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Abstract
Many elements in the periodic table form ionic compounds; the crystal lattices of such compounds contain cations and 
anions, which are arranged in the way that these cations and anions form two interpenetrated sub-lattices (cation and anion 
sub-lattices). Up to now, a number of ionic compounds are known, in which cations or anions are fairly mobile within the 
corresponding sub-lattice; these compounds are termed as “solid-state electrolytes”. Many solid-state electrolytes with such  
moveable cations and moveable anions are known to date. Following the footsteps of the established Li-ion battery technol-
ogy, an interest in the Li+-conducting solid-state electrolytes appears, and all-solid-state lithium battery has started its journey 
to accompany the reigning counterpart. The valence and ionic radius of ions, the crystal structure, and intrinsic defects of the 
material are the prime properties of the solid-state electrolytes, which determine the ion mobility in the crystal framework. 
There are a number of solid-state electrolyte structures that demonstrate high Li+-mobility and high Li+ conductivity (Li+ 
superconductors) in the range of 10−2 to 10−3 S/cm at room temperature, which is comparable to the ionic conductivity of 1 M 
LiPF6 (~ 10−2 S/cm), but the conductivity can dwindle highly by up to 5–6 orders of magnitude within the different materials 
that belonged to the same crystal structure family. Moreover, the surface or interface properties are also crucial factors in 
tailoring the ionic conductivity of practical polycrystalline solid electrolytes. The interfacial properties and compatibility 
with electrode materials have a high impact on the performance of electrochemical cells with solid electrolytes. Although 
the potential window of many solid electrolytes is high enough, there are solid electrolytes which are unstable at low oper-
ating potentials while others are not stable towards the cathodes; these features result in the appearance of non-conductive 
interface layers resulting in a low interfacial charge–transfer kinetics. In this review, we discuss the latest advancements in 
the field of Li-ion conducting electrolytes from the points of their fundamental properties. The latest achievements in the 
fields of cell design and improvements of (solid-state electrolytes)/(various anodes) and (solid-state electrolytes)/(various 
cathodes) compatibilities are considered as well.

Introduction

Crystal lattices of solid ionic compounds contain cations 
and anions, which form two interpenetrated cation and anion 
sub-lattices. These compounds demonstrate the feature of 
ionic conductivity; the phenomenon is that cations and/or 
anions are somewhat mobile within the corresponding sub-
lattice. Such compounds with a reasonably high value of 
ionic conductivity are commonly termed “solid-state elec-
trolytes” (SSEs). This phenomenon has been known for quite 
some time; Faraday first discovered this effect examining 
the conductivity of Ag2S and PbF2; during the nineteenth 
and first half of the twentieth century, a remarkable num-
ber of SSEs were discovered [1]. Nevertheless, up to the 
end of 1960, an operable battery with solid electrolyte was 
not demonstrated; to the best of our knowledge, specific 
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designs of such secondary batteries with solid electrolyte 
(ß-alumina and NASICON-type glassy SSE) were reported 
only in 1968 [2]. Ag+-ion cell with RbAg4I5 electrolyte was 
the first reversible room-temperature rechargeable cell with 
solid electrolyte; its description of the cell was first reported 
in 1969 [3]. First reports on rechargeable Li-ion cells with 
solid Li+-conducting electrolyte appear in the beginning 
of 1990. These were thin film (Li-metal)/TiS2, (Li-metal)/
V2O5, and (Li-metal)/LixMn2O4 cells with thin film (~ 1 µm 
thick) solid electrolytes composed of lithium phosphorus 
silicates or lithium phosphorus oxynitrides [4]. In some 
ways, these works may be considered as the starting point 
of the development of modern rechargeable Li-ion batteries 
with SSE. A sketch of historical solid electrolyte discovery 
lineage is presented in Fig. 1 [5, 6], and all the abbreviations 
are listed in Table 1.

Lithium-ion batteries (LIBs) with liquid electrolyte are 
composed of cathode and anode separated with electrolyte-
permeable (porous) separator and filled with the electrolyte; 
corresponding active materials are affixed to the cathode and 
the anode, and the liquid electrolyte is composed of a lithium 
salt solution in an organic solvent. Usually, both cathode and 
anode are porous and filled with the electrolyte for providing 
the Li+ access on the full thickness of the active material 
layer of the electrodes. LIBs with solid electrolyte (all-solid-
state lithium-ion battery, ASSLIB) are composed of cath-
ode and anode that were separated one from another by the 
membrane made from SSE. The most common anode mate-
rial for ASSLIB is metal lithium, and ASSLIB cathodes are 
composites of active cathode material and SSE; such struc-
ture provides Li+-ions access on the full thickness of the 
cathode; the thin film versions of ASSLIB (micro-ASSLIB) 
suggest that both SSE layer and the active cathode material 
are thin films. Currently, energy storage market is dominated 
by LIBs with liquid electrolytes because of numerous merits 
of these LIBs such as high energy density, high cycling effi-
ciency, high cycling, and operational life. LIBs with liquid 
electrolytes have a number of drawbacks along with these 
uncontestable merits, though, and these drawbacks are best 
to be addressed by the substitution of the organic electrolytes 
with inorganic solid electrolytes.

•	 Most of organic electrolytes are flammable, whereas most 
of solid electrolytes are safe in this regard; the implemen-
tation of solid electrolytes reduces the number of combus-
tible materials making the energy storage system safer.

Fig. 1   A historical outline of 
the development of solid-state 
electrolytes (reproduced with 
permission from [5])

Table 1   List of abbreviations

ASSB All-solid-state batteries
LIBs Li-ion batteries
SSEs Solid-state electrolytes
SE Solid electrolytes
NASICON Na1+xZr2SixP3−xO12,(0 < x < 3), sodium superionic 

conductor
LISICON Lithium superionic conductor, γ-Li3PO4-type oxides
LATP Li1+xAlxTi2−x(PO4)3

LAGP Li1+xAlxGe2−x(PO4)3

LLZO Li7La3Zr2O12

SEI Solid electrolyte interface
CTE Coefficients of thermal expansion
ASSLIB All-solid-state lithium-ion battery
LTP LiTi2(PO4)3

LGP LiGe2(PO4)3

LFP LiFePO4

BN Boron nitride
LZP LiZr2(PO4)3

LMO LiMn2O4

LCO LiCoO2

NCM LiNi1/3Co1/3Mn1/3O2

SPS Spark plasma sintering
LLZO Li7La3Zr2O12

GB Grain boundaries
LLTO Li3xLa2/3−xTiO3

CV Cyclic voltammetry
LGVO Li3.5Ge0.5V0.5O4

LiPON LixPOyNz

DFT Density functional theory
RFMS Radio frequency magnetron sputtering
ALD Atomic layer deposition
PVP Physical vapour deposition
CVD Chemical vapour deposition
PLD Pulsed laser deposition
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•	 Many SSEs have voltage stability windows much wider 
than any liquid electrolyte allowing implementation of 
high-voltage cathode active materials; also, the SSE layer 
may be prepared as thin as 1 µm, in contrast with stand-
ard 25 mm in case of separator for Li-ion cell with liquid 
electrolyte. These facts make possible further increase of 
the energy density of Li-ion cell on switching from liquid 
to solid electrolytes.

•	 Li-ion batteries with liquid electrolytes and Li-metal 
anodes are plagued with formation of Li-dendrites, 
whereas solid electrolytes may eliminate or considerably 
hinder dendrite growth; the implementation of Li-metal 
anodes substantially increases the specific energy of the 
battery.

•	 On one hand, operation temperature window of a liquid 
electrolyte is limited by the liquid phase stability tem-
perature, and a battery may be destroyed by electrolyte 
boiling; on the other hand, frozen electrolytes lose their 
conductivity. Temperature operation windows of solid 
electrolytes are substantially wider than the temperature 
operation windows of liquid electrolytes; SSEs can func-
tion at lower temperatures than freezing points of most 
liquid electrolytes and at higher temperatures than boil-
ing points of most liquid organic electrolytes.

•	 There are also some integration advantages of ASSLIB: 
the cells with SSE may easily be stacked in a bipolar 
arrangement forming a high-voltage body, thus providing 
simplified system architecture.

ASSLIBs, due to the outlined advantages, have attracted a 
lot of attention in recent decades [7–14]. While Li+-conductive 

SSE can be divided into the following categories: inorganic 
crystalline and amorphous (glass-type) materials, organic 
polymer materials, and composite electrolytes (which are a 
mix of inorganic particles and (organic or inorganic) solid 
electrolyte matrix), this review is solely focused on the current 
development in the field of inorganic oxide Li+-conductive 
SSEs and ASSLIB with such SSEs.

From ASSLIB design requirements point of view, SSE 
should be prepared in compact sheet (thin pellet, membrane) 
form (Fig. 2). Regarding inorganic SSE, while monocrystal-
line SSEs were reported [15, 16], most of the reported SSE 
materials had a polycrystalline or amorphous (glass-type) 
structure. Although preparation of amorphous and poly-
crystalline thin SSE films was reported [17], the most com-
mon methods of SSE preparation are (i) a melt-quenching 
(glass–ceramic) synthesis, (ii) a solid-state synthesis, and 
(iii) wet-chemistry synthesis followed by the prepared SSE 
powder sintering [18–20]. Whereas monocrystalline and 
film-like SSEs form compact membranes in a natural way, 
the latter three preparation processes first result in powdered 
SSE material:

	 (i)	 According to the melt-quenching (glass–ceramic) 
process, precursor ingredients are mixed and then 
the mix is melted in a crucible followed by pour-
ing the melt into moving rolls of rolling machine 
or onto a massive metal plate; thus, compact glass 
SSE sheets are formed; these glass ceramics subse-
quently undergo crystallizing at a moderate tempera-
ture [21, 22]. The morphology of such sheets often 
features the presence of micro-voids, though. The 

Fig. 2   Li-ion cell with liquid and solid electrolytes. Acquired and modified from [5]

1811Journal of Solid State Electrochemistry (2022) 26:1809–1838



1 3

micro-voids result in the reduced density of the SSE 
sheets, compromises the SSE sheets ionic conduc-
tivity, and induces dendrite growth; also, SSE sheet 
cracks may be induced because of high mechanical 
stress that originated from a large temperature gra-
dient between the outside and inside SSE sheet sur-
faces that appeared in the course of quenching [23]. 
The issue is commonly handled by complementing 
of the melt-quenching with ceramic processing. For 
this end, the melt-quenched glass or glass/crystalline 
SSE bodies are grinded, the powder is pressed into 
green pellets, and the pellets are sintered [24, 25]. 
The sintering is conducting at temperatures 50–80% 
of the melting temperature; the compacting of the 
powder takes place because of atomic inter-diffusion 
between the powder particles [26].

	 (ii)	 Regarding solid-state SSE syntheses, these processes 
are in some respects similar to the sintering of melt-
quenched SSE powder; the difference is that pow-
dered precursor ingredient mixes do not go through 
melting but are directly pressed into green pellets and 
undergo heat treatment at temperatures below melt-
ing point, so that atomic inter-diffusion between the 
powder particles comes along with chemical reac-
tions, and SSE material appears.

	 (iii)	 The essence of the wet chemistry preparation is that 
SSEs appear as the result of liquid-state reactions; for 
this end, the suited set of initial compounds is dis-
solved in a proper solvent. The initiated liquid-state 
interactions of the compounds result in precipitation 
of the corresponding SSE precursor; this is after the 
sediment undergoes a thermotreatment. At this stage, 
the prepared SSE material is in a powder form; the 
compunction is achieved by ceramic processing (sin-
tering) [27–29].

Thus, up to now, most of the results in the field of inor-
ganic SSE were based on polycrystalline ceramic-type SSE 
material studies, and most of the experimental ASSLIBs 
with inorganic SSE were prepared using polycrystalline or 
glass-type ceramic SSE.

The common requirements for ceramic SSE material to 
be used for ASSLIB are:

•	 High Li+ conductivity: It is noteworthy that conductivity 
of polycrystalline SSE is composed of two consecutively 
connected constituents, i.e. in-grain (bulk) conductivity 
and interface (grain-to-grain contacts) conductivity.

•	 Low SSE electronic conductivity: This parameter gov-
erns the battery self-discharge and the energy efficiency 
of battery cycling.

•	 Li+-transference number should be close to 100%; this is 
the case for most current ceramic SSE, though.

•	 Chemical and electrochemical stabilities at the cathode/
SSE interface.

Regarding chemical stability at the SSE/(active cathode 
material) interface, it should be considered not only in 
the battery operational temperature interval, but also con-
sidering the ASSLIB preparation technology temperature 
requirements. There is an apparent necessity of having 
the SSE/(cathode active material composite) with intimate 
contacts between SSE grains and cathode material grains; 
Fig. 3 schematically presents typical morphology of such 
SSE/(cathode active material) composite body. The point 
is, though, that most of the active cathode materials are 
powdered oxides, and that generally, oxide-based com-
pounds are characterized by their firmness and fragility, 
so sintering is a common way to prepare the SSE/(cath-
ode active material) composite structures with the required 
morphology in the case of oxide-based SSEs.

Fig. 3   (a) ASSLIB with compact cathode, low active cathode material loading per the electrode area unit; (b) ASSLIB with composite cathode, 
high active cathode material loading per the electrode area unit (modified figure reproduced with permission from [30])
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As a result, green pellets of SSE/(cathode active mate-
rial) mix undergo heating in the course of sintering; on one 
hand, the heating temperature should be high enough for 
providing the pellet sintering, and on the other hand, SSE 
and cathode active material should not enter into chemi-
cal reactions at sintering temperatures. The best is if such 
reactions are thermodynamically disadvantageous; at least, 
the reaction rates should be significantly lower than the 
sintering rate.

•	 Mechanical stability at the cathode/SSE interface.
•	 The serious source of Li-ion transport failure is the 

mechanical degradation of the SSE/(cathode mate-
rial) interface. The delamination of the SSE/(cathode 
material) contacts with cycling originates from volume 
changes of cathode material with Li+ intercalation/dein-
tercalation [31]. These changes result in “breathing” of 
linear dimensions of the cathode side of the interface 
and in appearance of periodical tensile and contraction 
stresses; these stresses finally result in SSE/(cathode 
material) contacts delamination, build-up of the Li+-ion 
transport resistance, and the ASSLIB cycling fade. Over-
all, the delamination rate and degree depend on cathode 
expansion coefficient (the expansion of 1 mol of cathode 
per intercalation of 1 mol of Li+), the elasticity and hard-
ness of SSE and cathode material (typical values of these 
parameters certify that commonly oxide SSEs are fragile 
materials [32]), and [SSE]/[cathode material] interface 
adhesion [33].

•	 Chemical and electrochemical stabilities at the lithium/
SSE interface are a very desirable property since the 
most advantageous ASSLIB designs suggest the imple-
mentation of Li-metal anode.

•	 A wide electrochemical stability window in order to benefit 
from the high-voltage cathode material implementation.

•	 Good thermal stability: The requirement is mostly related 
to the SSE interaction with metal Li on heating evolved 
in the case of dendrite formation on ASSLIB charging.

•	 The morphology of the ceramic SSE material should 
inhibit dendrite formation.

•	 The adequate mechanical strength is also an advantage; 
besides, the feature is very important for ASSLIB manu-
facturing.

Brief introduction into Li+ conduction mechanisms 
in ceramic SSEs

The basic assumption regarding inorganic crystalline Li+–SSE 
bulk ionic conductivity phenomenon is that vacancies, in 
lattice and interstitials in cationic sub-lattice, are treated as 
being charged moveable species [34, 35]. Three types of cat-
ion migration are commonly taken into consideration; these 
types are listed below and also are being illustrated in Fig. 4.

It is noteworthy that only a fraction of cations in a lattice has 
an ability to move having vacant stable or meta-stable lattice 
nodes within reach. Figure 4(a–c) illustrate the processes (i), 
(ii), and (iii) that make up the ionic drift phenomenon in SSE.

	 (i)	 Cation vacancy diffusion: Physically, this mechanism 
corresponds to a cation hopping from its initial posi-
tion into the adjacent vacant lattice site.

Fig. 4   Cation migration mechanisms and associated energy profiles. 
(a) The arrows indicate three typical migration mechanisms: vacancy, 
direct interstitial and correlated (interstitialcy) involving a single or 
multiple sites (blue and red, respectively). Circles represent cations 
in stable (green) and metastable (orange) sites of a model crystal lat-
tice. Dotted lines represent the transition state for cation hopping as 
imposed by the anionic framework (not shown explicitly). (b, c) The 
energy profiles associated with cation migration via direct vacancy 
or interstitial hopping (b) and correlated hopping (c) are shown with 
their associated hopping energies, Em, hopping distances α0 and hop-
ping frequencies, ν0 (reproduced with permission from [35]) 
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	 (ii)	 Direct interstitial cation transfer between partially 
occupied interstitial (meta-equilibrium) positions.

	 (iii)	 Correlated cation migration (knock-on migration); 
according to this mechanism, the interstitial ion 
migrates toward adjacent lattice node displacing the 
occupying ion into the next site.

Amorphous (glass) inorganic SSEs potentially present 
some substantial advantages over polycrystalline ceramic 
SSE in respect of flexibility, uniformity, and dense mor-
phology; these materials do not demonstrate grain bound-
ary resistance and grain boundary related anisotropy of Li+ 
mobility. These attractive features stimulated the extensive 
attempts to understand the mechanism of cationic conduc-
tivity in amorphous SSEs. While a wealth of experimental 
data on the amorphous Li+–SSEs are reported up to now, a 
detailed mechanism of ion conductivity in amorphous SSE 
is still not well understood, and no universal theory of glassy 
SSE is developed. In this context, the principal challenges 
are that such materials not only have no long-range crys-
talline order and thus regular symmetrical long-range ion 
migration pathways, but also do not have regular symmet-
ric short-range coordination order. The latter circumstance 
makes it difficult to develop a theory of the elemental cation 
hopping. Despite of a lack of a universal theory for describ-
ing Li+-ion mobility in various types of amorphous SSEs, 
several hypotheses have been offered for explaining the phe-
nomenon [36–38].

The latest development in the fields of inorganic 
oxide ceramic Li‑ion SSE

Li+-conducting oxide SSEs may be classified into the fol-
lowing six groups on the basis of their atomic structure, and 
we will heavily discuss each of the listed materials below:

•	 NASICON-type.
•	 Garnet-type.
•	 Perovskite-type.
•	 Anti-perovskite-type.
•	 LISICON-type.
•	 Amorphous oxides.

NASICON‑type Li‑ion SSE

Conductivity of  the  Li.+‑NASICON‑ceramics  In 1976, Good-
enough first named a 3D network of superionic Na ion con-
ductor, with a formula NaMe2(PO4)3 (here Me stands for four 
valence metals, [Me+4], like Ge, Ti, Sn, Hf, and Zr), partially 
substituted P by Si, as NASICON (Na1+xZr2SixP3−xO12, 
0 < x < 3); these types of materials were studied earlier in the 
1960s [39, 40]. Following this report, Li+ versions of NASI-
CON-type compounds attracted a substantial attention as 

promising SSE for ASSLIB; numerous NASICON-type com-
pounds LiMe2(PO4)3 were prepared and studied for Li+–SSE 
[41–47]. Whereas most of these Li+-NASICON compounds 
had a rhombohedral symmetry, compounds with triclinic 
distortion also are found. The framework of these materials 
composed of Me2(PO4)3 units; these units are assembled so 
that two MeO6 octahedra have common oxygen atoms with 
three PO4 tetrahedra forming a 3D scaffold of the material. 
Inside this scaffold, Li+-ions are usually located in M1 sites. 
M1 sites are positioned between two MeO6 octahedra being 
surrounded by six oxygen atoms, and each M1 site is sur-
rounded by six empty M2 sites; the M2 site is “a double site” 
composing of two M3 and M’3 sites with the same energy. 
The process of Li+ conductivity composes of cooperative 
transport of Li+-ions from the M1 site to the nearest M1 site 
through the midway M2 site. The energy barrier between M1 
and M2 hinders Li+ transition and presents a kind of “bottle-
neck” obstructing the Li+ conductivity [48, 49]. The need of 
penetrating through this barrier results in a very low cation 
conductivity of LiMe2(PO4)3 compounds. For instance, NASI-
CONs LiTi2(PO4)3 (LTP) and LiGe2(PO4)3 (LGP) with rhom-
bohedral symmetry lattices are providing the most favourable 
frameworks for Li-ion migration, but the reported conductiv-
ity of LiTi2(PO4)3 is 4.4 × 10−8 S/cm, and the reported conduc-
tivity of LiGe2(PO4)3 is 5.9 × 10−9 S/cm [50].

The conductivity of Li+-NASICONs may be substantially 
enhanced by aliovalent substitution. Li1+xMe2−xMx(PO4)3 pre-
serves NASICON structure on partial metal Me substitution 
for a three-valence metal M (here M stands for M+3 metals 
like Al, Y, etc.) in LiMe2(PO4)3 compound, while the mate-
rial structure turns to be more dense, and Li+ concentration 
increases. The additional Li+ partially populates sites M3 and 
M’3, which in turn decrease M1 site population; this circum-
stance assists Li+ hopping between adjacent partially popu-
lated Li+ sites facilitating long-range Li+ migration along con-
ductive pathways through the SSE [51–55]. This approach is 
now dominated in NASICON SSE development, and a num-
ber of Li1+xAlxTi2−x(PO4)3 (LATPs) and Li1+xAlxGe2−x(PO4)3 
(LAGPs) NASICONs with improved conductivity were 
reported [56]. Up to now, 5.1 × 10−3 S/cm for total conduc-
tivity of Li1.2Al0.2Ti1.8(PO4)3 ceramic [57] was reported as 
the highest conductivities of NASICON SSE ceramics; 
regarding in-grain conductivity, such values at 2.77 × 10−4 
S/cm (in-grain conductivity of Li1.8Al0.2Zr1.8(PO4)3 
ceramic [54]), 7.76 × 10−4 S/cm (in-grain conductivity of 
Li1.5Al0.5Ge1.5(PO4)3 ceramic [58]), 5.826 × 10−3 S/cm (in-
grain conductivity of Li1.5Al0.33Sc0.17Ge1.5(PO4)3 ceramic 
[59]), and 5.63 × 10−3 S/cm (in-grain conductivity of 
Li1.4Al0.4Ti1.6(PO4)3 ceramic [60]) were reported.

The total conductivity of the polycrystalline ceramic 
SSE body depends on the in-grain and inter-grain (contact) 
resistances to the Li+ transport connected in series; in most 
cases, the inter-grain resistance is significantly higher than 
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the in-grain resistance [51, 61, 62], so substantial efforts 
have been invested in improving the inter-grain lithium-ion 
mobility.

It is currently thought that a low inter-grain conductivity 
is related to the following factors:

•	 The presence of voids and cracks at the grain interface is 
compromising Li+ inter-grain mobility; the feature goes 
hand in hand with low ceramic SSE density compared 
with the theoretical X-ray density of the material.

•	 The presence of alien phases at grain interfaces; the 
phases appear in the course of SSE ceramic sintering, 
and these phases may suppress Li+ mobility.

•	 The grain lattice distortions at the grain boundaries. The 
corresponding lattice mismatch at grain interfaces results 
in formation of charged double-layer structure, and such 
interface structure constitutes a substantial impediment 
to Li+ mobility even in the absence of boundary-related 
alien phases or such morphological barriers as sub-
micron cracks and voids.

(i) The influence of the grain interfaces morphology on 
the inter-grain conductivity: The influence of the grain 
interface morphology on the inter-grain conductivity and 
the ways of the control of the interface morphology are 
well reported. Various methods of the SSE ceramic com-
pactness control were employed by different authors, and 
it was demonstrated that the increase of the density of 
SSE ceramic usually goes hand-in-hand with enhance-
ment of inter-grain conductivity.

✔ Preparation of LATP ceramic with enhanced density 
by intermixing precursor powders with bimodal particle 
size distribution [63] and by applying a particular com-
plex sintering procedures [64, 65] was reported; it was 

demonstrated that the increase of the ceramic density is 
accompanied with suppressing of grain border defect con-
centration and inter-grain voids and the enhancement of 
inter-grain conductivity.
✔ The other avenue of the grain interface modification 
on behalf of inter-grain conductivity enhancement is the 
employment of sintering aids. In this way, grain interfaces 
of Li1.3Al0.3Ti1.7(PO4)3 were modified by the addition of 
SnO–P2O5–MgO glass (SPM, 0.7 wt%) [66], B2O3 and 
Bi2O3 [67, 68], Li2.9B0.9S0.1O3.1 [69], and Li2WO4 (7 w. 
%) [70]. The glass-forming sintering aids increase the 
ceramic densities favouring grain growth and patching 
up the interface voids and cracks; it was demonstrated 
that the sintering aids are securing the grain fitting, thus 
increasing the inter-grain SSE conductivity; the effect is 
illustrated in Fig. 5 [71].

(ii) The presence of alien phases at grain interfaces: 
LATP/LAGP SSE conductivity is plagued by the pres-
ence of secondary phases at the grain interface; most of 
these phases, which form in the course of sintering, are 
poorly Li+-conductive. The most common phases are ber-
linite AlPO4 and also a complementary LiTiOPO4 phase 
[51, 72, 73]. It was demonstrated that the excess of phos-
phorus and elevated sintering temperatures are favourable 
for berlinite formation [74], whereas the phosphorus defi-
ciency favours formation of LiTiOPO4 [75]. Regarding 
the secondary phases, their action is more complicated 
than a mere formation of continuous low-conducting 
shells around SSE grains [51]. It was reported that ber-
linite forms nano-sized particles, and these particles are 
concentrating at the SSE grain boundaries; Li+-ions are 
adsorbing onto these particles during the ion inter-grain 
passage. This process results in the appearance of the 
positive space charge at the grain interfaces:

Fig. 5   Grain border fitting 
improvement by sintering aid, 
LAGP ceramic, and Y2O3 
sintering aid (modified figure 
reproduced with permission 
from [71])
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AlPO4 + Li+  ↔ [AlPO
4
]Li

+

Li+

The space charge limits the transport of Li+ through the 
grain interfaces, and Li+ inter-grain passage hindrance inten-
sifies as the interface berlinite particles become more numer-
ous and/or larger [76].

These findings highlight the role of interface insulating 
phases in inter-grain conductivity of NASICON-type SSE 
and substantiate the efforts for diminishing the formation of 
the insulating secondary phases. The common approach is 
the employment of sintering aids; the presence of sintering 
aids markedly lowers the SSE ceramic sintering tempera-
tures limiting the formation of insulating berlinite, substitut-
ing it for Li+-ion conductive phases.

✔ LATP fluorination reduces the formation of secondary 
phases (viz. AlPO4 and LiTiOPO4) on the SSE sinter-
ing improving the SSE inter-grain and total conductivity; 
total conductivity of the Li3.6Al0.8Ti4.0P7.6O29.75F0.5 was 
reported to be 3.85 × 10−5 S/cm (at room temperature) 
[77].
✔ The sintering of LATP ceramic with Li4SiO4 and LiF 
sintering aids results in the appearances of Li+-conducting 
interface phases (viz. LiTiPO5, LiAlP2O7), thus improv-
ing the inter-grain conductivity [78, 79].
✔ The sintering of Li1.3Al0.3Ti1.7(PO4)3 ceramic with 
0.75·Li2O × 0.25·B2O3 [80] and LiBO2 [81] as sintering 
aids results in decomposition of inter-grain berlinite and 
other insulating aluminophosphate phases and forma-
tion of some lithium conducting phosphates instead. The 
process is accompanied with the increase of inter-grain 
conductivity of the SSE ceramic.

(iii) The impact of grain lattice distortions at the grain 
boundaries on inter-grain conductivities: SSE grain lat-

tices undergo misalignment and accompanied distortion 
at the interfaces; Fig. 6a and b demonstrate this feature of 
SSE ceramics; this Å-scale interface phenomenon consti-
tutes a substantial impediment to Li+ inter-grain transport 
[83–85]. Naturally, the border between two misaligned 
grains is a layer with some thickness; it was demonstrated 
that the conductivity of such transition layer strongly 
depends on the layer thickness; the interface with sharp 
transition between lattices demonstrates a substantially 
higher resistance to the Li+ transport than a “thick” inter-
face with a smooth, gradual transition (Fig. 6c).

Additionally, the lattice mismatch results in the emer-
gence of a nano-sized double-layer charged arrangement, 
in which the appearance assumes the formation of Li-ions 
depleted layer; this structure also presents an obstacle for Li-
ions trans-interface transport [86]. The presented considera-
tion provides an additional conceptual basis for improvement 
of the inter-grain conductivity by sintering aid introduction; 
their implementation is favouring the appearance of seam-
less, gradual, and smooth grain interfaces increasing the 
inter-grain conductivity [86, 87].

 Stability of the Li.+‑NASICON‑ceramics in contact 
with electrode materials

The state of SSE/cathode and SSE/anode interfaces is the 
important aspect of ASSLIB design.

Stability toward Li‑metal anode  The most developed NASI-
CONs with the highest Li+ conductivities are LATP and 
LAGP; theoretically calculated values of the reduction 
potentials are 2.17 V (vs. Li/Li+) for LATP and 2.70 V 
(vs. Li/Li+) for LAGP [88], whereas the experimentally 

Fig. 6   (a) HRTEM image of Li1.3Al0.3Ti1.7(PO4)3 ceramic sample; grain 
boundary is blue-circled; (b) HRTEM image of Li1.3Al0.2B0.1Ti1.7(PO4)3 
ceramic sample (B is glass-former); grain boundary is marked with 
white dash corridor (reproduced with permission from [82]); (c) theo-

retical estimate of the resistance (ρ) to Li+ transport through misaligned/
distorted grain boundary depending of the thickness (δ) if the distorted 
layer (reproduced with permission from [82])
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determined values are somehow different, namely, 2.65 V 
(vs. Li/Li+) for LATP and 1.85 V (vs. Li/Li+) for LAGP [89]. 
In any case, this suggests that LATPs and LAGPs are not sta-
ble in contact with Li-metal anode. The first reaction step is 
the local reduction of Ti4+ to Ti3+ and formation of the areas 
with electronically conductive phase Li3AlxTi2−x(PO4)3; 
this phase is less dense than the original LATP phase. The 
generated wedging stresses initiate cracking of the LATP 
matrix, and the cracks compromise Li+ conductivity. Since 
Li3AlxTi2−x(PO4)3 phase is electronically conductive, the 
SSE reduction continues at the second step of the process, 
and the reaction products precipitate onto SSE/Li interface 
[90]. A similar two-step chemomechanical process of the 
interface degradation takes place at the LAGP/(Li-metal) 
boundary. The films, which form onto Li/LATP and Li/
LAGP interfaces, contain P, LiTiPO5, AlPO4, and Li3PO4, 
and Ge, GeO2, Li4P2O7, and AlPO4 correspondingly; the 
films demonstrate mixed ion-electronic conductivity, and 
thus, they are not passivated [88], becoming thicker with 
time, which results in instability of SSE/anode interface and 
compromises the interface conductivity. The apparent solu-
tion is the introduction of a protecting buffer layer between 
Li-anode and LATP/LAGP [91, 92].

While the above deliberation distinctly suggests that a 
preferable protective layer should be Li+-conductive but 
electronically insulating, recently, some relatively efficient 
metallic protective buffer layers for LATP/LAGP and Li-
metal anode interface were reported:

✔ It was reported that 30-nm Cr protective layer sub-
stantially increased the cycle life of Li/Cr/LAGP/
LiFePO4 (LFP) cell, up to 200 cycles [93]. The coating 
was thin enough for letting Li+-ions to pass through 
the films easily; it does not prevent the precipitation 
of the LAGP decomposition products, since Cr-surface 
potential follows the potential of underlying Li. The 
precipitated product film was reported to be substan-
tially more homogeneous and smoother than in the case 
of unprotected LAGP, though, and the authors relate 
the stability improvement with the change of interphase 
morphology, because unprotected film forms numerous 
wedges in the course of growth resulted in mechanical 
stress concentrations and the mechanical crumbling of 
the adjacent material layers accelerating SSE degrada-
tion [94, 95].
✔ The Li/Bi/LAGP/LFP cell with 20 nm Bi buffer film 
demonstrated stabile operation during 120 cycles [96]; 
the improvements were related to the formation of LiBix 
alloy and the moderation of the SSE film formation at the 
[alloy]/[SSE] interface.
✔ The Li/Ge/LAGP/LFP cell with 60 nm Ge buffer film 
demonstrated stabile operation during 120 cycles [97]; 

the testing symmetrical Li/Ge/LAGP/Ge/Li cell demon-
strated more than 100 cycles without a substantial degra-
dation, whereas the reference Li/LAGP/Li cell revealed 
a noticeable degradation after 25 cycles.

Second, an electronically non-conductive (mostly metal 
oxide) protective buffer layer between LATP/LAGP and 
Li-anode was employed for the interface protection; the 
employed films were thin enough for Li+-ions passing 
through the layer and were inert toward LATP/LAGP for 
moderating the interface reactions. It is noteworthy that 
these buffer films also alleviate dendrite development, 
because the anode dendrite growth is related to the elec-
tronic conductivity of SSEs [98]. Some examples for SSEs 
with buffer layers are listed below:

✔ The Li/ZnO/Li1.4Al0.4Ti1.6(PO4)3/LFP cell with ZnO 
buffer layer (≈200 nm thick) operated during 200 cycles 
without noticeable degradation [99].
✔ The Li/ZnO/LAGP/LFP cell with ZnO buffer layer 
(≈50 nm thick) showed a good capacity retention after 
100 cycles (0.5 C) [100]
✔ The Li/Al2O3/LATP/Al2O3/Li cell with Al2O3 buffer 
layer (≈15 nm thick, 150 ALD cycles) showed a good 
capacity retention after 300 cycles [101].
✔ The Li/Al2O3-ZnO/LATP/LFP cell with Al2O3–ZnO 
buffer layer (≈57 nm thick, Zn/Al at. ratio 25) showed a 
good capacity retention during 50 cycles (0.1 C) [102]
✔ The LFP/LATP/BN/Li cell retained 96.6% of initial 
capacity after 500 cycles for 70 days; BN coating was a 
highly defective polycrystalline film 5–10 nm thick [103].

While LATP and LAGP SSEs are the most extensively 
studied NASICON-type SSE because of their outstandingly 
high Li+ conductivity, the reduction of Ti+4 and Ge+4 on 
contact with lithium proves itself as the immanent feature 
of LATP and LAGP [104]. From the electrochemical point, 
the phenomenon causes the degradation of LATP/(Li-anode) 
and LAGP/(Li-anode) interfaces because the products of the 
SSE reduction exhibit mixed electronic–ionic conduction. 
This circumstance draws the attention to zirconium-based 
NASICONs (LiZr2(PO4)3, LZP). The rhombohedral modi-
fication of LZP (LZP is a polymorph material [105, 106]) 
has reduction potential of 2.20 vs. Li+/Li [107], so a film 
appears onto LZP/Li interface upon cycling. According to 
the phase equilibria diagram, the film is expected to be made 
from such passivating film-forming materials such as Li2O, 
Li3P, Li3PO4, and Li6Zr2O7 [108]; it was reported that the 
film was composed of Li3P and Li8ZrO6 compounds and that 
it conducts Li+-ions and passivates the interface against fur-
ther reactions having a stable resistance upon cycling [109].

It is noteworthy that Li+-ion mobility is inherently less 
in the un-doped LZP than in LGP or LTP [110], so the 
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improvement of LZP conductivity turns to be an important 
condition for development of [Li/LZP/…]-type ASSLIB 
configurations. Up to now, the highest reported conduc-
tivity of un-doped LZP is 1.8 × 10−4 S/cm (80 °C) [111]. 
Doping LZP delivered a substantial improvement of the 
SSE conductivities; the reported conductivity of Ca-doped 
LZP (Li1.667Ca0.333Zr1.667(PO4)3, LCZP) is 25 × 10−3 S/
cm, and the reported conductivity of Mg-doped LZP 
(Li1.667Mg0.333Zr1.667(PO4)3, LMZP) is 19 × 10−3 S/cm (at 
room temperature). Such high Li+-ion conductivities of 
LCZP and LMZP were attributed to the excess of Li+-ions 
in the transport pathways and the highly distorted LiOx poly-
hedrons [108].

Stability toward ASSLIB cathode materials

Calculated oxidation potentials are 4.21 V for LATP and 
4.27 V (vs. Li/Li+) for LAGP [88]; the experimentally deter-
mined values are in some way different, namely, 4.6 V (vs. 
Li/Li+) for LATP and 4.9 V (vs. Li/Li+) for LAGP [89]. In 
any case, CVs demonstrate the lack of oxidation current up 
to 5 V [112] (vs. Li/Li+) for LATP and 6 V [113, 114] (vs. 
Li/Li+) for LAGP, possibly because of kinetically sluggish 
reactions, so these SSEs are expected to be electrochemi-
cally stabile at cathode interfaces, and NASICON SSEs are 
the most cathodic stable among other classes of SSEs [115]. 
Regarding chemical stability, LATP is thermodynamically 
stable in contact with LiFePO4, but not in contact with such 
common cathode materials as LiMn2O4 (LMO), LiCoO2 
(LCO), and LiNi1/3Co1/3Mn1/3O2 (NCM) [116]. It was dem-
onstrated that only insignificant number of insulating phases 
appears on sintering at Li3V2(PO4)3/LAGP [117, 118], at 
LiCoPO4/LAGP [119], at Li3Fe2(PO4)3/LATP [120], and 
(expectably) at LATP/LFP [121] interfaces.

It should be underscored the impact of ASSLIB-compacting 
technique on the appearance of deleterious non-conductive 
films in-between SSE and cathode materials. There is a clear 
dichotomy between the requirements of intimate contacting of 
SSEs and cathode material grains and the SSE-cathode mate-
rial reactivity: On one hand, the rate of reactions at the SSE/
(cathode material) interfaces is often insignificantly small at 
room and near-room temperatures even if the reactions are 
thermodynamically favourable, but the reactions seriously 
accelerate at elevated temperatures during SSEs/cathodes 
sintering [122]; on the other hand, a common approach for 
achieving such contact is to implement an elevated sintering 
temperature.

One of the solutions is a scrupulous choice of the opti-
mal thermotreatment of the SSE/(cathode active material) 
joints; the fairly high conductive LATP/LCO [123, 124] and 
LATP/LiNi0.8Co0.1Mn0.1O2 [125] joints were prepared in this 
way. A more far-reaching way is to modify the technique of 
SSE/(cathode material) connection circumventing classical 

thermal sintering, resorting to flash sintering [126] and to 
spark plasma sintering [127]; up to now, the morphology 
and properties LAGP/Li3V2(PO4)3 [117], LATP/LiCoPO4 
[128], and LAGP/LiFePO4 [129] SSE/(cathode active mate-
rial) composites prepared by SPS were reported.

There is one more important feature of the implemen-
tation of high-temperature sintering for combining SSEs 
and cathode materials, namely, the prepared SSE/(cathode 
material) composite should be cooled down to the room 
temperature after sintering, and mechanical stresses emerge 
if the coefficients of thermal expansion (CTE) of the cath-
ode active material and CTE of the corresponding SSE 
are different. These stresses may develop into cracks and 
delamination-type defects, and this aspect is devastating 
for mechanical strength and conductivity of the ASSLIB-
related cathode/SSE composite [130]. The fundamental 
solution of the problem is to mate SSEs and cathode mate-
rials with CTEs, which are close to one another. In this rela-
tion, it is remarkable that the LATP/LFP couple has a fairly 
small thermal dilatation mismatch [131], which diminish 
the above stresses of the SSE/(cathode active material) 
composites.

Garnet‑type Li‑ion SSE

Conductivity of the garnet ceramics  Garnet SSEs have two 
crystal modifications, with lattices of tetragonal and cubic 
symmetry correspondingly [132]. The tetragonal phase 
belongs to the I41/acd space group with lattice parameters 
at = 13.134(4) Å, ct = 12.663(8) Å, and ct/at = 0.9641, and 
the cubic phase belongs to the Ia-3d space group with lat-
tice parameter ac = 12.9827(4) Å. The empirical formula of 
a garnet is C3A2B3O12, and atom C belongs to the site Ç 
with oxygen dodecahedral coordination, atom A belongs to 
the site Ạ with oxygen octahedral coordination, and atom B 
belongs to the site Ḅ with oxygen tetrahedral coordination 
[, 132, 133].

In garnet-type lithium SSE Li7La3Zr2O12 (LLZO), Ç sites 
are occupied by La, Ạ sites are occupied by Zr, and Ḅ sites 
and interspaces are occupied by Li [144]. Now, the main 
difference in between t-LLZO and c-LLZO is the Li occu-
pancy; c-LLZO only has two types of occupied positions 
for Li-ions (Li1-tetrahedral void 24d, Li2-eccentric octahe-
dral gap 96 h) and the tetragonal phase; there are three Li 
occupancies (Li1-tetrahedral void 8a, Li2-regular octahe-
dral gap 16f, Li3-eccentric octahedral gap 32 g). The Li-ion 
conductivity depends on the arrangement and occupancy 
rate of lithium in the Li sub-lattice. The Li-ion positions 
and vacancies in cubic phase are less ordered than in the 
tetragonal phase, and hence, the ionic transport in a tetrago-
nal phase is substantially more facile than in a tetragonal 
phase. Li1 and Li2 are in alternate positions in c-LLZO and 
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are concertedly occupied because of the repulsion between 
Li-ions in the positions (viz. if Li1 position is occupied, two 
other adjacent Li2 positions are vacant, and the next Li2 posi-
tions are filled, so Li+-ions may migrate along this path), and 
as the result, c-LLZO may reach a significant values, up to 
two–three orders of magnitude higher than conductivity of 
t-LLZO [132].

The issue is, though, that in the course of synthesis, a 
tetragonal modification of LLZO appears first, and it needs 
a prolonged (36 h or more) heating at temperatures 1200 °C 
(or higher) to convert the material into the more conductive 
cubic phase. A more practical way to stabilize cubic phase 
(c-LLZO) is to introduce atomic substitutions (commonly 
super-valent cations) into the garnet lattice; the c-phase sta-
bilizing effect of such introduction was reported by many 
research groups. The c-phase stabilizing alien cations may 
be positioned in Li-sites, in La-sites, and in Zr-sites; such 
dopants as Al, Ga, and Ge are good for Li-site doping, Ce 
is good for La-site doping, and Ta, Te, Nb, Sb, W, Mo, 
Cr, Y, and Ti are good for Zr-site doping [132, 134, 135]. 
The extensive discussions on the matter may be found in 
[136–139].

Apropos of the highest reported value of garnet SSE 
ceramic conductivity, it is ~ 2 × 10−3 S/cm [140, 141]. The 
conductivity of garnet-based SSEs may be further improved 
based on the consideration that apart from other properties 
of the material, the conductivity depends on the concentra-
tion of moveable Li+-ions; it has a maximum at some spe-
cific Li+ concentrations, and the maximal value depends on 
a particular parameter of c-LLZO cell and on the particulari-
ties of the doping cation(s) [142]. Thus, the dopant is better 
not only for stabilizing the cubic phase but also for maintain-
ing the optimal concentration of moveable Li+-ions in the 
SSE. The right choice of the synthetic procedure and the 
multi-site dopant strategy is a promising approach for gain-
ing the highest conductivity of c-LLZO [143]. Whereas this 
approach is centred on the in-grain conductivity of garnet 
SSE ceramics, this is in line with the recent reports, as the 
major part of the total conductivity of garnet SSE ceramics 
is the in-grain conductivity, and the inter-grain conductivity 
is only a small fraction of the total conductivity [144–147].

Stability of the LLZO ceramics in contact with electrode 
materials

Stability toward Li‑metal anode  Theoretically calculated 
LLZO reduction potential is ~ 0.05 V (vs. Li/Li+), and the 
end products of LLZO reduction are supposed to be Li2O, 
Zr3O, and La2O3 [148]. Whereas these calculations sug-
gest that generally LLZO is thermodynamically unstable 
in contact with Li-metal, practically the reduction poten-
tial insignificantly differs from [Li/Li+] potential, and thus, 

the driving forces for the reactions LLZO ↔ (Li2O, Zr3O, 
La2O3) are very small; it was reported that the LL(Al)ZO/
Li interface does not present a noticeable barrier for Li+-ion 
transport [149]. The experimental observations and calcula-
tions have revealed that under this circumstance, bulk chemi-
cal LL(Al)ZO decomposition does not take place; a thin 
near-contact layer of LL(Al)ZO gets enriched with lithium, 
which results in the formation of thin (6 nm) film of the 
tetragonal phase t-LL(Al)ZO at the interface:

The resulting thin tetragonal Li6.95Al0.25Zr2O12 film is 
actually “oxygen-deficient” when compared with the bulk 
of the SSE; the film passivates the interface being fairly 
Li+-conductive and electronically insulating [150, 151] and 
does not present a noticeable barrier for Li+-ion transport 
through the LL(Al)ZO/Li interface posing insignificant 
additional polarization resistance. The properties of such 
interface films essentially depend on the doping cations, 
though. Whereas the oxygen-deficient films at LL(Al)ZO/
Li and LL(T)ZO/Li interfaces were found to be passivating, 
the film at LL(Nb)ZO/Li interface was found to be grow-
ing with cycling (i.e. it is non-protective); this feature was 
related to the possible electronic conductivity of the film 
[152].

Nevertheless, it was found that Li+-ion transport experi-
ences hindrance passing LLZO/Li interface in the case of 
a permanent cycling; the origin of this effect is that Li side 
of the interface undergoes morphological reformation due 
to the injection and accumulation of metal vacancies in the 
course of lithium dissolution/deposition. The process ends 
up with a pore formation and a local interface delamina-
tion, and the related loss of physical contacts between SSE 
and lithium decreases the LLZO/Li interface conductiv-
ity. It was reported that the application of a permanent 
pressure (40 mPa and up) to the Li/LLTO/cathode contact 
helps to preserve the interface conductivity [153]. The 
other way to prevent the interface conductivity degrada-
tion is to deposit a lithiophilic interlayer between lithium 
and LLZO. While such film does not present noticeable 
obstacle for Li+ transport, it levels off lithium deposition/
dissolution preventing vacancy formation and their accre-
tion and emergence in the micro-scale delamination at Li/
LLOZ interface [154–156]. The other important role of 
such interlayers is preventing dendrite formation, as den-
drites start growing at Li surface at the spots with high 
current density [157].

Stability toward cathode materials  No secondary oxide 
phases were found at LLZTO/LCO interface after heat-
ing the joint up to 900 °C [158] and up to 1050 °C [159], 
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and no secondary oxide phases were found at LL(Ba,Ta)O/
LCO [160] interface at 900 °C. It was assumed that dop-
ing elements are relevant factors influencing stability of 
the LLZ(Me)O/LCO interfaces; secondary phases were 
found at LLZ(Al)O/LCO interface [161] at 700 °C and at 
LLZ(Si,AL)O/LCO interface even at 600 °C [162].

Whereas secondary oxide phases at LLZ(Ba,Ta)O/
LiNiO2 interface after heating the contact at 400 °C in 
air were reported in [160], no secondary oxide phases at 
LLZTO/LiNiO2 interface were found in [158] after heating 
the contact up to 700 °C in air. Regarding the transforma-
tions of LLZTO/LiNiO2 interface at elevated temperatures, 
it was reported that La4NiLiO8 phase forms at the inter-
face at temperatures between 700 and 900 °C; this phase 
also conducts Li+-ions; thus, it does not present an obstacle 
for Li+ transport through the interface [158]. It was also 
suggested that the sintering in pure oxygen would suppress 
the appearance of secondary phases at this interface [158]. 
Whereas no secondary oxide phases were found at LLZTO/
LiNi0.94Co0.06O2 and LLZTO/LiNi0.8Mn0.1Co0.1O2 inter-
faces after heating the joint up to 800 °C in air, a noticeable 
Ni2+/Li+ redistribution takes place around this interface at 
800 °C; the formation of secondary phases was found at 
the LLZTO/LiMn2O4, LLZTO/Li1.2Ni0.15MnxCoyO2, and 
LLZ(Ba,Ta)O/LiMn2O4, interfaces at temperatures 400 °C 
and over [158, 163]. Regarding LLZTO/LiFePO4 interface, 
the formation of secondary oxide phases on sintering at tem-
peratures between 500 and 800 °C of the cathode material 
with LLZTO was reported in [164].

An introduction of a thin intermediate layer between 
SSE and cathode material is the most common approach for 
taming the secondary phase formation, moderating through 
interface atomic diffusion and other related processes, which 
are the origins of Li+-ion transport barriers at LLZO/(cath-
ode material) interfaces on sintering. It was reported that 
the introduction of a thin (7–15 nm) Nb layer improves Li+ 
transport through the LLZ(Si, AL)O/LiCoO2 interface [175], 
the introduction of 10-nm-thick Li3PO4 interlayer improves 
Li+ transport through LLZTO/LiNi0.8Co0.1Mn0.1O2 inter-
face [165], and the introduction of the Li3BO3 interlayer 
improves Li+ transport through LLZ(Al)O/LiCoO2 interface 
[161]. The complementary solutions of this problem may be 
found here [166].

Li+-ion transport failure, which originates from the mor-
phological decay of the LLZO/(cathode material) interfaces, 
is discussed in [33]; the source of the SSE/(cathode material) 
contact delamination is the volume change of cathode mate-
rial in the course of Li+ intercalation/deintercalation [31], and 
the cathode volume changes impose stress/strain cycles onto 
the contacting SSE. This cycling is deleterious to the contact 
integrity because LLZO is intrinsically fragile [167]. Since 
the delamination rates and degrees depend on the cathode 

expansion coefficient, the most straightforward approach is to 
choose a cathode material with low volume changes on lithia-
tion [33]. Recently, two such low-expansion cathode materi-
als with 0.02% (low-temperature phase LiCo0.85Al0.15O2) and 
2.4% (low-temperature phase LiMn0.5Ni0.5O2) of Li+ interca-
lation expansion were offered [168]; these findings are con-
ducive to further exploration of cathode materials with low 
expansion coefficients on Li intercalation.

The other approach suggests the implementation of fine-
grain LLZO for preparation LLZO/(cathode material) con-
tacts. The delamination rate and degree depend on the elas-
ticity and hardness of SSE material; these parameters differ 
for grain boundaries and the bulk of LLZO grains, and the 
ceramics with smaller grains (and higher grain boundary 
share) are softer than the LLZO ceramics with large grains 
[169]. This suggests that the implementation of fine grain 
LLZO ceramics may moderate stresses at the LLZO/(cath-
ode material) interface in the course of cell cycling and thus 
tame the delamination and fracturing at the interface [186].

Perovskite‑type Li‑ion SSE

Conductivity of the perovskite ceramics  ABX3 is a formula of 
a typical perovskite; Â cation sites are octahedral coordinated, 
and B̂ cation sites are icosahedral coordinated. < A > cation 
sub-lattice is built with larger cations, such as Na+, K+, Ca2+ 
Sr2+, Ba2+, and La3+; B cation sub-lattice is built with smaller 
cations, such as Sc3+, In3+, Al3+, Sm3+, Ga3+, Ti4+, Zr4+, 
Hf4+, Sn4+, Ge4+, Nb5+, and Ta5+; and X is oxygen for most 
perovskites [170].

Li-ion conducting perovskites are Â site-deficient materi-
als, and Li-ion transport takes place in < A > sub-lattice; for 
this end, < A > sub-lattice should be provided with Li+ and 
also vacancies (i.e. < A > sub-lattice should be only partially 
filled). These may be achieved by:

•	 Providing Li+ and vacancies by doping < A > sub-
lattice with lithium; e.g. one La3+ can be substituted 
with three Li+; thus, the formula of Li-doped lan-
thanum titanium oxide La2/3TiO3 can be written as 
Li3xLa(2/3)−x⎕(1/3)−2xTiO3, and ⎕ stands here for a vacancy.

•	 Providing Li+ and vacancies by doping < A > sub-lattice 
with lithium and high-valence elements, e.g. (x + y) 
of (Sr2+) can be substituted with z of (Li+) and with 
y of (La3+), in SrTiO3 perovskite; for charge balance, 
z = 2x − y and the formula Li2x−ySr1−x−yLayTiO3 with dif-
ferent x and y values can be obtained.

•	 Providing Li+ and vacancies by doping < A > sub-lattice 
with lithium and B-site with higher valence cations, e.g. x 
of (Sr2+) and y of (Zr4+) can be substituted with z of (Li+) 
and with y of (Ta5+) in SrZrO3 perovskite; for charge bal-
ance, z = 2x − y, and the formula of the perovskite with 
Li/Sr/⎕ is Li2x−ySr1−xTayZr1−yO3.
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Perovskite SSEs exhibit cubic, hexagonal, orthorhom-
bic, and tetragonal types of crystal structures; Li+ transport 
takes place in < A > planes (Fig. 7); the “basic” cubic struc-
ture may undergo distortion and transmutes into structures 
with lower symmetry depending on substitution coefficient 
x in the case of certain Li3xLa(2/3)−x⎕(1/3)−2xTiO3 SSE, on 
the particular doping ions and the specific thermotreatment 
schedule of the individual SSE material [170–175]. The 
planes are packed with A cations, Li+ cations, and vacan-
cies, and Li+ mobility depends on the degree of disorder 
of the packing [176]; the disorder in the < A > planes of a 
cubic SSE perovskite material is higher than the disorder 
in the < A > planes of a tetragonal perovskite SSE material, 
so the conductivity of the cubic compound is higher than 
the conductivity of the tetragonal material [172]. Tetrago-
nal perovskite SSEs are characterized by the presence of 
the alternating A cation–rich and A cation–poor plane; 
the A cation–rich planes are highly ordered, whereas A 
cation–poor planes demonstrate disordered Li/A/vacancy 
arrangement, so the Li+ transport takes place mostly in A 
cation–poor planes of tetragonal perovskite SSE materi-
als [170]. Regarding Li+ transport in the < A > planes, the 
critical point of Li+ pathway is the narrowness between 
the oxygen anions or so named “bottleneck” (Fig. 7a). 
The latter may be tuned by doping < A > sub-lattice with a 
dopant, which is favourable for cubic structure of perovs-
kite and intended to widen the structural bottleneck [171]; 
it is noteworthy that the dopant ion should be chosen so 
that its radius is inside the stability range of Goldschmidt 

perovskite tolerance factor [177]. Furthermore, the doping 
with matching aliovalent ions may increase Li+ concen-
tration in the < A > sub-lattice via maintaining a charge 
balance; this circumstance is also favourable for enhanc-
ing Li+ conductivity [178]. Sr is the most common A-type 
dopant for La substitution in LL(Me)O SSEs, its introduc-
tion results in the widening of the structural bottlenecks and 
increases Li+ concentration [139, 179].

 < B > sub-lattice doping also has an impact on Li+ con-
ductivity of perovskite SSEs [180, 181]; in this case, the 
effect takes place because of the variation of the activa-
tion energy of the Li+-ions hopping. Indeed, if the B̂-site 
cation B1 is substituted for the doping cation B2 with a 
lower Gibbs potential of its oxide formation, the intera-
tomic B2–O bond strengthens compared to the B1–O bond 
strength. This weakens the competing Â–O bonds, i.e. A–O 
and Li–O bonds, thus decreasing the activation energy of 
Li+ hopping in < A > plane [182–184]. The B̂-site aliovalent 
doping also may enhance Li+ conductivity inducing vacan-
cies in < A > sub-lattices for maintaining the charge balance 
[185]. In the case of < A > and < B > sub-lattice doping com-
bination, synergy effects could be created through such co-
doping approach [186, 187].

Up to now, the highest value of perovskite Li-ion in-grain 
conductivity was reported for La0.56Li0.36Ti0.97Al0.03O3; it is 
equal to σbulk = 2.95 × 10−3 S/cm [173].

However, whereas the in-grain conductivity of perovskite 
SSEs is quite comparable to specific conductivities of com-
mercial organic liquid electrolytes (which are ~ 10−2 S/cm), 

Fig. 7   Structure and schematic presentation of structure and Li.+ con-
ductivity of a perovskite oxide; (a) cubic perovskite (modified figure 
reproduced with permission from [188, 189]); (b) tetragonal perovs-

kite with alternating < La-rich > and < La-loose > layers and Li con-
ductivity in La-loose layers (modified figure reproduced with permis-
sion from [190])
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the ionic conductivity of the SSE ceramic is few orders of 
magnitude less than the in-grain conductivity values. The 
cause is that ceramic body grain boundaries (GB) pose sub-
stantial restrictions to the Li+ mobility, and in-grain-related 
and GB-related segments of Li+ transport pathways in 
ceramic SSEs are connected in series, e.g. while the con-
ductivity champion SSE material La0.56Li0.36Ti0.97Al0.03O3 
demonstrates in-grain conductivity of ~ 3 × 10−3 S/cm, the 
grain boundary related conductivity of this ceramic is about 
2 × 10−5 S/cm. The Li+ transporting in perovskite SSEs takes 
place in < A > planes by hopping through Â-site vacancies; 
the mismatch of < A > plane directions at the grain interfaces 
hinders the Li+ transport through the GB, and such mismatch 
is equivalent to the appearance of a few-atom-layer-scale-
thick poorly Li+-conducting phases. This interface structure 
is the source of GB Li+ transport blocking effect [191–193]. 
The other GB effect is related to the positive charge, which 
appears at the grain interfaces resulting in depleting of GB 
region with Li+ and thus hindering Li+ passage across the 
GBs [194, 195].

The prevailing input of GB input into the total resistance 
of ceramic perovskite SSE to the Li+ transport suggests the 
importance of addressing the GB conductivity issue. Some 
efforts were focused on GB conductivity enhancement; the 
increasing of GB conductivity was successfully attained by 
suppressing Li+ depletion at GB by the addition of lithium-
rich Li3OCl to LLTO in the course of its synthesis [196] and 
by slashing down the potential related to the GB positive 
charge; the latter was attained by LLTO Cu++-doping [197]. 
It was also demonstrated that B̂-site cation doping increases 
GB conductivity by tackling the lattice mismatch issue [187, 
198]. Some efforts were focused on the increasing of the 
ceramic grain sizes, which decreases the GB density of the 
ceramic SSE. Particularly, it was reported that the grain size 
enlargement accompanies with the increasing of the total 
conductivity of LLTO ceramic [199–201].

The other approach suggests the removal of the direct 
contacts between crystalline grains by introduction inter-
face layers of amorphous materials, which are able to con-
duct Li+; these materials may be ceramic sintering aids 
[202–205] or polymer electrolytes [206] and do not contain 
(crystalline grain)/(crystalline grain) interfaces. The authors 
of the cited works had reported that the substitutions of the 
(crystal grain)/(crystal grain) interfaces for (crystalline 
grain)/(amorphous Li+ conductor) and (crystalline grain)/
(polymer Li+ conductor) interfaces result in the increase of 
the total conductivity of the LLTO/(amorphous Li+ conduc-
tor) composites.

Finally, the amorphous LLTO-like compounds were 
examined under the assumption that while these materi-
als do not contain crystallite grain interfaces, they would 
develop high Li+ conductivity. Most of these materials were 
prepared by sol–gel method or PVD (pulse laser deposition 

or microwave sputtering) in the form of films [207–210]; 
these films were typically several hundred nanometers thick; 
and sol–gel-prepared powered amorphous LLTO ceramic 
also was investigated [211]. It was reported that amor-
phous LLTO films have higher conductivity than crystal-
line ceramic-type films [211]; the conductivity decreases as 
crystallization occurs, viz., 9.56 × 10−6 S/cm for amorphous 
film vs. 0.64 × 10−6 for fully crystallized film [212]. It is 
worth noting, however, that up to now, the best reported 
conductivities of crystalline LLTO ceramic SSEs supersede 
conductivities of the reported amorphous LLTO SSEs if the 
common GB resistance suppression methods (i.e. doping 
and adequate thermotreatment) are employed.

Stability of the LLTO ceramics in contact with electrode 
materials

Stability toward Li‑metal anode  Theoretically calculated 
LLTO reduction potential is 1.75 V (vs. Li/Li+), and the end 
products of LLTO reduction are supposed to be Li4Ti5O12, 
Li7/6Ti11/6O4, and La2Ti2O7 [88]; the potential is very close 
to the potential of phase decomposition (Li intercalation) 
[213]. This suggests that LLTO-type SSEs are not stable in 
contact with Li-metal anode. The formation of interfacial 
films during LLTO contact with metal lithium was reported; 
high electronic conductivity of perovskite SSE reduction is 
often clearly illustrated by darkening of the white body of 
the SSE ceramic pellet [214]. These films contained extra 
lithium and Ti+3 [215] and Ti0 [216] species, and the elec-
tronic conductivity of the pellets increases with the time of 
the contact with lithium from 1.32 × 10−11 to ~ 0.12 S/cm). 
Such high electronic conductivity of the film proves its non-
passivating nature [217]. Table 2 shows reduction potentials 
of some perovskite-type SSEs with B cations other than Ti. 
The reduction potential of LLTO makes impossible to use 
this SSE in direct contact not only with Li-metal and most 
of its alloys, but also with such Li-ion anodes as spinel 
Li4Ti5O12 with voltage plateau of 1.5 V vs. Li/Li+. SSEs 
with other tested B cations also reduce in contact with metal 
lithium, but SSEs with such B cations as Ta, Zr, and Hf are 
stable in contact with Li4Ti5O12 anode.

Theoretically, La2/3−xLi3xTiO3 is not stable in contact with 
metal lithium, and Ti+4 of LLTO is susceptible to reduction 
forming Ti+3 [88]. While such processes take place in the 
case of crystalline ceramic LLTO [226], amorphous modi-
fication of LLTO is stable in the contact with lithium metal 
[207–209]. The existing explanation implies that LLTO 
reduction mechanism consists of the Li-ion intercalation 
followed by charge transfer and forming new electronic 
conductive phases; Ti+3 ions are incorporated into lattices 
of these phases [226]; at the same time, the process of such  
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recrystallization is hindered in the amorphous LLTO; there 
is no formation of conductive phases; and the reduction of 
LLTO is limited by several atomic layers because of the lack 
of charge transfer, and Li/LLTO interface passivates [207, 
211]. It was reported that cells Li/(amorphous LLTO)/(dif-
ferent interlayers/(cathode) cells were stable for 100 cycles, 
and cycling performance degradation was mostly linked to 
the (amorphous LLTO)/(interlayer)/(cathode) junction [227].

Stability toward ASSLIB cathodes  Although DFT calcu-
lated LLTO oxidation phase stability potential is obtained 
at ~ 3.70 V (vs. Li/Li+), and stoichiometry stability potential 
of LLTO is ~ 4.46 V (vs. Li/Li+) with end products TiO2 
and La2Ti2O7 [88, 213], under experimental conditions, 
oxidation decomposition takes place with substantial over 
voltages against thermodynamic values, because of slow 
kinetics. The precession of these DFT calculated values lie 
in the range of 10 meV, which is a suitable self-consistent 
value; it is arguable that the estimations with respect to an 
experimental value can be better than 0.1 eV. Most often, 
the origin of these sluggish reactions is that the electronic 
conductivity of the products of oxidative decomposition is 
very low, and hence, the films formed by the decomposition 
products are passivating. Particularly passive toward oxida-
tion are amorphous LLTO-like perovskites, which are able 
to withstand potentials up to 12 V (vs. Li/Li+) [211].

This circumstance suggests that on one hand LLTO-type 
SSEs are expected to be relatively stable in contact with 
common Li-ion cell cathodes and that on the other hand 
a protective transition layer at the cathode/LLTO interface 
may be favourable for the corresponding ASSLIB stability. It 
was reported that while the amorphous LLTO is stable in the 
contact with LiNi0.5Co0.3Mn0.2O2 (NCM), the cell cycling is 
improved on the introduction of thin SiO2 transition layer, 
so that NCO/SiO2/LLTO/(Li-metal) may be cycled over 800 
times between 4.2 and 2.7 V [227].

While calculations suggest that LLTO may decompose 
in contact with LiCoO2 (LCO), the interface decomposi-
tion energy is very small (− 5 × 10−4 eV per atom) [228], so 
no reaction-related transformations was found at the LCO/

LLTO interface at temperatures below 300 °C [229]; mate-
rial inter-diffusion and formation of Li − Ti − Co − O phase 
layer takes place at the LCO/LLTO interface at 700 °C, and 
the layer develops high resistance to Li+ transport [230]. 
The amorphous LLTO coating was successfully employed 
for protection of sulphide SSEs against reaction with LCO 
[231, 232] and against reaction with LiNi0.5Co0.3Mn0.2O2 
[233]; the crystalline LLTO coating was used for protection 
of Li6PS5Cl SE against reaction with LiNi0.6Co0.2Mn0.2O2 
[234]. Crystalline LLTO was used as a component of a 
composite LiCo1/3Ni1/3Mn1/3O2 cathode of a Li-ion cell 
[235]. It was demonstrated that the surface coating of 
LiNi0.815Co0.15Al0.035O2cathode particles with LLTO 
increases the cycle life of the corresponding composite cath-
ode, and the effect of crystalline LLTO coating exceeded the 
effect of amorphous LLTO coating [236]. The cycle life of 
LiMn2O4 (LMO) cathode was improved by coating LMO 
with the protective crystalline LLTO film; the coated LMO 
particles were thermos-treated at 500 °C without LMO/
LLTO interface degradation [237].

Anti‑perovskite type Li‑ion SSE

The pioneering work of Zhao and Daemen [238] generated 
much interest to anti-perovskite SSEs. While anti-perovskites 
have a perovskite ABX3 crystal lattice, its structure mirrors 
the perovskites SSE in a sense that in anti-perovskite A and 
B sites are occupied by anions and X sites are occupied by 
a cation (Fig. 8a); correspondingly, X cations form sub-lat-
tice composed of the vertex-sharing octahedral. Although 
an anti-perovskite theoretically is expected to develop cubic 
structure, anti-perovskites also demonstrate tetragonal, 
orthorhombic, rhombohedral, and hexagonal phases, depend-
ing on ambient conditions (temperature, pressure) and the 
exact material compositions [239].

Conductivity of the anti‑perovskite ceramics

Regarding Li+-conductive SSEs, X cations are to be Li+, 
and Li+ transport in such lattice takes place along the octa-
hedron edges, so the corollary to this circumstance is that 

Table 2   Reduction potential 
of some perovskite-type SSEs 
(table was modified from [218])

Compounds B ion V vs. Li/Li+ References (remarks)

La2/3−xLi3xTiO3 Ti 1.6–1.7 [219, 220]
La1/3−xLi3xNbO3 Nb 2.0 [221]
(Sr,Li)(Ti,Ta)O3 Ti, Ta 1.5 Private communication
Sr7/16Li3/8Zr1/4Ta3/4O3 Zr, Ta 1.0 [222]
Sr7/16−3x/2LaxLi3/8Zr1/4Ta3/4O3 

(x = 0.025)
Zr, Ta 1.3 [223]

Li3/8Sr7/16Hf1/4Ta3/4O3 Hf, Ta 1.4 [224]
Li0.375Sr0.4375Hf0.25Nb0.75O3 Hf, Nb 1.4 [225]
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Li+ conductivity of the perfect anti-perovskite is very low 
[240–244], and sine qua non for Li+ hopping is the presence 
of a vacancy (defect) in the nearby position in the cation 
sub-lattice (Fig. 8b). Up to now, the most investigated anti-
perovskite SSE is Li3OCl, which is considered as a model 
of anti-perovskite SSEs; with the reference to the Li3OCl 
material, such defect suggests the simultaneous absence of 
the Li+ cation and the Cl− anion; this is a Schottky-type 
defect. Generally, interstitial Li+-ions (Frenkel defects) also 
may move across the anti-perovskite lattice, but usually, 
the activation energy for the interstitial Li+ hopping is sub-
stantially larger than for Li+ hopping along the octahedron 
edges; it is also quite possible to consider such Li+ transport 
as the movement of negatively charged Li-ion vacancies in 
the opposite direction [242]. The corollary to this circum-
stance is that Li+ conductivity of the anti-perovskite with 
the perfect crystal lattice is very low [240–242]. Since the 
concentration of the intrinsic Schottky and Frenkel defects 
inside the anti-perovskite material (“degree of imperfect-
ness”) depends on peculiarities the synthetic procedures 
and characteristics of the following thermotreatment, the 
conductivity of SSEs also depends on these factors; e.g. 
the conductivity of Li3OCl anti-perovskite SSE prepared in 
[238] was 0.85 × 10−3 S/cm at room temperature.

Li3OCl doping was investigated in line with the above 
considerations [245]; the substitution of lithium for alkali-
earth (AE) elements (supervalent doping) results in the 
formation of extra Li+-vacancies in the cation sub-lat-
tice of the matrix anti-perovskite, and the increase of the 
Li+-vacancy concentration suggests the improvement of 
the conductivity of the resulting Li3−2x(AE)xOCl mate-
rial; the issue is the pairing of dopant and the correspond-
ing Li+-vacancy, and the dopant–vacancy binding dimin-
ishes the charge carrier (vacancy) mobility compromising 
Li3−2x(AE)xOCl conductivity [246]; it was demonstrated 
that the Li3−2xMgxOCl is expected to have the highest con-
ductivity since [Mg+2-vacancy] pair has the smallest bind-
ing energy compared to [Ca+2-vacancy], [Sr+2-vacancy], 
and [Ba+2-vacancy] pairs; the ionic radii similarity 

(Mg+2 = 0.72 Å and Li+  = 0.76 Å) was cited as the origin 
of the circumstance [247, 248]. Braga et al. claimed the 
preparation of highly conductive glassy Li2.99Mg0.005OCl, 
Li2.99Ca0.005OCl, Li2.99Sr0.005OCl, and Li2.99Ba0.005ClO 
materials, and the conductivity of glassy Li2.99Ba0.005OCl 
was reported 25 mS/cm at 25 °C [249]; later, the same 
authors announced preparation of Li2.99Ca0.005OCl with con-
ductivity 0.28 mS/cm of at 44 °C [250]; the experimental 
strategies of these works were contested, though. Namely, 
it was very probably that the reported compounds contain 
uncontrollable share of hydroxyl-modified compounds like 
Li1.99Ba0.005(OH)Cl and also uncontrollable amount of a 
well-known Li+ conductor LiCl·xH2O [251]; these facts may 
explain high conductivity of the reported SSEs.

The issue of the additional concern on the matter is that 
the reported conductivity of Ca-doped Li3ClO is substan-
tially lower than the reported conductivity of Ba-doped 
Li3ClO, whereas the [Ba+2-vacancy] pair interaction energy 
is substantially higher than [Ca+2-vacancy] [248], which 
suggests lower conductivity of Ba-doped material. It is also 
noteworthy that the theoretical insight on the current flow 
process in the amorphous Li3ClO reveals that the Li+-ion 
transference number tLi+ is markedly below unity lying in 
the interval 0.83 < t

Li+
< 0.88 depending on the temperature.

The Li3OCl B-site doping, i.e. fluorine substitution 
for oxygen decreases the conductivity, because of high 
[F− vacancy] binding energy; in other words, the introduc-
tion of F− instead of O−2 results in interstitial Li+, which 
is not an efficient conductor, and dopant-vacancy clusters 
with low mobility of current carriers (Li+-vacancies) [248, 
252]. The experimental confirmation of the effect was chal-
lenging because of the extreme hydroscopic nature of the 
substituted Li3OCl material [253], so Li2(OH)Cl (OH− poly-
anion at B site) and Li2(OH)1−xFxCl SSEs were prepared and 
compared. It was reported that the Li2(OH)Cl material has 
a cubic lattice at temperatures over 38 °C and the material 
conductivity σcub ~ 1.4 × 10−3 S/cm at 39 °C, and the mate-
rial has an orthorhombic lattice at temperatures below 38 °C 
and the material conductivity σorth ~ 1.2 × 10−5S/cm at 37 °C 

Fig. 8   Perovskite SSE and anti-perovskite SSE structures and mechanisms of Li-ion conductivities
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[254]. Fluorine substitution stabilizes the cubic lattice of 
Li2(OH)0.9F0.1Cl impelling the material σF ~ 3.5 × 10−5 S/cm 
at 25 °C [255]. Besides preserving a favourable cubic crystal 
structure, the fluorine B-doping results in the increase of the 
rotation rate of OH groups in fluorinated material [255] and 
the corresponding increase of Li+ mobility [256]. The latter 
do not give a tangible rise to the conductivity of the material, 
though; the Li2(OH)0.9F0.1Cl conductivity was reported to be 
1.9 × 10−3 S/cm at 100 °C, whereas the reported conductivi-
ties of Li2(OH)Cl at 100 °C are 3.5 × 10−3 S/cm [254] and 
2.4 × 10−3 S/cm [257]. The B-site doping of Li2(OH)Cl with 
bromine also results in structural and conductivity changes; 
the introductions of fluorine and bromine both extend the 
stability region of a more conductive cubic crystal phase 
toward lower temperature area and thus modify conductiv-
ity of the doped materials in the following order: Li2(OH)
Cl < Li2(OH)Cl0.8Br0.2 < Li2(OH)0.9F0.1Cl < Li2(OH)0.9Br0.1
Cl [258].

Anti-perovskite SSE equivalent doping, i.e. alien halo-
gen substitution for chlorine (A-site substitution), also 
was explored. It was reported that while the conductiv-
ity of Li3OCl was 0.85 × 10−3 S/cm, Li3OBr0.5Cl0.5 had 
demonstrated conductivity of 1.94 × 10−3 S/cm being 
prepared under the identical procedures [238]. Later, 
it was theoretically demonstrated that the conductivi-
ties of the Br-substituted SSEs are arranged in the order 
of Li3OBr0.25Cl0.75 > Li3OCl0.5Br0.5 > Li3OCl > Li3OBr, 
and the optimal conductivity is provided by the 
Li3OBr0.25Cl0.75 compound, in which conductivity is 
expected to be 30% higher than the conductivity of 
Li3OCl0.5Br0.5. The result was explained in the way that 
Br− introductions distort SSE lattice (Br− and Cl− size 
mismatch, < Br− >  = 1.96 Å, < Cl− >  = 1.81 Å) creating 
fast migration paths in the anti-perovskite structure, but 
an excess of Br results in would lead to clogging these 
channels and decreasing conductivity [259]. Simi-
lar distortion of the crystal lattice (F− and Cl− size mis-
match, < F− >  = 1.33 Å, < Cl− >  = 1.81 Å) accompanied with 
increase of Li+ mobility and Li+ conductivity was demon-
strated in the case of fluorine substitution for chlorine [256].

One more approach suggests the introduction of dopants, 
which generates Frenkel defects and distorts the crystal lat-
tice of the matrix anti-perovskite in the way that its micro-
structure turns to be favourable for charge transport by these 
defects. The Frenkel defect concentration may be increased 
by A-site supervalent doping. This may be done by O− sub-
stitution for Cl− forming Li3+xO(Cl1−xOx) SSE material 
[260], but the calculations demonstrate that the Coulombic 
attraction toward the A-site oxygen restricts the mobility of 
the Li+ interstitials forming Li+

Frenkel
⋯O

−
A−site

 couple with a 
markedly high binding energy (~ 0.66 eV); at the same time, 
the A-site substitution of sulfur for chlorine does not present 
that disadvantage, and the Li+

Frenkel
⋯S−

A−site
 couple binding 

energy is just 0.031 eV, which suggests the substantially 
higher Li+ interstitial mobility. The calculated conductivity 
of Li3.125O(Cl0.875O0.125) was 1.286 mS/cm at 300 K [261].

It was reported that the generation of Frenkel defects 
may be also achieved by fluorine A-site substitution, and 
fluoride substitution for chlorine increased the concentra-
tion of Frenkel defects preserving the mobility of interstitial 
Li+ high enough for enhancing the conductivity of Li2OHBr 
on doping; conductivity of Li2OHBr0.98F0.02 was found to 
be 1.1 × 10−6 S/cm vs. 0.91 × 10−6 S/cm for non-doped 
Li2OHBr at 25 °C [262].

The anti-perovskite ceramic grain boundary conduc-
tivity is markedly over the bulk in-grain conductivity of 
the ceramic [251], so GB presents a substantial input into 
the total SSE ceramics resistance. Currently, the cause of 
this circumstance is linked to the lattice mismatch at the 
interfaces [263, 264], and the suggested way to increase 
the conductivity is to enlarge the ceramic grains: larger 
grains–lower GB concentration. It was demonstrated that 
the Li3OCl polycrystalline ceramic can have total conductiv-
ity up to 85% of its in-grain conductivity value, and for this 
end, the ceramic grains should be ⪞500 nm in size [263]. It 
is also noteworthy that Li+ transport along the GB is favour-
able if compared with the transport across GB [265]; this 
circumstance suggests a marked tortuosity of conductive 
pathways in the anti-perovskite ceramics. Having no GBs, 
glassy anti-perovskite ceramics are expected to demonstrate 
higher conductivity; indeed, it was reported that the glassy 
double anti-perovskite Li6OSI2 [266] had demonstrated a 
remarkable ionic conductivity of 6.15 mS/cm at 85 °C [267].

Stability of the anti‑perovskite ceramics in contact 
with electrode materials

Stability toward Li‑metal anode  It is experimentally proven 
that such anti-perovskite SSEs as Li(OH)Cl [268], Li(OH)Br 
[269], LiOCl [270], Li2.99Ca0.005ClO [249], Li2(OH)0.9F0.1Cl, 
Li2(OH)0.9Br0.1Cl [258], Li6OSI2 [267], and Li3SI [271] are 
stable in electrochemical cells under operation being in con-
tact with metal lithium anode. However, calculation demon-
strated that the work function of Li3OCl is higher than the 
metal lithium working function; this means that the material 
is not in equilibrium with lithium, and free electrons are 
expected to stream in the SSE on contact with lithium. Nev-
ertheless, the electron inflow does not result in the reduc-
tion of the bulk of Li3OCl ceramic; instead, the electrons 
transferred to Cl− atoms of the SSE creating a layer inside 
the Li3OCl, and the layer does not propagate inside the bulk 
of the SSE forming a thin SEI with high Li+-ion mobil-
ity [272]. The formation of the protecting SEIs at the SSE/
Li interfaces was noted for several SEs when coupled with 
metallic Li at different conditions such as a stable cycling 
of a symmetric Li/Li2(OH)Cl/Li cell under harsh conditions 
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(molten Li at 195 °C) [257], a stable cycling of a symmetric 
Li/Li2OCl/Li cell at room temperature [270], and a stable 
cycling of a symmetric Li/Li2OBr/Li cell at 60 °C [269].

Stability toward ASSLIB cathodes  The experimental CVs 
of cells with anti-perovskite SSEs that originated from 
Li3OCl demonstrate the outstanding electrochemical stabil-
ity of these materials, although the thermodynamic assess-
ment of the onset of oxidative decomposition of Li3OCl is 
2.55 V (vs. Li/Li+) [240]. The stability of LiOCl at poten-
tials ≤ 5 V was demonstrated in [264, 270], the stability 
of Li2(OH)0.9F0.1Cl was demonstrated at potentials ≤ 6 V 
and even at potentials ≤ 9  V [255], Li2(OH)0.9Br0.1Cl 
demonstrated stability at potentials ≤ 6  V [258], and 
Li2.99Ca0.005ClO demonstrated stability at potentials ≤ 8 V 
[249]. The evidence is mixed regarding stability window 
of Li2OHBr; according to Yoshikawa et al. [273], the mate-
rial is stable up to 3.5 V, while the stability of the material 
at potentials ≤ 9 V was reported in [255]. Li6OSI2 demon-
strated stability at potentials ≤ 5 V [267], and Li3SI demon-
strated stability at potentials ≤ 10 V [271]. The explanation 
of such large oxidation overvoltages may be related to slow 
kinetics of the SSE decomposition reactions [274].

Some anti-perovskite SSEs demonstrated comparability 
with common Li-ion cathode materials being tested in full 
cells anode/SSE/cathode. Li3OCl film demonstrated com-
parability with LiCoO2 cathode being cycled in [graphite/
Li3OCl/LiCoO2] cell [264], Li3SI demonstrated compara-
bility with LiNi0.6Co0.2Mn0.2O2 cathode being cycled (over 
50 cycles) in In/Li3SI/LiNi0.6Co0.2Mn0.2O2 cell [275], and 
Li2OHCl demonstrated comparability with LiFePO4 being 
cycled (over 200 cycles) in Li/(LLZTO coated with Li2OHCl 
core–shell SSE)/LFP cell.
LISICON Li‑ion SSE

Conductivity of the LISICON ceramics  High Li+-ion conduc-
tivity in γ-Li3PO4-type oxides was first reported at the end 

of the 1970s; this group of oxides was named LISICON — 
Lithium Super Ionic Conductors [276, 277]. Current carri-
ers in LISICON are intrinsic Frenkel defects — interstitial 
Li+-ions; there are two types of metastable sites for such 
interstitials (I and II with the reference to Fig. 9), and the 
conductivity is carried out by Li+-ion hopping via the chan-
nels formed by these metastable sites [278]. In this regard, it 
is worth to be noted that the conductivity of pure γ-Li3PO4 is 
fairly low and lie between 6.36 × 10−9 S/cm and 4.65 × 10−8 
S/cm; expectably, the conductivity depends on the synthe-
sis mode because it controls the defect concentration in the 
material [279].

The conductivity of the LISICON (Li14Zn(GeO4)4, 
σLISICON = 2 × 10−6 S/cm at 50 °C), which was reported in 
the pioneering work [277], was not impressive, though. 
The attempts to enhance the conductivity were focused on 
preparation of others but [Li4GeO4–Zn2GeO4] oxide solid 
solutions with LISICON structure. The idea is that cation 
substitution into the archetype LISICON material introduces 
extra Li+ (over three per formula unit), and these lithium 
cations would be weakly bounded with oxygen anions (viz. 
would be placed at metastable sites) and thus would have 
higher mobility. For this end, a substantial number of binary 
LISICON-type oxide solid solutions were tested [280]; the 
best conductivity obtained in this way was reported for 
Li3.7Ge0.85W0.15O4, and it comprised 3.84 × 10−5 at 25 °C 
[281]. The approach was further extended to the solid solu-
tions of three and more oxides with different cations form-
ing LISICON structure; calculations demonstrated that in 
such LISICONs, the activation energy of Li+ hopping may 
be decreased by the favourable choice of polyanion (XO4)m 
groups, and so, the conductivity may be enhanced [282]. 
The general outline of the approach has paid off, and the 
SSE Li3.68 (Ge0.6V0.36Ga0.04)O4 has demonstrated the highest 
LISICON conductivity of 1.5 × 10−4 S/cm at 25 °C reported 
up to now [283].

The input of grain boundaries into the total LISICON 
ceramic conductivity depends on the ceramic processing 

Fig. 9   Orthorhombic Pnma 
crystal structure of γ-Li3PO4 
with metastable interstitial 
Li-ion indicated (view along the 
c axis of the primary cell); the 
different interstitial sites labeled 
I and II (reproduced with per-
mission from [278])
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mode and is often comparable with the bulk in-grain conduc-
tivity input or even smaller than the in-grain input. Regard-
ing Li2ZnGeO4, it was reported that its in-grain conductivity 
was 3.9 × 10−7 S/cm and GB conductivity was 1.2 × 10−7 S/
cm [284]; the total conductivity of Li3.5Ge0.75S0.25O4 con-
tained mostly in-grain component being prepared under a 
proper pellet sintering mode [285].

Summing up, the LISICON SSE conductivities, which are 
reported up to now, are too low for common ambient tem-
perature secondary battery applications and need improve-
ments. On the other hand, many of these LISICONs fit well 
for high-temperature applications, such as reserve batter-
ies, because these compounds have high thermal stability 
and good conductivities at elevated temperatures [286], e.g. 
conductivity of Li14Zn(Ge04)4 at 50 °C is just 2 × 10−6 S/
cm, but it is 1.25 × 10−2 S/cm at 300 °C and 9 × 10−2 S/cm 
at 500 °C [277].

Stability of the LISICON ceramics in contact with electrode 
materials

Stability toward Li‑metal anode  Most LISICONs are ther-
modynamically unstable against metallic lithium because 
of Ge reduction, e.g. such LISICON as Li14Zn(GeO4)4 has 
reduction potential 1.44 V (vs. Li/Li+) [88].

Stability toward ASSLIB cathodes  Thermodynamically cal-
culated oxidation potential of Li14Zn(GeO4)4 is 3.39 V (vs. 
Li/Li+) [88]. Nevertheless, LISICON-type Li3.5Ge0.5V0.5O4 
(LGVO) SSE demonstrated stability on cycling with the 
upper limit of 4.2 V [287].

Regarding LISICON reactivity toward common Li-ion 
cathode materials, no interface reaction products were 
detected on SPS sintering of LGVO with such cathode 
materials as LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiNi0.5Mn0.5O2, 
LiNi0.8Co0.15Al0.05O2, and Li1.20Ni0.16Mn0.55Co0.09O2 
(450 °C for 5 min with an electric current at 400 MPa). 
[LiCoO2/(LGVO/PEO-based electrolyte film)/(Li-metal 
anode)] cell and [LiNi1/3Mn1/3Co1/3O2/LGVO/(PEO-based 
electrolyte film)/(Li-metal anode) cell demonstrated fair 
cyclability and the absence of insulating layers at the cath-
ode/(LGVO) interfaces [287]. Similar advantageous proper-
ties (no interface reactions, no interface insulating films) of 
LISICON SSE were reported in the case of the contact of 
LiNi1/3Mn1/3Co1/3O2 and the amorphous version of LISI-
CON SSE [0.5·Li3.75Ge0.75P0.25O4 + 0.5·Li3BO3] [288].
Amorphous Li‑ion SSE

Conductivity of  amorphous ceramics  The advantages of 
the oxide crystalline oxide ceramic electrolytes are outlined 
above, namely, these advantages are fair conductivities, good 
water and air stability, and comparability with metallic lithium 

and popular Li-ion cell cathode materials. On the other hand, 
the problematic aspect is a low deformability of oxide SSEs at 
ambient temperatures; this feature makes difficult maintain-
ing a close contact between the cathode of ASSLIB and the 
SSE on battery assembling, and the poor contact results in the 
appearance of a high interfacial resistance between SSE and 
the cathode [289]. Although the common way for handling 
the problem is high-temperature sintering of oxide electro-
lytes and cathode, a low-conducting film often forms at the 
interfaces between many SSEs and cathode; the effect is par-
ticularly pronounced for [cathode/SSE] composite prepara-
tion [290]; besides, high-temperature sintering is a time- and 
energy-consuming process. In this regard, the attractive fea-
tures of amorphous (glass) oxide electrolytes are their favour-
able mechanical properties; specifically, the amorphous SSE 
are soft, so the materials allow ASSLIB integration without 
high-temperature sintering step, while retaining the advanta-
geous features of oxide crystalline ceramic SSEs [288, 291, 
292].

Amorphous oxides (glasses) have been considered as SSEs 
for the last several decades [293]. Many of these materials 
develop very low electronic conductivities and stable in con-
tact with metal lithium, moisture, and air [294, 295]. Most of 
the reported amorphous oxide SSEs demonstrate room tem-
perature conductivities ≲ 10−5 S/cm [296–304], which is not 
high enough for common ambient temperature ASSELIBs, 
because the design of such cells suggests the employment of 
the ceramic sheets of sub-millimetre thickness. Recently, the 
research on a new system of amorphous oxides, Li2S • B2S3 
• LiI • SiO2, was reported; the conductivity of the most con-
ductive SSE of this system (viz. Li0.84B0.40Si0.2O0.4S0.84I0.36) 
was found to be 2.1 × 10−3 S/cm [305], so this ceramic has 
the potential for being employed as the electrolyte in ambient 
temperature ASSELIBs.

Currently, the LiPON (LixPOyNz) compound can be 
viewed as the most investigated oxide amorphous SSE [306, 
307]. While experimentally LiPON demonstrates high sta-
bility against metallic Li [308], its thermodynamic reduction 
potential is positive (0.68 V vs.Li/Li+); this circumstance 
is linked to the formation of protection film at the inter-
face between the SSE and Li, which inhibits further LiPON 
decomposition [17, 88]. The LiPON conductivity depends 
on synthesis and thermos-treatment conditions [309, 310], 
on the material content [311] and on doping with alien ele-
ments [, 17, 312]; highest reported room temperature con-
ductivity of the doped LiPON (viz. Li1.35Si0.79P0.21O1.98N0.98) 
is 2 × 10−5 S/cm [313]; reported theoretical calculations 
predict an incredibly high conductivity for an amorphous 
modification of LiPON-like compound (LiSiON), namely, 
σLiSiON = 8.1 × 10−3 S/cm [314]; in this relation, it is worth 
to be noted that the experimentally prepared LiSiON film 
(RF sputtering deposition, ~ 0.5 μm thick) had conductivity 
of 2.47 × 10−6 S/cm [315].
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Other promising oxide amorphous SSEs belong to the 
system Li–V–Si–O [316]; the reported conductivity of the 
Li1.2V1.3Si0.7O4 film was 6.5 × 10−5 S/cm [317], which is the 
highest conductivity of amorphous oxide SSE reported up 
to now. The redox stability of LVSO does not fit well to the 
ASSLIB requirements; the reversible redox transformation 
of the in-film vanadium takes place at the potentials in the 
range ~ 1.0–2.7 V, and VLSO irreversibly decomposes at 
potentials below ~ 1.0 V. Regarding oxidation stability, VLSO 
was cycled without decomposition between 1.0 and 4.0 V vs. 
Li/Li+ for > 20 cycles [318]. Thus, it is problematic to inte-
grate VLSO SSE into the ASSLIB with metal lithium anode.

Applications  Generally, amorphous oxide implementations 
are currently mostly considered in a thin-film format. First, 
these films fit well to thin film ASSLIB design [17, 319]. The 
introduction of micro-scaling devices, such as stand-alone 
sensor systems, medical implants and devices, labs-on-chip, 
and credit cards, sparks the interest to the development of 
electrochemical cells with thin-film architecture for powering 

such devices. A schematic of a typical ASSLIB micro-cell is 
presented in Fig. 10a.

Thicknesses of employing amorphous SSE layers com-
monly are few micrometres or less; this circumstance sug-
gests the implementation of such methods of SSE appli-
cation as radio frequency magnetron sputtering (RF MS), 
atomic layer deposition (ALD), physical vapour deposition 
(PVP), chemical vapour deposition (CVD), and pulsed laser 
deposition (PLD). Up to now, a marked number of crys-
talline (LISICON, LLTO, NASICON) and amorphous thin 
film SSEs were tested, and thin film ASSLIBs with Li-metal 
anodes and LiCoO2 and LiMn2O4 cathodes were reported 
[319]; pros and cons of the crystalline and amorphous SSE 
films are presented in Fig. 10b, in the form of a spider web 
chart. The most popular amorphous thin film SSEs are 
LiPON films [308], although few cases of LiBON and LVSO 
thin film implementation also were reported [319].

Second, many crystalline SSEs are not stable in the con-
tact with ASSLIB electrodes (viz. Li-metal anodes and/or 

Fig. 10   (a) Schematics of a typical micro-ASSLIB (modified figure reproduced with permission from [320]); (b) radar chart comparing impor-
tant features of SSEs for thin film ASSLIB (modified figure reproduced with permission from [319])

Fig. 11   Schematic presentation 
of the merits and demerits of 
oxide SSEs (modified figure 
reproduced with permission 
from [328])
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cathodes) having fair conductivities; also, particular cathode 
materials with advantageous properties may be also prone to 
degradation in LIB with liquid electrolytes in the course of 
cell cycling. In these cases, the electrode coating with thin 
films of stable amorphous SSEs (mostly LiPON) may be 
used for preventing ASSLIB degradation [308].

✔ Even though the traditional belief was that ASSLIBs 
with lithium metal anode are not prone to the Li-dendrite 
growth during cycling, the dendrite growth at the Li/SSE 
interface was reported by multiple accounts; while the 
mechanism of the dendrite growth is still under discus-
sion, the well-established fact is that LiPON resists the 
dendrite growth and that the presence of a thin LiPON 
layer at the Li/SSE interface suppresses the dendrite 
appearance [321, 322].
✔ LiPON interlayer tackles the issue of comparability 
of many SSEs with cathode materials on preparation and 
on cycling [323].
✔ LiPON coating hinders cathode material degrada-
tion in common carbonate-based LIB liquid electrolytes. 
A thin LiPON film (1 nm thick) substantially reduced 
disruptive interfacial reactions and holds up crack onset 
in the case of LiCoO2 cathode cycling between 3 and 
4.4 V [324, 325]; ~ 1-nm-thick LiPON film markedly 
improved cycle life of Li1.2Mn0.525Ni0.175Co0.1O2 and 
LiNi0.8Co0.1Mn0.1O2 restraining the dissolution of tran-
sition metal from cathode [326, 327].

Conclusions

Li-ion batteries (LIB) gain leading positions in the field 
of energy storage across scales. The batteries are widely 
employing for powering portable electronics, electric vehi-
cles, solar energy units, etc. because of high energy den-
sity, high cycle life, and high efficiency. While most LIBs 
offered on the market are based on liquid electrolytes now, 
the interest to solid electrolytes is motivated by demands for 
improvements of LIB safety, energy density, and manufac-
turability. The strengths and current weaknesses of oxide 
SSEs are schematically presented in the chart in Fig. 11.

Up to now, oxide SSEs demonstrated a promising data 
on stability toward metal lithium and on high voltage stabil-
ity; these results suggest the possibility of development high 
energy density (batteries with Li-metal anodes) and voltage 
ASSLIBs. The ability of Li-dendrite growth suppression and 
superior thermostability of oxide SSEs impels the elevated 
safety to the ASSLIB with oxide SSEs. The other features 
such as air and moisture stability are advantageous for low-
ering battery production cost.

The ongoing challenges in oxide SSE research and devel-
opment are:

•	 SSE ionic conductivity is still too low; the best reported 
oxide SSE conductivities are by an order of magnitude 
less than current commercial LIB liquid electrolytes.

•	 High-temperature sintering is often necessary for gaining 
connected and compact [cathode active material]/[oxide 
SSE] composite and a fair contact at the cathode/SSE 
assembly interface; these circumstances create manu-
facturing problems because of interaction between SSE 
and cathode materials at high temperature and also make 
the battery design more difficult and increase the battery 
processing cost.

The challenge of the development of oxide SSEs with 
excellent conductivity and the ability of a low-temperature 
processing remain to be addressed. The research continues, 
and new SSE materials enabling to extend the frontiers of 
cost, energy density, power density, cycle life, and safety 
are in search.
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