
SMCQL: Secure Querying for
Federated Databases

Raluca Ada Popa
Oct 1, 2019

Some slides are adapted from Jennie Rogers, adding my views

The challenge

•Cheap computing and storage means people record
and process enormous amounts of data at different
data owners (DOs)
•DOs do not wish to share information with one another
often owing to privacy concerns

SMCQL proposes an architecture for database federations for combining
the private data of multiple parties for querying

Private Data Federations

• Querying the private records of many DOs with a unified
SQL interface

• A DO will not reveal info about their sensitive data to
others, but is willing to enable a client to learn certain
query results over all DOs

• Client issues queries in SQL

• Built-in security policy

Honest Broker

Client

Threat model
• Honest-but-curious DOs

• Honest broker plans and orchestrates queries over the DOs
on behalf of the client

(the broker is not strictly needed)
Honest Broker

Client

SQL 101

Databases
• Structured collection of data
• Often storing tuples/rows of related values
• Organized in tables

Customer
AcctNum Username Balance
1199 zuckerberg 35.7

0501 bgates 79.2

… … …

SQL
• Widely used database query language
• (Pronounced �ess-cue-ell� or �sequel�)

• Fetch a set of rows:

SELECT column FROM tableWHERE condition
returns the value(s) of the given column in the

specified table, for all records where condition is true.

• e.g:

SELECT Balance FROM Customer
WHERE Username='bgates'
will return the value 79.2

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL (cont.)
• Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski',
10.00);

Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

SQL (cont.)
• Can delete entire tables:

DROP TABLE Customer

• Issue multiple commands, separated by semicolon:
INSERT INTO Customer VALUES (4433, 'vladimir',
70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir'
returns 4433.

Join tables
SELECT Username, Car from Customer, Cars where

Customer.Username = Cars.uname WHERE Balance>70;

Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

Cars
uname Car

zuckerberg Toyota
bgates Tesla
oski Honda

… …

Result: (bgates, Tesla)

Back to SMCQL

HealthLNK Use Case

A group of healthcare providers, such as
HealthLNK in Chicago-area, agree to use
their patient records for research.

Each hospital responsible for maintaining
confidentiality of patient health records

Running Example: Electronic Health Records

patient ID gender diag …..

00001 M blues …..

00002 F cdiff …..

00003 M X …..

public private private

I have concerns about patient ID really being public, but let’s assume so for as in the paper

Example in the paper:

Clinical Data Research Network

Analyst

“How many
patients are

there?”

SELECT
COUNT(DISTINCT
patient_id)
FROM
diagnosis;

Honest
Broker

Issues with Currently Deployed Systems
• Need to trust honest broker unconditionally
• Network traffic between honest broker and data providers leaks

info on secret data to curious observers

Clinical Data Research Network

Analyst

SELECT
COUNT(DISTINCT
patient_id)
FROM diagnosis
WHERE diag=X;

I can’t share that
private data!

I can’t share that
private data!

I can’t share that
private data!

“How many patients
suffer from rare

disease X?”

Honest
Broker

Goal: simulate a completely trustworthy
third party to query private datastores

Analyst

Secret data

Secret data

Secret data
Query

 re
sults

How many
patients suffer

from X?

SMCQL

•Sensitive query evaluation carried out in-situ among
DOs using secure multiparty computation (SMC)
•Generates hybrid SMC/plaintext query execution plans

•Differential privacy: can be used complementarily to
hide any one record in the final query result

SMC Building Blocks
• Secure query execution is oblivious – it reveals nothing about the data to

parties other than the result
• Garbled circuits

• Cryptographic protocol used to securely compute a function across two parties
• Protects a query’s program traces from snooping

• Oblivious RAM (ORAM)
• Shuffles data on all reads/writes to prevent DO from learning memory traces of

secure computation
• O(log2n) bandwidth per I/O

• ObliVM
• Converts imperative code into garbled circuits and ORAM
• We use it to translate a query’s DB operators into SMC

There are better MPC/SMC tools these days, so consider substituting those

Secure Multiparty
Computation

SMCQLArchitecture

SQL query q
output of q run on

all DBs in DDF

secure query plan

secret shares of q’s output
(1/data owner)

Client

Honest
Broker

SMCQL is for two mutually distrustful data owners.

SQL-to-ObliVM
Translation

Specs for garbled
circuits and ORAM

Setting and Trust Model
• Analysts alone view the output of their queries

• Data providers learn nothing about the private records of their peers

• Query results are either precise or differentially-private

• All data providers support a shared schema definition

• Column-level security policy initialized before first query

SQL Supported
• Filter
• Projection
• Join: equi-joins, theta joins
• Cross products
• Aggregates (inc. group-by)
• Limited window aggs
• Distinct
• Sort
• Limit
• Common table expressions

diagnosis

�pid2cdiff cohort

�diag,count(⇤)

sort(count)

limit 10

Secure

(a) Comorbidity

diagnosis

�diag2cdiff cohort

rowno

rename(rcd) distinct

./

rcd rcd

Sliced on Patient ID

(b) Recurrent C.Di↵

COUNT(*)

DISTINCT

./

�diag=hd �med=aspirin

diagnosis medication

(c) Aspirin Count

Figure 6: Optimized PDN query execution plans for running example.

are sorted on timestamp. We then self-join this table one
patient at a time to identify the ones with a recurring diag-
nosis, and eliminate duplicates using the same slice key.

Aspirin count begins in plaintext with scans on the med-
ication and diagnosis tables. Next, we filter on a protected
attribute, and this step is sliced on patient ID. We then join
the two tables to identify heart disease patients who received
an Aspirin prescription. After that, we eliminate duplicate
patient IDs one slice at a time. Finally, we switch to secure
mode to count up the patient IDs over all slices.

In summary, we optimize our use of secure computation
in three ways. First, smcql horizontally partitions the data
over public attributes to reduce the time and complexity of
our oblivious computing. Second, the query evaluator splits
up query operators to prolong its time in a less expensive
execution mode. Lastly, the optimizer identifies tuples that
do not require distributed secure computation and evaluates
them within their source DBMS.

7. RESULTS
We now verify that smcql produces e�cient query plans

using the workload introduced in Section 2.2. We first re-
view our experimental design. Next, we explore the e↵ec-
tiveness of this system’s heuristics-based optimizer at man-
aging our use of SMC. Then we examine the impact of SMC
on assorted database operators. After that, we test the scal-
ability of smcql as it executes over data of increasing size.
Lastly, we reveal the performance profile of this system in
comparison to a hypothetical federated database where the
parties trust one another.

7.1 Experimental Setup
We evaluate smcql on medical data from two Chicago-

area hospitals in the HealthLNK data repository [29] over
one year of data. This dataset has 500,000 patient records,
or 15 GB of data. To simplify our experiments, we use a
public patient registry for common diseases that maintains
a list of anonymized patient identifiers associated with these
conditions. We filter our query inputs using this registry.

smcql’s query executor is built atop PostgreSQL 9.5 run-
ning on Ubuntu Linux. We evaluated our two-party proto-
type on 8 servers running in pairs. The servers each have 64
GB of memory, 7200 RPM NL-SAS hard drives, and are on
a dedicated 10 Gb/s network. Our results report the aver-
age of three runs per experiment. Unless otherwise specified,
the results show the end-to-end runtime of a query, includ-
ing its plaintext and secure execution. All figures display
their runtimes on a logarithmic scale.

1

10

100

1000

10000

100000

Aspirin Count Recurrent C. Diff Comorbidity

Ex
ec

ut
io

n
Ti

m
e (

se
cs

)

Query

Baseline
SMC Minimization
Fully Optimized

Figure 7: System performance on sampled data.

7.2 Secure Query Optimization
We now examine the role of smcql’s optimizations in

making PDN queries run with e�ciency and scalability. The
results in this section are from query executions over sam-
ples of HealthLNK data with 50 tuples per data provider.
The samples were taken uniformly at random, with the re-
striction that each sample has at least one distributed slice
partition so that the query uses secure computation.
We evaluate the optimizer’s heuristics with three tests.

First we use a baseline of fully secure execution with no
optimizations. This test is analogous to a query execution
where all of the attributes in a PDN’s schema are protected.
The baseline has the same configuration as the results in
Section 4.1. The second approach, SMC minimization, eval-
uates optimizations that reduce the subtree of a query’s plan
that is executed securely and the data processed therein. For
comorbidity, this tests split operators. In aspirin count and
recurrent c. di↵, it showcases the secure semi-join. Lastly,
we measure the system’s performance when fully optimized.
These results show the system performance with the previ-
ous optimizations plus sliced execution.
Figure 7 displays the runtime for each query end-to-end.

It is clear that our baseline execution is very slow, even for
modest data sizes. Leveraging the PDN’s security policy is
important for e�cient query evaluation in this setting. The
SMCminimization techniques substantially improve the sys-
tem’s performance for all queries. With the split operator
evaluation, comorbidity runs 5X faster than the baseline.

HealthLNK Queries
COMORBIDITY
SELECT diag, COUNT(*) cnt
FROM diagnoses
WHERE patient_id IN

cdiff_cohort
GROUP BY diag
ORDER BY cnt
LIMIT 10;

RECURRENT C. DIFF
WITH rcd AS (

SELECT pid, time, row_no() OVER
(PARTITION BY pid ORDER BY time)

FROM diagnosis
WHERE diag=cdiff)

SELECT DISTINCT pid
FROM rcd r1 JOIN rcd r2 ON r1.pid =
r2.pid
WHERE r2.time - r1.time >= 15 DAYS

AND r2.time - r1.time <= 56 DAYS
AND r2.row_no = r1.row_no + 1;

ASPIRIN COUNT
SELECT COUNT(DISTINCT pid)
FROM diagnosis d

JOIN medication m ON d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time;

SMC Performance

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

Aspirin Recurrent C. Diff Comorbidity

Ru
nt

im
e

(m
s)

Query

Plaintext
SMC

Secure multiparty computation is breathtakingly expensive even with small data.

Attribute-level Security Model
• Annotated table definitions-each column has an access control policy
• Public attribute
• Visible to all parties
• E.g., Lab results, anonymized IDs

• Protected attribute
• Conditionally available to other parties (e.g., k-anonymous)
• E.g., Age, gender, diagnosis codes

• Private attribute
• Accessible only by originating available to DO
• E.g., Timestamps, zip codes

Private

Protected

Public

K-anonymity is an obsolete and weak privacy notion.
I think the protected attribute should not exist.

(whiteboard example of k-anonymity weakness)

Generally, attribute-level security is weak

because there are correlations between attributes due to their place in the
same record and across foreign keys/primary keys relations

Arrows go from primary key to foreign key.

Example: Say that we keep P_ID
unencrypted and treatment plans are
also unencrypted (e.g., they are
generic). If we know that one patient
is following a certain treatment, we
can infer the other treatments.

Second path analysis [Hinke’88]

Sensitivity inference rule in relational tables:

If an attribute of a table is private, the entire table is private and all
tables reachable via primary-foreign key relationships

SMCQL should have used this

Which tables are sensitive here?

Patient, treatment plan and
record are sensitive and
should not be visible

Disease, medication and
gene can be public, and
contain not information
about the patients

Operator Trees

COMORBIDITY
SELECT diag, COUNT(*) cnt
FROM diagnoses
WHERE patient_id IN cdiff_cohort
GROUP BY diag
ORDER BY cnt
LIMIT 10;

Query optimizations

• Aim to reduce the amount of computation happening in MPC
• Important lesson when using MPC

• Need to rewrite query planners

Query Optimization: Split Operators
Precompute part of the operator locally

Partial count(*) #1

Partial count(*) #2

Secure
Plaintext

Security Type System

• Taint analysis

• Trace the flow of sensitive
attributes through the operator
tree

• Identify minimal subtree that
must be computed securely to
uphold security policy

Secure

Plaintext

Example:

COMORBIDITY
SELECT diag, COUNT(*) cnt
FROM diagnoses
WHERE patient_id IN

cdiff_cohort
GROUP BY diag
ORDER BY cnt DESC
LIMIT 10;

Local filter
Group by locally and compute local count

Recall each hospital has a horizontal partition (e.g., subset of records) of table diagnoses

Pad intermediate values to public values to avoid leakage.

Query Optimization: Sliced Evaluation
Horizontally partition tuples on public attributes for secure evaluation

Unsliced Output
Cardinality

Sliced Output
Cardinality

1 1 1 2 2
1
1
1
2
2

⋈pid

1
1
1

1 1 1
2 2

2
2

1
1
1
2
2

1
1
1
2
2

Query Optimization: Semi-join
Find single-party slices to eliminate unnecessary secure computation

Honest Broker

Local
Evaluation

Local
Evaluation

Alice Bob

Secure Evaluation

Tuple ID ∈ IDA ∩ IDB

Tuple ID ∈
IDA - (IDA ∩ IDB)

Encrypted
Output

Encrypted
Output

Tuple ID ∈
IDB - (IDA ∩ IDB)

Example

ASPIRIN COUNT
SELECT COUNT(DISTINCT pid)
FROM diagnosis d

JOIN medication m ON d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time;

If pid is not sensitive, what is
the split?

If pid is sensitive/encrypted
(which I think it should), what
is the split?

Assume table diagnosis at a party and
medication at another party

Example:

RECURRENT C. DIFF
WITH rcd AS (

SELECT pid, time, row_no() OVER
(PARTITION BY pid ORDER BY time)

FROM diagnosis
WHERE diag=cdiff)

SELECT DISTINCT pid
FROM rcd r1 JOIN rcd r2 ON r1.pid =
r2.pid
WHERE r2.time - r1.time >= 15 DAYS

AND r2.time - r1.time <= 56 DAYS
AND r2.row_no = r1.row_no + 1;

If pid is not sensitive, what is
the split?

If pid is sensitive/encrypted
(which I think it should), what
is the split?

SMCQL Query Planner (at the honest broker)

SQL Statement

ID Secure Ops

Optimize Secure Ops

Generate ObliVM Code

Executable Plan

SELECT COUNT(DISTINCT pid)
FROM diagnosis d

JOIN medication m ON d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time;

Query Tree

diagnosis

�pid2cdiff cohort

�diag,count(⇤)

sort(count)

limit 10

Secure

(a) Comorbidity

diagnosis

�diag2cdiff cohort

rowno

rename(rcd) distinct

./

rcd rcd

Sliced on Patient ID

(b) Recurrent C.Di↵

COUNT(*)

DISTINCT

./

�diag=hd �med=aspirin

diagnosis medication

(c) Aspirin Count

Figure 6: Optimized PDN query execution plans for running example.

are sorted on timestamp. We then self-join this table one
patient at a time to identify the ones with a recurring diag-
nosis, and eliminate duplicates using the same slice key.

Aspirin count begins in plaintext with scans on the med-
ication and diagnosis tables. Next, we filter on a protected
attribute, and this step is sliced on patient ID. We then join
the two tables to identify heart disease patients who received
an Aspirin prescription. After that, we eliminate duplicate
patient IDs one slice at a time. Finally, we switch to secure
mode to count up the patient IDs over all slices.

In summary, we optimize our use of secure computation
in three ways. First, smcql horizontally partitions the data
over public attributes to reduce the time and complexity of
our oblivious computing. Second, the query evaluator splits
up query operators to prolong its time in a less expensive
execution mode. Lastly, the optimizer identifies tuples that
do not require distributed secure computation and evaluates
them within their source DBMS.

7. RESULTS
We now verify that smcql produces e�cient query plans

using the workload introduced in Section 2.2. We first re-
view our experimental design. Next, we explore the e↵ec-
tiveness of this system’s heuristics-based optimizer at man-
aging our use of SMC. Then we examine the impact of SMC
on assorted database operators. After that, we test the scal-
ability of smcql as it executes over data of increasing size.
Lastly, we reveal the performance profile of this system in
comparison to a hypothetical federated database where the
parties trust one another.

7.1 Experimental Setup
We evaluate smcql on medical data from two Chicago-

area hospitals in the HealthLNK data repository [29] over
one year of data. This dataset has 500,000 patient records,
or 15 GB of data. To simplify our experiments, we use a
public patient registry for common diseases that maintains
a list of anonymized patient identifiers associated with these
conditions. We filter our query inputs using this registry.

smcql’s query executor is built atop PostgreSQL 9.5 run-
ning on Ubuntu Linux. We evaluated our two-party proto-
type on 8 servers running in pairs. The servers each have 64
GB of memory, 7200 RPM NL-SAS hard drives, and are on
a dedicated 10 Gb/s network. Our results report the aver-
age of three runs per experiment. Unless otherwise specified,
the results show the end-to-end runtime of a query, includ-
ing its plaintext and secure execution. All figures display
their runtimes on a logarithmic scale.

1

10

100

1000

10000

100000

Aspirin Count Recurrent C. Diff Comorbidity

Ex
ec

ut
io

n
Ti

m
e (

se
cs

)

Query

Baseline
SMC Minimization
Fully Optimized

Figure 7: System performance on sampled data.

7.2 Secure Query Optimization
We now examine the role of smcql’s optimizations in

making PDN queries run with e�ciency and scalability. The
results in this section are from query executions over sam-
ples of HealthLNK data with 50 tuples per data provider.
The samples were taken uniformly at random, with the re-
striction that each sample has at least one distributed slice
partition so that the query uses secure computation.
We evaluate the optimizer’s heuristics with three tests.

First we use a baseline of fully secure execution with no
optimizations. This test is analogous to a query execution
where all of the attributes in a PDN’s schema are protected.
The baseline has the same configuration as the results in
Section 4.1. The second approach, SMC minimization, eval-
uates optimizations that reduce the subtree of a query’s plan
that is executed securely and the data processed therein. For
comorbidity, this tests split operators. In aspirin count and
recurrent c. di↵, it showcases the secure semi-join. Lastly,
we measure the system’s performance when fully optimized.
These results show the system performance with the previ-
ous optimizations plus sliced execution.
Figure 7 displays the runtime for each query end-to-end.

It is clear that our baseline execution is very slow, even for
modest data sizes. Leveraging the PDN’s security policy is
important for e�cient query evaluation in this setting. The
SMCminimization techniques substantially improve the sys-
tem’s performance for all queries. With the split operator
evaluation, comorbidity runs 5X faster than the baseline.

Secure
Plaintext

Sliced

Secure

int$dSize[m*n] join(int$lSize[m] lhs, int$rSize[n] rhs) {
int$dSize[m*n] dst;
int dstIdx = 0;

for(int i = 0; i < m; i=i+1) {
int$lSize l = lhs[i];
for(int j = 0; j < n; j=j+1) {

int$rSize r = rhs[j];
if($filter(l, r) == 1) {
dst[dstIdx] = $project;
dstIdx = dstIdx + 1;

}
}

}
return dst;

}

Performance on Sampled
HealthLNK Data

Minimizing SMC:
reducing secure subtree,
identifying data that
can be evaluated locally
Fully Optimized:
using slicing often
creates further speedup

System Scale Up

Minimizing the secure
subtree enables us to
scale to larger inputs.

comorbidity query

SMCQL vs Plaintext

Secure
computation has
substantial
overhead, and
there is fertile
ground for
optimization in
this space.

Conclusions

• Second-path analysis for inferring sensitivity

• Perform as much computation as possible on plaintext

• Query planners need to be redesigned to reason in terms of
secure and plaintext computation

