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ABSTRACT 

The evolution of the visual display technology used in synthetic environments is 

fueling the development of numerous applications. The results of these initial expeditions into 

virtual worlds have been promising. However, these initial investigations have also 

highlighted the need for force feedback in synthetic environments to make the virtual 

experience more immersive and easier for the traveler to interact with the objects that 

populate the synthetic environment. In addition the inclusion of force feedback in a synthetic 

environment will provide another input channel that can provide information to the traveler 

beyond the typical visual and audio input modes. Research in the area of force feedback for 

synthetic environments thus far has focused on the design and construction of specialized 

interface devices. These new haptic devices can be used to provide force interaction, however 

because these devices are unique prototypes it is difficult if not impossible to reproduce and 

extend results obtained at different facilities. This work proposes a new approach to force 

interaction in synthetic environments, virtual manipulators. The virtual manipulator control 

concept can be applied to any available six degree of freedom robot manipulator. Therefore 
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experimental results obtained using the virtual manipulator control law can be reproduced at 

any research fecility with a six degree of freedom robot. This work will develop the virtual 

manipulator control approach as well as investigate the stability characteristics of the control 

law operating on a general six degree of freedom robot. Experimental results will be 

presented for various virtual manipulators including the time varying extension of the virtual 

manipulator concept. In addition to the virtual manipulator concept this work will also 

develop a physically-based modeling technique that can be used to assimilate a force feedback 

device into a synthetic environment. This modeling approach uses finite element analysis 

techniques but uses the NURBS basis fimctions instead of the typical interpolation basis 

fimctions. As a result the dynamics of the model can be represented using the same 

characteristic parameters as the geometric model. Results of this modeling approach will be 

presented for one and two dimensional dynamic models. 
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CHAPTER 1. INTRODUCTION 

The rapid development of synthetic environments is based on the idea of providing 

high quality, realistic images to the traveler in the environment. However, the main 

motivation is finding new ways of interacting with information. Visualization is at the root of 

synthetic environments and is an important application but if all that is needed to increase the 

utility of synthetic environments is a better quality image then ±ere is little need for the 

research being done in this area. Improvements in displayed image quality will naturally 

follow advances in state of the art graphics hardware. 

The current research is extending the boundaries of what can be done in a synthetic 

environment. This is simply a question of how the traveler in a synthetic environment can 

interact with the computer data that describes the world. The data can be viewed, the 

visualization aspect of the synthetic environment. The data can also be manipulated, moved, 

scaled and deformed. However, these operations can be performed and have been performed 

traditionally using a keyboard and mouse. Once the data has been modified it can again be put 

into the synthetic environment for a visual inspection. The modification process can be 
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Streamlined if the traveler is able to reach with her hand modify the data directly without 

having to transition between the synthetic environment and a traditional computer 

workstation. 

The previous illustration clearly shows the direction of research in synthetic 

environments. Developing the interactive capabilities of synthetic enviromnents is what will 

unlock the potential of the technology, simply having a faster computer will not. However, 

interacting with an synthetic environment is not a simply task. A traveler cannot reach out 

and grab data when all that is there is a projection, no matter how convincingly the mind of 

the traveler has been fooled. 

Interaction devices such as a wand or glove can be used to communicate with the 

computer controlling the synthetic environment. However, this requires some mechanism for 

manipulation, such as touch the object and push a button and then move the object. 

Interaction in a synthetic environment is not the same as interacting with real objea but these 

contrived mechanism for interaction may be sufiBcient or even preferred in some situations. 

Another way to view interaction with a synthetic environment is what modalities are 

available to supply information to the traveler. When a wand or glove is used as the 

interaction device the input modalities are the same as a visualization synthetic environment. 

So a wand or glove interaction device has extended the interaction abilities of the synthetic 

environment but it has not extended the ability of the environment to supply the traveler with 

information. This is because these interaction devices are "passive", they can only observe 

what the traveler does and allow the synthetic environment to change in response. However, 

by using a haptic interaction device the traveler can interact with the synthetic environment in 
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the same way as with a wand or glove but the haptic device also represents a new source of 

information that is available to the traveler, force information. 

This force information can be used in a tradition setting such as to display the surfiice 

characteristics of an object or display to the traveler the weight or inertia of an object that is 

being carried. But forces can be used to represent other types of information as well, a force 

applied to the traveler need not represent a "real" force. This is the same idea as using a color 

map to represent the stress results obtained from a finite element analysis. Consider for 

example allowing a traveler design a part prototype in a virtual design studio. A quantity of 

design material is presented to the traveler. The design material could behave like clay that is 

used in the automobile industry. However, the real material used may not behave exactly the 

way the designers would want, in the synthetic environment the dynamic characteristics of the 

material can be customized. 

One option is to allow the dynamic characteristics of ±e material should change 

during the design process. Consider that the job of the traveler in the synthetic environment 

design studio is to lay out a stifiBng web. The traveler lays out the modeling material in the 

general shape and then sculpts it into the final form. During the design process a finite 

element analysis of the part could be running simultaneously, the results of this analysis could 

be used to modify the material properties of the design material. If the stress at some point in 

the web is high the modeling material could become stiff and viscous so that the designer can 

not fiirther reduce the thickness of the web at that point. 

The idea of modifying the properties of a design material could be used in other 

situations. When a large number of designers are working simultaneously on a complex 



www.manaraa.com

4 

product. They are generally given a working envelope in which their part or component must 

fit. A designer must not violate this envelope or risk having their component interfere with 

another part. As the designer shapes the part the modeling material could respond when the 

part approaches the envelope boundary. Varying modeling material properties could also be 

used to enforce continuity requirements on the surface of a part. Stiffing the modeling 

material at a point could be used to prevent a designer fi^om introducing a curvature 

discontinuity into an automobile panel that would look "bad" under the show room lights. 

Application of force feedback in the design process is not limited to prototype design. 

Design for assembly and disassembly is a major concern in the production of large complex 

machines. Using a haptic device coupled with common robot impedance fields would allow 

designers to investigate the installation or removal of a component part without construction 

of a physical prototype. 

Although the potential of force feedback technology in synthetic environments is great, 

the development and assimilation of this technology has been slow. One reason for the slow 

development of haptic feedback technology is the accuracy and robusmess of the human force 

sensors. Although the human visual system can be "fooled" with stereo images projected 

thirty times a second, the requirements for believable haptic interaction are more difficult to 

achieve. There is little doubt that the subject of haptic interaction in synthetic environments 

will be an open problem for some time to come. 

The lack of usage of the haptic devices that do currently exist in synthetic 

envirormients is starting to be addressed. There has been a shift in the focus of many research 

groups, which in the past have concentrated on the design and construction of haptic 
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interaction devices. These groups are now focusing on how to incorporate the current haptic 

devices into more complicated interactive dynamic simulations for use in synthetic 

environments. However, the integration of haptics into synthetic environments still presents 

some problems. 

The first major problem resides in the difiFerent system requirements for a visual display 

system and a force display system. For a visual display system to work properly the stereo 

images must be updated at least thirty times per second, which is a least one order of 

magnitude slower than the update rate required for a haptic device. In addition the accuracy 

of the update rate for a visual display system is not critical, slight fluctuations in the update 

rate will most likely not be detrimental or even noticed by the traveler in the synthetic 

environment. However, variations in the update rate of a force display can lead to unstable 

system response that will at best degrade the experience of the traveler in the synthetic 

environment and at worst pose a physical risk to the traveler. Fuially due to the relatively 

slow update rates of the visual system it is possible to communicate with the external 

hardware, such as position trackers, using conventional serial communication protocols. This 

is not the case for most force display systems due to the faster update rates and the amount of 

information that must be transferred for proper control of the hardware. 

For these reasons ±e host computer selected for visual display systems and force 

display systems are different. Visual display systems typically nm on unix platform computers 

with specialized graphics pipelines designed to increase display quality and speed. Where as 

force display systems are typically run on DOS based personal computers or on specialized 

control computers using a true real time operating system. As a result a synthetic 
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environment containing both visual and force display will usually have two or more host 

computers which must communicate effectively for proper system performance. 

Recent advances and changes in technology are reducing the magnitude of this 

problem. The demand for commercially available haptic interaction devices has required the 

development of interface circuitry and software to control haptic devices from traditional 

graphics workstations. Although this interface hardware and software is currently proprietary, 

it still leads to the conclusion that similar equipment could be developed to interface with a 

generic haptic device. In addition recent design choices made by the manufacturers of 

personal computers and graphics workstations are moving these two classes of host 

computers more towards a similar structure. Therefore as developers and users of haptic 

feedback devices adapt to these changes the process of including haptic devices in synthetic 

environments should be simplified. Finally, the wide availability of internet transfer protocols, 

such as UDP and TCP sockets, has made the process of communicating between dissimilar 

host computers substantially easier. 

The second major problem associated with including a haptic device into a synthetic 

environment is due to the recent changes in the way three dimensional images are presented to 

the traveler. Most of the prototype and commercially available haptic feedback devices were 

designed and developed prior to the advent of projection style synthetic environments. As a 

result the design of these haptic devices are not compatible with this three dimensional 

graphics presentation technique. The presence of the device in the synthetic environment will 

occlude the projected images and have a detrimental effect on the quality of the experience of 

the traveler. 
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The third and final major problem associated with including a haptic device into a 

synthetic environment is caused by the unique nature of most haptic interfeces. There has, of 

course, been an increase in the number of commercially available force feedback devices but 

most devices used are one of a kind prototype devices. The one of a kind configuration of 

haptic devices prevents external verification and extension of research results. In addition the 

cost in money and time to design and construct a haptic device is prohibitively high for most 

research facilities. This coupled with the idiosyncratic nature of prototype hardware is 

suflBcient to prevent the use of haptic devices in synthetic environments. Although 

commercially available feedback devices have reduced in some sense the isolation faced by 

haptics researches, proprietary programming libraries continue to stifle open communication 

between researchers in the haptic feedback arena. 

This work addresses the problem developing a haptic interface that is compatible with 

all synthetic environment implementations, that is also commonly available to the haptic 

research commimity. It proposes using a generic six degree of fi^eedom robot as a haptic 

interaction device for a synthetic environment, as well as a new control law which will allow 

the robot to behave like some virtual mechanism or manipulator. The proposed virtual 

manipulator control approach can make haptic interaction in synthetic environments more 

available to the research community. Although custom haptic devices are not prevalent, six 

degree of fi-eedom robots are quite common. In addition interface hardware and software for 

joint level control of robots is commonly available for today's powerfijl personal computers. 

The virtual manipulator control approach is modular, can be easily changed, allowing any one 

of various six degree of freedom robots to represent the virtual manipulator. 
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This will allow research based on virtual manipiilators to be verified and extend at 

different research facilities. Because the robot and interfece equipment is readily available the 

cost in both money and time associated with acquiring and maintaining a haptic display system 

can be reduced. There are currently no six degree of fi"eedom robots designed specifically as 

haptic devices, although some have been proposed. However, if such a device is ever 

manufactured the virtual manipulator control law would run on it as well. 

The drawback to using the six degree of fi-eedom robots currently available as a haptic 

device is that their general dynamic characteristics do not match those of an ideal haptic 

interface. The increased computational power of the personal computer offers a solution, as it 

is now possible to run complex, real time control laws that compensate for the physical short 

comings of a given robot. This will allow a less than ideal robot to behave more like an ideal 

haptic device. 

It is also possible to use a six degree of freedom robot as a haptic display in a 

projection style synthetic environment. The robot can be equipped with a handle and 

positioned so that it is behind the traveler in the projection environment. Using the position 

sensors normally associated with a robot, the position of the handle in the synthetic 

environment can be calculated and the image of a virtual tool can be grown fi"om this 

calculated position. This will allow the traveler to see the images of the scene and the tool 

without having the interface occlude any portion of the world. 

Using the virtual manipulator control approach a six degree of fi-eedom robot can be 

made to mimic the kinematic behavior of some other mechanism. The time varying extension 

of the virtual manipulator control can allow the traveler to interact with arbitrary rigid objects. 
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In addition the time varying characteristics of the a virtual manipulator can be tied to a 

dynamic model allowing the traveler to interact with a virtual object that possess dynamic 

charaaeristics. 

The goal of this work is to advance the state of the art in haptic interaction in synthetic 

environments. To that end the virtual manipulator control approach will be developed. The 

control approach is designed for use on a general sbc degree of freedom robot in an effort to 

increase the availability of force display in synthetic environments. This is achieved by making 

it easier to acquire and maintain the haptic interaction device. In addition this approach 

should foster a greater sense of cooperation and collaboration in this area of research by 

allowing researchers to verify and extend the work performed by others at different facilities. 

In addition this approach to haptic interaction can be used in most if not all types of synthetic 

environments from head mounted displays to surround screen virtual enviroxunents. 

The virtual manipulator approach also makes a contribution in the area of control 

theory and nonlinear systems apart from the area of haptic interaction. The system composed 

of the virtual manipulator control law and a six degree of freedom robot has an infinite 

continuum of equilibrium points defined by the end effector trajectory of the virtual 

manipulator. This is an unusual occxarrence in control theory, where most systems are 

designed to have a single isolated equilibrixam point. The stability of the continuum of 

equilibrium points will be demonstrated using a tradition Lyapunov argument. 

Small two and three degree of freedom haptic devices are currently commercially 

available for use with today's graphic workstations. However, using the virtual manipulator 

control approach it will be possible for the next generation of graphics workstations to be 
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equipped with a low cost six degree of freedom force feedback interface. Using a fish bowl 

style synthetic environment a virtual tool will be extended form the haptic device to allow 

engineers to develop prototype designs or analyze response data with the addition of force as 

an input channel. This advancement should provide a natural and effective human-computer 

interaction mechanism. 

This work is divided into two major parts. Preceding Part I is a review of current 

literature in Chapter 2. Part I then discusses the area of haptic interaction. Specifically, 

Chapter 3 presents the virtual manipulator control law. The stability of this control law 

operating on a general six degree of freedom robot is shown in Chapter 4. The experimental 

hardware used to verify the virtual manipulator control scheme is presented in Chapter 5. In 

Chapter 6 experimental results obtained from the available hardware is exhibited. The 

second part of this dissertation develops a dynamic modeling approach that can be used with 

the B-spline geometric representation. This part begins with a description of finite element 

analysis in Chapter 7. Chapter 8 proposes a modification to the standard finite element 

analysis. A comparison of the standard and modified finite element analyses is presented in 

Chapter 9. Chapter 10 develops a technique for deforming dynamic models derived using the 

modified finite element analysis. A dynamic surface for use in a synthetic environment is 

developed in Chapter 11 using the modified finite element analysis. Following Part II, the 

final chapter. Chapter 12, discusses the results of this dissertation and examines areas of 

future research. 
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CHAPTER 2. LITERATURE REVIEW 

Graphical display technology has advanced greatly in the past decade. Current 

graphics workstations can now render large, photo realistic scenes while still allowing real 

time interaction. These advanced computers are fueling the development of synthetic 

environment technology. A graphics workstation can generate two images of a particular 

scene, one calculated for the left eye of the observer and the second for the right eye of the 

observer. When the images are presented to the appropriate eye, the mind of the observer is 

able to fuse the images together to form a believable three dimensional picture of a scene that 

exists only in a computer database, a synthetic environment [41]. 

There are several ways to present these stereographic scenes to the traveler in a 

synthetic environment. The least immersive, in the sense that the traveler is least likely to 

believe that she is present in the conceptual world, is to simply display the images on a 

conventional computer monitor. A pair of liquid crystal display shutter glasses is used in this 

implementation approach to occlude the right eye image from the left eye and conversely to 

occlude the left eye image from the right eye. The result of this approach is that a three 
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dimensional synthetic environment is created that occupies the space in front of and behind the 

computer monitor [20]. This synthetic environment technique is commonly referred to as a 

"fish bowl" because the traveler's view of the synthetic environment is similar to a person's 

view of fish swimming in an aquariimi. Although this stereographic display technique is not 

highly immersive, it is a good starting point in the development of a synthetic environment. 

Another approach to presenting stereographic scenes to a traveler is the use of a head 

mounted display (HMD). This technique uses two display monitors instead of one, as used in 

the fish bowl approach. Each eye is allowed to see one display and is occluded from seeing 

the other by means of some physical barrier [99]. This is generally achieved by using small 

display monitors that are mounted in a visor, that is placed over the face of the traveler. This 

approach is more immersive than the fish bowl technique because the traveler sees only what 

is displayed on the monitors, anything that is physically present around the traveler is 

occluded. 

Although a BMD provides an immersive synthetic environment it also raises some 

problems that must be overcome by the designer of the synthetic environment. Because the 

traveler can not see the real world aroimd her safety is an issue that must be addressed. 

However, a more important issue is registration. If the traveler is allowed to interact with the 

synthetic environments using her hands, a graphical representation of the hands must be 

placed in the synthetic environment. The graphical representation of the traveler's hands must 

be placed in the same position and orientation as her real hands, if there is error in the 

placement of the computer generated hands the traveler may become disoriented thus lowing 

the sense of immersion. 
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A head coupled display (HCD) is a stereographic presentation technique that is a 

generalization of the HMD. Because the display monitors used in a HMD must be worn on 

the head of the observer, they must be low weight so they do not cause fatigue or injury to the 

traveler. This weight limitation typically results in the use of low resolution display monitors 

in a HMD [14]. The HCD display technique was conceived to overcome the weight issue 

associated with a HMD. In a HCD heavier display monitors are used because the weight of 

the display hardware is counterbalanced by a mechanical link^e [69]. As a result the weight 

of the HCD display is of less importance, however the inertia of the display monitors and of 

the coimterbalance mechanism are still experienced by the traveler and can impede on the 

sense of immersion. 

The final stereographic presentation technique is a generalization of the fish bowl 

approach. Instead of allowing the traveler to view the synthetic environment fi-om the 

outside, the stereographic images are projected onto the walls and floor of a room. This 

projection approach allows the traveler to step into the synthetic environment and interact 

with the objects that populate the environment [25], in the same fashion as the HMD. This 

projection technique removes some of the registration problems encountered Avith a HMD 

because there is no need to display any of the traveler's body, the traveler will be able to see 

her real hand. The main problem encountered with projection based systems is occlusion. If a 

real object or person stands between the traveler and the projection surface that portion of the 

synthetic environment will not be visible to the traveler. 

The previous discussion was not presented to determine what is the "best" approach 

for presenting realistic three dimensional scenes to a traveler in a synthetic environment. The 
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selection of a particular system is most often made by what resources are available to a project 

and what the ultimate goals of that project are. The main point of the discussion was to show 

the progression of stereographic presentation techniques and that the research and 

advancement of synthetic environment technology is viewed as an important and enabling 

technology by the world community. 

The presentation of realistic three dimensional scenes focuses on the visualization 

capabilities of a synthetic environment. Even if synthetic environments were limited only to 

visualization, there is little doubt that this technology will still have a positive impact on 

science [26], engineering [78], architecture [12] and medicine [32]. However, synthetic 

environments are not limited to visualization. In fact even in synthetic environments 

developed solely for visualization purposes the traveler interacts with the environment by 

means of view point tracking [27], that is, the scene changes in response to the traveler's 

change in position or gaze. Much of the current research in synthetic environments is 

focusing on extending the potential of this technology by developing new interaction 

paradigms. 

In order for the traveler in a synthetic environment to interact with the environment, 

the traveler must have an interface for communicating with the computer that is controlling 

the simulation of the environment. Traditionally, users interact with computers using a mouse 

and keyboard. A standard mouse is not an effective interface for a three dimensional synthetic 

environment because it is a two dimensional device. Although there are hand held keyboards, 

such as the Twiddler [39], keyboard interaction is also unnatural for interaction with a 

synthetic environment. 
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Two different types of devices have been developed as interface devices for travelers 

in a synthetic environment. The first type of device, a wand, is a three dimensional 

generalization of a conventional mouse. A wand is a hand held device that is instrimiented so 

that the position and orientation of the device can be measured and utilized as input to the 

computer controlling the synthetic environment. In addition, a wand can be equipped with 

buttons that serve as additional digital inputs to the controlling computer. The second type of 

device, a glove [107], is used to provide more refined input to the computer controlling the 

synthetic environment. A glove is a device worn over the traveler's hand that is instrumented 

to track the motion of the traveler's hand as well as measure the motion of each digit of the 

hand. The data fi-om a glove device can be used to allow dexterous manipulation of a virtual 

object in a synthetic environment by the traveler. 

As the traveler in a synthetic environment is allowed to interact with the objects that 

populate the conceptual world, the database associated with the environment must extended. 

The database for a visualization synthetic environment must include a complete graphical 

description of the environment, such as object geometry, colors, textures and a lighting model. 

However, for an interactive synthetic environment the database must include a complete 

graphical description of the environment as well as a description of the interaction 

methodologies. 

Therefore given a device, either a wand or a glove, an interaction protocol can be 

developed to facilitate picking up objects, moving them around and stacking them up. These 

types of interactions could be grouped as interacting Avith rigid objects, objects with constant 

and unchangeable geometry. Perhaps the objects that populate the synthetic environment 
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should not be rigid, the interaction device can be used to allow the traveler to maneuver the 

object as well as deform the shape of the object. Once the objects that populate the synthetic 

environment are allowed to be deformed the size of the synthetic environment database again 

increases. The database must now include protocols that describe how the objects deform 

when the traveler acts on them. 

It is easy to envision a synthetic environment developed as a design studio for an 

automobile stylist. The stylist can shape the contour of next years automobile not with clay 

but with a computer database. However, to the stylist the interaction metaphor is the same, 

using her hands to arrive at the desired form. The major obstacle that stands in the way of 

realizing this goal is the method of interaction [33]. The current interaction devices, both 

wands and gloves, are passive they only sense the traveler's motion and allow the synthetic 

environment to react based on the measurements. However, a new class of interaction 

devices are currently being uivestigated. These haptic devices [55] can not only sense the 

motion of the traveler in a synthetic environment but also react by applying force feedback to 

the traveler. 

The technology used to develop haptic interaction devices is based on tele-operation 

equipment. Tele-operation is the control of a remote robotic slave manipulator by an operator 

using a master manipulator [103], The use of tele-operation technology in synthetic 

environments is easy to imagine, the master manipulator interface is used to control the 

synthetic environment instead of the remote located slave manipulator [16]. In fact interaction 

techniques for synthetic environments have developed in much the same way as tele-operation 

equipment. 
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Early tele-operation systems allowed the operator to interact with the remote slave 

manipulator using a passive master manipulator. However, it was soon realized that these 

passive interaction approaches were diflScult for ±e operator to use and the research into 

active force feedback master manipulators provided an effective solution to this problem. 

This parallel development of tele-operation systems and synthetic environments provides the 

designer of a synthetic environment system with a wealth of information to draw upon. Most 

importantly, the previous tele-operation research provides a description of a "good" force 

reflecting master, this information can be used to design a haptic interface for a synthetic 

environment. 

Tele-operation research has described a "good" haptic interface as a low inertia, low 

friction manipulator that is back driveable [40]. This description of the ideal haptic interface 

manipulator is significantly different then the description of most commercially available robot 

manipulators. As a result most of the early research into force feedback for synthetic 

environments has focused on the design and construction of interface manipulators; which 

behave more like the ideal haptic interface than traditional robots [60]. 

Although all of the devices that will be described below were specially designed and 

fabricated, with only one prototype being built they can be classified into three groups. The 

first group contains highly specialized devices with only one intended use or fimction. 

Devices in this category are characterized by high fidelity reproduction of the desired 

sensation. However, the cost of this high fidelity is a loss of generality for the device. A good 

example of these types of devices is the piano action simulator [36]. Another example is a 

non-invasive surgical simulator developed for medical training [95]. 
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The second group contains devices where the hnman-machine interface is 

accomplished by means of a stylist or grip. This category contains devices with both large and 

small working volumes. Large workspace devices have been developed with a single degree 

of freedom [74], four degrees of freedom [73], but most possess six degrees of freedom [1] 

[77] [96] [105], These interfaces allow the human to feel contact on the pahn of the hand by 

grasping a bar. Using these systems the traveler in a synthetic environment can sense 

boundaries, shapes, interact with virtual objects by moving them or deforming their geometry 

or even play tennis. Smaller pen-based interface arrangements have been used to deform free 

form surfaces [50], simulate surgical tools [5] [15] or allow standard computer interaction 

[56]. 

The third group contains devices that were developed to apply forces to the fingers of 

the traveler. Research has shown that for dexterous manipulation of an object it is siifBcient 

to apply forces to the finger tips and sagital planes of the finger of the human [63]. Using 

various mechanical arrangements devices have been developed to apply finger tip forces to a 

single digit [68], two digits [49], three digits [13], and five digits [9], In addition one device 

has been developed to apply finger tip forces as well as sagital plane forces to a single digit 

[65], 

The construction of all these unique devices has effectively isolated most of the 

researchers in the area of haptic interaction for synthetic environments. Collaboration and 

verification of experimental results is difScult if not impossible when only one prototype of a 

haptic force feedback device exists. Some haptic devices are currently being sold to the 

public, making uniform hardware available to the haptics research community. 
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CH Products [80] and Nficrosoft [94] are both marketing a low end force feedback 

joystick aimed at PC gaming enthusiasts. Immersion Corporation [47] offers high end force 

feedback joysticks developed for commercial gaming use. Sensable Corporation has taken the 

three degree of freedom PHANToM prototype [67] into a commercially available haptic 

interaction device [93], CyberGrasp [84] is offering a tendon driven, hand worn, exoskeleton 

force feedback device. Response to ±ese commercially available devices has been positive. 

Because these devices are available to the general public, researchers have been able to 

establish support "communities" [91] to foster and enhance the development of haptics. 

Although these commercially available devices are reducing the isolation faced by 

researchers in the field of haptic interaction. The manufacturers of the devices are still 

isolating themselves by using proprietary application programmer interfaces (API), such as the 

QHOST API [92] developed for the PHANToM device. Even in situations where the force 

feedback devices are for all intents and purposes the same, such as the low end PC force 

joystick market, the manufacturers have established proprietary API's [46] [72], This lack of 

cooperation by manufacturers is of course expected but only adds to the difiBculties faced by 

researchers and developers of haptic simulations. 

However, recent research efforts in haptic interaction have focused on developing 

control approaches for implementing force feedback in a synthetic environment with 

commonly available robot manipulators. Although commonly available robots are generally 

not classified as ideal haptic devices, control implementations, more sophisticated then earlier 

tele-operation implementations, are now possible due to the increased computational power of 

personal computers. More sophisticated control implementations allow a less than ideal 
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interfece robot to respond as well as an ideal haptic device. In addition, because these control 

laws are developed for a general six degree of freedom robot manipulator, they can be applied 

to a common industrial robot or a high performance haptic interface [54] if this type of 

manipulator becomes available. These control approaches adlow a general six degree of 

freedom robot to mimic the dynamic or kinematic behavior of some virtual manipulator. 

The first attempts at controlling the dynamic behavior of robot interfaces to allow it to 

mimic another dynamic mechanism or object [43] utilized impedance control theory [42]. The 

natural converse to impedance control, admittance control has also been applied to the 

problem of modifying the dynamic characteristics of the interface robot by having the robot 

behave like another dynamic system [19] [106]. However, care must be exercised when 

selecting the desired dynamic behavior for an interface robot. There is without doubt a limit 

on the dynamic characteristics which can be mapped onto a given interfece robot. 

Researchers are currently investigating techniques, such as Z-width for stiff walls [22], for 

determining how "transparent" a given interface robot can be made with respect to a desired 

set of dynamic characteristics [59]. 

The idea of having a robot behave kinematically like another virtual mechanism 

appears in the area of kinematically redundant robotic systems [28]. In this context the 

control approach was not used to generate an himian - machine interface but was used to 

handle system redundancies. It has also been shown that the kinematic constraints imposed by 

a virtual manipulator in the context of a kinematically redundant system are the same as the 

kinematic constraints imposed in a hybrid position/force control problem [88]. The kinematic 

constraints of the virtual manipxilator establish easily the directions of force control and 
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position control in the hybrid formulation [52]. Although there are docimiented concerns 

associated with hybrid position/force control [29], most notably dimensionally inconsistent 

products, these concerns have been addressed in the area of cooperating manipulators and 

have resulted in the theory of generalized inverses [10], 

The concept of virtual manipulators has been applied to tele-robot systems in order to 

simplify interaction with the master manipulator by Idnematically constraining the master to 

follow the desired path defined by the end effector of the virtual manipulator [51]. This 

implementation assumes that the virtual manipulator is ideal and therefore no power can be 

transmitted to it or taken from it. This assixmption allows the velocity of the virtual 

manipulator to be determined based on the interaction forces from the master and slave 

robots. The velocity of the virtual manipulator can then be integrated to determine the 

position of the virtual manipulator as a function of time during the course of operation of the 

system. 

An alternative approach has been developed which uses the null space of the transpose 

of the virtual manipulator Jacobian to impose the virtual manipulator kinematic constraints 

onto a general six degree of freedom robot for use as an interface to a synthetic enviroimient. 

Virtual manipulators have been developed to allow interaction with one dimensional [61], two 

dimensional [64] and three dimensional [62] constraint mechanisms. The virtual manipulator 

control law used in the three examples above has since been rederived in the context of a 

decoupling control [71] and is shown to have a performance advantage over the earlier idea 

virtual manipulator control law formulation [51], 
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In addition to the description of a good haptic device previous tele-operation research 

also addresses other critic control issues such as force scaling and time delays, that are of 

importance in synthetic environments. Force scaling is relevant in synthetic environments 

because the conceptual, computer generated world can have arbitrary size. Synthetic 

environments have been developed to allow investigation of molecular dynamics [79]. If force 

feedback devices are included in these microscopic synthetic environments, micro-macro force 

scaling will be required [53]. The issue of time delay is important in the area of distributed 

synthetic environments [75], When several travelers are interacting with haptic devices 

remotely in the same synthetic environment the communication delays present in the system 

wiU have an impact on the performance of the haptic devices [3]. 

The main reason for using force feedback techniques in synthetic environments is to 

increase the level of immersion experienced by the traveler in attempt to increase the utility of 

the synthetic environment. These types of devices should increase the feeling that the traveler 

in a synthetic environment is present or immersed in the conceptual world. For example, 

when a traveler encounters a rigid object in a synthetic environment instead of the graphical 

representation of her hand passing through the object, resistance is felt. Rigid objects are 

prevalent in haptics research because they represent one of the most challenging tasks faced 

by a haptic display [21]. However, these devices are also capable of representing deformable 

objects and perhaps application of haptic devices to deformable objects will allow greater 

advances in the interactive abilities of synthetic environments than rigid objects. 

As would be expected when a haptic device is included in a synthetic environment the 

database required for operation again increases. It must now include a complete graphical 
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description of the worid, an interactive description of the world and objects that populate it, 

and a force description [66] [102]. This force description describes the force - motion 

relationships between the conceptual world and the objects contained in it. The requirement 

of knowing the force - motion relationships immediately brings physically based modeling to 

interest. 

Physics based modeling uses the laws of physics to obtain realistic simulations of 

objects defined by a computer graphics database. Because physics based models are 

developed using a force - motion relationship, they will make the assimilation of haptic 

devices into synthetic environments easier than tradition kinematic based motion and 

deformation techniques. Physically based models can be derived for rigid objects [7] to allow 

virtual objects to be positioned using force instead of moving the object by constraining it to 

move with the traveler's hand position. Deformable objects can also be modeled using 

physics based techniques thus allowing force input to produce deformation as opposed to free 

form deformation techniques [45] [90]. 

Physically based models for deformable objects have been developed using finite 

element analysis (FEA) techniques [38] [101]. Material behaviors other than elasticity, such 

as plasticity and fi-acture dynamics, can also be incorporated into these FEA models in a 

consistent firamework [100]. The geometry of a FEA model can be defined by an implicit 

siuface [70] that has been deformed either globally or locally [8] to represent the virtual 

object. However, it may not be possible to represent an arbitrary virtual object using an 

implicit fimction. As a result the geometry of a FEA model is typically represented with a grid 

of points which are interpolated using a set of shape fimctions to obtain the shape of the 



www.manaraa.com

24 

object [11], The selection of an appropriate set of interpolation shape fimctions can be a 

complicated [17] and computer intensive [37] operation, which results in an obscure set of 

interpolation fimctions. 

In order to allow the use of a common set of interpolation shape fimctions, some 

researchers have developed physically based models that have two geometric descriptions, one 

for display and ±e second for dynamic modeling [18] [81]. The results firom the dynamic 

model are transformed by point inversion [82] or modal analysis [48], However, the use of 

two geometric descriptions does not easily allow the shape of the virtual object to be 

represented using a traditional basis such as the B-spline or NURBS [2], 

Recent work has developed physically based models using finite element techniques 

but using the B-spline basis in place of the traditional interpolation shape fimctions [30]. The 

use of the B-spline basis has been explored by the finite element community for modeling one-

dimensional and two-dimensional time dependent problems [104], vibration of thick circular 

cylindrical panels [76], undular bore [35] and the non-linear Schrodinger equation [34]. This 

work has shown that the B-spline basis can be used effectively as a set of shape fimctions in 

FEA. However, this work used physically based dynamic models as an analysis tool instead of 

a mechanism for interaction. 

In fact the rational extension of the B-spline basis, the NURBS basis, has been used to 

develop physically based models using FEA. This approach was used to associate dynamic 

characteristics with traditional NURBS curves and surfaces [86], NURBS swung surfaces 

[85] and triangular NURBS [87]. These NURBS based physically based dynamic models 

were used to facilitate interaction with the virtual object by the user, but the conceptual 
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interaction forces were applied using a mouse driven, traditional, graphical user interface 

without a haptic force feedback device. 

In addition the NURBS based dynamic models describe above were developed in the 

parametric space of the curve or surfece. Althoi^ developing the dynamic model in 

parametric space simplifies model development, this results in a mismatch of the dynamic 

characteristic defined in parametric space and external forces defined in Cartesian space. This 

mismatch may result in an une?q)ected response of the model when the external forces are 

applied by a graphical user interface. However, if the external forces are applied by a haptic 

interaction device the mismatch will manifest as a form of force scaling, which in the worst 

case could result in unstable operation of the haptic interface. To prevent this mismatch it 

essential that the model be developed with respect to the same Cartesian coordinate system as 

the external forces [31], In order to develop the model in Cartesian space the Jacobian for the 

curve or surface in required. This Jacobian matrix contains information describing the 

parameterization of the curve or surface. 

This work will develop and present examples of a kinematic based virtual manipulator 

control law that can be used as a human-machine interaction mechanism in a synthetic 

environment. In addition, a firamework will be developed to allow the shape of the object, 

that is defined by the virtual manipulator, to deform d>-namically when external forces are 

applied. The dynamic model of the object will be developed using a B-spline based FEA 

approach. The combination of the haptic interaction device in concert with the physically 

based dynamic model will produce a synthetic environment that is more immersive that a 

simple graphic feedback synthetic environment. 
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PARTL HAPTIC INTERACTION 
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CHAPTER 3. CONCEPT AND CONTROL 

Virtual manipulators are a new concept in the area of force feedback for synthetic 

environments. They allow a person traveling in a synthetic environment to interact physically 

with the objects that populate the computer generated world. The presentation of contact 

forces to the traveler will add to the realism needed to make the journey an immersive 

experience. In addition, the interaction force experienced by the traveler will provide more 

life-like and natural control over virtual objects. This chapter will begin by describing the 

motivation for the virtual manipulator interface approach and will conclude by deriving the 

appropriate robot control law to fiilfill the concept requirements. 

Virtual Manipulator Concept 

The virtual manipulator concept is based on the idea that a general sbc degree of 

freedom robot can be used to mimic the kinematic behavior of some virtual manipulator with 

five or less degrees of freedom. The virtual manipulator is selected so that it provides the 

necessary contact forces associated with the object that is being explored. The robot interface 
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is constrained to follow the virtual manipulator by enforcing a closed kinematic chain 

relationship between the robot end effector and the end effector of the virtual manipulator. 

Consider, for example, constructing a virtual manipulator that will allow a traveler in a 

synthetic environment to manipulate a one degree of freedom crank [61], such as a gear shift 

mechanism. In this example the virtual manipulator is simply a one degree of freedom 

revolute manipulator whose position and orientation match the gear shift mechanism as shown 

in Figure 3.1. Figure 3.2 shows the closed kinematic chain relationship that must be enforce 

to ensure that robot interface behaves like the gear shift mechanism. This type of haptic 

display coupled with a synthetic environment containing an automobDe interior could be 

utilized to examine the ergonomic characteristics such as position, orientation and range of 

motion of the gear shift mechanism. 

It is important to note at this time that the virtual manipulator control approach is not 

limited to reproducing the kinematic characteristics of mechanisms. Time-varying virtual 

Figure 3.1. Virtual mechanism for constraint development. 
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Six DOF Manipulator 

Virtual Mechanism 
\ 

Figure 3.2. Closed kinematic chain relationship. 

manipulators can be formulated to represent abstract synthetic objects such as general curves 

and surfaces [64], However, the complexity of the virtual manipulator will be a function of 

the complexity of the object that is being represented. This subject will be addressed in more 

detail in Chapter 6; which describes experimental results. Using the overall concept of the 

virtual mechanism interface, the question of how to control the robot will be addressed. 

Virtual Manipulator Control Law 

In order to develop a robot control law that will enforce the closed kinematic chain 

requirement of virtual manipulator approach, some standard robotic analysis techniques will 

be used. A reader with experience in robotic analysis should have little difBculty following the 

derivation that will be presented, and numerous texts are available on the subject of robotic 

analysis that can be used to provide background information for this section [24] [89], 
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Consider for the moment that a virtual manipulator exists physically. If an operator 

grasps the virtual manipulator and applies an external force, F,, to the end effector a set of 

joint torques, , for the virtual manipulator can be calculated using the relationship in 

equation (3.1) that will prevent the virtual manipulator from moving. That is the vector of 

joint torques, , will allow the virtual manipulator under static equilibrium conditions to 

resist the external force, , and behave as if it were a fixed structure. 

(31)  

The matrix is the transpose of the Jacobian for the virtual manipulator. Note that the 

Jacobian, , and the external force, F,, must be represented in the same coordinate 

reference frame. For convenience this coordinate reference frame is taken to be the end 

effector frame of the virtual manipulator, although this selection is arbitrary. 

However, a virtual manipulator is allowed to have at most five degrees of freedom. 

Therefore the transpose of ±e Jacobian for the virtual manipulator, , is an non-square 

matrix, in fact will be a « by six matrix. Where n is the number of degrees of freedom for 

the virtual manipulator. As a result there is no unique mapping between the joint torque, , 

and the external end effector force, F^. There are an infinite number of external end effector 

forces, F,, that will yield the same vector of joint torques, . 

If however, a set of artificial constraints is chosen, a unique map can be found between 

the joint torques, , and the external end effector forces, F^. One such constraint is to select 
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the vector of external end efifector forces, F, to have the smallest norm in the least square 

sense. This result can be achieved by using the Moore and Penrose pseudo-inverse as shown 

in equation (3.2). 

The superscript (*) notation is used to indicate a least squares solution. It is important to note 

that the entries in the Jacobian matrix have physical units associated with them. In addition 

the inner product combination of these units in the term results in the combination of 

physically dissimilar units [29]. This issue has been addressed by several researchers and one 

solution to this problem is to add a heuristic weight matrix to form a weighted pseudo-inverse 

[10] as shown in equation (3.3). 

The matrix A is a positive definite weighting matrix. The exact form of A will not be 

selected at this point. 

Equations (3.1) and (3.3) can be combined to determine the least squares end effector 

force, F*,associated with a given end efifector force, F^, as shown in equation (3.4) below. 

(3.2) 

(3.3) 
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F; =AJ,(J:AJ„)"J:F, (3.4) 

The term AJ^(J(,AJ„) J(, in equation (3.4) is commonly referred to as ±e range space 

filter, R, for the transpose of the virtual manipulator Jacobian, J[,. The range space filter, 

R, for the transpose of the virtual manipulator Jacobian, , removes any components of the 

end effector force, , that don't influence the virtual manipulator's joint torques, , in the 

weighted least squares sense. That is the weighted least squares end effector force, F/ 

represents the components of the original end effector force, F^, that the virtual manipulator's 

joint actuators must resist in order to prevent motion. 

The vector of forces removed by the range space filter, F„, can be calculated using 

equation (3.5). 

F.=F, -F;={i-aj.(J;AJ.)" J;}F, o.S) 

The term I - AJ„(J|,AJ„) ' in equation (3.5) is commonly referred to as the null space 

filter, S, for the transpose of the virtual manipulator Jacobian, J|,. The null space filter, S, 

for the transpose of the virtual manipulator Jacobian, , removes any components of the end 

effector force, F^, that influence the virtual manipulator's joint torques, , in the weighted 

least squares sense. That is the components of the end effector force that are in the null space 

of the transpose of the virtual manipulator Jacobian, F„, are resisted by the structure of the 
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virtual manipulator, such as by the bearings, and do not have to be resisted by the actuators of 

the virtual manipialator as shown below in equation (3.6). 

= J:{I-AJ,(J:AJJ''J:}F, (3.6) 

= 0 

Now assume that a six degree of freedom robot is maneuvered so that it's end effector 

has the same position and orientation as the virtual manipulator with the goal that the robot 

Avill behave kinematically the same as the virtual manipulator. If the operator again grasps the 

end effector of the robot and applies the same external force, , that was applied previously 

to the virtual manipulator, a set of joint torques, r^, can be calculated using the relationship 

shown in equation (3.7) that will prevent the robot from moving. 

T^ = JX (3.7) 

However the goal of the virtual manipulator control law is to constrain the robot end 

effector to follow the end effector of the virtual manipulator. Therefore the robot does not 

need to resist all components of the end effector force, F^, only those components that would 

have been resisted by the structure of the virtual manipulator, F„. Therefore, if the joint 

torques, z;, apphed to the robot are changed to those shown in equation (3.8) the robot will 
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be free to move along the end effector trajectory defined by the virtual manipulator but will 

resist motion in all other directions. 

Equation (3.8) can be used as a control law for the robot interface to satisfy the virtual 

manipulator interface goal. The control law for the robot interface is independent of the 

control force generation scheme. That is there is no requirement on the origin of the end 

effector force, , this topic will be addressed in the next section. 

The virtual manipulator control law is independent of the force generation scheme. As 

a result there are numerous ways to implement this control approach. One technique is to 

mount a six-axis force/torque transducer on ±e end effector of the robot and simply measure 

the forces being applied. However, there are difl5culties associated with this approach. First, 

force transducers typically have poor noise characteristics. The presence of noise in force 

measurements can lead to unpredictable system behavior without proper compensation. 

Attempts to remove the noise by means of a filter introduce a phase lag into the force signal 

which can result in unstable user excited oscillations. Second, the high feedback gains needed 

for proper system response when the force loop is closed generally requires knowledge of the 

rate of change of the force signal for stable performance. The noise present in the original 

force signal prohibits obtaining force rate of change information. For these reasons measuring 

(3.8) 

Force Generation Scheme 



www.manaraa.com

35 

the end effector force for the virtual manipulator control law was not pursued. Instead the 

theory of operational space control [58] was selected as a viable candidate. 

The operational space control formulation uses springs and dampers defined in 

Cartesian space to manipulate the end eflfector position and orientation of a robot. Figure 3.3 

illustrates this control approach by showing the three linear springs used to control the end 

effector position, superimposed on the image of the robot. To control all six degrees of 

freedom of a general interface robot, three torsional springs, to control the orientation, are 

required in addition to the three linear springs shown in Figure 3.3. 

The control law used for the operational space formulation is shown in equation (3.9). 

The terms , J' and are the vector of robot control torques, the transpose of the robot 

Jacobian and the external control force applied by the Cartesian space springs and dampers 

respectively. The external control force applied fay the Canesian space springs and dampers 

(3.9) 

X 

Figure 3.3. Operational space linear control springs. 
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can be evaluated using equation (3.10). 

F ,  =K,e  +  K„e (3.10) 

The matrices and are positive definite, symmetric gain matrices. In addition e is an 

error vector, containing both position and orientation errors, that describes the displacement 

of the robot end efifector relative to the desired end eflfector position and orientation and e is 

the rate of change of this error vector. 

When the external force applied to the robot is developed using the operational space 

formulation, the virtual manipulator control law can be expressed in the form shown in 

equation (3.11). 

With proper selection of the gain matrices A, and the control law shown in 

equation (3.11) will constrain a general six degree of fireedom robot to behave kinematically 

like the virtual manipulator with the null space filter, S. The structure of the gain matrices 

A, Kp and K„ will be selected based on the equilibrium point and stability analyses of the 

dynamic system; which will be addressed in the next chapter. 

(3.11) 



www.manaraa.com

37 

CHAPTER 4. STABILITY OF INTERACTION 

The subject of safety for a haptic device is of paramount importance. Most large force 

feedback manipulators could without doubt deliver a fatal injury to its operator and even the 

smaller units posses sufiBcient force delivery to injury fingers and hands. The subject of 

robotic safety at the university or corporate level is generally handled by means of stringent 

safety requirements that are imposed onto a system designer. These safety requirements are 

essentially restate the most common sense rule of robotics, do not allow the operator or 

observer to stand within the reach of the robot manipulator. The safety requirements also 

specify various hardware and software protocols to immediately shut down an operating robot 

in the event that a person enters the workspace of the robot, whether intentionally or 

accidentally. 

However, these legislated safety requirements are in direct conflict with the goals of 

the man-machine interface sought for this or any other haptic display. The Occupational 

Safety and Health Adn:iinistration (OSHA) has little flexibility in the execution of their 

regulator responsibilities, if it walks like a duck and quacks like a duck, it is a duck. OSHA 
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regulations apply specifically to autonomous devices. Powered robots under the control of 

human operators, such as an excavator, are unregulated. Experience in extending the level of 

autonomous action of the interface robot is needed to allow development of industry 

standards for this type of system. 

As a result, for these types of devices to take a place our everyday life will require a 

change in societal opinions concerning computer controlled hardware. Most people would 

probably conclude that it is safer to navigate through congested holiday traffic on the 

interstate, than interact with a robotic interface. Is this ±e correct conclusion? Can society 

leam to "trust" computer controlled hardware? The current onslaught of internet hip is 

bringing computer hardware into more homes than ever before. This also includes haptic 

devices such as the Force FX joystick [80]. This increased familiarity with computers and 

their associated peripherals should allow the assimilation of an anthropomorphic interface 

devices such as the system considered in this work. 

However, ±e assimilation process would be severely hampered by any accidents 

occurring at this early stage in development of the technology. Clearly the legislated safety 

requirements currently available were not intended or developed for haptic interaction devices. 

Until this technology has matured to the point where a concise set of safety requirements 

specifically developed for a general class of haptic interaction device can be written, the 

system designers will have to follow a more ambiguous set of moral guidelines such as 

AsimoVs Laws of Robotics [4], 

AsimoVs Laws of Robotics 
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0. A robot may not injure humanity or, through inaction, allow humanity to 
come to harm. 

1. A robot may not injure a human being, or through inaction, allow a human 
being to come to harm, except where that would conflict with the Zeroth Law. 

2. A robo^" must obey the orders given to it by a human being, except where 
that would conflict with the Zeroth or First Law. 

3. A robot must protect it's own existence, except where that would conflict 
with the Zeroth, First or Second Law. 

Although it may appear that these laws are some what grandiose when applied to 

typical haptic display, the main point is clear. The safety of the operator must be the first 

concern of the robot. Because most if not all commonly encountered robots lack the 

sentience typically associated with fictional robotic systems the job of safety falls to the system 

designer. The first step in ensuring the safety of the operator interacting with a six degree of 

fi-eedom robot running a virtual manipulator control law is to ensure that the dynamic system 

has appropriate stability characteristics. 

The remainder of this chapter is devoted to the presentation of background material 

which will collimate in the proof of stability of the virtual manipulator control law when 

applied to a general six degree of fi^eedom robotic manipulator. The second section in this 

chapter will present the system of dynamic equations for a six degree of fi-eedom robot, as 

well as describe some of the mathematical properties of the elements of this dynamic model. 

The third section of this chapter will analyze the dynamic system of equations in order to 

determine the equilibriimi points of the system. The fourth and final section will present a 

proof of stability to show that the virtual manipulator control law, as a general class, has 

acceptable stability characteristics for application as a haptic interface. 



www.manaraa.com

40 

Dynamic System: Structure and Properties 

This section will introduce and discuss several important mathematical properties of 

the dynamic system composed of a six degree of freedom robot that is controlled by the 

virtual manipulator control scheme. Specifically this section will discuss the matrices that 

make up the dynamic equations of motion of a general six degree of freedom robot as well as 

the gain matrices, and , the null space filter matrix, S, associated with the virtual 

manipulator control approach. 

General Robot Dynamics 

In order to begin the stability analysis of the haptic interface, the dynamic equations of 

motion for a general six degree of freedom robot with be introduced. For a general six degree 

of freedom robot, the joint space dynamic equations are shown in equation (4.1). 

The matrix M(0) is a six by six, positive definite and symmetric inertia matrix for the robot 

vector of Coriolis and centrifiigal terms which is a fimction of the joint positions as well as 

joint rates, G(0) is a six by one vector forces arising from acceleration due to gravity which 

like the mass matrix is a fiinction of only the configuration of the manipulator, finally f and 

(4.1) 

which is a fimction of the position of all of the joints of the robot, v(0,0) is a six by one 
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are six by one vectors of joint actuator forces and external Cartesian forces and moments 

respectively. 

The dynamics of robot can be determined analytically using a number of techniques 

such as Lagrangian or Newton-Euler. However, even for devices with two or three degrees 

of freedom these equations become extremely cumbersome and difficult to derive. Many 

researchers are turning to symbolic approaches to determine the equations of motion for six 

degree of freedom robots [19]. Symbolic processing packages such as Maple possess the 

ability to derive, optimize and code the dynamic equations of motion for a given manipulator. 

However, this process with not be undertaken in this work. The proof of stability presented 

here will only deal with the robot dynamics in the matrix form presented above. There will, 

however, be times during the proof where certain properties of the matrices and vectors 

contained in the equations of motion will be needed. The special properties used will be 

presented and proved for a general manipulator thereby allowing the proof of stability to apply 

to any six degree of freedom manipulator. 

The first assumption that will be made in this proof of stability is that accurate gravity 

compensation can be obtained. The gravity compensation can take the form of an accurate 

analytic model of the gravitation forces that act on the manipulator or could be based on 

experimental data. The presence of gravity compensation will modify ±e system dynamics. 

(4.2) 
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The vector ^0) is a six by one vector of gravity compensating joint forces. If the gravity 

compensation is reasonably accurate, then equation (4.3) below is true. 

G(0)«G(0) (4.3) 

As a result the system dynamics reduce to the form show in the equation below. 

M(0)© + V(0,0) = T -  J X  (4.4) 

In addition it is common to see the vector of Coriolis and centrifugal terms, v(0,0), 

partitioned into a matrix form as shown in equation (4.5). 

V(0,0) = V„ (0,0)0 (4.5) 

The matrix V^(0, ©) is a six by six matrix. Careful examination of the vector, v(0,0), will 

reveal that there are several different ways to partition the vector into a matrix such that 

equation (4.5) is satisfied. However, it is assumed that the matrix, V^(0,0), is the result of 

a special type of partitioning of the original vector, v(0,0). Due to the nature of the 

partitioning the matrix, V„(0,0), is endowed with two properties of interest. First the 
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matrix, V„(0, ©), is a symmetric matrix. Second the matrix, V„(0, ©), will make the 

matrix, Q, defined below a skew-symmetric matrix. 

Q = M(0) - 2V„(0,0) (4.6) 

The matrix, M(0), is the time derivative of the inertia matrix, M(0), of the robot. These 

two properties of the matrix of Coriolis and centrifugal elements, V„(0, ©), will be used in 

the proof of stability for the dynamic system. 

The joint space dynamics of a robot shown in equation (4.4) can be transformed into 

Cartesian space using the Jacobian relationship for the robot. The Jacobian of a robot 

provides a linear relationship between the joint space rates and Cartesian space rates as shown 

in equation (4.7). 

(4.7) 

The matrix, J , is Jacobian of the robot and the vectors, and 0 , are the Cartesian space 

velocities and the joint space velocities, respectively. The leading superscript, b, on ±e 

Jacobian matrix and on the vector of Cartesian space velocities is used to represent the 

coordinate frame with which the Jacobian and the Cartesian space velocities are expressed in. 

As a result there are any number of Jacobian matrices for a given robot that can be used in 

equation (4.7). The selection of a particular Jacobian matrix is arbitrary and is generally made 
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in order to simplify calculations. In addition to relating joint space and Cartesian space 

velocities the Jacobian of a robot can also be used to relate Cartesian space forces to joint 

space forces. 

r=''J^''F (4.8) 

The vectors, r and "F, are a vector of joint space forces and a vector of Cartesian space 

forces represented in the coordinate frame labeled b, respectively. 

The Jacobian of a six degree of freedom robot will be a sbc by six matrix. For a given 

manipulator there are certain joint configurations where the Jacobian of the robot will lose 

column rank. These singular configurations typically form the boundaries of the usable 

workspace of the robot. If it is assumed that the robot is moving in an area of the workspace 

free of singularities, then the Jacobian of the robot can be inverted to obtain the inverse 

relationships of equations (4.7) and (4.9). 

(4.9) 

'F='J-^r (4.10) 

Equation (4.9) and its derivative and equation (4.10) can be used to transform the joint space 

robot dynamics into the Cartesian space. The derivative of equation (4.9) is shown below. 
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0='j-"i+^j-"'x (4.11) 

Substituting equations (4.9) and (4.11) into the joint space dynamic equation, equation (4.4) 

and pre-multiplying by the transpose of the inverse of the robot Jacobian yields the Cartesian 

space dynamic equations for the robot. 

Mx + Vi = (4.12) 

Note the leading superscript on the Jacobian matrix has been removed to show that the 

dynamics can be obtained with respect to any coordinate frame. The matrices, M and V, are 

the transformed inertia matrix and Coriolis and centrifugal matrix, respectively. The 

expression for these transformed matrices are shown below. 

M = (4.13) 

V = J-'" VJ-' + (4.14) 

The proof of stability presented in the final section of this chapter will be performed in 

Cartesian space therefore the dynamic system model shown in equations (4.12), (4.13) and 

(4.14) will be used. 
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Gain Matrices 

Two gain matrices are used in the virtual manipulator control scheme, and . 

The matrix is the position gain matrix and is the damping gain matrix. The position 

gain matrix will be discussed first followed the by damping gain matrix K^. 

The position gain matrix, , is used to transform the end effector position and 

orientation errors into control forces [58], The form of the position gain matrix, , is 

shown in the following equation. 

K. = 

k-
p 

0 0 0 0 

1 o
 

0 k' 
p 

0 0 0 0 

0 0 e 
p 

0 0 0 

0 0 0 k' 
p 

0 0 

0 0 0 0 ¥ 
p 

0 

0 0 0 0 0 k' 
? _ 

(4.15) 

The coefiBcients and k"" are a linear control spring rate and a rotational control spring rate 

respectively. Both and k'^ are positive constants. The gain matrix, K^, is diagonal 

therefore it is also symmetric. The eigenvalues are all positive which allows the conclusion 

that, Kp, is also a positive definite matrix. 

The block style of the position gain matrix is used so that the same linear or rotational 

error produces the same force regardless of the direction of the error. In addition the block 
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Style of the gain matrix accounts for the dissimilar nature of the two types of error, linear and 

rotational by allowing the selection of different control spring rates. 

The selection of the constants k' and k"" are left to the system designer with the only 
P P 

restriction that they be greater than zero. As these constants are increased the "stiflSiess" of 

the system is increased. Increasing the stif&iess of the system will reduce steady state errors 

and provide greater disturbance rejection, there is however a limit on how high these gains can 

be made. This performance limit is a fimction of the robot's physical characteristics and will 

vary from manipulator to manipulator. This performance limit is based on the amount of 

damping present in the system [22]. So although any six degree of freedom robot can be used 

as the interface device using the virtual manipulator control approach some manipulators such 

as the proposed high performance six degree of freedom haptic interface [54] which has been 

designed with a large amount of damping may offer a performance benejSt. 

The damping matrix, , has a structure that is similar to the position gain matrix, 

Kp, but it's fimction is quite different. The damping gain matrix, , is used to transform 

the velocity of the end effector both linear and angular into viscous damping forces [58], The 

form of the position gain matrix, , is shown in ±e following equation. 

k' 
d 

0 0 0 0 

r O
 

0 e 
d 

0 0 0 0 

0 0 /t' 
d 

0 0 0 

0 0 0 k' 
d 

0 0 

0 0 0 0 k' 
d 

0 

0 0 0 0 0 k' 
-
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The coefiBcients and are a linear viscous damping rate and a rotational viscous 

damping rate respectively. Both and are positive constants. The gain matrix, Kj, is 

diagonal therefore it is also symmetric. The eigenvalues are all positive which allows the 

conclusion that, , is also a positive definite matrix. 

The block style of the damping gain matrix was selected for the same reasons 

described in the discussion of the position gain matrix. In addition as alluded to in the 

position gain matrix discussion, there is a correlation between the damping gain matrix and ±e 

position gain matrix. On common technique for determining the optimal values for the 

damping and position gain matrices involves increasing the damping gain matrix until 

excessive noise is transmitted through the actuators of the robot. 

Once these maximum values for the damping gain matrix have been determined the 

elements of the matrix will be analyzed term by term as specified below. The value of the 

damping gain is obtained by using approximately eighty percent of this maximum value. The 

value of the damping matrix is then taken to have the form shown below. 

(4.17) 

The terms C and are a dimensionless damping ratio and a nature fi-equency respectively. 

The value of damping ratio, C, is selected by the system designer, a range between 0.7 and 
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1.0 is common. Based on the selected value for the damping ratio, 4", the value of the nature 

frequency, a}„, is determined using the equation (4.18). 

(4.18) 

The value of the position gain can be determined using the natural frequency, <y„, found, 

above as shown below. 

k,=(o; (4.19) 

The individual elements found using the procedure above can then be combined to form the 

position and damping gain matrices. 

The heuristic procedure that was outlined above to determine the position and 

damping gain matrices is just one technique that can be applied. The application of the virtual 

manipulator control scheme does not in any way specify a procedure to select the position and 

damping gain matrices. This clearly shows the flexibility of the control strategy. The force 

generation scheme can be based on the position and damping gain matrices as described in this 

work using any appropriate technique for determination of the values in the gain matrices. 
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Null Space FBter Matrix 

The null space filter matrix, S, this matrix is constructed using a weighted Moore-

Penrose pseudo-inverse of the transpose of the Jacobian of the virtual manipulator. The 

equation for the null space filter matrix is shown in the equation below. 

S = I-AJ,(jtAJ,)''j: (4.20) 

The null space filter matrix, S, is idempotent, that is S times itself is equal to S. This 

property is shown mathematically in the equation below. 

SS = S (4.21) 

The proof that S is idempotent is shown below. 

ss={i- j;) 

= I - j.r' K  - j; K  

=s 

It is Icnown that the Jacobian of the virtual manipulator does not have fiill rank, for this 

reason it is intuitive that the null space filter matrix, S, will not have fiall rank. However, the 
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rank of the null space filter matrix, S, is not known and will be critical in the next section 

concerning the equilibrium analysis of the dynamic system. Therefore, the following 

paragraphs will perform a detailed analysis of the null space filter matrix aimed at determining 

the rank of the matrix. 

The process of determining the rank of the null space filter, S, will be begin by 

determining the rank of the range space filter, R. 

The matrix, , is the m by n Jacobian of the virtual manipulator, which is assumed to have 

fiill column rank. 

The integer n is the number of degree of fi"eedom of the virtual manipulator. In addition m is 

the number of degrees of fi'eedom of the interface robot. As a result m is generally six, 

however, results are shown for the case of planar motion, in this situation m will be three. 

The matrix, A, in equation (4.22) is an m by /n positive definite and symmetric weighting 

matrix. The fact that the weighting matrix, A, is positive definite and symmetric ensures that 

the matrix has fiill rank. 

(4.22) 

(4.23) 
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rank(A) = m  (4.24) 

The product of the weighting matrix and the Jacobian of ±e virtual manipulator, AJ„, 

will be an OT by « matrix. The following rank inequality [44] will allow the rank of the matrix, 

A, to be determined. 

rank(C) + rank(D) — q <  rank(CD) < min(rank(C), rank(D)} (4.25) 

The matrix, C, has size p h y  q  and the matrix, D, has size q  by r .  Using the inequality in 

equation (4.25) it can be concluded that the rank of the product, AJ^, is the same as the rank 

of the virtual manipulator Jacobian, J„. 

rank(AJ„) = rank(j^) = Az (4.26) 

The information in equation (4.26) can now be used Avith the rank inequality shown in 

equation (4.25) to investigate the rank of the « by « matrix, J^AJ„. 

2/7-m< rank(j^AJ„) < (4.27) 
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As shown in equation (4.27) the rank of the matrix, J^AJ„, can not be determined, an upper 

and lower boimd can only be specified. However, for the range space filter, R, to exist the 

inverse of the matrix, J^AJ„, must exist. This requires that the matrix, J^AJ^, has fiill rank. 

If equation (4.28) is not true then the range space filter, R, will not exist and consequently 

the null space filter, S, will not exist. If the null space filter matrix, S, does not exist then the 

virtual manipulator control law can not be implemented. Therefore it will be assumed that 

equation (4.28) is true for all virtual manipulator control laws of interest. 

If the rank of the n h y n  matrix, J^AJ^, is n  then the inverse of the matrix exists and 

also has fiill rank. 

Knowing that the m by « matrix, AJ^, has rank equal to w, equation (4.26), and the nbyn 

(4.28) 

(4.29) 

matrix, [J^AJ„] ', has rank equal to n ,  the rank inequality shown in equation (4.25) can be 

used to verify equation (4.29). 

rank(AJ^[jJ'AJ„] ') = « (4.30) 
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Finally, application of the rank inequality shown in equation (4.25) to the /w by « 

ma t r i x ,  A J ^ [ J ^ A J ^ ]  ,  w i t h  r a n k  e q u a l  t o  n  a n d  t h e  «  b y  m  m a t r i x ,  ,  w i t h  r a n k  e q u a l  t o  n  

allows ±e conclusion that the m by /n range space filter, R, has rank equal to the rank of the 

virtual manipulator Jacobian, . 

rank(AJ„[j^AJ„]'j^j = rank(R) = Ai (4.31) 

Now having established the rank of the range space filter, R, as shown in equation 

(4.31), the rank of the null space filter, S, can be addressed. 

S  =  I - R  ( 4 . 3 2 )  

The matrix, I, is an OT by m identity matrix. Equation (4.32) can be rewritten as shown in 

equation (4.33) below. 

I  =  R + S  ( 4 . 3 3 )  

The rank inequality [44] wiU help establish the rank of the null space filter matrix, S. 

rank(E + F) < rank(E) + rank(F) (4.34) 
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For the case of ±e null space filter matrix, S, and the range space filter matrix, R, equation 

(4.34) can be expressed as shown in equation (4.35) below. 

rank(R + S) < rank(R) + rank(S) (4.35) 

Equation (4.26) can be simplified equation (4.31) and (4.33) and knowing that an identity 

matrix always has fiJl rank. 

m - n <  rank(S) (4.36) 

Equation (4.35) establishes a lower limit on the rank of the null space filter matrix, S. In 

order to determine the upper limit for the rank of the null space filter matrix, S, the product 

of the null space filter matrix, S, and the range space filter matrix, R, will be used in 

conjunction with the rank inequality shown in equation (4.25). 

rank(R) + rank(S)- m <  rank(RS) (4.37) 

The product of the range space filter matrix, R, and the null space filter matrix, S, is shown 

in equation (4.38) below. 
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RS = (I-S)S = S-SS = S-S = 0 (4.38) 

Equation (4.38) allows the conclusioa that the rank of the product, RS, is zero. Therefore 

equation (4.37) can be simplified into the form shown in equation (4.39). 

Now that the upper and lower bounds on the rank of the null space filter matrix, S, have been 

established in equations (4.36) and (4.39), the rank of the null space filter, S, can be 

determined. 

This section has presented many important facts about the matrices that compose the 

dynamic system. This information will be used in the next section of this chapter which will 

perform any equilibrium analysis of the dynamic system as well as in the last section of this 

chapter which will provide a proof of stability for the virtual manipulator control law. 

Equilibrium Point Analysis 

Before discussing the stability of a system it is first essential to analyze the system to 

determine the number and location of the system's equilibrium points. An investigation of the 

equilibrium points of a system is the correct place to begin a discussion of the stability 

rank(S) < m - n  (4.39) 

rank(S) -  m - n  (4.40) 
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characteristics of a system. Although it is common to hear the expression "the system is 

stable" this statement is ambiguous, misleading and should be avoided. The correct result 

from a stability discussion is whether or not a particular equilibrium point is stable or not 

stable. 

An equilibriimi point is an invariant point, y*, in the system's state space which has 

the property that if the system starts at the equilibrium point, y', it will remain at the 

equilibrium point for all time [57], If we consider a general nonlinear autonomous system, 

this is a class that includes the dynamic equations of motion for a robot manipulator utilizing 

the virtual manipulator control law, as shown below. 

Then the equilibrium points of the system are the roots to the equation shown below. 

This therefore outlines a procedure that can be followed in order to determine number and 

location of the equilibrium points associated with a system. 

To begin an equilibrium point analysis for a general six degree of freedom robot using 

the virtual manipulator control law the dynamic equations of motion are required. The 

dynamics of a six degree of freedom robot were shown in equation (4.12) in the first section 

of this chapter, repeated here for convenience. 

y = f ( y )  (4.41) 

(4.42) 
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m + Vi = J-'^r-F, (4.43) 

The vector, t , is specified by the virtual manipulator control developed in Chapter 3, 

equation (3.11), repeated here for convenience. 

The vector, e, is the error between the position of the virtual manipulator end effector and the 

end effector of the interface robot and the vector, e, is the rate of change of the error vector. 

Although this equation is not written in state space format like equation (4.41) an 

equivalent set of equilibrium condition can be derived. If the dynamic system of equations 

(4.43) were placed into state space form, the equivalent set of equilibrium conditions would 

have the form shown below. 

Substituting the equivalent equilibrium conditions above into the dynamic system of 

equations yields that following equilibrium equation. 

r = rSKpe + rSK,e (4.44) 

i = 0 

x = 0 

SK^e + SK> = 0 (4.45) 
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It is important to note that the external force, , in equation (4.43) was also set to 

zero to arrive at equation (4.45). The external force, , will be applied to the system by the 

human operator, as a result it is not possible to model this force. Therefore the external force 

will be considered as a disturbance to the system. The stability of the system in the absence of 

disturbances should be considered first. After the stability of the system has been verified, the 

control system can be analyzed to determine how robust the system will be when faced with 

unknown disturbances. In addition, the external force F^ represents the coupling between 

robot interface and human machine. The issue of coupled stability is typically addressed using 

a passivity argument which is also possible in this situation but will not be discussed in this 

work. 

Equation (4.45) can be expanded by substituting in the expressions for the error, e, 

and the rate of change of the error, e. 

e = - X 

e = x^ - i 

SKpX„ - SK,x + SK^x, - SK^i = 0 (4.46) 

The desired trajectory, the path of the end effector of the virtual manipulator, is not a flmction 

of time but is a flmction of the configuration of the robot interface. This fact comes fi-om the 

existence of the desired closed kinematic chain relationship between the robot interface and 
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virtual manipulator. The position of the virtual manipulator is related to the position of the 

robot by some nonlinear relationship as shown in equation (4.47). 

The vector, 6^, contains the positions of the joints of the virtual manipulator and the vector, 

6, contains the positions of the joints of the robot. The function, g(o), in equation (4.47) is a 

nonlinear vector function containing n independent equations. The integer n is the number of 

degrees of freedom of the virtual manipulator. Equation (4 .47) can be modified using the 

forward kinematics of the virtual manipulator and the inverse kinematics of the robot interface 

as shown in equation (4.48). 

The fianction, g'(o), is a nonlinear vector fiinction containing m  equations of which n  are 

independent. The integer m is the number of degrees of freedom of the Cartesian space in 

which the robot interface is maneuvering. 

Equation (4.48) can be differentiated to obtain the linear rate relationship between the 

velocity of the virtual manipulator and the velocity of the robot as shown below. 

(4.47) 

= g'W (4.48) 

(4.49) 
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The matrix, , is the Jacobian matrix associated with the nonlinear vector function, g'(o). 

Equations (4.48) and (4.49) can be substituted into equation (4.46) to obtain the equilibrium 

condition shown in equation (4.50). 

However, i = 0, for all equilibrium points therefore equation (4.50) can be fiirther simplified. 

Equation (4.51) can be solved to determine the equilibrium points associated with the dynamic 

system. The goal of the virtual manipulator control law was to derive a control law which had 

an injSnite number of equilibrium points and these would be defined by the trajectory of the 

end eflfector of the virtual manipulator. This desired infinite continuum of equilibrium points 

all satisfy equation (4.52) below. 

(4.50) 

(4.51) 

e = g'(x) - X = 0 (4.52) 
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However the rank analysis of the null space filter, S, firom the previous section has 

shown that this matrix does not have fiill rank as shown in equation (4.40), repeated here for 

convenience. 

rank(S) =  m - n  (4.53) 

In addition the product of the null space filter matrix, S, and the position gain matrix, , 

can be shown to have the same rank as the matrix, S. Therefore, in addition to the desired 

continuum of equilibrium points defined by equation (4.52) there is a second n - dimensional 

continuum of equilibrium points which arise fi-om the fact that matrix, SK^, does not have 

fiiU rank. 

This second continuum of equilibrium points can be removed by using the closed 

kinematic chain constraint equations contained in the vector fiinction g(o) or g'(o). This 

process of removing the undesired equilibrium points is most easily understood by viewing the 

position vectors, i and , with respect to the end effector coordinate firame of the virtual 

manipulator. When the displacements of the robot and the virtual manipulator are viewed 

fi-om the end effector coordinate firame of the virtual manipulator the desired continuum of 

equilibrium points collapse into a single point, the origin of the coordinate fi^me. This fact 

will also be used in the next section concerning stability. This coUapse is caused because the 

position of the end effector of the virtual manipulator in the end effector fi-ame of the virtual 

manipulator is defined to be zero. 
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(4.54) 

Here the leading superscript, is used to denote that the vector, , is written with respect 

to the end efifector coordinate frame of the virtual manipulator. Therefore equation (4.52) can 

be rewritten as shown below. 

However, in equation (4.55) the position of the robot interface, ^x, is not only a function of 

the robot joint variables, 9, but also a fimction of the n virtual manipulator joint variables, 6^.. 

T h e  c l o s e d  k i n e m a t i c  c h a i n  c o n s t r a i n t  e q u a t i o n s ,  e q u a t i o n  ( 4 . 4 7 ) ,  a r e  d e t e r m i n e d  b y  d e f i n i n g  n  

elements of the displacement vector, ^x, equal to zero. The selection of the elements in the 

displacement vector that are set to zero is some what arbitrary but the goal of this process is 

to establish n equations of the form shown in equation (4.56), which are independent of the 

m-n equations of equation (4.51). 

E e=-g'(x)-°x =--x = 0 (4.55) 

^ x ,  = 0  (4.56) 

The variable, ^x,, is the i th element in the vector, ^x. 



www.manaraa.com

64 

When this process is used the only equilibrium point, when viewed from the end 

effector space of the virtual manipulator, is the origin. The infinite continuum of the 

equilibrium points that were obtained from the fact that the matrix, SK^, did not have fvill 

rank have been removed by appropriate selection of the closed kinematic chain constraint 

equations. When the system is viewed from the world coordinate system, there is an infinite 

continuum of equilibrium points that are defined by equation (4.52), which was the goal of the 

virtual manipulator control law. 

Stability Analysis 

The previous chapter has developed the virtual manipulator constraint controller. This 

control structure generates control forces based on standard Cartesian space control 

techniques. However, after the control forces are generated the portion of the control force 

that lies in the range space of the transpose of the Jacobian of the virtual manipulator is 

removed by multiplication by ±e null space filter matrix. Earlier work has shown that the 

Cartesian space proportional plus derivative control approach is globally uniformly 

asymptotically stable. However, the inclusion of the null space filter matrix and the kinematic 

constraints into the control law reqioires an analysis of stability to verify that the new control 

law has acceptable stability characteristics to warrant use in a haptic display application. 

This stability analysis will examine the stability of the infinite continuum of equilibrium 

points found in the previous section. The stability analysis of a control system that contains 

multiple equilibrium points is a subject typically not addressed in control literature [57], When 

the stability of a continuimi of equilibrium points is addressed it is mainly for mathematical 
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interest [6] and not to show the stability of a particular system. In addition the stability of 

these equilibrium points will be analyzed with respect to the end effector coordinate frame of 

the virtual manipulator. This coordinate frame is the obvious choice for stability analysis 

because the continuum of equilibrium points coUapses to a single point located at the origin in 

this reference frame. As a result the stability of this equilibrium point can be determined using 

standard techniques such as Lyapunov theory and La Salle's theorem. 

This section will present two proofs of stability, the first will be for a slightly modified 

virtual manipulator control law. The second proof will show the conditions necessary for 

stability of the original virtual manipulator control law developed in Chapter 3. The reason 

for the modifications to virtual manipulator control law made in the first proof will be 

discussed later. In addition both proofs presented in this section will be performed with 

respect to the end effector space of the virtual manipulator. This fact was represented in the 

last section by placing a leading superscript, E, on necessary variables. This section assumes 

that all displacements, velocities, accelerations and Jacobians are written with respect to the 

end effector coordinate frame of the virtual manipulator. Therefore the leading superscript 

notation will only be used in situations where confiision might result. 

Modified Control Law 

This subsection will show the stability of a slightly modified virtual manipulator 

control law. The modifications to the control law are shown in equation (4.57). 

r = -J^SK^x-rK,i (4.57) 
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The form of the damping term of the virtual manipulator control has been modified in 

equation (4.57). Specifically, the proportional plus derivative damping term has been replaced 

with a minor loop velocity feedback term. This term adds some rate damping to all motion 

directions, including the direction of motion along the virtual constraint. In addition none of 

the minor loop velocity feedback term is removed by the null space filter matrix. 

The dynamic system model for a general robot running the modified virtual 

manipulator control law in equation (4.57) is shown in equation (4.58) below. 

The stability of the origin of this dynamic system will be investigated using Lyapunov's direct 

must be found that is positive definite in some domain that includes the origin, the first 

derivative of this Lyapunov fiinction with respect to time must be continuous in the domain 

and which is negative semi-definite m the domain. The proposed Lyapunov fiinction 

candidate selected for this stability analysis is shown in the equation below. 

Mi +Vi + K,i + SKpX = 0 (4.58) 

method. In order to carry out a Lyapunov stability analysis a Lyapunov fiinction, F(X, i), 

r(x,x) = Tx'Mi+Tx'SKpX (4.59) 

This fiinction was selected based on the energy of the system, which is a traditional starting 

point for a candidate fiinction. The first term represents the kinetic energy associated with the 
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haptic interface and the second term represents the potential energy. However, the fiinction 

shown in equation (4.59) may not be a valid Lyapunov function when the domain, Q, is . 

The integer, /n, is the number of degrees of freedom of the interface robot. The product of 

the null space filter matrix, S, and the position gain matrix, , does not have fiill rank and 

as a result will not be positive definite. 

This product can be shown to be positive semi-definite. In order to shown that the 

matrix, SKp, is positive semi-definite ±e matrix must be symmetric. This restriction 

determines the form of the weighting matrix, A, in the null space filter matrix. In order for 

the matrix, SK^, to be symmetric the weighting matrix must have the form shown below. 

A = (4.60) 

The variable, a, is a positive scalar number that is nonzero. 

This coupled with the fact that the closed kinematic chain constraint equations reduces 

the size of the state space by the number of degrees of fireedom of the virtual manipulator, n, 

allows the conclusion that the proposed candidate fimction is positive definite in the domain, 

n = 9?-""". The closed kinematic chain constraint equations reduce the size of the state space 

by «, by defining n elements of the end effector position vector of the interface robot to zero 

b y  a p p r o p r i a t e  s e l e c t i o n  o f  t h e  j o i n t  v a r i a b l e s  a s s o c i a t e d  w i t h  t h e  v i r t u a l  m a n i p u l a t o r .  T h e s e  n  

elements in the end effector position vector have not been removed from the proposed 

candidate fimction because their associated velocities are not in general zero. This may at first 

appear to be a contradiction that an element of a position vector is defined to be zero but the 
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velocity of the associated with the position element is nonzero. However, this situation is the 

result of having the positions and velocities defined with respect to the end effector space of 

the virtual manipulator. Because the reference fi"ame is moving it is possible for a position 

element to remain zero while the interface robot has a nonzero velocity in the direction 

associated with the position element. 

Now that the fimction candidate has been shown to be positive definite in the domain, 

Q, the continuity of the first derivative of this fimction will be investigated. The time 

derivative of the Lyapunov fimction candidate is shown in equation (4.61). 

Note the position gain matrix, , is a constant matrix by selection and this proof assumes 

that in the end effector coordinate firame of the virtual manipulator the null space fiker matrix, 

S, is also a constant matrix. This assumption of a constant null space filter is true for all 

virtual manipulators presented in this work, however, a virtual manipulator may exist that 

would not satisfy this assumption. 

The system dynamics in the end efifeaor space of the virtual manipulator, equation 

(4.58), can be substituted into equation (4.61) to remove the vector of Cartesian 

accelerations, i. 

r(x, i) = yi'Mi + i'Mx -f-i'SK^x (4.61) 

r(x, i) = 4- i'Mi - x'Vi - i'SK^x - i'K^i + i'SK^x (4.62) 



www.manaraa.com

69 

The term, M - 2 V, is a skew symmetric matrix, so when put into the quadratic form reduces 

to zero. Therefore the time rate of change of the proposed fimction candidate, f^(x, i), can 

be reduced to the form shown in equation (4.63). 

F(x, i) = -i'K (4.63) 

The proposed Lyapunov fimction candidate is continuously differentiable. In addition 

in the domain, Q, that contains the origin the fimction is positive definite therefore the 

fimction is a valid fimction candidate and can be used to investigate ±e stability of the 

nonlinear system. The Lyapunov fimction candidate, equation (4.59), is also radially 

unbounded and decrescent by inspection. These two additional properties will be used to 

strengthen the stability conclusions for this system. 

The Lyapunov fimction candidate will be a Lyapunov fimction on the domain, Q., if 

the expression in equation (4.63) is negative semi-definite. The damping gain matrix, , is 

positive definite by selection, therefore the time derivative of the candidate function is 

negative semi-definite. As a result the fimction in equation (4.59) is a Lyapunov fimction and 

it can be concluded that the modified virtual manipulator control law running on a general six 

degree of fi-eedom robot will be stable in the sense of Lyapunov subject to the state 

assumptions. This however, is a rather weak stability conclusion, therefore La Salle's 

invariance theorem will be used to determine if a stronger stability conclusion can be made. 
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In order to use La Salle's theorem the set, E, as shown in equation (4.64) below must 

be defined. 

Now if it can be shown that the only solution that can stay identically in the set, £, is the 

trivial solution, then the origin of the end effector space of ±e virtual manipulator will be 

asymptotically stable. In the set, E, the velocity of the robot is zero, i = 0, which implies 

that the acceleration of the robot is zero, x = 0. Substituting these conditions into the 

dynamic system model shown in equation (4.58) results in the following expression. 

Equation (4.65) is the same as equation (4.51) in the equilibrium point analysis section of this 

chapter. It was shown in the equilibrium point analysis section that when the robot interface 

position, X, is contained in the domain, Q, that equation (4.65) has only the trivial solution, 

zero. Therefore the largest invariant set, M, in the set, E, contains only the origin. This 

allows the conclusion that origin of the end effector coordinate system of the virtual 

manipulator is asymptotically stable. This fact implies that the end effector trajectory of the 

virtual manipulator is asymptotically stable when viewed in world coordinates. 

The stability conclusion for the modified virtual manipulator control law running on a 

six degree of fireedom robotic manipulator can be refined by examining the Lyapunov function 

(4.64) 

SK^i = 0 (4.65) 
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shown in equation (4.59). The Lyapunov function is a fijnction of the state variable, x  and i, 

only, as a result the Lyapunov function, F(x^ i), is automatically decrescent. The fact that 

the Lyapunov function is decrescent allows the stability conclusion to be extended to 

uniformly asymptotically stable. 

One final note on the "globalness" of this stability conclusion should be made. The 

Lyapunov fimction, F(x, i), in equation (4.59) is radially unbounded for all robot interface 

positions, x, and velocities, i, in ±e domain Q. That is the norm of the Lyapunov function 

goes to infinite as the norm of the state variables goes to infinite regardless of the direction the 

state variables move. This concept is shown mathematically below. 

||x, if ̂  CC => ||r(x, i)(| -*• X (4.66) 

The radially unbounded property of the Lyapunov fimction is required to allow any global 

stability conclusions to be made. 

The domain, Q = 9?-"^" ^ includes the entire state space and the rate of change of the 

Lyapunov function, r(x,x), is negative semi-definite over the entire domain, Q. Therefore 

using the global corollary to La Salle's theorem it can be concluded that the origin of the end 

effector coordinate firame of the virtual manipulator is globally uniformly asymptotically 

stable. This implies that the continuum of equilibrium points defined by the end effector 

trajectory of the virtual manipulator are globally uniformly asymptotically stable, when the 

system is viewed in world coordinates. That is the continuum of equilibrium points is globally 

attractive for any set of initial conditions in the state space. However, nothing can be said 
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about where the final position of the interface robot will be along this continuum of 

equilibrium points. It may be argued that La Salle's invariance theorem has no global form, 

however, a specialization of La Salle's theorem called the theorem of Barashin and 

Krasovskii, is applicable and does have a global form. 

This stability analysis has shown that the modified virtual manipulator control law 

running on a general sbc degree of fi-eedom robot has acceptable stability characteristics to be 

used as a haptic interaction metaphor. This proof has shown that the entire class of virtual 

manipulator control laws is stable subject to the assumptions made. In addition, the 

assumptions made were not restrictive and are listed below for inspection. First it was 

assumed that accurate gravity compensation for the robot is available. This assumption is 

common in most robot system stability analyses and is readily satisfied using analytic or 

experimental models of the gravitational force applied to the manipulator. The second 

assumption that was made was that the robot was operating in a portion of the configuration 

space that is fi'ee of singularities so that the joint space robot dynamics could be transformed 

into Cartesian space. This assumption restricts the range of motion of the robot but it is 

required for correct operation of the control law regardless of the proof of stability. Third it 

was assumed that the null space filter matrix existed. This poses no restriction because if the 

null space filter does not exist the control law can not be implemented. Finally, it was 

assumed that the null space filter matrix is a constant matrix in the end effector space of the 

virtual manipulator. This assumption has currently placed no restriction on the virtual 

manipulator implementations. However, it is conceded that this assumption could pose some 

restriction in fiiture work. 
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Original Control Law 

The stability of the original virtual manipulator control law will be addressed in this 

subsection. The proof for the modified control law was presented first because it illustrates 

the stability of the entire class of modified virtual manipulator control laws. The modified 

control law adds damping forces in the fi^ee directions of motion which is not desired, 

therefore the original virtual manipulator control law will be investigated. This proof of 

stability will not allow such a conclusion to be made at present. However, the conditions for 

stability of a specific virtual manipulator control law will be described so that each control law 

can be verified in a case by case manner. 

The proof of stability for the original virtual manipulator control law will be 

demonstrated by showing that the error between the position of the end effeaor of the 

interface robot and the position of the end effector of the virtual manipulator is stable. 

Therefore the continuum of equilibrium points defined by the end effector trajectory of the 

virtual manipulator is stable. This type of error analysis is traditionally used in trajectory 

following applications and works well in this constraint enforce situation. 

In order to begin the analysis the dynamics of the error must be determined. This will 

include the dynamics of the robot, equation (4.67) as well as the dynamics of the virtual 

manipulator. 

^ Vi, = F, (4.67) 
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The subscript, r ,  denotes robot variables and the vector, , is the control force applied to the 

robot calculated using the Cartesian space proportional plus derivative control. The dynamics 

of the interface robot were introduced earlier in this chapter, however, there has been no 

discussion in this work about the dynamics of the virtual manipulator. This is because the 

virtual manipulator is used as a kinematic constraint not a dynamic constraint. If analysis of 

the motion of the virtual manipulator was performed a dynamic model could be generated for 

the device. However, the motion of the virtual manipulator is based on the motion of the 

interface robot, therefore it is natural to conclude that the dynanaics of the virtual manipulator 

will have the same characteristics as the dynamics of the interface robot, equation (4.67). As 

a result the dynamic equations of motion for the virtual manipulator are shown in equation 

The dynamics of the error between the two devices can be determined by subtraction 

of equation (4.67) and (4.68). 

(4.68). 

Mi +Vi =F (4.68) 

(4.69) 

The control force applied to the virtual manipulator, , is the same control force applied to 

the interface robot, F^, but the only component of this force that must be resisted by the 

virtual manipulator is the component that lies in the ranges space of the transpose of the 
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virtual manipulators Jacobian. This component of the control force can be determined by 

multiplying the robot control force, , by the range space filter matrix, R, as shown in 

equation (4.70). 

M(i,-i,) + v(i,-i.) = (I-R)F, (4.70) 

The error in the system will be defined in the same way as in Chapter 3 so that the 

control force can be expressed as shown in equation (4.44), repeated here for convenience. 

F ,=K^e  +  K,e  (4 .71)  

The error is defined in equation (4.72). 

e = (4.72) 

Using equations (4.70), (4.71) and (4.72) the error dynamics for the system can be 

represented by the following system of differential equations. 

Me + Ve + SK^e + SK^e = 0 (4.73) 
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It is important to note that in the formulation of the error dynamics the coordinate ftame with 

respect to which the position, velocities and accelerations are written is not critical. It is only 

required that ail quantities be expressed in terms of the same coordinate frame. 

The equilibrium conditions of the error dynamics are the same as the equilibrium 

conditions of the robot dynamic model discussed in the second section of this chapter. 

Therefore a separate equilibrium point analysis is not required for the error dynamics. To 

ensure that the only equilibrium points for the robot are those points where the error is equal 

to zero, «, elements in the error vector will be defined to be zero by appropriate selection of 

the w joint variables associated with the virtual manipulator. However, the process of defining 

an element of the error vector to be zero has a slightly different effect than defining an element 

in the robot position vector to be zero. Because an element in the error vector represents a 

relative displacement between the robot and the virtual manipulator when an element in the 

error vector is defined to be zero all of the time derivatives of that element are also zero. This 

allows the error state space to be reduce from Im to 2(OT - ri) where as the state space of the 

robot dynamics could only be reduced to 2m-n in size. 

Because of the reduction in the number of the states of the error dynamic system, the 

dynamic model can be expressed as shown below. 

(4.74) 
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The subscript, «, simply indicates that the vector contains only elements not dejSned to be zero 

process of removing elements defined to be zero. The size reduction has not affected the 

skew symmetric property of the time rate of change of the mass matrix and the velocity matrix 

or the positive definite and symmetric properties of the mass matrix. In addition the reduction 

in the size of the product of the null space filter matrix and the position gain matrix has made 

this matrix a positive definite and symmetric matrix. 

The only equilibrium point for the error dynamics is the origin, a moving point at the 

end of the virtual manipulator, which maps to an infinite continuum of equilibrium points for 

the end effector of the interface robot. Because the error dynamics have only one equilibrium 

a Lyapunov analysis similar to the one used in the proof of stability for ±e modified virtual 

manipulator control law will be used. The proposed Lyapunov fimction candidate is shown 

below. 

This proposed Lyapunov fimction candidate is globally positive definite, decrescent, radially 

unbounded and is continuously differentiable. Therefore the fimction shown in equation 

(4.75) is a valid Lyapunov fimction candidate. To determine if this fimction is indeed a 

Lyapunov fimction the time rate of change of the fimction must be determined. 

notation indicates that the dimension of the matrix has been reduced during the 

(4.75) 
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F(e,e) = -e'(SKj e (4.76) 

However, there is no guarantee that the time rate of change of the Lyapunov function 

candidate is negative semi-definite. Therefore it cannot be concluded in general that the 

function candidate, equation (4.75), is a Lyapunov fiinction. 

For this reason the stability of the original virtual manipulator control law cannot be 

shown for the entire class of control laws. The conditions for stability of the equilibrium point 

can be determined in order to demonstrate the stability of the original virtual manipulator 

control law in a case by case manner. The time rate of change of the Lyapunov function 

candidate contains only the rate of change of the error vector. Therefore the rate of change of 

the function is at best negative semi-definite. In order for the rate of change of Lyapunov 

/ 

fiinction candidate to be negative semi-definite, the reduced dimension matrix, (SK^) , must 

be positive definite. 

If this condition is satisfied the fiinction candidate is a Lyapunov function can be used 

to draw conclusions about the stability of the equilibrium point. In addition, because the 

equation (4.75) is a Lyapunov fimction it can be concluded that the equilibrium point is stable 

in the sense of Lyapunov. This conclusion can be strengthened by application of La Salle's 

theorem, in the same manner as in the first proof of stability presented in this chapter. The 

application of La Salle's theorem supports the conclusion that the equilibrium point is globally 

uniformly asymptotically stable without placing additional requirements on control law. 
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r 

Therefore, if it can be shown that the reduced dimension matrix, (SK^) , is positive 

definite, then the equilibrium point associated with the error dynamics will be globally 

uniformly asymptotically stable. The interpretation of this stability conclusion is similar to the 

interpretation of the first proof of stability. The end effector trajectory of the virtual 

manipulator is globally attractive regardless of the initial conditions of the interfece robot. 

However, the proof of stability for the original virtual manipulator control law does not 

prevent the interface robot fi-om having a nonzero velocity along the equilibrium trajectory 

due to reduction in the state space. 

The two proofs of stability presented in this chapter have established the necessary 

conditions for the stability of the modified and original virtual manipulator control laws. 

However, in Chapter 6 experimental results of the time varying extension of the virtual 

manipulator concept will be presented. Time varying virtual manipulators are used to extend 

the potential of the control concept by allowing a virtual manipulator to represent more 

complex constraints. The inclusion of time varying components into the control law has not 

been considered in either of the two proofs presented here. Therefore the stability of time 

varying virtual manipulators has not been verified and remains as a area for future work. 

In the beginning of this chapter the subject of safety was addressed in general terms. 

The proof of stability presented here is an important step in showing that the virtual 

manipulator control law running on a general six degree of fi-eedom robot will be safe. 

However, other issues associated with the performance of the system in the presence of fault 

conditions still requires exploration. These issues will be discussed in the following chapter 

that describes the experimental hardware used as a test bed for this study. 
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CHAPTERS. EXPERIMENTALTESTBED 

Now that the virtual manipulator control law has been developed and the equilibrium 

and stability characteristics of the control approach have been investigated. The next step is 

to implement the control law on an experimental test bed. The remainder of this chapter will 

describe the hardware used to demonstrate the virtual manipulator control law. Specifically 

this chapter will describe the robot manipulator, the control interface and computer, the force 

torque transducer and finally some safety issues associated with this system will be addressed. 

Robot Manipulator 

The robot manipulator used to implement and test the virtual manipulator control 

concept is a PUMA 560 manipulator, shown in Figure 5.1. This manipulator was selected 

based on it's availability for use during this study. It is important to note that any other six 

degree of fi-eedom robot could have been used. However, a PUMA 560 is probably a good 

choice for this investigation. The PUMA 560 is a fairly common manipulator in most 

university robotics laboratories. Therefore this research is not isolated, it can be reproduced 
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and evaluated in numerous other facilities around the world. As well as the fact that there is 

a large volume of previous PUMA 560 research that can be utilized. In addition, the size of a 

PUMA 560 makes it an appropriate interface for most people in a standing posture. Finally, 

the PUMA 560 has a workspace that is large enough to accommodate most haptic 

interactions that are of interest. 

As was illustrated in the Chapter 3. which developed the virtual manipulator control 

approach a kinematic description of the PUMA 560 is needed for implementation. The 

PUMA 560 is a six degree of freedom robot composed solely of revolute joints. The 

coordinate frame assignments used in the kinematic analysis of the PUMA are shown in 

Figure 5.2. These frame assignments are commonly used in the kinematic analysis of the 

PUMA 560 al±ough some variation due exist. 

Using the coordinate the frame assignments shown in Figure 5.2. the structure of the 

Denavit-Hartenberg parameters for the PUMA 560 can be determined as shown in Table 5.1. 

i 

Figure 5.1. The PUMA 560 manipulator. 



www.manaraa.com

82 

Figure 5.2. Coordinate frame assignments for the PUMA 560 manipulator. 

In Table 5.1 the variables, 9^, represent the joint variables for the robot. The variables, /,, 

represent fixed offset lengths between the various revolute joints in the PUMA. The values 

for constants, /,, can be obtained by direct measurement; however, this would require the 

disassembly of the robot. In addition the values of the constants, /,, can also be obtained from 

numerous published sources [23]. Unlike some properties associated with the PUMA 560 

robot, the pubhshed values for the kinematic constants are fairly uniform across the published 

sources. Therefore to avoid the difficulty of disassembly of the robot, the values of the 

kinematic constants reported in earlier work [98] will be used in this analysis. These values 

are presented in Table 5.2. 

Using the Denavit - Hartenberg parameters shown in Table 5.1 and the transformation 

matrix associated with a generic set of Denavit - Hartenberg parameters, shown in equation 
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Table 5.1. Denavit - Hartenberg parameters for the PUMA 560 robot. 

/ ^,-1 d. B. 
1 0 0 0 B, 
2 0 0 Bz 
J A 0 L B, 
4 ^3 -?• h B. 

5 0 2 0 B, 

6 0 0 B. 

(5.1) below, the transformation matrix between each coordinate frame on the PUMA 560 can 

be found. 

cos a. i-i 

i-i r= 

3s(^) -sin(^) 0 

sin(^)co^ar,_,) cos(^)cos(a,_,) -sin(a,_,) -sin(a,_,) 

sin(^)sin(a,_;) cos(^)sin(a;_i) cos(a,_,) <i, cos(aj_;) 

0 0 0 1 

(5.1) 

cos(^i) - sin(0,) 0 0 

^T-
sin(6l) cos(^) 0 0 

0 0 1 0 

0 0 0 1 

Table 5.2. Values for kinematic constants for the PUMA 560 robot. 

value (meters) 

A 0.4318 

k 0.1501 

L -0.0191 

K 0.4311 
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1 
o
 

o
 

0 0 

0 0 1 0 

-sin(ft) 1 0
 

0
 

.5
li 0 0 

0 0 0 1 

005(^3) -sin(^3) 0 ( 
sin(^3) 005(03) 0 0 

0 0 1 L 
. 0 0 0 1 

cos(6>^) -sin(0j) 0 L 
J 

0 0 -1 -h 
sin(^^) cos(6?i) 0 0 

0 0 0 1 

1 
0
 

0
 

-sin(6'5) 0 o1 
j 

0 0 1 0 

-sin(^5) 1 0
 

0
 

0 0 

L 0 0 0 1_ 

(5.3) 

(5.4) 

(5.5) 

(56)  

cos(^6) -sin(^5) 0 0 

0  0 - 1 0  

sin(05) cos(^g) 0 0 

0 0 0 1 

(5.7) 
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The sequence of transformation matrices shown in equation (5.2) - (5.7) represent a 

complete kinematic analysis of the PUMA 560 robot manipulator. These transformation 

matrices can be concatenated using standard matrix multiplication to obtain a transformation 

matrix that will transform a vector represented in the end effector coordinate frame of the 

PUMA (coordinate frame six) into a vector represented in the base or world coordinate frame 

space (coordinate frame zero) as shown in general in equation (5.8) and specifically in 

equation (5.9). 

OT^OT'^T'-TirjT'j (5.8) 

0 
6 

'•n ^12 ^13 Pr 

hi 
^^2 r,-. P-. 

0 0 0 1 

(5.9) 

The elements in the matrix shown in equation (5.9) are shown below. 

(^23 (' ) - •s'23-ys<^6 } - {•y4<^5C6 + ̂ 4^6 } (5.10) 

(5.11) 

(5.12) 

(5.13) 
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r,, =5 ^4^5*^6 •^23'^S'^6 } ^1 { } (5.14) 

^32 ~ •^23(^4~'^4^6)''"''Z3'^5'^6 

t\- — c^ (c^CjSj + 5^305) — 5^5^55 (5.16) 

(5.15) 

r,_- =s,{c,^c^s^ ^s._^c^)+c,s^s^ (5.17) 

^*33 =-5':3^4-y5^'^23^5 

P^ =C^ {c^^l- -!- 523^ ~ A ) ~ -^1 ^2 

•^v = -^1 (^23^3 •!- ^\k 

P. = --^234 -^23^ - Vl 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

In addition, to the forward kinematics of the PUMA the virtual manipulator control 

law also requires the Jacobian matrix for the manipulator. The Jacobian matrix for the PUMA 

can be found by performing a rate kinematic analysis of the mechanism. The expressions for 

the end effector velocity (linear and angular) contain all the information needed to generate 

the PUMA Jacobian. However, due to the length of the calculations in the rate kinematics 

analysis, only the resulting Jacobian will be presented. 

The elements in the matrix shown in equation (5.22) are shown below. 
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r = 
Ju Jn 

Ji\ Jzz 

Ji \  Jn ^4-^5^4 "*"^5^ 

(5.23) 

J\l ~'•5^6 (~ "'"'^3^3 ~ •^rs^i)) "'" (^;A ~^Z3^'S -^3^4 )) ~ •^5^6'^3 A 

J\z ~ (^4 (•^3 A ••" A )) + ̂ 6 (~ ̂ ^4 (-^3 A •*• ^4 )) ~ ̂ 5*^6 (~ ̂ 3 A ~ A ) 

Jzi ~ "^5-^6 ^4 A ~^3A •'"•^3 A))'*"'•6 (^3-^4 A •^^4(^;A •*" "^3 A )) ~ ̂ 5"^S-^3 A 

7— = "C's'Ss (^^4 (•^3 A A )) ~ ^6 (~ -^4 (-^3 A •*• A )) "*" •^5'^6 (~ ̂ 3 A ~ A ) 

-/31 ~ ^z3^i^z ~ ^ii.^z^i ^aA """ ^^3^4)) ~ A 

73: =-^5(^4(^1 ^A))+'^5(-'^3A - A) 

' J '  =  •^23 + C^C^S^ } T" 

[_ "^23^4^*^5 ^13^5 

(•^4-^6 ^4^5^6) ^3*^5^6 ^4-^6 • •^4^5^6 ^4-^6 ~ •^4^5^i 

C,C,-5,C,5, CX,-5X,5, I 

•^•1*^5 •^4*^5 J 

-5;C6 ^6 0 

II «o 

^<•^6 0 

- <^5 0 1 

(5.24) 

(5.25) 

The Jacobian shown above is represented in the end effector coordinate frame for the 

PUMA 560. However, this Jacobian can be transformed into any other coordinate frame by 

using a generalized rotation matrix as shown in equation (5.26) below. 
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1 O
 6 j b  

The leading superscript /denotes the coordinate frame that the PUMA Jacobian has been 

transformed into by the generalized rotation matrix. 

Control Hardware 

Now that the robot manipulator has been introduced, the control hardware needed to 

operate the PUMA 560 will be described. When originally manufectured the PUMA 560 

robot was controlled by a Unimation Val industrial computer. However, the Val computer 

does not provide the flexibility needed to implement the virtual manipulator control law. For 

this reason the Val computer used in the experimental work presented in the following chapter 

has been modified to provide joint level control by means of a personal computer. 

To that end the majority of the control interface cards associated with the Val 

computer were removed and replaced with a TRC004 servo control card from Trident 

Robotics. The TRC004 servo control card is a general purpose card to control the operation 

of a robotic manipulator. It is equipped with optical encoder decoders and counters, analog 

inputs and analog outputs for input and output communication with the components of a 

robot. 

In order to be used in the virtual manipulator control law the robot interface must have 

some instrumentation to measure the position and orientation of the end effector. This 
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measurement mstrumentation can be external device such as a magnetic tracker or an internal 

device such as an optical encoder. The PUMA 560 has two internal position sensors, the use 

of an external sensor has not been attempted but represents a viable alternative if necessary. 

The encoder decoder circuitry of the TRC004 card is connected to the two phase and index 

outputs of standard HP optical encoders located in the PUMA 560. These inputs tot he 

encoder circuitry determine the position of the various axes of the robot and stores this 

information in a set of digital counters. 

In addition to the digital optical encoders as a mechanism for determining the position 

of the robot joints, the PUMA 560 is also equipped with potentiometer driven voltage 

dividers. The voltage across ±ese analog circuits can be measured with the analog inputs of 

the TRC004 control card. Although analog potentiometers have been used classically as a 

measurement device for revolute joints, the potentiometers on the PUMA 560 do not have 

sufficient performance characteristics to be used in the virtual manipulator control application. 

Specially, the signal conditions in the potentiometer subsystem of the PUMA 560 is not 

sufficient to allow the position of the PUMA joints to be determined with any level of 

accuracy. This poor signal conditioning can most likely be attributed to the long unshielded 

cable which connects the Unimation, Val computer and the robot proper. Because of signal 

conditioning problem the digital encoders will be used to determine the position of the PUMA 

560 in all control calculation. 

Each axis of the PUMA 560 is also equipped with a DC servo motor to control the 

position of the various joints. The analog outputs of the TRC004 control card are used to 

apply control voltages to the DC servo motors of the robot. However, the analog outputs of 



www.manaraa.com

90 

the TRC004 control card are lunited to plus and minus ten volts with a limited current output. 

Therefore the voltages from the analog outputs of the TRC004 are conditioned through the 

power amplifiers of the Val computer. The output voltages from the power amplifiers have a 

magnitude and current level capable of driving the servo motors of the PUMA. 

The transmission of signals from the Val computer to the robot proper is controlled by 

the arm cable control card. The power amplifiers and the arm cable control card are the only 

original interface cards that are retained in the Val computer. The TRC004 servo control card 

reproduces the input - output operation of the Val computer but does not have a 

microprocessor to perform control calculations. Therefore, the TRC004 control card is 

coupled with a TRC006 interface card. The TRC006 interface card allows that input - output 

information maintained by the TRC004 to be accessed through the port memory of the 

personal computer in which the TRC006 is installed. This allows the personal computer to 

determine the position of the PUMA by accessing the encoder counters on the TRC004 

through the TRC006 Using the position information the personal computer can perform all 

control calculations needed to obtain a set of voltages to apply to the servo motors of the 

robot. These voltages are then passed to the TRC004 for signal conditioning and application 

to the manipulator. 

In order for the modified hardware, including the Val computer, TRC004 servo 

control card, TRC006 interface card and personal computer, to successfully control the 

PUMA 560 a control program must be written and executed on the personal computer to 

perform the control calculations as well as access the port memory of the computer. The first 

task, performing the control calculations, is easily achieved using any computer programming 
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language. However, the second task, accessing the port memory of the computer, quickly 

reduces the number of acceptable programming languages. This work makes use of the C 

programming language. A program can be written, using C, to perform the control 

calculations as well as access the port memory of the computer to provide communication 

between the TRC006 interface card and the control program. 

The C programming language provides several low level fimctions for performing 

input and output operations on the registers of the TRC006 interface card located in the port 

memory of the computer. However, the availability of these low level functions depends on 

the operating system on which the program is intended to run. For example a C program 

running in the DOS operating system has access to all mtemipt vectors, all direct memory 

access channels and the entire port memory range. If a higher level operating system is used 

the C programming language has less if any access to these low level hardware 

communication channels. The Windows 95 16-bit operating system allows a C program to 

access the port memory range but blocks access to key interrupt vectors and direct memory 

access channels. But Windows 95 32-bit and Windows NT operating systems block all access 

to the low level C fimctions. 

This discussion would seem to demand that a low level operating system be used for 

PUMA 560 control applications. However, 32-bit operating systems, Windows 95 and NT, 

offer advantages not available in other personal computer operating systems. First these 

operating systems allow access to a high performance timer, the processor oscillator. An 

accurate timer is required in the PUMA control applications to allow velocity calculations to 

be made. Second these 32-bit operating systems provide access to the standard socket 
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functions. Socket fimctions are used for network communication to allow the control 

computer to transmit data to other computational or graphical support engines. To utilize 

these features of a 32-bit operating system, addition support software is needed to reproduce 

the low level functions associated with the C programming language that were removed by the 

operating system. 

The most direct way of providing low level function access to the control hardware is 

by developing a specialized device driver for the TRC006 interface card. The creation of a 

custom device driver is a formidable task that has a large cost is both time and money. 

However, third party software, such as Driver X provided by Tetradyne, is able to provide 

low level interfacing with only minor expense. Although this type of software suffers from a 

loss in performance due to the generalized nature of the interface library, it still performs at a 

level acceptable to control ±e PUMA 560. 

Force Transducer 

The virtual manipulator control law developed in Chapter 3 used a Cartesian space 

proportional plus derivative error feedback technique for the force generation scheme. In 

addition this chapter also discussed the possibility of using measured end effector forces in the 

virtual manipulator control and concluded that this approach was not acceptable due to 

problems associated with the quality of the measured force signal. However, it is possible to 

used a low gain force control loop in conjunction with the virtual manipulator control law to 

provide compensation for the frictional and inertial effects of the interface robot. The addition 

of the force control loop is addressed in detail in the high degree of freedom virtual 
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manipulator section of Chapter 6. The use of a force transducer in the control hardware for 

the virtual manipulator control law is not required but can refine the haptic interaction 

experience of the traveler in the synthetic environment. 

As a result the interface robot, PUMA 560, has been equipped with an Assurance 

Technologies six axis force/torque transducer. The force transducer is mounted between the 

end effector of the robot and the interfece handle that is manipulated by the traveler. This 

force transducer can measure forces up to 30 pounds and moments up to 100 inch pounds. In 

addition it is configured with mechanical stops to prevent damage to the strain gages in the 

transducer if forces or moments in excess of the rated limits are applied. 

In order to minimize the noise characteristics of the force transducer, the signal fi^om 

the strain gages are conditioned prior to leaving the force transducer proper for transmission 

to the force transducer interface box. The connection between the force transducer proper 

and the interface box is made with shielded cable to prevent contamination of the signals by 

external sources. The force transducer interface box then converts the analog strain gage 

signals into a consistent set of forces and moments, represented digitally, using calibration 

information. The digital representation of the six forces and moments are then sent to the 

personal computer controlling the PUMA 560 by means of a parallel interface card. The 

parallel interface card, like the TRC006, is located in the port memory of the personal 

computer. This requires that the Driver X software be used to allow the personal computer to 

receive and request force information. 
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Safety Considerations 

Chapter 4 examined the equilibrium and stability characteristics of the virtual 

manipulator control law. This section will examine the fault tolerance and safety 

characteristics of the combined control law and hardware system. The discussion will begin 

with the interface robot, then the force transducer will be addressed and finish with comments 

on the control computer. 

The presence of an operator in close proximity to a robot poses safety concerns. 

However, the nature of the virtual manipulator control law is well suited for this application. 

Virtual manipulator control is based on the idea of constraining the interface robot. So for 

low degree of freedom virtual manipulators the mterface robot has only a limited range of 

motion and thus offers a greater level of safety for the traveler. 

Even in situations where the virtual manipulator has a high number of degrees of 

freedom, the traveler carries a dead-man switch. This switch is hard wired to the Val 

computer and must be depressed in order for the robot to operate. Therefore, if at anytime 

during the interaction between the robot and the traveler, the traveler can immediately stop 

the robot by releasing the dead-man switch. 

In addition due to the structure of the virtual manipulator control approach the 

interface robot does not move unless it is acted on by the traveler. Therefore if the traveler 

releases the interface robot during an interaction the motion of the robot will stop. The 

motion may not stop immediately due to the inertia of the mechanism and slight errors in the 

gravity compensation but this motion will decay. In this context the virtual manipulator 
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control law offers real advantages over admittance based interaction control laws where the 

motion of the interfece robot may accelerate even in the absence of contact with the traveler. 

The virtual manipulator control law makes use of the Jacobian of the interfece robot. 

In addition the proof of stability in the last chapter assumed that the robot was operating in a 

portion of the configuration space that is free of singularities. This is easy to ensure for low 

degree of freedom virtual manipulators, which are highly constrained. However, with high 

degree of freedom virtual manipulators it is possible to maneuver the PUMA into a 

singularity. Joint space impedance fields are used to prevent the robot from entering a 

singularity. These joint space fields limit the range of motion of the PUMA but are required 

to ensure stable controller operation. In addition joint space impedance fields are also used to 

provide joint limit protection for the robot. The joint limits of the PUMA are not protected by 

limit switches so the impedance fields prevent the robot or the traveler from damaging the 

robot by moving a joint past the mechanical limit. 

The subject of mechanical limits is also important for the force transducer. If forces or 

moments in excess of the rated limits could damage the strain gages of the force transducer if 

mechanical limits are not present. Damages strain gages would lead to erroneous force 

measurements and possible unstable system performance. Therefore mechanical stops should 

be present in any force transducer used in haptic interaction. 

The remaining safety considerations deal with fault detection. Both the TRC004 servo 

control card and the force transducer interface box have status registers to diagnose numerous 

fault conditions. These registers should be checked during each control cycle to ensure that 

no errors have been registered by the PUMA 560 or the force transducer. 
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The tuning of the control cycles is critical in this type of application. The 

multiprocessing nature of the 32-bit Windows 95 / NT operating systems makes it difi5cult to 

ensure that each control cycle is a fixed time increment. However by increasing the priority of 

the control application it is possible to have the control cycle remain relatively constant. The 

slight variations in control cycle duration have caused no perceived problems but the stability 

of a digitally controlled system subject to varying control cycles is a complex problem. For 

this reason the variation in control cycle duration is recorded using the high performance 

system clock and this data is used to stop the operation of the robot if a control cycle becomes 

too long. The point at which the robot is stopped was determined heuristically by examining 

typical time histories of the control hardware. In addition by running the control application 

on a dual processor personal computer more accurate system timing can be achieved. 

Although multiprocessor personal computers do not offer the ability to specify which 

processes run on which processors, one the high priority control application has started on a 

processor no other lower priority process can interrupt it. These lower priority processes are 

simply routed to the fi-ee system processors. 

Many of the safety considerations discussed above have been handled by incorporating 

feature into the control application. However, there is always the possibility that the control 

application or the computer running the application will stop fimctioning. This could happen 

for numerous reasons, most of which are not recognizable by the technician nmning the 

application or easily prevented by external hardware. This condition can however be 

diagnosed by a watchdog timer. The watchdog timer observes the communication between 

the control personal computer and the robot. If the control computer stops communicating 
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with the robot, the operation of the robot is terminated. The time delay between the end of 

communication and the stopping of robot is longer than one control cycle of the robot but is 

only a fraction of a second. Therefore if the control computer hangs up for any reason the 

motion of the robot can be stopped before any erratic behavior is encountered by the traveler. 
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CHAPTER 6. EXPERIMENTAL RESULTS 

The virtual manipulator control law developed in Chapter 3 will be demonstrated using 

the experimental test bed described in Chapter 5. The experimental results shown in this 

chapter do not represent ±e limit of what can be performed with virtual manipulators, they 

are intended to illustrate the control approach as well as reveal the potential of this concept. 

To that end the experiments presented here will show two basic virtual manipulator joints, 

revolute and prismatic, in various combinations to represent a virtual object for haptic 

interaction. In addition an extension to the virtual manipulator control technique, time varying 

virtual manipulators, with be developed in order to allow haptic interaction with complex 

objects such as free-form curves and surfaces. 

The remainder of this chapter will be divided into four major sections. The first 

section will discuss a revolute virtual mechanism. The second section will show an example of 

a virtual mechanism constructed using prismatic joints. The third section will develop the time 

varying extension to the virtual manipulator concept and illustrate this extension by means of 
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two examples. The fourth section of this chapter will develop a virtual manipulator with a 

varying number of degrees of freedom to allow general interaction with a virtual object. 

Virtual Revolute Mechanism 

This section will discuss a one degree of freedom virtual manipulator composed of a 

singe revolute joint. This virtual mechanism could be used to perform an ergonomic analysis 

of a gear shift mechanism in an automobile or to represent a flight control lever in a fight 

simulator. A schematic representation of this mechanism is shown in Figure 6.1. The position 

of the center of rotation, the orientation of the axis of rotation of this mechanism and the 

length of the lever arm can easily reconfigured in the control software. As a result this simple 

mechanism can be used to represent an infinite number of lever devices. 

In order to implement the virtual manipulator control law for the one degree of 

freedom revolute mechanism, the forward kinematics as well as rate kinematics of the device 

are needed. The forward kinematics of the device are required in order to enforce the closed 

kinematic chain relationship that exists between the virtual manipulator and the interface 

Axis of Rotation 

Center of Rotation 

Figure 6.1. Schematic of revolute virtual mechanism. 

Lever 
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robot. The rate kinematics of the device are required in order to determine the null space 

filter that is generated using the Jacobian matrix of the virtual manipulator. Both the forward 

kinematics and the rate kinematics of the virtual manipulator can be obtained using standard 

robotic analysis techniques. 

The first step in this analysis is to assign coordinate firames for the mechanism. These 

coordinate fi-ames will be assigned using the Denavit - Hartenberg coordinate fi-ame 

assignment rules [24]. The coordinate fi-ames used for the revolute virtual mechanism are 

shown in Figure 6.2, superimposed over the schematic representation of the device. The 

bracket notion used in Figure 6.2 is used to present the name (description) of a particular 

fi-ame. The virtual manipulator has three fi-ames associated with it, {0,1,2}, the fourth firame 

is the world coordinate system, {W}. Through out this work the world coordinate system for 

y 

y 
{0,1} 

X 
z 

z 
{W} 

X 

Figure 6.2. Coordinate Same assignments. 
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the virtual manipulator will be taken as the base coordinate system for the interface robot. 

In most situations in this work the forward kinematics of the virtual manipulator will 

be derived independent of the position and orientation of the world coordinate system. That is 

Denavit - Hartenberg parameters for the coordinate frames (0, 1,2} will be presented. These 

Denavit - Hartenberg parameters will allow the transformation matrix, "T, to be determined. 

The complete forward kinematic description of the virtual manipulator, , will be 

determined by concatenating the transformation matrix obtained from the virtual manipulators 

Denavit - Hartenberg parameter, "T, with a transformation matrix, , that describes the 

position of the virtual manipulators base coordinate frame with respect to the world 

coordinate system. The motivation for this approach is that the transformation matrix, is 

used to position the center of rotation and set the axis of rotation for the virtual lever. 

Therefore by keeping this transformation separate from virtual manipulators transformation 

matrix it is easier to reconfigure the virtual manipulator to represent different types of lever 

mechanisms. 

In addition to the general transformation fr^me from the world coordinate system to 

the base coordinate system of the virtual manipulator, some times a fourth coordinate frame 

will be added to the end of the virtual manipulator. The kinematic constraint being used is 

that the end effector coordinate frame of the interface robot will be in ±e same position and 

orientation as the end effector coordmate of the virtual manipulator. The end effector of the 

interface robot will be equipped with some type of handle to facilitate interaction. The fourth 

transformation matrix is used so that the interaction handle is oriented with respect to the 
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virtual manipulator in an appropriate manner. As a result the fourth coordinate frame will be a 

constant rotation matrix which involves no translation. 

The Denavit - EEartenberg parameter for the revolute virtual manipulator are shown in 

Table 6.1. Using the parameters from Table 6.1, the transformation matrix, °T, shown 

equation (6.1) and the Jacobian matrix, " J„, shown in equation (6.2) can be found. 

cos 9 - sin^ 0 L 

sin^ cos^ 0 0 

0 0 1 0 

0 0 0 1 

'J„ = [ 0  L 0 0 0 l]' (6.2) 

The null space filter in the end effector coordinate frame of the virtual manipulator, S, can be 

evaluated using the Jacobian matrix in equation (6 .2) 

Now that the forward kinematics of the virtual manipulator and the null space filter 

have been determined the virtual manipulator control, constraining the end effector of the 

PUMA to foUow the circular arc trajectory of the virtual manipulator, can be implemented. It 

is important to note that heuristic tuning of the position and damping gain matrices is required 

Table 6.1. Denavit - Hartenberg parameter for revolute mechanism. 

i ^,-1 d, 9, 

1 0 0 0 e 
2 L 0 0 0 
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to obtain proper performance for the system. 

In addition there are two ways to formulate the closed kinematic constraint equations 

for this virtual manipulator. The first is based on the position of the interface robot, selecting 

the angle of the virtual manipulator by requiring that the 'V' position of the robot, as shown in 

Figure 6.2, is zero. The second is based on the orientation of the interface robot, selecting the 

angle of the virtual manipulator by projecting the orientation of the robot into the plane of 

rotation of the virtual manipulator. Experimental results are presented for both cases and 

stable performance was observed for both. Experimental data for two one degree of fi^eedom 

revolute virtual manipulators will be presented. In first set of data the virtual manipulator is 

positioned so that only the second, third and fifth axes of the PUMA are actuated. 

In Figure 6.3 the end eftector trajectory of the PUMA is compared with the end 

effector trajectory of the virtual manipulator. Due to the positioning of the virtual 

manipulator the motion of the robot is planar so the planar view of the data in Figure 6.3 is 

sufficient to capture the response of the interface robot. The data in Figure 6.3 was 

formulated with the positioned based closed kinematic constraint. Figure 6.4 examines the 

motion of the robot in Cartesian space to verify that the virtual manipulator control law 

enforces the constraints desired by the virtual manipulator control approach. Figures 6.5 and 

6.6 reproduce the data in Figures 6.3 and 6.4, respectively. However, Figures 6.5 and 6.6 

used the orientation based closed kinematic chain constraint formulation. Comparison of 

these four figures illustrates that regardless of the selection of the closed kinematic chain 

constraint equation, proper constraint enforcement is achieved. 
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Figure 6.3. End effector trajectory, position constraint. 
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Figure 6.4. Cartesian motion, position constraint. 
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X, meters 

Figure 6.5. End effector trajectory, orientation constraint. 
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Figure 6.6. Cartesian motion, orientation constraint. 
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Both Figures 6.3 and 6.5 exhibit data that pulls away from the desired trajectory 

during the downward motion of the virtual manipulator. A close comparison of sections of 

Figure 6.3 and 6.5 is shown in Figure 6.7. The direction of motion of these loop effects is 

indicated in Figure 6.7. This loop effect is present in both Figures 6.3 and 6.5 therefore this 

artifact can not be associated with the selection of the closed kinematic chain constraint 

equations. In addition by comparing figures 6.4 and 6.6 it can be seen that the speed of the 

traveler's input motion is approximately equal in both cases and that the size of the loops are 

approximately equal. This supports the hypothesis that the loop effect is associated with the 

inertia of the interface robot which has not been compensated for in the virtual manipulator 

control law. 

In order to investigate the effects of the inertia of the robot on the response of the 

virtual manipulator system a third set of was collected using the orientation based closed 

kinematic chain constraint equation. In this data, shown in Figures 6.8 and 6.9, the input 

speed of the traveler was approximately one third of the original data. The reduced input 

velocity is clearly seen in Figure 6.9. Figure 6.8 shows that the loop effect is still present but 

the magnitude is reduced. Therefore the inertia of the interface will affect the response of the 

virtual manipulator system. The inertia of the robot can be compensated for, but this requires 

knowledge of the mass matrix of ±e PUMA as well as calculation or measurement of the 

acceleration of the robot. Both of these quantities are difficult to obtain, with any level of 

accuracy, using the current configuration of the experimental hardware. Without inertial 

compensation, the experience of the traveler interacting with the PUMA Avill contain 

disturbance forces associated with the inertial properties of the robot. These inertial 



www.manaraa.com

109 

0.13 

0.125 

0.12 

0.115 

0.11 

I 0.105 
i 

0.1 

0.095 

0.09 

0.085 

0.08 
0.77 0.775 0.78 

0.13 

0.125 

0.12 

0.115 

0.11 

0.105 

>> 
0.1 

0.095 

0.09 

0.085 

0.08 
0.78 0.77 0.775 

X, meters x, miners 

Figure 6.7. Comparison of loop eflfects. 
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Figure 6.8. End effector trajectory, orientation constraint, slow motion. 



www.manaraa.com

I l l  

q8r 

Q75-

Q7 

QS 
2 3 5 7 0 6 1 4 

tinreseoartfa 
Q4, 

Q3-

02 

3 7 2 5 6 0 1 4 
tiimsBccrd^ 

1.6r 

1.4-

QSl 
3 7 2 5 6 4 0 1 

t^seccnfe 

Figure 6.9. Cartesian motion, orientation constraint, slow motion. 
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disturbance forces may not affect the sense of immersion experienced by the traveler much. 

The interaction of the traveler with the haptic interface usually involves slow motion of the 

robot. However, if these disturbance forces become detrimental in the simulation of the 

synthetic environment a compensation mechanism can be developed and included into the 

control in a similar fashion to the inclusion of the gravity compensation. 

In the second set of revolute virtual manipulator data, the one degree of freedom 

device is positioned so that motion of ail six axes of the PUMA is required for proper 

constraint enforcement. The configuration of the virtual manipulator was in a horizontal plane 

and the axis of rotation was not collinear with the axis of rotation of the first revolute joint of 

the PUMA. Figure 6.10 shows a picture of the experimental hardware with the constraint 

trajectory superimposed. Figure 6.11 shows the desired trajectory and experimental data, 

viewed from the same point of view as the image shown in Figure 6.10. 

The revolute joint is one of the two basic joints used to develop a virtual manipulator. 

The data presentation in this section has shown how a revolute constraint can be introduced 

into a synthetic environment using a one degree of freedom revolute manipulator. This type 

of virtual manipulator could be used to simulate interaction with a parking brake or gear shift 

lever in a vehicle or aircraft. Thus allowing evaluation of a system design without 

construction of a physical prototype. The second principle mechanism joint the prismatic joint 

will be examined in the next section. 
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Figure 6.1. Experimental hardware with revolute constraint. 

Figure 6.2. Experimental and desired trajectory. 
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Virtual Prismatic Mechanism 

This section will present data for a virtual manipulator that contains both prismatic and 

revolute joints. In addition it will also introduce the first type of time varying virtual 

manipulator. Specifically the base mechanism used in this section will have six degrees of 

fireedom. This will allow free motion of the interface robot, however the number of degrees 

of freedom will be reduced in order to simulate various point contact situations. The idea is 

that this virtual manipulator will allow free motion inside a cube boundary. So the traveler is 

free to explore inside the box but if a boundary is contacted resistance will be encountered 

preventing the traveler from moving outside the desired region. However, the traveler is free 

to orient the end effector of the interface robot in any direction. 

The base virtual manipulator has six degrees of freedom and is shown schematically in 

Figure 6.12. The closed kinematic chain relationship is shown in Figure 6.13 using a 

{E} 

Figure 6.12. Virtual prismatic manipulator. 
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Figure 6.13. Closed kinematic chain relationship. 

schematic representation of the virtual manipulator and interface robot. The forward 

kinematics of this base virtual manipulator are trivial to evaluate due to orthogonal prismatic 

joints and ±e decoupled nature of the end effector rotation. The Cartesian position of the end 

effector of the virtual manipulator is just the displacement of each of the prismatic joints and 

the XYZ fixed Euler angles relative tot he world coordinate system. The end effector 

Jacobian of the virtual manipulator is shown in equation (6.3) below. 

c c r  y  C S S  - s  c  z^y^: X : C S C  + 5  5  X  y :  X  z  0  0  0  

S  S  S  -f-c c B S C — C S  X y z  X z  0  0  0  

—  C  C  0  0  0  

0  0  0  -^x 0 

0 0 0 0 

0 0 0 0 -1 
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During contact situations the number of degrees of freedom of the virtual manipulator 

is reduced by introducing the idea of joint limits into the virtual manipulator concept. Due to 

the decoupled nature of the base manipulator the appropriate Jacobian for contact situations 

can be determined by removing the column of the base Jacobian associated with the axis that 

has reached the joint limit. There are essentially four contact situations which are shown in 

Figure 6.14. Part a) of Figure 6.14 shows free motion with six degrees of freedom, part b) 

shows plane contact with five degrees of freedom, part c) shows line contact with four 

degrees of freedom and part d) shows point contact with three degrees of freedom. The three 

la) (b) 

(c) (d) 

Figure 6.14. Motion constraints: a) six dof, b) five do^ c) four dof^ d) three dof 
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degrees of freedom during point contact are tiie rotational degrees of freedom because the 

orientation of the end effector has not been constrained. 

A picture of the experimental hardware with the constraint boundary superimposed is 

shown in Figure 6.15. A set of experimental data is shown in Figure 6.16 in which the traveler 

was tracing the boundaries of the constraint box. This time varying virtual manipulator was 

developed to allow exploration of a synthetic environment using a point. Although the 

synthetic environment was quite simple, only one box. other objects could be added to the 

environment by modifying the joint hmits imposed on the virtual manipulator. The next 

section will introduce another type of time varying virtual manipulators. This second class of 

time varying virtual manipulators will have a constant number of degrees of freedom 

Figure 6.1. Experimental hardware with prismatic constraint. 
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0.4 
0.1 

0.05 0.6 

0.5 
-0.05 

-0.1 0.4 

Figure 6.16. Experimental data tracing boundary. 

but the conjfiguration of the virtual manipulator will change during the course of the 

interaction. 

Time Varying Virtual Manipulators 

The last section introduced the use of joint limits to extend the virtual manipulator 

concept to represent various types of contact. This section will now introduce the use of a 

virtual manipulator with a time varying configuration to allow interaction with more 

complicated objects in a synthetic environment. This section will present two virtual 

manipulators to allow the exploration of the shape of a NURBS curve and surface. 
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NURBS Curve Virtual Manipulator 

This development will assume that all weights in the NURBS curve are equal to one. 

This restriction is only added to make the presentation of this technique more tractable. 

Removing this restriction only increases the mathematical complexity of the equations, it does 

not change any of the results. 

A NURBS curve, C{u), with all weights equal to one is defined by equation (6.4). 

u -parameterization variable 
N - number of control points 
n - degree of NURBS curve 
5, „ - NURBS basis fimctions 

P, - NURBS control points 

The rate of change of the NURBS curve defined in equation (6.4) with respect to the 

parameterization variable, is shown in equation (6.5). 

.V 

(6.4) 

dC{u) _ j. 
du du ' 

(6.5) 

The tangent of the NURBS curve defined in equation (6.4) is expressed in equation (6.6). 
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TU) = 
dC{u) 

du 
(6.6) 

Equations (6.4), (6.5) and (6.6) present all the information about a NURBS curve that 

is needed to construct a time varying virtual manipulator that will constrain the motion of a 

robot to follow the curve. During a simulation in which the operator is allowed to move the 

end effector of a robot along a NURBS curve, the following list shows the steps performed by 

the virtual manipulator constraint controller. 

• Perform point inversion to determine the closest point on the NURBS curve, 

C{u), to the end effector of the robot 

• Determine the configuration of the time varying virtual manipulator (this 

includes determining the link lengths, positions and orientations) 

• Evaluate the Jacobian of the virtual manipulator 

• Evaluate control law 

These steps will be described for one type of virtual manipulator, a one degree of fi^eedom 

prismatic manipulator. 

In order to allow the end effector of a robot to trace a NURBS curve there must be 

way of transforming the Cartesian coordinates of the end effector (x, y, z) into the parametric 

coordinate of the curve, u. This is the point inversion problem and it will be discussed briefly 

before describing the time varying virtual manipulator. Point inversion is the process of 

determining the parametric coordinates associated with a given set of Cartesian coordinates 
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[82]. In theory the point inversion problem can be solved in closed form for curves with 

degree less ttian four. However, due to a host of numerical complications point inversion is 

typically performed iteratively using techniques such as a Newton search. A modified Newton 

search is used for point inversion in this work. After point inversion is performed the 

parametric coordinate u is determined; which represents the point on the NURBS curve that 

is closest to the end effector of the robot. The next step is to determine the configuration of 

the virtual manipulator that will approximate the shape of the NURBS curve in a region 

around u . 

To approximate a NURBS curve the one degree of fi-eedom mechanism shown 

schematically in Figure 6.17 will be used. This manipulator can be represented with two 

coordinate frames as shown in Figure 6.18. As shown in Figure 6.18 the end effector frame, 

{E}, of the virtual manipulator is allowed to translate along the z-axis of the base frame, (B}. 

A kinematic analysis of the virtual manipulator is required to formulate the virtual constraint 

controller. In order to determine the kinematics of this manipulator the Denavit-Hartenberg 

(D-H) parameters associated with it must be determined. The D-H parameters for the 

prismatic virtual manipulator are shown below in Table 6.2. The D-H parameters in Table 6.2 

are used to construct the follovi/ing kinematic transformation matrix for the virtual 

manipulator. 

Table 6.2. D-H parameters. 

i ^,-1 d. 9, 
1 0 0 d 0 
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Axis of Motion 

End Effector 

Figure 6.17. Schematic of prismatic virtual mechanism. 

T = IT ~ 

1 0  0  0  

0  1 0  0  

0 0 1^ 

0 0 0 1 

(6.7) 

This virtual manipulator will be used construct a linear approximation to the original 

NURBS curve. The position and orientation of the base frame, (B} of the virtual manipulator 

are allowed to vary over the length of the curve. The instantaneous position and orientation 

of frame {B} are determined by the characteristics of the NURBS curve at the parameter 

value u which was determined by point inversion. Specifically, the position of fi"ame {B} is 

defined by C(M*) . The orientation of the frame {B} is partially determined by the tangent of 

the NURBS curve, T(M*) . Frame {B} is oriented such that the z-axis of frame {B} is in the 

direction of the T(«*) . However, a second vector, is required to completely fix the 

orientation of frame {B}. The vector V„p is used to determine the orientation of frame {B} in 
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Base Frame {B} 

End Effector Frame {E} 

X. 

Figure 6.18. Virtual mechanism frame assignment. 

same way that it is commonly used in computer graphics to determine the orientation of view 

reference coordinate frame [2], 

ZB = 

JB  = •  

= 

W"')! 

Zb ^ V-p 

YB  ̂ Z B  

lys ^ Zsl 

(6.8) 

The vector is arbitrary and can be select by the user. In addition, can be constant or 

defined as a vector field over the length of the NURBS curve. After determining the 

configuration of the virtual manipulator its Jacobian must be found. 
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The Jacobian of the virtual manipulator can be determine by applying standard robot 

analysis techniques to the kinematic transformation matrix ^T. The Jacobian of this one 

degree of freedom prismatic manipulator is shown in equation (6.9) 

J v , = [ 0  0  1  0  0  o ] '  (6.9) 

Note that the Jacobian of this virtual manipulator is quite simple and remains constant, which 

is a distinct advantage of this control approach. 

In order to verify the effectiveness of the virtual constraint NURBS curve controller an 

Figure 6.1. PUMA 560 manipulator with constraint NURBS curve. 



www.manaraa.com

125 

experiment was performed in which a PUMA 560 manipiilator was constrained to follow a 

quadratic NURBS curve defined by three control points. Figure 6.19 shows a picture of the 

PUMA with the NURBS curve constraint superimposed. Experimental data is presented for 

two simulations of the controller. Figure 6.20 shows experimental position data when the 

user is moving the end effector of the PUMA along the NURBS curve slowly. Figure 6.21 

shows experimental position data when the user moves the robot more quickly. 

The data presented in Figure 6.20 clearly shows that as the operator moves the PUMA 

along the NURBS curve slowly, good tracking performance is obtained. However, as seen in 

Figure 6.21 when operator moves the robot quickly, the tracking performance degrades. 

When the user moves the PUMA slowly the effect of the inertial properties of the robot are 

small thus good tracking is obtained. However, as the speed of the robot is increased the 

0.5 
constraint curve 
experimental data 0.49 

0.48 

0.47 

0.46 

0.45 

0.44 

0.43 

0.42 

0.41 

0.4 1 1 1 1— 
-0.1 -0.08 -0.Q6 -0.04 -0.02 0.02 0.04 0.06 0.08 0.1 0 

Figure 6.20. Experimental data, slow motion. 
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0.52 
constraint curve 
experimental data 

0.5 

0.48 

0.46 

0.44 

direction 
direction 

0.42 
motion 

motion 

0.4 

0.38 
0.15 0.05 -0.15 0.1 -0.05 0 -0.1 

Figure 6.21. Experimental data, fast motion. 

inertial effect is more dominate as seen the experimental data. The direction dependent 

response shown in Figure 6.21 clearly shows the effect of the PUMA inertia on the systems 

response. 

The magnitude of the inertial disturbance can by minimized by changing the stifBiess of 

the local error feedback control springs. However, there is a distinct limit on how high the 

stiflBiess of the control springs can be increased. If the stifftiess of the control springs is 

increased above this limit the controller will enter a region of instability. In order to ensure 

the safety of operator it is essential that no controller instability occur. This upper bound is a 

property of the robotic manipulator and represents a functional limitation of ±e device. 
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NURBS Surface Virtual Manipulator 

This paper will not present a detailed description of NURBS surfeces. Only the 

NURBS surfeces concepts needed to develop the time varying virtual manipulator will be 

presented. An interested reader is referred to Piegl and Tiller [82] for fiirther details about 

NURBS surfaces. This development will assume that all weights in the NURBS surface are 

equal to one. This restriction is only added to make the presentation of this technique more 

tractable. Removing this restriction only increases the mathematical complexity of the 

equations, it does not change any of the results. 

A NURBS surface, S(M, V), with all weights equal to one is defined by equation 

(6.10). 

s(",") = i f (6.10) 
1=0 7=0 

u -parameterization variable 
V - parameterization variable 
.V - number of control points in «-direction 
M - number of control points in v-direction 
n - degree of surface in ^-direction 
m - degree of surface in v-direction 

fiinctions in ^-direction 

„(v) - basis fimctions in v-direction 

P,^ - matrix of control points 

The rate of change of the NURBS surfece defined in equation (6.10) with respect to the 

parameterization variable, m, is shown in equation (6.11). 
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(6.11) 

The rate of change of the NURBS surface defined in equation (6.10) with respect to the 

parameterization variable, v, is shown in equation (6.12). 

The normal of the NURBS surface defined in equation (6.10) is expressed in equation (6.13). 

Equations (6.10), (6.11), (6.12) and (6.13) present all the information aboutaNURBS 

surface that is needed to construct a time varying virtual manipulator that will constrain the 

motion of a robot to follow the surface. 

In order to allow the end effector of a robot to trace a NURBS surfece there must be 

way of transforming the Cartesian coordinates of the end effector (x, _y, z) into the parametric 

coordinates of the surface («, v). Point inversion is the process of determining the parametric 

coordinates associated with a given set of Cartesian coordinates [82]. After point inversion is 

performed the parametric coordinates are determined; which represent the point on 

(m, v) = 2,2- W . P-.y 
cv ,=0 ;=o dv 

(6.12) 

1V(M, V) = S „ (W, V) 0 S , («, v) (6.13) 
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the NURBS surface that is closest to the end effector of the robot. The next step is to 

determine the configuration of the virtual manipulator that will approximate the shape of the 

To approximate a NURBS surface the two degree of fi-eedom mechanism shoAvn 

schematically in Figure 6.22 will be used. This manipulator can be represented with three 

coordinate frames as shown in Figure 6.23, however, a fourth frame is added to produce a 

more "appropriate" connection between the virtual manipulator and the robot. The robot used 

as an experimental test-bed in this work has a handle which aligns with the z-axis of the end 

effector of the robot. The addition of the fixed rotation associated with the fourth coordinate 

fiame in Figure 6.23 will allow the handle of the robot to align with the normal of the NURBS 

surface. The details of this handle - normal alignment will be shown in detail later; however, it 

should be noted that this alignment is the motivation of the addition of the extra coordinate 

frame. 

A kinematic analysis of the virtual manipulator is required to formulate the virtual 

NURBS surface in a region around . 

Axes of Motion 

End Effector 

Figure 6.22. Prismatic -prismatic virtual mechanism. 
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Figure 6.23. Virtual mechanism frame assignment. 

constraint controller. The Denavit-Hartenberg (D-H) parameters for the prismatic - prismatic 

virtual manipulator are shown below in Table 6.3. The D-H parameters in Table 6.3 are used 

to construct the following kinematic transformation matrix for the virtual manipulator. 

0 0 1 0 

1 0 0 

0 1 0 d. 

0 0 0 1 

(6.14) 

This virtual manipulator will allow motion along the bilinear approximation to the 

Table 6.3. D-H parameters. 

i ^1-. a.-. < 9. 

1 0 0 0 
2 0 -90° -90° 
J 0 -90° 0 -90° 
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original NURBS surface. The position and orientation of the base frame, {B}, of the virtual 

manipulator is allowed to vary over the surface. The instantaneous position and orientation of 

frame {B} are determined by the charaaeristics of the NURBS surface at the parameter 

values which were determined by point inversion. 

Specifically, the position of frame {B} is defined by s(«*, v*). The orientation of the 

frame {B} is determined by the two tangents of the NURBS surface, S„(m*,v*) and 

Sv(«*, v'). Frame {B} is oriented such that the x-axis of frame {B} is in the direction of the 

n(w*, V*), the>'-axis is in the direction of S„(zf*,v*), and the z-axis is in the direction of 

^3 = 

iv ̂  Y b  =  

= 

Su(^\v') 

jSuK.v*)! 

SV(M',V') 

|sv(«',v*)| 

(6.15) 

Note that these unit vectors are written with respect to a world coordinate system which has 

been selected as the base frame for the robot interface for convenience. After determining the 

configuration of the virtual manipulator the Jacobian relating the end effector velocity with the 

velocity in the base coordinate frame can be computed. 
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The Jacobian of the virtual manipulator can be determined by applying standard robot 

analysis techniques to the kinematic transformation matrices. The Jacobian of this two-

degree-of-freedom prismatic - prismatic manipulator is shown in equation (6.16). 

Note that the Jacobian of this virtual manipulator is quite simple and remains constant, which 

will be a distinct advantage in control approach. 

In order to verify the effectiveness of the virtual constraint NURBS surface controller 

an experiment was performed in which a PUMA 560 manipulator was constrained to a bi­

quadratic NURBS surface defined by a matrix of nine control points. Figure 6.24 shows a 

0 1 0 0 0 O"'* 

1 0 0 0 0 0 
(6.16) 

0.35--

0.34-

0.33-

0.32-
z 

0.31-

0.3 

0.29: 
0.1 

0.6 

y -0.1 0.4 
X 

Figure 6.24. Constraint NURBS surface. 
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Figure 6.25. Experimental data for NURBS constraint. 

picture of the NURBS surface constraint. Figure 6.25 shows experimental position data when 

the user is moving the end effector of the PUMA over the NURBS surface. 

The data presented in Figure 6.25 clearly shows that as the operator moves the PUMA 

over the NURBS surface, good tracking performance is obtained. However, the constraint 

controller being used does not compensate for the inertial effects of the PUMA when operator 

moves the robot quickly, the inertia of the can clearly be felt. 

The magnitude of position error caused by inertial disturbances can by minimized by 

changing the stif5iess of the local error feedback control springs. However, there is a distinct 

limit on how high the stiffiiess of the control gains can be increased. This upper bound is a 

property of the robotic manipulator, sensor resolution and noise, and actuator characteristics. 

This performance limitation of the device is present regardless of the structure of the control 

scheme. Removing the constraint forces in the virtual manipulator control approach does not 
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affect the overall stability of the underlying error controller. In order to ensure the safety of 

operator the feedback gains for the local control must be chosen to provide stable operation. 

The motion of the end effector of the PUMA was tied to a graphical display to provide 

the operator with a more complete feeling of immersion. Figure 6.26 shows a typical image 

from the graphical display. The end of the PUMA is show as an exploration tool in the visual 

interface. The graphics engine is connected to PUMA control hardware by means of an 

Figure 6.1. Graphical interface. 
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ethernet socket connect. 

EUgh Degree of Freedom Virtual Manipulator 

The high degree of freedom virtual manipulator presented in this section is similar to 

the prismatic virtual manipulator presented earlier. The number of degrees of freedom of the 

virtual manipulator change to allow exploration and interaction in the synthetic environment. 

The interaction is achieved in this section by allowing the traveler to manipulate a virtual tool. 

As a result the contaa between the traveler and the synthetic environment is different than 

with the prismatic virtual manipulator, which allowed only a single point as the tool of 

exploration. 

A five-degree of freedom virtual manipulator will be described that provides force 

feedback to a youi^ Jedi dueling with a virtual Lord Vader. This work is characteristically 

different from previous virtual manipulator work, which focused on highly constrained low 

degree of freedom virtual manipulators. This section will focus on revealing the potential of 

this control approach as general interaction metaphor for synthetic environments. The fenciful 

depiction of a light saber battle with Darth Vader is used to underscore the ability of the 

virtual manipulator approach. The general application of the virtual manipulator presented 

here will be to examine, maneuver or deform objects placed in a synthetic environment. 

When the traveler in the synthetic environment is maneuvering her sword in free space 

the virtual manipulator will have six degrees of freedom. In this situation the configuration of 

the virtual manipulator is somewhat arbitrary because regardless of configuration the null 
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space filter matrix becomes a matrix of zeros. Thus the control torques applied to the 

interface robot is zero and the traveler is fi"ee to move the interface robot in any manner. 

I£^ however, the two swords make contact, the virtual manipulator losses a degree of 

fi"eedom—the degree of fi'eedom that would allow the swords to pass through one another. 

During contact situations the virtual manipulator has five degrees of fireedom and the 

configuration of the virtual manipulator used is a prismatic joint, three orthogonal revolute 

joints and a prismatic joint. Thus during contact the traveler can maneuver the interface robot 

so that her sword has three axes of rotation about the point of contact and two axes of 

translation along Darth Vader's sword but can not pass through her opponent's sword. 

Due to the nature of interaction in this synthetic environment it is difBcult to present 

data that describes the experience. However, an experiment was performed in which the 

traveler's sword was positioned perpendicular to Darth Vader's sword and moved laterally 

until the two swords contacted. A schematic diagram of the experiment is shown in Figure 

6.27. During the experiment the lateral motion of the traveler's sword was measured as well 

as the force applied to the end effector of the interface robot by the traveler. This data is 

presented in Figure 6.28. 

Prior to contacting Darth Vader's sword the interface robot was moved in fi*ee space 

this provides an idea of the magnitude of the force necessary to manipulate the interface robot. 

Approximately 10 Newton's of force is required to stop and change the direction of motion of 

the interface. This force is most likely associated with the inertia of the device, which has not 

been compensated for using feed forward elements. In addition, increasing the gain of the 

force feedback loop can reduce the magnitude of the fi^ee space manipulation force. However, 
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this was not done to avoid the closed loop instability sometimes associated with high gain 

force loops. 

Once the two swords come into contact, contact a large negative force peak is seen. 

This force is preventing the swords from passing through each other. The initial contact gives 

rise to a slight recoil of the traveler's sword, which is accompanied by a positive force peak. 

After the contact transient the traveler continues pressing into her opponent's sword and 

gradvially reduces the contact force. 

Figure 6.29 shows a picture of the experimental hardware located in the four-wall 

projection environment. Figure 6.30 shows a not so young Jedi attempting to defeat the evil 

Lord of Sith. 

Darth's Sword 

Direction 

of Motion 

Traveler's Sword 

Figure 6.27. Experiment protocol. 
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Figure 6.28. Experimental data for light saber. 
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Figure 6.1. Experimental hardware 
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Figure 6.2. Graphical display. 
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PART N. DYNAMIC MODELS FOR INTERACTION 
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CHAPTER?. FINITE ELEMENT ANALYSIS 

This chapter will review some of the major concepts of finite element analysis (FEA). 

This treatment is not intended to be a complete development of FEA but will give a general 

overview of the technique, focusing on the topics that will be used in Chapter 8. For further 

information on FEA the reader is referred to [11]. 

FEA is a technique that reduces an mfinite degree of fi^eedom problem, to one with a 

finite number of degrees of fi'eedom. This reduction in the number of degrees of fi-eedom 

allows an approximate solution to be found at reduced computational expense. FEA can be 

divided into five steps, listed below, which will be described in the following sections. 

1. Discretization 

2. Interpolation 

3. Elemental Description 

4. Assembly 

5. Solution 
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Discretization 

Discretization is the process of dividing a continuous medium into a finite nvmiber of 

elements. The elements are intercoimected at special points called nodes. Although the 

boundary of an element is defined by nodes, nodes may also be located in the interior of an 

element. See Figure 7.1 for a one-dimensional example of nodes and elements. The response 

of an element is determined by the nodal displacements associated with the element. The 

nodal displacements are generalized displacements, which may be translations, rotations or 

curvatures. 

There are several types of elements that can be used; however, all elements can be 

classified by their dimension and interpolation scheme. Figure 7.2 shows three types of 

elements with linear interpolation. The selection of an element depends on the nature of the 

problem being solved; this will be address in more detail in the following section on 

interpolation. 

Nodes 

i \ 

Elements 

Figure 7.1. Nodes and elements. 
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• • 

(a) (b) (c) 

Figure 7.2. Linear elements; (a) 1-D; (b) 2-D; (c) 3-D. 

Interpolation 

The approximate solution obtained from a finite element model is found by 

interpolating the nodal displacements of an element with shape fimctions. The response, 

u{x,y,z,t], for an element is shown in equation (7.1). 

'ul^x,y,zj) = Y^u,{t)N{x,y,z) (7.1) 

/ is ±e number of nodes 

M, {i) are the nodal displacements 

AA,(x,j/,r) are the shape fimctions 

The shape functions used in equation (7.1) are a key component in 

paragraphs will discuss the requirements that shape functions must 

derivation of the shape fimctions typically used in FEA. 

FEA. The following 

satisfy and outline the 
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Shape Function Requirements 

There are a number of functions that can be used as shape fiinctions, for example: 

simple polynomials, Lagrange polynomials and Hermite polynomials. Regardless of type, the 

shape functions must interpolate the nodal displacements. That is, a shape function must have 

a unit value at its associated nodal coordinates and must be zero at all other nodal 

coordinates. This concept is expressed mathematically in equation (7.2). 

The terms , yj and Zj are nodal coordinates. In general for a set of shape fiinctions to be 

acceptable, they must satisfy the following criteria. 

(7.2) 

1. Shape fimctions derived from simple polynomials must be balanced with respect to all 

coordinate axes. 

2. The shape functions must have acceptable continuity between elements. 

J .  The shape fianction must be complete with respect to the system being modeled. 

The reader is referred to [11] for more details on these requirements. In addition, if the nodal 

displacements are limited to translational displacements the shape fimctions must also satisfy 

the following properties. 
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I 

z ^ 
I 

=y 
t 

(7.3) 

Shape functions derived from simple polynomials are capable of satisfying all of the 

stated requirements and are easily developed; as a result, they will be used whenever the 

standard FEA is used. The following section will outline the derivation of this type of shape 

fiinction. 

Derivation of Shape Functions 

When deriving simple polynomial shape fimctions, the interpolation degree, n, and 

dimension of the problem are used to develop an approximate solution. For a one dimensional 

problem with nth degree interpolation the approximate solution would have the following 

form. 

u(x) = + a^x + a^x' -i—ra^x" (7.4) 

The coeflBcients a. are constant coefficients. The approximate solution, equation (7.4), is then 

evaluated at the /? +1 nodal coordinates, x-. 
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u(x, } = u,=a^+ a,x, + a^y- +• • •+a^x^ 

m(X,) = W, = flg —^«^2 

w(x^,) = = a^ +a,r^! +a2J^^i+— 

(7.5) 

The system of equations (7.5) can be rewritten in matrix form. 

' «: 

• = 

U I  

I Xi 

1 X, 

1 X l-I 

u = Xa 

a. 

a. 

(7.6) 

The coefficients, a,, can be found in terms of the nodal coordinates, x,, and the nodal 

displacements, «,, by matrix inversion. 

a = X-'u (7.7) 

The approximate solution can be rewritten by substituting the coefficients, a, into equation 

(7.4). 
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^0 

a(x) = {l r ••• x''}j^H = {l X ••• x'jx-'u (7.8) 

The shape functions, N^x), are determined by combining terms associated with each nodal 

displacement, u,. This is done systematically using equation (7.9). 

Shape fimctions can be derived in the above fashion for all elements in a finite element 

model. However, the shape fimctions are different for each element and the process of 

solving for all of the different shape fimctions is time consuming. In order to simplify this 

process the coordmate transformation described in the following section is used. 

Coordinate Transformation 

To simplify shape fimction calculation, shape fimctions are determined for a simple 

parent element, which are transformed to the particular element in question. The 

transformation from the parent element to the actual element is achieved through a coordinate 

(7.9) 

x-'=[x;' x:' - x;;,] 
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element 

I ^ local 
0 1 

1 1—^ global 
Xi JQx+i 

Figure 7.3. Coordinate transformation. 

transformation from a local coordinate system to the global coordinate system. Figure 7.3 

shows an example of this transformation for a one dimensional element of degree n. The use 

of the above coordinate transformation will be clarified in the next section, which discusses 

the elemental description. 

As discussed in the discretization section, the selection of an element and an 

interpolation scheme in constructing a finite element model are not independent. The major 

consideration in selecting an interpolation scheme is that in the limit as the elements are 

refined the approximate finite element solution should converge to the exact solution. 

Elemental Description 

There are various ways to generate a finite element model. Direct integration of the 

differential equation is the most straight forward method. However, this is not always 

possible and in this situation there are two commonly accepted approaches to obtain the 

desired model. In the first approach the energy associated with the problem is determined by 

integration over the domain and boundary of the region. The method of Ritz is then used to 

obtain a set of algebraic equations [11]. The second approach uses the differential equation 
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directly in the weak formulation. This approach is equivalent to the principle of virtual work 

used in mechanics. A set of algebraic equations is obtained by combining the weak 

formulation of the diSerentiai equation and Galerkin's method. 

In order to demonstrate how Galerkin's method and the weak formulation of a 

differential equation are used in constructing the elemental description, the following 

paragraphs will develop a finite element model for the one-dimensional wave equation. 

The coefificients k, p and/ represent the restoring force, mass density and external force 

respectively. Two boundary conditions are required to solve equation (7.10). There are two 

types of acceptable boundary conditions; essential and natural. 

u - a  (essential) 

k — -b (natural) 
cx 

The constants a and h are the boundary conditions. One type of boundary condition, either 

essential or natural, must be specified at x = 0 and x = I. In addition to the two boundary 

conditions, two initial conditions are also required to solve equation (7.10). 

(7.10) 

(7.11) 

du 
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«(r,0) = /(x) (position) 

(7.12) 

(velocity) 

The functions /(x) and g(x) are the initial conditions. 

Galerkin's method is considered to be one of the Methods of Weighted Residuals 

(MWR). MWR is a general technique that finds application in minimization processes outside 

of FEA. In the MWR an approximate solution, u, to the dijfferential equation is selected. 

t) = ^ Z ('V, W (7-13) 
t 

c, are constant coefiBcients 

are functions which satisfy the boundary conditions 

The approximate solution, u, typically used in FEA is based on the nodal displacements and 

shape functions as shown in equation (7.1), rewritten here in vector form. 

M(X, r) = (x)u(/) = {iV, (x) N. (x) • • • (x)} (7.14) 
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The integer n is determined by the degree of the interpolation scheme. When equations (7.13) 

and (7.14) are compared it is obvious that: 

c,W = «,(r) (7.15) 

(pXx) = NXx), for/ = U,...,n + l 

The approximate solution, u, is then substituted into the wave equation (7.10). 

i(*f (7.16) 
ct 

The residual, error caused by the approximate solution, R(x) is then evaluated. 

^ \  ̂ ( du\ fiu .\ \ S (, ff-u ,i 

If the approximate solution was exact then the residual would be zero. In general the residual 

is non-zero; therefore, the goal is to minimize the residual by requiring the weighted average 

of the residual to be zero. The weighted average of the residual is evaluated in equation 

(7.18). 
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\R{x)w{x)cbc = Q (7.18) 

X, is ±e coordinate value of the first node of the element 

is the coordinate value of the last node of the element 

w(x) are the weight fimctions 

There are several types of weight fimctions. The selection of a weight fimction determines the 

way in which the residual is minimized In Galerkin's method the weight fimctions are the 

same as the approximating polynomials (shape fimctions). 

M'rW (7.19) 

Before substituting the shape fimctions into equation (7.18) the weak form of the differential 

equation will be derived by integration by parts [97], 

'?• r ̂  dx = wk— 
cx - J  

dM , du d~u 
-^k—^wp-^-wf 

V. cx cx cx > 
A = 0 (7.20) 

The shape fimctions derived in the interpolation section are then substituted into equation 

(7.20). 
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J [/jN(x)N^(x)u(r) + = 7N(x)/dr + ̂ N(x)^^^u(r) (7.21) 

•^r = ^[n'"(x)u(/)] = N^(x) ^[u(r)] = N^(x)u(/) 

^  r  7 /  \  /  \ i  .  ,  - = -[N^WuW] = —«w 

Equation (7.21) is the elemental description for the one-dimensional wave equation. Equation 

(7.21) is solved for the vector of nodal displacements, u(f). These displacements minimize 

the error between the actual solution, u(x, f), and the approximate solution, u(x, f). The 

different components of ±e elemental model can be determined by investigating equation 

(7.21). 

The elemental mass matrix, is associated with the nodal accelerations, u(/), and 

is evaluated by equation (7.22). 
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•'It*! 

M,u(/) = J pN(x)N^(x)u(/)<35: 

M , =  J  

pN^ix)N^ix) pN'^(,x)N'^ix) ••• pN^ix)N'„ix) 

pNXx)N^{x) ••• pNXx)N„{x) 

SYM pNSx)N„{x) 

dx 

(7.22) 

The elemental stifi&iess matrix, K^, is associated with the nodal displacements, u(/), and is 

evaluated by equation (7.23). 

^ . y , <m{x) c/N^(x) , , ^ 
K.a(')= J k 2 '"(')<& 

K . =  J  

dx dx 

kN^{x)N^{x) kN\{x)N.,{x) 

kN.{x)N\Xx) 

SYM 

NXx) = 
dNXx) 

dx 

kN:{x)N„{x) 

kNzix)N„{x) 
dx 

(7.23) 

kN„{x)N:{x) 

The elemental force vector, fg, is associated with the external distributed force, /, and is 

evaluated by equation (7.24). 
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f. = J NW/<ic 
X, 

r Af,w ^ 
N,{x) f.= J/ 

(7-24) 

•dx 

The final term in the elemental description contains information about the natural boundary 

conditions. The vector, bg, is evaluated in equation (7.25). 

= —T—u 
dx 

b = 

'kN\x)N,{x) kN,ix)K{x) 

kN,ix)N:{x) 

SYM 

kN,{x)N'^X^) 

kN„,,{x)N\^,{x) 

^:(^i) = ^3(^1) =•••=-^^1(^1) = 0 = l 

^ )  =  ̂ 2  ) = • • • =  ̂ n{^n.X ) = 0 (^^1 ) = 1 
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b. = k (7.25) 

The statement of the finite element model, equation (7.21), can therefore be rewritten using 

equations (7.22), (7.23), (7.24) and (7.25). 

M^u(/) + K,u(r) = f, -r b, (7.26) 

The elemental model in equation (7.26) is obtained by integrating various physical 

parameters and the shape fimctions. The coordinate transformation described in the 

interpolation section is used to simplify ±ese integrations. The shape fimctions are 

determined with respect to the local coordinate system, n(^/) , instead of the global 

coordinate system, N(x). The first term in the elemental stiffiiess matrix, will be used to 

clarify the coordinate transformation. 

*7' •/ \ •/ \ r dN, dw dN, dw dx 
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This coordinate transformation can be used for all parts of the elemental description, thus 

greatly simplifying the calculation of the elemental matrices. After the elemental matrices 

have been calculated they must be assembled to construct the global system model. 

Assembly 

The elemental description formulated in the previous section allows the elemental 

matrices to be determined. The elemental matrices are then assembled, in order to construct 

the global system model. The global system model can be developed by inspection for one-

dimensional and simple multidimensional problems. For example, consider constructing the 

global stiffiiess matrix for a system with two quadratic elements as shown in Figure 7.4. 

There are five, one degree of fi-eedom nodes in this model. As a result the global stiffiiess 

matrix will be a 5x5. The global stifi&iess matrix will contain elements fi^om the two elemental 

matrices. The stiffiiess matrix for the first element has the form shown in equation (7.28). 

K,. ^1.3 
Ky = A.-» -7 ul > (7.28) 

^3.1 <3 .< 

I 
I element 1 element 2 

Xi X2 X3 X4 X5 

Figure 7.4. Two element model. 
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The stif&iess matrix for the second element has the form shown in equation (7.29). 

K = kii ... 

kl_ 

"'U2 

^3 
k;. ^"3 J 

(7.29) 

The global matrix is the sum of the elemental matrices when they are expanded to the size of 

the global matrix. However, before the elemental matrices can be expanded to global size, the 

local nodal displacements must be mapped to the global nodal displacements as shown in 

Figure 7.5. 

element 1 

u\ u: 

u. 

element 2 

\i/ \j/ 

Local Nodes 

CHobal Nodes 

Figure 7.5. Mapping local nodal displacements to global nodal displacements. 



www.manaraa.com

160 

u, =u. 

u. =u. 

«r="3 

U: = «; 

(7.30) 

The elemental matrices can now be expanded and sxmmied. 

'fr' ''i.i Kz 0 0' '0 0 0 0 0 " 

k l .  ^ I z  kl. 0 0 "2 0 0 0 0 0 Ur 
K.u, = g s K.Z '̂3.3 0 0 "3 '-r 0 0 klz «3 • (7 

0 0 0 0 0 0 0 kL k:, • .J 
_ 0 0 0 0 0 ."s. 0 0 kl. kL k } ,  i.J _ «5. 

Therefore the global stiJB&iess matrix has the following form. 

"i.i 

*2.1 

"•3.1 
0 

0 

Kz 
k l .  

0 

0 

''i.j 
k l .  

k '  +  k -"3,3 

0 0 

0 0 

k -  k -
"•1.2 "1.3 

^3 
k : ,  k : ,  

J.2 

"2 

"3^ 

L«5J 

(7.32) 

The inspection method works well for one-dimensional problems; however, with higher 

dimension problems a more systematic approach is required. 
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The assembly process is easily automated by using a connectivity matrix. The 

connectivity matrix contains the global node numbers which map the elemental matrices into 

the global matrix. The connectivity matrix, C, for the example problem shown in Figure 7.4 is 

shown in Figure 7.6. Once the connectivity matrix is constructed, it can be used to map the 

elemental matrices into the global matrix using the following relationship. 

The terms and K^ j are the elements of the elemental matrices and the elements of the 

global matrix respectively. An element in the global matrix is the sum of all of the elemental 

elements mapped to the global element. This technique produces the same global matrix as 

the inspection method, however, the technique can be implemented in computer code to 

K, — 
(7.33) 

I = C{ej) 

J  =  C { e j )  

2 y local node 
number 

1 1 2  3  

'y - A 5^ global node 
~ I I I N number 

element 
number 

Figure 7.6. Connectivity matrix. 
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automate the assembly process. 

Solution 

After the assembly process the global system model is obtained as shown in equation 

The global system model is now ready to be solved for the nodal displacements. The system 

of differential equations will be solved using a central difference approximation, which is 

discussed in the following section. 

Central Difference Approximation 

The central difference approach reduces the system of differential equations to a 

system of algebraic equations by expressing the nodal accelerations, Ug(/) in terms of 

Ug(r -r A/), Ug(f) and Ug(/ - A/). The UgCr + A/) term can be approximated using Ug(0 

and a three term Taylor series expansion [97] as shown in equation (7.35). 

(7.34). 

M,u,(/) + K ,Ug(r) = fg^bg (7.34) 

Ug(r +A/) = Ug(r)-rAnkg(f)+—^Ug(r) (7.35) 
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The Ug(f - At) term can be approximated in the same fashion as shown in equation (7.36). 

Ug(r-A/) = UgW - AriigW (7.36) 

An expression for u (/) is found by adding equations (7.35) and (7.35). 

Ug(r -r A/) + Ug(r - At) = 2Ug(r) + (A/)" Ug(/) (7.37) 

Solving for u (r); 

Ug(r+A/) + Ug(/-A/)-2Ug(r) 

" {Aty-
(7.38) 

Equation (7.38) is then substimted into the global system model, equation (7.34). 

M. 
Ug(/ + A/) + Ug(/ - A/) - 2Ug(/) 

(AtY-
(7.39) 

This substitution reduces the system of differential equations to a system of algebraic 

equations. Equation (7.39) can be rewritten as shown in equation (7.40). 
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MgUg(r + A/) = [2Mg -(A/)'KjugW-MgUg(r-A/)+(Ar)'fg+(A/)'bg (7.40) 

Equation (7.40) is a finite difference equation ±at allows Ug(/ + A/) to be determined fi^om 

Ug(/) and Ug(/ - A/). Equation (7.40) allows an approximate solution to the original 

differential equation to be obtained by stepping through time. Although equation (7.40) is 

easy to solve there is some difiBculty in starting the solution process, which will be discussed 

in the next section. 

Start-Up 

In order to solve equation (7.40) for Ug(A/) the nodal displacements, Ug(0) and 

Ug(- At) must be known. However, Ug(- Ai) is not specified in the original statement of the 

differential equation. As a result Ug(- A/) will be estimated using the Taylor series expansion 

and the given initial conditions. 

The constants Ug(0), Ug(0) and Ug(0) are the initial nodal displacements, initial nodal 

velocities and the initial nodal accelerations respectively. The initial nodal displacements and 

velocities are available firom the initial conditions applied to the original differential equation. 
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The initial nodal accelerations are not specified; however, they can be obtained by evaluating 

equation (7.34) at the initial conditions. 

ii.(0)=M-[f,̂ b,-K,u,(0)] (742) 

With Ug(- A/) determined only one obstacle remains to be overcome before the system of 

equations can be solved. The system of equations must be constrained to comply with the 

boundary conditions. 

Constraints 

The system of equations (7.40) reduces to an algebraic set of equations of the form 

shown in equation (7.43). 

If the boundary conditions, equation (7.11), at x = 0 or x = L are essential boundary 

conditions the global system model, equation (7.43), must be augmented to enforce the 

boundary conditions. The boundary conditions can be enforced by rewriting the system of 

equations. 

lVIgUg(r + A/) = rhs (7.43) 

rhs = [2Mg - (A/)'Kg]u,W - - A/) + (A/)'fg ^ {At)\ 
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For example, consider the original algebraic set, equation (7.43) expanded in equation 

(7.44). 

"̂ 1.1 
rru. 

SYM 

"hn,' rhŝ  

• — « 

rhŝ  

n ̂  

(7.44) 

If equation (7.44) is subject to two essential boundary conditions of the form; 

Wj = 
(7.45) 

The system can be constrained by rewriting the and equations as shown in equation 

(7.46). 

m,, TO,; 

0 0 

0 0 u. 

r = < 

u .  m-l 
U_ 

A 

rhSr 

rhs. 

B 

(7.46) 

After the augmented system has been constructed the system response can be 

determined using matrix inversion. Now that the standard FEA has been developed. Chapter 



www.manaraa.com

167 

8 will modify it by using the B-spline basis fimctions instead of the polynomial shape fimctions 

developed in this chapter. 



www.manaraa.com

16S 

CHAPTER 8. MODIFIED FINITE ELEMENT ANALYSIS 

Finite element analysis (FEA) was reviewed in Chapter 7, this technique can be used to 

obtain physically based simulations of virtual components. However, the response from the 

FEA is not in line with the ultimate goal of developing a physically based design system. As a 

result the standard FEA will be modified so that the response is more appropriate for a design 

system. 

FEA will be modified by representing the virtual component's geometry with B-splines. 

The modified FEA will provide several advantages over the standard FEA. The designer will 

have accurate control of the virtual object's continuity. The time required for collision 

detection between the user's virtual hand and the virtual object can be reduced by using 

bounding box techniques. The response for modified FEA model can be computed at less 

computational expense than a standard FEA model with the same number of elements. The 

virtual object can be deformed using free form deformations. 

This chapter will present some basic information about B-splines, the reader is referred 

to [2] for more details about this representation. A B-spIine curve is a piece-wise continuous 
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curve as shown in Figure 8.1. The nth degree curve, 0(4"), is a parametric curve defined on 

^"£[0,1] which contains a given number of nth degree segments, 01(4"), and 03(1^). 

The curve is generated by blending data points, typically called control points with a set of 

basis functions as shown in equation (8.1). 

= (8-1) 
(=0 

k  is the number of control points 

are the coordinates of the curve at the parameter value C 

are the basis functions at the parameter value 4" 

p, are the coordinates of the control points 

Equation (8.1) is similar to equation (7.1), which is the standard interpolation scheme used in 

FEA. However, the B-spline basis functions must satisfy all of the shape function 

Figure 8.1. B-spIine curve. 
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requirements specified in Chapter 7 in order to be used in FEA. The following sections will 

develop the B-spIine basis functions and show that they are an acceptable FEA interpolation 

scheme. 

B-spline Basis Functions 

The B-spline basis functions are piece-wise continuous polynomial fimctions. In order 

to calculate the basis functions a non-decreasing sequence of real numbers called a knot vector 

must be specified as shown in equation (8.2). 

The knot vector is essentially a list of special parameter values called breakpoints that bound 

the individual curve segments as shown in Figure 8.1. The knot vector is used to control the 

level of inter-segment continuity. The inter-segment continuity is, n—r. The integers n and 

r are the curve degree and the knot multiplicity respectively. 

Non-periodic B-splines are used in this development, this means that the curve 

interpolates the first and last control points. This effect is obtained by repeating the first and 

last knots in the knot vector degree +1 (« +1) times. In addition uniform knot vectors are 

used, that is the interior knots are evenly spaced and have multiplicity of one. The length of 

the a uniform non-periodic knot vector, m/\sk-rn. The integers k and n are the number of 

(8.2) 

for/ = 0,l,...,m-l 
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control points and the degree of the B-spIine respectively. Once the knot vector has been 

determined the basis flmctions can be evaluated. 

The ith B-spline basis fimction of degree n is defined by the Cox-DeBor formulation as 

shown in equation (8.3). 

(8.3) 

Bdc) = 4̂  {() * {<) 

There may be situations where equation (8.3) leads to division by zero; this problem is 

eliminated by the definition shown in equation (8.4). 

- = 0 (8.4) 
0 

The basis functions are constructed iteratively starting with the step function, q as 

shovra in Figure 8.2. Now that the basis functions have been developed, they can be tested to 

ensure that they comply with all of the shape fimction requirements specified in Chapter 7. 
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m-n-Iji 

Figure 8.2. Triangular basis function table. 

Shape Function Requirements 

The first requirement is that the shape fimctions must interpolate the nodal 

displacements, equation (7.2). In the standard FEA the nodes are points along the surface of 

the virtual component; ±erefore, the approximate solution should pass through the nodes. 

However, this is not the case in the modified FEA. B-splines do not in general interpolate the 

control points, with the exception of the first and last control points due to non-periodic basis 

fimctions. The modified FEA does not supply nodes along the surfece to be interpolated but 

supplies control points that are blended to yield the surface. Although the B-spIine basis 

functions do not satisfy this requirement, it does not truly apply to them. 
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The primary shape function requirements from Chapter 7 are: 

1. Shape functions derived from simple polynomials must be balanced with respect to all 

coordinate axes. 

2. The shape fimctions must have acceptable continuity between elements. 

3. The shape flinction must be complete with respect to the system being modeled. 

The B-spline basis fimctions are simple polynomials so they must be balanced with respect to 

all coordinate axes. This requirement is automatically satisfied for B-spline curves. In 

addition, it can be shown that the B-spIine tensor products used to represent surfaces and 

volumes also meet this requirement. In addition, the degree and knot vector multiplicity can 

be selected such that the B-spIine basis fimctions have acceptable inter-elemental continuity 

and are complete with respect to the system being modeled. 

The secondary shape fimction requirements from Chapter 7 are: 

t 

I (8.5) 

The B-spIine basis fimctions have a partition of unity property such that for an arbitrary knot 

span [C,C.): 
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lB„(f) = l forallfs[cC.) (8.6) 

The remaining three requirements are satisfied by expanding the vector notation of equation 

(8.1) 

Pr 

Pv 
I 

IPrJ 

(8.7) 

c,[^) is ±e X coordinate of the curve at ±e parameter value 

Cj,(4') is the y coordinate of the curve at ±e parameter value 4" 

c.{^) is the z coordinate of the curve at ±e parameter value ^ 

is the X coordinate of a control point 

Py is the y coordinate of a control point 

p. is the z coordinate of a control point 

The B-spUne basis functions fulfill the shape fimction requirements outlined in Chapter 

7; therefore, they can be used to generate a finite element model. However, there is some 

ambiguity in what constitutes an element in the modified FEA, which will be addressed in the 

following section. 
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B-spIine Elements 

The triangular basis fimction table. Figure 8.2, and the knot vector, equation (8.2) are 

used to determine the nature of the B-spline element. To that end, consider a quadratic B-

spline defined by four control points. The knot vector has a length of 6 and is shown in 

equation (8.8). 

z = fe 4; 4; 4; ^ 4;} 
(8.8) 

Z = {0 0 0 0.5 I 1 1} 

The B-spline curve defined by this knot vector has two segments associated with the two non­

zero knot spans, 0 < 4'< 0.5 and 0.5 < 4"< 1 - The triangle basis fimction table can be 

construaed for this knot vector as shown in Figure 8.3. For the first knot span 0 < 4r< 0.5: 

' l  i f / =  2  

0 
5:.o=L (8.9) 

As a result only ^1.2 and B,, are non-zero. Therefore the first segment is only affected 

by the first three control points. Similarly for the second knot span 0.5 < 4'< 1: 
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Figure 8. 3. Example triangular basis flmction table. 

J 1  i f / =  3  

^ 1 0  i f / ^ 3  
(8.10) 

As a result only 5,,, 5,, and B,. are non-zero. Therefore the second segment is only 

affected by the last three control points. The curve blend equation (8.1) can therefore be 

rewritten as shown in equation (8.11) 

spon 
(8.11) 

:-spi2n-n 

The flmction is the curve segment associated with the knot span indicated by the integer 

span. Equation (8.11) shows that the curve segments are the B-spIine elements. The number 
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of elements in a modified FEA model is therefore determined by the degree and number of 

control points used to define the B-spline. 

Now that the modified FEA elements have been established, the model can be 

developed using the elemental description derived in Chapter 7 and the B-spline basis 

fijnctions described earlier. The construction of the elemental matrices will be clarified by 

developing a generic elemental stiffoess matrix. 

dB,^d^dB,^dC 
dC dx d̂  dx dC dx d/̂  dx 

dB̂ d̂ dB,̂  dC 

dt; dx d̂  dx 

SYM 

d̂B,̂  dC dB„̂  dC 

d<̂  dx di; dx 
dB,̂  d̂ dB„̂  dC 

dC dx dC dx 

dB dCdB̂  d̂  

dC dx di; dx 

(8.12) 

The prime notation is used to indicate a modified FEA matrix, not a derivative. The other 

elemental matrices are constructed in the same manner. The elemental matrices are then 

assembled using the technique presented in Chapter 7. After assembly, a global system of the 

following form is obtained. 

M,p,W + K,p,W = f.+b. (8.13) 

Equation (8.13) can then be solved using the solution method developed in Chapter 7. Now 

that both the standard FEA and the modified FEA have been developed, the performance of 

the two methods can be compared. 
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CHAPTER 9. COMPARISON OF METHODS 

The modified finite element analysis (FEA) will be compared to the standard FEA fay 

constructing a model for the taut string shown in Figure 9.1. The unforced response of a taut 

string is defined by the one-dimensional wave equation shown in equation (9.1). 

=  0 < x < L ,  0 < t  (9.1) 
dl' 

The coefficients T, p and L are the tension applied to the string, the mass per unit length and 

the length of the string respectively. Equation (9.1) is subject to two essential boundary 

conditions. 

w(0) = 0 

w(I) = 0 
(9.2) 
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U 
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—•X 

Figure 9.1. Taut string. 

The next two sections will develop the string model for the standard FEA and the modified 

FEA. 

Standard Finite Element Model 

The standard finite element model will use two quadratic elements. The shape 

flmctions must be determined, using the techniques fi"om Chapter 7, before the model is 

developed. The three quadratic shape fimctions for the parent element are shown in equations 

(9.3). 

N ^ = 2 i f r  -3^/+! 

N , = - 4 y r  (9.3) 

N ,  = 2 i f r  -  t f /  

The variable y/ is the parameter in the local coordinate system. The shape functions are 

shown graphically in Figure 9.2. The shape fimctions can now be used to calculate the 

elemental matrices. The two elemental mass matrices are the same and are shown in equation 

(9.4). 
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Figure 9.2. Shape functions. 

4 2 -1 

2 16 2 

-1 2 4 

(9.4) 

The two elemental stifBiess matrices are also the same and are shown in equation (9.5). 

Ti 
r 7 -8 1 

-8  16 -8  

1 -8 7 

(9.5) 

The global system model is constructed by assembling the elemental matrices. 
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pL 

60 

4  2 - 1 0 0  

16 2 0 0 

8  2 - 1  

16 2 

SIM 4 

r + -
=L 
3L 

7 - 8  1  0  0  
16 -8 0 0 

1 4 - 8  1  

SYM 

^ = 0 (9.6) 

1 6  - 8  

7 

The global system model is now ready to be solved. The next section will develop a modified 

FE A model for the same string. 

Modified Finite Element Model 

The modified FEA model will use a quadratic B-spline defined by five control points. 

The knot vector for this B-spline is shown in equation (9.7). 

Z = {0 0 0 t t 1 1 l} (9.7) 

The knot vector has three non-zero knot spans as a result the modified FEA model has three 

elements. Although the modified finite element model has one more element than the standard 

finite element model, both models are solved with the same computational expense. Once 

again the B-spline basis functions must be determined, using the techniques fi-om Chapter 8, 

before the model is developed. The basis fimctions for the first non-zero knot span, 0 < 4'< j, 

are shown in equations (9.8). 
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=94^-6^-1 

A.2=-f^'+64' 

(9.8) 

^3.2=0 

^4.2=0 

The basis functions for the second non-zero knot span, 4- < ^< ^, are shown in equations 

(9.9). 

^0.2=0 

5,, =f 4^--6^-2 

5,, =-94"-+9^-4 (9.9) 

Kz =0 

The basis functions for the third non-zero knot span, f < 4'< 1, are shown in equations (9.10). 

^0.2 = 0 

= 0  

5,2 =f'f-94'+f (9.10) 

53,2=-f4'-+2i4--f 

5^2 =94'--124'+4 



www.manaraa.com

183 

0.8 - , 

§ 06 - ' ̂  BO.2 
> 

~ 0.2 -

0 

Bl.2 

•S 04 — bz.2 

- : B3,2 
B4.2 

0 0.2 0 4 0.6 0.8 1 

-0.2 -

Parameter Value. ^ 

Figure 9.3. B-spline basis functions. 

The basis fimctions are shown graphically in Figure 9.3. The basis functions can now be used 

to calculate the elemental matrices. The three elemental mass matrices are shown in equations 

(9.11), (9.12) and (9.13). 

m! = iL 
480 

44 23 J 

23 47 15 
'y J 15 7 

(9.11) 

M: = pL 
480 

6 13 1 

13 54 13 

1 13 6 

(9.12) 
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' 480 

7 15 J 

15 47 23 

J 23 44 

(9.13) 

The three elemental stifiBiess matrices are shown in equations (9.14), (9.15) and (9.16). 

K 
4T 

L 

0.7726 

-0.5452 

- 0.2274 

- 0.5452 

0.5904 

- 0.0452 

- 02274 

- 0.0452 

0.2726 ] 

(9.14) 

K = AT 
0.3333 

-0.1667 

- 0.1667 

- 0.1667 

0.3333 

-0.1667 

- 0.1667 

-0.1667 

0.3333 

(9.15) 

Kf = — 
AT 

L 

0.2726 

- 0.0452 

[- 0.2274 

- 0.0452 - 02274 

0.5904 - 0.5452 

- 0.5452 0.7726 

(9.16) 

The global system model is constructed by assembling the elemental matrices. 

" 44 23 3 0 0' "t "0.7726 -0i452 -0.2274 0 0 "i' 

pL 
480 

53 28 

68 

I 

28 

0 

3 

u. 

"3 
4r 

• + "7~ 

0.9237 -0.2118 

03785 

-0.1667 

-0.2118 

0 

-02274 

u, 
"i 

pL 
480 

SYM 
53 23 

44 SYM 
05237 -0i452 

0.7726 

u, 
"5, 
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The next two sections will compare the models modal response and dynamic response 

respectively. 

Modal Response 

The standard and modified finite element models are first analyzed to determine their 

modal response. The modal analysis will determine how accurate the approximate models are 

when compared with the exact solution [48]. Modal analysis is performed by solving the 

generalized eigenvalue problem with the model's mass and stiffiiess matrices. The following 

parameters are used for the string. 

r = i  
p=\  

1 = 1 
(9.18) 

A comparison of system's natural fi-equencies is shown in Table 9.1. The percent error in each 

of the natural frequencies is shown in Table 9.2. The mode shapes associated with these 

natural frequencies are shown in Figures 9.4, 9.5 and 9.6. 

The modal analysis has shown that both FEA models are accurate for the first two 

modes of vibration. Neither model is accurate for the third mode of vibration; although the 

modified FEA model clearly presents a better response. However this result is expected, the 

accuracy of the models decreases as the mode number increases, for a given model size. 
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Table 9.1. Natural frequencies, radls. 

Mode Exact Standard FEA Modified FEA 
1 3.1416 3.1534 3.1431 
2 6.2832 6.3246 6.3451 
3 9.4248 11.3456 10.1011 

Table 9.2. Percent error in natural frequencies. 

Mode Standard FEA Modified FEA 
1 0.38 0.05 
2 0.66 0.99 
J 20.38 7.18 

u actual 

u standard 

u modified 

•0.2 -

Spatial Variable, x 

Figure 9.4. Mode 1. 
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Figure 9.6. Mode 3. 
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Dynamic Response 

The dynamic response of the string models is obtained fay using the constrained system 

model, equation (7.44). The dynamic response of the standard and modified finite element 

models will be demonstrated for the first mode of vibration with A/ = 0.2 seconds. Figures 

9.7 and 9.8 show the dynamic response of the standard FEA model and the modified FEA 

model respectively. The system was excited by placing the string into ±e first mode and 

releasing. 

Figures 9.7 and 9.8 show that the dynamic response calculated by the central 

difference approximation accurately represents the actual dynamic response even with a 

coarse A/. The accuracy of the central difference approximation increases as the A/ is refined 

0.8 

0.6 

= 0.4 
sT "a 
5 0.2 
a. 

S* 
1 -0.2 

0.2 04 0.6 0.8 

t-0. 

-0.4 

-0.6 

-0.8 

Spactal Variable, x 

Standard FEA 

exact 

Figure 9. 7. Dynamic response of standard FEA model. 
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Figure 9.8. Dynamic response of modified FEA model. 

because a more accurate estimate of the system's velocity and acceleration are obtained. 

Both the modal and dynamic analyses have verified that the modified FEA is an 

acceptable substitute for the standard FEA. Chapter 10 will describe how a modified finite 

element model can be deformed as well as how the force associated with the deformation can 

be obtained. 
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CHAPTER 10. MODEL DEFORMATION 

Chapter 9 compared the modified finite element analysis (FEA) with the standard FEA 

and showed that the modified FEA is an acceptable substitute with some advantages in 

accuracy and continuity. However, the modified FEA offers other advantages, which makes it 

a more appropriate representation for use in a modeling system. These advantages arise fi-om 

how the model is deformed. The following sections will describe how a modified finite 

element model can be deformed locally and globally. 

Local Deformation 

The local deformation system is used to ensure that the user's finger remains in contact 

with the virtual component during the deformation process. The local deformation system is a 

fi-ee form deformation (FFD) technique [45][90]. The problem is to determine the change in 

the control points required to move one point on the B-spline curve fi-om its original location 

to a new final position. 

The original point on the B-spline curve, c{c), is defined by equation (10.1). 
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c( i . )={sUc)  Bute) - S„(c)} 

Po 

Pi  
(10.1) 

The final position, c(^) -f- , is defined by equation (10.2). 

c(^)+Ac(c)  = { f i , , (c)  BJC) -  B„(c)}  
p, +Ap, 

Pn+^n 

(10.2) 

When equations (10.2) and (10.1) are subtracted equation (10.3) is obtained. 

f^ol 

M4:)=K„(4:) 

M 

(10.3)  

Equation (10.3) allows the change in control points, Ap, to be calculated based on the 

required change in the curve position, Ac(^). This problem is under-constrained with any 

number of acceptable control point configurations. Therefore the problem will be solved for 

the control point configuration, which minimizes the control point motion in the least squares 
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sense. This solution is the pseudo-inverse solution to the equation (10.3) as shown in 

equation (10.4). 

X»(«) 

BdQ) 
Mc)= •  

Bji)  
BJC) - s j i ] }  

BM).  

ap = (b'"B)"'B^AC 

This technique allows the user to move any point on ±e B-spIine curve to a new position. 

However, there is some difficulty in solving the system of equations (10.4). The matrix of 

basis fimctions, B^B, is generally ill conditioned, if not singular. As a result, the singular 

value decomposition (SVD) method [83] must be used. The SVD technique tests the matrix 

condition as well as removes any singularities that are present. Therefore, SVD is the only 

acceptable method of solving equation (10.4). 

Using the FFD technique the user can move one point on the B-spline at a time; 

however, it would be easier to obtain the desired shape if multiple points could be moved 

simultaneously. The FPD technique is general and does allow multiple points to be moved. 

The user can specify up to degree + 1 (n+1) points per B-spline element (segment) thus 

extending the design potential of this technique. 

Any given point on a B-spline curve is only affected by a certain number of control 

points. Therefore the local deformation technique only specifies the positions of some of the 
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control points. The positions of the remaining control points are determined by the global 

deformation system described in the following section. 

Global Deformatioa 

The global deformation system is used to established the position of any control point 

whose position was not specified by the local deformation system or the essential boundary 

conditions. The global deformation technique essentially solves a constrained version of the 

global system model equation (10.5). 

MgPg (r + A/) = rhs (10.5) 

rhs = [2Mg -(A/)-K;^]pg(f) - M;^Pg(f - A/) + (A/)-fg +(A/)-bg 

The system is solved using the central difference approach developed in Chapter 7 However, 

the global system model is constrained in a different manner than discussed in Chapter 7. The 

global system model is constrained to enforce the essential boundary conditions as well as the 

control points specified by the local deformation system. The control points specified by the 

local deformation system are constrained in the same manner as the essential boundary 

conditions. For example, consider a five control point model with the first and fifth control 

points constrained for essential boundary conditions and the third control point constrained by 

the local deformation system as shown in equation (10.6). 
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o
 ^o(f + A/) ' A • 

^.1 "h.3 "HA "hjs /7,(r +A/) rhŝ _ 

o
 

o
 

o
 

o
 

/?,(/ +A/) > — * C 

rhŝ  

0 0 0 0 1 p^U + At) .fij 

The constants A, B and C are the essential boundary conditions"and the constraint supplied 

by the local deformation system respectively. Therefore, the positions of the unspecified 

control points are determined by the dynamic response of the system subject to ±e constraints 

imposed by the local deformation system and the essential boundary conditions. This 

deformation method also allows the force required to constrain a control point to be 

calculated which will be discussed in the following section. 

Force Determination 

As seen in the previous section, the local and global deformation techniques yield a 

constrained system of equations, equation (10.6), from which the B-spline control points can 

be found. This two level deformation technique allows the control point forces to be 

determined. The control point forces are the forces required to keep the constrained control 

points in their positions. The control point forces are determined by substituting the control 

points found from the constrained system, equation (10.6), back into the unconstrained system 

of equations as shown in equation (10.7). 
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"hj. '"i.s + [fx 

m,, ot,_3 p,(f + Af) rhŝ  /, 

'"3.1 '"3.2 '"sj "h.A. \Pz^t + ^t)> = YhsAjr^t-\fA 

'"4.1 ^"4.2 '"4 J ^"4.4 ^"4^ ^-(r + A/) rAs^ 

.'"S.I '"SJ! '"5.3 ^^5.4 '"S.5JU4(^ + '^)J [''^sj 1/5. 

(10.7) 

The vectors p(r + A/) and f are the vector of control points determined from equation (10.6) 

and the vector of control point forces respectively. 

The control point forces are the discrete forces that arise from deforming the modified 

FEA model. The control point forces are associated with a force distribution instead of a 

point force because the local deformation system has a finite radius of influence. However, an 

equivalent point force can be found for the force distribution using equation (10.8). 

(10.8) 

The variable F is the equivalent point force for the force distribution, f 

In order to determine F ±e control point forces will be examined. 

(10.9) 

/ is the ith control point force 
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5, is the ith B-spline basis fimction of degree n at the parameter value 4" 

The sum of the control point forces is evaluated in equation (10.10). 

Z/ =1 ZA,(d 
dx 

(10.10) 

Equation (10.10) can be simplified using the partition of unity property, ^ = 1. 

(10.11) 

Therefore the equivalent point force, F, can be evaluated using equation (10.12). 

(10.12) 

The point force, F, has two components, one associated with the user and one associated 

with the constraints supplied by the boundary conditions. 

F  =  F u + F c  (10.13) 
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The force component associated with the user, F«, is the force that the haptic device needs to 

apply to the user's digit. Based on equation (10.12), Fu is the simi of the control point forces 

associated with the control points constrained by the local deformation system. Now that the 

force associated with deforming the virtual object has been determined it can be applied to the 

user with a haptic device. 
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CHAPTER 11. SURFACE MODEL 

The taut string model has verified that FEA with the B-spline basis fimctions is an 

acceptable technique for obtaining physically based models of components whose shape is 

defined with the B-spline representation. However, because the dynamic string model has 

limited use, the concept was next extended to a dynamic surface. The surface model has the 

dynamic characteristics of a thin membrane. The thin membrane dynamic equation is similar 

to the dynamic model used for fi-ee-form shape design by Celniker [17], However, this 

development will use the B-spline basis functions instead of the conventional FEA 

interpolation shape fimctions. 

One minor difference must be addressed before constructing the physically based 

model for the thin membrane. The tensor product of basis fimctions, N, is a combination of 

basis fimctions for each of the two parametric directions. 

/ \ / \ / = 0,l,...,/7 
(11.1) 



www.manaraa.com

199 

The integers n and m are the degree of the B-spline surfece in the two parametric directions. 

As a result the interpolation equation, equation (8.1) has a slightly different form. 

"'Za'V, (11.2) 

The physically based surface model can now be developed in the same way as the 

physically based curve model. The dynamics of a thin membrane are defined by the following 

equation [11]. 

d f. cu 
-p-z^+f  = Q 

3c \ 3cJ ' 6y) ct' 
(11.3) 

The coefBcients and are the stiffiiess coefBcients in the x- and y- directions. By 

applying FEA techniques to equation (11.3), the components of the elemental description; 

M,, and f^, can be evaluated by integrating the physical parameters and the tensor 

product of the B-spline basis flmctions. 

M. = if 
e 

(11.4) 
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3 

ihio (11.5) 

4/ 

(11.6) 
e  

The coefificients p, k and/ are the mass density, restoring force and external force respectively. 

In addition the matrix, J, is a Jacobian matrix that transforms the integral from Cartesian 

space into parametric space. Figures 11.1, 11.2 and 11.3 show a frames taken from a dynamic 

simulation in which the traveler was allowed to deform a surface using a wand tool. The 

wand can be driven with a three-dimensional mouse, magnetic tracker or a force feedback 

device. 
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Figure 11.1. Undeformed Surface (image source: Pillsbury Corporation, "Pillsbury -
Doughboy," Doughboy, June 3, 1996, www.doughboy.com/frameset.asp 
?section=meet). 



www.manaraa.com

Figure 11.2. Initial deformation. 
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Figure 113. Resulting motion of dynamic model. 
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CHAPTER 12. CONCLUSIONS 

The virtual manipulator control approach was developed to extend the state of the art 

in the area of force feedback for synthetic environments. The virtual manipulator control 

concept utilizes a six degree of freedom robot as the interface mechanism between the traveler 

and the computer running the synthetic environment. As a result the control concept reduces 

the isolation faced by researches in the area of force feedback. It is easier and less expensive 

to acquire a haptic display when a commercially available six degree of freedom robot can be 

used effectively. Control interface hardware and software can be obtained from numerous 

sources to control a general six degree of freedom robot. Finally, because any robot can be 

used, research results can be verified and extended at other fecilities. 

In addition it has been shown that a haptic display using a general six degree of 

freedom robot and the virtual manipulator control law can be incorporated into most if not all 

of the synthetic environments used today. Attention is given to projection style synthetic 

environments where the presence of the haptic display can occlude the images viewed by the 

traveler. By positioning the interface robot behind the traveler in the projection synthetic 
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environment and extending a graphical representation of the interaction tool into the synthetic 

environment the haptic display will not occlude or diminish the visual display. 

The virtual manipulator control law also makes contributions in the area of non-linear 

systems. The virtual manipulator control law operating on a general six degree of freedom 

robot is a highly non-linear system with an infinite continuum of equilibrium points. The 

design of multiple equilibriimi point control laws is rarely done and the proof of stabiUty of 

these systems is an important area. A proof of stability for a modified virtual manipulator 

control law was presented that verified the acceptable stability characteristics for the general 

class of modified virtual manipulator control laws. In addition the stability requirements were 

established for the original virtual manipulator control law. Although it was not possible to 

show stability for the entire class of original virtual manipulator control laws, it is easy to 

check the stability requirements for any given virtual manipulator. 

Experimental results of several virtual manipulators have been presented. This 

presentation has shown how the control concept can be used to represent constraints. The 

time varying extension of the virtual manipulator concept was developed to represent complex 

general constraints shapes. In addition time varying virtual manipulators were also developed 

as a general interaction and exploration technique in synthetic environments. Finally, the 

inclusion of a virtual manipulator based haptic display into a visually inmiersive synthetic 

environment was demonstrated. 

The results documented in this work have verified the ability of virtual manipulators to 

be used as a haptic display in sjmthetic environments. Although several virtual manipulators 

have been presented there is no limit on the number that can be developed. The development 
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of new virtual manipulators is driven by the types of applications feced by synthetic 

environment developers. In addition this work has established the stability requirements for 

the "static" virtual manipulator control law, however an investigation of the time varying 

extension of the virtual manipulator concept is required. The proof of stability for the time 

varying virtual manipulator will probably place restrictions on how quickly the configuration 

of the virtual manipulator can change. 

The virtual manipulator concept has potential to increase the use of force feedback in 

synthetic environments. Tne assimilation of haptic displays into synthetic environments 

provides an additional channel to provide information to the traveler. This information will be 

valuable in releasing the potential of synthetic environments for processing and interacting 

with computer data. 
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APPENDIX: COMPUTER CODE 

Planar Circular Arc 

// ftictioiLC 

#include "puma h" 

void friction(puinaFile* pumaData) 
{ 

int i; 
double tau=0.05305; 

if (puinaData->tIieta[0] > pumaData-
>tiieta_oid[0]) puinaDaia->v_&ic[0]=i.0; 

if (puniaData->theta[Oj <= pumaData-
>theta_old[0]) paiDaData->v_ffic[0]=-0.9; 

puinaDaia->v &ic[0]=(puinaData-
>v_&ic [0 ] *puinaData->dt+puinaData-
>v_&ic_old[0]*tau)/(puniaData->dt+tau); 

if (pumaData->theta[l] > pumaData-
>theta_old[l]) 

{ 
if (puniaData->theta[l] > -1.57) 

puinaData->v_fric[ 1 ]=-0.3; 
else puniaDaia->v_&ic(ll=-0.9; 

if (puniaData->theta[l] <= pumaData-
>theta_oId[l]) 

{ 
if (puinaData->theta[l] > -1.57) 

puinaData->v_fric[l]=0.9; 

else puinaData->v_fric[l 1=0.6; 
} 
puinaDaia->v_&ic[ 1 ]=(puniaData-

>v_fric[l]*puiiiaData->dt+puinaDaia-
>v_&ic_old[ 1 ] *tau)/(puinaData->dt+tau); 

if (puinaData->theta[2] > pumaData-
>tlieta_oId[2]) puinaData->v_fcc[2]=0.47; 

if (puinaData->theta[2] <= pumaData-
>theta_oId[2]) piunaData->v_fcc[2]=-0.47; 

puinaData->v_fric[2]=(pumaData-
>v_&ic[2] •puinaData->dt+puinaData-
>v_fric_old[2]*tau)/(puiiiaData->dt+tau); 

if (puinaData->tlieta[3J > pumaData-
>theta_old[3]) puinaData->v_fiic[3]=-0.35; 

else if (puniaData->theta[3] <= 
pumaData->tlieta_old[3]) pumaData-
>v_fric[3]=0.35; 

else puinaData->v_fric[3]=0.0: 
puinaData->v_fric{3 ]=(pumaDaia-

>v_&ic[3]*puinaData->dt+puniaData-
>v_fric_old[3 ] •tau)/(pumaData->dt+tau); 

if (puniaData->theta[4] > pumaData-
>tfaeia_old[4]) puinaData->v_&ic(4]=-0.4: 

else if (pumaDaia->tIieia[4] < pumaData-
>tiieta_old[4]) puinaData->v_&ic[4]=0.4; 

else puinaData->v_&ic[4]=0.0; 
puinaData->v_fric[4]=(puniaData-

>v_&ic[4]*puinaData->dt+puinaData-
>v_fric_old[4] •tau)/(puinaData->dl+tau); 
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if (puinaData->theta[5] > pumaData-
>tfaeta_oIci[5]) puinaDaia->v_&ic[5]=-0.5; 

else if (puinaData->theta[5| < pmnaOata-
>theta_old[51) piiinaData->v_&ic[51=0.5; 

else puinaData->v_fric[5]=0.0; 
pumaData->v_fric[5]=(puinaData-

>v_fric[5] *puinaData->dt+puinaDaia-
>v_&ic_oId[5] •tau)/(puniaData~>dt+tau); 

for (i=0:i<6;i-H-) 
{ 

pumaData-
>v_fric_oId[i]=pumaData->v_fric[i]; 

} 
} 

// gravity.c 

#include "pumah" 

void gravityCpumaFile* pumaData) 
{ 

double c2.s2,c23,s23; 

c2=cos(puinaData->theta[l]): 
s2=siii(puinaData->theta[ 1 ]); 

c23=cos(puinaData->theta[ l]+puinaData-
>theta[2]): 

s23=sm(pmnaData->theta[ I ]+puinaDaia-
>theta[21); 

// gravity compensanon 
puinaData->vg[0]=0.0; 
puinaDaa->vg[2]=-

1.120l*s23-K).0977»c23: 
pumaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*pumaData-
>vg[2]; 

puinaData->vg[3 ]=0.0; 
puinaData->vg[4]=0.0; 
puinaData->vg[5]=0.0; 

) 
/ 

// impedence.c 

#include "puma-h" 

void impedenceCpumaFile* pumaData) 
{ 

pmnaData-
>vim[01=0.02*pow((l.0/(puiiiaData->theta[0]-
2.7)),3.0)-K).02*pow(( 1.0/(puniaData-
>theta(0]+2.7))J.0); 

pinnaData->viin[l ]=-
0.02*pow((1.0/(puiiiaData->theta[l]-0.7)),3.0)-
0.02*pow(( 1.0/(puinaDala->theta[ l]+3.7)).3.0); 

pumaData-
>vini[2]=0.02*pow(( 1.0/(pumaData->theta(21-
pumaData-
>jliniit3)),3.0)+0.02*pow(( LO/(puinaDaia-
>theta[2]+0.9)),3.0); 

pumaData->viin[3 ]=-
0.02*pow(( 1.0/(puinaData->theta[3 ]-3.2)).3.0)-
0.02*pow((1.0/(puinaData->theta[3]+l.8)).3.0); 

puinaData->viin[4]=-
0.02*pow((1.0/(puinaData->theta[4]-1.7)).3.0)-
0.02*^w((1.0/(puinaData->tfaeta(4]+pumaData-
>jliinit5)).3.0); 

puniaData->viin[51— 
0.02*pow(( l.0/(puinaData->theta[5]-5.2)).3.0)-
0.02*pow(( 1.0/(puinaData->theta[5]-i-5.2)),3.0); 
} 

// main c 

#include "pumah" 

void main(void) 
{ 
// robot stuff 

pumaFile •pumaData; 
int stop: 
int homecount: 

// window's stuff 
HANDLE hprocess; 
HANDLE hthread; 
int processerror, 

// timer stuff 
BOOL result; 
LARGE_INTEGER li&equency: 
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LARGE_EN ItGER licount: 
LONO-ONG ftequency, 
double d&equency: 
LONGLONG startcount: 
LONGLONG count 
double cuiienttime; 
double dtacQial: 
double dterror. 
double dtmax 

// error flags 
int timerenon 
int timeroverrun; 
int DeviceStop; 
int errorSocket: 

// socket stuff 
intern 
char szDataSend[IOO]: 
intgcounu 

// data file stuff 
double data[4][2000]; 
int datalengih=2000; 
int datacount; 
int datacycle: 
intdatamax: 
int fileerror, 
FILE *out; 

// general stuff (counter and the like) 
inti: 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
H Taking Care of Business 
llllllllllllllllllllllllllllllllllllllllllllllllllllllllltlllllllllll 

printf(TUMA control prograni\n"); 
printfC'written by Jim Edwards for 

LARCOn"); 
printfCAll rights reserved\n\n\n\n''); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Code Initialization Section 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I set counter error flag to pass 

timererror=l; 

// set counter overrun flag to pass 
timeroverrun=l; 

// start taking data at zero 

datacounf=0; 

I I set data pass to zero 
datacycle=0; 

// set process error flag to pass 
processerrQr=0: 

// set maximum delta-t to zero 
dtinax=0.0; 

// set stop to pass 
stop=l; 

II set homecount to zero 
homecount=0; 

// set socket error to none 
enorSocket=0; 

// set graphics dump counter to zero 
gcount=0; 

llllllllllllllllllllllllltlllllllllllllllllllllllllllllllllllll 
mill Hardware Initialization 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II get process handle 

hprocess=GetCurrentProcessO: 

II set process priority 
result=SetPriorityClass(hprocess. 

REALTIME_PRI0RITY1CLASS); 
if (result == 0) processerTor=l; 

// get thread handle 
hthread=GetCurrentThread(); 

// set thread priority 
result=SetThreadPriority(hthread, 

THREAD_PRIORrTY_TIME_CRITICAL): 
if (result = 0) processerror=2; 

// allocate memory for puma structure 
pumaData=(pumaFile 

•)maUoc(sizeof(pumaFile)); 

// connea to the puma kernel device 
DeviceStop=l; 
pumaData-

>PumaDevice=HwNewDevice(NULL); 
HwSetErrorHandler(pumaData-

>E>umaDevice, MyErrorHandler); 
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if (!HwCoimectDevice(puinaData-
>PumaDevice. "puma")) 

{ 
ptrn.tf("Faiied to connect to puma 

device!\n"); 
HwDeleteDevice(pimiaData-

>PumaDevice); 
DeviceStop=0; 

i 
J 

// setup puma 
pumaInitialization(pumaData); 

// open socket - useSocket = 1 use socket, = 0 
don't use socket 

pumaData->useSocket= 1; 
pumaData->activeSocketr=0; 
openSocket(pumaData): 

// test socket 
testSocket(pumaData); 

// get frequency of high peiformance counter 
result=QueiyPeiformanceFrequency(&Iifr 

equency); 
if (result = TRUE) 
{ 

frequency=Iifrequency.QtiadPart; 
dfrajuency=((double) 

frequency); 
printf("clock frequency; %f 

MHz\n\n\n\n".dfrequencv); 
} 
else 
{ 

printf("QueryPeTfonnanceFrequency; 
failureVn"); 

timererror=0; 
} 

// get starting count 
printf("\n\n\nTum Arm Power On!!! !\n"); 
resuIt=QueiyPerformanceCounter(&licou 

nt); 
if (result = TRUE) 
{ 

startcount=licounLQuadPart; 
} 
else 
{ 

printf("QueryPerformanceCounter 
&ilure\n"); 

timererror=0: 
} 

// disengage the brakes 
HwOutpw(pimiaData->PuniaDevice, 

0x02e, 0x0001); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Main Control Loop 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

whiIe((homecount < 2000) && 
(DeviceStop = 1) «&& (timererror == 1) && 
(timeroverrun = I) && (processerror = 0)) 

f t 
I I control code 

if(kbhitO) stop=0; 
if (stop = 1) 
{ 
pumaControl(piunaData); 
} 
else 
{ 
homecount-H-; 

pumaHome(pumaData); 
} 

// increment graphics dump counter 
gcount-H-; 

// send data to graphics engine 
if (gcount = 5) 
{ 
gcount=0; 

// but only if there is an active socket for 
communication 

if (pumaData-
>activeSocket = L) 

{ 

sprintf(szDataSend."%+.3f %t.3f %4.3f 
%;.3f %4.3f %4.3f %4.3f 

pmnaData->time, 
pumaData-

>theta[0], 
pumaData-

>theta[l], 
pumaData-

>theta[2]. 
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>theta[3], 

>theta[4], 

>theta[51); 

pumaData-

pumaData-

pumaData-

// take some data 

err=send(pumaData->hSock. 
(LPSTR) szDataSend 51. 0): 

if 
(err==SOCKET_ERROR) errorSocke^l; 

// timing code 
do 
{ 

// get the current count of performance counter 

resultr=QueryPerformanceCounter(&licou 
nt); 

if (result = TRUE) 
{ 

count=IicounL(3uadPart: 
// convert into time since program started 

currenttime=((doubIe) (count-
startcount))/dfi:equency; 

} 
else 
{ 

printf("QueiyPerformanceCounter: 
failure\n"); 

timererTor=0: 
} 

pumaData->time; 

>dt); 

dtacnial=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t 
if (dtactual > dtmax) 

dtmax=dtactual; 

// get error in delta-t 
dterroi=dtactuai-pumaData->dt; 
if (&bs(dteiTor) > pumaData-

>dt) timeroverrmi=0; 

if (stop = 1) 
{ 

data[0 ] [datacount]=pumaData->theta[ 1 ]; 

data[l ] [datacount]=pun]aData->theta[2]; 

data[2] [datacount]=puniaData->theta[4]; 

data[3 J [datacount]=puniaData->vpos; 

if (datacoimt = 1999) 
/ 

datacount=K); 
datacvcle=l; 

} 
else datacouni+-t-; 

// update absolute time base 
pumaData->time=pumaData-

>time+pumaData->dt; 
} // end main control loop 

// engage the brakes 
HwOutpw(pumaData->PumaDevice, 

0x02e. 0x0000); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Hardware Clean-Up 
llllllllllllllllllllllllllllllllllllirillllllllllllllllllllllllllllll 
II kemal device 

HwDeIeteDevice(pumaData-
>PumaDevice); 

I I close socket 
closeSocket(pimiaData); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
H Take some data 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIII 

II open the data file 
if ((out=fopen("ouLdat''.'*wt"))==NULL) 

fileerror=0: 
else 
{ 

I I write data 
fileerror=l; 
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fprintf(ouL"inax dt is 
%f\n",dtinax); 

fprintf(out"%C 
%f\n\n\n",pumaData->center[0],puinaDaia-
>center[l]); 

if (datacycle == I) 
datainax=datalength: 

else datamax=datacount; 

for (i=0; i<datainax: i-H-) 

{ 
fpriiitf(ouL"%£ %£ %£ 

%f\n",data[0] [i],data[ll [i],data(2] [i],data(3][i]); 
} 

// close file 
fclose(out); 

} 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Final Error Messages 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

printf("\n\n\nError Messages:\n"); 
if (timererror = 0) printf("timer 

malfunction\n"); 
else if (timeroverrun = 0) printf("tiiner 

over run\n"); 
else if (DeviceStop == 0) printfC'DriverX 

error\n''); 
else if (fileerror == 0) printf("could not 

open data file\n"); 
else if (processerror = 1) printf("could 

not set process prioriw\n"): 
else if (processerror = 2) printfC'could 

not set thread priorily\n"); 
else if (errorSocket = 1) printf("error 

sending data over socket\n"); 
else printfC'all went well\n"); 

Sleep(3000); 
} 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
mill DriverX Error H^dler 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
void MyErrorHandIer(HWDEVICE* pDevice, 
DWORD nError) 
{ 

printfCCritical DriverX error: %d\n'', 
nError); 

exit(nError); 
} 

// puma.h 

// include files 
#include <windows.li> 
#include <winsock.h> 
#include <stdio.li> 
#include <conio.h> 
#inciude <matfa-li> 
#include "DriverX.!!" 

// structures 
typedef struct 
{ 
// needed for all 

HWDEVICE* PumaDevice; 
double dt: 
double time: 
double encoder_scale[6]; 
double encoder_ofiset[6]; 
double theta[6]; 
double voltage_out[6]; 

// virtual manipulator stuff 
double center[2]: 
double eeoId[3]; 

// socket stuff 
SOCKET hSock: 
int useSockeu 
int activeSocket: 

// needed for me 
int first_flag; 
int last_flag; 
double kp[6]; 
double kd[6]; 
double error[6]; 
double erTorold[6]; 
double errordot[6]; 
double thetad[6]; 
double theta_old[6]; 
double thetao[6]; 
double timeh; 
double vg[6]; 
double v_&ic(6]; 
double v_fiic_old[6]; 
double vim[6]; 
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double jlimiO: 
double jlimitS; 
double vpos; 

} pumaFile; 

// prototypes 
void mainCvoid); 
void MyErrorHandlerCHWDEVICE • . DWORD); 
void piiTnaTnifiali7arinn(pnmaFilff *); 

void puinaCoiitroi(puinaFile •); 
void pumaHomeCpumaFile •); 
void openSocketCpumaFile *); 
void cIoseSocketCpumaFile *); 
void testSocket(puinaFile 
void gravi1y(puinaFiIe •); 
void &iction(puinaFile •); 
void iinpedeiice(puinaFile •); 

// pumaControLc 

finclude "pumah" 

void puinaControi(pumaFile* pumaData) 
{ 

short val[6]; 
int voItage_int[6]; 
int i; 
double thetaf[6]: 
double tf=5.0; 
double c2, s2, c23. s23, c235. s235; 
double c35, s35, c5, s5; 
double xx[3], rr[31[3], J[3][3]; 
double ew[3], ee[3], eedot[3]; 
double L, xdes[3J, thetav. 
double wn. z, Kp. Kv. F[3I, Fm[3], T[3]; 
int wall_flag=0; 

// read encoders 
val[0]=HwInpw(pumaData-

>E>uniaDevice. 0x010); 
val[ l]=HwInpw(puniaData-

>PuniaDevice. 0x012); 
val[2]=HwInpw(puniaData-

>PuinaDevice, 0x014); 
val[3 ]=HwInpw(piunaData-

>PuinaDevice, 0x016); 
val[4]=HwInpw(puniaData-

>PuniaDevice. 0x018); 
val[5]=HwInpw(puniaData-

>PuniaDevice, 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i++) 
{ 

puniaData->theta[i]=puniaData-
>encoder_scale[i]•(((double) val[i]) - pumaData-
>encoder_offeet(i]); 

} 

// gravity compensation 
gravity(pimiaData); 

// fiiction compensation 
&iction(puniaData); 

// impedence protection 
impedence(pumaData); 

// Forward kinematics 
c2=cos(pumaDaia->tIieta[ 1 J); 
s2=sin(pumaData->theta[ I ]); 
c23=cos(pumaData->theta[ 1 ]+puniaData-

>tlieta[2]); 
s23=sin(pumaData->tIieta[ 1 l+pumaData-

>theta[2]); 
c235=cos(pmnaData-

>tIieta[l]+pumaData->theta[2]+pumaData-
>tfaeta[4]); 

s235=sin(pmnaData-
>theta[ 1 ]+pumaData->tfaeta[2]+pumaData-
>theta[4]); 

xx(0]— 
0.0203»c23+0.433 I*s23-H).4318*c2; 

xx[ll=0.0203»s23+0.433 l*c23-
0.4318*s2; 

xx[2]=pumaData->theta( 1 j-i-pumaData-
>theta[2]+pum^ata->tlieta[4]; 

rr[0][0]=c235; 
rr[0][2]=-s235; 
rr[l][0]=-s235; 
rr[l][2]=-c235; 
rr[2][0]=0.0; 
rr(2][2]=0.0; 

// Evaluate the PUMA jacobian 
c3 5=cos(pumaData->theta[2]+puniaData-

>theta[4|); 
s35=sin(pumaData->theta[21+piimaData-

>theta[4J); 
c5=cos(pumaData->theta[4]); 

rT[0]tl]=0.0; 

rT[l][ll=0.0; 

rT[2][l]=1.0; 
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s5=sin(puinaData->theta[4]); 

J[0][0]=0.4318»s35+0.433 l*c5-
0.0203»s5: J[0][I]=0.4331»c5-0.0203»s5; 

J[0][21=0.0; 
J[ll[0]=0.4318*c35-0.433 l*s5-

0.0203»c5; J[l][l]=-0.433 I*s5-0.0203*c5; 
J[ll[21=0.0: 
Jt2][01=L0; 

J[21[l]=I.O; 

J[2][2]=1.0: 

// first time through get current position 
if (pumaData->first_fIag==I) 
{ 

pumaData-
>thetao[01=pumaData->theta(0]; 

pumaData-
>thetao( l]=puniaData->theta[ 1]; 

pumaData-
>thetao[2]=puinaData->theta[2]; 

pumaData-
>thetao[3]=puniaData->theta[3]; 

piunaData-
>thetao[4]=pumaData->theta[4]; 

pumaData-
>thetao[5]=puniaData->theta(51; 

pumaData->first_flag=2; 
} 

// final position 
thetafl0]=0.0; 
thetafIl]=-0.5; 
theiaf[2]=2.5: 
thetafI3]=0.0; 
thetaf[4]=-0.4359; 
thetaf[5]=0.0; 

// do cubic spline interpolation 
if (puinaData->time <= tf) 
{ 

piunaData-
>thetad[0]=puniaData->thetao(0]-3.0*(pumaData-
>tfaetao[0]-thetaf[0])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time*pumaData-
>time/(tftf*tf); 

pumaData-
>thetad[l]=puniaData->thetao[l]-3.0*(puniaData-
>thetao[l]-thetafri])*pumaData-

>time*pimiaData->time/(tf*tf)+2.0*(pumaData-
>thetao[l]-thetaf[l])*pumaData-
>time*pumaData->time*piunaData-
>time/(tf*tftf); 

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(puniaData-
>thetao[2]-tIietaf[2])*puniaData-
>time*pumaData->time/(tf tf)+2.0*(puniaDaia-
>thetao[2]-thetafI2])*puniaData-
>time*puinaData->time*pumaData-
>time/{tf*tf*tf); 

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(puniaData-
>thetao[3]-tlietafI3])*pumaData-
>time*pumaData->time/(tf^+2.0*(pumaData-
>thetao[3 ] -thetafI3])*puinaData-
>time*puniaData->time*puniaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[4]=pumaData->thetao[4]-3.0*(puniaData-
>thetao[4]-tIietaf[4])*pumaData-
>time*piunaData->time/(tf^+2.0*(pumaData-
>thetao[4] -thetaf[4])*ptmiaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[5]=puniaData->thetao(5]-3.0*(puinaData-
>thetao[5]-thetafI5])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[5]-thetaft5])*puniaData-
>time*puniaData->time*puniaData-
>time/(tP''tf*tf); 

} 
// after tf stay put at final position 

else if (pumaData->time > tf) 
! K 

pumaData->thetad[0]=thetafl[0]; 
puinaData->thetad[ 1 ]=theiaf[ 1 ]; 
puniaData->thetad[2]=tfaetaf[2]; 
piunaData->thetad[3 ]=thetaf{3 ]; 
puniaData->thetad[4]=thetaf[4]; 
puinaDaia->thetad[51=thetafI5]; 

// 
// control section 
// 

for (i=0;i<6;i-H-) 
{ 

// calculate error 
puniaData->error[i]=pumaData-

>thetad[i]-pumaData->theta[i]; 
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// calculate rate of change of the error 
pumaData-

>errordot[il=(puinaData->error(i]-puniaData-
>errorold[i])/puinaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=pumaData->lqp[i]*puinaData-
>error[i]+pumaData->kd[i] *puinaData-
>errordot[i]; 

// impedence based control law 
if (pumaData->time > 6.0) 
{ 

L=0.3; 

if (pumaData->first_Qag=2) 
{ 

>center[0]=xdes(0]-L; 

>center[l]=xdes[ I]; 

>first_flag=0: 

xdesl0]=xx[0]; 
xdes[l]=xx(l]; 
xdes[2]=xx(2]; 

pumaData-

pumaData-

pumaData-

} 

// inverse kinematics of virtual manipulator 
// position based 

// thetav=atan2(-xx[l]+pumaData-
>center[ l],xx[0]-pimiaData->center(0]); 

// orientation based 
thetav=xx[2]-1.57; 

pumaData->vpos=thetav; 

// check joint limits of virtual manipulator 
if (thetav >= 0.0) 
{ 

thetav=0.0; 
wall_flag=l; 

} 
else if (thetav <= -1.0) 
{ 

thetav=-1.0; 
wall_flag=l; 

// forward kinematics of virtual manipulator 

xdes[0]=L*cos(thetav)+pumaData-
>center(0]; 

.'<des[l]=-
L*sin(thetav)+pumaData->center[l]; 

.Kdes[2]=thetav+1.57: 

// error in world coordinates 
ew[0]=xdes[0]-.xx[0] 
ew[ll=xdes[l]-xx[l] 

. ew[2]=xdes[2]-.xx[2] 

// error in local coordinates 

ee[0]=TT(0] [0]*ew(0]+rr[0] [2] *ew[ 1]; 

ee[ 1 ]=rr[ 1] [0] *ew[0]+rr[ 1] [2] *ew[ 1]: 
ee[21=ew[21; 

// velocity calculation 
eedot[0]=(ee[0]-puinaData-

>eeold[0])/puinaData->dt; 
eedot(l]=(ee[l]-pumaData-

>eeold[l])/puinaData->dt; 
eedot(2]=(ee[2]-piunaData-

>eeold[2] )/pumaData->dt; 

// save some old values 
pumaData->eeold[0]=ee(0]; 
pumaData->eeoldri]=ee[ll; 
pumaData->eeold[2]=ee[2]; 

// force - linear part 
wn=210.0; 
z=0.7; 
Kp=wn*wn; 
Kv=2.0*wn*z: 

F[0]=Kp*ee(0]+Kv*eedot[0]; 
F[l]=Kp*ee[l]+Kv»eedot[l]; 

// force - angular part 
wn=10.0; // 10 - angular 60 • 

position 
z=0.7; 
Kp=wn•^vn; 
Kv=2.0*wn*z; 

F[2]=Kp*ee[2]+Kv*eedot[2]; 
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// null space filter 
Fm(0]=(F[01-L*F[2])/a*L+1.0); 
Fin[I]=F[l]: 
Fm[21=(-

L*F[0]+L*L*F[2])/(L*L+1.0); 

if (wall_flag) 
{ 

Fm[0]=F[0]; 
Fm[l]=F[l]; 
Fm[2]=F[2]; 

} 

// required torque 

T[0]=J[0][0]*Fm[0]+J[l][0]»Fm[l]+J[2][ 
0]*Fml21; 

T[l]=Jt0][l]*Fm[0]+J[l][l]»Fm[l]+J[2][ 
ll*Fm[2]; 

T[2]=J[0][2]*Fin[0]+J[l][21*Fm[l]+J[2][ 
2rFm[21; 

// torque to voltage 
puniaData->voltage_out[ 1]=-

0.0515»T[0]; 
pmnaData-

>voltage_out(2]=0.1118*T[1]; 
puinaData->voItage_out[4]=-

0.4980»T[2]: 
} 

// Convert voltages into integers to output to 
trident board 

for (i=0:i<6;i-H-) 
{ 

pumaData-
>voltage_out[i]=puinaData-
>voltage_out[i]+puinaData->vg[i]+pumaData-
>v_fiic(i] ;//+pumaData->vim[i]; 

if (febs(puniaData-
>voltage_out[i]) >9.9) 

pumaData-
>voItage_out[il=9.9*puinaData-
>voltage_out[i]/febs(puniaData->voItage_out[i]); 

voltage_int[i]=(int) 
(4095.0*(puniaData->voltage_out(i]+10.0)/20.0); 

} 

// Output voltages to trident hardware 

HwOutpw(pumaData->E>uniaDevice. 
0x030, voltage_int[0]); 

HwOutpw(puiiiaData->PumaDevice, 
0x032, voltage_int[l]); 

HwOutpw(puinaData->PuinaDevice, 
0x034, voItage_int[2]); 

HwOutpw(puinaData->E>umaDevice, 
0x036. voItage_int[3]); 

HwOutpw(pumaData->PuinaDevice. 
0x038. voltage_int[4]); 

HwOutpw(puinaData->PumaDevice. 
0x03a. voltage_int[51); 

// save some old information 
for (i=0;i<6;i-H-) 
{ 

pumaData-
>erTorold[i]=puiiiaData->error(i]; 

pumaData-
>theta_old[i]=puinaData->theta[i]; 

} 
} 

// puniaHome.c 

#include "puma.h" 

void pumaHome(pumaFile* pumaData) 
{ 

short val[6]; 
int voltage_int[61; 
int i; 
double thetaf[6]; 
double localtime: 
double t^5.0; 

// read encoders 
val[0]=HwInpw(pumaData-

>PumaDevice, 0x010); 
val[ l]=HwInpw(pun3aData-

>E>umaDevice. 0x012); 
val[2]=HwInpw(pumaData-

>PumaDevice, 0x014); 
val[3 l=HwInpw(pumaData-

>PumaDevice, 0x016); 
val[4]=HwInpw(puinaData-

>PumaDevice, 0x018); 
val[5]=HwInpw(pumaData-

>PumaDevice, 0x0 la); 
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pumaOata-
>errordot[i]=(puinaData->enor(i]-puinaData-
>errorold(i])/pumaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out(i]=pumaData->kp[i] *puniaData-
>error[i]+puinaData->kd[i] *puniaDaia-
>erroidot[i]; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i-H-) 
{ 

pumaData-
>voltage_out[i]=puniaData-
>voltage_out[i] y/+puniaData->vg(i]+puinaData-
>v_fric[i]+puinaData->viin[i]; 

if (&bs(pumaData-
>voltage_out[i]) > 9.9) 

pumaData-
>voltage_out[i]=9.9*pumaData-
>voItage_out[i]/febs(pumaData->voltage_out[i]); 

voltage_int[i]=(int) 
(4095.0*(puinaData->voltage_out[i]+10.0)/20.0); 

} 

// Output voltages to trident hardware 
HwC>utpw(puniaData->PuinaDevice. 

0x030, voltage_int[0]); 
HwOutpw(pumaData->PuinaDevice. 

0x032, voltage_int[l]); 
HwOutpw(puniaData->PuniaDevice. 

0x034. voltage_int(2]); 
HwOutpw(puniaData->PuniaDevice, 

0x036, voltage_int(3]); 
HwOutpw(puinaData->PuniaDevice, 

0x038, voltage_int[4]); 
HwOutpw(puniaData->PumaDevice, 

0x03a, voltage_int[5]); 

// save some old information 
for (i=0;i<6;i-H-) 
{ 

pumaData-
>errorold[i]=pimiaData->error[i]; 

pumaData-
>theta_old[iI=pumaData->theta[i]; 

} 

// piimaTnifialiyatinn r 

#include "pimia.Ii" 

void pumaInitialization(pumaFile* pumaData) 
{ 

double frequency. 
inti: 

// desired refiesh rate (Hz) 
&equency=300.0; 

// desired delta-t 
pumaDaia->dt= 1.0/frequency; 

// initialize absolute time base to zero 
pumaData->time=0.0: 

// set somejoint limits for impedence fields 
pumaData->jlimit3=4.0; 
piunaData->jlimit5= 1.7; 

// set flags for slow up and down 
pumaData->first_flag= 1; 
pumaData->last_flag= 1; 

// encoder stuff 
pumaData-

>encoder_scale[01=0.00010035; 
pumaData->encoder_scale [ 1 ]=-

0.000073156: 
puinaData->encoder_scale[21=0.000117; 
pumaData->encoder_scale[3]=-

0.000082663; 
pumaData->encoder_scale[4]=-

0.000087376; 
pumaData->encoder_scale[51=-

0.00016377; 

pumaData->encoder_ofEKt[0]=0.0; 
pumaData->encoder_ofiset[ 1 ]~21472.0; 
pumaData->encoder_ofE^t[2]=-13426.0; 
pumaData->encoder_ofiset[3]=8000.0; 
pumaData->encoder_ofifeet[4]=0.0; 
pumaData->encoder_ofifset[5]=0.0; 

// initialize feedback gains 
pumaData->kp[0]=118.0; 
pimiaData->kd(0J=15.4; 



www.manaraa.com

219 

puinaData->kp[l]=-288.0; 
pumaData->kd[I]—24.0: 
puinaData->kp[2]=200.0: 
piunaData->kd[2]=20.0; 
puinaData->kp[3]—15.0; 
puinaData->kd[3]=-2.0; 
puinaDaia->kp[4]=-25.2; 
puinaDaia->kd[4]=-2.2; 
pmiiaData->kp[5]=-I0.0; 
puniaData->kd[5]=-2.0; 

I I initialize some variables 
for (i=0; i<6; i++) 
{ 

puniaData->erron)ld[i]=0.0; 
I I error values 

pmnaData->theia_oId[i]=0.0; 
// angular positions 

puinaData->v_fric_old[il=0.0: 
I I friction voltages 

} 

for (i=0; i<3: i-H-) 
{ 

puinaData->eeold[i]=0.0; 
} 

// caHbrate encoders 
HwOutpw(pumaData->PumaDevice. 

0x020, 0x0000); 
HwOutpw(puniaData->E*uniaDevice. 

0x022. 0x0000); 
HwOutpw(puniaData->PuniaDevice, 

0x024, 0x0000); 
HwOutpw(pumaDaia->PuniaDevice, 

0x026, 0xlf40); 
HwOutpw(puniaData->PumaDevice, 

0x028. 0x0000); 
HwOutpw(pumaData->I>unjaDevice, 

0x02a- 0x0000); 
} 

// sockeLc 

#include "puina.h" 

SOCKADDR_IN stLclName; 
SOCKADDR_IN stRmtName; 

void apenSocket(puniaFile* pumaData) 

{ 
int server=0; 
intnRet: 

// ip for snow 
// char szHostQ = " 129.186.232.46"; 

// ip for hood 
// char szHostQ = " 129.186.232.34"; 

// ip for mammoth 
charszHostO = "129.186.232.54"; 

char szDataReceiveQ = {0}; 
unsigned long addr. 
WORD WSA_VERSION; 
WSADATA stWSAData; 

WSA_VERSION = MAKEWORDd. 1); 
nRet=WSAStartup(WSA_VERSION. 

&stWSAData); 
if(nRet==0) printf("attached to winsock 

dU\n"); 
else printf("could not attach winsock 

dU\n"); 

if (puniaData->useSocket == I) 
{ 

pumaOata-
>hSock=socket(AF_INET. SOCK_DGRAM. 0); 

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not 
get a valid socket handleVn"); 

else 
{ 

if (server=l) 
{ 

stLclName.sin_femily = PF_INET; 

stLclName.sin_port=htons(1026); 

stLclName.sin addr.s addr=INADDR A 
NY; 

nRet=bind(pim3aData->hSock, 
(LPSOCKADDR) &stLcIName. sizeof(struct 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printf("could not 
bind server socket\n"); 
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else 
printf("server socket: Open\n"); 

iiRet=iecv(puinaDaia->hSock, (LPSTR) 
szDataReceive. 5, 0); 

if 
(nReP=SOCKET_ERROR) piintf("server socket 
could not receive data\n"); 

else 
printfC'sever socket received dataVa"); 

} 
else 
{ 

addr=inet_addr(0-PSTR) szHost); 
if 

(addr=INADDR_NONE) printf("could not find 
address of servenn"); 

stRmtName.sin_femily = PF_INET; 

stRmtName.sin_port=Iitons( 1026); 

stRintName.sin_addr.s_addr=addr; 

nRet=connect(puinaData->hSock, 
(LPSOCKADDR) &stRintName. sizeof(struct 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printfCcould not 
connea to server socket\n"); 

else 
{ 

printfC'Socket OpenVn"); 

puinaData->actrveSocket= I: 
} 

} 
} 

} 
} 

void cIoseSocket(pumaFile* pumaData) 
{ 

int nRet; 

if (puinaData->activeSocket = I) 
{ 

nRet=closesocket(puinaData-
>hSock): 

if (nRet==SOCKET_ERROR) 
printfCerror closing socketW); 

else printfCSocket ClosedVn"); 

nRet=WSACleanup(); 

} 

void testSocket(puniaFUe* pumaData) 
{ 

int nRet; 
char szDataSend[100]: 
double t0=0.0; 
double tl=L571; 
double t2=-1.571; 

sprintf(szDataSend,''%4.3f %4.3f %+.3f 
%4.3f%4.3f%4.3f%4.3f".t0.t0.t2.tl,t0,t0.t0); 

if (pumaData->activeSocket = 1) 
{ 

nRet=send(puniaData->liSock. 
(LPSTR) szDataSend. 51,0); 

if (nRet=SOCKET_ERROR) 
printfC'Socket test &iled\n"); 

else printfC'Socket test 
passed\n"); 

} 
} 

Spacial Circular Arc 

// error.c 

#include "puma.h" 

void error(pumaFile* pumaData) 
{ 

double xv[3],xv_dot[3],xyz_dot[3]; 
double center[3],dist; 
double theta_v; 
int i.j,k; 
double cv,sv; 
double xv_ori[3][3]; 
double wruz; 
double xyz[3]; 
double ang[3]; 
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double fin[6]; 
int f_flag; 
double fend[6], fbase(6], rv[3][3]; 

ceiiter[0]=0.2; 
center[l]=0.0; 
center[2]=0.6: 

// inverse kinematics of virtual manipuator 
// theta_v=atan2(x[lj-center[I],x[0]-
center[0]); 

ang[ 1 ]=atan2(-pmnaData-
>r[2] [0],sqn(pumaData->r[0] [01*pumaData-
>r(0] [0]+pumaData->r[ l][0]*puniaData-
>r[ll[OI)); 

if (fabs(ang[l]-1.5708) < 0.01) 
{ 

ang[2]=0.0-. 
ang[0]=atan2(pumaData-

^r[0 j [ 1 ],pumaData->r[ 1 ] [11); 
} 
else if (febs(ang[l]+1.5708) < 0.01) 
{ 

ang[21=0.0; 
ang[01=-atan2(pumaData-

^r[0] [ 1 ],pumaData->r[ 1 ] [ 11); 
} 
else 
f i 

ang[2]=atan2(pimiaData-
11 [0],pmiiaData->r[0] [0]): 

ang[0]=atan2(pumaData-
>r(2] [l],pumaData->r[2] [2]); 

} 

theta_v-ang[2]-1.57; 

f_flag=0; 
if (theta_v < -0.2) 
{ 

theta_v=-0.2; 
f_£lag=l; 

} 
if (theta_v > 0.8) 
{ 

theta_v=0.8; 
f_£Iag=l; 

} 

dist=0.3; 

cv=cos(theta_v); 
sv=sin(theta_v); 

rv[0][0]=-sv: 
rv[0][l]=cv; 
rv[0][2]=0.0; 
rv[l][01=0.0; 
rv[l][ll=0.0; 
rv[l][2]=1.0; 
rv[2][0]=cv: 
rv[2][l]=sv; 
rv[2][21=0.0; 

// Determine the position of the robot in the 
virtual manipulator's 
// end effea space 

xv[01=-sv*pumaData-
>x[0]+cv*pumaData->x[l]-
cv*center[l]+sv*center[0]; 

xv[ 1 ]=pumaData->x[2]-center[2]; 
.Kv[2]=cv*puinaData-

>x[0]+sv*pumaData->x[l]-dist-cv*center[0]-
sv*center[l]; 

for (i=0;i<3;i-H-) 
{ 

for 0=O;j<3 J++) 
{ 

xv_ori[i]lj]=0.0; 
for (k=0Jc<3 Jc-r+) 
{ 

xv_ori[i][j] -i-= 
rvfi] [k] *pumaData->r[k] jj]; 

} 

} 

xyz[ll=atan2(-
xv_ori[2][0],sqrt(xv_ori[0][0]*xv_ori[0][0]+.w_or 
i[l][0]*xv_ori[l][0])); 

if (febs(xv2[l]-1.5708) < 0.01) 
{ 

.wz[21=0.0: 

.xyz[01=aian2(xv_ori[0] [ 1 ],xv_ori[ 1 ] [ 1 ]); 
}' 
else if {febs(xy2[ll+1.5708) < 0.01) 
{ 

xy2[2]=0.0; 
xy2[0]=-

atan2(xv_ori[0][l],xv_ori[l][l]); 



www.manaraa.com

222 

} 
else 
{ 

xy2[21=atan2(xv_ori[l][0],xv_oti[01[01); 

xy2[0]=atan2(xv_ori[2][l],xv ori[2][2]); 
} 

wn=60.0; 
z=0.7071; 

for (i=0:i<3;i++) 

xv_dot[i]={wn*wn*puinaData-
>dt*(xv[i]-puinaData->xv_old[i])+punMData-
>xv_dot_oId[i]*(2.0+2.0*z*wn*puinaData->dt)-
pumaData-
>xv_dot_way_oId[i])/( 1.0+2.0*z*wn*puinaDaia-
>dt+wn*wn*puinaData->dt*pumaData->dt); 

xyz_dot(i]=(wii*wn*puinaData-
>dt*(xyz[i]-piiinaData->xyz_oId[i])+puniaData-
>xyz_dot_old[il*(2.0+2.0*z*wn*puinaData->dt)-
pumaData-
>xyz_dot_way_oId[i])/(L0+2.0*z*'wn*puinaData-
>dt-i-wn*wn*puinaData->dt*puinaData->dt); 

} 

for (i=0;i<3:i-H-) 
/ i 

pumaData-
>xv_dot_way_oId[i]=piimaData->xv_dot_oId[i]; 

pumaData-
>xv_dot_oId[il=xv_dot[i]: 

puinaData->xv_old[i]=xv[i]; 
pumaData-

>xyz_dot_way_oId[i]=puinaData->xyz_dot_old[i]; 
pmnaData-

>xyz_dot_oId(i]=xyz_dot[i]; 
pumaData->xvz_old[i]=xvz[i]; 

} 

// Evaluate virtual spring force 
for (i=0;i<3;i++) 
f I 

fin[i]=400.0*xv[i]+30.0*xv_dot[i]; 

&n[i+3]=30.0*xvz[i]+2.0*xvz_dot[i]; 
} 

// Apply Null space filter 

fend[0]=0.9174=»fiii[01-0.2752*fin(41; 
fend[I]=fin[l]; 
fend[2]=fin[2]; 
fend[3]=fin[3]; 
fend[4]=-0.2752'^[0]-K).0826»fin(4]; 
fend[5]=fin[5]; 

if(f_flag= I) 
{ 

fend[0]=fin[0]; 
fend[l]=fiii[ll; 
fend[2]=fin[2]; 
fend[3]=fin(31; 

. fend[4]=fin(4]; 
fend[51=fiii(5]; 

} 

// force end effector vm to base puma 
for (i=0; i<3; 1++) 
{ 

fbase[i]=0.0; 
for (j=0; j<3; j-i-+) 

{ 

fbase[i]=fbase[i]+rv[j] [i] *fend|j]; 
} 

} 

for (i=0; i<3; i-t-r) 
{ 

fbase[i+3]=0.0; 
for0=O; j<3;j-H-) 
s i 

fbase[i+3 ]=fbase[i-i-3 l+rvQ] [i] *fend[j+3 ]; 
} 

} 

// force base puma to end eflfeaor puma 
for (i=0; i<3; 1++) 
{ 

pumaData->fv[i]=0.0; 
for 0=0; j<3; j^-^) 
{ 

pumaData-
>fv[i]=puniaData->fv[i]+pumaData-
>r[i][i]*fbase[j]; 

} 
} 

for (i=0; i<3: i-H-) 
{ 
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puiiiaDaia->fv[i+3]=0.0; 
for(j=0;j<3;j-H-) 
{ 

pumaData-
>fv[i+3 ]=puinaData->fv[i+3 ]+puinaData-
>r[j][i]*fbase0+3]; 

} 
} 

} 

// friction.c 

finclude "pumah" 

void friction(puinaFile* pumaData) 
{ 

inti; 
double tau=0.05305; 

if (puinaData->theta[0] > pumaData-
>theta_old[0]) pumaData->v_Mc[0]=1.0; 

if (puinaData->theta[01 <= pumaData-
>theta_old[0]) pumaData->v_Mc[0]=-0.9; 

pumaData->v_&ic[0]=(pmnaData-
>v_fric[01 *pun!aData->dt+puinaData-
>v_fric_old(01*tau)/(puinaData->dt+taa); 

if (puniaData->theta[l] > pumaData-
>theta_old[l]) 

{ 
if (puinaData->thea[l] > -1.5T) 

puniaData->v_fric[ 1 ]=-0.3; 
else puinaData->v fric[ll=-0.9; 

} 
if (puinaData->theta[l] <= pumaData-

>theta_old[l]) 
{ 

if (puinaData->theta(l] > -1.57) 
puinaData->v_fric[l]=0.9; 

else puniaData->v_fin[c[l]=0.6; 
} 
piimaData->v_fric[ 1 ]=(puniaData-

>v_fric[ 1] *puinaData->dt+puinaData-
>v_firic_old[l]*tau)/(puinaData->dt+tau); 

if (puiiiaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fiic[2]=0.47; 

if (puinaData->tIieta[2] <= pumaData-
>theta_old[2J) puniaData->v_fric[2I=-0.47; 

puinaData->v_6ic[2]=(puiiiaData-
>v_fiic[2] *puinaDaia->dt+puinaData-
>v_&ic_old[2]*tau)/(puiiiaData->dt+tau); 

if (piiinaData->dieta[3] > pumaData-
>tfaeia_old[3]) puniaData->v_&ic[3]=-0.35; 

else if (puinaData->theta[31 <= 
puinaData->tlieta_old[3]) pumaData-
>v_fiic[3]=0.35; 

else puinaData->v_&ic[3]=0.0; 
puniaData->v_&ic[3 ]=(puinaData-

>v_jQic[3 ] *pumaData->dt+pumaData-
>v_&ic_old[31 •tau)/(puinaData->dt+tau); 

if (puinaData->tfaeta[4] > pumaData-
>tlieta_old[4]) puniaData->v_ftc[4]=-0.4; 

else if (pumaData->theta[41 < pumaData-
>tlieta_old[4]) puinaData->v_fric[4]=0.4; 

else puinaData->v_fric[4]=0.0; 
puinaDaia->v_fric(4]=(puniaDaia-

>v_&ic[4] *puniaData->dt+piiiiiaData-
>v_fiic_old[41*tau)/(pumaDaia->dt+tau); 

if (pumaData->tlieta[5] > pumaData-
>tIieta_old[5]) puinaData->v_&ic[5]=-0.5; 

else if (puinaData->tfaeta[5] < pumaData-
>theta_old[51) puinaData->v_fric[51=0.5; 

else puinaData->v_fric[5]=0.0; 
puniaData->v_fric[5]=(pinnaData-

>v_fric[5] *puinaDaia->dt+puinaData-
>v_fric_old[5]*tau)/(puinaData->dl+tau); 

for (i=0:i<6;i-t-f) 
f I 

pumaData-
>v_fiic_old(i]=pumaData->v_firic[i]; 

} 

} 

// gravity.c 

#include "puma-h" 

void gravitv(puinaFile* pumaData) 
{ 

double c2,s2,c23,s23: 

c2=cos(puniaData->theta[l]); 
s2=sin(puniaData->theta[l]); 
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c23=cos(puniaData->theta[l]+puinaData-
>tlieta[2]); 

s23=sin(puniaData->theta[l]+pmnaData-
>tlieta[2]); 

// gravity compensation 
puinaData->vg[0]=0.0; 
pumaData->vg[2]=-

I.1201»s23+0.0977*c23; 
pumaData-

>vg[ l]=0.2400*s2+2.1144*c2-0.5304*puinaData-
>vg[2]; 

puinaData->vg[3 ]=0.0; 
puinaData->vg[4]=0.0: 
pumaDaia->vg[5]=0.0; 

} 

// impedencex 

#inciude "puma h" 

void inipedence(puinaFile* pumaData) 
{ 

pumaData-
>vim[0] .̂02*pow(( 1.0/(puinaData->theta(0]-
2.7)),3.0)+0.02*pow(( 1.0/(puinaData-
>tfaeta[0]+2.7)),3.0); 

puiiiaData->viin[ 1 ]— 
0.02*pow(( 1.0/(puinaData->theta[ 11-0 .T)),3.0)-
0.02*pow(( I.O/(piunaData->theta[ I]+3.7)).3.0); 

pumaData-
>viin[2]=0.02*pow(( 1.0/(puniaData->theta(2]-
pumaData-
>jliiiiit3 )),3.0)-K).02*pow(( 1.0/(puniaData-
>theta[2]+0.9)),3.0); 

puniaData->vim[3 ]=-
0.02*pow((1.0/(puniaData->theta[3]-3.2)),3.0)-
0.02»ix)w(( 1.0/(puniaData->tfaeta[31+1.8)),3.0); 

puniaData->vim[4]=-
0.02*pow(( 1.0/(puniaData->theta[4]-L7)),3.0)-
0.02*ix)w((1.0/(pmnaData->theta[4]+pmnaData-
>jliniit5))J.O); 

puinaData->vim[5]=-
0.02*pow(( 1.0/(puniaData->theta[5]-5.2)),3.0)-
0.02*pow((l .0/(puniaData->theta[5]+5.2)).3.0); 

// jacofoiaiLc 

#iliclude "puma h" 

voidjacobianCpumaFile'*' pumaData) 
{ 

double 
cl.sl,c2.s2,c3,s3.c23,s23.c4.s4.c5.s5.c6,s6; 

double 1[5]; 
1[1]=0.4318; 
1[21=0.15005; 
I[3]=-0.0191; 
I[4]=0.4331; 

cl=cos(pmnaData->theta[OJ); 
sl=sin(pumaData->tlieta[0]); 

c2=cos(pumaData->theta[l 1): 
s2=sin(pumaData->theta[ 11); 

c3=cos(pumaData->theta[2]); 
s3=sin(pumaData->theta[2]); 

c23=cos(pumaData->tIieta( 1 ]+pumaData-
>theta[2]); 

s23=srn(pimiaData->tlieta( 1 J+pumaData-
>theta[2]); 

c4=cos(pumaData->theta[3]); 
s4=sin(pmnaData->theta[3 ]); 

c5=cos(pumaData->theta[4|); 
s5=sin(pumaData->theta[4]); 

c6=cos(ptmiaData->theta[5]); 
s6=sin(puinaData->theta[5]); 

// jacobian 
pumaData->eJr[0J[0]=c5*c6*(-

c23*c4*l[21+s4*(c2*I[ll+c23»l(31+s23*I[4]))+s6* 
(c23*s4*I(2]+c4*(c2»l[l]-K:23*I[3]+s23»l[4]))+s5 
•c6»s23»I[2]; 

pumaData-
>eJr[0][l]=c5*c6»(c4»(s3*I[l]+l[4]))-Hs6*(-
s4*(s3*l[ll+l[41))-s5*c6*(-c3*l[ll-l[3]); 

pumaData->eJr[0] [2]=c5*c6'''c4*l[4]-
s6*s4»I[4]+s5*c6*l[3]; 

pumaData->eJr[0] [3]=0.0; 
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V I=c4*c5*c6-s4*s6; 
v2=s5*c6; 
v3=c23-»vl-s23*v2; 
v4=s4*c5*c6-rc4*s6; 

puinaData->r(0] [01=c 1 •v3-s 1 *v4; 
puinaData->r[ 1 ] [0]=s 1 *v3+c l*v4; 
puinaData->r[21 [0]=-s23 •v 1 -c23 *v2; 

v5=c4*c5*s6+s4*c6: 
v6=s5*s6; 
v7=-dl3*v5+^3*\6: 
V8=s4*c5*s6-c4*c6; 

puiiiaData->r[0] [ l]=c 1 »v7+s 1 *v8; 
pumaData->r[ 1 ] [ll=s 1 *v7-c 1 *v8; 
puinaData->r(2] [ 1 ]=s23 •v5-H:23 *v6; 

v9=c4*s5; 
vl0=c23»v9+s23*c5; 
vl I=s4*s5; 

puinaData->r[0] [2]=cl •viO-sl •v 11; 
puinaData->r[ l][2]=sl *vlO+cl *vl 1; 
paniaData->r[2] [2]=-s23 *v9+c23 *05; 

LONGLONG count 
double cuirenttinie; 
double dtactual: 
double dteiron 
double dtmax: 

// error flags 
int timererror. 
int timeroverrun; 
int DeviceStop; 
int eirorSocket: 

// socket stuff 
intern 
char szDataSend[IOO]; 
int gcount: 

// data file stu£f 
double data[3][2000]; 
int datalength=2000; 
int datacount: 
int datacycle; 
intdatamax 
int fileerror. 
FILE *out: 

// general stuff (counter and the like) 
int i; 

// inain.c 

#include "puma-h" 

llllllllllllllllllllllllllllllllllflllllllllllltlllllllllllllllllllll 
I I Taking Care of Business 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

void main(void) 
{ 
// robot stuff 

pumaFile *puniaData: 
int stop; 
int homecount; 

// window's stuff 
HANDLE hprocess; 
HANDLE hthread; 
int processerror, 

// timer stuff 
BOOL result; 
LAR(E_INTEGER lifirequencv" 
LARGE_INTEGER licount; 
LONGLONG frequency; 
double dfrequency; 
LONGLONG startcount 

printfCPUMA control program\n"); 
printf("written by Jim Edwards for 

LARCOn"); 
printfC'AU rights reserved\n\n\n\n"); 

iiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiii 
I I Code Initialization Section 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I set counter error flag to pass 

timererror=l; 

I I set counter overrun flag to pass 
timeroverrun=l; 

II start taking data at zero 
datacount=0; 

// set data pass to zero 
datacycle=0; 
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// set process error flag to pass 
processerror=0; 

// set maxiTTiiiTn delta-t to zero 
dtmax=0.0; 

// set stop to pass 
stop=l; 

// set homecount to zero 
homecoimt=0; 

// set socket error to none 
errorSocket=0; 

// set graphics dump counter to zero 
gcount=0; 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
mill Hardware Initialization 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II get process handle 

hprocess=GetCurrentPiocessO; 

I I set process priority 
result=SetPriorityClass(hprocess. 

REALTIME_PRIORITY_CLASS); 
if(result = 0) processerror=l; 

// get thread handle 
hthread=GetCurrentThreadO; 

I I set thread priority 
result=SetThreadPrioritv(hthread. 

THR£AD_PRIORITY_TIME_CRmCAL); 
if (result == 0) processerror=2; 

I I allocate memory for puma structure 
pumaData=(pumaFile 

•)malloc(sizeof(pumaFile)); 

I I connea to the puma kernel device 
DeviceStop=l; 
pumaData-

>PuinaDevice=HwNewDevice(NULL); 
HwSetErrorHandler(pimiaData-

>PumaDevice, MyErrorHandler); 
if (!HwConnectDevice(puniaData-

>PumaDevice, "pimia")) 
{ 

printfCFailed to comiea to puma 
device!\n"); 

HwDeleteDevice(pumaData-
>E>uniaDevice); 

DeviceStcp=0: 
> 
f 

II setup puma 
piiTnarniriati7afif>n(piiTnanaTa)-

// Open socket - useSocket = 1 use socket. = 0 
don't use socket 

pimiaData->useSocket= 1; 
pumaData->activeSocket=0; 
openSocket(puinaData): 

// test socket 
testSocket(puniaData): 

// get ftequency of high performance counter 
resuIt=QueryPerformanceFrequency(«Sarfr 

equency); 
if (result = TRUE) 
{ 

frequency=lifiequency.QuadPart: 
dfiraiuency=((double) 

ftequency); 
printfC'clock frequence" %f 

MHz\n\n'ui\n".dfi:equency); 
} 
else 
{ 

printfCQueryPerformanceFrequency: 
feilureVn"); 

timererror=0: 
} 

// get starting count 
printf("\n\n\nTum Arm Power On!!! l\n"); 
result=QueryPerfbrnianceCounter(&licou 

nt); 
if (result = TRUE) 
{ 

startcount=licounLQuadPart: 
} 

else 
{ 

printfCQueryPerformanceCounter 
failureVn"); 

timererror=0; 
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} 

I I disengage the brakes 
HwOutpw(puniaData->PuinaDevice, 

0x02e, 0x0001); 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiimiii 
II Main Control Loop 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

while((homecount < 2000) && 
CDeviceStop == 1) && (timererror =1) && 
(timeroverrun = 1) && (processerror == 0)) 

f I 
// control code 

if(kbhitO) stop=0: 
if (stop == 1) 
{ 
puniaControI(pumaData); 
} 
else 
{ 
homecount-H-: 

pumaHomeCpuinaData): 
} 

// increment graphics dump counter 
gcount++; 

// send data to graphics engine 
if (gcount = 5) 
{ 
gcount=0: 

// but only if there is an active socket for 
commimication 

if (pumaData-
>activeSocket = 1) 

{ 

sprintf(szDataSend,"%4.3f %4.3f %4-.3f 
%4.3f %4.3f %4.3f %4.3f 

puinaData->time, 
pnmaDafa-

>theta[0], 
pimiaData-

>theta[l], 
pumaData-

>theta[2], 
pumaData-

>theta[3], 
pumaData-

>theta[4], 

>theta[5]); 
pumaData-

err=send(pumaData->hSock, 
(LPSTR) szDataSend, 51, 0); 

if 
(err=SOCKET_ERROR) errDrSocket=l; 

} 

// dining code 
do 
{ 

// get the current count of perfonnance counter 

result=QueryPerfonnanceCounter(&licou 
nt); 

if (result = TRUE) 
{ 

count=IicounLQuadPart: 
// convert into time since program started 

currenttime=((doubIe) (coimt-
startcoimt))/dfrequency; 

} 
else 
{ 

printf("QueryPerformanceCounter 
failureVn"); 

timererror=0: 
} 

puinaData->time; 

>dt); 

dtactual=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t 
if (dtactual > dtmax) 

dtinax=dtactual; 

// get error in delta-t 
dterror=dtactual-puniaData->dU 
if (fabs(dterror) > pumaData-

>dt) timeroverrun=0; 

// take some data 
if (stop = 1) 
{ 
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// time 
// 

data[01 [datacount!=puinaData->time; 
I I ftesh&equencv 

// 
data[ 1] [datacount]=1.0/dtactual; 

II voltage to axis 5 
// 

data[2] [datacount]=pumaData-
>voltage_out[4]; 

data[0] [datacouiit]=puinaData->x[0]; 

data[ 1 ] [datacount]=puinaData->x( 1 ]; 

data[21 [datacountl=piiinaData->x[2]; 

if (datacount = 1999) 
{ 

daiacount=0: 
datacycle=l; 

} 
else datacount++; 

} 

// update absolute time base 
pumaData->time=pumaData-

>time+pim3aData->dt; 
} // end main control loop 

// engage the brakes 
HwOutpw(pumaData->PumaDevice, 

0x02e. 0x0000); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Hardware Clean-Up 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II kemal device 

HwDeleteDevice(pumaData-
>PumaDevice); 

I I close socket 
closeSocket(pumaData); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Take some data 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

I I open the data file 

if ((out=fopen("ouLdat".''wt"))==NlILL) 
fileerror=0; 

else 
{ 

// write data 
fileerTOi=l; 

fprintf(ouL"max dt is 
%f\n\n\n".dtmax); 

if (datacycle = 1) 
datamax=datalength; 

else dataniax=datacount: 

for (i=0; i<datamax: i++) 
{ 

fprintf(out,"%£l %f. 
%f\n".data[0][i],data[l][i],data[2][i]); 

// close file 
fcIose(out); 

} 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Final Error Messages 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

printf("\n\nVnError Messages:\n"); 
if (timererror = 0) printf("timer 

malfimction\n''); 
else if (timeroverrun = 0) printfCtimer 

over run\n"): 
else if (DeviceStop == 0) printffDriverX 

error\n"); 
else if (fileerror == 0) printf("could not 

open data file\n"); 
else if (processerror == 1) printf("could 

not set process priority\n''); 
else if (processerror = 2) printf("could 

not set thread priorityVn"); 
else if (errorSocket == 1) printf("error 

sending data over socket\n"); 
else printfCall went well\n"); 

SleepOOOO); 
} 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
mill DriverX Error Handler 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
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void MyEiTorHandler(HWDEVICE* pDevice, 
DWORD nError) 
{ 

printf("CriticaI DriverX error %d\n'', 
nError); 

exit(iiError): 
} 

// pun)a.h 

// include files 
#incliide <windo\vs.li> 
#include <winsock.li> 
#include <stdio.h> 
#include <conio.h> 
#include <inatlLh> 
^include "DriverX.h" 

// structures 
typedef struct 
{ 
// needed for all 

HWDEVICE* PumaDevice; 
double dt; 
double time: 
double encoder_scale[6]; 
double encoder_o£EKt[6]; 
double theta[61; 
double voltage_out[6]; 

// socket snifF 
SOCKET hSock; 
int useSocket: 
int activeSocket; 

// kinematics 
double x(6]; 
double r[3][3]; 
double eJr[6][6]; 

// virtual manipulator 
double fv[6]; 
double u_vm; 
double v_vm; 
double .xv_old[3]; 
double xv_dot_old[3]; 
double xv_dot_way_old[3]; 
double xyz_old[3]; 
double xyz_dot_old[3]; 
double xyz_dot_way_old[3]; 

// needed for me 
int first_flag; 
int last_flag; 
double kp[6]; 
double kd[6]; 
double error[6]; 
double errorold[6]; 
double errordot[6]; 
double thetad[6]; 
double theta_old[6]; 
double tlietao[6]; 
double timeh; 
double vg(6]; 
double v_fric[6]; 
double v_fnc_old[6]; 
double vim[6]; 
double jiimit3: 
double jlimitf; 

} pumaFile: 

// prototypes 
void main(void); 
void MyEirorHandlerCHWDEVICE * , DWORD); 
void pumaInitialization(pumaFile *): 
void pumaControl(pumaFile •); 
void pumaHome(piunaFile *); 
void openSocket(pumaFile *); 
void closeSocket(pumaFile *); 
void testSocket(puinaFile *); 
void gravity(pumaFile *); 
void ftiction(pumaFile •); 
void impedence(pumaFiIe •); 
void kinematics(pumaFile 
void jacobian(pumaFile *); 
void error(pumaFile •); 

// pumaControLc 

#include "punia.h" 

void pumaControl(pumaFiIe* pumaData) 
{ 

short val[6]; 
int voltage_int[6]; 
inti.j; 
double tlietaf[6]; 
double tf=5.0; 

// read encoders 
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vaI[0]=HwInpw(pumaData-
>PuniaDevice, 0x010); 

val[ll=Hw[npw(puinaDaia-
>PuniaDevice, 0x012); 

\'aI[2]=HwInpw(puniaData-
>PuinaDevice, 0x014); 

vaI[3]=HwInpw(pumaData-
>PuniaDevice, 0x016); 

val[4]=HwInpw(piimaData-
>PumaDevice, 0x018); 

val[5]=HwInpw(piiinaDaia-
>PumaDevice, 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i-f-i-) 

{ 
puniaData->theta(il=piiniaData-

>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_oflfeet[i]); 

} 

// gravity compensation 
gravity(pmnaData); 

// forward kinematics and Jacobian 
kinematics(pmnaData); 

// virtual manipulator control 
error(pumaData); 

// evaluate jacobian 
jacobian(puinaData); 

// friction compensation 
&iction(pumaData); 

// impedence protection 
impedence<puniaData); 

// first time through get current position 
if (puniaData->first_Qag=l) 
{ 

pumaData-
>thetao[0]=pumaData->theta[0]; 

piunaData-
>thetao [ 1 ]=pumaData->theta[ 1 ]; 

pmnaData-
>thetao[2]=pumaData->theta[2]; 

pumaData-
>thetao[3 ]=pumaData->theta[3 ]; 

pumaData-
>thetao[4]=pimiaData->theta[4]; 

pumaData-
>thetao[5]=purnaData->theta[5]; 

pumaData->first_flag=2; 
} 

// final position 
thetaf[0]=0.1428; 
thetaf[l]=-0.3966; 
thetaf[2]=0.5388; 
thetaf[3]=0.6374; 
thetaf[4]=1.4137; 
thetaf[51=1.5168; 

// do cubic spline interpolation 
if (pumaData->time <= tf) 
{ 

pumaData-
>thetad(0]=pumaData->thetao[0]-3.0*(pumaData-
>thetao[0]-thetaf[0])*piunaData-
>time*pumaData->time/(tf*tf)+2.0 * (pumaData-
>thetao[0]-thetaf[0])*pumaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf); 

pumaData-
>thetad(l]=pmiiaData->thetao[l]-3.0*(pumaData-
>thetao[l]-tlietafIl])*puniaData-
>time*pumaData->time/(tPtf)+2.0*(puniaData-
>thetao[l]-thetaf[l])*puniaData-
>time*pumaData->time*puinaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(pumaData-
>thetao[21 -thetaf[2] )*purnaData-
>time*pumaData->time/(tf*tf)+2.0*(pimiaData-
>thetao[2]-thetaf[2])*puniaData-
>time*pumaData->tiine*puinaData-
>time/(tf*tf*tf); 

pimiaData-
>thetad[3 ]=puniaData->thetao[3 ]-3.0*(pimiaData-
>thetao(3]-thetaf[3])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaDaia-
>thetao[3]-thetafI3])*puniaData-
>time*pumaData->time*puinaData-
>time/(tf*tE*tf); 

pimiaData-
>thetad[4]=pimiaData->thetao[4]-3.0*(pumaData-
>thetao[4]-thetafI4])»puniaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[4]-thetaf[4])*pumaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf); 
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pumaData-
>theiad[5]=pumaData->thetao[5]-3.0*(pumaData-
>thetao[5J-thetaf[5])*puiiiaData-
>time*puinaData->tinie/(tf*tf)+2.0*(puinaData-
>thetao[5]-thetaf[5])*puniaData-
>time*puinaData->time*puniaDaia-

} 
I I after tf stay put at final positioii. 

else if (puinaData->time > tf) 
{ 

piunaData->thetad[0]=tlietafl0]; 
puinaData->thetad[l]=thetafll]; 
puinaData->thetad[2]=thetaf[2]; 
puinaData->thetad[3]=thetafl[3]; 
puinaData->thetad[4]=thetaf[4]; 
puinaData->thetad[51=thetaf[5 j; 

} 

// 
// control section 
// 

for (i=0:i<6;i-i-+) 

{ 
// calculate error 

pumaData->error[i]=puniaData-
>thetad[i]-puniaData->tfaeta[i]; 

// calculate rate of change of the error 
pumaData-

>errordot[i]=(piunaData->error[i]-puinaData-
>errorold[i])/puinaData->dt 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=puinaData->kp(i]*piunaData-
>error[i]+puinaData->kd[i] •pumaData-
>erTordot[i]; 

} 

pumaData-
>voltage_out(0]=pumaData->voItage_oui[01*-1.0; 

pumaOata-
>voltage_out[2]=puiiiaData->voltage_oui[2] *-1.0; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0:i<6;i-!-+) 
{ 

pumaData-
>voltage_out[i]=pumaData-
>voltage_out[i]+pumaData->vg[i]+pumaData-
>v_&ic(i]+puniaData->vim[i]; 

tf (fabsCpumaData-
>voltage_out[il) >9.9) 

pumaData-
>voItage_out(i]=9.9*puinaData-
>voltage_out[i]/fabs(puinaData->voltage_out[il); 

voltage_int[i]=(int) 
(4095.0*(pumaData->voltage_out[i]+10.0)/20.0); 

} 

// Output voltages to trident hardware 
HwC)utpw(pumaData->PumaDevice. 

0x030, voltage_int[01); 
HwOutpw(pumaData->PuinaDevice, 

0x032, voltage_int[l]); 
HwOutpw(puniaData->PuinaDevice, 

0x034, voltage_int[2]); 
HwOutpw(pumaData->PuniaDevice. 

0x036. voltage_int(31); 
HwOutpw(puinaData->PuinaDevice. 

0x038, voltage_int[4]); 
HwOutpw(puniaData->PuinaDevice. 

0x03a. voltage_int[5]); 

// save some old information 
for (i=0;i<6;i-t-r) 
{ 

pumaData-
>errorold[i]=pumaData->error[i]; 

pumaData-
>theta_old[i]=pumaData->theta[i]; 

} 
} 

// impedence based control law 
if (pumaData->time > 6.0) 
{ 

for (]=0;j<6;j-H-) 
{ 
pumaData->voltage_out|j]=0.0; 

for (i=0:i<6;i-t-+) 
{ 

pumaData->voltage_out[j] 
pumaData->eJr[i] [j] *pnmaData->fv[i]; 

} 
} 

// pumaHome.c 
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#include "puma h" 

void puniaHome(pumaFile* pumaData) 
{ 

shon val[6]; 
int voltage_int[6]; 
inti; 
double thetaf[6]; 
double localtime; 
double tf=5.0; 

// read encoders 
val[0]=HwInpw(pimiaData-

>E>umaDevice, 0x010); 
val[l]=HwInpw(pumaData-

>E>umaDevice. 0x012); 
val[2]=HwInpw(pimiaData-

>PumaDevice. 0x014); 
val[3]=HwInpw(pumaData-

>E*umaDevice. 0x016); 
val[4]=HwInpw(puinaData-

>PumaDevice. 0x018); 
val[5]=HwInpw(pumaDaia-

>PumaDevice, 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i-i-r) 
{ 

pumaData->theta[i]=pumaDaia-
>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_offeet[i]); 

} 

// first time through get current position 
if (pumaData->last_flag=l) 
{ 

pumaData-
>thetao[0]=pumaData->theta[0]; 

pumaData-
>thetao[ 1 ]=puniaData->theta[ 1 ]; 

pumaData-
>thetao[2]=pim3aData->theta[2]; 

pumaData-
>thetao[3]=pumaData->theta(3 ]; 

pumaData-
>thetao[4]=pumaData->theta[4]; 

piunaData-
>thetao(5]=pumaData->theta(5]; 

pumaData->Iast_flag=0; 
puinaData->timeh=pumaData-

>time; 
X 
) 

I I final position 
thetaf[0]=0.0; 
thetaf[l]—1.57; 
thetaf[21=1.57; 
theiaf[3]=0.0; 
thetaf[4]=0.0; 
thetaf[5]=0.0; 

// time that home has been rurming 
Iocaitime=pumaData->time-pumaData-

>rimgh-

// do cubic spline interpolation 
if (localtime <= tf) 
{ 

pumaOata-
>thetad[0]=pumaData->thetao(01-3.0*(piunaData-
>thetao[0]-
thetafI0])*localtime*localtime/(tf*tf)+2.0*(pumaD 
ata->thetao[0]-
thetafIO])*localtime*Iocaltime*localtime/(tf*tf*tf); 

pumaData-
>thetad[ l]=pumaData->thetao[ 1 ]-3.0*(pumaData-
>thetao[l]-
thetaf[ l])*Iocaltime*Iocaltime/(tf*tf)+2.0*(puinaD 
ata->thetao(l]-
thetaf[ 1 ])*Iocaltime*localtime*localtime/(tf*tf*tf); 

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(pimiaData-
>thetao[2]-
thetaf[2])*localtime*localtime/(tf*tf)+2.0*(pumaD 
ata->thetao[2]-
thetaf[2])*localtime*localtime*localtime/(tf*tf*tf); 

pumaData-
>thetad[3 ]=pumaData->thetao [3 ]-3.0*(pumaData-
>thetao[3]-
thetaf[3])*localtime*Iocaltime/(tf*tf)+2.0*(puiiiaD 
ata->thetao[3]-
thetaf[3])*localtime*localtime*localtime/(tf*tf*tf); 

pimiaData-
>thetad[4]=puniaData->thetao[4]-3.0*(pumaData-
>thetao[4]-
thetaf[4])*localtime*localtime/(tf*tf)+2.0*(puinaD 
ata->thetao[4]-
thetafl4])*Iocaltime*localtime*localtime/(tf*tf*tf); 

piunaData-
>thetad[5]=piunaData->thetao[5]-3.0*(pumaData-
>thetao(5]-
thetaf[5])*Iocaltime*localtime/(tf*tf)+2.0*(pumaD 
ata->thetao[5]-
tfaetafI5])'''localtime*localtime*localtime/(tf*tP'tf); 
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} 
I I after tf stay put in the final position 

else if (localtime > tf) 
{ 

pumaData->tlietad[01=tlietaf[0]; 
pumaData->tlietad[I]=thetafIl]; 
puniaData->tfaetad[2]=tlietaft2]; 
puniaData->thetad[3]=thetaf[3]; 
puinaData->thetad[4]=thetafI41; 
puinaData->thetad[5]=tlietaf[5]; 

// 
// control section 
// 

for (i=0:i<6;i-Hr) 

{ 
// calculate error 

puniaData->error[i]=puinaData-
>thetad[i]-pumaData->theta[i]; 

// calculate rate of change of the error 
pumaData-

>erTordot[i]=(puniaData->error[i]-puinaData-
>errorold[i])/puniaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=puniaData->kp[i]*pumaData-
>error[i]+puniaData->kd[i]*puniaData-
>errordot[i]; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i++) 
{ 

pumaData-
>voltage_out[i]=puniaData-
>voltage_out[i]y/+puinaData->vg[i]+puniaData-
>v_fiic[i]+puinaData->vim[i]; 

if (&bs(puniaData-
>voltage_out[i]) > 9.9) 

pumaData-
>voltage_out[i]=9.9*pumaData-
>voitage_out[i]/febs(puniaData->voltage_out(i]); 

voltage_int[i]=(int) 
(4095.0*(puinaData->voltage_out[i]+10.0)/20.0); 

} 

// Output voltages to trident hardware 

HwOutpw(punMData->PuniaDevice, 
0x030, voltage_int[0]); 

HwOutpw(puniaData->PuniaOevice. 
0x032, voltage_int[l]); 

HwOutpw(pumaData->PuniaDevice, 
0x034, voltage_int[2]); 

HwOutpw(pumaData->PurnaDevice, 
0x036. voltage_int[3]) ; 

HwOutpw(puniaData->PumaDevice, 
0x038, voltage_int[4]); 

HwOutpw(puniaData->PuniaDevice, 
0x03a. voltage_int(51); 

// save some old information 
for (i=0;i<6;i++) 
{ 

pumaData-
>errorold[i]=pumaData->error(i] ; 

pumaData-
>theta_old[i]=pumaData->theta(il; 
} 

// pnmafnitialiTatinn r 

#include "puma.h" 

void pumalnitialization(pumaFile* pimiaData) 
{ 

double frequencv" 
inti: 

// desired refiresh rate (Hz) 
fi:equency=300.0; 

// desired delta-t 
pumaData->dt= 1.0/firequency; 

// initialize absolute time base to zero 
pumaData->time=0.0; 

// set some joint limits for impedence fields 
pumaData->jlimit3=4.0; 
puniaData->jlimit5= 1.7; 

// set flags for slow up and down 
pumaData->first_£lag= 1; 
pumaData->Iast_flag= 1; 

// encoder stuff 
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pumaData-
>encoder_scale[0]=0.00010035; 

pumaData->encoder_scaIe[ 1 ]=-
0.000073156; 

puinaData->enco(ler_scale(2]=0.000117; 
puinaData->encoder_scale[3]=-

0.000082663; 
puiiiaData->enaxler_scale[4]=-

0.000087376; 
puinaData->encoder_scaIe[5]=-

0.00016377; 

puniaData->encoder_ofifeet[0]=0.0; 
puinaData->encoder_oflfeet[ 1 ]—21472.0; 
puinaData->encoder_o£feet(2]=-13426.0; 
pumaData->encoder_ofE^[3]=8000.0; 
piiinaData->encoder_ofifeet[4]=0.0; 
pumaData->encoder_o£E»t[5]=0.0; 

// initialize feedback gains 
puinaData->kp[0]= 118.0; 
puiiiaData->kd[0]=15.4; 
puinaData->kp[ l]=-288.0; 
puinaData->kd[ l]=-24.0; 
puniaData->kp[2]=200.0; 
puniaData->kd[2]=20.0; 
puinaData->kp[3]—15.0; 
piimaData->kd[3]=-2.0; 
piimaData->kp[4]=-25.2; 
piimaData->kd[4]=-2.2; 
puinaData->kp[5]=-10.0; 
puinaData->kd[5]=-2.0; 

puinaData->u_vin=0.0; 
puinaData->v_vin=0.0; 

// initialize some variables 
for (i=0; i<6; i-H-) 
{ 

puniaData->errorold[i]=0.0; 
// error values 

puinaData->tlieta_oId[i]=0.0; 
// angular positions 

puinaDaia->v_fiic_old[i]=0.0; 
// fiiction voltages 

} 

for (i=0; i<3; i++) 
{ 

pumaData->xv_old[i]=0.0; 
pumaData->.w_dot_oId[i]=0.0; 

pumaData-
>xv_dot_way_old[il=0.0; 

pmnaData->xyz_old[il=0.0; 
puniaData->xyz_dot_old[i]=0.0; 
pumaData-

>xyz_dot_wav_old[i]=0.0; 
} 

// calibrate encoders 
HwOutpw(pimiaData->E'uinaDevice, 

0x020. 0x0000); 
HwOutpw(pumaData->PuniaDevice, 

0x022, 0x0000); 
HwOutpw(puinaData->PumaDevice, 

0x024, 0x0000); 
HwOutpw(puinaData->PuniaDevice, 

0x026, 0xlf40); 
HwOutpw(puniaData->PumaDevice. 

0x028, 0x0000); 
HwOutpw(puniaData->PuniaDevice. 

0x02a. 0x0000); 
} 

// socketc 

#include "puma-h" 

SOCKADDR_IN stLclName; 
SOCKADDR_IN stRmtName; 

void openSocketCpumaFUe* pumaData) 
{ 

int server=0; 
int nRet; 

// ip for snow 
// char szHostQ = "129.186.232.46"; 

// ip for hood 
char szHostQ = "129.186.232.34"; 
// ip for mammoth 

// char szHostO = "129.186.232.54"; 

char szDataReceiveQ = {0}; 
unsigned long addr, 
WORD WSA_VERSION; 
WSADATA stWSAData; 

WSA_VERSION = MAKEWORDd, 1); 
nRet=WSAStartup(WSA_VERSION, 

&stWSAData); 
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if(nRet=0) priiitf("attacfaed to winsock 
dU\ii"); 

else printfCcould aot attach winsock 
dll\n"); 

if (paniaData->useSocket = 1) 
{ 

pumaData-
>hSock=socket(AF_INET. S(XX_DGRAM. 0); 

if (pmnaData-
>IiSock==INVALID_SOCKET) prinlfCcould not 
get a valid socket handleVn"); 

else 
{ 

if (server=l) 
{ 

stLcIName.sin_&mily = PF_INET; 

stLclName.siii_portFfatons( 1026), 

stLclName.sin_addr.s_addr=INADDR_A 
NY; 

nRet=bind(piiiiiaData->hSock. 
(LPSOCKADDR) &stLclName. sizeof(stnict 
sockaddr)); 

if 
(aElet=SOCKET_ERROR) printf("could not 
bind server socket\n''); 

else 
printf("server socket: Open\n"); 

nRec=recv(puinaData->hSock. (LPSTR) 
szDataReceive, 5, 0); 

if 
(nRet=SOCKET_ERROR) printf("server socket 
could not receive data\n"); 

else 
printfC'sever socket received data\n"); 

} 
else 
{ 

addr=inet_addr((LPSTR) szHost); 
if 

(addr=INADDR_NONE) printf("could not find 
address of server\n"); 

stRintName.sin_femily = PF_INET; 

stRnitName.sinjport=htons(1026); 

stRnitName.sin addrs addF=addr. 

nRet=connea(puniaData->faSock. 
(LPSOCKADDR) &stRmtNanie, sizeof(struct 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printf("could not 
connea to server socket\n"); 

else 
{ 

printf("Socket OpenVn"); 

pumaDaia->activeSocket= 1; 

} 
} 

void cIoseSocketCpumaFile* pumaData) 
{ 

intnRet; 

if (puinaData->activeSocket = I) 
{ 

nRet=closesocket(pumaData-
>hSock); 

if (nRet=SOCKET_ERROR) 
printfC'error closing socket\n"); 

else printfC'Socket CIosed\n"); 
} 

nRet=WSACIeanup(); 

} 

void testSocket(puniaFile* pumaData) 
{ 

int nRet; 
char szDataSend[100]; 
double t0=0.0; 
double tl=L57l; 
double t2—1.571; 
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sprintf(szDataSend."%4.3f %4.3f %4-.3f 
%4.3f%4.3f%4.3f»/»t.3f".t0,l0,t2,tl,t0.t0.t0); 

if (puinaData->activeSocket = 1) 
{ 

nRet=send(pmnaData->hSock, 
(LPSTR) szDataSend, 51,0); 

if (nRet=SOCKET_ERROR) 
printfCSocket test feiled\ii"); 

else printfCSocket test 
passed\n"); 

} 
} 

// set the baud rate 
SetBaud(BaudRate); 
printfC^aud Rate; %ld\n''JBaudRate); 

// turn off modem control 
outportb(MODEM_CONTROL3IOHAN 

DSHAKING); 
status=inportb(MODEM_CONTROL); 
if (status ==0) printf("Hardware 

else printf(" Something is wrong with 
Modem Control!! IXn"); 

Bob The Fish 

// calibration2.c 

irinclude "puma.h" 

void calibration2(void) 
{ 

loadencoder(0.0); 
loadencoder(1.0); 
loadencoder(2,0); 
loadencoder(3,8000); 
Ioadencoder(4.0); 
loadencoder(5,0); 

} 

// com_initc 

#include <stdio.h> 
^include <math.h> 
#include "conLh" 

void com_init(long BaudRate) 
{ 

int status; 

// turn off all interrupts on the UART 
outportbGNTERRUPT_ENABLE,NOENT 

ERRUPTS); 
status=inportb(INTERRUPT_ENABLE); 
if(status = 0) printfCInterrupts 

DisabledXn"); 
else printfC'Something is wrong with the 

Interrupts! !!\n"); 

// enable 16550 FIFO 
outportb(FIFO_CONTROL,0x07); 
status=inportb(INTERRUPT_IDENT); 
if (status = Oxcl) printf("FIFO 

enabledXn"); 
else 
{ 

outportb(FIFO_CONTROL.OxOO); 
printfC'Something is wrong with 

the FIFO! !!\n"); 
} 

} 

void SetBaud(long BaudRate) 
/ 
i 

long BaudRateDivisor^BaseBaud: 
int msb.lsb; 

// maximum PC baud rate 
BaseBaud=l15200; 

// ratio of maximmn baud rate and desired baud 
rate 

BaudRateOivisor=BaseBaud/BaiidRate; 

// decompose divisor into 2 8-bit bytes 
msb=BaudRateDivisor » 8; 
Isb=BaudRateDivisor & OxFF; 

// set divisor latch to change baud rate 
outportb(LINE_CONTROL,EIGHTDAT 

ABITS I ONESTOPBITS | NOPARTTY | 
DIVISORLATCH); 

// enter most and least significant bytes of baud 
rate divisor 

outportb(RECrEVER_BUFFER,lsb); 
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ouipoitb(INTERRUPT_ENABLE.msb); 

I I un-set divisor latcti to continue 
ou^rtb(LINE_CONTROL^IGHTDAT 

ABITS I ONESTOPBrrS | NOPARTTY); 
} 

void com_close(void) 
{ 

int status; 

// disable 16550 FIFO 
outporti3(FIFO_CONTROL,OxOO); 
status=inportb(INTERRUPT_IDENT); 
if(status = 0x01) printf("FIFO 

disabled\n"); 
else printf("Something is wrong with the 

FIFO!!!\n"); 
} 

^define FIVEDATABITS 0x00 
#define SIXDATABITS 0x01 
#define SEVENDATABITS 0x02 
#define EIGHTDATABITS 0x03 

#define ONESTOPBITS 0x00 
#define TWOSTOPBITS 0x04 

#define NOPARTTY 0x00 
#define ODDPARTTY 0x08 
#defineEVENPARITY 0x18 
#define MARKPARTTY 0x28 
#define SPACEPARTTY 0x38 

#define BREAKCONTROL 0x40 

#define DIVISORLATCH 0x80 

#define NOINTERRUPTS 0x00 

#defineNOHANDSHAKING 0x00 

// coni-h 

// register stuff 
#define C0M_1 0x3F8 
#define RECIEVER_BUFFER 

COM_l+OxOO 
#define TRANSMIT_BUFFER 

C0M_1 +0x00 
#define INTERRUPT_ENABLE C0M_1 + 
0x01 
#define INTERRUPT_rDENT 

C0M_1 +0x02 
#define FIFO_CONTROL C0M_1 + 
0x02 
#define LE>IE_CONTROL C0M_1 + 
0x03 
#define MODEM_CONTROL 

C0M_1 + 0x04 
#define LINE_STATUS C0M_1 + 
0x05 
#define MODEM_STATUS 

C0M_1 +0x06 
#define SCRATCH 

C0M_1 +0x07 
#define DIVISOR_LATCH_HIGH COM_l + 
0x01 
#define DIVISOR_LATCH_LOW C0M_1 + 
0x00 

// commimication set-up stuff 

// communications prototypes 
void SetBaud(long): 
void com_init(Iong); 
void com_cIose(void); 

// controLc 

#include "puma-h" 
#include "com.h" 
#include "pumaext" 

extern int dcount 

void control(void) 
{ 

int Lj; 
int int_x: 
double sfaitl,shit2.xabs: 
double spie[3]; 

// Read encoders 
for (ii=0;ii<6;ii++) 
{ 

val[ii]=readencoder(ii); 

position[ii]=encoder_scale(ii] *((double) 
(val[ii]) - encoder_oflfeet[ii]): 
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I I Forward kineniatics 
foridnO; 
spie[0]=x[0]; 
spie[l]=x(l]; 
spie[2]=x[2]; 

// prepare stufffor serial transmission 
for (i=0;i<6;i-!-+) 

error_old[ii])*300.0; 
errDr_dot(iiI=<erTor[u]-

{ 

0x8000; 

OxOFF; 

xabs=&bs(x(i]); 
int_x={(int) (10000.0*xabs)); 
if (x[i] < 0.0) int_x=int_x | 

serial[i][l]=int_x & OxOFF; 
serial[i][0]=(int_x » 8) & 

} 

// Evaluate the PUMA jacobian 
jacobianQ; 

// Error calculation 
error_vO; 

// Position gains 
kp[0]=27.6; 
kd[0]=3.5; 
kp[l]=-71.9; 
kd[l]=-9.0; 
kp[2]=51.5; 
kd[2]=3.7; 
kp[3]=-15.0 
kd[3]=-1.2; 
kp[4]=-I5.2 
kd[4]=-1.2; 
kp[5]=-I0.0 
kd[5]=-I.O; 

if (time < 2.0) 
{ 

invkinO; 

// Calculate control command 
positiond[3]=0.0 
positiond[4]=0.0 
positiond[5]=0.0 

position[ii]; 

for (ii=0;ii<6;ii-H-) 
{ 

error[ii]=positiond[ii]-

voltage_out[ii]=kp[iil *error(ii]+kd[ii] *err 
or_dot[iil; 

} 
} 

/* positiond[3]=0.0; 
positiond[4]=0.0; 
positiond[5]=0.0; 

for (ii=3;ii<6;ii-H-) 
{ 

error[ii]=positiond(ii]-
position[ii]; 

error_dot[ii]=(error[ii]-
error_old[ii])*300.0; 

voltage_out[ii]=kp[ii]*error[ii]-rkd[ii]*err 
or_dot[ii]; 

}*! 

I I Implement impedence control to protect the 
joints 

voltage_imped=0.02*pow(( 1.0/(position[ 
0]-
2.7)),3.0)-K).02*pow((1.0/(position[0]+2.7)),3.0); 

voltage_out[0] += voltage_imped+vg[0]; 
if (position[0] > position_old[0]) 

voltage_out(0] += 1.0; 
if (position[01 < position_old[0]) 

voltage_out[01 — 0.9; 
voltage_imped=-

0.02*pow((1.0/(position[l]-0.7)),3.0)-
0.02*pow((1.0/(position[I]+3.7)),3.0); 

voltage_out[I] += voItage_imped+vg[I]; 
if (position[I] > position_old[ll) 
{ 

if (position[l] > -1.57) 
voltage_out[I] -= 0.3; 

else voltage_out[l] — 0.9; 
} 
if (position[l] < position_old[l]) 
{ 

if (position[l] > -1.57) 
voltage_out(I] += 0.9; 

else voltage_out[I] += 0.6; 
} 
voltage_imped=0.02*pow(( 1.0/(position[ 

21-
4.0)),3.0)-K).02*pow((I.0/(position[2]+0.9)) J .0); 
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voltage_out(2] += voItage_imped+vg[21; 
if (position[2] > positioii_oId[2]) 

voitage_oui(2] += 0.47; 
if (position[2] < position_oId[2]) 

voitage_out[2] — 0.47; 
voItage_iinped=-

0.02*pow((1.0/(position[3]-3.2)),3.0)-
0.02*pow((1.0/(position[3]+l.8)).3.0); 

voltage_out[3] += voltage_imped; 
voitage_iinped=-

0.02*pow(( 1.0/(positioii[4]-1.7)).3.0)-
0.02*pow(( 1.0/(positioii[4]-!-1.7)),3.0); 

voItage_out[4] += voitage_imped; 
voltage_imped=-

0.02*pow(( 1.0/(position[51-5.2)),3.0)-
0.02*pow(( 1.0/(position[5]+5.2)),3.0); 

voItage_oul[5] += voItage_imped; 

// Convert voltages into integers to output to 
trident board 

for (ii=0;ii<6;ii-i-f-) 
{ 

if (febs(voltage_oiit[ii]) > 9.9) 
voltage_out[ii]=9.9*voltage_out[iil/fii»s(voltage_o 
ut[ii]); 

voltage_im[ii]=(int) 
(4095.0*(voItage_out[iil+I0.0)/20.0); 

} 

// Output voltages 
for (ii=0;ii<6;ii++) 
{ 

outport(BASE + 0x0030 -i- 2*ii. 
voItage_int[ii]); 

} 

// Save old position values 
position_old[0]=position[0]; 
position_oId[ 1 ]=position[ 1 ]; 
position_old[2]=position[2]; 
position_oId[3 ]=position[3 ]; 
position_oId[4]=position[4]; 
position_old[5]=position[5 j; 

// Save old error values 
error_old[0]=erTor(0]; 
error_old[I]=error(l]; 
error_oId[2]=error(2]; 
error_old[3 ]=error[3 ]; 
erTor_old[4]=error(4]; 
error_oId[5]=erTort5]; 

// Increment counter 
time += 1.0/300.0; 

// Take some data 
if (dcount=3) 
{ 

dcoimt=C; 
if (data < daia_max) 
{ 

data-i-+; 

daia_pts[0] [data]=spie[0]; 

daia_pts[ 1 ] [data]=spie( 1 ]; 

data_pts[2] [daia]=spie[2]; 
// data_pts2[data]=0.0; 

if (data = 999) data=0; 
) 
/ 

} 
dcount++; 

// Send some information over serial port 
sync++; 
if (svnc = 7) 
{ 

while ((inportb(LINE_STATUS) 
& 0x20) = 0); 

outportb(TRANSMIT_BUFFER.serial[01[ 
0]); 

while ((inportb(LINE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMIT_BUFFER.serial(OI [ 
U): 

while ((inportb(LINE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMIT_BlJFFER.serial[ 1 j [ 
0]): 

while ((inportb(LINE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMrT_BUFFER.serial[l][ 
1]); 

while ((inportb(LINE_STATUS) 
& 0x20) = 0); 

outportb(TRANSMIT_BUFFER.serial[2] [ 
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while ((iiiportb(LINE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMIT_BUFFER.serial(2][ 
11): 

while ((inportb(LINE_STATUS) 
& 0x20) = 0); 

outportb(TRANSMIT_BUFFER.serial[3 ] [ 
0]): 

while ((inportb(LINE_STATUS) 
& 0x20) == 0); 

outportbCniANSMIT_BUFFER.serial[3 ] [ 
M); 

while ((inportbO;-INE_STATUS) 
& 0x20) == 0); 

outpoitb(TRANSMrr_BLiFFER.serial[4] [ 
01): 

while ((inportb(LrNE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMIT_BUFFER.serial(4] [ 
11); 

while ((inportb(LINE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMIT_BUFFER,serial[5] [ 
01): 

while ((inportb(LrNE_STATUS) 
& 0x20) == 0); 

outportb(TRANSMrr_BUFFER.serial[5] [ 
11): 

counter-f-+; 
if (counter > 199) counter=0; 
sync=0; 

} 
} 

// error.c 

înclude "puina.h" 
#include "puma-ext" 

void error_v(void) 
{ 

double 
xc(3],pi,e[3],xdot[31,xv[3],xv_dot[3],J[6][6]; 

double center[3],lI.I2,D,spring,damp; 
intLj; 
double kp[3]Jcv(3]; 
double wn,z.T; 

i=0; 

center[0]=0.5; 
center[ll=0.0; 
center[2]=0.5; 

// inverse kinematics of virtual manipuator 
ll=x[0]-center[0]; 
ifai<-0.075) ll=-0.075; 
if 01 >0.075) 11=0.075: 

I2=x[l]-center[l]; 
if(12<-0.075) I2=-0.075; 
if(12> 0.075) 12=0.075; 

0=x[2]-center[2]; 
ifa3<-0.075) I3=-0.075: 
if (13 >0.075) 13=0.075; 

// Determine the position of the robot in the 
virtual manipulator's 
// end effea space 

xv[01=x[01-center[0]-l 1; 
xv[ 1 ]=x[ 1 ]-center[ 1 ]-I2; 
.w(2]=x(2]-center[2]-l3; 

wn=60.0; 
1=1.0/300.0; 
z=0.7071; 

for (i=0;i<3 ;i-H-) 
{ 

.xv_dot[i]=(wn*wn*T*(xv[i]-
.xv_old[i])+xv_dot_old[i]*(2.0-H-2.0*z*wn*T)-
.xv_doi_wav_old[i])/(1.0-i-2.0*z*wn*T+wn*wn*T* 
T); 

} 

for (i=0;i<3;i-H-) 
{ 

xv_dot_way_old[i]=xv_dot_old[i]; 
xv_dot_old[il=xv_dot[il; 
.xv_oid[il=xv[i]; 

} 

spring=530.0; 
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damp=40.0; 

ifai<=-0.05) 

kp[0]=spimg; 
kv[0]=damp; 

Ise if (11 >= 0.05) 

kp[0]=spring; 
kv[0]=damp; 

else 

kp[0]=0.0; 
kv[01=0.0; 

if (12 <=-0.05) 

kp[l]=spxing; 
kv[ll=damp; 

else if (12 >= 0.05) 

kp[l]=spriiig; 
kv[l]=dainp; 

else 

kp[l]=0.0: 
kv[l]=0.0; 

if(0 <=-0.05) 

kp[2]=spring; 
kv[2]=damp; 

else if (13 >= 0.05) 

kp[2]=spring; 
Icv[2]=damp: 

else 

kp[2]=0.0; 
kv[2]=0.0; 

J[01[0]=oJr[0][0]; 
J[0][l]=oJr[01[l]; 

J[0][2]=oJr[0][2]; 

J[ll[0]=oJr[l][0]: 
J[l]tll=oJr[l][l]; 
J[l][2]=oJr[l][21; 

J[2][0]=oJr[2][0]; 
J[2][Il=oJr[21[I]; 
J[2][2]=oJr[2][2]; 

for (i=0;i<3;i-t-H) 

{ 
voltage_oiit[i]=0.0; 
for (j=0 j<3;j+-f-) 

{ 
voitage_out[i] += 

JDl[i]*Oq)[j]''xv[j]+kv[j]*xv_dot(j]); 
} 

} 

voltage_out[0]=voltage_out[0] *-1.0 
// voltage_out[ l]=voltage_oitt[ 1]»-1.0 

voltage_out[2]=voltage_out[2]*-1.0 
voltage_out[3]=0.0; 
voltage_out(4]=0.0: 
voltage_out[5]=0.0: 

// Saftynet 
.x[0]=center[0]; 
.x[l]=center[l]; 
x[2]=center[2]: 
x[3]=0.0; 
x[4]=0.0; 
x(5]=0.0; 

/* if(time>2.1) 
{ 

x[0]=ll; 
x[l]=12; 
x[2]=xv[21; 

} *! 

} 

// home.c 

#include "puina.h" 
#indude "puina.ext" 

void home(void) 
{ 
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I I Read encodeis 
for (ii=0;ii<6;ii-i-i-) 
{ 

vaI[ii]=readencoder(ii); 

position[ii]=encoder_scale[iiI*((doiible) 
(val[iil) - encoder_oflfeet[ii]); 

} 

// Desired trajeaory 
positiond[0]=0.0; 
positiond[l ]=-1.57: 
positiond[2]=1.57; 
positiond[3]=0.0: 
positiond[4]=0.0; 
positiond[51=0.0; 

// Control law 
kp[01=27.6; 
kd[0]=3.5; 
kp[l]=-71.9: 
kd[l]=-9.0; 
kp[2]=51.5; 
kd[2]=3.7; 
lcp[3]=-5.0; 
kd[3]=0.0; 
kp[4]=-15.2; 
kd[4]=-1.2; 
kp[5]=-5.0; 
kd[5]=0.0; 

for (ii=0;ii<6;ii-i-+) 

{ 
error[ii]=positiond[ii]-

position[ii]; 
error_dot[ii]=(error(iiV 

error_old[ii])*300.0: 
// velodty[ii]=(position[ii]-
position_old[ii])*300.0; 

voltage_out[ii]=kp[ii]*erTor[ii]+kd[iil*err 
or_dot[ii]; 
// 

voltage_imped=0.05*pow(( 1.0/(position[i 
i]-L85 )),3.0)-K).05*pow((1.0/(position[ii]+1.85 
)),3.0); 
// if (position[ii] < 1.65) 
voltage_imped=0.0; 
// if (ii=4) 
voltage_out[ii]=voltage_out[ii]+voltage_imped; 

if (&bs(voltage_out[ii]) > 9.9) 
voltage_out[ii]=9.9*voltage_out[ii]/̂ s(voltage_o 
ut(ii]); 

voltage_int(ii]=(int) 
(4095.0*(voltage_out[ii]+10.0)/20.0); 

II Output voltages 
for (ii=0;ii<6;ii++) 
{ 

outport(BASE + 0x0030 + 2*ii 
voltage_iiit[ii]); 

// Save old position values 
position_old[0]=positioii[01 
positioii_oId[l]=position(l] 
position_old[2]=position[2] 
position_old[3]=position[3] 
position_old[4]=position[4] 
position_old[51=position[5] 

// Save old error values 
error_old[0]=erTor[0]; 
error_old[ 1 ]=error [ 1 ]; 
error_old[2]=erTor(2]; 
error_old[3 ]=error[3 ]; 
error_old[4]=error[4]; 
erTor_old[5]=error[5]; 

// iniLc 

#include "piuna.h" 
rftnclude "puina.ext" 

void imt(void) 
{ 

DISCRETE=OxOOOO; 

encoder_scale[0]=0.00010035; 
encoder_scale[l]=-0.000073156; 
eiicoder_scale[2]=0.000117; 
encoder_scaIe[3 ]=-0.000082663; 
encoder_scale[4]=-0.000087376; 
encoder_scale[5]=-0.00016377; 

eiicoder_ofeet[0]=0.0; 
encoder_ofi»t[l]=-21472.0; 
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encoder_offeet[2]=-13426.0; 
encoder_ofifeet[3]=8000.0; 
encoder_oflfeet[4]=0.0: 
encoder_ofifeet[5]=0.0; 

positioiid[0]=0.0; 
positiond[l]=0.0; 
positiond[2]=0.0; 
positiond[31=0.0; 
positiond[4]=0.0; 
positiond[5]=0.0; 

error_old[0]=0.0; 
error_old[l]=0.0: 
eiTor_oId[2]=0.0; 
en:or_old[3]=0.0; 
eiTor_oId[4]=0.0; 

enor_old[5]=0.0; 

positioii_old[0]=0.0; 
position_old[l]=0.0; 
positioii_old[2]=0.0; 
positioii_old[3]=0.0; 
position_old[4]=0.0; 
position_old[5]=0.0; 

xv_dot_old[0]=0.0; 
xv_dot_old[l]=0.0; 
xv_dot_old[2]=0.0; 
xv_dot_old[3]=0.0; 
xv_doi_old[4]=0.0: 
xv_dot_old[5]=0.0: 

xv_dot_way_old[01=0.0: 
xv_dot_way_old[ 1 ]=0.0; 
xv_dot_way_old[2]=0.0; 
xv_dot_way_old[3]=0.0; 
xv_dot_way_old[4]=0.0; 
xv_dot_way_oldp]=0.0; 

xv_old[0]=0.0; 
xv_old[lj=0.0; 
xv_old[2]=0.0; 
xv_old[3]=0.0; 
xv_old[4]=0.0; 
xv_old[5]=0.0; 

#iliclude "puma h" 
#mclude "puma-ext" 

void iiivkin(void) 
{ 

double l[4],theta(41[6I,pUcvl,v2.v3; 
double valid[4],liiiiits[6][2],dist,sdist; 
double ca,sa,cb,sb.cc.sc,r[4][4]; 
double cl,sl.c23,s23,c4,s4,c5,s5.c6,s6: 
double rll.rl2.r21.r22,r23,rl3.r33; 
int ij,select; 

pi=3.14159; 

1[0]=0.4318; 
1[ 11=0.15005; 
1[2]=-0.0191; 
1[31=0.4331; 

valid(0]=l; 
valid[l]=l; 
valid(2]=I; 
valid[3]=l; 

select=0; 

liinits[0][0]=-2.92; 
liinits(0][I]=2.89; 

liimts[l][0]=-3.92; 
Iiinits[l][l]=0.82; 

liimts[2][0]=-l.0l; 
Iiimts(2][l]=4.27; 

limits[3][0I=-2.02; 
Iinuts(3][l]=3.36; 

liinits(4][0]=-1.87; 
Iiinits(4][l]=1.86; 

linuts[5][0]=-5.36; 
linuts[5][l]=5.35; 

// theta 1 calailation 
theta[0][0]=atan2(x[l],x[0])-

atan2(l[l],sqrt(pow(x[0],2.0)+pow(x[l],2.0)-
powa[l],2.0))); 

theta[l][0]=ataii2(x[l],x[01)-ataii2G[l],-
sqrt(pow(x[0],2.0)+pow(x[l],2.0)-pow(l(l],2.0))); 

theta[2][0]=theta[0][0]; 
theta[3 ] [0]=theta( 1 ] [0]; 

// theta 3 calculatioii 
// invkin-C 
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k=(pow(x[0],2.0)+pow(x[l],2.0)+pow(x[2 
],2.0)-pow(l[01,2.0)-pow(l[l],2.0)-pow(l[2],2.0)-
powa[3],2.0))/(2.0*l[0]); 

theta[0][21=atan2(k,sqrt(pow0[2],2.0)+po 
w(I[3],2.0)-pow(k.2.0)))-atan2(l[2],l[3]); 

theta[l][2]=theta[0][2]; 
theta[2] [2]=atan2(k.-

sqrt(pow(l[2],2.0)+pow(l[31,2.0)-pow(k.2.0)))-
ataii2a[2],l[3]); 

theta[3][21=theta[2][2]; 
for (i=0:i<4;i-M-) 

{ 
if (theta[i][2] < -1.01) 

theta[i] [2]=tfaeta(i] [2]+2.0*pi; 
} 

// tbeta 2 calculation 
for (i=0;i<4;i-H-) 
{ 

vl=l[2]+l[0]»cos(tlieta(i][2]); 

v2=x[0] •cos(theta[i] [0])-i-x[ 1 ] •sin(tfaeta[i] 
[0]); 

v3=l[3]+l[0]*sin(theta[i] [2]); 
theta[il [ I]=atan2(v3 *v2-

x[2]-S'Lvl»v2+x[2]»v3)-theta[i][2]; 
if (theta[i][l] > 0.82) 

theta[i][l ]=tfaeta[i] [1 ]-2.0*pi; 
} 

select=i; 
sdistpO.O; 
for (j=0;j<3 j++) 

{ 

sdist=sdist+&bs(positiond[j]-theta(i] [j]); 
> f 
break: 

for (i=selea+l;i<4;i-H-) 
{ 

if (validp] = 1) 
s t 

dist==0.0; 
for (j=0:j<5u-̂ ) 

{ 

dist=dist+fabs(positiond|j]-theta[il[j]); 
} 

if (dist < sdist) 
{ 

sdist=dist: 
select=i; 

} 

// check joint limits 
for (i=0;i<4;i-T-i-) 
{ 

for O=0:j<3;j++) 

{ 
if ((limitsO][01 < 

thetaplO']) && (theta(i][j] < linuts|j][l])) 
{ 

valid[i]=l; 
} 
else 
{ 

valid[i]=0; 
break; 

} 
} 

} 

// select the solution 
for (i=0;i<3;i-i-+) 

positiond[i]=theta[selea] [i]; 
} 

// jacobian.c 

#include "punia.h" 
#include "puma.ext" 

void jacobian(void) 
{ 

int i; 
doî le cl,sl.c2,s2,c3,s3,c23,s23'. 
double 11.12.13,14; 

// find the closest valid solution to the old position 
for (i=0;i<4;i-i-+) 

{ 
if (valid[i] == 1) 

11=0.4318; 
12=0.15005; 
13=-0.019l; 
14=0.4331; 
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c l=cos(position[0]); 
sl=sin(position(0]); 

c2=cos(position[ 1 ]); 
s2=sin(position[ 1]); 

c3=cos(position[2]); 
s3=siii(position[2]); 

c23=cos(position[ ll+position[2]); 
s23=sm(position[l]+position[2]); 

eJr[0][0]=-c23*I2: 
eJr[0][l]=s3*ll+14; 
eJr[0][2]=I4; 

eJr[l][0]=c2*ll+c23»13+s23*14; 
eJr(l][ll=0.0; 
eJr[l][2]=0.0; 

eJr[2][0]=-s23*12; 
eJr[2][l]=-c3*ll-0; 
eJr{2][2]=-l3: 

oJr[01[0]=-sl*(c23*13+s23*l4+c2*ll)-

oJr[0] [ 1 ]=cl •(-s23 *13+023 »14-s2*l 1); 
oJr[0][2]=cl*(-s23*13+c23*l4); 

oJr[l][0]=cI»(c23*13+s23*14+c2*Il)-

oJr(l][l]=sl*(-s23*I3+c23*14-s2*ll); 
oJr[l][2]=sl*(-s23»l3+c23*14); 

oJr(2][0]=0.0; 
0Jr[21[ll=K:23»13-s23*l4-c2*lI: 
oJr[2][2]=-c23*I3-s23*I4: 

// gravity compensatioii 
Vg[0]=0.0; 
vg[2]=-1.1201 *s23+0.0977*c23; 
vg[l]=0.2400*s2+2.1144*c2-

0.5304*vg[2]; 
// vg[0]=0.0; 
// vg[I]=0.0; 
// vg[2]=0.0; 
} 

cl*12; 

sl*12; 

// forkin.c 

#mclude "puina.h" 
înclude "puma.ext" 

void foiidii(void) 
{ 

double 
cl.sl.c2.s2,c23,s23.c4,s4x5.s5.c6,s6; 

double 
V I.v2.v3.v4.v5.v6,v7.v8.v9.v lO.v 11; 

double AB.C; 
double l[5],r[4][4]; 

I[l]=0.4318; 
I[2]=0.15005; 
I[3]=-0.0191; 
lt4]=0.4331; 

cl=cos(position[0]); 
sl=sin(position[0]); 

c2=cos(position[ 1 ]); 
s2=siii(position[l]); 

c23=cos(position[l]+position[2]); 
s23=sin(position( 1 ]+position[2]); 

c4=cos(position[3]); 
s4=sin(position(3]); 

c5=cos(position[4]): 
s5=sin(position[4]); 

c6=cos(position[5]); 
s6=sin(position[5]); 

// end effeaor position 
x[0]=cl*(c23*l[3]+s23*l[4]+c2*l[l])-

sl*l[2]; 
X(l]=sl*(c23*l[3]+s23*l[4]+c2*l[l])+cl 

x[2]=-s23*l[3]+c23*I[4]-s2*l[l]; 

vl=c4*c5*c6-s4*s6; 
v2=s5*c6; 
v3=c23*vl-s23*v2; 
v4=s4*c5 *06+04*56; 

r[ll[ll̂ l*v3-sl*v4; 
r[21[ll=sl*v3+cl*v4; 
r(31[l]=-s23*vl-c23*v2; 
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v5=c4*c5*s6+s4*c6; 
v6=s5*s6; 
v7=-c23*v5+s23*v6; 
v8=s4*c5*s6-c4*c6; 

r[l][2]=cl*v7+sl*v8; 
r[2][2]=sl*v7-cî «; 
r{3][2]=s23*v5+c23»v6; 

v9=c4*s5; 
V 10=c23 *v9+s23 *c5; 
vll=s4*s5; 

r[ll[3]=cl*vlO-sl*vll; 
r[2][3]=sl*vl0-i-cl*vl 1; 
r[3][3]=-s23*v9+c23»c5; 

// end efieaor orientation 
B=atan2(sqrt(pow(r[3][l],2.0)-t-pow(r[3][ 

21,2.0)),r[3][3]); 
if (&bs(B) < 0.0001) 

{ 
A=0.0; 

C=atan2(-r[l][2],r[l][ll); 
} 
else if (febs(B-180.0) < 0.0001) 
{ 

A=0.0; 

C=atan2(r[ll[2],-r[l][l]); 
} 
else 
r 

A=atan2(r[21[31.r[ll[31); 
C=atan2(r(31[2],-r[3][l]); 

} 

.x[3]=C; 
x[41=B; 
x(5]=A; 

} 

// loadencoder.c 

#include "puma.h" 

void loadencoder(int channeUint value) 
{ 

outport(ENC_LOAD + 2*channel, 
value); 
} 

// main.c 

#include "puma-h" 
#include "com.h" 
#inciude "puma-gbl" 

int dcount=0; 

// Prototypes for interrupt service routines 
static void interrupt far iny_isrO; 
static void interrupt (•old_isr)(); 

void main(void) 
{ 

int i,safe_count; 
int cdiv.Ib.lib; 
long BaudRate.safty: 
double fs; 
double base_freq= 1192500.0; 

FILE •out 

// Initialize some variables 
initO; 

// Calibrate encoders to scratch mark values 
calibration2(); 

// Open serial port 
Baudl̂ te=38400; 
com_init(BaudRate); 

// Determine time base for control loop 
fs=300.0; 
cdiv=(int) ceil(base_freq/fs); 
outportb(0x43.0x36); 
hb=cdiv/255; 
Ib=(ini) finod(cdiv,255); 
outport(0x40Jb); 
outpon(0x40,hb); 

// Save old interrupt serive routine 
disableO; 
old_isT=getvea(Oxlc); 

// Activate new interrupt service routine 
setvea(Oxlc,iity_isr); 
enableO; 
counter=0; 
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safe_couiit=0; 

I I Enable aim power 
DISCRETE=DISCRETE | POWER_BIT; 
outport(DISCRETE_REGX>ISCRETE); 
printf("Tum aim power on!! IVn"); 

I I Loop in time - nm controller 
while(!kbhitO && saftv > 0) 
{ 

// Turn interrupt flag off 
disableO; 
INTERRUPT_FLAG=0; 

I I Run control fimction 
controlO; 
enable(); 

counter. 

safe count=0: 

data_pts2[safe_count]=(double) 

safe_count'+-'-. 
if (safe_count > 998) 

saftv=0; 

// Wait for interrupt 
while(! INTERRUPT_FL AG) 

safty-H-; 

} 

// Change time base back to nonnal 
fe=18.3; 
cdiv={int) ceil(base_freq/fs); 
outportb(0x43,0x36); 
hb=cdiv/255; 
Ib=(int) finod(cdiv,255); 
outport(0x40.Ib); 
outport(0x40.hb); 

// close serial port 
com_closeO; 

// Output counter value 
printf("\n\ncounter = %ld\n",counter); 

// Output some data 
if((out=fopen("ouLdat"."wt"))==NULL) 

OUT.DAT.\n"): 
printf("Cannot open output file 

exit(l); 

for (i=0;i<=999:i++) 

{ 
fprintf(out,"%f %f %f 

%f\n".data_pts[0] [i],data_pts[ 1] [i],data_p 
ts[2] [i],daia_pts2[i]); 

// Loop in time - return to home position 
for(i=0;i<500;i-T-r) 
{ 

// Turn interrupt flag off 
INTERRUPT FLAG=0; 

} 

static void interrupt fer my_isr() 
{ 

INTERRUPT FLAG=1; 

// Run control fimction 
homeO; 

// Wait for interrupt 

while(!INTERRUPT_FLAG): 
} 

// Disable arm power 
DISCRETE=DISCRETE | 

(~POWER_BIT); 
outport(DISCRETE_REG.DISCRETE); 

// Reactivate old interrupt service routine 
disable(); 
setvect(Oxlc.old_isr); 
enableO; 

// pathx 

#include "puma.h" 
#include "puma.ext" 

void pathO 
{ 

double u,pi,radius.center[3]; 
int counter_max; 

pi=3.14159; 
radius=0.3; 
center[0]=0.2; 
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center[l]=0.0; 
center[21=0.5; 
counter_niax=2001; 

counterH-; 
if (counter = counter_inax) 
{ 

counter=0; 
if (direction = 1) direction—I 
else direction=l; 

} 

u=((double) counter)/((doubIe) 
(counter_max-l)); 

if (direction = -I) u=1.0-u; 

x[0]=radixis*cos(pi*u/2.0)+center[0]; 
x[ 1 ]=radius*sin(pi*u/'2.0)+center( 1 ]; 
x[2]=center[2]; 

r 
) 

II punia.ext 

I I External variables 
extern long DISCRETE; 
extern long STATUS; 
extern long counter. 
extern int data; 
extern intii; 
extern int val[6]; 
extern double encoder_scale(6]; 
extern double encoder_oSret[6]; 
extern double position[61; 
extern double position_old[6]; 
extern double velocity(6]; 
extern double positiond[6] ; 
extern double error[6]; 
extern double error_old[61; 
extern double error_dot(6]; 
extern double voItage_out[6]; 
extern double voltage_imped; 
extern int voItage_int[6]; 

extern double kp[6]; 
extern double kd[6]; 
extern double data_pts[3][2000]; 
extern double data_pts2[1003]; 
extern int data_niax; 
extern double w; 
extern double time; 
extern double x(6],xstart,xfinish; 

extern double tlieta_oldl,theta_old2; 
extern int direction; 
extern double eJr[6][6]; 
extern double oJr[61[6]; 
extern double theta_v; 
extern double xv_old[6]; 
extern double xv_dot_old[6]; 
extern double xv_dot_way_old[6]; 
extern double vg[6]; 
extern int sync; 
extern int serial[6][2]; 

// puma.gbl 

// Global variables 
int INTERRUPT_FLAG=1; 
long DISCRETE; 
long STATUS; 
long counter. 
int data=0; 
intii; 
int val[6]; 
double encoder_scale[6]; 
double encoder_ofiset[6]; 
double position[6]; 
double position_old(6]; 
double velocity[6]; 
double positiond[6]; 
double enor[6]; 
double error_old[61; 
double error_dot[6]; 
double voltage_out[6]; 
double voItage_iniped; 
int voltage_int[6]; 
double kp[6]; 
double kd[6]; 
double data_pts[3][2000]; 
double data_pts2[1003]; 
int data_niax=1000; 
double w. 
double time=0.0; 
double x[6],xstart=.5,xfinish—.5; 
double theta_oldl=1.57,theta_old2=0.0; 
int directioa=l; 
double eJr[6][6]; 
double oJr[6][6]; 
double tlieta_v=0.0; 
double xv_old[6]; 
double xv_dot_old[61; 
double xv_dot_way_old[6]; 
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double vg[6]; 
mtsync=0; 
int serial(6][2]; 

// puma h 

#include <stdio.h> 
#include <dos.h> 
#inciude <floaLh> 
#include <stdlib.li> 
#indude <bios.h> 
#include <como.h> 
nfindude <io.h> 
#include <math.Ii> 
#include <string.h> 

// prototypes 
int readencodeitint): 
void calibration2(void); 
void loadencoder(inLint): 
void control(void); 
void path(void); 
void invkin(void); 
voidjacobian(void); 
void forkin(void); 
void error_v(void); 

double **niatrix(int,inLint,int); 
double ***array3(intintint,intintint); 
double *vector(int,int); 
int *iveaor(inLint); 
void &ee_veaor(double *. int); 
void &ee_iveaor(int *, int); 
void &ee_inatrix(double int, inLint); 

// define some addresses that will be needed 
#define BASE 
0x0300 
#define AD_MUX_SELECT 
BASE + 0x002c 
#define AD_START_PULSE 
BASE+ 0x00 IE 
#define DISCRETE_REG 
BASE + 0x002E 
#define STATUS_REG 
BASE + OxOOOC 
#define AD_VALUE 
BASE + 0x00 IC 

#define ENC_COUNTER 

BASE+ 0x0010 
#define ENC_LOAD 

BASE+ 0x0020 

// define some bit masks that will be needed 
#define AD_MASK 
0x4000 
#define AD_STATUS_MASK 
0x4000 
#define POWER.BIT 

OxOOOl 

// readencoder.c 

#include "puma.h" 

int leadencoderCint channel) 
{ 

int val; 

val=(int)(inportCENC_COUNTER + 
2*channel)); 

return val; 
} 

NURBS Curve 

// cahl)raton2.c 

înclude "punia.h" 

void calibration2(void) 

{ 
loadencoder(0.0); 
Ioadencoder(L0); 
loadencoder(2,0); 
loadencoder(3,8000); 
loadencx)der(4,0); 
loadencoder(5,0); 

} 

// controLc 
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#include "puma h" 

extern double encoder_scale(6]; 
extern double encoder_ofifeet[61; 
extern double position[6]; 
extern double position_old[6]; 
extern double vg[61; 
extern double error_old[6]; 
extern double foFced[6]; 
extern double forced_old[6]; 
extern double f_fil_old[61; 
extern double f_fiI_way_old[61; 
extern double data_pts(3][1500]; 
extern double time: 
extern int data; 
extern double evJl[3][3]; 
extern double eJ'w(3][3]; 
extern double x[6]; 
extern double x_old[6]; 
extern double joint_linut; 
extern double fv[6]; 
extern double r[3][3]; 
extern double rv[3I[3]; 
extern double eJI[3][3]; 
extern double f_flag; 

void control(void) 
{ 

intuj; 
int val[6]; 
double kp[6]; 
double kd[6]; 
int voltage_int[6]; 
double voItage_out[6]: 
double error(6]; 
double error_dot[6]; 
double f_fil[6]; 
double positiond[6]; 
double voltage_imped: 
double wn = 2.0*5.0*3.14159; 
double zeta = 1.0; 
double T = 1./300.; 

double KpLKpw; 
double fb[61; 
double fev[6]; 

// Read encoders 
for (i=0;i<6;i++) 

{ 
val[i]=readencoder(i); 

position[i]=encoder_scale[i]*((double) 
(val[i]) - encoder_offset[i]); 

} 

// Get gravity compensation 
gravityO; 

// Forwaid kinematics 
forkinO; 

// Error calculation 
error_vO; 

// Get end effeaor force 
get_forceO; 

// Evaluate the PUMA jacobian 
jacobianO; 

// Position gains 
kp[01=27.6; 
kd[01=3.5; 
kp[ll=-71.9: 
kd[l]=-9.0: 
kp[2]=51.5; 
kd[2]=3.7; 
kp[3]=-15.0; 
kd[3]=-1.0: 
kp(4]=-25.2: 
kd(4]=-1.2; 
kp[5]=-10.0; 
kd[5]=-1.0; 

positiond[0]=-0.50; 
positiond[l]=-0.17; 
positiond[2]=0.3 5; 
positiond[3]=0.0; 
positiond[4]=0.0; 
positiond[5]=0.0; 

// Calculate control command 
for (i=0;i<6;i-i-+) 

{ 
error[i]=positiond[il-

positionp]; 
error_dot(i]=(error[i]-

error_old[i])*300.0; 

f_m[il={forced[il*T*T*wn*wn+f_fil_old 
[i]*(2,0*zeta*wn*T+2.0)-
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f_fil_way_oId[i])/(1.0+2.0*zeta*wn*T+wn*wn*T 
*T); 

voltage_out[i]=kp(i]*en:or[i]+kd[i]*enor 
_dot[i]; 

} 

for (i=0;i<3;i-H-) 
{ 

ffa[i]=0.0; 
for (j=0:j<3;j++) 

{ 
ffa[i] += 

} 
} 
for (i=0;i<3;i++) 

{ 
fev[i]=0.0; 
for (j=0;j<3;j-H-) 
{ 

fev[i] += 
rv[i]DTfb[j]; 

} 

// I can't believe I am trying this unattended 
if (time > 5.0) 
{ 

joint_Iimit =1.4; 

fev(0]=0.0: 
fev[l]=0.0; 
if (f_£lag = 1) 

fev(2]=0.0; 

for (j=0;j<3;j++) 

{ 

voltage_out(j]=0.0; 

for 
(i=0;i<3:i+-f-) 

{ 

voltage_out|j] += evJl[i][j]*(fv[i]-
0.5*fev[i]); 

} 
} 

voltage_out[0]=voltage_out[0]*-1.0; 

voltage_out[2]=voltage_out[2]*-l.O; 
} 

// Implement impedence control to protect the 
joints 

voltage_imped=0.02*pow(( 1.0/(position[ 
01-
2.7)),3.0)-K).02»pow(( 1.0/(position[0]+2.T)).3.0); 

voltage_out[0] += voltage_imped+vg[01; 
if (position[01 > position_old[0]) 

voltage_out[Oj += 1.0: 

if (position[0] < position_old[0]) 
voltage_out[0] — 0.9: 

voltage_imped— 
0.02*pow(( 1.0/(position[l]-0.7)) J .0)-
0.02*pow(( 1.0/(position[ 1 ]+3.7)).3.0): 

voltage_out[lI += voltage_imped+vg[l]; 
if (position[ll > position_old[l]) 
{ 

if (position[l] > -1.57) 
voltage_out[l] -= 0.3: 

else voltage_out[l] -= 0.9: 

if (position[l] < position_old[ll) 
{ 

if (position[l] > -1.57) 
voltage_out[l] += 0.9: 

else voltage_out(l] += 0.6: 
} 

voltage_tmped=0.02*pow(( 1.0/(position[ 

21-
joint_Iimit)),3.0)-H).02*pow((1.0/(position[21+0.9) 
),3.0): 

voltage_out[21 += voltage_imped+vg[21; 
if (position(21 > position_old[21) 

voltage_out[2] += 0.47: 

if (position[2] < position_old[21) 
voltage_out[21 -= 0.47: 

voltage_imped=-

0.02*pow(( 1.0/(position[3]-3.2)),3.0)-
0.02*pow((1.0/(position[31+1.8)),3.0): 

voltage_out[31 += voltage_iniped: 

voItage_imped=-
0.02*pow((1.0/(position[41-1.7)).3.0)-
0.02*ix)w((1.0/(position[4]+1.7)),3.0): 

voltage_out[4] += voltage_imped: 
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voltage_unped=-
0.02*pow((1.0/(position[5]-5.2)).3.0)-
0.02*ix)w((l .0/(position[51+5.2)),3.0); 

voltage_oiit[51 += voItage_imped; 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i-H-) 
{ 

if (febs(voltage_out[i]) > 9.9) 
voltage_out[i]=9.9*voltage_out[i]/&fas(voltage_out 
[i]); 

voltage_int[i]=(int) 
(4095.0*(voltage_out[i]+10.0)/20.0); 

// Output voltages 
for (i=0;i<6;i-H-) 

{ 
outport(BASE + 0x0030 + 2*i 

voltage_int[i]); 
} 

// Save old position values 
position_old[0]=position[0]; 
position_old[ I]=position[ 1 ]; 
position_old[2]=position[21; 
position_oldt3 ]=position[3]; 
position_old[4]=position[4]; 
position_oId[5]=position[5]; 

// Save old error values 
error_old[01=erTor[01; 
error_old[ 1 ]=error[ 1 ]; 
error_old[2]=error[2]; 
error_oId[3 ]=error [3 ]; 
error_old[41=error[4]; 
error_old[5]=error[5]; 

// Save old force values 
forced_old[0]=forced[0]; 
forced_old[ 1 ]=forced[ 1 ]; 
forced_old[2]=forced[2]; 
forced_old[3]=forced[3]; 
forced_old[4]=forced[4]; 
forced_old[5]=forced[5]; 

f_ffl_way_old[0]=f_fil_old[0]; 
f_fil_way_old[l]=f_fil_old[I]; 
f_m_way_old[2]=f_fil_old[2]; 
f_fil_way_oId[3]=f_fil_old[3]; 
f_fil_way_old[4]=f_fil_old[4]; 

f_fil_w^_old[51=f_fil_oId[5]; 

f_ffl_old[0]=f_fil[0]; 
f_fil_old[l]=f_ffl[lI; 
f_fil_old[2]=f_fiI[2]; 
f_ffl_old[3]=f_fil[31: 
f_fil_old[4]=f_m[4]; 
f_fil_old[51=f_fil[5]; 

x_old[0]=x(0]; 
x_old[l]=x[Il; 
x_old[2]=x(2]: 
x_old[3]=x[3]; 
x_old[4]=x[4]; 
x_oId[51=x[51; 

dme = time + 1./300.; 

// Take some data 
if (data < 1000) 
{ 

data_pts[0] [data]=x[0 ]; 
data_pts[ 1] [datal=x[ 1 ]; 
data_pts(2] [data]=x[2]; 
data-++: 
if (data = 999) data=0; 

} 
} 

// error.c 

#include "puma-h" 

extern double u_vin: 
extern double x[6]: 
extern double xv_old[3]; 
extern double xv_dot_old[3]; 
extern double xv_dot_way_old[3]; 
extern double fv[6]; 
extern double rv[3][3|; 
extern int f_flag; 

void error_v(void) 
{ 

double xv[3],xv_dot[3]; 
double xq)[3],yq)[3],zq)[3]; 
double b[3],db'[3],vup[3]; 
double xc[3],e(3],xdot[3],d_u_vni,mag; 
double xh[3],yh[3],zh[3]; 
intLflag; 
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double kp[3]Jcv[3]; 
double wiuz,T; 

i=0; 

xcp[0]=0.5; 
xcp(l]=0.5; 
xcp[2]=0.5; 

ycp[0]=-0.1; 
ycp[l]=0.0; 
yq)[2]=0.1; 

zq)[0]=0.5; 
zq)[l]=0.3; 
zcp[2]=0.5; 

I I invei^kineiiiatics of virtual manipuaior 
while(i != 30 && flag != I) 
{ 

b[0]=( 1.0-u_vm)*( 1.0-u_vm); 
b[ 1 ]=2.0*( 1.0-u_vni)*u_vni: 
b[2]=u_vin*u_viii; 

d_u_vm=e[0]*xdot[0]+e[ 1 ] •xdot[ 1 ]+e[2] 
•xdot[2]; 

u_vni=u vm+d u vm; 

// parameter in bounds 
if (u_vm < 0.0) 
{ 

} 

u_vm=0.0: 
flag=l; 

else if (u_vm > l.O) 
{ 

u_vm=1.0; 
flag=I; 

} 
// parameter nnf changing 

else if (M)s(d_u_vm) < 0.01) 
{ 

} 

i++; 

Qag=l; 

[2]; 

[2]; 

[21; 

xc[0]=xcp[0]*b[0]+xq)[ll*b[l]+.\q)[2]*b 

.xc[lj=ycp[0]*b(0]+yq)[l]*btl]+ycp[2]»b 

.xc[2]=zcp[0]*b[0]+zq)[l]*b[l]+zq)(2]*b 

e[0]=x[0]-.xc[0]; 
e[I]=x(l]-.xc[l]; 
e[2]=x[2]-xc[2]; 

2.0*u vnu 

db[0]=-2.0*(1.0-u_vin); 
db[l]=2.0*(l .0-u_vin)-

db[2]=2.0*u_vni; 

.xdot[01=xcp[0]*db[0]+xcp[l]*db[l]+xcp[ 
2]*db[2]; 

xdot[ 1 ]=yqp[0] *db[01+yqj[ 1 ] *db[ l]+yq)[ 
2]*db[2]; 

xdot[2]=zq)[0]*db[0]+zq)[l]*db[l]+zq)[ 

// forward kinematics 
b[0]=( 1.0-u_vm)*( 1.0-u_vm); 
b[ I ]=2.0*( 1.0-u_vm)*u_vm: 
b[2]=u_vm*u_vm; 

[21; 

[2]; 

[2]; 

2]=»db[2] 

2]*db[21 

2]*db[2] 

xc[01=xq3[0]*b[0]+xcp[l]*b[l]+.xcp[2]»b 

.xc[l]=yq)[01*b[0]+yq)[ll*b[l]+yq)[2]*b 

xc[2]=zq)[0]=»b[0]+zcp[ I rb[ l]+zcp[2]*b 

db[0]=-2.0*(1.0-u_vm); 
db[ I ]=2.0*( 1.0-u_vm)-2.0*u_vm: 
db[2]=2.0*u_vm; 

xdot[0]=xcp[01«db[0]+xq)[l]»db[l]+xcp[ 

xdot[ l]=ycp[0] *db[0]+yq)[ 1 ] *db[ I l+ycp[ 

xdot[21=zcp[01*db[01+zq)[l]*db[l]+zcp[ 

inag=sqrt(xdct [0] •xdot[0]+.xdot[ I ]*xdot[ 
ll+xdot[2]*xdot[2]); 

2]*db[2]; 
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zh(0]=xdot[0]/mag; 
zh[l]=xdot[l]/inag; 
zfa[2]=xdot[2]/inag; 

vup[0]=0.0; 
vup[l]=0.0: 
vup(2]=1.0: 

yfa(0]=zh[ l]*VTip[2]-viip( 1 ] *2li[2]; 
yh(l]=vup(0]*zh[2]-zh(0I*vup[2]; 
yh[2]=zh[0]'HTip[ 1 ]-vup[0]*zfa[ 1 ]; 

niag=sqrt(yh[0]*vh(0]+vh[l]*vh[l]+vh(2 
]*yfa[2]); 

yh[0]=yfa[01/inag; 
yh[l]=yh[li/inag; 
yh[2]=yh[2I/mag; 

xh[0]=yh[l]»zh[2]-zh[ll-̂ h[2]; 
xh(l]=k(01*yh(2]-yh[01*k[2]; 
xh[2]=yh[0I*k[ l]-'zh[OI*yh[ 1]; 

inaff=sqrt(xfa[0] *xhrO]+xh[ 1 ] *xh[ 11+xh[2 
]*xfa[2]); 

xh[0]=xh[0]/inag; 
xh[l]=xh[l]/mag; 
xh[2]=xh[2]/inag; 

rv[01[0]=xh[0]; 
rv[0][ll=xh[l]: 
rv[0][2]=xh[2]; 
tv[l][0]=yh[0]; 
rv[l][l]=yh[l]; 
rv[l][2]=yh[2]; 
rv[2][0]=zh[0]; 
rv[2][ll=zh[l]; 
rv[2][2]=zh(2]; 

// Determine the positioa of the robot in the 
virtual manipulator's 
// end eflFea space 

xv[0]=xh(0]*x[0]+xh[l]*x[l]+xh[2]*x[2] 
-xh[0]*xc[0]-xh[l]*xc[l]-xh[2]*xc[2]; 

xv[ll=yh[0]*x[0]+yh[l]*x[l]+yh[2]*x[21 
-yh[0]*xc[0]-yh[l]*xc[ll-yh[2]*xc[2]; 

xv[2i=zh[0]»x[0]+zh[ipx[I]+zh(2]*x[2] 
-zh[0]*xc[0]-zh(l]*xc[l]-zh[2]*xc[2]; 

wn=60.0; 
T= 1.0/300.0; 

z=0.7071; 

for (i=0u<3;i++) 

{ 
xv_dot[i]={wn*wn*T*(xv[i]-

.xv_oId[i])+xv-_dot_oId[i]*(2.0+2.0*z*wn*T)-
xv_dot_waY_oId[i])/( 1.0+2.0*z*wn*T+wn*wn*T* 
T): 

for (t=0:i<3;i++) 

{ 

.w_dot_way_old[i]=xv_dot_old[i]; 
xv_dot_old[i]=xv_dot[i]; 
.w_old[i]=xv[i]; 

} 

if (u_vm <= 0.0) 

{ 
kp[2]=470.0: 
kv[2]=30.0; 
f_flag=I; 

} 
else if (u_vTn >= 1.0) 

{ 
kp[2]=470.0; 
kv[2]=30.0; 
f_flag=l; 

} 

else 
{ 

kp(2]=0.0; 
kv[2]=0.0; 
f_flag=0; 

} 

kp[0]=470.0; kv[0]=30.0; 
kp[l]=470.0-. kv[l]=30.0; 

for (i=0;i<3;i-r-t-) 

{ 

fv[i]=kp[i] *xv[i]+ky[i] •xv_dot[i]; 
} 

} 

// ft.c 

#include "pumah" 
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extern int stop; 
extern double forced[6]; 
extern double r[3][3I; 
extern double fbasis[6]; 

void init_force(void) 
{ 

int status.data: 

ptintf("Tnitialize ATI force 
transducer\n"); 

printf("Written at LARCQn"); 
printf("copyright 1996. Jim Ed\vards\n''); 

status=inportb(STATUS_FT); 
printf("\n\nCheck STATUS_FT register 

%d\n" .status): 
status=inportb(CONFIG); 
printf("Check configuration register 

%d\n" .status); 

if (inportb(STATUS_FT) & 0x10) 
{ 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf("preload 1 %d\n'',data); 
} 

if (rnportb(STATUS_FT) & 0x10) 
{ 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printfC'preload 2 %d\n".data); 
) 
/ 

// send CPP to switch to parallel board 
printf("Switch to parallel boardXn"); 

while((inportb(STATUS_FT) & 0x80) = 0) 
sleep(l); 

send(67); //C 
printfCC"); 

wbile((inportb(STATUS_FT) & 0x80) == 0) 
sleep(l); 

send(80); // P 

printfC'P"); 
while((inportb(STATUS_FT) & 0x80) = 0) 

sleep(l); 
send(80); // P 
printfCP"); 
while((inportb(STATUS_FT) & 0x80) == 

0) sleep(l); 
send(13); //<cr> 

printf("<cr>\n''); 

// wait for acknowledgment 
whiIe((inportb(STATUS_FT) & 0x10) == 0); 

//printf("xx\n"); 
daia=inportb(PORT_B)« 81 

inportb(PORT_A); 
printf("%d\n",data); 

while((inportb(STATUS_FT) & 0x10) == 0); 
//printf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf("%d\n",data); 
while((inportb(STATUS_FT) & 0x10) == 

0): //printf("xx\n"); 
data=inportb(PORT_B)« 8 [ 

inporti)(PORT_A); 
printf("%d\n".data); 

wfaile((inportb(STATUS_FT) & 0x10) = 0); 
//printf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_.A.); 

printf("%d\n",data); 

if (inportb(STATUS_FT) & 0x10) 
{ 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf(".%d\n",data); 
} 
if (inportb(STATUS_FD & 0x10) 

data=inportb(PORT_B)« 8 I 

inportb(PORT_A); 
printf("..%d\n",data); 

} 
if (inportb(STATUS_FT) & 0x10) 

{ 
data=inportb(PORT_B)« 8 | 

inportb(PORT_A); 
printf("...%d\n",data); 

if (inportb(STATUS_FT) & 0x10) 
{ 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf("... .%d\n",data); 
} 

if (inportb(STATUS_FT) & 0x10) 
{ 
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data=inpoitb(PORT_B)« 8 | 
mportb(PORT_A); 

printf(" %d\n".data); 
} 
if (mportb(STATUS_FT) & 0x10) 
{ 

data=inportb(PORT_B)« 8 | 
mportb(PORT_A): 

prmtf(" %d\n".daia); 
} 

// sendCDB 
printf("\n Set to communicate binaiy 

mode\n"); 
whiIe((inportb(STATUS_FT) & 0x80) = 0) 

sleep(l); 
send(67); 

while((inportb(STATUS_FT) & 0x80) = 0) 
sleep(l): 

while((inportb(STATUS_FT) & 0x10) = 0); 
data=inportb(PORT_B)« 8 | 

iiipoitb(PORT_A); 
printf("%d\n",data); 

whiIe((inportfa(STATUS_FT) & 0x80) = 
0) sleep(l); 

send(68); 
while((mportb(STATUS_FT) & 0x80) == 0) 

sleep(l); 
whiIe((iiiportb(STATUS_FT) & 0x10) — 0); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf("%d\n".data); 
while((mportb(STATUS_FT) & 0x80) == 0) 

sleep(l); 
send(66); 

while((inportb(STATUS_FT) & 0x80) == 0) 
sleep(l); 

whiIe((mportb(STATUS_FT) & 0x10) = 
0); //prmtf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

prmtf("%d\ii",daia); 
while((inportb(STATUS_FT) & 0x80) = 

0) sleep(l); 
send(13); 

while((inportb(STATUS_FT) & 0x80) = 0) 
sleep(l); 

whiIe((mportb(STATUS_FT) & 0x10) == 0); 
//printf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

prmtf("%d\n",data); 

wfaile((inportb(STATUS_FT) & 0x10) == 0); 
//priiitf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inpoitb(PORT_A); 

printf("%d\ii'',data); 
whiIe((mportb(STATUS_FT) & 0x10) = 0); 

//printf("xx\n"); 
data=mportb(PORT_B)« 8 | 

inportb(PORT_A); 
printf("%d\n".data): 
while((iiiportb(STATUS_Fr) & 0x10) = 

0); //prmtf("xx\nr); 
data=iiiportb(PORT_B)« 8 | 

inportb(PORT_A); 
printf("%d\n",data); 

whiIe((mportb(STATUS_FT) & 0x10) = 0); 
//printf("xx\n"); 

data=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

printf("%d\n",data); 
while((mportb(STATUS_FT) & 0x10) = 0); 

//printf("xx\n"); 
data=inportb(PORT_B)« 8 | 

inpora)(PORT_A); 
printf("%d\n''.data); 

while((mportb(STATUS_FT) & 0x10) = 0); 
//printf(''xx\n"); 

data=inportb(PORT_B)« 8 | 
inpoitb(PORT_A); 

priiitf("%d\ii".data); 
} 

void get_force(void) 
{ 

int force[T|,ij; 

send(14); 

while((iiiportb(STATUS_FT) & 0x10) = 
0); //printf("xx\n"); 

force[6]=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

while((inportb(STATUS_FT) & 0x10) = 
0); //printfC'xxW); 

force[0]=inportb(PORT_B)« 8 | 
inportb(PORT_A); 

wliiIe((inportb(STATUS_FT) & 0x10) == 
0); //printf("xx\n"); 
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mportb(PORT_A); 

while((iiiportb(STATUS_FT) & 0x10) = 
0); //printf("xx\ii"); 

force(21=iiiportb(PORT_B)« 8 i 
inportb(PORT_A); 

whiIe((inportfa(STATUS_FT) & 0x10) == 
0); //printf("xx\n"); 

force[3]=inportb(PORT_B)« 8 1 
inportb(PORT_A); 

while((inportb(STATUS_FT) & 0x10) = 
0); //priiitf("xx\ii"); 

force[4]=iiiportb(PORT_B)« 8 | 
mportb(PORT_A); 

wIuIe((inportb(STATUS_FT) & 0x10) = 
0); //prmtf(''xx\n"); 

force[5]=inportfa(PORT_B)« 8 | 
inportb(PORT_A); 

if (force[6] != 0) stop=0; 

forced[0]=((double) (force[0]))*0.1-
fbasis(0]+3.6*r[2][01; 

forced(l]=((double) (force[l]))*O.I-
fbasis[l]+3.6»r(21[l]; 

forced[2]=((double) (force[2]))*0.1-
fbasis[2]+3.6*r[2][21; 

forced[3]=((double) (force[3]))*0.005-
fbasis[3]: 

forced[4]={(doubIe) (force[4]))*0.005-
fbasis(4]; 

forced[5]=((double) (force[5]))*0.005-
fbasis[5]; 

} 

void send(iiit data) 
{ 

int msb, Isb: 
long i; 

msb=(data & 0x00)» 8; 
lsb=data & OxFF; 

outportb(PORT_C,lsb); 
outportb(PORT_Djnsb); 

} 

// gravity.c 

#include "puma h" 

extern double vg(6]; 
extern double position[6]; 

void gravitv(void) 
{ 

double c2,s2.c23.s23; 

c2=cos(position[lJ); 
s2=sin(position[l]); 

c23=cos(position[ 1 ]+position(21): 
s23=sin(position[ 1 ]+position[2]): 

// gravity compensation 
vg[01=0.0-, 
vg[2]=-1.1201*s23+0.0977»c23; 
vg[ 1 l=0.2400*s2+2.1144*c2-

0.5304*vg[2]; 
} 

// home.c 

înclude "punia.h" 

extern double encoder_scale[6]; 
extern double encoder_ofiset[6]; 
extern double position(6]; 
extern double eiror_old[6]; 

void home(void) 
{ 

int i; 
int val[6]; 
double positiond[6]; 
double lq}[6]; 
double kd[6]; 
double error[6]; 
double error_dot[6]; 
double voItage_out(6]; 
int voltage_int[6]; 

// Read encoders 
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position(i]=encoder_scale[i] *(((100516) 
(val[i]) - enco<ier_ofifeet(i]); 

for (i=0;i<6;i++) 

{ 
val[i]=readencoder(i); 

voltage_int(i]); 
} 

outport(BASE + 0x0030 -i- 2»i, 

Desired trajectory 
positiond[0]=0.0: 
positiond[ 1]—1.57; 
positiond[2]=1.57; 

// Save old error values 
error_old[0]=error[0] 
error_old[ 1 ]=error[ I ] 
ertor_old[2]=erTor[2] 
error_old[3]=error[3] 
error_old[4]=error[4] 
error_old[5]=error[5] 

// 

positiond[3]=0.0; 
positiond[4]=0.0; 
positiond[5]=0.0; 

// Control law 
kp[0]=27.6; 
kd[0]=3.5; 
kp[l]=-71.9; 
kd[l]=-9.0; 
kp[2]=51.5; 
kd[2]=3.7; 
i£p[3]=-5.0; 
kd[3]=0.0; 
kp[4]=-15.2; 
kd[4]=-1.2; 
kp[5]=-5.0; 
kd[5]=0.0; 

for (i=0;i<6;i++) 

{ 
error[i]=positiond[i]-position[i]: 
error_dot[i]=(error(i]-

error_old[i])*300.0; 

voltage_out[i]=kp[i]*erTor(i]+kd[i]*error 
_dot[i]; 

if (6bs(voItage_out[i]) > 9.9) 
voltage_out[i]=9.9*voltage_out[i]/febs(voltage_out 
[i]); 

voltage_int(i]=(int) 
(4095.0*(voltage_out[i]+10.0)/20.0); 

} 

// Output voltages 
for (i=0;i<6;i++) 

{ 

// iniLc 

#include "puma.li" 

extern long DISCRETE; 
extern double encoder_scale[6]; 
extern double encoder_ofiset[6]; 
extern double error_old[6]; 
extern double position_oId[6]; 
extern double forced_old[61; 
extern double f_fil_old[6]; 
extern double f_fil_way_old(6]; 
extern double x_old[6]; 
extern double xv_old[3]; 
extern double xv_dot_old[3]; 
extern double xv_dot_way_oId[3]; 
extern double fbasis[6]; 

void init(void) 
{ 

int i; 

DISCRETE=0x0000; 

encoder_scale[0]=0.00010035; 
encoder_scaIe[ 1]=-0.000073156; 
encoder_scale[2]=0.000117; 
encoder_scale[3]=-0.000082663; 
encoder_scale[4]=-0.000087376; 
encoder_scale(5]=-0.00016377; 

encoder_oflFset(0]=0.0; 
encoder_oflfset[ 1 ]=-21472.0; 
encoder_ofifeet[2]=-13426.0; 
encoder_oflfeet[3]=8000.0; 
encoder_ofiFset[4]=0.0; 
encoder_offeet[5]=0.0; 
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error_oId[0]=0.G; 
enor_old[l]=0.0; 
error_old[2]=0.0; 
error_old[3]=0.0; 
error_old[4]=0.0; 
eiTor_old[5]=0.0; 

position_old[0]=0.0; 
positioii_old[l]=0.0; 
posilioii_old[2]=0.0: 
position_old[3]=0.0; 
position_old[4]=0.0; 
position._old[5]=0.0; 

forced_old[0] = 0.0; 
forced_old[l] = 0.0; 
forced_old[2] = 0.0; 
forced_old[3] = 0.0; 
forced_old[4] = 0.0; 
forced_old[5] = 0.0; 

f_fil_old[0] = 0.0; 
f_fil_old[l] = 0.0; 
f_fil_oId[2] = 0.0; 
f_fil_old(3] = 0.0; 
f_fil_old[4] = 0.0; 
f_fil_old[5] = 0.0; 

f_fil_way_old[0] = 0.0; 
f_fil_way_old[l] = 0.0; 
f_fil_way_oId[2] = 0.0; 
f_fil_way_oId[3] = 0.0; 
f_fil_way_old[4] = 0.0; 
f_fil_way_oId[5] = 0.0; 

.x_old[0] = 0.0; 

.>c_old[l] = 0.0; 
x_oId[2] = 0.0; 
.x_oId[3] = 0.0; 
x_oId[4] = 0.0; 
.x_old[5] = 0.0; 

for (i=0;i<3;i++) 

{ 
.xv_old[i]=0.0; 
.xv_dot_old[i]=0.0; 
xv_dot_wav_old[i]=0.0; 

} 

for (i=0;i<6;i++) 

{ 

fbasis[i]=0.0; 
} 

} 

// invkiiLc 

#include "puma.Ii'' 
#indude "pumaext" 

void iiivkiii(void) 
s I 

double I[4],theta[4][6],pi4c,vl,v2,v3; 
double valid[4],liimts[61[2],disLsdist; 
double ca,sa,cb,sb.cc,scr[4][4]; 
double cl,sl,c23,s23,c4.s4.c5.s5,c6.s6; 
double rl I,rl2,r21.r22,r23.rl3.r33: 
int i,j,select; 

pi=3.14159; 

1[0]=0.4318; 
1[1]=0.15005; 
1[2]=-0.0191; 
1[3]=0.4331; 

valid[0]=l; 
valid[l]=l; 
valid[2]=l; 
valid[3]=l; 

select=0; 

liniits[0][0]=-2.92; 
liiiiits(0][l]=2.89; 

Iimits[l][0]=-3.92; 
liinits[l][l]=0.82; 

liiiiits[2][0]=-1.01; 
liinits[2][l]=4.27; 

limitsP ] [0]=-2.02; 
limits[3][l]=3.36; 

liimts[4][0]=-1.87; 
liinits[4][l]=1.86; 

liinits[5] [0]=-5.36; 
liinits(5][l]=5.35; 

// theta 1 calculation 
theta[0] [01=atan2(x[ ll,x(0])-

atan2G[ 11 ,sqrt(pow(x(0],2.0)+pow(x[ 1 ],2.0)-
powa[l],2.0))); 
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theta(l][0]=atan2(x[l],x[0])-atan2(l[l],-
sqrt(pow(x[0],2.0)+pow(x[l],2.0)-pow(l[l],2.0))); 

theta[2][0]=tlieta[0][01; 
theta[3][0]=theta[l][0]; 

// theta 3 calculation 
k=(pow(x[0],2.0)+pow(x[l],2.0)+pow(x[2 

],2.0)-powa[0],2.0)-powa[l],2.0)-powa[2],2.0)-
powa[3],2.0))/(2.0*I[01); 

tlieta[0] [2]=atan2(k,sqrt(pow(I[2],2.0)+po 
w(I[3],2.0)-pow(k,2.0)))-atan2(I[2],I[3]); 

theta[l][2]=tlieta[01[2]; 
theta[2] [2]=aian2(k,-

sqrt(pow(l[2],2.0)+pow(l[3],2.0)-pow(k.2.0)))-
atan2a[2],l[3]); 

theta[3] [2]=theta[2] [2]; 
for (i=0;i<4;i++) 
{ 

if (theta(i][2] < -1.01) 
thetap] [2]=theta[i] [2]+2.0*pi; 

X i 

I I theta 2 calculation 
for (i=0;i<4;i++) 

{ 
V l=l[2]+l[0]*cos(theta[i] [2]); 

v2=x[0] *cos(theta[i] [0])+x[ I] *sin(theta[i] 
[0]); 

v3=l[3]+l[0]*sin(theta[i][2]); 
theta[i] [ 1 ]=atan2(v3 *v2-

x[21»vl.vl*v2+x[2]*v3)-theta(il[2]; 
if (theta[i][l] > 0.82) 

thetati][ l]=theta[i] [ I ]-2.0*pi; 
} 

// check joint limits 
for (i=0;i<4;iT+) 

{ 
for (j=0:j<3:j++) 

{ 
if ((liinits[j][0] < 

theta(i](j]) && (theta[i][j] < linuts|j][l])) 

{ 
valid[i]=l; 

} 
else 
{ 

valid[i]=0; 
break; 

} 
} 

} 

// find the closest valid solution to the old position 
for (i=0;i<4;i-H-) 
{ 

if (validp] == 1) 
{ 

select=i; 
sdist=0.0: 
for O'=0:j<3;j-H-) 
{ 

sdist=sdist-rfabs(positiond|j]-tfaeta(i] Q]); 
} 
break; 

} 
} 

for (i=select+l:i<4;i+-i-) 

{ 
if (valid[i] = 1) 
{ 

dist=0.0; 
for 0=0:j<3;j-i-i-) 

{ 

dist=dist+febs(positiond[j]-theta(i] [j]); 
} 
if (dist < sdist) 
{ 

sdist=dist; 
select=i; 

} 

} 

// selert the solution 
for (i=0;i<3;i-i-+) 

positiond[i]=theta[seleaI [i]; 
} 

// jacobiaiLC 

#include "puma-h" 

extern double position[6]; 
extern double evJl[3][3]; 
extern double eJw[3][3]; 
extern double r[3][3]; 
extern double rv[3][3]; 
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extern double eJl[3][3]; 

void jacobian(void) 
{ 

double c2.c3,s3,c23.s23; 
double 1142,13,14; 
double bJl[3] [3]; 
int Lj,k: 

11=0.4318; 
12=0.15005; 
13=-0.0191; 
14=0.4331; 

c2=cos(position[l]); 

c3=cos(position[2]); 
s3=sm(position[2]); 

c23=cos(position[l]+position[2]); 
s23=sin(position[ 1 ]-i-position[2]); 

eJl[0][0]=-c23*I2; 
eJl[0][l]=s3*ll+14; 
eJl[01[2]=I4; 

eJl[ lH0]=c2*l 1+C23 *l3+s23 *14: 
eJl[l][l]=0.0; 
en[l][2]=0.0; 

en[2][0]=-s23*12; 
eJl[2][l]=-c3»ll-l3; 
eJl[2n21=-I3; 

for (i=0;i<3;i+-i-) 
{ 

for (j=0;j<3;j++) 

{ 
bJl[i][i]=0.0; 
for (k=0±<3 \k++) 

{ 

bJl[i][j] += 
r[il[k]*eJl[k][j]; 

} 

} 

for (i=0;i<3;i-i-t-) 
{ 

for (j=0;j<3;j++) 

{ 
evJl[i][j]=0.0; 
for (k=0;k<3;k++) 

rv[i][kl*bJl[k][j]; 
evJimm 

} 

eJw[0][0]=-s23; 
eJw[0][l]=0.0; 
eJw[0][2]=0.0; 

eJw[l][0]=0.0 
eJw[l][l]=1.0 
eJw[l][2]=1.0 

eJw[2][0]=c23; 
eJw[2][l]=0.0; 
eJw[2][2]=0.0; 

// forkin.c 

înclude "puma h" 

extern double position[6]; 
extern double x[6]; 
extern double r[3][3]; 

void forkin(void) 
{ 

double 
cLsl.c2.s2,c23.s23.c4.s4,c5.s5,c6.s6; 

double 1[51; 
double 

V I.v2.v3,v4.v5,v6,v7.v8.v9,v 10,v 11; 

1[1]=0.4318; 
1[2]=0.15005; 
1[3]=-0.0191; 
1[4]=0.4331; 

cl=cos(position[0]); 
sl=sin(position[0]); 

c2=cos(position[lJ); 
s2=sin(position[ 1 ]); 

c23=cos(position[l]+position[2]); 
s23=sin(position[l]+position[2]); 
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c4=cos(position[31); 
s4=sin(posilioii[3]); 

c5=cos(position(4]); 
s5=sin(positioii[4]); 

c6=cos(position[5]); 
s6=sm(position(5]); 

void loadencoder(int channel,int value) 
{ 

sl*l[2]; 
x[0]=cl»(c23*l[3]+s23*I[4]+c2*l[l])-

x[l]=sl*(c23*l[31+s23*l[4]-fc2*l[l])+cl 

x[2]=-s23*l[3]+c23«I[4]-s2*l[l]; 
x[3]=0.0; 
x[4]=0.0; 
x[5]=0.0; 

V1 =c4*c5*c6-s4*s6; 
v2=s5*c6: 
v3=c23*vl-s23»v2; 
V4=s4*c5*c6+c4*s6; 

r[0] [0]=cl *v3-s 1 *v4; 
r[l][0]=sl»v3+cl*v4; 
r|;2][0]=-s23•vl-c23•̂ r2; 

v5=c4*c5*s6+s4*c6; 
v6=s5*s6; 
v7=-c23 *v5+s23 *v6; 
v8=s4*c5*s6-c4*c6; 

r[01[l]=cl»v7+sl*v8: 
r[l][ll=sl*v7-cl*v8; 
r[2][l]=s23*v5+c23*v6; 

v9=c4*s5; 
vl0=c23*v9+s23*c5; 
vll=s4*s5; 

r[0][2]=cl*vl0-sl*vll; 
r[l][2]=sl*vl0+cl*vll; 
r[2][2]=-s23 *v9+c23 »c5; 

// loadencoder.c 

#include "puina.h" 

value); 
} 

outport(ENC_LOAD + 2*chaimeL 

// main c 

#include "puma.li" 

// global variables 
int board;// daq card board number 
interr_num: // daq card error number 
intstop=l; // flag used to stop program in event 
of ft error 
long DISCRETE; // PUMA discrete input control 
word 
double encoder_scale[6]; // scale faaor to convert 
encoder counts to radians 
double encoder_ofEMt[6]; // encoder counts in 
home position 
double position[6]; 
double position_old[6]; 
double error_old[6]; 
double forced[6]; 
double forced_old[6]; 
double f_fil_old[61; 
double f_fil_way_old[6]; 
double vg[6]; 
double data_pts[3][1500]; 
double time = 0.0; 
int data = 0; 
double evJl[3][3]; 
double eJw[3][3]; 
double x[6]; 
double x_old[61; 
double joint_Iimit = 4.; 
double r[3][3]; 
double u_vm=0.0; 
double xv_old[3]; 
double xv_dot_old[3]; 
double xv_dot_way_old[3]; 
double fv[6]; 
double rv[3][3]; 
double eJl[3][3]; 
double ibasis[6]; 
int f_flag; 

void main(void) 
{ 
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intctrl=l; // counter 1 
mtctr2=2; // counter 2 
int overflow, I I counter overflow error 

flag 
inti: // counting variable 
int safety=l; // flag used to stop program 

if control loop takes to long 
intcount=0; // coimter variable used in 

homing robot 
unsigned int countl; // counter I value 
unsigned int count2; // counter 2 value 
double timel=0.0; // time associated 

with counter 1 
double time2=0.0; // time associated 

with counter 2 
double dt=I.0/300.0: // desired control 

loop re&esh time 
double error // actual control loop 

refresh time 
int kbh=I: // flag used to detennine if 

keyboard event has occured 
FILE •out // output data file 

// PUMA controller 
printfCPUMA control designed at 

LARCQn"); 
printfCLaboratory for Advanced Robotics 

and Computer ControlXn"); 
printfC'Iowa State UniversityVn"); 
printf("\n\nwritten by Jim Edwards and 

Brian MiIIer\n"); 
printfC'All rights reserved\n"): 

// Get the board number of the daq card 
board=getDeviceToUse(); 

// Initialize some gobal variables 
initO; 

// Initialize force transducer 
init_force(); 
get_force(); 
printfr%f%f%f%f%f 

%f\n" jbrced[0]/orced[ 1 ]/orced[2]/orced[3]/orce 
d[4]4brced[5]); 

fbasis[0]=forced[0]; 
fl3asis[l ]=forced[ 1 ]; 
fljasis[2]=forced[2]+3.6; 
fbasis[3]=forced[3 ]; 
fbasis[4]=forced[4]; 
fi5asis[5]=forced[5]; 

// Calibrate encoders to scratch mark values 
calibration20; 

// Set up counter 1 and 2 
err_num=CTR_EvCount(board,ctrl, 1.1); 
ErrPrini("CTR_EvCount",err_nvmi); 

err_nmn=CTR_EvCount(board,cti2,0,0); 
ErrPrint("CTR_EvCount" .err_num); 

// Enable arm power 
DISCRETE=DISCRETE | POWER_BIT: 
outport(DISCRETE_REG-DISCRETE); 
printf(".Tum arm power on!! IVn"); 

while(count<500 && safetv && stop) 
{ 

// if a keyboard event occurs switch the flag 
if (kbhitO) kbh=0: 

// perform control loop if no keyboard event 
if (kbh) 
{ 

controK); 
} 

II if keyboard event send the robot home 
else 
{ 

home(): 
// it only has so long to get there 

count-Hr; 

do 
{ 

// read counter 1 and 2 

err_num=CrR_EvRead(board.ctr2,&over 

flow.&count2); 

err_num=CTR_EvRead(boardctrl.&over 
flow,&countl); 

// based on coimters determine what dme it is 
timel=(double) 

(countl)*0.000001; 
timel += (double) 

(coimt2)*0.065535; 

// if it's time run the loop again 
} while((timel-time2) < dt-

.00002); 
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I I detennine how long the loop took 
enor=timel-time2; 

I I if it took to long better stop 
if (febs((error-dt) > 0.00003)) 

safety=0; 

// save current time for next loop 
tiine2=tiniel: 

// do it all again 
} 

// Disable arm power 
DISCRETE=DISCRFrE | 

(~POWER_Brr); 
outport(DISCRETE_REGJ)ISCRETE): 

printf("\n\ncounten %d\n'*.count); 
// Output some data 

if((out=fopen(''outdat"."wi"))=NULL) 
{ 

printf("Cannot open output file 
OUT.DAT.\n"); 

exit(l); 
} 

for (i=0;i<999;i-t-+) 
{ 

fprintf(out,"%f %f 
%f\n",data_pts[0] [i],daiajpts[l ] [i],data_p 

ts(21[n); 

/ 

fcIose(out); 
} 

// path.c 

#include "puma.h" 
#include "ptmiaext" 

void pathO 
{ 

double u,pi.radius,center[3]; 
int counter_max; 

pi=3.14159; 
radius=0.3; 
center[0]=0.2; 

center[l]=0.0; 
center[2]=0.5; 
counter_n3ax=2001; 

counteî -+; 
if (counter = counter max) 
{ 

counter=0; 
if (direction = 1) direction=-l; 
else direction=l; 

} 

u=((double) counter)/((double) 
(coimter_max-l)); 

if (direction =-1) u=1.0-u; 

x(0]=radius*cos(pi*u/2.0)+center[0|; 
x[ 1 ]=tadius*sin(pi*u/2.0)+center[ I ]; 
x[2]=center[2]; 

} 

// pimia.h 

#include <stdio.h> 
jftnclude <dos.h> 
^include <floaLh> 
#include <stdlib.h> 
#include <bios.h> 
#include <conio.h> 
rftnclude <io.h> 
#include <math.h> 
^include <string.h> 
#include "nidaq.h" 
#include "nidaqcns.fa" 
#include "nidaqerT.h" 

// prototypes 
void init(void); 
int getDeviceToUse(void); 
void ErtPrint(charQ,int); 
int CTR_EvCount(int,inLint.int); 
int CRT_EvRead(intint,int •.int •); 
int readencoder(int); 
void calibration2(void); 
void loadencoder(intint); 
void control(void); 
void home(void); 
INovi. path(void); 
//void invkin(void); 
voidjacobian(void); 
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INoid forkm(void); 
/Afoid ern)r_v(void); 
void send(int): 
void iiiit_force(void); 
void get_force(void); 
void giavity(void); 

// define some addresses that will be needed 
#defineBASE 
0x0300 
#define AD_MUX_SELECT 
BASE + 0x002C 
#define AD_START_PULSE 
BASE+ 0x00 IE 
#define DISCRETE_REG 
BASE + 0x002E 
#define STATUS_REG 
BASE + OxOOOC 
#define AD_VALUE 
BASE + 0x00 IC 
#define ENC_COUNTER 

BASE+ 0x0010 
#define ENC_LOAD 

BASE + 0x0020 

// define some bit masks that will be needed 
#define AD_MASK 
0x4000 
#define AD_STATUS_MASK 
0x4000 
#define POWER_BIT 

0x0001 

// addresses for the ATI force transducer 
^define FT_BASE 0x280 
#define PORT_A FT_BASE 
#define PORT_B FT_B ASE + 0x01 
#define PORT_C FT_BASE -r 0x02 
#define PORT_D FT_BASE + 0x03 
#define STATUS_FT FT_BASE + 0x04 
#define CONnG FT_BASE + 0x05 

// readencoder.c 

#include "puma.h" 

int ieadencoder(int channel) 
{ 

intval; 

val=(int)(inport(ENC_COirNTER + 
2*channel)); 

return val; 
} 

NURBS Surface 

// error.c 

#include "puma h" 

void error(pumaFiIe* piunaData) 
{ 

double xv[3],xv_dot[3]; 
double xcp[3][3],ycp[3][31,zcp[31[3]; 
double bu[3I,dbu[3],bv[3],dbv[3]; 
double xc[3],tu[3],tv[3],mag; 
double xh[3],yh[3],zh[3]; 
double e[3], d_u_vm, d_v_vm; 
int i, j, k; 
intflag=0; 
double kp[3],kv[3]; 
double wn.z; 
double spring,damper. 
int normal=0; 
double fend[6], fbase[6], rv[3][3]; 
double rd[3][3], xv_ori[3][3], xyz[3], 

xyzd[3]; 
double xyz_dot[3]; 

i=0; 

if (normal == 1) 

{ 
xcp[0][0]=0.5; 
xcp[0][l]=0.5; 
xcp[0] [21=0.3; 

xcp[l][0]=0.5; 
xcp[l][l]=0.5; 
xcp[l][2]=0.3; 

xcp[2I[0]=0.5; 
xcp[2][l]=0.5; 
xcp[21[21=0.3; 

ycp[0][0]=-0.1; 
ycp[0][l]=-0.1; 
ycp[0][2]=-0.1: 
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} 
else 
{ 

ycp[l][0]=0.0 
ycp(ll[l]=0.0 
ycp[ll[2]=0.0 

ycp[2][01=0.1 
yq)[2][l]=0.I 
ycp[2][2]=0.I 

zcp[0][0]=0.3; 
zq)[0][l]=0.4: 
zcp[0][2]=0.5; 

zq)[l][0I=0.3; 
zcp[l][l]=0.4; 
zcp[I][2]=0.5; 

zcp[2][0]=0.3; 
zcp[2][l]=0.4; 
zcp[21[21=0.5: 

xq)[0][0]=0.5; 
xq)[0][I]=0.5; 
xcp[0][2]=0.5; 

xq)[l][0J=0.5; 
xcp[I][l]=0.1; 
xcp[l][2I=0.5; 

xq)[2][0]=0.5; 
xcp[2][I]=0.5: 
xcp[2][2]=0.5; 

ycp[0][0]=-0.1: 
vq)[0i[l]=-0.1; 
ycp[0][2]=-0.1; 

ycp[i][0]=0.0 
ycp[l][l]=0.0 
yq)[l][2]=0.0 

vcp[2][0]=0.1 
ycp[2][l]=0.1 
ycp[2][2]=0.I 

zcp[01[0]=0.3; 
zcp[0][l]=0.4; 
zq)[0][2]=0.5; 

zcp[l][0]=0.3; 
zcp[l][l]=0.4; 

zq)[l][2]=0.5; 

zq)[2][0]=0.3; 
zq)(2][I]=0.4; 
zcp(2][2]=0.5; 

} 

// inverse kinematics of virtual manipuator 
while(i != 30 && flag != 1) 
{ 

// evaluate basis functions 
bu[0]=( 1.0-pumaData-

>u_vm)*( 1.0-pumaDaia->u_vm); 
bu[l ]=2.0*( 1.0-pumaData-

>u_vm)*pumaData->u_vin; 
bu[2j=pumaDaia-

>u_vm*puniaDaia->u_vni; 

bv[01={ 1.0-pumaData-
>v_vm)*( 1.0-puniaDaia->v_vm): 

bv[l]=2.0*( l.O-pumaData-
>v_vni) *puniaData->v_vm; 

bv[2]=piiniaData-
>v_vm*puniaData->v_vni; 

// determine what the canesian coordinates are for 
u_vm and v_vm 

xc[0]=bu[0]»(xcp[01[0]*bv[0]+xcp[01[ll* 
bv[l]-rxcp[01[21*bv[2]) 

+fau[ll*(xcp[l][01*bv[0]+xcp[l][ll*bv[l]+xcp[l][ 
21*bv[2]) 

+bu[2]*(xcp[2][0]»bv[01+xcp[2][l]*bv(l]+xcp[2I[ 
2rbv[2]): 

xc[ l]=bu(0]*evq>[0] [0] *bv[0]+ycp[01 [ I 
bv[l]+ycp[0][21*bv[2]) 

+bu[l]*(ycp[l][0]*bv[0]+vcp[l][l]*bv[l]+vcp[l][ 
2]=^bv[2]) 

+bu[2]*(ycp[2][0]*bv[0]+vcp[2][l]*bv[l]+vcp[2][ 
2]*bv[2]); 

xc[2]=bu[0]*(zcp[0] [0]*bv[0]+zcp(0] [ I]» 
bv[l]+zcp[0][2]*bv[21) 
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+bu[l]»(zcp[l][0]*bv[01+zq)[ll[l]*bv[l]-Hzcp[l][ 
2]*bv[2]) 

+bu[2]»(zcp[2][0]»bv(0]+zcp[2][l]*bv[l]-i-zcp[2][ 
2]*bv[2]); 

I I determine the error between the robot is and the 
point on the sur&ce 

e(0]=pujniaData->x[0]-xc[0]; 
e[ l]=puinaData->x[ l]-xc[ 1 ]; 
e[2]=pimiaData->x[2]-xc[2]; 

// evaluate derivatives of the basis fimctions 
dfau(0]=-2.0*( 1.0-pumaOata-

>u_vin); 
dbu[ 1 ]=2.0*( 1.0-pnmaData-

>u_vm)-2.0*piunaData->u_vm; 
dbu[2]=2.0*puniaData->u_vm; 

dfav[0]=-2.0*(1.0-puniaData-
>v_vm); 

dbv[ 1 ]=2.0*( l.O-pnmaData-
>v_vTn)-2.0*puniaData->v_vin; 

dbv[2]=2.0*pmnaData->v_vin: 

// determine the u and v direction tangents 

tu(0]=dbu[0]*(xq)[0] [0]*bv[0]+xq)[0] [1 ] 
»bv[l]-rxcp(0][2]*bv[2]) 

+dbu(ll*(xcp[l][01»bv[0]-rxcp[l][l]*bv[l]+xcp[l] 
[2]*bv[2]) 

-i-dbu[2]*(xq>(2] [0]*bv[0 J+xq)[2 j [ l]*bv[ 1 ]+xq)l2] 
(21*bv[2I); 

tu[ 1 l=dbu[0] *(yq)[0] [0] *bv[0]+ycp[0] [ 1 ] 
•bvtl]+yq)[0][2]*bv(2]) 

+dbu[ll*(yq)(l][0]*bv[0]-i-vq)[l][l]*bv[l]+vq)(lI 

(21*bv[21) 

+dbu[l]«(zcp[l][0j»bv[0]+zcp[ll[l]*bv[ll+zcp[ll 
[2rbv[2]) 

+dbu[2]*(zcp[2][0]»bv[0]+zq)[2][ll»bv[l]+zcp[2] 
[2]*bv[2]); 

tv[01=bu[01»(xcp[0][0]*dbv[0]+xcp[01[l] 
»dbv[l]+xcp[0][2]*dfav[2]) 

- i-bu[l]*(xq) r i I[0]*dbv[0]+xcp[ll[l]*dbv(l]+xcp[ 
1][2]*dbv[2]) 

-i-bu(2]*(xq)[2][0]*dbv[0]+xq)[2][l]*dbv[l]+xq)[ 

2][21*dbv[21); 

tv[l]=bu[0]*(ycp[0][01*dbv[0]+ycp[0][l] 
•dbv[l]+ycp[0][2]»dbv(2]) 

+bu[ 1 ] *(yq)[ 1] [0] •dbv[0]+vq)[ 1 ] [ 1 ] *dbv[ 1 ]+vq)[ 
1][2pdbv[2]) 

+bu[2]*Cvcp[2][0]*dbvt0]-Hvcp[2][l]*dbv[ll+vcp[ 
2][2]*dbv[21); 

tv(2]=bu[0]*(zq)[01 [0]*dbv[0]+zcp[0] [ 1] 
*dbv[l]+zcp(0][2]*dbv[2]) 

+bu(ll»(zcp[l][0]»dbv[0]+zq)[l][ll*dbv[l]+zcp[ 
ll[2]*dbv[2]) 

+bu[2]*(zq)[2][0]*dbv[0]+zq)(2][ll»dbv[l]+zqp[ 
2][2]*dbv(2]); 

// determine how much to change the parameter 
estimates u_vm and v_vm 

d_u_vm=e[0]»tu[0]+e[l]*tu[l]+e(21»tu[2 

+dbu[2]*(\-cp[2][01*bv[0]+vcp(21[l]*bv[l]+vcp(2] 
[2]»bv[2]); ]: 

d_v_vm=e[0] •tv[0]-f-e[ 1 ] *tv[ 1 j-i-e[2] •tvp 

tu[2]=dbu(0]*(zcp(0][0]»bv[0]+zcp[0][l] 
•bv(I]+zcp[0][2]»bv[2]) 

// update the parameter estimates 
puinaData->u_vm=puinaData-

>u_vm+d_u_vm; 
puinaData->v_vm=pumaData-

>v_vm+d v_vm; 
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I I parameter in bounds 
if (pmnaData->u_vm < 0.0) 
{ 

puiiiaData->ii_vtn=0.0; 
} 
else if (puinaData->u_vm > 1.0) 
{ 

pumaData->u_vm= 1.0: 
} 

if (puinaData->v_vin < 0.0) 
{ 

puinaData->v_vni=0.0; 
} 
else if (puinaData->v_vin > l.O) 
{ 

pumaData->v_vm= 1.0; 
} 

// parameter not changing 
else if 

(sqrt(d_u_vin*d_u_vin-t-d_v_vm*d_v_vm) < 0.02) 
{ 

flag=l; 
} 

i++; 
T 
J 

// forward kinematics 
mag=sqrt(tu[0] *m[0]+tu[ 1 ] *tu[ 1 ]+ni[2] *1 

u[21); 

xfa[0]=m[0]/mag; 
.\h[l]=m[l]/mag; 
xfa[2]=tu[2]/mag; 

mag=sqrt(tv[01 •tv[0]+tv[ 1 ] *tv[ l]+tv[2] 
v(2]); 

tv[0]=tv[0]/mag; 
tv[ll=tv[ll/mag; 
tv[2]=tv[2]/mag; 

zh[0]=xli[l]*tv[2]-tv[l]*xh[2]; 
zh[l]=tv(0]*xh[2]-xfa[0]»tv[2]; 
zli[2]=xh[0]*tv[l]-tv[0]*xfa[l]; 

mag=sqrt(zh[0]*zh[01-i-zh[ 1] •2h[ 1 ]+zIi[2 
rzh[2]); 

zh[01=zfa[0]/niag; 
zh[l]=zli[lj/mag; 
zh[2]=zii[2]/mag; 

yh[0]=zh[I]*xh[2]-xfa(l]»zh[2]; 
yh(l]=xfa(0]*zh[2]-zh(0]*xli[2]; 
yh[2]=zh(0]*xfa[l]-.xli[01»2h[l]; 

mag=sqrt(yh[0]*vh[0]+vh[l]*vfa[l]+vh[2 
]*yfa[2]): 

yh[0]=yfa(0]/mag; 
yh[l]=yh[l]/mag; 
yh[2]=yh[2]/mag; 

rv[0][01=xh[0I; 
rv[01[l]=xfa[l]; 
rv[0][2]=xh[2]; 
rv[l][0I=yh(0]; 
rv[l][l]=yh[I]; 
rv[l][2]=yh[2]: 
rv[21[0]=zh[0]-. 
rv[2][l]=zh[ll; 
rv[2I[2]=zh[2]; 

// Determine the position of the robot in the 
virtual manipulator's 
// end effect space 

xv[0]=xh[01 *pumaData-
>x[0]+xh[ 1] •puniaData->.x[ 1 ]+xfa[2]*puinaData-
>x[2]-xfa[0]*xc(0]-xh[l]*xc[l]-xh[21*xc[2]; 

xv[l]=yh[0]*puniaData-
>x(01+yh[ ll*pumaData->x[ll-!-vhr21*pumaDaia-
>x[2]-yh[0]*xc[0]-yh[l]»xc[l]-yh[2]*xc[2]; 

xv[2]=zh[0] *pumaData-
>x[0]+zh[ 1] •puinaData->x[ l]-i-zh[2] •pumaData-
>x[2]-zh[0]*xc[0]-zh[ l]»xc( 1 ]-zfa[2Pxc[2]; 

if (normal = 1) 
{ 

nl[01[0]=xh[0]; 
rd[0][l]=vh(0]: 
rd[0][21=zh[0]; 
rd[l][0]=xh[l]; 
rd[ll[l]=yh(I]; 
rd[l][2]=zh[ll; 
rd[2I[0]=xh[2]; 
rd[2][l]=yh[2]; 
rd[2][2]=zh[2]; 

} 
else 
{ 
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} 

for (i=0a<3u++) 
{ 

pumaData-
>xv_dot_way_oId[i]=puniaData->xv_dot_oId[i]; 

pumaData-
>xv_dot_old[i]=xv_dot[i]; 

pmnaDaia->xv_old[i]=xv[i]; 
pumaData-

>xyz_dot_way_oId(i]=puniaData->xy2_dot_oId[ij; 
pumaData-

>:q^_dot_old[il=xyz_dot[i]; 
puinaData->xvz_oId[i]=xvz[i]; 

} 

sprm^=400.0: 
dampei=30.0; 

if (puinaData->u_vm <= 0.0) 
{ 

} 

kp[0]=spiing; 
kv[0]=dainper. 

else if (pumaData->u_vm >= 1.0) 
{ 

} 
else 
{ 

kp[01=spring; 
lcv[Oj=dainper. 

kp[0]=0.0: 
kv[01=0.0: 

if (puiiiaData->v_vin <= 0.0) 
{ 

kp[l]=spring; 
!cv[l|=damper. 

} 
else if (puniaData->v_vm >= 1.0) 
{ 

} 
else 
{ 

kp[l]=spring; 
lcv[l]=damper. 

kp[l]=0.0; 
kv[l 1=0.0; 

// kp[0]=spring; kv[0]=dainper; 

// kp[l]=spring; kv[l]=dainper, 
kp[2I=spring; kv[2]=damper, 

for (i=0;i<3;i++) 
{ 

fend[i]=kp[i]*xv[i]-fkv[i]*xv_dot[i]; 

feiid[i+3]=30.0*xvz[i]-i-2.0*xvz_dot[i]; 
} 

// force end effeaor vm to base puma 
for (i=0; i<3; i++) 
{ 

fbase[i]=0.0: 
for(j^;j<3;j-H-) 
{ 

fbase[i]=fbase[il+rv(j] [i] •fendQ]; 
} 

} 

for (i=0; i<3: i-i-+) 
{ 

fbase(i+3]=0.0; 
for (1=0; j<3; j-M") 
{ 

fbase[i-^3 ]=fbase[i+3]+rv[j] [i]*fend|j+3 ]; 
} 

X 
) 

II force base piuna to end effector puma 
for (i=0; i<3; i++) 
{ 

pumaData->fv[i]=0.0; 
for (j=0; j<3; j++) 
{ 

pumaData-
>fv[i]=pumaDaia->fv[i]+pumaData-
>r[j][i]*ft)aseO]; 

} 
} 

for (i=0; i<3; i-H-) 
{ 

pumaData->fv[i+5]=0.G; 
for(j=0;j<3; j-M-) 
{ 

pumaOata-
>fv[i+3]=pumaData->fv[i+3]+pumaData-
>r|j][i]*fbase|j+3]; 
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} 
} 

// zero some stuff 
/• fend[3]=0.0; 

fend[4]=0.0; 
fend[51=0.0; 
fbase[3]=0.0; 
fbase[4]=0.0-. 
fbase[51=0.0-. 
puiiiaData->fv[3]=0.0; 
pumaData->fv[4]=0.0: 
puinaData->fv[5]=0.0;*/ 

// ftictioiLc 

#include "puma h" 

void friction(puniaFile* pumaData) 
{ 

inti; 
double tau=0.05305; 

if (puinaData->theta[0] > pumaData-
>theta_old[0]) pumaData->v_&ic[0]=1.0; 

if (puinaDaia->theta[0] <= pumaData-
>theta_old[0]) puinaData->v_fric[0]=-0.9; 

puinaData->v_&ic[0]=(pumaData-
>v_fric[01*puinaData->dt+pumaData-
>v_fric_old[0] •tau)/(puinaData->dt+tau); 

if (puinaData->tfaeta[l] > pumaData-
>theta_old[l]) 

{ 
if (puinaData->theta[l] > -1.57) 

puinaData->v_&ic[l]=-0.3; 
else puinaData->v_fric[l]=-0.9; 

} 
if (puinaData->theta[l] <= pumaData-

>theta_oId[ll) 
{ 

if (puniaData->theta[l] > -1.57) 
puinaData->v_&ic[l]=0.9; 

else puinaData->v_&ic[l]=0.6; 
} 
puiiiaData->\_fric[l]=(puinaData-

>v_&ic[I]*puniaData->dt+puinaData-
>v_&ic_old[ 1 ] *tau)/(puinaData->dt+tau); 

if (puiiiaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fric[2]=0.47; 

if (pnmar)ara->theta[2] <= pumaData-
>tlieta_old[2]) piunaDaia->v_&ic(2]=-0.47; 

pumaData->v_ficic[2]=(puinaData-
>v_fiic[2] *puinaData->dt+puinaData-
>v_&ic_old[2] *tau)/(puiiiaData->dt+tau); 

if (puniaData->theta[3] > pumaData-
>theta_oId[3]) puniaData->v_&ic[3]=-0.35; 

else if (pumaData->theta[3] <= 
puinaData->theta_old[3]) pumaData-
>v_&ic(3]=0.35; 

else pumaData->v_fric[3]=0.0; 
puinaData->v_fiic(3]=(puinaData-

>v_&ic[3]*puinaData->dt+puinaData-
>v_&ic_oId[3 ] *tau)/(puinaDaia->dt+tau); 

if (puinaDaia->dieia[4] > pumaOata-
>theia_old[4]) puinaData->v_Mc[4]=-0.4; 

else if (puinaData->tlieta[4] < pumaData-
>theta_old[4]) puinaData->v_fric[4J=0.4; 

else pumaData->v_fric[4]=0.0; 
puinaData->v_fric[4]=(puniaData-

>v_fric[4] »puniaData->dt+puinaData-
>v_fric_old[4]*tau)/(puinaData->dt+tau); 

if (puinaData->tlieta[5] > piimaPata-
>theta_oIdr5]) puinaData->v_Mc[5]=-0.5; 

else if (puniaData->theta[5] < pumaData-
>tlieta_old[5]) pumaData->v_&ic[5]=0.5: 

else puniaData->v_fric[5]=0.0; 
puinaData->v_fric[51=(pumaData-

>v_fric(5]*pumaData->dt-i-puinaData-
>v_fric_old[51*tau)/(puinaData->dt+tau); 

for (i=0:i<6;i+-i-) 
{ 

pumaData-
>v_&ic_old[i]=puinaData->v_fric[i]; 

} 
} 

// giavity.c 

#include "puma-h" 

void gravitv(puinaFiIe* pumaData) 
{ 

double c2.s2,c23.s23; 
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c2=cos(puinaData->tfaeta[ 1 ]); 
s2=sin(puinaData->theta[ 1 ]); 

c23=cos(pmnaData->theta[ I ]-i-piiinaData-
>tfaeta[2]); 

s23=sm(punjaData->theta[ 1 J+pumaData-
>theta[2]); 

I I gravity compensation 
puniaData->vg[0]=0.0; 
punjaData->vg[2]=-

1.1201*s23+0.0977*c23; 
pmnaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*pumaData-
>vg(2]; 

pumaData->vg[3]=0.0; 
puinaData->vg[4]=0.0: 
puinaData->vg[5]=0.0; 

} 

// impedence-c 

#include "puma h" 

void inipedence(puniaFile* pumaData) 
{ 

pumaData-
>vini[0]=0.02*pow(( 1.0/(puinaData->tfaeta[0]-
2.7)).3.0)-K).02*pcw((1.0/(piunaData-
>theta[0]-r2.7)).3.0); 

pmnaData->vim[l]=-
0.02*pow(( 1.0/(puniaData->theta[ l]-0.7)),3.0)-
0.02*IX)w(( 1.0/(puinaData->theta[l]+3.7)),3.0); 

puinaData-
>viin[2]=0.02*pow((1.0/(puniaData->theta[2]-
pumaData-
>jIiimt3)),3.0)+0.02*pow((1.0/(puinaData-
>tlieta[2]-K).9)),3.0); 

puniaData->viin[3 ]=-
0.02*pow(( 1.0/(puniaData->theta[3 ]-3.2)),3.0)-
0.02*pow((1.0/(pumaData->theta[3]+1.8)),3.0); 

puniaData->vim[4]=-
0.02*pow(( 1.0/(puniaData->theta[4]-l .7)),3.0)-
0.02*ix)w((1.0/(puinaData->theta[4]+puniaData-
>jliiiiit5)),3.0); 

puniaData->vim[5]=-
0.02*pow((1.0/(puniaData->theta(5]-5.2)).3.0)-
0.02*pow(( 1.0/(puniaData->theta[5]+5.2)).3.0): 
} 

// jacobian.c 

#include "puma-h" 

void jacobian(piiinaFile* pumaData) 
{ 

double 
c 1 ,s I,c2,s2.c3,s3 ,c23 .s23 ,c4.s4.c:5,s5,c6.s6: 

double 1[5]; 
I[l]=0.4318; 
I[2]=0.15005; 
1[3]=-0.0191: 
l[4]=0.4331; 

cl=cos(pumaData->theta(01); 
s l=sin(pumaDaia->tfaeta[0]); 

c2=cos(pumaData->theta[ 1 ]); 
s2=sin(pumaData->theta[ I ]); 

c3=cos(pumaDaia->theta(2]): 
s3=sin(pumaData->theta[2]); 

c23=cos(pumaData->theta[ 1 J+pumaData-
>theta(2]); 

s23=sin(pumaDaia->tfaeta[ 1 ]+pumaData-
>theta[2]); 

c4=cos(pumaData->theta[3]); 
s4=sin(pumaData->tfaeta[3]); 

c5=cos(pumaData->theta[4]); 
s5=sin(pumaData->theta[4]); 

c6=cos(pumaData->theta[5]); 
s6=sin(pumaDaia->theta[51); 

// jacobian 
pumaData->eJr[0][0]=c5*c6*(-

c23*c4*I[2]+s4*(c2»l[l]+c23*l[3]+s23*l[4]))+s6* 
(c23*s4*I[2]+c4*(c2*l[l]+c23*l[3I+s23*l[4]))+s5 
•c6*s23*l[2]; 
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pumaData- pumaData->eJr(5][2]=s4*s5; 
>eJr[0][l]=c5*c6*(c4*(s3*I[l]+I[4]))+s6*(- puinaData->eJr(5][3]=c5; 
s4*(s3*l[l]+l[4]))-s5*c6*(-c3*I[l]-l[3]); pumaData->eJr[51[4]=0.0; 

puinaData->eJr[0][2]=c5*c6*c4*l[4]- puniaData->eJr[5][51=1.0; 
s6*s4*l[4]+s5*c6*I[3]; } 

puinaData->&rr[0] [3]=0.0; 
puinaDaia->eJr[0][4]=0.0; 
puinaData->eJr[0][5I=0.0: 

puinaData->eJr[l][0]=-c5*s6*(-
c23*c4*l[2]+s4*(c2*l[l]+c23*l[31+s23*l[4]))+c6* 
(c23*s4*l[2]+c4*(c2*l[ll+c23»I[3]+s23*l[4]))-
s5»s6*s23*l(2]; 

puinaData->eJr[ 1 ] [ 1]=-
c5*s6*(c4*(s3*l[l]+l[4]))+c6»(-
s4*(s3*I[l]+l[4]))+s5*s6*(-c3»l[l]-l[3]); 

puniaData->eJr[l][2]=-c5*s6*c4»l[4]-
c6*s4»I[4]-s5*s6*I[3]; 

puniaData->eJr[l][3]=0.0; 
puinaData->eJr[ I] [4]=0.0: 
puinaData->eJr[l][5]=0.0; 

puiiiaData->eJr[2] [0]=s5*(-
c23»c4*l[21+s4*(c2*l[l]+c23*l[31+s23*l[4]))-
c5*s23*I[2]; 

pumaData-
>eJr[2][l]=s5*(c4*(s3*l[l]+l[4]))+c5*(-c3»I[l]-
I[3]); 

puinaData->eJr[2][2]=s5*c4*l[4]-c5»I[3]; 
puinaData->eJr[2][3]=0.0; 
puinaData->eJr[2] [4]=0.0; 
pumaData->eJr[2] [5]=0.0: 

pumaData->eJr[3] [0]=s23 •(s4*s6-
c4»c5»c6)-c23*s5*c6; 

puinaData->eJr [3 ] [ 1 ]=s4*c5 *c6+c4*s6; 
puinaData->eJr[3 ] [2i=s4*c5 *C6h^4*S6; 
puinaData->eJr(3] [3 ]=-s5»c6; 
puniaData->eJr(3] [4]=s6; 
puinaData->eJr[3][5]=0.0; 

pumaData-
>eJr(4][0]=s23*(c4*c5*s6+s4*c6)+c23*s5*s6; 

pumaData->eJr[4][l]=-s4*c5*s6-i-c4*c6; 
puinaData->eJr[4] [2]=-s4*c5*s6+c4*c6; 
pumaData->eJr[4] [3 ]=s5*s6; 
puinaData->eJr(4] [4]=c6; 
piiinaData->eJr[4] [5]=0.0; 

puinaData->eJr[5] [0]=-
s23•c4*s5+c23 *c5; 

pumaData->eJr[5] [ 1 ]=s4*s5; 

// kmematics.c 

^include "punia.h" 

void kineinatics(puinaFile'*' pumaData) 
{ 

double 
cl.sl,c2,s2.c3,s3.c23,s23,c4.s4x5.s5.c6,s6: 

double I[5]; 
double 

V I.v2.v3 .v4.v5.v6.v7,v8.v9,v lO.v II; 

1[1]=0.4318; 
1[2]=0.15005; 
I[3]=-0.0191; 
1[4]=0.433I; 

c l=cos(puinaData->theta[0]): 
s l=sin(puinaData->theta[0]); 

c2=cos(puinaData->theta[ 1 ]): 
s2=sin(puinaData->theta[ 1]): 

c3=cos(puinaData->theta(2]): 
s3=sin(puinaData->theta[21); 

c23=cos(puinaData->theta[ I J+piunaData-
>theta[2]); 

s23=sin(puniaData->theta[ IJ-i-pumaData-
>theta[2]); 

c4=cos(puinaData->theta(3]); 
s4=sin(puinaData->tteta[3]): 

c5=cos(puinaData->theta[4]); 
s5=sin(puinaData->theta[4]); 

c6=cos(pumaData->theta[5]); 
s6=sin(puinaData->theta[5]); 

pumaData-
>x[0]=cl*(c23*I[3]+s23*I[4]+c2*l[l])-sl*l[2]; 

pumaData-
>x[l]=sl*(c23*l[3]+s23*l[4]+c2»l[l])+cl*l[2]; 
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s2*I[l]; 
puinaData->x[2]=-s23 »1[3 ]+c23 *I[4]-

puinaData->x[3]=0.0; 
puinaData->x[4]=0.0; 
puinaData->x[5]=0.0; 

vl=c4*c5*c6-s4*s6; 
v2=s5*c6; 
v3=c23*vl-s23*v2; 
v4=s4*c5*c6-i-c4*s6; 

pun3aData->r[0] [0]=cl •vS-s 1 •v4; 
puinaData->r[ 1 ] [0]=s 1 *v3+cl *v4; 
puinaData->r[2] [0]=-s23 *v I -c23 •v2; 

v5=c4*c5*s6+s4*c6; 
v6=s5*s6; 
v7=-c23»v5+s23*v6; 
v8=s4*c5*s6-c4*c6; 

puinaData->r[0] [ 1 ]=c 1 •vT+s 1 •v8; 
puinaDaa->r[ 1 ] [ 1 ]=s 1 *v7-c 1 *v8; 
puinaDaia->r[2] [ 1 ]=s23 •v5+c23 *v6; 

v9=c4*s5; 
V10=c23 *v9+s23 *c5; 
vH=s4*s5; 

puinaData->r[0] [2]=cl *v 10-s 1 •v 11; 
puinaData->r[ 1 ] [2]=sl •v 10+c 1 •v 11; 
pumaData->r[2] [2]=-s23 •v9+c23 •c5; 

BOOL result: 
LARGE_INTEGER lifrequency; 
LARGE_IMTEGER licount: 
LONGLONG ftequency: 
double d&equency: 
LONGLONG startcount: 
LONGLONG count: 
double cunenttime: 
double dtactual; 
double dterron 
double dtmax: 

// error flags 
int timererron 
int timeroverrun: 
int DeviceStop; 
int errorSocket: 

// socket stuff 
int err: 
char szDataSend[100]; 
int gcount: 

// data file stuff 
double data[3][2000]; 
int datalength=2000; 
int datacount: 
int datacycle: 
intdatamax: 
int fileerror. 
FILE *out: 

// general stuff (counter and the like) 
int i; 

// main.c 

^include "puina.h" 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Taking Care of Business 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

void niain(void) 
{ 
// robot stuff 

pumaFile "^umaData: 
int stop; 
int homecount; 

// window's stuff 
HANDLE hprocess; 
HANDLE hthread; 
int processerror, 

// timer stuff 

printfCPUMA control programVn"): 
printfCwritten by Jim Edwards for 

LARCOn"); 
printfCAU rights reserved\n\n\n\n"); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Code Initialization Section 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I set counter error flag to pass 

timererror=l; 

I I set counter ovemm flag to pass 
timeroverrun=l; 
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// start taking data at zero 
datacounp=0; 

// set data pass to zero 
datacycle=0; 

// set process error flag to pass 
processerror=0; 

// set maxiTniim delta-t to zero 
dtinax=0.0; 

// set stop to pass 
stop=l; 

// set homecount to zero 
homecount=0; 

// set socket error to none 
errorSocket=0; 

// set graphics dump coimter to zero 
gcount=0; 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
nun Hardware Initialization 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// get process handle 

hprocess=GetCurrentProcessO; 

I I set process priority 
result=SetPrioriivClass(hprocess. 

REALTIME_PRIORrrY_CLASS); 
if (result = 0) processerror=l; 

I I get thread handle 
hthread=GetCurrentTbread(); 

// set thread priority 
result=SetThieadPriority(hthread. 

THREAD_PRIORrrY_TIME_dimCAL); 
if (result = 0) processerror=2: 

I I allocate memoiy for puma structure 
pimiaData=(pumaFile 

*)malloc(sizeof(pimiaFile)); 

I I connea to the puma kernel device 
DeviceStop=l; 
pumaData-

>PumaDevice=HwNewDevice(NULL); 

HwSetErrorHandler(piimaData-
>PumaDevice. MyErroiHandler); 

if (IHwConnectDexaceCpumaData-
>PumaDevice. "puma")) 

{ 
printf("Failed to connea to puma 

device!\n"); 
HwDeleteDevice(pumaData-

>PumaDevice); 
DeviceStop=0; 

} 

// semppuma 
piunalnitializationCpumaData): 

// open socket - useSocket = I use socket = 0 
don't use socket 

pumaData->useSocket= 1; 
pmnaData->activeSocket=0; 
openSocket(pumaData): 

// test socket 
testSocket(pmnaData): 

// get ftequencj'ofhigh performance counter 
result=QueryPerformanceFrequency(&lifr 

equency); 
if (result = TRUE) 
{ 

frequency=Iifrequency.QuadPart: 
dfiequency=((double) 

frequency); 
prinif("clock frequency; %f 

MHz\n\n\n\n",dfiequency); 
} 
else 
{ 

printf("QueryPerformanceFrequency; 
&iliue\n"); 

timereiioi-O; 
} 

// get starting count 
printf("\n\n\nTum Arm Power On! I! !\n"); 
result=QueiyPerfonnanceCounter(&licou 

nt); 
if (result = TRUE) 
{ 

startcoimt=licount.QuadPart; 
} 
else 
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{ 

printf("QueryPerfonnanceCoimten 

timererror=0; 
} 

I I disengage the brakes 
HwOutpw(pumaData->PuinaDevice, 

0x02e. 0x0001); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Main Control Loop 
llllltlllllllllllllllllllllllfllllllllffllltlllllllllllllllllltllllll 

while((homecount < 2000) && 
(DeviceStop == 1) &&. (timererror = 1) && 
(timeroverrun = I) && (processeiror — 0)) 

{ 
// control code 

if(kbhitO) stop=0; 
if (stop = 1) 
{ 
pumaControl(piunaData): 
) 
/ 

else 
{ 
homecount-H-; 

puinaHome(puniaData): 
} 

// increment graphics dump coimter 
gcountT-r: 

// send data to graphics engine 
if (gcount == 5) 
{ 
gcount=0; 

// but only if there is an active socket for 
conunimication 

if (pumaData-
>activeSocket = 1) 

{ 

sprintf(szDataSend. "%4.3f %4.3f %4.3f 
®/<4.3f %4.3f %4.3f %4.3f 

pumaData->time. 
pumaData-

>theta(0], 
pumaData-

>theta(l]. 

>theta[2], 

>theta[3], 

>theta(4], 

>theta[5]); 

pumaData-

pumaData-

pumaData-

pumaData-

en=send(puniaData->hSock, 
(UPSTR) szDataSend. 51,0); 

if 
(err=SOCKET_ERROR) errorSocket=l; 

// timing code 
do 
{ 

// get the current count of performance counter 

result=QueryPerformanceCounter(&licou 
at): 

if (result = TRUE) 
{ 

count=licounLQuadPart; 
// convert into time since program started 

currenttime=((double) (count-
startcount))/dfrequency; 

i 

else 
{ 

printfC'QueiyPerfonnanceCounter 
feilureVn"): 

timererror=0: 
} 

piunaData->time: 

>dt); 

dtactuai=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t 
if (dtactual > dtmax) 

dtmax=dtactual; 

// get error in delta-t 
dterror=dtactual-pumaData->dt; 



www.manaraa.com

278 

if (&bs(dterior) > prima Data-
>dt) timerovernin=0; 

// take some data 
if (stop == I) 
{ 

// time 
// 

data[0] [datacoimt]=pmnaData->time; 
II ftesli ftequency 

// 
data[ 1 ] [datacoimt]=1.0/dtactual: 

// voltage to axis 5 
// 

data[2] [datacount]=pumaData-
>voItage_out[4]; 

data[0] [datacount]=pumaData->x(0]; 

data( 1 ] [datacomit]=pmnaData->x[ 1 ]; 

data[2] [datacount]=pumaData->x[2]; 

if (datacomit = 1999) 
{ 

datacomit=0: 
datacvcle=l; 

} 
else datacount-i-i-; 

} 

// update absolute time base 
pumaData->time=puinaData-

>time-rpumaData->dt; 
} // end main control loop 

// engage the brakes 
HwOutpw(pumaData->fhm3aDevice. 

0x02e, 0x0000); 

llllllllllllllllllllllltlllllllllllllllllllllllllllllllllllllllllllll 
II Hardware Clean-Up 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II kemal device 

HwDeIeteDevice(pumaData-
>PumaDevice); 

// close socket 
closeSocket(puniaData); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Take some data 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

II open the data Sle 
if ({out=fopen("ouLdat","wt"))=NULL) 

fileerror=0; 
else 
{ 

// write data 
fileerror=l; 

fprintf(out"max dt is 
%M\n\n".dtniax); 

if (datacycle = 1) 
daiamax=datalength; 

else datamax=datacount: 

for (i=0: i<datamax: i++) 
{ 

fprintfCouL*"}^ %£ 
%fin".data[0] [i],data[ll [i].data[2] [i]); 

} 

// close file 
fclose(out); 

I > 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Final Error Messages 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

printf("\n\n\nError Messages:\n"): 
if (timererror == 0) printf("timer 

malfimctionVn"); 
else if (timeroverrun = 0) printf("timer 

over run\n"); 
else if (DeviceStop = 0) printfC'DriverX 

error\n"); 
else if (nleerror == 0) printf("could not 

open data file\n"): 
else if (processerror = 1) printf("could 

not set process priority\n''); 
else if (processerror == 2) printf("could 

not set thread priority\n"); 
else if (enorSocket == 1) printf("erTor 

sending rfata over socketVn"); 
else printfCall went well\n"); 

Sleep(3000); 
} 
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lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
mill DriverX Error Handler 
IIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
void MyErrorHandler(HWDEVICE* pDevice, 
DWORD nError) 
{ 

printfC'Critical DriverX error %d\n''. 
nError); 

exit(nEnor); 
} 

// puma.h 

II include files 
#include <windows.li> 
#include <winsock.h> 
#incliide <stdio.h> 
#include <como.h> 
#inciude <matli.h> 
#iaclude "DriverXh" 

I I structures 
typedefstrua 
{ 
// needed for all 

HWDEVICE* PumaDevice; 
double dc 
double time: 
double encoder_scale[6]; 
double encoder_oflFset[6]; 
double theta[6]; 
double voltage_out[6]; 

// socket stuff 
SOCKET hSock; 
int useSocket; 
int activeSocket; 

// kinematics 
double x[6]; 
double r(3][3]; 
double eJr[6][6]; 

// virtual manipulator 
double ^^[6]; 
double u_vm; 
double v_vm; 
double xv_old[3]; 
double xv_dot_old[3]; 

double xv_dot_way_old[3]; 
double xyzoldp]; 
double xyz_dot_old[3]; 
double xyz_dot_way_old[3]; 

// needed for me 
int first_flag; 
int last_flag; 
double kp[6]; 
double kd[6]; 
double errQr(6]; 
double errorold[6]; 
double erroniot(6]; 
double tbetad[6]; 
double theta_old[6]; 
double thetao[6]; 
double timeiu 
double vg[6]; 
double v_&ic[6]; 
double v_&ic_old(6]; 
double vim[6]; 
double jlimit3: 
double jlimitf; 

} pmnaFile; 

// prototypes 
void main(void); 
void MyErrorHandler(HWDEVICE * . DWORD); 
void pumaInitialization(pumaFile *); 
void pumaControl(pumaFile *); 
void pumaHomeCpiunaFile *); 
void openSocket(pumaFile •); 
void cIoseSocket(pumaFile *): 
void testSocketfpumaFile *): 
void gravity(pumaFile *); 
void friction(pumaFile *); 
void impedence(pumaFile *); 
void kinematics(pumaFile *); 
void jacobian(pumaFile •); 
void error(piunaFile •); 

// pumaControLc 

#include "puma-h" 

void pumaConttQl(pumaFile* pumaData) 
{ 

short val[6]; 
int voltage_int[6]; 
intij; 
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double tbetaf[6]; 
double tf=5.0; 

I I lead encoders 
val[0]=HwInpw(pumaData-

>PuniaDevice, 0x010); 
val [ 1 l=HwInpw(pumaData-

>PuniaDevice, 0x012); 
vaI[2]=HwInpw(puniaData-

>PuinaDevice, 0x014); 
val[3 ]=HwInpw(puniaData-

>PuinaDevice, 0x016); 
val[4]=HwInpw(puniaData-

>PumaDevice, 0x018); 
val[5]=HwInpw(puinaData-

>PumaDevice, 0x0 la); 

// convert encoders to radians 
for (1=0; i<6; i-H-) 
{ 

puniaData->tIieta[i]=puniaData-
>encoder_scaIe[i]*(((double) val[i]) - pumaData-
>encoder_ofifeet[i]); 

} 

// gravity compensation 
gravity(pumaData); 

// forward kinematics and Jacobian 
kinematics(pumaData); 

// virtual manipulator control 
error(pumaData); 

// evaluate jacobian 
jacobianCpumaData); 

// friction compensation 
frictionCpimiaData); 

// impedence protection 
impedence(pumaData); 

// first time through get current position 
if (pumaData->fiTSt_fIag=l) 
{ 

pumaData-
>thetao[01=pumaData->theta(0]; 

pumaData-
>thetao [ 1 ]=pimiaData->theta[ 1 ]; 

pumaData-
>thetao[2|=pumaData->theta[2]; 

pumaData-
>thetao[3]=puinaData->theta[3]; 

pumaData-
>thetao[4]=pinTiaData->theta[4]; 

pumaData-
>thetao[51=pumaData->theta[5]; 

puinaDala->first_flag=2; 
} 

// final position 
thetaf[01=-0.4965; 
thetaflll=0.3013; 
thetafI21=-0.0805; 
thetafI31=0.4976; 
thetafI4]=1.3767; 
thetaft51= 1.4526; 

// do cubic spline interpolation 
if (pumaData->time <= tf) 
{ 

pumaData-
>thetad[0]=puinaData->thetao[0]-3.0*(pumaDaia-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time/(tf*tf)+2.0*(pumaData-
>thetao[0]-thetafI0])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[ l]=pumaData->thetao[ 1 ]-3.0*(puinaData-
>thetao[l]-thetaf[l])*puniaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[ 1 ]-thetafl l])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(pumaData-
>thetao[2]-tfaetaft2])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[2]-thetafl2])*pumaData-
>time*pimiaData->time*pumaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[3]=piunaData->thetao[3]-3.0*(pumaData-
>thetao[3]-tfaetafl3])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[3]-thetafI3])*puniaData-
>time*pumaData->time*pumaData-
>time/(tf*tftf); 

pumaData-
>thetad[4]=puinaData->thetao[4]-3.0*(pumaData-
>thetao[4]-thetaf[4])*ptmiaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-



www.manaraa.com

2S1 

>thetao[4]-thetaf[4])*piiinaData-
>time*puinaData->time*puinaData-

pumaData-
>thetad[5]=puinaData->thetao[5]-3.0*(puinaData-
>thetao[5]-thetaf[5])*pumaData-
>tiine*puinaData->tiine/(tf*tf)+2.0*(puinaData-
>thetao[5]-thetafI5])*pumaData-
>time*puinaData->time*pTiinaData-

} 
I I after tf stay put at final position 

else if (pumaData->time > tf) 
{ 

puinaData->thetad[0]=tlietaf[0]; 
piunaData->tlietad[l]=tIietaf[l]; 
puinaData->thetad[2]=thetafI2]; 
puinaDaia->thetad[3]=tlietafI3]; 
puinaData->thetad[4]=tlietaf[4]; 
purnaData->thetad[5]=tIietaf[5]; 

} 

// 
// control section 
// 

for (i=0:i<6;i-M-) 
{ 

// calculate error 
pumaData->error[i]=piunaData-

>thetad[i]-puinaData->theta[i]; 

// calculate rate of change of the error 
pumaData-

>errordot(i]=(puniaData->error[i]-puinaData-
>errorold[i])/piunaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=puinaData->kp[i]*puinaData-
>error[i]+puinaData->kd[i] *puinaData-
>errordot(i]; 

V J 

// impedence based control law 
if (pumaData->tiine > 6.0) 
{ 

for (j=0-j<3:j-r+) 
{ 
puinaData->voltage_out[j]=0.0; 

for (i=0;i<3;i-H-) 
{ 

puniaData->voltage_out[j] += 
pumaData->eJr(i] jj] *puniaData->fv[i]; 

} 
} 
for (j=3;j<6:j-t-f-) 
{ 
puniaData->voltage_out(j]=0.0; 

for (i=3:i<6:i++) 
{ 

puinaData->voltage_out(j] += 
pumaData->eJr(i] [j]*pumaData->fv[i]; 

} 
} 

pumaData-
>voltage_out[0]=puniaData->voltage_out[0] *-1.0; 

pumaData-
>voltage_out[2]=puinaData->voltage_out[2]*-1.0; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i-H-) 
r I 

pumaData-
>voltage_out[i]=pumaData-
>voltage_out[i]+piuiiaData->vg[i]+purnaData-
>v_fric[i]+puniaData->viin[i]; 

if (&bs(puniaData-
>voltage_out(i]) > 9.9) 

piunaData-
>voltage_out(i]=9.9*puniaData-
>voltage_out[i]/febs(puinaData->voltage_out[i]): 

voltage_int(i]=(int) 
(4095.0*(pumaData->voitage_out[i]-i-10.0)/20.0); 

} 

// Output voltages to trident hardware 
HwOutpw(puinaData->PuniaDevice. 

0x030. voltage_int[0]); 
HwOutpw(puinaData->PiunaDevice, 

0x032, voltage_int[I]); 
HwOutpw(puniaData->PuniaDevice. 

0x034. voltage_int[2]); 
HwOutpw(pumaData->PuinaDevice, 

0x036, voltage_int[3]); 
HwOutpw(pumaData->PumaDevice. 

0x038. voltage_int[4]); 
HwOu^w(pumaData->PumaDevice. 

0x03a, voltage_int[5]); 

// save some old information 
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for (i=0;i<6;i-H-) 
{ 

pumaOata-
>errorold[i]=puniaData->enor[i]; 

pvunaData-
>theta_oId[i]=puinaData->theta[i]: 

} 
} 

// puinaHome.c 

#include "puma-h." 

void piiTnaHnTne(piiTnaFi1p* pumaData) 
{ 

short val[6]; 
int voItage_int[6]; 
inti; 
double thetafI6]; 
double localtime: 
double t^5.0; 

// read encoders 
vaI[0]=HwInpw(puniaData-

>E>umaDevice, 0x010); 
val[l]=HwInpw(pumaData-

>PumaDevice, 0x012); 
val[2]=HwInpw(puinaData-

>pumaDevice, 0x014); 
val[3]=HwInpw(pumaData-

>PuinaDevice. 0x016); 
val[4]=HwInpw(pumaData-

>PumaDevice, 0x018); 
val[5]=HwInpw(pumaData-

>PumaDevice, 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i-h-) 
{ 

puniaData->theta[i]=pumaData-
>encoder_scaie[i]*(((doubIe) val[i]) - pimiaData-
>encoder_offeet[i]); 

} 

// first time through get current position 
if (pimiaData->Iast_fIa^=l) 
{ 

pumaData-
>thetao[0]=puinaData->theta(0]; 

pumaData-
>thetao[ l]=pumaData->theta( 1 ]; 

pumaData-
>thetao[2]=pumaData->theta[2]; 

pumaData-
>thetao[3]=pumaData->theta[3]; 

pumaData-
>thetao[41=pumaData->theta(4]; 

pumaData-
>thetao[5]=pumaData->theta[51; 

pumaData->last_fIag=0; 
puinaData->timeh=pumaData-

>time; 
} 

// final position 
thetaf[0]=0.0; 
thetaf[ll=-1.57; 
thetafI2]=l.57; 
thetaf[3]=0.0; 
thetafl4]=0.0; 
thetafI51=0.0; 

// time that home has been running 
localtime=pumaData->time-pumaData-

>timeh; 

// do cubic spline interpolation 
if (localtime <= tf) 
{ 

pumaData-
>thetad[0]=puinaData->thetao[0]-3.0*(pumaData-
>thetao[0]-
thetaf[0])*localtime*localtime/(tf*tf)+2.0*(pumaD 
ata->thetao[0]-
thetafI01)*localtime*localtime*locaitime/(tP'tf*tf); 

pumaData-
>thetad[l]=pumaData->thetao[ 1 ]-3.0*(pumaData-
>thetao[l]-
thetaf[ll)*lQcaltime*localtime/(t£*tf)+2.0*(pumaD 
ata->tfaetao[l]-
thetaf[l])*localtime*localtime*Iocaltime/(tf*tf*tf); 

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(pumaData-
>thetao[2]-
thetafI2])*Iocaltime*localtime/(tf*tf)-r2.0*(pumaD 
ata->thetao[2]-
thetafl2])*localtime*localtime*localtime/(tf*tf*tf); 

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-
>thetao(3]-
thetafI3])*localtime*localtime/(tf*tf)+2.0*(pumaD 
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ata->thetao(31-
thetaf[3 ])*Iocaitime*IocaItime*Iocaltune/(tf*tf*tf); 

pumaData-
>thetad[4]=pumaData->thetao(4]-3.0*(puinaData-
>thetao[4]-
thetaf[4])*Iocaltiine*Iocaltime/(tf*tf)+2.0*(pmiiaD 
ata->thetao[4]-
thetaf[4])*IocaItiine*Iocaltime*Iocaltime/(tf*lf*tf); 

pumaDaia-
>thetad[51=puiiiaData->thetao[5]-3.0*(pumaData-
>thetao(51-
thetaf[5])*Iocaltime*locaItmie/(tf*tf)+2.0*(puniaD 
ata->thetao[5]-
thetaf[51)*locaItime*lcxaItiine*localtime/(tf*tf*tf); 

} 
// after tf stay put in the final posiuon 

else if (localtime > tf) 
{ 

puinaData->tfaetad(0]=thetafI0]; 
puniaData->thetad[ I ]=thetafi[ 1 ]; 
pumaData->thetad(2]=thetaf[2]; 
pumaData->thetad[3]=thetafI3 ]; 
pumaData->thetad[41=thetafI4]; 
pumaData->thetad[5]=thetafI5]; 

/ 

// 
// control section 
// 

for (i=0;i<6;i++) 
{ 

// calculate error 
puniaData->error[i]=puniaData-

>thetad[i]-pumaData->tIieta[i]; 

// calculate rate of change of the error 
pumaDaia-

>errordot[i]=(puniaData->error[i]-puniaData-
>errorold[i])/puniaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=puniaData->kp(i] *puniaData-
>error[il+puniaData->kd[i]*puniaData-
>errordot[i]; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i-H-) 
{ 

pumaData-
>voItage_out[i]=puniaData-
>voltage_out(i] y/+puniaData->vg[i]+puniaData-
>v_fric[i]+puinaData->vim[i]; 

if (^bsCpumaData-
>voItage_out[i]) > 9.9) 

pumaData-
>voltage_out(i]=9.9*puniaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]); 

voltage_int[iI=(int) 
(4095.0*(puniaData->voltage_out[i]+l0.0)/20.0); 

} 

// Output voltages to trident hardware 
HwOutpw(pumaData->PuniaDevice. 

0x030. voltage_inl[0]); 
HwOutpw(pumaData->PuniaDevice. 

0x032. voltage_int[Il); 
HwOutpw(pumaData->PuinaDevice. 

0x034. voItage_int[2]) ; 
HwOutpw(puniaData->PuniaDevice, 

0x036. voItage_int[3]); 
HwOutpw(pumaData->PuniaDevice, 

0x038. voltage_int[4]); 
HwOutpw(pumaData->PuniaDevice. 

0x03a. voltage_int[5]); 

// save some old information 
for (i=0;i<6;i-i->-) 
/ I 

pumaData-
>errorold[i]=pumaData->error[i]; 

pumaData-
>theta_oId[i]=puinaData->theta[i] ; 

} 

} 

// puniaIiutialization.c 

#include "puma.h" 

void puniaInitialization(puniaFile* pumaData) 
{ 

double frequency; 
inti; 

II desired refresh rate (Hz) 
5equency=300.0; 

// desired delta-t 
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puinaData->dt= 1.0/firequency; 

// initialize absolute time base to zero 
pumaData->time=0.0; 

I I set some joint limits for impedence fields 
pumaData->jlimit3=4.0; 
pumaData->jlimit5= 1.7; 

// set flags for slow up and down 
puinaData->fiist_fIag= 1; 
pumaData->Iast_flag= 1; 

// encoder stuff 
pumaData-

>encoder_scale[0]=0.00010035; 
pumaData->encoder_scale[ 1 ]=-

0.000073156; 
puinaData->encx)der_scale[2]=0.000117; 
puinaData->encoder_scale[3]— 

0.000082663; 
puinaData->encoder_scale[4]=-

0.000087376; 
pumaData->encoder_scale[5]=-

0.00016377; 

puniaData->encoder_oSset[0]=0.0; 
pumaData->encoder_oflfeet[ 1 ]=-21472.0; 
puinaData->encoder_offeet[2]=-I3426.0; 
puniaData->encoder_ofifeet[3 ]=8000.0; 
puniaData->encoder_ofE^t[41=0.0; 
puniaData->encoder_offeet[5]=0.0; 

// initialize feedback gains 
puniaData->kp[01= 118.0; 
puniaData->kd[0]= 15.4; 
puniaData->kp[l]=-288.0; 
puniaData->kd[ 1 ]=-24.0; 
pumaData->kp[2]=200.0; 
pumaData->kd[2|=20.0; 
pumaData->kp[3]=-15.0; 
puniaData->kd[3]=-2.0; 
puniaData->kp[4]=-25.2; 
puniaData->kd[4]=-2.2; 
pumaData->kp[5]=-10.0; 
pumaData->kd[5]=-2.0; 

piuiiaData->u vm=0.0; 
pumaData->v_vm=0.0; 

{ 
puniaData->erroroId[i]=0.0; 

// error values 
pumaData->theta_old(i]=0.0; 

// angular positions 
puinaData->v_&ic_old[i]=0.0; 
// fiiction voltages 

} 

for (i=0; i<3; 1+-^) 
! I 

puniaData->xv_old[i]=0.0; 
puniaData->xv_dot_old[i]=0.0; 
pmnaData-

>xv_dot_way_old[i]=0.0; 
puinaData->xyz_oId[i]=0.0; 
puniaData->xyz_dot_oId[il=0.0; 
pumaData-

>xvz_dot_wav_old[i]=0.0; 
} 

11 calibrate encoders 
HwOutpw(pumaData->PuniaDevice. 

0x020, 0x0000); 
HwOutpw(pumaData->PumaDevice, 

0x022, 0x0000); 
HwOu^)w(pumaData->PumaDevice, 

0x024,0x0000); 
HwOutpw(pumaData->PumaDevice. 

0x026. 0xlf40); 
HwOutpw(pimiaData->PumaDevice. 

0x028, 0x0000); 
HwOutpw(pumaData->PumaDevice. 

0x02a, 0x0000); 
} 

// sockeLc 

#include "puma-h" 

SOCKADDR_IN stLclName; 
SOCBLADDR_IN stRmtName; 

void openSocketCpimiaFile'* pumaData) 
{ 

int server=0; 
intnRet; 

// initialize some variables 
for (i=0; i<6; i++) 

// ip for snow 
// char szHostQ = •• 129.186.232.46"; 
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I I ip for hood 
charszHostO = "129.186.232.34"; 
// ip for mammoth 

// char szHostQ = " 129.186.232.54"; 

char szDataReceiveQ = {0}; 
unsigned long addr. 
WOEID WSA_VERSION; 
WSADATA stWSAData: 

WSA_VERSI0N = MAKEW0RD(1, 1); 
nRet=WSAStartup(WSA_VERSION, 

(festWSAData); 
if(aRet=0) printf("attached to winsock 

dU\n"); 
else printf("could not attach winsock 

dll\n"); 

if (pumaData->iiseSocket = 1) 
{ 

pumaData-
>hSock=socket(AF_INET. SOCK_DGRAM. 0); 

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not 
get a valid socket handle\n"); 

else 
{ 

if (server=l) 
{ 

stLcIName.sin_femily = PF_INET; 

stLclName.sin_port=htons(1026); 

stLcIName.sin_addr.s_addr=INADDR_A 
NY; 

nRet=bind(pumaData->hSock. 
(LPSOCKADDR) &stLcIName, si2eof(stnia 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printf("coiiId not 
bind server socket\n"); 

else 
printf("server socket: Open\n"); 

nRet=recv(pumaData->hSock, (LPSTR) 
szDataReceive. 5, 0); 

if 
(nReP=SOCKET_ERROR) printf("server socket 
could not receive dataVn"); 

else 
printf("sever socket received dataVn"); 

} 
else 
{ 

addr=inet_addr((LPSTR) szHost); 
if 

(addr==INADDR_NONE) printf("could not find 
address of server\n"); 

stRmtName.sin_&mily = PFINET; 

stRmtName.sinjxDrt=htons(1026); 

stElmtName.sin addr.s addr=addr. 

nRet=connea(pumaData->hSock, 
(LPSOCBCADDR) &stElmtNaine. sizeof(strua 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printf("could not 
connea to server socket\n"); 

else 

printf("Socket C)pen\n"); 

pim3aData->activeSocket= 1; 
} 

} 
} 

} 
} 

void cioseSocket(pumaFile* pumaData) 
{ 

int nRet; 

if (pumaData->activeSocket =1) 
{ 

nRet=closesocket(puniaData-
>hSock); 

if (nRet==SOCKET_ERROR) 
printfC'error closing socketVn"); 

else printf("Socket Closed\n"); 
} 
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nRet=WSACIeanup(); 

} 

void testSocketCpumaFile* pumaData) 
{ 

intoRet; 
char szDataSend[100]; 
double t0=0.0; 
double tl=L.571; 
double t2=-1.571; 

sprintf(szDaiaSend,"%4.3f %4.3f %4.3f 
%4.3f %4.3f y<4.3f %4.3f M0.t0.l2.tl.t0.t0.t0); 

if (puinaData->activeSocket = I) 
{ 

nRet=seiid(puinaData->hSock, 
(LPSTR) szDataSend. 51, 0); 

if (nRet=SOCKET_ERROR) 
printfC'Socket test feiledNn"); 

else priiitf("Socket test 
passed\n"); 

} 
} 

Darth Vader 

// error.c 

#include "puina.h" 

void error(pumaFile* pumaData) 
{ 

double xv[3],xv_dot[3]; 
double e[3]; 
double xv_ori[3][3],xyz(3].xyz_dot[3]; 
double rd[3][3]^[3],C[3]; 
double ctheta,theta.niag; 
double wn,2; 

int i.j\k; 
double rv[3][3]: 

// linear error - world space 
e[0]=0.0; //0.4175-x(0]; 
e[l]=0.0; //0.1505-x(l]; 
e[2]=0.0;//0.4310-x[2]; 

II linear error - end effector space 

for (j=0:j<3;j-H-) 
{ 

xv[i]=0.0; 
for (i=0;i<3;i+-i-) 
{ 

xv[j] -f-= pumaData-
>r[i]D]*e[i]; 

} 
} 

// rotational error - world space 
R[0]=-pumaData->r[0] [2]; 
R[ l]=-puniaData->r[ 1 ] [2]; 
R[2]=0.0; 
mag=sqrt(R[0]*R(0]+R[l]*R[I]+R[21*R[ 

2]); 
R[01=R[0]/niag; 
R(l]=R[ll/inag; 
R[2]=R[2]/mag; 

C[0]=puniaData->x[0]-1.0: 
C[ll=puniaData->x[l]-0.0; 
C[2]=0.0: 
mag=sqrt(C[0]»C[0]+C[l]»C[l]+C[2]»C[ 

21): 
C[01=C[0]/niag; 
C[l]=C[ll/mag; 
C[2I=C[2]/mag; 

ctheta=R[0]*C(01+R[l]*C[l]+R[2]*C[2]; 
theta=acos(ctheta): 

// check to see which solution of arccos is needed 
theta=theta*febs(R[0]*C[l]-

R[1]*C[0])/(R[0]*C[1]-R[1]*C[0]): 

// desired orientation - world space 
rd(0] [O]=cos(theta): 
rd[0] [ l]=-sin(theta); 
rd[0][2]=0.0; 

rd[ 1 ] [0]=sin(theta); 
rd[ 1 ] [ 1 ]=cos(theta); 
rd[l][2]=0.0: 

rd[2][0]=0.0; 
rd[2I[ll=0.0; 
rd[2][2]=1.0; 

for (i=0;i<3;i+-r) 
{ 

for (j=0-j<3;j-H-) 
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{ 
rv[i]D]=00; 
for (kF0-Jc<3i:++) 
{ 

rv[i][j] += 
rd[i] [k]*puinaDaia->r[k] [j]; 

} 
} 

} 

I I desired oiientation - end eflfeaor space 
for (i=0;i<3u-i-f-) 
{ 

for (j=0-j<3;j+-i-) 
{ 

xv_ori[i][j]=0.0; 
for (k=0Jc<3±-H-) 
{ 

xv_ori[i][j] += 
puniaData->r[k] [i] *rv[k] [j]; 

} 
} 

} 

// rotational error - end effector space 
x5-z[l]=atan2(-

xv_ori[2] [0].sqrt(xv_ori[0] [0] •xv_ori[0] [01+xv_or 
i[l][0]*xv_ori[l][01)): 

if (&bs(xvz[ll-l.5708) < 0.01) 
{ 

xyz[2]=0.0; 

xv-z[01=atan2(xv_ori[01[ ll,xv_ori{ 1] [l]"); 
} 
else if (fabs(xvz[l]-!-1.5708) < 0.01) 
{ 

.xyz[2]=0.0: 

.\yz[0]=-
atan2(xv ori[01[l],xv_ori[l][l]); 

} 
else 
{ 

xyz[21=atan2(xv_ori[ 1] [0],xv_ori[0] [0]): 

xyz[0]=atan2(xv_ori[2] [ l],xv_ori[2] [2]); 
} 

// derivatives of linear and rotational error 
wn=60.0; 
z=0.7071; 

for (i=0;i<3;i-H-) 
{ 

xv_dot(il=(wn*Twn*pumaData-
>dt*(xv[i]-pumaData->xv_old[i])+pumaData-
>xv_dot_old[i] *(2.0-i-2.0*z*wn*puinaData->dt)-
pumaData-
>xv_dot_way_old[il)/(1.0+2.0*z*wn*pumaData-
>dt+wn*wn*piunaData->dt*puniaData->dt); 

.icyz_dot[i]=(wn*wn*puniaData-
>dt*(xyz[i]-piiinaData->xyz_oId[i])+pumaData-
>xyz_dot_oId(i]*(2.0+2.0*z*wn*pumaData->dt)-
pumaData-
>:CT^_dot_way_oId[i])/(1.0+2.0*z*wn*puniaData-
>dt+wn*wn*pmnaData->dt*puniaData->dt); 

} 

for (i=0;i<3:i-i-+) 
{ 

pumaData-
>xv_dot_way_oId[i]=puniaData->xv_dot_old[i]; 

pumaData-
>xv_dot_old[il=xv_dot[i]; 

pumaData->xv_oId(i]=xv[i]; 
pmnaData-

>xyz_dot_way_old[i]=puniaData->xyz_dot_old[il; 
pmnaData-

>xyz_dot_oId[i]=xyz_dot[i]; 
puniaData->xvz_old[i]=xvz[i]; 

} 

// Evaluate virtual spring force 
for (i=0:i<3;i-H-) 

puinaData->fv[i]=-470.0*xv[il-
30.0*xv_dot[i]; 

} 

// if (f^s(theta) <=0.05) 
if (theta > 0.0) 
{ 

puniaData->contact= 1.0; 
for (i=0;i<3;i-H-) 
{ 

puinaData->fv[i+3 ]=-
60.0*xvz[i]-3. *xvz_dot[i]; 

'} 

J 

else 
{ 

pumaData->contact=0.0; 
for (i=0;i<3:i-(-+) 
{ 



www.manaraa.com

288 

pumaData-
>fv[i+3]=0.0; 

} 
} 

} 

// frictioiLc 

^include "puina.h" 

void £riction(puiiiaFiJe* pumaData) 
{ 

int i; 
double tau=0.05305; 

if (puinaData->theta[0] > pumaData-
>theta_old[0]) piiinaData->v_firic[0]=1.0; 

if (puniaData->theta(0] <= pumaData-
>theta_old(0]) pumaData->v_firic[0]=-0.9; 

puinaData->v_fric[0]=(puinaData-
>v_firic[0] *puniaData->dt-!-puiiiaData-
>v_&ic_old[0] *tau)/(puinaData->dt+au); 

if (puinaData->theta[l] > pumaData-
>tlieta_old[ll) 

{ 
if (puniaData->theta[l] > -1.57) 

pumaDaM->v_fric[ 1 ]=-0.3; 
else puniaData->v fric(l]=-0.9; 

} 
if (puinaData->theta[ll <= pumaData-

>theta_oId[l]) 
{ 

if (puniaData->theta(l] > -1.57) 
puinaData->v_fric[ 1 ]=0.9; 

else puniaData->v_&ic[l]=0.6; 
} 
puinaData->v_fric( I ]=(puinaData-

>v_fric[ 1 ] *pumaData->dt+pumaDaia-
>v_&ic_old[ 1] •tau)/(puinaData->dt+tau); 

if (puniaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fric[21=0.47; 

if (pumaData->theta(2] <= pumaData-
>tlieta_old[2]) pumaData->v_:Kc(2j=-0.47; 

pumaData->v_firic[21=(pumaData-
>v_fric[2]»puniaData->dt+piiiiiaData-
>v_fric_old[2] *tau)/(puinaData->dt+tau); 

if (pmnaData->theta[3] > pumaData-
>theta_old[3]) pmnaData->v_fric[3]=-0.35; 

else if (puiiiaDaia->tbeta[3I <= 
pmnaDaia->theta_oId[3]) pumaData-
>vj6ic[3]=0.35; 

else piiinaData->v_&ic[3]=0.0; 
pumaData->v_fric[3 ]=(puinaData-

>v_&ic [3 ] *puinaData->dt+puinaData-
>v_&ic_old[31 •tau)/(puinaData->dt+tau); 

if (puinaData->theta[4] > piimaData-
>tIieta_oId[4]) puinaData->v_fric[4]=-0.4; 

else if (puinaData->theta[4] < pumaData-
>tIieta_oId[4]) puniaData->v_fric[4]=0.4; 

else puniaData->v_fric[4]=0.0; 
puniaData->vj&ic[4]=(puinaData-

>v_&ic[4]*puniaData->dt+puinaData-
>v_fric_oId[4]*tau)/(puinaData->dt+tau); 

if (puinaDaia->tIieta[5] > pmnaOata-
>theta_oId[5]) puniaData->v_&ic[5]=-0.5; 

else if (puinaData->theta[5] < pumaData-
>tlieta_oId[5]) puinaData->v_&ic[5]=0.5; 

else puniaData->v_&ic(5]=0.0; 
puinaData->v_&ic[5]=(puinaData-

>v_fric[5]*puiiiaData->dt+puinaData-
>v_&ic_old[51*tau)/(puinaData->dt+tau): 

for (i=0;i<6;i-H-) 
{ 

pumaData-
>v_fric_oId[i]=puinaData->v_&ic[i]; 

> 

} 

n fLc 

#include "puina.h" 

void ftaskCpumaFile* pumaData) 
{ 

short data: 
BYTE bbigh, blow; 

data=I4; 
bhigfa=(BYTE) ((data & OxFFOO) » 8); 
blo\v=(BYTE) (data & OxFF); 
HwOutp(puinaData-

>FTDevice,0x02,bIow); 
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HwOutp(pumaData-
>FTDevice,0x03,bhigh); 
} 

int ftget(puinaFile* pumaData) 
{ 

short force(7], data; 
BYTE bhi^ blow; 
double wn=2.0*5.0*3.14159; 
double zeta=1.0; 
double f_fil[6]; 
int i; 

data=daia | (short) (blow & OxFF); 
force[2]=data; 

while ((HwInp(pumaData-
>FTDevice.0x04) & OxIO) == 0); 

blow=HwInp(pumaData-
>FrDevice.OxOO); 

bhigh=HwInp(puniaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[3]=data; 

// get a force measurement 

while ((HwInp(puniaData-
>FTDevice,0x04) & 0x10) == 0); 

bIow=HwInp(pinnaData-
>FTDevice,0x00); 

bhigh=HwInp(pumaData-
>FTT)evice,0x01); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[6]=data; 

while ((HwInp(puinaData-
>ETDevice,0x04) & 0x10) == 0); 

blow=HwInp(pumaData-
>FTDevice,OxOO); 

bhigfa=HwInp(puniaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data i (short) (blow & OxFF); 
force[01=data; 

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0); 

bIow=HwInp(pumaData-
>FTDevice.OxOO); 

bhigh=HwInp(pimiaData-
>FTDevice,OxO 1); 

data={short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[41=data; 

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0); 

bIow=HwInp(pumaData-
>FTDevice.OxOO); 

bhigh=HwInp(puinaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force(5]=data; 

if (force(6] != 0) retum(O); 

while ((Hwlnp(pumaData-
>FTDevice,0x04) & 0x10) == 0); 

bIow=HwInp(puniaData-
>FTDevice,OxOO); 

bhigh=HwInp(pumaData-
>FTDevice,0x01); 

data=(short) (bhigh « 8); 
data=data 1 (short) (blow & OxFF); 
force[l]=data; 

while ((Hwlnp(pun]aData-
>FTDevice,0x04) & 0x10) = 0); 

blow=HwInp(pimiaData-
>FTDevice,OxOO); 

bhigh=HwInp(pumaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 

// convert counts to force adjust for fbasis and 
weight of handle 

puinaData->forced[0]=((double) 
(fofce(0]))*0. l-pumaData-
>fbasis[0];+3.6*pumaData->r[2] [0]; 

puniaData->forced[ 1 ]=((double) 
(force[l]))*0. l-pumaData-
>fbasis[ 1] ;+3.6*pumaData->r[2] [ I ]; 

pumaData->forced[2]=((double) 
(force[2]))*0.1-pumaData-
>fbasis[2];+3.6*pumaData->r[2] [2]; 

puinaData->forced[3]=((double) 
(force[3]))*0.005-pumaData->fbasis[3]-
0.09*puinaData->forced[ 1] ;-0.06*2.6*pumaData-
>r[2][l]; 

puinaData->forced[4]=((double) 
(force[4]))*0.005-puniaData-
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>fbasis[4]-K).09*puinaData-
>forced[Q];-K).06*2.6*puniaData->r[2][0]; 

pniinaData->forced[5]=((double) 
(foice[5]))*0.005-puiiiaData->ffaasis[5]; 

// filter force data 
for (i=0;i<6;i++) 
/ I 

f_fil[i]=(pumaData-
>forced[i] *puniaData->dt*puinaData-
>dt*wn*wii+ 

pumaData-
>f_fil_old[i]*(2.0*zeta*wn*puinaData->dt+2.0)-

pumaData-
>f_fil_way_old[i])/( 1 .(H-2.0*zeta*wn*puinaData-
>dt+wn*wii*puinaData->dt*puinaData->dt); 

} 

for (i=0;i<3:i+-i-) 
{ 

puinaData->fl(i]==0.3 *f_fil[i]; 
pumaData-

>ft[i+3]=0.5*f_m[i+3]; 
} 

for (i=0;i<6;i-r+) 
{ 

pumaData-
>f_fil_vvay_old[i]=pumaData->f_fil_old[i]; 

puinaData->f_fil_old[i]=f_fil[i]; 
} 

retum(l); 

// fl1niriali7e.c 

#include "puma-h" 

int ftTnifiali7p(pimaFilp* pumaData) 
{ 

short data. force[7]; 
BYTE bhigh. blow; 

// clear any data in the buffer 
if (HwInp(puniaData->FTDevice.0xO4) & 

0x10) 
{ 

blow=HwInp(puinaData-
>FTDevice,OxOO); 

bhigh=HwInp(puniaData-
>FrDevice.OxO I); 

data=(sfaort) (bhigh « 8); 
data=data | (short) (blow & 

OxFF); 
printfCpreload 1 %d\n",data); 
SIeep(500); 

} 
if (HwInp(pumaData->FrDevice.0x04) & 

0x10) 
{ 

bIow=HwInp(puniaData-
>FTDevice.OxOO); 

bhigh=HwInp(puniaData-
>FTDevice.OxO 1): 

data=(short) (bhigh « 8); 
data=data | (short) (blow & 

OxFF); 
printfCpreload 2 %dVn".data); 
Sleep(500); 

X ) 

// send CI*? to switch to parallel board 
printfCSwitch to parallel boardVn"); 
Sleep(lOOO); 

while((HwInp(pumaData-
>ETDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

data=67; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwC)utp(pumaData-

>FTDevice.0x02,blow); 
HwOutp(pumaData-

>FTDevice.0x03 ,bhigh); 
printf("C\n"); 
Sleep(500); 

while((HwInp(pumaData-
>ETTDevice,0x04) & 0x80) = 0) Sleep(IOOO); 

data=80; 
bhigh=(BYTE) ((data & OxFFOO)» 8); 
blow=(BYTE) (data & OxFF); 
HwOutp(puinaData-

>FTDevice.0x02,blow); 
HwOu9(puniaData-

>FTDevice,0x03,bhigh); 
printf("P\n"); 
Sleep(500); 

while((HwInp(piunaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 



www.manaraa.com

291 

daia=80; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
bIow=(BYTE) (data & OxFF); 
HvvOutp(pmnaData-

>t 1 Uevice.0x02,blow); 
H\vOutp(puinaData-

>FTDevice,0xO3 .bfaigh); 
printf("P\n"); 
Sleep(500); 

while((HwInp(puniaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

data=13; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwC)utp(puiiiaData-

>tr iuevice,0x02,blow): 
HwOutp(puinaData-

>FTDevice,0x03.bhigIi); 
printf("<cr>\n"); 
SIeep(500); 

If wait for acknowledgment 
while ((HwInp(puniaData-

>FTDevice,0x04) & 0x10) == 0); 
bIow=HwInp(puniaData-

>FrDevice,OxOO); 
bhigh=HwInp(puniaData-

>FTDevice,OxO 1); 
data=(short) (bhigh « 8); 
data=data | (short) GJIOW & OxFF); 
printf("%d\n",data); 
SIeep(500); 

while ((HwInp(pumaData-
>FTDevice.0x04) & 0x10) == 0); 

bIow=HwInp(pumaData-
>FrDevice,OxOO); 

bhigh=HwInp(puniaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf("%d\n'\data); 
Sleep(500): 

while ((Hwlnp(puniaData-
>FTDevice,0x04) & 0x10) == 0); 

bIow=HwInp(pumaData-
>FTDevice,OxOO); 

bhigh=HwInp(puniaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 

data=data i (short) (blow & OxFF); 
printf("%d\n",data); 
SIeep(500); 

while ((HwInp(pumaData-
>FrDevice,0x04) & 0x10) == 0); 

blow=HwInp(puniaData-
>FrDevice,OxOO); 

bhigh=Hwlnp(puinaData-
>FrDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf("%d\n".data); 
Sleep(500); 

if (HwInp(puniaDaia->FTDevice.0x04) & 
0x10) 

{ 
blow=HwInp(puniaData-

>FrDevice.OxOO); 
bhigh=HwInp(puniaData-

>ETDevice.OxO 1); 
data=(short) (bhigh « 8); 
daia=data 1 (short) (blow & 

OxFF); 
printf(".%d\n".data); 
Sleep(500); 

} 

if (Hwlnp(puniaData->FTDevice.0x04) & 
0x10) 

{ 
blow=HwInp(piiniaData-

>FTDevice,OxOO); 
bhigh=Hwlnp(puinaData-

>FTDe%ice.OxO 1); 
data=(short) (bhigh « 8); 
data=data | (short) (blow & 

OxFF); 
printf("..%d\n",data); 
Sleep(500): 

} 

if (HwInp(puniaData->FTDevice.0x04) & 
0x10) 

{ 
bIow=HwInp(pumaData-

>FTDevice,OxOO); 
bhigh=HwInp(puniaData-

>FTDevice.OxO 1); 
data=(short) (bhigh « 8); 
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data=data | (shon) (blow & 
OxFF); 

printf("...%d\n",data); 
Sleep(500); 

} 

if (HwInp(pumaData->FTDevice,0x04) & 
0x10) 

{ 
blow=HwInp(puinaData-

>FTDevice,OxOO); 
bhigii=HwInp(puinaData-

>FTDevice,OxO 1); 
data=(short) (bhigh « 8); 
daia=data | (short) (blow & 

OxFF); 
printf("... .%d\n" .data); 
Sleep(500); 

} 

if (HwInp(puinaData->FTDevice.0x04) & 
0x10) 

{ 
blow=HwInp(piiniaData-

>FTDevice,0x00); 
bhigh=HwInp(puinaData-

>ETDevice.OxO 1); 
data=(short) (bhigh « 8); 
data=data | (short) (blow & 

OxFF); 
printf(" %d\n''.data); 
Sleq)(500); 

if (HwInp(pumaData->FTDevice.0x04) & 
0x10) 

{ 
blow=HwInp(puinaData-

>nDevice.OxOO); 
bhigh=HwInp(puinaData-

>FTDevice.OxO 1); 
data=(short) (bhigh « 8); 
data=data | (short) (blow & 

OxFF); 
printf(" %d\ii",data); 
Sleep(500); 

} 

// sendCDB 
printfC'Set to communicate binary 

mode\n"); 
Sleep(lGOO); 

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) == 0) Sleep(lOOO); 

data=67; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwOutp(pmnaData-

>ETDevice,0x02,blow); 
HwOutp(pmnaData-

>Fl'Device,0x03.bhigh); 
whiIe((HwInp(puniaData-

>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 
while ((Hwlnp(pimiaData-

>fTT)evice,0x04) & 0x10) — 0); 
biow=HwInp(puinaData-

>mDevice,0x00); 
bhigh=HwInp(puinaData-

>FrDevice,OxO 1); 
data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf(''%d\n".data); 
Sleep(500); 
if (data != 67) retum(O); 

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

data=68; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwOutp(pumaData-

>FTDevice,0x02.blow); 
HwOutp(pumaData-

>fTDevice.0x03.bhigh); 
while((HwInp(pumaData-

>FTDevice,0xO4) & 0x80) == 0) Sleep(lOOO); 
while ((HwInp(pumaData-

>FTDevice,0xO4) & 0x10) = 0); 
blow=HwInp(puinaData-

>FrDevice,OxOO); 
bhigh=HwInp(pumaData-

>FrDevice.OxG 1); 
data=(shon) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf("%d\n",data); 
Sleep(500); 
if (data != 68) retxim(O); 

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

data=66; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
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HwOutp(piunaData-
>FTDevice,0x02,blow); 

HwOutpCpumaData-
>FrDevice.0x03 ,bhigh); 

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

while ((HwInp(puinaData-
>FrDevice,0x04) & 0x10) = 0); 

blow=HwInp(puniaData-
>FTDevice.OxOO); 

bhigh=HwInp(puinaDaia-
>FTDevice.OxO 1); 

daa=(shoit) (bhigh « 8); 
data=data 1 (short) (blow & OxFF); 
priiitf("%d.\n",data); 
Sleep(500); 
if (data != 66) retuin(O); 

while((HwInp(pumaData-
>ETDevice,0x04) & 0x80) = 0) Sleep(lOOO); 

data=I3; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwOutp(pmnaData-

>FTDevice.0x02,blow); 
HwOutp(puinaData-

>FTDevice,0x03,bhigh); 
while((HwInp(puinaData-

>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO); 
while ((HwInp(puniaData-

>FTDevice,0x04) & 0x10) == 0); 
blow=HwIiip(puinaData-

>FrDevice,OxOO); 
bhigh=HwInp(pumaData-

>FrDevice.OxO 1); 
data=(short) (bhigh « 8); 
data=data i (short) (blow & OxFF); 
printf("%d\ii".data); 
Sleep(500); 
if (data != 13) retum(O); 

while ((Hwlnp(puinaData-
>FTDevice,0x04) & 0x10) == 0); 

blow=HwInp(puinaData-
>FTDevice.OxOO); 

bhigh=HwInp(puinaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf("%d\n",data); 
Sleep(500); 
if (data != 10) retum(O); 

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0); 

blow=HwInp(puinaData-
>FTDevice,OxOO); 

bhigh=HwIiip(puinaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
printf("%d\n".data); 
Sleep(500); 
if (data != 6) retum(O); 

while ((HwInp(puinaData-
>FTDevice,0x04) & 0x10) == 0): 

blow=HwInp(pumaData-
>FTDevice,OxOO); 

bhigh=HwInp(puinaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=data [ (short) (blow & OxFF); 
printf("%d\n",data); 
Sleep(500); 
if (data != 6) retiim(O); 

while ((HwInp(puitiaData-
>!• lUevice.0x04) & 0x10) == 0); 

blow=Hwlnp(puinaData-
>FTDevice,OxOO); 

bhigh=HwInp(puinaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=daia I (short) (blow & OxFF); 
printf("%d\n".data); 
Sleep(500); 
if (data != 13) retum(O); 

while ((HwInp(puinaData-
>FTDevice,0x04) & 0x10) — 0); 

blow=HwInp(puiiiaData-
>FTDevice,0x00); 

bhigh=HwInp(puinaData-
>FrDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
priiitf("%d\n",data); 
Sleep(500); 
if (data != 10) retuni(O); 

while ((HwInp(puniaData-
>FTDevice,0x04) & 0x10) == 0); 
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blow=HwInp(puinaData-
>FTDevice,OxOO); 

bhigh=EIwInp(pumaData-
>Fn)evice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
prmtf("%d\n'\daia); 
SIeqj(500); 
if (data != 62) return(O); 

while ((HwIiip(puinaData-
>FTDevice,0x04) & 0x10) = 0): 

blow=HwInp(puinaDaia-
>FTDevice,OxOO); 

bhigh=HwInp(puinaData-
>FrDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data i (short) (blow & OxFF); 
force(2]=data; 

// get a force measurement for the basis 
while((HwInp(pumaData-

>FTDevice,0xG4) & 0x80) == 0) Sleep(lOOO); 
data=14; 
bhigh=(BYTE) ((data & OxFFOO) » 8); 
blow=(BYTE) (data & OxFF); 
HwOutp(pimiaData-

>FTDevice,0x02,blow); 
HwOutp(pumaData-

>t" iuevice.0x03.bhigfa); 

while ((HwInp(piiinaData-
>t* 1 Uevice,0x04) & OxIO) = 0): 

blow=HwInp(puniaData-
>FTDevice.0x00); 

bhigh=HwInp(pumaData-
>FTDevice.OxO I); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[61=data; 

while ((HwInp(pumaData-
>FTDevice.0xO4) & 0x10) = 0); 

blow=HwInp(pumaData-
>FTDevice,0x00); 

bhigh=HwInp(pumaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[0]=data; 

while ((HwInp(pumaData-
>FTDevice,0xO4) & 0x10) = 0); 

blow=HwInp(pumaData-
>ETDevice,OxOO); 

bhigh=HwInp(pumaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[l]=data; 

while ((HwInp(pumaData-
>FTDevice.0x04) & 0x10) = 0); 

bIow=HwInp(puinaData-
>FTDevice,OxOO); 

bhigh=HwInp(puinaData-
>FTDevice,OxG 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force[3]=data; 

while ((HwInp(pumaData-
>FTDevice,0x04) & 0x10) = 0); 

blow=HwInp(puinaData-
>FTDevice.OxOO); 

bhigh=HwInp(pumaData-
>FTDevice.OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFEO; 
force[4]=data; 

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0); 

blow=HwInp(puinaData-
>FTDevice.OxOO); 

bhigh=HwInp(pumaData-
>FTDevice,OxO 1); 

data=(short) (bhigh « 8); 
data=data | (short) (blow & OxFF); 
force(5]=data; 

if(force[6] !=0) 
{ 

priiitf("Error getting force 

retum(O); 
basisVn"); 

} 

puniaData->fbasis[0]=((double) 
(force[0]))*0.1; 

pumaData->fbasis[ 1 ]=((double) 
(force[l]))*0.1; 
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puinaData->fbasis[2]=((double) 
(force(2]))*0.1+3.6; 

piiTnaData->fbasis[3]=((double) 
(force(3]))*0.005-0.09*puniaData->fbasis(l]; 

puniaData->fbasis[4]=((double) 
(force[4]))*0.005-K).09*pumaData->fbasis[01; 

puinaData->fbasis[5]=((double) 
(force(5]))*0.005; 

printfC'Fr initialized OK\n"); 
retuin(l); 

} 

// gravity.c 

#include "puina.h" 

void gravity(pumaFile* pumaData) 
{ 

double c2.s2.c23.s23; 

c2=cos(puinaData->tfaeta[ 1 ]); 
s2=sin(puinaData->dieta[l]); 

c23=cos(puinaData->tfaeta[ll+puinaData-
>tfaeta[2]); 

s23=sin(puTnaData->theta[ 1 ]+puinaData-
>tlieta[2|); 

// gravity compensatica 
puinaData->vg[0]=0 0; 
puinaData->vg[2]=-

I.1201»s23+0.0977*c23; 
pumaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*puniaData-
>vg[2]; 

pumaData->vg(3]=0.0; 
puinaData->vg[4]=0.0; 
puinaData->vg[5]=0.0; 

} 

pumaData-
>vim[0]=0.02*pow(( 1.0/(pmnaDaia->tlieta(0]-
2.7)),3.0)+0.02*pow(( 1.0/(puinaData-
>tlieta[01+2.7)),3.0); 

piunaData->viin[Il=-
0.02*pow((1.0/(puinaData->theta[l]-0.7)).3.0)-
0.02*pow(( I.O/(piiniaData->theta[ 1 ]+3.7)),3.0); 

pumaData-
>vim[2]=0.02*pow(( 1.0/(puinaDaia->theta[2]-
pumaData-
>jlinut3)).3.0)+0.02*pow((1.0/(puinaData-
>theta(2]-K).9)).3.0); 

pumaData->viin[3]=-
0.02*pow((1.0/(puinaData->theta[3]-3.2)),3.0)-
0.02*pow(( 1.0/(pumaData->tlieta[3 ]+1.8)),3.0); 

puinaData->vim[4]=-
0.02*pow(( 1.0/(pumaData->tIieta[4]-1.7)).3.0)-
0.02*pow((l-0/(puinaData->theta[4]+puinaDaia-
>jliinit5)).3.0); 

puinaData->viin(5]— 
0.02*pow((1.0/(pumaData->theta[5]-5.2)),3.0)-
0.02*pow(( 1.0/(pumaData->theta[5]+5.2)),3.0); 
} 

// ldneinatics.c 

#include "puma-h" 

void kineinatics(pumaFile* pumaData) 
{ 

double 
c 1 .s I,c2,s2,c3 ,s3 ,c23 ,s23 .c4,s4,c5,s5,c6,s6; 

double 1[5]; 
double 

V I,v2,v3 .v4,v5,v6.v7.v8,v9.v lO.v 11; 

l[l]=0.4318; 
1[2]=0.15005; 
1[3]=-0.0191; 
1(4]=0.4331; 

// unpedencex 

#include "puma.h" 

void iinpedence(puinaFile* pumaData) 
{ 

cl=cos(pumaData->theta[0]); 
sl=sin(puinaData->theta[0]); 

c2=cos(puinaData->theta[ 1]); 
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s2=sm(pumaData->thea[ 1 ]); 

c3=cos(puinaData->theta[2]); 
s3=sin(puinaData->theta[2]); 

c23 =cos(puinaDaia->theta[ 1 J+pumaData-
>theta[2]); 

s23=sin(puinaData->theta[ 1 ]+puinaData-
>theta[2]); 

c4=cos(puinaData->theta[3]); 
s4=sin(puinaData->theta[3]); 

c5=cos(puinaData->thea[4]); 
s5=sm(puniaData->theta[4]); 

c6=cos(pumaData->theta[5]); 
s6=siii(puinaData->theta[5]); 

pumaData-
>x[0]=c 1 *(023 *l[3]+s23 *l[4]+c2*l( 11)-s 1 •ip]; 

pumaData-
>x[l]=sl*(c23*l[3]+s23*l[4]+c2*l[ll)+cl»l[2]; 

pnmaData->x[2]=-s23 *l[3 ]+c23 *1[4]-
s2*I[l]; 

pumaData->x[3]=0.0; 
puniaData->x[4]=0.0; 
puniaData->x[5]=0.0; 

V I=c4*c5*c6-s4*s6; 
v2=s5*c6; 
v3=c23*vl-s23*v2: 
v4=s4*c5*c6-fc4*s6; 

puinaData->r[0] [0]=c 1 •vS-s 1 *^4; 
puniaData->r[ 1] [01=s 1 HS+c 1 *v4; 
puinaData->r[2] [0]=-s23 •v 1 -c23 *v2; 

v5=c4*c5*s6+s4*c6; 
v6=s5*s6; 
v7=-c23 *v5-(-s23 *v6; 
v8=s4*c5*s6-c4*c6: 

puinaData->r[0] [ l]=cl*v7-i-s l*v8: 
puinaData->r[l][ l]=sl *v7-cl *v8; 
puinaData->r[2] [ l]=s23 "^5+023 *v6: 

v9=c4*s5; 
V 10=c23 *v9+s23 *c5; 
vll=s4*s5: 

puinaData->r[0][21=cl*vl0-sl*vi i; 

piuiiaData->r[l][2]=sl*vlO+cl*vl 1; 
puinaDaia->r[2] [2]=-s23*v9+c23'*c5:\ 

// jacobian 
puinaData->eJr[0] [0]=c5*c6*(-

c23»c4'*l[2]+s4*(c2»l[l]+c23*l[3]+s23*I[41))+s6* 
(c23*s4»I[2]+c4»(c2*l[l]+c23*l[3]+s23*l[4]))+s5 
•c6*s23»l[2]; 

pumaDaia-
>eJr[0][l]=c5»c6*(c4*(s3*I[l]+l[4]))+s6»(-
s4»(s3*I[ll+I[4]))-s5»c6*(-c3*I[lI-I[3]); 

piiinaData->eJr[0] [2]=c5*c6*c4*l[4]-
s6*s4»l[4]+s5*c6*l[3]; 

puinaData->eIr[0] [3]=0.0; 
piunaData->eJr(0] [4]=0.0; 
puinaData->eJr[0] [5]=0.0; 

puinaData->eJr[ 1] [0]=-c5*s6*(-
c23*c4»l[2]+s4*(c2*l[l]+c23*l[3]+s23*l[4]))+c6* 
(c:23*s4*I[2I+c4«(c2»l[l]-fc23*I[3]+s23*l[4]))-
s5*s6*s23*I[2]; 

puinaData->eJr[l][l]=-
c5*s6*(c4*(s3*I[ll+l[4]))+c6*(-
s4*(s3 »1[ 1 ]+l[4]))+s5*s6»(-c3 *1[ I ] -I[3 ]); 

piiiniData->eJr[l][2]=-c5*s6*c4*I[4]-
c6*s4*l[4]-s5*s6»l[3]; 

puinaData->eJii;i][3]=0.0; 
puniaData->eJr[l][4]=0.0; 
puinaData->eJr(l][5]=0.0; 

piiinaData->eJr[2] [01=s5*(-
c23*c4*l[2]+s4*(c2*I[l]+c23»l[31-^3*l[4]))-
c5»s23*l[2]: 

pumaData-
>eJr[2] [ I]=s5*(c4*(s3 »l[ 1 ]-^l[4]))+c5*(-c3*l[l]-
I[3]); 

puinaData->eJr[2][2]=s5*c4*I[41-c5*I[3]; 
pumaData->eJr[2][3]=0.0: 
puinaData->eJr[2] [4]=0.0; 
pumaData->eJr[2] [5]=0.0: 

puinaData->eJr[3 ] [0]=s23 *(s4*s6-
c4»c5*c6)-c23*s5*c6; 

puinaData->eJr[3] [ I]=s4*c5*c6+c4*s6; 
puinaData->eJr[3] [2]=s4*c5 *06+04*56; 
puinaData->eJr[3 ] [3]=-s5*c6; 
puinaData->eJr[3 ] [4]=s6; 
puinaData->eJr[3][5]=0.0; 

pumaData-
>eJr[4] [0]=s23 *(c4*c5*s6+s4*c6)+c23 *s5*s6; 

puinaData->eJr[4][l]=-s4*c5*s6+c4*c6; 
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puiiiaData->eJr[4][2]=-s4*c5*s6+c4*c6; 
pumaData->eJr[4][3]=s5*s6; 
puinaData->eJr[4] [4]=c6; 
puniaDaia->eJr{4] [5]=0.0; 

puinaData->eJr[5] [0]— 
s23*c4*s5+c23*c5; 

piiinaData->eJr[5] [ 1 ]=s4*s5; 
piiinaData->eJr[5] [2]=s4*s5; 
puinaData->eJr[5] [3]=c5; 
pumaDaia->eJr[51[4]=0.0; 
pumaData->eJr(51 [5]=1.0; 

// main c 

#include "puma-h" 

void niain(void) 
{ 
// robot smflf 

pumaFile *pumaData; 
int stop; 
int homecounc 

// window's stuff 
HANDLE hprocess; 
HANDLE hthread; 
int processerror. 

// timer stuff 
BOOL result; 
LARGE_INTEGER li&equency, 
LARGE_INTEGER licoimt: 
LONGLONG frequency; 
double dfiequency; 
LONGLONG staitcount; 
LONGLONG count; 
double currenttime; 
double dtacrual; 
double dterror, 
double dtmax; 

// error flags 
int timererror, 
int timerovenun; 
int DeviceStop; 
int errorSockec 

// socket stuff 

intern 
char szDataSend[100]; 
int gcount; 

// ftstuff 
int ftinitok; 

// data file stuff 
double data[3][2000]; 
int datalength=2000; 
int datacount; 
int datacycle; 
intdatamax; 
int fileerror. 
FILE *out; 

// general stuff (counter and the like) 
int i; 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
II Taking Care of Business 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

printf("PUMA control programyn"); 
printfCwritten by Jim Edwards for 

LARCOn"); 
printf("AJl rights reserved\n\n\n\n"); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Code Initialization Section 
IlllllllinilllllllllllllllllilllllllllllllllillUIIIIIIIIIIIIIIIIIII 
II set counter error flag to pass 

timererror=I; 

// set coimter overrun flag to pass 
timeroverrun=l; 

I I start taking data at zero 
daiacoimt=0; 

// set data pass to zero 
datacycle=0; 

I I set process error flag to pass 
processerrorO; 

// set maximum delta-t to zero 
dtmax=0.0; 

I I set stop to pass 
stop=l; 
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// set homecoiint to zero 
homecount=0; 

// set socket enor to none 
errorSockeiK): 

// set graphics dump counter to zero 
gcount=0; 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
IIUH Hardware Initialization 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II get process handle 

hprocess=GetCurrentProcessO; 

// set process priority 
result=SetPriorityClass(hprocess, 

REALTIME_PRI0RITY1CLASS); 
if (result == 0) processerror=I; 

// get thread handle 
hthread=GetCurTentThreadO; 

// set thread priority 
result=SetThreadPriority(lithread, 

THREAD_PRIORriT_TIME_CRmCAL); 
if (result = 0) processerror=2; 

// allocate memoiy for puma structure 
pumaData=(puniaFile 

*)malloc(sizeof(pumaFile)); 

// connect to the puma kernel device 
DeviceStop=l; 
pumaData-

>PumaDevice=H'wNewDevice(NULL); 
HwSetErrorHandIer(pumaData-

>PumaDevice, MyErrorHandler); 
if (!HwConnectDevice(pumaData-

>PumaDevice. "pmna")) 
{ 

printfCFailed to connect to puma 
device!\n"); 

HwDeIeteDevice(pumaData-
>PumaDevice); 

DeviceSlop=0; 
} 

// coimea to the ft kernel device 
pumaData-

>FTDevice=HwNewDevice(NULL); 

HwSetEnorHandler(pumaData-
>FTDevice, MyErrorHmdler); 

if (!HwConnectDevice(pmnaData-
>FTDevice. "ft")) 

{ 
printfC'Failed to connea to ft 

device!\n"); 
HwDeleteDevice(pumaData-

>M Device): 
DeviceStop=0; 

} 

// setup fl 
ftinitok=ftInitialize(pumaData): 
pumaData->ftgetok= 1; 

// setup pmna 
piiTnafnitiali7ari<m(piimar)ara); 

// open socket - useSocket = 1 use socket = 0 
don't use socket 

pumaData->useSocket= 1; 
pumaData->activeSocket=0; 
openSocket(pumaData); 

// test socket 
testSocket(pumaData); 

// get frequency ofhigh performance counter 
resuIt=QueryPerfonnanceFrequency(&lifr 

equency); 
if (result = TRUE) 
{ 

firequency=li&equency.QuadPart; 
dfiequency=((doubIe) 

frequency); 
printfC'clock frequency: %f 

MHz\n\n\n\n".dfrequency); 
} 
else 
{ 

printfC'QueryPerfbrmanceFrequency; 
failure\n"): 

timererror=0: 
} 

// get starting count 
printf(''\n\n\nTum Arm Power On!!! !\n"): 
resuIt=QueryPerfonnanceCounter(&licou 

nt); 
if (result = TRUE) 
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{ pumaData-
startcoun^IicountQuadPart >theta[0]. 

} pumaDaia-
else >theta[l]. 
{ 

>theta[2]. 
pumaData-

printf("QueTyPerfonnanceCounter pumaData-
feilureVn"); >theta(3]. 

timererror=0; pumaData-
i >theta[4]. 

pumaData-
// disengage the brakes >theta(5]); 

HwOutpw(puniaData->PuiiiaDevice, 
0x026,0x0001); 

lllllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllll 
I I Main Control Loop 
lllllllllllllllllllllllllllllllllllllllllllllllltllllllllllllllllllll 

while((liomecount < 2000) && 
(puinaData->ftgetok = 1) && (ftinitok = I) && 
(DeviceStop = 1) && (timererror = 1) &&. 
(ttmerovemin = 1) && (processerror = 0)) 

{ 
I I control code 

if(kbliitO) stop=0; 
if (stop == 1) 
{ 
puniaControl(pumaData): 
} 
else 
{ 
homecount-H-: 

pumaHomeCpumaData); 
} 

// increment graphics dump counter 
gcount-H-; 

// send data to graphics engine 
if (gcount = 5) 
{ 
gcount=0; 

// but onI>- if there is an active socket for 
communication 

if (pumaData-
>activeSockei == 1) 

{ 

sprintf(szDataSend"%4-.3f %4.3f %4.3f 
%4.3f %4.3f %4.3f %t.3f 

pxmiaData->time. 

. err=send(pumaData->hSock, 
(LPSTR) szDataSend. 51. 0); 

if 
(erT=SOCKET ERROR) errorSocket=l; 

// timing code 

} 

do 
{ 

// get the current count of performance counter 

resuIt=QueryPerformanceCounter(&licou 
nt); 

if (result = TRUE) 
{ 

count=IicounLQuadPart: 
// convert into time since program started 

currenitime=((double) (count-
startcount))/d&equency: 

} 
else 
{ 

printf("QueryPerformanceCounter. 
&ilure\n"); 

timererror=0; 
} 

dtactual=curTenttime-
pumaData->time; 

} while(dtactual < pumaData-
>dt); 

// get maximum delta-t 
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if (dtactual > dtmax) 
dtniax=dtactual; 

I I get error in delta-t 
dterror=dtactuaI-puniaData->dt; 
if (&bs(dterTor) > pumaData-

>dt) tirneroverrun=0; 

I I take some data 
if (stqj == 1) 
{ 

data[0] [datacount]=pmnaData-
>forced[l]; 

data[ 1 ] [datacount]=puniaData->contact: 

data[2] [datacount]=painaData->x[ 1 ]; 

if (datacount == 1999) 
{ 

datacount=0; 
datac:vcle=l; 

} 
else daiacount++; 

} 

II update absolute time base 
puniaData->tinie=puniaData-

>time+pumaData->dt; 
} I I end main control loop 

II engage the brakes 
HwOutpw(pumaData->PumaDevice. 

0x02e, 0x0000); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Hardware Clean-Up 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I kemal device 

HwDeleteDevice(pumaData-
>PuiDaDevice); 

HwDeleteDevice(pumaData->FTDevice); 

// close socket 
closeSocket(pumaData); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
I I Take some data 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

I I open the data file 

if ((ou^open("om.dat"."wt"))=NULL) 
fileenot=0; 

else 
{ 

// write data 
fileerror=I; 

fprintf(out."niax dt is 
%f\n\n\n".dtniax); 

if (datacycle = 1) 
datamax=datalength: 

else dataniax=datacount: 

for (i==0; i<datamax: i++) 
{ 

fprintf(ouL"%f. %£ 
%f\n",daia[0] [i].data[ 1 ] [i],daia[2I [i]); 

// close file 
fclose(out); 

} 

llllllllllllllllllllllllllllllllllllllinilllllllllllllllllllllllllll 
I I Final Error Messages 
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

printf(''\n\n\nErTor Messages:\n"): 
if (timererror == 0) printf("timer 

malfimction\n"): 
else if (timeroverrun == 0) printf("timer 

over run\n"); 
else if (DeviceStop == 0) printf("DrTverX 

errorVn"); 
else if (fileerror == 0) printf("could not 

open data file\n"); 
else if (processerror = 1) printf("could 

not set process priorityVn"); 
else if (processerror = 2) printfC'could 

not set thread priority\n"); 
else if (errorSocket = I) printf("error 

sending data over socketVn"); 
else printfC'all went well\n"); 

Sleep(3000); 
} 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
mill DriverX Error Handler 
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
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void \fyErrotHaiidler(HWDEVICE* pDevice, 
DWORD nError) 
{ 

pruitf("CriticaI DriverX error %d\n". 
nError); 

exit(iiError); 
} 

// puiiia.li 

// include files 
#include <windows.li> 
#incliide <winsock.h> 
#include <stdio.h> 
#inciude <Coiiio.h> 
#include <inath.h> 
#inciude "DriverX-h" 

// structures 
tvpedefstrua 
{ 
// needed for all 

HWDEVICE* PmnaDevice: 
HWDEVICE* M Device; 
double dt; 
double time; 
double encoder_scale[6]; 
double encoder_ofE^t(6]; 
double tiieta[6]; 
double voltage_out[6]; 

// standard robot stufT 
double r[3][3]; 
double eJr[6][6]; 
double x[6]; 

// virtual majaipulator stuff 
double ftr[6]; 
double xv_old[3]; 
double xv_dot_old[3]; 
double xv_dot_w^_old[3]; 
double xy2_old[31; 
double j^_dot_old[3]; 
double xy2_dot_wa\_old[3]; 

// socket stuff 
SOCKET hSock; 
int useSocket; 
int activeSocket; 

// ftstuff 
double fbasis[6]; 
double forced[6]; 
int ftgetok; 
double ft[61; 
double f_fil_old[6]; 
double f_fil_way_old[6]; 

// needed for me 
int fiist_£lag; 
int last_flag; 
double kp[6]; 
double kd[6]; 
double error [6]; 
doirfjle erroroid[6]: 
double errordot[6]; 
double thetad[6]; 
double tIieta_old[6]; 
double thetao[61; 
double timeh: 
double vg[6]; 
double v_&ic[6]; 
double v_fric_oId(6]: 
double vim[6]; 
double jliniit3: 
double jlimitf; 
double contact; 

} pumaFile; 

// prototypes 
void main(void); 
void MyErrorHaiidler(HWDEVICE * . DWORD); 
void pnTnarniriaIi7ation(puTnfiFile *); 
int ftInitialize(pumaFile •); 
void pumaControl(pumaFile *); 
void pumaHome(puniaFiIe *); 
void openSocket(pumaFile *): 
void closeSocket(puniaFile *); 
void testSocket(pumaFile *); 
void gravity(pumaFile •); 
void fiiction(pumaFile *); 
void inipedence<puniaFile *); 
void fiask(pumaFile *); 
int flget(puniaFiIe •); 
void kinematicsCpumaFile •); 
void errorCpumaFile •); 

// pumaControLc 

#inciude "puma-h" 
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void pumaControlCpumaFile* pumaData) 
{ 

short val[6]; 
int voItage_int[6]; 
inti.j; 
double thetaf[61; 
double tf=5.0; 

// read encoders 
vaI[01=HwInpw(puinaDaia-

>PuinaDevice. 0x010); 
val[ 1 I=HwInpw(pumaData-

>PumaDevice, 0x012); 
val[2]=HwInpw(pumaData-

>PumaDevice. 0x014); 
val[3 ]=HwInpw(puinaData-

>PumaDevice, 0x016); 
val[4]=HwInpw(pumaDaia-

>PumaDevice, 0x018); 
val[5]=HwInpw(puniaData-

>PumaDevice. 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i+-r) 
{ 

pumaData->tlieta[il=puniaData-
>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_ofifeet[i]); 

} 

// ask for some forces 
ftask(puinaData); 

// forward kinematics and Jacobian 
kinematics(pumaData); 

// virtual manipulator control 
error(pumaData); 

// gravity compensation 
gravity(pumaData); 

// &iction compensation 
fiiction(pumaData); 

// get forces 
pumaData->ftgetok=ftget(pumaData); 

// impedence protection 
impedence(pumaData); 

// first time through get current position 
if (pumaData->first_flag=l) 
{ 

pumaData-
>thetao(0]=puinaData->theta[0]; 

pumaData-
>thetao[ I ]=pumaDaia->theta( 1 ]; 

pumaData-
>thetao[2]=pumaData->theta[2]; 

pumaData-
>thetao[3]=pumaData->theta[3 ]; 

pumaData-
>thetao[4]=pumaData->theta[4]; 

pumaData-
>theiao[5]=puniaData->theta[5]; 

p»mar)ata->first_flag=2; 
} 

// final position 
thetaf[0]=0.0 ; 
thetaf[l]=0.0 ; 
thetaft2]=0.0 ; 
thetaf[3]=-0.2593 ; 
thetaf[4]=1.3638; 
thetafI51=0.2776; 

// do cubic spline interpolation 
if (pumaData->time <= tf) 
{ 

pumaData-
>thetad[0]=pimiaData->thetao[0]-3.0*(pumaData-
>thetao[0]-thetafI0])*pumaData-
>time*pumaData->time/(tf*tf)T-2.0*(pmnaData-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time*pumaData-
>time/(tftP'tf); 

pumaData-
>thetad[ 1 ]=pumaData->thetao[ I ]-3.0*(pumaData-
>thetao(l]-thetaf[l])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[l]-tfaetaf[l])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(puniaData-
>thetao[2]-thetafI2])*pumaData-
>time*pumaData->time/(tf*tf)"'"2.0*(pumaData-
>thetao[2]-thetaf[2])*pumaData-
>time*pimiaData->time*pumaData-
>time/(tf*tf*tf); 

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-
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>thetao[3]-thetaf[3])*pmnaData-
>time*puinaData->tiaie/(tf*tf)+2.0*(pumaData-
>thetao[3]-thetafI3])*pumaData-
>time*puinaData->time*pmnaData-

pumaDaia-
>thetad[4]=puinaData->thetao[4]-3.0*(puinaData-
>tfaetao[4]-thetafI4])*pmnaData-
>time*puinaData->time/(tf*tf)+2.0*(puiQaData-
>thetao[4]-thetafI4])*puinaData-
>time*puniaData->tinie*puinaData-

pumaData-
>thetad[5]=puniaData->tlietao[5]-3.0*(puinaData-
>tfaetao[5]-tIietafI5])*pumaDaa-
>tune*puinaData->tiine/(tf''tf)+2.0*(piiinaData-
>thetao{51-thetafl51)*puniaData-
>time*puniaData->tinie*puniaData-

} 
// after tf stay put at final position 

else if (puinaData->tinie > tf) 
{ 

pumaData->thetad[0]=thetafI0]; 
puinaData->tlietad[ 1 ]=thetafl 1 ]; 
puinaData->thetad[2]=theiaf[2]; 
pumaData->thetad[31=tfaetafl31; 
purnaData->thetad[4]=thetafI4]; 
pumaData->thetad[5]=thetafI5]; 

} 

// 
// control section 
// 

for (i=0:i<6:i-i-f-) 
{ 

// calculate error 
puniaData->error[i]=puniaData-

>thetad[i]-puniaData->theta[i]; 

// calculate rate of change of the error 
pumaData-

>errordot[i]=(pmnaData->en:or[i]-pumaData-
>errorold[i])/puniaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=ptiinaData->kp[i]*pumaData-
>error[i]+puniaData->kd[i]*puinaData-
>errordot(i]; 

} 

// impedence based control law 
if (puniaData->time > 6.0) 
{ 

puinaData->jlimit3=1.4; 
puniaData-5jlinut5=-0.2; 
for O'=0-j<6;j++) 
{ 
puniaData->voltage_out(j]=0.0; 

for {i=0;i<6;i-H-) 
{ 

puinaData->voltage_out|j] += 
puniaData->eJr[i] [j]*(puinaData->fv[i]-pumaData-
>ft[i]); 

} 
} 
pumaData-

>voltage_out[01=puniaDaia->voltage_out[0]*-1.0: 
pumaData-

>voltage_out(2]=puinaData->voltage_out[2] *-1.0; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i++) 
{ 

pumaData-
>voltage_out(i]=puniaData-
>voltage_out[i]+puinaData->vg[i]+puniaData-
>v_&ic[i]-!-puinaData->vim[i]; 

if (fabs(pumaData-
>vQltage_out[il) > 9.9) 

pumaData-
>voltage_out[i]=9.9*puinaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]); 

voltage_int[i]=(im) 
(4095.0*(puniaData->voltage_out[i]+10.0)/20.0); 

} 

// Output voltages to trident hardware 
HwOutpw(puniaData->PuinaDevice. 

0x030, voltage_int[0]); 
HwOutpw(puniaData->PuniaDevice. 

0x032, voItage_int[l]); 
HwOuq)w(puniaData->PumaDevice, 

0x034. voltage_int[2]); 
HwOutpw(puniaData->PuniaDevice. 

0x036, voItage_int[3]); 
HwOutpw(puniaData->PumaDevice, 

0x038, voltage_int(4]); 
HwOutpw(puniaData->PuinaDevice, 

0x03a, voltage_int[5]); 
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I I save some old infonnatioa 
for (i=0;i<6;i-H-) 
s t 

pumaData-
>errorold[i]=pumaData->enor[i]; 

pumaData-
>theta_oId[i]=pmnaData->theta[i]; 

} 
> f 

H pumaHome.c 

#include "puma.Ii" 

void pumaHome(pumaFile* pumaData) 
{ 

short val[6]; 
int voItage_int[6]; 
int i; 
double thetaf[6]; 
double localtime: 
double tf=5.0; 

// read encoders 
vaI[0]=HwInpw(pumaData-

>PumaDevice, 0x010); 
val[l]=HwInpw(pumaData-

>PumaDevice. 0x012); 
val[2]=HwInpw(pumaData-

>PumaDevice. 0x014); 
val[3]=HwInpw(pumaData-

>PumaDevice, 0x016); 
val[4]=HwInpw(pumaData-

>PumaDevice, 0x018); 
val[5]=HwInpw(puinaData-

>PumaDevice, 0x0 la); 

// convert encoders to radians 
for (i=0; i<6; i++) 
{ 

pumaData->theta[i]=putnaData-
>encoder_scale[i]*(((double) val[i]) - piunaOata-
>encoder_ofEKt[i]); 

} 

// first time through get current position 
if (pumaData->last_flag=l) 
{ 

pumaData-
>thetao[0]=pumaData->theta[0]; 

pumaData-
>thetao[l]=pimiaData->theta[lI; 

pumaData-
>thetao[2]=pumaData->theta[2]; 

pumaData-
>thetao[3 ]=pumaData->theia(3 ]; 

pimiaData-
>thetao[4]=pimiaData->theta[4]; 

pumaData-
>thetao[5]=pumaData->theta[5]; 

puniaDaia->last_flag=0; 
puinaDaia->timeh=pumaData-

>time; 
} 

// final position 
thetafl0]=0.0; 
thetaf[l]=-L57; 
thetafI2]=1.57; 
thetafI3]=0.0; 
thetaf[4]=0.0; 
thetaft5]=0.0; 

// time that home has been running 
localtime=pumaData->time-puinaData-

>timefa; 

// do cubic spline interpolation 
if (localtime <= tf) 
{ 

pumaData-
>thetad[0]=pumaData->thetao(0]-3.0*(pumaData-
>thetao(01-
thetafl[01)*Iocaltime*localtim&(tf*tf)+2.0*(puniaD 
ata->thetao[0]-
thetaf[0])*localtime*localtime*localtime/(tf*tftf); 

pumaData-
>thetad[ 1 ]=puinaData->thetao[ 1 ]-3.0*(pumaData-
>thetao[lI-
thetaf[ 1 ])*localtime*localtime/(tf*tf)-i-2.0*(pumaD 
ata->thetao[l]-
thetaf[ 1 ])*localtime*localtime*localtime/(tf*tf*tf); 

pumaData-
>thetad[2]=pumaData->thetao(2]-3.0*(pumaData-
>thetao[2I-
thetaf[2])*localtime*localtime/(tf*tf)+2.0»(pumaD 
ata->thetao[2]-
thetaf[2])*localtime*localtime*localtime/(tf*tf*tf); 

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-
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>thetao[3]-
thetaf[3])*localtime*localtime/(tf*tf)-!-2.0*(puinaD 
ata->tlietao[3]-
thetaf[3])*localtime*Iocaitime*locaItime/(tf*tf*tf); 

pumaData-
>tfaetad[4]=piimar)ata->thetao[4]-3.0*(pumaData-
>thetao[4]-
thetaf[4])*IocaItime*localtime/(tf*tf)+2.0*(puinaD 
ata->tIietao[4]-
thetafI4])*IocaItime*localtime*localtime/(tf*tf*tf): 

pumaData-
>thetad[5]=puinaData->thetao[51-3.0*(puinaData-
>thetao[5]-
thetaf[5])*IocaItime*localtiine/(tf*tf)+2.0*(puinaD 
ata->tfaetao[5]-
theiafI5])*localtime*Iocallime*Iocaltime/{tf*tf*tf); 

} 
// after tf stay put in the final position 

else if Gocaltime > tf) 
{ 

pumaData->thetad[0]=thetaf[0]; 
pxunaData->tIietad[ 1 ]=thetaf[ I ]; 
pumaData->thetad[2]==thetafI2]; 
pumaData->tlietad[3]=thetafI3]; 
piunaData->thetad[4]=tIietaf[4]; 
pumaData->thetad[5]=thetaf[5]; 

} 

// 
// control section 
// 

for (i=0;i<6:i-i-f-) 

i 
// calculate error 

pumaDaia->error(i]=pumaData-
>thetad[i]-pumaData->theta[i]; 

// calculate rate of change of the error 
pumaData-

>errordot[i]=(pumaData->error[i]-pumaData-
>erTorold[i])/puinaData->dt; 

// evaluate local PD control law 
pumaData-

>voltage_out[i]=puinaData->kp[i] *puinaData-
>error[i]+puniaData->kd[i] »puniaData-
>errordot[i]; 

} 

// Convert voltages into integers to output to 
trident board 

for (i=0;i<6;i++) 
{ 

pumaDaia-
>voltage_out[i]=puniaData-
>voltage_out[i];//+puinaData->vg[i]+pumaData-
>v_&ic[i]+pumaData->vim[i]; 

if (fabsCpiimaData-
>voItage_out[i]) > 9.9) 

pumaData-
>voltage_out[i]=9.9*puniaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]); 

voltage_int[i]=(int) 
(4095.0*(puinaData->voltage_out[i]-rI0.0)/20.0); 

X i 

// Output voltages to trident hardware 
HwOutpw(puniaDaia->PumaDevice. 

0x030. voltage_int[0]); 
HwOutpw(puniaData->PuniaDevice. 

0x032, voltage_int[I]); 
HwOutpw(pumaData->PuinaDevice, 

0x034, voltage_int[2]); 
HwOutpw(pumaData->PuniaDevice. 

0x036, voItage_irK[3]); 
HwOutpw(puinaData->PuniaDevice. 

0x038, voltage_int[4]); 
HwOutpw(pumaData->PuinaDevice. 

0x03a. voltage_int[5]); 

// save some old information 
for (i=0;i<6;i-f-+) 
s K 

pumaData-
>errorold[i]=pumaData->error[i]; 

pumaData-
>theta_old[i]=pumaData->theta[i] ; 

} 
} 

// pumalnitialize.c 

#include "puma-h" 

void pumaInitializadon(pimiaFile* pumaData) 
{ 

double fiequency, 
int i; 

// desired re&esh rate (Hz) 
fiBquency=300.0; 
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// desired delta-t 
puniaDaia->dt= 1.0/frequency; 

// initialize absolute time base to zero 
puniaData->time=0.0; 

// set some joim limits for impedence fields 
pumaData->jlimit3=4.0; 
pmnaData->jIimit5= 1.7; 

// set flags for slow up and down 
pumaDaia->first_flag= 1; 
piimaData->last_flag= 1; 

// encoder stuff 
pumaData-

>encoder_scale[0]=0.00010035: 
pumaData->encoder_scaIe[ 1 ]=-

0.000073156; 
pumaData->encoder_scale[2]=0.000117; 
pumaData->encoder_scale[3 ]=-

0.000082663; 
puniaData->encoder_scale[4]=-

0.000087376; 
pumaData->encoder_scale[5]=-

0.00016377; 

pmnaData->encoder_o£EKt[0]=0.0; 
pumaData->encoder_ofSet[l]=-21472.0; 
pimiaData->encoder_ofifeet[2]=-13426.0; 
pimiaData->encoder_ofeet[3]=8000.0; 
pumaData->encoder_ofiEKt[41=0.0; 
puniaData->encoder_o£E«t[5]=0.0; 

// initialize feedback gains 
puniaData->kp[0]=l 18.0; 
pumaData->kd[0]= 15.4; 
pumaData->kp[l]=-288.0; 
pimiaData->kd[l]=-24.0; 
pumaData->kp[2]=200.0; 
pumaData->kd[2]=20.0; 
pumaData->kp[3]=-15.0; 
pmnaData->kd[3]=-2.0; 
puinaData->kp[4]=-25.2; 
pnmaData->kd[4]=-2.2; 
pimiaData->kp[5]=-10.0; 
purriaData->kd[5]=-2.0; 

// initialize some variables 
for (i=0; i<6; i++) 
{ 

pumaData->errorold[i]=0.0; 
// error values 

pumaData->theta_old[i]=0.0; 
// angular positions 

pumaData->v_fiic_old(i]=0.0; 
// fiiction voltages 
pumaData-

>f_fil_way_old[i]=0.0; 
pimiaData->f_fil_old[i]=0.0; 

} 

for (i=0; i<3; i++) 
{ 

. puniaData->xv_old[i]=0.0; 
pumaData->xv_dot_old[i]=0.0; 
pumaData-

>xv_dot_way_old(i]=0.0; 
pumaData->Jtyz_old[il=0.0; 
puniaData->xyz_dot_old[i]=0.0; 
pumaData-

>xyz_dot_way_old[i]=0.0: 
X. 
} 

I I calibrate encoders 
HwOutpw(pumaData->PumaDevice. 

0x020. 0x0000); 
HwOutpw(puinaData->PumaDevice. 

0x022, 0x0000); 
HwOutpw(piunaData->PumaDevice. 

0x024, 0x0000); 
HwOutpw(pmnaData->PumaDevice. 

0x026, 0xlf40); 
HwOutpw(pumaData->PumaDevice. 

0x028, 0x0000); 
HwC)utpw(pumaData->PumaDevice. 

0x02a, 0x0000); 
} 

it socketc 

#include "puma.h" 

SOCXADDR_IN stLclName; 
SOCKADDR_IN stRmtName; 

void openSocket(piunaFile* piunaData) 
{ 

int server=0; 
intnRet; 
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I I ip for snow 
I I char szHostO = " 129.186.232.46"; 

// ip for hood 
I I char szHostQ = "129.186.232.34"; 

// ip for mammoth 
// char szHostD = "129.186.232.54"; 

I I mammoth direa 
// char szHostQ= "192.168.1.3"; 

I I racer 
I I char szHostO= " 129.186.232.66"; 

I I tiny 
charszHostD= "129.186.232.49"; 

char szDataReceiveQ = {0}; 
uasigned long addr, 
WORD WSA_VERSION; 
WSADATA stWSAData; 

WSA_VERSION = MAKEWORDd, 1); 
nRet=WSAStartup(WSA_VERSION. 

&stWSAData); 
if (nRet=0) printf("attached to winsock 

dll\n"); 
else printfCcouId not attach winsock 

dll\n"); 

if (pumaData->useSocket = 1) 
{ 

pmnaData-
>hSock=socket(AF_INET, SOCK DGRAM, 0); 

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not 
get a valid socket handle\n"); 

else 
{ 

if (server=l) 
{ 

stLcIName.sin_femily = PF_INET; 

stLclName.sin_port=htons( 1036); 

stLclName.sin_addr.s_addi=INADDR_A 
NY; 

nRet=bind(puinaData->hSock, 
(LPSOCKADDR) &stLclName, sizeof(struct 
sockaddr)); 

if 
(nRetF=SOCKET_ERROR) printf("coiild not 
bind server socket\n"); 

else 
printf("server socket: OpenVn"); 

nRet=recv(pumaData->hSock, (LPSTR) 
szDataReceive. 5.0); 

if 
(nRet=SOCKET_ERROR) printf("server socket 
could not receive data\n"); 

else 
piintf("sever socket received data\n"); 

} 
else 
{ 

addr=inet_addr((LPSTR) szHost); 
if 

(addr=INADDR_NONE) printf("couId not find 
address of serverVn"); 

stRmtName.sin_family = PF_INET; 

stRmtName.sin_port=htons(1036); 

stRmtName.sin addr.s addr=addr. 

nRet=connect(pumaData->hSock. 
(LPSOCKADDR) &stRmtName. sizeof(struct 
sockaddr)); 

if 
(nRet=SOCKET_ERROR) printf("could not 
connea to server socketVn"); 

else 
{ 

printf("Socket Open\n"); 

puniaData->activeSocket= I; 
} 

} 
} 

} 
} 

void closeSocketCpirniaFile"' pumaData) 
{ 

int nRet; 
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if (puniaData->activeSocket == 1) 
{ 

nRet=closesocket(puinaData-
>hSock); 

if (nRet=SOCKET_ERROR) 
printfC'error dosing socketVn"); 

else printfCSocket Closed\n"); 
} 

nRet=WSACleanup(); 

} 

void testSocketCpumaFile'*' piunaOata) 
{ 

int nRet; 
char szDataSend[1001; 
double t0=0.0: 
double tl=1.571; 
double t2=-1.571; 

spriiitf(szDataSend."%4.3f %4-.3f %4.3f 
%4.3f%4.3f%4.3f%4.3f".t0,t0,t2.tl.t0.t0.t0); 

if (puniaData->activeSocket = 1) 
{ 

nRet=send(puinaData->hSock. 
(LPSTR) szDataSend, 51,0); 

if (nRet=SOCKET_ERROR) 
printfCSocket test feiled\n"); 

else printfCSocket test 
passed\n"); 

> 

} 

Dynamic Surface 

// basisfunc.c 

#include "JimsCave-h" 

void dboy_basisfiins(int î double u,int p,int 
mdouble •U.double •*ders) 
{ 
I* Compute nonzero basis iunctions and 
their 

derivatives. */ 

double saved.temp,d; 
int j,r,sl.s24c.rk,pk.j l.j2: 

ndu=dboy_DoubleMatrix(0,p,0,p); 
lefl=dboy_DoubIeVector(0,p); 
rigfat=dboy_DoubIeVector(0,p); 
a=dboy_DoubleMatrix(0,p,0,p); 

ndu[0][0]=1.0: 
for (j=l;j<=py-<-!-) 
{ 

left[i]=u-U[i+l-j]; 
right(j]=U[i+j]-u; 
saved=0.0; 
for (r=0;r<j;r^) 
{ 

ndu[j] [rl=right[r+- l]+left|j-r]; 
temp=ndu[r]lj-

l]/ndu[j][rl; 

ndu[r] [j]=saved+right[ri-1] *temp; 
saved=lrft(j-r]*temp; 

} 
ndu|j][j]=saved; 

} 
for 0'=OU<=PU"^) ders[0][j]=nduD][p]; 
for (r=0;r<=p;rt-r) 
{ 

sl=0; s2=l; 
a[01[0]=1.0; 
for (k=l Jc<=n;k++) 
{ 

d=0.0; 
rk=r-k; pk=p-k; 
if(r>=k) 
{ 

a[s2] [0]=a[sl] [0]/ndu[pk+1 ] [rkj; 

d=a[s2][0]»ndu[rkl[pk]; 
} 
if(rk>=-l) jl=l; 
else jl— 

rk; 
if(r-l<=pk) j2=k-l; 
else j2=p-

r, 
for (j=il;j<=j2;j-i-f-) 
{ 

double **ndu,*left,*right,**a; 



www.manaraa.com

309 

a(s2]D]=(a[sl]D]-a[sl][j-
l])/ndu[pk+ll[rk+jl; 

a[s2][fl*ndu[rk+j][pkl; 

a[s 1 ] [k-1 l/ndu[pk+1 ] [r]; 

a[s2][kriidu[r][pk]; 

} 
} 
r=p; 
for (k=lJc<=n;k-H-) 
{ 

for ders[kl(j] *= 
n 

r »= (p-k); 
} 

dboy_freeDoubleMatrix(ndii,0,p,0,p); 
dboy_&eeDoubleVeaor(leftO,p); 
dboy_&eeDoubleVeaor(right,0,p); 
dbov_freeDoubleMatrL\(a,0,p.0.p); 

} 

// computex 

#include "JinisCave.h" 

/* declare external shared memory pointers */ 
extern int *dboy_NCPTS; 
extern double **dboy_M, **dboy_K; 
extern double •dboy_PNEW, *dboy_PCURRENT, 
*dboy_POLD. *dboy_PREF; 
extern double **dbOT_PCONST; 
extern double •dboy_WAND; 

extern dboy_File *dboy_parameter. 

I* compute performs all necessary computations 
for drawScene() */ 
void dboy_Compute(void) 
{ 

intLj; 

double dt=0.05; 
double **sconst: 

sconst=dboy_DoubleMatrix( l.dbov_NCP 
TS[0]*dboy_NCPTS[l], 1,2); 

/* zero secondary position constraints */ 
for 

(i= 1 ;i<=dbov_NCPTS[0]*dbov_NCPTS[l];i-M-) 
{ 

sconst[i][l]=0.0; 
sconst[i][2]=0.0; 

} 

/* invert wand tip coordinates into parametric 
coordinates *t 

dboy_inversion(dboy_WAND.sconst); 

/* Step forward in time •/ 
dboy_step(dboy_PNEW.dboy_POLD,dboy 

_PCIJRRENT,dboy_BC,dboy_M,dt.dboy_PCONST. 
sconst); 

/* Up-data control points */ 
for (i=0;i<ix5y_NCPTS[l];i+-i-) 

{ 
for (J=0;j<dbov_NCPTS[0]j++) 
{ 

dboy_POLD[dboy_NCPTS[0]*i+j+l]=db 
oy_PCURRENT[dboy_NCPTS[0]*i-tj+l]; 

dboy_PCURRENT[dboy_NCPTS[01»i+j> 
1 l=dboy_PNEW[dboy_NCPTS[6] •i+j+1 ]; 

dboy_parameter-
>cpts[j][i][2]=dbov_PNEW[dbov_NCPTS[0]»i+j+ 
1]; 

i 
} 

dboy_fTeeDoubleMatrix(sconsL l.dboy_N 
CPTS[Ordboy_NCPTS[l], 1,2); 

/* check to see if the surface should be reset and 
killed »/ 

dbov_resetO; 
} 

// dpythag-C 

d+= 

} 
if (r<=pk) 
{ 

a[s21(kl= -

d+= 

} 
ders[kl[r]=d; 
j=sl; sl=s2; s2=i; 
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#inciude "JiinsCave.li" 

double dbov_dpythag(double a. double b) 
{ 

double absa.absb; 
absa=febs(a); 
absb=febs(b); 
if (absa > absb) return 

absa*sqrt( 1.0+dboy_DSQR(absb/absa)); 
else return (absb = 0.0 ? 0.0 : 

absb*sqrt( 1.0+dbov_DSQR(absa/absb))); 
} 

// draw.c 

#include "JimsCave.li" 

/* declare external shared memory pointers */ 
extern int *dboy_NCPTS; 
extern int *dboy_P; 
extern int •dboy_npatcti; 
extern double •dboy_U, •dboy_V; 
extern double •*dboy_X, •*dboy_Y, •*dboy_Z; 
extern double •*dboy_X_DU. **dboy_Y_DU; 
extern double **dboy_X_DV. ••dboy_Y_DV; 
extern double ***dboy_U_BAS. 
•»*dboy_U_BAS_D  ̂••»dbov_V_BAS, 
*»*dboy_V_BAS_DER; 
extern double *dboy_WAND; 
extern double *dboy_TRANS; 

extern int dboy_backTexIndex; 
extern int dboy_texture; 

extern dboy_File *dboy_parameter. 

extern int dboy_sound; 
extern int •dboy_Playme; 

extern awSound *dboy_sowood; 
extern awSound *dboy_soboing; 
extern awSound *dboy_socreaky: 

/• drawScene() is called every &ame */ 
void dbov_drawScene(void) 
{ 

int uj; 
double u, v, 
double *tpts, *tpts_du, *tpts_dv; 
double **temp, **temp_du; 

double •norm; 
double **tpts_store, **norm_store; 
int nu, nv; 
int uspan, vspan; 
ints, r. 
double mag; 
float ori[3]; 
float pos[3]; 
double point[3]; 
int bstate; 
double dme; 

gIClear(GL_COLOR_BUFFER_Brr | 
GL_DEPTH_BUFFER_BrD; 

if (dbov_sound) 
{ 

if (CAVEDistribMaster() && 
CAVEMasterDispIayO && CAVEEye == 
CAVE_LEFT_EYE) 

{ 
time = awGetClockSecsO; 
awFrame( time): 

if (dboy_Playme(0]=l) 
f 

awProp (dboy_soboing, 
AWSND_STATE. AWSND_ON); 

dbov_Plavme[0]=0; 
} 
if (dbov_Plavme[ 1 ]—1) 
{ 

awPtop (dboy_sowood. 
AWSND_STATE. AWSND_ON); 

dboy_PIayme[ 1 ]=0; 
} 
if (dboy_Plavme[2]=l) 
{ 

awProp (dboy_socreaky, 
AWSND_STATE. AWSND_ON); 

dboy_Playme[2]=0; 
} 
if (dboy_Playme[3]=l) 
{ 

awProp (dboy_socreaky, 
AWSND_STATE, AWSND_OFF); 

dboy_PIayme[3]=0: 
} 

} 
} 
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/* get wand position */ 
CAVEGetPosition(CAVE_WAND,pos); 
CAVEGetWandFront(ori[0],ori[l],ori[2]) 

dboy_ WAND [O]=(doiible) 
(pos[0]+1.0*ori[0]); 

dboy_W AND [ 1 ]=(doiible) 
(pos[I]+1.0*ori[l]); 

dboy_WAND[2]=(doubIe) 
(pos[2]+1.0*ori[2]): 

CAVEGetWandOrientation(ori[0].ori[l], 
ori[2]); 

/* draw wand •/ 
glCoior3f(0.0,1.0.0.0); 
if (dboy_paranieter->intersect) 

gICoIor3f(0.0. 1.0. l.O); 

glPiishMatrixQ; 
giTranslated(dfaoy_WAND[0], 

dboy_WAND[l], dboy_WAND[2]); 
glRotated((doubIe) (ori[0]), 0.0, 1.0, 0.0); 
gI[lotated((double) (ori[l]), l.O, 0.0,0.0); 
gIRotated((double) (ori[2]), 0.0,0.0, 1.0); 
glBegin(GL_TRIANGLE_STRIP); 

for (i=0;i<=10;i++) 
{ 

u=((doubIe) (i))/10.0; 

point[0]=0.05*cos(2.0*3.l4159*u); 

point[l]=0.05*sin(2.0*3.14159*u); 
point[2]=0.0; 
giVertex3dv(point); 

point(2] += l.O; 
gIVertex3dv(point); 

glEndO; 
glPopMatrixO; 

/* draw control point net in red *! 
glPushMatrixO; 

bstate=CAVEBuaonChange(2); 
if (dboy_parameter->intersect) 
{ 

if(CAVEBUTT0N2) 
{ 

if (bstate=l) 

{ 

dboy_TRANS[0]=dboy_paranieter-
>surf[0]-2.5; 

dboy_TRANS [ 1 ]=dboy_paranieter-
>surf[l]+2.5; 

dboy_TRANS [2]=dboy_paranieter-
>surfl2]; 

} 
dboy_parameter-

>wand_old(0]=dboy_WAND(0]-dboy_TRANS[0]; 
dboy_parameter-

>wand_old[l]=dboy_WAND[l]-dboy_TRANS[l]; 
dboy_parameter-

>wand_old[2]=dboy_WAND[2]-dboy_TElANS[2]; 
dboy_parameter-

>wand_old[3]=dboy_parameter-
>wand_oId[3]+((doubIe) ori[01)-dboy_TRANS[3]; 

dboy_paraineter-
>wand_old[4]=dboy_parameter-
>wand_old[4]+((double) ori[ll)-dboy_TRANS[4]; 

dboy_paranieter-
>wand_oId[5]=dboy_parameter-
>wand_old[5]-H((doubIe) ori[2])-dboy_TRANS[5]; 

} 
} 

dboy_TRANS[3]=((doubIe) ori[0]); 
dboy_TRANS[4]={(double) ori[l]); 
dboy_TRANS[5]=((doubie) ori[2]); 

glT ranslated(dboy_parameter-
>wand_old[0], dboy_parameter->wand_old[lj, 
dboy_paranieter->wand_old[2]); 

giTranslated(dboy_TRANS[0], 
dboy_TElANS[l], dboy_TRANS[2]); 

gIRotated(dboy_paiameter->wand_oId[3 ], 
0.0. 1.0,0.0); 

glRotated(dboy_parameter->wand_oId[4], 
1.0, 0.0,0.0); 

glRotated(dboy_paiameter->wand_old[5], 
0.0, 0.0, 1.0); 

glTianslated(-dboy_TRANS[0], -
dboy_TRANS[l], -dboy_TRANS[2]); 

glTranslated(-2.5.2.5,0.0); 

glCoIor3f(l,0,0); 
for (i=0;i<dboy_NCPTS[0];i+-i-) 

{ 
glBegin(GL_LrNE_STRIP); 
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for 
(j=0:j<dboy_NCPTS[l]y++) 

{ 

gl Vertex3dv(dbov_parameter->cpts[i] [j]); 
} 

glEndO; 
} 
for (i=0;i<dbov_NCPTS[lJ;i-i-r) 
{ 

gIBegin(GL_LINE_STRIP); 

for 
(j=0j<dboy_NCPTS[0]y"-!-i-) 

{ 

glVeitex3dv(dboy_parameter->q)ts(j] [i]); 
} 

glEndO; 
} 

/• Evaluate B-spline su&ce •/ 
gIColor3f(0.0. 0.369. 0.165); 

if (dbovtexture) 
{ 

glEiiable(GL_TEXrL'RE_2D); 
gICallList(dboy_backTexIndex): 

} 

nu=dboy_NCPTS[0]-1; 
nv=dboy~NCPTS[l]-I; 

tpts=dboy_DoubleVeaor(0,2); 
tpts_du=dboy_DoubleVeaor(0,2); 
tpts_dv=dboy_DoubleVeaor(0,2); 
temp=cibov_DoubieMatrLx(0,2,0.dbov_P[ 

1]); 
temp_du=dbov_DoubIeMatrix(0.2.0.dboy 

nonn=dboy_DoubleVeaor(0,2); 
tpts_store=dboy_DoubleMatrix(0.dboy_n 

patch[0],0.2); 
nonii_store=dboy_DoubleMatrix(0.dboy_ 

npatch[0],0,2); 

for (i=0;i<=dboy_npatch[0];i++) 
{ 

u=((double) i)/((dGubIe) 
dboy_npatch[0]); 

uspan=dbov_findspan(u,dboy_U,nu,dboy_ 
P[0]); 

glBegin(GL_TRIANGLE_STRJP); 
for O'=0;j<=dboy_npatch[01y++) 
{ 

v=((double) j)/((doubIe) 
dboy_npatch[0]); 

vspan=dbov_findspan(v.dbo>'_V,nv,dbov_ 
P[l]): 

for 
(s=0;s<=dbov_P[l];s++) 

{ 

temp[2][s]=0.0; 

temp_du[2][sl=0.0; 
for 

(r=0;r<=dbov_P[0];rH-) 
{ 

temp[2][sl=temp[2][s]+dboy_U_BAS[i]0] 
[rI*dboy_parameter->q)ts[uspan-
dboy_P[0]+r] [vspan-dboy_P[ l]+s] [2]; 

temp_du[2] [s]=tenip_du[2] [s]-i-dboy_U_B 
AS_DER[i]lj][r]*dboyjparameter->q)ts[uspan-
dboy_P[0]-rr][vspan-dbov P[l]+sl[2]: 

} 

tpts[2]=0.0: 
tpts_du(2]=0.0; 
tpts_dv[2]=0.0; 
for 

(s=0;s<=dbov_P[ 1 ] ;s++) 
{ 

tpts(2]=tpts[2]+dbov_V_B AS [i] [j] [s] *teni 
p[2][sl; 

tpls_du[2]=tpts_du[2]+dboy_V_BAS[i] [j] 
[s] *teiiip_du[2] [s]; 

tpts_dv[2]=tpts_dv[2]+dbov_V_BAS_DE 
R[i][j][sl»temp(2][s]; 

} 

tpts[0]=dboy_X[i]D]; 
tpts[l]=dboy_Y[i]0]; 
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<S'oy_2[ilDl=lpts[21; 

tpts_du[0]=dboy_X_DU[i]D]; 

tpts_du[lI=dboy_Y_DU[i]D]; 

tpts_dv(0]=dboy_X_DV[i](j]; 

tpts_dv[l]=dboy_Y_DV[i][]]; 

norm[0]=tpts_du[ 1 ] *tpts_dv[2]-
q)ts_du(2] *tpts_dv[ 1 ]; 

aonn[l]=tpts_du[0]*tpts_dv[2]-
tpts_du[2] *tpts_dv[0]; 

aonn[2]=tpts_du[0] *tpts_dv[ 1 ]-
tpts_du[ 1 ] *^ts_dv[0]; 

inag=sqrt(pow(nonn(0],2.0)+pow(iionn[l 
],2.0)+pow(nonn(2],2.0)); 

aonn[0]=nonn[0]/(inag); 

normt l]=nonn[ 1 ]/(inag); 

aomi[2]=nonn[2]/(inag); 

if(i !=0) 
{ 

glNonnaI3dv(norni_store[j]); 

giVertex3dv(tpts_store|j]); 

glNonnaOdv(nonn): 

glVertex3dv(tpts); 
} 
tpts_storetj] [0]=tpts[0]; 
tpts_store|j] [ l]=tpts[ 1]; 
tpts_storeO] [2]=tpts[2]; 

norni_store(j] [0]=nonn[0]; 

norm_storelj] [ l]=norm[ 1]; 

nonii_store(j] [2]=norm[2]; 
} 

gtEndQ; 
} 

if (dbov_tertuie) 
{ 

gIDisable(GL_TEXrLIRE_2D); 
glEndO; 

f 

glPopMairixO; 

dboy_&eeDoubleVeaor(tpts.0,2); 
dboy_freeDoubleVeaor(tpts_du.0,2); 
dboy_freeDoubleVeaor(tpts_dv,0,2); 
dbov &eeDoubleMatrix(temp.0.2,0.dbov_ 

P[ll): 
dbov_&eeDoubIeMatrix(temp_du.0.2.0.db 

oy_P[I]); 
dboy_freeDoubIeVeaor(nonn.0,2); 
dboyj&eeDoubIeMatrix(tpts_store.0.dboy 

_npatcfa[0],0,2); 
dfaoy_freeDoubleMaliix(nonii_store,0,dbo 

y_npatch[0].0.2): 
} 

// dsvbksb.c 

#include "JimsCave-h" 

void dboy_dsvbksb(double **u.doubIe •w.double 
**v.iiit m,int ludouble •b.double •x) 
{ 

intii.j,i; 
double s.*tmp: 

tmp=dboy_DoubleVeaor( Un); 
for 0=l:j<=iuj-i-i-) { 

s=0.0: 
if (w|j]) { 

for (i=I;i<=m;i-<-(-) s +-

s /= wjj]; 
} 
tinp[j]=s; 

} 
for 0=l;j<=ii:j++) { 

s=0.0; 
for (ij=l;ii<=iuii-H-) s += 

vDlDuTtmpQj]; 
xD]=s: 
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} 
dboy_&BeDoubleVeaor(tmp. l,n); 

// dsvdcmp.c 

#mclude "JinisCave.h" 

void dboy_dsvdcmp(doufaie **3,1111 ntint adouble 
*w,doubIe •*v) 
{ 

int flag4,its.j JJcLnm; 
double aiiorm.cjElg,Ii,s.scale,xy,z,*rvl; 

rv I =dboy_DoubIe Vector( 141); 
g=scale=anorai=0.0; 
for (i=l;i<=ii;i-H-) { 

l=i+l; 
rvl[i]=scale*g; 
g=s=scale=0.0; 
if (i <= m) { 

for (k=i;k<=m;k-H-) 
scale += &bs(a(k][i]); 

if (scale) { 
for 

(k=iJc<=mJc-H-) { 

mm 
/= scale: 

s += 
a[k][i]*a[k][i]; 

dboy_SIGN(sqit(s)jE); 

(j=l:j<=n;j++) { 

^a[il[il; 
g = -

h=f*g-s; 
a[i][i]=f-g; 
for 

(s=O.OJk=iUc<=ni;k-H-) s += a[k][i]*a[k][i]; 

(fc=iUt<=niJc-H-) a[kl[j] += f*a[k][i]; 
} 
for 

(k=i;k<=mjc-i-+) a[k][i] •= scale; 
} 

for 

f=s/h; 
for 

} 
w[il=scale •§; 
g=s=scale=0.0; 

if (i <= m && i != n) { 
for (l̂ IJc<=ii;k++) 

scale += &bs(a[il|̂ I); 
if (scale) { 

for 
(k=lUc<=nU£+-'-) { 

a[i][kl 
/= scale: 

s += 
a[i][k]*a(i]rKl: 

} 

dboy_SIGN(sqrt(s)i); 

(k=IJc<=nJc-i-i-) rvl[kl=a[i][kl/li: 

^a(i][l]: 

h=f*g-s: 
a[i][l]=f-g; 
for 

for 
(j=l:j<=in:j++) { 

(s=O.OJc=lJc<=n±-H-) s -i-= a[j][kl*a[i][k]: 
for 

for 
(k=IJc<=iuk-i->-) a|j][k] += s*rvl(k]; 

} 
for 

(k=IJc<=Tuk-H-) a[il[k] *= scale: 
} 

} 

anonn=dboy_DMAX(anonii,(febs(w[i])-i-f 
abs(rvl[i]))): 

for (i=Ti:i>=l;i—) { 
if (i < Q) { 

if(g) { 
for 

(j=lU<=n:j++) v[n [il=(a[il [j]/a[i] [Il)/g; 
for 

(j=l:j<=n:j+-^) { 

(s=O.OJc=lJc<=iiJc-H-) s += a[i][k]*v[k][i]; 

(k=lj£<=nJc-H-) v[k]|j] += s*v[k][i]; 

for 

for 

v[i]m=vO][i]=0.0; 

} 
for 

} 
v[i][i]=1.0: 
g=rvl[i]; 
I=i; 
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} 
for (i=dboy_IMIN(m,n);i>=l;i—) { 

M+l; 
g=w[i]; 
for 0=l;j<=n:j-i-^) a[i]|j]=0.0; 
if(g) { 

g=l-0/g; 
for (j=l;j<=n:j-i-(-) { 

for 
(S=0.0j£=ljc<=in;k-H-) s += a[k][i]*a(lc][j]; 

f=(s/a[i][il)*g; 
for 

(k=uk<=nuk-H-) a[k][j] += f*a[k][i]; 
} 
for (j=iy<=in:j-H-) 

aD][i]»=g; 
} else for (i=i;j<=m;j-i-+) 

aD][il=0.0; 

} 
for (k=iijc>=l Jc—) { 

for (its=l;its<=30;its-t-+) { 
flag=l: 
fora=k;l>=l;l-) { 

nm=l-l; 
if 

((doufale)(febs(rvl[l])Tanonn) = anorm) { 

flag=0: 
break: 

s 
if 

((doubIe)(&bs(w[nm])-i-anonn) == anorm) break: 
} 
if (flag) { 

c:=0.0; 
s=l.O: 
for 

(i=l:i<=k:i4-H) { 

f=s*rvl[i]; 

rvl[i]=c*rvl[i]; 
if 

((double)(&bs(f)+anorm) == anorm) break: 

g=w[i]; 

h=dboy_dpythag(f,g); 

w[i]=h; 

h=1.0/li: 

c=g*li: 

Ph: 

(j=l:j<=m:j+-!-) { 

y=a[j][nm): 

^a[j][i]; 

a[j] [nm]=y*c+z*s: 

aD][i]=z*c-y*s: 

s = • 

for 

} 

> 

z=w[k]; 
ifa = k){ 

if(z<0.0) { 
w[kl 

-z: 
for 

(j=l;j<=n;j-Hr) v[j][k] = -v(j][kl; 
} 
break: 

} 
if (its = 30) printfC'no 

convergence in 30 dsvdcmp iterationsln"): 
x=w[l]; 
nm=k-l; 
y=w[mnl: 
g=rvl[nm]; 
h=rvl[k]; 
f^((y-z)*(y+z)+(g-

li)»(g+h))/(2.0»li«y); 
g=dboy_dpythag(f, 1.0); 
f=((x-

z)*(x+z)+h*((y/(f+dboy_SIGN(g4)))-li))/x: 
c—s—1.0: 
for (j=l:j<=nm:j++) { 

i=j+l; 
g=rvl[i]; 
y=w[i]: 
h=s*g: 

z=dboy_dpythag(£h); 

g=c*g; 

rvl[j]=z: 
c=Cz: 
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s=h/z; 
^*c+g*s; 
g = g*c-x»s; 
li=y*s; 
y •= c; 
for 

(ij=I;ij<=n;i]++) { 

x=v(ij][j]; 

z==vCljl[il; 

v[ij][n=x*c î-z*s; 

v[ij][i]=z*c-x*s; 
} 

z=dboy_dpythag(fJi); 
wD]=z: 
if(z){ 

2:=1.0/z; 
c=f*z; 

s=h*z; 
} 
f=C*g+S*\-
x=c*y-s*g; 
for 

(ij=l;ij<=in;ij++) { 

>"=a[ij][j]; 

z=a[u][i]; 

a[ij]D]=y*c+z*s; 

a[ij][i]=z*c-v*s; 
} 

} 
rvl[l]=0.0; 
rvl[kl=f, 
w[k|=x; 

} 
} 
dbov_freeDoubleVectorfrvl, l,n); 

} 

// eiementc 

#include "JimsCave-h" 

extern int •dboy_NCPTS; 
extern int *<iboy_P; 
extern double •dboy_U, •dboy_V; 
extern double **dboy_Nl **dboy_BC; 

extern dbo\-_File •dboy_paiameten 

void dbov_element(void) 
{ 

int LjXlAii-ui-jij; 
intng; 
ints,n 
double 

**temp.**teinp_du.dx_du,dy_du.dx_dv,dy_dvjna 
g i.**ini.**iiirv. 

double a.b.c.idGauss; 
double u,v; 
int nspan,vspan,nu,nv.du,dv; 
double •g,*w.*gu.*gv; 
double 

•*uders.**vders,*Ni.*Ni_du,*Ni_dv-

/* Gauss quadrature points and weights */ 
ng=4; 
g=dboy_Double Vector(0.ng-1); 
giFdboy_Double Vertor(0,ng-1); 
gv=dboy_E)oubIeVector(Ojig-l); 
g(0]=0.861I36312; 
g(l]=0.339981044: 
g[21=-0.339981044; 
g(3]=-0.861136312; 

w=dboy_DoubleVeaor(0,ng-l); 
w(0]=0.34785485: 
w[l]=0.65214515; 
w[2]=0.65214515; 
w[31==0.34785485: 

/* allocate some memory •/ 
uders=dboy_DoubleMatrix(0.dboy_P[0].0 

.dboy_P[0]); 
vders=dboy_DoubleMatrix(0,dboy_P[ 1 ],0 

.dboy_P[l]); 
Ni=dboy_Double Vector(0.(dboy_P[0]+1) 

»(dboy_P[l]+l)-l); 
Ni_du=dboy_DoubleVeaor(0,(dboy_P[0] 

+I)»(dboy_P[lI+l)-l); 
Ni_dv=dboy_DoubleVeaor(0,(dboy_P[0] 

•f-l)*(dboy_P[ll+l)-I); 
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tenip=dbov_DoubIeMatcix(0. l,0.dbov_P[ 
11); 

temp_diF=dbov_DoubIeMatrix(0. l,0.dbov 

jni=dboy_DoubleMatrix(0.1,0,1); 
jiiiv==dboy_DoubleMatrix(0, LO, 1); 

/* evaluate mass and stiffness matrices *! 

I* zero matrices */ 
for 

(i=0;i<=dbov_NCPTS[0]*dbov_NCPTS[l]-l;i++) 
{ 

for 
0"=0u<=dbov_NCPTS[0]*dbov_NCPTS[l]-l;j++) 

{ 
dboy_M[i][j]=0.0: 
dbo^_K[ilO]=0.0; 

} 
} 

/* integrate each element separately */ 
for (i=dboy_P[0];i<=dboy_NCPTS[0]-

la++) 
{ 

for 
(j=dboy_P[l]J<===dboy_NCPTS[l]-l;j-H-) 

{ 

/* scale quadrature points to correa range */ 
a=dboy_U[i]; 
b=dbov_U[i+l]; 

c=dboy_VIj]; 
d=dbOT_V[j+l]; 

for (k=0Jc<ng-4c+^) 
{ 

gu[kl=((b+a)/2.0)+((b-a)/2.0)*g[k]; 

gv[k]=((d+c)/2.0K(d<)/2.0)»g[k]; 
} 

I* determine magnitude change due to rescaling 
*1 

dGauss=((b-a)/2.0)*((d-
c)/2.0); 

/* initialize stuff for basis fimction evaluation */ 
nu=dboy_NC:PTS[0]-l; 
du=l; 

nv=dboy_NCPTS[l]-l; 
dv=l; 

/* for each Gauss point */ 
for (lc=0 Jc<ag;k-M-) 
{ 

/* evaluate interpolation (basis) functions •/ 
u=gu[k;]; 

uspan=dbov_findspan(u.dbov_U.nu,dbov_ 
P[0]); 

dboy_basisfuns(uspan.u.dboy_P[01,du.dbo 
y_U,uders); 

for 
(l=0;l<ng;l+-!-) 

{ 

v=gv[l]; 

vspan=dboy_findspan(v.dbov_V.irv,dbov_ 
P[11); 

dboy_basisfims(vspan.v,dboy_P[ 1 ] .dv.dbo 
y_V,vders); 

for 
(ii=0-,ii<=dbov_P[l]-.ii-i-r) 

{ 

for (ij=0jj<=dboy_P[0]J+-i-) 

{ 

Ni(j]+(dbov_P[01+1 )*ii]=uders[0] [jij] *vde 
rs[0][ii]; 

Ni_du[j[]-Kdboy_P[0]-i-l)*ii]=uders(l][ij]* 
vders[0][ii]; 

Ni_dv[ij+(dboy_P[0]-r l)*ii]=uders(0] [jj]* 
vders[lj[ii]; 

} 
} 

/* evaluate Jacobian matrix */ 
for 

(s=0;s<=dboy_P[l];s++) 
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{ 

teinp[0][sj=0.0; 

teinp[l][s]=0.0; 

tenip_du[0][s]=0.0; 

teinp_du[l][s]=0.0; 

for (r=0-j<=dboy_P[0];r++) 

{ 

temp[0] [s]=teinp[0] ts]+uders[0] [r]*dboy_ 
paraineter->qjts[uspan-dboy_P[0]+r][vspan-
dboy_P[l]+s][0]; 

temp[l][sl=temp[l][s]+uders[0] [r]*dboy 
parameter->q)ts[uspan-<flx>y_P[0]+rl[vspaii-
dboy_P[l]+s][l]; 

temp_du[0][s]=temp_du[0][s]+uders[l][r] 
•dboy_parameter->qjts[uspan-
dboy_P[0]+r][vspan-<Iboy_P[l]+sl[0]; 

teinp_du( 1 ] [s]=temp_du[ 1 ] [s]+uders[ 1] [r| 
•dboy_parameter->q)ts[uspan-
dboy_P[01+r] [vspan-dboy_P[ 1 ]+sl [ 1]; 

} 
} 

dx_du=0.0; 

dy_du=0.0; 

dx_dv=0.0; 

dy_dv=0.0; 

for 
(s=0;s<=dboy_P[ 1] ;s++) 

{ 

dx_du=dx_du+vders[0] [sj *temp_du[0] [sj 

dy_du=dy_du+vders[0][sl*temp_du[l][sl; 

dx_dv=dx_dv+vders( I ] [s j*temp[0] [s]; 

dv_dv=(ty_dv+vders (11 [s] •temp [ 1 ] [s I; 
} 

jm[0][0]=dx_du; 

jm[0][I]=dy_du; 

jm[l][0]=dx_dv; 

jm[l][ll=dy_dv: 

magj=^m[0][0]»im[l][l]-
jm[0][l]*jm[ll[0]; 

/• evaluate the inverse of the Jacobian matrix */ 

jinv[0][0]^m[l][l]/magj; 

jinv[0][l]=-jm[0][l]/wagJ; 

jinv[l][0]=-jm[l][0]/magj; 

jinv[l][l]=jm[0][0]/inagJ; 

/* evaluate integral and assemble into global 
matrix */ 

for 
(ii=0;ii<=(dbov_P[0]-i-1 )*(dbov_P[ 1 ]+1)-1 ;ii+-^) 

{ 

for 
(ij=ii;jj<=(dboy_P[0]+l)*(dboy_P[l]+I)-l;j|i-t-+) 

{ 

iii=ii-
(dboy_P[0]+l)*(ii/(dboy_P[0]+l))+uspan-
dboy_P[0]+dboy_NCPTS[0]*((ii/(dboy_P[01+l))+ 
vspan-dboy_P[l]); 
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(dboy_P[0]+l)*(|j/(dboy_P[0]+l))+uspaii-
dboy_P[0]+dboy_NCPTS(0]*((ij/(dboy_P[0]+l))+ 
vspan-<fi)oy_P[ll); 

dboy_M[iii][iifl -H= 
>fifii1*Nififl*wncl*wfn*mag i*dGanss: 

dboy_K[iii](ji]] += 
(Ni_du[ii]*Ni_du[ij]*(jiDv[0] [0]*jmv[01 [01+jiiiv[ 1 
l[0]*jinv[ll[0]) 

•!-Ni_dv[ii] *Ni_duQj] •(jinv[0] [0] *jinv[0] [ l]+jmv[ 1 
l[0]*jiiiv[l][l]) 

-!-Ni_du[ii]*Ni_dv[j[j] *(jinv[0] [0] *jiiiv[0] [ l]+jiiiv[ 1 
][0]*jiiiv[l][l]) 

-i-Ni_dv[ii] *Ni_dv[ij] •(jinv[0] [ 1] *jiiiv[0] [ 1 ]+jinv[l 
iri1*iiiivfllfn))*wfk1*wfn*inag i*dGauss: 

} 
) 
/ 

} 
} 

} 
} 

/* fill in remaining elements */ 
for 

(k=0±<=dboy_NCPTS[0]*dbov_NCPTS[l]-
iac++) 

{ 
for 

(l=k;I<=dboy_NCPTS[0]*dbo\-_NCPTS[ll-l;l++) 
{ 

if(l !=k) 
{ 

dboy_M[ll[kl=dboy_M[kl[l]; 

dbov_K[l] [k]=dboy_K[k] [1]; 
} 

} 
} 

/* firee some memory •/ 
dboy_fieeDoubieVertor(g,0,ng-1); 
dboy_fi:eeDoubIe Vertor(w.O,ng-1); 
dboy_freeDouble Veaor(gu,0,ng-1); 

dboy_&eeDoubleVeaor(gv,Ojig-l); 
dboy_freeDoubleMatiix(uders,0.dbov_P[0 

]Adboy_P[0]); 
dbov_fireeDoubIeMatrix(vders.O,dbov_P[ 1 

],0,dboy_P[l]); 
dboy_freeDoubIeVector(Ni,0,(dboy_P[0J+ 

l)*(dboy_P[l]+l)-l); 
dbOT_fiBeDoubIeVector(Ni_du,0.(dboy_P[ 

01+l)*(dboylP[ll+l)-l); 
dboy_fi:eeDoubIeVector(Ni_dv,0.(dboy_P[ 

0]+l)»(dboy_P[l]+l)-l); 
dbov_fieeDoubIeMatrix(temp,0. l,0,dbov_ 

P[11); 
dboy_fijeeDoubIeMatrix(temp_du,0, LO.db 

ov_P[lD; 
dboy_freeDoubleMatrix(jm,0,1,0.1); 
dboy_fi:eeDoubleMatrix(iinv.0.1,0.1): 

// findspan.c 

#include "JimsCave.h" 

int dbov_findspan(doubIe u.double *U.iat n.int p) 
{ 

int low.niid,liigIi; 
if(u—U[a+1]) return (n); 
low = p; 
high = n+1; 
while (low <= high) 
{ 

mid = (Iow+high)/2; 
if (u==U[mid]) 
{ 

while (u=U[imd+l]) 
mid-H-; 

return (mid); 
} 
if(u<U[nud]) high=mid-l; 

else low=mid+l: 
} 
if(u=U[high]) 
{ 

while (u=U[high]) high-H-; 
return (high); 

} 
return (low-1); 

} 
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// iiiit_q).c 

#include "JuiisCave.h." 

/* declare extemal pointer to shared memoiy 
arena */ 
extern void *dboy_sharedData: 

/• declare external shared memory pointers */ 
extern int •dboy_NCPTS; 
extern int *dboy_P; 
extern int *dboy_npatcfa; 
extern double *dboy_U, •dboy_V; 
extern double •*dboy_M, •*dboy_IC; 
extern double *dboy_PNEW, •dboy_PCURRENT. 
•dboy_POLD, *dboy_PREF; 
extern double **dboy_PCONST; 
extern double **dboy_X. •*dboy_Y, **dboy_Z; 
extern double •*dboy_X_DU. •*dboy_Y_DU; 
extern double •*dboy_X_DV. •=»dboy_Y_DV; 
extern double ***dboy_U_BAS. 
•**dbo>-_U_BAS_D  ̂•••dboy_V_BAS, 
***dboy_V_BAS_DER: 
extern double *dboy_WAND; 
extern double *dboy_TRANS; 
extern int *dboy_Playme; 

extern dboy_File •dboy_parameten 

void dbov_initCompute(void) 
{ 

intLj: 
int m, n; 
int iiTTiin, umax. vmin, vmax; 

int nu, du, nv. dv, 
double **uders. **vders; 
double •tpts, *tpts_du, *tpts_dv; 
double **temp, **temp_du; 
int uspan, vspan; 
double u, v; 
int s, r. 

/* create a shared memory arena */ 
dboy_sharedData=CAVEUserSharedMe 

mory(51200000); 

/* allocate shared memory for data structure */ 
dboy_parameter=(dboy_File *) 

anialloc(si2eof(dboy_File),dboy_sharedData); 

dboy_NCPTS=dboy_sIiaredIntVeaor(0,1, 
dboy_sharedData); 

/* number of control points in u direction •/ 
dboy_NCPTS[0]=8; 

/* number of control points in v direction •/ 
dboy_NCPTStl]=8; 

dboy_P=dboy_sharedIntVector(0, l.dboy_ 
sharedData); 

/* degree in u direction */ 
dboy_P[0]=2; 

/* d3egree in v direction •/ 
dboy_P[l]=2; 

/* length of the knot veaor in u direction •/ 
m=dboy_NCPTS[0]-Hlboy_P[0]; 

/* length of the knot veaor in u direction */ 
n=dboy_NCPTS[l]+dboy_P[l]; 

dboy_U=dboy_sharedDoubleVector(0,m.d 
boy_sharedData); 

/* evaluate uniform knot vector in u direction •/ 
dboy_knot(dboy_U,m.dboy_P[0]); 

dboy_V=dboy_sharedDoubleVeaor(0,n.d 
boy_sharedData); 

/* evaluate uniform knot vector in V direction •/ 
dboy_knot(dboy_V.n.dboy_P[l]); 

/* initial control point positions *! 
for (i=0;i<dboy_NCPTS[0];i-i-+) 
{ 

for (j=0;j<dboy_NCPTS[l]:j++) 
{ 

dboy_parameter-
>cpts(i]D][0]=5.0*(((double) i)/((double) 
(dboy_NCPTS[0] -1))); 

dboy_parameter-
>cpts[i] D] [ 1 ]=5.0*(((double) j)/((double) 
(dboy_NCPTS[ll -1))); 

dboy_parameter-
>cpts[i][j][2]=0.0; 

} 
} 
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dboy_M==dboy_sharedDoubleMatiix(0,db 
c3y_NCPTS[0]»dboy_NCPTS[ll-
l,0,dboy_NCPTS[0]*dboy_NCPTS[I]-
I,dboy_sharedData); 

dboy_K=dboy_sIiaredDoubIeMatrix(0.dbo 
y_NCPTS[0]»dboy_NCPTS[l]-
I,0.dboy_NCPTS[0]*dboy_NCPTS[lI-
l,dboy_sharedData); 

/* integrate for FEA model •/ 
dboy_elementO; 

dboy_PNEW=dboy_sharedDoubleVeaor{ 
l,dboy_Na>TS[0]*dboy_NCPTS[I],dboy_sliared 
Data); 

dboy_PCURRENT=dboy_sliaredDoubleV 
eaor(l,dboy_NCPTS[Opdboy_NCPTS[l],dboy_sh 
axedData); 

dboy_POLD=dboy_sharedDoubleVector( 
l,dboy_NCPTS[0]*dboy_NCPTS[l],dboy_shaied 
Data); 

dboy_PRBF=dboy_sfaaredDouble Vector( 1 
,dboy_NCPTS[0]*dboy_NCPTS[l], 
dboy_sharedData); 

I* establish initial conditions */ 
for (i=0;i<dbov_NCPTS[l];i-^) 
{ 

for (j=0;j<dbov_NCPTS[0];j++) 
{ 

dboy_PCURRENT[dboy_NCPTS[0]*i+j+ 
1 ]=dbov_parameter->cpts [j] [i] [2]; 

} 

for 
(i= 1 ;i<=dbov_NCPTS [0]*dboy_NCPTS[ 1 ] ;i++) 

{ 

dboy_POLD[i]=dboy_PCURRENT[i]; 
dboy_PNEW[i]=0.0; 
dbov PREF[i]=0.0; 

dboy_PCONST=dboy_sIiaredDoubleMatri 
x(l,dboy_NaT'S[0]*dboy_NCPTS[l],L2,dboy_sh 
aredData); 

/* zero the primary contraint matrix */ 
for 

(i=l;i<=dboy_NCPTS[0]*dboy_NCPTS[ll;i-H-) 

{ 
dboy_PCONST[i][l]=0.0; 
dboy_PCONST[i][21=0.0; 

} 

/* set bomidary conditions */ 
umin=0; 
umax=dboy_NCPTS[0]-l; 
vmin=0; 
vmax=dboy_NCTTS [ I ] -1; 
for (i=umin;i<=umax;i++) 
{ 

dboy_PCONST[i+l][l]=10.0; 
dboy_PCONST[i-r 1] [2]=0.0; 

dboy_PCONST[i+dboy_NCPTS[0]*vmax 
+1][1]=10.0; 

dboy_PCONST[i+dboy_NCPTS[0]'STnax 
+1][2]=0.0; 

} 
for (i=vmin+l;i<vniax;i++) 
{ 

dboy_PCONST[dboy_NCPTS[0]*i+l][l] 
=10.0; 

dboy_PCONST[dboy_NCPTS[0]*i+l] [2] 
=0.0; 

dboy_PCONST[dboy_NCPTS [0] *i+umax 
+1][I1=10.0; 

dbov PCONST[dbov NCPTS[0]*i+umax 
+1I[2]=0.0;' 

} 

/* evaluate x and y components for B-spline 
sur&ce */ 

dboy_npatch=dboy_sharedIntVeaor(0,0,d 
boy_sharedData); 

dboy_npatch[0]=20; 
dboy_X=dboy_sharedDoubIeMatrix(0,dbo 

y_npatch[0]+l,0,dboy_npatch[0]+l.dboy_sharedD 
ata); 

dboy_Y=dboy_sharedDoubleMatrLx(0.dbo 
y_npatch[0]+ l,0,dboy_npatch[0]+l,dboy_sharedD 
ata); 

dboy_Z=dboy_sharedDoubleMatrix(0,dbo 
y_npatch[0]+1,0,dboy_npatch[0]+l,dboy_sharedD 
ata); 
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dboy_X_DU=<lboy_sharedDoubIeMiatrix( 
0,dboy_npatch[0]+l,0.dboy_npatch[0]+l.dboy_sha 
redData); 

dboy_Y_DU=dboy_sharedDoubIeMatiix( 
0.dboy_npatch[0]+l,0,dboy_npatcli[01+l.dboy_sha 
redData); 

dboy_X_DV=dboy_sharedDoubleMatrix( 
0,dboy_npatcfa[0]+l,0,dboy_npatch[0]+l.dboy_sfaa 
redData); 

dbcjy_Y_DV=dboy_sfaaredDoubleMatrix( 
0,dboy_npatch[0]+l,0,dboy_npatch[0]+l,dboy_sba 
redData); 

dboy_U_BAS=dboy_sharedDoubIe3Tenso 
r(0,dboy_npatch[0]+l,0,dboy_npatch[0]+1.0,dboy 
_P[0],dboy_sharedData); 

dboy_U_BAS_DER=dboy_sharedDoubIe3 
Tensor(0,dboy_npatch[0]+l,0.dboy_npatdi[0]+LO 
,dboy_P[0],d^_shaialData); 

dboy_V_BAS=dboy_sharedDouble3Teiiso 
r(0.dboy_npatch[0]+1,0.dboy_npatch[0]+l.O.dboy 
_P[ 1 ],dboy_sharedData); 

dboy_V_BAS_DER=dboy_sharedDoubIe 
3Tensor(0,d^_npatch[0]+l.0,dbo\'_npatch(0]+l. 
0,dboy_P[l],d^_sharedData); 

iiu=dboy_NCPTS[0]-l; 
du=l; 
uders=dboy_DoubleMatrix(0,dboy_P[0],0 

,dboy_P[0]); 

nv=dboy_NCPTS[l]-l; 
dv=l; 
vders=dboy_DoubleMatrix(0,dboy_P( 1],0 

,dboy_P[l]); 

tpts=dboy_DoubIeVeaor(0.1); 
tpts_du=dboy_Double Vector(0,1); 
tpts_dv=dboy_Double Vector(0,1); 
temp=dbov_DoubleMatrix(0.1.0.dbov_P[ 

1]): 
temp_du=dbov_DoubIeMatrix(0, l,0,dbov 

_P[1]); 

for (i=0;i<=dbov_iipatch[0];i-H-) 
{ 

u=((double) i)/((double) 
dboy_npatch(01); 

uspan=dbov_findspan(u.dbov_U,nu.dbov_ 
P[01); 

dboy_basisfiins(uspan,ii,dboy_P[0],du.dbo 
y_U.uders); 

for 0=Ou<=dbov_npatch[0]y-!-i-) 
{ 

v=((doubIe) j)/((double) 
dboy_npatch[0]); 

vspan=dbov_findspan(v.dbov_V.iiv.dbov_ 
P[ll); 

dboy_basisfuns(vspan,v.dboy_P[l],dv,dbo 
y_V.vders); 

for 
(s=0;s<=dbov_P[ 1 ] ;s-i-+) 

{ 

temp[0][s]=0.0; 

temp[l][s]=0.0; 

temp_du[0] [s]=0.0; 

temp_du[l][s]=0.0; 
for 

(r=0;r<=dbov_P[0];r+-r) 
{ 

temp[0] [s]=temp[0] [s]+uders[0] [r] *dboy_ 
parameter->q)ts[uspan-dboy_P[0]+rj [vspan-
dboy_P[l]+sl[0]; 

temp[ 11 [sl=temp( 11 [sl+uders[0] [r] *dboy_ 
paiameter->q)ts[uspan-<flx)y_P(0]+r] [vspan-
dboy_P[l]+sl[l]; 

temp_du[0] [s]=temp_du[0] [s]+uders[ 1 ] [r] 
*dboy_parameter->q)ts[uspan-
dboy_P[0]+r] [vspan-dboy_P[ l]+s] [0]; 

temp_du[ 1] [s]=temp_du[ 1 ] [s]-ruders[ 1 ] [r] 
*dboy_paiameter->q)ts[uspan-
dboy_P[0]+r][vspan-dbOT_P[ 1 ]-f l̂ [ 1]; 

} 
} 

tpts[0]=0.0; 
tpts[l]=0.0; 
tpts_du[0]=0.0; 
tpts_du[l]=0.0; 
tpts_dv[0]=0.0: 
tpts_dv[l]=0.0; 
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for 
(s=0;s<=dboy_P[l];s-H-) 

{ 

tpts[0]=tpts[0]-Hvders(0] [sj*temp[0] [s]; 

tpts[ l]=tpts[l ]-i-vders(0] [sl*temp[l ] [sj; 

tpts_du(0]=tpts_du[0]+vders[0] [s] •temp_ 
clu[OI[sl; 

tpts_du[ l]=tpts_du( 1 ]+vders[0] [s] *tenip_ 
du[l][sl; 

tpts_dv[0]=tpts_dv[0]+vders[l] [s]*temp[ 
0][sj; 

tpts_dv[ 1 ]=tpts_dv[ 1 ]+vders[ 1 ] [s]*temp[ 
ll[sl; 

} 

dboy_X[i]D]=tptstO]; 
dboy_Y[i]Q]=tpts[l]; 

dboy_X_DU[i] |j]=tpts_du[0]; 

dboy_Y_DU[i] [j]=tpts_du[ 1]; 

dboy_X_D V[i] [n=tpts_dv[0]; 

dboy_Y_D V[i] [j] =tpts_dv[ 1 ]; 
for 

(r=0:r<=dboy_P[0];r^) 
{ 

<D'oy_U_B AS[i] [j] lr]=uders[0] [r]; 

dboy_U_B AS_DER[i] [j] [r]=uders[ 1] [r]; 
} 
for 

(r=0;r<=dbov_P[l]:rH-) 
{ 

dboy_V_B AS [i] Q] [r]=vders[0] [r]; 

dbov_V_BAS_DER(i] (j] [r]=vders[ 1 ] [r]; 
} 

} 

dboy_&eeDoubleMatrix(uders,0,dbov_P[0 
],0,dboy_P[01); 

dboy_freeDoubIeMatrix(vders.0.dboy_P[ 1 
],0,dboy_P[l]); 

dboy_fieeDoubleVeaor(tpts,0,1); 
dboy_&eeDoubIeVector(tpts_du,0.1); 
dboy_&eeDoubIe Veaor(tpts_dv,0.1); 
dbov_fieeDoubIeMatrL\(temp,0.1.0,dbov_ 

P[l]); 
dbov_&eeDoubleMatrix(temp_du,0. l.O.db 

oy_P[l]); 

/* allocate memory for wand position •/ 
dboy_Plj^e=dboy_sharedIntVeaor(0.4, 

dboy_sharedData); 
dboy_PI^Tne[0]=0; 
dboy_Pla^e[ I ]=0: 
dboy_Pla}Tne[2]=0; 
dboy_PIayme[3]=0: 
dboy_WAND=dboy_sIiaredDoubleVector 

(0.3,dboy_sbaredData); 
dboy_TRANS=dboy_sharedDoubleVector 

(0,6.dbov_sharedData); 
} 

II init_^.c 

#include "JiinsCave.h" 
#include <IoadIinage.h> 

int dboy_backTexIndex; 
extern int dboy_texnire: 

/• InitScene() is called only once, at the start of 
the program •/ 
void dbov_initScene(void) 
{ 

static unsigned long •teximage; 
static long sizex, sizey: 
GLfloat mat_specular[l = { 0.5, 0.5,0.5. 

I.O }; 
GLfloat mat_shininessQ = { 100.0 }; 
GLfloat lightO_ambient[] = { .1, .1. .1, 

1.0 }; 

GLfloat lightO_difRiseQ = { .8. 0.8. 0.8, 
1.0 }; 

GLfloat lightO_specularQ = { 0.9. 0.9. 
0.9, 1.0 }; 

GLfloat lightO_position[] = {10.0. 10.0, 
5.0. 1.0 }; 
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static float texGeiiPaiam[l] = 
{GL_OBJECT_LINEAR}; 

static float texGenTParain[4] = {0.0. 0.2, 
0.0. 0.0}; 

static float texGenSParam[4] = {0.2, 0.0. 
0.0, 0.0}; 

glMaterialfv(GL_FRONT, 
GL_SPECULAR, inat_specular); 

gIMaierialfv(GL_FRONT. 
GL_SHININESS. iiiat_shininess); 

glLightfv(GL_LIGHrO, GL_AMBIENT. 
lightO_aiiibient); 

glLight^(GL_LIGfrrO, GL_DIFFUSE, 
lightO_difiuse); 

gILightfv(GL_LIGHnrO. GL_SPECULAR. 
light0_specular); 

glLightfv(GL_LIGHTO. GL_POSrnON. 
lightO_positioii): 

glEnable(GL_DEPTH_TEST); 
glEnable(GL_NORMALIZE); 

glEnable(GL_LIGHTING); 
glEnable(GL_LIGHTO); 

gIEnabIe(GL_COLOR_MATERIAL): 
glShadeModel(GL_SM(X)'IH); 

if (dbov_texture) 
{ 

dboy_backTexIndex = glGeiiLists(l); 
teximage = 

readLongfmagePataC'gdb.rgfa". &sizex, Asizey); 

gINewList(dboy_backTexIncIex, 
GL_COMPILE_AND_EXECUTE); 

glEnabIe(GL_TEXTURE_2D); 

glTe.xIinage2D(GL_TEXTURE_2D, 0, 
4, (int)sizex, (int)sizey, 0. GL_RGBA, 
GL_UNSIGNED_BYTE. 

teximage); 

gITexEnvf(GL_TEXrURE_ENV. 
GL_TEXTURE_ENV_MODE, 
GL_MODULATE); 

glTexPaiameterf(GL_TEXTURE_2D, 
GL_TEXTURE_WRAP_S, GL_REPEAT); 

glTexParameterf(GL_TEXrURE_2D, 
GL_TEXTLIRE_WRAP_T, GL_REPEAT); 

glTexParameteif(C3-_TEXTURE_2D, 
GL_TEXTURE_MAG_FILTER, GL_LINEAR); 

glTexParameteif((3-_TEXrURE_2D. 
GL_TEXTURE_MIN_FILTER, GL_LINEAR); 

glTexGenfv(GL_S.GL_TEXrURE_GEN 
_MODE. texGenPaiam); 

glTexGenfv(GL_T.GL_TEXTURE_GEN 
_MODE, texGenParam); 

glTexGenfv(GL_T.GL_OBJECT_PLANE 
. texGenTParam); 

glTexGenfv(GL_S.GL_OBJECT_PLANE 
. texGenSParam); 

glEiiable(GL_TEXrURE_($N_S); 
glEiiabIe(GL_TEXTURE_GEN_T); 

glColor4f(1.0. 1.0. 1.0. 0.3); 
glEndListQ; 

i 
} 

// iiiit_so.c 

#include "JiinsCave.h" 

extern awSoimd *dboy_sowood; 
extern awSoimd •dboy_soboing; 
extern awSound •dbov*_socreaky; 

void dbov_imtSound(void) 
{ 
/* only needs to be local, then one can delete 
adfFile[100] *! 

static char adfFile[100]; 

/* print the adf file name to a string *! 

sprintf(ad£File, "%s". 
"/home/usrl/trisha/research/CAVE/Sound/jiins.adf 

/* initialize the Audio Works system •/ 

printf( "Load adf file [%s]\n", adfFile); 

awInitSysO; 
awDefineSysCadfFile); 
awConfigSysO; 
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/* find the sound we want */ 

printf ("Find the mysound wave\n"); 
dboy_sowood = awFindSnd("wood4"); 
dboy_soboing = awFindSnd("boing2"); 
dboy_socreal5y = awFindSnd("crealcy"); 
printf ( "Located inysound\n"); 

if (dboy_sowood = 0 || dboy_soix)ing==0 || 
dboy_socieakv=0) 

{' 

awNotrfy ( AW_FATAL. AW_APP, "Unable 
to locate mysoundVn"); 
} 

awProp(dboy_sowood, AWS>JD_RETRIGGER, 
AW_ON); 

awProp(dboy_soboing, AWSND RETRIGGER, 
AW_ON): 
} 

// inversion.c 

#include "JimsCave.h" 

extern int *dboy_NCPTS; 
extern int *dboy_P; 
extern double *dboy_U. *dboy_V; 
extern double **dboy_X, **dboy_Y. **dboy_Z; 
extern double ***dboy_U_BAS. ••*dboy_V_BAS; 
extern int *dboy_npatch; 
extern double *dboy_TRANS; 

extern int dboy_old_int; 
extern int dboy_play; 

extern dboy_File *dboy__parameten 

extern int *dboy_Pl»Tne; 

void dboy_inversion(double *WAND, double 
**sconst) 
{ 

int i-j,iiij; 
double shortdistance. distance; 
double ustarL vstart; 
int usint, vsint. neqn; 
intnu,nv; 

int uspan^vspan: 
double dz; 
double wmin. wmax; 
double •bb, *b. **a. •w, **v, *x; 
double up, vp: 
double wand[3]; 
double cx,sx,cy.sy.cz,sz; 

cy=cos(dboy_parameter-
>wand_ord[3]*3.ui59/180.0); 

sy=sin(dboy_parameter-
>wand_old[3]»3.14159/180.0); 

cx=cos(dboy_paranieter-
>wand_old[4] *3.14159/180.0); 

sx=sin(dboy_parameter-
>wand_old[4]*3.14159/180.0); 

cr=cos(dboy_paranieter-
>wand_old[5]*3.14159/180.0); 

sz=sin(dboy_parameter-
>wand_old[5]»3.14159/180.0); 

wand[0]=(cz*cy+sz*sx*sy)*WAND[0]+s 
z*cx*WAND[l]+(-cz*sy+sz*sx*cy)*WAND[2]; 

wand[0]=wand[0]+(-dboy_parameter-
>wand_old[0]-
dboy_TRANS[0])*(cz*cy+sz*sx*sy)-K-
dboy_parameter->wand_old[l]-
dboy_TRANS [ 1 ])*sz*cx-K-dboy_paranieter-
>wand_old[2]-dboy_TRANS[2])'''(sz*sx*cy-
cz*sy)+dboy_TRANS[0]+2.5; 

wand[l]=(-
sz*cy+cz*sx*w)*WAND(0]+cz*cx*WAND[l]-Ks 
z*sy+cz*sx*cy)*WAND[21; 

wand[ 1 ]=wand[ 1 ]-K-dboy_paranieter-
>wand_old[0]-dboy_TRANS[0])*(cz*sx*sy-
sz*cy)+(-dboy_parameter->wand_old[l]-
dboy_TRANS[l])*cz*cx+(-dboy_paranieter-
>wand_old[2]-
dbov_TRANS[2])*(cz*sx*cv-t-sz*sv)+dboy_TRAN 
S[l]'-2.5; 

wand[2]=cx*sy*WAND(0]-
sx*WAND[l]+cx*cy*WAND(2]+(-
dboy_paranieter->wand_old[0]-
dboy_TRANS[0])*cx*sy-(-dboy_parameter-
>waad_old[l]-dboy_TRANS[l])*sx-K-
dboy_parameter->wand_old[2]-
dboy_TRANS[2])*cx*cy+dboy_TRANS[2]; 

/* wand[0]=WAND[0]-dboy_parameter-
>wand_old[0]+2.5; 
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wand[ 1 ]=W AND [ 1 ]-dboy_paiameter-
>wand_old[l]-2.5; 

wand[2]=WAND [2]-dboy_paranieter-
>wand_old[2];*/ 

/* Do point inverstion */ 
shortdistance= 1000.0; 
for (i=0;i<=dbov_npatch[0];i-H-) 
{ 

for (j=0;j<=dboy_npatch(01y-H-) 
{ 

distance=pow(dboy_X[i] jj]-
wand[0],2.0)+pow(dboy_Y[i] [j]-
wand[l],2.0)+pow(-wand[2],2.0); 

if (distance < 
shortdistance) 

{ 

ustart=((double) i)/((doubIe) 
dboy_npatdi(0]); 

vstart=((double) i)/((doubIe) 
dboy_npatch[0]); 

usint=i; 
vsint=j; 

shortdistance=distance; 
} 

} 
} 
dboy_paranieter-

>surfI01=dboy_X[usintl [vsint]; 
dboy_parameter-

>surf[l ]=dboy_Y[usint] [vsintj; 
dboy_paraineter-

>suif[21=dboy_Z[usint] [vsintj-O. I; 

/* Do collision detection */ 
dboy_parameter->intersect=0; 

I* if ((dboy_Z[usintl[vsint] >= wand[2]) && 
(shortdistance < 0.1)) dboy_parameter-
>intersect=I;*/ 

if (dboy_Z[usintJ [vsint] >= wand[2]) 
dboy_parameter->intersect= I; 

/* If collision, performed &ee-fonn deformation 
*/ 

if (dboy_paiameter->intersea == 1 && 
dboy_old_int = 0) 

{ 
dbov_Plavme[I]=l; 

} 
dboy_old_int=dboy_parameter->intersect; 
if (dboy_parameter->intersect &&. 

CAVEBUTTONI) 
{ 

if (dbcy_play = 0) 
{ 

dboy_Playme[2]= I; 
dbov_plav=I; 

} 

neqn=(dboy_P[0]+l)*(dboy_P[l]+l): 

a=dboy_DoubleMatrix( I.neqn, Lneqn); 
w=dboy_DoubleVector(I,neqn): 

v=dboy_DoubleMatrix( Uneqn. 1 ,neqn); 
.x=dboy_DoubleVector( l,neqn); 
b=dboy_DoubleVeaor( Lneqn); 
bb=dboy_DoiibleVeaor(0,neqn-

1): 

dz=wand[2]-
dboy_Z[usintI [vsint]; 

for (i=0;i<=dboy_P[0];i-H-) 
{ 

for 
(j=0;j<=dbov_P[ 11 ;j-H-) 

{ 

bb[i-Kdboy_P[0]+l)*j]=dboy_U_BAS[usi 
nt] [vsint] [i] *dboy_V_B AS [usint J [vsint] [j]; 

b[i+(dboy_P[01+I)*j+l]=bb(i+(dboy_P[0] 
+l)*j]*dz; 

} 
} 

for (i=0;i<neqn;i-H-) 
{ 

for (j=0;j<neqn;j++) 
{ 

a[i+I][j+l]=bb[i]*bbD]; 
} 

} 
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dboy_dsvdcinp{ajieqn,neqn.w.v); 
winax=0.0; 
for (j=l J<=neqn;j-H-) if (w|j] > 

wmax) winax=w(j]; 
wmin=wniax*0.000001; 
for (j=l;j<=neqii;j++) if (w(j] < 

wmin) w[j]=0.0; 

dboy_dsvbksb(a.w,v,neqn.neqn,b.x); 

nu=dboy_NCPTS[01-l; 
iiv=dboy_NCPTS[l]-l; 
ap=((double) usint)/((double) 

dboy_npatch[0]); 
vp=((double) vsint)/((doubie) 

dboy_npaich[0]); 

uspan=dbov_findspan(iip,dbov_U,mi.dbov 
_P[0]); 

vspan=dbov_findspan(vp.dbov_V.nv,dbov 
_P[i]); 

for (i=0;i<=dbov_P[0];i-i-+) 
{ 

for 
(j=0 j<=dboy_P[ 1 ] J++) 

{ 
j|j=uspan-

dboy_P[0]+i; 
ii=vspan-

dboy_P[l]+j; 

sconst[dboy_NCPTS[01*ii+ji+1 ] [ 1 ]=lO.O: 

sconst[dboy_NCPTS[0]*ii+jj+l](2]=dboy 
_parameter->cpts[j[j] [ii] [2]+x[i-Kdbov_P[0]+l)*j]; 

} 
} 

dboy_&eeDoubIeMatrix(a, l,neqiL l,neqn); 

dboy_freeDoubieVeaor(w, l.neqn); 

dboy_fi:eeDoubIeMatrix(v, Lneqn. l,neqn) 

dboy_freeDoubieVeaor(x. l,neqn); 

dboy_fi:eeDoubleVeaor(b. l,neqn); 

dboy_freeDoubie Veaor(bb.0.neqn-1); 
} 
else 
{ 

if (dboy_piay=l) 
{ 

dboy_Playme[3 ]=1; 
dboy_piay=0; 

} 
} 

} 

// jimscave-h 

#include <cave_ogl.Ii> 
#indude <unistd.h> 
#include <niath.h> 
#inciude <stdio.Ii> 
#include <aw.h> 
#inciude <stdlib.h> 
#include "util.h" 

/* fimction prototypes */ 
void dboy_initScene{void); 
void dboy_drawScene(void); 
void dboy_Conipute(void); 
void dboy_initCompute(void); 
void dboy_knot(double •. int, int); 
void dboy_element(void); 
int dboy_findspan(doubie. double *. int. int); 
void dboy_basisfims(int double. inL int. double *, 
double •*); 
void dboy_step(double *, double •. double •. 
double double **, double, double •*, double 
**)•• 
void dboy_dsvdcnip(double int int. double *. 
double **); 
double dboy_dpythag(double. double); 
void dboy_dsvbksb(double double *, double **, 
int int, double *. double *); 
void dboy_inversion(double •. double **); 
void dboy_initSound(void); 
void dboy_initialize(void); 
void dboy_process(void); 
void dboy_reset(void); 

tvpedefstrurt 
{ 

int intersect; 
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double suif[31: 
double wand_oId[6]; 
double q)ts[8][8][3]; 

} dboy_FiIe; 

// knoLc 

^include "JiinsCave.h" 

/* This function returns a uniform knot 
vector, 

U, given the order of the B-spline. p. and 
the length of the knot vector, m. */ 

void dbov_knot(doubIe •U,int nuint p) 
{ 

int i; 
for (i=0;i<=p;i+-t-) 
{ 

U[i]=0.0; 
} 
for (i=p+1 ;i<=m-p-1 ;i++) 
{ 

U[i]=((doubIe) (i-p))/((doubIe) 
(m-2*p)); 

} 
for (i=ni-p;i<=m;i-M-) 
{ 

U[i]=I.O; 
} 

} 

// Ioad.image.c 

#include <stdio.h> 
#inciude <inalloc.h> 
#include <unistd.h> 
#include <stdlib.h> 

#include "load-image.h" 

void bwToCpack(unsigned short •, unsigned long 
*, int); 
void rgbToCpack( unsigned short *. unsigned 
short •. unsigned short *, 

unsigned long •, int); 

void rgbaToCpack( unsigned short *, unsigned 
short *, unsigned short *, 

unsigned short unsigned long *. int); 
void rgbaToCpackCond( unsigned short *. 
unsigned short unsigned short •, 

unsigned short unsigned long int, 
unsigned short, unsigned short 

unsigned short, unsigned short); 

unsigned long •readLongIniageData(char •name, 
long *width. long *height) 
{ 

unsigned long *base, *Iptr, 
unsigned short *rbufl •gbuf, *bbuf. *abuf. 
IMAGE •image; 
inty. ij; 

image = iopen(name,"r"); 
if(!image) { 

return NULL; 
} 
•width = image->xsize; 
•height = iinage->ysize; 
base = (imsigned long •)nialloc(image-

>xsize^image->ysize^sizeof(unsigned long)); 
rbuf = (unsigned short •)niaIIoc(iniage-

>xsize^sizeof(short)); 
gbuf = (unsigned short •)malloc(iniage-

>xsize*sizeof(sfaort)); 
bbuf = (imsigned short •)maIloc(iinage-

>xsize^sizeof(short)); 
abuf = (imsigned short •)nialloc(image-

>xsize^sizeof(short)); 
if(!base || !rbuf || !gbuf || !bbuf) { 

^rintf(stderr,"readLongIniageData; can't 
malloc enough memoiy\n"); 

exit(l); 
i 
Iptr = base; 
for(y=0; y<image->ysize; y-H-) { 

if(image->zsize>=4) { 
if(y==0) 

printfC'Doing 4 component 
texture : %s \n", name); 

/• getrow(image,ri)ufy,0); 
getrow(image,gbuf y, 1); 
getxow(image,bbu£,y,2); 
getrow(image,abufy.3); •/ 

getrow(image.abuty,0); 
getrow(image,bbuf y, 1); 
getrow(image,gbuf,y,2); 
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getrow(unage.rbuf;y,3); 

rgbaToCpack(xbii^gfau£bbu£abufJptr.iinage-
>xsi2e): 

Iptr += image->xsize; 
} else if(iinage->zsize=3) { 

if(y=0) 
printfCDoing 3 compoaent 

texture : %s \n", name); 
getrow(iinage,bbuly,0); 

void rgbToCpack( unsigned short ̂ r, unsigned 
short •g, unsigned short *b, 

unsigned long *L int n) 
{ 
unsigned short a, aval; 

aval = 255; 

a = aval; /* Objea non transparent •/ 

getrow(iinage,gfauf;y, 1); wfaile(n>=8) { 
getrow(iniage.rbu£y.2); l[0]=a (r(0]«8) (g[01«16) 1 
rgbToCpack(rbu£;gbuflbbuf,lptrainage- (b[0]«24); 

>xsize); l[l] = a (r[l]«8) (g[l]«16) i  
iptr += iniage->xsize; (b[ll«24); 

} else { I[21 = a (r[2]«8) (g(2]«l6) 1 
if(y=0) (b[2]«24); 

printf("Doing 1 component l[31 = a (r[3]«8) (g[3]«l6) 1 
texture ; %s \n", name); (b[31«24); 

getrow(image.ibu£;y,0); l[4] = a (r[4]«8) (g[4]«l6) 1  
bwToCpack(ibnf^lptr,image->xsize); (b[4]«24); 
Iptr -!-= image->xsize; l[5]=a (r[5]«8) (g[51«16) 1  

} (b[5]«24); 
} I[6] = a (r[61«8) (g[61«l6) 1  
iclose(image); (b[6]«24); 
free(rbuf); L[71=a (r[71«8) (gm«16) 1  
&ee(gbuf); (b[7]«24); 
fifee(bbuf); 
free(abuf); 
return base; 

} 

void bwToCpack( unsigned short *b, unsigned 
long *L int n) 
{ 

while(n>=8) { 
I[0] = 0x00010101*b(0]; 
I[l] = 0x00010101»b[l]; 
l[2]=0x00010101*b[2]; 
l[3] = 0x00010101*b[3]; 
1(4] = 0x00010101»b[41; 
l[5] = 0x00010101»b[5]; 
l[6] = 0x00010101*b[6]; 
l[7] = 0x00010101*b[7]; 
I+=8;  
b+=8; 
n-= 8; 

} 
while(n—) 

*1++ = 0x00010101*(*b++); 

«24; 

«24; 

«24; 

«24; 

«24; 

«24; 

«24; 

«24; 

/* 

l[01 = r[0] 1 (g[0]«8) ! (b[01«l6) 

a = aval; 
I[ll = r[l] I (g[l]«8) I (b[ll«l6) 

a = aval; 
I[2] = r[2] I (g[2]«8) I (b[2]«16) 

a = aval; 
1[31 = r[3] I (g[3]«8) I (b(3]«16) 

a = aval; 
l[4] = r[4]|(g[4]«8)|(b(4]«16) 

a = aval; 
1[5] = r[5] I (g[5]«8) I (b(5]«16) 

a = aval; 
1[6] = r[6] I (g[6]«8) I (b(6]«16) 

a = aval; 
im = r[711 (g[7]«8) I (b[71«16) 
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•/ 
l+=8; 
r+= 8; 
g+=8: 
b+=8; 
n —8; 

} 
wfaile(n—) 
{ 

a = aval; 
*l++ = *!++ i ((•g-H-)«8) I ((*b++)«16) I 

a«24; 
} 

} 

void rgbaToCpack( unsigned short •r, unsigned 
short *g, unsigned short •b, 

unsigned short unsigned long int 
n) 
{ 

while(n>=8) { 

#ifO 
r[0] = 0; 
r[l] = 0; 
r[2] = 0; 
r[3] = 0; 
r[4] = 0: 
r(51 = 0-. 
r[61 = 0; 
r[7] = 0; 

if(»a = 0&& »g = 0 && *b = 0) 
*r = 0; 

#endif 

l[0] = r[0] 
(a[0]«24); 

l[ll = r[l] 
(a[l]«24); 

l[2] = rt2] 
(a[2]«24); 

I[3I = r[31 
(a[3]«24); 

l[41 = r[4] 
(a[4]«24); 

l[51 = r(5] 
(a[5]«24); 

l[6] = r(6] 
(a[6]«24); 

UT] = r[711 (g(71«8) I (b[71«16) ! 
(a[7]«24); 

l+=8; 
r 8; 
g+=8; 
b+=8; 
a += 8; 
n-=8; 

} 

while(n—) 
{ 

*1++ = 1 ((*g++)«8) I ((•tH-t-)«l6) I 
((»a++)«24); 

} 
} 

unsigned long *readLongIinageDataCond(char 
•name. long *width. long •height 

unsigned short 
It unsigned short gt unsigned short bt 

unsigned short 
comp) 
{ 

unsigned long •base. •Ipcr. 
unsigned shon •rbu£ •gbu£ •bbu£ •abuf. 
IMAOE *iniage; 
int y. jj; 

image = iopen(nanie,"r"); 
if(! image) { 

return NULL; 
} 
•width = iniage->xsize; 
•height = iniage->ysi2e; 
base = (unsigned long *)malloc(iinage-

>xsize*iinage->ysize*sizeof(unsigned long)); 
rbuf = (unsigned short •)malloc(image-

>xsize*sizeof(short)); 
gbuf = (unsigned short *)maIloc(image-

>xsize^sizeof(short)); 
bbuf = (unsigned short •)malloc(iniage-

>xsize*si2eof(short)); 
abuf = (unsigned short •)malloc(image-

>xsize*sizeof(short)); 
if(!base |1 Irbuf || Igbuf |1 !bbu£) { 

(g[0]«8) 1 (b[0]«16) 

(g[l]«8) 1 (b(l]«16) 

(g[21«8) j i (b[2]«l6) 

{g[3]«8) i 1 (b[3]«16) 

(g[4]«8) 1 1 (b[4]«l6) 

(g[5]«8) 1 I (b[5]«16) 

(g[6]«8) 1 1 (b(6]«16) 
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^rinif(stderr."readLongIniageData: can't 
malloc enough memoiy\n"); 

exit(l); 
} 
Iptr = base; 
for(y=0; y<iniage->ysize; y++) { 

if(iniage->23ize>=4) { 
if(y=0) 

printf("Domg 4 component 
texture: %s Vn", name); 

/* getiow(image.rbu£y,0); 
getrow(image,gbuCy, 1); 
getrow(image,bbu£y,2); 
getrow(image,abuty.3); *l 

getrow(image,abuf;y,0): 
getrow(image.bbu£^y, I); 
getrow(image,gbufly,2); 
getrow(iniage,rbu£y,3); 

rgbaToCpackCond(rbuf.gbuf;bbutabuf.lptr.image-
>xsize. rt, gt, bt, comp); 

Iptr += image->xsize; 
} else if(image->zsize=3) { 

if(\=0) 
printfCDoing 3 component 

texture : %s \n''. name); 
getrow(image,rbuty,0); 
getrow(image,gbuty, 1); 
getrow(image,bbuf,y.2); 
rgbToCpack(rbu£;gbu£bbu£.lptr,iniage-

>xsize); 
Iptr += image->xsi2e; 

} el« { 
if(y=0) 

printfCDoing 1 component 
texture : %s \n". name); 

getrow(image^u£;y,0); 
bwToCpack(rbuf;iptr,image->xsize); 
Iptr += image->xsize; 

} 
} 
iclose(image); 
&ee(rbuf); 
free(gbuf); 
&ee(bbuf); 
free(abuf); 
return base; 

} 

void rgbaToCpackCond( unsigned short •r, 
unsigned short •g, unsigned short •b. 

unsigned short *a, unsigned long *1, int 
n, 

unsigned short rt unsigned short gt 
unsigned short bt. unsigned short comp) 
{ 

while(n>=8) { 

switch(comp) 
{ 
caseO; 

if(a(0] =rt&&g[0] = gt&&b[0] 
= bt) r[0] = 0; 

if(a[l] =rt&&g[l] = gt«Sk&b[l] 
= bt) r[l] = 0; 

if(a(2] =rt&&g[2] = gt&&b[2] 
==bt) r[2] = 0; 

if(a(3] == rt && g[3] = gt && b[3] 
= bt) r[3] = 0: 

if(a[4] = rt && g[4] = gt && b[4] 
= bt) r[4] = 0; 

if(a[5] =rt&&g[5] = gt&&b[5] 
= bt) r(5] = 0; 

rf(a[61 =rt&&g[6] = gt&&b[6] 
= bt) r(61 = 0; 

if(a[7] = rt && g[7] = gt && b[71 
= bt) r[7] = 0: 

brrak; 
case 1; 

if(a(0] <= rt && g[0] <= gt && b[0] 
<=bt) r[0] = 0; 

if(a[l] <=rt&&g[l]<=gt&&b[l] 
<=bt) r[l] = 0; 

if(a(2] <= rt && g[21 <= gt && b[21 
<= bt) r(2] = 0; 

if(a[3] <= rt && g[3] <= gt && b[3] 
<= bt) rI3] = 0; 

if(a(4] <= rt && g[4] <= gt && b[4] 
<= bt) r(4] = 0; 

tf(a[5] <= rt && g[5] <= gt && b[5] 
<= bt) r[5] = 0; 

if(a(6] <= rt && g[6] <= gt && b[6] 
<=bt) rt61 = 0; 

if(a[71 <= rt && g[7] <= gt && b[7J 
<= bt) r[71 = 0; 

break; 
case 2; 

if(a[0] >= rt && g[0] >= gt && b(0] 
>=bt) r[0]=0; 

if(a[l] >=rt«&&g[l]>=gt&&b[ll 
>= bt) r[l] = 0: 

if(a[2] >= rt && g[2] >= gt && b[2] 
>= bt) r[2] = 0; 
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if(a(3] >= rt«S^g[3] >= gt && b(3] #ifdef. cplusplus 
>=bt) 

o
 tl extern "C" { 

if(a(4] >= rt&&g[4] >= gt && b[4] #endif 
>=bt) r(4] = 0; 

if(a(51 >= rt&&g[5] > = g t & &  b[5] 
>=bt) r[5] = 0; /* 

if(a[61 >= rt&&g[6] >= gt && b[6] * Defines for image files .... 
>=bt) r[6] = 0; * 

if(a[7] >= rt&&g[7] >=gt&&b[71 * PaulHaeberli 
>=bt) r(7] = 0; * Modified Carolina Cruz-Neira -

break; * Look in 
} 

1[0] = r[0] I (g[0]«8) 1 (b[0]«l6) I 
(a[0]«24); 

I[l] = r[l] i (g[l]«8) I (b[l]«16) i 
(a[l]«24); 

1[2] = r[2] 1 (g[2]«8) I (b[2]«16) 
(a[21«24); 

I[3] = r[3]|(g[3]«8) l (b[31«16) 
(a[3]«24); 

I[4] = rt4] I (g[4]«8) I (b[4]«16) 
(a[4]«24); 

1[51 = r[5] I (g[51«8) I Cb[5]«16) 
(a[51«24); 

1(6] = r[6] I (g[6]«8) I (b[61«16) 
(a[6]«24); 

1(7] = r(7] I (g[7]«8) I (b[7]«16) 
(a[7]«24); 

i+=8; 
r 8  ̂
g+=8; 
b+=8: 
a += 8; 
n —8; 

} 

while(n—) 
{ 

if(*a = 0&& •§ = 0 && *b = 0) 
»r = 0; 

•1++ = *1++ I ((*g-i-i-)«8) I ((•b-H-)«l6) I 
((»a-i-(-)«24): 

} 
} 

// loadiniage.h 

#ifiidef _GL_IMAGE_H_ 
#define GL IMAGE H 

/usr/people/4Dgifis/instools/imgtools for example 
code! 
* 

*! 

#include <stdio.Ii> 

#define EMAGIC 0732 

/• colonnap of images */ 
#define CM_NORMAL 0 /* ffle 
contains rows of values which 

* are 
either RGB values (zsize = 3) 

* or 
greyramp values (zsize = 1) */ 
#define CM_DrrHERED 1 
#define CM_SCREEN 2 I* ffle 
contains data which is a screen 

* 

can 
image; getrow returns buffer which 

be displayed directly with 

writepixels */ 
#define CM_COLORMAP 

/* a colormap ffle */ 

#define TYPEMASK OxfEDO 
#define BPPMASK OxOOfF 
#define ITYPE_VERBATTM 

0x0000 
#define ITYPE_RLE 0x0100 
#define ISRLE(type) (((type) & 
OxfTOO) = ITYPE_RLE) 
#define ISVERBATIM(type) (((^TK) & 
OxflEOO) = ITYPE_VERBATIM) 
#define BPP(type) ((type) & 
BPPMASK) 
#define RLE(bpp) (rrYPE_RLE 1 
(bpp)) 
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#define VERBATIM(bpp) 
(ITYPE_VERBATIM | (bpp)) 

#defiiie IBUFSIZE(pixeis) 
((pixeIs-Kpixels»6))«2) 

#defiiie RLE NOP 0x00 

#defi[ne ierror(p) (((p)-
>flags&_IOERR)!=0) 
#defiiie ifileno(p) 
#define getpLx(p) 
? •(p)->ptr++: ifilbuf(p)) 
#define putpLx(p,x) 
\ 

>ptrH-={uiisigned)(x))) \ 

iflsbuf(p,(unsigned)(x))) 

typedef struct { 
unsigned short imagic: 

on disk.. •/ 
unsigned short type; 
unsigned short dim: 
unsigned short xsize; 
unsigned short ysize: 
unsigned short zsize; 
unsigned long min; 
unsigned long max: 
unsigned long wastebytes: 
char name[80]; 
unsigned long coiormap; 

((p)->ffle) 
(-{p)->cnt>=0 

(-(p)->cnt>=0 

?((int)e(p)-

/* stuff saved 

/• stuff used in long file; 
core only */ 

unsigned short flags; 
short dorev: 
short x; 
short y; 
short z; 
short cnu 
unsigned short •ptr, 
unsigned short *base; 
unsigned short •tmpbuf, 
unsigned long of^t; 
unsigned long rleend; /* for rle 

images */ 
unsigned long *rowstart; I* for rle 

images */ 
long •rowsize; /* for rle 

images *! 
} IMAGE; 

IMAGE •icreateO; 
/* 

* IMAGE *iopen(char *file, char *mode, 
unsigned int type, unsigned int riim 
* unsigned int xsize, unsigned int 

ysize, unsigned int zsize); 
* IMACK *fiopen(int t char •mode, unsigned int 

type, unsigned int rfiiti 
* unsigned int xsize, unsigned int 

ysize, unsigned int zsize); 
* 

• ...while iopen and fiopen can take an extended 
set of parameters, the 
• last five are optional, so a more correct 

prototype would be: 

• IMAGE •iopen(char •file, char *mode,...); 
• IMA(S *fiopen(int L, char •mode,...); 
• 

• unsigned short •ibufalloc(IMAGE *image); 
• int ifiIbuf(IMAGE •image); 
• int iflush(IMAGE •image); 
• unsigned int iflsbuf(IMAGE •image, unsigned 
intc); 
• void isetname(IMAGE •image, char •name); 
• void isetcolonnap(IMAGE •image, int 

coiormap); 
• int iclose(IMAGE •image); 
• 

• int putrow(IMAGE •image, unsigned short 
•buffer, unsigned int y, unsigned int z); 
• int getrow(IMAGE •image, unsigned short 
•buffer, unsigned int y. unsigned int z); 

•/ 

/•IMAGE •iopenO; *! 
IMAGE •iopen(char •file, char •mode); 
IMAGE •icreate(); 
int iclose(IMAGE •); 
unsigned short •ibufallocQ; 

unsigned long •TeadLongImageData(char •. long 
•, long •); 

unsigned long •readLongImageDataCond(char •. 
long •, long •, 

unsigned short 
, unsigned short. unsigned short, 

unsigned short 
); 
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#define IMAGEDEF /* for 
backwards compatibility *! 
#ifdef ^cplusplus 
} 
#endif 
#endif I* !_GL_IMAGE_H_ •/ 

// maiiLc 

#inciude "JimsCave.h" 

/* declare pointer to shared memory arena */ 
void *dboy_sharedData; 

/* declare shared memory pointers *! 
int *dboy_NCPTS; 
int *dboy_P; 
int •dboy_npatch; 
double *dboy_U, •dboy_V; 
double **dboy_M, **dboy_K: 
double *dboy_PNEW, *dboy_PCURRENT. 
•dboy_POLD, •dboy_PREF; 
double *»dboy_Pc6NST; 
double **dboy_X, •*dboy_Y, ••dboy_Z; 
double **dboy_X_DU, **dboy_Y_DU; 
double **dboy_X_DV, **dboy_Y_DV; 
double ***dboy_U_BAS, ***dboy_U_BAS_DER. 
•»*dboy_V_BA5, ••*dboy_V_BAS_DER; 
double *dboy_WAND; 
double *dbo\_TRANS; 
int •dboy Playme; 

awSound *dboy_sowood; 
awSound •dboy_soboing; 
awSoimd *dboy_socreaky; 

int dboy_old_int=0: 
int dboy_play=0; 
int dboy_soimd= 1; 
int dboy_texture=l; 

dboy_File •dboy_parameter. 

/* mainO starts the CAVE tracking, drawing, and 
computing •/ 
void main(int argc, char **argv) 
{ 

CAVEConfigure(&argc, argv, NULL); 

dboyJnitializeQ; 

CAVEInitO; 

CAVEInitApplication(dboy_initScene. 
0); 

CAVEDisplay( dboy_drawScene. 0); 

CAVEDistribCoimectO; 
sleep(l): 

while 
(! CAVEgetbutton(CAVE_ESCKEY)) 

{ 
dboy_processO: 

} 

if(dboy_sound) awExitO; 
CAVEExitO; 

} 

# makefile 

COMPILER = CC 

CAVE_DIR = -L/homeA(T/CAVE/Iib/test 
CAVE_INC_DIR= -
I/homeArx/CAVE/incIude/test 

CAVELIBS = -lcave_ogI -U -ly -IGLU -llimg 

AW2_LIB = -law -lawhwi -Ipsi -laudiofile -IC 
AW2_LDIR= -Uusr/Ub/PSI 
AW2_INC_DIR = -I/usr/include/PSI 

# These are assorted other libraries that must be 
linked with 
GLLIBS= -IGL 
XLIBS= -1X11-IXt-lXi 
OTHERLIBS = -Im -Igutil -limage 

LIBS = $(AW2_LDIR) $(AW2_LIB) 
$(CAVE_DIR) $(CAVELIBS) $(XLIBS) 
$(GLLIBS) $(OTHERLIBS) 

CFLAGS = -32 -mips2 -O $(CAVE_INC_DIR) 
$(AW2_INC_DIR) -1. -DSGI 

OBJS = main n util.o compute.o draw.o init_gr.o 
init_cp.o knoto elemenLo findspasuo bfiins.o 
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stqi.o dsvdcmp.o dpythag.o dsvbksb.o iiiversion.o 
iiiit_so.o miniLo inproc.o reseto 

all: run 

# Does linking of the files and libraries 
run; $(OBJS) 

@.echo "Currently compiling" 
$(COMPE^) $(CFLAGS) $(OBJS) -o 

run S(L1BS) 
@echo "Compiled and linked" 

# Compiles the files if necessary 
.c.o: 

$(COMPILER) $(CFLAGS) -c $(@ $*.c 

#clean up code 
clean: 

strip run 
nn -f *.0 
@echo "All Neat Now" 

// miniLc 

#include "JimsCave.h" 

extern int dboy_sound; 

void dbov_initialize(void) 
{ 

dboyinitComputeO: 
if(dboy_sound) dboy_initSound(); 

} 

// mproc.c 

#include "JimsCave.h" 

extern dboy_File *dboy_parameter, 

void dbov_process(void) 
{ 

if(CAVEDistribMasterO) 
{ 

dboy_Compute(); 

CAVEDistribBarrier(); 

CAVEDistribSend(dboyjparameter. 
sizeof(dboy_File)); 
} 

else 
{ 

CAVEDistribBarrierO; 
CAVEDistribRficeive<dboy_parameter, 

sizeof(dboy_File)); 
} 
sginap(O); 

} 

// reset-c 

#include "JimsCave.h" 

extern dboy_File •dboy_parameten 
extern double *dboy_PCURRENT. *dboy_POLD, 
»dboy_PREF; 
extern int *dboy_NCPTS; 

extern int *dboy_Playme: 

void dbov_reset(void) 
{ 

inti.j; 

if(CAVEBUTTON3) 
{ 

/* reset the surface •/ 
dboy_Playme[0]= 1: 

for (i=0;i<dbov_NCPTS[l];i++) 
{ 

for (j=0j<dbov_NCPTS[0]:j+-i-) 
{ 

dboy_POLD[dboy_NCPTS[0]*i+j+1 ]=0.0; 

dboy_PaJRRENTIdboy_NCPTS[0]*i+j+l]=0.0; 

dboy_PREF[dboy_NCPTS[0]*i+j+ll=0.0; 
dboy_parameter-

>cpts(j][i] [21=0.0; 
} 

} 

/* check to see if the process should be terminated 
*! 

if(CAVEBmTON2) 
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{ 
printfralleii\n"); 

} 
} 

} 

// stq).c 

tfinclude "JiinsCave.li" 

extern double *dboy_PREF; 
extern int •dboy_NCPTS; 

void dboy_step(double *Unew.double 
*Uold.double *Ucurrent,doubIe •*FC,double 
**M.doubIe delta.double **pconst,double 
**sconst) 
{ 

double ••a,*w.**v.*b,*x; 
double alpha=20.0: 
double beta=10.0; 
double tau=0.1: 
double wmin,wmax: 
int lj,nu 

m=dboy_NCPTS(0]*dboy_NCPTS[l]; 

a=dboy_DoubleMatrix( l.m, l,in); 
w=dboy_DoubleVeaor(Uin); 
v=dboy_DoubleMatrix( Um, l.m): 
x=dboy DoubleVector(l.m): 
b=dboy_DoubleVeaor( l,m); 

for (i=l;i<=m;i-i-t-) 
{ 

for (j=l:j<=ni;j++) 
{ 

a[i]D]=(l-0+alpha*delta)*M[i-l][j-lI; 

} 
} 

for (i=l:i<=m;i++) 
{ 

b[i]=0.0; 
for (j= 1 :j<=m;j++) 
{ 
/• b[i] += 

((2.0+alplia*delta)*M[i-l][i-l]-

pow(delta,2.0)*K[i-1 ] [j-l ])*UcurTentlj]-M[i-1] [j-
l]*Uold|j];*/ 

b[i] += 
(2.0+alpha*delta)*M[i-1] [j-1 ] *UcurTent|j]-
pow(delta.2.0)*beta*K[i-I]|j-l]*(Ucurrent[j]-
dboy_PREF[i])-M[i-l][j-l]*UoldD]; 

} 
} 

/* Apply primary constraints to the matrix */ 
for (i=l;i<=ni;i++) 
{ 

if (pconst[i][l] > l.O) 
{ 

for (j=l;j<=rtuj++) 
{ 

a[i]m=0.0: 
if(i=j) 

a[i]Ql=I.O: 

b[i]=pconst[i][2]; 

} 

/* Apply secondary constraints to the matrix •/ 
for (i=l;i<=m;i-H-) 
{ 

if (sconst[i][l] > 1.0) 
{ 

for (j=l:j<=ni;j++) 
{ 

a[il(jl=0.0; 
if(i==i) 

a[i]D]=1.0: 

b[i]=sconst[i][2]; 
} 

X 
} 

} 

for (i=l;i<=m;i++) 
{ 

dboy_PREF[i]=(Ucurrent[i]*delta+dboy. 
PREF[i]*tau)/(delta+tau): 

} 

dboy_dsvdcmp(a,m.m,w,v); 
wmax=0.0; 
for (i=l:j<=in;j++) if (w(j] > wmax) 

wniax=wlj]; 
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winin=wniax*0.000001; 
for (j=l;j<=in;j-H-) if (wQ] < wmin) 

w[fl=0.0; 
dboy_dsvbksb(a,w.v,ni.in.b.x); 
for (i=l;i<=in;i++) Unew[i]=x[i]; 

dboy_&eeDoubleMatrix(aL l,ni,l.in); 
dboy_&eeDoubleVector(w. l,in); 
dboy_&eeDoubIeMatrix(v, Lm, l.m); 
dboy_&eeDoubIeVeaor(x. l.m); 
dbov_&eeDoubleVeaor(b. l.m); 

} 

// iml.c 

#indude "util-h" 

/* allocate a double number in shared memory */ 
double *dbov sharedDouble(void *sharedMemorv) 
{ 

double *d; 

d=(double •) 
amalloc(sizeof(double).shaiedMemory); 

return d; 
} 

/* allocate a double vector in shared memory *! 
double *dboy_sharedDoubleVector(long nL long 
nh, void •sharedMemory) 
{ 

double *v; 

v=(double •) ainalloc((nh-
nl+ l+NR_END)*sizeof(double).sfaaredMemory); 

if (!v) printf("allocation &ilure in 
sharedDoubleVector\n"); 

return v-nl+NR_END-. 
} 

/* allocate a double matrix in shared memory •/ 
double **dboy_sharedDoubleMatrixGong nrL long 
nrh, long ncl, long nch, void *sharedMemory) 
{ 

long i, nrow=nrh-nrl+l, ncol=nch-ncl+l; 
double **m; 

m=(double **) 
amalloc((nrow+NR_END)*sizeof(double*),shared 
Memory); 

if (!m) printfCallocation Allure 1 in 
sharedDoubleMatrix\n"); 

m += NR_END; 
m —nrl; 

m[nrl]=(double *) 
amalloc((nro\v*ncol+NR_END)*sizeof(double),sh 
aredMemoiy); 

if (!m[nrl]) printfCallocation &iliu:e 2 in 
sharedDoubleMatrix\n''); 

m[nrl] += NR_END; 
m[nrl] — ncl; 

for(i=nrl+l;i<=nrh;i++) m[i]=m[i-
l]+ncol; 

return m; 
} 

/* allocate a double 3D tensor in shared memory 
*/ 
double •**dboy_sharedDouble3Tensor(Iong nrl. 
long nrh. long ncL long nch. long ndL long ndh. 
void *sharedMemorv) 
{ 

long i, j, nrow=nrfa-nrl+l. ncol=nch-
ncl+1. ndep=ndh-ndl+l; 

double ***t; 

t=(double •**) 
amalloc((nro-w-t-NR_END)*sizeof(double**),share 
dMemory); 

if(!t) prinlf("allocation failure 1 in 
sharedDoubIe3Tensor\n"); 

t += NR_END; 
t-= nrl; 

t[nrl]=(double **) 
ainalloc((nrow*ncol+NR_END)*sizeof(double*).s 
haredMemory); 

if (!t[nrl]) printf("allocation failure 2 in 
sharedDouble3Tensor\n"); 

t[nrl] += NR_END; 
t[nrl] — ncl; 

t(nrl][ncl]=(double *) 
amalloc((nrow*ncoI*ndep+NR_END)*sizeof(doub 
le),sharedMemory); 

if (!t[nrl][ncl]) printf("allocation feilure 
3 in sharedDouble3Tensor\n"); 

t[nrl][ncl] += NREND; 
t[tu-l][ncli -= ndl; 
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for(i=ncl+1 ;i<=nch;i++) 
t[nrll[i]=t[iirl][i-l]+n(iq); 

for(i=iirl+l;i<=nrh;i++) 
{ 

t[i]=t(i-l]+ncol; 
t[i][ncll=t[i-l][ncl]+ncoI*ndep; 
for(j=ncl+I;j<=nch:j-t-(-) 

t[i]D]=t[i]D-l]+ndep; 
} 

retumt; 
} 

/• allocate a float veaor in shared memoiy */ 
float *dboy_sfaaredFloatVeaor(Iong nl. long nh. 
void *shaiedMemorv) 
{ 

float *v; 

v={float *) ainalloc((nh-
til+l+NR_END)*sizeof(float),sliaredMemory); 

if(!v) printfC'allocation feilure in 
sharedRoatVeaor\n"); 

return v-nl+NR_END; 
) 
/ 

/* allocate an integer vector in shared memory *! 
int •dboy_sharedIntVeaor(long nl. long nhu void 
•sharedMemorv) 
{ 

int *v; 

v=(int *) amalloc((nh-
nl+ l+NR_END)*sizeof(int),sfaaredMemory); 

if(!v) printf("allocation failure in 
sharedIntVector\n"); 

return v-nl+NR_END; 
} 

return v-nl+NR_END; 
} 

/* allocate a double matrix •/ 
double •*dboy_DoubleMatrix(long nrL long nrh. 
long ncL long nch) 
{ 

long i, nrow=nrh-nrl-!-I. ncol=nch-ncl+l: 
double ••m; 

m=(double •*) 
malloc((nrow+NR_END)*sizeof(double*)); 

if (!m) printf("allocation Mlure 1 in 
DoubleMatrix\n"); 

m += NR_END: 
m -= nrl; 

mfnrl]=(double •) 
nialloc((nrow*ncol+NR_END)*sizeof(double)); 

if (!m[nrl]) printf("allocation &ilure 2 in 
DoubleMatrix\n"); 

m[nril += NR_END; 
m[nrl] — ncl; 

for(i=iu-I+l;i<=iu-h;i-^) m[i]=Tn[i-
l]+ncol; 

return m; 
} 

/* ftee a double veaor */ 
void dboy_freeDoubleVeaor(double *v, long nl. 
long nh) 
{ 

free(v+nl-NR_END); 
nh=nh; 

} 

/• allocate a double veaor •/ 
double *dboy_DoubleVeaorGong nl. long nh) 
{ 

double *v; 

v=(double *) malloc((nh-
nl+l+NR_END)*sizeof(double)); 

if (!v) printfCallocation failure in 
DoubleVeaor\n"); 

/• free a double veaor *! 
void dboy_freeDoubleMatrix(double **ni. long 
nrl, long nrh, long ncl. long nch) 
{ 

free(m(nrl]+nci-NR_END); 
free(m+nrl-NR_END); 
nrh=nrh; 
nch=nch; 

} 
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// utiLh 

#include <sys/types.h> 
#incliide <nialloc.h> 

#define NR_END I 

static double dsqiarg; 
#defiiie dboy_DSQR(a) ((dsqiarg=(a)) == 0.0 ? 0.0 
: dsqiarg*dsqrarg) 

static double dmaxargLdmaxargl: 
#define dboy_DMAX(a,b) 
(dmaxargl=(a),dinaxarg2=(b),(dinaxargl) > 
(dmaxargi) ? (dmaxargl); (dmaxarg2)) 

static int iminargl.iiTiinarg2; 
#define dboy_IMIN(a,b) 
(iminargl=(a) iTninarg2=(h) (iTniTiargl) < 
(iminarg2) ? (iminargl); (iminargl)) 

#define dboy_SIGN(a.b) ((b) >= 0.0 ? &bs(a): -
^s(a)) 

/* memory allocation utilities - prototypes */ 
double •dboy_sIiaredDouble(void *); 
double •dboy_sharedDoubleVector(long, long, 
void *); 
double **dboy_sharedDoubleMatrix(long, long, 
long, long, void *); 
double •**dboy_sharedDouble3Tensor(long. long, 
long, long, long, long, void *); 
float *dboy_sharedFloatVector(long, long, void *); 
int *dboy_sIiaredIntVeaor(long, long, void •); 

double •dboy_DoubleVeaor(long, long); 
double **dboy_DoubleMatrix(long, long, long, 
long); 

void dboy_fi:eeDoubleVector(double long, long); 
void dboy_freeDoubleMatrix(double **, long, 
long, long, long); 
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