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ABSTRACT Small open reading frames (smORFs) are widely distributed in various living 
organisms. However, their functions remain largely unexplored. In addition, annotation 
and detection of smORFs are limited using existing methods and hindered by their 
specific properties. In this study, we systematically investigated smORFs and smORF-
encoded peptides (SEPs) in Streptomyces, which are well-known bacterial producers of 
diverse bioactive secondary metabolites. We established a peptidogenomic workflow 
based on multi-integrated comprehensive database search and database-independent 
de novo sequencing to identify smORFs in Streptomyces xinghaiensis NRRL B-24674T 

(S187). In addition, we described SEPome related to the secondary metabolism, which 
include 68 novel SEPs and 79 common smORFs with Streptomyces coelicolor A3 (2). 
Functional analysis of universal smORFs revealed enrichment in biosynthetic processes, 
stress response, ribosomes, and nucleic acid binding. Meanwhile, 5 Cryptic smORF-enco­
ded Peptides (CSEPs) distributed in non-annotated regions of the genome, and non-
coding RNAs could encode for CSEPs. A total of 66 new RNAs, including 32 non-coding 
RNAs (ncRNAs) were revealed, and 4 ncRNA-encoded peptides were identified. Fur­
thermore, an investigation of carbon metabolism showed that NagE functions in spore 
formation and secondary metabolism in Streptomyces. Particularly, NagE was observed 
to function in the biosynthesis of anti-complement agents in S. xinghaiensis, suggest­
ing a novel role of the phosphoenolpyruvate phosphotransferase system in microbial 
secondary metabolism. We thus provide an effective strategy for analyzing public data 
sets of model strains to identify smORFs for non-model species. The ncRNAs and SEPs 
present rich sources for engineering streptomycetes to produce bioactive compounds.

IMPORTANCE Due to their small size and special chemical features, small open reading 
frame (smORF)-encoding peptides (SEPs) are often neglected. However, they may play 
critical roles in regulating gene expression, enzyme activity, and metabolite production. 
Studies on bacterial microproteins have mainly focused on pathogenic bacteria, which 
are importance to systematically investigate SEPs in streptomycetes and are rich sources 
of bioactive secondary metabolites. Our study is the first to perform a global identifi­
cation of smORFs in streptomycetes. We established a peptidogenomic workflow for 
non-model microbial strains and identified multiple novel smORFs that are potentially 
linked to secondary metabolism in streptomycetes. Our multi-integrated approach in 
this study is meaningful to improve the quality and quantity of the detected smORFs. 
Ultimately, the workflow we established could be extended to other organisms and 
would benefit the genome mining of microproteins with critical functions for regulation 
and engineering useful microorganisms.

KEYWORDS smORF-encoded peptides, peptidogenomics, de novo sequencing, 
secondary metabolism, Streptomyces

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00245-23 1

Editor Xiao-Hua Zhang, Ocean University of China, 
Qingdao, Shandong Province, China

Address correspondence to Chun Su, 
suchun@snnu.edu.cn, or Xin-Qing Zhao, 
xqzhao@sjtu.edu.cn.

Si-Min Fan and Ze-Qi Li contributed equally to this 
article. Author order was determined by alphabetic 
order of family name.

The authors declare no conflict of interest.

See the funding table on p. 20.

Received 27 March 2023
Accepted 20 July 2023
Published 15 September 2023

Copyright © 2023 Fan et al. This is an open-access 
article distributed under the terms of the Creative 
Commons Attribution 4.0 International license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

9 
O

ct
ob

er
 2

02
3 

by
 2

02
.1

20
.4

5.
10

2.



S mall open reading frames (smORFs) are DNA sequences that can be translated 
from less than 100 codons in eukaryotes and bacteria (1). They are widely dis­

tributed in the genomes of various species. However, smORFs have typically been 
deemed non-coding based on their length, and a few contain non-AUG start codons 
(2). Classical algorithms neglect smORFs in evaluating protein-coding capacity (3). In 
previous bioinformatic analyses, these transcripts were usually annotated as non-coding 
RNA (ncRNA) or junk proteins (4). Nevertheless, these long non-coding RNAs (lncRNAs), 
circular RNAs (circRNAs) in eukaryotes, and ncRNA in prokaryotes can be translated into 
small proteins with advances in high-throughput sequencing, ribosome footprinting, 
and proteomics (5–10). Moreover, recent evidence suggests that processed and modified 
smORF-encoded peptides (SEPs) are instrumental in the physiological and pathophysio­
logical functions of eukaryotes (11–14). SEPs play vital regulatory roles in prokaryotes 
concerning cellular stress, membrane transport, and antibiotic biosynthesis (15, 16). Most 
current work on smORFs and SEPs in bacteria mainly focuses on the virulence and stress 
response of pathogenic bacteria (17–20). However, SEPs related to the regulation of 
metabolites production in beneficial bacteria have been rarely been studied (16, 21). 
Therefore, systematic exploration of smORFs in bacteria with potential for industrial 
applications is urgently needed.

Actinomycetes are a rich source of structurally diverse bioactive secondary metab­
olites that receive constant attention for drug discovery. Due to their unique living 
environment, marine streptomycetes often encounter various external pressures. They 
are important players in producing unique bioactive secondary metabolites (22, 23). 
Considering that SEPs often have vital effects in allowing living organisms to accommo­
date multiple environmental conditions, exploring microproteins from marine actinomy­
cetes is of great interest (24). However, the functions and properties of microproteins 
in most Streptomyces species have not yet been studied. Studies on mining smORFs 
from Streptomyces will likely to reveal their roles in secondary metabolism and elucidate 
influencing factors and regulatory mechanisms in the biosynthesis of useful secondary 
metabolites.

In recent years, various bioinformatic-based methods have been developed to 
explore thousands of smORFs and ncRNAs with advances in next-generation sequenc­
ing (NGS) technology (15, 25, 26). A multi-integrated approach can combine differ­
ent databases, such as genomic and transcriptomic databases, to improve prediction 
accuracy, and has attracted increasing attention for SEP discovery (27, 28). Peptidoge­
nomics is derived by combining genome mining and peptidomics and can be beneficial 
in identifying complete ORFs and hidden SEPs (29). Database (DB) search has been the 
main method of analysis for peptidomics because of their high accuracy and simple 
operation (30–32). Completely annotated protein databases are available for humans, 
mice, and common laboratory model organisms. However, it is difficult to identify novel 
SEPs in non-model organisms because of a lack of available public databases. De novo 
sequencing, which involves directly inferring peptide sequences by comparing mass 
differences from MS spectra to amino acid residues, avoids dependence on databases 
to discover more novel SEPs (33, 34). Given the distinct advantages of DB search and de 
novo sequencing, combining these two approaches seems conducive to identifying the 
SEPs of non-model organisms.

Non-model industrial microorganisms exhibit unique and diverse metabolic 
characteristics, offering the potential for in-depth investigations of secondary metabolic 
pathways. Streptomyces xinghaiensis, a marine sediment-derived streptomycete isolated 
by our group, is characterized as a novel species and was named S. xinghaiensis 
NRRL B-24674T (referred to as strain S187) (35). Various strains of S. xinghaiensis have 
been identified using genomic and interspecific analyses compared to S187 (36–38). S. 
xinghaiensis S187 has been revealed to have significant applications potential for mining 
new compounds and biosynthetic enzymes (39, 40). Importantly, S187 metabolites also 
exhibited strong anti-complement activity and might potentially be used as a source 
of novel microbially derived agents for developing autoimmune disease drugs (41). Our 

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00245-23 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

9 
O

ct
ob

er
 2

02
3 

by
 2

02
.1

20
.4

5.
10

2.



genome mining analysis of S. xinghaiensis identified a potential glycopeptide (named 
as xinghaimycin) biosynthesis gene cluster (BGC), which showed 93% overall similarity 
with that of the known anticomplement agent complestatin (42). Although the structure 
of xinghaimycin remains unsolved due to low concentration in the fermentation broth, 
further analysis revealed the potential products of the xinghaimycin BGC are related to 
anticomplement activity and antibacterial activity (43).

To improve the production of the anti-complement active compounds and investi­
gate the biosynthetic mechanism of S187, it is important to understand the role of 
SEPs in regulating secondary metabolism in Streptomyces. In this study, we proposed 
an optimized peptidogenomic workflow, including sample preparation, comprehen­
sive database construction, and high-precision DIA for mass spectrometric detection. 
Simultaneously, a combination of DB search and database-independent de novo 
sequencing was used to identify as many novel SEPs as possible. To the best of our 
knowledge, this is the first report to combine peptidogenomics with de novo sequencing 
to identify SEPs related to secondary metabolism. Our results provide a basis for studies 
on SEPs in Streptomyces and other living organisms.

MATERIALS AND METHODS

Bacterial strains and culture conditions

The strains and plasmids used in this study are listed in Table S1. Plasmids were 
propagated in Escherichia coli DH5α cells cultured in Luria-Bertani broth with 50 µg/mL 
apramycin at 37°C. MS agar medium (2.0% soy flour, 2.0% mannitol, 2.0% agar, 10 mM 
MgCl2) was used for intergeneric conjugation between E. coli ET12567/pUZ8002 and 
streptomycete. For spore preparation, S187, Streptomyces coelicolor M145 (S. coelicolor A3 
(2) without the endogenous plasmid), and their derivatives were maintained on the MS 
medium. For seed cultures, S187 and S. coelicolor M145 were cultivated in TSB medium 
(1.7% tryptone, 3% soy peptone, 0.5% glucose, 0.5% NaCl, 0.25% K2HPO4, unadjusted 
pH) at 28°C and shaken at 200 rpm for 36 hours. For fermentation and analysis of the 
metabolites, S187 was cultivated in an M33 medium (3.0% soluble starch, 1.0% soy 
flour, 0.25% yeast extract, 0.3% CaCO3, pH 7.2) for 48 and 120 hours. For growth and 
fermentation curve measurements, 1 mL (108 CFU/mL) of spore suspension was sampled 
every 4 or 12 hours.

Sample preparation for peptidogenomic analysis

Samples taken at different time points (36, 48, 72, and 120 hours) were rapidly frozen 
in liquid nitrogen and ground into powder. Endogenous peptides were extracted using 
3:1:4 (vol/vol) methanol/chloroform/water, and the aqueous supernatant was passed 
through a 10 kDa protein ultrafiltration membrane to enrich SEPs. Certain peptides from 
different samples were mixed in equal volumes. The mixed sample (mix-sample) and 
the remaining peptides (single-sample) were desalted using a C18 cartridge to remove 
urea. Endogenous peptides were loaded onto a C18 tip and collected in three fractions. 
All fractions were dried under vacuum and reconstituted in water containing 0.1% (vol/
vol) formic acid (FA). A standard (0.2 µL) was added to the fractionated samples before 
subsequent analyses.

DDA and DIA liquid chromatography-tandem mass spectrometry

DDA and DIA mass spectrometry data were obtained using an Orbitrap Q-Exactive 
HF mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) coupled with an 
online Easy-nLC 1200 nano-high performance liquid chromatography (HPLC) system 
(Thermo Fisher Scientific, Bremen, Germany). For transition library construction, a sample 
containing 1 µg of the total peptide from a fractionated sample reconstituted in 0.1% FA 
was injected onto a homemade C18 Nano-Trap column (2 cm × 100 µm, 3 µm, Thermo 
Fisher Scientific, Bremen, Germany). Peptides were separated on an analytical column 
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(25 cm × 5 µm, 100 A) using a 90 minutes linear gradient of 0 to 100% of eluent B (0.1% 
FA in 80% acetonitrile [ACN], 20% water) in eluent A (0.1% FA in water) at a flow rate 
of 600 nL/minute. The detailed solvent gradient was as follows: 6%–12% B, 8 minutes; 
12%–30% B, 55 minutes; 30%–40% B, 12 minutes; and 40%–95% B, 15 minutes. The 
Orbitrap Fusion mass spectrometer was operated in DDA mode using the Xcalibur 3.0 
software with a 1.8 kV electrospray voltage. The full scan was processed in Orbitrap from 
m/z 350 to 1,200, followed by data-dependent MS2 scans in an ion-routing multipole at 
30% normalized collision energy (HCD). The resolution was 60,000 for the full scan mode 
and 15,000 for the MS2 mode. The maximum scan time was 50 ms for full scans and 22 
ms for MS2 scans. MS1 resolution was set to 120,000 and MS2 resolution to 30,000. The 
m/z range was 350–1,500. The DIA settings used a normalized collision energy of 33%.

smORF database construction

To generate a comprehensive S187 smORF database and assess the characteristics of 
smORFs, we chose all putative ORFs with a size ≤300 bases from the S187 genome 
six-frame translation database and used alternative start and stop codons (start: ATG, 
GTG, CTG, and TTG; stop: TAG, TAA, and TGA) in the online web resource OrfFinder (43). 
To obtain the S187 smORF database with higher confidence, the Prodigal prokaryotic 
dynamic programming genetic algorithm v2.6.3 (44) was used to re-predict the full ORF 
set for S187, obtaining information on each potential start site and including parameters 
such as confidence scores and ribosome binding site motifs. Alternative start codons for 
bacteria were chosen, and ORFs with confidence levels of ≥90 and encoded amino acid 
lengths of ≤100 aa were selected as a library of SEPs with high coding potential.

Small RNAs and predicted SEP database construction

Seven sets of wild-type S. coelicolor A3 (2) raw transcriptome data were selected 
from available NCBI online SRA databases. Transcriptome analysis was carried out 
on the following data sets: SRR13349472, SRR13349473, SRR10011614, SRR10011615, 
SRR5371191, SRR5371192, and SRR5371193 (45–47). RNA-seq raw data were processed 
through a quality check using FastQC, and Trimmomatic (48) was used to remove 
adapters and low-quality sequences. Bowtie2 (49) and STAR (50) were simultaneously 
used to map sequences to the reference genome of S. coelicolor A3 (2) to ensure the 
accuracy of the results, and SAMtools was used to generate binary sequencing files 
(*.bam). RSEM and featureCounts (51) were used for quantification. The transcript files 
were filtered under FPKM > 1 and nucleotide length ≤300 bases to generate a small RNA 
(smRNA) database of the model strains. Putative smRNAs were translated using EMBOSS 
Transeq. The SEP database of the model strain S. coelicolor A3 (2) was compared to the 
S187 genome using tBLASTn or BLASTp to construct the predicted SEP database.

RNA-seq data analysis

mRNAs with polyA structure were enriched from total RNA using oligo(dT) magnetic 
beads, and ion interruption was used to break the RNA into fragments of approxi­
mately 300 bp. Using RNA as the template, library fragments were enriched using PCR 
amplification, followed by library selection based on a fragment size of 450 bp. After 
RNA extraction, purification, and library construction, libraries were sequenced using 
NGS based on the Illumina HiSeq sequencing platform with paired-end sequencing. 
Quality control, read mapping, and quantification of transcriptome data from S187 were 
performed using Trimmomatic, Bowtie2, and featureCounts, respectively. The transcript 
file was filtered with FPKM >1 and nucleotide length ≤300 bases to generate an SEP 
database based on the S187 transcriptome. The database was merged with the predicted 
SEP database to construct a Streptomyces SEP database for spectral matching and DB 
searches.
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Database search of MS data

Transcriptome sequencing reads were assembled according to the S187 genome 
annotation file. NCBI OrfFinder was used to translate the assembled sequences into 
six frames. The constructed S187 SEP database was used for spectral matching and 
DB searching. Data analysis and visualization of DDA and DIA data were performed 
using the Spectronaut 15 platform (Biognosys, Wagistrasse, Switzerland), PEAKS studio 
(Bioinformatics Solutions Inc., Waterloo, Canada) and the R statistical framework. DDA 
MS raw files were analyzed using Spectronaut 15 and PEAKS studio, and peak lists were 
searched against the protein database. The data extraction and extraction window were 
set to “dynamic” with correction factor 1. Identification was established with a “normal 
distribution P-value estimator” and a q-value cut­off of 0.01. The profiling strategy was 
set as “iRT profiling,” with a q-value cut­off of 0.01.

Function prediction analysis for SEPs

Clusters of Orthologous Groups (COGs), Gene Ontology (GO), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases were used for protein classification, homologous 
protein function, and metabolic pathway analyses, respectively. Based on related species, 
probable interacting partners were predicted using the STRING-db server to predict 
protein-protein interactions. The enrichment pipeline was used to perform GO and KEGG 
enrichment analyses. PSIPRED was used for secondary structure prediction with the data 
type sequence; the analytical methods of choice were PSIPRED 4.0 and MEMSAT-SVM 
(52, 53). An online version of the hmmscan program was used to identify SEPs with 
functional domains. InterProScan was used to search for the functions of non-annotated 
proteins (54). SignalP (55) was used to predict signal peptides of SEPs using parameters 
for Gram-positive bacteria. TMHMM (56) was run with default parameters to predict 
transmembrane sequences in SEPs.

De novo assembly algorithms for identification of non-observed SEPs

PEAKS Studio version 10.6 was used to reanalyze mass spectral data. PEAKS was used 
with the following parameters: no digesting enzyme, fragment ion mass tolerance of 
0.02 Da, parent ion tolerance of 7 ppm, and oxidation (M), acetylation (protein N-term), 
and deamidation (NQ) as variable modifications. Peptides were filtered using −10logP ≥ 
20. Peptides with an average local confidence (ALC) ≥80% and without post­modification 
were filtered to obtain highly credible novel peptides. The results were mapped to the 
full protein library, which was created based on a six-frame translation library of the 
genome and transcriptome OrfFinder database of S187 using the peptide sequence 
matching software PeptideMapper (57). Mapped peptides were submitted to UniProt to 
search for and filter reported proteins. The parameters were set as follows: the searched 
species were limited to Actinobacteria (taxonomy: 201174), and leucine and isoleucine 
were considered equivalent.

Another novel peptide pipeline analysis was performed. The redundant parts of de 
novo peptides were deleted using BLASTp against the Actinobacteria sequence from the 
Nr database. The results were mapped to the S187 genome using tBLASTn, and the 
PAM30 scoring matrix and best matches were set. Peptides with identity and cover­
age ≥80% and an E-value ≤ 1 were detected. Following this, an ID lookup comparison, 
including calculated peptide location and ORF position, was carried out according to 
the annotated ORFs in chromosomes. An ORF length of less than 100 aa was used. 
Reported homologous sequences were filtered using the online tool BLASTp and the 
NCBI NR database. Peptide sequences with ALC values ≥80%, length ≥7, and mismatch 
numbers less than 2 aa were selected. Higher-quality spectra were filtered by matching 
less impure peaks and three pairs of b/y ions.
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New transcripts mining and ncRNA analysis

Mapped reads from the RNA-seq data set were assembled into transcripts in a reference 
annotation-based transcript assembly mode in two ways by using StringTie (v.2.2.1; 
Center for Computational Biology, Baltimore, USA) and Cufflink (v.2.2.1; Seattle, USA). 
Putative transcripts were obtained with the parameter “-m 30” in StringTie, while 
the parameter “--min-frags-per-transfrag 1” was set in Cufflink. Cuffcompare (v.2.2.1; 
Seattle, USA) was used to identify the location relationship between new transcripts 
and annotated genes. Then, transcripts with a length of >500 nt were excluded. All 
new transcripts were BLASTx with SEPome I and SEPome II. db_gencode was selected 
as codon 11, E-value was selected as 1e-5, and both similarity and coverage >80% 
were considered matches. All the candidate new RNAs were translated into amino acid 
sequences considering six frames, and the de novo only peptide was compared with 
ncRNA by BLASTp. At the same time, the task was selected as blastp-short, the scoring 
matrix was chosen as PAM30, and the E-value was selected as 10.

Construction of NagE mutants

pSET152 ermE* derivative reporter vectors were constructed using PCR to amplify the 
sfGFP fragment. A different set of primers was used to amplify two sfGFP fragments: the 
complete sequence and the sequence with the start codon deleted. The resulting PCR 
fragment was cloned into the same sites as pSET152 ermE*, and psfGFPwt and psfGFPmut 
were constructed. psfGFPmut-NagE-S187 and psfGFPmut-NagE-M145 were constructed 
by amplifying the NagE fragment without stop codons, and the PCR fragments were 
cloned into the same sites as psfGFPmut. All the resulting fusion genes were confirmed 
using sequencing. To construct overexpression strains, a PCR-generated DNA fragment 
containing the SEP-NagE coding sequence was cloned into the plasmid pSET152 ermE*. 
The primers used in this study are listed in Table S2. Restriction enzymes, PrimeSTAR Max 
DNA Polymerase, and In-Fusion HD Cloning Kits were purchased from TaKaRa Bio (Dalian, 
China). Fluorescent expression and overexpression plasmids were introduced into E. coli 
ET12567/pUZ8002 for conjugation with S187 and S. coelicolor M145. Exconjugants were 
plated on A1 solid medium (containing 50 µg/mL apramycin) and grown at 28°C. PCR 
amplification and DNA sequencing were used to determine the mutant genotypes.

Observation of strain phenotype

Aerial mycelia were scraped and spread on a glass slide for observation under a 
fluorescence microscope (Zeiss, Jena, Germany) to observe the fluorescence phenotype. 
Fluorescence images were transferred to a computer and edited with ZEN 3.5 (blue 
editor) to achieve uniform brightness and contrast in group photos. To observe growth 
conditions, 3 × 107 spores of each strain were plated on MS and TSB solid media in 
triplicate. The plates were incubated at 28°C for 3 and 5 days and observed every 
12 hours. Observations were made using a Nava NanoSEM 450 scanning electron 
microscope (FEI Company, USA).

Association analysis for bioactive metabolites

Fermentation broth (100 mL) was extracted using ethyl acetate (100 mL) and evaporated 
to dryness. The extracted products were analyzed using an UltiMate 3000 HPLC with 
UV detection at 280 nm. The HPLC system used methanol as eluent A and water as 
eluent B (water). The solvent gradient was set as follows: 15%–50% B, 12 minutes; 50%–
80% B, 12 minutes; 80%–90% B, 10 minutes; 90%–100% B, 10 minutes. The samples 
were injected into a Luna Omega 3 µm Polar C18 (Phenomenex, USA; 100 × 2.1 mm) 
column and analyzed using TripleTOF 6600+ (AB SCIEX, USA) under the following LC 
analysis conditions: PDA detection wavelengths of 210, 254, and 280 nm. The acquired 
mass spectrometry data were uploaded and compared with global natural product 
social molecular networking (GNPS) (58). The data generated from GNPS for secondary 
metabolites was visualized using Cytoscape 3.9.1. The classic pathway was selected for 
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anti-complement activity analysis based on previous work (59). The anti-complement 
activity was determined as the mean of triplicate measurements at each concentration.

RNA isolation and real-time-quantitative PCR (RT-qPCR)

Total RNA was isolated using HiPure Bacteria L RNA (Magen, Guangzhou, China) and 
on-column digestion to remove DNA contamination. Complementary DNA (500 ng) was 
synthesized using M-MLV reverse transcriptase (TaKaRa Bio., Dalian, China). The hrd B 
gene was used as a reference to normalize the relative expression of S187. RT-qPCR was 
performed on a Bio-Rad system using 2× SYBR qPCR Master Mix (Vazyme Biotech Co., 
Nanjing, China). All data represent the mean ± SD of at least three biological replicates 
per condition; P < 0.05 was considered significant.

RESULTS

Sensitive streamlined platform

An optimized and streamlined platform was proposed to improve the sensitivity of SEP 
identification (Fig. 1). Instead of the prevailing bottom-up strategy of proteomics (60, 
61), we used direct extraction and enrichment of endogenous peptides with a 10 kDa 
molecular weight cut­off to increase the number of high-sequence-coverage peptides 
and identify more native peptides. The average coverage of SEPs was 39.8%, and four 
full-length coverage peptides were detected. Premium-quality custom databases are 
critical for the successful identification of SEPs. To address the challenge of inadequate 
publicly available databases, we created customized databases, including a genomic 
six-frame translation smORF database (Fig. 2A), a SEP database based on RNA-seq for 
S187(Fig. 2B), and an additional SEP database from seven sets of public high-quality 
transcriptome data of S. coelicolor A3 (2) (Fig. 2C, Fig. S1AB). All 27 sequences were 
functional SEPs with predicted conserved structural domains and functional sites (Table 
S3). We reached 86.5% coverage of SEPs from peptidogenomics, combined with the 
other two omic approaches. This multi-integrated approach was thus efficient and 
accurate for the discovery and identification of SEPs in strain S187. We used de novo 
sequencing, a database-independent approach to compensate for the limitations of 
DB searches, to mine more novel peptides and identify 68 novel SEPs not observed in 
available Actinomyces databases or global public databases.

Peptidogenomic landscape based on DB search

Based on global Streptomyces and custom database profiling, 24,155 peptides were 
identified, including 1,952 unique proteins. Among the 1,952 unique proteins, there were 
126 polypeptides less than 100 aa, of which 76–100-aa SEPs comprised the majority 
(~60%), and 3 SEPs were under 50 aa (Fig. 3A). All 126 identified SEPs could be mapped to 
complete ORFs in the genome, which are recognized under the strict definition of SEP 
(62). The comparisons of the smORF database and smRNA database with SEPome I 
revealed that parallel analysis results from the three omics yielded 109 shared SEPs, with 
an 86.50% coverage of SEPome I (Fig. 3B). This suggests that rigorous criteria for evaluat­
ing the customized database significantly effect overall SEP identification.

Given the high G+C content of the Streptomyces genome, the canonical start codons 
ATG, GTG, and TTG are usually used (63). Here, 91% of the 126 smORFs started with 
canonical codons, although 11 started with other codons (Fig. 3C; Fig. S1C). High-
coverage SEPs can provide high confidence in SEP identification and functional verifica­
tion (64). The sequence coverage for almost one-third of the 126 SEPs was >50% (Fig. 
3D). Moreover, four SEPs with full sequence coverage were detected, with only the N-
terminal methionine or valine missing after mapping with the genome (Fig. 3E). N-
terminal methionine cleavage is a general modification in the bacterial peptide 
biosynthetic process, usually leaving the second amino acid of the peptide, such as 
arginine, lysine, and leucine (65, 66). These results indicate that the non-digestion 
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strategy significantly improves sequence coverage and enhances confidence in SEP 
identification.

SEPome I is involved in the dynamic transition from the exponential growth phase to 
the bioactive secondary metabolite biosynthesis phase. Therefore, we investigated the 
126 identified SEPs for their role in metabolism using protein function prediction and 
metabolic pathway analysis. All 72 annotated SEPs could be divided into six groups: 
biosynthetic processes, nucleic acid binding, stress responses, ribosomes, bacterial 
secretion systems, and membranes (Fig. 3F; Table S4). Significantly, there were another 54 
non-annotated SEPs in SEPome I, hypothetical proteins with no characterized function 
that had experimental validation (Fig. S1D). As SEPs are often associated with small 
membrane proteins and may have signal peptides (25), four novel and nine annotated 
SEPs were predicted to be secreted proteins with signal peptide sequences, whereas 
three single SEPs were predicted to be membrane proteins with a transmembrane 
structure (Table S5; Fig. S1E).

FIG 1 Integrated research strategy for discovery and identification of SEPs. Proteins were enriched without digestion and directly analyzed using liquid 

chromatography tandem mass spectrometry to obtain high peptide coverage. We searched the raw data using a customized database, including smORFs from 

S187 six-frame translation, a model strain smRNAs database, and S187 RNA-seq data to identify SEPs. De novo sequencing mapping of the genome was carried 

out to define ORFs and discover more novel SEPs. The steps in red font represent the optimized strategy for a comprehensive search of SEPs.
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Novel SEP identification using de novo sequencing

Database-independent de novo sequencing is considered an alternate analytical method 
for SEP identification, whereby “de novo only” sequences comprise novel peptides, 
unknown modified peptides, or other molecules of interest (67). To mine novel SEPs 
outside the database, DDA and DIA data were reanalyzed using PEAKS studio as a 
complementary approach. Subsequently, three different methods were applied to 
identify novel SEPs (Fig. 4A). Five novel peptides with a length of less than 300 bases 
were acquired after removing candidate peptides corresponding to ORFs (Table S6). 
Then, 33 novel candidate peptides were selected according to Method 3. All 38 novel 
candidate peptides could be back-correlated to the corresponding small ORFs in the 
genomes, demonstrating the reliability of the analysis.

Additionally, 15 de novo only novel SEPs emerged after high-quality spectral selection 
(Table S6). The SEP locations appear to fall into two categories based on their positions 
relative to conventionally annotated proteins in the chromosome (Fig. 4B). Cryptic SEPs 
(CSEPs), like cryptic proteins, are distributed in ostensibly non-coding or non-annotated 

FIG 2 Construction of a predicted smORF database. (A) Venn diagram comparing results from OrfFinder and Prodigal based on the six-frame translation of the 

S187 genome and 126 SEPs from the peptidogenomic database. (B) Cumulative intensity of 126 SEPs in the S187 transcriptome. The top five most abundant 

smRNAs are labeled in the panel. Among these, smRNA coding cold shock proteins shared with the S. coelicolor A3 (2) predicted database are marked in blue, 

and the smRNAs coding a full-length coverage peptide is marked in red. (C) Processing of seven RNA-seq data sets from public databases of S. coelicolor A3 (2). 

(D) Overlap data of SEPs identified from the predicted SEPome and SEPome I databases. Blue circles indicate shared SEPs with functional sites.
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regions in the genome. Isoform SEPs (ISEPs) are located within the sequences of func­
tional proteins, and a hidden start codon is used in translation, leading to the generation 
of a novel peptide isoform. However, the functional activity of the peptide differs from 
that of the co-located protein (68, 69). The five CSEPs are located on different ORFs from 
the annotated proteins in the genome annotation data; therefore, these are novel 

FIG 3 Peptidogenomic database search results. (A) Sequence length analysis of SEPs in three databases. (B) Number analysis of SEPs in three databases (genomic 

database: green circle; RNA-seq database: red circle; peptidogenomic database: yellow circle). (C) Utilization rate of initial translation with canonical (ATG, CTG, 

GTG, and TTG) and other start codons of the peptidogenomic database. (D) Sequence coverage analysis of peptidogenomic database. (E) Coverage comparison 

of four full-length peptides (red line) with protein sequences (green line) in S187. Red rectangles indicate N-terminal methionine cleavage amino acids. Two 

unique SEPs in S187 are marked by red characters; 1/–1 is the differential expression of two time-points (48 and 120 hours). (F) Functional cluster of the 72 

annotated SEPs using KEGG, GO, and InterProScan analysis.
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FIG 4 De novo sequencing identification of novel SEPs. (A) Illustration of three processes for analyzing “de novo only” data to identify novel SEPs. (B) Classification 

and characteristics of detected novel SEPs and new RNAs. Isoform SEPs are novel isoforms derived from a larger protein. Cryptic SEP is a SEP located in 

non-coding or non-annotated regions of the genome. Black numbers in brackets show the number of each type of SEP and new RNA. Red numbers in brackets

(Continued on next page)
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proteins that are not associated with existing annotated ORFs, providing complementary 
information for genome annotation. The ISEP peptide F131566 was detected in the DB 
search as the full-coverage sequence SEP RS31550, demonstrating the high accuracy of 
this approach for identification. The database-driven DB search approach can identify 
novel SEPs despite the limitations of the static search space.

More than three MS2 spectra within the peak matched the spectral database for 
peptide F216964 (VGAGPGEGDDAVRPG) (Fig. 4C). A possible start codon (GTG) was 
identified in the gene sequence for F216964, and gene structure analysis showed 
that this novel peptide was located on the positive strand and overlapped with the 
extended DNA sequence of the annotated gene RS26880 (6, 291, 884–6, 293, 566 bp) 
encoding FAD-dependent oxidoreductase. Nevertheless, the canonical protein translated 
by RS26880 was not detected in the protein database using the DB search strategy. 
Based on the stop-codon-to-stop-codon principle and the observed peptide data, this 
novel peptide, F216964, may map to a 24-aa ISEP translated from a hidden start codon 
in ORF RS26880 (Fig. 4D). The 24-aa ISEP was located at the C-terminus of the longer 
canonical protein and shared the same stop codon as RS26880. Another de novo only 
peptide, F111021 (GPGEGDDAVRPG), matched the same translation area as F216964 (Fig. 
S1F), confirming that this novel gene sequence encodes a 24-aa ISEP. Three spectra 
were detected for the peptide F541327 (MRFPGGGE) (Fig. 4E), which was located on 
the negative strand of the chromosome and overlapped with RS03870. F541327 and 
RS03870 were not encoded by the same ORF, although peptide F541327 was assigned 
to the C-terminus of RS03870 in the DB search. Evidently, F541327 does not belong 
to RS03870. A methionine residue encoded by one theoretical start codon (ATG) on 
F541327, and this novel peptide was mapped with a smORF that encoded a 99-aa 
ISEP (908, 104–907, 805 bp) (Fig. 4F). These results demonstrate that this ISEP contain­
ing a new translation start site is a novel peptide, providing complementary data for 
genome annotation. De novo sequencing, complementing to DB searches, provides a 
new approach to peptidomics.

Potential SEPome of the model strain S. coelicolor A3 (2) and key bioprocess 
SEPs

Since S. coelicolor A3 (2) has become a model strain for genetics, development, and 
antibiotic production in the genus Streptomyces, we explored the potential SEPs in 
this workhorse strain. A set of 464 smRNAs was obtained from public transcriptome 
data sets of S. coelicolor A3 (2), of which 248 smRNAs coding SEPs were observed in 
the predicted SEPome of S187. Additionally, 79 SEPs were observed in SEPome I of 
the S187 peptidogenomic, with 62.7% crossover between the two databases (Fig. 2D). 
Additionally, there are 59 annotated and 20 non-annotated common SEPs (Fig. 5A). Ka/Ks 
values (70) were all below 1, demonstrating that these SEPs are under purifying selection 
pressure, leading to conservative evolution in these two species. A further 21 SEPs with 
conserved structural domains and functional sites in S. coelicolor A3 (2) were mapped 
to 17 functional SEPs of strain S187 (Table S3). These common SEPs may play significant 
roles in the biological processes of Streptomyces.

SEPs usually contain more α-helices than other protein secondary structures (71). 
As expected, most of the 17 functional SEPs had predicted α-helical structures, suggest­
ing that these SEPs may play roles in signal transduction by interacting with the cell 
membrane (Fig. S2A). Cold shock proteins have been reported to be smORFs, and share 
a five­stranded β-barrel structure (72, 73). This simple protein structure allows cold-shock 
proteins to associate with DNA and RNA strands, resulting in various biological functions, 

FIG 4 (Continued)

show the numbers of ncRNAs. (C) MS2 spectrum of the novel peptide F216964, VGAGPGEGDDAVRPG. (D) Illustration of F216964 and F111021 locations on 

the S187 chromosome. The amino acid sequences of the novel peptides F216964 and F111021 are marked with purple and green lines, respectively. (E) MS2 

spectrum of the novel peptide F541327, MRFPGGGE. (F) Illustration of F541327 location on the S187 chromosome. The amino acid sequence of the novel peptide 

F541327 is marked by a purple line.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00245-23 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

9 
O

ct
ob

er
 2

02
3 

by
 2

02
.1

20
.4

5.
10

2.



FIG 5 Conservation of SEPs in the Streptomyces strains. (A) Circos plot showing genome, transcriptome, and protein information for S187 and S. coelicolor A3 

(2). Information on genome synteny, RNA-seq data, and genome annotation shown from the inside to the outside rings, with the outermost ring representing 

chromosomes. SEPs shared by S187 and S. coelicolor A3 (2) divided into six categories and marked by lines of different colors. SEPs containing functional sites

(Continued on next page)
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such as regulating global gene expression and influencing signal transduction pathways 
under stress conditions (74). smRNA coding cold-shock protein represent the top two 
cumulative intensities in transcripts of S. coelicolor A3 (2) and match the top one 
(RS08820) in the S187 transcriptome (Fig. S2B). The cold-shock protein RS08820 in the 
S187 strain showed a high sequence similarity with functionally characterized SEPs in 
other Streptomyces species (Fig. 5B). The RT-qPCR results showed expression changes 
during periods of secondary metabolism (Fig. 5C; Fig. S2B), showing that this SEP carries 
out essential physiological functions.

PTSNag, a PTS system using NagE as a conserved sucrose/glucose PTS IIB domain, is 
a biased carbon source uptake pathway for transporting N-acetylglucosamine (GlcNAc) 
into streptomycete cells (75, 76). The PTS system proteins PstH and NagE were com­
mon SEPs of S. coelicolor A3 (2) and S187. Four unique peptides detected in the mass 
spectrometry data were matched with different sequences of NagE, with a coverage 
of up to 69.41%, reflecting the accuracy of identification for this 86-aa SEP (Fig. 5D). 
Furthermore, NagE exhibited high conservation with functionally characterized SEPs in 
other Streptomyces species and many industrial strains producing active metabolites (Fig. 
5B). The expression of NagE changes during the period of secondary metabolism (Fig. 5C; 
Fig. S2C).

MbtH-like protein (MLP), which affects the production of non-ribosomal peptide 
(NRP) compounds by initiating and enhancing enzymatic adenylation activity (77–80), 
was detected in the SEP database of S. coelicolor A3 (2) and SEPome I of the S187 strain. 
Moreover, MLP exists in many pathogenic bacteria, such as Mycobacterium tuberculosis 
and Pseudomonas aeruginosa, and industrial strains with active metabolites, such as the 
vancomycin-producing strain Amycolatopsis orientalis. These MLPs exhibit high sequence 
conservation with three tryptophan active enzyme sites (Fig. S2D). Moreover, MLP is 
encoded by the gene sinE in the BGC for xinghaimycin and plays a vital regulatory role 
in its biosynthesis in S187 (Fig. 5E; Fig. S2E). We observed that MLP may directly interact 
with the NRP synthetases (sinA-sinD) in the xinghaimyxin BGC and regulate xinghaimycin 
biosynthesis in S187 (Fig. S2F).

Peptidogenomic association analysis of metabolic processes

The secondary metabolites of the S187 strain are diverse, and anti-complement activity 
was observed. Sample collection time points of 48 and 120 hours were chosen to 
assess expression levels of endogenous peptides and SEPs during growth and secondary 
metabolism (Fig. 6A and B). Results for significant enrichment of the 1,952 unique 
proteins from peptidogenomics showed that carbohydrate and energy production 
pathways play important roles in S187 metabolism (Fig. 6C). Moreover, 798 unique 
proteins exhibited significant differential expression during the secondary metabolism 
phase of the S187 strain (Fig. S2G).

We explored 67 significantly altered SEPs to investigate associations between SEPs 
and metabolites of Streptomyces (Fig. 6D). Ribosome-associated SEPs were the most 
highly enriched and represented the most functional groups (Fig. S2H). All 11 ribo­
some SEPs including 9 downregulated SEPs, interacted with each other and showed 
close relationships (Fig. 6E), indicating that these ribosome-associated SEPs may be 
mutually connected and jointly influence secondary metabolite biosynthesis (81, 82). 
The type II toxin-antitoxin (TA) system plays a key role in various Streptomyces species 
regarding physiology, environmental stress responses, and antibiotic synthesis (83–85). 

FIG 5 (Continued)

are marked on the outermost ring and colored according to their functional description. (B) BLAST sequence alignment analysis and predicted secondary 

structures of NagE and cold shock proteins in other modal Streptomyces species and microorganisms. The conserved active sites are marked by a star. (C) RT-qPCR 

quantification results of cold shock protein (RS08820) and NagE (RS19465) at fermentation time points of 48, 72, and 120 hours relative to 48 hours for each gene 

analyzed. (D) Sequence coverage analysis of NagE with the four detected peptides. (E) Of the 1,952 global proteins detected in peptidogenomics, those involved 

in the xinghaimycin biosynthesis metabolic pathway were analyzed, including one SEP-MLP. Proteins with upregulated expression are marked in red, those with 

downregulated expression in blue, and proteins with unchanged expression in yellow.
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FIG 6 Analysis of SEPs according to metabolic processes. (A) Growth and anti-complement activity curve of S187. Each point represents the mean ± standard 

deviation of three independent cultures. Arrows indicate time points for sample collection for peptidogenomic analyses. (B) Principal component analysis of all 

quantifiable proteins at the two time points. The results show excellent proteomic separation between the two groups. (C) KEGG pathway enrichment analysis

(Continued on next page)
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Two significantly altered YefM family SEPs belonging to the TA system were identified. 
Phylogenetic evolutionary relationship analyses revealed three unique antitoxin SEPs 
(RS22200, RS17010, and RS27865) belonging to the S187 strain that showed different 
clades in phylogenetic evolutionary relationships as novel TA systems (Fig. 6F). Therefore, 
many antitoxin SEPs were detected during the secondary metabolite phase of strain 
S187 and may be associated with its growth in extreme deep-sea environments.

Small peptides usually contain a single structural domain and can interact with 
larger proteins to fine­tune complicated biological systems (86). Canonical signal peptide 
sequences and transmembrane structures were observed in annotated functional SEPs 
and in non-annotated SEPs (Fig. 6G). These abundant unknown SEPs, not been identified 
in previous databases, are likely to have important biological functions.

Identification of a potential growth-affected factor, NagE, associated with 
metabolism in Streptomyces

According to peptidogenomic results, pyruvate metabolism, the TCA cycle, and 
glycolysis/gluconeogenesis were the top three enriched KEGG pathways of significantly 
differentially expressed proteins during active metabolism in the S187 strain. All these 
genes are related to glucose metabolism. We noted that one of the SEPs, NagE, is 
responsible for glucose transport at the beginning of gluconeogenesis, affecting the top 
three pathways (Fig. 7A, Fig. S3A). Then, we further confirmed the intracellular expression 
of NagE in S. coelicolor M145 and S187 (Fig. 7B, Fig. S3BC). The overexpression mutant 
S187::NagE formed spores earlier, and the color of the colony was darker than that of 
the wild-type strain (S187 wt) and comparison strain (S187-pSET152) on TSB plates (Fig. 
7C, Fig. S3D). M145::NagE showed no significant difference in spore growth. However, the 
colony appeared to have a different color than that of the control groups on TSB plates. 
The same result was observed on plates based on different media (Fig. S3E).

Bioaccumulation of S187::NagE was higher than that of the control strain in the 
logarithmic phase, and the curve of the mutant strain showed an earlier inflection 
point at 24 hours (Fig. 7D). However, a similar result was not seen in the growth 
curve of S. coelicolor M145 (Fig. S3F). NagE affects strain growth and participates in 
morphological differentiation in S187, not in S. coelicolor M145 (Fig. 7E). However, the 
change in color of M145::NagE colonies on plates with different media showed that NagE 
influences the metabolism of two main antibiotics, prodiginine and actinorhodin, in S. 
coelicolor M145. We observed that the anti-complement activity of fermentation extracts 
from S187::NagE was significantly increased relative to that of wild-type S187 (Fig. 7F). 
The production of secondary metabolites increased, and a few new compounds (87) 
appeared in S187::NagE (Fig. 7G; Fig. S3G). In particular, the production of xinghaimycin 
(m/z 1,329.51) increased, and two potential intermediates (m/z 846.204 and m/z 859.48) 
appeared in the metabolic products of S187::NagE. Thus, NagE appears to be involved in 
the production of secondary metabolites and primary metabolism in strain S187.

DISCUSSION

Streptomyces species have the potential to synthesize various bioactive metabolites 
for applications in agriculture, medicine, and food technology (88, 89). However, the 
underlying control mechanisms in Streptomyces metabolic pathways remain unclear. To 

FIG 6 (Continued)

of 798 significantly differentially expressed global proteins (P > 0.05). Differentially expressed proteins are mainly enriched in carbohydrate-metabolism-related 

pathways. (D) HeatMap of differentially expressed SEPs between 48 and 120 hours during S187 fermentation. Three replicates for each group were normalized 

for different proteins and clustered. Up-regulated proteins are marked in red, down-regulated in blue, membrane-associated proteins in black, and full sequence 

coverage proteins in purple. S187 unique proteins are marked by pink rectangles. (E) Analysis of ribosomal protein interaction mapping. Altered proteins were 

included in the protein interaction network using the STRING database (combined score >0.85). (F) Evolutionary tree of Streptomyces antitoxin proteins. The 

five identified antitoxin proteins of S187 are marked by pink rectangles, the shared antitoxin proteins of S. coelicolor A3 (2) by a yellow rectangle, and antitoxin 

proteins characterized in Streptomyces by blue rectangles. (G) Identification of signal peptide functionality and cleavage sites within signal peptides. Diagram 

showing that RS10605 may be a secreted protein. One transmembrane helices region (purple) is in RS11095, indicating association with a membrane protein.
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FIG 7 Expression verification and functional validation of the SEP of NagE. (A) Of the 1,952 global proteins detected in peptidogenomics, those involved in 

carbohydrate-metabolism-related pathways including the PTS system (blue), pyruvate metabolism (yellow), TCA cycle (green), and gluconeogenesis (red), were 

analyzed. The S187 core carbon metabolism pathway and major enzymes are shown. Pgi, glucose-6-phosphate isomerase; PfkA3, 6-phosphofructokinase; GlpX,

(Continued on next page)
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identify novel SEPs and determine pathways, we employed a multi-integrated approach 
involving comprehensive database building, peptidogenomics, and de novo sequencing. 
We identified 140 SEPs in Streptomyces, including 68 novel SEPs (54 non-annotated 
from DB searches and 15 de novo only) and at least 67 SEPs predicted to be closely 
related to secondary metabolism. For the multi-integrated approach, 63 and 111 SEPs 
were predicted using OrfFinder and Prodigal (90), respectively. The predicted data 
simultaneously obtained using these two methods covered almost half of the 126 
SEPs detected using peptidogenomics, revealing the accuracy of the combined data. 
However, prokaryotic SEPs of up to 100 aa can be included, considering the complex 
metabolism of Streptomyces (16, 21, 91). In this study, we set a cut­off of 100 aa for the 
size of candidate proteins and obtained comprehensive protein structural and annota­
tion information for SEPs affecting S187 metabolism. SEPs of less than 50 aa comprised 
2.38% of SEPome I and 46.67% of SEPome II.

Due to the lack of available non-model biological databases, the identification of SEPs 
in strain S187 was arduous. A database-independent de novo sequencing approach is 
used for discovering novel SEPs. The combined strategy of analyzing de novo sequencing 
data and strict selection criteria for candidate SEPs further improves the quantity and 
reliability of the identified SEPs (92–94). smORFs located in non-coding regions can 
have functions relating to stress responses, virulence, and transport, and novel isoforms 
of canonical proteins can have important functions (68, 95). However, such ORFs are 
often ignored in database-dependent analyses. None of the five CSEPs or four ISEPs 
were observed in the custom database, an outcome that provides support for the DB 
search approach. These novel SEPs have not been annotated in the S187 genome. 
Another six ISEPs were observed in the custom database and not detected as SEPs in 
the DB search because of the limitations of this database-driven approach. These results 
demonstrate the advantage of database-independent de novo sequencing in identifying 
SEPs in proteomics. Combining both approaches has the capability and possibility to 
discover new rare genes and novel SEPs.

Meanwhile, we explored the new transcripts and 66 new RNAs that are independent 
of the most updated gene annotations from genomics in the RNA-seq database. Based 
on the genome location, new RNAs were classified into the following types (96, 97): 
5 “u” (intergenic, unknown), 30 “p” (RNA within 2000 nt of annotated genes and not 
overlapping), 27 “x” (opposite strand overlaps with reference), 3 “o” (on the same strand 
overlap with reference), and 1 “c” (contained in reference) (Fig. 4B). Moreover, 19 new 
RNAs that could be matched with peptide segments of MS/MS data were codable. 
ncRNAs are critical regulatory elements that control various cellular processes, includ­
ing regulating primary metabolism, stress response, morphological differentiation, and 
secondary metabolism (98–101). Thirty-two ncRNAs were observed in the 66 new RNAs. 
Noteworthy, four ncRNA-encoded peptides, which one encodes for a 61 aa CSEP, were 
observed (Fig. 4B). This supports the conclusion that ncRNAs can be translated into 
peptides and even, rarely, SEP (102).

Many SEPs related to metabolism were identified in this study (Fig. S4), including 
47 unique SEPs of S187 and 79 common SEPs with S. coelicolor A3 (2) in SEPome I 

FIG 7 (Continued)

fructose 1,6-bisphosphatase II; Fba, fructose-bisphosphate aldolase; TpiA, triosephosphate isomerase; PckA, phosphoenolpyruvate carboxykinase; Pyk2, pyruvate 

kinase; AceE1, pyruvate dehydrogenase subunit E1; SucB, 2-oxoglutarate dehydrogenase; Idh, isocitrate dehydrogenase; Kgd, alpha-ketoglutarate decarboxylase; 

SucC, succinyl-CoA synthetase subunit beta; SdhB, succinate dehydrogenase iron-sulfur subunit; FumC, fumarate hydratase; Mdh, malate dehydrogenase. 

(B) sfGFP fluorescence was used to confirm the expression of SEP NagE in S187 and M145 cells. The scale bar represents 500 µm. (C) The colony of wild type and 

nagE over-expression mutants of S187 and M145 on TSB solid medium after 24, 48, and 96 hours. 1: S187/M145::NagE; 2: S187/M145-pSET152; 3: S187/M145 wt. 

(D) Growth curves of wild type and nagE over-expression mutants of S187 cultures cultivated in TSB liquid medium. Each point represents the mean ± standard 

deviation of three independent cultures. (E) Scanning electron micrographs of the S187 wt, S187-pSET152, and S187::NagE mutants. Scale bars represent 1 µm. 

The strains were grown on TSB liquid medium and imaged after 20 hours. (F) Anti-complement activity of S187::NagE, S187-pSET152, and S187 wt crude extracts 

(**P <0.01; ***P <0.001). (G) GNPS analysis for the S187::NagE (red dot) and S187-pSET152 (blue dot) fermentation products. The compounds represented by the 

four clusters are misaugamycin, tetrachlorizine, Xiamycin, and isorenieratene.
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based on the peptidogenomics of strain S187. We further surveyed the common SEPs 
in two other model strains, S. lividans TK24 and S. albus NRRL B-1811T, and observed 74 
universal strains. In unique SEPs, 13 were functionally annotated (Table S7). In addition, 
12 SEPs, including four novel ones located on 9 BGCs, were closely associated with 
regulating and producing the main bioactive secondary metabolites and transferring 
substances in S187 (Table S8). Xinghaimycin is a typical S187 metabolite exhibiting 
anti-complement activity, similar to vancomycin, a glycopeptide antibiotic (103). KEGG 
analysis of the peptidogenomics of S187 showed that MLP is involved in the synthesis 
pathway of vancomycin and xinghaimycin. Separate from MLP, three canonical proteins, 
SinHS, SinD, and SinH, related to 4-hydroxyphenylpyruvate dioxygenase, NRP synthetase, 
and tryptophan 7-halogenase, respectively, were detected in peptidogenomics. Another 
56 potential smORFs were located at the margin between functional genes in the BGC 
of xinghaimycin, and 13 of these were identified in the smORF database searched using 
OrfFinder (Table S9).

Different carbon sources (such as glucose, fructose, mannose, and GlcNAc) are 
phosphorylated in the endoplasmic reticulum by bacteria through the PTS system. 
The PTS system regulates nitrogen metabolism, mediates the homeostasis of iron and 
potassium, and is involved in stress responses (104–106). In this study, NagE signifi­
cantly affected the production of secondary metabolites in S187 and S. coelicolor M145. 
Additionally, it was involved in the growth, development, and sporulation of S187. 
However, a similar phenomenon was not observed during the growth of S. coelicolor 
M145. Prediction of protein structure showed that S187 NagE has an α-helical structure 
in the N-terminal region (Fig. S3H), which should lead to a more stable protein (107, 
108). Oxidative metabolism is considered the primary mechanism in S. coelicolor because 
of antibiotic (actinorhodin) synthesis (109, 110). This might be the reason for the lack 
of a significantly different phenotype in the nagE overexpression strain of S. coelicolor 
M145. We observed that the production of two major secondary metabolites, xinghaimy­
cin, and xiamycin, was increased, and the production of other potential intermediates 
was stimulated by the overexpression of nagE in S187. The approach used in this 
study increases the feasibility of active metabolite identification and potentially reveals 
biosynthetic processes.

In summary, the database establishment and reanalysis of a model organism 
database in this study offer a rapid, cost­effective, and reliable approach to performing 
high-throughput sequencing or proteomics studies in other non-model organisms. The 
SEPs identified in this study can be exploited as valuable target SEPs to provide a 
comprehensive view of the mechanisms underlying secondary metabolism in Streptomy­
ces. This research establishes a solid foundation for future applications investigating 
prokaryotic growth, differentiation, and secondary metabolism.
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