Skip to main content

Advertisement

Log in

Thymic stromal cell subsets for T cell development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The thymus provides a specialized microenvironment in which a variety of stromal cells of both hematopoietic and non-hematopoietic origin regulate development and repertoire selection of T cells. Recent studies have been unraveling the inter- and intracellular signals and transcriptional networks for spatiotemporal regulation of development of thymic stromal cells, mainly thymic epithelial cells (TECs), and the molecular mechanisms of how different TEC subsets control T cell development and selection. TECs are classified into two functionally different subsets: cortical TECs (cTECs) and medullary TECs (mTECs). cTECs induce positive selection of diverse and functionally distinct T cells by virtue of unique antigen-processing systems, while mTECs are essential for establishing T cell tolerance via ectopic expression of peripheral tissue-restricted antigens and cooperation with dendritic cells. In addition to reviewing the role of the thymic stroma in conventional T cell development, we will discuss recently discovered novel functions of TECs in the development of unconventional T cells, such as natural killer T cells and γδT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Von Boehmer H (2004) Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv Immunol 84(84):201–238. doi:10.1016/s0065-2776(04)84006-9

    Article  Google Scholar 

  2. Hogquist KA, Jameson SC (2014) The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat Immunol 15(9):815–823. doi:10.1038/ni.2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Miller JF (1961) Immunological function of thymus. Lancet 2(720):748–749

    Article  CAS  PubMed  Google Scholar 

  4. Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, Bean AGD, Ladyman HM, Ritter MA, Hugo P (1993) The thymic microenvironment. Immunol Today 14(9):445–459. doi:10.1016/0167-5699(93)90248-J

    Article  CAS  PubMed  Google Scholar 

  5. Gray DH, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL (2005) Controlling the thymic microenvironment. Curr Opin Immunol 17(2):137–143. doi:10.1016/j.coi.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  6. Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. doi:10.1016/j.it.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  7. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391. doi:10.1038/nri3667

    Article  CAS  PubMed  Google Scholar 

  8. Bhandoola A, Sambandam A, Allman D, Meraz A, Schwarz B (2003) Early T lineage progenitors: new insights, but old questions remain. J Immunol 171(11):5653–5658

    Article  CAS  PubMed  Google Scholar 

  9. Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135. doi:10.1038/nri1781

    Article  CAS  PubMed  Google Scholar 

  10. Jensen KDC, Su X, Shin S, Li L, Youssef S, Yarnasaki S, Steinman L, Saito T, Locksley RM, Davis MM, Baumgarth N, Chien Y-H (2008) Thymic selection determines gamma delta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29(1):90–100. doi:10.1016/j.immuni.2008.04.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Carding SR, Egan PJ (2002) gamma delta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345. doi:10.1038/nri.797

    Article  CAS  PubMed  Google Scholar 

  12. Kronenberg M, Engel I (2007) On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Curr Opin Immunol 19(2):186–193. doi:10.1016/j.coi.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  13. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CDId. Nat Immunol 2(10):971–978. doi:10.1038/ni710

    Article  CAS  PubMed  Google Scholar 

  14. Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5(5):546–553. doi:10.1038/ni1064

    Article  CAS  PubMed  Google Scholar 

  15. Anderson G, Lane PJL, Jenkinson EJ (2007) Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol 7(12):954–963. doi:10.1038/nri2187

    Article  CAS  PubMed  Google Scholar 

  16. Boehm T (2008) Thymus development and function. Curr Opin Immunol 20(2):178–184. doi:10.1016/j.coi.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  17. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the Winged-Helix protein family disrupted in mouse and rat nude mutations. Nature 372(6501):103–107. doi:10.1038/372103a0

    Article  CAS  PubMed  Google Scholar 

  18. Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, Miller JFAP, Morahan G (1996) The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci USA 93(12):5742–5746. doi:10.1073/pnas.93.12.5742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJH, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272(5263):886–889. doi:10.1126/science.272.5263.886

    Article  CAS  PubMed  Google Scholar 

  20. Vigliano I, Gorrese M, Fusco A, Vitiello L, Amorosi S, Panico L, Ursini MV, Calcagno G, Racioppi L, Del Vecchio L, Pignata C (2011) FOXN1 mutation abrogates prenatal T-cell development in humans. J Med Genet 48(6):413–416. doi:10.1136/jmg.2011.089532

    Article  CAS  PubMed  Google Scholar 

  21. Zuklys S, Gill J, Keller MP, Hauri-Hohl M, Zhanybekova S, Balciunaite G, Na KJ, Jeker LT, Hafen K, Tsukamoto N, Amagai T, Taketo MM, Krenger W, Hollander GA (2009) Stabilized beta-catenin in thymic epithelial cells blocks thymus development and function. J Immunol 182(5):2997–3007. doi:10.4049/jimmunol.0713723

    Article  CAS  PubMed  Google Scholar 

  22. Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Hollander GA (2002) Wnt glycoproteins regulate the expression of FoxNI, the gene defective in nude mice. Nat Immunol 3(11):1102–1108. doi:10.1038/ni850

    Article  CAS  PubMed  Google Scholar 

  23. Itoi M, Tsukamoto N, Amagai T (2007) Expression of DII4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int Immunol 19(2):127–132. doi:10.1093/intimm/dxl129

    Article  CAS  PubMed  Google Scholar 

  24. Senoo M, Pinto F, Crum CP, McKeon F (2007) p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129(3):523–536. doi:10.1016/j.cell.2007.02.045

    Article  CAS  PubMed  Google Scholar 

  25. Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, Knight R, Melino G (2007) Delta Np63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 104(29):11999–12004. doi:10.1073/pnas.0703458104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Liu B, Liu YF, Du YR, Mardaryev AN, Yang W, Chen H, Xu ZM, Xu CQ, Zhang XR, Botchkarev VA, Zhang Y, Xu GL (2013) Cbx4 regulates the proliferation of thymic epithelial cells and thymus function. Development 140(4):780–788. doi:10.1242/dev.085035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988–991. doi:10.1038/nature04813

    Article  CAS  PubMed  Google Scholar 

  28. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996. doi:10.1038/nature04850

    Article  CAS  PubMed  Google Scholar 

  29. Shakib S, Desanti GE, Jenkinson WE, Parnell SM, Jenkinson EJ, Anderson G (2009) Checkpoints in the development of thymic cortical epithelial cells. J Immunol 182(1):130–137

    Article  CAS  PubMed  Google Scholar 

  30. Baik S, Jenkinson EJ, Lane PJL, Anderson G, Jenkinson WE (2013) Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol 43(3):589–594. doi:10.1002/eji.201243209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ribeiro AR, Rodrigues PM, Meireles C, Di Santo JP, Alves NL (2013) Thymocyte selection regulates the homeostasis of IL-7-expressing thymic cortical epithelial cells in vivo. J Immunol 191(3):1200–1209. doi:10.4049/jimmunol.1203042

    Article  CAS  PubMed  Google Scholar 

  32. Ohigashi I, Zuklys S, Sakata M, Mayer CE, Zhanybekova S, Murata S, Tanaka K, Hollaender GA, Takahama Y (2013) Aire-expressing thymic medullary epithelial cells originate from beta 5t-expressing progenitor cells. Proc Natl Acad Sci USA 110(24):9885–9890. doi:10.1073/pnas.1301799110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ribeiro AR, Meireles C, Rodrigues PM, Alves NL (2014) Intermediate expression of CCRL1 reveals novel subpopulations of medullary thymic epithelial cells that emerge in the postnatal thymus. Eur J Immunol 44(10):2918–2924. doi:10.1002/eji.201444585

    Article  CAS  PubMed  Google Scholar 

  34. Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, Anderson G, Jenkinson WE (2014) Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol 44(1):16–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Klug DB, Carter C, Gimenez-Conti IB, Richie ER (2002) Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 169(6):2842–2845

    Article  CAS  PubMed  Google Scholar 

  36. Ripen AM, Nitta T, Murata S, Tanaka K, Takahama Y (2011) Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit beta 5t. Eur J Immunol 41(5):1278–1287. doi:10.1002/eji.201041375

    Article  CAS  PubMed  Google Scholar 

  37. Nitta T, Muro R, Shimizu Y, Nitta S, Oda H, Ohte Y, Goto M, Yanobu-Takanashi R, Narita T, Takayanagi H, Yasuda H, Okamura T, Murata S, Suzuki H (2015) The thymic cortical epithelium determines the TCR repertoire of IL-17-producing gamma delta T cells. EMBO Rep 16(5):638–653. doi:10.15252/embr.201540096

    Article  CAS  PubMed  Google Scholar 

  38. Hollander GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, Burakoff SJ, Gutierrez-Ramos JC, Terhorst C (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373(6512):350–353. doi:10.1038/373350a0

    Article  CAS  PubMed  Google Scholar 

  39. Roberts NA, Desanti GE, Withers DR, Scott HR, Jenkinson WE, Lane PJ, Jenkinson EJ, Anderson G (2009) Absence of thymus crosstalk in the fetus does not preclude hematopoietic induction of a functional thymus in the adult. Eur J Immunol 39(9):2395–2402. doi:10.1002/eji.200939501

    Article  CAS  PubMed  Google Scholar 

  40. Hozumi K, Mailhos C, Negishi N, Hirano K, Yahata T, Ando K, Zuklys S, Hollander GA, Shima DT, Habu S (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205(11):2507–2513. doi:10.1084/jem.20080134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, Macdonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205(11):2515–2523. doi:10.1084/jem.20080829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Calderon L, Boehm T (2012) Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell 149(1):159–172. doi:10.1016/j.cell.2012.01.049

    Article  CAS  PubMed  Google Scholar 

  43. Hara T, Shitara S, Imai K, Miyachi H, Kitano S, Yao H, Tani-ichi S, Ikuta K (2012) Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol 189(4):1577–1584. doi:10.4049/jimmunol.1200586

    Article  CAS  PubMed  Google Scholar 

  44. Moore TA, von Freeden-Jeffry U, Murray R, Zlotnik A (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7−/− mice. J Immunol 157(6):2366–2373

    CAS  PubMed  Google Scholar 

  45. Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Hollander GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K (2013) IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRgammadelta + intraepithelial lymphocytes. J Immunol 190(12):6173–6179. doi:10.4049/jimmunol.1202573

    Article  CAS  PubMed  Google Scholar 

  46. Boudil A, Matei IR, Shih HY, Bogdanoski G, Yuan JS, Chang SG, Montpellier B, Kowalski PE, Voisin V, Bashir S, Bader GD, Krangel MS, Guidos CJ (2015) IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte beta-selection. Nat Immunol 16(4):397–405. doi:10.1038/ni.3122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Plotkin J, Prockop SE, Lepique A, Petrie HT (2003) Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol 171(9):4521–4527

    Article  CAS  PubMed  Google Scholar 

  48. Benz C, Heinzel K, Bleul CC (2004) Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur J Immunol 34(12):3652–3663. doi:10.1002/eji.200425248

    Article  CAS  PubMed  Google Scholar 

  49. Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, Fujii N, Amagai T, Nagasawa T (2003) A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170(9):4649–4655

    Article  CAS  PubMed  Google Scholar 

  50. Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie HT, Forster R (2004) Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 200(4):481–491. doi:10.1084/jem.20040383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Trampont PC, Tosello-Trampont AC, Shen Y, Duley AK, Sutherland AE, Bender TP, Littman DR, Ravichandran KS (2010) CXCR4 acts as a costimulator during thymic beta-selection. Nat Immunol 11(2):162–170. doi:10.1038/ni.1830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Rode I, Boehm T (2012) Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci USA 109(9):3463–3468. doi:10.1073/pnas.1118823109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bunting MD, Comerford I, Seach N, Hammett MV, Asquith DL, Korner H, Boyd RL, Nibbs RJ, McColl SR (2013) CCX-CKR deficiency alters thymic stroma impairing thymocyte development and promoting autoimmunity. Blood 121(1):118–128. doi:10.1182/blood-2012-06-434886

    Article  CAS  PubMed  Google Scholar 

  54. Lucas B, White AJ, Ulvmar MH, Nibbs RJ, Sitnik KM, Agace WW, Jenkinson WE, Anderson G, Rot A (2015) CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol 45(2):574–583. doi:10.1002/eji.201445015

    Article  CAS  PubMed  Google Scholar 

  55. Prockop SE, Palencia S, Ryan CM, Gordon K, Gray D, Petrie HT (2002) Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J Immunol 169(8):4354–4361

    Article  CAS  PubMed  Google Scholar 

  56. Takahama Y, Letterio JJ, Suzuki H, Farr AG, Singer A (1994) Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor beta. J Exp Med 179(5):1495–1506

    Article  CAS  PubMed  Google Scholar 

  57. Bousso P, Bhakta NR, Lewis RS, Robey E (2002) Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296(5574):1876–1880. doi:10.1126/science.1070945

    Article  CAS  PubMed  Google Scholar 

  58. Bhakta NR, Oh DY, Lewis RS (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6(2):143–151. doi:10.1038/ni1161

    Article  CAS  PubMed  Google Scholar 

  59. Phee H, Dzhagalov I, Mollenauer M, Wang Y, Irvine DJ, Robey E, Weiss A (2010) Regulation of thymocyte positive selection and motility by GIT2. Nat Immunol 11(6):503–511. doi:10.1038/ni.1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Korthals M, Schilling K, Reichardt P, Mamula D, Schluter T, Steiner M, Langnase K, Thomas U, Gundelfinger E, Premont RT, Tedford K, Fischer KD (2014) AlphaPIX RhoGEF supports positive selection by restraining migration and promoting arrest of thymocytes. J Immunol 192(7):3228–3238. doi:10.4049/jimmunol.1302585

    Article  CAS  PubMed  Google Scholar 

  61. Sijts EJ, Kloetzel PM (2011) The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci 68(9):1491–1502. doi:10.1007/s00018-011-0657-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    Article  CAS  PubMed  Google Scholar 

  63. Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2(3):179–187. doi:10.1038/35056572

    Article  CAS  PubMed  Google Scholar 

  64. Murata S, Sasaki K, Kishimoto T, S-i Niwa, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316(5829):1349–1353. doi:10.1126/science.1141915

    Article  CAS  PubMed  Google Scholar 

  65. Tomaru U, Ishizu A, Murata S, Miyatake Y, Suzuki S, Takahashi S, Kazamaki T, Ohara J, Baba T, Iwasaki S, Fugo K, Otsuka N, Tanaka K, Kasahara M (2009) Exclusive expression of proteasome subunit {beta}5t in the human thymic cortex. Blood 113(21):5186–5191. doi:10.1182/blood-2008-11-187633

    Article  CAS  PubMed  Google Scholar 

  66. Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32(1):29–40. doi:10.1016/j.immuni.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  67. Xing Y, Jameson SC, Hogquist KA (2013) Thymoproteasome subunit-beta 5T generates peptide-MHC complexes specialized for positive selection. Proc Natl Acad Sci USA 110(17):6979–6984. doi:10.1073/pnas.1222244110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Takada K, Van Laethem F, Xing Y, Akane K, Suzuki H, Murata S, Tanaka K, Jameson SC, Singer A, Takahama Y (2015) TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8(+) T cells. Nat Immunol 16(10):1069–1076. doi:10.1038/ni.3237

    Article  CAS  PubMed  Google Scholar 

  69. Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, Takahama Y, Murata S (2015) Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun 6:7484. doi:10.1038/ncomms8484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Takahama Y, Nitta T, Mat Ripen A, Nitta S, Murata S, Tanaka K (2010) Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin Immunol 22(5):287–293. doi:10.1016/j.smim.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  71. Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3(6):472–482. doi:10.1038/nri1110

    Article  CAS  PubMed  Google Scholar 

  72. Bowlus CL, Ahn J, Chu T, Gruen JR (1999) Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol 196(2):80–86. doi:10.1006/cimm.1999.1543

    Article  CAS  PubMed  Google Scholar 

  73. Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280(5362):450–453

    Article  CAS  PubMed  Google Scholar 

  74. Honey K, Nakagawa T, Peters C, Rudensky A (2002) Cathepsin L regulates CD4(+) T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 195(10):1349–1358. doi:10.1084/jem.20011904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Gommeaux J, Gregoire C, Nguessan P, Richelme M, Malissen M, Guerder S, Malissen B, Carrier A (2009) Thymus-specific serine protease regulates positive selection of a subset of CD4(+) thymocytes. Eur J Immunol 39(4):956–964. doi:10.1002/eji.200839175

    Article  CAS  PubMed  Google Scholar 

  76. Viret C, Lamare C, Guiraud M, Fazilleau N, Bour A, Malissen B, Carrier A, Guerder S (2011) Thymus-specific serine protease contributes to the diversification of the functional endogenous CD4 T cell receptor repertoire. J Exp Med 208(1):3–11. doi:10.1084/jem.20100027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Viret C, Leung-Theung-Long S, Serre L, Lamare C, Vignali DA, Malissen B, Carrier A, Guerder S (2011) Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. J Clin Invest 121(5):1810–1821. doi:10.1172/JCI43314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455(7211):396–400. doi:10.1038/nature07208

    Article  CAS  PubMed  Google Scholar 

  79. Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, Jameson SC, Hogquist KA (2013) Murine thymic selection quantified using a unique method to capture deleted T cells. Proc Natl Acad Sci USA 110(12):4679–4684. doi:10.1073/pnas.1217532110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205(11):2575–2584. doi:10.1084/jem.20080866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Wekerle H, Ketelsen UP (1980) Thymic nurse cells–Ia-bearing epithelium involved in T-lymphocyte differentiation? Nature 283(5745):402–404

    Article  CAS  PubMed  Google Scholar 

  82. Wekerle H, Ketelsen UP, Ernst M (1980) Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization. J Exp Med 151(4):925–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Pezzano M, Samms M, Martinez M, Guyden J (2001) Questionable thymic nurse cell. Microbiol Mol Biol Rev 65(3):390–403. doi:10.1128/MMBR.65.3.390-403.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Nakagawa Y, Ohigashi I, Nitta T, Sakata M, Tanaka K, Murata S, Kanagawa O, Takahama Y (2012) Thymic nurse cells provide microenvironment for secondary T cell receptor alpha rearrangement in cortical thymocytes. Proc Natl Acad Sci USA 109(50):20572–20577. doi:10.1073/pnas.1213069109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Guo J, Hawwari A, Li H, Sun Z, Mahanta SK, Littman DR, Krangel MS, He YW (2002) Regulation of the TCRalpha repertoire by the survival window of CD4(+)CD8(+) thymocytes. Nat Immunol 3(5):469–476. doi:10.1038/ni791

    Article  PubMed  CAS  Google Scholar 

  86. Ni PP, Solomon B, Hsieh CS, Allen PM, Morris GP (2014) The ability to rearrange dual TCRs enhances positive selection, leading to increased allo- and autoreactive T cell repertoires. J Immunol 193(4):1778–1786. doi:10.4049/jimmunol.1400532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Sano S, Takahama Y, Sugawara T, Kosaka H, Itami S, Yoshikawa K, Miyazaki J, van Ewijk W, Takeda J (2001) Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15(2):261–273

    Article  CAS  PubMed  Google Scholar 

  88. Munoz JJ, Alfaro D, Garcia-Ceca J, Alonso CL, Jimenez E, Zapata A (2006) Thymic alterations in EphA4-deficient mice. J Immunol 177(2):804–813

    Article  CAS  PubMed  Google Scholar 

  89. Assarsson E, Chambers BJ, Hogstrand K, Berntman E, Lundmark C, Fedorova L, Imreh S, Grandien A, Cardell S, Rozell B, Ljunggren H-G (2007) Severe defect in thymic development in an insertional mutant mouse model. J Immunol 178(8):5018–5027

    Article  CAS  PubMed  Google Scholar 

  90. Vantourout P, Hayday A (2013) Six-of-the-best: unique contributions of gamma delta T cells to immunology. Nat Rev Immunol 13(2):88–100. doi:10.1038/nri3384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Haas JD, Ravens S, Dueber S, Sandrock I, Oberdoerfer L, Kashani E, Chennupati V, Foehse L, Naumann R, Weiss S, Krueger A, Foerster R, Prinz I (2012) Development of interleukin-17-producing gamma delta T cells is restricted to a functional embryonic wave. Immunity 37(1):48–59. doi:10.1016/j.immuni.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  92. Cai Y, Xue F, Fleming C, Yang J, Ding C, Ma Y, Liu M, Zhang HG, Zheng J, Xiong N, Yan J (2014) Differential developmental requirement and peripheral regulation for dermal Vgamma4 and Vgamma6T17 cells in health and inflammation. Nat Commun 5:3986. doi:10.1038/ncomms4986

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, Withers DR, McConnell FM, Desanti GE, Benezech C, Parnell SM, Cunningham AF, Paolino M, Penninger JM, Simon AK, Nitta T, Ohigashi I, Takahama Y, Caamano JH, Hayday AC, Lane PJL, Jenkinson EJ, Anderson G (2012) Rank signaling links the development of invariant gamma delta T cell progenitors and Aire(+) medullary epithelium. Immunity 36(3):427–437. doi:10.1016/j.immuni.2012.01.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108(12):3777–3785. doi:10.1182/blood-2006-02-004531

    Article  CAS  PubMed  Google Scholar 

  95. Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, Matsumoto M, Minato N (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8(3):304–311. doi:10.1038/ni1438

    Article  CAS  PubMed  Google Scholar 

  96. Gabler J, Arnold J, Kyewski B (2007) Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol 37(12):3363–3372. doi:10.1002/eji.200737131

    Article  PubMed  CAS  Google Scholar 

  97. Gray D, Abramson J, Benoist C, Mathis D (2007) Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204(11):2521–2528. doi:10.1084/jem.20070795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Khan IS, Mouchess ML, Zhu ML, Conley B, Fasano KJ, Hou Y, Fong L, Su MA, Anderson MS (2014) Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. J Exp Med 211(5):761–768. doi:10.1084/jem.20131889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Metzger TC, Khan IS, Gardner JM, Mouchess ML, Johannes KP, Krawisz AK, Skrzypczynska KM, Anderson MS (2013) Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. Cell Rep 5(1):166–179. doi:10.1016/j.celrep.2013.08.038

    Article  CAS  PubMed  Google Scholar 

  100. Nishikawa Y, Nishijima H, Matsumoto M, Morimoto J, Hirota F, Takahashi S, Luche H, Fehling HJ, Mouri Y, Matsumoto M (2014) Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program. J Immunol 192(6):2585–2592. doi:10.4049/jimmunol.1302786

    Article  CAS  PubMed  Google Scholar 

  101. Lkhagvasuren E, Sakata M, Ohigashi I, Takahama Y (2013) Lymphotoxin beta receptor regulates the development of CCL21-expressing subset of postnatal medullary thymic epithelial cells. J Immunol 190(10):5110–5117. doi:10.4049/jimmunol.1203203

    Article  CAS  PubMed  Google Scholar 

  102. Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, Kiyonari H, Maemura K, Yanagawa Y, Obata K, Takahashi S, Ikawa T, Satoh R, Kawamoto H, Mouri Y, Matsumoto M (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205(12):2827–2838. doi:10.1084/jem.20080046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. White AJ, Nakamura K, Jenkinson WE, Saini M, Sinclair C, Seddon B, Narendran P, Pfeffer K, Nitta T, Takahama Y, Caamano JH, Lane PJL, Jenkinson EJ, Anderson G (2010) Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol 185(8):4769–4776. doi:10.4049/jimmunol.1002151

    Article  CAS  PubMed  Google Scholar 

  104. Shores EW, Van Ewijk W, Singer A (1991) Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur J Immunol 21(7):1657–1661. doi:10.1002/eji.1830210711

    Article  CAS  PubMed  Google Scholar 

  105. Philpott KL, Viney JL, Kay G, Rastan S, Gardiner EM, Chae S, Hayday AC, Owen MJ (1992) Lymphoid development in mice congenitally lacking T cell receptor alpha beta-expressing cells. Science 256(5062):1448–1452

    Article  CAS  PubMed  Google Scholar 

  106. Surh CD, Ernst B, Sprent J (1992) Growth of epithelial-cells in the thymic medulla is under the control of mature t-cells. J Exp Med 176(2):611–616. doi:10.1084/jem.176.2.611

    Article  CAS  PubMed  Google Scholar 

  107. Negishi I, Motoyama N, Nakayama K, Nakayama K, Senju S, Hatakeyama S, Zhang Q, Chan AC, Loh DY (1995) Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376(6539):435–438. doi:10.1038/376435a0

    Article  CAS  PubMed  Google Scholar 

  108. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373(6514):531–536. doi:10.1038/373531a0

    Article  CAS  PubMed  Google Scholar 

  109. Weih F, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, Lira SA, Bravo R (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80(2):331–340

    Article  CAS  PubMed  Google Scholar 

  110. Naspetti M, Aurrand-Lions M, DeKoning J, Malissen M, Galland F, Lo D, Naquet P (1997) Thymocytes and RelB-dependent medullary epithelial cells provide growth-promoting and organization signals, respectively, to thymic medullary stromal cells. Eur J Immunol 27(6):1392–1397. doi:10.1002/eji.1830270615

    Article  CAS  PubMed  Google Scholar 

  111. Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172(4):2067–2075

    Article  CAS  PubMed  Google Scholar 

  112. Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308(5719):248–251. doi:10.1126/science.1105677

    Article  CAS  PubMed  Google Scholar 

  113. Kinoshita D, Hirota F, Kaisho T, Kasai M, Izumi K, Bando Y, Mouri Y, Matsushima A, Niki S, Han H, Oshikawa K, Kuroda N, Maegawa M, Irahara M, Takeda K, Akira S, Matsumoto M (2006) Essential role of IkappaB kinase alpha in thymic organogenesis required for the establishment of self-tolerance. J Immunol 176(7):3995–4002

    Article  CAS  PubMed  Google Scholar 

  114. Zhu M, Chin RK, Christiansen PA, Lo JC, Liu X, Ware C, Siebenlist U, Fu YX (2006) NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest 116(11):2964–2971. doi:10.1172/JCI28326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Zhang B, Wang Z, Ding J, Peterson P, Gunning WT, Ding HF (2006) NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem 281(50):38617–38624. doi:10.1074/jbc.M606705200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Zhang X, Wang H, Claudio E, Brown K, Siebenlist U (2007) A role for the IkappaB family member Bcl-3 in the control of central immunologic tolerance. Immunity 27(3):438–452. doi:10.1016/j.immuni.2007.07.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Boehm T, Scheu S, Pfeffer K, Bleul CC (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med 198(5):757–769. doi:10.1084/jem.20030794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE, Glanville SH, McConnell FM, Scott HS, Penninger JM, Jenkinson EJ, Lane PJL, Anderson G (2007) RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204(6):1267–1272. doi:10.1084/jem.20062497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, J-i Inoue (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29(3):423–437. doi:10.1016/j.immuni.2008.06.015

    Article  CAS  PubMed  Google Scholar 

  120. Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, J-I Inoue, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes Fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29(3):438–450. doi:10.1016/j.immuni.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  121. Irla M, Hugues S, Gill J, Nitta T, Hikosaka Y, Williams IR, Hubert F-X, Scott HS, Takahama Y, Hollaender GA, Reith W (2008) Autoantigen-specific interactions with CD4(+) thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29(3):451–463. doi:10.1016/j.immuni.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  122. Irla M, Guerri L, Guenot J, Serge A, Lantz O, Liston A, Imhof BA, Palmer E, Reith W (2012) Antigen recognition by autoreactive CD4(+) thymocytes drives homeostasis of the thymic medulla. PLoS ONE 7(12):e52591. doi:10.1371/journal.pone.0052591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Irla M, Guenot J, Sealy G, Reith W, Imhof BA, Serge A (2013) Three-dimensional visualization of the mouse thymus organization in health and immunodeficiency. J Immunol 190(2):586–596. doi:10.4049/jimmunol.1200119

    Article  CAS  PubMed  Google Scholar 

  124. Jenkinson SR, Williams JA, Jeon H, Zhang J, Nitta T, Ohigashi I, Kruhlak M, Zuklys S, Sharrow S, Adams A, Granger L, Choi Y, Siebenlist U, Bishop GA, Hollander GA, Takahama Y, Hodes RJ (2013) TRAF3 enforces the requirement for T cell cross-talk in thymic medullary epithelial development. Proc Natl Acad Sci USA 110(52):21107–21112. doi:10.1073/pnas.1314859111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Williams JA, Zhang J, Jeon H, Nitta T, Ohigashi I, Klug D, Kruhlak MJ, Choudhury B, Sharrow SO, Granger L, Adams A, Eckhaus MA, Jenkinson SR, Richie ER, Gress RE, Takahama Y, Hodes RJ (2014) Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. J Immunol 192(2):630–640. doi:10.4049/jimmunol.1302550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. White AJ, Withers DR, Parnell SM, Scott HS, Finke D, Lane PJL, Jenkinson EJ, Anderson G (2008) Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol 38(4):942–947. doi:10.1002/eji.200738052

    Article  CAS  PubMed  Google Scholar 

  127. White AJ, Jenkinson WE, Cowan JE, Parnell SM, Bacon A, Jones ND, Jenkinson EJ, Anderson G (2014) An essential role for medullary thymic epithelial cells during the intrathymic development of invariant NKT cells. J Immunol 192(6):2659–2666. doi:10.4049/jimmunol.1303057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Zhu M, Chin RK, Tumanov AV, Liu X, Fu YX (2007) Lymphotoxin beta receptor is required for the migration and selection of autoreactive T cells in thymic medulla. J Immunol 179(12):8069–8075

    Article  CAS  PubMed  Google Scholar 

  129. Seach N, Ueno T, Fletcher AL, Lowen T, Mattesich M, Engwerda CR, Scott HS, Ware CF, Chidgey AP, Gray DH, Boyd RL (2008) The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J Immunol 180(8):5384–5392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Mouri Y, Yano M, Shinzawa M, Shimo Y, Hirota F, Nishikawa Y, Nii T, Kiyonari H, Abe T, Uehara H, Izumi K, Tamada K, Chen L, Penninger JM, Inoue J, Akiyama T, Matsumoto M (2011) Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol 186(9):5047–5057. doi:10.4049/jimmunol.1003533

    Article  CAS  PubMed  Google Scholar 

  131. Akiyama N, Shinzawa M, Miyauchi M, Yanai H, Tateishi R, Shimo Y, Ohshima D, Matsuo K, Sasaki I, Hoshino K, Wu G, Yagi S, Inoue J, Kaisho T, Akiyama T (2014) Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation. J Exp Med 211(12):2425–2438. doi:10.1084/jem.20141207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Otero DC, Baker DP, David M (2013) IRF7-dependent IFN-beta production in response to RANKL promotes medullary thymic epithelial cell development. J Immunol 190(7):3289–3298. doi:10.4049/jimmunol.1203086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Hauri-Hohl M, Zuklys S, Hollander GA, Ziegler SF (2014) A regulatory role for TGF-beta signaling in the establishment and function of the thymic medulla. Nat Immunol 15(6):554–561. doi:10.1038/ni.2869

    Article  CAS  PubMed  Google Scholar 

  134. Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S, Hollander GA, Matthys P, Gray DH, De Strooper B, Liston A (2012) The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor. Nat Immunol 13(2):181–187. doi:10.1038/ni.2193

    Article  CAS  Google Scholar 

  135. Zuklys S, Mayer CE, Zhanybekova S, Stefanski HE, Nusspaumer G, Gill J, Barthlott T, Chappaz S, Nitta T, Dooley J, Nogales-Cadenas R, Takahama Y, Finke D, Liston A, Blazar BR, Pascual-Montano A, Hollander GA (2012) MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. J Immunol 189(8):3894–3904. doi:10.4049/jimmunol.1200783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Ueno T, Saito F, Gray DHD, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd RL, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200(4):493–505. doi:10.1084/jem.20040643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Gray DH, Tull D, Ueno T, Seach N, Classon BJ, Chidgey A, McConville MJ, Boyd RL (2007) A unique thymic fibroblast population revealed by the monoclonal antibody MTS-15. J Immunol 178(8):4956–4965

    Article  CAS  PubMed  Google Scholar 

  138. Kwan J, Killeen N (2004) CCR7 directs the migration of thymocytes into the thymic medulla. J Immunol 172(7):3999–4007

    Article  CAS  PubMed  Google Scholar 

  139. Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M, Boyd RL, Takahama Y (2006) CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24(2):165–177. doi:10.1016/j.immuni.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  140. McCaughtry TM, Wilken MS, Hogquist KA (2007) Thymic emigration revisited. J Exp Med 204(11):2513–2520. doi:10.1084/jem.20070601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Nitta T, Nitta S, Lei Y, Lipp M, Takahama Y (2009) CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc Natl Acad Sci USA 106(40):17129–17133. doi:10.1073/pnas.0906956106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Hopken UE, Wengner AM, Loddenkemper C, Stein H, Heimesaat MM, Rehm A, Lipp M (2007) CCR7 deficiency causes ectopic lymphoid neogenesis and disturbed mucosal tissue integrity. Blood 109(3):886–895. doi:10.1182/blood-2006-03-013532

    Article  PubMed  CAS  Google Scholar 

  143. Davalos-Misslitz AC, Rieckenberg J, Willenzon S, Worbs T, Kremmer E, Bernhardt G, Forster R (2007) Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur J Immunol 37(3):613–622. doi:10.1002/eji.200636656

    Article  CAS  PubMed  Google Scholar 

  144. Reinhardt A, Ravens S, Fleige H, Haas JD, Oberdorfer L, Lyszkiewicz M, Forster R, Prinz I (2014) CCR7-mediated migration in the thymus controls gammadelta T-cell development. Eur J Immunol 44(5):1320–1329. doi:10.1002/eji.201344330

    Article  CAS  PubMed  Google Scholar 

  145. Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, Malefyt Rde W, Nitta T, Takahama Y (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208(2):383–394. doi:10.1084/jem.20102327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972):355–360. doi:10.1038/nature02284

    Article  CAS  PubMed  Google Scholar 

  147. Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279(15):15396–15401. doi:10.1074/jbc.M314291200

    Article  CAS  PubMed  Google Scholar 

  148. Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328(5982):1129–1135. doi:10.1126/science.1188222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316(5822):295–298. doi:10.1126/science.1139221

    Article  CAS  PubMed  Google Scholar 

  150. Love PE, Bhandoola A (2011) Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 11(7):469–477. doi:10.1038/nri2989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Klein L, Kyewski B (2000) “Promiscuous” expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity? J Mol Med (Berl) 78(9):483–494

    Article  CAS  Google Scholar 

  152. Klein L, Klugmann M, Nave KA, Tuohy VK, Kyewski B (2000) Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 6(1):56–61. doi:10.1038/71540

    Article  CAS  PubMed  Google Scholar 

  153. Derbinski J, Schulte A, Kyewski B, Klein L (2001) Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol 2(11):1032–1039. doi:10.1038/ni723

    Article  CAS  PubMed  Google Scholar 

  154. Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202(1):33–45. doi:10.1084/jem.20050471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. DeKoning J, DiMolfetto L, Reilly C, Wei Q, Havran WL, Lo D (1997) Thymic cortical epithelium is sufficient for the development of mature T cells in relB-deficient mice. J Immunol 158(6):2558–2566

    CAS  PubMed  Google Scholar 

  156. Pinto S, Michel C, Schmidt-Glenewinkel H, Harder N, Rohr K, Wild S, Brors B, Kyewski B (2013) Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity. Proc Natl Acad Sci USA 110(37):E3497–E3505. doi:10.1073/pnas.1308311110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Anderson MS, Venanzi ES, Klein L, Chen ZB, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298(5597):1395–1401. doi:10.1126/science.1075958

    Article  CAS  PubMed  Google Scholar 

  158. Heino M, Peterson P, Kudoh J, Nagamine K, Lagerstedt A, Ovod V, Ranki A, Rantala I, Nieminen M, Tuukkanen J, Scott HS, Antonarakis SE, Shimizu N, Krohn K (1999) Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem Biophys Res Commun 257(3):821–825. doi:10.1006/bbrc.1999.0308

    Article  CAS  PubMed  Google Scholar 

  159. Heino M, Peterson P, Sillanpaa N, Guerin S, Wu L, Anderson G, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Jenkinson EJ, Naquet P, Krohn KJ (2000) RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur J Immunol 30(7):1884–1893

    Article  CAS  PubMed  Google Scholar 

  160. Zuklys S, Balciunaite G, Agarwal A, Fasler-Kan E, Palmer E, Hollander GA (2000) Normal thymic architecture and negative selection are associated with Aire expression, the gene defective in the autoimmune-polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED). J Immunol 165(4):1976–1983

    Article  CAS  PubMed  Google Scholar 

  161. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4(4):350–354. doi:10.1038/ni906

    Article  CAS  PubMed  Google Scholar 

  162. Liston A, Gray DH, Lesage S, Fletcher AL, Wilson J, Webster KE, Scott HS, Boyd RL, Peltonen L, Goodnow CC (2004) Gene dosage–limiting role of Aire in thymic expression, clonal deletion, and organ-specific autoimmunity. J Exp Med 200(8):1015–1026. doi:10.1084/jem.20040581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Anderson MS, Venanzi ES, Chen ZB, Berzins SP, Benoist C, Mathis D (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23(2):227–239. doi:10.1016/j.immuni.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  164. Aschenbrenner K, D’Cruz LM, Vollmann EH, Hinterberger M, Emmerich J, Swee LK, Rolink A, Klein L (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8(4):351–358. doi:10.1038/ni1444

    Article  CAS  PubMed  Google Scholar 

  165. Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP, Socci ND, Savage PA (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339(6124):1219–1224. doi:10.1126/science.1233913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348(6234):589–594. doi:10.1126/science.aaa7017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N (1997) Positional cloning of the APECED gene. Nat Genet 17(4):393–398. doi:10.1038/ng1297-393

    Article  CAS  PubMed  Google Scholar 

  168. Aaltonen J, Bjorses P, Perheentupa J, HorelliKuitunen N, Palotie A, Peltonen L, Lee YS, Francis F, Hennig S, Thiel C, Lehrach H, Yaspo ML (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17(4):399–403. doi:10.1038/ng1297-399

    Article  Google Scholar 

  169. Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O, Eskelin P, Pelto-Huikko M, Peltonen L (2002) Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11(4):397–409

    Article  CAS  PubMed  Google Scholar 

  170. Kuroda N, Mitani T, Takeda N, Ishimaru N, Arakaki R, Hayashi Y, Bando Y, Izumi K, Takahashi T, Nomura T, Sakaguchi S, Ueno T, Takahama Y, Uchida D, Sun SJ, Kajiura F, Mouri Y, Han HW, Matsushima A, Yamada G, Matsumoto M (2005) Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of aire-deficient mice. J Immunol 174(4):1862–1870

    Article  CAS  PubMed  Google Scholar 

  171. Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, Benoist C (2012) Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA 109(2):535–540. doi:10.1073/pnas.1119351109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, Greer A, Fasano K, Martinez-Llordella M, Pollack JL, Erle DJ, Su M, Anderson MS (2014) The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat Immunol 15(3):258–265. doi:10.1038/ni.2820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Venanzi ES, Melamed R, Mathis D, Benoist C (2008) The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc Natl Acad Sci USA 105(41):15860–15865. doi:10.1073/pnas.0808070105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Abramson J, Giraud M, Benoist C, Mathis D (2010) Aire’s partners in the molecular control of immunological tolerance. Cell 140(1):123–135. doi:10.1016/j.cell.2009.12.030

    Article  CAS  PubMed  Google Scholar 

  175. Giraud M, Jmari N, Du L, Carallis F, Nieland TJ, Perez-Campo FM, Bensaude O, Root DE, Hacohen N, Mathis D, Benoist C (2014) An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. Proc Natl Acad Sci USA 111(4):1491–1496. doi:10.1073/pnas.1323535111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Gillard GO, Farr AG (2005) Contrasting models of promiscuous gene expression by thymic epithelium. J Exp Med 202(1):15–19. doi:10.1084/jem.20050976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Gillard GO, Dooley J, Erickson M, Peltonen L, Farr AG (2007) Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 178(5):3007–3015

    Article  CAS  PubMed  Google Scholar 

  178. Dooley J, Erickson M, Farr AG (2008) Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 181(8):5225–5232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Ruan QG, Tung K, Eisenman D, Setiady Y, Eckenrode S, Yi B, Purohit S, Zheng WP, Zhang Y, Peltonen L, She JX (2007) The autoimmune regulator directly controls the expression of genes critical for thymic epithelial function. J Immunol 178(11):7173–7180

    Article  CAS  PubMed  Google Scholar 

  180. Laan M, Kisand K, Kont V, Moll K, Tserel L, Scott HS, Peterson P (2009) Autoimmune regulator deficiency results in decreased expression of CCR4 and CCR7 ligands and in delayed migration of CD4+ thymocytes. J Immunol 183(12):7682–7691. doi:10.4049/jimmunol.0804133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C (2015) Differential features of AIRE-induced and AIRE-independent promiscuous gene expression in thymic epithelial cells. J Immunol 195(2):498–506. doi:10.4049/jimmunol.1500558

    Article  CAS  PubMed  Google Scholar 

  182. Macedo C, Evangelista AF, Marques MM, Octacilio-Silva S, Donadi EA, Sakamoto-Hojo ET, Passos GA (2013) Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology 218(4):554–560. doi:10.1016/j.imbio.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  183. Ucar O, Tykocinski LO, Dooley J, Liston A, Kyewski B (2013) An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression. Eur J Immunol 43(7):1769–1778. doi:10.1002/eji.201343343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Hollander GA (2014) Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 24(12):1918–1931. doi:10.1101/gr.171645.113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Chin RK, Zhu M, Christiansen PA, Liu W, Ware C, Peltonen L, Zhang X, Guo L, Han S, Zheng B, Fu YX (2006) Lymphotoxin pathway-directed, autoimmune regulator-independent central tolerance to arthritogenic collagen. J Immunol 177(1):290–297

    Article  CAS  PubMed  Google Scholar 

  186. Bos R, van Duikeren S, van Hall T, Kaaijk P, Taubert R, Kyewski B, Klein L, Melief CJ, Offringa R (2005) Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer Res 65(14):6443–6449. doi:10.1158/0008-5472.CAN-05-0666

    Article  CAS  PubMed  Google Scholar 

  187. Cloosen S, Arnold J, Thio M, Bos GM, Kyewski B, Germeraad WT (2007) Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res 67(8):3919–3926. doi:10.1158/0008-5472.CAN-06-2112

    Article  CAS  PubMed  Google Scholar 

  188. Zhu ML, Nagavalli A, Su MA (2013) Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res 73(7):2104–2116. doi:10.1158/0008-5472.CAN-12-3781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Wu L, Shortman K (2005) Heterogeneity of thymic dendritic cells. Semin Immunol 17(4):304–312. doi:10.1016/j.smim.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  190. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH (2006) Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7(10):1092–1100. doi:10.1038/ni1385

    Article  CAS  PubMed  Google Scholar 

  191. Moore NC, Anderson G, McLoughlin DE, Owen JJ, Jenkinson EJ (1994) Differential expression of Mtv loci in MHC class II-positive thymic stromal cells. J Immunol 152(10):4826–4831

    CAS  PubMed  Google Scholar 

  192. Ferrero I, Anjuere F, MacDonald HR, Ardavin C (1997) In vitro negative selection of viral superantigen-reactive thymocytes by thymic dendritic cells. Blood 90(5):1943–1951

    CAS  PubMed  Google Scholar 

  193. Gallegos AM, Bevan MJ (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200(8):1039–1049. doi:10.1084/jem.20041457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Atibalentja DF, Byersdorfer CA, Unanue ER (2009) Thymus-blood protein interactions are highly effective in negative selection and regulatory T cell induction. J Immunol 183(12):7909–7918. doi:10.4049/jimmunol.0902632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Baba T, Badr Mel S, Tomaru U, Ishizu A, Mukaida N (2012) Novel process of intrathymic tumor-immune tolerance through CCR2-mediated recruitment of Sirpalpha + dendritic cells: a murine model. PLoS ONE 7(7):e41154. doi:10.1371/journal.pone.0041154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, Pachynski R, Nguyen L, Ghodsi A, Adler S, Butcher EC (2012) Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36(3):438–450. doi:10.1016/j.immuni.2012.01.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10(7):490–500. doi:10.1038/nri2785

    Article  CAS  PubMed  Google Scholar 

  198. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564. doi:10.1146/annurev.immunol.25.022106.141623

    Article  CAS  PubMed  Google Scholar 

  199. Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202(7):901–906. doi:10.1084/jem.20050784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Lio CWJQ, Hsieh CS (2008) A two-step process for thymic regulatory T cell development. Immunity 28(1):100–111. doi:10.1016/j.immuni.2007.11.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Tai X, Erman B, Alag A, Mu J, Kimura M, Katz G, Guinter T, McCaughtry T, Etzensperger R, Feigenbaum L, Singer DS, Singer A (2013) Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity 38(6):1116–1128. doi:10.1016/j.immuni.2013.02.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor FoxP3. Immunity 22(3):329–341. doi:10.1016/j.immuni.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  203. Cowan JE, Parnell SM, Nakamura K, Caamano JH, Lane PJL, Jenkinson EJ, Jenkinson WE, Anderson G (2013) The thymic medulla is required for Foxp3(+) regulatory but not conventional CD4(+) thymocyte development. J Exp Med 210(4):675–681. doi:10.1084/jem.20122070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Hinterberger M, Aichinger M, da Costa OP, Voehringer D, Hoffmann R, Klein L (2010) Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance. Nat Immunol 11(6):U512–U580. doi:10.1038/ni.1874

    Article  CAS  Google Scholar 

  205. Perry JSA, Lio CWJ, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS (2014) Distinct contributions of aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41(3):414–426. doi:10.1016/j.immuni.2014.08.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Millet V, Naquet P, Guinamard RR (2008) Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur J Immunol 38(5):1257–1263. doi:10.1002/eji.200737982

    Article  CAS  PubMed  Google Scholar 

  207. Koble C, Kyewski B (2009) The thymic medulla: a unique microenvironment for intercellular self-antigen transfer. J Exp Med 206(7):1505–1513. doi:10.1084/jem.20082449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Fuertbauer E, Zaujec J, Uhrin P, Raab I, Weber M, Schachner H, Bauer M, Schutz GJ, Binder BR, Sixt M, Kerjaschki D, Stockinger H (2013) Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells. Immunol Lett 154(1–2):31–41. doi:10.1016/j.imlet.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  209. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, Liu YJ (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436(7054):1181–1185. doi:10.1038/nature03886

    Article  CAS  PubMed  Google Scholar 

  210. Watanabe N, Hanabuchi S, Soumelis V, Yuan W, Ho S, de Waal Malefyt R, Liu YJ (2004) Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4+ T cell homeostatic expansion. Nat Immunol 5(4):426–434. doi:10.1038/ni1048

    Article  CAS  PubMed  Google Scholar 

  211. Hanabuchi S, Lto T, Park WR, Watanabe N, Shaw JL, Roman E, Arima K, Wang YH, Voo KS, Cao W, Liu YJ (2010) Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3(+) regulatory T cells in human thymus. J Immunol 184(6):2999–3007. doi:10.4049/jimmunol.0804106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. McCarthy NI, Cowan JE, Nakamura K, Bacon A, Baik S, White AJ, Parnell SM, Jenkinson EJ, Jenkinson WE, Anderson G (2015) Osteoprotegerin-mediated homeostasis of rank + thymic epithelial cells does not limit Foxp3+ regulatory T cell development. J Immunol 195(6):2675–2682. doi:10.4049/jimmunol.1501226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gamma delta T cells. Nat Genet 40(5):656–662. doi:10.1038/ng.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Barbee SD, Woodward MJ, Turchinovich G, Mention J-J, Lewis JM, Boyden LM, Lifton RP, Tigelaar R, Hayday AC (2011) Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc Natl Acad Sci USA 108(8):3330–3335. doi:10.1073/pnas.1010890108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. Turchinovich G, Hayday AC (2011) Skint-1 identifies a common molecular mechanism for the development of interferon-gamma-secreting versus interleukin-17-secreting gamma delta T cells. Immunity 35(1):59–68. doi:10.1016/j.immuni.2011.04.018

    Article  CAS  PubMed  Google Scholar 

  216. Drennan MB, Franki AS, Dewint P, Van Beneden K, Seeuws S, van de Pavert SA, Reilly EC, Verbruggen G, Lane TE, Mebius RE, Deforce D, Elewaut D (2009) Cutting edge: the chemokine receptor CXCR3 retains invariant NKT cells in the thymus. J Immunol 183(4):2213–2216. doi:10.4049/jimmunol.0901213

    Article  CAS  PubMed  Google Scholar 

  217. Kim JS, Smith-Garvin JE, Koretzky GA, Jordan MS (2011) The requirements for natural Th17 cell development are distinct from those of conventional Th17 cells. J Exp Med 208(11):2201–2207. doi:10.1084/jem.20110680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Marks BR, Nowyhed HN, Choi JY, Poholek AC, Odegard JM, Flavell RA, Craft J (2009) Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat Immunol 10(10):U1125–U1128. doi:10.1038/ni.1783

    Article  CAS  Google Scholar 

  219. Jenkinson WE, McCarthy NI, Dutton EE, Cowan JE, Parnell SM, White AJ, Anderson G (2015) Natural Th17 cells are critically regulated by functional medullary thymic microenvironments. J Autoimmun 63:13–22. doi:10.1016/j.jaut.2015.06.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants to T.N. from the Ministry of Education, Culture, Sports, and Technology in Japan (25111516, 25460606), National Center for Global Health and Medicine (24-112), Astellas Foundation, Inamori Foundation, Kanae Foundation, Naito Foundation, and Ichiro Kanehara Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takeshi Nitta or Harumi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, T., Suzuki, H. Thymic stromal cell subsets for T cell development. Cell. Mol. Life Sci. 73, 1021–1037 (2016). https://doi.org/10.1007/s00018-015-2107-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2107-8

Keywords

Navigation