

TemPower

INSTRUCTION MANUAL FOR AIR CIRCUIT BREAKERS

(With Draw-out Cradle and Type AGR-11B Overcurrent Protective Device)

Notice

- I Be sure to read this manual before installing, operating, servicing, or inspecting the ACB.
- I Please retain this manual for future reference.
- I Electrical work must be done by competent persons.
- I ACB maintenance, inspection, parts replacement, OCR field tests and setting changes must be performed by competent persons.

TABLE OF CONTENTS

		4-4. Lock in OFF Procedure	32
1. SAFETY NOTICES	5	4-5. Position Lock Lever Locking Procedure	32
2. RECEIVING AND HANDLING	7	4-6. Breaker Fixing Bolt Securing Procedure	33
2-1. Transportation Precautions	7	4-7. OCR Cover Locking Procedure	33
2-1-1. Transporting the ACB	7	5. OVERCURRENT RELEASE (OCR)	34
2-1-2. Transporting the breaker body	8	5-1. Specifications	34
2-1-3. Transporting the draw-out cradle	8	5-2. Characteristics	35
2-2. Storage Precautions	8	5-2-1. L characteristic for general feeder	35
2-3. Installation Precautions	9	5-3. OCR Setting Procedure	37
3. GENERAL	14	5-4. Operation Indication	38
3-1. Types and Descriptions	14	6. MAINTENANCE, INSPECTION AND PARTS	
3-2. Parts and Functions	17	REPLACEMENT	39
3-3. Circuits and Ratings	20	6-1. Inspection Procedures	40
4. OPERATION	23	6-2. Parts Replacement Procedure	43
4-1. Charging and Opening operation	23	6-2-1. Preparation	43
4-1-1. Charging operation	23	6-2-2. Arc chambers	46
4-1-2. Closing operation	24	6-2-3. Stationary contact	47
4-1-3. Opening operation	24	6-2-4. Moving contact	49
4-1-4. Motion of trip indication and spring charge		6-2-5 Latch release coil (LRC)	50
indication switches	24	6-2-6. Shunt trip device (SHT)	5′
4-1-5. Motion of operation mechanisms	25	6-2-7. Control relay	52
4-2. Draw-out and Insertion Operation	27	6-2-8. Magnet hold trigger (MHT)	55
4-2-1. General	27	6-2-9. Auxiliary switches	56
4-2-2. Draw-out operation	28	7. TROUBLESHOOTING FLOWCHARTS	58
4-2-3. Putting the breaker body back into the draw-out		ADDENDIV	
cradle	29	APPENDIX	
4-2-4. Contact status of auxiliary and position switches	31	8. DOOR INTERLOCK	6′
4-3. ON-OFF Button Cover Locking Procedure	31	9. MECHANICAL INTERLOCK	63

1. SAFETY NOTICES

Thank you for purchasing the TERASAKI AR-series Air Circuit Breaker (TemPower2).

This chapter contains important safety information.

Be sure to carefully read these safety notices, instruction in this manual, and other documents accompanying the Air Circuit Breaker (hereinafter referred to as the ACB) to familiarize your self with safe and correct procedures or practices before installing, operating, or servicing the ACB.

In this manual, safety notices are divided into "DANGER" and "CAUTION" according to the hazard level:

DANGER: A danger notice with this symbol indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION: A caution notice with this symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury and/or property damage.

Note that failure to observe a caution notice could result in serious injury/damage in some situations. Because safety notices contain important information, be sure to read and observe them.

n Transportation Precaution

! DANGER

I Never stand under the ACB that has been lifted or suspended by a lifter or lifting attachments. The weight of the ACB may cause serious injury.

n Installation Precautions

! CAUTION

- I Electrical work must be done by competent persons.
- Do not place the ACB in such an area that is subject to high temperatures, high humidity, dusty air, corrosive gases, strong vibration and shock, or other unusual conditions. Mounting the ACB in such an area could cause a fire or malfunction.
- l Be careful to prevent foreign objects (such as debris, concrete powder, dust, chippings, and iron powder) and oil or rainwater from entering the ACB. These materials inside the ACB could cause a fire or malfunction.
- Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage. Otherwise, electric shock may result.
- Fix the draw-out cradle of the ACB firmly on a flat, level surface using mounting screws. Otherwise, the draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- Take care not to deform or bend protrusions in the bottom face of the draw-out cradle when fixing the draw-out cradle with mounting screws. Deformation of the protrusions may cause a malfunction.
- I When terminating conductors to the ACB, tighten terminal screws to the torque specified in this manual. Otherwise, a fire could result.
- I For 4-pole ACBs, be sure to connect a 3-phase, 4-wire neutral conductor to the N-phase pole (on the right end). Otherwise, an overcurrent may hinder the ACB from tripping, resulting in a fire.

n Operation Precautions

DANGER

- I Never touch live terminal parts. Doing so will result in electric shock.
- Do not leave the ACB body in the draw-out position. If the ACB body is accidentally dropped, its weight may cause serious injury.

! CAUTION

- Do not force down the charging handle after completion of manual charging operation. Doing so may cause a malfunction.
- I The permissible operating voltage of the spring charging motor is 85 to 110% of the rated ac voltage or 75 to 110% of the rated dc voltage. Be sure to supply a voltage within the above ranges to the motor. Otherwise, a malfunction, burnout, or fire may result.

-5- KRB-5258

n Operation Precautions (continued)

A CAUTION

- Repeated open/close operation by the motor charging mechanism without pause should not exceed 15 times. If repeated continuous open/close operation is inevitable, a pause of at least 20 minutes should be provided after the repetitions of 15 times. Otherwise, a spring charging motor may be burnt out.
- Do not bring your hand or face close to arc gas vent of the arc chamber while the ACB is closed. Otherwise, a burn may result from high-temperature arc gas blowing out of the arc gas vent when the ACB trips open.
- I If the ACB trips open automatically, remove the cause of tripping operation before re-closing the ACB. Otherwise, a fire could result.
- If the ACB has the breaker fixing bolts, be sure to loose the fixing bolts before draw-out operation. Otherwise, damage to the ACB may result.
- Make sure the draw-out cradle is secured with mounting screws before inserting or drawing out the breaker body. Otherwise, the insertion or draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- I When retracting the draw-out rail into the draw-out cradle, be sure to push the rail end. Do not hold the hook pin, body stopper, or body stopper shaft. Doing so may cause your fingers to be pinched, resulting in injury.
- Do not forcedly turn the draw-out handle clockwise when the breaker body is in the "CONN." position. Doing so may cause a malfunction
- If the ACB has the breaker fixing bolts, make sure the bolts on both sides are securely tightened before using the ACB. Loosened fixing bolts may cause a malfunction of the ACB, in particular when it is installed in such an area that is subject to strong vibrations.

n OCR (Overcurrent Release) Handling Precautions

↑ CAUTION

- OCR setting changes must be performed by competent persons.
- Use a small flatblade screwdriver with a torque of not more than 0.1 N·m or a force of not more than 0.1 N when adjusting the setting switches (rotary step switches or slide switches). An excessive torque or force may cause a malfunction.

n Maintenance and Inspection Precautions

! CAUTION

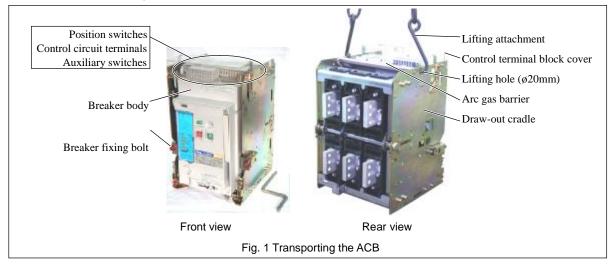
- ACB maintenance, inspection and parts replacement must be performed by competent persons.
- I Do not touch ACB current carrying parts and ACB structural parts close to a current carrying part immediately after the ACB trips open. Remaining heat may cause a burn.
- Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage from the main and control circuits. Otherwise, electric shock may result.
- I Take care to avoid adhesion of dust to main and control circuit contacts. Dust on the contacts may result in a fire.
- Prior to commencing maintenance, inspection, or parts replacement, make sure that the closing springs are released and the ACB is open. Otherwise, unintentional open/close operation may lead to fingers or tools to be pinched by the open/close mechanism, resulting in injury.
- l Retighten the terminal screws periodically to the specified torque. Otherwise, a fire could result.
- When grinding a contact tip, be careful to prevent grinding dust from entering the breaker operating mechanism. Wipe the tip clean after grinding. Otherwise, a malfunction or fire could result.
- Do not perform dielectric withstand tests under other conditions than specified. Doing so may cause a malfunction.
- l Be sure to reinstall the arc chamber if removed. Failure to do so or incorrect installation of the arc chamber may result in a fire or burn.
- I When charging the closing springs or performing open/close operation of the ACB with the arc chamber, front cover and/or side covers removed during maintenance or inspection work, do not touch parts other than those required for the above operation (charging handle, ON/OFF buttons, moving core and the like). Doing so may cause fingers or tools to be pinched, resulting in injury.
- I When replacing an auxiliary, do not damage the control wire for the auxiliary or pinch the wire between the auxiliary and the breaker body. Doing so may cause a malfunction.

KRB-5258 -6-

2. RECEIVING AND HANDLING

Upon receipt of your ACB, check the following. If you have any question or problem, contact us at the indicated on the back cover of this manual.

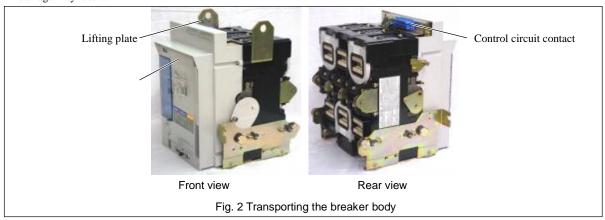
- I Check that the ACB received is as ordered and that the accessories are as specified.
- I Check that the ACB is not damaged during shipment.


2-1. Transportation Precautions

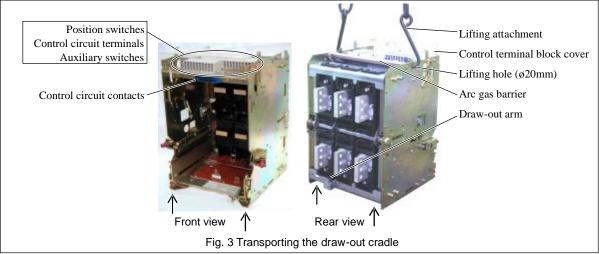
DANGER

Never stand under the ACB that has been lifted or suspended by a lifter or lifting attachments. If the ACB body is accidentally dropped, its weight may cause serious injury.

2-1-1. Transporting the ACB


- Before transporting the ACB, make sure the breaker body is in the CONN. position. If the ACB has breaker fixing bolts, make sure the breaker body is secured to the draw-out cradle with the fixing bolts.
- When lifting the ACB, hold it using lifting attachments or wire ropes through the lifting holes. Take care that the position switches, control circuit terminals, auxiliary switches, arc gas barrier and control terminal block cover which are shown in Fig. 1 are not damaged by the lifting rope. Lift the ACB carefully and gently. For transportation, place the ACB on a pallet and carry slowly and carefully.
- Avoid shock and vibration to the ACB during transportation.
- I Do not lay the ACB during transportation.
- I When transporting the ACB over great distances, crate it for protection against shock and vibration and secure the crate package with wood or ropes.
- I When transporting the ACB while it is installed in a switchboard, you should fix the breaker body in the draw -out cradle with the breaker fixing bolts (optional).
- I Lower the ACB onto a flat, level surface.

-7- KRB-5258


2-1-2. Transporting the breaker body

- Use an optional lifter or lifting plate to transfer the breaker body.
- I When transporting the breaker body on a lifter, move the lifter with the lifter fork held at the lowest possible position.
- I Take care not to exert forces on the front cover and the control circuit contacts shown in Fig. 2. Otherwise, a deformation or damage may result.

2-1-3. Transporting the draw-out cradle

I When transporting the draw-out cradle, hold it using lifting attachments or wire ropes through the lifting holes or carry it by the portions (4 points) marked with the arrows shown in Fig 3. When carrying the draw-out cradle, take care not to exert forces on the arc gas barrier, the draw-out arm, the position switches, the auxiliary switches, the control circuit terminals, the control terminal block cover, and the control circuit contacts.

2-2. Storage Precautions

It is recommended that the ACB be used as soon as you have received it. If it is necessary to store the ACB, note the following:

- I Store the ACB in a dry indoor location to prevent condensation due to sudden changes in ambient temperature. Condensation has a harmful effect on the ACB insulation.
- I Store the ACB in a clean place free of corrosive gases and dust. In particular, exposure to a mixture of moisture and cement dust may cause corrosion damage to metal parts of the ACB.
- l Place the ACB on a flat, level surface in its normal position (Do not lay the ACB).
- Do not place the ACB directly on the floor. Do not stack the ACBs during storage.

KRB-5258 -8-

2-3. Installation Precautions

⚠ CAUTION

- I Electrical work must be done by competent persons.
- I Do not place the ACB in such an area that is subject to high temperatures, high humidity, dusty air, corrosive gases, strong vibration and shock, or other unusual conditions. Mounting the ACB in such an area could cause a fire or malfunction.
- Be careful to prevent foreign objects (such as debris, concrete powder, dust, chippings, and iron powder) and oil or rainwater from entering the ACB. These materials inside the ACB could cause a fire or malfunction.
- I Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage. Otherwise, electric shock may result.
- I Fix the draw-out cradle of the ACB firmly on a flat, level surface using mounting screws. Otherwise, the draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.

 Take care not to deform or bend protrusions in the bottom face of the draw-out cradle when fixing the draw-out cradle with mounting screws. Deformation of the protrusions may cause a malfunction.
- Connect conductors (including screws) to the main circuit terminals in the specified area. Otherwise, a short-circuit may result.
- I When terminating conductors to the ACB, tighten terminal screws to the torque specified in this manual. Otherwise, a fire could result.
- I For 4-pole ACBs, be sure to connect a 3-phase, 4-wire neutral conductor to the N-phase pole (on the right end). Otherwise, an overcurrent may hinder the ACB from tripping, resulting in a fire.

Fig. 4 Protrusion on the bottom of the draw-out cradle

- I Do not install the ACB in such an area that is exposed to direct sunlight.
- Make sure that the mounting base has a sufficient capacity of bearing the weight of the ACB (see Table 3 and Table 4). The mounting base must be protected against vibration. Take appropriate measures to provide a perfect protection to the mounting base against resonance. Otherwise, open/close operation of the ACB may cause a malfunction of other devices in the switchboard or vibrations of the switchboard may cause a malfunction of the ACB.
- I Use the following screws with appropriate length for the main circuit terminals.

Main circuit terminal screws: Hex head M10, with flat washers (2), spring washer (1) and nut (1) per screw

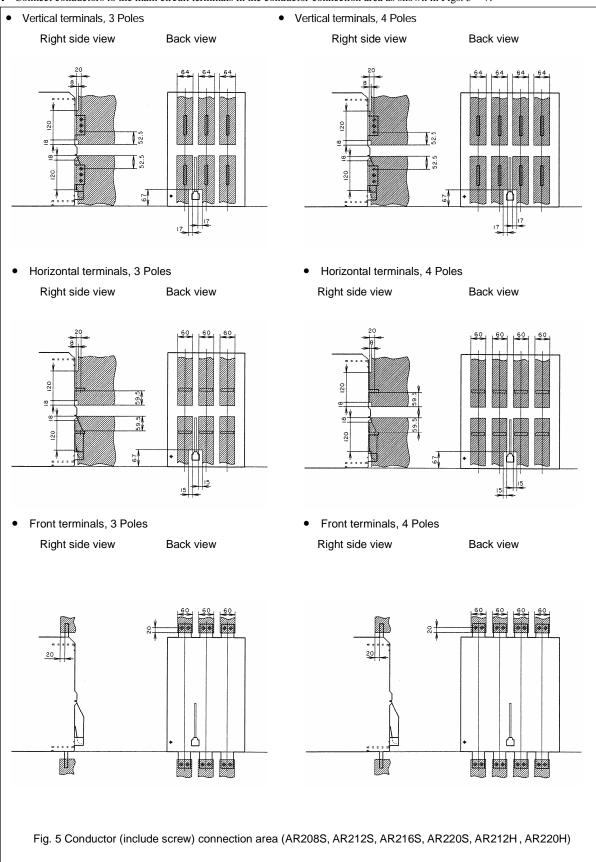
Tightening torque: 22.5 - 37.2 N·m

Table 1 Number of main circuit terminal screws required

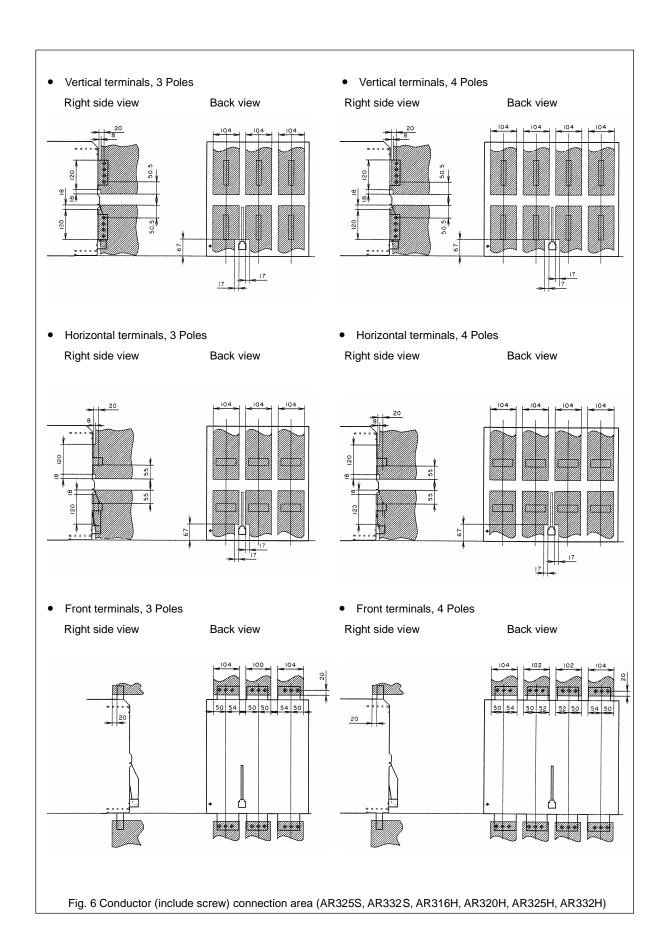
ACB type	ACB type		AR220S, AR212H, AR216H, AR220H	AR325S, AR332S AR316H, AR320H, AR325H, AR332H	AR440S
Number of main circuit terminal screws	Vertical terminals	12/16	18/24	24/32	48/64
(3/4-pole) Horizontal/front terminals*		12	/16	18/24	-

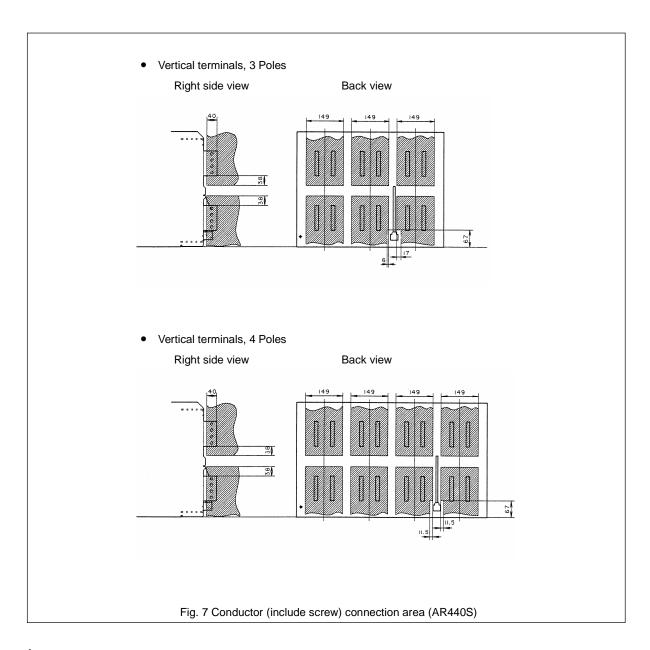
^{*} Front terminals are not applicable for high-performance ARxxxH types.

Use the following screw for the ground terminal. The screw must have a length that allows it to be inserted 4 - 9 mm into the ground terminal M8 tapped hole.

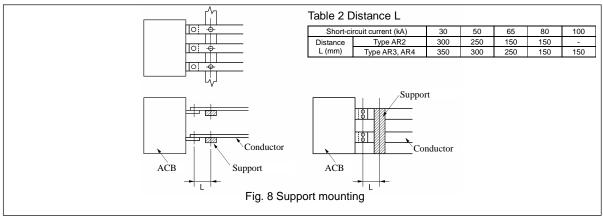

-9-

Ground terminal screw: M8 (1) with spring washer and flat washer

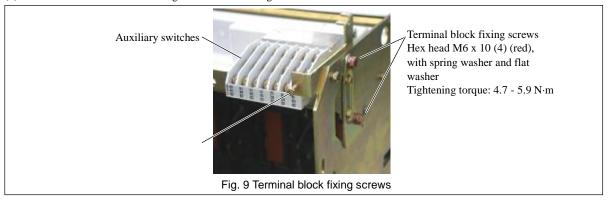

Tightening torque: 11.8 - 14.7 N·m

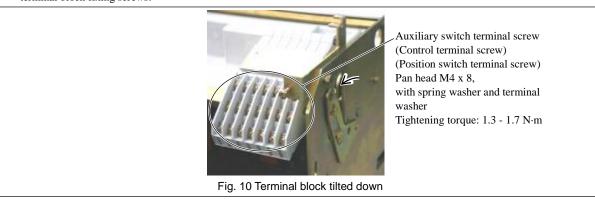

KRB-5258

Connect conductors to the main circuit terminals in the conductor connection area as shown in Figs. 5 - 7.



KRB-5258 -10-




I Use a support to hold conductors securely at distance L as shown in Fig. 8 and Table 2. Such a support will help preventing the conductors and main circuit terminals from being deformed or damaged due to a large electromagnetic force caused by any fault current.

- I The following procedure makes it easy to make connections with plug-in tab terminals (#187) of position switches, control circuit terminals, and auxiliary switches.
- (1) Draw out the breaker body to the removed position, and remove it using an optional lifter or lifting plate. Refer to sections 4 -2-2 and 2-1-2.
- (2) If the ACB is equipped with the control terminal block cover, loosen both the cover fixing screws and remove the cover.
- (3) Remove the terminal block fixing screws shown in Fig. 9.

(4) Tilt the terminal block down as shown in Fig. 10. After connecting wires, tilt the terminal block up again and fix it with the terminal block fixing screws.

If any work is done near the ACB that have been installed, protect the openings of the ACB with appropriate covers to prevent spatters, metal chips, wire cuttings or other foreign objects from entering the ACB.

3. GENERAL

3-1. Types and Descriptions

TemPower2 is available in types shown in Tables 3 and 4.

Table 3 Standard types

Frame size (A)				800		1250		1600		2000		2500		3200		4000		
Type				AR208	S	AR212	S	AR21	6S	AR22	20S	AR32	5S	AR33	2S	AR440S		
• • •		IEC, EN,	AS													4000		
Max. rated current [I _n] (A) *1, *2	JIS		800		1250		1600		2000		2500		3200	3200		3700	
	- , ,	Marine u	ise													4000		
N-phase rated curre	ent (A)			800		1250		1600		2000	2000		2500		3200		4000	
Number of poles *3				3	4	3	4	3	4	3	4	3	4	3	4	3	4	
Dielectric withstand	voltage [Ui] (50/60Hz)	*5	1000		1000		1000		1000		1000		1000		1000		
Operating voltage [U _e] (50/60Hz) *6				690	690 690 690 690 690									690				
Rated breaking/mal	king current [k	A sym rm	s/kA peak]															
IEC ,EN, AS [I _{CS} = I	1	AC 690V					50	/105					6	5/143		75/165		
IEC ,EIN, AS [ICS = I	cul	AC 440V		65/143 *10 85/187 *10											100/22			
		AC 550V	/				50	/105					6	5/143		75/165	5	
JIS		AC 460V	/				C	5/143					0.0	5/195.5		100/23	20	
		AC 220V	/				00	7143					00	0/190.5		100/23	30	
NK *7	•	AC 690V)/115						5/153		75/179	9	
INIX /		AC 450V					65/1	53 *10					85/	201 *10		100/24	15	
For DC	<u></u>	DC 600\									40/40							
FOI DC		DC 250\	/								40/40							
Rated short-time cu		rms] (1 s	ec.)					65						85			100	
Rated latching curre	ent (kA)							65						85			100	
	Mechanical		intenance	30	0000	30	0000		0000		25000	2	20000	2	0000	15	5000	
Endurance	Mechanical		naintenance	15	000	15	5000	1	5000		12000	1	0000	1	0000	8	000	
in number of ON-		Without	AC 460V	12000 12000		2000	1	12000 10000		7000			7000		3000			
OFF cycles *11	Electrical	mainte-	40.0001/	4.0											5000			
		nance	AC 690V	10000		10000		10000			7000		5000		5000		2500	
Installation				Draw-out or fixed type									T					
Mass (kg) for draw-				73	86	73	86	76	90	79	94	105	125	105	125	139	176	
External dimensions	s (mm)							1			1		1		1			
Fixed		a		360	445	360	445	360	445	360	445	466	586	466	586	-	1-	
type	Ы	b		460									-					
*12	J 441	d		290										-				
<u>. a</u>		a		75 354	439	354	439	354	439	354	439	460	580	460	580	631	801	
Draw-		b		460	439	334	433	334	433	334	433	400	300	400	300	460	001	
out type	ь 🕻	С		345												375		
*13		d		40												53		
,	1 1	Line side			Vertical, horizontal or front terminals									terminals				
Connection method		Load sid			l, horizon												terminals	
Control circuit termin	nal tyne	_000 310	~		erminals	01 1101	(01111111									vortical	torriniulo	
Spring charging me					or motor	chargin	n											
Overcurrent release					R, or L-ch			eneral fe	eder prot	tection								
Operation indication					indication		g	o.a. 10	- 20. pro									
		Tripping (TC)	coil		rd equipn		OCR-equ	ipped A	СВ									
Tripping device		Shunt tri	p device	Option	al													
1		undervol device (l		Option	al													
A			of switches	4C (standard), 7C or 10C; available for general feeder or microload														
Auxiliary switches		Terminal		screw terminals														
Rated voltage		Operatio				C200 - 2	240V, DC	100 - 12	25V, DC2	00 - 250	V, DC24	V or DC4	8V					
1: Ambient tempera	turo: 40°C (41				- 1.		. ,											

^{*1:} Ambient temperature: 40°C (45°C for marine use).
*2: With horizontal terminals for AR208S - 216S and vertical terminals for AR220S - 440S

To 2-pole applications, use two poles at both ends.
 4: 4-pole ACBs are not applicable to power distribution IT systems unless N-phase protection is provided.

^{*5:} Varies depending on applicable standards. AC1000V applies to ACBs conforming to IEC60947-2 and JIS C8201-2.

*6: Varies depending on applicable standards. AC690V applies to ACBs conforming to IEC60947-2 and JIS C8201-2.

*7: Applicable to 3-pole ACBs

^{*8:} For applicability to power distribution IT systems, consult us

^{*9:} Applicable under 3-pole serial connection scheme. *10: For AC500V

^{*11:} Expected service life based on endurance test. The service life of ACB depends on the working and environmental conditions. Refer to chapter 6 "Maintenance, Inspection and Parts Replacement".

^{*12:} For both vertical and horizontal terminals *13: This manual covers draw-out type ACBs.

Table 4 High-performance types

Frame size (A)	rame size (A)					1600		2000	2000			2000		2500		3200		
Type				1250 AR212	Н	AR216	SH	AR220)H	1600 AR316	Н	AR320)H	AR32	5H		AR332H	
-75-0		IEC, EN,	AS	12		7		7 2.	7.1.1.2.2.011							7 100	711100211	
Max. rated current [/ _n] (A) *1, *2	JIS Marine us		1250		1600		2000		1600	1600		2000		2500		3200	
N-phase rated curre	ent (A)	manno a	-	1250		1600	1600		2000		1600		2000			3200	3200	
Number of poles *3,				3	4	3	4	3	4	3	4	3	4	2500 3	4	3	4	
	electric withstand voltage [Ui] (50/60Hz) *5			1000		1000		1000		1000		1000		1000		1000		
	Operating voltage [U _e] (50/60Hz) *6			690	90 690 690 690 690 690						690							
	/making current [kA sym rms/kA peak			7														
IEC ,EN, AS [I _{CS} = I _C	1	AC 690V	*9		55/121								8	35/187				
ILC ,LIN, AS [ICS = IC	CUJ	AC 440V					0/176							00/220				
		AC 550V				5	5/121						8	35/196				
JIS		AC 460V				80	0/176						10	00/230				
		AC 220V																
NK *8		AC 690V					5/128							35/201				
-		AC 450V				80	0/186						10	00/233				
For DC		DC 600V								40	0/40							
Rated short-time cu	rront [/] [LA	DC 250V					80							100				
Rated short-time cu		11115] (1 50	ec.)				65			-				85				
		With mair	20	0000	2	0000	2	5000	20	0000	2	5000		20000		20000		
Endurance	Mechanical				5000		5000		2000		5000		2000		20000 10000		10000	
in number of ON-		Without maintenance				+						_						
	Electrical	mainte-	AC 460V	12	2000	12000		1	10000		12000		10000		7000		7000	
•		nance	AC 690V	10000		1	10000		7000		10000		7000		5000		5000	
Installation				Draw-out or fixed type														
Mass (kg) for draw-				79	94	79	94	79	94	105	125	105	125	105	125	105	125	
External dimensions	s (mm)																	
Fixed	7 /5	a		360	445	360	445	360	445	466	586	466	586	466	586	466	586	
type	ь 📙	b		460														
*12		C		290														
a		d		75	420	1054	400	1054	420	100	500	400	L 500	400	500	400	1500	
Draw-		a b		354 460	439	354	439	354	439	460	580	460	580	460	580	460	580	
out type	Ы	C		345														
*13		d		40														
		Line side	1		l termina	ls (Horiz	ontal term	inals ca	n be spe	cified as a	an option)						
Connection method		Load side					ontal term											
Control circuit termin	nal type	,			terminal							,						
Spring charging met				Manua	l or mote	or chargii	ng											
Overcurrent release	(OCR)			No OC	R, or L-	character	istic for ge	eneral fe	eder pro	tection								
Operation indication	1			Group	indicatio	n												
		Tripping (TC)		Standa	ırd equip	ment for	OCR-equ	ipped A	СВ									
Tripping device		Shunt trip (SHT)	'	Option	al													
		Undervol device (L		Option	al										-			
Auxiliary switches			of switches				C; availab	le for ge	neral fee	eder or mi	croload							
,		Terminal			terminals		040)/ 50	100 11	51/ DCC	00 050	. DOO (1)		2) (
Rated voltage		Operation		AC100	ı - 120V,	AC200 -	240V, DC	100 - 12	5 V, DC2	υυ - 250V	, DC24V	or DC48	3 V					

^{*1:} Ambient temperature: 40°C (45°C for marine used)

Use the ACBs in the environmental conditions specified in Table 5.

Table 5 Operating environment

	Altitude	2000 m max.
	Ambient temperature	-5°C to +45°C
Standard	Humidity	45 to 85% rel. max.
environment	Vibration	0.7G max.
(Standard equipped	Shock	200 m/s ² (20G) max.
ACBs)	Atmosphere	No excessive water vapor, oil vapor, dust, or corrosive gases. No sudden change in temperature and no condensation. Ammonia (NH ₃): 0.5 ppm max, Hydrogen sulfide (H ₂ S)/sulfur dioxide (SO ₂)/hydrogen chloride (HCl): 0.1 ppm max., Chlorine (Cl ₂): 0.05 ppm max.
Special	Tropical environment package	Different from standard ACBs in that Ambient temperature: 60°C max. and Humidity: 95% rel. max. (no condensation)
environment (Optional)	Cold environment package	Different from standard ACBs in that Ambient temperature: -25°C min. for use and -40°C min. for storage (no condensation)
(Optional)	Corrosion-resistant package	Different from standard ACBs in that NH ₃ : 50 ppm max, H ₂ S: 10 ppm max., SO ₂ /HCl: 5 ppm max., and Cl ₂ : 1 ppm max.

^{*2:} For vertical terminals

^{72:} For Vertical terminals
73: For 2-pole applications, use two poles at both ends.

44: 4-pole ACBs are not applicable to power distribution IT systems unless N-phase protection is provided.

55: Varies depending on applicable standards. AC1000V applies to ACBs conforming to IEC60947-2 and JIS C8201-2.

65: Varies depending on applicable standards. AC690V applies to ACBs conforming to IEC60947-2 and JIS C8201-2.

77: Setting the instantaneous trip function to NON reduces the rated breaking current to the rated latching current.

86: Applicable to 3-pole ACBs.

^{*9:} For applicability to power distribution IT systems, consult us
*10: Applicable under 3-pole serial connection scheme.
*11: Expected service life based on endurance test. The service life of ACB depends on the working and environmental conditions. Refer to chapter 6 "Maintenance, Inspection and Parts Replacement".

^{*12:} For vertical terminals

^{*13:} This manual covers draw-out type ACBs.

Table 6 shows the dielectric withstand voltage and the insulation resistance of the ACBs.

! CAUTION

I Do not perform dielectric withstand/insulation resistance tests under other conditions than specified. Doing so may cause a malfunction.

Table 6 Dielectric withstand voltage and insulation resistance

Circuit			Dielectric withstand voltage (5	Impulse withstand voltage $U_{\rm imp}$	Insulation resistance (DC500V Megger used)		
Main circuit			Between poles, and terminal group and ground	AC3500V	1 minute	12kV	300ΜΩ
	Auxiliary	For general feeder	Between terminal group and ground	AC2500V	1 minute	6kV	100ΜΩ
	switches	For microload	Between terminal group and ground	AC2000V	1 minute	4kV	100ΜΩ
Control circuit	Position sw	ritches	Between terminal group and ground	AC2000V	1 minute	4kV	100ΜΩ
Control circuit	Overcurren	t release	Between terminal group and ground	AC2000V	1 minute	4kV	100ΜΩ
Undervoltage trip device, Reverse power trip device			Between terminal group and ground	AC2500V	1 minute	6kV	100ΜΩ
Other accessorie	es		Between terminal group and ground	AC2000V	1 minute	4kV	100ΜΩ

The above data applies to new ACBs. Device terminals within ACBs are not covered. Use a DC500V Megger to measure the insulation resistance.

Table 7 shows the internal resistance and power consumption of the ACBs.

Table 7 Internal resistance and power consumption

Type	AR208S	AR212S	AR216S	AR220S	AR325S	AR332S	AR440S
Frame size (A)	800	1250	1600	2000	2500	3200	4000
DC internal resistance (mΩ) (for 1-pole ACB)	0.033	0.033	0.028	0.024	0.014	0.014	0.014
AC power consumption (W) (for 3-pole ACB)	200	350	350	490	600	780	1060
Type	AR212H	AR216H	AR220H	AR316H	AR320H	AR325H	AR332H
Type Frame size (A)	AR212H 1250	AR216H 1600	AR220H 2000	AR316H 1600	AR320H 2000	AR325H 2500	AR332H 3200

Table 8 shows applicable current of the ACBs. The applicable current varies depending on the ambient temperatures.

Table 8 Dependence of applicable current on ambient temperature

Type		AR208S	AR212S	AR216S	AR220S	AR325S	AR332S	AR440S
Standard	Conductor size Ambient temperature (°C)	2 × 50 × 5t	2 × 80 × 5t	2 × 100 × 5t	3 × 100 × 5t	2 × 100 × 10t	3 × 100 × 10t	4 × 150 × 6t
	40 (standard ambient temperature)	800	1250	1600	2000	2500	3200	4000
IEC60947-2	45	800	1250	1600	2000	2500	3200	4000
EN60947-2	50	800	1250	1600	2000	2500	3200	4000
AS3947-2 JIS C8201-2	55	800	1200	1540	1820	2500	2990	3940
JIS C8201-2	60	800	1150	1460	1740	2400	2850	3760
	40 (standard ambient temperature)	800	1250	1540	2000	2500	3200	3700
	45	800	1190	1470	1960	2500	3010	3580
NEMA,SG-3 ANSI C37.13	50	800	1130	1390	1860	2440	2860	3470
ANSI C37.13	55	790	1070	1310	1750	2300	2690	3350
	60	740	1000	1230	1640	2150	2520	3140
	40 (standard ambient temperature)	800	1250	1600	2000	2500	3200	3700
	45	800	1250	1600	1900	2500	2900	3580
JIS C8372	50	800	1190	1540	1820	2500	2800	3470
	55	800	1130	1460	1740	2400	2710	3350
	60	800	1080	1390	1650	2280	2610	3230
	40 (standard ambient temperature)	800	1100	1460	1740	2370	2610	3230
	45	800	1060	1400	1680	2280	2510	3100
JEC-160	50	800	1010	1340	1600	2180	2400	2970
	55	770	960	1280	1530	2080	2290	2830
	60	730	920	1220	1450	1970	2170	2690
Type		AR212H	AR216H	AR220H	AR316H	AR320H	AR325H	AR332H
	Conductor size							
Standard	Ambient temperature (°C)	2 × 80 × 5t	2 × 100 × 5t	3 × 100 × 5t	2 × 100 × 5t	3 × 100 × 5t	2 × 100 × 10t	3 × 100 × 10t
IE000047.0	40 (standard ambient temperature)	1250	1600	2000	1600	2000	2500	3200
IEC60947-2 EN60947-2	45	1250	1600	2000	1600	2000	2500	3200
AS3947-2	50	1250	1600	2000	1600	2000	2500	3200
JIS C8201-2	55	1250	1600	1820	1600	2000	2500	2990
010 00201 2	60	1250	1550	1740	1600	2000	2400	2850
	40 (standard ambient temperature)	1250	1600	2000	1600	2000	2500	3200
NEMA,SG-3	45	1250	1600	1960	1600	2000	2500	3010
ANSI C37.13	50	1250	1600	1860	1600	2000	2440	2860
ANOI 037.13	55	1250	1510	1750	1600	1950	2300	2690
	60	1240	1420	1640	1550	1830	2150	2520
	40 (standard ambient temperature)	1250	1600	2000	1600	2000	2500	3200
	45	1250 1250		2000 1900	1600 1600	2000 2000	2500 2500	3200 2900
JIS C8372	45 50	1250 1250 1250	1600 1600 1600	1900 1820	1600 1600	2000 2000	2500 2500	2900 2800
JIS C8372	45	1250 1250	1600 1600	1900	1600	2000	2500 2500 2400	2900
JIS C8372	45 50	1250 1250 1250 1250 1250	1600 1600 1600	1900 1820 1740 1650	1600 1600 1600 1600	2000 2000	2500 2500 2400 2280	2900 2800
JIS C8372	45 50 55	1250 1250 1250 1250	1600 1600 1600 1550	1900 1820 1740	1600 1600 1600	2000 2000 2000	2500 2500 2400	2900 2800 2710
JIS C8372	45 50 55 60	1250 1250 1250 1250 1250	1600 1600 1600 1550 1480	1900 1820 1740 1650	1600 1600 1600 1600	2000 2000 2000 1900	2500 2500 2400 2280	2900 2800 2710 2610
JIS C8372 JEC-160	45 50 55 60 40 (standard ambient temperature)	1250 1250 1250 1250 1250 1250	1600 1600 1600 1550 1480 1500	1900 1820 1740 1650 1740	1600 1600 1600 1600 1600	2000 2000 2000 1900 2000	2500 2500 2400 2280 2370	2900 2800 2710 2610 2610
	45 50 55 60 40 (standard ambient temperature) 45	1250 1250 1250 1250 1250 1250 1250 1250	1600 1600 1600 1550 1480 1500 1440	1900 1820 1740 1650 1740 1680	1600 1600 1600 1600 1600 1600	2000 2000 2000 1900 2000 2000	2500 2500 2400 2280 2370 2280	2900 2800 2710 2610 2610 2510

Notes: For AR208S, AR212S and AR216S, it is assumed that main circuit terminals are of horizontal type at both the line and load sides. Forother types, it is assumed that main circuit terminals are of vertical type at both the line and load sides. The above values may vary depending on the switchboard configuration.

3-2. Parts and Functions

Fig. 11 provides a general views of the ACB.

-17- KRB-5258

Q	ACB	Consists of breaker body ③ and draw-out cradle ②.
		Comes with main circuit terminals @, control circuit terminals @, auxiliary switches @,
Q	Draw-out cradle	and position switches 37.
		Contains the ON-OFF mechanism, the closing coil, the tripping device, and overcurrent
3	Breaker body	release @ .
Q.	OFF button	Push to open the ACB.
3	ON button	Push to close the ACB.
Cø.	ON-OFF indicator	Shows "OFF" when the ACB is open and "ON" when it is closed.
Ġ	Charge indicator	Shows "CHARGED" when the closing springs are charged and "DISCHARGED" when it is released.
(38	Charging handle	Pump to charge the closing springs.
()	Position indicator	Indicates the present breaker body position: CONN., TEST, or ISOLATED.
① 0	Grip	Hold to draw out the breaker body.
(DI	Draw-out handle insertion hole	Insert the draw-out handle into this hole to move the breaker body.
①2	Release button	Push to move the breaker body from the TEST position.
①3	Position padlock lever (optional)	Accommodates up to three padlocks to lock the breaker body in the CONN., TEST or ISOLATED position. (Padlocks are not supplied. Use padlocks with a 6 mm-diameter shackle.)
① 4	Lock-in-OFF plate (optional)	Padlocking this plate allows the ACB to be locked in the open (OFF) state. (Padlocks are not supplied. Use padlocks with a 6 mm-diameter shackle.)
Û5	ON-OFF button cover	Provides protection against inadvertent button operation and can be padlocked. (Padlocks are not supplied. Use padlocks with a 6 mm-diameter shackle.) Up to three padlocks can be installed.
D 6	ON-OFF cycle counter (optional)	Reads the number of ON-OFF cycles. It counts a series of operations from close to open as one cycle.
① 7	OCR cover	Padlocking this plate prevents settings of overcurrent release ® to be inadvertently changed. (Padlocks are not supplied. Use padlocks with a 6 mm-diameter shackle.)
Û8	Overcurrent release (OCR)	This protective device is supplied power via the power CT installed in the ACB main circuit. When the current sensor detects an overcurrent in the main circuit, the OCR instructs the magnet hold trigger (MHT) to trip open the ACB.
Œ9	Front cover	A plastic cover of the breaker body front panel.
20	Rating nameplate	Indicates the type, applicable standards and rated breaking capacity of the ACB.
2	Specification nameplate	Indicates the number of poles, operation method, accessories, and serial number of the ACB.
2 3	Breaker body roller	Allows breaker body 3 to be moved on draw-out rail 3.
24	Main circuit contact	Closes when the breaker body is in the CONN. position.
2 5	Control circuit contact	Closes when the breaker body is in the CONN. or TEST position.
26	Arc chamber	Extinguishes the arc that occurs in the breaking operation.
207	Current sensor	Converts the current in the main circuit into a voltage signal in proportion to the magnitude of the current and sends the signal to overcurrent release ③8.
28	Mold cover	A plastic cover of the breaker body side face.
29	Mold base	A plastic cover of the breaker body rear face.
30	Breaker fixing bolt (red) (optional)	Allows the breaker body to be locked in the CONN. position even if the ACB is subject to strong vibrations.
31	Draw-out rail	Use to draw out the breaker body from the draw-out cradle.
32	Draw-out rail end	Refer to chapter 1 "Operation Precautions".
33	Hook pin	Refer to chapter 1 "Operation Precautions".
34	Body stopper	Prevents the breaker body from falling when the body is drawn out from the draw-out cradle.
35	Body stopper shaft	Refer to chapter 1 "Operation Precautions".
36	Rail stopper (red)	Allows the draw-out rail to be locked in the drawn-out or retracted state.
37	Position switches (optional)	Indicate the present breaker body position: CONN., TEST, ISOLATED or INSERTED. The position switches are available in 2C or 4C configuration. Connections to the position switches are made through M4 screws.

KRB-5258

©8 Control circuit terminals

Allow connections of external control wire to the control circuits. Wire connections are made through M4 screw terminals. Fig. 12 shows the control circuit terminals.

Fig. 12 Control circuit terminals

39	Control terminal block cover (optional)	Protects the p damage.
40	Cover fixing screw	Secures the c
4 1	Auxiliary switches (optional)	Indicate the s configuration switches are i
4 2	Terminal block	Contains posi
4	Ground terminal M8 tapped hole	Allows conne
4 5	Gas exhaust port	Allows the ar
4 6	Arc gas barrier	Prevents the a trips open.

Breaker draw-out arm

Main circuit terminals

48

Protects the position switches, the control circuit terminals and the auxiliary switches from damage.

Secures the control terminal block cover.

Indicate the state of the ACB (ON or OFF). The auxiliary switches are available in 4C configuration (standard), or 7C or 10C configuration (optional). Connections to the switches are made through M4 screw terminals.

Contains position switches $\, \mathfrak{B} \,$, control circuit terminals $\, \mathfrak{T} \,$, and auxiliary switches $\, \mathfrak{B} \,$.

Allows connection of a ground terminal.

Allows the arc gas to be discharged from arc chamber ③ in a horizontal direction when the ACB trips open.

Prevents the arc gas from being discharged upwards from arc chamber 25 when the ACB trips open.

Is retracted in the draw-out cradle when the breaker body is in the CONN. position.

Allow connections of external conductors. These terminals are available in three configurations as shown in Fig. 13.

Vertical terminals

Horizontal terminals

Fig. 13 Main circuit terminals

Front terminals

499	Lifting hole (ø20mm)
© 0	Protrusion
(S)I	Draw-out handle (removable)

Allows lifting attachments or wire ropes to be used for lifting the ACB.

Refer to section 2-3. "Installation Precautions".

Use to draw out /insert the breaker body from/into the draw-out cradle.

3-3. Circuits and Ratings

Fig. 14 shows an ACB circuit diagram and Table 9 and Fig. 15 show the function of each terminal and the meaning of each sign in the diagram.

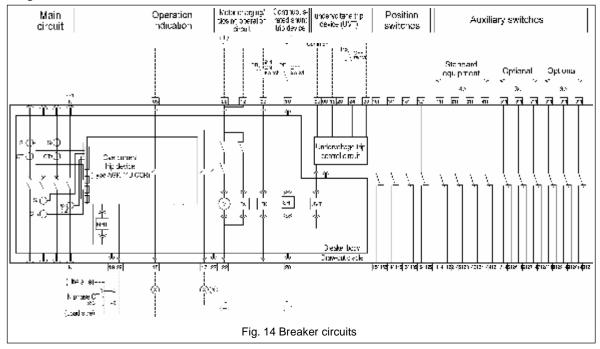
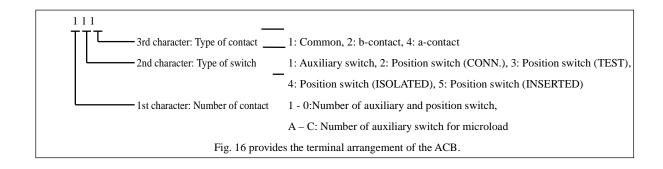


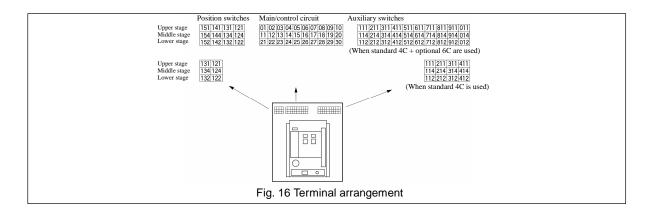
Table 9 Terminal functions and circuit symbols (Applicable to both 50 and 60Hz for AC. and mean the polarity for DC)

 \oplus

Terminal No.	Function							
102 ⊕ 122 ⊝		AC100 - 120V, AC200 - 240V, DC100 - 125V, DC200 - 250V, DC24V or DC48V (To be stated when ordering)						Operation power input terminals
1003 , 1312	ON swi	tch						Operation switch terminals
O5, O5	Group i	ndication						
106, 1317	Trip ind	ication						Operation indication contact output terminals
1005 , 1217	Spring	charged indication	n					
130 , 120	DC110\	V, AC110V, AC12 V, DC125V, DC20	00V or DC220V (To be sta	ited wher	n ordering)	C100V,	Shunt trip device power input terminals
		V, AC200V or AC4	applicable termina	al Nos.		<i>-</i>	1	
		Terminal No.	AC100V unit	AC200	OV unit	AC400V unit		
(08, (09, (1)8, (2)8		1018,1019	AC100V	AC2	200V	AC380V		Undervoltage trip device power
30, 37, 30, 20	,	ID8, ID9	AC110V	AC2	220V	AC415V		input terminals
		128 , 1019	AC120V	AC2	240V	AC440V		
124 , 130	OFF sw	vitch						Undervoltage trip
III9 , IZI9	Polarity	: 119 - 12, 129 - 1	ℓ					N-phase CT connection terminals *3
001 004 006 007 031 033 034 036 021 023 025 026	_							(Reserved)
Symbol Meaning				Symbol		Meaning		
M Spring charging motor C			CT ₁ - C	Γ ₃		Power supply CT *6		
LRC	Latch rele	ase coil		—			Main/control circuit contact	
MHT		Magnet ho			-			Hand connector
SHT		Shunt trip						User wiring
			age trip device		-⊗-			Relay or LED
S ₁ - S ₄		Current se	ensors *5					

^{*1:} For 4-pole ACBs.


*2: For 4-pole ACBs equipped with N-phase protection and/or ground fault trip functions.


*3: Used for 3-pole ACBs with N-phase protection and/or ground fault trip functions to be installed in a 3-phase, 43-wire circuit.

*4: Do not connect the ON switch with auxiliary switch b-contact in series. Doing so may cause pumping.

*5: Conversion ratio: CT rated primary current l_{cT} (A)/150 mV

*6: Provide power to the overcurrent trip device when control power is lost.

Tables 10 - 15 show the ratings of the operation power supply, the shunt trip device (SHT), the undervoltage trip device (UVT), auxiliary switches, position switches, operation indication contacts, and the N-phase CT.

Table 10 Ratings of operation power supply

	Permissible	Ratings of operation power supply					
Rated voltage (V)	charging/closing voltage range	Peak motor starting current (A)	Steady-state motor current (A)	Peak making current (A)	Latch release coil (LRC) resistance (ohm) *		
AC100	85 - 110	7	1.1	0.48	280 - 350		
AC110	94 - 121	7	1.1	0.39	330 - 420		
AC120	102 - 132	7	1.1	0.37	450 - 560		
AC200	170 - 220	4	0.7	0.24	1120 - 1380		
AC220	187 - 242	4	0.7	0.19	1400 - 1730		
AC240	204 - 264	4	0.7	0.18	1800 - 2210		
DC24	20 - 26	14	4	1.65	15 - 19		
DC48	41 - 53	10	1.6	0.86	63 - 78		
DC100	85 - 110	6	0.8	0.39	280 - 350		
DC110	94 - 121	6	0.8	0.37	330 - 420		
DC125	106 - 138	6	0.8	0.31	450 - 560		
DC200	170 - 220	4	0.5	0.19	1120 - 1380		
DC220	187 - 242	4	0.5	0.18	1400 - 1730		

^{*} Ambient temperature: 20°C

Table 11 Ratings of shunt trip device (SHT)

Rated voltage (V)	Permissible voltage range (V)	Peak exciting current (A)	Steady-state current (A)	Coil resistance (ohm)	Max. contact parting time (ms)
AC100	70 - 110		0.32	280 - 350	uno (mo)
AC110	77 - 121	0.39	0.26	330 - 420	
AC120	84 - 132	0.37	0.24	450 - 560	
AC200	140 - 220	0.24	0.16	1120 - 1380	
AC220	154 - 242	0.19	0.13	1400 - 1730	
AC240	168 - 264	0.18	0.12	1800 - 2210	
DC24	16.8 - 26.4	1.65	1.1	15 - 19	40
DC48	33.6 - 5.28	0.86	0.57	63 - 78	
DC100	70 - 110	0.39	0.26	280 - 350	
DC110	77 - 121	0.37	0.25	330 - 420	
DC125	87.5 - 137.5	0.31	0.21	450 - 560	
DC200	140 - 220	0.19	0.13	1120 - 1380	
DC220	154 - 242	0.18	0.12	1400 - 1730	

^{*} Ambient temperature: 20°C

-21- KRB-5258

Table 12 Ratings of undervoltage trip device (UVT)

Rated voltage	Opening voltage	Attraction voltage	Coil exciting	Power consu	umption (VA)	Cail registeres (abm) *
(V)	range (V)	(V)	current (A)	Normal	Attraction	Coil resistance (ohm) *
AC100	35 - 70	85				
AC110	38.5 - 77	93.5				
AC120	42 - 84	102				
AC200	70 - 140	170				
AC220	77 - 154	187				
AC240	84 - 168	204	0.1	8	10	Holding coil: 410 - 510
AC380	133 - 266	323	0.1	0	10	Attraction coil: 5.6-6.8
AC415	145 - 290	352				
AC440	154 - 308	374				
DC24	8.4-16.8	20.4				
DC48	16.8-33.6	40.8				
DC100	35-70	85				

^{*} Ambient temperature: 20°C

Table 13 Ratings of auxiliary and position switches

		Auxiliary	Position switches			
Voltage (V)	For gene	ral feeder	For mi	croload	FUSITION	SWILCHES
	Resistive load (A)	Inductive load (A) *1	Resistive load (A)	Inductive load (A) *2	Resistive load (A)	Inductive load (A) *2
AC100 - 250	5	5	0.1	0.1	11	6
AC251 - 500	5	5	-	-	-	-
DC8	-	-	-	-	10	6
DC30	1	1	0.1	0.1	6	5
DC125	-	-	-	-	0.6	0.6
DC250	-	=	-	-	0.3	0.3
DC125 - 250	1	1	-	-	=	-

^{*1:} AC cosø ≥ 0.3, DC L/R ≤ 0.007 *2: AC cosø ≥ 0.6, DC L/R ≤ 0.01 *3: Min. applicable load: DC5V/1 mA

Table 14 Ratings of operation indication contacts

Voltage (V)	Rated contact current (A)							
	Group in	ndication	Spring charging/tripping operation					
	Resistive load (A)	Inductive load (A) *1	Resistive load (A)	Inductive load (A) *2				
AC250	3	3	3	3				
DC30	3	3	3	2				
DC125	0.5	0.25	0.5	0.5				
DC250	0.3	0.15	0.1	0.1				

^{*1:} AC cosø ≥ 0.3, DC L/R ≤ 0.007 *2: AC cosø ≥ 0.6, DC L/R ≤ 0.01 *3: Min. applicable load: DC5V/1 mA

Table 15 Ratings of N-phase CT

Type of ACB	Type of N-phase CT	Ratings (A)		
AR208S, AR212S, AR216S	CW80-40LS	200/5A	400/5A	800/5A
AR212H, AR216H, AR316H	CVV0U-4UL3	1250/5A	1600/5A	
AR220S, AR325S, AR332S, AR440S	EC160-40LS	1600/5A	2000/5A	2500/5A
AR220H, AR320H, AR325H, AR332H	LC100-40L3	3200/5A	4000/5A	

4. OPERATION

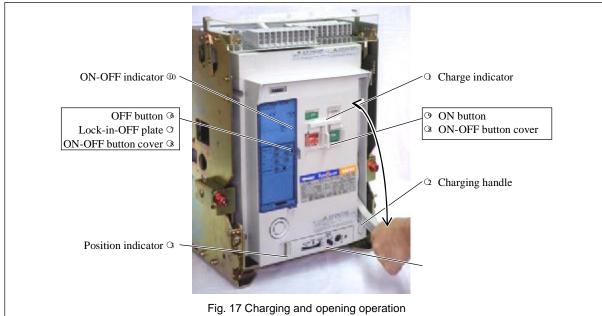
4-1. Charging and Opening operation

DANGER

I Never touch live terminal parts. Otherwise, electric shock may result.

↑ CAUTION

- I Do not force down the charging handle after completion of manual charging operation. Doing so may cause a malfunction.
- I The permissible operating voltage of the spring charging motor is 85 to 110% of the rated ac voltage or 75 to 110% of the rated dc voltage. Be sure to supply a voltage within the above ranges to the motor. Otherwise, burnout may result.
- Repeated open/close operation by the motor charging mechanism without pause should not exceed 15 times. If repeated continuous open/close operation is inevitable, a pause of at least 20 minutes should be provided after the repetitions of 15 times. Otherwise, a spring charging motor may be burnt out.
- I Do not bring your hand or face close to arc gas vent of the arc chamber while the ACB is energized. Otherwise, a burn may result from high-temperature arc gas blowing out of the arc gas vent when the ACB trips open.
- If the ACB trips open automatically, remove the cause of tripping operation before re-closing the ACB. Otherwise, a fire could result.
- If the ACB has the breaker fixing bolts, make sure the bolts on both sides are securely tightened before using the ACB. Loosened fixing bolts may cause a malfunction of the ACB, in particular when it is installed in such an area that is subject to strong vibrations.


The ACBs are available in two types in terms of the closing spring charging method and the remote operation capability: a manual charging type and a motor charging type. The manual charging type requires the charging and ON-OFF (close/open) operation to be done manually while the motor charging type allows the operation to be done either manually or by using a motor.

4-1-1. Charging operation

The ACB can be closed only when the closing springs have been charged. Be sure to charge the closing springs before closing the ACB. The charging operation is permitted, regardless of whether the ACB is ON (closed) or OFF (open). The procedure for charging the closing springs is as follows:

I Manual charging

Pump the charging handle (Fig. 17 \odot) until the charge indicator (Fig. 17 \odot) shows "CHARGED" Pumping the handle with the full stroke 10 - 13 times will fully charge the closing springs.

-23- KRB-**5258**

I Motor charging

When the charge indicator (Fig. 17 $^{\circ}$) changes to "DISCHARGED" while the specified operation voltage is applied to the control circuit terminals $^{\circ}$ and $^{\circ}$, the charging motor is activated to start charging the closing springs. Upon completion of the charging operation, the charge indicator shows "CHARGED" and the charging motor is automatically deactivated. The time required for the motor charging operation depends on the operation voltage or the ACB types, but does not exceed 10 seconds.

4-1-2. Closing operation

The ACB closing operation is not permitted unless all of the following conditions are met.

- 1) The charge indicator (Fig. 17 Q) shows "CHARGED".
- 2) The position indicator (Fig. 17 3) shows "CONN.", "TEST" or "ISOLATED" (a halfway position not permitted).
- 3) The draw-out handle is not inserted in the draw-out handle insertion hole(Fig. 17 3).
- 4) The OFF button (Fig. 17 \odot) is not locked with the lock-in-OFF plate (Fig. 17 \odot).
- 5) The specified voltage is supplied to the undervoltage trip device.

I Manual closing

Open the ON-OFF button cover (Fig. 17 $^{\circ}$) and press the ON button (Fig. 17 $^{\circ}$). The ACB will be closed with a sound. The ON-OFF indicator (Fig. 17 $^{\circ}$ 0) shows "ON" and the charge indicator (Fig. 17 $^{\circ}$ 1) shows "DISCHARGED".

I Electrical closing

Press the ON switch shown in Fig. 14. The latch release coil (LRC) (Fig. 14) will be excited and the ACB is closed with a sound. The ON-OFF indicator (Fig. 17 ⁽¹⁾) shows "ON", the charge indicator (Fig. 17 ⁽²⁾) shows "DISCHARGED", and the charging motor starts charging the closing springs.

4-1-3. Opening operation

I Manual opening

Open the ON-OFF button cover (Fig. 17 [®]) and press the OFF button (Fig. 17 [®]). The ACB will trip open with a sound. The ON-OFF indicator (Fig. 17 [®]) shows "OFF".

I Electrical opening

Press the OFF switch shown in Fig. 14. The shunt trip device (SHT) or the fixed type undervoltage trip device (Fig. 14) will be excited so that the ACB trips open with a sound. The ON-OFF indicator (Fig. 17 @) shows "OFF".

4-1-4. Motion of trip indication and spring charge indication switches

The trip indication and spring charge indication switches provide the breaker status as shown in Table 16.

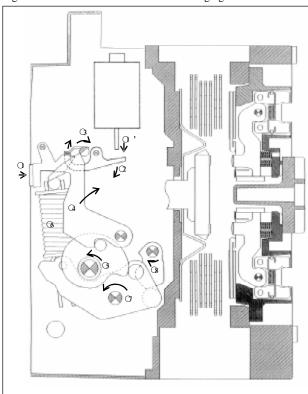
Table 16 Motion of trip indication and spring charge indication switches

		Contact output							
Type of OCR Operation	Operation	Terminal No.	State						
	,	See Fig. 14	Closing	g spring	ACB closed	ACB o	pen		
			Charged	Discharged	ACB closed	Not ready to close *	Ready to close *		
All	Trip	1015 , 1317	No change	No change	OFF	ON	OFF		
All	Spring charge	1015 , 1217	ON	OFF	No change	No change	No change		

[&]quot;Ready to close" means that all of the following conditions are met:

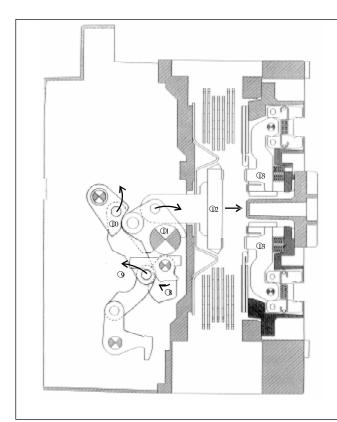
KRB-5258 -24-

^{1.} The closing springs are charged.


^{2.} Opening operation is complete (At least 40 ms has elapsed after trip signal was produced).

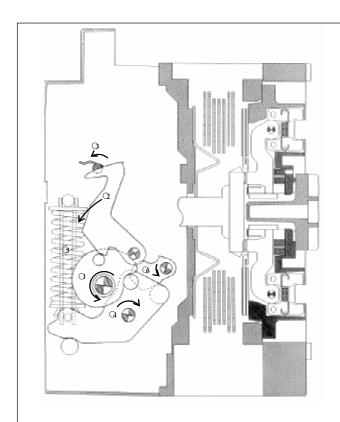
^{3.} The OFF button is released.

^{4.} The specified voltage is applied to the undervoltage trip device (if equipped).

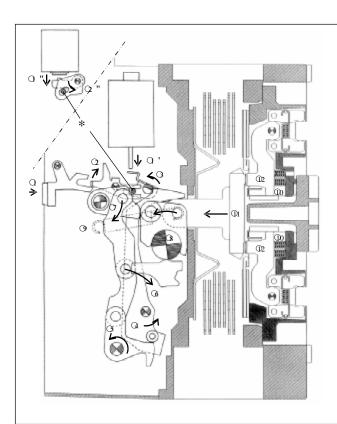

4-1-5. Motion of operation mechanisms

Figs. 18 - 21 illustrate the motion of the charging and ON-OFF mechanisms.

For manual closing operation, ON button $^{\circlearrowleft}$ rotates counterclockwise. For electrical closing operation, push rod $^{\circlearrowleft}$ 'protrudes downward from the latch release coil (LRC) and charge latch trigger $^{\circlearrowleft}$ rotates clockwise. This rotates closing trigger shaft $^{\circlearrowleft}$ clockwise and closing release lever $^{\circlearrowleft}$ disengages from a semicircular pawl and rotates clockwise. And charging cam $^{\circlearrowleft}$ rotates counterclockwise, so that charging lever $^{\circlearrowleft}$ disengages from closing spring $^{\circlearrowleft}$ and rotates counterclockwise. Closing cam $^{\circlearrowleft}$ is pushed up by charging lever $^{\circlearrowleft}$ and rotates clockwise. At this time, each component is positioned as shown in Fig. 20. Continued to Fig. 19.


Fig. 18 Closing motion 1 (discharge motion)

Closing cam $^{\circ}$ rotating clockwise causes closing link and top link $^{\circ}$ to be pushed straight. This rotates closing toggle cam $^{\circ}$ connected with closing link $^{\circ}$ counterclockwise, so that crossbar $^{\circ}$ rotates clockwise and thus moving contact $^{\circ}$ comes in contact with stationary contact $^{\circ}$. At this time, each component is positioned as shown in Fig. 21.

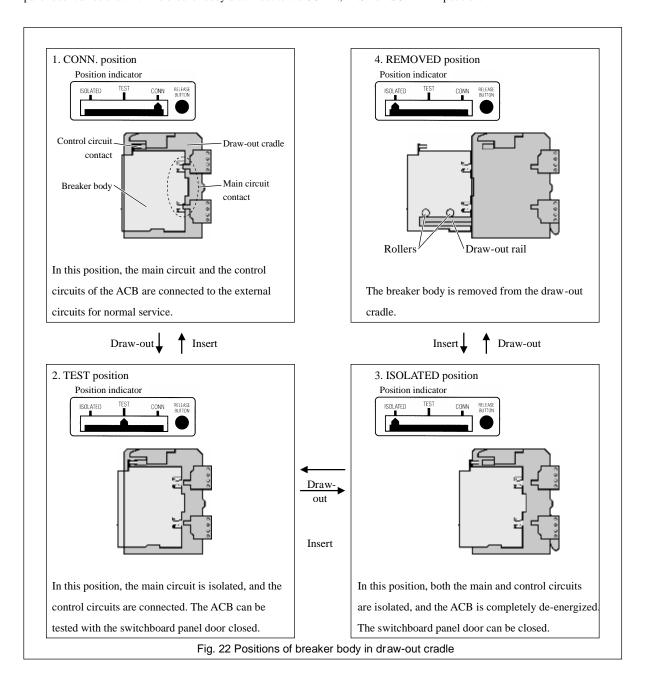

Fig. 19 Closing motion 2

-25-

The charging handle or the charging motor provides a counterclockwise rotation to charging cam $\ ^{\ }$. This rotates closing release lever $\ ^{\ }$ and closing tripper lever $\ ^{\ }$ counterclockwise and a semicircular pawl engages with closing release lever $\ ^{\ }$. And charging lever $\ ^{\ }$ rotates clockwise so that closing spring $\ ^{\ }$ is compressed and closing cam 5 rotates counterclockwise. At this time, each component is positioned as shown in Fig. 18.

Fig. 20 Charging motion

For manual opening operation, OFF button O rotates counterclockwise and trip linkage 2 rotates clockwise. For electrical opening operation, push rod O protrudes downward from the shunt trip device (SHT) or the undervoltage trip device (UVT). For tripping operation by the overcurrent release (OCR), moving core O protrudes downward from the magnet hold trigger (MHT) and trip linkage 2 rotates counterclockwise. (Parts marked with an asterisk (*) are trip pins. To avoid superposition in the figure, magnet hold trigger related parts are drawn in positions that are different from actual positions. This rotates trip trigger shaft 3 counterclockwise and trip lever B @ disengages from a semicircular pawl and rotates counterclockwise. And trip lever A 3 rotates counterclockwise, trip link 3 moves to a lower right direction and closing toggle cam Totates clockwise. The force of closing spring and contact spring @ rotates crossbar @ counterclockwise, so that moving contact @ is parted from stationary contact 12. At this time, each component is positioned as shown in Fig. 19.


Fig. 21 Opening motion

4-2. Draw-out and Insertion Operation

4-2-1. **General**

The draw-out type ACB consists of the breaker body and the draw-out cradle. The main and control circuit terminals are installed on the draw-out cradle, which permits you to draw out and inspect or service the breaker body without the need for removing wiring from the terminals.

The draw-out mechanism allows you to move the breaker body to any of the four positions as shown in Fig. 22. The switchboard panel door can be shut with the breaker body drawn out to the CONN., TEST or ISOLATED position.

I Operation Durability

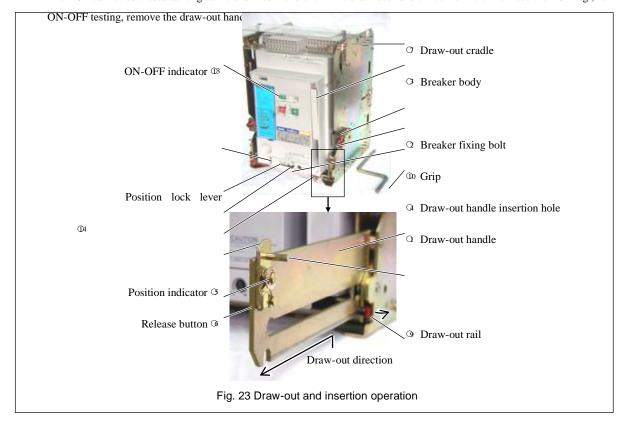
The AR series ACBs are designed to ensure the operation durability of 100 draw-out and insertion cycles in conformance to IEC 60947-1 (one cycle means that the breaker body is drawn out from the CONN. position to the Rem oved position and inserted back to the CONN. position). Draw-out and insertion operation of more than 100 cycles could abrade the main circuit contacts, resulting in an overheat of the contacts during energization.

-27- KRB-5258

4-2-2. Draw-out operation

DANGER

- Never touch live terminal parts. Otherwise, electric shock may result.
- I Do not leave the ACB body in the removed position. The weight of the ACB may cause serious injury.


⚠ CAUTION

- If the ACB has the breaker fixing bolts, be sure to loosen the bolts on both sides before draw-out operation. Otherwise, damage to the ACB may result.
- I Make sure the draw-out cradle is secured with mounting screws before drawing out the breaker body. Otherwise, the draw-out operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- When retracting the draw-out rail into the draw-out cradle, be sure to push the rail end. Do not hold the hook pin, body stopper, or body stopper shaft. Doing so may cause your fingers to be pinc hed, resulting in injury.

Use the separate draw-out handle to draw-out the breaker body.

4-2-2-1. Moving the breaker body from the CONN. position to the TEST position

- 1) Open the ACB. (If the ACB remains closed, the draw-out handle (Fig. 23 Q) cannot be inserted).
- 2) Loosen the breaker fixing bolts (Fig. 23 @), if used, to unlock the breaker body (Fig. 23 @).
- 3) Unlock the position lock lever (Fig. 23 ⁽¹⁾) if locked. See section 4-5.
- 4) Insert the draw-out handle into the draw-out handle insertion hole (Fig. 23 @) and slowly turn counterclockwise until the position indicator (Fig. 23 @) shows "TEST".
 - I When the main circuit is disconnected at the disconnect contacts, the breaker body will be slightly pushed forward by the spring action of the main circuit disconnect contacts. At this moment, a bang sound will be heard. This sound does not mean a malfunction.
 - I The ACB cannot be closed as long as the draw-out handle is in the draw-out handle insertion hole. To close the ACB e.g., for

KRB-5258 -28-

4-2-2-2. Moving the breaker body from the TEST position to the ISOLATED position

- 1) Open the ACB. (If the ACB remains closed, the draw-out handle (Fig. 23 Q) cannot be inserted).
- 2) Press the release button (Fig. 23 @). The release button will be locked depressed.
- 3) Unlock the position lock lever (Fig. 23 04) if locked. See section 4-5.
- 4) Insert the draw-out handle into the draw-out handle insertion hole (Fig. 23 ³) and slowly turn counterclockwise until the position indicator (Fig. 23 ³) shows "ISOLATED" and a freewheeling sound is heard. Turning the draw-out handle will unlock the release button.
- 5) Remove the draw-out handle.

4-2-2-3. Moving the breaker body from the ISOLATED position to the removed position

- 1) Make sure the draw-out cradle (Fig. 23 O) is secured with mounting screws.
- 2) Unlock the position lock lever (Fig. 23 @4) if locked. See section 4-5.
- 3) Push the rail stoppers (Fig. 23 ③) outward on both sides of the draw-out cradle to unlock the draw-out rail (Fig. 23 ④), and then uphold and pull out the rail until it stops. The draw-out rail will be locked again by the stoppers. (The breaker body cannot be drawn out unless the rail is locked).
- 4) Holding both the grips (Fig. 23 ⁽¹⁾), draw out the breaker body until it stops.
 - If the ACB is equipped with an optional auto-discharging device (Fig. 23 01), the closing springs of the ACB will be automatically discharged with a mechanical sound. This sound does not mean a malfunction.
 - Do not leave the ACB body on the draw-out rail pulled out.
- 5) Use an optional lifter or lifting plate to transfer the breaker body (Fig. 23 3) to a safe place. Refer to section 2-1-2.

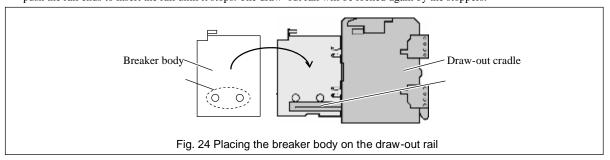
4-2-3. Putting the breaker body back into the draw-out cradle

I Never touch live terminal parts. Otherwise, electric shock may result.

Do not leave the ACB body in the removed position. The weight of the ACB may cause serious injury.

A CAUTION

- I Make sure the draw-out cradle is secured with mounting screws before inserting the breaker body into the draw-out cradle. Otherwise, the insertion operation may cause the breaker body or the draw-out cradle to fall, resulting in damage to the ACB or personal injury.
- I When retracting the draw-out rail into the draw-out cradle, be sure to push the rail end. Do not hold the hook pin, body stopper, or body stopper shaft. Doing so may cause your fingers to be pinched, resulting in injury.
- Do not forcedly turn the draw-out handle clockwise when the breaker body is in the CONN. Position. Doing so may cause a malfunction.
- If the ACB has the breaker fixing bolts, make sure the bolts on both sides are securely tightened before using the ACB. Loosened fixing bolts may cause a malfunction of the ACB, in particular when it is installed in such an area that is subject to strong vibrations.


Use the separate draw-out handle to insert the breaker body.

4-2-3-1. Putting the breaker body back to the ISOLATED position

- 1) Make sure the draw-out cradle (Fig. 23 ?) is secured with mounting screws.
- 2) Push the rail stoppers (Fig. 23 ③) outward on both sides of the draw-out cradle to unlock the draw-out rail (Fig. 23 ④), and then uphold and pull out the rail until it stops. The draw-out rail will be locked again by the stoppers. (The breaker body (Fig. 23 ③) cannot be inserted unless the rail is locked).
- 3) Use an optional lifter or lifting plate to place the breaker body rollers (Fig. 24) on the draw -out rail (Fig. 24).
 - I Do not leave the ACB body on the draw-out rail pulled out.

-29- KRB-**5258**

- 4) If the ACB has the breaker fixing bolts (Fig. 23 @), make sure the bolts are loosened and, holding both the grips (Fig. 23 @), firmly push the breaker body into the draw-out cradle.
- 5) Push the rail stoppers (Fig. 23 @) outward on both sides of the draw-out cradle (Fig. 23 @) to unlock the draw-out rail, and then push the rail ends to insert the rail until it stops. The draw-out rail will be locked again by the stoppers.

4-2-3-2. Moving the breaker body from the ISOLATED position to the TEST position

- 1) Make sure the ON-OFF indicator (Fig. 23 @) shows "OFF". (If the ACB remains closed, the draw-out handle (Fig. 23 O) cannot be inserted).
- 2) Unlock the position lock lever (Fig. 23 04) if locked. See section 4-5.
- 3) Insert the draw-out handle into the draw-out handle insertion hole (Fig. 23 @) and slowly turn clockwise until the position indicator (Fig. 23 @) shows "TEST".
 - I The ACB cannot be closed as long as the draw-out handle is in the draw-out handle insertion hole. To close the ACB e.g., for ON-OFF testing, remove the draw-out handle.

4-2-3-3. Moving the breaker body from the TEST position to the CONN. position

- 1) Open the ACB. (If the ACB remains closed, the draw-out handle (Fig. 23 0) cannot be inserted).
- 2) Unlock the position lock lever (Fig. 23 ¹) if locked. See section 4-5.
- 3) Press the release button (Fig. 23 @). The release button will be locked depressed.
- 4) Insert the draw-out handle into the draw-out handle insertion hole (Fig. 23 $^{\circ}$) and turn clockwise until the position indicator (Fig. 23 $^{\circ}$) shows "CONN." and the handle cannot be turned with its max. operating torque (14.7 N-m).

Turning the draw-out handle will unlock the release button.

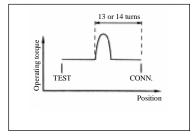


Fig. 25 Handle operating torque

- When the main contact starts engaging, the force required to turn the handle will increase as shown in Fig. 25. This symptom does not mean a malfunction. Continue to turn the handle. Rotating the handle more 13 or 14 turns moves the breaker body to the CONN. position, where the handle cannot be turned with its max. operating torque.
- 5) Remove the draw-out handle.
- 6) Tighten the breaker fixing bolts (Fig. 23 2), if used, to lock the breaker body.

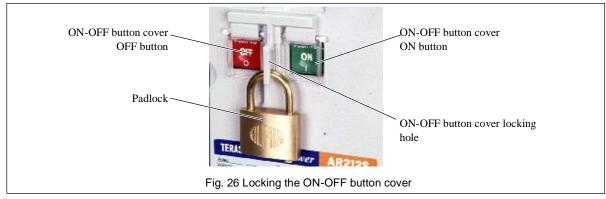
KRB-5258 -30-

4-2-4. Contact status of auxiliary and position switches

Tables 17 and 18 show the contact status of auxiliary switches and position switches respectively.

Table 17 Contact statues of auxiliary switches

ACB state Breaker body position	ON	OFF	Status of a-contact	Status of b-contact
CONN.			ON	OFF
COMN.			OFF	ON
TEST			ON	OFF
TEST			OFF	ON
ISOLATED			ON	OFF
ISOLATED			OFF	ON
Removed			ON	OFF
I/GIIIOVEQ			OFF	ON


Table 18 Contact statues of position switches

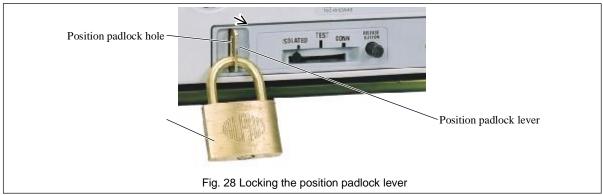
Position indication Switch	ISOLATED	TEST	CONN.	Status of a-contact	Status of b-contact
CONN. position indication				ON	OFF
CONN. position indication				OFF	ON
TEST position indication		ф		ON	OFF
1E31 position indication				OFF	ON
ISOLATED position indication	- 1			ON	OFF
130LATED position indication				OFF	ON
				ON	OFF
Inserted position indication *				OFF	ON

^{* &}quot;Inserted" means that the breaker body is in the CONN., TEST, or ISOLATED position.

4-3. ON-OFF Button Cover Locking Procedure

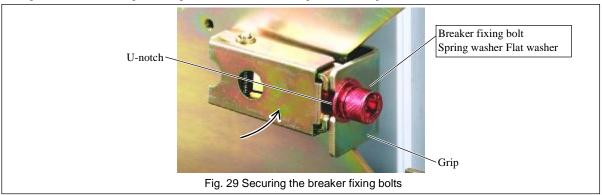
Lock the button cover using a padlock with ø6 shackle (up to 3 padlocks can be used) as shown in Fig. 26. The ON-OFF button cover is locked and the ON and OFF buttons cannot be operated.

-31- KRB-5258


4-4. Lock in OFF Procedure

- 1) Open the OFF button cover shown in Fig. 27.
- 2) Raise the OFF-lock tab and close the button cover.
- 3) Lock the button cover using a padlock with ø6 shackle (up to 3 padlocks can be used) as shown in Fig. 27. The OFF button is locked depressed, which disables the ON button.

4-5. Position Lock Lever Locking Procedure


- 1) Move the breaker body to the desired position (CONN, TEST or ISOLATED).
- 2) Pull out the position lock lever shown in Fig. 28.
- 3) Lock the position padlock lever using a padlock with ø6 shackle (up to 3 padlocks can be used) as shown in Fig. 28. This prevents the draw-out handle from being inserted into the draw-out handle insertion hole, i.e., the breaker position cannot be changed.

-32-

4-6. Breaker Fixing Bolt Securing Procedure

- 1) Move the breaker body to the CONN. position.
- 2) Loosen the breaker fixing bolt shown in Fig. 29, move the spring and flat washers close to the bolt head and push the bolt into the U-notch of the grip.
- 3) Tighten the breaker fixing bolt using the draw-out handle. This procedure is required for both the sides of the ACB.

4-7. OCR Cover Locking Procedure

Lock the OCR cover using a padlock with ø6 shackle as shown in Fig. 30. The OCR cover cannot be opened, which prevents OCR settings from being changed.

-33- KRB-**5258**

5. OVERCURRENT RELEASE (OCR)

Options available for the type AR ACBs include a highly reliable, multi-functional overcurrent release (OCR) with a built-in 16-bit microprocessor.

This OCR is supplied with power through a CT and main circuit current signals from current sensors. When the OCR detects a fault, it sends a trip signal to the magnet hold trigger (MHT) or provides a trip indication or an alarm depending on the type of the fault. The OCR uses the root mean square sensing for the long time delay (LTD), and N-phase protection (NP) functions. (When six times the CT rated primary current is exceeded, the peak value sensing is used instead.) If a harmonic current flows through the ACB continuously, the root mean square sensing allows the ACB to operate normally.

The OCR is available in the type that follows:

I AGR-11BL L characteristic for general feeder (for works and transformer protection)

5-1. Specifications

Specifications of the OCR are shown in Table 19.

Table 19 Specifications of type AGR-11B OCR (I : Standard, i : Optional, -: Not applicable)

Application		For gene	Reference	
Characteristic		-	section	
Type designation	ı	AGR-11BL-AL	AGR-11BL-GL	Section
Protective function	Long time delay trip (LT) Short time delay trip (ST) Instantaneous trip (INST)	I	I	
Turiction	Ground fault trip (GF)	=	I	5-2.
	N-phase protection	i	i	
Protection	I ² t ON/OFF (ST)	i	i	
characteristic	I ² t ON/OFF (GF)	=	ı	
Trip indication	Group indication LED and contact output	I	I	5-4.
Test function		=	-	_
Control power su	upply	Not required	Not required	3-3.

KRB-5258 -34-

5-2. Characteristics

5-2-1. L characteristic for general feeder

A general view, characteristic settings, and characteristic curves of the type AGR-11BL OCR (with L characteristic) are shown in Fig. 33, Table 20, and Fig. 34 respectively.

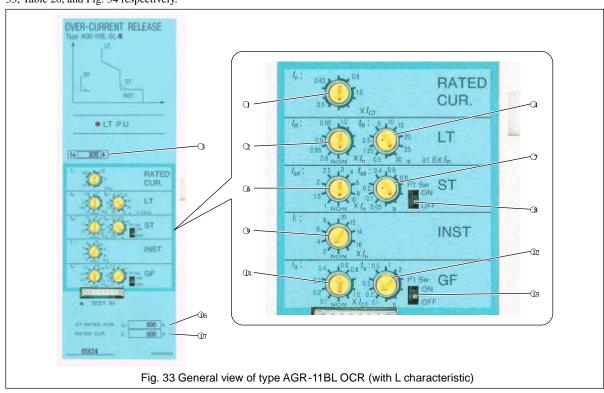
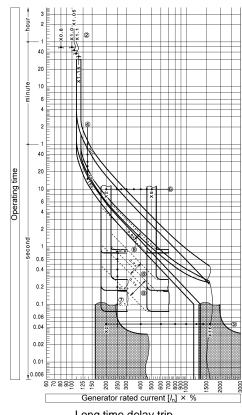


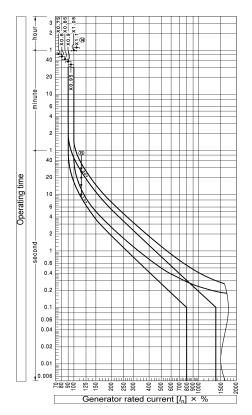
Table 20 Settings of type AGR-11L OCR (with L characteristic)

	= ::												
No.	Setting item	Symbol	Setting range										
	Rated current*1	I _n	CT rated primary current [I _{CT}] × (0.5-0.63-0.8-1.0) (A)										
			Applied [I _{CT}] (A)	2	200	400	800	1250	1600	2000	2500	3200	4000
			Rated [/c _T] × 0.5	1	00	200	400	630	800	1000	1250	1600	2000
Q			current $[I_{CT}] \times 0.63$	1	25	250	500	800	1000	1250	1600	2000	2500
			$[I_{\rm n}]$ $[I_{\rm CT}] \times 0.8$	1	60	320	630	1000	1250	1600	2000	2500	3200
			(A) [I _{CT}] × 1.0	2	200	400	800	1250	1600	2000	2500	3200	4000
0	Long time delay trip pickup current (continuous)	I _R	$[I_n] \times (0.8 \cdot 0.85 \cdot 0.9 \cdot 0.95 \cdot 1.0 \cdot NON)$ (A) • Non tripping at not more than $[I_n] \times 1.05$, Tripping at more than $[I_n] \times 1.05$ and not more than $[I_n] \times 1.2$										
(3	N-phase protection trip pickup current (continuous)	I _N	$[I_{CT}]$ × (0.4-0.5-0.63-0.8-1.0): Fixed to a single point • Non tripping at not more than $[I_N]$ × 1.05, Tripping at more than $[I_N]$ × 1.05 and not more than $[I_R]$ × 1.2										
C)	Long time delay/N-phase protection trip timing	t _R	Long time delay: $(0.5-1.25-2.5-5-\underline{10}-15-20-25-30)$ (sec) at 600% of $[I_{\rm R}]$, Tolerance: $\pm 15\%$, $+0.15$ s -0 s N-phase protection: $(0.5-1.25-2.5-5-\underline{10}-15-20-25-30)$ (sec) at 600% of $[I_{\rm R}]$, Tolerance: $\pm 15\%$, $+0.15$ s -0 s										
Œ	Short time delay trip pickup current	I _{sd}	[/ _n] x (1-1.5-2-2.5-3-4- <u>6</u> -8-10-NON) (A), Tolerance: ±15%										
Œ	Short time delay trip timing	$t_{\sf sd}$	Relaying time (ms.)			50		00	200	<u>400</u>		600	800
			Resettable time (ms.)			25		75	175	375		575	775
			Max. total clearing time	(ms.)		120	17	70	270	470		670	870
(3)	Short time delay trip I ² t mode	l ² t t _{sd}	ON/OFF										
9	Instantaneous trip pickup current	l _i	[In] x (2-4-6-8-10-12-14- <u>16</u> -NON) (A), Tolerance: ±20%										
Οl	Ground fault trip pickup current *2	I _g	$[I_{CT}] \times (0.1-0.2-0.3-0.4-0.6-0.8-1.0-NON)$ (A), Tolerance: $\pm 20\%$										
Û2	Ground fault trip timing	t _q	Relaying time (ms.)			100	20	00	300	500	1	000	2000
			Resettable time (ms.)			75	17	75	275	475		975	1975
			Max. total clearing time	(ms.)		170	27	70	370	570	1	070	2070
Û3	Ground fault trip I ² t mode	l²t t _g	ON/OFF										
Û6	CT rated primary current display-only field												
① 7	Factory-set rated current display-only field							•					

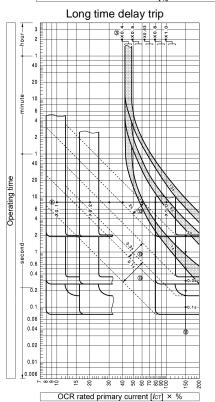
I Underlined values are default settings.

-35-**KRB-5258**


¹ NON setting disables protective functions. If the short time delay trip function and the instantaneous trip function are set to NON, however, the fail-safe operates so that:


[•] The instantaneous trip function is activated at [I_n] × 16 or more if the short time delay trip function and the instantaneous trip function are set to NON.

I A pickup current means the threshold by which the OCR determines whether or not an overcurrent occurs. When the current flowing through the OCR exceeds the pickup current setting provided that [I_n] × 1.05 < pickup current setting ≤ [I_n × 1.2, the OCR starts counting the time for tripping. Once the current flowing through the OCR reduces to less than the pickup current setting, time count is reset.


^{*1:} A change in rated current setting results in changes in long time delay, short time delay, and instantaneous current settings accordingly.

^{*2:} The ground fault trip pickup current setting should not exceed 1200A.

Short time delay trip, instantaneous trip

N-phase protection trip and ground fault trip

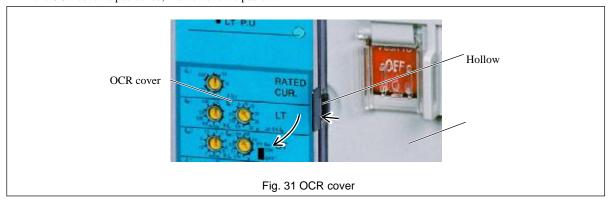
Note 1: The operating time (t) at a long time delay (or N-phase protection) trip pickup current setting is given by

 $\begin{array}{ll} I_R = & \text{Long time delay (or N-phase} \\ \text{protection) trip} \\ \text{pickup current setting} \\ t = -27.94 t_R ln & \left\{1 - \frac{\left(1.125 I_R\right)^2}{i^2}\right\} \pm 15\% \end{array} \text{ and }$

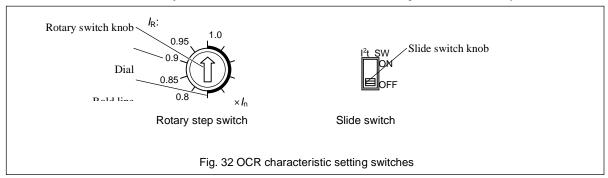
Note 2: The short time delay trip function has precedence over the long time delay trip function. The OCR operates at the short time delay trip timing even in those current ranges in which the long time delay trip time setting is shorter than the short time delay time setting.

Fig. 34 Characteristic curves of type AGR-11BL OCR (with L characteristic)

5-3. OCR Setting Procedure


! CAUTION

- I OCR setting changes must be performed by competent persons.
- 1 Use a small flatblade screwdriver with a torque of not more than 0.1 N·m or a force of not more than 0.1 N when adjusting the setting switches (rotary step switches or slide switches). An excessive torque or force may cause a malfunction.


The following describes how to set the OCR.

- 1) Open the ACB.
- 2) Push the right end of the OCR cover to the left at the hollow on the front cover to unlatch and open the OCR cover. See Fig. 31.

 If the OCR cover is padlocked, first remove the padlock.

- 3) Use rotary step switches and slide switches to set the OCR. See Fig. 32.
 - l Rotary step switches must be adjusted with a small flatblade screwdriver. Turn switch knobs stepwise and do not stop the knobs halfway between calibration markings. A bold line on a switch dial means the same settings.
 - I Slide switches must also be adjusted with a small flatblade screwdriver. Do not stop switch knobs halfway.

- 4) Close the OCR cover.
- 5) After setting changes are made, it is recommended that the settings be checked with e.g., a type ANU-1 OCR checker (optional).

-37- KRB-**5258**

5-4. Operation Indication

The OCR has LEDs on the front panel to provide operation indications as shown in Fig. 35 and Table 21. It also outputs operation signals to contacts.

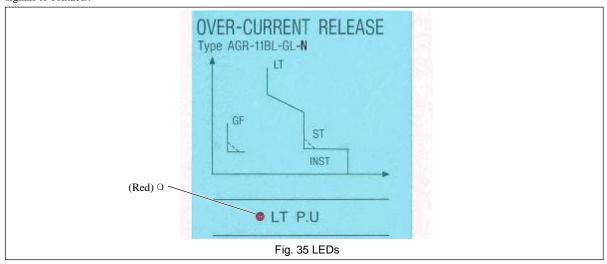


Table 21 Operation indication

	Control	Operation	LED			Contact output			
Type of OCR	power		Position	State			Terminal No.	Sta	State
	supply		FUSITION	Normal	pickup	Trip/Alarm	See Fig. 14	Normal	Trip/Alarm
AGR-11BL-AL AGR-11BL-GL	Not required	Long time delay trip (LT) N-phase protection (NP) Short time delay trip (ST) Ground fault trip (GF)	0	OFF	Flash	OFF	ODS , CDS	OFF	Turn OFF automatically after ON for 40 ms or more *1
		Instantaneous trip (INST)			OFF				more i

^{*1:} A self-hold circuit is required.

KRB-5258 -38-

6. MAINTENANCE, INSPECTION AND PARTS REPLACEMENT

This chapter describes the maintenance and inspection procedure for the AR series ACBs.

The service life of the ACB depends on the working and environmental conditions. The ACB is exposed to mechanical and electrical stresses and thus suffers gradual degradation during use, which will increase the possibility of malfunctions. Preventive maintenance and periodical inspection are very important to avoid any functional degradation, prevent malfunctions, extend the service life, and ensure safe operation.

The appropriate frequency of maintenance and inspection of the ACB varies depending on the installation conditions, the number of tripping operations, the magnitude of breaking current, and other factors that are to be considered empirically. As a guideline, Table 22 shows the recommended inspection frequency. See section 6-1 for detailed maintenance and inspection procedures.

Table 22 Frequency of maintenance and inspection

Category	Category Working and environmental			equency in interval or number of open/close cycles					
Odlogory	conditions	level	Interval	Number of open/close cycles					
	Not so dusty,Not so much corrosive gases,	Normal/ Detailed	Every year or 2 yearsEvery year after 3 years	Open/close condition	800AF or less	1250AF - 2500AF	3200AF or more		
	Ambient temperature: 35°C		since installation	Nearly no current level	Every 1000 cycles				
	or lower Not so humid,		Every half year after 6 years since installation	Rated current level	Every 1000 cycles	Every 500 cycles	Every 100 cycles		
Normal	Number of open/close cycles per day: 2 or less Ex. Switchboards in electric installation rooms, Control rooms,	Thorough	 Every 5 or 6 years Every 4 years after 6 years since installation Every year or 2 years after 10 years since installation 	Every 4000 cycles					
	Building installation	Overhaul	When abnormality is found d	uring normal or t	ring normal or through inspection				
	Highly dusty, Much corrosive gases, Ambient temperature: 45°C or higher, Highly humid, Number of open/close cycles per day: 4 or more, Always exposed to vibrations Ex. Iron or chemical plants Engine rooms (without ventilation), Cogeneration installation,	Normal/ Detailed	Every year Every half year after 2 years since installation	Open/close condition	800AF or less	1250AF - 2500AF	3200AF or more		
				Nearly no current level	Every 1000 cycles Every 500 cycles after 1000 cycles				
Harsh				Rated current level	Every 1000 cycles Every 500 cycles after 1000 cycles	• Every 500 cycles • Every 250 cycles after 500 cycles	Every 100 cycles Every 50 cycles after 100 cycles		
		Thorough	Every 2 or 3 years Every 2 years after 6 years since installation Every year after 10 years since installation	• Every 2500 - 3000 cycles • Every 2000 cycles after 3000 cycles					
	Ferryboats Overhaul When abnormality is found during normal or through inspe								
	On an /along amounting to the	Thorough		Open/close condition	800AF or less	1250AF - 2500AF	3200AF or more		
Abnormal	 Open/close operation due to overload, Tripping due to shortcircuit, 		When abnormality occurs	Overcurrent level (approx. 6 times the rated current)	Every 25 cycles	Every 25 cycles	Every 25 cycles		
	Accidentally submerged			Level exceeding overcurrent level	Every time	Every time	Every time		
		Overhaul	When ACB is deemed to be repairable at through inspection						

Normal inspection includes inspection and actions that can be done only with removing the arc chamber, contacts, front cover and the like. Normal inspection can be performed by the user. Terasaki also provides normal inspection service.

I About the service life

The expected service life of AR series ACBs is shown in the "Endurance in number of ON-OFF cycles" rows in Tables 3 and 4.

"With maintenance" in the tables means that appropriate inspection, maintenance, repair, and parts replacement are performed according to the instructions in this chapter. But, when an ACB performs three times of tripping operation nearly at the rated breaking current (three standard operating duty cycles), it is at the end of its safe service life even if thorough inspection is done every time it trips open. Such an ACB will be apt to suffer malfunctions and should be replaced without delay to avoid frequent inspection and parts replacement. See section 6-2 for detailed parts replacement procedures.

-39- KRB-**5258**

I Detailed inspection includes inspection, actions, and parts replacement that will be done to prevent functional degradation caused by aging or the like when abnormality is found during normal inspection.

You are recommended to use Terasaki's detailed inspection service.

¹ Thorough inspection must be left to Terasaki. Overhaul will be done in a Terasaki's factory.

6-1. Inspection Procedures

! CAUTION

- ACB maintenance, inspection and parts replacement must be performed by competent persons.
- Do not touch ACB current carrying parts and ACB structural parts close to a current carrying part immediately after the ACB trips open. Remaining heat may cause a burn.
- Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage from the main and control circuits. Otherwise, electric shock may result.
- I Take care to avoid adhesion of dust to main and control circuit contacts. Dust on the contacts may result in a fire.
- Prior to commencing maintenance, inspection, or parts replacement, make sure that the closing springs are released and the ACB is open. Otherwise, unintentional open/close operation may lead to fingers or tools to be pinched by the open/close mechanism, resulting in injury.
- l Retighten the terminal screws periodically to the specified torque. Otherwise, a fire could result.
- I When grinding a contact tip, be careful to prevent grinding dust from entering the breaker operating mechanism. Wipe the tip clean after grinding. Otherwise, a malfunction or fire could result.
- Do not perform dielectric withstand/insulation resistance tests under other conditions than specified. Doing so may cause a malfunction.
- Be sure to reinstall the arc chamber if removed. Failure to do so or incorrect installation of the arc chamber may result in a fire or burn
- When charging the closing springs or performing open/close operation of the ACB with the arc chamber, front cover and/or side covers removed during maintenance or inspection work, do not touch parts other than those required for the above operation (charging handle, ON/OFF buttons, moving core and the like). Doing so may cause fingers or tools to be pinched, resulting in injury.
- When replacing an auxiliary, do not damage the control wire for the auxiliary or pinch the wire between the auxiliary and the breaker body. Doing so may cause a malfunction.

To ensure safety, be sure to perform the preparation work described in section 6-2-1 unless otherwise specified in the inspection procedures. The normal inspection procedure and the detailed inspection procedure are shown in Tables 24 and 25 respectively.

I Information you are requested to state

If you want us to take action against an abnormality, contact us while providing us the information shown in Table 2 3 below. Our contact is shown at the end of this manual.

Table 23 Information you are requested to state

Item	Description	Reference
Туре	AR poles with draw-out cradle	Rating nameplate
Serial No.		realing nameplate
Main circuit rated current	o AC o DCV	Product Specifications
Rated voltage	A	I _n
Spring charging method	O Manual charging O Motor charging Rated operation voltage: O AC O DCV	CLOSING section on specification nameplate
Overcurrent release	O Non O Equipped Type: AGR-11 Rated control voltage: O AC O DC V	OCR section on specification nameplate
Electrical tripping device	O Shunt trip device (SHT) Rated voltage: O AC O DCV O Undervoltage trip device (UVT) Rated voltage: O AC O DCV	TRIPPING section on specification nameplate
Special specification	SR: SS: SO:	OTHERS section on specification nameplate
Working conditions (Voltage, current, environment)		-
Symptom of abnormality (in detail): When, How, Where, etc.)		-
Inspection done/actions taken (if any)		6-1.
Status quo and schedule	Permissible power cut date and time: Place where you want us to take action:	-

The contents of the nameplate should be provided in detail.

KRB-5258 -40-

I Related documents such as product specifications and inspection reports should be provided.

I If you have a desired inspection and maintenance schedule, let us know the schedule at your earliest convenience. Our service representative could not meet your last minute requirement.

Table 24 Normal inspection procedure

Check point	No.	Check item		Descrip	tion				
	1	Discoloration of conductors	Check connection conductors, main circuit terminals, and current carrying parts for heat discoloration. If such a symptom is found, contact us.						
	2	Parts missing	Check that screws, bolts, nuts, ware missing, contact us.	rashers, springs, re	tainers and the like are	not missing. If any parts			
General	3	Damage to parts	Check for deformation, cracks, ch	nips, or other dama	ge of parts. If damage is	found, contact us.			
-	4	Dust	Check that no dust is accumulated in ACB. If dust is accumulated, use vacuum cleaner to remo						
Main/aantral	4	accumulation	dust and wipe off with dry, clean cloth.						
Main/control circuit terminals See 2-3.	5	Connections	Check main circuit terminal screws, ground terminal screw, auxiliary switch terminal screws, control circuit terminal screws, and position switch terminal screws for looseness. If loose, tighten to specified torque.						
Main/control circuit contacts	6	Surface condition	Check that contacts have no dust accumulation and discoloration. If dust is accumulated, use vacuum cleaner to remove dust and wipe off with dry, clean cloth. If surface is discolored badly, polish it with #200 sandpaper. * For main circuit contacts, apply contact grease (SS grease, No. F-5G, FUJI KAGAKU SANGYO) to contact surface after cleaning. I Excessive grease may foster dust accumulation. Grease should be applied lightly. I Blackening of contacts is caused by oxidation or sulfuration and has no harmful effect except in extreme cases. If heat discoloration, arc marks, roughness, or peeling of plating layer is found, contact us.						
Arc chamber See 6-2-2.	7	Dust accumulation /Damage	Remove arc chamber and check it for foreign object or dust accumulation, deformation, cracks, chips and other damage. If foreign matter or dust is accumulated, use vacuum cleaner to remove foreign matter of dust and wipe off with dry, clean cloth. If metal spatters are adhered, use sandpaper to remove them. * If arc chamber has stubborn adherents suffers damage, replace arc chamber.						
Contacts See 6-2-2, 6-2- 3 and 6-2-4.	8	Surface condition	Remove arc chamber and check contact circumference, contacts, and contact tips for foreign object or dust accumulation, deformation, cracks, chips and other damage. If dust is accumulated, use vacuum cleaner to remove dust and wipe off with dry, clean cloth. If contact tips are badly discolored or roughened, polish with #200 sandpaper. * If contact tip suffers damage or is less than 0.7 mm thick after polishing, replace both moving and stationary contacts. I Blackening of contact tips is caused by oxidation or sulfuration and will be removed during closing operation. It has no harmful effect except in extreme causes. If heat discoloration is found, perform detailed inspection.						
	9	Looseness of screws	Check moving and stationary cor	ntact mounting scre	ws A and B for loosenes	s. If loose, retighten.			
Main circuit, Arc chamber See 6-2-2.	10	Insulation resistance	Use DC500V Megger to check that insulation resistance between main circuit terminals, between main circuit terminal group and ground, and between ends of adjacent grids exceeds 5M ohm. If resistance does not exceed 5M ohm, use sandpaper to remove carbonized portions of insulation around contacts or current carrying parts and/or spatters adhered to arc chambers and arc extinguishing grids. If problem persists, contact us.						
Operating mechanism See 6-2-7.	11	Internal mechanism	With OCR removed, check internal mechanism for missing parts, deformation, cracks, chips, foreign mater or dust accumulation, breakage of springs, and rust. If foreign matter or dust is accumulated, use vacuum cleaner to remove foreign matter of dust and wipe off with dry, clean cloth. If any parts are missing or damaged or springs are broken, contact us.						
Control circuit See 6-2-5.	12	Wiring	Remove side and front covers, check that wiring is properly connected, and not disconnected nor damaged. If incorrect connection is found, connect correctly. If disconnection or damage is found, contact us.						
		Operation	Check that auxiliary switches operate as shown to the right.	State of operation lever	Current conducting between _11 and _12	Current conducting between _11 and _14			
A 22 -	13		If not so, replace switches.	Natural position	100 m Ω or less	Non			
Auxiliary switches				Uppermost lift position	Non	100 mΩ or less			
See 6-2-9.	14	Auxiliary contacts	Remove auxiliary switches and contacts.	check contacts for	roughness. If roughen	ed excessively, replace			
	15	Looseness of screws	ess of Check screws of auxiliary switches for losseness. If losse, retighten						
Operation	16	Draw- out/insertion mechanism	Draw out and insert breaker body to check that draw-out handle can be turned with max. operating torque or less, position indictor provides correct indication, release button operates normally, and no abnormal sound is heard during handle operation. If abnormality is found, contact us.						
related mechanism	17	UVT	With breaker body in ISOLATED position, charge closing springs manually and attempt closing ACB to make sure ACB cannot be closed. If ACB can be closed, perform detailed inspection.						
See 4-1 and 4- 2.	18	Operation mechanism, LRC, SHT and UVT	With breaker body in TEST position and operation mechanism, SHT and UVT supplied with power, perform closing spring charging operation and manual and electrical open/close operation several times to check that charge indicator, ON-OFF indicator and ON-OFF cycle counter provide correction indication and no abnormal sound is heard. If abnormality is found, perform detailed inspection.						

^{*} Take care to avoid grinding dust from entering the ACB. Wipe contact surfaces clean of grinding dust.

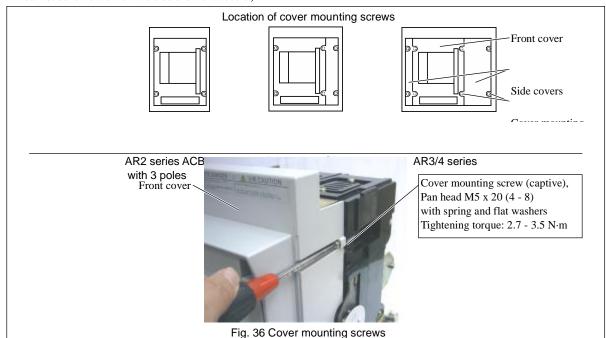
-41- KRB-5258

Table 25 Detailed inspection procedure

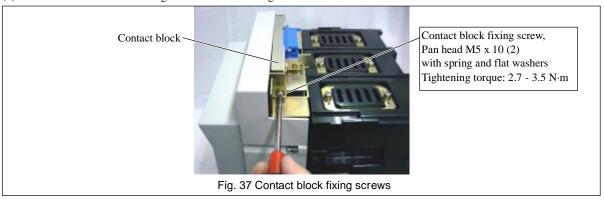
Check point	No.	Check item Parting	Description With ACB open, remove arc chamber and, using feeler gauge, make sure distance between moving			
	1	distance	and stationary contact tips is 20±1mm. If not so, replace both moving and stationary contacts. If it is			
Contacts See 6-2-2, 6-2-	1		useless to replace contacts, contact us.			
	2	Engagement	Insert 3.5 - 4.0-mm-dia x 50-mm-length rod into engagement measuring hole vertically until it stops and measure protrusion of rod when ACB is open and closed. Make sure difference in protrusion i following: line side; 2.7-3.4mm, load side; 2.7-4.0mm. (The difference of the value of line side and load side must not exceed 1.0mm.) If not so, replace both moving and stationary contacts. If it is useless to replace contacts, contact us.			
3 and 6-2-4	3	Displacement	With ACB closed, remove arc chamber and, using graduated ruler, make sure displacemen between corresponding contact tips is within 2 mm. If displacement is 2 mm or more, replace bot moving and stationary contacts. If it is useless to replace contacts, contact us.			
	4	Resistance	With ACB closed, remove arc chamber and, using tester, make sure resistance between moving and stationary contact tips is not more than 100 $\mu\Omega$. If not so, replace both moving and stationar contacts. If it is useless to replace contacts, contact us. After inspection, open ACB and discharge closing springs.			
Current sensors See 6-2-3.	5	Looseness of screws	Check current sensor mounting screws for looseness. If loose, retighten.			
000 0 2 0.	6	Coil resistance	Disconnect hand connector (green) and, using tester, measure coil resistance between terminals			
	7	Length and stroke of	and make sure it is within range specified in Table 10. If not so, replace LRC. Remove LRC and, using vernier caliper, make sure plunger length is 24.2 - 24.8 mm in natural state and protrusion of plunger is 6.3 - 7 mm when moving core is pushed in. If not so, replace LRC.			
Latch release coil (LRC)	8	plunger Hand	Check that hand connector (green) is connected to ACB hand connector (green) correctly.			
See 6-2-5.		connector Looseness of	incorrect, connect correctly.			
	9	screws	Check LRC mounting screws for looseness. If loose, retighten.			
	10	Mechanical motion	With closing springs charged, check that pushing moving core results in ACB being closed slowly and releasing moving core results in the core being restored smoothly. If not so, replace LRC. If it is useless to replace LRC, contact us. After inspection, open ACB and discharge closing springs.			
	11	Coil resistance	Disconnect hand connector (black) and, using tester, measure coil resistance between terminals and make sure it is within range specified in Table 11. If not so, replace SHT.			
Ol	12	Length and stroke of plunger	Remove SHT and, using vernier caliper, make sure plunger length is 24.2 - 24.8 mm in natural state and protrusion of plunger is 6.3 - 7 mm when moving core is pushed in. If not so, replace SHT.			
Shunt trip device (SHT)	13	Hand connector	Check that hand connector (black) is connected to ACB hand connector (black) correctly. I incorrect, connect correctly.			
See 6-2-6.	14	Looseness of screws	Check SHT mounting screws for looseness. If loose, retighten.			
	15	Mechanical motion	With ACB closed, check that pushing moving core results in ACB being opened slowly, and releasing moving core results in the core being restored smoothly. If not so, replace SHT. If it is useless to replace SHT, contact us. After inspection, discharge closing springs.			
	16	Coil resistance	Disconnect hand connector (red) and, using tester, measure coil resistance between terminals and make sure holding coil is rated at 410 - 510 Ω and attraction coil at 5.6 - 6.8 Ω . If not so, replace UVT.			
Undervoltage	17	Operation	Remove UVT and press in plunger, and make sure releasing plunger causes plunger to be smoothly restored. If not so, replace UVT.			
trip device (UVT) See 6-2-1.	18	Length and stroke of plunger	Remove UVT and, using vernier caliper, make sure plunger length is 32.5 - 33.5mm in natural state and plunger stroke is 6.5 - 7.5 mm. If not so, replace UVT.			
	19	Hand connector	Check that hand connector (red) is connected to ACB hand connector (red) correctly. If incorrect connect correctly.			
	20	Looseness of	Check UVT mounting screws for looseness. If loose, retighten.			
	21	screws Coil resistance	Disconnect hand connector (red) and, using tester, measure coil resistance between terminals and			
	22	Operation	make sure it is $1.8 - 2.2 \Omega$. If not so, replace MHT. Remove MHT and pull out moving core slowly, and make sure pushing moving core allows core to			
Magnet hold trigger (MHT) See 6-2-8.	23		be smoothly retracted and attracted If not so, replace MHT. Remove MHT and, using vernier caliper, make sure moving core length is 2.2 - 2.8 mm in pushed state and protrusion of moving core is 6.7 - 7.3mm in pulled-out state. If not so, replace MHT.			
See 0-2-0.	24	moving core Hand	Check that hand connector (red) is connected to ACB hand connector (red) correctly. If incorrect			
	25	connector Looseness of	connect correctly. Check MHT mounting screws for looseness. If loose, retighten.			
		screws	With breaker body assembled to original state, move breaker body to TEST position, supply ACE			
Charging motor and LRC	26	Electrical operation	With breaker body assembled to original state, move breaker body to TEST position, supply ACB with operation power, and attempt to perform motor charging and electrical closing operation with max. and min. voltages within permissible charging/closing voltage range to make sure ACB operates normally. (See Table 10). If ACB does not operate normally, contact us.			
SHT	27	Electrical operation	With breaker body assembled to original state, move breaker body to TEST position, close ACB, supply SHT with power, and attempt to perform electrical opening operation with max. and min. voltages within permissible closing voltage range to make sure ACB trips open normally. (See Table 11). If ACB does not trip open, contact us.			
UVT	28	Electrical operation	With breaker body assembled to original state, move breaker body to TEST position, charge closing springs, and make sure that ACB closes when UVT is supplied with attraction power. And decrease UVT supply voltage to make sure ACB opening voltage is within specified opening voltage range. (See Table 12.) If ACB does not operate normally, contact us.			
		· —	With breaker body assembled to original state, check OCR and MHT with type ANU-1 OCR checker			

KRB-5258

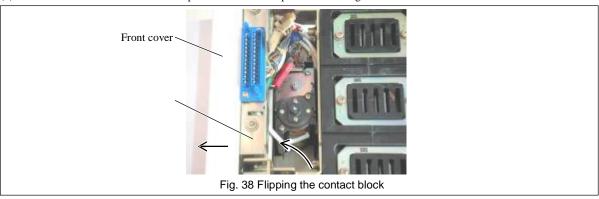
6-2. Parts Replacement Procedure

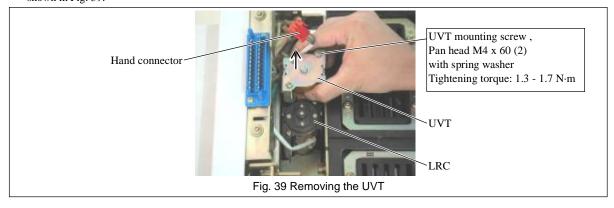

⚠ CAUTION

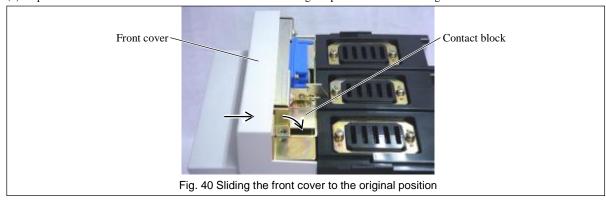
- ACB maintenance, inspection and parts replacement must be performed by competent persons.
- I Do not touch ACB current carrying parts and ACB structural parts close to a current carrying part immediately after the ACB trips open. Remaining heat may cause a burn.
- I Prior to commencing any work on the ACB, open an upstream circuit breaker or the like to isolate all sources of power/voltage from the main and control circuits. Otherwise, electric shock may result.
- I Take care to avoid adhesion of dust to main and control circuit contacts. Dust on the contacts may result in a fire.
- Prior to commencing maintenance, inspection, or parts replacement, make sure that the closing springs are released and the ACB is open. Otherwise, unintentional open/close operation may lead to fingers or tools to be pinched by the open/close mechanism, resulting in injury.
- Be sure to reinstall the arc chamber if removed. Failure to do so or incorrect installation of the arc chamber may result in a fire or burn
- I When replacing an auxiliary, do not damage the control wire for the auxiliary or pinch the wire between the auxiliary and the breaker body. Doing so may cause a malfunction.

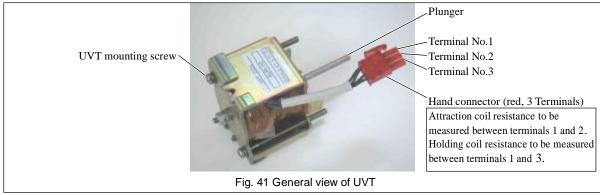

6-2-1. Preparation

Be sure to make the following preparations for parts replacement in order to ensure safety.

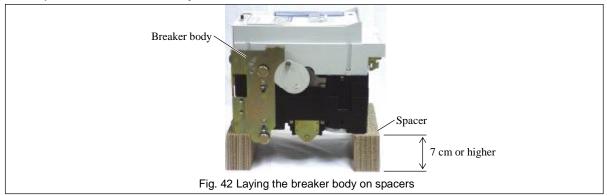

- 1) Open an upstream circuit breaker or the like to isolate all sources of power/voltage from the main and control circuits.
- 2) Draw out the breaker body to the removed position, and remove it using an optional lift er or lifting plate. Refer to sections 4-2-2 and 2-1-2.
- 3) Discharge the closing springs and open the ACB. The procedure varies depending on whether or not the ACB is equipped with the undervoltage trip device (UVT).
- I When the ACB is not equipped with the undervoltage trip device (UVT): Perform manual closing/opening operation of the ACB. Refer to sections 4-1-2 and 4-1-3.
- I When the ACB is equipped with the undervoltage trip device (UVT):
 - (1) Turn the cover mounting screws five or six turns to loosen as shown in Fig. 36. If the ACB is equipped with side covers, first remove the side covers and then loosen the front cover mounting screws. (The cover mounting screws are of captive type and cannot be removed from the side and front covers.)

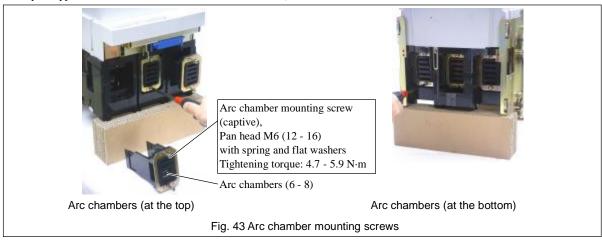

(2) Remove the contact block fixing screws as shown in Fig. 37.


(3) Slide the front cover to the left and flip the contact block up as shown in Fig. 38.

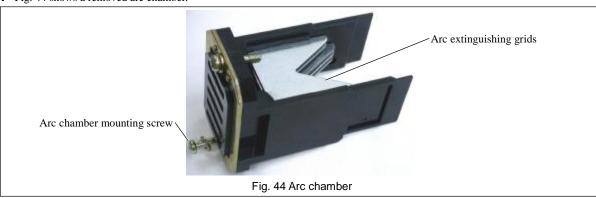

(4) Turn the UVT mounting screws eight or ten turns to loosen, disconnect the manual connector (red), and then remove the UVT as shown in Fig. 39.

(5) Flip the contact block down and slide the front cover to the original position as shown in Fig. 40.

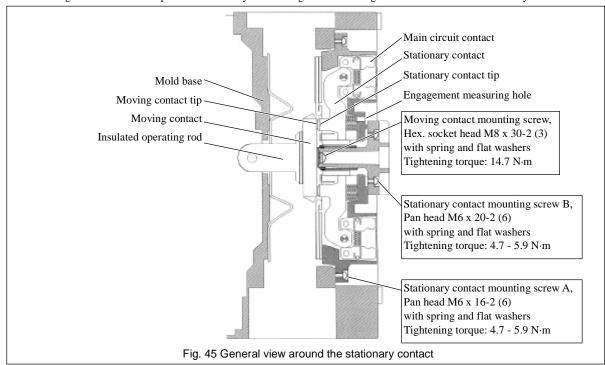

- (6) Perform manual closing/opening operation of the ACB. Refer to sections 4-1-2 and 4-1-3.
- (7) Reinstall each part or component in reverse order of removal after inspection. When installing the UVT, make sure the nameplate on the UVT can be viewed from the front of the ACB.
- I Fig. 41 provides the general view of the UVT.


6-2-2. Arc chambers

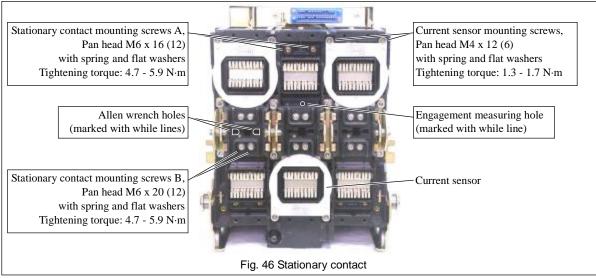
The following describes how to replace arc chambers.


- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) Carefully lay the breaker body on spacers with the backside down as shown in Fig. 42. The spacers must be at least 7-cm high to prevent deformation of protrusions on the breaker body backside, and have the size and strength that allow the breaker body to be safely laid on them. Take care to keep the main circuit contacts clean of dust.

3) Turn the arc chamber mounting screw eight or ten turns to loosen as shown in Fig. 43. (The arc chamber mounting screws are of captive type and cannot be removed from the arc chamber.)

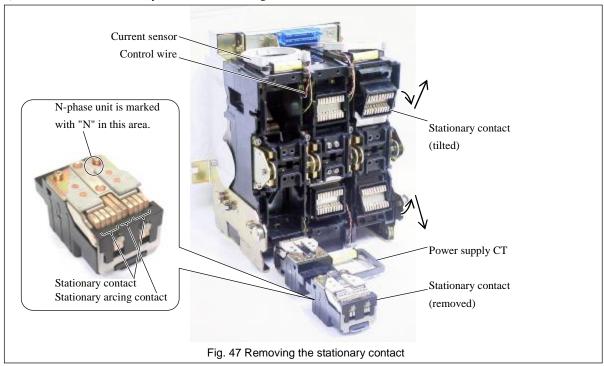


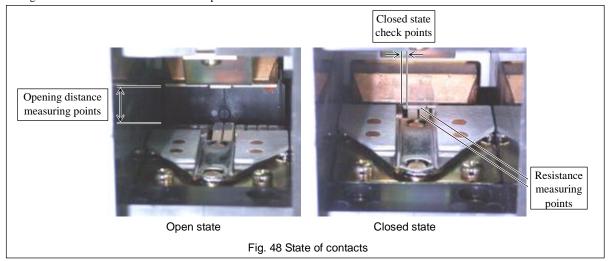
- 4) Holding the arc chamber mounting screw, remove the arc chamber.
- 5) Reinstall each part or component in reverse order of removal after inspection.
- Fig. 44 shows a removed arc chamber.



6-2-3. Stationary contact

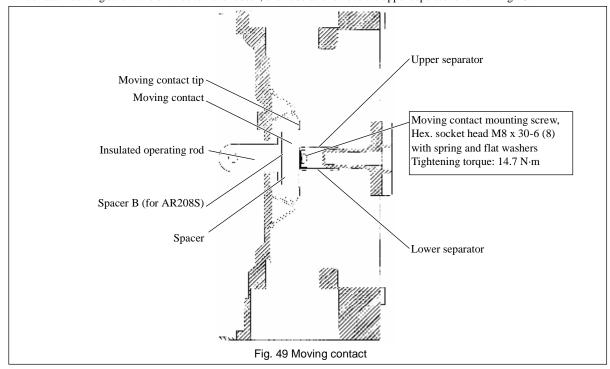
The following describes how to replace the stationary contact. Fig. 45 shows the general view around the station ary contact.

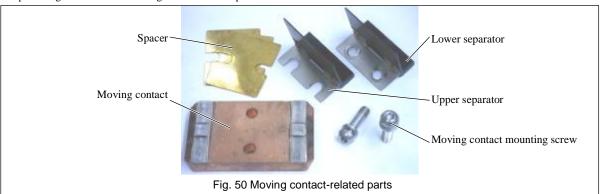

- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) Unscrew the current sensor mounting screws and remove the current sensor and the power supply CT located behind the sensor.
 Do not disconnect the control wire hand connectors from the current sensor and power supply CT. Place the removed current sensor and CT on the breaker body or floor while avoiding the control wire from being strained. See Fig. 46.


3) Unscrew stationary contact mounting screws A and B.

-47- KRB-5258

4) Tilt and remove the stationary contact as shown in Fig. 47.

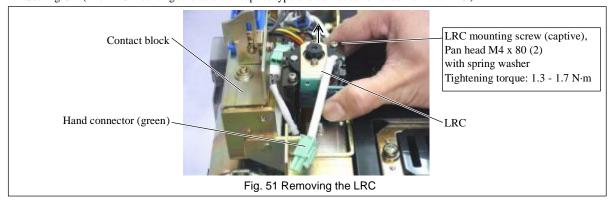

- 5) Reinstall each part or component in reverse order of removal after inspection. As to the moving contact-related parts, however, install the insulated operation rod, insulation plate, spacer, moving contact, upper separator, lower separator, flat washer, spring washer, and moving contact mounting screw in this order. See Fig. 56.
- 6) After installing the moving and/or stationary contact, be sure to perform 10 20 cycles of open/close operation and then retighten the contact mounting screws to the specified torque.
- I Fig. 48 shows the contacts in closed and open state.


6-2-4. Moving contact

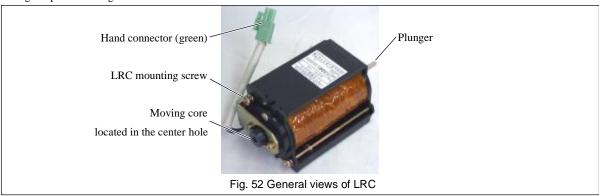
The following describes how to replace the moving contact.

- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) Remove the arc chambers and stationary contact. Refer to sections 6-2-2 and 6-2-3.
- 3) Insert an Allen wrench of a nominal diameter of 5 into each of the Allen wrench holes shown in Fig. 46, turn each moving contact mounting screw two or three turns to loosen, and raise and remove the upper separator shown in Fig. 49.

4) Supporting the spacers (the number of which varies depending on the poles), the moving contact, the lower separator, and the moving contact mounting screws by hand, turn the moving contact mounting screws additional two or three turns to remove these parts. Fig. 50 shows the moving contact-related parts.


- 5) Reinstall each part or component in reverse order of removal a fter inspection. As to the moving contact-related parts, however, install the insulated operation rod, insulation plate, spacer, moving contact, upper separator, lower separator, flat washer, spring washer, and moving contact mounting screw in this order. See Fig. 49.
- 6) After installing the moving and/or stationary contact, be sure to perform 10 20 cycles of open/close operation and then retighten the contact mounting screws to the specified torque.

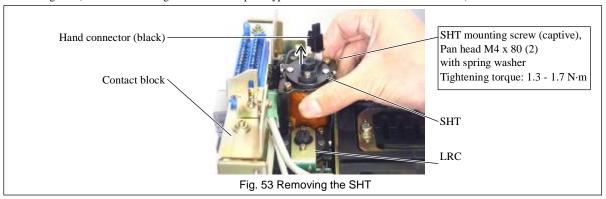
-49- KRB-**5258**


6-2-5 Latch release coil (LRC)

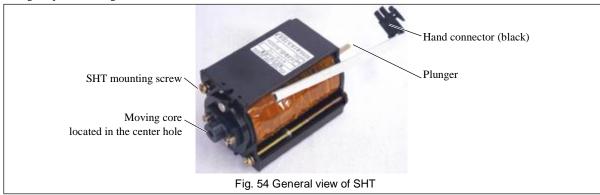
The following describes how to replace the latch release coil (LRC).

- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) If the ACB is not equipped with the fixed type undervoltage trip device, turn the cover mounting screws five or six turns to loosen as shown in Fig. 36. If the ACB is equipped with side covers, first remove the side covers and then loosen the front cover mounting screws. (The cover mounting screws are of captive type and cannot be removed from the side and front covers.)
- 3) Pulling the charging handle down, remove the front cover.
- 4) Remove the contact block fixing screws as shown in Fig. 37.
- 5) Flip the contact block up as shown in Fig. 38.
- 6) Turn the LRC mounting screws eight or ten turns to loosen, disconnect the manual connector (green), and then remove the LRC. See Fig. 51. (The LRC mounting screws are of captive type and cannot be removed from the LRC.)

- 7) Reinstall each part or component in reverse order of removal after inspection. When installing the LRC, make sure the nameplate on the LRC can be viewed from the front of the ACB.
- I Fig. 52 provides the general view of the LRC.



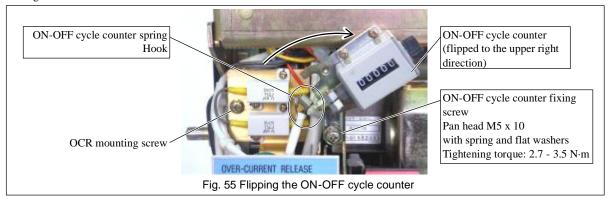
KRB-5258 -50-


6-2-6. Shunt trip device (SHT)

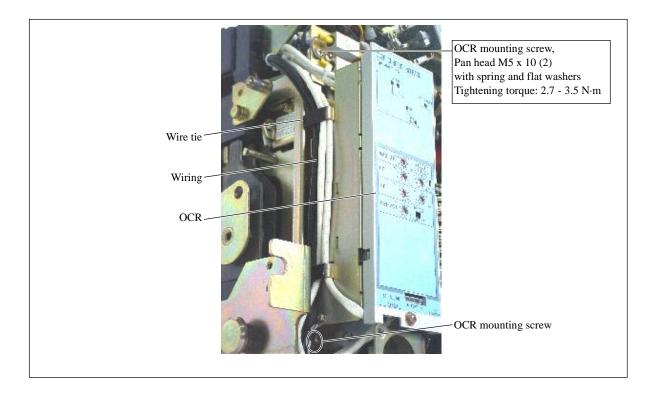
The following describes how to replace the shunt trip device(SHT).

- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) Turn the cover mounting screws five or six turns to loosen as shown in Fig. 36. If the ACB is equipped with side covers, first remove the side covers and then loosen the front cover mounting screws. (The cover mounting screws are of captive type and cannot be removed from the side and front covers.)
- 3) Pulling the charging handle down, remove the front cover.
- 4) Remove the contact block fixing screws as shown in Fig. 37.
- 5) Flip the contact block up as shown in Fig. 38.
- 6) Turn the SHT mounting screws eight or ten turns to loosen, disconnect the manual connector (black), and then remove the SHT. See Fig. 53. (The SHT mounting screws are of captive type and cannot be removed from the SHT.)

- 7) Reinstall each part or component in reverse order of removal after inspection. When installing the SHT, make sure the nameplate on the SHT can be viewed from the front of the ACB.
- I Fig. 54 provides the general view of the SHT.

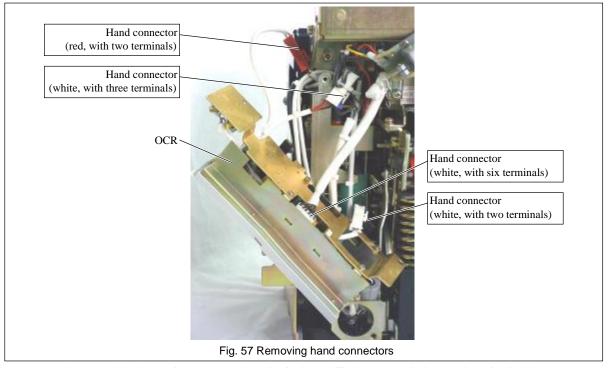


-51- KRB-5258

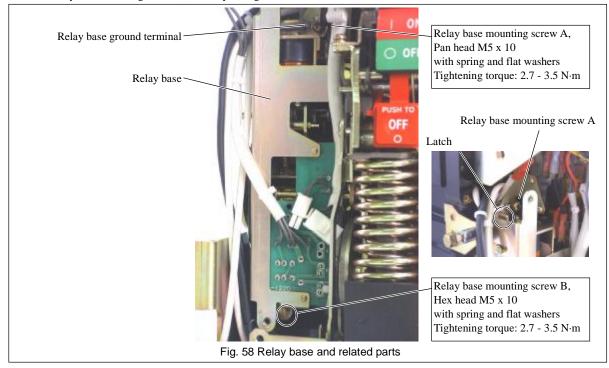

6-2-7. Control relay

The following describes how to replace the control relay.

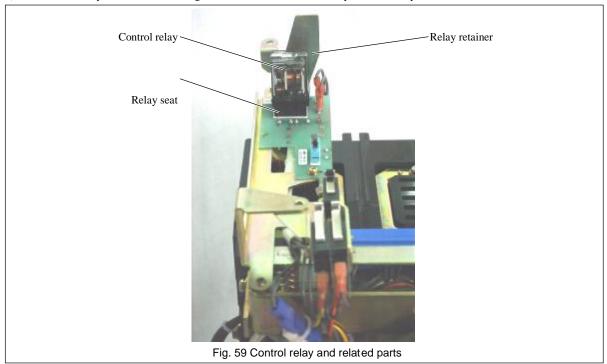
- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) If the ACB is not equipped with the fixed type undervoltage trip device, turn the cover mounting screws five or six turns to loosen as shown in Fig. 36. If the ACB is equipped with side covers, first remove the side covers and then loosen the front cover mounting screws. (The cover mounting screws are of captive type and cannot be removed from the side and front covers.)
- 3) Pulling the charging handle down, remove the front cover.
- 4) If the ACB is equipped with the ON-OFF cycle counter, disengage the hook located under the cycle counter spring, turn the cycle counter fixing screw two or three turns to loosen (do not remove), and flip the cycle counter up to the upper right direction. See Fig. 55.



4) Unscrew the OCR mounting screws and remove the wiring from the wire tie. See Fig. 56.

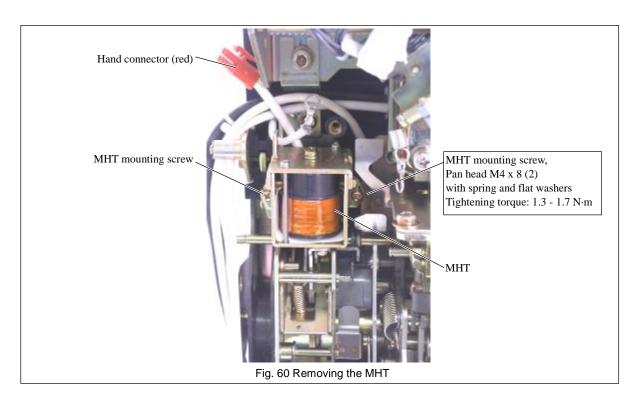


KRB-5258 -52-

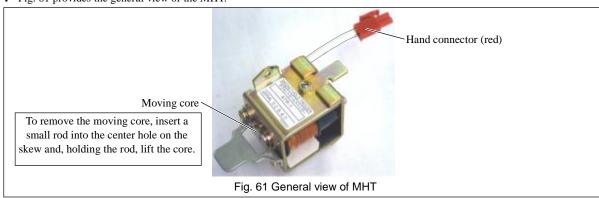

6) Pull out the OCR as shown in Fig. 57 and place it on the floor.

- 7) Unscrew the contact block mounting screws as shown in Fig. 37 and flip the contact clock up as shown in Fig. 38.
- 8) Unscrew relay base mounting screws A and B, raise the relay base to unlatch from other parts, remove the base and place it on the top of the breaker body. See Fig. 58.
- I When relay base mounting screw A, the relay base ground terminal will also be removed.

9) Remove the relay retainer shown in Fig. 59 and remove the control relay from the relay base.



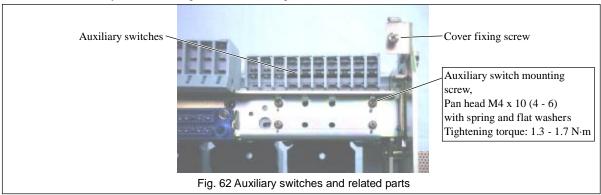
10) Reinstall each part or component in reverse order of removal after inspection. Do not forget to install the OCR ground terminal and the relay base ground terminal.


6-2-8. Magnet hold trigger (MHT)

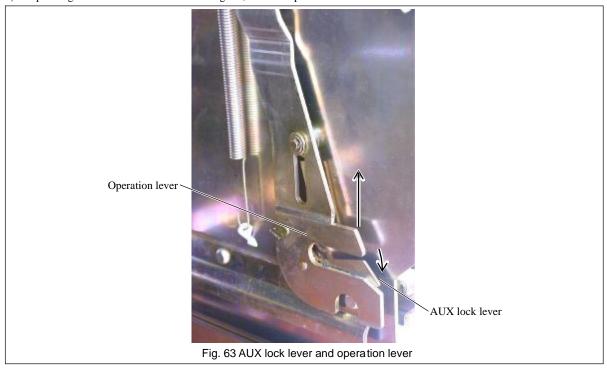
The following describes how to replace the magnet hold trigger (MHT).

- 1) Make preparations for parts replacement. Refer to section 6-2-1.
- 2) Remove the OCR and the relay base. Refer to items 2 8, section 6-2-7.
- 3) Unscrew the MHT mounting screws shown in Fig. 60, disconnect the hand connector (red), and remove the MHT.

- 4) Reinstall each part or component in reverse order of removal after inspection.
- I Fig. 61 provides the general view of the MHT.

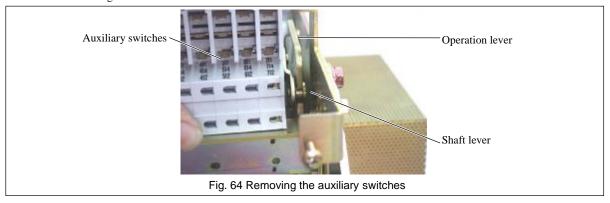


-55- KRB-**5258**


6-2-9. Auxiliary switches

The following describes how to replace auxiliary switches.

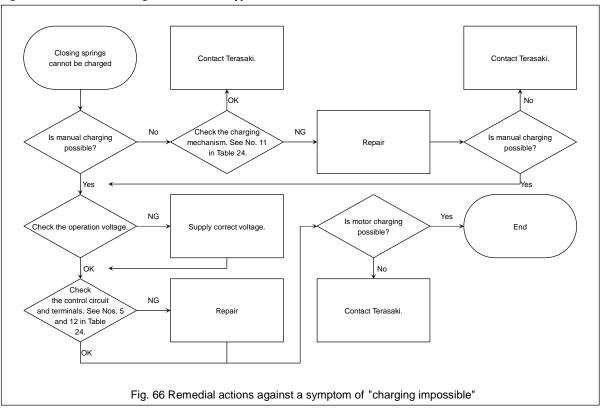
- 1) Make preparations for parts replacement. Refer to section 6-2-1, 1) and 2).
- 2) If the ACB is equipped with the control terminal block cover, loosen both the cover fixing screws and remove the cover.
- 3) Remove the auxiliary switch mounting screws shown in Fig. 62.

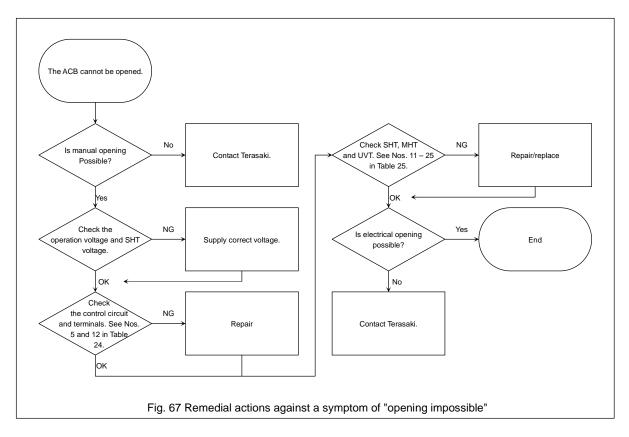


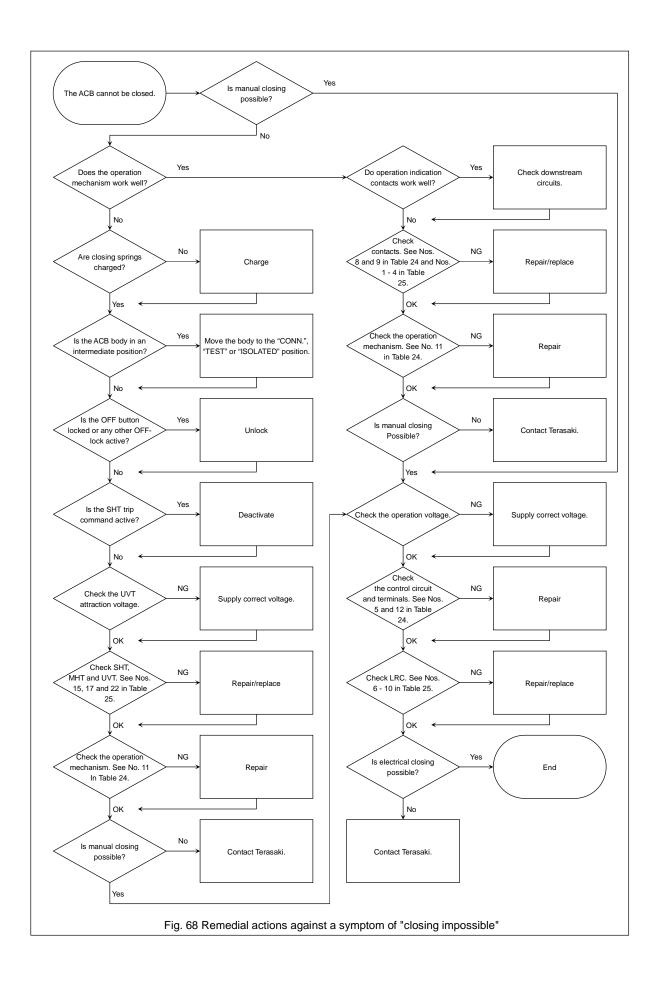
4) Depressing the AUX lock lever shown in Fig. 63, raise the operation lever.

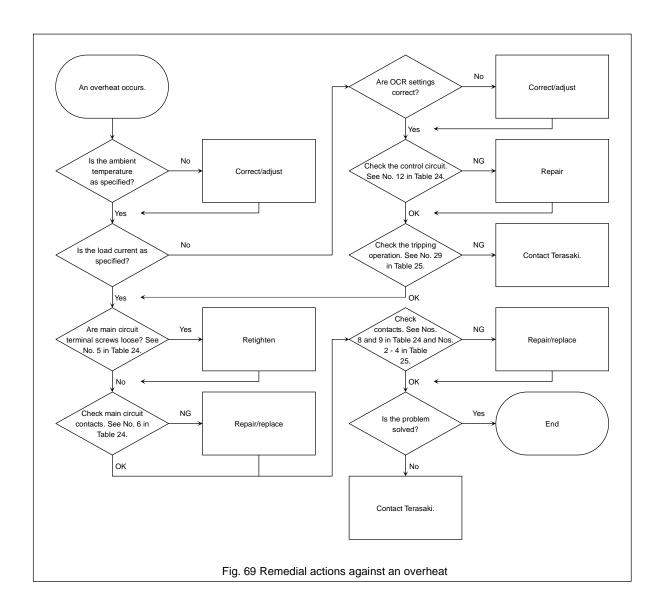
KRB-5258 -56-

5) With the operation lever raised, uplift the auxiliary switch unit, pull the shaft lever through the U -notch, and remove the auxiliary switch unit. See Fig. 64.




- 6) Reinstall each part or component in reverse order of removal after inspection. When installing the auxiliary switch unit, apply molybdenum grease to the engagement of the operation lever and the shaft lever.
- Auxiliary contacts can be checked visually through the inspection holes shown in Fig. 65.




7. TROUBLESHOOTING FLOWCHARTS

Figs. 66 - 69 are troubleshooting flowcharts where typical troubles and remedial actions are shown.

8. DOOR INTERLOCK

Function of the Door Interlock

General:

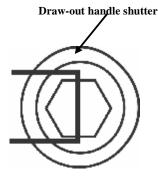
The door interlock prevents the switchboard panel from being opened when the ACB is closed, or in the CONNECT or TEST POSITION. The panel door is only operable when the ACB is OPEN and ISOLATED, thus preventing remote operation of the ACB.

Normal Function:

- When the ACB is CLOSED and in the connected position the draw-out handle cannot be inserted.
- When the ACB is OPEN it can be drawn-out to the test or isolated position. This is indicated on the ACB's position indicator.
- To open the panel door the ACB is required to be OPEN and in the isolated position.

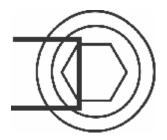
Areas of Caution:

- Ensure the panel door is fully closed and locked before attempting to draw-out or rack in the ACB, from any of thee three positions (CONNECTED, TEST & ISOLATED) to another.
- When moving the ACB body, care should be taken not to damage the door interlock pin, situated at the bottom left and
 protruding from the ACB.


Interlock Release:

The door interlock can be defeated by releasing the spring-actuated catch on the interlock panel unit. This is accessible through
a hole located between the interlock panel unit fasteners.

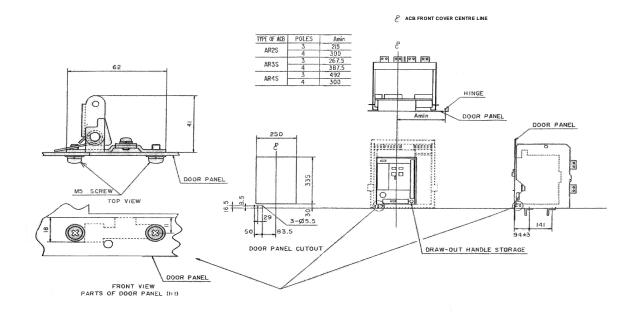
Door Interlock Adjustment


How to adjust the panel unit:

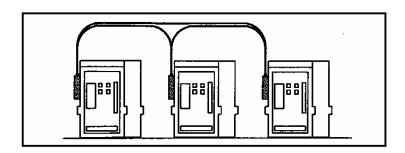
Once the ACB is installed into the switchboard and the panel door unit is fitted, check the position of the handle shutter when the door is closed and the ACB is in the isolated position.

The handle shutter
is a good
position at the centre
of the hole and no
adjustment is
required

When the handle shutter is at the left of the hole, remove the adjustment plate. This will push against the handle shutter less moving it towards the centre of the hole.



When the handle shutter is at the right of the hole, turn the adjustment plate upside down with the double side to the top. This will push against the handle shutter more moving it towards the centre of the hole.



Door Interlock Outline Dimensions & Arrangement Drawings

9. MECHANICAL INTERLOCK DEVICE. (HORIZONTAL TYPE) TYPES: AKR-1MH.

Group	Applicable Breaker Types
AR2	AR208S, AR212S, AR216S, AR220S
	AR212H, AR216H, AR220H
AR3	AR325S, AR332S,
	AR316H, AR320H, AR325H, AR332H
AR4	AR440S

The mechanical interlock system allows up to three ACBs to be selectively turned on or off to the configured requirement.

Please read these instructions carefully to ensure correct operator use. The Manufacturer assumes no responsibility for the damage resulting from non-application or incorrect application of the instructions provided herein. The contents of this manual may be subject to change without prior notice.

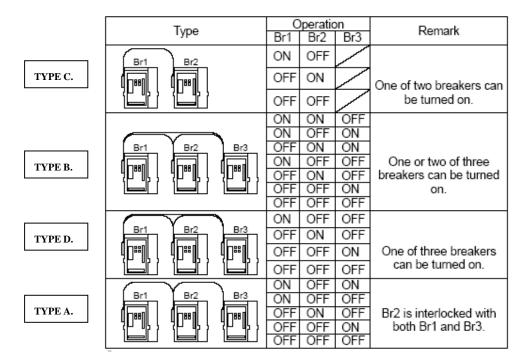
-63- KRB-**5258**

♠ CAUTION

SAFETY:

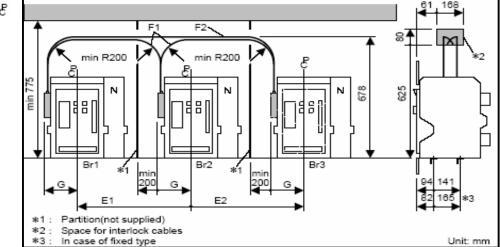
Be sure and read all instructions and associated documents accompanying the product thoroughly to familiarise yourself with the product handling, safety information, and all other safety precautions.

Installation Precautions:


- Installation work of the interlock must only be carried out by qualified and authorised personnel.
- Do not use the interlock in areas that are subject to high temperatures, high humidity, dusty air, corrosive gasses, strong vibration and shock. Using the interlock in these conditions may cause a malfunction.
- Care should be taken to prevent foreign objects (such as debris, concrete powder, dust, chippings), oil and rainwater from entering the interlock. Using the interlock in these conditions may cause a malfunction.
- If the ACBs are draw-out types, do not insert the bodies into the chassis until the installation of the interlock system has been complete. If the ACBs are fixed insure the ACBs are locked off during installation Failure to do so may result in damage to the interlock or personal injury.
- Do not bend the interlock cables at the radius of less than 200mm. Doing this may result in damage to the interlock cables causing the interlock to fail.
- Insert the interlock wire until it stops at the grove end of the lever. Insufficient insertion of the wire could result in damage to the interlock.

■ Operation & Maintenance

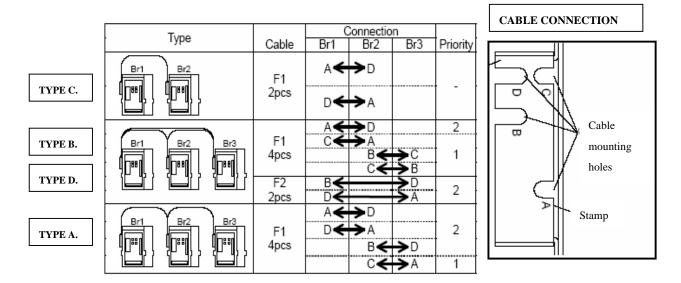
- Do not touch the interlock during operation. Doing so may result in personal injury.
- Maintenance and/or inspection of the interlock system must only be carried out by qualified and authorised personnel.
- Before commencing maintenance work, remove the ACB bodies from the chassis or lock off the ACBs. Failure to do so may result in damage to the interlock or personal injury.
- If the ACBs are draw-out types, ensure the ACBs are off while racking them into the chassis. Failure to do this can result in damage to the interlock.


KRB-5258 -64-

Types & Operations

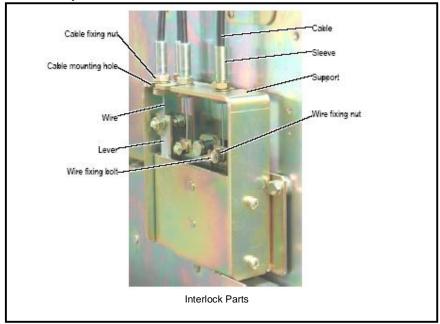
- The interlock is enabled in the connected position. When the ACB is in the TEST, ISOLATED or DRAW -OUT
 position the interlock is disabled.
- If all the ACBs in the interlock system are open and receive a close (on) signal, none will turn on. However, if this occurs there will be momentary continuity between the main circuit and the auxiliary switch A -contact in all the ACBs.
- The body of the other ACB(s), as long as they are off (open) can be drawn out or inserted, irrespective of the state of the other ACB(s). NOTE: Do not draw out or insert an ACB body during cable installation, adjustment or operation check.

■ Specifications


- ACB front cover centre line.
- There should be a minimum of 200mm-gap left between the interlock mechanism and the cabinet wall, this is to enable cable installation, adjustment or operation check.

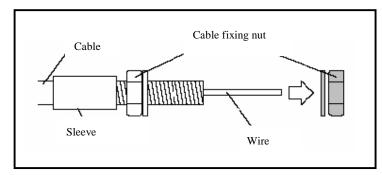
■ Mounting the ACBs

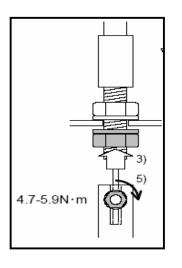
- Before mounting the ACBs check the type of interlock, number and length of the cables to ensure they are as ordered.
- Install the ACBs (for fixed type) or chassis (for draw -out type) in the switchboard (see specifications section aformentioned for dimensions).
- When installing the ACBs, be sure to locate each ACB as you have specified (i.e. middle, left or right) when ordering.
 A different arrangement does not permit correct installation of the interlock cables.
- If the ACBs are draw-out types, do not insert the bodies into the chassis until the installation of the inter lock system has been complete. If the ACBs are fixed insure the ACBs are locked off during installation.


■ Cable Connections

The following illustration shows he connections between the ACBs.

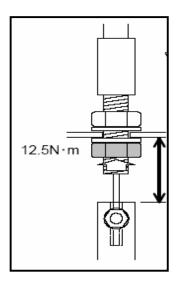
Mounting the Cables


• When installing the interlock cables, first perform the priority 1 connections and then priority 2 in cable connections chart above. Then follow the steps 1 to 10.


KRB-5258 -66-

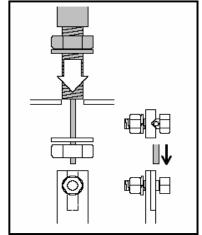
Loosen the cable fixing nut

and the wire fixing nut.

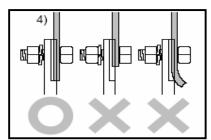


Temporarily tighten the cable 3 fixing nut.

5 Wire fixing nut to a torque of 4.7 to 5.9 N.m.


6 Repeat steps 1 to 5 for the wire on the other end of the cable.

Attach the cable in the cable mounting


Hole and insert the wire into the wire

Insertion hole of the wire fixing bolt.

Push in and hold the wire until

It stops against the groove end

	Unit: mm
Cable mounting hole	Distance
A,B	38.5±0.5
C,D	22±0.5

Make sure the distance between the support and the lever is as specfied and then tighten the cable fixing nut to a torque of 12.5N.m. If the distance is out of the specfied range, proceed to step 8 to adjust the distance.

If the distance is too small, turn the cable-fixing nut counter clockwise to lower the sleeve and the lever, increasing the distance until it falls within the specified range. If the distance is too large, turn the cable-fixing nut clockwise to raise the sleeve

If the ACBs are of a draw-out type, insert the ACB bodies into the chassis to the connected position. Do not turn the ACB(s) on until it is in the connected position. If the ACB is a fixed typed, unlock the ACB.

After making sure the main circuit is not energised, check the operation of the ACB(s). Do not touch the interlock during operation.

10

7

8

■ Inspection & Maintenance

- If the ACBs are draw-out types, remove the ACB bodies from their chassis. If the ACBs are fixed ensure the ACBs are locked off.
- Check the wire fixing nut and cable fixing nut for tightness. If loose, retighten to the sp ecified torque.
- Make sure the distance between the support and the lever is as specified. If the distance is out of the specified range, readjust it.
- If the ACBs are of a draw-out type, insert the ACB bodies into the chassis to the connected position. Do not turn the ACB(s) on until it is in the connected position. If the ACB is a fixed type, unlock the ACB.
- After making sure the main circuit is not energised, check the operation of the ACB(s). Do not touch the interlock during operation.

Published in June 2002.

Revised in November 2002, April 2003, March 2004, March 2006.

The contents of this manual may be subject to change without notice.

Recycle paper used.

KRB-5258 -68-