
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1998

Interactive synthetic environments with force
feedback
James Christopher Edwards
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Edwards, James Christopher, "Interactive synthetic environments with force feedback " (1998). Retrospective Theses and Dissertations.
11606.
https://lib.dr.iastate.edu/rtd/11606

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/11606?utm_source=lib.dr.iastate.edu%2Frtd%2F11606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UME

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter fece, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UME a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Infonnation Q}mpai ̂

300 North Zed> Road, Ann Aibor MI 48106-1346 USA
313/761^700 800/521-0600

www.manaraa.com

www.manaraa.com

Interactive synthetic environments with force feedback

by

James Christopher Edwards

A dissenation submitted to the graduate faculty

in partial fiilfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Major Professor: Greg R. Luecke

Iowa State University

Ames, Iowa

1998

Copyright © James Christopher Edwards, 1998. All rights reserved.

www.manaraa.com

DMI Nvunber: 982 6528

Copyright 1998 by-
Edwards, James Christopher

All rights reserved.

UMI \Ucroforni 9826528
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

James Christopher Edwards

has met the dissertation requirements of Iowa State University

For the Miijor Prog

Forth!

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

U1

To my loving wife, Trisha

www.manaraa.com

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS vii

ABSTRACT viii

CHAPTER L INTRODUCTION 1

CHAPTER 2. LITERATURE REVIEW II

PARTL HAPTIC INTERACTION 26

CHAPTERS. CONCEPT AND CONTROL 27
Virtual Manipulator Concept 27
Virtual Manipulator Control Law 29
Force Generation Scheme 34

CHAPTER 4. STABILITY OF INTERACTION 37
Dynamic System: Structure and Properties 40

General Robot Dynamics 40
Gain Matrices 46
Null Space Filter Matrix 50

Equilibrium Point Analysis 56
St^ility Analysis 64

Modified Control Law 65
Original Control Law 73

CHAPTER 5. EXPERIMENTAL TESTBED 80

www.manaraa.com

V

Robotic Manipulator 80
Control Hardware 88
Force Transducer 92
Safety Considerations 94

CHAPTER 6. EXPERIMENTAL RESULTS 98
Virtual Revolute Mechanism 99
Virtual Prismatic Mechanism 114
Time Varying Virtual Manipulators 118

NURBS Curve Virtual Manipulator 119
NURBS Surface Virtual Manipulator 127

High Degree of Freedom Virtual Manipulator 135

PARTE. DYNAMIC MODELS FOR INTERACTION 141

CHAPTER?. FINTTE ELEMENT ANALYSIS 142
Discretization 143
Interpolation 144

Shape Function Requirements 145
Derivation of Shape Functions 146
Coordinate Transformation 148

Elemental Description 149
Assembly 158
Solution 162

Central Difference Approximation 162
Start-Up 164
Constraints 165

CHAPTER 8. MODIFIED FINITE ELEMENT ANALYSIS 168
B-spline Basis Functions 170
Shape Function Requirements 172
B-spline Elements 175

CHAPTER 9. COMPARISON OF METHODS 178
Standard Finite Element Model 179
Modified Finite Element Model 181
Modal Response 185
Dynamic Response 188

CHAPTER 10. MODEL DEFORMATION 190
Local Deformation 190
Global Deformation 193

www.manaraa.com

vi

Force Determination 194

CHAPTER 11. SURFACE MODEL 198

CHAPTER 12. CONCLUSIONS 204

APPENDIX; COMPUTER CODE 207

REFERENCES 340

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to begin by thanking Greg Luecke for his continued support of this work.

As I think back, it is doubtfiil that I would have pursued an advanced degree if I had not met

Dr. Luecke. I would also like to express my appreciation to the members of my program of

study committee, Judy Vance, Jim Oliver, Alison Flatau and Julie Dickerson. I would

especially like to thank Dr. Oliver and Dr. Flatau for serving double duty on both my doctor

of philosophy and master of science committees. In addition, I would like to thank the staff of

the Department of Mechanical Engineering and the Iowa Center for Emerging Manufacturing

Technology, especially Rosalie Enfield and M Shannon, for answering my numerous

questions and handling the paper work associated with my research and studies.

Role of my parents, Rob and Susan, and my in-laws, Pat and Colette, have been

extremely important. They aU have supported my studies both emotionally and financially.

Finally I would have to thank by wife, Trisha, for supporting me through out my education. I

hope that I have been as supportive of her education as she has mine.

www.manaraa.com

viii

ABSTRACT

The evolution of the visual display technology used in synthetic environments is

fueling the development of numerous applications. The results of these initial expeditions into

virtual worlds have been promising. However, these initial investigations have also

highlighted the need for force feedback in synthetic environments to make the virtual

experience more immersive and easier for the traveler to interact with the objects that

populate the synthetic environment. In addition the inclusion of force feedback in a synthetic

environment will provide another input channel that can provide information to the traveler

beyond the typical visual and audio input modes. Research in the area of force feedback for

synthetic environments thus far has focused on the design and construction of specialized

interface devices. These new haptic devices can be used to provide force interaction, however

because these devices are unique prototypes it is difficult if not impossible to reproduce and

extend results obtained at different facilities. This work proposes a new approach to force

interaction in synthetic environments, virtual manipulators. The virtual manipulator control

concept can be applied to any available six degree of freedom robot manipulator. Therefore

www.manaraa.com

ix

experimental results obtained using the virtual manipulator control law can be reproduced at

any research fecility with a six degree of freedom robot. This work will develop the virtual

manipulator control approach as well as investigate the stability characteristics of the control

law operating on a general six degree of freedom robot. Experimental results will be

presented for various virtual manipulators including the time varying extension of the virtual

manipulator concept. In addition to the virtual manipulator concept this work will also

develop a physically-based modeling technique that can be used to assimilate a force feedback

device into a synthetic environment. This modeling approach uses finite element analysis

techniques but uses the NURBS basis fimctions instead of the typical interpolation basis

fimctions. As a result the dynamics of the model can be represented using the same

characteristic parameters as the geometric model. Results of this modeling approach will be

presented for one and two dimensional dynamic models.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

The rapid development of synthetic environments is based on the idea of providing

high quality, realistic images to the traveler in the environment. However, the main

motivation is finding new ways of interacting with information. Visualization is at the root of

synthetic environments and is an important application but if all that is needed to increase the

utility of synthetic environments is a better quality image then ±ere is little need for the

research being done in this area. Improvements in displayed image quality will naturally

follow advances in state of the art graphics hardware.

The current research is extending the boundaries of what can be done in a synthetic

environment. This is simply a question of how the traveler in a synthetic environment can

interact with the computer data that describes the world. The data can be viewed, the

visualization aspect of the synthetic environment. The data can also be manipulated, moved,

scaled and deformed. However, these operations can be performed and have been performed

traditionally using a keyboard and mouse. Once the data has been modified it can again be put

into the synthetic environment for a visual inspection. The modification process can be

www.manaraa.com

2

Streamlined if the traveler is able to reach with her hand modify the data directly without

having to transition between the synthetic environment and a traditional computer

workstation.

The previous illustration clearly shows the direction of research in synthetic

environments. Developing the interactive capabilities of synthetic enviromnents is what will

unlock the potential of the technology, simply having a faster computer will not. However,

interacting with an synthetic environment is not a simply task. A traveler cannot reach out

and grab data when all that is there is a projection, no matter how convincingly the mind of

the traveler has been fooled.

Interaction devices such as a wand or glove can be used to communicate with the

computer controlling the synthetic environment. However, this requires some mechanism for

manipulation, such as touch the object and push a button and then move the object.

Interaction in a synthetic environment is not the same as interacting with real objea but these

contrived mechanism for interaction may be sufiBcient or even preferred in some situations.

Another way to view interaction with a synthetic environment is what modalities are

available to supply information to the traveler. When a wand or glove is used as the

interaction device the input modalities are the same as a visualization synthetic environment.

So a wand or glove interaction device has extended the interaction abilities of the synthetic

environment but it has not extended the ability of the environment to supply the traveler with

information. This is because these interaction devices are "passive", they can only observe

what the traveler does and allow the synthetic environment to change in response. However,

by using a haptic interaction device the traveler can interact with the synthetic environment in

www.manaraa.com

3

the same way as with a wand or glove but the haptic device also represents a new source of

information that is available to the traveler, force information.

This force information can be used in a tradition setting such as to display the surfiice

characteristics of an object or display to the traveler the weight or inertia of an object that is

being carried. But forces can be used to represent other types of information as well, a force

applied to the traveler need not represent a "real" force. This is the same idea as using a color

map to represent the stress results obtained from a finite element analysis. Consider for

example allowing a traveler design a part prototype in a virtual design studio. A quantity of

design material is presented to the traveler. The design material could behave like clay that is

used in the automobile industry. However, the real material used may not behave exactly the

way the designers would want, in the synthetic environment the dynamic characteristics of the

material can be customized.

One option is to allow the dynamic characteristics of ±e material should change

during the design process. Consider that the job of the traveler in the synthetic environment

design studio is to lay out a stifiBng web. The traveler lays out the modeling material in the

general shape and then sculpts it into the final form. During the design process a finite

element analysis of the part could be running simultaneously, the results of this analysis could

be used to modify the material properties of the design material. If the stress at some point in

the web is high the modeling material could become stiff and viscous so that the designer can

not fiirther reduce the thickness of the web at that point.

The idea of modifying the properties of a design material could be used in other

situations. When a large number of designers are working simultaneously on a complex

www.manaraa.com

4

product. They are generally given a working envelope in which their part or component must

fit. A designer must not violate this envelope or risk having their component interfere with

another part. As the designer shapes the part the modeling material could respond when the

part approaches the envelope boundary. Varying modeling material properties could also be

used to enforce continuity requirements on the surface of a part. Stiffing the modeling

material at a point could be used to prevent a designer fi^om introducing a curvature

discontinuity into an automobile panel that would look "bad" under the show room lights.

Application of force feedback in the design process is not limited to prototype design.

Design for assembly and disassembly is a major concern in the production of large complex

machines. Using a haptic device coupled with common robot impedance fields would allow

designers to investigate the installation or removal of a component part without construction

of a physical prototype.

Although the potential of force feedback technology in synthetic environments is great,

the development and assimilation of this technology has been slow. One reason for the slow

development of haptic feedback technology is the accuracy and robusmess of the human force

sensors. Although the human visual system can be "fooled" with stereo images projected

thirty times a second, the requirements for believable haptic interaction are more difficult to

achieve. There is little doubt that the subject of haptic interaction in synthetic environments

will be an open problem for some time to come.

The lack of usage of the haptic devices that do currently exist in synthetic

envirormients is starting to be addressed. There has been a shift in the focus of many research

groups, which in the past have concentrated on the design and construction of haptic

www.manaraa.com

5

interaction devices. These groups are now focusing on how to incorporate the current haptic

devices into more complicated interactive dynamic simulations for use in synthetic

environments. However, the integration of haptics into synthetic environments still presents

some problems.

The first major problem resides in the difiFerent system requirements for a visual display

system and a force display system. For a visual display system to work properly the stereo

images must be updated at least thirty times per second, which is a least one order of

magnitude slower than the update rate required for a haptic device. In addition the accuracy

of the update rate for a visual display system is not critical, slight fluctuations in the update

rate will most likely not be detrimental or even noticed by the traveler in the synthetic

environment. However, variations in the update rate of a force display can lead to unstable

system response that will at best degrade the experience of the traveler in the synthetic

environment and at worst pose a physical risk to the traveler. Fuially due to the relatively

slow update rates of the visual system it is possible to communicate with the external

hardware, such as position trackers, using conventional serial communication protocols. This

is not the case for most force display systems due to the faster update rates and the amount of

information that must be transferred for proper control of the hardware.

For these reasons ±e host computer selected for visual display systems and force

display systems are different. Visual display systems typically nm on unix platform computers

with specialized graphics pipelines designed to increase display quality and speed. Where as

force display systems are typically run on DOS based personal computers or on specialized

control computers using a true real time operating system. As a result a synthetic

www.manaraa.com

6

environment containing both visual and force display will usually have two or more host

computers which must communicate effectively for proper system performance.

Recent advances and changes in technology are reducing the magnitude of this

problem. The demand for commercially available haptic interaction devices has required the

development of interface circuitry and software to control haptic devices from traditional

graphics workstations. Although this interface hardware and software is currently proprietary,

it still leads to the conclusion that similar equipment could be developed to interface with a

generic haptic device. In addition recent design choices made by the manufacturers of

personal computers and graphics workstations are moving these two classes of host

computers more towards a similar structure. Therefore as developers and users of haptic

feedback devices adapt to these changes the process of including haptic devices in synthetic

environments should be simplified. Finally, the wide availability of internet transfer protocols,

such as UDP and TCP sockets, has made the process of communicating between dissimilar

host computers substantially easier.

The second major problem associated with including a haptic device into a synthetic

environment is due to the recent changes in the way three dimensional images are presented to

the traveler. Most of the prototype and commercially available haptic feedback devices were

designed and developed prior to the advent of projection style synthetic environments. As a

result the design of these haptic devices are not compatible with this three dimensional

graphics presentation technique. The presence of the device in the synthetic environment will

occlude the projected images and have a detrimental effect on the quality of the experience of

the traveler.

www.manaraa.com

7

The third and final major problem associated with including a haptic device into a

synthetic environment is caused by the unique nature of most haptic interfeces. There has, of

course, been an increase in the number of commercially available force feedback devices but

most devices used are one of a kind prototype devices. The one of a kind configuration of

haptic devices prevents external verification and extension of research results. In addition the

cost in money and time to design and construct a haptic device is prohibitively high for most

research facilities. This coupled with the idiosyncratic nature of prototype hardware is

suflBcient to prevent the use of haptic devices in synthetic environments. Although

commercially available feedback devices have reduced in some sense the isolation faced by

haptics researches, proprietary programming libraries continue to stifle open communication

between researchers in the haptic feedback arena.

This work addresses the problem developing a haptic interface that is compatible with

all synthetic environment implementations, that is also commonly available to the haptic

research commimity. It proposes using a generic six degree of fi^eedom robot as a haptic

interaction device for a synthetic environment, as well as a new control law which will allow

the robot to behave like some virtual mechanism or manipulator. The proposed virtual

manipulator control approach can make haptic interaction in synthetic environments more

available to the research community. Although custom haptic devices are not prevalent, six

degree of fi-eedom robots are quite common. In addition interface hardware and software for

joint level control of robots is commonly available for today's powerfijl personal computers.

The virtual manipulator control approach is modular, can be easily changed, allowing any one

of various six degree of freedom robots to represent the virtual manipulator.

www.manaraa.com

8

This will allow research based on virtual manipiilators to be verified and extend at

different research facilities. Because the robot and interfece equipment is readily available the

cost in both money and time associated with acquiring and maintaining a haptic display system

can be reduced. There are currently no six degree of fi"eedom robots designed specifically as

haptic devices, although some have been proposed. However, if such a device is ever

manufactured the virtual manipulator control law would run on it as well.

The drawback to using the six degree of fi-eedom robots currently available as a haptic

device is that their general dynamic characteristics do not match those of an ideal haptic

interface. The increased computational power of the personal computer offers a solution, as it

is now possible to run complex, real time control laws that compensate for the physical short

comings of a given robot. This will allow a less than ideal robot to behave more like an ideal

haptic device.

It is also possible to use a six degree of freedom robot as a haptic display in a

projection style synthetic environment. The robot can be equipped with a handle and

positioned so that it is behind the traveler in the projection environment. Using the position

sensors normally associated with a robot, the position of the handle in the synthetic

environment can be calculated and the image of a virtual tool can be grown fi"om this

calculated position. This will allow the traveler to see the images of the scene and the tool

without having the interface occlude any portion of the world.

Using the virtual manipulator control approach a six degree of fi-eedom robot can be

made to mimic the kinematic behavior of some other mechanism. The time varying extension

of the virtual manipulator control can allow the traveler to interact with arbitrary rigid objects.

www.manaraa.com

9

In addition the time varying characteristics of the a virtual manipulator can be tied to a

dynamic model allowing the traveler to interact with a virtual object that possess dynamic

charaaeristics.

The goal of this work is to advance the state of the art in haptic interaction in synthetic

environments. To that end the virtual manipulator control approach will be developed. The

control approach is designed for use on a general sbc degree of freedom robot in an effort to

increase the availability of force display in synthetic environments. This is achieved by making

it easier to acquire and maintain the haptic interaction device. In addition this approach

should foster a greater sense of cooperation and collaboration in this area of research by

allowing researchers to verify and extend the work performed by others at different facilities.

In addition this approach to haptic interaction can be used in most if not all types of synthetic

environments from head mounted displays to surround screen virtual enviroxunents.

The virtual manipulator approach also makes a contribution in the area of control

theory and nonlinear systems apart from the area of haptic interaction. The system composed

of the virtual manipulator control law and a six degree of freedom robot has an infinite

continuum of equilibrium points defined by the end effector trajectory of the virtual

manipulator. This is an unusual occxarrence in control theory, where most systems are

designed to have a single isolated equilibrixam point. The stability of the continuum of

equilibrium points will be demonstrated using a tradition Lyapunov argument.

Small two and three degree of freedom haptic devices are currently commercially

available for use with today's graphic workstations. However, using the virtual manipulator

control approach it will be possible for the next generation of graphics workstations to be

www.manaraa.com

10

equipped with a low cost six degree of freedom force feedback interface. Using a fish bowl

style synthetic environment a virtual tool will be extended form the haptic device to allow

engineers to develop prototype designs or analyze response data with the addition of force as

an input channel. This advancement should provide a natural and effective human-computer

interaction mechanism.

This work is divided into two major parts. Preceding Part I is a review of current

literature in Chapter 2. Part I then discusses the area of haptic interaction. Specifically,

Chapter 3 presents the virtual manipulator control law. The stability of this control law

operating on a general six degree of freedom robot is shown in Chapter 4. The experimental

hardware used to verify the virtual manipulator control scheme is presented in Chapter 5. In

Chapter 6 experimental results obtained from the available hardware is exhibited. The

second part of this dissertation develops a dynamic modeling approach that can be used with

the B-spline geometric representation. This part begins with a description of finite element

analysis in Chapter 7. Chapter 8 proposes a modification to the standard finite element

analysis. A comparison of the standard and modified finite element analyses is presented in

Chapter 9. Chapter 10 develops a technique for deforming dynamic models derived using the

modified finite element analysis. A dynamic surface for use in a synthetic environment is

developed in Chapter 11 using the modified finite element analysis. Following Part II, the

final chapter. Chapter 12, discusses the results of this dissertation and examines areas of

future research.

www.manaraa.com

11

CHAPTER 2. LITERATURE REVIEW

Graphical display technology has advanced greatly in the past decade. Current

graphics workstations can now render large, photo realistic scenes while still allowing real

time interaction. These advanced computers are fueling the development of synthetic

environment technology. A graphics workstation can generate two images of a particular

scene, one calculated for the left eye of the observer and the second for the right eye of the

observer. When the images are presented to the appropriate eye, the mind of the observer is

able to fuse the images together to form a believable three dimensional picture of a scene that

exists only in a computer database, a synthetic environment [41].

There are several ways to present these stereographic scenes to the traveler in a

synthetic environment. The least immersive, in the sense that the traveler is least likely to

believe that she is present in the conceptual world, is to simply display the images on a

conventional computer monitor. A pair of liquid crystal display shutter glasses is used in this

implementation approach to occlude the right eye image from the left eye and conversely to

occlude the left eye image from the right eye. The result of this approach is that a three

www.manaraa.com

12

dimensional synthetic environment is created that occupies the space in front of and behind the

computer monitor [20]. This synthetic environment technique is commonly referred to as a

"fish bowl" because the traveler's view of the synthetic environment is similar to a person's

view of fish swimming in an aquariimi. Although this stereographic display technique is not

highly immersive, it is a good starting point in the development of a synthetic environment.

Another approach to presenting stereographic scenes to a traveler is the use of a head

mounted display (HMD). This technique uses two display monitors instead of one, as used in

the fish bowl approach. Each eye is allowed to see one display and is occluded from seeing

the other by means of some physical barrier [99]. This is generally achieved by using small

display monitors that are mounted in a visor, that is placed over the face of the traveler. This

approach is more immersive than the fish bowl technique because the traveler sees only what

is displayed on the monitors, anything that is physically present around the traveler is

occluded.

Although a BMD provides an immersive synthetic environment it also raises some

problems that must be overcome by the designer of the synthetic environment. Because the

traveler can not see the real world aroimd her safety is an issue that must be addressed.

However, a more important issue is registration. If the traveler is allowed to interact with the

synthetic environments using her hands, a graphical representation of the hands must be

placed in the synthetic environment. The graphical representation of the traveler's hands must

be placed in the same position and orientation as her real hands, if there is error in the

placement of the computer generated hands the traveler may become disoriented thus lowing

the sense of immersion.

www.manaraa.com

13

A head coupled display (HCD) is a stereographic presentation technique that is a

generalization of the HMD. Because the display monitors used in a HMD must be worn on

the head of the observer, they must be low weight so they do not cause fatigue or injury to the

traveler. This weight limitation typically results in the use of low resolution display monitors

in a HMD [14]. The HCD display technique was conceived to overcome the weight issue

associated with a HMD. In a HCD heavier display monitors are used because the weight of

the display hardware is counterbalanced by a mechanical link^e [69]. As a result the weight

of the HCD display is of less importance, however the inertia of the display monitors and of

the coimterbalance mechanism are still experienced by the traveler and can impede on the

sense of immersion.

The final stereographic presentation technique is a generalization of the fish bowl

approach. Instead of allowing the traveler to view the synthetic environment fi-om the

outside, the stereographic images are projected onto the walls and floor of a room. This

projection approach allows the traveler to step into the synthetic environment and interact

with the objects that populate the environment [25], in the same fashion as the HMD. This

projection technique removes some of the registration problems encountered Avith a HMD

because there is no need to display any of the traveler's body, the traveler will be able to see

her real hand. The main problem encountered with projection based systems is occlusion. If a

real object or person stands between the traveler and the projection surface that portion of the

synthetic environment will not be visible to the traveler.

The previous discussion was not presented to determine what is the "best" approach

for presenting realistic three dimensional scenes to a traveler in a synthetic environment. The

www.manaraa.com

14

selection of a particular system is most often made by what resources are available to a project

and what the ultimate goals of that project are. The main point of the discussion was to show

the progression of stereographic presentation techniques and that the research and

advancement of synthetic environment technology is viewed as an important and enabling

technology by the world community.

The presentation of realistic three dimensional scenes focuses on the visualization

capabilities of a synthetic environment. Even if synthetic environments were limited only to

visualization, there is little doubt that this technology will still have a positive impact on

science [26], engineering [78], architecture [12] and medicine [32]. However, synthetic

environments are not limited to visualization. In fact even in synthetic environments

developed solely for visualization purposes the traveler interacts with the environment by

means of view point tracking [27], that is, the scene changes in response to the traveler's

change in position or gaze. Much of the current research in synthetic environments is

focusing on extending the potential of this technology by developing new interaction

paradigms.

In order for the traveler in a synthetic environment to interact with the environment,

the traveler must have an interface for communicating with the computer that is controlling

the simulation of the environment. Traditionally, users interact with computers using a mouse

and keyboard. A standard mouse is not an effective interface for a three dimensional synthetic

environment because it is a two dimensional device. Although there are hand held keyboards,

such as the Twiddler [39], keyboard interaction is also unnatural for interaction with a

synthetic environment.

www.manaraa.com

15

Two different types of devices have been developed as interface devices for travelers

in a synthetic environment. The first type of device, a wand, is a three dimensional

generalization of a conventional mouse. A wand is a hand held device that is instrimiented so

that the position and orientation of the device can be measured and utilized as input to the

computer controlling the synthetic environment. In addition, a wand can be equipped with

buttons that serve as additional digital inputs to the controlling computer. The second type of

device, a glove [107], is used to provide more refined input to the computer controlling the

synthetic environment. A glove is a device worn over the traveler's hand that is instrumented

to track the motion of the traveler's hand as well as measure the motion of each digit of the

hand. The data fi-om a glove device can be used to allow dexterous manipulation of a virtual

object in a synthetic environment by the traveler.

As the traveler in a synthetic environment is allowed to interact with the objects that

populate the conceptual world, the database associated with the environment must extended.

The database for a visualization synthetic environment must include a complete graphical

description of the environment, such as object geometry, colors, textures and a lighting model.

However, for an interactive synthetic environment the database must include a complete

graphical description of the environment as well as a description of the interaction

methodologies.

Therefore given a device, either a wand or a glove, an interaction protocol can be

developed to facilitate picking up objects, moving them around and stacking them up. These

types of interactions could be grouped as interacting Avith rigid objects, objects with constant

and unchangeable geometry. Perhaps the objects that populate the synthetic environment

www.manaraa.com

16

should not be rigid, the interaction device can be used to allow the traveler to maneuver the

object as well as deform the shape of the object. Once the objects that populate the synthetic

environment are allowed to be deformed the size of the synthetic environment database again

increases. The database must now include protocols that describe how the objects deform

when the traveler acts on them.

It is easy to envision a synthetic environment developed as a design studio for an

automobile stylist. The stylist can shape the contour of next years automobile not with clay

but with a computer database. However, to the stylist the interaction metaphor is the same,

using her hands to arrive at the desired form. The major obstacle that stands in the way of

realizing this goal is the method of interaction [33]. The current interaction devices, both

wands and gloves, are passive they only sense the traveler's motion and allow the synthetic

environment to react based on the measurements. However, a new class of interaction

devices are currently being uivestigated. These haptic devices [55] can not only sense the

motion of the traveler in a synthetic environment but also react by applying force feedback to

the traveler.

The technology used to develop haptic interaction devices is based on tele-operation

equipment. Tele-operation is the control of a remote robotic slave manipulator by an operator

using a master manipulator [103], The use of tele-operation technology in synthetic

environments is easy to imagine, the master manipulator interface is used to control the

synthetic environment instead of the remote located slave manipulator [16]. In fact interaction

techniques for synthetic environments have developed in much the same way as tele-operation

equipment.

www.manaraa.com

17

Early tele-operation systems allowed the operator to interact with the remote slave

manipulator using a passive master manipulator. However, it was soon realized that these

passive interaction approaches were diflScult for ±e operator to use and the research into

active force feedback master manipulators provided an effective solution to this problem.

This parallel development of tele-operation systems and synthetic environments provides the

designer of a synthetic environment system with a wealth of information to draw upon. Most

importantly, the previous tele-operation research provides a description of a "good" force

reflecting master, this information can be used to design a haptic interface for a synthetic

environment.

Tele-operation research has described a "good" haptic interface as a low inertia, low

friction manipulator that is back driveable [40]. This description of the ideal haptic interface

manipulator is significantly different then the description of most commercially available robot

manipulators. As a result most of the early research into force feedback for synthetic

environments has focused on the design and construction of interface manipulators; which

behave more like the ideal haptic interface than traditional robots [60].

Although all of the devices that will be described below were specially designed and

fabricated, with only one prototype being built they can be classified into three groups. The

first group contains highly specialized devices with only one intended use or fimction.

Devices in this category are characterized by high fidelity reproduction of the desired

sensation. However, the cost of this high fidelity is a loss of generality for the device. A good

example of these types of devices is the piano action simulator [36]. Another example is a

non-invasive surgical simulator developed for medical training [95].

www.manaraa.com

18

The second group contains devices where the hnman-machine interface is

accomplished by means of a stylist or grip. This category contains devices with both large and

small working volumes. Large workspace devices have been developed with a single degree

of freedom [74], four degrees of freedom [73], but most possess six degrees of freedom [1]

[77] [96] [105], These interfaces allow the human to feel contact on the pahn of the hand by

grasping a bar. Using these systems the traveler in a synthetic environment can sense

boundaries, shapes, interact with virtual objects by moving them or deforming their geometry

or even play tennis. Smaller pen-based interface arrangements have been used to deform free

form surfaces [50], simulate surgical tools [5] [15] or allow standard computer interaction

[56].

The third group contains devices that were developed to apply forces to the fingers of

the traveler. Research has shown that for dexterous manipulation of an object it is siifBcient

to apply forces to the finger tips and sagital planes of the finger of the human [63]. Using

various mechanical arrangements devices have been developed to apply finger tip forces to a

single digit [68], two digits [49], three digits [13], and five digits [9], In addition one device

has been developed to apply finger tip forces as well as sagital plane forces to a single digit

[65],

The construction of all these unique devices has effectively isolated most of the

researchers in the area of haptic interaction for synthetic environments. Collaboration and

verification of experimental results is difScult if not impossible when only one prototype of a

haptic force feedback device exists. Some haptic devices are currently being sold to the

public, making uniform hardware available to the haptics research community.

www.manaraa.com

19

CH Products [80] and Nficrosoft [94] are both marketing a low end force feedback

joystick aimed at PC gaming enthusiasts. Immersion Corporation [47] offers high end force

feedback joysticks developed for commercial gaming use. Sensable Corporation has taken the

three degree of freedom PHANToM prototype [67] into a commercially available haptic

interaction device [93], CyberGrasp [84] is offering a tendon driven, hand worn, exoskeleton

force feedback device. Response to ±ese commercially available devices has been positive.

Because these devices are available to the general public, researchers have been able to

establish support "communities" [91] to foster and enhance the development of haptics.

Although these commercially available devices are reducing the isolation faced by

researchers in the field of haptic interaction. The manufacturers of the devices are still

isolating themselves by using proprietary application programmer interfaces (API), such as the

QHOST API [92] developed for the PHANToM device. Even in situations where the force

feedback devices are for all intents and purposes the same, such as the low end PC force

joystick market, the manufacturers have established proprietary API's [46] [72], This lack of

cooperation by manufacturers is of course expected but only adds to the difiBculties faced by

researchers and developers of haptic simulations.

However, recent research efforts in haptic interaction have focused on developing

control approaches for implementing force feedback in a synthetic environment with

commonly available robot manipulators. Although commonly available robots are generally

not classified as ideal haptic devices, control implementations, more sophisticated then earlier

tele-operation implementations, are now possible due to the increased computational power of

personal computers. More sophisticated control implementations allow a less than ideal

www.manaraa.com

20

interfece robot to respond as well as an ideal haptic device. In addition, because these control

laws are developed for a general six degree of freedom robot manipulator, they can be applied

to a common industrial robot or a high performance haptic interface [54] if this type of

manipulator becomes available. These control approaches adlow a general six degree of

freedom robot to mimic the dynamic or kinematic behavior of some virtual manipulator.

The first attempts at controlling the dynamic behavior of robot interfaces to allow it to

mimic another dynamic mechanism or object [43] utilized impedance control theory [42]. The

natural converse to impedance control, admittance control has also been applied to the

problem of modifying the dynamic characteristics of the interface robot by having the robot

behave like another dynamic system [19] [106]. However, care must be exercised when

selecting the desired dynamic behavior for an interface robot. There is without doubt a limit

on the dynamic characteristics which can be mapped onto a given interfece robot.

Researchers are currently investigating techniques, such as Z-width for stiff walls [22], for

determining how "transparent" a given interface robot can be made with respect to a desired

set of dynamic characteristics [59].

The idea of having a robot behave kinematically like another virtual mechanism

appears in the area of kinematically redundant robotic systems [28]. In this context the

control approach was not used to generate an himian - machine interface but was used to

handle system redundancies. It has also been shown that the kinematic constraints imposed by

a virtual manipulator in the context of a kinematically redundant system are the same as the

kinematic constraints imposed in a hybrid position/force control problem [88]. The kinematic

constraints of the virtual manipxilator establish easily the directions of force control and

www.manaraa.com

21

position control in the hybrid formulation [52]. Although there are docimiented concerns

associated with hybrid position/force control [29], most notably dimensionally inconsistent

products, these concerns have been addressed in the area of cooperating manipulators and

have resulted in the theory of generalized inverses [10],

The concept of virtual manipulators has been applied to tele-robot systems in order to

simplify interaction with the master manipulator by Idnematically constraining the master to

follow the desired path defined by the end effector of the virtual manipulator [51]. This

implementation assumes that the virtual manipulator is ideal and therefore no power can be

transmitted to it or taken from it. This assixmption allows the velocity of the virtual

manipulator to be determined based on the interaction forces from the master and slave

robots. The velocity of the virtual manipulator can then be integrated to determine the

position of the virtual manipulator as a function of time during the course of operation of the

system.

An alternative approach has been developed which uses the null space of the transpose

of the virtual manipulator Jacobian to impose the virtual manipulator kinematic constraints

onto a general six degree of freedom robot for use as an interface to a synthetic enviroimient.

Virtual manipulators have been developed to allow interaction with one dimensional [61], two

dimensional [64] and three dimensional [62] constraint mechanisms. The virtual manipulator

control law used in the three examples above has since been rederived in the context of a

decoupling control [71] and is shown to have a performance advantage over the earlier idea

virtual manipulator control law formulation [51],

www.manaraa.com

22

In addition to the description of a good haptic device previous tele-operation research

also addresses other critic control issues such as force scaling and time delays, that are of

importance in synthetic environments. Force scaling is relevant in synthetic environments

because the conceptual, computer generated world can have arbitrary size. Synthetic

environments have been developed to allow investigation of molecular dynamics [79]. If force

feedback devices are included in these microscopic synthetic environments, micro-macro force

scaling will be required [53]. The issue of time delay is important in the area of distributed

synthetic environments [75], When several travelers are interacting with haptic devices

remotely in the same synthetic environment the communication delays present in the system

wiU have an impact on the performance of the haptic devices [3].

The main reason for using force feedback techniques in synthetic environments is to

increase the level of immersion experienced by the traveler in attempt to increase the utility of

the synthetic environment. These types of devices should increase the feeling that the traveler

in a synthetic environment is present or immersed in the conceptual world. For example,

when a traveler encounters a rigid object in a synthetic environment instead of the graphical

representation of her hand passing through the object, resistance is felt. Rigid objects are

prevalent in haptics research because they represent one of the most challenging tasks faced

by a haptic display [21]. However, these devices are also capable of representing deformable

objects and perhaps application of haptic devices to deformable objects will allow greater

advances in the interactive abilities of synthetic environments than rigid objects.

As would be expected when a haptic device is included in a synthetic environment the

database required for operation again increases. It must now include a complete graphical

www.manaraa.com

23

description of the worid, an interactive description of the world and objects that populate it,

and a force description [66] [102]. This force description describes the force - motion

relationships between the conceptual world and the objects contained in it. The requirement

of knowing the force - motion relationships immediately brings physically based modeling to

interest.

Physics based modeling uses the laws of physics to obtain realistic simulations of

objects defined by a computer graphics database. Because physics based models are

developed using a force - motion relationship, they will make the assimilation of haptic

devices into synthetic environments easier than tradition kinematic based motion and

deformation techniques. Physically based models can be derived for rigid objects [7] to allow

virtual objects to be positioned using force instead of moving the object by constraining it to

move with the traveler's hand position. Deformable objects can also be modeled using

physics based techniques thus allowing force input to produce deformation as opposed to free

form deformation techniques [45] [90].

Physically based models for deformable objects have been developed using finite

element analysis (FEA) techniques [38] [101]. Material behaviors other than elasticity, such

as plasticity and fi-acture dynamics, can also be incorporated into these FEA models in a

consistent firamework [100]. The geometry of a FEA model can be defined by an implicit

siuface [70] that has been deformed either globally or locally [8] to represent the virtual

object. However, it may not be possible to represent an arbitrary virtual object using an

implicit fimction. As a result the geometry of a FEA model is typically represented with a grid

of points which are interpolated using a set of shape fimctions to obtain the shape of the

www.manaraa.com

24

object [11], The selection of an appropriate set of interpolation shape fimctions can be a

complicated [17] and computer intensive [37] operation, which results in an obscure set of

interpolation fimctions.

In order to allow the use of a common set of interpolation shape fimctions, some

researchers have developed physically based models that have two geometric descriptions, one

for display and ±e second for dynamic modeling [18] [81]. The results firom the dynamic

model are transformed by point inversion [82] or modal analysis [48], However, the use of

two geometric descriptions does not easily allow the shape of the virtual object to be

represented using a traditional basis such as the B-spline or NURBS [2],

Recent work has developed physically based models using finite element techniques

but using the B-spline basis in place of the traditional interpolation shape fimctions [30]. The

use of the B-spline basis has been explored by the finite element community for modeling one-

dimensional and two-dimensional time dependent problems [104], vibration of thick circular

cylindrical panels [76], undular bore [35] and the non-linear Schrodinger equation [34]. This

work has shown that the B-spline basis can be used effectively as a set of shape fimctions in

FEA. However, this work used physically based dynamic models as an analysis tool instead of

a mechanism for interaction.

In fact the rational extension of the B-spline basis, the NURBS basis, has been used to

develop physically based models using FEA. This approach was used to associate dynamic

characteristics with traditional NURBS curves and surfaces [86], NURBS swung surfaces

[85] and triangular NURBS [87]. These NURBS based physically based dynamic models

were used to facilitate interaction with the virtual object by the user, but the conceptual

www.manaraa.com

25

interaction forces were applied using a mouse driven, traditional, graphical user interface

without a haptic force feedback device.

In addition the NURBS based dynamic models describe above were developed in the

parametric space of the curve or surfece. Althoi^ developing the dynamic model in

parametric space simplifies model development, this results in a mismatch of the dynamic

characteristic defined in parametric space and external forces defined in Cartesian space. This

mismatch may result in an une?q)ected response of the model when the external forces are

applied by a graphical user interface. However, if the external forces are applied by a haptic

interaction device the mismatch will manifest as a form of force scaling, which in the worst

case could result in unstable operation of the haptic interface. To prevent this mismatch it

essential that the model be developed with respect to the same Cartesian coordinate system as

the external forces [31], In order to develop the model in Cartesian space the Jacobian for the

curve or surface in required. This Jacobian matrix contains information describing the

parameterization of the curve or surface.

This work will develop and present examples of a kinematic based virtual manipulator

control law that can be used as a human-machine interaction mechanism in a synthetic

environment. In addition, a firamework will be developed to allow the shape of the object,

that is defined by the virtual manipulator, to deform d>-namically when external forces are

applied. The dynamic model of the object will be developed using a B-spline based FEA

approach. The combination of the haptic interaction device in concert with the physically

based dynamic model will produce a synthetic environment that is more immersive that a

simple graphic feedback synthetic environment.

www.manaraa.com

26

PARTL HAPTIC INTERACTION

www.manaraa.com

27

CHAPTER 3. CONCEPT AND CONTROL

Virtual manipulators are a new concept in the area of force feedback for synthetic

environments. They allow a person traveling in a synthetic environment to interact physically

with the objects that populate the computer generated world. The presentation of contact

forces to the traveler will add to the realism needed to make the journey an immersive

experience. In addition, the interaction force experienced by the traveler will provide more

life-like and natural control over virtual objects. This chapter will begin by describing the

motivation for the virtual manipulator interface approach and will conclude by deriving the

appropriate robot control law to fiilfill the concept requirements.

Virtual Manipulator Concept

The virtual manipulator concept is based on the idea that a general sbc degree of

freedom robot can be used to mimic the kinematic behavior of some virtual manipulator with

five or less degrees of freedom. The virtual manipulator is selected so that it provides the

necessary contact forces associated with the object that is being explored. The robot interface

www.manaraa.com

28

is constrained to follow the virtual manipulator by enforcing a closed kinematic chain

relationship between the robot end effector and the end effector of the virtual manipulator.

Consider, for example, constructing a virtual manipulator that will allow a traveler in a

synthetic environment to manipulate a one degree of freedom crank [61], such as a gear shift

mechanism. In this example the virtual manipulator is simply a one degree of freedom

revolute manipulator whose position and orientation match the gear shift mechanism as shown

in Figure 3.1. Figure 3.2 shows the closed kinematic chain relationship that must be enforce

to ensure that robot interface behaves like the gear shift mechanism. This type of haptic

display coupled with a synthetic environment containing an automobDe interior could be

utilized to examine the ergonomic characteristics such as position, orientation and range of

motion of the gear shift mechanism.

It is important to note at this time that the virtual manipulator control approach is not

limited to reproducing the kinematic characteristics of mechanisms. Time-varying virtual

Figure 3.1. Virtual mechanism for constraint development.

www.manaraa.com

29

Six DOF Manipulator

Virtual Mechanism
\

Figure 3.2. Closed kinematic chain relationship.

manipulators can be formulated to represent abstract synthetic objects such as general curves

and surfaces [64], However, the complexity of the virtual manipulator will be a function of

the complexity of the object that is being represented. This subject will be addressed in more

detail in Chapter 6; which describes experimental results. Using the overall concept of the

virtual mechanism interface, the question of how to control the robot will be addressed.

Virtual Manipulator Control Law

In order to develop a robot control law that will enforce the closed kinematic chain

requirement of virtual manipulator approach, some standard robotic analysis techniques will

be used. A reader with experience in robotic analysis should have little difBculty following the

derivation that will be presented, and numerous texts are available on the subject of robotic

analysis that can be used to provide background information for this section [24] [89],

www.manaraa.com

30

Consider for the moment that a virtual manipulator exists physically. If an operator

grasps the virtual manipulator and applies an external force, F,, to the end effector a set of

joint torques, , for the virtual manipulator can be calculated using the relationship in

equation (3.1) that will prevent the virtual manipulator from moving. That is the vector of

joint torques, , will allow the virtual manipulator under static equilibrium conditions to

resist the external force, , and behave as if it were a fixed structure.

(31)

The matrix is the transpose of the Jacobian for the virtual manipulator. Note that the

Jacobian, , and the external force, F,, must be represented in the same coordinate

reference frame. For convenience this coordinate reference frame is taken to be the end

effector frame of the virtual manipulator, although this selection is arbitrary.

However, a virtual manipulator is allowed to have at most five degrees of freedom.

Therefore the transpose of ±e Jacobian for the virtual manipulator, , is an non-square

matrix, in fact will be a « by six matrix. Where n is the number of degrees of freedom for

the virtual manipulator. As a result there is no unique mapping between the joint torque, ,

and the external end effector force, F^. There are an infinite number of external end effector

forces, F,, that will yield the same vector of joint torques, .

If however, a set of artificial constraints is chosen, a unique map can be found between

the joint torques, , and the external end effector forces, F^. One such constraint is to select

www.manaraa.com

31

the vector of external end efifector forces, F, to have the smallest norm in the least square

sense. This result can be achieved by using the Moore and Penrose pseudo-inverse as shown

in equation (3.2).

The superscript (*) notation is used to indicate a least squares solution. It is important to note

that the entries in the Jacobian matrix have physical units associated with them. In addition

the inner product combination of these units in the term results in the combination of

physically dissimilar units [29]. This issue has been addressed by several researchers and one

solution to this problem is to add a heuristic weight matrix to form a weighted pseudo-inverse

[10] as shown in equation (3.3).

The matrix A is a positive definite weighting matrix. The exact form of A will not be

selected at this point.

Equations (3.1) and (3.3) can be combined to determine the least squares end effector

force, F*,associated with a given end efifector force, F^, as shown in equation (3.4) below.

(3.2)

(3.3)

www.manaraa.com

32

F; =AJ,(J:AJ„)"J:F, (3.4)

The term AJ^(J(,AJ„) J(, in equation (3.4) is commonly referred to as ±e range space

filter, R, for the transpose of the virtual manipulator Jacobian, J[,. The range space filter,

R, for the transpose of the virtual manipulator Jacobian, , removes any components of the

end effector force, , that don't influence the virtual manipulator's joint torques, , in the

weighted least squares sense. That is the weighted least squares end effector force, F/

represents the components of the original end effector force, F^, that the virtual manipulator's

joint actuators must resist in order to prevent motion.

The vector of forces removed by the range space filter, F„, can be calculated using

equation (3.5).

F.=F, -F;={i-aj.(J;AJ.)" J;}F, o.S)

The term I - AJ„(J|,AJ„) ' in equation (3.5) is commonly referred to as the null space

filter, S, for the transpose of the virtual manipulator Jacobian, J|,. The null space filter, S,

for the transpose of the virtual manipulator Jacobian, , removes any components of the end

effector force, F^, that influence the virtual manipulator's joint torques, , in the weighted

least squares sense. That is the components of the end effector force that are in the null space

of the transpose of the virtual manipulator Jacobian, F„, are resisted by the structure of the

www.manaraa.com

33

virtual manipulator, such as by the bearings, and do not have to be resisted by the actuators of

the virtual manipialator as shown below in equation (3.6).

= J:{I-AJ,(J:AJJ''J:}F, (3.6)

= 0

Now assume that a six degree of freedom robot is maneuvered so that it's end effector

has the same position and orientation as the virtual manipulator with the goal that the robot

Avill behave kinematically the same as the virtual manipulator. If the operator again grasps the

end effector of the robot and applies the same external force, , that was applied previously

to the virtual manipulator, a set of joint torques, r^, can be calculated using the relationship

shown in equation (3.7) that will prevent the robot from moving.

T^ = JX (3.7)

However the goal of the virtual manipulator control law is to constrain the robot end

effector to follow the end effector of the virtual manipulator. Therefore the robot does not

need to resist all components of the end effector force, F^, only those components that would

have been resisted by the structure of the virtual manipulator, F„. Therefore, if the joint

torques, z;, apphed to the robot are changed to those shown in equation (3.8) the robot will

www.manaraa.com

34

be free to move along the end effector trajectory defined by the virtual manipulator but will

resist motion in all other directions.

Equation (3.8) can be used as a control law for the robot interface to satisfy the virtual

manipulator interface goal. The control law for the robot interface is independent of the

control force generation scheme. That is there is no requirement on the origin of the end

effector force, , this topic will be addressed in the next section.

The virtual manipulator control law is independent of the force generation scheme. As

a result there are numerous ways to implement this control approach. One technique is to

mount a six-axis force/torque transducer on ±e end effector of the robot and simply measure

the forces being applied. However, there are difl5culties associated with this approach. First,

force transducers typically have poor noise characteristics. The presence of noise in force

measurements can lead to unpredictable system behavior without proper compensation.

Attempts to remove the noise by means of a filter introduce a phase lag into the force signal

which can result in unstable user excited oscillations. Second, the high feedback gains needed

for proper system response when the force loop is closed generally requires knowledge of the

rate of change of the force signal for stable performance. The noise present in the original

force signal prohibits obtaining force rate of change information. For these reasons measuring

(3.8)

Force Generation Scheme

www.manaraa.com

35

the end effector force for the virtual manipulator control law was not pursued. Instead the

theory of operational space control [58] was selected as a viable candidate.

The operational space control formulation uses springs and dampers defined in

Cartesian space to manipulate the end eflfector position and orientation of a robot. Figure 3.3

illustrates this control approach by showing the three linear springs used to control the end

effector position, superimposed on the image of the robot. To control all six degrees of

freedom of a general interface robot, three torsional springs, to control the orientation, are

required in addition to the three linear springs shown in Figure 3.3.

The control law used for the operational space formulation is shown in equation (3.9).

The terms , J' and are the vector of robot control torques, the transpose of the robot

Jacobian and the external control force applied by the Cartesian space springs and dampers

respectively. The external control force applied fay the Canesian space springs and dampers

(3.9)

X

Figure 3.3. Operational space linear control springs.

www.manaraa.com

36

can be evaluated using equation (3.10).

F , =K,e + K„e (3.10)

The matrices and are positive definite, symmetric gain matrices. In addition e is an

error vector, containing both position and orientation errors, that describes the displacement

of the robot end efifector relative to the desired end eflfector position and orientation and e is

the rate of change of this error vector.

When the external force applied to the robot is developed using the operational space

formulation, the virtual manipulator control law can be expressed in the form shown in

equation (3.11).

With proper selection of the gain matrices A, and the control law shown in

equation (3.11) will constrain a general six degree of fireedom robot to behave kinematically

like the virtual manipulator with the null space filter, S. The structure of the gain matrices

A, Kp and K„ will be selected based on the equilibrium point and stability analyses of the

dynamic system; which will be addressed in the next chapter.

(3.11)

www.manaraa.com

37

CHAPTER 4. STABILITY OF INTERACTION

The subject of safety for a haptic device is of paramount importance. Most large force

feedback manipulators could without doubt deliver a fatal injury to its operator and even the

smaller units posses sufiBcient force delivery to injury fingers and hands. The subject of

robotic safety at the university or corporate level is generally handled by means of stringent

safety requirements that are imposed onto a system designer. These safety requirements are

essentially restate the most common sense rule of robotics, do not allow the operator or

observer to stand within the reach of the robot manipulator. The safety requirements also

specify various hardware and software protocols to immediately shut down an operating robot

in the event that a person enters the workspace of the robot, whether intentionally or

accidentally.

However, these legislated safety requirements are in direct conflict with the goals of

the man-machine interface sought for this or any other haptic display. The Occupational

Safety and Health Adn:iinistration (OSHA) has little flexibility in the execution of their

regulator responsibilities, if it walks like a duck and quacks like a duck, it is a duck. OSHA

www.manaraa.com

38

regulations apply specifically to autonomous devices. Powered robots under the control of

human operators, such as an excavator, are unregulated. Experience in extending the level of

autonomous action of the interface robot is needed to allow development of industry

standards for this type of system.

As a result, for these types of devices to take a place our everyday life will require a

change in societal opinions concerning computer controlled hardware. Most people would

probably conclude that it is safer to navigate through congested holiday traffic on the

interstate, than interact with a robotic interface. Is this ±e correct conclusion? Can society

leam to "trust" computer controlled hardware? The current onslaught of internet hip is

bringing computer hardware into more homes than ever before. This also includes haptic

devices such as the Force FX joystick [80]. This increased familiarity with computers and

their associated peripherals should allow the assimilation of an anthropomorphic interface

devices such as the system considered in this work.

However, ±e assimilation process would be severely hampered by any accidents

occurring at this early stage in development of the technology. Clearly the legislated safety

requirements currently available were not intended or developed for haptic interaction devices.

Until this technology has matured to the point where a concise set of safety requirements

specifically developed for a general class of haptic interaction device can be written, the

system designers will have to follow a more ambiguous set of moral guidelines such as

AsimoVs Laws of Robotics [4],

AsimoVs Laws of Robotics

www.manaraa.com

39

0. A robot may not injure humanity or, through inaction, allow humanity to
come to harm.

1. A robot may not injure a human being, or through inaction, allow a human
being to come to harm, except where that would conflict with the Zeroth Law.

2. A robo^" must obey the orders given to it by a human being, except where
that would conflict with the Zeroth or First Law.

3. A robot must protect it's own existence, except where that would conflict
with the Zeroth, First or Second Law.

Although it may appear that these laws are some what grandiose when applied to

typical haptic display, the main point is clear. The safety of the operator must be the first

concern of the robot. Because most if not all commonly encountered robots lack the

sentience typically associated with fictional robotic systems the job of safety falls to the system

designer. The first step in ensuring the safety of the operator interacting with a six degree of

fi-eedom robot running a virtual manipulator control law is to ensure that the dynamic system

has appropriate stability characteristics.

The remainder of this chapter is devoted to the presentation of background material

which will collimate in the proof of stability of the virtual manipulator control law when

applied to a general six degree of fi^eedom robotic manipulator. The second section in this

chapter will present the system of dynamic equations for a six degree of fi-eedom robot, as

well as describe some of the mathematical properties of the elements of this dynamic model.

The third section of this chapter will analyze the dynamic system of equations in order to

determine the equilibriimi points of the system. The fourth and final section will present a

proof of stability to show that the virtual manipulator control law, as a general class, has

acceptable stability characteristics for application as a haptic interface.

www.manaraa.com

40

Dynamic System: Structure and Properties

This section will introduce and discuss several important mathematical properties of

the dynamic system composed of a six degree of freedom robot that is controlled by the

virtual manipulator control scheme. Specifically this section will discuss the matrices that

make up the dynamic equations of motion of a general six degree of freedom robot as well as

the gain matrices, and , the null space filter matrix, S, associated with the virtual

manipulator control approach.

General Robot Dynamics

In order to begin the stability analysis of the haptic interface, the dynamic equations of

motion for a general six degree of freedom robot with be introduced. For a general six degree

of freedom robot, the joint space dynamic equations are shown in equation (4.1).

The matrix M(0) is a six by six, positive definite and symmetric inertia matrix for the robot

vector of Coriolis and centrifiigal terms which is a fimction of the joint positions as well as

joint rates, G(0) is a six by one vector forces arising from acceleration due to gravity which

like the mass matrix is a fiinction of only the configuration of the manipulator, finally f and

(4.1)

which is a fimction of the position of all of the joints of the robot, v(0,0) is a six by one

www.manaraa.com

41

are six by one vectors of joint actuator forces and external Cartesian forces and moments

respectively.

The dynamics of robot can be determined analytically using a number of techniques

such as Lagrangian or Newton-Euler. However, even for devices with two or three degrees

of freedom these equations become extremely cumbersome and difficult to derive. Many

researchers are turning to symbolic approaches to determine the equations of motion for six

degree of freedom robots [19]. Symbolic processing packages such as Maple possess the

ability to derive, optimize and code the dynamic equations of motion for a given manipulator.

However, this process with not be undertaken in this work. The proof of stability presented

here will only deal with the robot dynamics in the matrix form presented above. There will,

however, be times during the proof where certain properties of the matrices and vectors

contained in the equations of motion will be needed. The special properties used will be

presented and proved for a general manipulator thereby allowing the proof of stability to apply

to any six degree of freedom manipulator.

The first assumption that will be made in this proof of stability is that accurate gravity

compensation can be obtained. The gravity compensation can take the form of an accurate

analytic model of the gravitation forces that act on the manipulator or could be based on

experimental data. The presence of gravity compensation will modify ±e system dynamics.

(4.2)

www.manaraa.com

42

The vector ^0) is a six by one vector of gravity compensating joint forces. If the gravity

compensation is reasonably accurate, then equation (4.3) below is true.

G(0)«G(0) (4.3)

As a result the system dynamics reduce to the form show in the equation below.

M(0)© + V(0,0) = T - J X (4.4)

In addition it is common to see the vector of Coriolis and centrifugal terms, v(0,0),

partitioned into a matrix form as shown in equation (4.5).

V(0,0) = V„ (0,0)0 (4.5)

The matrix V^(0, ©) is a six by six matrix. Careful examination of the vector, v(0,0), will

reveal that there are several different ways to partition the vector into a matrix such that

equation (4.5) is satisfied. However, it is assumed that the matrix, V^(0,0), is the result of

a special type of partitioning of the original vector, v(0,0). Due to the nature of the

partitioning the matrix, V„(0,0), is endowed with two properties of interest. First the

www.manaraa.com

43

matrix, V„(0, ©), is a symmetric matrix. Second the matrix, V„(0, ©), will make the

matrix, Q, defined below a skew-symmetric matrix.

Q = M(0) - 2V„(0,0) (4.6)

The matrix, M(0), is the time derivative of the inertia matrix, M(0), of the robot. These

two properties of the matrix of Coriolis and centrifugal elements, V„(0, ©), will be used in

the proof of stability for the dynamic system.

The joint space dynamics of a robot shown in equation (4.4) can be transformed into

Cartesian space using the Jacobian relationship for the robot. The Jacobian of a robot

provides a linear relationship between the joint space rates and Cartesian space rates as shown

in equation (4.7).

(4.7)

The matrix, J , is Jacobian of the robot and the vectors, and 0 , are the Cartesian space

velocities and the joint space velocities, respectively. The leading superscript, b, on ±e

Jacobian matrix and on the vector of Cartesian space velocities is used to represent the

coordinate frame with which the Jacobian and the Cartesian space velocities are expressed in.

As a result there are any number of Jacobian matrices for a given robot that can be used in

equation (4.7). The selection of a particular Jacobian matrix is arbitrary and is generally made

www.manaraa.com

44

in order to simplify calculations. In addition to relating joint space and Cartesian space

velocities the Jacobian of a robot can also be used to relate Cartesian space forces to joint

space forces.

r=''J^''F (4.8)

The vectors, r and "F, are a vector of joint space forces and a vector of Cartesian space

forces represented in the coordinate frame labeled b, respectively.

The Jacobian of a six degree of freedom robot will be a sbc by six matrix. For a given

manipulator there are certain joint configurations where the Jacobian of the robot will lose

column rank. These singular configurations typically form the boundaries of the usable

workspace of the robot. If it is assumed that the robot is moving in an area of the workspace

free of singularities, then the Jacobian of the robot can be inverted to obtain the inverse

relationships of equations (4.7) and (4.9).

(4.9)

'F='J-^r (4.10)

Equation (4.9) and its derivative and equation (4.10) can be used to transform the joint space

robot dynamics into the Cartesian space. The derivative of equation (4.9) is shown below.

www.manaraa.com

45

0='j-"i+^j-"'x (4.11)

Substituting equations (4.9) and (4.11) into the joint space dynamic equation, equation (4.4)

and pre-multiplying by the transpose of the inverse of the robot Jacobian yields the Cartesian

space dynamic equations for the robot.

Mx + Vi = (4.12)

Note the leading superscript on the Jacobian matrix has been removed to show that the

dynamics can be obtained with respect to any coordinate frame. The matrices, M and V, are

the transformed inertia matrix and Coriolis and centrifugal matrix, respectively. The

expression for these transformed matrices are shown below.

M = (4.13)

V = J-'" VJ-' + (4.14)

The proof of stability presented in the final section of this chapter will be performed in

Cartesian space therefore the dynamic system model shown in equations (4.12), (4.13) and

(4.14) will be used.

www.manaraa.com

46

Gain Matrices

Two gain matrices are used in the virtual manipulator control scheme, and .

The matrix is the position gain matrix and is the damping gain matrix. The position

gain matrix will be discussed first followed the by damping gain matrix K^.

The position gain matrix, , is used to transform the end effector position and

orientation errors into control forces [58], The form of the position gain matrix, , is

shown in the following equation.

K. =

k-
p

0 0 0 0

1 o

0 k'
p

0 0 0 0

0 0 e
p

0 0 0

0 0 0 k'
p

0 0

0 0 0 0 ¥
p

0

0 0 0 0 0 k'
? _

(4.15)

The coefiBcients and k"" are a linear control spring rate and a rotational control spring rate

respectively. Both and k'^ are positive constants. The gain matrix, K^, is diagonal

therefore it is also symmetric. The eigenvalues are all positive which allows the conclusion

that, Kp, is also a positive definite matrix.

The block style of the position gain matrix is used so that the same linear or rotational

error produces the same force regardless of the direction of the error. In addition the block

www.manaraa.com

47

Style of the gain matrix accounts for the dissimilar nature of the two types of error, linear and

rotational by allowing the selection of different control spring rates.

The selection of the constants k' and k"" are left to the system designer with the only
P P

restriction that they be greater than zero. As these constants are increased the "stiflSiess" of

the system is increased. Increasing the stif&iess of the system will reduce steady state errors

and provide greater disturbance rejection, there is however a limit on how high these gains can

be made. This performance limit is a fimction of the robot's physical characteristics and will

vary from manipulator to manipulator. This performance limit is based on the amount of

damping present in the system [22]. So although any six degree of freedom robot can be used

as the interface device using the virtual manipulator control approach some manipulators such

as the proposed high performance six degree of freedom haptic interface [54] which has been

designed with a large amount of damping may offer a performance benejSt.

The damping matrix, , has a structure that is similar to the position gain matrix,

Kp, but it's fimction is quite different. The damping gain matrix, , is used to transform

the velocity of the end effector both linear and angular into viscous damping forces [58], The

form of the position gain matrix, , is shown in ±e following equation.

k'
d

0 0 0 0

r O

0 e
d

0 0 0 0

0 0 /t'
d

0 0 0

0 0 0 k'
d

0 0

0 0 0 0 k'
d

0

0 0 0 0 0 k'
-

www.manaraa.com

48

The coefiBcients and are a linear viscous damping rate and a rotational viscous

damping rate respectively. Both and are positive constants. The gain matrix, Kj, is

diagonal therefore it is also symmetric. The eigenvalues are all positive which allows the

conclusion that, , is also a positive definite matrix.

The block style of the damping gain matrix was selected for the same reasons

described in the discussion of the position gain matrix. In addition as alluded to in the

position gain matrix discussion, there is a correlation between the damping gain matrix and ±e

position gain matrix. On common technique for determining the optimal values for the

damping and position gain matrices involves increasing the damping gain matrix until

excessive noise is transmitted through the actuators of the robot.

Once these maximum values for the damping gain matrix have been determined the

elements of the matrix will be analyzed term by term as specified below. The value of the

damping gain is obtained by using approximately eighty percent of this maximum value. The

value of the damping matrix is then taken to have the form shown below.

(4.17)

The terms C and are a dimensionless damping ratio and a nature fi-equency respectively.

The value of damping ratio, C, is selected by the system designer, a range between 0.7 and

www.manaraa.com

49

1.0 is common. Based on the selected value for the damping ratio, 4", the value of the nature

frequency, a}„, is determined using the equation (4.18).

(4.18)

The value of the position gain can be determined using the natural frequency, <y„, found,

above as shown below.

k,=(o; (4.19)

The individual elements found using the procedure above can then be combined to form the

position and damping gain matrices.

The heuristic procedure that was outlined above to determine the position and

damping gain matrices is just one technique that can be applied. The application of the virtual

manipulator control scheme does not in any way specify a procedure to select the position and

damping gain matrices. This clearly shows the flexibility of the control strategy. The force

generation scheme can be based on the position and damping gain matrices as described in this

work using any appropriate technique for determination of the values in the gain matrices.

www.manaraa.com

50

Null Space FBter Matrix

The null space filter matrix, S, this matrix is constructed using a weighted Moore-

Penrose pseudo-inverse of the transpose of the Jacobian of the virtual manipulator. The

equation for the null space filter matrix is shown in the equation below.

S = I-AJ,(jtAJ,)''j: (4.20)

The null space filter matrix, S, is idempotent, that is S times itself is equal to S. This

property is shown mathematically in the equation below.

SS = S (4.21)

The proof that S is idempotent is shown below.

ss={i- j;)

= I - j.r' K - j; K

=s

It is Icnown that the Jacobian of the virtual manipulator does not have fiill rank, for this

reason it is intuitive that the null space filter matrix, S, will not have fiall rank. However, the

www.manaraa.com

51

rank of the null space filter matrix, S, is not known and will be critical in the next section

concerning the equilibrium analysis of the dynamic system. Therefore, the following

paragraphs will perform a detailed analysis of the null space filter matrix aimed at determining

the rank of the matrix.

The process of determining the rank of the null space filter, S, will be begin by

determining the rank of the range space filter, R.

The matrix, , is the m by n Jacobian of the virtual manipulator, which is assumed to have

fiill column rank.

The integer n is the number of degree of fi"eedom of the virtual manipulator. In addition m is

the number of degrees of fi'eedom of the interface robot. As a result m is generally six,

however, results are shown for the case of planar motion, in this situation m will be three.

The matrix, A, in equation (4.22) is an m by /n positive definite and symmetric weighting

matrix. The fact that the weighting matrix, A, is positive definite and symmetric ensures that

the matrix has fiill rank.

(4.22)

(4.23)

www.manaraa.com

52

rank(A) = m (4.24)

The product of the weighting matrix and the Jacobian of ±e virtual manipulator, AJ„,

will be an OT by « matrix. The following rank inequality [44] will allow the rank of the matrix,

A, to be determined.

rank(C) + rank(D) — q < rank(CD) < min(rank(C), rank(D)} (4.25)

The matrix, C, has size p h y q and the matrix, D, has size q by r . Using the inequality in

equation (4.25) it can be concluded that the rank of the product, AJ^, is the same as the rank

of the virtual manipulator Jacobian, J„.

rank(AJ„) = rank(j^) = Az (4.26)

The information in equation (4.26) can now be used Avith the rank inequality shown in

equation (4.25) to investigate the rank of the « by « matrix, J^AJ„.

2/7-m< rank(j^AJ„) < (4.27)

www.manaraa.com

53

As shown in equation (4.27) the rank of the matrix, J^AJ„, can not be determined, an upper

and lower boimd can only be specified. However, for the range space filter, R, to exist the

inverse of the matrix, J^AJ„, must exist. This requires that the matrix, J^AJ^, has fiill rank.

If equation (4.28) is not true then the range space filter, R, will not exist and consequently

the null space filter, S, will not exist. If the null space filter matrix, S, does not exist then the

virtual manipulator control law can not be implemented. Therefore it will be assumed that

equation (4.28) is true for all virtual manipulator control laws of interest.

If the rank of the n h y n matrix, J^AJ^, is n then the inverse of the matrix exists and

also has fiill rank.

Knowing that the m by « matrix, AJ^, has rank equal to w, equation (4.26), and the nbyn

(4.28)

(4.29)

matrix, [J^AJ„] ', has rank equal to n , the rank inequality shown in equation (4.25) can be

used to verify equation (4.29).

rank(AJ^[jJ'AJ„] ') = « (4.30)

www.manaraa.com

54

Finally, application of the rank inequality shown in equation (4.25) to the /w by «

ma t r i x , A J ^ [J ^ A J ^] , w i t h r a n k e q u a l t o n a n d t h e « b y m m a t r i x , , w i t h r a n k e q u a l t o n

allows ±e conclusion that the m by /n range space filter, R, has rank equal to the rank of the

virtual manipulator Jacobian, .

rank(AJ„[j^AJ„]'j^j = rank(R) = Ai (4.31)

Now having established the rank of the range space filter, R, as shown in equation

(4.31), the rank of the null space filter, S, can be addressed.

S = I - R (4 . 3 2)

The matrix, I, is an OT by m identity matrix. Equation (4.32) can be rewritten as shown in

equation (4.33) below.

I = R + S (4 . 3 3)

The rank inequality [44] wiU help establish the rank of the null space filter matrix, S.

rank(E + F) < rank(E) + rank(F) (4.34)

www.manaraa.com

55

For the case of ±e null space filter matrix, S, and the range space filter matrix, R, equation

(4.34) can be expressed as shown in equation (4.35) below.

rank(R + S) < rank(R) + rank(S) (4.35)

Equation (4.26) can be simplified equation (4.31) and (4.33) and knowing that an identity

matrix always has fiJl rank.

m - n < rank(S) (4.36)

Equation (4.35) establishes a lower limit on the rank of the null space filter matrix, S. In

order to determine the upper limit for the rank of the null space filter matrix, S, the product

of the null space filter matrix, S, and the range space filter matrix, R, will be used in

conjunction with the rank inequality shown in equation (4.25).

rank(R) + rank(S)- m < rank(RS) (4.37)

The product of the range space filter matrix, R, and the null space filter matrix, S, is shown

in equation (4.38) below.

www.manaraa.com

56

RS = (I-S)S = S-SS = S-S = 0 (4.38)

Equation (4.38) allows the conclusioa that the rank of the product, RS, is zero. Therefore

equation (4.37) can be simplified into the form shown in equation (4.39).

Now that the upper and lower bounds on the rank of the null space filter matrix, S, have been

established in equations (4.36) and (4.39), the rank of the null space filter, S, can be

determined.

This section has presented many important facts about the matrices that compose the

dynamic system. This information will be used in the next section of this chapter which will

perform any equilibrium analysis of the dynamic system as well as in the last section of this

chapter which will provide a proof of stability for the virtual manipulator control law.

Equilibrium Point Analysis

Before discussing the stability of a system it is first essential to analyze the system to

determine the number and location of the system's equilibrium points. An investigation of the

equilibrium points of a system is the correct place to begin a discussion of the stability

rank(S) < m - n (4.39)

rank(S) - m - n (4.40)

www.manaraa.com

57

characteristics of a system. Although it is common to hear the expression "the system is

stable" this statement is ambiguous, misleading and should be avoided. The correct result

from a stability discussion is whether or not a particular equilibrium point is stable or not

stable.

An equilibriimi point is an invariant point, y*, in the system's state space which has

the property that if the system starts at the equilibrium point, y', it will remain at the

equilibrium point for all time [57], If we consider a general nonlinear autonomous system,

this is a class that includes the dynamic equations of motion for a robot manipulator utilizing

the virtual manipulator control law, as shown below.

Then the equilibrium points of the system are the roots to the equation shown below.

This therefore outlines a procedure that can be followed in order to determine number and

location of the equilibrium points associated with a system.

To begin an equilibrium point analysis for a general six degree of freedom robot using

the virtual manipulator control law the dynamic equations of motion are required. The

dynamics of a six degree of freedom robot were shown in equation (4.12) in the first section

of this chapter, repeated here for convenience.

y = f (y) (4.41)

(4.42)

www.manaraa.com

58

m + Vi = J-'^r-F, (4.43)

The vector, t , is specified by the virtual manipulator control developed in Chapter 3,

equation (3.11), repeated here for convenience.

The vector, e, is the error between the position of the virtual manipulator end effector and the

end effector of the interface robot and the vector, e, is the rate of change of the error vector.

Although this equation is not written in state space format like equation (4.41) an

equivalent set of equilibrium condition can be derived. If the dynamic system of equations

(4.43) were placed into state space form, the equivalent set of equilibrium conditions would

have the form shown below.

Substituting the equivalent equilibrium conditions above into the dynamic system of

equations yields that following equilibrium equation.

r = rSKpe + rSK,e (4.44)

i = 0

x = 0

SK^e + SK> = 0 (4.45)

www.manaraa.com

59

It is important to note that the external force, , in equation (4.43) was also set to

zero to arrive at equation (4.45). The external force, , will be applied to the system by the

human operator, as a result it is not possible to model this force. Therefore the external force

will be considered as a disturbance to the system. The stability of the system in the absence of

disturbances should be considered first. After the stability of the system has been verified, the

control system can be analyzed to determine how robust the system will be when faced with

unknown disturbances. In addition, the external force F^ represents the coupling between

robot interface and human machine. The issue of coupled stability is typically addressed using

a passivity argument which is also possible in this situation but will not be discussed in this

work.

Equation (4.45) can be expanded by substituting in the expressions for the error, e,

and the rate of change of the error, e.

e = - X

e = x^ - i

SKpX„ - SK,x + SK^x, - SK^i = 0 (4.46)

The desired trajectory, the path of the end effector of the virtual manipulator, is not a flmction

of time but is a flmction of the configuration of the robot interface. This fact comes fi-om the

existence of the desired closed kinematic chain relationship between the robot interface and

www.manaraa.com

60

virtual manipulator. The position of the virtual manipulator is related to the position of the

robot by some nonlinear relationship as shown in equation (4.47).

The vector, 6^, contains the positions of the joints of the virtual manipulator and the vector,

6, contains the positions of the joints of the robot. The function, g(o), in equation (4.47) is a

nonlinear vector function containing n independent equations. The integer n is the number of

degrees of freedom of the virtual manipulator. Equation (4 .47) can be modified using the

forward kinematics of the virtual manipulator and the inverse kinematics of the robot interface

as shown in equation (4.48).

The fianction, g'(o), is a nonlinear vector fiinction containing m equations of which n are

independent. The integer m is the number of degrees of freedom of the Cartesian space in

which the robot interface is maneuvering.

Equation (4.48) can be differentiated to obtain the linear rate relationship between the

velocity of the virtual manipulator and the velocity of the robot as shown below.

(4.47)

= g'W (4.48)

(4.49)

www.manaraa.com

61

The matrix, , is the Jacobian matrix associated with the nonlinear vector function, g'(o).

Equations (4.48) and (4.49) can be substituted into equation (4.46) to obtain the equilibrium

condition shown in equation (4.50).

However, i = 0, for all equilibrium points therefore equation (4.50) can be fiirther simplified.

Equation (4.51) can be solved to determine the equilibrium points associated with the dynamic

system. The goal of the virtual manipulator control law was to derive a control law which had

an injSnite number of equilibrium points and these would be defined by the trajectory of the

end eflfector of the virtual manipulator. This desired infinite continuum of equilibrium points

all satisfy equation (4.52) below.

(4.50)

(4.51)

e = g'(x) - X = 0 (4.52)

www.manaraa.com

62

However the rank analysis of the null space filter, S, firom the previous section has

shown that this matrix does not have fiill rank as shown in equation (4.40), repeated here for

convenience.

rank(S) = m - n (4.53)

In addition the product of the null space filter matrix, S, and the position gain matrix, ,

can be shown to have the same rank as the matrix, S. Therefore, in addition to the desired

continuum of equilibrium points defined by equation (4.52) there is a second n - dimensional

continuum of equilibrium points which arise fi-om the fact that matrix, SK^, does not have

fiiU rank.

This second continuum of equilibrium points can be removed by using the closed

kinematic chain constraint equations contained in the vector fiinction g(o) or g'(o). This

process of removing the undesired equilibrium points is most easily understood by viewing the

position vectors, i and , with respect to the end effector coordinate firame of the virtual

manipulator. When the displacements of the robot and the virtual manipulator are viewed

fi-om the end effector coordinate firame of the virtual manipulator the desired continuum of

equilibrium points collapse into a single point, the origin of the coordinate fi^me. This fact

will also be used in the next section concerning stability. This coUapse is caused because the

position of the end effector of the virtual manipulator in the end effector fi-ame of the virtual

manipulator is defined to be zero.

www.manaraa.com

63

(4.54)

Here the leading superscript, is used to denote that the vector, , is written with respect

to the end efifector coordinate frame of the virtual manipulator. Therefore equation (4.52) can

be rewritten as shown below.

However, in equation (4.55) the position of the robot interface, ^x, is not only a function of

the robot joint variables, 9, but also a fimction of the n virtual manipulator joint variables, 6^..

T h e c l o s e d k i n e m a t i c c h a i n c o n s t r a i n t e q u a t i o n s , e q u a t i o n (4 . 4 7) , a r e d e t e r m i n e d b y d e f i n i n g n

elements of the displacement vector, ^x, equal to zero. The selection of the elements in the

displacement vector that are set to zero is some what arbitrary but the goal of this process is

to establish n equations of the form shown in equation (4.56), which are independent of the

m-n equations of equation (4.51).

E e=-g'(x)-°x =--x = 0 (4.55)

^ x , = 0 (4.56)

The variable, ^x,, is the i th element in the vector, ^x.

www.manaraa.com

64

When this process is used the only equilibrium point, when viewed from the end

effector space of the virtual manipulator, is the origin. The infinite continuum of the

equilibrium points that were obtained from the fact that the matrix, SK^, did not have fvill

rank have been removed by appropriate selection of the closed kinematic chain constraint

equations. When the system is viewed from the world coordinate system, there is an infinite

continuum of equilibrium points that are defined by equation (4.52), which was the goal of the

virtual manipulator control law.

Stability Analysis

The previous chapter has developed the virtual manipulator constraint controller. This

control structure generates control forces based on standard Cartesian space control

techniques. However, after the control forces are generated the portion of the control force

that lies in the range space of the transpose of the Jacobian of the virtual manipulator is

removed by multiplication by ±e null space filter matrix. Earlier work has shown that the

Cartesian space proportional plus derivative control approach is globally uniformly

asymptotically stable. However, the inclusion of the null space filter matrix and the kinematic

constraints into the control law reqioires an analysis of stability to verify that the new control

law has acceptable stability characteristics to warrant use in a haptic display application.

This stability analysis will examine the stability of the infinite continuum of equilibrium

points found in the previous section. The stability analysis of a control system that contains

multiple equilibrium points is a subject typically not addressed in control literature [57], When

the stability of a continuimi of equilibrium points is addressed it is mainly for mathematical

www.manaraa.com

65

interest [6] and not to show the stability of a particular system. In addition the stability of

these equilibrium points will be analyzed with respect to the end effector coordinate frame of

the virtual manipulator. This coordinate frame is the obvious choice for stability analysis

because the continuum of equilibrium points coUapses to a single point located at the origin in

this reference frame. As a result the stability of this equilibrium point can be determined using

standard techniques such as Lyapunov theory and La Salle's theorem.

This section will present two proofs of stability, the first will be for a slightly modified

virtual manipulator control law. The second proof will show the conditions necessary for

stability of the original virtual manipulator control law developed in Chapter 3. The reason

for the modifications to virtual manipulator control law made in the first proof will be

discussed later. In addition both proofs presented in this section will be performed with

respect to the end effector space of the virtual manipulator. This fact was represented in the

last section by placing a leading superscript, E, on necessary variables. This section assumes

that all displacements, velocities, accelerations and Jacobians are written with respect to the

end effector coordinate frame of the virtual manipulator. Therefore the leading superscript

notation will only be used in situations where confiision might result.

Modified Control Law

This subsection will show the stability of a slightly modified virtual manipulator

control law. The modifications to the control law are shown in equation (4.57).

r = -J^SK^x-rK,i (4.57)

www.manaraa.com

66

The form of the damping term of the virtual manipulator control has been modified in

equation (4.57). Specifically, the proportional plus derivative damping term has been replaced

with a minor loop velocity feedback term. This term adds some rate damping to all motion

directions, including the direction of motion along the virtual constraint. In addition none of

the minor loop velocity feedback term is removed by the null space filter matrix.

The dynamic system model for a general robot running the modified virtual

manipulator control law in equation (4.57) is shown in equation (4.58) below.

The stability of the origin of this dynamic system will be investigated using Lyapunov's direct

must be found that is positive definite in some domain that includes the origin, the first

derivative of this Lyapunov fiinction with respect to time must be continuous in the domain

and which is negative semi-definite m the domain. The proposed Lyapunov fiinction

candidate selected for this stability analysis is shown in the equation below.

Mi +Vi + K,i + SKpX = 0 (4.58)

method. In order to carry out a Lyapunov stability analysis a Lyapunov fiinction, F(X, i),

r(x,x) = Tx'Mi+Tx'SKpX (4.59)

This fiinction was selected based on the energy of the system, which is a traditional starting

point for a candidate fiinction. The first term represents the kinetic energy associated with the

www.manaraa.com

67

haptic interface and the second term represents the potential energy. However, the fiinction

shown in equation (4.59) may not be a valid Lyapunov function when the domain, Q, is .

The integer, /n, is the number of degrees of freedom of the interface robot. The product of

the null space filter matrix, S, and the position gain matrix, , does not have fiill rank and

as a result will not be positive definite.

This product can be shown to be positive semi-definite. In order to shown that the

matrix, SKp, is positive semi-definite ±e matrix must be symmetric. This restriction

determines the form of the weighting matrix, A, in the null space filter matrix. In order for

the matrix, SK^, to be symmetric the weighting matrix must have the form shown below.

A = (4.60)

The variable, a, is a positive scalar number that is nonzero.

This coupled with the fact that the closed kinematic chain constraint equations reduces

the size of the state space by the number of degrees of fireedom of the virtual manipulator, n,

allows the conclusion that the proposed candidate fimction is positive definite in the domain,

n = 9?-""". The closed kinematic chain constraint equations reduce the size of the state space

by «, by defining n elements of the end effector position vector of the interface robot to zero

b y a p p r o p r i a t e s e l e c t i o n o f t h e j o i n t v a r i a b l e s a s s o c i a t e d w i t h t h e v i r t u a l m a n i p u l a t o r . T h e s e n

elements in the end effector position vector have not been removed from the proposed

candidate fimction because their associated velocities are not in general zero. This may at first

appear to be a contradiction that an element of a position vector is defined to be zero but the

www.manaraa.com

68

velocity of the associated with the position element is nonzero. However, this situation is the

result of having the positions and velocities defined with respect to the end effector space of

the virtual manipulator. Because the reference fi"ame is moving it is possible for a position

element to remain zero while the interface robot has a nonzero velocity in the direction

associated with the position element.

Now that the fimction candidate has been shown to be positive definite in the domain,

Q, the continuity of the first derivative of this fimction will be investigated. The time

derivative of the Lyapunov fimction candidate is shown in equation (4.61).

Note the position gain matrix, , is a constant matrix by selection and this proof assumes

that in the end effector coordinate firame of the virtual manipulator the null space fiker matrix,

S, is also a constant matrix. This assumption of a constant null space filter is true for all

virtual manipulators presented in this work, however, a virtual manipulator may exist that

would not satisfy this assumption.

The system dynamics in the end efifeaor space of the virtual manipulator, equation

(4.58), can be substituted into equation (4.61) to remove the vector of Cartesian

accelerations, i.

r(x, i) = yi'Mi + i'Mx -f-i'SK^x (4.61)

r(x, i) = 4- i'Mi - x'Vi - i'SK^x - i'K^i + i'SK^x (4.62)

www.manaraa.com

69

The term, M - 2 V, is a skew symmetric matrix, so when put into the quadratic form reduces

to zero. Therefore the time rate of change of the proposed fimction candidate, f^(x, i), can

be reduced to the form shown in equation (4.63).

F(x, i) = -i'K (4.63)

The proposed Lyapunov fimction candidate is continuously differentiable. In addition

in the domain, Q, that contains the origin the fimction is positive definite therefore the

fimction is a valid fimction candidate and can be used to investigate ±e stability of the

nonlinear system. The Lyapunov fimction candidate, equation (4.59), is also radially

unbounded and decrescent by inspection. These two additional properties will be used to

strengthen the stability conclusions for this system.

The Lyapunov fimction candidate will be a Lyapunov fimction on the domain, Q., if

the expression in equation (4.63) is negative semi-definite. The damping gain matrix, , is

positive definite by selection, therefore the time derivative of the candidate function is

negative semi-definite. As a result the fimction in equation (4.59) is a Lyapunov fimction and

it can be concluded that the modified virtual manipulator control law running on a general six

degree of fi-eedom robot will be stable in the sense of Lyapunov subject to the state

assumptions. This however, is a rather weak stability conclusion, therefore La Salle's

invariance theorem will be used to determine if a stronger stability conclusion can be made.

www.manaraa.com

70

In order to use La Salle's theorem the set, E, as shown in equation (4.64) below must

be defined.

Now if it can be shown that the only solution that can stay identically in the set, £, is the

trivial solution, then the origin of the end effector space of ±e virtual manipulator will be

asymptotically stable. In the set, E, the velocity of the robot is zero, i = 0, which implies

that the acceleration of the robot is zero, x = 0. Substituting these conditions into the

dynamic system model shown in equation (4.58) results in the following expression.

Equation (4.65) is the same as equation (4.51) in the equilibrium point analysis section of this

chapter. It was shown in the equilibrium point analysis section that when the robot interface

position, X, is contained in the domain, Q, that equation (4.65) has only the trivial solution,

zero. Therefore the largest invariant set, M, in the set, E, contains only the origin. This

allows the conclusion that origin of the end effector coordinate system of the virtual

manipulator is asymptotically stable. This fact implies that the end effector trajectory of the

virtual manipulator is asymptotically stable when viewed in world coordinates.

The stability conclusion for the modified virtual manipulator control law running on a

six degree of fireedom robotic manipulator can be refined by examining the Lyapunov function

(4.64)

SK^i = 0 (4.65)

www.manaraa.com

71

shown in equation (4.59). The Lyapunov function is a fijnction of the state variable, x and i,

only, as a result the Lyapunov function, F(x^ i), is automatically decrescent. The fact that

the Lyapunov function is decrescent allows the stability conclusion to be extended to

uniformly asymptotically stable.

One final note on the "globalness" of this stability conclusion should be made. The

Lyapunov fimction, F(x, i), in equation (4.59) is radially unbounded for all robot interface

positions, x, and velocities, i, in ±e domain Q. That is the norm of the Lyapunov function

goes to infinite as the norm of the state variables goes to infinite regardless of the direction the

state variables move. This concept is shown mathematically below.

||x, if ̂ CC => ||r(x, i)(| -*• X (4.66)

The radially unbounded property of the Lyapunov fimction is required to allow any global

stability conclusions to be made.

The domain, Q = 9?-"^" ^ includes the entire state space and the rate of change of the

Lyapunov function, r(x,x), is negative semi-definite over the entire domain, Q. Therefore

using the global corollary to La Salle's theorem it can be concluded that the origin of the end

effector coordinate firame of the virtual manipulator is globally uniformly asymptotically

stable. This implies that the continuum of equilibrium points defined by the end effector

trajectory of the virtual manipulator are globally uniformly asymptotically stable, when the

system is viewed in world coordinates. That is the continuum of equilibrium points is globally

attractive for any set of initial conditions in the state space. However, nothing can be said

www.manaraa.com

72

about where the final position of the interface robot will be along this continuum of

equilibrium points. It may be argued that La Salle's invariance theorem has no global form,

however, a specialization of La Salle's theorem called the theorem of Barashin and

Krasovskii, is applicable and does have a global form.

This stability analysis has shown that the modified virtual manipulator control law

running on a general sbc degree of fi-eedom robot has acceptable stability characteristics to be

used as a haptic interaction metaphor. This proof has shown that the entire class of virtual

manipulator control laws is stable subject to the assumptions made. In addition, the

assumptions made were not restrictive and are listed below for inspection. First it was

assumed that accurate gravity compensation for the robot is available. This assumption is

common in most robot system stability analyses and is readily satisfied using analytic or

experimental models of the gravitational force applied to the manipulator. The second

assumption that was made was that the robot was operating in a portion of the configuration

space that is fi'ee of singularities so that the joint space robot dynamics could be transformed

into Cartesian space. This assumption restricts the range of motion of the robot but it is

required for correct operation of the control law regardless of the proof of stability. Third it

was assumed that the null space filter matrix existed. This poses no restriction because if the

null space filter does not exist the control law can not be implemented. Finally, it was

assumed that the null space filter matrix is a constant matrix in the end effector space of the

virtual manipulator. This assumption has currently placed no restriction on the virtual

manipulator implementations. However, it is conceded that this assumption could pose some

restriction in fiiture work.

www.manaraa.com

73

Original Control Law

The stability of the original virtual manipulator control law will be addressed in this

subsection. The proof for the modified control law was presented first because it illustrates

the stability of the entire class of modified virtual manipulator control laws. The modified

control law adds damping forces in the fi^ee directions of motion which is not desired,

therefore the original virtual manipulator control law will be investigated. This proof of

stability will not allow such a conclusion to be made at present. However, the conditions for

stability of a specific virtual manipulator control law will be described so that each control law

can be verified in a case by case manner.

The proof of stability for the original virtual manipulator control law will be

demonstrated by showing that the error between the position of the end effeaor of the

interface robot and the position of the end effector of the virtual manipulator is stable.

Therefore the continuum of equilibrium points defined by the end effector trajectory of the

virtual manipulator is stable. This type of error analysis is traditionally used in trajectory

following applications and works well in this constraint enforce situation.

In order to begin the analysis the dynamics of the error must be determined. This will

include the dynamics of the robot, equation (4.67) as well as the dynamics of the virtual

manipulator.

^ Vi, = F, (4.67)

www.manaraa.com

74

The subscript, r , denotes robot variables and the vector, , is the control force applied to the

robot calculated using the Cartesian space proportional plus derivative control. The dynamics

of the interface robot were introduced earlier in this chapter, however, there has been no

discussion in this work about the dynamics of the virtual manipulator. This is because the

virtual manipulator is used as a kinematic constraint not a dynamic constraint. If analysis of

the motion of the virtual manipulator was performed a dynamic model could be generated for

the device. However, the motion of the virtual manipulator is based on the motion of the

interface robot, therefore it is natural to conclude that the dynanaics of the virtual manipulator

will have the same characteristics as the dynamics of the interface robot, equation (4.67). As

a result the dynamic equations of motion for the virtual manipulator are shown in equation

The dynamics of the error between the two devices can be determined by subtraction

of equation (4.67) and (4.68).

(4.68).

Mi +Vi =F (4.68)

(4.69)

The control force applied to the virtual manipulator, , is the same control force applied to

the interface robot, F^, but the only component of this force that must be resisted by the

virtual manipulator is the component that lies in the ranges space of the transpose of the

www.manaraa.com

75

virtual manipulators Jacobian. This component of the control force can be determined by

multiplying the robot control force, , by the range space filter matrix, R, as shown in

equation (4.70).

M(i,-i,) + v(i,-i.) = (I-R)F, (4.70)

The error in the system will be defined in the same way as in Chapter 3 so that the

control force can be expressed as shown in equation (4.44), repeated here for convenience.

F ,=K^e + K,e (4 .71)

The error is defined in equation (4.72).

e = (4.72)

Using equations (4.70), (4.71) and (4.72) the error dynamics for the system can be

represented by the following system of differential equations.

Me + Ve + SK^e + SK^e = 0 (4.73)

www.manaraa.com

76

It is important to note that in the formulation of the error dynamics the coordinate ftame with

respect to which the position, velocities and accelerations are written is not critical. It is only

required that ail quantities be expressed in terms of the same coordinate frame.

The equilibrium conditions of the error dynamics are the same as the equilibrium

conditions of the robot dynamic model discussed in the second section of this chapter.

Therefore a separate equilibrium point analysis is not required for the error dynamics. To

ensure that the only equilibrium points for the robot are those points where the error is equal

to zero, «, elements in the error vector will be defined to be zero by appropriate selection of

the w joint variables associated with the virtual manipulator. However, the process of defining

an element of the error vector to be zero has a slightly different effect than defining an element

in the robot position vector to be zero. Because an element in the error vector represents a

relative displacement between the robot and the virtual manipulator when an element in the

error vector is defined to be zero all of the time derivatives of that element are also zero. This

allows the error state space to be reduce from Im to 2(OT - ri) where as the state space of the

robot dynamics could only be reduced to 2m-n in size.

Because of the reduction in the number of the states of the error dynamic system, the

dynamic model can be expressed as shown below.

(4.74)

www.manaraa.com

77

The subscript, «, simply indicates that the vector contains only elements not dejSned to be zero

process of removing elements defined to be zero. The size reduction has not affected the

skew symmetric property of the time rate of change of the mass matrix and the velocity matrix

or the positive definite and symmetric properties of the mass matrix. In addition the reduction

in the size of the product of the null space filter matrix and the position gain matrix has made

this matrix a positive definite and symmetric matrix.

The only equilibrium point for the error dynamics is the origin, a moving point at the

end of the virtual manipulator, which maps to an infinite continuum of equilibrium points for

the end effector of the interface robot. Because the error dynamics have only one equilibrium

a Lyapunov analysis similar to the one used in the proof of stability for ±e modified virtual

manipulator control law will be used. The proposed Lyapunov fimction candidate is shown

below.

This proposed Lyapunov fimction candidate is globally positive definite, decrescent, radially

unbounded and is continuously differentiable. Therefore the fimction shown in equation

(4.75) is a valid Lyapunov fimction candidate. To determine if this fimction is indeed a

Lyapunov fimction the time rate of change of the fimction must be determined.

notation indicates that the dimension of the matrix has been reduced during the

(4.75)

www.manaraa.com

78

F(e,e) = -e'(SKj e (4.76)

However, there is no guarantee that the time rate of change of the Lyapunov function

candidate is negative semi-definite. Therefore it cannot be concluded in general that the

function candidate, equation (4.75), is a Lyapunov fiinction.

For this reason the stability of the original virtual manipulator control law cannot be

shown for the entire class of control laws. The conditions for stability of the equilibrium point

can be determined in order to demonstrate the stability of the original virtual manipulator

control law in a case by case manner. The time rate of change of the Lyapunov function

candidate contains only the rate of change of the error vector. Therefore the rate of change of

the function is at best negative semi-definite. In order for the rate of change of Lyapunov

/

fiinction candidate to be negative semi-definite, the reduced dimension matrix, (SK^) , must

be positive definite.

If this condition is satisfied the fiinction candidate is a Lyapunov function can be used

to draw conclusions about the stability of the equilibrium point. In addition, because the

equation (4.75) is a Lyapunov fimction it can be concluded that the equilibrium point is stable

in the sense of Lyapunov. This conclusion can be strengthened by application of La Salle's

theorem, in the same manner as in the first proof of stability presented in this chapter. The

application of La Salle's theorem supports the conclusion that the equilibrium point is globally

uniformly asymptotically stable without placing additional requirements on control law.

www.manaraa.com

79

r

Therefore, if it can be shown that the reduced dimension matrix, (SK^) , is positive

definite, then the equilibrium point associated with the error dynamics will be globally

uniformly asymptotically stable. The interpretation of this stability conclusion is similar to the

interpretation of the first proof of stability. The end effector trajectory of the virtual

manipulator is globally attractive regardless of the initial conditions of the interfece robot.

However, the proof of stability for the original virtual manipulator control law does not

prevent the interface robot fi-om having a nonzero velocity along the equilibrium trajectory

due to reduction in the state space.

The two proofs of stability presented in this chapter have established the necessary

conditions for the stability of the modified and original virtual manipulator control laws.

However, in Chapter 6 experimental results of the time varying extension of the virtual

manipulator concept will be presented. Time varying virtual manipulators are used to extend

the potential of the control concept by allowing a virtual manipulator to represent more

complex constraints. The inclusion of time varying components into the control law has not

been considered in either of the two proofs presented here. Therefore the stability of time

varying virtual manipulators has not been verified and remains as a area for future work.

In the beginning of this chapter the subject of safety was addressed in general terms.

The proof of stability presented here is an important step in showing that the virtual

manipulator control law running on a general six degree of fi-eedom robot will be safe.

However, other issues associated with the performance of the system in the presence of fault

conditions still requires exploration. These issues will be discussed in the following chapter

that describes the experimental hardware used as a test bed for this study.

www.manaraa.com

80

CHAPTERS. EXPERIMENTALTESTBED

Now that the virtual manipulator control law has been developed and the equilibrium

and stability characteristics of the control approach have been investigated. The next step is

to implement the control law on an experimental test bed. The remainder of this chapter will

describe the hardware used to demonstrate the virtual manipulator control law. Specifically

this chapter will describe the robot manipulator, the control interface and computer, the force

torque transducer and finally some safety issues associated with this system will be addressed.

Robot Manipulator

The robot manipulator used to implement and test the virtual manipulator control

concept is a PUMA 560 manipulator, shown in Figure 5.1. This manipulator was selected

based on it's availability for use during this study. It is important to note that any other six

degree of fi-eedom robot could have been used. However, a PUMA 560 is probably a good

choice for this investigation. The PUMA 560 is a fairly common manipulator in most

university robotics laboratories. Therefore this research is not isolated, it can be reproduced

www.manaraa.com

81

and evaluated in numerous other facilities around the world. As well as the fact that there is

a large volume of previous PUMA 560 research that can be utilized. In addition, the size of a

PUMA 560 makes it an appropriate interface for most people in a standing posture. Finally,

the PUMA 560 has a workspace that is large enough to accommodate most haptic

interactions that are of interest.

As was illustrated in the Chapter 3. which developed the virtual manipulator control

approach a kinematic description of the PUMA 560 is needed for implementation. The

PUMA 560 is a six degree of freedom robot composed solely of revolute joints. The

coordinate frame assignments used in the kinematic analysis of the PUMA are shown in

Figure 5.2. These frame assignments are commonly used in the kinematic analysis of the

PUMA 560 al±ough some variation due exist.

Using the coordinate the frame assignments shown in Figure 5.2. the structure of the

Denavit-Hartenberg parameters for the PUMA 560 can be determined as shown in Table 5.1.

i

Figure 5.1. The PUMA 560 manipulator.

www.manaraa.com

82

Figure 5.2. Coordinate frame assignments for the PUMA 560 manipulator.

In Table 5.1 the variables, 9^, represent the joint variables for the robot. The variables, /,,

represent fixed offset lengths between the various revolute joints in the PUMA. The values

for constants, /,, can be obtained by direct measurement; however, this would require the

disassembly of the robot. In addition the values of the constants, /,, can also be obtained from

numerous published sources [23]. Unlike some properties associated with the PUMA 560

robot, the pubhshed values for the kinematic constants are fairly uniform across the published

sources. Therefore to avoid the difficulty of disassembly of the robot, the values of the

kinematic constants reported in earlier work [98] will be used in this analysis. These values

are presented in Table 5.2.

Using the Denavit - Hartenberg parameters shown in Table 5.1 and the transformation

matrix associated with a generic set of Denavit - Hartenberg parameters, shown in equation

www.manaraa.com

83

Table 5.1. Denavit - Hartenberg parameters for the PUMA 560 robot.

/ ^,-1 d. B.
1 0 0 0 B,
2 0 0 Bz
J A 0 L B,
4 ^3 -?• h B.

5 0 2 0 B,

6 0 0 B.

(5.1) below, the transformation matrix between each coordinate frame on the PUMA 560 can

be found.

cos a. i-i

i-i r=

3s(^) -sin(^) 0

sin(^)co^ar,_,) cos(^)cos(a,_,) -sin(a,_,) -sin(a,_,)

sin(^)sin(a,_;) cos(^)sin(a;_i) cos(a,_,) <i, cos(aj_;)

0 0 0 1

(5.1)

cos(^i) - sin(0,) 0 0

^T-
sin(6l) cos(^) 0 0

0 0 1 0

0 0 0 1

Table 5.2. Values for kinematic constants for the PUMA 560 robot.

value (meters)

A 0.4318

k 0.1501

L -0.0191

K 0.4311

www.manaraa.com

84

1
o

o

0 0

0 0 1 0

-sin(ft) 1 0

0

.5
li 0 0

0 0 0 1

005(^3) -sin(^3) 0 (
sin(^3) 005(03) 0 0

0 0 1 L
. 0 0 0 1

cos(6>^) -sin(0j) 0 L
J

0 0 -1 -h
sin(^^) cos(6?i) 0 0

0 0 0 1

1
0

0

-sin(6'5) 0 o1
j

0 0 1 0

-sin(^5) 1 0

0

0 0

L 0 0 0 1_

(5.3)

(5.4)

(5.5)

(56)

cos(^6) -sin(^5) 0 0

0 0 - 1 0

sin(05) cos(^g) 0 0

0 0 0 1

(5.7)

www.manaraa.com

85

The sequence of transformation matrices shown in equation (5.2) - (5.7) represent a

complete kinematic analysis of the PUMA 560 robot manipulator. These transformation

matrices can be concatenated using standard matrix multiplication to obtain a transformation

matrix that will transform a vector represented in the end effector coordinate frame of the

PUMA (coordinate frame six) into a vector represented in the base or world coordinate frame

space (coordinate frame zero) as shown in general in equation (5.8) and specifically in

equation (5.9).

OT^OT'^T'-TirjT'j (5.8)

0
6

'•n ^12 ^13 Pr

hi
^^2 r,-. P-.

0 0 0 1

(5.9)

The elements in the matrix shown in equation (5.9) are shown below.

(^23 (') - •s'23-ys<^6 } - {•y4<^5C6 + ̂ 4^6 } (5.10)

(5.11)

(5.12)

(5.13)

www.manaraa.com

86

r,, =5 ^4^5*^6 •^23'^S'^6 } ^1 { } (5.14)

^32 ~ •^23(^4~'^4^6)''"''Z3'^5'^6

t\- — c^ (c^CjSj + 5^305) — 5^5^55 (5.16)

(5.15)

r,_- =s,{c,^c^s^ ^s._^c^)+c,s^s^ (5.17)

^*33 =-5':3^4-y5^'^23^5

P^ =C^ {c^^l- -!- 523^ ~ A) ~ -^1 ^2

•^v = -^1 (^23^3 •!- ^\k

P. = --^234 -^23^ - Vl

(5.18)

(5.19)

(5.20)

(5.21)

In addition, to the forward kinematics of the PUMA the virtual manipulator control

law also requires the Jacobian matrix for the manipulator. The Jacobian matrix for the PUMA

can be found by performing a rate kinematic analysis of the mechanism. The expressions for

the end effector velocity (linear and angular) contain all the information needed to generate

the PUMA Jacobian. However, due to the length of the calculations in the rate kinematics

analysis, only the resulting Jacobian will be presented.

The elements in the matrix shown in equation (5.22) are shown below.

www.manaraa.com

87

r =
Ju Jn

Ji\ Jzz

Ji \ Jn ^4-^5^4 "*"^5^

(5.23)

J\l ~'•5^6 (~ "'"'^3^3 ~ •^rs^i)) "'" (^;A ~^Z3^'S -^3^4)) ~ •^5^6'^3 A

J\z ~ (^4 (•^3 A ••" A)) + ̂ 6 (~ ̂ ^4 (-^3 A •*• ^4)) ~ ̂ 5*^6 (~ ̂ 3 A ~ A)

Jzi ~ "^5-^6 ^4 A ~^3A •'"•^3 A))'*"'•6 (^3-^4 A •^^4(^;A •*" "^3 A)) ~ ̂ 5"^S-^3 A

7— = "C's'Ss (^^4 (•^3 A A)) ~ ^6 (~ -^4 (-^3 A •*• A)) "*" •^5'^6 (~ ̂ 3 A ~ A)

-/31 ~ ^z3^i^z ~ ^ii.^z^i ^aA """ ^^3^4)) ~ A

73: =-^5(^4(^1 ^A))+'^5(-'^3A - A)

' J ' = •^23 + C^C^S^ } T"

[_ "^23^4^*^5 ^13^5

(•^4-^6 ^4^5^6) ^3*^5^6 ^4-^6 • •^4^5^6 ^4-^6 ~ •^4^5^i

C,C,-5,C,5, CX,-5X,5, I

•^•1*^5 •^4*^5 J

-5;C6 ^6 0

II «o

^<•^6 0

- <^5 0 1

(5.24)

(5.25)

The Jacobian shown above is represented in the end effector coordinate frame for the

PUMA 560. However, this Jacobian can be transformed into any other coordinate frame by

using a generalized rotation matrix as shown in equation (5.26) below.

www.manaraa.com

88

0 ' -5ja O

1 O
 6 j b

The leading superscript /denotes the coordinate frame that the PUMA Jacobian has been

transformed into by the generalized rotation matrix.

Control Hardware

Now that the robot manipulator has been introduced, the control hardware needed to

operate the PUMA 560 will be described. When originally manufectured the PUMA 560

robot was controlled by a Unimation Val industrial computer. However, the Val computer

does not provide the flexibility needed to implement the virtual manipulator control law. For

this reason the Val computer used in the experimental work presented in the following chapter

has been modified to provide joint level control by means of a personal computer.

To that end the majority of the control interface cards associated with the Val

computer were removed and replaced with a TRC004 servo control card from Trident

Robotics. The TRC004 servo control card is a general purpose card to control the operation

of a robotic manipulator. It is equipped with optical encoder decoders and counters, analog

inputs and analog outputs for input and output communication with the components of a

robot.

In order to be used in the virtual manipulator control law the robot interface must have

some instrumentation to measure the position and orientation of the end effector. This

www.manaraa.com

89

measurement mstrumentation can be external device such as a magnetic tracker or an internal

device such as an optical encoder. The PUMA 560 has two internal position sensors, the use

of an external sensor has not been attempted but represents a viable alternative if necessary.

The encoder decoder circuitry of the TRC004 card is connected to the two phase and index

outputs of standard HP optical encoders located in the PUMA 560. These inputs tot he

encoder circuitry determine the position of the various axes of the robot and stores this

information in a set of digital counters.

In addition to the digital optical encoders as a mechanism for determining the position

of the robot joints, the PUMA 560 is also equipped with potentiometer driven voltage

dividers. The voltage across ±ese analog circuits can be measured with the analog inputs of

the TRC004 control card. Although analog potentiometers have been used classically as a

measurement device for revolute joints, the potentiometers on the PUMA 560 do not have

sufficient performance characteristics to be used in the virtual manipulator control application.

Specially, the signal conditions in the potentiometer subsystem of the PUMA 560 is not

sufficient to allow the position of the PUMA joints to be determined with any level of

accuracy. This poor signal conditioning can most likely be attributed to the long unshielded

cable which connects the Unimation, Val computer and the robot proper. Because of signal

conditioning problem the digital encoders will be used to determine the position of the PUMA

560 in all control calculation.

Each axis of the PUMA 560 is also equipped with a DC servo motor to control the

position of the various joints. The analog outputs of the TRC004 control card are used to

apply control voltages to the DC servo motors of the robot. However, the analog outputs of

www.manaraa.com

90

the TRC004 control card are lunited to plus and minus ten volts with a limited current output.

Therefore the voltages from the analog outputs of the TRC004 are conditioned through the

power amplifiers of the Val computer. The output voltages from the power amplifiers have a

magnitude and current level capable of driving the servo motors of the PUMA.

The transmission of signals from the Val computer to the robot proper is controlled by

the arm cable control card. The power amplifiers and the arm cable control card are the only

original interface cards that are retained in the Val computer. The TRC004 servo control card

reproduces the input - output operation of the Val computer but does not have a

microprocessor to perform control calculations. Therefore, the TRC004 control card is

coupled with a TRC006 interface card. The TRC006 interface card allows that input - output

information maintained by the TRC004 to be accessed through the port memory of the

personal computer in which the TRC006 is installed. This allows the personal computer to

determine the position of the PUMA by accessing the encoder counters on the TRC004

through the TRC006 Using the position information the personal computer can perform all

control calculations needed to obtain a set of voltages to apply to the servo motors of the

robot. These voltages are then passed to the TRC004 for signal conditioning and application

to the manipulator.

In order for the modified hardware, including the Val computer, TRC004 servo

control card, TRC006 interface card and personal computer, to successfully control the

PUMA 560 a control program must be written and executed on the personal computer to

perform the control calculations as well as access the port memory of the computer. The first

task, performing the control calculations, is easily achieved using any computer programming

www.manaraa.com

91

language. However, the second task, accessing the port memory of the computer, quickly

reduces the number of acceptable programming languages. This work makes use of the C

programming language. A program can be written, using C, to perform the control

calculations as well as access the port memory of the computer to provide communication

between the TRC006 interface card and the control program.

The C programming language provides several low level fimctions for performing

input and output operations on the registers of the TRC006 interface card located in the port

memory of the computer. However, the availability of these low level functions depends on

the operating system on which the program is intended to run. For example a C program

running in the DOS operating system has access to all mtemipt vectors, all direct memory

access channels and the entire port memory range. If a higher level operating system is used

the C programming language has less if any access to these low level hardware

communication channels. The Windows 95 16-bit operating system allows a C program to

access the port memory range but blocks access to key interrupt vectors and direct memory

access channels. But Windows 95 32-bit and Windows NT operating systems block all access

to the low level C fimctions.

This discussion would seem to demand that a low level operating system be used for

PUMA 560 control applications. However, 32-bit operating systems, Windows 95 and NT,

offer advantages not available in other personal computer operating systems. First these

operating systems allow access to a high performance timer, the processor oscillator. An

accurate timer is required in the PUMA control applications to allow velocity calculations to

be made. Second these 32-bit operating systems provide access to the standard socket

www.manaraa.com

92

functions. Socket fimctions are used for network communication to allow the control

computer to transmit data to other computational or graphical support engines. To utilize

these features of a 32-bit operating system, addition support software is needed to reproduce

the low level functions associated with the C programming language that were removed by the

operating system.

The most direct way of providing low level function access to the control hardware is

by developing a specialized device driver for the TRC006 interface card. The creation of a

custom device driver is a formidable task that has a large cost is both time and money.

However, third party software, such as Driver X provided by Tetradyne, is able to provide

low level interfacing with only minor expense. Although this type of software suffers from a

loss in performance due to the generalized nature of the interface library, it still performs at a

level acceptable to control ±e PUMA 560.

Force Transducer

The virtual manipulator control law developed in Chapter 3 used a Cartesian space

proportional plus derivative error feedback technique for the force generation scheme. In

addition this chapter also discussed the possibility of using measured end effector forces in the

virtual manipulator control and concluded that this approach was not acceptable due to

problems associated with the quality of the measured force signal. However, it is possible to

used a low gain force control loop in conjunction with the virtual manipulator control law to

provide compensation for the frictional and inertial effects of the interface robot. The addition

of the force control loop is addressed in detail in the high degree of freedom virtual

www.manaraa.com

93

manipulator section of Chapter 6. The use of a force transducer in the control hardware for

the virtual manipulator control law is not required but can refine the haptic interaction

experience of the traveler in the synthetic environment.

As a result the interface robot, PUMA 560, has been equipped with an Assurance

Technologies six axis force/torque transducer. The force transducer is mounted between the

end effector of the robot and the interfece handle that is manipulated by the traveler. This

force transducer can measure forces up to 30 pounds and moments up to 100 inch pounds. In

addition it is configured with mechanical stops to prevent damage to the strain gages in the

transducer if forces or moments in excess of the rated limits are applied.

In order to minimize the noise characteristics of the force transducer, the signal fi^om

the strain gages are conditioned prior to leaving the force transducer proper for transmission

to the force transducer interface box. The connection between the force transducer proper

and the interface box is made with shielded cable to prevent contamination of the signals by

external sources. The force transducer interface box then converts the analog strain gage

signals into a consistent set of forces and moments, represented digitally, using calibration

information. The digital representation of the six forces and moments are then sent to the

personal computer controlling the PUMA 560 by means of a parallel interface card. The

parallel interface card, like the TRC006, is located in the port memory of the personal

computer. This requires that the Driver X software be used to allow the personal computer to

receive and request force information.

www.manaraa.com

94

Safety Considerations

Chapter 4 examined the equilibrium and stability characteristics of the virtual

manipulator control law. This section will examine the fault tolerance and safety

characteristics of the combined control law and hardware system. The discussion will begin

with the interface robot, then the force transducer will be addressed and finish with comments

on the control computer.

The presence of an operator in close proximity to a robot poses safety concerns.

However, the nature of the virtual manipulator control law is well suited for this application.

Virtual manipulator control is based on the idea of constraining the interface robot. So for

low degree of freedom virtual manipulators the mterface robot has only a limited range of

motion and thus offers a greater level of safety for the traveler.

Even in situations where the virtual manipulator has a high number of degrees of

freedom, the traveler carries a dead-man switch. This switch is hard wired to the Val

computer and must be depressed in order for the robot to operate. Therefore, if at anytime

during the interaction between the robot and the traveler, the traveler can immediately stop

the robot by releasing the dead-man switch.

In addition due to the structure of the virtual manipulator control approach the

interface robot does not move unless it is acted on by the traveler. Therefore if the traveler

releases the interface robot during an interaction the motion of the robot will stop. The

motion may not stop immediately due to the inertia of the mechanism and slight errors in the

gravity compensation but this motion will decay. In this context the virtual manipulator

www.manaraa.com

95

control law offers real advantages over admittance based interaction control laws where the

motion of the interfece robot may accelerate even in the absence of contact with the traveler.

The virtual manipulator control law makes use of the Jacobian of the interfece robot.

In addition the proof of stability in the last chapter assumed that the robot was operating in a

portion of the configuration space that is free of singularities. This is easy to ensure for low

degree of freedom virtual manipulators, which are highly constrained. However, with high

degree of freedom virtual manipulators it is possible to maneuver the PUMA into a

singularity. Joint space impedance fields are used to prevent the robot from entering a

singularity. These joint space fields limit the range of motion of the PUMA but are required

to ensure stable controller operation. In addition joint space impedance fields are also used to

provide joint limit protection for the robot. The joint limits of the PUMA are not protected by

limit switches so the impedance fields prevent the robot or the traveler from damaging the

robot by moving a joint past the mechanical limit.

The subject of mechanical limits is also important for the force transducer. If forces or

moments in excess of the rated limits could damage the strain gages of the force transducer if

mechanical limits are not present. Damages strain gages would lead to erroneous force

measurements and possible unstable system performance. Therefore mechanical stops should

be present in any force transducer used in haptic interaction.

The remaining safety considerations deal with fault detection. Both the TRC004 servo

control card and the force transducer interface box have status registers to diagnose numerous

fault conditions. These registers should be checked during each control cycle to ensure that

no errors have been registered by the PUMA 560 or the force transducer.

www.manaraa.com

96

The tuning of the control cycles is critical in this type of application. The

multiprocessing nature of the 32-bit Windows 95 / NT operating systems makes it difi5cult to

ensure that each control cycle is a fixed time increment. However by increasing the priority of

the control application it is possible to have the control cycle remain relatively constant. The

slight variations in control cycle duration have caused no perceived problems but the stability

of a digitally controlled system subject to varying control cycles is a complex problem. For

this reason the variation in control cycle duration is recorded using the high performance

system clock and this data is used to stop the operation of the robot if a control cycle becomes

too long. The point at which the robot is stopped was determined heuristically by examining

typical time histories of the control hardware. In addition by running the control application

on a dual processor personal computer more accurate system timing can be achieved.

Although multiprocessor personal computers do not offer the ability to specify which

processes run on which processors, one the high priority control application has started on a

processor no other lower priority process can interrupt it. These lower priority processes are

simply routed to the fi-ee system processors.

Many of the safety considerations discussed above have been handled by incorporating

feature into the control application. However, there is always the possibility that the control

application or the computer running the application will stop fimctioning. This could happen

for numerous reasons, most of which are not recognizable by the technician nmning the

application or easily prevented by external hardware. This condition can however be

diagnosed by a watchdog timer. The watchdog timer observes the communication between

the control personal computer and the robot. If the control computer stops communicating

www.manaraa.com

97

with the robot, the operation of the robot is terminated. The time delay between the end of

communication and the stopping of robot is longer than one control cycle of the robot but is

only a fraction of a second. Therefore if the control computer hangs up for any reason the

motion of the robot can be stopped before any erratic behavior is encountered by the traveler.

www.manaraa.com

98

CHAPTER 6. EXPERIMENTAL RESULTS

The virtual manipulator control law developed in Chapter 3 will be demonstrated using

the experimental test bed described in Chapter 5. The experimental results shown in this

chapter do not represent ±e limit of what can be performed with virtual manipulators, they

are intended to illustrate the control approach as well as reveal the potential of this concept.

To that end the experiments presented here will show two basic virtual manipulator joints,

revolute and prismatic, in various combinations to represent a virtual object for haptic

interaction. In addition an extension to the virtual manipulator control technique, time varying

virtual manipulators, with be developed in order to allow haptic interaction with complex

objects such as free-form curves and surfaces.

The remainder of this chapter will be divided into four major sections. The first

section will discuss a revolute virtual mechanism. The second section will show an example of

a virtual mechanism constructed using prismatic joints. The third section will develop the time

varying extension to the virtual manipulator concept and illustrate this extension by means of

www.manaraa.com

99

two examples. The fourth section of this chapter will develop a virtual manipulator with a

varying number of degrees of freedom to allow general interaction with a virtual object.

Virtual Revolute Mechanism

This section will discuss a one degree of freedom virtual manipulator composed of a

singe revolute joint. This virtual mechanism could be used to perform an ergonomic analysis

of a gear shift mechanism in an automobile or to represent a flight control lever in a fight

simulator. A schematic representation of this mechanism is shown in Figure 6.1. The position

of the center of rotation, the orientation of the axis of rotation of this mechanism and the

length of the lever arm can easily reconfigured in the control software. As a result this simple

mechanism can be used to represent an infinite number of lever devices.

In order to implement the virtual manipulator control law for the one degree of

freedom revolute mechanism, the forward kinematics as well as rate kinematics of the device

are needed. The forward kinematics of the device are required in order to enforce the closed

kinematic chain relationship that exists between the virtual manipulator and the interface

Axis of Rotation

Center of Rotation

Figure 6.1. Schematic of revolute virtual mechanism.

Lever

www.manaraa.com

100

robot. The rate kinematics of the device are required in order to determine the null space

filter that is generated using the Jacobian matrix of the virtual manipulator. Both the forward

kinematics and the rate kinematics of the virtual manipulator can be obtained using standard

robotic analysis techniques.

The first step in this analysis is to assign coordinate firames for the mechanism. These

coordinate fi-ames will be assigned using the Denavit - Hartenberg coordinate fi-ame

assignment rules [24]. The coordinate fi-ames used for the revolute virtual mechanism are

shown in Figure 6.2, superimposed over the schematic representation of the device. The

bracket notion used in Figure 6.2 is used to present the name (description) of a particular

fi-ame. The virtual manipulator has three fi-ames associated with it, {0,1,2}, the fourth firame

is the world coordinate system, {W}. Through out this work the world coordinate system for

y

y
{0,1}

X
z

z
{W}

X

Figure 6.2. Coordinate Same assignments.

www.manaraa.com

101

the virtual manipulator will be taken as the base coordinate system for the interface robot.

In most situations in this work the forward kinematics of the virtual manipulator will

be derived independent of the position and orientation of the world coordinate system. That is

Denavit - Hartenberg parameters for the coordinate frames (0, 1,2} will be presented. These

Denavit - Hartenberg parameters will allow the transformation matrix, "T, to be determined.

The complete forward kinematic description of the virtual manipulator, , will be

determined by concatenating the transformation matrix obtained from the virtual manipulators

Denavit - Hartenberg parameter, "T, with a transformation matrix, , that describes the

position of the virtual manipulators base coordinate frame with respect to the world

coordinate system. The motivation for this approach is that the transformation matrix, is

used to position the center of rotation and set the axis of rotation for the virtual lever.

Therefore by keeping this transformation separate from virtual manipulators transformation

matrix it is easier to reconfigure the virtual manipulator to represent different types of lever

mechanisms.

In addition to the general transformation fr^me from the world coordinate system to

the base coordinate system of the virtual manipulator, some times a fourth coordinate frame

will be added to the end of the virtual manipulator. The kinematic constraint being used is

that the end effector coordinate frame of the interface robot will be in ±e same position and

orientation as the end effector coordmate of the virtual manipulator. The end effector of the

interface robot will be equipped with some type of handle to facilitate interaction. The fourth

transformation matrix is used so that the interaction handle is oriented with respect to the

www.manaraa.com

102

virtual manipulator in an appropriate manner. As a result the fourth coordinate frame will be a

constant rotation matrix which involves no translation.

The Denavit - EEartenberg parameter for the revolute virtual manipulator are shown in

Table 6.1. Using the parameters from Table 6.1, the transformation matrix, °T, shown

equation (6.1) and the Jacobian matrix, " J„, shown in equation (6.2) can be found.

cos 9 - sin^ 0 L

sin^ cos^ 0 0

0 0 1 0

0 0 0 1

'J„ = [0 L 0 0 0 l]' (6.2)

The null space filter in the end effector coordinate frame of the virtual manipulator, S, can be

evaluated using the Jacobian matrix in equation (6 .2)

Now that the forward kinematics of the virtual manipulator and the null space filter

have been determined the virtual manipulator control, constraining the end effector of the

PUMA to foUow the circular arc trajectory of the virtual manipulator, can be implemented. It

is important to note that heuristic tuning of the position and damping gain matrices is required

Table 6.1. Denavit - Hartenberg parameter for revolute mechanism.

i ^,-1 d, 9,

1 0 0 0 e
2 L 0 0 0

www.manaraa.com

103

to obtain proper performance for the system.

In addition there are two ways to formulate the closed kinematic constraint equations

for this virtual manipulator. The first is based on the position of the interface robot, selecting

the angle of the virtual manipulator by requiring that the 'V' position of the robot, as shown in

Figure 6.2, is zero. The second is based on the orientation of the interface robot, selecting the

angle of the virtual manipulator by projecting the orientation of the robot into the plane of

rotation of the virtual manipulator. Experimental results are presented for both cases and

stable performance was observed for both. Experimental data for two one degree of fi^eedom

revolute virtual manipulators will be presented. In first set of data the virtual manipulator is

positioned so that only the second, third and fifth axes of the PUMA are actuated.

In Figure 6.3 the end eftector trajectory of the PUMA is compared with the end

effector trajectory of the virtual manipulator. Due to the positioning of the virtual

manipulator the motion of the robot is planar so the planar view of the data in Figure 6.3 is

sufficient to capture the response of the interface robot. The data in Figure 6.3 was

formulated with the positioned based closed kinematic constraint. Figure 6.4 examines the

motion of the robot in Cartesian space to verify that the virtual manipulator control law

enforces the constraints desired by the virtual manipulator control approach. Figures 6.5 and

6.6 reproduce the data in Figures 6.3 and 6.4, respectively. However, Figures 6.5 and 6.6

used the orientation based closed kinematic chain constraint formulation. Comparison of

these four figures illustrates that regardless of the selection of the closed kinematic chain

constraint equation, proper constraint enforcement is achieved.

www.manaraa.com

104

0.3

0.2

0.15

0.1

0.05 1
0.6 0.75 0.85 0.65 0.7 0.8

X, meters

Figure 6.3. End effector trajectory, position constraint.

www.manaraa.com

105

Q75

Q7

Q6
3 5 0 6 1 2 4 7
tnmseanfe

Q4,

Q3

02

3 5 6 7 0 2 4 1

secords

1.5-

Q5L
3 5 7 6 0 2 4 1

tirm seccrds

Figure 6.4. Cartesian motion, position constraint.

www.manaraa.com

106

X, meters

Figure 6.5. End effector trajectory, orientation constraint.

www.manaraa.com

107

oa

Q75-

Q7-

09
1 2 3 5 6 7 0 4

tgT&aaoTTfe

5 6 7 2 3 0 1 4
tinesBocnfe

I
QS

5 6 7 2 3 0 1 4
tirmsazndS

Figure 6.6. Cartesian motion, orientation constraint.

www.manaraa.com

108

Both Figures 6.3 and 6.5 exhibit data that pulls away from the desired trajectory

during the downward motion of the virtual manipulator. A close comparison of sections of

Figure 6.3 and 6.5 is shown in Figure 6.7. The direction of motion of these loop effects is

indicated in Figure 6.7. This loop effect is present in both Figures 6.3 and 6.5 therefore this

artifact can not be associated with the selection of the closed kinematic chain constraint

equations. In addition by comparing figures 6.4 and 6.6 it can be seen that the speed of the

traveler's input motion is approximately equal in both cases and that the size of the loops are

approximately equal. This supports the hypothesis that the loop effect is associated with the

inertia of the interface robot which has not been compensated for in the virtual manipulator

control law.

In order to investigate the effects of the inertia of the robot on the response of the

virtual manipulator system a third set of was collected using the orientation based closed

kinematic chain constraint equation. In this data, shown in Figures 6.8 and 6.9, the input

speed of the traveler was approximately one third of the original data. The reduced input

velocity is clearly seen in Figure 6.9. Figure 6.8 shows that the loop effect is still present but

the magnitude is reduced. Therefore the inertia of the interface will affect the response of the

virtual manipulator system. The inertia of the robot can be compensated for, but this requires

knowledge of the mass matrix of ±e PUMA as well as calculation or measurement of the

acceleration of the robot. Both of these quantities are difficult to obtain, with any level of

accuracy, using the current configuration of the experimental hardware. Without inertial

compensation, the experience of the traveler interacting with the PUMA Avill contain

disturbance forces associated with the inertial properties of the robot. These inertial

www.manaraa.com

109

0.13

0.125

0.12

0.115

0.11

I 0.105
i

0.1

0.095

0.09

0.085

0.08
0.77 0.775 0.78

0.13

0.125

0.12

0.115

0.11

0.105

>>
0.1

0.095

0.09

0.085

0.08
0.78 0.77 0.775

X, meters x, miners

Figure 6.7. Comparison of loop eflfects.

www.manaraa.com

110

0.13

0.125

0.3
0.12

0.115
0.25

0.11

I 0.105

0.1

0.15
0.095

0.09
0.1

0.085

0.05 0.08
0.6 0.7 0.9 0.775 0.8 0.77 0.78

X, metas x. meters

Figure 6.8. End effector trajectory, orientation constraint, slow motion.

www.manaraa.com

I l l

q8r

Q75-

Q7

QS
2 3 5 7 0 6 1 4

tinreseoartfa
Q4,

Q3-

02

3 7 2 5 6 0 1 4
tiimsBccrd^

1.6r

1.4-

QSl
3 7 2 5 6 4 0 1

t^seccnfe

Figure 6.9. Cartesian motion, orientation constraint, slow motion.

www.manaraa.com

112

disturbance forces may not affect the sense of immersion experienced by the traveler much.

The interaction of the traveler with the haptic interface usually involves slow motion of the

robot. However, if these disturbance forces become detrimental in the simulation of the

synthetic environment a compensation mechanism can be developed and included into the

control in a similar fashion to the inclusion of the gravity compensation.

In the second set of revolute virtual manipulator data, the one degree of freedom

device is positioned so that motion of ail six axes of the PUMA is required for proper

constraint enforcement. The configuration of the virtual manipulator was in a horizontal plane

and the axis of rotation was not collinear with the axis of rotation of the first revolute joint of

the PUMA. Figure 6.10 shows a picture of the experimental hardware with the constraint

trajectory superimposed. Figure 6.11 shows the desired trajectory and experimental data,

viewed from the same point of view as the image shown in Figure 6.10.

The revolute joint is one of the two basic joints used to develop a virtual manipulator.

The data presentation in this section has shown how a revolute constraint can be introduced

into a synthetic environment using a one degree of freedom revolute manipulator. This type

of virtual manipulator could be used to simulate interaction with a parking brake or gear shift

lever in a vehicle or aircraft. Thus allowing evaluation of a system design without

construction of a physical prototype. The second principle mechanism joint the prismatic joint

will be examined in the next section.

www.manaraa.com

113

Figure 6.1. Experimental hardware with revolute constraint.

Figure 6.2. Experimental and desired trajectory.

www.manaraa.com

114

Virtual Prismatic Mechanism

This section will present data for a virtual manipulator that contains both prismatic and

revolute joints. In addition it will also introduce the first type of time varying virtual

manipulator. Specifically the base mechanism used in this section will have six degrees of

fireedom. This will allow free motion of the interface robot, however the number of degrees

of freedom will be reduced in order to simulate various point contact situations. The idea is

that this virtual manipulator will allow free motion inside a cube boundary. So the traveler is

free to explore inside the box but if a boundary is contacted resistance will be encountered

preventing the traveler from moving outside the desired region. However, the traveler is free

to orient the end effector of the interface robot in any direction.

The base virtual manipulator has six degrees of freedom and is shown schematically in

Figure 6.12. The closed kinematic chain relationship is shown in Figure 6.13 using a

{E}

Figure 6.12. Virtual prismatic manipulator.

www.manaraa.com

115

Figure 6.13. Closed kinematic chain relationship.

schematic representation of the virtual manipulator and interface robot. The forward

kinematics of this base virtual manipulator are trivial to evaluate due to orthogonal prismatic

joints and ±e decoupled nature of the end effector rotation. The Cartesian position of the end

effector of the virtual manipulator is just the displacement of each of the prismatic joints and

the XYZ fixed Euler angles relative tot he world coordinate system. The end effector

Jacobian of the virtual manipulator is shown in equation (6.3) below.

c c r y C S S - s c z^y^: X : C S C + 5 5 X y : X z 0 0 0

S S S -f-c c B S C — C S X y z X z 0 0 0

— C C 0 0 0

0 0 0 -^x 0

0 0 0 0

0 0 0 0 -1

www.manaraa.com

116

During contact situations the number of degrees of freedom of the virtual manipulator

is reduced by introducing the idea of joint limits into the virtual manipulator concept. Due to

the decoupled nature of the base manipulator the appropriate Jacobian for contact situations

can be determined by removing the column of the base Jacobian associated with the axis that

has reached the joint limit. There are essentially four contact situations which are shown in

Figure 6.14. Part a) of Figure 6.14 shows free motion with six degrees of freedom, part b)

shows plane contact with five degrees of freedom, part c) shows line contact with four

degrees of freedom and part d) shows point contact with three degrees of freedom. The three

la) (b)

(c) (d)

Figure 6.14. Motion constraints: a) six dof, b) five do^ c) four dof^ d) three dof

www.manaraa.com

117

degrees of freedom during point contact are tiie rotational degrees of freedom because the

orientation of the end effector has not been constrained.

A picture of the experimental hardware with the constraint boundary superimposed is

shown in Figure 6.15. A set of experimental data is shown in Figure 6.16 in which the traveler

was tracing the boundaries of the constraint box. This time varying virtual manipulator was

developed to allow exploration of a synthetic environment using a point. Although the

synthetic environment was quite simple, only one box. other objects could be added to the

environment by modifying the joint hmits imposed on the virtual manipulator. The next

section will introduce another type of time varying virtual manipulators. This second class of

time varying virtual manipulators will have a constant number of degrees of freedom

Figure 6.1. Experimental hardware with prismatic constraint.

www.manaraa.com

118

0.4
0.1

0.05 0.6

0.5
-0.05

-0.1 0.4

Figure 6.16. Experimental data tracing boundary.

but the conjfiguration of the virtual manipulator will change during the course of the

interaction.

Time Varying Virtual Manipulators

The last section introduced the use of joint limits to extend the virtual manipulator

concept to represent various types of contact. This section will now introduce the use of a

virtual manipulator with a time varying configuration to allow interaction with more

complicated objects in a synthetic environment. This section will present two virtual

manipulators to allow the exploration of the shape of a NURBS curve and surface.

www.manaraa.com

119

NURBS Curve Virtual Manipulator

This development will assume that all weights in the NURBS curve are equal to one.

This restriction is only added to make the presentation of this technique more tractable.

Removing this restriction only increases the mathematical complexity of the equations, it does

not change any of the results.

A NURBS curve, C{u), with all weights equal to one is defined by equation (6.4).

u -parameterization variable
N - number of control points
n - degree of NURBS curve
5, „ - NURBS basis fimctions

P, - NURBS control points

The rate of change of the NURBS curve defined in equation (6.4) with respect to the

parameterization variable, is shown in equation (6.5).

.V

(6.4)

dC{u) _ j.
du du '

(6.5)

The tangent of the NURBS curve defined in equation (6.4) is expressed in equation (6.6).

www.manaraa.com

120

TU) =
dC{u)

du
(6.6)

Equations (6.4), (6.5) and (6.6) present all the information about a NURBS curve that

is needed to construct a time varying virtual manipulator that will constrain the motion of a

robot to follow the curve. During a simulation in which the operator is allowed to move the

end effector of a robot along a NURBS curve, the following list shows the steps performed by

the virtual manipulator constraint controller.

• Perform point inversion to determine the closest point on the NURBS curve,

C{u), to the end effector of the robot

• Determine the configuration of the time varying virtual manipulator (this

includes determining the link lengths, positions and orientations)

• Evaluate the Jacobian of the virtual manipulator

• Evaluate control law

These steps will be described for one type of virtual manipulator, a one degree of fi^eedom

prismatic manipulator.

In order to allow the end effector of a robot to trace a NURBS curve there must be

way of transforming the Cartesian coordinates of the end effector (x, y, z) into the parametric

coordinate of the curve, u. This is the point inversion problem and it will be discussed briefly

before describing the time varying virtual manipulator. Point inversion is the process of

determining the parametric coordinates associated with a given set of Cartesian coordinates

www.manaraa.com

121

[82]. In theory the point inversion problem can be solved in closed form for curves with

degree less ttian four. However, due to a host of numerical complications point inversion is

typically performed iteratively using techniques such as a Newton search. A modified Newton

search is used for point inversion in this work. After point inversion is performed the

parametric coordinate u is determined; which represents the point on the NURBS curve that

is closest to the end effector of the robot. The next step is to determine the configuration of

the virtual manipulator that will approximate the shape of the NURBS curve in a region

around u .

To approximate a NURBS curve the one degree of fi-eedom mechanism shown

schematically in Figure 6.17 will be used. This manipulator can be represented with two

coordinate frames as shown in Figure 6.18. As shown in Figure 6.18 the end effector frame,

{E}, of the virtual manipulator is allowed to translate along the z-axis of the base frame, (B}.

A kinematic analysis of the virtual manipulator is required to formulate the virtual constraint

controller. In order to determine the kinematics of this manipulator the Denavit-Hartenberg

(D-H) parameters associated with it must be determined. The D-H parameters for the

prismatic virtual manipulator are shown below in Table 6.2. The D-H parameters in Table 6.2

are used to construct the follovi/ing kinematic transformation matrix for the virtual

manipulator.

Table 6.2. D-H parameters.

i ^,-1 d. 9,
1 0 0 d 0

www.manaraa.com

122

Axis of Motion

End Effector

Figure 6.17. Schematic of prismatic virtual mechanism.

T = IT ~

1 0 0 0

0 1 0 0

0 0 1^

0 0 0 1

(6.7)

This virtual manipulator will be used construct a linear approximation to the original

NURBS curve. The position and orientation of the base frame, (B} of the virtual manipulator

are allowed to vary over the length of the curve. The instantaneous position and orientation

of frame {B} are determined by the characteristics of the NURBS curve at the parameter

value u which was determined by point inversion. Specifically, the position of fi"ame {B} is

defined by C(M*) . The orientation of the frame {B} is partially determined by the tangent of

the NURBS curve, T(M*) . Frame {B} is oriented such that the z-axis of frame {B} is in the

direction of the T(«*) . However, a second vector, is required to completely fix the

orientation of frame {B}. The vector V„p is used to determine the orientation of frame {B} in

www.manaraa.com

123

Base Frame {B}

End Effector Frame {E}

X.

Figure 6.18. Virtual mechanism frame assignment.

same way that it is commonly used in computer graphics to determine the orientation of view

reference coordinate frame [2],

ZB =

JB = •

=

W"')!

Zb ^ V-p

YB ̂ Z B

lys ^ Zsl

(6.8)

The vector is arbitrary and can be select by the user. In addition, can be constant or

defined as a vector field over the length of the NURBS curve. After determining the

configuration of the virtual manipulator its Jacobian must be found.

www.manaraa.com

124

The Jacobian of the virtual manipulator can be determine by applying standard robot

analysis techniques to the kinematic transformation matrix ^T. The Jacobian of this one

degree of freedom prismatic manipulator is shown in equation (6.9)

J v , = [0 0 1 0 0 o] ' (6.9)

Note that the Jacobian of this virtual manipulator is quite simple and remains constant, which

is a distinct advantage of this control approach.

In order to verify the effectiveness of the virtual constraint NURBS curve controller an

Figure 6.1. PUMA 560 manipulator with constraint NURBS curve.

www.manaraa.com

125

experiment was performed in which a PUMA 560 manipiilator was constrained to follow a

quadratic NURBS curve defined by three control points. Figure 6.19 shows a picture of the

PUMA with the NURBS curve constraint superimposed. Experimental data is presented for

two simulations of the controller. Figure 6.20 shows experimental position data when the

user is moving the end effector of the PUMA along the NURBS curve slowly. Figure 6.21

shows experimental position data when the user moves the robot more quickly.

The data presented in Figure 6.20 clearly shows that as the operator moves the PUMA

along the NURBS curve slowly, good tracking performance is obtained. However, as seen in

Figure 6.21 when operator moves the robot quickly, the tracking performance degrades.

When the user moves the PUMA slowly the effect of the inertial properties of the robot are

small thus good tracking is obtained. However, as the speed of the robot is increased the

0.5
constraint curve
experimental data 0.49

0.48

0.47

0.46

0.45

0.44

0.43

0.42

0.41

0.4 1 1 1 1—
-0.1 -0.08 -0.Q6 -0.04 -0.02 0.02 0.04 0.06 0.08 0.1 0

Figure 6.20. Experimental data, slow motion.

www.manaraa.com

126

0.52
constraint curve
experimental data

0.5

0.48

0.46

0.44

direction
direction

0.42
motion

motion

0.4

0.38
0.15 0.05 -0.15 0.1 -0.05 0 -0.1

Figure 6.21. Experimental data, fast motion.

inertial effect is more dominate as seen the experimental data. The direction dependent

response shown in Figure 6.21 clearly shows the effect of the PUMA inertia on the systems

response.

The magnitude of the inertial disturbance can by minimized by changing the stifBiess of

the local error feedback control springs. However, there is a distinct limit on how high the

stiflBiess of the control springs can be increased. If the stifftiess of the control springs is

increased above this limit the controller will enter a region of instability. In order to ensure

the safety of operator it is essential that no controller instability occur. This upper bound is a

property of the robotic manipulator and represents a functional limitation of ±e device.

www.manaraa.com

127

NURBS Surface Virtual Manipulator

This paper will not present a detailed description of NURBS surfeces. Only the

NURBS surfeces concepts needed to develop the time varying virtual manipulator will be

presented. An interested reader is referred to Piegl and Tiller [82] for fiirther details about

NURBS surfaces. This development will assume that all weights in the NURBS surface are

equal to one. This restriction is only added to make the presentation of this technique more

tractable. Removing this restriction only increases the mathematical complexity of the

equations, it does not change any of the results.

A NURBS surface, S(M, V), with all weights equal to one is defined by equation

(6.10).

s(",") = i f (6.10)
1=0 7=0

u -parameterization variable
V - parameterization variable
.V - number of control points in «-direction
M - number of control points in v-direction
n - degree of surface in ^-direction
m - degree of surface in v-direction

fiinctions in ^-direction

„(v) - basis fimctions in v-direction

P,^ - matrix of control points

The rate of change of the NURBS surfece defined in equation (6.10) with respect to the

parameterization variable, m, is shown in equation (6.11).

www.manaraa.com

128

(6.11)

The rate of change of the NURBS surface defined in equation (6.10) with respect to the

parameterization variable, v, is shown in equation (6.12).

The normal of the NURBS surface defined in equation (6.10) is expressed in equation (6.13).

Equations (6.10), (6.11), (6.12) and (6.13) present all the information aboutaNURBS

surface that is needed to construct a time varying virtual manipulator that will constrain the

motion of a robot to follow the surface.

In order to allow the end effector of a robot to trace a NURBS surfece there must be

way of transforming the Cartesian coordinates of the end effector (x, _y, z) into the parametric

coordinates of the surface («, v). Point inversion is the process of determining the parametric

coordinates associated with a given set of Cartesian coordinates [82]. After point inversion is

performed the parametric coordinates are determined; which represent the point on

(m, v) = 2,2- W . P-.y
cv ,=0 ;=o dv

(6.12)

1V(M, V) = S „ (W, V) 0 S , («, v) (6.13)

www.manaraa.com

129

the NURBS surface that is closest to the end effector of the robot. The next step is to

determine the configuration of the virtual manipulator that will approximate the shape of the

To approximate a NURBS surface the two degree of fi-eedom mechanism shoAvn

schematically in Figure 6.22 will be used. This manipulator can be represented with three

coordinate frames as shown in Figure 6.23, however, a fourth frame is added to produce a

more "appropriate" connection between the virtual manipulator and the robot. The robot used

as an experimental test-bed in this work has a handle which aligns with the z-axis of the end

effector of the robot. The addition of the fixed rotation associated with the fourth coordinate

fiame in Figure 6.23 will allow the handle of the robot to align with the normal of the NURBS

surface. The details of this handle - normal alignment will be shown in detail later; however, it

should be noted that this alignment is the motivation of the addition of the extra coordinate

frame.

A kinematic analysis of the virtual manipulator is required to formulate the virtual

NURBS surface in a region around .

Axes of Motion

End Effector

Figure 6.22. Prismatic -prismatic virtual mechanism.

www.manaraa.com

130

Figure 6.23. Virtual mechanism frame assignment.

constraint controller. The Denavit-Hartenberg (D-H) parameters for the prismatic - prismatic

virtual manipulator are shown below in Table 6.3. The D-H parameters in Table 6.3 are used

to construct the following kinematic transformation matrix for the virtual manipulator.

0 0 1 0

1 0 0

0 1 0 d.

0 0 0 1

(6.14)

This virtual manipulator will allow motion along the bilinear approximation to the

Table 6.3. D-H parameters.

i ^1-. a.-. < 9.

1 0 0 0
2 0 -90° -90°
J 0 -90° 0 -90°

www.manaraa.com

131

original NURBS surface. The position and orientation of the base frame, {B}, of the virtual

manipulator is allowed to vary over the surface. The instantaneous position and orientation of

frame {B} are determined by the charaaeristics of the NURBS surface at the parameter

values which were determined by point inversion.

Specifically, the position of frame {B} is defined by s(«*, v*). The orientation of the

frame {B} is determined by the two tangents of the NURBS surface, S„(m*,v*) and

Sv(«*, v'). Frame {B} is oriented such that the x-axis of frame {B} is in the direction of the

n(w*, V*), the>'-axis is in the direction of S„(zf*,v*), and the z-axis is in the direction of

^3 =

iv ̂ Y b =

=

Su(^\v')

jSuK.v*)!

SV(M',V')

|sv(«',v*)|

(6.15)

Note that these unit vectors are written with respect to a world coordinate system which has

been selected as the base frame for the robot interface for convenience. After determining the

configuration of the virtual manipulator the Jacobian relating the end effector velocity with the

velocity in the base coordinate frame can be computed.

www.manaraa.com

132

The Jacobian of the virtual manipulator can be determined by applying standard robot

analysis techniques to the kinematic transformation matrices. The Jacobian of this two-

degree-of-freedom prismatic - prismatic manipulator is shown in equation (6.16).

Note that the Jacobian of this virtual manipulator is quite simple and remains constant, which

will be a distinct advantage in control approach.

In order to verify the effectiveness of the virtual constraint NURBS surface controller

an experiment was performed in which a PUMA 560 manipulator was constrained to a bi­

quadratic NURBS surface defined by a matrix of nine control points. Figure 6.24 shows a

0 1 0 0 0 O"'*

1 0 0 0 0 0
(6.16)

0.35--

0.34-

0.33-

0.32-
z

0.31-

0.3

0.29:
0.1

0.6

y -0.1 0.4
X

Figure 6.24. Constraint NURBS surface.

www.manaraa.com

133

0.35

0.05 0.6
0.55

0.5
-0.05 0.45

-0.1 0.4

Figure 6.25. Experimental data for NURBS constraint.

picture of the NURBS surface constraint. Figure 6.25 shows experimental position data when

the user is moving the end effector of the PUMA over the NURBS surface.

The data presented in Figure 6.25 clearly shows that as the operator moves the PUMA

over the NURBS surface, good tracking performance is obtained. However, the constraint

controller being used does not compensate for the inertial effects of the PUMA when operator

moves the robot quickly, the inertia of the can clearly be felt.

The magnitude of position error caused by inertial disturbances can by minimized by

changing the stif5iess of the local error feedback control springs. However, there is a distinct

limit on how high the stiffiiess of the control gains can be increased. This upper bound is a

property of the robotic manipulator, sensor resolution and noise, and actuator characteristics.

This performance limitation of the device is present regardless of the structure of the control

scheme. Removing the constraint forces in the virtual manipulator control approach does not

www.manaraa.com

134

affect the overall stability of the underlying error controller. In order to ensure the safety of

operator the feedback gains for the local control must be chosen to provide stable operation.

The motion of the end effector of the PUMA was tied to a graphical display to provide

the operator with a more complete feeling of immersion. Figure 6.26 shows a typical image

from the graphical display. The end of the PUMA is show as an exploration tool in the visual

interface. The graphics engine is connected to PUMA control hardware by means of an

Figure 6.1. Graphical interface.

www.manaraa.com

135

ethernet socket connect.

EUgh Degree of Freedom Virtual Manipulator

The high degree of freedom virtual manipulator presented in this section is similar to

the prismatic virtual manipulator presented earlier. The number of degrees of freedom of the

virtual manipulator change to allow exploration and interaction in the synthetic environment.

The interaction is achieved in this section by allowing the traveler to manipulate a virtual tool.

As a result the contaa between the traveler and the synthetic environment is different than

with the prismatic virtual manipulator, which allowed only a single point as the tool of

exploration.

A five-degree of freedom virtual manipulator will be described that provides force

feedback to a youi^ Jedi dueling with a virtual Lord Vader. This work is characteristically

different from previous virtual manipulator work, which focused on highly constrained low

degree of freedom virtual manipulators. This section will focus on revealing the potential of

this control approach as general interaction metaphor for synthetic environments. The fenciful

depiction of a light saber battle with Darth Vader is used to underscore the ability of the

virtual manipulator approach. The general application of the virtual manipulator presented

here will be to examine, maneuver or deform objects placed in a synthetic environment.

When the traveler in the synthetic environment is maneuvering her sword in free space

the virtual manipulator will have six degrees of freedom. In this situation the configuration of

the virtual manipulator is somewhat arbitrary because regardless of configuration the null

www.manaraa.com

136

space filter matrix becomes a matrix of zeros. Thus the control torques applied to the

interface robot is zero and the traveler is fi"ee to move the interface robot in any manner.

I£^ however, the two swords make contact, the virtual manipulator losses a degree of

fi"eedom—the degree of fi'eedom that would allow the swords to pass through one another.

During contact situations the virtual manipulator has five degrees of fireedom and the

configuration of the virtual manipulator used is a prismatic joint, three orthogonal revolute

joints and a prismatic joint. Thus during contact the traveler can maneuver the interface robot

so that her sword has three axes of rotation about the point of contact and two axes of

translation along Darth Vader's sword but can not pass through her opponent's sword.

Due to the nature of interaction in this synthetic environment it is difBcult to present

data that describes the experience. However, an experiment was performed in which the

traveler's sword was positioned perpendicular to Darth Vader's sword and moved laterally

until the two swords contacted. A schematic diagram of the experiment is shown in Figure

6.27. During the experiment the lateral motion of the traveler's sword was measured as well

as the force applied to the end effector of the interface robot by the traveler. This data is

presented in Figure 6.28.

Prior to contacting Darth Vader's sword the interface robot was moved in fi*ee space

this provides an idea of the magnitude of the force necessary to manipulate the interface robot.

Approximately 10 Newton's of force is required to stop and change the direction of motion of

the interface. This force is most likely associated with the inertia of the device, which has not

been compensated for using feed forward elements. In addition, increasing the gain of the

force feedback loop can reduce the magnitude of the fi^ee space manipulation force. However,

www.manaraa.com

137

this was not done to avoid the closed loop instability sometimes associated with high gain

force loops.

Once the two swords come into contact, contact a large negative force peak is seen.

This force is preventing the swords from passing through each other. The initial contact gives

rise to a slight recoil of the traveler's sword, which is accompanied by a positive force peak.

After the contact transient the traveler continues pressing into her opponent's sword and

gradvially reduces the contact force.

Figure 6.29 shows a picture of the experimental hardware located in the four-wall

projection environment. Figure 6.30 shows a not so young Jedi attempting to defeat the evil

Lord of Sith.

Darth's Sword

Direction

of Motion

Traveler's Sword

Figure 6.27. Experiment protocol.

www.manaraa.com

138

Q3

2 3 7 0 4 5 6 1

liiTEi saxncfe

- y y
' \<r I

0 1 2 3 4 5 6 7

limEiSBoatfe

Figure 6.28. Experimental data for light saber.

www.manaraa.com

139

Figure 6.1. Experimental hardware

www.manaraa.com

140

Figure 6.2. Graphical display.

www.manaraa.com

141

PART N. DYNAMIC MODELS FOR INTERACTION

www.manaraa.com

142

CHAPTER?. FINITE ELEMENT ANALYSIS

This chapter will review some of the major concepts of finite element analysis (FEA).

This treatment is not intended to be a complete development of FEA but will give a general

overview of the technique, focusing on the topics that will be used in Chapter 8. For further

information on FEA the reader is referred to [11].

FEA is a technique that reduces an mfinite degree of fi^eedom problem, to one with a

finite number of degrees of fi'eedom. This reduction in the number of degrees of fi-eedom

allows an approximate solution to be found at reduced computational expense. FEA can be

divided into five steps, listed below, which will be described in the following sections.

1. Discretization

2. Interpolation

3. Elemental Description

4. Assembly

5. Solution

www.manaraa.com

143

Discretization

Discretization is the process of dividing a continuous medium into a finite nvmiber of

elements. The elements are intercoimected at special points called nodes. Although the

boundary of an element is defined by nodes, nodes may also be located in the interior of an

element. See Figure 7.1 for a one-dimensional example of nodes and elements. The response

of an element is determined by the nodal displacements associated with the element. The

nodal displacements are generalized displacements, which may be translations, rotations or

curvatures.

There are several types of elements that can be used; however, all elements can be

classified by their dimension and interpolation scheme. Figure 7.2 shows three types of

elements with linear interpolation. The selection of an element depends on the nature of the

problem being solved; this will be address in more detail in the following section on

interpolation.

Nodes

i \

Elements

Figure 7.1. Nodes and elements.

www.manaraa.com

144

• •

(a) (b) (c)

Figure 7.2. Linear elements; (a) 1-D; (b) 2-D; (c) 3-D.

Interpolation

The approximate solution obtained from a finite element model is found by

interpolating the nodal displacements of an element with shape fimctions. The response,

u{x,y,z,t], for an element is shown in equation (7.1).

'ul^x,y,zj) = Y^u,{t)N{x,y,z) (7.1)

/ is ±e number of nodes

M, {i) are the nodal displacements

AA,(x,j/,r) are the shape fimctions

The shape functions used in equation (7.1) are a key component in

paragraphs will discuss the requirements that shape functions must

derivation of the shape fimctions typically used in FEA.

FEA. The following

satisfy and outline the

www.manaraa.com

145

Shape Function Requirements

There are a number of functions that can be used as shape fiinctions, for example:

simple polynomials, Lagrange polynomials and Hermite polynomials. Regardless of type, the

shape functions must interpolate the nodal displacements. That is, a shape function must have

a unit value at its associated nodal coordinates and must be zero at all other nodal

coordinates. This concept is expressed mathematically in equation (7.2).

The terms , yj and Zj are nodal coordinates. In general for a set of shape fiinctions to be

acceptable, they must satisfy the following criteria.

(7.2)

1. Shape fimctions derived from simple polynomials must be balanced with respect to all

coordinate axes.

2. The shape functions must have acceptable continuity between elements.

J . The shape fianction must be complete with respect to the system being modeled.

The reader is referred to [11] for more details on these requirements. In addition, if the nodal

displacements are limited to translational displacements the shape fimctions must also satisfy

the following properties.

www.manaraa.com

146

I

z ^
I

=y
t

(7.3)

Shape functions derived from simple polynomials are capable of satisfying all of the

stated requirements and are easily developed; as a result, they will be used whenever the

standard FEA is used. The following section will outline the derivation of this type of shape

fiinction.

Derivation of Shape Functions

When deriving simple polynomial shape fimctions, the interpolation degree, n, and

dimension of the problem are used to develop an approximate solution. For a one dimensional

problem with nth degree interpolation the approximate solution would have the following

form.

u(x) = + a^x + a^x' -i—ra^x" (7.4)

The coeflBcients a. are constant coefficients. The approximate solution, equation (7.4), is then

evaluated at the /? +1 nodal coordinates, x-.

www.manaraa.com

147

u(x, } = u,=a^+ a,x, + a^y- +• • •+a^x^

m(X,) = W, = flg —^«^2

w(x^,) = = a^ +a,r^! +a2J^^i+—

(7.5)

The system of equations (7.5) can be rewritten in matrix form.

' «:

• =

U I

I Xi

1 X,

1 X l-I

u = Xa

a.

a.

(7.6)

The coefficients, a,, can be found in terms of the nodal coordinates, x,, and the nodal

displacements, «,, by matrix inversion.

a = X-'u (7.7)

The approximate solution can be rewritten by substituting the coefficients, a, into equation

(7.4).

www.manaraa.com

148

^0

a(x) = {l r ••• x''}j^H = {l X ••• x'jx-'u (7.8)

The shape functions, N^x), are determined by combining terms associated with each nodal

displacement, u,. This is done systematically using equation (7.9).

Shape fimctions can be derived in the above fashion for all elements in a finite element

model. However, the shape fimctions are different for each element and the process of

solving for all of the different shape fimctions is time consuming. In order to simplify this

process the coordmate transformation described in the following section is used.

Coordinate Transformation

To simplify shape fimction calculation, shape fimctions are determined for a simple

parent element, which are transformed to the particular element in question. The

transformation from the parent element to the actual element is achieved through a coordinate

(7.9)

x-'=[x;' x:' - x;;,]

www.manaraa.com

149

element

I ^ local
0 1

1 1—^ global
Xi JQx+i

Figure 7.3. Coordinate transformation.

transformation from a local coordinate system to the global coordinate system. Figure 7.3

shows an example of this transformation for a one dimensional element of degree n. The use

of the above coordinate transformation will be clarified in the next section, which discusses

the elemental description.

As discussed in the discretization section, the selection of an element and an

interpolation scheme in constructing a finite element model are not independent. The major

consideration in selecting an interpolation scheme is that in the limit as the elements are

refined the approximate finite element solution should converge to the exact solution.

Elemental Description

There are various ways to generate a finite element model. Direct integration of the

differential equation is the most straight forward method. However, this is not always

possible and in this situation there are two commonly accepted approaches to obtain the

desired model. In the first approach the energy associated with the problem is determined by

integration over the domain and boundary of the region. The method of Ritz is then used to

obtain a set of algebraic equations [11]. The second approach uses the differential equation

www.manaraa.com

150

directly in the weak formulation. This approach is equivalent to the principle of virtual work

used in mechanics. A set of algebraic equations is obtained by combining the weak

formulation of the diSerentiai equation and Galerkin's method.

In order to demonstrate how Galerkin's method and the weak formulation of a

differential equation are used in constructing the elemental description, the following

paragraphs will develop a finite element model for the one-dimensional wave equation.

The coefificients k, p and/ represent the restoring force, mass density and external force

respectively. Two boundary conditions are required to solve equation (7.10). There are two

types of acceptable boundary conditions; essential and natural.

u - a (essential)

k — -b (natural)
cx

The constants a and h are the boundary conditions. One type of boundary condition, either

essential or natural, must be specified at x = 0 and x = I. In addition to the two boundary

conditions, two initial conditions are also required to solve equation (7.10).

(7.10)

(7.11)

du

www.manaraa.com

151

«(r,0) = /(x) (position)

(7.12)

(velocity)

The functions /(x) and g(x) are the initial conditions.

Galerkin's method is considered to be one of the Methods of Weighted Residuals

(MWR). MWR is a general technique that finds application in minimization processes outside

of FEA. In the MWR an approximate solution, u, to the dijfferential equation is selected.

t) = ^ Z ('V, W (7-13)
t

c, are constant coefiBcients

are functions which satisfy the boundary conditions

The approximate solution, u, typically used in FEA is based on the nodal displacements and

shape functions as shown in equation (7.1), rewritten here in vector form.

M(X, r) = (x)u(/) = {iV, (x) N. (x) • • • (x)} (7.14)

www.manaraa.com

152

The integer n is determined by the degree of the interpolation scheme. When equations (7.13)

and (7.14) are compared it is obvious that:

c,W = «,(r) (7.15)

(pXx) = NXx), for/ = U,...,n + l

The approximate solution, u, is then substituted into the wave equation (7.10).

i(*f (7.16)
ct

The residual, error caused by the approximate solution, R(x) is then evaluated.

^ \ ̂ (du\ fiu .\ \ S (, ff-u ,i

If the approximate solution was exact then the residual would be zero. In general the residual

is non-zero; therefore, the goal is to minimize the residual by requiring the weighted average

of the residual to be zero. The weighted average of the residual is evaluated in equation

(7.18).

www.manaraa.com

153

\R{x)w{x)cbc = Q (7.18)

X, is ±e coordinate value of the first node of the element

is the coordinate value of the last node of the element

w(x) are the weight fimctions

There are several types of weight fimctions. The selection of a weight fimction determines the

way in which the residual is minimized In Galerkin's method the weight fimctions are the

same as the approximating polynomials (shape fimctions).

M'rW (7.19)

Before substituting the shape fimctions into equation (7.18) the weak form of the differential

equation will be derived by integration by parts [97],

'?• r ̂ dx = wk—
cx - J

dM , du d~u
-^k—^wp-^-wf

V. cx cx cx >
A = 0 (7.20)

The shape fimctions derived in the interpolation section are then substituted into equation

(7.20).

www.manaraa.com

154

J [/jN(x)N^(x)u(r) + = 7N(x)/dr + ̂ N(x)^^^u(r) (7.21)

•^r = ^[n'"(x)u(/)] = N^(x) ^[u(r)] = N^(x)u(/)

^ r 7 / \ / \ i . , - = -[N^WuW] = —«w

Equation (7.21) is the elemental description for the one-dimensional wave equation. Equation

(7.21) is solved for the vector of nodal displacements, u(f). These displacements minimize

the error between the actual solution, u(x, f), and the approximate solution, u(x, f). The

different components of ±e elemental model can be determined by investigating equation

(7.21).

The elemental mass matrix, is associated with the nodal accelerations, u(/), and

is evaluated by equation (7.22).

www.manaraa.com

155

•'It*!

M,u(/) = J pN(x)N^(x)u(/)<35:

M , = J

pN^ix)N^ix) pN'^(,x)N'^ix) ••• pN^ix)N'„ix)

pNXx)N^{x) ••• pNXx)N„{x)

SYM pNSx)N„{x)

dx

(7.22)

The elemental stifi&iess matrix, K^, is associated with the nodal displacements, u(/), and is

evaluated by equation (7.23).

^ . y , <m{x) c/N^(x) , , ^
K.a(')= J k 2 '"(')<&

K . = J

dx dx

kN^{x)N^{x) kN\{x)N.,{x)

kN.{x)N\Xx)

SYM

NXx) =
dNXx)

dx

kN:{x)N„{x)

kNzix)N„{x)
dx

(7.23)

kN„{x)N:{x)

The elemental force vector, fg, is associated with the external distributed force, /, and is

evaluated by equation (7.24).

www.manaraa.com

156

f. = J NW/<ic
X,

r Af,w ^
N,{x) f.= J/

(7-24)

•dx

The final term in the elemental description contains information about the natural boundary

conditions. The vector, bg, is evaluated in equation (7.25).

= —T—u
dx

b =

'kN\x)N,{x) kN,ix)K{x)

kN,ix)N:{x)

SYM

kN,{x)N'^X^)

kN„,,{x)N\^,{x)

^:(^i) = ^3(^1) =•••=-^^1(^1) = 0 = l

^) = ̂ 2) = • • • = ̂ n{^n.X) = 0 (^^1) = 1

www.manaraa.com

157

b. = k (7.25)

The statement of the finite element model, equation (7.21), can therefore be rewritten using

equations (7.22), (7.23), (7.24) and (7.25).

M^u(/) + K,u(r) = f, -r b, (7.26)

The elemental model in equation (7.26) is obtained by integrating various physical

parameters and the shape fimctions. The coordinate transformation described in the

interpolation section is used to simplify ±ese integrations. The shape fimctions are

determined with respect to the local coordinate system, n(^/) , instead of the global

coordinate system, N(x). The first term in the elemental stiffiiess matrix, will be used to

clarify the coordinate transformation.

*7' •/ \ •/ \ r dN, dw dN, dw dx

www.manaraa.com

158

This coordinate transformation can be used for all parts of the elemental description, thus

greatly simplifying the calculation of the elemental matrices. After the elemental matrices

have been calculated they must be assembled to construct the global system model.

Assembly

The elemental description formulated in the previous section allows the elemental

matrices to be determined. The elemental matrices are then assembled, in order to construct

the global system model. The global system model can be developed by inspection for one-

dimensional and simple multidimensional problems. For example, consider constructing the

global stiffiiess matrix for a system with two quadratic elements as shown in Figure 7.4.

There are five, one degree of fi-eedom nodes in this model. As a result the global stiffiiess

matrix will be a 5x5. The global stifi&iess matrix will contain elements fi^om the two elemental

matrices. The stiffiiess matrix for the first element has the form shown in equation (7.28).

K,. ^1.3
Ky = A.-» -7 ul > (7.28)

^3.1 <3 .<

I
I element 1 element 2

Xi X2 X3 X4 X5

Figure 7.4. Two element model.

www.manaraa.com

159

The stif&iess matrix for the second element has the form shown in equation (7.29).

K = kii ...

kl_

"'U2

^3
k;. ^"3 J

(7.29)

The global matrix is the sum of the elemental matrices when they are expanded to the size of

the global matrix. However, before the elemental matrices can be expanded to global size, the

local nodal displacements must be mapped to the global nodal displacements as shown in

Figure 7.5.

element 1

u\ u:

u.

element 2

\i/ \j/

Local Nodes

CHobal Nodes

Figure 7.5. Mapping local nodal displacements to global nodal displacements.

www.manaraa.com

160

u, =u.

u. =u.

«r="3

U: = «;

(7.30)

The elemental matrices can now be expanded and sxmmied.

'fr' ''i.i Kz 0 0' '0 0 0 0 0 "

k l . ^ I z kl. 0 0 "2 0 0 0 0 0 Ur
K.u, = g s K.Z '̂3.3 0 0 "3 '-r 0 0 klz «3 • (7

0 0 0 0 0 0 0 kL k:, • .J
_ 0 0 0 0 0 ."s. 0 0 kl. kL k } , i.J _ «5.

Therefore the global stiJB&iess matrix has the following form.

"i.i

*2.1

"•3.1
0

0

Kz
k l .

0

0

''i.j
k l .

k ' + k -"3,3

0 0

0 0

k - k -
"•1.2 "1.3

^3
k : , k : ,

J.2

"2

"3^

L«5J

(7.32)

The inspection method works well for one-dimensional problems; however, with higher

dimension problems a more systematic approach is required.

www.manaraa.com

161

The assembly process is easily automated by using a connectivity matrix. The

connectivity matrix contains the global node numbers which map the elemental matrices into

the global matrix. The connectivity matrix, C, for the example problem shown in Figure 7.4 is

shown in Figure 7.6. Once the connectivity matrix is constructed, it can be used to map the

elemental matrices into the global matrix using the following relationship.

The terms and K^ j are the elements of the elemental matrices and the elements of the

global matrix respectively. An element in the global matrix is the sum of all of the elemental

elements mapped to the global element. This technique produces the same global matrix as

the inspection method, however, the technique can be implemented in computer code to

K, —
(7.33)

I = C{ej)

J = C { e j)

2 y local node
number

1 1 2 3

'y - A 5^ global node
~ I I I N number

element
number

Figure 7.6. Connectivity matrix.

www.manaraa.com

162

automate the assembly process.

Solution

After the assembly process the global system model is obtained as shown in equation

The global system model is now ready to be solved for the nodal displacements. The system

of differential equations will be solved using a central difference approximation, which is

discussed in the following section.

Central Difference Approximation

The central difference approach reduces the system of differential equations to a

system of algebraic equations by expressing the nodal accelerations, Ug(/) in terms of

Ug(r -r A/), Ug(f) and Ug(/ - A/). The UgCr + A/) term can be approximated using Ug(0

and a three term Taylor series expansion [97] as shown in equation (7.35).

(7.34).

M,u,(/) + K ,Ug(r) = fg^bg (7.34)

Ug(r +A/) = Ug(r)-rAnkg(f)+—^Ug(r) (7.35)

www.manaraa.com

163

The Ug(f - At) term can be approximated in the same fashion as shown in equation (7.36).

Ug(r-A/) = UgW - AriigW (7.36)

An expression for u (/) is found by adding equations (7.35) and (7.35).

Ug(r -r A/) + Ug(r - At) = 2Ug(r) + (A/)" Ug(/) (7.37)

Solving for u (r);

Ug(r+A/) + Ug(/-A/)-2Ug(r)

" {Aty-
(7.38)

Equation (7.38) is then substimted into the global system model, equation (7.34).

M.
Ug(/ + A/) + Ug(/ - A/) - 2Ug(/)

(AtY-
(7.39)

This substitution reduces the system of differential equations to a system of algebraic

equations. Equation (7.39) can be rewritten as shown in equation (7.40).

www.manaraa.com

164

MgUg(r + A/) = [2Mg -(A/)'KjugW-MgUg(r-A/)+(Ar)'fg+(A/)'bg (7.40)

Equation (7.40) is a finite difference equation ±at allows Ug(/ + A/) to be determined fi^om

Ug(/) and Ug(/ - A/). Equation (7.40) allows an approximate solution to the original

differential equation to be obtained by stepping through time. Although equation (7.40) is

easy to solve there is some difiBculty in starting the solution process, which will be discussed

in the next section.

Start-Up

In order to solve equation (7.40) for Ug(A/) the nodal displacements, Ug(0) and

Ug(- At) must be known. However, Ug(- Ai) is not specified in the original statement of the

differential equation. As a result Ug(- A/) will be estimated using the Taylor series expansion

and the given initial conditions.

The constants Ug(0), Ug(0) and Ug(0) are the initial nodal displacements, initial nodal

velocities and the initial nodal accelerations respectively. The initial nodal displacements and

velocities are available firom the initial conditions applied to the original differential equation.

www.manaraa.com

165

The initial nodal accelerations are not specified; however, they can be obtained by evaluating

equation (7.34) at the initial conditions.

ii.(0)=M-[f,̂ b,-K,u,(0)] (742)

With Ug(- A/) determined only one obstacle remains to be overcome before the system of

equations can be solved. The system of equations must be constrained to comply with the

boundary conditions.

Constraints

The system of equations (7.40) reduces to an algebraic set of equations of the form

shown in equation (7.43).

If the boundary conditions, equation (7.11), at x = 0 or x = L are essential boundary

conditions the global system model, equation (7.43), must be augmented to enforce the

boundary conditions. The boundary conditions can be enforced by rewriting the system of

equations.

lVIgUg(r + A/) = rhs (7.43)

rhs = [2Mg - (A/)'Kg]u,W - - A/) + (A/)'fg ^ {At)\

www.manaraa.com

166

For example, consider the original algebraic set, equation (7.43) expanded in equation

(7.44).

"̂ 1.1
rru.

SYM

"hn,' rhŝ

• — «

rhŝ

n ̂

(7.44)

If equation (7.44) is subject to two essential boundary conditions of the form;

Wj =
(7.45)

The system can be constrained by rewriting the and equations as shown in equation

(7.46).

m,, TO,;

0 0

0 0 u.

r = <

u . m-l
U_

A

rhSr

rhs.

B

(7.46)

After the augmented system has been constructed the system response can be

determined using matrix inversion. Now that the standard FEA has been developed. Chapter

www.manaraa.com

167

8 will modify it by using the B-spline basis fimctions instead of the polynomial shape fimctions

developed in this chapter.

www.manaraa.com

16S

CHAPTER 8. MODIFIED FINITE ELEMENT ANALYSIS

Finite element analysis (FEA) was reviewed in Chapter 7, this technique can be used to

obtain physically based simulations of virtual components. However, the response from the

FEA is not in line with the ultimate goal of developing a physically based design system. As a

result the standard FEA will be modified so that the response is more appropriate for a design

system.

FEA will be modified by representing the virtual component's geometry with B-splines.

The modified FEA will provide several advantages over the standard FEA. The designer will

have accurate control of the virtual object's continuity. The time required for collision

detection between the user's virtual hand and the virtual object can be reduced by using

bounding box techniques. The response for modified FEA model can be computed at less

computational expense than a standard FEA model with the same number of elements. The

virtual object can be deformed using free form deformations.

This chapter will present some basic information about B-splines, the reader is referred

to [2] for more details about this representation. A B-spIine curve is a piece-wise continuous

www.manaraa.com

169

curve as shown in Figure 8.1. The nth degree curve, 0(4"), is a parametric curve defined on

^"£[0,1] which contains a given number of nth degree segments, 01(4"), and 03(1^).

The curve is generated by blending data points, typically called control points with a set of

basis functions as shown in equation (8.1).

= (8-1)
(=0

k is the number of control points

are the coordinates of the curve at the parameter value C

are the basis functions at the parameter value 4"

p, are the coordinates of the control points

Equation (8.1) is similar to equation (7.1), which is the standard interpolation scheme used in

FEA. However, the B-spline basis functions must satisfy all of the shape function

Figure 8.1. B-spIine curve.

www.manaraa.com

170

requirements specified in Chapter 7 in order to be used in FEA. The following sections will

develop the B-spIine basis functions and show that they are an acceptable FEA interpolation

scheme.

B-spline Basis Functions

The B-spline basis functions are piece-wise continuous polynomial fimctions. In order

to calculate the basis functions a non-decreasing sequence of real numbers called a knot vector

must be specified as shown in equation (8.2).

The knot vector is essentially a list of special parameter values called breakpoints that bound

the individual curve segments as shown in Figure 8.1. The knot vector is used to control the

level of inter-segment continuity. The inter-segment continuity is, n—r. The integers n and

r are the curve degree and the knot multiplicity respectively.

Non-periodic B-splines are used in this development, this means that the curve

interpolates the first and last control points. This effect is obtained by repeating the first and

last knots in the knot vector degree +1 (« +1) times. In addition uniform knot vectors are

used, that is the interior knots are evenly spaced and have multiplicity of one. The length of

the a uniform non-periodic knot vector, m/\sk-rn. The integers k and n are the number of

(8.2)

for/ = 0,l,...,m-l

www.manaraa.com

171

control points and the degree of the B-spIine respectively. Once the knot vector has been

determined the basis flmctions can be evaluated.

The ith B-spline basis fimction of degree n is defined by the Cox-DeBor formulation as

shown in equation (8.3).

(8.3)

Bdc) = 4̂ {() * {<)

There may be situations where equation (8.3) leads to division by zero; this problem is

eliminated by the definition shown in equation (8.4).

- = 0 (8.4)
0

The basis functions are constructed iteratively starting with the step function, q as

shovra in Figure 8.2. Now that the basis functions have been developed, they can be tested to

ensure that they comply with all of the shape fimction requirements specified in Chapter 7.

www.manaraa.com

172

m-n-Iji

Figure 8.2. Triangular basis function table.

Shape Function Requirements

The first requirement is that the shape fimctions must interpolate the nodal

displacements, equation (7.2). In the standard FEA the nodes are points along the surface of

the virtual component; ±erefore, the approximate solution should pass through the nodes.

However, this is not the case in the modified FEA. B-splines do not in general interpolate the

control points, with the exception of the first and last control points due to non-periodic basis

fimctions. The modified FEA does not supply nodes along the surfece to be interpolated but

supplies control points that are blended to yield the surface. Although the B-spIine basis

functions do not satisfy this requirement, it does not truly apply to them.

www.manaraa.com

173

The primary shape function requirements from Chapter 7 are:

1. Shape functions derived from simple polynomials must be balanced with respect to all

coordinate axes.

2. The shape fimctions must have acceptable continuity between elements.

3. The shape flinction must be complete with respect to the system being modeled.

The B-spline basis fimctions are simple polynomials so they must be balanced with respect to

all coordinate axes. This requirement is automatically satisfied for B-spline curves. In

addition, it can be shown that the B-spIine tensor products used to represent surfaces and

volumes also meet this requirement. In addition, the degree and knot vector multiplicity can

be selected such that the B-spIine basis fimctions have acceptable inter-elemental continuity

and are complete with respect to the system being modeled.

The secondary shape fimction requirements from Chapter 7 are:

t

I (8.5)

The B-spIine basis fimctions have a partition of unity property such that for an arbitrary knot

span [C,C.):

www.manaraa.com

174

lB„(f) = l forallfs[cC.) (8.6)

The remaining three requirements are satisfied by expanding the vector notation of equation

(8.1)

Pr

Pv
I

IPrJ

(8.7)

c,[^) is ±e X coordinate of the curve at ±e parameter value

Cj,(4') is the y coordinate of the curve at ±e parameter value 4"

c.{^) is the z coordinate of the curve at ±e parameter value ^

is the X coordinate of a control point

Py is the y coordinate of a control point

p. is the z coordinate of a control point

The B-spUne basis functions fulfill the shape fimction requirements outlined in Chapter

7; therefore, they can be used to generate a finite element model. However, there is some

ambiguity in what constitutes an element in the modified FEA, which will be addressed in the

following section.

www.manaraa.com

175

B-spIine Elements

The triangular basis fimction table. Figure 8.2, and the knot vector, equation (8.2) are

used to determine the nature of the B-spline element. To that end, consider a quadratic B-

spline defined by four control points. The knot vector has a length of 6 and is shown in

equation (8.8).

z = fe 4; 4; 4; ^ 4;}
(8.8)

Z = {0 0 0 0.5 I 1 1}

The B-spline curve defined by this knot vector has two segments associated with the two non­

zero knot spans, 0 < 4'< 0.5 and 0.5 < 4"< 1 - The triangle basis fimction table can be

construaed for this knot vector as shown in Figure 8.3. For the first knot span 0 < 4r< 0.5:

' l i f / = 2

0
5:.o=L (8.9)

As a result only ^1.2 and B,, are non-zero. Therefore the first segment is only affected

by the first three control points. Similarly for the second knot span 0.5 < 4'< 1:

www.manaraa.com

176

Figure 8. 3. Example triangular basis flmction table.

J 1 i f / = 3

^ 1 0 i f / ^ 3
(8.10)

As a result only 5,,, 5,, and B,. are non-zero. Therefore the second segment is only

affected by the last three control points. The curve blend equation (8.1) can therefore be

rewritten as shown in equation (8.11)

spon
(8.11)

:-spi2n-n

The flmction is the curve segment associated with the knot span indicated by the integer

span. Equation (8.11) shows that the curve segments are the B-spIine elements. The number

www.manaraa.com

Ill

of elements in a modified FEA model is therefore determined by the degree and number of

control points used to define the B-spline.

Now that the modified FEA elements have been established, the model can be

developed using the elemental description derived in Chapter 7 and the B-spline basis

fijnctions described earlier. The construction of the elemental matrices will be clarified by

developing a generic elemental stiffoess matrix.

dB,^d^dB,^dC
dC dx d̂ dx dC dx d/̂ dx

dB̂ d̂ dB,̂ dC

dt; dx d̂ dx

SYM

d̂B,̂ dC dB„̂ dC

d<̂ dx di; dx
dB,̂ d̂ dB„̂ dC

dC dx dC dx

dB dCdB̂ d̂

dC dx di; dx

(8.12)

The prime notation is used to indicate a modified FEA matrix, not a derivative. The other

elemental matrices are constructed in the same manner. The elemental matrices are then

assembled using the technique presented in Chapter 7. After assembly, a global system of the

following form is obtained.

M,p,W + K,p,W = f.+b. (8.13)

Equation (8.13) can then be solved using the solution method developed in Chapter 7. Now

that both the standard FEA and the modified FEA have been developed, the performance of

the two methods can be compared.

www.manaraa.com

178

CHAPTER 9. COMPARISON OF METHODS

The modified finite element analysis (FEA) will be compared to the standard FEA fay

constructing a model for the taut string shown in Figure 9.1. The unforced response of a taut

string is defined by the one-dimensional wave equation shown in equation (9.1).

= 0 < x < L , 0 < t (9.1)
dl'

The coefficients T, p and L are the tension applied to the string, the mass per unit length and

the length of the string respectively. Equation (9.1) is subject to two essential boundary

conditions.

w(0) = 0

w(I) = 0
(9.2)

www.manaraa.com

179

U
A

—•X

Figure 9.1. Taut string.

The next two sections will develop the string model for the standard FEA and the modified

FEA.

Standard Finite Element Model

The standard finite element model will use two quadratic elements. The shape

flmctions must be determined, using the techniques fi"om Chapter 7, before the model is

developed. The three quadratic shape fimctions for the parent element are shown in equations

(9.3).

N ^ = 2 i f r -3^/+!

N , = - 4 y r (9.3)

N , = 2 i f r - t f /

The variable y/ is the parameter in the local coordinate system. The shape functions are

shown graphically in Figure 9.2. The shape fimctions can now be used to calculate the

elemental matrices. The two elemental mass matrices are the same and are shown in equation

(9.4).

www.manaraa.com

1

0.8 -r

180

= as -
s >

I 0.4 -
3

U & s
5 02 -

N"1

N'2

NJ

\

a
0

•0,2 -

0.2 .04

Parameter Value.

Figure 9.2. Shape functions.

4 2 -1

2 16 2

-1 2 4

(9.4)

The two elemental stifBiess matrices are also the same and are shown in equation (9.5).

Ti
r 7 -8 1

-8 16 -8

1 -8 7

(9.5)

The global system model is constructed by assembling the elemental matrices.

www.manaraa.com

181

pL

60

4 2 - 1 0 0

16 2 0 0

8 2 - 1

16 2

SIM 4

r + -
=L
3L

7 - 8 1 0 0
16 -8 0 0

1 4 - 8 1

SYM

^ = 0 (9.6)

1 6 - 8

7

The global system model is now ready to be solved. The next section will develop a modified

FE A model for the same string.

Modified Finite Element Model

The modified FEA model will use a quadratic B-spline defined by five control points.

The knot vector for this B-spline is shown in equation (9.7).

Z = {0 0 0 t t 1 1 l} (9.7)

The knot vector has three non-zero knot spans as a result the modified FEA model has three

elements. Although the modified finite element model has one more element than the standard

finite element model, both models are solved with the same computational expense. Once

again the B-spline basis functions must be determined, using the techniques fi-om Chapter 8,

before the model is developed. The basis fimctions for the first non-zero knot span, 0 < 4'< j,

are shown in equations (9.8).

www.manaraa.com

182

=94^-6^-1

A.2=-f^'+64'

(9.8)

^3.2=0

^4.2=0

The basis functions for the second non-zero knot span, 4- < ^< ^, are shown in equations

(9.9).

^0.2=0

5,, =f 4^--6^-2

5,, =-94"-+9^-4 (9.9)

Kz =0

The basis functions for the third non-zero knot span, f < 4'< 1, are shown in equations (9.10).

^0.2 = 0

= 0

5,2 =f'f-94'+f (9.10)

53,2=-f4'-+2i4--f

5^2 =94'--124'+4

www.manaraa.com

183

0.8 - ,

§ 06 - ' ̂ BO.2
>

~ 0.2 -

0

Bl.2

•S 04 — bz.2

- : B3,2
B4.2

0 0.2 0 4 0.6 0.8 1

-0.2 -

Parameter Value. ^

Figure 9.3. B-spline basis functions.

The basis fimctions are shown graphically in Figure 9.3. The basis functions can now be used

to calculate the elemental matrices. The three elemental mass matrices are shown in equations

(9.11), (9.12) and (9.13).

m! = iL
480

44 23 J

23 47 15
'y J 15 7

(9.11)

M: = pL
480

6 13 1

13 54 13

1 13 6

(9.12)

www.manaraa.com

184

' 480

7 15 J

15 47 23

J 23 44

(9.13)

The three elemental stifiBiess matrices are shown in equations (9.14), (9.15) and (9.16).

K
4T

L

0.7726

-0.5452

- 0.2274

- 0.5452

0.5904

- 0.0452

- 02274

- 0.0452

0.2726]

(9.14)

K = AT
0.3333

-0.1667

- 0.1667

- 0.1667

0.3333

-0.1667

- 0.1667

-0.1667

0.3333

(9.15)

Kf = —
AT

L

0.2726

- 0.0452

[- 0.2274

- 0.0452 - 02274

0.5904 - 0.5452

- 0.5452 0.7726

(9.16)

The global system model is constructed by assembling the elemental matrices.

" 44 23 3 0 0' "t "0.7726 -0i452 -0.2274 0 0 "i'

pL
480

53 28

68

I

28

0

3

u.

"3
4r

• + "7~

0.9237 -0.2118

03785

-0.1667

-0.2118

0

-02274

u,
"i

pL
480

SYM
53 23

44 SYM
05237 -0i452

0.7726

u,
"5,

www.manaraa.com

185

The next two sections will compare the models modal response and dynamic response

respectively.

Modal Response

The standard and modified finite element models are first analyzed to determine their

modal response. The modal analysis will determine how accurate the approximate models are

when compared with the exact solution [48]. Modal analysis is performed by solving the

generalized eigenvalue problem with the model's mass and stiffiiess matrices. The following

parameters are used for the string.

r = i
p=\

1 = 1
(9.18)

A comparison of system's natural fi-equencies is shown in Table 9.1. The percent error in each

of the natural frequencies is shown in Table 9.2. The mode shapes associated with these

natural frequencies are shown in Figures 9.4, 9.5 and 9.6.

The modal analysis has shown that both FEA models are accurate for the first two

modes of vibration. Neither model is accurate for the third mode of vibration; although the

modified FEA model clearly presents a better response. However this result is expected, the

accuracy of the models decreases as the mode number increases, for a given model size.

www.manaraa.com

186

Table 9.1. Natural frequencies, radls.

Mode Exact Standard FEA Modified FEA
1 3.1416 3.1534 3.1431
2 6.2832 6.3246 6.3451
3 9.4248 11.3456 10.1011

Table 9.2. Percent error in natural frequencies.

Mode Standard FEA Modified FEA
1 0.38 0.05
2 0.66 0.99
J 20.38 7.18

u actual

u standard

u modified

•0.2 -

Spatial Variable, x

Figure 9.4. Mode 1.

www.manaraa.com

187

1 —

0.8 -

0.6 -i-

0.4 -

0.2 -

oZ

/ /
/ / •

S 0
g -0.2 -

S
K -0.4 -

-0.6 -

-0.8 -

-1 -

02 0.4 \ 0.6
\
\

X

~v

Spactai Vaxiabie, x

0.8

Figure9.5. Model.

"V
/I

//
/ /

uactual

usundaid

umodifieci

1 —

0.8 —

0.6 -

0.4 -

0.2 - .

S -0.2 -

I--0 4 -
as

-0.6 -

-0 8 -

•1 —

-12-

0.6' 0.3

• U

u standard

a modified

Spactai Variable, x

Figure 9.6. Mode 3.

www.manaraa.com

188

Dynamic Response

The dynamic response of the string models is obtained fay using the constrained system

model, equation (7.44). The dynamic response of the standard and modified finite element

models will be demonstrated for the first mode of vibration with A/ = 0.2 seconds. Figures

9.7 and 9.8 show the dynamic response of the standard FEA model and the modified FEA

model respectively. The system was excited by placing the string into ±e first mode and

releasing.

Figures 9.7 and 9.8 show that the dynamic response calculated by the central

difference approximation accurately represents the actual dynamic response even with a

coarse A/. The accuracy of the central difference approximation increases as the A/ is refined

0.8

0.6

= 0.4
sT "a
5 0.2
a.

S*
1 -0.2

0.2 04 0.6 0.8

t-0.

-0.4

-0.6

-0.8

Spactal Variable, x

Standard FEA

exact

Figure 9. 7. Dynamic response of standard FEA model.

www.manaraa.com

189

t=0.0

0.8 -

ae -

-£•2 04 0.6 0.8 ^
o -0.2 -

t-0 6

- -0.4 -

•0.6 -

rKIS
•0.8 -r

Spacial Variable, x

modified FEA

exact

Figure 9.8. Dynamic response of modified FEA model.

because a more accurate estimate of the system's velocity and acceleration are obtained.

Both the modal and dynamic analyses have verified that the modified FEA is an

acceptable substitute for the standard FEA. Chapter 10 will describe how a modified finite

element model can be deformed as well as how the force associated with the deformation can

be obtained.

www.manaraa.com

190

CHAPTER 10. MODEL DEFORMATION

Chapter 9 compared the modified finite element analysis (FEA) with the standard FEA

and showed that the modified FEA is an acceptable substitute with some advantages in

accuracy and continuity. However, the modified FEA offers other advantages, which makes it

a more appropriate representation for use in a modeling system. These advantages arise fi-om

how the model is deformed. The following sections will describe how a modified finite

element model can be deformed locally and globally.

Local Deformation

The local deformation system is used to ensure that the user's finger remains in contact

with the virtual component during the deformation process. The local deformation system is a

fi-ee form deformation (FFD) technique [45][90]. The problem is to determine the change in

the control points required to move one point on the B-spline curve fi-om its original location

to a new final position.

The original point on the B-spline curve, c{c), is defined by equation (10.1).

www.manaraa.com

191

c(i .)={sUc) Bute) - S„(c)}

Po

Pi
(10.1)

The final position, c(^) -f- , is defined by equation (10.2).

c(^)+Ac(c) = { f i , , (c) BJC) - B„(c)}
p, +Ap,

Pn+^n

(10.2)

When equations (10.2) and (10.1) are subtracted equation (10.3) is obtained.

f^ol

M4:)=K„(4:)

M

(10.3)

Equation (10.3) allows the change in control points, Ap, to be calculated based on the

required change in the curve position, Ac(^). This problem is under-constrained with any

number of acceptable control point configurations. Therefore the problem will be solved for

the control point configuration, which minimizes the control point motion in the least squares

www.manaraa.com

192

sense. This solution is the pseudo-inverse solution to the equation (10.3) as shown in

equation (10.4).

X»(«)

BdQ)
Mc)= •

Bji)
BJC) - s j i] }

BM).

ap = (b'"B)"'B^AC

This technique allows the user to move any point on ±e B-spIine curve to a new position.

However, there is some difficulty in solving the system of equations (10.4). The matrix of

basis fimctions, B^B, is generally ill conditioned, if not singular. As a result, the singular

value decomposition (SVD) method [83] must be used. The SVD technique tests the matrix

condition as well as removes any singularities that are present. Therefore, SVD is the only

acceptable method of solving equation (10.4).

Using the FFD technique the user can move one point on the B-spline at a time;

however, it would be easier to obtain the desired shape if multiple points could be moved

simultaneously. The FPD technique is general and does allow multiple points to be moved.

The user can specify up to degree + 1 (n+1) points per B-spline element (segment) thus

extending the design potential of this technique.

Any given point on a B-spline curve is only affected by a certain number of control

points. Therefore the local deformation technique only specifies the positions of some of the

www.manaraa.com

193

control points. The positions of the remaining control points are determined by the global

deformation system described in the following section.

Global Deformatioa

The global deformation system is used to established the position of any control point

whose position was not specified by the local deformation system or the essential boundary

conditions. The global deformation technique essentially solves a constrained version of the

global system model equation (10.5).

MgPg (r + A/) = rhs (10.5)

rhs = [2Mg -(A/)-K;^]pg(f) - M;^Pg(f - A/) + (A/)-fg +(A/)-bg

The system is solved using the central difference approach developed in Chapter 7 However,

the global system model is constrained in a different manner than discussed in Chapter 7. The

global system model is constrained to enforce the essential boundary conditions as well as the

control points specified by the local deformation system. The control points specified by the

local deformation system are constrained in the same manner as the essential boundary

conditions. For example, consider a five control point model with the first and fifth control

points constrained for essential boundary conditions and the third control point constrained by

the local deformation system as shown in equation (10.6).

www.manaraa.com

194

(
 o

o

o

o
 ^o(f + A/) ' A •

^.1 "h.3 "HA "hjs /7,(r +A/) rhŝ _

o

o

o

o

/?,(/ +A/) > — * C

rhŝ

0 0 0 0 1 p^U + At) .fij

The constants A, B and C are the essential boundary conditions"and the constraint supplied

by the local deformation system respectively. Therefore, the positions of the unspecified

control points are determined by the dynamic response of the system subject to ±e constraints

imposed by the local deformation system and the essential boundary conditions. This

deformation method also allows the force required to constrain a control point to be

calculated which will be discussed in the following section.

Force Determination

As seen in the previous section, the local and global deformation techniques yield a

constrained system of equations, equation (10.6), from which the B-spline control points can

be found. This two level deformation technique allows the control point forces to be

determined. The control point forces are the forces required to keep the constrained control

points in their positions. The control point forces are determined by substituting the control

points found from the constrained system, equation (10.6), back into the unconstrained system

of equations as shown in equation (10.7).

www.manaraa.com

195

"hj. '"i.s + [fx

m,, ot,_3 p,(f + Af) rhŝ /,

'"3.1 '"3.2 '"sj "h.A. \Pz^t + ^t)> = YhsAjr^t-\fA

'"4.1 ^"4.2 '"4 J ^"4.4 ^"4^ ^-(r + A/) rAs^

.'"S.I '"SJ! '"5.3 ^^5.4 '"S.5JU4(^ + '^)J [''^sj 1/5.

(10.7)

The vectors p(r + A/) and f are the vector of control points determined from equation (10.6)

and the vector of control point forces respectively.

The control point forces are the discrete forces that arise from deforming the modified

FEA model. The control point forces are associated with a force distribution instead of a

point force because the local deformation system has a finite radius of influence. However, an

equivalent point force can be found for the force distribution using equation (10.8).

(10.8)

The variable F is the equivalent point force for the force distribution, f

In order to determine F ±e control point forces will be examined.

(10.9)

/ is the ith control point force

www.manaraa.com

196

5, is the ith B-spline basis fimction of degree n at the parameter value 4"

The sum of the control point forces is evaluated in equation (10.10).

Z/ =1 ZA,(d
dx

(10.10)

Equation (10.10) can be simplified using the partition of unity property, ^ = 1.

(10.11)

Therefore the equivalent point force, F, can be evaluated using equation (10.12).

(10.12)

The point force, F, has two components, one associated with the user and one associated

with the constraints supplied by the boundary conditions.

F = F u + F c (10.13)

www.manaraa.com

197

The force component associated with the user, F«, is the force that the haptic device needs to

apply to the user's digit. Based on equation (10.12), Fu is the simi of the control point forces

associated with the control points constrained by the local deformation system. Now that the

force associated with deforming the virtual object has been determined it can be applied to the

user with a haptic device.

www.manaraa.com

198

CHAPTER 11. SURFACE MODEL

The taut string model has verified that FEA with the B-spline basis fimctions is an

acceptable technique for obtaining physically based models of components whose shape is

defined with the B-spline representation. However, because the dynamic string model has

limited use, the concept was next extended to a dynamic surface. The surface model has the

dynamic characteristics of a thin membrane. The thin membrane dynamic equation is similar

to the dynamic model used for fi-ee-form shape design by Celniker [17], However, this

development will use the B-spline basis functions instead of the conventional FEA

interpolation shape fimctions.

One minor difference must be addressed before constructing the physically based

model for the thin membrane. The tensor product of basis fimctions, N, is a combination of

basis fimctions for each of the two parametric directions.

/ \ / \ / = 0,l,...,/7
(11.1)

www.manaraa.com

199

The integers n and m are the degree of the B-spline surfece in the two parametric directions.

As a result the interpolation equation, equation (8.1) has a slightly different form.

"'Za'V, (11.2)

The physically based surface model can now be developed in the same way as the

physically based curve model. The dynamics of a thin membrane are defined by the following

equation [11].

d f. cu
-p-z^+f = Q

3c \ 3cJ ' 6y) ct'
(11.3)

The coefBcients and are the stiffiiess coefBcients in the x- and y- directions. By

applying FEA techniques to equation (11.3), the components of the elemental description;

M,, and f^, can be evaluated by integrating the physical parameters and the tensor

product of the B-spline basis flmctions.

M. = if
e

(11.4)

www.manaraa.com

200

3

ihio (11.5)

4/

(11.6)
e

The coefificients p, k and/ are the mass density, restoring force and external force respectively.

In addition the matrix, J, is a Jacobian matrix that transforms the integral from Cartesian

space into parametric space. Figures 11.1, 11.2 and 11.3 show a frames taken from a dynamic

simulation in which the traveler was allowed to deform a surface using a wand tool. The

wand can be driven with a three-dimensional mouse, magnetic tracker or a force feedback

device.

www.manaraa.com

201

Figure 11.1. Undeformed Surface (image source: Pillsbury Corporation, "Pillsbury -
Doughboy," Doughboy, June 3, 1996, www.doughboy.com/frameset.asp
?section=meet).

www.manaraa.com

Figure 11.2. Initial deformation.

www.manaraa.com

203

Figure 113. Resulting motion of dynamic model.

www.manaraa.com

204

CHAPTER 12. CONCLUSIONS

The virtual manipulator control approach was developed to extend the state of the art

in the area of force feedback for synthetic environments. The virtual manipulator control

concept utilizes a six degree of freedom robot as the interface mechanism between the traveler

and the computer running the synthetic environment. As a result the control concept reduces

the isolation faced by researches in the area of force feedback. It is easier and less expensive

to acquire a haptic display when a commercially available six degree of freedom robot can be

used effectively. Control interface hardware and software can be obtained from numerous

sources to control a general six degree of freedom robot. Finally, because any robot can be

used, research results can be verified and extended at other fecilities.

In addition it has been shown that a haptic display using a general six degree of

freedom robot and the virtual manipulator control law can be incorporated into most if not all

of the synthetic environments used today. Attention is given to projection style synthetic

environments where the presence of the haptic display can occlude the images viewed by the

traveler. By positioning the interface robot behind the traveler in the projection synthetic

www.manaraa.com

205

environment and extending a graphical representation of the interaction tool into the synthetic

environment the haptic display will not occlude or diminish the visual display.

The virtual manipulator control law also makes contributions in the area of non-linear

systems. The virtual manipulator control law operating on a general six degree of freedom

robot is a highly non-linear system with an infinite continuum of equilibrium points. The

design of multiple equilibriimi point control laws is rarely done and the proof of stabiUty of

these systems is an important area. A proof of stability for a modified virtual manipulator

control law was presented that verified the acceptable stability characteristics for the general

class of modified virtual manipulator control laws. In addition the stability requirements were

established for the original virtual manipulator control law. Although it was not possible to

show stability for the entire class of original virtual manipulator control laws, it is easy to

check the stability requirements for any given virtual manipulator.

Experimental results of several virtual manipulators have been presented. This

presentation has shown how the control concept can be used to represent constraints. The

time varying extension of the virtual manipulator concept was developed to represent complex

general constraints shapes. In addition time varying virtual manipulators were also developed

as a general interaction and exploration technique in synthetic environments. Finally, the

inclusion of a virtual manipulator based haptic display into a visually inmiersive synthetic

environment was demonstrated.

The results documented in this work have verified the ability of virtual manipulators to

be used as a haptic display in sjmthetic environments. Although several virtual manipulators

have been presented there is no limit on the number that can be developed. The development

www.manaraa.com

206

of new virtual manipulators is driven by the types of applications feced by synthetic

environment developers. In addition this work has established the stability requirements for

the "static" virtual manipulator control law, however an investigation of the time varying

extension of the virtual manipulator concept is required. The proof of stability for the time

varying virtual manipulator will probably place restrictions on how quickly the configuration

of the virtual manipulator can change.

The virtual manipulator concept has potential to increase the use of force feedback in

synthetic environments. Tne assimilation of haptic displays into synthetic environments

provides an additional channel to provide information to the traveler. This information will be

valuable in releasing the potential of synthetic environments for processing and interacting

with computer data.

www.manaraa.com

207

APPENDIX: COMPUTER CODE

Planar Circular Arc

// ftictioiLC

#include "puma h"

void friction(puinaFile* pumaData)
{

int i;
double tau=0.05305;

if (puinaData->tIieta[0] > pumaData-
>tiieta_oid[0]) puinaDaia->v_&ic[0]=i.0;

if (puniaData->theta[Oj <= pumaData-
>theta_old[0]) paiDaData->v_ffic[0]=-0.9;

puinaDaia->v &ic[0]=(puinaData-
>v_&ic [0] *puinaData->dt+puinaData-
>v_&ic_old[0]*tau)/(puniaData->dt+tau);

if (pumaData->theta[l] > pumaData-
>theta_old[l])

{
if (puniaData->theta[l] > -1.57)

puinaData->v_fric[1]=-0.3;
else puniaDaia->v_&ic(ll=-0.9;

if (puniaData->theta[l] <= pumaData-
>theta_oId[l])

{
if (puinaData->theta[l] > -1.57)

puinaData->v_fric[l]=0.9;

else puinaData->v_fric[l 1=0.6;
}
puinaDaia->v_&ic[1]=(puniaData-

>v_fric[l]*puiiiaData->dt+puinaDaia-
>v_&ic_old[1] *tau)/(puinaData->dt+tau);

if (puinaData->theta[2] > pumaData-
>tlieta_oId[2]) puinaData->v_fcc[2]=0.47;

if (puinaData->theta[2] <= pumaData-
>theta_oId[2]) piunaData->v_fcc[2]=-0.47;

puinaData->v_fric[2]=(pumaData-
>v_&ic[2] •puinaData->dt+puinaData-
>v_fric_old[2]*tau)/(puiiiaData->dt+tau);

if (puinaData->tlieta[3J > pumaData-
>theta_old[3]) puinaData->v_fiic[3]=-0.35;

else if (puniaData->theta[3] <=
pumaData->tlieta_old[3]) pumaData-
>v_fric[3]=0.35;

else puinaData->v_fric[3]=0.0:
puinaData->v_fric{3]=(pumaDaia-

>v_&ic[3]*puinaData->dt+puniaData-
>v_fric_old[3] •tau)/(pumaData->dt+tau);

if (puniaData->theta[4] > pumaData-
>tfaeia_old[4]) puinaData->v_&ic(4]=-0.4:

else if (pumaDaia->tIieia[4] < pumaData-
>tiieta_old[4]) puinaData->v_&ic[4]=0.4;

else puinaData->v_&ic[4]=0.0;
puinaData->v_fric[4]=(puniaData-

>v_&ic[4]*puinaData->dt+puinaData-
>v_fric_old[4] •tau)/(puinaData->dl+tau);

www.manaraa.com

208

if (puinaData->theta[5] > pumaData-
>tfaeta_oIci[5]) puinaDaia->v_&ic[5]=-0.5;

else if (puinaData->theta[5| < pmnaOata-
>theta_old[51) piiinaData->v_&ic[51=0.5;

else puinaData->v_fric[5]=0.0;
pumaData->v_fric[5]=(puinaData-

>v_fric[5] *puinaData->dt+puinaDaia-
>v_&ic_oId[5] •tau)/(puniaData~>dt+tau);

for (i=0:i<6;i-H-)
{

pumaData-
>v_fric_oId[i]=pumaData->v_fric[i];

}
}

// gravity.c

#include "pumah"

void gravityCpumaFile* pumaData)
{

double c2.s2,c23,s23;

c2=cos(puinaData->theta[l]):
s2=siii(puinaData->theta[1]);

c23=cos(puinaData->theta[l]+puinaData-
>theta[2]):

s23=sm(pmnaData->theta[I]+puinaDaia-
>theta[21);

// gravity compensanon
puinaData->vg[0]=0.0;
puinaDaa->vg[2]=-

1.120l*s23-K).0977»c23:
pumaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*pumaData-
>vg[2];

puinaData->vg[3]=0.0;
puinaData->vg[4]=0.0;
puinaData->vg[5]=0.0;

)
/

// impedence.c

#include "puma-h"

void impedenceCpumaFile* pumaData)
{

pmnaData-
>vim[01=0.02*pow((l.0/(puiiiaData->theta[0]-
2.7)),3.0)-K).02*pow((1.0/(puniaData-
>theta(0]+2.7))J.0);

pinnaData->viin[l]=-
0.02*pow((1.0/(puiiiaData->theta[l]-0.7)),3.0)-
0.02*pow((1.0/(puinaDala->theta[l]+3.7)).3.0);

pumaData-
>vini[2]=0.02*pow((1.0/(pumaData->theta(21-
pumaData-
>jliniit3)),3.0)+0.02*pow((LO/(puinaDaia-
>theta[2]+0.9)),3.0);

pumaData->viin[3]=-
0.02*pow((1.0/(puinaData->theta[3]-3.2)).3.0)-
0.02*pow((1.0/(puinaData->theta[3]+l.8)).3.0);

puinaData->viin[4]=-
0.02*pow((1.0/(puinaData->theta[4]-1.7)).3.0)-
0.02*^w((1.0/(puinaData->tfaeta(4]+pumaData-
>jliinit5)).3.0);

puniaData->viin[51—
0.02*pow((l.0/(puinaData->theta[5]-5.2)).3.0)-
0.02*pow((1.0/(puinaData->theta[5]-i-5.2)),3.0);
}

// main c

#include "pumah"

void main(void)
{
// robot stuff

pumaFile •pumaData;
int stop:
int homecount:

// window's stuff
HANDLE hprocess;
HANDLE hthread;
int processerror,

// timer stuff
BOOL result;
LARGE_INTEGER li&equency:

www.manaraa.com

209

LARGE_EN ItGER licount:
LONO-ONG ftequency,
double d&equency:
LONGLONG startcount:
LONGLONG count
double cuiienttime;
double dtacQial:
double dterror.
double dtmax

// error flags
int timerenon
int timeroverrun;
int DeviceStop;
int errorSocket:

// socket stuff
intern
char szDataSend[IOO]:
intgcounu

// data file stuff
double data[4][2000];
int datalengih=2000;
int datacount;
int datacycle:
intdatamax:
int fileerror,
FILE *out;

// general stuff (counter and the like)
inti:

lll
H Taking Care of Business
llltlllllllllll

printf(TUMA control prograni\n");
printfC'written by Jim Edwards for

LARCOn");
printfCAll rights reserved\n\n\n\n'');

lll
I I Code Initialization Section
lll
I I set counter error flag to pass

timererror=l;

// set counter overrun flag to pass
timeroverrun=l;

// start taking data at zero

datacounf=0;

I I set data pass to zero
datacycle=0;

// set process error flag to pass
processerrQr=0:

// set maximum delta-t to zero
dtinax=0.0;

// set stop to pass
stop=l;

II set homecount to zero
homecount=0;

// set socket error to none
enorSocket=0;

// set graphics dump counter to zero
gcount=0;

llllllllllllllllllllllllltlllllllllllllllllllllllllllllllllllll
mill Hardware Initialization
lll
II get process handle

hprocess=GetCurrentProcessO:

II set process priority
result=SetPriorityClass(hprocess.

REALTIME_PRI0RITY1CLASS);
if (result == 0) processerTor=l;

// get thread handle
hthread=GetCurrentThread();

// set thread priority
result=SetThreadPriority(hthread,

THREAD_PRIORrTY_TIME_CRITICAL):
if (result = 0) processerror=2;

// allocate memory for puma structure
pumaData=(pumaFile

•)maUoc(sizeof(pumaFile));

// connea to the puma kernel device
DeviceStop=l;
pumaData-

>PumaDevice=HwNewDevice(NULL);
HwSetErrorHandler(pumaData-

>E>umaDevice, MyErrorHandler);

www.manaraa.com

210

if (!HwCoimectDevice(puinaData-
>PumaDevice. "puma"))

{
ptrn.tf("Faiied to connect to puma

device!\n");
HwDeleteDevice(pimiaData-

>PumaDevice);
DeviceStop=0;

i
J

// setup puma
pumaInitialization(pumaData);

// open socket - useSocket = 1 use socket, = 0
don't use socket

pumaData->useSocket= 1;
pumaData->activeSocketr=0;
openSocket(pumaData):

// test socket
testSocket(pumaData);

// get frequency of high peiformance counter
result=QueiyPeiformanceFrequency(&Iifr

equency);
if (result = TRUE)
{

frequency=Iifrequency.QtiadPart;
dfrajuency=((double)

frequency);
printf("clock frequency; %f

MHz\n\n\n\n".dfrequencv);
}
else
{

printf("QueryPeTfonnanceFrequency;
failureVn");

timererror=0;
}

// get starting count
printf("\n\n\nTum Arm Power On!!! !\n");
resuIt=QueiyPerformanceCounter(&licou

nt);
if (result = TRUE)
{

startcount=licounLQuadPart;
}
else
{

printf("QueryPerformanceCounter
&ilure\n");

timererror=0:
}

// disengage the brakes
HwOutpw(pimiaData->PuniaDevice,

0x02e, 0x0001);

lll
I I Main Control Loop
lll

whiIe((homecount < 2000) &&
(DeviceStop = 1) «&& (timererror == 1) &&
(timeroverrun = I) && (processerror = 0))

f t
I I control code

if(kbhitO) stop=0;
if (stop = 1)
{
pumaControl(piunaData);
}
else
{
homecount-H-;

pumaHome(pumaData);
}

// increment graphics dump counter
gcount-H-;

// send data to graphics engine
if (gcount = 5)
{
gcount=0;

// but only if there is an active socket for
communication

if (pumaData-
>activeSocket = L)

{

sprintf(szDataSend."%+.3f %t.3f %4.3f
%;.3f %4.3f %4.3f %4.3f

pmnaData->time,
pumaData-

>theta[0],
pumaData-

>theta[l],
pumaData-

>theta[2].

www.manaraa.com

211

>theta[3],

>theta[4],

>theta[51);

pumaData-

pumaData-

pumaData-

// take some data

err=send(pumaData->hSock.
(LPSTR) szDataSend 51. 0):

if
(err==SOCKET_ERROR) errorSocke^l;

// timing code
do
{

// get the current count of performance counter

resultr=QueryPerformanceCounter(&licou
nt);

if (result = TRUE)
{

count=IicounL(3uadPart:
// convert into time since program started

currenttime=((doubIe) (count-
startcount))/dfi:equency;

}
else
{

printf("QueiyPerformanceCounter:
failure\n");

timererTor=0:
}

pumaData->time;

>dt);

dtacnial=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t
if (dtactual > dtmax)

dtmax=dtactual;

// get error in delta-t
dterroi=dtactuai-pumaData->dt;
if (&bs(dteiTor) > pumaData-

>dt) timeroverrmi=0;

if (stop = 1)
{

data[0] [datacount]=pumaData->theta[1];

data[l] [datacount]=pun]aData->theta[2];

data[2] [datacount]=puniaData->theta[4];

data[3 J [datacount]=puniaData->vpos;

if (datacoimt = 1999)
/

datacount=K);
datacvcle=l;

}
else datacouni+-t-;

// update absolute time base
pumaData->time=pumaData-

>time+pumaData->dt;
} // end main control loop

// engage the brakes
HwOutpw(pumaData->PumaDevice,

0x02e. 0x0000);

lll
I I Hardware Clean-Up
llllllllllllllllllllllllllllllllllllirillllllllllllllllllllllllllllll
II kemal device

HwDeIeteDevice(pumaData-
>PumaDevice);

I I close socket
closeSocket(pimiaData);

lll
H Take some data
IIUIII

II open the data file
if ((out=fopen("ouLdat''.'*wt"))==NULL)

fileerror=0:
else
{

I I write data
fileerror=l;

www.manaraa.com

212

fprintf(ouL"inax dt is
%f\n",dtinax);

fprintf(out"%C
%f\n\n\n",pumaData->center[0],puinaDaia-
>center[l]);

if (datacycle == I)
datainax=datalength:

else datamax=datacount;

for (i=0; i<datainax: i-H-)

{
fpriiitf(ouL"%£ %£ %£

%f\n",data[0] [i],data[ll [i],data(2] [i],data(3][i]);
}

// close file
fclose(out);

}

lll
II Final Error Messages
lll

printf("\n\n\nError Messages:\n");
if (timererror = 0) printf("timer

malfunction\n");
else if (timeroverrun = 0) printf("tiiner

over run\n");
else if (DeviceStop == 0) printfC'DriverX

error\n'');
else if (fileerror == 0) printf("could not

open data file\n");
else if (processerror = 1) printf("could

not set process prioriw\n"):
else if (processerror = 2) printfC'could

not set thread priorily\n");
else if (errorSocket = 1) printf("error

sending data over socket\n");
else printfC'all went well\n");

Sleep(3000);
}

lll
mill DriverX Error H^dler
lll
void MyErrorHandIer(HWDEVICE* pDevice,
DWORD nError)
{

printfCCritical DriverX error: %d\n'',
nError);

exit(nError);
}

// puma.h

// include files
#include <windows.li>
#include <winsock.h>
#include <stdio.li>
#include <conio.h>
#inciude <matfa-li>
#include "DriverX.!!"

// structures
typedef struct
{
// needed for all

HWDEVICE* PumaDevice;
double dt:
double time:
double encoder_scale[6];
double encoder_ofiset[6];
double theta[6];
double voltage_out[6];

// virtual manipulator stuff
double center[2]:
double eeoId[3];

// socket stuff
SOCKET hSock:
int useSockeu
int activeSocket:

// needed for me
int first_flag;
int last_flag;
double kp[6];
double kd[6];
double error[6];
double erTorold[6];
double errordot[6];
double thetad[6];
double theta_old[6];
double thetao[6];
double timeh;
double vg[6];
double v_&ic(6];
double v_fiic_old[6];
double vim[6];

www.manaraa.com

213

double jlimiO:
double jlimitS;
double vpos;

} pumaFile;

// prototypes
void mainCvoid);
void MyErrorHandlerCHWDEVICE • . DWORD);
void piiTnaTnifiali7arinn(pnmaFilff *);

void puinaCoiitroi(puinaFile •);
void pumaHomeCpumaFile •);
void openSocketCpumaFile *);
void cIoseSocketCpumaFile *);
void testSocket(puinaFile
void gravi1y(puinaFiIe •);
void &iction(puinaFile •);
void iinpedeiice(puinaFile •);

// pumaControLc

finclude "pumah"

void puinaControi(pumaFile* pumaData)
{

short val[6];
int voItage_int[6];
int i;
double thetaf[6]:
double tf=5.0;
double c2, s2, c23. s23, c235. s235;
double c35, s35, c5, s5;
double xx[3], rr[31[3], J[3][3];
double ew[3], ee[3], eedot[3];
double L, xdes[3J, thetav.
double wn. z, Kp. Kv. F[3I, Fm[3], T[3];
int wall_flag=0;

// read encoders
val[0]=HwInpw(pumaData-

>E>uniaDevice. 0x010);
val[l]=HwInpw(puniaData-

>PuniaDevice. 0x012);
val[2]=HwInpw(puniaData-

>PuinaDevice, 0x014);
val[3]=HwInpw(piunaData-

>PuinaDevice, 0x016);
val[4]=HwInpw(puniaData-

>PuniaDevice. 0x018);
val[5]=HwInpw(puniaData-

>PuniaDevice, 0x0 la);

// convert encoders to radians
for (i=0; i<6; i++)
{

puniaData->theta[i]=puniaData-
>encoder_scale[i]•(((double) val[i]) - pumaData-
>encoder_offeet(i]);

}

// gravity compensation
gravity(pimiaData);

// fiiction compensation
&iction(puniaData);

// impedence protection
impedence(pumaData);

// Forward kinematics
c2=cos(pumaDaia->tIieta[1 J);
s2=sin(pumaData->theta[I]);
c23=cos(pumaData->theta[1]+puniaData-

>tlieta[2]);
s23=sin(pumaData->tIieta[1 l+pumaData-

>theta[2]);
c235=cos(pmnaData-

>tIieta[l]+pumaData->theta[2]+pumaData-
>tfaeta[4]);

s235=sin(pmnaData-
>theta[1]+pumaData->tfaeta[2]+pumaData-
>theta[4]);

xx(0]—
0.0203»c23+0.433 I*s23-H).4318*c2;

xx[ll=0.0203»s23+0.433 l*c23-
0.4318*s2;

xx[2]=pumaData->theta(1 j-i-pumaData-
>theta[2]+pum^ata->tlieta[4];

rr[0][0]=c235;
rr[0][2]=-s235;
rr[l][0]=-s235;
rr[l][2]=-c235;
rr[2][0]=0.0;
rr(2][2]=0.0;

// Evaluate the PUMA jacobian
c3 5=cos(pumaData->theta[2]+puniaData-

>theta[4|);
s35=sin(pumaData->theta[21+piimaData-

>theta[4J);
c5=cos(pumaData->theta[4]);

rT[0]tl]=0.0;

rT[l][ll=0.0;

rT[2][l]=1.0;

www.manaraa.com

214

s5=sin(puinaData->theta[4]);

J[0][0]=0.4318»s35+0.433 l*c5-
0.0203»s5: J[0][I]=0.4331»c5-0.0203»s5;

J[0][21=0.0;
J[ll[0]=0.4318*c35-0.433 l*s5-

0.0203»c5; J[l][l]=-0.433 I*s5-0.0203*c5;
J[ll[21=0.0:
Jt2][01=L0;

J[21[l]=I.O;

J[2][2]=1.0:

// first time through get current position
if (pumaData->first_fIag==I)
{

pumaData-
>thetao[01=pumaData->theta(0];

pumaData-
>thetao(l]=puniaData->theta[1];

pumaData-
>thetao[2]=puinaData->theta[2];

pumaData-
>thetao[3]=puniaData->theta[3];

piunaData-
>thetao[4]=pumaData->theta[4];

pumaData-
>thetao[5]=puniaData->theta(51;

pumaData->first_flag=2;
}

// final position
thetafl0]=0.0;
thetafIl]=-0.5;
theiaf[2]=2.5:
thetafI3]=0.0;
thetaf[4]=-0.4359;
thetaf[5]=0.0;

// do cubic spline interpolation
if (puinaData->time <= tf)
{

piunaData-
>thetad[0]=puniaData->thetao(0]-3.0*(pumaData-
>tfaetao[0]-thetaf[0])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time*pumaData-
>time/(tftf*tf);

pumaData-
>thetad[l]=puniaData->thetao[l]-3.0*(puniaData-
>thetao[l]-thetafri])*pumaData-

>time*pimiaData->time/(tf*tf)+2.0*(pumaData-
>thetao[l]-thetaf[l])*pumaData-
>time*pumaData->time*piunaData-
>time/(tf*tftf);

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(puniaData-
>thetao[2]-tIietaf[2])*puniaData-
>time*pumaData->time/(tf tf)+2.0*(puniaDaia-
>thetao[2]-thetafI2])*puniaData-
>time*puinaData->time*pumaData-
>time/{tf*tf*tf);

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(puniaData-
>thetao[3]-tlietafI3])*pumaData-
>time*pumaData->time/(tf^+2.0*(pumaData-
>thetao[3] -thetafI3])*puinaData-
>time*puniaData->time*puniaData-
>time/(tf*tf*tf);

pumaData-
>thetad[4]=pumaData->thetao[4]-3.0*(puniaData-
>thetao[4]-tIietaf[4])*pumaData-
>time*piunaData->time/(tf^+2.0*(pumaData-
>thetao[4] -thetaf[4])*ptmiaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf);

pumaData-
>thetad[5]=puniaData->thetao(5]-3.0*(puinaData-
>thetao[5]-thetafI5])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[5]-thetaft5])*puniaData-
>time*puniaData->time*puniaData-
>time/(tP''tf*tf);

}
// after tf stay put at final position

else if (pumaData->time > tf)
! K

pumaData->thetad[0]=thetafl[0];
puinaData->thetad[1]=theiaf[1];
puniaData->thetad[2]=tfaetaf[2];
piunaData->thetad[3]=thetaf{3];
puniaData->thetad[4]=thetaf[4];
puinaDaia->thetad[51=thetafI5];

//
// control section
//

for (i=0;i<6;i-H-)
{

// calculate error
puniaData->error[i]=pumaData-

>thetad[i]-pumaData->theta[i];

www.manaraa.com

215

// calculate rate of change of the error
pumaData-

>errordot[il=(puinaData->error(i]-puniaData-
>errorold[i])/puinaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=pumaData->lqp[i]*puinaData-
>error[i]+pumaData->kd[i] *puinaData-
>errordot[i];

// impedence based control law
if (pumaData->time > 6.0)
{

L=0.3;

if (pumaData->first_Qag=2)
{

>center[0]=xdes(0]-L;

>center[l]=xdes[I];

>first_flag=0:

xdesl0]=xx[0];
xdes[l]=xx(l];
xdes[2]=xx(2];

pumaData-

pumaData-

pumaData-

}

// inverse kinematics of virtual manipulator
// position based

// thetav=atan2(-xx[l]+pumaData-
>center[l],xx[0]-pimiaData->center(0]);

// orientation based
thetav=xx[2]-1.57;

pumaData->vpos=thetav;

// check joint limits of virtual manipulator
if (thetav >= 0.0)
{

thetav=0.0;
wall_flag=l;

}
else if (thetav <= -1.0)
{

thetav=-1.0;
wall_flag=l;

// forward kinematics of virtual manipulator

xdes[0]=L*cos(thetav)+pumaData-
>center(0];

.'<des[l]=-
L*sin(thetav)+pumaData->center[l];

.Kdes[2]=thetav+1.57:

// error in world coordinates
ew[0]=xdes[0]-.xx[0]
ew[ll=xdes[l]-xx[l]

. ew[2]=xdes[2]-.xx[2]

// error in local coordinates

ee[0]=TT(0] [0]*ew(0]+rr[0] [2] *ew[1];

ee[1]=rr[1] [0] *ew[0]+rr[1] [2] *ew[1]:
ee[21=ew[21;

// velocity calculation
eedot[0]=(ee[0]-puinaData-

>eeold[0])/puinaData->dt;
eedot(l]=(ee[l]-pumaData-

>eeold[l])/puinaData->dt;
eedot(2]=(ee[2]-piunaData-

>eeold[2])/pumaData->dt;

// save some old values
pumaData->eeold[0]=ee(0];
pumaData->eeoldri]=ee[ll;
pumaData->eeold[2]=ee[2];

// force - linear part
wn=210.0;
z=0.7;
Kp=wn*wn;
Kv=2.0*wn*z:

F[0]=Kp*ee(0]+Kv*eedot[0];
F[l]=Kp*ee[l]+Kv»eedot[l];

// force - angular part
wn=10.0; // 10 - angular 60 •

position
z=0.7;
Kp=wn•^vn;
Kv=2.0*wn*z;

F[2]=Kp*ee[2]+Kv*eedot[2];

www.manaraa.com

216

// null space filter
Fm(0]=(F[01-L*F[2])/a*L+1.0);
Fin[I]=F[l]:
Fm[21=(-

L*F[0]+L*L*F[2])/(L*L+1.0);

if (wall_flag)
{

Fm[0]=F[0];
Fm[l]=F[l];
Fm[2]=F[2];

}

// required torque

T[0]=J[0][0]*Fm[0]+J[l][0]»Fm[l]+J[2][
0]*Fml21;

T[l]=Jt0][l]*Fm[0]+J[l][l]»Fm[l]+J[2][
ll*Fm[2];

T[2]=J[0][2]*Fin[0]+J[l][21*Fm[l]+J[2][
2rFm[21;

// torque to voltage
puniaData->voltage_out[1]=-

0.0515»T[0];
pmnaData-

>voltage_out(2]=0.1118*T[1];
puinaData->voItage_out[4]=-

0.4980»T[2]:
}

// Convert voltages into integers to output to
trident board

for (i=0:i<6;i-H-)
{

pumaData-
>voltage_out[i]=puinaData-
>voltage_out[i]+puinaData->vg[i]+pumaData-
>v_fiic(i] ;//+pumaData->vim[i];

if (febs(puniaData-
>voltage_out[i]) >9.9)

pumaData-
>voItage_out[il=9.9*puinaData-
>voltage_out[i]/febs(puniaData->voItage_out[i]);

voltage_int[i]=(int)
(4095.0*(puniaData->voltage_out(i]+10.0)/20.0);

}

// Output voltages to trident hardware

HwOutpw(pumaData->E>uniaDevice.
0x030, voltage_int[0]);

HwOutpw(puiiiaData->PumaDevice,
0x032, voltage_int[l]);

HwOutpw(puinaData->PuinaDevice,
0x034, voItage_int[2]);

HwOutpw(puinaData->E>umaDevice,
0x036. voItage_int[3]);

HwOutpw(pumaData->PuinaDevice.
0x038. voltage_int[4]);

HwOutpw(puinaData->PumaDevice.
0x03a. voltage_int[51);

// save some old information
for (i=0;i<6;i-H-)
{

pumaData-
>erTorold[i]=puiiiaData->error(i];

pumaData-
>theta_old[i]=puinaData->theta[i];

}
}

// puniaHome.c

#include "puma.h"

void pumaHome(pumaFile* pumaData)
{

short val[6];
int voltage_int[61;
int i;
double thetaf[6];
double localtime:
double t^5.0;

// read encoders
val[0]=HwInpw(pumaData-

>PumaDevice, 0x010);
val[l]=HwInpw(pun3aData-

>E>umaDevice. 0x012);
val[2]=HwInpw(pumaData-

>PumaDevice, 0x014);
val[3 l=HwInpw(pumaData-

>PumaDevice, 0x016);
val[4]=HwInpw(puinaData-

>PumaDevice, 0x018);
val[5]=HwInpw(pumaData-

>PumaDevice, 0x0 la);

www.manaraa.com

Si CN CS rn m
o

/J
•S -6 S g A A -S a A A

» 9 * £3

I f f
l g l

r». y

I | f A
•9 -s a 3
A A -S a

lo in

A A

4. a i s A a 3 u 3 Q 3 s
"S ^ •s ^ -s
A Q A Q A

r I £ 1: 1: £
a t-H cS

immJ
rn "tT

i
•§
A

i
•9
A

1

1

i

f 1
A

I
A A

O --I fS m Tf- "o
te' ta' tr* t*

3 a a 3 S3 (U <U 0> V V (U
f f f f f f

• g . » i ^ a j o i a i o i a i a) r l
g , ^ - S - a 6 6 6 3 ^ - 1 ^ < 5 / ^ / j A A A / j r r r - a
H A 3 3 3 3 3 3

I

• 5 y c x t i . a . D , a , a , ^ J ' w
3 jS fl vh J o 5., o 9 p 3 4)

R •&< R fS w u B ® "
to ^ ^ ^ ^ ^ ^
tj " —

1 § 1 1

o o o

^ <N fO Tt- iO fc* & te't*
W i l l i oi di (U cu u
5 -S -a -S -3

•a -9
A A

www.manaraa.com

218

pumaOata-
>errordot[i]=(puinaData->enor(i]-puinaData-
>errorold(i])/pumaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out(i]=pumaData->kp[i] *puniaData-
>error[i]+puinaData->kd[i] *puniaDaia-
>erroidot[i];

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i-H-)
{

pumaData-
>voltage_out[i]=puniaData-
>voltage_out[i] y/+puniaData->vg(i]+puinaData-
>v_fric[i]+puinaData->viin[i];

if (&bs(pumaData-
>voltage_out[i]) > 9.9)

pumaData-
>voltage_out[i]=9.9*pumaData-
>voItage_out[i]/febs(pumaData->voltage_out[i]);

voltage_int[i]=(int)
(4095.0*(puinaData->voltage_out[i]+10.0)/20.0);

}

// Output voltages to trident hardware
HwC>utpw(puniaData->PuinaDevice.

0x030, voltage_int[0]);
HwOutpw(pumaData->PuinaDevice.

0x032, voltage_int[l]);
HwOutpw(puniaData->PuniaDevice.

0x034. voltage_int(2]);
HwOutpw(puniaData->PuniaDevice,

0x036, voltage_int(3]);
HwOutpw(puinaData->PuniaDevice,

0x038, voltage_int[4]);
HwOutpw(puniaData->PumaDevice,

0x03a, voltage_int[5]);

// save some old information
for (i=0;i<6;i-H-)
{

pumaData-
>errorold[i]=pimiaData->error[i];

pumaData-
>theta_old[iI=pumaData->theta[i];

}

// piimaTnifialiyatinn r

#include "pimia.Ii"

void pumaInitialization(pumaFile* pumaData)
{

double frequency.
inti:

// desired refiesh rate (Hz)
&equency=300.0;

// desired delta-t
pumaDaia->dt= 1.0/frequency;

// initialize absolute time base to zero
pumaData->time=0.0:

// set somejoint limits for impedence fields
pumaData->jlimit3=4.0;
piunaData->jlimit5= 1.7;

// set flags for slow up and down
pumaData->first_flag= 1;
pumaData->last_flag= 1;

// encoder stuff
pumaData-

>encoder_scale[01=0.00010035;
pumaData->encoder_scale [1]=-

0.000073156:
puinaData->encoder_scale[21=0.000117;
pumaData->encoder_scale[3]=-

0.000082663;
pumaData->encoder_scale[4]=-

0.000087376;
pumaData->encoder_scale[51=-

0.00016377;

pumaData->encoder_ofEKt[0]=0.0;
pumaData->encoder_ofiset[1]~21472.0;
pumaData->encoder_ofE^t[2]=-13426.0;
pumaData->encoder_ofiset[3]=8000.0;
pumaData->encoder_ofifeet[4]=0.0;
pumaData->encoder_ofifset[5]=0.0;

// initialize feedback gains
pumaData->kp[0]=118.0;
pimiaData->kd(0J=15.4;

www.manaraa.com

219

puinaData->kp[l]=-288.0;
pumaData->kd[I]—24.0:
puinaData->kp[2]=200.0:
piunaData->kd[2]=20.0;
puinaData->kp[3]—15.0;
puinaData->kd[3]=-2.0;
puinaDaia->kp[4]=-25.2;
puinaDaia->kd[4]=-2.2;
pmiiaData->kp[5]=-I0.0;
puniaData->kd[5]=-2.0;

I I initialize some variables
for (i=0; i<6; i++)
{

puniaData->erron)ld[i]=0.0;
I I error values

pmnaData->theia_oId[i]=0.0;
// angular positions

puinaData->v_fric_old[il=0.0:
I I friction voltages

}

for (i=0; i<3: i-H-)
{

puinaData->eeold[i]=0.0;
}

// caHbrate encoders
HwOutpw(pumaData->PumaDevice.

0x020, 0x0000);
HwOutpw(puniaData->E*uniaDevice.

0x022. 0x0000);
HwOutpw(puniaData->PuniaDevice,

0x024, 0x0000);
HwOutpw(pumaDaia->PuniaDevice,

0x026, 0xlf40);
HwOutpw(puniaData->PumaDevice,

0x028. 0x0000);
HwOutpw(pumaData->I>unjaDevice,

0x02a- 0x0000);
}

// sockeLc

#include "puina.h"

SOCKADDR_IN stLclName;
SOCKADDR_IN stRmtName;

void apenSocket(puniaFile* pumaData)

{
int server=0;
intnRet:

// ip for snow
// char szHostQ = " 129.186.232.46";

// ip for hood
// char szHostQ = " 129.186.232.34";

// ip for mammoth
charszHostO = "129.186.232.54";

char szDataReceiveQ = {0};
unsigned long addr.
WORD WSA_VERSION;
WSADATA stWSAData;

WSA_VERSION = MAKEWORDd. 1);
nRet=WSAStartup(WSA_VERSION.

&stWSAData);
if(nRet==0) printf("attached to winsock

dU\n");
else printf("could not attach winsock

dU\n");

if (puniaData->useSocket == I)
{

pumaOata-
>hSock=socket(AF_INET. SOCK_DGRAM. 0);

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not
get a valid socket handleVn");

else
{

if (server=l)
{

stLclName.sin_femily = PF_INET;

stLclName.sin_port=htons(1026);

stLclName.sin addr.s addr=INADDR A
NY;

nRet=bind(pim3aData->hSock,
(LPSOCKADDR) &stLcIName. sizeof(struct
sockaddr));

if
(nRet=SOCKET_ERROR) printf("could not
bind server socket\n");

www.manaraa.com

220

else
printf("server socket: Open\n");

iiRet=iecv(puinaDaia->hSock, (LPSTR)
szDataReceive. 5, 0);

if
(nReP=SOCKET_ERROR) piintf("server socket
could not receive data\n");

else
printfC'sever socket received dataVa");

}
else
{

addr=inet_addr(0-PSTR) szHost);
if

(addr=INADDR_NONE) printf("could not find
address of servenn");

stRmtName.sin_femily = PF_INET;

stRmtName.sin_port=Iitons(1026);

stRintName.sin_addr.s_addr=addr;

nRet=connect(puinaData->hSock,
(LPSOCKADDR) &stRintName. sizeof(struct
sockaddr));

if
(nRet=SOCKET_ERROR) printfCcould not
connea to server socket\n");

else
{

printfC'Socket OpenVn");

puinaData->actrveSocket= I:
}

}
}

}
}

void cIoseSocket(pumaFile* pumaData)
{

int nRet;

if (puinaData->activeSocket = I)
{

nRet=closesocket(puinaData-
>hSock):

if (nRet==SOCKET_ERROR)
printfCerror closing socketW);

else printfCSocket ClosedVn");

nRet=WSACleanup();

}

void testSocket(puniaFUe* pumaData)
{

int nRet;
char szDataSend[100]:
double t0=0.0;
double tl=L571;
double t2=-1.571;

sprintf(szDataSend,''%4.3f %4.3f %+.3f
%4.3f%4.3f%4.3f%4.3f".t0.t0.t2.tl,t0,t0.t0);

if (pumaData->activeSocket = 1)
{

nRet=send(puniaData->liSock.
(LPSTR) szDataSend. 51,0);

if (nRet=SOCKET_ERROR)
printfC'Socket test &iled\n");

else printfC'Socket test
passed\n");

}
}

Spacial Circular Arc

// error.c

#include "puma.h"

void error(pumaFile* pumaData)
{

double xv[3],xv_dot[3],xyz_dot[3];
double center[3],dist;
double theta_v;
int i.j,k;
double cv,sv;
double xv_ori[3][3];
double wruz;
double xyz[3];
double ang[3];

www.manaraa.com

221

double fin[6];
int f_flag;
double fend[6], fbase(6], rv[3][3];

ceiiter[0]=0.2;
center[l]=0.0;
center[2]=0.6:

// inverse kinematics of virtual manipuator
// theta_v=atan2(x[lj-center[I],x[0]-
center[0]);

ang[1]=atan2(-pmnaData-
>r[2] [0],sqn(pumaData->r[0] [01*pumaData-
>r(0] [0]+pumaData->r[l][0]*puniaData-
>r[ll[OI));

if (fabs(ang[l]-1.5708) < 0.01)
{

ang[2]=0.0-.
ang[0]=atan2(pumaData-

^r[0 j [1],pumaData->r[1] [11);
}
else if (febs(ang[l]+1.5708) < 0.01)
{

ang[21=0.0;
ang[01=-atan2(pumaData-

^r[0] [1],pumaData->r[1] [11);
}
else
f i

ang[2]=atan2(pimiaData-
11 [0],pmiiaData->r[0] [0]):

ang[0]=atan2(pumaData-
>r(2] [l],pumaData->r[2] [2]);

}

theta_v-ang[2]-1.57;

f_flag=0;
if (theta_v < -0.2)
{

theta_v=-0.2;
f_£lag=l;

}
if (theta_v > 0.8)
{

theta_v=0.8;
f_£Iag=l;

}

dist=0.3;

cv=cos(theta_v);
sv=sin(theta_v);

rv[0][0]=-sv:
rv[0][l]=cv;
rv[0][2]=0.0;
rv[l][01=0.0;
rv[l][ll=0.0;
rv[l][2]=1.0;
rv[2][0]=cv:
rv[2][l]=sv;
rv[2][21=0.0;

// Determine the position of the robot in the
virtual manipulator's
// end effea space

xv[01=-sv*pumaData-
>x[0]+cv*pumaData->x[l]-
cv*center[l]+sv*center[0];

xv[1]=pumaData->x[2]-center[2];
.Kv[2]=cv*puinaData-

>x[0]+sv*pumaData->x[l]-dist-cv*center[0]-
sv*center[l];

for (i=0;i<3;i-H-)
{

for 0=O;j<3 J++)
{

xv_ori[i]lj]=0.0;
for (k=0Jc<3 Jc-r+)
{

xv_ori[i][j] -i-=
rvfi] [k] *pumaData->r[k] jj];

}

}

xyz[ll=atan2(-
xv_ori[2][0],sqrt(xv_ori[0][0]*xv_ori[0][0]+.w_or
i[l][0]*xv_ori[l][0]));

if (febs(xv2[l]-1.5708) < 0.01)
{

.wz[21=0.0:

.xyz[01=aian2(xv_ori[0] [1],xv_ori[1] [1]);
}'
else if {febs(xy2[ll+1.5708) < 0.01)
{

xy2[2]=0.0;
xy2[0]=-

atan2(xv_ori[0][l],xv_ori[l][l]);

www.manaraa.com

222

}
else
{

xy2[21=atan2(xv_ori[l][0],xv_oti[01[01);

xy2[0]=atan2(xv_ori[2][l],xv ori[2][2]);
}

wn=60.0;
z=0.7071;

for (i=0:i<3;i++)

xv_dot[i]={wn*wn*puinaData-
>dt*(xv[i]-puinaData->xv_old[i])+punMData-
>xv_dot_oId[i]*(2.0+2.0*z*wn*puinaData->dt)-
pumaData-
>xv_dot_way_oId[i])/(1.0+2.0*z*wn*puinaDaia-
>dt+wn*wn*puinaData->dt*pumaData->dt);

xyz_dot(i]=(wii*wn*puinaData-
>dt*(xyz[i]-piiinaData->xyz_oId[i])+puniaData-
>xyz_dot_old[il*(2.0+2.0*z*wn*puinaData->dt)-
pumaData-
>xyz_dot_way_oId[i])/(L0+2.0*z*'wn*puinaData-
>dt-i-wn*wn*puinaData->dt*puinaData->dt);

}

for (i=0;i<3:i-H-)
/ i

pumaData-
>xv_dot_way_oId[i]=piimaData->xv_dot_oId[i];

pumaData-
>xv_dot_oId[il=xv_dot[i]:

puinaData->xv_old[i]=xv[i];
pumaData-

>xyz_dot_way_oId[i]=puinaData->xyz_dot_old[i];
pmnaData-

>xyz_dot_oId(i]=xyz_dot[i];
pumaData->xvz_old[i]=xvz[i];

}

// Evaluate virtual spring force
for (i=0;i<3;i++)
f I

fin[i]=400.0*xv[i]+30.0*xv_dot[i];

&n[i+3]=30.0*xvz[i]+2.0*xvz_dot[i];
}

// Apply Null space filter

fend[0]=0.9174=»fiii[01-0.2752*fin(41;
fend[I]=fin[l];
fend[2]=fin[2];
fend[3]=fin[3];
fend[4]=-0.2752'^[0]-K).0826»fin(4];
fend[5]=fin[5];

if(f_flag= I)
{

fend[0]=fin[0];
fend[l]=fiii[ll;
fend[2]=fin[2];
fend[3]=fin(31;

. fend[4]=fin(4];
fend[51=fiii(5];

}

// force end effector vm to base puma
for (i=0; i<3; 1++)
{

fbase[i]=0.0;
for (j=0; j<3; j-i-+)

{

fbase[i]=fbase[i]+rv[j] [i] *fend|j];
}

}

for (i=0; i<3; i-t-r)
{

fbase[i+3]=0.0;
for0=O; j<3;j-H-)
s i

fbase[i+3]=fbase[i-i-3 l+rvQ] [i] *fend[j+3];
}

}

// force base puma to end eflfeaor puma
for (i=0; i<3; 1++)
{

pumaData->fv[i]=0.0;
for 0=0; j<3; j^-^)
{

pumaData-
>fv[i]=puniaData->fv[i]+pumaData-
>r[i][i]*fbase[j];

}
}

for (i=0; i<3: i-H-)
{

www.manaraa.com

223

puiiiaDaia->fv[i+3]=0.0;
for(j=0;j<3;j-H-)
{

pumaData-
>fv[i+3]=puinaData->fv[i+3]+puinaData-
>r[j][i]*fbase0+3];

}
}

}

// friction.c

finclude "pumah"

void friction(puinaFile* pumaData)
{

inti;
double tau=0.05305;

if (puinaData->theta[0] > pumaData-
>theta_old[0]) pumaData->v_Mc[0]=1.0;

if (puinaData->theta[01 <= pumaData-
>theta_old[0]) pumaData->v_Mc[0]=-0.9;

pumaData->v_&ic[0]=(pmnaData-
>v_fric[01 *pun!aData->dt+puinaData-
>v_fric_old(01*tau)/(puinaData->dt+taa);

if (puniaData->theta[l] > pumaData-
>theta_old[l])

{
if (puinaData->thea[l] > -1.5T)

puniaData->v_fric[1]=-0.3;
else puinaData->v fric[ll=-0.9;

}
if (puinaData->theta[l] <= pumaData-

>theta_old[l])
{

if (puinaData->theta(l] > -1.57)
puinaData->v_fric[l]=0.9;

else puniaData->v_fin[c[l]=0.6;
}
piimaData->v_fric[1]=(puniaData-

>v_fric[1] *puinaData->dt+puinaData-
>v_firic_old[l]*tau)/(puinaData->dt+tau);

if (puiiiaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fiic[2]=0.47;

if (puinaData->tIieta[2] <= pumaData-
>theta_old[2J) puniaData->v_fric[2I=-0.47;

puinaData->v_6ic[2]=(puiiiaData-
>v_fiic[2] *puinaDaia->dt+puinaData-
>v_&ic_old[2]*tau)/(puiiiaData->dt+tau);

if (piiinaData->dieta[3] > pumaData-
>tfaeia_old[3]) puniaData->v_&ic[3]=-0.35;

else if (puinaData->theta[31 <=
puinaData->tlieta_old[3]) pumaData-
>v_fiic[3]=0.35;

else puinaData->v_&ic[3]=0.0;
puniaData->v_&ic[3]=(puinaData-

>v_jQic[3] *pumaData->dt+pumaData-
>v_&ic_old[31 •tau)/(puinaData->dt+tau);

if (puinaData->tfaeta[4] > pumaData-
>tlieta_old[4]) puniaData->v_ftc[4]=-0.4;

else if (pumaData->theta[41 < pumaData-
>tlieta_old[4]) puinaData->v_fric[4]=0.4;

else puinaData->v_fric[4]=0.0;
puinaDaia->v_fric(4]=(puniaDaia-

>v_&ic[4] *puniaData->dt+piiiiiaData-
>v_fiic_old[41*tau)/(pumaDaia->dt+tau);

if (pumaData->tlieta[5] > pumaData-
>tIieta_old[5]) puinaData->v_&ic[5]=-0.5;

else if (puinaData->tfaeta[5] < pumaData-
>theta_old[51) puinaData->v_fric[51=0.5;

else puinaData->v_fric[5]=0.0;
puniaData->v_fric[5]=(pinnaData-

>v_fric[5] *puinaDaia->dt+puinaData-
>v_fric_old[5]*tau)/(puinaData->dl+tau);

for (i=0:i<6;i-t-f)
f I

pumaData-
>v_fiic_old(i]=pumaData->v_firic[i];

}

}

// gravity.c

#include "puma-h"

void gravitv(puinaFile* pumaData)
{

double c2,s2,c23,s23:

c2=cos(puniaData->theta[l]);
s2=sin(puniaData->theta[l]);

www.manaraa.com

224

c23=cos(puniaData->theta[l]+puinaData-
>tlieta[2]);

s23=sin(puniaData->theta[l]+pmnaData-
>tlieta[2]);

// gravity compensation
puinaData->vg[0]=0.0;
pumaData->vg[2]=-

I.1201»s23+0.0977*c23;
pumaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*puinaData-
>vg[2];

puinaData->vg[3]=0.0;
puinaData->vg[4]=0.0:
pumaDaia->vg[5]=0.0;

}

// impedencex

#inciude "puma h"

void inipedence(puinaFile* pumaData)
{

pumaData-
>vim[0] .̂02*pow((1.0/(puinaData->theta(0]-
2.7)),3.0)+0.02*pow((1.0/(puinaData-
>tfaeta[0]+2.7)),3.0);

puiiiaData->viin[1]—
0.02*pow((1.0/(puinaData->theta[11-0 .T)),3.0)-
0.02*pow((I.O/(piunaData->theta[I]+3.7)).3.0);

pumaData-
>viin[2]=0.02*pow((1.0/(puniaData->theta(2]-
pumaData-
>jliiiiit3)),3.0)-K).02*pow((1.0/(puniaData-
>theta[2]+0.9)),3.0);

puniaData->vim[3]=-
0.02*pow((1.0/(puniaData->theta[3]-3.2)),3.0)-
0.02»ix)w((1.0/(puniaData->tfaeta[31+1.8)),3.0);

puniaData->vim[4]=-
0.02*pow((1.0/(puniaData->theta[4]-L7)),3.0)-
0.02*ix)w((1.0/(pmnaData->theta[4]+pmnaData-
>jliniit5))J.O);

puinaData->vim[5]=-
0.02*pow((1.0/(puniaData->theta[5]-5.2)),3.0)-
0.02*pow((l .0/(puniaData->theta[5]+5.2)).3.0);

// jacofoiaiLc

#iliclude "puma h"

voidjacobianCpumaFile'*' pumaData)
{

double
cl.sl,c2.s2,c3,s3.c23,s23.c4.s4.c5.s5.c6,s6;

double 1[5];
1[1]=0.4318;
1[21=0.15005;
I[3]=-0.0191;
I[4]=0.4331;

cl=cos(pmnaData->theta[OJ);
sl=sin(pumaData->tlieta[0]);

c2=cos(pumaData->theta[l 1):
s2=sin(pumaData->theta[11);

c3=cos(pumaData->theta[2]);
s3=sin(pumaData->theta[2]);

c23=cos(pumaData->tIieta(1]+pumaData-
>theta[2]);

s23=srn(pimiaData->tlieta(1 J+pumaData-
>theta[2]);

c4=cos(pumaData->theta[3]);
s4=sin(pmnaData->theta[3]);

c5=cos(pumaData->theta[4|);
s5=sin(pumaData->theta[4]);

c6=cos(ptmiaData->theta[5]);
s6=sin(puinaData->theta[5]);

// jacobian
pumaData->eJr[0J[0]=c5*c6*(-

c23*c4*l[21+s4*(c2*I[ll+c23»l(31+s23*I[4]))+s6*
(c23*s4*I(2]+c4*(c2»l[l]-K:23*I[3]+s23»l[4]))+s5
•c6»s23»I[2];

pumaData-
>eJr[0][l]=c5*c6»(c4»(s3*I[l]+l[4]))-Hs6*(-
s4*(s3*l[ll+l[41))-s5*c6*(-c3*l[ll-l[3]);

pumaData->eJr[0] [2]=c5*c6'''c4*l[4]-
s6*s4»I[4]+s5*c6*l[3];

pumaData->eJr[0] [3]=0.0;

www.manaraa.com

o

• i

"8
'Q
'G
i
t
rn

n
'3 tn

u

I •a t3

o >••4
>

«n
>•

t
fo >
>

a P.

I
3
I
A

.. <o ^ .. g ^
00 o o —' B B >-< o tn g a

a|

i i l i P §
rn JL il ST ^ O V)

D-Tt d

(u i ̂ ^

* m

o o o ?L rr
tit to, Tf- !£L £

•a s-# en
^7}
CL +

?r

'?

t/}

•a '0 iJ;

S,^£i g,;lU

H 3
f I
1 1
w CO

©a
o .s
if f

'^. "n
^ u S

§ € i? CO

•n in (J </)

'?

«
o ., . ^ .. * o o o
i f f ? ?

CI4 O4 CXi

» #

*t
* 0 0 * fo * * in •' b
'SI IS ^ o

II II II II ¥

»n
(/}

is is # Tf

* *
P P «
f f i ? ? ? il

m ro m rn ro
JS !? !? S'

Ci!ILZL!£L 2j CILCLI2,ZLS I^^SSILSS 2<
S S S ^ " r r ! ^ r r ! : r ' r r ' . T T " T ' r r " T " - r - r — >
S'S'5'iH

llil

•n *0
#" .^o o

•3; U "G § S
JL JLX.X4L
2 ̂ 2 2 S
'otrrirTirrirr

I
S I S i I

 ̂ ̂
M U ' i

www.manaraa.com

226

V I=c4*c5*c6-s4*s6;
v2=s5*c6;
v3=c23-»vl-s23*v2;
v4=s4*c5*c6-rc4*s6;

puinaData->r(0] [01=c 1 •v3-s 1 *v4;
puinaData->r[1] [0]=s 1 *v3+c l*v4;
puinaData->r[21 [0]=-s23 •v 1 -c23 *v2;

v5=c4*c5*s6+s4*c6:
v6=s5*s6;
v7=-dl3*v5+^3*\6:
V8=s4*c5*s6-c4*c6;

puiiiaData->r[0] [l]=c 1 »v7+s 1 *v8;
pumaData->r[1] [ll=s 1 *v7-c 1 *v8;
puinaData->r(2] [1]=s23 •v5-H:23 *v6;

v9=c4*s5;
vl0=c23»v9+s23*c5;
vl I=s4*s5;

puinaData->r[0] [2]=cl •viO-sl •v 11;
puinaData->r[l][2]=sl *vlO+cl *vl 1;
paniaData->r[2] [2]=-s23 *v9+c23 *05;

LONGLONG count
double cuirenttinie;
double dtactual:
double dteiron
double dtmax:

// error flags
int timererror.
int timeroverrun;
int DeviceStop;
int eirorSocket:

// socket stuff
intern
char szDataSend[IOO];
int gcount:

// data file stu£f
double data[3][2000];
int datalength=2000;
int datacount:
int datacycle;
intdatamax
int fileerror.
FILE *out:

// general stuff (counter and the like)
int i;

// inain.c

#include "puma-h"

llllllllllllllllllllllllllllllllllflllllllllllltlllllllllllllllllllll
I I Taking Care of Business
lll

void main(void)
{
// robot stuff

pumaFile *puniaData:
int stop;
int homecount;

// window's stuff
HANDLE hprocess;
HANDLE hthread;
int processerror,

// timer stuff
BOOL result;
LAR(E_INTEGER lifirequencv"
LARGE_INTEGER licount;
LONGLONG frequency;
double dfrequency;
LONGLONG startcount

printfCPUMA control program\n");
printf("written by Jim Edwards for

LARCOn");
printfC'AU rights reserved\n\n\n\n");

iiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiii
I I Code Initialization Section
lll
I I set counter error flag to pass

timererror=l;

I I set counter overrun flag to pass
timeroverrun=l;

II start taking data at zero
datacount=0;

// set data pass to zero
datacycle=0;

www.manaraa.com

227

// set process error flag to pass
processerror=0;

// set maxiTTiiiTn delta-t to zero
dtmax=0.0;

// set stop to pass
stop=l;

// set homecount to zero
homecoimt=0;

// set socket error to none
errorSocket=0;

// set graphics dump counter to zero
gcount=0;

lll
mill Hardware Initialization
lll
II get process handle

hprocess=GetCurrentPiocessO;

I I set process priority
result=SetPriorityClass(hprocess.

REALTIME_PRIORITY_CLASS);
if(result = 0) processerror=l;

// get thread handle
hthread=GetCurrentThreadO;

I I set thread priority
result=SetThreadPrioritv(hthread.

THR£AD_PRIORITY_TIME_CRmCAL);
if (result == 0) processerror=2;

I I allocate memory for puma structure
pumaData=(pumaFile

•)malloc(sizeof(pumaFile));

I I connea to the puma kernel device
DeviceStop=l;
pumaData-

>PuinaDevice=HwNewDevice(NULL);
HwSetErrorHandler(pimiaData-

>PumaDevice, MyErrorHandler);
if (!HwConnectDevice(puniaData-

>PumaDevice, "pimia"))
{

printfCFailed to comiea to puma
device!\n");

HwDeleteDevice(pumaData-
>E>uniaDevice);

DeviceStcp=0:
>
f

II setup puma
piiTnarniriati7afif>n(piiTnanaTa)-

// Open socket - useSocket = 1 use socket. = 0
don't use socket

pimiaData->useSocket= 1;
pumaData->activeSocket=0;
openSocket(puinaData):

// test socket
testSocket(puniaData):

// get ftequency of high performance counter
resuIt=QueryPerformanceFrequency(«Sarfr

equency);
if (result = TRUE)
{

frequency=lifiequency.QuadPart:
dfiraiuency=((double)

ftequency);
printfC'clock frequence" %f

MHz\n\n'ui\n".dfi:equency);
}
else
{

printfCQueryPerformanceFrequency:
feilureVn");

timererror=0:
}

// get starting count
printf("\n\n\nTum Arm Power On!!! l\n");
result=QueryPerfbrnianceCounter(&licou

nt);
if (result = TRUE)
{

startcount=licounLQuadPart:
}

else
{

printfCQueryPerformanceCounter
failureVn");

timererror=0;

www.manaraa.com

228

}

I I disengage the brakes
HwOutpw(puniaData->PuinaDevice,

0x02e, 0x0001);

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiimiii
II Main Control Loop
lll

while((homecount < 2000) &&
CDeviceStop == 1) && (timererror =1) &&
(timeroverrun = 1) && (processerror == 0))

f I
// control code

if(kbhitO) stop=0:
if (stop == 1)
{
puniaControI(pumaData);
}
else
{
homecount-H-:

pumaHomeCpuinaData):
}

// increment graphics dump counter
gcount++;

// send data to graphics engine
if (gcount = 5)
{
gcount=0:

// but only if there is an active socket for
commimication

if (pumaData-
>activeSocket = 1)

{

sprintf(szDataSend,"%4.3f %4.3f %4-.3f
%4.3f %4.3f %4.3f %4.3f

puinaData->time,
pnmaDafa-

>theta[0],
pimiaData-

>theta[l],
pumaData-

>theta[2],
pumaData-

>theta[3],
pumaData-

>theta[4],

>theta[5]);
pumaData-

err=send(pumaData->hSock,
(LPSTR) szDataSend, 51, 0);

if
(err=SOCKET_ERROR) errDrSocket=l;

}

// dining code
do
{

// get the current count of perfonnance counter

result=QueryPerfonnanceCounter(&licou
nt);

if (result = TRUE)
{

count=IicounLQuadPart:
// convert into time since program started

currenttime=((doubIe) (coimt-
startcoimt))/dfrequency;

}
else
{

printf("QueryPerformanceCounter
failureVn");

timererror=0:
}

puinaData->time;

>dt);

dtactual=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t
if (dtactual > dtmax)

dtinax=dtactual;

// get error in delta-t
dterror=dtactual-puniaData->dU
if (fabs(dterror) > pumaData-

>dt) timeroverrun=0;

// take some data
if (stop = 1)
{

www.manaraa.com

229

// time
//

data[01 [datacount!=puinaData->time;
I I ftesh&equencv

//
data[1] [datacount]=1.0/dtactual;

II voltage to axis 5
//

data[2] [datacount]=pumaData-
>voltage_out[4];

data[0] [datacouiit]=puinaData->x[0];

data[1] [datacount]=puinaData->x(1];

data[21 [datacountl=piiinaData->x[2];

if (datacount = 1999)
{

daiacount=0:
datacycle=l;

}
else datacount++;

}

// update absolute time base
pumaData->time=pumaData-

>time+pim3aData->dt;
} // end main control loop

// engage the brakes
HwOutpw(pumaData->PumaDevice,

0x02e. 0x0000);

lll
II Hardware Clean-Up
lll
II kemal device

HwDeleteDevice(pumaData-
>PumaDevice);

I I close socket
closeSocket(pumaData);

lll
I I Take some data
lll

I I open the data file

if ((out=fopen("ouLdat".''wt"))==NlILL)
fileerror=0;

else
{

// write data
fileerTOi=l;

fprintf(ouL"max dt is
%f\n\n\n".dtmax);

if (datacycle = 1)
datamax=datalength;

else dataniax=datacount:

for (i=0; i<datamax: i++)
{

fprintf(out,"%£l %f.
%f\n".data[0][i],data[l][i],data[2][i]);

// close file
fcIose(out);

}

lll
II Final Error Messages
lll

printf("\n\nVnError Messages:\n");
if (timererror = 0) printf("timer

malfimction\n'');
else if (timeroverrun = 0) printfCtimer

over run\n"):
else if (DeviceStop == 0) printffDriverX

error\n");
else if (fileerror == 0) printf("could not

open data file\n");
else if (processerror == 1) printf("could

not set process priority\n'');
else if (processerror = 2) printf("could

not set thread priorityVn");
else if (errorSocket == 1) printf("error

sending data over socket\n");
else printfCall went well\n");

SleepOOOO);
}

lll
mill DriverX Error Handler
lll

www.manaraa.com

230

void MyEiTorHandler(HWDEVICE* pDevice,
DWORD nError)
{

printf("CriticaI DriverX error %d\n'',
nError);

exit(iiError):
}

// pun)a.h

// include files
#incliide <windo\vs.li>
#include <winsock.li>
#include <stdio.h>
#include <conio.h>
#include <inatlLh>
^include "DriverX.h"

// structures
typedef struct
{
// needed for all

HWDEVICE* PumaDevice;
double dt;
double time:
double encoder_scale[6];
double encoder_o£EKt[6];
double theta[61;
double voltage_out[6];

// socket snifF
SOCKET hSock;
int useSocket:
int activeSocket;

// kinematics
double x(6];
double r[3][3];
double eJr[6][6];

// virtual manipulator
double fv[6];
double u_vm;
double v_vm;
double .xv_old[3];
double xv_dot_old[3];
double xv_dot_way_old[3];
double xyz_old[3];
double xyz_dot_old[3];
double xyz_dot_way_old[3];

// needed for me
int first_flag;
int last_flag;
double kp[6];
double kd[6];
double error[6];
double errorold[6];
double errordot[6];
double thetad[6];
double theta_old[6];
double tlietao[6];
double timeh;
double vg(6];
double v_fric[6];
double v_fnc_old[6];
double vim[6];
double jiimit3:
double jlimitf;

} pumaFile:

// prototypes
void main(void);
void MyEirorHandlerCHWDEVICE * , DWORD);
void pumaInitialization(pumaFile *):
void pumaControl(pumaFile •);
void pumaHome(piunaFile *);
void openSocket(pumaFile *);
void closeSocket(pumaFile *);
void testSocket(puinaFile *);
void gravity(pumaFile *);
void ftiction(pumaFile •);
void impedence(pumaFiIe •);
void kinematics(pumaFile
void jacobian(pumaFile *);
void error(pumaFile •);

// pumaControLc

#include "punia.h"

void pumaControl(pumaFiIe* pumaData)
{

short val[6];
int voltage_int[6];
inti.j;
double tlietaf[6];
double tf=5.0;

// read encoders

www.manaraa.com

231

vaI[0]=HwInpw(pumaData-
>PuniaDevice, 0x010);

val[ll=Hw[npw(puinaDaia-
>PuniaDevice, 0x012);

\'aI[2]=HwInpw(puniaData-
>PuinaDevice, 0x014);

vaI[3]=HwInpw(pumaData-
>PuniaDevice, 0x016);

val[4]=HwInpw(piimaData-
>PumaDevice, 0x018);

val[5]=HwInpw(piiinaDaia-
>PumaDevice, 0x0 la);

// convert encoders to radians
for (i=0; i<6; i-f-i-)

{
puniaData->theta(il=piiniaData-

>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_oflfeet[i]);

}

// gravity compensation
gravity(pmnaData);

// forward kinematics and Jacobian
kinematics(pmnaData);

// virtual manipulator control
error(pumaData);

// evaluate jacobian
jacobian(puinaData);

// friction compensation
&iction(pumaData);

// impedence protection
impedence<puniaData);

// first time through get current position
if (puniaData->first_Qag=l)
{

pumaData-
>thetao[0]=pumaData->theta[0];

piunaData-
>thetao [1]=pumaData->theta[1];

pmnaData-
>thetao[2]=pumaData->theta[2];

pumaData-
>thetao[3]=pumaData->theta[3];

pumaData-
>thetao[4]=pimiaData->theta[4];

pumaData-
>thetao[5]=purnaData->theta[5];

pumaData->first_flag=2;
}

// final position
thetaf[0]=0.1428;
thetaf[l]=-0.3966;
thetaf[2]=0.5388;
thetaf[3]=0.6374;
thetaf[4]=1.4137;
thetaf[51=1.5168;

// do cubic spline interpolation
if (pumaData->time <= tf)
{

pumaData-
>thetad(0]=pumaData->thetao[0]-3.0*(pumaData-
>thetao[0]-thetaf[0])*piunaData-
>time*pumaData->time/(tf*tf)+2.0 * (pumaData-
>thetao[0]-thetaf[0])*pumaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf);

pumaData-
>thetad(l]=pmiiaData->thetao[l]-3.0*(pumaData-
>thetao[l]-tlietafIl])*puniaData-
>time*pumaData->time/(tPtf)+2.0*(puniaData-
>thetao[l]-thetaf[l])*puniaData-
>time*pumaData->time*puinaData-
>time/(tf*tf*tf);

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(pumaData-
>thetao[21 -thetaf[2])*purnaData-
>time*pumaData->time/(tf*tf)+2.0*(pimiaData-
>thetao[2]-thetaf[2])*puniaData-
>time*pumaData->tiine*puinaData-
>time/(tf*tf*tf);

pimiaData-
>thetad[3]=puniaData->thetao[3]-3.0*(pimiaData-
>thetao(3]-thetaf[3])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaDaia-
>thetao[3]-thetafI3])*puniaData-
>time*pumaData->time*puinaData-
>time/(tf*tE*tf);

pimiaData-
>thetad[4]=pimiaData->thetao[4]-3.0*(pumaData-
>thetao[4]-thetafI4])»puniaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[4]-thetaf[4])*pumaData-
>time*pumaData->time*puniaData-
>time/(tf*tf*tf);

www.manaraa.com

232

pumaData-
>theiad[5]=pumaData->thetao[5]-3.0*(pumaData-
>thetao[5J-thetaf[5])*puiiiaData-
>time*puinaData->tinie/(tf*tf)+2.0*(puinaData-
>thetao[5]-thetaf[5])*puniaData-
>time*puinaData->time*puniaDaia-

}
I I after tf stay put at final positioii.

else if (puinaData->time > tf)
{

piunaData->thetad[0]=tlietafl0];
puinaData->thetad[l]=thetafll];
puinaData->thetad[2]=thetaf[2];
puinaData->thetad[3]=thetafl[3];
puinaData->thetad[4]=thetaf[4];
puinaData->thetad[51=thetaf[5 j;

}

//
// control section
//

for (i=0:i<6;i-i-+)

{
// calculate error

pumaData->error[i]=puniaData-
>thetad[i]-puniaData->tfaeta[i];

// calculate rate of change of the error
pumaData-

>errordot[i]=(piunaData->error[i]-puinaData-
>errorold[i])/puinaData->dt

// evaluate local PD control law
pumaData-

>voltage_out[i]=puinaData->kp(i]*piunaData-
>error[i]+puinaData->kd[i] •pumaData-
>erTordot[i];

}

pumaData-
>voltage_out(0]=pumaData->voItage_oui[01*-1.0;

pumaOata-
>voltage_out[2]=puiiiaData->voltage_oui[2] *-1.0;

}

// Convert voltages into integers to output to
trident board

for (i=0:i<6;i-!-+)
{

pumaData-
>voltage_out[i]=pumaData-
>voltage_out[i]+pumaData->vg[i]+pumaData-
>v_&ic(i]+puniaData->vim[i];

tf (fabsCpumaData-
>voltage_out[il) >9.9)

pumaData-
>voItage_out(i]=9.9*puinaData-
>voltage_out[i]/fabs(puinaData->voltage_out[il);

voltage_int[i]=(int)
(4095.0*(pumaData->voltage_out[i]+10.0)/20.0);

}

// Output voltages to trident hardware
HwC)utpw(pumaData->PumaDevice.

0x030, voltage_int[01);
HwOutpw(pumaData->PuinaDevice,

0x032, voltage_int[l]);
HwOutpw(puniaData->PuinaDevice,

0x034, voltage_int[2]);
HwOutpw(pumaData->PuniaDevice.

0x036. voltage_int(31);
HwOutpw(puinaData->PuinaDevice.

0x038, voltage_int[4]);
HwOutpw(puniaData->PuinaDevice.

0x03a. voltage_int[5]);

// save some old information
for (i=0;i<6;i-t-r)
{

pumaData-
>errorold[i]=pumaData->error[i];

pumaData-
>theta_old[i]=pumaData->theta[i];

}
}

// impedence based control law
if (pumaData->time > 6.0)
{

for (]=0;j<6;j-H-)
{
pumaData->voltage_out|j]=0.0;

for (i=0:i<6;i-t-+)
{

pumaData->voltage_out[j]
pumaData->eJr[i] [j] *pnmaData->fv[i];

}
}

// pumaHome.c

www.manaraa.com

233

#include "puma h"

void puniaHome(pumaFile* pumaData)
{

shon val[6];
int voltage_int[6];
inti;
double thetaf[6];
double localtime;
double tf=5.0;

// read encoders
val[0]=HwInpw(pimiaData-

>E>umaDevice, 0x010);
val[l]=HwInpw(pumaData-

>E>umaDevice. 0x012);
val[2]=HwInpw(pimiaData-

>PumaDevice. 0x014);
val[3]=HwInpw(pumaData-

>E*umaDevice. 0x016);
val[4]=HwInpw(puinaData-

>PumaDevice. 0x018);
val[5]=HwInpw(pumaDaia-

>PumaDevice, 0x0 la);

// convert encoders to radians
for (i=0; i<6; i-i-r)
{

pumaData->theta[i]=pumaDaia-
>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_offeet[i]);

}

// first time through get current position
if (pumaData->last_flag=l)
{

pumaData-
>thetao[0]=pumaData->theta[0];

pumaData-
>thetao[1]=puniaData->theta[1];

pumaData-
>thetao[2]=pim3aData->theta[2];

pumaData-
>thetao[3]=pumaData->theta(3];

pumaData-
>thetao[4]=pumaData->theta[4];

piunaData-
>thetao(5]=pumaData->theta(5];

pumaData->Iast_flag=0;
puinaData->timeh=pumaData-

>time;
X
)

I I final position
thetaf[0]=0.0;
thetaf[l]—1.57;
thetaf[21=1.57;
theiaf[3]=0.0;
thetaf[4]=0.0;
thetaf[5]=0.0;

// time that home has been rurming
Iocaitime=pumaData->time-pumaData-

>rimgh-

// do cubic spline interpolation
if (localtime <= tf)
{

pumaOata-
>thetad[0]=pumaData->thetao(01-3.0*(piunaData-
>thetao[0]-
thetafI0])*localtime*localtime/(tf*tf)+2.0*(pumaD
ata->thetao[0]-
thetafIO])*localtime*Iocaltime*localtime/(tf*tf*tf);

pumaData-
>thetad[l]=pumaData->thetao[1]-3.0*(pumaData-
>thetao[l]-
thetaf[l])*Iocaltime*Iocaltime/(tf*tf)+2.0*(puinaD
ata->thetao(l]-
thetaf[1])*Iocaltime*localtime*localtime/(tf*tf*tf);

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(pimiaData-
>thetao[2]-
thetaf[2])*localtime*localtime/(tf*tf)+2.0*(pumaD
ata->thetao[2]-
thetaf[2])*localtime*localtime*localtime/(tf*tf*tf);

pumaData-
>thetad[3]=pumaData->thetao [3]-3.0*(pumaData-
>thetao[3]-
thetaf[3])*localtime*Iocaltime/(tf*tf)+2.0*(puiiiaD
ata->thetao[3]-
thetaf[3])*localtime*localtime*localtime/(tf*tf*tf);

pimiaData-
>thetad[4]=puniaData->thetao[4]-3.0*(pumaData-
>thetao[4]-
thetaf[4])*localtime*localtime/(tf*tf)+2.0*(puinaD
ata->thetao[4]-
thetafl4])*Iocaltime*localtime*localtime/(tf*tf*tf);

piunaData-
>thetad[5]=piunaData->thetao[5]-3.0*(pumaData-
>thetao(5]-
thetaf[5])*Iocaltime*localtime/(tf*tf)+2.0*(pumaD
ata->thetao[5]-
tfaetafI5])'''localtime*localtime*localtime/(tf*tP'tf);

www.manaraa.com

234

}
I I after tf stay put in the final position

else if (localtime > tf)
{

pumaData->tlietad[01=tlietaf[0];
pumaData->tlietad[I]=thetafIl];
puniaData->tfaetad[2]=tlietaft2];
puniaData->thetad[3]=thetaf[3];
puinaData->thetad[4]=thetafI41;
puinaData->thetad[5]=tlietaf[5];

//
// control section
//

for (i=0:i<6;i-Hr)

{
// calculate error

puniaData->error[i]=puinaData-
>thetad[i]-pumaData->theta[i];

// calculate rate of change of the error
pumaData-

>erTordot[i]=(puniaData->error[i]-puinaData-
>errorold[i])/puniaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=puniaData->kp[i]*pumaData-
>error[i]+puniaData->kd[i]*puniaData-
>errordot[i];

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i++)
{

pumaData-
>voltage_out[i]=puniaData-
>voltage_out[i]y/+puinaData->vg[i]+puniaData-
>v_fiic[i]+puinaData->vim[i];

if (&bs(puniaData-
>voltage_out[i]) > 9.9)

pumaData-
>voltage_out[i]=9.9*pumaData-
>voitage_out[i]/febs(puniaData->voltage_out(i]);

voltage_int[i]=(int)
(4095.0*(puinaData->voltage_out[i]+10.0)/20.0);

}

// Output voltages to trident hardware

HwOutpw(punMData->PuniaDevice,
0x030, voltage_int[0]);

HwOutpw(puniaData->PuniaOevice.
0x032, voltage_int[l]);

HwOutpw(pumaData->PuniaDevice,
0x034, voltage_int[2]);

HwOutpw(pumaData->PurnaDevice,
0x036. voltage_int[3]) ;

HwOutpw(puniaData->PumaDevice,
0x038, voltage_int[4]);

HwOutpw(puniaData->PuniaDevice,
0x03a. voltage_int(51);

// save some old information
for (i=0;i<6;i++)
{

pumaData-
>errorold[i]=pumaData->error(i] ;

pumaData-
>theta_old[i]=pumaData->theta(il;
}

// pnmafnitialiTatinn r

#include "puma.h"

void pumalnitialization(pumaFile* pimiaData)
{

double frequencv"
inti:

// desired refiresh rate (Hz)
fi:equency=300.0;

// desired delta-t
pumaData->dt= 1.0/firequency;

// initialize absolute time base to zero
pumaData->time=0.0;

// set some joint limits for impedence fields
pumaData->jlimit3=4.0;
puniaData->jlimit5= 1.7;

// set flags for slow up and down
pumaData->first_£lag= 1;
pumaData->Iast_flag= 1;

// encoder stuff

www.manaraa.com

235

pumaData-
>encoder_scale[0]=0.00010035;

pumaData->encoder_scaIe[1]=-
0.000073156;

puinaData->enco(ler_scale(2]=0.000117;
puinaData->encoder_scale[3]=-

0.000082663;
puiiiaData->enaxler_scale[4]=-

0.000087376;
puinaData->encoder_scaIe[5]=-

0.00016377;

puniaData->encoder_ofifeet[0]=0.0;
puinaData->encoder_oflfeet[1]—21472.0;
puinaData->encoder_o£feet(2]=-13426.0;
pumaData->encoder_ofE^[3]=8000.0;
piiinaData->encoder_ofifeet[4]=0.0;
pumaData->encoder_o£E»t[5]=0.0;

// initialize feedback gains
puinaData->kp[0]= 118.0;
puiiiaData->kd[0]=15.4;
puinaData->kp[l]=-288.0;
puinaData->kd[l]=-24.0;
puniaData->kp[2]=200.0;
puniaData->kd[2]=20.0;
puinaData->kp[3]—15.0;
piimaData->kd[3]=-2.0;
piimaData->kp[4]=-25.2;
piimaData->kd[4]=-2.2;
puinaData->kp[5]=-10.0;
puinaData->kd[5]=-2.0;

puinaData->u_vin=0.0;
puinaData->v_vin=0.0;

// initialize some variables
for (i=0; i<6; i-H-)
{

puniaData->errorold[i]=0.0;
// error values

puinaData->tlieta_oId[i]=0.0;
// angular positions

puinaDaia->v_fiic_old[i]=0.0;
// fiiction voltages

}

for (i=0; i<3; i++)
{

pumaData->xv_old[i]=0.0;
pumaData->.w_dot_oId[i]=0.0;

pumaData-
>xv_dot_way_old[il=0.0;

pmnaData->xyz_old[il=0.0;
puniaData->xyz_dot_old[i]=0.0;
pumaData-

>xyz_dot_wav_old[i]=0.0;
}

// calibrate encoders
HwOutpw(pimiaData->E'uinaDevice,

0x020. 0x0000);
HwOutpw(pumaData->PuniaDevice,

0x022, 0x0000);
HwOutpw(puinaData->PumaDevice,

0x024, 0x0000);
HwOutpw(puinaData->PuniaDevice,

0x026, 0xlf40);
HwOutpw(puniaData->PumaDevice.

0x028, 0x0000);
HwOutpw(puniaData->PuniaDevice.

0x02a. 0x0000);
}

// socketc

#include "puma-h"

SOCKADDR_IN stLclName;
SOCKADDR_IN stRmtName;

void openSocketCpumaFUe* pumaData)
{

int server=0;
int nRet;

// ip for snow
// char szHostQ = "129.186.232.46";

// ip for hood
char szHostQ = "129.186.232.34";
// ip for mammoth

// char szHostO = "129.186.232.54";

char szDataReceiveQ = {0};
unsigned long addr,
WORD WSA_VERSION;
WSADATA stWSAData;

WSA_VERSION = MAKEWORDd, 1);
nRet=WSAStartup(WSA_VERSION,

&stWSAData);

www.manaraa.com

236

if(nRet=0) priiitf("attacfaed to winsock
dU\ii");

else printfCcould aot attach winsock
dll\n");

if (paniaData->useSocket = 1)
{

pumaData-
>hSock=socket(AF_INET. S(XX_DGRAM. 0);

if (pmnaData-
>IiSock==INVALID_SOCKET) prinlfCcould not
get a valid socket handleVn");

else
{

if (server=l)
{

stLcIName.sin_&mily = PF_INET;

stLclName.siii_portFfatons(1026),

stLclName.sin_addr.s_addr=INADDR_A
NY;

nRet=bind(piiiiiaData->hSock.
(LPSOCKADDR) &stLclName. sizeof(stnict
sockaddr));

if
(aElet=SOCKET_ERROR) printf("could not
bind server socket\n'');

else
printf("server socket: Open\n");

nRec=recv(puinaData->hSock. (LPSTR)
szDataReceive, 5, 0);

if
(nRet=SOCKET_ERROR) printf("server socket
could not receive data\n");

else
printfC'sever socket received data\n");

}
else
{

addr=inet_addr((LPSTR) szHost);
if

(addr=INADDR_NONE) printf("could not find
address of server\n");

stRintName.sin_femily = PF_INET;

stRnitName.sinjport=htons(1026);

stRnitName.sin addrs addF=addr.

nRet=connea(puniaData->faSock.
(LPSOCKADDR) &stRmtNanie, sizeof(struct
sockaddr));

if
(nRet=SOCKET_ERROR) printf("could not
connea to server socket\n");

else
{

printf("Socket OpenVn");

pumaDaia->activeSocket= 1;

}
}

void cIoseSocketCpumaFile* pumaData)
{

intnRet;

if (puinaData->activeSocket = I)
{

nRet=closesocket(pumaData-
>hSock);

if (nRet=SOCKET_ERROR)
printfC'error closing socket\n");

else printfC'Socket CIosed\n");
}

nRet=WSACIeanup();

}

void testSocket(puniaFile* pumaData)
{

int nRet;
char szDataSend[100];
double t0=0.0;
double tl=L57l;
double t2—1.571;

www.manaraa.com

237

sprintf(szDataSend."%4.3f %4.3f %4-.3f
%4.3f%4.3f%4.3f»/»t.3f".t0,l0,t2,tl,t0.t0.t0);

if (puinaData->activeSocket = 1)
{

nRet=send(pmnaData->hSock,
(LPSTR) szDataSend, 51,0);

if (nRet=SOCKET_ERROR)
printfCSocket test feiled\ii");

else printfCSocket test
passed\n");

}
}

// set the baud rate
SetBaud(BaudRate);
printfC^aud Rate; %ld\n''JBaudRate);

// turn off modem control
outportb(MODEM_CONTROL3IOHAN

DSHAKING);
status=inportb(MODEM_CONTROL);
if (status ==0) printf("Hardware

else printf(" Something is wrong with
Modem Control!! IXn");

Bob The Fish

// calibration2.c

irinclude "puma.h"

void calibration2(void)
{

loadencoder(0.0);
loadencoder(1.0);
loadencoder(2,0);
loadencoder(3,8000);
Ioadencoder(4.0);
loadencoder(5,0);

}

// com_initc

#include <stdio.h>
^include <math.h>
#include "conLh"

void com_init(long BaudRate)
{

int status;

// turn off all interrupts on the UART
outportbGNTERRUPT_ENABLE,NOENT

ERRUPTS);
status=inportb(INTERRUPT_ENABLE);
if(status = 0) printfCInterrupts

DisabledXn");
else printfC'Something is wrong with the

Interrupts! !!\n");

// enable 16550 FIFO
outportb(FIFO_CONTROL,0x07);
status=inportb(INTERRUPT_IDENT);
if (status = Oxcl) printf("FIFO

enabledXn");
else
{

outportb(FIFO_CONTROL.OxOO);
printfC'Something is wrong with

the FIFO! !!\n");
}

}

void SetBaud(long BaudRate)
/
i

long BaudRateDivisor^BaseBaud:
int msb.lsb;

// maximum PC baud rate
BaseBaud=l15200;

// ratio of maximmn baud rate and desired baud
rate

BaudRateOivisor=BaseBaud/BaiidRate;

// decompose divisor into 2 8-bit bytes
msb=BaudRateDivisor » 8;
Isb=BaudRateDivisor & OxFF;

// set divisor latch to change baud rate
outportb(LINE_CONTROL,EIGHTDAT

ABITS I ONESTOPBITS | NOPARTTY |
DIVISORLATCH);

// enter most and least significant bytes of baud
rate divisor

outportb(RECrEVER_BUFFER,lsb);

www.manaraa.com

238

ouipoitb(INTERRUPT_ENABLE.msb);

I I un-set divisor latcti to continue
ou^rtb(LINE_CONTROL^IGHTDAT

ABITS I ONESTOPBrrS | NOPARTTY);
}

void com_close(void)
{

int status;

// disable 16550 FIFO
outporti3(FIFO_CONTROL,OxOO);
status=inportb(INTERRUPT_IDENT);
if(status = 0x01) printf("FIFO

disabled\n");
else printf("Something is wrong with the

FIFO!!!\n");
}

^define FIVEDATABITS 0x00
#define SIXDATABITS 0x01
#define SEVENDATABITS 0x02
#define EIGHTDATABITS 0x03

#define ONESTOPBITS 0x00
#define TWOSTOPBITS 0x04

#define NOPARTTY 0x00
#define ODDPARTTY 0x08
#defineEVENPARITY 0x18
#define MARKPARTTY 0x28
#define SPACEPARTTY 0x38

#define BREAKCONTROL 0x40

#define DIVISORLATCH 0x80

#define NOINTERRUPTS 0x00

#defineNOHANDSHAKING 0x00

// coni-h

// register stuff
#define C0M_1 0x3F8
#define RECIEVER_BUFFER

COM_l+OxOO
#define TRANSMIT_BUFFER

C0M_1 +0x00
#define INTERRUPT_ENABLE C0M_1 +
0x01
#define INTERRUPT_rDENT

C0M_1 +0x02
#define FIFO_CONTROL C0M_1 +
0x02
#define LE>IE_CONTROL C0M_1 +
0x03
#define MODEM_CONTROL

C0M_1 + 0x04
#define LINE_STATUS C0M_1 +
0x05
#define MODEM_STATUS

C0M_1 +0x06
#define SCRATCH

C0M_1 +0x07
#define DIVISOR_LATCH_HIGH COM_l +
0x01
#define DIVISOR_LATCH_LOW C0M_1 +
0x00

// commimication set-up stuff

// communications prototypes
void SetBaud(long):
void com_init(Iong);
void com_cIose(void);

// controLc

#include "puma-h"
#include "com.h"
#include "pumaext"

extern int dcount

void control(void)
{

int Lj;
int int_x:
double sfaitl,shit2.xabs:
double spie[3];

// Read encoders
for (ii=0;ii<6;ii++)
{

val[ii]=readencoder(ii);

position[ii]=encoder_scale(ii] *((double)
(val[ii]) - encoder_oflfeet[ii]):

www.manaraa.com

239

I I Forward kineniatics
foridnO;
spie[0]=x[0];
spie[l]=x(l];
spie[2]=x[2];

// prepare stufffor serial transmission
for (i=0;i<6;i-!-+)

error_old[ii])*300.0;
errDr_dot(iiI=<erTor[u]-

{

0x8000;

OxOFF;

xabs=&bs(x(i]);
int_x={(int) (10000.0*xabs));
if (x[i] < 0.0) int_x=int_x |

serial[i][l]=int_x & OxOFF;
serial[i][0]=(int_x » 8) &

}

// Evaluate the PUMA jacobian
jacobianQ;

// Error calculation
error_vO;

// Position gains
kp[0]=27.6;
kd[0]=3.5;
kp[l]=-71.9;
kd[l]=-9.0;
kp[2]=51.5;
kd[2]=3.7;
kp[3]=-15.0
kd[3]=-1.2;
kp[4]=-I5.2
kd[4]=-1.2;
kp[5]=-I0.0
kd[5]=-I.O;

if (time < 2.0)
{

invkinO;

// Calculate control command
positiond[3]=0.0
positiond[4]=0.0
positiond[5]=0.0

position[ii];

for (ii=0;ii<6;ii-H-)
{

error[ii]=positiond[ii]-

voltage_out[ii]=kp[iil *error(ii]+kd[ii] *err
or_dot[iil;

}
}

/* positiond[3]=0.0;
positiond[4]=0.0;
positiond[5]=0.0;

for (ii=3;ii<6;ii-H-)
{

error[ii]=positiond(ii]-
position[ii];

error_dot[ii]=(error[ii]-
error_old[ii])*300.0;

voltage_out[ii]=kp[ii]*error[ii]-rkd[ii]*err
or_dot[ii];

}*!

I I Implement impedence control to protect the
joints

voltage_imped=0.02*pow((1.0/(position[
0]-
2.7)),3.0)-K).02*pow((1.0/(position[0]+2.7)),3.0);

voltage_out[0] += voltage_imped+vg[0];
if (position[0] > position_old[0])

voltage_out(0] += 1.0;
if (position[01 < position_old[0])

voltage_out[01 — 0.9;
voltage_imped=-

0.02*pow((1.0/(position[l]-0.7)),3.0)-
0.02*pow((1.0/(position[I]+3.7)),3.0);

voltage_out[I] += voItage_imped+vg[I];
if (position[I] > position_old[ll)
{

if (position[l] > -1.57)
voltage_out[I] -= 0.3;

else voltage_out[l] — 0.9;
}
if (position[l] < position_old[l])
{

if (position[l] > -1.57)
voltage_out(I] += 0.9;

else voltage_out[I] += 0.6;
}
voltage_imped=0.02*pow((1.0/(position[

21-
4.0)),3.0)-K).02*pow((I.0/(position[2]+0.9)) J .0);

www.manaraa.com

240

voltage_out(2] += voItage_imped+vg[21;
if (position[2] > positioii_oId[2])

voitage_oui(2] += 0.47;
if (position[2] < position_oId[2])

voitage_out[2] — 0.47;
voItage_iinped=-

0.02*pow((1.0/(position[3]-3.2)),3.0)-
0.02*pow((1.0/(position[3]+l.8)).3.0);

voltage_out[3] += voltage_imped;
voitage_iinped=-

0.02*pow((1.0/(positioii[4]-1.7)).3.0)-
0.02*pow((1.0/(positioii[4]-!-1.7)),3.0);

voItage_out[4] += voitage_imped;
voltage_imped=-

0.02*pow((1.0/(position[51-5.2)),3.0)-
0.02*pow((1.0/(position[5]+5.2)),3.0);

voItage_oul[5] += voItage_imped;

// Convert voltages into integers to output to
trident board

for (ii=0;ii<6;ii-i-f-)
{

if (febs(voltage_oiit[ii]) > 9.9)
voltage_out[ii]=9.9*voltage_out[iil/fii»s(voltage_o
ut[ii]);

voltage_im[ii]=(int)
(4095.0*(voItage_out[iil+I0.0)/20.0);

}

// Output voltages
for (ii=0;ii<6;ii++)
{

outport(BASE + 0x0030 -i- 2*ii.
voItage_int[ii]);

}

// Save old position values
position_old[0]=position[0];
position_oId[1]=position[1];
position_old[2]=position[2];
position_oId[3]=position[3];
position_oId[4]=position[4];
position_old[5]=position[5 j;

// Save old error values
error_old[0]=erTor(0];
error_old[I]=error(l];
error_oId[2]=error(2];
error_old[3]=error[3];
erTor_old[4]=error(4];
error_oId[5]=erTort5];

// Increment counter
time += 1.0/300.0;

// Take some data
if (dcount=3)
{

dcoimt=C;
if (data < daia_max)
{

data-i-+;

daia_pts[0] [data]=spie[0];

daia_pts[1] [data]=spie(1];

data_pts[2] [daia]=spie[2];
// data_pts2[data]=0.0;

if (data = 999) data=0;
)
/

}
dcount++;

// Send some information over serial port
sync++;
if (svnc = 7)
{

while ((inportb(LINE_STATUS)
& 0x20) = 0);

outportb(TRANSMIT_BUFFER.serial[01[
0]);

while ((inportb(LINE_STATUS)
& 0x20) == 0);

outportb(TRANSMIT_BUFFER.serial(OI [
U):

while ((inportb(LINE_STATUS)
& 0x20) == 0);

outportb(TRANSMIT_BlJFFER.serial[1 j [
0]):

while ((inportb(LINE_STATUS)
& 0x20) == 0);

outportb(TRANSMrT_BUFFER.serial[l][
1]);

while ((inportb(LINE_STATUS)
& 0x20) = 0);

outportb(TRANSMIT_BUFFER.serial[2] [

www.manaraa.com

241

while ((iiiportb(LINE_STATUS)
& 0x20) == 0);

outportb(TRANSMIT_BUFFER.serial(2][
11):

while ((inportb(LINE_STATUS)
& 0x20) = 0);

outportb(TRANSMIT_BUFFER.serial[3] [
0]):

while ((inportb(LINE_STATUS)
& 0x20) == 0);

outportbCniANSMIT_BUFFER.serial[3] [
M);

while ((inportbO;-INE_STATUS)
& 0x20) == 0);

outpoitb(TRANSMrr_BLiFFER.serial[4] [
01):

while ((inportb(LrNE_STATUS)
& 0x20) == 0);

outportb(TRANSMIT_BUFFER.serial(4] [
11);

while ((inportb(LINE_STATUS)
& 0x20) == 0);

outportb(TRANSMIT_BUFFER,serial[5] [
01):

while ((inportb(LrNE_STATUS)
& 0x20) == 0);

outportb(TRANSMrr_BUFFER.serial[5] [
11):

counter-f-+;
if (counter > 199) counter=0;
sync=0;

}
}

// error.c

înclude "puina.h"
#include "puma-ext"

void error_v(void)
{

double
xc(3],pi,e[3],xdot[31,xv[3],xv_dot[3],J[6][6];

double center[3],lI.I2,D,spring,damp;
intLj;
double kp[3]Jcv(3];
double wn,z.T;

i=0;

center[0]=0.5;
center[ll=0.0;
center[2]=0.5;

// inverse kinematics of virtual manipuator
ll=x[0]-center[0];
ifai<-0.075) ll=-0.075;
if 01 >0.075) 11=0.075:

I2=x[l]-center[l];
if(12<-0.075) I2=-0.075;
if(12> 0.075) 12=0.075;

0=x[2]-center[2];
ifa3<-0.075) I3=-0.075:
if (13 >0.075) 13=0.075;

// Determine the position of the robot in the
virtual manipulator's
// end effea space

xv[01=x[01-center[0]-l 1;
xv[1]=x[1]-center[1]-I2;
.w(2]=x(2]-center[2]-l3;

wn=60.0;
1=1.0/300.0;
z=0.7071;

for (i=0;i<3 ;i-H-)
{

.xv_dot[i]=(wn*wn*T*(xv[i]-
.xv_old[i])+xv_dot_old[i]*(2.0-H-2.0*z*wn*T)-
.xv_doi_wav_old[i])/(1.0-i-2.0*z*wn*T+wn*wn*T*
T);

}

for (i=0;i<3;i-H-)
{

xv_dot_way_old[i]=xv_dot_old[i];
xv_dot_old[il=xv_dot[il;
.xv_oid[il=xv[i];

}

spring=530.0;

www.manaraa.com

242

damp=40.0;

ifai<=-0.05)

kp[0]=spimg;
kv[0]=damp;

Ise if (11 >= 0.05)

kp[0]=spring;
kv[0]=damp;

else

kp[0]=0.0;
kv[01=0.0;

if (12 <=-0.05)

kp[l]=spxing;
kv[ll=damp;

else if (12 >= 0.05)

kp[l]=spriiig;
kv[l]=dainp;

else

kp[l]=0.0:
kv[l]=0.0;

if(0 <=-0.05)

kp[2]=spring;
kv[2]=damp;

else if (13 >= 0.05)

kp[2]=spring;
Icv[2]=damp:

else

kp[2]=0.0;
kv[2]=0.0;

J[01[0]=oJr[0][0];
J[0][l]=oJr[01[l];

J[0][2]=oJr[0][2];

J[ll[0]=oJr[l][0]:
J[l]tll=oJr[l][l];
J[l][2]=oJr[l][21;

J[2][0]=oJr[2][0];
J[2][Il=oJr[21[I];
J[2][2]=oJr[2][2];

for (i=0;i<3;i-t-H)

{
voltage_oiit[i]=0.0;
for (j=0 j<3;j+-f-)

{
voitage_out[i] +=

JDl[i]*Oq)[j]''xv[j]+kv[j]*xv_dot(j]);
}

}

voltage_out[0]=voltage_out[0] *-1.0
// voltage_out[l]=voltage_oitt[1]»-1.0

voltage_out[2]=voltage_out[2]*-1.0
voltage_out[3]=0.0;
voltage_out(4]=0.0:
voltage_out[5]=0.0:

// Saftynet
.x[0]=center[0];
.x[l]=center[l];
x[2]=center[2]:
x[3]=0.0;
x[4]=0.0;
x(5]=0.0;

/* if(time>2.1)
{

x[0]=ll;
x[l]=12;
x[2]=xv[21;

} *!

}

// home.c

#include "puina.h"
#indude "puina.ext"

void home(void)
{

www.manaraa.com

243

I I Read encodeis
for (ii=0;ii<6;ii-i-i-)
{

vaI[ii]=readencoder(ii);

position[ii]=encoder_scale[iiI*((doiible)
(val[iil) - encoder_oflfeet[ii]);

}

// Desired trajeaory
positiond[0]=0.0;
positiond[l]=-1.57:
positiond[2]=1.57;
positiond[3]=0.0:
positiond[4]=0.0;
positiond[51=0.0;

// Control law
kp[01=27.6;
kd[0]=3.5;
kp[l]=-71.9:
kd[l]=-9.0;
kp[2]=51.5;
kd[2]=3.7;
lcp[3]=-5.0;
kd[3]=0.0;
kp[4]=-15.2;
kd[4]=-1.2;
kp[5]=-5.0;
kd[5]=0.0;

for (ii=0;ii<6;ii-i-+)

{
error[ii]=positiond[ii]-

position[ii];
error_dot[ii]=(error(iiV

error_old[ii])*300.0:
// velodty[ii]=(position[ii]-
position_old[ii])*300.0;

voltage_out[ii]=kp[ii]*erTor[ii]+kd[iil*err
or_dot[ii];
//

voltage_imped=0.05*pow((1.0/(position[i
i]-L85)),3.0)-K).05*pow((1.0/(position[ii]+1.85
)),3.0);
// if (position[ii] < 1.65)
voltage_imped=0.0;
// if (ii=4)
voltage_out[ii]=voltage_out[ii]+voltage_imped;

if (&bs(voltage_out[ii]) > 9.9)
voltage_out[ii]=9.9*voltage_out[ii]/̂ s(voltage_o
ut(ii]);

voltage_int(ii]=(int)
(4095.0*(voltage_out[ii]+10.0)/20.0);

II Output voltages
for (ii=0;ii<6;ii++)
{

outport(BASE + 0x0030 + 2*ii
voltage_iiit[ii]);

// Save old position values
position_old[0]=positioii[01
positioii_oId[l]=position(l]
position_old[2]=position[2]
position_old[3]=position[3]
position_old[4]=position[4]
position_old[51=position[5]

// Save old error values
error_old[0]=erTor[0];
error_old[1]=error [1];
error_old[2]=erTor(2];
error_old[3]=error[3];
error_old[4]=error[4];
erTor_old[5]=error[5];

// iniLc

#include "piuna.h"
rftnclude "puina.ext"

void imt(void)
{

DISCRETE=OxOOOO;

encoder_scale[0]=0.00010035;
encoder_scale[l]=-0.000073156;
eiicoder_scale[2]=0.000117;
encoder_scaIe[3]=-0.000082663;
encoder_scale[4]=-0.000087376;
encoder_scale[5]=-0.00016377;

eiicoder_ofeet[0]=0.0;
encoder_ofi»t[l]=-21472.0;

www.manaraa.com

244

encoder_offeet[2]=-13426.0;
encoder_ofifeet[3]=8000.0;
encoder_oflfeet[4]=0.0:
encoder_ofifeet[5]=0.0;

positioiid[0]=0.0;
positiond[l]=0.0;
positiond[2]=0.0;
positiond[31=0.0;
positiond[4]=0.0;
positiond[5]=0.0;

error_old[0]=0.0;
error_old[l]=0.0:
eiTor_oId[2]=0.0;
en:or_old[3]=0.0;
eiTor_oId[4]=0.0;

enor_old[5]=0.0;

positioii_old[0]=0.0;
position_old[l]=0.0;
positioii_old[2]=0.0;
positioii_old[3]=0.0;
position_old[4]=0.0;
position_old[5]=0.0;

xv_dot_old[0]=0.0;
xv_dot_old[l]=0.0;
xv_dot_old[2]=0.0;
xv_dot_old[3]=0.0;
xv_doi_old[4]=0.0:
xv_dot_old[5]=0.0:

xv_dot_way_old[01=0.0:
xv_dot_way_old[1]=0.0;
xv_dot_way_old[2]=0.0;
xv_dot_way_old[3]=0.0;
xv_dot_way_old[4]=0.0;
xv_dot_way_oldp]=0.0;

xv_old[0]=0.0;
xv_old[lj=0.0;
xv_old[2]=0.0;
xv_old[3]=0.0;
xv_old[4]=0.0;
xv_old[5]=0.0;

#iliclude "puma h"
#mclude "puma-ext"

void iiivkin(void)
{

double l[4],theta(41[6I,pUcvl,v2.v3;
double valid[4],liiiiits[6][2],dist,sdist;
double ca,sa,cb,sb.cc.sc,r[4][4];
double cl,sl.c23,s23,c4,s4,c5,s5.c6,s6:
double rll.rl2.r21.r22,r23,rl3.r33;
int ij,select;

pi=3.14159;

1[0]=0.4318;
1[11=0.15005;
1[2]=-0.0191;
1[31=0.4331;

valid(0]=l;
valid[l]=l;
valid(2]=I;
valid[3]=l;

select=0;

liinits[0][0]=-2.92;
liinits(0][I]=2.89;

liimts[l][0]=-3.92;
Iiinits[l][l]=0.82;

liimts[2][0]=-l.0l;
Iiimts(2][l]=4.27;

limits[3][0I=-2.02;
Iinuts(3][l]=3.36;

liinits(4][0]=-1.87;
Iiinits(4][l]=1.86;

linuts[5][0]=-5.36;
linuts[5][l]=5.35;

// theta 1 calailation
theta[0][0]=atan2(x[l],x[0])-

atan2(l[l],sqrt(pow(x[0],2.0)+pow(x[l],2.0)-
powa[l],2.0)));

theta[l][0]=ataii2(x[l],x[01)-ataii2G[l],-
sqrt(pow(x[0],2.0)+pow(x[l],2.0)-pow(l(l],2.0)));

theta[2][0]=theta[0][0];
theta[3] [0]=theta(1] [0];

// theta 3 calculatioii
// invkin-C

www.manaraa.com

245

k=(pow(x[0],2.0)+pow(x[l],2.0)+pow(x[2
],2.0)-pow(l[01,2.0)-pow(l[l],2.0)-pow(l[2],2.0)-
powa[3],2.0))/(2.0*l[0]);

theta[0][21=atan2(k,sqrt(pow0[2],2.0)+po
w(I[3],2.0)-pow(k.2.0)))-atan2(l[2],l[3]);

theta[l][2]=theta[0][2];
theta[2] [2]=atan2(k.-

sqrt(pow(l[2],2.0)+pow(l[31,2.0)-pow(k.2.0)))-
ataii2a[2],l[3]);

theta[3][21=theta[2][2];
for (i=0:i<4;i-M-)

{
if (theta[i][2] < -1.01)

theta[i] [2]=tfaeta(i] [2]+2.0*pi;
}

// tbeta 2 calculation
for (i=0;i<4;i-H-)
{

vl=l[2]+l[0]»cos(tlieta(i][2]);

v2=x[0] •cos(theta[i] [0])-i-x[1] •sin(tfaeta[i]
[0]);

v3=l[3]+l[0]*sin(theta[i] [2]);
theta[il [I]=atan2(v3 *v2-

x[2]-S'Lvl»v2+x[2]»v3)-theta[i][2];
if (theta[i][l] > 0.82)

theta[i][l]=tfaeta[i] [1]-2.0*pi;
}

select=i;
sdistpO.O;
for (j=0;j<3 j++)

{

sdist=sdist+&bs(positiond[j]-theta(i] [j]);
> f
break:

for (i=selea+l;i<4;i-H-)
{

if (validp] = 1)
s t

dist==0.0;
for (j=0:j<5u-̂)

{

dist=dist+fabs(positiond|j]-theta[il[j]);
}

if (dist < sdist)
{

sdist=dist:
select=i;

}

// check joint limits
for (i=0;i<4;i-T-i-)
{

for O=0:j<3;j++)

{
if ((limitsO][01 <

thetaplO']) && (theta(i][j] < linuts|j][l]))
{

valid[i]=l;
}
else
{

valid[i]=0;
break;

}
}

}

// select the solution
for (i=0;i<3;i-i-+)

positiond[i]=theta[selea] [i];
}

// jacobian.c

#include "punia.h"
#include "puma.ext"

void jacobian(void)
{

int i;
doî le cl,sl.c2,s2,c3,s3,c23,s23'.
double 11.12.13,14;

// find the closest valid solution to the old position
for (i=0;i<4;i-i-+)

{
if (valid[i] == 1)

11=0.4318;
12=0.15005;
13=-0.019l;
14=0.4331;

www.manaraa.com

246

c l=cos(position[0]);
sl=sin(position(0]);

c2=cos(position[1]);
s2=sin(position[1]);

c3=cos(position[2]);
s3=siii(position[2]);

c23=cos(position[ll+position[2]);
s23=sm(position[l]+position[2]);

eJr[0][0]=-c23*I2:
eJr[0][l]=s3*ll+14;
eJr[0][2]=I4;

eJr[l][0]=c2*ll+c23»13+s23*14;
eJr(l][ll=0.0;
eJr[l][2]=0.0;

eJr[2][0]=-s23*12;
eJr[2][l]=-c3*ll-0;
eJr{2][2]=-l3:

oJr[01[0]=-sl*(c23*13+s23*l4+c2*ll)-

oJr[0] [1]=cl •(-s23 *13+023 »14-s2*l 1);
oJr[0][2]=cl*(-s23*13+c23*l4);

oJr[l][0]=cI»(c23*13+s23*14+c2*Il)-

oJr(l][l]=sl*(-s23*I3+c23*14-s2*ll);
oJr[l][2]=sl*(-s23»l3+c23*14);

oJr(2][0]=0.0;
0Jr[21[ll=K:23»13-s23*l4-c2*lI:
oJr[2][2]=-c23*I3-s23*I4:

// gravity compensatioii
Vg[0]=0.0;
vg[2]=-1.1201 *s23+0.0977*c23;
vg[l]=0.2400*s2+2.1144*c2-

0.5304*vg[2];
// vg[0]=0.0;
// vg[I]=0.0;
// vg[2]=0.0;
}

cl*12;

sl*12;

// forkin.c

#mclude "puina.h"
înclude "puma.ext"

void foiidii(void)
{

double
cl.sl.c2.s2,c23,s23.c4,s4x5.s5.c6,s6;

double
V I.v2.v3.v4.v5.v6,v7.v8.v9.v lO.v 11;

double AB.C;
double l[5],r[4][4];

I[l]=0.4318;
I[2]=0.15005;
I[3]=-0.0191;
lt4]=0.4331;

cl=cos(position[0]);
sl=sin(position[0]);

c2=cos(position[1]);
s2=siii(position[l]);

c23=cos(position[l]+position[2]);
s23=sin(position(1]+position[2]);

c4=cos(position[3]);
s4=sin(position(3]);

c5=cos(position[4]):
s5=sin(position[4]);

c6=cos(position[5]);
s6=sin(position[5]);

// end effeaor position
x[0]=cl*(c23*l[3]+s23*l[4]+c2*l[l])-

sl*l[2];
X(l]=sl*(c23*l[3]+s23*l[4]+c2*l[l])+cl

x[2]=-s23*l[3]+c23*I[4]-s2*l[l];

vl=c4*c5*c6-s4*s6;
v2=s5*c6;
v3=c23*vl-s23*v2;
v4=s4*c5 *06+04*56;

r[ll[ll̂ l*v3-sl*v4;
r[21[ll=sl*v3+cl*v4;
r(31[l]=-s23*vl-c23*v2;

www.manaraa.com

247

v5=c4*c5*s6+s4*c6;
v6=s5*s6;
v7=-c23*v5+s23*v6;
v8=s4*c5*s6-c4*c6;

r[l][2]=cl*v7+sl*v8;
r[2][2]=sl*v7-cî «;
r{3][2]=s23*v5+c23»v6;

v9=c4*s5;
V 10=c23 *v9+s23 *c5;
vll=s4*s5;

r[ll[3]=cl*vlO-sl*vll;
r[2][3]=sl*vl0-i-cl*vl 1;
r[3][3]=-s23*v9+c23»c5;

// end efieaor orientation
B=atan2(sqrt(pow(r[3][l],2.0)-t-pow(r[3][

21,2.0)),r[3][3]);
if (&bs(B) < 0.0001)

{
A=0.0;

C=atan2(-r[l][2],r[l][ll);
}
else if (febs(B-180.0) < 0.0001)
{

A=0.0;

C=atan2(r[ll[2],-r[l][l]);
}
else
r

A=atan2(r[21[31.r[ll[31);
C=atan2(r(31[2],-r[3][l]);

}

.x[3]=C;
x[41=B;
x(5]=A;

}

// loadencoder.c

#include "puma.h"

void loadencoder(int channeUint value)
{

outport(ENC_LOAD + 2*channel,
value);
}

// main.c

#include "puma-h"
#include "com.h"
#inciude "puma-gbl"

int dcount=0;

// Prototypes for interrupt service routines
static void interrupt far iny_isrO;
static void interrupt (•old_isr)();

void main(void)
{

int i,safe_count;
int cdiv.Ib.lib;
long BaudRate.safty:
double fs;
double base_freq= 1192500.0;

FILE •out

// Initialize some variables
initO;

// Calibrate encoders to scratch mark values
calibration2();

// Open serial port
Baudl̂ te=38400;
com_init(BaudRate);

// Determine time base for control loop
fs=300.0;
cdiv=(int) ceil(base_freq/fs);
outportb(0x43.0x36);
hb=cdiv/255;
Ib=(ini) finod(cdiv,255);
outport(0x40Jb);
outpon(0x40,hb);

// Save old interrupt serive routine
disableO;
old_isT=getvea(Oxlc);

// Activate new interrupt service routine
setvea(Oxlc,iity_isr);
enableO;
counter=0;

www.manaraa.com

248

safe_couiit=0;

I I Enable aim power
DISCRETE=DISCRETE | POWER_BIT;
outport(DISCRETE_REGX>ISCRETE);
printf("Tum aim power on!! IVn");

I I Loop in time - nm controller
while(!kbhitO && saftv > 0)
{

// Turn interrupt flag off
disableO;
INTERRUPT_FLAG=0;

I I Run control fimction
controlO;
enable();

counter.

safe count=0:

data_pts2[safe_count]=(double)

safe_count'+-'-.
if (safe_count > 998)

saftv=0;

// Wait for interrupt
while(! INTERRUPT_FL AG)

safty-H-;

}

// Change time base back to nonnal
fe=18.3;
cdiv={int) ceil(base_freq/fs);
outportb(0x43,0x36);
hb=cdiv/255;
Ib=(int) finod(cdiv,255);
outport(0x40.Ib);
outport(0x40.hb);

// close serial port
com_closeO;

// Output counter value
printf("\n\ncounter = %ld\n",counter);

// Output some data
if((out=fopen("ouLdat"."wt"))==NULL)

OUT.DAT.\n"):
printf("Cannot open output file

exit(l);

for (i=0;i<=999:i++)

{
fprintf(out,"%f %f %f

%f\n".data_pts[0] [i],data_pts[1] [i],data_p
ts[2] [i],daia_pts2[i]);

// Loop in time - return to home position
for(i=0;i<500;i-T-r)
{

// Turn interrupt flag off
INTERRUPT FLAG=0;

}

static void interrupt fer my_isr()
{

INTERRUPT FLAG=1;

// Run control fimction
homeO;

// Wait for interrupt

while(!INTERRUPT_FLAG):
}

// Disable arm power
DISCRETE=DISCRETE |

(~POWER_BIT);
outport(DISCRETE_REG.DISCRETE);

// Reactivate old interrupt service routine
disable();
setvect(Oxlc.old_isr);
enableO;

// pathx

#include "puma.h"
#include "puma.ext"

void pathO
{

double u,pi,radius.center[3];
int counter_max;

pi=3.14159;
radius=0.3;
center[0]=0.2;

www.manaraa.com

249

center[l]=0.0;
center[21=0.5;
counter_niax=2001;

counterH-;
if (counter = counter_inax)
{

counter=0;
if (direction = 1) direction—I
else direction=l;

}

u=((double) counter)/((doubIe)
(counter_max-l));

if (direction = -I) u=1.0-u;

x[0]=radixis*cos(pi*u/2.0)+center[0];
x[1]=radius*sin(pi*u/'2.0)+center(1];
x[2]=center[2];

r
)

II punia.ext

I I External variables
extern long DISCRETE;
extern long STATUS;
extern long counter.
extern int data;
extern intii;
extern int val[6];
extern double encoder_scale(6];
extern double encoder_oSret[6];
extern double position[61;
extern double position_old[6];
extern double velocity(6];
extern double positiond[6] ;
extern double error[6];
extern double error_old[61;
extern double error_dot(6];
extern double voItage_out[6];
extern double voltage_imped;
extern int voItage_int[6];

extern double kp[6];
extern double kd[6];
extern double data_pts[3][2000];
extern double data_pts2[1003];
extern int data_niax;
extern double w;
extern double time;
extern double x(6],xstart,xfinish;

extern double tlieta_oldl,theta_old2;
extern int direction;
extern double eJr[6][6];
extern double oJr[61[6];
extern double theta_v;
extern double xv_old[6];
extern double xv_dot_old[6];
extern double xv_dot_way_old[6];
extern double vg[6];
extern int sync;
extern int serial[6][2];

// puma.gbl

// Global variables
int INTERRUPT_FLAG=1;
long DISCRETE;
long STATUS;
long counter.
int data=0;
intii;
int val[6];
double encoder_scale[6];
double encoder_ofiset[6];
double position[6];
double position_old(6];
double velocity[6];
double positiond[6];
double enor[6];
double error_old[61;
double error_dot[6];
double voltage_out[6];
double voItage_iniped;
int voltage_int[6];
double kp[6];
double kd[6];
double data_pts[3][2000];
double data_pts2[1003];
int data_niax=1000;
double w.
double time=0.0;
double x[6],xstart=.5,xfinish—.5;
double theta_oldl=1.57,theta_old2=0.0;
int directioa=l;
double eJr[6][6];
double oJr[6][6];
double tlieta_v=0.0;
double xv_old[6];
double xv_dot_old[61;
double xv_dot_way_old[6];

www.manaraa.com

250

double vg[6];
mtsync=0;
int serial(6][2];

// puma h

#include <stdio.h>
#include <dos.h>
#inciude <floaLh>
#include <stdlib.li>
#indude <bios.h>
#include <como.h>
nfindude <io.h>
#include <math.Ii>
#include <string.h>

// prototypes
int readencodeitint):
void calibration2(void);
void loadencoder(inLint):
void control(void);
void path(void);
void invkin(void);
voidjacobian(void);
void forkin(void);
void error_v(void);

double **niatrix(int,inLint,int);
double ***array3(intintint,intintint);
double *vector(int,int);
int *iveaor(inLint);
void &ee_veaor(double *. int);
void &ee_iveaor(int *, int);
void &ee_inatrix(double int, inLint);

// define some addresses that will be needed
#define BASE
0x0300
#define AD_MUX_SELECT
BASE + 0x002c
#define AD_START_PULSE
BASE+ 0x00 IE
#define DISCRETE_REG
BASE + 0x002E
#define STATUS_REG
BASE + OxOOOC
#define AD_VALUE
BASE + 0x00 IC

#define ENC_COUNTER

BASE+ 0x0010
#define ENC_LOAD

BASE+ 0x0020

// define some bit masks that will be needed
#define AD_MASK
0x4000
#define AD_STATUS_MASK
0x4000
#define POWER.BIT

OxOOOl

// readencoder.c

#include "puma.h"

int leadencoderCint channel)
{

int val;

val=(int)(inportCENC_COUNTER +
2*channel));

return val;
}

NURBS Curve

// cahl)raton2.c

înclude "punia.h"

void calibration2(void)

{
loadencoder(0.0);
Ioadencoder(L0);
loadencoder(2,0);
loadencoder(3,8000);
loadencx)der(4,0);
loadencoder(5,0);

}

// controLc

www.manaraa.com

251

#include "puma h"

extern double encoder_scale(6];
extern double encoder_ofifeet[61;
extern double position[6];
extern double position_old[6];
extern double vg[61;
extern double error_old[6];
extern double foFced[6];
extern double forced_old[6];
extern double f_fil_old[61;
extern double f_fiI_way_old[61;
extern double data_pts(3][1500];
extern double time:
extern int data;
extern double evJl[3][3];
extern double eJ'w(3][3];
extern double x[6];
extern double x_old[6];
extern double joint_linut;
extern double fv[6];
extern double r[3][3];
extern double rv[3I[3];
extern double eJI[3][3];
extern double f_flag;

void control(void)
{

intuj;
int val[6];
double kp[6];
double kd[6];
int voltage_int[6];
double voItage_out[6]:
double error(6];
double error_dot[6];
double f_fil[6];
double positiond[6];
double voltage_imped:
double wn = 2.0*5.0*3.14159;
double zeta = 1.0;
double T = 1./300.;

double KpLKpw;
double fb[61;
double fev[6];

// Read encoders
for (i=0;i<6;i++)

{
val[i]=readencoder(i);

position[i]=encoder_scale[i]*((double)
(val[i]) - encoder_offset[i]);

}

// Get gravity compensation
gravityO;

// Forwaid kinematics
forkinO;

// Error calculation
error_vO;

// Get end effeaor force
get_forceO;

// Evaluate the PUMA jacobian
jacobianO;

// Position gains
kp[01=27.6;
kd[01=3.5;
kp[ll=-71.9:
kd[l]=-9.0:
kp[2]=51.5;
kd[2]=3.7;
kp[3]=-15.0;
kd[3]=-1.0:
kp(4]=-25.2:
kd(4]=-1.2;
kp[5]=-10.0;
kd[5]=-1.0;

positiond[0]=-0.50;
positiond[l]=-0.17;
positiond[2]=0.3 5;
positiond[3]=0.0;
positiond[4]=0.0;
positiond[5]=0.0;

// Calculate control command
for (i=0;i<6;i-i-+)

{
error[i]=positiond[il-

positionp];
error_dot(i]=(error[i]-

error_old[i])*300.0;

f_m[il={forced[il*T*T*wn*wn+f_fil_old
[i]*(2,0*zeta*wn*T+2.0)-

www.manaraa.com

252

f_fil_way_oId[i])/(1.0+2.0*zeta*wn*T+wn*wn*T
*T);

voltage_out[i]=kp(i]*en:or[i]+kd[i]*enor
_dot[i];

}

for (i=0;i<3;i-H-)
{

ffa[i]=0.0;
for (j=0:j<3;j++)

{
ffa[i] +=

}
}
for (i=0;i<3;i++)

{
fev[i]=0.0;
for (j=0;j<3;j-H-)
{

fev[i] +=
rv[i]DTfb[j];

}

// I can't believe I am trying this unattended
if (time > 5.0)
{

joint_Iimit =1.4;

fev(0]=0.0:
fev[l]=0.0;
if (f_£lag = 1)

fev(2]=0.0;

for (j=0;j<3;j++)

{

voltage_out(j]=0.0;

for
(i=0;i<3:i+-f-)

{

voltage_out|j] += evJl[i][j]*(fv[i]-
0.5*fev[i]);

}
}

voltage_out[0]=voltage_out[0]*-1.0;

voltage_out[2]=voltage_out[2]*-l.O;
}

// Implement impedence control to protect the
joints

voltage_imped=0.02*pow((1.0/(position[
01-
2.7)),3.0)-K).02»pow((1.0/(position[0]+2.T)).3.0);

voltage_out[0] += voltage_imped+vg[01;
if (position[01 > position_old[0])

voltage_out[Oj += 1.0:

if (position[0] < position_old[0])
voltage_out[0] — 0.9:

voltage_imped—
0.02*pow((1.0/(position[l]-0.7)) J .0)-
0.02*pow((1.0/(position[1]+3.7)).3.0):

voltage_out[lI += voltage_imped+vg[l];
if (position[ll > position_old[l])
{

if (position[l] > -1.57)
voltage_out[l] -= 0.3:

else voltage_out[l] -= 0.9:

if (position[l] < position_old[ll)
{

if (position[l] > -1.57)
voltage_out[l] += 0.9:

else voltage_out(l] += 0.6:
}

voltage_tmped=0.02*pow((1.0/(position[

21-
joint_Iimit)),3.0)-H).02*pow((1.0/(position[21+0.9)
),3.0):

voltage_out[21 += voltage_imped+vg[21;
if (position(21 > position_old[21)

voltage_out[2] += 0.47:

if (position[2] < position_old[21)
voltage_out[21 -= 0.47:

voltage_imped=-

0.02*pow((1.0/(position[3]-3.2)),3.0)-
0.02*pow((1.0/(position[31+1.8)),3.0):

voltage_out[31 += voltage_iniped:

voItage_imped=-
0.02*pow((1.0/(position[41-1.7)).3.0)-
0.02*ix)w((1.0/(position[4]+1.7)),3.0):

voltage_out[4] += voltage_imped:

www.manaraa.com

253

voltage_unped=-
0.02*pow((1.0/(position[5]-5.2)).3.0)-
0.02*ix)w((l .0/(position[51+5.2)),3.0);

voltage_oiit[51 += voItage_imped;

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i-H-)
{

if (febs(voltage_out[i]) > 9.9)
voltage_out[i]=9.9*voltage_out[i]/&fas(voltage_out
[i]);

voltage_int[i]=(int)
(4095.0*(voltage_out[i]+10.0)/20.0);

// Output voltages
for (i=0;i<6;i-H-)

{
outport(BASE + 0x0030 + 2*i

voltage_int[i]);
}

// Save old position values
position_old[0]=position[0];
position_old[I]=position[1];
position_old[2]=position[21;
position_oldt3]=position[3];
position_old[4]=position[4];
position_oId[5]=position[5];

// Save old error values
error_old[01=erTor[01;
error_old[1]=error[1];
error_old[2]=error[2];
error_oId[3]=error [3];
error_old[41=error[4];
error_old[5]=error[5];

// Save old force values
forced_old[0]=forced[0];
forced_old[1]=forced[1];
forced_old[2]=forced[2];
forced_old[3]=forced[3];
forced_old[4]=forced[4];
forced_old[5]=forced[5];

f_ffl_way_old[0]=f_fil_old[0];
f_fil_way_old[l]=f_fil_old[I];
f_m_way_old[2]=f_fil_old[2];
f_fil_way_oId[3]=f_fil_old[3];
f_fil_way_old[4]=f_fil_old[4];

f_fil_w^_old[51=f_fil_oId[5];

f_ffl_old[0]=f_fil[0];
f_fil_old[l]=f_ffl[lI;
f_fil_old[2]=f_fiI[2];
f_ffl_old[3]=f_fil[31:
f_fil_old[4]=f_m[4];
f_fil_old[51=f_fil[5];

x_old[0]=x(0];
x_old[l]=x[Il;
x_old[2]=x(2]:
x_old[3]=x[3];
x_old[4]=x[4];
x_oId[51=x[51;

dme = time + 1./300.;

// Take some data
if (data < 1000)
{

data_pts[0] [data]=x[0];
data_pts[1] [datal=x[1];
data_pts(2] [data]=x[2];
data-++:
if (data = 999) data=0;

}
}

// error.c

#include "puma-h"

extern double u_vin:
extern double x[6]:
extern double xv_old[3];
extern double xv_dot_old[3];
extern double xv_dot_way_old[3];
extern double fv[6];
extern double rv[3][3|;
extern int f_flag;

void error_v(void)
{

double xv[3],xv_dot[3];
double xq)[3],yq)[3],zq)[3];
double b[3],db'[3],vup[3];
double xc[3],e(3],xdot[3],d_u_vni,mag;
double xh[3],yh[3],zh[3];
intLflag;

www.manaraa.com

254

double kp[3]Jcv[3];
double wiuz,T;

i=0;

xcp[0]=0.5;
xcp(l]=0.5;
xcp[2]=0.5;

ycp[0]=-0.1;
ycp[l]=0.0;
yq)[2]=0.1;

zq)[0]=0.5;
zq)[l]=0.3;
zcp[2]=0.5;

I I invei^kineiiiatics of virtual manipuaior
while(i != 30 && flag != I)
{

b[0]=(1.0-u_vm)*(1.0-u_vm);
b[1]=2.0*(1.0-u_vni)*u_vni:
b[2]=u_vin*u_viii;

d_u_vm=e[0]*xdot[0]+e[1] •xdot[1]+e[2]
•xdot[2];

u_vni=u vm+d u vm;

// parameter in bounds
if (u_vm < 0.0)
{

}

u_vm=0.0:
flag=l;

else if (u_vm > l.O)
{

u_vm=1.0;
flag=I;

}
// parameter nnf changing

else if (M)s(d_u_vm) < 0.01)
{

}

i++;

Qag=l;

[2];

[2];

[21;

xc[0]=xcp[0]*b[0]+xq)[ll*b[l]+.\q)[2]*b

.xc[lj=ycp[0]*b(0]+yq)[l]*btl]+ycp[2]»b

.xc[2]=zcp[0]*b[0]+zq)[l]*b[l]+zq)(2]*b

e[0]=x[0]-.xc[0];
e[I]=x(l]-.xc[l];
e[2]=x[2]-xc[2];

2.0*u vnu

db[0]=-2.0*(1.0-u_vin);
db[l]=2.0*(l .0-u_vin)-

db[2]=2.0*u_vni;

.xdot[01=xcp[0]*db[0]+xcp[l]*db[l]+xcp[
2]*db[2];

xdot[1]=yqp[0] *db[01+yqj[1] *db[l]+yq)[
2]*db[2];

xdot[2]=zq)[0]*db[0]+zq)[l]*db[l]+zq)[

// forward kinematics
b[0]=(1.0-u_vm)*(1.0-u_vm);
b[I]=2.0*(1.0-u_vm)*u_vm:
b[2]=u_vm*u_vm;

[21;

[2];

[2];

2]=»db[2]

2]*db[21

2]*db[2]

xc[01=xq3[0]*b[0]+xcp[l]*b[l]+.xcp[2]»b

.xc[l]=yq)[01*b[0]+yq)[ll*b[l]+yq)[2]*b

xc[2]=zq)[0]=»b[0]+zcp[I rb[l]+zcp[2]*b

db[0]=-2.0*(1.0-u_vm);
db[I]=2.0*(1.0-u_vm)-2.0*u_vm:
db[2]=2.0*u_vm;

xdot[0]=xcp[01«db[0]+xq)[l]»db[l]+xcp[

xdot[l]=ycp[0] *db[0]+yq)[1] *db[I l+ycp[

xdot[21=zcp[01*db[01+zq)[l]*db[l]+zcp[

inag=sqrt(xdct [0] •xdot[0]+.xdot[I]*xdot[
ll+xdot[2]*xdot[2]);

2]*db[2];

www.manaraa.com

255

zh(0]=xdot[0]/mag;
zh[l]=xdot[l]/inag;
zfa[2]=xdot[2]/inag;

vup[0]=0.0;
vup[l]=0.0:
vup(2]=1.0:

yfa(0]=zh[l]*VTip[2]-viip(1] *2li[2];
yh(l]=vup(0]*zh[2]-zh(0I*vup[2];
yh[2]=zh[0]'HTip[1]-vup[0]*zfa[1];

niag=sqrt(yh[0]*vh(0]+vh[l]*vh[l]+vh(2
]*yfa[2]);

yh[0]=yfa[01/inag;
yh[l]=yh[li/inag;
yh[2]=yh[2I/mag;

xh[0]=yh[l]»zh[2]-zh[ll-̂ h[2];
xh(l]=k(01*yh(2]-yh[01*k[2];
xh[2]=yh[0I*k[l]-'zh[OI*yh[1];

inaff=sqrt(xfa[0] *xhrO]+xh[1] *xh[11+xh[2
]*xfa[2]);

xh[0]=xh[0]/inag;
xh[l]=xh[l]/mag;
xh[2]=xh[2]/inag;

rv[01[0]=xh[0];
rv[0][ll=xh[l]:
rv[0][2]=xh[2];
tv[l][0]=yh[0];
rv[l][l]=yh[l];
rv[l][2]=yh[2];
rv[2][0]=zh[0];
rv[2][ll=zh[l];
rv[2][2]=zh(2];

// Determine the positioa of the robot in the
virtual manipulator's
// end eflFea space

xv[0]=xh(0]*x[0]+xh[l]*x[l]+xh[2]*x[2]
-xh[0]*xc[0]-xh[l]*xc[l]-xh[2]*xc[2];

xv[ll=yh[0]*x[0]+yh[l]*x[l]+yh[2]*x[21
-yh[0]*xc[0]-yh[l]*xc[ll-yh[2]*xc[2];

xv[2i=zh[0]»x[0]+zh[ipx[I]+zh(2]*x[2]
-zh[0]*xc[0]-zh(l]*xc[l]-zh[2]*xc[2];

wn=60.0;
T= 1.0/300.0;

z=0.7071;

for (i=0u<3;i++)

{
xv_dot[i]={wn*wn*T*(xv[i]-

.xv_oId[i])+xv-_dot_oId[i]*(2.0+2.0*z*wn*T)-
xv_dot_waY_oId[i])/(1.0+2.0*z*wn*T+wn*wn*T*
T):

for (t=0:i<3;i++)

{

.w_dot_way_old[i]=xv_dot_old[i];
xv_dot_old[i]=xv_dot[i];
.w_old[i]=xv[i];

}

if (u_vm <= 0.0)

{
kp[2]=470.0:
kv[2]=30.0;
f_flag=I;

}
else if (u_vTn >= 1.0)

{
kp[2]=470.0;
kv[2]=30.0;
f_flag=l;

}

else
{

kp(2]=0.0;
kv[2]=0.0;
f_flag=0;

}

kp[0]=470.0; kv[0]=30.0;
kp[l]=470.0-. kv[l]=30.0;

for (i=0;i<3;i-r-t-)

{

fv[i]=kp[i] *xv[i]+ky[i] •xv_dot[i];
}

}

// ft.c

#include "pumah"

www.manaraa.com

256

extern int stop;
extern double forced[6];
extern double r[3][3I;
extern double fbasis[6];

void init_force(void)
{

int status.data:

ptintf("Tnitialize ATI force
transducer\n");

printf("Written at LARCQn");
printf("copyright 1996. Jim Ed\vards\n'');

status=inportb(STATUS_FT);
printf("\n\nCheck STATUS_FT register

%d\n" .status):
status=inportb(CONFIG);
printf("Check configuration register

%d\n" .status);

if (inportb(STATUS_FT) & 0x10)
{

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf("preload 1 %d\n'',data);
}

if (rnportb(STATUS_FT) & 0x10)
{

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printfC'preload 2 %d\n".data);
)
/

// send CPP to switch to parallel board
printf("Switch to parallel boardXn");

while((inportb(STATUS_FT) & 0x80) = 0)
sleep(l);

send(67); //C
printfCC");

wbile((inportb(STATUS_FT) & 0x80) == 0)
sleep(l);

send(80); // P

printfC'P");
while((inportb(STATUS_FT) & 0x80) = 0)

sleep(l);
send(80); // P
printfCP");
while((inportb(STATUS_FT) & 0x80) ==

0) sleep(l);
send(13); //<cr>

printf("<cr>\n'');

// wait for acknowledgment
whiIe((inportb(STATUS_FT) & 0x10) == 0);

//printf("xx\n");
daia=inportb(PORT_B)« 81

inportb(PORT_A);
printf("%d\n",data);

while((inportb(STATUS_FT) & 0x10) == 0);
//printf("xx\n");

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf("%d\n",data);
while((inportb(STATUS_FT) & 0x10) ==

0): //printf("xx\n");
data=inportb(PORT_B)« 8 [

inporti)(PORT_A);
printf("%d\n".data);

wfaile((inportb(STATUS_FT) & 0x10) = 0);
//printf("xx\n");

data=inportb(PORT_B)« 8 |
inportb(PORT_.A.);

printf("%d\n",data);

if (inportb(STATUS_FT) & 0x10)
{

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf(".%d\n",data);
}
if (inportb(STATUS_FD & 0x10)

data=inportb(PORT_B)« 8 I

inportb(PORT_A);
printf("..%d\n",data);

}
if (inportb(STATUS_FT) & 0x10)

{
data=inportb(PORT_B)« 8 |

inportb(PORT_A);
printf("...%d\n",data);

if (inportb(STATUS_FT) & 0x10)
{

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf("... .%d\n",data);
}

if (inportb(STATUS_FT) & 0x10)
{

www.manaraa.com

257

data=inpoitb(PORT_B)« 8 |
mportb(PORT_A);

printf(" %d\n".data);
}
if (mportb(STATUS_FT) & 0x10)
{

data=inportb(PORT_B)« 8 |
mportb(PORT_A):

prmtf(" %d\n".daia);
}

// sendCDB
printf("\n Set to communicate binaiy

mode\n");
whiIe((inportb(STATUS_FT) & 0x80) = 0)

sleep(l);
send(67);

while((inportb(STATUS_FT) & 0x80) = 0)
sleep(l):

while((inportb(STATUS_FT) & 0x10) = 0);
data=inportb(PORT_B)« 8 |

iiipoitb(PORT_A);
printf("%d\n",data);

whiIe((inportfa(STATUS_FT) & 0x80) =
0) sleep(l);

send(68);
while((mportb(STATUS_FT) & 0x80) == 0)

sleep(l);
whiIe((iiiportb(STATUS_FT) & 0x10) — 0);

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf("%d\n".data);
while((mportb(STATUS_FT) & 0x80) == 0)

sleep(l);
send(66);

while((inportb(STATUS_FT) & 0x80) == 0)
sleep(l);

whiIe((mportb(STATUS_FT) & 0x10) =
0); //prmtf("xx\n");

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

prmtf("%d\ii",daia);
while((inportb(STATUS_FT) & 0x80) =

0) sleep(l);
send(13);

while((inportb(STATUS_FT) & 0x80) = 0)
sleep(l);

whiIe((mportb(STATUS_FT) & 0x10) == 0);
//printf("xx\n");

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

prmtf("%d\n",data);

wfaile((inportb(STATUS_FT) & 0x10) == 0);
//priiitf("xx\n");

data=inportb(PORT_B)« 8 |
inpoitb(PORT_A);

printf("%d\ii'',data);
whiIe((mportb(STATUS_FT) & 0x10) = 0);

//printf("xx\n");
data=mportb(PORT_B)« 8 |

inportb(PORT_A);
printf("%d\n".data):
while((iiiportb(STATUS_Fr) & 0x10) =

0); //prmtf("xx\nr);
data=iiiportb(PORT_B)« 8 |

inportb(PORT_A);
printf("%d\n",data);

whiIe((mportb(STATUS_FT) & 0x10) = 0);
//printf("xx\n");

data=inportb(PORT_B)« 8 |
inportb(PORT_A);

printf("%d\n",data);
while((mportb(STATUS_FT) & 0x10) = 0);

//printf("xx\n");
data=inportb(PORT_B)« 8 |

inpora)(PORT_A);
printf("%d\n''.data);

while((mportb(STATUS_FT) & 0x10) = 0);
//printf(''xx\n");

data=inportb(PORT_B)« 8 |
inpoitb(PORT_A);

priiitf("%d\ii".data);
}

void get_force(void)
{

int force[T|,ij;

send(14);

while((iiiportb(STATUS_FT) & 0x10) =
0); //printf("xx\n");

force[6]=inportb(PORT_B)« 8 |
inportb(PORT_A);

while((inportb(STATUS_FT) & 0x10) =
0); //printfC'xxW);

force[0]=inportb(PORT_B)« 8 |
inportb(PORT_A);

wliiIe((inportb(STATUS_FT) & 0x10) ==
0); //printf("xx\n");

www.manaraa.com

force(lI=mportb(PORT_B)« 8 |
mportb(PORT_A);

while((iiiportb(STATUS_FT) & 0x10) =
0); //printf("xx\ii");

force(21=iiiportb(PORT_B)« 8 i
inportb(PORT_A);

whiIe((inportfa(STATUS_FT) & 0x10) ==
0); //printf("xx\n");

force[3]=inportb(PORT_B)« 8 1
inportb(PORT_A);

while((inportb(STATUS_FT) & 0x10) =
0); //priiitf("xx\ii");

force[4]=iiiportb(PORT_B)« 8 |
mportb(PORT_A);

wIuIe((inportb(STATUS_FT) & 0x10) =
0); //prmtf(''xx\n");

force[5]=inportfa(PORT_B)« 8 |
inportb(PORT_A);

if (force[6] != 0) stop=0;

forced[0]=((double) (force[0]))*0.1-
fbasis(0]+3.6*r[2][01;

forced(l]=((double) (force[l]))*O.I-
fbasis[l]+3.6»r(21[l];

forced[2]=((double) (force[2]))*0.1-
fbasis[2]+3.6*r[2][21;

forced[3]=((double) (force[3]))*0.005-
fbasis[3]:

forced[4]={(doubIe) (force[4]))*0.005-
fbasis(4];

forced[5]=((double) (force[5]))*0.005-
fbasis[5];

}

void send(iiit data)
{

int msb, Isb:
long i;

msb=(data & 0x00)» 8;
lsb=data & OxFF;

outportb(PORT_C,lsb);
outportb(PORT_Djnsb);

}

// gravity.c

#include "puma h"

extern double vg(6];
extern double position[6];

void gravitv(void)
{

double c2,s2.c23.s23;

c2=cos(position[lJ);
s2=sin(position[l]);

c23=cos(position[1]+position(21):
s23=sin(position[1]+position[2]):

// gravity compensation
vg[01=0.0-,
vg[2]=-1.1201*s23+0.0977»c23;
vg[1 l=0.2400*s2+2.1144*c2-

0.5304*vg[2];
}

// home.c

înclude "punia.h"

extern double encoder_scale[6];
extern double encoder_ofiset[6];
extern double position(6];
extern double eiror_old[6];

void home(void)
{

int i;
int val[6];
double positiond[6];
double lq}[6];
double kd[6];
double error[6];
double error_dot[6];
double voItage_out(6];
int voltage_int[6];

// Read encoders

www.manaraa.com

259

position(i]=encoder_scale[i] *(((100516)
(val[i]) - enco<ier_ofifeet(i]);

for (i=0;i<6;i++)

{
val[i]=readencoder(i);

voltage_int(i]);
}

outport(BASE + 0x0030 -i- 2»i,

Desired trajectory
positiond[0]=0.0:
positiond[1]—1.57;
positiond[2]=1.57;

// Save old error values
error_old[0]=error[0]
error_old[1]=error[I]
ertor_old[2]=erTor[2]
error_old[3]=error[3]
error_old[4]=error[4]
error_old[5]=error[5]

//

positiond[3]=0.0;
positiond[4]=0.0;
positiond[5]=0.0;

// Control law
kp[0]=27.6;
kd[0]=3.5;
kp[l]=-71.9;
kd[l]=-9.0;
kp[2]=51.5;
kd[2]=3.7;
i£p[3]=-5.0;
kd[3]=0.0;
kp[4]=-15.2;
kd[4]=-1.2;
kp[5]=-5.0;
kd[5]=0.0;

for (i=0;i<6;i++)

{
error[i]=positiond[i]-position[i]:
error_dot[i]=(error(i]-

error_old[i])*300.0;

voltage_out[i]=kp[i]*erTor(i]+kd[i]*error
_dot[i];

if (6bs(voItage_out[i]) > 9.9)
voltage_out[i]=9.9*voltage_out[i]/febs(voltage_out
[i]);

voltage_int(i]=(int)
(4095.0*(voltage_out[i]+10.0)/20.0);

}

// Output voltages
for (i=0;i<6;i++)

{

// iniLc

#include "puma.li"

extern long DISCRETE;
extern double encoder_scale[6];
extern double encoder_ofiset[6];
extern double error_old[6];
extern double position_oId[6];
extern double forced_old[61;
extern double f_fil_old[6];
extern double f_fil_way_old(6];
extern double x_old[6];
extern double xv_old[3];
extern double xv_dot_old[3];
extern double xv_dot_way_oId[3];
extern double fbasis[6];

void init(void)
{

int i;

DISCRETE=0x0000;

encoder_scale[0]=0.00010035;
encoder_scaIe[1]=-0.000073156;
encoder_scale[2]=0.000117;
encoder_scale[3]=-0.000082663;
encoder_scale[4]=-0.000087376;
encoder_scale(5]=-0.00016377;

encoder_oflFset(0]=0.0;
encoder_oflfset[1]=-21472.0;
encoder_ofifeet[2]=-13426.0;
encoder_oflfeet[3]=8000.0;
encoder_ofiFset[4]=0.0;
encoder_offeet[5]=0.0;

www.manaraa.com

260

error_oId[0]=0.G;
enor_old[l]=0.0;
error_old[2]=0.0;
error_old[3]=0.0;
error_old[4]=0.0;
eiTor_old[5]=0.0;

position_old[0]=0.0;
positioii_old[l]=0.0;
posilioii_old[2]=0.0:
position_old[3]=0.0;
position_old[4]=0.0;
position._old[5]=0.0;

forced_old[0] = 0.0;
forced_old[l] = 0.0;
forced_old[2] = 0.0;
forced_old[3] = 0.0;
forced_old[4] = 0.0;
forced_old[5] = 0.0;

f_fil_old[0] = 0.0;
f_fil_old[l] = 0.0;
f_fil_oId[2] = 0.0;
f_fil_old(3] = 0.0;
f_fil_old[4] = 0.0;
f_fil_old[5] = 0.0;

f_fil_way_old[0] = 0.0;
f_fil_way_old[l] = 0.0;
f_fil_way_oId[2] = 0.0;
f_fil_way_oId[3] = 0.0;
f_fil_way_old[4] = 0.0;
f_fil_way_oId[5] = 0.0;

.x_old[0] = 0.0;

.>c_old[l] = 0.0;
x_oId[2] = 0.0;
.x_oId[3] = 0.0;
x_oId[4] = 0.0;
.x_old[5] = 0.0;

for (i=0;i<3;i++)

{
.xv_old[i]=0.0;
.xv_dot_old[i]=0.0;
xv_dot_wav_old[i]=0.0;

}

for (i=0;i<6;i++)

{

fbasis[i]=0.0;
}

}

// invkiiLc

#include "puma.Ii''
#indude "pumaext"

void iiivkiii(void)
s I

double I[4],theta[4][6],pi4c,vl,v2,v3;
double valid[4],liimts[61[2],disLsdist;
double ca,sa,cb,sb.cc,scr[4][4];
double cl,sl,c23,s23,c4.s4.c5.s5,c6.s6;
double rl I,rl2,r21.r22,r23.rl3.r33:
int i,j,select;

pi=3.14159;

1[0]=0.4318;
1[1]=0.15005;
1[2]=-0.0191;
1[3]=0.4331;

valid[0]=l;
valid[l]=l;
valid[2]=l;
valid[3]=l;

select=0;

liniits[0][0]=-2.92;
liiiiits(0][l]=2.89;

Iimits[l][0]=-3.92;
liinits[l][l]=0.82;

liiiiits[2][0]=-1.01;
liinits[2][l]=4.27;

limitsP] [0]=-2.02;
limits[3][l]=3.36;

liimts[4][0]=-1.87;
liinits[4][l]=1.86;

liinits[5] [0]=-5.36;
liinits(5][l]=5.35;

// theta 1 calculation
theta[0] [01=atan2(x[ll,x(0])-

atan2G[11 ,sqrt(pow(x(0],2.0)+pow(x[1],2.0)-
powa[l],2.0)));

www.manaraa.com

261

theta(l][0]=atan2(x[l],x[0])-atan2(l[l],-
sqrt(pow(x[0],2.0)+pow(x[l],2.0)-pow(l[l],2.0)));

theta[2][0]=tlieta[0][01;
theta[3][0]=theta[l][0];

// theta 3 calculation
k=(pow(x[0],2.0)+pow(x[l],2.0)+pow(x[2

],2.0)-powa[0],2.0)-powa[l],2.0)-powa[2],2.0)-
powa[3],2.0))/(2.0*I[01);

tlieta[0] [2]=atan2(k,sqrt(pow(I[2],2.0)+po
w(I[3],2.0)-pow(k,2.0)))-atan2(I[2],I[3]);

theta[l][2]=tlieta[01[2];
theta[2] [2]=aian2(k,-

sqrt(pow(l[2],2.0)+pow(l[3],2.0)-pow(k.2.0)))-
atan2a[2],l[3]);

theta[3] [2]=theta[2] [2];
for (i=0;i<4;i++)
{

if (theta(i][2] < -1.01)
thetap] [2]=theta[i] [2]+2.0*pi;

X i

I I theta 2 calculation
for (i=0;i<4;i++)

{
V l=l[2]+l[0]*cos(theta[i] [2]);

v2=x[0] *cos(theta[i] [0])+x[I] *sin(theta[i]
[0]);

v3=l[3]+l[0]*sin(theta[i][2]);
theta[i] [1]=atan2(v3 *v2-

x[21»vl.vl*v2+x[2]*v3)-theta(il[2];
if (theta[i][l] > 0.82)

thetati][l]=theta[i] [I]-2.0*pi;
}

// check joint limits
for (i=0;i<4;iT+)

{
for (j=0:j<3:j++)

{
if ((liinits[j][0] <

theta(i](j]) && (theta[i][j] < linuts|j][l]))

{
valid[i]=l;

}
else
{

valid[i]=0;
break;

}
}

}

// find the closest valid solution to the old position
for (i=0;i<4;i-H-)
{

if (validp] == 1)
{

select=i;
sdist=0.0:
for O'=0:j<3;j-H-)
{

sdist=sdist-rfabs(positiond|j]-tfaeta(i] Q]);
}
break;

}
}

for (i=select+l:i<4;i+-i-)

{
if (valid[i] = 1)
{

dist=0.0;
for 0=0:j<3;j-i-i-)

{

dist=dist+febs(positiond[j]-theta(i] [j]);
}
if (dist < sdist)
{

sdist=dist;
select=i;

}

}

// selert the solution
for (i=0;i<3;i-i-+)

positiond[i]=theta[seleaI [i];
}

// jacobiaiLC

#include "puma-h"

extern double position[6];
extern double evJl[3][3];
extern double eJw[3][3];
extern double r[3][3];
extern double rv[3][3];

www.manaraa.com

262

extern double eJl[3][3];

void jacobian(void)
{

double c2.c3,s3,c23.s23;
double 1142,13,14;
double bJl[3] [3];
int Lj,k:

11=0.4318;
12=0.15005;
13=-0.0191;
14=0.4331;

c2=cos(position[l]);

c3=cos(position[2]);
s3=sm(position[2]);

c23=cos(position[l]+position[2]);
s23=sin(position[1]-i-position[2]);

eJl[0][0]=-c23*I2;
eJl[0][l]=s3*ll+14;
eJl[01[2]=I4;

eJl[lH0]=c2*l 1+C23 *l3+s23 *14:
eJl[l][l]=0.0;
en[l][2]=0.0;

en[2][0]=-s23*12;
eJl[2][l]=-c3»ll-l3;
eJl[2n21=-I3;

for (i=0;i<3;i+-i-)
{

for (j=0;j<3;j++)

{
bJl[i][i]=0.0;
for (k=0±<3 \k++)

{

bJl[i][j] +=
r[il[k]*eJl[k][j];

}

}

for (i=0;i<3;i-i-t-)
{

for (j=0;j<3;j++)

{
evJl[i][j]=0.0;
for (k=0;k<3;k++)

rv[i][kl*bJl[k][j];
evJimm

}

eJw[0][0]=-s23;
eJw[0][l]=0.0;
eJw[0][2]=0.0;

eJw[l][0]=0.0
eJw[l][l]=1.0
eJw[l][2]=1.0

eJw[2][0]=c23;
eJw[2][l]=0.0;
eJw[2][2]=0.0;

// forkin.c

înclude "puma h"

extern double position[6];
extern double x[6];
extern double r[3][3];

void forkin(void)
{

double
cLsl.c2.s2,c23.s23.c4.s4,c5.s5,c6.s6;

double 1[51;
double

V I.v2.v3,v4.v5,v6,v7.v8.v9,v 10,v 11;

1[1]=0.4318;
1[2]=0.15005;
1[3]=-0.0191;
1[4]=0.4331;

cl=cos(position[0]);
sl=sin(position[0]);

c2=cos(position[lJ);
s2=sin(position[1]);

c23=cos(position[l]+position[2]);
s23=sin(position[l]+position[2]);

www.manaraa.com

263

c4=cos(position[31);
s4=sin(posilioii[3]);

c5=cos(position(4]);
s5=sin(positioii[4]);

c6=cos(position[5]);
s6=sm(position(5]);

void loadencoder(int channel,int value)
{

sl*l[2];
x[0]=cl»(c23*l[3]+s23*I[4]+c2*l[l])-

x[l]=sl*(c23*l[31+s23*l[4]-fc2*l[l])+cl

x[2]=-s23*l[3]+c23«I[4]-s2*l[l];
x[3]=0.0;
x[4]=0.0;
x[5]=0.0;

V1 =c4*c5*c6-s4*s6;
v2=s5*c6:
v3=c23*vl-s23»v2;
V4=s4*c5*c6+c4*s6;

r[0] [0]=cl *v3-s 1 *v4;
r[l][0]=sl»v3+cl*v4;
r|;2][0]=-s23•vl-c23•̂ r2;

v5=c4*c5*s6+s4*c6;
v6=s5*s6;
v7=-c23 *v5+s23 *v6;
v8=s4*c5*s6-c4*c6;

r[01[l]=cl»v7+sl*v8:
r[l][ll=sl*v7-cl*v8;
r[2][l]=s23*v5+c23*v6;

v9=c4*s5;
vl0=c23*v9+s23*c5;
vll=s4*s5;

r[0][2]=cl*vl0-sl*vll;
r[l][2]=sl*vl0+cl*vll;
r[2][2]=-s23 *v9+c23 »c5;

// loadencoder.c

#include "puina.h"

value);
}

outport(ENC_LOAD + 2*chaimeL

// main c

#include "puma.li"

// global variables
int board;// daq card board number
interr_num: // daq card error number
intstop=l; // flag used to stop program in event
of ft error
long DISCRETE; // PUMA discrete input control
word
double encoder_scale[6]; // scale faaor to convert
encoder counts to radians
double encoder_ofEMt[6]; // encoder counts in
home position
double position[6];
double position_old[6];
double error_old[6];
double forced[6];
double forced_old[6];
double f_fil_old[61;
double f_fil_way_old[6];
double vg[6];
double data_pts[3][1500];
double time = 0.0;
int data = 0;
double evJl[3][3];
double eJw[3][3];
double x[6];
double x_old[61;
double joint_Iimit = 4.;
double r[3][3];
double u_vm=0.0;
double xv_old[3];
double xv_dot_old[3];
double xv_dot_way_old[3];
double fv[6];
double rv[3][3];
double eJl[3][3];
double ibasis[6];
int f_flag;

void main(void)
{

www.manaraa.com

264

intctrl=l; // counter 1
mtctr2=2; // counter 2
int overflow, I I counter overflow error

flag
inti: // counting variable
int safety=l; // flag used to stop program

if control loop takes to long
intcount=0; // coimter variable used in

homing robot
unsigned int countl; // counter I value
unsigned int count2; // counter 2 value
double timel=0.0; // time associated

with counter 1
double time2=0.0; // time associated

with counter 2
double dt=I.0/300.0: // desired control

loop re&esh time
double error // actual control loop

refresh time
int kbh=I: // flag used to detennine if

keyboard event has occured
FILE •out // output data file

// PUMA controller
printfCPUMA control designed at

LARCQn");
printfCLaboratory for Advanced Robotics

and Computer ControlXn");
printfC'Iowa State UniversityVn");
printf("\n\nwritten by Jim Edwards and

Brian MiIIer\n");
printfC'All rights reserved\n"):

// Get the board number of the daq card
board=getDeviceToUse();

// Initialize some gobal variables
initO;

// Initialize force transducer
init_force();
get_force();
printfr%f%f%f%f%f

%f\n" jbrced[0]/orced[1]/orced[2]/orced[3]/orce
d[4]4brced[5]);

fbasis[0]=forced[0];
fl3asis[l]=forced[1];
fljasis[2]=forced[2]+3.6;
fbasis[3]=forced[3];
fbasis[4]=forced[4];
fi5asis[5]=forced[5];

// Calibrate encoders to scratch mark values
calibration20;

// Set up counter 1 and 2
err_num=CTR_EvCount(board,ctrl, 1.1);
ErrPrini("CTR_EvCount",err_nvmi);

err_nmn=CTR_EvCount(board,cti2,0,0);
ErrPrint("CTR_EvCount" .err_num);

// Enable arm power
DISCRETE=DISCRETE | POWER_BIT:
outport(DISCRETE_REG-DISCRETE);
printf(".Tum arm power on!! IVn");

while(count<500 && safetv && stop)
{

// if a keyboard event occurs switch the flag
if (kbhitO) kbh=0:

// perform control loop if no keyboard event
if (kbh)
{

controK);
}

II if keyboard event send the robot home
else
{

home():
// it only has so long to get there

count-Hr;

do
{

// read counter 1 and 2

err_num=CrR_EvRead(board.ctr2,&over

flow.&count2);

err_num=CTR_EvRead(boardctrl.&over
flow,&countl);

// based on coimters determine what dme it is
timel=(double)

(countl)*0.000001;
timel += (double)

(coimt2)*0.065535;

// if it's time run the loop again
} while((timel-time2) < dt-

.00002);

www.manaraa.com

265

I I detennine how long the loop took
enor=timel-time2;

I I if it took to long better stop
if (febs((error-dt) > 0.00003))

safety=0;

// save current time for next loop
tiine2=tiniel:

// do it all again
}

// Disable arm power
DISCRETE=DISCRFrE |

(~POWER_Brr);
outport(DISCRETE_REGJ)ISCRETE):

printf("\n\ncounten %d\n'*.count);
// Output some data

if((out=fopen(''outdat"."wi"))=NULL)
{

printf("Cannot open output file
OUT.DAT.\n");

exit(l);
}

for (i=0;i<999;i-t-+)
{

fprintf(out,"%f %f
%f\n",data_pts[0] [i],daiajpts[l] [i],data_p

ts(21[n);

/

fcIose(out);
}

// path.c

#include "puma.h"
#include "ptmiaext"

void pathO
{

double u,pi.radius,center[3];
int counter_max;

pi=3.14159;
radius=0.3;
center[0]=0.2;

center[l]=0.0;
center[2]=0.5;
counter_n3ax=2001;

counteî -+;
if (counter = counter max)
{

counter=0;
if (direction = 1) direction=-l;
else direction=l;

}

u=((double) counter)/((double)
(coimter_max-l));

if (direction =-1) u=1.0-u;

x(0]=radius*cos(pi*u/2.0)+center[0|;
x[1]=tadius*sin(pi*u/2.0)+center[I];
x[2]=center[2];

}

// pimia.h

#include <stdio.h>
jftnclude <dos.h>
^include <floaLh>
#include <stdlib.h>
#include <bios.h>
#include <conio.h>
rftnclude <io.h>
#include <math.h>
^include <string.h>
#include "nidaq.h"
#include "nidaqcns.fa"
#include "nidaqerT.h"

// prototypes
void init(void);
int getDeviceToUse(void);
void ErtPrint(charQ,int);
int CTR_EvCount(int,inLint.int);
int CRT_EvRead(intint,int •.int •);
int readencoder(int);
void calibration2(void);
void loadencoder(intint);
void control(void);
void home(void);
INovi. path(void);
//void invkin(void);
voidjacobian(void);

www.manaraa.com

266

INoid forkm(void);
/Afoid ern)r_v(void);
void send(int):
void iiiit_force(void);
void get_force(void);
void giavity(void);

// define some addresses that will be needed
#defineBASE
0x0300
#define AD_MUX_SELECT
BASE + 0x002C
#define AD_START_PULSE
BASE+ 0x00 IE
#define DISCRETE_REG
BASE + 0x002E
#define STATUS_REG
BASE + OxOOOC
#define AD_VALUE
BASE + 0x00 IC
#define ENC_COUNTER

BASE+ 0x0010
#define ENC_LOAD

BASE + 0x0020

// define some bit masks that will be needed
#define AD_MASK
0x4000
#define AD_STATUS_MASK
0x4000
#define POWER_BIT

0x0001

// addresses for the ATI force transducer
^define FT_BASE 0x280
#define PORT_A FT_BASE
#define PORT_B FT_B ASE + 0x01
#define PORT_C FT_BASE -r 0x02
#define PORT_D FT_BASE + 0x03
#define STATUS_FT FT_BASE + 0x04
#define CONnG FT_BASE + 0x05

// readencoder.c

#include "puma.h"

int ieadencoder(int channel)
{

intval;

val=(int)(inport(ENC_COirNTER +
2*channel));

return val;
}

NURBS Surface

// error.c

#include "puma h"

void error(pumaFiIe* piunaData)
{

double xv[3],xv_dot[3];
double xcp[3][3],ycp[3][31,zcp[31[3];
double bu[3I,dbu[3],bv[3],dbv[3];
double xc[3],tu[3],tv[3],mag;
double xh[3],yh[3],zh[3];
double e[3], d_u_vm, d_v_vm;
int i, j, k;
intflag=0;
double kp[3],kv[3];
double wn.z;
double spring,damper.
int normal=0;
double fend[6], fbase[6], rv[3][3];
double rd[3][3], xv_ori[3][3], xyz[3],

xyzd[3];
double xyz_dot[3];

i=0;

if (normal == 1)

{
xcp[0][0]=0.5;
xcp[0][l]=0.5;
xcp[0] [21=0.3;

xcp[l][0]=0.5;
xcp[l][l]=0.5;
xcp[l][2]=0.3;

xcp[2I[0]=0.5;
xcp[2][l]=0.5;
xcp[21[21=0.3;

ycp[0][0]=-0.1;
ycp[0][l]=-0.1;
ycp[0][2]=-0.1:

www.manaraa.com

267

}
else
{

ycp[l][0]=0.0
ycp(ll[l]=0.0
ycp[ll[2]=0.0

ycp[2][01=0.1
yq)[2][l]=0.I
ycp[2][2]=0.I

zcp[0][0]=0.3;
zq)[0][l]=0.4:
zcp[0][2]=0.5;

zq)[l][0I=0.3;
zcp[l][l]=0.4;
zcp[I][2]=0.5;

zcp[2][0]=0.3;
zcp[2][l]=0.4;
zcp[21[21=0.5:

xq)[0][0]=0.5;
xq)[0][I]=0.5;
xcp[0][2]=0.5;

xq)[l][0J=0.5;
xcp[I][l]=0.1;
xcp[l][2I=0.5;

xq)[2][0]=0.5;
xcp[2][I]=0.5:
xcp[2][2]=0.5;

ycp[0][0]=-0.1:
vq)[0i[l]=-0.1;
ycp[0][2]=-0.1;

ycp[i][0]=0.0
ycp[l][l]=0.0
yq)[l][2]=0.0

vcp[2][0]=0.1
ycp[2][l]=0.1
ycp[2][2]=0.I

zcp[01[0]=0.3;
zcp[0][l]=0.4;
zq)[0][2]=0.5;

zcp[l][0]=0.3;
zcp[l][l]=0.4;

zq)[l][2]=0.5;

zq)[2][0]=0.3;
zq)(2][I]=0.4;
zcp(2][2]=0.5;

}

// inverse kinematics of virtual manipuator
while(i != 30 && flag != 1)
{

// evaluate basis functions
bu[0]=(1.0-pumaData-

>u_vm)*(1.0-pumaDaia->u_vm);
bu[l]=2.0*(1.0-pumaData-

>u_vm)*pumaData->u_vin;
bu[2j=pumaDaia-

>u_vm*puniaDaia->u_vni;

bv[01={ 1.0-pumaData-
>v_vm)*(1.0-puniaDaia->v_vm):

bv[l]=2.0*(l.O-pumaData-
>v_vni) *puniaData->v_vm;

bv[2]=piiniaData-
>v_vm*puniaData->v_vni;

// determine what the canesian coordinates are for
u_vm and v_vm

xc[0]=bu[0]»(xcp[01[0]*bv[0]+xcp[01[ll*
bv[l]-rxcp[01[21*bv[2])

+fau[ll*(xcp[l][01*bv[0]+xcp[l][ll*bv[l]+xcp[l][
21*bv[2])

+bu[2]*(xcp[2][0]»bv[01+xcp[2][l]*bv(l]+xcp[2I[
2rbv[2]):

xc[l]=bu(0]*evq>[0] [0] *bv[0]+ycp[01 [I
bv[l]+ycp[0][21*bv[2])

+bu[l]*(ycp[l][0]*bv[0]+vcp[l][l]*bv[l]+vcp[l][
2]=^bv[2])

+bu[2]*(ycp[2][0]*bv[0]+vcp[2][l]*bv[l]+vcp[2][
2]*bv[2]);

xc[2]=bu[0]*(zcp[0] [0]*bv[0]+zcp(0] [I]»
bv[l]+zcp[0][2]*bv[21)

www.manaraa.com

268

+bu[l]»(zcp[l][0]*bv[01+zq)[ll[l]*bv[l]-Hzcp[l][
2]*bv[2])

+bu[2]»(zcp[2][0]»bv(0]+zcp[2][l]*bv[l]-i-zcp[2][
2]*bv[2]);

I I determine the error between the robot is and the
point on the sur&ce

e(0]=pujniaData->x[0]-xc[0];
e[l]=puinaData->x[l]-xc[1];
e[2]=pimiaData->x[2]-xc[2];

// evaluate derivatives of the basis fimctions
dfau(0]=-2.0*(1.0-pumaOata-

>u_vin);
dbu[1]=2.0*(1.0-pnmaData-

>u_vm)-2.0*piunaData->u_vm;
dbu[2]=2.0*puniaData->u_vm;

dfav[0]=-2.0*(1.0-puniaData-
>v_vm);

dbv[1]=2.0*(l.O-pnmaData-
>v_vTn)-2.0*puniaData->v_vin;

dbv[2]=2.0*pmnaData->v_vin:

// determine the u and v direction tangents

tu(0]=dbu[0]*(xq)[0] [0]*bv[0]+xq)[0] [1]
»bv[l]-rxcp(0][2]*bv[2])

+dbu(ll*(xcp[l][01»bv[0]-rxcp[l][l]*bv[l]+xcp[l]
[2]*bv[2])

-i-dbu[2]*(xq>(2] [0]*bv[0 J+xq)[2 j [l]*bv[1]+xq)l2]
(21*bv[2I);

tu[1 l=dbu[0] *(yq)[0] [0] *bv[0]+ycp[0] [1]
•bvtl]+yq)[0][2]*bv(2])

+dbu[ll*(yq)(l][0]*bv[0]-i-vq)[l][l]*bv[l]+vq)(lI

(21*bv[21)

+dbu[l]«(zcp[l][0j»bv[0]+zcp[ll[l]*bv[ll+zcp[ll
[2rbv[2])

+dbu[2]*(zcp[2][0]»bv[0]+zq)[2][ll»bv[l]+zcp[2]
[2]*bv[2]);

tv[01=bu[01»(xcp[0][0]*dbv[0]+xcp[01[l]
»dbv[l]+xcp[0][2]*dfav[2])

- i-bu[l]*(xq) r i I[0]*dbv[0]+xcp[ll[l]*dbv(l]+xcp[
1][2]*dbv[2])

-i-bu(2]*(xq)[2][0]*dbv[0]+xq)[2][l]*dbv[l]+xq)[

2][21*dbv[21);

tv[l]=bu[0]*(ycp[0][01*dbv[0]+ycp[0][l]
•dbv[l]+ycp[0][2]»dbv(2])

+bu[1] *(yq)[1] [0] •dbv[0]+vq)[1] [1] *dbv[1]+vq)[
1][2pdbv[2])

+bu[2]*Cvcp[2][0]*dbvt0]-Hvcp[2][l]*dbv[ll+vcp[
2][2]*dbv[21);

tv(2]=bu[0]*(zq)[01 [0]*dbv[0]+zcp[0] [1]
*dbv[l]+zcp(0][2]*dbv[2])

+bu(ll»(zcp[l][0]»dbv[0]+zq)[l][ll*dbv[l]+zcp[
ll[2]*dbv[2])

+bu[2]*(zq)[2][0]*dbv[0]+zq)(2][ll»dbv[l]+zqp[
2][2]*dbv(2]);

// determine how much to change the parameter
estimates u_vm and v_vm

d_u_vm=e[0]»tu[0]+e[l]*tu[l]+e(21»tu[2

+dbu[2]*(\-cp[2][01*bv[0]+vcp(21[l]*bv[l]+vcp(2]
[2]»bv[2]);]:

d_v_vm=e[0] •tv[0]-f-e[1] *tv[1 j-i-e[2] •tvp

tu[2]=dbu(0]*(zcp(0][0]»bv[0]+zcp[0][l]
•bv(I]+zcp[0][2]»bv[2])

// update the parameter estimates
puinaData->u_vm=puinaData-

>u_vm+d_u_vm;
puinaData->v_vm=pumaData-

>v_vm+d v_vm;

www.manaraa.com

269

I I parameter in bounds
if (pmnaData->u_vm < 0.0)
{

puiiiaData->ii_vtn=0.0;
}
else if (puinaData->u_vm > 1.0)
{

pumaData->u_vm= 1.0:
}

if (puinaData->v_vin < 0.0)
{

puinaData->v_vni=0.0;
}
else if (puinaData->v_vin > l.O)
{

pumaData->v_vm= 1.0;
}

// parameter not changing
else if

(sqrt(d_u_vin*d_u_vin-t-d_v_vm*d_v_vm) < 0.02)
{

flag=l;
}

i++;
T
J

// forward kinematics
mag=sqrt(tu[0] *m[0]+tu[1] *tu[1]+ni[2] *1

u[21);

xfa[0]=m[0]/mag;
.\h[l]=m[l]/mag;
xfa[2]=tu[2]/mag;

mag=sqrt(tv[01 •tv[0]+tv[1] *tv[l]+tv[2]
v(2]);

tv[0]=tv[0]/mag;
tv[ll=tv[ll/mag;
tv[2]=tv[2]/mag;

zh[0]=xli[l]*tv[2]-tv[l]*xh[2];
zh[l]=tv(0]*xh[2]-xfa[0]»tv[2];
zli[2]=xh[0]*tv[l]-tv[0]*xfa[l];

mag=sqrt(zh[0]*zh[01-i-zh[1] •2h[1]+zIi[2
rzh[2]);

zh[01=zfa[0]/niag;
zh[l]=zli[lj/mag;
zh[2]=zii[2]/mag;

yh[0]=zh[I]*xh[2]-xfa(l]»zh[2];
yh(l]=xfa(0]*zh[2]-zh(0]*xli[2];
yh[2]=zh(0]*xfa[l]-.xli[01»2h[l];

mag=sqrt(yh[0]*vh[0]+vh[l]*vfa[l]+vh[2
]*yfa[2]):

yh[0]=yfa(0]/mag;
yh[l]=yh[l]/mag;
yh[2]=yh[2]/mag;

rv[0][01=xh[0I;
rv[01[l]=xfa[l];
rv[0][2]=xh[2];
rv[l][0I=yh(0];
rv[l][l]=yh[I];
rv[l][2]=yh[2]:
rv[21[0]=zh[0]-.
rv[2][l]=zh[ll;
rv[2I[2]=zh[2];

// Determine the position of the robot in the
virtual manipulator's
// end effect space

xv[0]=xh[01 *pumaData-
>x[0]+xh[1] •puniaData->.x[1]+xfa[2]*puinaData-
>x[2]-xfa[0]*xc(0]-xh[l]*xc[l]-xh[21*xc[2];

xv[l]=yh[0]*puniaData-
>x(01+yh[ll*pumaData->x[ll-!-vhr21*pumaDaia-
>x[2]-yh[0]*xc[0]-yh[l]»xc[l]-yh[2]*xc[2];

xv[2]=zh[0] *pumaData-
>x[0]+zh[1] •puinaData->x[l]-i-zh[2] •pumaData-
>x[2]-zh[0]*xc[0]-zh[l]»xc(1]-zfa[2Pxc[2];

if (normal = 1)
{

nl[01[0]=xh[0];
rd[0][l]=vh(0]:
rd[0][21=zh[0];
rd[l][0]=xh[l];
rd[ll[l]=yh(I];
rd[l][2]=zh[ll;
rd[2I[0]=xh[2];
rd[2][l]=yh[2];
rd[2][2]=zh[2];

}
else
{

www.manaraa.com

£
u
°l

s
13 4^

S

g' a s
•g °
>' ^
^ 00 " o
a

1 Vw' a ^
•c -

B
S
•S «

g-

feal
"&:=r-5^
S?G
S i f ' S
£1*

S •§,I
S5

o
?
<N
v.

•c o.
o
d
V
00 o r-

C
o I ^

• ̂ w N rvj o

cd
jL
•o
&

•n

O r-H

? il •'c' <N O
•Wi4 °l

>% u u
&&

fa
W-f
o
•g,

s
I ^

o r^ <N

o o o o o o o o o

i f j L i r f v ? T ?

fO
.y.

?

*r7»
V"

2iZLCL£,d,CL£,zlCL ;{;
O o" o" " " " cT r7 rT 'T-l
•s -H W'e W's's'a's .P

=:S
I, V !2-H

s.' *-• .2

•c o.

Q
!«,

Wi
A

^P-
s

S.
c o.

JL, s
I

CL ?T
C o.
ij;

.—'. CN.
•c ^

fi ^

o ̂

4_
S Hi ^ -a

(N

I

V

g- g-
o o

15

/—V

i
fO
y,

A A

+,
p.

'C °l
»
o.

o
d
V
/—s
00 o h-«o a ^

•s,
a Vw.̂

—5 O
a .'
S# ̂
•g a

fi S

ha

i& if

'C o.

•c °l
g

o
d
V /«—V
00
o r ̂»o

I
c«
II

!t)
iS ' o;

p :zr
? ii ̂

I (N O ?r o

•g M I i>
P.

rt

a
•e

I q1

c o.

cd I)

&

CL
S
•c: o.

(M.

O.

6 ^

o

V

?

t TT*
7 T3 O
II O

O
d
5
o.

www.manaraa.com

271

}

for (i=0a<3u++)
{

pumaData-
>xv_dot_way_oId[i]=puniaData->xv_dot_oId[i];

pumaData-
>xv_dot_old[i]=xv_dot[i];

pmnaDaia->xv_old[i]=xv[i];
pumaData-

>xyz_dot_way_oId(i]=puniaData->xy2_dot_oId[ij;
pumaData-

>:q^_dot_old[il=xyz_dot[i];
puinaData->xvz_oId[i]=xvz[i];

}

sprm^=400.0:
dampei=30.0;

if (puinaData->u_vm <= 0.0)
{

}

kp[0]=spiing;
kv[0]=dainper.

else if (pumaData->u_vm >= 1.0)
{

}
else
{

kp[01=spring;
lcv[Oj=dainper.

kp[0]=0.0:
kv[01=0.0:

if (puiiiaData->v_vin <= 0.0)
{

kp[l]=spring;
!cv[l|=damper.

}
else if (puniaData->v_vm >= 1.0)
{

}
else
{

kp[l]=spring;
lcv[l]=damper.

kp[l]=0.0;
kv[l 1=0.0;

// kp[0]=spring; kv[0]=dainper;

// kp[l]=spring; kv[l]=dainper,
kp[2I=spring; kv[2]=damper,

for (i=0;i<3;i++)
{

fend[i]=kp[i]*xv[i]-fkv[i]*xv_dot[i];

feiid[i+3]=30.0*xvz[i]-i-2.0*xvz_dot[i];
}

// force end effeaor vm to base puma
for (i=0; i<3; i++)
{

fbase[i]=0.0:
for(j^;j<3;j-H-)
{

fbase[i]=fbase[il+rv(j] [i] •fendQ];
}

}

for (i=0; i<3: i-i-+)
{

fbase(i+3]=0.0;
for (1=0; j<3; j-M")
{

fbase[i-^3]=fbase[i+3]+rv[j] [i]*fend|j+3];
}

X
)

II force base piuna to end effector puma
for (i=0; i<3; i++)
{

pumaData->fv[i]=0.0;
for (j=0; j<3; j++)
{

pumaData-
>fv[i]=pumaDaia->fv[i]+pumaData-
>r[j][i]*ft)aseO];

}
}

for (i=0; i<3; i-H-)
{

pumaData->fv[i+5]=0.G;
for(j=0;j<3; j-M-)
{

pumaOata-
>fv[i+3]=pumaData->fv[i+3]+pumaData-
>r|j][i]*fbase|j+3];

www.manaraa.com

272

}
}

// zero some stuff
/• fend[3]=0.0;

fend[4]=0.0;
fend[51=0.0;
fbase[3]=0.0;
fbase[4]=0.0-.
fbase[51=0.0-.
puiiiaData->fv[3]=0.0;
pumaData->fv[4]=0.0:
puinaData->fv[5]=0.0;*/

// ftictioiLc

#include "puma h"

void friction(puniaFile* pumaData)
{

inti;
double tau=0.05305;

if (puinaData->theta[0] > pumaData-
>theta_old[0]) pumaData->v_&ic[0]=1.0;

if (puinaDaia->theta[0] <= pumaData-
>theta_old[0]) puinaData->v_fric[0]=-0.9;

puinaData->v_&ic[0]=(pumaData-
>v_fric[01*puinaData->dt+pumaData-
>v_fric_old[0] •tau)/(puinaData->dt+tau);

if (puinaData->tfaeta[l] > pumaData-
>theta_old[l])

{
if (puinaData->theta[l] > -1.57)

puinaData->v_&ic[l]=-0.3;
else puinaData->v_fric[l]=-0.9;

}
if (puinaData->theta[l] <= pumaData-

>theta_oId[ll)
{

if (puniaData->theta[l] > -1.57)
puinaData->v_&ic[l]=0.9;

else puinaData->v_&ic[l]=0.6;
}
puiiiaData->_fric[l]=(puinaData-

>v_&ic[I]*puniaData->dt+puinaData-
>v_&ic_old[1] *tau)/(puinaData->dt+tau);

if (puiiiaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fric[2]=0.47;

if (pnmar)ara->theta[2] <= pumaData-
>tlieta_old[2]) piunaDaia->v_&ic(2]=-0.47;

pumaData->v_ficic[2]=(puinaData-
>v_fiic[2] *puinaData->dt+puinaData-
>v_&ic_old[2] *tau)/(puiiiaData->dt+tau);

if (puniaData->theta[3] > pumaData-
>theta_oId[3]) puniaData->v_&ic[3]=-0.35;

else if (pumaData->theta[3] <=
puinaData->theta_old[3]) pumaData-
>v_&ic(3]=0.35;

else pumaData->v_fric[3]=0.0;
puinaData->v_fiic(3]=(puinaData-

>v_&ic[3]*puinaData->dt+puinaData-
>v_&ic_oId[3] *tau)/(puinaDaia->dt+tau);

if (puinaDaia->dieia[4] > pumaOata-
>theia_old[4]) puinaData->v_Mc[4]=-0.4;

else if (puinaData->tlieta[4] < pumaData-
>theta_old[4]) puinaData->v_fric[4J=0.4;

else pumaData->v_fric[4]=0.0;
puinaData->v_fric[4]=(puniaData-

>v_fric[4] »puniaData->dt+puinaData-
>v_fric_old[4]*tau)/(puinaData->dt+tau);

if (puinaData->tlieta[5] > piimaPata-
>theta_oIdr5]) puinaData->v_Mc[5]=-0.5;

else if (puniaData->theta[5] < pumaData-
>tlieta_old[5]) pumaData->v_&ic[5]=0.5:

else puniaData->v_fric[5]=0.0;
puinaData->v_fric[51=(pumaData-

>v_fric(5]*pumaData->dt-i-puinaData-
>v_fric_old[51*tau)/(puinaData->dt+tau);

for (i=0:i<6;i+-i-)
{

pumaData-
>v_&ic_old[i]=puinaData->v_fric[i];

}
}

// giavity.c

#include "puma-h"

void gravitv(puinaFiIe* pumaData)
{

double c2.s2,c23.s23;

www.manaraa.com

273

c2=cos(puinaData->tfaeta[1]);
s2=sin(puinaData->theta[1]);

c23=cos(pmnaData->theta[I]-i-piiinaData-
>tfaeta[2]);

s23=sm(punjaData->theta[1 J+pumaData-
>theta[2]);

I I gravity compensation
puniaData->vg[0]=0.0;
punjaData->vg[2]=-

1.1201*s23+0.0977*c23;
pmnaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*pumaData-
>vg(2];

pumaData->vg[3]=0.0;
puinaData->vg[4]=0.0:
puinaData->vg[5]=0.0;

}

// impedence-c

#include "puma h"

void inipedence(puniaFile* pumaData)
{

pumaData-
>vini[0]=0.02*pow((1.0/(puinaData->tfaeta[0]-
2.7)).3.0)-K).02*pcw((1.0/(piunaData-
>theta[0]-r2.7)).3.0);

pmnaData->vim[l]=-
0.02*pow((1.0/(puniaData->theta[l]-0.7)),3.0)-
0.02*IX)w((1.0/(puinaData->theta[l]+3.7)),3.0);

puinaData-
>viin[2]=0.02*pow((1.0/(puniaData->theta[2]-
pumaData-
>jIiimt3)),3.0)+0.02*pow((1.0/(puinaData-
>tlieta[2]-K).9)),3.0);

puniaData->viin[3]=-
0.02*pow((1.0/(puniaData->theta[3]-3.2)),3.0)-
0.02*pow((1.0/(pumaData->theta[3]+1.8)),3.0);

puniaData->vim[4]=-
0.02*pow((1.0/(puniaData->theta[4]-l .7)),3.0)-
0.02*ix)w((1.0/(puinaData->theta[4]+puniaData-
>jliiiiit5)),3.0);

puniaData->vim[5]=-
0.02*pow((1.0/(puniaData->theta(5]-5.2)).3.0)-
0.02*pow((1.0/(puniaData->theta[5]+5.2)).3.0):
}

// jacobian.c

#include "puma-h"

void jacobian(piiinaFile* pumaData)
{

double
c 1 ,s I,c2,s2.c3,s3 ,c23 .s23 ,c4.s4.c:5,s5,c6.s6:

double 1[5];
I[l]=0.4318;
I[2]=0.15005;
1[3]=-0.0191:
l[4]=0.4331;

cl=cos(pumaData->theta(01);
s l=sin(pumaDaia->tfaeta[0]);

c2=cos(pumaData->theta[1]);
s2=sin(pumaData->theta[I]);

c3=cos(pumaDaia->theta(2]):
s3=sin(pumaData->theta[2]);

c23=cos(pumaData->theta[1 J+pumaData-
>theta(2]);

s23=sin(pumaDaia->tfaeta[1]+pumaData-
>theta[2]);

c4=cos(pumaData->theta[3]);
s4=sin(pumaData->tfaeta[3]);

c5=cos(pumaData->theta[4]);
s5=sin(pumaData->theta[4]);

c6=cos(pumaData->theta[5]);
s6=sin(pumaDaia->theta[51);

// jacobian
pumaData->eJr[0][0]=c5*c6*(-

c23*c4*I[2]+s4*(c2»l[l]+c23*l[3]+s23*l[4]))+s6*
(c23*s4*I[2]+c4*(c2*l[l]+c23*l[3I+s23*l[4]))+s5
•c6*s23*l[2];

www.manaraa.com

274

pumaData- pumaData->eJr(5][2]=s4*s5;
>eJr[0][l]=c5*c6*(c4*(s3*I[l]+I[4]))+s6*(- puinaData->eJr(5][3]=c5;
s4*(s3*l[l]+l[4]))-s5*c6*(-c3*I[l]-l[3]); pumaData->eJr[51[4]=0.0;

puinaData->eJr[0][2]=c5*c6*c4*l[4]- puniaData->eJr[5][51=1.0;
s6*s4*l[4]+s5*c6*I[3]; }

puinaData->&rr[0] [3]=0.0;
puinaDaia->eJr[0][4]=0.0;
puinaData->eJr[0][5I=0.0:

puinaData->eJr[l][0]=-c5*s6*(-
c23*c4*l[2]+s4*(c2*l[l]+c23*l[31+s23*l[4]))+c6*
(c23*s4*l[2]+c4*(c2*l[ll+c23»I[3]+s23*l[4]))-
s5»s6*s23*l(2];

puinaData->eJr[1] [1]=-
c5*s6*(c4*(s3*l[l]+l[4]))+c6»(-
s4*(s3*I[l]+l[4]))+s5*s6*(-c3»l[l]-l[3]);

puniaData->eJr[l][2]=-c5*s6*c4»l[4]-
c6*s4»I[4]-s5*s6*I[3];

puniaData->eJr[l][3]=0.0;
puinaData->eJr[I] [4]=0.0:
puinaData->eJr[l][5]=0.0;

puiiiaData->eJr[2] [0]=s5*(-
c23»c4*l[21+s4*(c2*l[l]+c23*l[31+s23*l[4]))-
c5*s23*I[2];

pumaData-
>eJr[2][l]=s5*(c4*(s3*l[l]+l[4]))+c5*(-c3»I[l]-
I[3]);

puinaData->eJr[2][2]=s5*c4*l[4]-c5»I[3];
puinaData->eJr[2][3]=0.0;
puinaData->eJr[2] [4]=0.0;
pumaData->eJr[2] [5]=0.0:

pumaData->eJr[3] [0]=s23 •(s4*s6-
c4»c5»c6)-c23*s5*c6;

puinaData->eJr [3] [1]=s4*c5 *c6+c4*s6;
puinaData->eJr[3] [2i=s4*c5 *C6h^4*S6;
puinaData->eJr(3] [3]=-s5»c6;
puniaData->eJr(3] [4]=s6;
puinaData->eJr[3][5]=0.0;

pumaData-
>eJr(4][0]=s23*(c4*c5*s6+s4*c6)+c23*s5*s6;

pumaData->eJr[4][l]=-s4*c5*s6-i-c4*c6;
puinaData->eJr[4] [2]=-s4*c5*s6+c4*c6;
pumaData->eJr[4] [3]=s5*s6;
puinaData->eJr(4] [4]=c6;
piiinaData->eJr[4] [5]=0.0;

puinaData->eJr[5] [0]=-
s23•c4*s5+c23 *c5;

pumaData->eJr[5] [1]=s4*s5;

// kmematics.c

^include "punia.h"

void kineinatics(puinaFile'*' pumaData)
{

double
cl.sl,c2,s2.c3,s3.c23,s23,c4.s4x5.s5.c6,s6:

double I[5];
double

V I.v2.v3 .v4.v5.v6.v7,v8.v9,v lO.v II;

1[1]=0.4318;
1[2]=0.15005;
I[3]=-0.0191;
1[4]=0.433I;

c l=cos(puinaData->theta[0]):
s l=sin(puinaData->theta[0]);

c2=cos(puinaData->theta[1]):
s2=sin(puinaData->theta[1]):

c3=cos(puinaData->theta(2]):
s3=sin(puinaData->theta[21);

c23=cos(puinaData->theta[I J+piunaData-
>theta[2]);

s23=sin(puniaData->theta[IJ-i-pumaData-
>theta[2]);

c4=cos(puinaData->theta(3]);
s4=sin(puinaData->tteta[3]):

c5=cos(puinaData->theta[4]);
s5=sin(puinaData->theta[4]);

c6=cos(pumaData->theta[5]);
s6=sin(puinaData->theta[5]);

pumaData-
>x[0]=cl*(c23*I[3]+s23*I[4]+c2*l[l])-sl*l[2];

pumaData-
>x[l]=sl*(c23*l[3]+s23*l[4]+c2»l[l])+cl*l[2];

www.manaraa.com

275

s2*I[l];
puinaData->x[2]=-s23 »1[3]+c23 *I[4]-

puinaData->x[3]=0.0;
puinaData->x[4]=0.0;
puinaData->x[5]=0.0;

vl=c4*c5*c6-s4*s6;
v2=s5*c6;
v3=c23*vl-s23*v2;
v4=s4*c5*c6-i-c4*s6;

pun3aData->r[0] [0]=cl •vS-s 1 •v4;
puinaData->r[1] [0]=s 1 *v3+cl *v4;
puinaData->r[2] [0]=-s23 *v I -c23 •v2;

v5=c4*c5*s6+s4*c6;
v6=s5*s6;
v7=-c23»v5+s23*v6;
v8=s4*c5*s6-c4*c6;

puinaData->r[0] [1]=c 1 •vT+s 1 •v8;
puinaDaa->r[1] [1]=s 1 *v7-c 1 *v8;
puinaDaia->r[2] [1]=s23 •v5+c23 *v6;

v9=c4*s5;
V10=c23 *v9+s23 *c5;
vH=s4*s5;

puinaData->r[0] [2]=cl *v 10-s 1 •v 11;
puinaData->r[1] [2]=sl •v 10+c 1 •v 11;
pumaData->r[2] [2]=-s23 •v9+c23 •c5;

BOOL result:
LARGE_INTEGER lifrequency;
LARGE_IMTEGER licount:
LONGLONG ftequency:
double d&equency:
LONGLONG startcount:
LONGLONG count:
double cunenttime:
double dtactual;
double dterron
double dtmax:

// error flags
int timererron
int timeroverrun:
int DeviceStop;
int errorSocket:

// socket stuff
int err:
char szDataSend[100];
int gcount:

// data file stuff
double data[3][2000];
int datalength=2000;
int datacount:
int datacycle:
intdatamax:
int fileerror.
FILE *out:

// general stuff (counter and the like)
int i;

// main.c

^include "puina.h"

lll
I I Taking Care of Business
lll

void niain(void)
{
// robot stuff

pumaFile "^umaData:
int stop;
int homecount;

// window's stuff
HANDLE hprocess;
HANDLE hthread;
int processerror,

// timer stuff

printfCPUMA control programVn"):
printfCwritten by Jim Edwards for

LARCOn");
printfCAU rights reserved\n\n\n\n");

lll
I I Code Initialization Section
lll
I I set counter error flag to pass

timererror=l;

I I set counter ovemm flag to pass
timeroverrun=l;

www.manaraa.com

276

// start taking data at zero
datacounp=0;

// set data pass to zero
datacycle=0;

// set process error flag to pass
processerror=0;

// set maxiTniim delta-t to zero
dtinax=0.0;

// set stop to pass
stop=l;

// set homecount to zero
homecount=0;

// set socket error to none
errorSocket=0;

// set graphics dump coimter to zero
gcount=0;

lll
nun Hardware Initialization
lll
// get process handle

hprocess=GetCurrentProcessO;

I I set process priority
result=SetPrioriivClass(hprocess.

REALTIME_PRIORrrY_CLASS);
if (result = 0) processerror=l;

I I get thread handle
hthread=GetCurrentTbread();

// set thread priority
result=SetThieadPriority(hthread.

THREAD_PRIORrrY_TIME_dimCAL);
if (result = 0) processerror=2:

I I allocate memoiy for puma structure
pimiaData=(pumaFile

*)malloc(sizeof(pimiaFile));

I I connea to the puma kernel device
DeviceStop=l;
pumaData-

>PumaDevice=HwNewDevice(NULL);

HwSetErrorHandler(piimaData-
>PumaDevice. MyErroiHandler);

if (IHwConnectDexaceCpumaData-
>PumaDevice. "puma"))

{
printf("Failed to connea to puma

device!\n");
HwDeleteDevice(pumaData-

>PumaDevice);
DeviceStop=0;

}

// semppuma
piunalnitializationCpumaData):

// open socket - useSocket = I use socket = 0
don't use socket

pumaData->useSocket= 1;
pmnaData->activeSocket=0;
openSocket(pumaData):

// test socket
testSocket(pmnaData):

// get ftequencj'ofhigh performance counter
result=QueryPerformanceFrequency(&lifr

equency);
if (result = TRUE)
{

frequency=Iifrequency.QuadPart:
dfiequency=((double)

frequency);
prinif("clock frequency; %f

MHz\n\n\n\n",dfiequency);
}
else
{

printf("QueryPerformanceFrequency;
&iliue\n");

timereiioi-O;
}

// get starting count
printf("\n\n\nTum Arm Power On! I! !\n");
result=QueiyPerfonnanceCounter(&licou

nt);
if (result = TRUE)
{

startcoimt=licount.QuadPart;
}
else

www.manaraa.com

277

{

printf("QueryPerfonnanceCoimten

timererror=0;
}

I I disengage the brakes
HwOutpw(pumaData->PuinaDevice,

0x02e. 0x0001);

lll
I I Main Control Loop
llllltlllllllllllllllllllllllfllllllllffllltlllllllllllllllllltllllll

while((homecount < 2000) &&
(DeviceStop == 1) &&. (timererror = 1) &&
(timeroverrun = I) && (processeiror — 0))

{
// control code

if(kbhitO) stop=0;
if (stop = 1)
{
pumaControl(piunaData):
)
/

else
{
homecount-H-;

puinaHome(puniaData):
}

// increment graphics dump coimter
gcountT-r:

// send data to graphics engine
if (gcount == 5)
{
gcount=0;

// but only if there is an active socket for
conunimication

if (pumaData-
>activeSocket = 1)

{

sprintf(szDataSend. "%4.3f %4.3f %4.3f
®/<4.3f %4.3f %4.3f %4.3f

pumaData->time.
pumaData-

>theta(0],
pumaData-

>theta(l].

>theta[2],

>theta[3],

>theta(4],

>theta[5]);

pumaData-

pumaData-

pumaData-

pumaData-

en=send(puniaData->hSock,
(UPSTR) szDataSend. 51,0);

if
(err=SOCKET_ERROR) errorSocket=l;

// timing code
do
{

// get the current count of performance counter

result=QueryPerformanceCounter(&licou
at):

if (result = TRUE)
{

count=licounLQuadPart;
// convert into time since program started

currenttime=((double) (count-
startcount))/dfrequency;

i

else
{

printfC'QueiyPerfonnanceCounter
feilureVn"):

timererror=0:
}

piunaData->time:

>dt);

dtactuai=currenttime-

} while(dtactual < pumaData-

// get maximum delta-t
if (dtactual > dtmax)

dtmax=dtactual;

// get error in delta-t
dterror=dtactual-pumaData->dt;

www.manaraa.com

278

if (&bs(dterior) > prima Data-
>dt) timerovernin=0;

// take some data
if (stop == I)
{

// time
//

data[0] [datacoimt]=pmnaData->time;
II ftesli ftequency

//
data[1] [datacoimt]=1.0/dtactual:

// voltage to axis 5
//

data[2] [datacount]=pumaData-
>voItage_out[4];

data[0] [datacount]=pumaData->x(0];

data(1] [datacomit]=pmnaData->x[1];

data[2] [datacount]=pumaData->x[2];

if (datacomit = 1999)
{

datacomit=0:
datacvcle=l;

}
else datacount-i-i-;

}

// update absolute time base
pumaData->time=puinaData-

>time-rpumaData->dt;
} // end main control loop

// engage the brakes
HwOutpw(pumaData->fhm3aDevice.

0x02e, 0x0000);

llllllllllllllllllllllltlll
II Hardware Clean-Up
lll
II kemal device

HwDeIeteDevice(pumaData-
>PumaDevice);

// close socket
closeSocket(puniaData);

lll
II Take some data
lll

II open the data Sle
if ({out=fopen("ouLdat","wt"))=NULL)

fileerror=0;
else
{

// write data
fileerror=l;

fprintf(out"max dt is
%M\n\n".dtniax);

if (datacycle = 1)
daiamax=datalength;

else datamax=datacount:

for (i=0: i<datamax: i++)
{

fprintfCouL*"}^ %£
%fin".data[0] [i],data[ll [i].data[2] [i]);

}

// close file
fclose(out);

I >

lll
II Final Error Messages
lll

printf("\n\n\nError Messages:\n"):
if (timererror == 0) printf("timer

malfimctionVn");
else if (timeroverrun = 0) printf("timer

over run\n");
else if (DeviceStop = 0) printfC'DriverX

error\n");
else if (nleerror == 0) printf("could not

open data file\n"):
else if (processerror = 1) printf("could

not set process priority\n'');
else if (processerror == 2) printf("could

not set thread priority\n");
else if (enorSocket == 1) printf("erTor

sending rfata over socketVn");
else printfCall went well\n");

Sleep(3000);
}

www.manaraa.com

279

lll
mill DriverX Error Handler
IIIIIIIIIIIIIIHIII
void MyErrorHandler(HWDEVICE* pDevice,
DWORD nError)
{

printfC'Critical DriverX error %d\n''.
nError);

exit(nEnor);
}

// puma.h

II include files
#include <windows.li>
#include <winsock.h>
#incliide <stdio.h>
#include <como.h>
#inciude <matli.h>
#iaclude "DriverXh"

I I structures
typedefstrua
{
// needed for all

HWDEVICE* PumaDevice;
double dc
double time:
double encoder_scale[6];
double encoder_oflFset[6];
double theta[6];
double voltage_out[6];

// socket stuff
SOCKET hSock;
int useSocket;
int activeSocket;

// kinematics
double x[6];
double r(3][3];
double eJr[6][6];

// virtual manipulator
double ^^[6];
double u_vm;
double v_vm;
double xv_old[3];
double xv_dot_old[3];

double xv_dot_way_old[3];
double xyzoldp];
double xyz_dot_old[3];
double xyz_dot_way_old[3];

// needed for me
int first_flag;
int last_flag;
double kp[6];
double kd[6];
double errQr(6];
double errorold[6];
double erroniot(6];
double tbetad[6];
double theta_old[6];
double thetao[6];
double timeiu
double vg[6];
double v_&ic[6];
double v_&ic_old(6];
double vim[6];
double jlimit3:
double jlimitf;

} pmnaFile;

// prototypes
void main(void);
void MyErrorHandler(HWDEVICE * . DWORD);
void pumaInitialization(pumaFile *);
void pumaControl(pumaFile *);
void pumaHomeCpiunaFile *);
void openSocket(pumaFile •);
void cIoseSocket(pumaFile *):
void testSocketfpumaFile *):
void gravity(pumaFile *);
void friction(pumaFile *);
void impedence(pumaFile *);
void kinematics(pumaFile *);
void jacobian(pumaFile •);
void error(piunaFile •);

// pumaControLc

#include "puma-h"

void pumaConttQl(pumaFile* pumaData)
{

short val[6];
int voltage_int[6];
intij;

www.manaraa.com

280

double tbetaf[6];
double tf=5.0;

I I lead encoders
val[0]=HwInpw(pumaData-

>PuniaDevice, 0x010);
val [1 l=HwInpw(pumaData-

>PuniaDevice, 0x012);
vaI[2]=HwInpw(puniaData-

>PuinaDevice, 0x014);
val[3]=HwInpw(puniaData-

>PuinaDevice, 0x016);
val[4]=HwInpw(puniaData-

>PumaDevice, 0x018);
val[5]=HwInpw(puinaData-

>PumaDevice, 0x0 la);

// convert encoders to radians
for (1=0; i<6; i-H-)
{

puniaData->tIieta[i]=puniaData-
>encoder_scaIe[i]*(((double) val[i]) - pumaData-
>encoder_ofifeet[i]);

}

// gravity compensation
gravity(pumaData);

// forward kinematics and Jacobian
kinematics(pumaData);

// virtual manipulator control
error(pumaData);

// evaluate jacobian
jacobianCpumaData);

// friction compensation
frictionCpimiaData);

// impedence protection
impedence(pumaData);

// first time through get current position
if (pumaData->fiTSt_fIag=l)
{

pumaData-
>thetao[01=pumaData->theta(0];

pumaData-
>thetao [1]=pimiaData->theta[1];

pumaData-
>thetao[2|=pumaData->theta[2];

pumaData-
>thetao[3]=puinaData->theta[3];

pumaData-
>thetao[4]=pinTiaData->theta[4];

pumaData-
>thetao[51=pumaData->theta[5];

puinaDala->first_flag=2;
}

// final position
thetaf[01=-0.4965;
thetaflll=0.3013;
thetafI21=-0.0805;
thetafI31=0.4976;
thetafI4]=1.3767;
thetaft51= 1.4526;

// do cubic spline interpolation
if (pumaData->time <= tf)
{

pumaData-
>thetad[0]=puinaData->thetao[0]-3.0*(pumaDaia-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time/(tf*tf)+2.0*(pumaData-
>thetao[0]-thetafI0])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf);

pumaData-
>thetad[l]=pumaData->thetao[1]-3.0*(puinaData-
>thetao[l]-thetaf[l])*puniaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[1]-thetafl l])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf);

pumaData-
>thetad[2]=puniaData->thetao[2]-3.0*(pumaData-
>thetao[2]-tfaetaft2])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[2]-thetafl2])*pumaData-
>time*pimiaData->time*pumaData-
>time/(tf*tf*tf);

pumaData-
>thetad[3]=piunaData->thetao[3]-3.0*(pumaData-
>thetao[3]-tfaetafl3])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[3]-thetafI3])*puniaData-
>time*pumaData->time*pumaData-
>time/(tf*tftf);

pumaData-
>thetad[4]=puinaData->thetao[4]-3.0*(pumaData-
>thetao[4]-thetaf[4])*ptmiaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-

www.manaraa.com

2S1

>thetao[4]-thetaf[4])*piiinaData-
>time*puinaData->time*puinaData-

pumaData-
>thetad[5]=puinaData->thetao[5]-3.0*(puinaData-
>thetao[5]-thetaf[5])*pumaData-
>tiine*puinaData->tiine/(tf*tf)+2.0*(puinaData-
>thetao[5]-thetafI5])*pumaData-
>time*puinaData->time*pTiinaData-

}
I I after tf stay put at final position

else if (pumaData->time > tf)
{

puinaData->thetad[0]=tlietaf[0];
piunaData->tlietad[l]=tIietaf[l];
puinaData->thetad[2]=thetafI2];
puinaDaia->thetad[3]=tlietafI3];
puinaData->thetad[4]=tlietaf[4];
purnaData->thetad[5]=tIietaf[5];

}

//
// control section
//

for (i=0:i<6;i-M-)
{

// calculate error
pumaData->error[i]=piunaData-

>thetad[i]-puinaData->theta[i];

// calculate rate of change of the error
pumaData-

>errordot(i]=(puniaData->error[i]-puinaData-
>errorold[i])/piunaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=puinaData->kp[i]*puinaData-
>error[i]+puinaData->kd[i] *puinaData-
>errordot(i];

V J

// impedence based control law
if (pumaData->tiine > 6.0)
{

for (j=0-j<3:j-r+)
{
puinaData->voltage_out[j]=0.0;

for (i=0;i<3;i-H-)
{

puniaData->voltage_out[j] +=
pumaData->eJr(i] jj] *puniaData->fv[i];

}
}
for (j=3;j<6:j-t-f-)
{
puniaData->voltage_out(j]=0.0;

for (i=3:i<6:i++)
{

puinaData->voltage_out(j] +=
pumaData->eJr(i] [j]*pumaData->fv[i];

}
}

pumaData-
>voltage_out[0]=puniaData->voltage_out[0] *-1.0;

pumaData-
>voltage_out[2]=puinaData->voltage_out[2]*-1.0;

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i-H-)
r I

pumaData-
>voltage_out[i]=pumaData-
>voltage_out[i]+piuiiaData->vg[i]+purnaData-
>v_fric[i]+puniaData->viin[i];

if (&bs(puniaData-
>voltage_out(i]) > 9.9)

piunaData-
>voltage_out(i]=9.9*puniaData-
>voltage_out[i]/febs(puinaData->voltage_out[i]):

voltage_int(i]=(int)
(4095.0*(pumaData->voitage_out[i]-i-10.0)/20.0);

}

// Output voltages to trident hardware
HwOutpw(puinaData->PuniaDevice.

0x030. voltage_int[0]);
HwOutpw(puinaData->PiunaDevice,

0x032, voltage_int[I]);
HwOutpw(puniaData->PuniaDevice.

0x034. voltage_int[2]);
HwOutpw(pumaData->PuinaDevice,

0x036, voltage_int[3]);
HwOutpw(pumaData->PumaDevice.

0x038. voltage_int[4]);
HwOu^w(pumaData->PumaDevice.

0x03a, voltage_int[5]);

// save some old information

www.manaraa.com

282

for (i=0;i<6;i-H-)
{

pumaOata-
>errorold[i]=puniaData->enor[i];

pvunaData-
>theta_oId[i]=puinaData->theta[i]:

}
}

// puinaHome.c

#include "puma-h."

void piiTnaHnTne(piiTnaFi1p* pumaData)
{

short val[6];
int voItage_int[6];
inti;
double thetafI6];
double localtime:
double t^5.0;

// read encoders
vaI[0]=HwInpw(puniaData-

>E>umaDevice, 0x010);
val[l]=HwInpw(pumaData-

>PumaDevice, 0x012);
val[2]=HwInpw(puinaData-

>pumaDevice, 0x014);
val[3]=HwInpw(pumaData-

>PuinaDevice. 0x016);
val[4]=HwInpw(pumaData-

>PumaDevice, 0x018);
val[5]=HwInpw(pumaData-

>PumaDevice, 0x0 la);

// convert encoders to radians
for (i=0; i<6; i-h-)
{

puniaData->theta[i]=pumaData-
>encoder_scaie[i]*(((doubIe) val[i]) - pimiaData-
>encoder_offeet[i]);

}

// first time through get current position
if (pimiaData->Iast_fIa^=l)
{

pumaData-
>thetao[0]=puinaData->theta(0];

pumaData-
>thetao[l]=pumaData->theta(1];

pumaData-
>thetao[2]=pumaData->theta[2];

pumaData-
>thetao[3]=pumaData->theta[3];

pumaData-
>thetao[41=pumaData->theta(4];

pumaData-
>thetao[5]=pumaData->theta[51;

pumaData->last_fIag=0;
puinaData->timeh=pumaData-

>time;
}

// final position
thetaf[0]=0.0;
thetaf[ll=-1.57;
thetafI2]=l.57;
thetaf[3]=0.0;
thetafl4]=0.0;
thetafI51=0.0;

// time that home has been running
localtime=pumaData->time-pumaData-

>timeh;

// do cubic spline interpolation
if (localtime <= tf)
{

pumaData-
>thetad[0]=puinaData->thetao[0]-3.0*(pumaData-
>thetao[0]-
thetaf[0])*localtime*localtime/(tf*tf)+2.0*(pumaD
ata->thetao[0]-
thetafI01)*localtime*localtime*locaitime/(tP'tf*tf);

pumaData-
>thetad[l]=pumaData->thetao[1]-3.0*(pumaData-
>thetao[l]-
thetaf[ll)*lQcaltime*localtime/(t£*tf)+2.0*(pumaD
ata->tfaetao[l]-
thetaf[l])*localtime*localtime*Iocaltime/(tf*tf*tf);

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(pumaData-
>thetao[2]-
thetafI2])*Iocaltime*localtime/(tf*tf)-r2.0*(pumaD
ata->thetao[2]-
thetafl2])*localtime*localtime*localtime/(tf*tf*tf);

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-
>thetao(3]-
thetafI3])*localtime*localtime/(tf*tf)+2.0*(pumaD

www.manaraa.com

283

ata->thetao(31-
thetaf[3])*Iocaitime*IocaItime*Iocaltune/(tf*tf*tf);

pumaData-
>thetad[4]=pumaData->thetao(4]-3.0*(puinaData-
>thetao[4]-
thetaf[4])*Iocaltiine*Iocaltime/(tf*tf)+2.0*(pmiiaD
ata->thetao[4]-
thetaf[4])*IocaItiine*Iocaltime*Iocaltime/(tf*lf*tf);

pumaDaia-
>thetad[51=puiiiaData->thetao[5]-3.0*(pumaData-
>thetao(51-
thetaf[5])*Iocaltime*locaItmie/(tf*tf)+2.0*(puniaD
ata->thetao[5]-
thetaf[51)*locaItime*lcxaItiine*localtime/(tf*tf*tf);

}
// after tf stay put in the final posiuon

else if (localtime > tf)
{

puinaData->tfaetad(0]=thetafI0];
puniaData->thetad[I]=thetafi[1];
pumaData->thetad(2]=thetaf[2];
pumaData->thetad[3]=thetafI3];
pumaData->thetad[41=thetafI4];
pumaData->thetad[5]=thetafI5];

/

//
// control section
//

for (i=0;i<6;i++)
{

// calculate error
puniaData->error[i]=puniaData-

>thetad[i]-pumaData->tIieta[i];

// calculate rate of change of the error
pumaDaia-

>errordot[i]=(puniaData->error[i]-puniaData-
>errorold[i])/puniaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=puniaData->kp(i] *puniaData-
>error[il+puniaData->kd[i]*puniaData-
>errordot[i];

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i-H-)
{

pumaData-
>voItage_out[i]=puniaData-
>voltage_out(i] y/+puniaData->vg[i]+puniaData-
>v_fric[i]+puinaData->vim[i];

if (^bsCpumaData-
>voItage_out[i]) > 9.9)

pumaData-
>voltage_out(i]=9.9*puniaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]);

voltage_int[iI=(int)
(4095.0*(puniaData->voltage_out[i]+l0.0)/20.0);

}

// Output voltages to trident hardware
HwOutpw(pumaData->PuniaDevice.

0x030. voltage_inl[0]);
HwOutpw(pumaData->PuniaDevice.

0x032. voltage_int[Il);
HwOutpw(pumaData->PuinaDevice.

0x034. voItage_int[2]) ;
HwOutpw(puniaData->PuniaDevice,

0x036. voItage_int[3]);
HwOutpw(pumaData->PuniaDevice,

0x038. voltage_int[4]);
HwOutpw(pumaData->PuniaDevice.

0x03a. voltage_int[5]);

// save some old information
for (i=0;i<6;i-i->-)
/ I

pumaData-
>errorold[i]=pumaData->error[i];

pumaData-
>theta_oId[i]=puinaData->theta[i] ;

}

}

// puniaIiutialization.c

#include "puma.h"

void puniaInitialization(puniaFile* pumaData)
{

double frequency;
inti;

II desired refresh rate (Hz)
5equency=300.0;

// desired delta-t

www.manaraa.com

284

puinaData->dt= 1.0/firequency;

// initialize absolute time base to zero
pumaData->time=0.0;

I I set some joint limits for impedence fields
pumaData->jlimit3=4.0;
pumaData->jlimit5= 1.7;

// set flags for slow up and down
puinaData->fiist_fIag= 1;
pumaData->Iast_flag= 1;

// encoder stuff
pumaData-

>encoder_scale[0]=0.00010035;
pumaData->encoder_scale[1]=-

0.000073156;
puinaData->encx)der_scale[2]=0.000117;
puinaData->encoder_scale[3]—

0.000082663;
puinaData->encoder_scale[4]=-

0.000087376;
pumaData->encoder_scale[5]=-

0.00016377;

puniaData->encoder_oSset[0]=0.0;
pumaData->encoder_oflfeet[1]=-21472.0;
puinaData->encoder_offeet[2]=-I3426.0;
puniaData->encoder_ofifeet[3]=8000.0;
puniaData->encoder_ofE^t[41=0.0;
puniaData->encoder_offeet[5]=0.0;

// initialize feedback gains
puniaData->kp[01= 118.0;
puniaData->kd[0]= 15.4;
puniaData->kp[l]=-288.0;
puniaData->kd[1]=-24.0;
pumaData->kp[2]=200.0;
pumaData->kd[2|=20.0;
pumaData->kp[3]=-15.0;
puniaData->kd[3]=-2.0;
puniaData->kp[4]=-25.2;
puniaData->kd[4]=-2.2;
pumaData->kp[5]=-10.0;
pumaData->kd[5]=-2.0;

piuiiaData->u vm=0.0;
pumaData->v_vm=0.0;

{
puniaData->erroroId[i]=0.0;

// error values
pumaData->theta_old(i]=0.0;

// angular positions
puinaData->v_&ic_old[i]=0.0;
// fiiction voltages

}

for (i=0; i<3; 1+-^)
! I

puniaData->xv_old[i]=0.0;
puniaData->xv_dot_old[i]=0.0;
pmnaData-

>xv_dot_way_old[i]=0.0;
puinaData->xyz_oId[i]=0.0;
puniaData->xyz_dot_oId[il=0.0;
pumaData-

>xvz_dot_wav_old[i]=0.0;
}

11 calibrate encoders
HwOutpw(pumaData->PuniaDevice.

0x020, 0x0000);
HwOutpw(pumaData->PumaDevice,

0x022, 0x0000);
HwOu^)w(pumaData->PumaDevice,

0x024,0x0000);
HwOutpw(pumaData->PumaDevice.

0x026. 0xlf40);
HwOutpw(pimiaData->PumaDevice.

0x028, 0x0000);
HwOutpw(pumaData->PumaDevice.

0x02a, 0x0000);
}

// sockeLc

#include "puma-h"

SOCKADDR_IN stLclName;
SOCBLADDR_IN stRmtName;

void openSocketCpimiaFile'* pumaData)
{

int server=0;
intnRet;

// initialize some variables
for (i=0; i<6; i++)

// ip for snow
// char szHostQ = •• 129.186.232.46";

www.manaraa.com

285

I I ip for hood
charszHostO = "129.186.232.34";
// ip for mammoth

// char szHostQ = " 129.186.232.54";

char szDataReceiveQ = {0};
unsigned long addr.
WOEID WSA_VERSION;
WSADATA stWSAData:

WSA_VERSI0N = MAKEW0RD(1, 1);
nRet=WSAStartup(WSA_VERSION,

(festWSAData);
if(aRet=0) printf("attached to winsock

dU\n");
else printf("could not attach winsock

dll\n");

if (pumaData->iiseSocket = 1)
{

pumaData-
>hSock=socket(AF_INET. SOCK_DGRAM. 0);

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not
get a valid socket handle\n");

else
{

if (server=l)
{

stLcIName.sin_femily = PF_INET;

stLclName.sin_port=htons(1026);

stLcIName.sin_addr.s_addr=INADDR_A
NY;

nRet=bind(pumaData->hSock.
(LPSOCKADDR) &stLcIName, si2eof(stnia
sockaddr));

if
(nRet=SOCKET_ERROR) printf("coiiId not
bind server socket\n");

else
printf("server socket: Open\n");

nRet=recv(pumaData->hSock, (LPSTR)
szDataReceive. 5, 0);

if
(nReP=SOCKET_ERROR) printf("server socket
could not receive dataVn");

else
printf("sever socket received dataVn");

}
else
{

addr=inet_addr((LPSTR) szHost);
if

(addr==INADDR_NONE) printf("could not find
address of server\n");

stRmtName.sin_&mily = PFINET;

stRmtName.sinjxDrt=htons(1026);

stElmtName.sin addr.s addr=addr.

nRet=connea(pumaData->hSock,
(LPSOCBCADDR) &stElmtNaine. sizeof(strua
sockaddr));

if
(nRet=SOCKET_ERROR) printf("could not
connea to server socket\n");

else

printf("Socket C)pen\n");

pim3aData->activeSocket= 1;
}

}
}

}
}

void cioseSocket(pumaFile* pumaData)
{

int nRet;

if (pumaData->activeSocket =1)
{

nRet=closesocket(puniaData-
>hSock);

if (nRet==SOCKET_ERROR)
printfC'error closing socketVn");

else printf("Socket Closed\n");
}

www.manaraa.com

286

nRet=WSACIeanup();

}

void testSocketCpumaFile* pumaData)
{

intoRet;
char szDataSend[100];
double t0=0.0;
double tl=L.571;
double t2=-1.571;

sprintf(szDaiaSend,"%4.3f %4.3f %4.3f
%4.3f %4.3f y<4.3f %4.3f M0.t0.l2.tl.t0.t0.t0);

if (puinaData->activeSocket = I)
{

nRet=seiid(puinaData->hSock,
(LPSTR) szDataSend. 51, 0);

if (nRet=SOCKET_ERROR)
printfC'Socket test feiledNn");

else priiitf("Socket test
passed\n");

}
}

Darth Vader

// error.c

#include "puina.h"

void error(pumaFile* pumaData)
{

double xv[3],xv_dot[3];
double e[3];
double xv_ori[3][3],xyz(3].xyz_dot[3];
double rd[3][3]^[3],C[3];
double ctheta,theta.niag;
double wn,2;

int i.j\k;
double rv[3][3]:

// linear error - world space
e[0]=0.0; //0.4175-x(0];
e[l]=0.0; //0.1505-x(l];
e[2]=0.0;//0.4310-x[2];

II linear error - end effector space

for (j=0:j<3;j-H-)
{

xv[i]=0.0;
for (i=0;i<3;i+-i-)
{

xv[j] -f-= pumaData-
>r[i]D]*e[i];

}
}

// rotational error - world space
R[0]=-pumaData->r[0] [2];
R[l]=-puniaData->r[1] [2];
R[2]=0.0;
mag=sqrt(R[0]*R(0]+R[l]*R[I]+R[21*R[

2]);
R[01=R[0]/niag;
R(l]=R[ll/inag;
R[2]=R[2]/mag;

C[0]=puniaData->x[0]-1.0:
C[ll=puniaData->x[l]-0.0;
C[2]=0.0:
mag=sqrt(C[0]»C[0]+C[l]»C[l]+C[2]»C[

21):
C[01=C[0]/niag;
C[l]=C[ll/mag;
C[2I=C[2]/mag;

ctheta=R[0]*C(01+R[l]*C[l]+R[2]*C[2];
theta=acos(ctheta):

// check to see which solution of arccos is needed
theta=theta*febs(R[0]*C[l]-

R[1]*C[0])/(R[0]*C[1]-R[1]*C[0]):

// desired orientation - world space
rd(0] [O]=cos(theta):
rd[0] [l]=-sin(theta);
rd[0][2]=0.0;

rd[1] [0]=sin(theta);
rd[1] [1]=cos(theta);
rd[l][2]=0.0:

rd[2][0]=0.0;
rd[2I[ll=0.0;
rd[2][2]=1.0;

for (i=0;i<3;i+-r)
{

for (j=0-j<3;j-H-)

www.manaraa.com

287

{
rv[i]D]=00;
for (kF0-Jc<3i:++)
{

rv[i][j] +=
rd[i] [k]*puinaDaia->r[k] [j];

}
}

}

I I desired oiientation - end eflfeaor space
for (i=0;i<3u-i-f-)
{

for (j=0-j<3;j+-i-)
{

xv_ori[i][j]=0.0;
for (k=0Jc<3±-H-)
{

xv_ori[i][j] +=
puniaData->r[k] [i] *rv[k] [j];

}
}

}

// rotational error - end effector space
x5-z[l]=atan2(-

xv_ori[2] [0].sqrt(xv_ori[0] [0] •xv_ori[0] [01+xv_or
i[l][0]*xv_ori[l][01)):

if (&bs(xvz[ll-l.5708) < 0.01)
{

xyz[2]=0.0;

xv-z[01=atan2(xv_ori[01[ll,xv_ori{ 1] [l]");
}
else if (fabs(xvz[l]-!-1.5708) < 0.01)
{

.xyz[2]=0.0:

.\yz[0]=-
atan2(xv ori[01[l],xv_ori[l][l]);

}
else
{

xyz[21=atan2(xv_ori[1] [0],xv_ori[0] [0]):

xyz[0]=atan2(xv_ori[2] [l],xv_ori[2] [2]);
}

// derivatives of linear and rotational error
wn=60.0;
z=0.7071;

for (i=0;i<3;i-H-)
{

xv_dot(il=(wn*Twn*pumaData-
>dt*(xv[i]-pumaData->xv_old[i])+pumaData-
>xv_dot_old[i] *(2.0-i-2.0*z*wn*puinaData->dt)-
pumaData-
>xv_dot_way_old[il)/(1.0+2.0*z*wn*pumaData-
>dt+wn*wn*piunaData->dt*puniaData->dt);

.icyz_dot[i]=(wn*wn*puniaData-
>dt*(xyz[i]-piiinaData->xyz_oId[i])+pumaData-
>xyz_dot_oId(i]*(2.0+2.0*z*wn*pumaData->dt)-
pumaData-
>:CT^_dot_way_oId[i])/(1.0+2.0*z*wn*puniaData-
>dt+wn*wn*pmnaData->dt*puniaData->dt);

}

for (i=0;i<3:i-i-+)
{

pumaData-
>xv_dot_way_oId[i]=puniaData->xv_dot_old[i];

pumaData-
>xv_dot_old[il=xv_dot[i];

pumaData->xv_oId(i]=xv[i];
pmnaData-

>xyz_dot_way_old[i]=puniaData->xyz_dot_old[il;
pmnaData-

>xyz_dot_oId[i]=xyz_dot[i];
puniaData->xvz_old[i]=xvz[i];

}

// Evaluate virtual spring force
for (i=0:i<3;i-H-)

puinaData->fv[i]=-470.0*xv[il-
30.0*xv_dot[i];

}

// if (f^s(theta) <=0.05)
if (theta > 0.0)
{

puniaData->contact= 1.0;
for (i=0;i<3;i-H-)
{

puinaData->fv[i+3]=-
60.0*xvz[i]-3. *xvz_dot[i];

'}

J

else
{

pumaData->contact=0.0;
for (i=0;i<3:i-(-+)
{

www.manaraa.com

288

pumaData-
>fv[i+3]=0.0;

}
}

}

// frictioiLc

^include "puina.h"

void £riction(puiiiaFiJe* pumaData)
{

int i;
double tau=0.05305;

if (puinaData->theta[0] > pumaData-
>theta_old[0]) piiinaData->v_firic[0]=1.0;

if (puniaData->theta(0] <= pumaData-
>theta_old(0]) pumaData->v_firic[0]=-0.9;

puinaData->v_fric[0]=(puinaData-
>v_firic[0] *puniaData->dt-!-puiiiaData-
>v_&ic_old[0] *tau)/(puinaData->dt+au);

if (puinaData->theta[l] > pumaData-
>tlieta_old[ll)

{
if (puniaData->theta[l] > -1.57)

pumaDaM->v_fric[1]=-0.3;
else puniaData->v fric(l]=-0.9;

}
if (puinaData->theta[ll <= pumaData-

>theta_oId[l])
{

if (puniaData->theta(l] > -1.57)
puinaData->v_fric[1]=0.9;

else puniaData->v_&ic[l]=0.6;
}
puinaData->v_fric(I]=(puinaData-

>v_fric[1] *pumaData->dt+pumaDaia-
>v_&ic_old[1] •tau)/(puinaData->dt+tau);

if (puniaData->theta[2] > pumaData-
>theta_old[2]) puinaData->v_fric[21=0.47;

if (pumaData->theta(2] <= pumaData-
>tlieta_old[2]) pumaData->v_:Kc(2j=-0.47;

pumaData->v_firic[21=(pumaData-
>v_fric[2]»puniaData->dt+piiiiiaData-
>v_fric_old[2] *tau)/(puinaData->dt+tau);

if (pmnaData->theta[3] > pumaData-
>theta_old[3]) pmnaData->v_fric[3]=-0.35;

else if (puiiiaDaia->tbeta[3I <=
pmnaDaia->theta_oId[3]) pumaData-
>vj6ic[3]=0.35;

else piiinaData->v_&ic[3]=0.0;
pumaData->v_fric[3]=(puinaData-

>v_&ic [3] *puinaData->dt+puinaData-
>v_&ic_old[31 •tau)/(puinaData->dt+tau);

if (puinaData->theta[4] > piimaData-
>tIieta_oId[4]) puinaData->v_fric[4]=-0.4;

else if (puinaData->theta[4] < pumaData-
>tIieta_oId[4]) puniaData->v_fric[4]=0.4;

else puniaData->v_fric[4]=0.0;
puniaData->vj&ic[4]=(puinaData-

>v_&ic[4]*puniaData->dt+puinaData-
>v_fric_oId[4]*tau)/(puinaData->dt+tau);

if (puinaDaia->tIieta[5] > pmnaOata-
>theta_oId[5]) puniaData->v_&ic[5]=-0.5;

else if (puinaData->theta[5] < pumaData-
>tlieta_oId[5]) puinaData->v_&ic[5]=0.5;

else puniaData->v_&ic(5]=0.0;
puinaData->v_&ic[5]=(puinaData-

>v_fric[5]*puiiiaData->dt+puinaData-
>v_&ic_old[51*tau)/(puinaData->dt+tau):

for (i=0;i<6;i-H-)
{

pumaData-
>v_fric_oId[i]=puinaData->v_&ic[i];

>

}

n fLc

#include "puina.h"

void ftaskCpumaFile* pumaData)
{

short data:
BYTE bbigh, blow;

data=I4;
bhigfa=(BYTE) ((data & OxFFOO) » 8);
blo\v=(BYTE) (data & OxFF);
HwOutp(puinaData-

>FTDevice,0x02,bIow);

www.manaraa.com

289

HwOutp(pumaData-
>FTDevice,0x03,bhigh);
}

int ftget(puinaFile* pumaData)
{

short force(7], data;
BYTE bhi^ blow;
double wn=2.0*5.0*3.14159;
double zeta=1.0;
double f_fil[6];
int i;

data=daia | (short) (blow & OxFF);
force[2]=data;

while ((HwInp(pumaData-
>FTDevice.0x04) & OxIO) == 0);

blow=HwInp(pumaData-
>FrDevice.OxOO);

bhigh=HwInp(puniaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[3]=data;

// get a force measurement

while ((HwInp(puniaData-
>FTDevice,0x04) & 0x10) == 0);

bIow=HwInp(pinnaData-
>FTDevice,0x00);

bhigh=HwInp(pumaData-
>FTT)evice,0x01);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[6]=data;

while ((HwInp(puinaData-
>ETDevice,0x04) & 0x10) == 0);

blow=HwInp(pumaData-
>FTDevice,OxOO);

bhigfa=HwInp(puniaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data i (short) (blow & OxFF);
force[01=data;

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0);

bIow=HwInp(pumaData-
>FTDevice.OxOO);

bhigh=HwInp(pimiaData-
>FTDevice,OxO 1);

data={short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[41=data;

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0);

bIow=HwInp(pumaData-
>FTDevice.OxOO);

bhigh=HwInp(puinaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force(5]=data;

if (force(6] != 0) retum(O);

while ((Hwlnp(pumaData-
>FTDevice,0x04) & 0x10) == 0);

bIow=HwInp(puniaData-
>FTDevice,OxOO);

bhigh=HwInp(pumaData-
>FTDevice,0x01);

data=(short) (bhigh « 8);
data=data 1 (short) (blow & OxFF);
force[l]=data;

while ((Hwlnp(pun]aData-
>FTDevice,0x04) & 0x10) = 0);

blow=HwInp(pimiaData-
>FTDevice,OxOO);

bhigh=HwInp(pumaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);

// convert counts to force adjust for fbasis and
weight of handle

puinaData->forced[0]=((double)
(fofce(0]))*0. l-pumaData-
>fbasis[0];+3.6*pumaData->r[2] [0];

puniaData->forced[1]=((double)
(force[l]))*0. l-pumaData-
>fbasis[1] ;+3.6*pumaData->r[2] [I];

pumaData->forced[2]=((double)
(force[2]))*0.1-pumaData-
>fbasis[2];+3.6*pumaData->r[2] [2];

puinaData->forced[3]=((double)
(force[3]))*0.005-pumaData->fbasis[3]-
0.09*puinaData->forced[1] ;-0.06*2.6*pumaData-
>r[2][l];

puinaData->forced[4]=((double)
(force[4]))*0.005-puniaData-

www.manaraa.com

290

>fbasis[4]-K).09*puinaData-
>forced[Q];-K).06*2.6*puniaData->r[2][0];

pniinaData->forced[5]=((double)
(foice[5]))*0.005-puiiiaData->ffaasis[5];

// filter force data
for (i=0;i<6;i++)
/ I

f_fil[i]=(pumaData-
>forced[i] *puniaData->dt*puinaData-
>dt*wn*wii+

pumaData-
>f_fil_old[i]*(2.0*zeta*wn*puinaData->dt+2.0)-

pumaData-
>f_fil_way_old[i])/(1 .(H-2.0*zeta*wn*puinaData-
>dt+wn*wii*puinaData->dt*puinaData->dt);

}

for (i=0;i<3:i+-i-)
{

puinaData->fl(i]==0.3 *f_fil[i];
pumaData-

>ft[i+3]=0.5*f_m[i+3];
}

for (i=0;i<6;i-r+)
{

pumaData-
>f_fil_vvay_old[i]=pumaData->f_fil_old[i];

puinaData->f_fil_old[i]=f_fil[i];
}

retum(l);

// fl1niriali7e.c

#include "puma-h"

int ftTnifiali7p(pimaFilp* pumaData)
{

short data. force[7];
BYTE bhigh. blow;

// clear any data in the buffer
if (HwInp(puniaData->FTDevice.0xO4) &

0x10)
{

blow=HwInp(puinaData-
>FTDevice,OxOO);

bhigh=HwInp(puniaData-
>FrDevice.OxO I);

data=(sfaort) (bhigh « 8);
data=data | (short) (blow &

OxFF);
printfCpreload 1 %d\n",data);
SIeep(500);

}
if (HwInp(pumaData->FrDevice.0x04) &

0x10)
{

bIow=HwInp(puniaData-
>FTDevice.OxOO);

bhigh=HwInp(puniaData-
>FTDevice.OxO 1):

data=(short) (bhigh « 8);
data=data | (short) (blow &

OxFF);
printfCpreload 2 %dVn".data);
Sleep(500);

X)

// send CI*? to switch to parallel board
printfCSwitch to parallel boardVn");
Sleep(lOOO);

while((HwInp(pumaData-
>ETDevice,0x04) & 0x80) = 0) Sleep(lOOO);

data=67;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwC)utp(pumaData-

>FTDevice.0x02,blow);
HwOutp(pumaData-

>FTDevice.0x03 ,bhigh);
printf("C\n");
Sleep(500);

while((HwInp(pumaData-
>ETTDevice,0x04) & 0x80) = 0) Sleep(IOOO);

data=80;
bhigh=(BYTE) ((data & OxFFOO)» 8);
blow=(BYTE) (data & OxFF);
HwOutp(puinaData-

>FTDevice.0x02,blow);
HwOu9(puniaData-

>FTDevice,0x03,bhigh);
printf("P\n");
Sleep(500);

while((HwInp(piunaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);

www.manaraa.com

291

daia=80;
bhigh=(BYTE) ((data & OxFFOO) » 8);
bIow=(BYTE) (data & OxFF);
HvvOutp(pmnaData-

>t 1 Uevice.0x02,blow);
H\vOutp(puinaData-

>FTDevice,0xO3 .bfaigh);
printf("P\n");
Sleep(500);

while((HwInp(puniaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);

data=13;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwC)utp(puiiiaData-

>tr iuevice,0x02,blow):
HwOutp(puinaData-

>FTDevice,0x03.bhigIi);
printf("<cr>\n");
SIeep(500);

If wait for acknowledgment
while ((HwInp(puniaData-

>FTDevice,0x04) & 0x10) == 0);
bIow=HwInp(puniaData-

>FrDevice,OxOO);
bhigh=HwInp(puniaData-

>FTDevice,OxO 1);
data=(short) (bhigh « 8);
data=data | (short) GJIOW & OxFF);
printf("%d\n",data);
SIeep(500);

while ((HwInp(pumaData-
>FTDevice.0x04) & 0x10) == 0);

bIow=HwInp(pumaData-
>FrDevice,OxOO);

bhigh=HwInp(puniaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf("%d\n'\data);
Sleep(500):

while ((Hwlnp(puniaData-
>FTDevice,0x04) & 0x10) == 0);

bIow=HwInp(pumaData-
>FTDevice,OxOO);

bhigh=HwInp(puniaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);

data=data i (short) (blow & OxFF);
printf("%d\n",data);
SIeep(500);

while ((HwInp(pumaData-
>FrDevice,0x04) & 0x10) == 0);

blow=HwInp(puniaData-
>FrDevice,OxOO);

bhigh=Hwlnp(puinaData-
>FrDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf("%d\n".data);
Sleep(500);

if (HwInp(puniaDaia->FTDevice.0x04) &
0x10)

{
blow=HwInp(puniaData-

>FrDevice.OxOO);
bhigh=HwInp(puniaData-

>ETDevice.OxO 1);
data=(short) (bhigh « 8);
daia=data 1 (short) (blow &

OxFF);
printf(".%d\n".data);
Sleep(500);

}

if (Hwlnp(puniaData->FTDevice.0x04) &
0x10)

{
blow=HwInp(piiniaData-

>FTDevice,OxOO);
bhigh=Hwlnp(puinaData-

>FTDe%ice.OxO 1);
data=(short) (bhigh « 8);
data=data | (short) (blow &

OxFF);
printf("..%d\n",data);
Sleep(500):

}

if (HwInp(puniaData->FTDevice.0x04) &
0x10)

{
bIow=HwInp(pumaData-

>FTDevice,OxOO);
bhigh=HwInp(puniaData-

>FTDevice.OxO 1);
data=(short) (bhigh « 8);

www.manaraa.com

292

data=data | (shon) (blow &
OxFF);

printf("...%d\n",data);
Sleep(500);

}

if (HwInp(pumaData->FTDevice,0x04) &
0x10)

{
blow=HwInp(puinaData-

>FTDevice,OxOO);
bhigii=HwInp(puinaData-

>FTDevice,OxO 1);
data=(short) (bhigh « 8);
daia=data | (short) (blow &

OxFF);
printf("... .%d\n" .data);
Sleep(500);

}

if (HwInp(puinaData->FTDevice.0x04) &
0x10)

{
blow=HwInp(piiniaData-

>FTDevice,0x00);
bhigh=HwInp(puinaData-

>ETDevice.OxO 1);
data=(short) (bhigh « 8);
data=data | (short) (blow &

OxFF);
printf(" %d\n''.data);
Sleq)(500);

if (HwInp(pumaData->FTDevice.0x04) &
0x10)

{
blow=HwInp(puinaData-

>nDevice.OxOO);
bhigh=HwInp(puinaData-

>FTDevice.OxO 1);
data=(short) (bhigh « 8);
data=data | (short) (blow &

OxFF);
printf(" %d\ii",data);
Sleep(500);

}

// sendCDB
printfC'Set to communicate binary

mode\n");
Sleep(lGOO);

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) == 0) Sleep(lOOO);

data=67;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwOutp(pmnaData-

>ETDevice,0x02,blow);
HwOutp(pmnaData-

>Fl'Device,0x03.bhigh);
whiIe((HwInp(puniaData-

>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);
while ((Hwlnp(pimiaData-

>fTT)evice,0x04) & 0x10) — 0);
biow=HwInp(puinaData-

>mDevice,0x00);
bhigh=HwInp(puinaData-

>FrDevice,OxO 1);
data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf(''%d\n".data);
Sleep(500);
if (data != 67) retum(O);

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);

data=68;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwOutp(pumaData-

>FTDevice,0x02.blow);
HwOutp(pumaData-

>fTDevice.0x03.bhigh);
while((HwInp(pumaData-

>FTDevice,0xO4) & 0x80) == 0) Sleep(lOOO);
while ((HwInp(pumaData-

>FTDevice,0xO4) & 0x10) = 0);
blow=HwInp(puinaData-

>FrDevice,OxOO);
bhigh=HwInp(pumaData-

>FrDevice.OxG 1);
data=(shon) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf("%d\n",data);
Sleep(500);
if (data != 68) retxim(O);

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);

data=66;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);

www.manaraa.com

293

HwOutp(piunaData-
>FTDevice,0x02,blow);

HwOutpCpumaData-
>FrDevice.0x03 ,bhigh);

while((HwInp(puinaData-
>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);

while ((HwInp(puinaData-
>FrDevice,0x04) & 0x10) = 0);

blow=HwInp(puniaData-
>FTDevice.OxOO);

bhigh=HwInp(puinaDaia-
>FTDevice.OxO 1);

daa=(shoit) (bhigh « 8);
data=data 1 (short) (blow & OxFF);
priiitf("%d.\n",data);
Sleep(500);
if (data != 66) retuin(O);

while((HwInp(pumaData-
>ETDevice,0x04) & 0x80) = 0) Sleep(lOOO);

data=I3;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwOutp(pmnaData-

>FTDevice.0x02,blow);
HwOutp(puinaData-

>FTDevice,0x03,bhigh);
while((HwInp(puinaData-

>FTDevice,0x04) & 0x80) = 0) Sleep(lOOO);
while ((HwInp(puniaData-

>FTDevice,0x04) & 0x10) == 0);
blow=HwIiip(puinaData-

>FrDevice,OxOO);
bhigh=HwInp(pumaData-

>FrDevice.OxO 1);
data=(short) (bhigh « 8);
data=data i (short) (blow & OxFF);
printf("%d\ii".data);
Sleep(500);
if (data != 13) retum(O);

while ((Hwlnp(puinaData-
>FTDevice,0x04) & 0x10) == 0);

blow=HwInp(puinaData-
>FTDevice.OxOO);

bhigh=HwInp(puinaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf("%d\n",data);
Sleep(500);
if (data != 10) retum(O);

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0);

blow=HwInp(puinaData-
>FTDevice,OxOO);

bhigh=HwIiip(puinaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
printf("%d\n".data);
Sleep(500);
if (data != 6) retum(O);

while ((HwInp(puinaData-
>FTDevice,0x04) & 0x10) == 0):

blow=HwInp(pumaData-
>FTDevice,OxOO);

bhigh=HwInp(puinaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=data [(short) (blow & OxFF);
printf("%d\n",data);
Sleep(500);
if (data != 6) retiim(O);

while ((HwInp(puitiaData-
>!• lUevice.0x04) & 0x10) == 0);

blow=Hwlnp(puinaData-
>FTDevice,OxOO);

bhigh=HwInp(puinaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=daia I (short) (blow & OxFF);
printf("%d\n".data);
Sleep(500);
if (data != 13) retum(O);

while ((HwInp(puinaData-
>FTDevice,0x04) & 0x10) — 0);

blow=HwInp(puiiiaData-
>FTDevice,0x00);

bhigh=HwInp(puinaData-
>FrDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
priiitf("%d\n",data);
Sleep(500);
if (data != 10) retuni(O);

while ((HwInp(puniaData-
>FTDevice,0x04) & 0x10) == 0);

www.manaraa.com

294

blow=HwInp(puinaData-
>FTDevice,OxOO);

bhigh=EIwInp(pumaData-
>Fn)evice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
prmtf("%d\n'\daia);
SIeqj(500);
if (data != 62) return(O);

while ((HwIiip(puinaData-
>FTDevice,0x04) & 0x10) = 0):

blow=HwInp(puinaDaia-
>FTDevice,OxOO);

bhigh=HwInp(puinaData-
>FrDevice,OxO 1);

data=(short) (bhigh « 8);
data=data i (short) (blow & OxFF);
force(2]=data;

// get a force measurement for the basis
while((HwInp(pumaData-

>FTDevice,0xG4) & 0x80) == 0) Sleep(lOOO);
data=14;
bhigh=(BYTE) ((data & OxFFOO) » 8);
blow=(BYTE) (data & OxFF);
HwOutp(pimiaData-

>FTDevice,0x02,blow);
HwOutp(pumaData-

>t" iuevice.0x03.bhigfa);

while ((HwInp(piiinaData-
>t* 1 Uevice,0x04) & OxIO) = 0):

blow=HwInp(puniaData-
>FTDevice.0x00);

bhigh=HwInp(pumaData-
>FTDevice.OxO I);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[61=data;

while ((HwInp(pumaData-
>FTDevice.0xO4) & 0x10) = 0);

blow=HwInp(pumaData-
>FTDevice,0x00);

bhigh=HwInp(pumaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[0]=data;

while ((HwInp(pumaData-
>FTDevice,0xO4) & 0x10) = 0);

blow=HwInp(pumaData-
>ETDevice,OxOO);

bhigh=HwInp(pumaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[l]=data;

while ((HwInp(pumaData-
>FTDevice.0x04) & 0x10) = 0);

bIow=HwInp(puinaData-
>FTDevice,OxOO);

bhigh=HwInp(puinaData-
>FTDevice,OxG 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force[3]=data;

while ((HwInp(pumaData-
>FTDevice,0x04) & 0x10) = 0);

blow=HwInp(puinaData-
>FTDevice.OxOO);

bhigh=HwInp(pumaData-
>FTDevice.OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFEO;
force[4]=data;

while ((HwInp(puniaData-
>FTDevice.0x04) & 0x10) == 0);

blow=HwInp(puinaData-
>FTDevice.OxOO);

bhigh=HwInp(pumaData-
>FTDevice,OxO 1);

data=(short) (bhigh « 8);
data=data | (short) (blow & OxFF);
force(5]=data;

if(force[6] !=0)
{

priiitf("Error getting force

retum(O);
basisVn");

}

puniaData->fbasis[0]=((double)
(force[0]))*0.1;

pumaData->fbasis[1]=((double)
(force[l]))*0.1;

www.manaraa.com

295

puinaData->fbasis[2]=((double)
(force(2]))*0.1+3.6;

piiTnaData->fbasis[3]=((double)
(force(3]))*0.005-0.09*puniaData->fbasis(l];

puniaData->fbasis[4]=((double)
(force[4]))*0.005-K).09*pumaData->fbasis[01;

puinaData->fbasis[5]=((double)
(force(5]))*0.005;

printfC'Fr initialized OK\n");
retuin(l);

}

// gravity.c

#include "puina.h"

void gravity(pumaFile* pumaData)
{

double c2.s2.c23.s23;

c2=cos(puinaData->tfaeta[1]);
s2=sin(puinaData->dieta[l]);

c23=cos(puinaData->tfaeta[ll+puinaData-
>tfaeta[2]);

s23=sin(puTnaData->theta[1]+puinaData-
>tlieta[2|);

// gravity compensatica
puinaData->vg[0]=0 0;
puinaData->vg[2]=-

I.1201»s23+0.0977*c23;
pumaData-

>vg[l]=0.2400*s2+2.1144*c2-0.5304*puniaData-
>vg[2];

pumaData->vg(3]=0.0;
puinaData->vg[4]=0.0;
puinaData->vg[5]=0.0;

}

pumaData-
>vim[0]=0.02*pow((1.0/(pmnaDaia->tlieta(0]-
2.7)),3.0)+0.02*pow((1.0/(puinaData-
>tlieta[01+2.7)),3.0);

piunaData->viin[Il=-
0.02*pow((1.0/(puinaData->theta[l]-0.7)).3.0)-
0.02*pow((I.O/(piiniaData->theta[1]+3.7)),3.0);

pumaData-
>vim[2]=0.02*pow((1.0/(puinaDaia->theta[2]-
pumaData-
>jlinut3)).3.0)+0.02*pow((1.0/(puinaData-
>theta(2]-K).9)).3.0);

pumaData->viin[3]=-
0.02*pow((1.0/(puinaData->theta[3]-3.2)),3.0)-
0.02*pow((1.0/(pumaData->tlieta[3]+1.8)),3.0);

puinaData->vim[4]=-
0.02*pow((1.0/(pumaData->tIieta[4]-1.7)).3.0)-
0.02*pow((l-0/(puinaData->theta[4]+puinaDaia-
>jliinit5)).3.0);

puinaData->viin(5]—
0.02*pow((1.0/(pumaData->theta[5]-5.2)),3.0)-
0.02*pow((1.0/(pumaData->theta[5]+5.2)),3.0);
}

// ldneinatics.c

#include "puma-h"

void kineinatics(pumaFile* pumaData)
{

double
c 1 .s I,c2,s2,c3 ,s3 ,c23 ,s23 .c4,s4,c5,s5,c6,s6;

double 1[5];
double

V I,v2,v3 .v4,v5,v6.v7.v8,v9.v lO.v 11;

l[l]=0.4318;
1[2]=0.15005;
1[3]=-0.0191;
1(4]=0.4331;

// unpedencex

#include "puma.h"

void iinpedence(puinaFile* pumaData)
{

cl=cos(pumaData->theta[0]);
sl=sin(puinaData->theta[0]);

c2=cos(puinaData->theta[1]);

www.manaraa.com

296

s2=sm(pumaData->thea[1]);

c3=cos(puinaData->theta[2]);
s3=sin(puinaData->theta[2]);

c23 =cos(puinaDaia->theta[1 J+pumaData-
>theta[2]);

s23=sin(puinaData->theta[1]+puinaData-
>theta[2]);

c4=cos(puinaData->theta[3]);
s4=sin(puinaData->theta[3]);

c5=cos(puinaData->thea[4]);
s5=sm(puniaData->theta[4]);

c6=cos(pumaData->theta[5]);
s6=siii(puinaData->theta[5]);

pumaData-
>x[0]=c 1 *(023 *l[3]+s23 *l[4]+c2*l(11)-s 1 •ip];

pumaData-
>x[l]=sl*(c23*l[3]+s23*l[4]+c2*l[ll)+cl»l[2];

pnmaData->x[2]=-s23 *l[3]+c23 *1[4]-
s2*I[l];

pumaData->x[3]=0.0;
puniaData->x[4]=0.0;
puniaData->x[5]=0.0;

V I=c4*c5*c6-s4*s6;
v2=s5*c6;
v3=c23*vl-s23*v2:
v4=s4*c5*c6-fc4*s6;

puinaData->r[0] [0]=c 1 •vS-s 1 *^4;
puniaData->r[1] [01=s 1 HS+c 1 *v4;
puinaData->r[2] [0]=-s23 •v 1 -c23 *v2;

v5=c4*c5*s6+s4*c6;
v6=s5*s6;
v7=-c23 *v5-(-s23 *v6;
v8=s4*c5*s6-c4*c6:

puinaData->r[0] [l]=cl*v7-i-s l*v8:
puinaData->r[l][l]=sl *v7-cl *v8;
puinaData->r[2] [l]=s23 "^5+023 *v6:

v9=c4*s5;
V 10=c23 *v9+s23 *c5;
vll=s4*s5:

puinaData->r[0][21=cl*vl0-sl*vi i;

piuiiaData->r[l][2]=sl*vlO+cl*vl 1;
puinaDaia->r[2] [2]=-s23*v9+c23'*c5:\

// jacobian
puinaData->eJr[0] [0]=c5*c6*(-

c23»c4'*l[2]+s4*(c2»l[l]+c23*l[3]+s23*I[41))+s6*
(c23*s4»I[2]+c4»(c2*l[l]+c23*l[3]+s23*l[4]))+s5
•c6*s23»l[2];

pumaDaia-
>eJr[0][l]=c5»c6*(c4*(s3*I[l]+l[4]))+s6»(-
s4»(s3*I[ll+I[4]))-s5»c6*(-c3*I[lI-I[3]);

piiinaData->eJr[0] [2]=c5*c6*c4*l[4]-
s6*s4»l[4]+s5*c6*l[3];

puinaData->eIr[0] [3]=0.0;
piunaData->eJr(0] [4]=0.0;
puinaData->eJr[0] [5]=0.0;

puinaData->eJr[1] [0]=-c5*s6*(-
c23*c4»l[2]+s4*(c2*l[l]+c23*l[3]+s23*l[4]))+c6*
(c:23*s4*I[2I+c4«(c2»l[l]-fc23*I[3]+s23*l[4]))-
s5*s6*s23*I[2];

puinaData->eJr[l][l]=-
c5*s6*(c4*(s3*I[ll+l[4]))+c6*(-
s4*(s3 »1[1]+l[4]))+s5*s6»(-c3 *1[I] -I[3]);

piiiniData->eJr[l][2]=-c5*s6*c4*I[4]-
c6*s4*l[4]-s5*s6»l[3];

puinaData->eJii;i][3]=0.0;
puniaData->eJr[l][4]=0.0;
puinaData->eJr(l][5]=0.0;

piiinaData->eJr[2] [01=s5*(-
c23*c4*l[2]+s4*(c2*I[l]+c23»l[31-^3*l[4]))-
c5»s23*l[2]:

pumaData-
>eJr[2] [I]=s5*(c4*(s3 »l[1]-^l[4]))+c5*(-c3*l[l]-
I[3]);

puinaData->eJr[2][2]=s5*c4*I[41-c5*I[3];
pumaData->eJr[2][3]=0.0:
puinaData->eJr[2] [4]=0.0;
pumaData->eJr[2] [5]=0.0:

puinaData->eJr[3] [0]=s23 *(s4*s6-
c4»c5*c6)-c23*s5*c6;

puinaData->eJr[3] [I]=s4*c5*c6+c4*s6;
puinaData->eJr[3] [2]=s4*c5 *06+04*56;
puinaData->eJr[3] [3]=-s5*c6;
puinaData->eJr[3] [4]=s6;
puinaData->eJr[3][5]=0.0;

pumaData-
>eJr[4] [0]=s23 *(c4*c5*s6+s4*c6)+c23 *s5*s6;

puinaData->eJr[4][l]=-s4*c5*s6+c4*c6;

www.manaraa.com

297

puiiiaData->eJr[4][2]=-s4*c5*s6+c4*c6;
pumaData->eJr[4][3]=s5*s6;
puinaData->eJr[4] [4]=c6;
puniaDaia->eJr{4] [5]=0.0;

puinaData->eJr[5] [0]—
s23*c4*s5+c23*c5;

piiinaData->eJr[5] [1]=s4*s5;
piiinaData->eJr[5] [2]=s4*s5;
puinaData->eJr[5] [3]=c5;
pumaDaia->eJr[51[4]=0.0;
pumaData->eJr(51 [5]=1.0;

// main c

#include "puma-h"

void niain(void)
{
// robot smflf

pumaFile *pumaData;
int stop;
int homecounc

// window's stuff
HANDLE hprocess;
HANDLE hthread;
int processerror.

// timer stuff
BOOL result;
LARGE_INTEGER li&equency,
LARGE_INTEGER licoimt:
LONGLONG frequency;
double dfiequency;
LONGLONG staitcount;
LONGLONG count;
double currenttime;
double dtacrual;
double dterror,
double dtmax;

// error flags
int timererror,
int timerovenun;
int DeviceStop;
int errorSockec

// socket stuff

intern
char szDataSend[100];
int gcount;

// ftstuff
int ftinitok;

// data file stuff
double data[3][2000];
int datalength=2000;
int datacount;
int datacycle;
intdatamax;
int fileerror.
FILE *out;

// general stuff (counter and the like)
int i;

III
II Taking Care of Business
lll

printf("PUMA control programyn");
printfCwritten by Jim Edwards for

LARCOn");
printf("AJl rights reserved\n\n\n\n");

lll
II Code Initialization Section
IlllllllinilllllllllllllllllilllllllllllllllillUIIIIIIIIIIIIIIIIIII
II set counter error flag to pass

timererror=I;

// set coimter overrun flag to pass
timeroverrun=l;

I I start taking data at zero
daiacoimt=0;

// set data pass to zero
datacycle=0;

I I set process error flag to pass
processerrorO;

// set maximum delta-t to zero
dtmax=0.0;

I I set stop to pass
stop=l;

www.manaraa.com

298

// set homecoiint to zero
homecount=0;

// set socket enor to none
errorSockeiK):

// set graphics dump counter to zero
gcount=0;

lll
IIUH Hardware Initialization
lll
II get process handle

hprocess=GetCurrentProcessO;

// set process priority
result=SetPriorityClass(hprocess,

REALTIME_PRI0RITY1CLASS);
if (result == 0) processerror=I;

// get thread handle
hthread=GetCurTentThreadO;

// set thread priority
result=SetThreadPriority(lithread,

THREAD_PRIORriT_TIME_CRmCAL);
if (result = 0) processerror=2;

// allocate memoiy for puma structure
pumaData=(puniaFile

*)malloc(sizeof(pumaFile));

// connect to the puma kernel device
DeviceStop=l;
pumaData-

>PumaDevice=H'wNewDevice(NULL);
HwSetErrorHandIer(pumaData-

>PumaDevice, MyErrorHandler);
if (!HwConnectDevice(pumaData-

>PumaDevice. "pmna"))
{

printfCFailed to connect to puma
device!\n");

HwDeIeteDevice(pumaData-
>PumaDevice);

DeviceSlop=0;
}

// coimea to the ft kernel device
pumaData-

>FTDevice=HwNewDevice(NULL);

HwSetEnorHandler(pumaData-
>FTDevice, MyErrorHmdler);

if (!HwConnectDevice(pmnaData-
>FTDevice. "ft"))

{
printfC'Failed to connea to ft

device!\n");
HwDeleteDevice(pumaData-

>M Device):
DeviceStop=0;

}

// setup fl
ftinitok=ftInitialize(pumaData):
pumaData->ftgetok= 1;

// setup pmna
piiTnafnitiali7ari<m(piimar)ara);

// open socket - useSocket = 1 use socket = 0
don't use socket

pumaData->useSocket= 1;
pumaData->activeSocket=0;
openSocket(pumaData);

// test socket
testSocket(pumaData);

// get frequency ofhigh performance counter
resuIt=QueryPerfonnanceFrequency(&lifr

equency);
if (result = TRUE)
{

firequency=li&equency.QuadPart;
dfiequency=((doubIe)

frequency);
printfC'clock frequency: %f

MHz\n\n\n\n".dfrequency);
}
else
{

printfC'QueryPerfbrmanceFrequency;
failure\n"):

timererror=0:
}

// get starting count
printf(''\n\n\nTum Arm Power On!!! !\n"):
resuIt=QueryPerfonnanceCounter(&licou

nt);
if (result = TRUE)

www.manaraa.com

299

{ pumaData-
startcoun^IicountQuadPart >theta[0].

} pumaDaia-
else >theta[l].
{

>theta[2].
pumaData-

printf("QueTyPerfonnanceCounter pumaData-
feilureVn"); >theta(3].

timererror=0; pumaData-
i >theta[4].

pumaData-
// disengage the brakes >theta(5]);

HwOutpw(puniaData->PuiiiaDevice,
0x026,0x0001);

lllllllllllllllllllllllllllllllllllllltllllllllllllllllllllllllllllll
I I Main Control Loop
lltllllllllllllllllllll

while((liomecount < 2000) &&
(puinaData->ftgetok = 1) && (ftinitok = I) &&
(DeviceStop = 1) && (timererror = 1) &&.
(ttmerovemin = 1) && (processerror = 0))

{
I I control code

if(kbliitO) stop=0;
if (stop == 1)
{
puniaControl(pumaData):
}
else
{
homecount-H-:

pumaHomeCpumaData);
}

// increment graphics dump counter
gcount-H-;

// send data to graphics engine
if (gcount = 5)
{
gcount=0;

// but onI>- if there is an active socket for
communication

if (pumaData-
>activeSockei == 1)

{

sprintf(szDataSend"%4-.3f %4.3f %4.3f
%4.3f %4.3f %4.3f %t.3f

pxmiaData->time.

. err=send(pumaData->hSock,
(LPSTR) szDataSend. 51. 0);

if
(erT=SOCKET ERROR) errorSocket=l;

// timing code

}

do
{

// get the current count of performance counter

resuIt=QueryPerformanceCounter(&licou
nt);

if (result = TRUE)
{

count=IicounLQuadPart:
// convert into time since program started

currenitime=((double) (count-
startcount))/d&equency:

}
else
{

printf("QueryPerformanceCounter.
&ilure\n");

timererror=0;
}

dtactual=curTenttime-
pumaData->time;

} while(dtactual < pumaData-
>dt);

// get maximum delta-t

www.manaraa.com

300

if (dtactual > dtmax)
dtniax=dtactual;

I I get error in delta-t
dterror=dtactuaI-puniaData->dt;
if (&bs(dterTor) > pumaData-

>dt) tirneroverrun=0;

I I take some data
if (stqj == 1)
{

data[0] [datacount]=pmnaData-
>forced[l];

data[1] [datacount]=puniaData->contact:

data[2] [datacount]=painaData->x[1];

if (datacount == 1999)
{

datacount=0;
datac:vcle=l;

}
else daiacount++;

}

II update absolute time base
puniaData->tinie=puniaData-

>time+pumaData->dt;
} I I end main control loop

II engage the brakes
HwOutpw(pumaData->PumaDevice.

0x02e, 0x0000);

lll
II Hardware Clean-Up
lll
I I kemal device

HwDeleteDevice(pumaData-
>PuiDaDevice);

HwDeleteDevice(pumaData->FTDevice);

// close socket
closeSocket(pumaData);

lll
I I Take some data
lll

I I open the data file

if ((ou^open("om.dat"."wt"))=NULL)
fileenot=0;

else
{

// write data
fileerror=I;

fprintf(out."niax dt is
%f\n\n\n".dtniax);

if (datacycle = 1)
datamax=datalength:

else dataniax=datacount:

for (i==0; i<datamax: i++)
{

fprintf(ouL"%f. %£
%f\n",daia[0] [i].data[1] [i],daia[2I [i]);

// close file
fclose(out);

}

llllllllllllllllllllllllllllllllllllllinilllllllllllllllllllllllllll
I I Final Error Messages
lll

printf(''\n\n\nErTor Messages:\n"):
if (timererror == 0) printf("timer

malfimction\n"):
else if (timeroverrun == 0) printf("timer

over run\n");
else if (DeviceStop == 0) printf("DrTverX

errorVn");
else if (fileerror == 0) printf("could not

open data file\n");
else if (processerror = 1) printf("could

not set process priorityVn");
else if (processerror = 2) printfC'could

not set thread priority\n");
else if (errorSocket = I) printf("error

sending data over socketVn");
else printfC'all went well\n");

Sleep(3000);
}

lll
mill DriverX Error Handler
III

www.manaraa.com

301

void \fyErrotHaiidler(HWDEVICE* pDevice,
DWORD nError)
{

pruitf("CriticaI DriverX error %d\n".
nError);

exit(iiError);
}

// puiiia.li

// include files
#include <windows.li>
#incliide <winsock.h>
#include <stdio.h>
#inciude <Coiiio.h>
#include <inath.h>
#inciude "DriverX-h"

// structures
tvpedefstrua
{
// needed for all

HWDEVICE* PmnaDevice:
HWDEVICE* M Device;
double dt;
double time;
double encoder_scale[6];
double encoder_ofE^t(6];
double tiieta[6];
double voltage_out[6];

// standard robot stufT
double r[3][3];
double eJr[6][6];
double x[6];

// virtual majaipulator stuff
double ftr[6];
double xv_old[3];
double xv_dot_old[3];
double xv_dot_w^_old[3];
double xy2_old[31;
double j^_dot_old[3];
double xy2_dot_wa_old[3];

// socket stuff
SOCKET hSock;
int useSocket;
int activeSocket;

// ftstuff
double fbasis[6];
double forced[6];
int ftgetok;
double ft[61;
double f_fil_old[6];
double f_fil_way_old[6];

// needed for me
int fiist_£lag;
int last_flag;
double kp[6];
double kd[6];
double error [6];
doirfjle erroroid[6]:
double errordot[6];
double thetad[6];
double tIieta_old[6];
double thetao[61;
double timeh:
double vg[6];
double v_&ic[6];
double v_fric_oId(6]:
double vim[6];
double jliniit3:
double jlimitf;
double contact;

} pumaFile;

// prototypes
void main(void);
void MyErrorHaiidler(HWDEVICE * . DWORD);
void pnTnarniriaIi7ation(puTnfiFile *);
int ftInitialize(pumaFile •);
void pumaControl(pumaFile *);
void pumaHome(puniaFiIe *);
void openSocket(pumaFile *):
void closeSocket(puniaFile *);
void testSocket(pumaFile *);
void gravity(pumaFile •);
void fiiction(pumaFile *);
void inipedence<puniaFile *);
void fiask(pumaFile *);
int flget(puniaFiIe •);
void kinematicsCpumaFile •);
void errorCpumaFile •);

// pumaControLc

#inciude "puma-h"

www.manaraa.com

302

void pumaControlCpumaFile* pumaData)
{

short val[6];
int voItage_int[6];
inti.j;
double thetaf[61;
double tf=5.0;

// read encoders
vaI[01=HwInpw(puinaDaia-

>PuinaDevice. 0x010);
val[1 I=HwInpw(pumaData-

>PumaDevice, 0x012);
val[2]=HwInpw(pumaData-

>PumaDevice. 0x014);
val[3]=HwInpw(puinaData-

>PumaDevice, 0x016);
val[4]=HwInpw(pumaDaia-

>PumaDevice, 0x018);
val[5]=HwInpw(puniaData-

>PumaDevice. 0x0 la);

// convert encoders to radians
for (i=0; i<6; i+-r)
{

pumaData->tlieta[il=puniaData-
>encoder_scale[i]*(((double) val[i]) - pumaData-
>encoder_ofifeet[i]);

}

// ask for some forces
ftask(puinaData);

// forward kinematics and Jacobian
kinematics(pumaData);

// virtual manipulator control
error(pumaData);

// gravity compensation
gravity(pumaData);

// &iction compensation
fiiction(pumaData);

// get forces
pumaData->ftgetok=ftget(pumaData);

// impedence protection
impedence(pumaData);

// first time through get current position
if (pumaData->first_flag=l)
{

pumaData-
>thetao(0]=puinaData->theta[0];

pumaData-
>thetao[I]=pumaDaia->theta(1];

pumaData-
>thetao[2]=pumaData->theta[2];

pumaData-
>thetao[3]=pumaData->theta[3];

pumaData-
>thetao[4]=pumaData->theta[4];

pumaData-
>theiao[5]=puniaData->theta[5];

p»mar)ata->first_flag=2;
}

// final position
thetaf[0]=0.0 ;
thetaf[l]=0.0 ;
thetaft2]=0.0 ;
thetaf[3]=-0.2593 ;
thetaf[4]=1.3638;
thetafI51=0.2776;

// do cubic spline interpolation
if (pumaData->time <= tf)
{

pumaData-
>thetad[0]=pimiaData->thetao[0]-3.0*(pumaData-
>thetao[0]-thetafI0])*pumaData-
>time*pumaData->time/(tf*tf)T-2.0*(pmnaData-
>thetao[0]-thetaf[0])*pumaData-
>time*puniaData->time*pumaData-
>time/(tftP'tf);

pumaData-
>thetad[1]=pumaData->thetao[I]-3.0*(pumaData-
>thetao(l]-thetaf[l])*pumaData-
>time*pumaData->time/(tf*tf)+2.0*(pumaData-
>thetao[l]-tfaetaf[l])*pumaData-
>time*pumaData->time*pumaData-
>time/(tf*tf*tf);

pumaData-
>thetad[2]=pumaData->thetao[2]-3.0*(puniaData-
>thetao[2]-thetafI2])*pumaData-
>time*pumaData->time/(tf*tf)"'"2.0*(pumaData-
>thetao[2]-thetaf[2])*pumaData-
>time*pimiaData->time*pumaData-
>time/(tf*tf*tf);

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-

www.manaraa.com

303

>thetao[3]-thetaf[3])*pmnaData-
>time*puinaData->tiaie/(tf*tf)+2.0*(pumaData-
>thetao[3]-thetafI3])*pumaData-
>time*puinaData->time*pmnaData-

pumaDaia-
>thetad[4]=puinaData->thetao[4]-3.0*(puinaData-
>tfaetao[4]-thetafI4])*pmnaData-
>time*puinaData->time/(tf*tf)+2.0*(puiQaData-
>thetao[4]-thetafI4])*puinaData-
>time*puniaData->tinie*puinaData-

pumaData-
>thetad[5]=puniaData->tlietao[5]-3.0*(puinaData-
>tfaetao[5]-tIietafI5])*pumaDaa-
>tune*puinaData->tiine/(tf''tf)+2.0*(piiinaData-
>thetao{51-thetafl51)*puniaData-
>time*puniaData->tinie*puniaData-

}
// after tf stay put at final position

else if (puinaData->tinie > tf)
{

pumaData->thetad[0]=thetafI0];
puinaData->tlietad[1]=thetafl 1];
puinaData->thetad[2]=theiaf[2];
pumaData->thetad[31=tfaetafl31;
purnaData->thetad[4]=thetafI4];
pumaData->thetad[5]=thetafI5];

}

//
// control section
//

for (i=0:i<6:i-i-f-)
{

// calculate error
puniaData->error[i]=puniaData-

>thetad[i]-puniaData->theta[i];

// calculate rate of change of the error
pumaData-

>errordot[i]=(pmnaData->en:or[i]-pumaData-
>errorold[i])/puniaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=ptiinaData->kp[i]*pumaData-
>error[i]+puniaData->kd[i]*puinaData-
>errordot(i];

}

// impedence based control law
if (puniaData->time > 6.0)
{

puinaData->jlimit3=1.4;
puniaData-5jlinut5=-0.2;
for O'=0-j<6;j++)
{
puniaData->voltage_out(j]=0.0;

for {i=0;i<6;i-H-)
{

puinaData->voltage_out|j] +=
puniaData->eJr[i] [j]*(puinaData->fv[i]-pumaData-
>ft[i]);

}
}
pumaData-

>voltage_out[01=puniaDaia->voltage_out[0]*-1.0:
pumaData-

>voltage_out(2]=puinaData->voltage_out[2] *-1.0;

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i++)
{

pumaData-
>voltage_out(i]=puniaData-
>voltage_out[i]+puinaData->vg[i]+puniaData-
>v_&ic[i]-!-puinaData->vim[i];

if (fabs(pumaData-
>vQltage_out[il) > 9.9)

pumaData-
>voltage_out[i]=9.9*puinaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]);

voltage_int[i]=(im)
(4095.0*(puniaData->voltage_out[i]+10.0)/20.0);

}

// Output voltages to trident hardware
HwOutpw(puniaData->PuinaDevice.

0x030, voltage_int[0]);
HwOutpw(puniaData->PuniaDevice.

0x032, voItage_int[l]);
HwOuq)w(puniaData->PumaDevice,

0x034. voltage_int[2]);
HwOutpw(puniaData->PuniaDevice.

0x036, voItage_int[3]);
HwOutpw(puniaData->PumaDevice,

0x038, voltage_int(4]);
HwOutpw(puniaData->PuinaDevice,

0x03a, voltage_int[5]);

www.manaraa.com

304

I I save some old infonnatioa
for (i=0;i<6;i-H-)
s t

pumaData-
>errorold[i]=pumaData->enor[i];

pumaData-
>theta_oId[i]=pmnaData->theta[i];

}
> f

H pumaHome.c

#include "puma.Ii"

void pumaHome(pumaFile* pumaData)
{

short val[6];
int voItage_int[6];
int i;
double thetaf[6];
double localtime:
double tf=5.0;

// read encoders
vaI[0]=HwInpw(pumaData-

>PumaDevice, 0x010);
val[l]=HwInpw(pumaData-

>PumaDevice. 0x012);
val[2]=HwInpw(pumaData-

>PumaDevice. 0x014);
val[3]=HwInpw(pumaData-

>PumaDevice, 0x016);
val[4]=HwInpw(pumaData-

>PumaDevice, 0x018);
val[5]=HwInpw(puinaData-

>PumaDevice, 0x0 la);

// convert encoders to radians
for (i=0; i<6; i++)
{

pumaData->theta[i]=putnaData-
>encoder_scale[i]*(((double) val[i]) - piunaOata-
>encoder_ofEKt[i]);

}

// first time through get current position
if (pumaData->last_flag=l)
{

pumaData-
>thetao[0]=pumaData->theta[0];

pumaData-
>thetao[l]=pimiaData->theta[lI;

pumaData-
>thetao[2]=pumaData->theta[2];

pumaData-
>thetao[3]=pumaData->theia(3];

pimiaData-
>thetao[4]=pimiaData->theta[4];

pumaData-
>thetao[5]=pumaData->theta[5];

puniaDaia->last_flag=0;
puinaDaia->timeh=pumaData-

>time;
}

// final position
thetafl0]=0.0;
thetaf[l]=-L57;
thetafI2]=1.57;
thetafI3]=0.0;
thetaf[4]=0.0;
thetaft5]=0.0;

// time that home has been running
localtime=pumaData->time-puinaData-

>timefa;

// do cubic spline interpolation
if (localtime <= tf)
{

pumaData-
>thetad[0]=pumaData->thetao(0]-3.0*(pumaData-
>thetao(01-
thetafl[01)*Iocaltime*localtim&(tf*tf)+2.0*(puniaD
ata->thetao[0]-
thetaf[0])*localtime*localtime*localtime/(tf*tftf);

pumaData-
>thetad[1]=puinaData->thetao[1]-3.0*(pumaData-
>thetao[lI-
thetaf[1])*localtime*localtime/(tf*tf)-i-2.0*(pumaD
ata->thetao[l]-
thetaf[1])*localtime*localtime*localtime/(tf*tf*tf);

pumaData-
>thetad[2]=pumaData->thetao(2]-3.0*(pumaData-
>thetao[2I-
thetaf[2])*localtime*localtime/(tf*tf)+2.0»(pumaD
ata->thetao[2]-
thetaf[2])*localtime*localtime*localtime/(tf*tf*tf);

pumaData-
>thetad[3]=pumaData->thetao[3]-3.0*(pumaData-

www.manaraa.com

305

>thetao[3]-
thetaf[3])*localtime*localtime/(tf*tf)-!-2.0*(puinaD
ata->tlietao[3]-
thetaf[3])*localtime*Iocaitime*locaItime/(tf*tf*tf);

pumaData-
>tfaetad[4]=piimar)ata->thetao[4]-3.0*(pumaData-
>thetao[4]-
thetaf[4])*IocaItime*localtime/(tf*tf)+2.0*(puinaD
ata->tIietao[4]-
thetafI4])*IocaItime*localtime*localtime/(tf*tf*tf):

pumaData-
>thetad[5]=puinaData->thetao[51-3.0*(puinaData-
>thetao[5]-
thetaf[5])*IocaItime*localtiine/(tf*tf)+2.0*(puinaD
ata->tfaetao[5]-
theiafI5])*localtime*Iocallime*Iocaltime/{tf*tf*tf);

}
// after tf stay put in the final position

else if Gocaltime > tf)
{

pumaData->thetad[0]=thetaf[0];
pxunaData->tIietad[1]=thetaf[I];
pumaData->thetad[2]==thetafI2];
pumaData->tlietad[3]=thetafI3];
piunaData->thetad[4]=tIietaf[4];
pumaData->thetad[5]=thetaf[5];

}

//
// control section
//

for (i=0;i<6:i-i-f-)

i
// calculate error

pumaDaia->error(i]=pumaData-
>thetad[i]-pumaData->theta[i];

// calculate rate of change of the error
pumaData-

>errordot[i]=(pumaData->error[i]-pumaData-
>erTorold[i])/puinaData->dt;

// evaluate local PD control law
pumaData-

>voltage_out[i]=puinaData->kp[i] *puinaData-
>error[i]+puniaData->kd[i] »puniaData-
>errordot[i];

}

// Convert voltages into integers to output to
trident board

for (i=0;i<6;i++)
{

pumaDaia-
>voltage_out[i]=puniaData-
>voltage_out[i];//+puinaData->vg[i]+pumaData-
>v_&ic[i]+pumaData->vim[i];

if (fabsCpiimaData-
>voItage_out[i]) > 9.9)

pumaData-
>voltage_out[i]=9.9*puniaData-
>voltage_out[i]/&bs(pumaData->voltage_out[i]);

voltage_int[i]=(int)
(4095.0*(puinaData->voltage_out[i]-rI0.0)/20.0);

X i

// Output voltages to trident hardware
HwOutpw(puniaDaia->PumaDevice.

0x030. voltage_int[0]);
HwOutpw(puniaData->PuniaDevice.

0x032, voltage_int[I]);
HwOutpw(pumaData->PuinaDevice,

0x034, voltage_int[2]);
HwOutpw(pumaData->PuniaDevice.

0x036, voItage_irK[3]);
HwOutpw(puinaData->PuniaDevice.

0x038, voltage_int[4]);
HwOutpw(pumaData->PuinaDevice.

0x03a. voltage_int[5]);

// save some old information
for (i=0;i<6;i-f-+)
s K

pumaData-
>errorold[i]=pumaData->error[i];

pumaData-
>theta_old[i]=pumaData->theta[i] ;

}
}

// pumalnitialize.c

#include "puma-h"

void pumaInitializadon(pimiaFile* pumaData)
{

double fiequency,
int i;

// desired re&esh rate (Hz)
fiBquency=300.0;

www.manaraa.com

306

// desired delta-t
puniaDaia->dt= 1.0/frequency;

// initialize absolute time base to zero
puniaData->time=0.0;

// set some joim limits for impedence fields
pumaData->jlimit3=4.0;
pmnaData->jIimit5= 1.7;

// set flags for slow up and down
pumaDaia->first_flag= 1;
piimaData->last_flag= 1;

// encoder stuff
pumaData-

>encoder_scale[0]=0.00010035:
pumaData->encoder_scaIe[1]=-

0.000073156;
pumaData->encoder_scale[2]=0.000117;
pumaData->encoder_scale[3]=-

0.000082663;
puniaData->encoder_scale[4]=-

0.000087376;
pumaData->encoder_scale[5]=-

0.00016377;

pmnaData->encoder_o£EKt[0]=0.0;
pumaData->encoder_ofSet[l]=-21472.0;
pimiaData->encoder_ofifeet[2]=-13426.0;
pimiaData->encoder_ofeet[3]=8000.0;
pumaData->encoder_ofiEKt[41=0.0;
puniaData->encoder_o£E«t[5]=0.0;

// initialize feedback gains
puniaData->kp[0]=l 18.0;
pumaData->kd[0]= 15.4;
pumaData->kp[l]=-288.0;
pimiaData->kd[l]=-24.0;
pumaData->kp[2]=200.0;
pumaData->kd[2]=20.0;
pumaData->kp[3]=-15.0;
pmnaData->kd[3]=-2.0;
puinaData->kp[4]=-25.2;
pnmaData->kd[4]=-2.2;
pimiaData->kp[5]=-10.0;
purriaData->kd[5]=-2.0;

// initialize some variables
for (i=0; i<6; i++)
{

pumaData->errorold[i]=0.0;
// error values

pumaData->theta_old[i]=0.0;
// angular positions

pumaData->v_fiic_old(i]=0.0;
// fiiction voltages
pumaData-

>f_fil_way_old[i]=0.0;
pimiaData->f_fil_old[i]=0.0;

}

for (i=0; i<3; i++)
{

. puniaData->xv_old[i]=0.0;
pumaData->xv_dot_old[i]=0.0;
pumaData-

>xv_dot_way_old(i]=0.0;
pumaData->Jtyz_old[il=0.0;
puniaData->xyz_dot_old[i]=0.0;
pumaData-

>xyz_dot_way_old[i]=0.0:
X.
}

I I calibrate encoders
HwOutpw(pumaData->PumaDevice.

0x020. 0x0000);
HwOutpw(puinaData->PumaDevice.

0x022, 0x0000);
HwOutpw(piunaData->PumaDevice.

0x024, 0x0000);
HwOutpw(pmnaData->PumaDevice.

0x026, 0xlf40);
HwOutpw(pumaData->PumaDevice.

0x028, 0x0000);
HwC)utpw(pumaData->PumaDevice.

0x02a, 0x0000);
}

it socketc

#include "puma.h"

SOCXADDR_IN stLclName;
SOCKADDR_IN stRmtName;

void openSocket(piunaFile* piunaData)
{

int server=0;
intnRet;

www.manaraa.com

307

I I ip for snow
I I char szHostO = " 129.186.232.46";

// ip for hood
I I char szHostQ = "129.186.232.34";

// ip for mammoth
// char szHostD = "129.186.232.54";

I I mammoth direa
// char szHostQ= "192.168.1.3";

I I racer
I I char szHostO= " 129.186.232.66";

I I tiny
charszHostD= "129.186.232.49";

char szDataReceiveQ = {0};
uasigned long addr,
WORD WSA_VERSION;
WSADATA stWSAData;

WSA_VERSION = MAKEWORDd, 1);
nRet=WSAStartup(WSA_VERSION.

&stWSAData);
if (nRet=0) printf("attached to winsock

dll\n");
else printfCcouId not attach winsock

dll\n");

if (pumaData->useSocket = 1)
{

pmnaData-
>hSock=socket(AF_INET, SOCK DGRAM, 0);

if (pumaData-
>hSock=INVALID_SOCKET) printf("could not
get a valid socket handle\n");

else
{

if (server=l)
{

stLcIName.sin_femily = PF_INET;

stLclName.sin_port=htons(1036);

stLclName.sin_addr.s_addi=INADDR_A
NY;

nRet=bind(puinaData->hSock,
(LPSOCKADDR) &stLclName, sizeof(struct
sockaddr));

if
(nRetF=SOCKET_ERROR) printf("coiild not
bind server socket\n");

else
printf("server socket: OpenVn");

nRet=recv(pumaData->hSock, (LPSTR)
szDataReceive. 5.0);

if
(nRet=SOCKET_ERROR) printf("server socket
could not receive data\n");

else
piintf("sever socket received data\n");

}
else
{

addr=inet_addr((LPSTR) szHost);
if

(addr=INADDR_NONE) printf("couId not find
address of serverVn");

stRmtName.sin_family = PF_INET;

stRmtName.sin_port=htons(1036);

stRmtName.sin addr.s addr=addr.

nRet=connect(pumaData->hSock.
(LPSOCKADDR) &stRmtName. sizeof(struct
sockaddr));

if
(nRet=SOCKET_ERROR) printf("could not
connea to server socketVn");

else
{

printf("Socket Open\n");

puniaData->activeSocket= I;
}

}
}

}
}

void closeSocketCpirniaFile"' pumaData)
{

int nRet;

www.manaraa.com

308

if (puniaData->activeSocket == 1)
{

nRet=closesocket(puinaData-
>hSock);

if (nRet=SOCKET_ERROR)
printfC'error dosing socketVn");

else printfCSocket Closed\n");
}

nRet=WSACleanup();

}

void testSocketCpumaFile'*' piunaOata)
{

int nRet;
char szDataSend[1001;
double t0=0.0:
double tl=1.571;
double t2=-1.571;

spriiitf(szDataSend."%4.3f %4-.3f %4.3f
%4.3f%4.3f%4.3f%4.3f".t0,t0,t2.tl.t0.t0.t0);

if (puniaData->activeSocket = 1)
{

nRet=send(puinaData->hSock.
(LPSTR) szDataSend, 51,0);

if (nRet=SOCKET_ERROR)
printfCSocket test feiled\n");

else printfCSocket test
passed\n");

>

}

Dynamic Surface

// basisfunc.c

#include "JimsCave-h"

void dboy_basisfiins(int î double u,int p,int
mdouble •U.double •*ders)
{
I* Compute nonzero basis iunctions and
their

derivatives. */

double saved.temp,d;
int j,r,sl.s24c.rk,pk.j l.j2:

ndu=dboy_DoubleMatrix(0,p,0,p);
lefl=dboy_DoubIeVector(0,p);
rigfat=dboy_DoubIeVector(0,p);
a=dboy_DoubleMatrix(0,p,0,p);

ndu[0][0]=1.0:
for (j=l;j<=py-<-!-)
{

left[i]=u-U[i+l-j];
right(j]=U[i+j]-u;
saved=0.0;
for (r=0;r<j;r^)
{

ndu[j] [rl=right[r+- l]+left|j-r];
temp=ndu[r]lj-

l]/ndu[j][rl;

ndu[r] [j]=saved+right[ri-1] *temp;
saved=lrft(j-r]*temp;

}
ndu|j][j]=saved;

}
for 0'=OU<=PU"^) ders[0][j]=nduD][p];
for (r=0;r<=p;rt-r)
{

sl=0; s2=l;
a[01[0]=1.0;
for (k=l Jc<=n;k++)
{

d=0.0;
rk=r-k; pk=p-k;
if(r>=k)
{

a[s2] [0]=a[sl] [0]/ndu[pk+1] [rkj;

d=a[s2][0]»ndu[rkl[pk];
}
if(rk>=-l) jl=l;
else jl—

rk;
if(r-l<=pk) j2=k-l;
else j2=p-

r,
for (j=il;j<=j2;j-i-f-)
{

double **ndu,*left,*right,**a;

www.manaraa.com

309

a(s2]D]=(a[sl]D]-a[sl][j-
l])/ndu[pk+ll[rk+jl;

a[s2][fl*ndu[rk+j][pkl;

a[s 1] [k-1 l/ndu[pk+1] [r];

a[s2][kriidu[r][pk];

}
}
r=p;
for (k=lJc<=n;k-H-)
{

for ders[kl(j] *=
n

r »= (p-k);
}

dboy_freeDoubleMatrix(ndii,0,p,0,p);
dboy_&eeDoubleVeaor(leftO,p);
dboy_&eeDoubleVeaor(right,0,p);
dbov_freeDoubleMatrL\(a,0,p.0.p);

}

// computex

#include "JinisCave.h"

/* declare external shared memory pointers */
extern int *dboy_NCPTS;
extern double **dboy_M, **dboy_K;
extern double •dboy_PNEW, *dboy_PCURRENT,
*dboy_POLD. *dboy_PREF;
extern double **dbOT_PCONST;
extern double •dboy_WAND;

extern dboy_File *dboy_parameter.

I* compute performs all necessary computations
for drawScene() */
void dboy_Compute(void)
{

intLj;

double dt=0.05;
double **sconst:

sconst=dboy_DoubleMatrix(l.dbov_NCP
TS[0]*dboy_NCPTS[l], 1,2);

/* zero secondary position constraints */
for

(i= 1 ;i<=dbov_NCPTS[0]*dbov_NCPTS[l];i-M-)
{

sconst[i][l]=0.0;
sconst[i][2]=0.0;

}

/* invert wand tip coordinates into parametric
coordinates *t

dboy_inversion(dboy_WAND.sconst);

/* Step forward in time •/
dboy_step(dboy_PNEW.dboy_POLD,dboy

_PCIJRRENT,dboy_BC,dboy_M,dt.dboy_PCONST.
sconst);

/* Up-data control points */
for (i=0;i<ix5y_NCPTS[l];i+-i-)

{
for (J=0;j<dbov_NCPTS[0]j++)
{

dboy_POLD[dboy_NCPTS[0]*i+j+l]=db
oy_PCURRENT[dboy_NCPTS[0]*i-tj+l];

dboy_PCURRENT[dboy_NCPTS[01»i+j>
1 l=dboy_PNEW[dboy_NCPTS[6] •i+j+1];

dboy_parameter-
>cpts[j][i][2]=dbov_PNEW[dbov_NCPTS[0]»i+j+
1];

i
}

dboy_fTeeDoubleMatrix(sconsL l.dboy_N
CPTS[Ordboy_NCPTS[l], 1,2);

/* check to see if the surface should be reset and
killed »/

dbov_resetO;
}

// dpythag-C

d+=

}
if (r<=pk)
{

a[s21(kl= -

d+=

}
ders[kl[r]=d;
j=sl; sl=s2; s2=i;

www.manaraa.com

310

#inciude "JiinsCave.li"

double dbov_dpythag(double a. double b)
{

double absa.absb;
absa=febs(a);
absb=febs(b);
if (absa > absb) return

absa*sqrt(1.0+dboy_DSQR(absb/absa));
else return (absb = 0.0 ? 0.0 :

absb*sqrt(1.0+dbov_DSQR(absa/absb)));
}

// draw.c

#include "JimsCave.li"

/* declare external shared memory pointers */
extern int *dboy_NCPTS;
extern int *dboy_P;
extern int •dboy_npatcti;
extern double •dboy_U, •dboy_V;
extern double •*dboy_X, •*dboy_Y, •*dboy_Z;
extern double •*dboy_X_DU. **dboy_Y_DU;
extern double **dboy_X_DV. ••dboy_Y_DV;
extern double ***dboy_U_BAS.
•»*dboy_U_BAS_D ̂••»dbov_V_BAS,
*»*dboy_V_BAS_DER;
extern double *dboy_WAND;
extern double *dboy_TRANS;

extern int dboy_backTexIndex;
extern int dboy_texture;

extern dboy_File *dboy_parameter.

extern int dboy_sound;
extern int •dboy_Playme;

extern awSound *dboy_sowood;
extern awSound *dboy_soboing;
extern awSound *dboy_socreaky:

/• drawScene() is called every &ame */
void dbov_drawScene(void)
{

int uj;
double u, v,
double *tpts, *tpts_du, *tpts_dv;
double **temp, **temp_du;

double •norm;
double **tpts_store, **norm_store;
int nu, nv;
int uspan, vspan;
ints, r.
double mag;
float ori[3];
float pos[3];
double point[3];
int bstate;
double dme;

gIClear(GL_COLOR_BUFFER_Brr |
GL_DEPTH_BUFFER_BrD;

if (dbov_sound)
{

if (CAVEDistribMaster() &&
CAVEMasterDispIayO && CAVEEye ==
CAVE_LEFT_EYE)

{
time = awGetClockSecsO;
awFrame(time):

if (dboy_Playme(0]=l)
f

awProp (dboy_soboing,
AWSND_STATE. AWSND_ON);

dbov_Plavme[0]=0;
}
if (dbov_Plavme[1]—1)
{

awPtop (dboy_sowood.
AWSND_STATE. AWSND_ON);

dboy_PIayme[1]=0;
}
if (dboy_Plavme[2]=l)
{

awProp (dboy_socreaky,
AWSND_STATE. AWSND_ON);

dboy_Playme[2]=0;
}
if (dboy_Playme[3]=l)
{

awProp (dboy_socreaky,
AWSND_STATE, AWSND_OFF);

dboy_PIayme[3]=0:
}

}
}

www.manaraa.com

311

/* get wand position */
CAVEGetPosition(CAVE_WAND,pos);
CAVEGetWandFront(ori[0],ori[l],ori[2])

dboy_ WAND [O]=(doiible)
(pos[0]+1.0*ori[0]);

dboy_W AND [1]=(doiible)
(pos[I]+1.0*ori[l]);

dboy_WAND[2]=(doubIe)
(pos[2]+1.0*ori[2]):

CAVEGetWandOrientation(ori[0].ori[l],
ori[2]);

/* draw wand •/
glCoior3f(0.0,1.0.0.0);
if (dboy_paranieter->intersect)

gICoIor3f(0.0. 1.0. l.O);

glPiishMatrixQ;
giTranslated(dfaoy_WAND[0],

dboy_WAND[l], dboy_WAND[2]);
glRotated((doubIe) (ori[0]), 0.0, 1.0, 0.0);
gI[lotated((double) (ori[l]), l.O, 0.0,0.0);
gIRotated((double) (ori[2]), 0.0,0.0, 1.0);
glBegin(GL_TRIANGLE_STRIP);

for (i=0;i<=10;i++)
{

u=((doubIe) (i))/10.0;

point[0]=0.05*cos(2.0*3.l4159*u);

point[l]=0.05*sin(2.0*3.14159*u);
point[2]=0.0;
giVertex3dv(point);

point(2] += l.O;
gIVertex3dv(point);

glEndO;
glPopMatrixO;

/* draw control point net in red *!
glPushMatrixO;

bstate=CAVEBuaonChange(2);
if (dboy_parameter->intersect)
{

if(CAVEBUTT0N2)
{

if (bstate=l)

{

dboy_TRANS[0]=dboy_paranieter-
>surf[0]-2.5;

dboy_TRANS [1]=dboy_paranieter-
>surf[l]+2.5;

dboy_TRANS [2]=dboy_paranieter-
>surfl2];

}
dboy_parameter-

>wand_old(0]=dboy_WAND(0]-dboy_TRANS[0];
dboy_parameter-

>wand_old[l]=dboy_WAND[l]-dboy_TRANS[l];
dboy_parameter-

>wand_old[2]=dboy_WAND[2]-dboy_TElANS[2];
dboy_parameter-

>wand_old[3]=dboy_parameter-
>wand_oId[3]+((doubIe) ori[01)-dboy_TRANS[3];

dboy_paraineter-
>wand_old[4]=dboy_parameter-
>wand_old[4]+((double) ori[ll)-dboy_TRANS[4];

dboy_paranieter-
>wand_oId[5]=dboy_parameter-
>wand_old[5]-H((doubIe) ori[2])-dboy_TRANS[5];

}
}

dboy_TRANS[3]=((doubIe) ori[0]);
dboy_TRANS[4]={(double) ori[l]);
dboy_TRANS[5]=((doubie) ori[2]);

glT ranslated(dboy_parameter-
>wand_old[0], dboy_parameter->wand_old[lj,
dboy_paranieter->wand_old[2]);

giTranslated(dboy_TRANS[0],
dboy_TElANS[l], dboy_TRANS[2]);

gIRotated(dboy_paiameter->wand_oId[3],
0.0. 1.0,0.0);

glRotated(dboy_parameter->wand_oId[4],
1.0, 0.0,0.0);

glRotated(dboy_paiameter->wand_old[5],
0.0, 0.0, 1.0);

glTianslated(-dboy_TRANS[0], -
dboy_TRANS[l], -dboy_TRANS[2]);

glTranslated(-2.5.2.5,0.0);

glCoIor3f(l,0,0);
for (i=0;i<dboy_NCPTS[0];i+-i-)

{
glBegin(GL_LrNE_STRIP);

www.manaraa.com

312

for
(j=0:j<dboy_NCPTS[l]y++)

{

gl Vertex3dv(dbov_parameter->cpts[i] [j]);
}

glEndO;
}
for (i=0;i<dbov_NCPTS[lJ;i-i-r)
{

gIBegin(GL_LINE_STRIP);

for
(j=0j<dboy_NCPTS[0]y"-!-i-)

{

glVeitex3dv(dboy_parameter->q)ts(j] [i]);
}

glEndO;
}

/• Evaluate B-spline su&ce •/
gIColor3f(0.0. 0.369. 0.165);

if (dbovtexture)
{

glEiiable(GL_TEXrL'RE_2D);
gICallList(dboy_backTexIndex):

}

nu=dboy_NCPTS[0]-1;
nv=dboy~NCPTS[l]-I;

tpts=dboy_DoubleVeaor(0,2);
tpts_du=dboy_DoubleVeaor(0,2);
tpts_dv=dboy_DoubleVeaor(0,2);
temp=cibov_DoubieMatrLx(0,2,0.dbov_P[

1]);
temp_du=dbov_DoubIeMatrix(0.2.0.dboy

nonn=dboy_DoubleVeaor(0,2);
tpts_store=dboy_DoubleMatrix(0.dboy_n

patch[0],0.2);
nonii_store=dboy_DoubleMatrix(0.dboy_

npatch[0],0,2);

for (i=0;i<=dboy_npatch[0];i++)
{

u=((double) i)/((dGubIe)
dboy_npatch[0]);

uspan=dbov_findspan(u,dboy_U,nu,dboy_
P[0]);

glBegin(GL_TRIANGLE_STRJP);
for O'=0;j<=dboy_npatch[01y++)
{

v=((double) j)/((doubIe)
dboy_npatch[0]);

vspan=dbov_findspan(v.dbo>'_V,nv,dbov_
P[l]):

for
(s=0;s<=dbov_P[l];s++)

{

temp[2][s]=0.0;

temp_du[2][sl=0.0;
for

(r=0;r<=dbov_P[0];rH-)
{

temp[2][sl=temp[2][s]+dboy_U_BAS[i]0]
[rI*dboy_parameter->q)ts[uspan-
dboy_P[0]+r] [vspan-dboy_P[l]+s] [2];

temp_du[2] [s]=tenip_du[2] [s]-i-dboy_U_B
AS_DER[i]lj][r]*dboyjparameter->q)ts[uspan-
dboy_P[0]-rr][vspan-dbov P[l]+sl[2]:

}

tpts[2]=0.0:
tpts_du(2]=0.0;
tpts_dv[2]=0.0;
for

(s=0;s<=dbov_P[1] ;s++)
{

tpts(2]=tpts[2]+dbov_V_B AS [i] [j] [s] *teni
p[2][sl;

tpls_du[2]=tpts_du[2]+dboy_V_BAS[i] [j]
[s] *teiiip_du[2] [s];

tpts_dv[2]=tpts_dv[2]+dbov_V_BAS_DE
R[i][j][sl»temp(2][s];

}

tpts[0]=dboy_X[i]D];
tpts[l]=dboy_Y[i]0];

www.manaraa.com

313

<S'oy_2[ilDl=lpts[21;

tpts_du[0]=dboy_X_DU[i]D];

tpts_du[lI=dboy_Y_DU[i]D];

tpts_dv(0]=dboy_X_DV[i](j];

tpts_dv[l]=dboy_Y_DV[i][]];

norm[0]=tpts_du[1] *tpts_dv[2]-
q)ts_du(2] *tpts_dv[1];

aonn[l]=tpts_du[0]*tpts_dv[2]-
tpts_du[2] *tpts_dv[0];

aonn[2]=tpts_du[0] *tpts_dv[1]-
tpts_du[1] *^ts_dv[0];

inag=sqrt(pow(nonn(0],2.0)+pow(iionn[l
],2.0)+pow(nonn(2],2.0));

aonn[0]=nonn[0]/(inag);

normt l]=nonn[1]/(inag);

aomi[2]=nonn[2]/(inag);

if(i !=0)
{

glNonnaI3dv(norni_store[j]);

giVertex3dv(tpts_store|j]);

glNonnaOdv(nonn):

glVertex3dv(tpts);
}
tpts_storetj] [0]=tpts[0];
tpts_store|j] [l]=tpts[1];
tpts_storeO] [2]=tpts[2];

norni_store(j] [0]=nonn[0];

norm_storelj] [l]=norm[1];

nonii_store(j] [2]=norm[2];
}

gtEndQ;
}

if (dbov_tertuie)
{

gIDisable(GL_TEXrLIRE_2D);
glEndO;

f

glPopMairixO;

dboy_&eeDoubleVeaor(tpts.0,2);
dboy_freeDoubleVeaor(tpts_du.0,2);
dboy_freeDoubleVeaor(tpts_dv,0,2);
dbov &eeDoubleMatrix(temp.0.2,0.dbov_

P[ll):
dbov_&eeDoubIeMatrix(temp_du.0.2.0.db

oy_P[I]);
dboy_freeDoubIeVeaor(nonn.0,2);
dboyj&eeDoubIeMatrix(tpts_store.0.dboy

_npatcfa[0],0,2);
dfaoy_freeDoubleMaliix(nonii_store,0,dbo

y_npatch[0].0.2):
}

// dsvbksb.c

#include "JimsCave-h"

void dboy_dsvbksb(double **u.doubIe •w.double
**v.iiit m,int ludouble •b.double •x)
{

intii.j,i;
double s.*tmp:

tmp=dboy_DoubleVeaor(Un);
for 0=l:j<=iuj-i-i-) {

s=0.0:
if (w|j]) {

for (i=I;i<=m;i-<-(-) s +-

s /= wjj];
}
tinp[j]=s;

}
for 0=l;j<=ii:j++) {

s=0.0;
for (ij=l;ii<=iuii-H-) s +=

vDlDuTtmpQj];
xD]=s:

www.manaraa.com

314

}
dboy_&BeDoubleVeaor(tmp. l,n);

// dsvdcmp.c

#mclude "JinisCave.h"

void dboy_dsvdcmp(doufaie **3,1111 ntint adouble
*w,doubIe •*v)
{

int flag4,its.j JJcLnm;
double aiiorm.cjElg,Ii,s.scale,xy,z,*rvl;

rv I =dboy_DoubIe Vector(141);
g=scale=anorai=0.0;
for (i=l;i<=ii;i-H-) {

l=i+l;
rvl[i]=scale*g;
g=s=scale=0.0;
if (i <= m) {

for (k=i;k<=m;k-H-)
scale += &bs(a(k][i]);

if (scale) {
for

(k=iJc<=mJc-H-) {

mm
/= scale:

s +=
a[k][i]*a[k][i];

dboy_SIGN(sqit(s)jE);

(j=l:j<=n;j++) {

^a[il[il;
g = -

h=f*g-s;
a[i][i]=f-g;
for

(s=O.OJk=iUc<=ni;k-H-) s += a[k][i]*a[k][i];

(fc=iUt<=niJc-H-) a[kl[j] += f*a[k][i];
}
for

(k=i;k<=mjc-i-+) a[k][i] •= scale;
}

for

f=s/h;
for

}
w[il=scale •§;
g=s=scale=0.0;

if (i <= m && i != n) {
for (l̂ IJc<=ii;k++)

scale += &bs(a[il|̂ I);
if (scale) {

for
(k=lUc<=nU£+-'-) {

a[i][kl
/= scale:

s +=
a[i][k]*a(i]rKl:

}

dboy_SIGN(sqrt(s)i);

(k=IJc<=nJc-i-i-) rvl[kl=a[i][kl/li:

^a(i][l]:

h=f*g-s:
a[i][l]=f-g;
for

for
(j=l:j<=in:j++) {

(s=O.OJc=lJc<=n±-H-) s -i-= a[j][kl*a[i][k]:
for

for
(k=IJc<=iuk-i->-) a|j][k] += s*rvl(k];

}
for

(k=IJc<=Tuk-H-) a[il[k] *= scale:
}

}

anonn=dboy_DMAX(anonii,(febs(w[i])-i-f
abs(rvl[i]))):

for (i=Ti:i>=l;i—) {
if (i < Q) {

if(g) {
for

(j=lU<=n:j++) v[n [il=(a[il [j]/a[i] [Il)/g;
for

(j=l:j<=n:j+-^) {

(s=O.OJc=lJc<=iiJc-H-) s += a[i][k]*v[k][i];

(k=lj£<=nJc-H-) v[k]|j] += s*v[k][i];

for

for

v[i]m=vO][i]=0.0;

}
for

}
v[i][i]=1.0:
g=rvl[i];
I=i;

www.manaraa.com

315

}
for (i=dboy_IMIN(m,n);i>=l;i—) {

M+l;
g=w[i];
for 0=l;j<=n:j-i-^) a[i]|j]=0.0;
if(g) {

g=l-0/g;
for (j=l;j<=n:j-i-(-) {

for
(S=0.0j£=ljc<=in;k-H-) s += a[k][i]*a(lc][j];

f=(s/a[i][il)*g;
for

(k=uk<=nuk-H-) a[k][j] += f*a[k][i];
}
for (j=iy<=in:j-H-)

aD][i]»=g;
} else for (i=i;j<=m;j-i-+)

aD][il=0.0;

}
for (k=iijc>=l Jc—) {

for (its=l;its<=30;its-t-+) {
flag=l:
fora=k;l>=l;l-) {

nm=l-l;
if

((doufale)(febs(rvl[l])Tanonn) = anorm) {

flag=0:
break:

s
if

((doubIe)(&bs(w[nm])-i-anonn) == anorm) break:
}
if (flag) {

c:=0.0;
s=l.O:
for

(i=l:i<=k:i4-H) {

f=s*rvl[i];

rvl[i]=c*rvl[i];
if

((double)(&bs(f)+anorm) == anorm) break:

g=w[i];

h=dboy_dpythag(f,g);

w[i]=h;

h=1.0/li:

c=g*li:

Ph:

(j=l:j<=m:j+-!-) {

y=a[j][nm):

^a[j][i];

a[j] [nm]=y*c+z*s:

aD][i]=z*c-y*s:

s = •

for

}

>

z=w[k];
ifa = k){

if(z<0.0) {
w[kl

-z:
for

(j=l;j<=n;j-Hr) v[j][k] = -v(j][kl;
}
break:

}
if (its = 30) printfC'no

convergence in 30 dsvdcmp iterationsln"):
x=w[l];
nm=k-l;
y=w[mnl:
g=rvl[nm];
h=rvl[k];
f^((y-z)*(y+z)+(g-

li)»(g+h))/(2.0»li«y);
g=dboy_dpythag(f, 1.0);
f=((x-

z)*(x+z)+h*((y/(f+dboy_SIGN(g4)))-li))/x:
c—s—1.0:
for (j=l:j<=nm:j++) {

i=j+l;
g=rvl[i];
y=w[i]:
h=s*g:

z=dboy_dpythag(£h);

g=c*g;

rvl[j]=z:
c=Cz:

www.manaraa.com

316

s=h/z;
^*c+g*s;
g = g*c-x»s;
li=y*s;
y •= c;
for

(ij=I;ij<=n;i]++) {

x=v(ij][j];

z==vCljl[il;

v[ij][n=x*c î-z*s;

v[ij][i]=z*c-x*s;
}

z=dboy_dpythag(fJi);
wD]=z:
if(z){

2:=1.0/z;
c=f*z;

s=h*z;
}
f=C*g+S*\-
x=c*y-s*g;
for

(ij=l;ij<=in;ij++) {

>"=a[ij][j];

z=a[u][i];

a[ij]D]=y*c+z*s;

a[ij][i]=z*c-v*s;
}

}
rvl[l]=0.0;
rvl[kl=f,
w[k|=x;

}
}
dbov_freeDoubleVectorfrvl, l,n);

}

// eiementc

#include "JimsCave-h"

extern int •dboy_NCPTS;
extern int *<iboy_P;
extern double •dboy_U, •dboy_V;
extern double **dboy_Nl **dboy_BC;

extern dbo\-_File •dboy_paiameten

void dbov_element(void)
{

int LjXlAii-ui-jij;
intng;
ints,n
double

temp.teinp_du.dx_du,dy_du.dx_dv,dy_dvjna
g i.**ini.**iiirv.

double a.b.c.idGauss;
double u,v;
int nspan,vspan,nu,nv.du,dv;
double •g,*w.*gu.*gv;
double

•*uders.**vders,*Ni.*Ni_du,*Ni_dv-

/* Gauss quadrature points and weights */
ng=4;
g=dboy_Double Vector(0.ng-1);
giFdboy_Double Vertor(0,ng-1);
gv=dboy_E)oubIeVector(Ojig-l);
g(0]=0.861I36312;
g(l]=0.339981044:
g[21=-0.339981044;
g(3]=-0.861136312;

w=dboy_DoubleVeaor(0,ng-l);
w(0]=0.34785485:
w[l]=0.65214515;
w[2]=0.65214515;
w[31==0.34785485:

/* allocate some memory •/
uders=dboy_DoubleMatrix(0.dboy_P[0].0

.dboy_P[0]);
vders=dboy_DoubleMatrix(0,dboy_P[1],0

.dboy_P[l]);
Ni=dboy_Double Vector(0.(dboy_P[0]+1)

»(dboy_P[l]+l)-l);
Ni_du=dboy_DoubleVeaor(0,(dboy_P[0]

+I)»(dboy_P[lI+l)-l);
Ni_dv=dboy_DoubleVeaor(0,(dboy_P[0]

•f-l)*(dboy_P[ll+l)-I);

www.manaraa.com

317

tenip=dbov_DoubIeMatcix(0. l,0.dbov_P[
11);

temp_diF=dbov_DoubIeMatrix(0. l,0.dbov

jni=dboy_DoubleMatrix(0.1,0,1);
jiiiv==dboy_DoubleMatrix(0, LO, 1);

/* evaluate mass and stiffness matrices *!

I* zero matrices */
for

(i=0;i<=dbov_NCPTS[0]*dbov_NCPTS[l]-l;i++)
{

for
0"=0u<=dbov_NCPTS[0]*dbov_NCPTS[l]-l;j++)

{
dboy_M[i][j]=0.0:
dbo^_K[ilO]=0.0;

}
}

/* integrate each element separately */
for (i=dboy_P[0];i<=dboy_NCPTS[0]-

la++)
{

for
(j=dboy_P[l]J<===dboy_NCPTS[l]-l;j-H-)

{

/* scale quadrature points to correa range */
a=dboy_U[i];
b=dbov_U[i+l];

c=dboy_VIj];
d=dbOT_V[j+l];

for (k=0Jc<ng-4c+^)
{

gu[kl=((b+a)/2.0)+((b-a)/2.0)*g[k];

gv[k]=((d+c)/2.0K(d<)/2.0)»g[k];
}

I* determine magnitude change due to rescaling
*1

dGauss=((b-a)/2.0)*((d-
c)/2.0);

/* initialize stuff for basis fimction evaluation */
nu=dboy_NC:PTS[0]-l;
du=l;

nv=dboy_NCPTS[l]-l;
dv=l;

/* for each Gauss point */
for (lc=0 Jc<ag;k-M-)
{

/* evaluate interpolation (basis) functions •/
u=gu[k;];

uspan=dbov_findspan(u.dbov_U.nu,dbov_
P[0]);

dboy_basisfuns(uspan.u.dboy_P[01,du.dbo
y_U,uders);

for
(l=0;l<ng;l+-!-)

{

v=gv[l];

vspan=dboy_findspan(v.dbov_V.irv,dbov_
P[11);

dboy_basisfims(vspan.v,dboy_P[1] .dv.dbo
y_V,vders);

for
(ii=0-,ii<=dbov_P[l]-.ii-i-r)

{

for (ij=0jj<=dboy_P[0]J+-i-)

{

Ni(j]+(dbov_P[01+1)*ii]=uders[0] [jij] *vde
rs[0][ii];

Ni_du[j[]-Kdboy_P[0]-i-l)*ii]=uders(l][ij]*
vders[0][ii];

Ni_dv[ij+(dboy_P[0]-r l)*ii]=uders(0] [jj]*
vders[lj[ii];

}
}

/* evaluate Jacobian matrix */
for

(s=0;s<=dboy_P[l];s++)

www.manaraa.com

318

{

teinp[0][sj=0.0;

teinp[l][s]=0.0;

tenip_du[0][s]=0.0;

teinp_du[l][s]=0.0;

for (r=0-j<=dboy_P[0];r++)

{

temp[0] [s]=teinp[0] ts]+uders[0] [r]*dboy_
paraineter->qjts[uspan-dboy_P[0]+r][vspan-
dboy_P[l]+s][0];

temp[l][sl=temp[l][s]+uders[0] [r]*dboy
parameter->q)ts[uspan-<flx>y_P[0]+rl[vspaii-
dboy_P[l]+s][l];

temp_du[0][s]=temp_du[0][s]+uders[l][r]
•dboy_parameter->qjts[uspan-
dboy_P[0]+r][vspan-<Iboy_P[l]+sl[0];

teinp_du(1] [s]=temp_du[1] [s]+uders[1] [r|
•dboy_parameter->q)ts[uspan-
dboy_P[01+r] [vspan-dboy_P[1]+sl [1];

}
}

dx_du=0.0;

dy_du=0.0;

dx_dv=0.0;

dy_dv=0.0;

for
(s=0;s<=dboy_P[1] ;s++)

{

dx_du=dx_du+vders[0] [sj *temp_du[0] [sj

dy_du=dy_du+vders[0][sl*temp_du[l][sl;

dx_dv=dx_dv+vders(I] [s j*temp[0] [s];

dv_dv=(ty_dv+vders (11 [s] •temp [1] [s I;
}

jm[0][0]=dx_du;

jm[0][I]=dy_du;

jm[l][0]=dx_dv;

jm[l][ll=dy_dv:

magj=^m[0][0]»im[l][l]-
jm[0][l]*jm[ll[0];

/• evaluate the inverse of the Jacobian matrix */

jinv[0][0]^m[l][l]/magj;

jinv[0][l]=-jm[0][l]/wagJ;

jinv[l][0]=-jm[l][0]/magj;

jinv[l][l]=jm[0][0]/inagJ;

/* evaluate integral and assemble into global
matrix */

for
(ii=0;ii<=(dbov_P[0]-i-1)*(dbov_P[1]+1)-1 ;ii+-^)

{

for
(ij=ii;jj<=(dboy_P[0]+l)*(dboy_P[l]+I)-l;j|i-t-+)

{

iii=ii-
(dboy_P[0]+l)*(ii/(dboy_P[0]+l))+uspan-
dboy_P[0]+dboy_NCPTS[0]*((ii/(dboy_P[01+l))+
vspan-dboy_P[l]);

www.manaraa.com

319

(dboy_P[0]+l)*(|j/(dboy_P[0]+l))+uspaii-
dboy_P[0]+dboy_NCPTS(0]*((ij/(dboy_P[0]+l))+
vspan-<fi)oy_P[ll);

dboy_M[iii][iifl -H=
>fifii1*Nififl*wncl*wfn*mag i*dGanss:

dboy_K[iii](ji]] +=
(Ni_du[ii]*Ni_du[ij]*(jiDv[0] [0]*jmv[01 [01+jiiiv[1
l[0]*jinv[ll[0])

•!-Ni_dv[ii] *Ni_duQj] •(jinv[0] [0] *jinv[0] [l]+jmv[1
l[0]*jiiiv[l][l])

-!-Ni_du[ii]*Ni_dv[j[j] *(jinv[0] [0] *jiiiv[0] [l]+jiiiv[1
][0]*jiiiv[l][l])

-i-Ni_dv[ii] *Ni_dv[ij] •(jinv[0] [1] *jiiiv[0] [1]+jinv[l
iri1*iiiivfllfn))*wfk1*wfn*inag i*dGauss:

}
)
/

}
}

}
}

/* fill in remaining elements */
for

(k=0±<=dboy_NCPTS[0]*dbov_NCPTS[l]-
iac++)

{
for

(l=k;I<=dboy_NCPTS[0]*dbo\-_NCPTS[ll-l;l++)
{

if(l !=k)
{

dboy_M[ll[kl=dboy_M[kl[l];

dbov_K[l] [k]=dboy_K[k] [1];
}

}
}

/* firee some memory •/
dboy_fieeDoubieVertor(g,0,ng-1);
dboy_fi:eeDoubIe Vertor(w.O,ng-1);
dboy_freeDouble Veaor(gu,0,ng-1);

dboy_&eeDoubleVeaor(gv,Ojig-l);
dboy_freeDoubleMatiix(uders,0.dbov_P[0

]Adboy_P[0]);
dbov_fireeDoubIeMatrix(vders.O,dbov_P[1

],0,dboy_P[l]);
dboy_freeDoubIeVector(Ni,0,(dboy_P[0J+

l)*(dboy_P[l]+l)-l);
dbOT_fiBeDoubIeVector(Ni_du,0.(dboy_P[

01+l)*(dboylP[ll+l)-l);
dboy_fi:eeDoubIeVector(Ni_dv,0.(dboy_P[

0]+l)»(dboy_P[l]+l)-l);
dbov_fieeDoubIeMatrix(temp,0. l,0,dbov_

P[11);
dboy_fijeeDoubIeMatrix(temp_du,0, LO.db

ov_P[lD;
dboy_freeDoubleMatrix(jm,0,1,0.1);
dboy_fi:eeDoubleMatrix(iinv.0.1,0.1):

// findspan.c

#include "JimsCave.h"

int dbov_findspan(doubIe u.double *U.iat n.int p)
{

int low.niid,liigIi;
if(u—U[a+1]) return (n);
low = p;
high = n+1;
while (low <= high)
{

mid = (Iow+high)/2;
if (u==U[mid])
{

while (u=U[imd+l])
mid-H-;

return (mid);
}
if(u<U[nud]) high=mid-l;

else low=mid+l:
}
if(u=U[high])
{

while (u=U[high]) high-H-;
return (high);

}
return (low-1);

}

www.manaraa.com

320

// iiiit_q).c

#include "JuiisCave.h."

/* declare extemal pointer to shared memoiy
arena */
extern void *dboy_sharedData:

/• declare external shared memory pointers */
extern int •dboy_NCPTS;
extern int *dboy_P;
extern int *dboy_npatcfa;
extern double *dboy_U, •dboy_V;
extern double •*dboy_M, •*dboy_IC;
extern double *dboy_PNEW, •dboy_PCURRENT.
•dboy_POLD, *dboy_PREF;
extern double **dboy_PCONST;
extern double **dboy_X. •*dboy_Y, **dboy_Z;
extern double •*dboy_X_DU. •*dboy_Y_DU;
extern double •*dboy_X_DV. •=»dboy_Y_DV;
extern double ***dboy_U_BAS.
•**dbo>-_U_BAS_D ̂•••dboy_V_BAS,
***dboy_V_BAS_DER:
extern double *dboy_WAND;
extern double *dboy_TRANS;
extern int *dboy_Playme;

extern dboy_File •dboy_parameten

void dbov_initCompute(void)
{

intLj:
int m, n;
int iiTTiin, umax. vmin, vmax;

int nu, du, nv. dv,
double **uders. **vders;
double •tpts, *tpts_du, *tpts_dv;
double **temp, **temp_du;
int uspan, vspan;
double u, v;
int s, r.

/* create a shared memory arena */
dboy_sharedData=CAVEUserSharedMe

mory(51200000);

/* allocate shared memory for data structure */
dboy_parameter=(dboy_File *)

anialloc(si2eof(dboy_File),dboy_sharedData);

dboy_NCPTS=dboy_sIiaredIntVeaor(0,1,
dboy_sharedData);

/* number of control points in u direction •/
dboy_NCPTS[0]=8;

/* number of control points in v direction •/
dboy_NCPTStl]=8;

dboy_P=dboy_sharedIntVector(0, l.dboy_
sharedData);

/* degree in u direction */
dboy_P[0]=2;

/* d3egree in v direction •/
dboy_P[l]=2;

/* length of the knot veaor in u direction •/
m=dboy_NCPTS[0]-Hlboy_P[0];

/* length of the knot veaor in u direction */
n=dboy_NCPTS[l]+dboy_P[l];

dboy_U=dboy_sharedDoubleVector(0,m.d
boy_sharedData);

/* evaluate uniform knot vector in u direction •/
dboy_knot(dboy_U,m.dboy_P[0]);

dboy_V=dboy_sharedDoubleVeaor(0,n.d
boy_sharedData);

/* evaluate uniform knot vector in V direction •/
dboy_knot(dboy_V.n.dboy_P[l]);

/* initial control point positions *!
for (i=0;i<dboy_NCPTS[0];i-i-+)
{

for (j=0;j<dboy_NCPTS[l]:j++)
{

dboy_parameter-
>cpts(i]D][0]=5.0*(((double) i)/((double)
(dboy_NCPTS[0] -1)));

dboy_parameter-
>cpts[i] D] [1]=5.0*(((double) j)/((double)
(dboy_NCPTS[ll -1)));

dboy_parameter-
>cpts[i][j][2]=0.0;

}
}

www.manaraa.com

321

dboy_M==dboy_sharedDoubleMatiix(0,db
c3y_NCPTS[0]»dboy_NCPTS[ll-
l,0,dboy_NCPTS[0]*dboy_NCPTS[I]-
I,dboy_sharedData);

dboy_K=dboy_sIiaredDoubIeMatrix(0.dbo
y_NCPTS[0]»dboy_NCPTS[l]-
I,0.dboy_NCPTS[0]*dboy_NCPTS[lI-
l,dboy_sharedData);

/* integrate for FEA model •/
dboy_elementO;

dboy_PNEW=dboy_sharedDoubleVeaor{
l,dboy_Na>TS[0]*dboy_NCPTS[I],dboy_sliared
Data);

dboy_PCURRENT=dboy_sliaredDoubleV
eaor(l,dboy_NCPTS[Opdboy_NCPTS[l],dboy_sh
axedData);

dboy_POLD=dboy_sharedDoubleVector(
l,dboy_NCPTS[0]*dboy_NCPTS[l],dboy_shaied
Data);

dboy_PRBF=dboy_sfaaredDouble Vector(1
,dboy_NCPTS[0]*dboy_NCPTS[l],
dboy_sharedData);

I* establish initial conditions */
for (i=0;i<dbov_NCPTS[l];i-^)
{

for (j=0;j<dbov_NCPTS[0];j++)
{

dboy_PCURRENT[dboy_NCPTS[0]*i+j+
1]=dbov_parameter->cpts [j] [i] [2];

}

for
(i= 1 ;i<=dbov_NCPTS [0]*dboy_NCPTS[1] ;i++)

{

dboy_POLD[i]=dboy_PCURRENT[i];
dboy_PNEW[i]=0.0;
dbov PREF[i]=0.0;

dboy_PCONST=dboy_sIiaredDoubleMatri
x(l,dboy_NaT'S[0]*dboy_NCPTS[l],L2,dboy_sh
aredData);

/* zero the primary contraint matrix */
for

(i=l;i<=dboy_NCPTS[0]*dboy_NCPTS[ll;i-H-)

{
dboy_PCONST[i][l]=0.0;
dboy_PCONST[i][21=0.0;

}

/* set bomidary conditions */
umin=0;
umax=dboy_NCPTS[0]-l;
vmin=0;
vmax=dboy_NCTTS [I] -1;
for (i=umin;i<=umax;i++)
{

dboy_PCONST[i+l][l]=10.0;
dboy_PCONST[i-r 1] [2]=0.0;

dboy_PCONST[i+dboy_NCPTS[0]*vmax
+1][1]=10.0;

dboy_PCONST[i+dboy_NCPTS[0]'STnax
+1][2]=0.0;

}
for (i=vmin+l;i<vniax;i++)
{

dboy_PCONST[dboy_NCPTS[0]*i+l][l]
=10.0;

dboy_PCONST[dboy_NCPTS[0]*i+l] [2]
=0.0;

dboy_PCONST[dboy_NCPTS [0] *i+umax
+1][I1=10.0;

dbov PCONST[dbov NCPTS[0]*i+umax
+1I[2]=0.0;'

}

/* evaluate x and y components for B-spline
sur&ce */

dboy_npatch=dboy_sharedIntVeaor(0,0,d
boy_sharedData);

dboy_npatch[0]=20;
dboy_X=dboy_sharedDoubIeMatrix(0,dbo

y_npatch[0]+l,0,dboy_npatch[0]+l.dboy_sharedD
ata);

dboy_Y=dboy_sharedDoubleMatrLx(0.dbo
y_npatch[0]+ l,0,dboy_npatch[0]+l,dboy_sharedD
ata);

dboy_Z=dboy_sharedDoubleMatrix(0,dbo
y_npatch[0]+1,0,dboy_npatch[0]+l,dboy_sharedD
ata);

www.manaraa.com

322

dboy_X_DU=<lboy_sharedDoubIeMiatrix(
0,dboy_npatch[0]+l,0.dboy_npatch[0]+l.dboy_sha
redData);

dboy_Y_DU=dboy_sharedDoubIeMatiix(
0.dboy_npatch[0]+l,0,dboy_npatcli[01+l.dboy_sha
redData);

dboy_X_DV=dboy_sharedDoubleMatrix(
0,dboy_npatcfa[0]+l,0,dboy_npatch[0]+l.dboy_sfaa
redData);

dbcjy_Y_DV=dboy_sfaaredDoubleMatrix(
0,dboy_npatch[0]+l,0,dboy_npatch[0]+l,dboy_sba
redData);

dboy_U_BAS=dboy_sharedDoubIe3Tenso
r(0,dboy_npatch[0]+l,0,dboy_npatch[0]+1.0,dboy
_P[0],dboy_sharedData);

dboy_U_BAS_DER=dboy_sharedDoubIe3
Tensor(0,dboy_npatch[0]+l,0.dboy_npatdi[0]+LO
,dboy_P[0],d^_shaialData);

dboy_V_BAS=dboy_sharedDouble3Teiiso
r(0.dboy_npatch[0]+1,0.dboy_npatch[0]+l.O.dboy
_P[1],dboy_sharedData);

dboy_V_BAS_DER=dboy_sharedDoubIe
3Tensor(0,d^_npatch[0]+l.0,dbo\'_npatch(0]+l.
0,dboy_P[l],d^_sharedData);

iiu=dboy_NCPTS[0]-l;
du=l;
uders=dboy_DoubleMatrix(0,dboy_P[0],0

,dboy_P[0]);

nv=dboy_NCPTS[l]-l;
dv=l;
vders=dboy_DoubleMatrix(0,dboy_P(1],0

,dboy_P[l]);

tpts=dboy_DoubIeVeaor(0.1);
tpts_du=dboy_Double Vector(0,1);
tpts_dv=dboy_Double Vector(0,1);
temp=dbov_DoubleMatrix(0.1.0.dbov_P[

1]):
temp_du=dbov_DoubIeMatrix(0, l,0,dbov

_P[1]);

for (i=0;i<=dbov_iipatch[0];i-H-)
{

u=((double) i)/((double)
dboy_npatch(01);

uspan=dbov_findspan(u.dbov_U,nu.dbov_
P[01);

dboy_basisfiins(uspan,ii,dboy_P[0],du.dbo
y_U.uders);

for 0=Ou<=dbov_npatch[0]y-!-i-)
{

v=((doubIe) j)/((double)
dboy_npatch[0]);

vspan=dbov_findspan(v.dbov_V.iiv.dbov_
P[ll);

dboy_basisfuns(vspan,v.dboy_P[l],dv,dbo
y_V.vders);

for
(s=0;s<=dbov_P[1] ;s-i-+)

{

temp[0][s]=0.0;

temp[l][s]=0.0;

temp_du[0] [s]=0.0;

temp_du[l][s]=0.0;
for

(r=0;r<=dbov_P[0];r+-r)
{

temp[0] [s]=temp[0] [s]+uders[0] [r] *dboy_
parameter->q)ts[uspan-dboy_P[0]+rj [vspan-
dboy_P[l]+sl[0];

temp[11 [sl=temp(11 [sl+uders[0] [r] *dboy_
paiameter->q)ts[uspan-<flx)y_P(0]+r] [vspan-
dboy_P[l]+sl[l];

temp_du[0] [s]=temp_du[0] [s]+uders[1] [r]
*dboy_parameter->q)ts[uspan-
dboy_P[0]+r] [vspan-dboy_P[l]+s] [0];

temp_du[1] [s]=temp_du[1] [s]-ruders[1] [r]
*dboy_paiameter->q)ts[uspan-
dboy_P[0]+r][vspan-dbOT_P[1]-f l̂ [1];

}
}

tpts[0]=0.0;
tpts[l]=0.0;
tpts_du[0]=0.0;
tpts_du[l]=0.0;
tpts_dv[0]=0.0:
tpts_dv[l]=0.0;

www.manaraa.com

323

for
(s=0;s<=dboy_P[l];s-H-)

{

tpts[0]=tpts[0]-Hvders(0] [sj*temp[0] [s];

tpts[l]=tpts[l]-i-vders(0] [sl*temp[l] [sj;

tpts_du(0]=tpts_du[0]+vders[0] [s] •temp_
clu[OI[sl;

tpts_du[l]=tpts_du(1]+vders[0] [s] *tenip_
du[l][sl;

tpts_dv[0]=tpts_dv[0]+vders[l] [s]*temp[
0][sj;

tpts_dv[1]=tpts_dv[1]+vders[1] [s]*temp[
ll[sl;

}

dboy_X[i]D]=tptstO];
dboy_Y[i]Q]=tpts[l];

dboy_X_DU[i] |j]=tpts_du[0];

dboy_Y_DU[i] [j]=tpts_du[1];

dboy_X_D V[i] [n=tpts_dv[0];

dboy_Y_D V[i] [j] =tpts_dv[1];
for

(r=0:r<=dboy_P[0];r^)
{

<D'oy_U_B AS[i] [j] lr]=uders[0] [r];

dboy_U_B AS_DER[i] [j] [r]=uders[1] [r];
}
for

(r=0;r<=dbov_P[l]:rH-)
{

dboy_V_B AS [i] Q] [r]=vders[0] [r];

dbov_V_BAS_DER(i] (j] [r]=vders[1] [r];
}

}

dboy_&eeDoubleMatrix(uders,0,dbov_P[0
],0,dboy_P[01);

dboy_freeDoubIeMatrix(vders.0.dboy_P[1
],0,dboy_P[l]);

dboy_fieeDoubleVeaor(tpts,0,1);
dboy_&eeDoubIeVector(tpts_du,0.1);
dboy_&eeDoubIe Veaor(tpts_dv,0.1);
dbov_fieeDoubIeMatrL\(temp,0.1.0,dbov_

P[l]);
dbov_&eeDoubleMatrix(temp_du,0. l.O.db

oy_P[l]);

/* allocate memory for wand position •/
dboy_Plj^e=dboy_sharedIntVeaor(0.4,

dboy_sharedData);
dboy_PI^Tne[0]=0;
dboy_Pla^e[I]=0:
dboy_Pla}Tne[2]=0;
dboy_PIayme[3]=0:
dboy_WAND=dboy_sIiaredDoubleVector

(0.3,dboy_sbaredData);
dboy_TRANS=dboy_sharedDoubleVector

(0,6.dbov_sharedData);
}

II init_^.c

#include "JiinsCave.h"
#include <IoadIinage.h>

int dboy_backTexIndex;
extern int dboy_texnire:

/• InitScene() is called only once, at the start of
the program •/
void dbov_initScene(void)
{

static unsigned long •teximage;
static long sizex, sizey:
GLfloat mat_specular[l = { 0.5, 0.5,0.5.

I.O };
GLfloat mat_shininessQ = { 100.0 };
GLfloat lightO_ambient[] = { .1, .1. .1,

1.0 };

GLfloat lightO_difRiseQ = { .8. 0.8. 0.8,
1.0 };

GLfloat lightO_specularQ = { 0.9. 0.9.
0.9, 1.0 };

GLfloat lightO_position[] = {10.0. 10.0,
5.0. 1.0 };

www.manaraa.com

324

static float texGeiiPaiam[l] =
{GL_OBJECT_LINEAR};

static float texGenTParain[4] = {0.0. 0.2,
0.0. 0.0};

static float texGenSParam[4] = {0.2, 0.0.
0.0, 0.0};

glMaterialfv(GL_FRONT,
GL_SPECULAR, inat_specular);

gIMaierialfv(GL_FRONT.
GL_SHININESS. iiiat_shininess);

glLightfv(GL_LIGHrO, GL_AMBIENT.
lightO_aiiibient);

glLight^(GL_LIGfrrO, GL_DIFFUSE,
lightO_difiuse);

gILightfv(GL_LIGHnrO. GL_SPECULAR.
light0_specular);

glLightfv(GL_LIGHTO. GL_POSrnON.
lightO_positioii):

glEnable(GL_DEPTH_TEST);
glEnable(GL_NORMALIZE);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);

gIEnabIe(GL_COLOR_MATERIAL):
glShadeModel(GL_SM(X)'IH);

if (dbov_texture)
{

dboy_backTexIndex = glGeiiLists(l);
teximage =

readLongfmagePataC'gdb.rgfa". &sizex, Asizey);

gINewList(dboy_backTexIncIex,
GL_COMPILE_AND_EXECUTE);

glEnabIe(GL_TEXTURE_2D);

glTe.xIinage2D(GL_TEXTURE_2D, 0,
4, (int)sizex, (int)sizey, 0. GL_RGBA,
GL_UNSIGNED_BYTE.

teximage);

gITexEnvf(GL_TEXrURE_ENV.
GL_TEXTURE_ENV_MODE,
GL_MODULATE);

glTexPaiameterf(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameterf(GL_TEXrURE_2D,
GL_TEXTLIRE_WRAP_T, GL_REPEAT);

glTexParameteif(C3-_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteif((3-_TEXrURE_2D.
GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexGenfv(GL_S.GL_TEXrURE_GEN
_MODE. texGenPaiam);

glTexGenfv(GL_T.GL_TEXTURE_GEN
_MODE, texGenParam);

glTexGenfv(GL_T.GL_OBJECT_PLANE
. texGenTParam);

glTexGenfv(GL_S.GL_OBJECT_PLANE
. texGenSParam);

glEiiable(GL_TEXrURE_($N_S);
glEiiabIe(GL_TEXTURE_GEN_T);

glColor4f(1.0. 1.0. 1.0. 0.3);
glEndListQ;

i
}

// iiiit_so.c

#include "JiinsCave.h"

extern awSoimd *dboy_sowood;
extern awSoimd •dboy_soboing;
extern awSound •dbov*_socreaky;

void dbov_imtSound(void)
{
/* only needs to be local, then one can delete
adfFile[100] *!

static char adfFile[100];

/* print the adf file name to a string *!

sprintf(ad£File, "%s".
"/home/usrl/trisha/research/CAVE/Sound/jiins.adf

/* initialize the Audio Works system •/

printf("Load adf file [%s]\n", adfFile);

awInitSysO;
awDefineSysCadfFile);
awConfigSysO;

www.manaraa.com

325

/* find the sound we want */

printf ("Find the mysound wave\n");
dboy_sowood = awFindSnd("wood4");
dboy_soboing = awFindSnd("boing2");
dboy_socreal5y = awFindSnd("crealcy");
printf ("Located inysound\n");

if (dboy_sowood = 0 || dboy_soix)ing==0 ||
dboy_socieakv=0)

{'

awNotrfy (AW_FATAL. AW_APP, "Unable
to locate mysoundVn");
}

awProp(dboy_sowood, AWS>JD_RETRIGGER,
AW_ON);

awProp(dboy_soboing, AWSND RETRIGGER,
AW_ON):
}

// inversion.c

#include "JimsCave.h"

extern int *dboy_NCPTS;
extern int *dboy_P;
extern double *dboy_U. *dboy_V;
extern double **dboy_X, **dboy_Y. **dboy_Z;
extern double ***dboy_U_BAS. ••*dboy_V_BAS;
extern int *dboy_npatch;
extern double *dboy_TRANS;

extern int dboy_old_int;
extern int dboy_play;

extern dboy_File *dboy__parameten

extern int *dboy_Pl»Tne;

void dboy_inversion(double *WAND, double
**sconst)
{

int i-j,iiij;
double shortdistance. distance;
double ustarL vstart;
int usint, vsint. neqn;
intnu,nv;

int uspan^vspan:
double dz;
double wmin. wmax;
double •bb, *b. **a. •w, **v, *x;
double up, vp:
double wand[3];
double cx,sx,cy.sy.cz,sz;

cy=cos(dboy_parameter-
>wand_ord[3]*3.ui59/180.0);

sy=sin(dboy_parameter-
>wand_old[3]»3.14159/180.0);

cx=cos(dboy_paranieter-
>wand_old[4] *3.14159/180.0);

sx=sin(dboy_parameter-
>wand_old[4]*3.14159/180.0);

cr=cos(dboy_paranieter-
>wand_old[5]*3.14159/180.0);

sz=sin(dboy_parameter-
>wand_old[5]»3.14159/180.0);

wand[0]=(cz*cy+sz*sx*sy)*WAND[0]+s
z*cx*WAND[l]+(-cz*sy+sz*sx*cy)*WAND[2];

wand[0]=wand[0]+(-dboy_parameter-
>wand_old[0]-
dboy_TRANS[0])*(cz*cy+sz*sx*sy)-K-
dboy_parameter->wand_old[l]-
dboy_TRANS [1])*sz*cx-K-dboy_paranieter-
>wand_old[2]-dboy_TRANS[2])'''(sz*sx*cy-
cz*sy)+dboy_TRANS[0]+2.5;

wand[l]=(-
sz*cy+cz*sx*w)*WAND(0]+cz*cx*WAND[l]-Ks
z*sy+cz*sx*cy)*WAND[21;

wand[1]=wand[1]-K-dboy_paranieter-
>wand_old[0]-dboy_TRANS[0])*(cz*sx*sy-
sz*cy)+(-dboy_parameter->wand_old[l]-
dboy_TRANS[l])*cz*cx+(-dboy_paranieter-
>wand_old[2]-
dbov_TRANS[2])*(cz*sx*cv-t-sz*sv)+dboy_TRAN
S[l]'-2.5;

wand[2]=cx*sy*WAND(0]-
sx*WAND[l]+cx*cy*WAND(2]+(-
dboy_paranieter->wand_old[0]-
dboy_TRANS[0])*cx*sy-(-dboy_parameter-
>waad_old[l]-dboy_TRANS[l])*sx-K-
dboy_parameter->wand_old[2]-
dboy_TRANS[2])*cx*cy+dboy_TRANS[2];

/* wand[0]=WAND[0]-dboy_parameter-
>wand_old[0]+2.5;

www.manaraa.com

326

wand[1]=W AND [1]-dboy_paiameter-
>wand_old[l]-2.5;

wand[2]=WAND [2]-dboy_paranieter-
>wand_old[2];*/

/* Do point inverstion */
shortdistance= 1000.0;
for (i=0;i<=dbov_npatch[0];i-H-)
{

for (j=0;j<=dboy_npatch(01y-H-)
{

distance=pow(dboy_X[i] jj]-
wand[0],2.0)+pow(dboy_Y[i] [j]-
wand[l],2.0)+pow(-wand[2],2.0);

if (distance <
shortdistance)

{

ustart=((double) i)/((doubIe)
dboy_npatdi(0]);

vstart=((double) i)/((doubIe)
dboy_npatch[0]);

usint=i;
vsint=j;

shortdistance=distance;
}

}
}
dboy_paranieter-

>surfI01=dboy_X[usintl [vsint];
dboy_parameter-

>surf[l]=dboy_Y[usint] [vsintj;
dboy_paraineter-

>suif[21=dboy_Z[usint] [vsintj-O. I;

/* Do collision detection */
dboy_parameter->intersect=0;

I* if ((dboy_Z[usintl[vsint] >= wand[2]) &&
(shortdistance < 0.1)) dboy_parameter-
>intersect=I;*/

if (dboy_Z[usintJ [vsint] >= wand[2])
dboy_parameter->intersect= I;

/* If collision, performed &ee-fonn deformation
*/

if (dboy_paiameter->intersea == 1 &&
dboy_old_int = 0)

{
dbov_Plavme[I]=l;

}
dboy_old_int=dboy_parameter->intersect;
if (dboy_parameter->intersect &&.

CAVEBUTTONI)
{

if (dbcy_play = 0)
{

dboy_Playme[2]= I;
dbov_plav=I;

}

neqn=(dboy_P[0]+l)*(dboy_P[l]+l):

a=dboy_DoubleMatrix(I.neqn, Lneqn);
w=dboy_DoubleVector(I,neqn):

v=dboy_DoubleMatrix(Uneqn. 1 ,neqn);
.x=dboy_DoubleVector(l,neqn);
b=dboy_DoubleVeaor(Lneqn);
bb=dboy_DoiibleVeaor(0,neqn-

1):

dz=wand[2]-
dboy_Z[usintI [vsint];

for (i=0;i<=dboy_P[0];i-H-)
{

for
(j=0;j<=dbov_P[11 ;j-H-)

{

bb[i-Kdboy_P[0]+l)*j]=dboy_U_BAS[usi
nt] [vsint] [i] *dboy_V_B AS [usint J [vsint] [j];

b[i+(dboy_P[01+I)*j+l]=bb(i+(dboy_P[0]
+l)*j]*dz;

}
}

for (i=0;i<neqn;i-H-)
{

for (j=0;j<neqn;j++)
{

a[i+I][j+l]=bb[i]*bbD];
}

}

www.manaraa.com

327

dboy_dsvdcinp{ajieqn,neqn.w.v);
winax=0.0;
for (j=l J<=neqn;j-H-) if (w|j] >

wmax) winax=w(j];
wmin=wniax*0.000001;
for (j=l;j<=neqii;j++) if (w(j] <

wmin) w[j]=0.0;

dboy_dsvbksb(a.w,v,neqn.neqn,b.x);

nu=dboy_NCPTS[01-l;
iiv=dboy_NCPTS[l]-l;
ap=((double) usint)/((double)

dboy_npatch[0]);
vp=((double) vsint)/((doubie)

dboy_npaich[0]);

uspan=dbov_findspan(iip,dbov_U,mi.dbov
_P[0]);

vspan=dbov_findspan(vp.dbov_V.nv,dbov
_P[i]);

for (i=0;i<=dbov_P[0];i-i-+)
{

for
(j=0 j<=dboy_P[1] J++)

{
j|j=uspan-

dboy_P[0]+i;
ii=vspan-

dboy_P[l]+j;

sconst[dboy_NCPTS[01*ii+ji+1] [1]=lO.O:

sconst[dboy_NCPTS[0]*ii+jj+l](2]=dboy
_parameter->cpts[j[j] [ii] [2]+x[i-Kdbov_P[0]+l)*j];

}
}

dboy_&eeDoubIeMatrix(a, l,neqiL l,neqn);

dboy_freeDoubieVeaor(w, l.neqn);

dboy_fi:eeDoubIeMatrix(v, Lneqn. l,neqn)

dboy_freeDoubieVeaor(x. l,neqn);

dboy_fi:eeDoubleVeaor(b. l,neqn);

dboy_freeDoubie Veaor(bb.0.neqn-1);
}
else
{

if (dboy_piay=l)
{

dboy_Playme[3]=1;
dboy_piay=0;

}
}

}

// jimscave-h

#include <cave_ogl.Ii>
#indude <unistd.h>
#include <niath.h>
#inciude <stdio.Ii>
#include <aw.h>
#inciude <stdlib.h>
#include "util.h"

/* fimction prototypes */
void dboy_initScene{void);
void dboy_drawScene(void);
void dboy_Conipute(void);
void dboy_initCompute(void);
void dboy_knot(double •. int, int);
void dboy_element(void);
int dboy_findspan(doubie. double *. int. int);
void dboy_basisfims(int double. inL int. double *,
double •*);
void dboy_step(double *, double •. double •.
double double **, double, double •*, double
**)••
void dboy_dsvdcnip(double int int. double *.
double **);
double dboy_dpythag(double. double);
void dboy_dsvbksb(double double *, double **,
int int, double *. double *);
void dboy_inversion(double •. double **);
void dboy_initSound(void);
void dboy_initialize(void);
void dboy_process(void);
void dboy_reset(void);

tvpedefstrurt
{

int intersect;

www.manaraa.com

328

double suif[31:
double wand_oId[6];
double q)ts[8][8][3];

} dboy_FiIe;

// knoLc

^include "JiinsCave.h"

/* This function returns a uniform knot
vector,

U, given the order of the B-spline. p. and
the length of the knot vector, m. */

void dbov_knot(doubIe •U,int nuint p)
{

int i;
for (i=0;i<=p;i+-t-)
{

U[i]=0.0;
}
for (i=p+1 ;i<=m-p-1 ;i++)
{

U[i]=((doubIe) (i-p))/((doubIe)
(m-2*p));

}
for (i=ni-p;i<=m;i-M-)
{

U[i]=I.O;
}

}

// Ioad.image.c

#include <stdio.h>
#inciude <inalloc.h>
#include <unistd.h>
#include <stdlib.h>

#include "load-image.h"

void bwToCpack(unsigned short •, unsigned long
*, int);
void rgbToCpack(unsigned short *. unsigned
short •. unsigned short *,

unsigned long •, int);

void rgbaToCpack(unsigned short *, unsigned
short *, unsigned short *,

unsigned short unsigned long *. int);
void rgbaToCpackCond(unsigned short *.
unsigned short unsigned short •,

unsigned short unsigned long int,
unsigned short, unsigned short

unsigned short, unsigned short);

unsigned long •readLongIniageData(char •name,
long *width. long *height)
{

unsigned long *base, *Iptr,
unsigned short *rbufl •gbuf, *bbuf. *abuf.
IMAGE •image;
inty. ij;

image = iopen(name,"r");
if(!image) {

return NULL;
}
•width = image->xsize;
•height = iinage->ysize;
base = (imsigned long •)nialloc(image-

>xsize^image->ysize^sizeof(unsigned long));
rbuf = (unsigned short •)niaIIoc(iniage-

>xsize^sizeof(short));
gbuf = (unsigned short •)malloc(iniage-

>xsize*sizeof(sfaort));
bbuf = (imsigned short •)maIloc(iinage-

>xsize^sizeof(short));
abuf = (imsigned short •)nialloc(image-

>xsize^sizeof(short));
if(!base || !rbuf || !gbuf || !bbuf) {

^rintf(stderr,"readLongIniageData; can't
malloc enough memoiy\n");

exit(l);
i
Iptr = base;
for(y=0; y<image->ysize; y-H-) {

if(image->zsize>=4) {
if(y==0)

printfC'Doing 4 component
texture : %s \n", name);

/• getrow(image,ri)ufy,0);
getrow(image,gbuf y, 1);
getxow(image,bbu£,y,2);
getrow(image,abufy.3); •/

getrow(image.abuty,0);
getrow(image,bbuf y, 1);
getrow(image,gbuf,y,2);

www.manaraa.com

329

getrow(unage.rbuf;y,3);

rgbaToCpack(xbii^gfau£bbu£abufJptr.iinage-
>xsi2e):

Iptr += image->xsize;
} else if(iinage->zsize=3) {

if(y=0)
printfCDoing 3 compoaent

texture : %s \n", name);
getrow(iinage,bbuly,0);

void rgbToCpack(unsigned short ̂ r, unsigned
short •g, unsigned short *b,

unsigned long *L int n)
{
unsigned short a, aval;

aval = 255;

a = aval; /* Objea non transparent •/

getrow(iinage,gfauf;y, 1); wfaile(n>=8) {
getrow(iniage.rbu£y.2); l[0]=a (r(0]«8) (g[01«16) 1
rgbToCpack(rbu£;gbuflbbuf,lptrainage- (b[0]«24);

>xsize); l[l] = a (r[l]«8) (g[l]«16) i
iptr += iniage->xsize; (b[ll«24);

} else { I[21 = a (r[2]«8) (g(2]«l6) 1
if(y=0) (b[2]«24);

printf("Doing 1 component l[31 = a (r[3]«8) (g[3]«l6) 1
texture ; %s \n", name); (b[31«24);

getrow(image.ibu£;y,0); l[4] = a (r[4]«8) (g[4]«l6) 1
bwToCpack(ibnf^lptr,image->xsize); (b[4]«24);
Iptr -!-= image->xsize; l[5]=a (r[5]«8) (g[51«16) 1

} (b[5]«24);
} I[6] = a (r[61«8) (g[61«l6) 1
iclose(image); (b[6]«24);
free(rbuf); L[71=a (r[71«8) (gm«16) 1
&ee(gbuf); (b[7]«24);
fifee(bbuf);
free(abuf);
return base;

}

void bwToCpack(unsigned short *b, unsigned
long *L int n)
{

while(n>=8) {
I[0] = 0x00010101*b(0];
I[l] = 0x00010101»b[l];
l[2]=0x00010101*b[2];
l[3] = 0x00010101*b[3];
1(4] = 0x00010101»b[41;
l[5] = 0x00010101»b[5];
l[6] = 0x00010101*b[6];
l[7] = 0x00010101*b[7];
I+=8;
b+=8;
n-= 8;

}
while(n—)

1++ = 0x00010101(*b++);

«24;

«24;

«24;

«24;

«24;

«24;

«24;

«24;

/*

l[01 = r[0] 1 (g[0]«8) ! (b[01«l6)

a = aval;
I[ll = r[l] I (g[l]«8) I (b[ll«l6)

a = aval;
I[2] = r[2] I (g[2]«8) I (b[2]«16)

a = aval;
1[31 = r[3] I (g[3]«8) I (b(3]«16)

a = aval;
l[4] = r[4]|(g[4]«8)|(b(4]«16)

a = aval;
1[5] = r[5] I (g[5]«8) I (b(5]«16)

a = aval;
1[6] = r[6] I (g[6]«8) I (b(6]«16)

a = aval;
im = r[711 (g[7]«8) I (b[71«16)

www.manaraa.com

330

•/
l+=8;
r+= 8;
g+=8:
b+=8;
n —8;

}
wfaile(n—)
{

a = aval;
*l++ = *!++ i ((•g-H-)«8) I ((*b++)«16) I

a«24;
}

}

void rgbaToCpack(unsigned short •r, unsigned
short *g, unsigned short •b,

unsigned short unsigned long int
n)
{

while(n>=8) {

#ifO
r[0] = 0;
r[l] = 0;
r[2] = 0;
r[3] = 0;
r[4] = 0:
r(51 = 0-.
r[61 = 0;
r[7] = 0;

if(»a = 0&& »g = 0 && *b = 0)
*r = 0;

#endif

l[0] = r[0]
(a[0]«24);

l[ll = r[l]
(a[l]«24);

l[2] = rt2]
(a[2]«24);

I[3I = r[31
(a[3]«24);

l[41 = r[4]
(a[4]«24);

l[51 = r(5]
(a[5]«24);

l[6] = r(6]
(a[6]«24);

UT] = r[711 (g(71«8) I (b[71«16) !
(a[7]«24);

l+=8;
r 8;
g+=8;
b+=8;
a += 8;
n-=8;

}

while(n—)
{

*1++ = 1 ((*g++)«8) I ((•tH-t-)«l6) I
((»a++)«24);

}
}

unsigned long *readLongIinageDataCond(char
•name. long *width. long •height

unsigned short
It unsigned short gt unsigned short bt

unsigned short
comp)
{

unsigned long •base. •Ipcr.
unsigned shon •rbu£ •gbu£ •bbu£ •abuf.
IMAOE *iniage;
int y. jj;

image = iopen(nanie,"r");
if(! image) {

return NULL;
}
•width = iniage->xsize;
•height = iniage->ysi2e;
base = (unsigned long *)malloc(iinage-

>xsize*iinage->ysize*sizeof(unsigned long));
rbuf = (unsigned short •)malloc(image-

>xsize*sizeof(short));
gbuf = (unsigned short *)maIloc(image-

>xsize^sizeof(short));
bbuf = (unsigned short •)malloc(iniage-

>xsize*si2eof(short));
abuf = (unsigned short •)malloc(image-

>xsize*sizeof(short));
if(!base |1 Irbuf || Igbuf |1 !bbu£) {

(g[0]«8) 1 (b[0]«16)

(g[l]«8) 1 (b(l]«16)

(g[21«8) j i (b[2]«l6)

{g[3]«8) i 1 (b[3]«16)

(g[4]«8) 1 1 (b[4]«l6)

(g[5]«8) 1 I (b[5]«16)

(g[6]«8) 1 1 (b(6]«16)

www.manaraa.com

331

^rinif(stderr."readLongIniageData: can't
malloc enough memoiy\n");

exit(l);
}
Iptr = base;
for(y=0; y<iniage->ysize; y++) {

if(iniage->23ize>=4) {
if(y=0)

printf("Domg 4 component
texture: %s Vn", name);

/* getiow(image.rbu£y,0);
getrow(image,gbuCy, 1);
getrow(image,bbu£y,2);
getrow(image,abuty.3); *l

getrow(image,abuf;y,0):
getrow(image.bbu£^y, I);
getrow(image,gbufly,2);
getrow(iniage,rbu£y,3);

rgbaToCpackCond(rbuf.gbuf;bbutabuf.lptr.image-
>xsize. rt, gt, bt, comp);

Iptr += image->xsize;
} else if(image->zsize=3) {

if(\=0)
printfCDoing 3 component

texture : %s \n''. name);
getrow(image,rbuty,0);
getrow(image,gbuty, 1);
getrow(image,bbuf,y.2);
rgbToCpack(rbu£;gbu£bbu£.lptr,iniage-

>xsize);
Iptr += image->xsi2e;

} el« {
if(y=0)

printfCDoing 1 component
texture : %s \n". name);

getrow(image^u£;y,0);
bwToCpack(rbuf;iptr,image->xsize);
Iptr += image->xsize;

}
}
iclose(image);
&ee(rbuf);
free(gbuf);
&ee(bbuf);
free(abuf);
return base;

}

void rgbaToCpackCond(unsigned short •r,
unsigned short •g, unsigned short •b.

unsigned short *a, unsigned long *1, int
n,

unsigned short rt unsigned short gt
unsigned short bt. unsigned short comp)
{

while(n>=8) {

switch(comp)
{
caseO;

if(a(0] =rt&&g[0] = gt&&b[0]
= bt) r[0] = 0;

if(a[l] =rt&&g[l] = gt«Sk&b[l]
= bt) r[l] = 0;

if(a(2] =rt&&g[2] = gt&&b[2]
==bt) r[2] = 0;

if(a(3] == rt && g[3] = gt && b[3]
= bt) r[3] = 0:

if(a[4] = rt && g[4] = gt && b[4]
= bt) r[4] = 0;

if(a[5] =rt&&g[5] = gt&&b[5]
= bt) r(5] = 0;

rf(a[61 =rt&&g[6] = gt&&b[6]
= bt) r(61 = 0;

if(a[7] = rt && g[7] = gt && b[71
= bt) r[7] = 0:

brrak;
case 1;

if(a(0] <= rt && g[0] <= gt && b[0]
<=bt) r[0] = 0;

if(a[l] <=rt&&g[l]<=gt&&b[l]
<=bt) r[l] = 0;

if(a(2] <= rt && g[21 <= gt && b[21
<= bt) r(2] = 0;

if(a[3] <= rt && g[3] <= gt && b[3]
<= bt) rI3] = 0;

if(a(4] <= rt && g[4] <= gt && b[4]
<= bt) r(4] = 0;

tf(a[5] <= rt && g[5] <= gt && b[5]
<= bt) r[5] = 0;

if(a(6] <= rt && g[6] <= gt && b[6]
<=bt) rt61 = 0;

if(a[71 <= rt && g[7] <= gt && b[7J
<= bt) r[71 = 0;

break;
case 2;

if(a[0] >= rt && g[0] >= gt && b(0]
>=bt) r[0]=0;

if(a[l] >=rt«&&g[l]>=gt&&b[ll
>= bt) r[l] = 0:

if(a[2] >= rt && g[2] >= gt && b[2]
>= bt) r[2] = 0;

www.manaraa.com

332

if(a(3] >= rt«S^g[3] >= gt && b(3] #ifdef. cplusplus
>=bt)

o
 tl extern "C" {

if(a(4] >= rt&&g[4] >= gt && b[4] #endif
>=bt) r(4] = 0;

if(a(51 >= rt&&g[5] > = g t & & b[5]
>=bt) r[5] = 0; /*

if(a[61 >= rt&&g[6] >= gt && b[6] * Defines for image files
>=bt) r[6] = 0; *

if(a[7] >= rt&&g[7] >=gt&&b[71 * PaulHaeberli
>=bt) r(7] = 0; * Modified Carolina Cruz-Neira -

break; * Look in
}

1[0] = r[0] I (g[0]«8) 1 (b[0]«l6) I
(a[0]«24);

I[l] = r[l] i (g[l]«8) I (b[l]«16) i
(a[l]«24);

1[2] = r[2] 1 (g[2]«8) I (b[2]«16)
(a[21«24);

I[3] = r[3]|(g[3]«8) l (b[31«16)
(a[3]«24);

I[4] = rt4] I (g[4]«8) I (b[4]«16)
(a[4]«24);

1[51 = r[5] I (g[51«8) I Cb[5]«16)
(a[51«24);

1(6] = r[6] I (g[6]«8) I (b[61«16)
(a[6]«24);

1(7] = r(7] I (g[7]«8) I (b[7]«16)
(a[7]«24);

i+=8;
r 8 ̂
g+=8;
b+=8:
a += 8;
n —8;

}

while(n—)
{

if(*a = 0&& •§ = 0 && *b = 0)
»r = 0;

•1++ = *1++ I ((*g-i-i-)«8) I ((•b-H-)«l6) I
((»a-i-(-)«24):

}
}

// loadiniage.h

#ifiidef _GL_IMAGE_H_
#define GL IMAGE H

/usr/people/4Dgifis/instools/imgtools for example
code!
*

*!

#include <stdio.Ii>

#define EMAGIC 0732

/• colonnap of images */
#define CM_NORMAL 0 /* ffle
contains rows of values which

* are
either RGB values (zsize = 3)

* or
greyramp values (zsize = 1) */
#define CM_DrrHERED 1
#define CM_SCREEN 2 I* ffle
contains data which is a screen

*

can
image; getrow returns buffer which

be displayed directly with

writepixels */
#define CM_COLORMAP

/* a colormap ffle */

#define TYPEMASK OxfEDO
#define BPPMASK OxOOfF
#define ITYPE_VERBATTM

0x0000
#define ITYPE_RLE 0x0100
#define ISRLE(type) (((type) &
OxfTOO) = ITYPE_RLE)
#define ISVERBATIM(type) (((^TK) &
OxflEOO) = ITYPE_VERBATIM)
#define BPP(type) ((type) &
BPPMASK)
#define RLE(bpp) (rrYPE_RLE 1
(bpp))

www.manaraa.com

333

#define VERBATIM(bpp)
(ITYPE_VERBATIM | (bpp))

#defiiie IBUFSIZE(pixeis)
((pixeIs-Kpixels»6))«2)

#defiiie RLE NOP 0x00

#defi[ne ierror(p) (((p)-
>flags&_IOERR)!=0)
#defiiie ifileno(p)
#define getpLx(p)
? •(p)->ptr++: ifilbuf(p))
#define putpLx(p,x)
\

>ptrH-={uiisigned)(x))) \

iflsbuf(p,(unsigned)(x)))

typedef struct {
unsigned short imagic:

on disk.. •/
unsigned short type;
unsigned short dim:
unsigned short xsize;
unsigned short ysize:
unsigned short zsize;
unsigned long min;
unsigned long max:
unsigned long wastebytes:
char name[80];
unsigned long coiormap;

((p)->ffle)
(-{p)->cnt>=0

(-(p)->cnt>=0

?((int)e(p)-

/* stuff saved

/• stuff used in long file;
core only */

unsigned short flags;
short dorev:
short x;
short y;
short z;
short cnu
unsigned short •ptr,
unsigned short *base;
unsigned short •tmpbuf,
unsigned long of^t;
unsigned long rleend; /* for rle

images */
unsigned long *rowstart; I* for rle

images */
long •rowsize; /* for rle

images *!
} IMAGE;

IMAGE •icreateO;
/*

* IMAGE *iopen(char *file, char *mode,
unsigned int type, unsigned int riim
* unsigned int xsize, unsigned int

ysize, unsigned int zsize);
* IMACK *fiopen(int t char •mode, unsigned int

type, unsigned int rfiiti
* unsigned int xsize, unsigned int

ysize, unsigned int zsize);
*

• ...while iopen and fiopen can take an extended
set of parameters, the
• last five are optional, so a more correct

prototype would be:

• IMAGE •iopen(char •file, char *mode,...);
• IMA(S *fiopen(int L, char •mode,...);
•

• unsigned short •ibufalloc(IMAGE *image);
• int ifiIbuf(IMAGE •image);
• int iflush(IMAGE •image);
• unsigned int iflsbuf(IMAGE •image, unsigned
intc);
• void isetname(IMAGE •image, char •name);
• void isetcolonnap(IMAGE •image, int

coiormap);
• int iclose(IMAGE •image);
•

• int putrow(IMAGE •image, unsigned short
•buffer, unsigned int y, unsigned int z);
• int getrow(IMAGE •image, unsigned short
•buffer, unsigned int y. unsigned int z);

•/

/•IMAGE •iopenO; *!
IMAGE •iopen(char •file, char •mode);
IMAGE •icreate();
int iclose(IMAGE •);
unsigned short •ibufallocQ;

unsigned long •TeadLongImageData(char •. long
•, long •);

unsigned long •readLongImageDataCond(char •.
long •, long •,

unsigned short
, unsigned short. unsigned short,

unsigned short
);

www.manaraa.com

334

#define IMAGEDEF /* for
backwards compatibility *!
#ifdef ^cplusplus
}
#endif
#endif I* !_GL_IMAGE_H_ •/

// maiiLc

#inciude "JimsCave.h"

/* declare pointer to shared memory arena */
void *dboy_sharedData;

/* declare shared memory pointers *!
int *dboy_NCPTS;
int *dboy_P;
int •dboy_npatch;
double *dboy_U, •dboy_V;
double **dboy_M, **dboy_K:
double *dboy_PNEW, *dboy_PCURRENT.
•dboy_POLD, •dboy_PREF;
double *»dboy_Pc6NST;
double **dboy_X, •*dboy_Y, ••dboy_Z;
double **dboy_X_DU, **dboy_Y_DU;
double **dboy_X_DV, **dboy_Y_DV;
double ***dboy_U_BAS, ***dboy_U_BAS_DER.
•»*dboy_V_BA5, ••*dboy_V_BAS_DER;
double *dboy_WAND;
double *dbo_TRANS;
int •dboy Playme;

awSound *dboy_sowood;
awSound •dboy_soboing;
awSoimd *dboy_socreaky;

int dboy_old_int=0:
int dboy_play=0;
int dboy_soimd= 1;
int dboy_texture=l;

dboy_File •dboy_parameter.

/* mainO starts the CAVE tracking, drawing, and
computing •/
void main(int argc, char **argv)
{

CAVEConfigure(&argc, argv, NULL);

dboyJnitializeQ;

CAVEInitO;

CAVEInitApplication(dboy_initScene.
0);

CAVEDisplay(dboy_drawScene. 0);

CAVEDistribCoimectO;
sleep(l):

while
(! CAVEgetbutton(CAVE_ESCKEY))

{
dboy_processO:

}

if(dboy_sound) awExitO;
CAVEExitO;

}

makefile

COMPILER = CC

CAVE_DIR = -L/homeA(T/CAVE/Iib/test
CAVE_INC_DIR= -
I/homeArx/CAVE/incIude/test

CAVELIBS = -lcave_ogI -U -ly -IGLU -llimg

AW2_LIB = -law -lawhwi -Ipsi -laudiofile -IC
AW2_LDIR= -Uusr/Ub/PSI
AW2_INC_DIR = -I/usr/include/PSI

These are assorted other libraries that must be
linked with
GLLIBS= -IGL
XLIBS= -1X11-IXt-lXi
OTHERLIBS = -Im -Igutil -limage

LIBS = $(AW2_LDIR) $(AW2_LIB)
$(CAVE_DIR) $(CAVELIBS) $(XLIBS)
$(GLLIBS) $(OTHERLIBS)

CFLAGS = -32 -mips2 -O $(CAVE_INC_DIR)
$(AW2_INC_DIR) -1. -DSGI

OBJS = main n util.o compute.o draw.o init_gr.o
init_cp.o knoto elemenLo findspasuo bfiins.o

www.manaraa.com

335

stqi.o dsvdcmp.o dpythag.o dsvbksb.o iiiversion.o
iiiit_so.o miniLo inproc.o reseto

all: run

Does linking of the files and libraries
run; $(OBJS)

@.echo "Currently compiling"
$(COMPE^) $(CFLAGS) $(OBJS) -o

run S(L1BS)
@echo "Compiled and linked"

Compiles the files if necessary
.c.o:

$(COMPILER) $(CFLAGS) -c $(@ $*.c

#clean up code
clean:

strip run
nn -f *.0
@echo "All Neat Now"

// miniLc

#include "JimsCave.h"

extern int dboy_sound;

void dbov_initialize(void)
{

dboyinitComputeO:
if(dboy_sound) dboy_initSound();

}

// mproc.c

#include "JimsCave.h"

extern dboy_File *dboy_parameter,

void dbov_process(void)
{

if(CAVEDistribMasterO)
{

dboy_Compute();

CAVEDistribBarrier();

CAVEDistribSend(dboyjparameter.
sizeof(dboy_File));
}

else
{

CAVEDistribBarrierO;
CAVEDistribRficeive<dboy_parameter,

sizeof(dboy_File));
}
sginap(O);

}

// reset-c

#include "JimsCave.h"

extern dboy_File •dboy_parameten
extern double *dboy_PCURRENT. *dboy_POLD,
»dboy_PREF;
extern int *dboy_NCPTS;

extern int *dboy_Playme:

void dbov_reset(void)
{

inti.j;

if(CAVEBUTTON3)
{

/* reset the surface •/
dboy_Playme[0]= 1:

for (i=0;i<dbov_NCPTS[l];i++)
{

for (j=0j<dbov_NCPTS[0]:j+-i-)
{

dboy_POLD[dboy_NCPTS[0]*i+j+1]=0.0;

dboy_PaJRRENTIdboy_NCPTS[0]*i+j+l]=0.0;

dboy_PREF[dboy_NCPTS[0]*i+j+ll=0.0;
dboy_parameter-

>cpts(j][i] [21=0.0;
}

}

/* check to see if the process should be terminated
*!

if(CAVEBmTON2)

www.manaraa.com

336

{
printfralleii\n");

}
}

}

// stq).c

tfinclude "JiinsCave.li"

extern double *dboy_PREF;
extern int •dboy_NCPTS;

void dboy_step(double *Unew.double
*Uold.double *Ucurrent,doubIe •*FC,double
**M.doubIe delta.double **pconst,double
**sconst)
{

double ••a,*w.**v.*b,*x;
double alpha=20.0:
double beta=10.0;
double tau=0.1:
double wmin,wmax:
int lj,nu

m=dboy_NCPTS(0]*dboy_NCPTS[l];

a=dboy_DoubleMatrix(l.m, l,in);
w=dboy_DoubleVeaor(Uin);
v=dboy_DoubleMatrix(Um, l.m):
x=dboy DoubleVector(l.m):
b=dboy_DoubleVeaor(l,m);

for (i=l;i<=m;i-i-t-)
{

for (j=l:j<=ni;j++)
{

a[i]D]=(l-0+alpha*delta)*M[i-l][j-lI;

}
}

for (i=l:i<=m;i++)
{

b[i]=0.0;
for (j= 1 :j<=m;j++)
{
/• b[i] +=

((2.0+alplia*delta)*M[i-l][i-l]-

pow(delta,2.0)*K[i-1] [j-l])*UcurTentlj]-M[i-1] [j-
l]*Uold|j];*/

b[i] +=
(2.0+alpha*delta)*M[i-1] [j-1] *UcurTent|j]-
pow(delta.2.0)*beta*K[i-I]|j-l]*(Ucurrent[j]-
dboy_PREF[i])-M[i-l][j-l]*UoldD];

}
}

/* Apply primary constraints to the matrix */
for (i=l;i<=ni;i++)
{

if (pconst[i][l] > l.O)
{

for (j=l;j<=rtuj++)
{

a[i]m=0.0:
if(i=j)

a[i]Ql=I.O:

b[i]=pconst[i][2];

}

/* Apply secondary constraints to the matrix •/
for (i=l;i<=m;i-H-)
{

if (sconst[i][l] > 1.0)
{

for (j=l:j<=ni;j++)
{

a[il(jl=0.0;
if(i==i)

a[i]D]=1.0:

b[i]=sconst[i][2];
}

X
}

}

for (i=l;i<=m;i++)
{

dboy_PREF[i]=(Ucurrent[i]*delta+dboy.
PREF[i]*tau)/(delta+tau):

}

dboy_dsvdcmp(a,m.m,w,v);
wmax=0.0;
for (i=l:j<=in;j++) if (w(j] > wmax)

wniax=wlj];

www.manaraa.com

337

winin=wniax*0.000001;
for (j=l;j<=in;j-H-) if (wQ] < wmin)

w[fl=0.0;
dboy_dsvbksb(a,w.v,ni.in.b.x);
for (i=l;i<=in;i++) Unew[i]=x[i];

dboy_&eeDoubleMatrix(aL l,ni,l.in);
dboy_&eeDoubleVector(w. l,in);
dboy_&eeDoubIeMatrix(v, Lm, l.m);
dboy_&eeDoubIeVeaor(x. l.m);
dbov_&eeDoubleVeaor(b. l.m);

}

// iml.c

#indude "util-h"

/* allocate a double number in shared memory */
double *dbov sharedDouble(void *sharedMemorv)
{

double *d;

d=(double •)
amalloc(sizeof(double).shaiedMemory);

return d;
}

/* allocate a double vector in shared memory *!
double *dboy_sharedDoubleVector(long nL long
nh, void •sharedMemory)
{

double *v;

v=(double •) ainalloc((nh-
nl+ l+NR_END)*sizeof(double).sfaaredMemory);

if (!v) printf("allocation &ilure in
sharedDoubleVector\n");

return v-nl+NR_END-.
}

/* allocate a double matrix in shared memory •/
double **dboy_sharedDoubleMatrixGong nrL long
nrh, long ncl, long nch, void *sharedMemory)
{

long i, nrow=nrh-nrl+l, ncol=nch-ncl+l;
double **m;

m=(double **)
amalloc((nrow+NR_END)*sizeof(double*),shared
Memory);

if (!m) printfCallocation Allure 1 in
sharedDoubleMatrix\n");

m += NR_END;
m —nrl;

m[nrl]=(double *)
amalloc((nro\v*ncol+NR_END)*sizeof(double),sh
aredMemoiy);

if (!m[nrl]) printfCallocation &iliu:e 2 in
sharedDoubleMatrix\n'');

m[nrl] += NR_END;
m[nrl] — ncl;

for(i=nrl+l;i<=nrh;i++) m[i]=m[i-
l]+ncol;

return m;
}

/* allocate a double 3D tensor in shared memory
*/
double •**dboy_sharedDouble3Tensor(Iong nrl.
long nrh. long ncL long nch. long ndL long ndh.
void *sharedMemorv)
{

long i, j, nrow=nrfa-nrl+l. ncol=nch-
ncl+1. ndep=ndh-ndl+l;

double ***t;

t=(double •**)
amalloc((nro-w-t-NR_END)*sizeof(double**),share
dMemory);

if(!t) prinlf("allocation failure 1 in
sharedDoubIe3Tensor\n");

t += NR_END;
t-= nrl;

t[nrl]=(double **)
ainalloc((nrow*ncol+NR_END)*sizeof(double*).s
haredMemory);

if (!t[nrl]) printf("allocation failure 2 in
sharedDouble3Tensor\n");

t[nrl] += NR_END;
t[nrl] — ncl;

t(nrl][ncl]=(double *)
amalloc((nrow*ncoI*ndep+NR_END)*sizeof(doub
le),sharedMemory);

if (!t[nrl][ncl]) printf("allocation feilure
3 in sharedDouble3Tensor\n");

t[nrl][ncl] += NREND;
t[tu-l][ncli -= ndl;

www.manaraa.com

338

for(i=ncl+1 ;i<=nch;i++)
t[nrll[i]=t[iirl][i-l]+n(iq);

for(i=iirl+l;i<=nrh;i++)
{

t[i]=t(i-l]+ncol;
t[i][ncll=t[i-l][ncl]+ncoI*ndep;
for(j=ncl+I;j<=nch:j-t-(-)

t[i]D]=t[i]D-l]+ndep;
}

retumt;
}

/• allocate a float veaor in shared memoiy */
float *dboy_sfaaredFloatVeaor(Iong nl. long nh.
void *shaiedMemorv)
{

float *v;

v={float *) ainalloc((nh-
til+l+NR_END)*sizeof(float),sliaredMemory);

if(!v) printfC'allocation feilure in
sharedRoatVeaor\n");

return v-nl+NR_END;
)
/

/* allocate an integer vector in shared memory *!
int •dboy_sharedIntVeaor(long nl. long nhu void
•sharedMemorv)
{

int *v;

v=(int *) amalloc((nh-
nl+ l+NR_END)*sizeof(int),sfaaredMemory);

if(!v) printf("allocation failure in
sharedIntVector\n");

return v-nl+NR_END;
}

return v-nl+NR_END;
}

/* allocate a double matrix •/
double •*dboy_DoubleMatrix(long nrL long nrh.
long ncL long nch)
{

long i, nrow=nrh-nrl-!-I. ncol=nch-ncl+l:
double ••m;

m=(double •*)
malloc((nrow+NR_END)*sizeof(double*));

if (!m) printf("allocation Mlure 1 in
DoubleMatrix\n");

m += NR_END:
m -= nrl;

mfnrl]=(double •)
nialloc((nrow*ncol+NR_END)*sizeof(double));

if (!m[nrl]) printf("allocation &ilure 2 in
DoubleMatrix\n");

m[nril += NR_END;
m[nrl] — ncl;

for(i=iu-I+l;i<=iu-h;i-^) m[i]=Tn[i-
l]+ncol;

return m;
}

/* ftee a double veaor */
void dboy_freeDoubleVeaor(double *v, long nl.
long nh)
{

free(v+nl-NR_END);
nh=nh;

}

/• allocate a double veaor •/
double *dboy_DoubleVeaorGong nl. long nh)
{

double *v;

v=(double *) malloc((nh-
nl+l+NR_END)*sizeof(double));

if (!v) printfCallocation failure in
DoubleVeaor\n");

/• free a double veaor *!
void dboy_freeDoubleMatrix(double **ni. long
nrl, long nrh, long ncl. long nch)
{

free(m(nrl]+nci-NR_END);
free(m+nrl-NR_END);
nrh=nrh;
nch=nch;

}

www.manaraa.com

339

// utiLh

#include <sys/types.h>
#incliide <nialloc.h>

#define NR_END I

static double dsqiarg;
#defiiie dboy_DSQR(a) ((dsqiarg=(a)) == 0.0 ? 0.0
: dsqiarg*dsqrarg)

static double dmaxargLdmaxargl:
#define dboy_DMAX(a,b)
(dmaxargl=(a),dinaxarg2=(b),(dinaxargl) >
(dmaxargi) ? (dmaxargl); (dmaxarg2))

static int iminargl.iiTiinarg2;
#define dboy_IMIN(a,b)
(iminargl=(a) iTninarg2=(h) (iTniTiargl) <
(iminarg2) ? (iminargl); (iminargl))

#define dboy_SIGN(a.b) ((b) >= 0.0 ? &bs(a): -
^s(a))

/* memory allocation utilities - prototypes */
double •dboy_sIiaredDouble(void *);
double •dboy_sharedDoubleVector(long, long,
void *);
double **dboy_sharedDoubleMatrix(long, long,
long, long, void *);
double •**dboy_sharedDouble3Tensor(long. long,
long, long, long, long, void *);
float *dboy_sharedFloatVector(long, long, void *);
int *dboy_sIiaredIntVeaor(long, long, void •);

double •dboy_DoubleVeaor(long, long);
double **dboy_DoubleMatrix(long, long, long,
long);

void dboy_fi:eeDoubleVector(double long, long);
void dboy_freeDoubleMatrix(double **, long,
long, long, long);

www.manaraa.com

340

REFERENCES

1. Adachi, Y., T. Kumano, and BC. Ogino, "Sensory evaluation of virtual haptic push­

buttons," ASME Dynamic Systems and Control, DSC-VoI. 55-1, pp. 361-368,

Chicago, IL, 1994.

2. Anand, V.B., Computer Graphics and Geometric Modeling for Engineers, John Wiley

& Sons, New Yoric, NY.

3. Anderson, R.J. and M.W. Spong, "Asymptotic stability for force reflecting

teleoperators with time delay," International Journal of Robotics Research, 11(2); pp.

135-149, 1992.

4. Asimov, I., I, Robot, Double Day, Garden City, NJ, 1950.

5. Astley, O. and V. Hayward, "An experimental procedure for autonomous joint sensor

estimation using adaptive control," Proceedings nfTF.F.F International Conference on

Robotics and Automation, Albuquerque, NM, 1997.

6. Aulbach, B., "Continuous and discrete dynamics new manifolds of equilbria," Lecture

Notes in Mathematics, 1058: pp. 1-142, 1984.

www.manaraa.com

7. Barafi^ D., "Analytical methods for dynamic simulations of non-penetrating rigid

bodies," Proceedings ofSIGGRAPH '89, 23(3): pp. 223-232, July, 1989.

8. Barr, A.H., "Global and local deformations of solid primitives," Proceedings of

SIGGRAPH '84, 18(3); pp. 21-30, July, 1984.

9. Bergamasco, M, D.M. De Micheli, G. Parrini, F. Salsedo, S. Marchese, "Design

considerations for glove-like advanced interfaces," Proceedings of the Fifth

International Conference on Advanced Robotics, Pisa, Italy, 1991.

10. Bonitz, R.G. and T.C. Hsia, "Force decomposition in cooperating manipulators using

the theory of metric spaces and generalized inverses," Proceedings of IEEE

International Conference on Robotics and Automation, San Diego, CA, 1994.

11. Brickman, W.E., A First Course in the Finite Element Method, Irwin, Homewood, IL,

1990.

12. Brooks, F.P., "Walkthrough: A dynamic graphics system for simulating virtual

buildings," SIGGRAPH Workshop on 3D Graphics, 1986.

13. Burdea, G.. J. Zhaung, E. Roskos, D. Silver, N. Langrana, "A portable dexterous

master with force feedback," Presence-Teleoperators and Virtual Environments, 1(1):

pp. 18-29, 1992.

14. Burdea, G. and P. Coiffet, Virtual reality technology, John Wiley & Sons, New York,

NY, 1994.

15. Buttolo, P., B. Bratthen, and B. Hannaford, "Sliding control of a force reflecting

teleoperation: Preliminary studies," 3(2): pp. 158-172, 1994.

www.manaraa.com

16. Buttolo, P., D. Kung, and B. Hannaford, "Manipulaiion in real, virtual and remote

environments," Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, Vancouver, EC, Can, 1995.

17. Celniker, G. and D. Gossard, "Defonnable curve and surface finite-element for firee-

form shape design," Proceedings of SIGGRAPH '91, 25(4); pp. 257-266, July, 1991.

18. Chadwick, J.E., D.R. Haumann, and R.E. Parent, "Layered construction for

defonnable animated characters," Proceedings of SIGGRAPH '89, 23(3); pp. 243-252,

July, 1989.

19. Clover, C.L., "Control system design for robots used in simulating dynamic force and

moment interaction in virtual reality applications," Ph.D. Thesis, Department of

Mechanical Engineering, Iowa State University, 1996.

20. Codella, C., L. Koved, J.B. Lewis, "Interactive simulation in a multi-person virtual

world," Proceedings of Hitman Factors in Computing Systems, Monterey, CA, 1992.

21. Colgate, J.E., P.E. Grafing, M.C. Stanley, G. Schenkel, "Implementation of stiff

virtual walls in force-reflecting interfaces," Proceedings of IEEE Annual Virtual

Reality International Symposium, Seattle, WA, 1993.

22. Colgate, J.E. and J.M. Brown, "Factors affecting the Z-width of a haptic display,"

Proceedings of IEEE International Conference on Robotics and Automation, San

Diego, CA, 1994.

23. Corke, P.L and B. Armstrong-Helouvry, "Search for consensus among model

parameters reported for the PUMA 560 robot," Proceedings of IEEE International

Conference on Robotics and Automation, San Diego, CA, 1994.

www.manaraa.com

343

24. Craig, J. J., Introduction to Robotics, Mechanics and Control, Addison-Wesley,

Reading, MA, 1989.

25. Cruz-Neira, C., D.J. Sandin, and T.A. DeFanti, "Surround-screen projection-based

virtual reality: the design and implementation of the CAVE," Proceedings of

SIGGRAPH '93, Anaheim, CA, 1993.

26. Dede, C.J., M. Salzman, and R.B. Loftin, "Development of a virtual world for learning

Newtonian mechanics," Proceedings of International Corrference on Multimedia,

Hypermedia, and Virtual Reality, Moscow, Russia, 1994.

27. Deering, M., "High resolution virtual reality," Proceedings of SIGGRAPH '92,

Chicago, IL, 1992.

28. Doty, K.L., C. Melchiorri, and C. Bonivento, "A theory of generalized inverses

applied to robotics" IntemationalJoumal of Robotics Research, 12(1); pp. 1-18,

1993.

29. Dufiy, J., M. GriflBs, and M. Swinson, "Fallacy of modem hybrid controll theory for

the simultaneous control of force and motion," Symposium on Advances in Robot

Kinematics 2nd Workshop on Advances in Robot Kinematics, 1990.

30. Edwards, J.C. and G.R. Luecke, 'Thysically based dynamic models for use in a force

feedback virtual environment," Proceedings of Twenty-Fourth Midwestern Mechanics

Conference, Ames, lA, 1995.

31. Edwards, J.C. and G.R. Luecke, "Physically based models for use in a force feedback

virtual environment," Proceedings of Japan-USA Symposium on Flexible Automation,

Boston, MA, 1996.

www.manaraa.com

32. Fuchs, H.M., M. Levoy, and S.M. Pizer, "Interactive visualization of 3-D medical

data," IEEE Computer, pp. 46-50, 1989.

33. Galyean, T. and J.F. Hughes, "Sculpting: An interactive volumetric modeling

technique," Proceedings of SIGGRAPH '91, 25(4); pp. 261-21 A, July, 1991.

34. Gardner, L.R.T., G.A. Gardner, S.I. Zaki, Z. El Sahrawi, "B-spline finite element

studies of the non-linear Schroedinger equation," Computer Methods in Applied

Mechanics and Engineering, 108(3-4); pp. 303-318, 1993.

35. Gardner, L.R.T., G.A. Gardner, F.A. Ayoub, N.K Amein, "Modeling an undular bore

with B-splines," Computer Methods in Applied Mechanics and Engineering, 147(1-

2): pp. 147-152, 1997.

36. Gillespie, B. and M. Cutkosky, "Interactive dynamics with haptic display,"

Proceedings of ASME Winter Annual Meeting, New Orleans, LA, 1993.

37. Gourret, J.-P., N.M. Thalmann, and D. Thahnann, "Simulation of object and human

skin deformation in a grasp task," Proceedings of SIGGRAPH '89, 23(3); pp. 21-30,

July, 1989.

38. Gudukbay, U. and B. Ozguc, "Free-form solid modeling using deformations,"

Computers and Graphics, 14(3); pp. 491-500, 1990.

39. "Handykey Corporation," http;//www.handykey.com, (December 10, 1997).

40. Hannaford, B., L. Wood, D.A. McAffee, H. Zak, "Performance evaluation of a six-

axis generalized force-reflecting teleoperator," TF.F.F. Transactions on Systems, Man

and Cybernetics, 21(3); pp. 620-633, 1991.

http://www.handykey.com

www.manaraa.com

41. Hatada, T., "Psychological and physiological analysis of stereo-scopic vision," Journal

of Robotics and Mechatronics, 4(1); p. 13-19, 1992.

42. Hogan, N., "Impedance control; An approach to manipulation," Journal of Dynamic

Systems, Measiirement and Control, 107(1): pp. 1-7, 1985.

43. Hogan, N., "Controlling impedance at ±e man/machine interface," Proceedings of

IEEE International Conference on Robotics and Automation, Scottsdale, AZ, 1989.

44. Horn, R.A. and C.R. Johnson, Matrix Analysis, Cambridge University Press, New

York, NY, 1985.

45. Hsu, W.M., J.F. Hughes, and H. Kaufman, "Direct manipulation of free-form

deformation," Proceedings of SIGGRAPH '92, Chicago, EL, 1992.

46. "I - Force," iforce.html, http;www.force-feedback.com/iforce, (December 10, 1997).

47. "IMMERSION CORP; Impulse Engine 2000," research-html, http;//www.force-

feedback.com/research, (December 10, 1997).

48. Inman, D.J., Engineering Vibration, Prentice HaU, Englewood Cliffs, NJ, 1994.

49. Ishii, M and M. Sato, "A 3D interface device with force feedback; A virtual work

space for pick-and-place tasks," Proceedings of TKf.f. Virtual Reality Annual

International Symposium, 1993.

50. Iwata, H., "Artificial reality with force-feedback. Development of desktop virtual

space with compact master manipulator," Proceedings of SIGGRAPH '90, 24(4); pp.

165-170, August, 1990.

http://www.force-feedback.com/iforce

www.manaraa.com

346

51. Joly, L.D. and C. Andriot, "Imposing motion constraints to a force reflecting telerobot

through real-time simulation of a virtual mechanism," Proceedings of IEEE

International Conference on Robotics and Automation, Nagoya, Japan, 1995.

52. Joly, L.D., C. Andriot, and V. Hayward, "Mechanical analogies in hybrid

position/force control," Proceedings of IEEE International Conference on Robotics

and Automation, Albuquerque, NM, 1997.

53. BCaneko, K., H. Tokashiki, K. Tanie, K. Komoriya, "Impedance shaping based on force

feedback bilaterial control in macro-mirco teleoperation system," Proceedings of IEEE

International Conference on Robotics and Automation, Albuquerque, NM, 1997.

54. Kapusinski, C.L., "Motor selection and damper design for a six degree of freedom

haptic display," M.S. Thesis, Department of Mechanical Engineering, North Western

University, 1997.

55. Kazerooni, H. and M.-G. Her, "Dynamics and control of a haptic interface device,"

IEEE Transactions on Robotics and Automation, 10(4): pp. 453-464, 1994.

56. Kelley, A. J. and S.E. Salcudean, "On the development of a force-feedback mouse and

its integration into a graphical user interface," Proceedings of International

Mechanical Engineering Congress and Exposition, Chicago, IL, 1994.

57. Khalil, H.K., Nonlinear Systems, Prentice HaU, Upper Saddle River, NJ.

58. Khatib, 0., "Operational space framework," JSME International Journal, 36(3); pp.

277-287, 1993.

www.manaraa.com

59. Lawrence, D.A., L.Y. Pao, M.A. Salada, A.M. Dougherty, "Quantitative experimental

analysis of transparency and stability in haptic interfaces," Proceedings ofASME

International Mechanical Engineering Congress and Exposition^ Atlanta, GA, 1996.

60. Luecke, G.R. and J. Winkler, "Magnetic interface for robot-supplied virtual forces,"

Proceedings of International Mechanical Engineering Congress and Exposition,

Chicago, IL, 1994.

61. Luecke, G.R. and J.C. Edwards, "Virtual cooperating manipulators as a virtual reality

haptic interface," Proceedings of 3rd Annual Symposium on Human Interaction with

Complex Systems, Dayton, OH, 1996.

62. Luecke, G.R. and J.C. Edwards, "Force interactive virtual reality using local joint

error control," Proceedings of Interruxtional Symposium on Intelligent Systems and

Advanced Manufacturing, Boston, MA, 1996.

63. Luecke, G.R-, Y.H. Chai, and J.C. Edwards, "An exoskeleton manipulator for

application of electromagnetic virtual forces," Proceedings of ASME Dynamic

Systems and Control Division, Atlanta, GA, 1996.

64. Luecke, G.R., J.C. Edwards, and B.E. Miller, "Virtual cooperating manipulator

control for haptic interaction with NURBS surfeces," Proceedings of IEEE

International Conference on Robotics and Automation, Albuquerque, NM, 1997.

65. Luecke, G.R., Y.-H. Chai, and J.C. Edwards, "Force interactions in the synthetic

enviromnent using the ISU force reflecting exoskeleton," Computer & Graphics,

21(4): pp. 431-442, 1997.

www.manaraa.com

348

66. Mark, W.R., S.C. Randolph, M. Finch, J.M. Van Verth, R.M. Taylor, "Adding force

feedback to graphics systems; Issues and solutions," Proceedings of SIGGRAPH '96,

1996: pp. 447-452, August.

67. Massie, T.H., "Design of a three degree of freedom force-reflecting haptic interfece,"

B.S. Thesis, Department of Mechanical Engineering, Massachusetts Institute of

Technology, 1993.

68. Massie, T.M. and J.K. Salisbury, "The PHAJ^JToM haptic interfece: A device for

probing virtual ohiQCts,"^ Proceedings of ASME Winter Annual Meeting, 1994.

69. McDowall, I.E., M. Bolas, S. Pieper, S.S. Fisher, J. Humphries, "Implementation and

integration of a counterbalanced CRT-based stereoscopic display for interactive

viewpoint control in virtual environment apphcations," Proceedings of SPIE, 1990.

70. Metaxas, D. and D. Terzopoulos, "Dynamic deformation of solid primitives with

constraints," Proceedings of SIGGRAPH '92, 26(2), July, 1992.

71. Micaelli, A, C. Bidard, and C. Andriot, "Decoupling control based on virtual

mechanisms for telemanipulation," Proceedings of TF.F.F. International Conference on

Robotics and Automation, 1997.

72. "Microsoft Direct X Directlnput," default.asp,

http;//www.microsoft.com/directx/pavilion/dinput, (December 10, 1997).

73. Miilman, P. A. and I.E. Colgate, "Design of a four degree-of-freedom force reflecting

manipulandum with a special force/torque workspace," Proceedings of IEEE

International Conference on Robotics artd Automation, Sacramento, CA, 1991.

http://www.microsoft.com/directx/pavilion/dinput

www.manaraa.com

74. Millman, P.A., M. Stanley, and J.E. Colgate, 'TDesign of a high performance interface

to virtual environments," Proceedings of IEEE Annual Virtual Reality International

Symposium, Seattle, WA, 1993.

75. Mitsuishi, M, T. Watanabe, H. Nakanishi, T. Hori, H. Watanabe, B. Kramer, "Tele-

micro-surgery system across the internet with a fixed viewpoint/operation-point,"

Proceedings of the IEEE International Conference on Intelligent Robots and Systems,

Pittsburgh, PA, USA, 1995.

76. NCzusawa, T. and T. Kato, "Application of the spline prism method to analyze

vibration of thick circular cylindrical panels," International Journal of Solids and

Structures, 33(7); pp. 967-976, 1996.

77. Morizono, T., K. Kurahashi, and S. Kawamura, "Analysis and control of a force

display system driven by parallel wire mechanism," Japan-USA Symposium on

Flexible Automation, Boston, MA, 1996.

78. Orr, J.N., "Exotic CAD," Computer Graphics World, 12(7): pp. 88-89, 1989.

79. Ouh-Young, M., M. Pique, J. Hughes, N. Srinivasan, F.P. Brooks, "Using a

manipulator for force display in molecular docking," Proceedings of IEEE

International Conference on Robotics and Automation, Philadelphia, PA, 1988.

80. "PC Gear - Force FX," CH Products, The new force FX, pcgear.html,

http://www.chproducts.com, (December 10, 1997).

81. Pentland, A_ and J. Williams, "Good Vibrations: Modal dynamics for graphics and

animation," Proceedings of SIGGRAPH '89, 23(3): pp. 215-222, July, 1989.

82. PiegL, L. and W. Tiller, The NURBS Book, Springer, New York, NY, 1995.

http://www.chproducts.com

www.manaraa.com

350

83. Press, W.H., Nvmerical recipes in C, Cambridge University Press, Cambridge, MA,

1992.

84. "Product Overview: VTI CyberGrasp," prod_cybergrasp.html,

bttp://www.virtex.com, (December 10, 1997).

85. Qin, H. and D. Terzopoulos, "Dynanaic NURBS swung surfaces for physics-based

shape design," Computer Aided Design, 27(2): pp. 111-127, 1995.

86. Qin, H. and D. Terzopoulos, "D-NURBS: A physics-based framework for geometric

design," IEEE Transactions on Visualization and Computer Graphics, 2(1): pp. 85-

96, 1996.

87. Qin, H. and D. Terzopoulos, "Triangular NURBS and their dynamic generalizations,"

Computer Aided Geometric Design, 14(4): pp. 325-347, 1997.

88. Raibert, M.H. and J.J. Craig, "Hybrid position/force control of manipulators," Journal

of Dynamic Systems, Measurement and Control, 103(2): pp. 126-133, 1981.

89. Sciavicco, L. and B. Siciliano, Modeling and Control of Robot Manipulators,

McGraw-HBlL New York. NY, 1996.

90. Sederberg, T.W. and S.R. Parry, "Free-form deformation of solid geometric models,"

Proceedings of SIGGRAPH '86, 20(4): pp. 151-160, August, 1986.

91. "SensAble Technologies: Community, in The SensAble Community,"

community.html, http://www.sensable.com, (December 10, 1997).

92. "SensAble Technologies: Product - Info," products.html#ghost,

http://www.sensable.coni, (December 10, 1997).

http://www.virtex.com
http://www.sensable.com
http://www.sensable.coni

www.manaraa.com

93. "SensAble Technologies: Products - Info," products.htmI#phantom,

http;//www.sensabIe.coni, (December 10, 1997).

94. "Side Winder Force Feedback Pro - Overview," 488_ov.html,

http://www.microsoft.com/products/prodnet, (December 10, 1997).

95. Song, G.J. and N.P. Reddy, "Towards surgical simulation of cutting in the VR

environment," Proceedings of the ASME Bioengineering Division ASME

International Mechanical Engineering Congress and Exposition, Chicago, EL, USA,

1994.

96. Stewart, P., P. Buttolo, and Y. Chen, "CAD data representations for haptic virtual

prototyping," Proceedings of ASME Design Engineering Technical Conferences,

Sacramento, CA, 1997.

97. Swokowski, E.W., Calculus with analytic geometry, PWS Kent Publishing Company,

Boston, MA, 1988.

98. Tarn, T.J., S.H. Bejczy, and X. Yun, "Inertia parameters of Puma 560 robot arm,

Washington University, St. Louis, MO, 1985.

99. TeiteL, MA., "Eyephone, a head mounted stereo display," Proceedings of

International Society for Optical Engineering Stereoscopic Displays and

Applications, Santa Clara, CA, 1990.

100. Terzopoulos, D. and K. Fleischer, "Modeling inelastic deformations; Viscoelasticity,

plasticity, fracture," Proceedings of SIGGRAPH '88, 22(4): pp. 269-278, August,

1988.

http://www.sensabIe.coni
http://www.microsoft.com/products/prodnet

www.manaraa.com

101. Terzopoulos, D., "Elastically deformable models," Proceedings ofSIGGRAPH '87,

21(4): pp. 205-214, July, 1987.

102. Thompson, T. V.I., D.E. Johnson, and E. Cohen, "Direct haptic rendering of

sculptured models," Symposium on Interactive 3D Graphics, Providence, RI, 1997.

103. Van de Vegte, J.M.E., P. NClgram, and R.H. Kwong, "Teleoperator control models:

Effects of time delay and imperfect system knowledge," IEEE Transactions on

Systems, Man and Cybernetics, 20(6): pp. 1258-1272, 1990.

104. Viswanadham, K.N.S.K. and S.R. Koneru, "Finite element method for one-

dimensional and two-dimensional time dependent problems with B-splines," Computer

Methods in Applied Mechanics and Engineering, 108(3-4): pp. 201-222, 1993.

105. Yokoi, H., "Development of the virtual shape manipulating system," Proceedings of

Fourth International Conference on Artificial Reality and Tele-existence, 1994.

106. Yokokohji, Y., R.L. HoUis, and T. BCanade, "Vision-based visual/haptic registration for

WYSIWYF display," Proceedings of lEEE/RSJ International Conference on

Intelligent Robots and Systems, Osaka, Japan, 1996.

107. Zimmerman, T.G., J. Lanier, C. Blanchard, S. Bryson, Y. Harvil, "Hand gesture

interface device," Human Factors in Computing Systems arui Graphics Interfaces,

Toronto, Ont, Can, 1987.

www.manaraa.com

IMAGE EVALUATION
TEST TARGET (QA-3)

150mm

IIVWGE. Inc
1653 East Main Street
Rochester. NY 14609 USA
Phone; 716/482-0300
Fax; 716/288-5989

01993. Applied Image. Inc.. All Rights Reserved

	1998
	Interactive synthetic environments with force feedback
	James Christopher Edwards
	Recommended Citation

	

