Skip to main content

Definition of the Subject

Our subject is networks, and in particular, stable networks and the game theoretic underpinnings of stable networks.

Networks are pervasive. We routinely communicate over the internet, advance our careers by networking, travel to conferences over the transportationnetwork and pay for the trip using the banking network. Doing this utilizes networks in our brain. The list could go on. While network models have hada long history in sociology, the natural sciences, and engineering (e. g., in modeling social organizations, brain architecture, and electricalcircuits), the rise of the network paradigm in economics is relatively recent. Economists are now beginning to think of political and economicinteractions as network phenomena and to model everything from terrorist activities to asset market micro structures as games ofnetwork formation. This trend in economics, which began with the seminal paper by Myerson [88] on graphs and cooperation and accelerated with the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Homogeneous networks:

A homogeneous network consists of a finite set of nodes together with a finite set of mathematical objects called links or arcs, each identifying a connection between a pair of nodes. Given finite node set N with typical element i, a homogeneous linking network G is a finite collection of sets of the form \( { \{i,i^{\prime} \} } \) called links. Link \( { \{i,i^{\prime} \}\in G } \) indicates that nodes i and \( { i^{\prime} } \) are connected in network G. A homogeneous directed network G is a finite collection of ordered pairs (\( { i,i^{\prime} } \)) called arcs. Arc \( { (i,i^{\prime})\in G } \) indicates that nodes i and i′ are connected in network G via a connection running from i to i′. In a homogeneous network (whether it be a linking network or a directed network) all connections are of the same type.

Heterogeneous networks:

A heterogeneous network consists of a finite set of nodes together with a finite set of mathematical objects called labeled links or labeled arcs, each identifying a particular type of connection between a pair of nodes. Given finite node set N with typical element i and given finite label set A with typical element a, a heterogeneous linking network G is a finite collection of ordered pairs of the form (\( { a,\{i,i^{\prime}\} } \)) called labeled links . Labeled link \( { (a,\{i,i^{\prime}\})\in G } \) indicates that nodes i and i′ are connected in network G via a type a link. A heterogeneous directed network G is a finite collection of ordered pairs of the form \( { (a,(i,i^{\prime})) } \) called labeled arcs . Labeled arc \( { (a,(i,i^{\prime}))\in G } \) indicates that nodes i and \( { i^{\prime} } \) are connected in network G via a type a arc running from i to i′. In a heterogeneous network (whether it be a linking network or a directed network) connections can differ and are distinguished by type.

Abstract game of network formation with respect to irreflexive dominance:

An abstract game of network formation with respect to irreflexive dominance consists of a feasible set of networks \( { \mathbb{G} } \) equipped with a irreflexive dominance relation >. A dominance relation on \( { \mathbb{G} } \) is a binary relation on \( { \mathbb{G} } \) such that for all G and G′ in \( { \mathbb{G} } \), \( { G^{\prime} >G } \) (read G′ dominates G) is either true or false. The dominance relation is irreflexive if \( { G > G } \) is always false.

Abstract game of network formation with respect to path dominance :

An abstract game of network formation with respect to path dominance consists of a feasible set of networks \( { \mathbb{G} } \) equipped with a path dominance relation \( { \geq _{p} } \) induced by an irreflexive dominance relation > on \( { \mathbb{G} } \). Given networks G and G′ in \( { \mathbb{G} } \), \( { G^{\prime} \geq _{p}G } \) (read G′ path dominates G) if either \( { G^{\prime} =G } \) or there is a finite sequence of networks in \( { \mathbb{G} } \) beginning with G and ending with G′ such that each network along the sequence dominates its predecessor.

Bibliography

  1. Allouch N, Wooders M (2007) Price taking equilibrium in economies with multiplememberships in clubs and unbounded club sizes. J Econ Theory. doi:10.1016/j.jet.2007.07.06

  2. Arnold T, Wooders M (2006) Club formation with coordination. University ofWarwick Working Paper 640

    Google Scholar 

  3. Aumann RJ (1964) Markets with a continuum of traders. Econometrica32:39–50

    MathSciNet  MATH  Google Scholar 

  4. Aumann RJ, Myerson RB (1988) Endogenous formation of links between players andcoalitions: An application of the Shapley value. In: Roth A (ed) The Shapley value. Cambridge University Press, Cambridge,pp 175–191

    Google Scholar 

  5. Bala V, Goyal S (2000) A noncooperative model of networkformation. Econometrica 68:1181–1229

    MathSciNet  MATH  Google Scholar 

  6. Banerjee S, Konishi H, Sonmez T (2001) Core in a simple coalition formationgame. Soc Choice Welf 18:135–158

    MathSciNet  MATH  Google Scholar 

  7. Belleflamme P, Bloch F (2004) Market sharing agreements and collusivenetworks. Int Econ Rev 45:387–411

    MathSciNet  Google Scholar 

  8. Berge C (2001) The theory of graphs. Dover, Mineola (reprint of the translatedFrench edition published by Dunod, Paris, 1958)

    MATH  Google Scholar 

  9. Bhattacharya A (2005) Stable and efficient networks with farsighted players: Thelargest consistent set. Typescript, University of York

    Google Scholar 

  10. Bloch F (1995) Endogenous structures of association in oligopolies. RandJ Econ 26:537–556

    Google Scholar 

  11. Bloch F (2005) Group and network formation in industrial organization:A survey. In: Demange G, Wooders M (eds) Group formation in economics: Networks, clubs, and coalitions. Cambridge University Press, Cambridge,pp 335–353

    Google Scholar 

  12. Bloch F, Genicot G, Ray D (2008) Informal insurance in socialnetworks. J Econ Theory. doi:10.1016/j.jet.2008.01.008

  13. Blume L (1993) The statistical mechanics of strategic interaction. Games EconBehav 5:387–424

    MathSciNet  MATH  Google Scholar 

  14. Bogomolnaia A, Jackson MO (2002) The stability of hedonic coalitionstructures. Games Econ Behav 38:201–230

    MathSciNet  MATH  Google Scholar 

  15. Bollobas B (1998) Modern graph theory. Springer, NewYork

    MATH  Google Scholar 

  16. Boorman SA (1975) A combinatorial optimization model for transmission ofjob information through contact networks. Bell J Econ 6:216–249

    Google Scholar 

  17. Bramoulle Y, Kranton R (2007) Public goods in networks. J Econ Theory135:478–494

    MathSciNet  MATH  Google Scholar 

  18. Bramoulle Y, Kranton R (2007) Risk-sharing networks. J Econ Behav Organ64:275–294

    Google Scholar 

  19. Calvo-Armengol A (2004) Job contact networks. J Econ Theory115:191–206

    MathSciNet  MATH  Google Scholar 

  20. Calvo-Armengol A, Ballester C, Zenou Y (2006) Who's who in networks. Wanted:The key player. Econometrica 75:1403–1418

    MathSciNet  Google Scholar 

  21. Calvo-Armengol A, Jackson MO (2004) The effects of social networks onemployment and inequality. Am Econ Rev 94:426–454

    Google Scholar 

  22. Calvo-Armengol A, Jackson MO (2007) Social networks in labor markets: Wage andemployment dynamics and inequality. J Econ Theory 132:27–46

    MathSciNet  MATH  Google Scholar 

  23. Casella A, Rauch J (2002) Anonymous market and group ties in internationaltrade. J Int Econ 58:19–47

    Google Scholar 

  24. Casella A, Rauch J (2003) Overcoming informational barriers in internationalresource allocations: Prices and ties. Econ J 113:21–42

    Google Scholar 

  25. Chvatal V, Lovasz L (1972) Every directed graph hasa semi‐kernel. In: Hypergraph Seminar, Lecture Notes in Mathematics, vol 411. Springer, Berlin

    Google Scholar 

  26. Chwe M (1994) Farsighted coalitional stability. J Econ Theory63:299–325

    MathSciNet  ADS  MATH  Google Scholar 

  27. Chwe M (2000) Communication and coordination in social networks. Rev Econ Stud67:1–16

    MathSciNet  MATH  Google Scholar 

  28. Corominas-Bosch M (2004) Bargaining in a network of buyers andsellers. J Econ Theory 115:35–77

    MathSciNet  MATH  Google Scholar 

  29. Currarini S (2007) Group stability of hierarchies in games withspillovers. Math Soc Sci 54:187–202

    MathSciNet  MATH  Google Scholar 

  30. Currarini S, Morelli M (2000) Network formation with sequential demands. RevEcon Des 5:229–249

    Google Scholar 

  31. Debreu G, Scarf H (1963) A limit theorem on the core of an economy. IntEcon Rev 4:235–246

    MATH  Google Scholar 

  32. Demange G, Henreit D (1991) Sustainable oligopolies. J Econ Theory54:417–428

    MATH  Google Scholar 

  33. Demange G (1994) Intermediate preferences and stable coalitionstructures. J Math Econ 23:45–48

    MathSciNet  MATH  Google Scholar 

  34. Demange G (2004) On group stability and hierarchies innetworks. J Political Econ 112:754–778

    Google Scholar 

  35. Deroian F, Gannon F (2005) Quality improving alliances in differentiatedoligopoly. Int J Ind Organ 24:629–637

    Google Scholar 

  36. Diamantoudi E, Xue L (2003) Farsighted stability in hedonic games. Soc ChoiceWelf 21:39–61

    MathSciNet  MATH  Google Scholar 

  37. Durlauf S (1997) Statistical mechanics approaches to socioeconomicbehavior. In: Arthur WB, Durlauf S, Lane DA (eds) The economy as an evolving complex system II. Addison-Wesley, Reading,pp 81–104

    Google Scholar 

  38. Dutta B, Ghosal S, Ray D (2005) Farsighted network formation. J EconTheory 122:143–164

    MathSciNet  MATH  Google Scholar 

  39. Dutta B, Mutuswami S (1997) Stable networks. J Econ Theory76:322–344

    MathSciNet  MATH  Google Scholar 

  40. Even-Dar E, Kearns M, Suri S (2007) A network formation game forbipartite exchange economies. Computer and Information Science typescript, University of Pennsylvania

    Google Scholar 

  41. Furusawa T, Konishi H (2007) Free trade networks. J Int Econ72:310–335

    Google Scholar 

  42. Galeana-Sanchez H, Xueliang L (1998) Semikernels and \( { (k,l) } \)‑kernels in digraphs. SIAM J DiscretMath 11:340–346

    MATH  Google Scholar 

  43. Galeotti A, Moraga-Gonzalez JL (2007) Segmentation, advertising andprices. Int J Ind Organ. doi:10.1016/j.ijindorg.2007.11.002

  44. Gillies DB (1959) Solutions to general non-zero-sum games. In: Tucker AW, LuceRD (eds) Contributions to the Theory of Games, vol 4. Princeton University Press, Princeton, pp 47–85

    Google Scholar 

  45. Goyal S (2005) Learning in networks. In: Demange G, Wooders M (eds) Groupformation in economics: Networks, clubs, and coalitions. Cambridge University Press, Cambridge, pp 122–167

    Google Scholar 

  46. Goyal S (2007) Connections: An introduction to the economics ofnetworks. Princeton University Press, Princeton

    Google Scholar 

  47. Goyal S, Joshi S (2003) Networks of collaboration in oligopoly. Games EconBehav 43:57–85

    MathSciNet  MATH  Google Scholar 

  48. Goyal S, Joshi S (2006) Bilateralism and free trade. Int Econ Rev47:749–778

    MathSciNet  Google Scholar 

  49. Goyal S, Moraga-Gonzalez JL (2001) R&D networks. Rand J Econ32:686–707

    Google Scholar 

  50. Granovetter M (1973) The strength of weak ties. Am J Sociol78:1360–1380

    Google Scholar 

  51. Gravel N, Thoron S (2007) Does endogenous formation of jurisdictions lead towealth stratification? J Econ Theory 132:569–583

    MathSciNet  MATH  Google Scholar 

  52. Green J (1972) On the inequitable nature of core allocations. J EconTheory 4:132–143

    Google Scholar 

  53. Guilbaud GT (1949) La theorie des jeux. Economie. Appliquee2:18

    Google Scholar 

  54. Harsanyi JC (1974) An equilibrium‐point interpretation of stable setsand a proposed alternative definition. Manag Sci 20:1472–1495

    MathSciNet  MATH  Google Scholar 

  55. Herings PJ-J, Mauleon A, Vannetelbosch V (2006) Farsightedly stablenetworks. Meteor Research Memorandum RM/06/041

    Google Scholar 

  56. Hojman D, Szeidl A (2006) Endogenous networks, social games andevolution. Games Econ Behav 55:112–130

    MathSciNet  MATH  Google Scholar 

  57. Hollard G (2000) On the existence of a pure strategy equilibrium in groupformation games. Econ Lett 66:283–287

    MathSciNet  MATH  Google Scholar 

  58. Inarra E, Kuipers J, Olaizola N (2005) Absorbing and generalized stablesets. Soc Choice Welf 24:433–437

    MathSciNet  MATH  Google Scholar 

  59. Jackson MO (2003) The stability and efficiency of economic and socialnetworks. In: Dutta B, Jackson MO (eds) Networks and groups: Models of strategic formation. Springer, Heidelberg,pp 99–141

    Google Scholar 

  60. Jackson MO (2005) A survey of models of network formation: Stability andefficiency. In: Demange G, Wooders M (eds) Group formation in economics: Networks, clubs, and coalitions. Cambridge University Press, Cambridge,pp 11–57

    Google Scholar 

  61. Jackson MO, van den Nouweland A (2005) Strongly stable networks. Games EconBehav 51:420–444

    MATH  Google Scholar 

  62. Jackson MO, Watts A (2002) The evolution of social and economicnetworks. J Econ Theory 106:265–295

    MathSciNet  MATH  Google Scholar 

  63. Jackson MO, Watts A (2008) Social games: Matching and the play of finitelyrepeated games. Games Econ Behav. doi:10.1016/j.geb.2008.02.004

  64. Jackson MO, Wolinsky A (1996) A strategic model of social and economicnetworks. J Econ Theory 71:44–74

    MathSciNet  MATH  Google Scholar 

  65. Kalai E (2004) Large robust games. Econometrica72:1631–1665

    MathSciNet  MATH  Google Scholar 

  66. Kalai E, Pazner A, Schmeidler D (1976) Collective choice correspondences asadmissible outcomes of social bargaining processes. Econometrica 44:233–240

    MathSciNet  MATH  Google Scholar 

  67. Kalai E, Schmeidler D (1977) An admissible set occurring in various bargainingsituations. J Econ Theory 14:402–411

    MathSciNet  MATH  Google Scholar 

  68. Kirman A (1983) Communication in markets: A suggested approach. Econ Lett12:101–108

    MathSciNet  Google Scholar 

  69. Kirman A, Herreiner D, Weisbuch G (2000) Market organization and tradingrelationships. Econ J 110:411–436

    Google Scholar 

  70. Konishi H, Le Breton M, Weber S (1998) Equilibrium in a finite localpublic goods economy. J Econ Theory 79:224–244

    MATH  Google Scholar 

  71. Konishi H, Ray D (2003) Coalition formation as a dynamicprocess. J Econ Theory 110:1–41

    MathSciNet  MATH  Google Scholar 

  72. Kovalenkov A, Wooders M (2001) Epsilon cores of games with limited sidepayments: Nonemptiness and equal treatment. Games Econ Behav 36:193–218

    MathSciNet  MATH  Google Scholar 

  73. Kovalenkov A, Wooders M (2003) Approximate cores of games and economies withclubs. J Econ Theory 110:87–120

    MathSciNet  MATH  Google Scholar 

  74. Kranton R, Minehart D (2000) Networks versus vertical integration. RANDJ Econ 31:570–601

    Google Scholar 

  75. Kranton R, Minehart D (2001) A theory of buyer‐seller networks. AmEcon Rev 91:485–508

    Google Scholar 

  76. Li S (1992) Far‐sighted strong equilibrium and oligopoly. Econ Lett40:39–44

    MATH  Google Scholar 

  77. Li S (1993) Stability of voting games. Soc Choice Welf10:51–56

    MathSciNet  MATH  Google Scholar 

  78. Lucas WF (1968) A game with no solution. Bull Am Math Soc74:237–239

    MATH  Google Scholar 

  79. Luo X (2001) General systems and φ‑stable sets –a formal analysis of socioeconomic environments. J Math Econ 36:95–109

    MATH  Google Scholar 

  80. Mariotti M, Xue L (2002) Farsightedness in coalition formation. Typescript,University of Aarhus

    Google Scholar 

  81. Maschler M, Peleg B (1967) The structure of the kernel of a cooperativegame. SIAM J Appl Math 15:569–604

    MathSciNet  MATH  Google Scholar 

  82. Maschler M, Peleg B, Shapley LS (1971) The kernel and bargaining set forconvex games. Int J Game Theory 1:73–93

    MathSciNet  MATH  Google Scholar 

  83. Mauleon A, Sempere-Monerris J, Vannetelbosch V (2008) Networks of knowledgeamong unionized firms. Can J Econ (to appear)

    Google Scholar 

  84. Mauleon A, Vannetelbosch V (2004) Farsightedness and cautiousness in coalitionformation games with positive spillovers. Theory Decis 56:291–324

    MathSciNet  MATH  Google Scholar 

  85. Monderer D, Shapley LS (1996) Potential games. Games Econ Behav14:124–143

    MathSciNet  MATH  Google Scholar 

  86. Montgomery J (1991) Social networks and labor market outcomes: Toward aneconomic analysis. Am Econ Rev 81:1408–1418

    Google Scholar 

  87. Mutuswami S, Winter E (2002) Subscription mechanisms for networkformation. J Econ Theory 106:242–264

    MathSciNet  MATH  Google Scholar 

  88. Myerson RB (1977) Graphs and cooperation in games. Math Oper Res2:225–229

    MathSciNet  MATH  Google Scholar 

  89. Page FH Jr, Kamat S (2005) Farsighted stability in network formation. In:Demange G, Wooders M (eds) Group formation in economics: Networks, clubs, and coalitions. Cambridge University Press, Cambridge,pp 89–121

    Google Scholar 

  90. Page FH Jr, Wooders M (1996) The partnered core and the partnered competitiveequilibrium. Econ Lett 52:143–152

    MathSciNet  MATH  Google Scholar 

  91. Page FH Jr, Wooders M (2005) Strategic basins of attraction, the farsightedcore, and network formation games. FEEM Working Paper 36.05

    Google Scholar 

  92. Page FH Jr, Wooders M (2007) Club networks with multiple memberships andnoncooperative stability. Indiana University, Department of Economics typescript (paper presented at the Conference in Honor of Ehud Kalai, 16–18December, 2007)

    Google Scholar 

  93. Page FH Jr, Wooders M (2008) Strategic basins of attraction, the pathdominance core, and network formation games. Games Econ Behav. doi:10.1016/j.geb.2008.05.003

  94. Page FH Jr, Wooders M, Kamat S (2005) Networks and farsightedstability. J Econ Theory 120:257–269

    MathSciNet  MATH  Google Scholar 

  95. Qin C-Z (1993) A conjecture of Shapley and Shubik on competitive outcomesin the cores of NTU market games. Int J Game Theory 22:335–344

    MATH  Google Scholar 

  96. Qin C-Z (1994) The inner core of an N‑person game. Games Econ Behav6:431–444

    MATH  Google Scholar 

  97. Qin C-Z (1996) Endogenous Formations of Cooperation Structures. J Econ Theory69:218–226

    MATH  Google Scholar 

  98. Rees A (1966) Information networks in labor markets. Am Econ Rev56:218–226

    Google Scholar 

  99. Reny PJ, Wooders M (1996) The partnered core of a game without sidepayments. J Econ Theory 70:298–311

    MathSciNet  MATH  Google Scholar 

  100. Richardson M (1953) Solutions of irreflexive relations. Ann Math58:573–590

    MATH  Google Scholar 

  101. Rockafellar RT (1984) Network flows and monotropic optimization. Wiley, NewYork

    MATH  Google Scholar 

  102. Rosenthal RW (1973) A class of games possessing pure‐strategyNash equilibria. Int J Game Theory 2:65–67

    MATH  Google Scholar 

  103. Roth AE (1975) A lattice fixed-point theorem with constraints. Bull AmMath Soc 81:136–138

    MATH  Google Scholar 

  104. Roth AE (1977) A fixed-point approach to stability in cooperativegames. In: Karamardian S (ed) Fixed points: Algorithms and applications. Academic Press, New York

    Google Scholar 

  105. Roughgarden T (2005) Selfish routing and the price of anarchy. MIT Press,Cambridge

    Google Scholar 

  106. Scarf H (1967) The core of an N‑person game. Econometrica35:50–69

    MathSciNet  MATH  Google Scholar 

  107. Schwartz T (1974) Notes on the abstract theory of collectivechoice. Carnegie-Mellon University, School of Urban and Public Affairs typescript

    Google Scholar 

  108. Shapley LS, Shubik M (1969) On market games. J Econ Theory1:9–25

    MathSciNet  Google Scholar 

  109. Shenoy PP (1980) A dynamic solution concept for abstractgames. J Optim Theory Appl 32:151–169

    MathSciNet  MATH  Google Scholar 

  110. Shubik M (1971) The “bridge game” economy: An example ofindivisibilities. J Political Econ 79:909–912

    Google Scholar 

  111. Skyrms B, Pemantle R (2000) A dynamic model of social networkformation. Proc Nat Acad Sci 97:9340–9346

    ADS  MATH  Google Scholar 

  112. Slikker M, Dutta B, van den Nouweland A, Tijs S (2000) Potential maximizersand network formation. Math Soc Sci 39:55–70

    MATH  Google Scholar 

  113. Slikker M, van den Nouweland A (2001) Social and economic networks incooperative game theory. Kluwer, Boston

    Google Scholar 

  114. Slikker M, van den Nouweland A (2002) Network formation, costs, andpotential games. In: Borm P, Peters H (eds) Chapters in game theory. Kluwer, Boston, pp 223–246

    Google Scholar 

  115. Tardos E, Wexler T (2007) Network formation games and the potential functionmethod. In: Nisan N, Roughgarden T, Tardos E, Vazirani V (eds) Algorithmic game theory. Cambridge University Press, Cambridge,pp 487–516

    Google Scholar 

  116. Tesfatsion L (1997) A trade network game with endogenous partnerselection. In: Amman HM, Rustem B, Whinston AB (eds) Computational approaches to economic problems. Kluwer, Boston,pp 249–269

    Google Scholar 

  117. Tesfatsion L (1998) Preferential partner selection in evolutionary labormarkets: A study in agent-based computational economics. In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary programmingVII. Proceedings of the seventh annual conference on evolutionary programming. Springer, Berlin, pp 15–24

    Google Scholar 

  118. Topa G (2001) Social interactions, local spillovers, and unemployment. RevEcon Stud 68:261–295

    MATH  Google Scholar 

  119. van Deemen AMA (1991) A note on generalized stable set. Soc Choice Welf8:255–260

    MathSciNet  MATH  Google Scholar 

  120. van den Nouweland A (2005) Models of network formation in cooperativegames. In: Demange G, Wooders M (eds) Group formation in economics: Networks, clubs, and coalitions. Cambridge University Press, Cambridge,pp 58–88

    Google Scholar 

  121. Vega-Redondo F (2007) Complex social networks. Cambridge University Press,Cambridge

    MATH  Google Scholar 

  122. von Neumann J, Morgenstern O (1944) Theory of games and economicbehavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  123. Wang P, Watts A (2006) Formation of buyer‐seller trade networks ina quality differentiated product market. Can J Econ 39:971–1004

    Google Scholar 

  124. Watts A (2001) A dynamic model of network formation. Games Econ Behav34:331–341

    MathSciNet  MATH  Google Scholar 

  125. Wooders M (1983) The epsilon core of a large replica game. J MathEcon 11:277–300

    MathSciNet  MATH  Google Scholar 

  126. Wooders M (2008) Competitive markets and market games. Rev Econ Design(forthcoming)

    Google Scholar 

  127. Wooders M (2008) Small group effectiveness, per capita boundedness andnonemptiness of approximate cores. J Math Econ. doi:101016/j.jmateco.2007.06.006

  128. Wooders M, Cartwright C, Selten R (2006) Behavioral conformity in games withmany players. Games Econ Behav 57:347–360

    MathSciNet  MATH  Google Scholar 

  129. Xue L (1998) Coalitional stability under perfect foresight. Econ Theory11:603–627

    MATH  Google Scholar 

  130. Xue L (2000) Negotiation‐proof Nash equilibrium. Int J GameTheory 29:339–357

    MATH  Google Scholar 

  131. Zissimos B (2005) Why are free trade agreements regional? FEEM Working Paper67-07

    Google Scholar 

Download references

Acknowledgments

This paper was begun while Page and Wooders were visiting CERMSEM at the University of Paris 1 in Juneand October of 2007. The authors thank CERMSEM and Paris 1 for their hospitality. URLs:http://mypage.iu.edu/%7Efpage,http://www.myrnawooders.com.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Page Jr., F.H., Wooders, M. (2009). Networks and Stability. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_355

Download citation

Publish with us

Policies and ethics