TECHNICAL REPORT STANDARD TITLE PAGE

16. Abstract

Improvements of GIS Software to perform automated routing of overweight/oversize vehicles for the Texas Department of Transportation are reported. Originally developed in Texas Department of Transportation (TxDOT) Research Study $0-1482$, the software was incorporated with functional improvements to consider vehicle turn penalties, to obtain maximal-capacity routes and to speed up the computation process in determining routes by network partitioning. Also included in this report are (a) the description of the procedure to update the GIS information due to periodic changes in the BRINSAP database, and the geographic features of the On-system Highways of Texas as documented in digitized county maps; (b) a summary of observations made during the correction and verification of the bridge locations for all On-system bridges in Texas; and (c) installation and user's guides manual of the routing software. The software is intended to be used by the Motor Carrier Division (MCD) and the Design Division of TxDOT for the evaluation of bridges and clearances along routes of superheavy-vehicles.

Overweight/Oversize Vehi Routing, GIS, Network Overloads.	Automated18. Dlstributio No restric through th Port Royal	18. Distribution Statement No restrictions. This document is available to the public through the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161	
19. Security Classir. (of this report)	20. Security Classif. (ofthis page)	21. No. of Pages	22. Price
Unclassified	Unclassified	115	

Improvements on Automated Routing of Overweight/Oversize Vehicles

by
Roberto A. Osegueda, Ph.D., P.E.
Octavio Melchor-Lucero
Cesar J. Carrasco
The University of Texas at El Paso
and
Alberto Garcia Diaz, Ph.D., P.E.
Sung-Ho Chang
Texas Transportation Institute
Texas A\&M University System
Research Project 0-1823
AUTOMATED ROUTING OF OVERWEIGHT VEHICLES PHASE II
Conducted for
Texas Department of Transportation in cooperation with
Federal Highway Administration
The Center for Highway Materials Research
The University of Texas at El Paso
El Paso, TX 79968-0516
Research Report 0-1823-1
May 2000

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

NOT INTENDED FOR CONSTRUCTION, BIDDING, OR PERMIT PURPOSES

Roberto A. Osegueda, Ph.D., P.E.

Octavio Melchor-Lucero
Cesar J. Carrasco
Alberto Garcia-Diaz, Ph.D., P.E.
Sung-Ho Chang

ACKNOWLEDGEMENTS

The authors would like to give their sincere appreciation to several people within the TxDOT Organization, including Robert Wilson, John Holt, Mike Lynch, Will Watson, Lawrence Smith, Curtis Wagner and Doris Perkins who have demonstrated utmost commitment to the success of this project.

The research assistants on this project have consisted of Matthew Hotteling, Sonia Perez, Carla Verrando, Flor Sanchez, Adalgisa Lopez, Heidi Sarabia, Irene Valenzuela and Sonia Jurado. Their patience in the laborious tasks for this project is greatly acknowledged.

Abstract

Improvements on the GIS Software to perform automated routing of overweight/oversize vehicles for the Texas Department of Transportation are reported. Originally developed for Texas Department of Transportation (TxDOT) in Research Study 0-1482, the software was incorporated with functional improvements to consider vehicle turn penalties, to obtain maximalcapacity routes and to speed up the computation process in determining routes by network partitioning. Also included in this report are (a) the description of the procedure to update the GIS information due to periodic changes in the BRINSAP database and the geographic features of the On-system Highways of Texas as documented in digitized county maps; (b) a summary of observations made during the correction and verification of the bridge locations for all Onsystem bridges in Texas; and (c) installation and user's guides manual of the routing software. The software is intended to be used by the Motor Carrier Division (MCD) and the Design Division of TxDOT for the evaluation of bridges and clearances along routes of superheavyvehicles.

EXECUTIVE SUMMARY

The objective of this project was to develop an automatic procedure for evaluating the adequacy of bridges along routes for overweight/oversize vehicles. The procedure developed uses a network representation of the On-system roads to identify inadequate bridges in the vehicle's route. The network model is included within a Geographic Information System operating in the PC environment. The model was based on the On-system roadways and simulates the travel of vehicles within the On-system highways only. The system automatically finds a shortest path between an origin and a destination disabling segments with inadequate bridges due to capacity or clearances for a given overload/oversize vehicle.

The overweight vehicle is first analyzed according to the Texas Administrative Code requirements. If the vehicle fails to meet these requirements, then the determination of a route is performed evaluating the bridges using the Bridge Load Formulae and the rating and description parameters included in BRINSAP.

This report includes:
(a) A summary of the work accomplished by correcting for the bridge locations of all the bridges located on the On-system highways for the entire State of Texas.
(b) A description of improvements incorporated into the GIS routing program to consider turnpenalty information (the inability of large trucks to make sharp turns), to determine maximalcapacity routes, and to accelerate the computation time of determining routes.
(c) A discussion of update issues of BRINSAP and TxDOT County Urban Maps.
(d) A description of procedures to update the GIS information in the routing software due to the periodic releases on new versions of BRINSAP and County Urban files by TxDOT.
(e) An installation manual and a User's Guide for the Routing Software.

TABLE OF CONTENTS

Page
CHAPTER 1-INTRODUCTION
1.1 Introduction 1
1.2 Current Permitting Procedure 1
1.3 Summary of Projects 1266 and 1443 1
1.4 Summary of Project 1482 2
1.5 Objective 3
1.6 Scope of Report 4
CHAPTER 2- CORRECTION OF BRIDGE LOCATIONS
2.1 Introduction 5
2.2 BRINSAP Coordinate Problems and Information Available 5
2.3 Procedure to Correct Bridge Locations. 6
CHAPTER 3- IMPROVEMENTS IN THE ROUTING MODEL
3.1 General 33
3.2 Description of the Overweight/Oversize Vehicle Routing Macro 33
3.3 Maximal-Capacity Route Procedure 35
3.4 Turn-Penalty Procedure 35
3.5 Network Partitioning Procedure 37
3.6 Summary 41
CHAPTER 4- PROCEDURES TO UPDATE GIS ROUTING FILES
4.1 Background 43
4.2 Typical BRINSAP Changes 43
4.3 Typical Changes in Road Maps (Urban files) and ROADS Database 44
4.4 GIS Files Update Procedure 44
4.5 Description and Preparation of Files Required for Updating 48
4.5.1 BRINSAP Files 48
4.5.2 Existing County GIS Files. 49
4.5.3 TxDOT's County Urban Maps 49
4.6 Updating Tasks of County GIS Files 49
4.6.1 Task One: Backup Existing County GIS Files and Export Existing County BRINSAP 50
4.6.2 Task Two: Identification of New and Modified Links in the County Urban Base Maps 50
4.6.3 Task Three: Incorporate New Links to Road Network 51
4.6.4 Task Four: Comparison of New and Previous BRINSAP 52
4.6.5 Task Five: Update Relational Database 57
Page
4.7 Merge Updated GIS County Files 60
4.8 Problems With the Update Process 61
4.8.1 Problems Associated With ROADS Database 61
4.8.2 Problems Associated With the Urban Maps 64
4.8.3 Problems Associated With BRINSAP 65
CHAPTER 5- SUMMARY AND FUTURE WORK
5.1 Summary 71
5.2 Future Work 72
REFERENCES 73
APPENDIX A - OVERWEIGHT/OVERSIZE ROUTING SOFTWARE INSTALLATION GUIDE 74
APPENDIX B - OVERWEIGHT/OVERSIZE VEHICLE ROUTING PROGRAM USER'S GUIDE 80
B. 1 Summary 80
B. 2 Software Overview 80
B. 3 Opening and Running the Routing Program 81
B. 4 Reading a Network File and Selecting an Analysis Algorithm 81
B. 5 Vehicle Information 82
B. 6 Selection of Path Points 84
B. 7 Determination of Route 85
APPENDIX C - OVR MACRO ROUTING REPORT ILLUSTRATING APPLICATIONS DISCUSSED IN CHAPTER 3 89
APPENDIX D - COMPARISON REPORT OF OLD BRINSAP WITH NEW BRINSAP FOR HOUSTON DISTRICT 92
Brazoria County 93
Fort Bend County 94
Galveston County 95
Harris County 96
Montgomery County 106
Waller County 107

LIST OF FIGURES

Figure Page
2.1 Correction of BRINSAP Coordinates in a Highway Interchange 6
3.1 Overall Routing Procedure 34
3.2 Application of Maximal Capacity Algorithm 36
3.3 Application of Shortest-Path Algorithm using Turn-Penalty Information 38
3.4 Application of Shortest-Path Algorithm using Network Partitioning 40
4.1 General Flowchart for Update Process of the GIS Files for Vehicle Routing 46
4.2 Detailed Flowchart for Update Process of the GIS Files for Vehicle Routing 47
4.3 Case of GIS ROAD Network Updated with New Links 51
4.4 CompareBRG Program. Main Components 53
4.5 CompareBRG Report Format. Report for Fort Bend County 56
4.6 CompareB2R Program. Main Components 58
4.7 Road Network Update Process Including ROADS Database 63
4.8 Case of Repeated Links Identified between Previous and Latest Urban Maps 64

LIST OF TABLES

Table Page
2.1 BRINSAP Observation Summaries for District 01 - Paris 8
2.2 BRINSAP Observation Summaries for District 02 - Fort Worth 9
2.3 BRINSAP Observation Summaries for District 03 - Wichita Falls 10
2.4 BRINSAP Observation Summaries for District 04 - Amarillo. 11
2.5 BRINSAP Observation Summaries for District 05 - Lubbock 12
2.6 BRINSAP Observation Summaries for District 06 - Odessa 13
2.7 BRINSAP Observation Summaries for District 07 - San Angelo 14
2.8 BRINSAP Observation Summaries for District 08 - Abilene 15
2.9 BRINSAP Observation Summaries for District 09 - Waco 16
2.10 BRINSAP Observation Summaries for District 10 - Tyler 17
2.11 BRINSAP Observation Summaries for District 11 - Lufkin 18
2.12 BRINSAP Observation Summaries for District 12 - Houston 19
2.13 BRINSAP Observation Summaries for District 13 - Yoakum 20
2.14 BRINSAP Observation Summaries for District 14 - Austin 21
2.15 BRINSAP Observation Summaries for District 15 - San Antonio 22
2.16 BRINSAP Observation Summaries for District 16 - Corpus Christi 23
2.17 BRINSAP Observation Summaries for District 17 - Bryan 24
2.18 BRINSAP Observation Summaries for District 18 - Dallas 25
2.19 BRINSAP Observation Summaries for District 19 - Atlanta 26
2.20 BRINSAP Observation Summaries for District 20 - Beaumont 27
2.21 BRINSAP Observation Summaries for District 21 - Pharr 28
2.22 BRINSAP Observation Summaries for District 22 - Laredo 29
2.23 BRINSAP Observation Summaries for District 23 - Brownwood 30
2.24 BRINSAP Observation Summaries for District 24 - El Paso 31
2.25 BRINSAP Observation Summaries for District 25 - Childress 32
3.1 Computational Performance of Maximal-Capacity Algorithm 41
4.1 Weighted Optimization Table to Find Replaced/Rebuilt Bridges by Comparing the BRINSAP List of Removed Bridges to the List of Added Bridges 67
4.2 Weighted Optimization Table to Find Bridges Transferred from On- to Off-System and Vice Versa 70

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Motor Carrier Division (MCD) of the Texas Department of Transportation (TxDOT) is in charge of issuing permits for overload and overweight vehicles for the state highways under its jurisdiction. These are referred to as the On-system highways. With the continuing increase in commerce and trade in Texas, the MCD continues to experience increases in the number of permits issued for oversize and overweight vehicles.

Some of the permit requests are for superheavy loads that is vehicles in excess of 300,000 pounds. The customary procedure for processing these requests is time consuming and costly. The process consists of (a) manually establishing a tentative route, (b) identifying all the bridges on the route, (c) obtain the information of the bridges to be crossed, and (d) analyzing for the structural adequacy of the bridge for the superheavy vehicle. Alternate routes are investigated, as some bridge structures are found inadequate. As an effort of reducing the time to process the permits, it is becoming customary to re-use portions of routes already analyzed for greater loads; an approach, which may create future problems due to repeated overloads.

1.2 Current Permitting Procedure

The current method MCD utilized for the routing of overweight/oversize vehicles is governed by the Texas Administrative Code [1] (TAC). These regulations limit the loads based on a gross axle weight criterion (which depends on the number of axles per axle group) and a tire load criterion of 650 lb per inch in of tire width. If either criterion is exceeded, MCD uses another method based on equivalent distributed loads to explore the adequacy of the vehicle. This method allows consideration of factors that provide greater distribution of the axle group's weight. The axle group weights are converted to an equivalent distributed load that is compared to a maximum value allowed. If the vehicle still fails to meet the criteria above, TxDOT's Design Division performs an analysis of the bridges along the vehicle's route to determine if a permit may still be issued. The significant drawback of analyzing each bridge is that the engineering efforts are time consuming and costly.

1.3 Summary of Projects 1266 and 1443

TxDOT sponsored Projects 1266 and 1443 to develop general formulae and procedures for issuing overload permits and to demonstrate the feasibility of an automated routing procedure. In project 1266 [2], formulae for limiting group weights passing over H15, H20 and HS20 simple span bridges were developed, and the feasibility of an automatic routing procedure through the use of network models [3,4$]$ was demonstrated.

As a continuation, Project 1443 defined permit bridge load formulae applicable to bridges designed for the AASHTO H-type and HS-type axle configurations [5]. These efforts included
formulae for bridges that may have been designed by or reduced to designations other than H15, H20, HS-15 and HS-20 (i.e. HX or HSX). Two types of formulae were derived, a general formula, function of the vehicle configuration, and a bridge-specific formula that is additionally function of the span length [5]. These formulae were suitable for implementation in an automated route evaluation system.

1.4 Summary of Project 1482

In project 1482 [6,7], the work focused on research and procedures towards building an operational system to route overweight and oversize vehicles on the system roads of Texas (Onsystem highways). The system was developed using Geographic Information Systems (GIS) technology, implementing the current TAC procedures and overweight load formulae developed in project 1443.

To develop such system, a survey was required to determine and gather the available information needed for the GIS. The survey focused on available digitized maps, road databases, bridge databases and GIS software. The following decisions were made in project 1482:

1) Use the TxDOT official digitized maps available from the Graphic Office of the Planning Division. The main reason for this selection was because these drawings are the most complete drawings available, containing the geometric characteristics of overpasses, underpasses, interchanges and exit ramps, needed to perform a comprehensive routing through the On-system roads.
2) Use the TransCAD GIS software. This decision was primarily made because this particular software is specifically designed for Transportation applications. In addition, the software is easy to use and flexible for its customization to particular applications.
3) Use TxDOT's roads database attached to the official digitized maps.
4) Use TxDOT's Bride Inventory Inspection and Appraisal Program (BRINSAP) database. BRINSAP is the only bridge database available.

Two critical elements for the success of project 1482 were (a) to accurately account for the correct bridge at its correct location and (b) to have an accurate network of the roads along with the directional flow information.

The procedure utilized for the identification of the correct bridge location was as follows. A GIS map showing points at the BRINSAP longitude and latitude coordinates of the bridges was created. This map was superimposed on another map containing the On-system roads and bridge symbols as defined in the TxDOT's urban files. The superposition allowed for the manual identification of the correct bridge location, each bridge at a time. The BRINSAP bridge locations were verified and corrected based on the location information in the BRINSAP database, the bridge symbol locations of the urban files and the bridge locations indicated in printed maps for the corresponding county.

For the creation of an accurate GIS roads network, a process was developed to convert TxDOT drawings (i.e., urban files) to GIS maps and is described in details in Reference [6]. In summary, this was accomplished by exporting the Intergraph urban files with their corresponding roads database to a TransCAD format and writing and implementing several macro program within TransCAD to facilitate and speed-up the process of converting the "drawings" of the roads into a network of highways suitable for routing. The macros performed tasks such as deleting duplicate lines, correcting connection problems (overshoots and undershoots), transferring database information from the centerlines to the actual road links, definition of overpass and underpasses and the assignment of traffic flow directions for one-way and divided roads.

Once these two critical elements were addressed, a relational database was created between the roads and the BRNSAP databases to automatically identify bridges as functions of routes of vehicles.

Reference [6] also documents the development of a macro that utilizes the vehicle, bridge information and clearance information to route overweight loads using the shortest path and bypassing inadequate bridges and locations of restricted clearances. The procedure uses a network representation of a system of roads and bridges to identify feasible routes. In addition, the routing methodology was consistent with the Texas Administrative Code [1] provisions for legal loads. The approach uses bridge load formulae (BLF) developed by Keating, Litchfield and Zhou [5]. The system automatically finds a shortest path between an origin and a destination disabling segments with inadequate bridges due to capacity or clearances for a given overload/oversize vehicle.

The activities of project 1482 also consisted of (a) enhancing the operations of the routing macro, (b) improving the computational efficiency of the macro in determining feasible routes, (c) expanding the coverage of bridge location corrections, and (d) illustrating bridge management applications of the GIS system [6,7]. The modifications to enhance the routing software included the avoidance of U-turns, the computational procedure to evaluate bridges and sorting of bridges based on rating and the longest span length. Project 1482 culminated with a routing package for overweight/oversize vehicles operational for TxDOT's Houston District.

1.5 Objective

The objective of this document is to report on the progress of the activities undertaken in Study $0-1823$ during its first year, towards the development of an automated routing system. The main goals of Project $0-1823$ are to correct bridge locations for the entire state of Texas, to enhance the procedure performed by automatic routing macro developed in Project 1482, and to develop procedures for updating the GIS information related to the routing software.

1.6 Scope of Report

The following tasks define the scope of Project 0-1823:
(1) Modify the overweight routing program to make it more "operational" for routing purposes in the MCD.
(2) Correct for bridge locations for all districts of the State.
(3) Modify the routing macro to allow for the consideration of penalty turns, network partitioning, and routes with maximum capacity (defined as safety margins).
(4) Incorporate procedures to upgrade TxDOT databases such as BRINSAP.
(5) Investigate exporting the routing software program in an ARC/Info ARC/view platform.
(6) Convert routing software program to an ARC/Info ARC/view platform for Houston District.

Task (1) has been accomplished by making modifications of the software according to user's input. Personnel of the MCD of TxDOT are currently using the routing software.

Chapter 2 of this report includes a summary of the work accomplished under Task (2), completed for all 25 Districts of the State. Chapter 3 presents a summary of the work accomplished under Task (3). Chapter 4 is based on the work completed in Task (4).

Task (5) consisting of exploring the possibility of exporting the software from TransCAD to Arc/Info has been completed. Most critical TransCAD commands that the routing software utilizes have a similar command in the ARC/View software. Details of this task will be included in the final report.

Task (6) is the subject of the second year of Project 0-1823 and is not discussed in this report.

CHAPTER 2

CORRECTION OF BRIDGE LOCATIONS

2.1 Introduction

On of the most critical elements of the functionality of the routing model developed in this research is to have the correct bridge location properly placed on the correct link of the highway network. The BRINSAP database includes geographic longitude and latitude coordinates that have been entered into the database without a quality control procedure. As a result, some of the coordinates are incorrect. In addition, the coordinates do not have the accuracy needed to match the resolution of the GIS maps created for the routing software. For this reason, the proper location for each bridge in the State of Texas was corrected or verified. This Chapter presents a summary of observations made during the correction of the location of the bridges.

2.2 BRINSAP Coordinates Problems and Information Available

The BRINSAP database has been entered manually over the years. Each bridge has geographic coordinates in a degree-minute format accurate to one-tenth of a minute. However, the method used to determine the original BRINSAP coordinates was a manual interpolation using reference points in printed maps. The accuracy of the coordinates obtained with this method is nowhere near the one that can be obtained today with GPS technology. In contrast, TxDOT developed the County Urban Maps by digitizing USGS Satellite Quad images that are very accurate. In principle, if a bridge is properly located on the County Urban Maps, then accurate geographic coordinates are simultaneously obtained.

The information that was available to identify the correct geographic coordinates of the bridges was the following:
(a) Longitude and latitude coordinates in BRINSAP.
(b) Description of facility carried over, feature crossed, description of location and direction of travel inside BRINSAP.
(c) Bridge symbols indicating the presence of bridges on the road in the County Urban Maps.
(d) Printed maps for most of the Texas Districts indicating the bridge identification at the correct location.
(e) Printed County maps that contain the names of all On-system and Off-system roads along with other geographic features such as rivers, railroad crossings, creeks, etc.

In addition to inaccurate coordinates, some of the bridges in BRINSAP had missing and/or mistyped coordinates. Furthermore, some of BRINSAP's descriptions of location, facility carried over, and the feature crossed were incorrect for some bridges. The County Maps had their problem also; the maps showed bridge symbols at locations where there was no bridge, and for some locations, the bridge symbols were missing.

2.3 Procedure to Correct Bridge Locations

An effective procedure to correct the bridge longitude/latitude coordinates stored in BRINSAP was developed. The geographic coordinates coded in BRINSAP were used to create points on the GIS system indicating the potential location of the bridges. The On-System roads and the bridge symbols included in the geographically accurate Urban Maps were also imported to the GIS system. By overlaying the BRINSAP points and the roads and bridge symbols, the inaccuracies in the BRINSAP coordinates were obvious because the points and the symbols usually did not coincide (see Figure 2.1).

Figure 2.1 Correction of BRINSAP Coordinates in a Highway Interchange.

The following procedure for correcting the coordinates was used:

1) Every bridge in a county was considered one at a time.
2) Its location was first checked in printed maps that were provided by TxDOT's Design Division.
3) The BRINSAP information that provides the description and location of the bridge, such as feature crossed, facility carried over, location description, and etc. was revised.
4) The correct location was then found in the GIS maps, and the point corresponding to the bridge was moved to its correct location, automatically providing accurate longitude/latitude coordinates that were updated. For most bridges, the above procedure was sufficient to correctly locate them. However, for those bridges with missing bridge symbols, without coordinates, or in complicated interchanges, individual attention was required in the localization process. This process was very safe, however, it was time consuming.

During the process undertaken for correcting bridge locations, general observations on the bridge locations were meticulously documented. The observations were compiled in files containing
information pertaining to the identification and location of each bridge. The observation reports include the bridge identification (in ascending order), the BRINSAP Structure number, the check status, observations or comments regarding its location status, feature carried over, location description, original longitude and latitude coordinates and the updated or modified coordinates. Appendices A through F of Reference [6] contain the observation reports for the Houston District. The observation reports of Austin, Beaumont, Bryan, Dallas, Lufkin, Waco and Yoakum Districts can be found in Appendices A through G of Reference [7].

As of the end of fiscal year 1997-1998 the rest of the Districts in the State of Texas have been completed. However, due to extensive amount of information, the observation reports are not included in this report. Instead, a summary of the observation reports is listed in Tables 2.1 through 2.25 , corresponding to all 25 Districts of the State.

The completion of this task demonstrated two major benefits for TxDOT:

1) A link was created between the BRINSAP data and the bridge locations on the base maps. This was performed by a clever utilization of the BRINSAP latitude / longitude and other BRINSAP data without the use of GPS receivers, and
2) By correcting BRINSAP longitude/latitude coordinates and merging BRINSAP to a GIS system, capabilities were developed to quickly display bridges as function of their attributes.

Table 2.1 BRINSAP Observation Summaries for District 01 - Paris

	Delta	Fannin	Franklin	Grayson	Hopkins	Hunt	Lamar	Rains	Red River	TOTAL
Types of Observations:	Errors									
Originally near another location	5	7		13	11	13	3	2	3	57
Originally outside of the boundary	3				9	3			2	17
Uncertain direction				53		65				118
Uncertain location							2		1	3
Uncertain overpass				27	10					37
Uncertain underpass				3						3
Missing bridge	6					11	6	1	1	25
Missing boulevard/road						1				1
Two structures have the same DGN symbol										0
Wrong reference to location distance (F9)										0
Reference F9 location not on map										0
Moved to uncertain position										0
Cannot measure from referenced FM										0
Either wrong feature crossed or carry over				10						10
Wrong reference F6 1 FEATXE										0
Unspecified location	2		2		2	16		4	1	27
Unspecified underpass		8				8				16
Unspecified overpass		2				14				16
Unspecified up/op										0
Unspecified direction	2									2
Assumption neded for correct location										0
Reference F9 distance off or junction incorrect										0
Inverted Heading										3
TOTAL	18	17	2	106	32	131	11	7	11	335
TOTAL NUM. OF RECORDS W/ERROR	17	15	2	103	32	112	11	7	11	310
TOTAL BRINSAP RECORDS	64	156	51	257	172	287	178	34	119	1318
\% ERROR	27\%	10\%	4\%	40\%	19\%	39\%	6\%	21\%	9\%	24\%

Table 2.2 BRINSAP Observation Summaries for District 02 - Forth Worth

	Erath	Hood	Jack	Johnson	Palo Pinto	Parker	Somervell	Tarrant	Wise	TOTAL
Types of Observations:	Errors									
Originally near another location	3	5	4	12		7		154	14	199
Originally out of county boundary	6	1	2	14	3	2	1	208	1	238
Uncertain direction								4		4
Uncertain location								4		4
Uncertain overpass										3
Uncertain underpass								2		2
Missing bridge	1		1	29	5	13		245	5	299
Missing boulevard/road				5		1		8	1	15
Two structures have the same DGN symbol										0
Wrong reference to location distance (F9)				12					1	13
Reference F9 location not on map										0
Moved to uncertain position										0
Cannot measure from referenced FM										0
Either wrong feature crossed or carry over										0
Wrong reference F6 1 FEATXE										0
Unspecified location								3	1	4
Unspecified underpass					3			19		22
Unspecified overpass								2		2
Unspecified up/op										0
Unspecified direction		2								2
Assumption neded for correct location										0
Reference F9 distance off or junction incorrect		3								3
Inverted Heading					1			6		7
One structure has two DGN symbols										0
Incorrect location description										0
Unknown location description										0
TOTAL	10	11	7	72	12	23	1	658	23	817
TOTAL NUM. OF RECORDS W/ERROR	10	10	7	55	11	20	1	438	23	575
TOTAL BRINSAP RECORDS	110	55	76	191	180	153	23	1187	126	2101
\% ERROR	9\%	18\%	9\%	29\%	6\%	13\%	4\%	37\%	18\%	27\%

Table 2.3 BRINSAP Observation Summaries for District 03 - Wichita Falls

	Archer	Baylor	Clay	Cooke	Montague	Throckmorton	Wichita	Wilbarger	Young	TOTAL
Types of Observations:	Errors									
Originally near another location			4	4	3		15	8	1	35
Originally outside of the boundary	1	1	1	10	9		25	3		50
Uncertain direction			7	4			14	6		31
Uncertain location										0
Uncertain overpass										0
Uncertain underpass							2			2
Missing bridge	2	1	4	9	4	2	37	3	7	69
Missing boulevard/road				6	3		4			13
Two structures have the same DGN symbol										0
Wrong reference to location distance (F9)										0
Reference F9 location not on map										0
Moved to uncertain position										0
Cannot measure from referenced FM										0
Either wrong feature crossed or carry over										0
Wrong reference F6 1 FEATXE										0
Unspecified location	7	5	6	6		2			5	31
Unspecified underpass							23			23
Unspecified overpass							3			3
Unspecified up/op									2	2
Unspecified direction					8					8
Assumption neded for correct location										0
Incorrect location description										0
Unknown location description										0
Incomplete bridge symbol										0
TOTAL	10	7	22	39	27	4	123	20	15	267
TOTAL NUM. OF RECORDS W/ERROR	10	7	22	27	25	4	85	20	14	214
TOTAL BRINSAP RECORDS	83	39	122	140	104	45	304	119	84	1040
\% ERROR	12\%	18\%	18\%	19\%	24\%	9\%	28\%	17\%	17\%	21\%

Table 2.4 BRINSAP Observation Summaries for District 04 - Amarillo

	Armintrag	Carson	Milam	Draf Snith	Gray	Fansford	[marticy	Hemphil	Hetinson	lipsomb	More	Ochiltre	Odram	Ptoter	Pankil]	Poberts	Shermm	TOLA
Types of Observations	Erros	Errors	Erras	Erum	Erme	Einos	Ernos	Errors	Frros	Erros	Erras	Firus	Errow	Erors	Etres	Errors	Erus	Erras
Ciginaly near anoter loction			1	2					5			1		36	3	1		49
Oignally ouside of the bandry					7	1			2		1			4	5			20
Lhartaindiretion					4			3			7		6	23	14		2	53
Unertainloctia	1			1		2					1			5	1	1		12
Unatain orepras																		0
Unetainundapas																		0
Uhartainupod														1				0
Mssingtidg		36	3	6	12	3	1		5				3	14	4	1		78
Mising budevadima																		0
Twostrutures have thesame DONsymba																		0
Wiang reference to loction distance((F)																		0
Refrence F9 loction not onmm																		0
Mbved touncertain position																		0
Carnot measre fiomreferaced PM																		0
Efter wug futurecrosed or cary ove																		0
Whag nefernce F6 1 FEATX																		0
Unspecified loction	2	1			1					1					2			7
Uspecifiedunderpes																		0
Unspecified overpas																		0
Unspecifiod upion	1																	1
Uxpecified dinection														2				2
Assumption neded for conect locatio																		0
Refremoe P9 distance off or junction inconay																		0
Inveldilading						1			3									4
Onestruturehes two Dansyutot																		0
TOLA	4	27	4	9	24	7	1	3	15	1	9	1	9	85	29	3	2	232
TOTALNM OFRTCORDSWERXCA	4	27	3	8	19	6	1	3	19	1	9	1	9	7	29	3	2	219
TOTALEINSAPRGCOKME	11	36	2	25	62	30	16	30	39	37	23	24	53	186	86	21	25	725
\%	36\%	7\%\%	14\%	32\%	31\%	20\%	6\%	10\%	49%	3\%	37\%	4\%	17\%	40\%	34\%	14\%	8\%	30%

Table 2.5 BRINSAP Observation Summaries for District 05 - Lubbock

	Hayley	Castro	Crosby	Daxson	Flogd	Carra	Hite	Hedey	Lamb	Lubbock	1 yrm	Pamer	Suisher	Teny	Coctran	Gains	Youlam	TOTAL
Types of Observatione:	Errors	Ermors	Emors	Enurs	Ermors	Emas	Errors	Eirors	Emors	Errors	Erors	Enus	Etros	Erous	Erros	Emas	Erous	Errors
Oigigally rear anothe locatio			1				1			6			2					10
Oigigally atside of the banden		2			1					1								4
Unertaindiretion																		0
Uhertain location													1					1
Uheatain ovepress																		0
Ukertain underpes																		0
Mssing tridgy		1	1						1	21			4	2				30
Mssing baulevadicor										2								
Twostuxturs have tivesam DON syoto																		0
Whongreferme to loctiondistaxe(P)																		0
Refarene F9 loctionnot anmp																		0
Moved to unatain position																		0
Cannt measuefiomrefarsed M .																		0
Ether wrong feature crosed drany one																		0
Whagreferne P6 1 FEATX																		0
Unspecified location							1			1		2	1					5
Unspecifiod undapas										2								2
Unspecified wepress						1												1
Uspeceified ${ }^{\text {d/'on }}$																		0
Unspecified direction							2			2		4		2				10
Assumpion neded for comat locatior																		0
- Imveted Hating													2					2
Che stuxturehas two DaNsyrubls																		0
Inconex locationdsscription																		0
Uhnoun locationdescriptiof																		0
Incomplate brides symo.																		0
total	0	3	2	0	1	1	4	0	1	35	0	6	10	4	0	0	0	67
TOIAL NMM OFRGCORDS WEREDA	0	3	2	0	1	1	4	0	1	32	0	4	9	4	0	0	0	61
TOTALBRINSAPRECORAS	4	10	11	3	10	48	47	3	14	190	5	23	68	5	0	0	0	411
\%erxar	0\%	30\%	18\%	0\%	10\%	2%	9\%	0\%	7\%	17\%	0\%	17\%	13\%	80\%	0%	0\%	0%	14\%

Table 2.6 BRINSAP Observation Summaries for District 06-Odessa

	Andrew	Crane	Ector	Loving	Martin	Midland	Pecos	Reeves	Terrell	Upton	Ward	Winkler	TOTAL
Types of Observations:	Errors												
Originally near another location			2		1	3	89						95
Originally outside of the boundary			7			7	7	2			2		25
Uncertain direction							1				2		3
Uncertain location							1				1		2
Uncertain overpass													0
Uncertain underpass					1		19		2				22
Missing bridge			8		5	8	38	26	13	1	6		105
Missing entrance ramp							1						1
Missing boulevard/road						1	1	4					6
Two structures have the same DGN symbol								1					0
Wrong reference to location distance (F9)													0
Reference F9 location not on map													0
Moved to uncertain position													0
Cannot measure from referenced FM													0
Either wrong feature crossed or carry over													0
Wrong reference F6 1 FEATXE													0
Unspecified location													0
Unspecified underpass													0
Unspecified overpass													0
Unspecified up/op													0
Unspecified direction													0
Assumption neded for correct location													0
Reference F9 distance off or junction incorrect													0
Incomplete bridge symbo								1					1
Inverted Heading													0
Incorrect location description													0
Unknown location description													0
TOTAL	0	0	17	0	7	19	157	34	15	1	11	0	260
TOTAL NUM. OF RECORDS W/ERROR		0	17	0	7	21	140	32	13	1	10	0	241
TOTAL BRINSAP RECORDS	0	19	110	4	14	72	466	208	52	39	54	1	1039
\% ERROR	0\%	0\%	15\%	0\%	50\%	29\%	30\%	15\%	25\%	3\%	19\%	0\%	23\%

Table 2.7 BRINSAP Observation Summaries for District 07 - San Angelo

	Cole	Concto	Crocket	Ehkard	Gassock	Irion	Kinde	Merand	Feagn	Real	Renmels	Schleicher	Sterting	Sutton	TomQren	TOLA
Types ofotservatione	Eriors	Errors	Firos	Frrors	Ertors	Erras	Ermos	Erros	Errors	Eras	Enors	Eruos	Emors	Grows	Emors	Exurs
Oiginally nea anther loction	4	3	20		13		17				8				5	65
Oiginally ${ }^{\text {a }}$ (side oftire banday		1	3	2			5		1		2				2	14
Unertaindrextion																0
Unatainlocaion			1												1	1
Unatainoverpos																0
Uncotainunkpess	1	3	2			6			7		1					20
Mssingtrice		4	12	1	1		12	3				3	2	2	33	36
Mssingetraneram																0
Mssingbailevadrimad			1												36	1
Twostuxures havette same DONsynta																0
Whorgeferme lo koctiondstance(F)																0
Reference P9 loctionntonmer																0
Mbued toumartain position																0
Canct mexure fromrefermodiM																0
Either wong featurecossedor cary ouen																0
Unspecifiedteadine							2									2
Worgrefermef6 1fEAIX																0
Unspocifiedloction			6			6								2		12
Unspecifieduntarpas			6				5	3	2				1	16		16
Unspocifiodorepress							1		1							2
Usprecified ${ }^{\text {y }}$ op															2	0
Unspaified drection																0
Assumpionneded fr comet location																0
Refermer9 dstame offor junction inmerney			2													2
Inveredlleaing																0
Incomect locationdssaiption																0
TOIA	5	11	53	3	14	12	42	6	11	0	11	3	3	20	99	171
TOLALNM OFTSGCORSWERROR	4	10	51	3	14	12	41	5	11	0	11	3	2	18	8	16
TOLALERINSAPTECNTIS	82	66	161	24	26	50	143	60	26	25	112	28	56	90	210	803
\% ${ }^{\text {ERMR }}$	5\%	15\%	32\%	13\%	54\%	24\%	29\%	8\%	42\%	0\%	10\%	11\%	4\%	20\%	34\%	21\%

Table 2.8 BRINSAP Observation Summaries for District 08-Abilene

	Borden	Callahan	Fisher	Haskell	Jones	Kent	Mitchell	Nolan	Scurry	Shakelford	Stonewall	Taylor	TOTAL
Typer of Observations:	Errors												
Bm moved to DGN position													
Originally near another location		4	5	1	1		3	5		3		5	27
Originally outside of the boundary	1	5	1	3	11		1	2	10	1	1	10	46
Uncertain direction													0
Uncertain location		1			1				1			2	5
Uncertain overpass													0
Uncertain underpass					1								1
Missing bridge		2	3	9	3	1	7	7	2	1	5	22	62
Missing entrance ramp													0
Missing boulevard/road													0
Two structures have the same DGN symbol													
Wrong reference to location distance (F9)													0
Reference F9 location not on map													0
Moved to uncertain position													0
Cannot measure from referenced FM													0
Either wrong feature crossed or carry over													0
Unspecified heading													0
Wrong reference F6 - 1 FEATXE													0
Unspecified location	1		2									9	12
Unspecified underpass	4		1									6	11
Unspecified overpass													0
Unspecified up/op													0
Unspecified direction												2	2
Assumption neded for correct location													0
Inverted Heading													0
Incorrect location description													0
Unknown location description													0
TOTAL	6	12	12	13	17	1	11	14	13	5	6	56	166
TOTAL NUM OF RECORDS W/ERROR	6	12	12	13	17	1	11	14	13	5	6	51	161
TOTAL BRINSAP RECORDS	49	140	77	61	122	25	120	137	94	68	36	331	1260
\% ERROR	12\%	9\%	16\%	21\%	14\%	4\%	9\%	10\%	14\%	7\%	17\%	15\%	13\%

Table 2.9 BRINSAP Observation Summaries for District 09-Waco

	Bell	Bosque	Coryell	Falls	Hamilton	Hill	Limestone	Mc Lennan	TOTAL
Types of Observations:	Errors								
Originally near another location	12		1	2		1	8	33	57
Originally outside of the boundary	10	1	2	3		5	5	11	37
Uncertain direction	6							4	10
Uncertain location								1	1
Uncertain overpass									0
Uncertain underpass									0
Missing bridge	32	6	7	15	1	7	3	50	121
Missing entrance ramp									0
Missing boulevard/road	4			2		2		12	20
Two structures have the same DGN symbol									0
Wrong reference to location distance (F9)									0
Reference F9 location not on map									0
verified position, o.k.									0
Location description incomplete									0
Cannot measure from referenced FM									0
Either wrong feature crossed or carry over									0
Uncertain F7FACCARRD	1						1		0
Unspecified heading									0
Wrong reference F6_1 FEATXE									0
Unspecified location		4			1	5			10
Unspecified underpass		1							1
Unspecified overpass					1				1
Unspecified up/op						5			5
Unspecified direction									0
Assumption neded for correct location									0
Reference F9 distance off or junction incorrect									0
Inverted Heading									0
TOTAL	65	12	10	22	3	25	17	111	263
TOTAL NUM. OF RECORDS W/ERROR	62	11	51	19	3	22	16	91	275
TOTAL BRINSAP RECORDS	343	110	161	152	80	245	131	419	1641
\% ERROR	18\%	10\%	32\%	13\%	4\%	9\%	12\%	22\%	17\%

Table 2.10 BRINSAP Observation Summaries for District 10 - Tyler

	Anderson	Cherokee	Gregg	Henderson	Rusk	Smith	Van Zandt	Wood	TOTAL
Types of Observations:	Errors								
Originally near another location	4				1	21	5		31
Originally outside of the boundary			17	4	5	1			27
Uncertain direction	2						2		4
Uncertain location	2		1			8	1		12
Uncertain overpass									0
Uncertain underpass									0
Missing bridge		4	6	4	7	1	5	2	29
Missing entrance ramp									0
Missing boulevard/road			1			1			2
Wrong reference F102DIRTRA									0
Two structures have the same DGN symbol									0
Wrong reference to location distance (F9)						4			4
Reference F9 location not on map									0
Moved to uncertain position									0
Cannot measure from referenced FM									0
Wrong F7 FACCARD									0
Either wrong feature crossed or carry over						18	9		27
Incorrect location			2						0
Incorrect distance			5						0
Unspecified heading									0
Wrong reference F6 1 FEATXE									0
Unspecified location				3	1				4
Unspecified underpass		6	17	23	8				54
Unspecified overpass			3	1	3				7
Unspecified up/op									0
Unspecified direction									0
Reference F9 distance off or junction incorrect									0
TOTAL	8	10	52	35	25	54	22	2	201
TOTAL NUM. OF RECORDS W/ERROR	8	7	43	34	25	57	21	5	200
TOTAL BRINSAP RECORDS	113	121	134	144	151	206	183	60	1112
\% ERROR	7\%	6\%	32\%	24\%	17\%	28\%	11\%	8\%	18\%

Table 2.11 BRINSAP Observation Summaries for District 11 - Lufkin

	Angelina	Houston	Nachogdoches	Polk	Sabine	San Augustine	San Jacinto	Shelby	Trinity	TOTAL
Types of Observations:	Errors									
Originally near another location			2		1		1		1	5
Originally outside of the boundary										0
Inverted heading										0
Uncertain direction	6			6						12
Uncertain location	1	5	1							7
Uncertain overpass										0
Uncertain underpass										0
Missing bridge	2	3	2		1	2	3	1	2	16
Missing boulevard/road	1					1		1		3
Unspecified direction										0
Unspecified location										0
Unspecified overpass										0
Unspecified underpass					2	1	1	3		7
Two structures have the same DGN symbol Reference not located within county line										$\begin{aligned} & 0 \\ & 0 \end{aligned}$
Switched overpass/underpass										0
Incorrect location description	18	16	10	11	3	7	5	2	6	0
One bridge for two structures										0
Verified position, o.k.										0
Overpass description does not match										0
TOTAL	28	24	15	17	7	11	10	7	9	50
TOTAL NUM OF RECORDS W/ERROR	27	21	15	15	7	10	6	10	9	120
TOTAL BRINSAP RECORDS	106	96	123	118	62	43	102	73	56	779
\% ERROR	25\%	22\%	12\%	13\%	11\%	23\%	6\%	14\%	16\%	15\%

Table 2.12 BRINSAP Observation Summaries for District 12-Houston

	Brazoria	Fort Bend	Galveston	Harris	Montgomery	Waller	TOTAL
Types of Observations:	Errors						
Originally near another location	14	4	8	89	24	1	140
Originally outside of the boundary	17	34	16	432	17	12	528
Inverted heading							0
Uncertain direction				31			31
Uncertain location			1		14		15
Uncertain overpass				1			1
Uncertain underpass							0
Missing bridge		10		464		10	484
Missing boulevard/road	16		9	169			194
Unspecified direction	8						8
Unspecified location				2			2
Unspecified overpass							0
Unspecified underpass							0
Two structures have the same DGN symbol				20			20
Reference not located within county line							0
Switched overpass/underpass							0
Incorrect location description							0
One bridge for two structures							0
Verified position, o.k.							0
Overpass description does not match							0
TOTAL	55	48	34	1208	55	23	1423
TOTAL NUM. OF RECORDS W/ERROR	71	75	69	695	54	20	984
TOTAL BRINSAP RECORDS	262	245	190	1848	241	105	2891
\% ERROR	27\%	31\%	36\%	38\%	22\%	19\%	34\%

Table 2.13 BRINSAP Observation Summaries for District 13 - Yoakum

	Austin	Calhoun	Colorado	De Witt	Fayette	Gonzales	Jackson	Lavaca	Matagorda	Victoria	Wharton	TOTAL
Types of Observations:	Errors											
Originally near another location	1	2	19	5	4	1	3	2	2	1	2	40
Originally outside of the boundary		1	2	5	11	5	6	1	1	27	22	59
Inverted heading												0
Uncertain direction									10			10
Uncertain location												0
Uncertain overpass												0
Uncertain underpass												0
Missing bridge	1		1	3	4	7	5	3	16	18	6	58
Missing boulevard/road				1		2	2		4	13	7	22
Unspecified direction												0
Unspecified location												0
Unspecified overpass												0
Unspecified underpass												0
Two structures have the same DGN symbol												0
Switched overpass/underpass												0
Location description is incomplete												0
Verified position, o.k.												0
Overpass description does not match												0
TOTAL	2	3	22	14	19	15	16	6	33	59	37	189
TOTAL NUM. OF RECORDS W/ERROR	2	3	22	12	18	11	12	6	29	33	36	184
TOTAL BRINSAP RECORDS	105	73	153	146	232	237	128	119	88	169	180	1630
\% ERROR	2\%	4\%	14\%	8\%	8\%	5\%	9\%	5\%	33\%	20\%	20\%	11\%

Table 2.14 BRINSAP Observation Summaries for District 14 - Austin

	Bastrop	Blanco	Burnet	Caldwell	Gillespie	Hays	Lee	Llano	Marion	Travis	Williamson	TOTAL
Types of Observations:	Errors											
Originally near another location										7		7
Originally outside of the boundary	2	1	2	2	10	6		1	1	91	9	116
Inverted heading	1		1			1	7		1	7	2	18
Uncertain direction										2		2
Uncertain location										4	2	4
Uncertain overpass										1		1
Uncertain underpass	2											2
Missing bridge	21		3	2	10	21	2	8		131	19	198
Missing boulevard/road				1		4				84	5	89
Unspecified direction										1		1
Unspecified location											1	0
Unspecified overpass										2	4	2
Unspecified underpass				1			2				93	3
Two structures have the same DGN symbol	4									3	2	7
Reference not located within county line						1						1
- Switched overpass/underpass												0
Incorrect location description							3					3
Verified position, o.k.												0
Overpass description does not match												0
TOTAL	30	1	6	6	20	33	14	9	2	333	137	454
TOTAL NUM. OF RECORDS W/ERROR	25	1	5	4	13	22	14	11	2	153	113	363
TOTAL BRINSAP RECORDS	118	55	79	94	95	102	61	71	74	548	305	1602
\% ERROR	21\%	2\%	6\%	4\%	14\%	22\%	23\%	15\%	3\%	28\%	37\%	23\%

Table 2.15 BRINSAP Observation Summaries for District 15-San Antonio

	Atascosa	Bandera	Bexar	Comal	Frio	Guadalupe	Kendall	Kerr	McNullen	Medina	Uvalde	Wilson	TOTAL
Types of Observations:	Errors												
Originally near another location	6	4	97	4	2	9	2	5		1	2	4	130
Originally outside of the boundary			131	11	17	2	5	11		7	5	1	184
Inverted heading	3	1				1		1					6
Uncertain direction													0
Uncertain location			17										17
Uncertain overpass			3										3
Uncertain underpass		1	15	2		1		3					22
Missing bridge	21	2	296	32	13	40	2	9		13	4	13	428
Missing boulevard/road	1		13			2							16
Unspecified direction								1					1
Unspecified location													0
Unspecified overpass		3	6	1		4	4	1				1	19
Unspecified underpass	2	1	59	7	1	5	6	4	2	5	2	1	92
Two structures have the same DGN symbol													0
Reference not located within county line													0
Switched overpass/underpass						1							1
Incorrect location description													0
One bridge for two structures			4										4
Verified position, o.k.													0
Overpass description does not match													0
TOTAL	33	12	641	57	33	65	19	35	2	26	13	20	923
TOTAL NUM. OF RECORDS W/ERROR	31	11	450	49	33	61	18	31	2	21	11	18	718
TOTAL BRINSAP RECORDS	144	55	1313	130	123	194	80	137	52	143	78	93	2542
\% ERROR	22\%	20\%	34\%	38\%	27\%	31\%	23\%	23\%	4\%	15\%	14\%	19\%	28\%

Table 2.16 BRINSAP Observation Summaries for District 16 - Corpus Christi

	Aransas	Bee	Goliad	Jim Wells	Karnes	Kleberg	Live Oak	Nueces	Refugio	San Patricio	TOTAL
Types of Observations:	Errors										
Originally outside of the boundary	2									11	13
Uncertain direction	2			20		17	15	2	2	2	60
Uncertain location				1							1
Uncertain overpass							3				3
Uncertain underpass				6		4	13		5		28
Inverted heading								1			1
Missing bridge	1	2		1			13	15	1	22	55
Missing boulevard		1								6	7
Unspecified direction		18					2			19	39
Unspecified location		21				4	3			50	78
Unspecified overpass	2									3	5
Unspecified underpass		9	7		9					2	27
Two structures have the same DGN symbol											0
Incorrect location description											0
TOTAL	7	51	7	28	9	25	49	18	8	115	317
TOTAL NUM. OF RECORDS W/ERROR	5	39	7	28	9	21	44	17	8	90	268
TOTAL BRINSAP RECORDS	9	107	72	111	105	43	193	309	107	158	1214
\% ERROR	56\%	36\%	10\%	25\%	9\%	49\%	23\%	6\%	7\%	57\%	22\%

Table 2.17 BRINSAP Observation Summaries for District 17 - Bryan

	Brazos	Burleson	Freestone	Grimes	Leon	Madison	Milam	Robertson	Walker	Washington	TOTAL
Types of Observations:	Errors										
Originally near another location		2		1	3	5	12		8	1	32
Originally outside of the boundary	12	2	2	3		3	2		3	6	33
Inverted heading	3		2								5
Uncertain direction					2				3		5
Uncertain location				1			1		4	11	17
Uncertain overpass										3	3
Uncertain underpass											0
Missing bridge	13	2	7	6	7		2		1	1	39
Missing boulevard/road	5			3						2	10
Unspecified direction				6		2					8
Unspecified location	1		1								2
Unspecified overpass	2					2	9				13
Unspecified underpass						5	5			4	14
Two structures have the same DGN symbol											0
Switched overpass/underpass	1										1
Location description is incomplete											0
Verified position, o.k.											0
Overpass description does not match										1	1
TOTAL	37	6	12	20	12	17	31	0	19	29	183
TOTAL NUM. OF RECORDS W/ERROR	24	6	12	13	12	17	28	0	17	29	158
TOTAL BRINSAP RECORDS	152	75	116	119	130	103	130	88	108	94	1115
\% ERROR	16\%	8\%	10\%	11\%	9\%	17\%	22\%	0\%	16\%	31\%	14\%

Table 2.18 BRINSAP Observation Summaries for District 18 - Dallas

	Collin	Dallas	Denton	Ellis	Kaufman	Navarro	Rockwall	TOTAL
Types of Observations:	Errors							
Originally near another location	23	56			28	8	3	118
Originally outside of the boundary	75	575	30		5		6	691
Inverted heading	5	3						8
Uncertain direction	2	24	14		2			42
Uncertain location	1	166	2		6		2	177
Uncertain overpass		67						67
Uncertain underpass		38						38
Missing bridge	102	680	55	7	22	9	23	898
Missing boulevard/road	18	214	9	2		2		245
Unspecified direction		20		6	1	1		28
Unspecified location	4	12			1			17
Unspecified overpass		101	76	64	1	36		278
Unspecified underpass	21	73	41	26	2	12	4	179
Two structures have the same DGN symbol								0
Location description is incomplete								0
Verified position, o.k.								0
Inverted bridge symbol		2						2
Incorrect underpass		4						4
Incorrect street name		2						2
Moved to uncertain position			2					2
Checked dgn position								0
One structure has two dgn symbols				1				1
Switched information			1					1
Wrong distance			1	1	1			3
TOTAL	251	2037	231	107	69	68	38	2801
TOTAL NUM. OF RECORDS W/ERROR	144	1109	170	99	58	57	30	1667
TOTAL BRINSAP RECORDS	352	2000	407	419	366	227	55	3826
\% ERROR	41\%	55\%	42\%	24\%	16\%	25\%	55\%	44\%

Table 2.19 BRINSAP Observation Summaries for District 19 - Atlanta

	Bowie	Camp	Cass	Harrison	Marion	Morris	Panola	Titus	Upshur	TOTAL
Types of Observations:	Errors									
Originally near another location	31	2	10	19		1	7	6	11	87
Originally outside of the boundary						2		2		4
Uncertain direction	30					10		10		50
Uncertain location	1	1		1					1	4
Missing bridge	4	1	1	11				1	5	23
Missing boulevard/road	3			8					4	15
Two structures have the same DGN symbol										0
Wrong reference to location distance (F9)										0
Reference F9 location not on map										0
Moved to uncertain position		2								2
Cannot measure from referenced FM										0
Either wrong feature crossed or carry over										0
Wrong reference F6 1 FEATXE										0
TOTAL	69	6	11	39	0	13	7	19	21	185
TOTAL NUM. OF RECORDS W/ERROR	68	6	11	23	0	13	12	17	21	171
TOTAL BRINSAP RECORDS	239	38	133	214	49	51	128	103	132	1087
\% ERROR	28\%	16\%	8\%	11\%	0\%	25\%	9\%	17\%	16\%	16\%

Table 2.20 BRINSAP Observation Summaries for District 20 - Beaumont

	Chambers	Hardin	Jasper	Jefferson	Liberty	Newton	Orange	Tyler	TOTAL
Types of Observations:	Errors								
Originally near another location	8	5	2	10	5	8		2	40
Originally outside of the boundary				2					2
Uncertain location				8		1	3		12
Uncertain overpass				3					3
Missing bridge	16	54	6	48	8		96	2	230
Missing boulevard/road		3	5	40			11		59
Unspecified direction							2		2
Two structures have the same DGN symbol									0
Location description incorrect	1			2	1	4			8
Location description incomplete						1			1
Incorrect FACCARR				5	3				8
Moved short distance to correct location (ie. FR to ML)	25								25
Moved greater distance to correct location (ie. Moved to new location)	4								4
TOTAL	54	62	13	118	17	14	112	4	394
TOTAL NUM. OF RECORDS W/ERROR	34	54	8	91	16	14	99	4	320
TOTAL BRINSAP RECORDS	109	110	133	296	136	112	116	74	1086
\% ERROR	31\%	49\%	6\%	31\%	12\%	13\%	85\%	5\%	29\%

Table 2.21 BRINSAP Observation Summaries for District 21 - Pharr

	Brooks	Cameron	Kenedy	Hidalgo	Jim Hogg	Starr	Willacy	Zapata	TOTAL
Types of Observations:	Errors								
Originally near another location									0
Originally outside of the boundary									0
Inverted heading									0
Uncertain direction			2						2
Uncertain location									0
Uncertain overpass									0
Uncertain underpass									0
Missing bridge	1	14	8	1		7	3		34
Missing boulevard/road		5							5
Unspecified direction									0
Unspecified location	1					1			2
Unspecified overpass									0
Unspecified underpass								1	1
Two structures have the same DGN symbol			2						2
Reference not located within county line									0
Switched overpass/underpass									0
Incorrect location description									0
One bridge for two structures									0
Verified position, o.k.									0
Overpass description does not match									0
TOTAL	2	19	12	1	0	8	3	1	46
TOTAL NUM. OF RECORDS W/ERROR	2	14	10	1	0	8	3	1	39
TOTAL BRINSAP RECORDS	24	209	197	29	15	48	36	35	593
\% ERROR	8\%	7\%	5\%	3\%	0\%	17\%	8\%	3\%	7\%

Table 2.22 BRINSAP Observation Summaries for District 22 - Laredo

	Dimmit	Duval	Kinney	Lasalle	Maverick	Val Verde	Webb	Zavala	TOTAL
Types of Observations:	Errors								
Originally near another location						2		1	3
Originally outside of the boundary	2	2	2	4	6	3	1		20
Inverted heading									0
Uncertain direction						1			1
Uncertain location		2		3					5
Uncertain overpass		3							3
Uncertain underpass									0
Missing bridge	8		1	7	7	11	31	2	67
Missing boulevard/road					3	2			5
Unspecified direction									0
Unspecified location	1			2	6	2	6		17
Unspecified overpass									0
Unspecified underpass				1					1
Two structures have the same DGN symbol				1					1
Reference not located within county line									0
Switched overpass/underpass									0
Incorrect location description									0
One bridge for two structures									0
Missing milepoint				2					2
Verified position, o.k.									0
Overpass description does not match									0
TOTAL	11	7	3	20	22	21	38	3	125
TOTAL NUM. OF RECORDS W/ERROR	11	7	2	13	15	14	38	3	103
TOTAL BRINSAP RECORDS	71	117	37	109	79	78	220	71	782
\% ERROR	15\%	6\%	5\%	12\%	19\%	18\%	17\%	4\%	13\%

Table 2.23 BRINSAP Observation Summaries for District 23 - Brownwood

	Brown	Coleman	Comanche	Eastland	Lampasas	Mc Culloch	Mills	San Saba	Stephens	TOTAL
Types of Observations:	Errors									
Originally near another location	5	6	2	10	3	2			1	29
Originally outside of the boundary	2	1	5	1	2	1	1	2	1	16
Uncertain direction										0
Uncertain location	5	1		1						7
Uncertain overpass				1						1
Uncertain underpass	2			4	1					7
Missing bridge	10	2	1	7	3	3		2	2	30
Missing boulevard/road				1	2	1			1	5
Two structures have the same DGN symbol										0
Wrong reference to location distance (F9)										0
Reference F9 location not on map										0
Moved to uncertain position										0
Cannot measure from referenced FM										0
Either wrong feature crossed or carry over										0
Wrong reference F6 1 FEATXE										0
Unspecified location					1	2	1	4	5	13
Unspecified underpass				1		1				2
Unspecified overpass										0
Unspecified up/op										0
Unspecified direction										0
Assumption neded for correct location										0
Reference F9 distance off or junction incorrect										0
Inverted Heading	1	1	3		1					6
One structure has two DGN symbols										0
Incorrect location description										0
Unknown location description										0
TOTAL	25	11	11	26	13	10	2	8	10	116
TOTAL NUM. OF RECORDS W/ERROR	21	10	11	26	9	9	2	8	8	104
TOTAL BRINSAP RECORDS	136	109	114	168	78	93	57	69	84	908
\% ERROR	15\%	9\%	10\%	15\%	12\%	10\%	4\%	12\%	10\%	11\%

Table 2.24 BRINSAP Observation Summaries for District 24 - EI Paso

	Brewster	Culberson	El Paso	Hudspeth	Jeff Davis	Presidio	TOTAL
Types of Observations:	Errors						
Originally near another location		26	14	8	7		55
Originally outside of the boundary			37	6	16		59
Uncertain direction							0
Uncertain location	1	1					2
Uncertain overpass							0
Uncertain underpass							0
Missing bridge	13	1	60		3	14	91
Missing boulevard/road							0
Two structures have the same DGN symbol							0
Wrong reference to location distance (F9)							0
Reference F9 location not on map							0
Moved to uncertain position							0
Cannot measure from referenced FM							0
Either wrong feature crossed or carry over							0
Wrong reference F6_1 FEATXE							0
Unspecified location		2	3			2	7
Unspecified underpass	2	10	4		6	1	23
Unspecified overpass							0
Unspecified up/op							0
Unspecified direction						2	2
Assumption neded for correct location							0
Reference F9 distance off or junction incorrect							0
Inverted Heading							0
One structure has two DGN symbols							0
Incorrect location description							0
Unknown location description							0
TOTAL	16	40	118	14	32	19	239
TOTAL NUM. OF RECORDS W/ERROR	13	32	83	14	30	18	190
TOTAL BRINSAP RECORDS	94	134	429	123	127	73	980
\% ERROR	14\%	24\%	19\%	11\%	24\%	25\%	19\%

Table 2.25 BRINSAP Observation Summaries for District 25 - Childress

	Briscoe	Childress	Collingsworth	Cotte	Dickens	Donley	Foard	Hall	Hardeman	King	Knax	Motley	Wheeler	TOTAL
Types of Observations:	Errors	Errars	Errors	Errors	Errors	Errors	Errors	Errors						
Originally near another location			2	3	1	1	2	1					7	17
Originally outside of the boundary								2	1				1	4
Uncertain direction											-			0
Uncertain location					1									1
Uncertain overpass														0
Uncertain underpass														0
Missing bridge	1	1		4	2	14	3	8	2		5	2	36	78
Missing boulevardiroad														0
Two structures have the same DGN symbol					4									4
Wrong reference to location distance (F9)														0
Reference F9 location not on map														0
Moved to uncertain position														0
Cannot measure from referenced FM														0
Either wrong feature crossed or cany over														0
Wrong reference F6_1 FEATXE														0
Unspecified location												2		2
Unspecified underpass Unspecified overpass														0
Unspecified uplop														0
Unspecified direction		10	3		2	10		11	8				17	61
Assumption neded for correct location														0
Reference F9 distance off or junction incorrect														0
Inverted Heading														0
One stucture has two DGN symbols														0
Incorrect location description														0
Unknown location description														0
Incomplete bridge symbol														0
TOTAM		11	5	7	10	25	5	22	11	0	5	4	61	167
TOTALNUM OF RECORDS W/ERROR	1	11	5	7	10	25	5	13	11	0	5	4	44	141
TOTAL BRINSAP RECORDS	14	67	45	53	60	61	49	91	56	36	37	44	92	705
\%ERROR	7\%	16\%	11\%	13\%	17\%	41\%	10\%	14\%	20\%	0\%	14\%	9\%	48\%	20\%

CHAPTER 3

IMPROVEMENTS IN THE ROUTING MODEL

3.1 General

The following three improvements have been incorporated in the current version of the overweight/oversized vehicle routing macro during the 1998 fiscal year:
(1) Procedure to include turn-penalty information
(2) Determination of maximal-capacity route
(3) Procedure to partition a network

The main purpose of these improvements into the overall network routing procedure was to accommodate realistic situations, such as highway construction, traffic congestion, unsafe turns, unfeasibility of some turns, and other limitations frequently encounter by the user in issuing overweight/oversize vehicle routing permits.

The organization of this section is as follows. Section 3.2 presents a brief description of the routing macro. Section 3.3 provides the methodology developed to find a maximal-capacity (highest safety margin) route. Section 3.4 outlines the procedure to include turn-penalty information after a shortest route is determined. Section 3.5 outlines the procedure for partitioning a network. Finally, Section 3.6 summarizes computational results related to the performance of the routing macro in finding a maximal-capacity route using the Houston District network.

3.2 Description of the Overweight/Oversized Vehicle Routing Macro

Figure 3.1 shows a flowchart of the overall GIS-based network optimization macro for obtaining shortest routes and maximal-capacity routes. The procedure outlined in this figure starts by loading the network on which a route for a particular vehicle needs to be determined. Once this is accomplished, relevant configuration data for the specific vehicle under consideration, as well as a value for the impact factor [2] are provided by the user. The vehicle configuration data include height, width, number of axles and location of axles. In addition, specific axle information is also provided and includes (a) axle weights, (b) number and width of tires, and (c) the gage of each axle.

The impact factor is a value that depends on the speed of travel of the vehicle. If the vehicle is escorted, its speed can be reduced while crossing the bridges and a lower value for the impact factor would be chosen.

Figure 3.1. Overall Routing Procedure

The next step is the selection of the desired routing algorithm. The user has an option to activate either a shortest-path algorithm or a maximum-capacity algorithm to determine the optimal route between an origin and a destination for a given a vehicle. The shortest-path algorithm determines a route with minimal length and having all bridges along the route, being adequate for the specified vehicle. Alternatively, the maximum-capacity algorithm determines a bridgeadequate route having maximum allowed weight. That is, a route having a maximal safety margin.

The macro requires the specification of the point of origin (source node) and the point of destination (terminal node) to find a route. This is done by clicking on the terminal nodes of the road links in the network. The program allows zooming in/out of the map containing the road network, to facilitate the specification of the path points. Once this information is entered, the routing macro finds and displays (if found) an optimal path that satisfies vertical clearance, horizontal clearance and vehicle load constraints. Then, by visually inspecting the optimal route the user is presented with the following three options:

Option 1: Accept the route.
Option 2: If the route contains unacceptable turns, provide turn-penalty information and run the macro again.
Option 3: If the route contains unacceptable links, disable these links from the active network and run the macro again.

Once the user determines that the route generated by the macro is satisfactory, an output report is automatically generated, describing the selected route and documenting all the bridges avoided due to clearance or weight restrictions.

3.3 Maximal-Capacity Route Procedure

The capacity of a bridge is defined as the difference between its load carrying capacity and the load of the truck. Because of the high number of bridges within the State of Texas, the determination of a maximal capacity path involves the iterative finding of a large sequence of shortest paths with increasing capacities. In essence, the procedure can be outlined as follows. Once a feasible shortest path is found, which can be done with the currently developed methodology [6], the road section containing a bridge having minimal capacity is disabled from the network. Afterwards, another feasible shortest path is found from the remaining road sections in the network. The new feasible shortest path has higher capacity than the previous one. This basic procedure is repeated until no more feasible routes are found. Once the routing macro stops searching for additional feasible shortest routes, it can be concluded that the last route found is both feasible and has the highest/maximal capacity between the specified origin and destination points.

Application 1

Figure 3.2 shows a portion of the Houston District network with three routes resulting from the application of the maximal-capacity algorithm. The first iteration of the algorithm generated Route 1 with a capacity of 6 kips.; in the second iteration Route 2 was found, with a capacity of 27.6 kips.; and finally, the last iteration of the algorithm yielded Route 3, with a capacity of 30.2 kips. The vehicle information used and a detailed output report generated by the routing macro are included in Appendix C.

3.4 Turn-Penalty Procedure

In the case of oversized-vehicle routing, there exist many turns (i.e. transitions from one link to another) which the user may want to avoid, due to the dimensions of a particular vehicle. As an illustration, if the optimal route, generated either by shortest-path or maximal-capacity path algorithm, contains a turn that the user considers to be highly undesirable, then a high penalty can be assigned to that specific turn.

Figure 3.2 Application of Maximal Capacity Algorithm.

To be able to include the turn-penalty capability into the routing macro, a modification was made to the program code using TransCAD's built-in Shortest Path with Turn Penalty algorithm instead of Shortest Path algorithm.

The following procedure lists the steps to create or include turn-penalty information in a routing analysis, using TransCAD's built-in Turn Toolbox utility:

Follow the usual steps outlined in Appendix B when running the OVR program.

1. Identify the turn(s) you want to apply a restriction to.
2. Within TransCAD:
a. Choose Network/Paths-Turn Toolbox to display the Penalty Dataview dialog box
b. Choose one of the options from the table:

New Table: Creates a new table to store turn-penalty information
Open Table: Open a table file on disk to store turn-penalty information
Existing Dataview: Choose an existing data-view to store turn-penalty information Initially a new table should be created, afterwards, open the existing table to add/delete turn information in the future.
Save the table under $d: \mid$ mergetx \mid turnpen \mid datal. $d b f$
c. Click OK. TransCAD displays the Turn toolbox
d. Click " + " bar to activate the add-penalty tool
e. Click on the first link of the turn from the map
f. Click on the second link of the turn form the map
g. Enter penalty value in the Penalty box (leave the penalty value blank to prohibit the turn)
h. Close the toolbox
3. Now save those turn-penalty info into the network file
a. Go to network-setting-update.
b. Click turn-penalty option
c. In the "specific" field, choose path to file (d:\mergetx|turnpen\datal.dbf) leave the "default" field empty or blank
d. Click $O K$

Now, the network will have turn-penalty information to be used by the OVR program
4. Run the OVR program and when asked whether to use turn penalty information, click YES.

Application 2

Figure 3.3 shows a portion of the Houston district network with two shortest paths found before and after using the turn-penalty information. The undesirable turn is labeled with the letter A. A value of 99 was entered in the Penalty dialog box as the turn penalty value associated with the restriction. The vehicle information used and a detailed output report generated by the routing macro are included in Appendix C.

Figure 3.3 Application of Shortest-Path Algorithm using Turn-Penalty Information

3.5 Network Partitioning Procedure

There exist many situations where routing might be restricted and/or should be avoided. These may include:

1) When a road/bridge is closed for construction.
2) When a congested section of the network is not allowed for routing.
3) When the routing is limited within a specified area (e.g. load posted bridges or load-zoned roads).

In these situations it is desirable to temporarily modify the network by disabling and/or enabling links in a network (network partitioning), to model realistic road conditions. TransCAD has the capability to quickly disable any number of the links in a network, perform a routing analysis and then re-enable the links, without having to recreate the entire network file (see Appendix B). TransCAD saves information on links that are enabled and disabled in the separate network file. Therefore, when searching for a feasible route, the new network information is retrieved and used simultaneously with the original network information.

There are two alternatives available in partitioning a given network. First, the user can disable one individual link or a set of links from the network. Second, the user can first disable all links in the network and then select a portion of them and generate a sub-network for further routing. These two procedures are provided below:

Disabling a link or set of links

a. Select a link or set of links from the network by using the Selection Tool in TransCAD
b. Choose Networks/Path-Settings to display the Network Setting dialog box
c. Click Update to display the Update Network dialog box
d. Choose Disable Links from the Option drop-down list
e. Choose Selection from the Using drop-down list to display the Expression dialog box
f. Click $O K$ and run the OVR program as usual.

Selecting a portion of a network (sub-network)

a. Choose Networks/Path-Settings to display the Network Setting dialog box
b. Click Update to display the Update Network dialog box
c. Choose Disable Links from the Option drop-down list
d. Choose All features from the Using drop-down list to display the Expression dialog box. All links are disabled from the network now
e. Select a portion of the network for routing by using the Selection Tool in TransCAD
f. Choose Networks/Path-Settings to display the Network Setting dialog box
g. Click Update to display the Update Network dialog box
h. Choose Enable Links from the Option drop-down list
i. Choose Selection from the Using drop-down list to display the Expression dialog box.
j. Click $\boldsymbol{O K}$.
k. Create a new network (and save it with another name). The desired network is available for routing at this point.
g. Run the OVR program as usual.

Figure 3.4 Application of Shortest-Path Algorithm using Network Partitioning.

Application 3

Figure 3.4 shows a portion of the Houston District network with two shortest paths found before and after partitioning the network. By using the selection tool provided by TransCAD, 256 links were removed from the network. The vehicle information and a detailed output report generated by the routing macro are also included in Appendix C.

3.6 Summary

This section summarizes the performance analysis of the "maximal-capacity" routing algorithm. A complete description of the "shortest-path" routing procedures and related computational performance results have been documented in the report for fiscal year 1997 [7].

Several applications of the maximal-capacity algorithm have been tested. A summary of the results using the Houston district network is shown in Table 3.1. This network includes approximately 2,800 bridges, 41,000 nodes, and 52,000 arcs. In order to demonstrate the effectiveness of the proposed approach, vehicles with various axle configurations, weights, clearances, and different points of origin and destination were used. In all cases, an impact factor of 10% was used. Table 3.1 shows that the maximal-capacity algorithm finds routes within several minutes (usually within two minutes), depending on the number of axles of the vehicle and the location and number of path points (origin, destination and intermediate points). It was observed, that an average of three shortest-path routes is required before the optimal maximal-capacity route is found.

Table 3.1 Computational Performance of Maximal-Capacity Algorithm
$\left.\begin{array}{|l|c|c|c|c|c|c|c|}\hline & \text { Examples } & \begin{array}{c}\text { Total } \\ \text { load (kips) }\end{array} & \begin{array}{c}\text { No. of } \\ \text { axdes }\end{array} & \begin{array}{c}\text { Height of } \\ \text { the truck }\end{array} & \begin{array}{c}\text { Width of } \\ \text { the truck }\end{array} & \begin{array}{c}\text { No. of unconstrained } \\ \text { shortest paths found }\end{array} & \begin{array}{c}\text { No. of feasible } \\ \text { shortest paths found }\end{array}\end{array} \begin{array}{c}\text { Computational } \\ \text { time (sec.) }\end{array}\right)$
$\left({ }^{*}\right)$ denotes the use of trucks $1,3,4$ and 5 considering different origin and destination pairs.

The high computational efficiency of the routing macro is due to two major improvements:
a) a path tracing methodology, and
b) a bridge evaluation procedure

A discussion of each of these improvements follows.

Path Tracing Methodology

A path tracing methodology verifies if the road links are adequate for the height, width, and weight requirements of the specified vehicle. The links are evaluated in the alternating order in which they appear on the shortest path (i.e., first link to be checked is the link closest to the source node, second link to be checked is the link closest to the terminal node, third link to be checked is the link second closest to the source node, fourth link to be checked is the link second closes to the terminal node, and so on). By using this proposed methodology, the evaluation of bridges along the shortest path is accomplished in a significantly short time compared to the procedure in which bridges are evaluated in the chronological order in which they appear. It also appears that a significantly lower number of feasible unconstrained shortest paths from the specified origin to the specified destination nodes need to be evaluated.

Bridge Evaluation Procedure

During a routing analysis a link or set of links with one or more bridge(s) attributed may become part of multiple feasible routes. A simple procedure that avoids multiple evaluations is implemented in the routing macro. This procedure consists in storing the list of links with bridges, previously evaluated using Keating's bridge load formulae [7], in an array. If the link(s) with bridges attributed are included in a new possible route, the program skips the evaluation and continues with the next links. This approach reduces the number of bridges to be evaluated, thus reducing the overall computational time.

CHAPTER 4

PROCEDURES TO UPDATE GIS ROUTING FILES

4.1 Background

TxDOT Design Division and Mapping Office periodically update and modify BRINSAP and ROADS databases and the digitized County Urban maps. These changes are natural consequences of the routine growth of the highway system to satisfy new traffic demands. These changes must be accounted for in the GIS routing maps and databases for a proper accountability of the actual highway system. This Chapter describes the update procedure of the routing software due to updates in the BRINSAP and road maps of the On-System highways.

4.2 Typical BRINSAP Changes

The information contained in the BRINSAP database periodically changes as a result of the following factors:
(a) field inspections (changes in the conditions of the bridges),
(b) the construction of new bridges,
(c) the reconstruction of bridges,
(d) change in the jurisdiction of the bridges, and
(e) the closure of bridges or highways.

Although these changes are periodic, updates of BRISAP are usually released in time intervals (usually six months). In order to perform a proper update of the GIS routing software, it is necessary to compare the new updated BRINSAP to its previous version and to reconstruct all changes that have taken place between their release times. To do this however, it is desirable to account for all changes using only the information contained in the old BRINSAP and in the new BRINSAP.

As a result of comparing the new and the old BRINSAP, the following events can be identified:
a) Bridges are removed from the On-System highways, either because the roads are being permanently closed to traffic or because they are being demolished and never rebuilt. Therefore, the bridge records in the old BRINSAP are not contained in the updated database.
b) New bridges are built on existing or new segments of the On-System highways. In this event, new bridge records are included in the updated BRINSAP.
c) Bridges are replaced by or rebuilt with new structures on the same location. In this event, typically, a new bridge record is reflected in the updated BRINSAP and replaces a record of the old BRINSAP. Certain information related to bridge location remains the same and is used to identify the record of the replaced bridge. Bridge specific attributes, needed for routing analysis, such as operating and inventory ratings, span lengths, clearances, and etc. are updated.
d) The jurisdiction of some bridges may have changed from On-System to Off-System when comparing the old and the new BRINSAP records. The records pertaining to the bridge in the old On-System BRINSAP are transferred to the Off-System portion of the new BRINSAP database.
e) Alternately, the jurisdiction of some bridges may have changed from Off-System to OnSystem. In this case, the records of the Off-System BRINSAP are transferred to the New On-System BRINSAP. Furthermore, these bridges were previously unaccounted for in the routing program, and therefore, their correct location and geographic coordinates need to be determined.

4.3 Typical Changes in Road Maps (Urban Maps) and ROADS Database

As a result of new highway construction, the county Urban drawings experience updates and modifications in the geographic elements. The following events can be identified when comparing a new road map with its previous version:
a) New constructed highways are reflected by new links.
b) New bridges built on existing or new roads are reflected by added bridge symbols.
c) Roads permanently closed to traffic are absent in the new urban files.
d) Roads no longer under the On-System jurisdiction are transferred to different drawing layers within the road map.

In addition, the relational ROADS database associated with the geographical drawings is updated accordingly. As described in Reference [6], the highway tables in the ROADS database contain the attributes associated to the centerlines of the On-System highway-drawing element. These database attributes include the Highway identification, road type (IH, FM, etc.) and the MSLink code that links the geographic map feature to the information in the database.

The following sections describe in detail the procedure to update the existing network model required for the routing of overweight and oversize vehicles.

4.4 GIS Files Update Procedure

The process to update the GIS routing network has been developed to reflect the changes and upgrades that TxDOT makes on their base maps and databases. The core of the automated routing package is composed of a network model of the Texas highway system, with attributes from TxDOT's ROADS database, and a relational database linked to BRINSAP. Two separate processes can be identified:
a) Update of the highway network, and
b) Update of BRINSAP.

After performing each process individually, the update has to be completed by updating the relational database BRINSAP-ROADS inside the routing software.

The update of the GIS routing software files needs to be performed one county at a time. The following items are required:

1. The existing county GIS files to be updated (in standard geographic format);
2. The new version of BRINSAP containing the On-System and Off-system information;
3. The previous version of BRINSAP from which the bridge information in the GIS files was created/updated the last time (On- and Off-System).
4. The new version of the County Urban base maps (with the corresponding ROADS database);
5. The previous version of the County Urban maps from which the GIS files were created/updated the last time.
6. Macros that run in TransCAD to prepare the road network for routing that perform functions such as to compare the links of the old and new digitized maps, fix connectivity problems, assign traffic directions, define overpass/underpasses, and etc.
7. External programs to perform comparisons between the BRINSAP databases to compare the old and new BRINSAP databases and their corresponding relational databases within the routing software.

Figure 4.1 illustrates the overall process to update the GIS files used for routing. The process flows from top to bottom. The process is divided in three main sections A, B and C. Section A illustrates the set of files required to perform the update. Section B illustrates and briefly describes the five main tasks to be performed on each of the existing County GIS files. Section C shows the set of final updated files, on which the routing analysis will be performed. The lefthand side of the flowchart shows the update process pertaining to the BRINSAP database; the right-hand side shows the process pertaining to the ROADS network; and the middle portion shows files and tasks related to both. The oval shapes represent required files and final updated files; the rectangular shapes correspond to tasks to perform with the corresponding files.

The files and tasks involved in the update process are described in the following sections. A detailed flow chart of all the details and steps of the updating process is illustrated in Figure 4.2. File and program names are referred to this figure throughout the chapter.

Figure 4.1 General Flowchart for Update Process of the GIS Files for Vehicle Routing.

OVERWEIGHT VEHICLE ROUTING - GIS FILES UPDATE PROCEDURE 0-1823

Figure 4.2 Detailed Flowchart for Update Process of the GIS Files for Vehicle Routing.

4.5 Description and Preparation of Files Required for Updating

This section describes in detail the files that are required to perform the update. This includes the "New and Previous BRINSAP" databases, the "Existing County GIS files" and the "NEW and Previous County Urban Maps".

4.5.1 BRINSAP Files

The BRINSAP database files are usually available in a Microsoft Access format. However, TransCAD requires that the databases to be in a dBase format. During the processes of converting from Access to dBase , the names of the record-fields were shortened. As a result, the converted dBase databases were re-structured to have the proper fields re-sized and renamed. In addition, the structure of the database was modified by adding fields needed in the relational database of the GIS routing software. Furthermore, since the update of the GIS files is performed by county, the modified dBase database is separated by counties using an extraction procedure.

The procedures described here assume that the TxDOT's BRINSAP structure will not change. If fields are added or renamed in the future, the macros described here will need modifications to consider the modified or added fields.

The New and Previous BRINSAP containing the updated On-System and Off-System databases must be converted to dB ase format and prepared to be fully compatible with TransCAD and the existing GIS files formats. This is required to facilitate the manipulation of database files required in task Four of Section B as shown in Figure 4.1.

The preparation of the database files consists of modifying the internal structure of the databases. The process of the preparation can be seen in the upper-left portion of Figure 4.2. The modifications are made in TransCAD using four customized macros:
a) Macro "modbrg.rsc" renames and resizes the fields of the databases.
b) Macros "adfildon.rsc" and "adfildof.rsc" add blank relational database fields in the OnSystem and Off-System databases respectively;
c) Macro "fillid.rsc" performs two tasks. One task assigns internal ID's to each record in the databases. The other task converts the record's original geographic coordinates from degreesminute format to decimal-degrees format. This is required for mapping the bridge locations in TransCAD and generating the GIS point layer representing the location of the bridges.
d) And macro "indexbrg.rsc" creates index files that speed up search procedures utilized in comparing the BRINSAP databases.

These modifications are done only once to each database, containing all the information of all counties to be updated. When the preparation of the files is complete, three files are left, "New BRGON", "New BRGOF", and "Previous BRGOF" as seen in Figure 4.2.

After BRINSAP has been prepared, the corresponding county to be updated can be extracted from the new On-System ("New BRGON") database. The extraction is accomplished using TransCAD's built-in commands. Following is a description of the specifics of the extraction of bridges by county. First, the modified BRGON database is opened in TransCAD as a Dataview only (without creating a geographic file). Second, the corresponding county to be extracted is selected using the "Select by Condition" option under the Dataview menu. The condition is set to the county number (e.g. F3COUNTY $=$ "237") and executed. Once the selection is executed and displayed in the Dataview, it is then saved in dBase format with a unique identifiable filename (e.g. $237 \mathrm{brn} . \mathrm{dbf}$). This is repeated for all the counties to be updated.

The results of the above are "New On-System County BRINSAP files" with updated BRINSAP information except for the corrected geographic coordinates. These will be updated later as described in Task Four of Figure 4.2. This completes the preparation of the required BRINSAP files.

4.5.2 Existing County GIS Files

The "Existing County GIS files", in TransCAD format, contain the BRINSAP database, the ROADS database and the BRINSAP-ROADS relational database used in the routing program. The BRINSAP database already contains the corrected geographic coordinates of the bridges that need to be maintained and copied to the new BRINSAP information on Task Four of Section B. As a result, the "Existing County GIS files" are needed for the update. These GIS files correspond to the ones initially created or previously updated and prepared for routing, as described in Reference [6], and merged to generate the GIS files for a larger region (e.g. district or state). These files must be in TransCAD's Standard Geographic format in order to be modified.

4.5.3 TxDOT's County Urban Maps

In order to update changes in the roads, as inventoried by TxDOT in the County Urban maps, it is necessary to have available the new and previous County Urban maps (in Intergraph format, "Microstation Design File or DGN file"). It is extremely important to save and safeguard backup copies of both the previous and the latest County Urban maps used in the update. The reason for this is that the "new" County Urban maps will become the "previous" maps in the next future update. Without these maps, future updates of the ROADS GIS files will be extremely laborious and time consuming. Additional information on this matter is provided in Section 4.8.2.

4.6 Updating Tasks of County GIS Files

In the previous section, detail descriptions of seven files needed for updating were provided. Five tasks are required to perform the update.

4.6.1 Task One: Backup Existing County GIS Files and Export Existing County BRINSAP

This task consists of making a backup copy of all the "Existing County GIS files" (BRINSAP and ROADS), and exporting the County BRINSAP.

The backup copy of all the "Existing County GIS files (BRINSAP and ROADS) is needed because the update will be performed in these files. It is extremely important that the copy be made using TransCAD's copy utility found under the Tools/Geographic File menu. The copied files should be kept in as separate folder; for example, "...|NEWROADS\" and "...INEWBRINSAP\".

To facilitate the comparison of bridge databases described later in task Four, an additional copy of the entire County BRINSAP database should be exported. This copy must include the actual corrected geographic coordinates of each bridge record. The copy should be made in TransCAD by opening the Dataview (when the BRINSAP layer is active), and saving it in dBase format in a separate folder. This process allows for the current/corrected geographic coordinates, to be included in the exported file (the "Existing County BRINSAP file").

4.6.2 Task Two: Identification of New and Modified Links in the County Urban Base Maps

In this task, the new and previous County Urban maps are compared for the purpose of identifying the new and modified links in the maps. This information provides an insight of the roads modification of the highway system.

The road segments corresponding to the On-system highways of both Urban maps (new and previous) are imported into TransCAD using a readily available TransCAD import utility (Import Intergraph DGN Files). Once imported into TransCAD, maps containing the imported road links are created. An "Old Roads map" contains the road links from the "Previous DGN County Urban file", and a "New Roads map" contains the road links from the "New DGN County Urban file". These maps are compared against each other to identify the new added road segments and/or existing modified road links. Afterwards, a crosscheck comparison can identify deleted road segments.

The comparison of the maps is accomplished by using the customized macro "CompRoad". This macro copies the new and modified lines from the "New Roads map" to the "Old Roads map". At the end of the comparison an "Updated Old Roads map" will contain the old roads and the new roads identified with a different color. Finally, the set of new and modified road segments is exported as a separate set of GIS files, creating a new map. The "New/Modified Road links map" will be used in Task Three to incorporate the new road links into the "Existing County GIS ROADS map". It should be noted that these maps do not contain the ROADS database attributed to the centerlines of the highways, for the reasons explained in Section 4.8.1 and 4.8.2.

Figure 4.3 shows an example in the Brazoria county where new added links were identified in the "New Roads map". The figure in the left depicts the old map and the one on the right shows the "Updated Old Roads map", which consists of the old roads plus the new links.

Figure 4.3 Case of GIS ROAD Network Updated with New Links

4.6.3 Task Three: Incorporate New Links to Road Network

This task consists of updating the existing county roads network, by incorporating the new links identified in Task Two. The updating takes place when the "New/Modified Road links map" and the copy of the "County GIS ROADS map" are compared against each other, using the CompRoad macro.

The macro automatically copies the new and modified links into the existing road network. It should be noted that since the copy of the "County GIS ROADS map" already contains the structure of the ROADS database, the new links will automatically have this structure associated to them. The "County GIS ROADS map" is updated with the new and modified road links.

During this task, some road links that appear to be repeated are copied. Section 4.8.2 addresses this issue. Repeated links must be carefully compared by visual means and deleted accordingly.

Afterwards, the updated "County GIS ROADS map with New and Modified links" must be prepared for routing analysis by means of the procedure described in Chapter 4 of Reference [6]. In summary, the preparation of the road network consists of fixing connectivity problems, assigning traffic directions to one-way highways and defining underpasses/overpasses when
applicable. These tasks are accomplished in TransCAD by using the macros "Connect.rsc", "Assign.rsc" and "Intersec.rsc".

Immediately after, if new centerlines are copied to the network, these must be deleted. Finally, an identification code must be assigned to the remaining new links in the county road ID field (CTYRDID) of the GIS ROADS database. This field value is required for updating the relational database BRINSAP-ROADS.

The "Updated County GIS ROADS map" now contains all the new road links, except for centerlines, is fully connected, has traffic directions and overpasses/underpasses defined and properly identified.

4.6.4 Task Four: Comparison of New and Previous BRINSAP

In this task the information extracted from the TxDOT updated On-System BRINSAP ("New OnSystem County BRINSAP file", Section 4.5.1) is compared against the "Existing County BRINSAP file" (4.6.1) and the both Off-System BRINSAP files ("New and Previous BRGOF") (Section 4.5.1). This comparison is needed to identify the changes made to the On-System database and incorporate the new/updated information into the routing package.

During the comparison the following events are identified:
a) Bridges removed from the On-System database.
b) New bridges added to the On-System database.
c) Rebuilt/replaced bridges within the On-System jurisdiction.
d) On-System bridges transferred to the Off-System jurisdiction.
e) And Off-System bridges transferred to the On-System jurisdiction.

The comparison is made through the use of a stand-alone external program, "CompareBRG". The program was developed in $\mathrm{C}++$ programming language, and is specifically customized to compare four bridge databases. The program can be executed from any drive and/or folder in the computer. However, the program requires that a dBase template file (BRNTMP.dbf) be located under the "d:Macros" folder. This template is required to create the structure for temporary files during the process of identifying removed and added bridges.

A typical execution is described as follows:
First, the user must choose the four files (in dBase format) to be compared. The files must always be selected in a sequential top-down order as seen in Figure 4.4. The filenames and paths appear on the edit boxes on the right of each choose-file button. Afterwards, click on the "Compare/Report/Update" button to start the comparison. At the end, the window displays the path and filenames associated with reports associated with the removed and added bridges. In addition, in the bar at the bottom of the window (a status bar), the name of a text file containing a list of both removed and added bridges is displayed.

Figure 4.4 CompareBRG Program. Main Components.

Bridges removed.

The program first finds "Removed bridges" by comparing the "Existing County BRINSAP file" to the "New On-System County BRINSAP file". The program scrolls the database files, each record at a time, comparing the fields that contain the bridge's unique structure identification number. When a record is not found in the "New On-System County BRINSAP file", the structure number and additional specific information of the record not found is copied to a temporary dBase file with suffix _rem (e.g. countyname_rem.dbf). The information is copied in the corresponding fields of the dBase file, which was internally created from a template file (BRNTMP.dbf) used for this purpose.

New or Replaced/Rebuilt Bridges.

After all removed records have been found, the program then searches for "Added bridges" by crosschecking the same files. As before, the structure number is used for this purpose. When a record is not found in the "Existing County BRINSAP file", it is considered as a new added record to the On-System database. The predefined information pertaining to the new record is copied to another temporary dBase file with suffix _add (e.g. countyname_add.dbf).

The new added record may correspond to either a "New" bridge or a "Replaced/Rebuilt" bridge in the On-System. To conclude whether the record falls into one category or another, the program compares the temporary file countyname_rem against the file countyname_add. The temporary files now have information pertaining to each bridge record contained in only 12 fields. These include: the structure number, district number, county number, feature crossed, facility carried over, location, control number, section number, original geographic coordinates (latitude and longitude) in degrees-minutes format, milepoint and the year built.

Since the structure numbers of the removed and added bridges are different, the comparison is made assuming that for a replaced/rebuilt bridge, the location, highway identification and original coordinates, should match in both the removed records list and the added records list. The information compared includes (a) the control and section numbers pertaining to the highway section carrying the bridge; (b) the original geographic coordinates (latitude and longitude) in degrees-minutes format; (c) the feature crossed and (d) the facility carried over. Occasionally, the information in a field did not exactly match between the removed bridge record and the added record. The differences where basically due to typing errors (e.g. missing characters, etc.), additional characters present (e.g. parenthesis, commas, etc), different information or missing information. This situation prohibited the proper identification of a replaced bridge since the information in all the fields did not match simultaneously. Section 4.8.3 further addresses this problem and the solution developed. Whenever a bridge is identified as replaced/rebuilt, the corrected coordinates are copied from the removed bridge record to the added bridge record.

Bridges Transferred From On- to Off-System Jurisdiction

After the added records have been properly identified and classified, the program continues with the task of finding bridges that were transferred to the Off-System. This task was accomplished by comparing the temporary file with removed records, countyname_rem, against the "New BRGOF" database file. The process is somewhat similar to the one used for finding replaced/rebuilt bridges. In this case, the comparison does not include the structure number nor the highway control and section number as comparison fields because TxDOT assigns complete different highway identification codes (e.g. control and section numbers) and the structure number contains these codes. Therefore, only the geographic coordinates and the location information, namely the feature crossed, the facility carried over and the location fields were used. The solution to overcome the problem of field information not matching simultaneously is described in Section 4.8.3.

Bridges Transferred From Off- to On-System Jurisdiction

This task was accomplished by comparing the temporary file with the added records, countyname_add, against the "Previous BRGOF" database file. The process is somewhat similar to that described above.

To complete Task Four, the program updates the geographic coordinates in the "New On-System County BRINSAP file" of the records corresponding to the bridges identified in the added list, as rebuilt/replaced. The coordinates for the remaining bridges are updated in Task Five. This
completes the comparison of bridge databases with a "New On-System County BRINSAP file, with correct Geographic Coordinates for Replaced Bridges only".

Also, during this task, the program also generates a report or CSV (Comma Separated Value format) text file that contains both lists of removed bridges and added bridges. Figure 4.5 illustrates the format of the report using the information for Fort Bend county. The reports generated for the counties of the Houston district are shown in Appendix D. The list of removed bridges is presented first. The bridge record information reported includes:
a) The internal ID number already assigned by macro fillid.rsc when preparing BRINSAP.
b) The structure number of the removed bridge records.
c) The feature crossed.
d) The facility carried over.
e) The location description.
f) The route control number.
g) The route section number.
h) The milepoint.
i) And the latitude and longitude (in degrees-decimal minutes format).

If the removed bridge was identified in the new Off-System database, the corresponding OffSystem structure number is reported. (An associated match criterion is also included, representing the degree of certainty that the bridge record information matched between the removed list and the new Off-System database). At the end of the list, the total number of records removed is reported.

Immediately after, the list of added bridges continues. The bridge record information is similar to the reported for removed bridges. Except that if the added bridge was identified as replaced/rebuilt, the corresponding structure number from the removed list is appended. (Similarly, an associated match criterion is also included, representing the degree of certainty that the bridge record information matched between the removed and the added list).

If the added bridge was identified in the previous Off-System database, the corresponding OffSystem structure number is also reported. (An associated match criterion is also included, representing the degree of certainty that the bridge record information matched between the added list and the previous Off-System database). At the end of the list, the total number of records added is reported, and in addition a balance of bridges removed or added per county is computed.

This text file was generated for two reasons: a) to keep track of the latest changes made to BRINSAP, and b) to aid in the task of un-assigning removed bridges from the roads network, verifying the location of replaced/rebuilt bridges and new bridges. The update of the relational database BRINSAP-ROADS is the subject of the following task. It should be noted that at the end of this task, the integrity of the latest BRINSAP information is maintained (e.g. bridge spans, clearances, rating, etc.).

Figure 4.5 CompareBRG Report Format. Report For Fort Bend County.

4.6.5 Task Five: Update Relational Database

At this point, both the County BRINSAP and the County GIS ROADS network map are updated. However, the database that relates the two of them also needs to be updated to recognize the changes in the network for the GIS routing program to perform the proper identification of routes. Task Five consists of:
a) Un-assign the removed bridges from the existing road links. These bridges are no longer on the network.
b) Fill/update the relational database fields and correct geographic coordinates for those bridges that remain in the highway network.
c) Locate the new bridges and attribute them to the corresponding new or existing road links. The location of replaced/rebuilt bridges is also verified.
d) Delete road segments no longer corresponding to the On-System network (if required).

Un-assigning Removed Bridges.

The first step is to un-assign the bridges removed from the On-System highways from the roads network. This task consists of removing the corresponding bridge structure number from the relational database fields of the ROADS database. This is accomplished in TransCAD by using the "Bridges2Roads" or "B2R.rsc" macro on a map containing the "Updated County GIS ROADS" and the "Existing County GIS BRINSAP". The macro interactively scrolls over each BRINSAP record, highlighting with different colors, the active bridge and the corresponding road links to which the bridge is attributed as an overpass and/or an underpass. To know which bridges must be un-assigned from the On-System, the user must review the "Removed bridges" list on the CSV text file generated in Task Four.

By means of clicking on the "Deselect" button of the "B2R.rsc" macro, the bridge can be unassigned simultaneously from all road links to which it is attributed. For example, if the bridge is an overpass or underpass, the bridge structure number is assigned to the link(s) corresponding to the facilities carried and to the link(s) of the facility crossed. Therefore, the bridge structure numbers are automatically removed from the BRGOP1-BRGOP2 fields, if the bridge was attributed to one or more road links as an overpass, and/or from the BRGUP1-BRGUP2 fields, if attributed as an underpass. The changes are saved automatically.

In addition, the relational database in the "Existing County GIS BRINSAP" contains four fields that identify the road links identification numbers (CTYRDID) of the facilities carried and facilities crossed (if it is a highway) which are simultaneously updated. The corresponding county road ID codes are removed from the CTYRDOP1-CTYRDOP2 fields if the bridge was attributed as an overpass and removed from the CTYRDUP1-CTYRDUP2 if assigned as underpass.

The resulting roads network corresponds to the county GIS ROADS and GIS BRINSAP that no longer contain the bridges removed from the On-System network between the releases of the old and new BRINSAP, but still does not contain the added bridges. These files are referred to as the "County GIS ROADS without removed and new bridges" and the "County GIS BRINSAP map without road links attributed to removed bridges and without new bridges".

Update Relational Database Fields and Correct Geographic Coordinates

To incorporate the added bridges into the routing network and have access to the most updated bridge record information when performing a routing analysis, a map showing the correct location of the latest bridge records is required. The file that contains the latest BRINSAP information, is the "New On-System County BRINSAP file, with correct Geographic Coordinates for Replaced bridges only" described in Task Four (Section 4.6.4). Nevertheless, this file only has the correct coordinate information for the bridges identified as rebuilt/replaced. To update the correct coordinates for the records of the remaining bridges, a comparison is made between three database files:
a) The "County BRINSAP file without the road ID's (CTYRDID) attributed to removed bridges" has the corrected coordinates of the all the bridges, except for the bridges corresponding to the ones identified as added (alias Existing county B2R, see Figure 4.6). This database file is obtained by exporting the Dataview of the "Existing County GIS BRINSAP" described in the previous sub-section and saving it in dBase format (see 4.6.1).
b) The corresponding temporary file Countyname_rem file with removed bridges (alias Removed bridges, see Figure 4.6).
c) And, the corresponding "New On-System County BRINSAP file, with correct Geographic Coordinates for Replaced bridges only" (alias New county B2R, see Figure 4.6).

Figure 4.6 CompareB2R Program. Main Components.

The comparison is made through the use of the external stand-alone program CompareB2R developed in $\mathrm{C}++$ programming language. In a typical execution the files (in dBase format) to be compared are chosen in the following order: 'Existing county B2R' file first, followed by the 'Removed Bridges' and then by 'New county B2R' files (see Figure 4.6).

The filenames and paths appear on the edit boxes on the right of each choose-file button. Afterwards, click on the "Delete Removed Bridges and Update Coordinates and Relational Database fields" button to start the comparison.

The program scrolls the database files, each record at a time, comparing the fields that contain the bridge' structure identification number. Each time a record is found in the "New county B2R" database, the geographic coordinates (in decimal degrees format), the corresponding relational database fields (BRGOP1, BRGOP2, BRGUP1, BRGUP2) and the FLAGS fields, are updated with the information contained in the corresponding fields in the "Existing county B2R" database.

Three internal counters keep track of the initial number of bridge records, the number of bridge records updated and the final number of On-System bridges that the county will have.

Th resulting file contains the corrected coordinates updated for the replaced/rebuilt bridges and the corresponding relational database fields also updated.

Incorporate/Locate New Bridges

At this point the added bridges still have to be incorporated and located in the roads network. Subsequently, new County GIS BRINSAP files need to be generated, using the updated geographic coordinates, to map the corrected bridge locations and represent them in a point layer.

Once these files are generated, a "New Regenerated County Map" is created by superimposing a) the "New County GIS BRINSAP", and b) the "County GIS ROADS without removed and new bridges". The position of the new added bridges can be verified and corrected, if required. The procedure to verify and locate bridges is described in Chapter 4 of Reference [6].

After verifying the bridge locations, the new added bridges have to be incorporated into the roads network. This consists of writing the corresponding bridge structure numbers in the relational database fields (BRGOP1, BRGOP2, BRGUP1, and BRGUP2) of the road links. Again this is accomplished in TransCAD by using the "B2R.rsc" macro on the previously created map.

The process is similar to the one described for un-assigning the removed bridges. The macro interactively scrolls over each BRINSAP record. By clicking on the "Overpass" or "Underpass" buttons and then selecting the corresponding road links, the links will be highlighted with different colors.

To incorporate the new added bridges to the On-System, the user must review the "Added bridges" list on the CSV text file generated in Task Four.

By means of clicking on the "Save" button, the bridge can be attributed simultaneously to all road links to which it is attributed. The bridge structure numbers are automatically added to the BRGOP1-BRGOP2 fields, if the bridge was attributed to one or more road links as an overpass, and/or to the BRGUP1-BRGUP2 fields, if attributed as an underpass. The changes are saved automatically.

In addition, the relational database fields in the BRINSAP are simultaneously updated. The corresponding county road ID's are added to the CTYRDOP1-CTYRDOP2 fields if the bridge was attributed as an overpass and removed from the CTYRDUP1-CTYRDUP2 if assigned as underpass.

The resulting roads network corresponds to the "County GIS ROADS map with new bridges". This road network may still have some road links that are no longer part of the On-System network and need to be deleted, before using the routing program.

Delete Non On-System Road Links

The last step in the update process consists in eliminating the road links that are no longer part of the On-System network. By deleting the unwanted road links the routing program will avoid determining unrealistic On-System routes. The deletion process should be done with extreme care to avoid deleting other road links by mistake. The deletion process involves a series of steps that are listed below:

With the "County GIS ROADS map with new bridges" opened in TransCAD:

1) Select the ROADS layer as the working layer.
2) Carefully inspect each candidate road link to eliminate, verify that no bridges are attributed in any form. If there are one or more bridges attributed, skip the road link. Use the zoom-in, zoom-out, and pan tools to facilitate the inspection.
3) Select the road links to eliminate first, clicking on the "Select by Pointing" button in the Tools/toolbox and then click on the link. The link is then highlighted and automatically added to an internal set. Note that to deselect a link from the internal set, press Ctrl and click on the link. The link is automatically deselected.
4) After all the links to be eliminated have been selected, choose Edit/Delete set and to proceed with the deletion click "Yes". The road feature and corresponding record from the ROADS database are deleted.

The changes are automatically saved. The On-System roads network is now completely updated and the entire update process is complete.

4.7 Merge Updated GIS County Files

The end product of this update process consists of a new set of county GIS files with updated BRINSAP and ROADS geographic features and corresponding relational database BRINSAPROADS ("Final County GIS ROADS and BRINSAP map").

After the update process has been performed on the corresponding counties, to be able to perform the routing analysis on a district level, the "Final County GIS files" must be merged together to obtain the "Updated District GIS files". The merging of the GIS files is accomplished by the use of macros "Mergel.rsc" and "Mergep.rsc" in TransCAD. The "Final County GIS Roads" files are merged using the macro "Mergel.rsc", which merges GIS files containing line geographic features. The "Final County GIS BRINSAP" files are merged with the use of macro "Mergep.rsc", which merges GIS files containing point geographic features (see Chapter 4 of Reference [6]).

Once the "Updated District GIS" files have been obtained, these can be converted to TransCAD's compact read-only geographic format. This format not only saves disk space, it expedites the display of the maps on the computer screen. To convert the GIS files to compact read-only format, in TransCAD, the user must:

1. Choose the geographic features to export.
2. Then under Tools/Export menu option choose the following:
a) Export: All records
b) To: Compact Geographic file
c) Data Field: <None>
d) Note Data Field: <None>
e) Options: <check> Include Built-in data.
3. Finally, choose a folder and wait a few seconds until the conversion is terminated. For more information see TransCAD's User's manual.

At this point the routing package is completely updated and ready for routing analysis. To perform a routing analysis, the "OVR.rsc" macro is used. More information on installing the program and running the application can be found in the OVR Installation Guide and the OVR User's guide included in Appendices A and B of this report.

4.8 Problems With the Update Process

During the prototyping phase of the update process, several problems associated with the County Urban maps and the databases were encountered. These problems are addressed in the following sections.

4.8.1 Problems Associated With the ROADS Database

An important step in the update process consists of incorporating, into the road network, the new added road links with its corresponding ROADS database attributed to the highways' centerlines (e.g. HIGHWAY_ID, MSLINK, etc.). The attributes, specifically the HIGHWAY_ID, are used in road management operations (e.g. maps highlighting specific highways, etc.) and also to clarify the route information in the routing program's output report.

At the time this report was written, TxDOT's ROADS database was unavailable due to incomplete information and corruption problems in the files. Therefore, the update procedure does not consider the inclusion of this information. Upon availability of the ROADS database,
the following procedure can be implemented to import, into TransCAD, the database attributes along with its corresponding road features:
a) From the "New County Urban map or New DGN", select and expont the On-System road links, including centerlines of divided highways;
b) Operating under the Modular GIS Environment software (MGE), access and the ROADS database attributes corresponding to the On-System road network, as MapInfo tables; this will generate a number of table files per highway feature (e.g. State Highways (SH), Interstate Highways (IH), etc.).
c) Once all the highway tables have been exported, append all of them into a single highway feature table using MapInfo GIS software; export the resulting table into MapInfo Import Format (MIF).
d) Import the MIF table into TransCAD and generate the New Roads map (with database attributes included).

Note that this procedure differs from the one outlined in Chapter 4 of Reference [6], where a line cleaning process consisting of deleting duplicate lines and short overshoots is implemented. This cleaning process modifies the geometry of the original drawing features, thus making the identification of new/modified links difficult and cumbersome.

To identify the new/modified road links, the "New Roads map with ROADS database attributes" and the "Old Roads map" need to be compared. The "New Roads map ..." has a database structure incorporated in the GIS files, where the "Old Roads map" does not. This incompatibility creates a problem when comparing both maps. When a new/modified link is identified in the "New Roads map ...", the line feature is copied to the "Old Roads map" without the database attribute.

Modifying the internal database structure of the "Old Roads map" solves this problem. Specifically, the ROADS database fields (MGEFCODE, HIGHWAY_ID, COUNTY_NO, MSLINK and MAPID) and the relational database fields (HEADING, CTYRDID, BRGOP1, BRGOP2, BRGUP1, and BRGUP2) need to be added. This is accomplished in TransCAD using the customized macro "adroadf.rsc".

Figure 4.7 depicts the procedure described above.

Figure 4.7 Road Network Update Process Including ROADS Database.

After making both GIS maps compatible, the comparison and the rest of the update process for the roads network can be made as described in Tasks Two and Three of Section B (Sections 4.6.2 and 4.6.3).

4.8.2 Problems Associated With the Urban Maps

Ideally, the identification of new and modified roads links should be done comparing the "New Roads Map" containing the On-System road links imported from the new version of the County Urban maps against the "Existing County GIS ROADS map". Nevertheless, this was neither feasible nor practical since the "Existing County GIS ROADS map" was modified during the road network preparation procedure (see Section 4.4 of Reference [6]). In summary, undershoots, overshoots, duplicate lines, short segments and other disconnectivity problems where identified and fixed, thus, modifying the drawing geometry. When making the comparison an extensive number of existent segments were repeated, defying the purpose of the comparison.

Therefore, it was decided to perform the comparison between the road links imported from the latest and previous county Urban maps ("New DGN and Previous DGN").

Although, the resulting number of new/modified road links identified was significantly reduced, some links were still repeated (see Figure 4.8). The reason for this is that the geometry and/or connectivity of the drawing elements in the new Urban map were modified (e.g. two or more contiguous segments were connected, divided highways were added, etc). The repeated links are deleted to avoid connectivity problems.

1. Old Roads map.

2. Updated Old Roads map.

Figure 4.8 Case of Repeated Links Identified between New and Previous Urban Maps.

4.8.3 Problems Associated With BRINSAP

During the comparison of the "Existing County BRINSAP" and the "New On-System County BRINSAP" described in Task Four (Section 4.6.4), new added bridge records and removed bridge records are identified. Among these bridge records, some of the new added bridge records may correspond to bridge structures that are replaced/rebuilt, and similarly, some removed bridges may correspond to bridges assigned to Off-System jurisdiction. Several problems were encountered while comparing the new and previous databases and are addressed in the sections below.

Identification of Replaced/Rebuilt Bridges: While comparing the list of removed bridges against the list of added bridge records to identify replaced/rebuilt bridges, the BRINSAP structure numbers cannot be used because the numbers are different. Therefore, it is assumed that for a replaced/rebuilt bridge, the geographic location description, the highway identification and the original geographic coordinates should simultaneously and match in the corresponding fields of both a removed record and an added record.

Occasionally the field information does not match exactly for the reasons listed in Section 4.6.4 causing the comparison process to skip possible matching records.
The problem was addressed by utilizing a "weighted optimization" procedure. The objective is to maximize the number of matching records by assigning weights to the different fields analyzed and combining the weights to determine the degree of certainty that the record corresponds to a match.

In summary the "weighted optimization" consists of:
a) Each record in the added list is compared to the corresponding fields in the records of the removed list. If there is a match in the fields between the two records, individual and/or combined weights are assigned reflecting the importance of the field(s) to consider the bridge record as replaced/rebuilt.
b) A total match value is computed by aggregating the individual weights assigned.
c) The total match value is associated to a criterion that subjectively describes the degree of certainty that the record corresponds to a replaced/rebuilt bridge record. Larger total match values suggest increasing certainty that the record corresponds to a replaced/rebuilt bridge.

Table 4.1 illustrates the individual and combined weights assigned to the fields according to the following assumptions:
a) If an added bridge record corresponds to a replaced/rebuilt bridge, the inventory route codes should match, specifically, the Control and Section numbers. These are the primary fields of importance in the matching process. The weight values are assigned according to the following pairwise scenarios:

1. If both the Control number and the Section number of the records match, then a total combined weight of 2.25 is assigned.
2. If the Control numbers between the records match but no match is encountered in the Section numbers, then a weight of 1.25 is given to the Control number and a weight value of 0.0 is given to the Section number.
3. If the Control numbers between the records do not match and a match is found in the Section numbers, then a weight of 0.0 is given to the Control number and a weight value of 0.5 is given to the Section number.
4. If neither field matches a negative weight of -1.0 is given.

The occurrence of both numbers matching simultaneously suggests a higher possibility of a match than exclusive occurrences (one or the other), thus having a higher combination weight. Similarly, when both codes do not match, the possibility of the record corresponding to a match is lower.
b) Following in order of importance are the original geographic coordinates (in degrees-minute format) entered in BRINSAP. If a match in the records is found for either the latitude or the longitude coordinate, then an individual weight of 1.5 is assigned otherwise the weight is 0 .
c) The description of the Feature Crossed and the Facility Carried are the last in order of importance. Both are also assigned the same weight if either is met, but the weight value is the least of all (0.50); if either is not met a null value is assigned (0.00).

By adding the weights a total the match value is obtained by comparing the BRINSAP records of the list of removed bridges and those of the added bridges. The total match value may vary between -1.00 and 6.25 according to the possible scenarios in Table 4.1. This match value is used to subjectively describe the degree of certainty of the record's match. The possible descriptors include a) no match (below 2.0), b) uncertain match (between 2.25 and 3.75), c) possible match (between 4 and 5.25) and d) exact match (greater that 5.5). As can be observed the total match values are classified in four ranges. As the range values increase the possibility of having an exact match also increases.

As part of the optimization process, to enhance the possibility of matching common field information, an algorithm was employed to eliminate non-alphanumeric characters (e.g. commas, colons, slashes, parenthesis, spaces, etc.) from the contents of the fields. For example, the Feature Carried Over field in a removed record could read as SH62 NB, and in the added record it might read as $\mathrm{SH} 62(\mathrm{NB})$. This is the same information, nevertheless without the algorithm it would have not been considered as a match and a null weight value would have been assigned, decreasing the certainty of an exact match.

The weights, the total match value ranges and certainty descriptors were proposed based on the observations made on the BRINSAP databases and the understanding of maximizing the matching process. The "weighted optimization" procedure was integrated in the program CompareBRG. Appendix D shows the reports for the counties in Houston district.

Table 4.1 Weighted Optimization Table to Find Replaced/Rebuilt Bridges by Comparing the BRINSAP List of Removed Bridges to the List of Added Bridges.

MATCHVALLERANGES ANDASSOCATEDDESCRPIORS

| 200 | 225 | 3755400 | 525550 |
| :--- | :--- | :--- | :--- | :--- |
| | UNORRTAN | POSSELE | EXACT |

Identification of Bridges transferred from Off- to On-System and Vice Versa

The identification of bridges with jurisdiction transfer, from On- to Off-System and Off- to OnSystem, also presented some problems while comparing the records. The main reason for this is that Off-System bridges have Control numbers and Section numbers different to the On-System bridges. The structure numbers may sometimes be different, nevertheless it is also assumed that for a bridge assigned to the Off-System the geographic location description and the original geographic coordinates should simultaneously and exactly match in the corresponding fields of both a removed record and an added record. Therefore, the weighted optimization process was employed with a few minor differences.

Table 4.2 illustrates the individual and combined weights assigned to the fields according to the following assumptions:
a) If an added bridge record corresponds to a bridge transferred from one jurisdiction the other, the original geographic coordinates (in degrees-minute format) entered in BRINSAP should match. A weight of 1.5 is assigned if either fields match; if either field does not match a weight of 0.0 is assigned; nevertheless if neither fields match, a total combined weight of -1.00 is assigned. In this case, these are the primary fields of importance in the matching process.
b) Following in the order of importance are the description of the Feature Crossed and the Facility Carried. The weight values are assigned according to the following scenarios:

1. If both the Feature Crossed and the Facility Carried match, a weight value of 1.00 is assigned to each.
2. If the Feature Crossed between records match but no match is found with the Facility Carried, then a weight of 1.00 is given to the Feature Crossed and a weight of -0.25 to the Facility Carried);
3. In contrast, if the Feature Crossed between records do not match and the Facility Carried do, the corresponding weights assigned are -0.25 and 1.00 .
4. If neither fields match, the total combined weight is -1.00 is given.
c) The last field compared is the description of the Location. If a match is found, a value of 0.50 is assigned, otherwise, a value of 0.00 is assigned.

As with the replaced/rebuilt bridges, the individual weights are added and a total match value is determined. The total match value may vary between -2.00 and 5.50 according to the scenarios shown in Table 4.2.

Again, four descriptors are used to describe the degree of certainty of the record's match. Nevertheless, three different range scales are used to classify the total match values. The subclassification of match values is based on three matching scenarios with respect to the original geographic coordinates:
a) when both coordinates (longitude and latitude) match simultaneously;
b) when either coordinate (longitude or latitude) matches and the other one does not; and
c) when neither coordinates match.

The subroutine to eliminate non-alphanumeric characters was again utilized to enhance the matching process. The weights, the sub-ranges were proposed as before aiming at the maximization of the matching process.

Interchanged location information:

It was also observed that sometimes only the description information corresponding to the Facility Carried Over and the Feature Crossed fields of a removed record was interchanged in the description of a bridge in the added record list. This situation suggests that the information may have been originally wrong and was corrected, meaning that the bridge record was originally considered as an overpass and may have been corrected to an underpass or vice versa. When this situation was encountered, the record was treated as one lacking matching information (refer to Appendix D, Harris county report, compare record 121020011005129 in list of added records with record 121020011005089 in list of removed records).

Table 4.2 Weighted Optimization Table to Find Bridges Transferred from On- to Off-System and Vice Versa.

CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

This report documented the progress of activities undertaken in Texas Department of Transportation Study 0-1823 towards the development of an automated routing system for overweight and oversize vehicles on the On-System highways. Chapter 1 included an introduction to the oversize/overweight routing problem in the State of Texas and an overview of the background work.

Chapter 2 of summarized the work accomplished by correcting for the bridge locations of all the bridges located on the On-system highways. The correct bridge location on the routing software is one of the most critical elements for the functionality of the software. The BRINSAP database includes geographic longitude and latitude coordinates that have been entered into the database without a quality control procedure. As a result, some of the coordinates are incorrect and of low accuracy. The proper location for each bridge in the State of Texas was corrected and/or verified using a computer procedure that places the bridges on the proper road segments depicted in geographically accurate maps. The bridge location correction process was applied to all 25 Districts of the TxDOT. Chapter 2 includes summary tables of the observations made during the correction for the bridge locations.

Chapter 3 of this report includes a description of improvements incorporated into the GIS routing program. These improvements consist of:
a) A procedure to include turn-penalty information (the inability of large trucks to make sharp turns).
b) A procedure to select routes for heavy vehicles where the capacity of the bridges along the routes is maximized, and
c) A procedure to partition a network in order to speed-up the computation time to determine routes.

The main purpose of these improvements was to accommodate realistic situations, such as highway construction, traffic congestion, unsafe turns, unfeasibility of some turns, and other limitations frequently encountered by the user in issuing overweight/oversize vehicle routing permits.

Chapter 4 addresses the issue of updating the GIS information in the routing software to maintain the system current with the latest information of the On-System Roads and Bridges. The problem arises because TxDOT Design Division and Mapping Office periodically update and modify BRINSAP and the Roads databases as well as the digitized County Urban Maps. These changes, of course, are natural consequences of the routine growth of the highway system to satisfy new traffic demands as well as bridge inspection and management programs in the State. These changes, however, must be accounted for in the GIS routing maps and databases for a proper accountability of the actual highway system.

All the work accomplished in this project and in Project $0-1482$ has resulted in operational software that can be used for the routing of overweight/oversize vehicles avoiding inadequate bridges and clearances. The TransCAD version of the software is being tested in the Motor Carrier Division and the Design Division, who are the intended customers.

Appendix A of this report includes an installation guide. Appendix B includes a User's Manual.

5.2 Future Work

During the second and last year of this project, the routing program and GIS information databases will be converted to Arc/View. This is required for the software to be compatible with TxDOT's "core" GIS technology. Independent to this research, TxDOT's GIS office adopted to exclusively use the Arc/Info and Arc/View GIS products.

REFERENCES

[1] Texas Administrative Code, 1992 Supplement, West Publishing Co., St. Paul, MN, (1992).
[2] P.B. Keating, et al., "Overweight Permit Procedures." FHWA-TX-93-1266-4F, Texas A\&M University, College Station, TX. (1993).
[3] R.A. Osegueda, et al., "Towards the implementation of a Bridge Load Formula using BRINSAP", FHWA-TX- 1266-2, The University of Texas at El Paso, TX. (1992).
[4] R.A. Osegueda, et al., "Heavy Load Vehicle Routing using Highway Network Models and Bridge Load Formula", FHWA-TX- 1266-3, The University of Texas at El Paso, TX. (1993).
[5] P.B. Keating, "Overweight Permit Rules," Research Report 1433-IF, Texas Transportation Institute, Texas A\&M University, College Station, TX. (1994).
[6] R.A. Osegueda, et al., "Development of Automated Routing of Overweight/Oversize Vehicle System for Houston District," Report TX-96-1482-1, The University of Texas at El Paso, TX, April 1997.
[7] R.A. Osegueda, et al., "Automated Route Evaluation of Overweight/Oversize Vehicles," Report TX-96-1482-2F, The University of Texas at El Paso, TX, October 1998.

APPENDIX A

OVERWEIGHT/OVERSIZE VEHICLE ROUTING SOFTWARE INSTALLATION GUIDE

This guide assumes that the user has basic knowledge about computers. This knowledge includes use of Windows 95 or NT 4.0 operating systems as well as basic functions such as Copy, Paste, and the ability to create New folders '.
NOTE: It is strongly recommended that the user become familiar with all the steps listed in each section of this guide, before actually carrying them out.

A. MINIMUM HARDWARE REQUIREMENTS

IBM PC or compatible with:
a) Pentium processor 150 Mhz or greater
b) 32 MB of RAM (128 MB recommended)
c) 2 GB Hard Disk (1GB of free space recommended)
d) VGA monitor
e) CD-ROM drive
f) 3.5 " high density (1.44 MB) floppy disk drive
g) Windows 95 (recommended) or Windows NT 4.0 operating system
h) Microsoft Mouse or compatible
i) Iomega Zip drive (for 100 MB zip disks)
j) Printer (optional, recommended)

B. SOFTWARE REQUIREMENTS

k) TransCAD 3.0 Base (assumed commercial License) with hardware key

1) WordPad and Microsoft Word applications (included with Windows)
m) Installation zip disk (provided by UTEP with required files)

C. OVR PROGRAM FILES (Included in zip disk)

The following lists folders and files that contain geographic features, databases, help files and examples of the OVR program. Some of the geographic files included in this zip disk are NOT required to run the program. Files with BOUNDARIES, STREETS, SYMBOLS are examples of non-required files that should be kept for future reference, since they contain information that help identify geographic features.

The zip disk has three main folders: Macros, MergeTx and Winzip. The MergeTx folder contains eleven subfolders with zipped files and text files.

- Macros folder:

Ovr.rsc
: text file containing the OVR routing program code.

- MergeTx folder:

Boundary folder:
boundcdf.zip : zip file with political BOUNDARIES, NOT required

Brinsap folder:
brncdf.zip
: zip file with BRINSAP database and geographic files

Help folder:
helpovr.txt
Maps folder:
<empty>
Networks folder: TEXAS.NET

Readme folder: OVR_install OVR user

Reports folder: 9 text files

Roads folder: roadscdf.zip

Streets folder: streetsscdf.zip

Symbols folder:

 symbolscdf.zipVeh_lib folder: $<\overline{1} 6$ text files>

- Winzip folder: winzip95 ReadMe
: text file with HELP information to run the OVR program
: user will create a MAP file and save here
: road network file required for generating routes in TransCAD. User may have to regenerate this file once more and replace the existent one.
: Microsoft Word Document, "the file you are viewing."
: Microsoft Word Document, OVR user's guide
: sample REPORTS from OVR trials with varying results
: zip file with ROAD database and geographic files
: zip file with STREETS, NOT required
: zip file with bridge SYMBOLS, NOT required
: sample files of different VEHICLE configurations
: application file to install WINZIP
: text file with HELP instructions to install winzip

The setup for the geographic files requires approximately 55 MB of disk space. If you need to install Winzip, it will require an additional 2 MB of disk space.

The zipped files with the cdf suffix contain the geographic files in "Compact format". This format does not allow modifications to the files. The zipped files contain the geographic files that will be used to generate the map and the network file as well as run the OVR program.
When the cdf zip files are extracted, three files with names matching the parent folder should be placed into their corresponding folders. The three files have the following extensions: bin, channel file and dcb.

D. INSTALLATION OF REQUIRED GEOGRAPHIC FLLES

The computer must be turned on and logged into Windows, with the zip disk connected and properly installed to the computer. You must also have the Winzip program installed in order to unzip the required files from the zip disk. If you DO NOT have Winzip installed, refer to section E of this guide.

NOTE: Before attempting to install the files, it is strongly suggested that a backup copy of the zip disk is made.

The following is a step by step procedure to install the geographic files in order to run the OVR application:

1. Using Explorer, select and copy all the folders and files from the zip disk.
2. Choose a drive in your computer (C, D or any other) and paste the folders and zipped files included in the zip disk onto the selected drive. After copying, unzip them using the Winzip program.
It is recommended that you choose the root directory of the selected drive to facilitate file selection. This step will take between 10 to 20 minutes to complete.
3. Once all the folders and corresponding files are copied to the chosen directory, the next step is to unzip the zipped files.
4. In this step it is assumed that the computer already has Winzip installed. Double click on the files "xxxxxcdf.zip" to extract into the corresponding folders. For example, double click on the file "boundcdf.zip", click the "I agree button", select all files, then click the "Extract" button. Choose the folder "MergeTxlboundary", then click the "Extract" button. Wait a few seconds until the extraction process is completed. Similarly, follow the same steps for the other "xxxxxcdf.zip" files.
5. Once all the "xxxxcdf.zip" files have been extracted, the setup of the required geographic files is complete. The additional text files and net file should have been copied automatically as described in steps 1 and 2 .

E. WINZIP INSTALLATION

Refer to the Readme text file included in the Winzip folder, and follow the instructions to install Winzip.

F. TRANSCAD SOFTWARE INSTALLATION ${ }^{2}$

The following steps are a guide to install TransCAD GIS software, assuming it is being installed from a CDROM. The setup of TransCAD software requires approximately 37 MB of disk space.

When installing under the Windows NT 4.0 environment, the software must be installed from the administrator account; otherwise, it will not be able to run after installation.

1. Place the "hardware block" key in the first parallel port on the back of the computer's CPU. Insert the "hardware block" key with care to avoid damaging the pins.
If another device is connected to this parallel port, disconnect it, connect the "hardware block key" and connect the device back again on top of the hardware block key. This should not create any conflict whatsoever.
2. Place the TransCAD version 3.0 Program CD in the CD-ROM;
3. Go to Start/Settings/Control Panel and choose the Add-Remove Programs icon, double click on it;
4. Click the "Install" button and then the "Next" button. Windows searches for the corresponding CD drive and displays the setup executable file in the edit box.
5. Click the "Finish" button to start the installation. Windows with several options will appear on the screen and guide you through the installation.
NOTES:
a) Select Base TransCAD (this is the "assumed "commercial license)
b) Select Single-User installation
c) Choose any directory where you want to install TransCAD (the default directory is suggested)
d) Speed-up files are optional and are not required to run the OVR program.

Wait a few seconds until TransCAD is completely installed, then re-start Windows or reboot your computer, before running TransCAD.

Go to StartPrograms $\$ TransCAD \backslash and/or choose the TransCAD icon to start the application.
For more information on how to install TransCAD GIS software refer to Chapter 1, page 12 of the TransCAD User's guide.

G. OVR PROGRAM INSTALLATION

It is STRONGLX SUGGESTED that before installing and using the OVR program, the user should get familiar with TransCAD.

Customized programs or macros can be incorporated or added into TransCAD as compiled resource files to facilitate their distribution. Compiled resource files must be stored in a special database called user interface (U1) database. The name of the resource file containing the Overweight Vehicle Routing (OVR) macro is ovr.rsc (the .rsc extension is required), which can be found in the Macros folder.
This resource file should be copied from the Macros folder to the folder where TransCAD is installed (i.e. c : Itcw). Then the resource file ovr.rse must be compiled into a separate, stand-alone UI database with the name ovr0001.dbd, which must also be stored in the TransCAD folder.
To install the OVR program as an Add-in macro in TransCAD, conduct the following steps for the initial time only:

1. From the Tools menu, choose Add-Inns to display the Add-Ins dialog box; then choose GIS Developer's kit and click OK. The GISDK toolbox will appear on the screen.
2. Click on the third button (from left to right) of the GISDK toolbox, the one with the help pop-up message "Compile to UI" showing just bellow the button; then the Compile to UI Database dialog box appears.
3. Choose the ovr.rsc file from the TransCAD folder (e.g. celtew) in your computer and click OK.
4. Then the Save As dialog box displays on the screen prompting for a path to create the UI database. Choose the standard product folder (i.e. c:ltcw) or where TransCAD is installed and then enter for a name "ovr0001.dbd" and click OK to compile the file.
5. Again from the Tools menu choose Add-Inns to display the Add-Ins dialog box; click on Setup to display the Setup Add-Ins dialog box.
6. Click Add to create a new add-in, and click Macro in the radio list.
7. Type "Overweight Vehicle Routing" in the Description box.
8. Type "ovr" in the Name box.
9. Type "ovr0001" in the UI Database box.
10. Click OK to install the add-in and return to the Add-Ins dialog box.
11. Click Cancel to exit the Add-Ins dialog box. The OVR macro is now incorporated into TransCAD.

NOTE that "ovr" and "ovr0001" are case sensitive.
To run the OVR program see section \mathbf{J} located later in this guide.
For more information on how to install Add-ins in TransCAD GIS software refer to Chapter 2, page 11 of the GISDK Programmer's Guide.

H. CREATE/LOAD A MAP FILE

TransCAD organizes geographic information in a map into layers. Each layer is a group of features of the same type, such as roads, streets, bridges, political boundaries, etc.

The OVR program requires only two layers to be included in a map, the ROADS line layer with its corresponding Endpoints layer, and the BRINSAP point layer,

The following steps will aid in the creation of a map:

1. Open TransCAD application.
2. Choose File/Open and set List Files of Type to Geographic File, then find the ROADS.cdf file in the directories box (e.g. c:MergeTx\Roadsicdftroads.cdf) and select it. Either double click on it or click OK to load in into the workplace and view it on the screen. Wait a few seconds until the geographic features are completely loaded.
3. Then choose Map-Layers to display the Layers dialog box. Click Add Layer to display the File Open dialog box.
4. Choose Geographic File as the File Type and choose BRINSAP.cdf as in step 2. To add this layer to the map and retum to it, click Close on the Layers dialog box and the map will automatically be updated with the selected layer(s).
5. To Save the map choose File/Save As and select from the save as dialog box the Map file type and type any name (e.g. Texas.map); save the map under the MergeTx/maps/ folder, then click the OK button.

You may add other layers such as: the boundary layer, the streets layer or bridge symbols layer using the steps mentioned above. These last layers are not required to run the OVR program.

Furthermore, the map does not need to be created every time to run the OVR program, unless different maps with different layers included are desired. Next time any existing map needs to be opened, choose File/Open and set List Files of Type to Map File, then find the corresponding Maps folder and choose the map file to be loaded.

To learn more about layering features on a map refer to Chapter 4, page 65 of the TransCAD User's guide.

I. GENERATE A NETWORK FILE

To generate a shortest path between an origin and a destination from a map containing a road line layer, TransCAD requires a network file that stores important characteristics or features of the roads and/or the transportation system. To create a network file, a map file must be loaded into TransCAD and the corresponding ROADS line layer must be selected from the drop-down list on the toolbar to "activate it". Afterwards, the network can be generated following the next steps:
a. If the Networks/Path menu is not displayed, choose Procedures-Networks/Path
b. Choose Networks/Path -Create to display the Create Network dialog box.
b. From the Create links drop-down list, choose Entire line layer.
c. From the Optional Fields-Other Link Fields scrolling list, select everything by using the Shift-Click combination.
d. Click OK to display the Save Network As dialog box.
e. Choose the MergeTx/Network folder and select the Texas.net as the file name. Click OK. Accept the number of links TransCAD will use to generate the network and wait a few seconds until it is generated. TransCAD creates the network file, and makes it the currently active network. The name of the active network is displayed in the status bar at the right bottom of the screen.

To learn more about networks refer to Chapter 9, page 167 of the TransCAD User's guide.

J. RUN THE OVR PROGRAM (MACRO)

To run the "Overweight Vehicle Routing" macro, TransCAD should be opened. From Tools choose Add Inns and then, choose Overweight Vehicle Routing from the list and click OK. The macro should run as expected. If a map was not previously loaded, the macro will prompt for one.

For a general overview on how to run the OVR program, see the OVR user's guide in the Readme folder copied to your computer. The guide is entitled "OVR_user.doc" This guide is an excerpt from Chapter 3 of Progress report 1482-2F.

For a more detailed guide on running the OVR program, see the customized help file entitled "helpovr.txt". This file can be accessed in two ways:
a) from explorer, find the file under the MergeTx/help/folder, select the file and double click on it to open it with WordPad,
b) having the OVR program running in TransCAD, from the OVR main toolbox, click on the "Help" button to access it.

NOTES:

1) After running the OVR program and clicking on "Find Path" button, two outcomes are possible. One is that the program did not find a path between the selected points. The other one is that it did find a path and it was displayed on the map with a highlighted line.
To delete a line representing the path, do the following:
a) click on the "Pointer tool" button in TransCAD's Toolbox, and notice that the pointer icon changes to a cross within the scope of the map;
b) then select the highlighted line with the mouse pointer and press the Delete key. The highlighted line should disappear from the map.
2) The map can be closed with or without saving the map. The map can be saved with different name other than the original. It is recommended that the new maps should be saved under the folder MergeTx/maps
3) To QUIT the OVR program after nunning it, close the OVR main toolbox by clicking the small dash icon on its upper-left hand corner and choose Close.
[^0]
APPENDIX B

OVERWEIGHT/OVERSIZE VEHICLE ROUTING PROGRAM USER'S GUIDE

B. 1 Summary

This chapter consists of a description of the current GIS-based overweight/oversize vehicle routing program. The program has been incorporated within the TransCad GIS software. It consists of a network representation of the On-system highways according to TxDOT's official base maps. The links of the network are interconnected to simulate allowable traffic flows and represent an accurate model of interchanges, overpasses and underpasses. The TxDOT's ROADS database, originally assigned to the centerlines, has been used to build the attributes of the road segments. The corrected locations of the BRINSAP's bridge geographic coordinates were used to attribute the bridge identifications to the corresponding links (representing road segment) that the bridges are located on. This permits the identification of bridges along routes and the access to the BRINSAP records as a function of the traveled route. The routing model was incorporated as a macro within the software. The user specifies the characteristics of the vehicle, to include weight and dimensions, and the program finds a shortest-path route bypassing bridges with insufficient clearances or weight capacity, according to the TAC requirements and/or TTI's Bridge Load Formulae. This chapter includes a description of the software.

B. 2 Software Overview

In order to execute the routing software, the program requires (a) a commercial license of the TransCad GIS software, (b) a GIS map containing a three layers (Roads, BRINSAP, and Endpoints) and (c) an existing road network file created from the ROADS layer, including all links and endpoint information. The GIS map includes (1) the Roads layer which defines the On-system highway network with an associated roads database, (2) the BRINSAP layer providing access to the records of the On-system bridges, and (3) the Endpoints layer which define the nodes and links in the road layer. The Endpoints also correspond to the origin and destination points of travels. To properly execute the software, it is necessary first to become familiar with where the required files are located. The locations of the files are indicated below.

Type of Files	Location
GIS maps	<drive>:\mergetx\maps*.map
Network files	<drive>:\mergetx\networks*.net
Roads layer	<drive>:/mergetx\roads/*.cdf
Endpoints layer	<drive>:/mergetx\roads*.pts
BRINSAP layer	<drive>:\mergetx\BRINSAP ${ }^{*}$.cdf
Vehicle Description (Input files)	<drive>:\mergetx\veh_libl*.veh
Output Routing reports	<drive>:\mergetxlreports*.out
Help file	<drive>:\macros\helpovr.txt
OVR macro program	<drive>:Itcwlovr.rsc

B. 3 Opening and Running the Routing Program

First, Open TransCad from the Desktop or the Start programs menu. Once in TransCad open the GIS map file associated with the desired Texas On-system highway network. These files have the extension of *.map. By opening the "map" file, the software automatically loads the files associated with the geographic features of the maps. That is, the roads, BRINSAP and the endpoints.

To invoke the routing program, from the software select "tools" and "Add-Ins" and then select the "Overweight Vehicle Routing" (OVR) option from the dialog window. If this step is done before a map is opened, the macro will request for a GIS map to be opened. Upon successful selection of the OVR macro, a toolbox appears in the computer screen with 10 buttons that control the execution of the routing process. This toolbox is shown in Figure B.1. The general flow of execution is from top to bottom of the toolbox.

Figure B.1. OVR Macro, Main Toolbox.

B. 4 Reading a Network file and Selecting an Analysis Algorithm

Once a map is selected and the OVR macro has been invoked, a Network file must be selected. This file must have been previously created and contains the description of the working network associated with the map. By clicking on "Read Network File", a dialog box appears prompting the user to select an existing road network file. A message is displayed at the bottom of the screen indicating that the file is being read. When finished, a message appears on the screen. Click "OK" to continue.

Next the analysis algorithm must be selected. Clicking on the "Analysis Algorithm" button allows displays a new dialog box. Two choices are available: "Shortest path" and the "Maximum capacity route". The shortest path algorithm finds the shortest path between any number of points (using the Select Path Points button) that satisfies the vehicle's vertical and horizontal constraints, as well as the vehicle's weight. The "Maximum Capacity route" algorithm is not yet available but will be later implemented. Figure B. 2 illustrates the dialog boxes for reading the network file and selecting the algorithm.

Figure B. 2 Dialog boxes for reading the network file and selecting analysis algorithm.

B. 5 Vehicle Information

The next step consists of entering or reading into the program the vehicle characteristics. Two options are available: (1) read the vehicle information from an existing file, or (2) enter a new vehicle description or modify an existing file. The first option is accomplished by clicking on the "Read Vehicle Data" button. A dialog box appears prompting the user to select an existing text file with the vehicle information. This existing files must have been created by pressing the "Save Vehicle Data" button. To select a file, choose the drive and subdirectory where the vehicle file is located. Then, click "OK" or double-click on the file name. When the program has finished reading the file, a message appears on the screen saying: "Finished reading vehicle information". Click "OK" to continue.

The second option permits to enter a new vehicle description or to modify an existing description. Pressing the "Edit Vehicle Data" button does this. A dialog box appears prompting the user for the "Initial data" pertaining to the vehicle description. This initial data include vehicle model, type, nominal capacity, height, width, total number of axles and an impact factor associated to the speed at which the vehicle is expected to cross the bridges. The vehicle's total number of axles includes the tractor's axles as well as the trailer's. The parameters in these boxes are initially blank when the second option is selected. The impact factor should be selected between three options $0 \%, 10 \%$, or 30%. If a vehicle is assigned an escort, or if the velocity is limited, then an impact factor of 10% is recommended. If the vehicle has no monitoring or velocity restrictions, an impact factor of 30% is suggested. The default impact factor value is 10%. After entering this information, click "OK" to continue. The program is now ready for a
description of the vehicles' axle configuration and prompts the user to update the axle individual information. If "Yes" is selected, then a new set of dialog boxes appears on the screen to provide the individual axle description. The axle information consists of distance from the previous axle (zero for the first axle), total axle weight, number of tires in the axle, axle gage, and tire width (all tires per axle are assumed to have the same width). The axle gage is the distance measured between the centers of gravity of the two tire groups.

If a new vehicle description has been entered or an existing description modified, the information can be saved by clicking on the "Save Vehicle Data" button.

Figure B. 3 illustrates a super-heavy vehicle for which an overload permit was requested at the MCD. The vehicle's total weight is 648 tons. Figure B. 4 illustrates the dialog boxes related to the "Read Vehicle Data" and the "Edit Vehicle Data" buttons. The values in the input boxes pertain to the vehicle in Figure B.3.

Figure B. 3 A super-heavy vehicle, 648 -ton capacity, 27 axles.

Figure B. 4 Illustration of Dialog Boxes related to vehicle description.

B. 6 Selection of Path Points

The route selection for the OVR macro to determine starts by the definition of the origin and destination and optional intermediate points. Clicking on the "Select Path Points" button of the main toolbox does this. When this button is pressed, the Endpoints layer is automatically activated and the user can select an unlimited number of "end" points to define the desired route. When selecting an endpoint, the user needs to use the zoom capabilities of software in congested areas. The first point selected is the origin; the last point is the destination. Any other point is considered as intermediate points (stopping points). If a mistake is made in selecting a point, the "Deselect Previous" button can be pressed to delete the previous entry. If mistakes are made in selecting various points, the user can delete the entire set of points by pressing "Deselect Path". Figure B. 5 illustrates the selection of path points.

Figure B. 5 Illustration of selection of path points to define routes.

B. 7 Determination of Route

After selecting the path points, the user needs to press the "Find Route" button to invoke the OVR routing algorithms. This displays a dialog box prompting for the selection of an existing output file or the creation of a new output file. This file is the routing report summarizing the input, the route description, the feasible route found, and the bridges that need to be avoided due to clearances and weight restrictions. Immediately after the output file is selected or entered, the program starts running.

Several "status bars" may appear on the screen reporting two stage indicators, the possible route number being tested, and the restrictions being tested on the bridges of the current route. If an underpass bridge is encountered it checks for both vertical and horizontal restrictions. If a bridge is to be crossed over, horizontal restrictions are checked, in addition to weight capacity. The
status bars indicate the progress of the checks in terms of percentage checked for each possible route found.

In addition to the status bars, some links are highlighted with different colors. This indicates that the links have been disabled. Links disabled by vertical constraints are highlighted in pink. Those disabled by horizontal constraints are highlighted in violet. Links disabled by weight constraints are highlighted in red. Links disabled due to missing information in the BRINSAP database are highlighted in yellow.

When the routing macro finishes the route searching process, two possible outcomes can be expected: (1) A route was found that meets the clearance and weight criteria, or (2) a route was NOT found for the specified vehicle and routing points. In either case, a final report is generated. When a route is found, it is displayed in the computer screen. Figure B. 6 shows a route that was determined for a vehicle using the path points shown in Figure B.5.

Figure B. 6 Feasible route found for an overweight vehicle.

A typical report is illustrated in Figure B.7. This report is automatically launched using NOTEPAD so it can be viewed. First a "Vehicle description" section is found at the beginning of the report. In addition the computed center of gravity of the total vehicle load is also included. Then follows the selected route input consisting of the points selected on the map. In addition, the program generates a verbal description of the input points.

Next, the actual route description (if found) is reported by TransCad with headings, highway ID's, mileage, and the cumulative mileage. If a route was not found, the possible reasons are reported in the following sections. Whether a route was found or not, the report includes a list of bridges that might have been avoided due to the different restrictions encountered during the routing search. The total number of routes tested by the OVR macro, before a final result was reached, is also reported.

The following sections can be found if some bridges were avoided due to the several constraints encountered. Each section is classified according to (a) Bridges avoided due to vertical clearance constraints, (b) Bridges avoided due to horizontal width constraints, (c) Bridges avoided due to weight capacity constraints, and (d) Bridges avoided due to missing information in BRINSAP database. For all the classifications, the report includes the bridge structure number according to BRINSAP, the unique numerical link ID where bridge is located (for TransCad), Highway ID and heading (if available), and the specifics on the pertaining constraints. For example, for (a) above, the report includes the limiting vertical under-clearance in BRINSAP; for (c) information regarding axle groups, allowable vs. Actual axle group weights, axle group IDs, and bridge load formulae under which the axle groups failed, are listed. For item (d) the report list the missing BRINSAP information (i.e.: operating rating, total number of spans, total structure length, maximum span length, vertical under-clearance, or total horizontal clearance). Finally, the report lists the elapsed time that the computer took in determining a route. The report can be closed without having to save it.

Figure B. 7 Typical Routing Report

APPENDIX C

OVR MACRO ROUTING REPORT ILLUSTRATING APPLICATIONS DISCUSSED IN CHAPTER 3

Output Report Generated from Application 1
 **

Overweight/Oversize Vehicle Routing Report **Maximal-Capacity Route**						
*** Vehicle Description ***						
Model ; Scenario 3 (228)						
Type : Horizontal load						
Nominal Capacity: 128 kip						
Helght (ft\| in) ; 15	4					
midth (ft\|inl: $15 \mid 4$						
Number of Axles: 5						
Impact	: 10					
Axild	Dist.prev,axl(ft)	Weight/axl (kips)	No.tines	Gage (ft)	Tire_width(in)	
01	00.000	000020.000	2	06.000	12	
02	14.000	000020.000	2	06.000	12	
03	04.000	000035.000	2	06.000	12	
04	24,000	000035.000	2	06.000	12	
05	04.000	000035.000	2	06.000	12	

Vehicle's Center of Gravity from the lat axle is $w 0027.52 \mathrm{ft}$
End of Vehicle Description
Route Description

Geographic Coordinates (Degrees)			on Road Link (s)		Highway ID	
	Longitude	Latitude	(10 11	(ID 2)	(1)	(2)
Oxigin	-095.977194	029.679739	12000010053	12080010005	FM1093	FM1093
Destination	-095.389066	029.539991	12080010248	12080010140	UA0090	FM1952

Start	South on	EM1093	4.77	Miles	14.7\%	Miles)
Continue	zast on	FM0359	3.26	Miles	18.03	Miles)
continue	East on	\%M1093	4.22	Miles	122.25	Miles)
Tumn might	South on	\$10099	12.42	Miles	124.67	Miles)
Contanue	South on	EM2759	1.94	Mides	126.61	Miles)
Turn Right	West on	FM0762	4.07	Milles	130.68	Miles)
Turn left	South on	FM1640	3.10	Miles	133.78	Miles)
Turn Right	North on	SH0036	0.07	Miles	(33.85	Miles
Turn Left	West on	UA0090	0.65	Miles	(34.50	Miles
Continue	West on		9.15	Miles	(43.65	M1
continue	west on	UA0090	1.16	Miles	(44.81	Mi

Total number of unconstrained routes tested before final mesult $=9$
End of Route Description
** Links disabled and Bridges avoided due to vertical clearance constraints **
Total number of bridges evaluated for vertical clearance -38
No links were disabled and no bridges were avoided due to vertical clearance
*** End of links disabled and bridges avoided due to vertical clearance constraints ***
** Links disabled and gridges avoided due to horizontal width constraints ***
Total number of bridges evaluated for hoxizontal width $=\mathbf{2 4 2}$
No links were disabled and no bridges were avoided due to horizontal width
*** End of links disabled and bridges avoided due to horizontal width constraints ***

The eapacity of the resulting route $\mathbf{m} 30.201017$
*** Links disabled and Bridges avoided due to welght capacity constraints ***
TAC restrictions were not satisfied
Total number of bridges evaluated for welght capacity 95

CountyRDID	Highway	Heading	BridgeId	Allow Gw (kips)	Actual_GW(kips)	Ax1s/Grp	15t_6ypaxim	bla not met
12080010052	5M0723	--------	120800018809027	000054.510	000145.000	002	004	Genezal
12080010141	5M0762		120800054303013	000067.426	000145.000	002	004	General

Total number of bridges avoided due to Etf General = 2
Total number of bridges avoided due to BLF Specific 0

Countymbrd	Highway	Heading	Eridgeto	Capacity (kips)
12020020213	SH0036		120200018803009	0023.06
12020010102	EM1462		120200141404013	0010.28
12080012378	050059	south Bound	120800002712137	0008.14

| 12080012364 | US0059 West Bound | 120800002712139 | 0010.28 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12080010035 | FM1489 | West Bound | 120800141803005 | 0005.00 |
| 12080012420 | UA0090 Wes | | 0002708271 | 0027.50 |

*** End of 1 inks diabled and bridges avolded due to weight capacity constraints **
*** Links disabled and Eridges avolded due to missing lnformation in BRINSAz database ***
No links were disabled and no bridges were avoided due to missing information in arinsap database
** End of links disabled and bridges avoided due to missing information in BRINSAP database ***

- ---- End of Report -m-

Time elapsed 00 h 01 m 34 s
**

Output Report Generated from Application 2

Overweight/Oversize Vehicle Routing Eeport
Shortest Route

Model : Seenario 3 (120)						
Type	: Horizon	al Load				
Nominal Capacity: 128 kip						
Height [ft\|inj: 1514						
width (ft \| in): 15	4					
Number of Axles : 5						
Impact	: 10 \%					
AxIID	Dist.prev.axl(ft)	Meight/axi (kips)	No. Tises	Gage (${ }^{\text {ct) }}$	Tiremidth (in)	
01	00.000	000020.000	2	06,000	- 12	
02	14.000	000020.000	2	06.000	12	
03	04.000	000035.000	2	06.000	12	
04	24.000	000035.000	2	06.000	12	
05	04.000	000035.000	2	06.000	12	

Vehicle's center of Gravity trom the 1 st axle is = 0027.52ft
nd of Vehicle Desexiption

Total number of routes tested before final resuit - 2
End of Route Description*
*** Links disabled and Bricges avoided due to vertical clearance constrants *** Total number of bridges evaluated for vertical clearance $=0$
No links were disabled and no bridges were avoided due to vertical clearance
*** End of links disabled and bridges avoided due to vertical clearance constraints ***
*** Links disabled and Eridges avoided due to horizontal width constraints *** Total number of bridges evaluated for horizontal width -15
No links were disabled and no bridges were avoided due to horizontal width
*** End of links disabled and bridges avoided due to horizontal width constraints ***
*** Links disabled and Bridges avoided due to weight capacity constraints ***
TAC restrictions were not satisfled
Total number of bridges evaluated for weight capacity = 11

Total number of bridges avolded due to ELF General m 1
Total number of bridges avoided due to BLF specticic m o
*** End of links disabled and bridges avolded due to weight capacity constraints ***
*** Links disabled and Bildges avoiced due to missing information in BRINSAP database **
No links were disabled and no bridges were avoided due to missing information in ERINSAF database
*** End of links disabled and bxidges ayoided due to missing information in Brinsar database ***
--.-- End of Report -m.
Time elapsed 00 h 00 m 37 s

Output Report Generated from Application 3
 **

Overweight/Oversize Vehicle Routing Report
*** Vehicle Description ***

Model : Scenario 3 (128)					
Nominal Capacity: 128 kip					
Height (ft l in) : 1514					
Width (ft l in) : 1514					
Number of Axles : 5					
Impact : 10%					
Axlid	Dist.prev.axi(ft)	Weight/axl(kips)	No.Tires	Gage (ft)	Tire_Width(in)
01	00.000	000020.000	2	06.000	12
02	14.000	000020.000	2	06.000	12
03	04.000	000035.000	2	06.000	12
04	24.000	000035.000	2	06.000	12
05	04.000	000035.000	2	06.000	12

Vehicle's Center of Gravity from the lst axle is = 0027.52ft
End of Vehicle Description

Total number of routes tested before final result $=1$
End of Route Description
*** Links disabled and Bridges avoided due to vertical clearance constraints *** Total number of bridges evaluated for vertical clearance $=4$
No links were disabled and no bridges were avoided due to vertical clearance
*** End of links disabled and bridges avoided due to vertical clearance constraints ***
*** Links disabled and Bridges avoided due to horizontal width constraints *** Total number of bridges evaluated for horizontal width $=20$
No links were disabled and no bridges were avoided due to horizontal width
*** End of links disabled and bridges avoided due to horizontal width constraints ***
*** Links disabled and Bridges avoided due to weight capacity constraints ***
TAC restrictions were not satisfied
Total number of bridges evaluated for weight capacity $=16$
No links were disabled and no bridges were avoided due to weight capacity constraints
*** End of links disabled and bridges avoided due to weight capacity constraints ***
*** Links disabled and Bridges avoided due to missing information in BRINSAP database ***
No links were disabled and no bridges were avoided due to missing information in BRINSAP database
*** End of links disabled and bridges avoided due to missing information in BRTNSAP database ***
----- End of Report

Time elapsed 00 h 00 m 05 s
** * * * * * * * * * * * * * * * * * * *

APPENDIX D

COMPARISON REPORTS OF OLD BRINSAP WITH NEW BRINSAP FOR HOUSTON DISTRICT

BRAZORIA COUNTY

170120200084703017 BRAZOS RIVER \& SH 332
176120200100301007 BASTROP BAYOU
120200816012009 MARYS CRK
251120200816012011 COWART CRK
252120200816012012 MARYS CRK BYPASS CHANN 253120200846312001 DRAINAGE D
254120200846812001 MUSTANG BY
255420200848812003 DRAINAGE D
258120200847312001 MUSTANG BYU 257120200870512005 OLD BRAZOS RI 258120200870512006 DRAINAGE D 259120200870512009 OLD BRAZOS RI 260120200870712001 SECOND ST 261120200875112001 OYSTER CRK 262120200875312001 OYSTER CRK

Total bridges REMOVED $=$

ID New bridges Feature Crossed
12587120200017803055 DRAINAGE DITCH 12631120200019202047 DRAINAGE DITCH 12632120200019202048 DRAINAGE DITCH 12633120200019202049 DRAINAGE DITCH 12634120200019202050 DRANAGE DITCH 2635120200019202051 DRAINAGE DITCH 2635120200019202051 DRAINAGE DITCH 2682120200059802204 FM 1462
12735120200100301020 BASTROP BAYOU 12766120200152401017 BRAZOS RIVER \& SH 332

Facility Carried OverLocation

FM0521	1MIIN.BRAZORIA TX.
FM 523	.5M1.S.OF FM523 \&FM2004
DIXIE FARM RD	2.60 MI NE OF SH 35
DIXIE FARM RD	0.90 MINE OF SH 35
DIXIE FARM RD	1,85 MI NE OF SH 35
MUSTANG RD	2.30 MIS OF SH 35
SOUTHST	0.10 MI W OF SH 35
W SOUTH ST	0.20 MIW OF JOHNSON ST
2ND ST	0.40 MIN OF SEALY PRK ST
VELasco blvd se	0.20 MIN OF 2ND ST
S VELASCO BLVD	0.10 Ml N OF SH 36
VELASCO blvo nb	0.20 Mi N OF 2 NDS ST
MPRR	0.35 M E OF FM 523
YAUPON ST	0.10 MIN OF OYSTER CR

15

Control Section MilepointLat(DM) Long(DM) Yr.Buil

847	3	855	29032	95334	1939.
1003	1	24964	29088	95225	1952.
8160	12	2600	30000	100000	1967
8160	12	900	30000	100000	1973.
8160	12	1850	30000	100000	1991.
8463	12	3900	30000	100000	1958.
8468	12	100	30000	100000	1986.
8468	12	1700	30000	100000	1970.
8473	12	450	30000	100000	1961.
8705	12	1300	30000	100000	1956.
8705	12	100	30000	100000	1982.
8705	12	1300	30000	100000	1956.
8707	12	1700	30000	100000	1947.
8751	12	1600	29033	95274	1977
8753	12	900	30000	100000	1956.

Facility Carried OverLocation

SH35	0.95 MI NE OF SP 28
SH 6	0.71 MIE OF SH 288
SH 6	1.26 MIE OF SH 288
SH 8	1.46 MIE OF SH 288
SH 6	2.22 MIE OF SH 288
SH 6	3.30 MIE OF SH 288
SH 288 SB	AT SH288 / FM1462 ${ }^{\text {NTER }}$
SH 288 NB	AT SH288/FM1462 ${ }^{\text {NTER }}$
FM 523	.6MLSE OF FM2004
FM 521	0.90 MIE OF SH 36

Control Section MilepointLat(DM) Lang(DM) Yr.Built Bridge Rep.

178	3	25791	29455	95210	1937	
192	2	3673	29288	95234	1995	
192	2	4218	29286	95229	1985	
182	2	4420	(rull)	(null)	1985	
182	2	5184	29283	95222	1995	
192	2	6259	29280	95212	1995	
598	2	16977	29206	95258	1996	
598	2	16977	29206	95258	1996	
1003	1	24864	29068	95224	1995	

120200M00750003 EXACT 120200 M 00750001 EXAC 120200 M 00750002 POS 120200000890001 EXACT 120200001180002 EXACT 120200001180003 EXACT 120200001100001 EXACT 120200 C 00490002 EXACT 120200000490001 EXACT $120200 \mathrm{C00490003}$ EXACT 120200 C 00380001 EXACT 120200800850001 EXACT 120200800265001 EXACT

FORT BEND COUNTY

1120800002706007 SAN BERNARD RI
14120800002708056 DRAINAGE D
78120800008909057 SAN BERNARD RI 188120800196501001 GUY CRK 203120800342201001 BIG CRK 232120800613212001 AMERICAN CAN 233120800813212002 OYSTER CRK 234120800813212003 OYSTER CRK 35120800813712007 DRAINAGED 33612000815312006 DRAINAGE D 12000081012001 KEEGANS BYU 120000817212003 DRAINAGED 33 120000817212003 DRAINAGED 239120800817212004 DRAINAGED 240120800880612001 RABBS BYU 41120800885512001 DRY CRK 242120800886112001 SEABOURNE CRK 243120800886412001 DRY CRK 244120800886612001 SEABOURNE CRK 245120800886812001 DRY CRK

Facility Carried Over Location
US 90A
US-90A(W.B.)
US 59 SB FM 199 PR 72 DULLES AVE DULLES RD NB DULLES RD NB D POLLES RD SB SPOST OAK RD FONDRENRD BELKNAP RD
WAIRPORT BLVD WB
WAIRPORT BLVD EB GOLFVIEW DR AIRPORT AV BLUME RD 4TH ST KLAUKE RD
LOUISE RD
3.90 MI W OF FM 1952
2.9 MI. SW OF SHG 0.60 MI SW OF FM 2919 0.30 MI NE OF SH 36 IN BRAZOS BEND STATE PARK .50 MI S OF US 90A 2.40 MI S OF US 90A 2.40 MI S OF US 90A .20 MI S OF COURT RD . 20 MIS OF CO LINE 0.75 MI OF CO 59
0.75 MI EOF 59 .30 MI NE OF THOMPSON .30 MI E OF LOUISE 1.30 MI S OF US LP 529 . 65 MI SOUTH OF FM 1640 1M W OF BAMORE RD 0.10 MIN OF AIRPORT AVE

Control Section Milepoint Lat(DM) Long(DM) Yr.Built

27	6	40050	29320	96032	1923.
27	8	23677	29361	95410	1943.
89	9	31719	29262	96010	1939.
1965	1	3577	29211	95464	1950.
3422	1	4443	29226	95359	1930.
8132	12	1800	30000	100000	1987.
8132	12	900	30000	100000	1986.
8132	12	900	30000	100000	1986.
8137	12	6500	30000	100000	1986.
8153	12	1200	30000	100000	1973.
8168	12	1000	30000	100000	1975.
8172	12	2100	30000	100000	1970.
8172	12	2100	30000	100000	1970.
8806	12	800	30000	100000	1975.
8855	12	600	30000	100000	1980.
8861	12	1300	30000	100000	1980.
8864	12	900	30000	100000	1990.
8866	12	100	0	0	1990.
8868	12	600	30000	100000	1986.

OFF-sys bridge OFF FLAG
\square

120800AA0412003 UNC 120800AA0412001 POS 20800AA041201 POS 120800 AO4 2313009 POS 20800 120800824809010 POS 20800AA0139001 POS 120800NN0010001 POS 120800NNO010002 POS 120800000310001 POS 120800 C 00900001 POS
$120800 \mathrm{C00245001}$ POS
120800 C 00410001 POS

Total bridges REMOVED $=$

ID New bridges
 Feature Crossed

12806120800002706282 SAN BERNARD RIVER 12821120800002708280 DRAINAGE DITCH 12893120800008909204 SAN BERNARD RIVER 13003120800342201002 BIG CREEK

Facility Carried Over

US 90A
US90A
US 59 SB
PARK RD 72

Location
0.2 MI E OF WBERNARD RD

25MI S OF BW8
0.6 MI SW OF FM 2919

RRAZOS BEND STATE PARK

ControlSection Milepoint Lat(DM) Long(DM) Yr.Built Bridge Rep. Rep. FLAG OFF-bridge Rep. OFF FLAG

| 27 | 6 | 40050 | 29320 | 96032 | 1996 | 120800002706007 EXACT | | |
| ---: | ---: | ---: | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| 27 | 8 | 33477 | (null) | (null) | 1998 | 120800002708056 UNC | 120800 AA0281002 POS | |
| 89 | 9 | 40050 | 29262 | 96010 | 1996 | 120800008909057 EXACT | . | . |
| 3422 | 1 | 4443 | 29226 | 95359 | 1996 | 120800342201001 POS | . | . |

Total NEW bridges $=$	4
Balance $=$	-15

GALVESTON COUNTY

1D Removed bridges Feature Crossed

40120850036706028 FERRY MAINT. BRG
41120850036706030 FERRY MAINT.BRG.
183120850811512002 CLEAR CRK
84120850832512001 LAKE MADELINE 185120850832512002 LAKE MADELEINE 186120850832612001 PELICAN ISLAND CHANNEL 87120850832612004 SP \& ATSFRR (88 120850832712002 MENBELI BYU 189120850839812002 DICKINSON BYU 190 120850839912001 CLOUD BYU

Facility Carried Over Location

H-87
WHISPERING PINES
JONES DREB JNES DR WB JONES DR WB STEWART RD ET
1.20 MI N OF BROADWAY AVE KWAY AT PORTINDUSTRIAL BIVD

GAIVESTON FERRY GALVESTON FERRY 0.35 MI NE OF FM 518 . 00 M M W OF FM 34 1.00 MI W OF FM 34 a MO OF PABST RD O. M M N PABST 1.20 MI N OF 4 T 10

Total bridges REMOVED $=$

Facility Carried Over
Location
FM 270

Control Section Milepoint Lat(DM) Long(DM) Yr.Built

367	6	1014	29247	94428	1980
367	6	1000	29247	94428	1980
8115	12	500	30000	100000	1988
8325	12	1000	30000	100000	1965
8325	12	1000	30000	100000	1970
8326	12	110	30000	100000	1960
8328	12	2500	30000	100000	1960
8327	12	3200	30000	100000	1910
8398	12	600	30000	100000	1980
8399	12	1700	30000	100000	1988

OFF-sys bridge OFF FLAG
-
120850PP1760001 EXACT
20850B00535001 EXACT
$20850 \mathrm{B00535002}$ EXACT $20850 \mathrm{B00535002}$ EXACT 20850 B 00790001 POS 20850800720001 POS $20850 \mathrm{B00825001}$ EXACT $120850 D 00345001$ EXACT
120850 AA0520001 EXACT

13210120850331202004 DRAINAGE DITCH
1.50 MIN OF FM 646

Control Section Milepoint Lat(DM) Long(DM) Yr,Buill Bridge Rep. Rep. FLAG OFF-bridge Rep. OFF FLAG $\begin{array}{llllll}3312 & 2 & 2428 & 29036 & 95042 & 1998\end{array}$

HARRIS COUNTY

ID Removed bridges Feature Crossed
121020002709032 WLLOW WATER BAYOU
121020002709051 WLOW WATER BAYOU 121020002709051 WLLOW WATER BAYOU 121020002713129 WEST BEL 121020002713263 FM 1092 ELFORT AVE 121020002713264 WEST BELLFORT 121020002801001 HUNTING BAYOU 121020011005062 IH 45 1210200140050831 H 45 121020011005089 HH 45 ML 121020011000054 RANKIN RD 121020011006086 GREENS ROAD 121020011008127 GREENS RD 121020017706148 US 59 121020017707100 GARNERS BAYOU 121020017707102 REINHARD BAYOU 121020017707117 日ELTWAY B 121020017711050 COLLINGSWORTH ST 121020017711051 QUITMAN ST．
121020017711052 T \＆NO R．R．
121020017711057 JEWELL ST PED CROSSING 121020017711137 TEXAS AVE
121020017711144 CAPITAL AVE 121020017711250 COLLINGSWORTH ST 121020017711251 JEWEL ST PED CROSSING 121020017711252 QUITMAN ST 121020017711390 CROSSTMMERS 121020017711392 EENNINGTON ST 1210200271153311 H 610 121020038912034 HOUSTON SHIP CHANNEL 2003912097 SPUR 201 121020038912038 SAN JACINTO BAY 121020038912098 SAN JACINTO BAY 121020038912099 BLACK DUCK BAY 121020050003079 TWCKENHAM OITCH 121020050003081 OUTFALL DITC 121020050003428 BELTWAY B 121020050801047 SAN JACINTO RIVER 121020050601242 MEADOW ST RAMPS 121020098101007 DRAW 121020098101009 CLEAR CREEK 121020248301096 BELTWAY \＆FRONTAGE ROAD 121020325603054 DRAIN
121020800212009 JOHN F KENNEDY BLVD SB 121020800212010 JOHN F KENNEDY BLVD NB 121020800212015 DRAINAGE D 121020800212016 DRAINAGE D 121020800212017 DRAINAGE D 121020800212019 GARNERS BYU 121020800212024 SOUTHERN PACIFIC RR 121020800212025 GREENS BYU 121020800212028 GREENS BYU 121020800212031 WLLLAM CLAYTON PFWY WB 124020800212032 WLLAM CLAYTON PFWY 121020800212033 WLLLAM CLAYTON PKWY 121020800212034 WLLIAM CLAYTON PKW 121020800212035 DRAINAGED

Facility Carried	Location
LT Ln USSoa	．5MIE．HARRIS－FT BENO CL．
EAST BOUND US90A	SMIW OF HARRIS CA．
US 59 SBML	$0.25 M I . N$ ．OF FORT－BEND CA
US 59 SEML	25MI．N．OF FORT BEND CA
US 59 NBML	0.25 MI N OF FORT BEND CA
US 59 NB ML	0．5OMI N OF FORT BEND CI
US 90A	0.1 M1 W OF 1 H 610
RICHEY RD	2MIS OF 1 H 45 AND FM1960
AIRTEX DR	4MIS OF 1 H 45 \＆FM1960
CYPRESSWOOD	2MIN OFIH45 \＆FM1960
1H45	TMIN OFIH45 AND IHS 10
1 H 45 Na ML	TOMI N OF IH45＊ H H810
SPUR 261	150 FT S．Of LEAGOSt．
$1 \mathrm{H}_{4} 5 \mathrm{SE}$ ML	T0 MIN OF IH45＊｜H610
TOMNSEND BLVD	0.9 Ml H OF FM 1960
US59 Na	12．MI．N．OF US598LCOP－137
US59 NB	10．5MI N OF US59 \＆LP137
US59 S． B ．	1．5M1 S OF US59 \＆FM1960
US 59 SEML	2MIS．SOF KELLY ST．
US 59 SBML	1．SMIS．OF KELLYST
US 59	，GMLFROM IH－10 EASt
US 5958	1．75M1．S．OF KELLY
USS9SE CONN F	US59SB \＆TEXAS AVE
RAMP TO USS 59 N．B．	． 1 MIIS．OF CAPITAL AVE．
US 59 NBML	2 MHS OF KELIYST
US 59 NB	1．75 MI S OF KELLY ST
US 59 NBML	1.5 MIS OF KELLY ST
US 59 NEML	0.75 M 5 OF LAURA KOPPE
US 59 NEML．	0.5 MIN O O KELLY RD
UTILITY	IHG10ATCLINTON DR
BAYTOWN TUNNEL	SH 146
SH 146 We	1MINE．OF BAYTOWN TUNNEL
SH148 EBML	．5MIN．OF BAYTOWN TUNNEL
SH146 WB ML	．4MI SW OF BAYTOWN TUNNEL
SH146EEML	．4MI SW OF BAYTOWN TUNNEL
SH146 WE ML	．5MIN OF BAYTOWN TUNAEL
IH 45 ML \＆FR	25M N OF IH458PARKER RD
IH45 ML \＆SBFR	$800{ }^{\circ} \mathrm{NOF}$ IH458PARKER RD
IH 45 SB	16MIS．OF DTWN．HOUSTON
IH10 RT LANE	12MI E OFIH10＋1H610
Ramp C	AT IH10，US59
RAMP $\mathrm{Q}^{\text {OVER RAMP A }}$	AT H10／US59
FM 528	500 W OF IH45 \＆FM 528
FM 528	harris／galveston ca
HARDY TOLL RD ML	O．25M NORTH OF BLACKWOOD
BWe SB	． 5 MIN OF 1410
WCLAYTON PKWY E日	4.50 MIW OF US 59
W CLA YTON PKWY EE	4.50 mlW OF US 59
W CLAYTON PKWY WB	1．90 MIW OF US 59
W CLAYTON CROSSOVR	0．20 MIW OF LEE
COLONEL FISCHER RD	1.00 MIE OF JFK ELVD
WCLAYTON PKWY We	0.75 MLW OF US 59
W CLA YTON PKWY EB	0.75 MIW OF US 59
W CLAYTON PKWY	0.30 MIE OF US 59
JFK 日lvo ng	4．40 MIS OF WCLAYTON
JFK 日lvo Se	4.40 MIS OF WCLAYTON
SOUTH TERMINAL RD	0.50 MIE OF JFK BLVD
NORTH TERMINAL RD	0.70 MIE OF JFK BLVD
airplane taxiway	0.40 MIE OF JFK ELVD
AIRPLANE TAXIWAY	0．50 MIE OF JFK BLVD

Control

OFF－sys bridg OFF FLA
$121020 \mathrm{B6} 9685001$ POS $121020 \mathrm{B69685001}$ POS 121020869885011 PO 121020 Bb 96 BSO 5 S POS 121020889685012 EXACI 121020869685013 EXACT 121020 T 11000001 POS $121020 A A B 348001$ EXACT 121020AAB349002 EXACT $121020 \mathrm{B6} 5685031$ POS 121020869685032 POS 121020869685003 POS 121020869685005 POS

	Removed bridges Feature Crossed
1480	121020800212037 WLLLIAM CLAYTON PKWY WE
1481	121020800212040 REINHARDT BYU
1462	121020800212044 REINHARDT BYU
1463	121020800212045 REINHARDT BYU
1464	121020800212048 UNNAMED STREET
1465	121020800212047 UNNAMED STREET
1468	121020800312010 DRAINAGE D
1467	121020800312016 HCFCD DRAINAGE D
1468	121020800312018 DRAINAGE D
1469	121020800312019 DRAINAGE D
1470	121020800312020 DRAINAGE D
1471	121020800312021 VOGEL CRK
1472	121020800312022 DRAINAGE D
1473	121020800312023 DRAINAGE D
1474	121020800412001 VOGEL CRK
1475	121020800412009 HALLS BYU
1476	121020800412017 WHITE OAK BYU
1477	121020800412018 WHITE OAK BYU
1478	121020800412019 DRAINAGE D
1479	121020800512004 COLE CRK
1480	121020800512005 LITTLE WHITEOAK BYU
1481	121020800512015 HALLS BYU TRIB
1482	121020800512016 GREENS BYU
1483	121020800512017 COLE CRK
1484	121020800512020 WHITE OAK BYU
1485	121020800512021 WHITE OAK BYU
1486	121020800512022 HALLS BYU
1487	121020800512023 HALLS BYU
1488	121020800512024 HB\&T RR \& MOPAC RR
1489	121020800512025 HB\&T R \& M MOPAC RR
1490	121020800812002 WHITE OAK BYU
1491	121020800612006 WHITE OAK BYU
1492	121020800612007 WHITEOAK EYU
1493	121020800612018 CROSSTIMBERS ST
1494	121020800612017 LANGHAM CRK
1495	121020800612018 BRICKHOUSE GUL
1496	121020800612019 TURKEY CREEK TRIB
1497	121020800612020 DRAINAGE D
1498	121020800612021 DRAINAGE D
1499	121020800612023 GREENS BYU
1500	121020800612025 LEY RD
1501	121020800612026 DRAINAGE D
1502	121020800712054 HUNTNG BYU
1503	121020800712060 KELLEY ST
1504	121020800712070 KELLEY ST
1505	121020800912011 HUNTING BYU
1506	121020800912012HUNTING BYU
1507	121020800912013 CARPENTERS BYU
1508	121020800912014 BIG GULCH
1509	121020800912015 GREENS BYU
1510	121020800912016 WEST CAN
1511	121020801012001 DRAINAGE D
1512	121020801112004 LYNCHBURG RES CAN
1513	121020801112005 LLUFF GUL
1514	121020801112013 DRAINAGE D
1515	121020801112014 BUFFALO BYU
1516	121020801612008 RED BLUFF RD
1517	121020801612009 WLLOW SPRING BYu
1518	121020801612010 WLLOW SPRING BYU
1519	121020801612011 SPRING GUL
520	121020801612012 SPRING GUL
1521	121020801612013 BIG ISLAND SLOUGH

Facility Carried SOUTH TERMINAL RD JFK BLVD SB FR
JFK BLVD NB FR JFK BLVD
JFK BLVD NB JFK BLVD SB GULF BANK RD MT HOUSTON RD
WGULF BANK RD WE WGULF BANKRDEB WGULF BANKRDEB WGULF BANK RD WGULF BANKRD WGULF BANK RD WE VICTORY DR LITLE YORK RD VICTORY DR WB VICTORY DR EB
VICTORY DR TIDWELL RD W WTIDWELL RD TIDWELL RD TIDWELLRD TIDWELL RDEB TIDWELL RDEB TIDWELL RD WB TIDWELL RDEB TIDWELL RD WE
TIDWELL RDEB TIDWELL RD WE W 43RD ST WB W 43RDST EB CROSSTIMBERS ST
HB\&TRR
CLAYRD
CLAYRD
CLAYRD
CLAYRD
W43RD ST GREEN RIVER DR HB\&TRR Clay ro KELLEYST T\&NORR HB\&TRR WALLISVILLERDEB WALLISVILLE RD WB WALLISVILLERD WALLISVILLERD WALLISVILLERD SHELDON RD CROSBY-LYNCHEURG CROSBY LYNCHBURG CROSEY LYNCHBURG CROSBYLYNCHEURG PORT TERMINAL RR RED BLUFFRD RB RED BLUFF RDSB RED BLUFF RDSB RED BLUFF RD NB

Location
O.80 MIE OF JFK BLVD
0.80 MIE OF JFK BLVD
1.30 MIN OF GREENS RD
1.30 MIN OF GREENS RD 1.30 MIN OF GREENS RD 1.25 MIN OF GREENS RD 1.25 MIN OF GREENS RD 0.20 MI W OF HARDY RD 0.50 MI W OF LOCKWOOD 0.20 MI W OFNHROSSLYN
0.20 MI W OF NHROSSLYN 0.01 MIE OF ELLA BLVD 0.4 MI E OF ANTOINE 0.40 MI W OF ANTOINE 1.20 MI W OF IH 45
0.25 MI E OF ANTOINE DR
0.70 MI W OF US 59
0.10 MI W OF ANTOINE O.10 MI W OF ANTOINE 0.30 MIE OF BINGLE 0.40 MI W OF IH 45 1.80 Ml W OF JOHN RALSTON 0.25 MI W OF RALSTON RD 0.30 MIE OF BINGLE
0.50 MIE OF ANTOINE
0.50 MIE OF ANTOINE
2.90 MIE OF US 59
2.90 MIE OF US 59
2.30 MIE OF 59
2.30 MI E OF US 59 0.05 MI W OF TC JESTER 0.05 MI W OF TC JESTER 0.15 MI WOF JCT IH 45 0.05 MI E OF HARDY TOLL R 1.25 MI WOF ADDICKS-FAIR 0.7 MI E OF GESSNER RD 0.3 MI W OF BRITTMOORE RD 0.15 MI WOF CE KING 0.40 MI W OF J RALSTON RD 0.80 MI E OF HOMESTDRD 0.05 MI E OF BLALOCK RD 0.10 MI NW OF IH 610
0.15 MIW OF US 59
0.90 MI W OF JCT US 59
1.50 MIE OF IH 810
1.50 MIE OFIH 610
0.50 MI W OF UVALDERD
2.00 MI W OF UVALDE RD
0.20 MI E OF UVALDE RD
0.10 MiN OF US 90
0.10 MIN OF IH 10
2.90 MIN OF IH 10
1.30 MI S OF US 90
2.40 MI SWOF IH 10
0.40 MI E OF SHAVER ST
0.80 MI S OF FAIRMONT PKW
1.50 MI S OF RED BLUFF
1.50 MI S OF RED BLUFF GE
0.20 MI SE OF UNDERWOOD R

Control

OFF-sys bridg OFF FLA
121020869685037 POS 121020834977009 EXAC 121020834977007 EXAC 121020834977008 EXACT 121020834977011 EXAC 121020829249005 POS 121020 AA 4351002 PO 121020829249002 POS 121020AA2480001 POS 121020829249004 EXACT 121020829249003 POS 121020 AA 2460002 POS 121020866825003 EXACT 121020839913001 EXACT 121020866825001 EXAC 121020866825002 EXACT 121020864305001 EXACT 121020864305005 POS 121020064289003 EXAC 121020AA9961001 EXACT 121020864305002 EXAC 121020864305003 EXACT 121020 BE 4305004 EXACT $121020 \mathrm{B64289004} \mathrm{POS}$ 121020864289005 POS 121020864289007 POS 121020800905002 EXACT $121020 \mathrm{BOO905003}$ EXACT 121020B17497001 EXAC 121020817497003 EXACT 12102014885002 EXACT 121020814885004 EXAC 121020814885003 PO 121020AA4417001 POS 121020 B 28441001 EXAC 121020 в39337001 EXACT 121020814885005 POS 121020835729003 POS 121020 B 35729002 PO 121020 B 35729001 PO 121020887417001 EXACT 121020 B 8417002 EXACT 121020 AA 4541003 EXACT 121020AA4541001 EXAC 121020AA4541002 EXAC 121020 AA 4538001 POS $121020 A A 9962003$ EXACT 121020 AA 9962002 EXAC 121020AA9956001 POS 121020 AA 9956004 EXAC 121020 CO 2836009 POS 121020 C02636004 EXAC 121020 C 02836005 EXAC 121020 C 02836006 EXAC 121020 C 02636007 EXACT

HARRIS COUNTY

ID	Removed bridges Feature Crossed
1522	121020801612014 EIG ISLAND SLOUGH
1523	121020801612015 TAYLOR BYU
1524	121020801612016 ARMAND BYU
1525	121020801612047 RED BLUFF RD
1528	121020801912008 BERRY BYU
1527	121020801912007 DRAINAGE D
1528	121020801912009 DRAINAGE D
1529	121020801912011 DRAINAGE D
1530	121020801912012 DRAINAGED
1531	121020801912013 EIG ISLAND SLOUGH
1532	121020801912014 Big ISLAND SLOUGH
1533	121020801912015 SPRING GUL
1534	121020801912016 SPRING GUL
1535	121020801912017 WLLLOW SPRING EYU
1538	121020809912018 WLL LOW SPRING EYU
1537	121020801912019 ARMAND BYU
1538	121020801912020armand gru
1539	121020801912021 DRAINAGE D
1540	121020801912022 VINCE BYU
1541	121020801912023 VINCE BYU
1542	121020801912027 DRAINAGE D
1543	121020802012004 BERRY BYU
1544	121020802012005 VINCE BYU
1545	121020802012006 LITTLE VINCE BYU
1546	121020802012007 ARMAND BYU
1547	121020802012008 WLLLOW SPRING EYU
1548	121020802012009 WLLLOW SPRING BYU TRAB
1549	121020802012010 big island slough
1550	121020802012011 SOUTHERN PACIFIC RR
1551	121020802012012 LITTLE CEDAR BYU
1552	121020802012018 DRAINAGE D
1553	121020802112008 LITTLE VINCE BYU
1554	121020802212080 SOUTHERN PACIFIC RR
1555	121020802512009 VINCE BYU
1558	121020802512010 LITLE VINCE BYU
1557	121020802712006 LITTLE VINCE BYU
1558	121020802812005 VINCE BYU
1559	121020802812008 LITTLE VINCE BVU
1560	121020802912003 WEST CAN
1581	121020802912005 LITTLE VINCE BYU
1562	121020802912006 VINCE BYU
1563	121020802912007 SHAVER ST
1564	121020802912008 SHAVER ST
1565	121020802912010 ORAINAGED
1565	121020802912011 ORAINAGED
1587	121020802912014 HUNTING BYU
1568	121020802912026 HOUSTON SHIP CHANNEL
1569	121020803012003 LITTLE VINCE BYU
1570	121020803112005 VINCE BYU
1571	121020803312001 EERRY BYU
1572	121020803312003 LITTLE VINCE BYU
1573	121020803312004 VINCE EYU
1574	121020803312006 RICHEY ST
1575	121020803312007 RICHEY ST
1576	121020803512004 PANTHER CRK
1577	121020803512006 SOUTHERN PACIFIC RR
1578	121020803512007 CLINTON DR
1579	121020803512006 CLINTON DR
1580	121020803812002 HUNTING EYU
1581	121020803612003 LIEERTY RD \& S P RR
1582	121020603612004 N WAYSIDE DR
1583	121020803612005 N WAYSIDE DR

Facility Carried	Location	Control
RED atuff Ro Sb	0.20 MISE OF UNDERWOOD R	
RED BLUFF RD	0.80 M W W F FM 148	
RED BLUFF RD	0.50 MIS OF OASADENA ELV	
UTLITY BRIDGE	0.40 MIE OF SHAVER ST	
EDSEBROOK DR	O. 50 MIE OF THETA	
EDGEBROOK DR WB	0.10 MIEOFSH 3	
EDGEBROOK DR EB	0.10 Ml EOFSH 3	
W FAIRMONT PKWY WE	S0 FT W OF SP RR TRACKS	
W FAIRMONT PKWY EE	50 FT W OF SP RR TRACKS	
FAIRMONT PKWY EE	0.70 MT E OF UNDERWOOD	
FAIRMONT PKWY Wa	0.70 MI E OF UNDERWOOD	
FAIRMONT PKWY EB	0.30 MI W OF UNDERWOOD	
FAIRMONT PKWY WG	0.30 MIWOF UNDERWOOD	
FAIRMONT PKWY EB	0.70 M EOF RED BLUFF RO	
FAIRMONT PKWY WB	0.70 M E RED BLUFFRO	
FAIRMONT PKWY WB	0.40 MI W OF RED BLUFF RD	
FAIRMONT PKWY EB	0.40 MI W OF RED BLUFF RD	
FAIRMONT PKWY	2.60 MIE OF SHAVER	
FAIRMONT PKWY wa	0.90 MIE OF S SHAVER	
FAIRMONT PKWY EB	0.90 MIE OF SHAVER	
FARMONT PKWY	2.20 MIE OF SHAVER	
SPENCER HWY	100 FT WOF 3RDST	
SPENCER HWY	0.60 MIE OF SHAVER	
SPENCERHMY	3.40 MIE OF S SHAVER	
SPENCER HWY	0.40 MI W OF RED BLUFF RD	
SPENCER HMY	EOF FERN ROCK	
Spencer hay	E OF CANADA	
SPENCER HWY	050 MIE OF UNDERWOOD DR	
SPENCER HWM	2.80 MIE OF UNDERWOOD DR	
SPENCER HWY	3.10 MI E OF UNDERWOOD DR	
COLLEGE AVE	0.30 Mt NE OFIH 45	
pasadena blvo	1.70 M W OF RED BLUFF	
EAST blvo	0.02 MIS OF JCT SH 225	
W SOUTHMORE AVE	1.00 MIE OF ALLEN GENOA	
e Southmoreave	1.20 MIEOFSSSHAVER	
statarst	0.35 Mis of JCt SH 225	
w Shaw ave	0.50 MIE OF SHAVER ST	
SHAWAVE	0.15 MI W OF TATAR STREET	
FEDERAL RD	1.25 MIS OF IH 10	
N Shaver St	0.50 MIN OF JCT SH 225	
S SHAVER ST	2.55 MI S OF SH 225	
PORT TERMINAL RR	0.40 MIN OF SH 225	
PORT TERMINAL RR	0.40 MlN OF SH 225	
C EkINGPKWY EFR	0.60 MI N OF GREEN RIVER	
CEkING PKWY	0.60 MIN OF GREEN RIVER	
FEDERAL RD	0.50 MI N OF CLINTON DR	
Washeurn tunnel	FEDERAL RDS SF iH 10	
N MAIN ST	0.30 MIN OF SH 225	
queens ro	0.10 MIWOFS SHAVER	
SOUTH RICHEY	0.40 MI NE OF OLD GALV RD	
N RICHEY ST	0.10 MI SW OF SHAVER ST	
N RICHEY ST	0.20 MI NE OF SHAW AVE	
PORT TERMINAL RR	0.15 MI SW OF SHAVER ST	
UTIUTY BRIDGE	0.15 MI SW OF SHAVER ST	
CLINTON DR	0.70 MILE W OF MAIN ST	
CLINTON DR	0.20 MI W OF WAYSIDE DR	
SPRR	0.10 MIE OF WAYSIDE DR	
SPRR	0.20 MI W OF N WAYSIDE DR	
N WAYSIDE DR	0.60 MIS OF IH 610	
N WAYSIDE DR	0.20 MIS OF IH 610	
SPRR	0.20 MIS OF $1 \mathrm{H}^{610}$	
SPRR	$0.20 \mathrm{MIS} \mathrm{OFIH610}$	

Sectio Milepoi Lat(DMLong(DMY.Bui					
8086	12	11700	30000	100000	1967.
8018	12	14820	30000	100000	1981
8015	12	6500	30000	100000	1965
8016	12	300	30000	100000	1948
8019	12	1200	30000	100000	1960
8019	12	1500	30000	100000	1963
8019	12	1500	30000	100000	1963
8019	12	12300	30000	100000	1960
8019	12	600	30000	100000	1960
8019	12	10100	30000	10000	1993
8019	12	10100	30000	10000	1993
8019	12	9000	30000	10000	198
8019	12	9000	30000	100000	1989
8019	12	8000	30000	100000	1959
8019	12	8000	30000	100000	1959
8019	12	6400	30000	100000	1963
8019	12	6400	30000	100000	63
8019	12	4700	30000	100000	1975
8019	12	3200	30000	100000	1975
8019	12	3200	30000	100000	1975
8019	12	4300	30000	100000	1992
8020	12	300	30000	100000	1992
8020	12	2400	30000	100000	1995
8020	12	4900	30000	100000	1993
8020	12	5700	30000	100000	1993
8020	12	7700	30000	100000	1993
8020	12	8300	30000	100000	1992
8020	12	9400	30000	100000	1992
8020	12	1700	30000	100000	1978
8020	12	2300	30000	100000	1992
8020	12	300	30000	100000	1993
8021	12	700	30600	100000	1988
8022	12	1700	29424	95060	1990
8025	12	1000	30000	100000	1950
8025	12	2550	30000	100000	1985
8027	12	700	30000	100000	1977
8029	12	200	30000	100000	1945
${ }^{8028}$	12	1000	30000	100000	1980
6029	12	1500	30000	100000	1960
8029	12	4100	30000	100000	1965
8029	12	3300	30000	100000	1965
8029	12	200	30000	100000	197
8029	12	200	30000	100000	196
8029	12	3800	30000	100000	195
8029	12	3800	30000	100000	1954
8029	12	2600	30000	100000	1988
8029	12	13100	30000	100000	1950
8030	12	300	30000	100000	1978
8039	12	400	30000	100000	1965
8033	12	300	30000	100000	1966
8033	12	100	30000	100000	1960
8033	12	500	30000	100000	1960
8033	12	200	30000	100000	1906
8033	12	200	30000	100000	1966
8035	12	1000	30000	100000	1948
8035	12	2700	30000	100000	1988
8035	12	3100	30000	100000	1927
8035	12	3200	30000	100000	1927
8036	12	1500	30000	100000	1987.
8036	12	1000	30000	100000	1988
8036	12	1000	30000	100000	1950
8036	12	1000	30000	100000	195

OFF-sys bridg OFF FLA $121020 \mathrm{CO2636008}$ EXACT $121020 C 02636002$ EXACT $121020 \mathrm{CO2636009}$ EXACT 121020 B 24553001 EXACT 121020821581001 POS 121020821581002 POS 121020 L 00144007 POS $121020 L 00144008$ POS 12102000144008 POS $121020 \mathrm{L00144003} \mathrm{EXACT}$ $121020 L 00144004$ EXACT 21020L00144001 EXACT $121020 L 00144002$ EXACT 121020 C 01076004 EXACT 121020001076005 EXACT 121020 C 01076003 POS 121020 CO 1076001 EXACT
121020 C 01076002 EXACT $121020 \mathrm{C01078000} \mathrm{POS}$ 121020 H 60593001 EXACT 121020 C 02961002 EXACT $121020 \mathrm{CO2961003}$ POS
$121020 \mathrm{C02564004}$ EXACT 121020 L 60593002 EXACT 121020 L 60593003 EXACT $121020 L 60593004$ POS 121020141705002 POS 121020 H 15577001 POS 121020 C 02388001 POS 121020G00070001 UNC 121020 C 02941001 EXACT 121020C02941002 POS $121020 \mathrm{C03071001}$ POS 121020 CO 02851001 EXACT 121020.123889001 EXACT 121020 C 02841003 POS 121020 C 02836001 EXACT 121020 C 02841001 EXACT 121020 C 02841001 EXACT 121020AA4353004 POS 121020AA4353005 POS 121020123889002 EXACT 21020 A 99960001 POS
121020 C 02581001 EXAC 121020854225001 EXACT $121020 \mathrm{C02691001} \mathrm{POS}$ 121020 C 01078001 POS $121020 \mathrm{C02691002}$ EXACT 121020 C 02691004 EXACT 121020.15169001 EXACT 121020815169001 POS 121020 B 15169002 EXACT 121020868017004 EXACT 121020 BBBO 17001 EXACT 121020866017002 EXACI 121020888017002 EXACT

HARRIS COUNTY

ID	Removed bridges Feature Crossed	Facility Carried	Location	Control	Sectio	lepoi	at(DM	ongiDN			OFF-sys bridg OFF FLA 121020844185011 POS
1646	121020805512008 MEMORIAL DRJBUFFALO BYU	STUDEMONT St Sb	0.40 MI E OF WAUGH DR	8055	12	5900	30000	100000	1967.		
1647	121020805512009 MEMORIAL DR	SPRR	0.10 MIE OF STUDEMONT	8055	12	5000	30000	100000	1964		$121020 \mathrm{B44485012}$ EXACT
1648	121020805512010 BUFFALO BYU	MEMORIAL DR	0.45 MIE OF STUDEMONT	8055	12	5400	30000	100000	1954.		121020844185013 EXACT
1649	1210208055120118 FFFALO EYU	MEmorial dr	0.70 MIE OF STUDEMONT	8055	12	5600	30000	100000	1955.		$121020 \mathrm{B44185014}$ EXACT
1650	121020805512012 MEMORIAL DR	SAWMER ST	0.75 MIW OFIH 45	8055	12	5700	30000	100000	1969.		121020844185015 EXACT
1651	121020805512013 MEMORIAL DR	PEDESTRIAN X-ING	0.50 M W W OF HH^{45}	8055	12	10100	30000	100000	1955.		$121020 \mathrm{B44185016}$ EXACT
1652	121020805512014 BUFFALO BYU/HOUSTON AVE	memorial dr wb	AT 1445 AND BUFFALO BYU	8055	12	10100	30000	100000	1959.		121020844185017 POS
1653	121020805512015 BUFFALO BYUMOUSTON AVE	memorial dr eb	ATH 45 \& BuFFALO BYU	8055	12	10100	30000	100000	1959.		121020844185018 POS
1654	121020805512017 S APPROACH TO TEXAS AVE	bagey st	AT MEMORIALEUFFALO EYU	8055	12	400	30000	100000	1959.		121020805073003 POS
1855	121020805512018 EUFFALO BYU	bagby 5 T	AT MEMORIAL DRIVE	8055	12	350	30000	100000	1959.		121020805073002 EXACT
1658	121020805512019 N APPROACH TO PRAIRIE ST	bagby	0.20 MIS OF WASHINGTON	8055	12	300	30000	100000	1968.		121020805073001 POS
1657	121020805512025 MEMORIAL OR	PEDESTRIAN X-ING	8.30 MIE OFIH 810	8055	12	5300	30000	100000	1986		121020844185008 EXACT
1658	121020805512028 HOUSTON AVE	MEMORIAL DR FR EE	0.10 MI W OF IH 45	8055	12	10200	30000	100000	1956		121020844185019 EXACT
1659	121020805512027 HOUSTON AVE	MEMORIAL DR FR WB	0.10 M W W OF IM 45	8055	12	10200	30000	100000	1956		121020844185020 EXACT
1660	121020805712003 DRAINAGE D	BISSONNET ST	0.20 MI E OF FONDREN	8057	12	9700	30000	100000	1960.		121020807961003 POS
1661	121020805712006 8RAYS EYU	BISSONNETSTEE	0.80 MI EOF SW FREEWAY	8057	12	800	30000	100000	1987.		121020807961001 EXACT
1662	121020805712007 ERAYS BYU	BISSONNET ST WB	0.80 MIEOF SW FREEWAY	57	12	800	00	100000 95295	1987.		121020 BO 7961002 EXACT
1683	121020805812001 erays By	FONDREN RD	0.03 MIN OF S BRAESWCOD	S	12	5100	29407	95295	1959.		
1664	121020805812004 COUNTRY CLUB D	FONDREN RDSB	0.20 MIS OF BEECHNUT	8058	12	4200	30000	100000	1968.		121020824809003 EXACT
1665	121020805812005 ORAINAGE D	FONDREN RD	0.20 MI S OF W AIRPORT	8058	12	7400	30000	100000	1972.		121020868825004 POS
1668	121020805812008SIMS BYU	FONDREN RD SB	0.40 MIS SF US 904	8058	12	8300	30000	100000	1972.		121020801921002 POS
1667	121020805812007 SIMS BYU	FONDREN RD NB	0.40 MIS SF US 90A	8058	12	6300	30000	100000	1972.		121020801921002 POS
1668	121020805812008 COUNTRY CLUB O	FONDRENRONB	0.20 MI S OF BEECHNUT	6058	12	4200	30000	100000	1968		${ }_{1}^{121020824809004 ~ E X A C T ~}$
1689	121020805912002 QRICKHOUSE GUL	BLALOCK RDNB	0.20 MI NOF KEMPWOOO DR	8059	12	1500	30000	1000000	${ }^{1973}{ }^{1973 .}$		${ }_{1} 1210208144885004$ POS
1670	121020805912004 ARICKHOUSE GUL	BLALOCK RD SE	0.20 MIN N OF KEMPMOOD DR	59	12	1500	30000 30000	100000 100000	1973. 1983.		121020814885004 POS 121020 BOB 129003 EXACT
1674	121020805912005 BRIAR ER	BLALOCK RD	0.30 MI N OF JCTIH 10	59	12	4200	30000	100000	1983.		
1672	121020805912008COLE CRK	FAIRBANKS N HOU NB	0.06 MIN OF JCT US 290	6059	12	5610	30000	100000	1988.		${ }_{121020831281001}{ }^{\text {120 }}$
1873	121020805912007COLE CRK	FAIREANKS N HOU SB	0.06 MIN OF JCT US 290	8059	12	5610	30000	100000	1988.		121020831281001 POS
1674	121020806012001 BRICKHOUSE GUL.	GESSNER RD NB	0.50 MIS OF CLAYRD	0060	12	3300	29495	95327	1979.		121020828713002 POS
1675	121020806012002 RRICKHOUSE GUL	GESSNER RD Sb	0.50 MIS SFFLAYRD	8060	12	3300	29495	95327	1979.		121020826713003 POS
1878	121020806012003 ERICKHOUSE GUL	GESSNER RD	0.20 MIN OFFCLAYRO	8060	12	2600	30000	100000	1940.		121020828713004 EXACT
1677	121020806012005 BUFFALO BYU	gessner ro se	2.35 MIS SOFIH 10	8060	12	8700	30000	100000	1970.		121020826713005 EXACT
1678	121020806012006 BUFFALO BYU	GESSNER RD NB	2.35 MIS OFIH 10	8060	12	8700 10300	30000 30000	100000 100000	1965.		121020866825004 POS
1679	121020806012007 DRAINAGED	SGESSNER RD	0.20 MI N OF RICHMOND	8060	12	10300 1500	30000 30000	100000 100000	1985.		121020AA9956604 POS
1680	121020806112003 BUFFALO BYU	DAIRY ASHFORD NB	1.50 MIS SOFIM 10	8061 8061	12	1500 8200	30000 30000	100000 100000	1978.		121020 B 7911009 EXACT
1881	121020806112004 KEEGANS BYU	DAIRY ASHFORD SB	8.20 MIS SFIH 10 8.20 MIS OFIH 10	8061	12 12	8200 8200	30000 30000	1000000 1000	1978.		121020817911010 EXACT
1682	121020806112005 KEEGANS BYU 121020806112008 BUFFALO BYU	DAIRY ASHFORD NB	8.20 MIS OF IH 10	${ }_{8061} 8061$	12	8200 1500	30000 30000	100000	1978.		$1210204 A 9956004$ POS
1683	121020806112008 BUFFALO BYU 121020806112009 BRAYS EYU	DAIRY ASHFORD SB DAIRY ASHFORD	1.50 MIS OFIH 10 4.30 MIS OFIH 10	80661	12	4300	30000	100000	1983.		121020802601001 POS
1684	121020806112009 BRAYS BYU 121020806112010 ERAYS BYU	DAIRY ASHFORD ${ }^{\text {d }}$ (DAIRY ASHFORD SB	4.30 MIS OFIH 10 4.30 MIS OFIH 10	80661	12	4300	30000	100000	1983.		121020802801001 POS
1686	121020806112011 DRAINAGE D	DAIRY ASHFORD NB	5.40 MIS OFIH 10	8061	12	5400	30000	100000	1987.		121020817911010 POS
1687	121020806112012 DRAINAGE D	DAIRY ASHFORD SB	5.40 MIS OFIH 10	8061	12	5400	30000	100000	1987.		121020817911009 POS
1688	121020806112013 DRAINAGED	DAIRY ASHFORD	6.00 MIS OFIH 10	8061	12	8000	30000	100000	1960.		121020817911007 POS
1889	121020806112014 DRAINAGE D	DAIRY ASHFORD	8.90 MIS OFIH 10	8061	12	6900	30000	100000	1986.		121020817911008 POS
1890	121020808212003 SMITH ST AND HOLMAN ST	brazos st	1.00 M N N OF JCT US 59	8082	12	0	30000	100000	1969.		121020805073004 POS
1691	121020806412004 BUFFALO BYU	SMITH ST	0.40 MIS OFIH 10	8084	12	100	30000	100000	1982.		121020859801001 POS
1692	121020806612008 MILAM ST	SPRR	0.10 M N OF FRANKLIN ST	8066	12	200	30000	100000	1989.		121020844745001 EXACT
1693	121020808612009 BUFFALO BYU	MILAM ST	0.15 MIS OF H 10	8068	12	300	30000	0	1947.		121020844745002 EXACT
1694	121020806812004 LITTLE WHITEOAK BYU	N MAINST	0.50 M 1 SE OFIH 45	68	12	4000	00	0	1914.		121020847897001 POS
1695	121020806812005 BUFFALO BYU	BURNETT ST \& SPRR	0.20 MIN OFIH 10	8088	12	4900	30000	100000	1923.		12102084697002 POS
1606	121020806812006 BUFFALO BYU	MAIN ST	0.20 MI S OF JCT IH 10	8068	12	4949	30000	100000	1914.		121020841897003 EXACT
1697	121020806912001 BUFFALO BYU	FANNIN ST	0.20 MIS OFIH 10	8069	12	200	29459	95214	1977.		121020823569001 POS
1898	121020806912002NONE	allens landing rp	At commerce and faninin	8069	12	200	29459	95214	1972.		121020823569002 POS
1699	121020807012001 BuFFALO BYU	SAN JaCinto st	AT COMMERCEST	8070	12	300	30000	100000	1914.		121020857017001 EXACT
1700	121020807812008 BUFFALO BYU	MCXEE ST	0.35 MIS OF IH 10	8078	12	200	30000	100000	1932.		121020843593001 EXACT
1701	121020808512005 BUFFALO BYU	FRANKLINST	0.30 MIW OF MAIN ST	8085	12	200	30000	100000	1914.		121020825401001 EXACT
1702	1210208085120088 UFFALO BYU	FRANKLIN ST	0.35 MI W OF MAIN ST	8085	12	200	30000	100000	1931.		121020825401002 EXACT
1703	121020810212003 GARNERS BYU	RANKIN RD	0.80 MIE OF US 59	8102	12	2150	30000	100000	1977.		1210204 A 6581002 POS
1704	121020810312007 DRAINAGE D	WLSONRD	0.20 MIS OFFM 1960	8103	12	1150	30000	100000	1561.		$1210204 A 6581002$ POS
1705	121020810312009 GARNERS BYU	WLSONRD	0.90 MIN OF BWY ${ }^{\text {a }}$	8103	12	3400 3000	330000	100000 05157	1988.		$1210204 A 6581001$ EXACT 121020844417001 POS
1708	121020810312010 HALLS BYU	MESA DR	0.15 MI S OF TIDWELL RD	${ }_{8103}^{8103}$	12	3000 4800	29509 29493	${ }_{95157}^{95157}$	1953.		121020844417006 UNC
1707	121020810312012 DRAIN D	MESA DR NE	0.90 MIN OF US 90	8103	12	4800	29493				

Reserach Report 0-1823-1

ID	Removed bridges Feature Crossed	Facility Carried	Location	Control	Sectio Milepoi LatiomLong(DMr. Bui						OFF-sys bridg OFF FLA	
1708	121020810312014 DRAIN D	MESA DR SB	0.90 MIN OF US 90	8103	12	4800	29493	95157	1982.		121020844417003	
1709	121020810312015 MESA DR	SPRR	0.10 MIN OF US 90	8103	12	5800	29486	95157	1986		121020844417004	
1710	121020910312016 MESA DR	LIEERTY RD	0.10 MIN OFUS 90	8103	12	5800	29488	95157	1986		121020844417005	POS
1711	121020810712002LITTLE CEDAR BYU	FAIRMONT PKWY EB	0.10 MI E OF FAIRMONT PKW	8107	12	0	30000	100000	1982.		121020 L12313001	pos
1712	121020810712003 LTTLE CEDAR BYU	FABRMONT PKWY WB	0.10 MIE OF 5 SH 148	8107	12	100	30000	100000	1982		121020 L 12313002	Pos
1713	121020810812005 DRAINAGE D	bay area bevo mo	3.00 MI E OF MIDDLEAROOK	8108	12	6300	30000	100000	1988		121020AAS958003	
1714	121020810812008 DRAINAGE D	bay area blvo eb	3.00 MI E OF MIDDLEBROOK	8108	12	6300	30000	100000	1968		121020AA9958004	
1715	121020810812007 PORT RD DRAINAGE D	bay area blvo eb	1.35 MI NE RED BLUFF BLVD	8108	12	5600	30000	100000	1970		121020 A 9958001	
1716	121020810812008 PORT RD DRAINAGE D	bay area blvo we	O.10 MI NE OF CHEMICAL RD	8108	12	5600	30000	100000	1970		121020AA995B602	
1717	1210200108120120RAINAGE D	SENS RD	0.50 Ml W OF SPRR	8108	12	1200	30000	100000	1968		$121020 L 00554002$	POS
1718	121020810812013DRAINAGE D	SENS RD	0.10 Ma N OF SPENCER HWY	8108	12	1500	30000	100000	1989		$121020 L 00554001$	POS
1719	121020810812014 ARMAND BYU	bay area blvo eb	0.90 MI E OF MIDDLEBROOK	8108	12	1900	30000	100000	1968		121020843186002	EXACT
1720	121020810812015 ARMAND BYU	bay area blvo wb	0.90 M E E OF MIDDLEBROOK	8108	12	1900	30000	100000	1968		121020AA3168003	Exact
1721	121020810812016 DRAINAGE D	bay area blvo eb	E Of bay area park	8108	12	1300	30000	100000	1968.		121020AA3186005	
1722	121020810812017 DRAINAGE D	bay area blvo	0.70 MI W OF GULF	8108	12	1700	30000	100000	1978.		121020 A 3166001	
1723	121020810812018 DRAINAGE D	bay area blvdeb	WOF EL CAMINO REAL	8108	12	1600	30000	100000	1966		121020808029001	POS
1724	121020810812019 DRAINAGE D	bay area blvo wa	WOFEL CAMINOREAL	8108	12	1600	30000	100000	1968		121020806029002	POS
1725	121020810812020 HORSEPEN BYU	bay area blvoeb	ne space ctr blvo	8108	12	4000	30000	100000	1968		121020806029003	EXACT
1728	121020810812021 HORSEPEN BYU	bay area blvo wo	NE SPaCE CTR BLVD	8108	12	4000	30000	100000	1968		121020806029004	EXACT
1727	121020811412009 TURKEY CRK	dixie farm ro we	$0.10 \mathrm{MI} \mathrm{W} \mathrm{OF} 1 \mathrm{H}^{45}$	8114	12	2500	30000	100000	1992		121020819690001	EXACT
1728	121020811412010 TURKEY CRK	DIXIE FARM RDEE	0.10 Ml SW OF GULF FWY	8114	12	2500	30000	100000	1982		121020819690002	Exact
1729	121020811412011 DRAINAGE D	DIXIE FARM RD	0.30 MIISW OF BEAMER	8114	12	1100	30000	100000	1979.		121020419959002	
1730	121020811412012CLEAR CREEK	DIXIE FARM RD.	1.5 MI SW OF BEAMER RD	8114	12	2500	30000	100000	1978.		121020M00750004	Pos
1731	121020811912001 HCFCD DRAINAGED	holland ave	1.00 MIS OFIH 10	8119	12	900	30000	100000	1984.		121020132241004	Pos
1732	121020811912002 PANTHER CRK	holland ave	0.05 MI S OF GTH ST	8119	12	2500	30000	100000	1953		121020132241002	Exact
1733	121020812012002 TURKEY RUN GUL.	MERCURY DR	0.95 MIS OFIH 10	8120	12	900	30000	100000	1958		121020144000001	Exact
1734	121020812012007 OREDGE FILL BASIN	MERCURY DR	1.80 MI S OF JCT IH 10	8120	12	1800	30000	100000	1985		121020144000005	EXACT
1735	121020812012008 OREDGE FILL BASIN	MERCURY DR	1.60 MIS OFIH 10	8120	12	1600	30000	100000	1985		121020144000004	EXACT
1738	121020812012009 DREDGE FILL BASIN	MERCURY DR	1.40 MIS OFIH 10	8120	12	1400	30000	100000	1985		121020,144000003	EXACT
1737	121020012012010 DREDGE FILL EASIN	MERCURY DR	1.00 MIS OFIH 10	8120	12	1000	30000	100000	1985		121020144000002	Exact
1738	121020012012011 PANTHER CRK	MAINST	0.75 MI N OF CLINTON DR	8120	12	200	30000	100000	1905.		121020,41889001	EXACT
1739	121020812112001 HUNTING BYU	MARKET STEB	2.50 MI W OFFEDERAL RD	8121	12	6200	30000	100000	1948		121020k42473601	Exact
1740	121020812112002HUNTING BYU	MARKET ST We	2.50 MI W OF FEDERAL RD	8121	12	6200	30000	100000	1943		121020 K 42473002	Exact
1741	121020812112005 WEST CAN	MARKET ST	0.20 MI E OF NORMANDY	8121	12	6599	30000	100000	1970		1210204 A 4541007	EXACT
1742	121020812112007 GREENS BYU	MARKETST WE	0.25 MI W OFIH 610	8121	12	8504	30000	100000	1995		121020842473004	Exact
1743	121020812112008 GREENS BYU	MARKET STEE	4.50 MIEOF JCT IH610	8121	12	6599	30000	100000	1995		121020 AA4310001	
1744	121020812212001 日RICKHOUSE GUL	hempstead ri	0.20 MIS OF BINGLE	8122	12	6300	30000	100000	1988.		121020831281002	EXACT
1745	121020812212002 COLE CRK	HEMPSTEAD RD	0.2 MIS SOF LITTLE YORK	8122	12	1400	30000	100000	1980		121020831281001	EXACT
1746	121020813812005 WHITE OAK BYU	WATONGA BLVD NE	0.10 MIS OFTCJESTER	8138	12	100	30000	100000	1987		121020867817001	Exact
1747	121020813812006 WHITE OAK BYU	WATONGA blvo sb	0.10 MIS OFTCJESTER	8138	12	100	30000	100000	1987		121020897817002	Exact
1748	121020813812007 BRICKHOUSE GUL	watonga blvd sb	0.90 MIS OFTCJESTER	8138	12	900	30000	100000	1988		121020867817003	Eact
1749	121020813812008 BRICKHOUSE GUL.	Watonga blvd na	0.90 MIS OFTCJESTER	8138	12	900	30000	100000	1988	.	121020857817004	Exact
1750	121020813912001 WHITE OAK BYU TRIB	TCJESTER blvo na	0.40 MIN OFW 43 RDST	0139	12	4500	30000	100000	1987	.	121020882921005	Exact
1751	121020813912002 WHITE OAK BYU TRIE	TCJESTER blVDSb	0.40 MIN OF W 43 RDST	8139	12	4500	30000	100000	1987		121020862921006	Exact
1752	121020813912003 DRAINAGED	WTCJESTERNE	$0.10 \mathrm{M1}$ NWOF JCTIH 610	8139	12	7000	30000	100000	1980		121020862937001	Os
1753	121020813912004 DRAINAGE D	WTC Jester Sb	0.10 MI NW OF JCTIH 610	8139	12	7000	30000	100000	1960		121020862937002	
1754	121020813912005 WHITE OAK BYU	WTC Jesterna	0.10 MiN OF W34TH ST	8139	12	6200	30000	100000	1985		121020862937003	exact
1755	121020813912006 WHITE OAK BYU	WTCJESTER SB	0.10 MIN OFW34TH ST	8139	12	6200	30000	100000	1965		121020862937004	EXACT
1756	121020814112006 BERING D	SANFELPERDEB	0.20 MIEOF JCT VOSS RD	8141	12	1300	30000	100000	1562		121020857009003	pos
1757	121020814112007 BERING D	SAN FELIPE RD We	0.20 MIE OF JCT VOSS RD	8141	12	1300	30000	100000	1962		121020857009004	pos
1758	121020814112011 BuFFALO BYU	BRIAR FOREST DR WB	0.50 MIEOF GESSNER RD	8141	12	8500	30000	100000	1985	.	121020809761001	Exact
1759	121020814112012 BuFFALO BYU	ERIAR FOREST DR EE	0.50 MIE OF GESSNER RD	8141	12	8500	30000	100000	1985	-	121020809781002	Exact
1760	121020814112013 guffalo gYu	SAN FELPERD WG	0.40 Ml W OF JCT VOSS RD	8141	12	500	30000	100000	1970.	.	121020857009001	Exact
1781	121020814112014 guffalo BYU	SAN FELPE RDEB	0.40 Ml W OF JCT VOSS RD	8141	12	500	30000	100000	1970.		121020857009002	Exact
1782	121020914412002BRAYS BYU	S WAYSIDE DR SB	0.10 Ml 5 Of Jctus 90a	8144	12	100	30000	100000	1986		121020868025001	EXACT
1763	121020014412003 gRAYS BYU	S WAYSIDE DR NB	0.10 Mt S OF JCT US 90 A	8144	12	100	30000	100000	1986		121020888025002	Exact
1764	121020814412004 SIMS BYU	MYKAWA RD	0.70 MIS OF EELLFORT DR	8144	12	3300	30000	100000	1945		121020888025003	Exact
1785	121020814612012 SOUTHERN PACIFIC RR	WACP ST	0.70 MIN OF IH to	8146	12	8800	30000	100000	1988	.	121020832105007	
1768	121020814612013 HALLS BYU	HIRSCH RD NB	1.00 MIN OF TIDWELL R	8146	12	2800	30000	100000	1988		121020832105001	Exact
1767	121020814612014 DRAIN D	HIRSCH RD	0.50 MIN OF TIDWELLRD	8146	12	3500	30000	100000	1954.	.	121020832105003	
1788	121020814612015 HALLS BYU	HIRSCH RDSs	1.00 MIN OF TIDWELL RD	8146	12	2800	30000	100000	1988	.	121020832105002	Exact
1769	121020814612018 HUNTING BYU	HIRSCH RD SB	0.10 MIS OF 1 H 410	8146	12	7000	30000	100000	1991	.	121020832105005	EXACT

HARRIS COUNTY

ID	Removed bridges Feature Crossed
1770	121020814612017 HUNTING BYU
1771	121020814612018 DRAIN D
1772	121020814712004 HALLS BYU
1773	121020814712005 HALLS BYU
1774	121020814712007 HUNTING BYU \& HET RR
1775	121020814712008 HUNTING BYU
1776	121020814712009 HUNTING BYU
1777	121020814712010 UUNTING BYU \& HBT RR
1776	121020814712011 GREENS BYU
779	121020815012001 SENGER GUL
1780	121020815012002 KOTHMAN GUL
1781	121020815012005 THEISS GUL.
1782	121020815012006 ORY CRK
1763	121020815012009 SEALS GUL
1784	121020815012010 SPRING SUL
1785	121020815012011 S WHITE OAK BYU
1788	121020815012012 FAULKNER CRK
1787	121020815012013 PILLOT GUL
788	121020815012014 DRAINAGE D
789	121020815012015 PILLOT GUL
1790	121020015012016 DRAINAGE D
1791	121020815112001 GREENS BYU
1792	121020815112004 TURKEY CRK TRIE
1793	121020815112005 DRAINAGED
1794	121020815112009 DRAINAGE D
1795	121020815112010 GREENS BYU
1796	121020815112011 LITLE YORK RD
1797	121020815112012 LITLLE YORK RD
1798	121020815112013 ALDINE MAIL ROUTE RD
1799	121020015112014 ALDINE MAIL ROUTE RD
1800	121020815112015 LITLLE YORK RD
1801	12102081511201 LITTLE YORK RD
1802	121020815112017 ALDINE MAIL. ROUTE RD
1803	121020815112018 ALDINE MALL ROUTE RD
1804	121020815112019 TRIB TURKEY CRK
1805	121020815112020 FM 525 GRADE CROSSING
1806	121020815112021 FM 525 GRADE CROSSING
1807	121020815112022 DRAINAGE D
1808	121020815112025 FM 525 GRADE CROSSING
1809	121020015112026 FM 525 GRADE CROSSING
1810	121020815112027 HALLS BYU
1811	121020815712005 DRAINAGE D
1812	121020815712006 DRAINAGE D
1813	121020815712007BENS BR
1814	121020815712008 BENS BR
1815	121020815812002 W FORK GOOSE CRK
1818	121020815812003 E FORK GOOSE CRK
1817	121020815812004 E FORK GOOSE CRK
1818	121020815912005 VINCE BYU
1619	121020815912006 drainage D
1820	121020818812002 DRAINAGE D
1821	121020818812003 DRAINAGE D
1822	121020818812004 DRAINAGE D
1823	121020816612005 DRAINAGE D
1824	121020816812006 DRAINAGE D
1825	121020818712005 N FORK BRAYS BYU
1826	121020816712006 N FORK BRAYS BYU
1827	121020816712007 BRAYS BYU
1828	121020816712008 BRAYS BYU
1829	121020816712009 DRAINAGE D
1830	121020816742010 DRAINAGE D
1831	121020816912003 ERAYS EYU

Facility Carried	Location	Control
HIRSCH RD NB	0.10 Mi S OFIH 610	
HIRSCH RD	0.10 MIS OF CRESTON ST	
HOMESTEAD ROSB	0.3 MI N OF TIDWELL RD	
HOMESTEAD RD NB	0.3 MIN OF TOWELL RO	
HOMESTEAD RD NB	$0.20 \mathrm{MIN} \mathrm{OFIH610}$	
homestead turound	$0.20 \mathrm{MIN} \mathrm{OF} \mathrm{H}^{2} 610$	
homestead turound	$0.20 \mathrm{MIN} \mathrm{OFIH610}$	
homestead ro sb	0.20 MIN OFIH 610	
homestead ro	0.45 MIS OF US 59	
lovettard	3.1 MIE OF KUYKENDAHL	
LOUETTA RD	1.7 MIE OF KUYKENDAHL	
LOUETTA RD	0.06 MI E OF STUESNER AIR	
LOUETTA RD	0.15 MI W OF CHAMP FOREST	
LOUETta RD	1.3 MIE OF KUYKENDAHL	
LOUETTA Ro	1.20 MIE OF STUEBNER AIR	
louetta ro	0.70 MIE OFSH 249	
LOUETTA RD	1.40 MlW OF SH 249	
LOUETTA RD EB	0.70 MIE OF SH 249	
LOUETTA RD Eb	1.20 MI W OF CHAMP FOREST	
LOUETTA RO Wb	0.70 MIE OF SH 249	
LOUETTA RD Wb	1.20 MIW OF CHAMP FOREST	
W Haroy ro	0.75 M1N OF EWY 69	
E HARDY RD	0.20 Ml S OF THORNE BLVD	
EHAROY RD	1.0 MIS OF FM 1960	
W Haroy ro	1.00 MIN OF ALDINE MAIL.	
EMARDY RD	0.85 MIN OF BW\% 8	
E HARDY N APPROACH	ATLITLE YORK RO	
W Hardy ${ }^{\text {S APPRRACH }}$	AT LTTLE YORK RD	
W MARDY N APPROACH	at aldine mall route rd	
E HARDY N APPROACH	AT ALDINE MAIL ROUTE RD	
E HAROY S APPrOACH	AT LITTLE YORK RD	
WHARDY N APPROACH	AT LITTLE YORK RD	
W Hardy S Approach	AT ALDINE MAIL ROUTE RD	
E HARDY S APPROACH	AT ALDINE MAIL ROUTE RD	
E HARDY RO	1.60 MIS OFFM 1960	
EHARDY NAPPROACH	AT FM 525	
Whardy n approach	AT FM 525	
E HARDY RD	1.10 MIS OF FM 525	
W HARDY S APPROACH	AT FM 525	
E HARDY S APPROACH	AT FM 525	
Wharoy ro	0.20 MIN OF COLLINS RD	
KINGWOOD OR WB	4.50 MIE OF US59	
KINGWOOD DREB	4.50 MIE OF US59	
KINGWDOD DR EB	0.20 MI W OF LAKE HOU PK	
KINGWOOD DR WB	0.20 MIW OF LAKE HOUPK	
ROLLINGBROOK DR	0.85 M1W OF GARTH RD	
ROLLINGBROOK DR We	0.40 MIE OF GARTH RD	
ROLLINGBROOK DR EB	0.40 MIE OF GARTH RD	
Wharris ave	0.20 MI EAST OF S RICHEY	
W HARRIS AVE	0.30 MIE OF S RICHEYRD	
ERICHEYRD	0.50 MI SE OF FM 1960	
RICHEY RO Wb	0.40 MIW OF HARDY TOLL	
RICHEY RDEB	0.40 MIW OF HAROY TOLL	
W RICHEY ROWB	. 5 MI SWISTUEENER AIRLINE	
WRICHEY RDEA	. 5 MI SWISTUEBNER AIRLINE	
ELORIDGE RD Na	0.80 MIS OF WESTHEMMER	
Eldidge ro sb	0.80 MIS OF WESTHEIMER	
Eldridgeron	1.40 MIS OF WESTHEIMER	
Eldridgero sb	1.40 MIS OF WESTHEIMER	
ELDRIDGE PKWY NB	3.10 MI S OF WESTHEIMER	
ELDRIDGE PKWY SB	3.10 MIS OF WESTHEMMER	
	0.50 MI SEOF WAYSIDE DR	

21020032 bidg OFF FLA
121020832105006 EXAC
121020032537001 EXAC 121020832537002 EXACT 121020 B 32537003 EXACT 121020832537004 EXACT 121020832537004 EXACT 121020832537006 EXACT 121020AA4310001 EXACT 121020AAA21111009 EXACT 121020 AA 2111006 EXACT 121020 AA 2111005 EXACT 121020 AA 2111008 EXACT 21020AA2111007 EXACT 121020AA2111002 EXACT 121020AA2111001 EXACT 21020 AA2111003 EXACT 21020 AA 2111004 POS 121020AA2111012 POS 121020830209001 EXACT 121020 AA 5775032 EXACT 121020AA5775030 POS 121020AA5775038 POS 121020830209002 POS 121020830209003 POS 121020830209004 POS 121020AA 5775040 UNC 121020 B 30209005 POS 121020830209006 POS 121020AA5775042 UNC 121020AA5775043 UNC 121020AA5775031 POS 121020 AA 5775033 UNC 121020 AA 5775034 UNC 121020 AA 5775037 UNC $121020 A A 5775038$ UNC 121020 AA 5775039 POS 21020AAB075003 POS 21020AABD75004 POS 121020AAB075001 EXACT 121020AAB075002 EXACT 121020002060001 EXACT 121020002000002 EXACT 121020002066003 EXACT $1210200^{01401001}$ POS 121020 AA5330005 POS 121020AA5330003 POS 121020AA5330004 POS 121020AA5330001 POS 121020AA5330002 POS $121020 \mathrm{B2} 1912005 \mathrm{POS}$ 121020 B 21912006 POS 21020802801001 POS 121020866625004 POS
121020866825004 POS
121020 B 38473002 EXACT

HARRIS COUNTY

Facility Carried	Location
MKT RR	0.10 MI N OF WASHINGTON
SPRR	0.10 MIN OF WASHINGTON
SPRR	0.10 MIN OF WASHINGTON
galveston ro	0.05 MI NW OF JCTIH 610
Galveston rd	0.80 M SE OF IH610E
Galveston rd	1.10 M SE OF IH610E
OLD GALVESTON RD	1.35 M SE OF IH610
galveston rd	0.20 MI SE OF HOWARO DR
galveston rd	N OF RICHEY ST
S PACIFIC RR	0.20 MIS OF HOWARD DR
CUITENRD	2.4MI N OF FM 1960
GRANT RO	1.00 M NW OF JONES RD
GRANT RD	0.90 MI NW OF JONES RD
CHAMPION FDREST SE	0.30 MIS OF CYPRESSWCOD
CHAMPION FORESTNB	0.30 MIS OF CYPRESSWCOD
CHAMPION FOREST NB	0.25 MIN OF CYPRESSWOOD
CHAMPION FOREST SB	0.25 MIN OF CYPRESSWOOD

Control

Sectio Milepoi Lat(DMLong(DM r.Bui					
8170	12	1900	30000	100000	1934.
8170	12	1000	30000	100000	1934.
8170	12	1800	30000	100000	1934.
8171	12	1300	30000	10000	1940.
8171	12	1800	30000	100000	1945.
8171	12	1100	30000	100000	1984.
8171	12	1300	30000	100000	1945.
8171	12	2000	30000	100000	1968.
8171	12	3000	30000	100000	1988.
8171	12	2400	30000	100000	1970.
8175	12	6400	1	1	1993.
8177	12	539	30000	100000	1978.
8177	12	539	30000	100000	1954.
8178	12	1800	30000	100000	1983.
8178	12	1800	30000	100000	1979.
8178	12	1300	30000	100000	1980.
8178	12	1300	30000	100000	1983.

OFF-sys bridg OFF FLA
121020831281004 EXACT
121020831281004 EXACT
121020831281003 EXACT 121020831261003 EXACT 121020 B 26105001 EXACT 124020326105002 EXACT 121020326105003 EXACT 21020828105004 EXACT 21020 B 26105005 POS $121020 \mathrm{CO1164002}$ EXACT 121020AA2020002 POS 121020AA0725002 EXACT 121020 AAO 725003 EXACT 1210204A 1693003 EXACT 121020AA1693004 EXACT 121020 AA 1693001 EXACT
121020AA1693002 EXACT

HARRIS COUNTY

1 D	New bridges Feature Crossed	Facility Carried	Location
13324	121020002713268 WLLCREST DR.	US 59 NB ML	$0.25 M 1$ N OF FORT BEND CA
13325	121020002713267 WILCREST DR.	US 59 SEML	,75MI N OF FORT-BENDCA
1332 s	121020002713288 WEST BELLFORT	US 59 NB ML	O.SOMIN OF FORT BENDCA
13327	121020002713289 WEST BELLFORT AVE	US 59 SBML	25M1. N. OF FORT BENDC/L
13351	121020002801227 HUNTING BAYOU	US 90a	0.1 Mi W OF IH 610
13472	121020005102349 SH 3 \& GH \& HRR	BW8EB	1.10 MINEOFIH 45
13473	121020005102350SH 3 G GH \& H RR	BWB WB	1.10 MINE OFIH45
13487	121020011005129 CYPRESSWOOD RD	144588	2.20 MIN OFFM 1960
13491	121020011005143 AIRTEX BLVD	[H 45	4 MIS OF FM 1960
13493	121020011005163 RICHEY RD	1 H 45 NBML	2 MIS OF FM 1960
13494	121020011005182 CYPRESSWOOD RD	1 H 45 NB	2.20 M ${ }^{\text {N OF FM }} 1960$
13495	121020011005192 RICHEY RD	1 H 45 SBML	2 MIS OF FM 1900
13517	121020011006141 RANKIN RD	IH 45 NB	1.8 MIN OF EWY 8
13518	121020011006142 RANKIN RD	1H45 SB	1.8 MIN OF EWV 8
13545	121020017706225 US 59	TOWNSEN BLVD	0.9 MI N OF FM 1960
13570	121020017707214 REINHARD BAYOU	US 59 NBFR	10.5 M N OF LP 137
13571	121020017707219 GARNERS BAYOU	US 59 NB FR	12.0 M N OF LP 137
13576	121020017707275 BELTWAY 8	US 59 SB	5.0 MIS OF FM 1960
+3597	121020017711201 US59SB / KING AVE	US59 HOV	.2MI S OF BENNINGTON
13601	121020017711286 LYONS ST \& TANO RR	US 59 (NB)	0.40 MIN OFIH 10
13602	121020017711289 QuITMAN ST	US 59 (SB)	$0.90 \mathrm{M} / \mathrm{N}$ OFIH 10
13603	121020017711290 COLLINGSWORTH ST	US 59 (S8)	1.60 M N OFIH 10
13604	$121020017711299 L Y O N S S T$ \& TANO RR	US 59 (SE)	O.40 MiN OFIH 10
13605	121020017711300 QUITMAN ST	US 59 (NB)	O.90 MIN OFIH 10
13608	121020017711301 COLUNGSWORTH ST	US 59 (NB)	1.60 MIN OF IH 10
13611	121020017601357 SH 35	BW8	3.40 MI W OF BEAMER RD
13908	121020038912089 HOUSTON SHIP CHANNEL	SH146 NB (E.LANE)	.6M1 N OF SH225
13909	121020038912090 HOUSTON SHIP CHANNEL	SH146 SB (W.LANE)	6M1 N OF SH225
13919	121020038913106 MISSOURI ST	SH 146	0.9 MI N OF FRED HARTMAN
13920	121020038913107 WETLANO	SH 146 NB ExIT	0.3 MIE OF SH146
+3921	121020038913108 WETLAND	LP201 WB-NE CONN	ATLP201SH146 INTER.
13922	121020038913109W. TEXAS AVE.	SH 148	3.5 MI N OF FRED HARTMAN
13923	121020038913110 SH 146 ML .	LP 201 CONN	AT LP201 \& SH146 INTER.
13924	121020038913111 GOOSE CREEK \& GARTH ROAD	SH 146 MAIN LANES	0.5 MIE OF MAIN STREET
13925	121020038913112 N . MAINST.	LP 201	1.4 MIE OF SPUR330
14060	1210200500033051 HH 4	1 H 45 HOV	0.7 MIS OF MONROE
14081	121020050003306 IH 45 NB FR	IH 45 HOV EXIT RP	0.7 MI S OF MONROE
14062	121020050003307 HH 45 SB FR	IH 45 HOV EXIT RP	0.7 M 15 OF MONROE
14063	121020050003309 EERRY CREEK	IH 45 HOV EXITRP	0.4 MIE OF MONROE
14064	121020050003309 EERPY CREEK	IH 45 HOV ENT. RP	0.4 M E OF MONROE
14065	121020050003313 BELTWAY	IH 45 SB	0.90 MI SE OF FLQUA ST
14082	121020050003343 BW 8 EB FR	IH 45 NBFR	IH 45 NB CONN "D"
14083	1210200500033441 H 45 NB ENTRANCE RAMP	1 H 45 NB CONN "E"	1.80 M1 NW OF FM 1959
14084	1210200500033451H 45	BELTWAY 8	IH 45 SE CONN" ${ }^{\text {H/ }}$
14085	121020050003347 HH 45 NB EXIT RAMP	BWY 8 EB CONN "K"	1.80 MI NW OF FM 1959
14086	121020050003360 HCFCO DITCH A-149-07.00	IH 45 SB ON RAMP	0.80 M SE OF FUQUA ST
14087	121020050003361 HCFCD DITCH A-119-07-00	[$\mathrm{H}_{4} 4$	0.80 MI SE OF FUQUA ST
14142	121020050201081 SH 225 ML AND WB FR	Miller Cut off	5.6 M E OF BELTWAY 8
14143	121020050201083 SH 225 ML AND WB FR	SENS ROAD	6.8 MEE OF BELTWAY 8
14152	121020050201355 SH 225	belimay and	1.5 MIS OF SHIP CHANNEL
14153	121020050201356 SH 225	beltway ssa	1.5 MIS OF SHIP CHANNEL
14262	121020050801317 SAN JACINTO RIVER	IH10 RTLANE	12MI E OF $\mathrm{HH} 10+$ He 10
14342	121020059801336 SH 288	BW8EB	JCT. OF SH 288
14343	121020059801337 SH 288	BW8 WB	JCT. OF SH 288
14373	121020098101020 CLEAR CREEK	FM 528	0.85 M NE OF FM 518
14374	121020098101021 HCFCO OITCH A-111-00-60	FM 528	0.20 MISWOFIH 45
14375	121020098101022 FUTURE DRAINAGE CHANNEL	FM 528	1.00 MIW OFIH 45
14583	121020325602096 日ELTWAY 8 FR	HAROY TOLL RO	0.25 MIN OF BLACKWOOD
14657	121020325603253 GENOA - RED BLUFF	beltway 8 nb	3.1 MI NE OFIH 45
14558	121020325603254 GENOA - RED BLUFF	beltway 8 SB	3.1 MI NE OF IH 45
14663	1210203258032688 PRESTON AVENUE	beltway 8 Ne	3.7 M1 NE OF IH 45

Control
0.25 M N N OF FORT BENDCA
O.5OM N OF FORT BENDC

5MI. N. OF FORT BENDCI
1.10 MI NE OF:H 45
1.10 MI NE OF IH 45
220 MI N OF FM 1960
2.20 MIN OF FM 1960
4 MIS OF FM 1960

2 MIS OFFM 1960
2.20 MIN OF FM 1960
1.8 MI N OF BWY 8

0,9 MI NOF FM 1960
10.5 M N OF LP 137
12.0 M I N OF LP 137
5.0 MIS OF FM 1960

2 MI S OF BENNINGTON
.90 M N OFIH 10
. 40 MIN OFIH 10
0.90 MIN OF IH 10

40 MI W OF BEAMER RD
.6 MIN N SH 225
6 MM N OF SH2 25
0.9 MI N OF FRED HARTMAN
.3 MIE OF SH146
3.5 MI N OF FRED HARTMAN
. 4 MIE OF SPUR33O
0.7 MI S OF MONROE
0.7 MI 5 OF MONROE

4 MI E OF MONROE
4 M E OF MONROE
IH 45 NB CONN "D"

1.80 MI NW OF FM 1959
Q.BO MI SE OF FUQUA ST
5.6 ME OF RELTWAY

BME OF BELTWAY
1.5 MI S OF SHIP CHANNEL

2MI EOFIH10+HE10
CT. OF SH 288
0.85 MI NE OF FM 518
0.20 MISWOFIH 45
. 25 MI N OF BLACKWOOD
1 MI NE OFH 45
3.7 MI NE OF IH 45

Sectio Milepoi Lat(DMLong\{DM r.Bui Bridge Rep. Rep. FLACDFF-bridge Reoff FLA

				8	

MONTGOMERY COUNTY

ID Removed bridges Feature Crossed
240121700866112001 STEWARTS CRK 241 121700866312002 STEWARTS CRK

Total bridges REMOVED $=$
(D) New bridges Feature Crossed

14759121700011004165 N. REL SAN JACINTO RIVE 14760121700011004166 SAN JACINTO RIVER 14761121700011004167 S. REL SAN JACINTO RIVE 14762121700011004168 N. REL SAN JACINTO RIVE 14763121700011004169 SAN JACINTO RIVER 14764121700011004170 S. REL SAN JACINTO RIVE

Total NEW bridges $=$
Balance =

Facllity Cartied Over Location

SILVERDALE RD $\quad 0.40 \mathrm{MI} \mathrm{W}$ OF FM 1314 FOSTERRD 1.40 MIE OF SH 75

Facillty Carred Over Location
0.50 M! FROM JCT. FM 148 .75 MI FROM JCT. FM 148 0.15 MI FROM JCT. FM 1488 .90 MI FROM JCT. FM 148 0.75 MI FROM JCT. FM 1488 0.15 MI FROM JCT. FM 148

Control	Section	Milepoint	Lat(DM)	Long(DM)	Yr.Bult
8561	12	400	30000	100000	1985
8663	12	300	30000	100000	1960

OFF-sys bridge OFF FLAG
$121700 \mathrm{CO1165001}$ EXACT $21700 \mathrm{C00330001}$ EXACT

Control Section Milepoint Lat(DM) Long(DM) Yr.Bullt Bridge Rep. Rep. FLAG OfF-bridge Rep. OFF FLAG

110	4	90	30150	95274	1997.
110	4	75	30145	95274	1997.
110	4	15	0	0	1997.
110	4	90	0	0	1997.
110	4	75	0	0	1997.
110	4	15	0	0	1997.

WALLER COUNTY

[^0]: ${ }^{1}$ For more in depth information or instructions on how to use Windows 95 or Windows NT 4.0 , refer to the corresponding User's Guide, included with the software license.
 ${ }^{2}$ For more in depth information or instructions on tasks performed by TransCAD menu items or buttons, refer to the TransCAD User's Guide, included with the commercial license.

