
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

Systematic collection of TPM
2.0 chips attributes on Linux

BACHELOR'S THESIS

Daniel Zaťovič

Brno, Spring 2020

MASARYK UNIVERSITY
FACULTY OF INFORMATICS

Systematic collection of TPM
2.0 chips attributes on Linux

BACHELOR'S THESIS

Daniel Zaťovič

Brno, Spring 2020

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. A l l sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Daniel Zat'ovic

Advisor: Ing. M i l a n Brož, Ph.D.

i

Acknowledgements

I wish to show my gratitude to my supervisor Ing. Mi lan Broz, Ph.D.,
for his help, advice and guidance throughout the writing of this thesis.
I am also thankful to my loving parents and family.

i i

Abstract

This work provides an overview of a Trusted Platform Module (TPM),
related vulnerabilities, Linux software and kernel modules. A Linux-
based bootable USB image for collecting T P M properties by volunteers
is designed. The image is based on an existing command-line utility for
T P M benchmarking. A hybrid user interface for the utility was imple
mented, which can run either in a terminal or in GUI. The anonymised
result can be stored on a persistent partition on the flash drive or up
loaded to a repository. The solution was verified on devices with T P M
2.0, ranging from embedded systems, laptop and desktop computers
to dual-socket workstations and servers.

i i i

Keywords

T P M 2.0, Trusted Platform Module, TSS, vulnerabilities, bootable im
age

iv

Contents

Introduction 1

1 Trusted Platform Module 2
1.1 Platform Configuration Registers 2
1.2 Cryptographic keys 3
1.3 Sessions and authorization 4
1.4 NV memory 4
1.5 Use cases 5

1.5.1 Remote health attestation 5
1.5.2 Ful l disk encryption 6
1.5.3 Cryptography coprocessor 6

2 TPM types 7
2.1 Discrete TPM 7
2.2 Firmware TPM 7
2.3 Software TPM 8

3 Vulnerabilities 10
3.1 Man in the middle attack 10
3.2 RAM readout 11
3.3 Side-channel attack 12
3.4 Logic vulnerabilities 13

4 TPM software 14
4.1 TPM Software Stack 14

4.1.1 TCTI 14
4.1.2 SAPI 14
4.1.3 ESAPI 15
4.1.4 R M and TAB 15

4.2 Linux TPM software 16
4.2.1 TSS implementations 16
4.2.2 Linux kernel 16
4.2.3 Measured boot in Linux ecosystem 17

5 Practical part 18
5.1 Front-end for tpm2-algtest 18

v

5.2 Packaging 20
5.3 Bootable disk image 20
5.4 Persistent partition 21
5.5 Uploading results 22

6 Experiment 23
6.1 Discovered issues 24

7 Conclusion 28

7.1 Future work 28

Bibliography 30

Acronyms 38

A Digital attachments 4 0

v i

Introduction

With the rise of the Internet, a need to secure sensitive data has
emerged. Since the software ecosystem became increasingly complex
and, therefore, hard to secure a hardware solution was proposed.
Trusted Platform Module (TPM) is a cryptography chip providing
a stripped-down and secure environment to perform cryptographic
operations without the keys ever leaving the T P M . The chip also acts
as a passive element where the host uploads measurements of system
components to ensure platform integrity.

To keep the chip as simple as possible, it performs only elementary
operations, leaving most of the logic to the application software. T P M
is designed w i t h cost i n m i n d to make it easy to include in as many
consumer devices as possible. It has grown increasingly popular and
has been included in many PCs and servers.

This work describes the general design, history and use-cases of a
T P M in the first chapter. The next chapter discusses the various types
of T P M , including a description of both, the software implementations
and the physical forms and interfaces. Chapter 3 gives an overview of
discovered flaws in the specification and in concrete T P M implemen
tations. Then follows a chapter on the T P M Software Stack (TSS) and
T P M software ecosystem with a focus on the G N U / L i n u x OS.

A tool called tpm2-algtest was developed [1] to give T P M soft
ware developers an insight into the capabilities of T P M s on the mar
ket. The tool collects supported algorithms, performs speed bench
marks and collects generated key pairs for analysis by security re
searchers. The goal of this thesis was to package tpm2-algtest utility
as a bootable image, provide a convenient interface for the user and
verify the solution by running it on volunteers' computers.

The process of creation of the bootable image and used technolo
gies are described i n Chapter 5. Results of the testing runs collected
from the volunteers are presented in Chapter 6.

1

1 Trusted Platform Module

Trusted Platform Module (TPM) is a vendor-independent specifica
tion of a cryptographic coprocessor responsible for performing cryp
tographic operations in a secure separated environment and ensuring
the integrity of the host system, which is continuously measured. It
was invented by the Trusted Computing Group (TCG) consortium
and the exact design is standardized as ISO/IEC 11889 [2]. The main
functionality of a T P M includes cryptographically ensured device
identification, secure key generation and storage, device health detec
tion and remote attestation and finally, secure generation of random
numbers.

1.1 Platform Configuration Registers

Platform Configuration Register (PCR) is a location i n a T P M which
can not be written directly but only extended. The extend operation is
cryptographically guaranteed not to be reversible. The old value of
a P C R is concatenated w i t h the new extension and then hashed [2,
p. 80]. These extensions (called measurements) are supplied to the
T P M by an external application which measures critical components
of the system (e.g. code of the BIOS, bootloader and kernel) and
configuration files.

This process creates a hash in the PCR, which represents a chain of
the measurements leading to the current state. When before malicious
code is loaded, it is measured, and therefore the expected P C R hash
is corrupted. Particular secret or usage of specific cryptographic keys
may be bound to a concrete PCR value. After loading malicious code
under such conditions, the T P M would not release the secret to a host
which is controlled by the attacker.

A common issue with T P M 1.2 was an update of a system compo
nent would break the unsealing because the secret wou ld be sealed
to a specific P C R value. T P M 2.0 supports sealing to any P C R value
signed by a given key. The administrator can sign P C R hashes for
multiple combinations of trusted configurations and system compo
nent versions. Apart from sealing objects to PCR values, the T P M can

2

l . TRUSTED PLATFORM M O D U L E

also provide a signed report of the state of all PCRs (called a quote [3,
p. 158]).

1.2 Cryptographic keys

T P M is suitable for storage of cryptographic keys because it is sepa
rated from the host and is significantly less complex and therefore
has significantly reduced attack surface. TPM's main microcontroller
is too slow for cryptographic operations. Therefore, a cryptographic
accelerator is included in most TPMs to speed up the computations.

The keys are arranged into a hierarchy. O n the T P M 1.2, only a
single hierarchy existed and was represented by the Storage Root Key
(SRK) [3, p. 105]. On the T P M 2.0, there are three persistent key hier
archies and one non-persistent, called null, for session keys [2, p. 73].
The three persistent hierarchies are platform, owner and endorsement.
Its administrator can disable each hierarchy. This is an advantage over
T P M 1.2 where disabling the single hierarchy means disabling the
whole T P M .

Existing keys can be loaded or new can be generated directly on
the T P M , as the T P M contains an R N G . Due to storage constraints, not
all keys can be made persistent. However, the keys can be wrapped,
exported, stored on the host and later reloaded.

Endorsement Key (EK) , which is the root of the endorsement
hierarchy, provides a guarantee the signature came from a T P M . The
T P M manufacturer pre-generates the endorsement key and creates
a certificate signed by the manufacturer's certification authority. O n
T P M 1.2, only a single endorsement key existed (because only RSA
and SHA-1 were supported), and the certificate was stored persistently
on the T P M .

A significant advantage of the T P M 2.0 is the support for mult i
ple encryption, signature and hash algorithms [3, p. 49]. Therefore,
multiple EKs may exist, one for every combination of algorithm and
key size. Storing certificates for all the combinations would consume
much of the limited persistent storage. Therefore, only one or a few of
them are stored on the T P M . The rest can be looked up by the public
key in the manufacturer's repository.

3

l . TRUSTED PLATFORM M O D U L E

The same problem arises w i t h the private keys. T C G addressed
this by making the key generation reproducible on the same T P M . The
same key is generated when the same key length, algorithm type and
seed are supplied (collectively called a template [3, p. 121]). The tem
plate is combined with the TPM's primary seed (which is unique and
known only by the specific T P M) using a key derivation function [2,
p. 72]. The primary seed represents a root of all the keys stored and
used by the T P M . This mechanism can be used for generating any
key, including the persistent hierarchies' roots, eliminating the need
to store all possible private keys.

1.3 Sessions and authorization

T P M provides a way to ensure the integrity and confidentiality of
commands transmitted between the host and the T P M [2, p. 102]. T P M
1.2 offered only two ways of access management, either by verifying the
physical presence of the owner or by an H M A C using a shared secret.
T P M 2.0 extends this model by allowing additional authorization
methods.

Authorization is usually performed over an established session.
The exception is a password authorization in which the password is
sent directly in the command data. Password is intended for local use
only, because it is sent in plaintext and assumes the channel between
the T P M user and the T P M is secure. The session includes nonces
which are generated on both sides to prevent a replay attack. Every
session can be optionally encrypted.

T P M 2.0 includes new kinds of authorizations called Enhanced
Authorization (EA) . These include plaintext password, signature,
PCRs, counter values or value in the N V memory [2, p. 117]. Policy-
based authorization allows any logical conjunction or disjunction of
all possible authorization methods, making it the most expressive
kind of authorization.

1.4 NV memory

The Non-Volatile (N V) memory can be used for permanent storage
of user-defined data [2, p. 207]. A n N V index identifies the data ob-

4

l . TRUSTED PLATFORM M O D U L E

jects. T P M 1.2 supported only unstructured objects. Various read and
write locks were provided based on H M A C , P C R values or physical
presence.

T P M 2.0 assigns a data type to every defined N V index. The type is
one of ordinary, counter, bit-field or extend [2, p. 208]. Ordinary is T P M
1.2-like unstructured data. A counter is a 64-bit number, which can
only be increased. Bit field is a 64-bit value, initially set to 0, where
every bit can be set, but never cleared. A n extend type is similar to
the PCRs. Its size is dependent on the used hash algorithm. It is zero-
initialized and can be extended by hashing the new value w i t h the
previous value.

The permanent N V storage can withstand only a limited number
of rewrites. A hybrid index was included in the T P M design to prevent
the gradual wear-out of N V storage. It is an N V index, which is stored
and modified in volatile memory and is only written on shutdown [3,
p. 143].

1.5 Use cases

1.5.1 Remote health attestation

Remote health attestation is based on the TPM's capability to export a
signed quote of the PCRs state. The same key may be used for signing
arbitrary data and signing attestation quotes. The attacker can create a
structure resembling a quote and then ask the T P M to sign it with the
same key it uses to sign valid quotes. The quote begins with a constant
value TPM_GENERATED to prevent this attack. The T P M refuses to sign
provided data if they start with TPM_GENERATED constant [3, p. 128].

Next, the quote contains the qualified name of the key used to sign
it (including all the ancestors of the key), the extra challenge provided
by the caller (an anti-rep lay countermeasure), T P M firmware version
and clock state and a list of included PCRs together with their digest [3,
p. 158].

A server can use the described mechanism to determine the state
of the remote system securely. To decide if the state should be trusted,
he has to keep a database of known-good PCR states. When it receives
the quote, it checks if the signing key used to produce it belongs to a

5

l . TRUSTED PLATFORM M O D U L E

trusted computer and then checks the signature. Finally, it verifies if
the PCR state is in the database and decides to grant access accordingly.

1.5.2 Full disk encryption

Combination of the approach described in the previous section and the
N V storage capabilities of a T P M is used in disk encryption schemes.
The disk encryption key or passphrase is stored in the T P M and is
sealed to the expected PCRs values. Additionally, a second factor, like
a smartcard signature, data signed by a fingerprint scanner [3, p. 166]
or a P I N (available e.g. i n Bitlocker [4]), may be added.

1.5.3 Cryptography coprocessor

T P M provides cryptographic primitives like sign, hash, encrypt or de
crypt. They are much slower than their implementation on a regular
PC. In some cases, however, it may be more convenient to use them
instead. E.g., in embedded devices where the application C P U is too
slow, or there is not enough storage for the cryptography implementa
tion [3, p. 113].

6

2 TPM types

T P M chips exist in multiple forms. Discrete T P M is a separate physical
chip on the motherboard. Firmware T P M is implemented inside a
Trusted Execution Environment (TEE) of the application C P U or as a
part of the chipset. Software T P M is used during application develop
ment or in cloud environments. The following chapters give a more
detailed description of the different types.

2.1 Discrete TPM

In theory, discrete T P M provides the best security guarantees [5]. Its
physical separation from the main C P U provides better isolation and
removes some of the possible side channels. The separate IC package
provides resistance against physical attacks like fault injection.

There are multiple ways a discrete T P M can be connected to the
host C P U . A common approach for desktop computers is to use the
Low Pin Count (LPC) bus, but also Inter-Integrated Circuit (I 2 C)
can be used. The T P M is usually sold on a daughterboard, which
plugs into a vendor-specific connector on the motherboard. O n laptop
computers, the T P M is soldered directly to the motherboard. T P M
chips with Serial Peripheral Interface (SPI) or I 2 C interfaces also exist.
Chips with these interfaces can be deployed in Internet of Things (I6T)
or industrial environments. Figure 2.1 shows different types of TPMs.
Left-to-right Infineon Ir idium [6] w i t h SLB9670 [7] (SPI interface),
G I G A B Y T E T P M G C - T P M 2.0 [8] w i t h SLB9665 [9] (LPC interface)
and ASUS TPM-SPI [10] with Nuvoton NPCT750 [11] (SPI interface).
T C G publishes a list of complaint T P M devices [12]. It shows three
vendors - Infineon Technologies, Nuvoton Technologies Corporation and
STMicroelectronics.

2.2 Firmware TPM

To further decrease price, increase the availability and bring T P M to al
ready shipped hardware, vendors started to implement it in firmware.
Such implementations might run inside a trusted execution environ-

7

2. T P M TYPES

Figure 2.1: Different types of discrete T P M .

ment and share the C P U w i t h untrusted applications. There exist
commercial implementations [13] for A R M processors that run inside
ARMTrustZone [14].

Intel started incorporating a special processor core to their chipsets
called Intel Management Engine (ME) [15]. The role of this processor
is to provide remote management capabilities and the root of trust.
It is also the place, where Intel implements the firmware T P M [16].
A M D offers similar technology called A M D GuardMI, which provides
a firmware T P M [17]. It is implemented inside A M D Secure Processor,
which plays a role analogous to the Intel M E .

2.3 Software TPM

Software T P M includes simulator and hypervisor T P M implementa
tions. Trusted Computing Group (TCG) has provided reference i m
plementation, which was packaged into a simulator by Microsoft [18].

8

2. T P M TYPES

ThinkPad Setup
Secur ity

Security Chip Item S p e c i f i c Help

[[1103130]
[f l c t i u e]

Security Chip

Security Reporting Options

Clear Security Chip

Intel (R) TXT Feature
» Unselectable uhen Inte

is enabled.

Physical Presence for Prouisioning [Disabled]
Physical Presence for Clear [Enabled]

[Discrete TPM]
Use a discrete TPM
chip with TPM 1.2
node •

[Intel PIT]
Use Intel (R) Platform
Trusted Technology
ui t h TPM 2-0 node.

Note: Intel (R) PTT can
be used u i t h
Microsoft (R)
Uindous 8 (R) or later
operating systen.

F l Help T i Select Iten •/ Change Ualues F9 Setup Defaults
Esc Exit *~* Select Menu E n t e r Select • Sub-Menu F10 Saue and Exit

Figure 2.2: Thinkpad X240 setup wi th an option to turn on firmware
T P M .

The simulator is useful during the development of a new T P M
application. Google has created an online version w i t h study texts
intended to be an educational tool [19]. Some virtualization hypervi-
sors implement virtual T P M to increase security i n the virtual guests.
Such implementation is present i n V M w a r e vSphere [20], Microsoft
Hyper-V [21], and Xen [22].

The swtpm tool can be used on Linux to create a virtual T P M char
acter device. This device can be used as a regular physical T P M with
standard tools. Q E M U supports T P M pass-through of a real T P M , or
virtual T P M created using swtpm.

Xen hypervisor enables virtual T P M support via a distinct v T P M
management virtual machine (VM) which emulates the TPMs used by
other V M s . It uses a special design to link the virtual T P M certificates
to the hardware T P M root of trust [23]. Google provides virtual TPMs
in its Shielded V M product. The v T P M is used for measured boot, and
it is based on swtpm implementation [24].

9

3 Vulnerabilities

A s w i t h any security device, T P M is also not without vulnerabilities.
The attacks can be divided into two categories. The first one includes
hardware attacks which require physical access. The other one com
prises logical flaws in the firmware behaviour.

3.1 Man in the middle attack

This attack requires the attacker to be able to eavesdrop and manip
ulate the communication between a host and a T P M . The concrete
methodology used to accomplish this goal varies according to the
T P M type and the bus it uses for interaction.

As described in section 2.1, standard options for the bus are an L P C
bus on PCs and I 2 C or SPI on embedded devices. Using a firmware
T P M or a discrete T P M i n the same chip package as the main C P U
might significantly complicate the attack. In such cases the bus is
not exposed externally and attaching to it wou ld require advanced
techniques and costly equipment.

Intercepting a discrete T P M , external to the C P U , might be rel
atively easy. In the case of T P M soldered to the motherboard, it is
necessary to solder conductors directly to the chip pins. This is the
case with most of the laptop TPMs. On the other hand, desktop TPMs
often come on daughterboards making it sufficient to just disconnect
the T P M and insert a malicious device between the host and the daugh
terboard. It has been shown that cheap off-the-shelf components are
sufficient to construct the interception device [25, 26]. A l l that is nec
essary is a microcontroller capable of communicating over I 2 C or SPI
or a low-end F P G A for L P C bus transceiving.

After the attacker has gained control over the communication
channel, he can directly read the secret (e.g. disk encryption key)
after the T P M unseals it [26]. Moreover, if the host uses the T P M as
a source of entropy, the attacker may modify random data returned
by the T P M . In practice, this gives h i m the ability to temper w i t h
cryptography operations, like secure key generation, on the host.

Driver authors often do not consider the possibility of the T P M
being malicious. This premise does not hold when the attacker seizes

10

3. VULNERABILITIES

control over T P M communication. Linux kernel and major bootloaders
including Coreboot, EDKII, U-Boot and tboot contained vulnerabilities
which the attacker could exploit by sending malformed responses
from the T P M [25].

Possible mitigations include using authorization sessions. The
problem is that this is made mandatory by the T C G specification
only for specific commands. However, i n practice, developers often
do not choose to implement the optional authorization for critical
commands like GetRandom and PcrExtend. In some cases, even when
the software authors have used authorization session, they have not
used it correctly. For example, in tboot, the H M A C was generated on
outgoing messages but was not verified on incoming messages, Linux
kernel made the nonce based on random data supplied by the T P M
or tboot even disclosed uninitialized memory as the nonce [25].

3.2 RAM readout

While this vulnerability is not directly a T P M vulnerability, it still
significantly affects environments in which TPMs are deployed. Some
secrets can be sealed to PCRs and automatically released on every
reboot after the system gets into the allowed state. For example, Bit-
Locker seals the volume key to a known-good PCR state. These secrets
may then be stored in R A M . Some attacks like cold boot or D M A , make
it possible to read arbitrary memory, including the TPM-released se
cret data.

This way, the attacker can also read non-TPM stored secrets if the
computer is put to sleep. However, in most cases, the attacker has only
one attempt to extract the data. If he fails and the memory content is
cleared, he can not repeat the attack. In the case of PCR-sealed data, it
can be released from the T P M and loaded into R A M on every reboot
(given that the system measurements haven't changed). This gives the
attacker a virtually unlimited number of attempts to repeat the attack.

The first way an attacker can read R A M is using a cold boot attack.
The cold boot attack is based on the fact that R A M keeps its content for
a brief moment even after reset or disconnection. This moment can be
further prolonged by exploiting physical properties of storage medium
(e.g. by freezing the memory module). Dur ing this period attacker

11

3. VULNERABILITIES

may quickly reset the PC and boot into a small bootloader capable of
dumping the R A M contents left from the previously running OS on
a persistent disk [27]. To mitigate this, T C G required all complaint
systems to overwrite all the memory when an unclean shutdown is
detected [28]. Although this is an improvement, it still does not solve
the problem when the R A M module is cooled and transferred to a
different system where the T C G rules are not followed.

A second way to obtain R A M content is by using a rogue device
which misuses D M A capability of PCIe bus. A full form of PCIe on the
desktop or mini PCIe on laptops can be used for connecting the offen
sive device. These connectors are available only after disassembling
the case. However, some laptops have them exposed externally in the
form of a Thunderbolt port or ExpressCard. It has been demonstrated
that a low-end mini PCIe F P G A can be used for the construction of
such a device [29]. Us ing conversion adapters similar tool can be
connected to a Thunderbolt connector [30]. To mitigate D M A attacks,
I O M M U and Intel VT-d technologies [31] can be used to restrict access
to memory by PCI devices.

Several solutions have been proposed to mitigate generic R A M
readout attacks. One of them is a series of patches to Linux kernel
which keep cryptographic keys solely in microprocessor registers [32].
Microsoft recommends turning on pre-boot authentication (e.g. using
a PIN) in addition to sealing the encryption key to PCR measurements
to prevent the attacker from having multiple attempts to perform the
attack [4].

3.3 Side-channel attack

This class includes attacks i n which private information may be dis
closed via an unintended channel like duration, power consumption,
heat dissipation or electromagnetic radiation while performing a par
ticular operation. A common cause for such vulnerabilities may in
clude improper physical shielding to stop electromagnetic radiation,
power consumption pattern during a performance of critical compu
tations or secret-dependent duration of cryptographic primitives like
signature creation or verification and data encryption or decryption.
Such vulnerability was found in STMicroelectronics discrete T P M s

12

3. VULNERABILITIES

and Intel fTPMs [33]. It enabled the attacker to recover E C D S A and
ECSchnorr private keys after observing 1300 operations for Intel f T P M
or 40000 operations for STM T P M . It was fixed by releasing a firmware
update for S T M T P M and update for Intel M E inside which Intel f T P M
runs.

3.4 Logic vulnerabilities

T P M implementations may also include erroneous behaviour, or there
might be grey areas in the T C G specifications. A bug was found in the
handling of sleep mode on Trusted Platform Modules manufactured
by multiple vendors [34]. The T P M relies on the host to tell it that it
is entering S3 sleep mode, and the T P M should save its state. U p o n
restoring from the sleep state, the host notifies the T P M to restore the
saved state. The vulnerability consisted of leaving out the command
for the T P M to save state, then enter S3 sleep state which cuts off power
to the T P M and after restoring from the sleep send a command to the
T P M asking to restore state. In TPMs from specific vendors, this caused
the T P M (including the PCRs) to reset. It has been demonstrated [34]
that this can be combined with a modified bootloader and OS, which
save the chain of measurements leading to a good P C R state. The
attacker may then be able to replay this chain to set PCRs to the trusted
state.

Another algorithmic flaw was discovered using black-box testing
of devices manufactured by Infineon Technologies A G . The bug was
found i n the RSA key generation by an RSALib software component
used in the firmware of multiple devices from various domains (in
cluding T P M s and smartcards) [35]. The attack simplified private
key factorization based on the structure of the generated keypairs,
which was limited to a specific form. When uti l izing this attack, it
was possible to derive the private key just using the knowledge of the
public key. The attack takes approximately 3 CPU-months for 1024
and 2048-bit. Infineon probably introduced the vulnerability i n an
attempt to speed up the key generation.

13

4 TPM software

The T P M is on purpose as simple as possible and leaves most of the
logic to application software. A stack has to exist on the host which
performs low-level operations. E.g. sharing access to the T P M among
applications or swapping objects in-and-out of the T P M (due to the
space constraints).

4.1 TPM Software Stack

T P M Software Stack (TSS) is a T C G developed specification of APIs
for communication w i t h the T P M [36]. The APIs are designed to be
OS and hardware independent allowing development of portable
software. The stack consists of multiple layers.

4.1.1 TCTI

T P M Command Transmission Interface (TCTI) is the layer responsible
for direct communication wi th the T P M . It takes a byte stream from
the upper layer and transmits it to the T P M . The TCTI's receive and
transmit functions depend on the way the host communicates wi th
the T P M . There may be different TCTIs for a remote T P M and a local
T P M . Apart from the transceiving functionality, the TCTI can cancel
the issued command or terminate the connection.

The TCTI layer may occur multiple times i n the software stack,
when raw T P M commands need to be transmitted [3, p. 94]. For
example, a resource manager may run on the host and use a TCTI to
communicate wi th the T P M . Applications then use another TCTI to
talk to the resource manager.

4.1.2 SAPI

System API (SAPI) provides a low-level interface to the T P M . It gives
direct access to all T P M features. Low memory footprint and no need
to allocate memory (except for the caller allocated structures) make it
an ideal choice for embedded uses. There are functions to allocate and
prepare command context, to execute the command and to finish it.

14

4- T P M SOFTWARE

Firstly the caller allocates a memory block of size returned by
Tss2_Sys_GetContextSize and then uses T s s 2 _ S y s _ I n i t i a l i z e [3,
p. 86] to initialize the context structure i n the provided memory lo
cation wi th a given TCTI context. Then a command-specific prepare
function is called. The command parameters have to be marshalled into
a byte stream in the required form. Optionally it calculates the H M A C
and performs encryption if the authorization session is used. Then
the command is executed, either synchronously or asynchronously.
Finally, a finalization function is called which (analogously to the pre
pare function) decrypts, verifies H M A C and unmarshalls the received
response.

4.1.3 ESAPI

Enhanced System A P I (ESAPI) is an extension on top of SAPI which
aims to reduce programming complexity but still provide the capabil
ity to send individual commands to the T P M . It provides 100% of the
T P M capabilities, whereas FAPI provides about 80% [37]. It signifi
cantly reduces the complexity when sessions and authorizations are
used.

4.1.4 R M and TAB

T P M Access Broker (TAB) is a software component which allows
multiple processes to use the T P M concurrently. It forbids sending
new T P M commands when another process is already communicating
with the T P M . TAB prevents a process from accessing another process'
T P M sessions and objects.

Resource Manager (RM) loads the objects in-and-out of the T P M
due to the limited number of objects which can be loaded at the same
time. R M has to virtualize handles to provide an il lusion that more
free handles are available.

These two layers are usually found in a single package because their
functions are closely related [3, p. 95]. They may be omitted completely
in single-user and single-threaded systems, like embedded devices.

15

4- T P M SOFTWARE

4.2 Linux TPM software

4.2.1 TSS implementations

Multiple open-source implementations of TSS exist for the Linux plat
form. A n implementation by tpm2-software community called tpm2-tss
exists. The same community develops a set of command-line utilities
called tpm2-tools [38], built upon tpm2-tss, which provide an in
terface to T P M 2.0 functionality. They support performing all cryp
tographic operations like signing, encrypting, decrypting or hashing
data. Other capabilities include manipulating P C R registers and N V
memory, creating policies and loading, generating and exporting cryp
tographic keys.

The tools by I B M offer similar functionality [39]. They are based on
IBM's implementation of TSS, which is not completely TCG-complaint
but offers equivalent functionality. Microsoft Research has developed
TSS implementations, called TSS. MSR, in multiple programming lan
guages including C#, C++, Java and TypeScript [40].

4.2.2 Linux kernel

The Linux kernel contains drivers for multiple T P M 1.2 and 2.0 devices
by various vendors including Atmel, Infineon, Nuvoton and STM, but
also virtual T P M s created by Xen hypervisor. There exists a special
virtual T P M proxy driver which populates a T P M character device
and connects it to a user-specified file descriptor [41].

A T P M simulator can be attached to the file descriptor, and soft
ware can communicate wi th it via the virtual device as w i t h regular
T P M device. The virtual device and file descriptor pairs are managed
through a control device /dev/vtpmx. The swtpm project [42] aims to
provide T P M 1.2 and 2.0 simulator together with a setup utility which
creates the virtual T P M and connects it to the simulator. Mult iple
virtual T P M s can be created and then passed to virtual machines or
containers.

Linux kernel has a key retention capability [43]. It supports several
types of keys. They are a user, logon and keyring. A l l of them have
a name, and user and logon keys have a payload. A user key can be
created, modified and read in userspace, but cannot be used by kernel

16

4- T P M SOFTWARE

services. After a user writes logon key, it can be read and used only by
kernel services (e.g. as a key for filesystem encryption), and it is i m
possible to read. A new TPM-backed trusted key type was added [44].
The key is generated in the kernel and sealed by a T P M using an RSA
key. The key itself never leaves the kernel, and only the TPM-sealed
blob is released to userland.

Since version 4.12, the Linux kernel offers in-kernel resource man
ager. For every T P M character device, it publishes another T P M device.
E.g. for /dev/tpmO device there is corresponding /dev/tpmrmO device.
When the T P M is accessed via this proxy device by multiple programs
at the same, the kernel manages these accesses and rearranges them
so that they do not conflict.

4.2.3 Measured boot i n Linux ecosystem

In order to make sealing a secret to a P C R value provide reasonable
security guarantees, critical system components have to be measured.
This requires cooperation from previous stages of the boot chain. A
TPM-aware bootloader is required. Initial attempts included Trusted-
GRUB [45] based on the now obsoleted GRUB version and Trusted-
GRUB2 [46] based on GRUB 2.02. Both projects support only T P M 1.2
and do not support EFI. Currently, similar functionality is included in
upstream GRUB [47], wi th support for EFI systems only.

17

5 Practical part

Part of this work was to create a bootable USB image designed for run
ning T P M 2.0 tests and benchmarks. The advantage of this approach
is that a user is not required to install any dependencies on his system.
The user only writes the disk image to an empty disk device (most
likely a flash drive) and boots the system from the written medium.
We used an already made tool for collecting T P M 2.0 properties called
tpm2-algtest [1]. O n top of this command-line tool, we made a hy
brid user interface capable of running either i n the terminal, or in
GUI.

5.1 Front-end for tpm2-algtest

The live system is intended to be used not only by technically skilled
individuals, but also by ordinary users. To make the tool more accessi
ble and to help collect as many test results as possible, we created and
packaged a UI front-end for the tpm2-algtest utility. A s a fail-safe,
when the system can not boot to a ful l graphical environment, the
solution is also capable of running in a terminal.

The UI is written i n Python 3 and reuses a part of the logic from
run_algtes t . py, which is a part of tpm2-algtest. To run in both GUI
and terminal mode, we used l i b y u i l ibrary 1 , which is developed as a
part of the YaST Linux installer by OpenSuse [48]. The l i b y u i library
picks the most suitable backend to render the UI . Currently, there
are three available: Qt [49], G T K [50] and ncurses [51]. Therefore,
the same UI code can run either in the terminal via ncurses, or i n a
desktop environment via G T K or Qt.

The UI tool lets the user run tpm2-algtest, shows the progress
and asks the user to enter a contact email address optionally. U p o n
completion, the tool asks the user whether to upload the results or
store them on a persistent partition of the bootable disk. If stored on
the disk, the results can be read later by plugging the live USB to for
example a Windows or Linux system.

1. https://github.com/libyui/libyui

18

https://github.com/libyui/libyui

5. PRACTICAL PART

TPM2 algorithms test

Select the test type keygen petf O both

The collected information do not contain any of your personal information.
It w i l l t>e used for research purposes regarding the performance
and the security of the keys generated byyour TPM.

We may need to contact you in the future if we need more info.

The email address won't be shared with anybody and you wi l l not receive any advertisement.

Your email(optiorval):

12:23:13 INFO

12:23:13 INFO

TPH2 algorithms test

Do you want to upload the anonymised results or fust store on the USB?

12:23:13 INFCJ Results w i l l be available after plugging the Live USB on ALGTEST_RESULTS

12'2313INFO P l e a 5 e ' connect to a network before choosing to uplc

12:23:13 INFO

12:23:13 INFO

12:23:13 INFO

Just store on USB

algorithm UUUd | d

í volume.

J
12:23:13 INFO: Pert hash: 94: algorithrr

12:23:13 INFO: Pert hash: 95: algorithm

12:23:13 INFO: Pert hash: 96: algorithm

12:23:13 INFO: Pert hash: 97: algorithm

12:23:13 INFO: Pert hash: 98: algorithm

12:23:13 INFO: Pert hash: 99: algorithm

12:23:13 The performance test finished

12:23:13 A l l tests finished successfully.

12:23:13 Please wait, collecting results.

12:23:4S Results collected.

OOOd | duration 0.002867 | rc 0000

OOOd | duration 0.002895 | rc 0000

OOOd | duration 0.002596 | rc OOOO

OOOd | duration 0.0024011 rc 0000

OOOd | duration 0.002395 | rc 0000

OOOd | duration 0.002496 | rc 0000

Start Stop Shutdown PC I Store or upload results

Figure 5.1: Interface for tpm2-algtest running wi th G T K backend.

I TPMZ algorithms test

Select the test typeC) keygen(D perftxD both
d information do not contain any of your personal information,
sed for research purposes regarding the performance
r i t y of the keys generated by your TPH.

to contact you in the future i f ue need more info.
dress uon't be shared uith anybody and you will not receiue any advertisement.

Your email (optional!):

39 INFO
39 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
33 INFO
39 INFO
39 INFO
39 INFO
39 INFO
39 INFO
39 INFO
39 The perfi
39 fill tests f

Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf h
Perf h
Perf h
Perf h
Perf h
Perf h
Perf hi
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash
Perf hash

algorithm OOOd
algorithm OOOd
algorithm OOOd
algorithm OOOd
algorithm OOOd
algorithm OOOd
algorithm OOOd

0.002322
0.002277
0.002217
0.002220
0.002222
0.002301
0.002193

; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000

Do you uant to upload the anonymised results or just store on the USB?
Results u i l l be auailable after plugging the Hue USB on AXGTEST RESULTS i
Please, connect to a network before choosing to upload.

J [Upload and store][Cancel 1

lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd
lgorithm OOOd

test finished
ished successfully.

iults. . .

0.002154
0.002178
0.002225
0.002340
0.002360
0.002191
0.002334
0.00228b
0.002194
0.002163
0.002340
0.002188

; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000
; 0000

[Start][Stop][Exit][Shutdown PC]

Figure 5.2: Interface for tpm2-algtest running with ncurses backend.

19

5. PRACTICAL PART

5.2 Packaging

The UI along with tpm2-algtest were packaged as an R P M package
and stored in an online repository to ease versioning, installation and
live image build process. For this, we used Copr [52] build system run
by the Fedora Project [53].

To bui ld an R P M package a . spec file is required. It contains all
the necessary information for building the package from source code
and installing it. It includes package metadata like the package name,
description, author, license, version, changelog and dependencies.
Packages required during the build process are also listed. It contains
script to prepare, build and clean up after the package is built, as well
as scripts to run before and after installation. Finally, it contains a list
of built files w i t h their destination on the system where the package
is installed.

When the package is built using rpkg [54] (which is the default
choice in Copr), template . spec files can be used (with . spec. rpkg ex
tension). The . spec. rpkg file can contain specific placeholders which
are then substituted for actual values. Builds from remote source code
repositories are also supported through an rpkg module [55]. When
the remote bui ld is used, the module can replace the placeholders
with information from the repository like name, author, changelog or
version (based on a version control tag).

5.3 Bootable disk image

We chose Fedora L inux distribution as a platform for creating the
tpm2-algtest bootable image. The Fedora Project uses a tool called
l ivemedia-creator [56] for building a bootable installation ISO file.
This utility composes the live system image based on a kickstart file.
A kickstart file specifies software repositories, packages to install and
scripts to run before and after the installation of the packages. Default
kickstart files used to bui ld Fedora installation media are shipped in
a package f edora-k icks tar ts 2 . By adjusting these kickstart files, a
modified Fedora distribution, known as a "Fedora Remix" [57], can be
created.

2. https://pagure.io/fedora-kickstarts

20

https://pagure.io/fedora-kickstarts

5. PRACTICAL PART

In addition to the original Fedora repositories, we added the Copr-
generated repository 3 , with the tpm2-algtest tool and the UI applica
tion. Unnecessary packages were removed from the default kickstart
file, to decrease the overall size of the image. We added a startup script
to launch the G U I automatically after system boot.

The kickstart file is passed to the l ivemedia-creator program. It
creates an empty disk image and starts Anaconda [58] installer, to set
up the live system on the disk image. The system where Anaconda
runs should be as similar as possible to the live system, which is to be
built (e.g. a live system based on Fedora 32 should be built on a Fedora
32 host). To simplify this, l ivemedia-creator offers an option to start
Anaconda i n a virtual system emulated using a QEMU 4 emulator.
After Anaconda finishes, Lorax templates [59] are used to transform
the disk image into a bootable ISO file.

The template compresses the image by storing it on squashf s [60]
filesystem. The final ISO image is created from the individual partition
images and bootloader binary using x o r r i s o f s tool [61]. The tool
creates a hybrid partition layout. The hybrid image at the same time
contains an ISO 9660 filesystem [62] (for booting from an optical disk),
M B R (for booting on legacy BIOS systems) and GPT (for booting on
EFI systems).

5.4 Persistent partition

To be able to store the result from the live system offline, we included a
persistent partition in the image. We created an empty FAT32 partition
image and modified the x o r r i s o f s arguments in the default Lorax
template to add the partition. The produced image was written to
a flash drive and tested on Linux and Windows systems. Different
positions of the persistent partition with respect to the other partitions
were tested. Linux could recognize and mount only some layouts, as
well as Windows, but Windows could not mount any.

Therefore, a different solution was chosen. After bui lding the
bootable ISO file, it is converted to a partitioned disk image by writing
it to a loopback device using l i v e c d - i s o - t o - d i s k [63]. This process

3. https://copr.fedorainfracloud.org/coprs/dzatovic/tpm2-algtest/
4. https://www.qemu.org/

21

https://copr.fedorainfracloud.org/coprs/dzatovic/tpm2-algtest/
https://www.qemu.org/

5. PRACTICAL PART

removes the ISO 9660 filesystem, which is essential for booting the sys
tem from an optical drive. However, a persistent read-write partition
can not be used on an optical disc, so it does not present a problem. A
shell script is then used to enlarge the disk image, modify the partition
table and create a FAT32 partition for storing the test results.

5.5 Uploading results

A s the image contains a ful l Linux system with networking support,
we have implemented a method for uploading the results to a remote
location. If a wired connection is used, it is set up automatically using
D H C P or custom settings can be configured using G N O M E settings
graphical interface [64]. The same interface can be used for connecting
to a wireless network.

For uploading the results, we chose personal depository in the
information system of Masaryk University 5 . Every information system
user has a depository, readable only by h im, where other users can
upload files. A user has an option to allow anybody from the Internet
to upload files to his depository. The current implementation contains
an uploader class, which can upload the result to a depository of the
person specified by his university identification number. This class
can be potentially replaced, to support different upload destinations.

5. https://is.muni.cz/

22

https://is.muni.cz/

6 Experiment

The goal of the experiment was to test and verify the implementation
on various systems, and identify problems which may arise while
performing the data collection. The bootable image has to be built
and distributed to the volunteers, along with instructions. If the test is
performed remotely, the volunteer is expected to create the bootable
USB disk himself.

To create the bootable disk, an image writing tool which allows bit-
by-bit copy is used. On the Windows platform, a commonly used tool,
which also works wi th our solution, is Rufus [65]. O n the Linux plat
form, the Disks [66] utility, which is part of the GNOME project, can
be used. It is shipped on all distributions which use GNOME desktop
environments like Fedora or Ubuntu. A command-line utility dd [67]
can be used, but extra caution must be taken not to confuse the block
devices and overwrite user data. Therefore, it is not recommended to
be used by regular users.

After the disk is written, the volunteer has to restart the computer
and boot from the created disk. He can use the one-time BIOS boot
menu to select a temporary boot device. A vendor-specific key has
to be pressed on startup to bring up the menu. A list of hotkeys for
BlOSes by different vendors can be included in the instructions.

When the system boots, the tpm2-algtest UI is shown. It includes
information about the test duration, the intended use of collected
data and the fact that they do not contain the user's sensitive data.
The participant may optionally enter his email address, if he wants to
further participate in the research.

After the test finishes, the user is asked if the result shall be up
loaded to the remote repository or only stored locally, on a persistent
partition of the bootable USB drive. The result is named uniquely, so
the same drive can be reused for multiple test runs across different
computers. If the user wants to upload the result, he is asked to set up
networking.

If the experiment is performed in person, the user may be individ
ually guided, and he can be given a pre-prepared drive. It is possible
to hand-out bootable drives and let the volunteer run the test inde
pendently, store the result on the USB and return it.

23

6. EXPERIMENT

In remote or cloud systems, it might be difficult or impossible to
boot an arbitrary image. Instead, the user can choose from a list of
Linux distributions. If Fedora is available, the user can add a custom
repository 1 via a package manager to install the tpm2-algtest UI. The
same approach can be used if the user already runs Fedora distribution.

We have collected results both, by directly booting the image, and
by installing the tool to already running remote servers and worksta
tions. A l l the systems, except one, were based on x86 architecture. One
system (Raspberry P i with T P M evaluation board [6]) was based on a
64-bit ARM architecture. For this system, we used a pre-built Fedora 31
image and manually installed the testing tool. The x86 systems ranged
from desktop and laptop computers to dual-socket workstations and
servers.

6.1 Discovered issues

One system was discovered (Thinkpad X240 wi th an Intel firmware
T P M 2.0), where the test failed to run, although T P M 2.0 was present.
The tpm2-algtest utility uses an elliptic curve primary key for cre
ating every key used during the benchmark. This specific system,
however, does not support any elliptic curve.

The device was initially produced wi th a discrete T P M 1.2. Later,
T P M 2.0 capabilities were added as a chipset update which included
a firmware implementation of a T P M . It was tested w i t h the latest
available Intel M E update (from July 2018) 2 .

During the testing, a discrepancy was discovered between the du
ration of the test with and without a T P M resource manager and access
broker. The measurements acquired during the performance testing
phase were affected. The kernel resource manager (tpmrmO device)
performed the worst, followed by tpm2-abrmd and direct device ac
cess via tpmO was the fastest. Several factors might have introduced
the slow-down. There is an additional overhead of marshalling and

1. https://copr.fedorainfracloud.org/coprs/dzatovic/tpm2-algtest/
2. https://pcsupport.lenovo.com/sk/en/products/laptops-and-netbooks/
thinkpad-x-series-laptops/thinkpad-x240/downloads/driver-list/
component?name=Chipset

24

https://copr.fedorainfracloud.org/coprs/dzatovic/tpm2-algtest/
https://pcsupport.lenovo.com/sk/en/products/laptops-and-netbooks/

6. EXPERIMENT

unmarshalling the data, coming to and from resource manager, as
well as the need to virtualize handles.

To show this, we have performed the test using all three mentioned
TCTIs. The measurements were done on two significantly different
devices. One was a low-cost Raspberry Pi 3 Model B+ [68] board with
an ARM C P U , and the other one was a high-end dual-CPU x86 H P Z8
G4 workstation [69]. Both devices included the same T P M 2.0 chip
(Infineon SLB9670 [7]). The tpm2-algtest was the only application
on the system accessing a T P M .

The difference among the different TCTIs was present on both
systems. It was the most significant when the operation (measured via
direct device access) was too quick (under 25 ms). The measurements
are presented in Table 6.1 and Table 6.2. It is worth noting that the T P M
on Raspberry Pi performed better than the one on H P Z8 G4, although
they are the same model and the H P workstation is significantly more
performant than the Raspberry Pi .

25

6. EXPERIMENT

Table 6.1: Comparison of average operation duration, i n ras, using
direct device access compared to resource managers (Raspberry P i
withSLB9670).

tpmO tpmrmO tpm2-abrmd
TPM2_GetRandom 4.15 65.24 4.90
TPM2_Create
E C C (NIST P256) 213.79 275.57 246.30
H M A C 51.07 112.81 83.58
RSA1024 1906.09 1968.85 2092.06
RSA 2048 9546.34 10589.42 10080.02

A E S 128 48.99 110.63 81.48
TPM2_HMAC
SHA-256 13.49 135.96 75.17

TPM2_Hash
SHA-1 4.61 65.78 6.80
SHA-256 4.78 65.82 6.83
TPM2_RSA_Decrypt
RSA 1024 88.44 210.82 150.26
RSA 2048 185.58 309.06 247.79
TPM2_RSA_Encrypt
RSA1024 6.45 128.89 68.37

RSA 2048 9.74 132.51 71.44
TPM2_Sign
E C C (NIST P256) E C D S A 70.89 193.08 132.12
RSA 1024 RSAPSS 94.26 217.28 155.33
RSA 2048 RSAPSS 192.84 314.99 254.52
TPM2_VerifySignature
E C C (NIST P256) E C D S A 106.16 229.08 167.67

RSA 1024 RSAPSS 14.39 136.35 75.63
RSA 2048 RSAPSS 22.93 143.36 82.28

26

6. EXPERIMENT

Table 6.2: Comparison of average operation duration, i n ms, using
direct device access compared to resource managers (HP Z8 G4 Work
station wi th SLB9670).

tpmO tpmrmO tpm2-abrmd
TPM2_GetRandom 4.19 120.88 3.98
TPM2_Create
E C C (NIST P256) 156.82 272.90 214.78
H M A C 107.55 223.95 165.44
RSA1024 787.75 1040.78 902.22
RSA 2048 7079.44 6670.52 6885.91
A E S 128 102.56 219.02 160.11
TPM2_HMAC
SHA-256 25.06 257.38 142.91
TPM2_Hash
SHA-1 6.26 123.30 7.59
SHA-256 6.02 122.43 7.31
TPM2_RSA_Decrypt
RSA1024 81.21 314.76 198.07
RSA 2048 439.25 672.93 555.96
TPM2_RSA_Encrypt
RSA1024 7.00 240.26 125.25
RSA 2048 11.26 243.87 128.46
TPM2_Sign
E C C (NIST P256) E C D S A 71.12 304.66 188.98
RSA 1024 RSAPSS 112.13 345.67 229.49
RSA 2048 RSAPSS 502.18 734.64 618.85
TPM2_VerifySignature
E C C (NIST P256) E C D S A 107.61 340.04 224.96
RSA 1024 RSAPSS 37.10 269.51 154.14
RSA 2048 RSAPSS 70.65 305.72 186.90

27

7 Conclusion

The goal of this work was to provide an overview of the T P M 2.0 tech
nology and compare it to its predecessor T P M 1.2. We have described
possible use cases, where T P M usage might be beneficial. Survey of
Linux T P M software stacks by multiple authors was provided along
with the tools which can be used for managing and performing opera
tions on the T P M . Linux kernel and its services associated with T P M ,
like drivers, support for virtual TPMs and built-in resource manager,
were presented. We also discussed the support for measured boot in
the context of G N U / L i n u x ecosystem.

The implementation task was to provide a framework for creating
bootable images wi th a user interface, for collecting data for research
purposes by laypeople. We have provided a hybrid user interface for a
tpm2-algtest utility, which benchmarks and collects data about T P M
2.0 devices. The tool was packaged into a bootable image, to make it
accessible to the users of all OSes. We integrated capabilities to upload
the collected results to a researcher-specified repository or store them
on a persistent partition of the bootable disk.

Lastly, an experiment was performed to verify the implementation
against a heterogeneous set of real-world systems. We demonstrated
that the solution is flexible and works either locally, using a G U I , or
remotely via a terminal UI. It can operate on an ARM-based embedded
system, but also on x86 PCs, workstations and servers.

7.1 Future work

During the experiment phase, we have discovered a difference in per
formance which depends on which resource manager is used. The
framework might be extended to perform benchmark not only a single
method, but to measure them all. This would provide an insight into
the heterogenous T P M ecosystem on the Linux platform and possibly
uncover performance bugs in resource a managers. The tpm2-algtest
utility can be extended to support different primary keys, to enable
benchmarking T P M s which do not support elliptic curve cryptogra
phy.

28

7. C O N C L U S I O N

The framework can be extended to detect if the T P M is susceptible
to any published attack (like [35, 33, 34]), as there already exist de
tection tools. This information w o u l d then be presented to the user,
which could make it more attractive to volunteers.

29

Bibliography

1. STRUK, Simon. A tool for analysis of supported cryptographic prop
erties ofTPM 2.0 chips. 2019. Master's thesis. Masaryk University,
Faculty of Informatics, Brno. Supervised by Petr S V E N D A .

2. ISO Central Secretary. ISO/IEC 11889-1:2015 - Information tech
nology - Trusted platform module library - Part 1: Architecture. Geneva,
C H , 2015. Standard. International Organization for Standardiza
tion.

3. A R T H U R , W i l l ; C H A L L E N E R , David; G O L D M A N , Kenneth. A
Practical Guide to TPM 2.0: Using the New Trusted Platform Module
in the New Age of Security. 1st ed. Apress, 2015. ISBN 978-1-4302-
6583-2,978-1-4302-6584-9.

4. Microsoft, Co. BitLocker Countermeasures [online]. 2015 [visited
on 2020-04-28]. Available from: https : / /docs .microsof t . com/e
n-us/previous-vers ions/windows/ i t -pro/windows-8 .1 -and-
8/dn632176(v = ws . 11) ?redirectedf rom = MSDN # pro tec t ion -
dur ing-pre-boot -pre-boot -authent icat ion .

5. Trusted Platform Module (TPM) 2.0: A Brief Introduction. Trusted
Computing Group, 2015. Available also from: https : / / t r u s t e d
computinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-
Introduct ion.pdf . Technical report.

6. Infineon Technologies, A G . Iridium 9670 Evaluation Board for
OPTIGA™ Trusted Platform Module [online]. 2020 [visited on
2020-04-28]. Available from: h t t p s : //www. in f ineon. com/dgdl/
Infineon - I r id ium _ 1 - 0 _ 9670 _HD- Addi t iona lTechnica l ln f
ormation-v01_01-EN .pdf ?fileld=5546d46271bf4f920171ef
70667e51b4. Technical report. Rev. 1.1.

7. I N F I N E O N T E C H N O L O G I E S , A G . OPTIGA™ TPM SLB 9670
TPM2.0 [online]. 2018 [visited on 2020-04-28]. Available from:
https://www.infineon.com/dgdl/Infineon-SLB%209670VQ2.
0-DataSheet-v01_04-EN.pdf ?fileld=5546d4626fclce0b016f
c78270350cd6. Technical report. Rev. 1.4.

30

https://www.infineon.com/dgdl/Infineon-SLB%209670VQ2

B I B L I O G R A P H Y

8. GIGA-BYTE Technology Co., Ltd. GC-TPM2.0 [online]. 2020 [vis
ited on 2020-04-28]. Available from: https : / /www . gigabyte .
com/Motherboard/GC-TPM20#ov.

9. I N F I N E O N T E C H N O L O G I E S , A G . OPTIGA™ TPM SLB 9665
TPM2.0 [online]. 2018 [visited on 2020-04-28]. Available from:
https : / / www . in f ineon . com / dgdl / Inf ineon - data - sheet -
SLB9665_2 . 0_Revl . 2 - DS - vOl _02 - EN . pdf ? f i l e l d = 5546d
462689a790c016929dld3054feb. Technical report. Rev. 1.2.

10. ASUSTeK Computer, Inc. TPM-SPI (14-1 pin). 2018. Available
also from: https : / / d l c d n e t s . asus . com/pub/ASUS/mb/Add-
on_card/E15028_TPM-SPI_card_QSG_WEB.pdf. Technical report.

11. Nuvoton Technology, Co. NPCT7xxTPM 2.0FIPS 140-2 Security
Policy. 2019. Available also from: https : / / c s r c . n i s t . gov/CSRC/
media /pro jec t s / c ryptographic -module -va l idat ion-progra
m/documents/securi ty-pol ic ies/140sp3187 .pdf. Technical
report. Rev. 1.0.9.

12. Trusted Computing Group. TPM Certified Products [online]. 2020
[visited on 2020-03-21]. Available from: https : //trustedcomp
u t i n g g r o u p . o r g / m e m b e r s h i p / c e r t i f i c a t i o n / t p m - c e r t i f i e d -
products/ .

13. RAJ, Himanshu et al.fTPM: A Firmware-based TPM 2.0 Implemen
tation. Microsoft Research, 2015. Technical report.

14. A R M , Ltd. TrustZonefor ArmvS-A [online]. 2019 [visited on 2020-
04-28]. Available from: https : / /developer .arm. com/-/media/
Armyo20Developeryo20Community/PDF/Leamyo20theyo20Architec
ture/TrustZone%20for%20Armv8-A.pdf?revision=c3134c8e-
fld0-42ff-869e-0e6a6bab824f.

15. Intel, Co. What is Intel ® Management Engine? [online]. 2017 [vis
ited on 2020-04-28]. Available from: https : //www. i n t e l . com/
content/www/us/en/support/articles/000008927/software/
chipset -sof tware .html .

16. B O S C H , Peter. Intel Management Engine deep dive [online]. 36th
Chaos Communication Congress, 2019 [visited on 2020-04-28].
Available from: h t t p s : / /pbx . sh/ inte lme_ta lk . pdf.

31

B I B L I O G R A P H Y

17. Advanced Micro Devices, Inc. AMD GuardMI Technology [online].
2019 [visited on 2020-03-21]. Available from: h t t p s : //www. amd.
com/en/system/files?file=documents/guardmi-infographic
.pdf.

18. Microsoft, Co. MS TPM2.0 Reference Implementation [online]. 2020
[visited on 2020-04-28]. Available from: https : / / g i t h u b . com/
microsoft/ms-tpm-20-ref/blob/master/README.md.

19. Google, L L C . TPM-JS [online]. 2020 [visited on 2020-04-28]. Avail
able from: h t t p s : / /google .g i thub. i o / t p m - j s / .

20. V M w a r e , Inc. Add a Virtual Trusted Platform Module to a Virtual
Machine [online]. 2019 [visited on 2020-04-28]. Available from:
https : / / docs . vmware . com / en / VMware - vSphere / 6 . 7 / com .
vmware . vsphere . secur i ty . doc/GUID-3D39CBA6-E5B2-43E2-
A596-B9A69B094558.html.

21. Microsoft, Co. Generation 2 virtual machine security settings for
Hyper-V [online]. 2016 [visited on 2020-04-28]. Available from:
https : / / d o c s . microsoft . c o m / e n - u s / w i n d o w s - s e r v e r / v i r
t u a l i z a t i o n / hyper - v / l e a r n - more /generat i o n - 2 - v i r t u a l -
machine-secur i ty - se t t ings - for -hyper -v .

22. Xen Project. Virtual Trusted Platform Module (vTPM) [online].
2020 [visited on 2020-04-28]. Available from: https : / / w i k i .
xenproject . o r g / w i k i / V i r t u a l _ T r u s t e d _ P l a t f orm_Module_
(vTPM).

23. BERGER, Stefan; C A C E R E S , Ramon; G O L D M A N , Kenneth A . ;
PEREZ, Ronald; SAILER, Reiner; D O O R N , Leendert van. V T P M :
Virtualizing the Trusted Platform Module. In: Proceedings of the
15th Conference on USENIX Security Symposium - Volume 15. Van
couver, B.C., Canada: USENIX Association, 2006. USENIX-SS'06.

24. Z I M M E R M A N , Miriam. Virtual Trusted Platform Module for Shielded
VMs: security in plaintext [online]. 2018 [visited on 2020-04-28].
Available from: https : / / c l o u d . google . com/blog/products/
g c p / v i r t u a l - t r u s t e d - p l a t f o r m - m o d u l e - f o r - s h i e l d e d - v m s -
s e c u r i t y - i n - p l a i n t e x t .

32

B I B L I O G R A P H Y

25. B O O N E , Jeremy. TPM Genie: Interposer Attacks Against the Trusted
Platform Module Serial Bus. N C C Group, 2018. Available also from:
https : / / g i t h u b . com/nccgroup/TPMGenie/raw/master/do
cs /NCC_Group_ Jeremy_Boone _TPM_Genie _Whitepaper . pdf.
Technical report.

26. A N D Z A K O V I C , Denis. Extracting BitLocker keys from a TPM [on
line]. Pulse Security, 2020 [visited on 2020-04-28]. Available from:
h t t p s : / / p u l s e s e c u r i t y . c o . n z / a r t i c l e s / T P M - s n i f f i n g .

27. H A L D E R M A N , J. Alex; S C H O E N , Seth D. ; H E N I N G E R , Nadia;
C L A R K S O N , Wil l iam; P A U L , Wil l iam; C A L A N D R I N O , Joseph
A . ; F E L D M A N , Ar ie l J.; A P P E L B A U M , Jacob; FELTEN, Edward
W. Lest We Remember: Cold Boot Attacks on Encryption Keys. In:
O O R S C H O T , Paul C. van (ed.). Proceedings of the 17th USENIX
Security Symposium, July 28-August 1, 2008, San Jose, CA, USA.
USENIX Association, 2008, pp. 45-60.

28. TCG Platform Reset Attack Mitigation Specification. 2008. Available
also from: https : //trustedcomputinggroup. org/wp-content/
u p l o a d s / P l a t f o r m - R e s e t - A t t a c k - M i t i g a t i o n - S p e c i f i c a t i o
n.pdf. Technical report. Trusted Computing Group, Inc.

29. FRISK, Ulf. Direct Memory Attack the Kernel [online]. DEF CON24,
2016 [visited on 2020-04-28]. Available from: https : / / m e d i a ,
def con . org/DEF ,/.20C0N ,/.2024/DEF ,/.20C0N ,/.2024 ,/.20presenta
t ions /DEF,/.20C0N,/.2024,/.20 - °/.20Ulf - F r i s k - D i r e c t - Memory-
At tack- the-Kerne l .pdf .

30. FRISK, Ulf. DMA attacking over USB-C and Thunderbolt 3 [online].
2016 [visited on 2020-04-28]. Available from: https : / / b l o g .
f r izk .net /2016/ lO/dma-at tacking-over-usb-c -and.html .

31. Intel, Co. Intel ® Virtualization Technology for Directed I/O (VT-d)
[online]. 2012 [visited on 2020-04-28]. Available from: https : / /
sof tware . inte l .com/content /www/us/en/develop/art ic les /
i n t e l - v i r t u a l i z a t i o n - t e c h n o l o g y - f o r - d i r e c t e d - i o - v t - d -
e n h a n c i n g - i n t e l - p l a t f o r m s - f o r - e f f i c i e n t - v i r t u a l i z a t i o
n - o f - i o - d e v i c e s . h t m l .

33

https://pulsesecurity.co.nz/articles/TPM-sniffing

B I B L I O G R A P H Y

32. MÜLLER, Tilo; FREILING, Felix C ; D E W A L D , Andreas. TRE
SOR Runs Encryption Securely Outside R A M . In: Proceedings
of the 20th USENIX Conference on Security. San Francisco, C A :
USENIX Association, 2011, p. 17. S E C ' l l .

33. M O G H I M I , Daniel; S U N A R , Berk; E ISENBARTH, Thomas;
H E N I N G E R , Nadia. TPM-FAIL: T P M meets Timing and Lattice
Attacks. In: 29th USENIX Security Symposium (USENIX Security
20). Boston, M A : USENIX Association, 2020.

34. H A N , Seunghun; S H I N , Wook; P A R K , Jun-Hyeok; K I M , H y -
oungChun. A Bad Dream: Subverting Trusted Platform M o d
ule While You Are Sleeping. In: 27th USENIX Security Sympo
sium (USENIX Security 18). Baltimore, M D : USENIX Association,
2018, pp. 1229-1246. ISBN 978-1-939133-04-5.

35. N E M E C , Matus; SYS, Marek; S V E N D A , Petr; K L I N E C , Dusan;
M A T Y A S , Vashek. The Return of Coppersmith's Attack: Prac
tical Factorization of Widely Used RSA M o d u l i . In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communi
cations Security. Dallas, Texas, U S A : Association for Computing
Machinery, 2017, pp. 1631-1648. CCS '17. ISBN 9781450349468.

36. Trusted Computing Group. TPM Software Stack (TSS) [online].
2020 [visited on 2020-04-28]. Available from: https : / / t r u s t e d c
omputinggroup.org/work-groups/software-stack/.

37. TCG TSS 2.0 Enhanced System Level API (ESAPI) Specification. 2019.
Available also from: https : //trustedcomputinggroup. org/wp-
content/uploads/TSS_ESAPI_vlp00_r05_published.pdf. Tech
nical report. Trusted Computing Group, Inc.

38. The tpm2-software community. tpm2-tools Wiki [online]. 2020
[visited on 2020-04-28]. Available from: https : / / g i t h u b . com/
tpm2-software/tpm2-tools/wiki .

39. I B M . TPM 2.0 TSS Project Page [online]. 2020 [visited on 2020-
04-28]. Available from: https : / / sourcef orge . n e t / p r o j e c t s /
ibmtpm20tss/.

40. Microsoft Research. TSS.MSR [online]. 2020 [visited on 2020-04-
28]. Available from: h t t p s : / / g i t h u b . com/microsof t/TSS. MSR/
blob/master/README.md.

34

B I B L I O G R A P H Y

41. BERGER, Stefan. Virtual TPM Proxy Driver for Linux Containers
[online]. 2020 [visited on 2020-03-21]. Available from: https :
/ / www . kernel . o r g / d o c / h t m l / l a t e s t / s e c u r i t y / t p m / t p m _
vtpm_proxy.html.

42. BERGER, Stefan, swtpm Wiki [online]. 2020 [visited on 2020-03-
21]. Available from: h t t p s : / / g i t h u b . com/stef anberger/swtpm
/ w i k i .

43. The Linux kernel development community. Kernel Key Retention
Service [online]. 2020 [visited on 2020-03-21]. Available from:
h t t p s : / / w w w . k e r n e l . o r g / d o c / h t m l / l a t e s t / s e c u r i t y / k e y s /
core.html.

44. The Linux kernel development community. Trusted and Encrypted
Keys [online]. 2020 [visited on 2020-03-21]. Available from: ht
tps : //www . k e r n e l . o r g / d o c / h t m l / l a t e s t / s e c u r i t y / k e y s /
trusted-encrypted.html .

45. STUEBLE, C ; SELHORST, Marcel. TrustedGRUB Wiki [online]
[visited on 2020-03-21]. Available from: https : / /sourcef orge.
net/p/trustedgrub/wiki/Home/.

46. Rohde & Schwarz G m b H & Co. K G . TrustedGRUB2 documentation
[online]. 2017 [visited on 2020-03-21]. Available from: https :
/ / g i t h u b . com/Rohde-Schwarz/TrustedGRUB2/blob/master/
README, md.

47. Free Software Foundation, Inc. GNU GRUB Manual 2.04 [online].
2019 [visited on 2020-03-21]. Available from: h t t p s : //www.gnu.
org/software/grub/manual/grub/html_node/Measured-Boot.
html.

48. SUSE, L L C . YaST the installation and configuration tool [online].
2020 [visited on 2020-04-28]. Available from: https : / / y a s t .
opensuse.org/documentation.

49. The Qt community. About Qt [online]. 2019 [visited on 2020-03-
21]. Available from: h t t p s : / / w i k i .q t . io/About_Qt.

50. The G T K Team. Getting Started with GTK [online]. 2020 [visited
on 2020-03-21]. Available from: https : //www . g tk . org/docs/
g e t t i n g - s t a r t e d / .

35

https://www.kernel.org/doc/html/latest/security/keys/
http://www.gnu

B I B L I O G R A P H Y

51. P R A D E E P P A D A L A . What is NCURSES [online]. 2005 [visited
on 2020-03-21]. Available from: https : / / t l d p . org/HOWTO/
NCURSES-Programming-HOWTO/intro.html#WHATTS.

52. Fedora Project. Copr User Documentation [online]. 2020 [visited
on 2020-04-28]. Available from: https : / /docs . pagure . o r g /
copr.copr/user_documentation.html.

53. Fedora Project. Fedora's Mission and Foundations [online]. 2020
[visited on 2020-04-28]. Available from: https : / /docs . f edorap
ro jec t .org/en-US/pro j ect/ .

54. rpkg team, rpkg documentation [online]. 2018 [visited on 2020-
04-28]. Available from: h t t p s : / /docs .pagure. o r g / r p k g / i n t r o .
html.

55. rpkg team, module-build documentation [online]. 2017 [visited
on 2020-04-28]. Available from: https : / /docs . pagure . o r g /
rpkg2/commands/module-build.html.

56. L A N E , B r i a n C . livemedia-creatorDocumentation [online]. 2019
[visited on 2020-04-28]. Available from: https : / / w e l d r . i o /
lorax/ lorax-composer/ l ivemedia-creator .html .

57. Red Hat, Inc et al. Fedora Project Wiki [online]. 2020 [visited on
2020-04-28]. Available from: https : / / f edoraproj ect . o r g / w i k i
/Remix.

58. Red Hat, Inc. Introduction to Anaconda [online]. 2015 [visited on
2020-04-28]. Available from: https : / /anaconda - i n s t a l l e r .
r e a d t h e d o c s . i o / e n / l a t e s t / i n t r o . h t m l .

59. L A N E , Brian C. Lorax Documentation [online]. 2018 [visited on
2020-04-28]. Available from: https : / / w e l d r . i o / l o r a x / l o r a x .
html#how-it-works.

60. PAVLOV, Artemiy I.; CECCHETTI , Marco. What is SquashFS [on
line]. 2008 [visited on 2020-04-28]. Available from: https : / /
tldp.org/HOWTO/SquashFS-HOWTO/whatis.html.

61. SCHMITT, Thomas, xorrisofs Manual Page [online]. 2019 [vis
ited on 2020-04-28]. Available from: https : / /www . gnu . o r g /
sof tware/xorr iso/man_l_xorr isofs .html .

36

B I B L I O G R A P H Y

62. ISO Central Secretary. ISO 9660:1988 - Information processing -
Volume and file structure of CD-ROM for information interchange.
Geneva, C H , 1988. Standard. International Organization for Stan
dardization.

63. Fedora Project, livecd-iso-to-diskManual Page [online]. 2017
[visited on 2020-04-28]. Available from: https : //github. com/
livecd-tools/livecd-tools/blob/master/docs/livecd-iso-
to-disk. pod.

64. G N O M E Documentation Project. GNOME Disks [online]. 2018
[visited on 2020-03-21]. Available from: https : //wiki . gnome .
org/Design/SystemSettings/.

65. BATARD, Peter. Rufus project page [online]. 2020 [visited on 2020-
03-21]. Available from: https : //rufus . ie/.

66. G N O M E Documentation Project. GNOME Disks [online]. 2018
[visited on 2020-03-21]. Available from: https : //wiki . gnome .
org/Apps/Disks.

67. R U B I N , Paul; M A C K E N Z I E , David; K E M P , Stuart, dd Manual
Page [online]. 2020 [visited on 2020-04-28]. Available from: http
s://man7.org/linux/man-pages/manl/dd.1.html.

68. Raspberry P i Foundation. Raspberry Pi 3 Model B+ [online] [vis
ited on 2020-04-28]. Available from: https : //static .raspberr
ypi.org/files/product-briefs/Raspberry-Pi-Model-Bplus-
Product-Brief .pdf. Technical report.

69. Hewlett-Packard Company. HP Z8G4 Workstation [online]. 2020
[visited on 2020-04-28]. Available from: https : //www8 . hp . co
m/h20195/v2/GetPDF . aspx/c05527763 . pdf. Technical report.
Version 29.

37

Acronyms

BIOS Basic Input /Output System.

EA Enhanced Authorization.

EFI Extensible Firmware Interface.

EK Endorsement Key

ESAPI Enhanced System API .

FAPI Feature API .

fTPM Firmware Trusted Platform Module.

GPT G U I D Partition Table.

H M A C Hash-based Message Authentication Code.

I 2C Inter-Integrated Circuit.

IC Integrated circuit.

IOMMU Input-Output Memory Management Unit.

IoT Internet of Things.

LPC Low Pin Count.

MBR Master Boot Record.

NV Non-Volatile.

PCIE Peripheral Component Interconnect Express.

PCR Platform Configuration Register.

R M Resource Manager.

RNG Random Number Generator.

RPM R P M Package Manager.

RSA Rivest-Shamir-Adleman.

SAPI System API .

SHA-1 Secure Hash Algorithm 1.

SPI Serial Peripheral Interface.

SRK Storage Root Key.

STM STMicroelectronics.

TAB T P M Access Broker.

TCG Trusted Computing Group.

TCTI T P M Command Transmission Interface.

TEE Trusted Execution Environment.

TPM Trusted Platform Module.

TSS T P M Software Stack.

V M Virtual Machine.

vTPM Virtual Trusted Platform Module.

Digital attachments

• tpm2-algtest - modified tpm2-algtest to report progress sta
tus

• tpm2_algtest_l ive - kickstart files, makefile and description
for building the live image

• tpm2_algtest_ui - Python 3 user interface for tpm2-algtest
with a . spec. rpkg file for building a package

• c o l l e c t e d _ r e s u l t s - results of T P M tests collected during the
experiment

40

