0\,5 »,% ‘] . .
% CS 294-163: Detehtralized Security: Theory and Systems . /
\ & Vo8| Fall'2019 ’ = ' |
N "13(513-“"'1:> m \ 5 -
' *

SMCQL: Secure Querying for
Federated Databases

Raluca Ada Popa
Oct 1, 2019

Some slides are adapted from Jennie Rogers, adding my views

The challenge

* Cheap computing and storage means people record
and process enormous amounts of data at different
data owners (DOs)

 DOs do not wish to share information with one another
often owing to privacy concerns

SMCQL proposes an architecture for database federations for combining
the private data of multiple parties for querying

Private Data Federations

* Querying the private records of many DOs with a unified
SQL interface

* A DO will not reveal info about their sensitive data to
others, but 1s willing to enable a client to learn certain
query results over all DOs

Honest Broker

* Client 1ssues queries in SQL

* Built-in security policy

Threat model

 Honest-but-curious DOs

* Honest broker plans and orchestrates queries over the DOs
on behalf of the client
(the broker 1s not strictly needed)

Honest Broker

SQL 101

W\

Mysal:
D at ab as e S PostgreSQL
‘mongo
e Structured collection of data ORACLE
* Often storing tuples/rows of related values
* Organized 1n tables
Customer
AcctNum | Username Balance
1199 | zuckerberg 35.7

0501 |[bgates 79.2

SQL

* Widely used database query language

e (Pronounced “ess-cue-ell” or “sequel”)
* Fetch a set of rows:
SELECT column FROM table WHERE condition

returns the value(s) of the given column in the

specified table, for all records where condition 1s true.

’ eg Customer
SELECT Balance FROM Customer | _ActNum | Usemame | Balance
' ' 1199 zuckerber 35.71
WHERE Username='bgates oo —
will return the value 79.2

SQL (cont.)

* Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski1',

10.00);
Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2

8477 oski 10.00

SQL (cont.)

 (Can delete entire tables:
DROP TABLE Customer

* Issue multiple commands, separated by semicolon:

INSERT INTO Customer VALUES (4433, 'vladimair',
70.0); SELECT AcctNum FROM Customer
WHERE Username="vladimir'

returns 4433.

Join tables

SELECT Username, Car from Customer, Cars where

Customer.Username = Cars.uname WHERE Balance>70;

Result: (bgates, Tesla)

Customer
AcctNum Username Balance
1199 zuckerberg 35.7
0501 bgates 79.2
8477 osKki 10.00

Cars

uname Car
zuckerberg Toyota
bgates Tesla
osKki Honda

Back to SMCQL

HealthLNK Use Case

|:||:I+EIEI
S[atei{u]s
O
A group of healthcare providers, such as N i e
HealthLNK in Chicago-area, agree to use oot M bues ..
their patient records for research. ¥ ™
=55 0000
ooo|00
H= 2
public private private
Each hospital responsible for maintaining [R G
. . . . 00001 M blues | ...
confidentiality of patient health records e L
DD*DD 00003 M X |
888\oo
He 2
public private private
patientID sex diag ...
00001 M blues | ...
00002 F cdiff | ...

00003 M) S [

Running Example: Electronic Health Records

Example in the paper:

public private private

patient ID gender diag

00001 M blues
00002 F cdiff
00003 M X

| have concerns about patient ID really being public, but let’s assume so for as in the paper

Clinical Data Research Network

public private private

“How many
patients are | _
there?” E gog 0000
: \D. Z
SELECT i
COUNT (DISTINCT | s) ==k
patient 1id) | 35|00
| O 2
FROM :
diagnosis; i
(] * :
| 78 P aag
| O %

00001 | M blues | ...
An aly St 00002 | F cdiff
00003 | M X

Issues with Currently Deployed Systems

* Need to trust honest broker unconditionally
* Network traffic between honest broker and data providers leaks
info on secret data to curious observers

Clinical Data Research Network

“How many patients
suffer from rare

disease X?”

I can’t share that
private data!

.
|
|
SELECT | ot
COUNT (DISTINCT I can’t share that S R b
patient id) | private data!
FROM diagnosis 5 e e e
WHERE diag=X; |
e
ﬂm i [can’t share that B
| private data!
§ TR
Analyst K

00003 M X

Goal: simulate a completely trustworthy
third party to query private datastores

00002 F cdiff ...

............

How many oo
patients suffer s \g 025
O EI‘ID O

Bob 0D

00002 F cdiff ..

............

Analyst

SMCOL

* Sensitive query evaluation carried out in-sifu among
DOs using secure multiparty computation (SMC)

* Generates hybrid SMC/plaintext query execution plans

* Differential privacy: can be used complementarily to
hide any one record 1n the final query result

SMC Building Blocks

* Secure query execution is oblivious — it reveals nothing about the data to
parties other than the result

* Garbled circuits
* Cryptographic protocol used to securely compute a function across two parties
* Protects a query’s program traces from snooping

* Oblivious RAM (ORAM)

 Shuffles data on all reads/writes to prevent DO from learning memory traces of
secure computation

* O(log’n) bandwidth per I/O
 ObliVM

* Converts imperative code into garbled circuits and ORAM
* We use it to translate a query’s DB operators into SMC

There are better MPC/SMC tools these days, so consider substituting those

SMCQL Architecture

SQL-to-ObliVM Specs for garbled
Client Translation circuits and ORAM

l l

secure query plan

B rOker —

secret shares of g’s output
(1/data owner)

Secure Multiparty
Computation

SMCQL 1s for two mutually distrustful data owners.

Setting and Trust Model

Analysts alone view the output of their queries

Data providers learn nothing about the private records of their peers
Query results are either precise or differentially-private

All data providers support a shared schema definition

Column-level security policy initialized before first query

SQL Supported

* Filter

* Projection COUNT(*)
* Join: equi-joins, theta joins |
* Cross products DISTINCT

* Aggregates (inc. group-by)

* Limited window aggs ™

o« e Odiag= Omed=aspirin
* Distinct dag=hd T
* Sort T T

o diagnosis medication
e Limit

* Common table expressions

HealthLNK Queries
RECURRENT C. DIFF

COMORBIDITY WITH rcd AS (

SELECT diag, COUNT (*) cnt SELECT pid, time, row no() OVER

FROM diagnoses (PARTITION BY pid ORDER BY time)
WHERE patient id IN FROM diagnosis

cdiff cohort WHERE diag=cdiff)
GROUP BY diag
ORDER BY cnt SELECT DISTINCT pid
LIMIT 10; FROM rcd rl JOIN rcd r2 ON rl.pid =
r2.pid
WHERE r2.time - rl.time >= 15 DAYS
ASPIRIN COUNT D oy o T T T 2 P e
SELECT COUNT (DISTINCT pid) r2' ime ~ '1lme = .
FROM diagnosis d AND r2.row no = rl.row no + 1;

JOIN medication m ON d.pid = m.pid
WHERE d.diag = hd AND m.med = aspirin
AND d.time <= m.time;

SMC Performance

10,000,000
1,000,000
100,000
10,000
1,000

100 -

10 -

1

J

|

|

|

m Plaintext
m SMC

|

Runtime (ms)

Aspirin Recurrent C. Diff Comorbidity
Query

Secure multiparty computation is breathtakingly expensive even with small data.

Attribute-level Security Model

* Annotated table definitions-each column has an access control policy

* Public attribute
* Visible to all parties K-anonymity is an obsolete and weak privacy notion.
* E.g., Lab results, anonymized 1 | think the protected attribute should not exist.

* Protected attribute /m/

* Conditionally available to other parties (e.g., k-anonymous)
* E.g., Age, gender, diagnosis codes
* Private attribute
* Accessible only by originating available to DO Protected
* E.g., Timestamps, zip codes .
Public

(whiteboard example of k-anonymity weakness)

Generally, attribute-level security 1s weak

because there are correlations between attributes due to their place in the
same record and across foreign keys/primary keys relations

Patient (P_)

Treatment Plan

(TP)

T_ID

Disease (D_)

PID

Treatment
Record (TR.)

TR_ID

START_DATE

T_ID

L,

END_DATE

DOCTOR

COMMENT

M_ID

DATE

START_TIME

D_ID

NAME

L.

Medication (M_)

M_ID

END_TIME

DOSAGE

COMMENT

NAME

=

D_ID

COST

Gene (G)

G_ID

NAME

COMMENT

Arrows go from primary key to foreign key.

Example: Say that we keep P_ID
unencrypted and treatment plans are
also unencrypted (e.g., they are
generic). If we know that one patient

is following a certain treatment, we
can infer the other treatments.

Second path analysis [Hinke’88]

Sensitivity inference rule in relational tables:

If an attribute of a table 1s private, the entire table 1s private and all
tables reachable via primary-foreign key relationships

SMCQL should have used this

Which tables are sensitive here?

- Treatment Plan

(TP_)
- Patient (P_) T_Ib
iR PID
Y START_DATE
o END_DATE
I DOCTOR
COMMENT
Disease (D_) Medication (M)
D_ID M_ID
NAME L NAME
G_ID D_ID
r COST

Record (TR_)

Treatment

TR_ID

T_ID

>
-

M_ID

DATE

START_TIME

END_TIME

DOSAGE

COMMENT

Gene (G)

G_ID

NAME

COMMENT

Patient, treatment plan and
record are sensitive and
should not be visible

Disease, medication and
gene can be public, and
contain not information
about the patients

Operator Trees

limit 10
SELECT diag, COUNT(¥*) cnt sort(count)
FROM diagnoses
WHERE patient_id IN cdiff cohort > Ydiag,count(s)
GROUP BY diag ~
8%31\‘]/_3[%]3 BY Cnt Opidcedif fCohort
10; f

diagnosis

Query optimizations

* Aim to reduce the amount of computation happening in MPC
* Important lesson when using MPC

* Need to rewrite query planners

Query Optimization: Split Operators
Precompute part of the operator locally

limit 10

Partial count(*) #1

sort(count)

—————————— Ydiag,count(*) -—--------
T~

. oooo Opidecdif f Cohort
Partial count(*) #2 elal=i{a]= e t{f e
O

diagnosis

Security Type System

limit 10
- Taint analysis T
- Trace the flow of sensitive sort(count)
attributes through the operator N

tree

- Identify minimal subtree that W"“-‘?’f‘:“"t(*)

must be computed securely to
uphold security policy

Opid€cdif fCohort

M

diagnosis

Example:

Recall each hospital has a horizontal partition (e.g., subset of records) of table diagnoses

COMORBIDITY
SELECT diag, COUNT(*) cnt

FROM diagnoses
WHERE patient id IN Local filter
cdiff cohort

GROUP BY diag Group by locally and compute local count
ORDER BY cnt DESC
LIMIT 10;

Pad intermediate values to public values to avoid leakage.

Query Optimization: Sliced Evaluation

Horizontally partition tuples on public attributes for secure evaluation

1 (11122

Unsliced Output
Cardinality

1111

Sliced Output 1
Cardinality 1 2

NIN[R R

Query Optimization: Semi-join

Find single-party slices to eliminate unnecessary secure computation

Encrypted
Output

Honest Broker

Local
Evaluation

Tuple ID €

ID,- (IDA N IDp)

A

Alice

Tuple ID € IDA N IDp

Encrypted
Output

Local
Evaluation

A

Tuple ID €
IDg- (ID5 N IDp)

Bob

Example

Assume table diagnosis at a party and
medication at another party

ASPIRIN COUNT
SELECT COUNT (DISTINCT pid)

FROM diagnosis d
JOIN medication m ON d.pid = m.pid

WHERE d.diag = hd AND m.med = aspirin
AND d.time <= m.time;

If pid is not sensitive, what is
the split?

If pid is sensitive/encrypted
(which | think it should), what
is the split?

Example:

If pid is not sensitive, what is

RECURRENT C. DIFF the split?
WITH rcd AS (

SELECT pid, time, row no() OVER
(PARTITION BY pid ORDER BY time)

FROM diagnosis If pid is sensitive/encrypted
WHERE diag=cdiff) (which I think it should), what
is the split?

SELECT DISTINCT pid

FROM rcd rl JOIN rcd r2 ON rl.pid =

r2.pid

WHERE r2.time - rl.time >= 15 DAYS
AND r2.time - rl.time <= 56 DAYS
AND r2.row no = rl.row no + 1;

SMCQOL Query Planner (at the honest broker)

SELECT COUNT (DISTINCT pid)
FROM diagnosis d
JOIN medication m ON d.pid = m.pid
SQL Statement WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time;
\
Secure COUNT(*)
Query Tree A

‘ Sliced

DISTINCT

int$dSize[m*n] join(int$lSize[m] lhs, int$rSize[n] rhs) {
int$dSize[m*n] dst;

D j int dstIdx = 0;
for(int i = 0; i < m; i=i+l) {
int$lSize 1 = 1lhs[i];

for(int j = 0; j < n; j=j+1) {

OAd; _ O int$rSize r = rhs[j];
dzag_hd if ($filter(l, r) == 1) {
dst[dstIdx] = $project;

T dstIdx = dstIdx + 1;

}

return dst;

Generate ObliVM Code sflaintext | y o

diagnosis]

Executable Plan

Performance on Sampled
HealthLNK Data

Execution Time (secs)

100000 -
“ Baseline
. g oo g g
10000 - SMC Minimization
¥ Fully Optimized
i Minimizing SMC:
reducing secure subtree,
1dentifying data that
100 - can be evaluated locally
Fully Optimized:
using slicing often
10 -
creates further speedup
1 =

Aspirin Count Recurrent C. Diff Comorbidity

Query

Execution Time (ms)

System Scale Up

100000000

1000000

10000 -

100 -

100 200 400 650
Input Size per Party (tuples)

Minimizing the secure
subtree enables us to
® Secure .
= Plaintext scale to larger inputs.

comorbidity query

SMCQL vs Plaintext

1000000000

Execution Time (ms)

10000000

100000

1000

10

|

1

1

= SMCQL
¥ Plaintext

Aspirin Count

Recurrent C. Diff
Query

Comorbidity

Secure
computation has
substantial
overhead, and
there 1s fertile
ground for
optimization in
this space.

Conclusions

* Second-path analysis for inferring sensitivity
* Perform as much computation as possible on plaintext

* Query planners need to be redesigned to reason in terms of
secure and plaintext computation

