Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3-Oxo-3-phenylpropyl)piperidinium chloride

Venkatramu Anuradha,^a S. Madan Kumar,^b B. P. Siddaraju,^c N. K. Lokanath^b and P. Nagendra^c*

^aDepartment of Physics, Dr M. G. R. Educational and Research Institute, Maduravoval, Chennai, India, ^bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422, India

Correspondence e-mail: nagendra088@yahoo.co.in

Received 28 October 2013; accepted 31 October 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.130; data-to-parameter ratio = 13.9.

In the title salt, $C_{14}H_{20}NO^+ \cdot Cl^-$, the piperidine ring adopts a chair conformation. In the crystal, the cations and anions are linked by classical N-H···Cl hydrogen bond and weak C- $H \cdots Cl$ and $C - H \cdots O$ hydrogen bonds; the $C - H \cdots O$ hydrogen bonds exhibit $R_2^2(14)$ ring motifs while the C-H···Cl hydrogen bonds link the molecules into chains along the *a*-axis direction. $\pi - \pi$ stacking is observed between parallel phenyl rings of adjacent cations, the centroid-centroid distance being 3.8164 (15) Å.

Related literature

For the synthesis and biological activity of piperidine derivatives, see: Vartanyan (1984). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{14}H_{20}NO^+ \cdot Cl^-$

 $M_{\rm w} = 253.76$

Monoclinic, $P2_1/c$	
a = 11.2936 (13) Å	
b = 12.0531 (15) Å	
c = 10.9650 (13) Å	
$\beta = 112.971 (5)^{\circ}$	
V = 1374.2 (3) Å ³	

Data collection

Bruker X8 Proteum diffractometer	7001 measured reflections
Absorption correction: multi-scan	2217 independent reflections
(<i>SADABS</i> ; Bruker, 2013)	1833 reflections with $I > 2\sigma(I)$
$T_{min} = 0.558, T_{max} = 0.614$	$R_{\text{int}} = 0.057$
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.130$	independent and constrained
S = 1.09	refinement
2217 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
159 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Z = 4

Cu $K\alpha$ radiation

 $0.23 \times 0.22 \times 0.21 \text{ mm}$

 $\mu = 2.33 \text{ mm}^{-1}$

T = 296 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H11 \cdots Cl1^{i}$ $C4 - H4 \cdots Cl1^{ii}$ $C14 - H14B \cdots O1^{iii}$	0.95 (2) 0.93 0.97	2.15 (2) 2.82 2.45	3.0837 (18) 3.745 (3) 3.249 (3)	171 (2) 172 139

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and Mercury.

The authors are thankful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. PN thanks the BET Academy of Higher Education for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5748).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736-749.

supporting information

Acta Cryst. (2013). E69, o1748 [doi:10.1107/S1600536813029887]

1-(3-Oxo-3-phenylpropyl)piperidinium chloride

Venkatramu Anuradha, S. Madan Kumar, B. P. Siddaraju, N. K. Lokanath and P. Nagendra

S1. Comment

The piperidine hydrochloride is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative, is an effective drug against diarrhea resulting from gastroenteritis or inflammatory bowel disease (Vartanyan *et al.*, 1984).

The piperidine ring (N1/C10—C14) of the title compound (Fig. 1) adopts chair conformation. The puckering parameters of the piperdine ring are Q = 0.571 (2) Å, $\theta = 180.0$ (2)° and $\varphi = 19$ (10)° (Cremer & Pople, 1975). The bond lengths and angles are in normal ranges (Allen *et al.*, 1987).

The molecules are packed along *a* axis with inter molecular hydrogen bonds are shown in Figure 2. Bond lengths and angles of intermolecular hydrogen bonds (N1—H11···Cl1, C14—H14B···O1 and C4—H4···Cl1) are listed in table 1. Also, N···Cl intercontacts with a distance of 3.084 Å is observed. The C14—H14B···O1, exhibits $R^2_2(14)$ ring motifs (Bernstein *et al.*, 1995). The molecules are connected by infinite one dimensional chains along *a* axis by C4—H4···Cl1 hydrogen bonds. In addition, π ··· π interactions exists between phenyl rings Cg2···Cg2 with a distance of 3.8164 (15) Å, where Cg2 is C1/C2/C3/C4/C5/C6. Overall crystal structure of the title molecule exhibits three dimensional architecture.

S2. Experimental

Single crystals (block) were obtained from slow evaporation of a solution of ethylacetate (m.p.:410-413 K).

S3. Refinement

The H11 atom is located in a difference Fourier map and refined isotropically. Other H atoms were fixed geometrically (C -H= 0.93-0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}$ for methyl H atom and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

ORTEP diagram of the title compound with 50% probability ellipsoids.

Figure 2

Packing diagram of molecule, viewed along the crystallographic *a* axis. Dotted lines indicate hydrogen bonds and short contacts involved.

1-(3-Oxo-3-phenylpropyl)piperidinium chloride

Crystal data	
$C_{14}H_{20}NO^+ \cdot Cl^-$	V = 1374.2 (3) Å ³
$M_r = 253.76$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 544
Hall symbol: -P 2ybc	$D_{\rm x} = 1.227 {\rm ~Mg} {\rm ~m}^{-3}$
a = 11.2936 (13) Å	Cu K α radiation, $\lambda = 1.54178$ Å
b = 12.0531 (15) Å	Cell parameters from 2217 reflections
c = 10.9650 (13) Å	$\theta = 4.3 - 64.4^{\circ}$
$\beta = 112.971 \ (5)^{\circ}$	$\mu = 2.33 \text{ mm}^{-1}$

T = 296 KBlock, colourless

Data collection

Dura concerión	
Bruker X8 Proteum diffractometer	$T_{\min} = 0.558, T_{\max} = 0.614$ 7001 measured reflections
Radiation source: Bruker MicroStar microfocus rotating anode	2217 independent reflections 1833 reflections with $I > 2\sigma(I)$
Helios multilayer optics monochromator	$R_{\rm int} = 0.057$
Detector resolution: 10.7 pixels mm ⁻¹	$\theta_{\text{max}} = 64.4^{\circ}, \theta_{\text{min}} = 4.3^{\circ}$
φ and ω scans	$h = -13 \rightarrow 12$
Absorption correction: multi-scan	$k = -10 \rightarrow 14$
(SADABS; Bruker, 2013)	$l = -10 \rightarrow 12$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.052$	$W = 1/[\Sigma^2(FO^2) + (0.0762P)^2 + 0.2853P]$
$wR(F^2) = 0.130$	where $P = (FO^2 + 2FC^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2217 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
159 parameters	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Hydrogen site location: inferred from neighbouring sites	2008), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4} Extinction coefficient: 0.173 (7)
6 6	

 $0.23 \times 0.22 \times 0.21 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.28618 (16)	0.3894 (2)	-0.17351 (15)	0.0736 (8)	
N1	0.05732 (13)	0.45578 (15)	-0.22047 (13)	0.0286 (5)	
C1	-0.43665 (19)	0.3624 (2)	-0.5286 (2)	0.0438 (7)	
C2	-0.5574 (2)	0.3438 (2)	-0.6274 (2)	0.0533 (8)	
C3	-0.6620(2)	0.3275 (2)	-0.5943 (3)	0.0592 (9)	
C4	-0.6478 (2)	0.3307 (2)	-0.4642 (3)	0.0586 (9)	
C5	-0.5288 (2)	0.3513 (2)	-0.3656 (2)	0.0464 (8)	
C6	-0.42153 (17)	0.36703 (19)	-0.39763 (18)	0.0353 (6)	
C7	-0.29561 (18)	0.3890 (2)	-0.28717 (18)	0.0381 (7)	
C8	-0.17901 (16)	0.41077 (19)	-0.31941 (17)	0.0353 (6)	
C9	-0.06310 (17)	0.44018 (19)	-0.19508 (17)	0.0344 (6)	
C10	0.05276 (19)	0.55864 (19)	-0.29863 (19)	0.0378 (6)	
C11	0.1784 (2)	0.5746 (2)	-0.3175 (2)	0.0457 (8)	
C12	0.2928 (2)	0.5773 (2)	-0.1862 (2)	0.0521 (8)	

C13	0.29567 (18)	0.4721 (2)	-0.1097 (2)	0.0500 (8)
C14	0.17059 (17)	0.4572 (2)	-0.09057 (18)	0.0404 (7)
Cl1	0.05845 (4)	0.24029 (5)	0.09932 (4)	0.0406 (2)
H1	-0.36580	0.37180	-0.55080	0.0530*
H2	-0.56760	0.34230	-0.71580	0.0640*
H3	-0.74260	0.31430	-0.66040	0.0710*
H4	-0.71860	0.31900	-0.44240	0.0700*
Н5	-0.51980	0.35480	-0.27770	0.0560*
H8A	-0.19730	0.47130	-0.38240	0.0420*
H8B	-0.16000	0.34530	-0.35990	0.0420*
H9A	-0.08110	0.50800	-0.15790	0.0410*
H9B	-0.04900	0.38170	-0.13020	0.0410*
H10A	0.03750	0.62240	-0.25280	0.0450*
H10B	-0.01790	0.55340	-0.38450	0.0450*
H11	0.066 (2)	0.393 (2)	-0.268 (2)	0.041 (6)*
H11A	0.18900	0.51460	-0.37120	0.0550*
H11B	0.17470	0.64360	-0.36440	0.0550*
H12A	0.37160	0.58350	-0.20140	0.0620*
H12B	0.28670	0.64120	-0.13530	0.0620*
H13A	0.36670	0.47550	-0.02390	0.0600*
H13B	0.30930	0.40890	-0.15740	0.0600*
H14A	0.17360	0.38800	-0.04420	0.0480*
H14B	0.16080	0.51720	-0.03640	0.0480*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0501 (9)	0.138 (2)	0.0387 (8)	-0.0265 (11)	0.0239 (7)	-0.0115 (10)
N1	0.0294 (8)	0.0315 (10)	0.0248 (7)	-0.0022 (6)	0.0104 (6)	-0.0011 (7)
C1	0.0371 (10)	0.0478 (15)	0.0450 (11)	-0.0014 (9)	0.0144 (8)	-0.0064 (10)
C2	0.0506 (13)	0.0500 (17)	0.0470 (11)	-0.0009 (11)	0.0057 (9)	-0.0092 (12)
C3	0.0373 (11)	0.0412 (16)	0.0810 (17)	-0.0043 (10)	0.0034 (11)	-0.0122 (13)
C4	0.0343 (11)	0.0499 (17)	0.0903 (18)	-0.0076 (11)	0.0230 (11)	-0.0031 (15)
C5	0.0403 (11)	0.0440 (15)	0.0596 (13)	-0.0058 (10)	0.0245 (9)	-0.0010 (11)
C6	0.0337 (10)	0.0307 (12)	0.0427 (11)	0.0001 (8)	0.0163 (8)	-0.0014 (9)
C7	0.0355 (10)	0.0450 (14)	0.0365 (10)	-0.0033 (9)	0.0171 (8)	-0.0022 (10)
C8	0.0311 (9)	0.0435 (14)	0.0329 (9)	0.0010 (8)	0.0144 (7)	0.0013 (9)
C9	0.0324 (9)	0.0444 (13)	0.0293 (9)	-0.0020 (8)	0.0153 (7)	0.0007 (9)
C10	0.0408 (10)	0.0381 (13)	0.0369 (10)	0.0035 (9)	0.0177 (8)	0.0087 (9)
C11	0.0490 (12)	0.0481 (16)	0.0450 (11)	-0.0047 (10)	0.0239 (9)	0.0090 (11)
C12	0.0430 (12)	0.0569 (18)	0.0565 (13)	-0.0150 (11)	0.0197 (10)	0.0001 (12)
C13	0.0321 (10)	0.0650 (18)	0.0467 (11)	-0.0061 (10)	0.0086 (8)	0.0066 (11)
C14	0.0349 (10)	0.0547 (15)	0.0263 (9)	-0.0078 (9)	0.0063 (7)	0.0054 (9)
Cl1	0.0444 (4)	0.0417 (4)	0.0369 (4)	-0.0004 (2)	0.0171 (2)	0.0073 (2)

Geometric parameters (Å, °)

01	1.209 (2)	С2—Н2	0.9300	
N1—C9	1.503 (3)	С3—Н3	0.9300	
N1—C10	1.497 (3)	C4—H4	0.9300	
N1—C14	1.498 (2)	С5—Н5	0.9300	
N1—H11	0.95 (2)	C8—H8A	0.9700	
C1—C6	1.380 (3)	C8—H8B	0.9700	
C1—C2	1.389 (3)	С9—Н9А	0.9700	
C2—C3	1.379 (4)	C9—H9B	0.9700	
C3—C4	1.373 (4)	C10—H10A	0.9700	
C4—C5	1.379 (4)	C10—H10B	0.9700	
C5—C6	1.400 (3)	C11—H11A	0.9700	
C6—C7	1.488 (3)	C11—H11B	0.9700	
С7—С8	1.514 (3)	C12—H12A	0.9700	
C8—C9	1.518 (3)	C12—H12B	0.9700	
C10—C11	1.524 (3)	C13—H13A	0.9700	
C11—C12	1.514 (3)	C13—H13B	0.9700	
C12—C13	1.514 (3)	C14—H14A	0.9700	
C13—C14	1.518 (3)	C14—H14B	0.9700	
C1—H1	0.9300			
C9—N1—C10	112.23 (16)	C7—C8—H8B	110.00	
C9—N1—C14	108.91 (13)	C9—C8—H8A	109.00	
C10—N1—C14	111.15 (16)	C9—C8—H8B	109.00	
C9—N1—H11	107.3 (15)	H8A—C8—H8B	108.00	
C10—N1—H11	109.6 (14)	N1—C9—H9A	109.00	
C14—N1—H11	107.4 (13)	N1—C9—H9B	109.00	
C2C1C6	120.2 (2)	С8—С9—Н9А	109.00	
C1—C2—C3	119.9 (2)	C8—C9—H9B	109.00	
C2—C3—C4	120.3 (2)	H9A—C9—H9B	108.00	
C3—C4—C5	120.2 (2)	N1-C10-H10A	109.00	
C4—C5—C6	120.1 (2)	N1-C10-H10B	109.00	
C5—C6—C7	117.75 (17)	C11-C10-H10A	109.00	
C1—C6—C7	123.03 (19)	C11-C10-H10B	109.00	
C1—C6—C5	119.22 (19)	H10A—C10—H10B	108.00	
O1—C7—C6	120.8 (2)	C10-C11-H11A	109.00	
O1—C7—C8	120.36 (19)	C10-C11-H11B	109.00	
C6—C7—C8	118.87 (16)	C12—C11—H11A	109.00	
С7—С8—С9	110.77 (15)	C12—C11—H11B	109.00	
N1—C9—C8	112.86 (14)	H11A—C11—H11B	108.00	
N1-C10-C11	110.89 (18)	C11—C12—H12A	110.00	
C10-C11-C12	111.59 (17)	C11—C12—H12B	110.00	
C11—C12—C13	109.56 (19)	C13—C12—H12A	110.00	
C12—C13—C14	110.85 (19)	C13—C12—H12B	110.00	
N1-C14-C13	111.44 (15)	H12A—C12—H12B	108.00	
C2—C1—H1	120.00	C12—C13—H13A	109.00	
С6—С1—Н1	120.00	C12—C13—H13B	109.00	

С1—С2—Н2	120.00	C14—C13—H13A	109.00
С3—С2—Н2	120.00	C14—C13—H13B	110.00
С2—С3—Н3	120.00	H13A—C13—H13B	108.00
С4—С3—Н3	120.00	N1-C14-H14A	109.00
C3—C4—H4	120.00	N1-C14-H14B	109.00
C5—C4—H4	120.00	C13—C14—H14A	109.00
С4—С5—Н5	120.00	C13—C14—H14B	109.00
С6—С5—Н5	120.00	H14A—C14—H14B	108.00
С7—С8—Н8А	110.00		
C10—N1—C9—C8	69.9 (2)	C4—C5—C6—C7	180.0 (2)
C14—N1—C9—C8	-166.55 (18)	C1—C6—C7—O1	-178.0 (2)
C9—N1—C10—C11	177.56 (15)	C1—C6—C7—C8	1.9 (3)
C14—N1—C10—C11	55.3 (2)	C5-C6-C7-O1	2.4 (4)
C9—N1—C14—C13	179.67 (18)	C5—C6—C7—C8	-177.6 (2)
C10-N1-C14-C13	-56.2 (2)	O1—C7—C8—C9	-4.6 (3)
C6—C1—C2—C3	-1.4 (4)	C6—C7—C8—C9	175.5 (2)
C2-C1-C6-C5	0.9 (4)	C7—C8—C9—N1	176.49 (18)
C2-C1-C6-C7	-178.7 (2)	N1-C10-C11-C12	-56.2 (2)
C1—C2—C3—C4	0.7 (4)	C10-C11-C12-C13	56.4 (2)
C2—C3—C4—C5	0.6 (4)	C11—C12—C13—C14	-56.6 (2)
C3—C4—C5—C6	-1.2 (4)	C12-C13-C14-N1	57.1 (2)
C4—C5—C6—C1	0.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
N1—H11···Cl1 ⁱ	0.95 (2)	2.15 (2)	3.0837 (18)	171 (2)	
C4—H4…Cl1 ⁱⁱ	0.93	2.82	3.745 (3)	172	
C14—H14 <i>B</i> …O1 ⁱⁱⁱ	0.97	2.45	3.249 (3)	139	

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*-1, -*y*+1/2, *z*-1/2; (iii) -*x*, -*y*+1, -*z*.