

Fundamentals of Density Functional Theory

Jackson Deobald Knowles Lab September 9, 2022

Schrödinger Equation

Time-Independent Form:

 $\widehat{H}|\Psi\rangle = E|\Psi\rangle$

 $\widehat{H} = \widehat{T} + \widehat{V}$

kinetic potential energy energy

Variational Theorem:

 $\mathbf{E} = \langle \Psi | \widehat{\mathbf{H}} | \Psi \rangle \le \langle \Phi | \widehat{\mathbf{H}} | \Phi \rangle$

"The ground state energy of any approximate wavefunction is always an upper bound to the exact ground state energy"

The exact wavefunction can be approximated by finding a solution that minimizes energy

Schrödinger Equation

Born-Oppenheimer Hamiltonian:

$$\widehat{\mathbf{H}} = \sum_{i}^{N_{e}} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{i}^{N_{n}} \sum_{j}^{N_{e}} \frac{e^{2}Z_{i}}{\left|\vec{r}_{j} - \vec{R}_{i}\right|} + \sum_{i < j}^{N_{n}} \frac{e^{2}Z_{i}Z_{j}}{\left|\vec{R}_{i} - \vec{R}_{j}\right|} + \sum_{i < j}^{N_{e}} \frac{e^{2}}{\left|\vec{r}_{i} - \vec{r}_{j}\right|}$$
electronic kinetic energy
nuclear-electronic attraction
nuclear-nuclear repulsion
electron-electron repulsion

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

– Paul Dirac, 1929

Born-Oppenheimer Approximation:

The motion of nuclei is slow relative to the motion of electrons, so we can treat them as stationary

- No nuclear kinetic energy term in Hamiltonian
- Nuclear-electronic attraction term depends only on position of electrons
- Nuclear-nuclear repulsion term becomes a constant

Linear Combination of Atomic Orbitals (LCAO):

- Molecular orbitals are expressed in terms of hydrogen-like atomic orbitals (known exactly)
- Bonding interactions correspond to constructive interference
- Antibonding interactions correspond to destructive interference

Linear Combination of Atomic Orbitals (LCAO):

- Molecular orbitals are expressed in terms of hydrogen-like atomic orbitals (known exactly)
- Bonding interactions correspond to constructive interference
- Antibonding interactions correspond to destructive interference

Hartree-Fock:

- Assume that the wavefunction can be expressed as the product of one-electron wavefunctions (orbitals)
- Electrons interact with electric field from average position of other electrons
- Antisymmetrized to satisfy Pauli exclusion principal (permutation of electrons changes sign)
- Variational principle used to find minimum-energy electronic state

electronic kinetic energy

nuclear-electronic attraction

nuclear-nuclear repulsion

electron-electron repulsion

Hartree-Fock:

average field of other electrons

electronic kinetic energy

nuclear-electronic attraction

nuclear-nuclear repulsion

electron-electron repulsion

Hartree-Fock:

Self-consistent field (SCF): electronic charge distribution must be consistent with its own electrostatic field

Provides a method for determining orbital coefficients

average field of other electrons

 $\Phi(\mathbf{r}) = \sum c_i e^{-\alpha_i \mathbf{r}^2}$

Some terminology:

Individual Gaussian functions are called Gaussian *primitives*

Contraction is the process of grouping primitives to form basis functions

The number of contractions per orbital is referred to as *zeta* (double zeta, triple, etc.)

12

Polarization Functions

114.4° (107.8° expt.)

111.9° (104.5° expt.)

Geometries predicted by large basis set of only s and p symmetry

Limitation of LCAO: molecular orbitals cannot be described using only occupied atomic orbitals Solution: add additional basis functions of *higher angular momentum* (*polarization functions*)

(The true space of possible electronic configurations has *infinite* dimension)

Diffuse functions

Describing negatively charged molecules becomes difficult using only neutral hydrogen-like atomic orbitals

Add extra basis functions with larger radius (simulate shielding effect)

Pople style basis sets

6-31+G(d,p)

6 primitives per core electron 3 primitives for first valence basis function 1 primitive for second valence basis function + diffuse function on heavy atoms (Li and beyond) d polarization on heavy atoms, p polarization on light atoms (H, He)

Pople style basis sets

6-311++G(2d,2p)

6 primitives per core electron 3 primitives for first valence basis function 1 primitive for second valence basis function 1 primitive for third valence basis function + diffuse function on heavy atoms + diffuse function on light atoms 2 d polarization functions on heavy atoms 2 p polarization functions on light atoms

Pople	e style	basis sets	
-------	---------	------------	--

STO-3G 3-21G 6-31G(d,p) 6-31+G(2d,2p) 6-311G(d,p) 6-311+G(2d,2p) 6-311++G(2df,2pd)

Ahlrichs basis sets

def2-SV(P) def2-SVP def2-TZVP(-f) def2-TZVP def2-TZVPP def2-QZVP def2-QZVPP Dunning basis sets

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

LanL2DZ: Ignores core electrons, replaces them with a potential (often used for metals)

Pople style basis sets

STO-3G 3-21G 6-31G(d,p) 6-31+G(2d,2p) 6-311G(d,p) 6-311+G(2d,2p) 6-311++G(2df,2pd)

Ahlrichs basis sets	Dunning basis sets
def2-SV(P) def2-SVP def2-TZVP(-f) def2-TZVP def2-TZVPP def2-QZVP def2-QZVP	cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ

- Converge energy quickly
- "Well balanced" with polarization functions built in
- Matching auxiliary basis sets speed up integral evaluation
- def2-TZVP usually "good enough" for organic molecules

Pople style basis sets	Ahlrichs basis sets	Dunning basis sets
STO-3G	def2-SV(P)	
3-21G	def2-SV(P)	cc-pVDZ cc-pVTZ
6-31G(d,p)	def2-TZVP(-f)	cc-pVQZ
6-31+G(2d,2p)	def2-TZVP	i cc-pV5Z i
6-311G(d,p) 6-311+G(2d,2p)	def2-TZVPP def2-QZVP	aug-cc-pVDZ aug-cc-pVTZ
6-311++G(2df,2pd)	def2-QZVPP	aug-cc-pVQZ

- More highly contracted than def2
- Good for correlated methods (post-HF)
- Good choice for anions, excited states, long-range interactions using augmented version (diffuse functions)

Using larger basis sets, the energy tends toward the *Hartree-Fock Limit* (complete basis set limit)

How can we recover the correlation energy?

Correlated Methods

Wavefunction Theory

Configuration interaction (full CI, CIS, CISD, etc.)

MP2 (perturbation theory)

Coupled cluster theory (CCSD, CCSD(T))

CASSCF, RASSCF, QCI, composite methods, etc.

Density Functional Theory

Density Functional Theory

Pierre Hohenberg

"For a nondegenerate ground state of a many-electron system, the properties of the system are *uniquely determined* by the electron density."

Hohenberg-Kohn Theorem II

Walter Kohn

"The functional that delivers the ground-state energy of the system gives the lowest energy if and only if the input density is the true ground-state density."

$\mathbf{E} = \mathbf{F}[\rho(\mathbf{r})]$

"The universal density functional"

$$\mathbf{E}[\rho(\mathbf{r})] = \mathbf{T} + \mathbf{V}_{ne} + \mathbf{V}_{ee} + \mathbf{E}_{xc}$$

Electronic energy determined by: kinetic energy nuclear attraction electronic repulsion exchange and correlation

Electron interacting with itself

Kohn-Sham DFT

Express the electron density in an orbital basis set

Orbitals consist of fictitious, noninteracting electrons

Density for noninteracting system can be solved *exactly*

Hartree-Fock:Approximate solution to real problemKohn-Sham:Exact solution to hypothetical problem

Local Density Approximation: XC energy as a functional of *local* electron density, integrate over all space

$$\mathbf{E}_{xc}^{\text{LDA}}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \epsilon_{xc}(\rho(\mathbf{r})) d\mathbf{r}$$

Generalized Gradient Approximation: XC energy as a functional of electron density and gradient

$$E_{xc}^{GGA}[\rho(\mathbf{r})] = E_{xc}^{LDA}[\rho(\mathbf{r})] + \Delta E[\nabla \rho(\mathbf{r})]$$

Meta-GGA: Use higher order gradients

Hybrid Functionals

Observation:

For Hartree-Fock, we didn't know the correlation energy, but we knew the exchange energy *exactly*

Divide XC functional into X and C functionals

$$E_{xc}[\rho(\mathbf{r})] = E_x[\rho(\mathbf{r})] + E_c[\rho(\mathbf{r})]$$

Use exchange energy from HF to obtain a more accurate approximation

$$\mathbf{E}_{x}[\rho(\mathbf{r})] = a\mathbf{E}_{x}[\rho(\mathbf{r})] + (1-a)\mathbf{E}_{x}^{\mathrm{HF}}$$

Some Examples

Increasing Cost Increasing Accuracy

Hybrid-meta-GGA: M06, M06-2x, TPSS0

Hybrid-GGA: B3LYP, PBE0, B3P86

Meta-GGA: M06-L, TPSS

GGA: PBE, BP86, B97

LDA

Which functional should I use? Check benchmarks Do the experiment!

Some Examples

Increasing Cost Increasing Accuracy

Hybrid-meta-GGA: M06, M06-2x, TPSS0

Hybrid-GGA: B3LYP, PBE0, B3P86

Meta-GGA: M06-L, TPSS

GGA: PBE, BP86, B97

LDA

Can we improve accuracy even more?

Range-Separated Hybrids

Key Concept:

Don't use a fixed mixture of Hartree-Fock and DFT exchange, vary exchange with distance

Range-Separated Hybrids

Examples:

 $CAM-B3LYP, \omega\text{-}B97X\text{-}D, \omega\text{-}B97M\text{-}V$ Good for noncovalent/long-range interactions

Key Concept:

Mixing in some Hartree-Fock improved exchange energy

Can we use the same strategy to improve correlation energy?

Remember: Hartree-Fock is not correlated

Use MP2 to improve correlation energy

 $E_{xc}[\rho(\mathbf{r})] = a_x E_x[\rho(\mathbf{r})] + a_c E_c[\rho(\mathbf{r})] + (1 - a_x) E_x^{HF} + (1 - a_c) E_c^{MP2}$

Examples:

B2-PLYP, mPW2-PLYP, B2K-PLYP, DSD-PBEP86

Practical Considerations

Geometry Optimization

Find geometry where gradient is 0 (stationary point)

$$-\frac{\partial E}{\partial x} = Force \quad \nabla E = \begin{pmatrix} \frac{\partial E}{\partial x_1} \\ \vdots \\ \frac{\partial E}{\partial x_n} \end{pmatrix} = Gradient$$

Eigenvalues of H determine concavity (minimum vs. saddlepoint)

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^{2} \mathbf{E}}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} \mathbf{E}}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathbf{E}}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} \mathbf{E}}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \mathbf{E}}{\partial x_{2} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathbf{E}}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} \mathbf{E}}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} \mathbf{E}}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} \mathbf{E}}{\partial x_{n} \partial x_{n}} \end{pmatrix} = \text{Hessian}$$

36

Practical Considerations

-3 kcal/mol

Your calculations are only as good as your geometries!

- Consider conformational effects when building a structure
 - When in doubt, run the calculation for each conformer
 - Always do an optimization and frequency calculation

Practical Considerations

Explicit Solvation

 \mathcal{M} \sim \sim \sim \mathcal{M} \sim \mathbf{M} \sim

Implicit Solvation

We usually aren't interested only in gas-phase properties

Explicit solvation: Add solvent molecules (expensive/inconvenient, but sometimes necessary) Implicit solvation: Create a polarizable surface around molecule corresponding to solvent dielectric and polarizability

Spin contamination

Basis set superposition error

Semiempirical/Composite DFT Methods

Dispersion corrections (D3(0), D3(BJ), D4)

Relativistic Corrections (ZORA, Douglas-Kroll-Hess)

Excited state calculations (TD-DFT)

Optimization algorithms (RFO, quasi-Newton, etc.)