

Path consistency (PC)

How to strengthen the consistency level?
More constraints are assumed together!

Definition:

The path $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}\right)$ is path consistent iff for every pair of values $x \in D_{0}$ a $y \in D_{m}$ satisfying all the binary constraints on V_{0}, V_{m} there exists an assignment of variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m} .1}$ such that all the binary constraints between the neighbouring variables V_{i}, V_{i+1} are satisfied.
CSP is path consistent iff every path is consistent.

Attention!

Path consistency does not guarantee that all the constraints among the variables on the path are satisfied; only the constraints between the neighbouring variables must be satisfied.

PC and paths of length 2 (Montanari)

It is not very practical to ensure consistency of all paths fortunately, only the paths of length 2 can be explored!

Theorem: CSP is PC iff every path of length 2 is PC. Proof:

1) $P C \Rightarrow$ paths of length 2 are $P C$
2) (paths of length 2 are $P C \Rightarrow \forall N$ paths of length N are $P C$) $\Rightarrow P C$ induction using the path length
a) $\mathrm{N}=2$ visibly satisfied
b) $\mathrm{N}+1$ (proposition already holds for N) i) take arbitrary $\mathrm{N}+1$ vertices $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
ii) take arbitrary pair of compatible values $\mathrm{x}_{0} \in \mathrm{D}_{0} a \mathrm{x}_{\mathrm{n}} \in \mathrm{D}$ iii) from a) we can find $x_{n-1} \in D_{n-1}$ s.t. constraints $C_{0, n-1} a \cdot G_{n-1, n}$ hold iv) from the induction we can find the values for v_{0}, v_{1}, v_{n-1}

Relation between PC and AC

Does PC subsumes AC (i.e. if CSP is PC, is it AC as well)?
the arc (i, j) is consistent (AC) if the path ($\mathrm{i}, \mathrm{j}, \mathrm{i})$ is consistent (PC)

- thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but not PC)?
Example: \mathbf{X} in $\{1,2\}, Y$ in $\{1,2\}, \mathbf{Z}$ in $\{1,2\}, \quad X \neq Z, X \neq Y, Y \neq Z$ it is $A C$, but not $P C(X=1, Z=2$ cannot be extended to $X, Y, Z)$
$A C$ removes incompatible values from the domains, what will be done in PC?

> - PC removes pairs of values

- PC makes constraints explicit ($A<B, B<C \Rightarrow A+1<C$)
- a unary constraint $=$ a variable's domain

Foundations of constraint satistaction

Composing the constraints on the path

A, B, C in $\{1,2,3\}, B>1$
$A<C, A=B, B>C-2$

How to improve PC-1?

Is there any inefficiency in PC-1?
just a few „bits"

- it is not necessary to keep all copies of Y^{k} one copy and a bit indicating the change is enough
- some operations produce no modification ($\mathrm{Y}_{\mathrm{kk}}=\mathrm{Y}^{\mathrm{k}-1}{ }_{\mathrm{kk}}$)
- half of the operations can be removed ($\mathrm{Y}_{\mathrm{ji}}=\mathrm{Y}_{\mathrm{ij}}$)
the grand problem
- after domain change all the paths are re-revised it is enough to revise just the influenced paths

Algorithm of path revision

Algorithm PC-1 (Mackworth 1977)

How to make the path ($\mathbf{i}, \mathrm{k}, \mathrm{j}$) consistent?

$$
R_{i j} \leftarrow R_{i j} \&\left(R_{i k} * R_{k k}{ }^{*} R_{\mathrm{kj}}\right)
$$

How to make a CSP consistent?
Repeated revisions of all paths (of length 2) while any domain changes.

Which paths are influenced by the revision?

Because $\mathrm{Y}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{ij}}$ it is enough to revise only the paths ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) where $\mathrm{i} \leq \mathrm{j}$. Let the domain of the constraint (i, j) is changed when revising ($i, k, j)$:
Situation a: i<j
all the paths containing (i, j) or (j, i) must be re-revised
the paths (i,j,j), (i,i,j) are not revised again (no change)
$S_{a}=\quad\{(i, j, m) \mid i \leq m \leq n \& m \neq j\}$
$\cup \quad\{(m, i, j) \mid 1 \leq m \leq j \& m \neq i\}$
$\cup \quad\{(\mathrm{j}, \mathrm{i}, \mathrm{m}) \mid \mathrm{j}<\mathrm{m} \leq \mathrm{n}\}$
$\cup \quad\{(m, j, i) \mid 1 \leq m<i\}$
$\left|S_{a}\right|=2 n-2$
Situation b: $i=j$
all the paths containing i in the middle of the path are re-revised the paths ($\mathbf{i}, \mathrm{i}, \mathrm{i}$) and ($\mathbf{k}, \mathrm{i}, \mathrm{k}$) are not revised again
$\mathrm{S}_{\mathrm{b}}=\quad\{(\mathrm{p}, \mathrm{i}, \mathrm{m}) \mid 1 \leq \mathrm{m} \leq \mathrm{n} \& 1 \leq \mathrm{p} \leq \mathrm{m}\}-\{(\mathrm{i}, \mathrm{i}, \mathrm{i}),(\mathrm{k}, \mathrm{i}, \mathrm{k})\}$
$\left|S_{b}\right|=n^{*}(n-1) / 2-2$

$$
\left|S_{b}\right|=n^{*}(n-1) / 2-2
$$

$$
4-2
$$

Algorithm PC-2 (Mackworth 1977)

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised
Algorithm PC-2

```
procedure PC-2(G)
\(\mathrm{n} \leftarrow \mid\) nodes \((\mathrm{G}) \mid\)
```

$Q \leftarrow\{(i, k, j) \mid 1 \leq i \leq j \leq n \& i \neq k \& j \neq k\}$
while Q non empty do
select and delete ($(\mathbf{i}, \mathbf{k}, \mathbf{j})$) from \mathbf{Q}
if REVISE_PATH($\mathbf{i}, \mathbf{k}, \mathbf{j})$) then $\mathbf{Q} \leftarrow \mathbf{Q} \cup$ RELATED PATHS $(i, k, j))$
end while
end PC-2

```
procedure RELATED_PATHS((i,k,j))
    if i<j then return }\mp@subsup{\overline{S}}{\textrm{a}}{2}\mathrm{ else return }\mp@subsup{\textrm{S}}{\textrm{b}}{
    end RELATED_PATHS
```


Other path consistency algorithms

PC-3 (Mohr, Henderson 1986)

- based on computing supports for a value (like AC-4)
- this algorithm is not sound!

If the pair (a, b) at the arc (i, j) is not supported by another
variable, then a is removed from D_{i} and b is removed from D_{i}.
PC-4 (Han, Lee 1988)

- correction of the PC-3 algorithm
- based on computing supports of pairs (b, c) at $\operatorname{arc}(i, j)$

PC-5 (Singh 1995)

- uses the ideas behind AC-6
- only one support is kept and a new support is looked for when the current support is lost

Drawbacks of path consistency

Memory consumption
because PC eliminates pairs of values, we need to keep all the compatible pairs extensionally, e.g. using \{0,1\}-matrix

Bad ratio strength/efficiency
PC removes more (or same) inconsistencies than AC, but the strength/efficiency ratio is much worse than for AC

Modifies the constraint network

- PC adds redundant arcs (constraints) and thus it changes connectivity of the constraint network
this complicates using heuristics derived from the structure of the constraint network (like tightness, graph width etc.)
$P C$ is still not a complete technique
A, B, C, D in $\{1,2,3\}$
$A \neq B, A \neq C, A \neq D, B \neq C, B \neq D, C \neq D$ is PC but has not solution

Half way between AC and PC

Can we make an algorithm:
stronger than AC,
without drawbacks of PC (memory consumption, changing the constraint network)?
Restricted path consistency (Berlandier 1995) based on AC-4 (uses the support sets) as soon as a value has only one support in another variable, PC is evoked for this pair of values

k-consistency

Is there a common formalism for AC and PC?
$A C$: a value is extended to another variable
PC: a pair of values is extended to another variable ... we can continue

Definition: CSP is k-consistent iff any consistent valuation of ($k-1$) different variables can be extended to a consistent valuation of one additional variable.

Strong k-consistency

Definition: CSP is strongly k-consistent iff it is j -consistent for every $\mathrm{j} \leq \mathrm{k}$.
Visibly: \quad strong k-consistency \Rightarrow k-consistency
Moreover: strong k-consistency $\Rightarrow \mathrm{j}$-consistency $\forall \mathbf{j} \leq \mathbf{k}$
In general: $\neg \mathbf{k}$-consistency \Rightarrow strong k-consistency
NC = strong 1-consistency = 1-consistency
AC = (strong) 2-consistency
PC = (strong) 3-consistency
sometimes we call $\mathrm{NC}+\mathrm{AC}+\mathrm{PC}$ together strong path consistency

What k-consistency is enough?

Assume that the number of vertices is n. What level of consistency do we need to find out the solution?
Strong n-consistency for graphs with n vertices! n -consistency is not enough - see the previous example strong \mathbf{k}-consistency where $\mathbf{k}<n$ is not enough as well

graph with n vertices domains 1..(n-1)

It is strongly k-consistent for $k<n$ but it has no solution

And what about this graph?

(D)AC is enough

Because this a tree.
Foundations of constraint satistaction. Roman Bartik

Backtrack-free search

Definition: CSP is solved using backtrack-free search if for some order of variables we can find a value for each variable compatible with the values of already assigned variables.

How to find out a sufficient consistency level for a given graph?
Some observations:

- variable must be compatible with all the "former" variables

> i.e., across the „backward" edges

- for k,,backward" edges we need ($k+1$)-consistency
- let m be the maximum of backward edges for all the vertices, then strong ($m+1$)-consistency is enough
- the number of backward edges is different for different variable order - of course, the order minimising m is looked for

Graph width

Ordered graph is a graph with a given total order of vertices.
Vertex width in the ordered graph is the number of edges going back from this vertex.
Width of the ordered graph is maximum among the width of vertices Graph width is the maximum among the widths of its ordered graphs.

©
©
-

©	0
(1)	
(0)	

```
procedure MinWidthOrdering((V,E))
\(Q \leftarrow\}\)
```

while V not empty do
$\mathrm{N} \leftarrow$ select and delete node with the smallest \#edges from (V,E) enqueue N to Q
return 0
end MinWidthOrdering

(i,j)-consistency

\mathbf{k}-consistency extends instantiation of ($\mathbf{k}-1$) variables to a new variable, we remove ($k-1$)- tuples that cannot be extended to another variable

Definition: CSP is (i,j)-consistent iff every consistent instantiation of i variables can be extended to a consistent instantiation of any j additional variables.
CSP is strongly (i, j)-consistent, iff it is (k, j)-consistent for every $\mathrm{k} \leq \mathrm{i}$.

k-consistency	$=(k-1,1)$ consistency
AC	$=(1,1)$ consistency

AC $\quad=(1,1)$ consistency
$=(2,1)$ consistency
Foundations of constraint satistaction, Rom sartab

Graph width and consistency level

Theorem: Let w be the width of the constraint graph. If the constraint graph is strongly k-consistent for any $k>w$ then there exists an order of variables giving backtrack-free solution.

Proof:
w is a graph width, i.e., there is some ordered graph of this width thus the max. number of backward edges for each vertex is \mathbf{w} let us assign the variables in the order given by this ordered graph now, if the variable is being labelled:
we must find a value compatible with the labelled variables connected with the current variable
let there is m such variables, then $m \leq w$
the graph is $(m+1)$-consistent, thus a compatible value must exist

Inverse consistencies

Worst case time and space complexity of (i,j)-consistency is exponential in i, moreover we need to record forbidden i-tuples extensionally (see PC).
What about keeping $i=1$ and increasing j ?
We already have such an example:
RPC is (1,1)-consistency and sometimes (1,2)-consistency
Definition: ($1, \mathrm{k}-1$)-consistency is called k -inverse consistency.
We remove values from the domain that cannot be consistently extended to additional ($\mathbf{k}-1$) variables.
Inverse path consistency (PIC) = (1,2)-consistency
Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)
We remove values of v that cannot be consistently extended to the set of variables directly linked to v.

Singleton consistencies

Can we strengthen any consistency technique? YES! Let's assign a value and make the rest of the problem consistent

Definition: CSP P is singleton A-consistent for some notion of A-consistency iff for every value h of any variable \boldsymbol{X} the problem $\mathbf{P}_{|\mathrm{X}=\mathrm{h}|}$ is A-consistent.

Features:

+ we remove only values from variable's domain - like NIC and RPC
+ easy implementation (meta-programming)
- not so good time complexity (be careful when using SC)

1) singleton A-consistency \geq A-consistency
2) A-consistency \geq B-consistency \Rightarrow
singleton A-consistency \geq singleton B-consistency
3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)
4) strong ($\mathrm{i}+1, \mathrm{j}$)-consistency $>$ singleton (i, j)-consistency (PC>SAC)

Consistency techniques at glance
NC = 1- consistency
$A C=2-$ consistency $=(1,1)$ - consistency
PC = 3- consistency $=(2,1)$ - consistency PIC = (1,2)- consistency

