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ABSTRACT 

 

The tumor microenvironment contributes to the progression of pancreatic ductal 

adenocarcinoma (PDAC), an almost uniformly lethal disease. Here, we demonstrate how tumor 

hypoxia resulting from characteristic PDAC hypovascularity drives epithelial-mesenchymal 

transition (EMT), a cellular program that occurs early in metastasis and promotes 

chemoresistance. The work described in this thesis establishes hypoxia as a bona fide driver of 

EMT in pancreas cancer and uncovers the molecular mechanisms through which hypoxia 

promotes a heterogeneous, but highly durable, EMT in transformed PDAC ductal cells. Multiple 

mouse models, publicly available human patient data, single-cell and bulk omics, cell-based 

assays, and data science models are employed to gain a comprehensive and systematic 

understanding of the signal transduction and epigenetic regulatory processes governing hypoxia-

mediated EMT. We find that neoplastic PDAC cells preferentially undergo EMT in hypoxic tumor 

regions and that hypoxia drives a cell-autonomous EMT in PDAC cells that is substantially more 

persistent than EMT in response to growth factors. We further identify an oxygen-dependent 

histone methylation-MAPK signaling positive feedback process that is responsible for driving EMT 

in response to hypoxia. The signaling process initiated by low oxygen tension that leads to durable 

phenotype switching can be pharmacologically targeted to inhibit, and even reverse, hypoxia-

mediated EMT. Further, through single-cell RNA-sequencing, we uncover the transcriptional 

basis for the heterogeneity of hypoxia- and growth factor-mediated EMT. We identify context-

dependent transcripts that preferentially control EMT by actively suppressing or promoting the 

mesenchymal state in hypoxic culture, but not in response to growth factors. Collectively, these 

findings identify several potential vulnerabilities in hypoxia-mediated signaling for EMT in PDAC 

and nominate specific targeted inhibitors for incorporation into combination therapies designed to 

augment chemoresponse by antagonizing EMT. 
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CHAPTER 1: INTRODUCTION 

1.1 PANCREAS CANCER SURVIVAL RATES AND SUBTYPES 

Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest survival rates of all 

cancers, with a five-year survival of only 11% (2022, American Cancer Society). This can be 

attributed to the fact that patients are often not diagnosed until advanced metastatic disease (1). 

More than 50% of PDAC patients have detectable metastasis at diagnosis, but autopsies suggest 

that an even larger percentage of patients have metastatic disease (2,3). Due to nonspecific 

symptoms, patients usually present with advanced disease, which allows less than 10% of 

patients to be eligible for surgical resection (4,5). Even with complete resection, relapse occurs 

80% of the time, suggesting that undetectable metastases are also present at diagnosis for most 

surgical patients (6). The current standard of care of chemotherapies, commonly gemcitabine or 

FOLFIRINOX, potentially in combination with other agents, only results in a median survival of 23 

months (4,7). Immunotherapies and molecularly-targeted therapies have not provided the same 

success in PDAC as they have seen in other carcinomas (8). Therefore, there is a clear and 

urgent need to develop improved therapies for PDAC. 

In an effort to understand inter-tumoral heterogeneity in disease progression and 

treatment response, patient bulk tumor transcriptomics have been utilized to determine subtypes 

within PDAC, with the three major classification systems being those attributed to Moffit, 

Collisson, and Bailey (9-11). Moffitt et al. classifies tumors into classical and basal-like subtypes, 

with the basal subtype having the worse prognosis and enrichment of mesenchymal 

characteristics (9). The Collisson method defines three subtypes of classical, quasimesenchymal, 

and exocrine-like, where quasimesenchymal tumors have the shortest median survival among 

the subtypes (10). Lastly, the Bailey classification defines four subtypes: squamous, pancreatic 

progenitor, immunogenic, and aberrantly differentiated endocrine exocrine, based on 

histopathological characteristics, with the squamous population having the worst prognosis and 
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an increase in mesenchymal characteristics (11). Therefore, each of these methods for classifying 

PDAC tumors identifies an especially aggressive subtype that is associated with decreased 

survival and mesenchymal characteristics. However, these subtyping methods were defined from 

bulk tumor transcriptomics, which does not account for heterogeneity within the tumor. 

 

1.2 EPITHELIAL-MESENCHYMAL TRANSITION 

Epithelial-mesenchymal transition (EMT) is a normal developmental and wound healing 

process by which cells lose their polarity and cell-cell adhesions to become more motile and 

invasive. EMT is associated with the earliest stages in metastasis and promotes chemoresistance 

in a variety of carcinomas, including PDAC (12-14). The epithelial phenotype is associated with 

expression of E-cadherin, certain cytokeratins, and zonula occludens-1 (ZO-1), which are lost as 

cells transition to a mesenchymal state (Figure 1.1) (15). The mesenchymal phenotype can 

involve expression of vimentin, fibronectin, and N-cadherin, and can alter the cytoskeleton to allow 

for migration (16). EMT is predominantly regulated by key transcription factors (TFs), including 

Slug, Snail, Twist, and Zeb1 (17). Although these are all known to drive EMT, they serve non-

redundant functions (18). The downstream targets of the EMT-TFs are different, as they contain 

different DNA recognition patterns (18). For example, in breast cancer, ZEB1, but not Slug, 

promotes transcription of the receptor tyrosine kinase AXL (18). 

 
Figure 1.1 Schematic of EMT 

EMT is associated with a loss of junctional proteins, including E-cadherin, and a gain of mesenchymal-
associated proteins, including vimentin. Figure created with BioRender.com. 
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EMT is associated with poor tumor differentiation, which is a hallmark of a higher-grade 

carcinoma (19,20). Circulating tumor cells (CTCs) are detected in the majority of PDAC patients, 

and the presence of mesenchymal-CTCs is positively correlated with higher PDAC stage, 

metastasis, and decreased reoccurrence-free survival (21,22). Lineage tracing in an 

autochthonous PDAC mouse model (KPC, which generates pancreas-specific mutation in Kras 

and a deletion of one allele of p53) shows that a subset of CTCs maintain a mesenchymal 

phenotype, which ultimately seed the liver (13). KPC epithelial cells labeled with a RosaYFP allele 

creates a KPCY mouse model that allows for tracing of cells of epithelial origin (13). This model 

allowed for the conclusion that EMT occurs in premalignant lesions and becomes invasive before 

histological evidence of PDAC (13). Further, mesenchymal PDAC cells are more resistant than 

epithelial cells to chemotherapy, and silencing Zeb1 can restore drug sensitivity (23). Therefore, 

EMT has a clinical relevance in aggressive disease and the ability to reduce EMT could improve 

the therapeutic window of chemotherapies in PDAC. 

 

1.3 MULTIVARIATE SIGNALING AND EPIGENETIC REGULATION OF EMT 

EMT can be driven by a variety of exogeneous stimuli that activate a multitude of signal 

transduction pathways, which ultimately control gene expression (Figure 1.2). Signaling can be 

initiated from many soluble factors, such as cytokines and growth factors (e.g., TGFβ, EGF, TNF⍺, 

IL-6) which can originate from the tumor microenvironment (24,25). TGFβ is perhaps the most 

potent and commonly described initiator of EMT, with it routinely being used as an in vitro EMT-

driver (26-28). Other extracellular cues include Wnt signaling through β-catenin, Notch receptor 

nuclear localization, Hedgehog signaling, and matrix interactions (25). These external stimuli can 

activate intracellular signaling pathways including MAPK and PI3K/AKT, which will ultimately 

impact EMT-regulating transcription factors (i.e., Snail, Slug, Twist, Zeb1) to downregulate 

epithelial genes, such as E-cadherin (25).  
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Figure 1.2 EMT is induced through signal transduction pathways 
Extracellular cues activate intracellular signal transduction to promote expression of EMT transcription 
factors. This is a summary of key pathways but not an exhaustive list of all signaling pathways involved in 
EMT or the crosstalk between pathways. Figure created with BioRender.com. 
 

Single-cell RNA sequencing (scRNA-seq) of lung, prostate, breast and ovarian cancer 

cells treated with TGFβ, EGF, and TNF⍺ over a time course revealed the context dependence of 

cell signaling in EMT, based on minimal overlap of differentially expressed genes between 

treatments within a cell line and between cell lines for a particular treatment (29). In the same 

study, a panel of kinase inhibitors was used to demonstrate inhibition of multiple targets, including 

TGFβR1, EGFR, MEK, and RIPK1, had varying effects on preventing EMT in response to the 

three different ligands (29). Further, in TGFβ-treated breast cancer cells, scRNA-seq revealed 

that cells progress through EMT at different paces (30), and mechanistic modeling of single-cell 

mass spectrometry revealed network rewiring of both ERK and AKT pathways (31). Previous work 

from our lab identified a more complete EMT when cells were treated with EGF in addition to 
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TGFβ by engaging SHP2 (32). Therefore, drivers of EMT are activating numerous signaling 

pathways to create a network of multivariate signaling regulation of EMT. 

Epigenetic changes can also regulate EMT. Epigenetic alterations are stable through 

multiple cell divisions, and DNA methylation patterns can serve as a form of cell memory (33). In 

PDAC, dysregulation of the histone methyltransferase Nsd2 and the demethylase Kdm2a allow 

for increased dimethylation of histone 3 lysine 36 (H3K36me2) to act upstream of Snai1 and Zeb1 

(34). Additional histone modifications (e.g., methylation, acetylation), such as H2K27me3, 

H3K4me2, and H3K4Ac, have also been reported to regulate EMT-associated genes (35,36). 

However, there is a lack of understanding in the literature of the interplay between signal 

transduction pathways and epigenetic modifications and the resulting ability to drive EMT. 

 

1.4 COMPLEX TUMOR MICROENVIRONMENT OF PANCREAS CANCER 

PDAC tumors have a rich desmoplastic stroma, accounting for up to 90% of the tumor 

volume (37) and comprised of tumor-associated immune cells and cancer-associated fibroblasts 

(CAFs) that reside in an extracellular matrix (ECM) of secreted proteins (Figure 1.3) (38). This 

dense PDAC stroma, along with hypovascularity, gives rise to tumor subdomains of low oxygen 

tension (39-42). Recently, there has been a greater appreciation for the role the complex tumor 

microenvironment can play in tumorigenesis and EMT (Figure 1.4).  

 
Figure 1.3 The tumor microenvironment promotes EMT in neoplastic cells 

The complex tumor microenvironment is comprised of cancer-associated fibroblasts (CAFs), tumor-
associated immune cells (e.g., macrophages and neutrophils), extracellular matrix [(ECM), e.g., collagens, 
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fibronectin, laminins] that impact epithelial and mesenchymal tumor cells. The arrows indicate 
disseminating mesenchymal cells. Figure created with BioRender.com. 
 

 Immune cells, such as tumor-associated macrophages (TAMs) and tumor-associated 

neutrophils (TANs), impact neighboring tumor cells through secretion of proteins. TAMs can be 

classified as M1 (anti-tumor, pro-inflammatory) or M2 (pro-tumor, anti-inflammatory), where M1-

type secrete inflammatory cytokines (e.g., IL-1, TNF⍺) and M2-type secrete immunosuppressive 

cytokines (e.g., TGFβ, IL-10) (43). For example, TAMs produce hepatocyte growth factor (HGF) 

and proteolytic matrix metalloproteinases (MMPs) (38). Secretion of these extracellular proteins 

can promote EMT in tumor cells. 

CAFs are activated resident pancreatic stellate cells and have been classified into two 

main subtypes: myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs). There is 

recognition of other CAF subtypes including antigen-presenting CAFs and mesenchymal stem 

cell CAFs (38). The myCAF subtype is associated with expression of ⍺-smooth muscle actin and 

matrix components (44). The iCAF subtype can be induced via IL-1⍺ and is characterized by 

secretion of inflammatory cytokines (e.g., IL-6, CXCL12), which can promote EMT via JAK/STAT 

in tumor cells (38,45). CAFs are able to promote EMT directly through secreted factors and by 

contributing to the ECM by laying down collagens, fibronectin, and laminin (46-48). 

 Additionally, the stiffness of the ECM can contribute to tumor cell fate. The PDAC ECM is 

comprised primarily of collagens, with type I and III being the most abundant (48). Integrins are 

able to interact with collagen, fibronectin, and laminins to initiate intracellular signaling, such as 

Src-family kinase and JNK signaling (48). The binding of ECM proteins with dimerized integrins 

allows for formation of focal adhesions (48), with focal adhesion formation proportionate to 

external mechanical force (49). Therefore, a stiff ECM will constantly engage these adhesion 

pathways to promote signaling that drives EMT. 
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Figure 1.4 The tumor microenvironment promotes EMT through a variety of stimuli 
Non-transformed tumor cells such as cancer associated fibroblasts (CAFs) and tumor-associated 
macrophages (TAMs) and hypoxic regions created by the diffusional limitations of oxygen (50,51) can 
participate in driving EMT in the cancer cell compartment. In the context of the tumor, fibroblasts are 
activated to become CAFs, which secrete cytokines and growth factors, release exosomes, and 
metalloproteinases that can all drive the neighboring tumor cells to undergo EMT. In some tumor settings, 
such as pancreas cancers, CAFs exist in subpopulations, including inflammatory CAFs (iCAFs) that secrete 
growth factors and cytokines which may drive EMT and myofibroblast-like CAFs (myCAFs). Tissue-resident 
macrophages, as well as recruited macrophages, are polarized to release cytokines and growth factors that 
cause cancer cells to undergo EMT. HIFs = hypoxia-induced factors; ROS = reactive oxygen species; 
MMPs = matrix metalloproteinase; ADAMs = disintegrin metalloproteases; TGFβ = transforming growth 
factor beta; IL-1α = interleukin 1 alpha; IL-6 = interleukin 6; αSMA = alpha smooth muscle actin; EGF = 
epidermal growth factor; TNFα =tumor neurosis factor alpha. This figure is part of the submitted paper, 
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Brown BA, Barbeau MC, Hart WS, Kowalewski K, Lazzara MJ, Regulation of epithelial-mesenchymal 
transition within the tumor microenvironment. 
 

1.5 ROLE OF HYPOXIA IN PANCREAS CANCER 

Hypoxia is defined as a state of reduced oxygen availability or decreased oxygen partial 

pressure (O2 tensions, pO2 values). Cells that are farther than approximately 70 µm from a blood 

vessel experience diffusion-limited hypoxia due to decreased oxygen supply, creating chronic 

hypoxia (Figure 1.5A,B) (51,52). Tumors can also have perfusion-limited O2 delivery to create 

ischemic hypoxia, which is an acute, transient hypoxia due to abnormal structure and function of 

microvessels (52). Additionally, patients can experience anemic hypoxia which decreases the 

ability of oxygen transport capacity in the blood, ultimately lowering the oxygen supplied to the 

tumor (52,53). Almost half of cancer patients experience anemia, which can be caused by the 

tumor itself, or from treatments of myelosuppressive chemotherapy or radiation (54-56). 

Therefore, many carcinomas, including PDAC, have lower oxygen availability than the 

surrounding normal tissue (39,57,58). The pancreas has a median oxygen level of 6.8%, whereas, 

pancreas tumors have a median oxygen level of 0.4%, a close to 20-fold decrease in the 

abundance of oxygen (39). Evidence of hypoxia can be found as early as the pancreatic 

intraepithelial neoplasia (PanIN) stage in PDAC (59).  

Figure 1.5 Hypoxia in PDAC 
(A) Immunohistochemistry of a pancreas tumor section from a patient-derived xenograft (PDX 395) stained 
for CD31, ⍺-smooth muscle actin (⍺SMA), and hypoxia (HYP). (B) Schematic of diffusion-limited hypoxia 
promoting EMT. Figure created with BioRender.com. 

 

A B 



 

 

18 

Considerable reductions in oxygen availability can impact transcriptional programs, which 

in part is regulated by hypoxia-inducible factors (HIFs). Decreased oxygen results in suppression 

of the hydroxylation and ubiquitination of the ⍺ subunits of the three HIF isoforms (HIF-1⍺, HIF-

2⍺, and HIF-3⍺) to allow for HIF protein stabilization, which directly links oxygen abundance to 

transcriptional regulation (60). A hypoxic environment also promotes mitochondrial reactive 

oxygen species (ROS), such as superoxide and hydrogen peroxide, by a transfer of electrons 

from a free radical state to molecular oxygen in the electron transport chain (61,62). ROS can 

activate signaling by oxidizing target molecules, such as phosphatases and transcription factors 

(61,62). Further, some histone demethylases containing the Jumanji-C domain, can directly sense 

oxygen, which impairs their activity to allow for increased histone methylation and resulting   

changes in gene expression (63,64). To date, at least two histone demethylases, KDM5A and 

KDM6A, have been identified to exhibit substantially variable activities over (patho)physiological 

ranges in oxygen tension (63,64). 

These transcriptomic changes allow for phenotypic changes in low oxygen. Hypoxia 

causes rapid tumor growth, spontaneous metastasis, and resistance to chemotherapies in PDAC 

(65,66). Analysis of transcriptomic data from The Cancer Genome Atlas (TCGA) reveals that 

HIF1A was positively correlated with EMT signatures in nine cancer types, including PDAC (65). 

Further, head and neck squamous cell carcinoma tumors show co-expression of HIF-1⍺ with 

Twist and Snail (67), and PDAC tumors show co-expression of carbonic anhydrase, a protein up-

regulated by hypoxia, with vimentin and Twist2 (68). Conversely, excess oxygen in vivo causes 

mesenchymal-epithelial transition (MET), measured by an increase in epithelial genes and a 

decrease in mesenchymal genes (69). 

Some of the proposed mechanisms of hypoxia-mediated EMT include HIF-1⍺-

dependence through, for example, HIF-1⍺- binding directly to the hypoxia response element on 

the TWIST promoter and HIF-1⍺ promoting expression of lysyl oxidase to stabilize Snail (67,70). 
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ROS can also drive EMT, both indirectly and directly. Attenuation of ROS by the antioxidants N-

acetylcysteine (NAC) and ebselen suppresses expression of Snail, Slug, and Twist in hypoxic 

cancer cells. The antioxidant NAC also abrogates the activation of HIF-1α and NF-κB during 

hypoxia, which both play an active role in hypoxia-driven EMT (62). Additionally, ROS play a 

critical role in signaling by receptors such as the epidermal growth factor receptor by targeting 

protein tyrosine phosphates to promote tumor progression and drug resistance (61). 

Although some studies have identified a potential connection between hypoxia and EMT 

and identified some relevant signaling pathways, there has yet to be a systematic study of 

hypoxia-driven EMT signaling or a study that broadly profiles transcriptional programs involved in 

hypoxic response and EMT simultaneously. While there is significant in vitro evidence of hypoxia-

driven EMT, the in vivo relevance of hypoxia for EMT in PDAC still needs to be studied further. 

Additionally, it will be worth understanding the capacity for hypoxia to drive EMT compared to 

other agonists (e.g., growth factors). Further, the most critical signaling effector pathways that are 

common to multiple agonists of EMT, which would provide the most readily accessible targets of 

inhibition, are unknown. In this work, we plan to find targetable pathways to prevent hypoxia-

driven EMT. 

When discussing hypoxic cell culture to compare to in vivo measurements, it is important 

to note that traditional cell culture is conducted in a humidified 37°C incubator with 5% CO2, and 

thus operates at an oxygen percentage closer to 18.6% O2, rather than that of dry air of 20.9% O2 

(71). Additionally, although the incubator is operating at that bulk oxygen level, the cells under a 

layer of medium may experience a lower oxygen level due to diffusional limitations and oxygen 

consumption from cells (71,72). With these caveats, oxygen-dependent studies can still be 

conducted by allowing for all other parameters to be the same and creating a substantial enough 

difference in bulk oxygen so that any differences can be attributed to the differential oxygen levels 

(71). 
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1.6 PLASTICITY AND HETEROGENEITY IN EMT 

EMT is a highly dynamic process that results in phenotypic plasticity and heterogeneity of 

EMT states within a population (17). Thus, cells do not exist only as binary states of epithelial (E) 

or mesenchymal (M), but rather cells exist on a spectrum in which hybrid/intermediate phases 

exist with cells co-expressing E and M markers (73). Some have defined a partial EMT as a 

program that involves internalization of E-cadherin, whereas a complete EMT requires 

transcriptional repression of epithelial genes (19). Partial EMT could be even more detrimental 

than a complete EMT for metastasis, as cells still harbor epithelial characteristics allowing for a 

collective migration and the ability to seed a metastatic site, but both partial and complete EMT 

promote chemoresistance (74). 

EMT heterogeneity can arise from extrinsic factors including a nonuniform tumor 

microenvironment. As previously described, the stromal compartment can promote EMT; 

therefore, the distribution of cell types within the tumor can dictate the neighboring tumor cell 

phenotype. In pancreas cancer, myCAFs were found to be adjacent to neoplastic cells more so 

than the cytokine-secreting iCAFs (45). This intra-tumoral spatial heterogeneity in the tumor 

microenvironment can create gradients in diffusible ligands and oxygen. Hypoxic subdomains 

arise from diffusional limitations. Thus, cells proximal to blood vessels do not experience hypoxia 

and the resulting consequences.  

 Heterogeneity in gene expression and signal transduction across cells can yield baseline 

differences in E and M states within a population and can also make a cell more susceptible to 

undergoing EMT. HGF stimulation of in silico cells produced differential responses that were 

determined to be dependent on the network of MEK/ERK and PI3K/AKT within the cells (75). In 

a lung cancer cell line, patterns of basal signaling heterogeneity across clones correlated with 

drug sensitivity (76), and in colon cancer cells, baseline differences in signaling activity among 
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cells correlated with the baseline EMT state (77). Therefore, identification of genetic differences 

in susceptibility to undergo EMT could provide insight into targetable mechanisms.  

 

1.7 THESIS SUMMARY 

 Given the dismal survival rate of PDAC, there is an urgent need to provide improved 

therapeutic options to patients. Due to the chemoresistance of PDAC and the role of EMT in 

chemoresistance, methods to target EMT may allow for improved therapeutic response and 

ultimately improved patient survival. While tumor hypoxia has been associated with especially 

poor PDAC patient outcomes, the mechanisms through which hypoxia impacts tumor progression 

are incompletely understood. An association between hypoxia and EMT has been proposed, but 

a definitive mechanistic connection has not been established, and the frequency with which 

hypoxia is associated with EMT in PDAC is unknown. This thesis addresses the relationship 

between EMT and hypoxia in PDAC and analyzes the ability of the hypoxic tumor 

microenvironment of PDAC to promote EMT through multivariate signaling.  

In Chapter 2, we performed a comprehensive study of the relationship between hypoxia 

and EMT in PDAC and identified an integrated kinase signaling and epigenetic mechanism that 

leads from low oxygen tension to EMT. The study utilizes four PDAC mouse models, 

transcriptomic and proteomic human patient data, and neoplastic PDAC cells derived from human 

and mouse tumors. Murine mouse models include orthotopic patient-derived xenografts, the 

autochthonous lineage-traced KPCY model (LSL-KrasG12D; p53R172H; Pdx1-Cre; Rosa26LSL-YFP), 

subcutaneous tumors formed by KPCY-derived cell lines, and orthotopically implanted human 

PDAC cells engineered with a hypoxia fate mapping system. Human and murine PDAC cells were 

used to conduct biochemical and phenotypic measurements in normoxic and hypoxic culture 

conditions to definitely show hypoxia promotes a bona fide EMT. Hypoxia-mediated EMT is found 

to be substantially more durable than growth factor-mediated EMT, and the mesenchymal state 
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is more heritable when driven by hypoxia. Neoplastic cells that undergo EMT in response to 

hypoxia can retain mesenchymal characteristics for weeks, and once-hypoxic cells in tumors 

retain mesenchymal characteristics outside the local hypoxic environment. We determined that 

the activity of the histone demethylase KDM2A is highly oxygen-dependent and propose it as 

playing a critical initiating role in hypoxia-mediated EMT. Furthermore, data science models based 

on human tumor transcriptomics and proteomics were used to probe for relationships between 

hypoxia and EMT, to nominate hypoxia-activated signaling pathways, and to confirm the 

relevance of transcript or protein alterations identified in cell culture studies. We identified ERK 

and JNK pathways as druggable targets whose simultaneous antagonism prevents, and even 

reverses, the effects of a microenvironment-initiated phenotypic transition that occurs early in 

tumor dissemination and promotes chemoresistance. 

In Chapter 3, we sought to compare the EMT drivers of hypoxia and growth factors and 

studied heterogeneity in EMT through data-driven modeling of scRNA-seq. Analysis of the 

significantly differentiated genes allowed us to identify promoters of both mesenchymal and 

epithelial states. We exposed pancreatic cancer cells to hypoxia or the growth factor combination 

of TGFβ+HGF, and then subjected cells to scRNA-seq comparing to a control condition. Through 

unbiased clustering, we found that cells generally organized into their experimental treatment 

condition with genes associated with hypoxia, proliferation, and EMT being the most dominant 

distinguishing features among the clusters. To address the role of EMT directly, we clustered the 

full data set of all conditions on an EMT-associated gene set to generate two groups of cells 

identified as epithelial (E) or mesenchymal (M). By performing gene set variation analysis on 

signaling pathways, it was determined that the Hippo pathway was the most differentially enriched 

between the E and M clusters, with substantial upregulation in the epithelial cells. To elucidate 

the differential regulation of EMT across the different drivers, we clustered on the EMT-associated 

genes within each original treatment condition. We determined that FAT1 was enriched in the E 
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clusters across all three experimental treatments. We validated this finding in vitro by knocking 

down FAT1 and measuring the resulting increase in vimentin, at the transcript and protein level, 

and decrease in CDH1. Given the reported role of FAT1 in assembling the Hippo pathway, we 

tested the effects of FAT1 knockdown and identified a resulting increase in nuclear YAP 

accumulation. Further, we identified a context-dependent role of AXL in hypoxic mesenchymal 

cells. Specifically, AXL inhibition only prevented EMT in hypoxia and not in the presence of growth 

factors. Interestingly, at the protein level, nuclear AXL was enriched in vimentin-positive hypoxic 

cells, as well as in nuclear YAP-positive cells. To connect this back to Chapter 2, we demonstrated 

that MEK and JNK inhibition rescued FAT1 expression in hypoxic cells. We were able to validate 

the role of FAT1 and AXL in patient tumor scRNA-seq data. Thus, this chapter utilizes 

computational data analysis methods to generate testable hypotheses for understanding 

heterogenous EMT. 

In Chapter 4, we provide perspective on the clinical implications of these findings and 

recommend future work to accompany these studies. EMT is being explored in the clinical setting 

by informing treatment plans based on the phenotypic state of the tumor and as a target to 

improve therapeutic response. Classification of patient tumors as basal or classical could provide 

insight into responsiveness to chemotherapy and inform the selection of patient populations for 

clinical trials. One of the biggest challenges facing pancreatic cancer treatment is the impact of 

tumor heterogeneity. As we explored in Chapter 2, even within a cell line there is significant 

genetic heterogeneity that leads to phenotypic heterogeneity. We identified a potential therapeutic 

target of AXL in the specific context of hypoxic mesenchymal cells. Additionally, the interesting 

finding of differential nuclear AXL expression is an area that requires more exploration of its 

mechanistic role in promoting EMT. Lastly, the work presented in this thesis could eventually be 

translated to new investigational combination therapies aimed at antagonizing EMT with 

molecularly targeted drugs in combination with chemotherapy. Indeed, Chapter 2 identifies a 



 

 

24 

synergistic effect of MEK and JNK inhibition on suppressing hypoxia-mediated EMT, and the work 

in Chapter 3 identifies a potentially druggable AXL/YAP signaling axis as critical for explaining the 

heterogeneous EMT driven by hypoxia. In order to succeed in leveraging these findings in 

combination therapy approaches, additional work needs to be conducted to identify strategic 

dosing regimens to allow for optimal response while minimizing adverse effects of additive drugs.  
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CHAPTER 2: A HISTONE METHYLATION-MAPK SIGNALING AXIS 
DRIVES DURABLE EPITHELIAL-MESENCHYMAL TRANSITION IN 

HYPOXIC PANCREAS CANCER1 
 

2.1 ABSTRACT 

Here, we show that hypoxia drives especially long-lasting epithelial-mesenchymal 

transition (EMT) in pancreatic ductal adenocarcinoma (PDAC) primarily through a positive-

feedback histone methylation-MAPK signaling axis. We find that neoplastic PDAC cells 

preferentially undergo EMT in hypoxic tumor regions in multiple model systems and that hypoxia 

drives a cell-autonomous EMT in PDAC cells which, unlike EMT in response to growth factors, 

can last for weeks. We further demonstrate that hypoxia reduces histone demethylase KDM2A 

activity, suppresses PP2 family phosphatase expression, and activates MAPKs to post-

translationally stabilize histone methyltransferase NSD2, leading to an H3K36me2-dependent 

EMT in which hypoxia-inducible factors play only a supporting role. This mechanism can be 

antagonized in vivo by combinations of MAPK inhibitors that may be effective in multi-drug 

therapies designed to target EMT. 

 

  

 

1 A version of Chapter 2 is under revision at Cancer Research, Brown BA, Myers PJ, Adair SJ, Pitarresi JR, 
Sah-Teli SK, Campbell LA, Hart WS, Barbeau M, Leong K, Seyler N, Jones M, Kane W, Lee KE, Stelow E, 
Simon MC, Koivunen P, Bauer TW, Stanger BZ, and Lazzara MJ, A histone methylation-MAPK signaling 
axis drives durable epithelial-mesenchymal transition in hypoxic pancreas cancer. 
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2.2 INTRODUCTION 

The pancreatic ductal adenocarcinoma (PDAC) microenvironment exerts complex 

regulation over tumor progression and response to therapy. One of the most well described 

features of the dense PDAC stroma is its characteristic hypovascularity, which gives rise to tumor 

subdomains with low oxygen concentration (39-42). Hypoxic regions are found in most or all 

human PDAC, with oxygen tensions as low as 0.4% (ratio of corresponding equilibrium gas-phase 

oxygen partial pressure to atmospheric pressure) within tumors compared to 6.8% in adjacent 

normal tissue (39,42). Evidence of hypoxia can be found as early as the pancreatic intraepithelial 

neoplasia (PanIN) stage in PDAC, and low numbers of mature blood vessels or pronounced 

hypoxia transcriptomic signatures portend shorter patient survival times (40,59,78). 

Hypovascularity and hypoxia have been proposed to reduce patient survival by limiting tumor 

perfusion with systemic therapies and decreasing anti-cancer immune cell infiltration (40). In 

patient-derived xenografts (PDX), hypoxia correlates with increased PDAC tumor growth and 

spontaneous metastasis (65). Hypoxia has also been proposed as a driver of epithelial-

mesenchymal transition (EMT) (79-84), a cell developmental process that occurs aberrantly in 

PDAC as early as the late PanIN stage and has been linked to chemoresistance and poor tumor 

differentiation (13,19,85).  

Each of the common methods for classifying PDAC tumors has identified an especially 

aggressive subtype that is enriched for mesenchymal characteristics and associated with 

decreased survival (9-11). There are many known drivers of EMT, but cytokines and growth 

factors including transforming growth factor β (TGFβ) and hepatocyte growth factor (HGF) are 

perhaps the best known (15). It was recently discovered that complete TGFβ-mediated EMT in 

PDAC cells involves dimethylation of H3K36 mediated by loss of histone demethylase KDM2A 

and upregulated expression of histone methyltransferase NSD2 (34). Hypoxia can also promote 

epigenetic rewiring through histone methylation (86), but the possibility that such regulation 
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impacts EMT has not been fully explored. Interestingly, at least two histone demethylases, 

KDM5A and KDM6A, exhibit substantially variable activities over (patho)physiological ranges in 

oxygen tension (63,64), raising the intriguing possibility that EMT could be controlled via an 

entirely intracellular mechanism independent of cytokines. One recent study identified a 

mechanism involving KDM5A and the NADPH oxidase NOX4 that promoted H3K4 trimethylation 

to regulate Snail expression in PDAC (81), but the signaling mechanisms involved were not 

investigated. 

The potential mechanistic connections between hypoxia and EMT notwithstanding, direct 

evidence for hypoxia as a driver of EMT in PDAC is limited. Some studies have highlighted the 

role HIFs could play in PDAC EMT through HIF-1⍺-induced Twist expression (80), HIF-1⍺/YAP1 

interactions (79,83), or HIF-2⍺ crosstalk with Wnt/β-catenin (84). Further, transcriptomic analyses 

have identified a correlation between hypoxia-inducible factor-1⍺ (HIF1A) expression and EMT in 

PDAC (85). However, given that HIF1A is only one target affected by hypoxia and that it is 

primarily post-translationally regulated, individual transcript measurements provide limited insight. 

Moreover, the connection between hypoxia and specific signaling pathways that may promote 

EMT is largely unexplored. More specifically, whether a potential hypoxia-driven EMT might occur 

via the same pathways that are important for growth factor-mediated EMT is unclear. MAPKs 

have been proposed as some of the most critical regulators of growth factor-driven EMT (15,32), 

but the potential relevance of MAPKs in hypoxic PDAC cells and tumors for driving EMT has not 

been thoroughly investigated, either experimentally or through the analysis of publicly-available 

patient data.  

Here, we demonstrate that hypoxia promotes a bona fide EMT in PDAC via an integrated 

mechanism involving histone methylation and MAPK signaling that can be pharmacologically 

inhibited. Through the analysis of multiple types of human patient data, we demonstrate that the 

relationship between hypoxia and EMT in PDAC is so typical that statistically significant 
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relationships between EMT and hypoxic gene signatures can be identified. Through use of 

multiple mouse models and cell culture studies, we find that hypoxia-mediated EMT occurs in 

both a cell-autonomous fashion and in the tumor microenvironment, and that hypoxia drives a 

more durable EMT than growth factors. The identification of MAPK signaling as indispensable for 

hypoxia-mediated EMT nominates specific targeted inhibitors for combination therapy 

approaches that could promote chemoresponse by antagonizing EMT. 
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2.3 METHODS 

2.3.1.Data Analytic and Computational Modeling Methods 

Acquisition of publicly available datasets 

CPTAC PDAC Discovery Study data (78) were generated by the Clinical Proteomic Tumor 

Analysis Consortium (NCI/NIH). Clinical information and tumor histology data were obtained from 

the same publication, and the processed proteomics data were downloaded from the 

LinkedOmics data portal. CPTAC data are also available through the Proteomic Data Commons. 

Links to publicly available data and software used are in Supp Table 2.S1. To maximize the 

number of proteins retained for consensus clustering of the pcEMT signature, imputation was 

performed on the CPTAC global proteomics gene-level data for all proteins with non-missing 

values in at least 50% of samples using the DreamAI algorithm (87), which was designed 

specifically for proteomics data. DreamAI was used with default settings.  

TCGA PAAD RNA-seq gene expression data (data set ID: 

TCGA.PAAD.sampleMap/HiSeqV2; version: 2017-10-13) were downloaded from the UCSC Xena 

Browser as log2(RSEM+1) normalized counts and were converted first to transcripts per million 

(TPM) and finally to log2(TPM+1) for all analyses unless otherwise noted. Curated TCGA PAAD 

phenotype and survival data were also downloaded from UCSC Xena. Only PDAC tumors were 

retained for analysis, as determined based on provided histology annotations (150 tumors). 

Annotated and pre-processed PDAC scRNA-seq data from (88) were kindly provided by Dr. David 

Tuveson (Cold Spring Harbor Laboratory). The code used to analyze the publicly available omics 

data can be accessed here: https://github.com/lazzaralab/Brown-et-al_PDAC-hypoxia-EMT. R 

version 4.1.2 was used for all analyses. 

 

Gene sets and signatures 
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The pan-cancer EMT signature (89) was used as the primary feature set for clustering 

based on EMT markers. The HIF target signature (90) was used as the primary feature set for 

clustering based on hypoxia markers. Gene sets from the Molecular Signatures Database 

(MsigDB) including Hallmark Hypoxia (91) were accessed within R using the msigdbr package, 

and gene sets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) (92,93) were 

accessed within R using the clusterProfiler package. 

 

Immune deconvolution of TCGA RNA-seq data 

Cell-type-specific immune deconvolution of bulk TCGA PAAD data was performed using 

the immunedeconv R package (94) and EPIC algorithm (95). EPIC was selected because of its 

reported superior performance over other algorithms for most cell types (94) and because it 

estimates absolute fractions of cell types, including cancer-associated fibroblasts and neoplastic 

cells. 

 

Clustering of tumor-derived bulk and single-cell omics data sets 

 Non-negative matrix factorization (NMF) clustering of bulk tumor data from TCGA (RNA-

seq) and CPTAC (mass spectrometry) was performed with expression data for all available genes 

or proteins, respectively, from the pcEMT signature using the NMF R package (96) and the 

standard NMF algorithm based on the Kullback-Leibler divergence (97). For CPTAC data, the 

imputed version of the data was used to retain as many proteins as possible for clustering since 

NMF requires non-negative, non-missing data. The optimal NMF factorization rank k (i.e., number 

of clusters) was selected using an approach similar to that described previously (78). First, a 

range of clusters from k = 2 to 10 was tested by: (i) performing 100 iterations of NMF with random 

initializations of the NMF matrices W (basis component matrix) and H (mixture coefficient matrix); 

(ii) calculating the product of the cophenetic correlation coefficient, the dispersion coefficient of 



 

 

31 

the consensus matrix (98), and the average silhouette width (99) of the consensus matrix for each 

k; and (iii) selecting the optimal k with the maximum product of the cophenetic, dispersion, and 

average silhouette coefficients. Then, using the optimal k, the final NMF clustering was obtained 

by repeating the analysis with 500 iterations of random initializations of matrices W and H. The 

coefficient matrix H was used to assign samples (tumors) to clusters by identifying the cluster 

(row of H) for which each sample (column of H) had its maximum mixture coefficient. 

 Clustering of the ductal cell scRNA-seq data (88) was performed by first projecting cells 

onto a 2D UMAP space using gene expression data for only the mesenchymal genes from the 

pcEMT signature. The UMAP projection was calculated using a nearest neighbors setting of 30 

and a minimum distance of 0.01 using the umap R package. Consensus clustering (100) was 

then performed on the resulting UMAP projection to assign cells to individual clusters. Consensus 

clustering was performed in R with ConsensusClusterPlus (101) using Euclidean distance as the 

distance metric, Ward’s linkage for subsampling and as the linkage method for the consensus 

matrix, and partitioning around medoids (PAM) as the clustering algorithm. 

 

Gene set enrichment analysis and pathway overdispersion analysis 

 Gene set variation analysis (GSVA) (102) was used to calculate sample-wise gene set 

enrichment scores using the CPTAC PDAC global proteome data and TCGA PAAD RNA-seq 

data from the and using the GSVA R package. For GSVA on CPTAC data, the original global 

proteome data were used without imputing missing values since GSVA does not require non-

missing data. For GSVA on TCGA PAAD data, log-transformed transcripts per million 

(log2(TPM+1)) expression values were used. Pathway and gene set overdispersion analysis 

(Pagoda2) (103-105) was used to calculate sample-wise gene set enrichment scores for the 

ductal cell scRNA-seq data from (88) using the Pagoda2 R package. 
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Partial correlations with pan-cancer EMT enrichment 

 Partial rank correlation coefficients and associated confidence intervals were computed 

with ggstatsplot in R. In all analyses, partial correlations were computed with respect to GSVA 

scores for the mesenchymal portion of the pcEMT signature, as calculated using the CPTAC 

global proteomics data or TCGA PAAD RNA-seq data as indicated in each analysis. 

 

Phospho-kinase overrepresentation analysis 

First, using the gene-level phosphorylation data (i.e., summarized over all phosphosites, 

as provided by the CPTAC), we filtered the data set for only kinases (358 kinases retained) and 

calculated Spearman rank correlation coefficients between the kinase phosphorylation levels and 

the Hallmark Hypoxia GSVA scores calculated from the CPTAC global proteomics expression 

data. KEGG pathway overrepresentation analysis was then performed on the list of positively and 

significantly (p < 0.05) correlated phospho-kinases using the clusterProfiler R package (106). Only 

the list of available kinases in the CPTAC phosphoproteomics data set was used as the set of 

reference genes for testing overrepresentation. p values from the hypergeometric test were 

adjusted for multiple comparisons by controlling the false discovery rate (107). Spearman 

correlations and p values were calculated using the Hmisc R package. 

 

Linear modeling of human ductal cell scRNA-seq data 

Least absolute shrinkage and selection operator (LASSO) regression was performed 

using the glmnet R package (108). The LASSO regularization parameter λ was determined via 

cross-validation using the “cv.glmnet” function with default settings and by taking the largest value 

of λ such that the cross-validated mean-squared error (MSE) was within one standard error of the 

minimum MSE. An ordinary least squares linear regression model was then trained using the 

LASSO-selected KEGG signaling pathways and subjected to further variable selection by 
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minimizing the Akaike information criterion [AIC; (109)] using the “step” R function. Finally, model 

statistics, including statistics for the regression coefficients of the final LASSO+AIC-selected 

KEGG pathways, were calculated using the base R “summary” function and were plotted using 

ggstatsplot. 

 

Statistical analyses and visualizations of publicly available data 

The ggstatsplot R package (110) was used to perform the Mann-Whitney U test and the 

Kruskal-Wallis test. Log-rank test p value and survival curves were generated in R using the 

survival (111) and survminer packages, respectively. The ggplot2 (112), tidyHeatmap (113) , 

ComplexHeatmap (114) and cowplot R packages were used throughout this work to generate 

figures and plots. UpSet plots (115) were created in R using the ggupset package. 

 

2.3.2.Experimental Methods 

Cell culture 

HPAF-II cells (Carl June, University of Pennsylvania) were authenticated by the Genetic 

Resources Core Facility at the John Hopkins University School of Medicine by performing short 

tandem repeat profiling via GenePrint 10 (Promega) and comparing to the ATCC database. 

HPAF-II cells and cell lines derived from human PDXs (116,117) were maintained in RPMI with 

10% fetal bovine serum (FBS), 1 mM L-glutamine, 100 units/mL penicillin, and 100 μg/mL 

streptomycin. MiaPaca2 cells (Paolo Provenzano, University of Minnesota) were maintained in 

DMEM with 10% FBS, 1 mM L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. 

Murine KPCY cells were derived from KrasLSL-G12D, p53LSL-R172H, Pdx1-Cre, Rosa26LSL-YFP mice 

(2838c3, 6499c4, 6556c6, and 7160c2; all clonal) or KrasLSL-G12D, p53loxP/+, Pdx1-Cre, Rosa26LSL-

YFP mice (PD798 and PD7591) and were maintained in DMEM + GlutaMAX supplemented with 

10% FBS, 1 mM L-glutamine, 100 units/mL penicillin, 100 μg/mL streptomycin, and 8.66 μg/mL 
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gentamicin. Cell lines were tested for mycoplasma using the MycoAlert PLUS Detection Kit 

(Lonza). Cells were maintained in a Thermo Scientific Forma Steri-Cycle i160 incubator at 5% 

CO2 and 37ºC for normal culture. For culture at 1% or 7% O2, cells were maintained in a Tri-Gas 

version of the same incubator, which displaces O2 using N2. While O2 tensions < 1% have been 

reported in PDAC tumors, 1% is the lower limit of the incubator. For hypoxia experiments, cells 

were moved to the tri-gas incubator 16 hr after plating and culturing under normal 21% O2 

conditions. For chronic hypoxia experiments, medium was changed after 72 hr or every 48 hr 

when growth factors or inhibitors were used. Cells were treated with inhibitors immediately prior 

to hypoxic culture.  

 

Growth factors and inhibitors 

Recombinant human HGF and TGFβ (Peprotech) were used at 50 ng/mL and 10 ng/mL, 

respectively. For treatment, complete medium containing growth factors was replenished every 

48 hr. The SFK inhibitor PP2 (Sigma-Aldrich) was used at 10 μM, PP2A inhibitor LB-100 (Selleck 

Chem) was used at 5 μM, PP2Cδ inhibitor sanguinarine chloride (MedChemExpress) was used 

at 1.5 μM, MEK inhibitor CI-1040 (LC Laboratories) was used at 1 μM, JNK inhibitor SP600125 

(LC Laboratories) was used at 10 μM, and p38 inhibitor SB203580 (LC Laboratories) was used 

at 10 μM. Stocks of all inhibitors were prepared in DMSO.  

 

Patient-derived xenograft tumors 

PDAC tumor sample MAD12-395 was generated from a human tumor surgical pathology 

specimen coordinated through the UVA Biorepository and Tissue Research Facility, as previously 

described (116,117). Tumors were passaged in mice, then sewn orthotopically into 6-7-week-old 

female athymic nude mice (Envigo, Indianapolis, IN). For studies probing for hypoxic cells, mice 

were injected with pimonidazole (IP, 60 mg/kg; Hypoxyprobe, #HP7-100) 90 min prior to tumor 
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harvest. For paraffin embedded sections, tumors were fixed in 10% zinc buffered formalin for 24 

hr, transferred to 70% ethanol, then paraffin embedded. 4-5 μm sections were cut. Paraffin 

embedded tumors were used throughout these studies, except for sections stained for CD31 for 

which frozen tumors and sections were prepared. For frozen sections, tumors were fixed in 4% 

paraformaldehyde for 1-3 hr, then moved to 30% sucrose overnight, and finally embedded in 

OCT. For analysis, 4-5 μm sections were cut on charged slides. PDX animal studies and 

procedures were approved by the UVA Institutional Animal Care and Use Committee. The UVA 

Research Histology Core performed the embedding, sectioning, and Hematoxylin/eosin (H&E) 

staining.  

 

Use of kinase inhibitors in PDX models 

PDX 395 tumors were allowed to grow for 6 weeks until palpable. Mice were treated with 

selumetinib (2.5 mg/kg, orally, twice daily; Selleck Chem), SP600125 (12 mg/kg, IP, twice daily; 

LC Laboratories), selumetinib+SP600125, or vehicle control. For oral dosing, vehicle was 0.5% 

hydroxypropylmethylcellulose + 0.1% Tween 80 in water. For IP dosing, vehicle was 5% DMSO 

+ 15% Tween 20 in water. Hypoxyprobe administration and tumor processing was conducted as 

previously described. 

 

Genetically engineered mouse models 

KrasLSL-G12D, p53LSL-R172H, Pdx1-Cre, Rosa26LSL-YFP (KPCY) mice were described 

previously (13). Both female and male mice were used. Mice were palpated and examined for 

evidence of morbidity twice per week. 90 min prior to harvesting, intraperitoneal injection of tumor-

bearing mice with pimonidazole at 60 mg/kg body weight was performed. Tissue was fixed in zinc 

formalin and paraffin embedded prior to staining. Animals were maintained and experiments were 
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conducted in compliance with the NIH guidelines for animal research and approved by the 

University of Pennsylvania Institutional Animal Care and Use Committee. 

 

Subcutaneous tumors 

Female C57BL/6J (stock no. 000664) or NOD.SCID (stock no. 001303) mice for 

subcutaneous tumor cell injection experiments were obtained from The Jackson Laboratory. 

C57BL/6J (7160c2) or mixed genetic background (PD7591) KPCY cell lines were previously 

described (19,118,119). Briefly, 2×105 cells were injected subcutaneously into mice and allowed 

to grow for 2-6 weeks, where 6 weeks was used unless otherwise noted. 90 min prior to 

harvesting, intraperitoneal injection of tumor-bearing mice with pimonidazole at 60 mg/kg body 

weight was performed. Tissue was fixed in zinc formalin and paraffin embedded prior to staining. 

Animals were maintained and experiments were conducted in compliance with the NIH guidelines 

for animal research and approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee. 

 

HPAF-II hypoxia fate-mapping orthotopic tumors 

1 × 106 HPAF-II cells engineered with the hypoxia fate-mapping reporter system were 

injected orthotopically into 8-week-old male athymic nude mice (Envigo, Indianapolis, IN). Mice 

were sacrificed 5 weeks later with pimonidazole injected (IP, 60 mg/kg) 90 min prior to tumor 

harvest. For paraffin-embedded sections, tumors were fixed in 10% zinc buffered formalin for 24 

hr, transferred to 70% ethanol, and then paraffin embedded. 4-5 μm sections were cut. Animal 

studies and procedures were approved by the University of Virginia Institutional Animal Care and 

Use Committee. The UVA Research Histology Core performed the embedding, sectioning, and 

H&E staining. 
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Cell dissociation from HPAF-II orthotopic tumors 

Following sacrifice, pieces of four tumors were kept on ice to be dissociated (120). For 50 

mg of tumor, 2 mL of protease solution [5mM CaCl2, 10mg/mL Bacillus Licheniformis protease, 

and 125 U/mL DNAseI in Dulbecco’s phosphate-buffered saline (DPBS)] was used. Over ice, 

tumors were minced in solution and then mechanically dissociated for 8 min using a 1 mL pipet. 

Samples were transferred to Miltenyi C-tubes and run on the gentleMACS tumor_01 program 3 

times. Afterwards, cells were mechanically dissociated for 2 min using a 1 mL pipet. Cells were 

suspended in 10% FBS and EDTA in DPBS, centrifuged at 1200 g for 5 min at 4°C, and 

supernatant was discarded. Cells were sorted using a Becton Dickinson Influx Cell Sorter at the 

UVA Flow Cytometry Core Facility, with parental HPAF-II cells and engineered HPAF-II hypoxia 

fate-mapping cells as controls for setting gates. ToPro3 was used to determine viability. For each 

tumor, cells were sorted into DsRed+, GFP+, and DsRed+GFP+ populations and plated in 

complete RPMI following sorting.  

 

Pathologic assessment of human PDAC tumor samples 

Tumor pieces were placed in tumor blocks, fixed in zinc buffered formalin for 24 hr and 

embedded in paraffin. H&E staining was performed on human tumors. A board-certified 

pathologist specializing in pancreatic and liver pathology (EBS) reviewed all slides to assess 

differentiation as “moderate” or “poor.” 

 

Antibodies 

 Antibodies against E-cadherin (clone ECCD2, Invitrogen, 13-1900) and c-Jun (Cell Signal 

Technology (CST), #9165) were used for immunofluorescence and western blotting. For 

immunofluorescence, antibodies against HIF-1⍺	 (CST, #79233), vimentin (Santa Cruz 

Biotechnology, sc-373717), H3K36me2 (CST, #2901), and NSD2 (Santa Cruz Biotechnology, sc-
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365627) were used. For western blotting, antibodies against HIF-1⍺ (Novus Biologics, NB100-

134), HIF-2⍺	(Novus Biologics, NB100-122), vimentin (Santa Cruz Biotechnology, sc-373717), 

pc-Jun S73 (CST, #3270), pERK T202/Y204 (CST, #4370), ERK1/2 (CST, #4695), p-p38 

T180/Y182, and GAPDH (Santa Cruz Biotechnology, sc-32233) were used. Alexa488-conjugated 

vimentin antibody (Santa Cruz Biotechnology, sc-373717) was used for flow cytometry and 

fluorescent immunohistochemistry for PDX and HPAF-II tumors. For KPCY tumors, antibody 

against vimentin (CST, #5741) was used. E-cadherin (clone ECCD2, Takara, M108), c-Jun (CST, 

#9165), pERK T202/Y204 (CST, #4370), CD-31 (BioLegend, 102501), ⍺-smooth muscle actin 

(R&D Systems, MAB1420), GFP (Abcam, ab6673), RFP (Rockland, 600-401-379), and 

HypoxyprobeTMRed549 (Hypoxyprobe, HP7-100Kit) was used for immunohistochemistry. 

Hoechst 33342 (Invitrogen, H1399) was used for nuclear stain. 

 

Immunohistochemistry 

 Slides were antigen-retrieved with high pH by the UVA Biorepository and Tissue Research 

Facility. Slides were then permeabilized with 0.1% Triton-X in PBS for 20 min and blocked with 

Intercept Blocking Buffer (IBB) (LiCor, 927-60001) for 1 hr. Primary antibody was diluted in IBB 

and incubated overnight at 4°C. Slides were washed with PBS and then incubated with secondary 

antibody diluted in IBB for 2 hr at room temperature. After washing, slides were mounted with 

ProLong Gold Antifade Mountant (Invitrogen). For immunohistochemistry staining of E-cadherin, 

a slightly different protocol was used. Slides were blocked with 5% donkey serum in 0.3% Triton-

X in PBS for 1 hr, then incubated at 4°C overnight with primary antibodies. Slides were then 

washed twice with 0.1% Tween-20 in PBS for 5 min each, incubated with secondary antibodies 

for 1 hr at room temperature, and then washed again with 0.1% Tween-20 in PBS for 5 min in the 

dark. Slides were mounted with ProLong Gold Antifade Mountant (Invitrogen).  
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Western blotting 

Cells were lysed using a standard cell extraction buffer with protease and phosphatase 

inhibitors (Sigma-Aldrich, P8340, P5726, P0044). Crude lysates were centrifuged at 14,000 rpm 

for 10 min at 4°C, and supernatants were removed as clarified lysates. Total protein concentration 

was determined with a micro-bicinchoninic acid (BCA) assay (Pierce). Equal protein amounts 

where combined with 10× NuPAGE reducing agent, 4X LDS sample buffer and MilliQ water to 

reach equal sample volumes. Samples were then heated at 100°C for 10 min and loaded onto a 

1.5 mm NuPAGE gradient (4-12%) gel (Invitrogen, NP0336BOX). After electrophoresis, the gel 

was transferred to a 0.2 μm nitrocellulose membrane using the TransBlot Turbo Transfer System 

(BioRad). Membranes were blocked with diluted IBB for 1 hr on an orbital shaker. Primary 

antibodies diluted at 1:1000 in IBB were incubated on the membrane overnight at 4°C. GAPDH 

was used as a loading control. Membranes were washed with shaking three times for 5 min with 

0.1% Tween-20 in PBS. Secondary antibodies were diluted 1:10,000 in IBB and incubated on the 

membrane with shaking for 2 hr at room temperature. Membranes were washed with 0.1% 

Tween-20 in PBS as before then imaged on LiCor Odyssey. Membranes were stripped with 0.2 

M NaOH as needed, with confirmation by re-imaging. Image Studio software was used to quantify 

band intensities. 

 

Coverslip immunofluorescence 

Cells were grown on 18-mm glass coverslips. At the conclusion of the experiment, cells 

were fixed with 4% paraformaldehyde in PBS for 20 min and then permeabilized with 0.25% 

Triton-X 100 in PBS for 5 min. Coverslips were incubated with primary antibodies in a humidified 

chamber overnight at 4°C. Following five washes with 0.1% Tween 20 in PBS, coverslips were 

incubated for 1 hr at 37°C in a humidified chamber with Alexa Fluor secondary antibodies and 
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Hoechst nuclear stain. All antibodies were diluted in IBB. After all staining and washing steps, 

coverslips were mounted on glass slides with ProLong Gold Antifade Mountant.  

 

Fluorescence microscopy and automated image analysis 

 Cells on coverslips were imaged using a Zeiss Axiovert Observer.Z1 fluorescence 

microscope, using a 10×, 20×, or 40× objective and ZEN image processing software to produce 

.czi files. All image comparisons were done using identical exposure times and image settings. 

For immunofluorescence microscopy, four frames for each biological replicate were taken at 

random on the coverslip. For each replicate, at least 1000 cells were quantified. For 

immunohistochemistry, at least eight frames per tumor section were taken, with more taken for 

larger sections. For image analysis, CellProfiler v3.1.9 (Broad Institute) was used to quantify 

signal intensity and localization (121-123). Individual cells were identified based on a nuclear 

stain, which served as the primary object in the analysis pipeline. For junctional E-cadherin, cells 

were first identified by nuclei and then the mean edge intensities were measured. For percent-

positive measurements (e.g., vimentin), the threshold was set based on a negative control 

consisting of a sample stained with a secondary antibody only. The same threshold was applied 

to all images, and a percentage was calculated based on the number of cells with signal above 

background compared to the total cell number. For intensity measurements, the mean intensity 

per positive object was quantified.  

 

Five-channel confocal microscopy 

Image acquisition was performed on a Zeiss LSM 880 confocal microscope using four 

laser lines: 405 nm, 488 nm, 561 nm, 633 nm. Fluorophores were deconvoluted by first taking 

lambda stacks of singly-stained and unstained tissue sections and then by using spectral 

unmixing. The gallium arsenide phosphide (GaAsP) spectral array detector was tuned to 8.9 nm 
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to obtain 32-channel images ranging from 411 to 696 nm from which emission spectra for each 

of the fluorochromes were obtained. The spectral fingerprints from each of the fluorophores and 

from tissue autofluorescence were then used in the “online fingerprinting” mode of the ZEN Black 

imaging software. Images were taken using a Plan-Apochromat 20×/0.8 M27 objective.   

 

Cell scatter measurements 

GFP-expressing HPAF-II cells were engineered via second-generation lentiviral 

transfection with LX293T cells (Takara) using pLX302-EGFP plasmid (Kevin Janes, University of 

Virginia), with pCMV-VSVG and pCMV-delta8.2 as packaging plasmids. Cells were sparsely 

seeded in a 24-well plate, allowed to adhere for 48 hr, then t = 0 images were taken and then 

samples were either maintained in 21% O2 or moved to 1% O2 for 96 hr. Individual cell clusters 

(up to 20 cells by the end point) were imaged over time for six individual wells per condition. Using 

ImageJ, the GFP signal was used to create a binary mask of the cluster to determine the area 

and perimeter of each cluster to quantify the shape factor as a measure of circularity, shape factor 

= 4$(area/perimenter2), where a circle = 1. 

 

Quantitative reverse transcription PCR (qRT-PCR) 

RNA was extracted using the RNeasy Kit (Qiagen, #74104) and reverse transcribed using 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosciences, #4368814). qRT-PCR was 

performed using PowerUp SYBR Green (Applied Biosciences, #A25741) per manufacturer 

protocol using a QuantStudio3 system (Applied Biosystems). TaqManTM Array Human 

Endogenous Control (Applied Biosciences, 4396840) with 32 potential housekeeping genes was 

run in triplicate with RNA from HPAF-II cells cultured in 21% or 1% O2 for 120 hr. This identified 

CASC3 as a gene that did not change significantly in response to hypoxia. Measurements were 
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analyzed with the ddCt method (124). Data are displayed as a normalized fold changes, using 

CASC3 as a housekeeping gene. Primer sequences are provided in Supp Table 2.S2. 

 

Flow cytometry for vimentin expression 

Cells were dissociated with 0.25% Trypsin EDTA, then fixed with 4% paraformaldehyde 

and permeabilized with 0.25% Triton-X. Washed cells were then incubated with conjugated 

antibody for 30 min in the dark, and cells were resuspended in 0.1% FBS in PBS. A BD/Cytek 

FACS Calibur for cytometry, and FCS Express 7 was used for data analysis. Forward and side 

scatter were used to identify intact single cells, and data shown in main figures represent only 

single-cell events. 20,000 cells were counted per biological replicate, and gates were based on 

unstained controls. Flow cytometry was performed at the UVA Flow Cytometry Core Facility. 

 

siRNA-mediated knockdowns 

 siRNAs against HIF-1⍺ (sc-35561), EPAS-1/HIF-2⍺ (sc-35316), c-Jun (sc-29223), and 

NSD2 (sc-61233), as well as a control siRNA (sc-37007), were purchased from Santa Cruz 

Biotechnology. siRNA against ERK 1/2 (#6560) was purchased from Cell Signal Technology. 

Lipofectamine RNAiMAX (Thermo Fisher) was used per manufacturer recommendations. Cells 

were transfected 24 hr after plating and subjected to any treatment or hypoxic culture 24 hr after 

transfection.  

 

Generation of shRNA-mediated knockout cell lines 

pLKO.1 plasmids encoding two non-overlapping shRNAs targeting HIF1A 

(TRCN0000003810 and TRCN0000010819) or EPAS1 (HIF-2⍺) (TRCN0000003805 and 

TRCN0000003806), or a scrambled control, were purchased from Sigma-Aldrich. HIF1A and 

EPAS1 plasmids carried puromycin and neomycin resistance, respectively. Second-generation 
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lentiviral transfection was performed in LX293T cells (Takara) with pCMV-VSVG and pCMV-

delta8.2 packaging plasmids. HPAF-II cells were transduced with filtered viral supernatant with 

HIF1A-targeting plasmids, puromycin selected, then transduced with viral supernatant with 

EPAS1-targeting plasmids with 8 μg/mL polybrene. 

 

Hypoxia fate-map cell line engineering 

 HPAF-II cells were engineered with a previously described fate mapping system that 

enables cells to switch irreversibly from constitutive dsRed to GFP expression in response to 

hypoxia (125). LX293T cells were transfected with the CMV-loxp-DsRed-loxp-eGFP or 4xHRE-

MinTK-CRE-ODD plasmid and the psPAX2 and pMD2.G packaging plasmids. CMV-loxp-DsRed-

loxp-eGFP and 4xHRE-MinTK-CRE-ODD were created by Dr. Daniele Gilkes (Addgene plasmid 

#141148 and #141147; http://n2t.net/addgene:141148 and http://n2t.net/addgene:141147; 

RRID:Addgene_141148 and RRID:Addgene_141147). psPAX2 and pMD2.G were provided by 

Dr. Didier Trono (Addgene plasmid #12260 and #12259; http://n2t.net/addgene:12260 and 

http://n2t.net/addgene:12259; RRID:Addgene_12260 and RRID:Addgene_12259). Polyjet 

(SignaGen, SL100688) was used to increase transfection efficiency. HPAF-II cells were first 

transduced with filtered viral supernatant from LX293T cells transfected with CMV-loxp-DsRed-

loxp-eGFP and 8 μg/mL polybrene. After selection in zeocin (Gibco, R25001), cells were 

transduced with filtered viral supernatant from LX293T cells transfected with 4xHRE-MinTK-CRE-

ODD in the presence of polybrene. HPAF-II cells were then cultured in 5% O2 and single-cell 

sorted into 96-well plates using a Becton Dickinson Influx Cell Sorter by the UVA Flow Cytometry 

Core Facility, with parental HPAF-II cells used as a control for setting gates. Sorting removed 

GFP+ cells and retained DsRed+ cells. To increase cell viability, single-cell clones were grown in 

medium condition by parental HPAF-II cells and supplemented with an additional 10% fresh FBS. 

Once confluent, single-cell clones were split into three plates, with one maintained at 21% O2, 
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one at 3% O2, and one at 1% O2. Plates were imaged using a Cytation5 (BioTek) with a 10× 

objective to screen for clones that exhibited increased GFP expression in 1% O2 only. The 

selected clone was further confirmed in a larger well format for its ability to decrease DsRed 

expression in 1% O2 and that the vimentin expression gained in hypoxic and growth factor culture 

was comparable to parental HPAF-II cells. 

 

Plasmid cloning for recombinant expression of KDM2A 

The KDM2A gene fused to an N-terminal FLAG tag was extracted from pcDNA-FLAG-

KDM2A (Jing-Yi Chen, I-Shou University) by restriction digest with SalI-HF and XbaI and 

extraction of the appropriate molecular weight band using a QIAquick gel extraction kit (Qiagen). 

FLAG-KDM2A was inserted into pFastBac1 (Mark Yeager, University of Virginia) digested 

similarly using standard bacterial cloning techniques. The final version of the cloned plasmid was 

verified by Sanger sequencing (Eurofins).  

 

Baculovirus generation, protein production, and purification 

KDM2A bacmids were generated using DH10Bac competent E.coli cells with the standard 

Bac-to-Bac protocol (Invitrogen). Baculoviruses were generated by transducing the bacmid DNA 

into Sf9 insect cells using the flashBACTM System (Oxford Expression Technologies). 

Recombinant proteins were produced by infecting Sf21 insect cells with the baculoviruses for 72 

hr at 27°C. The cells were homogenized in a pH 7.8 buffer containing 10 mM Tris, 150 mM NaCl, 

100 mM glycine, 0.1% (v/v) Triton X-100, and a protease inhibitor cocktail tablet without EDTA. 

The cell lysates were centrifuged at 21,000 g for 30 min, and the soluble fractions containing the 

FLAG-tagged KDM2A protein were affinity purified using the anti-FLAG M2 affinity gel (Sigma). 

Gel beads were washed with TBS buffer (50 mM Tris, 150 mM NaCl, pH 7.4, protease inhibitor 

cocktail tablet without EDTA), and the proteins were eluted with TBS buffer also containing 150 
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µg/mL FLAG-peptide. Eluted fractions were analyzed by SDS-PAGE with Coomassie blue and 

western blotting using anti-FLAG M2 antibody (Sigma). Protein concentration was measured by 

Nanodrop, and protein was aliquoted and stored at -70°C until further use. 

 

KDM2A kinetic assays 

The kinetic assays were performed as previously described with slight modifications (126). 

In order to define the optimum conditions for KDM2A-catalyzed reactions, we determined the 

optimum reaction time and pH. In brief, the 50 µL reactions consisted of 50 mM Tris-HCl, pH 8.8, 

2 mg/mL BSA (Roche), 60 µg/mL catalase (Sigma), 0.1 mM DTT, 2 mM sodium ascorbate, 10% 

v/v DMSO and 0.4 µM of affinity-purified KDM2A enzyme. To determine the KM values for the 

histone peptide substrate H3K36me2 ((NH2-)ATKAARKSAPATGGV-(K-Me2)-KPHRYRP-GG(K-

Biotin) (-CONH2)) (Innovagen), 2-oxo [1-14C] glutarate (2-OG) (Perkin-Elmer), Fe2+, and O2, the 

enzymatic reactions were carried out by varying the concentration of the component in question 

while keeping the concentration of others saturating and constant. The kinetic experiment to 

calculate KM for O2 was carried out at six different oxygen concentrations in an InVivo400 hypoxia 

workstation (Ruskinn). The enzymatic reactions were carried out at 37°C for 30 min, and the 

reactions were stopped by adding 100 µL of 1 M KH2PO4, pH 5. The amount of 14C-labeled CO2 

generated during reaction was counted using Tri-carb 2900TR scintillation device (Perkin-Elmer). 

The KM values were calculated from Michaelis-Menten saturation curves and Lineweaver-Burk 

plots using Graphpad Prism. The turnover rate of the enzyme (kcat) was calculated using Vmax 

values obtained from Michaelis-Menten curves. 

 

 Statistical analyses for experimental studies 

Prism 9 for macOS was used for all experimental statistical analyses. Most details are 

provided in figure captions. For identifying the relationship between E-cadherin and vimentin 
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expression, a non-linear least squares regression with no weighting was performed with sum-of-

squares F test comparison to a line with slope of 0 to determine significance. For cell scatter 

curves, a logistic least squares regression with no weighting was performed with sum-of-squares 

F test comparison between 21% and 1% O2 curves to determine significance. For two-way 

ANOVA, the post hoc test was Tukey’s multiple comparisons when considering all conditions and 

Sidak’s multiple comparisons when considering only specific conditions within a larger dataset. 

For single-cell measurements of protein intensity, a mixed-effects model was used where the 

number of biological replicates was used as the n value and individual cells were treated as 

repeated measurements within the replicates. This allowed for consideration of all cellular 

measurements in the analysis, as opposed to just a mean value per replicate, while maintaining 

the assumption of independence of the biological replicates. For all comparisons, significance 

was reported based on the p value: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

2.3.3.Supplemental Methods 

RNA extraction and RNA-sequencing of patient-derived xenografts 

Human pancreatic cancer samples were obtained in accordance with a University of 

Virginia IRB for Health Sciences Research under the direction of Dr. Todd Bauer. Primary PDX 

tumors were grown, as previously described (116). Upon harvest, tumors were stored in Qiagen 

AllProtect at -80°C. Samples were processed using Qiagen Tissuelyser LT along with Qiagen 

AllPrep DNA/RNA extraction kit. Samples were quantified and quality control was performed 

before libraries were prepared using polyA capture and cDNA reverse transcription. Libraries 

were sequenced on Illumina platform PE150 at a read depth of 40 million reads (Novogene Corp., 

Chula Vista, CA).  

 

Patient-derived xenograft tissue microarray 
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A tissue microarray was created by the UVA Biorepository & Tissue Research Facility 

using paraffin-embedded PDX tumors, PDX-derived cell lines, HPAF-II cells, MiaPaca2 cells, and 

normal pancreas. Antigen retrieval was performed by the UVA Biorepository & Tissue Research 

Facility, and the slide was stained per the immunohistochemistry protocol described elsewhere in 

Methods. The microarray was imaged using Cytation5 (BioTek) with a 10× objective. 

 

Phospho-kinase and receptor tyrosine kinase arrays 

The Proteome Profiler Human Phospho-Kinase Array, which covers 37 phosphorylated 

kinases and 2 total proteins, was purchased from R&D Systems (ARY003C). Lysates were 

prepared per manufacturer protocol. The array was developed on film at multiple exposures (30 

sec, 1 min, 3 min, 5 min, 7.5 min, 10 min) and imaged using a GS-800 Densitometer (Bio-Rad). 

The Human Receptor Tyrosine Kinase Phosphorylation Array, which covers 71 targets, was 

purchased from RayBiotech (AAH-PRTK-G1). Lysates were prepared per manufacturer protocol. 

After incubation with cell lysates, the array was shipped to RayBiotech for scanning and data 

extraction.  
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2.4 RESULTS 

EMT is correlated with hypoxia in human PDAC tumors 

We first investigated a potential relationship between EMT and hypoxia in human PDAC 

by analyzing mass spectrometry data from the National Cancer Institute Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) PDAC Discovery Study (78). When tumors were clustered based 

on a patient-derived pan-cancer EMT (pcEMT) signature (89) containing 77 genes associated 

with epithelial and mesenchymal cell states, two groups were identified: mesenchymal-high (M-

high) and mesenchymal-low (M-low) (Figure 2.1A). The pcEMT gene signature was used for 

most analyses because, unlike PDAC subtype signatures (9-11), it includes many of the genes 

typically measured in EMT studies (Supp Figure 2.S1A,B) and is predictive of disease-free 

survival (Figure 2.1B). Gene set variation analysis [GSVA; (102)] enrichment scores based on 

the Hallmark Hypoxia set of 200 hypoxia-related genes (91) were higher for M-high tumors than 

for M-low (Figure 2.1C), suggesting that EMT may occur preferentially in hypoxic tumors. 

Importantly, only the COL5A1 gene is shared between the Hallmark Hypoxia and pcEMT 

signatures (Supp Figure 2.S1C), minimizing concerns about common gene features leading to 

correlations. The high stromal content of PDAC tumors (42) raises another potential concern with 

analyses based on bulk tumor measurements, but a relationship between pcEMT mesenchymal 

protein enrichment and hypoxia was preserved even when controlling for stromal or other tissue 

content (Figure 2.1D). Repeating the analysis using a 44-gene HIF target gene signature (90), 

which has no gene overlap with the pcEMT signature, also demonstrated that EMT preferentially 

occurs in hypoxic tumors (Supp Figure 2.S2A,B).  

It is worth noting that the CPTAC PDAC study found hypoxia to be predictive of poor 

patient survival (78), and we found that the mesenchymal component of the pcEMT signature is 

highly enriched in the tumors identified as most hypoxic in that publication (Supp Figure 2.S2C), 

indicating that the positive relationship between hypoxia and EMT in the CPTAC data is robust to 
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whether tumors are first clustered based on EMT or hypoxia. Despite very little overlap between 

the pcEMT and PDAC subtype signatures, M-high tumors largely aligned with the Collisson quasi-

mesenchymal, Moffitt basal-like, and Bailey squamous subtypes (Figure 2.1A, Supp Figure 

2.S2D), which are associated with more aggressive disease. Tumors classified as quasi-

mesenchymal (Collisson), basal-like (Moffitt), or squamous (Bailey) were also significantly 

enriched in both Hallmark Hypoxia and HIF signatures (Supp Figure 2.S1D, Supp Figure 

S2E,F).  

To extend the analysis to transcriptomics, we used RNA-sequencing data from The 

Cancer Genome Atlas (TCGA) Pancreatic Adenocarcinoma (PAAD) study. Findings similar to 

those reached in Figure 1 were obtained (Supp Figure 2.S3A-G). Enrichment for hypoxia-related 

transcripts was predictive of disease-specific survival (Supp Figure 2.S3H), consistent with 

conclusions reached in the CPTAC PDAC study for proteomics (78).  

To confirm the relationship between EMT and hypoxia in ductal cells specifically, we 

analyzed previously reported single-cell RNA-sequencing (scRNA-seq) data from six human 

PDAC tumors (88). Ductal cells were projected in a two-dimensional UMAP space (127) using the 

mesenchymal pcEMT signature genes as features, and consensus clustering (100,101) was 

performed based on the UMAP features (Figure 2.1E). While the two groups that emerged had 

markedly different mesenchymal gene expression, they had similar epithelial gene expression 

(Figure 2.1F), which may result from the focus of this analysis on ductal cells. Sample-wise gene 

set enrichment scores calculated using pathway and gene set overdispersion analysis (Pagoda2 

scores) revealed that that the Hallmark Hypoxia (Figure 2.1G) and HIF target (Supp Figure 

2.S4A) signatures were significantly enriched in ductal cells expressing mesenchymal markers. 

Ductal cells from a Kras+/LSL-G12D, Trp53+/LSL-R172H, Pdx1-Cre mouse model (88) exhibited the same 

relationships (Supp Figure 2.S4B-E). Collectively, these analyses suggest that hypoxia and EMT 

are correlated in PDAC tumors.  
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Figure 2.1 EMT and hypoxia marker enrichment are correlated in human PDAC tumors and ductal 
cells 

(A) CPTAC PDAC tumor samples were clustered using non-negative matrix factorization (NMF) of protein 
expression data for the pan-cancer EMT (pcEMT) signature. Heatmap entries indicate z-scored expression 
values. The vertical side bar at left (green, purple) indicates the assigned NMF cluster for each tumor. The 
next three vertical side bars indicate tumor classifications based on the Collisson, Moffit, and Bailey PDAC 
signatures as reported previously (78). The horizontal side bar (red, blue) indicates the phenotype 
associated with each protein, as described in publication defining the pcEMT signature (89). (B) Kaplan-
Meier analysis was used to determine differences in CPTAC PDAC patient survival when stratifying based 
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on pcEMT classifications, with a log-rank test performed for statistical analysis. (C) Protein enrichment of 
the Hallmark Hypoxia signature was calculated using GSVA and compared between M-high and M-low 
CPTAC PDAC tumors. The Mann-Whitney U test was used to measure significance. (D) Partial rank 
correlation coefficients (PRCCs) of the indicated variables were calculated with respect to protein 
enrichment scores for the mesenchymal portion of the pcEMT signature (pcEMT-M). Hallmark Hypoxia 
enrichment scores were from calculations described in (C). All available histology estimates of specific 
tissue content were used as provided with the CPTAC data. Error bars denote 95% confidence intervals for 
the indicated PRCCs. (E) Consensus clustering of scRNA-seq data from human PDAC ductal cells (88) 
was performed on a 2D UMAP embedding based on the pcEMT-M signature to separate cells into two 
groups. As explained by results in panel (F), these groups were characterized as epithelial+/mesenchymal- 
(E+/M-) and epithelial+/mesenchymal+ (E+/M+). (F) Gene expression (normalized UMIs) of the full pcEMT 
signature in ductal cells is shown with a heatmap, annotated with the cell clusters identified in (E). (G) 
mRNA enrichment of the Hallmark Hypoxia signature (Pagoda2 scores) was computed and compared 
between E+/M+ and E+/M- human ductal cells. The Mann-Whitney U test was used to determine statistical 
significance. (P.J.M.) 

 

To confirm the relationship between EMT and hypoxia in ductal cells specifically, we 

analyzed previously reported single-cell RNA-sequencing (scRNA-seq) data from six human 

PDAC tumors (88). Ductal cells were projected in a two-dimensional UMAP space (127) using the 

mesenchymal pcEMT signature genes as features, and consensus clustering (100,101) was 

performed based on the UMAP features (Figure 2.1E). While the two groups that emerged had 

markedly different mesenchymal gene expression, they had similar epithelial gene expression 

(Figure 2.1F), which may result from the focus of this analysis on ductal cells. Sample-wise gene 

set enrichment scores calculated using pathway and gene set overdispersion analysis (Pagoda2 

scores) revealed that that the Hallmark Hypoxia (Figure 2.1G) and HIF target (Supp Figure 

2.S4A) signatures were significantly enriched in ductal cells expressing mesenchymal markers. 

Ductal cells from a Kras+/LSL-G12D, Trp53+/LSL-R172H, Pdx1-Cre mouse model (88) exhibited the same 

relationships (Supp Figure 2.S4B-E). Collectively, these analyses suggest that hypoxia and EMT 

are correlated in PDAC tumors.  

 

Hypoxia promotes and is correlated with EMT in multiple PDAC model systems 

 To explore the potential ability of PDAC cells to undergo a cell-autonomous EMT in 

response to hypoxia, HPAF-II human PDAC cells, which exhibit baseline epithelial characteristics, 
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were cultured for 120 hr in 21%, 7%, or 1% O2. These oxygen concentrations were chosen to 

align with conventional cell culture conditions (21%), median oxygen tension of 6.8% in normal 

pancreas, and median oxygen tension of 0.4% in pancreas tumors (39,57). E-cadherin loss was 

robust by 120 hr of hypoxic culture, but hypoxia-inducible factor (HIF)-1⍺ expression peaked at 

times < 24 hr (Supp Figure 2.S5A,B). At 1% O2, some HPAF-II cells underwent a clear EMT 

based on reduced E-cadherin and increased vimentin expression compared to the other O2 

concentrations (Figure 2.2A). Because meaningful differences in EMT markers were not 

observed between 21% and 7% O2, all subsequent experiments were performed to compare 21% 

and 1% O2. For 1% O2, a statistically significant inverse relationship between E-cadherin and 

vimentin expression among cells was determined by linear regression (Figure 2.2A). Because 

vimentin exhibits a more obvious switch-like expression change in micrographs than does E-

cadherin, vimentin was used as the primary mode of assessing EMT throughout this study.  

To ensure that changes in E-cadherin and vimentin protein expression observed in 

hypoxia were accompanied by other changes characteristic of EMT, cellular morphology and 

EMT-related transcripts were also measured. In a 1% O2 environment, clusters of GFP-

expressing HPAF-II cells exhibited a loss of circularity (Figure 2.2B), consistent with what has 

been observed for other cell types in response to EMT-inducing growth factors (32). Additionally, 

in HPAF-II cells cultured in 1% O2, there was increased expression of the hypoxia transcriptional 

markers PGK1 and SLC2A1 (128), increased expression of the mesenchymal transcripts VIM, 

SNAI1, and TWIST1, and decreased expression of the epithelial transcript CDH1 (Figure 2.2C). 

While there was a decrease in HIF1A expression consistent with prior reports (129), HIF-1⍺ 

protein expression was stabilized by low oxygen (Supp Figure 2.S5A). Together, these results 

confirm that a bona fide EMT occurred in response to hypoxia.  

To test for hypoxia-driven EMT in other settings, we first screened cell lines derived from 

patient-derived xenograft (PDX) tumors. An analysis of RNA-sequencing and tumor grading by a 
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board-certified pathologist demonstrated that mesenchymal genes were enriched in cells derived 

from poorly differentiated tumors (Supp Figure 2.S5C,D). Based on screening for baseline 

epithelial traits using a tissue microarray (Supp Figure 2.S5E-G), we proceeded with six PDX-

derived cell lines that readily grew in cell culture and had little or no murine fibroblasts present. 

Three of these (PDX 366, PDX 395, and PDX 449) exhibited an increase in cell scatter or loss of 

epithelial morphology in response to 1% O2 (Supp Figure 2.S5H). PDX 395 cells were selected 

for further study because they exhibited measurable loss of junctional E-cadherin and increase in 

vimentin positivity in hypoxic culture.  

We also screened for hypoxia-mediated EMT in cells derived from the KPCY (KrasLSL-G12D, 

p53loxP/+ or LSL-R172H, Pdx1-Cre, Rosa26LSL-YFP) mouse model of PDAC. Six cell lines were screened 

based on their baseline epithelial phenotype. In pilot screening studies, every cell line exhibited 

increased vimentin positivity in 1% O2 (Supp Figure 2.S6A). 7160c2 was among the cell lines 

that also had an obvious morphology change in 1% O2, and it was used for further studies. These 

results suggest that hypoxia-mediated EMT occurs in a variety of PDAC cell settings but that not 

all cell contexts are primed for this phenomenon.  

 To investigate a correlation between hypoxia and EMT in vivo, we first confirmed the 

presence of hypoxic tumor regions in a mouse model of PDAC using pimonidazole 

(Hypoxyprobe), a reagent that binds to peptide thiols at low oxygen concentrations. The growth 

time needed to detect Hypoxyprobe (HYP)-positive cells in implantable tumor models was based 

on a pilot study that showed abundant staining by six weeks (Supp Figure 2.S6B). Compared to 

normal mouse pancreas, a PDX tumor exhibited low CD31 and elevated Hypoxyprobe staining, 

indicating relatively poor vascularization (Figure 2.2D). Higher magnification images revealed 

that CD31-positive structures consistent with capillary beds were non-overlapping with HYP-

positive cells (Figure 2.2E).  
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Figure 2.2 Hypoxia drives a bona fide EMT in PDAC cells and correlates with EMT in diverse 

mouse models of PDAC 
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(A) HPAF-II cells were cultured under atmospheric (21% O2), normal pancreas (7% O2), and PDAC tumor 
(1% O2) conditions for 120 hr. Immunofluorescence microscopy was performed for the indicated proteins, 
n = 3. For percent vimentin+, a one-way ANOVA with Tukey’s multiple comparison test comparing all 
conditions was performed. For mean E-cadherin intensity, a mixed-effects analysis with Tukey’s multiple 
comparison test was performed. To compare E-cadherin and vimentin intensity per cell, normalized signal 
from HPAF-II cells cultured in 1% O2 was plotted and fit to a nonlinear regression, as described in Methods. 
(B) GFP-expressing HPAF-II cells were cultured in 21% or 1% O2 for 96 hr. Fluorescence microscopy for 
GFP was performed and the shape factor was calculated per cluster. Data are represented as mean ± 
s.e.m. p < 0.0001 for nonlinear regression comparing slopes, as described in Methods. (C) RNA was 
extracted from HPAF-II cells cultured for 120 hr in 21% and 1% O2, and qRT-PCR was performed for 
hypoxia response markers (HIF1A, EPAS1, PGK1, and SLC2A1) and EMT markers (CDH1, VIM, SNAI1, 
and TWIST1). CASC3 was used as a control gene for normalization. n = 3, with t test per transcript. (D) 
H&E and fluorescent immunohistochemistry for Hypoxyprobe (HYP) and CD31 was performed for murine 
normal pancreas and PDX tumors. Representative image shown for n = 3. (E) Sections of normal mouse 
pancreas or PDX 395 tumors were stained for HYP and CD31. Image analysis was performed for PDX 395 
tumors and quantified for the percent CD31+ cells that were HYP- or HYP+. n = 3, with t test. (F) PDX 395 
tumors were sectioned and stained to quantify COXIV+/vimentin+ cells that were HYP- or HYP+. n = 4, 
with t test. White dotted line separates regions enriched for HYP+ or HYP- cells. (G) Sections of KPCY 
tumors were stained with the indicated antibodies, and image analysis was performed to quantify 
YFP+/vimentin+ cells that were HYP- or HYP+. Data are represented as fold change due to variability 
across spontaneous genetic mouse model. n = 4, with t test. (H) Subcutaneous tumors generated from 
KPCY-derived PD7591 cells were sectioned and stained with the indicated antibodies. Image analysis was 
performed to quantify YFP+/vimentin+ cells that were HYP- or HYP+. n = 6, with t test. (I) Sections of 
PD7591 subcutaneous tumors were stained for with the indicated antibodies, and image analysis was 
performed to quantify YFP+/HYP+ cells that were Ecadhigh or Ecadlow. n = 4, with t test. * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001  

 

To assess the relationship between hypoxia and EMT, we utilized three mouse models: orthotopic 

PDX tumors, KPCY autochthonous tumors, and subcutaneous tumors formed from KPCY-derived 

cell lines. Antibodies against human COXIV or YFP were used to identify human cells in PDX 

tumors or epithelial-derived cells in KPCY and subcutaneous tumors, respectively (Figure 2.2F-

I, Supp Figure 2.S6C-H). Based on prior work showing that PDX 395 tumors are devoid of human 

fibroblasts (130), COXIV+ cells were identified as human ductal tumor cells. In PDX tumors, 

COXIV+/HYP+ cells were primarily vimentin+ (Figure 2.2F). Similarly, in KPCY and 

subcutaneous tumors, more YFP+/HYP+ cells were vimentin+ than were YFP+/HYP- (Figure 

2.2G,H, Supp Figure 2.S6G). Further, in KPCY subcutaneous tumors, YFP+/HYP+ cells were 

preferentially low in E-cadherin expression (Figure 2.2I, Supp Figure 2.S6H). 
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Hypoxia-driven EMT can be as complete as growth factor-driven EMT and is more durable 

Growth factors are perhaps the most well-studied drivers of EMT. To compare that mode 

of EMT induction against hypoxia, we combined TGFβ and HGF because both potently promote 

EMT. In HPAF-II cells, flow cytometry revealed that growth factors drove more than twice as many 

cells to become mesenchymal than did hypoxia, based on vimentin staining (Figure 2.3A).  E-

cadherin expression was reduced by both growth factors and hypoxia (Supp Figure 2.S7A). By 

immunofluorescence microscopy, the trend of more potent EMT induction by growth factors was 

again observed in HPAF-II cells, but hypoxia and growth factors led to comparable EMT effects 

in PDX- and KPCY-derived cells (Figure 2.3B). Thus, in some cell settings, hypoxia may drive 

EMT as homogeneously among cells as growth factors do.  

 To explore the time scale of mesenchymal phenotype persistence for different methods of 

EMT induction, HPAF-II cells that had been treated with growth factors or cultured in 1% O2 were 

replated in complete medium (without added growth factors) and cultured in 21% O2. Interestingly, 

the rate of loss of vimentin+ cells was smaller for cells that had been cultured in hypoxia than 

those that had been treated with growth factors (Figure 2.3C). Similar trends were observed in 

KPCY- and PDX-derived cell lines (Supp Figure 2.S7B,C). In KPCY and PDX cells, however, 

replating after removal of the EMT-inducing condition caused a temporary spike in vimentin 

positivity. Despite this artifact, it is apparent that hypoxia resulted in more persistent vimentin 

expression. In PDX-derived 395 cells, there was a more modest decrease in vimentin positivity 

than in HPAF-II and KPCY 7160c2 cells, which could potentially be attributed to differential 

baseline vimentin expression.  

The preferential maintenance of vimentin expression among cells that experienced low 

oxygen suggests that hypoxia-induced EMT may be more heritable than EMT driven by growth 

factors. That is, because the time scale for HPAF-II cell division [~36-42 hr, based on our 

observations and prior work (131)] is small compared to the time scale over which the fraction of 
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mesenchymal cells can be maintained (at least 120 hr), the data in Figure 2.3C suggest that 

vimentin-positive cells must give rise to other vimentin-positive cells for the hypoxic, but not the 

growth factor-treated, condition. To test this, we quantified nuclei with a morphology indicative of 

mitosis 120 hr after relief of EMT-inducing conditions. More vimentin-positive cells that appeared 

to be actively dividing were found among those previously treated with hypoxia than those treated 

with growth factors (Figure 2.3D). The overall trend in preferential vimentin persistence after 

hypoxia was also observed five weeks after treatment-withdrawal (Supp Figure 2.S7D). 

To explore the implications of durable hypoxia-mediated EMT in tumors, HPAF-II cells were 

engineered with a HIF-regulated fate-mapping system that stably converts from DsRed to GFP 

expression after sufficient hypoxia exposure (125). Validation of the clonally selected transductant 

used in these studies is described in Supp Figure 2.S7E,F. As in other PDAC models, orthotopic 

tumors formed from the HPAF-II clone exhibited more vimentin+/HYP+ tumor cells than 

vimentin+/HYP- cells (Supp Figure 2.S7G). Furthermore, there were equivalent numbers of 

GFP+/vimentin+ cells that were HYP+ and HYP- (Figure 2.3E). One possible explanation for this 

observation is that cells can maintain a hypoxia-driven mesenchymal state in a tumor even 

outside a region of low oxygen tension. Five-color confocal imaging revealed a lack of difference 

in vimentin positivity for DsRed+ and GFP+ cells (Supp Figure 2.S7G), suggesting that 

microenvironmental factors other than hypoxia, such as growth factors, may also be substantial 

drivers of EMT in PDAC tumors. To test the mesenchymal durability of GFP+ cells, pieces of 

explanted orthotopic tumors were dissociated and flow-sorted into DsRed+, GFP+, and 

DsRed+/GFP+ populations, which were cultured in 21% O2. Note that double-positive cells arise 

due to slow DsRed turnover and that there were too few collected cells that were only GFP+ to 

analyze. 12 days after tumor dissociation, more DsRed+/GFP+ cells were vimentin+ than were 

DsRed+ cells (Figure 2.3F). Combined with the results of Figure 2.3C, this suggests that hypoxia-

mediated EMT contributed substantially to vimentin expression in DsRed+/GFP+ cells.  
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Figure 2.3 EMT in response to hypoxia can occur heterogeneously and is more durable than EMT 

in response to growth factors 
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(A) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ and 50 ng/mL HGF or cultured 
in 1% O2 for 120 hr. Cells were then fixed and stained for vimentin, and flow cytometry was performed. 
Representative data are shown for a single biological replicate, with a summary of data for n = 3 in the bar 
plot. One-way ANOVA with Tukey’s multiple comparisons test with comparison to 21% O2. (B) PDAC cells 
from three different backgrounds were cultured as in (A). Immunofluorescence microscopy was performed 
for the indicated proteins. n = 3, with two-way ANOVA and Tukey’s multiple comparisons test, comparisons 
shown within each cell line to the control 21% O2 condition. (C) HPAF-II cells were first cultured as described 
in (A). At the end of treatment, cells were re-plated on coverslips and cultured in 21% O2 without growth 
factors for up to 120 hr. At the indicated times after re-plating, cells were fixed and immunofluorescence 
microscopy was performed for the indicated proteins, n = 3. Data are represented as mean ± s.e.m. p < 
0.0001 for nonlinear regression comparing slopes. (D) 120 hr after treatment withdrawal from either 10 
ng/mL TGFβ + 50 ng/mL HGF or culture in 1% O2, HPAF-II cells were stained for DNA and vimentin to 
quantify actively dividing, vimentin+ cells (examples shown encircled by dotted lines). n = 3, with t test. (E) 
Orthotopic tumors generated from HPAF-II hypoxia fate-mapping cells (GFP = hypoxic response) were 
sectioned and stained with the indicated antibodies. Image analysis was performed to quantify the fraction 
of GFP+ cells that were vimentin+ and Hypoxyprobe-negative (HYP-) or positive (HYP+). n = 6, with t test. 
(F) Pieces of explanted tumors described in (E) were disaggregated and flow-sorted based on DsRed and 
GFP fluorescence. The indicated populations of cells were cultured in 21% O2 for 12 days after dissociation, 
and then fixed and stained with the indicated antibodies. n = 4, with t test. * p < 0.05, ** p < 0.01, **** p < 
0.0001 
 

 

MAPK and SFK signaling promote hypoxia-mediated EMT and are activated by impaired 

phosphatase expression  

 To identify signaling mechanisms that promote EMT in hypoxia, we first analyzed publicly 

available human PDAC patient data. From the CPTAC PDAC Discovery Study proteomics data 

(78), we extracted the reported overall phosphorylation scores for all human kinases and 

calculated Spearman rank correlation coefficients with Hallmark Hypoxia enrichment scores. We 

then pared the list of kinases to retain only those whose phosphorylation was positively and 

significantly (p < 0.05) correlated with Hallmark Hypoxia protein enrichment for use in an 

overrepresentation analysis (hypergeometric test) with the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) signaling pathways. The KEGG MAPK signaling pathway gene set had the 

largest number and highest fraction of its phosphokinases present in this list of overrepresented 

pathways (Figure 2.4A, Supp Figure 2.S1E). The KEGG MAPK gene set contains nodes 

involved in the ERK1/2, JNK, p38, and ERK5 pathways. Thus, this analysis suggests that 

signaling through one or more of those pathways may regulate PDAC response to hypoxia.  
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To extend this analysis to the scRNA-seq data (88), we developed a linear model of the 

relationship between signaling ontologies and Hallmark Hypoxia gene set enrichment in human 

PDAC ductal cells. We first calculated enrichment scores for the KEGG signaling pathways and 

Hallmark Hypoxia gene set using pathway and gene set overdispersion analysis (Pagoda2). We 

then trained a least absolute shrinkage and selection operator (LASSO) regression model to 

perform automatic variable selection of the KEGG signaling pathway gene sets for predicting 

Hallmark Hypoxia enrichment, followed by training an ordinary least squares regression model 

and performing additional variable selection via minimization of the Akaike information criterion 

(AIC). Of the 30 KEGG signaling pathway gene sets that were sufficiently overdispersed to obtain 

Pagoda2 scores, 19 were retained by the LASSO model, and 16 of these were retained after AIC 

selection. The final linear model was statistically significant and identified the KEGG MAPK gene 

set as most predictive of Hallmark Hypoxia enrichment in human ductal cells (Figure 2.4B). An 

identical analysis performed using the published mouse ductal cell scRNA-seq data (88) identified 

HIF-1 and MAPK signatures as most predictive of Hallmark Hypoxia enrichment (Supp Figure 

2.S8A). We will return to the role of HIFs but note for now the consistent role of MAPK signaling 

implied across our analyses. 

Based on the computational model results, we tested inhibitors of the p38, JNK, and 

ERK1/2 MAPK pathways for their ability to antagonize hypoxia-mediated EMT. MEK and JNK 

inhibitors suppressed vimentin expression and promoted E-cadherin expression in hypoxic 

culture (Figure 2.4C, Supp Figure 2.S8B,C). Inhibitor concentrations were selected for their 

ability to impact EMT without causing cell death. Surprisingly, p38 inhibition promoted vimentin 

expression in both 21% and 1% O2, which could indicate a role for p38 in antagonizing EMT, as 

has been reported (132,133). Combined inhibition of MEK and JNK had an additive effect, 

suggesting that both pathways may participate in hypoxia-mediated EMT. An additive effect was 
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also seen for EMT protein markers in PDX 395 cells (Figure 2.4D) and EMT transcript markers 

in HPAF-II cells (Supp Figure 2.S8D).  

Given the role of MAPK signaling in growth factor-driven EMT (32,134,135), we compared 

MAPK activation in growth factor- and hypoxia-driven EMT. For growth factors, pc-Jun, c-Jun, 

and pERK abundance increased acutely 24 hr after treatment and returned to untreated levels by 

120 hr. In hypoxic culture, elevated c-Jun expression and ERK phosphorylation persisted at 120 

hr, with a concomitant reduction in E-cadherin expression (Figure 2.4E, Supp Figure 2.S8E). 

Because changes in total c-Jun expression were more robustly detected than changes in its 

phosphorylation, c-Jun expression was typically used throughout this study as a proxy for JNK 

activity. This choice is supported by prior work showing that JNK activity promotes c-Jun 

expression (136-138) and by our observation that c-Jun expression was suppressed by JNK 

inhibition (Supp Figure 2.S8F). siRNA-mediated knockdown of ERK1/2 and c-Jun, alone or in 

combination, also impeded EMT in hypoxic culture (Supp Figure 2.S8G,H). Note that ERK1/2 

knockdown did not suppress c-Jun expression (Supp Figure 2.S8G), further supporting our use 

of c-Jun expression as a specific readout for JNK signaling. 

To identify the driver of MAPK signaling in hypoxia, a human phospho-kinase array (37 

phosphorylated and two total protein targets) and phosphorylated receptor tyrosine kinase array 

(71 targets) were used (Supp Figure 2.S9A,B). Both arrays detected increased phosphorylation 

of Src family kinases (SFKs). Given that SFKs can participate in MAPK activation, we tested the 

relationship between SFKs and MAPKs in hypoxia and found that SFK inhibition antagonized 

nuclear c-Jun accumulation and ERK phosphorylation (Figure 2.4F,G). SFK inhibition also 

antagonized hypoxia-driven EMT, halving the number of vimentin-positive cells and promoting a 

more clustered cell configuration (Figure 2.4H). We also screened for hypoxia-induced cytokines 

at the protein (Luminex) and transcript (qRT-PCR) levels, but these measurements did not identify 

any upregulated cytokines that regulate EMT in HPAF-II cells (not shown).   
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Figure 2.4 Hypoxia promotes EMT through MAPK signaling and suppression of protein 

phosphatase expression 
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(A) Overrepresentation analysis for the indicated KEGG signaling pathways was performed using the list 
of kinases whose overall phosphorylation was significantly and positively correlated with Hallmark Hypoxia 
protein enrichment in the CPTAC PDAC Discovery Study (78). The 15 overrepresented KEGG signaling 
pathway gene sets (out of 46) based on kinase ratio are shown (FDR-adjusted p < 0.05). Kinase count 
indicates the number of kinases appearing in each gene set with significant and positive correlations with 
Hallmark Hypoxia enrichment. Kinase ratio indicates the fraction of kinases in each gene set that are 
significantly and positively correlated with Hallmark Hypoxia enrichment. (P.J.M.) (B) Coefficients are 
shown for the regularized linear regression model predicting Hallmark Hypoxia Pagoda2 scores based on 
KEGG signaling pathway Pagoda2 scores for scRNA-seq data (88). Error bars denote 95% confidence 
intervals. (P.J.M.) (C) HPAF-II cells were cultured for 120 hr in 21% O2 or 1% O2 with 1 μM CI-1040 (MEKi), 
10 μM SP600125 (JNKi), 10 μM SB203580 (p38i), or DMSO. n = 3, two-way ANOVA with Sidak’s multiple 
comparisons test. (D) PDX 395-derived cells were cultured in 1% O2 with 1 μM CI-1040 (MEKi), 10 μM 
SP600125 (JNKi), a combination, or DMSO for 120 hr, with inhibitors replenished every 48 hr. Cells were 
then fixed and stained with antibodies for the indicated proteins. Immunofluorescence microscopy and 
quantitative image analysis was performed. n = 3, one-way ANOVA with Dunnett’s multiple comparison test 
against the untreated (control) condition. (E) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL 
TGFβ + 50 ng/mL HGF, or in 1% O2, and lysed 24 and 120 hr after treatment. Immunoblotting was 
performed for the indicated proteins. n = 3, one-way ANOVA with Tukey’s multiple comparisons test at each 
time point. (F) HPAF-II cells were cultured for 120 hr in 21% O2 or 1% O2 with 10 μM PP2 (Src family kinase 
inhibitor, SFKi) or DMSO, and immunofluorescence microscopy was performed for nuclear c-Jun. n = 3, 
mixed-effects analysis with Tukey’s multiple comparisons test. (G) HPAF-II cells were treated as in (F), and 
lysates were analyzed by immunoblotting for the indicated proteins. n = 3, two-way ANOVA with Sidak’s 
multiple comparison test. (H) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ and 50 
ng/mL HGF or in 1% O2 for 120 hr. Cells were pre-treated with 10 μM PP2 or DMSO 24 hr prior to hypoxia 
or growth factor treatment. n = 3, two-way ANOVA with Sidak’s multiple comparison test. (I) qRT-PCR was 
performed for PP1A, PP2A, and PP2C subunit transcripts on RNA isolated from HPAF-II cells treated as 
described in (D) for 120 hr. CASC3 was used as a control gene for normalization. n = 3, one-way ANOVA 
with Tukey’s multiple comparisons test for each subunit independently. (J) HPAF-II cells were cultured for 
120 hr in 21% O2 with 5 μM LB100 (PP2Ai), 1.5 μM sanguinarine chloride (PP2Cδi), or DMSO. n = 3, one-
way ANOVA with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 

Lacking leads for potential cytokine inducers of SFK activity, we hypothesized that 

phosphatase expression may be suppressed in hypoxia. We specifically considered protein 

phosphatase 2 (PP2A), a serine/threonine phosphatase holoenzyme with catalytic, regulatory, 

and scaffolding subunits (139), due to its regulation of MAPK and SFK signaling (140,141). To 

test this hypothesis, we first analyzed the PDAC tumor scRNA-seq data (88) and found that 

transcripts for PP2A, as well as PP2C and PP1A, were negatively correlated with the HIF gene 

signature (Supp Figure 2.S10). This finding was confirmed in HPAF-II cells, where transcripts for 

multiple protein phosphatase subunits (catalytic, regulatory, and scaffolding) were decreased by 

hypoxia but not by growth factors (Figure 2.4I). Furthermore, inhibition of PP2A or PP2Cδ at 21% 

O2 promoted vimentin expression (Figure 2.4J) and the accumulation of c-Jun and ERK in the 
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nucleus (Supp Figure 2.S9C-E) in HPAF-II cells. Thus, suppressed expression of MAPK-

regulating serine/threonine phosphatases may be a hypoxia-specific mechanism for EMT.  

To further probe the relevance of MAPK signaling for hypoxia-mediated EMT, we returned 

to the mouse models used in Figure 2.2. In KPCY and subcutaneous tumors, nuclear c-Jun 

abundance was elevated in hypoxic YFP+ cells (Figure 2.5A,B). In PDX tumors, c-Jun was also 

more abundant in hypoxic cells, and nuclear c-Jun was found preferentially in vimentin-positive 

cells (Figure 2.5C). PDX tumors also exhibited elevated pERK staining in vimentin-positive cells 

(Figure 2.5D). These results further support a role for JNK and ERK signaling in hypoxia-

mediated EMT in PDAC. Interestingly, hypoxia-mediated EMT, while durable, is reversible via 

MEK and JNK inhibition in cell culture experiments (Figure 2.5E, Supp Figure 2.S9F).  

To investigate the ability of MAPK antagonism to abrogate EMT in vivo, MEK and JNK 

inhibitors were tested in mice bearing orthotopic PDX 395 tumors. For both HYP+ and HYP- cells, 

MEK or JNK inhibition reduced the fraction of cells that were vimentin+, but this effect was only 

significant when MEK and JNK inhibitors were combined (Figure 2.5F). EMT inhibition was 

accompanied by anticipated reductions in ERK phosphorylation and c-Jun nuclear accumulation 

(Supp Figure 2.S9G,H). These results confirm that ERK and JNK cooperate to drive EMT in both 

hypoxic and normoxic tumor cells and demonstrate that small-molecule inhibitors may be able to 

interrupt and reverse this process in vivo, even in areas with limited vascularization.     
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Figure 2.5 Hypoxic PDAC tumor tissue is enriched for markers of MAPK signaling, and MAPK 
inhibition prevents EMT in hypoxic tumor cells 

(A) Sections of KPCY tumors were stained for the indicated proteins, and image analysis was performed 
to quantify YFP+/c-Jun+ cells that were positive or negative for Hypoxyprobe (HYP). Data are reported as 
fold change in the percent c-Jun+ cells from HYP- to HYP+. n = 3, with t test. White dotted line separates 
regions enriched for HYP+ or HYP- cells. (B) Sections of subcutaneous tumors formed from KPCY-derived 
7160c2 cells were stained for the indicated proteins, and image analysis was performed as described in 
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(A). n = 4, with t test. (C) Sections of PDX 395 orthotopic tumors were stained for the indicated proteins, 
and image analysis was performed to quantify c-Jun+ cells that were HYP- or HYP+ or vimentin- or 
vimentin+. c-Jun+ data are reported as fold change in percent c-Jun+ cells that were HYP- or HYP+. n = 3, 
with t test. (D) Sections of PDX 395 tumors were stained to probe for correlations in pERK and vimentin, 
and image analysis was performed to quantify the percent of vimentin- or vimentin+ cells that were pERK+ 
cells. n = 3, with t test. (E) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ + 50 
ng/mL HGF or in 1% O2 for 120 hr. Cells were then re-plated and cultured for another 120 hr at 21% O2 
without exogenous growth factors and with 1 μM CI-1040 (MEKi) and 10 μM SP600125 (JNKi) or DMSO. 
At the indicated times, cells were fixed and stained for vimentin. Immunofluorescence microscopy with 
quantitative image analysis for the percentage of vimentin+ cells was performed. n = 3, two-way ANOVA 
with Tukey’s multiple comparisons test. (F) Mice bearing orthotopic PDX 395 tumors were treated for nine 
days with selumetinib (MEKi), SP600125 (JNKi), selumetinib+SP600125, or vehicle control. Tumor sections 
were stained for COXIV, HYP, and vimentin, and quantitative image analysis was performed. n = 5 - 6, two-
way ANOVA with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 

HIFs play a supporting role in hypoxia-driven EMT 

 To probe the role of HIFs in hypoxia-mediated EMT, we first utilized RNA interference in 

HPAF-II cells. Transient knockdown of HIF1A (HIF-1⍺) and/or EPAS1 (HIF-2⍺) antagonized 

vimentin expression in hypoxia (Figure 2.6A, Supp Figure 2.S11A). At the transcriptional level, 

however, there was no statistically significant effect of HIF knockdown on VIM, SNAI1, or CDH1 

at 1% O2 (Figure 2.6B). Vimentin can be post-translationally modified (142) which could account 

for the discrepancy in protein and transcript changes, that we also saw with JNK inhibition alone 

(Supp Figure 2.S8D). Further, with stable knockdown of both transcripts, there was not a 

significant decrease in vimentin positivity (Figure 2.6C, Supp Figure 2.S11B). To test the role of 

HIF expression on EMT	in vivo, we analyzed tumors from a pancreas-specific Kras-mutant Hif1a-

knockout (KrasG12Hif1aKO) mouse (59). Focusing on cells that could be definitively determined as 

epithelial-derived through E-cadherin staining, we observed comparable amounts of E-

cadherin+/vimentin- cells and an insignificant decrease in E-cadherin+/vimentin+ cells in Hif1aKO 

versus Hif1a-replete tumors (Supp Figure 2.S11C-E). Hif1aKO tumors did display more E-

cadherin-/vimentin+ cells, but some of those are likely to be fibroblasts. The ambiguous effects of 

Hif1a knockout on EMT may be consistent with prior reports that pancreas-specific Hif1a depletion 

in KrasLSL-G12D/+/Trp53LSL-R172H/+/Pdx1-Cre mice actually resulted in more advanced neoplasia and 

increased metastasis (143).   
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Figure 2.6 HIF expression plays a supporting role in hypoxia-mediated EMT and is regulated by 
MAPK signaling 

(A,B) HPAF-II cells were transfected with HIF-1⍺ or HIF-2⍺ siRNA, a combination of the two, or control 
siRNA. 24 hr later, cells were switched to a 1% O2 environment or maintained in 21% O2 and allowed to 
grow for 120 hr. (A) Immunofluorescence microscopy for the indicated targets was performed, with 
quantification of vimentin+ cells. n = 3, two-way ANOVA with Tukey’s multiple comparisons test, 
comparisons made against the control condition for 21% or 1% O2. (B) qRT-PCR was performed for CDH1, 
VIM, and SNAI1. CASC3 was used as a control gene for normalization. n = 3, two-way ANOVA with Tukey’s 
multiple comparisons test. (C) Immunofluorescence microscopy was performed on HPAF-II cells 
engineered with stable expression of HIF-1⍺ and HIF-2⍺ shRNAs or control shRNAs. Cells were cultured 
in 21% or 1% O2 for 120 hr prior to fixing and staining with antibodies against the indicated proteins. n = 3, 
two-way ANOVA with Tukey’s multiple comparisons test. (D) HPAF-II cells were pre-treated with 1 μM CI-
1040 (MEKi), 10 μM SP600125 (JNKi), a combination, or DMSO for 24 hr, then cultured in 21 or 1% O2 for 
4 hr. n = 3, two-way ANOVA with Tukey’s multiple comparisons test, comparisons against control condition 
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for 21% or 1% O2. (E) qRT-PCR for HIF1A was performed using RNA isolated from HPAF-II cells cultured 
for 120 hr in 21% O2 or 1% O2 with 1 μM CI-1040 (MEKi),10 μM SP600125 (JNKi), a combination, or DMSO. 
CASC3 was used as a control gene for normalization. n = 3, two-way ANOVA with Tukey’s multiple 
comparisons test, comparisons against the control condition within either 21% or 1% O2. * p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001 
 

Because MAPKs regulate HIF expression in some settings (144,145), we tested the 

effects of MEK and JNK inhibitors on HIF expression. Each inhibitor antagonized HIF-1⍺ 

accumulation in hypoxia, and the combination of inhibitors was even more effective (Figure 2.6D). 

However, HIF1A transcripts were unaffected by the inhibitors (Figure 2.6E). Therefore, in addition 

to their HIF-independent roles in EMT, ERK and JNK stabilize HIF-1⍺ post-translationally in 

hypoxia. Collectively, our data suggest that HIFs may play a supporting, but not indispensable, 

role in EMT. 

 

Hypoxia-driven EMT depends on histone methylation 

 Due to the durable and heritable nature of hypoxia-driven EMT, we hypothesized that 

epigenetic modifications could be involved. Based on prior work that found that TGFβ-mediated 

EMT depends on dimethylation of lysine 36 on histone H3 (H3K36me2) and that this epigenetic 

mark promotes Zeb1 and Snai1 expression (34), we probed for changes in H3K36me2 in hypoxia. 

H3K36me2 abundance was increased in HPAF-II cells treated with growth factors or cultured in 

1% O2 (Figure 2.7A). Furthermore, H3K36me2 persisted longer in cells exposed to hypoxia than 

in those treated with growth factors (Supp Figure 2.S12A), mirroring the persistence of 

mesenchymal traits described previously.  

To understand the basis for altered histone methylation in hypoxia, we investigated the 

activity and expression of the methyltransferase NSD2 and the lysine demethylase KDM2A, which 

are critical in TGFβ-mediated EMT (34). The activities of certain lysine demethylases in the 

Jumonji C (JmjC) domain-containing family, including KDM5A and KDM6A, are sensitive to 

(patho)physiologically relevant changes in oxygen tension (63,64). Therefore, we characterized 
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the oxygen-dependent activity of FLAG-tagged and purified KDM2A (Supp Figure 2.S12B-G). 

Measurements confirmed an interaction strength between KDM2A and H3K36me2 consistent 

with other pairs of histones and demethylases represented by an H3K36me2 KM = 108 ± 12 μM 

and revealed an O2 KM = 57 ± 17 μM (Figure 2.7B,C, Supp Figure 2.S12H). While this O2 KM is 

several-fold lower than those reported for KDM5A and KDM6A (63,64), it clearly falls between the 

oxygen concentrations observed in normal pancreas (1.21-12.05%, or 11.9-118.6 μM) and PDAC 

tumors (0-0.69%, or 0-6.78 μM) (39,146). Thus, KDM2A activity can be expected to be 

substantially compromised in hypoxic regions of PDAC tumors. Interestingly, KDM2A transcripts 

were slightly elevated by hypoxia (Supp Figure 2.S12I).  While prior studies have shown KDM2A 

expression to be HIF-1⍺-dependent (147), this relationship was absent in HPAF-II cells (Supp 

Figure 2.S12I). KPCY-derived cell lines (34) also displayed increased H3K36 dimethylation in 

response to hypoxia (Figure 2.7D, Supp Figure 2.S12J), demonstrating the generality of this 

phenomenon across different cell backgrounds.  

To probe for a possible effect of hypoxia on the rate of histone methylation, we tested for changes 

in NSD2 expression in hypoxia. NSD2 was significantly more abundant in HPAF-II cells at 1% O2 

than at 21% O2 without growth factors (Figure 2.7E). Interestingly, NSD2 transcripts were 

depleted in hypoxic HPAF-II cells, and scRNA-seq patient data demonstrate a negative 

correlation between NSD2 abundance and the HIF gene signature (Supp Figure 2.S13A,B). 

Changes in NSD2 abundance in hypoxia were insensitive, however, to knockdown of HIF-1⍺ and 

HIF-2⍺ or inhibition of MEK and JNK (Supp Figure 2.S13C,D). Searching for possible post-

translational mechanisms to explain the elevated expression of NSD2 in hypoxia, we noted that 

dephosphorylation by PP2Cδ promotes NSD2 proteasomal degradation (148) and recalled that 

PPM1D, which encodes PP2Cδ, was depleted in hypoxia (Figure 2.4I). Consistent with the 

potential mechanism implied, NSD2 expression was elevated in response to PP2Cδ inhibition, 

and to a lesser degree in response to PP2A inhibition (Figure 2.7F). While NSD2 knockdown 
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impeded H3K36 dimethylation in response to hypoxia or growth factors, it preferentially 

antagonized EMT in response to hypoxia (Figure 2.7G, Supp Figure 2.S13E), indicating that 

growth factors may be less dependent on NSD2 for EMT. Hypoxia-mediated EMT and H3K36 

dimethylation were also Nsd2- and Kdm2a- dependent in engineered KPCY-derived cell lines 

described in previous work (34). In baseline-mesenchymal 3077c4 cells, Nsd2 knockout impeded 

H3K36 dimethylation and vimentin expression and promoted E-cadherin expression in both 21% 

and 1% O2 (Supp Figure 2.S13F). In baseline-epithelial 6694c2 cells, Kdm2a knockout promoted 

vimentin expression and decreased E-cadherin expression in both 21% and 1% O2, with 1% O2 

causing an even stronger EMT (Supp Figure 2.S13G). Previously reported RNA-sequencing of 

these cell lines (34) reveals that PP2A and PP2C subunits, as well as dual-specificity 

phosphatases (DUSPs), are altered in response to Kdm2a or Nsd2 knockout, which provides a 

mechanistic link between histone methylation and MAPK activation. 

We further found that MEK and JNK inhibition antagonized H3K36 dimethylation and 

NSD2 expression in 1% O2, but that NSD2 expression could be rescued by co-inhibition of PP2Cδ 

(Figure 2.7H). Knockdown of HIF-1⍺ and/or HIF-2⍺ also antagonized H3K36 dimethylation in 1% 

O2 (Supp Figure 2.S13H). Collectively, these results suggest that low oxygen tension reduces 

KDM2A activity, which causes a suppression of serine/threonine phosphatase expression (34) 

that stabilizes NSD2 expression directly (through reported phosphatase/NSD2 interactions) and 

indirectly (through regulation of MAPK activity). 
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Figure 2.7 Hypoxia lowers the activity of KDM2A and stabilizes NSD2 expression to promote a 

histone methylation-dependent EMT 
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(A) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ + 50 ng/mL HGF or in 1% O2 for 
120 hr, and H3K36 dimethylation (H3K36me2) was measured by immunofluorescence microscopy. n = 3, 
mixed-effects analysis with Tukey’s multiple comparisons test. (B-C) Michaelis-Menten saturation curves 
were created with associated Lineweaver-Burk plots for KDM2A binding kinetics for (B) H3K36me2 and (C) 
oxygen, where velocity (V) is reported as disintegration parts per minute (dpm). Plots show data for one 
representative run, with solid lines corresponding to the model fits to the data shown. (S.K.S.) (D) KPCY-
derived cell lines 3077c4, 6419c5, and 6694c2 were cultured in 21% or 1% O2 for 120 hr. Cells were then 
fixed and stained with antibodies against the indicated proteins, and immunofluorescence microscopy was 
performed. n = 3, mixed-effects analysis for H3K36me2 per cell line. (E) Immunofluorescence microscopy 
was performed for NSD2 expression in HPAF-II cells treated as in (A). n = 3, mixed-effects analysis with 
Tukey’s multiple comparisons test against the 21% O2 condition. (F) HPAF-II cells were cultured for 120 hr 
in 21% O2 with 5 μM LB100 (PP2Ai), 1.5 μM sanguinarine chloride (PP2Cδi), or DMSO. 
Immunofluorescence microscopy was performed for NSD2. n = 3, mixed-effects analysis with Tukey’s 
multiple comparisons for all conditions. (G) HPAF-II cells were transfected with control or NSD2 siRNA. 24 
hr later, cells were treated as described in (A) for 120 hr. Immunofluorescence microscopy was performed 
for the indicated proteins. n = 3, two-way ANOVA for vimentin positivity with Sidak’s multiple comparisons 
test and mixed-effects analysis for H3K36me2 with Tukey’s multiple comparisons test. (H) HPAF-II cells 
were cultured in 1% O2 with 1 μM CI-1040 (MEKi), 10 μM SP600125 (JNKi), and 1.5 μM sanguinarine 
chloride (PP2Cδi), or DMSO for 120 hr. n = 3, mixed-effects analysis with Tukey’s multiple comparisons 
test.  * p < 0.05, ** p < 0.01, *** p < 0.001 
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2.5 DISCUSSION 

This study establishes that hypoxia and EMT are so typically related in PDAC that statistically 

significant relationships can be established from three types of patient data and four different 

mouse models. In the integrated molecular mechanism we propose (Figure 2.8), low oxygen 

tension reduces KDM2A activity, resulting in H3K36 dimethylation and decreased protein 

phosphatase expression. Loss of phosphatases promotes SFK and MAPK signaling, which 

cooperates with reduced PP2Cδ activity to stabilize NSD2 expression, creating a reinforcing 

positive feedback that leads to a durable EMT. ERK and JNK also stabilize HIF-1⍺, which plays 

a supporting, but not primary, role. Collectively, ERK, JNK, and H3K36me2 promote the 

expression of c-Jun, HIF-1⍺ and other transcription factors that drive EMT.  

 

 
Figure 2.8 Hypoxia promotes EMT through the integrated regulation of histone methylation and 

MAPK signaling 
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Hypoxia suppresses KDM2A activity resulting in dimethylation of H3K36, which in turn suppresses 
expression of protein phosphatase subunits. Decreased protein phosphatase expression promotes SFK 
and MAPK signaling to stabilize NSD2, HIF-1⍺, and nuclear c-Jun expression. Elevated NSD2 expression 
further promotes H3K36 dimethylation, reinforcing the integrated kinase signaling/histone methylation 
regulatory loop. Collectively, this promotes expression of EMT-regulating genes. Figure created with 
BioRender.com. 
 

Even with these mechanistic connections established, there remains some uncertainty 

about the rate-limiting step for epithelial reversion and H3K36 demethylation after hypoxic cells 

are returned to a normoxic environment. Previously hypoxic cells do revert to an epithelial state 

quickly after kinase inhibitors are applied. Thus, one possibility is that hypoxic cells become stuck 

in a metastable mesenchymal state that can only be reversed by severe intervention. EMT can 

exhibit hysteresis, with bistable or even tristable states (149), depending on the cell type and 

duration of EMT-induction (150). Further, JNK (151), ERK (152), and HIF-1⍺ (153) signaling can 

all exhibit bistability depending on the initiating signaling event. Epigenetic modifications 

maintained by bistable signaling feedbacks could confer a cellular memory effect leading to 

persistent EMT (154). 

Previous work has identified MAPK signaling as a target for PDAC combination therapy. 

For example, MEK/ERK inhibitors have been combined with anti-PD-L1 (155) and PI3K inhibitors 

(156), and low-dose “vertical inhibition” of RAF and ERK may promote a mesenchymal-epithelial 

transition in KRAS-mutant PDAC (157). ERK1/2 inhibition as a monotherapy for PDAC is 

ineffective due to an autophagic response that sustains viable tumor cells, but combined ERK 

and autophagy inhibition can suppress PDAC tumor growth (158). JNK signaling is activated in 

PDAC by treatment with 5-fluorouracil plus leucovorin (5-FU+LEU) or FOLFOX (5-FU+LEU plus 

oxaliplatin), and JNK inhibition reduces FOLFOX chemoresistance (137). Our findings provide 

specific motivation for pursuing combinations of MAPK inhibitors for the complete antagonism of 

hypoxia-mediated EMT, which may potential PDAC response to chemotherapy.  



 

 

75 

Due to the broad significance of HIFs across oncology, inhibitors of HIF dimerization, DNA 

binding, expression, and synthesis have been created or identified. While there has only been 

limited success of these inhibitors thus far in clinical trials (159), HIF inhibitors could potentially 

be useful components of combination therapies for PDAC. Indeed, in the mechanism we 

elucidated, HIFs played an important supporting role, but they were not solely responsible for 

hypoxia-mediated EMT.  

Although we focused on the role of H3K36me2, other epigenetic changes, including 

histone 3 lysine 4 acetylation (H3K4Ac), H3K4me2, and H3K27me3, have been reported to 

regulate EMT marker genes (e.g., CDH1, VIM) (35,36). We focused on H3K36me2 given its 

reported role in EMT in PDAC specifically (34). Enzymes that modify epigenetic marks are also 

being considered as drugs targets. While most of the small number of clinical trials directly 

targeting histone methylation are focused on lymphomas, there are some initial phase trials in 

solid tumors (160). Inhibitors have been identified against methyltransferases (161), the 

methyltransferase enhancer EZH2 (160), and histone deacetylases (HDAC) (162). While HDAC 

inhibition alone is ineffective in PDAC due to a potential tumor supportive effect on stromal cells 

(163), HDAC inhibitors combined with MEK inhibitors (164) or gemcitabine (165) may hold 

promise. The critical role that NSD2 plays in hypoxia-mediated EMT in PDAC provides rationale 

for targeting of NSD2. Due to the documented role of NSD2 in multiple cancers (166), NSD2 

inhibitors are in pre-clinical development, with multiple compounds identified that target the 

methyl-transferring SET domain (167,168).  

While the accumulation of NSD2 we observed in hypoxia was apparently post-

translationally regulated, others have reported hypoxia- and HIF-1⍺-dependent NSD2 transcript 

accumulation in melanoma cells (169). Thus, different mechanisms may regulate NSD2 

abundance in hypoxia, and these may leverage different NSD2 protein domains. We found there 

are several core HIF-binding sites (5’-RCGTG-3’) (170) in the NSD2 promoter region. However, 
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other transcription factors cooperate with HIF in a tissue- and gene-specific manner (171), which 

may explain why HIF does not regulate NSD2 transcription in all settings (170). Our work 

demonstrates that hypoxia can also regulate NSD2 through downregulation of PP2Cδ, which 

dephosphorylates and destabilizes NSD2 (148), and through MAPK activity. The latter effect may 

occur through the presence of NSD2 PEST domains, protein motifs that can slow protein turnover 

when phosphorylated (172,173). The online tool ePESTfind reports that NSD2 has two regions 

(531 – 546 and 615 – 656) with high PEST scores (>5). Further, using the online iGPS algorithm 

(174) with a lenient threshold predicts that JNK and ERK phosphorylate NSD2 threonine 544 and 

serines 631 and 639. Thus, hypoxia may stabilize NSD2 in part through a MAPK-dependent 

process involving PEST phosphorylation. 

Of course, hypoxia also promotes profound metabolic changes that contribute to 

aggressive disease in PDAC (175), and metabolic reprogramming can be accompanied by 

changes in EMT markers and phenotypes (176). In pancreas cancer cells, hypoxia-mediated 

expression of the mesenchymal protein N-cadherin in hypoxic culture is glucose- and glutamine-

dependent, indicating that glycolytic and glutaminolytic activity influence hypoxia-mediated EMT 

(177). Further, MEK and JNK are involved in the Warburg effect by interacting with key metabolic 

regulators in glycolysis (178), and some epigenetic modifiers are energy sensors that respond to 

intracellular energy levels (179). Thus, there are likely to be metabolic dependencies involved in 

the process we elucidated that have yet to be explored.  

While our analysis focused on ductal epithelial cells, tumor hypoxia may also affect stromal 

cells including cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). 

In PDAC, inflammatory CAFs secrete growth factors and cytokines (e.g., TGFβ, IL-6, TNF⍺) that 

have been identified as EMT agonists (48). Pancreatic stellate cells, the progenitors of PDAC 

CAFs, secrete IL-6 in hypoxic culture (180). Hypoxia-mediated ERK activation drives TAM 

polarization to a pro-inflammatory M2 phenotype in lung cancer (181), in which M2-like TAMs 
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have been shown to secrete cytokines to promote EMT in PDAC (182). Therefore, it is possible 

that tumor hypoxia could promote EMT in neoplastic cells through mechanisms that depend on 

other cell types present in the tumor microenvironment.   

 The observation that hypoxia generally led to heterogeneous effects among cells prompts 

the question of why only some cells respond to hypoxia by undergoing EMT. In colon cancer cells, 

baseline differences in signaling activity among cells revealed by scRNA-seq correlated with a 

baseline EMT state (77). Such effects could underlie the phenomena we observed. For example, 

nuclear c-Jun accumulation and H3K36me2 were only strongly apparent in a subset of cells. 

While we have not focused on this question here, it is worth exploring the degree to which 

signaling heterogeneities may explain EMT phenotypic heterogeneities in the hypoxic PDAC 

setting. 

 Finally, the durable nature of hypoxia-mediated EMT could make this mechanism 

especially likely to contribute to metastatic dissemination. At the same time, our finding that 

hypoxia-driven EMT can persist for weeks may challenge the typical view that a mesenchymal-

epithelial transition is required for metastatic outgrowth. Additional work is needed to investigate 

these questions. 
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2.7 SUPPLEMENTAL MATERIAL 

 

Supp Figure 2.S1 There is little overlap among the pan-cancer EMT (pcEMT), Hallmark Hypoxia, 
and established PDAC subtype gene signatures 
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(A) An UpSet plot shows the number of unique genes for comparisons made among the pcEMT signature 
and Collisson, Moffitt, and Bailey PDAC signatures. Note that subtypes are not shown for the Bailey PDAC 
signature because the genes defining each subtype were not explicitly defined by the original 
authors. UpSet plots were formatted left to right to show entries for single gene sets (which reflect the 
number of genes unique to those gene sets alone) followed by entries showing intersections across gene 
sets, with each type of entry arranged in rank order by cardinality. Bars are highlighted in green where at 
least one other gene set shares one or more gene features with the epithelial component of the pcEMT 
signature (pcEMT-E). (B) pcEMT genes overlapping with the indicated PDAC signatures are shown. (C) An 
UpSet plot was created for the pcEMT-E, pcEMT-M, and Hallmark Hypoxia gene sets Only COL5A1 is 
common to the pcEMT-M and Hallmark Hypoxia gene sets. (D) An UpSet plot was created for comparisons 
among the Hallmark Hypoxia, Bailey, Collison, and Moffitt gene sets. Bars are highlighted in red where at 
least one other gene set shares one or more gene features with the Hallmark Hypoxia gene set. (E) An 
UpSet plot was created for comparisons among the Hallmark Hypoxia and indicated KEGG signaling 
pathway gene sets. (P.J.M.) 
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Supp Figure 2.S2 Across different classification schemes, aggressive PDAC subtypes are 

correlated with an increase in hypoxic gene signatures 
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(A) CPTAC PDAC tumor proteomics data were clustered by non-negative matrix factorization using the 
protein analogs of the pcEMT signature as features, as shown in Figure 2.1. HIF signature GSVA 
enrichment scores were calculated for the resulting clusters of mesenchymal-high (M-high) and 
mesenchymal-low (M-low) tumors, with a Mann-Whitney U test. (B) Partial rank correlation coefficients 
(PRCCs) of the indicated variables were calculated with respect to protein enrichment (GSVA) scores for 
the mesenchymal portion of the pcEMT signature (pcEMT-M). HIF signature enrichment scores were 
calculated from the CPTAC PDAC global proteomics data using GSVA. Histology estimates were used as 
provided with the CPTAC data. Error bars denote 95% confidence intervals. (C) Protein enrichment of 
pcEMT-M was computed by GSVA and compared between hypoxia-high and hypoxia-low CPTAC PDAC 
tumors. Hypoxia status was used as previously described (78), with a Mann-Whitney U test. (D) 
Comparisons are shown of Collisson, Moffitt, and Bailey subtype proportions across pcEMT M-low and -
high tumor groups for CPTAC PDAC tumors. Collisson, Moffitt, and Bailey subtype classifications were 
used as reported previously (78). The results of Pearson’s chi-squared test comparing the proportions of 
PDAC subtypes between the two pcEMT groups are shown above each plot. (E) Hallmark Hypoxia GSVA 
enrichment scores were calculated from protein expression of CPTAC PDAC tumors and compared across 
subtypes within the Collisson, Moffitt, and Bailey classification systems. Results of the Kruskal-Wallis test 
or Mann-Whitney U test are shown above each plot. Pairwise comparisons for the Collisson and Bailey 
subtypes were computed using the Dunn test, and p values were adjusted for multiple comparisons using 
the Benjamini-Hochberg/FDR method. (F) HIF signature GSVA scores were calculated from protein 
expression of CPTAC PDAC tumors and compared across subtypes within the Collisson, Moffitt, and Bailey 
classification systems. The size of dots in (E) and (F) indicates the pcEMT-M enrichment score for each 
tumor. Results of the Kruskal-Wallis test or Mann-Whitney U test are shown above each plot. Pairwise 
comparisons for the Collisson and Bailey comparisons were computed using the Dunn test, and p values 
were adjusted for multiple comparisons using the Benjamini-Hochberg/FDR method. (P.J.M.) 
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Supp Figure 2.S3 EMT and hypoxia gene enrichment are correlated in TCGA PDAC tumors 
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(A) TCGA PAAD tumor samples were clustered using non-negative matrix factorization (NMF) of 
log2(TPM+1) expression data for genes from the pan-cancer EMT (pcEMT) signature. Heatmap indicates 
per-gene, z-scored log2(TPM+1) expression values. The left vertical side bar indicates the assigned NMF 
cluster for each tumor. The top horizontal side bar indicates the phenotype associated with each gene as 
described in the original pcEMT signature (89). (B) Hallmark Hypoxia or (C) HIF target signature GSVA 
(enrichment) scores were calculated for TCGA PAAD study PDAC tumors and compared across the NMF-
assigned pcEMT clusters. The Mann-Whitney U test indicated that there was a statistically significant 
difference in medians between the clusters. (D,E) Partial rank correlation coefficients (PRCCs) of the 
indicated TCGA PAAD immune deconvolution cell type estimates (estimated using the EPIC algorithm) and 
(D) Hallmark Hypoxia signature or (E) HIF target signature GSVA scores were calculated with respect to 
GSVA scores for the mesenchymal portion of the pcEMT signature (pcEMT-M). Error bars denote 95% 
confidence intervals for the indicated PRCCs. (F) pcEMT-M GSVA scores were calculated for TCGA PAAD 
study PDAC tumors and compared when tumors are split into hypoxia-high and hypoxia-low groups based 
on the median Hallmark Hypoxia GSVA score. (G) Kaplan-Meier survival curves were calculated for PDAC 
patients from the TCGA PAAD study, with stratification based on tumor pcEMT groups from NMF clustering, 
with log-rank test. (H) Kaplan-Meier survival curves were calculated for PDAC patients from the TCGA 
PAAD study, with stratification based on median Hallmark Hypoxia GSVA score, with log-rank test. (P.J.M.) 
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Supp Figure 2.S4 Mesenchymal mouse ductal cells are enriched for hypoxia-associated gene 

expression 
(A) mRNA enrichment of the HIF target signature was compared between M-high and M-low human ductal 
cells (88) from Figure 2.1E, with Mann-Whitney U test. (B) Mouse ductal cells (88) were projected onto a 
2D UMAP embedding of the mesenchymal portion of the pcEMT signature. The UMAP projection was then 
clustered using consensus clustering, and clusters were labeled by comparing the expression profiles of 
mesenchymal genes, as shown in (C). (C) A heatmap is shown of the consensus cluster-annotated 
heatmap of mRNA transcript abundances (normalized UMIs) for genes from the full pcEMT signature that 
are expressed in mouse ductal cells. (D) Hallmark Hypoxia Pagoda2 scores were compared across the 
mouse ductal cell pcEMT consensus clusters. The Kruskall-Wallis test indicated that there was a statistically 
significant difference in medians among the distributions. Pairwise comparisons were computed using the 
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Dunn test, and p values were adjusted for multiple comparisons using the Benjamini-Hochberg/FDR 
method. (E) HIF target signature Pagoda 2 scores were compared across the mouse ductal cell pcEMT 
consensus clusters. The Kruskall-Wallis test indicated that there was a statistically significant difference in 
medians among the distributions. Pairwise comparisons in panels (D) and (E) were computed using the 
Dunn test, and p values were adjusted for multiple comparisons using the Benjamini-Hochberg/FDR 
method. (P.J.M.) 
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Supp Figure 2.S5 HIF-1⍺ expression is transient in response to hypoxia, and PDX-derived cell 

lines exhibit evidence of hypoxia-mediated EMT 
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(A) HPAF-II cells were cultured in 21% or 1% O2 for up to 120 hr. At the time points indicated, cells were 
fixed and stained with antibodies for E-cadherin and HIF-1⍺. Fluorescence microscopy was performed, with 
quantitative image analysis for nuclear HIF-1⍺ protein. Microscopy is shown for three representative time 
points, with n = 3. (B) HPAF-II cells were cultured in 1% O2 for up to 120 hr and lysed at the indicated times. 
Lysates were analyzed by immunoblotting for the indicated proteins. (C) pcEMT-M signature mRNA 
enrichment (GSVA scores) was compared for moderately versus poorly differentiated human PDAC patient 
tumors, with Mann-Whitney U test. GSVA scores were calculated from RNA-seq data obtained from PDX 
tumors derived from the original patient tumors. (P.J.M.) (D) Representative images of H&E-stained 
sections of patient tumors used for histological grading of differentiation, with 608 and 738 exemplifying 
moderately and poorly differentiated tumors, respectively. Images taken with 10× objective, with 10× ocular. 
(E) A tissue microarray of PDX tumors and PDAC cell lines was stained with antibodies for E-cadherin, 
vimentin, and COXIV (human-specific), and fluorescence microscopy was performed. PDX 395 cell and 
tumor samples are boxed. (F) High-magnification images are shown from the tissue microarray in panel (E) 
of HPAF-II cells (epithelial baseline), MiaPaca2 cells (mesenchymal baseline), PDX 395 tumor, and the 
PDX 395-derived cell line. Exposure settings set based on the highest expressing sample to not 
overexpose; therefore, lower expressing cells may appear to have little to no expression. (G) 
Immunofluorescence microscopy of the tissue microarray was quantified the fraction of COXIV+ cells that 
were also vimentin+ for both cell lines and PDX tumors. (H) PDX-derived cell lines were cultured in 21% or 
1% O2 for 120hr and fixed. Immunofluorescence microscopy was performed for the indicated proteins, and 
images were quantified for junctional E-cadherin intensity for COXIV+ (human) cells and percent of COXIV+ 
cells that were also vimentin+. n = 1, with >1000 cells. 
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Supp Figure 2.S6 KPCY-derived cell lines exhibit evidence of hypoxia-mediated EMT in vitro and 

in vivo 
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(A) KPCY-derived cell lines were cultured in 21% or 1% O2 for 120 hr, fixed, and stained with antibodies 
for E-cadherin and vimentin. Immunofluorescence microscopy was performed, with quantitative image 
analysis to determine the percent of vimentin+ cells, n = 1, with >2000 cells. (B) Subcutaneous tumors were 
formed in mice using KPCY-derived cell lines and allowed to grow for two, four, or six weeks. Fluorescent 
immunohistochemical staining was performed on tumor sections, which were stained with antibodies for 
Hypoxyprobe (HYP) and YFP (ductal cells) and imaged, n = 1. (C) Sections of orthotopically implanted PDX 
395 tumor were subjected to H&E staining or to fluorescent immunohistochemistry using antibodies against 
COXIV (human specific), vimentin, and HYP. Visible color (H&E) or fluorescence microscopy was 
performed. Images are representative of n = 4. (D) Sections of KPCY autochthonous tumors were subjected 
to H&E staining and fluorescent immunohistochemistry for YFP, vimentin, and HYP. Microscopy shown is 
representative of n = 4. (E, F) Sections of subcutaneous tumors formed by implanting the KPCY-derived 
7160c2 or PD7591 cell line were imaged as described in panel (D). Microscopy shown is representative of 
n = 4 for 7160c2 or n = 6 for PD7591. (G) Sections of subcutaneous tumors generated from 7160c2 cells 
were stained for HYP, YFP, and vimentin. Fluorescence microscopy was performed, with quantitative image 
analysis for the fraction of YFP+/HYP- or YFP+/HYP+ cells that were vimentin+. n = 4, t test. * p < 0.05 (H) 
Sections of subcutaneous PD7591 tumors were stained for HYP, YFP, and E-cadherin. Representative 
images show Ecadhigh and Ecadow tissue regions, as described in Figure 2.2I. n = 4. 
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Supp Figure 2.S7 Hypoxia-mediated EMT is more durable than growth factor-driven EMT 
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(A) HPAF-II cells were cultured for 120 hr in 21% O2, with or without 10 ng/mL TGFβ + 50 ng/mL HGF or 
in 1% O2 for 120 hr. Cells lysates were analyzed by immunoblotting for the indicated proteins. n = 3, one-
way ANOVA with comparison to 21% O2. (B) KPCY 7160c2 and (C) PDX 395 cells were cultured as 
described in (A). Cells were then re-plated and cultured in 21% O2 without growth factors. At the indicated 
times, cells were fixed. Cells were stained with antibodies against the indicated proteins, and 
immunofluorescence microscopy was performed with quantitative image analysis for the percentage of 
vimentin-positive cells. n = 3, data represented as mean ± s.e.m. (D) HPAF-II cells were treated and re-
plated as described in panels (B) and (C). Five weeks after treatment-withdrawal, with passaging as needed 
to maintain cell health, cells were fixed and stained for the indicated proteins. Immunofluorescence 
microscopy with quantitative image analysis was performed. n = 3, one-way ANOVA with Tukey’s multiple 
comparisons test across all groups. (E) HPAF-II engineered with the hypoxia fate-mapping system were 
cultured in 21% or 1% O2 for 12 days. Live cells were imaged for DsRed or GFP expression, and 
quantification of each fluorescent protein per cell was performed. n = 3, t-test. (F) HPAF-II hypoxia fate-
mapping cells were cultured as described in (A). n = 3, one-way ANOVA with Dunnett’s multiple 
comparisons test against 21% O2. (G) Fluorescent immunohistochemistry was performed on sections of 
orthotopic mouse tumors formed using HPAF-II hypoxia fate-mapping cells. Antibody staining for DsRed, 
GFP, vimentin, and Hypoxyprobe (HYP) was performed, followed by five-color confocal microscopy and 
quantitative image analysis. n = 5, with t test used to compare vimentin+ HPAF-II cells (DsRed+ or GFP+) 
that were HYP- or HYP+ and two-way ANOVA with Sidak’s multiple comparison test used for a similar 
comparison where DsRed+/GFP- and GFP+ cells were split out separately. * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001 
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Supp Figure 2.S8 Hypoxia-driven EMT is MAPK-dependent 
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(A) Coefficients for the different KEGG signaling pathways are shown for the best LASSO+AIC-selected 
linear regression model of Hallmark Hypoxia Pagoda2 scores in mouse ductal cells. Pagoda2 scores for 
the indicated KEGG signaling pathways as the independent variables in the model. Error bars denote 95% 
confidence intervals for the indicated regression coefficient estimates. (P.J.M.) (B,C) HPAF-II cells were 
cultured in 21% or 1% O2 with 10 μM SB203580 (p38i), 1 μM CI-1040 (MEKi), 10 μM SP600125 (JNKi), or 
DMSO for 120 hr, with inhibitors replenished every 48 hr. Cell lysates were analyzed by immunoblotting for 
the indicated proteins. n = 3, two-way ANOVA with Tukey’s multiple comparison test against the untreated 
(control) condition. (D) HPAF-II cells were treated as described in panel (C) with the indicated inhibitors. 
RNA was extracted, and qRT-PCR was performed for the indicated transcripts. CASC3 was used as a 
control gene for normalization. n = 3, two-way ANOVA with Sidak’s multiple comparison test against the 
untreated (control) condition. (E) HPAF-II cells were treated and lysed as described in Figure 2.4E and 
quantification was performed for E-cadherin. n = 3, one-way ANOVA with Tukey’s multiple comparisons 
test at each time point. (F) HPAF-II cells were cultured for 120 hr in 21% or 1% O2 with 10 μM SP600125 
(JNKi) or DMSO, with inhibitor replenished every 48 hr. Cells were fixed and stained for c-Jun, and image 
analysis was performed. n =3, mixed-effects analysis with Tukey’s multiple comparisons test. (G) HPAF-II 
cells were transfected with siRNA targeting ERK1/2 and c-Jun or control siRNA and cultured at 1% O2 for 
24 hr. Lysates were analyzed by immunoblotting for the indicated proteins. (H) HPAF-II cells were 
transfected with siRNA targeting ERK1/2 and/or c-Jun or control siRNA. 24 hr later, cells were switched to 
1% O2 or maintained at 21% O2. 120 hr later, cells were fixed and stained with antibodies against the 
indicated proteins. Immunofluorescence microscopy was performed with quantitative image analysis for the 
indicated proteins. n = 3, two-way ANOVA for vimentin positivity and mixed-effects analysis for c-Jun 
expression, with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Supp Figure 2.S9 Hypoxia-mediated EMT is MAPK- and SFK-dependent 

(A) The Proteome Profiler Human Phospho-kinase Array (R&D Systems; 37 phosphorylated kinases and 
2 total proteins) was used to analyze lysates from HPAF-II cells cultured for 120 hr in 21% or 1% O2. 
Quantification for the top seven targets that were preferentially abundant in 1% O2 is displayed. n = 1. (B) 
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The Human Receptor Tyrosine Kinase Phosphorylation Array (RayBiotech; 71 targets) was used to 
analyzed lysates from HPAF-II cells cultured for 48 or 120 hr in 21% or 1% O2. Quantification for the top 
four targets that were preferentially abundant in 1% O2 is displayed. n = 1. (C) HPAF-II cells were cultured 
for 120 hr at 21% O2 with 5 μM LB100 (PP2Ai) or DMSO, with inhibitors replenished every 48 hr. Cells were 
fixed and stained for c-Jun. Immunofluorescence microscopy was performed with image analysis for 
nuclear c-Jun expression. n = 3, mixed-effects analysis. (D, E) HPAF-II cells were cultured for 120 hr in 
21% O2 with 1.5 μM sanguinarine chloride (PP2Cδi) or DMSO, with inhibitors replenished every 48 hr. Cells 
were fixed and stained for c-Jun or ERK1/2. Immunofluorescence microscopy was performed with image 
analysis for nuclear c-Jun or nuclear ERK1/2. n = 3, mixed-effects analysis. (F) Rate of change in percent 
vimentin+ cells from Figure 2.5E. Comparisons were made against the control (DMSO) condition of fitted 
y-intercepts and slopes. The null hypothesis was that a single curve could capture both the control and 
MEKi+JNKi conditions. The null hypothesis was only rejected for 1% O2. (G,H) PDX 395 tumors were 
treated twice daily for nine days with selumetinib (MEKi), SP600125 (JNKi), selumetinib+SP600125, or 
vehicle control, as described in Figure 2.5F. Tumor sections were stained and quantified for percent (G) 
pERK+ and (H) nuclear c-Jun+ cells. n = 4 - 6, one-way ANOVA with Tukey’s multiple comparisons test. * 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Supp Figure 2.S10 PP2A, PP2Cδ, and PP1A subunits are negatively correlated with HIF signature 

in PDAC patient tumors 
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Pearson correlation coefficients were computed between HIF signature Pagoda2 enrichment scores and 
the mRNA expression data of PP2A, PP2Cδ, and PP1A subunits using previously published scRNA-seq 
data (88). Only cells with non-zero expression of the indicated genes were retained in these analyses. The 
statistical significance of each correlation is indicated by p. (P.J.M.) 
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Supp Figure 2.S11 HIFs are involved in hypoxia-mediated EMT but are not the sole regulators 
(A) HPAF-II cells were transfected with siRNA targeting HIF-1⍺ or HIF-2⍺ or control siRNA. 24 hr later, cells 
were switched to 1% O2 for 4 hr and lysed. Lysates were analyzed by immunoblotting for the indicated 
proteins. (B) HPAF-II cells engineered with stable shRNA-mediated knockdown of HIF-1⍺ and HIF-2⍺ or 
control shRNAs were cultured in 1% O2 for 4 hr and lysed. Lysates were analyzed by immunoblotting for 
the indicated proteins. (C) Sections of pancreas tumors from mice harboring tissue-specific KrasG12 and 
KrasG12;Hif1aKO mutations (59) were stained for E-cadherin and vimentin and quantified by image analysis 
for the fraction of cells exhibiting the protein expression patterns indicated. n = 3, t test per protein 
combination revealed no significance between conditions for any protein combinations. (D) Representative 
images of KrasG12 and KrasG12;Hif1aKO tumors are shown. (E) Representative images are shown with 
examples of Ecad-vim-, Ecad-vim+, Ecad+vim+, and Ecad+vim- cells. 
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Supp Figure 2.S12 H3K36 dimethylation and KDM2A activity are regulated by oxygen tension 
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(A) HPAF-II cells were cultured for 120 hr in 21% O2 with or without 10 ng/mL TGFβ + 50 ng/mL HGF or in 
1% O2. Cells were then re-plated on coverslips and cultured in 21% O2 without additional growth factors for 
up to 120 hr. Cells were fixed at the indicated times after re-plating. Cells were then stained with an 
H3K36me2 antibody, and immunofluorescence microscopy was performed with image analysis for percent 
H3K36me2-positive cells. n = 3, with data represented as mean ± s.e.m. p = 0.0377 for nonlinear regression 
with extra sum-of-squares F test comparing slopes. (B) SDS-PAGE with Coomassie blue staining was 
performed for recombinant FLAG-affinity purified sample containing KDM2A protein. (S.K.S.) (C) 
Immunoblotting was performed with anti-FLAG M2 antibody to confirm the protein was purified, with the 
middle lanes left empty. (S.K.S.) (D) Screening was performed to determine the optimum pH for measuring 
the kinetics of KDM2A-catalyzed reactions. pH 8.8 was selected based on this analysis. Where velocity (V) 
is reported as disintegration parts per minute (dpm). (S.K.S.) (E) The rate of KMD2A-catalyzed reaction 
was measured at multiple time points to determine the range over which linearity was maintained. A 30-
min reaction time was selected based on this analysis. (S.K.S.) (F-G) Michaelis-Menten saturation curves 
with Lineweaver-Burk plots as insets are shown for the kinetic analysis of KDM2A-catalyzed reactions as a 
function of 2-oxoglutarate (2-OG) or Fe2+ concentration. Plots show data for one representative run, with 
solid lines corresponding to the model fits to the data shown. (S.K.S) (H) For Figure 2.7B,C, the fitted values 
of the Michaelis constant (KM) and enzyme turnover rate (kcat) are shown. Values are mean ± standard 
deviation for n = 3 independent biochemical measurements. (S.K.S.) (I) HPAF-II cells were transfected with 
siRNA targeting HIF-1⍺ and HIF-2⍺ or a control siRNA. 24 hr later, cells were moved to 1% O2 or maintained 
at 21% O2 for 120 hr. RNA was extracted, and qRT-PCR was performed for HIF1A, EPAS1, and KDM2A. 
CASC3 was used as a control gene for normalization. n = 3, two-way ANOVA with Tukey’s multiple 
comparisons test. (J) KPCY-derived cell lines 3077c4, 6419c5, and 6694c2 were treated as described in 
Figure 2.7D, and quantification of vimentin was performed. n = 3, one-way ANOVA. * p < 0.05, **** p < 
0.0001 
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Supp Figure 2.S13 NSD2 transcript expression is not HIF- nor MAPK-dependent, but Nsd2 or 

Kdm2a knockout impacts EMT in murine cells 
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(A) qRT-PCR was performed for NSD2 mRNA from HPAF-II cells cultured in 21% O2 with or without 10 
ng/mL TGFβ + 50 ng/mL HGF or cultured in 1% O2 for 120 hr. CASC3 was used as a control gene for 
normalization. n = 3, one-way ANOVA with Tukey’s multiple comparisons test. (B) The Pearson correlation 
coefficient was computed for the relationship between NSD2 gene expression and HIF signature 
enrichment in human PDAC ductal cells using previously published scRNA-seq data (88). Only cells with 
non-zero expression of NSD2 were retained in this analysis. (P.J.M.) (C) HPAF-II cells were transfected 
with siRNA targeting HIF-1⍺, HIF-2⍺, both HIFs, or control siRNA. 24 hr later, cells were moved to 1% O2 
or maintained at 21% O2 for 120 hr. RNA was then extracted from cells, and qRT-PCR was performed for 
NSD2. CASC3 was used as a control gene for normalization. n = 3. (D) qRT-PCR was performed for NSD2 
using RNA extracted from HPAF-II cells cultured for 120 hr in 21% or 1% O2 with 1 μM CI-1040 (MEKi) and 
10 μM SP600125 (JNKi) or DMSO. CASC3 was used as a control gene for normalization. n = 3. (E) HPAF-
II cells were transfected with siRNA targeting NSD2 or control siRNA. 24 hr later, cells were moved to 1% 
O2 and maintained for 120 hr. Immunofluorescence microscopy was performed for nuclear NSD2. n = 3, 
mixed-effects analysis. (F) 3077c4 cells with Nsd2 knockout, (G) 6694c2 cells with Kdm2a knockout, and 
their respective wild type counterparts were cultured for 120 hr in 21% or 1% O2. Cells were then fixed and 
stained with antibodies for the indicated proteins, and immunofluorescence microscopy was performed with 
quantitative image analysis. n = 3, mixed effects analysis with Tukey’s multiple comparison test. These 
KPCY-derived cell lines were described previously (34). (H) HPAF-II cells were transfected with siRNA 
targeting HIF-1⍺, HIF-2⍺, both HIFs, or control siRNA. 24 hr later, cells were moved to 1% O2 or maintained 
at 21% O2 for 120 hr. Cells were then fixed and stained with antibodies for the indicated proteins, and 
immunofluorescence microscopy with quantitative image analysis was performed. n = 3, one-way ANOVA 
with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Supp Table 2.S1 Software and algorithms 

RESOURCE IDENTIFIER SOURCE 

CPTAC Data via LinkedOmics 
http://www.linkedomics.org/data_download/CPTAC-
PDAC/ 

 

CPTAC Data via the Proteomic Data 
Commons 

https://pdc.cancer.gov/pdc/browse/).  

TCGA PAAD RNA-seq Data 
https://xenabrowser.net/datapages/?cohort=TCGA%2
0Pancreatic%20Cancer%20(PAAD)&removeHub=htt
ps%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

 

R v4.1.2 https://www.r-project.org 
R Development Core 
Team 

Bioconductor v3.14 https://bioconductor.org/  (183) 

clusterProfiler v4.0.5 (R package) https://doi.org/doi:10.18129/B9.bioc.clusterProfiler (106,184) 

ComplexHeatmap v2.8.0 (R package) 
https://doi.org/doi:10.18129/B9.bioc.ComplexHeatma
p 

(114) 

ConsensusClusterPlus v1.56.0 (R 
package) 

https://doi.org/doi:10.18129/B9.bioc.ConsensusClust
erPlus  

(101) 

Cowplot v1.1.1 (R package) https://wilkelab.org/cowplot/index.html  

DreamAI v0.1.0 (R package) https://github.com/WangLab-MSSM/DreamAI (87) 

EPIC v1.1.5 (R package) https://github.com/GfellerLab/EPIC  (95) 

ggplot2 v3.3.5 (R package) 
https://rdocumentation.org/packages/ggplot2/versions
/3.3.5 

(112) 

ggstatsplot v0.9.0 (R package) 
https://www.rdocumentation.org/packages/ggstatsplot
/versions/0.9.0 

(110) 

ggupset v0.3.0 (R package) https://github.com/const-ae/ggupset  

glmnet v4.1.-2 (R package) 
https://rdocumentation.org/packages/glmnet/versions/
4.1-2 

(108) 

GSVA v1.40.1 (R package) https://doi.org/doi:10.18129/B9.bioc.GSVA (102) 

Hmisc v4.6-0 (R package) https://github.com/harrelfe/Hmisc Frank Harrell 

immunedeconv v2.0.4 (R package) https://github.com/icbi-lab/immunedeconv  (94) 

msigdbr v7.4.1 (R package) https://igordot.github.io/msigdbr/index.html Igor Dolgalev 

NMF v0.23.0 (R package) 
https://www.rdocumentation.org/packages/NMF/versi
ons/0.23.0 

(96) 

pagoda2 v1.0.6 (R package) 
https://www.rdocumentation.org/packages/pagoda2/v
ersions/1.0.6 

(104) 

survival v3.2-13 (R package) 
https://rdocumentation.org/packages/survival/version
s/3.2-13 

Terry Therneau 

Survminer v0.4.9 (R package) https://rpkgs.datanovia.com/survminer/index.html  

tidyHeatmap v1.3.1 (R package) 
https://rdocumentation.org/packages/tidyHeatmap/ver
sions/1.3.1  

(113) 
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Supp Table 2.S2 qRT-PCR Primers 

Target  Sequence (5' → 3') 

CASC3 
Forward ACCTCGGAAAGGGCTCTTCTT 

Reverse CGACCCTCATCCTTCCATAGC 

CDH1 
Forward CATCAGGCCTCCGTTTCTG 

Reverse GGAGTTGGGAAATGTGAGCA 

VIM 
Forward TCTCTGAGGCTGCCAACCG 

Reverse CGAAGGTGACGAGCCATTTCC 

SNAI1 
Forward CTTCCAGCAGCCCTACGAC 

Reverse CGGTGGGGTTGAGGATCT 

TWIST1 
Forward CGGGAGTCCGCAGTCTTA 

Reverse TGAATCTTGCTCAGCTTGTC 

HIF1A 
Forward TGCTCATCAGTTGCCACTTC 

Reverse TCCTCACACGCAAATAGCTG 

EPAS1 
Forward GCGCTAGACTCCGAGAACAT 

Reverse TGGCCACTTACTACCTGACCCTT 

PGK1 
Forward AAGTCGGTAGTCCTTATGAGC 

Reverse CACATGAAAGCGGAGGTTCT 

SLC2A1 
Forward AGGTGATCGAGGAGTTCTAC 

Reverse TCAAAGGACTTGCCCAGTTT 

PPP1CA 
Forward GCTGCTGGCCTATAAGATCAA 

Reverse GTCTCTTGCACTCATCGTAGAA 

PPP2R2B 
Forward TGCAGCTTACTTTCTTCTGTCT 

Reverse GTAGCCTTCTGGCCTCTTATC 

PPM1D 
Forward CCTGTTAGAAGGAGCACAGTTAT 

Reverse GTTCAGGTGACACCACAAATTC 

KDM2A 
Forward CCGATTGTGTCAGGAGCCAG 

Reverse CACAGGACTGCTTCATGCGTC 

NSD2 
Forward CCCACCATACAAGCACAT 

Reverse TCAGACACTCCGAATCAAA 
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CHAPTER 3: SINGLE-CELL RNA-SEQUENCING REVEALS 
MICROENVIRONMENTAL CONTEXT-SPECIFIC ROUTES FOR 

EPITHELIAL-MESENCHYMAL TRANSITION IN PANCREAS CANCER 
CELLS2 

 

3.1 ABSTRACT 

In the PDAC tumor microenvironment, multiple factors initiate the epithelial-mesenchymal 

transition (EMT) that occurs heterogeneously among transformed ductal cells, but it is unclear if 

different drivers promote EMT through common or distinct signaling pathways. Here, we use 

single-cell RNA sequencing (scRNA-seq) to identify the transcriptional basis for EMT in pancreas 

cancer cells in response to hypoxia or EMT-inducing growth factors. Using clustering and gene 

set enrichment analysis, we find EMT gene expression patterns that are unique to the hypoxia or 

growth factor conditions or that are common between them. Among the inferences from the 

analysis, we find that the FAT1 cell adhesion protein is enriched in epithelial cells and suppresses 

EMT. Further, the receptor tyrosine kinase AXL is preferentially expressed in hypoxic 

mesenchymal cells in a manner correlating with YAP nuclear localization, which is suppressed by 

FAT1 expression. AXL inhibition prevents EMT in response to hypoxia but not growth factors. 

Relationships between FAT1 or AXL expression with EMT were confirmed through analysis of 

patient tumor scRNA-seq data. Further exploration of inferences from this unique dataset will 

reveal additional microenvironment context-specific signaling pathways for EMT that may 

represent novel drug targets for PDAC combination therapies.  

  

 

2 A version of Chapter 3 will be submitted to a peer-reviewed journal as, Brown BA and Lazzara MJ, Single-
cell RNA sequencing reveals microenvironment context-specific routes for epithelial-mesenchymal 
transition in pancreas cancer cells 
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3.2 INTRODUCTION 

 In pancreatic ductal adenocarcinoma (PDAC), an especially aggressive tumor subtype 

exists that is enriched in mesenchymal characteristics. The mesenchymal phenotype is 

associated with decreased survival and increased resistance to therapy relative to other subtypes 

(9-11,185) and correlates with gene signatures for ductal cell epithelial-mesenchymal transition 

(EMT) (185). EMT occurs in response to varied initiating factors in the PDAC tumor 

microenvironment, including receptor ligands such as transforming growth factor beta (TGFβ), 

hepatocyte growth factor (HGF), and epidermal growth factor (24,25,32), and the low oxygen 

tension (hypoxia) resulting from PDAC tumor hypovascularity (79,80,84,185). It is unclear if 

different modes of EMT induction use distinct or common signaling pathways.  

EMT occurs heterogeneously in PDAC tumors and cell populations (13,17,186). Even in 

cell culture conditions, where spatial variation in extrinsic EMT-driving factors is minimal, 

phenotypic heterogeneity is observed, and the degree of heterogeneity depends on cell 

background and mode of EMT induction (185). Heterogeneity is also affected by the durability of 

the transition, which is greater in response to hypoxia than growth factors (185). EMT 

heterogeneity endows differential chemoresistance to a subset of cells within tumors (186) and, 

as with any form of cell-to-cell heterogeneity, creates challenges for understanding the signaling 

or transcriptional processes that govern the phenotype (187). Prior work provides clues about the 

basis for EMT heterogeneity in different cancer cell settings, although generally without 

investigating fundamentally different classes of EMT-inducing conditions in parallel. In a colon 

cancer cell line subjected to single-cell RNA sequencing (scRNA-seq), variability in Wnt pathway 

activity due to intrinsic heterogeneity in the expression of key signaling network nodes correlates 

with the baseline mesenchymal state (77). Further, ATAC-seq revealed enrichment of the 

transcription factor RUNX2 in Wnt-high cells, which was confirmed via in vivo overexpression of 

RUNX2 promoting metastasis and in clinical samples, RUNX2 correlated to poor survival (77). In 
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MCF10A breast cancer cells treated with TGFβ, scRNA-seq demonstrates that some cells 

activate different EMT signaling pathways in series while others activate them in parallel (with 

Notch playing a particularly important role), leading to variability among cells in the rate of EMT 

progression and contributing to apparent phenotypic heterogeneity in a snapshot view (30). In 

lung, prostate, breast, and ovarian cancer cells treated with a diverse set of growth factors 

including TGFβ, EGF, and TNF⍺, scRNA-seq reveals minimal overlap of differentially expressed 

genes despite some common changes in the expression of genes associated with EMT (e.g., 

EPCAM, VIM) or specific EMT-regulating signaling pathways (e.g., JUN, EGFR), suggesting 

distinct transcriptional and signaling regulatory programs even among ligands for receptor kinases 

(29).   

Here, we performed scRNA-seq on a baseline epithelial pancreas cancer cell line that was 

treated with a combination of TGFβ and HGF or cultured under hypoxic conditions. Both 

conditions produced a heterogeneous EMT among cells, enabling the identification of regulatory 

transcriptional processes that lead to or restrain EMT in a context-specific manner using clustering 

and gene set enrichment analysis. Among the inferences from the analysis, we found that 

expression of the FAT1 cell adhesion protein and Hippo pathway activity, which is regulated by 

FAT1 (188) and suppresses YAP nuclear localization (189), are generally enriched in epithelial 

cells. We further identified the receptor tyrosine kinase AXL, which is transcriptionally regulated 

by YAP (190) and can drive EMT in other cancers (191,192), as a hypoxia-specific driver of EMT 

in pancreas cancer cells. This and other inferences from our analysis were confirmed in an 

analysis of PDAC patient tumors. In addition to these experimentally validated predictions, the 

dataset gathered here provides a wealth of additional inferences that can be pursued to 

understand the context-specific basis for EMT induction in a pancreas cancer cell background.  
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3.3 METHODS 

Cell culture 

HPAF-II cells (Carl June, University of Pennsylvania) were cultured in RPMI with 10% fetal 

bovine serum (FBS), 1 mM L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. 

The Genetic Resources Core Facility at the John Hopkins University School of Medicine 

authenticated the HPAF-II cells by performing short tandem repeat profiling via GenePrint 10 

(Promega) and comparing to the ATCC database. HPAF-II cells were assessed for mycoplasma 

using the MycoAlert PLUS Detection Kit (Lonza). Cells were cultured in a Thermo Scientific Forma 

Steri-Cycle i160 incubator at 5% CO2 and 37ºC for normal culture. For hypoxic culture at 1% O2, 

cells were grown in a Tri-Gas version of the same incubator, which allows for N2 to displace O2. 

The lower limit of the incubator is 1%. Following plating, cells cultured under normal 21% O2 

conditions for 16 hr then either maintained in 21% or transferred to the tri-gas incubator. 

 

Growth factors and inhibitors 

Recombinant human TGFβ and HGF (Peprotech) were used at 10 ng/mL and 50 ng/mL, 

respectively. During treatment, complete medium with growth factors was replenished every 48 

hr. The AXL inhibitor dubermatinib (MedChemExpress) was used at 40 nM, MEK inhibitor CI-

1040 (LC Laboratories) was used at 1 μM, and JNK inhibitor SP600125 (LC Laboratories) was 

used at 10 μM. Stocks of all inhibitors were prepared in DMSO.  

 

Antibodies 

 Antibodies against vimentin (Santa Cruz Biotechnology, sc-373717), E-cadherin (clone 

ECCD2, Invitrogen, 13-1900), FAT1 (BiCell, 50501), AXL (Cell Signaling Technology, #8661), 

YAP (Santa Cruz Biotechnology, sc-101199), and GAPDH (Santa Cruz Biotechnology, sc-32233) 

were used. For a nuclear stain, Hoechst 33342 (Invitrogen, H1399) was used. 
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Coverslip immunofluorescence 

Cells were cultured on 18-mm glass coverslips in 6-well plates. At the conclusion of an 

experiment, cells were fixed with 4% paraformaldehyde in PBS for 20 min and then permeabilized 

with 0.25% Triton-X 100 in PBS for 5 min. Primary antibodies were added to coverslips in a 

humidified chamber overnight at 4°C. Coverslips were washed five times with 0.1% Tween 20 in 

PBS, then incubated for 1 hr at 37°C in a humidified chamber with Alexa Fluor secondary 

antibodies and Hoechst nuclear stain. All antibodies were diluted in Intercept Blocking Buffer 

(Licor, 927-60001). Following the staining and washing steps, coverslips were mounted on glass 

slides with ProLong Gold Antifade Mountant.  

 

Fluorescence microscopy and automated image analysis 

 Coverslips were imaged on a Zeiss Axiovert Observer.Z1 fluorescence microscope, using 

a 20 or 63× objective and ZEN image processing software to produce .czi files. Within a particular 

experiment, across replicates and conditions, imaging was performed using the same exposure 

times and image settings. Four frames were imaged at random for each biological replicate, 

yielding at least 1000 cells per replicate. For image analysis, CellProfiler v3.1.9 (Broad Institute) 

was used to quantify signal intensity and localization (121-123). Discrete cells were identified 

based on the nuclear stain as the primary object for the analysis pipeline. For percent-positive 

measurements, a threshold was set based on a negative control consisting of a sample stained 

with a secondary antibody only. All cells were subject to the same threshold, and a percentage 

was calculated based on the number of cells with signal above background relative to the total 

cell number. For intensity measurements, the mean intensity per object was measured. For 

nuclear measurements, the nuclear stain was used to restrict the signal to the nuclear domain. 

 



 

 

111 

Western blotting 

Cells were lysed using a standard cell extraction buffer (Invitrogen, FNN0011) 

supplemented with protease and phosphatase inhibitors (Sigma-Aldrich, P8340, P5726, P0044). 

Crude lysates were centrifuged at 14,000 rpm for 10 min at 4°C, and supernatants were retained 

as clarified lysates. Total protein concentration was measured with a micro-bicinchoninic acid 

(BCA) assay (Pierce). Equal protein amounts were mixed with 10× NuPAGE reducing agent, 4X 

LDS sample buffer and MilliQ water. Samples were heated for 10 min at 100°C and loaded onto 

a 1.5 mm NuPAGE gradient (4-12%) gel (Invitrogen, NP0336BOX). After electrophoresis, gels 

were transferred to a 0.2 μm nitrocellulose membrane using the TransBlot Turbo Transfer System 

(BioRad). Membranes were blocked with Intercept Blocking Buffer (IBB; Licor, 927-60001) for 1 

hr on an orbital shaker. Primary antibodies were diluted at 1:1000 in IBB, then incubated with 

membranes overnight at 4°C. Membranes were washed with 0.1% Tween-20 in PBS by shaking 

three times for 5 min each. Secondary antibodies were diluted 1:10,000 in IBB and incubated with 

shaking for 2 hr at room temperature. Membranes were washed as previously described with 

0.1% Tween-20 in PBS. Membranes were imaged on a LiCor Odyssey. Image Studio software 

was used for band densitometry. 

 

Single-cell RNA sequencing 

 scRNA-seq was performed by the UVA Genome Analysis and Technology Core. HPAF-II 

cells were cultured in 6-well plates with three biological replicates per condition, with 

approximately one million cells per replicate at the conclusion of the experiment. For sequencing, 

three biological replicates were pooled together prior to preparing the samples. Cells were 

prepared using the 10× Genomics® Sample Preparation Demonstrated Protocol, Single Cell 

suspensions from Cultured Cell Lines for Single Cell RNA Sequencing (Manual CG00054 Rev B). 

After confirming cell viability and single cells, Next Generation Sequencing (NGS) Library 
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preparation was performed for 3’ RNA gene expression. For quality control of the library, a Qubit 

Fluorometer (Thermo Fisher), TapeStation D5000 HS system (Agilent), and MiSeq – 300 cycle 

nano (Illumina) were used. Sequencing was performed using Illumina NextSeqTM2000 with P2 – 

100 cycle v3 to allow for 25,000 reads per cell. 

 

Gene sets and signatures 

The pan-cancer EMT signature (89) was used as the primary feature set for clustering 

based on EMT markers. The HIF target signature was used as previously published (90). 

Hallmark gene sets were obtained from the Molecular Signatures Database, including Hallmark 

Hypoxia and Hallmark EMT (91). Gene sets from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (92,93) were accessed within R using the clusterProfiler package. 

 

Pre-processing of scRNAseq data 

 10× genomics data was aligned to the human genome and filtered to contain only cells 

with barcodes using CellRanger by the UVA Bioinformatics Core. This created a filtered dataset 

of 1910 (normoxic), 2493 (TGFβ+HGF), and 2441 (hypoxic) cells. Software and R packages used 

are cited in Supp Table 3.S1. The code used to analyze the data can be accessed here: 

https://github.com/lazzaralab/Brown-et-al_PDAC-scRNAseq. The Seurat R package was used to 

filter, normalize, scale, and cluster the data. The data was filtered to remove low-quality cells and 

doublets, by filtering out cells that express too few or too many genes and excessive mitochondrial 

gene counts. The R package scRNABatchQC (193) was used to determine the threshold for these 

metrics. Cells that had greater than 1882 genes, fewer than 8500 genes, and less than 15 percent 

mitochondrial genes were retained for analysis. After quality control steps, a dataset of 1703 

(normoxic), 2178 (TGFβ+HGF), and 2148 (hypoxic) cells was available for analysis. Using Seurat, 
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the data was normalized by log-transforming and scaled for the mean expression to be 0 and the 

variance across cells to be 1.  

 

Principal components analysis and clustering 

 To reduce the dimensionality of the data, we performed principal component analysis 

(PCA) for either all features or a subset of features (i.e., pcEMT gene set, HIF-target gene set, or 

Hallmark Hypoxia gene set, as noted in the results). For analysis including all genes, the number 

of principal components (PCs) to include was determined by calculating 1) the point where the 

PCs only contribute 5% of standard deviation and the PCs cumulatively contribute 90% of the 

standard deviation, and 2) the percent change in variation between consecutive PCs is less than 

0.1%, and using the lower value of 1) and 2) for the number of PCs to include in downstream 

analysis (as adapted from the Harvard Chan Bioinformatics Core). The Seurat package was used 

to employ k-nearest neighbor (kNN) clustering on a PCA projection of the data using the optimal 

dimensionality determined as described above. For analysis including all genes, the optimal 

resolution for the number of clusters was determined by calculating the silhouette score (as 

adapted from Roman Hillje), and the resolution was constrained when restricting the data to two 

clusters for comparison of E and M. Using Seurat, a UMAP projection was employed to visualize 

the clusters created from kNN clustering. 

 

Gene expression and gene set enrichment 

The Seurat package was used to calculate and visualize differential gene expression 

between the clusters, to visualize gene expression by violin plots, and for scatter plots. The R 

package Escape was used for gene set enrichment analysis (GSEA) calculations for individual 

cells. Per cell enrichment values were calculated using ssGSEA, as previously described (194). 

Significant differences between clusters were determined by performing ANOVA. Enrichment 
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plots for the Response to Hypoxia were performed by calculating a mean rank order for a gene 

set using ssGSEA across each condition. The R package UCell was used for scoring gene 

signatures based on the Mann-Whitney U statistic (195). Gene set variation analysis (GSVA) was 

utilized to determine the enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

signaling pathways using the R packages GSVA and limma for statistical testing. GSVA scores 

were calculated and fit to a linear model, followed by empirical Bayes statistics for differential 

enrichment analysis, as previously described [as adapted from Roman Hillje (102)]. The log-odds 

that the gene set is differentially enriched was displayed.  

 

siRNA-mediated knockdowns 

 SilencerTM Select siRNA against FAT1 s5033 (Thermo Fisher, 4392420) and SilencerTM 

Select negative control siRNA (Thermo Fisher, 4390843) were used with Lipofectamine 

RNAiMAX (Thermo Fisher) per manufacturer recommendations. 

 

Quantitative reverse transcription PCR (qRT-PCR) 

RNA was extracted using the RNeasy Kit (Qiagen, #74104) and reverse transcribed using 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosciences, #4368814). qRT-PCR was 

performed using PowerUp SYBR Green (Applied Biosciences, #A25741) per manufacturer 

protocol using a QuantStudio3 system (Applied Biosystems). Measurements were analyzed with 

the ddCt method (124). Data are displayed as a normalized fold changes, using CASC3 as a 

housekeeping gene. Primer sequences are provided in Supp Table 3.S2. 

 

Statistical analyses for experimental studies 

Prism 9 for macOS was used for all experimental statistical analyses. Figure captions 

include details on the analyses conducted. For two-way ANOVA, the post hoc test was chosen 
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based on the comparison made, with Tukey’s multiple comparisons used when considering all 

conditions and Sidak’s multiple comparisons used when considering specific comparisons within 

a larger dataset.  
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3.4 RESULTS 

EMT occurs heterogeneously in response to growth factors or hypoxia. 

HPAF-II human pancreas cancer cells were driven to undergo EMT by treatment with 

exogeneous TGFβ+HGF or culture in 1% O2. The combination of growth factors for receptors that 

independently promote EMT was used to activate downstream effectors broadly and thereby 

increase the odds that regulatory processes unique to growth factors or hypoxia are identified. 

HPAF-II cells were used because they are baseline epithelial and an established model for well-

differentiated PDAC (196). As we have observed previously (185), the extent of mesenchymal 

transition differed between growth factors and hypoxia as EMT drivers, with hypoxia promoting 

vimentin expression in only a minority of cells and growth factors causing most cells to express 

abundant vimentin (Figure 3.1A). Thus, both conditions produced a heterogeneous EMT among 

cells but to different degrees. These observations motivate the possibility that different molecular 

pathways are responsible for EMT in response to the different drivers and prompt exploration of 

the basis for heterogeneity of EMT for each condition.  

Given that EMT is highly regulated by transcription factors (e.g., Slug, ZEB1) and the 

feasibility of single-cell transcriptomics, we utilized single-cell RNA-sequencing (scRNA-seq) to 

probe the transcriptional basis for EMT heterogeneity. We performed scRNA-seq on HPAF-II cells 

cultured in 21% O2 with or without TGFβ+HGF or cultured in 1% O2. As expected, cells cultured 

in 1% O2 were enriched in hypoxia-inducible factor (HIF) target genes (90) (Supp Figure 

3.S1A,B), confirming that a hypoxic response occurred. Given the inherent technical noise in 

expression for any single gene in the data set, we performed principal component analysis (PCA) 

to allow for a group of genes to be used for subsequent clustering. The number of principal 

components (PC) for PCA projection was calculated by computing the variance in the dataset 

explained as a function of PC and using 0.1% as a cutoff (Supp Figure 3.S2A). Using a projection 

into 20 PCs, the aggregated data for all three conditions was clustered using k-nearest neighbors 
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(kNN). The optimal number of clusters was determined by computing silhouette scores per cell 

for up to 10 clusters. Three clusters provided the highest mean silhouette score (Supp Figure 

3.S2B). Clustered cells were then visualized in a UMAP projection (Figure 3.1B), and clusters 

corresponded well with treatment conditions (Figure 3.1C). To investigate the basis for cluster 

separation, we identified the top 10 differentially expressed genes (DEGs) by cluster (Figure 

3.1D). Of note, DEGs for cluster 0 included the mesenchymal-associated genes VIM and 

LGALS1. For Cluster 1, DEGs of note included the hypoxia-associated genes PGK1 and SLC2A1. 

For Cluster 2, DEGs of note included MKI67 and TUBA1B, which play important roles in 

proliferation (a process most characteristic of the epithelial state). To identify the top differentially 

regulated cell processes among clusters, enrichment scores were calculated on a per cell basis 

for the 50 Hallmark Gene Sets (Figure 3.1E). The top three gene sets that were significantly 

differentially enriched among the three clusters include Hallmark Hypoxia (most expressed in 

Cluster 1), Hallmark E2F Targets (mostly expressed in Cluster 2), and Hallmark EMT (most 

expressed in Clusters 0 and 1). Thus, in addition to hypoxic response and proliferation, EMT 

represents one of the most significant overall differences among clusters, despite inter- and intra-

condition differences in EMT induction.  
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Figure 3.1 EMT is heterogenous across and within each treatment condition 

(A) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ and 50 ng/mL HGF or cultured 
in 1% O2 for 120 hr. Immunofluorescence microscopy was performed for the indicated proteins. Histograms 
show vimentin intensities across all biological replicates. n = 3. The dotted vertical line denotes the threshold 
for the intensity vimentin positivity. (B) UMAP projection of k-Nearest Neighbor (kNN) clustering performed 
on all genes for the aggregated scRNA-seq data from HPAF-II cells as treated in (A). (C) For the same 
UMAP projection shown in (B), cells are color-coded based on experimental condition. (D) The top 10 
differentially expressed genes per cluster with respect to the other two clusters were calculated. (E) Gene 
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set enrichment analysis was performed per cell for the 50 Hallmark gene sets. Displayed are the top three 
significantly differentially enriched gene sets among the three clusters as calculated by ANOVA. 
 
 
Differential gene expression between epithelial and mesenchymal cells reveals the governing 

signaling pathways. 

 Given the relevance of EMT gene regulation in explaining variance among conditions, we 

next identified cells directly as epithelial or mesenchymal to probe the transcriptional differences 

between them. The full data set was re-clustered using the previously described approach but 

using features from a patient-derived pan-cancer EMT (pcEMT) signature (89), which contains 77 

genes associated with epithelial or mesenchymal cell states and specifying two clusters (Figure 

3.2A). This created one cluster enriched in epithelial (E) genes and one enriched in mesenchymal 

(M) genes (Figure 3.2B). Cells with no treatment (21% O2) overlapped primarily with the E cluster, 

while TGFβ+HGF-treated cells overlapped primarily with the M cluster; cells cultured at 1% O2 

were roughly evenly split between the E and M clusters (Figure 3.2C). Differences between the 

clusters are also apparent in UMAP projections color-coded by the expression of the EMT 

markers CDH1 (E-cadherin) and VIM (vimentin) (Figure 3.2D). As expected, the top 10 

differentially expressed genes for the two clusters included cell-adhesion markers (i.e., CDH17, 

CEACAM5) and mesenchymal genes (i.e., VIM and LGALS1) (Figure 3.2E).  

To identify regulators of EMT across the three experimental conditions, gene set variation 

analysis (GSVA) enrichment scores were calculated for Kyoto Encyclopedia of Genes and 

Genomes (KEGG) signaling pathways for a comparison of the E and M clusters. Hippo signaling 

was the most differentially enriched pathway (Figure 3.2F) and was preferentially active in the E 

cluster (Figure 3.2G). This is consistent with findings that Hippo activity promotes YAP/TAZ 

degradation in epithelial cells and that Hippo suppression promotes YAP/TAZ nuclear localization 

and expression of EMT transcription factors (197). 
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Figure 3.2 Cells were clustered on EMT-gene signature into epithelial and mesenchymal clusters 

to determine that the Hippo pathway is enriched in epithelial cells 
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(A) Aggregated scRNA-seq data from HPAF-II cells cultured in 21% O2 with or without 10 ng/mL TGFβ and 
50 ng/mL HGF or cultured in 1% O2 were subjected to k-nearest neighbor clustering on the pcEMT gene 
signature into two clusters and UMAP projections were created. (B) Scores for gene enrichment were 
calculated with UCell for the epithelial and mesenchymal portions of the pcEMT gene signature, identifying 
one cluster enriched in epithelial genes and one enriched in mesenchymal genes. A Mann-Whitney test 
was performed, and the bar denotes the median. (C) The experimental conditions were mapped to the 
UMAP projection shown in (A). (D) Expression of the epithelial gene CDH1 and the mesenchymal gene 
VIM were displayed on the UMAP projection from (A). (E) The top 10 differentially expressed genes per 
cluster were calculated. (F) Gene set variation analysis for KEGG signaling pathways was performed 
comparing the epithelial (E) and mesenchymal (M) clusters of the aggregated data set. (G) Scores for 
enrichment of the KEGG Hippo Signaling Pathway were calculated for the E and M clusters. A Mann-
Whitney test was performed, and the bar denotes the median. 
 
 

Growth factors and hypoxia drive unique and shared differentially expressed genes between 

epithelial and mesenchymal cells. 

 To identify common and distinct transcript features associated with EMT in response to 

growth factors and hypoxia, cells were separated by treatment condition prior to clustering based 

on the pcEMT gene signature (Figure 3.3A-C). Surveying pcEMT genes by enrichment scores 

for epithelial and mesenchymal genes (Figure 3.3D) or using a heatmap (Figure 3.3E), 

demonstrates that the clusters identified for each treatment condition are enriched in E or M 

genes. The proportion of cells falling into E and M clusters differed by treatment condition, as 

expected based on the immunofluorescence results in Figure 3.1A. M clusters from growth factor 

and hypoxic conditions were enriched in mesenchymal genes, and growth factor-treated 

mesenchymal cells had an overall lower expression of epithelial genes compared to hypoxic 

mesenchymal cells. Based on the heatmap, some genes are consistently enriched across E or M 

clusters regardless of treatment (e.g., VIM in M clusters). However, some genes are only enriched 

in E or M clusters for a particular condition (e.g., AXL in hypoxic M cells). When cells are projected 

in a two-PC space based on the pcEMT gene set, there is clear overlap of the three epithelial 

clusters but good separation for the mesenchymal clusters (Figure 3.3F), indicating that different 

modes of EMT lead to differential enrichment of EMT-associated genes. 
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 To understand the regulation of EMT in the three settings, the top 50 differentially 

expressed genes between the E and M clusters were identified for the three experimental 

conditions (Supp Figure 3.S3A-C). Of the top 50 genes per treatment, three were shared among 

each of the E clusters (ERBB3, GPX2, MMP7), and three were shared among each of the M 

clusters (VIM, LGALS1, EMP3) (Figure 3.3G,H). Further, among the top 50 differentially 

expressed genes, there were some genes common between just two of the E clusters (e.g., FAT1 

and CDH17 for 21% O2 and growth factor-treated) or M clusters (e.g., AXL and ITGA5 for 21% 

and 1% O2), as well as many that were unique to a treatment condition (e.g., LOXL2 for 1% O2 M 

cluster). However, it is important to note that this analysis identified the top differentially expressed 

genes between the E and M clusters per treatment, meaning that genes appearing as unique or 

among just two clusters could still be altered in other conditions but not among the top 50 

differentially expressed genes.  
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Figure 3.3 Growth factor- and hypoxia-driven EMT promote both unique and shared differential 

gene expression patterns 
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(A-C) HPAF-II cells cultured in (A) 21% O2, (B) 21% O2 with 10 ng/mL TGFβ and 50 ng/mL HGF, or (C) 
1% O2 were subjected to k-nearest neighbor clustering on the pcEMT gene signature into two clusters and 
UMAP projections were created. (D) Scores for gene enrichment were calculated with UCell for the 
epithelial and mesenchymal portions of the pcEMT gene signature, identifying one clustered enriched in 
epithelial genes (E) and one enriched in mesenchymal genes (M). A Kruskal-Wallis test with Dunn pairwise 
comparisons was performed, and the bar denotes the median. (E) The heatmap displays the expression of 
the pcEMT genes for each of the E and M clusters by treatment condition. Only genes expressed in more 
than 50 cells are displayed. (F) A two-component PCA based on the pcEMT gene set features is shown for 
the aggregated data. Cells are color-coded by treatment condition and E/M identify based on clustering 
performed in panels (A)-(C). (G,H) The top 50 differentially expressed genes were calculated per condition 
between the E and M clusters, as shown in Supp Figure 3.S3. Venn diagrams display the unique and 
shared (G) epithelial and (H) mesenchymal genes out of those top 50 differentially expressed per condition. 
 
 
FAT1 is enriched in epithelial cells. 

 After surveying the results of Figure 3.3 and the literature, we sought to investigate and 

validate the functions of gene products that could be hypothesized to maintain the epithelial state 

or promote EMT. FAT1 enrichment was common to the 21% O2 and growth factor-treated 

epithelial clusters for the top 50 differentially expressed genes (Figure 3.3G). Direct examination 

of FAT1 expression demonstrates its enrichment in epithelial cells across for all three conditions 

(Figure 3.4A). While FAT1 was not among the top 50 differentially expressed genes for the 

hypoxic condition, FAT1 was still significantly depleted in hypoxic M cells, with an even larger fold 

change than growth factor-treated E to M cells (Figure 3.4A). FAT1 suppression promotes a 

hybrid EMT in squamous cell carcinoma (198), and FAT1 activates the Hippo pathway in head 

and neck squamous cell carcinoma (188). In the aggregated data set, FAT1 expression positively 

correlates with Hippo pathway enrichment (Figure 3.4B). Based on this, we probed the relevance 

of FAT1 and its gene product in determining the epithelial phenotype.  

To analyze the role FAT1 in the intact tumor setting, we used a published scRNA-seq data 

set of six PDAC patient tumors (88). Limiting the analysis to ductal cells only, the pcEMT signature 

was used to create two clusters (Figure 3.4C), which were annotated as E and M based on their 

differential enrichment for mesenchymal and epithelial genes (Figure 3.4D, Supp Figure 3.S4). 

Ductal cells in the epithelial cluster displayed greater FAT1 expression than those in the 

mesenchymal cluster (Figure 3.4E), consistent with the findings in HPAF-II cells.  
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To probe these inferences functionally in vitro, we knocked down FAT1 in HPAF-II cells 

(Figure 3.4F). FAT1 depletion suppressed CDH1 and promoted VIM transcript expression 

(Figure 3.4G) and promoted vimentin protein expression (Figure 3.4H). FAT1-depleted cells also 

displayed increase nuclear accumulation of YAP (Figure 3.4I), consistent with prior reports that 

FAT1 antagonizes YAP signaling by assembling the Hippo pathway (188). YAP nuclear 

localization was most common in vimentin-positive hypoxic cells (Figure 3.4J). Thus, FAT1 

depletion may promote YAP nuclear localization and resultant EMT. 

We further tested whether the relationship between the current findings and our prior work 

demonstrating ERK and JNK signaling as required for hypoxia-mediated EMT (185). Combined 

MEK and JNK inhibition rescued FAT1 expression in hypoxic culture (Figure 3.4K), confirming 

key roles for these kinases in regulating FAT1 as a feature of the epithelial cell state. 
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Figure 3.4 FAT1 expression is higher in epithelial cells 
(A) The expression of FAT1 per cell is displayed per E/M cluster per condition. A Kruskal-Wallis test with 
Dunn pairwise comparisons was performed, and the bar denotes the median. (B) The scatter plot displays 
the UCell enrichments for the KEGG Hippo Signaling Pathway and FAT1 expression per cell for the 
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aggregated data as annotated by E/M clusters per condition. The Pearson correlation was calculated. (C) 
scRNA-seq from patient tumors (88) was subjected to the same analysis as with HPAF-II cells. A UMAP 
projection displays k-nearest neighbor clustering on the pcEMT gene signature into two clusters. (D) Scores 
for gene enrichment were calculated with UCell for the epithelial and mesenchymal portions of the pcEMT 
gene signature, identifying one cluster enriched in epithelial genes (E) and one enriched in mesenchymal 
genes (M). A Mann-Whitney test was performed, and the bar denotes the median. (E) The expression of 
FAT1 per cell is displayed comparing the E and M cluster of the patient tumor data. A Wilcoxon test was 
performed, and the bar denotes the median. (F) HPAF-II cells were transfected with siRNA targeting FAT1 
or control siRNA and cultured at 21% O2 for 120 hr. Lysates were analyzed by immunoblotting for the 
indicated proteins. n = 3, t test. (G) qRT-PCR was performed for the indicated transcripts on RNA isolated 
from HPAF-II cells treated as described in (F). CASC3 was used as a control gene for normalization. n = 3, 
two-way ANOVA with Sidak’s multiple comparisons test comparing FAT1 to control siRNA for each 
transcript. (H,I) HPAF-II cells were treated as in (F) and immunofluorescence microscopy was performed 
for the indicated proteins. n = 3, t test. (J) HPAF-II cells were cultured in 21% or 1% O2 for 120 hr and 
immunofluorescence microscopy was performed for the indicated proteins. n = 3, two-way ANOVA with 
Tukey’s multiple comparison test. (K) HPAF-II cells were cultured in 21% or 1% O2 with 1 μM CI-1040 
(MEKi) and 10 μM SP600125 (JNKi), or DMSO for 120 hr, with inhibitors replenished every 48 hr. RNA was 
extracted, and qRT-PCR was performed for FAT1, with CASC3 as a control gene for normalization. n = 3, 
two-way ANOVA with Tukey’s multiple comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
 
 
AXL regulates hypoxia-mediated EMT. 

The striking result in Figure 3.3E suggesting that AXL is primarily enriched in the hypoxic 

M cluster, and not in growth factor-treated M cells motivated investigation, motivated testing of 

AXL’s function in hypoxia. In breast cancer, AXL can be a driver of EMT potentially through NFκB 

signaling (199), but AXL can also be a result of a mesenchymal transition with vimentin being 

required for AXL expression (191) . Therefore, it is unclear if AXL plays a supporting role in EMT 

or if it is a consequence of EMT. While little is known about the relationship between AXL and 

EMT in PDAC, AXL inhibition promotes PDAC chemosensitivity (200), making AXL an enticing 

target to explore.  

To expand on the observation in Figure 3.3E, we confirmed that AXL is significantly 

enriched in hypoxic mesenchymal cells (Figure 3.5A). To determine if this also occurs in the intact 

tumor microenvironment, we clustered ductal PDAC tumor cells from a published patient tumor 

scRNA-seq data set using the Hallmark Hypoxia gene set (Figure 3.5B), which identified a cluster 

enriched in Hallmark Hypoxia and HIF-target genes, denoted as “HYP+” (Figure 3.5C). HYP+ 

cells were then clustered using the pcEMT gene set features (Figure 3.5D), which produced 
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clusters enriched in E or M genes (Figure 3.5E). Within the pcEMT gene set, AXL was the most 

consistently differentially regulated gene between the E and M clusters (Figure 3.5F). Consistent 

with the analysis of HPAF-II cells, AXL was preferentially enriched in hypoxic M cells (Figure 

3.5G). Interestingly, AXL inhibition prevented EMT in response to hypoxia but not in response to 

growth factors, suggesting a context-specific role for AXL in driving EMT (Figure 3.5H). 

 Given the functional relevance of AXL, we sought to understand the protein expression of 

AXL in response to the EMT drivers. AXL intensity was greatest in hypoxic cells, but only nuclear 

AXL was increased in vimentin-positive cells. Increased nuclear AXL was observed in vimentin-

positive cells from TGFβ+HGF or hypoxic treatment, with hypoxic mesenchymal cells displaying 

the highest overall nuclear AXL intensity (Figure 3.6A). In some settings, nuclear AXL represents 

a proteolytic cleavage product of the full-length receptor containing a nuclear localization 

sequence (201), but there is still limited understanding for the role of nuclear AXL. Lysates of 

HPAF-II cells do not suggest the presence of a lower molecular weight cleavage in hypoxic culture 

though (Figure 3.6B), despite the higher nuclear intensity by immunofluorescence microscopy. 

Given that YAP promotes AXL transcription (190), we tested for a correlation between YAP and 

AXL and found that nuclear AXL intensity was greatest in hypoxic cells displaying nuclear YAP 

(Figure 3.6C). These results suggest a role of nuclear AXL in promoting EMT in mesenchymal 

hypoxic cells. Based on the aggregated analyses presented, we propose a mechanism wherein 

FAT1 loss inhibits the Hippo pathway and allows for YAP nuclear localization and resulting AXL 

expression, which promotes EMT. 
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Figure 3.5 AXL is preferentially enriched in hypoxic mesenchymal cells 
(A) The expression of AXL per cell is displayed per E/M cluster per condition. A Kruskal-Wallis test with 
Dunn pairwise comparisons was performed, and the bar denotes the median. (B) A UMAP projection 
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displays k-nearest neighbor (kNN) clustering on scRNA-seq from patient tumors (88) on the Hallmark 
Hypoxia gene set into two clusters. (C) Scores for gene enrichment were calculated with UCell for the 
Hallmark Hypoxia gene signature and HIF-target gene signature, identifying one clustered enriched in 
hypoxic genes (HYP+) compared to the other cluster (HYP-). A Mann-Whitney test was performed, and the 
bar denotes the median. (D) The HYP+ cluster from (B) was then subjected to kNN clustering using the 
pcEMT gene signature, as previously done with the HPAF-II data set. (E) Scores for gene enrichment were 
calculated with UCell for the epithelial and mesenchymal portions of the pcEMT gene signature, identifying 
one cluster enriched in epithelial genes (E) and one enriched in mesenchymal genes (M). A Mann-Whitney 
test was performed, and the bar denotes the median. (F) The heatmap displays the expression of the 
pcEMT genes for each of the E and M clusters for the HYP+ patient tumor ductal cells. (G) The expression 
of AXL per cell is displayed comparing the E and M cluster of the HYP+ patient tumor data. A Wilcoxon test 
was performed, and the bar denotes the median. (H) HPAF-II cells were cultured in 21% O2 with or without 
10 ng/mL TGFβ and 50 ng/mL HGF or cultured in 1% O2, with 40 nM dubermatinib (AXLi) and or DMSO 
for 120 hr. Immunofluorescence microscopy was performed for the indicated proteins. n = 3, two-way 
ANOVA with Sidak’s multiple comparison test. ** p < 0.01 
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Figure 3.6 AXL is associated with YAP nuclear localization 
(A) HPAF-II cells were cultured in 21% O2 with or without 10 ng/mL TGFβ and 50 ng/mL HGF or cultured 
in 1% O2 for 120 hr. Immunofluorescence microscopy was performed for the indicated proteins. n = 3, one-
way ANOVA with Tukey’s multiple comparisons test. (B) HPAF-II cells were cultured as in (A). Cells lysates 
were analyzed by immunoblotting for the indicated proteins. (C) HPAF-II cells were cultured in 21% or 1% 
O2 for 120 hr and immunofluorescence microscopy was performed for the indicated proteins. n = 3, one-
way ANOVA with Tukey’s multiple comparisons test. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001  
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3.5 DISCUSSION 

In this study, we utilized scRNA-seq to understand heterogenous EMT transcriptional 

regulation in populations of pancreas cancer cells in response to different drivers of the 

mesenchymal transition. We identified both common and unique modes of EMT regulation at play 

between growth factor and hypoxia conditions. FAT1 was enriched across epithelial cells 

regardless of the treatment condition, whereas AXL played a context-dependent role in hypoxia-

mediated EMT only. Previous work found that FAT1 deletion promoted a hybrid EMT through 

YAP nuclear localization and ZEB1 expression in squamous cell carcinoma (198), and that FAT1 

prevents EMT via suppression of the MAPK/ERK pathway in esophageal squamous cell cancer 

(202). Additionally, to account for the hypoxia-specific enrichment of AXL, studies have found that 

HIF-1⍺ and HIF-2⍺ directly promote AXL expression, which promotes SRC activity (203). We 

have previously established a role for SRC-dependent MAPK/ERK-signaling in regulating 

hypoxia-mediated EMT (185), which unifies the present study and previous findings on FAT1 and 

AXL to provide a mechanism for hypoxia-driven EMT in PDAC.  

Aside from its role in EMT, AXL is involved in cell survival, angiogenesis, and immune 

response in pancreas cancer (204). AXL-deficient mice bearing pancreas tumors have increased 

survival, more differentiated tumor histology, and decreased metastasis, making AXL an attractive 

therapeutic target (205). Our results suggest a potentially interesting role for nuclear AXL in 

correlation with EMT. Nuclear AXL has been observed in various carcinomas, including 

schwannoma, melanoma, and mesothelioma (206-209); however, there is still more to interrogate 

regarding the function of nuclear AXL, especially in relation to EMT. One study identified in 

mesothelioma that there was nuclear colocalization of AXL and p53, and that AXL can bind to the 

TP53 promoter to suppress expression (209). Several AXL inhibitors are in clinical trials for 

advanced solid tumors, and other diseases (ClinicalTrials.gov). However, only one clinical trial 

has tested AXL inhibitors in pancreas cancer, in combination with chemotherapy, and that study 
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was terminated to pursue other research (NCT03649321; ClinicalTrials.gov). There has yet to be 

another study initiated for AXL inhibition in PDAC. Given the bias for AXL expression in hypoxic 

mesenchymal cells, more success could be achieved from AXL inhibition by targeting AXL-driven 

EMT in cooperation with other therapies. Supporting the notion of an important role for AXL in 

PDAC pathogenesis, soluble AXL is a useful biomarker for classifying patients as healthy, tumor-

burdened, or having chronic pancreatitis (210). Further, a current clinical trial in PDAC detects 

AXL-positive circulating tumor cells (CTCs) through real-time liquid biopsy to eventually correlate 

survival with the presence of AXL-positive CTCs (NCT05346536; ClinicalTrials.gov). Therefore, 

although AXL inhibition is still being investigated, detection of AXL could provide critical diagnostic 

insight in PDAC.  

While our study focuses on EMT transcriptional regulation, post-translational and 

epigenetic modifications may also play important roles in determining EMT heterogeneity. The 

activity of different EMT transcription factors can be dependent on the context and stage in 

transition (211). Further, the localization and turnover of EMT transcription factors, including Snail, 

Slug, Twist, and ZEB1, are regulated by acetylation, phosphorylation, and ubiquitination 

(212,213). Mutations and post-translational modifications can also influence the activity of EMT-

regulating signaling pathways, such as mutant KRAS promoting EMT in a MEK-dependent 

manner (135) and EGF-stimulated SHP2 activity augmenting EMT (32). Further, the Hippo 

pathway constrains YAP through phosphorylation-dependent degradation via LATS1/2 (214,215). 

In specific settings, histone methylation and acetylation marks are required for EMT, including 

histone 3 lysine 4 acetylation (H3K4Ac), histone 3 lysine 4 di-methylation (H3K4me2), histone 3 

lysine 27 tri-methylation (H3K27me3), and histone 3 lysine 36 di-methylation (H3K36me2) (34-

36). At least one of these marks (i.e., H3K36me2) is induced by both EMT-driving growth factors 

and hypoxia (34-36). Here, our analysis nominates H3 Histone Family 3A (H3F3A) as enriched in 

cells cultured in 21% or 1% O2, potentially pointing to a context-specific role for H3F3A. Mass 
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cytometry and high-content, multi-channel immunofluorescence imaging will be important tools 

moving forward for discovering the potential supporting role of post-translational modifications in 

explaining EMT heterogeneity.  

Given that mesenchymal cells are more resistant to chemotherapy (14), heterogeneity of 

EMT poses a significant challenge to treatment. One of the ways to combat this across 

carcinomas could be molecular subtyping to identify patients that will likely be more responsive 

(216). In PDAC, there are ongoing studies to classify patient tumors as classical or basal-like, 

since classical tumors are more responsive to the chemotherapy FOLFIRINOX (217). However, 

as identified through single-cell measurements in this study and others, there is significant 

heterogeneity in EMT between cells within a cell line and within a tumor. Since mesenchymal 

cells are chemoresistant (218), the existence of heterogenous EMT states creates a 

subpopulation of cells that are less chemoresponsive and likely to remain after treatment (219). 

A means to combat this heterogeneity could be to use small molecule drugs as neoadjuvants to 

antagonize EMT prior to conventional chemotherapy (220). Due to the heterogeneity of EMT and 

the regulatory processes that control it, identifying the most appropriate molecularly targeted 

drugs must leverage measurement and analysis techniques that accommodate cell-to-cell 

variability.    
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3.7 SUPPLEMENTAL MATERIAL 

 
Supp Figure 3.S1 Hypoxic cell culture promoted expression of hypoxia-associated genes 

(A) PCA on the HIF-target gene set was computed for the aggregated data as mapped to the experimental 
conditions. (B) The heatmap displays the expression of the HIF-target genes with annotation of the 
experimental conditions.  
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Supp Figure 3.S2 The optimal parameters were chosen for clustering on all genes within the data 

set 
(A) An elbow plot showing the percent variation and cumulative percent for each principal component used 
for clustering in Figure 3.1B. Plotted numbers refer to the principal component (PC) number. Red and blue 
numbers indicate the change in percent variation to the next PC is greater than or less than 0.1%, 
respectively. (B) Silhouette scores are shown per cell by cluster for the optimal number of k-nearest 
neighbor clusters based on the aggregated data set. 
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Supp Figure 3.S3 There was differential gene expression between epithelial and mesenchymal 

cells per treatment condition 
(A-C) Heatmaps display the top 50 differentially expressed genes comparing the E and M clusters for each 
experimental conditions of (A) 21% O2, (B) 21% O2 with 10 ng/mL TGFβ and 50 ng/mL HGF, and (C) 1% 
O2 in relation to the clusters from Figure 3.3A-C. 
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Supp Figure 3.S4 Patient ductal cells were clustered on EMT gene expression 
The heatmap displays the gene expression of the pcEMT gene signature for the patient ductal cells as 
clustered in Figure 3.4C. 
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Supp Table 3.S1 Software and algorithms 

RESOURCE SOURCE 

R v4.2.0 R Development Core Team 

Bioconductor (183) 

cluster v2.1.4 (221) 

clusterProfiler v4.4.4 (106,184) 

dittoSeq v1.8.1 (222) 

dplyr v1.0.9 (223) 

escape v1.6.0 (224) 

ggplot2 v3.3.6 (112) 

ggstatsplot v0.9.4 (110) 

limma v3.52.2 (225) 

org.Hs.eg.db v3.15.0 (226) 

patchwork v1.1.2 (227) 

rlang v1.0.5 (228) 

scRNABatchQC v0.10.4 (193) 

Seurat v4.1.1 (229-232) 

stringr v1.4.1 (233) 

UCell v2.0.1 (195) 
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Supp Table 3.S2 qRT-PCR Primers 

Target  Sequence (5' → 3') 

CASC3 
Forward ACCTCGGAAAGGGCTCTTCTT 
Reverse CGACCCTCATCCTTCCATAGC 

CDH1 
Forward CATCAGGCCTCCGTTTCTG 
Reverse GGAGTTGGGAAATGTGAGCA 

VIM 
Forward TCTCTGAGGCTGCCAACCG 
Reverse CGAAGGTGACGAGCCATTTCC 

FAT1 
Forward TCTCTGAGGCTGCCAACCG 
Reverse CGAAGGTGACGAGCCATTTCC 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

 

4.1 SUMMARY 

 The work described in this thesis uncovers novel mechanisms by which hypoxia can 

promote a heterogeneous, but durable, EMT and highlights vulnerabilities in PDAC for therapeutic 

intervention. Throughout this work, we employed a variety of techniques and models to study 

hypoxia-mediated EMT through mouse models, single-cell and bulk omics, and cell-based assays 

to gain a comprehensive understanding of signal transduction at the epigenetic, protein, and 

transcriptional level. The extensive information gained through this thesis work not only provides 

valuable knowledge to the field of pancreas cancer research, but also postulates a direct 

therapeutic opportunity to inhibit signaling pathway targets to reverse a dangerous phenotype 

prevalent in pancreas cancer. 

 In Chapter 2, we gained an improved understanding of the complex regulation of EMT 

driven from the hypoxic tumor microenvironment. We identified a complex histone methylation-

MAPK signaling axis responsible for driving a durable mesenchymal phenotype in PDAC. We 

determined that reduced activity of the oxygen-dependent histone demethylase KDM2A and the 

increased protein stabilization of the histone methyltransferase NSD2 allow for an increase in 

histone 3 lysine 36 dimethylation (H3K36me2). Through downregulation of protein phosphatases, 

SFK-mediated MAPK signaling is increased to drive an increase in nuclear cJun accumulation 

and ERK phosphorylation, as well as stabilization of HIF-1⍺. Our finding that MAPKs regulate 

HIF-1⍺ expression, but that HIF-1⍺	 does not solely dictate hypoxia-mediated EMT was an 

interesting finding that motivated exploring additional means of cellular responses to low oxygen. 

Further, we utilized patient data to generate a hypothesis to test in cell lines and mouse models 

to develop a detailed mechanism of hypoxic regulation of EMT, which ultimately concluded in 

demonstrating that co-inhibition of MEK and JNK has a synergistic effect in preventing and 
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reversing durable hypoxia-driven EMT. The work from this chapter can be expanded to 

incorporate the effect of hypoxia-mediated EMT on chemoresponse and the influence of hypoxia 

on other cell types (e.g., CAFs). This would then allow for future studies of targeting MAPKs in 

combination with chemotherapy to improve efficacy. 

 In Chapter 3, we sought to understand the heterogeneity of EMT and directly compare the 

transcriptional regulation of hypoxia- and growth factor-mediated EMT. Through scRNA-seq of 

cells cultured with or without the addition of TGFβ + HGF, or in hypoxic culture, we were able to 

directly study the response of these drivers, as opposed to our work in Chapter 2 with patient 

tumor data sets where we had to utilize hypoxic gene sets as a means of correlating hypoxia with 

the cellular response. Although both drivers promoted EMT on net based on gene sets, the 

specific EMT-associated genes that they regulated were not identical. Further, we were able to 

determine that the Hippo pathway and FAT1 were enriched in epithelial cells, whereas AXL was 

upregulated in mesenchymal cells, preferentially in response to hypoxic culture. We were able to 

validate these findings in patient tumor scRNA-seq data. Through cell-based assays, we 

confirmed the model findings by observing FAT1 to be lower in mesenchymal cells and that AXL 

inhibition only prevented EMT in hypoxic culture. We were intrigued by the nuclear localization of 

AXL, a phenomenon about which there is still limited published research. We acknowledge that 

there is still much to be uncovered from this unique data set, and we hope by making this data 

set publicly available that other researchers will generate and test new hypotheses. 

 

4.2 CLINICAL IMPLICATIONS OF EMT 

In pancreas cancer, there is a current clinical trial utilizing Purity Independent Subtyping 

of Tumors (PurIST) that stratifies patient tumors as classical (epithelial-like) or basal 

(mesenchymal-like) as a means of determining the therapeutic strategy (NCT04683315, 

ClinicalTrials.gov), based on the premise that basal-like tumors have been found to be less 
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responsive to the FOLIFIRNOX (9,217). Genomic data from patient tumors is analyzed for 

subtype-associated genes and scored based on the relative expression (217). For now, the trial 

consists of subjecting patients with a classical subtype to FOLFIRINOX and patients with a basal 

subtype to gemcitabine/nab-paclitaxel to understand if stratifying tumor subtypes by 

basal/classical will yield a better response rate to FOLFIRINOX. This study is still in early phase 

with no published results. However, the existence of the trial demonstrates that the field is 

pursuing PDAC classifications as a means of determining individual patient treatment plans and 

informing clinical trials to target the patient population that is most likely respond. 

Given the reported role of EMT in metastasis and resistance to therapy, targeting EMT 

provides an attractive mechanism for improving therapeutic response. Previous studies have 

found that downregulation of the mesenchymal transcription factor ZEB1, through silencing of 

ZEB1 or interference via an HDAC inhibitor, sensitizes once gemcitabine-resistant mesenchymal 

PDAC cells to gemcitabine (234,235). Further, repurposing drugs can be successful in 

suppressing EMT by sensitizing pancreas cancer cells to gemcitabine. For example, metformin 

can promote the tumor suppressor miR-663 (236) and zidovudine can inhibit the Akt-GSK3β-Snail 

pathway (237) to reverse EMT. The work in this thesis identifies the drug targets of MEK and JNK 

for preventing hypoxia-mediated EMT. There already exist FDA-approved drugs for MEK [e.g., 

trametinib and selumetinib (238)] and investigational drugs targeting JNK in other cancer settings, 

which provides a path for further preclinical and eventual clinical testing of the effects of EMT 

antagonism as a means of improving chemoresponse. 

 

4.3 EFFECTS OF HYPOXIA ON CELLULAR RESPONSE TO CHEMOTHERAPY 

A premise of the work performed in this thesis is that hypoxia and growth factors, through 

their ability to drive EMT, may impact PDAC cancer cell response to chemotherapy. To lay the 

groundwork for the next steps in this long-term research plan, we have begun to investigate the 
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interplay between hypoxia and growth factors as drivers of EMT and chemotherapeutic response. 

In a set of new pilot experiments, we cultured HPAF-II pancreas cancer cells with or without TGFβ 

+ HGF or in hypoxic culture prior to treating the cells with the chemotherapeutic gemcitabine and 

measuring cell death several days later. Cells grown in the hypoxic condition exhibited a greater 

degree of chemoresistance, reflected by a lower fraction of dead cells, than cells cultured in 21% 

O2 with or without TGFβ + HGF (Figure 4.1A). Surprisingly, growth factor treatment sensitized 

cells to gemcitabine, promoting a greater degree of cell death compared to 21% O2 without growth 

factors. Hypoxic culture prevented some DNA damage, as measured by lower pH2A.X, which 

could explain the reduced induction of cell death (Figure 4.1B). However, more work needs to be 

done to determine if this is a result of EMT or another hypoxia-regulated mechanism. Interestingly, 

gemcitabine caused EMT in pancreatic cancer cells. This is consistent with findings in the 

literature suggesting that PDAC cancer cells, and other carcinoma cells, may evade 

chemotherapy by undergoing an EMT. However, when cells were cultured in hypoxia, there was 

no supplementary EMT caused by the addition of gemcitabine (Figure 4.1C). It is important to 

note that chemotherapies with mechanisms of action different than gemcitabine may drive 

different degrees of EMT and chemoresistance and potentially through different mechanisms. 

Future studies should confirm these trends in different cell lines and using different 

chemotherapies and growth factors and seek to clarify if the effects of hypoxia on 

chemoresistance are due primarily to EMT.  
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Figure 4.1 Hypoxia promotes gemcitabine resistance 

(A-C) HPAF-II cells were cultured for 120 hr in 21% O2 with or without 10 ng/mL TGFβ + 50 ng/mL HGF or 
in 1% O2, then were exposed to 1 µg/mL gemcitabine for 72 hr. (A) Flow cytometry was performed for cell 
viability using ToPro3. n = 3, two-way ANOVA with Sidak’s multiple comparison test. (B) 
Immunofluorescence was performed for the indicated proteins, with the intensity of pH2A.X measured for 
DNA damage. n = 3, mixed-effects analysis with Tukey’s multiple comparison test. (C) Immunofluorescence 
was performed for the indicated proteins, with quantification of the percent positive vimentin cells. n = 3, 
two-way ANOVA with Sidak’s multiple comparison test.   
 

We are further testing the effects of hypoxia on gemcitabine resistance through in vivo 

studies. In ongoing studies, mice bearing orthotopic tumors created by injecting cells engineered 

with the hypoxia fate-mapping system (described in Chapter 2) are being treated with 

gemcitabine. We will assess the degree of DNA damage, via pH2A.X staining, in cells that 

experienced hypoxia versus those that did not. Further, to elucidate the involvement of EMT, we 

will stain for vimentin and ask if cellular resistance to gemcitabine occurs preferentially in the 

hypoxic mesenchymal cells. If there is no difference in DNA damage between hypoxic epithelial 

and mesenchymal cells, then hypoxic effects other than the induction of EMT, such as changes 

in metabolism, may be responsible for promoting the resistance to gemcitabine we observed in 

cell culture experiments. Additionally, we will evaluate the chemoresponse in epithelial and 

mesenchymal cells that did not experience hypoxia. Because hypoxia drives an especially durable 
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EMT, we hypothesize that once-hypoxic mesenchymal cells may be preferentially chemoresistant 

compared to never-hypoxic mesenchymal cells. The complete results of these studies may then 

motivate the investigation of combination therapy approaches based on the knowledge gained in 

Chapters 2 and 3 of this thesis. In Chapter 2, we found that MEK and JNK inhibition suppresses 

hypoxia-mediated EMT in vivo. Therefore, assuming hypoxia-induced chemoresistance is EMT-

dependent, we can perform studies to dose kinase inhibitors to promote mesenchymal-epithelial 

transition (MET) prior to treating mice with gemcitabine, with the hypothesis that EMT antagonism 

would promote chemoresponse. This analysis can be expanded to other chemotherapies, such 

as FOLFIRINOX, to understand if the effects proposed here may depend on the 

chemotherapeutic. Additionally, the use of the hypoxia fate-mapping cells allows for tracing of 

once-hypoxic cells even in distal metastatic sites, which could provide additional insight into 

hypoxia as a regulator of response to chemotherapy in metastatic lesions. Although our current 

initial studies are being conducted to probe for effects on EMT, survival studies would ultimately 

need to be conducted to determine if targeting EMT prior to chemotherapy provides a benefit.  

 We were particularly intrigued by the finding in Figure 4.1C that gemcitabine in 21% O2 

caused EMT, but the addition of gemcitabine in 1% O2 did not drive EMT more than hypoxic 

culture alone. This motivates further research into the signaling mechanisms governing 

gemcitabine-induced EMT. Given that both chemotherapy and hypoxia stimulate a stress 

response in cells, they could drive signaling through a common pathway such as JNK (239).  

Another hypothesis could be that the hypoxic response that is responsible for preventing 

chemotherapy-induced cell death is also preventing chemotherapy-induced EMT by not allowing 

for DNA damage to occur. To test these hypotheses, cells could be probed for their signaling 

response to chemotherapy in both 21% and 1% O2. By employing multiplexed 

immunofluorescence microscopy, the gemcitabine-treated hypoxia fate-mapped tumors could be 

utilized to determine the gemcitabine-induced cell signaling response in hypoxic mesenchymal 
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cells. Collectively, these studies would help to determine the cellular response to gemcitabine 

under hypoxic stress.  

 

4.4 IMPACT OF TUMOR HETEREOGENEITY ON TREATMENT 

 Tumor heterogeneity poses significant challenges for the design of effective therapies. 

The challenge of inter-tumoral heterogeneity across patients is being addressed through genetic 

subtyping for more informed treatment plans (217). However, there is significant intra-tumoral 

heterogeneity that needs to be overcome for complete tumor reduction. Tumors with greater 

diversity in genotypes are correlated with increased relapse and poorer outcomes (219) due to 

the existence of cell subpopulations that resist treatment and expand to drive tumor progression 

(219). In addition to intrinsic tumor cell heterogeneity, chemotherapy and radiation can also force 

mutations and modifications in cells leading to an even more diverse cell population (219).  

 In Chapter 3, we identified a subpopulation of hypoxic mesenchymal cells that are 

preferentially enriched in AXL in both cell line and patient tumor data. In cell culture studies, 

inhibition of AXL prevented hypoxia-mediated EMT but not growth factor-mediated EMT, 

identifying an important potential difference in the mode of regulation of EMT in the two different 

contexts. The potential value of targeting this cell subpopulation for clinical applications is unclear 

given that it is a small subset of cells. Preclinical testing in appropriate mouse models is needed 

to begin to understand this issue. There is an active clinical trial (NCT02183883, 

ClinicalTrials.gov) that is evaluating this concept through studying the response to an EGFR 

inhibitor in non-small cell lung cancer in tumors with varying degrees of mutations, including if the 

mutation is only in a subset of cells. The goal is to assess if the EGFR inhibitor is effective when 

the mutation is dominant (>50%), non-dominant (5-50%) or low frequency (<5%). Although the 

effect will ultimately depend on the target, trials such as this one will give insight into the 

effectiveness of targeting a subpopulation with an active mutation or overexpression. 
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 Overcoming intra-tumoral heterogeneity will be a critical task for developing improved 

PDAC therapies. Improved clinical methods of assessing patient tumors will need to be adopted 

for single-cell resolution and temporal measurements to gain a more complete picture of patient 

tumors. To address spatial heterogeneity of the tumor microenvironment, including hypoxic 

domains and stromal interactions, it is recommended to biopsy the tumor from multiple locations 

if feasible (240). Genetic sequencing is helpful at the bulk level, but ultimately it may be more 

beneficial to not just assess “basal” or “classical” subtypes but to understand the spectrum of 

classification. Further, temporal measurements are critical to allow for an adaptive treatment 

regimen (241), and to understand how adaption occurs from heterogeneity. 

 

4.5 COMBINATION THERAPY FOR TREATMENT OF PDAC  

Our work in Chapter 2 demonstrates the utility of a combination of kinase inhibitors to 

suppress the mesenchymal phenotype in hypoxic PDAC cells. Tumor cell heterogeneity and the 

ability of cells to adaptively resist treatments also motivate the idea of using combinations of drugs 

to improve therapeutic efficacy. We found that inhibition of MEK and JNK can mitigate hypoxia-

mediated EMT, which aligns with previous work suggesting MAPK signaling as a target for PDAC 

combination therapy. MEK/ERK inhibitors have been combined with anti-PD-L1 (155) and PI3K 

inhibitors (156), and low-dose “vertical inhibition” of RAF and ERK may promote a mesenchymal-

epithelial transition in KRAS-mutant PDAC (157). JNK inhibition reduces FOLFOX (5-FU+LEU 

plus oxaliplatin) chemoresistance in PDAC (137). Our findings provide specific motivation for 

pursuing combinations of MAPK inhibitors for the complete antagonism of hypoxia-mediated 

EMT, which may potentiate PDAC response to chemotherapy. Given that there are approved 

MEK inhibitors and investigational JNK inhibitors, this combination is feasible to pursue. Our work 

also demonstrates a role for histone modifications and HIFs in hypoxia-mediated EMT. As 

selective histone methyltransferase and HIF inhibitors continue to be developed, it may become 
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possible to consider combining kinase inhibitors with entirely different classes of drugs to interrupt 

the feedback process we identified in Chapter 2, which we propose as a driver of PDAC 

chemoresistance.  

As combination therapies are explored, questions of how to schedule multiple drugs 

naturally arise. Considering the often-significant side effects and toxicities of cancer therapies and 

the potential for undesirable drug interactions, there are practical barriers that limit how drugs can 

be deployed in combination. One recent study proposed a strategy of employing stochastic 

simulations of growth rates of sensitive and resistant cells to predict an optimal dosing regimen 

using continual and pulsed treatments of drugs to minimize the emergence of a resistant cell 

population in response to targeted therapies (242,243). Other work is investigating the application 

of optimal control mathematical models to design cancer therapy dosing schedules to optimize 

response (244). This would allow for a more systematic and informed decision making for dosing, 

especially when combining drugs. The objective is to utilize adaptive plans based on an 

evolutionary game theory model of cancer dynamics, instead of the standard administration of 

the maximum tolerated dose, to achieve the same impact on tumor growth while using less total 

drug (245). These models will be important in the practicality of combining therapies in order to 

minimize adverse events while maximizing the effects of pursuing different targets. Thinking in 

the context of EMT, it is conceivable to have a regimen of inhibitors that first reverses EMT to 

promote a cellular state that is more responsive to therapy and then follow those inhibitors with 

chemotherapy to promote an overall augmented chemoresponse. 
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