Fundamentals of Density Functional Theory

Schrödinger Equation

Time-Independent Form:

$$
\widehat{\mathrm{H}}|\Psi\rangle=\mathrm{E}|\Psi\rangle \quad \widehat{\mathrm{H}}=\widehat{\mathrm{T}}+\widehat{\mathrm{V}}
$$

Variational Theorem:

$$
\mathrm{E}=\langle\Psi| \widehat{\mathrm{H}}|\Psi\rangle \leq\langle\Phi| \widehat{\mathrm{H}}|\Phi\rangle
$$

"The ground state energy of any approximate wavefunction is always an upper bound to the exact ground state energy"

The exact wavefunction can be approximated by finding a solution that minimizes energy

Schrödinger Equation

Born-Oppenheimer Hamiltonian:

$$
\widehat{\mathrm{H}}=\sum_{i}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2}-\sum_{i}^{N_{n}} \sum_{j}^{N_{e}} \frac{e^{2} Z_{i}}{\left|\vec{r}_{j}-\vec{R}_{i}\right|}+\sum_{i<j}^{N_{n}} \frac{e^{2} Z_{i} Z_{j}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|}+\sum_{i<j}^{N_{e}} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

- Paul Dirac, 1929

Simplifying Approximations

Trivial to calculate

No known solution (many-body problem)

Born-Oppenheimer Approximation:

The motion of nuclei is slow relative to the motion of electrons, so we can treat them as stationary

- No nuclear kinetic energy term in Hamiltonian
- Nuclear-electronic attraction term depends only on position of electrons
- Nuclear-nuclear repulsion term becomes a constant

Simplifying Approximations

Linear Combination of Atomic Orbitals (LCAO):

- Molecular orbitals are expressed in terms of hydrogen-like atomic orbitals (known exactly)
- Bonding interactions correspond to constructive interference
- Antibonding interactions correspond to destructive interference
Hydrogen 1s orbital
$\mathrm{H}_{2} \sigma$-bonding
orbital
$\mathrm{H}_{2} \sigma$-antibonding
orbital

Simplifying Approximations

Linear Combination of Atomic Orbitals (LCAO):

- Molecular orbitals are expressed in terms of hydrogen-like atomic orbitals (known exactly)
- Bonding interactions correspond to constructive interference
- Antibonding interactions correspond to destructive interference

Probability densities:
。
-

1s orbitals

σ-orbitals

Simplifying Approximations

$$
\widehat{\mathrm{H}}=\sum_{i}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2}-\sum_{i}^{N_{n}} \sum_{j}^{N_{e}} \frac{e^{2} Z_{i}}{\left|\vec{r}_{j}-\vec{R}_{i}\right|}+\sum_{i<j}^{N_{n}} \frac{e^{2} Z_{i} Z_{j}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|}+\sum_{i<j}^{N_{i} \mid} \frac{\sum_{i}}{N_{e}} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

Hartree-Fock:

- Assume that the wavefunction can be expressed as the product of one-electron wavefunctions (orbitals)
- Electrons interact with electric field from average position of other electrons
- Antisymmetrized to satisfy Pauli exclusion principal (permutation of electrons changes sign)
- Variational principle used to find minimum-energy electronic state

Simplifying Approximations

$$
\widehat{\mathrm{H}}=\sum_{i}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2}-\sum_{i}^{N_{n}} \sum_{j}^{N_{j}} \sum_{\substack{\text { electronic } \\ \text { kinetic energy }}}^{N_{e}} \frac{e^{2} Z_{i}}{\left|\vec{r}_{j}-\vec{R}_{i}\right|}+\sum_{i<j}^{\sum_{n}} \frac{e^{2} Z_{i} Z_{j}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|}+\sum_{i<j}^{N_{i}}+\underset{\substack{\text { nuclear-nuclear } \\ \text { attraction }}}{N_{e}} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

Hartree-Fock:

He atom cannot be solved exactly

Simplifying Approximations

$$
\widehat{\mathrm{H}}=\sum_{i}^{N_{e}} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2}-\sum_{i}^{N_{n}} \sum_{j}^{N_{j}} \sum_{\substack{\text { electronic } \\ \text { kinetic energy }}}^{N_{e}} \frac{e^{2} Z_{i}}{\left|\vec{r}_{j}-\vec{R}_{i}\right|}+\sum_{i<j}^{\sum_{n}} \frac{e^{2} Z_{i} Z_{j}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|}+\sum_{i<j}^{N_{i}}+\underset{\substack{\text { nuclear-nuclear } \\ \text { attraction }}}{N_{e}} \frac{e^{2}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}
$$

Hartree-Fock:

Self-consistent field (SCF): electronic charge distribution must be consistent with its own electrostatic field

Provides a method for determining orbital coefficients

average field of other electrons

Gaussian Basis Sets

Polarization Functions

114.4° (107.8 ${ }^{\circ}$ expt. $)$

111.9° (104.5${ }^{\circ}$ expt. $)$

Geometries predicted by large basis set of only s and p symmetry

Limitation of LCAO: molecular orbitals cannot be described using only occupied atomic orbitals Solution: add additional basis functions of higher angular momentum (polarization functions)
(The true space of possible electronic configurations has infinite dimension)

Diffuse functions

Describing negatively charged molecules becomes difficult using only neutral hydrogen-like atomic orbitals Add extra basis functions with larger radius (simulate shielding effect)

Gaussian Basis Sets

Pople style basis sets

$6-31+G(d, p)$

6 primitives per core electron
3 primitives for first valence basis function
1 primitive for second valence basis function + diffuse function on heavy atoms (Li and beyond)
d polarization on heavy atoms, p polarization on light atoms $(\mathrm{H}, \mathrm{He})$

Gaussian Basis Sets

Pople style basis sets

$6-311++G(2 d, 2 p)$

6 primitives per core electron
3 primitives for first valence basis function
1 primitive for second valence basis function
1 primitive for third valence basis function

+ diffuse function on heavy atoms
+ diffuse function on light atoms
2 d polarization functions on heavy atoms
$2 p$ polarization functions on light atoms

Choice of Basis Set

Pople style basis sets
STO-3G
$3-21 G$
$6-31 G(d, p)$
$6-31+G(2 d, 2 p)$
$6-311 G(d, p)$
$6-311+G(2 d, 2 p)$
$6-311++G(2 d f, 2 p d)$

```
3-21G 6-31G(d,p) 6-31+G(2d,2p) 6-311G(d,p)
6-311++G(2df,2pd)
```

Ahlrichs basis sets

$$
\begin{gathered}
\text { def2-SV(P) } \\
\text { def2-SVP } \\
\text { def2-TZVP(-f) } \\
\text { def2-TZVP } \\
\text { def2-TZVPP } \\
\text { def2-QZVP } \\
\text { def2-QZVPP }
\end{gathered}
$$

Dunning basis sets

$$
\begin{gathered}
\text { cc-pVDZ } \\
\text { cc-pVTZ } \\
\text { cc-pVQZ } \\
\text { cc-pV5Z } \\
\text { aug-cc-pVDZ } \\
\text { aug-cc-pVTZ } \\
\text { aug-cc-pVQZ }
\end{gathered}
$$

LanL2DZ: Ignores core electrons, replaces them with a potential (often used for metals)

Choice of Basis Set

Pople style basis sets
STO-3G
$3-21 G$
$6-31 G(d, p)$
$6-31+G(2 d, 2 p)$
$6-311 G(d, p)$
$6-311+G(2 d, 2 p)$
$6-311++G(2 d f, 2 p d)$

Dunning basis sets

$$
\begin{gathered}
\text { cc-pVDZ } \\
\text { cc-pVTZ } \\
\text { cc-pVQZ } \\
\text { cc-pV5Z } \\
\text { aug-cc-pVDZ } \\
\text { aug-cc-pVTZ } \\
\text { aug-cc-pVQZ }
\end{gathered}
$$

- Converge energy quickly
- "Well balanced" with polarization functions built in
- Matching auxiliary basis sets speed up integral evaluation
- def2-TZVP usually "good enough" for organic molecules

Choice of Basis Set

Pople style basis sets
STO-3G
$3-21 G$
$6-31 G(d, p)$
$6-31+G(2 d, 2 p)$
$6-311 G(d, p)$
$6-311+G(2 d, 2 p)$
$6-311++G(2 d f, 2 p d)$

Ahlrichs basis sets

$$
\begin{gathered}
\text { def2-SV(P) } \\
\text { def2-SVP } \\
\text { def2-TZVP(-f) } \\
\text { def2-TZVP } \\
\text { def2-TZVPP } \\
\text { def2-QZVP } \\
\text { def2-QZVPP }
\end{gathered}
$$

I	Dunning basis sets
1	
1	cc-pVDZ
I	cc-pVTZ
I	cc-pVQZ
1	cc-pV5Z
1	aug-cc-pVDZ
I	aug-cc-pVTZ
,	aug-cc-pVQZ

- More highly contracted than def2
- Good for correlated methods (post-HF)
- Good choice for anions, excited states, long-range interactions
using augmented version (diffuse functions)

Choice of Basis Set

Using larger basis sets, the energy tends toward the Hartree-Fock Limit (complete basis set limit)

Choice of Basis Set

How can we recover the correlation energy?

Correlated Methods

Wavefunction Theory
 Configuration interaction (full CI, CIS, CISD, etc.)
 MP2 (perturbation theory)
 Coupled cluster theory (CCSD, CCSD(T))
 CASSCF, RASSCF, QCI, composite methods, etc.

Density Functional Theory

Density Functional Theory

Pierre Hohenberg

Walter Kohn

Hohenberg-Kohn Theorem I

"For a nondegenerate ground state of a many-electron system, the properties of the system are uniquely determined by the electron density."

Hohenberg-Kohn Theorem II

"The functional that delivers the ground-state energy of the system gives the lowest energy if and only if the input density is the true ground-state density."

Density Functional Theory

$\mathrm{E}=\mathrm{F}[\rho(\mathbf{r})]$

"The universal density functional"

$$
\mathrm{E}[\rho(\mathbf{r})]=\mathrm{T}+\mathrm{V}_{n e}+\mathrm{V}_{e e}+\mathrm{E}_{x c}
$$

Electronic energy determined by:
kinetic energy
Electron interacting with itself
nuclear attraction
electronic repulsion
exchange and correlation

Kohn-Sham DFT

Express the electron density in an orbital basis set
Orbitals consist of fictitious, noninteracting electrons
Density for noninteracting system can be solved exactly

$$
\begin{array}{ll}
\text { Hartree-Fock: } & \text { Approximate solution to real problem } \\
\text { Kohn-Sham: } & \text { Exact solution to hypothetical problem }
\end{array}
$$

Exchange-Correlation Functional

Local Density Approximation: XC energy as a functional of local electron density, integrate over all space

$$
\mathrm{E}_{x c}^{\mathrm{LDA}}[\rho(\mathbf{r})]=\int \rho(\mathbf{r}) \epsilon_{x c}(\rho(\mathbf{r})) \mathrm{d} \mathbf{r}
$$

Generalized Gradient Approximation: XC energy as a functional of electron density and gradient

$$
\mathrm{E}_{x c}^{\mathrm{GGA}}[\rho(\mathbf{r})]=\mathrm{E}_{x c}^{\mathrm{LDA}}[\rho(\mathbf{r})]+\Delta \mathrm{E}[\nabla \rho(\mathbf{r})]
$$

Meta-GGA: Use higher order gradients

Hybrid Functionals

Observation:

For Hartree-Fock, we didn't know the correlation energy, but we knew the exchange energy exactly

Divide XC functional into X and C functionals

$$
\mathrm{E}_{x c}[\rho(\mathbf{r})]=\mathrm{E}_{x}[\rho(\mathbf{r})]+\mathrm{E}_{c}[\rho(\mathbf{r})]
$$

Use exchange energy from HF to obtain a more accurate approximation

$$
\mathrm{E}_{x}[\rho(\mathbf{r})]=a \mathrm{E}_{x}[\rho(\mathbf{r})]+(1-a) \mathrm{E}_{x}^{\mathrm{HF}}
$$

Some Examples

Increasing Cost Increasing Accuracy

Hybrid-meta-GGA: M06, M06-2x, TPSSO
Hybrid-GGA: B3LYP, PBE0, B3P86
Meta-GGA: M06-L, TPSS

GGA: PBE, BP86, B97

LDA

Which functional should I use?
Check benchmarks
Do the experiment!

Some Examples

Increasing Cost Increasing Accuracy

Hybrid-meta-GGA: M06, M06-2x, TPSSO

Hybrid-GGA: B3LYP, PBE0, B3P86
Meta-GGA: M06-L, TPSS

GGA: PBE, BP86, B97

LDA
Can we improve accuracy even more?

Range-Separated Hybrids

Key Concept:

Don't use a fixed mixture of Hartree-Fock and DFT exchange, vary exchange with distance

Range-Separated Hybrids

Examples:

CAM-B3LYP, ω-B97X-D, ω-B97M-V Good for noncovalent/long-range interactions

Double Hybrids

Key Concept:

Mixing in some Hartree-Fock improved exchange energy
Can we use the same strategy to improve correlation energy?
Remember: Hartree-Fock is not correlated

Use MP2 to improve correlation energy

$$
\mathrm{E}_{x c}[\rho(\mathbf{r})]=a_{x} \mathrm{E}_{x}[\rho(\mathbf{r})]+a_{c} \mathrm{E}_{c}[\rho(\mathbf{r})]+\left(1-a_{x}\right) \mathrm{E}_{x}^{\mathrm{HF}}+\left(1-a_{c}\right) \mathrm{E}_{c}^{\mathrm{MP} 2}
$$

Examples:
B2-PLYP, mPW2-PLYP, B2K-PLYP, DSD-PBEP86

Practical Considerations

Find geometry where gradient is 0 (stationary point)

Geometry Optimization

Eigenvalues of \mathbf{H} determine concavity (minimum vs. saddlepoint)

$$
\begin{gathered}
-\frac{\partial \mathrm{E}}{\partial x}=\text { Force } \quad \nabla \mathrm{E}=\left(\begin{array}{c}
\frac{\partial \mathrm{E}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \mathrm{E}}{\partial x_{n}}
\end{array}\right)=\text { Gradient } \\
\mathbf{H}=\left(\begin{array}{cccc}
\frac{\partial^{2} \mathrm{E}}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} \mathrm{E}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathrm{E}}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} \mathrm{E}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \mathrm{E}}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathrm{E}}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} \mathrm{E}}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} \mathrm{E}}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathrm{E}}{\partial x_{n} \partial x_{n}}
\end{array}\right)=\text { Hessian }
\end{gathered}
$$

Practical Considerations

Your calculations are only as good as your geometries!

- Consider conformational effects when building a structure
- When in doubt, run the calculation for each conformer
- Always do an optimization and frequency calculation

Practical Considerations

 sorony provorn surno provar sourar prosors

Implicit Solvation

We usually aren't interested only in gas-phase properties
Explicit solvation: Add solvent molecules (expensive/inconvenient, but sometimes necessary)
Implicit solvation: Create a polarizable surface around molecule corresponding to solvent dielectric and polarizability

Important Topics Not Covered

Spin contamination
Basis set superposition error
Semiempirical/Composite DFT Methods
Dispersion corrections (D3(0), D3(BJ), D4)
Relativistic Corrections (ZORA, Douglas-Kroll-Hess)
Excited state calculations (TD-DFT)
Optimization algorithms (RFO, quasi-Newton, etc.)

