NATIONAL RADIO ASTRONOMY OBSERVATORY Socorro, New Mexico

VLBA TECHNICAL REPORT NO. 29

FRONT-END F104 (2.3 Ghz) CARD CAGE CIRCUITRY
Addendum to VLBA TECHNICAL REPORT NO. 10
Gerry Petencin and David Weber
January 15, 1995

Table of Contents

1.0 INTRODUCTION 1
2.0 THEORY OF OPERATION 1
2.1 Front-End Block Diagram 1
2.2 Front-End Interface Signals and Characteristics 3
2.3 Front-End Modes and Cryogenics Control States 4
2.4 Cryogenic Control Equations 4
2.5 Control Card Description 5
2.6 Monitor Card Description 9
2.7 Sensor Card Description 11
2.8 Bias Card Description 19
2.9 RF Plate Description 23
2.10 Dewar DC Interface Description 23
2.11 AC Circuitry Description 24
2.12 DVM Readout Values and Tolerances 25
2.13 Monitor and Control System Readout Values 26
2.14 Band, Serial Number, and Modification Level Encoding 27
2.15 Front-End DC Power and Quality Ground 27
2.16 Wire List Problems 27
3.0 RELEVANT NRAO DRAWINGS 29
4.0 COMPONENT DATA SHEETS 31
5.0 APPENDIX 33
5.1 List of Relevant NRAO Technical Reports and Technical Memoranda 33
5.2 Vacuum Sensor Field Calibration Procedure 33

List of Illustrations

Figure 1 Monitor Panel 9
Figure 2 DV-6R Vacuum Sensor Connections 11
Figure 3 DT-500 Sensor Temperature Response 16
Figure 4 Dewar DC Feedthrough Label 24
Figure 5 VLBA F104 Front-End Electronics Screen 26
Figure 6 VLBA F104 Front-End Cryogenics Screen 26

1.0 INTRODUCTION

Technical Report No. 29 is an addendum to VLBA TECHNICAL REPORT NO. 10 (F104, 2.3 $\mathrm{GHz}, 13 \mathrm{~cm}$). This report augments the RF , thermal and physical descriptions contained in TECHNICAL REPORT NO. 10 (TR 10) by describing the card cage circuitry and its interfaces with the RF amplifiers, vacuum and temperature sensors, vacuum valve, refrigerator, heater calibration, and Monitor and Control system. The temperature and pressure transducer characteristics are also described. Since the Front-End's RF and thermal characteristics are described in TR 10, these topics are not included in this addendum.

An important graphic feature of the Theory of Operation (Section 2.0) is a detailed Front-End block diagram that shows all Front-End interconnect and interface circuitry. Reduced scale copies of the schematic and assembly drawings for the four card types and the associated BOMs are included. The card descriptions include alignment procedures.

Section 3 contains a list of relevant NRAO Technical Reports and memoranda.
Section 4 contains data sheets for special-purpose components used in the card cage circuitry.
Since TR 10 contains many assembly and BOM drawings and the card cage wire list, they are not included in this addendum. These drawings are referenced in the circuitry descriptions as required.

2.0 THEORY OF OPERATION

2.1 Front-End Block Diagram

Drawing C53204K002, following this text, is the F104 block diagram and provides a functional overview of the F104 circuitry. It shows the card cage, dewar, RF Plate, pressure and temperature transducers, vacuum valve, refrigerator control, and Monitor and Control interface circuitry. The four card types are shown in block form; the card's schematic, assembly and BOM drawings are included for reference in the circuit card descriptions.

I/O connector pins and signals are tabulated in section 2.3. Drawing B53203W002, TR 10 Appendix page II-28 is the card cage assembly drawing and shows the card cage, I/O connectors, card connectors, power resistors, and ground lug. Drawing B53203A004, TR 10 Appendix page II-6, is a similar drawing and shows cable routing and a connector table. J17, the 9 -pin " D " connector, provides power and signal connections to the RF Plate mounted on the side of the card cage.

2.2 Front-End Interface Signals and Characteristics

Card Cage Panel Connectors

J2-Monitor			J5-PMR, Control 1 ID			d3-Dewar Bias, LED \& Temp		
Pin	Name	Function/Type	Pin	Name	Function/Type	Pin	Name	E Function/Type
1	VP	PUNP VAC Mon/analog	1	GND	POWER GROUND	1		Ret (15K) Ret/analog
2	VD	DEWAR VAC Mon/analog	2	+15	+15V/FE Power	2		Sig (15K) Sig/analog
3	15K	15K TEMP Mon/analog	3	-15	-15V/FE Power	3		Ret (50K) Ret/analog
4	50K	50K TEMP Mon/analog	4	Not	Used	4	TSB	Sig (50K) Sig/analog
5	300K	300K TEMP Mon/analog	5		Used	5	LCP	GATE 1 BIAS/analog
6	ACI	AC CURRENT Mon/analog	6	X	CONTROL BIT/TTL	6	LCP	DRAIN 1 BIAS/analog
7	RF 1	RCP STAGE 1 Mon/analog	7		CONTROL BIT/TTL	7	LCP	GATE 2 BIAS/ananlog
8	RF2	OTHER STAGES Mon/analog	8	H	CONTROL BIT/TTL	8	LCP	DRAIN 2 BIAS/analog
9	LF1	LCP STAGE 1 Mon/analog	9	PA	FE PARITY/TTL	9	LCP	GATE 4 BIAS/analog
10	LF2	OTHER STAGES Mon/analog	10		Used	10	LCP	DRAIN 3 BIAS/analog
11	LED	LED VOLTAGE Mon/analog	11		+28V DRIVE/CMO	11	LCP	GATE 4 BIAS/analog
12	Not Us		12	HI	CAL +28V ORIVE/CMD	12	LCP	DRAIN 4 BIAS/analog
13	QGND	OUALITY GND/analog	13		Not Used*	13	RCP	GATE 1 BIAS/analog
14	SENS	TEMP SENSE A Mon/analog	14	FO	LSB /TTL	14	RCP	DRAIN 1 BIAS/analog
15	Not Us		15	F1	FREQUENCY /TTL	15	RCP	GATE 2 BIAS/analog
16	Not Us		16	F2	ID /TTL	16	RCP	DRAIN 2 BIAS/analog
17	Not Us		17		MSB /TTL	17	RCP	GATE 3 BIAS/analog
18	Not Us		18	S0	LSB /TTL	18	RCP	DRAIN 3 BIAS/analog
19	Not Us	sed	19	S1	LSB /TTL	19	RCP	GATE 4 BIAS/analog
20	S	SOLENOID MON/TTL	20	S2	SERIAL /TTL	20	RCP	DRAIN 4 BIAS/analog
21	P	PUMP REQUEST MON/TTL	21	S3	NUMBER /TTL	21	DEWA	AR GND Not Used*
22	M	MANUAL MON/TTL	22	S4	ID /TTL	22	LED	LED DRIVE/analog
23	X	CONTROL MON/TTL	23	S5	MSB /TTL	23	Not	Used
24	C	MOOE MON/TTL	24	MO	MODIFICATION/TTL	24	DEWA	AR HEATER/150 VAC
25	H	MONITOR MON/TTL	25	M1	MS8 /TTL	25	DEWA	AR HEATER RET/AC
J4-Auxiliary			11-AC Power Interface			d17-RF Plate		
	Name	Function/Type	Pin	Name	Function/Type	Pin	Name	e Function/Type
1	AC+	CURRENT MON/analog	1	¢1 S	HIFTED PHASE/150 VAC	1	Grou	und
2	AC-	CURRENT MON/analog	2	\$2 L	INE PHASE/150 VAC	2	+15	volts
3	P	PUMP REQUEST CMD/TTL	3	RETUR		3	-15	vol ts
4	GND	GROUND PUMP REQ RET/GND				4	Grou	
5 through 9, Not Used						5	Low	Cal Control
						6	High	Cal Control
						7		Return
						8	300	${ }^{\circ} \mathrm{K}$ Temp Mon
						9	Not	Used

Dewar DC Feedthrough - See Figure 4 in Section 2.10.
RF I/O Connectors: J6-RCP RF Out; J7-LCP RF Out; J8-Phase Cal Input
AC Power Cables: P12 Refrigerator AC Power J12; P13 AC power to Elapsed Time Indicator J13; P14 AC drive to Solenoid J14. See Wire List A53203W001, Sheet 8, TR 10 Appendix page II-22 and 2.3 GHz FE Block Diagram C53204K002 for connections.

Vacun Sensor Cables: P15 Pump Vacuum Sense to Pump DV-R6 J15; P16 Dewar Vacuum Sense to Dewar DV-R6 J16 See Wire List A53203W001, Sheet 7, TR 10 Appendix page II-21 and 2.3 GHz FE Block Diagram C53204K002 for connections.

* Although VLBA Front-End manuals typically designate this pin as Ground, it is not wired in F104; see Uire List Sheet 12, TR 10 Appendix page II-26.

2.3 Front-End Modes and Cryogenics Control States

The F104 Front-End operates in two Modes: Local (manual) and CPU (remote). The mode is manually selected by S1, the Heat, Pump, Off, Load, Cool, CPU manual selector switch on the card cage Control-Monitor panel. When the switch pointer is in the CPU position, the mode is computer-remote; if the pointer is in any other position, the mode is Local-manual. When the switch is in the Local mode, the control computer cannot override the mode switch setting.

In both modes, there are five Cryogenic States selected by either the manual selector switch in the Local mode or by the control computer in the CPU mode. These five states are: Heat, Pump, Off, Load, and Cool. The table below briefly describes the operations performed by the cryogenic components as a function of the Cryogenic State. The three control discretes X, C, and $\overline{\mathbf{H}}$ (described in the Monitor Card description) determine the operation of the refrigerator, vacuum valve and pump request drive circuitry in the Control Card (described below).

State	X	C	$\overline{\mathrm{H}}$	Cryogenic Functions
OFF	1	0	1	No refrigerator power, heater power or vacuum pumping.
COOL	1	1	1	Normal cooled operation.
STRESS	1	0	0	COOL with a small added heat load to stress-test the cryogenic system.
HEAT	1	1	0	Fast warm-up of the dewar with 35 watts of heat added. PUMP REQ goes high when dewar vacuum is greater than 10 microns.
PUMP	0	1	0	No refrigerator or heater power. PUMP REQ is high. The vacuum solenoid is open when the manifold pressure is less than the dewar pressure.

In the CPU mode, three computer-commanded X, C, and $\overline{\mathrm{H}}$ control discretes from the F117 (VLBA) or the F14 (VLA) control the cryogenic state. $\overline{\mathrm{H}}$ is the standard terminology for this term and the bar on top does not imply logic negation. The * suffix denotes a logic negation; thus $\overline{\mathrm{H}}$ is true and $\overline{\mathbf{H}}^{*}$ is false.

2.4 Cryogenic Control Equations

From the table above, it would appear that when the X, C and $\overline{\mathrm{H}}$ control bits are set to the state appropriate for a desired cryogenic state, the cryogenic functions are automatically activated. This implied automatic activation is not the case; the commanded action will happen only if TA ($15{ }^{\circ} \mathrm{K}$ stage temperature), VD (dewar vacuum), and VP (pump vacuum) parameters are in ranges appropriate for these actions and the relationship between VD and VP is correct. Control logic equations for these cryogenic functions contain discrete terms which are a function of the parameter level and an associated threshold value. If the parameter is within the specified range, the term is true and is an enabling factor in the activation of the function. If a parameter is outside the specified range, it is false and the term inhibits
the activation of the function. With the exception of the OFF state, which is unconditional, all equation terms must be true to activate the selected action. The + symbol denotes an OR function and the \bullet symbol denotes an AND function. Parenthesis brackets delimit an AND term and a * suffix denotes a logic negation.

When the logic equations are true, they activate the following:
L - activates a $1 / 2 \mathrm{~W}$ dewar power load to stress-test the refrigerator.
P - the Pump Request activates the vacuum pump.
Q - activates a 30 W power load to heat the dewar.
R - activates refrigerator $A C$ power.
S - activates the solenoid valve to enable the vacuum pump to reduce dewar pressure.
The equations are:

```
\(\mathrm{L}=\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}^{\star} \bullet\left(\mathrm{TA}<360^{\circ} \mathrm{K}\right)\)
\(\mathrm{P}=\left(\mathrm{C}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}^{\star}\right) \bullet(\mathrm{VD}>3 \mu \mathrm{~m})\)
\(\mathrm{Q}=\left(\mathrm{X}^{\star}+\mathrm{C}^{*}\right) \bullet \overline{\mathrm{H}} \bullet\left(\mathrm{TA}<360^{\circ} \mathrm{K}\right)\)
\(\mathrm{R}=\left(\mathrm{C} \bullet \overline{\mathrm{H}}^{\star}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}\right) \bullet(\mathrm{VD}<50 \mu \mathrm{~m})\)
\(S=\left(\mathrm{C}+\mathrm{C}^{*} \bullet \overline{\mathrm{H}}^{\star}\right) \bullet\left\{(\mathrm{VD}>5 \mu \mathrm{~m}) \bullet(\mathrm{VP}<\mathrm{VD}) \bullet\left(\mathrm{TA}>30^{\circ} \mathrm{K}\right)+(\mathrm{VD}>50 \mu \mathrm{~m}) \bullet\left(\mathrm{TA}>280^{\circ} \mathrm{K}\right)\right\}\)
```

These equations are implemented on the Control Card, schematic D53200S003, described below. The X, C and $\overline{\mathrm{H}}$ control discretes come from the Monitor Card, schematic D53200S005, described below. The TA, VD and VP analog signals come from the Sensor Card, schematic DD53200S002, described below.

2.5 Control Card Description

The Control Card (schematic D53200S003) is installed in slot 7 and implements the cryogenic control logic equations described above. During the following discussion, refer to the reduced copy of this drawing following this text. A description of the implementation of these control equations follows a description of the card inputs and outputs.

The card inputs are the TTL level X, C and $\overline{\mathrm{H}}$ control terms from the Monitor Card and the TA, VD and VP analog signals from the Sensor Card. TA is the $15^{\circ} \mathrm{K}$ stage dewar temperature, VD is dewar vacuum and VP is the pump vacuum.

The card outputs are P, the pump request discrete, and 150 VAC power to the refrigerator, vacuum solenoid, 760Ω dewar heater resistor and the $5 \mathrm{k} \Omega$ dewar heater limiting resistor. The AC power outputs are switched by relays K1 through K5. During the following discussion refer to Figure 1.3.3 on page 18 in TR 10, which shows the Front-End AC wiring. Note that a PCB track connects the 150 VAC unshifted phase input on pin X (designated 150 V A on the schematic) to pins Y, W and S . Also note that a PCB track connects the 150 VAC shifted phase input on pin U (designated 150 VC on the schematic) to pin V. The AC circuitry is described in Section 2.11.

See Block Diagram C53204K002 for the Control Card connections. Wire list A53203W001, Appendix page II-30, in TR 10, also describes the Control Card wiring connections.

The control equations are implemented in LS-TTL digital logic. The analog signals are thresholdcompared and the comparator outputs are compatible with TTL logic. The comparator threshold levels are described below.

Three LM339N analog comparator outputs change state at three preset levels of TA. The U1-1, U1-2 and U1-14 outputs switch states when TA $>30 \mathrm{~K}, \mathrm{TA}>280 \mathrm{~K}$ and TA $<360 \mathrm{~K}$, respectively.

Three LM339N analog comparator outputs change state at three preset levels of VD. The U2-1, U2-2 and U2-14 outputs switch states when VD>3 $\quad \mathrm{m}$, VD $>5 \mu \mathrm{~m}$ and $\mathrm{VD}<50 \mu \mathrm{~m}$, respectively. One LM339N comparator, U2-13, compares VD with VP and switches high when VP<VD.

An analog comparator is a form of operational amplifier whose output makes large level changes for small differences in the two input terminals. Typically, one of the inputs, either the + or - input, is connected to a preset reference level. When the other input slightly exceeds or is slightly less than the reference input, the output makes a large change.

The LM339N comparator output is high when the voltage on the negative (-) input is more negative than the voltage on the positive $(+)$ input. Comparators can be either inverting or non-inverting depending upon the choice of inputs for reference level and input signal. U1-14 is an inverting comparator because the + input is connected to a reference voltage and the negative $(-)$ input is connected to the variable signal. The output swings low if the variable signal is more positive than the reference level. The operation is analagous to an inverting operational amplifier. The non-inverting comparator has the - input connected to the reference level and the variable signal is connected to the + input. The output swings high (positive) when the variable signal is more positive than the reference level. The operation is analagous to a non-inverting operational amplifier. U1-1, U1-2, U2-1, U2-2 and U2-14 are noninverting comparators. U2-13 is a basic comparator because both inputs are variable levels. An LM339 data sheet is included in Section 4.

The comparator outputs have positive feedbacks so that the comparator's switching thresholds exhibit hysterisis. The hysterisis effect (or signal overdrive requirement) requires that the variable analog signal swing past the level that would cause the output to switch if hysterisis were not a factor. The hysteresis property applies to both positive-going and negative-going levels of the variable signal. Hysterisis is often used in analog comparator circuits to eliminate noise-induced switching when the variable level is near the reference level. Low-level noise is generally present in analog signals and comparator hysterisis prevents noise-induced switching in this situation.

TA scaling is $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. The TA comparator reference levels and associated temperatures are: $\mathrm{U} 1-1,+0.297 \mathrm{~V}\left(29.7^{\circ} \mathrm{K}\right)$; U1-2, $+2.816 \mathrm{~V}\left(282^{\circ} \mathrm{K}\right)$; U1-14, $+3.602 \mathrm{~V}\left(360^{\circ} \mathrm{K}\right)$. The VD comparator reference levels and associated vacuums are: $\mathrm{U} 2-1,+0.745 \mathrm{~V}(3 \mu \mathrm{~m}) ; \mathrm{U} 2-2,+1.334 \mathrm{~V}(5 \mu \mathrm{~m})$ and $\mathrm{U} 2-14$, $+4.521 \mathrm{~V}(50 \mu \mathrm{~m})$. These vacuum levels are based upon the chart of vacuum monitor voltage versus vacuum on page 15 in TR 10.

The TA comparator hysterisis values are: U1-1, $50 \mathrm{mV}\left(5^{\circ} \mathrm{K}\right)$; U1-2, $50 \mathrm{mV}\left(5^{\circ} \mathrm{K}\right), \mathrm{U} 1-14,10$ $\mathrm{mV}\left(10^{\circ} \mathrm{K}\right)$. The VD comparator hysterisis values are: U2-1, $278 \mathrm{mV}(\approx 1.8 \mu)$; U2-2, $350 \mathrm{mV}(\approx 3$ $\mu \mathrm{m})$; U2-14, $10 \mathrm{mV}(\approx 0.4 \mu \mathrm{~m})$ and U2-13, $50 \mathrm{mV}(\approx 2 \mu \mathrm{~m})$.

U10, an Analog Devices AD581JH precision voltage reference, provides a +10 volt DC reference for the comparator reference voltage dividers. Since the load on the AD581 does not vary and the Front-

Ends operate at about $25^{\circ} \mathrm{C}$, the +10 reference is stable within a few millivolts. An AD581 data sheet is included in Section 4.

Refer to the equations above. Examination of the equations shows that the terms $\mathrm{C} \bullet \overline{\mathrm{H}}^{*}$ and $\mathrm{C}^{*} \bullet \overline{\mathrm{H}}$ are used in four of the five equations. These two terms are formed in OR-gates U6-6 and U6-11 and are combined as required in the equations. Since the X, C, and $\overline{\mathrm{H}}$ control discretes are used in all the equations, the yellow CR6 (X), red CR8 (C) and CR9 ($\overline{\mathrm{H}}$) LEDs are provided to make it easier to check the card logic.

The solid-state relays K1, K2, K3 and K4 and their associated LEDs are driven by 75452 dual peripheral drivers. Each driver has a two input AND gate that drives an open-collector, high current sinking capacity output transistor. K1 through K5 are all solid-state relays with an LED input optically coupled to a solid-state AC switch.

L, the $1 / 2$ watt load equation $L=\mathrm{C}^{*} \bullet \overline{\mathrm{H}} \bullet(\mathrm{TA}<360 \mathrm{~K})$, causes a $5 \mathrm{k} \Omega$ limiting resistor to be inserted in series with the 760Ω dewar heater resistor. The resistor is inserted by closing relay K2; K3 is open in this state. (See the Front-End AC wiring schematic on page 18 in TR 10.) The term T3 (TA $<360^{\circ} \mathrm{K}$) from comparator U1-14 is AND-ed with H in U6-4. This is AND-ed with C* in U7-3 (a 75452) and the output is low when all three terms are high-true. The low-true output sinks current from +15 V through the coil of relay K2 and CR4, a yellow LED ($5 \mathrm{k} \Omega$). The relay's output switch connects the lower end of the $5 \mathrm{~K} \Omega$ resistor to AC low.
Q, the dewar heater equation $Q=\left(X^{*}+C^{\star}\right) \bullet \bar{H}^{\bullet}(T A<360 K)$, uses the $T 3 \bullet \bar{H}$ product from U6-6. It is AND-ed with $\mathrm{X}^{*}+\mathrm{C}^{*}$ from U11-1 in gate U8-5 (a 75452). The output is low-true when all three terms are high-true and sinks current from +15 V through the LED of relay K 3 and the red LED (HEATER), CR3. K3's output applies 150 VAC to the 760Ω dewar heater resistor.

P is the pump request equation $\mathrm{P}=\left(\mathrm{C}+\mathrm{C}^{*} \bullet \overline{\mathrm{H}}\right) \bullet(\mathrm{VD}>3 \mu \mathrm{~m})$. AND gate U6-3 uses the $\mathrm{C}+\mathrm{C}^{*} \bullet \overline{\mathrm{H}}$ term from U5-3 (mentioned above) and the V1 term from comparator U2-1 (VD>3 $\mu \mathrm{m}$). The output is high-true if both input terms are high-true. This P (pump request) output goes to the auxiliary connector pin J4-3 to drive an external vacuum pump control circuit. It is also connected to the monitor connector J2-21 to enable the monitor and control system to read the P state. CR7 (PUMP), a yellow LED, sinks current through inverter U3-2 from +5 volts when P is high.
R, the refrigerator power equation $\mathrm{R}=\left(\mathrm{C} \bullet \overline{\mathrm{H}}^{\star}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}\right) \bullet(\mathrm{VD}<50 \mu \mathrm{~m})$, uses the $\left(\mathrm{C} \bullet \overline{\mathrm{H}}^{\star}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}\right)$ term from U5-6 (described above). This term is inverted to low-true by U3-8, which drives a 74LS32 gate U5-8. In this application, the 74LS32 functions as a low-true AND. The U5-8 output is low-true only if both inputs are low. V3, VD $>50 \mu \mathrm{~m}$ is the other U 5 input. This term is high when VD $>50 \mu \mathrm{~m}$ and low when VD<50 $\mu \mathrm{m}$. Thus the U5-8 output is low when $\left(\mathrm{C} \bullet \overline{\mathrm{H}}^{*}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}\right) \bullet(\mathrm{VD}<50 \mu \mathrm{~m})$. U8 is a 75452. The pin 1 input is connected to +5 through a $4.7 \mathrm{~K} \Omega$ resistor so that output U8-3 is high when the equation is true. The U8-3 output sinks current from +15 V through K4's LED and a 750Ω resistor. When K5 is actuated, it connects the 150 VAC return (or common) to the refrigerator. Note from the block diagram above that card pin X is connected to 150 VAC, Phase 1 , the unshifted phase. This line drives a rectifier-divider-filter circuit consisting of CR2 (1N4007), R35 ($10 \mathrm{k} \Omega$), R36 ($1 \mathrm{k} \Omega$) and C9 (100 $\mu \mathrm{F})$. When the 150 VAC , Phase 1 power is present at the filter input, C9 charges to about 19.3 volts. Note that K4's contacts are connected to the junction of the $10 \mathrm{k} \Omega$ and $1 \mathrm{k} \Omega$ resistors and to the low side of the capacitor so that when K 4 is actuated, the filter input is shorted. When the equation is true, K4
is not actuated, its contacts are open, and the capacitor is charged to about 19 volts. This DC voltage drives K5's LED, which closes its output contacts to pass the 150 VAC return (or common) to the refrigerator. Section 4 has data sheets for the 75452 and the relays.

S, the solenoid equation, is the most complicated and is the OR sum of two sets of AND products. $\mathrm{S}=\left(\mathrm{C}+\mathrm{C}^{\star} \bullet \overline{\mathrm{H}}\right) \bullet\{(\mathrm{VD}>5 \mu \mathrm{~m}) \bullet(\mathrm{VP}<\mathrm{VD}) \bullet(\mathrm{TA}>30 \mathrm{~K})+(\mathrm{VD}>50 \mu \mathrm{~m}) \bullet(\mathrm{TA}>280 \mathrm{~K})\}$. The term $\mathrm{D}(\mathrm{C}+\mathrm{C} \star \overline{\mathrm{H}})$ is common to both products. Consider the first set of products. The first term, $\mathrm{C}+\mathrm{C} \star \overline{\mathrm{H}}$, is formed by U53. The second term, V2 (VD>5 $\mu \mathrm{m}$), is the output of comparator U2-1. The third term, V4 (VP<VD), is the output of comparator U2-13. The fourth term $\mathrm{T} 1,\left(\mathrm{TA}>30^{\circ} \mathrm{K}\right)$, is the output of comparator U1-1. (VD>5 $\mu \mathrm{m}$), ($\mathrm{VP}<\mathrm{VD}$) and $\left(\left(\mathrm{TA}>30^{\circ} \mathrm{K}\right)\right.$ are AND-ed in gate U4-6. The output is ORR-ed in gate U5-11, a 75452 driver, with the second product. The second product is formed in U4-12, which has the inputs V3 (VD>50 $\mu \mathrm{m}$) and $\mathrm{T} 2\left(\mathrm{TA}>280^{\circ} \mathrm{K}\right)$. The U5-11 output drives one input on U7-5. The other input is the $D\left(C+C^{*} H\right.$) term from U5-3. U7-5 sinks current through K1's LED and CR1 (SOL), a yellow LED. The SMON term, a monitor discrete, is formed in gate U4-8 by the output of U5-11 and D. The Solenoid valve is an inductive device and if it does not actuate, the solenoid's AC current demand can be as high as 0.40 amperes. To protect K1 from current-induced voltage surges, an MOV and series RC circuit are connected across K1's output. The MOV clips voltage peaks and the RC circuit provides additional surge protection to K1.

For convenience in maintenance, the card LEDs mentioned above and circuit level test jacks are placed on the card edge for easy access. LED and test jack labels are silkscreened on the card. See the card assembly drawing D53200A004 for the locations.

The card's +5 volt logic power is derived from +15 volt power by U9, a MC7805, 5 -volt DC regulator.

Control Card Alignment

The Control Card does not have any alignment adjustments. There is not a Control Card tester or formal card alignment procedure but the circuit operations can be evaluated using the card's maintenance features, the Monitor Panel DVM and the Monitor Panel State Select switch, S1. The levels of four analog signals, TA ($15^{\circ} \mathrm{K}$), VD, VP and ACI (AC current load), can be measured using the DVM. The states of the comparator outputs (via card test jacks) can be related to these analog signal levels. LEDs on the X, C and $\overline{\mathrm{H}}$ control discretes enable verification of the control inputs from the Monitor Card. LEDs on the outputs of the five equation's logic circuits indicate the state of the equation's logic output. The Monitor Panel's State switch S1 can be set to select any of the five possible manual-mode states. This will cause the X, C and $\overline{\mathrm{H}}$ states to activate the logic equations as described above. In most cases, the card circuitry can be evaluated by selecting a cryogenic state, noting the TA, VD, VP, and ACI analog levels, the associate d comparator outputs, and the response of the solenoid, the refrigerator, vacuum pump, dewar heater, and $1 / 2$ watt load to these signal levels and control states.

control states*

STATE	CONTROC BIT			OCTAL	SYSTEM
-				VALOE	MODE
COOL	1	1	1	7	NORMAL
LOAD	1	0	0	4	1/2 W LOAD
OFF.	1	0	1	5	NO COOL, heat OR PUMP
PUMP	0	1	0	2	PUMP ONLY
heat	1	1	0	6	PUMP AND HEAT (30W)
UNUSED	0	0	0	0	LOAD
UNUSED	0	0	1	1	OFF
UNUSED	0	1	1	3	COOL

TTL LOGIC $1=$ ON $=$ HI LEVEL $0=0$ FF=LO LEVEL
$\begin{array}{ll}\mathrm{L}=1 / 2 \text { W Load } & =\overline{\mathrm{C}} \bullet \mathrm{H} \bullet(\mathrm{TA}\langle 360 \mathrm{~K}) \\ \mathrm{P}=\text { Pump Request. } & =(\mathrm{C}+\overline{\mathrm{C}} \bullet \mathrm{H}) \bullet(\mathrm{VD}>3 \mu) \\ \mathrm{Q}=\text { Heater } 30 \mathrm{~W} & =(\overline{\mathrm{X}}+\overline{\mathrm{C}}) \bullet \mathrm{H} \bullet(\mathrm{TA}\langle 360 \mathrm{~K}) \\ \mathrm{R}=\text { Refrigerator PWR } & =(\mathrm{C} \bullet \overline{\mathrm{H}}+\overline{\mathrm{C}} \bullet \mathrm{H}) \bullet(\mathrm{VD}\langle 50 \mu)\end{array}$
$S=V a l v e ~ O p e n(S o l . ~ O n) ~ \doteq(C+\bar{C} \bullet H) \bullet(V D>5 \mu) \bullet(V P\langle V D) \bullet(T A>30 K)+(V D>50 \mu) \bullet(T A>280 K)$

2.6 Monitor Card Description

The Monitor Card is installed in Slot 3 and has two functions: mode-state control via S1 (the Monitor Panel Mode-State switch) and its associated logic and local analog monitoring using the Monitor Panel DVM and S2, the Monitor Select Switch. Drawing C53200S005 shows the Monitor Card circuitry. Section 4 contains a data sheet for the DVM, a Texmate PM-45XU $41 / 2$ digit panel meter.

The Monitor Panel is attached to the Monitor Card so that the card and panel are a single assembly. Figure 1 shows the Monitor Panel.

See Block Diagram C53204K002 for the Monitor Card connections. Wire list A53203W001, Sheet 4, TR 10 Appendix page II-18, also describes the Monitor Card wiring connections.

S1, the mode-state selector switch, has six positions: HEAT, PUMP, OFF, LOAD, COOL and CPU. When the switch is in the CPU position, the Front-End is controlled by the control computer via F117 (VLBA) or F14 (VLA). In the other five positions, the FrontEnd cryogenic state is controlled by the setting of Sl as shown in the table in Section 2.3 above.

The Monitor mode-state logic is simple encoding and multiplexing logic. S1, the mode-state switch wiper, is connected to ground. The HEAT, PUMP, OFF, STRESS and COOL contacts are connected to +5 volt pull-up resistors and the inputs of U1, a

Figure 1 Monitor Panel 74 LS 148 , 8 -line to 3 -line priority encoder. The sixth position, CPU A0, A1 and A2 outputs are the X, C, and H control discretes, respectively. Since S1 has physical stops and the encoder inputs are low-true, the other three encoder inputs can safely float.

The X, C, and $\overline{\mathrm{H}}$ encoder outputs are connected to the B inputs of U 2 , a 74 LS 157 quad 2 -input multiplexer. The multiplexer A inputs are the X, C, and $\overline{\mathrm{H}}^{\star}$ cryogenic state command inputs from the CPU (via F14 or F117). The multiplexer outputs drive the X, C, and $\overline{\mathrm{H}}^{\star}$ inputs of the Control Card described in Section 2.5 above. The multiplexer A/B input selection is controlled by S1. When S1 is in the CPU position, the $2 \mathrm{k} \Omega$ pull-up resistor to +5 volts causes the mulitiplexer to select the A inputs; in any of the other five positions, the encoder outputs are selected. The three multiplexer outputs are connected to the Control Card.

The choice of encoder states is rather important. If through some mischance or malfunction the

C and H^{*} bits are stuck high or low, the Control Card will assume either the COOL or LOAD states, the desired default cryogenic states.

Three OR gates in U3, a 74LS32, are used as isolating buffers on the X, C, and $\overline{\mathrm{H}}$ lines to J2, the cryogenic state monitor outputs to F117 or F14 via J2. In the event of an inadvertant short on these lines, the buffers protect the X, C, and H inputs to the Control Card.

Gate U4-8 decodes the COOL state to sink current from a Monitor Panel red LED, CR2. When S1 is in the CPU position, gate U4-12 sinks current from a Monitor Panel red LED, CR1. The state of U4-12 is output to F117 and F14 via J2.

Five volt logic and DVM power is provided by U5, a 7805CT series regulator. Note that the DVM signal ground reference is Quality Ground from J2-13.

The Texmate PM-45-XU has jumper connectors to control its mode and the decimal point is selected by section 1 of the Monitor Select switch, S2. A pair of test jacks on the panel permits an external meter to be connected to the DVM input if there is some question about the DVM values. Since a DVM data sheet is included in Section 4, it is not described here.

Typical values and tolerances for the analog parameters measured by the DVM are described in Section 2.12.

There are no alignment adjustments for the Monitor Card. The card logic is so simple that it can be checked by setting the mode-state switch to the six positions and noting the states of the Monitor Panel LEDs (COOL and MAN) and the Control Card X, C, and $\overline{\mathrm{H}}$ LEDs.

COMPONENT SIDE

2.7 Sensor Card Description

The Sensor Card, slot 6, contains the interface circuitry for two Teledyne-Hastings DV-6R vacuum guages and two Lake Shore DT-500-KL diode temperature sensors. The vacuum guages sense dewar vacuum (VD) and the pump or manifold vacuum (VP) and the two diodes sense the $15^{\circ} \mathrm{K}$ (TA) and 50 ${ }^{\circ} \mathrm{K}$ (TB) dewar temperature stages.

The conditioned VD, VP, and TA outputs of the Sensor Card are connected to the Control Card, slot 7, for use in controlling the Front-End's cryogenic states. They are also connected to the Monitor Card for local monitor readout on the DVM and to J 2 for readout by the Monitor and Control System. A non-linear form of TA is also connected to J2 for Monitor and Control System readout. This signal has a higher sensitivity and potentially greater accuracy because it is not subjected to linearizing corrections. TB is not used by the Control Card but is connected to the Monitor Card for DVM readout and is also connected to J 2 for Monitor and Control System readout. See Block Diagram C53204K002 for the Sensor Card connections. Wire list A53203W001, TR 10 Appendix page II-29, also describes the Sensor Card wiring connections. The Sensor Card schematic is D53200S002 and the assembly drawing is D53200A003.

Teledyne-Hastings DV-R6 Vacuum Guages

The Hastings DV-6R vacuum gauge is a ruggedized, precision vacuum sensing guage with a specified range of 0 to $1000 \mu \mathrm{~m}$ of Hg (sea-level atmospheric pressure is $760,000 \mu \mathrm{~m}$ of Hg .). The DV6 R is a thermopile consisting of three identical noble-metal alloy thermocouples; see Figure 2 which shows the sensor and its connections to the VD interface amplifier. The + symbol indicates the thermal EMF polarity. The thermocouple alloys are Gold/Platinum and Platinum/Rhodium. All three thermocouples sense the gas pressure and the - (negative thermal EMF polarity) sides of all three are connected to DV-6R pin 8, which is simply a tie-point that is not connected to any external circuitry. The + sides of two thermocouples are connected to pins 3 and 5 and are heated by the AC excitation. The + side of the third thermocouple is connected to pin 7, is not heated by the AC excitation, and is analagous to the reference junction in a conventional thermocouple circuit. The thermal EMF of this third thermocouple is determined by the temperature of the sensed gas, is very small, and its polarity is in opposition to the thermal EMF of the heated thermocouples.

The vacuum-sensing properties of the DV-6R are a function of the sensed air's thermal conductivity, which decreases when the air pressure is decreased. A decreasing thermal conductivity increases the hot junction's temperatures, which increases the thermopile DC output. At a high vacuum, the hot junction temperature is about $300^{\circ} \mathrm{C}$. In the dewar and manifold vacuum-sensing applications, the DV-6R sensitivity is determined by the AC heating power delivered to the thermocouple junction; the Sensor Card VD ZERO and VP ZERO adjustments determine this power level. Hastings does not have an explicit

Figure 2 DV-6R Connections
mathematical expression for DC output as a function of the sensed air pressure but the DV-6R's output is roughly a logarithmic function of pressure. Hastings states that the DV-6R accuracy is about $\pm 2 \%$ at a high vacuum ($\approx 1 \mu \mathrm{~m}$).

Page 15 (in TR 10) shows a graph of the Sensor Card vacuum interface circuit readout voltage versus dewar pressure. At a vacuum of $1 \mu \mathrm{~m} \mathrm{Hg}$, and with the appropriate AC excitation, the nominal DV-6R sensitivity (output voltage change /vacuum change) is $-161 \mathrm{mV} / \mu \mathrm{m}$; this is the DV-6R's highest sensitivity. As pressure increases, the sensitivity rapidly decreases. At $1000 \mu \mathrm{~m}$ the interface circuit output is +9652 mV and at sea level atmospheric pressure, the interface circuit output is $+10,000 \mathrm{mV}$. The nominal sensitivity of $-161 \mathrm{mV} / \mu \mathrm{m}$ at $1 \mu \mathrm{~m}$ is the value used in Sensor Card alignment.

Hastings' vacuum thermopile interface circuit uses a center-tapped transformer secondary that drives pins 3 and 5 with a 0.38 volt, P-P square wave; this heats the two thermocouples connected back-to-back across pins 3 and 5 . The primary is driven by a 5 kHz power oscillator. The thermopile's DC output connections are pin 7 (the + side of the unheated thermocouple) and the transformer center-tap. Relative to pin 7, the heated thermocouple's DC voltages on pins 3 and 5 are identical because the two heated thermocouples are in parallel. Hastings typically connects the DC output to an analog current meter with a 40Ω current limiting resistor. The Hasting's interface's meter scale is calibrated for the sensor's working range.

The DV-6R interface circuits are aligned by substituting a Hastings DB-20 reference tube for the DV-6R. The DB-20 simulates the DV-6R at some high vacuum level, typically $2 \mu \mathrm{~m}$. In a recent lab test, a Hastings DB-20 Reference Tube marked $2 \mu \mathrm{~m}$ was substituted for the DV-6R. The DB-20 DC output measured on pin L of the Sensor Card was -287 mV . Although this was slightly under the expected 322 mV , the Sensor Card circuit aligned normally. The vacuum interface alignment procedure is described below. A Hastings DV-6R data sheet is included in Section 4.

The vacuum guage interface circuitry is shown on the left half of the Sensor Card schematic drawing, D53200S002. Note that there are three connections to the DV-6R.

Vacuum Guage Interface Circuitry

The DV-6R vacuum gauges require an AC excitation. An oscillator and two power buffers provide the AC power to drive the thermopiles. The oscillator is U4-8, a TI TL084BCN operational amplifier used in an RC relaxation oscillator circuit. The oscillation results from an alternating sequence of capacitor charge-discharge ramps. One output cycle consists of a capacitor charge period and a capacitor discharge period; therefore the capacitor's voltage waveform is a sawtooth and the oscillator's output is a square wave. The amplifiers negative (-) input is connected to the capacitor-resistor junction. The amplifiers positive (+) input is connected to a center-tapped $48 \mathrm{k} \Omega$ resistive voltage divider, connected to the amplifier's output; therefore, the amplifier's + input voltage is always half the output voltage. Capacitor C14 is charged (or discharged) through resistor R81 until a switching threshold is reached; at the threshold, the amplifier's output switches to the opposite polarity. This causes the charging current polarity to reverse so the capacitor begins to discharge (or charge). The TL084's two output levels are the positive and negative saturation limits, about +13.5 and -13.5 volts. The two switching thresholds are the levels at which the voltage difference between the two amplifier inputs is zero. Since the amplifiers + input is connected to the midpoint of the $48 \mathrm{k} \Omega$ resistive voltage divider, the switching thresholds are +6.25 and -6.25 volts.

The oscillator period is $2.2 \mathrm{R}_{81} \mathrm{C}_{14}$, which is $52.8 \mu \mathrm{~S}$, so the frequency is about 18.9 kHz .
The + input connected to the voltage divider experiences positive feedback, which adds hysterisis to the switching thresholds. This prevents spurious noise-induced switching that might otherwise occur when the differential voltage between the inputs is very small. Low level noise is always present in virtually any analog circuit.

The voltage on the TLO84 inputs are ± 6.5 volts above or below ground. This could be a problem in a conventional operational amplifier. The TL084 has JFET-inputs and is capable of operating with a differential input voltage of ± 30 volts and an input voltage of ± 15 volts. Section 4 has a data sheet for the TL084.

The oscillator output is clipped to $\mathrm{a} \pm 6.2$ volt square wave by a zenar diode clipping circuit. R79, a $2 \mathrm{k} \Omega$ resistor, isolates the amplifier from the clipper to prevent clipper overload. A pair of paralleled 1N821, 6.2 volt zenar diodes make a precise + and -6.2 volt square wave that is nearly independent of temperature. The 1 N 821 has a temperature coefficient of $0.01 \% /{ }^{\circ} \mathrm{C}$. The 1 N 823 , which may be used as an alternate zenar, has the same zenar voltage but a $0.005 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient.

Since there are two vacuum sensors, two independent sets of DV-R6 drivers and conditioning amplifiers are required. The driver circuits are power buffers and the conditioning amplifiers are a differential amplifier driving an inverting amplifier. The Hastings catalog does not specify a resistance value for the thermopile but it's reasonable to assume that it is small, probably less than an ohm. This low resistance requires a low impedance, high current drive.

We first consider the VD power buffer, driven by the clipper circuit described above. The power buffer is U8-1, an inverting operational amplifier with Q1, an emitter-follower power transistor in the feedback loop. The transistor provides the low impedance, high current drive required by the DV-6R.

The DV-6R must be driven by an AC signal. Therefore, the buffer amplifier input and output are both AC-coupled. The input is AC-coupled via $\mathrm{C}_{1}(0.01 \mu \mathrm{~F})$. At $18.9 \mathrm{kHz}, \mathrm{C}_{1}$'s impedance is about 800 Ω, small in comparison to $R_{7}(130 \mathrm{k} \Omega)$ and $R_{3}(50 \mathrm{k} \Omega)$. The amplifier output drive to the DV-6R is ACcoupled via $C_{2}, 10 \mu \mathrm{~F}$. C_{2} 's impedance is about 0.8Ω, small in comparison to the DV-6R impedance.

Note that Q1's collector is connected to ground; a 0.3 mA offset current from +10 volts into U8-2, the summing junction, shifts Q1's emitter Q-point to about -3.0 volts. This avoid3 clipping the DV-6R drive. Diode CR_{5} across the transistor base-emitter junction prevents base-emitter reverse voltage protection.

The amplifier gain is controlled by the ratio of feedback to input resistance. The feedback resistor is R_{1}, ($10 \mathrm{k} \Omega$) and the input resistance is $R_{7}(130 \mathrm{k} \Omega)$, and R_{3}, (a $50 \mathrm{k} \Omega$ pot). The maximum and minimum gains are 0.076 and 0.055 , respectively as a function of R_{3} 's setting. The clipper output is a 12.4 volt, P-P signal; with these two gain extremes, the corresponding Q1 output is about 0.95 volts P-P, and 0.69 volts, P-P. With R_{3} set mid-range, the buffer output is about 0.79 volts P-P. Hastings uses a 0.38 volt drive across pins 5 and 3.

The drive is AC-coupled to the DV-6R pin 5 and the thermopile heating current flows through the two thermocouples to ground via DV-6R pin 3. The 100 pF capacitor across the $10 \mathrm{k} \Omega$ feedback resistor R_{19} provides some high frequency pre-emphasis.

The DV-6R pin 7 output is amplified by cascaded amplifiers, U5-13 (noninverting) and U6-6 (inverting). The DV-6R thermal EMF output on pins 5 and 7 is a DC output that is connected to the inputs of differential amplifier U6-13. Note from Figure 2 that the two heated thermocouple's thermal EMFs are in opposition, thus pin 5 is actually at DC ground; this was verified in a recent measurement.

The DV-6R's negative polarity, thermal EMF output on pin 7, drives U5-4, the amplifier's noninverting (+) input. Since the noninverting input is driven and the noninverting input is static at DC ground, the amplifier's output signal polarity is the same as the DV-6R pin 7 polarity.

Note that the DV-6R AC excitation is also a normal-mode input to U5-13. The AC level on DV6 R pin 7 is half the AC excitation voltage. The normal-mode component is reduced by resistor R_{86} so that the AC level on U5-3 is also half the excitation level. The normal-mode component of the AC excitation is also reduced by the two amplifier's low-pass filtering.

U5-13's gain is 50 , determined by the $\mathrm{R}_{8} / \mathrm{R}_{85}$ ratio. The 19.8 kHz AC signal on U5-13's inputs is filtered by capacitor C_{4} across U5-13's feedback path. This capacitor in conjunction with R_{84} forms a single-pole, low-pass filter having a -3 dB frequency of about 3 Hz . Inverting amplifier U5-6 has a gain of 10 , and capacitor C_{8} provides additional AC filtering. U5-6's -3 dB frequency is about 32 Hz .

When the pressure is $1 \mu \mathrm{~m}$, the U5-13's output is -8.050 volts (50×-0.161). When the air pressure is high, U5-13's output is very small.

The next amplifier stage, U5-6, is an inverting amplifier with a gain of 10 . Note that the + input of U5-6 is biased to about +1 volt by the resistive voltage divider to +10 volts. This also causes the input to be biased to the same +1 volt level. If the U5-13 output is about zero volts, which is the atmospheric pressure level output of the DV-6R, the U5-6 output is +10 volts. If the U5-13 output is 8.050 volts, the result of a $1 \mu \mathrm{~m}$ pressure in the DV-6R, the U5-6 output is zero volts.

The VD amplifier output may be measured at TJ-5; TJ7 is analog ground. The amplifier's three outputs (MON OUT, METER, and VD) have isolation resistors $R_{16}(2 \mathrm{k} \Omega), \mathrm{R}_{17}(10 \mathrm{k} \Omega)$ and $\mathrm{R}_{18}(100 \Omega)$, respectively. The METER OUT signal could be used to drive an analog meter but is not used in F104. The MON OUT is also not used in F104. The VD output is connected to the Control Card (slot 7), the Monitor Card (slot 3), and to J2-2 for readout by the Monitor and Control System.

The VP power buffer (U8-14 and Q2) is similar to the VD power buffer but provides a slightly lower drive for its DV-6R; R_{7} in the series attenuator is $200 \mathrm{k} \Omega$. The maximum and minimum drives as a function of the R_{7} setting are 0.49 and 0.30 volts, $\mathrm{P}-\mathrm{P}$ respectively. With R_{21} set mid-range, the $A C$ drive is 0.40 volts, P-P, close to Hastings drive level.

Vacuum Sensor Interface Circuit Alignment

This alignment procedure was abstracted from VLBA Technical Report No. 1.
The two DV-6R interface circuits are aligned by using a Sensor Card Tester. The tester contains a Hastings DB-20 Reference Tube, which simulates the output of a DV-6R at a specified vacuum level, typically 2 to $3 \mu \mathrm{~m}$, printed on the side of the Reference Tube. The vacuum interface circuitry in the tester has a VD/VP selector switch to connect the DB-20 to either interface circuit and a ZERO/ATMOS toggle switch for the two adjustments. The DV-6R interface circuits have two alignment adjustments, VP

ZERO (or VD ZERO) and VP ATMOS (or VD ATMOS). The VP ZERO adjustment determines the AC drive level to the buffer circuit and the VP ATMOS adjustment determines the DC offset to the U6-6 (or U5-6) output amplifiers. In aligning the card's two DV-6R interface circuits, the tester's ZERO/ATMOS switch is first set to the ZERO position and the card's VP (or VD) ZERO potentiometer is adjusted to produce an output of 161 mV times the DB-20 reference pressure value. The output can be measured at TJ6 (or TJ5) on the tester on the EXT DVM jack or by the Monitor Panel DVM. Next, the ZERO/ATMOS is set to the ATMOS position and the VP (or VD) ATMOS potentiometer is adjusted to produce an output of +10230 mV (about positive full-scale on a $5 \mathrm{mV} / \mathrm{LSB}, 12$-bit A/D converter). In the ATMOS position, the tester presents an open circuit to the interface circuit in place of the DV-6R; this causes the full-scale output. Section 4 contains a Hastings DB-20 data sheet. A field calibration procedure for the DV-6R vacuum sensors is included in the Appendix, Section 5.

DT-500 Temperature Sense Diodes, TSA and TSB

The temperatures of the dewar $15^{\circ} \mathrm{K}$ and $50^{\circ} \mathrm{K}$ stations is sensed by two Lake Shore DT-500-KL diode temperature sensors, TSA and TSB. The $15^{\circ} \mathrm{K}$ stage conditioned signal is TA and TB is the 50 ${ }^{\circ} \mathrm{K}$ stage conditioned signal. Section 4 contains a data sheet for a similar Lake Shore diode temperature sensor. The $300^{\circ} \mathrm{K}$ temperature is measured by a National Semiconductor LM335 chip and is described in the RF Card description, Section 2.9, below. Figure 3, on the next page, shows a plot of the DT-500 diode voltage vs. temperature. This plot was abstracted from NRAO EDIR Report No. 204, May 1980 by Michael Balister.

The diode's characteristics are determined by the diode equation: $I_{F}=I_{S}\left(e^{\frac{q V}{k T}}-1\right) . \mathrm{I}_{\mathrm{F}}$ is the diode forward current and I_{S} is the reverse-bias saturation current. Constants are: I_{S}, e, the electronic charge, and k , Boltzman's constant. Variables are $\mathrm{I}_{\mathrm{F}}, \mathrm{V}$, the diode voltage, and T , the diode temperature, ${ }^{\circ} \mathrm{K}$. If I_{F} is maintained at a constant value, there are only two variables, V and T . By using a suitable conversion table and holding I_{F} at a constant value, T may be determined by measuring V . Note from the Lake Shore data sheets that if I_{F} is $10 \mu \mathrm{~A}, \mathrm{~V}$ is 1.345 volts at $13^{\circ} \mathrm{K}$ and 0.519 volts at $300{ }^{\circ} \mathrm{K}$.

Diode Interface Circuitry

Block Diagram C53204K002 shows the TSA and TSB diode wiring connections to the Sensor Card, which has two identical temperature interface circuits. The diode anodes are connected to analog ground (pins E and F) and the cathodes are connected to the current sources and temperature sense interface circuit inputs (pins 4 and H). The TA and TB diode interface circuits are shown in the right half of Schematic diagram D53200S002.

Implementation of a two-segment linearization circuit is suggested by the character of the DT-500 thermal response curve shown in Figure 3. The Sensor Card's diode interface circuitry is an adaptation of the design described in EDIR No. 204. ${ }^{1}$

Consider the TA circuit. Transistor Q3 and associated components are the $10 \mu \mathrm{~A}$ current sources for TSA. The base of Q3 is held at -8.8 volts by zenar diode $\mathrm{CR}_{1}\left(\mathrm{~V}_{\mathrm{Z}}=6.2\right.$ volts). Q3's collector current is determined by V_{CE} and the resistance between the emitter and -15 volts. Potentiometer R_{39} adjusts the

[^0]diode current to the $10 \mu \mathrm{~A}$ value.
Noninverting, unity-gain voltage followers U1-1 and U2-1 isolate the diode's current source circuitry from the linearization circuitry. Since they simply buffer the diode's voltage, the amplifiers outputs are a nonlinear function of temperature. The TSA signal is connected to its linearization circuitry and to J2-14 for readout by the Monitor and Control System. R_{87}, a $1 \mathrm{k} \Omega$ resistor, isolates the TA amplifier from the test point terminal TP1 and the nonlinear TA output on pin S. The nonlinear form of TA is not used by the Control Card and is not available to the

Figure 3 DT-500 Sensor Temperature Response Monitor Card DVM. The nonlinear TSB signal is only used by the TB linearization circuitry.

Note from the Lake Shore data sheets in Section 4 that at $13{ }^{\circ} \mathrm{K}$, the nonlinear TA signal has a sensitivity (slope) of $21.9 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. The sensitivity decreases to $15.9 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ at $24^{\circ} \mathrm{K}$. In this 11 degree region, the nonlinear TSA signal is more sensitive than the linearized TA and TB signals, which have a sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. In addition, in this region the nonlinear TA is more accurate than the linearized TA because the linearized signals are segmented approximations to the diode curve.

The TA and TB linearization circuitry approximates the diode's V versus T curve with two straight-line segment approximations, only one of which is operative at any given time. When the sensed temperature changes from one segment's range to the other segment's range, it crosses a segment transition temperature which causes the other segment's output signal to be selected for output. The segment amplifiers gains and offsets are adjusted for the best fit for its portion of the diode's V-T curve. The segment transition temperature is $27^{\circ} \mathrm{K}$. The linearized TA and TB signals can be adjusted to be in exact agreement with the diode V-T curves at $13,18,50$ and $300^{\circ} \mathrm{K}$. Since TSB monitors the $50^{\circ} \mathrm{K}$ stage, the lower temperature segment is never operative.

The linearization implementation consists of two independent segment gain paths with gain and offset adjustments appropriate for the segment, a segment signal level comparator, and a segment selector switch driven by the comparator.

The TA and TB linearization circuits are identical.
In each circuit both paths are driven by the input, unity-gain voltage follower, U1-1 or U2-1. The circuitry consists of two parallel-path independent, inverting operational amplifiers with different gains, an analog comparator that compares the two amplifier's outputs, an analog switch driven by the comparator that selects the most appropriate amplifier for output, and an inverting output amplifier.

Note from the schematic that one TA path is a HI GAIN path used for the higher temperature segment and the other path is the LO GAIN path used for the lower temperature segment. From the
paragraph above describing the nonlinear TA signal, note that in the 13 to $24^{\circ} \mathrm{K}$ range, the diode's sensitivity is greater than $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ so the lower segment amplifier's gain must be less than 1 . Also note that for temperatures greater than 25 degrees, the upper segment amplifiers gain must be greater than 1 . $20 \mathrm{k} \Omega$ gain control potentiometers R_{43} and R_{44} control the gain of the two TA amplifiers U1-7 and U1-8. For extreme settings of these two potentiometers, the resultant gains are: 4.02 and 3.29 , HI GAIN and 0.21 and 0.16, LO GAIN.

Both amplifiers use an offset current from an Analog Devices, AD581JH precision +10.000 reference voltage source. This chip was described in the Control Card description, Section 2.5. Potentiometers R_{40} and $R_{47}, 100 \mathrm{k} \Omega$, and $50 \mathrm{k} \Omega$, respectively, are the offset current adjustments.

Comparator U3-1, a National Semiconductor LM393AN, compares the levels of the high and low gain amplifiers. If the HI GAIN level on the negative input (-) is more positive than the LO GAIN positive input $(+)$, the output is low. In the converse case, the output is high. The comparator output is an open-collector transistor; a $22 \mathrm{k} \Omega$ pull-up resistor to +15 makes the output levels 0 and +15 volts. The LM393 features a very low input offset, typically 1 mV , important in this application.

U4 is an Analog Devices AD7512DIKN, dual-channel analog switch that selects either the HI GAIN signal or the LO GAIN signal as a function of the address (select control) input, pin 4. If pin 4 is high, the HI GAIN amplifier input on pin 9 is connected to the output, pin 10; if low, the LO GAIN signal on pin 11 is connected to the output. R_{74} provides isolation from the comparator for the control input and diode CR4 protects it in the event of a negative control input. The AD7512 features a low "ON" resistance, 75Ω, and low leakage currents. Section 4 contains an AD7512DI data sheet.

Unity-gain, inverting amplifier U1-14 provides output buffering for the TA output on card pin D. R_{56}, a 100Ω resistor, provides short-circuit protection for this output. The EXT MON output on pin 6 is not used in F104.
$0.47 \mu \mathrm{~F}$ Capacitors across the operational amplifiers provide low-frequency filtering of the temperature signals.

TJ1 and TJ3 enable measurement of the LO GAIN amplifier outputs and TJ2 and TJ4 enable measurement of the TA and TB outputs, respectively. TP2 and TP3 terminals enable measurement of the HI GAIN amplifier's outputs.

The Sensor Card Tester uses potentiometers and a buffer amplifier simulates the diode temperature sensors. Using this tester, the TA and TB interface circuits are aligned as follows:

1. Set the DVM switch to TA.
2. Set the Mode switch to $\mathrm{A}-10 \mu \mathrm{~A}$ and adjust the $\mathrm{A}-10 \mu \mathrm{~A}$ potentiometer for a reading of 1000 on the DVM.
3. Set the MODE switch to TA/TB and the TEMP switch to SHORT and adjust the TA HI GAIN potentiometer for 4350 mV on the DVM. Adjust the TA LO GAIN potentiometer for 445 mV , on the A LO GAIN test terminal, read by an external DVM.
4. Set the TEMP switch at 50 and adjust the TA HI GAIN potentiometer for 500 mV on the tester DVM.
5. Set the TEMP switch at 300 and readjust the TA HI GAIN potentiometer for a reading of 3000 mV on the tester DVM. Repeat steps 4 and 5 until 500 mV and 3000 mV readings are
obtained.
6. Set the TEMP switch at 13 and adjust the TA LO GAIN potentiometer for 130 mV on the tester DVM.
7. Set the TEMP switch at 18 and readjust the TA LO GAIN potentiometer for 180 mV on the tester DVM. Repeat steps 6 and 7 until 130 mV and 180 mV readings are obtained.
8. Repeat steps 1 through 7 for the TB circuit.

2.8 Bias Card Description

The dewar RCP and LCP amplifiers each use three HEMT (high electron mobility transistor) GASFET amplifiers. The amplifier's RF gain and noise performance can be optimized by providing each HEMT stage an empirically-deter mined, optimum pair of DC drain voltage and DC drain current values. The amplifier stages are AC-coupled; therefore, each stage can have a distinct DC drain voltage and current. The FET Bias Card performs two functions: 1) it provides the optimal HEMT drain voltages and 2) it controls the gate voltages to maintain the optimal drain currents.

During the test phase of F104 fabrication, optimum VD and ID values at both $15^{\circ} \mathrm{K}$ and $300^{\circ} \mathrm{K}$ temperatures are determined. These values and the resultant VG are recorded on an amplifier data sheet for future reference. Sheet 4, Appendix I, TR 10, is a copy of the F104, dewar S/N 01 data sheet. These data sheets are maintained in the AOC Front-End Laboratory file and the VG values are entered into the VLA and VLBA Data Checker programs for fault monitoring. In order to permit replacement of FET Bias Cards without adjustment, all new or spare cards are adjusted to produce a VD of +3 volts and an ID of 1 mA ; these values should enable the HEMT to function until the optimum settings are determined.

Each FET Bias Card contains four identical sets of bias control circuits. Since the F104 uses three HEMTs in each channel, two FET Bias Cards are used, one card for each channel. The RCP bias card is installed in slot 4 and the LCP bias card is installed in slot 5. Each card has an unused bias circuit that is wired to the dewar DC Feedthrough panel for potential future use. The spare bias circuit is thus immediately available in the event that a future dewar amplifier requires a fourth HEMT stage. Dewar ground is the return for these sixteen signals. Block Diagram C53204K002 shows the Bias Card-Dewar wiring connections and D53200S001 is the Bias Card Schematic. D53200A002 is the Bias Card assembly drawing.

Each bias circuit has a HEMT drain voltage (VD) and drain current (ID), adjustment potentiometer accessible on the edge of the card. HEMT sources are connected to dewar ground.

All four VD voltages can be measured on card-edge test jacks but cannot be measured by the DVM or the Monitor and Control System.

All four drain currents (ID) can be measured as voltages on card-edge test jacks. The ID voltage scaling factor is $1 \mathrm{~mA} / 100 \mathrm{mV}$. The drain currents cannot be measured by the DVM or by the Monitor and Control System.

All four gate voltages (VG) can be measured on card-edge test jacks. The first stage VG can also be measured by the Monitor Card DVM (with the selector switch S2 in the LF1 and RF1 positions) and by the Monitor and Control System via J2-7 (RF1 signal) and J2-9 (LF1 signal). Second and third stage VG voltages cannot be individually measured by the DVM or Monitor and Control System but a composite form of these two VG signals can be measured. Note that the block diagram shows that the stage 2 and 3 VG monitor signals on pins 5 and 6 are connected together and to the DVM selector switch S2. This connection sums the two signals and the composite signal level is intermediate between the VG2 and VG3 levels. The DVM measures the composite VG signals in selector switch positions LF2 and RF2. These two composite VG signals are also connected to J2-8 (RF2) and J2-10 (LF2) for readout by the Monitor and Control System. Since the composite VG readout level is the sum of the stage 2 and stage 3 VG levels, its level will differ from the actual VG2 and VG3 levels and its level will be approximately
intermediate between the two. It is important to remember this VG monitoring configuration when comparing the amplifier S/N data sheet VG2 and VG3 values (e.g., TR 10, Appendix I, Sheet 4 example values) with the composite VG values read out as RF2 and LF2.

The normal range of VG is between 0 and -1 volts and is a function of temperature with a typical change of 100 to 300 mV from $300^{\circ} \mathrm{K}$ to $15^{\circ} \mathrm{K}$. At $15^{\circ} \mathrm{K}$ the VG value should be within $\pm 20 \mathrm{mV}$ of the data sheet value. An open in the drain circuit will force the measured VG to the VG bias amplifier's positive limit, about +13.5 volts. In this condition, the forward gate current is limited to about 7 mA by a series resistor. A short in the drain or gate circuit (perhaps the result of insulation cold-flow on a dewar wire) will force the measured VG to the amplifier's negative limit, about -13.5 volts. In this condition, the actual HEMT gate voltage is limited to about -5 volts by the 1 N 821 protection diode.

Consider the first FET bias stage in the upper left quarter of D53200S001. Mentally picture the associated HEMT stage with the source connected to DC (dewar) ground, the gate connected to pin H (VG), and the drain connected to pin N (VD). Also assume that both the gate RF input and drain RF output are AC-coupled.

The bias circuit consists of a set of four interconnected operational amplifiers U1 (a TL084BCN quad operational amplifier) and a transistor Q1 (2N2219). The circuit descripton can be simplified if it is considered to consist of three sub-circuits: a VD driver circuit (U1-1, Q1 and U1-14), an ID sense circuit (U1-8), and a VG driver circuit (U1-7). The VD driver and ID sense circuit are described first because the VG driver circuit is a control loop that is dependent upon the outputs of the VD driver and ID sense circuits.

The bias circuit's first function is to set the VD voltage; this is the function of the VD driver, which consists of U1-1 and transistor Q1 (2N2219). This circuit is a voltage follower (noninverting operational amplifier with a gain of 1) with a Q1 emitter follower included in the feedback loop. Potentiometer R_{14} is the VD set point adjustment and provides a DC bias to U1-2, the + input. Since Q1 is inside the follower loop, U1's output is Q1's V_{BE} drop above the VD1 set point so the VD level is that set on R_{14}. Diode CR1 is a protective diode across Q1's emitter-base junction. The diode protects Q1 in the event that the U1-14 output ever swings negative (perhaps due to an accidental short while probing the board with a DVM, etc.). CR2 has a zenar voltage of 6.8 volts to protect the HEMT drain in the event of some malfunction or open in the operational amplifier circuit. U1-14 is a voltage follower used to isolate the drain from the VD1 test jack, TJ13. It also drives the ID sense circuit. R_{1}, the $2 \mathrm{k} \Omega$ series resistor between U1-14 and the VD1 test jack, protects U1-14 in the event that TJ13 is inadvertantly shorted to ground. Finally, C_{2}, a $1.0 \mu \mathrm{~F}$ capacitor filters the driver circuit's DC bias value to keep the output noise free.

The ID sense circuit consists of U1-14, a voltage follower and U1-8, a differential amplifier. HEMT drain current flows from the +15 volt power source through Q1, through $\mathrm{R}_{8}(200 \Omega)$, out pin N to the HEMT drain, and through the HEMT to dewar ground. ID is sensed as a voltage drop across R_{8} and amplified by differential amplifier U1-8, which has a gain of 0.5 . U1-8 is a differential amplifier because VD1 is a common-mode voltage on both U1-8's inputs. U1-8's output is scaled at 100 mV per mA of ID current. $2 \mathrm{k} \Omega$ resistor R_{2} isolates U1-8's output from TJ12 in the event of an inadvertant short to ground.

The second function of the FET bias circuit is to control VG so that ID is a constant, preset value; this is done by the VG drive circuit that closes the loop on ID. The VG driver consists of U1-7 with two
summing junction (U1-6) inputs: 1) a positive ID current input from U1-8 and 2) a negative offset current flowing to R_{15}, the ID1 adjustment potentiometer. U1-8's output is a positive voltage that is an analog of ID and is scaled at $100 \mathrm{mV} / \mathrm{mA}$. A current proportional to this voltage is input to the U1-7 summing junction (the - input) via $R_{7}, 100 \mathrm{k} \Omega$. When the loop is closed, the ID current into U1-6 is equal to the offset current through R_{12}, and the op-amp's output U1-7 is proportional to the offset current through \mathbf{R}_{12}. Although it's not obvious, the HEMT's drain-source impedance is a factor in the feedback path.

Two DC reference voltages are used by the bias circuits: -10 volts and +6 volts, derived from a pair of AD581JH +10 volt precision reference voltage sources. Four $10 \mathrm{k} \Omega$ VD adjustment pots are connected in parallel and to resistor $\mathrm{R}_{62}, 1.5 \mathrm{k} \Omega$, which drops four volts to produce the +6 volts for the VD adjustment potentiometers. Data sheets for the AD581JH and TL084BCN are included in Section 4.

The 6 volt relay circuit on the right side of the schematic diagram is not used.
The FET Bias Card is tested on a Bias Card Tester that contains + and - 15 volt power supplies and four FETs with characteristics similar to cooled GASFETs. The card is plugged into the tester and a DVM is plugged into the card's ground (TJ1), VD, ID and VG test jacks. The four sets of VD and ID potentiometers are adjusted to produce a VD of +3 volts, an ID of 1 mA , and VG is measured to verify that it is about -400 mV with these VD and ID values.

2.9 RF Plate Description

The RF Plate is installed on the side of the card cage and performs the amplification, calibration and $300^{\circ} \mathrm{K}$ temperature measurement functions shown on the F104 Block Diagram C53204K001, TR 10 page 2. These are: amplification of the LCP and RCP signals from the cooled amplifiers in the dewar, the generation of low and high noise calibration signals, injection of a phase calibration signal, and measurement of the RF Plate temperature.

The RF Plate Assembly drawing is C53203A005 and is shown on TR 10, Appendix page II-9. The associated BOM is A53204B005 and Appendix page II-10 lists the RF Plate components. There is not an RF Card Block diagram. P17, connected to the card cage J17, provides DC power and low frequency connections to the RF Plate. The RF Plate is physically identical to the 1.5 GHz RF Plate but uses different components.

The F104 Block Diagram 53204K001 and RF Plate Assembly drawing shows a High Calibration noise source as an optional F104 feature. Although it may not be installed in all F104s, provisions have been made for its installation.

Block Diagram C53204K002 shows the RF Plate functions in the context of this addendum's description. Since the emphasis of this addendum is on the theory of operation of the card cage circuitry, the RF PLate functions are not described here. Refer to TR 10 Page 33, for a description of the RF Plate's noise calibration circuitry. The room temperature post amplifiers have noise figures less than 3.5 dB and 17 to 20 dB of gain. These amplifiers are described in specification A53204N001 (not part of this manual). The specifications on TR 10 pages 5 through 8 encompass the RF Plate's performance.

The RF Plate has a National Semiconductor LM335Z Precision Temperature Sensor to measure the the plate's temperature. The sensor output is designated $300^{\circ} \mathrm{K}$ and connected to the Monitor Card for measurement by the DVM and to the Monitor and Control System via J2-5. The LM335 operates as a two-terminal zenar and has a breakdown voltage directly proportional to absolute temperature with a scaling of $+10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. Section 4 contains a LM335Z data sheet.

2.10 Dewar DC Interface Description

The DC Feedthrough is the interface for the connection of DC power and HEMT bias lines to the dewar RF amplifiers, AC power to the heater, and signal lines to temperature sensing diodes, and the LED circuitry. Wire list A53203W001 does not include the wiring between the card cage J3 and the DC Feedthrough. This wiring is shown on C53204K002, the 2.3 GHz FE Block Diagram.

The B53206A012 dewar DC Feedthrough is a hermetically-sealed interface panel that uses RFI feedthrough terminals soldered into a brass plate attached to the dewar inspection cover. Feedthrough terminal designations are shown on the artwork of a printed circuit board installed on the outside of the feedthrough. These designations are those used in C53204K002. Figure 4 on the next page shows the PC board terminal designations.

Sixteen HEMT drain (VD) and gate (VG) bias lines pass through the DC Feedthrough and are connected to the dewar amplifiers via two small 7-pin, Micro-Tech connectors. Since the emphasis of this report is on the card cage circuitry, for simplicity, these connectors are not shown on the block diagram. The HEMT source lines are connected to dewar ground.

The $15{ }^{\circ} \mathrm{K}$ stage temperature sensor diode (TSA) is connected to terminals A+ and A-. The diode anode is connected to $\mathrm{A}+$ and the cathode to A. Similarly, the $50^{\circ} \mathrm{K}$ stage temperature sensor diode (TSB) anode and cathode are connected to terminals $\mathrm{B}+$ and B -

As shown on C53204K002, the dewar LEDs circuit consists of two series strings, each consisting of three LEDs and a 300Ω limiting resistor. The bottom of the strings are connected to dewar ground, J3-21, and the tops are connected to terminal X1. Outside the dewar, X1 is connected to P3-22. $\mathrm{J} 3-22$ is connected to pin T on the Monitor Card, the LED monitor input for the DVM. A 510Ω limiting resistor is connected between pin T and $\operatorname{Pin} \mathrm{X}$. Pin X is not connected to any Monitor Card circuitry and simply serves as a convenient mounting terminal for the resistor. Pin X is jumpered to Pin 2 and B, the +15 volt bus. This resistor is shown on the Card Cage Assembly Drawing, D53203A004, TR 10 Appendix page II-6. The typical F104 LED monitor voltage is +5.0 volts but it can range between +4.5 to +5.5 volts. If one of the LED strings opens, the LED monitor voltage is +11 volts and if both open, the monitor readout is

Figure 4 Dewar DC Feedthrough Label +15 volts. This value can be read on the DVM but will be full-scale in the Monitor and Control system readout because it exceeds the working range of the Standard Interface Board's A/D converter in F117.

The dewar ground line is also connected to the dewar metal structure.
The dewar heater AC power is connected to terminals H1 and H2. Inside the dewar, these terminals are connected to two $750 \Omega, 75$ watt, 240 volt heaters.

2.11 AC Circuitry Description

The dewar's cryogenic functions are powered by two-phase, 150 volts AC power. Figure 1.3-3 on page 18, in TR 10 shows the Front-End's AC wiring. Page 16 lists the cryogenic function's AC loads. Because the F104 AC power is peculiar to the refrigerator's requirements, it does not have an intermal DC power supply for the card cage circuitry. DC + and - 15 volt power is provided by the control interface via J5. This DC power is described in Section 2.15.

Note that the 150 volt, two-phase power is supplied by a Model P112 power supply, which is described in 2.9, page 35, in TR 10. Figure 2.9-1, page 38, shows the power supply schematic. An important P112 power supply output is the AC current monitor, which is a DC signal scaled at 10 amperes/volt. This is input to the Front-End on J4-1 (signal) and J4-2 (return) and the signal polarity is positive. This signal, designated ACI, is connected to the Monitor Panel for DVM measurement and to J2-6 for readout by the Monitor and Control System.

On page 18 , note the vacuum solenoid current limiting resistor $R_{1}, 300 \Omega, 20$ watts, which is installed on the card cage connector mounting plate. This resistor is pictured in the card cage assembly drawing, D53203A004, TR 10 Appendix page II-6. If the vacuum solenoid is actuated for a long time,
the plate will become quite hot from the resistor's power dissipation. Also note that a stuck vacuum solenoid will draw 0.40 amperes. The dewar heater limiter resistor $R_{2} 5 \mathrm{k} \Omega, 10$ watts, is also installed on the card cage connector mounting plate; it too is pictured on the card cage assembly drawing.

The cryogenic control equations were described in Section 2.4 and Section 2.5, (Control Card) described the implementation of the control equations. Note that the R, S, H and X contacts shown on the Front-End Wiring schematic (Figure 1.3-3, page 18) are the Control Card relay contacts.

The dewar heater is two $750 \Omega, 75$ watt, 240 volt Hotwatt heater installed on the $15^{\circ} \mathrm{K}$ stage. Heater current is 0.40 amperes and dissipation is 60 watts. Note from the Front-End AC wiring schematic on page 18 that the heater has an internal thermostat that opens at a high temperature level. This feature prevents overheating in the event of a Control Card failure.

2.12 DVM Readout Values and Tolerances

The table below shows the DVM analog selector switch position Label, Function, Scaling, Normal Value and acceptable Tolerance Range.

DVM S2 Label	function	1 volt $=$	Normal Value	Tolerance Range
VP	Pump Vacumm ${ }^{1}$	-....	$+10.000^{2}$	+9.950 to +10.000
vo	Dewar Vacuum ${ }^{1}$	--	0.000	-0.200 to +0.200
15K	$15{ }^{\circ} \mathrm{K}$ Stage	$100{ }^{\circ} \mathrm{K}$	+0.150	+0.100 to +0.200
50K	$50 \cdot \mathrm{~K}$ Stage	$100 \cdot \mathrm{~K}$	+0.550	+0.400 to +0.700
300k	$300{ }^{\circ} \mathrm{K}$ Station	$100{ }^{\circ} \mathrm{K}$	+2.900	+2.000 to +3.000
AC CURR	AC Current ${ }^{3}$	10 Amps	-----	--...
RF1	RCP Gate 1	1 volt	$-0.60{ }^{4}$	-1.00 to +1.00
RF2	RCP Gates $2+3^{5}$	1 volt	$-0.60{ }^{4}$	-1.00 to +1.00
LF1	LCP Gate 1	1 volt	$-0.60{ }^{4}$	-1.00 to +1.00
LF2	LCP Gates $2+3^{5}$	1 volt	$-0.60{ }^{4}$	-1.00 to +1.00
LED	LED Voltage	1 volt	$+5.0^{6}$	+4.500 to +5.500
EXT	Spare Mon	1 Volt	---.	N/A

Notes:

1 Nonlinear vacuum readout scale, see page 15 in TR 10.
2 Readout when pump manifold is at sea level atmospheric pressure.
3 AC current depends upon cryogenic state, see page 16 in TR 10.
4 Typical value. Large changes indicate a dewar amplifier problem.
5 Approximate sum of Stage 2 and 3 Gate voltages.
6 If one LED string opens, the LED readout voltage is about +11 volts; if both strings open, the LED readout is +15 volts.

2.13 Monitor and Control System Readout Values

The Telescope Operator Front-End Cryogenic and Electronics displays show F104 status; Figures 5 and 6 are similar to these displays. Figure 5 shows the calibration mode, monitored calibration current and voltage, and the three HEMT gate bias voltages. Figure 6 shows the commanded cryogenics mode, monitored mode, state, discretes, and selected analog monitor values.

Figure 5 VLBA F104 Electronics Screen

FRONT END CRYOGENICS 13CM CMD COOL MANUAL STATE COOL PUMP REQ OFF AC 10.81
VALVE CLOSED 15K 14.6 PUMP VAC 9846 50K 59.6 DEWAR VAC 1 300K 293

The VLBA control interface is F117. It controls F104, reads F104 discretes, and converts F104 analog signals to digital values for input to the Antenna control computer via the Monitor and Control bus.

The first VLBA screen shows that the calibration level is LOW and is SWITCHING. F117 measures some additional Front-End analog parameters: (CAL I) cal current, cal voltage, the F117 +7.5 volt reference (7.5 V), and F117 ground reference (GRD). The example values show a calibration current of 7.03 mA and a cal voltage of 27.813 volts. The HEMT 5.05 voltage is the LED measurement described in Section 2.10. The FET voltages are the Bias Card HEMT gate voltages described in Section 2.8 .

The second VLBA screen shows that the Front-End is commanded to the COOL state, is in the MANUAL mode, and the X, C and H monitor discretes show the COOL state. The PUMP REQ(uest) is OFF and the (vacuum) VALVE is CLOSED. The 150 volt AC current load is 0.81 amperes. PUMP (VP) VAC is 9846 because the vacuum manifold is at the antenna's atmospheric pressure (see the vacuum vs. monitor voltage curve on page 15). DEWAR VAC(uum) is $1 \mu \mathrm{~m}$. Note that this value has been converted from the voltage readout value to the corresponding vacuum level. The 15 K (TA), 50 K (TB), and 300 K temperatures are shown degrees Kelvin. The SENS temperature (non-linear form of TA) is not shown.

If F104 is installed on the VLA, the control interface would probably be F14.

2.14 Band, Serial Number, and Modification Level Encoding

F104 has provisions to identify its serial number, frequency band and modification level as hardwired binary codes on the J 5 connector. These codes are implemented by connecting the appropriate J 5 pins to ground lugs near the connector. Grounded pins are 0's and floating pins are 1's. The control interfaces (such as F14, VLA or F117, VLBA) have pull-up resistors to +5 volts for input to TTL logic. Drawing C53204K002 shows the code bit assignments on J5.

The F104 band code is 3_{H} and the associated parity bit is a 0 . Page 14 in TR 10 describes the band, serial number and modification level encoding.

2.15 Front-End DC power and Quality Ground

The F104 card cage DC power is + and - 15 volts from J5, provided by the associated control interface, F117. The -15 volt power demand is 100 mA and the +15 volt power demand is 500 mA . The +15 volt current demand is dependent upon F104's cryogenic state. The Control and Monitor card's LSTTL logic is powered by on-card +5 volt regulators from +15 volt inputs.

Bus-bars running through the card cage PC board connectors (including spare card slots 1 and 2) provide +15 and -15 and power from $\mathrm{J5-2}(+15)$ and $\mathrm{J} 5-3(-15)$, respectively. Unlike other VLBA-style Front-Ends, the F104 does not have protective 1N5355A 18 volt zenar diodes installed in the card cage +15 and -15 volt bus bars. The Ground bus bar is connected to chassis ground at slot 7 , the Control Card. DC power distribution is shown in C53204K002.

Quality Ground is an analog ground reference that does not carry power currents. This reference is supplied to the Monitor Panel DVM and to the control interface via J2-13. The Quality Ground is connected to chassis ground near slot 5, the LCP FET Bias Card. The Quality Ground string is shown on C53204K002.

Dewar ground on J3-21 is connected to the Ground Bus and also to the dewar internal metal structure. This is the return path for the HEMT sources and the LED strings.

Note that Table II, TR 10, page 12 shows that J5-13 is a ground pin. This pin is floating as shown on the card cage wire list A53203W001, sheet 12, Appendix page II-26.

2.16 Wire List Problems

Wire List A53203W001, Sheet 8, TR 10 Appendix page II-22 has an error in the Pin S TO column. It has P14-S; it should be P14-1. On Sheet 12, Appendix page II-26, the TO column shows Gnd Bus for pin 14. It should be N.C. because it is the F0 encoding pin and the F104 Band Code is 03_{H}; this pin should float for this code.

3.0 RELEVANT NRAO DRAWINGS

Title: Number:	Notes:	
2.3 GHz FE Block Diagram C53204K002		
System Block Diagram	C53204K001	
Front-End Assembly	D53204A004	TR 10, Page 10
Front-End BOM	A53204B001	TR 10, Appendix page 1I-1
Card Cage Assembly*	D53203A004	TR 10, Appendix page II-6
Card Cage BOM*	A532038004	TR 10, Appendix page II-7
Card Cage Wire List*	A53203W001	TR 10, Appendix page 11-15
RF Plate Assembly*	C53203A005	TR 10, Appendix page II-9
RF Card BOM	A53204B005	TR 10, Appendix page II -10
Sensor Card Schematic	053200S002	
Sensor Card Assembly	D53200A003	
Sensor Card BOM		No BOM, parts are on the assembly drawing.
Control Card Schematic	053200S002	
Control Card Assembly	D53200A004	
Control Card BOM	A53200B004	
Monitor Card Schematic	C53200S005	
Monitor Card Assembly	D53200A006	
Monitor Card BOM	A532008006	
FET Bias Card Schematic	D53200S001	
FET Bias Card Assembly	D53200S002	
FET Bias Card BOM	A532008002	

4.0 COMPONENT DATA SHEETS

Data sheets for:
Lake Shore Cryotronics DT-500
Hastings DV-6R
Hastings DB-20
Texas Instruments TL084
Texmate PM-45XU
Analog Devices AD581JH
National Semiconductor LM339N
Texas Instruments 75452
Teledyne 643-1
Teledyne 645-2
National Semiconductor LM393AN
Analog Devices AD7512DIKN
National Semiconductor LM335Z
Precision Monolithics OP-10CY

Standard Curve 10: Measurement Current $=10 \mu \mathrm{~A} \pm 0.05 \%$

$\stackrel{\top}{(\mathrm{K})}$	Voltage	$\begin{gathered} \mathrm{dV} / \mathrm{dT} \\ (\mathrm{mV} / \mathrm{K}) \end{gathered}$	$\stackrel{\top}{(k)}$	Voltage	$\mathrm{dV} / \mathrm{dT}$ $(\mathrm{mV} / \mathrm{K})$	$\underset{(\mathrm{K})}{\mathbf{T}}$	Voltage	$\begin{gathered} d V / d T \\ (\mathrm{mV} / \mathrm{K}) \end{gathered}$
1.40	1.69812	-13.1	16.0	1.28527	. 18.6	95.0	0.98564	-2.02
1.60	1.69521	-15.9	16.5	1.27607	-18.2	100.0	0.97550	-2.04
1.80	1.69177	-18.4	17.0	1.26702	-18.0	1100	0.95487	-2.08
2.00	1.68786	-20.7	175	1.25810	-17.7	120.0	0.93383	-2.12
2.20	1.68352	-22.7	18.0	1.24928	-17.6	130.0	0.91243	-2.16
2.40	1.67880	-24.4	18.5	1.24053	-17.4	140.0	0.89072	-2.19
2.60	1.67376	-25.9	19.0	1.21784	-17.4	150.0	0.86873	-2.21
280	1.66845	-27.1	19.5	1.22314	-17.4	160.0	0.84650	-2.24
3.00	1.66292	-28.1	20.0	1.21440	-17.6	170.0	0.82404	-2.28
3.20	1.65721	-29.0	21.0	1.19645	-18.5	180.0	0.80138	-2.28
3.40	1.65134	-29.8	22.0	1.17705	-20.6	190.0	0.77855	-2.29
3.60	1.64529	-30.7	23.0	1.15558	-21.7	2000	0.75554	-2.31
3.80	1.63905	-31.6	24.0	1.13598	-159	2100	0.73238	-2.32
4.00	1.63263	-32.7	25.0	1.12463	-7.72	220.0	0.70908	-234
4.20	1.62602	-33.6	26.0	1.11896	-434	230.0	0.68564	-2.35
4.40	1.61920	-34.6	27.0	1.11517	-3.34	240.0	0.66208	-236
4.60	1.61220	-35.4	28.0	1.11212	-2.82	250.0	0.63811	-237
4.80	1.60506	-36.0	29.0	1.10945	-2.53	2600	0.61465	-238
5.00	1.59782	-36.5	30.0	1.10702	-2.34	270.0	0.59080	-239
5.50	1.57928	-37.6	32.0	1.10263	-209	280.0	0.56690	-2.39
6.00	1.56027	-38.4	34.0	1.09864	-1.92	290.0	0.54294	-2.40
6.50	1.54097	-38.7	36.0	1.09490	-1.83	300.0	0.51892	-240
7.00	1.52166	-38.4	38.0	1.09131	-177	3100	0.49484	-241
7.50	1.50272	-37.3	40.0	1.08781	-1.74	320.0	0.47669	-2.42
8.00	1.48443	-35.8	42.0	1.08436	-1.72	3300	0.46647	-2.42
8.50	1.46700	-34.0	44.0	1.08093	- 1.72	340.0	0.42221	-2.43
9.00	1.45048	-32.1	46.0	1.07748	-1.73	350.0	0.39783	-244
9.50	1.43488	-30.3	48.0	1.07402	-1.74	360.0	0.37337	-2.45
10.0	1.42013	-28.7	50.0	1.07053	-1.75	370.0	0.34881	-2.46
10.5	1.40615	-27.2	520	1.06700	-1.71	380.0	0.32416	-247
11.0	1.39287	-25.9	54.0	1.06346	-1.78	390.0	0.29941	-2.48
11.5	1.38021	. 24.8	56.0	1.05989	-1.79	400.0	0.27456	-2.49
12.0	1.36809	-23.7	58.0	1.05629	$\cdot 1.80$	410.0	0.24963	-2.50
12.5	1.35647	-22.8	60.0	1.05267	-181	420.0	0.22463	-250
13.0	1.34530	-21.9	65.0	1.04353	-1.84	430.0	0.19961	-2.50
13.5	1.33453	-21.2	70.0	1.03425	-1.87	440.0	0.17464	2.49
14.0	1.32412	. 21.5	75.0	1.02482	-1.91	450.0	0.14985	-2.46
14.5	1.31403	. 19.9	80.0	1.01525	-1.93	460.0	0.12547	-2.41
15.0	1.30422	-19.4	85.0	1.00552	-1.96	470.0	0.10191	-2.30
15.5	1.29464	-18.9	90.0	0.99565	-1.99	475.0	0.09062	-2.22

 The 1.4 K to 32 K portion ol Curve 10 is spplicable to the $0 \mathrm{O} \cdot 450$ miniatura sticon diode sensor.

DT-500-DRC (B) Voltage - Temperature Characteristic

T, Kelvin	Sensor Voltage	T, Kelvin	Sensor \qquad	T, Kelvin	Sensor Voltage
1.0	--	19.0	1.5944	160.0	0.75680
1.5	2.6647	20.0	1.5159	165.0	0.74276
1.6	2.6622	21.0	1.4389	170.0	0.72868
1.7	2.6593	22.0	1.3575	175.0	0.71457
1.8	2.6562	23.0	1.2895	180.0	0.70041
1.9	2.6528	24.0	1.2378	185.0	0.68622
2.0	2.6491	25.0	1.1955	190.0	0.67201
2.2	2.6410	26.0	1.1645	195.0	0.65777
2.4	2.6321	27.0	1.1434	200.0	0.64353
2.6	2.6223	28.0	1.1293	205.0	0.62928
2.8	2.6117	29.0	1.1192	210.0	0.61504
3.0	2.6005	30.0	1.1115	215.0	0.60084
3.2	2.5886	32.0	1.1003	220.0	0.58672
3.4	2.5762	34.0	1.0923	225.0	0.57268
3.6	2.5633	36.0	1.0859	230.0	0.55880
3.8	2.5499	38.0	1.0804	235.0	0.54508
4.0	2.5361	40.0	1.0752	240.0	0.53152
4.2	2.5220	45.0	1.0632	245.0	0.51810
4.4	2.5075	50.0	1.0515	250.0	0.50479
4.6	2.4928	55.0	1.0397	255.0	0.49151
4.8	2.4780	60.0	1.0276	260.0	0.47818
5.0	2.4631	65.0	1.0151	265.0	0.46483
5.5	2.4254	70.0	1.0024	270.0	0.45137
6.0	2.3877	75.0	0.98933	275.0	0.43773
6.5	2.3505	80.0	0.97610	280.0	0.42388
7.0	2.3142	85.0	0.96277	285.0	0.40988
7.5	2.2790	90.0	0.94939	290.0	0.39574
8.0	2.2452	95.0	0.93591	295.0	0.38155
8.5	2.2127	100.0	0.92238	300.0	0.36729
9.0	2.1818	105.0	0.90881	305.0	0.35294
9.5	2.1524	110.0	0.89520	310.0	0.33843
10.0	2.1246	115.0	0.88156	315.0	0.32375
11.0	2.0731	120.0	0.86788	320.0	0.30893
12.0	2.0236	125.0	0.85412	325.0	0.29407
13.0	1.9730	130.0	0.84035	330.0	0.27919
14.0	1.9186	135.0	0.82652	335.0	0.26432
15.0	1.8561	140.0	0.81265	340.0	0.24943
16.0	1.7942	145.0	0.79873	345.0	0.23458
17.0	1.7325	150.0	0.78478	350.0	0.21974
18.0	1.6651	155.0	0.77081	355.0	0.20500
				360.0	0.19037
				365.0	0.17598
				370.0	0.16192
				375.0	0.14846
				380.0	0.13597

HASTINGS VACUUM GAUGE TUBES

For Economy and Reliability in Vacuum Measurement

- Corrosion-Resistant
- Non-Contaminating
- Stable Calibration
- Rugged Under Demanding Conditions

Design Features

Hastings Vacuum Gauge Tubes are precision sensing devices designed to provide maximum accuracy in the measurement and control of vacuum. Fully compensated for both temperature and rate of temperature change, the tubes are renowned worldwide for their dependability, and boast a history of success that has endured for over 40 years.
Hastings Gauge Tubes use the rugged but sensitive, time-tested Hastings thermopile sensor. Short, firmly connected thermocouples have no suspended weld to an external heater.
The unique Model DV-760 uses a piezo-resistive strain gauge on a silicon chip. The chip includes a sealed vacuum reference, a resistive bridge circuit, and a temperature compensation network.
Hastings Gauge Tubes are color-coded for matching to the appropriate vacuum gauge or controller.

CHARACTERISTICS OF HASTINGS VACUUM GAUGE TUBES

Metal Tube	DV-4D	DV-5M	DV-8M	DV-8	DV-23	DV-24	DV-760
"R- Series	DV-4R	-	DV-6R	-	-	-	-
Stainlesa/Coramic	OV. 34	-	DV38	-	-	-	-
Pyrox	DV-16D	DV-18	DV-20	DV-31	OV-43	DN-4	-
Motal w/VCR Connection	OV-4D-VCR	DV-5M-VCR	DV-SM-VCR	-	DV-23-VCR	-	-
Metal w/KF-16 Connection	DV-4D-KF-16	-	DV-6M-KF-16	-	OV-23-KF-16	DV-24-KF-16	-
Best Sensiltbity Range	$\begin{gathered} 0.2-8 \text { torr } \\ 0.1-5 \text { mbar } \end{gathered}$	$\begin{aligned} & 2-20 \text { mtory } \\ & 0.002-.05 \text { mbar } \end{aligned}$	$\begin{aligned} & 10-200 \text { mtorr } \\ & .01-.2 \text { mbar } \end{aligned}$	$0.1 \cdot 10 \mathrm{mtor}$	5 mtorr - 1 torr . 01 - 2 mbar	$\begin{gathered} .1-5 \text { torr } \\ .1-5 \text { mbar } \end{gathered}$	$\begin{gathered} 1-800 \text { tor } \\ 1-1100 \text { mbar } \end{gathered}$
Usable Range	$\begin{aligned} & 0.1-20 \text { tort } \\ & 0.1-20 \text { mbar } \end{aligned}$	$0.2-100$ mtor 0.001 - 1 mbar	$\begin{gathered} 1-1000 \text { mtort } \\ .01-1 \text { mbar } \end{gathered}$	$0.1 \text { - } 10 \text { mtort }$	5 mtor - 5 torr $.01 \cdot 5 \mathrm{mbar}$	$\begin{aligned} & .1-20 \text { tor } \\ & .1-10 \mathrm{mbar} \end{aligned}$	$\begin{aligned} & 1-800 \text { tort } \\ & 1 \cdot 1100 \text { mbar } \end{aligned}$
Internal Volume of Gauge Tube	$\begin{aligned} & 1 / 20^{3} \\ & 0.800 \end{aligned}$	$\begin{aligned} & 1 / 2^{\omega} \\ & 8.2 \propto 0 \end{aligned}$	$\begin{aligned} & 1 / 20^{3} \\ & 8.200 \end{aligned}$	$\begin{aligned} & 1 / 2^{-3} \\ & 8.200 \end{aligned}$	$\begin{aligned} & 1 / 203 \\ & 8.200 \end{aligned}$	$\begin{aligned} & 1 / 20 \\ & 8.200 \end{aligned}$	$\begin{aligned} & 1 / 20^{3} \\ & 0.800 \end{aligned}$
Thermopile Temperature ma High Vacuum At Atmosphere	$\begin{gathered} 250^{\circ} \mathrm{C} \\ 30^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 48^{\circ} \mathrm{C} \\ & 1.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 300^{\circ} \mathrm{C} \\ 6^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 120^{\circ} \mathrm{C} \\ & 10^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 400^{\circ} \mathrm{C} \\ & 10^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 400^{\circ} \mathrm{C} \\ 35^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$
A-C Ampheres Through Tube	0.029	0.03	0.021	0.053	.04/.04	.03/.04	N/A
A-C Volts Acrose Tube	0.32	0.20	0.38	0.32	. 201.20	. 19.19	N/A
Watts Pequired by Tube	0.009	0.008	0.008	0.017	. 016	. 11	018
Output at High Vacuum mv D-C Internal Resistance - ohms	10 11	2 6	10 18	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & 13 \\ & 5 / 8 \end{aligned}$	$\begin{gathered} 13 \\ 6.57 .5 \end{gathered}$	-
Pesponse Time Zero to ATM - meconds ATM to Zero - seconds	0.04 0.18	0.8 25	0.08 2.9	$\begin{aligned} & 0.8 \\ & 25 \end{aligned}$	$\begin{gathered} 0.07 \\ 3.0 \end{gathered}$	$\begin{gathered} 0.05 \\ .2 \end{gathered}$	$\begin{aligned} & .002 \\ & .002 \end{aligned}$
A-C Connection Pin *	3-5	3-5	3-5	3-5	2-4, 6-8	2-4,6-8	-
D-C Connection Pin \#	7	7	7	7	-	-	-
Color of Bese Metal Tube	Purple	Pod	Yellow	Green	Orange	White	LT. Bue

The above information includes nominal values only. Not to be used for design purposes or acceptance teste.

PRESSURE AND TEMPERATURE DATA

	Max. Pressure	Max. Temperature
Tube Type	$100^{\circ} \mathrm{C}$	
Metal: DV-4D, DV-4D-VCR, DV-4D-KF-16	150 paig	$100^{\circ} \mathrm{C}$
Nl other metal (except Model DV-760)	50 psig	$150^{\circ} \mathrm{C}$
-R Serles	250 paig	$300^{\circ} \mathrm{C}$
Stainless/Ceramic	600 psig	$400^{\circ} \mathrm{C}$
Pyrex	15 psig	$40^{\circ} \mathrm{C}$

The gauge tubes can be expected to withstand the listed prossure and temperature without rupture but thoy are not warranted as safe under
these conditions. For crttical conditions or epecial terting, contact factory

HASTINGS REFERENCE TUBE

$\mathrm{DV}-4 \mathrm{R}$
$\mathrm{OV}-6 \mathrm{R}$

A Quick Calibration Device for Hastings Vacuum Gauges

- Instant Calibration Check
- Recalibration of Hastings Gauges
- Adjusts Gauge for Any Length Cable
- Stable, Accurate, Rugged, and Reliable

Reference Tube

NTELEDYNE
BROWN ENGINEERING
Hastings Instruments

General

The Hastings Reference Tube is an evacuated, sealed vacuum gauge tube accurately calibrated to precisely simulate a gauge tube at a given operating pressure. It is electrically equivalent to the metal and glass gauge tubes used with Hastings Instruments. It permits quick and easy recalibration of Hastings Vacuum Gauge Indicators by merely plugging the instrument into the reference and adjusting the calibration "current set" potentiometer until the instrument reads the exact pressure noted on the reference. Hastings Reference Tubes are available equivalent to most Hastings Gauge Tubes.

Application

Hastings Vacuum Gauge Indicators, Controllers, or Recorders can be checked or recalibrated in seconds by merely plugging the gauge tube cable into the reterence tube. If calibration adjustment is necessary, the "Current Set" potentiometer is adjusted until the instrument indicates the pressure marked on the reference tube. The customer now knows his instrument is correctly calibrated.

Whenever cable lengths between gauge tube and instrument are changed, some error may be introduced, requiring that the instrumen be readjusted to compensate for anylosses involved. By plugging the Reference tube into the new cable and readjusting the instrument for a correct reading, this "error" is eliminated.

Selection

Choose the reference tube that is equivalent to the glass or metal Hastings Gauge fube you are now using. The Reference Tube will be matched and sealed at a pressure ialing on the lower portion of the scale and calibrated accurately at this exact pressure. For example, it an instrument uses a DV-6M Gauge Tube, a DB-20 Reference Tube is ordered. The customer receives a tube marked, possibly. 10 microns. This is the exact pressure to which the indicator should be adjusted when plugged into the reference tube.

Selection Chart

Equivalent Gauge Tube and Range			Reference Tube	
Metal	Glass	Range	Model No.	Stock No.
- DV-3M		$0.1000 \mu \mathrm{Hg}$		
DV-4D		$0-20 \mathrm{~mm} \mathrm{Hg}$	DB-16D	55-100
- DV-5M		$0-100 \mu \mathrm{Hg}$	- DB-18	55-103
DV-6M	DV-20	$0-1000 \mu \mathrm{Hg}$	DB-20	55-104
DV-8M		$0.01-10 \mu \mathrm{Hg}$	DB-31	55-105
DV-23		$0.5000 \mu \mathrm{Hg}$	DB-33	55-106
DV-24		0.50 Torr	D8-44	55-107
DV-310		$\begin{aligned} & 0-1000 \text { mTorr and } \\ & 0-1400 \text { mbar } \end{aligned}$	DB-300	55-252

State reference letere of your Gauge Tube you for matching purposem.

Construction

Hastings Reference Tubes employ the same Hastings noble metal thermopile used in all Hastings Vacuum Gauge Tubes. The thermopile is sealed in a glass capsule that has been evacuated, baked, outgassed, sealed, and then aged to ensure stability over long periods of time. The sealed capsule is then housed in a protective metal shell to provide a rugged, trouble-free assembly.

Calibration

Considerable care and time are required in the manufacture to obtain the high degree of precision and stability required for the reference tube.
The thermopile is matched to the reference letter of the customer's tubes and maintains calibration over long periods of time. How cer, for applications requiring the highest e degree of accuracy, a periodic retur the reference tube to the factory for a check d recalibration may be desirable. A or semiannual check assures the customer an accurate and reliable reference at all times.

IMPORTANT MOTE:

These reference tubes are designed specifically for use with instruments employing Hastings circultry and are NOT interchange ble with instruments using other circuitry Connection to another manuffacturer's instrument may result in bumout.

Hastings instruments mesemes the night to change or
modity the design of hs acuipment without any obligation to provide notitication of change or intent to change.
P.O. Box 1436 • Hampton, VA 23661

TL080, TL081, TLO82, TL084, TL081A, TL082A, TL084A
TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS D2297, FEBAUARY 1977-REMSED OCTOEEA 1950

24 DEVICES COVER MILITARY, INDUSTRIAL AND COMMERCIAL TEMPERATURE RANGE8

- Low-Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Blas and Offset Currents
- Output Short-Clrcult Protection
- Low Total Harmonic Distortion . . . 0.003\% Typ
Tl080
D. JR P PACKAGE
(TOP VIEW) D. JG, OR P PACKAG
(TOP VIEW) N1/COMP 1 U 8 COMP

$v_{C C}-[4$
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL080, TLO80A)
- Latch-Up-Free Operation
- High Slow Rate . . . 13 V/as Typ
- Common-Mode Input Voltage Range Includes VCC +
TL082. TL082A, TLOB2E D. JG. OR P PACKAGE D. TLOB1B

(TOP VIEW

(TOP VIEW)
OFFSET NITUR NC

TL082M

 (TOP VIEW)

TL084, TL084A, TL084B
D. J. OR N PACKAGE
(TOP VIEW)

TLO80, TL081, TLO82, TL084, TL081A, TL082A, TL084A
TL081B, TL082B, TL084B
JFET-IIPUT OPERATIONAL AMPLIFIERS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		$\begin{aligned} & \text { TLO8_C } \\ & \text { TL08_AC } \\ & \text { TL08_BC } \end{aligned}$	T208_1	7208_M	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }}+$ (see Note 1)		18	18	18	v
Supply voltage, $\mathrm{V}_{\text {CC }}$ - (3ee Note 1)		-18	-18	-18	V
Differential input voltage (see Note 2)		± 30	± 30	± 30	V
Input voltage (see Notes 1 and 3)		± 15	± 15	± 15	v
Duration of output short circuit (soe Note 4)		unlimited	unlimitod	Unlimited	
Continuous total dissipation		See Dissipation Rating Table			
Operating free-sir temperature range		02070	-40 to 86	-55 to 125	${ }^{\circ} \mathrm{C}$
Storage temperature range		-65 to 150	-65 to 150	-65 to 180	${ }^{\circ} \mathrm{C}$
Case temperature for 60 seconds	FK package			260	${ }^{\circ} \mathrm{C}$
Lead temperature $1.6 \mathrm{~mm}(1 / 18 \mathrm{inch})$ from case for $\mathbf{6 0}$ seconds	J or JG package			300	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds	D. N. or P packege	260	260		${ }^{\circ} \mathrm{C}$

NOTES: 1. All voltage values, except differentiel vortages, are with respect to the midpoint between $\mathrm{VCC}_{\mathrm{C}}+$ and $\mathrm{V} \mathrm{CC}-$
2. Differential voltages are at the noninverting input terminal with respect to the inverting inpur terminal.
3. The magnitude of the inpur voitage muat nover excoed the magnitude of the supply voltage or 15 V , whichever is leas. the dissipation rating is not exceesed.
electrical characteristics, $\mathrm{V}_{\mathrm{CC}}^{\mathrm{I}}=\mathbf{=} \mathbf{1 5} \mathrm{V}$ (unless otherwise noted)

	Parameter	TEST CONDITIONS ${ }^{\dagger}$		mm	Tr	max	MMN	Tr	max	UWT
v_{10}	Input offeet voltage	$\begin{aligned} & v_{0}=0 . \\ & R_{S}=500 \\ & \hline \end{aligned}$	${ }^{\top}{ }^{\text {a }}$ - $25^{\circ} \mathrm{C}$		3	6		3	9	mv
			$T_{A}=-55^{\circ} \mathrm{C}$ to $125{ }^{\circ} \mathrm{C}$			9			15	
avo	Temperature coofficient of input offset voltage	$\begin{array}{ll} v_{O}=0 . & R_{S}=500 . \\ T_{A}=-55{ }^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{array}$			18			18	.	AV/* ${ }^{\circ}$
10	Input offset current ${ }^{\text { }}$	$v_{0}=0$	$\mathrm{T}^{\mathrm{T}} \mathrm{A}=25^{\circ} \mathrm{C}$		5	100		8	100	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			20			20	M
18	Input bias current ${ }^{\text {t }}$	$v_{0}=0$	$\mathrm{T}^{\text {A }}$ = $25^{\circ} \mathrm{C}$		30	200		30	200	pA
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			50			80	nA
VICR	Common-mode input voltage range	$T_{A}=25^{\circ} \mathrm{C}$			$\begin{array}{r} -12 \\ 10 \\ 10 \\ 10 \end{array}$		± 11	-12 to 18		v
${ }^{\text {оо }}$	Maximum peak output voltage swing	$T_{A}=25^{\circ} \mathrm{C}$,	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~kg}$	± 12	± 13.5		± 12	± 13.8		\checkmark
		$T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{A}_{6} \geq 10 \mathrm{~kg}$	± 12			± 12			
			$\mathrm{A}_{6} \geq 2 \mathrm{kQ}$	± 10	± 12		± 10	± 12		
Avo	Large-signol difterential voltage amplification	$V_{O}= \pm 10 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{kQ}$. $T_{A}=25^{\circ} \mathrm{C}$ $V_{O}= \pm 10 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{kO}$. $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		25	200		25	200		v/mv
				15			15			
B_{1}	Unitr-pain bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3			M M
${ }^{\text {i }}$	Input resistance	$T_{A}=25^{\circ} \mathrm{C}$		1012			10^{12}			0
CMRR	Common-mode rejection ratio	$T_{A C}=V_{\text {ICR min, }}$ $V_{O}=0$. $R_{S}=50 \Omega$. $T_{A}=25^{\circ} \mathrm{C}$		80	86		\%	86		d^{8}
*SVR	Supply voltage rejection ratio $\left(\Delta \mathrm{V}_{\mathrm{CC}}{ }_{ \pm} / \Delta \mathrm{V}_{10}\right)$	$\begin{array}{ll} V_{C C}= \pm 15 \mathrm{~V} \text { to } \pm 9 \mathrm{~V} . & V_{O}=0 . \\ R_{S}=50 \mathrm{O} . & T_{A}=25^{\circ} \mathrm{C} \end{array}$		80	86		во	86		dB
'CC	Supply current (per amplifier)	No load. $T_{A}=25^{\circ} \mathrm{C}$	$\mathrm{v}_{\mathrm{O}}=0$.		1.4	2.8		1.4	2.8	mA
$\mathrm{V}_{01} / \mathrm{V}_{0} 2$	Crosstalk attenuation	$\mathrm{A}_{\mathrm{VD}}=100$.	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120			120		dB

${ }^{\dagger}$ All characteristics are measured under open-loop conditions with zero common-mode input voltage unlese otherwise apecifiod.
All characteristics are messured under open-loop conditions with zero common-mode input voltege unlese otherwise specified. in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possitife.

		（1）																		
	${ }^{2}$														$\begin{array}{\|l\|l\|} \hline \text { < } \\ 0 \\ 0 \end{array}$			an		
	区ี		ธ	$\begin{aligned} & \check{\circ} \\ & \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}{ }_{\omega}$		$\stackrel{\rightharpoonup}{\square}$		$\stackrel{\ddot{0}}{\stackrel{\circ}{\circ}}$	\cdots				88	～\sim_{\sim}°		$\stackrel{\square}{\square}$			
	$\overline{\text { B }}$		8		$\stackrel{\circ}{\sim}$		\％		$\stackrel{\sim}{*}$	\cdots				8	$\sim \sim$		$\stackrel{\rightharpoonup}{\infty}$			
	\％	n	8	$\begin{aligned} & \mathbf{\circ} \\ & \mathbf{』} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim} \sim$		\％			\cdots		$\stackrel{4}{=}$ $8 \stackrel{1}{\sim}$		88	～\sim°		Ш	－	\cdots	
	\％				$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}{ }_{\sim}$		\％			$\stackrel{\sim}{\sim}$		$\stackrel{\stackrel{3}{*}}{ \pm}$	\％ 28	88	－${ }^{9}$		$\stackrel{\rightharpoonup}{\infty}$		W ${ }^{\text {a }}$	
	a	3	¢	$\%$	$0{ }^{\frac{3}{4}}$		倉			＜		＜	33	3	37		$\stackrel{*}{\vdots}$	录		等

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	$\begin{aligned} & \mathrm{V}_{1}=10 \mathrm{~V} . \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \end{aligned}$	$R_{L}=2 \mathrm{k} \Omega \text {. }$ See Figure 1		$8{ }^{*}$	13		$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} & \mathrm{V}_{1}=10 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} . \\ & \text { Seo Figure } 1 \end{aligned}$	$\begin{aligned} & R_{L}=2 \mathrm{kR} \\ & T_{A}=-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	TLO81M TLO82M TL084M	$5{ }^{\circ}$			
i_{1}	Rise time	$V_{1}=20 \mathrm{mV}$, $R_{L}=2 \mathrm{k} \Omega$, $C_{L}=100 \mathrm{pF}$, See Figure 1	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text {, }$ See Figure 1			0.05		μ
	Overshoot factor					20\％		
v_{n}	Equivalent input noise voltage	RS $=100 \mathrm{n}$	$\mathrm{f}=1 \mathrm{kHz}$			18		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{NV} \end{aligned}$
			$f=10 \mathrm{~Hz}$ to 10 kHz			4		
	Equivalent input noise current	$\mathrm{R}_{\mathrm{S}}=100 \mathrm{n}, \quad \mathrm{f}=1 \mathrm{kHz}$				0.01		$\mathrm{PA} / \sqrt{\mathrm{Hz}}$
THD	Total harmonic distortion	$\begin{array}{ll} v_{O(r m s)}=10 \mathrm{~V}, & R_{S} \leq 1 \mathrm{kR}, \\ R_{L} \geq 2 \mathrm{kn}, & f=1 \mathrm{kHz} \end{array}$				．003\％		

－On products compliant to MIL－STD－883，Class B ，this parameter is not production tested．

schematic（each amplifier）

ZEXMATE PM-45X \& PM-45XU 4 1/2 DIGIT PANEL METERS

accuracy lcd meters with 10 $\mu \mathrm{V}$ RESOLUTION, true differential inputs, ultra Low POWER <25mW AT +5VDC, AND STANDARD MUX-BCD OR OPTIONAL PARALLEL BCD OUTPUTS

DESCRIPTION

The PM-45X and PM-45XU are truly unique and extremely versatile instruments. Believed to be the world's smallest and most energy efficient 4 1/2 Digit LCD Panel Meters, they nevertheless offer more high performance features than most larger and more expensive DPM's.

Both meters incorporate a crystal controlled 100 KHz clock that provides an exceptionally high normal mode rejection of 120 dB at multiples to $50 / 60 \mathrm{~Hz}$. Bipolar differential and single-ended DC voltages from $\pm 199.99 \mathrm{mV}$ to $\pm 1200.0 \mathrm{~V}$ full scale can be measured and scaled in almost any known engineering unit. Provision has been made for signal offsetting and the capability of attenuating both high and low signal inputs. Resolution is $10 \mu \mathrm{~V}$ over ± 19999 counts, and errors due to zero drift are virtually eliminated by autozeroing. Other modes of operation, selectable by the user, include an ohmmeter mode, current meter mode and ratiometric mode

Multiplexed BCD data is available internally from a row of auxiliary solder pads. Both meters may be ordered with an internally mounted Tri-state Buffered Parallel BCD Output Board. This option, which is described in detail on a separate data sheet, can also be purchased for field retrofit.

The PM-45X features an ultra stable temperature compensated reference with selected low TC components. The PM-45XU is a derated economy priced model that provides all the features of the PM-45X but utilizes a standard reference, and components with less stringent specifications.

The true differential input capabilities and high 86 dB common mode rejection ratio. combined with their low signal measurement range and high noise immunity, make these meters ideal for measuring various balanced transducers and bridge inputs. When measuring bridge circuits, long term drift of the excitation voltage can be compensated by using the ratiometric voltmeter mode of operation.

The proprietary high contrast, long life liquid crystal display provides excellent readability under high and low ambient light conditions. Since the meters normally draw only a small constant current ($<25 \mathrm{~mW}$), operation from almost any DC power supply is simplified. If the supply has a stability of only 10%, a voltage dropping resistor in series with the meter is often sufficient. (See Application notes.)

SPECIFICATIONS

Input Configuration: Full Scale Ranges:

Input Impedance:

Input Protection:
Normal Mode Rejection:
Common Mode Rejection
Common Mode Voltage:

Accuracy:

Maximum Resolution:
Temperature Coefficient:

Zero Stability:
Conversion Rate:
Clock Frequency:

Display:

Polarity:
Overload Indication:

Power Requirements:
Warmup Time:
Operating Temperature:

True differential and single-ended
$\pm 19999 \mathrm{mVDC}$
$\pm 1.9999 \mathrm{VDC}$ (stancard)
$\pm 19.999 \mathrm{VDC}$
$\pm 19999 \mathrm{VDC}$
± 1200 OVDC (max. Input Signa: higher voltages can be measured if voltage dividing resistors are located externally) Exceeds $1000 \mathrm{M} \Omega$ on 200 mV and 2 V ranges. $10 \mathrm{M} \Omega$ on all other ranges
-170 VOC or 120 VAC on 200 mV and 2 V ranges.
$\pm 1200 \mathrm{VDC}$ or 850 VAC on all other ranges
120 dB at multiples of $50 / 60 \mathrm{~Hz}$
86 dB at DC: greater than 120 dB a: multiples of $50 / 60 \mathrm{~Hz}$
-2.8 V to +2.8 V (standard)
$\pm 2.8 \mathrm{~V}$ or more if differential dividers are used (see Typical Application Circuits and Carnection Instructions)
PM-45X $=10.01 \%$ of reading +1 digit)
$\pm(0.015 \%$ of reading +2 diguts) for 200 mV range.
PM-45XU $\pm(0.015 \%$ of reading +2 digits). $\pm 10.02 \%$
of reading +3 digits) for 200 mV range
of reading +3 digits for 200 mV rang
$10 \mu \mathrm{~V}$ over ± 19999 counts in 200 mV
range. $100 \mu \mathrm{~V}$ over ± 19999 counts in 2 V range
PM-45X:5PPM $/{ }^{\circ} \mathrm{C}$ ratiometric,
20PPM $/{ }^{\circ} \mathrm{C}$ using internal adjustable T.C. Reterence. PM-45XU: 5PPM $/{ }^{\circ} \mathrm{C}$ ratometric. $50 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ using internal reterence
Autozeroed $\pm 10 \mu \mathrm{~V}$ at all ranges:
$\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Typical
2.5 readings per second

100 KHz system clock derived from 200 KHz quariz crystal controlled oscillator of 0.05% accuracy $0.48^{\prime \prime}$ LCD
Automatic; displays boin "+" and "-" signs; polarity symbols may be blanked (see page 6) When input exceeds full scale on any range being used. the most significant " 1 " digit and "+" or " symbol is displayed with all other digits blank Low ripple +4.5 V to +5.5 VDC at 3 mA to 5 mA 10 seconds to specified accuracy
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

ORDERING INFORMATION

Order Part No. Order Part No.			
Standard High Accuracy $41 / 2$ Digit Panel Meter (2V Range)	PM-45X	Range Change Kits: (matched resistors for user	instaliation)
Standard Utility Version $41 / 2 \mathrm{Digit}$ Panel Meter (2V Range)	PM.45XU	200 mV Range	VG-200MV
PM-45X W/Tri-State Parallel BCD Output	PM. $45 \times \mathrm{BCD}$	20 V Aange	VKA-0020V
PM-45XU W/Tri-State Parallel BCD Output	PM.45XUBCD	200V Range	VKA-0200V
Retrofit Tri-State Parallel BCD Board for PM-45X/PM-45XU	PM. $45 \times 8 \mathrm{CDO}$	1200V Range	VKA. 1200 V
Accessories: Edge Connector (20 pin soider tabs)	CN-L10	Optional Cases*: (see back page for details)	
Options: Factory Installed 200 mV Range	VG-200MVFI	End Mount Case (twin meter mounting)	EM-CASECLR
Factory Installed 20V Range	VFA-0020V	Center Mount Case (multiple array mounting)	CM-CASECLR
Factory Installed 200V Range	VFA-0200V	Slim Bezel Case (supplied as standard)	SL CASECLR
Factory Installed 1200V Range	VFA. 200 V		
Factory Installed Special Scaling (Specify input signal. the s required. eg 1 to 5 V input to display 0 to 10.000 - 4 to 20 mA in 15.000:0 to 50 mA input to display -1000 to +8.000	and digital reading to display 0 to VS 45	-Meters purchased prior to August 1989 requre cases the rear side of the lens To order these cases. use the EM-CASELCD: CM-CASELCD: SL-CASELCD.	with a porarizer oondec to following pan numbers

CONNECTOR PINOUTS

The Texmate Model PM-45XIPM.45XU is interconnected by means of a standard PC board edge connector having two rows of 10 pins, spaced on 0.156^{*} centers. The optional parallel BCD Output is irterconnected by a standard PC board edge connector haying two rows of 13 pins spaced on $0.1^{\text {ch}}$ centers. (A standard 26 pin. PCB to Ribbon Cable Connector is recommended.l Connectors are available from Texmate. or from almost any connector manufacturer.

REAR VIEW OF METER CASE

A - Reference Output	1 - Reference Inpur
- - Signal High Input	2 - Offset Voltage Dutput
C - Analog Common	3 - Signal Low Input
D - Decimal Select ($1 \times \mathrm{XXX}$ X)	4 - Decimal Select (1XX.XX)
E- Decimal Select (1) XXXX (5 - Decimal Select Common
F - Decimal Seloct (.1 1 XXXX)	6 - Decimal Select (1X.XXX)
H - Back Plane Output	7 - Back Plane Input/Display Test
J - Clock Output	8 - Clock Input
K - + 5VDC System Power Input	9 - Busy Output
1 - Power Ground Input	10 - RuniHold

CAUTION: This meter employs high impedance CMOS inputs. Although internal protection has been provided for several hundred volt overloads. the meter will be destroyed if subjected to the high kilovolts af slatic discharge that can be produced in low humidity environments. Always handle the meter with ground protection.

SINGLE ENDED METER - >2V RANGES WITH VOLTAGE DIVIDER
II High single ended voliages. up to 1200 V max, can be measured andior scated or install ing the appropriate voltage dividing resistors in R1A and R2A positions Matched dividing resistots for the 20 V (1,10). 200V (1, 1001 and 1200V 111000 I ranges are avalabie fiom Texmate 2 I Connect Pin 3 to the nearest end of the signal soutce ground to avoid possible etrors caused by ground loop currents.

PIN DESCRIPTIONS

Pin A - Reference Output: Internal precision voltage reference. Standard output is 1.0000 V . adjustable $\pm 5 \%$ by R 10 potentiometer. Usable voltages from 0.05 V to 2.49 V for special high impedance scaling can be obtained by changing the value of internal dividing resistors $\mathrm{R8} 8$ and $\mathrm{R9}$. The primary reference voltage of the PM .45 X is trimmed by potentiometer R 20 to obtain the optimum compensated temperature coetticient. This temperature compensation network is omitted on the PM. 45 XU utility meter. Please read CALIBRATION PROCEDURE (Page 71.
Pin B - Signal High Input: Pin 8 is the signal high input for all input signal ranges. When attenuation is not required the resistor position RiA must be shorted by a jumper. Dividing resistors may be mounted internally in R1A and R2A positions to attentuate voltages up to 1200 V max. Matched dividing resisto:s for the $20 \mathrm{~V}(1 / 10), 200 \mathrm{~V}(1 / 100)$ and 1200 V $(1 / 1000)$ ranges are avalable Irom Texmate. Shunt resistors for current measurements up to 200 mA may also be internally mounted in the R2A position. The current loop is then applied to Pin B and returned through Analog Common Pin C.
Pin C - Analog Common: Pin C is signal return common for differential inputs. ratiometric inputs, or external reference inputs. For single-ended inputs, Signal Low input Pin 3 must be connected to Analog Common Pin C. To minimize any errors caused by ground loop currents it is recommended that this connection be made as close as possible to the input signal source ground. (See Typical Application Circuits and Connection In structions. Pages 4.6.)
Pins D, E, F, 4 and 6 - Decimal Select: Cecimal points may be displayed as required by connecting the appropriate pin to Decimal Select Common Pin 5. Any number of decimal points can be turned on at the same time. An open circuit will turn off the decimal points. However, static current pickup andiof PCB leakage of more than 100nA can cause decimal points to turn on undesirably. Therefore, it is recommended that the unused decimal points be connected to Back Plane Output Pin H either directly or by a resistor of less than $5 \mathrm{M} \Omega$ to insure an off condition. CAUTION: Any OC component introduced to the display drive circuitsy can, in time. cause permanent damage. PLEASE REAO PAGES 7 AND 8 FOR A DETAILED EXPLANATION OF LCO OPERATION.
Pin H - Back Plane Output: Liquid crystal displays are operated from an AC signal. Back Plane Output Pin H provides a square ware signal ol $60 \sim 160 \mathrm{HZ}$ that must be con nected by the user to back plane input Pin 7 for normal operation. Pin 7 is internally con nected to the LCO back plane which is the common base of the LCD capacitance struc ture. Thase segments that are driven 180° out of phase with the back plane will turn on. Those segments that are driven in-phase with the back plane will turn off. PLEASE READ PAGES 7 ANO 8 FQR A DETAILED EXPLANATION OF LCD OPERATION.
Pin J - Clock Output: A quartz crystal controlled oscillator provides a stable clock signal output of 100 KHz .
Pin K - + 5 VDC System Power Input: The meter requires a low rippie DC power supply of 4.5 V to 5.5 VDC at 3 mA to 5 mA . The low power consumption of oniy 25 mW enables the meter to be easily operated from varrous power sources with simple voltage regulating circuitry. The positive terminal of the power supply should be connected to Pin K .
Pin L - Power Ground Input: Negative terminal of the +5VDC power supply should be connected to Pin L. All digital signals, Display Test, and Run/Hold should be seturned to this ground point. Pin L is internally connected to Analog Common Pin C.
Pin 1 - Reference Input: Reference voltage input for A to D converter. Normally sup. plied from Pin A. An externat reference source referred to Pin C may be used instead. Pin I may be used as an input for ratiometric measurements. Minimum usable voltage is .O5VDC, with a maximum voitage of 4.OV. For ratiometric operation; Displayed Reading $=10000 \times$ (Signal Input Voltage \div Reference Input Voltage). The maximum signal input
voltage is $\pm 4 \mathrm{~V}$. Higher voltages must be scaled down through a voitage divider. Reference input voltage must remain stable during measurement period
Pin 2 - Offset Voltage Output: 0 to +2.490 V is avallable with the addition of a $\%$ " $20 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$ pot in the R15 position on the printed circuit board. The ottset voltage is derived from the internal precision voitage reference and is available for applications re. quering a zero offset such as $4 \sim 20 \mathrm{~mA}$ receiver and temperature measurements.
Pin 3 - Signal Low Input: Pin 3 is the signal low input for all input signals. A special feature of the meter is the provision for dividing resistors to be mounted internally in the R18 and R2B positions. This enabtes low signal inputs up to 1200 V max to be at tenuated, which is particularly useful when measuring small differential signals with a large common mode voltage. Matched dividing resistors for the $20 \mathrm{~V} 11 / 101,200 \mathrm{~V}$ $(1 / 100)$ and 1200 V ($1 / 1000$) ranges are available from Texmate. Differential current measurements up to 200mA may also be made by internally mounting shunt resistors in the R2B position. The current loop is then applied to Pin B and returned through Analog Common Pin C. When attenuation is not required the resistor position R18 must be shorted by a jumper.
Pin 5 - Decimal Select Common: Pin 5 is 180° out of phase with back plane output Pin H. Thus it serves as a common for the decimal select Pins D, E, F, 4 and 6. To turn on any required decimal point, connect the appropriate Decimal Select Pin to Decimal Select Common Pin 5.
Pin 7 - Back Plane Input|Display Test: Pin 7 is connected to the display's back plane which forms the common base of the LCD capacitance structure. Join Pin 7 to back plane output Pin H for normal operation. For Display Test connect Pin 7 instead to Power Ground Pin L and all operative segments will turn on, indicating + 18888. CAUTION: The Display Test function is only intended for momentary operation. Continuous application of Display Test will, in time, damage the display. SEE PAGES 7 ANO 8 FOR A DETAILED EX PLANATION OF LCD OPERATION.
Pin 8 - Clock Input: Normally Pin 8 is connected to the 100 KHz clock output from Pin J, thereby providing the optimum rejection of $50 / 60 \mathrm{~Hz}$ noise. However, an external ciock source may be used instead (5 V referenced to power ground with a recommended duty cycle of 50%). Minimum frequency is 10 KHz , and maximum frequency is 1 MHz (12.5 readings per sec.). For inputs below $100 \mathrm{KHz}_{2}$ or above 300 KHz , changes to the integrator time constant and some component values are necessary.
Pin 9 - Busy Output: Pin 9 goes to logic " 1 " at the beginning of the signal integration and remains at " 1 " until the first clock pulse after the zero-crossing is detected at the completion of deintegration. In addition to its use as a Busy or End-of Conversion signal, the output on Pin 9 can be used in some control applications to indicate the digutal seading of the meter as a function of time or clock pulses. Displayed Reading is equal to the total clock pulses during Busy less 10,000 , or total elapsed time during Busy, less 100 milliseconds if the clock frequency is 100 KHz .
Pin 10 - Run/Hald: If Pin 10 is left open for connected to +5 VOC System Power Input Pin K for logic control purposes), the meter will operate in a free-running mode. Under controt of the internal 100 KHz quartz crystal clock, readings will be updated every 400 mS (2.5 per sec.). If Pin 10 is connected to Power Ground Input Pin L (logic low). the meter will continue the measurement cycle that it is doing, then latch up and continuously hold the reading obtained as long as Pin 10 is held low. If Pin 10 is released from Pin L (Pin 10 then goes logic high) for more than 300ns and returned to Pin L (logic low), the meter will complete one conversion, update, and then hold the new reading. For all practical purposes, a manually actuated normally closed pushbutton switch will provide sufficient timing for "press to-update" operation.
\square A0581*

FEATURES

Laser-Trimmed to High Accuracy: 10.000 Volts 55 mV (L and U)
mmed Tomperature Coefficient. 5ppm/ C max, 0 to $+70^{\circ} \mathrm{C}$ (L) 10ppm/ $/{ }^{\circ} \mathrm{C}$ max, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (U)
Excellent Long-Torm Stability:
$25 \mathrm{ppm} / 1000 \mathrm{hrs}$. (Noncumulative) Negative 10 Volt Reforence Capability Low Quiescent Current: 1.0 mA max 10 mA Current Output Capability 3-Terminal TO-5 Package

RODUCT DESCRIPTION

The AD 581 is a three-terminal, temperature compensated monolithic band-gap voltage reference which provides a precise 10.00 volt output from an unregulated input level from 12 to 30 volts. Laser Wafer Trimming (LWT) is used to trim bod fice initia error at +25 C as wellis the temperane viously available only in expensive hybrids or oven-requlated modules. The 5 mV initial error tolerance and $5 \mathrm{ppm} / \mathrm{F}_{\mathrm{C}}$ guaranteed temperature coefficient of the AD581L represent the best performance combination available in a monolithic voltage reference.
The band gap circuit design used in the AD581 offers several advantages over classical Zener breakdown diode techniques. Most important, no external components are required to systems. In addition, total supply current to the device, including the ourpur buffer amplifier (which can supply up to 10 mA) is typically $750 \mu \mathrm{~A}$. The long-term stability of the band-gap design is equivalent or superior to selected Zener reference diodes.
The AD581 is recommended for use as a reference for 8 - 10 or 12 -bit D/A converters which require an external precision reference. The device is also ideal for all types of A / D converters up to 14 bit accuracy, either successive approximation or inte grating designs, and in general can offer better performance than that provided by standard self-contained references. The AD581J, K, and L are specified for operation from 0 to $+70^{\circ} \mathrm{C}$; the AD581S, T , and U are specified for the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. All grades are packaged in a hermetically sealed three-terminal TO-S metal can.
-Covered by Patent Nos. 3,887,863, RE 30,586

ADS81 FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS
Leer coefficient results in very low errors over temperature' with the use of external componenes-The-ADSE1t hat aximum deviation from 10.000 voles of $\pm 7.25 \mathrm{mV}$ frovis

Since the laser trimming is done on the'wifer'ptiot to'kent
Since the laser trimming is done on the'wifer 'pior 'to'sepes ration into individual chips, the AD581 will be dxeremely: aluable to hybrid designers for its ease of ubo, leol ah,
equired external :
The AD581 can also be operated in a two-terminal "Zener" mode to provide a precision negative 10 volt reference with ust one external resistor to the unregulated supply. The per, ormance in this mode is nearly $q u a l$ to that of the stand ard three-terminal configuration
4. Advanced circuit design using the band-gap concept allows the AD581 to give full performance with an unregulated input voltage down to 13 volts. With an external resistor, the device will operate with a supply as low as 11.4 volts.

SPECIFICATIONS

Model	mm	$\begin{gathered} \text { ADsal1 } \\ T_{T} \end{gathered}$	Mas	Mm	$\begin{gathered} \text { ADSAK } \\ \mathbf{T}_{\boldsymbol{p}} \end{gathered}$	Mea	Mn	$\begin{gathered} \text { ADsent } \\ T_{p p} \end{gathered}$	Max	Unem
OUTPUT VOLTAGE TOLERANCE (Enrof from nominal $10,000 \mathrm{~V}$ outrut)			230			± 10			± 5	mv
OUTPUT VOLTAGE CHANGE Maximum Deriation from $+25^{\circ} \mathrm{C}$ Value, $T_{\text {In }} 10 T_{\text {m }}$ (Temperturre Coefficien)			$\begin{aligned} & \pm 13.5 \\ & 30 \end{aligned}$			$\begin{aligned} & \pm 6.75 \\ & 15 \end{aligned}$			=2.2s	$\begin{aligned} & \mathbf{m v} \\ & \text { ppm } \mathrm{c} \end{aligned}$
lineregulation ${ }_{1 S V} \mathrm{~V}_{\mathrm{Im}} \leq 30 \mathrm{~V}$ $13 v \leq V_{\mathrm{nn}} \leq 15 \mathrm{~V}$			$\begin{aligned} & 3.0 \\ & (0.002) \\ & 1.0 \\ & (0.005) \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 .02) \\ & (0.002) \end{aligned}$ 1.0 (0.005)	.		3.0 $\left.\begin{array}{l}3.0 .02) \\ 1.0\end{array}\right)$ 1.00 (0.003)	
$\begin{aligned} & \text { LOADREGULATION } \\ & \text { OSIOCTSSMA } \end{aligned}$		200	500		200	500		200		${ }_{\mu} \mathrm{V}$ man
QUIESCENTCURRENT		0.75	1.0		0.75	1.0		0.75	1.0	mA
TURN-ON SETTLING TIME TOO.14'		200			200			200		μ
NOISE(0. 11010 Hz)		50			50			so		$\mu \mathrm{V} / \mathrm{p}$ -
LONG-TERMSTABILITY		25			25			23		ppavil000 hr .
SHORT-CIRCUITCURRENT		10			30			30		mA
\qquad	$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & 10 \\ & 5 \\ & 5 \end{aligned}$			$\begin{aligned} & m A \\ & m A \\ & m A \\ & m A \end{aligned}$
TEMPERATURE RANGE $\begin{array}{c}\text { Specifed } \\ \text { Operating }\end{array}$	0_{-65}		$\begin{aligned} & +70 \\ & +150 \\ & \hline \end{aligned}$	${ }_{-65}^{0}$		$\begin{aligned} & +70 \\ & +150 \end{aligned}$	${ }_{-65}^{0}$		$\begin{aligned} & +70 \\ & +150 \\ & +10 \end{aligned}$	$\begin{array}{r} \tau \\ \tau \end{array}$
$\begin{aligned} & \hline \text { PACKAGEOPTION } \\ & \text { TO. } 3(\mathrm{H} 03 \mathrm{~B}) \\ & \hline \end{aligned}$	ADSsiju			ADSHIKH			ADSALL			

Masal	Min	$\begin{gathered} \text { ADssis } \\ T_{T} \end{gathered}$	max	Mis	$\begin{gathered} \overline{\text { ADS } 81 T} \\ \mathrm{~T}_{17} \end{gathered}$	Max	Mm	ADselv	mam	Unter
OUTPUT VOLTAGE TOLERANCE (Error from nominal $10,000 \mathrm{~V}$ output)			± 10			± 10			± 5	mV :
OUTPUT VOLTAGE CHANGE Maximum Devistion from +25 C (Temperture Copefkient)			$\begin{aligned} & \pm 0 \\ & 30 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 15 \\ & 15 \end{aligned}$			10	ponit
			$\begin{aligned} & 3.0 \\ & (0.002) \\ & 1.0 \\ & (0.005) \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 .02) \\ & \left(\begin{array}{l} 1.002) \\ 1.0 \\ (0.005) \end{array}\right. \end{aligned}$			3.0 1.0 1.0 1.0 (0.008)	
$\begin{aligned} & \text { LOADREGULATION } \\ & 0 \leq h_{n Q T} \leq \operatorname{simA} \end{aligned}$		200	500		200	Som		200	50	$\mu \mathrm{V} \cdot \mathrm{~min}$
QUIESCENTCURRENT		0.75	1.0		0.75	1.0		0.75	1.0	mA
IURN-ON SETTLING TIME TOO.14'		200			200			200		${ }^{\text {me }}$
NOISE(0. 01010 OHz)		50			50			50		$\mu \mathrm{V} / \mathrm{p}$ - p
LONG-TERM STABILITY		25			25			25		ppm/1000 mi.
SHORT-CIRCUITCURRENT		30			30			30		mA
\qquad	$\begin{array}{\|c} 10 \\ 300 \\ 200 \\ \hline \end{array}$			$\begin{aligned} & 10 \\ & 200 \\ & 3 \\ & \hline \end{aligned}$			$\begin{aligned} & 10 \\ & 3 \\ & 300 \\ & \hline \\ & \hline \end{aligned}$			$\underset{\substack{m A \\ m A \\ M A}}{\substack{n A}}$
TEMPERATCRERANGE Specifed Oprotung	$\begin{aligned} & \$ 5 \\ & 65 \\ & \hline \end{aligned}$		$\begin{array}{r} 125 \\ \therefore 150 \\ \hline \end{array}$	$\begin{aligned} & \text { \$5 } \\ & 65 \\ & \hline \end{aligned}$		$\begin{aligned} & 125 \\ & : 1150 \\ & \hline \end{aligned}$	\$5		$\begin{array}{r} 125 \\ +150 \\ \hline \end{array}$	${ }_{\text {c }}$
PACKAGEOPTION TO.S(H.03B)	ADS81sh			ADSSITH			ADSIIUH			

$\underset{\text { Seter }}{\substack{\text { Nounrs }}}$

Sce Sation 13 Tor Daikene coulline informetion.
Spectifations shown in booldice tre tested on all prosuctivn unisa al final cerect
 min and max specifictions are surani

ABSOLUTE MAX RATING
Input Voltage $V_{\text {IN }}$ to Ground
Operating Junction Temperature Range $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) $+300^{\circ} \mathrm{C}$
Thermal Resistance
Junction-to-Ambient

OLTAGE VARIATION w. TEMPERATURE

Some confusion exista in the ares of defining and specifying reference voltage error over temperature. Historically, refer ences have been characterized using a maximum deviation per degree Centigrade; i.e., $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. However, because of nonlinearities in temperature characteristics, which originated in standard Zener references (such as " S " type characteristics) most manufacturers have begun to use a maximum limit error band approach to specify devices. This technique involves tures to guarantee that the output voltage will fall with in the iven error band. The remperature characteristic of the AD58 consistently follows the S-curve shown in Figure 4. Fivepoint consistently follows che Seurve shown in fure 4 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ange, threepoint measurement gurantees the error band from 0 to $+70^{\circ} \mathrm{C}$. the error band from 0 to +70 C .
The error band which is guaranteed with the AD581 is the maximum deviation from the initial value at $+25^{\circ} \mathrm{C}$; this error antees the maximum total change over the entire range (i.e., in the latter definition, all of the changes could occur in the positive direction). Thus, with a giver grade of the AD581, the designer can easily determine the maximum total error from initial tolerance plus temperature variation (e.g., for the AD581T, the initial tolerance is $\pm 10 \mathrm{mV}$, the temperature error band is $\pm 15 \mathrm{mV}$, thus the unit is guaranteed to be 10.000 volts $\pm 25 \mathrm{mV}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$).

Figure 4. Typical Temperature Characteristic
OUTPUT CURRENT CHARACTERISTICS
The AD581 has the capability to either source or sink current and provide good load regulation in either direction, although it has better characteristics in the source mode (positive cur rent into the load). The circuit is protected for shorts to either positive supply or ground. The output voltage vs. output current characteristics of the device are shown in Figure 5. Source current is displayed as negative current in the figure; sink cur-

Figure 5. AD581 Output Voltage vs. Sink and Source Current
rent is positive. Note that the short circuit current (i.e., zero volts output) is about 28 mA ; when shorted to +15 volts, the sink current goes to about 20 mA .

DYNAMIC PERFORMANCE

Many low power instrument manufacturers are becoming increasingly concerned with the turn-on characteristics of the components being used in their systems. Fast turn-on compo nents often enable the end user to keep power off when not needed, and yet respond quickly when the power is turned on for operation. Figure 6 displays the turn-on characteristic of the AD581. This characteristic is generated from coldstart operation and represents the true turn-on waveform after an extended period with the supplies off. The figure shows both the coarse and fine transient characteristics of the device; the total settling time to within 11 milimoit in abour 180\%s, there is no long thermal taileppenring after the point

Figure 7. Spectral Noise Density and Total rms Noise vs. Frequency

Figure 8. Quiescent Current vs. Temperature

Applying the AD581

An external fine trim may be desired to set the outpur level to exactly 10.000 volts within less than a millivolt (calibrated to 2 main system reference). System calibration may also require a reference slightly different from 10.00 volts. In either case, the optional trim circuit shown in Figure 2 can offect output by up to ± 30 millivolts (with the 22Ω resistor), if needed, with minimal effect on other device characteristics.

APPLYING THE ADS8

The AD581 is easy to use in virtually all precision reference applications. The three terminals are simply primary supply, ponents are required even for high precision applications, the degree of desired sbolute accuricy is achieved simply by selecting the required device grade. The AD581 requires les than 1 mA quiescent current from in operating supply range of 12 to 30 volts.

Figure 3. Simplified Schematic

Figure 2. Optionel Fine Trlm Conflguration
Figure 1. AD581 Pin Configuration (Top View)

PRECISION HIGH CURRENT SUPPL

The AD581 can be easily connected with power pnp or power darlington pnp devices to provide much greater output current capability. The circuit shown in Figure 9 delivers a precision volt output with up to 4 amperes supplied to the load. The $1 \mu \mathrm{~F}$ capacitor is required only if the load has a significant capacitive component. If the load is purely resistive, improved high frequency supply rejection results from removing the capacitor.

Figure 9. High Current Precision Supply
CONNECTION FOR REDUCED PRIMARY SUPPLY While line regulation is specified down to 13 volts, the typical AD581 will work as specified down to 12 volts or below. The current sink capability allows even lower supply voltage capability such as operation from $12 \mathrm{~V} \pm 5 \%$ as shown in Figure 10. The $\$ 60 \Omega$ resistor reduces the current supplied by the ADS8 to 2 manageable level at full 5 mA load. Note that the other bandgap references, without current sink capability, may be damaged by use in this circuit configuration.

Figure 10. 12-Volt Supply Connection

THE ADS81 AS A CURRENT LIMITER

 The AD581 represents an alternative to current limiter diodes which require factory selection to achieve 2 desired current. This approach often results in temperature coefficients $1 \% / \mathrm{C}$. The AD581 approach is not limited to a defined set current limit; it can be programmed from 0.1 s to mA with the insertion of a single external resistor. Of course, minimum voitage required to drive the connection is in The AD580, which is a 2.5 volt reference, can betype of circuit with compliance voltage down to 4.5 volts.

sirgo nimot

Figure 11. A Two-Component Precision Current Limiter
NEGATIVE 10-VOLT REFERENCE
The ADS 81 can also be used in a two-terminal "Zener" mode". to provide a precision -10.00 volt reference. As shown in Figure 13 , the $V_{\text {IN }}$ and $V_{\text {OUT }}$ terminals are connected together to the high supply (in this case, ground). The ground pin is connected through a resistor to the negative sapply. The output is now taken from the ground pin instead of $V_{\text {OUT }}$. With 1 mA flowing through the AD581:in this mode, a typical unit will show a 2 mV increase in outpur lever over that produced in the three-terminal mode. Note also thas the effective ou qut impedance in this connection increases from $\sigma .2 \Omega$ typ pical to 2 ohms. It is essential to arringe the output load apd the sup ply resistor, R_{S}, 30 that the net current through the AD581 is always between 1 and 5 mA . The temperaturacharacteristics and long-term stability of the device will bed eteintilly ene-met same as that of a unit used in the stapdard chree-temingive mode. The operatig
 The AD581 can also be used in a two-rerminat mpde ta develop a positive reference. $\mathbf{V}_{\mathbb{N}}$ and $\mathbf{V}_{\mathbf{O U T}}$ are tied topether and to the positive supply through an appropriate aupply resistor. The performance characteristics will be similar to those of the nes ative two-terminal connection. The only advanage of the nection over the standard three-terminal connection is that a lower primary supply can be used, as lew ate attention to load and primary supply regulation to be sure the AD581 always remains within its regulating range of 1 to 5 mA .

Figure 12. Two-Terminal - 10 Volt Reference

TYPES SN55452B, SN75452B
DUAL PERIPHERAL POSITIVE-NAND DRIVERS

schematic (each driver)

electrical characteristics over recommended operating free-air temperature range (uniess otherwise noted)

switching characteristics, VCC $=5 \mathrm{~V}, \mathrm{~T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN	TYP	max	UNIT
PLH Propegation doley time, lowro-hightevol output	$\begin{aligned} & 10 \sim 200 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=15 \mathrm{pF},$ See figure 3		26	35	m
PHL Propagation doley time, hightotowtewol output				24	36	n
TLH Transition time, loweohiontavol output				5	8	ns
TTHL Trensition time, nightotowtevol output				7	12	na
VOH Hightevel output voluge after switching	$v_{S}=20 \mathrm{~V}$ See Figure 4	$10 \sim 300 \mathrm{~mA}$.	vs-6.5			mV

TEXAS INSTRRUMENTS
post orfict sox boiz - dallas. texas moz2

National Semiconductor

LM139/ 239/339, LM139A/239A/339A, LM2901,LM3302

 Low Power Low Offset Voltage Quad Comparators
General Description

The LM139 series consists of four independent precision voltaqe comparators with an offset voltage specirication as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic-where the low power drain of the LM339 is a distinct advan tage over standard comparators.

Advantages

- High precision comparators
- Reduced $V_{O S}$ drift over temperature
- Eliminates need for dual supplies
- Allows sensing near gnd
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide single supply voltage range or dual sup. plies LM139 series. LM139A series. $\quad 2$ V $_{\text {DC }}$ to $36 \mathrm{~V}_{\text {DC }}$ or LM LM3302 $2 V_{D C}$ to 28 VDC $r \pm 1 V_{D C}$ to $\pm 14 \vee D C$
- Very low supply current drain (0.8 mA) independent of supply voltage ($2 \mathrm{~mW} /$ comparator at $+5 \mathrm{~V}_{D C}$)
- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage 3 mV
- Input common-mode voltage range includes gnd
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage
- Output voltage compatible with TTL, DTL ECL, MOS and CMOS logic systems
ror vir
Order Number LM139J, LM139AJ, LM239J, LM239AJ, LM339J, See NS Pack age J 14 A

Order Number LM339N, LM339AN. M2901N or LM3302N
See NS Packoge N14A

Driving TTL

Typical Performance Characteristics LM139/LM239/LM339, LM139A/LM239A/LM339A, LM3302

Typical Performance Characteristics LM2901

AN TELEDYNE SOLD STATE
SERENDIP ${ }^{\circ}$ AC SOLID STATE RELAY

OPTICALLY ISOLATED 1.0 A rms

features/benefits

- Optleal Isolation -
isolates control olements from load transients.
- Floating outpurt -

Eliminates ground loops and signal ground noise.

- Zere voltage turn on, Zero curromt turn ofl Minimum switthing transient noise and extromety low EM.
Low off state loakage current -
For high off state impedance.
Switehes high and low roltages and currents -
Switches voltages from 20 to 250 Vrms
Switches eurronts from 10 to 1000 mArma
- High noise Immunity -

Control circult cannol be triggered by output switening nolse.

- High dielectric strongth -

For salaty and for protection of control and signal leval circults.

- Meets design roguiroments of UL, CSA, and VDE 083Highest quality for commercial/ndustrial part. Approval pending.
Swithes resistive or reactivo losts to 0.2 P.F. Broad Load Swittehing Capabilly.

DESCRIPTION

The C45 Series employs back-to-back photo SCRs and a patented zero crossing circuit. The tight zero switch window ensures reliable transient free switching of AC loads and very ow EMI and noise generation. Optical isolation of contro rom output prevents switching noise from coupling into signal, power and ground distribution systems for noise free power switching. This series of solid state relays will swic rom 10 ma to 1.0 amp rms at 280 Vrms. The CAS packaged in a low profile 16 pin Dual In-Line package for $P C$ ounting with minimum spation

PMNTT	nelay deacmirnom			
C45 ${ }^{\text {Solia State }}$	Solic State Relisy with Terminals for Through Holo Moum			
Solid State Relay wint Terminals for Surtace Moumt				
ELECTRICAL SPECIFICATIONS (25'C UNLESS OTHERWISE SPECIFIED)				
		5	max	
Input Currrem (See Note 4)	C15-11.-21	5.0	50.0	ma
	C15-12.-22	10.0	50.0	ma
	C45-13. 23	NA		
Input Voltage (See Note 4)	C15-11, 21	NA		
	C15-12,-22	NA		
	C45-13.-23	3.5	7.0	vols
Tum on Curremt	C55-11,-21		10.0	m
	C15-12,-22			
Tum On Currem	C55-11,-21	5.0	50.0	ma
	C15-12,-22	10.0	50.0	ma
Tum On Voltape	C55-13,-23		0.5	volts
Tum On Vothage Reverse Vollese Protection	C15-13. 23	3.5	-7	vols
		ar		
Load Currem (Sees fipure 4)		0.01	1.0	Amm
Lasd Voltege Rasting.			280	Vms
Froquency Ranpe.		47	650	H_{2}
On State Vorrese Drop at Aated Curremt			1.5	Vrms
Zero Voltage Tum On			10	Vpaak
Surge Curromt Rating (non-repetitive 20 ms maximum) (See figure 3 \& Note 1)			8	A
Off State Leakgo at Maximum Operating Volnape			1.0	mams
Tum-On Time			$1 / 2$	$\mathrm{OCl}^{\text {che }}$
Tum-OHT Time			$1 / 2$	9cie
Over Voltage Rating	C45-11, 12, 13		400	$v_{\text {poak }}$
	C45-21, -22,-23		500	
Dielectric Strength (Input to Output)		4000		Vmm
Isolation (lnput to Output)		10°		Onms
Capactrance (Input to Output)			10	pf
OHf Slate evira			100	V/4sec
Fusing ${ }^{\text {T }}$ (1 mm)			5.0	${ }^{\text {A }}$ S
Output SCR's Dissipation factor			1.0	Warta
Output SCR Temperature (T, Maximum)			125	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\theta_{\text {A }}$		60	${ }^{\circ} \mathrm{CN}$
	θ_{x}		35	${ }^{\circ} \mathrm{CN}$

SERIES C45

$$
\begin{aligned}
& \text { CHARACTERISTIC CURVES } \\
& \text { THICAL CONTROL CUTSRENT VS. VOLTAGE }
\end{aligned}
$$

SURGE CURRENT VS. DURATION

LOAD CURRENT YS. TEMPERATURE

MECHANICAL SPECIFICATIONS

	$\begin{aligned} & \text { mingen } \\ & \text { mintion } \\ & \text { neay } \end{aligned}$	
140 Vac	400	970.1
250 Vac	600	$970-2$

FIGURE 5

NOTES:
SCR may lose blocking capabolity durng and ater surge untul I talls below $100^{\circ} \mathrm{C}$ maximum
${ }^{2}$ RC snubber 1 s recommenoea. but 15 not reaured.

6/93 SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

National

Semiconductor

LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single powe supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characterisic in that the input common oode voltage range includes ground even thoug perated from a single power supply voltage.

Application areas include limit comparators, simple Analo to digital converters; pulse squarewave and time nalog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; M193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced $\mathrm{V}_{\text {Os }}$ drift over temperature

Voltage Comparators

Allows sensing near ground
Compatible with all forms of logic

- Power drain suitable for battery operation

Features

Wide single supply $5.0 \mathrm{~V}_{\text {DC }}$)

- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and maximum offset voltage . 53 mV
Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output
saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Schematic and Connection Diagrams

Typical Applications ($\left.\mathrm{V}^{+}=5.0 \mathrm{voc}\right)$

Basic Comparator

Driving cmos

			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sum_{0}^{m} \\ & m \\ & m \end{aligned}$
$\vec{b}^{-1} \frac{1}{2}$ 			$\begin{aligned} & 8 \\ & \frac{8}{3} \\ & 0 \\ & \hline 0 \end{aligned}$
\bigcirc			
\bigcirc			¢
-			
\bigcirc			
\bigcirc	8		23
B	$\begin{array}{ll} 3 & 3 \\ \text { ò } \\ & \text { d } \\ \hline \end{array}$		$\stackrel{c}{2}$

Typical Performance Characteristics LM193/LM293/Lм393, LM193A/LM293A/LM393A

Typical Performance Characteristics Lm2903

$5 \cdot 44$

ANALOG DEVICES

 AD7510DI/AD7511DI/AD7512DIFEATURES
Overvoltage-Proof: $\pm \mathbf{2 5 V}$
Low R $_{\text {OM }}$: 75Ω
Low Dissipation: 3 mw
TTL/CMOS Direct Interface
Monolithic Dielectrically Isolated CMOS
tandard $\mathbf{1 4} / 16$-pin DIPs and $20-$ Torminal
Surface Mount Packeges

GENERAL DESCRIPTION

The AD7510DI, AD7511DI and AD7512DI are a family of latch-proof dielectrically isolated CMOS switches featuring overvoltage protection up to $\pm 25 \mathrm{~V}$ above the power supplies. These benefits are obtained without sacrificing the low "ON" resistance (75Ω) or low leakage current (500 pA), the main features of an analog switch.
The AD7510DI and AD7511DI consist of four independent SPST analog switches packaged in either a 16 -pin DIP or a 20 terminal surface mount package. They differ only in that the digital control logic is inverted. The AD7512D has two independent SPDT switches packaged in either a 14 -pin DIP or a 20 -terminal surface mount package.
Very low power dissipation, overvoltage protection and TTL/ CMOS direct interfacing are achieved by combining a unique circuit design and a dielectrically isolated CMOS process. Silicon nitride passivation ensures long term stability while monolithic construction provides reliability.

ORDERING INFORMATION ${ }^{1}$

Temperature Range and Package		
0 to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Plastic DIP	Hermetic	Hermetic
AD7510DIJN	AD7510DIJQ	AD7510DISQ
AD7510DIKN	AD7510DIKQ	AD7510DITQ
AD7511DIJN	AD7511DIJQ	AD7511DITQ
AD7511DIKN	AD7511DIKQ	AD7512DISQ
AD7512DIJN	AD7512DIJQ	AD7512DITQ
AD7512DIKN	AD7512DIKQ	
PLCC		LCCC ${ }^{3}$
AD7510DIJP		AD7510DISE
AD7510DIKP		AD7511DISE
AD7511DIJP		AD7511DITE
AD7511DIKP		AD7512DISE
AD7512DIJP		AD7512DITE
AD7512DIKP		

AD7512DIKP
NOTES
order MIL-STD-883, Class B processed parts, add/883B to part number. See Anslog Devices' 1987 Military Product Databook miliary data sheet.
${ }_{2}{ }^{2}$ milucc: Plastic Leaded Chip Carrier
'LCCC: Leadess Ceramic Chip Carrier.

AD7510DVAD7511DU/AD7512D FUNCTIONAL BLOCK DIAGRAMS AND PIN CONFIGURATIONS

DIP

CONTROL LOGIC

- wite:mтtianais AD7511DI: Switch "ON" for Addrese" LOW", **n" AD7512DI: Address "HIGH" makea S1 to Out 1 ind 83 ta

PIN CONFIGURATIONS

CMOS SWITCHES \& MULTIPLEXEAS :-

COMMERCIAL AND INDUSTRIAL VERSIONS (J, K)

PARAMETER	MODEL	version.	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & (\mathrm{~N}, \mathrm{P}, \mathrm{Q}, \mathrm{E}) \end{aligned}$	$\begin{aligned} & 0 \text { © } 0+70^{\circ} \mathrm{C}(\mathrm{~N}, \mathrm{P}) \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathbb{Q}) \end{aligned}$	TEST CONDITIONS
analog switch $\mathrm{R}_{\mathrm{ON}}{ }^{\prime}$ $R_{\mathrm{ON}} \mathrm{ws}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathbf{s}}\right)$	$\begin{aligned} & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \text { J. K } \\ & \text { J. } \mathbf{k} \end{aligned}$	$\begin{aligned} & 75 \Omega \text { typ. } 100 \Omega \text { max } \\ & 200 \text { ryp } \end{aligned}$	178Ω max	$\begin{aligned} & -10 \mathrm{~V}<\mathrm{v}_{\mathrm{D}}<+10 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{DS}}=1.0 \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & \hline \text { All } \\ & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \hline \mathbf{J , k} \\ & \mathbf{J}, \mathbf{k} \\ & \mathrm{J}, \mathrm{~K} \end{aligned}$	$\begin{aligned} & +0.5 x \rho^{\circ} \mathrm{C} \text { typ } \\ & 1 \times \text { ryp } \\ & 0.01 \mathrm{~m} / \mathrm{O}^{\circ} \mathrm{Cyp} \end{aligned}$		$v_{\text {d }}=0,{ }_{\text {bs }}=1.0 \mathrm{~mA}$
	All	J. K	0.5 nA typ, $\mathrm{SnA}_{\text {max }}$	500 nA max	$\begin{aligned} & v_{D}=-10 \mathrm{v}, v_{s}=+10 \mathrm{vand} \\ & v_{D}=+10 \mathrm{~V}, v_{3}=-10 \mathrm{~V} \end{aligned}$
Id (1s)on'	All	J. K	10 nA max		$\begin{aligned} & v_{s}=v_{D}=+10 v \\ & v_{s}=v_{D}=-10 v \end{aligned}$
but ${ }^{\text {' }}$	AD7S12DI	J. K	15 nA max	$1500 n A$ max	
DIGITAL CONTROL					
$\begin{aligned} & \mathbf{v}_{\mathbf{N L L L}}{ }^{1}{ }_{\mathbf{N}} \mathbf{v}^{\prime} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \\ & \text { All } \end{aligned}$	$\begin{aligned} & \text { J. K } \\ & \text { K } \end{aligned}$		0.8 V max 3.0 V min 2.4 V min	.
C_{N}	All	J. K	7pF typ		- $\cdot \cdots$
$\begin{aligned} & \mathbf{S}_{\mathrm{SH}_{1}} \mathbf{b}_{\mathrm{SNL}_{1}} \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { All } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { J,K } \\ & \text { J. } \\ & \hline \end{aligned}$	$10 n A \max$ 10 nA max		$\begin{aligned} & V_{N}=V_{D D} \\ & V_{D N}=0 \end{aligned}$

7-10 CMOS SWITCHES \& MULTIPLEXERS

| | | EXTENDED VERSIONS (S, T) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Typical Performance Characteristics

$R_{O N}$ es a Function of $V_{D}\left(V_{S}\right)$

$R_{O N} \approx$ a Function of $V_{D}\left(V_{S}\right)$

${ }^{\text {tTRANSITION as a Function of Digital Input Voltage }}$

${ }^{\text {t ON }}$, tOFF as a Function of Temperature

${ }^{\text {t}}$ TRANSITION as a Function of Temperature

National Semiconductor

LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage o K With less 1Ω dynamic impedance the device K. Wtes over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.

Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy
The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$

Industrial Blocks

Schematic Diagram

Typical Applications
 -

o $+125^{\circ} \mathrm{C}$ temperature range. The LM335 operates from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO-92 packages.

Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initial accuracy available
- Operates from $400 \mu \mathrm{~A}$ to 5 mA

Less than 1Ω dynamic impedance
Easily calibrated
Wide operating temperature range

- $200^{\circ} \mathrm{C}$ overrange
- Low cost

Absolute Maximum Ratings
Reverse Current
15 mA
Forward Current
10 mA
torage Temperature
TO-46 Package
TO. 92 Package
Specified Operating Temperature Range

	Continuous	Intermittent (Note 2
LM135, LM135A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
LM235, LM235A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM335, LM335A	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$	

Temperature Accuracy LM135/LM235, LM135A/LM235A (Note 1)

PARAMETER	CONDITIONS	LM135A/LM235A			LM135/LM235			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$T^{T} \mathrm{C}=25^{\circ} \mathrm{C}, I_{\text {R }}=1 \mathrm{~mA}$	2.97	2.98	2.99	2.95	2.98	3.01	v
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	3	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$T_{M I N}<T_{C}<T_{M A X}, I_{R}=1 \mathrm{~mA}$		1.3	2.7		2	5	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$T_{M I N}<T_{C}<T_{\text {MAX }}, I_{R}=1 \mathrm{~mA}$		0.3	1		0.5	1.5	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$T_{C}=T_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	0.5		0.3	1	${ }^{\circ} \mathrm{C}$

Temperature Accuraciy Lм335, LM335A (Note 1)

PARAMETER	CONDITIONS	LM335A			LM335			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.95	2.98	3.01	2.92	2.98	3.04	\checkmark
Uncalibrated Temperature Error	$T_{C}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1	3		2	6	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$T_{M I N}<T_{C}<T_{M A X}, I_{R}=1 \mathrm{~mA}$		2	5		4	9	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$	$T_{M I N}<T_{C}<T_{M A X}, I_{R}=1 \mathrm{~mA}$		0.5	1		1	2	${ }^{\circ} \mathrm{C}$
Calibration								
Calibrated Error at Extended	$T_{C}=T_{\text {MAX }}$ (Intermittent) \cdots		2		-	2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1.5		0.3	1.5	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

PARAMETER	CONDITIONS	LM135/LM235 EM135A/LM235A			$\begin{aligned} & \text { LM335 } \\ & \text { LM335A } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Operating Output Voltage Change with Current	$\begin{aligned} & 400 \mu \mathrm{~A}<I_{\mathrm{R}}<5 \mathrm{~mA} \\ & \text { At Constant Temperature } \end{aligned}$		2.5	10		3	14	mV
Dynamic Impedance	$i_{R}=1 \mathrm{~mA}$		0.5			0.8		Ω
Output Voltage Temperature Drift			+10			+10		$m \mathrm{~m} \rho^{\circ} \mathrm{C}$
Time Constant	Still Air		80			80		sec
	$100 \mathrm{ft} / \mathrm{Min}$ Air		10			10		sec
	Stirred Oil		1			1		sec
Time Stability	$\mathrm{T}^{\mathrm{C}} \mathrm{C}=125^{\circ} \mathrm{C}$		0.2			0.2		${ }^{\circ} \mathrm{C} / \mathrm{khr}$

fEATURES

Extremely Tight Matching
Ezcellent Individual Amplifier Parameter
Offset Voltage Match
Oftsel Voltage Match ve Temp.
. 0.18 mV Max Tomp. $\ldots \ldots \ldots . .0 .0^{0.8 \mu} \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max Common-Mode Rejoction Match
Power Supply Rejection Match

- Blas Current Match
- Low Nolse .
- Low Bias Current
- High Common-Mode Input Im
- Excellent Channel Separation

ORDERING INFORMATION \dagger

$T_{A}=25^{\circ} C$ $V_{\text {Os }}$ MAX (mV)	HERMETIC DIP D4-PIN	OPERATING TEMPERATURE RANGE
0.5	OP10AY	MIL
0.5	OP 10EY	COM
0.5	OP10Y	MIL
0.5	OP10CY	COM

Fordevices procossed in total compliance to ML-STD-883, add/883 ather par number. Consult tactory tor 883 data shoet.
Burn-n is availialeo on anm morcal and industrial temperature range parts in CorDIP. plastic DIP, and TO-can packages. For ordering intormation, see

GENERAL DESCRIPTION

The OP-10 series of dual-matched instrumentation opera ional amplifiers consists of two independent monolithic high-performance operational amplifiers in a single 14 -pin dual-in-line package. Tight matching of critical parameters

- provided between channels of the dual operational amplifier.
The excellent specifications of the individual amplifiers and tight matching over temperature enabie construction of high-pertormance instrumentation amplifiers. The designer can achieve the guaranteed specifications because the common package eliminates temperature differentials which occur in designs using separately housed amplifiers.
Matching between channels is provided on all critical parameters including offset voltage, tracking of offset voltage vs. lemperature, noninverting bias currents, and common-mode and power-supply rejection ratios. The individual amplifiers eature extremely low offset voltage. offset voltage drift, low oise voltage, low bias current internal compensation input/output protection.

PIN CONNECTIONS

NOTE:
this is due to inherent symmetry of pin locations of amplifiers A and B.

SIMPLIFIED SCHEMATIC (1/2 OP-10)

Supply Voltage .. \pm. 22 V	
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1).	
Output Short-Circuit Duration................................. Indefinite	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating Temperature Range	
OP-10A, OP-10	
OP-10E, OP-10C $0^{\circ} \mathrm{C}$ to +70	

INDIVIDUAL AMPLIFIER CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V} . T_{A}=25^{\circ} \mathrm{C}$. unless otherwise noted.

parameter	symbol	conditions	MIN	OP-10	max	Min	OP-10	max	UNITS
Input Ottret Voltage	vos		-	0.2	0.5	-	02	05	mv
Long-Term Input Ottset Voltage Stability	$\mathrm{sV}_{\text {os }} /$ Time	, Notes 1.2	-	0.25	1.0	-	0.25	1.0	${ }^{\text {UViMo }}$
Input Oftrset Current	los		-	1.0	2.8	-	1.0	2.8	nA
Input Biss Current	I_{8}		-	± 1	± 3	-	± 1	± 3	nA
Input Noise Voltage	${ }^{\text {nnp.p }}$. Note 20.1 Hz to 10Hz	-	0.35	06	-	0.35	0.6	$\mu V_{\text {P-D }}$
Input Noise Voltage Density	\bullet n	$\begin{aligned} I_{0} & =10 \mathrm{~Hz} \\ \text { (Note 2) } I_{0} & =100 \mathrm{~Hz} \\ 1_{2} & =1000 \mathrm{~Hz} \end{aligned}$	-	$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 130 \\ & 110 \end{aligned}$	-	$\begin{aligned} & 10.3 \\ & 10.0 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 180 \\ & 130 \\ & 110 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	Inp.p	(Note 2) 0.1 Hz to 10 Hz	-	14	30	-	14	30	$\mathrm{pA}_{\text {p-p }}$
Input Noise Current Density	in	$\begin{aligned} 1_{0} & =10 \mathrm{~Hz} \\ \text { (Note } 211_{0} & =100 \mathrm{~Hz} \\ 1_{0} & =1000 \mathrm{~Hz} \end{aligned}$	-	$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \end{aligned}$	-	$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \end{aligned}$	$\mathrm{PA} / \sqrt{\mathrm{Hz}}$
Input Resistance -Differential-Mode	$\mathrm{f}_{\text {IN }}$	(Note 3,	20	60	-	20	60	-	ma
Input Resistance -Common-Mode	$\mathrm{A}_{\text {INCM }}$		-	200	-	-	200	-	Gn
input Vottage Range	IVR		± 13	± 14	-	± 13	± 14	-	\checkmark
Common-Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	110	126	-	110	126	-	${ }^{88}$
Power Supply Rejection Ratio	PSRR	$\mathrm{V}_{\mathrm{s}}= \pm 3 \mathrm{~V} 10 \pm 18 \mathrm{~V}$	-	4	10	-	4	10	$\mu \mathrm{V} / \mathrm{N}$
$\begin{aligned} & \text { Large-Signal Voltage } \\ & \text { Gain } \end{aligned}$	Avo	$\begin{aligned} & R_{L} \geq 2 \mathrm{knI}, V_{0}=10 \mathrm{~V} \\ & R_{L} \geq 50002, V_{0}= \pm 0.5 \mathrm{~V} . \\ & v_{S}= \pm 3 \mathrm{~V} \text {. Note } 3 . \end{aligned}$	200 150	500 500	-	200 150	500 500	-	v/mv
Output Voltage Swing	v_{0}	$\begin{aligned} & R_{L} \geq 10 \mathrm{kI} \Omega \\ & R_{L} \geq 2 \mathrm{kn} \\ & R_{L} \geq 1 \mathrm{kn} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 120 \\ & \pm 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 13.0 \\ & \pm 12.8 \\ & \pm 12.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \pm 125 \\ & =120 \\ & =105 \\ & \hline 10 \end{aligned}$	$\begin{array}{r} \pm 130 \\ =128 \\ =120 \\ \hline \end{array}$	-	v
Slew Rate	SR	$\mathrm{A}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	-	0.17	-	-	0.17	-	V/ $/{ }^{3}$
Closed-Loop Bandwidth	Bw	$A_{\text {vcl }}=+10$	-	0.6	-	-	0.6	-	MHz
Open-Loop Output Resistance	R_{0}	$V_{0}=0.10=0$	-	60	-	-	60	-	n
Power Consumption	$P_{\text {d }}$	$\begin{aligned} & \text { Each Amplitier } \\ & V_{\mathrm{s}}= \pm 3 \mathrm{~V} \end{aligned}$	\bar{Z}	98	120 6	-	90	$\begin{gathered} 120 \\ 6 \end{gathered}$	mw
Ottret Adjustment Range		$\mathrm{R}_{\mathrm{p}}=20 \mathrm{kn}$	-	± 4	-	-	± 4	-	mv
Input Capacitance	$\mathrm{C}_{\text {IN }}$		-	8	-	-	8	-	pF
1. Long-Term Input Ottiset Voltage Stability refers to the averaged trend line of V_{0} va. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in $\mathrm{v}_{\text {os }}$ during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$ - reter to typical pertormance curves			$\begin{aligned} & \text { 2. Sample } \\ & \text { 3. Guarant } \end{aligned}$	tested. oed by	asign.				

5.0 APPENDIX

List of Relevant NRAO Technical Reports and Technical Memoranda.
VLBA Technical Report No. 1, Low-Noise, 8.4 GHz Cryogenic GASFET Front-End, S. Weinreb, H. Dill and R. Harris, August 29, 1984.

Electronics Division Internal Report No. 204, Temperature Readout Unit for Lake Shore Cryotronics Silicon Diode Sensors (DT-500 Series), Michael Balister, May 1980.

Calibration of the vacuum sensors on VLBA and JPL Front-Ends, Harry Dill, Jan 26, 1987. (This memorandum follows this list.)

VLBA Technical Report No. 22, FRONT-END CONTROL MODULE, Module Type F117, Paul Lilie, Larry May and David Weber, January 1993.

VLA Technical Report No. 68, FRONT-END CONTROL INTERFACE, Module Type F14, David Weber, 5/15/1992.

NOV-14-94 MON 11:20
NRAO VLA SITE

- ㄴ.

FAX NO. 5057724243
P. 01

NATIONAL RADIO ASTROI

Socorra, Naw Maxico

January 26, 1987

TO:
VLEA Front End Maintenance Fersonnol
FROM: Harry Dill
SUEJECT: Calibration of the vacuum sensors on ULBA and JPL front ends.

TOQLS FERD: Small flat bladed serew driver.
The vacuum senmor circuita in the field have a tendency to drift upward over time. The cause or thin is pgafibly contamination of the thermocouple. The extent of this probiem needs to bo determined, and can be dorie by keEFirig accurate fiold ropair recorda.

Two cirguitw enist for sensifg vacuum. Vo-dewar vaculum arid vppump vacuum. These fircults are en the sensor card, which is tho gexond from the top in the card\% e三ge. Each circult has t.wo potantiometers for settirig a zeris foint and an aimomphere point. Thase two set poirits are crupiar together so that changing one, will alter the other slightly.

Qutlined hare is a procedure for calibration of the vacuum sensors in the field. If these do not work, than the unit should be returned to maintemance. When ever this field calibration iy performed a proper maintenance report form should be filad. Thi m is the only way that data on this problem can be accumulated.

PROCEDURE.

1) The $V p$ and Vd thermocouplo gauges ori the front and will De uxed as the referance paints for ATM and ZERO. For this to work the front end must be cold, T15<25K.
 readout pangl and fecord them on the maintenance gheat.
31. To ensure that the solenoid or the refrigerator will not be digturbed during the calitoration process, the $A C$ power plugy connected to $J-1$, should be connected directiy to the refrigerator power receptacla. rhis removes power to the solmaid, and bypassax the control çard fur powaring the refrigerator.
4)

Connect the $V x$ plug to the Vd tharmocoupla. Tha reading for $V x$ shoula bar D.D. Adjust X ZERO to bring this

8) Recheck the ATM reading and zERD reading by rmpaating mtopirn andty. var.
7) Feroniriect tio vacuum line. reconnect. plugs V_{p} and Vd properiyy Replace the card cage cover and reconnoct the AC power to J-1 and the refrigerator AC powor to itself.

NOTES
a)

A reading of Vd 3 . fan will activate a pump raqumat. This will be activated at all times unlose the front end is commanded to the QFF mode. If the front end is ismuing a pump requpst and $i s$ cold and runining properly, tion this indicates that the vacuum serisinr has drified upward.

[^0]: ${ }^{1}$ Page 37, VLBA TECHNICAL REPORT NO. 1, August 29, 1984

