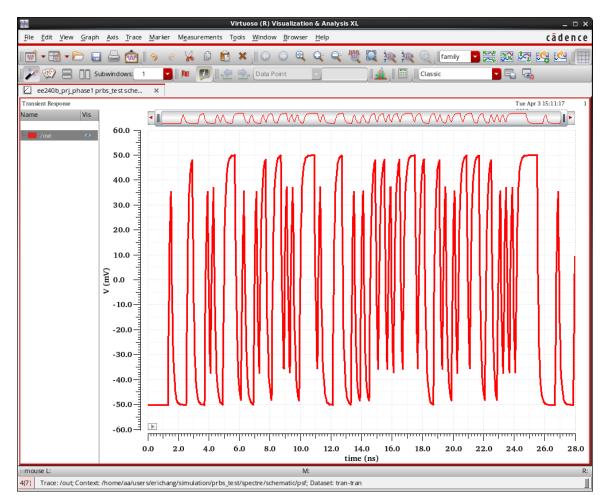
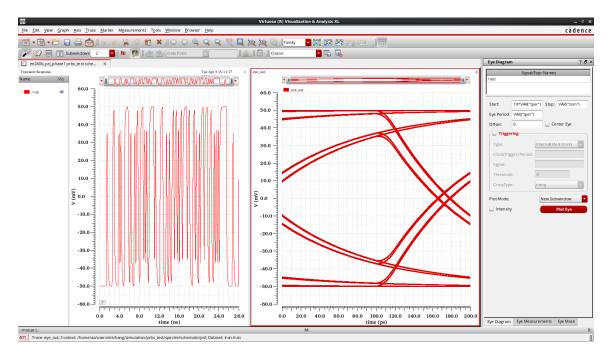

This document describes how to run transient simulation with a PRBS input data pattern, and plot the resulting eye diagram.

In this document, we will use the following simple circuit as an example:

The voltage source in the schematic is a vprbs cell in the analogLib library. Its property window is displayed on the next page:


Apply To only cur	rent 🔽 instance 🔽				
Show 🔄 system 🗹 user 🗹 CDF					
Browse	Reset Instance Labels Display				
Property	Value	Display			
Library Name	analogLib	off V off V off V			
Cell Name	vprbs				
View Name	symbol				
Instance Name	Ve				
	Add Delete Modify)			
User Property	Master Value Local Value	Display			
Ivsignore	TRUE	off			
CDF Parameter	Value	Display			
Delay time	tdelay s	off 🔽			
Zero value	-vamp V	off 🔽			
One value	vamp V	off 🔽			
Bit period	tper s	off 🔽			
Rise time	tr s	off 🔽			
Fall time	tr s	off 🔽			
Transition reference	0-100%	off 🔽			
Edge type	linear 🔽	off 🔽			
Trigger	Internal	off 🔽			
LFSR Mode	PN7	off 🔽			
Seed		off 🔽			
RJ(rms)		off 🔽			
RJ(seed)		off			
Number of periodic jitters	B	off 🔽			

Most fields are straight forward, but make sure the "Transition reference", "Edge type", "Trigger", "LFSR Mode", and "Seed" fields are exactly as above. This makes sure everyone use the same input source setup.


With this schematic, setup the transient simulation as shown in the next page. Note that since the PRBS7 sequence repeats every 127 bit, we simulate for 140 bit periods (so we can throw away some initial bits to avoid initial condition issues).

ADC L (0			ADE L (1) - ee240b_prj_phase1 prbs_test schematic	_ O X
La	unch S	ession Set <u>up</u>	nalyses Variables Outputs Simulation Results Tools Help C	ādence
🌶	-	27 C	💩 🎾 🖆 🗹 🗁	_
Des	sign Varial	bles		? • ×
	Name	Value	Type Enable Arguments	CTran
1 0	ар	10f	1 tran 🕑 0 VAR("tsim") conservative	15
2 r	es	10K		
3 t	per	200p		
4 t	r	20p		×
5 V	/amp	50m		
6 t	sim	140*tper	Outputs	? 🗗 🗙 🦲
7 t	delay	tper/2	Name/Signal/Expr Value Plot Save Save Option	ns
			1 out 🗹 📃 allv	VV
 > F	Re sults in	/aa/users/erich	an Plot after simulation: Auto Plotting mode: Replace	
2(3)	Plot C)utputs	Status: Ready T=27 C Simulat	or: spectre

After setting up ADEL/ADEXL, run the simulation, and you should see the following output plot:

To plot the eye diagram in the waveform viewer, go to "Measurements" tab, and select "Eye Diagram". A dialog form will appear, and fill in the form according to the screenshot below. Note that we truncate the first 10 bits to avoid initial condition problems. After clicking the "Plot Eye" button, the eye diagram will appear.

To measure the eye width and eye height, select the eye diagram trace, then press the "M" button. This will create a marker that you can drag around the eye traces. Then, with the marker selected, Pressing "D" button will create a new marker along with distance rulers displaying the horizontal/vertical distance.