
Operating Systems, Virtual Memory Intro
Instructor: Stephan Kaminsky

Agenda
• OS Intro
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory
• Summary

27/22/20 CS61C Su20 - Lecture 18

CS61C so far…

3

CPU

Caches

Memory

RISC-V Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s0)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1
Project 2Labs

Project 3

7/22/20 CS61C Su20 - Lecture 18

But wait…
• When we run Venus, it only executes one

program and then stops.
• When I switch on my computer, I have many

programs:

4

Yes, but that’s just software! The Operating System (OS)
7/22/20 CS61C Su20 - Lecture 18

Well, “just software”

• The biggest piece of software on your
machine?
• How many lines of code? These are

guesstimates:

5

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2015
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

84 million lines of code!

7/22/20 CS61C Su20 - Lecture 18

What is an operating system?

6

Computer Hardware
(CPU, SSD/HD, RAM, …)

Operating System

Applications
(“Software”)

Operating systems control how software applications access
and use hardware on your computer. They provide a
general interface for common actions (ex. reading/writing
disk) and allow software to run without knowledge of the
machine it lives on!

7/22/20 CS61C Su20 - Lecture 18

What does the OS do?
• One of the first things that runs when your

computer starts (right after firmware/bootloader)
• Loads, runs and manages programs:
–Multiple programs at the same time (time-sharing)
– Isolate programs from each other (isolation)
–Multiplex resources between applications (e.g.,

devices)
• Services: File System, Network stack, etc.
• Finds and controls all the devices in the machine

in a general way (using “device drivers”)

77/22/20 CS61C Su20 - Lecture 18

What is an operating system?

87/22/20 CS61C Su20 - Lecture 18

Have we always had OS?
Operating “systems” used to just be “operators”; these were
people, usually women!

9

As late as the 1960s many people perceived computer programming as a natural career choice for savvy young women.
Even the trend-spotters at Cosmopolitan Magazine urged their fashionable female readership to consider careers in
programming. In an article titled “The Computer Girls,” the magazine described the field as offering better job
opportunities for women than many other professional careers. As computer scientist Dr. Grace Hopper told a reporter,
programming was “just like planning a dinner. You have to plan ahead and schedule everything so that it’s ready when
you need it…. Women are ‘naturals’ at computer programming.” James Adams, the director of education for the
Association for Computing Machinery, agreed: “I don’t know of any other field, outside of teaching, where there’s as
much opportunity for a woman.”

7/22/20 CS61C Su20 - Lecture 18

What’s “different” about various
OS?

- Different experience for the user
- Organisation, appearance, etc.

- Different interfaces for applications
- Windows software won’t run on Mac OS!

- Different levels of licensing, availability,
hardware support
- Linux is open source
- MacOS can only run on Mac machines (sorta…)
- Windows can be purchased independently of a

Microsoft computer
107/22/20 CS61C Su20 - Lecture 18

Unix based, or … not

- In CS we often prefer systems that are “Unix-
based” but what does that mean?
- Unix was developed in AT&T’s Bell Labs back in

the mid-to-late 1960’s.
- Built modularly, strong file system core
- MacOS, Linux descended from this! Berkeley

(BSD) played a part!
- Windows developed independently of this

unix craze!

117/22/20 CS61C Su20 - Lecture 18

Agenda
• OS Intro
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory
• Summary

127/22/20 CS61C Su20 - Lecture 18

What happens at boot?
• When the computer switches on, it does the

same as Venus: the CPU executes instructions
from some start address (stored in Flash ROM)

13

1. BIOS: Find a storage
device and load first
sector (block of data)

2. Bootloader (stored on, e.g.,
disk): Load the OS kernel from
disk into a location in memory
and jump into it.

3. OS Boot: Initialize
services, drivers, etc.

4. Init: Launch an application
that waits for input in loop
(e.g., Terminal/Desktop/...

7/22/20 CS61C Su20 - Lecture 18

Launching Applications
• Applications are called “processes” in most OSs.
• Created by another process calling into an OS

routine (using a “syscall”, more details later).
–Depends on OS, but Linux uses fork (see OpenMP

threads) to create a new process, and execve to load
application.

• Loads executable file from disk (using the file
system service) and puts instructions & data into
memory (.text, .data sections), prepare stack and
heap.
• Set argc and argv, jump into the main function.

147/22/20 CS61C Su20 - Lecture 18

Supervisor Mode
• If something goes wrong in an application, it can

crash the entire machine. What about malware, etc.?
• The OS may need to enforce resource constraints to

applications (e.g., access to devices).
• To protect the OS from the application, CPUs have a

supervisor mode bit (also need isolation, more later).
– You can only access a subset of instructions and

(physical) memory when not in supervisor mode (user
mode).
– You can change out of supervisor mode using a special

instruction, but not into it (unless there is an interrupt).

157/22/20 CS61C Su20 - Lecture 18

What is an operating system?

167/22/20 CS61C Su20 - Lecture 18

Syscalls
• How to switch back to OS? OS sets timer

interrupt, when interrupts trigger, drop into
supervisor mode.
• What if we want to call into an OS routine? (e.g.,

to read a file, launch a new process, send data,
etc.)
–Need to perform a syscall: set up function arguments

in registers, and then raise software interrupt
–OS will perform the operation and return to user

mode
• This way, the OS can mediate access to all

resources, including devices, the CPU itself, etc.

177/22/20 CS61C Su20 - Lecture 18

Syscalls in Venus
• Venus provides many simple syscalls using the
ecall RISC-V instruction
• How to issue a syscall?
–Place the syscall number in a0
–Place arguments to the syscall in the a1 register
–Issue the ecall instruction

• This is how your RISC-V code has been able to
produce output all along
• ecall details depend on the ABI (Application

Binary Interface)

187/22/20 CS61C Su20 - Lecture 18

Example Syscall

• Let’s say we want to print an integer stored in
s3:

Print integer is syscall #1
li a0, 1
add a1, s3, x0
ecall

197/22/20 CS61C Su20 - Lecture 18

Venus’s Environmental Calls

7/22/20 CS61C Su20 - Lecture 18 20

More can be found here: https://github.com/ThaumicMekanism/venus/wiki/Environmental-Calls

https://github.com/ThaumicMekanism/venus/wiki/Environmental-Calls

Agenda
• OS Intro
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory
• Summary

217/22/20 CS61C Su20 - Lecture 18

Multiprogramming
• OS runs multiple applications at the same time.
• But not really (unless have a core per process)
• Switches between processes very quickly. This is

called a “context switch”.
• Deciding what process to run is called scheduling.
– Programs can be scheduled in a variety of

ways!
– Most/least resources needed, “fastest” to run,

most important, etc.

227/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

23

CPU
RAM

Process A

Process B

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

24

CPU
RAM

Process A

Process B

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

25

CPU
RAM

Process A

Process B

Process A

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

26

CPU
RAM

Process A

Process B

Process A

SWITCH

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

27

CPU
RAM

Process A

Process B

Process AProcess B

Wait… that
shouldn’t
happen!

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

28

CPU
RAM

Process A

Process B

Process A

Process B

Please give me
Process A’s
data! I am evil!

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

29

CPU
RAM

Process A

Process B

Process A

Process B

Process C

Process C

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

30

CPU
RAM

Process A

Process AProcess C

Process C

Process D Process D

Hmm… There’s enough
space, but not all
together!

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

31

CPU
RAM

Process A

Process AProcess C

Process CProcess D

Process D
There we go!

7/22/20 CS61C Su20 - Lecture 18

User mode: multiple applications

32

CPU
RAM

Process A

Process AProcess C

Process CProcess D

Process D

Wait… This isn’t my
data?

7/22/20 CS61C Su20 - Lecture 18

Protection, Translation, Paging
• Supervisor mode does not fully isolate

applications from each other or from the OS.
–Application could overwrite another application’s

memory.
–Remember the linker in CALL: application assumes

that code is in certain location. How to prevent
overlaps?
–May want to address more memory than we actually

have (e.g., for sparse data structures).
• Solution: Virtual Memory. Give each process the

illusion of a full memory address space that it has
completely to itself.

337/22/20 CS61C Su20 - Lecture 18

Virtual Memory

- From here on out, we’ll be working with two
different memory spaces:
- Virtual Memory (VM): A large (~infinite) space that a

process believes it, and only it, has access to
- Physical Memory (PM): The limited RAM space your

computer must share among all processes and processors
- Goals:
- Process/program isolation
- Make transition from infinite to finite seamless, or not

noticeable to the program
- Translate between VM, PM addresses

347/22/20 CS61C Su20 - Lecture 18

Virtual: The Illusion!

35

CPU
RAM

Process A

I am the ONLY
PROCESS
accessing
memory, and I
don’t have to
share it with
anyone!

7/22/20 CS61C Su20 - Lecture 18

Physical: The Reality!

36

CPU
RAM

Process A

Process B

Process A

Process B

Process C

Process C

DISK

7/22/20 CS61C Su20 - Lecture 18

Adding Disks to Hierarchy
• Use VM as a mechanism to “connect” memory

and disk in the memory hierarchy

7/22/20 CS61C Su20 - Lecture 18 37

Regs

L2 Cache

Memory

Disk

Tape

Instr Operands

Blocks

Pages

Files

Upper Level

Lower
Level

Faster

Larger

L1 Cache
Blocks

Memory Hierarchy

7/22/20 CS61C Su20 - Lecture 18 38

Now:
Virtual

Memory

Earlier:
Caches

Agenda
• OS Intro
• Administrivia
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory
• Summary

397/22/20 CS61C Su20 - Lecture 18

Virtual Memory Goals
• Allow multiple processes to simultaneously

occupy memory and provide protection: Don’t
let programs read/write each other’s memory
• Give each program the illusion that it has its

own private address space
–Suppose code starts at address 0x00400000, then

different processes each think their code resides
at that same address!
–Each program must have a different view of

memory

7/22/20 CS61C Su20 - Lecture 18 40

Segmented Memory

- Divide RAM into segments with a “base”
and “bound”
- Each program has access to its segment only!

- Program has a virtual address range 0x0...0
- 0xF...FE
- To get location of data in segment (physical

address), add to base value!

417/22/20 CS61C Su20 - Lecture 18

Segmented Memory

4242

CPU

Process A

Process B

Process A

Process B

baseA

boundA

baseB

boundB

7/22/20 CS61C Su20 - Lecture 18

Simple Base and Bound Translation

7/22/20 CS61C Su20 - Lecture 18 43

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤

Where have we seen segments
before?

Stack, Heap, Static,
Code, etc. !
Base & bound model
was used to keep
segments independent
of each other on earlier
machines; still used in
some memory models
(x86) today!

447/22/20 CS61C Su20 - Lecture 18

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address
is a physical address

7/22/20 CS61C Su20 - Lecture 18 45

P
C

Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

Base and Bound Machine

7/22/20 CS61C Su20 - Lecture 18 46

P
C

Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

≤

+

Logical
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

≤

+

Logical
Address

Bounds Violation?

Base & Bound: Problems!

- What if we need more space than our
segment allows?
- Increase segment? What if no more RAM?
- Use disk? How do we decide what data to move in or

out? How much data?
- What if we require 500MB of space, but RAM

is fragmented, so there isn’t a contiguous
chunk available?
- How can we fix this?

477/22/20 CS61C Su20 - Lecture 18

Think to yourself!

How can we fix our problems with base &
bound? is there a better scheme?
- Must provide protection b/t processes
- Programs can only find/access their own data

- Must be able to work with more data than RAM
can hold
- Swap to and from disk

- Must not fragment memory in an unusable way
- If need 500MB, and have 500MB available overall,

should be usable
487/22/20 CS61C Su20 - Lecture 18

Paged Memory!

- Instead of having segments of various sizes,
let’s divide physical memory and virtual
memory into equal units called pages!
- Pages are all the same size, regardless of

program, and RAM is an integer multiple of
pages.

- Page size is the same in both virtual and physical
memory

- What does our memory layout look like now?

497/22/20 CS61C Su20 - Lecture 18

Virtual: The Illusion!

50

CPU
RAM

Process A

I am the ONLY
PROCESS
accessing
memory, and I
don’t have to
share it with
anyone!

0
1
2
3
4
5
6
7
8
9
10

7/22/20 CS61C Su20 - Lecture 18

Physical: Paged Memory

5151

CPU

Process A

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

7/22/20 CS61C Su20 - Lecture 18

Paged Memory!

- Each program has access to one or more
pages

- Pages do not have to be contiguous, or next
to each other. Pages are not organised by
program

- How do we continue to enforce protection?
- How do we find a piece of data given our

virtual address between 0x0..0 and 0xF...FE?
527/22/20 CS61C Su20 - Lecture 18

Page protection: Page tables!

- Per program, maintain a list (or table) of
pages in physical memory that they own
- For each page, note the data it contains
- Sufficient to just note virtual page number! This will

tell us the range of addresses!
- Just like base and bound: use this table to

translate addresses so programs cannot
reach physical addresses outside of their
assigned range!

537/22/20 CS61C Su20 - Lecture 18

5454

CPU

Process A

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

VPN PPN Valid?

0

1

2

3

4

5

6

7

8

7/22/20 CS61C Su20 - Lecture 18

5555

CPU

Process A

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

VPN PPN Valid?

0 2 1

1

2

3 6 1

4

5

6

7 4 1

8

7/22/20 CS61C Su20 - Lecture 18

5656

CPU

Process A

Process B

Process A

Process B

Process A

Process A

Process B

Process B

Process A

0

1

2

3

4

5

6

Physical Memory (RAM)
Shared

Virtual Memory
(Process B Only!)

0

1

2

3

4

5

6

7

8

Process B

Process B

Process B

VPN PPN Valid?

0 2 1

1 X 0

2 X 0

3 6 1

4 X 0

5 X 0

6 X 0

7 4 1

8 X 0

7/22/20 CS61C Su20 - Lecture 18

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

7/22/20 CS61C Su20 - Lecture 18 57

Protection
several programs, each with their
private address space and one or
more shared address spaces

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

progi

Primary
Memory

Swapping
Store

VA PAmapping
TLB

Virtual Memory Goals
• Next level in the memory hierarchy:
–Provides program with illusion of a very large main

memory:–Working set of “pages” reside in main memory - others
reside on disk.

• Also allows OS to share memory, protect programs
from each other
• Today, more important for protection vs. just

another level of memory hierarchy
• Each process thinks it has all the memory to itself
• (Historically, it predates caches)

7/22/20 CS61C Su20 - Lecture 18 58

Agenda
• OS Intro
• Administrivia
• OS Boot Sequence and Operation
• Multiprogramming/time-sharing
• Introduction to Virtual Memory
• Summary

597/22/20 CS61C Su20 - Lecture 18

Summary

• The role of the Operating System
–Booting a computer: BIOS, bootloader, OS boot,

initialization
• Base and bounds for multiple processes
–Simple, but doesn’t give us everything we want

• Virtual memory bridges memory and disk
–Provides illusion of independent address spaces to

processes and protects them from each other

7/22/20 CS61C Su20 - Lecture 18 60

