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Macrophages derived from monocyte precursors undergo specific polarization
processes which are influenced by the local tissue environment: classically activated
(M1) macrophages, with a pro-inflammatory activity and a role of effector cells
in Th1 cellular immune responses, and alternatively activated (M2) macrophages,
with anti-inflammatory functions and involved in immunosuppression and tissue
repair. At least three different subsets of M2 macrophages, namely, M2a, M2b,
and M2c, are characterized in the literature based on their eliciting signals. The
activation and polarization of macrophages is achieved through many, often intertwined,
signaling pathways. To describe the logical relationships among the genes involved in
macrophage polarization, we used a computational modeling methodology, namely,
logical (Boolean) modeling of gene regulation. We integrated experimental data and
knowledge available in the literature to construct a logical network model for the gene
regulation driving macrophage polarization to the M1, M2a, M2b, and M2c phenotypes.
Using the software GINsim and BoolNet, we analyzed the network dynamics under
different conditions and perturbations to understand how they affect cell polarization.
Dynamic simulations of the network model, enacting the most relevant biological
conditions, showed coherence with the observed behavior of in vivo macrophages.
The model could correctly reproduce the polarization toward the four main phenotypes
as well as to several hybrid phenotypes, which are known to be experimentally
associated to physiological and pathological conditions. We surmise that shifts among
different phenotypes in the model mimic the hypothetical continuum of macrophage
polarization, with M1 and M2 being the extremes of an uninterrupted sequence of
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states. Furthermore, model simulations suggest that anti-inflammatory macrophages
are resilient to shift back to the pro-inflammatory phenotype.

Keywords: macrophage, differentiation, phenotype, model, gene regulating network, polarization, immune
system

AUTHOR SUMMARY

Macrophages are key players in the elicitation of an efficient
immune response. Latest classification of macrophage functional
types comprises the classically activated (M1) macrophages with
a pro-inflammatory activity and the alternatively activated (M2)
macrophages, with anti-inflammatory functions. The latter is
further subdivided into at least three different subsets, namely,
M2a, M2b, and M2c, which are characterized on the basis of
distinct eliciting signals.

Accounting for the gene-related mechanisms of macrophage
differentiation is a challenging task. We have used the
methodology known as gene regulation network modeling on
a newly constructed network of gene regulation originated
from published experimental data. We have used computer
simulations to explore the dynamical behavior of this network
and derived conclusions about the hypothetical continuum of
macrophage polarization with M1 and M2 being the extremes
of an uninterrupted sequences of states. Our simulations also
suggest that anti-inflammatory macrophages are resilient to shift
to the pro-inflammatory phenotype.

INTRODUCTION

Macrophages and neutrophils of the innate immune system
represent the first line of defense against most common
microorganisms. Indeed, macrophages can recognize and
respond to a wide range of stimuli, expressing a great variety
of surface and intracellular receptors that activate several signal
transduction pathways and complex gene expression patterns.
Macrophages respond to extracellular stimuli upon contact
with different cell types via endocytic, phagocytic, and secretory
functions (Figure 1). Their activity is modulated by contact
synapsis established with proximal cellular and molecular
entities, including microorganisms, chemical mediators, and
other macrophages (Gordon et al., 2014).

The monocyte–macrophage differentiation pathway is known
to exhibit plasticity and diversity (Mantovani et al., 2002; Bowdish
et al., 2007; Gordon, 2008; Mantovani, 2008). Similar to the
polarization process of helper T type 1 and 2 cells (Th1–Th2), two
distinct polarized forms of macrophages have been recognized
in the past: the classically activated (M1) macrophage phenotype
and the alternatively activated (M2) macrophage phenotype
(Biswas and Mantovani, 2010). Moreover, macrophages have also
been observed in “M2-like” states, which share some features
of both M1 and M2. Indeed, recent studies support the view
that fully polarized macrophages (M1 and M2) are the extremes
of a continuum of macrophage polarization (Mantovani, 2008).
For example, various stimuli, such as immune complexes (IC)
together with LPS or interleukin-1 beta (IL-1β), glucocorticoids,

transforming growth factor-β (TGF-β), and interleukin-10 (IL-
10), give rise to M2-like functional phenotypes that share
properties with IL-4- or IL-13-activated macrophages [such as
high expression of mannose receptor (MR) and IL-10, as well
as TNFα, IL-1β, and IL-6] (Mantovani et al., 2004). Variations
of the gene expression patterns corresponding to M1 or M2 are
also found in vivo (e.g., in the placenta and embryo, and during
helminthic infection, Listeria infection, obesity, and cancer) (Raes
et al., 2005; Biswas et al., 2006; Kraakman et al., 2014).

The M1 and M2 phenotypes Kraakman et al., 2014 correspond
to cell activation states driven by cytokines, which are typically
secreted by Th1, Th2, and T-regulatory cells, but also basophils,
mast cells, B lymphocytes, and eosinophils. The M1 phenotype
is polarized by single or a combination of Th1 cytokines and
pro-inflammatory mediators, including granulocyte-macrophage
colony-stimulating factor (GM-CSF), tumor necrosis factor
(TNF)-α, IL-6, IL-1β, IL-12, and various pathogen-associated
molecules, such as lipopolysaccharide (LPS). By contrast, the M2
polarization is induced by macrophage colony-stimulating factor
(M-CSF), IL-4 and IL-13, IC, IL-10, as well as glucocorticoid,
TGFβ, and serotonin (Sang et al., 2015) (see Table 1).

Although there is a wealth of information about the
different macrophage subsets in vitro, features such as plasticity,
heterogeneity, and adaptability make them very difficult to study
using conventional experimental tools. Furthermore, as many
of the studies are done in different settings or for different
goals, some literature reports are not conclusive and sometimes
contradictory. It is not clear how robust the different macrophage
subsets are to environmental changes. In particular, how does a
modification of the cytokine environment affect the phenotype
of macrophages? Which polarization state is most stable? Which
possible gene knockouts can lead to a phenotypic change?

Macrophages polarization is essential in orchestrating the
immune system response both in infectious and sterile immune
settings. To shed light on this complex molecular process
and address the questions above, we employed computational
modeling of gene regulatory networks (GRNs) (Karlebach and
Shamir, 2008).

Computational and mathematical modeling provide a means
to assemble the known relevant molecules and their interactions
into a network of pathways, with cross-talk between them.
This allows, for examples, the test of whether the assimilated
knowledge is sufficient to reproduce experimental results,
and, furthermore, introduce cell-specific perturbations into the
network to generate and test hypotheses in silico. For recent
reviews, see Eftimie et al. (2016), Chakraborty (2017).

Computational models of GRNs have been shown to be
a good approach to study how cells integrate several signals
driving the cell phenotypic changes, especially for their ability to
quantitatively and qualitatively describe a great variety of poorly
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FIGURE 1 | Macrophage signaling cascade. Macrophage receptors and their relationships with key transcription factors downstream of the signaling cascade. The
transcriptions of different sets of genes lead to distinctive macrophage phenotypes; M1, M2a, M2b, and M2c.

TABLE 1 | Summary of key molecules in macrophage polarization as taken from the literature.

M1 M2A M2B M2C

Cytokines IL-10, IL-1, IL-23, IL-1β, TNFα, IL-6, IL-18 IL-10, IL-12, IL-23, IL-1Ra IL-10, IL-12, IL-23, IL-1β, TNFα, IL-6 IL-10, IL-12, IL-23, TGFβ

CC-chemokines CCL-2, 3, 4, 5, 11, 17, 22 CCL-17, 18, 22, 24 CCL-1 CCL-16, 18

CXC-chemokines CXCL-1, 2, 3, 5, 8, 9, 10, 11, 16 – – CXCL-13

Scavenger receptors – SR, MR – MR, CD163

Metabolism iNOS FIZZ-1, Ym-1, Arg iNOS Arg

Cytokines, chemokines, receptors, and genes involved in metabolism are represented for each specific macrophage phenotype (adapted from Foey, 2014). Dashes
indicate missing/contrasting data in the literature.

characterized biological situations (Méndez and Mendoza, 2016).
Computational models are used to describe immunological
phenomena, to provide a better understanding of aspects of
the immune response, and to produce outcomes coherent with
available data, thus unraveling basic mechanisms of immunology
and possibly leading to new hypotheses that can be tested
experimentally in vivo or in vitro (Castiglione and Celada, 2015).

Discrete logical (Boolean or multi-state) models are usually
the method of choice especially when the biological questions are
of qualitative nature or when the available data (and knowledge)
are mainly qualitative. Boolean networks and logical models
have been used extensively to model many biological systems
including immunological systems such as T-cell signaling and T
helper cell differentiation (Naldi et al., 2010; Abou-Jaoudé et al.,
2016; Méndez and Mendoza, 2016).

There are several computational models of some pathways
that are involved in the pro and anti-inflammatory immune
response, such as the NF-κB, TNF-α, IL-1, and IL-10 signaling

pathways. Furthermore, there are computational models of T
helper cell differentiation including continuous (Carbo et al.,
2014), Boolean (Martinez-Sanchez et al., 2015), multistate logical
(Naldi et al., 2010), and multi-scale (Santoni et al., 2008; Tieri
et al., 2014). However, we are not aware of any GRN models
of the molecular network describing macrophage differentiation.
We have recently developed a multiscale model (Castiglione
et al., 2016) of the immune response incorporating a minimalistic
Boolean model of macrophages differentiation accounting for M1
and M2 polarization, but not for the subsets of M2. Maiti et al.
(2014) presented an ODE model to describe the pro- and anti-
inflammatory signaling in macrophages toward understanding
immune homeostasis.

In this paper, we present a novel logical model of the
gene regulation underlying macrophage differentiation and
polarization, where the regulatory interactions and logical rules
are inferred from the literature. We then used the model to study
the dynamical behavior of the network. The model not only was
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able to reproduce known experimental data but also provides
the first computational evidence of the continuum hypothesis of
phenotypes which was suggested by Sica and Mantovani (2012).

MATERIALS AND METHODS

Logical Models of Regulatory Networks
Gene regulatory network modeling aims at describing the way
cells integrate extracellular stimuli to run cellular programs
consisting of activations and inhibitions of genes (Kestler et al.,
2008).

Logical network modeling was introduced by the geneticist
R. Thomas (Thomas and D’Ari, 1990; Thomas and Kaufman,
2001) for the study of GRNs. Since then, they have been
developed further, and have been used extensively to model
many biological systems including cell-fate determination in
A. thaliana (Espinosa-Soto et al., 2004; Benítez and Hejátko,
2013), E. coli metabolism (Samal and Jain, 2008), and the
differentiation and plasticity of T helper cells (Naldi et al., 2010;
Abou-Jaoudé et al., 2014), to name a few.

Gene regulatory networks are typically drawn from a
mixture of literature, data mining and experimental data.
Signal transducers, transcription factors and target genes in the
activation of specific cellular programs (e.g., cell maturation or
differentiation) are identified, as well as their relationships coded
in terms of inhibition/activation. This data mining step produces
a network (N, E) in which the nodes N are the molecules and
the edges E = E− ∪ E+ are the activations (edges in the set E+)
and inhibitions (edges in E−) relationships. Gene activation levels
(states) or molecular concentrations are represented either by
a discrete and usually very small set of values (two levels, i.e.,
active/inactive, represents the most used one, called Boolean) or
by a continuous range of activity levels. In this paper, we have
used the discrete Boolean formulation.

Each node nk of the network N has a function Fk specifying
how the state of that node may change in response to changes in
the states of its neighbors (the nodes nj for which there exists an
edge ejk ∈ E) in the network. The synchronous or asynchronous
calculation of the functions F1,. . .,Fn, at each discrete step makes
the network evolve from one macro-state to another. In the
synchronous mode, all node states are updated at the same time,
while in an asynchronous case, nodes are randomly updated at
different time steps.

The Boolean model of a GRN is therefore defined as a discrete
dynamical system which can then be studied for its dynamical
properties. Since the space of all possible macro-states is finite,
starting from any configuration, the repeated application of the
functions F1,. . .,Fn, will lead the system to be in states that it
has reached before. These states correspond to stable patterns of
gene expression that can be reasonably regarded as real biological
states characterizing a specific cellular function. Starting from any
configuration and after a certain transient period, the network
dynamics will either reach a state and stay there (such a state is
called a steady state), or can keep cycling forever among the same
set of states (such a set of states is called a limit cycle) (Guevara,
2003; Ortiz-Gutiérrez et al., 2015). The transient period before

the network dynamics reaches a certain steady state or limit cycle
is called the basin of attraction of that state or cycle.

The dynamics of the system is encoded by a graph, whose
vertices are all configurations (states) of the network and directed
edges where each such edge indicates the transition of the system
from one state to the next.

We used the software GINsim (Naldi et al., 2009) for the
development of the model and the analysis of the network,
including the identification of all steady states (Karlebach and
Shamir, 2008; Méndez and Mendoza, 2016), and the BooleanNet
Python library (Albert et al., 2008) and BoolNet R library (Müssel
et al., 2010) for the study of the dynamics of the system.

RESULTS

Molecular Basis of the Macrophage
Polarization
During the inflammation process, several immune cells are
involved in initiating and maintaining the inflammatory state.
Macrophages, together with leukocytes, are the first cells
recruited to the inflammation site. They start releasing pro-
inflammatory cytokines (mostly IFN-γ and IL-1β), creating an
inflammatory environment. The binding of those molecules to
their specific receptors triggers a signal transduction cascade
resulting in the release of other inflammatory molecules. This
positive feedback mechanism allows the maintenance of the
inflammatory state and reinforce the M1 polarized state.

The resolution of inflammation occurs by different
mechanisms, such as the downregulation of pro-inflammatory
molecules, the short half-life of the inflammatory mediators, and
the production of anti-inflammatory molecules. In this context,
macrophages are expected to switch to M2, and, consequently,
produce anti-inflammatory mediators, such as IL-10, inhibiting
M1-related transcriptional regulators, while a positive feedback
loop provides the means to maintain their anti-inflammatory
phenotype.

Interferon (IFN) receptors have multi-chain structures and
interact with members of the Janus-activated kinase (JAK)
family (Darnell et al., 1994). When IFN-γ binds to its cognate
receptor, the activation of the receptor-associated JAKs occurs
in response to rearrangement and dimerization of the receptor
subunits, followed by auto-phosphorylation and activation of
the associated JAKs. This process determines the activation
of classical JAK–STAT (signal transducer and activator of
transcription) signaling pathways, resulting in the transcription
of target genes (Platanias, 2005; Mosser and Edwards, 2008;
McLaren and Ramji, 2009). Among the STATs, a pivotal role
is played by STAT1, which undergoes dimerization after its
JAK-mediated tyrosine phosphorylation. Hence, STAT1–STAT1
homodimer binds to cis elements known as “gamma-activated
sequences” (GAS) in the promoters of the genes encoding NOS2,
the MHC class II transactivator (CIITA) and IL-12, among others
(Darnell et al., 1994; Sadler and Williams, 2008; Lawrence and
Natoli, 2011). The IFN-associated JAK/STAT pathway exerts its
function in the regulation of several immune cells, including
macrophages, with a great increase of IFN production, the
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synthesis of several cytokines, such as interleukins IL-1β, IL-6,
IL-12, IL-18, IL-23, and TNF-α, and nitric oxide (NO), as well
as reactive oxide intermediates (ROI) and enzymes required for
tissue remodeling.

Toll-like receptors (TLRs) mediate the immune response to
a great variety of infectious agents and facilitate transcription
of many pro-inflammatory genes (Sheikh et al., 2014). LPS
is a component of the Gram-negative bacteria cell wall and
induces expression of a wide variety of genes that constitute
the innate immune response to bacterial infections. LPS signals
through TLR4 on the cell surface of many cell types, including
macrophages (Kawai and Akira, 2010, 2011). Signaling through
TLR4 induces rapid activation of two distinct intracellular
signaling pathways: one is the MyD88-dependent pathway, which
leads the cascade through interferon regulatory factor (IRF)-
3, and the other is the MyD88-independent signaling pathway,
which acts through TIR-domain-containing adapter-inducing
interferon β (TRIF). These pathways converge to activate the
transcription of NOS2; the inducible NO synthase (Kawai et al.,
2001; Doyle et al., 2002).

The M1 phenotype can also result from differentiation in the
presence of GM-CSF, with increased expression of IL-12 and pro-
inflammatory cytokines, the ability to activate Th1 cell immune
responses and decreased expression of IL-10 (Krausgruber et al.,
2011).

M2 macrophages exhibit a functionally distinct phenotype
to that of M1s, originally via the ability of IL-4 to induce
MR expression, followed by IL-13, which is another Th2
cytokine. IL-4/IL-13 and TGFβ/IL-10 have been described to be
associated with priming M2 macrophage subsets (M2a and M2c,
respectively). The role of IL-4- and IL-13-mediated signaling
in M2 macrophage polarization has been well established
both in vitro and in vivo (Gordon, 2003; Martinez et al.,
2009; Gordon and Martinez, 2010). Mice with a myeloid
cell-specific knockout of IL-4 receptor-α (IL4Rα) were found
to lack M2 macrophage development in mouse models of
helminth infection and in Th2 cell-mediated inflammation,
where IL-4 has a major role (Lawrence and Natoli, 2011).
It is well established that IL-4 and IL-13 are associated
with Th2-type responses, which have well-defined effects on
macrophages, other cells and immune functions. IL-4 and IL-
13 are produced particularly in allergic, cellular, and humoral
responses to parasitic and extracellular pathogens. IL-4 and
IL-13 upregulate expression of the MR and MHC class II
molecules by macrophages, which stimulates endocytosis and
antigen presentation, and they induce the expression of selective
chemokines (Gordon, 2003; Gordon and Martinez, 2010). IL-
4 and IL-13 act through a common receptor chain – IL-
4Rα – through signal transducer and activator of transcription
6 (STAT6).

Interleukin-1 beta and IC, together with TLR4-signaling
inducers (i.e., LPS), drive the macrophage to an M2b phenotype.
IL-1β not only plays a pivotal role in the initiation and
maintenance of the inflammatory response but also modulates
immunosuppressive mechanisms through the process of
macrophages endotoxin tolerance. IL-1β is also produced in
response to LPS, emphasizing a collaborative interplay between

M1 and M2b macrophages in eliciting and maintaining the
inflammatory response (Sato et al., 2012).

Interleukin-10 acts on a distinct plasma membrane receptor
to those for IL-4 and IL-13 (Riley et al., 1999; Moore et al., 2001;
Deng et al., 2012), and its effects on macrophage gene expression
are different, involving a more profound inhibition of a range
of antigen-presenting and effector functions, together with the
activation of selected genes or functions. T cells themselves
are more heterogeneous than was thought originally, including
not only Th0-, Th1-, and Th2-type cells but also regulatory
and possibly Th3-type cells, some of which secrete TGF-β and
IL-10 (Gordon, 2003). TGFβ and IL-10 have been described
to be associated with priming M2-like macrophages subset
polarization. TGFβ and IL-10 modulate macrophage polarization
and functional plasticity to that of an M2c subset which exhibits
a characteristic cytokine phenotype of IL-10hi, IL-12lo, IL-
23lo, and TGFβ+ which is associated with anti-inflammatory
responses, scavenging, immune regulation, tissue repair, and
tumor promotion. Both TGFβ and IL-10 directly suppress
immune activation via the down-regulation of the expression
of MHC II and pro-inflammatory cytokine production, with an
indirect effect through cross-regulation of M1-derived cytokines
and functionality (Gordon and Martinez, 2010; Lawrence and
Natoli, 2011; Sica and Mantovani, 2012). IL-10 is a potent STAT3-
dependent inhibitor of pro-inflammatory cytokine production
and NO release, after challenge with LPS. IL-10-deficient mice
develop widespread inflammatory cell infiltrates, including in the
bowel, and transgenic animals that constitutively overexpress IL-
metricconverterProductID10 in10 in macrophages suffer from
septic shock and over-activity of pro-inflammatory cytokines
(Lang et al., 2002b). The upregulation of expression of IL-4Rα

by IL-10 correlates with increased IL-4-dependent expression
of arginase-1. IL-10 also synergizes with LPS to increase the
expression of arginase-2. Therefore, IL-10 increases the total level
of arginases in macrophages in many ways (Lang et al., 2002a,b).

Phenotypes depending on complex regulatory logic can be
effectively studied by using mathematical and computational
approaches, such as GRN models.

A Logical Network Model of Macrophage
Differentiation
We have constructed a logical regulatory network model
(Figure 2 and Supplementary File S1) that describes macrophage
polarization using experimental data and knowledge derived
from literature (see Table 2) and a curated database of causal
relationships between biological entities (Perfetto et al., 2016).
The network comprises 30 nodes and 49 interactions among
them. Interactions can be either positive (activations) or negative
(inhibitions) (Figure 2). Table 2 shows a list of the molecules,
interactions, and references from the literature supporting each
interaction, while Table 3 shows logical rules for each molecule.

Nodes are of four kinds, depending on cellular location and
function (Figure 2): seven input nodes, which represent the
extracellular stimuli (IFNγ, GM-CSF, IL-1β, LPS, IC, IL-4, and
IL-10), seven receptors (IFNγR, CSF2Ra, IL-1R, TLR4, FcγR, IL-
4R, and IL-10R), 14 internal regulators (STAT1, STAT5, NF-κB,
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TABLE 2 | Interactions in the macrophage polarization network.

Source Interaction type Target Reference Source Interaction type Target Reference

IFNg_e Positive IFNgR Kotenko et al., 1995; Mosser and
Edwards, 2008; McLaren and Ramji,
2009

NF-κB Positive IL12_out Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

IL1b_e Positive IL1R Weber et al., 2010 NF-κB Positive IL1b Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

GM-CSF_e Positive CSF2Ra Lehtonen et al., 2002; Hamilton, 2008;
Krausgruber et al., 2011; Lawrence and
Natoli, 2011

PPARg Positive IL10_out Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

LPS_e Positive TLR4 Park et al., 2009; Lawrence and Natoli,
2011

LPS_e Positive FcgR Nimmerjahn and Ravetch, 2008; Foey,
2014

PPARg Negative NF-κB Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

IC_e Positive FcgR Sánchez-Mejorada and Rosales, 1998;
Nimmerjahn and Ravetch, 2008; Foey,
2014

PPARg Negative STAT3 Ricote et al., 1998; Bouhlel et al., 2007;
Lawrence and Natoli, 2011

IL1b_e Positive FcgR Nimmerjahn and Ravetch, 2008; Foey,
2014

STAT6 Positive KLF4 Sica and Mantovani, 2012

IL4_e Positive IL4Ra Gordon, 2003; Gordon and Martinez,
2010; Lawrence and Natoli, 2011

IL10_e Positive IL10R Moore et al., 2001; Foey, 2014; Hutchins
et al., 2013; Nakamura et al., 2015

STAT6 Positive SOCS1 Baker et al., 2009; Dickensheets et al.,
2007; Whyte et al., 2011

IFNgR Positive STAT1 Mosser and Edwards, 2008; McLaren
and Ramji, 2009

STAT6 Positive IL10_out Lang et al., 2002a; Gordon, 2003;
Gordon and Martinez, 2010; Lawrence
and Natoli, 2011

CSF2Ra Positive STAT5 Barahmand-Pour et al., 1998; Lehtonen
et al., 2002; Hamilton, 2008; Krausgruber
et al., 2011; Lawrence and Natoli, 2011

JMJD3 Positive IRF4 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

IL1R Positive NF-κB Weber et al., 2010 STAT3 Positive IL10_out Riley et al., 1999; Ritter et al., 1999;
Hutchins et al., 2013; Foey, 2014;
Nakamura et al., 2015

TLR4 Positive IRF3 Sheikh et al., 2014

TLR4 Positive NF-κB Tran-Thi et al., 1995; Lehtonen et al.,
2002; Park et al., 2009; Lawrence and
Natoli, 2011; Bally et al., 2015

STAT3 Negative NF-κB Riley et al., 1999; Hutchins et al., 2013

FcgR Positive ERK Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Lucas et al.,
2005; Nimmerjahn and Ravetch, 2008;
Zhang et al., 2009; Luo et al., 2010;
Clatworthy et al., 2014; Foey, 2014;
Vogelpoel et al., 2014, 2015

STAT3 Negative STAT1 Ito et al., 1999

FcgR Negative NF-κB Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Ji et al., 2003;
Lucas et al., 2005; Hirano et al., 2007;
Nimmerjahn and Ravetch, 2008; Zhang
et al., 2009; Luo et al., 2010; Clatworthy
et al., 2014; Guilliams et al., 2014;
Vogelpoel et al., 2014

STAT3 Negative STAT5 Yamaoka et al., 1998

FcgR Negative STAT3 Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Ji et al., 2003;
Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Zhang et al., 2009; Luo
et al., 2010; Clatworthy et al., 2014;
Guilliams et al., 2014; Vogelpoel et al.,
2014, 2015

IRF3 Positive IFNb Doyle et al., 2002; Honda et al., 2005;
Rauch et al., 2013; Mao et al., 2015

FcgR Negative TLR4 Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Abrahams et al.,
2000; Nimmerjahn and Ravetch, 2008;
Zhang et al., 2009; Luo et al., 2010;
Guilliams et al., 2014; Vogelpoel et al.,
2014, 2015

ERK Positive IL10_out Sánchez-Mejorada and Rosales, 1998;
Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Liu et al., 2009; Foey,
2014

(Continued)
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TABLE 2 | Continued

Source Interaction type Target Reference Source Interaction type Target Reference

IL4Ra Positive PPARg Gordon, 2003; Bouhlel et al., 2007;
Chawla, 2010; Gordon and Martinez,
2010; Gong et al., 2012

KLF4 Negative NF-κB Sica and Mantovani, 2012

IL4Ra Positive STAT6 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

SOCS1 Negative STAT1 Dickensheets et al., 2007; Baker et al.,
2009; Whyte et al., 2011

IL4Ra Positive JMJD3 Gordon, 2003; Ishii et al., 2009; Gordon
and Martinez, 2010; Satoh et al., 2010;
Lawrence and Natoli, 2011

IRF4 Negative STAT5 Sica and Mantovani, 2012

IL10R Positive STAT3 Riley et al., 1999; Ritter et al., 1999;
Hutchins et al., 2013; Foey, 2014;
Nakamura et al., 2015

STAT1 Positive IL12_out Mosser and Edwards, 2008; Sadler and
Williams, 2008; McLaren and Ramji,
2009; Lawrence and Natoli, 2011

IFNb Positive IFNgR Kotenko et al., 1995; Lehtonen et al.,
2002; Gordon, 2003; Platanias, 2005;
Lawrence and Natoli, 2011; Rauch et al.,
2013

STAT5 Positive IL12_out Yamaoka et al., 1998; Lehtonen et al.,
2002; Hamilton, 2008; Krausgruber et al.,
2011; Lawrence and Natoli, 2011

Source and target nodes are reported as well as the sign of the interaction between them (positive: source molecule activates target molecule; negative: source molecule
inhibits target molecule) and the references. Each input node is annotated with an “_e” suffix, which stands for external stimulus, as well as an “_out” suffix which stands
for output.

PPARγ, STAT6, JMJD3, STAT3, IRF3, ERK, KLF4, SOCS1, IRF4,
IL1β, and IFN-β), and two main products of each distinct type
of macrophage (IL-12 and IL-10). The input nodes represent
the main intercellular molecular stimuli that drive macrophage
polarization, as reported in the literature. Each external molecule
(input) is connected to its specific receptor, and this binding
elicits a signaling cascade, involving intracellular transducers
and transcription factors (mostly STAT factors). Each specific
transcription factor binds the promoter of a target gene, resulting
in the production of IL12 or IL10 depending on the macrophage
polarized form.

Interactions among nodes are derived from experimental data
available in the literature as shown in Table 2. All interactions
have been deposited in SIGNOR (Perfetto et al., 2016), a public
database of causal interactions between biological entities. Each
node is associated to a logical function which determines the
activation level of the node based on the activation levels reached
by its source nodes in the previous time step. The logical
function of each node is inferred from the available literature (see
Table 3).

The network encompasses several pathways. Different cell
fates, i.e., macrophage phenotypes, are defined by steady or
stable states (also called fixed point attractors) of gene expression,
and described in this dynamic model as multiple, specific, and
stable configurations of activated/deactivated nodes. In other
words, stable states are configurations toward which the system
tends to evolve, for a wide range of starting conditions. Thus,
according to the network, its starting configuration, and the
initial external stimuli, the pathways lead to a configuration
that resembles a specific cell state in terms of the given
gene expression pattern. In this regard, we assumed that the
sum of the sizes of the basins of attraction of the steady
states characterizes the likelihood of finding the cell in a

specific differentiation state. In other words, the probability
that the cell, stimulated by cytokines, will switch to the certain
differentiation state is proportional to the size of the subspace
of all network configurations eventually reached by the network
dynamics.

Inhibitory pathways among M1 and M2 phenotype-related
transcription factors are particularly interesting, because they
allow a mutual exclusivity of transcription factors and, therefore,
of the macrophage phenotypes, as reported in literature
(Lawrence and Natoli, 2011). Notably, among the interactions
describing the network and reported in tables above, the
inhibition of TLR4 and NF-κB signaling by FcγR activation
were added. These relationships allow the inhibition of M1
polarization in the presence of IC, that together with LPS and
IL-1β, drives the otherwise absent M2b polarization.

To analyze the dynamics of the network under different
conditions we used GINsim [Gene Interaction Network
simulation1; (Chaouiya et al., 2012)], a software tool for modeling
and simulation of genetic regulatory networks (Chaouiya et al.,
2012). In some cases, for further confirmation or additional
details, we used the BooleanNet Python (Albert et al., 2008) as
well as the BoolNet R library (Müssel et al., 2010).

The fate of a macrophage strongly depends on the local
biochemical microenvironment. To reproduce these different
microenvironments that influence the cells, we defined a set of
inputs to run the simulations. Hence, we could discriminate
among steady states with a real biological meaning.

The starting expression state of the network corresponds to the
naïve macrophage M0 (unstimulated/not-activated) phenotype,
in which the state of each node in the network is set to “0” (i.e.,
low expression).

1www.ginsim.org
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FIGURE 2 | Network for macrophage polarization. External stimuli are reported in the extracellular space, receptors inside membrane space, and internal
transducers/transcription factors in the intracellular space. Secreted cytokines (IL-10 and IL12) are also reported. Black arrows represent positive interactions
(activations), red dashed arrows are negative interactions (inhibitions), and blue arrows are transcriptional auto-regulatory loops. Nodes represent both genes and
proteins; edges represent both protein–protein interactions and transcriptional regulations.

In our simulations, we found that our model has five sets
of steady states fitting the following five specific macrophage
phenotypes markers according to literature (Figure 3):

1. M0: no nodes active;
2. M1: IL-12 and at least one among STAT1, STAT5 or NF-κB

are active;

3. M2a: all of PPARγ, STAT6, JMJD3 and IL-10 are active;
4. M2b: ERK and IL-10 are active; and
5. M2c: STAT3 and IL-10 are active.

We computed the steady states of macrophage polarization
network using a synchronous update. The system reached 1056
states, 1040 of which are steady states and 16 are cycles made
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TABLE 3 | Boolean functions in the macrophage polarization network.

Node Boolean function Reference

IFNgR IFNg_e ∨ IFNb Interferons bind to their cognate receptors (Kotenko et al., 1995; Lehtonen et al., 2002; Gordon, 2003;
Platanias, 2005; Mosser and Edwards, 2008; McLaren and Ramji, 2009; Rauch et al., 2013)

CSF2Ra GM-CSF_e GM-CSF ligand binds to its receptor (Lehtonen et al., 2002; Hamilton, 2008; Krausgruber et al., 2011;
Lawrence and Natoli, 2011)

IL1R IL1b_e ∨ IL1b IL-1 beta binds to its receptor (Weber et al., 2010)

TLR4 LPS_e ∧ q FcgR TLR4 is activated by LPS; TLR4 signaling is inhibited by Fc gamma receptor (Sánchez-Mejorada and
Rosales, 1998; Sutterwala et al., 1998; Nimmerjahn and Ravetch, 2008; Park et al., 2009; Zhang et al.,
2009; Luo et al., 2010; Lawrence and Natoli, 2011; Vogelpoel et al., 2014)

FcgR (IC_e ∧ LPS_e) ∨ (IC_e ∧
IL1b_e)

Immune complexes, together with LPS or IL-1 beta activate Fc gamma receptor (Sánchez-Mejorada and
Rosales, 1998; Sutterwala et al., 1998; Abrahams et al., 2000; Lucas et al., 2005; Nimmerjahn and
Ravetch, 2008; Zhang et al., 2009; Luo et al., 2010; Clatworthy et al., 2014; Guilliams et al., 2014;
Vogelpoel et al., 2014, 2015)

IL4Ra IL4_e IL-4 binds to its receptor (Gordon, 2003; Gordon and Martinez, 2010; Lawrence and Natoli, 2011)

IL10R IL10_e ∨ IL10_out IL-10 binds to its receptor (Moore et al., 2001; Hutchins et al., 2013; Foey, 2014; Nakamura et al., 2015)

STAT1 IFNgR ∧ q(SOCS1 ∨ STAT3) Interferon-gamma receptor activates JAK/STAT1 pathway and is inhibited by SOCS1 or STAT3 signaling
(Ito et al., 1999; Dickensheets et al., 2007; Mosser and Edwards, 2008; Baker et al., 2009; McLaren and
Ramji, 2009; Whyte et al., 2011)

STAT5 CSF2Ra ∧ q(STAT3 ∨ IRF4) STAT5 transcription factor is activated via CSF2Ra signaling and inhibited by STAT3 or IRF4
(Barahmand-Pour et al., 1998; Ito et al., 1999; Lehtonen et al., 2002; Dickensheets et al., 2007; Hamilton,
2008; Baker et al., 2009; Krausgruber et al., 2011; Lawrence and Natoli, 2011; Whyte et al., 2011)

NF-κB (IL1R ∨ TLR4) ∧ q(STAT3 ∨
FcgR ∨ PPARg ∨ KLF4)

NF-κB transcription factor is activated by LPS or IL1-beta signaling cascades and inhibited by M2a- or
M2b-related pathways (Tran-Thi et al., 1995; Ricote et al., 1998; Sánchez-Mejorada and Rosales, 1998;
Sutterwala et al., 1998; Riley et al., 1999; Lehtonen et al., 2002; Bouhlel et al., 2007; Nimmerjahn and
Ravetch, 2008; Park et al., 2009; Zhang et al., 2009; Luo et al., 2010; Weber et al., 2010; Lawrence and
Natoli, 2011; Sica and Mantovani, 2012; Hutchins et al., 2013; Guilliams et al., 2014; Vogelpoel et al.,
2014; Bally et al., 2015)

PPARg IL4Ra PPARg is activated by IL4 signaling (Gordon, 2003; Bouhlel et al., 2007; Chawla, 2010; Gordon and
Martinez, 2010; Gong et al., 2012)

STAT6 IL4Ra JAK/STAT6 pathway is activated by IL4 receptor after IL-4 binding (Gordon, 2003; Ishii et al., 2009;
Gordon and Martinez, 2010; Satoh et al., 2010; Lawrence and Natoli, 2011)

JMJD3 IL4Ra JMJD3 is activated in response to IL4 signaling cascade (Gordon, 2003; Ishii et al., 2009; Gordon and
Martinez, 2010; Satoh et al., 2010; Lawrence and Natoli, 2011)

STAT3 IL10R∧ q(FcgR ∨ PPARg) JAK/STAT3 pathway is activated in response to IL-10 and inhibited by PPAR gamma or Fc gamma
receptor pathways (Ricote et al., 1998; Sánchez-Mejorada and Rosales, 1998; Sutterwala et al., 1998;
Riley et al., 1999; Ji et al., 2003; Bouhlel et al., 2007; Nimmerjahn and Ravetch, 2008; Lawrence and
Natoli, 2011; Hutchins et al., 2013; Foey, 2014; Nakamura et al., 2015)

IRF3 TLR4 IRF3 is activated in response to TLR4 signaling pathway (Doyle et al., 2002; Sheikh et al., 2014; Mao et al.,
2015)

ERK FcgR ERK pathway is initiated in response to M2b-related signals (Sánchez-Mejorada and Rosales, 1998; Lucas
et al., 2005; Nimmerjahn and Ravetch, 2008; Liu et al., 2009; Foey, 2014)

KLF4 STAT6 KLF4 is activated downstream JAK/STAT6 pathway (Sica and Mantovani, 2012)

SOCS1 STAT6 SOCS1 is activated by STAT6 transcription factor (Baker et al., 2009; Whyte et al., 2011; Arnold et al.,
2014)

IRF4 JMJD3 IRF4 is activated by JMJD3 expression (Gordon, 2003; Ishii et al., 2009; Gordon and Martinez, 2010;
Satoh et al., 2010; Lawrence and Natoli, 2011)

IL1b NF-κB NF-κB transcription factor promotes IL-1 beta production (Tran-Thi et al., 1995; Lehtonen et al., 2002;
Park et al., 2009; Lawrence and Natoli, 2011; Bally et al., 2015)

IFNb IRF3 IRF3 promotes type I interferon production (Doyle et al., 2002; Honda et al., 2005; Rauch et al., 2013; Mao
et al., 2015)

IL12_out STAT1 ∨ STAT5 ∨ NF-κB IL-12 is produced by transcription factors STAT1, STAT5 or NF-κB (Mosser and Edwards, 2008; Sadler
and Williams, 2008; McLaren and Ramji, 2009; Lawrence and Natoli, 2011)

IL10_out PPARg ∨ STAT6 ∨ JMJD3 ∨
STAT3 ∨ ERK

PPAR gamma, STAT6, JMJD3, STAT3 and ERK downstream genes lead to the production of high
quantities of IL10 (Ricote et al., 1998; Sutterwala et al., 1998; Riley et al., 1999; Ritter et al., 1999; Lang
et al., 2002a; Gordon, 2003; Lucas et al., 2005; Bouhlel et al., 2007; Ishii et al., 2009; Liu et al., 2009;
Gordon and Martinez, 2010; Luo et al., 2010; Satoh et al., 2010; Lawrence and Natoli, 2011; Foey, 2014;
Sanin et al., 2015)

Based on the available literature (third column), a Boolean function (second column) is associated to each target node of the network (symbols ∧, ∨, and q indicate logical
operators AND, OR, NOT, respectively).
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of three different states. Among the 1040 unique steady states
(Supplementary Table S1), 228 can be mapped to the five
canonical macrophage phenotypes reported via experimental
studies in the literature. The frequencies of these 228 steady
states are reported in Figure 4. The remaining steady states do
not characterize the macrophage in any of the known canonical
phenotypes. These states, for which there is a lack of experimental
knowledge, could correspond to input conditions not existing
among in vivo inflammation settings or even be artefacts of
the modeling approach. Alternatively, they could correspond
to hybrid phenotypes (O’Carroll et al., 2013) resembling gene
expression patterns of two or more canonical phenotypes
(discussed below). It is worth to note that a higher number of
steady states does not imply a corresponding higher probability of
polarization, since the final outcome depends on the combination
of external stimuli. In other words, the number of steady states
indicates the propensity of the network logic to lead the cell to
the specific phenotypes yet driven by environmental cues.

The most frequent polarized state is the M2a followed by
M2c and then M1. This is consistent with the pivotal role of
macrophages in inflammation (M1), and in the resolution of
inflammation (M2a and M2c). On the other hand, according
to our analysis, M2b is the least frequent state, which might
be consistent with the lack of knowledge of M2b-related
pathways which is reflected in the network. This behavior of
the model is consistent with observed data (Sica and Mantovani,
2012).

A closer look at the dynamics of the model (Figure 5)
is obtained by performing several rounds of asynchronous
simulations by using the BooleanNet Python library. We
observed that any combination of stimuli among IFN-γ,
IL-1β, LPS, and GM-CSF keep the polarization of the M1
macrophage. Once macrophages have polarized into an
M1 form, the steady states are taken as initial conditions
to polarize macrophages into the three different forms of
M2 macrophage. IL-4 input is activated (i.e., IL-4 binding
by IL-4RA) to polarize M2a macrophage, IL-10 is activated
to polarize the M2c macrophages, and IC in combination
with either IL-1β or LPS is activated to polarize M2b
macrophages, according to the available literature on
macrophage polarization stimuli (Gordon and Martinez,
2010).

The M1 polarization is simulated starting from an M0 (i.e.,
all non-input signal nodes set to zero) cellular environment
and switching on all input nodes, as reported in literature.
Following the typical cellular response to inflammation, starting
from an M1-like configuration, and M2-related external stimuli
(i.e., IL-4 for M2a, IL-10 for M2c and IC in combination
with LPS or IL-1β for M2b macrophages), the dynamics
of transcription factors and secreted molecules (i.e., IL-12
and IL-10) show the macrophage moves from pro- to anti-
inflammatory states, as reported in literature. The M2-related
polarizations from an M0 initial state have been also performed
to check the ability of the system to simulate the situation
in which new monocyte-derived macrophage populations are
recruited to the inflammation site during the resolution
of inflammation, in addition to M2 macrophages polarized

FIGURE 3 | Gene expression markers of macrophage polarization according
to literature. Each row, associated to one of M0, M1, M2a, M2b, and M2c,
indicates the expression of the 10 marker genes determining the polarization
fate. White dots represent inactive genes; yellow dots indicate expressed
genes.

from the pro-inflammatory M1 state (see Supplementary
File S2).

We also tested in silico the “plasticity” of the polarized
phenotypes, i.e., the capability to revert the state from
inflammatory to anti-inflammatory and vice versa. In order
to proceed, we run a set of numerical experiments in
which macrophages, starting from the four polarized states
M1, M2a, M2b, and M2c, were challenged with the four
characteristic stimuli (i.e., pro-M1, -M2a, -M2b, and -M2c)
resulting in 16 possible couples “initial condition/stimuli.” Each
of those simulation settings was repeated 104 times using the
asynchronous updating scheme and averages were computed.
After that, we used the steady states obtained as initial states
for other simulations, giving each input from the input set (see
Figure 5).

We focused on M1-related initial states, since a normal
immune response begins with an inflammation state, followed by
anti-inflammatory environment settings.

With an M0 steady state as initial condition, several
stimuli were applied for each simulation. To represent
the M1 polarization we gave a combination of random
M1-related stimuli (LPS, GM-CSF, IFN-γ, and IL-1β).
The initial state for each node of the network are
those related to the M0 steady state (no active nodes at
all).

We then performed M2a, M2b, and M2c polarizations with
IL-4, a combination of IC and IL-1β or LPS, and IL-10 as inputs,
respectively. In other words, we started with M1 macrophages,
changed their environment and stimulated them with different
types of stimuli. Thus, we performed all the combinations for
the simulations and analyzed the dynamics and the differences
(see Figure 5 for details). We also investigated the possibility of
transforming an M2-like phenotype to an M1 macrophage by
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FIGURE 4 | Barplot of macrophages’ phenotypes occurrences. Each bar represents the number of steady states (total number = 228) related to a specific polarized
form.

changing the environment using a variety of external stimuli.
However, all considered combinations resulted in states that do
not characterize the macrophage M1 canonical phenotype.

Robustness Evaluation of the
Macrophage Network
Biological networks are considered to be robust when compared
to random networks, if a single perturbation does not influence
the behavior of the entire system. We analyzed the robustness of
macrophage polarization network as follows. First, we evaluated
the transition robustness by perturbing states of the network
with random bit flips (Müssel et al., 2010). When the successor
states of the original and the perturbed states are computed, the
distance between then is calculated as the Hamming distance
(HD, that is, the difference between strings of equal length is
the number of positions at which the corresponding symbols are
different). The HD, normalized by the number of genes in the
network, shows how robust the network is to small mutations:
the lower the normalized HD, the more robust is the network.

A hundred of these tests were repeated for 100 randomly
generated networks and the results plotted in Figure 6. Results
show that the macrophage model is statistically more robust
(p = 0.01) in comparison to the randomly generated networks.

The resulting mean normalized HD equal to 0.03 can be
interpreted as if, on average in the mutated networks, 3% of the
gene states are different.

Effects of Knockouts in the Simulations
To analyze the dynamics and investigate the role of each
component in the polarization process, we performed knockout
(components’ value set to “0”) and ectopic expression
(components’ value set to “1”) in silico experiments. These
constraints allowed us to see how perturbations of the system
affect the network functionality with respect to the macrophage
behavior. At a biological level, this analysis may have potential
impact in in-silico pharmaceutical target prioritization.

In our network, gene knockout is interpreted as a deactivation
of one or more components, just like the deactivation of a protein
that is a target of a drug.

We performed systematic knockouts on every internal node
of the network (internal transducers/transcription factors), to see
how they affect the dynamics of the network by calculating the
fold change of the number of steady states reached by the system
(see Figure 7 and Supplementary Files S3, S4 for details). The
idea is that a knockout modifies the network characteristics so
that also its dynamics is modified and the number of steady states,
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FIGURE 5 | Dynamics of the gene activation levels obtained for all combinations of initial polarization state and polarizing stimuli. The average activation values are
computed over 104 asynchronous simulations of the activation level of the genes. For each subplot, the horizontal axis represents eight time steps and the vertical
axis the average activity of a molecule from 0 to 1.

for example, a higher number of pro-inflammatory steady states
is interpreted as a greater probability to induce, via that specific
knockout, a pro-inflammatory polarization of the macrophages.

DISCUSSION

Pro-inflammatory macrophages are those polarized by cytokines
like IFN-γ or LPS (among other molecules). They are
produced during cell-mediated immune responses, interacting
with chemical mediators produced by other cells, such as the
IFN-γ secreted by natural killer (NK) cells (Mosser and Edwards,
2008). Resting macrophages are primed by IFN-γ to produce
pro-inflammatory cytokines, according to our simulations of an
unstimulated macrophage which undergoes an M1 polarization
when stimulated by IFN-γ (see Figure 5). TLR ligands, such
as the well-known LPS can also polarize macrophage into an
M1 form, via NF-κB signaling, producing pro-inflammatory
mediators, other stimuli such as GM-CSF and IL-1β gave similar
results (Mosser and Edwards, 2008; Lawrence and Natoli, 2011;

Sica and Mantovani, 2012). Macrophages respond to micro-
environmental cues, showing a distinct transcriptional profile
depending on the stimulus. Starting from M0, that is assumed to
be a cell with no typical constitutive gene expression profile, an
M1 stimulus (i.e., IFN-γ, LPS, IL-1β, and GM-CSF) leads to a M1
phenotype, IL4 to a M2a phenotype, IC together with LPS and/or
IL-1β to an M2b phenotype, and IL-10 to a M2c phenotype, the
network can represent the polarization process (see Figure 8 for
a visual representation of macrophage switch pathways).

Transcription factor NF-κB is among the most important
regulators of M1 polarization of macrophages (Wang et al.,
2014). Its expression is stable and maintained during macrophage
polarization after stimulation with M1-related inputs. If no
inputs are given to an M1-polarized system, NF-κB seems to
maintain the M1 polarization (see Figure 5), while STAT1 and
STAT5 decrease their expression (if not stimulated by IFN-γ
and GM-CSF), until an M2-related stimulus (IL-4, IL-10 or IC)
is present, which result in the resolution of the inflammation
phase, and in the increase of the expression of M2 master
regulators.

Frontiers in Physiology | www.frontiersin.org 12 November 2018 | Volume 9 | Article 1659

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01659 November 23, 2018 Time: 15:54 # 13

Palma et al. Modeling the Dynamics of Macrophage Polarization

FIGURE 6 | Test of the robustness of the macrophage network. Histogram of
the normalized Hamming distance (HD) of randomly generated networks
(RGN) in comparison to the HD of the perturbed macrophage network (PMN).
The red line shows the mean of the PMN-HD histogram (not shown) which is
smaller than the 5% quantile of the RGN-HD distribution (blue line). The test
shows that the noise influences the randomly generated networks significantly
more than the macrophage network (Müssel et al., 2010).

In the presence of IL-4 (i.e., activation of input node IL4), we
noticed rapid expression of M2a master regulators (i.e., STAT6,
PPARγ, and JMJD3) and the production of IL-10, with a slow
decrease in the production of IL-12, indicating that M2a-related
stimuli can immediately suppress the pro-inflammatory function
of macrophage, as already evidenced in literature (Sica and
Mantovani, 2012). In M2b polarization, despite the slow decrease
of the expression of pro-inflammatory transcription factors and
secreted molecules, IL-10 is finally produced by this type of
macrophage, and its master regulator, ERK. M2c polarization is
reached when IL-10 is given as input, with IL-10 production and
STAT3 expression.

In the absence of external stimuli, a polarized M2 macrophage
maintained its state with no alteration on the molecules
expression, highlighting the stability of this phenotype.

M1 stimuli do not affect M2-like macrophage, apart from
M2b in which we can assist to a slower decrease of IL12,
reaching its stable state at the seventh time step, at variance
with M2a and M2c simulations in which the anti-inflammatory
stimuli lead to the absence of IL12 at the fourth time step.
For any input given to an M2b-polarized macrophage, a
phenotype change related to the given stimulus seems to be
a common feature, except for M1 stimuli, which appear to
polarize macrophage to a form corresponding to the production
of both output cytokines (IL12 and IL10) and the repression
of ERK. This behavior has not been reported in literature,
but could explain the existence of this not-well characterized
type of macrophage that share common features between

pro- and anti-inflammatory macrophages (Sica and Mantovani,
2012).

A similar behavior can be observed when M2c macrophage
are polarized with M1-related cytokines, even though M2a and
M2b stimulations can subvert M2c polarization, indicating that
M2c macrophages are more likely to be polarized from an M0
phenotype or switch from an already M1-polarized macrophage.
Indeed, in some physiological and pathological conditions, such
as muscle regeneration, the co-existence of different populations
of M2 macrophages can be found at later stages, comprising
M2a and M2c macrophage (Novak et al., 2014; Rigamonti et al.,
2014). Hence, they can be thought of as distinct populations
of macrophage polarized independently, since this regulatory
network is characterized by well-known interactions between
molecules involved in the polarization pathway (Novak et al.,
2014; Rigamonti et al., 2014).

CONCLUSION

Transforming acute diseases into chronic ones is a realistic
strategy for those pathologies for which no definitive cure
is known, such as in the case of HIV (Scandlyn, 2000).
A better understanding of the pathways involved in the transition
from acute to chronic states and a more comprehensive
knowledge of the cellular and molecular mechanisms are in
need. Understanding how the immune response is regulated,
and how immune cells integrate information from the multitude
of molecular signals could certainly lead to improvements of
existing therapies and make suggestions on the way forward.

In this work, we presented a dynamic logical model of
the GRN of macrophage polarization, which is coherent to
the expected behavior, under different experimental conditions.
The model identified mechanisms driving a pro- into an anti-
inflammatory setting, and hence maybe useful in transforming,
fully or in part, an acute inflammation into a chronic one.

One example of network dynamics that could be affected
by providing different types of stimuli is reported in Figure 8.
We examined the different dynamics of this process to study
how macrophages switch their phenotype during ineffective and
sterile immune responses, focusing on M2-like polarization from
a pro-inflammatory micro-environment.

A first result regards the importance of two inhibitions,
namely, of TLR4 and NF-κB signaling by FcγR, that turned out
essential to obtain the M2b phenotype. In fact, a preliminary
version of the network, not accounting for these two inhibitions,
was not able to reach the M2b polarized state.

The repolarization from M2 to M1 has been experimentally
observed, yet occasionally in specific environments (Davis et al.,
2013; Zheng et al., 2013; Zhang et al., 2017; Gao et al., 2018).
Simulation results suggest that such polarization reversion seems
to show a higher inertia. In fact, as shown in Figure 5 panels a,
b, and c, the average values of pro-inflammatory genes starting
from an anti-inflammatory phenotype only reach the value of
30% of the activation level. Furthermore, our in silico knockout
experiments evidenced how some regulator plays a role by
downregulating genes that are known for their inhibition activity.
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FIGURE 7 | Circular bar plot of macrophage gene knockouts. Each group represents the knockout of a specific transcription factor of the network. Bar heights
represent the number of steady states for each macrophage canonical phenotype with respect to the wild type (WT in red).

FIGURE 8 | Cell fate map for macrophages. Each dotted arrow represents the switch of macrophage from a phenotype to another, annotated with the gene
expression patterns, based on simulation dynamics and results.
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FIGURE 9 | Conceptual representation of the continuum of differentiation states. Circles show intermediate stable states (smaller circles) between the five canonical
M0, M1, and M2a/b/c (larger monochromatic circles). Stable states whose correspondent phenotype is not uniquely determined are indicated as larger circles with
more than one color. Gray arrows indicate state changes the cell undergoes upon reception of extracellular stimuli. Black dashed arrows show jumps from one
differentiation pathway to another. For instance, just by changing the extracellular stimuli (e.g., IL10) a macrophage which started the differentiation from M1 to M2b
can divert toward the M2c phenotype.

For instance, in M2-related knockouts in silico experiments,
such regulators, as for example PPARG, are responsible for the
resolution of inflammation and the maintenance of an anti-
inflammatory environment by enabling the production of IL-
10 and other important anti-inflammatory mediators. Similar
studies could focus on networks that are specific to some
pathogen or some physiological mechanism, to get a better
comprehension in terms of the logic of the regulatory machinery.

This modeling study yielded another important observation,
which is related to the environmental-dependent expression of
mixed markers identifying one of the four canonical macrophage
polarizations. Indeed, recent studies support the view that fully
polarized macrophages (M1 and M2) as being the extremes of a
continuum of macrophages polarization (Mantovani, 2008). This
could for example be obtained by mixing various stimuli, such
as IC together with LPS or IL-1β and IL-10, which give rise to
M2-like functional phenotypes, yet sharing properties with IL-4-
activated macrophages (Mantovani et al., 2004). This continuum
of macrophages phenotypes parallels a continuum in CD4+ T
cell states, recently observed, as opposed to a limited number of

discrete phenotypes (Eizenberg-Magar et al., 2017). Indeed, while
T helper cell induction requires the participation of macrophages,
several signal feedback mechanisms are implemented for the
activation and differentiation of macrophages. Even if this
intertwinement may vary in both quantitative and qualitative
aspects, the continuum of states detected in T helper and
macrophage cells may be more linked than observed up to now.

We surmise that shifts among different phenotypes in
our model mimic the hypothetical continuum of macrophage
polarization, being M1 and the three subtypes of M2 the
extremes of such uninterrupted sequences of states. Figure 9
conceptualizes this continuum in the progression of gene
activations leading from one form of polarization to another
driven by various stimuli. For instance, an M1+M2 successive
stimuli can lead to an M2a stable configuration while passing
through an M1 state (see Figure 9).

The presented approach, although promising and general,
is not free of pitfalls. Even if little mathematical knowledge
is needed to build a Boolean network, the information gained
from its analysis is strongly affected by the accuracy of
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the relationships among genes encoded in the Boolean rules
characterizing the overall dynamics. Manually curated networks
optimally convey the biological information but cannot ensure
completeness. The usefulness of Boolean networks therefore is
found while dealing with poorly characterized systems, especially
when quantitative experimental data is missing. In some cases,
alternative approaches should be considered such as introducing
uncertainty with probabilistic networks or using continuous
models that describe the kinetic with greater accuracy than
Boolean networks.

To conclude, although there is a wealth of information
about the different macrophage subsets in vitro, features such
as plasticity, heterogeneity, and adaptability make them very
difficult to study using conventional experimental tools. In this
paper, we have shown that relatively simple logical description
of the gene regulation machinery can support the analysis of
the emerging complexity of the phenomena of mammalian cell
differentiation and can be used to provide testable predictions
as, for instance, which combination of stimuli leads to hybrid
phenotypes.

The network provided here is manually curated and has
been built based on the available information derived from
literature to date. This should be considered as-is, that is,
limited to the current knowledge which, regarding the less
characterized pathways and molecular interactions leading to
M2b macrophages, is admittedly lacking.
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