CS

61C

Instructor: Stephan Kaminsky

OPERATING SYSIEMS
RUNNING IN 1 HOUSE
Dos

ANDROD TINDEROS | | iéontentty)
HUMAN
UNDOWS W[Ov,uz,\m]

ENDS IN FIRE
1

llllll IIIIIIIIII llllllllllllllllllllllllllllllllllll IIII|I

2010 N 2000 2030 2040 050

Great Ideas
in Computer
Architecture

l'lllllllllll

2060

Agenda

® OS Boot Sequence and Operation
®* Multiprogramming/time-sharing
® Introduction to Virtual Memory

® Summary

7/22/20 CS61C Su20 - Lecture 18

C Programs

#include

RISC'V Assembly int fib(int n)
b -
fib(n-2);

T

L

=
£
e
&
o

a

7/22/20 CS61C Su20 - Lecture 18 3

But wait...

® When we run Venus, it only executes one
program and then stops.

® When | switch on my computer, | have many

programs:

S B ELEL LI G LCE

PPPPPP

wwwwwwwwww

B & 8 6 8

@
]
[c]
]
-

Yes, but that’s just software!

7/22/20

CS61C Su20 - Lecture 18

Well, “just software”

Microsoft Visual Studio 2012

US Army Future Combat System

Debian 5.0 codebase

Mac OS X “Tiger”

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2015
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

7/22/20 CS61C Su20 - Lecture 18 5

7/22/20

What is an operating system?

Applications
(“Software”)

Operating System

Computer Hardware
(CPU, SSD/HD, RAM, ..)

Operating systems control how software applications access
and use hardware on your computer. They provide a
general interface for common actions (ex. reading/writing

disk) and allow software to run without knowledge of the
machine it lives on!

CS61C Su20 - Lecture 18

What does the OS do?

® One of the first things that runs when your
computer starts (right after firmware/bootloader)
® Loads, runs and manages programs:
— Multiple programs at the same time (time-sharing)
—|solate programs from each other (isolation)

— Multiplex resources between applications (e.g.,
devices)

® Services: File System, Network stack, etc.

® Finds and controls all the devices in the machine
in a general way (using “device drivers”)

7/22/20 CS61C Su20 - Lecture 18

User Level

Kernel L evel

System Call Interface

File Subsystem Process Control

Inter Process
Communication

Device Drivers Scheduler

Memory
Man agement

Hardware Control

Hardware Level

H ardware
7/22/20 CS61C Su20 - Lecture 18

7/22/20

Have we always had OS?

Operating “systems” used to just be “operators”; these were
people, usually women!

4 - | (‘ Two women operating ENIAC (U.S. Army)
As late as the 1960s many people perceived computer programming as a natural career choice for savvy young women.
Even the trend-spotters at Cosmopolitan Magazine urged their fashionable female readership to consider careers in
programming. In an article titled “The Computer Girls,” the magazine described the field as offering better job
opportunities for women than many other professional careers. As computer scientist Dr. Grace Hopper told a reporter,
programming was “just like planning a dinner. You have to plan ahead and schedule everything so that it’s ready when
you need it.... Women are ‘naturals’ at computer programming.” James Adams, the director of education for the
Association for Computing Machinery, agreed: “l don’t know of any other field, outside of teaching, where there’s as
much opportunity for a woman.”

CS61C Su20 - Lecture 18 9

7/22/20

What's “different” about various
0S?

- Different experience for the user
= Organisation, appearance, etc.
- Different interfaces for applications
- Windows software won’t run on Mac OS!
- Different levels of licensing, availability,
hardware support
= Linux is open source
= MacOS can only run on Mac machines (sorta...)

- Windows can be purchased independently of a
Microsoft computer

CS61C Su20 - Lecture 18

10

Unix based, or ... not

- In CS we often prefer systems that are “Unix-
based” but what does that mean?

- Unix was developed in AT&T’s Bell Labs back in
the mid-to-late 1960’s.

= Built modularly, strong file system core

- MacOS§, Linux descended from this! Berkeley
(BSD) played a part!

- Windows developed independently of this
unix craze!

7/22/20 CS61C Su20 - Lecture 18 11

Agenda

® OS Intro

®* Multiprogramming/time-sharing
® Introduction to Virtual Memory
® Summary

7/22/20 CS61C Su20 - Lecture 18 12

What

happens at boot?

® When the computer switches on, it does the
same as Venus: the CPU executes instructions
from some start address (stored in Flash ROM)

Find a storage
device and load first
sector (block of data)

Diskette Drive B Serial Port(s) aro zro
Pri. Master Disk : LBA,ATA 100, 250GB Parallel Port(s) 0
Pri. Slave Disk : LBA,ATA 100, 250GB DDR at Bank(s) 012

Sec. Slave Disk : Nome
Pri. Master Disk HDD S.H.A.R.T. capability ... Disabled
Pri. Slave Disk HDD S.M.A.RT. capability ... Disabl

PCI Devices Listing

Bus Dev Fun Vendor Device SUID SSID Class Device Class 18g

0 27 0 8086 2668 1458 A005 003 Multimedia Device
0 29 0 8086 2658 1458 2658 0CO3 USB 1.1 Host Cntrlr
© 29 1 B0B6 2659 1458 2659 0C03 USB 1.1 Host Cntrlr
0 29 2 8086 265m 1458 2658 0CO3 1 Host

0 29 3 8086 2658 1458 2650 0C03 USB 1.1 Host Cntrlr
© 29 7 8086 265C 1458 5006 0C03 USB 1.1 Host Cntrlr
0 31 2 BoBe 2651 1458 2651 0101 IDE Cutrlr

6 31 3 8086 266h 1450 2668 0COS SMDus Cntrlr

1 0 0 10DE 0421 10DE 0479 0300 Display Cntr
20 9 ImI miz o oo ol Mas Storage Cntrlr
2 5 0 110B 4320 1458 E000 0200 Netuo rlr

ACPT Controtler

(stored on, e.g.,
disk): Load the OS kernel from
disk into a location in memory
and jump into it.

7/22/20

Launch an application
that waits for input in loop
(e.g., Terminal/Desktop/.

QUESTION 3:

speedup> x
Which layer should we op

<which layers

:-tiehivez2 Linux x86.64

~/src/proj3/proj3.st

answers. £xt cnn _cnni cnn.py data LICENSE Makefil

cs6lc-tighivez2 Linux xB6_64

et S S s sre/
¢ main.c python.c

Uelcone to the KNOPPIX live GNU/Linux on DUDY

cs6lc-tiehivez
o N an
“enn' is up to date.

ing Lina ornel 2.6.21.4
Hemory fr 118180kB.
csblc-tilhive22 Linux x86.64 19 acce ; g

-/sre/proj3/proj3_starter S |

[QEMU CD-RoM1

ary KNOPPIX compressed image at cdron KNOPPIX/KNOPPIX
rmmd “aditional IMERIK conpressed lnage at ciron NIERIX/RNIRE 12
ating /randisk (dynanic %) on shared
ting i disk
55 Read-only VD systen ecosata

Ily mcrg:d Vith read-urite srandisk.

INIT: version 2.86 booting

Configuring for Linux Kernel 2.6.2

Frocossot 8 1o Fentium 11 (Kraman) |f.s7nN7, 128 KB Cache

apnd[16081: apnd 3.2.1 interfacing with apn driver 1.16ac and APH BIOS 1.2
found, pover nanagement Lmstions enabica

Ubuntu 8,04, kernol 2.6.21-16-goneric. (recovery Hode)

udeu
vy va o plug harduare detection. 1
Ubuntu 8.8, mewtest86 N

‘toconfiguring devices.

Initialize
services, drivers, etc.

lise the $ aad | keys to select uklch sntxy is highlighted.
Press enter to boot ”ve selectai U5, ‘e €a edit
commands before boot i e Cormanieliner

CS61C Su20 - Lecture 18 13

Launching Applications

Applications are called “processes” in most OSs.

Created by another process calling into an OS
routine (using a “syscall”, more details later).

—Depends on OS, but Linux uses (see OpenMP
threads) to create a new process, and to load
application.

Loads executable file from disk (using the file

system service) and puts instructions & data into
memory (.text, .data sections), prepare stack and
heap.

Set argc and argv, jump into the main function.

7/22/20 CS61C Su20 - Lecture 18 14

Supervisor Mode

® |f something goes wrong in an application, it can
crash the entire machine. What about malware, etc.?

®* The OS may need to enforce resource constraints to
applications (e.g., access to devices).

® To protect the OS from the application, CPUs have a
bit (also need isolation, more later).
—You can only access a subset of instructions and
(physical) memory when not in supervisor mode (user
mode).

— You can change out of supervisor mode using a special
instruction, but not into it (unless there is an interrupt).

7/22/20 CS61C Su20 - Lecture 18

7/22/20

User Level

Kernel L evel

System Call Interface

File Subsystem Process Control

Inter Process
Communication

Device Drivers Scheduler

Memory
Man agement

Hardware Control

Hardware Level

Hardware

16

Syscalls

® How to switch back to OS? OS sets timer
interrupt, when interrupts trigger, drop into
supervisor mode.

® What if we want to call into an OS routine? (e.g.,
to read a file, launch a new process, send data,
etc.)

—Need to perform a : set up function arguments
in registers, and then raise

— OS will perform the operation and return to user
mode
® This way, the OS can mediate access to all
resources, including devices, the CPU itself, etc.

7/22/20 CS61C Su20 - Lecture 18

17

Syscalls in Venus

® Venus provides many simple syscalls using the
ecall RISC-V instruction

® How to issue a syscall?
—Place the syscall number in a0

—Place arguments to the syscall in the al register
—I|ssue the ecall instruction

® This is how your RISC-V code has been able to
produce output all along

® ecall details depend on the ABI (Application
Binary Interface)

7/22/20 CS61C Su20 - Lecture 18 18

Example Syscall

® Let’s say we want to print an integer stored in
s 3:

Print integer is syscall #1
11 a0, 1
add al, s3, xO0

ecall

7/22/20 CS61C Su20 - Lecture 18

19

Name

print_int

print_string

sbrk

exit
print_character

exit2

Description

prints integer in al

prints the null-terminated string whose address is in a1l

allocates al bytes on the heap, returns pointer to start in
ad

ends the program
prints ASCII character in a1l

ends the program with return code in al

More can be found here: https://github.com/ThaumicMekanism/venus/wiki/Environmental-Calls

7/22/20

CS61C Su20 - Lecture 18 20

https://github.com/ThaumicMekanism/venus/wiki/Environmental-Calls

Agenda

® OS Intro
® OS Boot Sequence and Operation

® Introduction to Virtual Memory
® Summary

7/22/20 CS61C Su20 - Lecture 18 21

Multiprogramming

® OS runs multiple applications at the same time.
® But not really (unless have a core per process)

® Switches between processes very quickly. This is
called a “context switch”.

® Deciding what process to run is called
— Programs can be scheduled in a variety of
ways!
— Most/least resources needed, “fastest” to run,
most important, etc.

7/22/20 CS61C Su20 - Lecture 18 22

7/22/20

User mode: multiple applications

Process A

Process B

CS61C Su20 - Lecture 18

23

7/22/20

User mode: multiple applications

Process A

Process B

CS61C Su20 - Lecture 18

24

7/22/20

User mode: multiple applications

Process A

Process B
Process A

CS61C Su20 - Lecture 18

25

7/22/20

User mode: multiple applications

Process A

Process ‘%

Process B

CS61C Su20 - Lecture 18

26

7/22/20

User mode: multiple applications

Process A

Process B

Wait... that
shouldn’t

happen!

CS61C Su20 - Lecture 18

27

7/22/20

User mode: multiple applications

Process A

ProceSS B Please give me

Process A’s
data! | am evil! ProceSS A
Process B

CS61C Su20 - Lecture 18

28

7/22/20

User mode: multiple applications

Process A

m\ Process B
Process C

CS61C Su20 - Lecture 18

29

User mode: multiple applications

Process A

Process A
Process C

Process D w Process D
Hmm... There’s enough
Process C

space, but not all
together!

7/22/20 CS61C Su20 - Lecture 18 30

User mode: multiple applications

Process A

Process A

Process D Process C
There we gol w\

Process D

7/22/20 CS61C Su20 - Lecture 18

7/22/20

User mode: multiple applications

Process A

Wait... This isn’t my
data?

=
H\

Process D

CS61C Su20 - Lecture 18

32

Protection, Translation, Paging

® Supervisor mode does not fully isolate
applications from each other or from the OS.
— Application could overwrite another application’s
memory.

—Remember the linker in CALL: application assumes
that code is in certain location. How to prevent
overlaps?

— May want to address more memory than we actually
have (e.g., for sparse data structures).

® Solution: . Give each process the
illusion of a full memory address space that it has
completely to itself.

7/22/20 CS61C Su20 - Lecture 18 33

Virtual Memory

- From here on out, we’ll be working with two

different memory spaces:

- Virtual Memory (VM): A large (~infinite) space that a
process believes it, and only it, has access to

- Physical Memory (PM): The limited RAM space your
computer must share among all processes and processors

- Goals:

- Process/program isolation
- Make transition from infinite to finite seamless, or not

noticeable to the program
- Translate between VM, PM addresses

7/22/20 CS61C Su20 - Lecture 18 34

7/22/20

Process A

| am the ONLY
PROCESS
accessing
memory, and |
don’t have to
share it with
anyone!

Virtual: The lllusion!

CS61C Su20 - Lecture 18

35

Physical: The Reality!

Process A

Process B
Process A
Process C

RAM

Process B

Process C

7/22/20 CS61C Su20 - Lecture 18 36

Adding Disks to Hierarchy

®* Use VM as a mechanism to “connect” memory
and disk in the memory hierarchy

7/22/20

Processor

EDO, SD-RAM, DDR-SDRAM, RD-RAM

and More...

SSD, Flash Drive

Mechanical Hard Drives

A

PROCESSOR
REGISTER

CPU CACHE

LEVEL 1 (L1) CACHE
LEVEL 2 (L2) CACHE
LEVEL 3 (L3) CACHE

PHYSICAL MEMORY

RAMDOM ACCESS MEMORY (RAM)

SOLID STATE MEMORY

NON-VOLATILE FLASH-BASED MEMORY

VIRTUAL MEMORY

FILE-BASED MEMORY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

SUPER FAST
SUPER EXPENSIVE
TINY CAPACITY

FASTER
EXPENSIVE
SMALL CAPACITY

FAST
PRICED REASONABLY
AVERAGE CAPACITY

AVERAGE SPEED
PRICED REASONABLY
AVERAGE CAPACITY

SLOW
CHEAP
LARGE CAPACTITY

Memory Hierarchy

e
- Instr Operands
Earlier: L1 Cache
Caches ™) Blocks
L2 Cache
_ Blocks

| Memory |

1 Pages
| Disk |
1 Files E
| Tape | | areet

Lower

7/22/20 CS61C Su20 - Lecture 18 Leve I 38

Agenda

® OSIntro

® Administrivia

® OS Boot Sequence and Operation

®* Multiprogramming/time-sharing
Introduction to Virtual Memory

® Summary

7/22/20 CS61C Su20 - Lecture 18

39

Virtual Memory Goals

® Allow multiple processes to simultaneously
occupy memory and provide : Don’t
let programs read/write each other’s memory

® Give each program the illusion that it has its
own

—Suppose code starts at address 0x00400000, then
different processes each think their code resides
at that same address!

—Each program must have a different view of
memory

7/22/20 CS61C Su20 - Lecture 18 40

7/22/20

Segmented Memory

Divide RAM into segments with a “base”

and “bound”
- Each program has access to its segment only!

Program has a virtual address range 0x0...0

- OxF...FE
- To get location of data in segment (physical
address), add to base value!

CS61C Su20 - Lecture 18

41

Segmented Memory

baseA >

Process A

Process B

Process B

boundB >

7/22/20 CS61C Su20 - Lecture 18 42

Simple Base and Bound Translation

e Segment Length

A
Bound Bounds
Register —> Violation?
: : Physical m il current
: Load X | Logical Address segment

Address

Base
Register

Base Physical Address

Program
Address Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

7/22/20 CS61C Su20 - Lecture 18

Physical Memory

7/22/20

Where have we seen segments
before?

Stack, Heap, Static,
Code, etc. |

physical

Base & bound model memory
was used to keep

segments independent
of each other on earlier
machines; still used in
some memory models
(x86) today!

CS61C Su20 - Lecture 18

44

“Bare” 5-Stage Pipeline

Inst. Decod

Cache ecoae
Physical ®| Memory Controller ¢ Physical
Address Address

1 Physical Address

A

Main Memory (DRAM)

® In a bare machine, the only kind of address
is a physical address

7/22/20 CS61C Su20 - Lecture 18 45

Base and Bound Machine

Bounds Violation? Bounds Violation?

Logical Logical

Address Address
Inst. Data
Cache Decode Cache
A Physical 4
Address Address
Physical Physical
Address Address
3> Mlemory Controller <

¢Physica| Address
Main Memory (DRAM)

7/22/20 CS61C Su20 - Lecture 18 46

7/22/20

Base & Bound: Problems!

- What if we need more space than our

segment allows?

- Increase segment? What if no more RAM?

- Use disk? How do we decide what data to move in or
out? How much data?

- What if we require 500MB of space, but RAM
is fragmented, so there isn’t a contiguous

chunk available?
- How can we fix this?

CS61C Su20 - Lecture 18 47

7/22/20

Think to yourself!

How can we fix our problems with base &
bound? is there a better scheme?

- Must provide protection b/t processes
- Programs can only find/access their own data

- Must be able to work with more data than RAM
can hold
- Swap to and from disk

- Must not fragment memory in an unusable way

- If need 500MB, and have 500MB available overall,
should be usable

CS61C Su20 - Lecture 18

48

7/22/20

Paged Memory!

- Instead of having segments of various sizes,
let’s divide physical memory and virtual
memory into equal units called pages!

- Pages are all the same size, regardless of
program, and RAM is an integer multiple of

pages.
- Page size is the same in both virtual and physical
memory

- What does our memory layout look like now?

CS61C Su20 - Lecture 18 49

7/22/20

Virtual: The lllusion!

Process A
\

| am the ONLY
PROCESS
accessing

memory, and |
don’t have to
share it with
anyone!

CS61C Su20 - Lecture 18

50

Physical: Paged Memory

Physical Memory (RAM)
Shared

Process A

Process A

Process B Process A
Process B
Process A

Process B

Process A

Process B

7/22/20 CS61C Su20 - Lecture 18 51

7/22/20

Paged Memory!

Each program has access to one or more
pages

Pages do not have to be contiguous, or next
to each other. Pages are not organised by
program

How do we continue to enforce protection?
How do we find a piece of data given our
virtual address between 0x0..0 and OxF...FE?

CS61C Su20 - Lecture 18 52

7/22/20

Page protection: Page tables!

- Per program, maintain a list (or table) of

pages in physical memory that they own

- For each page, note the data it contains

- Sufficient to just note virtual page number! This will
tell us the range of addresses!

- Just like base and bound: use this table to
translate addresses so programs cannot

reach physical addresses outside of their
assigned range!

CS61C Su20 - Lecture 18

53

7/22/20

Process A

Process B

PPN

Valid?

Physical Memory (RAM)
Shared

oo

s
P |

pruesen B
s

e |

Process B &

CS61C Su20 - Lecture 18

54

Physical Memory (RAM Virtual Memory

Shared (Process B Only!)

)

P
Process B '
Process B
;/PN 2PPN \1/alid? 3 3

L Process B &
2
4
. Process B &

1
2

4

5
6

Process B Wi

8 I -

7/22/20 CS61C Su20 - Lecture 18 55

7/22/20

Process A

Process B

\Y Valid?
4

2
X
4

1
0
0
1
0
0
1
0

5 X 0

PN PPN

0

1

2 X

3 6
X

6 X

7

8 X

Physical Memory (RAM
Shared

Virtual Memory
(Process B Only!)

Process A 0
1

Process B
s 3

Process B &
Process B &

)
0

l
2
Process B Wi

4
5
6
8

CS61C Su20 - Lecture 18 56

Modern Virtual Memory Systems

lllusion of a large, private, uniform store

Protection
several programs, each with their
private address space and one or
more shared address spaces prog;
Demand Paging :
Swapping
Provides the ability to run programs @%%
larger than the primary memory Primary N—e——
Memory/
Hides differences in machine 1—
configurations —

N—

VA |Mapping | pa

-
7/22/20 CS61C Su20 - Lecture 18 57

The price is address translation on
each memory reference

Virtual Memory Goals

® Next level in the memory hierarchy:
—Provides program with illusion of a very large main

memory:
—Working set of “pages” reside in main memory - others
reside on disk.

® Also allows OS to share memory, protect programs
from each other

Today, more important for VvS. just
another level of memory hierarchy

® Each process thinks it has all the memory to itself
® (Historically, it predates caches)

7/22/20 CS61C Su20 - Lecture 18 58

Agenda

® OS Intro

® Administrivia

® OS Boot Sequence and Operation

®* Multiprogramming/time-sharing

® Introduction to Virtual Memory
Summary

7/22/20 CS61C Su20 - Lecture 18

59

Summary

® The role of the Operating System
—Booting a computer: BIOS, bootloader, OS boot,
initialization
® Base and bounds for multiple processes
—Simple, but doesn’t give us everything we want

® Virtual memory bridges memory and disk

—Provides illusion of independent address spaces to
processes and protects them from each other

7/22/20 CS61C Su20 - Lecture 18 60

