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Abstract

Autonomous navigation of mobile robots is often based on information from a variety of heterogeneous sensors; hence, extrin-
sic sensor calibration is a fundamental step in the fusion of such information. In this paper, we address the problem of extrinsic
calibration of a radar – LiDAR – camera sensor system. This problem is primarily challenging due to sparse informativeness of
radar measurements. Namely, radars cannot extract rich structural information about the environment, while their lack of elevation
resolution, that is nevertheless accompanied by substantial elevation field of view, introduces uncertainty in the origin of the mea-
surements. We propose a novel calibration method which involves a special target design and two-step optimization procedure to
solve the aforementioned challenges. First step of the optimization is minimization of a reprojection error based on an introduced
point-circle geometric constraint. Since the first step is not able to provide reliable estimates of all the six extrinsic parameters, we
introduce a second step to refine the subset of parameters with high uncertainty. We exploit a pattern discovered in the radar cross
section estimation that is correlated to the missing elevation angle. Additionally, we carry out identifiability analysis based on the
Fisher Information Matrix to show minimal requirements on the dataset and to verify the method through simulations. We test the
calibration method on a variety of sensor configurations and address the problem of radar vertical misalignment. In the end, we
show via extensive experiment analysis that the proposed method is able to reliably estimate all the six parameters of the extrinsic
calibration.
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1. Introduction

Autonomous systems navigate through the environment
based on the information they gather from sensors. They have
to solve many task such as simultaneous localization and map-
ping, detection and tracking of moving objects, etc., based on
the available information from a variety of sensors. Commonly
used propriocetive sensors in robotics can include global po-
sitioning system, inertial measurement units, and wheel en-
coders, while extroceptive sensors include LiDARs, cameras,
sonars, and radars. Appropriateness of a sensor is dependent on
the application, because these sensors utilize different physical
phenomena, leading to different sets of advantages and disad-
vantages. Therefore, to achieve a robust, full-stack autonomy,
information from the aforementioned sensors is often fused.

The fundamental step in sensor fusion is sensor calibration,
commonly divided to intrinsic and extrinsic calibration. The
former provides internal parameters of an individual sensor re-
lated to its working principle, while the latter represent spatial
displacement between a pair of sensors. The calibration can
tackle both parameter groups at the same time or assume that
sensors are already intrinsically calibrated and proceed with the

extrinsic calibration. On the one hand, methods for finding in-
trinsic parameters do not share much similarities for different
types of sensors since they are related to the working principle
of the sensor. On the other hand, parametrization of extrin-
sic calibration, i.e., homogeneous transform, can always be ex-
pressed in the same manner, regardless of the sensors involved
in it. Nevertheless, solving the extrinsic calibration requires
finding correspondences in the data acquired by the sensors
which can be challenging since different types of sensors mea-
sure different physical quantities. The calibration approaches
can be target-based or targetless. In the case of target-based cal-
ibration, correspondences originate from a specially designed
target, while targetless methods utilize environment features
perceived by both sensors. Registration of structural correspon-
dences can be avoided by motion-based methods, which lever-
age motion estimated by individual sensors for calibration.

Cameras and LiDARs are rich sources of information, com-
monly used in robotics, which often require precise calibration.
Therefore, extensive research has been devoted to calibration of
these sensors within all aforementioned calibration approaches.
Target-based camera calibration approaches, based on pioneer-
ing work [1, 2], typically involve planar targets with known pat-
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terns such as checkerboard [3] or a grids of circles [4]. Novel
calibration target is presented in [5] where authors use a noise-
like pattern with many features of varying scales. It is suitable
for both intrinsic and extrinsic calibration of multiple cameras
with no or little filed of view (FoV) overlap. LiDAR calibra-
tion also uses flat surfaces as calibration targets. For instance,
intrinsic calibration of LiDARs is achieved by placing the Li-
DAR inside a box [6] or by observing planar wall [7], while
extrinsic calibration of multiple 2D LiDARs was found by the
aid of a corner structure [8]. Extrinsic target-based calibration
between LiDARs and cameras has also received significant re-
search attention, while the common targets are planes covered
with a pattern suited for camera detection. Widely adopted and
extended method presented in [9] introduced point-plane geo-
metric constraint initially designed for 2D LiDAR – camera cal-
ibration. Proposed approach was also applied in the calibration
of a 3D LiDAR and a camera [10]. Further improvements were
made by decoupling rotation from translation in the optimiza-
tion procedure [11]. To reduce the labour requirements, authors
in [12] extended the method with global correspondence regis-
tration which allows for multiple plane observations in a sin-
gle shot. The same constraint was used in [13] where instead
of checkerboard pattern, AprilTag fiducial markers were used
[14]. Additionally, they extended the extrinsic calibration with
estimation of intrinsic LiDAR parameters. AprilTag markers
and the same geometric constraint were also used in [15] as
a part of multi-sensor graph based calibration. Besides com-
monly used point-plane constraint, 3D LiDAR-camera pair was
calibrated based on the point-point correspondences. In [16]
authors used a target with circular holes for localization, while
in [17] authors extracted centerline and edge features of a V-
shaped planar target to improve 2D LiDAR-camera calibration.

Radars are frequently used in automotive applications for de-
tection and tracking of multiple objects due to their low price
and robustness. Since radars cannot provide rich information
about the detections, automotive systems often fuse radars with
cameras [18, 19] or LiDARs [20, 21] to perform advanced tasks,
e.g., object classification [22, 23]. Although sensor fusion re-
quires precise calibration, extrinsic radar calibration has not
gained much research attention. Existing calibration meth-
ods are all target-based since, for all practical means and pur-
poses, the targetless methods are hardly feasible due to limited
resolution of current automotive radar systems, as the radar is
virtually unable to infer the structure of the detected objects and
extract features such as lines or corners. Current radars have no
elevation resolution while the information about the detected
objects they provide contains range, azimuth angle, radar cross
section (RCS) and range-rate based on the Doppler effect. Al-
though having no elevation resolution, radars have substantial
elevation FoV which makes the extrinsic calibration challeng-
ing due to the uncertainty in the origin of the measurements.
Concerning automotive radars, common operating frequencies
(24 GHz and 77 GHz) result with reliable detections of conduc-
tive objects, such as plates, cylinders and corner retroreflec-
tors, which are then used in intrinsic and extrinsic calibration
methods [24]. In [25] authors used a metal plate as the target
for radar – camera calibration assuming that all radar measure-

ments originate from a single ground plane, thereby neglecting
the 3D nature of the problem. The calibration is then found by
optimizing a homography transformation between the ground
and image plane. Later, a similar approach was adopted by
using thin metal poles as calibration targets [18]. Contrary to
previous examples, 3D nature of the problem was taken into
account by moving a corner retroreflector within the FoV and
manually searching for detection intensity maximums [26]. Au-
thors assumed that detections lie on the radar plane (zero eleva-
tion plane in the radar coordinate frame) and used the points to
optimize a homography transform between the radar and cam-
era. The drawback of this method is that the maximum intensity
search is prone to errors, since the returned intensity depends on
a number of factors, e.g., target orientation and radar antenna
radiation pattern, which is usually designed to be as constant as
possible in the nominal FoV.

Even though current automotive radars cannot provide 3D
information about the targets (the missing elevation angle), ac-
curate 6DoF extrinsic calibration involving a more informative
sensor, e.g., LiDAR or camera, can also be especially useful
for detecting vertical misalignment. Namely, radars should be
mounted on the vehicle so that the radar and the ground plane
are aligned. Vertical misalignment is loosely defined as an an-
gular deviation between these two planes, while typical com-
mercial radars allow the misalignment for up to a few degrees
(e.g. Delphi ESR allows ±1◦). With greater misalignment,
radar range and detection probability are decreased, as less en-
ergy is radiated in the direction of interest. To the best of the
authors’ knowledge, existing related work does not address the
vertical misalignment problem nor are the existing calibration
methods accurate enough to provide reliable misalignment as-
sessment. However, several misalignment detection procedures
are patented [27, 28, 29], thus confirming the importance of the
aforementioned issue.

Sensor calibration approaches should ideally address the as-
pects of identifiability, i.e., give answers if and to what extent
in terms of uncertainty, one can estimate the parameters of the
addressed calibration problem. Furthermore, minimal require-
ments on the dataset can also give practical advice on the ex-
periment design and are also useful for robust estimation tech-
niques (e.g. RANSAC), where the time cost of the estimation
depends on the minimal size of the dataset. Some methods
approach the identifiability question from the geometric view-
point, while others from the framework of nonlinear observ-
ability or through statistical tools such as Fisher Information
Matrix (FIM). In [13] authors calibrated a 3D LiDAR – camera
pair by examining how the geometric point-plane constraints
react in the scenarios in which they observe one, two, or three
planes with linearly independent normals. Nonlinear observ-
ability analysis developed in [30] is a convenient tool for cases
where system dynamics are exploited in the calibration, such as
visual-inertial odometry combined with extrinsic calibration, as
demonstrated in [31] and [32]. Authors in [8] presented a solu-
tion which uses corner structures to perform extrinsic calibra-
tion of multiple 2D LiDARs. To show identifiability require-
ments, they relied on the FIM rank to show that the problem
becomes identifiable when at least three perpendicular planes
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are observed. FIM was also used in motion-based calibration
[33] to detect unobservable directions in parameter space from
the available data.

In this paper we present a novel target-based calibration
method for extrinsic 6DoF calibration of 3D LiDAR – radar
and camera – radar sensor pairs. By using FIM based sta-
tistical analysis, we also address the questions of parameter
identifiability, estimation uncertainty, and the choice of trans-
form parametrization. The proposed method involves a spe-
cial calibration target design whose properties enable accu-
rate cross-sensor correspondence localization and registration.
Afterwards, these correspondences are used in two consecu-
tive optimization steps: reprojection error based optimization
and RCS enhanced optimization. When combined, the steps
are able to accurately estimate all the 6DoF of the extrinsic
calibration. The current paper draws upon our earlier work
[34], where the target design and preliminary results of 3D Li-
DAR – radar calibration were presented. We extend this work
with novel contributions by adding camera in the optimization
framework, performing FIM based identifiability and estima-
tion uncertainty analysis, introducing improved RCS enhanced
optimization step, and correspondingly reporting extended ex-
perimental analysis for both sensor pairs with two radars from
different manufacturers to demonstrate the validity of the pro-
posed method.

The paper is organized as follows. Section 2 elaborates the
calibration method including calibration target design and data
correspondence registration. Section 3 explains two steps of
the optimization: reprojection error optimization and RCS opti-
mization. Section 4 gives insight on the theoretical background
used in the identifiability analysis and the tools used in the FIM
analysis. Section 5 provides details on the results of the iden-
tifiability analysis, the setup and the results of the real-world
experiments. In the end, Section 6 concludes the paper.

2. Target based correspondence registration

The proposed method is based on observing a calibration tar-
get placed at a range of different heights and positions, both
within and outside of the nominal radar FoV. The final goal of
the calibration is to estimate relative displacements between the
radar, LiDAR and camera coordinate frames, i.e., Fr, Fl, and
Fc, respectively. In the present paper, we will designate both
the 3D LiDAR and camera as 3D sensors, in the sense that they
can both infer the 3D position of a known target from measure-
ments. The method further assumes that the 3D sensor’s FoV
exceeds radar’s vertical FoV, which is the case in most appli-
cations. Given that, when it is not necessary to differentiate
between the two 3D sensor coordinate frames, we will desig-
nate the 3D sensor frame as Fs. Additionally, due to challenges
associated with radars, such as ghost measurements from mul-
tipath propagation and low angular resolution, data collection
has to be performed outdoors at a set of distances ranging from
2–10 m with enough clear space around the target.

2.1. Calibration Target Design
Calibration target design for radar – LiDAR calibration was

developed within our previous work [34], where we gave de-

(a) Calibration target

ac

l

(b) Triangular corner retroreflector

Figure 1: Constructed calibration target and the illustration of the working prin-
ciple of the triangular trihedral corner retroreflector

tailed remarks considering the design. However, for complete-
ness, in this section we provide essential information necessary
for the rest of the paper.

Properties of a well-designed target are (i) ease of detection
and (ii) high localization accuracy for all the three sensors. For
the radar, a target with a high RCS provides good detection
rates. Formally, RCS of an object is defined as the area of a per-
fectly conducting sphere whose echo strength would be equal to
the object strength [24]. Consequently, it is a function of object
size, material, shape, and orientation.

We proposed a complementary target design which consist
of a styrofoam triangle covered by a checkerboard-like pattern
and a triangular corner retroreflector. Since the styrofoam is
mostly made out of air (98%), it is virtually invisible to the
radar, while its flat shape enables precise localization within
the point cloud. Furthermore, its triangular shape solves lo-
calization ambiguity issues existing with common rectangular
targets caused by the finite LiDAR resolution, as shown in [35]
and [36]. On the other hand, the triangular corner retroreflec-
tor, which consists of three orthogonal flat metal triangles, has
good detection and localization properties with the radar. It has
an interesting property that any ray reflected from all three sides
is returned in the same direction as illustrated in Fig. 1b. Due
to this property, regardless of the incident angle, many rays are
returned to their source, i.e., the radar, which leads to a high
and orientation-insensitive RCS. When the retroreflector axis,
ac, points directly to the radar, it reaches its maximum RCS
value:

σc =
πl4

3λ2 , (1)

where l is the hypotenuse of the retroreflector’s side and λ is
radar’s operating wavelength. Furthermore, authors in [37]
show that all the rays which go through multiple reflections
travel the same length as the ray which is reflected directly from
the corner centre, thus providing good localization accuracy.
Lastly, target stand is designed to have RCS as small as possi-
ble, while it allows adjusting of target’s height and orientation.
The constructed radar calibration target and an illustration of
the working principle is shown in Fig. 1a.

2.2. Correspondence registration
Correspondence registration procedure from our previous

work [34] is expanded with checkerboard detection in the im-
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Figure 2: Front view of the calibration target at the experiment site with de-
tected corners (blue and origin red) and estimated position of the retroreflector
origin (green).

ages. It starts with the detection and localization of a target in
the LiDAR point cloud or camera image. Once we obtain the
3D location of the retroreflector origin, the rest of the method
is equal for the camera – radar and LiDAR – radar calibration.
Method for the target localization within the point cloud is ex-
plained in [34], while the image procedure is given in the se-
quel.

The intrinsic calibration of a camera, modelled as a pinhole
camera with radial distortion, is found using the Kalibr tool-
box [38]. In the sequel we perform all the steps on the rectified
images. To estimate the position of a corner origin in the im-
age, we use the toolbox developed in [12], which was able to
effectively find the corners in our cluttered environment shown
in Fig. 2. The size of the checkerboard corners was selected
to present a compromise between the number of points on the
target and the ability to be detected at larger distances. In the
end, we opted for the size of 0.1 m. However, since our target
did not have a rectangular form, we had to adapt the toolbox
to accept non-square patterns. After the corners of the pattern
are found, to recover the pose of the triangle based on a known
checkerboard configuration, we used the built-in Matlab func-
tion extrinsics , which is based on a closed form solution result-
ing with sufficient accuracy. Finally, as in the LiDAR’s case,
the position of the retroreflector origin cxc is calculated based
on the pose of the checkerboard and known target configuration.

Radar reports data as a list of detected objects described by
the measured azimuth rφr,i, range rrr,i and RCS σr,i. The i-th ob-
ject from the list is described by the vector rmi = [rφr,i

rrr,i
rσr,i]

in the radar coordinate frame, Fr : (rx, ry, rz). The only struc-
tural property of detected objects is contained within the RCS,
which is influenced by many other factors; hence, it is impos-
sible to classify a detection as the retroreflector based solely
on radar measurements. To find the matching object, a rough
initial calibration is required, e.g., with a measurement tape,
which is used to transform the estimated corner position from
the 3D sensors coordinate frame, Fs : (sx, sy, sz), to the radar
frame Fr : (rx, ry, rz), and eliminate all other objects that fall
outside of a predefined distance threshold. The correspondence
is accepted only if a single object is left.

Lastly, we form correspondence groups by observing the tar-
get at rest for a short period while the registered correspon-
dences fill a correspondence group with pairs of vectors rmi

and sxs. Variances of the radar data (rφr,i,
rrr,i,

rσr,i) within the
group are used to determine the stability of the target. If any of
the variances surpasses a preset threshold, the correspondence
is discarded, since it is likely that the target detection was ob-
structed. Otherwise, the values are averaged. Hereafter, we will
refer to the mean values of the groups as radar and 3D sensor
measurements.

3. Two-step Optimization

In this section we provide insight on how the optimization
is performed to obtain the 6DoF transformation between the
radar and the 3D sensor. The optimization is divided in two
steps which are based on different information provided by the
radar. Namely, first step, i.e., reprojection error optimization,
optimizes all six transformation parameters based on the com-
parison of 3D corner positions estimated by the 3D sensor, and
range and azimuth information provided by the radar. On the
other hand, second step, i.e., RCS optimization, uses informa-
tion from the 3D sensor combined with the radar RCS esti-
mate to refine only a subset of transformation parameters which
could not be estimated reliably in the first step.

3.1. Reprojection error optimization

Reprojection error optimization is based on a point – circle
geometric constraint, while the optimization parameter vec-
tor includes the translation and rotation parameters, i.e., cr =

[rps
s
rΘ]. For translation, we choose position of the 3D sensor

in the Fr, rps = [rps,x
rps,y

rps,z]T . For rotation, we choose Euler
angles parametrization s

rΘ = [s
rθz

s
rθy

s
rθx] where rotation from

Fr to Fs is given by:

s
rR(s

rΘ) =s
2 Rx(s

rθx)2
1Ry(s

rθy)1
r Rz(s

rθz). (2)

Although transformation can be expressed in multiple ways, the
proposed choice is preferable due to its distribution of uncer-
tainty caused by radar’s inability to measure elevation angle.
Further elaboration of the parametrization choice will be given
in Sec. 4.2 with results in Sec. 5.1 which further confirm this
assertion.

Figure 3 illustrates the calculation of the reprojection error
for the i-th paired measurement. As discussed previously, radar
provides measurements in spherical coordinates lacking eleva-
tion rsr,i = [rrr,i

rφr,i ∼], i.e., it provides an arc rar,i upon which
the object potentially resides. On the other hand, 3D sensor pro-
vides a point in Euclidean coordinates sxs,i. Using the current
transformation estimate, 3D sensor measurement sxs,i is trans-
formed into the radar coordinate frame:

rxs,i(cr) = s
rR

T (s
rΘ) sxs,i + rps, (3)

and then r xs,i is converted to spherical coordinates rss,i =

[rrs,i
rφs,i

rψs,i]. By neglecting the elevation angle rψs,i, we ob-
tain the arc ras,i upon which 3D sensor measurement resides and
can be compared to the radar’s. Reprojection error εr,i is then
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Figure 3: Illustration of the reprojection error calculation. Green: 3D sensor’s
measurement; blue: radar’s; red: reprojection error.

defined as the Euclidean distance of points on the arc for which
rψr,i = rψs,i = 0◦:

εr,i(cr) =

∥∥∥∥∥ [
rrr,i cos (rφr,i)
rrr,i sin (rφr,i)

]
−

[
rrs,i cos (rφs,i)
rrs,i sin (rφs,i)

] ∥∥∥∥∥. (4)

The estimate of the calibration parameters ĉr is obtained using
the Levenberg-Marquardt (LM) algorithm, which minimizes
the sum of squared reprojection errors from N measurements:

ĉr = arg min
cr

( N∑
i=1

ε2
r,i(cr)

)
. (5)

Reprojection error optimization yields unequally uncertain
calibration parameters, in other words, some parameters are
easier to estimate than the others. The lack of radar’s elevation
angle measurement leads to poor estimation of rps,z, s

rθy and s
rθx.

A formal analysis of these properties based on FIM is carried
out in Section 4.

3.2. RCS optimization
For the second optimization step, i.e., the RCS optimization,

we propose a method that is based on the distribution of RCS
across the 3D measurements. The idea of this step is to exploit
patterns discovered in radar’s RCS estimation; namely, RCS
depends on the object properties and relative orientation with
respect to the radar. The reason behind these patterns is that
radars can only estimate the RCS based on the amplitude differ-
ence between the radiated and received electromagnetic energy.
Ideally, radars would radiate with constant strength within the
nominal FoV and zero outside of it; however, this is infeasible
and leads to errors in RCS estimation. Using the retroreflector
as a calibration target, we can assume that the RCS estimate
is constant with respect to the object properties, since we use
the same target in all the experiments, and with respect to the
relative orientation, due to the retroreflector properties. How-
ever, radars emit the highest amount of radiation at the zero
elevation angle, while the dependence between elevation angle
and radiated energy, and thus RCS estimation, can be modelled
as a curve. Since radars cannot distinguish objects at different
elevation angles, they can neither compensate for the error in
the RCS estimation. For the usual application, such as object
tracking, this might not seem like an exploitable property, but

for our case of calibration with a target of a stable RCS, we can
exploit this pattern of varying RCS with respect to elevation and
enhance calibration results.

The results from the reprojection error optimization exhibit
varying uncertainty among the calibration parameters, which
was examined in the identifiability analysis (cf. Section 4). In
the RCS optimization step, only the parameters with the high-
est uncertainty from the previous optimization step are refined.
Given that, the RCS optimization parameter vector consist of a
subset of transformation parameters and curve parameters

cσ = [r ps,z
s
rθy

s
rθx c0, c2],

while other extrinsic parameters are kept fixed. Through the
empirical evaluation of the used radars, we have noticed that the
RCS – elevation dependence follows a quadratic form; hence,
we have modelled it as a second order polynomial without
the linear term. In the experiments (cf. Section 5.2), the pro-
posed model gave accurate and stable results for two automo-
tive radars from different manufacturers. However, other radars
might exhibit different patterns and the procedure could require
a revision of the curve parametrization. To initialize curve pa-
rameters, a fair assumption is to assume that at the elevation
angle zero, RCS is equal to the target maximum value defined
in (1), while at the edge of the nominal FoV it reduces −3dBm.
Due to the sufficiently good initialization of transformation pa-
rameters provided by the reprojection error optimization, the
proposed curve initialization showed sufficient for converging.
The proposed step can be seen as a combination of extrinsic and
intrinsic radar calibration, where the estimated curve is merely
a nuisance variable used to obtain an enhanced extrinsic cali-
bration (since it is of no relevance to other radar applications).
Another perspective on the idea behind the RCS optimization
concept is to provide a replacement for the radar’s lack of ele-
vation measurements. The prerequisite for this method is a tar-
get with reliable and stable RCS with respect to its orientation,
which in our case is ensured by the retroreflector properties.

The cost function for optimization is formed as follows. Af-
ter transforming a 3D sensor measurement sxs,i to Fr, the ele-
vation angle rψs,i in Fr is calculated. Afterwards, the expected
RCS is obtained using

σ̂s,i = c2
rψ2

s,i + c0. (6)

Cost function is then given by the sum of squared distances
between the expected and measured RCS, σ̂s,i and σs,i, respec-
tively:

ĉσ = arg min
cσ

( N∑
i=1

(
σs,i − σ̂s,i(cσ)

)2)
. (7)

In our previous work [34], we referred to the second optimiza-
tion step as the FoV optimization. Although the presently pro-
posed and previous approach exploit the same effect, the present
one shows better results and has several advantages. First, for
the FoV optimization, we have noticed that it works well with
many measurements, while it becomes unstable with only few
measurements. The problem with the FoV optimization is that
the cost function focuses only on the measurements near the
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nominal FoV border and ignores all the other measurements.
Therefore, the proposed RCS optimization was designed so that
it takes into account all the measurements. Second, FoV opti-
mization requires predetermination of the nominal FoV, which
can also affect calibration results. The nuisance parameter in
the FoV optimization, i.e., the RCS threshold, requires more
precise initialization than the nuisance parameters, i.e., curve
parameters, in the RCS optimization.

4. Identifiability analysis

Extrinsic calibration methods typically involve minimization
of a specific reprojection error depending on the type of the
data provided by the sensors. This minimization will yield an
estimate of the calibration parameters, but it would also be de-
sirable if it could provide an assessment of the whole process –
for example, by answering the following questions. What are
the minimal conditions on the dataset to ensure identifiabil-
ity of the parameters? How should the dataset be constructed
to maximize the quality of the estimation? Does the chosen
parametrization fit well with the optimization problem? In the
sequel, we present theoretical background and experimental re-
sults that address the aforementioned questions for the calibra-
tion problem investigated in the present paper.

For dynamical systems the term observability is used within
the context of a procedure assessing if system states can be es-
timated given a sequence of measurements. The term identifia-
bility is used in conjunction with a procedure for estimating sys-
tem parameters that are constant over time. However, the term
observability is also often used within the context of estimat-
ing constant system parameters, due to commonly used tools
in control theory and robotics. Nevertheless, in the present pa-
per we use the term identifiability, since we believe that it more
precisely describes the problem at hand. Given that, the objec-
tive of the identifiability analysis is to determine whether it is
possible to correctly estimate parameters of a model based on
the chosen criterion, e.g., the reprojection error, and available
data. In some cases, it is possible to derive analytical solu-
tions for such problems. However, when nonlinear transforma-
tions in the criterion grow in complexity, using methods such
as those developed in [30] becomes impractical, if not infeasi-
ble. Since our reprojection error design, described in Sec. 3.1,
involves heavy nonlinearities, we decided to adopt the statis-
tical concept of FIM through which local identifiability of the
system can shown. In the sequel, we provide the theoretical
background on the FIM, followed by the description of the per-
formed experiments that can be used to address identifiability,
asses the parametrization and give general advice on the exper-
iment setup.

4.1. Theoretical Background
Before approaching any identification problem, it is impor-

tant to know if it is even possible to correctly estimate the pa-
rameters in a noise-free system. That is the intuitive purpose
of the identifiability analysis. To approach it more formally, we
first define our system as a nonlinear regression

Y = H(Θ,X) + ε, (8)

where the response variable Y ∈ R2N×1 represents radar mea-
surements, the predictor variable X ∈ R3N×1 represents LiDAR
measurements, Θ ∈ Rd are parameters of the extrinsic calibra-
tion, ε ∼ N(0,Q) ∈ R2N×1 is additive zero-mean white noise, N
is the number of measurements, and the nonlinear transforma-
tion H(·) represents the reprojection function. We can notice
that LiDAR measurements are modelled as noise-free. This
may lead to slight imprecision in the simulation of the error;
however, we are not here concerned with precise estimation of
the error and covariance, but with the impact of the proposed
reprojection error on the identifiability of the calibration param-
eters.

Identifiability can be a global or a local concept for a specific
Θ0 [39]. Since FIM cannot provide insights into global iden-
tifiability, we restrict our analysis to local identifiability. This
is sufficient for our method, since we assume to have a rough
initial estimate of the parameters, e.g., by hand measuring the
displacements or from the project design. Now, we move on to
more formally defining the local identifiability.

Definition 4.1. Local identifiability

The noise-free system is locally identifiable at Θ0 if

∃UΘ0 ⊂ Rd (open subset containing Θ0)

∀Θ ∈ UΘ0 , {Θ , Θ0} ⇒ {H(Θ,X) , H(Θ0,X)}.

In other words, for a different parameter set the nonlinear func-
tion cannot yield the same output. This is intuitively clear, since
we would like to see a change in the response variable given the
change in the parameter values. Another theoretical concept
that we require for the present problem is the score.

Definition 4.2. Score funtion

The score function L̇Θ is the gradient of the log-likelihood
function L(Y;Θ,X) at Θ

L̇Θ = ∇Θ logL(Y;Θ,X).

The score function can be seen as an indicator of how sensitive
the likelihood functions is to the change in its parameters. In-
tuitively, this would mean that higher the sensitivity, the more
easy it should be to estimate the parameter. An interesting no-
tion that we will use is that FIM is defined as the covariance
matrix of the score.

Informally, FIM tells how much information about the pa-
rameters is available in any direction of the parameter space
from observing the sample. Since the expected value of the
score is zero, FIM is a positive semi-definite matrix of size d×d
whose elements can be computed as

[
I(θ)

]
i, j = Eθ

[(
∂

∂θi
logL(Y; θ, X)

) (
∂

∂θ j
logL(Y; θ, X)

)]
. (9)

Since we defined our problem as a nonlinear regression with
additive white noise, our likelihood function is simply a well-
known probability density function of a multivariate normal
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distribution. For such cases, it can be shown that calculation
of the FIM elements simplifies to [39]

[
I(θ)

]
i, j =

∂H(Θ,X)
∂θi

Q−1 ∂H(Θ,X)T

∂θ j
. (10)

As discussed in [40], such simplification is beneficial, espe-
cially for numerical accuracy, which can cause problems in
complex nonlinear problems.

It is also worth mentioning some additional properties of FIM
that are commonly used. First, the Cramér–Rao lower bound
(CRLB), calculated as an inverse of the FIM, is used to ex-
press the lower bound on the variance of the estimated param-
eters. Second, if we draw independent identically distributed
samples, likelihood function is simply the product of individual
likelihoods, whereas log-likelihood turns into summation of the
individual log-likelihoods. Due to linearity, this property also
holds for FIM. Therefore, if we draw two data samples of the
same random variable, maximum information expressed with
FIM is doubled. Finally, in [41] it was shown that the local
identifiability as defined in Def. 4.1 is equivalent to the regular-
ity of the FIM. Therefore, if FIM is not of full rank, we conclude
that the problem is not identifiable.

4.2. FIM tests

After the FIM has been evaluated at the estimated maximum
likelihood estimate, we proceed with test which will give us
insight into: (i) minimal requirements on the dataset which en-
sures identifiability of our problem, (ii) appropriateness of the
parametrization, and (iii) general advice on the dataset collec-
tion. To evaluate our reprojection function, we will create syn-
thetic datasets and test FIM behavior.

To show the minimal requirements on the dataset, we will
apply the rank test of FIM. For the case of 3D point – point cor-
respondences, at least three non-colinear points are required to
estimate the 6D transformation between two coordinate frames
[42]. However, the problem that we face is more complex,
and our reprojection error is less informative, because we use
point – circle correspondences. Therefore, it is a fair assump-
tion to take three non-colinear, but coplanar points, as a starting
dataset and expand it to find the minimal requirements. The
FIM is computed for each dataset and based on its regularity,
we infer on the identifiability. Furthermore, numerical inac-
curacies and noise can result in an illusory full rank of FIM;
therefore, it is advisable to examine the numerical rank of the
matrix [43]. A convenient summary statistic is given by the
matrix conditional number, i.e., the ratio of the biggest and the
smallest singular value, where high values indicate degeneracy
of the matrix.

In order to evaluate the choice of parametrization and to pro-
vide some practical advice on the dataset collection, we will
also rely on the theory of optimal experiment design. The opti-
mal experiment is the experiment that allows estimation of pa-
rameters without bias and with minimum variance with equal
or less experiment data than any other non-optimal experiment.
There exist many optimality criteria which a single experiment

can satisfy; however, we will use only the T-optimality crite-
rion, which tries to maximize the trace of the FIM. It is con-
venient as it tells us that we can observe only the diagonal ele-
ments of the FIM, which actually represent informativeness of
individual parameters. With this tool at our disposal, we are
able to infer on how different datasets affect estimation of indi-
vidual parameters.

Furthermore, extrinsic calibration seeks for a homogeneous
transformation which can be parametrized in a number of ways.
Translation can be expressed in any of the two coordinate
frames, while orientation can expressed through multiple Eu-
ler angle parametrizations. Generally, it may seem counterin-
tuitive that a certain parametrization of the transformation can
be preferable to others. However, for our calibration method
it is important due to the second optimization step – the RCS
optimization. Namely, in that step we do not refine all the pa-
rameters estimated in the first step, the reprojection error opti-
mization, but only the poorly estimated parameters (which we
will be able to identify with our FIM tests). However, we justify
locking the parameters that were well estimated by concentrat-
ing the information in them. Our aim is to show, through the
FIM tests, that our parametrization has highest concentration
of information in the locked parameters for a variety of sensor
configurations. This result is a direct consequence of the radar’s
inability to measure the elevation angle.

5. Experiment

To test the proposed calibration method, we conducted both
simulated and real-world data experiments. Through the sim-
ulations described in Section 5.1, based on the framework of
FIM described in Section 4, we have tested the properties of
designed reprojection error. Afterwards, in Sections 5.2 and
5.3 we describe the setup of the conducted experiment and the
final results, respectively. Finally, in the Section 5.4, we present
a real world application where our calibration method is used to
find radar vertical misalignment.

5.1. Simulations

To test our method in simulations under various conditions,
we have created a number of different synthetic datasets de-
scribed with the labelled tuple Dlabel = (SX, RY,T ,N, S )
where:

• SX represents the measurement set originating from a 3D
sensor in the sensor coordinate frame FS,

• RY represents the planar measurement set originating from
the radar in the radar coordinate frame FR,

• T represents the transformation betweenFS andFR which
can be parametrized in different forms,

• N represents number of unique measurement points in the
dataset,

• S represents number of samples of each unique point in
the dataset.
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For simulation purposes we have assumed a diagonal covari-
ance matrix Q = diag(σ2), where σ2 = 6.25 × 10−4 m2. Fur-
thermore, as datasets are comprised of a different number of
unique measurements N, S compensates for the total number of
used points. It allows a fair comparison of FIMs since amount
of information is proportional to the number of points. The
measurements are first given in radar’s spherical coordinates
rsr,i = [rrr,i

rφr,i
rψr,i], with φ and ψ being azimuth and eleva-

tion, respectively. Afterwards, they are transformed into the
3D sensor frame SX, and in radar’s planar measurements in the
zero-elevation plane RY (cf. Sec.3.1).

Minimal requirements on the number of measurements is
found by examining FIM singular values for the following
marginal datasets: D3CP consists of three (N = 3) coplanar,
non-colinear points at rrr,i = 5 m, rφr,i = [−45, 0, 45]◦, rψr,i = 0◦;
D4CP consists of four (N = 4) coplanar, non-colinear points at
rrr,i = 5 m, rφr,i = [−45,−15, 15, 45]◦, rψr,i = 0◦; D4nCP consists
of four (N = 4) non-coplanar, non-colinear points at rrr,i = 5 m,
rφr,i = [−45,−45, 45, 45]◦, rψr,i = [−5, 5,−5, 5]◦. Addition-
ally, datasetDFoV consists of N = 300 uniformly spread points
through the FoV within the following range, azimuth and eleva-
tion intervals: rrr,i = [4, 5] m, rφr,i = [−45, 45]◦, rψr,i = [−5, 5]◦.
It illustrates the upper bound on the achievable parameter in-
formativeness. FIM analysis results for the four datasets are
shown in Table 1, where we are striving to have the singular val-
ues as large as possible, since it suggests identifiability of the
parameters. Note that at this point we are not concerning our-
selves which exact parameters are identifiable, but only with
if all the 6 parameters of the relative transformation between
the coordinate frames are identifiable. By examining small-
est singular values, we can see an evident increase (∼ 104) in
the conditional number κ, i.e., the ratio between the largest and
smallest singular value, when the non-coplanar point is added
to the dataset (note the increase of the smallest singular value
σ6). Difference in the order of magnitude between the largest
and smallest singular value forD4nCP still exists, but unlike the
other two datasets, this is not caused by the degeneracy of FIM,
i.e., non-identifiability. It is caused by different scales of the
parameters, i.e., Euler angles and translation, and uneven sen-
sitivity in the parameters, which is further elaborated in the jus-
tification of parametrization choice. This conclusion was also
confirmed by the optimization results, since regardless of how
big of an S we chose, the reprojection error optimization was
unable to converge close to parameter ground truth values for
D3CP andD4CP, while forD4nCP andDFoV it always converged
successfully. Finally, dataset DFoV shows that adding more
unique points to the dataset does not present a significant im-
pact on the singular values in terms of the identifiability. This
brings us to the first important result of the identifiability anal-
ysis. To calibrate a radar and a 3D sensor, the previous analysis
suggests that to have all the 6 parameters identifiable, the best
course of action would be to have at least 4 non-coplanar non-
colinear points in the dataset.

The second important result of the identifiability analysis is
the justification of the parameter locking in the second opti-
mization step, which, as we will see, is related to parametriza-
tion of the relative transformation between the two sensor

frames. We have conducted four experiments which differ
only in the poses between the sensor coordinate frames and the
parametrization of the pertaining transformation. The dataset
DrPs_0 consists of a transformation TrPs_0 that assumes the sim-
plest case of no rotation and translation between the sensors,
while the parametrization is the same as the one defined in Sec-
tion 3.1 – translation defined as the position of the 3D sensor
in FR, i.e., radar’s coordinate system. The dataset DsPr_0 dif-
fers in the parametrization of the translation. Namely, it is de-
fined as the position of the radar in FS. The other two datasets,
DrPs_45 and DsPr_45, share the same differences in the trans-
lation parametrization, but they also assume that there exists a
difference in the pitch angle s

rθy = 45◦ between the radar and 3D
sensor. All the datasets use N = 300 unique (S = 1) uniformly
distributed measurements within the following range, azimuth
and elevation intervals: rrr,i = [2, 8] m, rφr,i = [−75, 75]◦,
rψr,i = [−10, 10]◦.

By analyzing the results for this experiment, which are
shown in Table 2, we can notice that the datasets with the
same sensor poses, DrPs_0 and DsPr_0, but different translation
parametrization, exhibit the same FIM results, which confirms
uneven uncertainty, or equivalently, uneven informativeness in
estimating each parameter. We can see that the yaw angle s

rθz is
significantly more informative than the other Euler angles. Sim-
ilarly, translations in directions r ps,x and r ps,y are more infor-
mative compared to the direction r ps,z. For DrPs_0 and DsPr_0,
the uncertainty is equivalent for directions s pr,x, s pr,y, and s pr,z

since the axes coincide due to the lack of rotation between the
sensor frames. However, if we observe datasets DrPs_45 and
DsPr_45, which include displacement in rotation, we can notice
significant differences in FIM diagonal elements for the two
translation parametrizations. Namely, when the translation is
defined in FR, informativeness remains the same as in the pre-
vious two cases. However, if the translation is expressed in FS,
we can notice that informativeness somewhat decreases in the
s pr,x direction, while it increases in the s pr,z direction, leading
to the same informativeness of the two directions.

The main cause for this uneven informativeness of the param-
eters is radar’s inability to measure the elevation angle. To illus-
trate the assertion, we refer to Fig. 4. We observe the effect on a
single measurement, X = [2 m, 0◦, 0◦], for two cases: when the
radar is translated along its r x and along its rz axis, yielding new
measurements Xx and Xz, respectively. The 3D sensor and the
target from which the measurement originates are kept fixed.
Measurement Xx = [1.8 m, 0◦, 0◦] is acquired by translating the
radar along the direction of r x for ∆r ps,x = 0.2 m, while the
measurement Xz = [2.01 m, 0◦, 5.7◦] is acquired by translating
the radar along the direction of rz for ∆r ps,z = 0.2 m . The only
difference that radar detects, in this case, is the change in the
range measurement which is significantly smaller in the case of
Xz. To generalize, if the radar is displaced along its xy-plane, or
rotates around its rz axis, it would produce significant changes
in range or azimuth or both. Meanwhile, the elevation, which
is unavailable, would not take away the information about the
translation or rotation, which is a case for the changes in the
other parameters.

Furthermore, Fig. 4 explains why parametrization TrPs_45 is
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Table 1: FIM singular values for the three datasets used for analyzing the minimum number and the distribution of points in the dataset

ς1 ς2 ς3 ς4 ς5 ς6 κ

D3CP 1.17 × 107 5.07 × 105 1.84 × 105 8.83 × 103 4.38 × 103 1.58 × 10−1 7.41 × 107

D4CP 1.17 × 107 5.05 × 105 1.57 × 105 8.98 × 103 3.69 × 103 6.47 × 10−1 1.81 × 107

D4nCP 1.18 × 107 5.18 × 105 2.59 × 105 5.09 × 104 4.33 × 104 3.70 × 103 3.19 × 103

DFoV 1.01 × 107 4.79 × 105 8.83 × 105 2.15 × 104 4.86 × 103 1.29 × 103 7.83 × 103

Table 2: FIM’s diagonal elements corresponding to the informativeness of individual parameters.

s
rθz

s
rθy

s
rθx px py pz

DrPs_0 1.37 × 107 5.81 × 104 8.28 × 104 4.79 × 105 4.80 × 105 4.81 × 103

DsPr_0 1.37 × 107 5.81 × 104 8.28 × 104 4.79 × 105 4.80 × 105 4.81 × 103

DrPs_45 1.37 × 107 5.28 × 104 6.87 × 106 4.78 × 105 4.81 × 105 4.74 × 103

DsPr_45 1.37 × 107 5.28 × 104 6.87 × 106 2.41 × 105 4.81 × 105 2.41 × 105

preferred to TsPr_45. Namely, in TrPs_45, where r x coincides
with the range, previously elaborated uncertainty has the most
spread form. On the other hand, in DsPr_45, this uncertainty is
equally spread between sx and sz, which is confirmed by the
FIM analysis in Tab. 2. Different distribution of uncertainty,
due to different parametrization, would merely be a preference
if we performed only reprojection error optimization, since it
does not provide any more information or lead to better cali-
bration. However, the second step tries to compensate for the
lack of radar’s elevation angle measurements based on the RCS
estimation. Since RCS measurements are less reliable, we do
not want to refine parameters which can be properly estimated
through reprojection error. Therefore, it is desirable to separate
reliable from unreliable parameters, as good as possible, which
is the case when translation is given in FR as rps, while there is
a rotation which coincides with the rotation around the rz axis.

Finally, based on the simulation results, we can give some
general advice on the dataset collection. Despite the om-
nipresent rule, the more the merrier, we would like to empha-
size the requirement on the observation of the target at a wide
range of radar elevation angle. If we observe points only in the
radar plane (zero elevation), we would obviously provide a de-
generate case as shown in the minimal requirements tests. As
we observe the target at a wider range of elevation angles, we
are further away from the singularity. However, when we ob-
serve the target at greater elevation angles, there is a risk we
might misinterpret the target stand for the actual target. This
is best avoided by determining the target stand RCS and per-
forming RCS thresholding. Better results of reprojection error
optimization will provide better initial values for the RCS opti-
mization.

5.2. Experiment setup

An outdoor experiment was conducted to test the proposed
calibration method. A mobile robot Husky UGV, shown in
Fig. 5 was used as the platform for data collection. It was
equipped with a Velodyne HDL-32E 3D LiDAR, two short
range radars from different manufacturers, namely the Conti-
nental SRR 20X and Delphi SRR2, and PointGrey camera sen-
sor combined with Kowa lens with resolution 1920 × 1080 and

∆pz

∆px X(2.00 m, 0◦, 0◦)

Xz(2.01 m, 0◦, 5.7◦)

Xx(1.80 m, 0◦, 0◦)r x

rz

s x

sz

Figure 4: Illustration of unequal uncertainty in parametrization caused by
radar’s inability to measure elevation angle (indicated in red for reference).
Xx and Xz show how a single radar measurement in spherical coordinates X
changes when the radar is translated for 0.2 m along r x and rz, respectively.

(a) Mobile robot

r x r y

r z
C

l x l y

l z

c x
c y

c z

r x r y

r z
D

(b) Sensor placement

Figure 5: Mobile robot and sensors used in the experiment. Marks D and C
stand for Delphi and Continental radar, respectively.

HFoV × VFoV = 60◦ × 40◦.
Commercially available radars are sensors which provide

high level information in the form of detected object list. Raw
data, i.e., the return echo, is processed by proprietary signal
processing techniques and is unavailable to the user. However,
from the experiments conducted with both radars, we noticed
that they follow the behaviour as expected from our calibration
method. The only noticed difference is that the target stand
without the target was completely invisible to the Continen-
tal radar, while the Delphi radar was able to detect it at closer
ranges (rrr,i < 5 m).
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Table 3: Continental SRR 20X specifications

Continental SRR 20X Value
HFoV × VFoV 150◦ × 12◦

Range Accuracy 0.2 m
Azimut Accuracy @ HFoV ±2◦@±20◦; ±4◦@±60◦; ±5◦@±75◦

Table 4: Delphi SRR2 specifications

Delphi SRR2 Value
HFoV × VFoV 150◦ × 10◦

Range Accuracy 0.5 m (noise error); 2.5% (bias error)
Azimut Accuracy @ HFoV ±1◦@±75◦

Although the purpose of the experiment is evaluation of the
proposed calibration method and not radar performance, we be-
lieve it is important to present results for two different radars
since they exhibit slightly different behaviour as previously
elaborated. Furthermore, RCS optimization uses a novel met-
ric based on a pattern that may not be equal for all the radars.
Therefore, success of the calibration using radars from two dif-
ferent manufacturers further confirms the validity of the pro-
posed method.

Technical data of interest for the Continental and Delphi
radars is given in Tables 3 and 4, respectively. Based on the
analysis of the reprojection error for the Continental radar, radar
measurements outside of the azimuth angle range of ±45◦ were
excluded from the optimization, because they exhibited signifi-
cantly higher reprojection error than those inside the range. For
the Delphi radar, measurements outside of the azimuth angle
range of ±60◦ were also excluded due to the observed increase
in the reprojection error. The calibration target was composed
of a retroreflector with side length l = 0.32 m with a maximum
RCS of σc = 18.75 dBm2. Based on the vertical resolution of
Velodyne HDL-32E LiDAR (1.33◦), we used a styrofoam trian-
gle of height h = 0.65 m. This ensured extraction of at least two
lines from the target in the experimental data, which is a prereq-
uisite to unambiguously determine the pose. Data acquisition
was done by driving a robot in the area of up to 7 m of distance
from the target which was placed at 17 different heights rang-
ing from ground level up to a 2 m height. For the Continen-
tal radar, 334 registered radar – LiDAR and 227 radar – camera
corresponding measurements were collected. For the Delphi
radar, 322 registered radar – LiDAR and 193 radar – camera cor-
responding measurements were collected.

5.3. Experimental results

In this section we present calibration results of four sensor
combinations, i.e., two radars combined with the camera and
3D LiDAR. Since the method for the LiDAR – radar and cam-
era – radar differs only in the step of target 3D localization, re-
sults of all the experiments are shown simultaneously for both
pairs. We have noticed larger difference in calibration results
when using different radars, as opposed to calibrating different
sensor types with the same radar. Therefore, we first present
calibration results for the Continental radar combined with both
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Figure 6: Histogram of reprojection errors for the two steps of the calibration
and the 2D calibration for Continental radar – LiDAR calibration.

3D sensors, and then we show results of the calibration involv-
ing the Delphi radar.

To assess the quality of calibration results we conducted four
experiments. First, we examined the distribution of the repro-
jection error after both optimization steps and compared it to a
2D optimization that minimizes reprojection error by optimiz-
ing only the calibration parameters with lower uncertainty, i.e.,
translation parameters rpl,x and rpl,y, and rotation s

rθz. Second,
we inspect FoV placement with respect to the distribution of
RCS over the 3D sensor’s data. Afterwards, we examine the
correlation between RCS and the elevation angle. In the end,
we run Monte Carlo simulations by random bootstrap resam-
pling with replacement of the dataset, to examine reliability of
the estimated parameters and potential overfitting of data.

5.3.1. Continental radar
We obtained the following results for the reprojection error

optimization, l ĉr, RCS optimization l ĉσ, and the carefully hand
measured translation, rp̃l, for the Continental radar – LiDAR
pair:

• l ĉr = [−0.05 m,−0.14 m, 0.11 m,−2.2◦, 5.1◦,−1.7◦]

• l ĉσ = [0.20 m, 4.8◦,−0.8◦,−0.13 dBm2deg−2, 16.2 dBm2]

• rp̃l = [−0.08 m,−0.12 m, 0.19 m]T .

Furthermore, for the Continental radar – camera pair, we ob-
tained the following results:

• c ĉr = [0.04 m,−0.15 m,−0.08 m, 0.1◦, 5.9◦,−2.3◦]

• c ĉσ = [0.04 m, 5.6◦,−1.6◦,−0.15 dBm2deg−2, 16.2 dBm2]

• rp̃c = [0.00 m,−0.15 m, 0.04 m]T .

Figures 6 and 7 show distribution of the reprojection errors
for LiDAR – radar and camera – radar calibrations, respectively.
They are composed of three histograms, where we can see how
the case of 2D calibration compares to the reprojection error
of both steps of the proposed calibration. Besides neglecting
three additional DoF, 2D reprojection error assumes that all
the measurements reside in the same plane, thus reducing the
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Figure 7: Histogram of reprojection errors for the two steps of the calibration
and the 2D calibration for Continental radar – camera calibration.

original circle – point relationship to point – point distance. Al-
though this 2D reprojection metric is not the same as the one
used for our two steps of optimization, it is the only fair com-
parison since 2D optimization is based on minimizing it. We
can observe that the 2D reprojection error has a larger number
of point correspondences with higher reprojection error. These
originate from the measurements that are further away from the
radar plane because the circle – point relationship has a greater
impact than the 2D optimization can explain. Therefore, we
conclude that neglecting the 3D nature of the problem causes
higher mean of the reprojection error which implies poor cal-
ibration. Furthermore, the RCS optimization is bound to de-
grade the overall reprojection error because it is not a part of
the optimization criterion. However, resemblance between the
distributions after the first and the second optimization steps
implies low degradation. Finally, it can be seen from both the
first and second optimization step, that the reprojection error is
below the nominal range accuracy of the radar.

In Fig. 8, distribution of the RCS across LiDAR’s data is
shown, while we omit results for camera since they do not ex-
hibit any significant difference. Measurements from 3D sensors
are color-coded with the RCS of the paired radar measurement,
while the pose of the radar’s nominal FoV is illustrated with
blue bounding pyramid. We can see that within the nominal
FoV, target produces a strong, fairly constant reflections. As
the elevation angle of the target leaves the radar’s nominal FoV,
the RCS decreases and this effect is the basis of the RCS opti-
mization step.

To examine the effect of decrease in the target’s RCS as a
function of the elevation angle after both optimizations, we use
Fig. 9 and Fig. 10 for LiDAR – radar and camera – radar re-
sults, respectively. Each figure shows elevation rψs,i of each 3D
sensor measurement transformed into the Fr and RCS of the
paired radar measurement. Furthermore, intrinsic radar curve
estimated by the RCS optimization is plotted. In the ideal case,
i.e., if the transformation was correct and the axis of retrore-
flector always pointed directly to the radar, the data would lay
on the curve which describes radar’s radiation pattern with re-
spect to the elevation angle. The dispersion around the curve is
present in both steps due to imperfect directivity of the target

and measurement noise. We have evaluated directivity of the
target towards the radar after the calibration and noticed that
all the measurements differed less than 18◦ from the ideal di-
rectivity in the context of maximum response. According to
experimental results in [24], such small angles do not reduce
retroreflector’s RCS significantly, which, combined with errors
in directivity estimation, prevents us from performing directiv-
ity compensation. We assert that this is not crucial in our case.
However, if the experiment is performed in such way that corner
retroreflector orientation differs significantly from the ideal, we
believe that RCS directivity compensation would be necessary.
From the plots, we can notice that dispersion of the measure-
ments after the reprojection error optimization is higher com-
pared to the case of RCS optimization. This effect is caused
due to the poor estimation of the parameters with higher uncer-
tainty which are corrected by the RCS optimization.

In the end, we performed Monte Carlo analysis to test how
sensitive our parameter estimates are to the available dataset.
We performed random bootstrap resampling with replacement
of our dataset. Optimization was performed in 1000 runs on
different randomly sampled datasets from which we observe the
estimated extrinsic calibration parameters. The results follow a
Gaussian distribution whose estimated parameters are given in
Table 5 for the LiDAR – radar calibration and the Table 6 for
the camera – radar calibration. As expected, distributions of pa-
rameters rps,x, rps,y and s

rθz obtained by the reprojection error
optimization have significantly lower variance than the other
parameters. Figures 11 and 12 illustrate how the RCS opti-
mization refines parameters rps,z, s

rθy and s
rθx. We can see sig-

nificant decrease in variance, as well as the shift in the mean.
For the purposes of distribution visualisation, we have reduced
the bin size for RCS optimization to 10% compared to the re-
sults for the reprojection error optimization. Otherwise, all the
results would fall within one bin due to the significantly lower
variance. Estimation of the mean of rps,z using the reprojection
error optimization is clearly further away from the measured
value than the RCS optimization’s estimate. Estimation of rpc,z

is fairly close to the measured value, while rpl,z exhibits a slight
bias of 2 cm from the measured value. The cause of the bias
could be imprecise hand-measurement or the systematic errors
in the LiDAR’s estimates of the retroreflector’s position. Fur-
thermore, a bias compared to the hand-measured values is also
visible in the estimation of both rpl,x and rpc,x. We believe that it
could originate from the bias in the radar’s range measurements
or the imprecision of the target design. However, when intro-
duced to the reprojection error optimization as a parameter, it
could not be distinguished between the translation parameters.
5.3.2. Delphi radar

From the experimental results for the Delphi radar, we no-
ticed that estimation of the r ps,x exhibited a noticeable offset
from the measured value. Although the exact origin of this
bias is uncertain, we hypothesize that most likely it is an ef-
fect caused by the target stand. Namely, since the Delphi radar
is able to detect the stand, proprietary algorithms that deter-
mine the range of the observed object could infer that a tar-
get is at the greater range. To address this issue, the repro-
jection error estimation was expanded with estimation of the
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Figure 8: RCS distribution across LiDAR 3D data and placement of the Continental radar’s FoV.
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Figure 9: RCS distribution across radar’s VFoV for Continental radar – LiDAR
calibration. Red: reprojection error optimization; blue: RCS optimization.
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Figure 10: RCS distribution across radar’s VFoV for Continental radar – camera
calibration. Red: reprojection error optimization; blue: RCS optimization.

range offset that is subtracted from the radar range measure-
ments, cr = [rps Θs,∆

rrr].
We obtained the following results for the reprojection error

optimization, l ĉr, RCS optimization l ĉσ, and the carefully hand
measured translation, rp̃l, for the Delphi radar – LiDAR pair:

• l ĉr = [−0.07 m, 0.13 m, 0.11 m,−2.9◦, 5.0◦, 7.6◦, 0.10 m]

• l ĉσ = [0.21m, 2.0◦,−0.2◦,−0.25 dBm2deg−2, 17.9 dBm2]

• rp̃l = [−0.08 m, 0.15 m, 0.20 m]T .
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Figure 11: Monte Carlo analysis results for Continental radar – LiDAR cali-
bration. Blue: calibration after reprojection error optimization; red: with RCS
optimization.

Table 5: Monte Carlo analysis results for Continental radar – LiDAR calibra-
tion.

Reprojection Error Optimization RCS optimization
rpl,x [m] N(−0.050, 2.36 × 10−5)
rpl,y [m] N(−0.134, 8.04 × 10−5)
rpl,z [m] N(0.113, 8.46 × 10−4) N(0.204, 1.48 × 10−7)
l
rθz [◦] N(−2.21, 1.61 × 10−2)
l
rθy [◦] N(5.29, 1.29) N(4.81, 2.32 × 10−5)
l
rθx [◦] N(−1.63, 3.39 × 10−1) N(−0.81, 4.29 × 10−5)

Furthermore, for the Delphi radar – camera pair, we obtained
the following results:

• c ĉr = [0.02 m, 0.11 m,−0.01 m,−0.1◦, 4.7◦, 7.3◦, 0.11 m]

• c ĉσ = [0.02 m; 2.6◦,−0.8◦,−0.27 dBm2deg−2, 17.4 dBm2]

• rp̃c = [0.00 m, 0.12 m, 0.05 m]T .
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Figure 12: Monte Carlo analysis results for Continental radar – camera calibra-
tion. Blue: calibration after reprojection error optimization; red: with RCS
optimization.

Table 6: Monte Carlo analysis results for Continental radar – camera calibra-
tion.

Reprojection Error Optimization RCS optimization
rpc,x [m] N(0.039, 2.37 × 10−5)
rpc,y [m] N(−0.148, 1.96 × 10−4)
rpc,z [m] N(−0.051, 1.48 × 10−3) N(0.043, 7.48 × 10−7)
c
rθz [◦] N(0.12, 4.44 × 10−2)
c
rθy [◦] N(6.21, 2.91) N(5.60, 1.65 × 10−4)
c
rθx [◦] N(−2.11, 3.26 × 10−1) N(−1.57, 4.07 × 10−4)

Results for the Continental radar showed that there is no sig-
nificant difference between calibration of LiDAR – radar pair
and camera – radar pair; therefore, for brevity, we focus on the
results of LiDAR – radar calibration. Reprojection error his-
tograms exhibited similar results to the case of the Continen-
tal radar when comparing reprojection error optimization, RCS
optimization, and 2D reprojection optimization results; hence,
they are not repeated here. However, an interesting effect was
noticed when comparing the reprojection error optimization es-
timating the range bias with the reprojection error optimiza-
tion omitting the bias. Figure 13 shows that when the bias is
included, average reprojection error per correspondence is re-
duced from 0.056 m to 0.045 m. On the other hand, for the case
of the Continental radar, estimation of the bias compromised
the results when calibrating the radar with a 3D sensor and was
not able to reduce the average reprojection error. It can be con-
cluded that with the Delphi radar, an actual bias is present, most
likely due to the target design, and the method is able to con-
verge to a local minimum of a significantly lower cost. Suc-
cess of the RCS optimization is most evident in Fig. 14, where
we can see a significant difference in the RCS distribution af-
ter two steps of optimization. The origin of this mismatch is
convergence to poor values of the less certain parameters in re-
projection error optimization. From the figure, one could con-
clude that there is no pattern in the data after the reprojection
error optimization. However, the RCS optimization is able to
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Figure 13: Histogram of reprojection errors for two types of reprojection error
optimization and RCS optimization for Delphi radar – LiDAR calibration.

−20 −15 −10 −5 0 5 10
−10

0

10

20

Nominal VFoV

Elevation angle rψl,i [ ◦ ]

R
C

S
[d

B
m

2 ]

Figure 14: RCS distribution across radar’s VFoV for Delphi radar – LiDAR
calibration. Red: reprojection error optimization; blue: RCS optimization.

Table 7: Monte Carlo analysis results for Delphi radar – LiDAR calibration.

Reprojection Error Optimization RCS optimization
rpl,x [m] N(−0.064, 8.75 × 10−5)
rpl,y [m] N(0.132, 2.70 × 10−5)
rpl,z [m] N(0.113, 5.79 × 10−4) N(0.208, 3.08 × 10−6)
l
rθz [◦] N(−2.93, 5.98 × 10−3)
l
rθy [◦] N(4.92, 1.01) N(2.02, 5.09 × 10−4)
l
rθx [◦] N(7.50, 2.22 × 10−1) N(−0.18, 4.85 × 10−5

∆rrr [m] N(0.101, 5.79 × 10−5)

find the same quadratic pattern as with the Continental radar
without significantly degrading the reprojection error, as seen
in Fig. 13.

Finally, Fig. 15 and Table 7 present results for the Monte
Carlo analysis. The results are similar to those of the Continen-
tal radar, although a slight increase in variance can be seen in
the estimation of rpl,x. The cause for the increase could be the
performance of the radar or the coupling of the range and bias
estimation.

5.4. Radar vertical alignment
In Section 1 we outlined the importance of proper radar ver-

tical alignment, and in this section we present a simple, yet
reliable mehod for its assessment. The proposed method re-
quires precise 6DoF extrinsic calibration. Thus, we compared
our method, labelled RCS, to the other 6DoF calibration method
[26], labelled MAN, which manually searches for RCS maxi-
mums and artificially assigns zero elevation angle to these radar
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Figure 15: Monte Carlo analysis results for Delphi radar – LiDAR calibration.
Blue: calibration after reprojection error optimization; red: with RCS optimiza-
tion.

Figure 16: Detected ground plane (blue), target(green) and environment clutter
(red) with LiDAR in the purposes of vertical misalignment test.

measurements. From Fig. 9, we can see that the measured target
reports RCS in the range of [16, 19] dBm2 at the zero elevation
angle. Therefore, for the MAN method, we used only the corre-
spondences that surpass the RCS threshold of σth = 16 dBm2,
resulting in 32 correspondence groups total. Even though the
low number of correspondence groups available from the ex-
periment could affect the accuracy of the MAN method, we can
see that only a small fraction of measurements could be used in
the optimization, thus leading to an expensive calibration data
collection.

To find the vertical misalignment we drove the robot and de-
tected the ground plane using a LiDAR, as illustrated by Fig. 16.
We used LiDAR for simplicity, but the ground plane can also be
found using a single camera as well [44]. The estimated ground
plane normals lngp from a 2-minute drive were averaged to re-
move the effects of uneven ground and robot rotation. The aver-
aged normal lngp was transformed to the radar r ngp coordinate
frame using the estimated LiDAR to radar extrinsic calibration
(for both the RCS and MAN method). Finally, we expressed the
rotation between the ground and radar plane in the radar’s coor-

Table 8: Monte Carlo analysis of vertical misalignment assessment for the Con-
tinantal radar using LiDAR-s ground plane estimation with extrinsic calibration
results.

MAN RCS
r
gθy[◦] N(−0.91, 8.86) N(−4.64, 3.40 × 10−5)
r
gθx[◦] N(6.40, 3.12) N(0.70, 3.69 × 10−5)

dinate frame. We set the arbitrary yaw angle around the ground
plane normal to r

gθz = 0◦ and determined the pitch and roll an-
gles r

gθy and r
gθx, respectively. The method was tested using the

same Monte Carlo analysis described in the Section 5.3 through
N = 1000 runs.

From the Tab. 8, we can see that MAN method produced
results with high uncertainty, which is inadequate for verti-
cal misalignment assessment. Namely, the MAN method es-
timated pitch angles in the interval r

gθy = [−11.12, 8.19]◦ which
surpasses common allowable vertical misalignments, thus pro-
viding unreliable misalignment correction guidelines. On the
other hand, our method produced stable estimation of ground
to radar plane angles, e.g. pitch angles in the interval r

gθy =

[−4.68,−4.62]◦.
From the results, we can see the RCS method estimated verti-

cal misalignment which surpasses allowable tolerance. Namely,
Continental SRR20X user manual specifies allowable mounting
pitch angle of ±1◦. To elaborate, vertical misalignment causes
reduction in range and thus probability of detection. For in-
stance, pitch misalignment of r

gθy = 4.5◦ causes a 25% decrease
in range for the Delphi SRR2, while such misalignment causes
decrease of 80% for the long range radar Delphi ESR. There-
fore, radar mounting on a vehicle is a crucial step where our
method can provide helpful guidelines. Given that, we conclude
that for our sensor setup we should correct the orientation of the
Continetal radar according to results because the misalignment
would impair the performance.

6. Conclusion

In this paper we have presented a method for extrinsic cali-
bration of a LiDAR – camera – radar sensor system. A special
calibration target design was developed to enable all the sen-
sors to detect and accurately localize the target. The extrinsic
calibration is based on the proposed two-step optimization pro-
cedure which involved: (i) optimization of a reprojection error
based on the point-circle constraint which captures radar’s lack
of elevation angle measurements, and (ii) RCS optimization
based on a pattern found in the radar’s RCS estimation – again
caused by the lack of the elevation angle resolution across sub-
stantial FoV thereof. Throughout the identifiability analysis, we
have shown that the proposed point-circle geometric constraint
requires minimum of 4 non-coplanar points to become identifi-
able, while the experimentally discovered effect of uneven un-
certainty in the extrinsic parameters was confirmed by the FIM
analysis. We presented the experimental results for LiDAR and
camera sensors in combination with two radars from different
manufacturers and have also addressed the radar vertical mis-
alignment problem. In the end, through extensive experimental
analysis, we have shown that the proposed method is able to
accurately estimate all the six DoF of the extrinsic calibration.
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