INTEL® SCALABLE SYSTEM FRAMEWORK A CONFIGURABLE DESIGN PHILOSOPHY EXTENSIBLE TO A WIDE RANGE OF WORKLOADS

Small Clusters Through Supercomputers Compute and Data-Centric Computing Standards-Based Programmability On-Premise and Cloud-Based

Intel[®] Xeon[®] Processors Intel[®] Xeon Phi[™] Processors Intel[®] Xeon Phi[™] Coprocessors Intel[®] Solutions for Lustre* Intel[®] SSDs Intel[®] Optane[™] Technology 3D XPoint[™] Technology Intel® Omni-Path Architecture Intel® True Scale Fabric Intel® Ethernet Intel® Silicon Photonics HPC System Software Stack Intel® Software Tools Intel® Cluster Ready Program Intel® Visualization Toolkit

INTEL[®] HPC DEVELOPER CONFERENCE

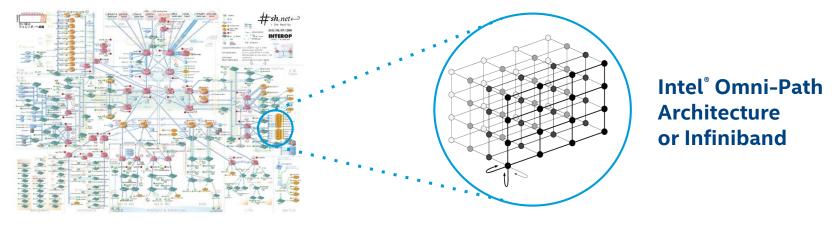
INTEL 100G OMNI-PATH FABRIC - ITOC2016

YANG YANGUO

May 2016

Agenda

- **Quick Overview: HPC Fabrics**
- □ What is Intel[®] 100Gb Omni-Path Architecture(OPA)?
- □ Why is Intel 100Gb OPA
- □ Summary



QUICK OVERVIEW: HPC FABRICS

What is Different Between Networks and Fabrics?

Network: Universal interconnect designed to allow any-and-all systems to communicate

HPC Fabric: Optimized interconnect allows many nodes to perform as a single system

Key NETWORK (Ethernet) Attributes:

- Flexibility for any application
- Designed for universal communication
- Extensible configuration
- Multi-vendor components

Key FABRIC Attributes:

- Targeted for specific applications
- Optimized for performance and efficiency
- Engineered topologies
- Single-vendor solutions

Fabric: InfiniBand* and OPA

InfiniBand/OPA is a multi-lane, high-speed serial interconnect (Copper or Fiber)

- Typically presented as a 4x solution
- Speeds: 40Gb/s (M & Intel QDR), 56Gb/s (M FDR), 100Gb/s (EDR & Intel OPA)

High bandwidth, low latency HPC interconnect for commodity servers

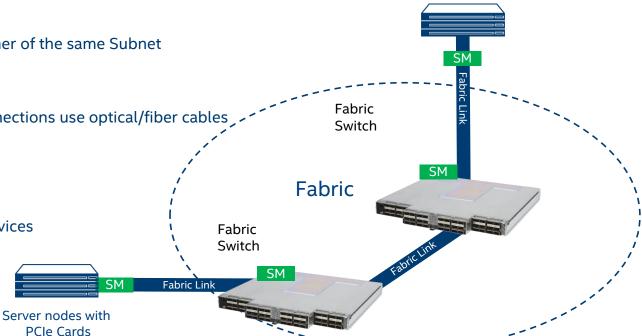
- Ethernet switch latency is typically measured in µs, but InfiniBand/OPA is in <u>nanoseconds</u>
- Lower CPU load
- Lower cost than Ethernet
 - 100GbE measured in multiple \$1,000's per switch port
 - 100Gb OPA is ~\$1k per switch port (target for Intel[®] OPA list pricing)

Major HPC Fabric Components

Host Channel Adapter (HCA) / Intel® OPA Card (Host Fabric Interface, HFI)

Terminates a Fabric link and executes transport-level functions

Switch


Routes packets from one link to another of the same Subnet

Cables

- Copper cables are typical, longer connections use optical/fiber cables
- Connectors are QSFP/QSFP28

Subnet Manager

 Discovers and configures attached devices and manages the fabric

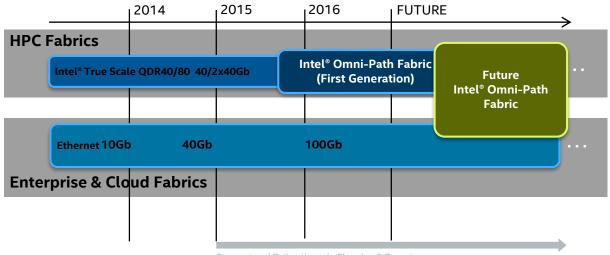
Server nodes with

PCIe Cards

HPC Fabric Configurations

Fat Tree [most popular]:

Network supports Full Bisectional Bandwidth (FBB) between a pair of nodes


Oversubscribed Fat Tree [next most popular]:

Constant Bisectional Bandwidth (CBB) can be less than FBB between a pair of nodes. **Oversubscribed Tree**

Node BW > Core BW

The Intel® Fabric Product Roadmap Vision

Forecast and Estimations, in Planning & Targets

Establish in HPC with the first generation Intel[®] Omni-Path Architecture Expand to broader market segments in successive generations

Potential future options, subject to change without notice. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

INTEL® OMNI-PATH FABRIC: 100g opa

Intel Confidential - CNDA Required

INTEL® 100G OMNI-PATH Evolutionay approach, revoluationary feathers, end-to-end products

空敕的逆到逆的产只线

(intel) Fabric Solutions Powered by Intel® Omni-Path Architecture

Intel Part # 100HFA018LS 100HFA016LS 100HFA018FS 100HFA016FS Description Single-port PCIe x8 Adapter, Single-port PCIe x16 Adapter, Low Profile and Std Height Low Profile and Std Height Availability¹ Q2'16 Q2'16 Speed 58 Gbps 100 Gbps Ports. Media Single port, QSFP28 Single port, QSFP28 Form Factor Low profile PCIe Low profile PCIe Std Height PCIe Std Height PCIe Features Passive thermal – QSFP Passive thermal – QSFP heatsink, supports up to Class heatsink, supports up to Class 4 max optical transceivers 4 max optical transceivers Sandy Bridge Х Х Ivy Bridge Х Х Intel[®] Xeon[®] processor E5-~ ~ 2600 v3 (Haswell-EP) Intel® Xeon® processor E5-2600 v4 (Broadwell-EP) ✓ ✓

	Edge Switches			Director Switches					
	REAL PROPERTY.								
Intel Part #	100SWE48UF2 / R2 100SWE48QF2 / R2	100SWE24UF2 / R2 100SWE24QF2 / R2	100SWD24B1N 100SWD24B1D 100SWD24B1A	100SWD06B1N 100SWD06B1D 100SWD06B1A	100SWDLF32Q	100SWDSPINE	100SWDMGTSH		
Description	48 Port Edge Switch ("Q" = mgmt card)	24 Port Edge Switch ("Q" = mgmt card)	24-slot Director Class Switch, Base Config	6-slot Director Class Switch, Base Config	Director Class Switch Leaf Module	Director Class Switch Spine Module	Director Class Switch Management Module		
Availability ¹	Q2'16	Q2'16	Q2'16	Q2'16	Q2'16	Q2'16	Q2'16		
Speed	100 Gbps	100 Gbps	100 Gbps	100 Gbps	100 Gbps	100 Gbps	100 Gbps		
Max External Ports	48	24	768	192	32	N/A	N/A		
Media	QSFP28	QSFP28	10/100/1000 Base-T USB Gen2	10/100/1000 Base-T USB Gen2	QSFP28	Internal high speed connections	10/100/1000 Base-T USB Gen2		
Form Factor	1U	1U	20U	7U	Half-width module 2 modules per leaf	Full width module, 2 boards/module	Half-width module		
Features	Forward / reverse airflow and mgmt card options, up to 2 PSU	Forward / reverse airflow and mgmt card options, up to 2 PSU	Up to 2 mgmt modules, up to 12 PSUs, AC and DC options	Up to 2 mgmt modules, up to 6 PSUs, AC and DC options	Hot swappable	96 internal mid-plane connections, hot swappable	N+1 redundancy, hot swappable		

	Passive	e Copper	Cables				Ac	tive Opt	ical Cabl	es		
0.5M	1.0M	1.5M	2.0M	3.0M	3.0M	5.0M	10M	15M	20M	30M	50M	100M
100CQQF3005 100CQQH3005 (30 AWG)	100CQQF3010 100CQQH3010 (30 AWG)	100CQQH2615 (26 AWG)	100CQQH2620 (26AWG)	100CQQH2630 (26AWG)	100FRRF0030	100FRRF0050	100FRRF0100	100FRRF0150	100FRRF0200	100FRRF0300	100FRRF0500	100FRRF1000

¹ Production Readiness / General Availability dates

Intel Confidential – CNDA Required

Intel[®] Omni-Path Edge Switch

100 Series 24/48 Port: Features¹

Compact Space (1U)

- 1.7"H x 17.3"W x 16.8"L

Switching Capacity

- 4.8/9.6 Tb/s switching capability

Line Speed

– 100Gb/s Link Rate

Standards-based Hardware Connections

– QSFP28

Redundancy

- N+N redundant Power Supplies (optional)
- N+1 Cooling –Fans (speed control, customer changeable forward/reverse airflow)

Management Module (optional)

No externally pluggable FRUs

¹Specifications contained in public Product Briefs.

Power	Сор	per	Optical (3W QSFP)		
Model	Typical	Maximum	Typical	Maximum	
24-Ports	146W	179W	231W	264W	
48-Ports	186W	238W	356W	408W	

24-port Edge Switch

48-port Edge Switch

This presentation discusses devices that have not been authorized as required by the rules of the Federal Communications Commission, including all Intel[®] Omni-Path Architecture devices. These devices are not, and may not be, offered for sale or lease, or sold or leased, until authorization is obtained.

Intel® OPA Director Class Systems 100 Series

6-Slot/24-Slot Systems¹

Highly Integrated

- 7U/20U plus 1U Shelf

Switching Capacity

- 38.4/153.6 Tb/s switching capability

Common Features

- Intel[®] Omni-Path Fabric Switch Silicon 100 Series (100Gb/s)
- Standards-based Hardware Connections QSFP28
- Up to Full bisectional bandwidth Fat Tree internal topology
- Common Management Card w/Edge Switches
- 32-Port QSFP28-based Leaf Modules
- Air-cooled, front to back (cable side) air cooling
- Hot-Swappable Modules
 - Leaf, Spine, Management, Fan , Power Supply
- Module Redundancy
 - Management (N+1), Fan (N+1, Speed Controlled), PSU (DC, AC/DC)
- System Power : 180-240AC

Power	Cop	per	Optical (3	SW QSFP)
Model	Typical	Maximum	Typical	Maximum
6-Slot	1.6kW	2.3kW	2.4kW	3.0kW
24-Slot	6.8kW	8.9kW	9.5kW	11.6kW

6-Slot Director Switch

24-Slot Director Switch

This presentation discusses devices that have not been authorized as required by the rules of the Federal Communications Commission, including all Intel® Omni-Path Architecture devices. These devices are not, and may not be, offered for sale or lease, or sold or leased, until authorization is obtained.

Intel[®] Omni-Path Host Fabric Interface 100 Series Single Port¹

Low Profile PCIe Card

- 2.71"x 6.6" max. Spec compliant.
- Standard and low profile brackets

Wolf River (WFR-B) HFI ASIC

PCle Gen3

Single 100 Gb/s Intel® OPA port

- QSFP28 Form Factor
- Supports multiple optical transceivers
- Single Link status LED (Green)

Power	Сор	per	Optical (3W QSFP)		
Model	Typical	Maximum	Typical	Maximum	
X16 HFI	7.4W	11.7W	10.6W	14.9W	
X8 HFI	6.3W	8.3W	9.5W	11.5W	

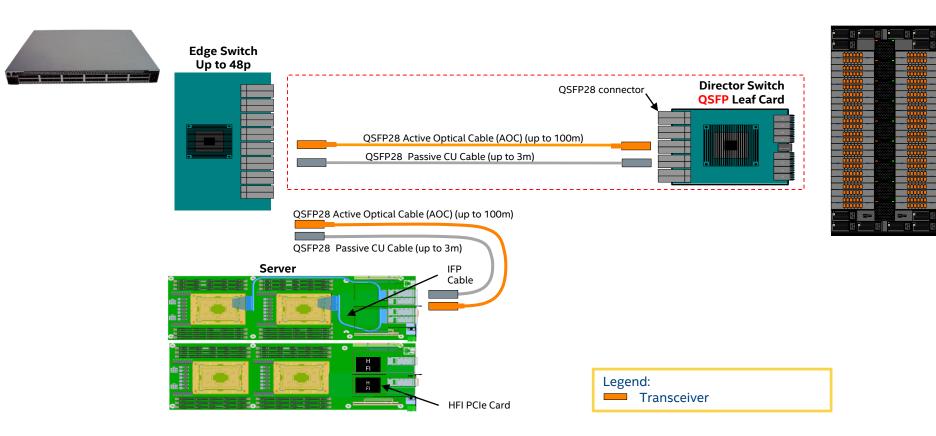
Thermal

- Passive thermal QSFP Port Heatsink
- Standard 55C, 200lfm environment

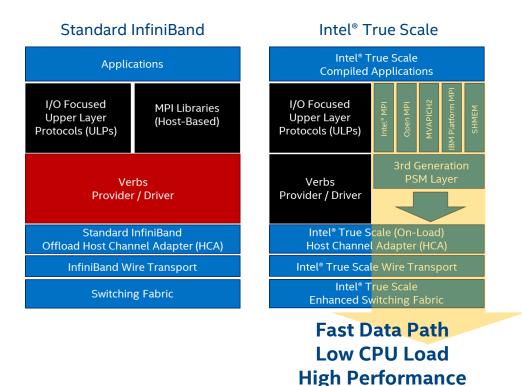
¹Specifications contained in public Product Briefs

x16 HFI (100Gb Throughput)

x8 HFI (~58Gb Throughput) PCIe Limited



This presentation discusses devices that have not been authorized as required by the rules of the Federal Communications Commission, including all Intel[®] Omni-Path Architecture devices. These devices are not, and may not be, offered for sale or lease, or sold or leased, until authorization is obtained.



Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. All products, dates, and figures ar **preprint confidential** change without any notice. Copyright © 2015, Intel Corporation.

Intel[®] Omni-Path Architecture Fabric Cabling Topology

Host Layer Optimization: Optimize HPC Code Path and Generational Compatibility

INTEL® HPC DEVELOPER CONFERENCE

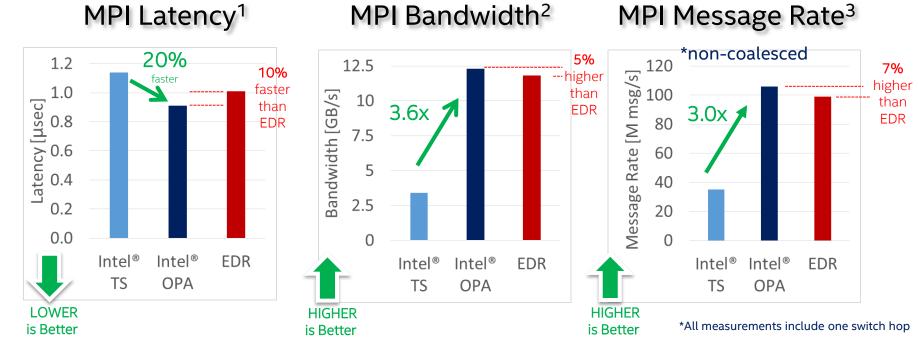
PERFORMANCE

Intel[®] OPA MPI Performance Measurements

Metric	Intel® Xeon® CPU E5-269 Intel® Omni-Path Fa		
LATENCY			
OSU Latency Test (8B)			
Latency (one-way, b2b nodes) ²	790 ns		
Latency (one-way, 1 switch) ²	900 ns		
MESSAGING RATES (rank = rank pairs)			
OSU Message Bandwidth Test (8B, streaming)			
Message Rate (1 rank, uni-dir) ³	5.3 M msg/s		CPU E5-2699 v4 with mni-Path Fabric ⁴
Message Rate (1 rank, bi-dir) ³	6.3 M msg/s	Inter Onini-Fath Fabric	
Message Rate (max ranks, uni-dir) ³	108 M msg/s	143 M msg/s	
Message Rate (max ranks, bi-dir) ³	132 M msg/s	172	2 M msg/s
BANDWIDTH (rank = rank pairs)			
OSU Message Bandwidth Test (512 KB, streaming)			
BW (1 rank, 1 port, uni-dir) ³	12.3 GB/s		
BW (1 rank, 1 port, bi-dir) ³	24.5 GB/s		

All tests performed by Intel with OSU OMB 4.4.1.

1 Intel[®] Xeon[®] processor E5-2697 v3 with Intel[®] Turbo-Mode enabled. 8x8GB DDR4 RAM, 2133 MHz. RHEL7.0.


2 osu_latency 1-8B msg. w/ and w/out switch. Open MPI 1.10.0-hfi packaged with IFS 10.0.0.0.625.

3 osu_mbw_mr modified for bi-directional bandwidth measurement. w/switch Open MPI 1.10.0-hfi packaged with IFS 10.0.0.0625. . IOU Non-Posted Prefetch disabled in BIOS. snp_holdoff_cnt=9 in BIOS. 4 Intel® Xeon® processor E5-2699v4 with Intel® Turbo-Mode enabled. 8x8GB DDR4 RAM, 2133 MHz. RHEL7.0. IFS 10.0.0.991.35. Open MPI 1.8.5-hfi. B0 Intel® OPA hardware and beta level software.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

Intel[®] OPA MPI Performance Improvements

Tests performed by Intel on Intel® Xeon® Processor E5-2697v3 dual-socket servers with 2133 MHz DDR4 memory. Turbo mode enabled and hyper-threading disabled. Ohio State Micro Benchmarks v. 4.4.1. Intel OPA: Open MPI 1.10.0 with PSM2. Intel Corporation Device 24f0 – Series 100 HFI ASIC. OPA Switch: Series 100 Edge Switch – 48 port. IOU Non-posted Prefetch disabled in BIOS. EDR: Open MPI 1.8-mellanox released with hpcx-v1.3.336-icc-MLNX_OFED_LINUX-3.0-1.0.1-redhat6.6-x86_64.tbz. MXM_TLS=self,rc tuning. Mellanox EDR ConnectX-4 Single Port Rev 3 MCX455A HCA. Mellanox SB7700 - 36 Port EDR Infiniband switch. Intel® True Scale: Open MPI. QLG-QLE-7342(A), 288 port True Scale switch. 1. osu_latency 8 B message. 2. osu_bw 1 MB message. 3. osu_mbw_mr, 8 B message (uni-directional), 28 MPI rank pairs

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

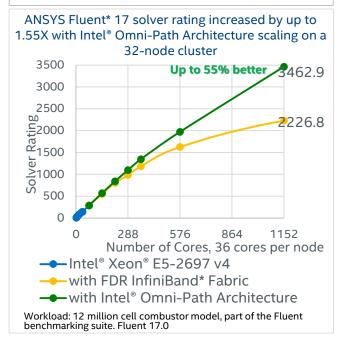
Intel® Xeon® Processor E5-2600 v4 Product Family

ANSYS*

Fluent* 17 Computational Fluid Dynamics

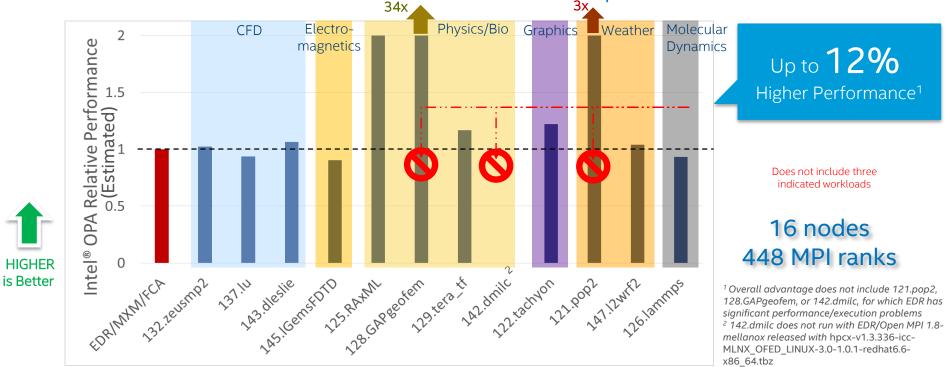
"Thanks to Intel® **OPA** and the latest Intel® **Xeon**® **E5-2600 v4** product family, ANSYS Fluent* is able to achieve performance levels <u>beyond our expectations</u>. Its unrivaled performance enables our customers to simulate higher-fidelity models without having to expand their cluster nodes ."¹

Dr. Wim Slagter - Director of HPC and cloud marketing, ANSYS


- Intel[®] Omni-Path Architecture (Intel[®] OPA) is a powerful low latency communications interface specifically designed for High Performance Computing.
- Cluster users will get better utilization of cluster nodes through better scaling.
- Cluster performance means better time-to-solution on CFD simulations.
- Coupled with Intel[®] MPI, and utilizing standard Fluent runtime options to access TMI, Fluent is ready and proven for out-of-the-box performance on Intel OPAready clusters.

Up to 55% performance advantage with Intel[®] OPA compared to FDR fabric on a 32 node cluster

www.ansys.com

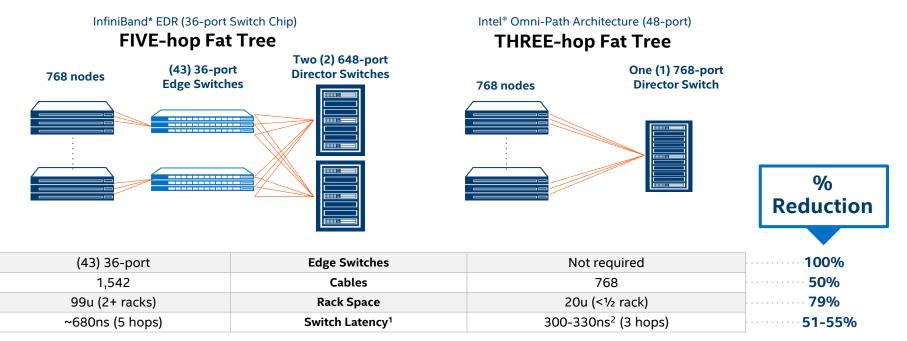

Technical Computing

^{1 -} Testing conducted on ISV* software on 2S Intel[®] Xeon[®] Processor E5-2697 v4 comparing Intel[®] OPA to FDR InfiniBand* fabric. Testing done by Intel. For complete testing configuration details, <u>go here</u>. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

Real Application Performance* - Intel® OPA vs EDR/MXM-FCA

*SPEC MPI2007 Intel internal measurements marked estimates until published

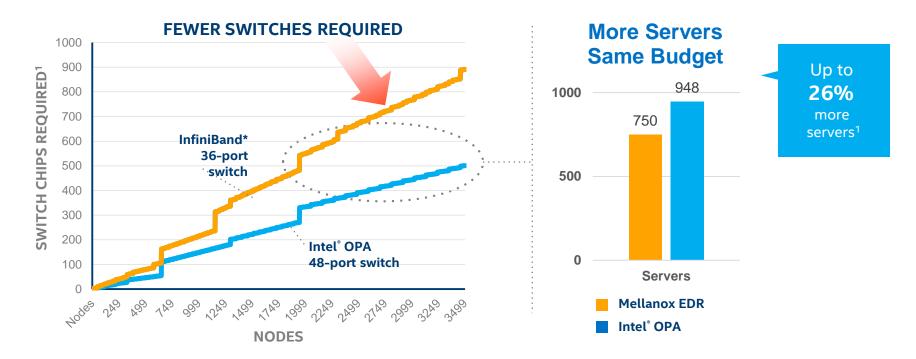
Tests performed by Intel on Intel® Xeon® Processor E5-2697v3 dual-socket servers with 2133 MHz DDR4 memory. 16 nodes/448 MPI ranks. Turbo mode and hyper-threading disabled. Intel® OPA: I


Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.

COST BENEFITS

Intel[®] Omni-Path Fabric's **48 Radix Chip**

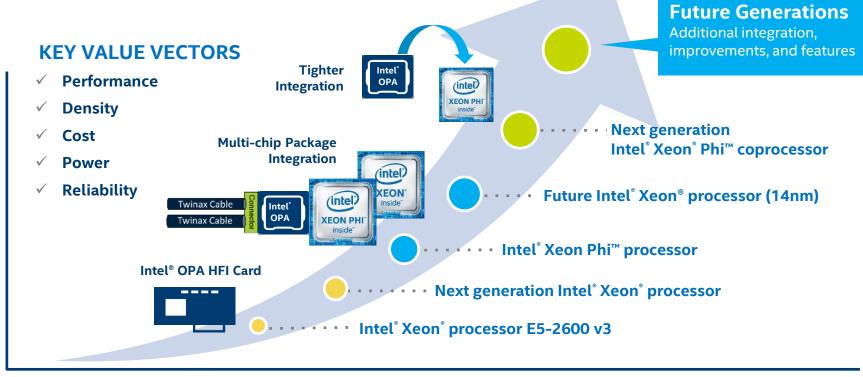
It's more than just a 33% increase in port count over a 36 Radix chip



1- Latency numbers based on Mellanox CS7500 Director Switch and Mellanox SB7700/SB7790 Edge switches. See www.Mellanox.com for more product information.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance</u>.*Other names and brands may be claimed as the property of others.

Are You Leaving **Performance** on the Table?



¹ Configuration assumes a 750-node cluster, and number of switch chips required is based on a full bisectional bandwidth (FBB) Fat-Tree configuration. Intel[®] OPA uses one fully-populated 768-port director switch, and Mellanox EDR solution uses a combination of 648-port director switches and 36-port edge switches. Mellanox component pricing from www.kernelsoftware.com, with prices as of November 3, 2015. Compute node pricing based on Dell PowerEdge R730 server from www.dell.com, with prices as of May 26, 2015. Intel[®] OPA pricing based on estimated reseller pricing based on projected Intel MSRP pricing at time of launch. * Other names and brands may be claimed as property of others.

CPU-Fabric Integration

with the Intel[®] Omni-Path Architecture

TIME

Intel[®] OPA HFI Option Comparison

	PCle Card x8 (Chippewa Forest)	PCIe Card x16 (Chippewa Forest)	Knights Landing-F	Skylake-F (single –F CPU populated)	Skylake-F (two –F CPUs populated)	Note	25
Ports per node	1	1	2	1	2	Assumes single CHF carc multiple cards in a single	
Peak bandwidth	7.25 GB/s	12.5 GB/s	25 GB/s	12.5 GB/s	25 GB/s	Total platform bandwidt	h
Latency	1 us	1 us	1 us	1 us	1 us	No measurable differenc since both use a PCIe inte	e in MPI latency expected erface
CPU TDP adder	n/a	n/a	15W	0W, 10W, 15W	0W, 10W, or 15W	TDP adder per socket, de	ependent on SKL-F SKU
Power	6.3W typ8.3W max	7.4W typ11.7W max	n/a	n/a	n/a	Estimated power numbe	rs with passive Cu cables
PCIe slot required?	Yes	Yes	No	No	No	Custom mezz card mech or chassis. Requires pow	anically attached to board ver and sideband cables
PCIe slot option		Low profile x16 PCIe slot, or custom mezz card	PCIe carrier card with x4 PCIe connector	PCIe carrier card with x4 PCIe connector	PCIe carrier card with x4 PCIe connector	SKL-F (dual –F CPU) can carrier card, similar to KN Carrier card requires a P(power, but not necessari	IL PCIe carrier card
PCIe lanes used (on board)	8	16	32 [4 lanes available]	0	0	SKL-F includes dedicated Assumes PCIe carrier car routed for power and no	d uses a x4 PCIe slot only

TECHNOLOGY COMPARISONS

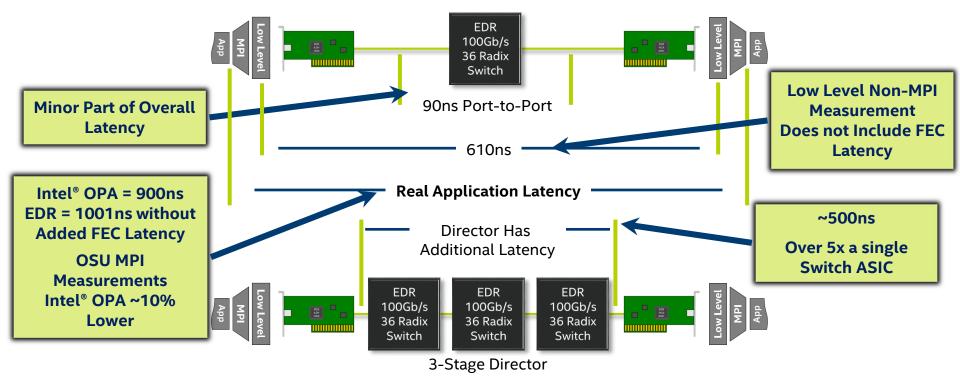
Product Comparison Matrix

Feature	Intel [®] Omni-Path	EDR	Notes
Switch Specifications			
Link Speed (QSFP28)	100Gb/s	100Gb/s	Same Speed
Port Count: Director - Edge -	192, 768 (66% more per 1U) 48, 24	216, 324, 648 36	+ 18.5% Ports + 33% Ports
Latency: Director - Edge -	300-330ns (Includes PIP) 100-110ns (Includes PIP)	<500ns ¹ (Should be 3 x 90ns?) 90ns ¹ (FEC Disabled)	Up to 32% Advantage FEC increases power up to 50% per port
Redundant Power/Cooling	Yes (Director AC and/or AC-DC Power)	Yes	
Packet Rate Per Port: Switch Host	195M msg/sec 160M msg/sec (CPU Dependent)	150/195M msg/sec - Switch-IB/Switch-IB 2 150M msg/sec	Mellanox claims are not for MPI Messages. Most HPC applications use MPI as transport
Power Per Port (<i>Typical Copper</i>)² : – 24/18-Slot Director – 48/36-Port Edge (M) – 48/36-Port Edge (U)	~8.85 Watts 3.87 W 3.48 W	14.1 Watts 3.78 W 3.78 W	37.2% Lower Power EDR Power for FEC and Mgmt Card missing EDR Power for FEC missing
Director Leaf Module: Size/Qty	32 / (24-Slot), (6-Slot)	36 / (18-Slot), (6-Slot)	+33% modules in single large director
Largest 2 Tier Fabric (Edge/Director)	18,432	11,664	~1.6x (QSFP28)
Host Adapter Specifications			
Host Adapter Model	Intel® OPA 100 Series (HFI)	HCA (ConnectX-4)	
Protocol	Intel® OPA	InfiniBand	
Speed Support (Host)	x16 = 100Gb/s – x8 = 58Gb/s	All Prior IB Speeds ¹	CX4 includes a rate locked FDR version ¹
Power Per Port (Typical Copper) ² : – 1-Port x16 HFI – 1-Port x8 HFI	7.4 W Copper 6.3 W Copper	13.9 W Copper	46.7% Lower Power

¹ Mellanox Datasheets: December, 19 2015 ² Power ratings assume fully loaded systems

Intel® Omni-Path High Level Feature Comparison Matrix

Features	Intel [®] OPA	EDR	Notes
Link Speed	100Gb/s 100Gb/s		Same Link Speed
Switch Latency – Edge/DCS	100-110ns/300-330ns	90ns/~500ns	Intel® OPA includes "Load-Free" error detection Application Latency Most important
MPI Latency (OSU pt2pt)	Less Than 1µs	~1µs	Similar 1 Hop LatencyIntel's OPA HFI improves with each CPU generation
Link Enhancements – Error Detection/Correction	Packet Integrity Protection	Stago Fabric	Intel OPA is a HW detection solution that adds <u>no</u> <u>latency or BW penalty</u>
Link Enhancements – Data Prioritization across VLs		Stage Fabric y Protection	Over and above VL prioritization. Allows High priority traffic to preempt in-flight low priority traffic (~15% performance improvement)
Link Enhancements – Graceful Degradation	Dynamic Lane Scaling (DLS)	No	Non-Disruptive Lane(s) failure. Supports asymmetrical traffic pattern. Avoids total shutdown,
RDMA Support	Yes	Yes	RDMA underpins verbs. Intel® OPA supports verbs. TID RDMA brings Send/Receive HW assists for RDMA for larger messages
Built for MPI Semantics	Yes – PSM (10% of code)	No - Verbs	Purpose designed for HPC
Switch Radix	48 Ports	36 Ports	Higher Radix means less switches, power, space etc.
Fabric Router	No	Future	Limited need to connect to older fabric technologies except for storage – Still not available
EDR Source: Publicall Intel Confidential – NDA OPA Features: Based Only Specifications		service activation. Performa	and benefits depend on system configuration and may require enabled hardware, software or nce varies depending on system configuration.


Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2015, Intel Corporation. Potential future options, subject to change without notice. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.

Switch Latency

Understanding Switch Latency Comparisons

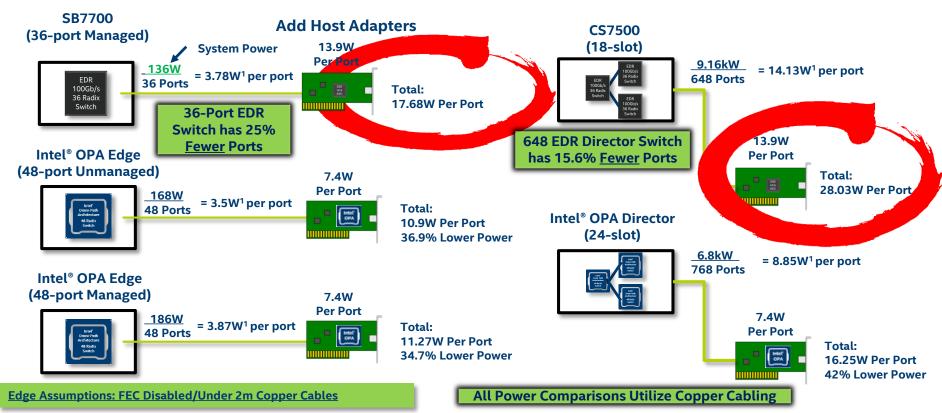
Tests performed by Intel on Intel[®] Xeon[®] Processor E5-2697v3 dual-socket servers with 2133 MHz DDR4 memory. Turbo mode enabled and hyper-threading disabled. Ohio State Micro Benchmarks v. 4.4.1. Intel OPA: Open MPI 1.10.0 with PSM2. Intel Corporation Device 24f0 – Series 100 HFI ASIC. OPA Switch: Series 100 Edge Switch – 48 port. IOU Non-posted Prefetch disabled in BIOS. EDR: Open MPI 1.8-mellanox released with hpcx-v1.3.336-icc-MLNX_OFED_LINUX-3.0-1.0.1-redhat6.6-x86_64.tbz. MXM_TLS=self,rc tuning. Mellanox EDR ConnectX-4 Single Port Rev 3 MCX455A HCA. Mellanox SB7700 - 36 Port EDR InfiniBand switch 1. osu_latency 8 B message.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>http://www.intel.com/performance.</u>

RDMA Support

Intel[®] Omni-Path Architecture (Intel[®] OPA) RDMA Support

Intel[®] OPA has always supported RDMA Functions for MPI-Based applications via PSM


- 16 Send DMA (SDMA) engines and Automatic Header Generation provide HW-assists for offloading large message processing from the CPU
- Intel® OPA supports RDMA for Verbs I/O
- RDMA is the underlying protocol for Verbs
- Storage runs over verbs
- Additional performance enhancements are coming
- 8K MTU supported to further reduce CPU interrupts for I/O

Power Usage

Intel® OPA vs. EDR: End-to-End Power Comparison:

¹Assumes that all switch ports are utilized. All power measurements are typical. All Mellanox power from 12/23/15 documents located a <u>www.mellanox.com</u>. Mellanox Switch 7790 power from datasheet. Host Adapter power from ConnectX[®]-4 VPI Single and Dual Port QSFP28 Adapter Card User Manual page 45. CS7500 Director power from 648-Port EDR InfiniBand Switch-IB[™] Switch Platform Hardware User Manual page 75

Intel[®] Solutions Summit 2016

Proven Technology Required for Today's Bids: Intel[®] OPA is the Future of High Performance Fabrics

Highly Leverages existing Intel, Aries and Intel[®] True Scale technologies

Innovative Features for high fabric performance, resiliency, and QoS

Leading Edge Integration with Intel[®] Xeon[®] processor and Intel[®] Xeon Phi[™] processor

Robust Ecosystem of trusted computing partners and providers

Open Source software and supports standards like the OpenFabrics Alliance*

*Other names and brands may be claimed as property of others.

experience what's inside[™]