STATE OF INDIANA INDIANA UTILITY REGULATORY COMMISSION

IN THE MATTER OF THE PETITION OF	
THE CITY OF FRANKFORT, INDIANA)
FOR APPROVAL OF A NEW	
SCHEDULE OF RATES AND CHARGES NO. 44856	
FOR ELECTRIC SERVICE)

DIRECT TESTIMONY

of
SCOTT D. BOWLES, P.E.

On
Behalf of
Petitioner,
City of Frankfort, Indiana

Petitioner's Exhibit 3

INTRODUCTION

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Scott D. Bowles and my business address is 5524 North County Line Road East, Auburn, Indiana 46706-9302.

Q. WHAT IS YOUR PROFESSION AND BY WHOM ARE YOU EMPLOYED?

A. I am a registered professional engineer in the State of Indiana as well as ten other states. I am a Principal and the President of Spectrum Engineering Corporation.

Q. PLEASE DESCRIBE SPECTRUM ENGINEERING CORPORATION AND

 ITS AREAS OF EXPERTISE.A. Spectrum Engineering Corporation, located in Auburn, Indiana, has been a privately held business for 36 years. Spectrum offers professional engineering services for electric utilities, including: system studies, design, testing, commissioning and assistance with negotiations with vendors and contractors. Supplementary expertise in contract administration, project management and broadband (fiber to the home) feasibility studies, as well as design and deployment, have also become a strong part of Spectrum's services. In addition, Spectrum Engineering has developed cost of service studies for its municipal utility clients.
Q. MR. BOWLES, WILL YOU PLEASE SUMMARIZE YOUR EDUCATIONAL BACKGROUND AND PROFESSIONAL EXPERIENCE?
A. For my undergraduate studies, I attended Michigan Technological University as a student of both Electrical Engineering and Applied Physics with a minor in

Mathematics. While at Michigan Technological University, I worked as a cooperative student; sponsored by Bechtel Power Corporation at the Enrico Fermi II Nuclear Facility in Newport, Michigan, then later at the Belle River Coal Fired generating facility in the East China Township of Michigan. I transferred to TriState University to complete my Electrical Engineering degree. In 1986, I graduated from Tri-State University cum laude with a Bachelor of Science degree in Electrical Engineering (Power Option). I also have completed extensive coursework in Mechanical and Civil Engineering. In 1992, I earned a Master's Degree in Business Administration (MBA) from Indiana University.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to present the results of the cost of service study filed in this proceeding by Petitioner, Frankfort City Light and Power ("Frankfort" or the "Utility"), and to discuss the underlying methodology I used to conduct the cost of service study. My testimony also presents and explains Frankfort's proposed design of rates and charges. I sponsor Petitioner's schedules of rates and charges. In addition, I describe and provide support for the proposed Economic Development Rider and certain changes to Frankfort's non-recurring charges. I also provide support for and describe Frankfort's capital improvement plan to be funded with the proposed electric revenue bonds.

Q. PLEASE IDENTIFY THE ATTACHMENTS YOU ARE SPONSORING IN THIS PROCEEDING.

A. I am sponsoring the following Attachments, and will discuss each Attachment and associated schedules in the applicable sections of my testimony:

SDB-1 Electric Cost of Service Study
SDB-2 Description of Allocation Factors
SDB-3 Red-lined Version of Proposed Electric Rates
SDB-4 Clean Version of Proposed Electric Rates
SDB-5 Impact Study of Proposed Rates on Smallest Customers of Each Class

SBD-6 Proposed Economic Development Rider (with statement of benefits application attachment)

SDB-7 Impact Study of Proposed Economic Development Rider
SDB-8 Determination of Non-Recurring Charges
SDB-9 Proposed Capital Improvement Plan Estimates
Q. DID YOU PREPARE OR DIRECT THE PREPARATION OF EACH OF THE IDENTIFIED ATTACHMENTS?
A. Yes.

Electric Cost of Service Study

Q. PLEASE EXPLAIN THE BASIS FOR YOUR EVALUATION AND DESIGN OF RATES.
A. The municipal ratemaking process generally can be categorized into three steps. First, the utility's total revenue requirements are determined to assess whether an adjustment to overall revenues from rates and charges is necessary. Petitioner's witness Andrew Lanam of Reedy Financial Group sponsors the evaluation of Petitioner's revenue requirements. Second, the utility must consider how the amount of any proposed increase in revenues is to be distributed among the various customer classes, based on the cost to serve each class. Finally, individual tariffs are designed to produce the required amount of revenues for each customer class to reflect the cost of serving customers within the class. The guiding principle at each step is cost of service.

Q. PLEASE DESCRIBE FURTHER THE PROCESS OF ALLOCATING THE REVENUE INCREASE TO THE APPROPRIATE CUSTOMER CLASS.

A. Each customer class should, to the extent reasonably practicable, produce revenues equal to the cost of serving that particular class. The standard tool for determining this is a class cost of service study, which determines the cost to serve, and the revenues recovered from each class of service. Rate levels should be modified so that each class provides approximately the same rate of return. This assures a correct match between the rates charged each class and the cost of serving it. In designing individual tariffs, the goal should also be to relate the rate design to the cost of service so that each customer's rate tracks, to the extent practicable, the utility's cost of providing that service.

Q. PLEASE PROVIDE A SUMMARY OF YOUR TESTIMONY WITH RESPECT TO THE COST OF SERVICE STUDY.

A. Allocating Frankfort's overall historical test year costs to the various classes of service in a manner that reflects the relative costs of providing service to each class was accomplished through analyzing costs and assigning each customer or rate class its proportionate share of the utility's total costs within the historical test year. In order to allocate costs to the various classes, I reviewed Frankfort's expense and plant accounts and the relative costs of providing facilities and
services for each rate class and analyzed the key factors that cause the costs to vary.

Q. WHY IS IT IMPORTANT TO ADHERE TO BASIC COST OF SERVICE PRINCIPLES IN THE RATE DESIGN PROCESS?

A. It is important to use cost of service as the primary factor in the rate design process because it achieves the principles of equity, engineering efficiency (cost minimization), conservation and stability.

Q. HOW IS EQUITY ACHIEVED BY BASING RATES ON COSTS?

A. When rates are based on cost, each customer (to the extent practical) pays what it costs the utility to serve that customer. If rates are not based on cost of service, some customers contribute disproportionately to the utility's revenues and subsidize the service provided to other customers, which may be inequitable.

Q. HOW DO COST-BASED RATES FURTHER ENGINEERING EFFICIENCY?

A. Cost minimization can be better achieved when customers receive the appropriate price signals from the rates they are charged. When the rates are designed so that energy costs, demand costs, and customer costs are properly reflected in the energy, demand, and customer components of the rate schedules respectively, customers are provided with the proper incentives to minimize their costs. This in turn can minimize the costs to the utility.

Q HOW DO COST BASED RATES FURTHER CONSERVATION?

A. Conservation is more apt to occur when wasteful or inefficient uses of electricity are discouraged. When rates for electric power are based on actual cost of
service, customers receive a balanced price signal on which to base their consumption decisions. If rates are not based on the cost to serve the customers, customers may be induced to use electricity inefficiently. It is important to note that Frankfort's existing rate structure is based on declining block principles whereby the more energy is consumed, the lower the unit energy price to the consumer. This method sends incorrect pricing signals regarding consumption efficiency. Further, the existing structure is incongruent with Frankfort's wholesale purchase power agreement where a single flat rate per kWh is charged for the energy consumed.

Q. HOW DO COST BASED RATES PROMOTE STABILITY?

A. The earnings impact on the utility attributable to changes in customer use patterns can be mitigated when rates are designed to track changes in the level of costs. From the perspective of the customer, cost-based rates provide a more reliable means of determining future levels of power costs.

Q. DID YOU PERFORM AN ELECTRIC COST OF SERVICE STUDY FOR FRANKFORT?

A. Yes. I worked with staff of Frankfort and completed the study in August of 2016. In order to allocate costs to the various classes, I reviewed Frankfort's expense and plant accounts and studied the relative costs of providing facilities and services for each rate class and analyzed the key factors that cause the costs to vary. The results of the electric cost of service study and associated proposed electric rates and charges are presented in Petitioner's Attachment SDB-1 Electric Cost of Service Study.
Q. WAS THE COST OF SERVICE STUDY USED TO ESTABLISH INITIAL REVENUE RESPONSIBILITY LEVELS AT FRANKFORT'S PROPOSED REVENUE REQUIREMENT FOR EACH RATE CLASS?

A. Yes. I used the cost of service study as the basis for designing the rates proposed
in this proceeding. Clean and red-lined versions of the proposed revised rate
schedules are set forth in Attachments SDB-3 Redlined Version of Proposed
Electric Rates and SBD-4 Clean Version of Proposed Electric Rates.

Q. WAS AN ELECTRONIC COPY OF THE COST OF SERVICE STUDY
MODEL PROVIDED TO THE COMMISSION AND THE OFFICE OF
THE UTILITY CONSUMER COUNSELOR?
A. Yes. A CD containing the electric cost of service study in Excel format with formulas intact is included with the working papers provided to the Commission and the OUCC as a confidential working paper.
Q. IN PERFORMING THE COST OF SERVICE STUDY YOU ARE SPONSORING, DID YOU BECOME FAMILIAR WITH THE ELECTRIC SYSTEM OWNED AND OPERATED BY FRANKFORT?
A. Yes. In fact, I have worked with the Utility on various system projects for more than 30 years.
Q. WHAT IS THE GUIDING PRINCIPLE THAT SHOULD BE FOLLOWED WHEN PERFORMING AN ELECTRIC COST OF SERVICE STUDY?
A. As previously mentioned, cost causation is the fundamental principle applicable to all cost of service studies. Cost causation addresses the question of which customer or group of customers causes the Utility to incur particular types of
costs. In order to answer this question, it is necessary to establish a relationship between the services used by a utility's customers and the particular costs incurred by the utility in serving those customers.

Q. WHAT IS THE GENERAL FRAMEWORK OF A COST OF SERVICE STUDY?
 A. The most important theoretical principle underlying a cost of service study is that cost incurrence should follow cost causation. In other words, costs assigned or allocated to particular customers should be those costs that the particular customers caused the utility to incur because of their usage characteristics.
 Q. WHAT ARE THE STEPS OF PERFORMING A COST OF SERVICE STUDY?
 A. In order to establish the cost responsibility of each customer class, initially a three step analysis of the utility's total operating costs must be undertaken. The three steps are: (1) cost functionalization; (2) cost classification; and (3) cost allocation.
 Q. DID YOU APPLY THE ABOVE STEPS IN DEVELOPING FRANKFORT'S COST OF SERVICE STUDY?

A. Yes.
Q. PLEASE DESCRIBE COST FUNCTIONALIZATION AND ITS APPLICATION TO FRANKFORT.
A. Cost functionalization identifies and separates plant and expenses into specific categories based on the various characteristics of utility operation. Frankfort's primary functional cost categories associated with electric distribution service include: Distribution, General Plant, Meters, Lighting and Services.

Q. PLEASE DESCRIBE COST CLASSIFICATION.

A. Cost classification further separates the functionalized plant and expenses

 categories described above according to the primary factors that determine the amount of costs incurred. These factors are: (1) the number of customers; (2) the need to meet peak demand requirements that customers place on the system; and (3) the amount of electricity consumed by customers. These classification categories have been identified for the cost of service study as 1) Customer Costs; 2) Demand Costs; and 3) Energy Costs.
Q. PLEASE DESCRIBE FURTHER HOW THESE COST CLASSIFICATION CATEGORIES RELATE TO THE AMOUNT OF COSTS INCURRED BY FRANKFORT.

A. Customer Costs are incurred to extend service to and attach a customer to the distribution system, meter any electric usage, and maintain a Frankfort customer's account. Customer Costs are largely a function of the number of customers served and continue to be incurred whether or not the customer uses any electricity. They may include capital costs associated with minimum size distribution systems, services, meters, and customer billing and accounting expenses.

Demand Costs are capacity-related costs associated with the plant that is designed, installed, and operated to meet maximum hourly or daily electric usage requirements, such as transmission lines, transformers and substations, or more localized distribution facilities which are designed to satisfy individual customer maximum demands.

Energy Costs are those costs that vary based on the amount of kilowatt hours
("kWh") sold to customers.

Q. DO A SIGNIFICANT PORTION OF FRANKFORT'S COSTS VARY BASED ON THE AMOUNT OF KWH SOLD TO CUSTOMERS?
 A.
 No. The vast majority of Frankfort's costs are fixed with respect to energy usage. Very little of Frankfort's remaining delivery service cost structure is energy- related.

Q. PLEASE DESCRIBE COST ALLOCATION
A. Cost allocation involves the allocation of each functionalized and classified cost element to the individual customer or rate class that benefits from the cost. Customers generally are divided into customer classes based on the type and character of services they require.
Q. CAN A LARGE PORTION OF THE PLANT AND EXPENSES OF A UTILITY BE DIRECTLY ASSIGNED TO A SPECIFIC CUSTOMER OR CERTAIN CUSTOMER CLASSES?
A. Some can, but most cannot be directly assigned to particular customers orcustomer classes. The nature of utility operations is characterized by theexistence of facilities used jointly or commonly by multiple customers andclasses. To the extent that a utility's plant and expenses cannot be directlyassigned to customer classes, allocation methods must be derived to assign orallocate the remaining costs to the customer classes.
Q. DID YOU DEVELOP ALLOCATION FACTORS IN CONNECTION
WITH THE PREPARATION OF FRANKFORT'S COST OF SERVICE STUDY?
A. Yes. The cost of service study I prepared uses a number of allocation factors to fairly and accurately distribute the appropriate costs to each rate class. Attachment SDB-2 contains a description of each allocation factor and its use in the cost of service study.
Q. WHAT IS THE SOURCE OF THE COST DATA ANALYZED IN FRANKFORT'S COST OF SERVICE STUDY?
A. Cost data was extracted from Frankfort's revenue requirement data set forth in the exhibits of Andrew Lanam of Reedy Financial Services for the historical test year ending March 31, 2016. Where more detailed information was required, the data was derived from the historical books and records of Frankfort and information provided by Utility personnel.

Q. HOW DID YOU FUNCTIONALIZE AND CLASSIFY FRANKFORT'S

 costs?A. I started by identifying each of Frankfort's accounts. Each account was assigned to a specific function. Costs were then classified in accordance with the applied allocation factor described in Attachment SDB-2 Description of Allocation Factors. The allocation factors were designed to account for the variability of costs within each functionalized classification.

Q. PLEASE DESCRIBE THE RATIONALE USED IN THE DEVELOPMENT OF THE ALLOCATION FACTORS.

A. Several allocation factors were needed to accurately distribute revenues and costs among the customer classes; the basis of which can be categorized as Revenue, Energy and Demand.

Revenue for each rate class was recorded monthly by type of charge (energy, cost adjustment, demand, code adjustment and customer), then adjusted to match the audited financial reports. This information was used to calculate the revenue allocation cost factors for each rate class.

Similarly, Energy consumption was recorded monthly for each rate class, then adjusted to match audited financial reports. System loss factors were applied to each rate class in order to adjust total consumption to match wholesale purchases from the Indiana Municipal Power Agency ("IMPA") for the test year. I then used this information to calculate energy allocation cost factors for each rate class.

Demand charges were determined monthly for each rate class, excluding lighting loads. Direct measurements were used in classes having metered demand rates. Rates without demand metering were assigned a pro rata share of the remaining unmetered demand coincident with the system demand.

Q. HAVE YOU EXAMINED THE PERCENTAGE RATE INCREASES THAT WOULD BE REQUIRED FOR EACH RATE SCHEDULE PER THE COST OF SERVICE STUDY?

A. Yes. As described in the testimony of Mr. Andrew Lanam, Frankfort revenues were found to be 10.09% deficient. Applying the cost of service study requires metered rate class increases ranging from 9.50% to 11.81%. Lighting rates will increase from 19.33% to 19.65%.

Q. HOW MUCH PROFIT DID YOU BUILD INTO YOUR MODEL?

A. No profit or extra margin has been built into the model. Frankfort is only looking for the proposed increase to cover costs associated with purchase power, needed capital improvements, and operating costs. Frankfort City Light and Power is a Municipal Electric Utility. As such, the shareholders of the Utility are its rate payers.
Q. DO THE PROPOSED RATES ASSUME THE TRACKER RESETS TO ZERO?
A. Yes. The Cost of Service Model accounts for the projected increase in purchase power cost from IMPA through March 31, 2017.
Q. PLEASE DESCRIBE PETITIONER'S ATTACHMENTS SDB-3 AND SBD4.
A. Attachments SDB-3 and SDB-4 are red-lined and clean version of Frankfort's rate schedules, respectively.
Q. DO YOU BELIEVE THE PROPOSED RATES ARE FAIR AND EQUITABLE AND REPRESENT REASONABLE AND JUST RATES AND CHARGES FOR ELECTRIC SERVICE?
A. Yes. The rates designed for Petitioner target the recovery of each class's cost of service. That is to say, the rates determined in the cost of service study recover the true cost to serve, with no subsidy between classes.
Q. HAVE YOU STUDIED THE IMPACT OF THE PROPOSED RATE INCREASE TO SMALL USERS IN EACH CUSTOMER CLASS?
A. Yes. I performed an Impact Study for each rate class to ensure that ratepayers were not being unduly burdened. Specifically, I studied July 2016 billings for the five smallest users in the residential class and the five smallest users in each of the
remaining customer classes. I then compared the proposed rates to Frankfort's July 2016 rates for these customers. The resulting analysis is depicted in Attachment SDB-5 Impact Study of Proposed Rates on Smallest Customers of Each Rate Class. Study over the last year of the smallest residential rate payers indicates that the proposed rate increase would average $\$ 6.78$ per month. Over the same period, the smallest Class B commercial customers rate would increase an average of $\$ 7.84$. The most heavily impacted commercial customers are being studied now. The Utility intends to proactively speak with the most impacted customers, and where practical, offer solutions to lessen the impact. It is also my understanding that the Utility is working with each customer to evaluate rate class changes to benefit the customer.

Increased Customer Charge

Q. IS Frankfort PROPOSING TO INCREASE THE CUSTOMER CHARGE

FOR EACH OF ITS RATE CLASSES?
A. Yes. Frankfort is proposing to increase its monthly customer charges as follows:

Class	Current Customer Charge	Cost-Based Customer Charge	Proposed Customer Charge
Rate A - Residential	$\$ 4.00$	$\$ 14.95$	$\$ 15.00$
Rate B - Commercial	$\$ 6.00$	$\$ 22.63$	$\$ 20.00$
Rate C - General Power	$\$ 15.00$	$\$ 175.37$	$\$ 45.00$
Rate PPL - Primary Power		$\$ 4,409.43$	$\$ 60.00$
IP - Industrial Power			$\$ 600.00$

Q. WHY IS Frankfort PROPOSING TO INCREASE ITS CUSTOMER CHARGES FOR THE IDENTIFIED CUSTOMER CLASSES?

A. The customer charges were adjusted to reflect the true fixed costs associated with interconnecting the customer to the Utility system. This fixed cost associated with interconnecting each customer is shown as "cost based" customer charge, which can be found near the bottom of Worksheet 7 Rate Development of the Electric Cost of Service Study included as Attachment SDB-1.
Q. COULDN'T FRANKFORT ELIMINATE THE PROPOSED INCREASE IN THE CUSTOMER CHARGE AND RECOVER THIS INCREASED COST THROUGH ITS VARIABLE RATES?
A. No. Artificially low customer charges require more of its fixed costs to be recovered through a markup in the variable energy charge. This approach to pricing provides inefficient price signals that distort customer's consumption decisions by setting the marginal price far above the marginal cost of either consuming, or foregoing consumption of, additional kilowatt-hours of electricity. In contrast, if all of the fixed costs of electricity production are recovered in a fixed customer charge, the variable energy charge can be set at a level that reflects the marginal cost of production. This two-part rate structure allows the Utility to recover its full revenue requirement, including fixed costs, while also efficiently giving customers appropriate price signals that allow them to determine whether the price justifies the marginal benefit of additional consumption.
Q. ARE THERE OTHER BENEFITS TO RECOVERING A GREATER SHARE OF FIXED COSTS IN THE FIXED MONTHLY CUSTOMER CHARGE?
A. Yes. An additional benefit is that it promotes margin stability for the benefit of
both Frankfort and the customer classes who pay the increased customer charge. For Frankfort a rate design that recovers a smaller proportion of fixed costs in a variable energy charge improves the ability of the utility to recover its revenue requirements. Once the rates approved by the Commission go into effect, Frankfort may sell either more or less than the pro forma test year kWh and, other things being equal to the extent that a large amount of fixed costs are loaded into the variable charge, Frankfort will tend to either over-recover or under-recover its costs in years when weather causes usage to depart from the expected norm. Similarly, when a large margin to recover fixed costs is built into the variable energy charge, the bills of weather sensitive customers would increase more than necessary in years when weather drives greater usage.

Q. ARE YOU PROPOSING TO RECOVER ALL OF FRANKFORT'S FIXED COSTS THROUGH THE CUSTOMER CHARGE?

A. We are looking to recover all in the residential rate class and most in the commercial service. As the rate classes increase, the recovery of fixed costs lessens. Recovering all the utility's fixed costs through a customer charge would cause some customers in Frankfort's polyphase commercial classes (Rate C General Power and PPL - Primary Power), undue financial burden. Therefore, Frankfort's fixed costs for polyphase rate classes remain more heavily subsidized by the variable rate than Frankfort's other rates.

Q. DOES INCREASING THE FIXED CUSTOMER CHARGE NEGATIVELY IMPACT CONSERVATION?

A. No. The delivery of electricity causes the Utility to incur both fixed costs and
variable costs. When a rate structure recovers fixed costs in variable energy charges, the rate structure overstates the marginal cost of electricity and discourages consumption that would be efficient in the sense that the marginal benefit of consuming additional units of electricity exceeds the marginal cost of the energy required to produce and deliver that electricity.

Q. DO YOU BELIEVE FRANKFORT'S INCREASED FIXED CHARGE WILL ADVERSELY IMPACT LOW-INCOME CUSTOMERS?

A. No. First, the increase in the customer charge is necessary to move the rate structure closer to one that recovers the costs of providing that service regardless of consumption. This in turn lowers the energy charge and allows for a rate design that better reflects the tiue costs of service. This methodology also provides more appropriate price signals to promote efficient usage. Moreover, low-income households do not necessarily use less electricity than other households. In fact, many low-income customers use more than the residential average amount.
Q. WHAT DO YOU RECOMMEND WITH RESPECT TO THE PROPOSED INCREASES TO THE CUSTOMER CHARGE?
A. I recommend that the Commission approve Frankfort's proposed increases in the customer charges, which will enable Petitioner to recover most of its fixed costs in the customer charge.

New Industrial Power Rate

Q. ARE EACH OF THE RATE SCHEDULES INCLUDED IN ATTACHMENT SDB-3 EXISTING RATE SCHEDULES?
A. All of the rates currently exist, aside from a proposed new Industrial Power tariff and the proposed new Economic Development Rider.
Q. WILL ANY OF FRANKFORT'S EXISTING CUSTOMERS RECEIVE SERVICE UNDER THE NEW INDUSTRIAL POWER TARIFF?
A. No. Currently, there are no Frankfort customers that meet the reqzirements of the Industrial Power tariff, which include having a minimum demand of 10 MW and being directly fed from the Utility's 69 kV Transmission system.
Q. GIVEN THAT NO CUSTOMERS CURRENTLY ARE ELIGIBLE FOR THE RATE, WHY IS FRANKFORT PROPOSING A NEW INDUSTRIAL POWER TARIFF?
A. Although no customers exist on the Frankfort system that are eligible for this rate today, Frankfort wants to be proactive and offer an approved rate that reflects the cost to serve large users. Frankfort wants to be able to respond quickly and favorably to industries looking to locate in its service territory and/or existing customers that may be considering a significant expansion.

Q. HOW WAS THE PROPOSED INDUSTRIAL POWER TARIFF DESIGNED?

A. The Industrial Power tariff was modeled after Frankfort's existing Primary Power Rate, with certain adjustments for unrelated costs, such as a portion of the distribution costs, adjusted out. There are two characteristics that allow a
customer to receive service under the Industrial Power tariff as opposed to the Primary Power Rate. First, any potential customer in the Industrial Power class is expected to consume more power (10 MWD) than a Primary Power customer. Second, a potential Industrial Power customer will take service only at transmission levels while a Primary Power customer takes service at the distribution level. In addition, as a practical matter, a cursory review of the existing transmission path was conducted to determine if enough building sites exist along said route, since any Industrial Power customer must be connected directly to the transmission system.
Q. WHAT IMPACT DOES THE PROPOSED INDUSTRIAL POWER TARIFF HAVE ON EXISTING CUSTOMERS?
A. There is no impact on existing customers. The Industrial Power tariff is not expected to be subsidized by the existing customers. Should a customer qualify for the Industrial Power rate, the Utility intends to perform a cost of service study after said rate has been in use for 2 years.
Q. IN YOUR OPINION, SHOULD THE COMMISSION APPROVE THE PROPOSED INDUSTRIAL POWER RATE FOR USE BY ELIGIBLE Frankfort CUSTOMERS?
A. Yes, I believe it should.

ECONOMIC DEVELOPMENT RIDER

Q. WHY IS Frankfort PROPOSING TO IMPLEMENT AN ECONOMIC DEVELOPMENT RIDER?
A. The Mayor of Frankfort, Frankfort's Electric Superintendent, and other government officials requested an Economic Development Rider ("EDR") be developed to stimulate business growth within the community.

Q. PLEASE DESCRIBE IN FURTHER DETAIL THE GOAL OF THE EDR.

A. The goal of the EDR is to incent business growth for both new and existing businesses. Any new load qualifying for the EDR may not be of a lesser quality than the existing aggregate load of the Utility. A load of lesser quality would either make less efficient use of the existing infrastructure or cause Frankfort to make capital investments to correct for the lesser quality load's deficiencies. Please refer to Attachment SDB-6 regarding details of the proposed Economic Development Rider.

Q. HOW WILL THE PROPOSED EDR IMPACT BILLS OF ELIGIBLE CUSTOMERS?

A. Customers that meet the eligibility requirement of the EDR will receive a 15% discount on the Demand charge in Year 1, then 10% in Years 2 through 4, with Year 5 declining to 5%, provided the load remains in compliance.
Q. WHAT QUALITIES WILL FRANKFORT REVIEW TO DETERMINE WHETHER CUSTOMERS QUALIFY FOR THE EDR?
A. The EDR is restricted to customers that meet certain criteria relating to the quality of the load. These criteria include minimum size, Total Harmonic Distortion, Load Factor, Power Factor, compliance with applicable standards, Business Type, and Jobs Creation.

Minimum Size was used as a criteria to make efficient use of the administrative process. That is to say, a minimum load was developed to limit the number of
applicants to those creating a more significant impact for the Utility, thereby maintaining engineering and administrative efficiency.

Total Harmonic Distortion is an important criterion to guard against a new load injecting unwanted harmonics onto Frankfort's grid. Unwanted harmonics often lead to premature heating and degradation of the serving transformer. Harmonics also can negatively impact Frankfort's other customers and lead to process disruption and costs associated with determining the cause and remediation.

Load Factor for Frankfort's existing customer base averages 70\%. Any new load having a load factor greater than 70% will use the infrastructure at the same level of efficiency or more efficiently than Frankfort's existing customer base. A load factor under 70% results in less efficient use and leads to costs ultimately being borne by the entire class of customers.

Power Factor for Frankfort's existing customer base averages 98\%. Any new load having a power factor greater than 98% will use the infrastructure at the same level of efficiency or more efficiently than the existing community. A power factor under 98% results in less efficient use and leads to costs ultimately being borne by the entire class of customers.

Compliance with Applicable Standards assures safety and reliability for the public.
Q. PLEASE COMMENT ON THE DESIGN OF THE ECONOMIC DEVELOPMENT RIDER.
A. In addition to the quality restrictions outlined above, the EDR is designed to attract growth in business as determined by leadership to be desirable to the
community that would not otherwise locate within the service territory. As previously mentioned, to guard against any undue subsidy, the benefit of the EDR is limited to a 10% discount on the Demand charge only for Year 1, and 5% for Years 2 through 5 provided the load remains in compliance. Also, the new or expanded load must result in the creation of at least ten full time equivalent jobs.
Q. IF APPROVED, WOULD THE EDR RESULT IN COSTS BEING SHIFTED TO FRANKFORT'S REMAINING CUSTOMERS?
A. The EDR is not subsidized by the existing customers over its length of term. The Customer charge and Energy consumption are billed in full. Customers qualifying for the EDR under the Primary Power rate are subsidized by 0.93% for the first year with the subsidy being recovered in the second year. No further subsidy exists over the life of the EDR. Similarly, customers qualifying for the proposed EDR under the newly proposed Industrial Power (IP) rate, would be subsidized in the first year by 1.68%. The subsidy is fully recovered in about 2.5 years. No further subsidy exists over the life of the EDR. Customers would have to agree to remain connected to the system for a period of five years to keep the benefit of the EDR. Please refer to Attachment SDB-7 Impact Study of Proposed Economic Development Rider for the complete analysis. It is my opinion that the EDR as designed will not have any adverse impact on existing rate payers. Should the customer exit prior to the term of the EDR, the customer must forfeit all discounts taken.

Q. IS THE PROPOSED EDR AVAILABLE TO EXISTING CUSTOMERS?

Attachment SDB-8 Determination of Non-Recurring Charges for the details of the calculation.

Q. HOW WAS THE PROPOSED NEW RETURN CHECK FEE DETERMINED?

A. The revised return check fee was established to recover most of the cost associated with a returned check. In general, the cost of a returned check due to non-sufficient funds is the greater of either $\$ 15$ or 5% of the value returned, plus the Utility's direct costs of administration. Labor overheads and benefits were not included in this calculus. Please refer to Attachment SDB-8 Determination of Non-Recurring Charges for complete details. The hourly labor cost and the average time allocated to process and follow-up on the returned check was provided by Frankfort.
Q. HOW DID YOU DETERMINE THE METER TEST FEE?
A. Again, the meter test fee was established sufficient to recover the cost of performing a meter test and rounded up to the nearest whole dollar. The equipment cost and hourly labor cost were provided by the Utility. Labor overheads and benefits were not included in this calculus. The tasks and time to complete each function were identified and quantified in conjunction with utility operating staff. Attachment SDB-8 Determination of Non-Recurring Charges contains a detailed calculation.
Q. PLEASE DESCRIBE HOW THE CHANGE TO THE SERVICE CALL FEE WAS DERIVED?
A. As with the other non-recurring charges, Frankfort provided the equipment cost and hourly labor cost. Labor overheads and benefits were not included in this calculus. The tasks and time to complete each function were identified and quantified in conjunction with utility operating staff. The rate, which is designed to recover these costs, is calculated in Attachment SDB-8 Determination of NonRecurring Charges.

Q. HOW DID YOU DETERMINE THE PROPOSED TEMPORARY SERVICE CHARGE?

A. The Temporary Service Charge recovers most of the cost associated with establishing and later removing the temporary service. Please refer to Attachment SDB-8 Determination of Non-Recurring Charges for complete details.

Q. HOW WAS THE PROPOSED LATE PAYMENT FEE DETERMINED?

A. The material, and hourly labor cost was provided by the Utility. Labor overheads and benefits were not included in this calculus. The tasks and time to complete each function were identified and quantified in conjunction with utility operating staff. The cost was then divided by the average residential bill, based on the proposed rates. The resulting percentage was then rounded down to the nearest whole percentage point. Please refer to Attachment SDB-8 Determination of NonRecurring Charges for complete details.

Capital Improvement Plan and

EXTENSIONS \& REPLACEMENTS REVENUE REQUIREMENT

Q. ARE YOU FAMILIAR WITH THE PROPOSED CAPITAL IMPROVEMENT PLAN?

A.	Yes, I am. Spectrum Engineering was engaged in 2015 to perform the power system study and develop a plan for the Utility. Spectrum worked closely with
	Frankfort's staff to prepare the study and proposed capital improvement plan.
	Each recommendation was then carefully reviewed to ensure that each project in
	the plan was necessary for Frankfort to continue to provide adequate and reliable
	service and that the cost estimates in the plan were reasonable.
Q.	PLEASE DESCRIBE ATTACHMENT SDB-9.
A.	Attachment SDB-9 Capital Improvement Plan, describes a total of twenty capital
	projects and purchases required by the Utility to keep functioning in a safe,
	reliable, efficient manner.
Q.	WHAT STEPS DID SPECTRUM ENGINEERING TAKE TO REVIEW
	THE PROPOSED CAPITAL IMPROVEMENT PLAN?
A.	I was provided with a copy of the Frankfort's Capital Inprovement Plan. I then
	reviewed each capital project carefully to ensure compliance with the following
	criteria: 1) necessity, 2) capital cost accuracy, and 3) priority.
Q.	PLEASE DESCRIBE THOSE CRITERIA AND HOW THEY APPLY TO
	FRANKFORT'S CAPITAL IMPROVEMENT PLAN.
A.	With respect to necessity, a review of line congestion at peak times supported the
	need for and location of the new substation included in Frankfort's Capital
	Improvement Plan. Other points of congestion on Frankfort's system also support
	the need for the line rebuild identified in the Capital Improvement Plan. My
	inspection of the Utility's aging substation infrastructure supports replacement
	and upgrade recommendations presented in the Capital Improvement Plan. Also

my inspection of the Utility's aging vehicle fleet supports the fleet replacements recommended in the Capital Improvement Plan. In sum, my inspection validated the necessity of all proposed projects.

With respect to capital cost accuracy, I directed staff to develop construction cost estimates in 2016 dollars using recent quotes for like materials on similar projects within 150 miles of Frankfort. Staff also considered how the Utility plans to execute the work. Most of the construction cost estimates included a 20% contingency. Items $2,3,4,6$, and 19 were based on firm quotes and contain no contingency.

All qualifying, proposed projects were collaboratively reviewed with the operating staff of the Utility. Priority was given to projects with the greatest need and/or urgency.
Q. PLEASE PROVIDE AN OVERVIEW OF THE PROJECTS SET FORTH IN THE CAPITAL IMPROVEMENT PLAN.
A. The projects included in the capital improvement plan are summarized in the table below:

Proposed Project	Budget	
1)	Install cutouts on radial taps to isolate disturbances.	$\$ 137,750.00$
2)	Update the existing distribution protective relay settings.	$\$ 16,850.00$
3)	Update/install Arc Flash Labels based on protective device coordination results/recommendations.	$\$ 4,250.00$
4) Vehicle Fleet Additions (2 service Pick-ups replace \#2-4 and \#2-4A with one and \#2-7 with the other).	$\$ 50,259.00$	
5)Voltage Regulators installed to remedy voltage issues on selected circuits, Burlington Sub feeder 5, Fairgrounds Sub Feeder 3, Westside Sub Feeder 3, Westside Sub Feeder 4.	$\$ 481,424.00$	

6) Vehicle Fleet Additions (2 service trucks to replace service trucks \#2-9 and \#214).	\$335,150.00
7) Re-conductor distribution circuits to increase ampacity (reduce bottleneck), WSS6 OH SW16 \& 11516 - from 336 to 477 ACSR (Approx. 100 feet), WSS4 from Sub to IN 28 pole 11715 - from 336to 477 ACSR (Approx. 2400 feet), FGR4 OH Fairground \& Prairie - from 336 to 477 ACSR (Approx. 600 feet), BUR8 OH Wash Ave.	\$360,719.00
8) New Substation Northwest $69 / 13.2 \mathrm{kV}$ with 8 feeders.	\$2,645,000.00
9) West Side Substation Upgrades (Replace two (2) circuit switchers with SF6 breakers, Two new 69/13.2 kV 20/26.7/33.3 MVA Transformers, Main-tie-main switchgear with 8 feeders, new relays, and metering.	\$2,265,412.00
10) West Side Substation Preventative Maintenance.	\$38,650.00
11) Burlington Substation Upgrades (New 69/13.2 kV, 30/40/50 MVA Transformer, Upgrade distribution switchgear (breaker and relays), maintain existing building for 69 kV relaying \& storage).	\$1,591,744.00
Proposed Project	Budget
12) Burlington Substation Preventative Maintenance.	\$38,650.00
13) Fairgrounds Substation Upgrades (Replace existing high side circuit breaker with SF6 breaker, upgrade existing SEL protective relays to 351S relays, SEL Communication processor for future SCADA).	\$242,172.00
14) GIS/Mapping System Upgrades.	\$209,415.00
15) Fairgrounds Substation Preventative Maintenance.	\$39,460.00
16) S.R. 28 3-phase rebuild	\$549,170.00
17) AMI Pilot for Industrial Customers	\$168,785.00
18) Utility IT, Communication network upgrades to support AMI, SCADA and increasing bandwidth needs for the Utility Operations.	\$450,000.00
19) Pole Replacements $-20,000$ poles in 50 years \sim avg 400 per year @ $\$ 290.50$ ea. $=$ \$116,200/year.	\$813,400.00
20) S.R. 28 Road Widening Project 2018	\$1,400,000.00
Total	\$11,838,260.00

Q. PLEASE PROVIDE A GENERAL NARRATIVE OF THE SCOPE FOR

 EACH PROJECT AS WELL AS ITS JUSTIFICATION.A. Each of the projects are described below in the order presented in the table above.

1) Install cutouts on radial taps to isolate disturbances.

Project Scope: Full system deployment of Cutouts and Fuses on radial distribution taps. Refer to the chart provided in the Device Coordination section of the

Full System Study report to determine the fuse size to best coordinate with the upstream device.
Justification: The existing distribution system predominately relies on substation feeders to clear feeder faults. This technique subjects hundreds of customers to problems that could be isolated to just a few. Installing cutouts and fuses on radial taps will improve overall system reliability and reduce the number of customers affected by an outage. Fuses should be sized based on the peak load for each tap and the upstream protection. Fuses on Feeders should be 65A fuses for small radial taps with light loading (<65A peak). Fuses on larger radial taps can be 150A fuses. Refer to the Device Coordination section of this study for a chart to determine the downstream fuse size.
2) Update the existing distribution protective relay settings.

Project Scope: Based on the Device Coordination section of the full system study. Update the settings on the existing relays to coordinate the settings in the relays with all downstream devices. Settings developed as part of the system study will need to be loaded in the relays and tested for expected relay operations.
Justification: Inspection of the 15 kV protective relay settings has found several areas where coordination can be improved. The goal is to ensure that downstream devices are given an opportunity to clear faults before upstream devices attempt to clear faults. There are areas where a fault with the existing protection settings will interrupt power for more customers than is necessary. Protection settings should be modified to prevent overreach and to increase system reliability. The existing relay settings and proposed settings are shown in the Device Coordination section of the full system study.
3) Update/install Arc Flash Labels based on protective device coordination results/recommendations.

Project Scope: Use the Arc Flash values generated by the full system study to create labels for equipment and verify proper PPE levels for general working environments.
Justification: Install Arc Flash Labels on equipment as necessary. Substation switchgear should have their PPE level clearly marked. Utilize the Arc Flash spreadsheets to determine the PPE at locations. Wear the proper PPE clothing when working near energized equipment, operating equipment, racking breakers in/out and opening/closing breakers. Ensure that personnel have the proper PPE to work energized equipment. There are locations that exceed PPE of 2 and require higher PPE to work while energized. Arc Flash analysis assumes that protective equipment functions at nameplate ratings. Ensure that protection settings and protective devices have been tested for functionality and are routinely maintained as recommended by their manufacturers.
4) Vehicle Fleet Additions (2 service Pick-ups replace \#2-45 and \#2-4A with one and \#2-7 with the other). \$50,259
Project Scope: Replace three (3) existing fleet service pick-ups with two (2) new service pick-ups.

Justification: As the existing fleet of vehicles has reached the end of life (service pick-ups \#2-4, \#2-4A vintage 1990, and \#2-7 vintage 1997) and facing additional maintenance costs, it is beneficial to ensure proper operating vehicles for the staff to use to conduct daily functions.
5) Voltage Regulators installed to remedy voltage issues on selected circuits, Burlington Sub feeder 5, Fairgrounds Sub Feeder 3, Westside Sub Feeder 3, Westside Sub Feeder 4
$\$ 481,424$
Project Scope: Based on the load flow scenarios run on the updated system model in ETAP, add 3-phase Voltage Regulators in the recommended locations to ensure the voltage levels do not dip below 95% nominal system voltage. Project includes the purchase of equipment and installation
Justification: Load flow scenarios conducted as part of the full system study indicated voltage sags (voltages $<95 \%$ nominal) on four (4) circuits throughout the system. These include Burlington Sub circuit 5, Fairgrounds Sub circuit 3, Westside Sub circuit 3, Westside Sub Circuit 4. Proper voltage level is needed to ensure system deliverable reliability and power quality at the customer location. Voltage issues can cause interruption to service and/or equipment damage if not monitored and controlled to be within the tolerance specified by the industry and specified by the utility.
6) Vehicle Fleet Additions
(2 service trucks to replace service trucks \#2-9 and \#2-14)
Project Scope: Replace two (2) existing fleet service trucks with two (2) new service trucks.
Justification: As the existing fleet of vehicles has reached the end of life (service trucks \#2-9 vintage 1994, \#2-14 vintage 2000) and facing additional maintenance costs, it is beneficial to ensure proper operating vehicles for the staff to use to conduct daily functions.
7) Re-conductor distribution circuits to increase ampacity

Project Scope: Re-conductor distribution circuits to increase ampacity (reduce bottleneck), WSS6 OH SW16 \& 11516 - from 336 to 477 ACSR (Approx. 100 feet), WSS4 from Sub to IN 28 pole 11715 - from 336to 477 ACSR (Approx. 2400 feet), FGR4 OH Fairground \& Prairie - from 336 to 477 ACSR (Approx. 600 feet), BUR8 OH
Justification: to take down substations for maintenance or in emergency situations it is important for the distribution system to have enough capacity to carry feeders from multiple directions. This requires that the major arteries between substations be large enough to carry a significant amount of power. The Load Flow section of the system study identified the areas with conductor capacities that are too small and should be upgraded. These areas are noted in the Project Scope above.

[^0]Project Scope: Design and construction activities related to the addition of a new $69 / 13.2 \mathrm{kV}$ substation located in the Northwest quarter of the FCL\&P service area. This substation will consist of a new transformer and switchgear capable of 8 new feeder circuits.

Justification: Westside Substation is heavily loaded - carrying well over half of the of 65 MVA total system peak load. In fact, Westside serves 66% of the total system load. Fairgrounds and Burlington Substations are not capable of carrying the additional load if Westside Substation goes down.
With the current system configuration, the natural location to add system capacity and redundancy is near the northwest industrial area of the FCL\&P service territory. This is due to several factors: load would be removed from heavily burdened Westside Sub, land appears to be readily available, a 69 kV transmission line is in the area, and several industrial feeders already converge in this region. Future industrial development will likely occur along county Road Zero.
9) West Side Substation Upgrades (Replace two (2) circuit switchers with SF6 breakers, Two new $69 / 13.2 \mathrm{kV}$ 20/26.7/33.3 MVA Transformers, Main-tie-main switchgear with 8 feeders, new relays, and metering $\$ 2,265,412$
Project Scope: Design and construction activities related to the removal and upgrade of existing equipment at the West Side Substation.
Justification: West Side Substation is comprised of two power transformers (T1 - 25/37.3MVA and T2-25/46.7MVA), 15 kV switchgear (Main-Tie-Main with 8 Feeders), and two 69 kV circuit switchers. The Substation is heavily loaded and nearing end of useful service life. Neither power transformer can reasonably assume load if the other one is taken down for service. Transformer T1 becomes overloaded at 110% if T2 is taken off line. Likewise, Transformer T2 becomes overloaded at 88% if T1 is taken off line.

The addition of two new 20/26.7/33.3MVA transformers with new switchgear will improve the system reliability. Additionally, either or both new transformers can now be taken out for maintenance.
10) West Side Substation Preventative Maintenance

Project Scope: Testing and Preventative Maintenance activities based on IEEE/NETA and OEM recommendations. Includes reports and testing results in database format for tracking purposes.
Justification: Substations have many critical components that require regular maintenance, inspections, testing, and upgrades. Failure to properly maintain equipment can lead to outages, equipment damage and human injuries. Most electrical equipment must be maintained every $3-5$ years. The safety of personnel, equipment, and outage durations are dependent on equipment operating as expected.
To pull routine maintenance on substations, FCL\&P must be able to take down any one piece of equipment at any time. This would require each substation to have a backup source for maintenance.
11) Burlington Substation Upgrades (New $69 / 13.2 \mathrm{kV}, 30 / 40 / 50 \mathrm{MVA}$ Transformer, Upgrade distribution switchgear (breaker and relays), maintain existing building for 69 kV relaying \& storage)
$\$ 1,591,744$
Project Scope: Design and construction activities related to the removal and upgrade of existing equipment at the Burlington Substation.
Justification: Burlington Substation is comprised of one 30/40/50 MVA Power Transformer protected by one (1) 69 kV Circuit Switcher, 15 kV switchgear (Main with 8 Feeders), and three 69 kV oil filled circuit breakers (OCB's). The 15 kV Switchgear is nearing end of useful service life.
The addition of a new 15 kV switchgear with modern SEL relays will improve the distribution system reliability.
The 69 kV oil filled circuit breakers (OCB's) should be scheduled for replacement. Upgrading too modern SF6 filled breakers will improve reliability, reduce maintenance costs and potential outage time, and eliminate EPA SPCC requirements for oil filled breakers within the substations. SF6 Breakers offer superior arc quenching capabilities and can interrupt higher fault currents in a very short period.
12) Burlington Substation Preventative Maintenance $\$ 38,650$

Project Scope: Testing and Preventative Maintenance activities based on IEEE/NETA and OEM recommendations. Includes reports and testing results in database format for tracking purposes.
Justification: Substations have many critical components that require regular maintenance, inspections, testing, and upgrades. Failure to properly maintain equipment can lead to outages, equipment damage and human injuries. Most electrical equipment must be maintained every $3-5$ years. The safety of personnel, equipment, and outage durations are dependent on equipment operating as expected.
In order to pull routine maintenance on substations, FCL\&P must be able to take down any one piece of equipment at any time. This would require each substation to have a backup source for maintenance.
13) Fairgrounds Substation Upgrades (Replace existing high side circuit breaker with SF6 breaker, upgrade existing SEL protective relays to 351S relays, SEL Communication processor to monitor and collect data from existing protective relays for future SCADA)
Project Scope: Remove and replace high side circuit breaker and upgrade the aging relays with modern micro-processor based relays to match the relays at the other FCL\&P substations.
Justification: Fairgrounds Substation is comprised of one 20/26.7/33.3 MVA Power Transformer protected by one (1) 69 kV SF6 filled Circuit Breaker, 15 kV switchgear (Main with 4 Feeders).
The existing 15 kV switchgear is fitted with outdated SEL 251 relays. These relays should be replaced with modern SEL 351S relays to maintain uniformity with the other substation feeder relaying. This upgrade will allow for interface with SCADA and will improve the distribution system reliability.
14) GIS/Mapping System Upgrades

Project Scope: Upgrade the GIS system to enable integration to the CRM items as well as SCADA and AMI infrastructure additions.
Justification: Data is the driving force behind better more efficient operations and customer service. Upgrades to the GIS system will allow FCL\&P to track all infrastructure items in a geospatially correct environment. This will help in asset verification and integration of future projects along with provide valuable data analytics for customer service.
15) Fairgrounds Substation Preventative Maintenance $\quad \$ 39,460$

Project Scope: Testing and Preventative Maintenance activities based on IEEE/NETA and OEM recommendations. Includes reports and testing results in database format for tracking purposes.
Justification: Substations have many critical components that require regular maintenance, inspections, testing, and upgrades. Failure to properly maintain equipment can lead to outages, equipment damage and human injuries. Most electrical equipment must be maintained every 3-5 years. The safety of personnel, equipment, and outage durations are dependent on equipment operating as expected.
In order to pull routine maintenance on substations, FCL\&P must be able to take down any one piece of equipment at any time. This would require each substation to have a backup source for maintenance.

8
16) S.R. 28 3-phase rebuild
\$549,170
Project Scope: Upgrade the conductor in many locations and replace aging poles along the SR28 corridor East of the Walmart.
Justification: This circuit has been extended over the years and has multiple sizes of conductor along the path which now causes issues when trying to maintain consistent voltage levels along the entire length of this rural circuit. Additionally, several poles must be replaced from age and or damage.
17) AMI Pilot for Industrial Customers

Project Scope: Develop the specifications, bid documents and system configurations for a fully integrated AMI pilot for the major industrial customers, along with provisions for future deployment to residential customers too.
Justification: Real time meter information will be beneficial to the utility operations as the utility continues to focus on controlling the wholesale power costs that are upwards of 70% of the costs to the utility. This project will also allow for better usage information to be shared with the consumer and allow FCL\&P to be in a better position as demand management and other regulatory changes that may develop soon.
18) Utility IT, Communication network upgrades to support AMI, SCADA and increasing bandwidth needs for the Utility Operations $\$ 450,000$
Project Scope: Update the servers and communication network in the IT Datacenter along with areas of fiber communication backbone to fully connect substation and remote devices on the FCL\&P system.
Justification: Reliable and safe communication and data repository capability has become a necessity in the industry. SCADA, AMI and System Coordination devices all require a safe, secure, high-speed network in which to operate over. While FCL\&P has deployed fiber in the past some areas will need to be connected to fully support the full system communication network additions provided earlier in the plan.
19) Pole Replacements:

20,000 poles in 50 years avg 400 per year @ $\$ 290.50$ ea. $=\$ 116,200 /$ year $\quad \$ 813,400$
Project Scope: Replace aging infrastructure components, specifically poles and cross-arms throughout the distribution system.
Project Schedule: 400 poles per year for seven years
Justification: While the life span of utility infrastructure stretches for several years, it is important to have a plan in place for review and upgrades as the weather, physical damage, and age degrades the reliable and safe application of these structures. With a multi-year replacement plan FCL\&P will ensure that the entire pole plant will be reviewed and replaced over time. The Seven year time period was chosen because it is likely that the Utility will need to perform another cost of service in 7 years.
20) S.R. 28 Road Widening Project 2019.

> Project Scope: Relocate the existing electric infrastructure along the S.R. 28 widening proposed by INDOT.

Justification: INDOT plans to widen S.R. 28 from the existing split 4 lane section at IMI Irving Materials on the West side of the city through the downtown corridor to the East side of town in front of the Walmart. This widening project affects 77 single phase poles and 73 three-phase poles along this route.

Q. CAN DETAILED COST ESTIMATES BE FOUND TO SUPPORT EACH OF THE FOREGOING PROJECTS?

A. Yes. Please refer to Attachment SDB-9 for a table depicting the breakdown by phase into design, equipment purchase, construction, and final commissioning. Following said table, please find a detailed cost estimate for each of the foregoing projects.
Q. HOW WERE THE COST ESTIMATES IN THE CAPITAL IMPROVEMENT PLAN DETERMINED?
A. As stated before, construction cost estimates are presented in 2016 dollars and were developed using recent quotes for like materials on similar projects within 150 miles of Frankfort. These cost factors have been further modified to directly apply to Frankfort's construction standards and available resources. Budget estimates have been prepared using data for the proposed projects and actual values recently experienced on similar projects, under similar conditions, located within a 150 -mile radius. Most of the construction cost estimates included a 20% contingency. Items $2,3,4,6$, and 19 were based on firm quotes and contain no contingency.
Q. WHAT IS YOUR PROFESSIONAL OPINION OF THE PROPOSED CAPITAL IMPROVEMENT PLAN?

1 A. The proposed Capital Improvement Plan was carefully reviewed for accuracy and

CONCLUSION
8 Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
9 A. Yes, at this time.

VERIFICATION

The undersigned affirms under the penalties for perjury that the foregoing testimony is true to the best of his knowledge, information and belief.

Scott D. Bowler, P.E.

ATTACHMENT SDB-1 ELECTRIC COST OF SERVICE STUDY

On
Behalf of
Petitioner, Frankfort City Light and Power

Petitioner's Exhibit 3

Frankfort City Light and Power

Revenue for each rate class was recorded monthly by type of charge (energy, cost adjustment, demand, code adjustment and customer) then adjusted to match financial reports.
Revenue allocation cost factors were then calculated for each rate class. Energy consumption was recorded monthly for each rate class then adjusted to match financial reports.
system loss factors were applied to each rate class in order to adjust total consumption to match wholesale consumption purchases for the test year. Energy allocation cost factors were then calculated for each rate class. Demand charges were determined monthly for each rate class, excluding lighting loads. Direct measurements were used for the largest capacities. Rates without demand metering were assigned a value equal to the product of the (difference between the total system demand minus the total metered demand) multiplied by the ratio of each specific rate class consumption divided by the total consumption for all rates without demand metering, for each month. Test year capacities were annualized, averaged and adjusted to match system totals. Transmission \& Distribution demand, energy and customer charge allocation cost factors were then calculated for each rate class. Operating revenues and
expenses were then distributed to each rate class by various allocation factors. New rates wre calculated to include the deficits found. The Table below summarizes results of the study

Active Rate Codes		Elec. Plant In-Service	Operating Expense	Revenue \% Tracker	Distribution Factors			Before Study	Revenue Increase	After Study	Projected Monthly Rates / Customer				$\begin{array}{\|l\|} \hline \$ \\ \hline \text { Revenue/mo. } \\ \hline \end{array}$	
					Customer	Energy	Demand				kWhrs.	KVA		Billing		
Rate A-Residential 5ervice	7,582	24.09\%	26.02\%	44.42\%	82.56\%	19.43\%	9.32\%	24.74\%	9.58\%	24.65\%	820	0.7	\$	91.71	\$	695,341
Rate B-Commercial Service	1,201	4.43\%	5.36\%	45.39\%	13.08\%	3.80\%	1.81\%	5.28\%	11.81\%	5.37\%	1,011	0.8	\$	126.10	\$	151,482
Rate C-General Power Service	341	11.37\%	11.49\%	49.89\%	3.71\%	9.88\%	14.07\%	11.66\%	11.74\%	11.85\%	9,269	22.7	\$	980.08	\$	334,124
Rate PPL	60	58.70\%	56.38\%	24.43\%	0.65\%	66.41\%	74.80\%	57.59\%	9.50\%	57.34\%	356,625	691.3	\$	27,143.86	\$	1,617,322
Rate Schedule SL	-	1.05\%	0.52\%	18.25\%	0.00\%	0.31\%	0.00\%	0.51\%	19.65\%	0.55\%	98,054	-	\$	-	\$	15,541
Rate Schedule OL	-	0.36\%	0.23\%	25.73\%	0.00\%	0.19\%	0.00\%	0.22\%	19.33\%	0.24\%	60,777	-	\$	-	\$	6,761
9,184	Totals	100.00\%	100.00\%	33.42\%	100.00\%	100.00\%	100.00\%	100.0\%	10.09\%	100.00\%	526,556	715.5	\$	28,341.75	\$	2,820,571

Approximately 27.1% of the requested increase is due to announced wholesale power cost increases from IMPA while about 40.9% of the increase is due to Capital Improvements and E\&R necessary to provide safety and reliability for employees and customers as well as improvements and efficiencies to system operations.

Summary of Results

Frankfort City Light and Power Exhibit A - Electric Rate Study Workbook
Twelve Months Ended March 31, 2016

WORKSHEET 1
SHEET 2 OF 2
Revised 08/30/2016

* Investor Owned Utility
+ Indiana Municipal Electric Association Member

Frankfort City Light and Power Pro Forma Results of Operations - Energy Allocation Factors

Twelve Months Ended March 31, 2016
STET 3 SHEET 1 OF 1 Revised 08/30/2016

Frankfort City Light and Power
WORKSHEET 4
Pro Forma Results of Operations - Demand Allocation Factors
SHEET 1 OF 1
Twelve Months Ended March 31, 2016

Frankfort City Light and Power
WORKSHEET 5
Municipal Street Lighting Consumption Estimator
SHEET 1 OF 8
Twelve Months Ended March 31, 2016
Revised 08/30/2016

Frankfort City Light and Power
WORKSHEET 5
Metered City Street Lighting Consumption - Rate Schedule SL
SHEET 2 OF 8
Twelve Months Ended March 31, 2016

FIXTURE WATTAGE : \& INSTALLATION	CONNECT	$\begin{aligned} & \text { LAMP } \\ & \text { TYPE } \end{aligned}$	FIXTURES IN USE	KWH/LTTE (currentmo.)	$\begin{gathered} \text { TOTAL KWHI } \\ / \mathrm{MO} \end{gathered}$	$\begin{aligned} & \text { BASE COST/ } \\ & \text { LITE / MO } \end{aligned}$	RATE TOTAL'	"TRACKER. "TOTAL'	ADJUSTED TOTAL	. 1
295	OH	INCAND	0	153	-	\$8.84	\$0.00	\$0.00	\$0.00	
100 (METAL URD)	OH	MERC	29	57	1,653	\$5.14	\$149.06	\$45.17	\$194.23	
175	OH	MERC	164	102	16,773	\$7.34	\$1,203.76	\$458.29	\$1,662.05	
250	OH	MERC	13	146	1,900	\$8.08	\$105.04	\$51.92	\$156.96	
400	OH	MERC	3	229	687	\$10.30	\$30.90	\$18.77	\$49.67	
100 (WOOD)	OH	HPS	0	51	-	\$6.17	\$0.00	\$0.00	\$0.00	
100 (METAL)	OH	HPS	56	51	2,843	\$9.31	\$521.36	\$77.67	\$599.03	
150 (WOOD)	OH	HPS	887	74	65,411	\$6.84	\$6,067.08	\$1,787.17	\$7,854.25	
150 (METAL)	URD	HPS	34	74	2,507	\$12.29	\$417.86	\$68.50	\$486.36	
250 (WOOD)	OH	HPS	82	129	10,553	\$8.02	\$657.64	\$288.32	\$945.96	
250 (METAL)	OH	HPS	42	129	5,405	\$11.19	\$469.98	\$147.68	\$617.66	
400 (WOOD)	OH	HPS	19	205	3,895	\$9.81	\$186.39	\$106.42	\$292.81	
400 (METAL)	OH	HPS	15	205	3,075	\$13.00	\$195.00	\$84.02	\$279.02	
400 (METAL URD)	URD	HPS	13	205	2,665	\$15.24	\$198.12	\$72.81	\$270.93	
							\$10,202.19	\$3,206.72		
CITY STREET LIGHT TOTALS			1,357		117,368		JAN		\$13,408.91	SELECT MONTH @ H44

Frankfort City Light and Power

Old Jail - Metered County Street Lighting Consumption - Rate Schedule SL
Twelve Months Ended March 31, 2016

FIXTURE WATTAGE \& INSTALLATION	LAMP TYPE	FIXTURES IN USE	KWH/ LITE (current mo.)	$\begin{gathered} \hline \text { TOTAL KWH } \\ \text { /MO } \end{gathered}$	BASE COST/ LITE / MO	RATE TOTAL	TRACKER TOTAL	ADJUSTED TOTAL
1000 (WOOD or METAL)	MERC	0	56	-	\$10.30	\$0.00	\$0.00	\$0.00
400 (WOOD)	HPS	4	205	820	\$9.81	\$39.24	\$22.40	\$61.64
						\$39.24	\$22.40	
COUNTY STREET LIGHT - JAI	ALS	4		820		JAN		\$61.64

Frankfort City Light and Power

Court House - Metered County Street Lighting Consumption - Rate Schedule SL
SHEET 4 OF 8
Twelve Months Ended March 31, 2016

FIXTURE WATTAGE \& INSTALLATION	$\begin{aligned} & \text { LAMP } \\ & \text { TYPE } \end{aligned}$	FIXTURES IN USE	KWH/ LITE (current.mo.)	TOTAL KWH /MO	$\begin{aligned} & \text { BASE COST/ } \\ & \text { LITE } / \cdot \mathrm{MO} \end{aligned}$	RATE TOTAL	TRACKER TOTAL	$\begin{gathered} \text { ADJUSTED } \\ \text { TOTAL } \\ \hline \end{gathered}$
250 (WOOD)	HPS	0	129	-	\$8.02	\$0.00	\$0.00	\$0.00
250 (METAL)	HPS	12	129	1,544	\$11.19	\$134.28	\$42.19	\$176.47
400 (WOOD)	HPS	0	205	-	\$9.81	\$0.00	\$0.00	\$0.00
400 (METAL)	HPS	4	205	820	\$13.00	\$52.00	\$22.40	\$74.40
						\$186.28	\$64.60	
COUNTY SL TOTALS - COURT HOUSE		16		2,364		JAN		\$250.88

Frankfort City Light and Power

Hospital - Metered County Street Lighting Consumption - Rate Schedule SL
SHEET 5 OF 8
Twelve Months Ended March 31, 2016

Frankfort City Light and Power
Metered City Outdoor Lighting Consumption - Rate Schedule OL
Twelve Months Ended March 31, 2016

FIXTURE WATTAGE \& in in INSTALLATION	$\begin{aligned} & \text { LAMP } \\ & \text { TYPE } \end{aligned}$	FIXTURES IN USE	KWH/ LITE ((Current mo,)	$\begin{gathered} \text { TOTAL KWH } \\ \text { / MO: } \end{gathered}$	$\begin{aligned} & \text { BASE COST/ } \\ & \text { LITE / MO } \end{aligned}$	RATE TOTAL	TRACKER TOTAL	ADJUSTED tOTAL
SECURITY LIGHTS - OPEN FACE								
175	MERC	134	102	13,705	\$6.24	\$836.16	\$374.45	\$1,210.61
250	MERC	0	146	-	\$7.83	\$0.00	\$0.00	\$0.00
400	MERC	3	229	687	\$8.97	\$26.91	\$18.77	\$45.68
100	HPS	8	51	406	\$3.67	\$29.36	\$11.10	\$40.46
150	HPS	399	74	29,424	\$4.31	\$1,719.69	\$803.92	\$2,523.61
250	HPS	9	129	1,158	\$5.64	\$50.76	\$31.64	\$82.40
400	HPS	7	205	1,435	\$7.26	\$50.82	\$39.21	\$90.03
						\$2,713.70	\$1,279.09	
SECURITY LIGHT TOTALS - O	FACE	560		46,815		JAN		\$3,992.79

Frankfort City Light and Power

WORKSHEET 5
Metered City Outdoor Lighting Consumption - Rate Schedule OL
SHEET 7 OF 8

'I' FIXTURE WATTAGE \& INSTALLATION	LAMP TYPE	FIXTURES IN USE	KWH/ LITE (current mo,	$\begin{gathered} \text { TOTAL KWH } \\ \text { IMO } \\ \hline \end{gathered}$	BASE COST/ LTE / MO	RATE TOTAL	$\begin{aligned} & \text { TRACKER } \\ & \text { TOTAL } \end{aligned}$	ADJUSTED tOTAL
SECURITY LIGHTS - FLOOD								
250 Flood	MERC	1	146	146	\$7.61	\$7.61	\$3.99	\$11.60
400 Flood	MERC	12	229	2,748	\$11.37	\$136.44	\$75.07	\$211.51
150 Flood	HPS	29	74	2,139	\$4.65	\$134.85	\$58.43	\$193.28
250 Flood	HPS	31	129	3,989	\$7.12	\$220.72	\$109.00	\$329.72
400 Flood	HPS	97	205	19,885	\$10.43	\$1,011.71	\$543.30	\$1,555.01
						\$1,511.33	\$789.79	
SECURITY LIGHT TOTALS - FLOOD		170		28,907		JAN		\$2,301.12

Frankfort City Light and Power

WORKSHEET 5
Metered City Outdoor Lighting Consumption - Rate Schedule OL

 	$\begin{aligned} & \text { LAMPP } \\ & \text { THPE } \end{aligned}$	$\begin{array}{\|l} \text { FIXTURES } \\ \text { INUSE } \end{array}$	KWH// LITE (current mo.)	TOTAL KWH 1 MO	$\begin{aligned} & \hline \text { BASE COST/ } \\ & \because \mathrm{LITE} / \mathrm{MO} \\ & \hline \end{aligned}$	RATE . TOTAL	TRACKER total	ADJUSTED TOTAL	\% Trable 8
SECURITY LIGHTS - NON COLLECT									
175	MERC	1	102	102	\$0.00	\$0.00	\$0.00	\$0.00	
150	HPS	2	74	147	\$0.00	\$0.00	\$0.00	\$0.00	
250	HPS	3	129	386	\$0.00	\$0.00	\$0.00	\$0.00	
400	HPS	2	205	410	\$0.00	\$0.00	\$0.00	\$0.00	
						\$0.00	\$0.00		
SECURITY LTS - NON COLLECT TOTALS		8		1,046		JAN	\$0.00		
OUTDOOOR SECURITY LIGHTIN	TOTALS	738		76,768		\$ 4,225.03	\$2,068.88	\$6,293.91	

Frankfort City Light and Power

WORKSHEET 6
SHEET 1 OF 6
Pro Forma Results of Twelve Months Operations Ended March 31, 2016

Service Class Allocation

Revised 08/30/2016
FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

From Department Financial Reports					Single Phase Single or Three Phase						Three Phase		Rate Schedule SL Municipal		Rate Schedule ol					
LineNo.												oor								
		Alloc Code	System Totals		Rate A Residential Service		Rate B Commercial Service		Rate C - General Power Service				Rate PPL		Street Lighting Service		Lighting Service			
(A) Distribution Expense			(D)			(E)	(F)		(G)		(H)		(1)		(J)					
Distribution Expense																				
21	Operation Supervision \& Engineering Salaries	DDAF	\$	763,475	\$	71,180	\$	13,824	\$	107,424	\$	571,047	\$	-	\$	-	\$	763,475		
22	Dental, Vision, Health \& Miscellanous	DDAF	\$	504,583	\$	47,043	\$	9,137	\$	70,997	\$	377,407	\$	-	\$	-	\$	504,583		
23	Line and Station Supplies Expense	DDAF	\$	77,780	\$	7,252	\$	1,408	\$	10,944	\$	58,176	\$	-	\$	-	\$	77,780		
24	Overhead Line Expenses	DDAF	\$	46,000	\$	4,289	\$	833	\$	6,472	\$	34,406	\$	-	\$	-	\$	46,000		
25	Underground Line Expense	DDAF	\$	$(126,366)$	\$	$(11,781)$	\$	$(2,288)$	\$	$(17,780)$	\$	$(94,516)$	\$	-	\$	-	\$	$(126,366)$		
26	Street Lighting and Signal System Expense	LITES	\$	33,695	\$	-	\$	-	\$	-	\$	-	\$	23,461	\$	10,234	\$	33,695		
27	Meter Expense	MCAF	\$	833	\$	688	\$	109	\$	31	\$	5	\$	-	\$	-	\$	833		
28	Tree Trimming Expense	MCAF	\$	4,579	\$	3,780	\$	599	\$	170	\$	30	\$	-	\$	\bullet	\$	4,579		
29	Distribution Expense Miscellaneous	DDAF	\$	49,028	\$	4,571	\$	888	\$	6,898	\$	36,671	\$	-	\$	-	\$	49,028		
30	Distribution Plan and Design	DDAF	\$	$(5,546)$	\$	(517)	\$	(100)	\$	(780)	\$	(4,148)	\$	-	\$	-	\$	$(5,546)$		
31	Maintenance of Structures \& Equipment	DDAF	\$	5,603	\$	522	\$	101	\$	788	\$	4,191	\$.	\$	-	\$	5,603		
32	Maintenance of Overhead Lines	DDAF	\$	121,573	\$	11,334	\$	2,201	\$	17,106	\$	90,932	5	-	\$	-	\$	121,573		
33	Maintenance of Underground Circuits	DDAF	\$	59,454	\$	5,543	\$	1,077	\$	8,365	\$	44,469	\$	-	\$	-	\$	59,454		
34	Total Distribution Expense		\$	1,534,692	\$	143,903	\$	27,789	\$	210,636	\$	1,118,669	\$	23,461	\$	10,234	\$	1,534,692		
Customer Account and Collection																				
35	Meter Reading Labor	MCAF	\$	78,375	\$	64,706	\$	10,251	\$	2,909	\$	508	\$	-	\$	-	\$	78,375		
36	Dental, Vision, Health \& Miscellanous	MCAF	\$	51,798	\$	42,764	\$	6,775	\$	1,923	\$	336	\$	-	\$	-	\$	51,798		
37	Meter Reading Expense	MCAF	\$	450	\$	372	\$	59	\$	17	\$	3	\$	-	\$	-	\$	450		
38	Collection Expense	MCAF	\$	172,602	\$	142,499	\$	22,576	\$	6,407	\$	1,120	\$	-	\$	-	\$	172,602		
39	Uncollectible Accounts	MCAF	\$	39,497	\$	32,608	\$	5,166	\$	1,466	\$	256	\$	-	\$	-		39,497		
40	Total Customer Accounting \& Collection Expense		\$	342,722	\$	282,948	\$	44,828	\$	12,722	\$	2,224	\$	-	\$	-	\$	342,722		
Administrative and General																				
41	Salaries and Wages	DDAF	\$	408,546	\$	38,089	\$	7,398	\$	57,484	\$	305,575	\$	-	\$	-		408,546		
42	Office 5upplies Expense	MCAF	\$	171,326	\$	141,445	\$	22,410	\$	6,360	\$	1,112	\$	-	\$	-		171,326		
43	Outside Service Employed	DDAF	\$	116,898	\$	10,899	\$	2,117	\$	16,448	\$	87,435	\$	-	\$	-		116,898		
44	Insurance	DDAF	\$	105,488	\$	9,835	\$	1,910	\$	14,843	\$	78,900	\$	-	\$	-		105,488		
45	Leased Truck Payment	DDAF	\$	28,206	\$	2,630	\$	511	\$	3,969	\$	21,097	\$	-	\$	-	\$	28,206		
46	Employees Pensions and Benefits:																			
47	Pension, Training, and Drug Testing	MCAF	\$	137,603	\$	113,604	\$	17,999	\$	5,108	\$	893	\$	-	\$	-		137,603		
48	Vacation, Personal, 5ick \& Bereavement Pay	MCAF	\$	322,211	\$	266,014	\$	42,145	\$	11,961	\$	2,090	\$	-	\$	-		322,211		

FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

Frankfort City Light and Power
Pro Forma Results of Twelve Months Operations Ended March 31, 2016
Service Class Allocation
WORKSHEET 6
SHEET 4 OF 6
Revised 08/30/2016
FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

From Department Financial Reports								Erea Schedme St	Rate Schedule ol
				Single Phase	Single or Three Phase		Three Phase	Municipal	
Line No.	Item	Alloc Code	System Totals	Rate A Residential Service	Rate B Commercial Service	Rate C - General Power Service	Rate PPL	Street Lighting Service	Lighting Service

Annual Operating Revenues
75 Metered Sales
75 Miscellaneous Revenue
77 Interest income
78 Total Adjusted Annual Receipts
79 Deficit
80 Allowance For Utility Receipts Tax @ 1.4\%
81 Revenue Increase Required
1 Reve
82 Total Sales of Electricity (less Other Operating Revenue)
83 Percentage Rate Increase Required
(C) (D)
(E)
(F)

REV	\$	30,320,883	\$	7,501,453	\$	1,602,154	\$	3,536,127	\$	17,460,344	\$	153,738	\$	67,067	\$	30,320,883
REV	\$	489,712	\$	121,156	\$	25,876	\$	57,112	\$	282,002	\$	2,483	\$	1,083	\$	489,712
REV	\$	10,898	\$	2,696	\$	576	\$	1,271	\$	6,276	\$	55	\$	24	\$	10,898
Ad	\$	30,821,493	\$	7,625,305	\$	1,628,606	\$	3,594,510	\$	17,748,622	\$	156,276	5	68,174	\$	30,821,493
	\$	3,016,903	\$	708,335	\$	186,941	\$	410,055	\$	1,634,918	\$	30,000	\$	12,869	\$	2,983,117
RE		42,237	\$	10,449	\$	2,232	\$	4,926	\$	24,322	\$	214	\$	93	\$	42,237
	\$	3,059,140	\$	718,784	\$	189,172	\$	414,980	\$	1,659,240	\$	30,214	\$	12,963	\$	3,025,353
REV	\$	30,320,883	\$	7,501,453	\$	1,602,154	\$	3,536,127	\$	17,460,344	\$	153,738	\$	67,067	\$	30,320,883
		10.09\%		9.58\%		11.81\%		11.74\%		9.50\%		19.65\%		19.33\%		

1,602,1
(G) (H)
(1)
(J)

Frankfort City Light and Power
Pro Forma Results of Twelve Months Operations Ended March 31, 2016
Service Class Allocation
WORKSHEET 6
SHEET 5 OF 6
Revised 08/30/2016
FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

From Department Financial Reports								Rate Schedule SL	Fate Schedue or
				Single Phase	Single or	ree Phase	Three Phase	Municipal	Outdoor
Line No.	Item	Alloc Code	System Totals	Rate A Residential Service	Rate B Commercial Service	Rate C-General Power Service	Rate PPL	Street Lighting Service	Lighting Service

Utility Plant In Service
Summary of fixed Assets
84 ELA CLP Land
85 EBL CLP Building
86 FEN CLP Fencing
87 PE PRIM EXT / New Service
88 DCE Data Center Equipment
89 ECO CLP Genl Communications Equip
90 EGL CLP GENL Lab 5tores Misc EQ
91 EMA CLP Machinery \& Equipment
92 EOE CLP Office Equipment
93 ESC CLP 5cada Equipment
94 ETR CLP Trailer \& Misc. Equipment
95 EVE CLP Vehicies
96 ECA CLP Capacitor Bank Equip
97 EDC CLP Dist Capacitor Banks
98 EFI CLP Fiber
99 EME CLP Meters
100 EPO CLP Poles
101 ERE CLP Reclosers
102 E5E CLP Security Lights
103 ESI CLP Switches
104 EST CLP 5treet Lights
105 ESW CLP Switching Equipment
106 ETR CLP Transformers
107 EWR CLP Wire
108 Total Electric Plant - In Service
109 Electric Plant In Service Allocation Factor

REV	$\$$	161,282	$\$$	39,902	$\$$	8,522	$\$$	18,809	$\$$	92,875	$\$$	818	$\$$
REV		$5,784,807$	$\$$	$1,431,174$	$\$$	305,669	$\$$	674,644	$\$$	$3,331,193$	$\$$	29,331	$\$$
REV	$\$$	9,100	$\$$	2,251	$\$$	481	$\$$	1,061	$\$$	5,240	$\$$	46	$\$$
DDAF	$\$$	$1,589,941$	$\$$	148,232	$\$$	28,790	$\$$	223,712	$\$$	$1,189,208$	$\$$	-	$\$$
MCAF	$\$$	258,316	$\$$	213,263	$\$$	33,788	$\$$	9,589	$\$$	1,676	$\$$	-	$\$$
MCAF	$\$$	51,951	$\$$	42,890	$\$$	6,795	$\$$	1,928	$\$$	337	$\$$	-	$\$$

FERC Form 1-F Based on Operating Reports - Adjusted to match Financial Reports

Equivalent Current Rates	Single Phase				Three Phase			
RATE CODE	Rate A. Residential Servite		Rate B Commercial Service		Rate C -General PowerService		Rate PPL	
Customer Charge S/Month	5	4.00	\$	6.00	\$	15.00	5	-
Demand Rate - \$/kVA	\$	-	\$.	\$	-	5	10.15
Energy Rate - $\$ / \mathrm{kWh}$	\$	0.051919	\$	0.055230	\$	0.046056	5	0.032698
Tracker Rate - \$/kWh	\$	0.045560	\$	0.050895	\$	0.047450	\$	0.017060
Equivalent All-in Rate $\$ / \mathrm{kWh}$	\$	0.102358	s	0.112050	\$	0.095124	\$	0.069432

Proposed Rates	Single Phase				Three Phase			
RATE CODE	Rate AResidential Service		Rate BCommercial Service		Rate C - General Power Service		Rate.PPL	
Customer Charge - \$/Month	\$	15.00	\$	20.00	s	45.00	s	60.00
Demand Charge- $5 / \mathrm{kVA}$	5	-	\$	-	5	-	s	18.85
Energy Charge - $\$ / \mathrm{kWh}$	\$	0.093568	\$	0.104945	5	0.100882	\$	0.039407
Tracker Charge - $5 / \mathrm{kWh}$	\$	-	\$	-	\$	-	\$	-
Equivalent All-in Rate $\$ / \mathrm{kWh}$	s	0.111865	s	0.124726	S	0.105737		0.076113

>10,000kw	
New Rate Schedule IP	
Industrial Power	
	600.00
\$	20.72
	0.035560
\$	-
	0.074395

Avg. Invoice 2016	S	83.92	S	113.30	5	881.70	S	24,761.29
Avg. Invoice 2017	\$	91.71	\$	126.10	\$	980,08	\$	27,143.86
Monthly Increase	\$	7.79	\$	12.81	\$	98.37	\$	2,382.57

Evaluation and Development of Capital Improvement Plan Allocators
SHEET 1 OF 5
Revised 08/30/2016

From Capital Improvement Plan Project Estimates		Revised 08/30/2016								
								Batcscicodul St	Rateschedulc ol	C
				Single Phase		Three Phase		Municipal	Outdoor	H
Line No.	Project Name	Plant Cost Category	Amount	Rate A Residential Service	Rate B - Commercial Service	Rate C General Power	Rate PPL.	Street Lighting Service	Lighting Service	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \end{aligned}$
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	
1	1) Install cutouts and coordinate fuses on radial taps	Trans	-	-	-	-	-	-	-	-
2		Distr	137,750	29,216	10,269	23,576	70,735	2,773	1,181	137,750
3		Meter	-	-	-	-	-	-	-	-
4	Project Total		137,750	29,216	10,269	23,576	70,735	2,773	1,181	137,750
13	2) Update the existing distribution protective device settings on relays	Trans	-	-	-	-	-	-	-	-
14		Distr	16,850	3,574	1,256	2,884	8,652	339	144	16,850
15		Genl	-	-	-	-	-	-	-	-
16	Project Total		16,850	3,574	1,256	2,884	8,652	339	144	16,850
17	3) Update/install Arc Flash labels based on protective device coordination results/recommendation	Trans	-	-	-	-	-	-	-	-
18		Distr	-	-	-	-	-	-	-	-
19		Genl	4,250	1,344	348	341	2,218	-	-	4,250
20	Project Total		4,250	1,344	348	341	2,218	-	\bullet	4,250
25	4) Vehicle Fleet Additions (2 service Pick-ups replace \#2-45 \& \#2-4A with one and \#2-7 with the other)	Trans		-	-	-	-	-	-	-
26		Distr	-	-	-	-	-	-	-	-
27		Genl	50,259	15,890	4,111	4,028	26,230	-	-	50,259
28	Project Total		50,259	15,890	4,111	4,028	26,230	-	-	50,259
29	5) Voltage Regulators installed to remedy voltage issues on select circuits, Burlington Sub Feeder 5,	Trans	-	-	-	-	-	-	-	-
30	Fairground Substation Feeder No. 3, Westside Sub Feeder No. 3, Westside Sub Feeder No. 4	Distr	481,424	102,108	35,890	82,396	247,212	9,691	4,128	481,424
31		Genl	-	-	-	-	-	-	-	-
32	Project Total		481,424	102,108	35,890	82,396	247,212	9,691	4,128	481,424
33	6) Vehicle Fleet Additions (2 service trucks service trucks \#2-9 and \#2-14)	Trans	-	-	-	-	-	-	-	-
34		Distr	-	-	-	-	-	-	-	-
35		Genl	335,150	105,963	27,416	26,859	174,911	-	-	335,150
36	Project Total		335,150	105,963	27,416	26,859	174,911	-	\bullet	335,150
37	7) Re-conductor distribution circuits to increase ampacity (reduce bottleneck), WSS6 OH SW16 \& 11516 -	Trans	"	-	-	-	-	-	-	-
38	from 336 to 477ACSR (Approx. 100 feet), W5S4 FROM Sub to IN 28 POLE 11715-336 to 477ACSR (Approx.	Distr	360,719	76,507	26,891	61,737	185,230	7,261	3,093	360,719
39	2400 feet), FGR4 OH FAIRGND \& PRAIRIE - from 336 to 477ACSR (Approx. 600 feet), BUR8 OH WASH AVE \&	Genl	-	-	-	-	-	-	-	-
40	Project Total		360,719	76,507	26,891	61,737	185,230	7,261	3,093	360,719

Frankfort City Light and Power
 WORKSHEET 9

Evaluation and Development of Capital Improvement Plan Allocators
5HEET 2 OF 5
Revised 08/30/2016

	From Capital Improvement Plan Project Estimates							Rate Schedrue st	Rateschestureo	C
				Single Phase		Three Phase		Municipal	Outdoor	H
Line No.	Project Name	Plant Cost Category.	Amount	Rate A. Residential Service	Rate BCommercial Service	Rate C- General Power	Rate PPL	5treet Lighting Service	Lighting Service	E
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	
41	8) New 5ubstation Northwest $69 / 13.2 \mathrm{kV}$ with 8 feeders	Trans	345,000	74,549	27,950	59,646	182,855	-	-	345,000
42		Distr	2,300,000	487,821	171,463	393,645	1,181,052	46,297	19,722	2,299,999
43		Genl	-	-	-	-	-	-	-	-
44	Project Total		2,645,000	562,370	199,413	453,291	1,363,907	46,297	19,722	2,644,999
45	9) West Side Substation Upgrades (Replace two (2) circuit switchers with SF6 breakers, Two New 69/13.2kV,	Trans	265,000	57,263	21,469	45,815	140,454	-	-	265,000
46	20/26.7/33.3 MVA Transformers, Main-Tie-Main 5witchgear with 8 Feeders, new relays, metering	Distr	2,000,412	424,279	149,129	342,371	1,027,214	40,256	17,153	2,000,411
47		Genl	.	-	-	-	-	-	-	-
48	Project Total		2,265,412	481,542	170,597	388,186	1,167,667	40,266	17,153	2,265,411
49	10) West Side Substation Preventative Maintenance	Trans	-	-	-	-	-	-	-	-
50		Distr	38,650	8,198	2,881	6,615	19,847	778	331	38,650
51		Genl	-	.	-	-	-	-	-	-
52	Project Total		38,650	8,198	2,881	6,615	19,847	778	331	38,650
53	11) Burlington 5ubstation Upgrades (NEW 69/13.2kV, 30/40/50 MVA Transformer, Upgrade distribution	Trans	345,000	74,549	27,950	59,646	182,855	-	-	345,000
54	switchgear (breakers and relays), maintain existing building for 69kV Relaying \& Storage)	Distr	1,246,744	264,429	92,944	213,380	640,204	25,096	10,690	1,246,744
55		Genl	- -	-	-	-	.	-	$\stackrel{-}{\square}$	-
56	Project Total		1,591,744	338,979	120,893	273,026	823,059	25,096	10,690	1,591,744
57	12) Burlington Substation Maintenance	Trans	-	-	-	-	-	-	-	\checkmark
58		Distr	38,650	8,198	2,881	6,615	19,847	778	331	38,650
59		Genl	- -	-	-	.	-	\bullet	\cdot	-
60	Project Total		38,650	8,198	2,881	6,615	19,847	778	331	38,650
61	13) Fairgrounds Substation Upgrades (Replace existing high side circuit breaker with SF6 breaker, Upgrade	Trans	-	-	-	-	-	-	-	-
62	existing SEL protective relays to 3515 Relays, 5EL Communication Processor to monitor and collect data	Distr	242,172	51,364	18,054	41,448	124,356	4,875	2,077	242,172
63	from existing protective relays for future SCADA)	Genl	-	-	-	-	-	-	-	-
64	Project Total		242,172	51,364	18,054	41,448	124,356	4,875	2,077	242,172
65	14) G15/Mapping System Upgrades	Trans	-	-	-	-	-	-	-	-
66		Distr	152,565	32,358	11,374	26,111	78,342	3,071	1,308	152,565
67		Genl	56,850	17,974	4,651	4,556	29,669	.	-	55,850
68	Project Total		209,415	50,333	16,024	30,667	108,012	3,071	1,308	209,415

Evaluation and Development of Capital Improvement Plan Allocator
Revised 08/30/2016

From Capital Improvement Plan Project Estimates				Revised 08/30/2016						
								Ratescheortes.	Rataschadute of	c
				Single Phase		Three Phase		Municipal	Outdoor	
Line No.	Project Name	Plant Cost Category	Amount	Rate A- Residential Service	Rate BCommercial Service	Rate CGeneral Power	Rate PPL	Street Lighting Service	Lighting Service	$\begin{aligned} & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{~K} \end{aligned}$
(A)	(B)	(c)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	
69	15) Fairgrounds Substation Maintenance	Trans	-	-	-	-	-	-	-	-
70		Distr	39,460	8,369	2,942	6,754	20,263	794	338	39,460
71		Genl	-	-	-	-	-	-	-	-
72	Project Total		39,460	8,369	2,942	6,754	20,263	794	338	39,460
73	16) S.R. 28 3-phase Re-Build	Trans	-	-	-	-	-	-	-	-
74		Distr	549,170	116,477	40,940	93,990	281,999	11,054	4,709	549,170
75		Genl	-	-	-	-	-	-	-	-
76	Project Total		549,170	116,477	40,940	93,990	281,999	11,054	4,709	549,170
77	17) AMI Pilot for Industrial Customers	Trans	-	-	-	-	-	-	-	-
78		Distr	-	-	-	-	-	-	-	-
79		Meter	168,785	106,538	21,238	23,353	17,656	"	-	168,785
80	Project Total		168,785	106,538	21,238	23,353	17,656	-	-	168,785
81	18) Utility IT, Communication network upgrades to support AMI, SCADA and increasing bandwidth needs for	Trans	150,000	32,413	12,152	25,933	79,502	-	-	150,000
82	the Utility Operations	Distr	150,000	31,814	11,182	25,673	77,025	3,019	1,286	150,000
83		Genl	150,000	47,425	12,271	12,021	78,283	-	-	150,000
84	Project Total		450,000	111,652	35,605	63,627	234,811	3,019	1,286	450,000
85	19) Pole Replacements - 20,000 poles in 50 years ~ avg 400 per yr. @ \$290.50 ea. $=\$ 116,200 /$ year.	Trans	-	-	-	-	-	-	-	-
86	According to Annixter Feb 2016, a 50 foot - Class 3 SYP CCA treated wood pole costs \$290.50.	Distr	813,400	172,519	60,638	139,213	417,682	16,373	6,975	813,400
87		Genl	-	-	-	-	-	-	-	-
88	Project Total		813,400	172,519	60,638	139,213	417,682	16,373	6,975	813,400
89	20) 5 R28 Road Widening Project 2018 - INDOT has announced plans to widen 5 R28 through Frankfort. As a	Trans	-	-	-	-	-	-	-	-
90	result, all poles along the proposed route must be moved and associated electrical infrastructure must be	Distr	1,400,000	296,934	104,369	239,610	718,901	28,181	12,004	1,399,999
91	modified. INDOT's road widening project is scheduled to begin in 2018.	Genl	-	-	-	-	-	-	-	-
92	Project Total		1,400,000	296,934	104,369	239,610	718,901	28,181	12,004	1,399,999
93		Trans	-	-	-	-	-	-	-	-
94		Distr	-	\bullet	-	-	-	-	-	-
95		Genl	.	.	-	-	-	-	- -	-
96	Project Total		-	-	-	-	-	-	-	-

Frankfort City Light and Power WORKSHEET 9
Evaluation and Development of Capital Improvement Plan Allocators
SHEET 4 OF 5 Revised 08/30/2016

		From Capital Improvement Plan Project Estimates							Rate Scheovicsi	Rate Scheotule 01	C	
					Single Phase		Three Phase		Municipal	Outdoor		
$\begin{array}{\|l\|} \hline \text { Line } \\ \text { No. } \end{array}$		Project Name	Plant Cost Category	Amount	Rate A Residential Service	Rate BCommercial Service	Rate CGeneral Power	Rate PPL	Street Lighting Service	Lighting Service	$\begin{aligned} & \mathbf{E} \\ & \mathbf{C} \end{aligned}$	
(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)		
97			Trans	-	-	-	-	-	-	-		-
98			Distr	-	-	-	-	-	-	-		-
99			Genl	-	-	-	-	-	-	-		-
100	Project Total			-	-	-	-	-	-	-		-
101			Trans	-	-	-	-	-	-	-		-
102			Distr	-	-	-	-	-	-	-		-
103			Genl	-	-	-	-	-	-	-		-
104	Project Total			-	-	-	-	-	-	-		-
105			Trans	-	-	-	-	-	-	-		-
106			Distr	-	-	-	-	-	-	-		-
107			Genl	-	-	-	-	-	-	-		-
108	Project Total			-	-	-	-	-	-	-		-
109			Trans	-	-	-	-	-	*	-		-
110			Distr	-	-	-	-	-	-	-		-
111			Genl	-	-	-	-	-	-	-		-
112	Project Total			-	-	-	-	-	-	-		-
113			Trans	-	-	-	-	-	-	-		-
114			Distr	-	-	-	-	-	-	-		-
115			Genl	-	-	-	-	\cdot	-	-		-
115	Project Total			-	-	-	-	-	-	-		-
117			Trans	-	-	-	-	-	-	-		-
118			Distr	-	-	-	-	\cdot	-	-		-
119			Genl	-	-	-	-	-	-	-		-
120	Project Total			-	-	-	-	-	*	-		-
121			Trans	-	-	-	-	-	-	*		-
122			Distr	-	-	-	-	-	-	-		-
123			Genl	-	-	-	-	-	-	-		-
124	Project Total			-	-	-	-	-	-	\bullet		-

Frankfort City Light and Power

WORKSHEET 9
Evaluation and Development of Capital Improvement Plan Allocators
SHEET 5 OF 5
Revised 08/30/2016

Billing System Totals and Projections

WORKSHEET 10 SHEET 1 OF 1 Revised 08/30/2016

2014 System Billing Totals						
Date	Energy KWh		Energy \$	Demand kW		Demand \$
Jan-14	36,877,824	\$	1,173,267.97	61,560	\$	1,205,098.56
Feb-14	33,102,348	\$	1,053,151.21	59,184	\$	1,158,585.99
Mar-14	33,767,448	\$	1,074,311.36	56,880	\$	1,113,482.88
Apr-14	29,981,050	\$	953,847.11	51,060	\$	999,550.56
May-14	32,657,010	\$	1,038,982.77	60,464	\$	1,183,643.27
Jun-14	35,671,852	\$	1,134,899.97	68,904	\$	1,348,864.71
Jul-14	35,654,876	\$	1,153,898.75	66,716	\$	1,355,202.10
Aug-14	37,384,664	\$	1,209,879.89	71,496	\$	1,452,298.24
Sep-14	32,810,976	\$	1,061,861.61	70,488	\$	1,431,822.74
Oct-14	32,053,968	\$	1,037,362.57	53,280	\$	1,082,276.64
Nov-14	32,090,112	\$	1,038,532.29	56,232	\$	1,142,240.62
Dec-14	34,163,676	\$	1,105,639.05	55,812	\$	1,133,709.16
Totals	406,215,804	\$	13,035,634.55	732,076	\$	14,606,775.47

\$ 27,642,410.02

2015 System Billing Projections							
Energy KWh		Energy \$	Demand kW		Demand \$		
35,809,903	\$	1,190,356.99	58,843	\$	1,234,761.51		
32,562,297	\$	1,082,403.31	58,863	\$	1,235,181.19		
33,039,245	\$	1,098,257.54	55,020	\$	1,154,539.68		
30,463,660	\$	1,012,642.52	52,523	\$	1,102,142.63		
32,378,556	\$	1,076,295.58	59,635	\$	1,251,380.84		
36,352,422	\$	1,208,390.86	70,928	\$	1,488,353.15		
39,740,151	\$	1,321,002.36	72,260	\$	1,516,303.84		
37,889,402	\$	1,259,481.61	70,886	\$	1,487,471.82		
34,001,783	\$	1,130,253.27	70,210	\$	1,473,286.64		
32,390,493	\$	1,076,692.38	54,417	\$	1,141,886.33		
31,037,220	\$	1,031,708.23	53,175	\$	1,115,824.20		
33,832,320	\$	1,124,620.15	56,796	\$	1,191,807.26		
409,497,452	\$	13,612,104.80	733,556	\$	15,392,939.10	\$	29,005,043.91

Calculated		
$\$ / \mathrm{kWh}$	\$/kW	
0.031815	$\$$	19.576000
0.031815	$\$$	19.576000
0.031815	$\$$	19.576000
0.031815	$\$$	19.576000
0.031815	$\$$	19.576000
0.031815	$\$$	19.576000
0.032363	$\$$	20.313000
0.032363	$\$$	20.313000
0.032363	$\$$	20.313000
0.032363	$\$$	20.313000
0.032363	$\$$	20.313000
0.032363	$\$$	20.313000

Projected

$\$ / \mathrm{kWh}$	$\$ / \mathrm{kW}$	
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000
0.033241	$\$$	20.984000

Frankfort City Light and Power
WORKSHEET 11
Metered City Street Lighting Consumption - Rate Schedule SL
SHEET 1 OF 2

Frankfort City Light and Power
WORKSHEET 11
Metered City Street Lighting Consumption - Rate Schedule SL
SHEET 2 OF 2
Twelve Months Ended March 31, 2016

ATTACHMENT SDB-2
 DESCRIPTION OF ALLOCATION FACTORS

On

Behalf of
Petitioner,
Frankfort City Light \& Power

Petitioner's Exhibit 3

Allocation Factors

The model uses a number of allocation factors to fairly and accurately distribute the appropriate costs to each rate class. The following describes each allocation factor and its use in the attached model.

Allocation Codes:

PLT: Electric Plant in Service Allocation Factor is defined as the ratio of each customer class plant cost allocation to the total Electric Plant in Service cost.

CAP: Electric Plant Adjusted for Capital Improvements is derived by dividing the total capital improvement projects cost for each class of service by the Total of all Capital Improvements. The CAP is used to properly allocate the electric plant; adjusted for capital improvements.

DEAF: Distribution Energy Allocation Factor is derived by dividing the Adjusted Load in kWh (Total Energy consumption) per customer service class by the Total Adjusted FCL\&P System Load. The DEAF is used extensively throughout the model.

DDAF: Distribution Demand Allocation Factor is derived by dividing the Average Distribution Demand per customer service class by the Total Average Distribution Demand. The DDAF is used extensively throughout the model. The DDAF is used to properly allocate operating expenses related to load dispatching, stations, overhead lines, underground lines, miscellaneous, rents as well as maintenance expenses related to Structures, Station Equipment, Overhead Lines, Underground Lines, Line Transformers, and Miscellaneous maintenance.

GPAF: General Plant Allocation Factor is derived by dividing the Total General Plant per customer service class by the Total General Plant. The GPAF is used extensively throughout the model. The GPAF is used to properly allocate the Power Production, Transmission and Distribution Expenses related to Operation Supervision and Labor, and well as Maintenance. The GPAF is also used to properly allocate all present Customer Service and Informational Expenses related to Operations. Further GPAF allocates Administrative and General Salaries, Outside Services Employed, Property Insurance, Injuries and Damages, Employee Pensions and Benefits, Miscellaneous General Expenses, Rents, Maintenance of General Plant, Depreciation Expense, Amortization Expense, FICA Taxes, and Unemployment Tax. GPAF is also used to define Genl,
which is used to properly allocate the General Plant portions of the Capital Projects across customer service classes.

Trans: Transmission Plant Cost Allocation Factor. Because the Utility does not presently break out transmission costs as it does not have any Transmission fed customers or rate to service said customers, a factor was developed based on Transmission, the present and the estimated capital related to transmission to be expended in each service class. While this factor may not be necessary today, the Utility desires to establish a Large Power Tariff to supply any new Transmission fed customer. This exercise affords the Utility an opportunity to establish a tariff that more closely matches true cost of service for said new customer type.

Distr: Distribution Plant Cost Allocation Factor $=$ DPLT. The Distr is used to properly allocate the Distribution Plant portion of the capital projects across customer service classes.

Genl: General Plant Cost Allocation Factor = GPAF. The Genl is used to properly allocate the General Plant portion of the capital projects across customer service classes.

Meter: Metering Plant Cost Allocation Factor is the product of meter count per class times the relative cost to purchase install and test the associated meter type per class divided by the sum of all said products of meter count and relative cost to purchase. The Meter is used to properly allocate the Metering Plant portion of the capital projects across customer service classes.

MCAF: Metered Customer Allocation Factor is defined as the total number of meters per customer class divided by the total number of meters in the system. The MCAF is used to properly allocate the Operating Expenses related to Meter and Customer Installations, Maintenance Expenses related to Meters, as well as all Operations Expense related to Customer Accounts, Office Supplies and General Expense. Further, the MCAF is used to properly allocate the Electric Plant in Service related to Services, and Meters.

RAF: Revenue Allocation Factor is derived by dividing the adjusted revenue per service class by the total adjusted revenue. The RAF is used properly allocate by customer class the Total proforma power supply expense, fuel expense for power production, as well as operation supplies and expenses. The RAF is also used to allocate by customer class the Payment (or Contribution) in Lieu of Tax also abbreviated as the PILOT.

Attachment 2: Description of Allocation Factors
 Petitioner's Exhibit 3 Frankfort City Light \& Power Page No. 3 of 3

URT: Utility Receipts Tax Allocation Factor is defined as Total Sales of Electricity per customer class divided by the Total Sales of Electricity; Where Total Sales of Electricity is the arithmetic sum of Operating Revenues and Public Street and Security Lighting. The URT is used to properly allocate by customer class the Utility Receipts Tax.

LITES: LITES is the Revenue collected for each lighting class of service divided by the total Revenue collected for Public Street and Security Lighting. LITES is used to properly apportion the expenses associated with maintenance of street light and signal systems across each lighting class of service.

DIR: DIR is derived as the directly reported Operating Revenues less Public Street and Security Lighting Revenues collected for each service class divided by the Total Operating Revenues less Public Street and Security Lighting. DIR is used to properly apportion the expenses associated with Purchased Power across each class of service.
\%Mtr: Percentage Meter is calculated by dividing the Operating Revenues for each customer class by the Total Operating Revenues. The \%Mtr is used to properly allocate Forfeited Discounts and Other Operating Revenues.

Attachment 3: Redlined Version of Proposed Electric Rates

Petitioner's Exhibit 3
Frankfort City Light \& Power 15 Pages including Cover

ATTACHMENT SDB-3
 REDLINED VERSION OF

PROPOSED ELECTRIC RATES

On
Behalf of Petitioner, Frankfort City Light and Power

Petitioner's Exhibit 3

Rate A - Residential Service

Availability
Available through one meter to individual customers for single phase residential service, including lighting, household appliances, refrigeration, cooking, water heating and small motors not exceeding three (3) horsepower individual capacity.

Character of Service

Alternating current, sixty Hertz, single phase, at a voltage of approximately 120 volts two-wire, 120/240 volts three-wire.

Customer Charge per month	\$4.00
First 500 KWH pexmonth	$5.8636 \notin$ per KWH
Next 1000 KWH per month	60854 per KWH
Over: 1500 KWH per month	3.7496 perKNH

Rate*
Customer Charge
Energy Charge

Minimum Charge
The Minimum monthly charge shall be the customer charge.

[^1]
FRANKFORT CITY LIGHT AND POWER

 FRANKFORT, INDIANA
Rate B - Commercial Service

Availability

Available through one meter for single phase commercial service including lighting, miscellaneous small appliances, refrigeration, cooking, water heating and incidental small motors not exceeding five (5) horsepower individual capacity.

Character of Service

Alternating current, sixty Hertz, single phase at a voltage of approximately 120 volts two-wire, or 120/240 volts three-wire.

Customer Charge per month	\$6.00
First 1000 KWHper month $6.5808 ¢$ per KWH	
Next 1500 KWH per montn	\$7378¢ per KWH
Overz2900 KWH per month	$3.8678 \not ¢ \mathrm{per} \mathrm{KWH}$

Rate*
Customer Charge $\$ 20.00$ per meter per month
Energy Charge $\quad \$ 0.104945$ per kWh for all kWh

Minimum Charge
The Minimum monthly charge shall be the customer charge

[^2]
Rate C - General Power Service

Availability

Available to any customer for light and/or power purposes who are located on or adjacent to a distribution line of the Utility which is adequate and suitable for supplying the services required.

Character of Service

Alternating current, sixty Hertz, at a voltage which is standard with the Utility in the area served.

Custamer Charge per month	\$15.00
First 500 KWH ker month	8.2303ϕ per KWH
Next 2000 KWH per morth	6.7553ϕ per KWH
Next 2500 KWH per month	4.8242ϕ per KWH
Over 5000 KWH per month	4.0353ϕ per KWHH

Rate*
Customer Charge
Energy Charge
\$45.00 per meter per month
$\$ 0.100882$ per kWh for all kWh

Minimum Charge

The minimum monthly charge shall be the customer charge.

[^3]
I.U.R.C. NO.
 FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

ORIGINAL SHEET NO. PPL. 1

Rate PPL - Primary Power and Light Service

Availability

Available through one meter for any customer contracting for a specified capacity of not less than 25 kilovolt-amperes. Applicant must agree to a one-year term of service and must be located adjacent to an electric transmission or distribution line of the Utility that is adequate and suitable for supplying the service required.

Character of Service

Alternating current having a frequency of sixty Hertz and at a voltage which is standard with the Utility in the area served.

Rate*
Customer Charge $\$ 60.00$ per meter per month
Maximum Load Charge $---------\quad \$ 10.1518 .85$ per kVA of Billing Maximum Load
Energy Charge --_\$ 0.0164740 .039407 per kWHh for all kWHh

Minimum Charge

The minimum monthly charge shall be the maximum load charge.

Measurement of Maximum Load and Energy

Maximum load shall be measured by suitable instruments provided by the Utility, and in any month the maximum load expressed in kilovolt-amperes shall be the average number of kilowatts in the 30-minute interval in such month during which the energy metered is greater than in any other such 30-minute interval in such month, divided by the average lagging power factor (expressed as a decimal) calculated for the month. Energy shall be measured by suitable integrating instruments provided by the Utility.

Billing Maximum Load

The Billing Maximum Load for any month shall be the maximum load for the month, but in no month shall the Billing Maximum Load be less than 25 kilovolt-amperes.

* Subject to the provisions of Appendix A.

FRANKFORT CITY LIGHT AND POWER
 FRANKFORT, INDIANA

Rate PPL - Primary Power and Light Service (continued)

Metering Adjustment

If service is metered at a voltage of approximately 480 volts or lower, the maximum load and energy measurements shall be increased by two ene percent (24%) to convert such measurements to the equivalent of metering at the Utility's primary voltage.

Equipment Supplied By Customer

When Customer furnishes and maintains the complete substation equipment, including any and all transformers, and/or switches and/or the equipment necessary to take his entire service at the primary voltage of the transmission or distribution line from which it is to be received, a credit of $\$ 0.34$ per KVA of Billing Maximum Load will be applied to each month's net bill.

Off-Peak Service

When Customer elects to take electric service during the following designated Off-Peak periods, the following provisions will apply:

Measurement of Maximum Load and Energy. Maximum load shall be measured by suitable recording instruments and, in any month the maximum load for the on-peak hours shall be the highest thirty-minute Kilovolt-ampere load calculated during such on-peak hours and the maximum load for the off-peak hours shall be the highest thirty-minute kilovolt-ampere load calculated during such off-peak hours. Such thirty-minute kilovolt-ampere loads shall be calculated in accordance with the Measurement of Maximum Load and Energy provision of Rate PPL based on the use of the average lagging power factor for both periods.

Billing Maximum Load. The Billing Maximum Load for any month shall be the greatest of (1) the maximum load established during on-peak hours for the month, of fifty percent (50\%) of the maximum load established during off-peak hours for the month, but in no month shall the Billing Maximum Load be less than 500 kilovolt-amperes.

Off-Peak Periods. Off-Peak periods shall be all hours between 9:00 P.M. and 7:00 A.M., local time, Monday through Friday, and all hours of the day on Saturdays, Sundays and legal holidays. Legal holidays shall include New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day.

Special Terms and Conditions The availability of off-peak service shall be limited to an aggregate load of not more than 5,000 kilowatts on a first-come, first-serve basis.

FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Rate IP - Industrial Power Service

Availability

Available through one meter to any customer having a minimum load requirement of 10 megawatts or more and directly fed from the Utility's 69kV Transmission system. Applicant must be located adjacent to the Utility's transmission line that is adequate and suitable for supplying the service requested.

Character of Service

Alternating current having a frequency of sixty Hertz and furnished at a voltage which is standard with the Utility in the area served.

Rate*

- Customer Charge
- Demand Charge
- Energy Charge
$\$ 600.00$ per meter per month
$\$ 20.72$ per KVA of billing demand
$\$ 0.035560$ per KWh for all KWh

Minimum Charge

The minimum monthly charge shall be the demand charge.

Determination of Peak Demand and Measurement of Energy

Peak demand shall be measured by suitable recording instruments provided by Utility ad shall be the average number of kilovolt-amperes in the fifteen minute period during which the kilovoltampere demand is greater than any other fifteen-minute interval in such month. For those customers who are not being metered by the use of a recording instrument, the peak demand, expressed in kilovolt-amperes, shall be the average number of kilowatts in the recorded fifteenminute interval in such month during which the energy metered is greater than in any other such fifteen-minute interval in such month, divided by the lagging power factor (expressed as a decimal) calculated for the month. For billing purposes, the billing demand shall be the greater of the peak demand occurring during the month or ten (10) MVA. Energy shall be measured by suitable integrating instruments.
*Subject to the provisions of Appendix A.
\qquad

FRANKFORT CITY LIGHT AND POWER

FRANKFORT, INDIANA

Metering Adjustment

If service is metered at a voltage of approximately 13,800 volts or lower, the peak demand and energy measurements shall be increased by two percent (2%) to convert such measurements to the equivalent of metering at the Utility's primary voltage.

Equipment Ownership

Customer must own all equipment necessary to transform the power from 138 kV to its suitable working voltage. This equipment must include but is not limited to structures, foundations, large power transformer, switches, breakers, station batteries, relay protection and control, CT's, PT's, security, etc..

Customer is responsible for proper routine maintenance on its customer owned equipment in accordance with industry best practices.

FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Rate SL - Public Street Lighting Service

Availability

Available for street lighting within the corporate limits of the City of Frankfort and highway lighting within the area served by the Utility's distribution system.

Character of service

Standard Street Lighting Service using lamps available under this schedule.

Rate*

Type of Lamp

Rate per lamp per month

Overhead Service:

295 Watt Incandescent

\$ $10.58 \quad 8.84$
100 Watt Mercury Vapor
175 Watt Mercury Vapor
250 Watt Mercury Vapor
400 Watt and Over Mercury Vapor
100 Watt Sodium Vapor - Wood Pole
100 Watt Sodium Vapor - Metal Pole
150 Watt Sodium Vapor - Wood Pole
250 Watt Sodium Vapor - Wood Pole
250 Watt Sodium Vapor - Metal Pole
400 Watt Sodium Vapor - Wood Pole
400 Watt Sodium Vapor - Metal Pole

ISSUED BY STEPHEN MILLER SUPERINTENDENT
\qquad

I.U.R.C. NO.
 FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Type of Lamp

Underground Service:
100 Watt Sodium Vapor - Metal Pole \$ 6.15 6.82
150 Watt Sodium Vapor - Metal Pole \$ 14.7112 .29
400 Watt Sodium Vapor - Metal Pole \$ 18.2415 .24

Hours of Lighting

All lamps shall burn approximately one-half hour after sunset until approximately one-half hour before sunrise each day in the year, approximately 4000 hours per annum.

Facilities

All facilities necessary for the service hereunder, including all poles, fixtures, street lighting circuits, transformers, lamps, and other necessary facilities will be furnished and maintained by the Utility.

[^4]
I.U.R.C. NO.

 FRANKFORT CITY LIGHT AND POWER

 FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

 FRANKFORT, INDIANA}

Rate OL - Outdoor Lighting Service

Availability

Available only for continuous year-round service for outdoor lighting to any residential farm, commercial or industrial customer located adjacent to an electric distribution line of Utility.

Character of service

Outdoor Lighting Service using lamps available under this schedule and controlled by a photoelectric relay.

Rate*

Type of Lamp
175 Watt Mercury Vapor
250 Watt Mercury Vapor
400 Watt Mercury Vapor
100 Watt Sodium Vapor
150 Watt Sodium Vapor
250 Watt Sodium Vapor
400 Watt Sodium Vapor
Type of Lamp - Flood
250 Watt Mercury Vapor
400 Watt Mercury Vapor
150 Watt Sodium Vapor
250 Watt Sodium Vapor
400 Watt Sodium Vapor

Rate per lamp per month
\$ 7.456 .24
\$ 9.347 .83
\$ 10.708 .97
\$ 4.383 .67
\$ 5.144 .31
\$ $6.73 \quad 5.64$
\$ 8.667 .26
Rate per lamp per month
$\begin{array}{lll}\$ & 9.08 & 7.61\end{array}$
\$ 13.5711 .37
\$ 5.554 .65
\$ $8.50 \quad 7.12$
\$ 12.4510 .43
\qquad

I.U.R.C. NO.
\section*{FRANKFORT CITY LIGHT AND POWER}
FRANKFORT, INDIANA

Ownership of System

All facilities installed by Utility for service hereunder, including fixtures, controls, poles, transformers, secondary lines, lamps and other appurtenances shall be owned and maintained by Utility. All service and necessary maintenance shall be performed only during regularly scheduled working hours of the Utility. Non-operative lamps will normally be restored to service within 48 hours after notification by customer.

Hours of Lighting

All lamps shall burn approximately one-half hour after sunset until approximately one-half hour before sunrise each day in the year, approximately 4000 hours per annum.

* Subject to the provisions of Appendix A.

Appendix A

Rate Adjustments

The Rate Adjustments shall be on the basis-of based on a Purchase Power Cost Adjustment Tracking Factor occasioned solely by changes in the cost of purchased power and energy-. in accordance with the Order of the Indiana Utility Regulatory Commission, approved on December 13, 1989 in-Gause No. 36835 -S3 as follows:

Rate Adjustments applicable to the below listed Rate Schedules are as follows:

Residential Rate A	$\$ 0.044414 \$ 0.000000$ per KkWhH
Commercial Rate B	$\$ 0.052402 \$ 0.000000$ per KkWhH
General Power Rate C	$\$ 0.053943 \$ 0.000000$ per KkWhH
Industrial Rate PPL	$\$ 8.954626 \$ 0.000000$ per KkVAD
Industrial Rate PPL	$\$ 0.016882 \$ 0.000000$ per KkWhH
Industrial Rate IP	$\$ 0.000000$ per kVAD
Industrial Rate IP	$\$ 0.000000$ per kWh
Flat Rates	$\$ 0.019024 \$ 0.000000$ per KkWhH

July, August and September, 2016.
\qquad

Effectiveduly-1, 1996-USB Approved

The-Following Service Charges And Returned Check Fees
For-Frankfort Municipal Utilities

A $\$ 25.00$ Charge will be applied to all returned checks
DISGONTINUANGE OF SERVICE FOR NON-PAYMENT

	Payment During Office Hours,		Payment After Hours,	
	Whithin	Outside		
	City Limits	City Limits		System Wide
" ${ }^{\prime \prime}$	\$20.00	\$20.00	"A"	\$82.00
"B"	\$20.00	\$20.00	"B"	\$82.00
"C"	\$20.00	\$20.00	"C"	\$96.00
"PPL"	\$60.00	\$60.00	"PPL"	\$96.00

DISGONTINUANCE OF SERVICE FOR NON-PAYMENF REQUIRING REMOVING OF SERVIGE

Payment During-Office Hours Payment After Hours	
$\$ 45.00$	$\$ 96.00$

GUSTOMER REQUESTED-DISGONNEGTION FOR SEASONAL USE SERVICES

Labor Involves Meter Only Labor Involves Transfarmer	
$\$ 32.00$	$\$ 60.00$

We will-accept CASH or MONEY ORDER ONLY. For Disconnect Payment. (NQ-Ghecks-will be-accepted)
\qquad

I.U.R.C. NO.

Appendix B

Description of Charges

Reconnect/Disconnect Fee: $\$ 43.00$ for Rates A, B, and C service reconnection work performed during the Utility's normal published business hours. For Rates PPL and IP service reconnection work performed during the Utility's normal published business hours shall be \$60.00.

After Hours Reconnect/Disconnect Fee: $\$ 125.00$ for all service connection/reconnection work performed outside of the Utility's normal published business hours.

Return Check Fee: The greater of $\$ 25.00$ or 5% of the amount of the check.
Meter Test Fee: $\$ 33.00$
Residential Security Deposit: Minimum of $\$ 50.00$ to a maximum of 2 months anticipated usage for service under Rate A. The actual amount shall be based on the results of the credit check.

Business Security Deposit: Minimum of $\$ 100.00$ to a maximum of 2 months anticipated usage for service under Rates B, C, PPL and IP. The actual amount shall be based on the results of the credit check.

Service Call: $\$ 60.00$ for a service call made during normal business hours. $\$ 150.00$ for a service call made after normal business hours.

Temporary Service Charge: \$200.00
Late Payment: 4\% of the total current unpaid balance.
Customers disconnected for nonpayment will have until 8 p.m. local time during weekdays to call and make payment for reconnection. All other times shall be considered after hours. *Weekend reconnections must be made between 10 a.m. and 5 p.m. local time on Saturday only and are considered after hours. Reconnects are not available on Sunday.
*Saturday reconnections will be made only upon availability of Utility Billing Office personnel. No other Frankfort Municipal utilities employee will be eligible to make reconnections.

The Utility will accept CASH, MONEY ORDER, CREDIT and DEBIT CARDS only for disconnect payment. NO CHECKS WILL BE ACCEPTED.
\qquad
\qquad

ATTACHMENT SDB-4

CLEAN VERSION OF

PROPOSED ELECTRIC RATES

On
Behalf of
Petitioner,
Frankfort City Light and Power

Petitioner's Exhibit 3

I.U.R.C. NO. FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Rate A - Residential Service

Availability

Available through one meter to individual customers for single phase residential service, including lighting, household appliances, refrigeration, cooking, water heating and small motors not exceeding three (3) horsepower individual capacity.

Character of Service

Alternating current, sixty Hertz, single phase, at a voltage of approximately 120 volts two-wire, 120/240 volts three-wire.

Rate*
Customer Charge $\quad \$ 15.00$ per meter per month
Energy Charge $\quad \$ 0.093568$ per kWh for all kWh

Minimum Charge
The Minimum monthly charge shall be the customer charge.

[^5]I.U.R.C. NO.

FRANKFORT CITY LIGHT AND POWER
FRANKFORT, INDIANA

Rate B-Commercial Service

Availability

Available through one meter for single phase commercial service including lighting, miscellaneous small appliances, refrigeration, cooking, water heating and incidental small motors not exceeding five (5) horsepower individual capacity.

Character of Service

Alternating current, sixty Hertz, single phase at a voltage of approximately 120 volts two-wire, or 120/240 volts three-wire.

Rate*
Customer Charge $\$ 20.00$ per meter per month
Energy Charge $\$ 0.104945$ per kWh for all kWh

Minimum Charge
The Minimum monthly charge shall be the customer charge

* Subject to the provisions of Appendix A.

I.U.R.C. NO.
 FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Rate C-General Power Service

Availability

Available to any customer for light and/or power purposes who are located on or adjacent to a distribution line of the Utility which is adequate and suitable for supplying the services required.

Character of Service

Alternating current, sixty Hertz, at a voltage which is standard with the Utility in the area served.

Rate*

Customer Charge
Energy Charge
$\$ 45.00$ per meter per month
\$0.100882 per kWh for all kWh

Minimum Charge
The minimum monthly charge shall be the customer charge.

* Subject to the provisions of Appendix A.

FRANKFORT CITY LIGHT AND POWER
FRANKFORT, INDIANA

Rate PPL - Primary Power and Light Service

Availability

Available through one meter for any customer contracting for a specified capacity of not less than 25 kilovolt-amperes. Applicant must agree to a one-year term of service and must be located adjacent to an electric transmission or distribution line of the Utility that is adequate and suitable for supplying the service required.

Character of Service

Alternating current having a frequency of sixty Hertz and at a voltage which is standard with the Utility in the area served.

Rate*
Customer Charge $\$ 60.00$ per meter per month
Maximum Load Charge $\quad \$ 18.85$ per kVA of Billing Maximum Load
Energy Charge \$0.039407 per kWh for all kWh

Minimum Charge

The minimum monthly charge shall be the maximum load charge.

Measurement of Maximum Load and Energy

Maximum load shall be measured by suitable instruments provided by the Utility, and in any month the maximum load expressed in kilovolt-amperes shall be the average number of kilowatts in the 30-minute interval in such month during which the energy metered is greater than in any other such 30 -minute interval in such month, divided by the average lagging power factor (expressed as a decimal) calculated for the month. Energy shall be measured by suitable integrating instruments provided by the Utility.

Billing Maximum Load

The Billing Maximum Load for any month shall be the maximum load for the month, but in no month shall the Billing Maximum Load be less than 25 kilovolt-amperes.

* Subject to the provisions of Appendix A.

I.U.R.C. NO.

 FRANKFORT CITY LIGHT AND POWER

 FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

 FRANKFORT, INDIANA}

ORIGINAL SHEET NO. PPL. 2

Rate PPL - Primary Power and Light Service (continued)

Metering Adjustment

If service is metered at a voltage of approximately 480 volts or lower, the maximum load and energy measurements shall be increased by two percent (2\%) to convert such measurements to the equivalent of metering at the Utility's primary voltage.

Equipment Supplied By Customer

When Customer furnishes and maintains the complete substation equipment, including any and all transformers, and/or switches and/or the equipment necessary to take his entire service at the primary voltage of the transmission or distribution line from which it is to be received, a credit of $\$ 0.34$ per KVA of Billing Maximum Load will be applied to each month's net bill.

Off-Peak Service

When Customer elects to take electric service during the following designated Off-Peak periods, the following provisions will apply:

Measurement of Maximum Load and Energy. Maximum load shall be measured by suitable recording instruments and, in any month the maximum load for the on-peak hours shall be the highest thirty-minute Kilovolt-ampere load calculated during such on-peak hours and the maximum load for the off-peak hours shall be the highest thirty-minute kilovolt-ampere load calculated during such off-peak hours. Such thirty-minute kilovolt-ampere loads shall be calculated in accordance with the Measurement of Maximum Load and Energy provision of Rate PPL based on the use of the average lagging power factor for both periods.

Billing Maximum Load. The Billing Maximum Load for any month shall be the greatest of (1) the maximum load established during on-peak hours for the month, of fifty percent (50\%) of the maximum load established during off-peak hours for the month, but in no month shall the Billing Maximum Load be less than 500 kilovolt-amperes.

Off-Peak Periods. Off-Peak periods shall be all hours between 9:00 P.M. and 7:00 A.M., local time, Monday through Friday, and all hours of the day on Saturdays, Sundays and legal holidays. Legal holidays shall include New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day.

Special Terms and Conditions The availability of off-peak service shall be limited to an aggregate load of not more than 5,000 kilowatts on a first-come, first-serve basis.

Rate IP - Industrial Power Service

Availability

Available through one meter to any customer having a minimum load requirement of 10 megawatts or more and directly fed from the Utility's 69kV Transmission system. Applicant must be located adjacent to the Utility's transmission line that is adequate and suitable for supplying the service requested.

Character of Service

Alternating current having a frequency of sixty Hertz and furnished at a voltage which is standard with the Utility in the area served.

Rate*

Customer Charge
Demand Charge $\quad \$ 20.72$ per KVA of billing demand
Energy Charge
$\$ 600.00$ per meter per month
$\$ 0.035560$ per KWh for all KWh

Minimum Charge

The minimum monthly charge shall be the demand charge.

Determination of Peak Demand and Measurement of Energy

Peak demand shall be measured by suitable recording instruments provided by Utility ad shall be the average number of kilovolt-amperes in the fifteen minute period during which the kilovoltampere demand is greater than any other fifteen-minute interval in such month. For those customers who are not being metered by the use of a recording instrument, the peak demand, expressed in kilovolt-amperes, shall be the average number of kilowatts in the recorded fifteenminute interval in such month during which the energy metered is greater than in any other such fifteen-minute interval in such month, divided by the lagging power factor (expressed as a decimal) calculated for the month. For billing purposes, the billing demand shall be the greater of the peak demand occurring during the month or ten (10) MVA. Energy shall be measured by suitable integrating instruments.
*Subject to the provisions of Appendix A.

FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Metering Adjustment

If service is metered at a voltage of approximately 13,800 volts or lower, the peak demand and energy measurements shall be increased by two percent (2\%) to convert such measurements to the equivalent of metering at the.Utility's primary voltage.

Equipment Ownership

Customer must own all equipment necessary to transform the power from 138 kV to its suitable working voltage. This equipment must include but is not limited to structures, foundations, large power transformer, switches, breakers, station batteries, relay protection and control, CT's, PT's, security, etc..

Customer is responsible for proper routine maintenance on its customer owned equipment in accordance with industry best practices.
\qquad

Rate SL - Public Street Lighting Service

Availability

Available for street lighting within the corporate limits of the City of Frankfort and highway lighting within the area served by the Utility's distribution system.

Character of service
Standard Street Lighting Service using lamps available under this schedule.

Rate*
Type of Lamp
Rate per lamp per month
Overhead Service:

295 Watt Incandescent
\$ 10.58
100 Watt Mercury Vapor
175 Watt Mercury Vapor
\$ 8.78
250 Watt Mercury Vapor
\$ 9.67
400 Watt and Over Mercury Vapor
\$ 12.32
100 Watt Sodium Vapor - Wood Pole
\$ 6.96
100 Watt Sodium Vapor - Metal Pole
\$ 11.14
150 Watt Sodium Vapor - Wood Pole
\$ 8.18
250 Watt Sodium Vapor - Wood Pole
\$ 9.60
250 Watt Sodium Vapor - Metal Pole
\$ 14.23
400 Watt Sodium Vapor - Wood Pole
\$ 11.74
400 Watt Sodium Vapor - Metal Pole
\$ 15.55
\qquad
Type of Lamp Rate per lamp per month
Underground Service:
100 Watt Sodium Vapor - Metal Pole \$ 6.15
150 Watt Sodium Vapor - Metal Pole \$ 14.71
400 Watt Sodium Vapor - Metal Pole \$ 18.24
Hours of Lighting
All lamps shall burn approximately one-half hour after sunset until approximately one-half hourbefore sunrise each day in the year, approximately 4000 hours per annum.
FacilitiesAll facilities necessary for the service hereunder, including all poles, fixtures, street lightingcircuits, transformers, lamps, and other necessary facilities will be furnished and maintained bythe Utility.

* Subject to the provisions of Appendix A.EFFECTIVE FOR ELECTRIC SERVICE RENDERED
I.U.R.C. NO.
FRANKFORT CITY LIGHT AND POWER
FRANKFORT, INDIANA

ORIGINAL SHEET NO. OL. 1
FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA

Rate OL - Outdoor Lighting Service

Availability

> Available only for continuous year-round service for outdoor lighting to any residential farm, commercial or industrial customer located adjacent to an electric distribution line of Utility.

Character of service

Outdoor Lighting Service using lamps available under this schedule and controlled by a photoelectric relay.

Rate*

Type of Lamp
175 Watt Mercury Vapor
250 Watt Mercury Vapor
400 Watt Mercury Vapor
100 Watt Sodium Vapor
150 Watt Sodium Vapor
250 Watt Sodium Vapor
400 Watt Sodium Vapor
Type of Lamp - Flood
250 Watt Mercury Vapor
400 Watt Mercury Vapor
150 Watt Sodium Vapor
250 Watt Sodium Vapor
400 Watt Sodium Vapor

ISSUED BY STEPHEN MILLER SUPERINTENDENT

Rate per lamp per month

\$ 7.45
\$ 9.34
\$ 10.70
\$ 4.38
\$ 5.14
\$ 6.73
\$ 8.66
Rate per lamp per month
\$ 9.08
\$ 13.57
\$ 5.55
\$ 8.50
\$ 12.45
\qquad

I.U.R.C. NO.

Ownership of System

All facilities installed by Utility for service hereunder, including fixtures, controls, poles, transformers, secondary lines, lamps and other appurtenances shall be owned and maintained by Utility. All service and necessary maintenance shall be performed only during regularly scheduled working hours of the Utility. Non-operative lamps will normally be restored to service within 48 hours after notification by customer.

Hours of Lighting

All lamps shall burn approximately one-half hour after sunset until approximately one-half hour before sunrise each day in the year, approximately 4000 hours per annum.

* Subject to the provisions of Appendix A.
\qquad

Appendix A

Rate Adjustment Appendix A

Abstract

*Appendix A (Tracker) The Rate Adjustment shall be based on a Purchase Power Cost Adjustment Tracking Factor, occasioned solely by changes in the cost of purchased power and energy.

Rate Adjustments applicable to the below listed Rate Schedules are as follows:

Residential Rate A	$\$ 0.000000$ per kWh
Commercial Rate B	$\$ 0.000000$ per kWh
General Power Rate C	$\$ 0.000000$ per kWh
Industrial Rate PPL	$\$ 0.000000$ per kVAD
Industrial Rate PPL	$\$ 0.000000$ per kWh
Industrial Rate IP	$\$ 0.000000$ per kVAD
Industrial Rate IP	$\$ 0.000000$ per kWh
Flat Rates	$\$ 0.000000$ per kWh

Appendix B

Description of Charges

Reconnect/Disconnect Fee: $\$ 43.00$ for Rates A, B, and C service reconnection work performed during the Utility's normal published business hours. For Rates PPL and IP service reconnection work performed during the Utility's normal published business hours shall be $\$ 60.00$.

After Hours Reconnect/Disconnect Fee: \$125.00 for all service connection/reconnection work performed outside of the Utility's normal published business hours.

Return Check Fee: The greater of $\$ 25.00$ or 5% of the amount of the check.
Meter Test Fee: $\$ 33.00$
Residential Security Deposit: Minimum of $\$ 50.00$ to a maximum of 2 months anticipated usage for service under Rate A. The actual amount shall be based on the results of the credit check.

Business Security Deposit: Minimum of $\$ 100.00$ to a maximum of 2 months anticipated usage for service under Rates B, C, PPL and IP. The actual amount shall be based on the results of the credit check.

Service Call: $\$ 60.00$ for a service call made during normal business hours. $\$ 150.00$ for a service call made after normal business hours.

Temporary Service Charge: $\$ 200.00$
Late Payment: 4\% of the total current unpaid balance.
Customers disconnected for nonpayment will have until 8 p.m. local time during weekdays to call and make payment for reconnection. All other times shall be considered after hours. *Weekend reconnections must be made between 10 a.m. and 5 p.m. local time on Saturday only and are considered after hours. Reconnects are not available on Sunday.
*Saturday reconnections will be made only upon availability of Utility Billing Office personnel. No other Frankfort Municipal utilities employee will be eligible to make reconnections.

The Utility will accept CASH, MONEY ORDER, CREDIT and DEBIT CARDS only for disconnect payment. NO CHECKS WILL BE ACCEPTED.

ATTACHMENT SDB-5
 IMPACT STUDY OF PROPOSED RATES ON
 SMALLEST CUSTOMERS OF EACH RATE CLASS

On
Behalf of
Petitioner,
Frankfort City Light and Power

Petitioner's Exhibit 3

Sensitivity Analysis for Rate Class A - Frankfort City Light and Power

2916035-13

Read Date	Elapsed Days	kWh Usage billed	Avg use per Day	Amount billed	Proposed Estimate		
$7 / 27 / 2016$	30	490	16.333	$\$$	54.49	$\$$	60.86
$6 / 27 / 2016$	32	410	12.813	$\$$	50.52	$\$$	53.37
$5 / 26 / 2016$	30	290	9.667	$\$$	36.90	$\$$	42.14
$4 / 26 / 2016$	29	300	10.345	$\$$	38.04	$\$$	43.08
$3 / 28 / 2016$	32	250	7.813	$\$$	29.50	$\$$	38.40
$2 / 25 / 2016$	29	240	8.276	$\$$	28.48	$\$$	37.46
$1 / 27 / 2016$	29	330	11.379	$\$$	37.66	$\$$	45.89
$12 / 29 / 2015$	36	400	11.111	$\$$	48.12	$\$$	52.44
$11 / 23 / 2015$	27	250	9.259	$\$$	31.58	$\$$	38.40
$10 / 27 / 2015$	32	240	7.500	$\$$	30.47	$\$$	37.46
$9 / 25 / 2015$	30	270	9.000	$\$$	30.61	$\$$	40.27
$8 / 26 / 2015$	29	270	9.310	$\$$	30.61	$\$$	40.27

1318280-59 441 HOT DOG ST

Read Date	Elapsed Days	kWh Usage billed	Avg use per Day	Amount billed	Proposed Estimate		
$7 / 13 / 2016$	30	500	16.667	$\$$	55.53	$\$$	61.80
$6 / 13 / 2016$	32	460	14.375	$\$$	56.19	$\$$	58.05
$5 / 12 / 2016$	29	430	14.828	$\$$	52.79	$\$$	55.25
$4 / 13 / 2016$	33	430	13.030	$\$$	52.79	$\$$	55.25
$3 / 11 / 2016$	30	520	17.333	$\$$	56.79	$\$$	63.67
$2 / 10 / 2016$	28	560	20.000	$\$$	60.37	$\$$	67.41
$1 / 13 / 2016$	35	590	16.857	$\$$	63.05	$\$$	70.22
$12 / 9 / 2015$	26	370	14.231	$\$$	44.82	$\$$	49.63
$11 / 13 / 2015$	30	320	10.667	$\$$	39.29	$\$$	44.95
$10 / 14 / 2015$	30	340	11.333	$\$$	41.51	$\$$	46.82
$9 / 14 / 2015$	33	530	16.061	$\$$	55.85	$\$$	64.60
$8 / 12 / 2015$	29	570	19.655	$\$$	59.30	$\$$	68.35

Sensitivity Analysis for Rate Class A - Frankfort City Light and Power

1316400-06

Read Date	Elapsed Days	kWh Usage billed
$7 / 13 / 2016$	30	350
$6 / 13 / 2016$	32	330
$5 / 12 / 2016$	30	220
$4 / 12 / 2016$	32	540
$3 / 11 / 2016$	30	680
$2 / 10 / 2016$	28	820
$1 / 13 / 2016$	35	870
$12 / 9 / 2015$	26	480
$11 / 13 / 2015$	30	300
$10 / 14 / 2015$	30	180
$9 / 14 / 2015$	33	340
$8 / 12 / 2015$	29	410
		460

Avg use per
Day 11.667 \$ 10.313 \$ 41.45 \$ 45.89 7.333 \$ 28.96 \$ 35.59
16.875 \$ 64.77 \$ 65.54
22.667 \$ 71.10 \$ 78.64
29.286 \$ 83.62 \$ 91.75
24.857 \$ 88.09 \$ 96.43
18.462 \$ 56.95 \$ 59.93
10.000 \$ 37.09 \$ 43.08
6.000 \$ 23.85 \$ 31.85
10.303 \$ 37.51 \$ 46.82
14.138 \$ 44.41 \$ 53.37 Average Increase
15.158 \$ 51.49 \$ 58.05 \$ 6.56

Read Date	Elapsed Days	kWh Usage billed	Avg use per Day	Amount billed	Proposed Estimate		
$7 / 27 / 2016$	30	300	10.000	$\$$	34.91	$\$$	43.08
$6 / 27 / 2016$	32	370	11.563	$\$$	45.99	$\$$	49.63
$5 / 26 / 2016$	30	190	6.333	$\$$	25.56	$\$$	32.78
$4 / 26 / 2016$	29	170	5.862	$\$$	23.29	$\$$	30.91
$3 / 28 / 2016$	32	190	5.938	$\$$	23.38	$\$$	32.78
$2 / 25 / 2016$	29	230	7.931	$\$$	27.46	$\$$	36.53
$1 / 27 / 2016$	29	150	5.172	$\$$	19.30	$\$$	29.04
$12 / 29 / 2015$	36	320	8.889	$\$$	39.29	$\$$	44.95
$11 / 23 / 2015$	27	170	6.296	$\$$	22.75	$\$$	30.91
$10 / 27 / 2015$	32	190	5.938	$\$$	24.96	$\$$	32.78
$9 / 25 / 2015$	30	260	8.667	$\$$	29.63	$\$$	39.33

Sensitivity Analysis for Rate Class A - Frankfort City Light and Power

2916120-05	836 FRANKFORT PLACE CT						3 of 12
Read Date	Elapsed Days	kWh Usage billed	Avg use per Day		Amount billed	Proposed Estimate	
7/27/2016	30	530	17.667	\$	58.24	\$ 64.60	
6/27/2016	32	500	15.625	\$	60.74	\$ 61.80	
5/26/2016	30	220	7.333	\$	28.96	\$ 35.59	
4/26/2016	29	220	7.586	\$	28.96	\$ 35.59	
3/28/2016	32	290	9.063	\$	33.57	\$ 42.14	
2/25/2016	29	280	9.655	\$	32.56	\$ 41.21	
1/27/2016	29	320	11.034	\$	36.63	\$ 44.95	
12/29/2015	36	430	11.944	\$	51.43	\$ 55.25	
11/23/2015	27	220	8.148	\$	28.27	\$ 35.59	
10/27/2015	32	280	8.750	\$	34.89	\$ 41.21	
9/25/2015	30	380	12.667	\$	41.45	\$ 50.57	
8/26/2015	29	440	15.172	\$	47.36	\$ 56.18	Average Increase
		343	11.220	\$	40.26	\$ 47.06	\$ 6.80

Sensitivity Analysis for Rate Class B - Frankfort City Light and Power

Read Date	Elapsed Days	kWh Usage billed
$7 / 13 / 2016$	30	160
$6 / 13 / 2016$	32	170
$5 / 12 / 2016$	29	300
$4 / 13 / 2016$	33	430
$3 / 11 / 2016$	30	190
$2 / 10 / 2016$	27	450
$1 / 14 / 2016$	35	700
$12 / 10 / 2015$	27	420
$11 / 13 / 2015$	31	350
$10 / 13 / 2015$	29	250
$9 / 14 / 2015$	33	240
$8 / 12 / 2015$	29	200
		322

1426235-00 1001 S MAISH RD

Read Date	Elapsed Days	kWh Usage billed
$7 / 13 / 2016$	30	590
$6 / 13 / 2016$	32	610
$5 / 12 / 2016$	30	510
$4 / 12 / 2016$	32	530
$3 / 11 / 2016$	30	550
$2 / 10 / 2016$	28	530
$1 / 13 / 2016$	34	610
$12 / 10 / 2015$	27	450
$11 / 13 / 2015$	31	520
$10 / 13 / 2015$	32	580
$9 / 11 / 2015$	30	590
$8 / 12 / 2015$	29	560
		553

Avg use per
Day
19.667 \$ 75.75 \$ 8193 19.063 \$ 80.76 \$ 84.03 17.000 \$ 68.50 \$ 73.53 16.563 \$ 70.96 \$ 75.63 18.333 \$ 70.02 \$ 77.73 18.929 \$ 67.69 \$ 75.63 17.941 \$ 77.00 \$ 84.03 16.667 \$ 59.18 \$ 67.23 16.774 \$ 67.45 \$ 74.58 18.125 \$ 74.54 \$ 80.88 19.667 \$ 73.28 \$ 81.93 19.310 \$ 69.85 \$ 78.78 Average Increase 18.170 \$ 71.25 \$ 77.99 \$ 6.74

Sensitivity Analysis for Rate Class B - Frankfort City Light and Power

4200835-00

Read Date	Elapsed Days	kWh Usage billed
$7 / 28 / 2016$	30	470
$6 / 28 / 2016$	32	490
$5 / 27 / 2016$	30	460
$4 / 27 / 2016$	29	440
$3 / 29 / 2016$	32	480
$2 / 26 / 2016$	29	430
$1 / 28 / 2016$	30	440
$12 / 29 / 2015$	34	510
$11 / 25 / 2015$	27	410
$10 / 29 / 2015$	31	460
$9 / 28 / 2015$	32	490
$8 / 27 / 2015$	29	450
		461

712940-00
CARLYLE DR

	Elapsed	kWh Usage	Avg use per			Proposed	
Read Date	Days	billed	Day	Amount billed		Estimate	
7/7/2016	31	370	11.935	\$	49.74	\$ 58.84	
6/6/2016	31	490	15.806	\$	66.06	\$ 71.43	
5/6/2016	30	570	19.000	\$	75.86	\$ 79.83	
4/6/2016	33	710	21.515	\$	93.02	\$ 94.52	
3/4/2016	29	620	21.379	\$	78.17	\$ 85.08	
2/4/2016	28	650	23.214	\$	81.66	\$ 88.23	
1/7/2016	34	810	23.824	\$	100.28	\$ 105.02	
12/4/2015	28	630	22.500	\$	80.45	\$ 86.13	
11/6/2015	31	650	20.968	\$	82.82	\$ 88.23	
10/6/2015	32	650	20.313	\$	82.82	\$ 88.23	
9/4/2015	29	540	18.621	\$	67.57	\$ 76.68	
8/6/2015	29	490	16.897	\$	61.87	\$ 71.43	Average Increase
		598	19.664	\$	76.69	\$ 82.80	\$ 6.11

Sensitivity Analysis for Rate Class B - Frankfort City Light and Power

1911740-13

	Elapsed	kWh Usage	Avg use per	Proposed			
Read Date	Days	billed	Day	Amount billed Estimate			
$7 / 20 / 2016$	30	620	20.667	$\$$	79.29	$\$$	85.08
$6 / 20 / 2016$	32	540	16.875	$\$$	72.19	$\$$	76.68
$5 / 19 / 2016$	30	320	10.667	$\$$	45.22	$\$$	53.59
$4 / 19 / 2016$	32	340	10.625	$\$$	47.67	$\$$	55.69
$3 / 18 / 2016$	29	330	11.379	$\$$	44.42	$\$$	54.64
$2 / 18 / 2016$	28	350	12.500	$\$$	46.74	$\$$	56.74
$1 / 21 / 2016$	35	400	11.429	$\$$	52.56	$\$$	61.99
$12 / 17 / 2015$	29	310	10.690	$\$$	42.63	$\$$	52.54
$11 / 18 / 2015$	29	280	9.655	$\$$	39.09	$\$$	49.39
$10 / 20 / 2015$	32	360	11.250	$\$$	48.54	$\$$	57.79
$9 / 18 / 2015$	30	520	17.333	$\$$	65.29	$\$$	74.58
$8 / 19 / 2015$	29	560	19.310	$\$$	69.85	$\$$	78.78

Sensitivity Analysis for Rate Class C - Frankfort City Light and Power

Read Date	Elapsed Days	kWh Usage billed	Avg use per Day		Amount billed	Proposed Estimate	
7/25/2016	32	200	6.250	\$	42.25	\$ 65.17	
6/23/2016	30	190	6.333	\$	39.94	\$ 64.16	
5/24/2016	32	200	6.250	\$	41.25	\$ 65.17	
4/22/2016	30	250	8.333	\$	47.82	\$ 70.22	
3/23/2016	29	250	8.621	\$	47.34	\$ 70.22	
2/23/2016	28	240	8.571	\$	46.04	\$ 69.21	
1/26/2016	36	380	10.556	\$	64.15	\$ 83.33	
12/21/2015	28	280	10.000	\$	50.55	\$ 73.24	
11/23/2015	31	270	8.710	\$	49.28	\$ 72.23	
10/23/2015	30	990	33.000	\$	133.49	\$ 144.85	
9/23/2015	30	180	6.000	\$	39.10	\$ 63.15	
8/24/2015	31	160	5.161	\$	36.43	\$ 61.14	Average Increase
		299	9.815	\$	53.14	\$ 75.17	\$ 22.04

1415236-02 352 S HOKE AVE \#2

	Elapsed					
Read Date	Days	kWh Usage billed	Avg use per Day	Amount billed	Proposed Estimate	
$7 / 13 / 2016$	30	1310	43.667	$\$$	181.54	$\$ 177.13$
$6 / 13 / 2016$	33	1120	33.939	$\$$	152.87	$\$ 157.96$
$5 / 11 / 2016$	29	780	26.897	$\$$	113.25	$\$ 123.67$
$4 / 12 / 2016$	33	890	26.970	$\$$	126.08	$\$ 134.77$
$3 / 10 / 2016$	30	840	28.000	$\$$	118.63	$\$ 129.72$
$2 / 9 / 2016$	27	800	29.630	$\$$	114.05	$\$ 125.69$
$1 / 13 / 2016$	35	990	28.286	$\$$	135.81	$\$ 144.85$
$12 / 9 / 2015$	26	730	28.077	$\$$	104.31	$\$ 118.63$
$11 / 13 / 2015$	30	850	28.333	$\$$	117.77	$\$ 130.73$
$10 / 14 / 2015$	34	1190	35.000	$\$$	155.93	$\$ 165.02$
$9 / 10 / 2015$	29	1460	50.345	$\$$	196.33	$\$ 192.26$

Sensitivity Analysis for Rate Class C - Frankfort City Light and Power

411060-03	510 W MORRISON ST						8 of 12
Read Date	Elapsed Days	kWh Usage billed	Avg use per Day		Amount billed	Proposed Estimate	
7/5/2016	33	1320	40.000	\$	182.74	\$ 178.14	
6/2/2016	29	1140	39.310	\$	155.20	\$ 159.98	
5/4/2016	30	1860	62.000	\$	239.09	\$ 232.60	
4/4/2016	33	2820	85.455	\$	344.77	\$ 329.43	
3/2/2016	29	3000	103.448	\$	356.48	\$ 347.58	
2/2/2016	28	3120	111.429	\$	367.91	\$ 359.69	
1/5/2016	34	3000	88.235	\$	356.48	\$ 347.58	
12/2/2015	28	1860	66.429	\$	231.13	\$ 232.60	
11/4/2015	33	2280	69.091	\$	278.26	\$ 274.96	
10/2/2015	30	1740	58.000	\$	217.67	\$ 220.50	
9/2/2015	29	1560	53.793	\$	208.25	\$ 202.34	
8/4/2015	34	1860	54.706	\$	243.99	\$ 232.60	Average Increase
		2130	69.325	\$	265.16	\$ 259.83	\$ (5.33)
1415442-04	1905 E	ABASH ST					
	Elapsed	kWh Usage	Avg use per		Amount	Proposed	
Read Date	Days	billed	Day		billed	Estimate	
7/13/2016	30	1020	34.000	\$	146.30	\$ 147.88	
6/13/2016	33	1140	34.545	\$	155.20	\$ 159.98	
5/11/2016	29	1010	34.828	\$	140.05	\$ 146.87	
4/12/2016	33	1310	39.697	\$	175.01	\$ 177.13	
3/10/2016	30	1300	43.333	\$	171.33	\$ 176.12	
2/9/2016	27	1180	43.704	\$	157.59	\$ 164.02	
1/13/2016	35	1470	42.000	\$	190.82	\$ 193.27	
12/9/2015	26	1080	41.538	\$	143.59	\$ 153.93	
11/13/2015	30	830	27.667	\$	115.53	\$ 128.71	
10/14/2015	34	1060	31.176	\$	141.34	\$ 151.91	
9/10/2015	29	1050	36.207	\$	147.47	\$ 150.90	
8/12/2015	29	690	23.793	\$	104.59	\$ 114.59	Average Increase
		1095	36.041	\$	149.07	\$ 155.44	\$ 6.37

Sensitivity Analysis for Rate Class C - Frankfort City Light and Power

111050-01	300 N MAIN ST						9 of 12
	Elapsed	kWh Usage	Avg use per		Amount	Proposed	
Read Date	Days	billed	Day		billed	Estimate	
6/30/2016	30	740	24.667	\$	112.28	\$ 119.64	
5/31/2016	32	850	26.563	\$	121.41	\$ 130.73	
4/29/2016	29	730	25.172	\$	107.43	\$ 118.63	
3/31/2016	31	880	28.387	\$	124.91	\$ 133.76	
2/29/2016	31	790	25.484	\$	112.90	\$ 124.68	
1/29/2016	31	960	30.968	\$	132.37	\$ 141.83	
12/29/2015	29	1290	44.483	\$	167.16	\$ 175.11	
11/30/2015	31	1310	42.258	\$	169.40	\$ 177.13	
10/30/2015	30	920	30.667	\$	125.63	\$ 137.79	
9/30/2015	30	1020	34.000	\$	136.86	\$ 147.88	
8/31/2015	31	990	31.935	\$	140.33	\$ 144.85	
7/31/2015	31	870	28.065	\$	126.03	\$ 132.75	Average Increase
		946	31.054	\$	131.39	\$ 140.40	\$ 9.01

Competitive Analysis for Rate PPL (Big Five) - Frankfort City Light and Power

Frito Lay, Inc	Provider	Cost			10 of 12
	Boone County REMC	\$	353,851	*	
Beloit, WI 53511	Alliant Energy	\$	299,537		
Fayetteville, TN 37334	Fayetteville Public Utilities	\$	299,019		
Pulaski, TN 38478	Pulaski Electric System	\$	290,210		
Lynchburg, VA 24501	Appalachian Power	\$	270,986		
Kathleen, GA 31047	Flint Energies	\$	258,107		
	Duke Energy	\$	245,661		
Frankfort, IN 46041	Frankfort Municipal Utilities	\$	231,303		
	Lebanon Municipal Utility	\$	222,442		
	Indianapolis Power \& Light	\$	213,588	\#	
Charlotte, NC 28273	Duke Energy	\$	199,092	\#	
Topeka, KS 66609	Westar Energy	\$	193,206	\#	
Jonesboro, AR 72401	Jonesboro City, Water, \& Light	\$	178,498	\#	
ADM (Processor)	Provider	Cost			
	Boone County REMC	\$	350,187	*	
Goodland, KS	City of Goodland - Electrical Dept.	\$	333,178		
Fremont, NE	The City of Fremont, Nebraska	\$	291,968		
	Duke Energy	\$	243,779		
Columbus, NE	Loup Power District	\$	240,398		
Frankfort, IN 46041	Frankfort Municipal Utilities	\$	221,189		
Fostoria, OH	AEP - Ohio Power Company	\$	214,109		
	Lebanon Municipal Utility	\$	210,627		
	Indianapolis Power \& Light	\$	204,252	\#	* Company provided data seems too high
Des Moines, IA	MidAmerican Energy	\$	190,049	\#	\# Some trackers may be missing
Deerfield, MO	Kansas City Power \& Light	\$	179,761		

Competitive Analysis for Rate PPL (Big Five) - Frankfort City Light and Power

Federal Mogul	Provider		Cost		11 of 12
	Boone County REMC	\$	289,411		
Avilla, IN	Avilla Utilities	\$	267,851		
Lake City, MN 55041	Lake City Utilities	\$	235,357		
Greenville, MI 48838	Consumers Energy	\$	227,801		
Logansport, IN	LMU (Logansport Municipal Utility)	\$	217,291		
Columbus, IN	Bartholomew Co REMC	\$	214,336		
	Duke Energy	\$	200,878		
Frankfort, IN 46041	Frankfort Municipal Utilities	\$	188,372		
Van Wert, OH	AEP - Ohio Power Co.	\$	186,685		
	Lebanon Municipal Utility	\$	181,262		
	Indianapolis Power \& Light	\$	175,522	\#	
Zachary Confections	Provider		Cost		
	Boone County REMC	\$	146,201	*	
	Duke Energy	\$	101,166		
Frankfort, IN 46041	Frankfort Municipal Utilities	\$	99,399		
	Lebanon Municipal Utility	\$	95,735		
	Indianapolis Power \& Light	\$	93,092	\#	
Medfield, MA 02052	National Grid	\$	89,450	\#	
Fontana Fasteners (Tri Mas)	Provider		Cost		
	Boone County REMC	\$	101,781	*	
Lavonia, MI 48150	Consumers Energy	\$	88,927		
Wood Dale, IL 60191	ComEd (Commonwealth Edison Com	\$	87,939		
Lakewood, OH 44107	CEI (Cleveland Electric Illuminating Cl	\$	81,355		
Frankfort, IN 46041	Frankfort Municipal Utilities	\$	74,921		
	Lebanon Municipal Utility	\$	73,583		* Company provided data seems too high
	Indianapolis Power \& Light	\$	70,309	\#	\# Some trackers may be missing
	Duke Energy	\$	70,012		

Competitive Analysis for Rate PPL (Big Five) - Frankfort City Light and Power

NHK Seating of America Inc	Provider		Cost		
	Boone County REMC	$\$$	68,300	$*$	
Murfreesboro, TN 37127	Murfreesboro Electric Department	$\$$	54,290		
Frankfort, IN 46041	Frankfort Municipal Utilities	$\$$	48,953		
	Lebanon Municipal Utility	$\$$	48,132	$*$ Company provided data seems too high	
	Duke Energy	$\$$	47,151	$\#$	\# Some trackers may be missing

ATTACHMENT SDB-6 PROPOSED ECONOMIC DEVELOPMENT RIDER WITH STATEMENT OF BENEFITS SB1 APPLICATION ATTACHMENT

On
Behalf of
Petitioner, Frankfort City Light and Power

ECONOMIC DEVELOPMENT RIDER

Availability of Service

In order to encourage economic development in the Utility's service area, limited-term reductions in billing demands described herein are offered to qualifying new and existing customers who make application for service under this Rider prior to January 1, 2025.

Service under this Rider is intended for specific types of commercial and industrial customers whose operations, by their nature, will promote sustained economic development based on plant and facilities investment and job creation. This Rider is available to commercial and industrial customers served under Tariff PPL or Tariff IP who meet the following requirements:
(1) Size: A new customer must have a billing demand of $1,000 \mathrm{~kW}$ or more. An existing customer must increase billing demand by $1,000 \mathrm{~kW}$ or more over the maximum billing demand during the 12 months prior to the date of the application by the customer for service under this Rider (Base Maximum Billing Demand).
(2) THD: Total Harmonic Distortion. Both new and existing customers must comply with Standard IEEE 519-2014 or its most contemporary version, should the standard be revised.
(3) Load Factor: Both new and existing customers must maintain a monthly load factor of at least 70%. Load factor shall be calculated as follows: "Total monthly kWH"/["peak kWD" x "Days in Billing Period" x "24 hours"].
(4) Power Factor: Both new and existing customers must maintain a monthly power factor of at least 98\%
(5) Applicable Standards: Both new and existing customers shall comply with the most contemporary versions of National Electric Code, National Fire Protection Association Code, and relevant IEEE standards.
(6) Business Type: In no event shall service under this Rider be available to a customer whose principal business at the service location is classified in one of the following SIC Major Groups:

Standard Industrial Classification (SIC per US Dept. of Labor)

A: Agriculture, Forestry, and Fishing
01: Agricultural Production Crops
02: Agriculture production livestock and animal specialties
07: Agricultural Services
08: Forestry
09: Fishing, hunting, and trapping

C: Construction
15: Building Construction General Contractors and Operative Builders
16: Heavy Construction Other Than Building Construction Contractors
17: Construction Special Trade Contractors

F: Wholesale Trade
50: Wholesale Trade-durable Goods
51: Wholesale Trade-non-durable Goods
G: Retail Trade
52: Building Materials, Hardware, Garden Supply, and Mobile Home Dealers
53: General Merchandise Stores
54: Food Stores
55: Automotive Dealers and Gasoline Service Stations
56: Apparel and Accessory Stores
57: Home Furniture, Furnishings, and Equipment Stores
58: Eating and Drinking Places
59: Miscellaneous Retail

H: Finance, Insurance, and Real Estate
64: Insurance Agents, Brokers, and Service
65: Real Estate
67: Holding and Other Investment Offices
I: Services
70: Hotels, Rooming Houses, Camps, and Other Lodging Places
78: Motion Pictures
79: Amusement and Recreation Services

North American Industry Classification System (NAICS per OMB post 1997)
11: Agriculture, Forestry, Fishing and Hunting
22: Utilities
23: Construction
42: Wholesale Trade
44: Retail Trade
45: Retail Stores
48: Transportation
53: Real Estate Rental and Leasing
71: Arts, Entertainment, and Recreation
72: Accommodation and Food Services
81: Other Services (except Public Administration)

```
I.U.R.C. NO.
FRANKFORT CITY LIGHT AND POWER FRANKFORT, INDIANA
```

(3) A new customer, or the expansion by an existing customer, must result in the creation of at least 10 full-time equivalent jobs (FTE) maintained over the contract term at the service location. Utility reserves the right to verify FTE job counts. Failure to maintain the minimum required FTE jobs will result in the termination of this Rider.
(4) The customer must demonstrate through form SB-1, to the Utility's satisfaction that, absent the availability of this Rider, the qualifying new or increased demand would be located outside of the Utility's service territory or would not be placed in service due to poor operating economics.

Availability is limited to customers on a first-come, first-served basis for loads aggregating to 25 MVA.

Terms and Conditions

(1) To receive service under this Rider, the customer shall make written application to the Utility, using form SB-1, with sufficient information contained therein to determine the customer's eligibility for service.
(2) For new customers, billing demands for which deductions will be applicable under this Rider shall be for service at a new service location and not merely the result of a change of ownership. Relocation of the delivery point of the Utility's service does not qualify as a new service location.
(3) For existing customers, billing demands for which deductions will be applicable under this Rider shall be the result of an increase in business activity and not merely the result of resumption of normal operations following a force majeure, strike, equipment failure, renovation or refurbishment, or other such abnormal operating condition. In the event that such an occurrence has taken place during the 12month period prior to the date of the application by the customer for service under this Rider, the monthly billing demands during the 12-month period shall be adjusted as appropriate to eliminate the effects of such occurrence.
(4) All demand adjustments offered under this Rider shall terminate no later than December 31, 2029.
(5) The existing local facilities of the Utility must be deemed adequate, in the judgment of the Utility, to supply the new or expanded electrical capacity requirements of the customer. If construction of new or expanded local facilities by the Utility is required, the customer may be required to make a contribution-in-aid of construction for the installed cost of such facilities pursuant to the provisions of the Utility's Terms and Conditions of Service.

Determination of Monthly Adjusted Billing Demand.

The qualifying incremental billing demand shall be determined as the amount by which the billing demand, as determined according to Tariff PPL or IP for the current billing period without this Rider, exceeds the Base Maximum Billing Demand. Such incremental billing demand shall be considered to be zero, however, unless it is at least $1,000 \mathrm{~kW}$ for new customers or existing customers.

The monthly adjusted billing demand under this Rider shall be the billing demand as determined according to Tariff PPL or IP for the current billing period without this Rider less the product of the qualifying incremental billing demand and the applicable Adjustment Factor. No Adjustment Factors shall be applied to any portion of minimum billing demands as calculated under Tariff PPL or IP.

Determination of Adjustment Factor

Standard New Development Customers - customers meeting all availability and terms and conditions above shall contract for service for a period of five (5) years with a scheduled Adjustment Factor as follows:

```
Year 1: 10%
```

Year 2 through 5: 5%

Urban Redevelopment Customers - customers meeting all availability and terms and conditions above, and that (1) are locating a new business in an existing building that has been unoccupied and/or has remained dormant for at least one or more years and has no current or prior relationship with the previous occupant, as determined by the Utility, and (2) taking delivery at one point that does not require significant distribution or transmission system investment, other than the connection of service, shall qualify the same as a Standard New Development Customer.

The appropriate adjustment factor shall be applicable over a period of 60 consecutive billing months beginning with the first such month following the end of the start-up period. The start-up period shall commence with the effective date of the contract addendum for service under this Rider and shall terminate by mutual agreement between the Utility and the customer. In no event shall the start-up period exceed 12 months.

Written Annual Statement of Substantial Compliance

Customers must apply for the Economic Development Rider using Form SB-1 "Statement of Benefits" which can be found as Attachment A.

Subsequent to qualifying for the Economic Development Rider, the Customer MUST file an updated SB-1 at least 30 days prior to the anniversary of the start date identified in the Utility's confirmation that Customer is eligible for the Economic Development Rider. Failure to comply with the reporting requirements will result in termination of eligibility for the Economic Development Rider.

FRANKFORT CITY LIGHT AND POWER
FRANKFORT, INDIANA

Terms of Contract

A contract or agreement addendum for service under this Rider, in addition to service under Tariff PPL or IP, shall be executed by the customer and the Utility for the time period which includes the start-up period and the five-year period immediately following the end of the start-up period. The contract addendum shall specify the Base Maximum Billing Demand, the anticipated total demand, the Adjustment Factor and related provisions to be applicable under this Rider, and the effective date for the contract addendum.

The customer may discontinue service under this Rider before the end of the contract or agreement addendum only by reimbursing the Utility for any demand adjustments received under this Rider billed at the applicable rate.

Special Terms and Conditions

Except as otherwise provided in this Rider, written agreements shall remain subject to all of the provisions of Tariff PPL or IP. This Rider is subject to the Utility's Terms and Conditions of Service.

STATEMENT OF BENEFITS

 ECONOMIC DEVELOPMENT RIDER
DATE

\qquad
Frankfort City Light and Power

This statement is being completed for a customer that qualifies for an "Economic Development Rider."
INSTRUCTIONS:

1. This statement must be submitted to Frankfort City Light and Power at the time application is made for the Economic Development Rider. Please carefully fill out all fields.
2. In order to remain eligible for the Econamic Development Rider, this statement must be submitted annually, at least 30 days in advance of each anniversary af the Project Start Date. Failure ta submit the updated SB-1 will result in termination of the Economic development Rider.

SECTION 1 CUSTOMERINFORMATION						
Name of Customer						
Address of Customer (number and street, elty, state, and ZIP code)						
Name of Contact Person			Telephone number ()		E-mail address	
SECTION 2 LOCATION AND DESCRIPTION OF INCREASED LOAD						
Location of Property			Estimated Start Date (month, day, year)		Est. Date Placed-in-Use (mo, day, year)	
Description of Increased load. Please describe specific economic reasons why this EDR is required for the new load. Please also include Milestones, Timeline, and Expected Outcome. (You may attach additional pages as necessary.)						
SECTION 3 ESTIMATE OF EMPLOYEES AND SALARIES AS A RESULT OFPROPOSED PROJECT						
Current Number FTE		Number Retained FTE		Number Additional FTE		
SECTION 4		ESTIMATE OF ADDITIONAL ELECTRICLOAD				
Current Peak Demand	Current Energy	New Energy	Increase in Peak Demand	New P	k Demand	New Load Factor
SECTION 5		STATEMENT OF COMPLIANCE				
Total Harmonic Distortion, ($<\mathrm{V} \%,<1 \%$):		THD V\% shall be less than	\% at Utility demark	THD I\%	shall be less than	\% at Utility demark
Load Factor (LF > 70\%):		Load Factor shall be greater than \%				
Power Factor (PF > 98\%):		Power Factor shall be greater than \%				
Complies with all applicable standards (Yes, No)		Full or partial (circle one)		Describe:		
Business Type (SIC or NAICS code):		SIC or NAICS code:		Describe:		
SECTION 6		CUSTOMER CERTIFICATION				
1 hereby certify that the representations in this statement are true.						
Signature of authorized representative		Title		Date signed (manth, day, year)		

FOR OFFICE USE ONLY
The applicant meets the general standards in accordance with the Economic Development Rider. EDR Discount Limited to 10 years as outlined below:
Year 1: $10 \% \quad$ Year 2 through 5: 5\%

Approved (Authorized signature and title)	Telephone number	Date signed (month, day, year)
Printed name	1	
	Frankfort City Light and Power	
	16 N. Main St., Frankfort, IN 46041	

Attachment 7: Impact of Proposed Economic Development Rider
Petitioner's Exhibit 3 Frankfort City Light and Power 2 Pages including Cover

ATTACHMENT SDB-7

IMPACT OF PROPOSED ECONOMIC DEVELOPMENT RIDER

On
Behalf of Petitioner, Frankfort City Light and Power

Impact 5tudy of Proposed Economic Development Rider
 Attachment SDB-7

The calculus below is used to determine the impact of the EDR on each qualifying Rate Class and to understand if and to what extent any subsidy exists The all-in purchase power cost per kWh was used as a basis on which to determine if subsidy exists. For the given test year, the Utility paid on average $\$ 0.073405 / \mathrm{kWh}$. Any all-in cost greater than the average composite system cost results in no subsidy. The worst case scenario for PPL qualifying rate was established to be $1,000 \mathrm{kVAD}$ at 70% load factor, while the worst case for the new IP rate was established at $10,000 \mathrm{kVAD}$. This results in a minimum consumption of $511,000 \mathrm{kWh}$ and $5,110,000 \mathrm{kWh}$ respectively. Both the qualifying Primary power and newly proposed Industrial Power rates were studied.

Billing Demand (kWD)	1,000	10,000
Minimum Energy	511,000	$5,110,000$
Load Factor	70%	70%
Hours/Month	730	730
	PPL	IP
Customer Charge $\$ \$$	60.00	$\$$
Demand Charge $\$ / \mathrm{kWD}$	600.00	
Energy Charge $\$ / \mathrm{kWh} \$$	18.85	$\$$

글	Demand Disc \%	Cust \$		kWD \$		kWh \$				All in Price per kWh	All in Purchase Power Cost	Subsidy $(-)=N o$ $(+)=Y e s$	Cummulative Subsidy \%	Comment
¢	10\% YEAR 1	\$	60.00	\$	16,965.00	\$	20,136.98	\$	37,161.98	0.072724	0.0734046	0.000681		0.93\% Subsidy for Year 1 only
吕	5\% YEAR 2	\$	60.00	\$	17,907.50	\$	20,136.98	\$	38,104.48	0.074568	0.0734046	-0.00116		-0.66\% Year 1 subsidy recovered.
2	5\% YEAR 3	\$	60.00	\$	17,907.50	\$	20,136.98	\$	38,104.48	0.074568	0.0734046	-0.00116		-2.24\%
$\stackrel{\text { E. }}{\text { E }}$	5\% YEAR 4	\$	60.00	\$	17,907.50	\$	20,136.98	\$	38,104.48	0.074568	0.0734046	-0.00116		-3.83\%
2.	5\% YEAR 5	\$	60.00	\$	17,907.50	\$	20,136.98	\$	38,104.48	0.074568	0.0734046	-0.00116		-5.41\% No subsidy over term
	0\% YEAR 6	\$	60.00	\$	18,850.00	\$	20,136.98	\$	39,046.98	0.076413	0.0734046	-0.00301		-9.51\%

	Demand Dise \%	Cust \$		kWD \$ kWh \$			All in Price per kWh	All in Purchase Power Cost	Subsidy $(-)=N o$ $(t)=\text { Yes }$	Subsidy \%	Comment
	10\% YEAR 1	\$	600.00	\$ 186,480.00	\$ 181,711.60	\$ 368,791.60	0.072171	0.0734046	0.001234		1.68\% Subsidy for Year 1
	5\% YEAR 2	\$	600.00	\$ 196,840.00	\$ 181,711.60	\$ 379,151.60	0.074198	0.0734046	-0.00079		0.60\%
	5\% YEAR 3	\$	600.00	\$ 196,840.00	\$ 181,711.60	\$ 379,151.60	0.074198	0.0734046	-0.00079		-0.48\% Year 1 subsidy recovered.
	5\% YEAR 4	\$	600.00	\$ 196,840.00	\$ 181,711.60	\$ 379,151.60	0.074198	0.0734046	-0.00079		-1.56\%
	5\% YEAR 5	\$	600.00	\$ 196,840.00	\$ 181,711.60	\$ 379,151.60	0.074198	0.0734046	-0.00079		-2.64\% No subsidy over term
	0\% YEAR 6	\$	600.00	\$ 207,200.00	\$ 181,711.60	\$ 389,511.60	0.076225	0.0734046	-0.00282		-6.48\%

Attachment 8: Determination of Non-Recurring Charges
Petitioner's Exhibit 3
Frankfort City Light \& Power
3 Pages including Cover

ATTACHMENT SDB-8

DETERMINATION OF NON-RECURRING CHARGES

On
Behalf of Petitioner, Frankfort City Light \& Power

Petitioner's Exhibit 3

Determination of NonRecurring Charges

Attachment SDB-8

SHEET 1 of 2

Description	Unit of Quantity Measure (UoM)	Unit Cost	Equipment Cost	Material Cost	$\begin{aligned} & \text { Labor } \\ & \text { Cost } \end{aligned}$		bined ment, ial and Cost
Return Check Fee							
Cost from bank to FCL\&P \$15 or 5\% of returned whichever is greater.				\$ 15.00		\$	15.00
Office Administration	0.33 manhours	\$ 28.09			\$ 9.27	\$	9.27
TOTAL						\$	24.27
Return Check Fee		\$25 or 5\% of the amount of the check, whichever is greater.					
Late Fee							
Office Administration	0.20 manhours	\$ 28.09			\$ 5.62	\$	5.62
Postage and paper	1.00 lot	\$ 0.32		\$ 0.32		\$	0.32
total						\$	5.94
Average proposed residential bill =		\$ 91.71				\$	91.71
Percentage of residential bill							6.5\%
Late Fee				of the tota	current u	paid	balance

Determination of NonRecurring Charges

Attachment SDB-8

SHEET 2 of 2

Description	Quantity	Unit of Measure (UoM)		it Cost		quipment Cost	Material Cost		$\begin{aligned} & \text { Labor } \\ & \text { Cost } \end{aligned}$		bined ment, rial and Cost
Meter Test Fee											
Meter Reader	0.30	manhours	\$	28.00				\$	8.40	\$	8.40
Meter Test Tech	0.50	manhours	\$	28.52				\$	14.26	\$	14.26
Test Equipment	1.00		\$	4.00	\$	4.00				\$	4.00
Truck \& Tools	0.30	hourly	\$	20.00	\$	6.00				\$	6.00
TOTAL										\$	32.66
Meter Test Fee (For all tests beyond free one every 12 months)										\$	33.00

Attachment 9: Proposed Capital Improvement Plan Estimates
Petitioner's Exhibit 3 Frankfort City Light \& Power 30 Pages including Cover

ATTACHMENT SDB-9

CAPITAL IMPROVEMENT PLAN ESTIMATES

On
Behalf of
Petitioner,
Frankfort City Light \& Power

Petitioner's Exhibit 3

FCL1 Capital Project Planning Table

Item \#	Project Description	Design Phase		Purchase Equipment		Construction Phase		Final Commissioning		Total
		Time (weeks)	Cost (\$)							
1	install cutouts and coordinate fuses on radial taps to isolate disturbances (30 locations) See Feeder List for details	2	\$12,478	6-8	\$78,351	15	\$46,921	0	\$0	\$137,750.00
2	Update the existing distribution protective device settings.on relays							1	\$16,850	\$16,850,00
3	Update/install Arc flash labels based on protective devite coordination results/recommendation							1	\$4,250	\$4,250.00
4	Vehicle Fleet Addtitions (2 service. Pisck-ups replace \#Z-4 and \#2-4A, with one and \% $72-7$ with the other)			4	\$50,259					\$50,259.00
5	Voltage Regulators installed to remedy voltage issues on select circuits Applies only to System Configurations below (excludes Burlington Out or Westside Out cases): Normal System, Fairgrounds OUT, Westside T1 OUT, Westside T2 OUT									\$481,424.00
	Priority 1 (Normal system) - Burlington Sub Feeder 5	2	\$10,466	12	\$69,460	4	\$35,197	1	\$5,233	\$120,356.00
	Priority 2 (FGR Out) - Fairground Substation Feeder No. 3	2	\$10,466	12	\$69,460	4	535.197	1	55,233	\$120,356.00
	Priority 2 (FGR Out) - Westside Sub Feeder No. 3	2	510,466	12	S69,460	4	535,197	1	55,233	\$120,356.00
	Priority 2 (FGR Out) - Westside Sub Feeder No. 4	2	\$10,466	12	\$69,460	4	\$35,197	1	55,233	\$120,356.00
6	Vehicle Fleet Additions (2 service trucks to replace service trucks \#2-9 and \#2-14)			10	5335,150					\$335,150.00
7	Re-conductor distribution circuits to increase ampacity (reduce bottleneck)		\$27,081		\$77,812		\$244,581		\$11,245	\$350,719.00
	Priority 1 (Normal system) - WSS6 OH SW2 \& 11516 - from 336 to 477ACSR (Approx. 100 feea)	0	\$2,487	12	\$2,248	4	\$11,886	1	\$2,811	\$19.432.00
	Priority 2 (FGR Sub Out) - WSS4 FROM Sulb to IN 28 POLE 11715 - 336 to 477ACSR (Approx. 2400 feet)	2	\$10,230	12	\$35,925	4	\$105,531	1	\$2,810	\$154,396.00
	Priority 2 (BUR Sub Out) -FGR4 OH FAIRGND \& PRAIRIE - from 336 to 477ACSR [Approx. 600 feet)	1	\$3,482	12	\$4,056	4	\$22,482	1	\$2,812	\$32,832,00
	Priority 2 (BUR Sub Out) - BUR8 OH WASH AVE \& SIMS - from 4/0 to 477ACSR (Approx. 2350 feet)	2	\$10.982	12	\$35,583	4	\$104,682	1	\$2,812	\$154,059.00
8	New Substation Two 69/13.2kV, 20/26.7/33.3 MVA Transformers; Outdoor Main-Tle-Main with (8) Feeders To be located in the Northwest side of the service territory (land avaliable near RR and existing uransmission eircuits)	28	\$161,939	40	\$2,083,614	30	\$370,004	6	\$29,443	\$2,545,000.00
9	West Side Substation Upgrades									\$2,265,412.00
	Replace two (2) circuit switchers with SF6 breakers	2	58,964	20	\$124,224	12	\$24.787	1	\$14,650	\$172,625.00
	TWo NEW 69/13.2 $\mathrm{kV}, 20 / 26.7 / 33.3$ MVA Transformers	8	585,178	26	\$1,201,066	12	\$41,664	2	\$20,514	51,348,422,00
	NEW Main-Tie-Main Switchgear with 8 Feeders, new relays, metering etc.	10	\$49,627	26	\$507,148	12	\$154,976	2	\$18,934	5730,685.00
	New SPCC Plan							1	\$13,680	\$13,680.00
10	West Side Substation Mamsenanse							1	\$38,650	\$38,650.00
11	Burlington Substation Upgrades									\$1,591,745.00
	New $69 / 13.2 \mathrm{kV}, 30 / 40 / 50 \mathrm{MVA}$ Transformer and upgrade distribution switchgear (breakers and relays), maintain existing building for 69 kV Relaying \& Storage	24	\$120,652	38	\$1,307,780	16	\$120,046	2	\$29,587	\$1,578,065,00
	New SPCC Plian							4	\$13,680	\$13,680.00
12	Burlington Substation Maintenance							1	\$38,650	\$38,650:00
13	Fairrrounds Substation Upgrades									\$242,172.00
	Replace existing high side circuit breaker with SF6 breaker	2	\$11,67?	20	\$49,307	12	\$61,726	1	\$5,094	\$127,802,61
b	Upgrade existing SEL protective relays to 3515 Relays	1	\$9.148	12	\$41,751	10	\$11,740	1	\$5,177	\$67,815.59
	Install SEL Communication Processor to monitor and collect data from existing protective relays for future SCADA	0	52,138	12	\$13,176	10	\$16,292	1	\$1,268	\$32,873.80
	New SPCC Plan (Revisit existing oil containment solution)							4	\$13,680	\$13,680.00
14	G15/Mapping System Uperades	18.	589,823	26	\$68,177	12	\$45,630	2	\$4,785	\$208,415.00
15	Fairgrounds Substation Maintenance							1	\$39,460	\$39,460.00
15	S.R. 28 3-phase re-bunid	8	\$41,229	26	\$104,382	12	\$386,440	2	\$17,120	\$599,170.00
17	AMI Pilot for Industrial Customers	2	\$10,599	15	\$86,863	12	\$54,375	2	\$16,948	\$168,785.00
18	Ufilify IT, Communication netiwork upgrades, to support AM1, SCADA and increasing bandwidth needs for the Utility Operatlons.	8	\$41,392	18	\$264,528	20	\$229,311	2	\$14,769	\$450,000.00
19	Pole Replacements - 20,000 poles in 50 years avg 400 per year @ \$290.50 ea. $=\mathbf{\$ 1 1 6 , 2 0 0 / \text { year }}$			4	\$813,400					\$813,400.00
20	S.R. 28 Road Widening Project 2018	37	\$288,419,	$2{ }^{2}$	\$346,189	12	\$828,426	2	\$40,972	\$1,400,000.00
	Total									\$11,837,261.00

1	1) Install cutouts and coordinate fuses on radial taps to isolate disturbances (30 locations)							
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost	Combined Material and Labor Cost		ncludes 20\% ency)
3	Fuse Cut-out Body	96	\$ 382.77	\$ 36,745.92	\$ 2,323.20	\$ 39,069.12	\$	46,882.94
4	150A Fuse	96	\$ 228.34	\$ 21,920.64	\$ 2,323.20	\$ 24,243.84	\$	29,092.61
5	Mounting Assembly (fittings, terminals, clamps and hardware)	96	\$ 69.01	\$ 6,624.96	\$ 34,453.44	\$ 41,078.40	\$	49,294.08
6								
7	Project Sub-totals			\$ 65,291.52	\$ 39,099.84	\$ 104,391.36	\$	125,269.63
8			20\% Contingency	\$ 78,349.82	\$ 46,919.81	\$ 125,269.63		
9								
10			5.5\%	Design	\$ 6,839.72			
11			4.5\%	Const. Mgmt.	\$ 5,637.13			
12			0.0\%	T\&C	\$ -			
13			0.0\%	For Record	\$			
14	-			Pro	ject Engineering	Design Services	\$	12,477
15	Note: Dollars are estimated from 2016.							
16	1) Install cut	outs and	coordinate fuses	on radial taps to is	olate disturbanc	es (30 locations)	\$	137,750.00

1	3)Update/install Arc Flash labels based on protective device coordination results/recommendation							
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost	Combined Material and Labor Cost		ludes 0\% y)
3	Labels	82	\$ 4.95	\$ 405.90		\$ 405.90	\$	405.90
4	Remove old labels and Install ne labels	82	\$ 46.88		\$ 3,844,16	\$ 3,844.16	\$	3,844.16
5								
6	Project Sub-totals			\$ 405.90	\$ 3,844.16	\$ 4,250.06	\$	4,250.06
7			0\% Contingency	\$ 487.08	\$ 3,844.16	\$ 4,250.06		
8								
9			0.0\%	Design	\$ -			
10			0.0\%	Const. Mgmt.	\$			
11			0.0\%	T\&C	\$			
12	- --- - - -		0.0\%	For Record	\$ -			
13					ject Engineering	Design Services	\$	-
14	Note: Dollars are estimated from 2016.							
15	3) Update/install Arc	Flash labe	els based on prot	ective device coor	dination results/	recommendation	\$	4,250.00

FRANFORT CITY LIGHT AND POWER VEHICLE LIST 2015

FRANFORT CITY LIGHT AND POWER VEHICLE LIST 2015

--- - .-.-	-... .-.--						S̀ChÉdüle:
DIGGER DERRICK	2000	ALTEC	D2050-TR	0300AY0577				GOOD
UTILITY BODY	2000	ALTEC	ALUM. FLATBED	06/00 47-23646				G00D
TRANSVERSEBOX	2000	STEEL\&ALUM.PROD.	T-PLAT	20463				GOOD
RADIO	2011	MOTOROLA	ID\# 1237093	475 TME1117		\$1.135.00		G000
2-11	1995		4900	1HTSDAAN3SH645374	4181		46.436	FAIR
AERIAL TOWER	1995	TECO	S5-5013P-4TFS 1	56649408				WAS SENT IN AND HAD A MAJOR OVERHAUAL PREFORMED
								IN DECEMBER 2009. THIS VEHICLESTILL NEEDS TO BE
								REPLACED - .-............
TRANSERSE BOX	1995	MONROĖE						GOOD
- .-. ${ }^{\text {RADIO }}$	2011	MOTOROLA	ID\# 1237014	475TME118		-81.135.00		GOOD.
2-12	2004	FORD	RANGER	TFTYR15E94PB51399	4365	\$16.545.00	130,232	
-- - RADIO	2011	MOTOROLA	ID\# 1237015	475 TME1119				- --.-. - Goon
$\frac{2-14}{2}$	2000	FORD	F450 4×4	1 FDXF	4510		70, 100	. 6000
------.-								
ÜTLIITY BODY	1990	CASS	84 FIBERGLASS	10890				GOOD
RADIO	2011	MÖTOROLA	-1237016	$4757 \mathrm{ME1120}$		\$1,135.00		
. 2 -15	2013	DÖÖGE	5500	3C7WRNBLSEG588151	21681		1.100	NEW
RADIO	2011	MOTOROLA	ID\# 1237033	475TMG0104		\$1,135.00		
$\because-$								
		-... .-......---						------ --.---- -
2-16	2004	FORD	RANGER	IFTYR15E74PB51398	4198	\$16.545.00	110,424	FAIR
RADIO	2011	MOTOROLA	1237017	475TME1158		S1,135.00		GOOD
$2-17$	2000			1HTSDADRTYH215242	4495		37.892	
TOUWER		- .-.-- $\overline{\mathrm{M} T 1}$	V6A 6 51P	76829911				
UTIUTY BODY	2000	-- STAHL		499-001357				GOOD
RADIO	2019	MOTOROLA	ID\# 1237018	475TME1159		\$1.135.00		G000
2-18	1999.	IH	4900	THTSDADN9XH654986	4185		53,898	FPil
								SHOULD BE REPLACED DUE TO AGE
TOWER	1999	-- TECO VANGUARD	V5A-551P	4TFE2 74249808				G000
UTILT Y BODY	1999	- STAHL	SPL418A2	-48-1530				G000
RADIO	2011	MOTOROLA	10\# 1237019	475TME1160		\$1,135.00		G00D
2-19	2002		4400	THTMKADR82H514080	4204		51, 168	GOOD, THIS UNIT STARTS TO BOUNCE WHEND DIVING
								BETWEEN 45-60 MPH
TOWER	2002	$21-M T$	V5A-55IP-4TFE2	89680203				G000
UTILITY BODY	2002	2 - MONROE	L8190M 581818	02-18719				GOOD
RADIO	2011	1 - MOTOROLA	10\# 1237020	475 TME1161		\$1,135.00		GOOD
---------..-		-..-						.
--5-1	2011	1 I- FORD	RANGER XLT 4×4	1FTLR4FE4BPA86517	6958	\$19,281.00	T 22,938	1 - 6000

1	5) Installation of Voltage Regulators - 5a Burlington Sub Feeder 5										
2	Description	Quantity	Unit Cost		Material Cost	Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Site Preparation	1				\$	8,500.00	\$	8,500.00	\$	10,200.00
4	Foundations \& Anchor Bolts	1	\$	850.00	\$ 850.00	\$	1,200.00	\$	2,050.00	\$	2,460.00
5	4" - \# 53 Limestone - CuY̌ds	3	\$	8.95	\$ 26.85	\$	10.50	\$	37.35	\$	44.82
6	2" - \# 73 Limestone - CuYds	3	\$	10.25	\$ $\quad 30.75$	\$	10.50	\$	41.25	\$	49.50
7	$667 / 747 \mathrm{kVA} 3$-phase Voltage Regulator	1	\$	55,746.00	\$ 55,746.00	\$	18,840.00	\$	74,586.00	\$	89,503.20
8	636 kcm AAConductor, Fittings, Terminals, Clamps \& Hardware (LF)	220	\$	5.59	\$ 1,229.80	\$	770.00	\$	1,999.80	5	2,399.76
9											
10	Substation Construction Sub-totals				\$ 57,883.40	\$	29,331.00	\$	87,214.40	\$	104,657.28
11											
12											
13				6.0\%	Design	\$	6,279				
14				4.0\%	Const. Mgmt.	\$	4,186				
15				5.0\%	T\&C	\$	5,233				
16											
17	Substation Engineering Design Services									\$	15,699
18	Note: Dollars are estimated from 2016.										
19	5) Installation of Voltage Regulators - 5 a Burlington Sub Feeder 5									\$	120,356.00

1	5) Installation of Voltage Regulators - 5b Fairground Sub Feeder 3									
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Site Preparation	1.			\$	8,500.00	\$	8,500.00	5	10,200.00
4	Foundations \& Anchor Bolts	1	\$ 850.00	\$ 850.00	\$	1,200.00	\$	2,050.00	\$	2,460.00
5	4" - \# 53 Limestone - CuYds	3	\$ 8.95	\$ 26.85	\$	10.50	\$	37.35	\$	44.82
6	2"- \# 73 Limestone - CuYds	3	\$ 10.25	\$ 30.75	\$	10.50	\$	41.25	\$	49.50
7	$667 / 747 \mathrm{kVA} 3-\mathrm{phase}$ Voltage Regulator	1	\$ 55,746.00	\$ 55,746.00	\$	18,840.00	\$	74,586.00	\$	89,503.20
8	636 kem AAConductor, Fittings, Terminals, Clamps \& Hardware (LF)	220	\$ 5.59	\$ 1,229.80	\$	770.00	\$	1,999.80	\$	2,399.76
9										
10	Substation Construction Sub-totals			\$ 57,883.40	\$	29,331.00	\$	87,214.40	\$	104,657.28
11										
12										
13			6.0\%	Design		6,279				
14			4.0\%	Const. Mgmt.	\$	4,186				
15			5.0\%	T\&C	\$	5,233				
16										
17	Substation Engineering Design Services								\$	15,699
18	Note: Dollars are estimated from 2016.									
19	5) Installation of Voltage Regulators - 5b Fairground Sub Feeder 3								\$	120,356.00

1	5) Installation of Voltage Regulators - 5c West Side Sub Feeder 3										
2	Description	Quantity	Unit Cost		Material Cost	Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Site Preparation	1				\$	8,500.00	5	8,500.00	\$	10,200.00
4	Foundations \& Anchor Bolts	1	\$	850.00	\$ 850.00	\$	1,200.00	\$	2,050.00	\$	2,460.00
5	4"- \# 53 Limestone - CuYds	3	\$	8.95	\$ 26.85	\$	10.50	\$	37.35	\$	44.82
6	2" - \# 73 Limestone - CuYds	3	\$	10.25	\$ 30.75	\$	10.50	\$	41.25	\$	49.50
7	$667 / 747 \mathrm{kVA} 3$-phase Voltage Regulator	1	\$	55,746.00	\$ 55,746.00	\$	18,840.00	\$	74,586.00	\$	89,503.20
8	636 kcm AAConductor, Fittings, Terminals, Clamps \& Hardware (LF)	220	\$	5.59	\$ 1,229.80	\$	770.00	\$	1,999.80	\$	2,399.76
9											
10	Substation Construction Sub-totals				\$ $\quad 57,883.40$	\$	29,331.00		87,214.40	\$	104,657.28
11											
12											
13				6.0\%	Design	\$	6,279				
14				4.0\%	Const. Mgmt.	\$	4,186				
15				5.0\%	T\&C	\$	5,233				
16											
17	Substation Engineering Design Services									\$	15,699
18	Note: Dollars are estimated from 2016.										
19	5) Installation of Voltage Regulators - 5c West Side Sub Feeder 3									\$	120,356.00

UTILITY TRUCK EQUIPMENT, INC.
P.O. BOX 130

23893 U.S. 23 SOUTH
CIRCLEVILLE OH 43113
SALES / SERVICE/RENTALS
Telephone 740-474-5151
Fax 740-474-4402

May 23, 2016
Steve Miller
Superintendent
Frankfort City Light and Power
1000 Washington Ave, PO Box 458
Frankfort, IN 46041

Dear Mr. Miller:
At the request of Mick Wilson, I wish to submit budgetary pricing for a new Versalift VST47 bucket truck similar to the one you took delivery of in October of 2013.

The truck delivered in 2013 (Job \#2752) was invoiced at $\$ 152,325.00$. Average price increases on our state government contracts have been averaging around 2 to 4% per year. For budgetary purposes, I project a new sale price of $\$ 167,575.00$ to replicate that order later this year as a conservative estimate.

Please let me know if you have any questions. Thank you for the opportunity.

Sincerely,

Gohn Matiox

John Mattix
Vice President
Utility Truck Equipment, Inc.

FRANFORT GITY LIGHT AND POWER VEHICLE LIST 2015

VERICLE\# ${ }^{\text {\# }}$	YEARI	MAME	MODEL	VIN\#	PLATE \#	PRICE PAD M	MILEAGE	COMMENTS ON CONDITION
……砛-1-.....-	2005	-- - FORD	500	1 FAP23105G161653	69076	\$20,325.00	80,125	FAIR, NEEDS NEW TIRES, NEEDS AUC REPAIRED ${ }^{\text {a }}$
RADiō	2011	MOTOROLA	iD\# 1237001	475 TMC0579		\$1,135.00		
IT-2	2011	FORD	ESCAPE	1FMCUOD77BKC61623	5385		18,334	GOOD
RADIO	2011	MOTOROLA	ID\# 1237003	$475 T \mathrm{MCO582}$		\$1,062.00		
	2016	FORD	ESCAPESE	1FMCUOGXXGU29790		\$23,070.00	0	NEW
RADIO	2016	MOTOROLA		203 TRZ1347		\$1,135.00		
2-1	2016	FORD	ESCAPE SE	1FMCUOGX3GUC29789		\$23.070.00	0	NEW
RADIO	2011	MOTOROLA	10\# 1237005	475TMC0585		\$1.135.00		
2-2	2002		4400	THTMKADR42H514079	4207		32,357	
TOWER	2002	$M T I T$	T5LOAH	89670203				-.-...------ -- ${ }^{\text {GOOD }}$
LINE BODY	2002	MBC	LB190M 58184	$02-18721$				--------6000
RADIO	2011	MOTOROLA	ID\#\# 1237004	$475 T M C 0584$		\$1,135.00		GOOD
2-3	2011	FORD	ESCAPE	TFMCUODC1BKA21113	5387		24,055	G000
RADIO	2011	MOTOROLA	10\# 1237002	475 TMC0580		\$1, 135.00		
$\frac{2-4}{\text { स-2ITO }}$	1990	FORD	F350 4×4	2FDKF38M7MCA16299	4201		106707	TWENTY THREE YEARSOLD CLUTCH SLIPS
TAETU	2011	MOTOROLA	10\# 1237006	$475 \mathrm{TMC0586}$		\$1, 135.00		WHEN HOT, NEEDS TO BE REPLACED
UTILITY BODY	1991	MO-LO	FIBERGLASS BODY	-725				POOR BED FLOOR IS RUSTED OUT --....-
\cdots								
2-4A	1990	FORD	F250	IFTHF25H8LLA24948	4230		111,664	POOR MEEDS TO BE REPLACED, ENGINE RUNS ROUGH,
RADIO	2011	MOTOROLA	10\# 1237007	475TMC0587		\$1,135.00		TRANSAASSION SLIPS, BODY IS RUSTED OUT -....
			-	.--..- ... ---.. ..---		.-.--.......	-	.---....... .------.-.-....... .-..--....
2-5	2011	FORD	RANGER XLT 4×4	1 TFILR4FE9BPA59099	5390		30,238	GOOD-
RADIO	2011	MOTOROLA	$10{ }^{\text {\# }} 12337008$	$47 \mathrm{TMC0588}$		\$1.135.00		
- -.... .-..........		--...---......	--...........				
2-6	2012	OODGE	5500		17418	S 5131.575 .00	2. 15.643	-6000 --- --
TOWER	$\frac{2011}{2012}$	MOTOROLA	ID 1237009	$475 \mathrm{TMC0589}$		\$1,135.00		GOOD
	2012	BRANDFX	VST-40	KWW. ${ }^{\text {K }}$ (20160 37648				
-	$\underline{2012}$	BRANDFX		SER. 12-37648				GOOD
	1997.	GMC	SONOMA S14	1GTCTS14×7VK517957	4470		128000	POOR, HIGH MILEAGE. FIFTEEN YEARS OLD, -NEEDS TO BE
RADIO	2011	MÖTOROLA	ID\# 1237010	475 TME1103		\$1,135.00		REPLACED
2-8	2002	IH	4400	1HTMKADR62H514081	4206		17,720	G000
DIGGER DERRICK	K 2002	ALTEC	947	01028A3311				G000
UTILITY BODY	2002	- ALTEC	FLAT BED	04102 47-25794				GOOD
TRANSVERSEBOX	X 2002	! KNAPHEIDE	KP-9442 46	16008				G00D
RADIO	2011	1 MOTOROLA	id\# 1237011	475TME1104		\$1,135.00		G000
$2-9$	1994	- FORD	F350 4×4	1FDKF38MXRNB00280	4254		94	POOR. TWENTY YEARS OLD. NEEDS TO
								BE REPLACED
UTILITY BODY	1994	4 NORTHWEST	131	976938				G000
-- RADIO	2011	1-.... MOTOROLA	1D 1237012	475TME1116		\$1.13500		GOOD
$2-10$	12000	I-	...----- -4900					. -

FRANFORT CITY LIGHT AND POWER VEHICLE LIST 2015

--.-. .-....-			---------					\qquad
DIGGER DERRICK	2000	ALTEC	D2050-TR	0300 AY 0577				- G000 -
UTILITY BODY	2000	ALTEC	ALUM. FLATBED	06100 47-23646\%				G00D
TRANSVERSE BOX	2000	STEELQALUM.PROD.	T-PLAT	20463				GOOD
RADIO	2011	MOTOROLA	ID\# 1237013	475 TME117		\$1, 133500		GOOD
2-11	1995	IH	4900	1 HTSDAAN3S ${ }^{\text {H/G453374 }}$	4181		46.436	FAIR
AERIAL TOWER	1995	TECO	S5-5013P-4TFS1	56649408				WAS SENT IN AND HAD A MAJOR OVERHAUAL PREFORMED
								IN DECEMBER 2009. THIS VEHICLE STILL NEEDS TO BE
	-							REPLACED
TRANSEERSEBOX	1995	MONROE						Goód
- EAADIO	2011	- MOTOROLA	ID\# \# 12337014	- 475 ME1 118		51.135.00		GOOD.
$2-12$	$T 2004$	FORD	RANGER	1FTYR15E94PB51399	4365	\$16,545.00	130,232	GOOD
RAD!O	2011	MOTOROLA	ID\# 1237015	-475TME1119				
$2-14$	2000	FORD	F450 4×4	1FDXF47FOYED66338	4510		70,100	6000 ${ }^{\text {6, }}$.
UTTLITY BODY	1990	CASS	84 FIBERGLASS	10890				GOOD
RADIO	2011	MÖTOROLA	1237016	475 TME1120		\$1.135.00		GOOD
2-15	2013	DOOCGE	5500	3C7WRNBL9DG588151	21681		1,100	NEW
RADIO	2011	MOTOROLA	10\# 1237033	475 TMG0104		\$1.135.00		
.--								
								…-- ... ---....- ... --
2-16	2004	FORD	RANGER	1 TYR15E74PB51398	4198	\$16.545.00	110,424	Fair
RADIO	2011	MÖTOROLA	1237017	- 475TME1158		\$1,135.00		6000
$-\ddot{2}-17$	2000	T- - - - -	4900	1HTSDADRYY 215242	4495		37.892	
$\text { \|- }-\cdots-\cdots-$								
TOWER	2000	- $\cdots \cdots-\cdots-\overline{\text { MTT }}$	V6A 651 P	76829911				
UTILTY BODY	2000	STAHL		499-001357				GOOO.
RADIO	2011	MOTOROLA	ID\# 1237018	475 TME1159		\$1,135500		GOOD.
								SHOULD BE REPLACED DUE TO AGE
TOWER		- TECO VANG						
UTILITY BODY	1999	9. $-\frac{\text { TECO }}{\text { STANGUARD }}$	$\frac{V 5 A-551 P}{\text { SPL418A2 }}$	- $\frac{\text { 4TFE2 } 74249808}{48-1530}$				G00D
RADIO	2011	$1{ }^{-1 . .-M O T O R O L A ~}$	10\# 1237019	475 TME1160		\$1, 135.00		GOOD
2-19	2002	22	4400	1HTMKAD $\mathrm{R} 82 \mathrm{H5} 14080$	4204		51,168	GOOD, THIS UNIT STARTS TO BOUNCE WHEN DRIVING
								BETWEEN 45-60 MPH
TOWER	2002	2 I MTI	V5A-55iP-4TFE2	89680203				G000
UTILITY BODY	2002	2 MONROE	LB190M5818H	02-18719				GOOD
RADIO	2011	1 - MOTOROLA	1D\# 1237020	475TME1161		\$1.135.00		GOOD
--		------						
S-1	2011	11 - FORD	RANGEEE XITT4X4	-1FTLR4FE4BPA86517		\$19.261.00	- 1.22 .938	$81-6000$

1	7) Re -conductor Distribution Circuits											
2	Description	Quantity	Unit Cost		Material Cost		Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Pole, Wood SYP 50-3	18	\$	290.50	\$	5,229.00	\$	7,479.00	\$	12,708.00	\$	15,249.60
4	Crossarm, Fiberglass PUPI D.E. Arm	18	\$	221.90	\$	3,994.20	\$	8,325.00	\$	12,319.20	\$	14,783.04
5	Insulator, Polymer Suspension	54	\$	9.50	\$	513.00	\$	13,527.00	\$	14,040.00	\$	16,848.00
6	Wire, Bare ACSR 477	19154	\$	0.63	.	12,067.02	\$	149,286,28	\$	161,353.30	\$	193,623.96
7	Misc. Hardware and accessories	36	\$	1,121.00	\$	40,356.00	\$	11,502.00	\$	51,858.00	\$	62,229.60
8	Removal and disposal	36	\$	74.58	\$	2,684.88	\$	13,697.64	\$	16,382.52	\$	19,659.02
9												
10	Substation Construction Sub-totals				\$	64,844.10	\$	203,816.92	\$	268,661.02	\$	322,393.22
11												
12												
13				8.4\%	D		\$	27,081				
14				3.5\%		Mgmt.	\$	11,245				
15												
16												
17	Note: Dollars are estimated from 2016. P $^{\text {a }}$ Substation Engineering Design Services										\$	38,326
18												
19											\$	360,719.00

1	10) West Side Substation Maintenance						
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost	Estimated	
3						Combined Material	Project Cost
4						Labor Cost	(includes 20\% contingency)
5	Clean//nspect all insulators and terminations	1	\$ 3,580.00		\$ 3,580.00	\$ 3,580.00	\$ 4,296.00
6	Functionally test transformer to OEM specifications	1	\$ 2,870.00		\$ 2,870.00	2,870.00	\$ 3,444.00
7	Functionally test breakers to OEM specifications	1	\$ 1,530.00		\$ 1,530.00	\$ $1,530.00$	$5 \quad 1,836.00$
8	Functionally test CT, PT, CCVT to OEM specififcations	1	\$ 2,148.00		\$ 2,148.00	\$ 2,148.00	\$ 2,577.60
9	Functionally test arrestors to OEM specifications	1	\$ 1,750.00		\$ $\quad 1.750 .00$	\$ 1,750.00	\$ $\quad 2,100,00$
10	Functionally test switches to OEM specifications	1	\$ 2,890.00		\$ 2,890.00	\$ 2,890.00	\$ $3,468.00$
11	Functionally test relays to settings and coordination	1	\$ 13,450.00		\$ 13,450.00	\$ 13,450.00	\$ 16,140.00
12	Functionally teststation batteries to OEM specifications	1	\$ 2,150.00		\$ 2,150.00	\$ 2,150.00	\$ 2,580.00
13	Compile and distribute report	1	\$ 1,840.00		\$ 1,840.00	\$ 1, $1,840.00$	\$ 2,208.00
14			\$		\$ -	\$ -	\$ -
15	Master Display Equipment Sub-total			\$	\$ 32,208.00	\$ 32,208.00	S 38,649,60
16							
17							
18							
19							
20							
21				10) West	de Substation M	Project Budget	\$ 38,650

1	12) Burlington Substation Maintenance									
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost		Estimated		Project Cost	
3								d Material		
4								Cost		ntingency)
5	Clean/linspect all insulators and terminations	1	\$ 3,580.00		\$	3,580.00	\$	3,580,00	\$	4,296.00
6	Functionally test transformer to OEM specifications	1	\$ 2,870.00		\$	2,870.00	\$	2,870.00	\$	3,444.00
7	Functionally test breakers to OEM specifications	1	\$ 1,530.00		\$	1,530.00	\$	1,530.00	\$	1,836.00
8	Functionally test CT, PT, CCVT to OEM specififications	1	\$ 2,148.00		\$	2,148.00	\$	2,148.00	\$	2,577.60
9	Functionally test arrestors to OEM specifications	1	\$ 1,750.00		\$	1,750.00	\$	1,750.00	\$	2,100.00
10	Functionally test switches to OEM specifications	1	\$ 2,890.00		\$	2,890.00	\$	2,890.00	\$	3,468.00
11	Functionally test relays to settings and coordination	1	\$ 13,450.00		\$	13,450.00	\$	13,450.00	\$	16,140.00
12	Functionally teststation batteries to OEM specifications	1	\$ 2,150,00		\$	2,150.00	\$	2,150.00	\$	2,580.00
13	Compile and distribute report	1	\$ 1,840.00		\$	1,840.00	\$	1,840.00	\$	2,208.00
14			\$ -		\$	- -	5	-	\$	-
15	Master Display Equipment Sub-total			5	S	32,208.00	5	32,208,00	5	38,649.60
16										
17										
18										
19										
20										
21				12) Burlin	on	ubstation M	Pr	Budget	5	38,650

1	13) Fairgrounds Substation Upgrades									
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Site Preparation Removal of existing equipment	1			\$	12,500.00	\$	12,500.00	\$	15,000.00
4	Foundations \& Anchor Bolts	2	\$ 850.00	\$ 1,700.00	\$	1,200.00	\$	2,900.00	5	3,480.00
5	4" - \# 53 Limestone - CuYds	3	\$ 8.67	\$ 26.01	\$	9,001.50	\$	9,027.51	\$	10,833.01
6	2" - \# 73 Limestone - CuYds	3	\$ 9.75	\$ 29.25	\$	9,001.50	\$	9,030.75	\$	10,836.90
7	$69 \mathrm{kV}, 1200 \mathrm{~A} ., 60 \mathrm{~Hz}$, Power Circuit Breaker	1	\$ 39,000.00	\$ 39,000.00	\$	27,850.00	\$	66,850.00	\$	80,220.00
8	636 kcm AA Conductor, Fittings, Terminals, Clamps \& Hardware (LF)	150	\$ 4.89	\$ 733.50	\$	4,575.00	\$	5,308.50	\$	6,370.20
9	Wire, Cables, Terminals \& Labels	760	\$ 14.78	\$ 11,232.80	\$	7,980.00	\$	19,212.80	\$	23,055.36
10	Relay distribution rack	3	\$ 3,660.00	\$ 10,980.00	\$	9,001.50	\$	19,981.50	\$	23,977.80
11	SEL relays and comm processors	6	\$ 4,560.00	\$ 27,360.00	\$	1,803.00	\$	29,163.00	\$	34,995.60
12						:				
13	Substation Construction Sub-totals			\$ 91,061.56	\$	82,912.50	\$	173,974.06	\$	208,768.87
14										
15										
16			7.0\%	Design	\$	14,614				
17			4.0\%	Const. Mgmt.	\$	8,351				
18			5.0\%	T\&C	\$	10,438				
19										
20 21	Note: Dollars are estimated from 2016.			Substation Engineering Design Services					\$	33,403
22	13) Fairgrounds Substation Upgrades								\$	242,172.00

1	14) GIS/Mapping Systern Upgrades													
2	Description	Quantity	Unit Cost		Material Cost		Labor Cost		Estimated		Project Cost			
3					Combined MaterialLabor Cost									
4					(includes 20\% contingency)									
5	Dell Precision Tower 7000 Workstation	2	\$	2,049.00			\$	4,098.00	S	625.00	\$	4,723.00	\$	5,667.60
6	Graphics Card (for hi resolution quad monitor)	2	\$	5,000.00	\$	10,000.00	\$	625.00	\$	10,625,00	\$	12,750.00		
7	$65^{\prime \prime}$ Samsung LED UHDTV FLAT Panel Display port capable	2	\$	3,000.00	\$	6,000.00	S	625.00	\$	6,625.00	\$	7.950.00		
8	Wire, Cables, Terminals \& Labels	,	\$	81.00	\$	162.00	\$	625.00	\$	787.00	\$	944.40		
9	HP servers/Lenox operating system/Oracle database	1	\$	15,380.00	\$	15,380.00	S	8,345.00	\$	23,725.00	\$	28,470.00		
10	Esri 10.2.2 reease level or above Advanced license certification w/set-up \& training	2	\$	7,142.00	\$	14,284.00	\$	18,780.00	\$	33,064.00	\$	39,676.80		
11	Ike 4 GPS mapping device w/ training	1	\$	6,890.00	\$	6,890.00	\$	8,400.00	\$	15,290.00	\$	18,348.00		
12	System data collection	1	\$	78,840.00			$\$$	78,840.00	\$	78,840.00	\$	94,608.00		
13			\$	-	\$	-	\$	-	\$	-	\$	-		
14			\$	-	\$	-	\$	-	\$	-	\$	-		
15	Master Display Equipment Sub-tota!				s	56.814.00	5	116,865.00	5	173,679.00	\$	208,414.80		
16														
17														
18														
19														
20														
21						14) $\mathrm{GIS} /$	app	ng System	Pro	Budget	\$	208,415		

1	16) S.R. 28 3-phase rebuild											
2	Description	Quantity	Unit Cost		Material Cost		Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Pole, Wood SYP 50-3	46	\$	290.50	\$	13,363,00	\$	19,113.00		32,476.00	\$	38,971.20
4	Crossarm, Fiberglass PUPI D.E. Arm	46	\$	221.90	\$	10,207.40	\$	21,275.00	\$	31,482.40	\$	37,778.88
5	Insulator, Polymer Suspension	138	\$	9.50	\$	1,311.00	\$	34,569.00	\$	35,880.00	\$	43,056.00
6	Wire, Bare ACSR 336 Merlin	30258	\$	0.63	\$	19,062.54	\$	221,912.17	\$	240,974.71	\$	289,169.65
7	Misc. Hardware and accessories	36	\$	1,121.00	\$	40,356.00	\$	11,466.00	\$	51,822.00	\$	62,186.40
8	Removal and disposal	36	\$	74.58	\$	2,684.88	\$	13,698.00	\$	16,382.88	\$	19,659.46
9												
10	Substation Construction Sub-totals				\$	86,984.82	\checkmark	322,033.17	\$	409,017.99	\checkmark	490,821.59
11												
12												
13				8.4\%	D		\$	41,229				
14				3.5\%	C	Mgmt.	\$	17,120				
15												
16												
17						Substa	tion	Engineering	Des	gn Services	\$	58,349
18	Note: Dollars are estimated from 2016.											
19							16) S.R. 28 3-phase rebuild				\$	549,170.00

1	17) AMI Pilot for Industrial Customers												
2.	Description		Quantity	Unit Cost		Material Cost		Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	NS-2001	Network Server Platform	1	\$	9,000.00	\$	9,000.00	\$	1,200.00	\$	10,200.00	\$	12,240.00
4	NSL-201	Software License for NS-2001	1	\$	15,000.00	\$	15,000.00	\$	1,200.00	\$	16,200.00	\$	19,440.00
5	RT-4101	IP Collector	2	\$	325.00	\$	650.00	\$	6,001.00	\$	6,651.00	\$	7,981.20
6	TR-1901	900Mhz LAN Repeater	2	\$	265.00	\$	530.00	\$	6,001.00	\$	6,531.00	\$	7,837.20
7	TC-1220	TPM Controller - GE meter	60	\$	335.00	\$	20,100.00	\$	27,850.00	\$	47,950.00	\$	57,540.00
8	SL-1000	Ānnual Tech Support Service Package	1	\$	4,006.00	\$	4,006.00	\$	30.50	\$	4,036.50	\$	4,843.80
9	SV-1000	Initial Project set-up and Training	1.	\$	1,200.00			\$	1,200.00	\$	1,200.00	\$	1,440.00
10	GE	KV-2C 3 phase	60	\$	385.00	\$	23,100.00	\$	1,830.00	\$	24,930.00	\$	29,916.00
11													
12		Construction Sub-totals				\$	72,386.00	\$	45,312.50	\$	117,698.50	\$	141,238.20
13													
14													
15					7.5\%			\$	10,599				
16					12.0\%		Mgmt.	\$	16,949				
17													
18													
19		Substation Engineering Design Services										\$	27,547
20		Note: Dollars are estimated from 2016.											
21		17) AMI Pilot for Industrial Customers										\$	168,785,00

1	18) Utility IT, Communications Upgrades to support AMI, SCADA and Operations							
2	Description	Quantity	Unit Cost	Material Cost	Labor Cost	Combined Material and Labor Cost		hcludes 20\% ency)
3	RTU Installation	3	\$ 6,500.00	\$ 19,500.00	\$ 1,200.00	\$ 20,700.00	\$	24,840.00
4	Control Wiring	7	\$ 3,285.00	\$ 22,995.00	\$ 1,100.00	\$ 24,095.00	\$	28,914.00
5	Input blocks	12	\$ 1,290.00	\$ 15,480.00	\$ 975.00	\$ 16,455.00	\$	19,746.00
6	HMI Monitors	3	\$ 2,850.00	\$ 8,550.00	\$ 1,255.00	\$ 9,805.00	\$	11,766.00
7	48 count ADSS fiber ring connecting substations and utility office	95673	\$ 0.74	\$ 70,581.80	\$ 186,562.35	\$ 257,144.15	S	308,572.98
8								
9	Substation Construction Sub-totals			\$ 137,106.80	\$ 191,092.35	\$ 328,199.15	\$	393,838.98
10								
11								
12			7.0\%	Design	\$ 27,608			
13			3.5\%	Const. Mgmt.	\$ 13,784			
14			3.8\%	T\&C	\$ 14,769			
15								
16	Substation Engineering Design Services						\$	56,161
17	Note: Dollars are estimated from 2016.							
18	18) Utility IT, Communications Upgrades to support AMI, SCADA and Operations						\$	450,000

1	20) S.R. 28 Road Widening Project 2018											
2	Description	Quantity	Unit Cost		Material Cost		Labor Cost		Combined Material and Labor Cost		Project Cost (includes 20\% contingency)	
3	Pole, Wood SYP 50-3	73	\$	290.50	S	21,206.50	\$	29,236.50	\$	50,443.00	\$	60,531.60
4	Pole, Wood SYP 40-3	77	\$	240.50	\$	18,518.50	\$	30,838.50	\$	49,357.00	\$	59,228.40
5	Crossarm, Fiberglass PUPI D.E. Arm	150	\$	221.90	\$	33,285.00	\$	67,575.00	\$	100,860.00	\$	121,032.00
6	Insulator, Polymer Suspension	304	\$	9.50	\$	2,888.00	\$	76,152.00	\$	79,040.00	\$	94,848.00
7	Wire, Bare ACSR 336 Merlin	52313	\$	0.63	\$	32,957.19	\$	392,347.50	\$	425,304.69	\$	510,365.63
8	Misc. Hardware and accessories	150	\$	1,121.00	\$	168,150.00	\$	47,775.00.	\$	215,925.00	\$	259,110.00
9	Removal and disposal	154	\$	74.58	\$	11,485.32	\$	46,431.00	\$	57,916.32	\$	69,499.58
10												
11	Substation Construction Sub-totals				\$	288,490.51	\$	690,355.50	\$	978,846.01	\$	1,174,615.21
12												
13												
14				7.2\%	De		\$	84,572				
15				3.5\%	Co	t. Mgmt.	\$	40,971				
16				8.5\%		ment/ROW	\$	99,842	\$	99,842.29		
17												
18	Substation Engineering Design Services										\$	225,385
19	Note: Dollars are estimated from 2016.											
20	20) S.R. 28 Road Widening Project 2018										\$	1,400,000.00

[^0]: 8) New Substation Northwest $69 / 13.2 \mathrm{kV}$ with 8 feeders
 \$2,645,000
[^1]: * Subject to the provisions of Appendix A.

[^2]: * Subject to the provisions of Appendix A.

[^3]: * Subject to the provisions of Appendix A.

[^4]: * Subject to the provisions of Appendix A.

[^5]: * Subject to the provisions of Appendix A.

