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Abstract

I investigate how growth in total factor productivity (TFP) in an urban core associates
with future employment growth in its rural periphery. I develop a two-location spatial
general equilibrium model that highlights the interactions between a city and rural
town in its hinterland, which hypothesises a negative association between TFP growth
in the former and employment growth in the latter. I test the implications of the
model by evaluating confidential establishment-level data on a core-periphery system
in the state of Colorado from 2001 to 2017. I find TFP growth in an urban core
correlates with lower future employment growth in its rural periphery.
JEL Codes: R11 R13 R32

1 Introduction

To further understanding of urban-rural linkages, I study how total factor productivity

(TFP) growth in an urban core relates to employment growth in its rural periphery.

Using confidential establishment-level data from the Quarterly Census of Employment

and Wages (QCEW), I estimate how TFP growth among a cluster of highly integrated

Metropolitan Statistical Areas (MSAs), known as the Front Range Urban Corridor (FRUC)

in the US state of Colorado, associates with future employment in the cluster’s hinterland.

This paper evaluates the implications of urban TFP growth for local core–periphery

systems, adding further context to the relationship between an urban centre and its

hinterland. Consistent with theoretical predictions, I find revenue TFP growth in an

urban core correlates with lower future employment growth in its rural periphery.

To guide the empirical analysis, I develop a two-location spatial general equilibrium

trade framework that highlights economic interactions between a city and a rural town
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located in its hinterland. Following recent quantitative spatial economic models, this

theoretical framework synthesises the gravity structure international trade theory and a

(homogeneous and) perfectly mobile labour supply to study the allocation of economic

activity over space. There are ex-ante production differences between the city and rural

town that promote clustering within the former. Micro-founded input-output linkages in

the city give rise to agglomeration economies and aggregate increasing returns to scale

production technology, while firms in the rural town produce using constant returns

technology. Differences in housing markets translate to location-specific expenditure

shares and fixed housing supply generates dispersion forces. The system produces a

unique and point-wise stable equilibrium. When calibrated with empirically guided

parameter values, the urban-rural labour allocation in the model is consistent with

evidence from the US. As a result of exogenous growth shocks to urban TFP, the model

predicts that (1) TFP growth in the city associates with negative employment growth in

the rural town, (2) local TFP growth in the rural town can mitigate negative effects of a

positive urban TFP shock, and (3) the negative employment growth response in the rural

town is less severe the larger is the TFP gap (in levels) between the city and rural town.

The model informs a reduced form specification I take to data to test the theoretical

hypothesis of a negative association between urban revenue TFP growth and rural em-

ployment growth. Leveraging the detailed data on twenty differentiated sectors for the

whole of Colorado, I estimate a composite measure of annual urban revenue TFP and

segment the data on establishments in the FRUC’s rural hinterland into smaller census

designated regions known as ZIP Code Tabulation Areas (ZCTAs). The modelled data

generation process defines employment growth in a rural ZCTA, in part, as a function of

past TFP growth in a weighted average of the MSAs that comprise the FRUC. I uniquely

relate TFP growth in each MSA to individual ZCTAs using structural gravity inspired

spatial connectivity weights derived from the theoretical model.

Since the revenue TFP estimates are likely to contain substantial measurement error,

I construct Bartik style shift-share instruments and estimate the empirical model using

the feasible two-step generalised methods of moments (GMM) estimator. The main result

finds that a one standard deviation increase in the aggregate FRUC’s three-year revenue

TFP growth rate (which amounts to 3.4 percentage points) correlates with an average

1.34 percentage point lower ZCTA employment growth rate over the following three-year

period. The sign and significance of this result are robust to a wide variety of alternative

empirical specifications.

Previous research analysing the local implications of revenue TFP growth has been

restricted to particular sectors, namely manufacturing, as well as city-to-city spillovers.

Likewise, past studies analysing peer effects between urban and rural areas have focused

primarily on evidence related to associations between population growth rates in core and

periphery systems. I complement the existing literature by offering further evidence on

sub-national revenue TFP and its local associations. Additionally, I build upon preceding

findings related to urban-rural spillovers, moving away from exclusively considering

population growth comovements and instead, by studying correlations related to urban
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revenue TFP growth, I evaluate other potential avenues of influence.

2 Related Literature

This study is an intersection of two streams of the urban and spatial economic litera-

ture. The first related set of research is that analysing sub-national total factor productivity

(TFP). Much of the work concerned with investigating disparities in TFP levels and the

effects of its growth over time has focused on between country analysis. However, there

are a growing number of studies turning their attention to local TFP, which have curated

some stylised facts about sub-national TFP patterns.

Though TFP is challenging to measure, studies that have estimated local TFP find

evidence of the existence of large within-country TFP disparities, which explains some

of the nominal wage variation across space (Moretti, 2011). Moretti (2011) finds that

counties in the right tail of the distribution have a TFP estimate 2.9 times higher than

those in the left tail. Such spatial heterogeneity is not unique to the US. Ciani, Locatelli,

and Pagnini (2019) find sub-national manufacturing TFP estimates in the North of Italy

are between 12% and 30% higher than estimates from the, comparatively rural, South of

Italy.

This literature identifies strong evidence in favour of TFP persistence over time

(Moretti, 2011), implying persistent disparities in the level of TFP. Further, TFP growth

between regions is found to vary as much as TFP levels. In estimating manufacturing TFP

growth in the US among urban areas from 1980 to 1990, Hornbeck and Moretti (2020)

find locations at the 10th percentile experienced -2.2% TFP growth and those in the 90th

percentile experienced 13.7% growth, while the median growth rate was 4.5%.

There are many proposed reasons as to why these subnational differences exist. They

may reflect local infrastructure disparities or heterogeneous location-specific policy re-

lated to production (Albanese, de Blasio, and Locatelli, 2019; Hornbeck and Moretti, 2020).

Given insights from the urban economics literature studying agglomeration economies,

there is evidence of firm clustering promoting productivity spillovers and growth over

time. For example, areas with larger industrial clusters seem to experience higher pro-

ductivity levels and growth rates (Greenstone, Hornbeck, and Moretti, 2010; Moretti,

2011; Hornbeck and Moretti, 2020). Some authors argue supply-side influences, including

location or industry-specific technological innovation, spur TFP growth in some regions

(Syverson, 2004; Albanese, de Blasio, and Locatelli, 2019; Hornbeck and Moretti, 2020).

Syverson (2004) also proposes that demand-side forces, particularly “spatial substitutibil-

ity,” can increase production efficiency. If producers are clustered and consumers have

access to sufficiently substitutable alternatives, this may stimulate competition in the local

market thereby introducing a Melitz (2003)-flavoured truncation of the local productivity

distribution, pushing less efficient producers out of the market and increasing average

local productivity.

Considering the evidence on local TFP disparities, Hornbeck and Moretti (2020)

investigate how city-level growth in manufacturing revenue TFP impact the residents
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of cities that experience TFP growth (which they call the “direct effects”) as well as

residents of other cities where TFP growth does not occur via changes to the spatial

equilibrium (the “indirect effects”). They find local TFP growth increases local earnings,

house prices/rents, and employment (mainly due to in-migration), although the benefit

experienced by individuals varies based upon their level of education and their position

in the housing market (home owner versus renter). They also find that the migration

stimulated by TFP growth elsewhere causes other cities to experience wage increases and

house price decreases in response to out-migration to the booming city. However the

magnitude of these effects are too associated with individual skill levels. On net, they find

the average US worker benefits substantially from revenue TFP growth in manufacturing.

This paper joins a second strand of literature studying urban growth shadows (or the

lack thereof). The economic history of the US has been characterised by periods of regional

divergence and convergence. Kemeny and Storper (2020) find evidence for interregional

income convergence during the mid to late 20th century, but periods of divergence during

the mid 19th to early 20th centuries and since the 1980s. Notably, there is an increasing

divide between the success of particular urban areas and rural areas/declining urban

areas, and part of this regional asymmetry story appears to stem from how neighbouring

regions, including urban and rural neighbours, help or hurt each other’s economic growth

prospects.

A central prediction of the New Economic Geography class of models is that the cen-

tripetal forces that give rise to urban cores facilitate “agglomeration shadows,” otherwise

known as urban growth shadows, that prevent proximal urban areas to form (Partridge

et al., 2009). Indeed, Cuberes, Desmet, and Rappaport (2019) find proximity to large

urban areas was negatively correlated to local population growth from 1840-1920 in

the US. However, they also find that since the 1920s, areas close to densely populated

urban cores experience faster population growth, hinting at the absence of the previous

growth shadows and instead favouring evidence of urban growth spillovers. Evidence

from Partridge et al. (2009) using US data from 1990-2006 and Rauch (2014) using US

data from 2000 find similar positive correlations between large urban centres and the

population size of their hinterlands. However, Cuberes, Desmet, and Rappaport (2019)

find that this positive correlation seems to be weakening during the 21st century. While

there is evidence that comovements in population growth between urbanised areas and

more sparsely populated areas have changed with time, the exact mechanisms that define

the urban-rural relationship are not entirely clear.

To rationalise their findings of urban growth spillovers in the later 20th century,

Cuberes, Desmet, and Rappaport (2019) propose that innovations to transport technology,

which have reduced commuting costs, have encouraged commuting. As such, they argue

that suburban and rural areas adjacent to large metropolitan areas have grown due to

people choosing to live in those communities but work in the urban core. However, when

considering some of the local growth multipliers Moretti (2010) describes that stem from

local (tradable-sector) employment growth, it is not necessarily the case that the observed

population growth can be linked to meaningful economic growth if residents are working
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elsewhere. That is to say, it is difficult to assess the extent of urban growth spillovers (or

reject the existence of growth shadows) in the late 20th and early 21st centuries exclusively

from associations in population growth trends.

In this paper, I complement the existing literature by adapting the questions and

methodology of Hornbeck and Moretti (2020) from an urban-to-urban spillover analysis to

an urban-to-rural spillover analysis, thereby offering further insights as to the associations

between sub-national (estimated) revenue TFP and labour market outcomes, namely

employment growth. Furthermore, I provide additional context to the urban and rural

relationship, moving away from studying associations between population growth to

instead considering other urban forces (i.e. urban revenue TFP growth) which may covary

with observables in nearby rural places.

3 Theoretical Framework: The Urban-Rural General Equilibrium

To guide my empirical analysis, I develop a general equilibrium model that illustrates

the underlying link between exogenous growth in urban total factor productivity (TFP)

and rural employment growth. I consider a region comprised of two locations, a city c and

rural town r, with ex-ante differences in production technology and consumer expenditure

shares that are connected by intra-regional trade and a mobile homogeneous labour supply.

The model clarifies urban TFP’s relationship to the equilibrium distribution of activity

across space and offers useful qualitative predictions concerning co-movements between

urban TFP growth and employment growth in rural areas located in the core’s hinterland.

3.1 Production

Both the city and rural town produce a unique final good that is consumed locally

and in the other location. The urban and rural goods are differentiated according to

their point of origin (i.e. the Armington assumption from international trade) and by the

processes in which they are produced. Similar to Michaels, Rauch, and Redding (2012),

who differentiate production technology by sector, I differentiate production technology

by location. The city features increasing returns to factor inputs external to firms while

the rural town produces using constant returns to scale technology, implying the city

exhibits agglomeration economies while the rural town has no centripetal forces that

promote clustering.

Urban Production In an approach following Krugman and Venables (1995) and Du-

ranton and Puga (2004), I micro-found aggregate urban agglomeration economies via

input-output linkages. In the city, there is a single production sector composed of two

sub-sectors. A sub-sector of perfectly competitive final good producing firms (“final firms”

henceforth) utilises a bundle of input varieties produced by the other sub-sector comprised

of a mass M of monopolistically competitive firms (“intermediate firms” henceforth) that

use labour as their only input. Put differently, there is a single urban production sector

that uses labour and some fraction of output to produce final output.
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The perfectly competitive final firms produce according to a Dixit and Stiglitz (1977)-

style constant elasticity of substitution (CES) production technology

Yc = AFc

∫ M

0
z(κ)

1
1+ε dκ

1+ε

(3.1)

where Yc is the total supply of the final good produced in the city, AFc is the city-specific

final firm TFP, and z(κ) is the input produced by intermediate firm indexed κ. Each

intermediate input enters the final good production technology with a constant elasticity of

input substitution, denoted 1+ε
ε , where I assume ε > 0. This CES production specification

implies final firms possess a “taste for diversity” for input varieties in the production

of Yc such that the final firms prefer to use all the inputs available in the city, utilising

relatively cheaper inputs more intensively in their production process at a rate dictated

by the elasticity of input substitution. As ε approaches zero, intermediate inputs become

perfect substitutes in final good production while as ε approaches infinity, the equation

(3.1) becomes the Cobb-Douglas production function, in which case inputs enter at a fixed

proportion independent of final good output or the relative prices of input varieties.

Monopolistically competitive intermediate firms are single product firms where each

firm κ produces one variety z(κ) using a single factor of production, labour `(κ), and so

the available alternatives equals the number of firms. Each intermediate firm utilises the

following production technology:

z(κ) = AL`D(κ)− f (3.2)

where `D(κ) is firm κ’s labour demand, AL is the (constant) marginal product of labour,

and f are the fixed costs associated with the production of input variety z(κ), a formulation

following Ethier (1982). Intermediate goods providers are assumed homogeneous and

therefore face identical AL and f .

Final firms in the city choose inputs z(κ), priced g(κ) per unit, and face total input costs∫M
0 g(κ)z(κ)dκ. They seek to minimise their production costs subject to their production

technology

min
{z(κ)}Mκ=0

∫ M

0
g(κ)z(κ)dκ s.t. AFc

∫ M

0
z(κ)

1
1+ε dκ

1+ε

≥ Yc

which yields final firms’ demand for input variety κ of the form

z(κ) =

g(κ)
G

−( 1+ε
ε )
AFc Yc
G

(3.3)

where G ≡ [
∫M

0
g(κ)−

1
ε ]−ε

AFc
is a price index measuring the “true” cost of urban final good

production. G is decreasing in M and AFc , implying that final firms find production

cheaper when there are more varieties for them to choose from and when they are more

productive in transforming input varieties into the final output.
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The market equilibrium for input varieties (which, considering said market is nested

within a city where employment and wages are endogenously determined in general

equilibrium of the region, is necessarily a partial equilibrium) is characterised by three

conditions. The first condition is the intermediate firm profit maximisation condition,

where the marginal revenue for each firm κ (MRκ) equals the marginal costs faced

by firm κ (MCκ). The set of points for which MRκ = MCκ holds is referred to as the

intermediate firm equilibrium locus. The second condition is that free entry and exit in

the monopolistically competitive market pressures equilibrium profits to zero, at which

point the price of variety κ, g(κ), is equal to the average costs faced by firm κ (ACκ).

The set of points for which g(κ) = ACκ holds is called the intermediate firm sub-sector

equilibrium locus. Third, given that intermediate firms utilise labour as their sole input,

the equilibrium depends in part upon the urban labour market clearing equilibrium,

Lc, where the urban labour supply equals the urban labour demand (which is in turn

endogenously determined in the general equilibrium).

The intermediate firm locus is identified by solving the firm’s profit maximisation

problem. Given intermediate firms are monopolistically competitive, they display no

strategic behaviour towards one another (i.e. they ignore their interdependence in making

pricing decisions) and therefore take G as given. Furthermore, intermediate firms take the

output decision of final firms Yc, final firms’ TFP AFc , and wages paid to workers in the

city wc as given as well. Thus, facing final firm demands in equation (3.3), intermediate

firm κ chooses g(κ) to maximise profits Π(κ) subject to labour input costs:

max
g(κ)

Π(κ) = g(κ)z(κ)−wc`D(κ) = g(κ)z(κ)−wc
(z(κ) + f

AL

)
where the substitution for `D(κ) follows from solving equation (3.2) for `D(κ). Profit

maximising behaviour implies the optimal price set by firm κ is g(κ) =
(

1+ε
AL

)
wc, meaning

the optimal price is a mark-up 1+ε
AL over marginal labour costs wc faced by the firm. This

mark-up is decreasing as labour becomes more productive on the margin (i.e. decreasing

in AL) and increasing as inputs become less fungible (i.e. increasing in ε). Note that the

optimal price for firm κ is independent of the index κ, meaning this price is the optimal

price set by all intermediate firms in equilibrium.That is,

g(κ) = g =
(1 + ε
AL

)
wc ∀κ (3.4)

For the firm’s second order sufficient condition to be satisfied, and thus for equation (3.4)

to be the true profit maximising price set by intermediate firms, it must be that ε > 0,

which motivates the initial assumption made on ε.

Equation (3.4) characterises the intermediate firm equilibrium locus, defining the

set of points for which MC = MR given wc, which is endogenously determined in the

general equilibrium. The optimal price set by all intermediate firms implies perfect cost

pass-through from intermediate firms to final firms. Furthermore, equation (3.4) indicates

that the price-cost margin, g
wc

= 1+ε
AL , is a constant ratio determined by exogenous model
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parameters.

Setting total profits earned by intermediate firms to zero (i.e. imposing the zero-profit

condition) and solving for price reveals

g =
wc`

D(κ)
z(κ)

=
(
1 +

f

z(κ)

)wc
AL

(3.5)

which is a rectangular hyperbola. The set of points in equation (3.5) defines the interme-

diate firm sub-sector equilibrium locus, containing all the points at which g = AC. Notice

that the functional form of average costs implies that prices are decreasing in output z(κ)

as a result of overhead costs f being spread across a greater quantity of output, meaning

intermediate firms move down their average cost curve as production expands. As such,

the production technology of the monopolistically competitive intermediate firms displays

firm-level increasing returns.

The point of intersection between the firm and sector equilibrium loci, equations (3.4)

and (3.5) respectively, defines the equilibrium supply of input varieties. Substituting

the firm equilibrium locus into the sub-sector equilibrium locus and solving for firm κ’s

output z(κ) gives

z(κ) = z =
f

ε
∀κ (3.6)

and so in equilibrium each intermediate producer supplies an identical amount of output.

This means, under the assumption of final good CES production technology, the inten-

sive production margin of intermediate firms (i.e. how much each intermediate goods

firm produces in equilibrium) depends on fixed production costs scaled by the degree

of substitutability between inputs. As fixed production costs grow, each intermediate

supplier produces less in equilibrium while as the substitutability of inputs increases,

intermediate suppliers produce more in equilibrium. Like pricing decisions, intermediate

goods producers’ output choices are independent of final firm demands.

Substituting equation (3.6) into intermediate firm labour demands `D(κ) shows that

in equilibrium, each intermediate firm demands `D = f (1+ε)
ALε . Since in equilibrium all M

intermediate firms are identical, total labour demand in the city is LDc = n`D =M f (1+ε)
ALε .

Assuming the urban labour market equilibrium condition holds (i.e. LSc = LDc = Lc, where

Lc is endogenously determined in the spatial equilibrium) and subsequently solving for

M yields

M =
(wc
gz

)
Lc =

[ εAL

f (1 + ε)

]
Lc (3.7)

Therefore, the extensive intermediate goods production margin (i.e. how many intermedi-

ate firms are operating in equilibrium) is determined endogenously by the urban labour

market equilibrium, Lc, which is scaled by the inverse of the product of equilibrium

output z and the price cost ratio g
wc

, which in turn is determined by the parameters ε, f ,

and AL. Thus, the equilibrium intermediate goods extensive production margin becomes

more sensitive to changes in the (endogenously determined) urban labour market equilib-

rium as the substitutability of inputs declines, fixed production costs decline, and/or the

marginal product of labour increases.
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Equation (3.6) holds regardless of final good producers’ input demands in equilibrium.

Substituting the equilibrium output of all M homogeneous intermediate firms into the

final good production technology equation (3.1), it follows that

Yc = AFc

∫ n

0

f

ε

1
1+ε

di

1+ε

= AFcM
1+ε f

ε

which, given equation (3.7), implies equilibrium final good production in the city can be

expressed as

Yc = AcL
1+ε
c (3.8)

where Ac ≡ AFc
(
ε
f

)ε( AL
1+ε

)1+ε
is an endogenously determined variable that measures the

composite TFP level in the city, which is a function of the parameters that determine

the firm-level productivity of both the intermediate and final good production processes.

Therefore, the aggregate productivity of the city Ac is comprised of the productivity of all

urban firm types.

In analysing the impact of urban TFP growth within this model, since worker-consumers

are assumed identical across the region (meaning workers in both the city and rural town

have identical marginal product of labour, AL) and the degree of input substitutability

ε is fixed, all sources of urban TFP innovation in this model are assumed to come from

exogenous shocks to AFc or f and not innovations to the marginal product of labour.

Crucially, this model is not exploring changes in the production capacity of labour; rather

it is exploring the effects related to more general gains in the production capacity of factor

inputs. However, I remain agnostic as to the exact source of innovation and, for simplicity

express such perturbations as growth in the composite productivity Ac.

Taking logarithmic transformations of the right- and left-hand sides of equation (3.8)

and totally differentiating reveals

ŷc = âc + (1 + ε)l̂c

where x̂c ≡
dXc
Xc

for Xc ∈ {Yc,Ac,Lc} denotes a proportional change. This reveals that a

unit change in the urban labour market equilibrium level of workers corresponds to a

greater than one-unit response in output of the final good in the city since ε > 0, so while

individual final good producing firms face constant returns to scale production technology

in the form of equation (3.1), in aggregate the city features increasing returns to labour

due to input-output linkages. This implies external economies to scale in urban final good

production. Thus, through the productive advantages of final good producers clustering

in the city and, therefore, sharing in a wider variety of intermediate inputs provided by

a monopolistically competitive intermediate goods producing sector, the city features

agglomeration economies.

The intensity of the agglomeration economies in the city is dictated by the size of ε > 0.

Recall that input varieties become less fungible in final good production as ε increases.
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Thus, agglomeration economies grow as final good producers require a larger variety of

inputs in their production process. The underlying mechanism is the slope of final firm

demands. Under monopolistic competition, final firm demand curves (i.e. equation 3.3)

slope downward, with their gradient determined by ε. Demands under ε large correspond

to steeper final firm demand curves for each input variety produced, which translates

to larger consumer surplus going to final firms in the production of another variety. Put

differently, the agglomeration externality in the city grows as intermediate firms capture

less of the benefit of introducing an additional variety on account of higher values of ε.

In micro-founding agglomeration economies, it is important to note that this model

results in some strong and implausible (partial) equilibrium outcomes. In particular,

the price cost margin is constant and results in perfect pass-through, intermediate firm

output choices are independent of final firm demands, and the intermediate firm produc-

tion intensive and extensive margins are independent in equilibrium. These results are

consequences of the assumption that final firms utilise the special case, but mechanically

useful, CES production specification. While alternative final firm input demand specifica-

tions exist with more appealing monopolistically competitive firm equilibrium outcomes,

such as pricing that is linked to input demand (e.g. the “well-behaved” demand systems

Mrázová and Neary (2017) classify as subconvex), for the purposes of agglomeration

micro-foundations, this is an admissible simplifying assumption.

Perfect competition, and the accompanying free entry and exit condition, among final

firms drives equilibrium profits to zero. Using equation (3.8), zero profits implies the

urban equilibrium wage can be written

wc = pcAcL
ε
c (3.9)

where pc is the mill price (i.e. “factory gate price”) of the final good produced in the city.

Rural Production Unlike in the city, rural final good producing firms use labour, not

intermediate input varieties, as their sole factor input, and so there are no economies of

scale external to the firm. Instead, perfectly competitive final firms in the rural town

produce according to constant returns to scale technology

Yr = ArLr (3.10)

where Yr is the aggregate supply of the final good produced in the rural town, Ar is the

rural town-specific composite TFP level, and Lr is the rural labour market equilibrium

quantity of worker-consumers, which (like Lc) is endogenously determined in the general

equilibrium. Similar to composite TFP in the city, composite TFP in the rural town can be

decomposed such that Ar ≡ AFr AL, where AFr is the TFP of final firms in the rural town and

AL is the marginal product of labour common to workers in either location. In equilibrium,

the rural wage is such that the zero-profit condition holds

wr = prAr (3.11)
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where pr is the mill price of the final good produced in the rural town.

3.2 Consumption

The region’s economy is populated by L identical, intra-regionally mobile worker-

consumers. Workers possess the common marginal product of labour AL described in

Section 3.1 and supply one unit of labour inelastically in the location (either c or r) they

choose to live, earning the wage specific to that location. Workers derive utility from

goods consumption, housing consumption, and location-specific amenities. Housing

expenditure in each location i ∈ {c, r} is reallocated as a lump sum to workers living in that

location, as in Helpman (1998) and Redding (2016), implying that worker income Ii is the

sum of wages earned through labour and rents earned from housing expenditures.

Similar to Redding (2016), workers living in location i have Cobb-Douglas preferences

defined over goods consumption Qi and housing consumption hi which are subject to an

exogenous, location-specific amenity parameter Θi

Ui = Θi

(Qi
δi

)δi ( hi
1− δi

)1−δi
(3.12)

where δi ∈ (0,1) is the location-specific share of total income spent on goods consumption.

Given this preference specification and the lump sum redistribution of housing rents to

residents, income in i can be rewritten as

Ii =
wi
δi

(3.13)

The goods consumption index Qi is a CES aggregator defined over workers in location

i’s consumption of the good produced in i, denoted qi,i , and the good produced in the

other location i′ , i, denoted qi′ ,i :

Qi =
[
q
σ−1
σ
i,i + q

σ−1
σ
j,i

] σ
σ−1

(3.14)

where σ > 1 is the elasticity of substitution between the two goods varieties, which is

common to locations.1 To simplify the model, I assume that workers inelastically consume

a unit of housing (i.e. impose hi = 1), choosing Qi to maximise their utility subject to their

budget constraint, solving

max
Qi

Ui = Θi

(Qi
δi

)δi ( 1
1− δi

)1−δi
s.t. ei + ri ≤ Ii

where ei is total goods expenditure by workers in i and ri is the rental price of a unit of

housing in i. To choose their optimal goods consumption bundle Qi , workers in i must

1Like Allen and Arkolakis (2014), I restrict my attention to σ > 1 so that trade flows between the city and
rural town are decreasing in transport costs. See Section (3.3).
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also solve

max
qi,i ,qj,i

Qi =
[
q
σ−1
σ
i,i + q

σ−1
σ
i′ ,i

] σ
σ−1

s.t. pi,iqi,i + pi′ ,iqi′ ,i ≤ ei = δiIi = wi

where pi,i is the price of good i paid by workers in i, pi′ ,i is the price of good i′ paid by

workers in i, and δiIi = wi is the share of total income spent on goods by workers living in

i. This implies Marshallian demands

qi,i =
(pi,i
Pi

)−σ wi
Pi

qi′ ,i =
(pi′ ,i
Pi

)−σ wi
Pi

(3.15)

where Pi ≡
[
(pi,i)1−σ + (pi′ ,i)1−σ

] 1
1−σ is an index that measures the “true” cost of living in

location i and functions identically to G, but in a demand-side context. Substituting these

demands into the expression for Qi reveals the optimal goods consumption bundle for

workers residing in i can be expressed

Qi =
wi
Pi

(3.16)

Given the worker’s Cobb-Douglas preference specification and the definition of δi , the

ratio 1
1−δi can be re-expressed as Ii

ri
, that is the ratio of total income to housing expenditure.

Furthermore, assuming i has a fixed housing supply Hi , the housing market clearing

implies that the total value of housing in i, riHi , must equal total housing expenditure by

workers in i, (1−δi)IiLi , where Li is the endogenously determined equilibrium quantity of

workers in i. Solving for ri from the housing market clearing condition and substituting it

into the income to housing expenditure ratio, it follows that

1
1− δi

=
Ii
ri

=
Hi

(1− δi)Li
(3.17)

Letting hi = 1 and substituting equations (3.16) and (3.17) into equation (3.12), the

worker living in i has indirect utility

Ui = Θi

( wi
δiPi

)δi ( Hi
(1− δi)Li

)1−δi

Choosing units such that Θi = δ
δi
i (1−δi )1−δi

Hi
, indirect utility can be expressed

Ui = Lδi−1
i

(wi
Pi

)δi
(3.18)

implying that the utility of living in i is increasing in the wage wi , decreasing in the price

index Pi , and decreasing in the population Li . The result that utility is decreasing in the

size of the local population implies that the fixed housing supply operates as a dispersion

force that works in opposition to clustering forces in i. The sensitivity of indirect utility
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to changes in the endogenous variables {wi , Pi ,Li} is exogenously determined by the size

of δi .

In deciding where to live and supply her labour, a worker-consumer chooses to locate

where her utility is maximised. Assuming no uncertainty, she observes the set of values

{wc,wr , Pc, Pr ,Lc,Lr} and chooses to live in the city whenever indirect utility in the city is

such that Uc > Ur and the rural town whenever indirect utility there is such that Uc < Ur .

She is indifferent between living in the city and rural town in the event that Uc =Ur .

3.3 Intra-Regional Trade, Total Demands, and Gravity

I assume intra-regional trade is costly, with trade costs taking the Samuelson (1954)

iceberg form, implying that in order for a unit of a good produced in i′ to arrive in i,

τi′ ,i > 1 units must be shipped because τi′ ,i − 1 units of good i′ “melts” in transit to i. To

factor trade costs into goods pricing, I express the price of good i′ paid by workers in i

as pi′ ,i = τi′ ,ipi′ , where pi′ ,i is a mark-up of factor τi′ ,i over the mill price pi′ . Given there

are no frictions associated with local trade, the price for good i in i is the mill price, i.e.

pi,i = pi . Under these trade cost assumptions, the local price index for location i can be

re-expressed as Pi ≡
[
p1−σ
i + (τpi′ )1−σ

] 1
1−σ .

Due to costly trade, the total demand for goods produced in each location is intimately

linked with transport costs. Assuming bilaterally symmetric trade costs between the city

and rural town (i.e. τc,r = τr,c = τ) it follows that for qr,c units of the rural good to arrive in

the city, xr,c = τqr,c must be shipped. Similar logic follows for the quantity of the urban

good xc,r that must be shipped to meet rural demand qc,r . Letting xc,c = qc,c and xr,r = qr,r
(since, again, there are no local trade frictions), the total regional demands for the urban

good Xc and rural good Xr are

Xc = xc,cLc + xc,rLr = p−σc
[
P σ−1
c wcLc + P σ−1

r wrLrτ
1−σ

]
Xr = xr,cLc + xr,rLr = p−σr

[
P σ−1
c wcLcτ

1−σ + P σ−1
r wrLr

] (3.19)

where {Lc,Lr} is the (endogenously determined) allocation of total labour L between the

two locations. Since workers are assumed identical, demands are common to all workers.

As such, total demands are the individual demands of workers in location i multiplied by

the number of workers located in i.

The CES demand specification for worker preferences over goods allow the value of

intra-regional trade to be expressed as an Anderson (1979)/Anderson and van Wincoop

(2003)-style gravity relationship. Denote the value of trade originating in the city and

delivered to the rural town as Vc,r = pcxc,r and the value of trade originating in the rural

town and delivered to the city as Vr,c = prxr,c. Given the functional specification of xr,c
and xc,r as well as Marshallian demands qr,c and qc,r , equilibrium intra-regional trade
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values are

Vr,c =
(pr
Pc

)1−σ
wcLcτ

1−σ

Vc,r =
(pc
Pr

)1−σ
wrLrτ

1−σ

Since σ > 1, as trade costs τ grow, the value (i.e. quality adjusted volume) of trade between

the city and the rural town decreases.

Algebraic manipulation (as I show in Appendix A.1) reveals the above can be re-

expressed as so-called “structural gravity” equations

Vr,c =
( τ
ΛrPc

)1−σ wrLrwcLc
wL

Vc,r =
( τ
ΛcPr

)1−σ wcLcwrLr
wL

(3.20)

where Λi ≡
[
P σ−1
i θi + P σ−1

i′ τ1−σθi′
] 1

1−σ
for i ∈ {c, r} is a θ-weighted average of the transport

costs relative to local prices pi′ faced by location i and θi = wiLi
wL is the share of total

regional income earned in i. As such, while Pi measures how costly it is to consume in i,

Λi measures how costly it is to export from i to i′. The structural gravity equations (3.20)

state that bilateral trade flows between the city and rural town depend log-linearly on

exporter and importer size (as measured by labour costs) and negatively on bilateral trade

costs. Anderson and van Wincoop (2003) call Λi and Pi′ multilateral resistance terms, as

increases in either reduce trade volume between the city and rural town. The term wcLcwrLr
wL

reflects “frictionless trade,” which depends only on the relative size of trading parties.

3.4 Equilibrium

Given optimal producer and consumer behaviour as well as intra-regional trade

dynamics described in the preceding sections, the model can be summarised by the

following set of simultaneous equations:

Yc = AcL
1+ε
c

wc = pcAcL
ε
c

Xc = p−σc
[
P σ−1
c wcLc + P σ−1

r wrLrτ
1−σ

]
Pc =

[
p1−σ
c + (τpr )

1−σ
] 1

1−σ

Uc = Lδc−1
c

(wc
Pc

)δc

Yr = ArLr

wr = prAr

Xr = p−σr
[
P σ−1
c wcLcτ

1−σ + P σ−1
r wrLr

]
Pr =

[
(τpc)

1−σ + p1−σ
r

] 1
1−σ

Ur = Lδr−1
r

(wr
Pr

)δr
(3.21)

These equations determine the instantaneous equilibrium, which is characterised by five

conditions that map to those specified in Allen and Arkolakis (2014), but in a two-location

environment.

First, goods markets must clear, meaning the total supply of both the rural good Yr
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and the urban good Yc must satisfy total demands in both the city and the rural town

for both goods, i.e. Xr and Xc.2 Second, the regional labour market must feature full

employment. That is to say, not only must local labour markets clear (e.g. LDr = LSr = Lc),

but so too must the equilibrium distribution of labour between the city and rural town

sum to L, the region’s total labour force. Third, both locations must be inhabited, meaning

not all workers can live in the city while none live in the rural town, and vice versa. Forth,

utilities must equalise over space, meaning the utility of living in the city must match

that of living in the rural town so that the marginal worker is indifferent between living

in the city or the rural town. The final condition is that the equilibrium must be feature

point-wise stability, meaning that no small number of workers can increase their utility by

moving to the other location i.e. no spatial utility arbitrage is possible. The equilibrium

criterion can therefore be summarised as follows:

1. Goods markets clear: Yr +Yc = Xr +Xc

2. Full regional employment: Lr +Lc = L

3. Both locations are inhabited: {Lc,Lr} ∈R++

4. Utility equalisation over space: Ur =Uc

5. Point-wise stability (no spatial arbitrage): dUidLi
< 0 for i ∈ {c, r}

Given its non-linearities, I solve the model numerically. Using the system of equations

(3.21), I numerically evaluate the system at different distributions of the total factor

endowment L between the city and rural town such that goods markets clear 3 Computing

Ur and Uc at these points and finding where they equalise, I identify candidate equilibria

that satisfy requirements one through five above.

With the exception of the elasticity of substitution, iceberg transport costs, and urban

agglomeration economies (which were chosen to match common values used in the

literature), the exogenous parameters in the model were calibrated to reflect empirical

realities concerning differences between urban and rural areas, especially those located

in the FRUC and its hinterland. In particular, care was taken to calibrate exogenous

location-specific TFP, Ac and Ar , according to estimates from this paper performed in

Section 4.3 and to choose location-specific expenditure shares, δc and δr , that match to

empirical estimates for urban and rural spending. The baseline values and sources for

model parameters are given in Table (3.1) and the resulting dynamics are shown in Figure

(3.1).

Figure (3.1) plots the (log of) utility in the city (blue) and rural town (red) against

the share of the region’s total labour force L (normalised to unity) working and living in

the city, Lc. Along each curve, both goods markets clear. Labour allocations (Lc,Lr) to

the left of the point E0 imply higher utility in the city relative to the rural town, while

2An implication of this equilibrium requirement is that not only must the zero profit condition hold for final
firms in the city and rural town, but so too must the intermediate firm profit maximising condition and
intermediate firm sub-sector zero profit condition.

3i.e. given factors allocation {Lc,Lr } where Lr +Lc = L, I numerically identified the set {pc,pr ,wc,wr , Pc, Pr } at
which point Yr +Yc = Xr +Xc.
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Table 3.1: Baseline Theoretical Model Parameter Values

Parameter Source Value Comments

Elasticity of
substitution: σ

Allen and
Arkolakis
(2014)

σ = 4 Equilibrium becomes more sensitive to
changes in σ as its value decreases, though
the main qualitative implications are robust
to parameterisation.

Iceberg trade
costs: τ

Fujita,
Krugman, and
Venables (1999)

τ = 1.7 This value corresponds to the “intermedi-
ate transport costs” in Fujita, Krugman, and
Venables (1999). As in Allen and Arkolakis
(2014), higher transport costs encourage clus-
tering in the city. Main qualitative results are
robust parameterisations.

Urban
agglomeration
economies: ε

Allen and
Arkolakis
(2014)

ε = 0.1 Parameterisation consistent with empirical
agglomeration evidence from Rosenthal and
Strange (2004).

Urban TFP: Ac Author’s
estimates

Ac = 0.94 Averaged estimated TFP for Front Range ur-
ban corridor. See Section 4.3 for estimation
details and Appendix Table (B.10) for esti-
mate source.

Rural TFP: Ar Author’s
estimates

Ar = 0.73 Averaged estimated TFP for rural Colorado
ZCTAs located within the FRUC rural periph-
ery. See Section 4.3 for estimation details and
Appendix Table (B.9) for estimation source.

Urban goods
expenditure
share: δc

Author’s
calculation
using Hawk
(2013)

δc = 0.77 Average total non-housing expenditure (to-
tal expenditure net shelter, house furnish-
ings and equipment, and household opera-
tion spending) for urban households in 2011
was 74%, while just non-shelter expenditure
was 79%. Taking the average between the two
expenditure measures (like Allen and Arko-
lakis, 2014) for urban households implied
value of roughly 77%

Rural goods
expenditure
share: δr

Author’s
calculation
using Hawk
(2013)

δc = 0.85 Average total non-housing expenditure for
rural households in 2011 was 82%, while just
non-shelter expenditure was 87%. Taking the
average expenditure share implied a value
roughly 85%.

allocations to the right of E0 imply higher utility in the rural town relative to the city. In

both scenarios, workers located in the place with lower utility can make profitable utility

gains moving to the other location (i.e. perform spatial arbitrage). Utility differences

stimulate intra-regional migration, the direction of which is indicated by the arrows along

each curve, with workers moving to either the city or rural town depending on where said

utility gains can be made.

This process continues until point E0, which is the unique and point-wise stable

equilibrium of the model comprised of the set of values {L∗i ,p
∗
i ,w
∗
i ,w
∗
i ,U

∗
i ,M

∗, g∗} for i ∈ {c, r}.
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At E0, both goods markets clear, the region features full employment, both locations have

positive populations, the curves cross so utilities equalise over space and, finally, since
dUc
dLc

< 0 and dUr
d(1−Lc)

< 0, E0 is point-wise stable. Under this parameterisation, E0 is the only

crossing point of Ur and Uc for Lc ∈ (0,1) and is thus unique.

However, while utilities are equal at E0, other components of the equilibrium are not.

Wages in the city are higher than wages in the rural town (i.e. there is a rural-urban

earnings gap) and the urban good is cheaper than the rural good (due to increasing

returns). As a direct result of equilibrium pricing and the costs associated with intra-

regional trade, the price index in the city is lower than that in the rural town. Finally,

the equilibrium factor endowments are not symmetric. As in classic urban models, the

model’s equilibrium city size is the result of the fundamental trade-off of urban economics,

i.e. the competing agglomeration economies and diseconomies associated with population

size. The equilibrium value of Lc is the point at which the marginal benefit of an additional

worker in urban final good production is equal to the marginal cost she introduces moving

to the city via increased housing costs.

The equilibrium labour allocation asymmetry at E0 is akin to the core-periphery class

of models pioneered by Krugman (1991a), Krugman (1991b), and Fujita, Krugman, and

Venables (1999).4 This model predicts workers will cluster in the location that exhibits

increasing returns, with about 78% of the region’s total worker population residing in

the city. This urban-rural population divide is close to the actual rural-urban population

spread in the US, where in 2010 approximately 80% of the population lived in cities while

20% live in rural communities (US Census Bureau, 2016).

However, since this model borrows extensively from the menu of assumptions common

among quantitative spatial models developed in the past decade, the underlying mech-

anisms driving the rural-urban asymmetry differ from core-periphery models. Namely,

the centripetal forces promoting urban clustering here result from input-output linkages

within urban production, not due to the re-enforcing agglomeration cycle powered by the

home market effect and price effect. Additionally, the centrifugal forces in this model are

not transport costs between locations, but rather dispersion forces introduced via a fixed

housing stock.5 Finally, this model abstracts from the “flat earth” assumption common to

the core-periphery model and other new economic geography models, where all regions

are ex-ante identical. The fact that the city and rural town have different technology,

productivity, and preferences (in the form of budget shares) ex-ante powers the ex-post

uneven equilibrium factor allocation. Moreover, by relaxing assumptions of symmetry

among locations, the differences between the city and rural town results in a unique

equilibrium, unlike the multiplicity of equilibria that are possible for certain transport

cost levels in new economic geography models.

4Specifically, Fujita, Krugman, and Venables (1999) find the core-periphery pattern arises (and is point-wise
stable) for “low” and “intermediate” transport costs. For transport costs above the core-periphery sustain
point, they find that the only stable equilibrium, which is also unique, is a symmetric equilibrium where
both locations have half of all workers in the sector with increasing returns.

5In fact, I show in Appendix Figure (A.2) that increasing intra-regional transport costs stimulates further
clustering in the city, just as in the framework developed by Allen and Arkolakis (2014).
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Figure 3.1: Baseline Model Dynamics

Notes: This figure demonstrates the underlying model dynamics towards a unique and point-wise stable
spatial equilibrium between the city and rural town, denoted E0. I plot utility in each region as a function of
the region’s share of labour living and working in the city. Along each curve, both goods markets clear. For
labour allocations below E0, utility in the city (blue) is greater than utility in the rural town (red), stimulating
migration of workers from the rural periphery to the urban core. The converse is true to the right of E0,
where utility gains can be made moving from the city to the rural town. The arrows along the curves depict
these transition dynamics. Given the technology and expenditure asymmetries, which operate as centripetal
and centrifugal forces, respectively, between the city and the rural town, the resulting equilibrium E0 implies
a larger share of labour locating in the city.

3.5 Effect of Urban TFP Growth on Rural Employment Growth

I now explore how the unique, point-wise stable equilibrium outlined in the preceding

section responds first to exogenous growth in urban TFP Ac in isolation, then to simul-

taneous growth in urban and rural TFP. Suppose the region is initially located at the

equilibrium point, E0, where Ac = 0.94. Suppose further that Ac exogenously increases by

3.4% to Ac = 0.97 while rural TFP Ar remains unchanged.6 Figure (3.2a) plots utility in

both the city and rural town against the rural employment share Lr and documents the

change from the initial equilibrium to the new equilibrium, denoted E1.

The TFP growth in the city shifts utility in the city and the rural town upwards;

however the utility gains in the city at the original equilibrium are considerably larger.

For instance, the 3.4% increase in urban TFP facilitates an approximately 2.3% utility gain

6I experiment with this particular growth value, as this is a one standard deviation in the explanatory variable
of interest in the empirical analysis and the 3.4 percentage point value is used to interpret the benchmark
parameter estimates.
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in the city but only a 0.1% utility gain in the rural town for any given labour allocation in

the neighbourhood of E0. As such, the shift in urban utility dominates, prompting the

new point-wise stable spatial equilibrium E1 to exhibit a lower share of workers living

in the rural town, but a higher level of equilibrium regional utility. Specifically, moving

from E0 to E1, the rural labour force declines by about 8% while the utility of workers

living in either location increases by roughly 1.9%. Workers are unambiguously better off
regardless in both places, but there is out-migration from the rural town on account of

urban TFP growth.

Consider now a situation in which instead of isolated exogenous urban TFP growth,

rural TFP grows as well, but at a slower rate. Suppose that Ac still grows 3.4%, but also

Ar experiences half as large growth (i.e. 1.7%), thereby increasing to 0.74. Figure (3.2b)

plots utility in both the city and rural town against the rural employment share Lr and

documents the change from the initial equilibrium to the new equilibrium, denoted E′1.

The urban TFP shock’s impact on utility in the city is effectively unchanged, however, the

growth in rural TFP increases rural utility at E0 by 1.1%. The new equilibrium E′1 sports a

utility level 2.1% larger than that at E0 and the rural share of total regional employment

declines by 4.3%.

These shocks reveal that urban TFP growth has negative implications for growth in

rural employment, however the negative effects can be mitigated by local innovations

to rural TFP. The model conveys that the regional economy’s adjustment to exogenous

urban TFP shocks operates through TFP’s relationship with final good pricing, wages, and

utility equalisation requirements in equilibrium. Perfect competition among final good

firms implies that the price of the final good produced in i is equal to the marginal cost of

producing said good in i. Furthermore, in this market structure, factors of production are

paid their marginal product. An increase in Ac stimulates a decrease in pc and an increase

in wc via decreasing marginal costs faced by final firms in the city through increased

productivity by the marginal worker.

The requirement that utilities equalise over space puts upward pressure on rural

wages to maintain the labour force necessary to meet total regional demands for the rural

good. In the case of an isolated urban TFP shock, since rural TFP remains unchanged,

this upward pressure on rural wages increases the marginal cost of production, thereby

increasing the market clearing price of the rural good. The decrease in pc and increase in

pr , in turn, adjust the location-specific price indices, notably with Pr growing substantially

more than Pc on account of changes to pr being more influential in the determination of

the rural price index.7 Urban TFP growth, then, stimulates growth in wages and price

indices in both locations. However, wages in the city grow more than wages in the rural

town while the rural price index grows more than the urban price index. Given the

functional specification of (indirect) utility, these differences originating from increases in

Ac result in spatial arbitrage from the rural town to the city until dispersion forces in the

city prohibit further utility gains through migration.

Figure (3.3a) shows the relationship between equilibrium rural labour share L∗r and

7Mechanically, this is due to the influence of rural price increases being discounted by τ in Pc’s functional
specification.
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Figure 3.2: TFP Growth Shocks and the Rural Labour Share

(a) Isolated positive urban TFP growth (b) Positive urban and rural TFP growth

Notes: The figure details the model’s response to exogenous changes in urban TFP Ac. Panel (a) evaluates the
comparative statics of urban utility (blue) and rural utility (red) associated with increasing Ac by 3.4% in
(Lr ,U ) space, which moves the system from initial equilibrium E0 to new equilibrium E1. While regional
utility is higher in the new equilibrium, the share of labour living in the rural town is lower. Panel (b)
evaluates the comparative statics of urban utility and rural utility associated with increasing Ac by 3.4%
and increasing Ar by 1.7% in (Lr ,U ) space, which moves the system from initial equilibrium E0 to new
equilibrium E′1, which is to the right of E1 given the innovations to rural TFP blunt the effects of an urban
TFP increase.

Figure 3.3: Urban TFP and the Rural Labour Share

(a) Equilibrium Lr as a function of urban TFP (b) Equilibrium U as a function of urban TFP

Notes: The figure details the equilibrium’s response to exogenous changes in urban TFP Ac. Panel (a) plots the
equilibrium level of rural employment L∗r against Ac, revealing a “rural flight” associated with high levels
of Ac. Panel (b) plots the equilibrium (log) utility level U ∗ against Ac, implying that innovations to TFP in
the urban core unambiguously leaves workers living in either location better off. Thus, the model’s main
qualitative finding is that urban TFP growth is associated with employment growth declines in the rural
town, but aggregate well-being is higher across both locations.

urban TFP Ac. The growth of Ac prompts “rural flight” to the city, facilitating an emptying

of the rural town. However, the effect of sequential urban TFP growth is blunted as Ac
grows in levels. As the absolute level of the city’s TFP increases, the subsequent rate

of rural out-migration due to future urban TFP gains decreases. For example, if Ac is

relatively low (e.g. 0.8), a 1% increase in urban TFP would have a much larger negative
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effect on rural labour levels compared to 1% growth in urban TFP if it is initially large

(e.g. 1.4). As such, the model predicts regions with a large ex-ante urban-rural TFP gap

will not experience large ex-post rural flight due to urban TFP growth. Instead, regions

with small initial urban-rural TFP gaps will see the largest geographic population shifts.

This has interesting implications for regions with emerging cities that do not have a large

TFP edge over their rural periphery, as the model suggests they will experience much

faster rates of urbanisation after an exogenous TFP shock.

The equilibria previously discussed, E0 and E1, are shown in figure (3.3a) alongside

two additional equilibria. E2 is the unique, point-wise stable equilibrium when there is no

regional asymmetry in TFP levels (Ac = Ar ). The ex-ante technology differences between

the two regions ensure that even when TFP in levels are equal (which is empirically not

the case, and cities are found to be more productive), there is an asymmetric equilibrium

with (slight) clustering in the city. E3 is the equilibrium when the city has a TFP in levels

twice that of the rural town. In this case, a little over 5% of the region’s population lives

in the rural town (high degree of regional urbanisation). From a welfare perspective, this

model predicts that urban TFP growth leaves the region’s inhabitants unambiguously

better off. Figure (3.3b) plots the (log) of equilibrium utility against urban TFP levels,

demonstrating a near log-linear relationship between welfare and urban TFP.

The simplistic two-region set-up of this model in combination with its lack of dynamic

processes are unrealistic simplifying assumptions. However, there are there are three key

qualitative insights this model provides to guide the empirical analysis. First, it predicts

that urban TFP growth corresponds to negative rural employment growth. Second, local

TFP growth in the rural town can, to some extent, counteract out-migration facilitated

by urban TFP growth. Finally, the decline in rural employment due to urban TFP gains

is decreasing in urban TFP levels and so TFP growth in highly productive cities will not

prompt large rural out-migration. Motivated by the implications of the model, in the

empirical analysis to follow, I test the suggested relationship between TFP growth in an

urban core and employment growth within rural communities located in that urban core’s

hinterland.

4 Data Construction

To empirically test the associations between growth in rural employment and urban

total factor productivity (TFP) implied by the theoretical model, I use data on ZCTAs

located in the FRUC and its rural hinterland in US state of Colorado from 2001 to 2017. I

combine confidential establishment-level employment and labour cost data with estimates

of TFP growth for 361 ZCTAs, 245 of which are located in a parent county considered

urban and the remaining 116 located in a parent county considered rural. Data on urban

ZCTAs are aggregated according to their parent MSA. The empirical analysis explores

how employment growth in the average rural ZCTA covaries with growth in a spatial

connectivity weight sum of FRUC TFP.

In the discussion to follow, all monetary units are adjusted for inflation and are in
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terms of 2001 USD, consistent with the Bureau of Labor Statistic (BLS) Consumer Price

Index (CPI) for the Denver-Aurora-Lakewood MSA (the Denver MSA henceforth). While

the Denver CPI only measures price dynamics for a bundle of goods purchased by urban

consumers living in Denver, there are observable differences between the evolution of the

Denver CPI against the aggregate US CPI as well as the Western US CPI (see Appendix B.1).

As such, deflating according to the Denver CPI seems most appropriate for constructing

constant price data for spatial units in the state of Colorado compared to the other

trans-state alternatives.

4.1 Geography and Spatial Units of Analysis

Before discussing the data in detail, I briefly discuss Colorado’s geography and the

spatial units studied in the empirical analysis. Colorado is a state located in the Western

US with a total estimated population of 5.7 million residents as of 2018 (Colorado State

Demography Office, 2019) and is home to a diverse geography consisting of mountains,

plains, and deserts. For administrative purposes, Colorado is subdivided into 64 counties,

17 of which are considered ‘urban’ by the US Department of Agriculture’s Rural Urban

Continuum Codes (RUCC), with the remaining 47 considered ‘rural.’8

The state’s urban counties are grouped into larger geographic units by the US Office of

Management and Budget (OMB) called Metropolitan Statistical Areas (MSAs), with each

of these MSAs having at least one urbanised area of 50,000 or more inhabitants.9 Colorado

has seven MSAs: Boulder, Colorado Springs, Denver (which contains the state’s capital and

is the largest MSA), Fort Collins, Grand Junction, Greeley, and Pueblo. With the exception

of Grand Junction, all of Colorado’s urban counties are located along the eastern edge of

the Rocky Mountains in an urban cluster referred to as the Front Range Urban Corridor

(FRUC). In 2018, the FRUC was estimated to be home to approximately 4.8 million people,

which accounts for 85% of the state’s population. Given the definition of MSAs as spatial

units oriented around a core urbanised area, the FRUC is are the empirical mapping of

the city from the theoretical model.

Just as some of Colorado’s counties are the elements of larger geographic units (i.e.

MSAs), counties are comprised of smaller geographic units. The US Census Bureau

subdivides Colorado’s 64 counties into 526 census designated regions known as ZIP Code

Tabulation Areas (ZCTAs), so-called due to the fact that they more or less map to the

boundaries of the US Postal Service’s Zone Improvement Plan (ZIP) codes, which organise

regional mail delivery throughout the US. ZCTAs are small geographic units, and those

located in sparsely populated areas tend to be associated with a town or unincorporated

areas with a post office. As such, ZCTAs located within rural counties, rural ZCTAs

henceforth, roughly serve as the empirical analogue to the rural town from the theoretical

model.
8The RUCC is a classification scheme that distinguishes densely populated metropolitan counties from more

sparsely populated rural counties based on the population of the largest urban cluster in a particular county.
Counties with an urban cluster of fewer than 50,000 residents are considered nonmetropolitan. ‘Rural’ in
this study is adopted as a term to refer to these nonmetropolitan areas that are sparsely populated.

9See https://www.census.gov/programs-surveys/metro-micro/about.html for classification details.
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Excluding Grand Junction, Colorado displays a quintessential core and periphery

geographic rural-urban divide, with a centralised urban core surrounded by a rural

periphery. To empirically test the theoretical model’s implications in regard to TFP

growth in the city being negatively associated with employment growth in the rural town,

I isolate Colorado’s amenable urban-rural geography, restricting my analysis to the FRUC

and its hinterland. As such, in this paper I exclude Grand Junction and its hinterland

(which includes 79 ZCTAs), instead considering the six MSAs that comprise the FRUC

and the ZCTAs located in its hinterland. I define the FRUC hinterland as the group of

rural ZCTAs for which the closest MSA by road in kilometres (estimation details on this

are described below) is either Boulder, Colorado Springs, Denver, Fort Collins, Greeley, or

Pueblo. I further reduce the sample of rural ZCTAs by restricting attention to ZCTAs that

have at least one reporting establishment each year during the sampling interval (2001 to

2017) and more than 10 employees working locally in any given year. The exact details

concerning these selection criteria are given below, but it results in a sample of 116 rural

ZCTAs.

In Figure (4.1), I map the locations of the spatial units discussed above in the state of

Colorado. Each polygon in the map is the boundaries of a ZCTA. Polygons shaded white

are ZCTAs either not within the FRUC/its hinterland or excluded due to insufficient data,

blue ZCTAs are located within the FRUC, and red ZCTAs are part of the rural periphery.

The different shades of blue among the FRUC ZCTAs differentiate the six MSAs that

make up the FRUC. In the empirical analysis to follow, I investigate how TFP growth in

the collective blue region associates with employment growth in each individual the red

regions.

4.2 Employment and Labour Cost

I measure ZCTA employment and labour cost among privately owned business estab-

lishments by two-digit NAICS sectors from 2001 to 2017.10 These data are confidential

establishment-level data from the Quarterly Census of Employment and Wages (QCEW)

provided by the Colorado Department of Labor and Employment (CDLE).11 These data

offer detailed accounts on the geographic location and sectoral classification of individual

business establishments, as well as records concerning their monthly employment levels

and quarterly wage expenditures. I use these data to estimate the average number of

workers employed within a ZCTA in a given year and the total costs for labour paid by all

establishments in a ZCTA over the course of a year for each sector in each sample ZCTA.

Denote e ∈ {1,2, . . . ,E} as the set of all reporting business establishments in the Colorado

10The North American Industrial Classification System (NAICS) is a sector classification system that groups
establishments into sectors based on the similarity of their production processes OMB (2017). The NAICS
divides the economy into 20 sectors, which are numerically identified by a two-digit code.

11The CDLE is the Colorado state-level counterpart of the Bureau of Labor Statistics (BLS). The QCEW
is a nationally coordinated survey by BLS that tabulates the employment and wages of establishments,
specifically those that employ workers other than the proprietor and report to the US Unemployment
Insurance (UI) programme. Approximately 97% of employers in the US report to the QCEW. These data do
not include statistics on non-employing (e.g. “gig economy”) establishments.
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Figure 4.1: Front Range Urban Corridor MSAs and Rural Hinterland

Notes: This figure maps the spatial units of interest in reference to the entire state of Colorado. Each polygon
represents a different ZCTA located in the state of Colorado. ZCTAs in white are excluded from the sample
(either due to not belonging to the Front Range Urban Corridor (FRUC) urban-rural system or insufficient
data), blue ZCTAs are part of MSAs that belong to the FRUC, and red ZCTAs make up the FRUC’s rural
periphery. Different shades of blue denote different MSAs.

QCEW.12 For each establishment e reporting in year t ∈ {1,2, . . . ,T }, I average the monthly

employment count to estimate the annual employment level of e, Le,t. I aggregate the

reported (before tax) total wage bill paid by e for each quarter in t to estimate total

labour costs paid by establishment e during t, We,tLe,t.13 Let ei,h be a subset of the set

of total business establishments that include establishments reporting to be located in

ZCTA i ∈ {1,2, . . . ,N } and operating in sector h ∈ {1,2, . . . ,H}.14 I then estimate average

employment in ZCTA i’s sector h as

Li,h,t =
E∑

e∈ei,h
Le,t

Wi,h,tLi,h,t =
E∑

e∈ei,h
We,tLe,t

Total employment and labour costs in ZCTA i are estimated as the sum of Li,h,t and

12In any given year, there were around 170,000 reporting establishments in the state of Colorado.
13I use before tax labour costs, as these data are likely to better reflect the total value of the labour being

purchased for production purposes.
14It need not be the caseH = 20. Some ZCTAs, particularly those in the hinterland, do not have establishments

operating in all 20 NAICS two-digit sectors.
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Wi,h,tLi,h,t across sectors h, respectively, i.e.

Li,t =
H∑
h=1

Li,h,t

Wi,tLi,t =
H∑
h=1

Wi,h,tLi,h,t

which are equivalent to aggregating Le,t and We,tLe,t across e ∈ ei , where ei is the set of

business establishments located in ZCTA i. Note then that ei,h ∈ ei . To be clear, ZCTA

employment (sectoral and total) in this study is the sum of the average level of employment

among establishments belonging to the relevant parent set of interest (i.e. either ei,h or

ei). In other words, it represents the average count of employees working in a ZCTA over

the course of a year. This process allocates employees to the ZCTA in which they work

(strictly speaking, where their employer reports to be located), not necessarily where these

employees live. The ZCTA total wage bill is the sum of (pre-tax) compensation paid to

workers by establishments belonging to the relevant parent set of interest and is therefore

not an average.

I exclude any ZCTAs for which Li,t is below 10 for any t from the sample used in

the empirical analysis, the motivation being their size restricts meaningful inference. I

also exclude ZCTAs with inconsistent reporting over the years of observation, retaining

those that reported every year from 2001 to 2017. These selection criteria exclude 50

ZCTAs located in the FRUC hinterland.15 These excluded ZCTAs are not necessarily

devoid of economic activity. It reflects that the businesses operating in these ZCTAs do

not fit the criteria that requires them to report to the QCEW. Considering many of the

excluded rural ZCTAs are located in agriculturally intensive areas, it is likely that the

businesses operating within their borders do not employ extra-familial workers. Many of

these businesses are probably classified as sole-proprietorship establishments (e.g. family

farms, community stores, etc.).16 I present summary statistics concerning these data,

accompanied by sectoral analysis and time series behaviour commentary, for the sample

in Appendix B.2.

The data articulate a sizable urban-rural employment gap, with the average urban

ZCTA having an employment count on the order of six times that of the average rural

ZCTA. In fact, these data suggest that during the observation period, on average 93%

of employees were working in an urban ZCTA in any given year. I also find this rural-

urban employment gap extends from levels to rates of growth, with above average annual

employment growth concentrated among urban ZCTAs. In Figure (4.2), I plot the evolu-

tion of (aggregated) urban and rural employment in the sample over time. Both series

demonstrate cyclicality consistent with the business cycle. Rural and urban Colorado

experienced employment declines during the 2001 and 2007-2009 recessions, but the

effect of and recovery from these shocks differed. Following the Dotcom bust in 2001,

15These stipulations also eliminated 22 FRUC ZCTAs out of 267, as evidenced by the white gaps in the FRUC
of Figure (4.1).

16The same intuition holds for any excluded urban ZCTAs.
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Figure 4.2: Colorado Employment Dynamics, 2001-2017

(a) Urban Colorado Employment (b) Rural Colorado Employment

Notes: Panel (a) plots total urban employment in the sample over time and Panel (b) plots total rural
employment.

urban Colorado experienced a 7.5% employment decline, while during the 2007-2009

Great Recession, urban employment dropped by 6.4%. Conversely, the reaction of rural

employment to the 2001 recession was milder relative to the Great Recession, with rural

employment declining by 1.77% during the former and 10.6% during the latter. Further-

more, urban recovery from the Great Recession was swifter, surpassing peak employment

levels in 2008 by 2012, while rural employment did not return to 2008 levels until 2015.

The differences in urban and rural employment trends mainly stem from differences in

regional industrial composition. The 2001 recession hit urban Colorado particularly hard

due to its concentration in technology and telecommunication sectors, which were at the

centre of the Dotcom bust (Kacher and Weiler, 2017). Given the influence of the business

cycle on rural employment dynamics, I control for time fixed effects in the empirical

analysis.

4.3 Total Factor Productivity

I use the confidential QCEW data on ZCTAs employment and labour cost in tandem

with publicly available county-level and national data on two-digit NAICS sector private

Gross Domestic Product (GDP) and value of capital stock to estimate ZCTA equivalents

annually from 2001 to 2017. I then use the estimated GDP and capital stock value by

sector series to measure ZCTA revenue TFP. The revenue TFP estimates of urban ZCTAs

are aggregated to measure MSA revenue TFP.

ZCTA Gross Domestic Product Estimation I estimate GDP for Colorado ZCTAs using

recently released county GDP data from the Bureau of Economic Analysis (BEA) (BEA,

2019a). These data offer a comprehensive economic profile of US counties, providing

dollar estimates of total output as well as output for each two-digit NAICS sector from

2001 to 2017. Using the data described in Section (4.2), I allocate county b ∈ {1,2, . . . ,B}
GDP in sector h to all ZCTAs i within its borders proportional to each ZCTA’s share of b’s

sector h total wage bill. Due to disclosure concerns, county GDP data for certain sectors
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are suppressed for around 20% of sector-county observations, with approximately 90% of

these suppressed observations within rural counties. I impute these missing data using a

process described in Appendix B.3.1.17

Given data on two-digit NAICS sector-level GDP for each county in Colorado over the

period of interest, I estimate ZCTA GDP for each sector using the assumption that the

share of county b’s sector h total wage bill paid by the sector h establishments active in

ZCTA i ∈ ib, where ib is the subset of ZCTAs i located in county b, is equal to i’s share

of county b’s h output value.18 Specifically, I divide the year t total wage bill for sector

h in ZCTA i ∈ ib, Wi,h,tLi,h,t, by the year t total wage bill for h in county b, Wb,h,tLb,h,t,

to calculate ZCTA i’s sector h labour cost share, which I denote as ψi∈ib ,h,t = Wi,h,tLi,h,t
Wb,h,tLb,h,t

.

Multiplying ψi∈ib ,h,t by year t county b sector h GDP, Yb,h,t, I estimate ZCTA i ∈ ib’s sector

h GDP in year t as

Yi,h,t = ψi∈ib ,h,tYb,h,t

with i’s total GDP expressed as

Yi,t =
H∑
h=1

ψi∈ib ,h,tYb,h,t

This estimation procedure yields sector level and aggregate GDP estimates for all ZCTAs i

in the state of Colorado over the observable period. Summary statistics concerning these

estimated series are presented in Appendix B.3.2 for ZCTAs located in the FRUC and its

rural periphery alongside an applied example of the procedure.

A more direct way of estimating ZCTA GDP using a wage bill share approach is to

allocate ZCTA i ∈ ib a share of b’s total GDP equal to i’s share of b’s aggregate total wage

bill, and then allocate the estimate for i’s total GDP to each sector h at a rate equal to h’s

share of i’s aggregate total wage bill. As I show in Appendix B.3.3, while this “alternative”

method produces similar total GDP estimates for ZCTAs on average compared to the

“primary” method described above, it results in noticeable differences at the sector level,

implying a nontrivial choice in estimation procedure.

Using total wage bill shares to allocate GDP implies a risk of introducing a systematic

bias in sector-level GDP estimation. There is the possibility of rewarding sectors that are

labour intensive or use high skilled (and presumably higher paid) labour more GDP than

sectors that are capital intensive or use low-skill labour, biasing the ZCTA GDP estimates.

Assuming within sector labour–capital utilisation rates and skill distributions are more or

less constant across establishments in a county, by allocating county GDP shares within

17Since a county’s total output is never withheld, I exploit this property and estimate suppressed observations
using the unsuppressed QCEW data from Section (4.2). I allocate a share of each county’s GDP that is
unaccounted for among the unsuppressed sectors to the suppressed sectors at a rate proportional to that
sector’s share of the county’s total wage bill, which operates under the assumption that larger labour
costs are likely to have a larger share of GDP. Given that suppression arises in connection to sectors with
relatively little output, noise introduced by this approach is minimal.

18It is important to note that while I do not use all ZCTAs in the empirical analysis, I estimate GDP for all
ZCTAs in the state of Colorado, so as to not over-allocate county GDP to ZCTAs. For instance, if county b
has three ZCTAs, but one is excluded from the sample due to the criteria described above, by not allocating
GDP to all possible ZCTAs, I risk overestimating the GDP in the two ZCTAs that are in the sample.
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sectors to ZCTA-level counterparts, the primary method mitigates the extent of such a bias.

However, in relying upon between sector total wage bill shares, the alternative method is

more susceptible to this bias, thereby motivating the use of the primary method.

ZCTA Capital Stock Value Estimation The BEA provide annual data concerning the

value of the net stock of private fixed assets by sector for the aggregate US (BEA, 2019c),

but subnational analogues are not yet publicly available. As such, I estimate local capital

stock value in an approach exploiting the annual local data described above on ZCTA

labour costs and GDP alongside national wage bill data from the BLS (BLS, 2019) as well

as national GDP and capital stock value data from the BEA (BEA, 2020). The method

borrows from estimation procedures in the literature measuring market power, where a

common practice is to infer ‘normal’ profits by applying an estimated or assumed capital

return rate to a measure of the stock of capital. I effectively back engineer this strategy,

estimating capital stock by applying a capital return rate to a measure of profits.

Following standard accounting decomposition, GDP in ZCTA i for sector h in year t,

denoted Yi,h,t, is equal to the sum of total wages paid to employees (i.e. the total wage bill),

denoted Wi,h,tLi,h,t, and total profits earned by the firm/capital owners, denoted Πi,h,t,

i.e. Yi,h,t = Wi,h,tLi,h,t + Πi,h,t. Algebraic manipulation reveals Πi,h,t = Yi,h,t −Wi,h,tLi,h,t.

Simultaneously, total profits are equal to the product of the capital return rate ci,h,t (i.e.

the per-unit cost of capital use paid to the owner of capital) and the value of net capital

stock, RKi,h,t, where R is the price of capital and K is capital stock, i.e. Πi,h,t = ci,h,tRKi,h,t.

Equating the two profit decompositions and solving for the value of capital stock in

ZCTA i for sector h in year t, it follows that

RKi,h,t =
Yi,h,t −Wi,h,tLi,h,t

ci,h,t
(4.1)

Given appropriate data on Wi,h,tLi,h,t, Yi,h,t, and ci,h,t, this equation specifies an estimation

procedure for the value of sector-specific capital stock at the ZCTA-level across the years

of observation.

The data on Wi,h,tLi,h,t and Yi,h,t detailed above can be used to estimate the numerator

in equation (4.1), which necessitates that Πi,h,t = Yi,h,t −Wi,h,tLi,h,t > 0. There is a small

subset of observations in the sample (< 5%) for which this does not hold, likely due to

imprecision introduced by the utilisation of GDP estimates.19 In the event Πi,h,t < 0,

estimates are replaced with data-motivated alternatives, as detailed in Appendix B.4.1.

To estimate ci,h,t, I use the national accounts on aggregate GDP Yt and the value of

capital stock RKt, both sourced from the BEA, alongside aggregate labour cost WtLt from

the national QCEW. Substituting these data into RKt = Yt−WtLt
ct

and solving for ct results

in a national time varying estimate for the capital return rate. In estimating capital

19Out of 108,787 observations, there are 4,471 for which the GDP net the total wage bill is less than zero.
Although each of the 18 NAICS two-digit sectors had some observations violating the assumption Πi,h,t < 0,
most came from (1) Agriculture, Forestry, Fishing, and Hunting, (2) Management of Companies and
Enterprises, and (3) Professional, Scientific, and Technical Services, all of which are by definition labour
intensive sectors, potentially explaining their large wage bills.
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stock value, I use ct as a proxy for ci,h,t, which was on average 0.23 from 2001 to 2017.20

Sector-specific, time varying capital return rates, denoted ch,t, can be calculated using an

analogous approach, the results of which I present in Appendix B.4.2. However, these

estimates for certain sectors yield implausibly large ch,t. This likely reflects unobservable

inter-sector capital ownership patterns. For instance, sector h may rent, instead of own,

capital from other sectors, which would bias the estimated capital return rate for h

upwards. These concerns motivate the use of ct over ch,t in my estimation of capital stock

values.

Combining the total wage bill data, local GDP estimates, and the estimates of ct, I

estimate the value of capital stock in ZCTA i used by sector h during year t as

RKi,h,t =
Yi,h,t −Wi,h,tLi,h,t

ct
=

Yi,h,t −Wi,h,tLi,h,t
Yt −WtLt

RKt (4.2)

Detailed summary statistics concerning the estimated capital stock series among all

ZCTAs, urban ZCTAs, and rural ZCTAs in the sample are provided in Appendix B.4.3.

The term in square brackets in equation (4.2) is (an estimate of) sector h in ZCTA

i’s share of aggregate US profits (Yt −WtLt). Therefore, this capital stock estimation

procedure allocates to sector h in ZCTA i an equivalent share of aggregate capital (RKt).

This formulation immediately follows from my assumption that the rate of return (ct) is

the same for all sectors and locations.

This approach resembles the procedure introduced in Garofalo and Yamarik (2002),

who use the same national-level GDP and capital stock value series discussed above to

estimate the value of state-level capital stocks. They apportion the national capital stock

value for sector h in year t to that of each state o using the ratio of state GDP in h to total

GDP in h

RKo,h,t =

Yo,h,tYh,t

RKh,t (4.3)

They then estimate total state-level capital stock as RKo,t =
∑H
h=1RKo,h,t. The similarities

between equations (4.2) and (4.3) lend credibility to the estimates obtained via (4.2).

Furthermore, although equation (4.2) omits national-level industrial heterogeneity and

attempts to estimate capital stock for a smaller geographical unit, it builds upon the

Garofalo and Yamarik (2002) procedure by exploiting data more relevant to the value of

capital stock (i.e. the capital income component of GDP, as opposed to total GDP).

Although it ignores sectoral variation in capital return rates, this estimation procedure

imposes few restrictions on the data aside from the assumed functional specification of

cRK = Y −WL. For robustness, I estimate ZCTA sector-level capital stock series using an

alternative specification of the capital return rate which relies on more rigid assumptions.

Specifically, given the equilibrium capital return rate (or user cost of capital) can be

expressed ci,h,t = δi,h,t + ri,h,t +υi,h,t where δi,h,t is the capital depreciation rate, ri,h,t is the

rate of interest, and υi,h,t is a risk premium, I estimate capital depreciation by sector over

20This series was highly persistent over the sampling period, with little if any deviation from 0.23. See
Appendix Figure (B.8).
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time using relevant BEA data (BEA, 2019b) and make assumptions on the values of r and

υ. I present the results of this robustness inquiry in Appendix B.4.4, alongside a detailed

comparison of said results against those estimated using the “primary” method described

above.

As I show in the Appendix, the alternative approach results in smaller, relatively

static capital return rate estimates compared to the primary estimation strategy. This in

turn leads to larger capital stock estimates in levels relative to those from the primary

approach. However, when plotted against the (log of the) average ZCTA total capital

stock estimate from the primary approach, as I do in Appendix Figure (B.9), the series

estimated via the alternative method yields similar dynamics. Thus, there are nontrivial

differences between estimation strategies in levels, but not in rates of change. This is

unsurprising considering both methods use the same GDP and labour cost estimates.

Unlike the alternative approach, which requires making inflexible assumptions on the

interest rate and risk premium (both of which are likely to display large inter-sector and

regional heterogeneity), the primary approach is agnostic with respect to the values of δ,

r, and υ and resembles other capital stock estimation strategies in the literature.

ZCTA TFP Estimation Combining the data on ZCTA labour cost from the QCEW with

the estimated GDP and capital stock value series, I follow in the tradition of Griliches

and Ringstad (1971) by employing a cost-share approach to estimate ZCTA TFP, using

estimates of the share of output going to labour and capital to measure the output

elasticities. Where the data allow, I follow the TFP measurement strategies utilised by

Hornbeck and Moretti (2020).

I assume that in each ZCTA i, sector h during year t uses the following constant returns

to scale Cobb-Douglas production technology:

Yi,h,t = Ai,h,t(Wi,h,tLi,h,t)
αi,h,t (RKi,h,t)

1−αi,h,t (4.4)

where Yi,h,t is GDP, Wi,h,tLi,h,t are labour inputs measured in terms of the total wage bill,

RKi,h,t is the value of capital inputs, αi,h,t < 1 is the labour input elasticity, and Ai,h,t is

Hicks neutral TFP. Note that here I use Wi,h,tLi,h,t and RKi,h,t as qualty-adjusted measures

of labour and capital inputs. Equation (4.4) implies a log-linear relationship between TFP,

the factors of production, and factor output elasticities of the form

log(Ai,h,t) = log(Yi,h,t)−αi,h,t log(Wi,h,tLi,h,t)− (1−αi,h,t) log(Ri,h,tKi,h,t) (4.5)

Interpreting αi,h,t as labour’s share of GDP, for each ZCTA-sector-year observation, I

estimate αi,h,t according to

αi,h,t =
Wi,h,tLi,h,t
Yi,h,t

The resulting estimates contain a small subset (< 5%) for which αi,h,t > 1, violating the

CRS assumption in equation (4.4). Since capital’s share of GDP can be written as the profit

share of GDP, as 1−αi,h,t = 1− Wi,h,tLi,h,t
Yi,h,t

= Yi,h,t−Wi,h,tLi,h,t
Yi,h,t

= Πi,h,t
Yi,h,t

, αi,h,t may in turn be written
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as αi,h,t = 1− Πi,h,t
Yi,h,t

, meaning αi,h,t > 1 if and only if Πi,h,t
Yi,h,t

< 0. Thus, observations for which

αi,h,t > 1 are the same observations where Πi,h,t < 0 from when I estimate capital stock.

I replace these estimates of Yi,h,t and Wi,h,tLi,h,t that lead to αi,h,t < 1 with the identical

estimates that ensure Π > 0 from the capital stock estimation process, which in turn

ensures α < 1.21

Substituting data on Yi,h,t, Wi,h,tLi,h,t, RKi,h,t, and αi,h,t into equation (4.5), I estimate

sector h TFP in each ZCTA i. Note that, as in Hornbeck and Moretti (2020), this resulting

measure of TFP is a measure of “revenue productivity,” meaning Ai,h,t may reflect market

power as well as physical productivity. Therefore, growth in this measure over time has a

broad meaning, reflecting increases in the value of output for reported levels of sector h

input expenditures. This measure is broad in the sense that there are many components

contributing to revenue TFP changes within this measure, including changes in physical

productivity (i.e. increases in output for given levels of capital and labour inputs) as well

as increases in the real price of output. As Hornbeck and Moretti (2020) note, revenue TFP

is the correct measure for the purposes of evaluating how TFP growth influences regional

labour markets due to the fact that both sources of variation (i.e. physical productivity and

price changes) influence labour markets in equivalent ways via stimulating firm labour

demand.

To estimate ZCTA i’s average TFP in year t, I exponentiate estimates of log(Ai,h,t)

and weight Ai,h,t by h’s year t employment share in i, denoted ξi,h,t = Li,h,t
Li,t

.22 Summing

ξi,h,tAi,h,t over all active sectors h, I estimate average (composite) revenue TFP in i as

Ai,t =
∑
h

ξi,h,tAi,h,t

I provide summary statistics concerning estimates of Ai,h,t and Ai,t in Appendix B.5.1. The

average urban and rural estimates for Ai,t presented in the Appendix are used to calibrate

the initial urban core and rural town TFP levels in the theoretical model from Section 3.4.

Figure (4.3) maps the spatial distribution of TFP among ZCTAs in the sample. Panel

(a) presents the average aggregate TFP in levels for each ZCTA from 2001 to 2017 (i.e.
1
T

∑T
t=1Ai,t where T = 16), with darker shades of blue implying a higher average level of

TFP over the sampling period. Panel (b) shows the compound annual TFP growth rate in

each ZCTA from 2001 to 2017, with green indicating above average change, red below

average change, and darker colours representing a change of more than one standard

deviation from the mean. The resulting TFP estimates imply regional heterogeneity not

only in levels, but also in rates of change, consistent with other evidence of (estimated)

TFP differences over space (Syverson, 2004; Greenstone, Hornbeck, and Moretti, 2010;

Moretti, 2011; Ciani, Locatelli, and Pagnini, 2019; Hornbeck and Moretti, 2020).

Figure (4.3a) shows there exists a gap in weighted-average TFP estimates between

urban and rural ZCTAs, suggestive of between group variation. The data indicate that

21See Appendix B.4.1 for replacement details.
22Naı̈vely averaging across sectors, and therefore applying equal weight to each active sector, risks over

weighting sectors that are not particularly representative of a given ZCTA while under weighting those
that are.
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Figure 4.3: Spatial Distribution of Total Factor Productivity, 2001 to 2017

(a) Average TFP Level

(b) TFP Average Annual Growth Rate

Notes: Panel (a) maps the spatial distribution of TFP in levels. The leftmost map in Panel (a) shows the
average total factor productivity (TFP) from 2001 to 2017 for the 379 sample ZCTAs, with the two other maps
showing the same but for the 263 sample urban ZCTAs (centre) and 116 rural ZCTAs (right). To interpret the
relative magnitude of TFP in a given ZCTAs, darker shades of blue reflect ZCTAs in higher percentiles of the
set of all ZCTAs, with the darkest reflecting observations above the 75th percentile. Panel (b) maps the spatial
distribution of the annual change in TFP from 2001 to 2017. Similar to Panel (a), the three maps in panel (b)
show annual TFP change in all (left), urban (centre), and rural (right) ZCTAs, respectively. The mean annual
growth rate in the sample is -0.1% with one standard deviation of 1%. Observations above the mean are
shaded green, while observations below are shaded red, with darker shading indicating the observation is
more than one standard deviation from the mean.
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Figure 4.4: Estimated TFP Series Behaviour by ZCTA Classification

(a) Average TFP levels vs. future annual growth (b) TFP change over time

Notes: Panel (a) shows correlations between year t TFP in levels for ZCTA i and the residuals from regressing
ZCTA TFP growth from t to t + 1 on time effects with cluster-robust standard errors at the county level,
differentiating between urban ZCTAs (blue) and rural ZCTAs (red). Panel (b) plots the average TFP estimates
among rural (red) and urban (blue) ZCTAs over time, with bars at each annual observation measuring the
95% confidence interval for the mean.

urban ZCTAs enjoy a productivity premium over rural peers, with the mean urban

estimate of Ai,t being 23% larger than that among rural ZCTAs. This gap is close to other

estimates of the urban-rural productivity gap from OECD (2019), which find the average

level of urban TFP is about 22% larger than the rural average among OECD countries

from 2000 to 2015.

Figure (4.3b), however, suggests a Girbrat’s Law-type relationship between the data in

levels and differences, showing variation in annual growth across regional classifications

that appears independent of the magnitude of TFP in levels.23 ZCTAs with larger average

TFP are not necessarily the ZCTAs that experience higher average annual TFP growth.

Local TFP annual growth rates appear to be orthogonal to average TFP levels and the esti-

mates imply a degree of within group variation in differences. To evaluate the prevalence

of this apparent lack of association in the data, I regress the annual change in TFP from t

to t + 1 for t ∈ {2001, . . . ,2016} on time dummy variables clustering standard errors at the

county level. In Figure (4.4a) I scatter plot the residuals from this regression against TFP

in levels in t. The scatter plot of residualised ZCTA annual TFP growth against TFP in

levels suggests a lack of strong association between TFP in levels and annual growth rates.

In Figure (4.4b), I plot the (unweighted) average level of ZCTA TFP over time for both

urban and rural ZCTAs.24 The urban-rural TFP divide is apparent in the gap between the

plots. Furthermore, the wider confidence bands show that there is more between variation

in the level of TFP between the rural ZCTAs than between the urban ZCTAs. However,

despite these differences, the means of both series display a fair degree of persistence over

time and change little from one year to the next, consistent with TFP persistence evidence

from Moretti (2011).

23Gibrat’s Law for cities states that future growth of a city is independent from its population density (i.e.
rates of growth are not correlated with levels).

24The average is unweighted. For instance, the plotted year t average for i ∈ iu , where iu is the subset ZCTAs
located in urban counties, is given by 1

N
∑N
i∈iu Ai,t .
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MSA TFP Estimates Estimates of urban ZCTA TFP suggest variation between and

within the MSAs that comprise the FRUC. Appendix Figure (B.10) maps the spatial

distribution of urban TFP among ZCTAs located in each of these MSAs in average levels

and average annual growth rates from 2001 to 2017. Like in Figure (4.3), high average TFP

in levels does not necessarily map to faster annual TFP growth. That said, comparing high

performing MSAs such as Fort Collins or Boulder to a low performing MSA like Greeley

reveals noticeable TFP disparities. The geographically (and demographically) larger MSAs,

Denver and Colorado Springs, have a greater diversity of ZCTA TFP performance and

growth over time.

There are many potential sources for variations in TFP levels and growth within and

between MSAs. For instance, differences in connectivity to regional, national, and inter-

national markets facilitated by infrastructure, worker skill distributions, and industrial

composition all may foster urban TFP asymmetries. In particular, diversity in industrial

composition gives rise to differences in TFP over space due to the fact that certain sectors

may feature stronger agglomeration spillovers, utilise technology that has undergone

productivity-boosting innovations, or experience increases in real output prices. Given

the method employed to estimate average TFP by ZCTA in this paper, the likely source

of variation between ZCTAs is diversity in industrial composition. There are noticeable

differences between sectors and depending on the labour allocation in a particular ZCTA,

the weighted average may favour lower or higher TFP sectors.

Taking into consideration within variation among urban TFP estimates, in order

to secure estimates for broader urban TFP measures with which to evaluate against

employment dynamics in rural ZCTAs, I compute a weighted average TFP measure

for each MSA within the FRUC using the urban ZCTA TFP estimates. The weighting

procedure is similar to that used to estimate the sector average for each ZCTA. TFP

observations on ZCTAs i within MSA c, with the subset of such ZCTAs denoted ic, are

weighted by the share of employees working in i ∈ ic out of the total labour force in c

during year t, denoted ζi,t = Li,t
Lc,t

. Summing the product ζi,tAi,t over all ZCTAs in the set ic,

I estimate the TFP for MSA c during year t as

Ac,t =
N∑
i∈ic

ζi,tAi,t (4.6)

I present summary statistics on MSA-level aggregate TFP estimates in Appendix Table

B.10.25

Figure (4.5) plots the evolution of the weighted average TFP in each MSA estimated

via equation (4.6) from 2001 to 2017. The average (absolute) annual change in TFP among

MSAs is 1.44% and the largest is 6.78%. With the exception of Greeley, the other the

MSAs of the FRUC follow a broadly similar trend.26 I exploit the variation in FRUC MSA

25In Appendix Table B.10, alongside estimates of Ac,t , I also present estimates of weighted TFP averages by
sector for each MSA Ac,h,t .

26From 2003 to 2006, the employment weighted average of manufacturing TFP estimates among urban
ZCTAs saw sharp decline (see Appendix Figure (B.11)). Manufacturing is Greeley’s largest employment
sector, with roughly 14% of reported employees working in the sector, and unlike other MSAs with a large
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Figure 4.5: Estimated TFP Series Dynamics by MSA

Notes: This figure plots the log of the TFP measure for each of the six MSAs that comprise the Front Range
Urban Corridor.

measures of TFP to evaluate how such movements associate with rural ZCTA employment

growth.

Considerations and Limitations of TFP Estimates The revenue TFP estimation proce-

dure follows Hornbeck and Moretti (2020) in assuming a similar production function

specification (CRS Cobb-Douglas technology)27, labour inputs (total labour costs)28, and

produces a similar TFP measure (revenue TFP). However, in comparing the TFP estimates

above, especially those in MSAs, to the estimates in Hornbeck and Moretti (2020), there

manufacturing presence (e.g. Fort Collins or Boulder), Greeley is not diversified in high-TFP sectors, like
professional services. As such, the TFP plunge in manufacturing disproportionately affected the weighted
average ZCTA TFP in Greeley. This decline in manufacturing TFP in the early 21st century is consistent
with evidence from Syverson (2016), who reports manufacturing TFP went from growing 2.2% per year
over 1995–2004 to 0.4% during 2005–2013.

27There are subtle differences in the production function specification, namely concerning the level of
aggregation at which the Cobb-Douglas form is assumed to hold. Having data on plants, Hornbeck and
Moretti (2020) assume it holds at the plant level, while I assume it holds at the ZCTA level. It is important
to note that there is no compelling reason to believe a Cobb-Douglas production function specification
holds better at the plant level than the ZCTA level or vice versa.

28In estimating plant-level productivity Hornbeck and Moretti (2020) define and measure labour input in
plant p at time t as the weighted sum of hours worked by production workers, HPp,t , and non-production

workers HNPp,t , weighted by their relative hourly wage. Denoting LHMp,t as the Hornbeck-Moretti labour

input measure, it follows that LHMp,t = HPp,t +
(
wNPp,t
wPp,t

)
HPp,t . Multiplying both sides of the equation by wPp,t

gives the total wage bill on the right hand side. Thus, the Hornbeck-Moretti measure of labour input is
equivalent to expressing the total wage bill in constant prices, using a wage index for production workers.
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are some distinctions to make.

The first difference is that the estimates above are not residuals from regressing output

on inputs, though Hornbeck and Moretti (2020) state their parameter estimates for the

elasticity of output with respect to labour (i.e. α) are similar to those produced via cost-

share estimation, suggesting potential parallels between these cost-share estimates and

OLS estimates. Second, I estimate TFP for a broad scope of sectors relative to Hornbeck

and Moretti (2020), who measure only manufacturing TFP. They justify this decision

by arguing that their years of observation (1980-2010) include manufacturing’s peak

employment in the US (providing a third of US private employment), manufacturing

accounted for the majority of employment in the tradable goods sector, and manufacturing

experienced large gains in TFP relative to other sectors. The confidential QCEW data on

employment allocations in Colorado do not suggest such concentrations in manufacturing.

From 2001 to 2017, on average about 7.9% of private sector employment in the sample

was in manufacturing for any given year. The percent of rural private sector employment

in manufacturing was smaller still, with an average share of 5.9% of total rural employees.

In fact, over the sampling period, on average less than 20% of employment in the FRUC

and its rural periphery is in NAICS sectors BLS considers “goods producing,” with the

remaining shares of employment in “service providing” sectors. Although measuring TFP

growth in service sectors is less common in the literature, considering the employment

shares in the data, restricting the sample to manufacturing is likely to misrepresent

the influence of revenue TFP growth on rural labour dynamics given its small share of

employment. Finally, given the limitations in their data, Hornbeck and Moretti (2020)

estimate TFP at select ten year intervals from the late twentieth century to early twenty-

first century in MSAs across the US, while the data used in this study allow for annual

TFP estimates at the ZCTA level, though only for the state of Colorado.

TFP estimation introduces a number of issues and no single approach delivers overly

desirable results. These estimates are no exception, and there is reason to suspect sub-

stantial measurement error in revenue TFP at the ZCTA level, which aggregates to the

MSA level and threatens to bias any parameter estimates computed via OLS. Further-

more, reliance on estimated input-output data (i.e. capital stock value and GDP) worsens

measurement error.

However, concerns associated with measurement error in the empirical analysis are

mitigated using instrumental variables (which are discussed in Section 5.1). Furthermore,

this approach to estimating revenue TFP has some attractive properties that are worth

noting. First, this method applies as few assumptions on the data as possible. By assuming

a standard Cobb-Douglas production function, as opposed to alternative functional

specification (e.g. the transcendental logarithmic production function), it minimises

the number assumptions that must be made on function parameters, requiring only the

estimation of a single factor’s output elasticity, α. Second, at the ZCTA level, it seeks to

preserve time-varying elements of the data and does not assume TFP homogeneity among

sectors by permitting between-sector TFP differences and weighting them accordingly.

Third, it allows for within-city regional productivity heterogeneity when estimating urban
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TFP via a weighted sum of the ZCTAs that make up the MSA. Finally, by computing

a weighted average of TFP in each MSA according to employment shares, this method

identifies TFP relevant to employees and so emphasises TFP signals that might stimulate

rural to urban migration of workers, as described in the theoretical model in Section 3.5.

In applying more weight to the TFP estimates of ZCTAs with higher employment, this

method identifies the parts of MSAs that, if experiencing TFP growth, would be the most

likely to demand more labour and draw workers in from the hinterland.

4.4 Spatial Connectivity and Gravity

To characterise the spatial dependence between the sample of rural ZCTAs and ob-

servations on urban TFP changes, I model exogenous spatial dependence drawing on the

structural gravity equations defining trade flows between the rural town and city in the

theoretical model from Section 3.3 and the empirical gravity literature.

Recall in Section 3.3, I show that trade value, and therefore quality adjusted volume,

between the rural town and city can be expressed as

Vr,c =
( τ
ΛrPc

)1−σ wrLrwcLc
wL

Vc,r =
( τ
ΛcPr

)1−σ wcLcwrLr
wL

(4.7)

where τ
ΛiPi′

for i, i′ ∈ {r, c} measures bilaterally symmetric trade costs adjusted by the

product of the relative costs firms in i face selling in both markets (measured by the

index Λi) and the relative costs consumers in i′ face consuming goods produced in both

locations (measured by the index Pi′ ), wiLi is labour income in i, and wL is the total

labour income earned in the rural town and city (what I call the region in the model). In

adjusting nominal trade costs τ , τ
ΛiPi′

measures “true” trade costs. The term Vr,c measures

the quality adjusted trade volume travelling from the rural town to the city and Vc,r the

reverse. By equation (4.7), trade volume between i and i′ is decreasing in the real cost of

trade and increasing in the relative labour income of trading parties.

Empirically, trade volumes are well explained by simple gravity models like those in

equation (4.7), which relate bilateral trade interactions log-linearly to the relative size

of and distance between trading parties, with distance serving as a proxy for trade costs.

Evaluating 2,508 estimates from 159 papers, Head and Mayer (2014) find regressing

trade volume on distance and origin/destination GDP, alongside other controls such

as contiguity of trading partners, colonial links, and country fixed effects, results (on

average) in a distance parameter estimate of -0.93, exporter GDP parameter of 0.97,

and an importer GDP parameter of 0.85. Thus, empirical evaluation of gravity-type

models finds a 1% increase in distance is roughly associated with a 1% decrease in trade

volumes, while increases in importer/exporter GDP is correlated with a 1% increase in

trade volumes. Furthermore, Anderson and van Wincoop (2003) show these associations

hold for intra-national trade between US states.

In the discussion of the empirical strategy to follow, I take log differences in the MSA
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TFP series above to estimate TFP growth over time. I use these log differences to evaluate

how urban TFP growth associations with rural employment growth. Given the insights

from the theoretical model as well as the literature analysing the gravity relationship in

trade, I introduce exogenous variation to MSA TFP changes using labour-income scaled

inverse distance weights. In particular, I weight growth in MSA c TFP over a specified time

period by the product of the (time invariant and bilaterally symmetric) inverse distance

between rural ZCTA i and MSA c, which serves as a proxy for regional trade costs, denoted

di,c, and a frictionless trade coefficient estimated as the product of the average total wage

bill in ZCTA i and the average total wage bill in MSA c divided by the average aggregated

wage bill of the entire FRUC and its hinterland. Thus, the spatial connectivity between i

and c, ωi,c, is defined as

ωi,c =
1
di,c

(W iLi)(W cLc)

WL
(4.8)

where W iLi = 1
T

∑T
t=1Wi,tLi,t, W cLc = 1

T

∑T
t=1Wc,tLc,t, and WL = 1

T

∑T
t=1WtLt. Total labour

costs are averaged over time due to the fact that these series display little variation over

time. Note that whenever these spatial connectivity weights are applied to data, I scale

the observations to ensure that the sample mean of the spatial connectivity weighted

explanatory variable (e.g. the growth in TFP in Denver from 2003 to 2006) is equal to the

sample mean of the non-spatially weighted sample mean of the explanatory variable to

ease interpretation of parameter estimates.

Consistent with empirical evidence on trade and distance, the connectivity measure

in equation (4.8) imposes a distance gravity parameter of -1 by assuming that ωi,c is in

part a function of inverse distance. This is equivalent to assuming σ = 2 in equation (4.7).

Furthermore, as in structural and empirical gravity models, the intensity of connectivity

depends on the relative size of the trading parties, as measured by relative labour costs.

Equation (4.8) effectively weights urban TFP observations by an estimated measure of

trade quality adjusted volumes. Larger values of ωi,c imply greater spatial connectivity in

terms of intra-regional trade, while ωi,c small implies less spatial connectivity.

The introduction of exogenous spatial dependence between ZCTAs and MSAs plays

two important roles. First, by weighting observations on MSA TFP growth by ωi,c, I

mechanically introduce variation across rural ZCTAs in the primary explanatory variable.

Unlike in past studies evaluating urban growth shadows, such as Cuberes, Desmet, and

Rappaport (2019) or Partridge et al. (2009), who analyse urban-rural interaction using

observations on multiple core-periphery systems across the US, my sample is restricted

to a single urban core (the FRUC) and its hinterland. By assuming unique (albeit, time-

invariant) forms of spatial dependence between each MSA c and ZCTA i, a change in urban

TFP will have a varied effect across different ZCTAs, permitting econometric analysis.

Second, by exogenously assuming a proxy for intra-regional trade gravity relationships

between MSAs and rural ZCTAs, the spatial dependence measure ωi,c links the empirical

specification to the theoretical model.

However, note that equation (4.8) is a rather rigid assumption on the form of intra-

regional spatial dependence, imposing structural parameterisations on how trade volumes
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react to distance between trading parties and trading party size. Furthermore, distance

is an imperfect proxy for trade costs and assuming trade costs are symmetric may be

an oversimplification of regional trade dynamics in the FRUC and its hinterland. That

said, the use of real labour costs and the small scope (and, therefore, likely small pricing

regime gaps) of the region being analysed accounts for/mitigates influence of the missing

terms Λi and Pi . Likewise, the confidential data used to measure relative sizes offers some

precision in quantifying the economic ties that size facilitates in trading relationships and

is likely a better approximation of spatial dependence relative to the more conventional

approach to measure dependence by inverse distance alone. Finally, care is taken to

measure distances between locations as realistically as possible.

I measure the distance between ZCTA i and MSA c, di,c, in terms of Euclidean distances,

minimum distance by road, and minimum travel time by road using an automobile. All

physical distances are measured in kilometres (km) and travel time is measured in hours.

The US Census Bureau assigns a name to each ZCTA, which I match to the appropriate

decimal degree latitude and longitude to four decimal places. For MSAs, I did the same

for the city which lends its name to the MSA, with the assumption that distance from the

MSA should be measured in terms of distance from the economic hub of that MSA. In

geo-referencing locations in this manner, I avoid problems that are potentially introduced

by using geographic centroids.29 To measure the Euclidean distance between ZCTA i and

MSA c coordinates, I use a method from Picard (2010). To estimate distances by road

and travel time between the same pairs of coordinates I follow the method outlined in

Weber and Péclat (2017). The main specification utilises distances by road to construct

the spatial connectivity measures ωi,c, with Euclidean and travel time distance measures

used for robustness.

5 Empirical Model, Identification, and Estimation

In the notation to follow, for any variable in levels Xi,t denote xi,t = ln(Xi,t) and let

∆xi,t,t+s = xi,t+s − xi,t = ln(Xi,t−s)− ln(Xi,t) represent variable X percent growth (to a first-

order Taylor approximation) in location i from time t to t + s. To test the theoretical

model’s implications and empirically analyse the associations between growth in an urban

core’s TFP and employment growth dynamics in its hinterland, I model the rural ZCTA

employment change data generation process as

∆li,t,t+s = β0 + β1

C∑
c=1

ωi,c∆ac,t−k,t + δt,t+s +∆νi,t,t+s

for i ∈ {1,2, ...,N }, c ∈ {1,2, ...,C}, t ∈ {1,2, ...,T }, k, s ∈ {N : k < s}

(5.1)

29A centroid is the geometric centre of a polygon. Shapefiles store data as n-degree polynomials and statistical
software is available to calculate the coordinates that are associated with the geometric centre of said
polygons. Given this geography of Colorado and my interest in rural ZCTAs this introduces the potential
for problems. For rural ZCTAs, the geographic centre of the polygon could be on the top of a mountain or in
an area inaccessible by roads, rendering measurement by road distance futile. Likewise, if economic activity
of a ZCTA is clustered in a town on the edge of a ZCTA, measuring from the centre is a mismeasurement.
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where ∆li,t,t+s is the growth in rural ZCTA i employment from year t to t+s,
∑C
c=1ωi,c∆ac,t−k,t

spatial connectivity-weighted sum of all MSA TFP growth within the FRUC from year

t − k to t, δt,t+s is a time indicator variable which equals unity for employment changes

measured from t and t + s and zero otherwise, and ∆νi,t,t+s is an error term.

In the baseline empirical model, I pool observations on rural employment growth

from year t to t + s among 116 ZCTAs in the hinterland of the FRUC, with k,s fixed. I

then evaluate these observations of rural employment growth against past realisations

of the sum of (spatial connectivity weighted) MSA TFP growth in the FRUC from t − k
to t alongside an intercept term and time dummy variables. The explanatory variable of

interest, β1, can be interpreted as a coefficient (which is assumed common to the MSAs

located in the FRUC) that measures the correlation between TFP growth in MSA c and

future rural employment growth in ZCTA i after controlling for potential heterogeneous

associations between c and i via the spatial connectivity weights ωi,c.

In regard to parameter identification, I make two assumptions on the data. First,

since there are no compelling reasons to suspect that growth in the rural ZCTA em-

ployment disturbance term would be correlated with past urban TFP growth, I assume

that E[∆ac,t−k,t∆νi,t,t+s] = 0 ∀i, c, t,k, s. Second, to the extent that the spatial connectivity

weights ωi,c are time-invariant, it seems more likely that they would be correlated with

time-invariant ‘fixed’ effects in local employment than with transient shocks to local em-

ployment growth captured in the error term of equation (5.1). In taking (log) differences

of rural employment, these unobserved time-invariant effects with which ωi,c may covary

will be eliminated, and so here I also assume E[ωi,c∆νi′ ,t,t+s] = 0 ∀i, i′ , c, t, s. While these

assumptions are admissible, there remain outstanding concerns related to parameter

identification and inference when estimating the empirical model specified by equation

(5.1).

With respect to identification, as previously mentioned, the MSA TFP estimates are

likely to contain substantial measurement error, leading to inconsistent parameter esti-

mates were I to estimate equation (5.1) via pooled OLS.30 With respect to inference, in

estimating the variance-covariance matrix (and hence the standard errors of parameter

estimates), any serial correlation in the error terms would prevent meaningful inference

with parameter estimates, even if they are consistently estimated. Estimating standard

errors to be robust to heteroskedasticity of White (1980) presumably results in biased

standard error estimates due to serial correlation.31 Furthermore, given the data are

spatial, there is always the potential for spatial correlation in the error terms to bias

heteroskedasticity-robust standard error estimates as well. Though clustering at the

ZCTA-level can alleviate some concerns with respect to serial correlation, the same ap-

30Moreover, assuming the measurement error is serially uncorrelated and additive, it is exacerbated by taking
differences, as I do in equation (5.1).

31There are three likely sources of serial correlation. The first is any transient shock to the (log) level of
employment, which through the process of differencing would be transformed into moving average errors.
The second is any persistent local business cycle shock to employment in levels and (log) differences. Finally,
given I am pooling data, serial correlation in the error terms may extend from this use of overlapping data,
since errors for ZCTA i in overlapping intervals t to t + s are likely to be correlated. For example, if s = 3,
the observed employment growth in ZCTA i from 2001 to 2004 is likely to be correlated with growth from
2002 to 2005.
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proach does not necessarily hold for spatial dependence and depends largely on the form

of such dependence in the data.

Below, I develop an estimation strategy to address each of these concerns in turn. To

account for measurement error in the primary explanatory variable, I construct Bartik

style shift-share instruments and utilise instrumental variable techniques to circumnav-

igate OLS inconsistency in the results section. I then test for spatial dependence in the

dependent variable among rural ZCTAs to evaluate underlying spatial dependence threats

to consistent standard error estimation, ultimately opting for a cluster-robust estimator

which is robust to (particular forms of within-cluster) serial and spatial correlation in the

disturbance terms. Finally, I describe a consistent and efficient estimation procedure in

order to estimate the baseline model.

5.1 Instrumental Variables

Motivation Since revenue TFP is estimated as a residual from a production function,

it will inherently reflect any measurement error in inputs and output (Hornbeck and

Moretti, 2020). In this study, capital stock value and GDP are both estimates, implying

good reasons to suspect a degree of error in both the input and output data described

in Section 4.3. Moreover, differencing the (log of the) data will exacerbate the error in

the event said measurement error is not permanent (and therefore would be eliminated

by differencing). To circumnavigate this threat to identification that measurement error

poses, I instrument the estimated the weighted aggregate FRUC TFP growth from t − k to

t with Bartik style shift-share instruments.

Shift-Share Instrument The “canonical” Bartik style shift-share instrument, proposed

in Bartik (1991) and popularised by Blanchard and Katz (1992), is used to estimate labour

supply elasticity by instrumenting local employment growth with local employment

shares and national employment growth rates, with the underlying assumption that local

growth can be decomposed into a location-specific component and a (location-exogenous)

national component (Goldsmith-Pinkham et al., 2020). The application of this approach

to instrument TFP measured with error is adapted from Hornbeck and Moretti (2020).

For expositional simplicity, suppose the measurement error in estimated TFP takes on

an additive form.32 That is, assume that the measurement error enters linearly into the

estimated growth in MSA c TFP from year t − k to t

∆ãc,t−k,t = ∆ac,t−k,t +∆ec,t−k,t (5.2)

where ∆ãc,t−k,t is the (log) differenced estimate from Section 4.3, ∆ac,t−k,t is the “true”

growth in c TFP from t − k to t, and ∆ec,t−k,t is the change in unobserved and time-varying

measurement error. Furthermore, assume ∆ec,t−k,t is mean zero (i.e. E[∆ec,t−k,t] = 0∀c, t,k),

independent of TFP growth in c or any other MSA c′ (i.e. E[Ac,tec′ ,t′ ] = 0 ∀c,c′ , t), and

32This need not be the true form of the measurement error, as the inconsistency of OLS when using mis-
measured data is quite general. However, it eases exposition of the problem and its instrumental variable
solution, which too is quite generalisable.
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independent of innovations in the rural employment disturbance (i.e. E[∆ec,t−k,t∆νi,t,t+s] =

0 ∀i, c, t,k, s).33 When ∆ãc,t−k,t is summed over c, as is done in the baseline specification,

the data on the explanatory variable of interest,
∑C
c=1ωi,c∆ac,t−k,t, is then also measured

with error.

Given the TFP measurement error is zero in expectation, the aggregate of the estimated

TFP growth data will tend toward its true value as the sample size grows. As such, for a

sufficiently large sample, aggregate TFP growth estimates
∑C
c=1ωi,c∆ac,t−k,t will not feature

measurement error, and therefore will not lead to inconsistent estimates. Drawing on

the classic shift-share assumption that local growth trends are correlated with aggregate

growth trends, I instrument spatial-connectivity weighted aggregate TFP growth in the

FRUC from t − k to t measured with error,
∑C
c=1ωi,c∆ãc,t−k,t, with a vector of shift-share

instruments

Bi,t−k,t =
[
ωi,1B1,t−k,t ωi,2B2,t−k,t . . . ωi,CrBCr ,t−k,t

]
where c ∈ {1,2, . . . ,Cr} is a subset of the total set of MSAs c ∈ {1,2, . . . ,C} which have

relevant shift-share instruments for
∑C
c=1ωi,c∆ac,t−k,t. Each element of Bi,t−k,t for MSAs

c ∈ {1,2, . . . ,Cr} is

ωi,cBc,t−k,t =ωi,c
H∑
h=1

λc,h,t−kgh,t−k,t (5.3)

where ωi,c is the spatial connectivity weight between i and c (from Section), λc,h,t−k = Yc,h,t
Yc,t

is the output share expressed as the ratio of GDP in sector h to total GDP, and gh,t−k,t is an

aggregate TFP growth rate for sector h across the entire urban (continental) US from t − k
to t.

Under the following assumptions, the elements of the vector Bi,t−k,t are informative

and valid instrumental variables for
∑C
c=1ωi,c∆ac,t−k,t:

Assumption 1. Urban TFP growth in MSA c from t − k to t, ∆ac,t−k,t, can be decomposed into
the sum of the (MSA-specific) inner product of the output share of sector h in year t − k and
MSA-specific TFP growth in sector h from t − k to t, denoted gc,h,t−k,t, across all industries h:

∆ac,t−k,t =
H∑
h=1

λc,h,t−kgc,h,t−k,t

Assumption 2. Local growth in sector h TFP, gc,h,t−k,t, can be decomposed into a national
growth component, gh,t−k,t, and an idiosyncratic local component, g̈c,h,t−k,t

gc,h,t−k,t = gh,t−k,t + g̈c,h,t−k,t

where g̈c,h,t−k,t is mean zero across cities (i.e. E[g̈c,h,t−k,t] = 0) and independent of local sector
shares in t − k (i.e. E[λc,h,t−k g̈c,h,t−k,t] = 0).

33The latter two assumptions follow from the fact that there is no compelling reason to suspect any correlation
between the true TFP growth in c (or any other MSA) and the measurement error growth in estimated c
TFP growth nor between growth in the rural employment error term and ∆ec,t−k,t .
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Assumption 3. E[λc,h,t−k∆νi,t,t+s] = 0 ∀i, c, t,k, s,h: Sector h output shares in MSA c at time
t − k are independent with respect to dynamic innovations to the rural ZCTA employment
disturbance in i from t to t + s.

Assumption 4. E[gh,t′ ,t′′νi,t] = 0 ∀i ∈ {1,2, . . . ,N }, h ∈ {1,2, . . . ,H}, t, t′ , t′′ ∈ {1,2, ...,T }:
Aggregate changes to sector h TFP among US cities are strictly exogenous with respect to the
rural ZCTA employment disturbance.

Assumptions 1 and 2 are the specifications Hornbeck and Moretti (2020) use to construct

their shift-share instruments and both ensure informativeness.34 Assumptions 3 and 4

ensure instrument validity.

Combining assumptions 1 and 2, ∆ac,t−k,t can be written

∆ac,t−k,t =
H∑
h=1

λc,h,t−k(gh,t−k,t + g̈c,h,t−k,t) =
H∑
h=1

λc,h,t−kgh,t−k,t +
H∑
h=1

λc,h,t−k g̈c,h,t−k,t

Thus, spatial connectivity weighted TFP for MSA c measured with (serially uncorrelated

and additive) error can be expressed as

ωi,c∆ãc,t−k,t =ωi,c∆ac,t−k,t +ωi,c∆ec,t−k,t

=ωi,c
H∑
h=1

λc,h,t−kgh,t−k,t +ωi,c
H∑
h=1

λc,h,t−k g̈c,h,t−k,t +ωi,c∆ec,t−k,t

=ωi,cBc,t−k,t +ωi,c
H∑
h=1

λc,h,t−k g̈c,h,t−k,t +ωi,c∆ec,t−k,t

It follows then that by assumptions 1 and 2, the covariance between ωi,cBc,t−k,t for any

c ∈ {1,2, . . . ,Cr} and
∑C
c=1ωi,c∆ãc,t−k,t is non-zero, i.e.

E

( C∑
c=1

ωi,c∆ãc,t−k,t

)
ωi,cBc,t−k,t

 , 0

given
∑C
c=1ωi,c∆ãc,t−k,t is comprised of elements that define ωi,cBc,t−k,t (e.g. ωi,c, λc,h,t−k,

and gh,t−k,t) and so ωi,cBc,t−k,t is informative. By assumptions 3 and 4

E[∆νi,t,t+sωi,cBc,t−k,t] = E[∆νi,t,t+s]E[ωi,cBc,t−k,t] = 0

implying ωi,cBc,t−k,t satisfies the exclusion restriction and is therefore valid. Note that

since there are more instruments than mismeasured variables, overidentifying conditions

can be used to test satisfaction of the exclusion restriction.

Not only is the instrument vector Bi,t−k,t a valid and informative set of instruments for

the primary explanatory variable in the baseline model, so too is it valid and informative

for any of the components that make up
∑C
c=1ωi,c∆ãc,t−k,t. That is to say, Bi,t−k,t is a

vector of valid and informative instruments for TFP growth in any individual MSA in

34While it is a more common practice in the context of Bartik-type instruments to use shares λ from some
fixed initial time period, this follows the procedure in Hornbeck and Moretti (2020).
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the FRUC. The shift-share instruments are weighted averages of the same sector specific

national (urban) TFP growth rates, gh,t−k,t, differing from each other only to the extent

that the MSA-specific weights, λc,h,t−k , are different. For instance, consider (mismeasured)

TFP growth from t − k to t in MSA c (i.e. ωi,c∆ãc,t−k,t) and the shift-share instrument for

MSA c′ over the same sampling period (i.e. ωi,cBc′ ,t−k,t). The two variables covary since

they both are composed of gh,t−k,t, meaning ωi,cBc′ ,t−k,t is informative of ωi,c∆ãc,t−k,t, and

given assumptions 3 and 4, ωi,cBc′ ,t−k,t is a valid instrument for ωi,c∆ãc,t−k,t. I exploit this

versatility in the results section, experimenting with a variety of alternative models to the

baseline equation (5.1).

In addition to the standard shift-share instrument I present above, Hornbeck and

Moretti (2020) test alternative instruments that are constructed similarly but rely on

different identifying assumptions. Specifically, they construct a “technological shock”

instrument, “export shock” instrument, and “stock price” instrument, all of which use

different sources of growth other than aggregate estimated TFP to instrument local

TFP changes. The technological shock instrument measures technological shocks using

patenting activities, with the underlying assumption that urban TFP and patent activity

are closely related. The export shock instrument uses the intuition that increased industry

exposure to export markets would lead to higher innovation and therefore be correlated

with a city’s TFP change, and instruments urban TFP changes with industry level changes

in exports. Finally, the stock price instrument assumes that stock price valuations capture

a number of factors, including improvements to TFP. Therefore, they instrument urban

TFP changes with industry-specific stock market return changes.

Hornbeck and Moretti (2020) are able to construct these alternative instruments due

to the fact that they restrict their study to manufacturing industries and these alternative

instruments are well suited to instrument goods-producing industries. It is less clear

how informative patent activity, export exposure, or stock-market returns would be in

explaining variation over time in TFP for service-providing industries. Despite limitations

in urban TFP instrument options in this study, Hornbeck and Moretti (2020) find the

standard Bartik style shift-share instruments results in similar parameter estimates to the

other instruments, motivating its use in this paper.

Instrument Construction To construct the Bartik-style shift-share instruments for each

MSA in the FRUC, I use the GDP data (aggregated to the MSA level) from Section 4.3 to

estimate λc,h,t−k and publicly available county data on two-digit NAICS sectors in urban

counties to estimate gh,t−k,t. For consistency with the TFP estimates from Section 4.3, all

monetary data are adjusted for inflation using the Denver MSA CPI and are in 2001 USD.

In estimating λc,h,t−k , I measure MSA c’s sector h output in year t − k, denoted Yc,h,t−k ,

using county-level GDP data from BEA (2019a) with suppressed values estimated follow-

ing the procedure outlined in Appendix B.3.1. Summing across industries h active in c

during t − k to measure total output in c, I estimate λc,h,t−k = Yc,h,t−k∑
hYc,h,t−k

.

Estimation of gh,t−k,t draws on the TFP estimation strategy from Section 4 using county-

level GDP data from BEA (2019a), national capital stock data from BEA (2019c), and

county-level QCEW data (i.e. annual employment and labour expenditures) from BLS
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(2019). I estimate annual TFP in each sector h from 2001 to 2017 for a sample of 1,116

counties classified as urban using the method described in Section 4.3 (see Appendix C.1

for details), construct a weighted average for annual urban TFP in sector h (with weights

determined by employment shares of counties in the sample), and estimate gh,t−k,t as the

change in this average over time.35 As before, a small sample of county GDP data feature

suppression due to disclosure concerns.36 Similar suppression is featured among a small

subset of county-level QCEW data.37 Previously, I used the unsuppressed total wage

bill data from the Colorado QCEW to allocated unaccounted GDP; however given the

QCEW data are suppressed here, missing values are estimated using imputed County

Business Patterns (CBP) employment data from Eckert et al. (2020). See Appendix C.2 for

imputation details.

After estimating TFP (in levels) Ab,h,t for each county b ∈ bu , where bu is the set 1,116

US counties classified as urban, I calculate the share of sector h employees working in b

out of total urban h employment in the sample during year t, denoted ϑb,h,t = Lb,h,t
Lh,t

, which I

use to weight each observation Ab,h,t. Following Hornbeck and Moretti (2020), in order to

avoid instrument cross-contamination (e.g. the instrument correlating with measurement

error in the TFP estimate) when constructing the instrument for each FRUC MSA c, I

drop observations ϑb,h,tAb,h,t for counties b ∈ c and estimate A−c,h,t =
∑B
b<cϑb<c,h,tAb,h,t,

where A−c,h,t is (the weighted) aggregate urban TFP from sector h among observations

not belonging to MSA c. Note that A−c,h,t is not a weighted average, considering some

observations are dropped. However, most weights ϑbu ,h,t are exceedingly small, with an

average of 0.0009454, meaning the difference from the weighted average is negligible.

The aggregate sector h urban TFP growth rate is estimated as g−c,h,t−k,t = ln(A−c,h,t) −
ln(A−c,h,t−k). Summing the product λc,h,t−kg−c,h,t−k,t over all industries h, the Bartik shift-

share instrument for MSA c is constructed as

Bc,t−k,t =
H∑
h=1

λc,h,t−kg−c,h,t−k,t

However, these instruments are not a panacea: not all MSA shift-share instruments are

relevant and therefore should be/are used in estimation. Moreover, while these shift-share

instruments prove useful in an environment instrumenting to account for urban TFP

mismeasurement, the same cannot be said for instrumenting for mismeasurement in

rural TFP estimates. I tested a variety of shift-share instruments for TFP growth in the

rural ZCTAs, but with none achieving sufficient relevance, likely due to the small size

(economically and geographically) of rural ZCTAs. As such, in alternative specifications of

equation (5.1) where I control for local TFP innovations in the data generation process, I

account for local TFP measurement error using alternative strategies to test the robustness

35The RUCC classifies 1,167 counties in the US as urban. From this total I drop non-contiguous counties, i.e.
those in the states of Alaska and Hawaii. I also drop observations on urban counties in Virginia due to the
fact that the states’ so-called independent cities lead to problematic inconsistencies in data reporting.

36Missing industries accounted for a small portion of observations. Among counties classified as urban, the
suppression rate was less than 12% of sector GDP observations.

37In the QCEW, the suppression rate was higher, at around 24% of observations.
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of the urban TFP main result.

5.2 Testing for Spatial Dependence

As previously stated, given the spatial nature of these data, there are immediate

concerns of spatial dependence within the sample. Such dependence, which arises fre-

quently in geo-referenced data, occurs when local characteristics in proximal locations

are positively or negatively correlated with observations in a particular place. Growth in

unobservable and/or observable covariates in ZCTA i may depend on growth in covariates

within another ZCTA i′, and vice versa. While clustering standard errors at the ZCTA-level

can alleviate concerns related to serial correlation in the disturbance, solutions to spatial

correlation prove slightly less obvious and depend on the underlying form of spatial

dependence in the sample.

Failure to properly account for spatial dependence will lead to biased standard error

estimates. Consider the following alteration to equation (5.1) which incorporates spatial

dependence in the error term

∆li,t,t+s =β0 + β1

C∑
c=1

ωi,c∆ac,t−k,t + δt,t+s +∆νi,t,t+s

∆νi,t,t+s = γ
N∑
i′,i

ωi,i′∆νi′ ,t,t+s +∆εi′ ,t,t+s

(5.4)

where ∆νi′ ,t,t+s is the error term in ZCTA i′ ∈ {1, ...,N },ωi,i′ is an element of an (exogenously

specified) N x N spatial connectivity matrix W that determines how ZCTA i’s disturbance

depends on the ZCTA i′ , i disturbance term, γ measures the magnitude of spatial

dependence in the error term, and ∆εi′ ,t,t+s is an idiosyncratic error term component

unique to i. If γ , 0, the estimated residual for ZCTA i (computed using some consistent

estimates on the parameters in the baseline model) will be correlated with that of i′ via the

neglected correlation between ∆li,t,t+s and ∆li′ ,t,t+s, which in turn will bias Huber-White

standard error estimates.38 As such, a natural starting point to assess the threat of spatial

dependence, and determine if there is a need to actively model spatial dependence in the

baseline specification to consistently estimate the standard errors, is to evaluate if any

spatial correlation is present in the data on ∆li,t,t+s.

To rigorously test for the presence of spatial correlation in the employment data series

among rural ZCTAs in the sample, I use a panel-data variation of Moran’s I-Statistic

(Moran, 1950) that adapts a testing procedure discussed in Beenstock and Felsenstein

(2019). Although the Beenstock and Felsenstein (2019) panel test is intended to test for

38Since the explanatory variable of interest (i.e. aggregated spatial connectivity weighted FRUC TFP) is
measured at a higher level of spatial aggregation than the rural employment data, I assume MSA-level TFP
growth ∆ac,t−k,t is uncorrelated with the sum of (future) local shocks to employment growth in several
ZCTAs

∑N
i′,iωi,i′∆νi′ ,t,t+s (i.e. the spatial lag term in the disturbance in the above equation), which follows

from the previous assumption that (correctly measured) MSA-level TFP growth is uncorrelated with (later)
local shocks to employment growth in ZCTA i. As such, there is no compelling reason to suspect the
observed covariate of interest would be a source of spatial dependence in the residual and therefore I do not
test for spatial dependence in the primary explanatory variable data here, instead focusing on evaluating
evidence for or against spatial correlation in the dependent variable.
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the presence of spatial dependence in estimated residuals (which I do in the Section 6),

here instead of testing residuals, I test the degree to which demeaned data on employment

in levels and (log) differences spatially covary.

Recall that in equation (5.4), spatial correlation (if present) depends in part on the

elements ωi,i′ that comprise an exogenously specified N x N spatial connectivity matrix

W . The intuition of how these weights operate is similar to modelling spatial dependence

between MSAs and ZCTAs in Section 4.4, in that the ωi,i′ weights mathematically describe

how one place might influence outcomes in a different place. Note it is always the case

that ωi,i = 0 (i.e. how i spatially depends on itself is assumed to be zero), so the diagonal of

W is all zeros. However, unlike in the MSA to ZCTA environment, where the relationship

studied is one-sided (i.e. I do not evaluate how a particular rural ZCTA i influences

outcomes in MSA c, mainly due to the fact that the geographic/economic size differentials

likely make the i to c effect negligibly small), here ZCTAs i and i′ can influence each other.

The computation of the Moran’s I-Statistic relies on a chosen specification for spatial

dependence. That is, the econometrician is required to make an assumption on the form

of spatial dependence in the sample via her choice of spatial weights ωi,i′ . As such, the

values the I-Statistic can take depend quite heavily on the chosen form of ωi,i′ and it is

unlikely the results from Moran’s I tests using only one variation of ωi,i′ will completely

convey the realities of spatial dependence in a given sample. In testing ZCTA to ZCTA

spatial dependence in the rural ZCTA employment data, I construct Moran’s I-Statistics

using six spatial weighting matrices, which are summarised in Table (5.1).

The (queen) contiguity matrixWC , inverse-distance matrixWD , and (queen) contiguity-

inverse distance matrix WCD are commonly used specifications to model spatial depen-

dence. The two “Bester” matrices combine the contiguity/contiguity-inverse distance

flavour of spatial dependence, but instead of grouping ZCTAs that are (first and second-

order) neighbours, they instead allow for spatial connectivity to take place between ZCTAs

that are located in the same 10,000-square-km grid square. Bester, Conley, and Hansen

(2011) present a cluster-robust inference approach for dependent data in time series,

spatial, and panel data environments, allowing for correlation within fixed clusters. A

common response to potential spatial correlation of the form discussed in Bester, Conley,

and Hansen (2011) biasing standard error estimates in the applied spatial economic litera-

ture is to group spatial units on an arbitrary grid and perform cluster-robust inference.

This method is used by a number of authors including Michaels, Rauch, and Redding

(2012), Bleakley and Lin (2012), Michaels and Rauch (2018), and Bakker et al. (2020).

For instance, Bleakley and Lin (2012) cluster errors related to their spatial units of inter-

est in 60-square-mile grid squares. Here, I group ZCTAs into 10,000-square-kilometre

“Bester” grid squares j ∈ {1,2, . . . , J}.39 The final spatial connectivity matrix specification,

the Gravity matrix WG, allows for spatial connectivity identical to that used to define the

connectivity between ZCTAs and MSAs built upon the structural gravity foundations.40

39To group ZCTAs into grid clusters, I round the decimal latitude and longitude used to compute the spatial
connectivity weights to the nearest whole number, given each whole degree amounts to about 100km at
the equator, slightly less so moving North. I allocate ZCTA i and i′ to grid square j if they share the same
ones-place-rounded latitude and longitude.

40Although a common practice, note that I do not row normalise any of these matrices. My primary motivation
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Table 5.1: ZCTA to ZCTA Spatial Connectivity Matrix Specifications

Specification Matrix Elements Description

(Queen)
Contiguity (WC )

ωi,i′ =

1 if i, i′ are neighbours
0 if otherwise

Spatial association between ZCTA i′ and
ZCTA i occurs if i and i′ are first or second-
order neighbours.

Bester Contiguity
(WB)

ωi,i′ =

1 if i, i′ ∈ j
0 if otherwise

Spatial association between ZCTA i′ and
ZCTA i occurs if i and i′ are in the same
(Bester, Conley, and Hansen (2011)-inspired)
100-square-km grid square j.

Inverse Distance
(WD )

ωi,i′ = 1
di,i′

Spatial associations between ZCTA i′ on
ZCTA i are discounted according to the in-
verse of the distance by road (in km) between
i′ and i (denoted di,i′ ).

(Queen)
Contiguity-
Inverse Distance
(WCD )

ωi,i′ =

 1
di,i′

if i, i′ are neighbours

0 if otherwise
Spatial associations between ZCTA i′ on
ZCTA i are discounted according to the in-
verse of the distance by road (in km) between
i′ and i if i and i′ are first or second-order
neighbours.

Bester Contiguity-
Inverse Distance
(WBD )

ωi,i′ =

 1
di,i′

if i, i′ ∈ j

0 if otherwise
Spatial associations between ZCTA i′ on
ZCTA i are discounted according to the in-
verse of the distance by road (in km) between
i′ and i if i and i′ are in the same (Bester,
Conley, and Hansen (2011)-inspired) 10,000-
square-km grid square j.

Gravity (WG) ωi,i′ = 1
di,i′

(W iLi )(W i′Li′ )
WL

Spatial connectivity measured in a gravity
framework identically to weights between
ZCTAs and MSAs from Section 4.4.

Notes: This table presents ZCTA to ZCTA spatial connectivity matrices used in this study. ZCTAs i and
i′ are said to be first-order neighbours if they share a border or vertex (the so-called “Queen” contiguity
specification). ZCTA i′ is a second-order neighbour of i if i′ shares a border or vertex with a first-order
neighbour of i. ZCTA to ZCTA distances by road are calculated using the method proposed by Weber and
Péclat (2017), as before in Section 4.4.

Using each of the specifications for spatial dependence ωi,i′ , I compute the Moran’s I

test statistic of li,t in levels for all t ∈ {1,2, . . . ,T } as

It =
1∑

i
∑
i′ ωi,i′

∑
i
∑
i′ ωi,i′ (Li,t −Lt)(Li′ ,t −Lt)

1
N

∑
i(Li,t −Lt)2

(5.5)

where Lt is the average employment level among the rural ZCTAs in the sample in year t.

I repeat this process using the growth data ∆li,t,t+s for all t ∈ {1,2, . . . ,T } and s ∈ {1,2, . . . ,S},

for not doing so is that row normalisation obscures the role of distance.
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constructing the test statistic for (log) difference as

It,t+s =
1∑

i
∑
i′ ωi,i′

∑
i
∑
i′ ωi,i′ (∆li,t,t+s −∆lt,t+s)(∆li′ ,t,t+s −∆lt,t+s)

1
N

∑
i(∆li,t,t+s −∆lt,t+s)2

(5.6)

where ∆lt,t+s is the averaged observed change from t to t + s. I compute the panel average

for data in levels over the observed time period as I = 1
T

∑T
t=1 It.

The data on (log) differences can be aggregated and averaged in two distinct ways.

The first considers all available data that are of the form t to t + s, implying data overlap.

The second averages sequential data of the form t to t + s, implying no data overlap.41

Using overlapping data or non-overlapping data in constructing the panel average may

have different implications. For instance, it may be the case that sequential data do not

feature spatial dependence, while pooling all data do, and so I test for dependence in

both potential sample forms. I compute the panel average for data in differences where

data overlap is allowed as I s = 1
Ts

∑
t,t+s It,t+s∈ts where ts is the set of all overlapping periods

t to t + s evaluated and Ts is the number of distinct periods over which the data can be

averaged. I compute the panel average using non-overlapping data as I
∗
s = 1

T ∗s

∑
t,t+s∈ts It,t+s,

where t∗s is the set of all non-overlapping periods t to t + s evaluated and T ∗s is the number

of periods of non-overlapping data. According to Beenstock and Felsenstein (2019), when

Ĩ ∈ {I, I s, I
∗
s} is divided by

Ṽ = (Ṽ 2)
1
2 =

N2 ∑
i
∑
i′ ω

2
i,i′ + 3

(∑
i
∑
i′ ωi,i′

)2
−N

∑
i

(∑
i′ ωi,i′

)2

T̃ (N2 − 1)
(∑

i
∑
i′ ωi,i′

)2


1
2

where T̃ ∈ {T ,Tk ,T ∗k }, the resulting standardised panel average is distributed standard

normal under the null hypothesis that there is no spatial dependence, i.e. Ĩ
Ṽ
∼N (0,1). The

presence of spatial correlation can then be determined by comparing the standardised

panel average Moran’s I value to standard normal critical values. In Table (5.2), I report

the P -values of the corresponding test statistics for all data tested and all spatial weighting

matrices used.

While the data in levels robustly rejects the null hypothesis of no spatial correlation

across spatial connectivity specifications, the data in (log) differences offer no compelling

evidence in favour of spatial dependence in rural employment growth. Since this study is

concerned with rural ZCTA employment growth rather than employment levels, these

results give no immediate indication of a need to actively account for spatial dependence

via inclusion of additional terms, such as a spatial lag, in the empirical model. As such, in

the baseline estimation strategy, I estimate equation (5.1) and employ a “passive” response

to spatial correlation using cluster-robust standard errors conventional in the applied

41For example, consider a two year change in rural employment, i.e. s = 2. The sample spans from 2001−2017,
so the total set of two year changes in employment is {2001 − 2003,2002− 2004,2003− 2005, . . . ,2014 −
2016,2015− 2017}, which features temporal overlap. Considering two year changes in employment with
no overlap, the set becomes {2001− 2003,2003− 2005,2005− 2007, . . . ,2013− 2015,2015− 2017}. Since the
time dimension is shorter, the number of periods over which the non-overlapping data are averaged is
smaller than the number for overlapping data.
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Table 5.2: Standardised Panel Average Moran’s I-Statistic P -Values

W Data-Form Levels ∆t,t+1 ∆t,t+2 ∆t,t+3 ∆t,t+4 ∆t,t+5 ∆t,t+6

WC
Non-Overlapping 0.00 0.30 0.80 0.93 0.37 0.36 0.85
Overlapping 0.63 0.64 0.46 0.45 0.55

WB
Non-Overlapping 0.00 0.11 0.54 0.61 0.35 0.47 0.62
Overlapping 0.42 0.54 0.45 0.41 0.49

WD
Non-Overlapping 0.00 0.42 0.77 0.59 0.50 0.41 0.58
Overlapping 0.60 0.56 0.48 0.44 0.50

WCD
Non-Overlapping 0.00 0.06 0.66 0.50 0.39 0.32 0.59
Overlapping 0.36 0.37 0.34 0.34 0.42

WBD
Non-Overlapping 0.00 0.08 0.63 0.43 0.44 0.36 0.53
Overlapping 0.37 0.39 0.37 0.36 0.43

WG
Non-Overlapping 0.00 0.30 0.46 0.52 0.48 0.48 0.52
Overlapping 0.43 0.48 0.47 0.46 0.47

N 116 Rural ZCTAs

Notes: This table presents the P -values of the standardised panel average of Moran’s I-Statistics for em-
ployment data in levels and (log) differences within the sample 116 rural ZCTAs using a variety of spatial
connectivity matrices. Under the null hypothesis, there is no spatial correlation.

spatial economic literature in the event there is spatial correlation in the data the tests

above fail to reveal.

5.3 Estimation Strategy

I estimate parameters in equation (5.1) using a two-step feasible generalised method

of moments (GMM) estimator. Let ∆li be a (T − 1− k) x 1 vector of employment change

observations for ZCTA i, Xi a (T − 1 − k) x (T − k) matrix of explanatory variables, Zi a

(T − 1− k) x (T − 1− k +Cr ) matrix of instruments (where Cr is the number of informative

instruments, implying the system is just-identified if Cr = 1 and overidentified if Cr > 1),

∆νi a (T − 1− k) x 1 vector of error terms, and β a (T − k) x 1 parameter vector, i.e.

∆li =



∆li,1+k,1+k+s
...

∆li,t,t+s
...

∆li,T ,T+s


β =



β0

β1

δ2+k,2+k+s
...

δt,t+s
...

δT ,T+s


∆νi =



∆νi,1+k,1+k+s
...

∆νi,t,t+s
...

∆νi,T ,T+s


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Xi =



1
∑C
c=1ωi,c∆ac,1,1+k 0 · · · 0 · · · 0

1
∑C
c=1ωi,c∆ac,2,2+k 1 · · · 0 · · · 0

...
...

...
. . .

...
. . .

...

1
∑C
c=1ωi,c∆ac,t−k,t 0 · · · 1 · · · 0

...
...

...
. . .

...
. . .

...

1
∑C
c=1ωi,c∆ac,T−k,T 0 · · · 0 · · · 1


Zi =



1 0 · · · 0 · · · 0 Bi,1,1+k

1 1 · · · 0 · · · 0 Bi,2,2+k
...

...
. . .

...
. . .

...
...

1 0 · · · 1 · · · 0 Bi,t−k,t
...

...
. . .

...
. . .

...
...

1 0 · · · 0 · · · 1 Bi,T−k,T


where Bi,t−k,t is a 1 x Cr row vector of relevant (spatial connectivity weighted) shift-share

instruments. The baseline model can then be re-expressed as

∆li = Xiβ +∆νi (5.7)

with linear moment conditions g(∆li ,Xi ,Zi ,β) of the form

E[g(∆li ,Xi ,Zi ,β)] = E[Z Ti ∆νi(β)] = E[Z Ti (∆li −Xiβ)] = 0 (5.8)

and sample analogue

gN (∆Li ,Xi ,Zi ,β) =
1
N

N∑
i=1

gi(∆Li ,Xi ,Zi ,β) =
1
N

N∑
i=1

Z Ti (∆Li −Xiβ) ≈ 0 (5.9)

I compute β̂GMM as the minimiser of the criterion function

β̂GMM =arg min
β

gN (∆Li ,Xi ,Zi ,β)T Ŝ−1
J gN (∆Li ,Xi ,Zi ,β) (5.10)

where

Ŝ−1
J =

1
J

J∑
j=1

gj(∆Lj ,Xj ,Zj , β̂)gj(∆Lj ,Xj ,Zj , β̂)T − gJ (∆Lj ,Xj ,Zj , β̂)gJ (∆Lj ,Xj ,Zj , β̂)T (5.11)

gJ (∆Lj ,Xj ,Zj , β̂) =
1
J

J∑
j=1

gj(∆Lj ,Xj ,Zj , β̂) =
1
J

J∑
i=j

Z Tj (∆Lj −Xj β̂)

is the asymptotically efficient weighting matrix constructed using a consistent estimator

of β, β̂, which allows the error terms ∆νi to be dependent (temporally and spatially)

within J clusters. Since evidence from the previous section gives no strong indications of

spatial correlation in the dependent variable, I adopt the “passive” response to account for

potential spatial correlation in the residuals, using the “Bester” 10,000-square-kilometre

grids as the baseline cluster specification. As the efficient GMM weight matrix, Ŝ−1
J is

robust to heteroskedasticity. Furthermore, since error terms can correlate within clusters,

Ŝ−1
J is robust to serial correlation (since a given ZCTA is located in the same cluster j

across time) and spatial correlation of Bester, Conley, and Hansen (2011), provided spatial

dependence takes place only among ZCTAs within the same cluster j, but not across

clusters. In the event correlation takes place across clusters and following insights from
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Kelly (2019), who performs simulations showing that persistence regressions using spatial

data with spatial dependence can lead to spurious correlations, I perform tests in the

results section to evaluate the presence of any spatial correlation in the residuals of β̂GMM
from each estimated model, constructing panel standardised Moran’s I-Statistics using all

of the ZCTA to ZCTA spatial connectivity matrices from Table (5.1).

Provided Ŝ−1
J is positive semidefinite and asymptotically positive definite, β is an

interior solution to the criterion function, the moment conditions are continuously dif-

ferentiable, and the Jacobian of the moment conditions with respect to the parameter

vector is of full rank, i.e. rank
(
DβE[g(∆Li ,Xi ,Zi ,β)]

)
= T − k, then β̂GMM is a consistent

estimator for β and distributed asymptotically normal. Furthermore, given the system is

overidentified (for Cr > 1), I test satisfaction of exclusion restrictions via Hansen’s J test.

Considering recent debate and controversy surrounding the use of Bartik style shift-

share instruments, some clarifying remarks concerning the moment conditions must be

addressed. Goldsmith-Pinkham et al. (2020) show that the two-stage least squares (2SLS)

estimator with the Bartik shift-share instrument is numerically equivalent to a GMM

estimator with the local sector shares as instruments and a weight matrix constructed from

the regionally exogenous growth rates. They argue this numerical equivalence implies

that the exogeneity condition must be interpreted in terms of the “shares.” That is, while

the “shifts”, the g−c,h,t−k,t’s, influence relevance of the instruments, it is the shares, the

λc,h,t−k’s, that determine satisfaction of the exclusion restriction. In light of this result,

by testing overidentifying restrictions, I am in fact testing if Assumption 3 holds, since

g−c,h,t−k,t is exogenous by construction.

6 Results

Higher Total factor productivity (TFP) growth in an urban core is hypothesised to be

associated with lower employment growth in the core’s rural periphery. This is precisely

what I find. Following the estimation procedure discussed in Section 5 and setting

k = 3 and s = 3 in equation (5.1), a one standard deviation increase in the aggregate

TFP growth rate of the FRUC, which amounts to an additional 3.4 percentage points in

TFP growth over a three-year period, is associated with a 1.34 percentage point lower

average employment growth rate in ZCTAs located in the FRUC’s rural periphery. I

first investigate the robustness of the statistical significance of this result to alternative

ways of estimating the variance-covariance matrix (and hence, the standard errors used

to conduct inference on parameter estimates). Then, I evaluate the robustness of the

result to alternative specifications of the baseline model, incorporating spatial lags and

controlling for TFP. Furthermore, I evaluate the success of the spatial connectivity weights

ωi,c in capturing underlying heterogeneities in the associations between particular MSA

c and ZCTA i by testing if the parameter β1 is indeed common. Finally, I compare the

results for k = s = 3 against other potential lag specifications and test for contemporaneous

correlations between the primary explanatory variable and the dependent variable.

For each set of estimates, in addition to providing details concerning the sample
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size, R2, t-ratio P -value for the explanatory variable of interest, and conducting relevant

post-estimation tests for the class of instrumental variable estimators (where applicable),

the residuals for each estimated model in the results below are tested for evidence of

spatial dependence using the panel standardised Moran’s I-Statistics discussed in Section

5.2. I replace the demeaned variable in equation (5.6) with the estimated residuals for the

sample.42 I construct six panel standardised Moran’s I-Statistics using each of the ZCTA

to ZCTA spatial connectivity matrices in Table (5.1) and report the P -value associated with

each standardised I-Statistic when compared to a standard normal distribution. Recall

that under the null hypothesis, there is no spatial correlation. Across parameter estimators,

standard error estimators, and model specifications, I do not find robust evidence for

spatial correlation in the disturbance term.

The (queen) contiguity matrix and Bester contiguity matrix frequently reject the null

of no spatial dependence, however the other four specifications consistently fail to detect

such dependence. There are two reasons why rejection of the null hypothesis of no spatial

dependence under the contiguity-style spatial weighting matrices poses limited threat to

consistent standard error estimates. The first is that, at least when clustering standard

errors in the 10,000-square-km “Bester” grid squares, the standard error estimates are

robust to this exact type of spatial dependence. Given WC and WB share a fair degree of

overlap (i.e. most neighbours are located in the same 10,000-square-km cluster j), when

clustering on the grid squares, the the robustness of errors to dependence within the j

clusters likely extends to spatial dependence across neighbours. Second, assumption of

spatial dependence implied by WC and WB is rather strong. If two ZCTAs are neighbours

or located in the same cluster j, their comovements are given a weight of unity, assuming

no effect of distance in the relationship, which unrealistically abstracts from how ZCTAs

near and far likely influence one another. The other forms of weighting matrices, which

factor in more realistic frictions (i.e. distance, relative size of trading parties, etc.) to

correlation between two locations are likely less strict assumptions on how outcomes in

various places associate with each other.

Benchmark Results Using data described above on the observed 116 rural ZCTAs in

the hinterland of the FRUC, in Table (6.1) I present the parameter estimates resulting

from regressing three-year growth in rural ZCTA employment from t to t + 3 (i.e. ∆li,t,t+3)

on the sum of spatial connectivity weighted three-year growth in TFP from t − 3 to t in

the six MSAs that comprise the FRUC (i.e.
∑
cωi,c∆ac,t−3,t) and Intercept/Time Dummies

42That is, I construct the Moran’s I-Statistic for estimated residuals (following Beenstock and Felsenstein
(2019)) as

It,t+s =
1∑

i
∑
i′ ωi,i′

∑
i
∑
i′ ωi,i′ ∆̂νi,t,t+s∆̂νi′ ,t,t+s

1
N

∑
i (∆̂νi,t,t+s)2

where ∆̂νi,t,t+s = ∆li,t,t+s − β̂0 + β̂1
∑C
c=1ωi,c∆ac,t−k,t − δ̂t,t+s and “hatted”-parameters are consistent esti-

mates.
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(δt,t+3). That is, I estimate

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + δt,t+3 +∆νi,t,t+3 (6.1)

where t ∈ {2004,2005, . . . ,2014}. In columns (1) through (4), I use dependent (i.e. over-

lapping) temporal observations, while in columns (5) and (6) I use non-dependent (i.e.

non-overlapping) temporal observations. The reference time regime (i.e. omitted time

dummy variable) is 2004-2007 for columns (1) through (5) and 2005-2008 for column (6).

Cluster-robust standard errors are reported beneath parameter estimates in parenthesis

and are clustered in 10,000-square-km grid squares, robust to heteroskedasticity, serial

correlation, and spatial correlation of the form considered by Bester, Conley, and Hansen

(2011) within each cluster.

In column (1), I present results estimating the parameters in equation (6.1) via OLS.

The first row gives the estimate for the explanatory variable of interest and the second

row reports the estimated constant, which coincides with the parameter estimate for the

omitted time dummy. The parameter estimates in rows 3-12 evaluate how each included

temporal regime dummy δt,t+3 compares to the omitted time dummy (i.e. δ2004,2007).

Wald tests evaluating the joint significance of the time dummy variables rejects the null

hypothesis they are jointly equal to zero, thereby justifying their inclusion. In fact, the

behaviour of these estimates is consistent with evidence presented in Section 4.2 of rural

employment growth trends. Pre-Great Recession three-year rural employment growth

from 2004-2007 (the reference temporal regime) was positive, whereas intervals that span

the crisis (e.g. 2005-2008, 2006-2009, etc.) had lower estimated average employment

growth relative to the pre-crisis baseline. Finally, tests for spatial correlation in the

residuals fail to detect robust evidence in favour of spatial dependence to which the

estimated standard errors are not themselves robust.

There are underlying business cycle effects that explain variation over time in rural

ZCTA employment growth rates in the sample. However, using OLS, there is no evidence

of association between urban TFP growth and rural employment growth, as the t-ratio

test fails to reject the null hypothesis that β1 is statistically different from zero. Moreover,

statistical insignificance aside, the OLS estimate suggests a negligible economic effect.

The OLS parameter implies a one standard deviation increase in FRUC TFP growth over

a three-year period of 3.4 percentage points is associated with a 0.19 percentage point

decline in rural ZCTA employment growth in the following three-year period. However,

there is a concern about the reliability of these OLS estimates likely due to aforementioned

measurement error in urban TFP estimates, particularly when leveraged against results

produced via instrumental variable approaches.

Columns (2), (3), and (4) utilise the Bartik-style shift share instruments discussed in

Section 5.1 and estimate equation (6.1) via instrumental variable (IV) methods. Column

(2) uses the two-stage least squares (2SLS) estimator, column (3) the continuously updating

GMM estimator (CUE) of Hansen, Heaton, and Yaron (1996), and column (4) the feasible

two-step generalised method of moments (GMM) estimator. In each IV regression, I instru-
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Table 6.1: Benchmark Results

(1) (2) (3) (4) (5) (6)

Overlapping Data Non-Overlapping Data

∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3∑
cωi,c∆ac,t−3,t -0.063 -0.467∗∗ -0.388∗∗∗ -0.403∗∗∗ -0.884∗∗∗ -0.625∗∗∗

(0.114) (0.182) (0.127) (0.153) (0.319) (0.207)

δ2005,2008 -0.076∗∗ -0.078∗∗∗ -0.048∗∗∗ -0.060∗∗∗

(0.029) (0.028) (0.014) (0.019)

δ2006,2009 -0.144∗∗∗ -0.154∗∗∗ -0.124∗∗∗ -0.121∗∗∗

(0.033) (0.036) (0.024) (0.023)

δ2007,2010 -0.208∗∗∗ -0.217∗∗∗ -0.172∗∗∗ -0.172∗∗∗ -0.216∗∗∗

(0.039) (0.040) (0.032) (0.029) (0.039)

δ2008,2011 -0.132∗∗∗ -0.126∗∗∗ -0.094∗∗∗ -0.091∗∗∗ -0.074∗∗

(0.035) (0.034) (0.032) (0.027) (0.032)

δ2009,2012 -0.039 -0.038 -0.006 -0.008
(0.030) (0.029) (0.022) (0.020)

δ2010,2013 0.011 0.015 0.043∗ 0.032 0.036∗

(0.036) (0.034) (0.024) (0.025) (0.018)

δ2011,2014 0.003 0.008 0.035∗ 0.025 0.069∗∗∗

(0.033) (0.031) (0.020) (0.020) (0.018)

δ2012,2015 -0.029 -0.017 0.011 -0.001
(0.039) (0.036) (0.022) (0.021)

δ2013,2016 -0.033 -0.032 -0.005 -0.012 -0.026
(0.025) (0.025) (0.018) (0.017) (0.018)

δ2014,2017 -0.015 -0.017 0.013 0.006 0.024
(0.024) (0.024) (0.018) (0.018) (0.024)

Constant 0.073∗∗∗ 0.073∗∗∗ 0.039∗∗∗ 0.050∗∗∗ 0.066∗∗∗ 0.020
(0.019) (0.019) (0.010) (0.012) (0.008) (0.015)

N 1276 1276 1276 1276 464 464
R2 0.07 0.07 0.07 0.07 0.10 0.05
β̂1 t-Ratio P -value 0.58 0.01 0.00 0.01 0.01 0.00
Estimator OLS 2SLS CUE GMM GMM GMM
Weak ID F-Test – 2471.52 2471.52 2471.52 65.58 4042.32
Weak IV-robust P -value – 0.00 0.00 0.00 0.04 0.02
Hansen’s J-Test P -value – 0.59 0.55 0.59 0.98 0.21
C-Test P -value – 0.02 0.02 0.02 0.06 0.12
Moran’s I-Test P -value (WC ) 0.10 0.02 0.36 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.01 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.40 0.41 0.44 0.41 0.77 0.44
Moran’s I-Test P -value (WCD ) 0.44 0.45 0.46 0.44 0.50 0.46
Moran’s I-Test P -value (WBD ) 0.45 0.46 0.46 0.45 0.48 0.48
Moran’s I-Test P -value (WG) 0.55 0.59 0.64 0.57 0.64 0.50

Notes: This table displays estimates of equation (6.1). Columns (1)-(4) presents estimates using “dependent (i.e. overlapping) temporal observations and various
estimators: column (1) ordinary least squares estimator, column (2) two-state least squares estimator, column (3) the continuously updating GMM estimator, and
column (4) (the “benchmark” results) feasible two-step generalised method of moment estimator. Columns (5) and (6) estimate (6.1) using non-dependent (i.e.
non-overlapping) temporal observations, with estimates computed using the GMM estimator. The excluded time dummy for columns (1)-(3) is that for 2004-2007;
the excluded time dummy for columns (5)-6 is for 2005-2008. Standard errors are clustered in 10,000-square-km grid squares and are robust to heteroskedasticity,
serial correlation, and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed
test. The β̂1 t-Ratio evaluates if β̂1 is significantly different from zero; under the null hypothesis β1 = 0. The excluded instruments used for

∑
c ωi,c∆ac,t−3,t are

the Bartik-style shift share instruments from t − 3 to t for all FRUC MSAs excluding Greeley. First stage results are presented in Appendix Table (D.1). The weak
instrument F-test is the Kleibergen-Paap Wald rank F statistic; under the null the rank test fails. The weak IV-robust P -value is for the Stock-Wright S-statistic;
under the null, β1 is zero. Hansen’s J-Test of overidentifying restrictions evaluates the orthogonality of the instruments to the residuals in overidentified models;
under the null the instruments are exogenous. The C-Test evaluates if β̂1,IV for IV ∈ {2SLS,GMM,CUE} is statistically distinguishable from β̂1,OLS ; under the
null, the estimators produce the same estimates. The Moran’s I-Test evaluates the presence of spatial dependence in the residuals of each estimated model using
the standardised panel average of the global Moran’s I , here constructed in six different ways using a variety of ZCTA to ZCTA spatial connectivity matrices (see
Table (5.1) for details); under the null hypothesis, there is no spatial correlation among residuals.
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ment
∑C
c=1ωi,c∆ac,t−3,t with the shift-share instruments ωi,cBc,t−3,t for MSAs c including

Boulder (BCO), Colorado Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo

(PUB). I do not use the shift-share instrument for Greeley (GXY) given it is not informative

for
∑C
c=1ωi,c∆ac,t−3,t when used alongside the other MSA instruments, as evidenced by

Figure (4.5). I present the first-stage results in Appendix Table (D.1). In Appendix Table

(D.2) I present GMM estimates of (6.1) produced using other instrument specifications,

testing the sensitivity of the main results when all MSA shift-share instruments are in-

cluded (i.e. Greeley is not dropped), when only one or two MSA shift-share instruments

are used, and finally when sums and weighted averages of the shift-share instruments

are used. The results are broadly similar (i.e. the main result is statically significant and

negative), though significance of the main result is lost when the instruments are summed

together/averaged due larger standard error estimates and smaller parameter estimates.

Inspection of the first stage regressions and instrument diagnostic tests suggest the set

of Bartik style shift-share instruments are informative. Using the Kleibergen-Paap Wald

rank F-statistic (Kleibergen and Paap, 2006) to test instrument strength, under the null

hypothesis of which the rank test fails, the test statistic is 2,471.52, comfortably rejecting

the null. Furthermore, the weak IV-robust P -value from the Stock-Wright S-Test (Stock

and Wright, 2000), which is the GMM-analogue to the Anderson-Rubin Test, rejects the

null that the coefficient on the instrumented explanatory variable (β1) is zero, offering

further confidence in the shift-share instruments’ strength. Additionally, given the system

is overidentified, I test satisfaction of the exclusion restriction using Hansen’s J-statistic

(Hansen, 1982), where under the (joint) null hypothesis the overidentifying restrictions are

valid. The Hansen’s J-Test P -values for 2SLS/GMM and CUE are all above 0.5 and I do not

reject the null hypothesis, suggesting the instruments are orthogonal to the disturbance

term.

Quick comparison of the OLS parameter estimate for
∑
cωi,c∆ac,t−3,t against those

produced by 2SLS, GMM, and CUE (β̂1,OLS , β̂1,2SLS , β̂1,GMM , and β̂1,CUE , respectively

henceforth) hint at underlying measurement error rendering OLS inconsistent and biased

toward zero. I test if each IV parameter estimate differs (statistically) significantly from

β̂1,OLS using a C-statistic, otherwise known as a Difference-in-Hansen test. Under the

null, β̂1,IV = β̂1,OLS for IV ∈ {2SLS,GMM,CUE}. The C-statistic P -value rejects the null,

lending credibility to concerns of measurement error contamination in OLS estimation as

emphasised in a closely related context by Hornbeck and Moretti (2020) and discussed

in Section 5.1. Given the evidence in favour of the informativeness and validity of the

shift-share instruments alongside that suggesting biased OLS estimates, I limit subsequent

discussion to parameters estimated using the class of IV estimators. Moreover, comparing

parameter estimates between IV estimators, while the CUE estimates appear to be the

most efficient, they do not differ substantially from the feasible two-step GMM estimator.

Given GMM is less computationally intensive and using it does not sacrifice substantive

efficiency gains, I restrict subsequent analysis to the GMM estimates, defining the results

in column (4) as the “benchmark results.”

The GMM results in column (4) convey a similar story as OLS concerning the effects of
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business cycle dynamics on rural employment growth. However, there is a clear distinction

in their implication of the relationship between urban TFP growth and rural employment

growth, with the GMM results reporting a statistically significant negative comovement

between the explanatory variable of interest and the dependent variable. Moreover, these

results carry economic meaning, suggesting that a one standard deviation increase in

FRUC TFP growth over three years, i.e. 3.4 percentage points, is associated on average

with a 1.37 percentage point decline in the rural ZCTA employment growth rate over the

following three years. During the period of observation, the average ZCTA three-year

employment growth rate was 1.7%, which implies that a one standard deviation increase

in the FRUC TFP growth rate covaries with an slowdown in rural employment growth,

as the net three-year growth rate drops to 0.33%. While quantitatively different from

the rural employment growth decrease associated with a 3.4% increase in urban TFP

implied by the theoretical model (≈ 8%), there are qualitative parallels, as the sign of the

association matches the directional intuition of the model. Given the model’s insights,

the smaller comovement could in part be related to the particular rural-urban TFP levels

disparities in the FRUC core-periphery system, thought it is likely there are more factors

at play.

The use of overlapping temporal data in columns (1) through (4), while increasing the

sample size, likely results in serial dependence in the error term. The use of cluster-robust

standard errors to allow for serial (and spatial) dependence to occur within specified

clusters, while justified asymptotically, may inflate the statistical significance of reported

findings given the small number of clusters. However, this does not seem to be the case.

In columns (5) and (6), I report GMM estimates of model (6.1) using non-overlapping

data. The parameters in column (5) are estimated using data from 2004-2007, 2007-2010,

2010-2013, and 2013-2016. Column (6) results are estimated using data from 2005-2008,

2008-2011, 2011-2014, and 2014-2017. Relative to the benchmark results in column

(4), statistical significance of the main result is preserved. Furthermore, results for the

non-overlapping data imply a stronger association between FRUC TFP growth and rural

employment growth, with a 3.4 percentage point increase in the three-year FRUC TFP

growth rate correlating with between a 2.13 and 3.0 percentage point decline in the

average future three-year employment growth rate among rural ZCTAs.

I show in Appendix Table (D.3) that this result is robust to the spatial connectivity

distance measurement used in the construction of the gravity-style ZCTA-MSA weights

ωi,c. Results from measuring distance by travel time (in hours by automobile) imply

a 3.4 percentage point increase in FRUC TFP growth from t − 3 to t is associated with

1.23 percentage point decreases in rural employment growth from t to t + 3, while the

Euclidean distance (in km) results suggest a 1.55 percentage point decrease, both of which

are similar to the benchmark. Thus, I find the choice of different distance measure does not

noticeably alter estimated cluster-robust standard errors, the instruments performance,

nor conclusions regarding the presence of spatial correlation in the residuals.

Alternative Variance-Covariance Matrix Estimation I evaluate the robustness of the

benchmark results to alternative estimators of the standard errors. Given I am working
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within the GMM environment, the choice of variance-covariance matrix estimator has

direct relevance to the manifestation of the efficient GMM weighting matrix, which in

turn influences parameter and standard error estimates. As noted, the benchmark re-

sults are estimated using cluster-robust standard errors where ZCTAs are grouped into

10,000-square-km grid squares. The resulting standard errors are then robust to het-

eroskedasticity, serial correlation, and spatial correlation of the specified form described

by Bester, Conley, and Hansen (2011), provided these potential forms of dependence do

not exist between the specified clusters.

In Table (6.2), I reproduce the benchmark results in column (4) and compare them to

efficiet GMM estimates of equation (6.1) using Huber-White standard errors in column (1)

and different clusters for cluster-robust inference in columns (2) and (3). In column (2),

I cluster standard errors by ZCTA, implying these results are (asymptotically) robust to

serial correlation and heteroskedasticity. In (3), I cluster standard errors by county (i.e.

ZCTAs located in the same parent county are permitted to covary across time and space)

and so these results are (asymptotically) robust to serial correlation, spatial correlation

within-counties, and heteroskedasticity. Qualitatively, the various variance-covariance

matrix estimators and corresponding GMM weight matrices yield similar results in terms

of parameter and standard error estimates, though the benchmark standard errors clus-

tered on the grid squares (the “Bester” clusters) appear to be the smallest. Moreover,

the Moran’s I-Test results are roughly consistent across variance-covariance estimators,

with the exception that the test fails to reject the null of no spatial dependence between

neighbouring ZCTAs using Huber-White robust standard errors or clustering errors on

ZCTA. Given the similar results, I restrict subsequent variance-covariance estimation to

the estimation specification in column (4).

Spatial Lag Model Although the evidence given by the panel standardised global

Moran’s I-Test for each regression thus far has failed to detect spatial correlation to

which the standard error specification (i.e. the cluster-robust estimator using 10,000-

square-km clusters) is not robust, to test for any unmodelled spatial dependence, I adapt

(6.1) into a spatial lag model, which incorporates a spatial lag term of the dependent

variable to the right hand side and uses one of the six ZCTA-ZCTA spatial connectivity

matrices from Table 5.1. I estimate

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + β2

N∑
i′,i

ωi,i′∆li′ ,t,t+3 + δt,t+3 +∆νi,t,t+3 (6.2)

where
∑N
i′,iωi,i′∆li′ ,t,t+3 is the spatial lag term and ωi,i′ ∈ {WC ,WB,WD ,WCD ,WBD ,WG}.

Note that the data on
∑N
i′,iωi,i′∆li′ ,t,t+3 whereωi,i′ ∈WG are scaled like the weighted urban

TFP growth data such that the weighted mean equals the unweighted mean.

Table (6.3) presents the benchmark results for β1 in column (1) against those resulting

from estimates of equation (6.2) in columns (2) through (7), with the particular ZCTA-

ZCTA spatial connectivity matrix used in estimation specified in the column header.

These results are consistent with the benchmark estimates, with sign and statistical
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Table 6.2: Alternative Variance-Covariance Matrix Estimation

(1) (2) (3) (4)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3

Var-Cov Matrix Estimator Huber-White Cluster-Robust

Cluster N/A ZCTA County Bester∑
cωi,c∆ac,t−3,t -0.477∗∗∗ -0.545∗∗∗ -0.490∗∗∗ -0.403∗∗∗

(0.182) (0.206) (0.177) (0.153)

N 1276 1276 1276 1276
R2 0.06 0.06 0.06 0.07
β̂1 t-Ratio P -value 0.01 0.01 0.01 0.01
Intercept/Time Dummies Yes Yes Yes Yes
Estimator GMM GMM GMM GMM
Weak ID F-Test 23.44 493.74 356.84 2471.52
Weak IV-robust P -value 0.00 0.00 0.00 0.00
Hansen’s J-Test P -value 0.61 0.73 0.79 0.59
C-Test P -value 0.00 0.00 0.01 0.02
Moran’s I-Test P -value (WC) 0.37 0.13 0.03 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.44 0.44 0.43 0.41
Moran’s I-Test P -value (WCD ) 0.46 0.46 0.45 0.44
Moran’s I-Test P -value (WBD ) 0.46 0.46 0.46 0.45
Moran’s I-Test P -value (WG) 0.64 0.66 0.62 0.57

Notes: This table displays estimates of equation (6.1) estimated using the two-step feasible generalised method
of moments (GMM) estimator. Each column presents estimates using a different estimator for the standard
errors: column (1) the Huber-White estimator robust to heteroskedasticity of White (1980), column (2) errors
clustered on ZCTA codes implying robustness to heteroskedasticity and serial correlation within the cluster,
column (3) errors clustered on county FIPS codes implying robustness to heteroskedasticity, serial correlation,
and spatial correlation within the cluster, and column (4) the benchmark results estimating errors clustered
in 10,000-square-km grid squares and are robust to spatial correlation of Bester, Conley, and Hansen (2011)
alongside robustness to heteroskedasticity and serial correlation within the cluster, where ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The intercept term and time dummy variables were included in
each specification (with the time dummy for 2004-2007 omitted). Instruments used in estimation and the
post-estimation tests performed are identical to Table (6.1).

significant as well as absolute magnitude of parameter and standard error estimates

virtually unchanged across W , mitigating concerns of spatial correlation in the dependent

variable contaminating standard error estimates. The estimated β2 coefficients on the

spatial lag terms are insignificantly different from zero and the Moran’s I-Test P -values

are relatively the same across specifications.

The notable exception is when the (queen) contiguity-weighted or Bester contiguity-

weighted spatial lag is introduced, the Moran’s I test does not reject the null of spatial

dependence when residuals are weighted using WC . Given the standard error estimates

on β̂1 differ only by 0.005 between the benchmark and the WC/WB spatial lag models,

it does not seem that the inclusion of the spatial lag influences standard error estimates.

As such, this gives some evidence in favour of the idea that the Moran’s I-Test’s rejection

of the null under at least the WC weighting scheme is a result of the strong assumptions
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Table 6.3: Local Employment Growth Spatial Lag

(1) (2) (3) (4) (5) (6) (7)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3

Spatial Lag Connectivity Matrix N/A WC WB WD WCD WBD WG∑
cωi,c∆ac,t−3,t -0.403∗∗∗ -0.384∗∗ -0.395∗∗ -0.384∗∗ -0.389∗∗ -0.402∗∗ -0.397∗∗∗

(0.153) (0.158) (0.158) (0.159) (0.158) (0.158) (0.153)∑
i′,i ωi,i′∆li′ ,t,t+3 0.009 0.213 0.354 0.014 0.108 -0.007

(0.007) (0.284) (0.292) (0.013) (0.434) (0.007)

N 1276 1276 1276 1276 1276 1276 1276
R2 0.07 0.07 0.07 0.07 0.07 0.07 0.07
β̂1 t-Ratio P -value 0.01 0.02 0.01 0.02 0.01 0.01 0.01
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM GMM
Weak ID F-Test 2471.52 1457.87 2284.83 2205.61 547.80 1332.94 408.51
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hansen’s J-Test P -value 0.59 0.61 0.58 0.58 0.59 0.58 0.59
C-Test P -value 0.02 0.01 0.01 0.01 0.01 0.01 0.01
Moran’s I-Test P -value (WC ) 0.00 0.42 0.12 0.08 0.50 0.01 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.41 0.42 0.41 0.42 0.42 0.41 0.41
Moran’s I-Test P -value (WCD ) 0.44 0.45 0.45 0.45 0.45 0.44 0.44
Moran’s I-Test P -value (WBD ) 0.45 0.46 0.45 0.46 0.46 0.45 0.45
Moran’s I-Test P -value (WG) 0.57 0.59 0.58 0.58 0.58 0.57 0.57

Notes: This table displays estimates of equation (6.1) in column (1) and equation (6.2) in columns (2)
through (7)using different spatial connectivity matrices. Estimates are computed using the feasible two-step
generalised methods of moments estimator (GMM). The intercept term and time dummy variables were
included in each specification (with the time dummy for 2004-2007 omitted). Standard errors are clustered in
10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and spatial correlation
of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a
two-tailed test. Instruments used in estimation and the post-estimation tests performed are identical to Table
(6.1).

of spatial dependence this matrix specification implies rather than a reflection of spatial

dependence in the residuals.

Accounting for Local TFP The theoretical model in Section 3.5 describes a positive

auxiliary role for local TFP in the determination of the rural employment level that works

against the negative local employment growth effects related to TFP growth in the urban

core. Measurement error in rural TFP estimates coupled with the inability to construct

informative Bartik-style shift-share instruments for said estimates (on account of the

small size of individual rural ZCTAs hindering adequate correlation with national trends)

thwarts identification and meaningful inference. However, here I test the implications

of controlling for local rural ZCTA TFP growth on the β1 parameter estimate in the

benchmark specification.

In Table (6.4), I present the benchmark results in column (1) against different adapta-

tions of equation (6.1) that incorporate local TFP. Column (2) reports parameter estimates

for a model that adds a measure contemporaneous ZCTA TFP growth from t to t + 3 into

the baseline specification

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + β2∆ai,t,t+3 + δt,t+3 +∆νi,t,t+3 (6.3)
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Column (3) presents results of estimating a model that includes lagged local TFP growth

that coincides with the timing of urban TFP growth, i.e. year t − 3 to t

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + β2∆ai,t−3,t + δt,t+3 +∆νi,t,t+3 (6.4)

In column (4), I combine equations (6.3) and (6.4), estimating a model that includes both

contemporaneous and lagged three-year local TFP growth

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + β2∆ai,t,t+3 + β3∆ai,t−3,t + δt,t+3 +∆νi,t,t+3 (6.5)

The parameter estimates β̂1 in columns (2) through (4) are broadly similar to the bench-

mark estimates in column (1). So too are the standard error estimates and Moran’s I-Tests

results. The estimated parameter for contemporaneous TFP growth is positive and weakly

significant in both columns (2) and (4), while the lagged TFP growth parameter becomes

insignificant when included alongside the contemporaneous growth in local TFP. This

offers some evidence in favour of contemporaneous TFP growth plausibly playing a more

important role in local employment growth relative to lagged local TFP innovations.
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Table 6.4: Controlling for Local TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3

No Local TFP Spatial Lag Local TFP Spatial Lag

Spatial Connectivity Matrix N/A WC WB WD WCD WBD WG∑
cωi,c∆ac,t−3,t -0.403∗∗∗ -0.371∗∗∗ -0.437∗∗∗ -0.390∗∗∗ -0.391∗∗∗ -0.413∗∗∗ -0.444∗∗∗ -0.435∗∗∗ -0.389∗∗∗ -0.367∗∗∗

(0.153) (0.121) (0.139) (0.118) (0.121) (0.117) (0.121) (0.123) (0.122) (0.123)

∆ai,t,t+3 0.164∗ 0.138∗ 0.171∗ 0.182∗∗ 0.177∗ 0.178∗ 0.167∗ 0.169∗

(0.089) (0.082) (0.090) (0.089) (0.091) (0.092) (0.091) (0.089)

∆ai,t−3,t -0.134∗∗ -0.064
(0.068) (0.056)∑

i′,iωi,i′∆ai′ ,t,t+3 -0.005 -0.480 -0.500 -0.015 -0.081 0.0003∗∗∗

(0.010) (0.318) (0.346) (0.015) (0.434) (0.00004)

N 1276 1276 1276 1276 1276 1276 1276 1276 1276 1276
R2 0.07 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09
β̂1 t-Ratio P -value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM GMM GMM GMM GMM
Weak ID F-Test 2471.52 2225.99 2161.57 2058.13 2100.60 2265.72 2126.66 1502.64 1665.98 1309.04
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hansen’s J-Test P -value 0.59 0.51 0.56 0.51 0.51 0.54 0.51 0.52 0.50 0.54
C-Test P -value 0.02 0.07 0.04 0.10 0.09 0.08 0.08 0.07 0.08 0.06
Moran’s I-Test P -value (WC) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.41 0.41
Moran’s I-Test P -value (WCD ) 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.45 0.44 0.44
Moran’s I-Test P -value (WBD ) 0.45 0.46 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46
Moran’s I-Test P -value (WG) 0.57 0.57 0.61 0.59 0.57 0.57 0.58 0.58 0.57 0.57

Notes: This table displays estimates of equation (6.1) in column (1) against the estimates of equations (6.4) in column (2), (6.5) in column (3), (6.6) in column (4), and (6.7) in
columns (5) through (8). Columns (5)-(8) report estimates for various specifications of the ZCTA to ZCTA spatial connectivity matrix (see Table 5.1 for details on the different
ZCTA-ZCTA spatial connectivity matrices). All models are estimated using the feasible two-step generalised method of moments (GMM) estimator. The intercept term and time
dummy variables were included in each specification (with the time dummy for 2004-2007 omitted). Standard errors are clustered in 10,000-square-km grid squares and are
robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a
two-tailed test. Instruments used in estimation and the post-estimation tests performed are identical to Table (6.1).
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In Appendix Table (D.4), I present the results of testing local TFP data for spatial

dependence as I did in Section 5.2 for the local employment data. I find evidence for

the presence of spatial correlation in the local TFP data in levels and (log) differences

across spatial connectivity specifications. This is unsurprising given the process through

which ZCTA GDP was estimated likely introduced some form of spatial dependence (i.e.

allocating shares of a parent county’s GDP to each ZCTA by industry). By including local

TFP growth (which seems to be highly correlated with TFP growth in nearby ZCTAs),

I risk contaminating the estimated residuals and introducing spatial dependence. To

account for this, I incorporate a local TFP growth spatial lag, sometimes referred to in the

literature as a “spatial Durbin” term (Beenstock and Felsenstein, 2019), into equation (6.3)

∆li,t,t+3 = β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + β2∆ai,t,t+3 + β3

N∑
i′,i

ωi,i′∆ai′ ,t,t+3 + δt,t+3 +∆νi,t,t+3 (6.6)

and estimate equation (6.6) using each of the six ZCTA-ZCTA spatial connectivity matrices.

I present the estimation results in columns (5) through (10) of Table (6.4). Again, the β̂1’s

do not differ substantially from the benchmark results and nor do the parameter estimates

for the contemporaneous local TFP growth term differ noticeably from that in column (2)

without the spatial lag. Considering the limited influence of the lagged local TFP growth

from t − k to t and the spatial lag term alongside the relative consistency of β̂2 across

specifications, there is evidence of some positive correlation between contemporaneous

local TFP growth and local employment growth, which coincides with findings in the

theoretical model. However, the β2 estimates do not seem to influence β1 estimates.

That said, considering local TFP is likely measured with error, β̂2 may be biased

towards zero, thus implying the “true” β2 is potentially larger. This might cause local TFP

growth to have a more substantial effect on the estimated value of β1. To evaluate the

sensitivity of estimates of β1 to imposing larger values of β2, I estimate

∆l∗i,t,t+3(ϕ) = ∆li,t,t+3 − (β̂2 +ϕσ̂β2
)∆ai,t,t+3 = β0 +β1

C∑
c=1

ωi,c∆ac,t−3,t +δt,t+3 +∆νi,t,t+3 (6.7)

where β̂2 = 0.164 is the estimated parameter on the contemporaneous growth in local

TFP growth from column (2) in Table (6.4), σ̂β2
= 0.089 is the corresponding estimated

standard error, and ϕ is a multiplier term on the estimated standard error that increases

the estimated effect of ∆ai,t,t+3 on local employment growth from t to t + s. This model

transforms data on the dependent variable to reflect larger effects of local contempora-

neous TFP to account for measurement error. I report the results of estimating equation

(6.7) imposing different values of the parameter in Table (6.5). The sign, magnitude, and

statistical significance of the main result prove resilient to the increasing influence of

local contemporaneous TFP growth. The specification results in columns (2)-(5) estimate

slightly smaller β̂1 and standard errors relative to the benchmark.
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Table 6.5: Controlling for Local TFP and Adjusting for Measurement Error

(1) (2) (3) (4) (5)
∆li,t,t+3(ϕ) ∆l∗i,t,t+3(ϕ) ∆l∗i,t,t+3(ϕ) ∆l∗i,t,t+3(ϕ) ∆l∗i,t,t+3(ϕ)

Standard Deviation Multiplier N/A ϕ = 1 ϕ = 2 ϕ = 3 ϕ = 4∑
cωi,c∆ac,t−3,t -0.403∗∗∗ -0.368∗∗∗ -0.353∗∗∗ -0.337∗∗∗ -0.319∗∗

(0.153) (0.126) (0.122) (0.122) (0.125)

N 1276 1276 1276 1276 1276
R2 0.07 0.07 0.07 0.07 0.07
β̂1 t-Ratio P -value 0.01 0.00 0.01 0.01
Intercept/Time Dummies Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM
Weak ID F-Test 2471.52 2471.52 2471.52 2471.52 2471.52
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.00
Hansen’s J-Test P -value 0.59 0.46 0.42 0.40 0.38
C-Test P -value 0.02 0.10 0.13 0.15 0.17
Moran’s I-Test P -value (WC ) 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.01 0.04
Moran’s I-Test P -value (WD ) 0.41 0.41 0.42 0.42 0.43
Moran’s I-Test P -value (WCD ) 0.44 0.44 0.45 0.45 0.46
Moran’s I-Test P -value (WBD ) 0.45 0.46 0.46 0.46 0.47
Moran’s I-Test P -value (WG) 0.57 0.57 0.57 0.57 0.56

Notes: This table displays estimates of equation (6.1) in column (1) against the estimates of equation (6.8) for
various values of ϕ (number of standard deviations applied to account for measurement error in the local
TFP parameter estimate in column (2) of table (6.4) in columns (2)-(5). All models are estimated using the
feasible two-step generalised method of moments (GMM) estimator. The intercept term and time dummy
variables were included in each specification (with the time dummy for 2004-2007 omitted). Standard errors
are clustered in 10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and
spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01 using a two-tailed test. Instruments used in estimation and the post-estimation tests performed are
identical to Table (6.1).

Spatial Weights and Heterogeneous Associations In adapting the structural gravity

result from the theoretical model to inform the spatial dependence between each ZCTA

i and MSA c, the spatial connectivity weights ωi,c allow the correlation between TFP

growth in c and employment growth in i to vary both with the relative size of i and c as

well as with the distance between i and c. As such, the ωi,c’s are designed to capture the

potential heterogeneous associations between certain MSAs and ZCTAs. By controlling

for heterogeneous correlation via the spatial weights, the parameter that measures the

magnitude of association should be common to all the (spatial connectivity weighted)

MSAs, which is assumed in equation (6.1) given β1 is common to all (weighted) MSA

TFP growth observations. Thus, in testing if the estimated β1 coefficient is common

among MSAs, I am implicitly testing if the spatial connectivity weights are appropriately

capturing heterogeneity.

To test the null hypothesis that β1 is common against the alternative hypothesis that

at least one MSA c has a different parameter value, consider the following. Under the

alternative hypothesis where one MSA has a distinct parameter, denoted β2, the model
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Figure 6.1: Urban TFP Growth by MSA and Future Rural ZCTA Employment Growth

Notes: This figure plots parameter estimates of β2 − β1 from equation (6.8) for MSA c ∈
{Boulder (BCO), Colorado Springs (COS), Denver (DEN ), Fort Collins (FCO), Greeley (GXY ), Pueblo (PUB)}.
Each point presents the parameter estimate using the two-step feasible GMM estimator, with red spikes
representing the 95% confidence interval for the parameter estimate. In estimating equation (6.8) for various
c, the excluded instruments used for ωi,c∆ac,t−k,t include the shift-share instrument for the MSA c being
instrumented and an MSA c′ , c. The excluded instruments for

∑C
c′,cωi,c′∆ac′ ,t−k,t are two MSA shift share

instruments unused in instrumenting ωi,c∆ac,t−k,t . The intercept term and time dummy variables were
included in each specification (with the time dummy for 2004-2007 omitted). Standard errors are clustered in
10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and spatial correlation
of the form discussed in Bester, Conley, and Hansen (2011). Full results are presented in Appendix Table
(D.5).

from equation (6.1) becomes

∆li,t,t+3 = β0 + β1

C∑
c′,c

ωi,c′∆ac′ ,t−3,t + β2ωi,c∆ac,t−3,t + δt,t+3 +∆νi,t,t+3

Adding and subtracting β1ωi,c∆ac,t−3,t to the right hand side, it follows that

∆li,t,t+3 = β0 + β1

C∑
c′,c

ωi,c′∆ac′ ,t−3,t + β2ωi,c∆ac,t−3,t + δt,t+3 +∆νi,t,t+3 ± β1ωi,c∆ac,t−3,t

= β0 + β1

C∑
c=1

ωi,c∆ac,t−3,t + (β2 − β1)ωi,c∆ac,t−3,t + δt,t+3 +∆νi,t,t+3 (6.8)

Under the null hypothesis β2 = β1, and so equation (6.8) reduces to equation (6.1).

In Figure (6.1), I plot the estimated coefficients β2 − β1 from estimating equation (6.8)

separately for each of the FRUC MSAs. That is to say, I estimate six renditions of the
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Figure 6.2: Three-Year FRUC TFP Growth and Future Rural ZCTA Employment Growth

Notes: This figure plots estimates of equation (5.1) for k = 3 and for various s ∈ {1,2, . . . ,6} in the text.
Each point presents the parameter estimate for β1 using the two-step feasible GMM estimator, with red
spikes representing the 95% confidence interval for the parameter estimate. The x-axis gives various de-
pendent variables for different s, where ∆(t, t + s) is the growth in rural ZCTA employment from year t
to t + s. Moving from left to right along the x-axis implies larger intervals of time. The excluded instru-
ments used for

∑
cωi,c∆ac,t−3,t include the following Bartik-Style Shift Share Instruments: ωi,BCOBBCO,t−3,t ,

ωi,COSBCOS,t−3,t , ωi,DENBDEN,t−3,t , ωi,FCOBFCO,t−3,t , and ωi,P UBBPUB,t−3,t . The intercept term and time
dummy variables were included in each specification (with the time dummy for the earliest possible period
omitted). Standard errors are clustered in 10,000-square-km grid squares and are robust to heteroskedasticity,
serial correlation, and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. Full results are presented in Appendix D, Table
(D.6).

model above, specifying c to be a different MSA in each variation, testing if that particular

c (e.g. Fort Collins) has a distinct coefficient β̂2 on the weighted TFP growth term. The

x-axis details the parameter value and the y-axis gives the MSA specified to be c in (6.8).

The red spikes represent the 95% confidence interval for the parameter estimate. Full

results are presented in Appendix D, Table (D.5). For all MSAs c, where c includes Boulder

(BCO), Colorado Springs (COS), Denver (DEN), Fort Collins (FCO), Greeley (GXY), and

Pueblo (PUB), the results do not reject the null that there is a common coefficient among

MSAs, thereby offering evidence that the gravity-style weights ωi,c are appropriately the

capturing heterogeneous association between TFP growth in MSA c and employment

growth in i.

Alternative Dynamic Time Specifications Thus far, I have restricted analysis to a par-

ticular time specification of the baseline model equation (5.1). Specifically, I have pre-

sented results where k = s = 3. The negative associations between TFP growth in the FRUC

and rural employment growth prove to hold for other values of k and s. For instance, in
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Figure 6.3: Three-Year FRUC TFP Growth and Future Rural ZCTA Employment Growth

Notes: This figure displays plots for estimates of equation (5.1) for various k,s ∈ {1,2, . . . ,6}. Each point
represents the parameter estimate for β1 using the two-step feasible GMM estimator, with red spikes
representing the 95% confidence interval for the parameter estimate. Each individual panel evaluates the
model for a particular value of s. The x-axis is the period of lagged urban TFP growth (i.e. represents
the value of k) on which the period of rural ZCTA employment growth is t to t + s is regressed. The y-
axis denotes the estimated parameter value. The excluded instruments used for

∑
cωi,c∆ac,t−k,t include

the following Bartik-Style Shift Share Instruments: ωi,BCOBBCO,t−k,t , ωi,COSBCOS,t−k,t , ωi,DENBDEN,t−k,t ,
ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . The intercept term and time dummy variables were included in
each specification (with the time dummy for the earliest possible period omitted). Standard errors are
clustered in 10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and
spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01 using a two-tailed test. Full results are presented in Appendix D, tables (D.7) – (D.12).

Figure (6.2) I plot the GMM parameter estimates for β1 where k = 3 and s ∈ {1,2, . . . ,6}.
The x-axis is the period of employment growth being regressed on lagged three-year urban

TFP growth (i.e. represents the value of s) and the y-axis gives the estimate for β1. The

red spikes denote the parameter estimate’s 95% confidence interval. The negative and

statistically significant β̂1 holds for s ∈ {1,2, . . . ,5}. In fact, it appears to increase over time,

with the largest (in terms of absolute magnitude) estimated coefficient occurring four

years after the conclusion of the urban TFP growth interval in year t, though the size of

the association seems to lose its bite after the peak at four years, becoming statistically

indistinguishable from zero after a six year growth period.

In Figure (6.3), I present β1 estimates from models with all 36 possible combinations

of k ∈ {1,2, . . . ,6} and s ∈ {1,2, . . . ,6}. Each panel plots coefficients relating to different

values of s. The layout of the plots is identical to that of figure (6.2), with the exception
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that the x-axis is the period of lagged urban TFP growth (i.e. represents the value of

k) to which the period of rural ZCTA employment growth is t to t + s is related. These

collective results reinforce the findings in Figure (6.2) that the association is time sensitive.

However, a key finding is that when the correlation between FRUC TFP growth and future

rural ZCTA employment growth is significantly different from zero, it is negative. Across

plots for various s, a general pattern seems to emerge, with the coefficient tending to

increase (in absolute value) from k = 6 to k = 3 and returning to zero for k < 2, implying a

robust association between FRUC TFP growth over a three-year period and future rural

employment growth.

In addition to testing various lag structures for rural employment growth and urban

TFP growth, I also test for the presence the contemporaneous correlations. That is, I

evaluate how rural ZCTA employment growth from t to t + 3 associates with FRUC TFP

growth over the same period of time, though the results do not prove to be statistically

significant, suggesting the negative urban TFP and rural employment growth associations

occur with some form of a lag. The results are provided in Appendix Table (D.13). This

evidence is consistent with that of Hornbeck and Moretti (2020), who argue that the effects

of growth in urban TFP that perturb the spatial equilibrium depend in part with how

quickly agents respond to the shock. Agents’ reaction may take time as workers and firms

encounter frictions (e.g. housing/commercial lot availability, local infrastructure, etc.)

that slow their migration or ability to commute across locations, influencing the speed of

adjustment to the new equilibrium.

7 Conclusion

My analysis has two primary contributions. First, despite estimating revenue TFP as a

composite of sectors, my estimates of ZIP Code Tabulation Area (ZCTA) and Metropoli-

tan Statistical Area (MSA)-level revenue TFP follow established patterns in subnational

manufacturing revenue TFP. I find estimated (composite) revenue TFP in levels is higher

in urban ZCTAs relative to rural ZCTAs, indicating regional TFP asymmetries and po-

tential productivity advantages stemming from urban agglomeration economies. I find

average ZCTA revenue TFP to be highly persistent over time. My estimates imply that

neighbouring MSAs follow similar trends in levels and rates of growth. Second, I find

that during the first two decades of the 21st century, in the Front Range Urban Corridor

(FRUC) revenue TFP growth was correlated wtih lower future employment growth in its

rural periphery.

These findings suggest that urban revenue TFP growth not only has direct and indirect

implications for systems of cities, as shown by Hornbeck and Moretti (2020), but also

for urban and rural linkages. Further, although the existing literature no robust findings

for the presence of urban population growth shadows, the evidence given here seems to

imply there may be urban growth shadows. operating through other mechanisms such

as revenue TFP growth, that relate to different observables such as employment. While

proximity to a large urban cluster, such as the FRUC, might encourage population growth
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in neighbouring non-metropolitan regions (Partridge et al., 2009; Cuberes, Desmet, and

Rappaport, 2019), this spillover-induced growth may be accompanied by negative growth

implications that population data do not detect. While on net rural areas may indeed

benefit from proximity to large urban centres, the negative associations found in this

study between TFP growth and future rural employment growth possibly suggest the

benefits of closeness may be smaller in absolute magnitude.

There are notable limitations to this study. The first is that the findings relate only

to a particular core and periphery system in the US (i.e. the FRUC and its hinterland),

which limits the generalisability of these findings. The confidential establishment-level

data used are limited to labour inputs, but lack detailed records on establishment capital

stocks and output, which I must estimate in order to estimate revenue TFP. Considering

revenue TFP is a problematic measure in its own right, particularly for service-oriented

sectors, the likely mismeasured inputs and outputs used to estimate TFP in this study

only exacerbate the issue.

That said, the FRUC core and periphery system offers an almost textbook amenable

geography to study rural and urban relationships. Moreover, the main results fit the

intuition of the more general theoretical model, implying these results might plausibly

generalise to other core and periphery systems, at least in the Western US. Finally, the

use of the shift-share instruments can alleviate some threats to identification posed by

evaluating urban revenue TFP measured with error.
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Appendix A Model Appendix

A.1 Structural Gravity Derivation

Equating sales in i ∈ {i, i′}, piXi,i + piXi,i′ , to total labour income in i, wiLi ,

wiLi = piXi,i + piXi,i′

= p1−σ
i

[
P σ−1
i wiLi + P σ−1

i′ wi′Li′τ
1−σ

]
and then solving for p1−σ

i reveals

p1−σ
i =

wiLi[
P σ−1
i wiLi + P σ−1

i′ wi′Li′τ1−σ
] (A.1)

Recalling that trade value between i and i′ are

Vi,i′ =
( pi
Pi′

)1−σ
wi′Li′τ

1−σ

substituting equation (A.1) for p1−σ
i gives

Vi,i′ =
P σ−1
i wiLiwi′Li′τ

1−σ[
P σ−1
i wiLi + P σ−1

i′ wi′Li′τ1−σ
]

=
P σ−1
i wiLiwi′Li′τ

1−σ[
P σ−1
i

wiLi
wL wL+ P σ−1

i′
wi′Li′
wL wLτ1−σ

]
=

P σ−1
i τ1−σ[

P σ−1
i θi + P σ−1

i′ τ1−σθi′
] wiLiwi′Li′

wL

(A.2)

where wL = wcLc +wrLr is the total regional labour income and θi = wiLi
wL is the share of

total regional income earned in i. Letting Λ1−σ
i ≡

[
P σ−1
i θi + P σ−1

i′ τ1−σθi′
]
, equation (A.2)

can be written as

Vi,i′ =
( τ
ΛiPi

)1−σ wiLiwi′Li′

wL
(A.3)

which captures the so-called structural gravity between i and i′ á la Anderson and van

Wincoop (2003).
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Appendix B Data Appendix

B.1 Consumer Price Index

All monetary values in this paper are adjusted for inflation, with amounts given in

2001 USD according to the Denver-Aurora-Lakewood MSA (referred to as the Denver

MSA in the paper) Consumer Price Index (CPI). The Consumer Price Index (CPI) is a

measure of the average change over time in the prices paid by urban consumers living in

the Denver-Aurora-Lakewood MSA for a market basket of consumer goods and services

released by the BLS. Appendix Figure (B.1) plots the relative change in the US, Western

US, and Denver-Aurora-Lakewood MSA CPI from 2001 to 2017.

Figure B.1: Consumer Price Index by Region, 2001-2017

Notes: This figure plots the Bureau of Labor Statistic’s Consumer Price Index (prices paid by consumers in
urban areas for a designated basked of goods) for consumers across the US (blue), consumers living in cities
in the western US (red), and consumers living in the Denver-Aurora-Lakewood MSA (green). The index
base year is 2001 and differences from 100 reflect a growth in prices faced by consumers on the specified
consumption basket.

There are noticeable differences between the Denver-Aurora-Lakewood CPI and the

other two CPI series, with the former trending beneath the latter two for most of the

observed period. This motivates care in selection of the appropriate inflation adjustment

measure for the monetary data. Although the CPI measuring the urban price evolution

in Denver is likely different from price evolution in the hinterland, the Denver-Aurora-

Lakewood CPI is the most appropriate way to deflate regional prices relative to other

options to evaluate real changes over time, as it likely better reflects inflation trends in

Colorado relative to the two other potential adjustment factors.
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Table B.1: Employment Shares and ZCTA Average Annual Employment by Sector

All Urban Rural
Emp Share (%) ZCTA Employment Emp Share (%) ZCTA Employment Emp Share (%) ZCTA Employment

Mean Mean Std. Dev. Mean Mean Std. Dev. Mean Std. Dev.
Total 100 4,543.80 8,272.53 100 6,110.28 9,458.09 100 1,022.41 1,810.26
Agriculture (11) 0.75 54.61 108.92 0.45 49.76 96.21 4.75 62.32 126.19
Natural Resource Extraction (21) 0.89 81.60 370.88 0.83 93.50 420.87 1.61 42.96 84.45
Utilities (22) 0.35 43.53 106.42 0.31 53.22 127.00 0.87 23.23 25.74
Construction (23) 7.44 363.49 696.62 7.38 472.07 792.69 8.22 96.50 182.45
Manufacturing (31-33) 7.79 351.55 951.16 7.98 483.78 1,105.77 5.31 54.29 249.63
Wholesale Trade (42) 5.01 279.90 766.20 5.13 366.52 881.00 3.29 47.01 66.16
Retail Trade (44-45) 13.01 589.83 1,056.22 12.83 782.38 1,206.42 15.36 156.97 284.86
Transportation (48-49) 3.3 149.96 799.52 3.4 207.36 955.09 2.05 20.94 41.27
Information (51) 4.15 281.05 912.35 4.35 358.71 1,031.07 1.46 29.25 39.83
Finance and Insurance (52) 5.53 333.38 1,137.49 5.7 434.54 1,310.84 3.26 51.60 64.52
Real Estate (53) 2.34 142.47 242.67 2.24 168.01 263.93 3.68 63.68 132.20
Professional Services (54) 9.18 487.00 1,443.74 9.62 641.94 1,649.07 3.16 44.53 83.42
Management (55) 1.58 143.26 477.37 1.67 166.41 514.39 0.3 12.51 22.45
Administrative (56) 7.54 426.34 806.90 7.82 548.08 897.03 3.8 59.90 100.41
Education (61) 1.35 109.39 203.89 1.41 126.26 217.44 0.49 17.71 24.96
Health Care (62) 12.04 732.76 1,157.85 12.06 921.41 1,275.27 11.77 191.27 354.35
Entertainment/Recreation (71) 2.32 154.89 325.63 2 162.92 306.76 6.7 129.40 378.48
Accommodation/Food Services (72) 11.83 620.99 1,033.56 11.16 775.35 1,149.10 20.79 254.62 528.47
Other (81) 3.62 201.00 311.01 3.66 260.08 343.54 3.13 44.01 79.13
N 97,607 70,972 26,635

Notes: This table presents summary statistics concerning the employment data sourced from the Colorado
QCEW for the sample. Employment shares measure the share of total employment in a particular sector for
the specified region. For instance, under the All columns, the employment share refers to the share of all
sample employees (rural or urban) working in each sector. The ZCTA Employment columns offer mean levels
of sectoral employment within the specified subset of sample ZCTAs. Numbers next to sector titles reflect the
two-digit NAICS code for that sector.

B.2 Employment and Labour Cost

Summary statistics concerning average ZCTA employment by sector are presented in

Appendix Table (B.1). Employment shares are for the all employment, all urban employ-

ment, and all rural employment (i.e. they do not reflect an average by ZCTA), respectively.

With the exception of agriculture, urban ZCTAs have higher average employment in all

sectors and average total employment almost six times that among rural ZCTAs. Fur-

thermore, there are distinct differences in employment allocation across sectors between

rural and urban ZCTAs in the sample. For instance, the share of rural employment in

accommodation and food service is twice that of the share of urban employment in the

same sector, with a fifth of the rural labour force employed by an accommodation or

food service establishment. On the other hand, almost 10% of urban employees work at

an establishment classified under professional services, whereas only about 3% of rural

labour is employed by such establishments.

To better compare total wage bill estimates among ZCTAs, I divide Wi,tLi,t by Li,t to

estimate labour costs per worker. Summary statistics on these estimates are presented by

sector in Appendix Table (B.2). There is a clear per employee labour cost gap between

rural and urban ZCTAs, with differentials across all sectors favouring urban workers, with

the exception of agriculture. There is a lengthy literature that accounts for the urban

wage premium, which is reflected in these normalised labour cost estimates, attributing

most of the gap to higher housing and non-durable consumption costs associated with

living and working in a city. In Appendix Figure (B.2), I plot the average per employee

expenditure for urban and rural ZCTAs across all sectors over time. The average urban

ZCTAs experienced a modest decline following the 2001 recession and plateau during the

Great Recession, but otherwise saw steady growth. Rural ZCTAs, on average, experienced
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real labour cost growth per employee until the Great Recession, narrowing the gap with

the urban ZCTA gap. However, growth stalled during recovery.

Table B.2: ZCTA Wage Expenditure per Employee by sector

All ZCTAs Urban ZCTAs Rural ZCTAs
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Total 31,471.79 12,116.10 34,181.42 12,764.76 25,380.60 7,546.43
Agriculture (11) 25,084.55 14,206.66 24,775.21 15,496.33 25,568.96 11,898.56
Natural Resource Extraction (21) 66,687.53 67,568.12 73,421.78 73,690.27 44,599.20 33,090.03
Utilities (22) 58,174.83 48,637.23 62,021.02 57,388.56 50,278.69 19,227.30
Construction (23) 34,344.31 13,297.24 36,558.76 13,593.41 28,859.93 10,721.08
Manufacturing (31-33) 35,240.20 23,285.42 39,081.27 25,351.34 24,621.48 10,538.20
Wholesale Trade (42) 53,426.00 29,881.12 58,612.73 26,370.92 39,384.26 34,031.42
Retail Trade (44-45) 20,620.39 8,549.47 21,835.75 8,947.04 17,681.44 6,640.38
Transportation (48-49) 32,538.88 35,211.23 33,540.11 30,198.08 29,790.17 46,164.28
Information (51) 46,676.06 29,152.63 51,918.82 29,813.38 29,602.50 18,503.03
Finance and Insurance (52) 45,264.61 30,785.04 48,770.16 33,439.76 35,510.50 18,557.58
Real Estate (53) 31,980.74 25,383.72 33,967.57 26,968.70 25,735.41 18,233.56
Professional Services (54) 48,296.88 24,896.69 52,824.08 23,383.25 35,250.39 24,525.89
Management (55) 81,678.58 82,224.31 82,338.29 83,869.44 77,861.71 71,934.77
Administrative (56) 26,316.79 12,704.13 27,546.17 12,479.08 22,543.92 12,650.62
Education (61) 28,031.22 18,545.21 28,604.83 17,806.69 24,800.62 21,993.18
Health Care (62) 29,317.38 16,434.84 31,532.11 17,357.75 22,922.48 11,185.76
Entertainment/Recreation (71) 18,776.86 18,127.23 19,627.39 19,807.94 16,058.47 10,737.46
Accommodation/Food Services (72) 12,587.98 5,814.24 13,029.73 6,028.46 11,538.49 5,121.57
Other (81) 24,434.28 17,264.36 26,184.81 19,069.67 19,711.50 9,520.00
N 92,346 67,844 24,502

Notes: This table presents summary statistics concerning the employment-normalised wage bill by sector
among ZCTAs. That is, the wage bill for sector h in ZCTA i during year t, Wi,h,tLi,h,t , was divided by the
number of employees Li,h,t . Amounts above are in USD. Numbers next to sector titles reflect the two-digit
NAICS code for that sector.

B.3 Real GDP

B.3.1 Suppressed County Level GDP Imputation

For any given year t, in order to impute county-level GDP values for suppressed

sectors h ∈ h′′ (where h′′ is the set of suppressed sectors) in county b, I sum GDP across

all non-suppressed sectors h ∈ h′ (where h′ is the set of non-suppressed sectors) in b

and estimate the value of total suppressed sector-level GDP as the residual ûb,t when

non-missing sector GDP
∑H
h∈h′ Yb,h′ ,t is subtracted from the county total Yb,t. That is

ûb,t = Yb,t −
H∑
h∈h′

Yb,h′ ,t

I then aggregate ZCTA-level total wage bill data from Section 4.2 by sector h to the

county-level and obtain an annual county-level estimate for the total wage bill by sector

Wb,h,tLb,h,t =
N∑
i∈ib

Wi,h,tLi,h,t
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Figure B.2: Total Labour Cost per Employee, 2001-2017

Notes: This figure plots time series of the mean urban ZCTA total wage bill divided by the number of
employees (blue) against the rural ZCTA analogue (red). Each point is an annual mean and the vertical lines
extending from each point along both series reflect the 95% confidence interval associated with that mean.

where ib is the subset of ZCTAs i ∈ {1,2, . . . ,N } located within parent county b. Note

that since total wage bill data are unsuppressed, h is an element of the set composed of

suppressed and non-suppressed sectors in the GDP data, i.e. h ∈ {h′ ,h′′}. Summing across

each sector h’s estimated total wage bill in b to obtain county total wage bill measure,

Wb,tLb,t =
∑H
h=1Wb,h,tLb,h,t, and then dividing each sector’s total wage bill by the wage bill

aggregation yields sector h’s total wage bill share

µb,h,t =
Wb,h,tLb,h,t
Wb,tLb,t

Finally, multiplying the total wage bill share µb,h,t for each suppressed sector h ∈ h′′ by the

residual GDP ûb,t results in an estimate for GDP of the form

Yb,h,t = µb,h,tûb,t

for sector h ∈ h′′.
To give a tangible example of this process, consider a hypothetical county b. Suppose

the BEA estimate a total nominal GDP of $1,500,000,000 for year t in b. Estimates for three

sectors are suppressed, including (1) agriculture, (2) utilities, and (3) wholesale trade,

with $20,000,000 in output unaccounted for in the unsuppressed sectors’ aggregated GDP

data (i.e. ûb,t = $20m). Furthermore, suppose that the unsuppressed QCEW data indicate
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Table B.3: Estimated ZCTA Real GDP by Sector

All ZCTAs Urban ZCTAs Rural ZCTAs
Two-Digit NAICS Sector Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Total GDP 45,991.12 104,006.74 61,885.96 121,177.33 10,259.99 16,821.78
Agriculture (11) 766.29 1,988.26 436.76 1,346.73 1,290.32 2,628.92
Natural Resource Extraction (21) 2,380.36 9,263.27 2,598.25 10,346.80 1,673.06 4,028.81
Utilities (22) 1,545.43 3,639.15 1,910.97 4,174.72 779.72 1,902.97
Construction (23) 2,851.45 5,652.34 3,664.04 6,420.99 854.29 1,880.50
Manufacturing (31-33) 4,310.91 13,903.86 5,951.06 16,268.28 447.34 2,011.12
Wholesale Trade (42) 3,814.98 10,793.42 5,056.84 12,407.80 478.08 776.59
Retail Trade (44-45) 2,959.85 5,385.85 3,936.65 6,156.88 765.01 1,433.22
Transportation (48-49) 1,573.95 10,852.78 2,111.39 12,951.37 335.72 718.11
Information (51) 6,130.45 22,436.05 7,902.89 25,402.76 385.48 561.73
Finance (52) 4,134.61 15,830.63 5,388.18 18,289.59 644.91 749.08
Real Estate (53) 9,995.65 18,216.03 11,977.44 20,285.64 3,885.44 6,066.39
Professional Services (54) 5,690.59 19,693.28 7,523.06 22,594.11 459.91 903.00
Management (55) 1,856.42 6,775.20 2,124.04 7,316.95 345.73 371.03
Administrative (56) 2,095.18 4,344.10 2,670.15 4,867.35 364.90 617.85
Education (61) 810.28 1,571.64 936.79 1,677.85 123.14 192.92
Health Care (62) 4,205.06 7,521.46 5,297.02 8,378.21 1,072.47 2,067.53
Entertainment/Recreation (71) 959.02 3,641.20 1,046.63 3,930.07 680.69 2,493.17
Accommodation/Food Services (72) 1,891.25 3,697.64 2,286.50 4,047.09 953.41 2,450.71
Other (81) 1,526.07 2,457.46 1,956.06 2,738.31 384.22 608.67
N 97,385 70,906 26,479

Notes: This table presents summary statistics concerning the estimates of aggregate and sector-level private
establishment GDP for ZCTAs within the FRUC and its hinterland in tens of thousands of USD. Numbers
next to sector titles reflect the two-digit NAICS code for that sector.

that in year t, the nominal total wage bill in b is measured to be $400,000,000, $7,000,000

of which went to employees working for establishments categorised in one of the three

suppressed sectors. 20% went to agriculture employees, 10% to utilities employees, and

70% went to wholesale trade employees (these are the µs). By the procedure sketched

above, the $20,000,000 in unaccounted GDP in b is allocated according to these wage bill

shares, with $4,000,000 going to agriculture, $2,000,000 to utilities, and $14,000,000 to

wholesale trade.

B.3.2 ZCTA GDP Summary Statistics

In the main text, I estimate GDP in ZCTA i located in county b (i.e. i belongs to the

ZCTA subset ib) by sector h as

Yi,h,t = ψi,h,tYb,h,t

where ψi,h,t is the share of wages paid to sector h employees in b going paid to h employees

in i ∈ ib. Total GDP for ZCTA i ∈ ib is then the sum across sectors h.

Yi,t =
H∑
h=1

ψi,h,tYb,h,t

To demonstrate this procedure in an example, suppose that county b has four reporting

ZCTAs, one of which is ZCTA i ∈ ib. Furthermore, assume b has an estimated wholesale

trade GDP of $14,000,000. In year t, QCEW data reports that wholesale trade firms

located in the i accounted for 40% of b’s wholesale trade total wage bill (i.e. ψi,h,t = 0.4).
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Figure B.3: Average Urban and Rural ZCTA GDP Series Dynamics

Notes: This figure plots time series of the log mean urban ZCTA GDP per employee (blue) against the rural
ZCTA analogue (red). Each point is an annual mean and the vertical lines extending from each point along
both series reflect the 95% confidence interval associated with that mean.

As such, of b’s estimated $14,000,000 in Wholesale Trade GDP, $5,600,000 (i.e. 40%) is

allocated to i. Repeating this process for each two-digit NAICS sector and summing across

all sectors h yields the year t total GDP estimate for i ∈ ib. I present summary statistics of

the results from this estimation procedure in Appendix Table (B.3).

This estimation strategy yields intuitive results. sectors such as agriculture, educa-

tion, and entertainment/recreation are feature low relative output on average, while

sectors like real estate, information, manufacturing, and professional services generate

relatively high levels of output. Regional heterogeneity is also as expected: urban ZCTAs

have substantially larger average estimated total output relative to their rural peers and

have output dominance in comparatively “urban” sectors, such as professional services,

manufacturing, and information, while rural ZCTAs have an edge in agriculture output.

In Appendix Figure (B.3), I plot the evolution of the (log of) urban ZCTA average total

output per employee (blue) against the rural ZCTA analogue (red). Urban ZCTAs saw

relatively stable output per worker over the sampling period, with noticeable stagnation

during the Global Financial Crisis. Rural ZCTAs experienced sustained output per worker

growth from 2001 to 2007, but a clear decline during the Crisis.

B.3.3 Alternative GDP Estimation Strategy and Methodological Comparison

For robustness, I estimate alternative sector-level ZCTA GDP series (Y ∗) alongside

the primary estimates (Y ) generated using the process described in Section 4.3. The
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Table B.4: Estimated ZCTA Real GDP Method Comparison by Sector

Primary Method (Yi,h,t) Alternative Method (Y ∗i,h,t) Difference (Yi,h,t −Y ∗i,h,t)
All ZCTAs All ZCTAs All ZCTAs

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Total GDP 45,991.12 104,006.74 46,045.79 106,116.39 −54.67 11,267.09
Agriculture (11) 766.29 1,988.26 509.33 1,109.14 256.96 1,147.07
Natural Resource Extraction (21) 2,380.36 9,263.27 1,925.88 10,926.18 454.48 5,827.91

Utilities (22) 1,545.43 3,639.15 843.36 2,318.47 702.07 2,374.55

Construction (23) 2,851.45 5,652.34 3,847.03 7,506.78 −995.58 2,444.81

Manufacturing (31-33) 4,310.91 13,903.86 4,519.48 13,818.60 −300.76 4,050.02

Wholesale Trade (42) 3,814.98 10,793.42 3,912.27 10,160.84 −97.29 1,639.02

Retail Trade (44-45) 2,959.85 5,385.85 3,573.82 6,386.30 −613.97 1,991.63

Transportation (48-49) 1,573.95 10,852.78 1,389.14 8,084.94 170.34 3,979.82

Information (51) 6,130.45 22,436.05 4,647.94 17,584.47 1,482.51 8,277.09

Finance (52) 4,134.61 15,830.63 5,006.68 19,287.28 −872.07 3,793.37

Real Estate (53) 9,995.65 18,216.03 1,373.92 3,138.78 8,621.73 15,312.51

Professional Services (54) 5,690.59 19,693.28 7,921.94 26,304.58 −2,231.35 7,213.54

Management (55) 1,856.42 6,775.20 3,308.38 13,570.77 −1,451.96 8,058.69

Administrative (56) 2,095.18 4,344.10 2,958.83 6,187.85 −863.65 2,183.54

Education (61) 810.28 1,571.64 778.50 1,595.86 31.77 859.59

Health Care (62) 4,205.06 7,521.46 6,785.52 11,716.85 −2,580.47 4,644.66

Entertainment/Recreation (71) 959.02 3,641.20 1,095.13 3,905.86 −136.11 1,062.94

Accommodation/Food Services (72) 1,891.25 3,697.64 2,395.42 4,506.01 −504.16 1,304.67

Other (81) 1,526.07 2,457.46 1,405.87 2,319.66 120.19 741.36

N 97,385 97,385 97,385

Notes: This table presents summary statistics estimates for GDP in ZCTAs within the FRUC and its hinterland
produced using different estimation procedures, in tens of thousands of USD. Numbers next to sector titles
reflect the two-digit NAICS code for that sector. The primary method estimates are denoted Y , while the
alternative method estimates are denoted Y ∗.

alternative approach first estimates total GDP in ZCTA i located in county b, i.e. i ∈ ib, as

Y ∗i,t = χi,tYb,t

where χi,t = Wi,tLi,t
Wb,tLb,t

is i ∈ ib’s share of b’s total payments to employees in t. Then, sector h

GDP in i ∈ ib is estimated as

Y ∗i,h,t = φi,h,tY
∗
i,t

where φi,h,t = Wi,h,tLi,h,t
Wi,tLi,t

is the share of wages paid to sector h employees in i ∈ ib out of

i’s total labour cost. Summary statistics comparing estimates produced via the primary

method and alternative methods are presented in Appendix Table (B.4).

While the resulting total GDP estimates are very similar between both methods, as

demonstrated by the comparative plots of the (log of) ZCTA average GDP per worker

in Appendix Figure (B.4), there are differences at the sector level. For instance, the

alternative method allocates substantially more GDP to sectors such as professional

services, health care, and management and substantially less to sectors including real

estate and information. As I note in the text, this might stem from the fact that the

alternative method possibly introduces a labour-intensive or skill-intensive bias.
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Figure B.4: Average Estimated ZCTA GDP per Worker Series Dynamics

Notes: In this figure, the (log of the) average ZCTA GDP per worker estimated via the primary (solid) method
is plotted against the alternative method (dashed).

B.4 Capital Stock

B.4.1 Profit Share of GDP Replacement

To ensure observations satisfy Yi,h,t −Wi,h,tLi,h,t = Πi,h,t > 0, Πi,h,t is replaced with

alternative estimates motivated by the data. These replacements are determined using a

tiered approach, with the region/time level of replacement increasing in each stage.

On average, estimates for Πi,h,t varied little over time, so the first tier replaces Πi,h,t < 0

with Πi,h = 1
T

∑
tΠi,h,t, i.e. the profit share of sector h GDP in ZCTA i was averaged over

all years t, and Πi,h,t was replaced by that average. This was appropriate for 18% of

observations with Πi,h,t < 0. If both Πi,h,t < 0 and Πi,h < 0, Πi,h,t was replaced with

Πr,h,t = 1
R

∑
ir Πir ,h,t, where r is the RUCC grouping for ZCTA ir . That is, Πr,h,t gives an

average labour share of GDP in sector h at time t for all ZCTAs within the same RUCC

classification. This estimate was most appropriate to replace 56% of observations with

Πi,h,t < 0. If Πi,h,t < 0, Πi,h < 0, and Πr,h,t < 0, I estimate profit share of GDP in t for

sector h at time t as Πr,h = 1
RT

∑
r
∑
tΠi,h,t, which was suitable for 9% of observations

with Πi,h,t < 0. If still Πi,h,t, Πi,h, Πr,h,t, and Πr,h,t are all less than zero, I estimate

Πh,t = 1
I

∑
iΠi,h,t, which averages labour share over all ZCTAs at time t in sector h. This

replaces Πi,h,t for 8% of observations with Πi,h,t < 0. A final estimation strategy was to use

Πh = 1
IT

∑
i
∑
tΠi,h,t, which estimates average profit share of GDP across time and space

and was applied to 1% of observations with Πi,h,t < 0.

For the remaining 8% of observations with Πi,h,t < 0, the labour share was imposed to
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Table B.5: Estimated National Capital Return Rate by Sector, 2001-2017

Two-Digit NAICS Sector Mean Std. Dev. Min Max
Aggregate US 0.23 0.01 0.22 0.23
Agriculture (11) 0.24 0.04 0.19 0.31

Natural Resource Extraction (21) 0.14 0.03 0.07 0.20

Utilities (22) 0.12 0.01 0.10 0.13

Construction (23) 1.16 0.20 0.91 1.51

Manufacturing (31-33) 0.35 0.01 0.32 0.38

Wholesale Trade (42) 1.07 0.09 0.95 1.21

Retail Trade (44-45) 0.44 0.05 0.38 0.53

Transportation (48-49) 0.23 0.02 0.18 0.25

Information (51) 0.30 0.02 0.23 0.33

Finance (52) 0.51 0.07 0.31 0.61

Real Estate (53) 0.11 0.01 0.09 0.11

Professional Services (54) 0.86 0.03 0.82 0.91

Management (55) 0.22 0.01 0.20 0.24

Administration (56) 0.73 0.03 0.66 0.78

Education (61) 0.18 0.01 0.15 0.20

Health Care (62) 0.31 0.02 0.28 0.33

Entertainment/Recreation (71) 0.31 0.02 0.27 0.34

Accommodation/Food Services (72) 0.42 0.03 0.37 0.45

Other (81) 0.39 0.04 0.34 0.47

Inter-Sector Composite 0.42 0.31 .07 1.51

N 17

Notes: This table presents summary statistics concerning the estimated capital return rate series for data on
the aggregate US (which is used as the capital return rate when estimating the capital stock value series), each
two-digit NAICS sector, and series on the inter-sector average. These series were estimated via the approach
described in Section 4.1.

be 0.99. The observations for which 0.99 was imposed were all classified as urban and in

the Agriculture, Forestry, Fishing, and Wildlife sector. Given that this sector accounts for

roughly 0.5% of urban employment within any given year, this imposition has little effect

on TFP estimation.

B.4.2 Capital Return Rate Estimation

In the main text, I show that the capital return rate c is equal to Y−WL
RK . Given this

equivalence, I use annual data on the aggregate real value of fixed assets in the US RKt
from BEA (2019c) , the total real wage bill in the US WtLt from BLS (2019), and total US

real GDP Yt from BEA (2019a) to estimate an annual series on ct. I repeat this process for

each two-digit NAICS sector using the sector level analogues to these data to estimate an

annual series ch,t for each sector h. I present summary statistics for each estimated series

in Appendix Table (B.5).
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Aggregate US refers to the estimated ct series. National aggregate data suggest that

capital in the US features a capital return rate of 23%, which changes little with time.

The sector level data imply a high degree of inter-sector heterogeneity. sectors such as

construction, wholesale trade, and professional services feature a high capital return rate

and comparatively large variation over time, while sectors such as real estate, utilities,

and education feature low capital return rates that are not volatile. Furthermore, this

estimation procedure results in average capital return rates greater than 100% in the

construction and wholesale trade sectors, which seems implausible.

Capital return rate heterogeneity between sectors can be explained in part by the

varying composition of capital portfolios. For instance, the capital holdings of the goods-

producing sectors like manufacturing, which may include machinery and equipment

used in goods production, would differ substantially from service-oriented sectors like

education, which require less physical capital in their “production” process. These

compositional differences would lead to differences in the value of rents earned by capital

ownership. Likewise, the durability of capital used is likely to vary across sectors, which

thereby influences capital return rate differences via variable rates of depreciation. Real

estate is by definition composed of highly durable capital holdings, such as housing and

commercial buildings, while construction features capital machinery that depreciates at

a much faster rate due to the nature its use (drilling, clearing, building, etc.). Finally,

sector-specific risk factors are also likely to influence differences in capital return rates

through differences in risk premia. Firms in the finance sector may engage in riskier

capital activities due to variations in financial product risks relative to the risks associated

with capital in the health care sector, for example.

As I note in the text, the estimated capital return rates in certain sectors that exceed

100% on average are points of concern. Appendix Table B.5) shows that this concern stems

from the construction and wholesale trade sectors. Again, this is likely stemming from

unobserved inter-sector capital ownership patterns that bias certain sectors capital return

rates up and others down. For instance, it may be the case that both the construction

and wholesale trade sectors rent a large share of their capital from other sectors and

therefore, the estimation method compensates for this discrepancy in the data by applying

a large capital return rate to the limited amount of capital these sectors actually own. The

professional services sector, too, features a rather high capital return rate, which given the

smörgåsbord composition of the sector and close ties with other sectors, may also reflect

extra-sector capital ownership patterns.43

In Appendix Figure (B.5), I plot the evolution of the aggregate US capital return rate

series from 2001 to 2017 (blue) alongside the annual inter-sector average that excludes the

aggregate US (red). The three sectors plotted above the aggregate US series and inter-sector

average series, which are the only sectors to fall outside one standard deviation of the

inter-sector average, are construction (orange), wholesale trade (green), and professional

services (yellow). Note that the construction and wholesale trade series cross the unity

43Specifically, according to the NAICS manual, establishments classified as professional services “require a
high degree of expertise and training” and that “the establishments in this sector specialize according to
expertise and provide these services to clients in a variety of sectors” (OMB, 2017).
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Figure B.5: National Capital Return Rate Series Dynamics

Notes: This figure plots select time series data from Appendix Table (B.5). The aggregate US series (blue)
and series on the inter-sector average (red) lie beneath the three sectors that are, on average, more than one
standard deviation from the inter-sector mean capital return rate: construction (orange), wholesale trade
(green), and professional services (yellow). The aggregate US series was used to estimate ZCTA capital stock
by sector.

threshold at a number of points over the interval of observation. The aggregated and sector

average series display limited variability, while the plotted sectors, especially construction,

features relatively large changes in value over time. With construction in particular, these

changes align with the shock of and recovery from the Great Recession, with the capital

return rate taking a noticeable drop in 2008 and steadily recovering from 2011. This

might, in part, reflect the housing boom and bust that fuelled the crisis via the intimate

link between construction and residential housing development. That is to say, the crisis

altered returns to housing and therefore may have altered the returns to construction

capital ownership.

The potential, unobserved inter-sector capital ownership patterns that might explain

the implausible capital return rates in certain sectors cause reasonable concern against

the use of the sector level series to estimate the capital stock value. Likewise, it is not

immediately clear that taking a weighted or unweighted average of sector level-capital

return rates eliminates this concern. However, the rate implied by the aggregated US data

avoids inter-sector capital ownership concerns, motivating its use in estimation of the

capital stock value series in this paper.

86



Table B.6: Estimated Real Value of Capital Stock by Sector

All ZCTAs Urban ZCTAs Rural ZCTAs
Two-Digit NAICS Sector Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Total 121,787.84 263,897.15 161,297.32 307,187.09 32,971.65 51,801.40

Agriculture (11) 2,838.62 7,896.94 1,468.08 4,981.37 5,018.11 10,695.05

Natural Resource Extraction (21) 7,299.30 26,932.00 7,548.04 29,409.31 6,479.95 16,286.42

Utilities (22) 5,427.75 13,078.73 6,643.96 14,785.86 2,864.84 7,827.59

Construction (23) 5,962.55 11,448.83 7,503.48 12,878.51 2,175.28 5,044.76

Manufacturing (31-33) 14,239.58 46,257.60 18,806.26 53,203.50 1,776.40 6,531.03

Wholesale Trade (42) 9,802.92 28,132.64 12,934.89 32,365.62 1,387.27 2,517.85

Retail Trade (44-45) 8,109.12 13,570.65 10,493.25 15,312.54 2,316.97 3,823.01

Transportation (48-49) 5,628.17 37,134.69 7,074.49 43,322.28 1,709.15 3,062.94

Information (51) 18,452.33 68,889.19 23,747.46 78,039.77 1,289.36 1,940.84

Finance (52) 9,071.97 32,205.90 11,644.13 37,191.13 1,911.57 2,172.67

Real Estate (53) 41,513.34 74,437.31 49,733.59 82,851.32 16,168.73 24,728.62

Professional Services (54) 10,812.53 37,322.67 14,185.35 42,844.06 1,185.03 2,159.86

Management (55) 2,699.10 12,294.01 2,969.35 13,310.08 1,173.64 1,268.11

Administrative (56) 3,906.15 7,768.60 4,887.07 8,688.64 954.22 1,786.20

Education (61) 2,210.27 4,586.46 2,555.02 4,907.90 337.79 560.43

Health Care (62) 6,599.47 11,837.54 8,145.30 13,159.90 2,164.85 4,338.08

Entertainment/Recreation (71) 2,366.05 9,248.22 2,570.47 9,960.45 1,715.34 6,440.33

Accommodation/Food Services (72) 4,298.00 8,444.92 5,139.60 9,222.28 2,301.07 5,752.31

Other (81) 4,242.44 6,789.96 5,372.61 7,582.37 1,241.26 1,863.35

N 379 263 116

Notes: This table documents the mean and standard deviation of the real value of capital stock estimates (in
tens of thousands USD) in Colorado ZCTAs by sector from 2001-2017, estimated via equation (4.4). The
sector titles are shortened to conserve space; however the number in parenthesis next to each sector title
corresponds to the indented NAICS sector (two-digit) classification that title represents.

B.4.3 Capital Stock Value Series Summary Statistics

Summary statistics concerning the estimated capital stock value series described in

Section 4.1 are located in Appendix Table (B.6). This process seems to produce intuitive es-

timated data. Among all ZCTAs, capital intensive sectors like manufacturing, information,

and real estate are estimated to have large holdings compared to labour intensive sectors

such as education, management, or construction. Urban ZCTAs, on average, have greater

total capital stock holdings relative to rural ZCTAs and sector-level differences align with

standard assumptions on rural versus urban industrial composition and activity. For

instance, rural ZCTAs have more agricultural capital holdings than urban ZCTAs, while

the opposite is true for manufacturing capital allocation.

Turning to the dynamics of the estimated series, Appendix Figure (B.6) plots the

evolution of the (log of the) average total value of capital stock per worker among urban

ZCTAs (blue) against that in rural ZCTAs (red) from 2001 to 2017. Points along each

line represent the annual mean of the series and the black spikes extending from each

point reflect the 95% confidence interval associated with that estimated mean. These

plots suggest that, while urban ZCTAs are estimated to have larger total capital value

holdings, production in rural ZCTAs appears to be more capital intensive given the

larger capital to labour ratio in Appendix Figure (B.6). Considering the distribution of

skill/labour intensive sectors in urban versus rural areas, it seems plausible that urban
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Figure B.6: Urban and Rural ZCTA Real Capital Stock Value Series Dynamics

Notes: This figure plots time series of the log mean urban ZCTA value capital stock per employee (blue)
against the rural ZCTA analogue (red). Each point is an annual mean and the vertical lines extending from
each point along both series reflect the 95% confidence interval associated with that mean.

establishments rely more on labour inputs than capital inputs compared to the labour

scarce rural ZCTAs. Moreover, it seems that while capital stock per employee saw constant

growth in urban ZCTAs (with the exception of a decline from 2009 to 2012, likely related

to capital investment declines during the crisis), rural ZCTAs have seen a relatively steady

decline since 2008. Considering Figure (4.2b) shows increasing employment in rural

ZCTAs for (most) of this period, this may be indicative of capital investment growth being

outpaced by employment growth.

Dividing the total output estimates by ZCTA Yi,t from Section 4.3 by the total capital

stock value series RKi,t for each ZCTA yields the Output-Capital Ratio, Yi,t
RKi,t

. Plotting

the mean value for the output-capital ratio by ZCTA against the US aggregate analogue,

as is done in Appendix Figure (B.7) reveals that the GDP/capital estimates bear close

resemblance on average to US trends, indicating this estimation process resulted in

plausible estimates of capital stock value.

B.4.4 Alternative Capital Stock Estimation Strategy and Methodological Compari-

son

The alternative capital stock estimation method is identical to the primary method

aside from the estimated series on the capital return rate. As I note in the text, by

expressing the capital return rate as c = δ + r +υ, I can assume values for r and υ common

in the literature and estimate sector-level series on δ using data on sector-level capital
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Figure B.7: Urban and Rural ZCTA Output-Capital Ratio

Notes: This figure plots the evolution of the US output-capital ratio computed using data from BEA (2019b)
and BEA (2020) (dashed line) against the ZCTA average of that computed using the capital stock value and
GDP value series estimated in this paper (solid line).

depreciation from BEA (2019b) and fixed-assets by sector data from BEA (2019c).

I estimate δh,t by dividing the real capital depreciation value in year t by the real

capital stock value in year t−1 for data on sector h. Assuming a standard per-year interest

rate of 2% and a risk premium of 6% as suggested by literature on the Equity Premium

Puzzle, e.g. Mehra and Prescot (1985) and Kocherlakota (1996), I construct an alternative

estimate of the capital return rate according to c∗h,t = δh,t + 0.02 + 0.06, where ∗ indicates

this is an alternative estimated series from the primary series described in the main text. I

present relevant summary statistics for these series in Appendix Table (B.7).

The alternative estimation strategy yields a degree of variation between sectors; how-

ever, these series are relatively constant over time, with little change from year to year. All

between and within group variation in these estimates come from the estimated deprecia-

tion rate series, given ri,h,t = r = 0.2 and υi,h,t = υ = 0.6 are assumed common to all sectors

and overall years. The estimates suggest, then, that the rate of capital depreciation within

a given sector (and so the difference in capital depreciation between sectors) is relatively

constant over time.

I plot select time series in Appendix Figure (B.8). Series which appear in Appendix

Figure (B.5) retain their previous colourings. New series include utilities (grey), real estate

(purple), and administration (emerald). These sectors, alongside professional services

and construction, lie (on average) one standard deviation from the inter-sector average

(red). While different in levels, these series display temporal consistency observed in the
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Table B.7: Alternative Estimated National Capital Return Rate by Sector, 2001-2017

Two-Digit NAICS Sector Mean Std. Dev. Min Max
Aggregate US 0.14 0.00 0.13 0.14
Agriculture (11) 0.16 0.00 0.15 0.16

Natural Resource Extraction (21) 0.16 0.00 0.15 0.17

Utilities (22) 0.12 0.00 0.12 0.12

Construction (23) 0.21 0.00 0.20 0.22

Manufacturing (31-33) 0.19 0.00 0.19 0.20

Wholesale Trade (42) 0.20 0.01 0.19 0.21

Retail Trade (44-45) 0.15 0.00 0.14 0.15

Transportation (48-49) 0.14 0.00 0.14 0.15

Information (51) 0.19 0.01 0.18 0.20

Finance (52) 0.20 0.01 0.19 0.21

Real Estate (53) 0.11 0.00 0.11 0.11

Professional Services (54) 0.26 0.01 0.25 0.27

Management (55) 0.16 0.01 0.15 0.18

Administration (56) 0.21 0.01 0.19 0.23

Education (61) 0.13 0.00 0.12 0.13

Health Care (62) 0.15 0.00 0.14 0.15

Entertainment/Recreation (71) 0.16 0.01 0.15 0.17

Accommodation/Food Services (72) 0.14 0.00 0.13 0.14

Other (81) 0.13 0.00 0.13 0.13

Inter-Sector Composite 0.17 0 .04 0.11 0.27

Observations 17

Notes: This table presents summary statistics concerning the estimated capital return rate series for data
on the aggregate US, each two-digit NAICS sector, and series on the inter-sector average. These series were
estimated via the alternative approach described in the main text and in Appendix B.4.4.

summary statistics.

Contrasting the estimated capital return rate series generated using to the method

(c) against the estimates from the alternative estimation method (c∗), with the exception

of natural resource extraction, the primary method estimates a higher capital return

rate relative to the alternative method. Though sectors that are outliers in the primary

estimation approach, such as construction and professional services, remain outliers, the

degree to which they are different from other sectors is much smaller in the alternative

approach. As such, it may be the case the inter-sector capital ownership patterns do not

influence depreciation rates to a large extent. Furthermore, the alternative approach does

not produce estimated series with annual capital return rates greater than 100%.

In Appendix Table (B.8) I compare estimates of capital stock from the primary and

alternative methods (in tens of thousands USD). For a more natural comparison with the

series estimated using the primary method, despite the fact that there are no sector-level

capital return rates under the alternative method that exceed unity, the alternative method
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Figure B.8: National Capital Return Rate Series Dynamics (Alternative Estimates)

Notes: This figure plots select time series data from Appendix Table (B.7). The aggregate US series (blue)
and series on the inter-sector average (red) lie beneath the three sectors that are, on average, more than
one standard deviation from the inter-sector mean capital return rate, which include construction (orange),
administration (emerald), and professional services (yellow), and above the two series that are on average
less than one standard deviation from the inter-sector mean, which include utilities (grey) and real estate
(purple).

capital stock series are estimated via the aggregate US capital return rate from Appendix

Table (B.7).

Given the smaller capital return rates, the alternative method produces larger capital

stock value estimates relative to the primary method. In terms of sector-level differences,

there are large gaps between sectors such as information and real estate capital stock

estimates while there are smaller gaps for sectors like agriculture and education, implying

sector heterogeneity implications in method selection. However, when plotting the

average ZCTA capital stock value per employee series estimated from both methods, as in

Appendix Figure (B.9), the underlying dynamics remain consistent regardless of capital

return rate specification. Both series utilise the same capital share of GDP estimates, so by

construction they are likely to have similar dynamics, but this does alleviate concerns of

method selection influencing results given this study is interested in associations between

rates of change and not between levels.
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Table B.8: Estimated ZCTA Real Value of Capital Stock Comparison by Sector

Primary Method Alternative Method Estimation Difference
(R̂Ki,h,t) ( ̂RK∗i,h,t) (R̂Ki,h,t − ̂RK∗i,h,t)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Total 121,787.84 263,897.15 202,008.66 437,684.64 −80,220.82 173,896.94
Agriculture (11) 2,838.62 7,896.94 4,710.86 13,096.19 −1,872.24 5,202.67

Natural Resource Extraction (21) 7,299.30 26,932.00 12,115.70 44,782.55 −4,816.41 17,860.42
Utilities (22) 5,427.75 13,078.73 9,004.28 21,703.94 −3,576.53 8,630.98

Construction (23) 5,962.55 11,448.83 9,867.83 18,910.47 −3,905.28 7,465.24

Manufacturing (31-33) 14,239.58 46,257.60 23,620.50 77,085.88 −9,380.92 30,846.84

Wholesale Trade (42) 9,802.92 28,132.64 16,263.33 46,682.95 −6,460.41 18,560.58

Retail Trade (44-45) 8,109.12 13,570.65 13,447.01 22,487.91 −5,337.90 8,923.58

Transportation (48-49) 5,628.17 37,134.69 9,338.80 61,750.49 −3,710.64 24,624.37

Information (51) 18,452.33 68,889.19 30,586.82 114,069.65 −12,134.49 45,206.32

Finance and Insurance (52) 9,071.97 32,205.90 15,051.82 53,427.14 −5,979.85 21,232.64

Real Estate (53) 41,513.34 74,437.31 68,868.01 123,439.14 −27,354.67 49,032.98

Professional Services (54) 10,812.53 37,322.67 17,945.46 61,949.19 −7,132.92 24,641.12

Management (55) 2,699.10 12,294.01 4,483.39 20,478.81 −1,784.29 8,189.53

Administrative (56) 3,906.15 7,768.60 6,474.19 12,860.92 −2,568.04 5,095.70

Education (61) 2,210.27 4,586.46 3,670.06 7,624.22 −1,459.80 3,039.79

Health Care (62) 6,599.47 11,837.54 10,953.28 19,647.13 −4,353.81 7,814.96

Entertainment/Recreation (71) 2,366.05 9,248.22 3,928.31 15,348.69 −1,562.26 6,102.52

Accommodation/Food Services (72) 4,298.00 8,444.92 7,126.77 13,993.23 −2,828.77 5,552.15

Other (81) 4,242.44 6,789.96 7,033.49 11,251.46 −2,791.06 4,464.75

N 379 379 379

Notes: This table documents the mean and standard deviation of the real value of capital stock estimates (in
tens of thousands USD) using both the primary and alternative estimation methods in Colorado ZCTAs by
sector from 2001-2017 alongside moments concerning the difference between the estimates.

B.5 Total Factor Productivity

B.5.1 Total Factor Productivity Series Summary Statistics

In Appendix Table (B.9), I present summary statistics on ZCTA sector-level and

(weighted) average TFP estimates for the sample of all ZCTAs, urban ZCTAs and rural

ZCTAs. These data reveal between sector differences in estimated TFP, with sectors such

as health care, professional services, and management having higher average TFP relative

to real estate, agriculture, and information. Furthermore, there is within industry average

TFP variation based on location. For instance, the manufacturing sector has an average

TFP level of 0.84 in urban ZCTAs, but an average of 0.77 in rural ZCTAs.

In Appendix Table (B.10), I present the weighted average TFP estimate by sector for

each of the MSAs in the Front Range Urban Corridor (FRUC) and the FRUC overall. The

weighted sector average is the average of the estimates from equation (4.6) from 2001 to

2017. For each MSA c, the sector h weighted average, Ac,h, was estimated as

Ac,h =
1
T

T∑
t=1

N∑
i∈ic

ζi,h,tAi,h,t

where i ∈ ic is the set of ZCTAs located in c, ζi,h,t = Li,h,t
Lc,h,t

is the share of total sector h

employment in c located in i ∈ ic. The averages for the FRUC are the employment share
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Figure B.9: Average Estimated ZCTA Total Capital Stock Value Series Dynamics

Notes: In this figure, the (log of the) average ZCTA estimated capital stock value per worker using the primary
estimation method is plotted against the alternative method. Though there is a clear gap in levels, both
methods yield similar dynamics concerning the average evolution of local capital stock holdings over time.

weighted averages of each of the MSAs averaged from 2001 to 2017. That is, the weighted

sector average for the FRUC is

AFRUC =
1
T

T∑
t=1

C∑
c=1

ζc,tAc,t

where ζc,t = Lc,t
LFRUC,t

is the share of workers in c out of the entire FRUC. Similarly, the sector

specific FRUC average is

AFRUC,h =
1
T

T∑
t=1

C∑
c=1

ζc,h,tAc,h,t

where ζc,h,t = Lc,h,t
LFRUC,h,t

and Ac,h,t =
∑N
i∈ic ζi,h,tAi,h,t. Again, this table reveals between sector

variation and within sector variation between MSAs.

Note that the Rural ZCTA average from Appendix Table (B.9), 0.73, is used to calibrate

the rural town initial TFP level in the theoretical model from Section 3.4. The FRUC

average from Appendix Table (B.10), 0.94, is used to calibrate the city’s initial TFP level.

B.5.2 Urban Manufacturing TFP Dynamics

In Appendix Figure (B.11), I plot the weighted average of urban manufacturing TFP

against the weighted average of all urban TFP from 2001 to 2017. For h = manufacturing,

the urban average for year t is computed as

Ah,t =
N∑
i∈iu

ζi,h,tAi,h,t
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Figure B.10: Spatial Distribution of Urban TFP, 2001 to 2017

(a) TFP Levels

(b) TFP Annual Growth Rate

Notes: Panel (a) maps the spatial distribution of average TFP in levels among the six MSAs located in the Front
Range Urban Corridor in Colorado from 2001 to 20017. Similar to Figure (4.4a), to interpret the relative
magnitude of TFP in a given ZCTA, darker shades of blue reflect ZCTAs in higher percentiles of the set of
urban ZCTAs, with the darkest reflecting observations above the 75th percentile. Panel (b) maps the spatial
distribution of the annual change in TFP from 2001 to 2017 among MSAs. The mean annual growth rate in
the sample of urban ZCTAs is -0.2% with one standard deviation being 0.8%. Observations above the mean
are shaded green, while observations below are shaded red, with darker shading indicating the observation is
more than one standard deviation from the mean.
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Table B.9: Estimated ZCTA TFP by Sector

All ZCTAs Urban ZCTAs Rural ZCTAs
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

(Weighted) Sector Average 0.85 0.15 0.90 0.12 0.73 0.16
Agriculture (11) 0.62 0.29 0.66 0.30 0.55 0.27

Natural Resource Extraction (21) 0.72 0.30 0.78 0.30 0.53 0.23

Utilities (22) 0.69 0.33 0.62 0.30 0.85 0.35

Construction (23) 0.90 0.20 0.95 0.15 0.78 0.25

Manufacturing (31-33) 0.82 0.19 0.84 0.16 0.77 0.23

Wholesale Trade (42) 0.81 0.15 0.84 0.12 0.74 0.18

Retail Trade (44-45) 0.88 0.11 0.89 0.10 0.83 0.12

Transportation (48-49) 0.73 0.21 0.78 0.18 0.58 0.20

Information (51) 0.68 0.20 0.70 0.21 0.58 0.15

Finance and Insurance (52) 0.84 0.19 0.90 0.15 0.68 0.21
Real Estate (53) 0.30 0.08 0.30 0.08 0.31 0.08

Professional Services (54) 0.91 0.23 0.97 0.19 0.73 0.21
Management (55) 0.90 0.32 0.96 0.29 0.55 0.23

Administrative (56) 0.94 0.22 1.01 0.17 0.75 0.25

Education (61) 0.81 0.19 0.82 0.18 0.78 0.23

Health Care (62) 1.06 0.19 1.10 0.13 0.93 0.25

Entertainment/Recreation (71) 0.85 0.18 0.87 0.16 0.78 0.21

Accomodation/Food Service (72) 0.90 0.15 0.94 0.08 0.81 0.23

Other (81) 0.67 0.18 0.72 0.17 0.54 0.16

N 93,686 68,736 24,950

Notes: This table presents summary statistics concerning the TFP series by sector estimated in Section 4.3 for
the entire sample of ZCTAs as well as the urban and rural subsets. data sourced from the Colorado QCEW
for the sample. Numbers next to sector titles reflect the two-digit NAICS code for that sector.

where iu is the set of all urban ZCTAs and ζi,h,t = Li,h,t
Luh,t

is the share of total urban h

employment in year t working in ZCTA i. The inter-sector average is computed as

At =
N∑
i∈iu

ζi,tAi,t

where ζi,t = Li,t
Lut

and Ai,t is the weighted average from the main text.
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Table B.10: Estimated MSA TFP by Sector

FRUC Boulder Colorado Springs Denver Fort Collins Greeley Pueblo
Mean Mean Mean Mean Mean Mean Mean

(Weighted) Sector Average 0.94 0.92 0.94 0.94 0.94 0.87 0.94
Agriculture (11) 0.60 0.78 0.79 0.67 0.71 0.48 0.73

Natural Resource Extraction (21) 0.88 0.71 0.66 1.07 0.61 0.37 0.45

Utilities (22) 0.70 0.47 0.52 0.83 0.36 0.29 0.36

Construction (23) 1.01 0.81 0.96 1.04 0.99 0.93 1.03

Manufacturing (31-33) 0.87 0.82 0.87 0.86 1.01 0.78 0.88

Wholesale Trade (42) 0.85 0.84 0.89 0.85 0.78 0.91 0.89

Retail Trade (44-45) 0.90 0.92 0.89 0.90 0.90 0.89 0.93

Transportation (48-49) 0.83 0.88 0.85 0.84 0.90 0.73 0.60

Information (51) 0.74 0.67 0.65 0.78 0.66 0.58 0.63

Finance and Insurance (52) 0.96 1.00 0.93 0.98 0.86 0.82 0.82

Real Estate (53) 0.31 0.29 0.28 0.33 0.29 0.28 0.26

Professional Services (54) 1.04 1.07 1.07 1.03 1.01 1.00 0.84

Management (55) 1.02 1.15 1.16 1.00 1.11 1.21 0.83

Administrative (56) 1.07 0.98 1.08 1.08 1.04 1.04 0.92

Education (61) 0.81 0.83 0.95 0.77 0.85 0.88 0.79

Health Care (62) 1.13 1.11 1.12 1.13 1.11 1.15 1.14

Entertainment/Recreation (71) 0.87 0.78 0.88 0.89 0.78 0.97 0.88

Accommodation/Food Services (72) 0.94 0.95 0.92 0.94 0.93 0.96 0.96

Other (81) 0.79 0.74 0.93 0.80 0.65 0.54 0.59

N 17 17 17 17 17 17 17

Notes: This table presents summary statistics concerning the TFP series by sector estimated in Section 4.3 for
each MSA in the FRUC and a weighted average for the Front Range Urban Corridor. Numbers next to sector
titles reflect the two-digit NAICS code for that sector.

Appendix C Empirical Specification Appendix

C.1 Estimating Urban US County TFP

Given data on sector-level GDP Yb,h,t for counties b ∈ bu , where bu is the subset of

US counties classified as urban by the RUCC, and labour costs Wb,h,tLb,h,t for each urban

county in year t, I estimate the value of capital stock RKb,h,t via the cost-share approach

described in detail in Section 4.3

RKbu ,h,t =
Yb,h,t −Wb,h,tLb,h,t

ct
=

Yb,h,t −Wb,h,tLb,h,t
Yt −WtLt

RKt
where Yt, WtLt, and RKt are the national valuations of total GDP, labour costs, and capital

stock in year t. I then estimate county b sector h TFP as the residual

log(Ab,h,t) = log(Yb,h,t)−αb,h,t log(Wb,h,tLb,h,t)− (1−αb,h,t) log(RKb,h,t)

where the output elasticity of labour is estimated as αb,h,t = Wb,h,tLb,h,t
Yb,h,t

.44

44Data for which αb,h,t > 1 were replaced following the same procedure discussed in Section 4.3.
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Figure B.11: Urban Manufacturing TFP Series Dynamics

Notes: This figure plots the employment (weighted) urban ZCTA average of manufacturing TFP (blue) over
time relative to the inter-sector average (red).

C.2 Estimating Suppressed County-Level Data for Urban US Counties

The County Business Patterns (CBP) is an annual county-level data series provided by

the US Census Bureau that offers subnational economic data by sector. These data include

the number of establishments, employment during the week of 12 March, first quarter

payroll, and annual payroll. However, as Isserman and Westervelt (2006) note, two out

of every three employment statistics are suppressed to protect the rights of employers to

confidentiality. For 2002, Isserman and Westervelt (2006) calculate that the U.S. Census

Bureau has not disclosed the number of employees in 1.5 million cases. Eckert et al. (2020)

develop a linear programming method that exploits the large set of adding-up constraints

implicit in the hierarchical arrangement of the data to impute missing employment for all

counties in the US, offering a comprehensive database on county-level employment by

sector. They publicly provide these imputed data.

I estimate suppressed data (GDP, employment, and total wage bill) in an approach

nearly identical to that in Appendix B.3.1. For county b in year t, the unsuppressed data

for each sector h are aggregated and subtracted from the reported county total to deliver

an estimate for the value of the suppressed data. Employment for each missing sector

h in county b during year t according to Eckert et al. (2020) was then divided by the

total employment count for all the missing industries in b to produce a missing sector

employment share. The product of this share and the total value of the missing data were

allocated as the estimate for county b’s year t real GDP, real total wage bill value, or annual
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QCEW employment total for sector h.45 The underlying intuition for this methodology

is that employment levels are correlated with output and wage shares. Of course, this is

an imperfect assumption and likely to introduce some degree of error in the estimation,

but it mitigates measurement error introduced by other, less informed approaches, such

as ignoring missing industries, despite them being small, or dividing the missing data

evenly among suppressed industries. Note that I also impute missing QCEW employment

data with CBP employment data. This is in an effort to ensure consistent employment

measurement across all aspects of the study. Clearly, CBP employment measures will be

highly informative about suppressed QCEW employment measures.

Appendix D Results Appendix

45Given that the GDP and wage data came from two different data sources compiled by different US
governmental data authorities, it is not necessarily the case that county b was missing both sector h’s GDP
data and total wage bill data/employment.
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Table D.1: Baseline First Stage Results

Overlapping Data Non-Overlapping Data

(1) (2) (3)∑
cωi,c∆ac,t−3,t

∑
cωi,c∆ac,t−3,t

∑
cωi,c∆ac,t−3,t

ωi,BCOBBCO,t−3,t -0.0014∗∗∗ -0.0041∗∗∗ -0.0019∗∗∗

(0.0001) (0.0005) (0.0001)

ωi,COSBCOS,t−3,t -0.0004∗∗ -0.0013∗∗∗ 0.0015∗∗

(0.0001) (0.0003) (0.0006)

ωi,DENBDEN,t−3,t 0.0002∗∗∗ 0.0006∗∗∗ 0.0001∗∗∗

(0.0000) (0.0001) (0.0000)

ωi,FCOBFCO,t−3,t 0.0013∗∗∗ 0.0011∗ 0.0009∗∗∗

(0.0003) (0.0005) (0.0002)

ωi,P UBBPUB,t−3,t 0.0027∗∗∗ 0.0076∗∗∗ -0.0066∗∗

(0.0007) (0.0021) (0.0026)

δ2005,2008 0.0082∗∗∗

(0.0022)

δ2006,2009 -0.0097∗∗∗

(0.0029)

δ2007,2010 -0.0211∗∗∗ -0.0122∗∗∗

(0.0057) (0.0035)

δ2008,2011 0.0040∗∗ 0.0051∗∗∗

(0.0019) (0.0016)

δ2009,2012 -0.0101∗∗∗

(0.0029)

δ2010,2013 0.0009 0.0009
(0.0013) (0.0017)

δ2011,2014 0.0011 0.0105∗∗∗

(0.0015) (0.0027)

δ2012,2015 0.0138∗∗∗

(0.0042)

δ2013,2016 -0.0048∗∗∗ 0.0011
(0.0014) (0.0014)

δ2014,2017 -0.0035∗∗∗ 0.0055∗∗∗

(0.0010) (0.0018)

Constant 0.0081∗∗∗ 0.0043∗∗ 0.0005
(0.0023) (0.0017) (0.0012)

N 1276 464 464
R2 0.53 0.57 0.63
Estimator OLS OLS OLS

Notes: This table displays the first stage estimates for the benchmark results in Table (6.1) estimated using the ordinary
least squares (OLS) estimator. The intercept term and time dummy variables were included in each specification (with the
time dummy for 2004-2007 omitted). Standard errors are clustered in 10,000-square-km grid squares and are robust to
heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011)
where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. In addition to Intercept/Time Dummies (which are
included in the second stage), the excluded instruments are the spatial connectivity weighted shift-share instrument for
each MSA c, ωi,cBc,t−3,t , where the set of informative MSAs c include Boulder (BCO), Colorado Springs (COS), Denver
(DEN), Fort Collins (FCO), and Pueblo (PUB). Greeley (GXY) is not informative when included with the other MSAs and
so is not used in estimation. The excluded time dummy for columns (2) and (3) is that for 2004-2007; the excluded time
dummy for column (4) is for 2005-2008.
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Table D.2: Alternative Instrumental Variables Results

(1) (2) (3) (4) (5) (6) (7) (8)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3

Instrument Set Benchmark
∑
cωi,cBc,t−3,t

∑
c λc,tωi,cBc,t−3,t ωi,GXY BGXY ,t−3,t

ωi,BCOBBCO,t−3,t ωi,GXY BGXY ,t−3,t ωi,BCOBBCO,t−3,t All Cities
ωi,DENBDEN,t−3,t ωi,P UBBPUB,t−3,t ωi,FCOBFCO,t−3,t∑

cωi,c∆ac,t−3,t -0.403∗∗∗ -0.215 -0.204 -0.382∗∗ -0.368∗∗ -0.385∗∗ -0.440∗∗∗ -0.434∗∗∗

(0.153) (0.210) (0.212) (0.170) (0.161) (0.168) (0.151) (0.148)

N 1276 1276 1276 1276 1276 1276 1276 1276
R2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
β̂1 t-Ratio P -value 0.01 0.31 0.34 0.02 0.02 0.02 0.00 0.00
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM GMM GMM
Weak ID F-Test 2471.52 1300.12 723.22 23.22 392.26 39.07 15.61 1711.02
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Hansen’s J-Test P -value 0.59 – – – 0.36 0.92 0.25 0.65
C-Test P -value 0.02 0.42 0.46 0.04 0.20 0.04 0.03 0.02
Moran’s I-Test P -value (WC ) 0.00 0.06 0.07 0.03 0.06 0.03 0.20 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00
Moran’s I-Test P -value (WD ) 0.41 0.40 0.40 0.41 0.41 0.41 0.44 0.41
Moran’s I-Test P -value (WCD ) 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.44
Moran’s I-Test P -value (WBD ) 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.45
Moran’s I-Test P -value (WG) 0.57 0.56 0.56 0.58 0.59 0.58 0.65 0.56

Notes: This table displays estimates of equation (6.1) estimated using the two-step feasible generalised method of moments (GMM) estimator. Each column presents estimates using
different combinations of shift-share instruments for the explanatory variable of interest. The instruments used to procure the estimates in a particular column are listed in the
column header. The intercept term and time dummy variables were included in each specification (with the time dummy for 2004-2007 omitted). Standard errors are clustered in
10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. Instruments used in estimation and the post-estimation tests performed are identical to Table (6.1).
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Table D.3: Alternative Urban-Rural Spatial Connectivity Distance Specifications

(1) (2) (3)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3

Distance Measure Road (km) Travel Time (hr) Euclidean (km)∑
cωi,c∆ac,t−3,t -0.403∗∗∗ -0.362∗∗ -0.456∗∗∗

(0.153) (0.151) (0.144)

N 1276 1276 1276
R2 0.07 0.07 0.07
β̂1 t-Ratio P -value 0.01 0.02 0.00
Intercept/Time Dummies Yes Yes Yes
Estimator GMM GMM GMM
Weak ID F-Test 2471.52 1245.01 21.63
Weak IV-robust P -value 0.00 0.00 0.00
Hansen’s J-Test P -value 0.59 0.64 0.52
C-Test P -value 0.02 0.04 0.00
Moran’s I-Test P -value (WC) 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.41 0.40 0.42
Moran’s I-Test P -value (WCD ) 0.44 0.44 0.45
Moran’s I-Test P -value (WBD ) 0.45 0.45 0.46
Moran’s I-Test P -value (WG) 0.57 0.56 0.59

Notes: This table displays estimates of equation (6.1) estimated using the two-step feasible generalised
method of moments (GMM) estimator. Each column presents estimates using a different measurement of
distance used in the construction of the gravity weights between ZCTAs and MSAs. Column (1) presents
the benchmark results, where distance is defined in terms of distance by road in kilometres. Column (2)
presents distance is in terms of travel time, measured in hours of travel by automobile. Finally, column (3)
presents estimates with Euclidean distances in kilometres. The intercept term and time dummy variables
were included in each specification (with the time dummy for 2004-2007 omitted). Standard errors are
clustered in 10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation, and
spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01 using a two-tailed test. Instruments used in estimation and the post-estimation tests performed are
identical to Table (6.1).
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Table D.4: Local TFP Standardised Panel Average Moran’s I-Statistic P -Values

W Data-Form Levels ∆t,t+1 ∆t,t+2 ∆t,t+3 ∆t,t+4 ∆t,t+5 ∆t,t+6

WC
Non-Overlapping 0.00 0.00 0.00 0.00 0.00 0.04 0.00
Overlapping 0.00 0.00 0.00 0.00 0.00

WB
Non-Overlapping 0.00 0.00 0.00 0.00 0.01 0.09 0.08
Overlapping 0.00 0.00 0.00 0.00 0.00

WD
Non-Overlapping 0.00 0.00 0.00 0.00 0.01 0.00 0.10
Overlapping 0.00 0.00 0.00 0.00 0.00

WCD
Non-Overlapping 0.00 0.00 0.00 0.00 0.00 0.01 0.06
Overlapping 0.00 0.00 0.00 0.00 0.00

WBD
Non-Overlapping 0.00 0.00 0.00 0.00 0.01 0.05 0.14
Overlapping 0.00 0.00 0.00 0.00 0.00

WG
Non-Overlapping 0.00 0.01 0.02 0.18 0.25 0.28 0.36
Overlapping 0.01 0.11 0.15 0.13 0.17

N 116 Rural ZCTAs

Notes: This table presents the P -values of the standardised panel average of Moran’s I-Statistics for local TFP
data in levels and (log) differences within the sample 116 rural ZCTAs using a variety of spatial connectivity
matrices. Under the null hypothesis, there is no spatial correlation.
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Table D.5: Results for Figure 6.1 (MSA TFP Change Parameter Heterogeneity)

(1) (2) (3) (4) (5) (6)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3∑

cωi,c∆ac,t−3,t -0.424∗∗∗ -0.548∗∗ 0.508 -0.862∗∗ -0.875∗∗ -0.486∗∗

(0.159) (0.239) (0.656) (0.342) (0.351) (0.193)

ωi,BCO∆aBCO,t−3,t -0.111
(0.152)

ωi,COS∆aCOS,t−3,t 0.124
(0.144)

ωi,DEN∆aDEN,t−3,t -0.958
(0.671)

ωi,FCO∆aFCO,t−3,t 0.460
(0.288)

ωi,GXY∆aGXY ,t−3,t 0.115
(0.080)

ωi,P UB∆aPUB,t−3,t 0.030
(0.037)

N 1276 1276 1276 1276 1276 1276
R2 0.06 0.07 0.07 0.06 0.06 0.07
(β̂2 − β̂1) t-Ratio P -value 0.47 0.39 0.15 0.11 0.15 0.41
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 12.81 29.02 34.45 89.13 365.36 49.81
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.00 0.00
Hansen’s J-Test P -value 0.47 0.53 0.64 0.69 0.51 0.51
C-Test P -value 0.18 0.05 0.06 0.02 0.11 0.06
Moran’s I-Test P -value (WC) 0.02 0.02 0.01 0.10 0.00 0.01
Moran’s I-Test P -value (WB) 0.00 0.00 0.02 0.03 0.00 0.00
Moran’s I-Test P -value (WD ) 0.40 0.41 0.44 0.41 0.43 0.42
Moran’s I-Test P -value (WCD ) 0.44 0.44 0.45 0.44 0.45 0.45
Moran’s I-Test P -value (WBD ) 0.45 0.45 0.46 0.46 0.46 0.46
Moran’s I-Test P -value (WG) 0.56 0.58 0.63 0.59 0.59 0.60

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This presents results for the coefficient plots in figure (6.1). All models estimated using the feasible
two-step generalised method of moments (GMM) estimator. BCO refers to the Boulder MSA, COS to the
Colorado Springs MSA, DEN to Denver MSA, FCO to Fort Collins MSA, GXY to Greeley MSA, and PUB to
Pueblo MSA. The intercept term and time dummy variables were included in each specification (with the
time dummy for 2004-2007 omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. Instruments used
in estimation and the post-estimation tests performed are identical to Table (6.1).
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Table D.6: Results for Figure 6.2 (Three-Year Urban TFP Growth and Rural ZCTA Employment
Growth over Time)

(1) (2) (3) (4) (5) (6)
∆li,t,t+1 ∆li,t,t+2 ∆li,t,t+3 ∆li,t,t+4 ∆li,t,t+5 ∆li,t,t+6∑

cωi,c∆ac,t−3,t -0.185∗∗∗

(0.069)∑
cωi,c∆ac,t−3,t -0.358∗∗∗

(0.114)∑
cωi,c∆ac,t−3,t -0.403∗∗∗

(0.153)∑
cωi,c∆ac,t−3,t -0.477∗∗∗

(0.165)∑
cωi,c∆ac,t−3,t -0.352∗∗

(0.167)∑
cωi,c∆ac,t−3,t -0.128

(0.169)

N 1508 1392 1276 1160 1044 928
R2 0.04 0.06 0.07 0.06 0.06 0.06
β̂1 t-Ratio P -value 0.01 0.00 0.01 0.00 0.03 0.45
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 2518.81 2641.74 2471.52 1477.03 1378.46 2190.23
Weak IV-robust P -value 0.00 0.00 0.00 0.03 0.05 0.04
Hansen’s J-Test P -value 0.54 0.61 0.59 0.70 0.65 0.41
C-Test P -value 0.36 0.01 0.02 0.01 0.21 0.99
Moran’s I-Test P -value (WC ) 0.00 0.97 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.01 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.47 0.75 0.52 0.48 0.59 0.50
Moran’s I-Test P -value (WCD ) 0.50 0.61 0.50 0.43 0.48 0.46
Moran’s I-Test P -value (WBD ) 0.50 0.59 0.48 0.41 0.46 0.45
Moran’s I-Test P -value (WG) 0.34 0.50 0.3 0.27 0.57 0.44

Notes: This presents results for the coefficient plots in figure (6.2). All models estimated using the feasible
two-step generalised method of moments (GMM) estimator. The intercept term and time dummy variables
were included in each specification (with the time dummy for the earliest possible period omitted). Standard
errors are clustered in 10,000-square-km grid squares and are robust to heteroskedasticity, serial correlation,
and spatial correlation of the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01 using a two-tailed test. Instruments used in estimation and the post-estimation tests performed
are identical to Table (6.1).
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Table D.7: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 1)

(1) (2) (3) (4) (5) (6)
∆li,t,t+1 ∆li,t,t+1 ∆li,t,t+1 ∆li,t,t+1 ∆li,t,t+1 ∆li,t,t+1∑

cωi,c∆ac,t−1,t 0.043
(0.108)∑

cωi,c∆ac,t−2,t -0.084
(0.060)∑

cωi,c∆ac,t−3,t -0.185∗∗∗

(0.069)∑
cωi,c∆ac,t−4,t -0.086∗∗

(0.040)∑
cωi,c∆ac,t−5,t -0.016

(0.044)∑
cωi,c∆ac,t−6,t -0.168∗∗∗

(0.053)

N 1740 1624 1508 1392 1276 1160
R2 0.03 0.03 0.04 0.04 0.04 0.05
β̂1 t-Ratio P -value 0.69 0.17 0.01 0.03 0.71 0.00
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 16433.70 9352.53 2518.81 253.18 419.73 460.85
Weak IV-robust P -value 0.05 0.01 0.00 0.00 0.04 0.04
Hansen’s J-Test P -value 0.34 0.42 0.54 0.77 0.18 0.61
C-Test P -value 0.25 0.57 0.36 0.85 0.55 0.03
Moran’s I-Test P -value (WC ) 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.59 0.00 0.07 0.00 0.00
Moran’s I-Test P -value (WD ) 0.59 0.36 0.58 0.36 0.49 0.46
Moran’s I-Test P -value (WCD ) 0.54 0.43 0.55 0.44 0.49 0.47
Moran’s I-Test P -value (WBD ) 0.57 0.45 0.53 0.44 0.50 0.54
Moran’s I-Test P -value (WG) 0.48 0.50 0.52 0.44 0.60 0.19

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+1 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t for k ∈ {1,2, . . . ,6} are the Bartik-style shift share instruments for Boulder

(BCO), Colorado Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t ,
ωi,COSBCOS,t−k,t , ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are
identical to those performed in Table (6.1).
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Table D.8: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 2)

(1) (2) (3) (4) (5) (6)
∆li,t,t+2 ∆li,t,t+2 ∆li,t,t+2 ∆li,t,t+2 ∆li,t,t+2 ∆li,t,t+2∑

cωi,c∆ac,t−1,t -0.141
(0.145)∑

cωi,c∆ac,t−2,t -0.210∗∗

(0.100)∑
cωi,c∆ac,t−3,t -0.358∗∗∗

(0.114)∑
cωi,c∆ac,t−4,t -0.096∗∗

(0.049)∑
cωi,c∆ac,t−5,t -0.133

(0.083)∑
cωi,c∆ac,t−6,t -0.159

(0.114)

N 1624 1508 1392 1276 1160 1044
R2 0.05 0.06 0.06 0.07 0.07 0.08
β̂1 t-Ratio P -value 0.33 0.04 0.00 0.05 0.11 0.16
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 15235.11 9002.71 2641.74 172.10 335.03 481.10
Weak IV-robust P -value 0.00 0.00 0.00 0.00 0.07 0.03
Hansen’s J-Test P -value 0.13 0.22 0.61 0.27 0.20 0.46
C-Test P -value 0.85 0.14 0.01 0.72 0.65 0.28
Moran’s I-Test P -value (WC ) 0.00 0.00 0.42 0.53 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.08 0.00 0.00
Moran’s I-Test P -value (WD ) 0.48 0.43 0.31 0.48 0.64 0.81
Moran’s I-Test P -value (WCD ) 0.48 0.48 0.40 0.47 0.57 0.65
Moran’s I-Test P -value (WBD ) 0.52 0.50 0.39 0.48 0.57 0.66
Moran’s I-Test P -value (WG) 0.53 0.37 0.45 0.60 0.35 0.42

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+2 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t for k ∈ {1,2, . . . ,6} are the Bartik-style shift share instruments for Boulder

(BCO), Colorado Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t ,
ωi,COSBCOS,t−k,t , ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are
identical to those performed in Table (6.1).
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Table D.9: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 3)

(1) (2) (3) (4) (5) (6)
∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3 ∆li,t,t+3∑

cωi,c∆ac,t−1,t -0.242∗

(0.142)∑
cωi,c∆ac,t−2,t -0.256∗∗

(0.114)∑
cωi,c∆ac,t−3,t -0.403∗∗∗

(0.153)∑
cωi,c∆ac,t−4,t -0.169∗

(0.088)∑
cωi,c∆ac,t−5,t 0.009

(0.129)∑
cωi,c∆ac,t−6,t 0.191

(0.136)

N 1508 1392 1276 1160 1044 928
R2 0.06 0.06 0.07 0.07 0.08 0.09
β̂1 t-Ratio P -value 0.09 0.02 0.01 0.05 0.95 0.16
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 13713.72 8704.40 2471.52 148.13 380.00 536.19
Weak IV-robust P -value 0.00 0.00 0.00 0.03 0.10 0.06
Hansen’s J-Test P -value 0.22 0.41 0.59 0.37 0.31 0.37
C-Test P -value 0.53 0.14 0.02 0.42 0.78 0.32
Moran’s I-Test P -value (WC ) 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.46 0.21 0.41 0.51 0.91 0.14
Moran’s I-Test P -value (WCD ) 0.50 0.34 0.44 0.51 0.75 0.25
Moran’s I-Test P -value (WBD ) 0.54 0.37 0.45 0.49 0.73 0.31
Moran’s I-Test P -value (WG) 0.28 0.39 0.57 0.41 0.70 0.28

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+3 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t are the Bartik-style shift share instruments for Boulder (BCO), Colorado

Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t , ωi,COSBCOS,t−k,t ,
ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are identical to those
performed in Table (6.1).
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Table D.10: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 4)

(1) (2) (3) (4) (5) (6)
∆li,t,t+4 ∆li,t,t+4 ∆li,t,t+4 ∆li,t,t+4 ∆li,t,t+4 ∆li,t,t+4∑

cωi,c∆ac,t−1,t -0.199
(0.124)∑

cωi,c∆ac,t−2,t -0.248∗∗

(0.105)∑
cωi,c∆ac,t−3,t -0.477∗∗∗

(0.165)∑
cωi,c∆ac,t−4,t -0.040

(0.121)∑
cωi,c∆ac,t−5,t 0.191

(0.138)∑
cωi,c∆ac,t−6,t 0.214

(0.142)

N 1392 1276 1160 1044 928 812
R2 0.06 0.06 0.06 0.07 0.08 0.07
β̂1 t-Ratio P -value 0.11 0.02 0.00 0.74 0.17 0.13
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 899.30 9065.58 1477.03 289.86 1419.63 3340.02
Weak IV-robust P -value 0.00 0.01 0.03 0.19 0.11 0.06
Hansen’s J-Test P -value 0.37 0.46 0.70 0.52 0.56 0.19
C-Test P -value 0.41 0.11 0.01 0.38 0.81 0.12
Moran’s I-Test P -value (WC ) 0.00 0.00 0.00 0.00 0.00 0.02
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.94 0.00
Moran’s I-Test P -value (WD ) 0.29 0.32 0.62 0.97 0.30 0.47
Moran’s I-Test P -value (WCD ) 0.37 0.38 0.56 0.82 0.32 0.44
Moran’s I-Test P -value (WBD ) 0.41 0.42 0.52 0.78 0.36 0.48
Moran’s I-Test P -value (WG) 0.34 0.22 0.68 0.83 0.72 0.47

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+4 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t are the Bartik-style shift share instruments for Boulder (BCO), Colorado

Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t , ωi,COSBCOS,t−k,t ,
ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are identical to those
performed in Table (6.1).
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Table D.11: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 5)

(1) (2) (3) (4) (5) (6)
∆li,t,t+5 ∆li,t,t+5 ∆li,t,t+5 ∆li,t,t+5 ∆li,t,t+5 ∆li,t,t+5∑

cωi,c∆ac,t−1,t -0.045
(0.110)∑

cωi,c∆ac,t−2,t -0.163
(0.102)∑

cωi,c∆ac,t−3,t -0.352∗∗

(0.167)∑
cωi,c∆ac,t−4,t -0.015

(0.156)∑
cωi,c∆ac,t−5,t 0.063

(0.154)∑
cωi,c∆ac,t−6,t 0.032

(0.147)

N 1276 1160 1044 928 812 696
R2 0.06 0.05 0.06 0.07 0.07 0.06
β̂1 t-Ratio P -value 0.68 0.11 0.03 0.92 0.68 0.83
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 588.65 9705.26 1378.46 1177.62 1115.25 2292.18
Weak IV-robust P -value 0.03 0.01 0.05 0.07 0.26 0.18
Hansen’s J-Test P -value 0.36 0.22 0.65 0.52 0.76 0.34
C-Test P -value 0.53 0.53 0.21 0.67 0.80 0.31
Moran’s I-Test P -value (WC ) 0.00 0.00 0.00 0.00 0.04 0.00
Moran’s I-Test P -value (WB) 0.88 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.27 0.61 0.98 0.57 0.56 0.94
Moran’s I-Test P -value (WCD ) 0.40 0.58 0.84 0.46 0.46 0.76
Moran’s I-Test P -value (WBD ) 0.45 0.56 0.78 0.46 0.50 .67
Moran’s I-Test P -value (WG) 0.12 0.45 0.95 0.77 0.36 0.98

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+5 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t are the Bartik-style shift share instruments for Boulder (BCO), Colorado

Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t , ωi,COSBCOS,t−k,t ,
ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are identical to those
performed in Table (6.1).
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Table D.12: Results for Figure 6.3 (Urban TFP Growth over Time and Rural Employment Growth
t to t + 6)

(1) (2) (3) (4) (5) (6)
∆li,t,t+6 ∆li,t,t+6 ∆li,t,t+6 ∆li,t,t+6 ∆li,t,t+6 ∆li,t,t+6∑

cωi,c∆ac,t−1,t -0.132
(0.162)∑

cωi,c∆ac,t−2,t -0.138
(0.107)∑

cωi,c∆ac,t−3,t -0.128
(0.169)∑

cωi,c∆ac,t−4,t -0.048
(0.132)∑

cωi,c∆ac,t−5,t 0.066
(0.109)∑

cωi,c∆ac,t−6,t -0.166
(0.114)

N 1160 1044 928 812 696 580
R2 0.05 0.05 0.06 0.06 0.05 0.06
β̂1 t-Ratio P -value 0.41 0.19 0.45 0.71 0.55 0.15
Intercept/Time Dummies Yes Yes Yes Yes Yes Yes
Estimator GMM GMM GMM GMM GMM GMM
Weak ID F-Test 459.44 8135.55 2190.23 17309.93 1680.60 3416.56
Weak IV-robust P -value 0.01 0.03 0.04 0.02 0.12 0.09
Hansen’s J-Test P -value 0.20 0.20 0.41 0.38 0.42 0.38
C-Test P -value 0.19 0.79 0.99 0.91 0.51 0.52
Moran’s I-Test P -value (WC ) 0.07 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00 0.00 0.00 0.00 0.00
Moran’s I-Test P -value (WD ) 0.57 0.96 0.80 0.60 0.92 0.10
Moran’s I-Test P -value (WCD ) 0.54 0.81 0.59 0.48 0.75 0.26
Moran’s I-Test P -value (WBD ) 0.56 0.75 0.57 0.51 0.65 0.31
Moran’s I-Test P -value (WG) 0.32 0.88 0.81 0.25 0.95 0.81

Notes: This presents results for the coefficient plot concerning rural employment growth from t to t+6 in figure
(6.3). All models estimated using the feasible two-step generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
the earliest possible period omitted). Standard errors are clustered in 10,000-square-km grid squares and
are robust to heteroskedasticity, serial correlation, and spatial correlation of the form discussed in Bester,
Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a two-tailed test. The excluded
instruments used for

∑
cωi,c∆ac,t−k,t for k ∈ {1,2, . . . ,6} are the Bartik-style shift share instruments for Boulder

(BCO), Colorado Springs (COS), Denver (DEN), Fort Collins (FCO), and Pueblo (PUB): ωi,BCOBBCO,t−k,t ,
ωi,COSBCOS,t−k,t , ωi,DENBDEN,t−k,t , ωi,FCOBFCO,t−k,t , and ωi,P UBBPUB,t−k,t . Post-estimation tests are
identical to those performed in Table (6.1).
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Table D.13: Lagged and Contemporaneous Urban TFP Growth

(1) (2)
∆li,t,t+3 ∆li,t,t+3∑

cωi,c∆ac,t−3,t -0.403∗∗∗

(0.153)∑
cωi,c∆ac,t,t+3 0.177

(0.270)

N 1276 1624
R2 0.07 0.05
β̂1 t-Ratio P -value 0.01 0.51
Intercept/Time Dummies Yes Yes
Estimator GMM GMM
Weak ID F-Test 2471.52 209.10
Weak IV-robust P -value 0.00 0.00
Hansen’s J-Test P -value 0.59 0.25
C-Test P -value 0.02 0.29
Moran’s I-Test P -value (WC) 0.00 0.00
Moran’s I-Test P -value (WB) 0.00 0.00
Moran’s I-Test P -value (WD ) 0.52 0.27
Moran’s I-Test P -value (WCD ) 0.50 0.38
Moran’s I-Test P -value (WBD ) 0.48 0.36
Moran’s I-Test P -value (WG) 0.30 0.18

Notes: This table displays estimates of equation (6.1) in column (1) alongside estimates of a model in which
growth in urban TFP occurs contemporaneously with growth in employment (i.e. from t to t+3) in column (2),
both models being estimated using the two-step feasible generalised method of moments (GMM) estimator.
The intercept term and time dummy variables were included in each specification (with the time dummy for
2004-2007 omitted in column (1) and 2001-2004 for column (2)). Standard errors are clustered in 10,000-
square-km grid squares and are robust to heteroskedasticity, serial correlation, and spatial correlation of
the form discussed in Bester, Conley, and Hansen (2011) where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 using a
two-tailed test. Instruments used in estimation and the post-estimation tests performed are identical to Table
(6.1).
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