Skip to main content

Advertisement

Log in

Exploring the therapeutic potential of ADC combination for triple-negative breast cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer. Currently, standard treatment options for TNBC are limited to surgery, adjuvant chemotherapy, and radiotherapy. However, these treatment methods are associated with a higher risk of intrinsic or acquired recurrence. Antibody–drug conjugates (ADCs) have emerged as a useful and promising class of cancer therapeutics. ADCs, also known as “biochemical missiles”, use a monoclonal antibody (mAb) to target tumor antigens and deliver a cytotoxic drug payload. Currently, several ADCs clinical studies are underway worldwide, including sacituzumab govitecan (SG), which was recently approved by the FDA for the treatment of TNBC. However, due to the fact that only a small portion of TNBC patients respond to ADC therapy and often develop resistance, growing evidence supports the use of ADCs in combination with other treatment strategies to treat TNBC. In this review, we described the current utilization of ADCs and discussed the prospects of ADC combination therapy for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TNBC:

Triple-negative breast cancer

ADCs:

Antibody–drug conjugates

mAb:

Monoclonal antibody

SG:

Sacituzumab govitecan

TDM1:

Trastuzumab emtansine

AML:

Acute myeloid leukemia

DAR:

Drug-to-antibody ratio

mTNBC:

Metastatic triple-negative breast cancer

Trop-2:

Anti-trophoblast cell-surface antigen 2

SGN-LIV1A:

Ladiratuzumab vedotin

MMAE:

Monomethyl auristatin E

EMT:

Epidermal-to-mesenchymal transition

ORR:

Objective response rate

DCR:

Disease control rate

DXd:

DX-8951 derivative

CPT:

Camptothecin

GGFG:

Glycine-phenylalanine-glycine

ILD:

Interstitial lung disease

TPC:

The physician’s choice

HR:

Hormone receptor

GV:

Glembatumumab vedotin

gpNMB:

Glycoprotein non-metastatic B

CBR:

Clinical benefit rate

CTCAE:

Common toxicity criteria for adverse events

DOR:

Duration of response

TILs:

Tumor infiltrating lymphocytes

pCR:

Pathological complete response

DFS:

Disease-free survival

BCS:

Breast conserving surgery rate

QOL:

Quality of life

TTP:

Time to progression

iDFS:

Invasive disease-free survival

DMFS:

Distant metastasis-free survival

BORR:

Best overall response rate

TOP1CCs:

TOP1 cleavage complexes

DLT:

Dose limiting toxicity

TTR:

Time-to-tumor response

rPFS:

Radiographic progression-free survival

MTIs:

Microtubule inhibitors

References

  1. Lambert JM, Chari RV (2014) Ado-trastuzumab Emtansine (T-DM1): an antibody–drug conjugate (ADC) for HER2-positive breast cancer. ACS Publications

    Google Scholar 

  2. Pondé N, Aftimos P, Piccart M (2019) Antibody-drug conjugates in breast cancer: a comprehensive review. Curr Treat Options Oncol 20(5):37

    PubMed  Google Scholar 

  3. Beck A, Goetsch L, Dumontet C, Corvaïa N (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337

    CAS  PubMed  Google Scholar 

  4. Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659–671

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain N, Smith SW, Ghone S, Tomczuk B (2015) Current ADC linker chemistry. Pharm Res 32(11):3526–3540

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107

    CAS  PubMed  Google Scholar 

  7. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM (2014) Antibody–drug conjugates: current status and future directions. Drug Discovery Today 19(7):869–881

    CAS  PubMed  Google Scholar 

  8. Sievers EL, Linenberger M (2001) Mylotarg: antibody-targeted chemotherapy comes of age. Curr Opin Oncol 13(6):522–527

    CAS  PubMed  Google Scholar 

  9. Beck A, Haeuw J-F, Wurch T, Goetsch L, Bailly C, Corvaïa N (2010) The next generation of antibody-drug conjugates comes of age. Discov Med 10(53):329–339

    PubMed  Google Scholar 

  10. Chen RW, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Connors JM, Engert A, Larsen EK, Kennedy DA et al (2011) Results from a pivotal phase II study of brentuximab vedotin (SGN-35) in patients with relapsed or refractory Hodgkin lymphoma (HL). J Clin Oncol 29(15):8031–8031

    Google Scholar 

  11. Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J, Guardino E, Song C, Tong B, Ng V (2013) Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 31(9):1157–1163

    CAS  PubMed  Google Scholar 

  12. Tsuchikama K, An Z (2018) Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 9(1):33–46

    CAS  PubMed  Google Scholar 

  13. Afzal F, Aiman W, Zahoor H, Bajwa AR, Kazmi SH, Anwar A, Anwar MY, Rashid S, Zubair H, Kashif T et al (2023) Efficacy and safety of antibody-drug conjugates in triple-negative and HER-2 positive breast cancer: a systematic review and meta-analysis of clinical trials. Breast Dis 42(1):121–136

    PubMed  Google Scholar 

  14. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A (2023) Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov 2:2

    Google Scholar 

  15. Hafeez U, Parakh S, Gan HK, Scott AM (2020) Antibody-drug conjugates for cancer therapy. Molecules 25:20

    Google Scholar 

  16. Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30(7):631–637

    CAS  PubMed  Google Scholar 

  17. Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28(16):2698–2704

    CAS  PubMed  Google Scholar 

  18. Nicolo E, Zagami P, Curigliano G (2020) Antibody-drug conjugates in breast cancer: the chemotherapy of the future? Curr Opin Oncol 32(5):494–502

    CAS  PubMed  Google Scholar 

  19. Wynne J, Wright D, Stock W (2019) Inotuzumab: from preclinical development to success in B-cell acute lymphoblastic leukemia. Blood Adv 3(1):96–104

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Williams G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    CAS  PubMed  Google Scholar 

  21. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, Thomas SS, Govindan SV, Maliakal PP, Wegener WA et al (2015) First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res 21(17):3870–3878

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Trudel S, Lendvai N, Popat R, Voorhees PM, Reeves B, Libby EN, Richardson PG, Hoos A, Gupta I, Bragulat V et al (2019) Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: an update on safety and efficacy from dose expansion phase I study. Blood Cancer J 9(4):37

    PubMed  PubMed Central  Google Scholar 

  23. Sanchez E, Li M, Kitto A, Li J, Wang CS, Kirk DT, Yellin O, Nichols CM, Dreyer MP, Ahles CP et al (2012) Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol 158(6):727–738

    CAS  PubMed  Google Scholar 

  24. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, Shah NC, O’Shaughnessy J, Kalinsky K, Guarino M et al (2017) Efficacy and safety of anti-trop-2 antibody drug conjugate Sacituzumab Govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol 35(19):2141–2148

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiss J, Glode A, Messersmith WA, Diamond J (2019) Sacituzumab govitecan: breakthrough targeted therapy for triple-negative breast cancer. Expert Rev Anticancer Ther 19(8):673–679

    CAS  PubMed  Google Scholar 

  26. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O’Shaughnessy J, Moroose RL, Santin AD, Abramson VG et al (2019) Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 380(8):741–751

    CAS  PubMed  Google Scholar 

  27. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB et al (2021) Sacituzumab Govitecan in metastatic triple-negative breast cancer. N Engl J Med 384(16):1529–1541

    CAS  PubMed  Google Scholar 

  28. Bardia A, Hurvitz SA, Rugo HS, Brufsky A, Cortes J, Loibl S, Piccart M, Cowden J, Spears P, Carey LA (2021) A plain language summary of the ASCENT study: Sacituzumab Govitecan for metastatic triple-negative breast cancer. Future Oncol 17(30):3911–3924

    CAS  PubMed  Google Scholar 

  29. Rizzo A, Cusmai A, Acquafredda S, Rinaldi L, Palmiotti G (2022) Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential. Expert Opin Investig Drugs 8:1–4

    Google Scholar 

  30. Taylor KM, Hiscox S, Nicholson RI (2004) Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab 15(10):461–463

    CAS  PubMed  Google Scholar 

  31. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558

    CAS  PubMed  Google Scholar 

  32. Modi S, Pusztai L, Forero A, Mita M, Miller K, Weise A, Krop I, Burris H III, Kalinsky K, Tsai M et al (2018) Abstract PD3–14: Phase 1 study of the antibody-drug conjugate SGN-LIV1A in patients with heavily pretreated triple-negative metastatic breast cancer. Cancer Res 78:4

    Google Scholar 

  33. Tsai M, Han H, Montero A, Tkaczuk K, Assad H, Pusztai L, Hurvitz S, Wilks S, Specht J, Nanda R (2021) 259P Weekly ladiratuzumab vedotin monotherapy for metastatic triple-negative breast cancer. Ann Oncol 32:S474–S475

    Google Scholar 

  34. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS et al (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387(1):9–20

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 2:2

    Google Scholar 

  36. Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R, Lecesne A (2023) Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci 24:11

    Google Scholar 

  37. Yang R, Li Y, Wang H, Qin T, Yin X, Ma X (2022) Therapeutic progress and challenges for triple negative breast cancer: targeted therapy and immunotherapy. Mol Biomed 3(1):8

    PubMed  PubMed Central  Google Scholar 

  38. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL (2015) Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 42(4):587–600

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD et al (2016) Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol 34(21):2460–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cortés J, Diab S, Basho RK, Oliveira M, Pluard T, Alemany C, Brown-Glaberman U, Meisel J, Boni V, Sinha R et al (2020) 357TiP SGNLVA-002: Single arm, open-label, phase Ib/II study of ladiratuzumab vedotin (LV) in combination with pembrolizumab for first-line treatment of triple-negative breast cancer. Ann Oncol 31:8

    Google Scholar 

  42. Han H, Diab S, Alemany C, Basho R, Brown-Glaberman U, Meisel J, Pluard T, Cortes J, Dillon P, Ettl J et al (2020) Abstract PD1–06: Open label phase 1b/2 study of ladiratuzumab vedotin in combination with pembrolizumab for first-line treatment of patients with unresectable locally-advanced or metastatic triple-negative breast cancer. Cancer Res 80:4

    Google Scholar 

  43. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379(22):2108–2121

    CAS  PubMed  Google Scholar 

  44. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069–1086

    PubMed  Google Scholar 

  45. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Henschel V, Molinero L, Chui SY (2020) Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21(1):44–59

    CAS  PubMed  Google Scholar 

  46. Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, Boccia R, Lippman ME, Somer R, Smakal M et al (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167(3):671–686

    CAS  PubMed  Google Scholar 

  47. Bachelot T, Filleron T, Bieche I, Arnedos M, Campone M, Dalenc F, Coussy F, Sablin MP, Debled M, Lefeuvre-Plesse C et al (2021) Durvalumab compared to maintenance chemotherapy in metastatic breast cancer: the randomized phase II SAFIR02-BREAST IMMUNO trial. Nat Med 27(2):250–255

    CAS  PubMed  Google Scholar 

  48. Schmid P, Jung KH, Wysocki PJ, Jassem J, Ma CX, Fernandes R, Huisden R, Stewart R, Vukovic P, Tablante Nunes A et al (2022) 166MO Datopotamab deruxtecan (Dato-DXd) + durvalumab (D) as first-line (1L) treatment for unresectable locally advanced/metastatic triple-negative breast cancer (a/mTNBC): Initial results from BEGONIA, a phase Ib/II study. Ann Oncol 33:8

    Google Scholar 

  49. Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39(1):8–24

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S et al (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J Cell Biol 199(2):235–249

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, Cao SA, Park E, Eck MJ, Scully R et al (2014) PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov 4(12):1430–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A et al (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533

    CAS  PubMed  Google Scholar 

  53. Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M et al (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Diéras V, Han HS, Kaufman B, Wildiers H, Friedlander M, Ayoub JP, Puhalla SL, Bondarenko I, Campone M, Jakobsen EH et al (2020) Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 21(10):1269–1282

    PubMed  Google Scholar 

  55. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J (2020) PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 19(1):107

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Noordermeer SM, van Attikum H (2019) PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol 29(10):820–834

    CAS  PubMed  Google Scholar 

  57. Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM (2017) Synthetic lethality exploitation by an anti–trop-2-SN-38 antibody-drug conjugate, IMMU-132, Plus PARP inhibitors in BRCA1/2–wild-type triple-negative breast cancer. Clin Cancer Res 23(13):3405–3415

    CAS  PubMed  Google Scholar 

  58. Bardia A, Coates JT, Spring L, Sun S, Juric D, Thimmiah N, Niemierko A, Ryan P, Partridge A, Peppercorn J et al (2022) Abstract 2638: Sacituzumab Govitecan, combination with PARP inhibitor, Talazoparib, in metastatic triple-negative breast cancer (TNBC): translational investigation. Cancer Res 82(12):2638–2638

    Google Scholar 

  59. Yap TA, Hamilton E, Bauer T, Dumbrava EE, Jeselsohn R, Enke A, Hurley S, Lin KK, Habeck J, Giordano H et al (2022) Phase Ib SEASTAR study: combining rucaparib and sacituzumab govitecan in patients with cancer with or without mutations in homologous recombination repair genes. JCO Precis Oncol 6:e2100456

    PubMed  PubMed Central  Google Scholar 

  60. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24(11):1770–1783

    CAS  PubMed  Google Scholar 

  61. Goel S, DeCristo MJ, McAllister SS, Zhao JJ (2018) CDK4/6 inhibition in cancer: beyond cell cycle arrest. Trends Cell Biol 28(11):911–925

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sherr CJ (1996) Cancer cell cycles. Science (New York, NY) 274(5293):1672–1677

    CAS  Google Scholar 

  63. Pernas S, Tolaney SM, Winer EP, Goel S (2018) CDK4/6 inhibition in breast cancer: current practice and future directions. Therap Adv Med Oncol 10:175

    Google Scholar 

  64. Goel S, Tan AR, Rugo HS, Aftimos P, Andrić Z, Beelen A, Zhang J, Yi JS, Malik R, O’Shaughnessy J (2022) Trilaciclib prior to gemcitabine plus carboplatin for metastatic triple-negative breast cancer: phase III PRESERVE 2. Fut Oncol 2:2

    Google Scholar 

  65. Initial results from phase 2 trial demonstrate potential of trilaciclib to reduce adverse events related to an antibody drug conjugate (ADC). In. News release. G1 Therapeutics. November 2, 2022: http://bit.ly/3DUA6rO

  66. Yao HP, Suthe SR, Hudson R, Wang MH (2020) Antibody-drug conjugates targeting RON receptor tyrosine kinase as a novel strategy for treatment of triple-negative breast cancer. Drug Discov Today 25(7):1160–1173

    CAS  PubMed  Google Scholar 

  67. Strop P, Tran TT, Dorywalska M, Delaria K, Dushin R, Wong OK, Ho WH, Zhou D, Wu A, Kraynov E et al (2016) RN927C, a site-specific trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol Cancer Ther 15(11):2698–2708

    CAS  PubMed  Google Scholar 

  68. Shor RE, Dai J, Lee SY, Pisarsky L, Matei I, Lucotti S, Lyden D, Bissell MJ, Ghajar CM (2022) The PI3K/mTOR inhibitor Gedatolisib eliminates dormant breast cancer cells in organotypic culture, but fails to prevent metastasis in preclinical settings. Mol Oncol 16(1):130–147

    CAS  PubMed  Google Scholar 

  69. Radovich M, Solzak JP, Wang CJ, Hancock BA, Badve S, Althouse SK, Bray SM, Storniolo AMV, Ballinger TJ, Schneider BP et al (2022) Initial phase I safety study of gedatolisib plus cofetuzumab pelidotin for patients with metastatic triple-negative breast cancer. Clin Cancer Res 28(15):3235–3241

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Jiangsu Province (Grant numbers BK20210096), National Natural Science Foundation of China (Grant numbers 82100109 and 82303622), Soochow University College Students Innovation and Entrepreneurship Fund (Grant numbers 5731514922).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception of the study and the preparation and approval of the paper. LL took the lead in writing the manuscript, while ZN, ZC, and CF played vital roles in conducting the literature review, collecting and analyzing the data. KC and YS were responsible for conceptualizing the study, analyzing the data, critically reviewing the content, and providing valuable revisions to the manuscript.

Corresponding authors

Correspondence to Kai Chen or Yaqin Shi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethics approval and consent to participate

The patients/participants provided written informed consent to participate in this study.

Consent for publication

All authors read and approved the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Niu, Z., Chao, Z. et al. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cell. Mol. Life Sci. 80, 350 (2023). https://doi.org/10.1007/s00018-023-04946-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04946-x

Keywords

Navigation