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ABSTRACT

The first chapter provides a brief account of thedny and significant advances in
the fields of aromaticity and magnetism. In thigoter a concise history of the origin and
advancement of research in aromaticity is given ctwhcorrelates the chronological
development of the subjects with the evolution evrmaterials. The current status of the
research in aromaticity, with special emphasis lm metal based aromatic molecules, is
provided. Magnetism is also discussed accordirtbeahronology of the advancement of the
theory and explored materials. The effect of dinmmsn the magnetic properties is also
discussed here. The emergence of new moleculesdoomagnets and the role of the
theoretical advancement in designing such matealatsdiscussed in this chapter.

The second chapter presents a concise report obdki theoretical background
related to aromaticity, magnetic exchange couptiogstant and magnetic anisotropy. The
significance of the quantification of aromaticitghbeen discussed with special emphasis on
the fundamental categories based on which the sseees$ of aromaticity is performed. A
short description of the available methods for difiaation of aromaticity, which are of
subsequent use in this work, is also presentedriéf background for the estimation of
magnetic exchange coupling constant has been mdvidwo different methods of
determination of the magnetic exchange couplingstaont () is given, namely, the broken
symmetry approach and the spin-flip DFT approadie Theoretical approach behind these
two methods are discussed elaborately. A shortuwmtcof the basic theory behind the
guantification of magnetic anisotropy is also pded here. There are two popular methods
for the quantification of magnetic anisotropy. TRederson-Khanna (PK) approach and the
Neese method for quantification of zero-field sply (ZFS) parameteD, in connection to
the magnetic anisotropy are discussed with propgyhasis on the estimation of the spin-
orbit coupling in spin-systems.

Gradual migration of Nafrom Mg:®~ brings about fascinating change in aromatic and
magnetic behavior of inorganic Md& cluster, which is addressed at the B3LYP and
QCISD levels is discussed in the third chapter.ifuthis process, Natakes away the
electron density from M@~ causing a net decrease in aromaticity. A tug-af-etween the
Pauli repulsion and the aromaticity is shown tadsponsible for the observed stability and
aromaticity trends in singlet and triplet statesplications of a spin crossover vis-a-vis a
possible superexchange are also explored.

The fourth chapter is on the magnetism in metatecdéased donor—acceptor
complexes, which stems from the donor to acceptarge transfer. Thus, to correlate the
exchange coupling constadtand the charge transfer integral, a formalism asetbped
which enables one to obtain the coupling constemrnfthe value of the charge transfer
integral and the spin topology of the system. Tlagiance in the magnetic interaction
between donor and acceptor is also investigatedgalowo perpendicular directions in the
three dimensional crystal structure of the refeeesigstem, decamethylchromocenium ethyl
tricyanoethylenecarboxylate [Cr(CpJETCE]. These donor—acceptor pairs (V-pair and H-
pair), oriented along vertical and horizontal dif@es respectively, are found to have
different extents o, which is attributed to the difference in exchargeapling mechanisms,
viz., direct exchange and super exchange. Nexii¥gnd H-pair are taken together to treat
both the intra chain and inter chain magnetic atgons, since this competition is necessary
to decipher the overall magnetic ordering in théklphase. In fact, this truncated model
produces a small positive value dafsupporting the weak ferromagnetic nature of the



complex. Lastly, a periodic condition is imposedtba system to comprehend the nature of
magnetism in the extended system. Interestinglg, fdrromagnetism, prevailing in the
aperiodic system, turns into weak antiferromagnetis the periodic environment. This is
explained through the comparison of density ofestdDOS) plots in aperiodic and periodic
systems. This DOS analysis reveals proximity ofdbeor and acceptor orbitals, facilitating
their mixing in periodic conditions. This mixing uses the antiferromagnetic interaction to
prevail over the ferromagnetic one, and impartsoarrall antiferromagnetic nature in
periodic conditions. This change over in magnetture with the imposition of periodicity
may be useful to understand the dependence of radrehavior with dimensionality in
extended systems.

Magnetic anisotropy of a set of octahedral Cr@bmplexes is the key deliberation of
chapter five. The magnetic anisotropy is quantifiedderms of zero-field splitting (ZFS)
parameteD, which appeared sensitive toward ligand substitutiThe increasea-donation
capacity of the ligand enhances the magnetic anjgpiof the complexes. The aximdonor
ligand of a complex is found to produce an easyltype D > 0) magnetic anisotropy,
while the replacement of the axial ligands witlacceptors entails the inversion of magnetic
anisotropy into the easy-axis tyge € 0). This observation enables one to fabricatmgles
molecule magnet for which easy-axis type magnetisaropy is an indispensable criterion.
The equatorial ligands are also found to play a ioltuning the magnetic anisotropy. The
magnetic anisotropy property is also correlatechwlite nonlinear optical (NLO) response.
The value of the first hyperpolarizability variesoportionately with the magnitude of the
ZFS parameter. Finally, it has also been shown ghigtional design of simple octahedral
complexes with desired anisotropy characterist&cgpassible through the proper ligand
selection.

In chapter six, the effect of an external elecfietd on the magnetic anisotropy of a
single-molecule magnet has been investigated, whi help of DFT. The magnetic
anisotropy of a pseudo-octahedral Co(Il) complexelg, [Cd' (dmphen)(NCS)], has been
investigated in connection to the tunability of theagnetic anisotropy through external
electric field. The application of an electric letan alter the magnetic anisotropy from
“easy-plane” D > 0) to “easy-axis”ID < 0) type. The alteration in the magnetic anisorisp
found due to the change in the Rashba spin-orbiplotg by the external electric field. This
variation in the Rashba spin-orbit coupling is figrt confirmed by the generation of the spin
dependent force in the molecule which is later tbtovmanifest separation @f andg- spins
in opposite ends of the molecule. The excitatioalysis performed through time-dependent
DFT also predicts that the external electric fiigldilitates metal tar-acceptor ligand charge
transfer, leading to uniaxial magnetic anisotropg aoncomitant spin Hall effect in a single
molecule.

Finally chapter seven presents a general and ctmpsese conclusion of all the
chapters.



PREFACE

Wiberg once referred aromaticity as a “large fuimll” due to the difficulty in
defining the concept precisely. Although aromayicis popularly considered to be an
important concept primarily for organic compounkst it has been extended to compounds
containing transition-metal atoms. Recent findio§gromaticity and antiaromaticity in all-
metal clusters have enthused further researctkalia earth metal clusters referring to their
chemical bonding, structures and stability. In thissis we used thearomatic alkaline earth
metal clusters and their alkali metal complexetss@a extended the concept of aromaticity.
Motivated by the transformation efaromaticity in free cyclo-[Mg>™ to z-aromaticity in the
alkali metal salts, we undertake a detailed ingasion of the MgNa, firstly, to obtain a set
of consistent structural data for the species; rsdlgo to analyze the electronic structure,
electron delocalization properties, and aromatioftthese species; and finally, to discuss the
changes in aromaticity and emergence of magnetssian fanction of the distance from the
alkali metal to the center of the Mgng.

Single molecular magnets have opened an opportdartythe study of physical
phenomena at the interface of the microscopic aquanorld and the macroscopic classical
systems. The field of molecular magnetism has ed@drwith the discovery of magnetic
guantum tunneling in Mi-acetate molecules. The cornerstone for the rispreéent day
interest in molecular magnetism owes to the crégtof molecular chemists for designing
high and low spin clusters and single chain magnitsre is the vibrant ongoing work on
some hole burning phenomenon like molecular spidsy quantum tunnelling of
magnetisation, spin Hall effect etc. The magnetbdviour in molecules and solids are
primarily controlled by exchange interaction. Vaisomicroscopic electronic Hamiltonians,
spin Hamiltonians have been introduced to solventyua many body problems and compute
magnetic exchange coupling constant. Magnetic &gy is responsible for intrinsic ‘easy’
and ‘hard’ directions of the magnetization in sofegomagnetic materials. This magnetic
anisotropy is, from both a technological and fundatal viewpoint one of the most
important properties of magnetic materials. Owingthie perspective of both fundamental
sciences and applications new materials are clyrbaing prepared, named multifunctional
molecular materials, which involve interplay or sygy between multiple physical properties
like aromaticity and magnetism.
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12.49955 -924.8553117 1.000017 -924.85531
12.74955 -924.8553097 1.000017 -924.85531
12.99955 -924.8553077 1.000017 -924.85531
13.24955 -924.8553058 1.000017 -924.85531

Table A.S3.Description of the orbital, wherefrom and to chatrgesfer occurs in N&gs with Na —
Mgs distance of 5.08 A and corresponding second @udergy as obtained from the NBO outpuit.

AE (kcal/mole)

Donor NBO with Acceptor NBO with

composition composition
Within a — spin orbitals LP* (4) Mg 1 LP* (1) Na 4 -0.12
s (0.28%) p 99.99 (99.32% s (56.69%) p 0.76 (43.30%
d 1.42 (0.40%) d 0.00 (0.01%)
Within g — spin orbitals LP* (4) Mg 1 LP* (1) Na 5 -0.12

s (0.28%) p 99.99 (99.32%)s (56.69%) p 0.76 (43.30%)
d 1.42 (0.40%) d 0.00 (0.01%)

NICS

28 =
-28 -
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32 4

—— NICS(0)

Na-Mg, distance

Figure A.S1.Plot of NICS(0) and NICS(1) in the singlet stafeNaMg; at CCSD/6-311+g(d) level
of theory
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Figure A.S2.Plot of NICS(0) and NICS(1) in the singlet stafeNa,Mg; at the DFT level with and
without the dispersion correction.
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Figure A.S3. Comparison of potential energy curves in ;Mg with and without the dispersion
correction.
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Appendix B: Supplementary Information for Chapter 4
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Figure B.S1.Spin populations of the high spin states plottethintwo dimensional array (b)

V-pair and (c) H-pair of the donor-acceptor complex

Table B.S1.Energy comparison of triplet and quintet spin stateneutral [CHCp*)]

Level of Theory

Energy difference between
the quintet and triplet state

in a.u.

UBHandHLYP/6-311++G(d,p) with 0.005
LANL2DZ as extrabasis on Cr

CASSCF(6,8)/LANL2DZ 0.003

UBPW91/6-311++G(d,p) with 0.042
LANL2DZ as extrabasis on Cr

UB3LYP/6-311++G(d,p) with 0.028

LANL2DZ as extrabasis on Cr




Table B.S2.Spin populations at the vertical donor-acceptocksta different functionals
(percentage of HF exchange are given for each ifumadtin the parenthesis)

Functionals UBHandHLYP ~ UBPW91 UB3LYP UPBEPBE UTPSSH
% of Hartree-Fock Exchange 505! 0%2 208 (O 1072
-0.297 -0.250 -0.249 -0.255 -0.228

3.452 3.498 3.423 3.482 3.465

) t

-0.432 -0.385 -0.373 —-0.358 -0.381

. 0.892 0.727 0.790 0.706 -0.829
.?J- 4%-0 =

Magnetic exchange coupling 511 142 137 133 408
constants () in cm*

B1. Sorkin, A.; lIron, M. A.; Truhlar, D. GJ. Chem. Theory Compu008 4, 307 and
references therein.

B2. Kantchev, E. A. B.; Norsten, T. B.; Sullivan, M. Brg. Biomol. Chem2012 10, 6682.

B3. Pantazis, D. A.; Krewald, V.; Orio, M.; Neese[Jalton Trans, 2010 39, 4959.



Table B.S3. Variation in spin densities on the magnetic cen[Cr(Cp*),]" (D") and
[ETCE] (A") and coupling constants in thepair withnk points =0, 1, 2

Gammal) point n=1 r

l ~0.093 l —0.106 l 0.105

2 3o 3o 239

@ 13 ) T 3.142 d |36

33 33 33

l 0.158 l —0.168 l —0.1758

0.698 T 0.697 T 0.653 T
0J33‘0 Co'ﬁ‘o 9 ‘3‘0

J=-7.072 cm* J=-7.501 cm® J=-9.297cm*

Table B.S4.Estimation of magnetic exchange coupling constattt thie hybrid PBE(
functional (at PBE1PBE/LANL2DZ level) iGamma (I') point only.

Spin state Energy in a.u <52>* Jincm™
High spin (quintet) -1486.665434 6.100961 -107.24cm
Low spin (triplet) -1486.666884 3.133394

* The <82> values are obtained through unrestricted densitctianal approach. TF

unrestricted density functional calculation leaml$hie problem of spin contamination. Due

this spin cotamination, the<82> value is found to be deviated from the exact vadii

6.00084 B%

B4. (a) Bhattacharya, D.; Misre¢ A. J. Phys. Chem. 2009 113 5470; b) Shil, S.; Misra,
A. J. Phys. Chem.,201Q 114, 2022.

B5. Paul S.; Misra, AJ. Chem. Theory and Comy, 2012 8, 843.



Figure B.S2.Spin populations of the high-spin states at d#féfunctionals.




Spin populations at UBHandHLYP:

Mul i ken atom c spin densities:

1 O 3. 452088
2 C -0.075705
3 C -0.063121
4 C -0.045285
5 C -0.052738
6 C -0.060055
7 C 0. 015104
8 H -0.000610
9 H -0.000434
10 H -0.000001
11 C 0. 018556
12 H 0. 000152
13 H -0.000172
14 H -0.001848
15 C 0. 030128
16 H -0.001165
17 H -0.001640
18 H 0. 000560
19 C 0. 029040
20 H -0.002802
21 H -0.000792
22 H 0. 000371
23 C 0. 016175
24 H 0. 000376
25 H -0.001354
26 H -0.000248
27 C -0.108805
28 C -0.062361
29 C -0.021571
30 C -0.120283
31 C -0.119003
32 C 0. 045692
33 H 0. 000664
34 H -0.002864
35 H 0. 004106
36 C 0. 082698
37 H -0.006715
38 H -0.000653
39 H 0. 001546
40 C -0.001421
41 H -0.002097
42 H -0.001464
43 H -0.003589
44 C 0. 031833
45 H -0.000336
46 H -0.000281
47 H -0.001393
48 C 0. 012664
49 H 0. 006226
50 H -0.002422
51 H -0.001617
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Spin populations at UB3LYP:

Mul I'i ken atomi c spin densities:
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