8253-Timer

8253 Pin Diagram

$\begin{aligned} & \mathrm{or} \\ & \mathrm{DED} \\ & \hline 12 \end{aligned}$	$\sqrt{24} \mathrm{Vec}$	
		${ }_{2} 3$] $\overline{\text { M }}$
D543		22 ¢FD
0454		210 CS
D345		${ }^{20} \mathrm{P}^{\text {A }}$,
D206		19ア告
D107	8253	18 CLK 2
20L8		17 DOUT2
CLKOCs		160gate
OUT 0.10		150 CLK 1
GATE OC11		14 GgTE 1
GM0.12		13) OUT 1

8253 Block Diagram

Pin Description

- Clock: This is the clock input for the counter. The counter is 16 bits.
- The maximum clock frequency is 1 / 380 nanoseconds or 2.6 megahertz. The minimum clock frequency is DC or static operation.
- Out: This single output line is the signal that is the final programmed output of the device.
- Actual operation of the out line depends on how the device has been programmed.
- Gate: This input can act as a gate for the clock input line, or it can act as a start pulse, depending on the programmed mode of the counter.

Counter Features

- Each counter is identical, and each consists of a 16 -bit, pre-settable, down counter.
- Each is fully independent and can be easily read by the CPU.
- When the counter is read, the data within the counter will not be disturbed.
- This allows the system or your own program to monitor the counter's value at any time, without disrupting the overall function of the 8253 .

Counter Selection

	$\overline{\mathrm{RD}}$	W'R	A口	A1	function
COUNTER 1	1	\square	0	\square	Load counter 0
	[1	\square	\square	Read counter 0
COUNTER 1	1	\square	\square	1	Load counter 1
	0	1	\square	1	Read counter 1
COUNTER 2	1	\square	1	\square	Load counter 2
	0	1	1	\square	Read counter 2
MODE WORD or CONTROL WORE	1	\square	1	1	Write mode word
	0	1	1	1	No-operation

Control Word Register

- This internal register is used to write information to, prior to using the device.
- This register is addressed when A0 and A1 inputs are logical 1's.
- The data in the register controls the operation mode and the selection of either binary or BCD counting format.
- The register can only be written to.
- You can't read information from the register.

Control Word Format

Once a counter is set up, it will remain that way until it is changed by another control word.

Different uses of the 8253 gate input pin

Signal Status	Low or going low	Rising	High
Mode			
0	Disables counting	--	Enables counting
1		1) Initiates counting 2) Resets output after next clock	--
2	1) Disables counting 2) Sets output immediately high	1) Reloads counter 2) Initiates counting	Enables counting
3	1) Disables counting 2) Sets output immediately high	Initiates counting	Enables counting
4	Disables counting	--	Enables counting
5	--	Initiates counting	--

This table shows the different uses of the $\mathbf{8 2 5 3}$ gate input pin.

Each mode of operation for the counter has a different use for the GATE input pin.

Timer Modes - Mode 0

- Interrupt on Terminal Count
- The counter will be programmed to an initial value and afterwards counts down at a rate equal to the input clock frequency $(8 \mathrm{MHz})$.
- When the count is equal to 0 , the OUT pin will be a logical 1 .
- The output will stay a logical 1 until the counter is reloaded with a new value or the same value or until a mode word is written to the device.
- Once the counter starts counting down, the GATE input can disable the internal counting by setting the GATE to a logical 0.

Mode 0: Interupt on Terminal Count

Timer Modes - Mode 1

- Programmable One-Shot
- In mode 1, the device can be setup to give an output pulse that is an integer number of clock pulses.
- The one-shot is triggered on the rising edge of the GATE input.
- If the trigger occurs during the pulse output, the 8253 will be retriggered again.

Mode 1: Programmable One-Shot

 WR $n \longrightarrow \longrightarrow$

Trigger \quad| 43210 |
| :---: |
| 0 |

Outpu
$(n=4)$
Trigger Output

Timer Modes - Mode 2

- Rate Generator
- The counter that is programmed for mode 2 becomes a "divide by n " counter.
- The OUT pin of the counter goes to low for one input clock period.
- The time between the pulses of going low is dependent on the present count in the counter's register.

Timer Modes - Mode 2

- For example, suppose to get an output frequency of $1,000 \mathrm{~Hz}$, the period would be $1 / 1,000 \mathrm{~s}=1 \mathrm{~ms}$ or $1,000 \mu \mathrm{~s}$.
- If an input clock of $\mathbf{1 ~ M H z}$ were applied to the clock input of the counter \#0, then the counter \#0 would need to be programmed to $1000 \mu \mathrm{~s}$.
- This could be done in decimal or in BCD. (The period of an input clock of 1 MHz is $1 / 1,000,000=1 \mu \mathrm{~s}$.)
- The formula is: $\mathbf{n}=\mathbf{f i} /$ fout, where $\mathrm{fi}=$ input clock frequency, fout $=$ output frequency, $\mathrm{n}=$ value to be loaded.

Mode 2: Rate Generator Clock

Timer Modes - Mode 3

- Square Wave Generator
- Mode 3 is similar to the mode 2 except that the output will be high for half the period and low for half.
- If the count is odd, the output will be high for $(n+1) / 2$ and low for ($n-1$)/2 counts.

Mode 3: Square Wave Generator

$$
\begin{aligned}
& \text { Clock } \left.\begin{array}{l}
\text { H } \\
(\mathrm{n}=4) \\
(\mathrm{n}=4 \\
(\mathrm{n}=5
\end{array}\right)
\end{aligned}
$$

Timer Modes - Mode 4

- Software Triggered Strobe
- In this mode the programmer can set up the counter to give an output timeout starting when the register is loaded.
- On the terminal count, when the counter equals to 0 , the output will go to a logical 0 for one clock period and then returns to a logical 1.
- Firstly, when the mode is set, the output will be a logical 1.

Mode 4: Software Triggered Strobe

Timer Modes - Mode 5

- Hardware Triggered Strobe
- In this mode the rising edge of the trigger input will start the counting of the counter.
- The output goes low for one clock at the terminal count.
- The counter is re triggerable, thus meaning that if the trigger input is taken low and then high during a count sequence, the sequence will start over.
- When the external trigger input goes to a logical 1 , the timer will start to time out.
- If the external trigger occurs again, prior to the time completing a full timeout, the timer will retrigger.

Mode 5：Hardware Triggered Strobe

