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PREFACE. 

In its present form the "Elements of the Precision of Measure
ments and Graphical Methods" represents the ground covered in a 
brief course which has been given for a number of years at the Massa
chusetts Institute of Technology to all students in connection with 
their work in the Physical Laboratory. The author has been induced 
to amplify the printed "Notes" on this subject and give them a wider 
circulation in response to repeated requests to use them elsewhere. 
Although prepared primarily to meet the needs of his own classes, it 
is hoped, in the present form, they m a y prove useful in other tech
nical schools and colleges where quantitative work forms a part of 
the curriculum, and also to engineers whose work involves experi
mental testing. In many laboratories far too little weight is attached 
to the discussion of the magnitude and effect of sources of error 
on a result. This has been forced upon the writer's attention as the 
result of personal inter-views with hundreds of graduate students 
entering the Institute, who apply for excuse from, laboratory work. 
It is the exceptional student who has any conception how to figure 
out the precision of a final computed result from the precision 
of his individual measurements, and this is true even though his 
laboratory note-book shows his work to have been carefuUyand credi
tably performed. It is the author's firm Conviction that one of the 
most valuable and enduring benefits of physical laboratory training 
to a student of Science or Engineering is the acquisition of the proper 
view-point with which to approach an investigation, be it either 
purely scientific or technical; that is, the ability to recognize the 
essentials of a problem at the outset, so as to economize both time 
and labor in its solution. Although the exercise of judgment, based 
upon the personal experience of the investigator, is essential to the 
"best solution" of any experimental problem, still it is desirable to 
direct the student's attention to precision methods at an early stage 
of his laboratory work. Experience has shown that this m a y be satis
factorily done as soon as he has had a little practice in exact measure
ments and can handle the elements of Differential Calculus. At the 
Institute the course is given at the middle of the sophomore year, 
after the student has performed some six or Neight experiments on 
fundamental measurements in Mechanics.. Continued application of 
the principles is then made in subsequent laboratory work throughout 
the junior and senior years, and a precision discussion is regarded as 
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an important feature of the final thesis. It has been the writers 
experience that students have little trouble in understanding the gen
eral principles involved, but meet with considerable difficulty in 
applying these principles to concrete problems. For this reason the 
subject is most satisfactorily taught to small sections by recitations 
based on the text and the solution of numerous problems selected from 
the book and from the current laboratory work. A close correlation 
of class-room and laboratory work is indeed highly desirable, and in 
the Rogers Laboratory of Physics it is the practice to require with 
each laboratory report a precision discussion of the data or a solution 
of some precision problem related to the experiment. The laboratory 
manuals have been written with this in view. 

The method of treatment has been kept as brief as possible. A 
full discussion of the subject, with proofs based on the Theory of 
Probabihty and the Method of Least Squares, would so enlarge the 
work as to defeat its end. Proofs of the few theorems and formula; 
which the student is asked to assume m a y be found in any good treatise 
on Least Squares. A n excellent treatment is that given in Bartlett's 
"Method of Least Squares." A more exhaustive treatment of Pre
cision Methods may be found in Hohnan's "Precision of Measure
ments." 

A chapter on the solution of illustrative problems has been added 
to assist students who find it necessary to work up the subject by 
themselves. The collection of problems has been compiled from 
recent examination papers. The chapter on Graphical Methods con
tains specific directions for constructing graphs, and general directions 
for obtaining therefrom the functional relationship between two 
variables. For engineering students, as well as physicists, the method 
of logarithmic plottmg will be found of wide appUcation. In the 
Appendix several tables, of assistance in precision computations, 
have been added. 

In conclusion the author desires to express his indebtedness for 
many suggestions to his colleagues who have so ably assisted him in 
the instruction of this subject in recent years, and in particular to 
Professor William J. Drisko, whose experience in teaching this and 
related subjects has been most helpful. 

H. M. Goodwin, 
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PRECISION OF MEASUREMENTS. 

Classification of Physical Measurements.—All physical 
measurements may be classed as direct or indirect ac

cording as the measm-ement gives the desired result di

rect Ij-, or as the result is obtained by combining the re

sults of several measurements by means of some formula. 

Examples of the first class are the measurement of a length 

by means of a scale, the mass of a body by means of an equal 

arm balance, and the electrical resistance of a wire by the 

direct method of substitution. Examples of indirect meas

urements are the determination of g, the acceleration due to 

gravity, by means of a pendulum, involving the meastire-

ment of the length and time of vibration of the pendulum, 

the determination of the index of refraction of a substance 

from measurements of the angle and the minimum deviation 

of a prism by means of a spectrometer, and the determina

tion of the specific heat of a substance by the method of 

mixtures in which the results of the measurement of a num

ber of temperatures and weights are combined. The great 

majority of problems arising in practice come imder the 

second class. 

Reliability of a Result.—In order that the result of any 

measurement, whether direct or indirect, may be of any 

scientific or technical value, it is necessary to have some 

numerical estimate or measure of its reliability. The im

portance of such a measure cannot be overestimated. The 

result of a test, of a study of an instrument or method, or 

of the determination of a constant, may be rendered almost 

worthless, tmless the investigator is able to state the degree 

of reliance which can be placed upon it. This phase of 

an investigation should be kept constantly in mind in all 

laboratory work. The student's ability to intelligently dis-
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CUSS the reliability of his data is regarded as of no less im

portance than his ability to perform accurate work. 

B y the precision or precision measure of a result, denoted 

for brevity by p.m., will be always understood the best nu

merical measure of its reliability which can be obtained after 

all known sources of error have been eliminated or corrected 

for. H o w this m a y be computed will be explained below. 

B y the accuracy of a result should, strictly speaking, be un

derstood the degree of concordance between it and the true 

value of the quantity measured. Since, however, the latter 

is usually unknown, it is seldom that we can obtain a nmneri-

cal measure of the absolute accuracy of a measurement. W e 

must in most cases be content with an estimated or computed 

precision measure. The terms "accuracy" and "precision" 

are often carelessly used indiscriminately. 

The precision measure of a direct measurement is of no 

less importance than of an indirect measurement. As the 

precision of the latter depends primarily on the precision of 

the separate components from which it is computed, the 

method of determining a numerical estimate of the reliability 

of a series of direct observations will first be considered. 

Classification of Errors.—When any quantity is measured 

to the full precision of which the instrument or method em

ployed is capable, it will in general be found that the results 

of repeated measurements do not exactly agree. This is 

true not only of results obtained by different observers using 

different instruments and methods, but also when the meas

urements are made by the same observer under similar con

ditions. The cause of these discrepancies lies in various 

sources of error to which all experimental data are subject. 

These m a y be grouped conveniently in two classes,—de

terminate and indeterminate errors. 

Determinate Errors.—Determinate errors are, as then-

name indicates, of such a nature that their value can be de

termined and their effect on the result thereby eliminated. 

They m a y be classified as follows:— 

a. Instrumental Errors.—^These m a y arise from poor con-



DETERMINATE ERRORS 9 

struction or faulty adjustment of an instrument, as, for ex

ample, a defect in a micrometer screw, faulty graduations 

of scales and circles, eccentricity of circles, unequal balance 

arms, etc. 

b. Personal Errors.—^These may arise from characteristic 

peculiarities of individual observers, as, for example, the 

tendency to always record the occurrence of an event too 

soon or too late. This frequently happens in recording 

transit observations in which the "personal equation" of the 

observer becomes an important factor. 

c. Errors of Method or Theoretical Errors.—^These may 

arise from using an instrument under conditions for which 

its graduations are not standard. 

The following illustrations will make clearer the nature of 

the above sources of error. Suppose that the arms of a 

chemical balance are slightly unequal in length. All weigh

ings made with such a balance will be in error due to this 

cause (if the balance be used in the ordinary way), by an 

amount depending on the inequality in the length of the 

arms. Repeated weighings of the same substance on the 

same balance by the same method will, however, give no 

indication of the presence of this source of error. The re

peated independent weighings may indeed check among 

themselves to the full sensitiveness of the balance, and yet 

the result may be in error, due to the constant instrmnental 

error, by a very large amotmt. The presence of such an error 

would only be detected by comparing the results of the weight 

of the same body obtained on different balances or by differ

ent methods of weighing, for the probability of the same in

strumental error occurring to the same extent in different 

instruments is very small. 

Again, suppose a length is measured by means of a grad

uated scale at 20° C, while the scale is standard at some 

other temperature, say 0° C. Repeated measurements with 

such a scale by the same method and under the same condi

tions would probably show a very close agreement among 

themselves, and give no clew to the presence of any constant 
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error. The result would, however, be too small, since the 

value of the units of the scale would all be too large, due to 

the expansion of the scale from 0° to 20°. The error thus 

introduced by using the scale under conditions other than 

those for which it is standard is, however, determinate in its 

nature, since a knowledge of the coefficient of expansion of 

the scale and of the temperature at which it is standard, 

and also at which it is used, furnishes all necessary data 

for reducing the observed result to the value it would 

have had, had the scale been standard at the time of the 

measurement. The concordance of a series of observations 

taken under similar conditions Ls, therefore, no criterion of 

the absence of constant errors even of very large amount. 

To detect and eliminate such errors, it is necessary to com

pare the results of measm-ements of the quantity by different 

methods, different apparattis, and, if possible, different ob

servers, and to average such independent results by a special 

method described later; for the probability of the same source 

of error being present under such variable conditions is very 

small. A n interesting illustration of the presence of a con

stant error escaping detection is to be found in the original 

determination of the o h m by the British Association Com

mittee. The excellent agreement of the observations among 

themselves lead to the conclusion that the result possessed a 

high degree of reliability. Later determinations by inde

pendent methods and observers gave values which differed 

from the B. A. value by over one per cent., an amount far 

in excess of the precision with which the B. A. determination 

had been carried out. Attention was thus called to the 

probable presence of some constant error which fm-ther in

vestigation verified. 

Residual Errors.—After a result has been corrected as well 

as m a y be for all known sources of determinate errors, there 

m a y still remain in it small errors, the value of which cannot 

be determined, and which, therefore, fall into the second 

general class of errors,—indeterminate errors. Thus, if the 

instrumental error arising from inequality in the length of 
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balance arms be corrected by a determination of the ratio 

of the arms, this ratio will be known to only a certain degree 

of precision, and hence the corrected result of a weighing 

m a y still be in error by an amount depending on the preci

sion with which the correction itself has been determined. 

Or, again, correcting for the expansion of a scale involves an 

experimental investigation of the coefficient of expansion of 

the material of which the scale is constructed, and this con

stant can be determined with only a certain degree of pre

cision. A result corrected by means of this coefficient will, 

therefore, still be uncertain beyond a certain point due to 

the uncertainty in the A'alue of the coefl[icient used. These 

small errors remaining, because of the impossibility of com

pletely correcting for constant errors, are called residual 

errors: their numerical value and algebraic sign cannot be 

determined, but usually limiting values m a y be estimated 

and assigned to them. For this reason they are properly 

grouped and treated under the second general class of errors 

mentioned,—indeterminate errors. 

Indeterminate Errors.—Accidental; Residual.— Experience 

shows that, when a measurement is repeated a number 

of times with the same instrument and by the same ob

server imder apparently the same conditions, the results 

usually differ in the last place or sometimes last two 

places of figures. Thus in so simple a measurement as the 

determination of the distance between two lines with a scale 

graduated in millimeters, successive measurements will not 

agree to one-tenth millimeter if fractions of a millimeter are 

estimated by the eye. Errors which give rise to such varia

tions which at one time cause a result to be too high and 

at another too low are due to causes over which the observer 

has no control, such as sudden temperature fluctuations which 

m a y give rise to unequal expansion of different parts of an 

apparatus, or to changes in refraction, barometric changes, 

shaking of the instrument due to mechanical jar or to the 

wind, etc.; and, more important still, to physiological causes 

arising from imperfections or fatigue of the eye or ear 
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of the observer. The magnitude and sign of errors arising 

from such causes have been shown, however, to follow 

a perfectly definite law,—namely, the law of chance. The 

nature of this law m a y be illustrated as follows. Suppose a 

thousand shots be fired at a target by a skilled marksman 

under conditions as nearly alike as possible. Experience 

shows that the shots will be distributed in a manner which 

at first sight seems entirely irregular, but which on more 

careful examination will be found to be approximately in 

conformity with a perfectly definite law. In an actual case 

obtained with a target ruled in horizontal sections by lines 

one foot apart, the centre line (corresponding to the bull's 

eye) being in the middle of one of these spaces, the follow

ing results were obtained:— 

In space 

+ 5i to + 4i 

+ 4i " + 3i 
+ 3i " + 2i 
+ 2i " -f n 

+ li " + i 
+ i " - i 
- i " - H 
- H " - 2 \ 
— 2\ " — 3i 
- 3i " - 4i 
- 4i " - 5i 

No. of shots 

1 
4 

10 
89 
190 
212 
204 

193 
79 
16 
2 

If a plot be made with the number of shots falling in the 

several sections as ordinates and the distance of the corre

sponding spaces from the central line as abscissae, w e obtain 

Figure 1. F r o m this it appears that plus and minus devia

tions of the shots from the central line are about equally 

frequent, and that small deviations occtu- with m u c h greater 

frequency than large ones. If the number of shots (corre

sponding to observations) be increased, the irregularities pres

ent in the curve will tend to smooth out, and it can be 

shown mathematically that in the limit the curve represent-
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y 0 

Figr. 1. 

Pig. 2. 

ing the law of chance takes the general form shown in Fig

ure 2, the equation of which is 

y 
> ^ 

'^' 

Here y is the frequency of the occurrence of an error of the 

magnitude x, and A is a constant, the value of which depends 

on the character of the observations and which affords a 

measure of their precision. The curve represented by this 
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equation is called the Curve of Error. By inspection it is 

seen that:— 
First.—Small errors occm- more frequently than large ones 

(curve of error has a maximum for a; = o); 

/Second.—Very large errors are unlikely to occur (curve is 

asymptotic to the axis of X ) ; 
Third.—Po&itvve and negative errors of the same numerical 

magnitude are equally likely to occur (curve of error is sym

metrical with respect to axis of Y). 

Since accidental and residual errors of a series of observa

tions follow the law of chance, they may be properly subjected 

to mathematical treatment based on thLs law. It must be 

remembered, however, that, since the law itself represents 

a limiting case, corresponding to an infinite number of ob

servations, deductions from it apply to a finite ntmiber of 

observations only with a certain probability which becomes 

less the smaller the number of observations. 

The Method of Least Squares.—^As already pointed out, 

in the great majority of measurements the true value of the 

quantity is unknown and cannot be determined. Were it 

known, a measurement would be superfluous. All that we 

can hope to obtain from our experimental data is the most 

probable value of the quantity or quantities in question. 

In many cases this is a simple matter; but in others, where 

the number of observations is larger than the number of 

unknown quantities to be determined, the problem may 

become one of some difficulty. The branch of mathematics 

which treats of the general problem of the adjustment of 

errors of observation so that their effect upon the result is 

reduced to a minimum, and the best representative values 

of the desu-ed quantities thus obtained, is called Least Squares, 

the name being derived from the criterion upon which the 

adjustment of the observations is based. This states that 

the most probable values of a series of related observations 

arc those for which the sum of the squares of the errors is 

a minimum. Certain deductions from the theory of Least 

Squares will be assumed as demonstrated in the course of 
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this work. For the proofs the student is referred to Bart

lett's Method of Least Squares or other treatises on the 

subject. An illustration of the method as applied to the 

computation of the constants of an empirical equation is 

^ven under Graphical Methods. 

The Arithmetical Mean.—Deviation Measures.—^We will 

now consider the precision discussion of a series of direct 

measurements. Let Oj, ajj ... On be a series of observations 

on a quantity, all of which possess an equal degree of prob

ability. Under these conditions the most probable value 

of the quantity is given by the arithmetical mean, m, of the 

series, i.e. 

m = -. (1) 

Since the true value of the quantity is imknown, the error 

of each of the observations and of the mean, m, cannot be 

determined. W e can, however, obtain a numerical measure 

of the amount by which each observation differs from the 

mean value, and from this the probable deviation of the mean 

can be computed. The difference between the value of any 

observation of a series and the mean value of the series is 

called the deviation of that observation from the mean. It 

is to be distinguished from the absolute error of the obser

vation, i.e., the difference between the observed value and 

its true value, from which it may differ widely. Deviations 

as thus computed follow the same law as indeterminate errors, 

i.e., the law of chance, and are subject, therefore, to the 

same 'mathematical treatment. They give a measure of 

the magnitude of the accidental error of a measurement, but 

evidently afford no indication of the presence or magnitude 

of any constant errors which may be present. 

If the numerical deviations di, d̂ , d̂ , . . . d̂ , be computed 

for any series of observations as above, their algebraic sum 

wilj be zero, since the sum of the positive deviations is equal 

to the sum of the negative deviations. If, however, their 

arithmetical mean be computed, disregarding their sign, the 
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result will be a number which expresses how much on the 

average any single observation of the series taken at random 

is likely to differ (plus or minus) from the mean, m. This 

average value 

a.d. = ^ (2) 
n 

is called the average deviation of a single observation, and will 

be denoted by a.d. In recording data as a-x, â , . . . o„, space 

should always be left for computing the deviations d̂ , d̂ , 

. . . d„, respectively, and their a.d. as follows:— 

% — m = d^ 
Oa — m^== d̂  
â  — m := dg 

a„ — m = d-

2a Srf 
m = — a.d. ==—• 

n n 
Looked at from another point of view, an a.d. is a numerical 

measure of the amount by which a new observation taken 

under the same conditions as before is likely to differ from 

the mean value, m. It gives a numerical measure of the 

reliability of any single observation of the series so far 

as accidental errors affecting the measurement are con

cerned. 

Deviation of the Mean, A.D.—In general, however, it is 

the reliability of the mean that we desire to know rather 

than that of a single observation. As the mean has a higher 

degree of probability than any single observation from which 

it is computed, it must evidently have a smaller deviation 

than a single observation in proportion to its greater reli

ability. It can be shown that an arithmetical mean com

puted from n equally probable observations is V n times as 

reliable as any one observation. Hence, if the deviation 
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measure of a single observation of a series is a.d., the devia

tion measure of the mean of n such observation is only - = 

as great; i.e., the deviation of the mean, denoted by A.D., is, 

^.fl. = ^. (3) 
V n 

Thus, if the mean value of nine measurements of the dis

tance between two lines is 1.3215 m m . and the average devia

tion of any one of the measurements is found to be a.d. = 

0.0033 mm., the mean will have a probable deviation not 

0.0033 
greater than ,- = 0.0011 m m . From this it will be seen 

that in general it does not pay to increase the number of 

observations beyond a certain limit, say nine or sixteen, as the 

time and labor involved soon become excessive, without a 

corresponding increase in the precision attained. 

Fractional and Percentage Deviation Measures.— It is fre

quently convenient to express the reliability of a quan

tity as a fractional or as a percentage part of the quantity 

itself. Thus we have in very common use the two following 

deviation measures derived from the preceding:— 

the fractional deviation of a single observation = ^-^ • 
a 

the percentage deviation of a single observation = 100 -̂ —̂  • 
a ' 

the fractional deviation of the mean = —̂ —'- • 
m 

A D 
the percentage deviation of the mean = 100 —^—-. 

m 
Since these measures are never computed to more than two 

significant figures, see page 23, a and to, being approxi

mately the same, may be used indiscriminately in the com

putation. 

Deviation Measure vs. Precision Measure.— A little con

sideration will make clear that all of the above deviation 

measures give a measure of the magnitude of errors of that 
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type which has been classed as accidental. A result may 

be seriously in error due to residual errors, and yet the ob

servations show a good agreement among themselves, and 

their deviation measure be correspondingly small. If the 

magnitude of the residual errors can be estimated, we may 

compute the true precision measure, abbreviated p.m., of 

the result as follows:— 

Let the estimated magnitude of the residual errors be 

ri, r̂ , . . . r„. Let d.m. represent the value of the deviation 

measure of the accidental errors. This may be expressed as 

an average, fractional or percentage deviation, but, which

ever is chosen, the residuals must be expressed in the same 

way. It can then be shown that the most probable measure 

of the reliability of the result will be given by the expression:—• 

p.m.2 = d.m? -\r r-̂ -\-r̂ -\- • • • +?•„^ (4) 

or p.m. = ^Id.m? -\- ri -\- r^ -\- . . . -\- r^. (4a) 

Thus the precision measure of a result differs from its devia

tion measure in that it includes the effect of residual as well 

as of accidental errors. In a great many cases the value of 

the residuals is negligible compared with the magnitude of 

the accidental errors. In this case p.m. = d.m. The sym

bol 8 will be used to represent the value of p.m. or d.m. in

discriminately, as the latter is only a special case of the 

former when S?^ is negligible. 

It will be shown on page 31 that any single residual r* 

may be regarded as negligible in computing p.m. if 

rji = i p.m. (5) 

Also that any number p of residuals are simultaneously neg

ligible if 

Vri^ + r2̂  + . . . + r/ = J p.m. (6) 

The Probable Error and the Mean Error In the discus

sion of observations by the method of Least Squares and 

in many foreign treatises certain other measures are in 

common use; namely, the so-called probable error and the 
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mean error. The "probable error" of an observation is of 

such a magnitude that the probability of making an error 

greater than it is just equal to the probability of making 

one less than it, both probabilities being one-half. The 

probable error of a single observation and of the mean 

of n observations are given by the expressions 

p.e. = 0.6745 J ^^' and P.E. = 0.6745 J ^^' 
' n — 1 ^ n {n — 1) 

respectively, where Sd^ is the sum of the squares of the 

deviations of the single observations from the mean. 

The following approximate formulae are more convenient 

forms to use for purposes of computation: 

p.e. = 0.84537—== and P.£J. = 0.8453 , • 
Vn {n — 1) n\n — 1 

The "mean error" /a is defined as the square root of the 

arithmetical mean of the squares of the errors. It is 

seldom used except in treatises on Least Squares. 

It can be shown from the equation of the curve of error 

(p. 13) that, interpreted geometrically, p.e. = OP, the ab

scissa of the ordinate which divides the area O X Y into 

equal parts; a.d.=OD, the abscissa of the ordinate pass

ing through the center of gravity of the half area; and 

11.=OM, the abscissa of the point of inflection of the curve. 

From this it follows that 

0.4769 , 1 1 

or p.e. = 0.85 a.d. = 0.67/i. 

Although the probable error is frequently used by physi

cists as a precision measure, the average deviation is 

simpler, and wiU be adopted throughout the present work. 

Weights.—It frequently happens that it is necessary to 

average a series of results which have not been taken under 

like conditions, and which are not all equally probable; i.e., 
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which do not have the same precision measures. In this case 

it is first necessary to assign relative weights to the obser

vations, so that, in taking the average, the more precise 

measurements m a y be given a proportionally greater 

"weight" than the less precise measurements. 

It can be shown that the relative weights of a series of 

observations are inversely proportional to the squares of 

their precision measures; i.e., if pi, p^, Pz, • • • ̂ tc, are the 

weights of a series of observations whose respective precision 

measures are Ŝ , 82, 83, . . . etc., respectively, 

1 1 1 ,7^ 
Pi : P2 : P3 : . . . = ^ : T^ : ^ : (') 

61 02 63 
In determining the values of p, the nearest round numbers 

satisfying the above proportion should be chosen. 

Since the various precision and deviation measures differ 

from each other only by a constant factor, any one of them 

m a y be used in computing "weights." It is, of course, neces

sary, however, that the same measure be used throughout 

any given discussion; i.e., it is not permissible to express 

the precision of one quantity as an average deviation, another 

as a probable error, and a third as a percentage error. 

The Weighted Mean.—Having obtained the weights pi, p^, 

pg, etc., to be assigned respectively to a series of quantities 

TOi, ma, TOg, etc., the best representative value or weighted 

mean will evidently be given by the expression 

ĵjj- __ Pl X TOi H- P2 X TO2 -F P3 X ???3 ... 

P1 + P2 + PS + • • • ^ ^ 

Rejection of Observations—In a series of measurements 

taken under similar conditions, it not unfrequently happens 

that an observation will differ quite widely from others in 

the series, and the tendency to regard such an observation 

as erroneous and to reject it is great, particularly among 

beginners. If such an observation obviously contains a 

mistake, as, for example, the recordmg of a wrong number 

the recording the wrong scale division, the incorrect adding 
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up of weights, etc., it may, of course, be legitimately re

jected. If, however, no mistake is apparent, the observa

tion should neA-er be rejected without the most scrupu

lously unbiassed judgment on the part of the observer or 

the application of some mathematical criterion for the 

rejection of doubtful observations. For the experienced 

observer the former procedure is preferable, even though 

several mathematical criteria, Peirce's, Chauvenet's, etc., 

have been deduced, which are very satisfactory when 

the number of observations considered is large. In most 

physical work the number of observations is not very 

great, however, and one widely discordant from the others 

has an undue weight on the value of the mean. It is 

frequently better to reject such an observation, even 

though it contains no apparent mistake. A good cri

terion to foUow in such cases is the following:— 

Compute the mean and the average deviation a.d., 

omitting the doubtful observation. Compute also the 

deviation, d, of the doubtful observation from the mean. 

If d >r 4 a.d., reject the observation, since it can be shown 

that the probabihty of the occurrence of an observation 

whose deviation is equal to four times the average devia

tion is only one in a thousand. A n error of this unusual 

magnitude is called a Huge Error. 

Computation Rules and Significant Figures.—It is prob

ably true that at least half the time usually spent on com

putations is wasted, owing to the retention of more figures 

than the precision of the data warrants, and to the failure 

to use either logarithms or a slide rule instead of the 

lengthy arithmetical processes of multipHcation and divi

sion. A n important feature of physical laboratory work is 

the proper use of significant figures in recording data and 

in subsequent computations. The habit should be ac

quired at the outset of rejecting at each stage of the work all 

figures which have no influence on the final result. 

Rules for the correct use of significant figures are dis

cussed in the introduction to Hohnan's "Computation 
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Rules and Logarithm Tables" which may very advantageously 

be used in connection with the laboratory work. A fuller 

discussion, including the demonstration of these rules, is 

given in- Holman's "Precision of Measurements." The 

followmg brief statement of the rules is essentially that 

given in these works:— 
A Digit is any one of the ten characters 1, 2, 3, 4, 5, 6, 7, 8, 

9, 0. 
A Significant Figure is any digit to denote or signify the 

amount of the quantity in the place in which it stands. Thus 

zero may be a significant figure when it is written, not merely 

to locate the decimal point, but to indicate that the quantity 

in the place in which it stands is known to be nearer to zero 

than to any other digit. 

For example, if a distance has been measured to the nearest 

fiftieth of an inch, and fotmd to be 205.46 inches, all five of 

the figures, including the zero, are significant. Similarly, if 

the measurement had shown the distance to be nearer to 

205.40 than to 205.41 or to 205.39, the final zero would be 

also significant, and should invariably be retained, since its 

presence serves the most useful purpose of showing that this 

place of figures had been measured as well as the rest. If 

in such a case the quantity had been written 205.4 instead 

of 205.40, the inference would be drawn either that the 

hundredths of an inch had not been measin-ed or that 

the person who wrote the number was ignorant or careless 

of the proper numerical usage. Failure to follow this 

simple rule is a common source of annoyance and un

certainty. 
A zero, when used merely to locate the decimal point, is 

not a significant figure in the above sense; for the position 

of the decimal point in any measurement is determined solely 

by the unit in which the quantity in question is expressed. 

The number of decimal places in a result has, therefore, in 

itself no significance in indicating the precision of a measure

ment. For example, suppose a certaui distance is found to 

be 122.48 cm. with a A.D. of 0.12 cm. The percentage pre-
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0 12 
cision of the measurement is ̂ ^ X 100 = 0.10%. The re-

suit contains five significant figures, and its precision remains 

the same, namely, 0.10%, whether it be expressed as 1.2248 

meters, A.D. — 0.0012 m., or 1224.8 mm., A.D. = 1.2 m m . 

The statement that the distance is measured to 0.12 cm. gives 

no idea of the precision of the measurement unless the distance 

itself is stated. A fractional or percentage precision measure, 

on the other hand, gives a definite idea of the precision of the 

measm'ement without any further statement, as it involves 

both the value of the quantity and its average deviation. 

The following rules are deduced subject to the condition 

that the accumulated errors in a computation shall not affect 

the second unreliable place of figures in the final result by 

more than one imit, even though as many as sixteen rejec

tions of figures are made in the course of the computation. 

This is a safe limit to assume for most physical work, as it 

is seldom that more than this number of quantities or oper

ations enter into any single computation. 

Rule I.—In rejecting superfluous figures, increase by 1 the 

last figure retained, if the following figure {that rejected) is 5 

or over. 

Rule II.—In all deviation and precision measures retain 

two, and only two, significant figures. 

The reason for this rule is as follows: consider the above 

example where the length measured is m = 122.48 cm. with an 

A.D. = 0.12 cm. The significance of the A.D. is that the 

place of figures in m occupied by the 4 is uncertain by 1 

imit, and that the next place of figures occupied by 8 is un

certain by 12 units, while the third decimal place would be 

uncertain by at least 120 units; i.e., by an amount which 

would render it practically worthless. In general, the place 

of figures corresponding to the first significant figure of the 

deviation measure is somewhat uncertain (from 1 to 9 units), 

while the place corresponding to the second significant figure 

in the deviation measure is uncertain by ten times this amount 

(10 to 90 units, or, more exactly, 10 to 99 units). Beyond 
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this place the significance of additional figures is so sUght as 

to be of no value: hence, as deviations and precision meas

ures are at best only estimates of the reliability of a result, 

it is useless to compute them to places of figures which have 

no real significance in the result to which they refer. ̂  

If the first significant figure of the precision measure is as 

great as 8 or 9, in which case the place of figures in the data 

correspondmg to the second place in the precision measure 

is unreUable by 80 to 90 units, it is usually suflBcient to 

retain but one significant figure in the precision measure. 

Rule III.—Retain as many places of figures in a mean re

sult and in data in general as correspond to the second place 

of significant figures in the deviation or precision measure. 

T w o places of doubtful figures are thus retained in data 

and computations rather than one, so that accumulated 

errors due to rejections in the course of a computation may 

not affect the first place of uncertain figures in the result. 

Rule IV.—The sum or difference of two or more quanti

ties cannot be more precise numerically than the quantity 

having the largest average deviation. Hence, in adding or 

subtracting a number of quantities, find the average deviation 

of each, and then retain in each quantity as many places of 

figures as correspond to the second place of significant figures 

in the largest deviation. 

Rule V.—In multipheation or division the percentage 

precision of the product or quotien cannot be greater than 

the percentage precision of the least precise factor entering 

into the computation. Hence, in computations involving 

these operations, the number of significant figures to be re

tained in each factor is determined by the number properly 

retained under Rule III. in the factor which has the largest 

percentage deviation. 'Computations involving a precision 

not greater than 34 per cent, should be made with a sUde 

rule. For greater precision logarithm tables should be 

used. If multiplication and division must be resorted to, 

the "short, method" of rejecting all superfluous figures 

at each stage of the operation, should be adopted. 



INDIRECT MEASUREMENTS 25 

Rvie VI.—In carrying ovi the operations of multiplication 

and division by logarithms, retain as many figures in the man

tissa of the logarithm of each factor as are properly retained 

in the factors themselves under Rule V. 

Precision Discussion of Indirect Measurements.—^We will 

now consider the precision discussion of indirect measure

ments; i.e., those in which the final result is a more or less 

complicated function of one or more directly measured 

quantities. Tvro distinct classes of problems m a y arise: 

First.—^The precision measures of the directly measured 

components are known (determined as above described), and 

it is desired to find the precision measure of the final result. 

Second.—The desired precision of the final result is stipu

lated at the outset, and the problem is to ascertain what 

precision is necessary in the components, in order that the 

accumulated effect of the errors in these on the final result 

shall not exceed the prescribed limit. 

The importance of these problems cannot be overesti

mated; for, in the first case, a final result, be it the result 

of chemical analysis, the value of a physical constant, the 

algebraic expression of a law, or an efficiency test of an en

gine, is practically worthless unless a numerical estimate 

of its reliability can be stated. In fact, it m a y be worse 

than worthless if carried out to indicate a higher precision 

than the data warrant. And the second case is of equal 

importance; for, unless an investigator makes a preliminary 

precision discussion of his method and apparatus before 

beginning work, so that he m a y know, at least approx

imately, how precisely each quantity entering into the final 

result should be measured, the chances are that much 

time and labor will be wasted in measuring some compo

nents more precisely than necessary, 'while others will be 

measured to a degree of precision which will render impos

sible the attainment of the desired precision in the final 

result. 

Notation.—In the precision discussion which follows, the 

following notation will be adopted. 
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M = the final computed result of any indirectly measured 

quantity. 

A = numerical precision measure of M. 

TOj, mg, . . . = directly measured quantities, which may 

be either mean results or single observations. 

81, 82, ... = the numerical precision measures of m^, m^, 

. . . respectively. 

The values of 8 might be expressed as average deviations, 

probable errors, or mean errors, discussed on page 19. In the 

discussion of any given problem, however, the same kind 

of precision measure must be used throughout; i.e., in any 

given problem it is not proper to express the precision meas

ures of some quantities as probable errors, others as average 

deviations, and still others as percentage or fractional de

viations. In the following discussion we shall always assume 

values of 8 to be expressed as deviations. 

Ai, A2, . . . , will be used to denote the deviations pro

duced in M" by deviations 81, 83, ... in the components 

TOi, m^, . . . respectively. 

From the above notation it follows that, 

-r^ = the fractional precision of the final result; 

100 Y? =^ percentage precision of the final result; 

8 8 
— , — ,... = the fractional precision of the components 
mi TO2 

mi, m^, . . . respectively; 

8 8 
100 — , 100 — , . . . = : the percentage precision of the com-

mi m^ 
ponents TOj, mg, . . . respectively. 

In general 
M^:/(mi, TOa, . . - toJ, (9) 

which for brevity may be written M = f { ), where the 

form of the function is determined by the formula by which 

M is computed from mj, m^, etc. The first class of problems 

may then be stated mathematically as follows:— 
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Case I.—The Direct Problem. Given the precision meas

ures Si, \, . . . 8„, of the component measurements m-i, m^, 

. . . m„, to compute the precision measure A of the result M . 

The solution of this problem is obtained by finding, first, 

the effect of the deviation in each component on M , and 

then combining these separate effects to get the resultant 

effect. The method of computation to be followed in this 

last procedure depends upon the law to which the deviations 

concerned are subject, and will be considered below. 

Separate Effects.—̂ The effect of a deviation 8̂  in any com

ponent mi will be to produce a deviation A* in M of an 

amount 

A -^^''^ 8 
dmi 

=-^fi )-8*. (10) 

i.e., an amount equal to the rate at which the value of the 

function M ^ f { ) changes, as m^ changes (the other com

ponents m^, mg, . . . etc., remaining constant), multiplied 

by the actual change 8̂. in mi, or, in other words, the partial 

differential coefficient of the function with respect to m* 

multiplied by the actual deviation 8* in m^. 

Iixample 1.—Find the deviation in the volume of a 

sphere whose diameter is 10.013 cm., if the average devia
tion in the measurement of the diameter is A.D. = 0.012 cm. 

V — iTrD". 
Comparing with the notation on page 26, it is evident that 

M = y = /( ) = i^D\ 
m = D = 10.013 cm., and 5 = A.D. = 0.012 cm. 

The computed value of V is 
y = ^ X 3.1416 X 10.0133 
= 525.52 c.c. 

By (10) the deviation A in this volume produced by the 
deviation 5 in the diameter is 

^ = ^(i^D^).s 

= J X. 3D2. S 

= i X 3.1 X 3 X 102 0.012 
= 1.9 c.c; 
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i.e., the volume 525.5 c.c. is uncertain by 1.9 c.c, or by 19 parts 

m 5300. A deviation of 100 ̂  = 100 - ^ = 0.12% in the 

A 1.9 
diameter introduces a deviation of 100 ̂  = 100 -^^ = 0.36% 
in the volume, i.e., a percentage deviation three tunes 
as great. In this case 7 is a function of only a single vari
able, hence the resultant deviation in V is given at once by 

the above result. 
Eisample 2.—^What wiU be the numerical deviation in the 

value of g, as determined by a second's pendulum, due to 
a deviation A.D. = 0.0020 second in the determination of 
the time of vibration, and a deviation A.D. = 0.10 cm. in 
the determination of the length? 

Hence in the general notation M = g ^ f { ) = — •• 

mi := I = 1 0 0 cm.; m2 = < = 1 sec; Si = 5; = 0.10 cm.g 
82 = 3j = 0.0020 sec. 

The deviation Aj in g produced by the deviation 5j in Z is 
by (10) 

= ^ X 1 X Sj 

= -^2- X 1 X 0.10 

cm. 
= 0.96 = 2 ; 

sec. 
i.e., a deviation of 0.10 cm. in the measurement of I will 
produce a deviation of 0.96 —-^ in the value of g. 

Similarly the deviation A( in g' due to the deviation 5j in i 
is by (10) 

' 9t\ f I 

2 X 3 . 1 ^ X 1 0 0 ^ ^ _ „ ^ 
I" 

cm. . 
= —3.8 

sec.' 
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i.e., a deviation of 0.0020 sec. in the measurement of the time 

win introduce an uncertainty in the value of g of 3.8 = = 2 • 
sec. 

The negative sign simply indicates that a positive deviation in 
t produces a negative deviation in g, and vice versa. Since all 
deviations are equaUj' likely to be plus or minus, in pre
cision discussions no attention is usually paid to the sign 
resulting from differentiation of a function. By a direct 

application of (10) the effect of a deviation in any single 
component on a final result may always be computed. A 
much shorter method than the above, applicable in certain 
special cases, will be pointed out below. 

Resultant Effect.—To find the combined or resultant effect A, 

on the final result of the separate deviations Ai, A2, . . . etc., 

produced by the components. 

If for any reason the values of Ai, A2, ... etc., are of 

specified magnitude and sign (in which case they would not 

follow the general law of deviations), they should be com

bined according to the formula 

A = Ai + A2 + . . . -f A„. (11) 

As this case rarely occurs in practice, it need not be further 

discussed here. 

The important case to consider is that in which the values 

of Ai, A.J, . . . etc., are equally likely to be plus or minus and 

of a magnitude determined by the general law of deviations. 

If each Ai is computed by formula (10), page 27, i.e., 

these conditions will always be fulfilled, since the values of 

8i which determine Aj are of the nature of true deviations. 

Under these circumstances the most probable resulting devia

tion A, in M, can be shown by the method of Least Squares to 

be that obtained by combining the values of A* by the formula 

a2 = Aî  + Â ^ + . . . + A\, (12) 

or A = V a / + A22 + . . . + A„2. (12a) 
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This does not give us an exact solution of the problem, but 

rather the solution which in the long run is better than that 

obtained by any other method of combining the values of 

Aj. It is to be noted that by this method of computation 

the effect of the sign of individual deviations A* is elim

inated. The resultant deviation A is, of course, to be re

garded as equally likely plus or minus. 

Example 2 (contumed).— Thus in Example 2 the com

bined effect of the deviations in I and in t on the value of g 
is to be found by taking the square root of the sum of the 
squares of the deviations Aj and At, which SI and (5i sep

arately produce in g respectively; i.e., 

A = V Af + Aî  

= Vo!96^ + 3^^ 
cm. 

= 3.9 = 2 
see. 

Hence a deviation of 0.10 cm. in I and 0.0020 sec. in t wiU 
cm. cm. 

make the value of g = 980 ̂ =2 uncertain by nearly 4 = 2 . 
sec sec. 

Criterion for Negligibility of Deviations in Components.—It 
is frequently important to determine whether the deviation 
arising from one or more components m a y be neglected 

in computing the A of the final result. For this purpose 

the following criterion m a y be deduced. 

As explained imder rules for significant figures on page 

23, two significant figures are all that should be retained 

in any deviation measure. A quantity which affects a re

sult by only -̂-q the amount of its deviation or precision 

measure will therefore affect it only in that place of significant 

figures corresponding to the second place in the deviation 

measure. This place is so uncertain that such an amount 

m a y in general be regarded as negligible. Although the 

assumption that yV P-m. or jV d.m. is negligible is some

what arbitrary, it has been found to be a convenient and 

practical criterion to adopt. 

Suppose, therefore, that the value of the A of some quantity 
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M is made up of deviations Aj, Ag, . . . A„, arising from 

various deviations 81, 82, . . . 8„, in components mi, mj, . . . 

m„. May any of these A's, as Â , be neglected in com

puting A, or, in other words, may any of the components, 

as mi, be regarded as being without sensible error on M ? 

To answer this question, let 

A = Vai^ + A^^-f . . . -f A,2+ . . . A„2 

and A' = Vaj^ -[- a2^ + . . . -f a„2 ̂ -̂ Ŷi a* omitted. 

Then, if A — a' < J^ A 

or A' > 0.9 A, 

by the above criterion Ai may be considered as negligible. 

But Ai2 = A2 —A'= 

= a2(12_o.92) 

= 0.19 A 2 

.-. Ai=::0.43A. 

Hence the deviation in any component m may be neglected 

in computing the A of M , if its effect on M is equal or less 

than 0.43 A. A still safer and more convenient criterion to 

adopt, since the number of components considered is usually 

small and hence the assumed formula of squares is less 

rigidly applicable, is 

Ai=^0.33A^iA. (13) 

In the same way it can be shown that deviations in any 

number, p, components are simultaneously negligible if 

V ^ T + ^ T + T T T V < * -̂^ (14) 

The above criterion also applies to the rejection of residuals 

in computing the value of the precision measure by the 

formula p.m. = -ŷ d.m.̂  + '"î  + 5*2̂  + • • • fn̂ , as stated 

on page 18. 

Case II.—^The Converse Problem. Given a prescribed pre

cision A to be attained in the final result M , to find the allow

able deviations 81, 82, etc., in the components mi, m^, etc., re-
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spectively, such that their combined effect on M shall not exceed 

the value of A. 
W e have seen that when the deviations follow the law 

of errors, 

A^ = Ai^ + A22 + . . . + A„2, 

If the value of A is given and no further conditions im

posed, there are evidently an infinite number of solutions 

to the problem; i.e., an indefinite number of values can be 

found for Ai, A2, . . . etc. (and hence for the correspond

ing values of Si, 83, . . . etc.), which will satisfy the above 

equation. 

The most advantageous distribution of errors among the 

components will evidently be that one by which the desired 

precision is obtained with the minimum expenditure of 

time and labor on the part of the experimenter. As this 

will vary greatly with each individual problem, no mathe

matical criterion can be formulated which will embrace 

all cases. It is best, therefore, at least for a preliminary 

distribution of errors among the components, to so adjust 

them that the errors inherent in each variable or component 

shall produce the same effect on the final result. This is 

spoken of as the solution of the problem for "equal effects." 

Solving the formula for resultant effects subject to this 

condition, i.e., 

we have 

hence for any component. 

= A/ = . . . = A„2, 

A2 = nA/, 

-v^- (16) 

Having thus determined A*, the corresponding value of Si 

can be found at once by equation (15). 
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Example 3.—How precisely should the time of vibration 
and length of a seconds pendulum be measured in order that 
the computed value of g may be rehable to one-tenth of one 

percent.? ff= ^• 

As the pendulum is stated to be a "seconds" pendulum, 
t = one second and I— 100cm. approximately. It is further 

stipulated that 100— ^0.10; hence the allowable resultant 

deviation A in g must not be greater than A = g x 0.0010 
cm 

= 0.98 '- W e are to find the allowable values of St and Si, 
sec." 

which will give this precision. Solving the problem subject 
to the condition of equal effects,—i.e., that the resultant de
viation in ff is caused equally by the deviation in t and in I,— 
wehave 

A 0.98 cm. cm. 
A( = A, = - p =-;=• = ^ = 0.70=i. 

\jn y2 sec. sec. 
Hence the allowable deviations in the time and length meas
urements must be reduced to such a magnitude that they do 

. . . . _ cm. 
not separately produce a deviation in g greater than 0.70 = ; 

sec. 
respectively. But by the general equation (10), page 27 

„ „^ cm. 2 X 3l' X 100 cm. . 
or 0.70=^ = -Y=i . St 

sec. 1 sec. 
hence St = 0.00037 see. 

Sumlarly, A, = -^ . «z = y^\^-^) .Si = j,.St 
cm. 3.1 

or 0.70 = 2 = 1, 2 • Si 
sec. 1̂  sec. 

hence Si = 0.073 cm. 
The time of vibration of the pendulum should there

fore be measured to 0.00037 sec, and its length measured to 
0.073 cm. 

The Fractional or Percentage Method of Solution—The 
preceding formulae for obtaining the precision of a final 
result from the k n o w n or estimated precision of the c o m -
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ponent measurements, and for calculating the necessary 

precision of the component measurements when the de

sired precision of the final result is stipulated, are entirely 

general, and by them any type of problem can be solved. 

It is to be particularly noted throughout the preceding 

discussion that the values of the precision or deviation 

measures S and A are numerical deviations expressed in 

the same units as the quantities to which they refer. 

Percentage and fractional deviations should not be used 

when applying the general formulae (10) to (12a), (15) 

and (16). If in the statement of a problem, as in example 

3, the fractional or percentage precision is given, the cor

responding deviations 8 or A should first be computed 

before proceeding with the solution. 

There are, however, a large number of formulae which 

m a y be discussed with a great saving of time and labor 

by the use of percentage or fractional deviations. This 

is the case whenever the function M=/(toi, mg, • • - w„) 

can be put in the form of a product of the general type 

M = k .mf .mi ...mi (17) 

where k, a, b, : . . p are constants (positive, negative, 

fractional, or integral). For all such cases a very simple 

relation holds between the fractional or percentage devia

tion in any component and the fractional or percentage 

deviation which it produces in the final result. This 

may be shown as follows. Applying the general for

mula (10) for separate effects to the above special case, 

we have for the deviation Ai in M produced by 8i in mi 

9M 
Ai = -g— . ̂ 1 = (/c . m2^. . . mi) . ami'~̂ 8.̂ . 

Dividing through by equation (17) 

^ = a . ^ (18) 
M mi ^ 

Si . 
i.e., a fractional deviation -~~ m Wi produces a fractional 
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deviation a times as great in the final result. Thus, if 
g 

a = 2, a deviation of one per cent. (100 — = 1) in Wiwill 

introduce a deviation of two per cent, in M, no matter 
what the value of the remaining factors in the expression 
may be. The separate effect of a known fractional or 
percentage deviation in any component on the final 
result may therefore be stated at once by inspection, 
whenever the formula under discussion can be put ioi 
the above form. 

Since the formula for Resultant Effects (12a) may be 
put in the form 

A 
w H & H & + - ( & ("> 

the complete solution for any product function of the 
type given by equation (17) may be written down at 
once by inspection as 

B = = v / ( « ^ . ) ' + 0 ^ ) ' + - ( ^ a ' '-> 

8i 
if the fractional deviations — , etc., of the components 

are known. 
Similarly, the solution of the converse problem for a 

product function is equally simple, as the condition for 

equal effects, page 32, may be written 

Aj A2 Aj A„ 

and hence the allowable fractional deviation in the final 
result which any component as m^ may produce is 

where irj is the prescribed fractional deviation of the 
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final result which must not be exceeded. Having thus 

determined the value of -jA, we obtain at once the allow-

able fractional deviation -^ in the corresponding com-
mi 

ponent m* by inspection from the simple relation ex

pressed by equation (18). 

Since the exponents a, b, c, etc., of the factors may 

have negative as well as positive values, the above solu

tions apply to formulae involving division as well as mul-

tiphcation of factors. 

It is to be especially noted that, if the function M in

volves the sum or difference of several components, or 

is a trigonometric or logarithmic function, no simple 

relation exists between the fractional deviation of a com

ponent and the fractional deviation which it produces in 

the final result. The above special method of procedure 

is, therefore, inapphcable to such cases. This will be 

readily seen from the following simple example. Sup

pose 
M = a mi-\-b OT2. 

Then Ai = , ^ . 8i = a . 81 

and Ai a Si 

M ami-\-bm2 

from which it appears that -A stands in no simple relation 

g 
to -^ unless the term h m^ happens to be negUgible ia 

mi 
magnitude compared with a mi, in which case we should 
have assumed at the outset for our precision discussion 

that M = a m i approximately. 

It frequently happens, however, that apparently com-

phcated functions can be transformed into a simple 

product of factors by changing variables or noting that 

certain components may be neglected in the precision 

discussion. W h e n this is possible, the fractional method 

may be applied with advantage to each factor. 
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Example 4.—The solution of problem 2 may be obtained 
much simpler by the fractional or percentage method than by 
the general method as worked out on page 28. Tor the 

formula g = ir--̂  = -n̂l H is evidently a simple product func

tion of the variables I and i. To find the deviation in g 
due to a deviation of Si = 0.10 cm. in I and a deviation 
St= 0.0020 second in t, we find first the fractional deviation 
in I and in t respectively. 

5 , ^ a i 0 c m . ^ 
I 100 cm. 

, St 0.0020 sec. •„„„„„ 
and -7 = — T H = 0.0020. 

t 1.0 sec. 
Then by inspection, since g is directly proportional to the 
first power of I, 

^' = i? = 0.0010; 
9 ' 

and, since g is proportional to the second power of t (neglect
ing sign), 

^ = 2 - = 2 X 0.0020 = 0.0040. 
9 i 

- - f - V ( | ) ' + (f)" 

= ̂ (0.0010)2 + (0.0040)2 = ±0.0041 

cm. cm. 
or A = ±0.0041x 980^=-j=±4.0 ^ = 5 

sec. sec. 
which is practically the same result previously obtained, 
the slight difference arising from the use of but two signifi
cant figures in the computation. 
Example 5.—Again, the solution of example 3, page 33, 

may be simpUfied by using the fractional method. Thus, if 
it is stipulated that g is to be measured to 0.10 per cent., 

i.e., 100 — ^ 0 . 1 0 , the prescribed fractional deviation is 

—^0.0010. Distributing this deviation by the criterion of 
9 < 
equal effects between the component measurements I and ( 
respectively, we have 

4i = ^ ' l . ^ ^ 0:2210^000071. 
9 9 ^2 9 sj2 

But by inspection of the formula g = -5- it is seen that g ia 
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proportional to the first power of I and to the second power 

of t, therefore 

'̂ = ̂ 'and^' = 2''. 
9 I' 9 t 

Hence 
J = 0.00071, 

or the length must be measured to 
Si = 100 cm. X 0.00071 = 0.071 cm. 

Similarly, 

~ = ^ x 0.00071 =0.00036, 
t Z 

or the time must be measured to 
St = l sec. X 0.00036 = 0.00036 sec. 

These, it is seen, are practically the same values previously 
obtained by the differentiation method on page 33, the dif
ference in the second place of figures arising from the use of 

only two figures in the computation. 

Discussion of "Equal Effect" Solution.—It not infre

quently happens upon solving a problem as described 

above, that some component (or components) can with 

little additional time and labor be determined with a 

m u c h higher precision than the solution demands. In 

this case such a component or factor should be so meas

ured and then regarded as a constant in the precision 

discussion, since the error in it will have a negligible 

effect on the final result. T h e problem should then be 

re-solved on the basis of one less variable, in which 

case the remaining components which are more difficult 

to determine, m a y be measured with somewhat less pre

cision than was demanded b y the first solution. 

T h e proper adjustment of precision a m o n g components 

so as to give the desired precision in the final result with 

the apparatus at one's disposal and with the least ex

penditure of time and labor, requires some experience 

and good judgment on the part of the investigator. 

Beginners will not go far astray, however, if they follow 

the above criterion for equal effects. 
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Nature of Problems—The graphical method of discussing 

experimental data is of great convenience and importance 

when the problem under investigation is to determine the 

law or fundamental relationship between two quantities. 

This type of problem arises very frequently in scientific 

and technical investigations. The graphical method is 

also of great value for purposes of interpolation, discus

sion of corrections, etc. 

Procedure.—The general procedure to be followed in dis

cussing observations by the graphical method will be ex

plained and illustrated by following through, step by step, a 

specific problem. Suppose it is desired to find the relation 

which holds between the resistance of a certain coil of wire 

and its temperature, between 10° and 100° C ; that is, to 

determine the formula by which the resistance can be com

puted at any given temperature between these Hmits. The 

experimental procedure would consist in making a series 

of measurements of the resistance r of the wire at various 

temperatures t from approximately 10° to 100° C. Suppose 

that the result of such experiments ̂ ves the two following 

columns of data, the resistance measurements being reliable 

to 0.003 ohm, and the temperature measurements to 0.02° 

C , as shown by their respective deviation or precision 

measures. 

EXPERIMENTAL 
= resistance of t 
coil in. ohms. 
10.421 
10.939 
11.321 
11.799 
12.242 
12.668 

DATA. 
= temperature of coil 

in degrees 0. 
10.50 
29.49 
42.70 
60.01 
75.51 
91.05 
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The Direct Plot.—To obtain some clue to the relation 

between r and t (supposing it unknown), a Direct Plot 

should first be made. Plotting-paper suitable for this 

work should be ruled with carefully adjusted pens, other

wise the errors arising from irregularity of ruling may 

easily exceed those of only moderately accurate data. A 

convenient size is about eight by ten inches, ruled either 

in millimeters, or preferably, in twentieths of an inch. 

First.—Choice of Ordinates and A bscissce. The first thing 

to decide upon is which data are to be plotted as ordinates 

and which as abscissae. The usual convention of analytic 

geometry should always be followed. If, as in the problem 

under consideration, it is desired to obtain a relation in 

which r is expressed as a function of t, then values of r 

should be plotted as ordinates and values of t as abscissae. 

If, on the other hand, it were desired to obtain a formula 

for computing the temperature t corresponding to any 

resistance r, as in resistance pyrometry, the converse 

would be the case. 

Second.—Choice of Scales. B y the "scale" of a plot is 

meant the ratio of the number of units (inches, centi

meters, etc.) of the plot to one unit of the data. Scales 

of both ordinates and abscissae should be clearly indicated 

on the plot. Thus, if 100° is plotted so as to extend 

over 10 inches, the scale is 10": 100° = 1:10, or one-tenth. 

This is usually expressed as 1 inch to 10 degrees. In 

general, it is not feasible to choose the same scale for 

both ordinates and abscissae, nor should the attempt be 

made to have the origin fall on the plot. If equal scales 

are chosen for both abscissae and ordinates, the locus 

of the data is likely to be a line either nearly horizontal, 

in which case the precision of the data plotted as ordi

nates is sacrificed, or nearly vertical, in which case the 

same is true of the abscissae. Moreover, the intersection 

of a nearly horizontal line with lines parallel to the axis of 

X can be read off only with difficulty and Uability to error, 

while its point of intersection with the axis of Y is much 
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more definitely defined. In order, therefore, to preserve 

equal precision in the interpolation of both co-ordinates, the 

line should be inclined as nearly as m a y be at an angle of 

45° -uith both axes. Deviations of 10° or so to either side 

of this position are not serious. 

The scales chosen should, furthermore, be convenient; i.e., 

in aiming to distribute the data approximately 45° across 

the plotting-paper, scales of one inch equal to 1, 2, 4, 5, or 

10 units (or these units multiplied by 10 ̂"̂  where n is an 

integer), should be chosen, but never such scales as one inch 

to 3, 7, 6, 11 units. The latter scales make plotting not only 

laborious, but very Mable to error, whereas the former scales 

permit data to be plotted with facihty. In choosing scales 

for plotting, the student should guard as carefully against 

adopting excessively large scales as excessively small ones. 

In the latter case the plot will be cramped and the precision 

of the data sacrificed. In the former case the deviations 

of the data from the general law which they follow are Hkely 

to be so magnified to the eye that it is difficult or impossible 

to draw a representative line. Moreover, such plots give an 

exaggerated idea of the precision of the data. As an upper 

limit, a safe rule to follow is to adopt a scale which permits 

of easy interpolation to not more than two uncertain places 

of figures in the data; i.e., to that place corresponding to the 

second significant figure in the deviation or precision meas

ure. This rule applies particularly to data extending over 

narrow numerical limits, to corrections, etc. 

In the present problem it is seen that the extreme variation 

of r is about 2.3 ohms, and of t, 90°. The scales should there

fore be so chosen as to distribute these quantities well over 

the paper. Scales of 1" = 0.4 o h m and 1" = 10° evidently 

fulfill this condition and are at the same time convenient. 

It is evident, however, that some of the precision of the 

data wiU be sacrificed in plotting with these scales, since it 

is impossible on a plot of the size chosen to locate the last 

significant figure of the data with any great degree of pre

cision. It should also be noticed that the origin will not fall 
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on the plot. This is not at all necessary, and only in those 

cases when the data for both variables simultaneously 

approach small values (zero) is this likely to be the case. 

It is, however, desirable (although not imperative), that the 

zero value of the abscissae should fall on the plot, in order 

to determine the intercept of the curve with the ordinate 

through this point for reasons explained below. 

Third.—To plot the data. Data should be plotted as fol

lows. Locate the abscissa of the first point along the axis 

of abscissae and with a straight edge placed vertically through 

this point draw a fine line about one-eighth of an inch long 

approximately at the place where the corresponding ordinate 

is to be located. Then locate the ordinate along the axis 

of ordinates, and draw a short horizontal fine intersecting 

the first line drawn. The intersection is the desired position 

of the point. Never locate the data by dots, as the preci

sion attainable with the paper is not only sacrificed, but there 

is also much greater Uability to error in the operation of 

plotting itself when the attempt is made to locate both 

ordinate and abscissa at the same time. 

Fourth.—To draw the "Best Representative Line." The 

data being plotted, the next step is to draw a smooth curve, 

the equation of which shall best represent the law connecting 

the two variables in question. Inspection of the general 

form of this curve will usually give valuable information as 

to the form of the equation sought. 

If the points appear to lie along a straight line, the best 

representative line m a y be located by moving a stretched 

fine black thread among the points until a position is found 

such that the points fie as nearly as m a y be alternately on 

either side of the thread and in such a manner that the points 

above the line deviate from it by the same amoimt as those 

below. The exact criterion for locating the best represen

tative line would be to so adjust it among the points that the 

sum of the squares of the deviations of the points above the 

line is equal to the sum of the squares of the deviations of the 

points below the line. (Criterion of Least Squares.) W h e n 
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the best position of the thread has been foimd, the location 

of two points through which it passes is noted, and a fine 

straight line is then ruled through these points with a hard 

pencil, or, better, with a ruling pen. 

If the points cannot be uniformly distributed about a 

straight line, but deviate systematically from it, then the 

best representative curved line is to be drawn with a French 

or a flexible curve. The line shoiild in this case be drawn 

as before, so that the points are distributed as nearly as m a y 
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PLOT I. 

be on alternate sides. From the form of the resulting curve 

its equation m a y often be inferred. The next step is to 

determme the equation of the curve by transforming it 

graphically into a straight line by some one of the special 

methods of transformation described below. The numeri

cal constants in the equation of a straight line can always 

be readily determined directly from the plot. 
In the problem imder consideration, the points are seen. 

Plot I., to Ue very closely along a straight line A'.^', the 
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deviations from the line being of an irregular and not of a 

systematic character. The relation between r and t is there

fore a Hnear one; i.e., of the first degree. To determine 

completely the function r=f (t), we have to find the numeri

cal value of the constants in the equation of this line A'A". 

Determiaation of the Constants of a Straight Line.—The 

general equation of a straight Une is 

y=ax-\-b, (1) 

where a and b are constants. 

The constant a= -^ is the tangent of the angle 6 which 

the Une makes with the axis of X. The value of a cannot in 

general be found by reading off the angle with a protractor 

and looking out the value of its natural tangent, as the angle 

is usually distorted owing to the unequal scales used in plot

ting. To determine a, read off the value of the ordinate 

and abscissa x', y' and x", y", respectively, of any two points 

on the line, preferably near the extremities. These points 

wiU not in general be observed points. Then 

y" — y' 
a = tan 6 = ^, ^• 

Thus the co-ordinates of two such points A' and A" are 

seen to be x' = 6.0°, y' = 10.30 ohms, and x" = 94.5°, 

y" = 12.76 ohms. Hence 

, . 12.76—10.30 2.46 „„„_„ 

The constant b is the value of y when a; = 0; that is, it is 

the intercept of the line (prolonged, if necessary) on the 

axis of Y, read off on the scale of ordinates chosen. Thus 

from the plot it is seen that the line A'A" cuts the ordinate 

through a; = 0° at 6 = 10.13. The desired equation con

necting r and t is therefore 

r = 0.0278 t + 10.13. (2) 



RECTIFICATION OF CURVES 47 

Whenever the data are such that a long extrapolation of 

the Une is necessary in order to make it cut the ordinate 

through a; = 0, or when this ordinate falls off the plot, the 

value of b is found as follows. Substitute the value of a 

as determined above, together with values of x' and y' of some 

point on the Une, in equation (1) and solve for b directly. 

It is to be noted here that the precision of the constants in 

equation (2) is less than the precision of the original data. 

'̂alues of r computed by this formula cannot at best be more 

precise than one or two parts in 1,000, while the observed 

values were stated to be reliable to 3 parts in 10,000; in 

other words, the full precision of the data has not been 

utilized in the plot of the size here chosen. The procedure 

by means of which the precision of the constants as above 

determined may be increased, and another place of signi

ficant figures obtained, wiU be explained later. See Resid

ual Plot, p. 60. 

Rectification of Curved Lines.—^When the plotted data do 

not Ue along a straight line, the form of the smooth curve 

best representing the points wiU often suggest the relation

ship sought. Thus curves resembUng any of the conic sec

tions or trigonometric functions are usually readily recog

nized. In aU such cases it is lusually necessary to transform 

the curve into a straight Une in order to determine the con

stants in its equation. Suppose from inspection of the curve 

that the relation y r= F {x) is suggested. If F {x) can be 

factored or written in the form 

F (x) = af{x) + b, 

where a and b are numerical constants and f{x) contains no 

constants, the function suggested can be very readily tested 

graphically. This includes evidently the special cases when 

c = 1 and when & = 0; i.e., the functions, 

y = af{x); y = f{x); and y = f{x) -\- b. 

In aU of these cases let f{x) = z, and for each value of x of 

the data compute the corresponding value of z. Construct 



48 GRAPHICAL METHODS 

a new plot with values of z as abscissae and the correspond

ing (observed) values of y as ordinates. The general equa

tion of the new line wiU then be 

y = az-\-b, 

or that corresponding to the above special cases, 

y = az; y = z; and y = z + &, 

all of which are equations of a straight Une, the constants 

of which m a y readily be determined as described above. 

Whether the assumed equation y^af{x)-\-b represents 

the experimental data or not can thus be judged by the mag

nitude and sign of the deviations of the plotted data from the 

straight line. If the correct function has been assumed, the 

values of the constants a and b should be corrected by means 

of a residual plot, provided the precision of the data war

rants it. 

Problem.—Trigonometric Functions. Suppose that with a 

certain galvanometer the following defiections 6 are pro

duced by the currents, 7, respectively, and it is desired to de

termine the law of the galvanometer, i.e., the form of the 

function I = F {$), so that the current corresponding to any 

deflection may be computed. 

OBSERVED DATA. 
Deflection 6. Current I. z = tan 6. 

10.17° 0.0704 0.1794 
19.27° 0.1368 0.3496 
29.16° 0.2184 0.5580 
40.47° 0.3348 0.8532 
48.45° 0.4430 1.128 
56.90° 0.5780 1.477 

The data plotted directly with values of 7 as ordinates and 

6 as abscissae are found to lie along a curve A, Plot II., which 

evidently suggests the relation I = a tan 6 where a is con

stant; for 7 = 0 when 6 = 0° and 7 approaches a very great 
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value (infinity), for 6 = 90°. Comparing the suggested 

equation with y =- af (x), we see / {x) = tan $. Hence, to 

test the suggested equation, we compute the value z = tan 0 

for each observed value of 6, and construct a new plot with 

the values of 7 as ordinates as before, and values of z as 

6 

Deflections $—Ourve A. 
Tangent 9—Curve B 

PLOT M. 

abscissae. The line best representing these data is shown 

in B. This line must necessarily pass through the origin, 

since the current and corresponding deflection of the gal

vanometer approach the value zero simultaneously. The 

galvanometer is seen to follow the law of tangents between 

0° and 60°. Since the Une B passes through the origin, the 

value of the constant a, i.e., the tangent which the line 
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makes with the axis of X, is readily found from the co-or

dinates a;" if' of a single point M to be 

y" _ 0.525 _ 

The value of a, in this particular case, can also be obtained 

as foUows: Since tan 45° = 1, it follows from y = aiawB 

that y = a, iov 6 = 45° or z = 1; i.e., the ordinate of curve 

A at 45° or the ordinate of curve S at z = 1 gives the value 

of a directly. B y this method we find a = 0.393 from M', 

curve A, and a = 0.392 from M", curve B, both values being 

in good agreement with that obtained in the usual way. 

The desired formula for the galvanometer is, therefore, 

I = 0.392 tan 0. 

If the observations had been extended beyond 6 = 60° 

and it were found that the points corresponding to these 

data regularly deviated from the straight line, the conclusion 

would be that the instrument followed the law of tangents 

only within certain limits, which could be thus determined. 

Problem.—Reciprocal Functions. Suppose the volume v of 

a definite mass of gas kept at constant temperature is de

termined at various pressures p with the following results, 

and it is desired to find the law connecting p and v; e.g., to 

determine the form of the function p = f (v). 

Pressure p Volume v £ 
in cm. of Hg. in c. c. ^ 
37.60 41.90 0.02380 
39.35 40.13 0.02493 
43.59 36.51 0.02739 
47.50 33.67 0.02971 
54.34 29.65 0.03373 
56.26 28.63 0.03497 
58.28 27.70 0.03610 

Constructing a direct plot from these data, we obtain a 

sUghtly curved line A, Plot H I . The volume diminishes as 

the pressure increases, but not proportionally, since the data 

do not Ue along a straight Une. The curve suggests an equi-



RECIPROCAL FUNCTIONS 51 

lateral hyperbola referred to its asymptotes as axes, the 

equation of which is a::̂  = const. If this suggested relation 

be the correct one, i.e., if vp = const., or, otherwise written, 

p = const, f-j, by changing the variable from v to z=-, 

the resulting equation becomes p = const, z, the equation of 
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a straight line. Constructing, therefore, a second plot, with 

the s a m e values of p as ordinates a n d the reciprocal values 

of •« as abscissae, w e obtain curve B , which should be a straight 

line if the gas in question follows Boyle's law within the 

errors of the experiment. This is seen to be the case. If 

it were not the case, a study of the deviations of the data 



52 GRAPHICAL METHODS 

from the straight Une would afford a proper means of dis

cussion of the deviations of the gas from Boyle's law. 

Another method of treating this problem would be to 

compute the product pv for each pair of values of p and v 

and then to discuss the values of the product graphically 

as follows. With values of p as abscissa construct a plot 

with corresponding values of pv as ordinates. If the data 

satisfy the relation pv = const, within the experimental 

error, the best representative line will be parallel to the 

axis of abscissae, with the values of pv distributed alternately 

and about equally on either side. If, on the other hand, 

the gas deviates from Boyle's law, as many gases do even 

under ordinary conditions, and as all gases do at very great 

values of p, the resulting curve will give information not 

only as to the amount of the deviations, but also as to the 

method of correcting the assumed simple relationship to 

make it better conform with experimental facts. 

The Logarithmic Method. Exponential Functions.—If the 

data of a direct plot are found to deviate continually from 

a straight Une, they may very often be represented by an 

exponential equation of the form y = mx" where m and n 

are constants which may have any value. Cases of this 

kind are of very frequent occurrence, and it is, therefore, 

of great importance to be able to test this relationship and 

to determine the numerical values of the constants m and 

n. This can always be done by means of a Logarithmic 

Plot; i.e., a plot constructed with the values of the loga

rithms of y as ordinates and the corresponding logarithms 

of X as abscissae. For, if we take logarithms of both sides 

of the equation y = ?nx", we have 

log y = n log X -f- log m. 

Changing the independent variables x and y in this equation 

to x' and y' respectively, by putting x' = log x and y' = log y, 

and writing b = log m, the equation becomes y' = nx' -\- b-

This is the equation of a straight line of which the in. 

tercept on the axis of F is 6 = log m, and of which the 
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natural tangent of the imdistorted angle which it m a k e s with 

the axis of X is n. H e n c e the constants in the original equa

tion y = TTix" m a y be obtained at once b y looking out the 

n u m b e r m whose logarithm, b, is the intercept of the straight 

line on the axis of I", and b y determining the tangent which 

the line m a k e s with the axis of X . 
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PLOT IV. 

Here, again, the values of the constants m and n as thus 

determined are usually reUable to not more than 0.5%, and 

hence, if the orginal data warrant it, they should be further 

corrected b y m e a n s of a residual plot. 

Problem.—The logarithmic method will n o w be illustrated 

b y discussing data obtained for a body falUng freely under 

the influence of gravity. Suppose experiments gave the fol

lowing values for the distance s, through which a ball fell 

in the time t, and it is desired to deduce the law between s 
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and t; i.e., to find the equation by which the distance s can 

be computed for any value of t. 

Distance a in 
centimeters. 
30.13 
85.26 
150.39 
223.60 
274.20 

OBSERVED 
Time t in 
seconds. 
0.2477 
0.4175 
0.5533 
0.6760 
0.7477 

DATA. 
e' = log 8. 

1.4790 
1.9308 
2.1772 
2.3495 
2.4381 

i' = logt 

1.3939 
1.6207 
1.7430 
1.8300 
1.8737 

A direct plot A, Plot IV., of s and t, shows at once that s 

and t are not proportional. The regular deviation from a 

straight Une suggests an exponential curve, i.e., s = mt". 

To test this relation, we construct on ordinary co-ordinate 

paper a "logarithmic plot" B with s'= log s as ordinates 

and t' = log t as abscissae. Convenient scales which dis

tribute thfese values about 45° across the paper are 1" = 0.2 

for the ordinates and 1" = 0.1 for the abscissae. It is to be 

noticed that the values of t, being less than unity, lead to 

values of log t with negative characteristics. The abscissae 

are, therefore, laid off to the left of the origin as indicated, 

the plot thereby lying in the second quadrant. The data 

are seen to Ue very closely along a straight line, the constants 

of which are to be determined as described on page 46. Thus 

the intercept of the Une on the axis of Y is 6 == log m = 2.688, 

whence m = 488. The tangent which the Une makes with 

the axis of X is found to be n = 1.995 or n = 2.00 within 

the error of plotting. 

The desired equation is, therefore, s = 488 î ™. Since the 

law of falling bodies is known to be s = ĝt̂ , it follows that 

Jgr = 488, or the mean value of g from the data, within the 

cm 
error of direct plotting, is gf = 2 X 488 = 976 — ^ . 

If the data s and t are reUable to more than about 0.5 per 

cent., the constants m and n should be corrected by means 

of a residual plot. 

Attention should be called to one important point in this 
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connection. In constructing a plot like the above in which 

the intercept on the axis Y is to be determined, it is con

venient to choose the units in which the abscissae are ex

pressed such that the resulting line cuts the axis of Y without 

a long extrapolation. By a suitable choice of units this 

condition can always be attained, for increasing or dimin

ishing the unit expressing the abscissae by a multiple of ten 

does not affect the slope of the Une, but simply shifts it 

parallel with itself to or from the origin. 

Logarithmic Plotting-paper.—^When the constants of a num

ber of exponential curves of the type y = mx" are to be 

determined, a great saving of time and labor may be effected 

by using so-called logarithmic co-ordinate paper. Four 

quadrants of such paper are shown in Plot V. The length 

O X is laid off equal to O Y and put equal to 10 or some in

tegral power of 10 units. This is then subdivided into spaces 

such that the distances 1-2, 1-3, 1-4, etc., are proportional 

to the logarithms of 2, 3, 4, etc. Thus the point numbered 

2 is located not at two-tenths the distance from 0 to X, 

as in ordinary plotting-paper, but at log 2 = 0.301 of the 

distance OX. The rulings thus become more and more 

crowded together as they proceed from 0 to Z and Y. Con

tinuing the rulings beyond 10 in either direction, it is evi

dent that the unit square X O Y repeats itself indefinitely, 

since the value of the logarithm of any quantity multipUed 

by 10*, where k is a. positive or negative integer, is equal 

to the logarithm of the original quantity plus k. Thus 

the point marked 0.2 is laid off at a distance equal to 

log 0.2 = log (2 X 10-1) = log 2 — 1 = — 1 -f 0.301 to 

the left of 0; i.e., just the distance O X to the left of the 

point marked 2, etc. 
It is evident that a series of values of x and y which satisfy 

the equation 
y = mx" 

wiU, if plotted directly on logarithmic paper, Ue along a 

straight line; for the paper has the effect of locating the 

data y and x at points proportional to their logarithms, and 
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it has been shown on page 52 that this leads to a straight 

Une. W e are thus saved the labor of looking out logarithms 

and locating them on rectangular co-ordinate paper as pre

viously explained. Moreover, since the scales of ordinates 

and abscissae are here necessarily equal, the slope of the 
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PLOT V. 

resulting Une is undistorted, and, therefore, the tangent 

which it makes with the axis of X is obtained by measur

ing off with a scale the distance y"— y' and x" — x' of two 

points on the line and taking their ratio, ^ 

gives the desired value of the exponent of x. 

y — y _ n. This 
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To find the value of the constant m, we note that in the 

equation 
logy = nlogx-\- logm 

when X = 1, 

log y = log m. 

Hence, since values read off on logarithmic paper correspond 

to the numbers of which the spacings are the logarithms, 

the intersection of the logarithmic plot with the ordinate 

through X = 1 gives at once the value of m, whereas with 

rectangular plotting paper the intercept with the Y-axis 

gives the value of log m. 

The foUowing difference between logarithmic plots, drawn 

on rectangular and on logarithmic paper, should also be noted. 

Suppose the Une representing the data plotted on logarith

mic paper intersects the ordinate not through x = 1, but 

through X = 10*, where k is any positive or negative in

teger. Let m' be the value of the intercept. To obtain 

the value of m in the equation y = mx" from m', we have 

y = to' for X == 10*, i.e., 

m' := m 10*" 
m' 

or TO = —-T-• 
10*" 

In the case of rectangular paper, on the other hand, the 

Une intersects the ordinate through x = log 10* = & at m". 

To obtain m from this intercept, we have 

to" = log y ̂ = nk log 10 4- log m 

= nfc -[- log to 

Hence log m = m" — nk. 

The solution of the problem discussed on page 54, by the 

use of logarithmic paper is shown on a reduced scale in Plot 

V. Values of s and t are plotted directly and Ue, as is seen, 

along a straight Une. It is convenient to express here values 

of s in meters instead of centimeters. The tangent which 

this line makes with the axis of X measured off directly 

along O Y and OX' is found to be 2.00. Extrapolating the 
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Une to ciit the ordinate OY through x = 1, we see the inter

cept to be 
TO = 4.89. 

The equation connecting s and t is therefore 

s=: 4.89 < 2-00 

which agrees, within the error of plotting, with that pre

viously obtained with rectangular co-ordinate paper, when we 

remember that in the above equation s is expressed in meters 

instead of centimeters. 

Equations of the Form y = m (x -\- P)". 

A slightly more compUcated relation than that represented 

by the equation y = mx", which may also be treated by the 

logarithmic method, is that represented by the formula 

y = m {x 4-/3 )" 

where /S is a constant. If a logarithmic plot be made with 

data Xiyi, x̂ y.̂ , etc., which satisfy an equation of this form, 

the points will not Ue along a straight line for both large as 

well as small values of the variables. Suppose it is found 

that for large values of x and y the curve is practically 

straight, but for small values it becomes curved. Under 

these circumstances it is worth while to see if the best repre

sentative logarithmic plot cannot be rectified into a straight 

line by assuming an equation of the above form, for by 

putting z = X -f- y3 the equation reduces to 

y = mz" 

from which to and n are easily determined, if values of y 

and z are plotted logarithmicaUy. It is only necessary 

therefore to find the value of the constant P to be added to 

all values of x. This may be found as follows. Select two 

points Xiyi and x̂ ŷ  near the ends of the original logarithmic 

plot. Compute the ordinate ŷ  of an intermediate point 

such that 
log y& = i log y-i + i log 2/2 

ory3 = \yiy2 

and look out its corresponding abscissa Xg on the line. 
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Then it follows, if the data satisfy an equation of the form 
y = m (x -f- $)", that 

log (xa + ^) = i log (xi -i- /3) + J log (xa -j- /8) 

or X3 -f ;3 = V (xi +/8 ) (Xa -1- /?) 

from which /3 = 
2 
X3 XjXg 

Xj -f- X2 2x3 

Having thus obtained p, proceed in the usual manner to 

determine m and n from a new logarithmic plot of the equa

tion y = TO3" where z = x -}- p. 

Equations of the Form y = m 10"*; y = m^ 

Data satisfying equations of the form 

y = m 10"* and y =^m^, 

where « is the base of Naperian logarithms, may also be 

treated graphicaUy by the following special logarithmic 

method. Taking logarithms of these equations, we obtain 

log y = nx -\- log TO 

and log y = M n x -\- log m 

respectively, where M = 0.4343 is the modulus for reducing 

Naperian to common logarithms. If, on ordinary plotting 

paper, values of y' = log y are plotted as ordinates and the 

unchanged values of x as abscissae, the resulting curves will 

be straight lines; the intercept on the axis of F for x = 0 

wiU give y' = log m and the tangents of the lines with the 

axis of X will give the values of n and M n respectively. 

Precision of Plotting.—The qu^tion now arises as to the 

precision of the constants deduced from a direct or rectified 

plot. In discussing this question, we will consider only errors 

inherent in the process of plotting and interpolation, and in 

the plotting-paper itself. 

The error of estimating tenths of the smallest division, 

together with the uncertainty introduced by the width of 

the fines locating the data and the inaccuracies in the paper 

due to errors in ruling and unequal shrinkage, make 0.02 

inch a fair estimate of the extreme precision of reading or 



60 GRAPHICAL METHODS 

plotting. If the plot be 10 inches on a side (about the maxi

m u m size ordinarily employed), the fractional precision 

attainable cannot therefore be greater than about —r^r- = 

0.002, or 0.2 per cent. A more probable estimate of the 

precision ordinarily attained in direct plots is 0.4 to 0.5 per 

cent. Constants deduced from a direct plot of the size 

considered can therefore be reUed upon only to this degree 

of precision; that is, in general, to three significant figures, 

with the fourth doubtful. 

If the experimental data are reliable to four or more signifi

cant figures (i.e., to 0.1 per cent, or better), some of the pre

cision will evidently be sacrificed in the direct plot unless a 

much larger plot be made. In order that the full precision 

of such data m a y be utiUzed, the direct plot should be fol

lowed by a so-called res'ldual plot, by means of which the 

constants first obtained can be corrected and rendered more 

precise. By this procedure the precision of the graphical 

method m a y be greatly extended. The procedure to be fol

lowed in constructing a residual plot will now be considered. 

Residual Plot.—A residual plot is one in which the de

viations of the observed data from the "best representa

tive Une" are plotted on an enlarged scale. It serves to 

correct the position of this Une among the points, to correct 

the numerical value of the constants, and to test whether 

the data follows the assumed law within the precision of the 

measurements. It is constructed as foUows. Substitute 

in the equation y = ax-{-b, deduced for the best represen

tative Une, which m a y be either a direct or rectified plot, 

the observed values of x, and compute the corresponding 

values of y. The differences between these computed values 

of y and the corresponding observed values are called the 

residuals. A study of the sign and magnitude of these re

siduals furnishes much valuable information regarding the 

representative character of the "best Une" chosen, and the 

graphical discussion of these constitutes the residual plot. If 

a plot be made (preferably on the same paper and with the 
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same scale of abscissae as the straight Une plot), with the 

values of the residuals r = y (observed) — y (computed) as 

ordinates, and the corresponding vahies of x as abscissae, we 

obtain a gi-aphical representation of the deviations of the 

observed data from the Une assumed to best represent them. 

To better study these deviations, they should be plotted on 

a large scale. In effect, the process is to project the "best 

representative Une" horizontally and to magnify the devia

tions of the plotted data from it. If it is found that the 

plotted residuals lie alternately and about equal distances on 

either side of the horizontal Une passing through the zero of 

the residuals, the conclusion is that the original Une is the 

best line which can be drawn to represent the data. In gen

eral, however, it will be found that a new Une can be drawn 

among the residuals which will distribute them more nearly 

alternately on either side. The values of the tangent a and 

intercept b, found for the original representative Une, should 

therefore be corrected by the values of the tangent and in

tercept respectively of the new best representative Une of the 

residual plot, read off of course on the scales on which it is 

plotted. In this way the original constants m a y be corrected 

to the fourth significant figure. It is sometimes necessaiy 

to follow the first by a second residual plot when extreme 

precision is desired. 

If the residuals are found to deviate systematically from 

the straight Une, the conclusion is that the data cannot be 

represented by the Une in question within the precision of 

the measurements. In such a case a new formula should be 

sought. 
Illustration of a Residual Plot. The procedure to be fol

lowed in making a residual curve or plot will be illustrated 

by the data given in the Problem discussed in Plot I., p. 45. 

The equation of the best representative straight Une for these 

data was found to be 
r = 0.0278 14- 10.13. 

To test whether this equation is the best which can be 

obtained to represent the given data, we proceed to compute 
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the residuals, as described above, by substituting the observed 

values of t and computing /. 

( observed. 

10.50 
29.49 
42.70 
60.01 
75.51 
91.05 

r observed. 

10.421 
10.939 
11.321 
11.799 
12.242 
12.668 

r' computed. 

10.422 
10.949 
11.317 
11.798 
12 229 
12.661 

r-r' first 
residuals. 

—0.001 
—0.010 
-1-0.004 
4-0.001 
+0.013 
+0.007 

r̂  computed. 

10.413 
10.946 
11.317 
11.802 
12.237 
12.673 

r—r" second 
residuals. 

+0.008 
—0.007 
+0.004 
—0.003 
+0.005 
—0.005 

S (r—r')2 — 437 2 0 T 188 

Inspection of these residuals, column 4, affords valuable 

information, but they can be better studied graphically, 

especially if the number of observations is great. The scale 

to be chosen for the ordinates should not be greater than 

about 1 inch to 0.01 ohm, since this will permit the residuals 

to be plotted directly without interpolation to the last place 

of significant figures of the data, while by estimation the plot 

can be read to the next place of figures; i.e., to 0.0001 ohm, 

which is more than ten times the precision of the data. The 

plot may conveniently be made on the same sheet as the direct 

plot, using the same scale of abscissae as shown in Plot I., 

p. 45. The heavy horizontal line through 0 represents the 

Une A'A" projected horizontaUy. The residuals, plotted on 

a magnified scale, are connected by dotted Unes. Inspection 

shows that the positive residuals preponderate, and that a 

new line B'B" can be drawn which wiU distribute the residuals 

more nearly alternately on either side of it. The original 

Une A'A" should evidently have been drawn with a sUghtly 

greater incUnation. The value of the intercept of the new 

Une B'B" on the axis of Y (on the scale of residuals) is—0.011. 

The tangent of the angle which it makes with the axis of X 

is obtained from the ordinates and abscissae of two points 

B' and B" on the line respectively: thus x'= 5.00°, 2/' = 

0.0095; and x" = 95.05°, y" = 0.0135. Hence 

0.0135 y"-y'- (-0-0095). = 0.00025. 
95.05—5.00 
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Hence the constants of the original equation should be 

corrected by these amounts, thus becoming 

b' = 10.13 — 0.011 = 10.119 

a' = 0.0278 4- 0.00025 = 0.02805. 

The corrected equation connecting r and t is, therefore, 

r = 0.02805 t 4- 10.119. 

This represents the original data much better than the first 

equation obtained, as may be seen from the sign and magni

tude of the new set of residuals r — r" computed from the 

corrected equation and given in the last column of the table. 

There is now seen to be no systematic deviation among the 

residuals, and the smn of their squares is seen to be much less 

than in the case of the residuals from the first equation. 

Interpolation Formulae.—It frequently happens that ex

perimental data whose locus differs sUghtly but progres

sively from a straight Une cannot be represented by a two 

constant formula of the general exponential form y = mx". 

This is the case, for example, with data on the coefficient 

of expansion of many substances over wide ranges of tem

perature. To obtain an algebraic relation for such cases, 

interpolation formulae of the general form 

y = a -\-bx -{- cx̂  -\- do? 4" • • • 

are usuaUy assumed. The number of terms to be taken in 

this equation {i.e., the number of constants to be determined) 

depends upon the precision of the data and on the extent of 

the deviation of the curve representing them from a straight 

line. 
The values of the constants in such an equation are in gen

eral best determined analj^icaUy. For this purpose it is 

necessary to know at least as many pairs of values of x and 

y as there are constants to be determined. Thus, if the 

equation assumed to represent the data hey =^ a -{- bx-\- cx̂ , 

it is necessary to know at least three pairs of values of x and 

y which, substituted in the equation, will lead to three 

simultaneous equations, from which the values of the three 

imknown constants, a, b, c, can be at once determined by 
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eUmination. It is seldom necessary to carry the series be

yond the fourth term dx^; in fact, three terms are sufficient 

for most purposes. 

In general, however, the experimental data furnish many 

more pairs of values of x and y than there are constants to 

be determined. In all such cases the most probable value of 

the constants can be determined by the graphical procedure 

described below or by the method of Least Squares. 

Graphical Solution.—Let Xji/i, x̂ ŷ , . . . Xnyn, be the 

numerical values of pairs of observations on the variables x 

and y, which are assumed to satisfy the equation 

y^a-{-bx-\- CO?. 

Any three pairs of values substituted in this equation wiU 

give three simultaneous equations from which a, b, and c 

can be computed, but the values of these constants will vary 

to a certain extent according to which sets of values of x and 

y are chosen. The simplest procedure by which to obtain 

the best or most probable values of a, b, and c, is to plot all 

values of x and y and draw the best representative line 

among them. Then select three points on this line,—one 

near each end and one half-way between for convenience,— 

determine their ordinates and abscissae, and with these three 

pairs of values form three simultaneous equations and com

pute a, b, and c. Having obtained the constants in this 

manner, they may be further corrected by computing re

siduals and studying these by means of a residual plot, 

although this requires both care and judgment. A more 

exact although more laborious method of procedure is the 

analytical solution of the equation by the method of Least 

Squares. 
Least Square Solution—As before, let Xĵ /i, x̂ ŷ , . . . 

Xnyn, be numerical values of the observations, and 

y = a-\~ bx -\- CO? 

the equation the constants of which are to be determined. 

This may be written 

y — a — bx — cx̂  = 0. 
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If the observed values x, y, were free from all experimental 

errors and the equation represented the law connecting them, 

each pair would exactly satisfy the equation, with proper 

numerical values of the constants. This, however, is not the 

case, since all observations are Uable to indeterminate error. 

Hence, if the observations be substituted in the equation, the 

right member will not in general equal zero, but will differ 

from zero by some small quantity v called the residual error, 

which m a y be plus or minus. Thus, by substituting the 

observations in the assumed equation, we get the following 

so-called "observation equations":— 

yi — a — bxi — cxi^ = Vj, 

y^ — a — bx^ — cx^ = v̂ . 

yn O &Xm CXt? ̂ = Vn, 

from which the most probable values of the constants a, b, 

c, are to be determined. B y the principle of Least Squares 

those values of a, b, c, are the most probable which make 

the sum of the squares of the residual errors v a mini

m u m ; i.e., those which make the value of "Xv"^ = v^ -\-

v^ -\- . . . vn^ a minimum. The expression "SiV̂  is a function 

of the quantities a, b, c, and the condition that it shall be a 

minimum is that its first differential coefficient with respect 

to these variables shall be zero, and its second differential 

coefficient positive. The latter test need not be appUed, 

however, as inspection will distinguish between maximum 

and minimum values, the Umit of the former being evidently 

infinity. 

Applying this condition to the above observation equa

tions, we have 

di'^i?) d ^ „ , „ . , „, 

„/ dvi , dv« , , dvn\ „ 
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' ^ = l w + " ' + - - + ' ^ = 

^f dv-i . dv^ . dv^_f. 

d{-S,v'') d 

dc dc (V4-V+- • •+^»')= 

„/ dv-, , dvq, , , dv^ 

Substituting the values of Vi, v̂ , etc., and differentiatmg, we 

obtain 

iyi—a—bxi—cxi^) 4- {y^—a—bx^—cx^) 4" • • • 4" (y«—«— 

bXn CXn)-=Q, 

{yi—a—bxi—cx-^)xi-\-{y^—a—bx^—cx,^x^-\-- • • + (yn— 

a—bXn CXn̂ ) x»= 0, 

{yi—a—bxi—cxi^)xi^-\-{j2—a—bx^—cx2^)x^^-\" - - -^{yn 

—a—bxn—cxt?) x«.^=0, 

which may be simpUfied to the equations 

Sy — Sa — bSx — CSiX̂  = 0. 

%xy — aSx — 6Sx^ — ĉS,x̂  = 0. 

%yx^ — a%x^ — b'^ — c^x^ = 0. 

These are called the "normal equations," from which the 

values of the constants a, b, c, may be computed by the 

ordinary methods of elunination, there being now the same 

number of equations as unknowns. It will readily be seen 

that the process of substituting the values of % , "Saoy, 

%xy^, etc., in the normal equations and the subsequent so

lution of the equations for the constants is a tedious proc

ess, the labor involved increasing rapidly with the number 

of constants to be determined. 

For further details regarding the method of Least 

Squares consult Bartlett's The Method of Least Squares, 

Wright's Treatise on the Adjustment of Observations, or 

Merriman's Least Squares. For special Graphical Meth

ods see Peddle's The Construction of Graphical Charts. 
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SOLUTION O F ILLUSTRATIVE PROBLEMS. 

Before proceeding to the numerical solution of a pre

cision problem, the student should first decide the follow

ing questions:— 

First.—Is the formula to be discussed in the simplest 

form for precision treatment? It frequently happens, by 

the omission of certain terms the deviations in which 

evidently produce a negligible effect on the final result, 

that an apparently complex formula can be reduced to 

a more convenient form. If it can be reduced to a pro

duct function, this should always be done. 

Second.—From a consideration of the form of function 

to be discussed, a decision should be made as to which 

method it is better to employ in the solution; that is, 

whether to use the general "deviation method" involving 

differentiation of the function or the fractional or "in

spection" method. 

Third.—Having decided these questions, the statement 

of the problem should be studied; that is, all given data 

should be systematically written down and inspected to 

see if they are in the proper form for applying the method 

of solution decided upon. If this is not the case, numer

ical deviations 8 or A should be changed over into their 

, , . . 8 A 
corresponding fractional deviations — or ^ , or vice 

versa, as the case may be. Only after the problem has 

been consistently stated should the actual solution be 

begun. 

These general directions are illustrated below by the 

solution of several typical problems. 
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Problem i.—Given the following mean values of the 

weight of four substances with their respective deviation 

measures:—• 

«;i = 3147.226 g m s . A . D . = 0.312 g m . 

iU2 = 100.4211 g m s . reliable to 0.015 per cent. 

ws = 1.3246 g m s . Probable error P.E. = 0.0011 g m . 

W 4 = 604.279 g m s . reliable to 1 part in 5000. 

(a) Indicate any superfluous figures in the above meas

urements, considering each independent of the others. 

Each quantity should be carried out to two places of un
certain figures as indicated by the two significant figures in 
its average deviation (Rule III., p. 24). The average devia

tion of each measurement should therefore be computed for 
each measurement if it is not already given. Computing 
the average deviations and applying Rules I., II., and III., it 
will be seen that the correct number of figures to be retained 

is as follows:—• 
«)!= 3147.23 gms. A.D. = Si= 0.31 gm. 

M2= 100.421 gms. A.D. = S2= 0.015 gm. as 100^^=0.015. 

W3 = 1.3246 gms. A.D. = 53= 0.0013 gm. as P.E. = 0.85 A.D. 

Wi = 604.28 gms. A.D. = 84= 0.12 gm. as ~ = ̂  • 

(&) W h i c h is the most and which the least precise of 

these measurements? 

When the quantities whose precision is to be compared are 
not of approximately equal magnitude, their relative pre
cision is found by comparing their fractional or percentage 
deviations, but not their average deviations or probable 

errors. Hence with the above data we must compute the 
fractional or percentage deviation of each of the quantities. 

For wi, 100 — = 100 5 ^ = 0.010 per cent.; 
Wi 3100 

wi, 100 — = 100 5 ^ = 0.015 per cent.; 
Wa 100 

m, 100 — = 100 ̂ ^ ^ j ^ = 0.10 per cent.; 
Ws 1.3 

104, 100 — = 100 ̂  = 0.020 per cent. 
Wi bOO 

Therefore, the order of precision is wi, wi, wt, ws. It is to be 
noted that, although ws is weighed to a much smaller fraction 
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of a gram than any of the other quantities, it has by far the 

largest percentage deviation, and is to be regarded, there
fore, as the least precise measurement. 

(c) Find the s u m of the measurements and its devia

tion measure, retaining the proper n u m b e r of significant 

figures in the computation. 

M = U'l -]~W2 + W3-\- Wi. 
The quantity having the largest A.D. is wi, its average de

viation being 0.31 gm. In the units chosen to express the 
measurements, the first and second decimal places are un
certain. Therefore, by Rule IV., page 24, two decimal places 
only should be retained in each of the other quantities to be 

added. 
3147.23 gms. 
100.42 gms. 
1.32 gms. 

604.28 gms. 

M = 3853.25 gms. 
The resultant deviation A of tha sum M is 

A = \/ai2 + A 2 H ^ A ? + A ^ 
r)\I 

Ai= -- . 5i = 5i = 0.31 gm. 
dwi 

Similarly, A2 = 52= 0.015 gm., which is neghgible. 
A3 = 53 = 0.0013 gm., which is neghgible. 
A4=54=0.12gm. 

Therefore, A = s/sIh^' = VoSl^ + Ol^' = 0.33 gm. 
(d) Find the product of the four quantities a n d its 

precision measure. 

M = Wi . W2 • Ws . Wi. 
By Rule V., page 24, the least precise factor is ws, which 

is good to only 0.10 per cent., and in which, therefore, five 

significant figirres should properly be retained in a compu
tation, the last two being imcertain. Five figures should 
hkewise be retained in each of the other factors, and five 

place logarithms should be used in the computation. 
wi= 3147.2 log =3.49793 
1̂ )2=100.42 log = 2.00182 
i«i= 1.3246 log =0.12209 
W4= 604.28 log =2.78124 

log If =8.40308 

or ilf=252980000. gms".' 
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The precision of M should be computed by the fractional or 
inspection method, as it is a product function. By referring 
back to problem (6), it will be seen that the percentage pre
cision of wi, Wi, and Wi is between five and ten times as great 
as that of tcs. Hence practically all of the uncertainty in the 
product will result from the deviation in this factor alone. 
As M is directly proportioned to the first power of ws, 

1 0 0 ^ 1 = 1 0 0 ^ 
M WS 

and therefore the percentage deviation of the product 
100 4 = 0-10 per cent. Hence A = ilf x ̂ ^ = 250000. gms.* 

(e) Suppose the quantities are to be c o m b i n e d b y the 

formula 
Af = Wl X 1^2—Wg X W4. 

Compute M and its deviation measure. 

Before substituting the values of w in the actual caloukr 
tion of M , it is always well to note the approximate value 
of the terms involved. From inspection of the data it is 

evident that «)ixu)2 = 310000. approximately, and, as the 
least precise factor w^ is good to 0.015 per cent., this product 
should be computed to six significant figures, of which the 
last two will be uncertain. The second place of uncertain 
figures thus falls in the units' place; anything beyond this 

is, therefore, neghgible. The term wsy.Wi = 600. approxi
mately, and, as this is to be subtracted from wxXWi, it is 
useless to compute it beyond the units' place, i.e., three sig
nificant figures are sufficient. Six place logarithms should 
therefore be used in computing w\ x W2, and thrfee place 
logarithms, short multiphcation, or a shde rule in computing 

WsXWi. 
Thus t(Ji= 3147.23 gms. log wi= 3.4979284 

W2 = 100.421 gms. log w^ = 2.0018245 
log «)iX'!i;2= 5.4997529 

.•. wiXw2= 316048. gms." 

tcs = 1.32 gms. log ws = 0.121 

W4 = 604. gms. log Wi = 2.781 
log wsXWi = 2.902 

. •. W3XWi=7QSi gms. 

M=316048 gms. -798 gms. =315250 gms, 
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To determine the precision of M, we note that, if the for
mula be treated in theformiM" =ii;iX W2-«!8X«)4, we must use 
the general differential method and find the effect of each 8 
on M , and take the square root of the sums of the squares. 
It is evident, however, since ws is good to 0.10 per cent., 
and Mil to 0.02 per cent., that the first three significant figures 

of the product ws • Wi are known exactly, and, therefore, the 
deviations in wa and Wi introduce no uncertainty in the final 
result M . The whole uncertainty comes from the measure

ments wi and W2. As wsXWi is also numerically small com
pared with wiXwzwe may, in the precision discussion, neglect 
it and write 

M = w i X W2 approximately, 
and obtain the precision of M by the fractional method. 
The resultant fractional deviation in JW is 

M ylyn) "̂  \m) 

But ^ = -=0.00010 
M wi 

and ^ = —=0.00015 
M wi 

Therefore, ^=0.0001 Jl''+ Ls' = 0.00018 

or ^^'M'" ^'^^^ ^®'" ''®°*' 

and A = 320000. gms.'' x 0.00018 = 58 ims?; 

that is, the value of M is uncertain by ± 58 units. 

T h e above problem illustrates the m a n n e r in which the 

n u m b e r of significant figures to be retained in a measure

m e n t depends entirely u p o n the w a y in which it enters 

into the computation. T h u s in (d) Ws w a s required to 

its fuU precision, while in (e) it might have been measured 

m u c h less precisely. 

Problem 2.—It is desired to determine the a m o u n t of 

heat H generated in one hour b y a certain incandescent 

lamp, together with its deviation expressed in calories 

a n d in per cent. Suppose m e a n measurements obtained 

b y a n a m m e t e r a n d voltmeter give /" = 2.501 ±0.012 

amperes, and E = 109.72 ± 0.34 volts respectively, and the 

time of opening a n d closing the circuit is uncertain b y 
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± 0.5 second at each operation. The value of H expressed 

in calories is 

il = 0.2390 7.-E7.!!. 

The expression for H is, as it stands, a simple product 
function of the variables I, E, and t, and cannot be further 
simplified. The problem should therefore be solved by the 
fractional method. 
The data given are 

I =2.501 amp. Si = 0.012 amp. 

.B = 109.72 volts. Se = 0.34 volt. 
t=ti—ti = l hour = 3600 sec. 
5(1=6(2=0-50 sec, but St is unknown. 

The desired results are the value of H, its deviation A in 

A 
calories, and its percentage deviation 100 —. 

H 
The first step is to change the given deviations 3 in each 

component into their respective fractional deviations. 

The fractional deviation in / is -^ = ' , = 0.0048. 
1 2.0 

The fractional deviation in i? is -^ = ?i5i = o 0031 
E 110. "•""*'̂-

To find the fractional deviation in t, we must first compute 
its numerical deviation. Since i! = fe—ti and 5(j = Sĵ  = 0.5 sec, 

the numerical deviation in t is 6=\/a?+A2^; 

but Ai = ^rr .5t, = St. — 0.50 sec. 
oil '• ^ 

and A2 = 77 .6«„= S,„= O.SOsec 

Therefore S = V''o.5̂  + 0.5̂ ^ = 0.70 sec, 

and the fractional deviation in i is 

This is seen to be negligible compared with the fractional 
deviation in the current / and voltage E (see page 31). 
Hence the resultant fractional deviation in ff is 

' A ^ y - i ^ y 
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By insi)eotion of the formula for H, since / and E both enter 
as first power factors, 

A, Sr 
~ = - j = ' 0.004S 

^ = ^_E= 0.0031. 
H E 

Therefore, ;ĝ  = v'ao648^+00031^ = 0.0057, 

or the percentage deviation in ff is 100 ^ = 0.57 per cent. 

In computing the value of H, we note that the least pre
cise factor is the current which is uncertain by 0.48 per cent., 
and hence should be carried in the computation to four sig
nificant figures. H should therefore be computed by four 
place logarithms, four figures being retained in each factor, 
including the constant for transforming Joules to calories. 

H = 0.2390 X 2.501 X 109.7 x 3600 
= 236100 calories. 

The numerical deviation A in ff is obtained at once from its 
fractional deviation, as 

A = 240,000 X 0.0057 = 1400 calories. 

Problem 3.—The candle power of a gas flame is meas-
xired against a standard candle b y m e a n s of a photo
meter, the flame being placed at the end of a bar 100 
inches from the candle. Suppose the m e a n of a series 
of disk settings gave a = 20.17 ±0.27 inches, a being the 
distance of the disk from the candle. C o m p u t e the 
candle power of the flame and its deviation, assuming 
that the candle is burning at its normal rate. 

L (flame) (100 — a ) ' 
L^ (candle) a' 

™ - ,_ •.. T T /lOO — a X " /100-a\» 
This may be written L = L„ I / ~ ( — a — / 

as X/o = 1 candle power = 1 c.p. = constant. 
^ /100.-20.17\^ /79.83\^ irp7„„ 
^ = ( 20.17 ) = (2017; = ^̂ -̂ ^ "P-

L is a function of a single variable a; it is to be noted in 
the precision discussion that the function cannot be regarded as 
a fraction in which a deviation in the numerator is inde-



76 SOLUTION OF ILLUSTRATIVE PROBLEMS 

pendent of the deviation in the denominator. The formula 
may, however, be simplified by writing it in the form 

100-a 

and solving first for the deviation in L', after which the 
desired deviation in L can be easily found. 
The deviation A' in V , due to a deviation 5 = 0.27 inch in 

a, is 
,, A /, 100-a\ , , 100 ^ 
A'=T- ( IX ) . S=\X^r .S 

aa\ a J a'-
= l(c.p.)J ^°-^; X 0.27 cm. = 0.068 (c.p.)5. 

20 cm. 
To find now the deviation in L, we may proceed in either of 
two ways: — 

First, General Method: 

., di' 1,. 1 , 

where A is the desired deviation in L. 

Therefore, A = 2^1). A' 

= 2x ^16 c.p.X 0.068 (c.p.)i 
= 0.54 c.p. 

Second, Fractional Method: 

The fractional deviation in L' corresponding to A' is 

A' 0.068 0.068 
J-, = —7::^ = - p ^ = 0.017: 

and, since i'=I<'^, the fractional deviation in L' is one-half 
the fractional deviation in L; 

A'_ 1 A 
L'" 2' L' 

. •. ̂  = 2 .̂ , = 2x 0.017 = 0.034. 

Therefore, A = 0.034X L = 0.034x 16 c.p. = 0.54 c.p. 

The same result would of course be obtained by applying 
the general differentiation method to the original formula 
for L, but the resulting value of the differential coefficient ia 
somewhat more complicated. 
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On the assumption that the average light emitted by 
tiie candle during the measurements is equal to one candle 
power, the candle power of the gas flame is 15.67 + 0.54 c.p.; 

0 54 
i.e., it is known to only 100 - j ^ = 3.4 per cent., although the 

0 27 
original photometer setting a is good to 100 -;^ = 1.4 per cent. 

Problem 4.—Suppose the index of refraction n of a 

substance is to be determined b y measuring the angle of 

incidence i a n d the angle of refraction r of a ray of light. 

If approximate measurements give i = 45° and r = 30°, 

h o w precisely should these t w o angles be measured to 

give TO to 0.2 per cent.? 

The formula for n is 
sin i 

n = -. • 
sm r 

As this is not a product function of the variables i and r, we 
must use the general deviation method if we treat the for
mula in the above form. If, however, we change variables 
to X and y, letting x = sin i and y = sin r, the formula becomes 

n=-, to which we may apply the fractional method of solu-

tion for finding the allowable deviations in x and y. Having 

done this, however, we stiU have two new problems to solve 
by the general method, namely, the determination of the 
deviations in i and r from the equations a; = sin i and y = 

sin r. Both methods lead, of course, to the same result. 

W e wUl solve the problem both ways. 
First Solution. General Method: 

sin i 
n=-.— . 

sm r 
Given 100- = 0.2; i=45°; >-=30°; to find S, and Sy. 
W e must first find the value of the A in n from the pre

scribed percentage precision before proceeding to the solu
tion. This necessitates knowing the approximate value of n, 

which is easily obtained from the data; 

sin 45 1 . 1 1 . • i 1 , 
n =-^^r, = -p "=• o = 1-4 approximately. 

6in30 J2 2 
Hence A = 1.4 X 0.0020 = 0.0028. 
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Distributing this deviation between i and r by equal effects, 

A,= A. = A = ££^8=0.0020. 
V/2 1-4 

dn coai 
But ^' = ^-^^=Mrr-^'' 

.. . 5, = A, ™-' = 0.0020 ™|? = 0.0014 
cos 1 COS 4o 

To express this allowable deviation in the angle in degrees, 

we note that 

1° = -^ = 0.017 radians, 
180 

therefore, S, = ^^ = 0.082°, or 4.9'. 

_..,,. dn ^ sini cosr ^ 
Similarly, a^ = — . Ŝ  = .̂̂ ,̂  . Sr 

.•.Sr=Ar. . ".'"''" = 0.0020 . ^j^'^° ^„ = 0.00082, 
sini cosr sin45 cos30 

J • J ^ 0.00082 - . .„„ „ „, 
or, expressed m degrees, Sr= =0.048 , or 2.9 . 

The solution shows, therefore, that, to obtain a precision 
of 0.2 per cent, in n, an instrument should be used capable of 
reading to at least 3'. In practice one graduated to read to 
minutes would be chosen. 

Second Solution. Fractional Method: If we put x=sin i 

and 2/= sin r, then n = -, and we may use the inspection 

method as follows. The prescribed fractional deviation is 

stated to be not greater than — = 0.0020. Hence, distribut-
n ' 

ing this deviation between x and y by equal effects, we have 

^ = ^ = -L--=-^- 0.0020 = 0.0014. 

But by insi)ection of n=- it is seen that 

4£=?£and^=52;. 
n x n y 

Hence ^ = 0.0014 and ^ = 0.0014. 
x y 

We have now two new problems to solve, namely, to find 
St and Sr from the above values of the allowable precision in 
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sand y. Asi=sin t is a trigonometric function, we must 
go back to the general differentiation method to find the 
deviation in i corresponding to a deviation Sjc in x. 

As 

we have 

Also 

^ = 0.0014, 

5^ = 0.0014 X = 0.0014 sin 45° = 0.0010. 
d sin i . . . 

Sjc = —;7T— . Si= cos I . Si 

. •. S i = - ^ . = 0.0010 ̂  n= =0.0014, 
cos I V2 

or in degrees S, = ̂ ^ ^ = 0.082° = 4.9'. 

Similarly, to find Sr, given y=sia r and — = 0.0014, we 
y 

have 
Sy = 0.0014 y = 0.0014 sin 30° = 0.00070. 
. <̂  sin r , 

Also Sy = — J — . Sr = cos r . Sr 
.•.Sr = -^ =0.00070 -=- ^ = 0.00082, 

cos r 2 

or in degrees Sr = ̂ ^ g ^ = 0.048° = 2.9'. 

In this problem there is evidently no saving of labor by 
transforming the function to the product form and first 
using the fractional method, as the ultimate solution necessi

tates going back to the general method. 





PROBLEMS 

Questions and Problems. 

1. Eixplain the terms: precision measure; deviation measure; 
constant error; residual error; probable error; mean error; huge 
error; indeterminate error; weighted mean; weights. 

2. What is the geometrical significance of the average 
de\'iation, probable error, and mean error in relation to the 

curve representing the law of chance? 

3. Is it practicable to reduce the average deviation of a 
mean result to any desired value by increasing the number 
of observations? W h y ? 

4. If the mean ^-aIue of the length of a rod computed from 
nine measurements is 24.213 cm. A.D. = 0.012 cm., how many 

more similar observations should be made in order that the 

A.D. =0.0060 cm.? 

5. Under what circumstances may an observation properly 

be rejected, and why? 

6. What determines the number of places of significant 

figures to be retained at any part of a computation? 
Under what circumstances should four, five, or seven-place 

logarithms be used in a computation? 

7. Do the number of significant figures in a result depend 
upon the position of the decimal point? Explain reasons for 

your answer. Does the precision of a result depend upon the 

position of the decimal point? W h y ? 

8. Explain why when adding or subtracting observed 
quantities we are governed by decimal places in rejecting 
figures, but, when multiplying or dividing, places of signifi

cant figures, regardless of the decimal point, must be con

sidered. 
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9. Given the following measurements and their deviation 
measures:— 

241.631 gms. reliable to 0.25 per cent. 
1620.124 gms. A.D. = 0.81 gms. 

10.005 gms. reliable to 1 part in 1,000 
7141.110 gms. P.E. = 0.603 gms. 

(a) Indicate all superfluous figures. 
(6) Which is the most and which the least precise quantity, 

and why? 
(c) H o w many figures should be retained in each quantity 

in computing their sum? 
(d) H o w many figures should be retained in each quantity 

in computing their product? 
(e) H o w many figures should be retained in each quantity 

in computing the difference between the product of first two 
and the product of the last two quantities? 

10. Given the following measurements of the length of a 
rod and their precision measures:—• 

24.316 cm. A.D. = 0.028 cm. 
24.3922 cm. fractional precision 12 parts in 1,000 
24.358 cm. P.E. = 0.0121 cm. 

24.3091 cm. reliable to 0.11% 
24.3100 cm. A.D. = 0.0172 cm. 

(o) Indicate any superfluous figures. 
(b) Indicate the order of reliabiUty of the results. 
(c) Compute the relative "weights." 

- (d) Compute the weighted mean. 

11. The precision measures of four independent determina
tions of the modulus of elasticity of steel are expressed as 
follows: 1st, 0.60 per cent.; 2d, 2 parts in 1,000; 3d, 

probable error = 4.2 ^; 4th, average deviation = 10. ^ '• 
*̂  mm. ° mm? 
The modulus of elasticity is about 20,000 "• 

mm.̂  
Which measurement is the most reliable? Find the rela

tive weights of the four determinations. 
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12. Independent determinations of the rate of a pendulum 
by different methods and observers gave 

0.70061 sec. A.D. = 0.00023 sec. 
0.70047 " A.D. =0.00069 " 
0.70056 " correct to 0.092% 
0.70051 " P.E. =0.00039 sec. 

(a) Which is the most rehable observation? 
(6) Compute the relative " weights " of the observations. 
(c) Indicate how to compute the best representative value 

of all the observations. 

13. The dimensions of a right cylinder are found to be as 

follows:— 
length = 12.183 cm. A.D. = 0.024 cm. 
diameter = 4.242 cm. A.D. = 0.021 cm. 

Find the volume and its deviation measure, indicating 
proper number of significant figures at each step of the com

putation. 

14. The diameter of a spherical globe is found to be approxi
mately six inches. If the average diameter varies by 0.1 per 
cent., what variation in cubic inches will this produce in the 

volume? If the variation in the diameter is 0.0020 inch, what 

uncertainty will result in the volume? 

15. The length of a physical pendulum is given by the 

expression 

where r = J diameter of ball = -x, 

and h = distance of knife edge from the top of the ball. 

Suppose h = 100.031 cm. A.D. = 0.027 cm. 
d = 6.256 cm. ^.D. = 0.022 cm. 

(a) Find the resultant deviation in I. 
(b) H o w many significant figures should be retained in 

each term of the formula, in computing I, and why? 
(c) Is it necessary to consider the third term in this 

formula in a precision discussion of I? W h y ? 
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16. The mean time of nine coincidences of two beating 
pendulums is 50.43 seconds. A.D. = 0.11 second. The 
standard pendulum beating true seconds gains on the other 
pendulum. Compute the true time of vibration of the latter 

and its precision measure. 

17. The time of swing of a half-second pendulum is measured 
to 0.20 per cent. The length is measured to 0.10 mm. Find 
the precision of the computed value of g. 

18. Measurements with a spherometer gave for a certain 

lens 
h=^ 1.22110 mm. A.D. = 0.00088 mm. 
r = 35.735 mm. A.D. = 0.061 mm. 

^ = 2^+2-

Compute R, the radius of curvature of the lens retaining 
the proper number of significant figures throughout compu
tation. What deviation would be introduced in i? by a devi

ation of 0.00088 mm. iuh? By a deviation of 0.061 mm. in r ? 
What would be the combined effect of these deviations on 

R? Is the term — negligible in the above precision discus-

sion, and if so, why? 

19. A 10 ohm coil is standard at 15° C. What will be its 
resistance at 30° C. and how precise will this be known if the 

temperature is determined to 0.1 degree? 

t̂ == ̂ 15 fl + 0-00388 (i —15)1. 

How closely must t be known in order that the resistance 

may be depended upon to 0.02 per cent.? 

20. The electromotive force of a Clark cell is 

E^ = \ .4340 \\ — 0.00078 {t —15)1. 

How closely must t be measured in order that E may be 

known to 0.05 per cent.? 
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21. Given a coil of wire the resistance of which at 15° C. may 
be assumed to be exactly 100 ohms. The wire is an alloy the 
resistance of which at t° may be computed by the expression 

Rt=Ri, ["14-0.00051 (f—15)1. 

Calculate the amount of heat H generated in the wire in an 
hour's run by a current of 11.273 amperes, if the wire is main
tained at a temperature of 45° C. H=PRt. 

If the temperature is known to ±1.0°, the duration of the 
run to ±1.0 second, and the current to ±0.011 ampere, calcu
late the deviation in iJ in Joules and in per cent. Are the 
deviations in any measurements negligible, and if so, why? 

22. The sensitiveness of a spirit level is 6 = y X 206265". 

(a) If I = 380. mm. approx. and h = 0.0597 mm. ± 0.0018 
mm., how many figures would you keep in the value 0? 

(b) How many would you use in the value of the radian, 
206265? How many in ;if 

(c) If I and 206265 are to introduce no deviation in the re

sult in comparison with h, what is the allowable percentage 
deviation, and how few figures may be used in each? 

(d) If you wished to determine 6 with greater precision 

than above, in which measurement would you use greater 
care? 

23. In calibrating a burette by drawing off water for each 
10 cc. and weighing it in a flask, how precise should the weigh

ings be made if the calibration is to be reliable to 0.01 cc? 

Suppose the calibration were made with mercury, how close 

should the weighings be made? Is it necessary to note the 
temperature of the water in this calibration and why? 

24. It is desired to cafibrate a flask to hold 1,000 cc. at 
20° C, the calibration to be refiable to 0.5 cc. What weight 

(using brass weights sp. gr. = 8.5) would you add to the 
weight of the flask empty, so that it would exactly balance 
the water having the desired volume? How precise would 
you make your weighings? Would it be necessary to take 
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into account the barometer reading in figuring the correc

tion for reduction to vacuo? W h y ? 

25. The per cent, of silver in a certain alloy is determined 

gravimetrically by weighing the amount of silver present as 

silver chloride. Suppose an analysis gave the following 

results:— 
Wt. of alloy 1.43252 gms. ± 0.00014 gm. 

" " AgCl 0.19513 gms. ±0.00021 gms. 

Compute the per cent, of silver in the alloy and the preci

sion with which this would be known. 

Atomic weight silver = 107.93 ± 0.02 
Atomic weight chlorine = 35.45 ± 0.03 

26. A specific gravity determination by Archimedes' prin
ciple gave the follomng results:— 

weight of substance in air = 10.2431 gms. ± .0004 gm. 
weight of substance in distilled water at 20° C. = 9.0422 

gms. ± .0010 gm. 
density of water at 20° C. = 0.99825. 

Compute specific gravity and its precision measure, using 
the correct number of places of significant figures through
out the computation. Is the correction for reduction of 
weighings to vacuo negligible in this case, and why? 

27. Given 

Wt = (W20 - 6) [l + A; (i° - 20°)]^^ 

where Wzo = 27.6231 grams = weight of bottle plus water. 

b = 12.6193 grams = weight of bottle. 
k = 0.000026 per degree C. 

Dt and D20 = density of water at i!° and 20° respectively. 

The density D diminishes 0.02 per cent, per degree C. 
What is the greatest allowable value which t may have and 
the correction term due to expansion of glass be negligible; 
i.e., affecting the value of {wm — b) by less than 0.0001 gm. ? 
Is the correction due to change of density negligible for t = 22° 
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and why? If D,o = 0.99827 and t = 25°, compute wt, using 
as few figures as practicable. 

28. With what precision would it be necessary to meas
ure the length and diameter of a right cylindrical column 
approximately 12 inches long and 6 inches in diameter in 
order to determine the volume to 0.10 per cent.? What 
deviation in cubic inches would this correspond to? 

29. If it is desired to compute the area of a circle approxi
mately 10 sq. cm. in area to 5 parts in 10,000, how precise 
should the diameter be known? H o w many places should be 
retained in n in the computation? 

30. If the volume of a sphere is computed from a measure
ment of its diameter, how precise should the latter be measured 
in order that the former may be reliable to 0.1 per cent.; to 1 
part in 500? 

If the sphere is approximately six inches in diameter, what 
precision in the diameter does a precision of 0.1 per cent, in the 
volume require? If the A.D. of the diameter is 0.022 inch, 
what is the precision of the volume? 

31. The ratio of the length of the arms of a balance is given 
by the expression 

length right arm \^Wi 
length left arm V W / 

where Wi and Wr are the observed weights of a given mass 
when weighed in the left and right hand pan, respectively. If 
the mass weighs approximately 20 grams, with what precision 
must Wi and W t be determined in order that the ratio r may 
be refiable to 0.01 per cent.? 

32. The specific gravity of a platinum alloy is desired to 
0.1 per cent. The method based on Archimedes' principle is 
to be used. The weight of substance in air is about 42 grams. 
The specific gravity is approximately 21. To what fraction 
of a gram should each weighing be made? What corrections 
should be applied? 
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33. A freely falling body passes through the distance 
h = igt^ in t seconds. It is desired to determine g to one-
tenth per cent, from a measurement of h and t. 

(a) H o w precisely should h and t be measured? 
(b) li h = i meters, what will be the allowable numerical 

deviation in h and t? 
(c) If h = i meters and it is found that Sa = 1.0 m m . and 

St = 0.0014 second, what will be the resultant deviation in gr? 

34. If g is to be computed from the mean of a series of nine 
observations on the time of swing of a pendulum, the length of 
which is Z = 1 meter, what must be the percentage precision 
of t and I in order that g be precise to 0.1 per cent.? What 
will be the value of ad. and A.D. in the case of t? H o w many 
figures should be retained in tt? 

35. The gas constant R is given by the formula 

iJ = ^ where T = i° + 273°-

(a) How precisely must p, v, and t be measured in order 
that R may be reliable to 0.1 per cent.? 

(6) H o w large a deviation will be introduced in i? by a 
variation of 1° C. in the temperature alone at 20° C. ? 

36. The indicated horse power (I. H. P.) of an engine is 

,,, . r u V P X L X A X N 
given by the expression L H. F. = oWT̂ rv\ • 

oo,UUU 
Suppose for a given engine the approximate values of these 
quantities are as follows:— 
P = 60 lbs. per sq. in. = mean effective pressure. 
L = 2 feet = length of stroke. 

A = Area of piston, the diameter, D, of which is 16 inches. 
N = 100 = number of strokes per minute. 

How, precisely, should P, L, D, and N be determined in order 

that the computed horse power of the engine may be reliable 
to 1 per cent.? To one-quarter of a horse power? 

37. A rectangular steel rod of breadth h and depth d is 
supported at its ends and loaded at its centre by a weight W . 
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If Z is the length of the rod between its supports and a is 
the deflection at the centre, 

_ WP 
" 4Ebd? ' 

where E is the modulus of elasticity. 

Suppose measurements of these quantities gave 

6 = 8.113 mm. Sa = 0.042 mm. 
d = 10.50 mm. Sd = 0.025 mm. 
I = 1.000 meter precise to one part in 5,000 
a = 2.622 mm. precise to 0.25% 
IF = 2 kgms. precise to 0.02 gram 

Compute 

(a) E, the modulus of elasticity. 

(&) The deviation in E due to each component. 
(c) The resultant deviation in E. 

38. What would be the allowable deviations in the meas
urement of b, d, I, and a for the beam defined in problem 37 

if the value of E is to be refiable to i per cent.? Assume 
the error in the value of W to be negligible. 
Do you think this precision could be readily attained? 

Why? 

39. The modulus of elasticity £ of a cylindrical wire, of 
length I, cross section q, which when loaded with a weight 
w is elongated by an amount a, is given by the expression: 

aq 

a ̂  mi — mo where mi and mo are mean micrometer read
ings when the wire is under a load of w kilograms and no 

load, respectively, q = \Trd̂  where d is the mean diameter 

of the wire. 
Given the following data: 

Z = 200.11 cm. a.d. = 0.05 cm. 
y) = 10 kilograms accurate to 1 gram. 

mi = 9.4255 mm. A.D. = 0.0024 mm. 
Too = 8.2233 mm. A.D. = 0.0012 mm. 
d = 1.002 mm. correct to 0.2% 
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(a) Compute the average deviation and the percentage de
viation of q. 

(Jb) Compute the deviation of a. 
(c) Compute E, using proper number of significant figures. 
(d) Compute resultant percentage error of E. 
(e) Are any of the above data more precise than necessary 

and why? 

40. (a) If it is desired to determine E for the above sample 
of wire to 0.5 per cent., how precisely should the compo
nents a and q be measured, assuming that the deviations in 

Z and w can be made negligible? 
(b) H o w precisely must d be measured to fulfil this condi

tion? 
(c) H o w precisely must mi and mo be measured? 
(d) Do you think this degree of precision could be readily 

attained, and why? 

41. It is desired to determine the focal length of a plano
convex lens from spherometer measurements, n = 1.6 ap

proximately. 

i = (n-l)(l-fl); 

r' h 
^ ^ 2 A + "2-

(o) If F is desired to 0.1 per cent., how precisely must n 
and B be determined? 

(b) If preliminary measurements give r ̂  40 m m . and 
h = 4: mm., approximately, how precisely should r and h 
be determined to fulfil condition aP 

42 The formula for computing the wave length by means of 

a diffraction grating is for second order spectra X = — . sin 6. 

If the grating is ruled 17,296 lines to the inch, and a prelimi
nary measurement gives 6 = 53° approximately for the sodium 
band, with what precision must 0 be measured, and how 

should the optical circle be graduated to give X to one part 
in 10,000? 
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43. / = K tan 0 for a tangent galvanometer, whose galva
nometer constant is 

K = 1.963 ± 0.002. 

If the deviation in reading any deflection 6 is &g = 0.1°, com
pute the value of I and its deviation measure for 6 = 45° and 
6 = 60°. 

44. The heating effect H of an electric current is to be 
calculated from measurements of /, t, and E, or I, t, and R. 

H=0.2390IEt; E = 0.2390 PRt. 

(a) If H is to be reUable to 0.2 per cent., what must be the 
percentage precision of each of the component measurements 

in both cases? The allowable deviation in each measurement? 
(b) If £ = 110 volts and is measured to 0.5 per cent., 

E = 100 ohms and is reUable to 1 part in 1,000, 8i = 0.03 
amp. and St = 0.2 sec; compute the precision of a ten-minute 

n m by each method, and state which method you consider the 
better. 

45 Given the following approximate values for a specific 
heat determination:— 

s ^ sp. ht. of substance 
w = wt. of substance ^ 300 grams 

Wo = " " water = 500 grams 
Wi = " " calorimeter = 100 grams 
Si = sp. ht. of calorimeter = 0.095 

(f» — is) = fall of temperature of substance 
= 100° - 20° = 80° C. 

(̂2 — tx = rise of temperature of calorimeter 
plus water = 20° - 15° = 5° C. 

(wo + ^) (is —ti) , , J 
s = -̂̂  —r.—^-p;—-, where « = w^ Si 

w (ts — ti) 
If s is desired to 0.5 per cent., with what precision should 
each of the quantities w, wo, wi, Si, ts, ti, and t̂ , be measured 

or known? 
Can the deviations in any of the above quantities be readily 

made negfigible? Solve the problem under these conditions. 
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46. The resistance of a metal bar is determined by measur
ing the drop in potential between its ends and the correspond
ing current flowing through it. Suppose mean measurements 

gave 
I = 11.431 amperes ± 0.022 ampere, 
E = 0.5073 volt ± 0.010 volt. 

Compute the resistance of the bar and its deviation in ohms. 

47. Suppose the mean of nine settings of a photometer disk 

gave 
a = 240.1 cm. ± 1.1 cm., 

a being the distance of the disk from a gas flame whose candle 
power, L, is desired, and 300—a, the distance of the disk 
from a standard candle. Assuming the candle to be burning 
at its normal rate, compute the candle power of the flame and 

its percentage deviation. 

L (flame) _ â  

L' (candle) ~ (300—a)2 " 

48. li E = K loge —, compute the deviation in E due to a 
Pa 

deviation of 0.1 per cent, in the measurement of pi and pi 
respectively, K being a constant. If the deviations in pi and 
Ps were known to be of the same sign, what would be their 

resultant effect on E ? 

49. Suppose a stop watch loses regularly at the rate of 1.2 
seconds in 15 minutes and the uncertainty of stopping and 
starting the second hand is ±0.1 second in each case. If a 
runner makes a one-mile record in 4 minutes 35f seconds by 
the watch, calculate the true time and its deviation measure 
in seconds and per cent. 

50. To what fraction of a gram should a piece of aluminum 
be weighed in air and in water, respectively, in order that its 

computed specific gravity may be reliable to one part in a 
thousand? The approximate weight of the sample in air is 
25 grams, and its specific gravity is approximately 2.7. 

61. Four independent observers determine a resistance of 

about one ohm to 0.10 per cent., 0.0030 ohm, one part in five 
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hundred, and with a probable error of 0.00085 ohm, respectively. 
Wliat are the relative reliabilities of the determinations and 
their respective weights? 

52. A certain 32 c.p. lamp takes a current of approximately 
1 ampere at 110 volts. If its resistance under these conditions 
is desired to 0.5 ohm, how precise should the current and 
voltage be measured? 

63. The mean of sixteen comparisons of a yard scale and a 
standard meter scale gave the result: 

1 yard = 0.91449 m.; A.Z).=0.00011 m. 

If there is a residual error of ±0.007 cm. in the meter scale 
after all sources of constant error have been corrected for, to 
what fraction of an inch is the value of the yard reliable? If the 
meter scale were correct at 0° C. and used at 20° C , how large 

a constant error (in inches) would result if its expansion were 
neglected, assuming that it expanded 0.0025 per cent, per 

degree? 

54. Two tuning forks of slightly different pitch "beat" with 
each other 45.31 ± 0.45 times per minute when soimded simul
taneously. If the standard fork makes exactly 256 vibrations 
per second, ̂ vhat is the rate of the second fork and its deviation 
measure, assuming it to be of lower pitch than the standard? 

55. Given the following data on the specific gravity of a sub

stance fighter than water. 
Weight of substance in an- = 10.1321 gms. ± 0.0002 gm. 

Weight of substance and sinker 
immersed in water at 20.0° C. = 8.4418 gms. ± 0.0020 gm. 

Weight of sinker immersed in 
water at 20.0° C. = 10.4522 gms. ± 0.0010 gm. 

Compute the specific gravity of the substance referred to water 
at 20.0° C. and its numerical and percentage deviation. If the 

density of water decreases 0.18% between 4° C. and 20° C , 
compute the specific gravity referred to water at 4° C. H o w 
precisely should the temperature of the water at 20° be deter

mined if this last reduction is to be reliable to 0.05%? 
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56. Suppose a pendulum approximately 550 feet in length is 
swung from the top of the Washington Monument. H o w pre
cisely should the length and time of vibration be measured in 
inches and seconds, respectively, if the value of g computed 

from these data is to be refiable to 0.50 -, ^^ ? 
(second)^ 

57. Suppose that fifty 16 c.p. incandescent lamps are used on 
the average 2 hours a day for 4 weeks. Each lamp takes 0.5 
ampere at 110 volts. Calculate the total amount of energy 

consumed in Joules. If this energy is measured by determin
ing the average current and voltage by an ammeter and volt
meter each of which reads uniformly 2 % too high, how much 
overcharge would there be on the lighting bill if the cost of 
electrical energy is 10 cents per kilowatt hour? 
If the average voltage and current are imcertain by ±1.1 

volts and ±0.0050 ampere, respectively, what uncertainty 
would there be in the total electrical energy consumed, and in 
its value in dollars and cents? 

58. If the weight of a substance in air is 

w = 49.7631 ± 0.0012 grams 

and it is desired to calculate its weight W in vacuo, how closely 
should the density 8 of the substance, the density A of the 
balance weights, and the density o" of the air in the balance 
case be known in order that the correction to be added to w may 
be computed to the nearest 0.0005 gram? 

Given 8 = 0.8, A = 8.4, and o- = 0.0012 approximately. 

^=-[i + '^(-8-k)] 

59. The formula for calculating the temperature i of a mer
curial thermometer when corrected for stem exposure is 

< = ii+ 0.000156 {tx—ta)n, 

where ii = observed temperature, 

<a = temperature of exposed stem, 
w=number of degrees exposed at 4°. 

Suppose ii = 330° ± 0.5°, <„ = 30°±0.5°, and 
n — 200° ± 5° approximately. 

Compute t and its deviation measure. 
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60. The formula for the latent heat of vaporization is 

(Wo+k) (U—ti) — w(t,— ti) 
r= •• 

w 
If the rise m temperature ia—'i = 25°—15° = 10°, the fafi m 
temperature of steam 4—is = 100°—25° = 75°, the condensed 
steam = 20 grams, and the water equivalent wo + k —1,200 
grams approximately, calculate how precisely you would de
termine each of these four factors if r is to be refiable to 0.5%. 
(Assiune r = 540 cal. for steam.) 

E 
61. If / = -5 jr jr-, w h a t is the allowable deviation in 

lil+ ̂ 2 + lis 
ohms in Ri, Rs, and Eg, respectively, if / is to be reliable to 
0.1% and the deviation in £ is negligible? The approximate 
values of the resistances are Ri = 10 ohms, and R2 = 100 ohms, 
and Rs=l ohm. If the above formula were 

RiXR^XRs 
what would be the solution under the' same conditions? 

62. Suppose Ii=Ki sin 6 and I%=Ki tan 6. The value of 
Ki and Z j are each known to 0.1%; 6 = 45°; 8̂  = ±0.1°. 
Compare the precision of / as calculated by the two formulse. 

63. Suppose you had three areas, each equal approximately 
to 10 sq. in., one being a circle, one a square, and one an 
equilateral triangle. H o w precisely would you have to know 
the diameter of the first and the average value of one side of 
the last two, in order that the computed area may be reliable 
to 0.01 sq. in.? 

64. The capacity of a spherical condenser is given by the 

expression C = —^—^ • Suppose 
T 2 — r i 
ri = 10.0010 cms. ±0.0019 cm.; 
r2= 15.0000 cms. ± 0.0044 cm.; 
K = 2.0130 ±0.0012. 

Calculate C and its resultant deviation measure; the percentage 
deviation in the numerator; the deviation measure of the de
nominator expressed in centimeters. 
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65. Given a triangular lot of land whose three sides are a, h, c, 
respectively. o = 120 feet approximately; 6 = 180 feet approx
imately. The angle 6 between a and b is about 45°. It is 
desired to find the area of the triangle to 0.12%. H o w pre
cisely should a, b, and 0 be measured? If a, h, and 6 are meas
ured with the above precision, what would be the precision of 
the computed value of c ? 

Area = ia6 sin 6 
c2 = (j2 _[. j2 — 2ab cos 6 

66. A sample of sodium chloride, NaCl, is analyzed by pre
cipitating with silver nitrate and weighing the silver chloride, 

AgCl. 
Wt. of sample of NaCI =0.5017 gm. ± 0.0005 gm. 
Wt. of AgCl= 1.1817 gms. ±0.0012 gm. 

Assuming the atomic weight of sodium and chlorine to be 
known to ±0.1 per cent, and that of silver to be known to 
±0.03 per cent., calculate the per cent, of chlorine present in 
the sample and the precision with which you can depend upon 
this result. 

Atomic weights: 
Na = 23.00 CI = 35.46 Ag= 107.88 

67. The index of refraction of a substance is given by the 

sini 
expression n = -;— • 

smr 
If i = 45°±10' and r = 30°±5', compute the value of n and 

its average and percentage deviation. 

68. The index of refraction of a substance as determined by 
the Pulfrich refractometer is given by the relation 

n = \jN^ — s\n.̂ e, 

where iV is a constant of the instrument and & is the measured 
angle. 

If A'=1.62100 ±0.00005 and 6 = 45°, approxunately, how pre
cisely should 0 be measured in order that n may be reliable to 
0.1 per cent.? 

69. Given two resistances A and B, each known to -^ per 
cent; .4 = 2 ohms approximately, 5 = 1 ohm approximately. 
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If settings on a sfide wire bridge are h = 660 mm., and Ib = 340 
m m . approximately and these are each known to ±0.2 mm., 
compute the deviation measure of n. 

IaB—IbA 
^= A - B 

70. What considerations determine the precision with which 
the constants in the equation of a straight line may be ob
tained by the graphical method? With plotting-paper 10 
inches on a side and ruled in twentieths of an inch, explain 
what the extreme limits of precision attainable are. 

71. What is a residual plot, and what is its use? Explain 

fully. 

72. How would you determine by a graphical method the 
value of the constants a, b, and c in the equation 

y=a + bx+ ex'' 

from a series of values, xi, yi, x̂ , 2/2, etc.? 

73. What is a logarithmic plot and to what class of prob
lems is it applicable? Explain fully its use by an illustration, 

first, using rectangular co-ordinate paper, and second, using 

logarithmic paper. 

74. The heat H generated in a coil of wire in a given tune 
varies as the square of the current I. How would you test 
this relation graphically by a series of determinations of H 

and I? 

75. How would you test graphically the law that the de
flection of a beam loaded at its centre and supported at its 

ends is proportional to the cube of its length? 

76. From a series of measurements on the time of vibration 
and corresponding length of a pendulum explain how you 
coxdd obtain the mean value of g by treating the data graphi-

9 

77. From a series of measurements on the strength of cm*-

rent / flowing in a circuit of resistance R to which a variable 

caUy. t = '̂ \J -
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(measured) electrometer force E is appfied, explain how you 
would find the mean value of R by treating the data by a 
graphical method. 

78. Suppose a current / is measured by a tangent galva
nometer for which I = K tan 6. From a series of values of 
I and corresponding values of 0 explain how you would find 

if by a graphical method. 

79. The formula for the focal length of a lens is 

1=1-,!. 
V V 

From a series of measurements on p and p' explain how 

you would find the mean value of / by means of a graphical 
method. 
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Quantity. 

e 

logic e 

1 
logic 6 

X 

1/x 

x2 

^ 

1 radiaja 

1 degree 

TABLE I. 

>tlATHEMATICAL CONSTANTS. 

Value. 

2.71S2S 

0.-13-1295 

2.30259 

3.14159 

0.318310 

9.86960 

1.77245 

o7°17'45" 

^ -0.017,4533 radian 
180 

Remark. 

Base of Napierian, natural 
or hyperbolic logarithms. 

Factor to multiply Napier
ian logs to convert into 
C o m m o n logs. 
Factor to multiply Com
m o n logs to convert into 
Napierian logs. 

Ratio of circumference to 
diameter. 

Reciprocal cf ir. 

Square of ir. 

Square root of tt. 

57°.2958 = 206265"=arc 
equal to radius. 

Common 
Logarithm. 

0.434295 

9.637784 

0.362216 

0.497150 

9.502850 

0.994300 

0.248575 
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T A B L E II. 

APPROXIMATION FORMULAE. 

It frequently happens in a computation that a factor of the 
general form (1 ± a)" enters where w is a constant and a is 
a quantity whose numerical value is small compared with 
unity. In such cases the approximate value of the factor 

given by the first two terms of its expansion may usually be 
substituted in place of the factor itself without introducing an 
appreciable error in the result, and the computation becomes 
thereby decidedly simplified. If the factor is of the form 
(m ± a')" where a' is small compared with m, it may be written 

1 ± — 1 = m" (1 ± a)" and so reduced to the first form. 
m j 

Table II. contains the approximate forms of the factor for 
several values of n, together with the error which would be 
introduced by using the approximation. 

Factor. 

(1 ± a)" 

(1 ± ay 
(1 ± a)> 
(1 ± ay 
(1 ± a)i 
(1 ± a)i 
(1 ± o)-i 
(1 ± a)-^ 
(1 ± a)-i 
(1 ± a)-i 

Approximate 
Form, 

i±> 
1 ±2o 
1 ± 3a 
1 ±4a 
1 ±ia 
1 ±ia 
lT« 
1 :f2a 
Izfia 
iTia 

Resulting 
Error. 

n(n-l) 
2 
a2 
3a2 
6o2 

— w 
— io2 
a' 
3a2 
fa2 
W 

Computed Error 
if d = 0.01. 

0.0001 
0.0003 
0.0006 

—0.00001 
—0.00001 
0.0001 
0.0003 
0.00004 
0.00002 

For (1 ± a) (1 ± 6) (1 ± c) use (1 ± a ± 6 ± c). 

(1 ± o) (1 ± 6) 
^°^ (1 ± c) (1 ± d) 
_, / mi + ma 
For ymi ma use ^ 

. use (1 ± a ± 6 T c T d . . .) 

when mi and ma are nearly equal. 
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T A B L E III. 

SQUARES, CUBES, RECIPROCALS. 

Xo. 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1 S 
1.9 
2.0 
2.1 
2 2 
2̂ 3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 
3.1 
3.2 
3.3 
3.4 

3.5 
3.6 
3.7 
3.8 
3.9 

4.0 
4.1 
4.2 
4.3 
4.4 

4.5 
4 6 
4.7 
4.8 
4.9 

6.0 
5.1 
§'2 
5 3 
5A 

Square. 

1.00 
1.21 
1.44 
1.69 
1.96 

2.25 
2.56 
2 S9 
3.24 
3.61 

4.00 
4.41 
4.S4 
5.29 
5.76 

6.25 
6.76 
7.29 
7.84 
8.41 

9.00 
9.61 
10.2 
10.9 
11.6 

12.3 
13.0 
13.7 
14.4 
15.2 

16.0 
16.8 
17.6 
18.5 
19.4 

20.3 
21.2 
22.1 
23.0 
24.0 

25.0 
26.0 
27.0 
28.1 
29.2 

Cube. 

1.00 
1.33 
1.73 
2.20 
2.74 

3.38 
4.10 
4.91 
5.83 
6.86 

8.00 
9.26 
10.6 
12.2 
13.8 

15.6 
17.6 
19.7 
22.0 
24.4 

27.0 
29.8 
32.8 
35.9 
39.3 

42.9 
46.7 
50.7 
64.9 
69.3 

64.0 
68.9 
74.1 
79.5 
85.2 

91.1 
97.3 
104. 
111. 
118. 

125. 
133. 
141. 
149. 
157. 

Recip. i 

1 
1.00 
0.909 
.833 
.709 I 
.714 I 

.667 

.025 

.588 

.556 

.526 

.500 

.476 

.455 

.435 

.417 

.400 

.385 

.370 

.357 

.345 

.333 

.323 

.313 

.303 

.294 

.286 

.278 

.270 

.263 

.256 

.250 

.244 

.238 

.2.33 

.227 

.222 

.217 

.213 

.208 

.204 

.200 

.196 

.192 

.189 

.185 

No. 

5.5 
5.6 
5.7 
5.8 
5.9 
6.0 
6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 
7.0 
7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
8.0 
8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 
8.8 
8.9 
9.0 
9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 
9.9 

Square. 

30.3 
31.4 
32.5 
33.6 
34.8 

36.0 
37.2 
38.4 
39.7 
41.0 

42.3 
43.6 
44.9 
46.2 
47.6 

49.0 
50.4 
51.8 
53.3 
54.8 

66.3 
67.8 
69.3 
60.8 
62.4 

64.0 
65.6 
67.2 
68.9 
70.6 

72.3 
74.0 
75.7 
77.4 
79.2 

81.0 
82.8 
84.6 
86.5 
88.4 

90.3 
92,2 
94.1 
96.0 
98.0 

Cube. 

166. 
176. 
185. 
195. 
205. 

216. 
227. 
238. 
250. 
262. 

275. 
287. 
301. 
314. 
329. 

343. 
358. 
373. 
389. 
405. 

422. 
439. 
457. 
475. 
493. 

612. 
531. 
551. 
572. 
593. 

614. 
636. 
659. 
681. 
705. 

729. 
754. 
779. 
804. 
831. 

857. 
885. 
913. 
941. 
970. 

Recip. 

.182 

.179 

.175 

.172 

.169 

.167 

.164 

.161 

.159 

.156 

.154 

.152 

.149 

.147 

.145 

.143 

.141 

.139 

.137 

.135 

.133 

.132 

.130 

.128 

.127 

.125 

.123 

.122 

.120 

.119 

.118 

.116 

.115 

.114 

.112 

.111 

.110 

.109 

.108 

.105 

.105 

.104 

.103 

.102; 

.101 
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TABLE IV. 

FOUR PLACE LOGARITHMS. 

11 
^B 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
62 
63 
54 

0 

0000 
0414 
0792 
1139 
1461 

1761 
2041 
2304 
2553 
2788 

3010 
3222 
3424 
3617 
3802 

3979 
4150 
4314 
4472 
4624 

4771 
4914 
5051 
5185 
5315 

5441 
5563 
5682 
5798 
5911 

6021 
6128 
6232 
6335 
6435 

6532 
6628 
6721 
6812 
6902 

6990 
7076 
7160 
7243 
7324 

I 

0043 
0453 
0828 
1173 
1492 

1790 
2068 
2330 
2577 
2810 

3032 
3243 
3444 
3636 
3820 

3997 
4166 
4330 
4487 
4639 

4786 
4928 
5065 
5198 
5328 

5453 
5575 
5694 
5809 
5922 

6031 
6138 
6243 
6345 
6444 

6542 
6637 
6730 
6821 
6911 

6998 
7084 
7168 
7251 
7332 

2 

0086 
0492 
0864 
1206 
1523 

1818 
2095 
2355 
2601 
2833 

3054 
3263 
3464 
3655 
3838 

i014 
4183 
4346 
4502 
4654 

4800 
4942 
5079 
.5211 
5340 

5465 
5587 
5705 
5821 
5933 

6042 
6149 
6253 
6355 
6454 

6551 
6646 
6739 
6830 
6920 

7007 
7093 
7177 
7259 
7340 

3 

0128 
0531 
0899 
1239 
1563 

1847 
2122 
2380 
2625 
2856 

3075 
3284 
3483 
3674 
3856 

4031 
4200 
4362 
4518 
4669 

4814 
4955 
5092 
5224 
5353 

5478 
5599 
5717 
5832 
5944 

6053 
6160 
6263 
6365 
6464 

6561 
6656 
6749 
6839 
6928 

7016 
7101 
7185 
7267 
7348 

4 

0170 
0569 
0934 
1271 
1584 

1875 
2148 
2405 
2648 
2878 

3096 
3304 
3502 
3692 
3874 

4048 
4216 
4378 
4533 
4683 

4829 
4969 
5105 
5237 
5366 

5490 
5611 
5729 
5843 
5955 

6064 
6170 
6274 
6375 
6474 

6571 
6665 
6758 
6848 
6937 

7024 
7110 
7193 
7275 
7356 

5 

0212 
0607 
0969 
1303 
1614 

1903 
2175 
2430 
2672 
2900 

3118 
3324 
3522 
3711 
3892 

4065 
4232 
4393 
4548 
4698 

4843 
4983 
5119 
5250 
5378 

5502 
5623 
5740 
5855 
5966 

6075 
6180 
6284 
6385 
6484 

6580 
6675 
6767 
6857 
6946 

7033 
7118 
7202 
7284 
7364 

6 

0253 
0645 
1004 
1335 
1644 

1931 
2201 
2455 
2695 
2923 

3139 
3345 
3541 
3729 
3909 

4082 
4249 
4409 
4564 
4713 

4857 
4997 
5132 
5263 
5391 

5516 
5635 
5752 
5866 
5977 

6085 
6191 
6294 
6395 
6493 

6590 
6684 
6776 
6866 
6955 

7042 
7126 
7210 
7292 
7372 

7 

0294 
0682 
1038 
1367 
1673 

1959 
2227 
2480 
2718 
2945 

3160 
3365 
3560 
3747 
3927 

4099 
4265 
4425 
4579 
4728 

4871 
5011 
5145 
5276 
5403 

6527 
5647 
5763 
5877 
5988 

6096 
6201 
6304 
6405 
6503 

6599 
6693 
6785 
6875 
6964 

7050 
7135 
7218 
7300 
7380 

8 

0334 
0719 
1072 
1399 
1703 

1987 
2253 
2504 
2742 
2967 

3181 
3385 
3579 
3766 
3945 

4116 
4281 
4440 
4694 
4742 

4886 
5024 
5159 
5289 
5416 

5539 
5658 
5775 
5888 
5999 

6107 
6212 
6314 
6415 
6513 

6609 
6702 
6794 
6884 
6972 

7059 
7143 
7226 
7308 
7388 

9 

0374 
0755 
1106 
1430 
1732 

2014 
2279 
2529 
2765 
2989 

3201 
3404 
3598 
3784 
3962 

4133 
4298 
4456 
4609 
4757 

4900 
5038 
5172 
5302 
5428 

5551 
5670 
5786 
5899 
6010 

6117 
6222 
6325 
6425 
6522 

6618 
6712 
6803 
6893 
6981 

7067 
7152 
7235 
7316 
7396 

Pkoportional Pabts. 

I 

4 
4 
3 
3 
3 

3 
3 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
1 

2 

8 
8 
7 
6 
6 

6 
5 
5 
5 
4 

4 
4, 
4 
4 
4 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

3 

12 
11 
10 
10 
9 

8 
8 
7 
7 
7 

6 
6 
6 
6 
6 

6 
5 
6 
5 
4 

4 
4 
4 
4 
4 

4 
4 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
2 
2 
2 

4 

17 
15 
14 
13 
12 

11 
11 
10 
9 
9 

8 
8 
8 
7 
7 

7 
7 
6 
6 
6 

6 
6 
5 
5 
6 

5 
5 
5 
5 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

3 
3 
3 
3 
3 

5 

21 
19 
17 
16 
15 

14 
13 
12 
12 
11 

11 
10 
10 
9 
9 

9 
8 
8 
8 
7 

7 
7 
7 
6 
6 

6 
6 
6 
6 
5 

5 
5 
5 
5 
6 

5 
5 
5 
4 
4 

4 
4 
4 
4 
4 

6 

25 
23 
21 
19 
18 

17 
16 
15 
14 
13 

13 
12 
12 
11 
11 

10 
10 
9 
9 
9 

9 
8 
8 
8 
8 

7 
7 
7 
7 
7 

6 
6 
6 
6 
6 

6 
6 
5 
5 
5 

5 
5 
5 
5 
5 

7 

29 
26 
24 
23 
21 

20 
18 
17 
16 
16 

15 
14 
14 
13 
12 

12 
11 
11 
11 
10 

10 
10 
9 
9 
9 

9 
8 
8 
8 
8 

8 
7 
7 
7 
7 

7 
7 
6 
6 
6 

6 
6 
6 
6 
6 

8 

33 
30 
28 
26 
24 

22 
21 
20 
19 
18 

17 
16 
15 
15 
14 

14 
13 
13 
12 
12 

11 
11 
11 
10 
10 

10 
10 
9 
9 
9 

9 
8 
8 
8 
8 

8 
7 
7 
7 
7 

7 
7 
7 
6 
6 

9 

37 
34 
31 
29 
27 

25 
24 
22 
21 
20 

19 
18 
17 
17 
16 

15 
15 
14 
14 
13 

13 
12 
12 
12 
11 

11 
11 
10 
10 
10 

10 
9 
9 
9 
9 

9 
8 
8 
8 
8 
8 
8 
7 
7 
7 
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TABLE IV. 

FOUR PLACE LOGARITHMS. 

i°" 
t * 
ag 
2̂5 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 
69 

70 
71 
72 
73 
74 

75 
76 
77 
78 
79 

80 
81 
82 
83 
84 

86 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

1 
O I 1 2 
1 1 

1 1 
7404 7412 741f 

3 4 

1 
7427,7435 74S2 7490 7497,7505 

7559 7560 7574 7582 
7634 7642 7649 7657 

7513 
7589 
7664 

7709:7716 7723,7731 7738 
1 

77S2 77S9 7796 7803 7S10 
7853 7S60:7S68i7S75:7SS2 
7924 79317938 7945 7952 
7993 SOOO S007 S014 8021 
8062 8069; S075S0S2S089 

1 1 ! 1 
S129'8136 8142S149iSl.je 
S195 S202 8209 S215 >.222 
S201 S267 8274 S280 8287 
832,518331 8338 8344 8351 
8388 

8451 

8395;8401 8407 8414 
1 J 

8457 8463 8470,8476 
8513 85191862.5 8,531'8537 
S573 8579,8585 859118597 
8633 863918646 S6ol 18657 
8692 8698 8704,8710:8716 

1 i 1 
8751 
8808 
8866 
8921 
8976 

9031 
9085 
9138 
9191 
9243 

9294 
9345 
9395 
9445 
9494 

9542 
9590 
9638 
9686 
9731 

9777 
9823 
9868 
9912 
9956 

8756 876218768 8774 
8814 8820;8825 8831 
887118876 8882 8887 8927 8932 8938 8943 
8982 8987 8993 8998 

1 ! { 
9036 9042 9047 90.53 
9090;9096 9101 
91439149,9154 
9196i9201i9206 
9248 

9299 
9350 
9400 
9450 
9499 

9547 
9596 
9643 
9689 
9736 

9782 
9827 
9872 
9917 
9961 

9253 9258 

9304 9309 
9355 
9405 
9455 
9504 

9552 
9600 
9647 
9694 
9741 

9786 
9832 
9877 
9921 
9965 

9360 
9410 
9460 
9509 

9667 
9605 
9652 
9699 
9745 

9791 
9836 
9881 
9926 
9969 

9106 
9159 
9212 
9263 

9315 
9365 
9415 
9465 
9513 

9562 
9609 
9657 
9703 
9750 

9795 
9841 
9886 
9930 
9974 

5 

744i 
7520 
7597 
7672 
7745 

6 

7451 
7528 
7604 
7679 
7752 

7 

7459 
7536 
7612 
7686 
7760 

7S18'7825'7832 
78897896:7903 
7959:7966,7973 
8028:8035 8041 
8096 

8162 
8228 
8293 

8102 8109 

8 

7466 
7543 
7619 
7694 
7767 

7839 
7910 
7980 
8048 
8116 

8169 8176'81S2 
8235;8241 i8248 
8299 8:i(>(i 8312 

8357'S363 8370 8376 
8420 

8482 
8543 
8603 
8663 
8722 

8779 
SS37 
8893 
8949 
9004 

9058 
9112 
9166 
9217 
9269 

9320 
9370 
9420 
9469 
9518 

9566 
9614 
9661 
9708 
9754 

9800 
9845 
9890 
9934 
9978 

8420 

8488 
8549 
8609 
8669 
8727 

8785 
8842 
8899 
8954 
9009 

9063 
9117 
9170 
9222 
9274 

9325 
9375 
9425 
9474 
9523 

9571 
9619 
9666 
9713 
9759 

9805 
9850 
9894 
9939 
9983 

S432 

8494 
8555 
8615 
8675 
8733 

8791 
8848 
8904 
8960 
9015 

9069 
9122 
9175 
9227 
9279 

9330 
9380 
9430 
9479 
9528 

9576 
9624 
9671 
9717 
9763 

9809 
9854 
9899 
9943 
9987 

8439 

8500 
8561 
8621 
8681 
8739 

8797 
8854 
8910 
8965 
9020 

9074 
9128 
9180 
9232 
9284 

9336 
9386 
9435 
9484 
9533 

9581 
9628 
9675 
9722 
9768 

9814 
9859 
9903 
9948 
9991 

9 

7474 
7551 
7627 
7701 
7774 

7846 
7917 
7987 
8056 
8122 

8189 
8254 
8319 
8382 
8445 

8506 
8567 
8627 
8686 
8745 

8802 
8859 
8915 
8971 
9026 

9079 
9133 
9186 
9238 
9289 

9340 
9390 
9440 
9489 
9638 

9586 
9633 
9680 
9727 
9773 

9818 
9863 
9908 
9952 
9996 

Propohtional Parts. 

I 

0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

2 

2 
2 
2 

1 

1 

3 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 

4 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
o 
3 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

S 

4 
4 
4 
4 
4 

4 
4 
3 
3 
3 

3 
3 
3 
3 
3 

3 

6 

5 
5 
5 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
3 1 4 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

4 
4 
4 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

7 

5 
5 
5 
5 
5 

6 
5 
5 
5 
5 

5 
5 
5 
4 
4 

4 
4 
2 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

8 

6 
6 
6 
6 
6 

6 
6 
6 
5 
5 

5 
5 
5 
5 
5 

5 
5 

9 

7 
7 
7 
7 
7 

6 
6 
6 
6 
6 

6 
6 
6 
6 
6 

6 
5 

5 5 
5 6 
5 5 

5 
5 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 
4 
4 
4 
4 
3 

5 
5 
6 
6 
5 

5 
5 
5 
5 
5 

5 
5 
4 
4 
4 

4 
4 
4 
4 
4 

4 
4 
4 
4 
4 
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TABLE V. 

SINES, COSINES, TANGENTS. 

0.0 
0.6 
1. 
1.5 
2. 
2.5 
3. 
4. 
5. 
10. 
15. 
20. 
25. 
30. 
35. 
40. 
45. 
50. 
56. 
60. 
65. 
70. 
75. 
80. 
86. 
90. 

Natural. 

Sin. 

0.0000 
0.0087 
0.0176 
0.0262 
0.0349 
0.0436 
0.0523 
0.0698 
0.0872 
0.1736 
0.2588 
0.3420 
0.4226 
0.5000 
0.5736 
0.6428 
0.7071 
0.7660 
0.8192 
0,8660 
0.9063 
0,9397 
0.9659 
0.9848 
0.9962 
1.0000 

Cos. 

1.0000 
1.0000 
0.9998 
0.9997 
0.9994 
0.9990 
0,9986 
0.9976 
0.9962 
0.9848 
0.9659 
0.9397 
0.9063 
0.8660 
0,8192 
0.7660 
0.7071 
0.6428 
0.5736 
0.5000 
0.4226 
0.3420 
0.2588 
0.1736 
0,0872 
0.0000 

Tan, 

0,0000 
0,0087 
0,0175 
0.0262 
0.0349 
0.04.37 
0.0524 
0.0699 
0.0875 
0.1763 
0.2679 
0.3640 
0.4663 
0,5774 
0,7002 
0,8391 
1.0000 
1.1918 
1.4281 
1.7321 
2,1445 
2.7475 
3,7321 
6,6713 
11,43 
OD 

Logarithmic. 

Sin. 

• CO 
7,9408 
8,2419 
8,4179 
8.5428 
8.6397 
8.7188 
8.8436 
8.9403 
9.2397 
9.4130 
9.5341 
9.6259 
9.6990 
9.7586 
9.8081 
9.8495 
9.8843 
9.9134 
9.9375 
9,9573 
9,9730 
9.9849 
9.9934 
9.9983 
0,0000 

Cos. 

0,0000 
0,0000 
9,9999 
9.9999 
9,9997 
9,9996 
9,9994 
9,9989 
9.9983 
9.9934 
9.9849 
9.9730 
9.9573 
9,9375 
9.9134 
9.8843 
9.8495 
9.8081 
9.7586 
9.6990 
9.6259 
9.5341 
9.4130 
9.2397 
8.9403 
• OD 

Tan. 

• CD 
7.9409 
8.2419 
8.4181 
8.6431 
8.6401 
8.7194 
8.8446 
8.9420 
9.2463 
9.4281 
9.5611 
9.6687 
9.7614 
9.8452 
9.9238 
0.0000 
0.0762 
0.1548 
0.2,386 
0.3313 
0.4389 
0.5719 
0.7537 
1.0580 
00 
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