
1

4FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Path consistency (PC)Path consistency (PC)

How to strengthen the consistency level?
More constraints are assumed together!

Definition:
– The path (V0,V1,…, Vm) is path consistent iff for every pair of

values x∈∈D0 a y∈∈Dm satisfying all the binary constraints on V0,Vm
there exists an assignment of variables V1,…,Vm-1 such that all
the binary constraints between the neighbouring variables
Vi,Vi+1 are satisfied.

– CSP is path consistent iff every path is consistent.

Attention!

Path consistency does not guarantee that all the
constraints among the variables on the path are
satisfied; only the constraints between the neighbouring
variables must be satisfied.

V0 V1

V2
V3

V4

???

Foundations of constraint satisfaction, Roman Barták

PC and paths of length 2 (PC and paths of length 2 (MontanariMontanari))

It is not very practical to ensure consistency of all paths
fortunately, only the paths of length 2 can be explored!

Theorem: CSP is PC iff every path of length 2 is PC.
Proof:

1) PC ⇒⇒ paths of length 2 are PC
2) (paths of length 2 are PC ⇒⇒ ∀∀N paths of length N are PC) ⇒⇒ PC
induction using the path length

a) N=2 visibly satisfied
b) N+1 (proposition already holds for N)

i) take arbitrary N+1 vertices V0,V1,…, Vn

ii) take arbitrary pair of compatible values x0∈∈D0 a xn∈∈Dn

iii) from a) we can find xn-1∈∈Dn-1 s.t. constraints C0,n-1 a Cn-1,n hold
iv) from the induction we can find the values for V0,V1,…, Vn-1

0

nn-1

1

Foundations of constraint satisfaction, Roman Barták

Relation between PC and ACRelation between PC and AC

Does PC subsumes AC (i.e. if CSP is PC, is it AC as well)?
– the arc (i, j) is consistent (AC) if the path (i,j,i) is

consistent (PC)
– thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but not
PC)?
Example: X in {1,2}, Y in {1,2}, Z in {1,2}, X≠≠Z, X≠≠Y, Y≠≠Z

it is AC, but not PC (X=1, Z=2 cannot be extended to X,Y,Z)

AC removes incompatible values from the domains,
what will be done in PC?

– PC removes pairs of values
– PC makes constraints explicit (A<B,B<C ⇒⇒ A+1<C)
– a unary constraint = a variable’s domain

Foundations of constraint satisfaction, Roman Barták

A matrix representation of constraintsA matrix representation of constraints

In PC we need to exclude the pairs of values
ÄÄ the constraints must be represented in explicit form

Binary constraint = {0,1}-matrix
0 - the values are incompatible
1 - the values are compatible

Example:

5-queens problem
the constraint between queens i, j: r(i)≠≠r(j) & |i-j| ≠≠ |r(i)-r(j)|

1

2

3

4

5

A B C D Ea matrix for
queens A(1), B(2)

a matrix for
queens A(1), C(3)

××
××××××

××0 0 1 1 1
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

0 1 0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
1 1 0 1 0

Foundations of constraint satisfaction, Roman Barták

Operations over the constraintsOperations over the constraints

Intersection Rij & R‘ij
bitwise AND

A<B & A≥≥B-1 →→ B-1≤≤A<B
011 110 010
001 & 111 = 001
000 111 000

Composition Rik * Rkj →→ Rik

binary matrix multiplication
A<B * B<C →→ A<C-1

011 011 001
001 * 001 = 000
000 000 000

The induced constraint is joined with the original constraint
Rij & (Rik * Rkj) →→ Rij

R25 & (R21 * R15) →→ R25

01101 00111 01110 01101
10110 00011 10111 10110
11011 & 10001 *11011 = 01010
01101 11000 11101 01101
10110 11100 01110 10110

1

2

3

4

5

A B C D E

××
××

××

××××××××××
Notes:

Rij = RT
ji, Rii is a diagonal matrix representing the domain

REVISE((i,j)) from AC is equivalent to Rii ←← Rii & (Rij * Rjj * Rji)

2

Foundations of constraint satisfaction, Roman Barták

Composing the constraints on the pathComposing the constraints on the path

A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

Foundations of constraint satisfaction, Roman Barták

Algorithm PC-1 (Algorithm PC-1 (MackworthMackworth 19771977))

How to make the path (i,k,j) consistent?
Rij ←← Rij & (Rik * Rkk * Rkj)

How to make a CSP consistent?
Repeated revisions of all paths (of length 2) while any domain

changes.
 Algorithm PC-1

procedure PC-1(Vars,Constraints)
n ←← |Vars|, Yn ←← Constraints
repeat

Y0 ←← Yn

for k = 1 to n do
for i = 1 to n do
 for j = 1 to n do
 Yk

ij ←← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn=Y0

Constraints ←← Y0

end PC-1

If we use
Yk

ii ←← Yk-1
ii & (Yk-1

ik * Yk-1
kk * Yk-1

ki)
then we get AC-1

Foundations of constraint satisfaction, Roman Barták

How to improve PC-1?How to improve PC-1?

Is there any inefficiency in PC-1?
just a few „bits“
– it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
– some operations produce no modification (Yk

kk = Yk-1
kk)

– half of the operations can be removed (Yji = YT
ij)

the grand problem
– after domain change all the paths are re-revised

it is enough to revise just the influenced paths
Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ←← Yij & (Yik * Ykk * Ykj)
if Z=Yij then return false
Yij ←← Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.

Foundations of constraint satisfaction, Roman Barták

Which paths are influenced by the revision?Which paths are influenced by the revision?

Because Yji = Yt
ij it is enough to revise only the paths (i,k,j) where i≤≤j.

Let the domain of the constraint (i,j) is changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i ≤≤ m ≤≤ n & m≠≠j}

 ∪∪ {(m,i,j) | 1 ≤≤ m ≤≤ j & m≠≠i}
 ∪∪ {(j,i,m) | j < m ≤≤ n}
 ∪∪ {(m,j,i) | 1 ≤≤ m < i}

| Sa | = 2n-2

i j

Situation b: i=j

all the paths containing i in the middle of the path are re-revised
the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 ≤≤ m ≤≤ n & 1 ≤≤ p ≤≤ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

Foundations of constraint satisfaction, Roman Barták

Algorithm PC-2 (Algorithm PC-2 (MackworthMackworth 19771977))

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ←← |nodes(G)|
Q ←← {(i,k,j) | 1 ≤≤ i ≤≤ j ≤≤ n & i≠≠k & j≠≠k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ←← Q ∪∪ RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Foundations of constraint satisfaction, Roman Barták

Other path consistency algorithmsOther path consistency algorithms

PC-3 (Mohr, Henderson 1986)

– based on computing supports for a value (like AC-4)
– this algorithm is not sound!

If the pair (a,b) at the arc (i,j) is not supported by another
variable, then a is removed from Di and b is removed from Dj.

PC-4 (Han, Lee 1988)
– correction of the PC-3 algorithm
– based on computing supports of pairs (b,c) at arc (i,j)

PC-5 (Singh 1995)

– uses the ideas behind AC-6
– only one support is kept and a new support is looked

for when the current support is lost

3

Foundations of constraint satisfaction, Roman Barták

Drawbacks of path consistencyDrawbacks of path consistency

Memory consumption
– because PC eliminates pairs of values, we need to keep all the

compatible pairs extensionally, e.g. using {0,1}-matrix

Bad ratio strength/efficiency
– PC removes more (or same) inconsistencies than AC, but the

strength/efficiency ratio is much worse than for AC

Modifies the constraint network
– PC adds redundant arcs (constraints) and thus it changes

connectivity of the constraint network
– this complicates using heuristics derived from the structure of

the constraint network (like tightness, graph width etc.)

PC is still not a complete technique
– A,B,C,D in {1,2,3}

A≠≠B, A≠≠C, A≠≠D, B≠≠C, B≠≠D, C≠≠D
is PC but has not solution

1,2,3 1,2,3

1,2,3 1,2,3

≠≠

≠≠

≠≠

≠≠≠≠ ≠≠

Foundations of constraint satisfaction, Roman Barták

Half way between AC and PCHalf way between AC and PC

Can we make an algorithm:
– stronger than AC,
– without drawbacks of PC (memory consumption, changing the

constraint network)?

Restricted path consistency (Berlandier 1995)

based on AC-4 (uses the support sets)
as soon as a value has only one support in another

variable, PC is evoked for this pair of values

e f

a
b c

d

e f

a
b c

d

××
××

××

Foundations of constraint satisfaction, Roman Barták

k-consistencyk-consistency

Is there a common formalism for AC and PC?
AC: a value is extended to another variable
PC: a pair of values is extended to another variable
… we can continue

Definition: CSP is k-consistent iff any consistent
valuation of (k-1) different variables can be extended to
a consistent valuation of one additional variable.

1,2,3 1,2,3 1,2,3 4

≠≠

≠≠

≠≠ ≠≠ ≠≠

4-consistent graph

Foundations of constraint satisfaction, Roman Barták

Strong k-consistencyStrong k-consistency

Definition: CSP is strongly k-consistent iff it is
j-consistent for every j≤≤k.

Visibly: strong k-consistency ⇒⇒ k-consistency
Moreover: strong k-consistency ⇒⇒ j-consistency ∀∀j≤≤k
In general: ¬¬ k-consistency ⇒⇒ strong k-consistency

NC = strong 1-consistency = 1-consistency
AC = (strong) 2-consistency
PC = (strong) 3-consistency

sometimes we call NC+AC+PC together strong path consistency

1,2 1,2 1,2,3= =

=

3-consistent graph

but not 2-consistent graph!

Foundations of constraint satisfaction, Roman Barták

What What k-consistencyk-consistency is enough? is enough?

Assume that the number of vertices is n. What level of
consistency do we need to find out the solution?

Strong n-consistency for graphs with n vertices!
n-consistency is not enough - see the previous example
strong k-consistency where k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

≠≠

≠≠

≠≠
≠≠

≠≠

≠≠ ≠≠

≠≠

…

…

graph with n vertices
domains 1..(n-1)

It is strongly k-consistent for k<n
but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

(D)AC is enough!

Because this a tree..

Foundations of constraint satisfaction, Roman Barták

Backtrack-free searchBacktrack-free search

Definition: CSP is solved using backtrack-free search if for some
order of variables we can find a value for each variable compatible
with the values of already assigned variables.

1, 2 1, 2=

<

<

1, 2, 31, 2, 3
1 2 3 4

How to find out a sufficient consistency level for a given graph?

Some observations:

• variable must be compatible with all the “former” variables
i.e., across the „backward“ edges

• for k „backward“ edges we need (k+1)-consistency
• let m be the maximum of backward edges for all the vertices,

then strong (m+1)-consistency is enough
• the number of backward edges is different for different variable order
• of course, the order minimising m is looked for

4

Foundations of constraint satisfaction, Roman Barták

Graph widthGraph width

Ordered graph is a graph with a given total order of vertices.
Vertex width in the ordered graph is the number of edges going back

from this vertex.
Width of the ordered graph is maximum among the width of vertices.
Graph width is the maximum among the widths of its ordered graphs.

a

cb

a

c

b

a

b

c

b

c

a

b

a

c

c

b

a

c

a

b

1 1 1 2 1 2
Graph width is 1.

procedure MinWidthOrdering((V,E))
Q ←← {}
while V not empty do

N ←← select and delete node with the smallest #edges from (V,E)
enqueue N to Q

return Q
end MinWidthOrdering

Foundations of constraint satisfaction, Roman Barták

Graph width and consistency levelGraph width and consistency level

Theorem: Let w be the width of the constraint graph. If the constraint
graph is strongly k-consistent for any k>w then there exists an order
of variables giving backtrack-free solution.

Proof:

w is a graph width, i.e., there is some ordered graph of this width
thus the max. number of backward edges for each vertex is w
let us assign the variables in the order given by this ordered graph
now, if the variable is being labelled:

• we must find a value compatible with the labelled variables
connected with the current variable

• let there is m such variables, then m ≤≤ w
• the graph is (m+1)-consistent, thus a compatible value must exist

1 … i j l… … …

at most w

Foundations of constraint satisfaction, Roman Barták

(i,j)-consistency(i,j)-consistency

k-consistency extends instantiation of (k-1) variables to a new variable,
we remove (k-1)- tuples that cannot be extended to another variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation
of i variables can be extended to a consistent instantiation
of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every k≤≤i.

k-consistency = (k-1,1) consistency
AC = (1,1) consistency
PC = (2,1) consistency

We can do even more!

…

… …

Foundations of constraint satisfaction, Roman Barták

Inverse consistenciesInverse consistencies

Worst case time and space complexity of (i,j)-consistency is
exponential in i, moreover we need to record forbidden i-tuples
extensionally (see PC).

What about keeping i=1 and increasing j?
We already have such an example:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

Definition: (1,k-1)-consistency is called k-inverse consistency.

We remove values from the domain that cannot be consistently
extended to additional (k-1) variables.

Inverse path consistency (PIC) = (1,2)-consistency

Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)

We remove values of v that cannot be consistently extended to the
set of variables directly linked to v.

Foundations of constraint satisfaction, Roman Barták

Singleton consistenciesSingleton consistencies

Can we strengthen any consistency technique?
YES! Let’s assign a value and make the rest of the problem consistent.

Definition: CSP P is singleton A-consistent for some notion of
A-consistency iff for every value h of any variable X the problem
P|X=h| is A-consistent.

Features:

+ we remove only values from variable’s domain - like NIC and RPC

+ easy implementation (meta-programming)

- not so good time complexity (be careful when using SC)

1) singleton A-consistency ≥≥ A-consistency

2) A-consistency ≥≥ B-consistency ⇒⇒
singleton A-consistency ≥≥ singleton B-consistency

3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)

4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)

Foundations of constraint satisfaction, Roman Barták

Consistency techniques at glanceConsistency techniques at glance

NC = 1- consistency
AC = 2- consistency = (1,1)- consistency
PC = 3- consistency = (2,1)- consistency
PIC = (1,2)- consistency

AC

NIC

SAC PIC RPC

strong PC

SRPC

##
#

#

stronger technique

incomparable techniques

