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Abstract

Cette thèse aborde une problématique de recherche en physique théorique fondamentale,
et plus particulièrement en cosmologie, le problème de l’énergie noire. Dans l’hypothèse où
l’énergie noire résulte d’une modification de la relativité générale dans son régime infrarouge,
ce travail se concentre sur l’étude de corrections non-locales qui peuvent jouer ce rôle. Ces
corrections peuvent typiquement émerger d’une dynamique quantique effective mais aussi dans
des théories de dimensions supérieures. En particulier, l’application de l’idée de la ≪ degravita-
tion ≫ mène à deux modèles prototypes où la relativité générale est modifiée par des corrections
non-locales, générant une phase d’expansion accélérée dans l’Univers tardif. Nous analysons
la structure théorique et phénoménologique de ces deux modèles, avant de les contraindre à
l’aide de données cosmologiques complémentaires de haute précision et de comparer leurs per-
formances à celles du modèle standard de la cosmologie dans un cadre bayésien. Finalement,
prenant ces théories comme exemples, nous discutons aussi la modification de la propagation
des ondes gravitationnelles et les implications d’une telle modification pour les interféromètres
de génération future.





Résumé (français)

Cette thèse s’inscrit dans le programme scientifique visant à acquérir une compréhension
plus profonde de l’un des problèmes fondamentaux de la physique moderne, le problème de
l’énergie noire.

À la fin du vingtième siècle, notre compréhension de la dynamique de l’Univers dans son
ensemble fut marquée par une véritable révolution. Des observations de supernovae distantes
de Type Ia ont révélé l’évidence d’une phase actuelle d’accéleration de l’expansion de l’Univers.
L’explication la plus simple que l’on puisse fournir à ce phénomène, en accord avec les principes
de la relativité générale, est l’introduction d’une constant cosmologique Λ dans les équations
d’Einstein, modélisant une composante d’énergie noire dominant la densité d’énergie totale de
l’Univers. Cette décourverte entrâına l’ajout de Λ comme une des pièces mâıtresses au modèle
standard de la cosmologie contemporaine, dénoté ΛCDM. Depuis ce temps, le rafinement des
développements théoriques et l’augmentation des capabilités observationnelles et numériques
ont permis d’établir des constraintes de plus en plus fortes sur l’espace des paramètres de ce
modèle. Dorénavant, ces contraintes se situent au niveau du pourcent de précision sur de nom-
breux paramètres, ceux qui élève la cosmologie d’aujourd’hui au rang d’une science de précision,
et démontrent en particulier la consistence du modèle ΛCDM étant donné de nombreuses ob-
servations complémentaires.

Cependant, le succès de l’introduction d’une constante cosmologique dans les équations
d’Einstein pour expliquer la récente accélération cosmique est terni par des objections théoriques
quant à sa nature, son origine et sa domination récente. De surcrôıt, on constate que certaines
observations, en nombre cependant restreint, se trouvent être en désaccord étant donné le modèle
ΛCDM, bien que les erreurs systématiques doivent encore être prouvées se trouver sous contrôle.
La résolution de ces problèmes est l’une des quêtes les plus importantes de la physique fonda-
mentale contemporaine. En effet, de nombreux modèles alternatifs à la constante cosmologique
ont été proposé pour expliquer l’accélération cosmique récente. Ces modèles sont, par exemple,
basés sur l’addition de nouveaux degrés de liberté associés à l’énergie noire tel qu’un champ
scalaire ou métrique, ou une composante plus exotique tel qu’un gaz de Chaplygin. De plus,
des explications de l’énergie noire ont aussi été avancées sous la forme de théorie modifiant
la relativité générale, en particulier dans son regime infrarouge, motivées par un nombre de
dimensions supérieures ou par le fait que les degrés de liberté gravitationels pouvaient avoir une
masse. Jusqu’à maintenant, aucune de ces alternatives ne s’est montrée convaincante quant à
son pouvoir de prédire de manière consistante l’ensemble étendu des observations cosmologiques
actuelles en résolvant également les problèmes théoriques associés à la constante cosmologique.

Cette thèse fait partie intégrante de ce programme de recherche. Ici, nous faisons l’hypothèse
que la théorie de la gravité d’Einstein est possiblement modifiée dans son regime infrarouge par
des effets non-perturbatifs possiblement associés à une dynamique quantique effective. Pour ce
faire, nous supposons que des opérateurs non-locaux sont susceptibles d’être générés dans l’ac-
tion effective associée à la théorie de la relativité générale. En effet, ce type de corrections sont
typiquement générées dans les théories de bosons de jauge, par les fluctuations quantiques du
vide de champs légers ou sans masse auxquels ces bosons couplent. De plus, des opérateurs non-
locaux potentiellement pertinents dans l’infrarouge peuvent se voir être générés dans l’anomalie
conforme, dans les théories de dimensions supérieures ou également par les fluctuations quan-
tiques du vide du champ de gravité lui-même, comme récemment suggéré par des simulations



de gravité quantique sur réseau. Les effets infrarouges induits par des corrections quantiques
en gravité sont encore très largement mal compris et pour cette raison nous adoptons une ap-
proche plutôt phénoménologique, inspirée par l’application de l’idée de la ≪ degravitation ≫ à
la théorie de la gravité massive linéarisée sur l’espace de Minkowski. Notre étude porte sur les
aspects théoriques, phénoménologiques et observationnels de deux théories de gravité modifiée
développées dans ce cadre.

Après un bref essai d’introduction historique sur la construction du modèle standard de la
cosmologie et un résumé des problèmes associés à la constante cosmologique dans le Chapitre 1,
nous illustrons comment différents effets peuvent produire des opérateurs non-locaux dans le
cadre de la théorie effective des champs dans le Chapitre 2. Nous présentons également plusieurs
résultats d’études complémentaires à la nôtre, modifiant la théorie de la relativité générale dans
l’infrarouge. Dans le Chapitre 3, nous analysons la structure théorique de deux modèles de
gravité non-locale obtenus à travers l’application de l’idée de la degravitation à la théorie de la
gravité massive linéarisée sur l’espace de Minkowski. Nous verrons que, sur espace-temps plat,
ces deux modèles exposent une structure de propagateur contenant un pôle associé au champ de
spin deux non massif de la gravité, alors qu’il renferme également un pôle associé à un champ
scalaire sans masse et un autre associé à un champ scalaire de masse m inconnue, ayant un signe
opposé dans son terme cinétique. Plus loin, on montre de différentes façons que la structure
non-locale de ces théories implique qu’aucun degré de liberté physique n’est associé à ces deux
derniers pôles et que, de ce fait, ces théories sont fiables d’un point de vue effectif. Nous verrons
également que l’instabilité associée au pôle massif se développe génériquement à des longueurs
d’ondes plus grandes que la longueur de ≪ Compton ≫ du champ correspondant, qui doit être
de l’ordre de la taille de l’Univers observable sur le plan phénoménologique, c’est-à-dire pour
générer une accélération cosmique permetant d’expliquer les observations. À ces échelles, ce
n’est plus l’espace temps de Minkowski que l’on doit considérer comme métrique de fond, mais
plutôt la solution cosmologique de Friedmann-Lemâıtre-Robertson-Walker. Pour un modèle en
particulier, on démontre que toutes les perturbations linéaires sur ce fond sont globalement
stables, à cause de la violente expansion du fond induite par la nature ≪ fantôme ≫ de l’énergie
noire effective décrite par le modèle, entrâınant une domination de la friction de Hubble sur ses
perturbations cosmologiques.

La phénoménologie cosmologique des deux théories non-locales est investiguée en détails
dans le Chapitre 4, où on montre que les deux modèles décrivent une énergie noire effective
dynamique de caractère ≪ fantôme ≫, i.e. d’équation d’état inférieure à moins un, menant à
une phase accélérée d’expansion dans l’Univers tardif. Les perturbations linéaires autour de ce
fond cosmologique sont également étudiées dans le secteur scalaire et tensoriel. On montre en
particulier que les ondes gravitationelles sont stables et se propagent à la vitesse de la lumière,
en accord avec l’observation récente des ondes gravitationnelles associées à la fusion d’étoiles à
neutrons binaires et de la contrepartie électromagnétique associée, mais que leur propagation est
tout de même altérée par une modification du terme de friction dans l’équation la gouvernant.
De plus, nous montrons que les perturbations scalaires sont également stables et nous quantifions
leurs déviations par rapport à ΛCDM à l’aide de fonctions indicatrices utiles dans ce cadre. À
paramètres cosmologiques fixés, nous verrons que les deux modèles décrivent une croissance
de structures plus forte comparée à celle décrite par ΛCDM et également un effet de lentille
gravitationnelle plus proéminent. Nous étudions également les perturbations des énergies noires
effectives dans les deux modèles et trouvons que les composantes d’énergie noire effectives sont
assez ≪ lisses ≫. Les déviations de ΛCDM étant seulement de l’ordre de quelques à plusieurs
pourcents dans les deux modèles, leur phénoménologie apparâıt par conséquent pertinente a
priori.



Dans le Chapitre 5, nous implémentons ces deux modèles dans une version modifiée du code
d’évolution cosmologique linéaire CLASS et exerçons des contraintes observationelles sur ceux-
ci. Nous verrons que les deux modèles de gravité non-locale mènent essentiellement à l’inférence
des mêmes paramètres cosmologiques de base que ΛCDM, étant donné des mesures de haute
résolution du fond diffus cosmique, des supernovae de Type Ia et des oscillations acoustiques
des baryons, à l’exception d’une préférence pour une plus grande valeur de la constante de
Hubble, par conséquent plus en accord avec les mesures locales. Nous verrons également que le
modèle dont l’énergie noire effective est la plus fantôme expose, de manière assez générique, une
tension entre les mesures du fond diffus cosmique et des supernovae de Type Ia, le défavorisant
par rapport à standard ΛCDM sur des bases de statistique bayesienne que nous exposons en
détails. Nous montrons alors que cette tension est résolue par la considération d’une masse
absolue des neutrinos variable dans l’ajustement des paramètres, résultant en la prédiction
d’une masse absolue non-nulle à deux deviations standards, étant donné le modèle non-local
en question. Nous étudions également les contraintes observationnelles fournies par les mesures
de croissance de structures à travers les distortions induites dans l’espace des décalages vers le
rouge.

Le Chapitre 6 est consacré à l’étude de la modification du terme de friction dans l’équation
gouvernant la propagation des ondes gravitationnelles linéaires sur un fond cosmologique. Nous
montrons qu’une telle modification altère la notion de distance de luminosité de la source des
ondes gravitationelles, et par conséquent la relation distance-décalage vers le rouge obtenue à
travers les sirènes standards que celles-ci consistuent. Nous introduisons une paramétrisation
utile modélisant une telle déviation et contraignons ces paramètres avec des mesures du fond
diffus cosmologique, des supernovae de Type Ia, d’oscillations acoustiques des baryons et de
la detection de (mille) sirènes standards étant donné la sensibilité des interféromètres gravi-
tationnels de prochaine génération. Nous trouvons que les contraintes sur ce paramètre sont
plus importantes que celles sur la valeur de l’équation d’état de l’énergie noire aujourd’hui d’un
facteur quatre, et, par conséquent, que les perspectives de detection de déviations de la relati-
vité générale sont plus optimistes qu’initialement prévues. Nous illustrons également la capacité
potentielle de tels interféromères à distinguer un des modèles de gravité non-locale prédemment
cité par rapport à ΛCDM, en estimant le nombres de sirènes standards (avec leur contrepartie
électromagnétique) qu’ils devraient detecter.
Le Chapitre 7 présente nos conclusions.
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cadre de travail stimulant et agréable qu’il offre au quotidien, que ce soit durant les journal-
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poussé à accomplir mes ambitions, mes rêves. Merci pour leur soutien, pour leur confiance et
pour leur amour, c’est d’abord ce qui alimente ma force et mon courage.



Jury de thèse
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— Professeur Cédric Deffayet, Institut d’Astrophysique de Paris (IAP) et Institut des
Hautes Études scientifiques (IHÉS), Paris, France.
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Contents

Introduction 6
Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 A Brief History of the Universe 10
1.1 The Geometric Properties of the Universe . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Towards the Modern Standard Model of Cosmology . . . . . . . . . . . . . . . . 11

1.2.1 The Primordial Universe and the Inflationary Paradigm . . . . . . . . . . 11
1.2.2 Galaxy Motion and Flat Rotation Curves . . . . . . . . . . . . . . . . . . 13
1.2.3 What is Dark Matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Structure Formation with Cold Dark Matter . . . . . . . . . . . . . . . . 15
1.2.5 Supernovae Ia: Dark Energy for Accelerating Expansion . . . . . . . . . . 18

1.3 Precision Cosmology Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Resolving the CMB Temperature Spectrum . . . . . . . . . . . . . . . . . 19
1.3.2 Flat Universe: Cosmic Variance, Geometrical Degeneracy and Cosmic

Complementarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.3 CMB Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.4 WMAP for Six Cosmological Parameters . . . . . . . . . . . . . . . . . . 24
1.3.5 Baryon Acoustic Oscillations in Galaxy Surveys . . . . . . . . . . . . . . . 25
1.3.6 Growth of Structures and Weak Lensing . . . . . . . . . . . . . . . . . . . 26
1.3.7 Other Probes Relevant for Dark Energy . . . . . . . . . . . . . . . . . . . 27
1.3.8 The Standard (dark) ΛCDM Model: Current Status . . . . . . . . . . . . 28
1.3.9 The Importance of Future Gravitational Wave Experiments . . . . . . . . 32

1.4 What is the Cause of Cosmic Acceleration? . . . . . . . . . . . . . . . . . . . . . 32
1.4.1 The Cosmological Constant Problem(s) . . . . . . . . . . . . . . . . . . . 33
1.4.2 Modelling Dark Energy by Evading Lovelock’s Theorem . . . . . . . . . . 34

1.5 Conventions & Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Nonlocal Modifications to Gravity 40
2.1 Classically Induced Nonlocality: Open Systems . . . . . . . . . . . . . . . . . . . 40
2.2 Nonlocality Induced by Quantum Effects . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Effective Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2 Vacuum Polarisation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Conformal Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Nonlocality Versus Gauge Symmetry in Massive Theories . . . . . . . . . . . . . 54
2.3.1 Massive Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 Pauli-Fierz Massive Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Infrared Nonlocal Modifications to Gravity . . . . . . . . . . . . . . . . . . . . . 58

2



3 Aspects of Nonlocal Infrared Modifications to General Relativity 68
3.1 The RT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 No vDVZ Discontinuity, No Quantum Theory . . . . . . . . . . . . . . . . 70
3.1.2 Interlude: Apparent Ghost in Nonlocal Theories and Auxiliary Initial

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1.3 Localisation using Dissipative Systems Techniques . . . . . . . . . . . . . 74

3.2 Covariantization: The RR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2.1 Degrees of Freedom Count and Stability . . . . . . . . . . . . . . . . . . . 78

3.3 Local RR in Einstein Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4 Stability re-Analysis and Future Singularity . . . . . . . . . . . . . . . . . . . . . 80

4 Phenomenology of the RT and RR Models 86
4.1 Localised Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Cosmological Background Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Background Solution for RT . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Background Solution for RR . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.3 RD Initial Conditions From Earlier Stages: RRu0 . . . . . . . . . . . . . 94

4.3 Linear Cosmological Perturbations in Nonlocal Gravity . . . . . . . . . . . . . . . 96
4.3.1 Linear Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Linear Cosmological Perturbations in RT . . . . . . . . . . . . . . . . . . 98
4.3.3 Linear Perturbation Equations in RR . . . . . . . . . . . . . . . . . . . . 101
4.3.4 Perturbation of Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Results of Linear Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.1 Indicators of Deviations from GR . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.2 Effective Dark Energy Perturbations . . . . . . . . . . . . . . . . . . . . . 112

5 Observational Contraints and Bayesian Model Comparison 118
5.1 Observational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.2 Parameter Space and MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.1 The Bayes Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2 Model Nesting and Savage-Dickey Density Ratio . . . . . . . . . . . . . . 130

5.3 Growth Rate Data and Structure Formation . . . . . . . . . . . . . . . . . . . . . 134
5.4 Interlude: Inflationary Instabilities of the RT Model . . . . . . . . . . . . . . . . 137
5.5 Neutrino Mass Constraints in the RR Model . . . . . . . . . . . . . . . . . . . . . 138

5.5.1 Understanding the Tension . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.2 Solving the Tension in RR with Massive Neutrinos . . . . . . . . . . . . . 139
5.5.3 Bayesian Model Comparison in ν-extended Models . . . . . . . . . . . . . 142
5.5.4 Constraints a Posteriori from Redshift-Space Distortions data . . . . . . . 145
5.5.5 A Word on H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.5.6 The Importance of Terrestrial Determinations of

∑
mν . . . . . . . . . . 148

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



6 Modified Gravitational Wave Propagation and Standard Sirens 152
6.1 Standard Sirens as a Probe of Dark Energy . . . . . . . . . . . . . . . . . . . . . 152
6.2 GW Propagation in Modified Gravity . . . . . . . . . . . . . . . . . . . . . . . . 154
6.3 Measuring w0, wa, Ξ0 with Standard Sirens . . . . . . . . . . . . . . . . . . . . . 158

6.3.1 Understanding the Role of Degeneracies . . . . . . . . . . . . . . . . . . . 158
6.3.2 Standard Sirens and Modified Gravity with ET . . . . . . . . . . . . . . . 161

6.4 Testing the RR model with ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.1 Testing the “Minimal” RR model . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.2 The Model for Large Values of u0 . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 Primordial GWs and Modified Transfer Function . . . . . . . . . . . . . . . . . . 169
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7 Conclusions 174

Appendices 178

A Implementation of the nonlocal models in CLASS 178
A.1 Implementation of the RT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.2 Implementation of the RR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 180





Introduction

Contemporary cosmology has undergone fast developments over the past century. These
advances were built on fundamental theoretical insights originating from Einstein’s theory of
General Relativity, that has now been extensively tested on solar system and terrestrial scales.
Until now, no significant deviations from General Relativity have been detected in such regimes.
On cosmological, far-infrared, scales the theory provides the bedrock of the standard cosmolog-
ical model whose structure has undergone several mutations over the years, resulting from the
synergy between theoretical and observational efforts. This has gradually promoted cosmology
to a precision science, where theories can be rigorously tested against increasingly accurate and
complementary observations. In particular, observations of the motion of galaxies led to the
introduction of a cold dark matter component into the standard model, whose fundamental
nature is still not understood. In addition, measurements of distant Type Ia supernovae light-
curves provide significant evidence for an accelerated expansion of the Universe at late time,
suggesting the presence of a dark energy component dominating the present cosmic energy den-
sity. In nowadays standard cosmological model, the dark energy is modelled in the simplest way
following general relativistic principles, that is, by the introduction of a cosmological constant
Λ into the equations of General Relativity. This provides an essential building block of the
standard ΛCDM model, which has been shown to be able to consistently describe a handful of
high-resolution complementary cosmological observations.

Nevertheless, such a consideration raises fundamental theoretical questions about the nature,
origin and late time domination of the dark energy associated to the cosmological constant, as
well as observational puzzles that may however still be subject to unresolved systematics. At
the same time, Λ only affects the behavior of General Relativity at large observable scales, so
that its associated weaknesses can be translated into our lack of understanding of the infrared
dynamics of General Relativity itself. In this thesis, we attempt to provide relevant information
for a better understanding of the solution to the fundamental problem of dark energy. We
make the hypothesis that the theory of General Relativity is susceptible to be modified in its
infrared regime by intrinsic processes becoming relevant at these scales. For accessing this, we
focus on modellisations based on a particular class of modified gravity theories, where infrared
modifications are realised through the presence of nonlocal terms into Einstein’s equations or
into the Einstein-Hilbert action.

Chapter 1 starts by briefly outlining the major theoretical and observational advances made
in the past, that allowed cosmologists to shape the current standard ΛCDM model. We then de-
scribe the current state-of-the-art, summarise its main current observational inconsistencies and
emphasize the importance of future cosmological surveys for accessing a better understanding
about the physics of the dark energy. We then provide a description of the theoretical objec-
tions made against the cosmological constant and provide examples of alternative descriptions
of dark energy proposed for resolving these issues.
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Chapter 2 illustrates how nonlocal operators are typically generated into an effective field
theoretical framework and how these can lead to infrared corrections to gravity. At the classical
level, we will see that such corrections arise from explicitly integrating-out interacting fields
in generic theories, while at the quantum level, they are typically generated in the gravita-
tional quantum effective action through vacuum polarisation induced by the presence of light
or massless fields, through the conformal anomaly or quantum fluctuations of the gravitational
field itself, as recently suggested by lattice quantum gravity computations. As will also be
discussed, nonlocal corrections can also come from extra-dimensions, and generate a “degravi-
tation” mechanism that makes the interaction between the vacuum and gravity weaker at large
scales, therefore providing a possible solution to the “naturalness problem” of Λ.

Chapter 3 presents how the application of the degravitation idea leads to the development
of two distinct kinds of modified gravity models, the so-called RT and RR nonlocal gravity
models. We also describe peculiarities typically associated to the presence of nonlocal terms
into a theory and meticulously analyse the theoretical structure of the two nonlocal models
presented.

Chapter 4 reviews the associated phenomenology of both nonlocal models, showing in partic-
ular that they lead to interesting self-accelerating solutions characterised by phantom effective
dark energies and stable linear perturbations within the cosmological context.

Observational constraints and Bayesian model comparison between the nonlocal models
and standard ΛCDM are worked out in Chapter 5. For performing this, we consider data from
Cosmic Microwave Background measurements, as well as from observations of distant Type Ia
supernovae, Baryon Acoustic Oscillations, Redshift-Space-Distortions and local measurements
of the present Hubble constant H0. In a first part, we present the results obtained in assuming
the standard six-dimensional cosmological parametrisation, similar to that adopted within the
framework of the standard ΛCDM model. In a second part, we consider an extension of this
parametrisation within the framework of the RR model, consisting in allowing the absolute
mass of three degenerated massive neutrino species to vary.

In Chapter 6, inspired by the fact that the studied nonlocal models describe a modified prop-
agation for the gravitational waves compared to ΛCDM, we forecast the constraining power of
next generation gravitational waves interferometers. These experiments will measure the gravi-
tational waves emitted from binary inspirals with a high precision. We assume that the redshifts
of the binaries will be determined accurately, for instance from the detection of an associated
electromagnetic counterpart, as for the binary neutron star merger recently detected, or by
statistical methods. Together with a measurement of the amplitude of the gravitational waves,
this knowledge allows one to build a redshift-distant relation, making these binary inspirals
“standard sirens”. In turn, this relation provides a useful probe of the expansion history of
the Universe and is therefore relevant for constraining deviations from a cosmological constant.
Moreover, we will see that this relation is also very useful for constraining modifications of
the way gravitational waves propagate as compared for instance to those described by ΛCDM.
We parametrise this relation and show that the associated parameter can be measured with
a higher accuracy than the ones usually used in the literature. The expectations for testing
General Relativity using gravitational waves interferometers are therefore more optimistic than
initially expected. We then illustrate such constrains in the framework of the RR nonlocal
gravity model, and evaluate the number of sources needed to be detected for distinguishing it
from ΛCDM, given the forecast sensitivity of next generation gravitational waves experiments.

Our conclusions are drawn in Chapter 7.
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Chapter 1

A Brief History of the Universe

1.1 The Geometric Properties of the Universe

At the beginning of the twentieth century, A. Einstein revolutionised the concepts of abso-
lute space and time in merging them into a single entity, spacetime. In 1905, based on works
of H. Lorentz, H. Minkowski, H. Poincaré and others, he established the principles of Special
Relativity (Einstein, 1905), whose group representation theory was later used to provide the
field algebra of the Standard Model of particle physics (SM). The SM governs the classical and
quantum-relativistic dynamics of all the known visible matter that we observe in the present
Universe. At the same time, the theory expresses the equivalence between mass and energy
through the now world famous formula, E = mc2. Ten years later, his desire to incorporate
gravity into the same framework led him to postulate his equivalence principle. It states that,
in the presence of an arbitrary gravitational field, no local non-gravitational experiment can
distinguish a freely falling non-rotating system, from a system moving uniformly in the ab-
sence of gravitational field [see e.g. (Straumann, 1984) for a historical discussion]. Einstein’s
equivalence principle implies the equivalence between inertial and gravitational masses and es-
sentially formulates itself mathematically as the principle of General Covariance of physical
laws. These principles imply that spacetime is a dynamical entity sensitive to any form of
energy and provides the foundations of the theory of General Relativity (GR) governing such
dynamics (Einstein, 1915, 1916). The corresponding equations are given by,

Rµν −
1

2
gµνR =

8πG

c4
Tµν .

In his works, Einstein supplied the theory with three explicit predictions: the gravitational
redshift, the bending of light and the precession of Mercurys’ perihelion, which were all shown
to be consistent with observations. Other predictions have also been tested since then [see for
instance (Will, 2014) for a review] and, until now, none of them has been able to falsify the
theory. Most notably, a hundred years after the predictions, the direct detections of gravitational
waves (GWs) emitted from binary black hole mergers (Abbott et al., 2016c) [see also (Abbott
et al., 2017a) and references therein] and a binary neutron star inspiral (Abbott et al., 2017h),
have provided a further remarkable confirmation of GR, in particular confirming that GWs
propagate at the speed of light.

All the aforementioned predictions allow to constrain GR on small scales. In 1917, Einstein
and his contemporary W. de Sitter got interested in describing the Universe on larger scales, in
its most coarse grained and global structure. They adopted the class of solutions in agreement
with the cosmological principle, i.e. with homogeneous and isotropic spatial hypersurfaces.
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Einstein, motivated by the fact that the relative velocities of stars where observed to be much
smaller than the velocity of light, introduced a uniform matter component described by a
pressureless perfect fluid and was convinced that the Universe was spatially static. Such an
hypothesis forced him to introduce a “universal constant”, that he called λ (denoted Λ in modern
language), playing the role of a fudge factor into the equations of GR, so as to counteract the
effects of the uniform matter distribution on space (Einstein, 1917). Such a fact did not change
the yet confirmed predictions of the theory on smaller scale, as λ only modifies its dynamics
on large scale, in the far infrared. Five years later, A. Friedmann established the so-called
Friedmann equations (Friedmann, 1922, 1924) from which derives cosmological solutions where
space is expanding. Not much attention was given to his class of metric solutions until 1929,
when observations of E. Hubble unveiled the proportionality relation between the line-of-sight
velocity component and the radial distances of galaxies (Hubble, 1929). This relation, known
as the Hubble law, defines the Hubble constant characterising the expansion of the Universe.
In fact, this relation had already been derived theoretically and inferred observationally by
G. Lemâıtre in 1927, who was the first giving a physical meaning to Friedmann’s solution
(Lemâıtre, 1927). Works of H. Robertson and A. Walker also provided significant contributions
in understanding this solution and, in particular, showed that it is implied by the cosmological
principle (Robertson, 1935; Walker, 1937). This solution is today referred to as the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric. Einstein was then forced to admit the dynamical
nature of the spatial component of the Universe and considered it as an evidence for setting
λ = 0 in his equations. Later, alternative cosmological solutions were also put forward [see
e.g. (Zwicky, 1929; Milne, 1935; Bondi and Gold, 1948; Hoyle, 1948)]. These were discredited
in 1964 when, based on predictions of G. Gamow, R. Alpher and R. Herman (Gamow, 1948;
Alpher and Herman, 1948), the serendipitous discovery of the cosmic microwave background
(CMB) by A. Penzias and R. Wilson suggested that the FLRW universe, starting in a hot “big
bang”, provides the best explanation consistent with observations (Penzias and Wilson, 1965).
Such an understanding of the geometric properties of our Universe has marked the foundation of
modern cosmology and, in particular, provided the bedrock for the construction of the current
standard cosmological model.

1.2 Towards the Modern Standard Model of Cosmology

Nowadays, the standard model of cosmology is composed by four major pillars: the underly-
ing theory of gravity, the assumed symmetries of the Universe on large scales, its global structure
(topology) and its matter constituents together with their non-gravitational and gravitational
interactions [see e.g. (Uzan, 2009)]. As outlined in the previous section, the first three of them
are currently accepted to be provided by Einstein’s theory of GR together with solutions which
spatially average to the FLRW type.

1.2.1 The Primordial Universe and the Inflationary Paradigm

Regarding the matter components, its visible part is made of particles described by the
SM. At early times, the Universe was in a dense, highly energetic radiation dominated phase
(RD) composed by a mixture of elementary particles in thermal equilibrium. As the Universe
expanded and cooled down, its temperature dropped below a series of relevant scales inducing
several phase transitions. Similarly, the cooling of the Universe led to a cascade of other
phenomena as for instance at T ∼ 1MeV ∼ 1010K, when the first light elements such as
helium, deuterium or lithium nucliei were formed during the big bang nucleosynthesis (Alpher
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et al., 1948), as well as when the relic neutrinos decoupled from the primordial plasma and
started propagating freely until today, producing the cosmic neutrino background (CνB) [see
e.g. (Lesgourgues et al., 2013)]. The Universe was then composed by a plasma of electrons,
protons (or charged nuclei) and photons interacting through Thomson scattering whose typical
timescale was much smaller than the typical time associated to the expansion, preventing atomic
structures to form. Once the Universe get even colder, these timescales became comparable
favoring atomic formation and protons (helium nuclei) and electrons could combine into neutral
atoms of hydrogen (helium) making the photons decouple from them in a process known as
(helium) recombination. The Universe then became effectively transparent to photons, which
were allowed to propagate freely throughout the Universe until today. This relic radiation
provides a snapshot of the last scattering surface at the present time, making up the CMB that
Penzias and Wilson discovered in the sky at TCMB ≃ 3K. Other ground-based experiments
were realised in the following years [see e.g. (Weinberg, 1972), p. 512 for a list] and all of them
established the same conclusions about the consistency of the hot big bang model.

However, the hot big bang paradigm suffered for not addressing several fundamental ques-
tions which arose at the time. For instance, it did not provide a mechanism describing why the
Universe is so homogeneous and isotropic on large scales.
Indeed, if one considers that the expansion of the Universe was only composed by a dominating
radiation component at early times, the comoving radius of a causal patch (the particle horizon,
determined by light rays propagating outwards of a given location in a given time interval) is at
most bounded by the comoving Hubble radius defining the size of the observable Universe at the
final time of the interval. Therefore, in that case, the Hubble horizon provides a maximal region
of causal contact within which the homogeneity of a given process taking place on larger scales
(such as recombination) can be established. However, as the Universe continues to expand, the
Hubble radius increases and will cover regions that were not causally connected at the time
when the aforementioned process happened. Therefore, there is no reason why the early times
patch-wise homogeneity should result in a (global) large scale homogeneity at late times. This
is known as the horizon problem.

A solution to that problem is to invoke a pre-recombination period of accelerated expansion.
In such a way, the comoving radius of causally connected regions can become infinitely large
after a finite amount of time whereas the comoving Hubble radius shrinks down. Once the
Hubble horizon then increases again in a subsequent deceleration phase, fluctuations entering
the Hubble horizon were causally connected in the past, and large scale homogeneity can be
explained. Such a process has been proposed to be realised in an inflationary phase of the
Universe (Guth, 1981; Linde, 1982; Starobinsky, 1982; Bardeen et al., 1983), taking place right
below the Planck scale at T ∼ 1016GeV.

The inflationary paradigm also solves another problem of the hot big bang model: the fact
that the spatial curvature of the Universe is so close to vanish at present time. This is essentially
a fine-tuning problem which consists in explaining why the total energy density fraction of
matter (i.e. non-curvature components) was close to one by tens of orders of magnitude in
the early Universe. The problem is that the flatness condition is an unstable solution in a
decelerating expansion phase. In an accelerating phase of expansion, the situation is reversed
and the flatness condition of the Universe becomes an attractor [see e.g. (Lesgourgues, 2006;
Baumann, 2011)]. Moreover, inflation also solves the primordial monopole problem and predicts
the origin of the primordial density fluctuations which grew into the cosmic web we observe
today in the sky. In this paradigm, it is the quantum fluctuations associated with the internal
degree(s)-of-freedom of the theory, typically a scalar field called the inflaton, that gives raise
to a nearly scale invariant, gaussian spectrum for adiabatic primordial density fluctuations.
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Other theories offered an alternative to inflation, as topological defects such as cosmic strings,
textures, global monopoles or domain walls [see e.g. (Liddle and Lyth, 1993) and references
therein].

Precision observations of the COBE satellite revealed that the CMB has a near-ideal thermal
black body spectrum (Mather et al., 1994). Furthermore, COBE and RELIKT-1 CMB missions
observed that its temperature distribution respects nearly perfect isotropy over the whole sky:
it possesses a relative departure from it at the level of 10−5 (Smoot et al., 1992; Wright et al.,
1992; Klypin et al., 1992). It was found that the shape of the primordial power spectrum of
density fluctuations underlying this nearly isotropic temperature distribution is compatible with
the one predicted by inflationary theories.

1.2.2 Galaxy Motion and Flat Rotation Curves

Apart from the important discovery of the CMB and its anisotropies, earlier astronomers
were also concerned with another puzzle, the problem of “missing mass” at galactic to galactic
cluster scales underlying the existence of a dark matter component. Its empirical origin can be
tracked back to the beginning of the twentieth century or even before [see (Bertone and Hooper,
2016) for an exhaustive historical review].

In his lectures in 1904 (Kelvin, 1904), Lord Kelvin regarded the Milky Way as a gas composed
by stars under the influence of gravity and estimated an upper bound on its total stellar mass
density in relating it to the observed velocities of the stars. He was eventually led to formulate
the hypothesis that there may be a fraction of extinct or dark bodies invisible to us composing
the galaxy. In the few decades that followed, astronomers studying the dynamics of stars in the
Milky Way did take the hypothetic presence of invisible matter into account in their analysis.

Later, firmer estimations were derived by F. Zwicky during the 1930s from observations of
the Coma galaxy cluster. First, in estimating the mass of the cluster from the ∼ 800 galaxies
which were observed to compose it, and estimating its effective radius, he was able to compute
the potential energy of the cluster. Applying then the virial theorem, he could compute the
velocity dispersion of the galaxy distribution. The result that he calculated was smaller than
the observed velocity dispersion by an order of magnitude and he concluded that, if his result is
correct, the total amount of “dark matter” within the galaxy is much greater than the amount of
visible matter (Zwicky, 1933). Similar conclusions were reached by S. Smith, whose estimations
led to a larger galactic mass for the Virgo cluster (Smith, 1936). Also later, Zwicky turned the
situation the other way around in deriving the total mass of the Coma cluster from the observed
galaxy velocity dispersion and predicted the associated the mass-to-light ratio, which featured
an astonishing high value compared to that of a local star system (Zwicky, 1937). The reality of
this puzzle remained unclear for several decades. Numbers of hypotheses about the systematic
understanding of this apparent mass discrepancy were explored, but no solutions were found to
be compelling.

In the 1970s, K. Ford and V. Rubin (Rubin and Ford, 1970), and later with N. Thonnard
(Rubin et al., 1978, 1980), observed, through the Doppler shift of optical lines, the rotation
curves of spiral galaxies: the orbital velocity of the stars or gas in a galaxy as a function of the
radius. They noticed that they do not follow the second law of Kepler, which states that objects
farther to the center have smaller rotational velocity, as for instance for the planets of our solar
system. Instead, they observed that the rotation curve for galaxies flattens at a given threshold,
as the radius to the galactic center is increased (see Fig. 1.1 for an illustration). Such results
imply that for the galaxy to be stable, its mass profile should linearly increase as a function
of the radius, so as to compensate for the constant orbital velocity. This mass excess at large
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Figure 1.1 – Rotational velocities as a function of the distance from the nucleus, for seven
galaxies from the New General Catalog. From (Rubin et al., 1978).

radii revealed, under the assumption of Newtonian gravity, that the total mass of the galaxy
is larger than the stellar mass observed to compose it, suggesting evidence for the presence
of an invisible and massive matter component. Observations have also been performed in the
21cm lines of extragalactic hydrogen allowing to probe larger radii and they reached the same
conclusions [see e.g. (Whitehurst and Roberts, 1972)].

It was then shown that dark matter was likely to be distributed in extended haloes surround-
ing galaxies and could account for the virial mass discrepancy in clusters of galaxies mentioned
hereabove (Einasto et al., 1974; Ostriker et al., 1974).

1.2.3 What is Dark Matter?

Since then, the search for the exact nature of the dark matter became a major challenge in
particle and astroparticle physics and cosmology. Several hypotheses were put forward soon after
the observations of flat galactic rotation curves. Although the general trend was to postulate a
new form of matter to account for this effect, M. Milgrom (Milgrom, 1983) suggested instead to
do so in modifying Newton’s laws in a theory of Modified Newtonian Dynamics (MOND), that
he formalised further with J. Beckenstein (Bekenstein and Milgrom, 1984), whose relativistic
generalisation is known as the Tensor-Vector-Scalar gravity (TeVeS) (Bekenstein, 2004).

From the former perspective, the microscopic structure of dark matter and its eventual
interactions with other visible particles needs to be identified. Some proposals in that direction
included already known structures such as baryons or light massive neutrinos later referred to
as “hot dark matter” (Bond et al., 1980; Doroshkevich et al., 1980b; Schramm and Steigman,
1981; Zeldovich et al., 1982; Bond and Szalay, 1983).

However, these simplest hypothesis were rapidly found to be unsatisfactory. Indeed, con-
sidering the critical density of the Universe today being made of purely baryonic matter was
shown to be in conflict with predictions of big bang nucleosynthesis on the deuterium abun-
dance. Such a high baryonic density would have involved a too large fraction of deuterium
to be burned into helium, whereas observations of deuterium abundance rather suggested a
critical density fraction of about 5 percent at the time (Reeves et al., 1973; Gott et al., 1974).
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Constraints from improved estimates of the small-scale anisotropy of the CMB also served to
rule out baryonic matter models (Uson and Wilkinson, 1984). Hot dark matter models were
considered to be flawed as well, as they predict erroneous scenarios for the formation of galaxies
and galaxy clusters in N -body numerical simulations (White et al., 1983). Other possibilities
invoking new types of particles of more speculative origin have also been proposed.

Examples are provided by models of so-called warm dark matter, which exhibit a smaller
free-streaming scale than hot dark matter models and are therefore in better agreement with
clustering scenarios (Dodelson and Widrow, 1994). The microscopic structure of such a compo-
nent was shown to be possibly realised, for instance, by gravitinos in the context of supergravity
(Pagels and Primack, 1982; Bond et al., 1982) or by right-handed sterile neutrinos (Olive and
Turner, 1982). Furthermore, cold dark matter (CDM) candidates have also been extensively
proposed and studied. Notable possibilities are provided by new particles such as axions, mo-
tivated by SM particle physics in that they give a solution of the strong-CP problem of QCD
(Weinberg, 1978; Wilczek, 1978; Ipser and Sikivie, 1983) or more generic weakly interacting
massive particles (WIMPs) (Gary and Michael, 1985) such as photinos or neutralinos in the
context of the minimal supersymmetric extension of the SM (Ellis et al., 1984; Jungman et al.,
1996a). Mixed models of hot plus cold dark matter have also been shown to provide promising
candidates for explaining the observations (Schaefer et al., 1989).

Other hypotheses not requiring the need of new particles to be invoked have also been put
forward, speculating that dark matter could be made of massive astrophysical compact halo
objects (MACHOs) such as primordial black holes (Carr and Hawking, 1974), in particular
detectable through microlensing (Irwin et al., 1989).

From these benchmarks, it progressively became popular to admit that dark matter is more
likely to be described by quite cold, weakly interacting massive particles (Peebles, 1982; Blumen-
thal et al., 1984; Davis et al., 1985) and led to the emergence of the inflationary CDM paradigm,
also called the standard CDM model. In that picture, the Universe is described by an early
phase of cosmic acceleration, where primordial density fluctuations are generated from quantum
fluctuations of internal degrees of freedom. As such, inflationary scenarios predict a flat Universe
with a Gaussian, scale invariant spectrum of adiabatic perturbations later inherited by a CDM
component. Its distribution subsequently seeds perturbations of the baryon, electron, photon
primordial plasma through gravitational interaction. These perturbations manifest themselves
into temperature fluctuations in the CMB released at recombination and, at the same time, in
a hierarchical growth of the presently observed structures. The combination of both CMB and
large scale structure data is therefore complementary for constraining such scenarios.

1.2.4 Structure Formation with Cold Dark Matter

In the 1980s, the statistical properties of the distributions of galaxies and galaxy clus-
ters became a valuable tool to study the formation of large-scale structures (Peebles, 1967;
Doroshkevich, 1970; Peebles, 1973; Kirshner et al., 1979; Klypin and Kopylov, 1983). Techno-
logical developments at that time allowed increasingly large and precise galaxy surveys such as
for example CfA (Tonry and Davis, 1979), APM (Maddox et al., 1990), IRAS (Strauss et al.,
1990) or SRSS (Park et al., 1992) which, in conjuction with increasing numerical computational
power, allowed to robustly constrain cosmological models in making extensive use of N -body
techniques (Doroshkevich et al., 1980a; Efstathiou and Eastwood, 1981; Davis et al., 1982; Davis
and Peebles, 1983; White et al., 1983; Fry and Melott, 1985).

In particular, nonlinear structure formation properties of pure CDM models were studied
and compared with galaxy clustering observations on small and intermediary scales in (Davis
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Figure 1.2 – Two-dimensional projection of the galaxy distribution obtained from the spectro-
scopic redshifs surveys CfA2, 2dF and SDSS (upper left half) and assigned to dark matter
halos from mock catalogues constructed from the Millenium N -body simulation (lower right
half). From (Springel et al., 2006).

et al., 1985). In the latter, the authors compared the two- and three-point correlation functions
of simulated mass distributions with the ones derived from observed galaxies, as well as their
peculiar velocity distribution. They found that the pure CDM model is inconsistent with the
observations, unless one introduces a bias (Kaiser, 1984), converting the distribution of the
overall simulated CDM mass fluctuations into that of the supposedly seen galaxies and bringing
the standard model in agreement with the data at the scales considered [see also (White et al.,
1987a) for a more extended study]. This underlines that the understanding of the large-scale
galaxy bias is essential in large-scale structure formation studies and this remains a major
subject of research interests today [see e.g. (Desjacques et al., 2016) for a review].

Based on the results of (Davis et al., 1985), the same authors extended their simulation
on larger scales using the biasing prescription from (Bardeen et al., 1986), worked out from
statistical studies of Gaussian random fields. They found that, given the same parametrisation,
the model was able to resolve the distribution of structures on scales larger than 10Mpch−1,
providing even stronger support for the flat CDM model, and implying that no large-scale
processes other than the gravitational attraction is required for large-scale structures to form
(White et al., 1987b). Further investigations in the same spirit, but involving maps of the galaxy
distribution out to even larger scales, were later carried out. Observational constraints then
showed strong evidence for an excess of power on these very larger scales (tens of Mpch−1)
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within the data, as compared to that predicted by the standard CDM model (Maddox et al.,
1990; Park et al., 1992; Saunders et al., 1991; Vogeley et al., 1992; Ueda et al., 1993). It has then
been argued that this excess of power could be accommodated by a flat model with a nonzero
(positive) cosmological constant Λ, whose present energy density fraction represents 80 percent
of the total density fraction of the Universe today (Efstathiou et al., 1990). Moreover, this
would also bring the model in agreement with predictions of inflation and make it compatible
with CMB observations made at the time.

The specification of a cosmological model allowing one to translate the amplitude of CMB
temperature fluctuations into that of matter density fluctuations at the present epoch, the mea-
surement of CMB anisotropies from the COBE DMR experiment provided a normalisation for
the present matter power spectrum. As such, in combining CMB and galaxy surveys data,
stronger constraints have been put on the CDM model and further inconsistencies were un-
covered (Efstathiou et al., 1992). In addition, similar constraints were carried out in (Kofman
et al., 1993), which suggested that the addition of the cosmological constant Λ to the CDM
model is consistent with the data, for an amount of present matter density fraction of ∼ 25
percent [see also (Ostriker and Steinhardt, 1995)].

Furthermore, the use of different techniques revealed other tensions in the model as well.
For example, constraints from the abundance of clusters as a function of their mass (Bahcall
and Cen, 1993), the overabundance of baryonic matter in rich galaxy clusters (White et al.,
1993), or the prediction of bounds to the cosmological age of the Universe from determinations
of the age of old globular clusters and stars (Demarque et al., 1991), were all favorable to a
Universe of low matter density, including or not a cosmological constant. Open Universe models
were also shown to provide a good fit to large scale structure data, once the power spectrum
amplitude has been normalised to the COBE value (Kamionkowski and Spergel, 1994), although
evading the “theoretical imperatives” of the inflationary paradigm. So-called mixed dark matter
models, including both a cold and a hot dark matter components, presented attractive structure
formation properties as well [see e.g. (Klypin et al., 1993; Holtzman and Primack, 1993; Schaefer
and Shafi, 1993)] 1. However, methods based on the reconstruction of the mass density field
from the large scale peculiar velocity distribution have also been worked out (Bertschinger et al.,
1990), and were shown to be able to constrain the amplitude of mass fluctuations in the CDM
model, finding further agreement with the value provided by COBE (Seljak and Bertschinger,
1994). Other techniques have also been developed for testing the presence for a cosmological
constant at late times, as for example gravitational lensing of quasars or distant galaxies (Turner,
1990). Local measurements of the Hubble constant at that time were quite poor, as they could
easily vary by a factor of two [see for instance (Fukugita et al., 1993; Sandage and Tammann,
1975)].

In the mid-1990s, there was no clear evidence for privileging a given model over an other.
Although the inflationary CDM model was considered as an elegant and attractive theory,
because of its reduced number of parameters, the aforementioned internal inconsistencies raised
some skepticism about its overall ability for explaining combined sets of refined observations.
At that time, the standard model was therefore rather considered as a base model for developing
observational techniques, or a substrate on top of which one could add further theoretically well-
motivated structures to study, leading to a family of CDM based models (Dodelson et al., 1996;
Liddle and Lyth, 1993). Such structures involving different predictions for various observable

1. From such a structure formation point of view, other phenomena affecting the generation of primordial
fluctuations have also been proposed and shown to potentially leave observables features into the data. Examples
are provided by topological defects such as cosmic strings or textures [see e.g. (Kibble, 1976; Gooding et al.,
1991; Durrer et al., 1994; Shellard, 1995)].
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quantities, they could therefore be readily detected by increasingly diverse experiments, precise
measurements and the refinement of the associated methodology.

1.2.5 Supernovae Ia: Dark Energy for Accelerating Expansion

The strongest evidence against the CDM paradigm came from observations of distant Type
Ia supernovae (SNIa) made in the late 1990s. Two different groups, The High-Z Supernova
Search Team led by A. Riess (Riess et al., 1998) and Supernova Cosmology Project led by
S. Perlmutter (Perlmutter et al., 1999), selected about one hundred distant SNIa in total,
previously observed at redshifts 0.1 ≲ z ≲ 0.8, in order to robustly constrain cosmological
parameters.
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Figure 1.3 – Hubble diagram of the SDSS-II/SNLS3 Joint Light-curve Analysis (JLA) (up-
per panel) and its residuals compared to the corresponding best-fit ΛCDM cosmology. From
(Betoule et al., 2014).

SNIa are the product of thermonuclear explosions of white dwarfs after the accretion of
matter from nearby objects, such as a companion star. They are very bright, that is, detectable
at high redshifts (z ∼ 1) and are therefore of prime interest for late time cosmology. Since their
explosion is closely related to the Chandrasekhar mass, their absolute magnitude distribution
narrowly peaks at a fixed value of the order M ≃ −19.5, and in this sense, they are referred
to as “standard candles”. However, depending on the nature of the accreting material and
on their environment, this magnitude can acquire a quite high dispersion, so they are not
perfectly “standard”. In fact, SNIa are “standardisable” because there is an observed correlation
between their peak brightness, the shape of their light-curve (i.e. the higher the peak the
slower the light curve declines after the peak) and their color, so that their absolute magnitude
can be corrected in using color-brightness and light-curve shape-brightness relations [see e.g.
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(Hillebrandt and Niemeyer, 2000; Goobar and Leibundgut, 2011)], and this makes the absolute
magnitude a nuisance parameter. The knowledge of the apparent magnitude and redshift then
provides a measure of the luminosity distance to the source and is represented as the Hubble
diagram (see for example Fig. 1.3). The luminosity distance being sensitive to the cosmological
parameters, SNIa provide tight constraints from the establishment of a distance ladder (Goobar
and Perlmutter, 1995).

The team of Riess placed constraints on the flat standard CDMmodel and showed that it was
ruled out at 7 to 9 standard deviations given two different methodologies, whereas Perlmutter
et al. found it to be ruled out at 99.7 percent (3σ) confidence level. This is not only implying
that the cosmological constant density fraction is nonzero at present time, but in fact that it
is dominating the energy budget of the Universe at a level of 70 percent. From this, it follows
that the background expansion of our Universe is in fact accelerating, if one assumes the latter
to be flat. This discovery unambiguously appealed for the cosmological constant λ (or Λ in
more modern notations), earlier discarded by Einstein, to be reintroduced into the model for
it to be consistent with observations. Such observations led to the birth of a new paradigm in
cosmology, described by the Lambda-cold dark matter (ΛCDM) model. The energy component
associated to the acceleration of the Universe is called the dark energy.

The idea that the cosmological constant Λ could be replaced by alternative components
explaining cosmic acceleration, as for instance by a “smooth” component [see e.g. (Turner
and White, 1997; Coble et al., 1997)], i.e. a mostly time-varying vacuum energy, such as a
quintessence field (Ratra and Peebles, 1988; Wetterich, 1988; Caldwell et al., 1998; Sahni and
Starobinsky, 2000), was already considered at the time. In that case, the dark energy fluid is
characterised by an equation of state p = wρ, different from the ΛCDM value of w = −1, and
possibly varying in time as well. Constraints on a constant dark energy equation of state have
been shown to be provided by CMB and SNIa observations in (White, 1998), and updated in
(Perlmutter et al., 1999), showing that the consistency of the prediction of ΛCDM given these
data. The accuracy on the cosmological parameters remained however quite restricted at the
time but this situation changed drastically in the following years.

1.3 Precision Cosmology Era

1.3.1 Resolving the CMB Temperature Spectrum

The COBE satellite observed the CMB temperature anisotropies over the whole sky reaching
ℓ = 26 in multipole space, corresponding to an angular resolution of 7 degrees, and was therefore
only able to resolve its angular power spectrum at low multipoles, i.e. at large angular scales (see
Fig. 1.4 for a map of the CMB over the full sky). In that region, the shape of the anisotropies
power spectrum is dominated by the Sachs-Wolf effect (SW) (Sachs and Wolfe, 1967), that is
sensitive to the amplitudes of the linear gravitational potential at decoupling (ordinary SW)
and to their time variation integrated along the line-of-sight from last scattering (integrated
SW, ISW). As the gravitational potential is constant during the matter dominated era (at
least in linear theory), the former contributes at decoupling and basically reflects the initial
conditions provided from early Universe physics, whereas the latter is mostly affected by eventual
dominating energy components other than matter at mid-to-late times, e.g. dark energy or
spatial curvature 2. However, at those scales, the constraining power of CMB measurements is
intrinsically limited by cosmic variance, because one can only naturally access one realisation of
the sky. This is especially important at very low multipoles (ℓ ≲ 10), where the cosmic variance

2. Note that an exotic energy component at early times could also involve an early ISW effet.
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is maximal because of the restricted number of (2ℓ + 1) projected spherical modes labeled by
−ℓ ≤ m ≤ ℓ. This fact considerably reduces the statistical sampling compared to that obtained
on smaller angular scales.

Since COBE, CMB science has undergone fast developments due to increasingly accurate
theoretical predictions, numerical simulations and precise measurements. Indeed, in looking
at higher multipoles, cosmic variance is reduced and the shape of the power spectrum can
be better resolved. Its shape was expected to be more complex at smaller scales, reflecting
dynamical features of the photon, baryons, electron plasma at decoupling (Sachs and Wolfe,
1967; Silk, 1968; Sunyaev and Zeldovich, 1970; Doroshkevich et al., 1978). For example, the

Figure 1.4 – The temperature anisotropies of the Cosmic Microwave Background (CMB) as
observed by Planck (Ade et al., 2014c). Image Credit: ESA, Planck Collaboration (ESA).

photons scattering off electrons and baryons (tied together by electrostatic interaction) in the
plasma through Compton effect, tend to mix cold and hot regions on scales smaller than their
diffusion length. Such an effect exponentially damps the amplitude of temperature anisotropies
below that scale. As the process of recombination is not instantaneous, but took place in a
finite amount of time, the diffusion length of the photon increased as the ionization fraction
(i.e. the ratio of the number of electron to that of hydrogen nuclei) decreased, which implies
that smaller scales undergo more damping than larger ones. This produces a characteristic
damping tail in the power spectrum of CMB temperature anisotropies at high multipoles, whose
cut-off characterises the finite thickness of the surface of last scattering [see e.g. (Hu and
White, 1997a)]. Such a process is referred to as the Silk damping (Silk, 1968). A similar
damping process arises during the period of reionisation, when the first objects started to form
in the early Universe and were able to reionised the neutral hydrogen atoms which recombined
at decoupling. These combined effects result in an exponential suppression ∼ e−2τre of the
temperature power spectrum at scales smaller than the horizon, controlled by the Thomson
optical depth to reionisation τre.

Moreover, at the epoch of radiation-matter equality, CDM density perturbations dominate
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the evolution of the gravitational potential, forming wells which deepen with time. Because of
gravitational instability, the photon-baryon plasma inherits the scale invariant density fluctu-
ations configuration from CDM in falling into potential wells and starting to form overdense
regions. As the plasma is a relativistic gas, its effective pressure counteracts the gravitational
force at a distance given by the sound horizon. Below this scale, the fluctuations of the plasma
oscillate, giving raise to an oscillating pattern of standing sound waves. At the time of recom-
bination, some standing wave modes were therefore at their maximum/minimum (induced by
compression/decompression) while some others were vanishing. Such a phenomenon gives rise
to an imprint of harmonic acoustic oscillations in the temperature anisotropies power spectrum
of the CMB, forming peaks and troughs at characteristic scales. These are typically referred
to as the Baryonic Acoustic Oscillations (BAO) of the CMB (Sunyaev and Zeldovich, 1970),
whose first peak in increasing scales corresponds to the sound horizon size at recombination
(see Fig. 1.5 for an illustration).

A precise theoretical understanding of these features, and, more generally, on the physics
of the CMB, therefore allows one to access precious information about the physics of the early
Universe and its overall expansion history. In turn, such measurements provide powerful con-
straints on the underlying cosmological model (Bond et al., 1994; White et al., 1994). This has
been illustrated by forecast constraints given future CMB experiments at the time, that have
shown that the observation of the CMB temperature spectrum prove to encode information on
a large set cosmological parameters such as the geometry of the Universe, the baryon density,
the Hubble constant, the cosmological constant, the number of light neutrinos, the ionisation
history, and the amplitudes and spectral indices of the primordial scalar and tensor perturba-
tion spectra, and in particular allows to measure some of them to percent precision (Jungman
et al., 1996b,c; Zaldarriaga et al., 1997; Bond et al., 1997; Bond et al., 1998).

From a practical point of view, computing predictions from CMB physics is not an easy task
as it requires to solve simultaneously for the evolution of the various matter components through
their fluid or Blotzmann equations, together with the general relativistic dynamics of spacetime
governed by Einsteins’ equations. However, in the early Universe matter density and metric
fluctuations over the FLRW background are very small and one can compute robust predictions
from the system linearised to first order in perturbation theory [see e.g. (Lifshitz, 1946; Peebles
and Yu, 1970; Ma and Bertschinger, 1995)]. This computation is especially made easier by the
fact that Fourier modes evolve independently at linear level. However, solving for such a linear
system still requires the use of numerical computations. This has led to the development of
the first linear Einstein-Boltzmann solvers, especially made efficient by using the line-of-sight
method in CMBFAST (Seljak and Zaldarriaga, 1996), which sped up the computations by orders
of magnitude.

1.3.2 Flat Universe: Cosmic Variance, Geometrical Degeneracy and Cosmic
Complementarity

Observations with higher resolution have been able to uncover the acoustic structure of
the CMB power spectrum [see e.g. (Scott. et al., 1996; Netterfield et al., 1997; Melchiorri
et al., 2000)]. In particular, the BOOMERanG (de Bernardis et al., 2000), and MAXIMA
(Hanany et al., 2000), balloon-borne experiments measured the CMB with a resolution of ≃ 0.2
degree, over a range of hundreds of multipoles. This allowed them to report a high signal-to-
noise detection of the first acoustic peak in 2000. An accurate detection of the location of the
first peak allows one to put stringent constraints on the so-called acoustic-distance scale ratio
at recombination, the ratio of the comoving sound horizon size at decoupling to the angular
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diameter distance to decoupling. This quantity sensitively depends on variations in the energy
density parameter controlling the amount of total matter, spatial curvature and dark energy.
The latter experiments concluded the Universe to be spatially flat and that the primordial
power spectrum is compatible with a scale invariant one, supporting the inflationary paradigm.
However, their results on the amount of spatial curvature were shown to be unstable under
different prior assumptions (de Bernardis et al., 2000; Lange et al., 2001). This fact indicates
that their inferences were partially dominated by their prior knowledge and, as a consequence,
witnesses a lack of constraining power from the data.

Figure 1.5 – The grey dots show the CMB temperature anisotropies power spectrum measured
by Planck 2013 multipole-by-multipole and blue dots show their average on ∆ℓ ≈ 31 bands.
The red curve in the upper panel is the best-fit base ΛCDM theoretical spectrum fitted to the
Planck likelihood. The lower panel shows the corresponding residuals. The error bars on blue
dots show ±1σ uncertainties, while the green lines shows the ±1σ errors on the individual power
spectrum estimates at high multipoles. From (Ade et al., 2014d).

The reason to this fact is that there is a “geometrical degeneracy” into the temperature
anisotropy power spectrum of the CMB, implying that simultaneous changes of the total matter,
curvature and dark energy density fractions, can lead to the same angular power spectra, and
in particular to the same acoustic scale. This practically works up to different late time ISW
contributions affecting low multipoles, that are however poorly detectable as this region is
dominated by cosmic variance (Hu et al., 1997; Bond et al., 1997; Efstathiou and Bond, 1999).
The way for getting rid of this degeneracy is to use CMB temperature-independent data such
as from the observations of SNIa or galaxy surveys [see e.g. (Bond et al., 2000; Jaffe et al.,
2001)], in a complementary perspective (Tegmark et al., 1998; Eisenstein et al., 1998, 1999)
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(see Fig. 1.6 for an illustration). Galaxy weak lensing and CMB weak lensing surveys also
provide complementary constraints on the FLRW background-related cosmological parameters,
in particular because they measure the total mass distribution and do not depend of the dark
matter-to-galaxy biais (Hu and Tegmark, 1999; Hu, 2002).
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Figure 1.6 – Cosmic complementarity in the ΩΛ–ΩM plane between CMB, SNIa and BAO
observations. From (Kowalski et al., 2008).

1.3.3 CMB Polarisation

Other degeneracies were also observed to be present in the CMB temperature spectrum.
Most notably, at large scales, it was shown that the different ISW contributions resulting from
a change of cosmological parameters intervening into the geometrical degeneracy, in particular
the dark energy density fraction, can be compensated with the adjustment of the primordial
tensor-to-scalar amplitudes ratio, the scalar spectral index and the optical depth to reionisation
(Zaldarriaga et al., 1997). At small scales, a variation of the optical depth can be compensated
by a change in the primordial scalar amplitude As, so as to preserve the damping tail of the
CMB temperature power spectrum, that only efficiently constrains the combination As e

−2τre .
In that case, it is the measurement of CMB polarisation auto- and temperature-polarisation

cross-spectra that provide complementary constraints to the temperature spectrum. For in-
stance, earlier reionisation increases the amplitude of polarisation, creating a bump at large
scales, while decreases its amplitude at small scales (Zaldarriaga, 1997). This provides con-
straints on τre which consequently partially reverberates on the background cosmological pa-
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rameters. The first detection of CMB polarisation was reported by the Degree Angular Scale
Interferometer (DASI ) in 2002 (Kovac et al., 2002), and was found to be in agreement with
prediction of the standard ΛCDM model. From a technical point of view, CMB polarisation was
shown to be conveniently decomposed into E- and B-mode contributions for both theoretical
and observational purposes (Kamionkowski et al., 1997a; Hu and White, 1997c). In particu-
lar, B-modes cannot be generated from scalar perturbations and therefore provide information
on primordial gravitational waves and vorticity (Seljak and Zaldarriaga, 1997; Kamionkowski
et al., 1997b; Zaldarriaga and Seljak, 1997; Hu and White, 1997b), given that one gets system-
atic errors induced by foregrounds, e.g. polarised dust and synchrotron emission, under control.
As such, a complete statistical characterisation of CMB anisotropies requires four correlation
functions, the temperature, E- and B-modes auto-correlations and the temperature-E mode
cross-correlation, as cross-correlations including B-modes vanish for parity reasons.

Inflationary theories also find constraints through the measurement of the B-modes auto-
correlations, as different theories predict different gravitational wave primordial spectra (Turner
et al., 1993; Lyth, 1997), although the detection of such effects require a good understanding
of the gravitational lensing of CMB polarisation, as it can convert E-modes into B-modes
(Zaldarriaga and Seljak, 1998). The importance of such an understanding is also supported by
the fact that CMB lensing gives raise to non-gaussianities into the temperature and polarisation
spectra (Bernardeau, 1998; Zaldarriaga and Seljak, 1999; Okamoto and Hu, 2003), while typical
inflationary models generate primordial fluctuations with a Gaussian spectrum [see e.g. (Gangui
et al., 1994; Acquaviva et al., 2003)]. In particular, being able to isolate the non-gaussianities
induced by lensing provides a way to test simplest inflationary theories (Komatsu and Spergel,
2001), such as single field models which are characterised by consistency relations relating the
three-point correlation function in the squeezed-limit to the spectral tilt of the spectrum of the
two-point function (Maldacena, 2003).

1.3.4 WMAP for Six Cosmological Parameters

In 2003, the Wilkinson Microwave Anisotropy Probe (WMAP) space mission (Bennett et al.,
2003), provided full sky maps of the CMB allowing a very precise determination of the tem-
perature anisotropies spectrum. In turn, these applied unprecedented tight constraints on
the cosmological parameters of the standard inflationary ΛCDM model (Spergel et al., 2003),
which allowed to shape its overall structure much more precisely. Indeed, WMAP also detected
the temperature-polarisation cross-correlation (Kogut et al., 2003), that showed evidence for
reionisation at redshift zre ≃ 20, in accordance with bounds from the observation of the Gunn-
Peterson trough in the absorption line of distant quasars (Becker et al., 2001). The ΛCDM
model was therefore supplemented with an extra parameter, the optical depth to reionisation
τre, and shown to describe well WMAP observations with only six cosmological parameters
(Spergel et al., 2003),

θbase = (ωb, ωcdm, H0, As, ns, τre) ,

where the ωb, ωcdm, are the physical energy densities of baryons and CDM, respectively, H0 is
the Hubble parameter, As is the amplitude and ns the tilt of the power spectrum for primordial
scalar fluctuations. Constraining the above parameter space, but also extensions of it, was
made possible by the use of the efficient linear Einstein-Boltzmann code CMBFAST (Seljak
and Zaldarriaga, 1996), allowing to compute robust predictions from the model, together with a
Monte Carlo Markov Chain (MCMC) algorithm described in (Verde et al., 2003), for performing
Bayesian cosmological parameter inference. The consideration of additional external constraints
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from various astronomical data such as local measurements of H0, weak lensing, galaxy velocity
fields and number counts of clusters also found agreement with the WMAP -ΛCDM predictions
[see (Spergel et al., 2003) for details]. In particular, joint likelihood analyses including data from
smaller angular scale CMB experiments, distant SNIa, local measurements of H0 and large scale
structure where shown to be able to constrain the geometry of the Universe, the running of the
scalar spectral index as well as the nature of the dark energy. They found a striking consistency
for a flat Universe, whose late time cosmic acceleration is modelled by a cosmological constant
Λ, and whose primordial fluctuations are encoded in a nearly scale invariant Gaussian power
spectrum as those provided by inflationary scenarios. Further constraints from combined Sloan
Digital Sky Survey (SDSS ) spectroscopic galaxy redshift survey and WMAP were also carried
out and were shown to provide the very same conclusions (Tegmark et al., 2004a,b).

The increasingly precise measurement of cosmological probes such as the CMB by WMAP
or the galaxy distribution by SDSS made modern cosmology enter into its precision era, as
these were able to place constraints on a handful of cosmological parameters at the level of a
few percents.

1.3.5 Baryon Acoustic Oscillations in Galaxy Surveys

An additional very relevant probe complementary to CMB observations, in particular for
dark energy physics, is the measurement of the BAO peaks in the power spectrum of the
late time galaxy distribution. The distribution of galaxies in the sky inherits the imprint of
acoustic oscillations of the primoridial plasma. This is realised by the decoupling of the baryons
from the photons some time after recombination, at the end of the so-called drag epoch. The
baryon drag leads to alternating height of the peaks amplitude of the CMB (see Fig. 1.5), and
translates the acoustic oscillations of the primordial plasma into an acoustic feature in the baryon
distribution. Together with cold dark matter, such a distribution seeds the growth of structures
and leads to a Baryon Acoustic Peak into the real space two-point correlation function of the
late time galaxy distribution, and manifests itself in BAO peaks in the corresponding power
spectrum (Peebles and Yu, 1970; Bond and Efstathiou, 1984; Hu and Sugiyama, 1996; Eisenstein
and Hu, 1998). The possibility of observing such feature in the distribution of high redshift
quasars has also been evoked earlier (Shanks et al., 1987) [see (Bassett and Hlozek, 2009) for
a review]. Although largely resulting from linear structure formation physics, the observation
of this feature is however quite delicate in practice, as it is affected by Silk damping (Silk,
1968), redshift-space distortions induced by peculiar velocities (Kaiser, 1987; Hamilton, 1997),
a possibly scale-depent biais and other mild nonlinear effects induced by structure formation
(Meiksin and White, 1999), that alter the broadening of the peak structure, therefore making
it more difficult to detect.

The first detection of the BAO peak was reported by the spectroscopic SDSS in 2005 (Eisen-
stein et al., 2005), at an effective redshift z = 0.35. The physical scale of the oscillations is
determined by the baryon and CDM densities and its measurement allows to access a typical
acoustic-distance scale ratio, similar to the one provided by the CMB. As such, the observa-
tion of the BAO peaks provides a standard ruler once it is calibrated on CMB measurements
(Eisenstein et al., 1998; Eisenstein, 2003), or on local measurements from SNIa (Cuesta et al.,
2015; Cuesta et al., 2015). The decomposition of the BAO feature in the directions transverse
and longitudinal to the line-of-sight allows the separate measurements of the angular diameter
distance and expansion rate (Hubble parameter) respectively, rendered dimensionless by the
comoving sound horizon at the epoch of baryon drag. Such a decomposition therefore allows to
place useful constraints on the expansion history of the Universe, and therefore on its geometry
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and on the nature of the dark energy. In particular, the inferred quantities provide a so-called
Alcock-Paczynski test (Alcock and Paczynski, 1979) for the quantity DA(z)H(z), which gives
precious information about the geometrical structure of the Universe at the redshift of obser-
vation, independently of assumptions on the prior evolution. Moreover, observing the BAO
features in the distribution of galaxies and distant quasars at several redshifts allows for the
construction of a distance ladder which probes the expansion history of the Universe over an
extended redshift range.

Several works have considered such measurements for constraining the nature of the dark
energy through simple equation of state parametrisations (Blake and Glazebrook, 2003; Hu
and Haiman, 2003; Seo and Eisenstein, 2003; Matsubara, 2004), but also modelled as a perfect
fluid or a scalar field (Amendola et al., 2005), and other alternative scenarios such as decaying
photons (Bassett, 2004; Bassett and Kunz, 2004).

1.3.6 Growth of Structures and Weak Lensing

Redshift-Space Distortions

The observation of the distribution of galaxies in the sky in particular allows one to access
their redshift and their position on the celestial sphere. Converting these notions into real space
needs the input of a background geometry, and therefore of a cosmological model. Moreover,
the position of the galaxies in redshift-space is also influenced by their peculiar velocities with
respect to the Hubble flow. As such, the peculiar motion of galaxies induces redshift-space
distortions (RSD) (Jackson, 1972; Kaiser, 1987) [see e.g. (Strauss and Willick, 1995; Hamilton,
1997; Percival et al., 2011) for reviews], that can be used as a tool to probe the growth of
structures. Because redhift-space distortions are only induced in the direction longitudinal to
the line-of-sight, they induce an anisotropic clustering pattern which can be used to determine a
combination of the amplitude of growth and the linear biais between the galaxy and dark mat-
ter distribution [see e.g. (Tadros et al., 1999; Percival and White, 2009)]. To our knowledge,
the first high-significance measurements of these features that were shown to provide robust
cosmological constraints have been reported in 2001 by the Two-Degree-Field Galaxy Redshift
Survey (2dFGRS ) (Hatton and Cole, 1999; Peacock et al., 2001). As these distortions are corre-
lated with the Alcock-Paczynski effect, their consideration and associated controlled treatment
is unavoidable for a reliable measurement of the BAO feature. Ultimately, these measurements
constrain the linear growth of structure described by the underlying theory of gravity, and can
for instance be used to discriminate a modification in the response of the gravitational potential
to matter described by the theory, or deviations in its expansion history (Ballinger et al., 1996).

In particular, the standard ΛCDM model gives raise to consistency relationships between
expansion rate and growth, that can be used to test eventual modifications of gravity (Ishak
et al., 2006; Guzzo et al., 2008; Song and Koyama, 2009). Structure formation data were
therefore extensively used for constraining modified gravity models possessing self-accelerating
solutions. Examples are provided by studies in the framework of the DGP braneworld (Koyama
and Maartens, 2006; Ishak et al., 2006; Kunz and Sapone, 2007; Song and Percival, 2009) (see
Sec. 2.4 for more details on the model), or in theories involving an arbitrary function of the
Ricci curvature scalar f(R), for modifying the Einstein-Hilbert action (Song et al., 2007) [see
also (Carroll et al., 2004, 2005), where this class of models was originally proposed].
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Weak Lensing

Galaxies. The light emitted by point source galaxies travel to the observer under the grav-
itational influence of the stacked inhomogeneous total matter distribution along the photon
path. This gives raise to small distortions (shear) and magnification (convergence) effects in
the shapes of the observed galaxies, and provides a powerful method for evaluating the pro-
jected mass distribution when analysed statistically. This phenomenon is referred to as weak
gravitational lensing or cosmic shear (Gunn, 1967) [see e.g. (Bartelmann and Schneider, 2001;
Munshi et al., 2008; Kilbinger, 2015) for reviews]. The first precise cosmic shear measurements
of the Canada-France-Hawaii Telescope (CFHTLens), were shown to provide useful constraints
on the cosmological parameters of the ΛCDM model, and on its possible deviations with from
the point of view of the nature of the dark energy it describes (Hoekstra et al., 2006; Semboloni
et al., 2006). The cosmic shear is only sensitive to the total mass distribution in the Universe
and therefore does not need the modellisation of the bias between the galaxy and CDM dis-
tributions. Consequently, weak lensing surveys provide complementary constraints to the ones
of BAO and RSD observations and, in turn, proves to be of particular relevance for testing
deviations from Einstein gravity [see e.g. (Yoo, 2009; Song et al., 2011)].

In particular, at the time, weak lensing constraints on modified gravity models were con-
sidered in the framework of the DGP model (Knox et al., 2006), and together with f(R) and
TeVeS theories in (Schmidt, 2008).
They were also used in more phenomenological approaches using specific parametrisations for
appreciating the deviations to GR at the level of linear perturbations, conveniently constrained
using combined weak lensing and growth data (Hu and Tegmark, 1999; Sealfon et al., 2005;
Caldwell et al., 2007; Hu and Sawicki, 2007; Huterer and Linder, 2007; Zhang et al., 2007;
Amendola et al., 2008b; Sapone and Kunz, 2009).

CMB. The effects of weak lensing on the CMB have also been shown to be non-negligible
(Blanchard and Schneider, 1987; Cole and Efstathiou, 1989; Linder, 1990; Seljak, 1996) [see
e.g. (Lewis and Challinor, 2006) for a review], as they smooth-out the acoustic oscillations
in the temperature, polarisation spectra and temperature-polarisation cross-spectra by several
percents. Moreover, weak lensing convert E-modes into B-modes, which introduces a degeneracy
with those generated from primordial GWs. However, it also generates a small-scale non-
Gaussian trispectrum that can be utilised for breaking cosmological parameter degeneracies
present into CMB primary anisotropies, such as the geometric degeneracy and the one present
in the damping tail of the CMB between the amplitude of primordial fluctuations and the
optical depth to reionsiation. It therefore provides further information about late time structure
formation physics, where the manifestation of dark energy becomes important.

1.3.7 Other Probes Relevant for Dark Energy

Here above, we briefly outlined various observations proving to be relevant in understanding
the cosmic expansion history, and in particular dark energy, as these will be used in the following
study. We refer the reader to (Weinberg et al., 2013) for a far more exhaustive account. Of
course, the physics of various other phenomena are relevant as well for understanding the dark
energy more precisely and we provide a selected list of them here.

As already discussed above, the emergence of dark energy at late time causes the gravi-
tational potential, which is constant to a good approximation during the matter era, to vary
in time. This induces a late time ISW effect which affects the large-scale power of CMB
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temperature and polarisation anisotropies (Kofman and Starobinskii, 1985). Although such
effect is difficult to detect, because it takes place in regions dominated by cosmic variance, the
cross-correlation between CMB and large-scale galaxy surveys (Crittenden, 1996; Boughn et al.,
1998), was proven to give significant information on this effect, and therefore on the dark energy
dominating at late time (Peiris and Spergel, 2000; Cabre et al., 2006; Giannantonio et al., 2008).

Observations of the X-rays emitted from intracluster gas provide estimations of the red-
shift dependence of the underlying baryonic mass fraction, which is sensitive to the angular
diameter distance to the cluster assumed in the modellisation. These can therefore provide a
distance-redshift relation for inferring cosmological parameters (Sasaki, 1996; Pen, 1997). Such
observations from the Chandra space telescope, observing faint X-ray emitting sources, has
been shown to be able to place constrains on base cosmological parameters, as well as on the
equation of state of dark energy (Allen et al., 2002, 2004; Allen et al., 2008).
Such observations also allow to access the cluster abundance as a function of redshift, which is
also probed thought the thermal Sunyaev-Zeldovich (SZ) effect (Sunyaev and Zeldovich, 1972),
induced by the CMB photons being heated up in propagating through the hot intracluster gas.
Both of these observations provide complementary constraints, especially useful for constraining
dark energy related cosmological parameters (Haiman et al., 2000; Grego et al., 2001; Verde
et al., 2002; Komatsu and Seljak, 2002; Majumdar and Mohr, 2004), although affected by the
ignorance of an hydrostatic bias (Komatsu and Seljak, 2001).

1.3.8 The Standard (dark) ΛCDM Model: Current Status

Over the years, the aforementioned features were uncovered with increasingly exquisite
precision from cosmological observations, placing powerful and robust constraints on the six-
dimensional parameter space of the standard ΛCDM model (1.1), and various extensions of
it.

Linear Einstein-Boltzmann Solvers. Such a task was especially rendered possible by the
development of more and more accurate linear Einstein-Boltzmann solvers through the years
such as CMBEASY (Doran, 2005), or CAMB (Lewis et al., 2000), and more recently CLASS
(Blas et al., 2011). The two last ones are frequently updated and define nowadays standard for
linear cosmological solvers. Once interfaced with MCMC codes such as COSMOMC (Hu et al.,
2015) or MONTEPYTHON (Audren et al., 2013), these allow one to place accurate constraints
on the parameter space of the considered cosmological model.

Cosmic Microwave Background. Most notably, the WMAP CMB experiments provided
refined analyses over a nine-year period (Spergel et al., 2007; Komatsu et al., 2009; Komatsu
et al., 2011; Hinshaw et al., 2013), which were complemented with small scales ground-based
CMB experiments such as the Atacama Cosmology Telescope (ACT ) (Sievers et al., 2013),
which reported the first CMB lensing detection through measurement of the CMB temperature
trispectrum in 2011 (Das et al., 2011), and the South Pole Telescope (SPT ) (Reichardt et al.,
2012), that also provided CMB lensing data (van Engelen et al., 2012).

These were closely followed by the results of the ESA Planck spatial mission whose satellite
was launched in 2009, and allowed to release accurate CMB measurements, in particular of
the temperature, trispectrum-extracted lensing spectra and catalogue of SZ sources from the
“nominal mission” in 2013 (Ade et al., 2014c), and was already shown to provide tight con-
straints on the extended ΛCDM parameter space (Ade et al., 2014d). In 2015, Planck released
the “full mission” low-ℓ temperature and polarisation (cross-) spectra, the “cross-half-mission”
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high-ℓ spectra, as well as an update of its lensing spectrum and SZ cluster counts catalogue
(Adam et al., 2016), allowing to reach the most accurate percent-level precision measurements
of cosmological parameters of the base ΛCDM model (Ade et al., 2015d). A refined analysis
of Planck polarisation data has been provided in (Aghanim et al., 2016b), while the final full-
mission Planck measurements were recently presented in (Aghanim et al., 2018). Moreover, a
pre-Planck CMB analysis including updated WMAP and ACT/SPT data were performed in
(Calabrese et al., 2013, 2017).

Finally, the ground-based CMB observatories POLARBEAR (Ade et al., 2017) and the
Background Imaging of Cosmic Extragalactic Polarization (BICEP), together with the Keck
Array (Takahashi et al., 2010), have been conceived for specifically focusing on B-modes po-
larisation measurements. At the end of 2013, the BICEP2/Keck collaboration reported a large
excess of B-modes in the multipole range where the signal from inflationary GWs is expected
to peak (Ade et al., 2014b). However, further investigations based on a joint analysis of their
results with the ones from Planck, showed that this peak was largely induced by foreground
dust emission, and that the data displayed no statistical evidence for inflationary gravitational
waves (Ade et al., 2015a). A more recent reanalysis of these data in (Gott and Colley, 2017),
has equivalently shown no statistical evidence for B-modes generated from inflationary GWs.

Overall, these CMB observations were shown to be well described by the six-parameter base
ΛCDM model, being consistent within each surveys and when these are joined together. An
exception is however given in the case of the Planck 2015 results, where their primary CMB
constraints where shown to be in tension with the Planck SZ cluster counts (Ade et al., 2015d,
2016), although this is still subject to debate because of a major uncertainty in the overall mass
calibration typically controlled by an unknown hydrostatic mass bias parameter [see e.g. (Hurier
and Lacasa, 2017; Salvati et al., 2017; Bolliet et al., 2017) for a recent account].

Distant SNIa. Others observations were also developed beside those of CMB. In particular,
distant SNIa have been extensively observed by various scientific programs. For example, at
high redshift (up to z ∼ 1) by the Supernova Legacy Survey (SNLS ) (Astier et al., 2006) and
by the ESSENCE survey (Wood-Vasey et al., 2007) which, together with distant SNIa observed
by the Hubble Telescope (Knop et al., 2003) [see also (Suzuki et al., 2012)], were gathered into
the Union compilation (Kowalski et al., 2008), later updated in the Union2 compilation in
(Amanullah et al., 2010), or by the pan-STARRS project (Rest et al., 2014) or the ore recent
Pantheon sample (Scolnic et al., 2017). Intermediate redshift SNIa (0.05 ≲ z ≲ 0.4) were ob-
served by the SDSS-II supernova survey (Holtzman et al., 2008), which were later joined to the
SNLS sample to form the SNLS/SDSS Joint Lightcurve Analysis (JLA) (Betoule et al., 2014).
Low-redshift SNIa measurements (z < 0.1) have been performed by the Harvard-Smithsonian
Center for Astrophysics (CfA) surveys (Hicken et al., 2009), the Carnegie supernova project
(Contreras et al., 2010), the Lick Observatory Supernova Search (Ganeshalingam et al., 2013)
or the Nearby Supernova Factory (Aldering et al., 2002) [see also (Betoule et al., 2014) for more
references]. These provide over a thousand of distant SNIa measured to high accuracy, which
can consequently be used to set constraints on the expansion history of the Universe. Here also,
no significant deviations from ΛCDM were found up-to-date.

Baryon Acoustic Oscillations and Growth Rate. Detections of the BAO feature in the
real-space correlation function or the Fourier-space power spectrum have also been reported.
Examples are provided by the isotropic constraints provided by the 6dF galaxy survey at zeff =
0.106 (Beutler et al., 2011), SDSS main-galaxy sample DR7 at zeff = 0.15 (Ross et al., 2015)
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and or the Baryon Oscillation Spectroscopic Survey BOSS LOWZ at zeff = 0.32 (Anderson
et al., 2014), and anisotropic constraints from BOSS CMASS at zeff = 0.57 (Anderson et al.,
2014). These were in particular joined with CMB observations such as those of Planck in (Ade
et al., 2015d), and were shown to drastically improve CMB the constraints, in that they serve to
break the geometrical degeneracy present into the acoustic structure of the CMB. In particular,
they impose tight constraint on the geometry of the Universe and show high consistency with a
flat Universe. BAO measurements such as those of the PAU survey (Benitez et al., 2009), also
prove to be useful for such a purpose.

In conjunction to these BAO measurements, RSD data have also been collected. A selected
sample of them is given for instance by 6dF galaxy-redshift survey (Beutler et al., 2012), the
SDSS Luminous Red Galaxies (LRG) (Oka et al., 2014), SDSS MGS (Howlett et al., 2014),
BOSS LOWZ (Chuang et al., 2016), BOSS CMASS (Samushia et al., 2014; Alam et al., 2016),
WiggleZ (Blake et al., 2012) and VIPERS (de la Torre et al., 2013), and have been proven to
be consistent with Planck 2015 data as well (Ade et al., 2015d,e).

Galaxy clustering and weak lensing data from the Dark Energy Survey Year 1 (Abbott
et al., 2017j), were also recently released and found consistency with the Planck 2015 ΛCDM
predictions.

Cosmic Shear. Non-CMB data also arise from cosmic shear surveys such as CFHTLenS
(Heymans et al., 2012) or the Kilo-Degree Survey KiDS-450 (Kuijken et al., 2015), which have
in particular shown a preference for lower growth of structure as compared to the one inferred
from Planck 2015 CMB data given the ΛCDM model. However, systematic issues first need to
be addressed, and have recently been pointed out into (Troxel et al., 2018), where it was found
that taking into account the survey boundary and masks effects into the shape noise term of
the cosmic shear analytic covariance matrix, improves agreement between the KiDS-450 cosmic
shear constraints and the results of Planck.

Local Measurements of H0. Another crucial ingredient for constraining the cosmological
model is provided by the direct measurements of the present Hubble constant H0. Indeed, eval-
uating H0 independently from other experiments as CMB, BAO or SNIa surveys, allows one to
break associated degeneracies present in extensions of it, and can lead to a better determination
of the nature of the dark energy, or of the neutrino mass for instance. When applied to Planck
CMB data alone in the case of the base ΛCDM model, these measurements can be used for
testing the consistency of the model.

Local H0 measurements relies on the observation of well-understood objects in the sky, such
as stars known as Cepheid variables or maser galaxies, allowing one to access reliable distance
indicators (Freedman and Feng, 1999) [see also (Jackson, 2007; Freedman and Madore, 2010) for
reviews]. Such measurements have in particular been performed by the Hubble Space Telescope
(HST ) Key Project, which have led to a final estimate of H0 = 72±8 km s−1Mpc−1 (Freedman
et al., 2001). Since then, multiple programs are aiming to measure H0, as for instance the
Supernova and H0 for the Equation of State (SH0ES ) (Riess et al., 2009) or the Megamaser
Cosmology Project (MCP) (Reid et al., 2013).

Various data analysis from local measurements have provided different constraints on H0,
as for instance the new and extended analysis of the HST data of (Riess et al., 2011) led to
H0 = 73.8±2.4 km s−1Mpc−1 or H0 = 73.0±2.4 km s−1Mpc−1, after recalibration to NGC 4258
(Humphreys et al., 2013), while (Freedman et al., 2012) setsH0 = 74.3±2.1 km s−1Mpc−1. More
recently, the analysis of (Efstathiou, 2014), sets H0 = 70.6 ± 3.3 km s−1Mpc−1 (note that this
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Figure 1.7 – From top to bottom: H0 values measured from the H0LiCOW collaboration
(Bonvin et al., 2017), inferred from WMAP (Hinshaw et al., 2013), from the “baseline analysis”
of the data from (Riess et al., 2016) (R16) in (Cardona et al., 2017), from the actual value of
(Riess et al., 2016), from the indirect measurement of Planck 2015 (Ade et al., 2015d) and from
the updated Planck data of (Aghanim et al., 2016b). Image courtesy of (Cardona et al., 2017).

value becomes H0 = 72.5± 2.5 km s−1Mpc−1 if other assumptions are made into the analysis),
whereas the work of (Riess et al., 2018), sets a higher value of 73.48±1.66 km s−1Mpc−1 [see also
Refs. (Humphreys et al., 2013; Riess et al., 2016)]. Furthermore, a determination of H0 based
on the re-analysis of the data used in (Riess et al., 2016), through Bayesian hyper-parameters
has been performed in (Cardona et al., 2017), that found H0 = 73.75 ± 2.11 km s−1Mpc−1.
Measurements from other methods such as gravitational lensing time delay were also carried out
by the H0LiCOW collaboration (Bonvin et al., 2017) and provide H0 = 71.9+2.4

−3.0 km s−1Mpc−1.
Intriguingly, the Planck 2015 CMB results infer H0 = 67.51 ± 0.64 km s−1Mpc−1 (Ade

et al., 2015d), given the joined temperature, polarisation and lensing spectra, a value which
is even further decreased to H0 = 66.93 ± 0.62 km s−1Mpc−1, in the more recent analysis of
(Aghanim et al., 2016b), updating the polarisation data but excluding lensing data from the
constraint. The latter inferred measurement displays a tension with the value found by (Riess
et al., 2018) at 3.7σ, while is in tension at 3.1σ with the result of (Cardona et al., 2017) (see
Fig. 1.7 for an illustration). The final full-mission Planck analysis (Aghanim et al., 2018)
finds H0 = 67.36 ± 0.54 km s−1Mpc−1, with a discrepancy at a level of 3.6σ with respect to
the value of (Riess et al., 2018). Furthermore, large scale surveys also prove to be decisive
with respect to such a determination. In particular, the recent BOSS DR12 analysis provides
H0 = 67.6±0.5 km s−1Mpc−1, when combined with Planck (Alam et al., 2016), and DES yields
H0 = 67.2+1.2

−1.0 km s−1Mpc−1, in combination with other BAO experiments but independently
from CMB measurements (Abbott et al., 2017j). These also display tension with current local
determinations of H0. This discrepancy is still subject to current debate, as it could be an
indicator of unresolved systematics as well as of new physics [see e.g. (Amendola et al., 2013;
Bernal et al., 2016)], especially favorable for phantom dynamical dark energy as we will illustrate
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later.

Future Galaxy Redshift Surveys and S4 CMB Experiments. Constraints from future
ground-based surveys such as the Square Kilometre Array (SKA) (Dewdney et al., 2009; Yahya
et al., 2015), the The Large Synoptic Survey Telescope (LSST ) (LSST Science Collaboration
et al., 2009), or the Dark Energy Spectroscopic Instrument (DESI ) (Levi et al., 2013; DESI
Collaboration et al., 2016a,b), but also from the space-based mission Euclid (Amendola et al.,
2013), also prove to be of particular relevance. These missions will be able to observe tomo-
graphic galaxy clustering, cosmic shear and clusters counts which form complementary probes
for collecting useful cosmological information, in particular on the expansion and structure for-
mation history of the Universe. So-called ground-based CMB Stage 4 (S4 ) experiments will
also be deployed in the near future and will provide cosmological constraints from several probes
such as CMB temperature and polarisation spectra, CMB lensing, SZ cluster number counts
and other anisotropies (Abazajian et al., 2016).

1.3.9 The Importance of Future Gravitational Wave Experiments

A cosmological probe of a completely different nature than those discussed above, which has
become very important recently, is provided by the measurement of GWs from compact binary
mergers, or from the stochastic GW background in the Universe. Indeed, surveys probing the
CMB, galaxy surveys, distant or close-by SNIa only allow to access cosmological or gravitational
information through the detection of photons, i.e. light. Recently, the fantastic observations
of the GWs from binary compact objects such as black-hole mergers by the LIGO/Virgo col-
laboration (Abbott et al., 2016a,b, 2017a,b,c), as well as from the binary neutron star merger
GW170817 (Abbott et al., 2017i), together with its associated γ-ray burst (Goldstein et al., 2017;
Savchenko et al., 2017; Abbott et al., 2017g), and the further studies of this electromagnetic
counterpart (Abbott et al., 2017f), have opened the way for multi-messenger gravitational-wave
astrophysics and cosmology. In particular, the latter measurement has allowed to put stringent
constraints on the propagation speed of GWs, whose relative deviation from the speed of light
is found to be of the order of 10−15 (Abbott et al., 2017g). In turn, such a constraint has
significantly reduced the number of viable modified gravity theories (Creminelli and Vernizzi,
2017; Sakstein and Jain, 2017; Ezquiaga and Zumalacárregui, 2017; Baker et al., 2017). More-
over, as we will discuss in more details in Chapter 6, these experiments already allow one to
extract information about the expansion history of the Universe. A reason for this is because
binary mergers are standard sirens (Schutz, 1986, 2001; Holz and Hughes, 2005), which is the
GW analogue of standard candles such as SNIa. Nowadays cosmological constraints still remain
quite poor, as the number of detected objects and associated redshift range are quite restricted.
However, with the appearance of next-generation ground-based GWs interferometers such as
the Einstein Telescope (ET ) (Sathyaprakash et al., 2012), the Cosmic Explorer (Abbott et al.,
2017e), or the space-based Laser Interferometer Space Antenna (LISA) (Audley et al., 2017),
which is expected to be launched in 2034, cosmological prospects appear much more optimistic.
As we will see in Chapter 6, this not only allows to probe the expansion history of the Universe,
but also potential features in the propagation of the GWs.

1.4 What is the Cause of Cosmic Acceleration?

As outlined above, until now, modelling the observed late time cosmic acceleration by a
cosmological constant in Einstein’s equations explains numbers of complementary cosmological
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observations, without any well-established discrepancy. A straightforward conclusion to this
fact could be that Λ is a new fundamental constant of nature, on the same footing than the
Planck mass Mp, the Planck constant ℏ, the speed of light c, the elementary charge e, the
electric vacuum permeability µ0, etc. However, it is believed that this is not the case, as is
suggested by several theoretical objections.

1.4.1 The Cosmological Constant Problem(s)

When viewed on the right hand side of Einstein’s equations,

Gµν = 8πGTµν − gµνΛ , (1.1)

the cosmological constant can be interpreted as the energy density of vacuum Tµν = 0, such as
T vac
µν ≡ −Λ/(8πG)gµν , so that ρΛ = Λ/(8πG). In a quantum field theory on Minkowski space,

e.g. for a massive scalar field, the “bare” vacuum energy density λ can be implemented as,

S[ϕ] =

∫
d4x

[
1

2
ϕ
(
□−m2

)
ϕ− λ

]
. (1.2)

Once quantised, vacuum fluctuations of the free field correct the bare vacuum energy density
as [see e.g. (Maggiore, 2005)],

λcorr =
1

2

∫
d3p

(2π)3
Ep⃗ , (1.3)

where Ep⃗ ≡ (p⃗2 + m2)1/2, which, once regularised by a ultraviolet cutoff λcut, diverges as
∼ λ4cut, for large momenta. Such a correction arises from every single field of the SM, where the
contributions from bosonic fields have the opposite sign than the ones from fermionic fields. On
energy scales where the quantum theory of the SM has proven to agree well with observations,

such as at the (conservative) electroweak scale MEW ∼ G
−1/2
F ≃ 1011 eV, where GF is the

Fermi constant, this amounts to a correction of the order λcorr ≃ 1044 eV4, to the bare vacuum
energy density λ. On the other hand, the vacuum energy density inferred from gravitational
considerations, i.e. cosmological observations, is found to be of the order of ρΛ ≃ 10−11 eV4.
This means that, if one promotes the vacuum energy density generated by quantum fields to the
vacuum energy density of the semi-classical gravitational theory (where gravity can supposedly
still be treated classically), i.e. for the renormalised values λren ≡ ρrenΛ , this amounts to fudge
the bare vacuum energy λ to a number of digits of the order of 55, for reproducing the observed
value of ρΛ. From an effective field theory point of view, this a fine-tuning problem, underlying
the fact that the cosmological constant Λ is not natural under quantum corrections, in the sense
of (’t Hooft, 1980). This is the essence of the cosmological constant problem [see e.g. (Weinberg,
1989, 2000; Padmanabhan, 2003; Peebles and Ratra, 2003; Carroll, 2003; Antoniadis et al., 2007;
Bianchi and Rovelli, 2010)].

This problem is well-defined in the case where one believes that the vacuum energy induced
by quantum fields on Minkowski space can readily be transported to cosmological scales with-
out hindrance. However, such a consideration implies that the vacuum energy associated to λ
gravitates, and in turn that the flat space solution for the metric gµν = ηµν , is not the solu-
tion of interest any more but, in an idealised situation, would rather be of the de Sitter (or
FLRW) type. In that framework, the associated quantum corrections are known to give raise
to strong infrared instabilities, indicating the potential presence of relevant non-perturbative
effects possibly altering the vacuum energy density in a non-trivial way [see e.g. (Antoniadis
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and Mottola, 1991; Tsamis and Woodard, 1997; Antoniadis et al., 2007)] 3. The cosmological
constant problem is therefore intimately related to our lack of understanding of the quantum
theory of gravity, for which perturbative methods have been shown to provide only little reach
for describing the overall quantum dynamics of GR.

Nevertheless, when taken at face value, the fine-tuning problem of the cosmological constant
has been attempted to be solved in several ways. A notable example is provided by supersym-
metric theories [see e.g. (Martin, 1997) for an introduction and (Fuks, 2013) for a review], in
which each of the SM fields possesses a corresponding “superpartner” of different statistics,
so that their contributions to the vacuum energy automatically cancel each other. Another
example corresponds to the hypothesis assuming that gravity is asymptotically safe, that is,
that the theory features a non-trivial UV fixed point, away from which associated quantum
corrections are under control, and can effectively suppress the vacuum energy (Weinberg, 1980)
[see also (Falls, 2016) for a more recent discussion]. This idea is effectively founded on the
fact that non-perturbative effects regularise the quantum theory by themselves [see for example
(Percacci, 2007) for a review].

Another related puzzle of the cosmological constant is that its small value leads to the
coincidence problem, which can be stated as follows. Given the standard ΛCDM model, the
present cosmological observations lead to an inferred value of the dark energy density fraction
ΩΛ of the order of ΩΛ ≃ 0.7, while the one associated to the total matter in the Universe today is
inferred to be ΩM ≃ 0.3. This implies that, for reproducing nowadays cosmological observations,
given the ΛCDM model, one should have ΩΛ ∼ ΩM , which, as the total matter density fraction
redshifts as ∼ a−3, is only the case in a “brief” moment of the cosmological history. This means
that the model describes the present epoch as a special moment in the Universe’s history, where
the ΩΛ ∼ ΩM–“coincidence” is satisfied. This goes against the cosmological principle stating
that the Universe is homogeneous and isotropic in space and time on its largest scales, and
therefore can be interpreted as problematic [see however (Bianchi and Rovelli, 2010) for an
alternative view on this].

The smallness of Λ and its associated coincidence problem were shown to be possibly ad-
dressed by anthropic arguments, supporting the fact that if such conditions were not established,
observers like us would never have been present for measuring these values (Weinberg, 1989;
Efstathiou, 1995). In what follows, we will not consider how anthropic arguments can provide
an explanation to the cosmological constant problem, but rather describe a selection of rigorous
theoretical models that have been proposed over the years to address the issue, as this is also
the framework of the study of this thesis.

1.4.2 Modelling Dark Energy by Evading Lovelock’s Theorem

The search for an alternative to the cosmological constant Λ for describing the observed late
time cosmic acceleration is a major topic in nowadays research in cosmology. Its origin goes
back before the actual discovery of the cosmic acceleration, given the number of earlier analyses
suggesting the need for a cosmological constant. In fact, the idea of modifying the cosmological
“constant” by allowing it to vary in time was already mentioned in the 1930s in (Bronstein,
1933), for providing an explanation to the cosmic expansion based on assumed energy non-
conservation processes induced in star nuclei. Since then, several phenomenological studies
of such a smooth dark energy component producing an accelerated expansion were performed

3. Non-perturbative infrared renormalisation effects from gravitation fluctuations were recently shown to be
non-trivial on flat space and in the framework of the so-called “variable gravity” (Wetterich, 2017).
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[see for example (Steinhardt, 1996; Silveira and Waga, 1997; Turner and White, 1997; Hu and
Eisenstein, 1999; Chevallier and Polarski, 2001; Linder, 2003)], and more concrete theoretical
models have been put forward for potentially providing an explanation of its origin, and at the
same time resolving the intrinsic problems associated to Λ.

Diverse ways for realising the late time cosmic acceleration without a cosmological constant
exist, and a major part of them have a common tenet in that they evade the Lovelock theorem
(Lovelock, 1971, 1972), which was developed on the earlier works of (Vermeil, 1917; Cartan,
1922; Weyl, 1922). This theorem states that the only covariantly conserved rank-two tensor
including only derivatives of the metric gµν up to two in four dimensions is proportional to
the Einstein tensor or to the metric itself, i.e. a cosmological constant. Modifying Einstein’s
theory of GR therefore amounts to either breaking diffeomorphism invariance, including higher
derivatives of the metric or nonlocal operators acting on it, considering higher dimensions or
introducing explicit extra degrees of freedom beside the two modes of the massless spin-two
field described by the metric.

One might find useful to classify the various attempts to explain late time cosmic acceleration
in theories that are describing a genuine dark energy component and those modifying Einstein’s
theory of GR, although a clear distinction between these two classes can sometimes be a sub-
jective matter (Joyce et al., 2016). Reviews surveying different classes of models of dynamical
dark energy are provided for instance in (Copeland et al., 2006; Padmanabhan, 2006; Silvestri
and Trodden, 2009; Caldwell and Kamionkowski, 2009; Tsujikawa, 2010; Ruiz-Lapuente, 2010;
Joyce et al., 2015) [see also (Amendola and Tsujikawa, 2010) for a standard textbook], whereas
reviews on modifications of gravity relevant for late time cosmic acceleration are provided by
e.g. (Nojiri and Odintsov, 2011; Clifton et al., 2012; Berti et al., 2015; Koyama, 2016).

Other alternative to explain the late time cosmic acceleration have also been proposed
without the need of modifying GR or including additional species. Examples of them are given
by a possible backreaction of inhomogeneities on the cosmological averaged background [see e.g.
(Buchert and Räsänen, 2012) for a review], the variation of fundamental constants such as the
fine-structure constant (Uzan, 2005, 2007), or the speed of light (Albrecht and Magueijo, 1999;
Magueijo, 2003).

Scalar-Tensor Theories. Notable examples including extra degrees of freedom are most
commonly represented by the presence of an additional minimally coupled canonical scalar
field, generating the late time cosmic acceleration in rolling down its potential, much as cosmic
inflation is driven by an inflaton field. This idea was already evoked in the late 1980s (Weiss,
1987; Ratra and Peebles, 1988; Wetterich, 1988) and is nowadays known as quintessence [see
e.g. (Caldwell et al., 1998; Ferreira and Joyce, 1997, 1998; Copeland et al., 1998; Wang et al.,
2000; Sahni and Starobinsky, 2000; Binetruy, 2000), (Tsujikawa, 2013) for a review and (Dur-
rive et al., 2018) for recent observational constraints]. These models have been shown to be able
to produce a tracker behavior (Zlatev et al., 1999), generating a dynamical dark energy density
fraction Ωde(z) that reproduces the cosmic coincidence Ωde ∼ ΩM at late time, for an extended
range of initial conditions for the scalar field. Such theories provide a solution to the coincidence
problem but typically translate the unnaturalness of Λ into the unnaturalness of the scalar fields’
potential (Weinberg, 1989). Nevertheless, quintessence-like behavior in cosmic axion theories,
i.e. effective models of pseudo-Nambu-Goldstone bosons, were also found (Coble et al., 1997),
and represent a remarkable candidate evading the naturalness problem, as the potential they
describe is symmetry-protected from large radiative corrections. Moreover, such soft modes can
find a fundamental explanation in string theory (Choi, 2000; Kim and Nilles, 2003). Coupled
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quintessence models where the scalar is coupled to matter fields were developed in (Amendola,
2000) [see in particular (Barros et al., 2018) for recent observational constraints considerations],
and led to the concept of a coupled quintessence field controlling the amplitude of the neutrino
mass and generating the late time cosmic acceleration (Fardon et al., 2004; Peccei, 2005; Wet-
terich, 2007; Amendola et al., 2008a). In the same spirit as quintessence, scalar field models
with non-linear derivative self-interactions, dubbed K–essence, were developed in (Armendariz-
Picon et al., 2001), and include in particular ghost condensates (Arkani-Hamed et al., 2004) or
so-called Cuscuton models (Afshordi et al., 2007a,b). Alternatives to quintessence describing
an “exotic” extra matter component as well for producing the late time cosmic acceleration are
given by the so-called Chaplygin gas models, which have also been motivated by findings in
string theories [see e.g. (Kamenshchik et al., 2001; Gorini et al., 2004)].

Scalar tensor theories also include particular modifications of the Einstein-Hilbert action
where the corresponding Ricci curvature scalar is promoted to an arbitrary function of it, by an
f(R) term (Carroll et al., 2004, 2005; Song et al., 2007). This fact could appear quite counter
intuitive at the first glance, but such theories can be shown to be equivalent to scalar-tenosr
ones when certain conditions are satisfied [see e.g. (Sotiriou, 2006) and references therein].

These scalar-tensor models are particular classes of the more general scalar-tensor theory
developed by G. Horndeski (Horndeski, 1974), which contains higher derivative terms into the
action, but lead to equations of motion that are second order, such as to avoid the introduction of
other additional degrees of freedom carrying an Ostrogradski ghost. Furthermore, a remarkable
class of models belonging to this theory when linearised on flat space is provided by Galileons,
where the scalar sector is characterised by an internal shift symmetry (Nicolis et al., 2009),
and whose covariant generalisation (Deffayet et al., 2009; Deffayet et al., 2009, 2011), has been
shown to be provide interesting self-accelerating solutions (Chow and Khoury, 2009; Gannouji
and Sami, 2010; De Felice and Tsujikawa, 2010; Barreira et al., 2012). Horndeski theory has
recently been generalised in theories going Beyond Horndeski (Gleyzes et al., 2015a), where
the resulting equations of motion are found to be higher order, but a “kinetic degeneracy” in
the model prevents the appearance of additional degrees of freedom. A further generalisation
of Beyond Horndeski theories has been presented in (Langlois and Noui, 2016), which includes
more general degenerate higher derivatives scalar-tensor theories. All these theories are included
in the effective field theory of dark energy (Gleyzes et al., 2013, 2015b), whose construction is
inspired by the effective field theory of inflation (Cheung et al., 2008).

Models based on an extra scalar degree-of-freedom typically give raise to a fifth force that
need to be screened at small scales, in order to evade strong constraints from solar system
experiments. Quintessence models where such a screening is explicitly realised are provided
by chameleon models (Khoury and Weltman, 2004; Brax et al., 2004). In these models, the
scalar field is non-minimally coupled to matter, so that it acquires a mass proportional to the
local matter density, and its effect is screened in overdense regions. Another notable screening
mechanism is realised in so-called symmetron models (Hinterbichler and Khoury, 2010; Hin-
terbichler et al., 2011), where the scalar field has a (non-)trivial vacuum expectation value
in (under)overdense regions. This value controlling the coupling to matter, the fifth force in-
duced by the scalar field is suppressed in high density regions. Moreover, screening induced
by strong kinetic non-linearities of the scalar field induced by derivative self-interactions that
become dominant in high density regions has also been shown to be present scalar-tensor the-
ories (Babichev et al., 2009), though the so-called K–mouflage mechanism, equivalent to the
Vainshtein mechanism in massive gravity (Vainshtein, 1972) (see the next paragraph for more
details on this), that was also shown to be at play in Galileon models (Nicolis et al., 2009).
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Massive Gravity and Bi-gravity. Another important example of attempts at explaining
the late time accelerated expansion, and at the same time to solve the cosmological constant
problem, is the theory of massive gravity [see (Hinterbichler, 2012; de Rham, 2014) for reviews].
In this theory, the graviton has a mass that makes the force mediated between two static
sources of the Yukawa type, i.e. changing the behavior of the theory of GR in its infrared
regime, and therefore possibly able to describe cosmic acceleration. Moreover, from a quantum
field theoretical point of view, the mass of the graviton is expected to receive controlled quantum
corrections as it is naturally protected by the diffeomorphism symmetry. The construction of
this theory has received a lot of attention during the last decades. From a theoretical point
of view, its origin goes back to 1939, when M. Fierz and W. Pauli (Pauli and Fierz, 1939)
first elaborated a consistent theory describing a free massive spin-two field propagating over
Minkowski space. The question asking whether or not it is possible to add nonlinear corrections
to this model so as to construct a “massive GR”, then arose quite naturally. In fact, in the early
1970s, it was shown by H. van Dam, M. Veltman, V.I. Zakharov (vDVZ) and Y. Isawaki (van
Dam and Veltman, 1970; Zahkarov, 1970; Isawaki, 1970) that, once the spin-two field is coupled
to a source, the massless limit of Fierz-Pauli’s linear theory does not reproduce the initially
massless one, i.e. linearised GR, and was consequently in disagreement with solar system
observations. Nevertheless two years later, A.I. Vainshtein (Vainshtein, 1972) found a solution
to this problem by showing that once kinetic nonlinear corrections are taken in consideration,
they provide further information on the domain of validity of the linear approximation. In
particular, Vainshtein showed that the more the graviton mass goes to zero, the more the
space-time region where the approximation is valid shrinks. This therefore discredited the
physical relevance of the vDVZ discontinuity and motivated further consideration of nonlinear
corrections. Nevertheless, the same year, G. Boulware and S. Deser (Boulware and Deser,
(1972) showed that once nonlinear corrections are included to the linear model over flat space,
the theory generically ends up with an additional degree of freedom which is a ghost. The recent
works of C. de Rham, G. Gabadadze and A. Tolley (de Rham and Gabadadze, 2010; de Rham
et al., 2011), have shown that a healthy nonlinear model can be built through a perturbative
approach in avoiding the Boulware-Deser ghost. Not much later, (Hassan and Rosen, 2012a)
addressed the ghost issue at the non-perturbative level which allowed them to write down a
consistent nonlinear theory of massive gravity. A quite artificial aspect of such a theory is
that it requires the presence of an additional metric, a so-called non-dynamical “reference”
metric, whose choice is arbitrary. However, one can consider that this metric is dynamical as
well, and construct the theory of bi-metric massive gravity (Hassan and Rosen, 2012b). The
cosmological consequences of these models where vastly investigated in the last years, and some
of them where found to provide self accelerating solutions potentially able to explain the late
time cosmic acceleration. We refer the reader to the relevant literature for details about the
current status of these theories, to which a quite up-to-date detailed description can be found
in e.g. (Hinterbichler, 2016).

Extra-dimensions. A particularly interesting model modifying the behavior of gravity on
infrared scales is the Dvali-Gabadadze-Porrati (DGP) braneworld model (Dvali et al., 2000;
Dvali and Gabadadze, 2001), which was shown to possess self-accelerating solutions (Deffayet,
2001; Deffayet et al., 2002). This model evades Lovelock’s theorem in that it is defined on a
spacetime of dimension higher than four, that is, gravity is taking place on a five-dimensional
(bulk) spacetime and is in turn only induced on a four dimensional brane where the field of the
SM are confined. Furthermore, the induced graviton propagator on the four dimensional brane
signals the presence of nonlocal operators taking place in the theory. More details about the
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model will be provided below [see Sec. 2.4].

This thesis incorporates itself in the framework of studies aiming to investigate alternative
effects influencing the infrared behavior of gravity. In particular, we will consider nonlocal
modifications to the theory of GR that can hypothetically be present in the associated quantum
effective action, and be relevant for describing the observed late time cosmic acceleration. The
following report closely follows the studies performed in (Dirian et al., 2014; Dirian and Mitsou,
2014; Dirian et al., 2015, 2016; Dirian, 2017; Bellini et al., 2018; Belgacem et al., 2018b, 2017,
2018c), but also contains original material. Modifications of gravity through the presence of
nonlocal terms have recently attracted a lot of interest for modifying GR in its infrared regime.
For a more detailed discussion of such models, we refer the reader to our Sec. 2.4.

1.5 Conventions & Notations

Here we report the notational conventions used throughout the thesis.

We work in the natural units : ℏ = c = 1, the Planck mass is denoted by Mp and Newton’s
constant as G. In these units, the Planck mass readsMp = 1.221×1019GeV ≃ 6.1870×1034m−1

and the Hubble scale is given by H−1
0 ≃ 9.26× 1025h−1m. Generically, megaparsecs convert to

meters as 1Mpc ≃ 3.0857× 1022m and the astromonical unit is 1 a.u. ≃ 1.4960× 1011m.

We exclusively work in 3 + 1 spacetime dimensions, where our conventions for differential geo-
metric quantities are the same as the ones of the book of C. Misner, K. Thorne and J. Wheeler
(Misner et al., 1973), so that the signature of the metric is taken to be (−+++) and therefore
the Minkowski metric is ηµν = diag(−,+,+,+). The Greek indexes will run over 0, 1, 2, 3, while
the Latin ones only over the spatial dimensions 1, 2, 3, unless specified otherwise and we use the
Einstein summation convention.

In a local coordinate system, the Christoffel symbols for the Levi-Civita connection are given
by,

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) , (1.4)

whereas the Riemann tensor takes the form,

Rαβµν = ∂µΓ
α
νβ − ∂νΓ

α
µβ + ΓαµρΓ

ρ
νβ − ΓανρΓ

ρ
µβ .

The associated Ricci curvature tensor reads Rβν = Rαβαν , the associated Ricci scalar is R =
gµνRµν and the corresponding Einstein tensor is,

Gµν = Rµν −
1

2
gµνR . (1.5)

We denote the curved spacetime d’Alembert operator as □ ≡ gµν∇µ∇ν , while the flat space
spatial Laplacian is written as ∆ ≡ δij∂i∂j .

Our convention for the spacetime Fourier transformations follow,

f(x) =

∫
d4k

(2π)4
eikxf̃(k) , f̃(k) =

∫
d4x e−ikxf(x) ,

and therefore the spatial Fourier transform we adopt,

f(x⃗) =

∫
d3k

(2π)3
eik⃗·x⃗f̃(k⃗) , f̃(k) =

∫
d3x e−ik⃗·x⃗f(x⃗) .
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Chapter 2

Nonlocal Modifications to Gravity

We review basic concepts about nonlocal modifications to gravity and in particular, the
modifications that are relevant for cosmology, i.e. modifying the theory in its infrared regime.
We first introduce what is meant by “nonlocal” into our field theoretical framework and present
related subtleties and caveats. We then introduce mechanisms which generate nonlocal correc-
tions to the dynamics of GR from first principles, in a top-down approach, before to present
various bottom-up proposals that have been made in a more phenomenological framework.

The concept of nonlocality is broad in physics and possesses different meanings depending
on the framework that one addresses. Nonlocality in the present context applies to field theory
and can be defined by the negation of the definition of a local field theory.

A classical field theory is local if its Lagrangian density L at a given spacetime coordinate xµ is
exclusively a functional of the fields and their derivatives (in finite number) at that coordinate.

As a consequence, nonlocal field theories are generically characterized by the presence of an
infinite number of derivatives or non-polynominal operators in their Lagrangian.

2.1 Classically Induced Nonlocality: Open Systems

One of the simplest example of nonlocality that arises in classical field theory is well illus-
trated by a system of two coupled massive scalar fields, where one of them is integrated out in
using its own equation of motion. Starting from the action,

S =

∫
d4x

[
1

2
ϕ
(
□−m2

ϕ

)
ϕ+

1

2
ψ
(
□−m2

ψ

)
ψ − λϕψ

]
, (2.1)

one can derive the equation of motion for ψ which yields
(
− □ +m2

ψ

)
ψ = −λϕ. Its solutions

can generically be expressed as,

ψ(x) = ψ(h)(x)− λ

∫
d4x′ Gψ(x− x′)ϕ(x′) , (2.2)

where ψ(h) is a homogeneous solution satisfying
(
−□+m2

ψ

)
ψ(h) = 0 and Gψ(x−x′) characterizes

a generic Green’s function for the Klein-Gordon operator, i.e. respecting the condition,(
−□+m2

ψ

)
Gψ(x− x′) = δ(x− x′) , (2.3)

which can be solved in going to Fourier space,(
(k0)2 − E2

k

)
G̃ψ(k) = −1, (2.4)

40
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where we have defined Ek ≡
√
k⃗2 +m2. The solution is obtained by inverting the corresponding

operator and applying the inverse Fourier transformation. This needs to be done in the sense
of distributions since the denominator vanishes on-shell, i.e. it induces two simple poles at
±Ek once one integrates over k0. The method consists in integrating the distribution over a
closed contour in the complex plane, chosen so that it passes around the poles on the real axis.
Equivalently, one can use the so-called iϵ prescription during the inversion, amounting to shift
the poles in various directions. The way one closes the half contour then depends on the sign
of x0 − x′0. The contour is chosen to run clockwise into the lower plane when x′0 is on the past
lightcone of x0 (x0 − x′0 > 0) and counterclockwise into the upper plane when x′0 is on the
future lightcone of x0 (x0 − x′0 < 0) [see e.g. (Itzykson and Zuber, 1980)]. The three typical
choices relevant for the present discussion are (see Fig. 2.1):

— k0 −→ k0 + iϵ: retarded Green’s function G(x− x′) ≡ Gret(x− x′) vanishes for x0 < x′0.
— k0 −→ k0− iϵ: advanced Green’s function G(x−x′) ≡ Gadv(x−x′) vanishes for x0 > x′0.
— k0 −→ (k0)2 + iϵ: Feynman Green’s function G(x− x′) ≡ GF (x− x′).

In particular they respect Gret(x − x′) = Gadv(x
′ − x) and GF (x − x′) = GF (x

′ − x), so only
the latter is symmetric. Their expressions can be written as,

Gret(x− x′) = θ
(
x0 − y0

) ∫ d3k

(2π)3
eik⃗(x⃗−y⃗)

Ek
sin
(
Ek(x

0 − y0)
)
, (2.5)

Gadv(x− x′) = −θ
(
y0 − x0

) ∫ d3k

(2π)3
eik⃗(x⃗−y⃗)

Ek
sin
(
Ek(x

0 − y0)
)
, (2.6)

GF (x− x′) =

∫
d3k

(2π)3
1

2Ek

(
θ(x0 − y0)eik(x−y) + θ(y0 − x0)e−ik(x−y)

)
, (2.7)

and can be interpreted as the fact that the Feynman propagator evolves positive energies forward
in time and negative ones backwards, while the retarded (advanced) propagator evolves both
forward (backward) in time. The retarded Green’s function implements causality at classical
level and the Feynman one implements it at quantum level in the in-out formalism.
We are only interested in the classical evolution of the above system therefore we choose the
Green’s function to be of the retarded kind,

ψ(x) = ψ(h)(x)− λ

∫
d4x′ Gψ,ret(x− x′)ϕ(x′) , (2.8)

with,

Gψ,ret(x− x′) = − lim
ϵ→0+

∫
d4k

(2π)4
eik(x−x

′)

(k0 + iϵ)2 − k⃗2 −m2
ψ

. (2.9)

The initial conditions fix the fields’ homogeneous solution and, together with the choice of
Green’s function, uniquely determines the solution. Inserting (2.8) into the action (2.1), it
becomes,

S =

∫
d4x

[
1

2
ϕ(x)

(
□−m2

ϕ

)
ϕ(x) +

λ2

2
ϕ(x)

∫
d4x′ Gψ,ret(x− x′)ϕ(x′)− λ

2
ψ(h)(x)ϕ(x)

]
,

(2.10)

which is nonlocal in the sense defined above, i.e. the knowledge of the Lagrange density at a
given event xµ depends on the whole history of the field ϕ(x) in the past lightcone of that event.
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Figure 2.1 – Different prescriptions for solving Eq. (2.4). Axes represent the k0 complex plane
with the horizontal being real. Points are the poles at ±Ek shifted through the iϵ prescription
described in the text. In the case of the retarded (advanced) propagator only the lower (upper)
half-contour contributes, whereas for the Feynman propagator both do contribute.

Despite of having enforced causality by choosing the retarded propagator when solving for ψ,
this action does not lead to a causal behavior for the ϕ. Indeed, by computing its Euler-Lagrange
equations of motion, under variation, the nonlocal term automatically symmetrises,

(□−m2
ϕ)ϕ(x) +

λ2

2

∫
d4y

[
Gψ,ret(x− y) +Gψ,adv(x− y)

]
ϕ(y)− λ

2
ψ(h)(x) = 0 , (2.11)

and the appearance of the advanced Green’s function makes the classical evolution of ϕ acausal.
At classical level, as the dynamics of the system is determined by the underlying Euler-Lagrange
equations of motion, one could have inserted the solution for ψ (2.8), into the equation of motion
for ϕ,

(□−m2
ϕ)ϕ(x) = λψ , (2.12)

so as to get a causal evolution for the latter. Nevertheless, for classical systems, a rigorous way
of deriving such causal equations of motion from an action is given by the variational principle
for non-conservative systems (Galley, 2013). At quantum level, the causal dynamics for the
expectation values of quantum fields relates upon the use of the Schwinger-Keldysh, or in-in,
formalism (Schwinger, 1961; Keldysh, 1964) closely related to the influence functional formalism
of Feynman and Vernon (Feynman and Vernon, 1963) [see also (Jordan, 1986)]. The procedure
outlined in (Galley, 2013), consists in doubling the degrees of freedom of the original theory
{ϕ, ψ}. One set will evolve forward in time, say {ϕ1, ψ1}, while the second {ϕ2, ψ2} evolves
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backwards. The action can be written,

S =

∫ +∞

−∞
dx0

∫
d3x

[
1

2
ϕ1
(
□−m2

ϕ

)
ϕ1 +

1

2
ψ1

(
□−m2

ψ

)
ψ1 − λϕ1ψ1

]
+

∫ −∞

+∞
dx0

∫
d3x

[
1

2
ϕ2
(
□−m2

ϕ

)
ϕ2 +

1

2
ψ2

(
□−m2

ψ

)
ψ2 − λϕ2ψ2

]
(2.13)

=

∫ +∞

−∞
dx0

∫
d3x

[
1

2
ϕ1
(
□−m2

ϕ

)
ϕ1 +

1

2
ψ1

(
□−m2

ψ

)
ψ1 −

1

2
ϕ2
(
□−m2

ϕ

)
ϕ2

− 1

2
ψ2

(
□−m2

ψ

)
ψ2 − λϕ1ψ1 + λϕ2ψ2

]
. (2.14)

where the initial conditions for the set {ϕ2, ψ2} is identified with the final ones of {ϕ1, ψ1} such
that the action becomes an initial value problem rather than a boundary one. At the end of the
computation, one applies the physical limit ϕ1,2 → ϕ and ψ1,2 → ψ, to make contact with the
original theory. At this point, it is convenient to introduce the variables defined by ϕ± ≡ ϕ1±ϕ2
and ψ± ≡ ψ1 ± ψ2, for which the physical limit leads the “−” fields to vanish. Under this field
redefinition the above action takes the form,

S =

∫
d4x

[
1

2
ϕ−
(
□−m2

ϕ

)
ϕ+ +

1

2
ψ−
(
□−m2

ψ

)
ψ+ − λ

2

(
ϕ+ψ− + ϕ−ψ+

)]
. (2.15)

The equations of motion of ϕ± and ψ± are respectively given by,(
□−m2

ϕ

)
ϕ± = λψ± , (2.16)(

□−m2
ψ

)
ψ± = λϕ± . (2.17)

Now, according to the causality prescription required above, the “+” fields evolving forward in
time are automatically solved with a retarded Green’s function, while the “−” fields with an
advanced one. One obtains,

ψ+(x) = ψ
(h)
+ (x) + λ

∫
d4x′ Gψ,ret(x− x′)ϕ+(x

′) , (2.18)

ψ−(x) = λ

∫
d4x′ Gψ,adv(x− x′)ϕ−(x

′) , (2.19)

with,

ψ
(h)
+ (x) =

∫
d4k

(2π)4

(
ak,+e

−ikx + a∗k,+e
ikx

)
θ(k0)δ(k2 +m2) . (2.20)

where ak,+ are complex numbers. Similar expression can be computed for ϕ±. The homogeneous
solution for ψ− is zero since the latter has to vanish at final time, as it equals ψ1−ψ2. One can
now put the corresponding expression of ψ+ into the action (2.15),

S =

∫
d4x

[
1

2
ϕ−
(
□−m2

ϕ

)
ϕ+ − λ

2
ϕ−ψ

(h)
+ − λ2

2

∫
d4x′ϕ−(x)Gψ,ret(x− x′)ϕ+(x

′)

]
. (2.21)

The equation of motion derived with respect to ϕ− therefore leads to the effective equation of
motion for the open subsystem composed only by ϕ+,(

□−m2
ϕ

)
ϕ(x) =

λ

2
ψ(h)(x) + λ2

∫
d4x′Gψ,ret(x− x′)ϕ(x′), (2.22)
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where the physical limit ϕ+ → 2ϕ has been applied. This procedure justifies therefore unam-
biguously the use of the retarded Green’s function in the resulting effective action and equation
of motion. Moreover, this shows that the system made of ϕ only is non-conservative as it is non
symmetric under time reversal, i.e. it is now an open system through which the dynamics of
ψ only manifests itself in the nonlocal Gψ,ret operator, and its homogeneous solution ψ(h) that
one can interpret as an external force (Galley, 2013). Observe that using such a technique can
allow for the presence of friction terms of the form ϕ+∂0ϕ

− into the action, that in the usual
case reduce to a total derivative ϕ∂0ϕ→ ∂0(ϕ

2)/2, and vanish under the integral.

This example shows how nonlocality can be obtained classically, by simply integrating out
fields that are interacting with others. The resulting theory describes the non-conservative
dynamics of the remaining subsystem, that is an “open” system. The evolution of the latter is
nonlocal, i.e. the Lagrange density of the theory (or equivalently its equations of motion) at a
given spacetime point xµ depends on the fields’ configuration on a finite patch of spacetime, not
only on the infinitesimal neighborhood of xµ. Using the variational principle for non-conservative
systems, one can obtain the causal classical evolution of the corresponding subsystem. Observe
also that turning all the Green’s function in Eq. (2.11) to the retarded type, the causal equations
of motion of Eq. (2.22) are recovered. This means that, instead of going through the machinery
outlined here, one could just apply the standard variational principle and, at the end, turn all
the Green’s function appearing to be of the retarded kind. Such an ad hoc prescription has
been extensively considered by various authors in nonlocal gravity studies [see e.g. (Soussa and
Woodard, 2003; Tsamis and Woodard, 2014) and references therein].

2.2 Nonlocality Induced by Quantum Effects

Quantum corrections induced on the classical dynamics do also typically generate nonlocal
operators, for example when massless or light degrees of freedom are integrated out, or also by
quantum fluctuations of the vacuum on a curved spacetime. In this section, we review some
basis of the quantum effective action on Minkowski spacetime and provide examples illustrating
how nonlocal operators come into play in this context.

2.2.1 Effective Action

The quantum effective action encodes in principle all the information of a quantum field
theory. It allows one to access a semi-classical expansion in quantum loops suppressed by powers
of ℏ, providing back-reaction effects to the classical dynamics induced by quantum effects of
perturbative 1 and non-perturbative nature [see e.g. (Itzykson and Zuber, 1980; Zinn-Justin,
2002) for standard textbooks]. These correct the classical dynamics of a given field theory
characterised by an action S[ϕ]; where we denote collectively by ϕ the various fields involved
in the theory. This expansion is provided in a well controlled manner, as it includes only
proper vertices, also called 1-particle irreducible (1PI) Feynman diagrams. This is especially
relevant for computing how bare parameters are dressed up by quantum corrections. Its extrema
correspond not to the classical solution as for the regular action S[ϕ], but to the evolution of the
vacuum expectation values of the fields ϕ. Its definition relies on the functional path integral

1. The perturbative notion here refers to an expansion in the coupling constants of the theory.
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formalism which is based on the generating functional of n-points Green’s function,

Z[J ] = ⟨0|T exp

(
− i

∫
d4x J(x)ϕ(x)

)
|0⟩ (2.23)

=

∫
Dϕ exp

(
iS[ϕ]− i

∫
d4x J(x)ϕ(x)

)
, (2.24)

where the vacuum expectation value is taken between two asymptotic in and out Poincaré
invariant vacua of the theory, ⟨0|ϕ|0⟩ ≡ ⟨0out|ϕ|0in⟩. The T -operator orders the fields in de-
creasing time and is naturally implemented in the construction of the path integral. Within
this framework, it is convenient to switch to imaginary time through Wick rotation x0 → ix0,
so that the metric becomes Euclidean and hyperbolic operators are turned into elliptic ones,
which generically makes the problem more tractable. The generating functional then becomes,

Z[J ] =

∫
Dϕ exp

(
− S[ϕ] +

∫
d4x J(x)ϕ(x)

)
, (2.25)

and generates the n-point Green’s functions as,

Z[J = 0]−1 δN

δJ1δJ2 . . . δJN
Z[J ]

∣∣∣∣
J=0

= ⟨0|T
{
ϕ1ϕ2 . . . ϕN

}
|0⟩ , (2.26)

where we use the shorthand notation Ji ≡ J(xi), ϕi ≡ ϕ(xi). The denominator in front
removes the divergent vacuum-to-vacuum contributions (vacuum bubbles). Moreover, assuming
an action that splits into a quadratic and an interacting part,

S[ϕ] =
1

2
ϕ1K12ϕ2 + Sint(ϕ) , (2.27)

where we used the compact notation that we generalize throughout,

ϕ1K12ϕ2 ≡
∫

d4x1

∫
d4x2 ϕ(x1)K(x1, x2)ϕ(x2) , (2.28)

with K(x1, x2) a local operator that does not depend on the fields, the generating functional
can be written as,

Z[J ] =

∫
Dϕ exp

(
− 1

2
ϕ1K12ϕ2 − Sint(ϕ) + J1ϕ1

)
(2.29)

=

∫
Dϕ

∞∑
k=0

(
− Sint(ϕ)

)k
k!

exp

(
− 1

2
ϕ1K12ϕ2 + J1ϕ1

)
(2.30)

=

∫
Dϕ

∞∑
k=0

(
− Sint(δ/δJ)

)k
k!

exp

(
− 1

2
ϕ1K12ϕ2 + J1ϕ1

)
(2.31)

and dragging the infinite sum outside of the integral,

Z[J ] =

∞∑
k=0

(
− Sint(δ/δJ)

)k
k!

∫
Dϕ exp

(
− 1

2
ϕ1K12ϕ2 + J1ϕ1

)
(2.32)

≡ exp

(
− Sint

(
δ

δJ

))
Z0[J ] . (2.33)
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The first exponential term is only a formal notation and should be rather seen as its infinite
power series. We have also defined the Gaussian integral Z0[J ], which can be evaluated by
shifting ϕ by its saddle point value at ϕ1 = K−1

12 J2 ≡ ∆12J2, that is, by substituting ϕ1 →
ϕ1 +∆12J2, where ∆12 is the free propagator taken to be of the Feynman type. One gets,

Z0[J ] =

∫
Dϕ exp

(
− 1

2
ϕ1K12ϕ2 +

1

2
J1∆12J2

)
(2.34)

=
(
detK

)−1/2
e

1
2
J1∆12J2 (2.35)

where the irrelevant (although infinite) normalisation factor can be dropped in imposing Z0[J =
0] = 1. Finally we can rewrite the generating functional in the compact form,

Z[J ] = e−Sint
(
δ/δJ

)
e

1
2
J1∆12J2 . (2.36)

From this expression, one can access to a systematic perturbative expansion in powers of the
coupling constant of the theory once the interacting action Sint is specified. Considering a given
number n of external fields, through the n-point Green’s function (2.26), one can then easily
access its perturbative expression through an expansion which represents itself nicely in terms
of Feynman diagrams. This functional still contains disconnected contributions (where the
external points are not linked by propagators) which can be removed by defining the generating
functional of the connected n-point Green’s function,

W [J ] = logZ[J ] , (2.37)

with,

δN

δJ1δJ2 . . . δJN
W [J ]

∣∣∣∣
J=0

= ⟨0|Tϕ1ϕ2 . . . ϕN |0⟩c , (2.38)

and in particular,

δW [J ]

δJ(x)

∣∣∣∣
J=0

= ⟨0|ϕ(x)|0⟩ ≡ ⟨ϕ(x)⟩ , (2.39)

is the vacuum expectation value of ϕ in the full theory. The generating functional of proper
vertices we are interested in is defined as the Legendre transform of W [J ],

Γ[φ] =

∫
d4x J(x)φ(x)−W

[
J [φ]

]
, with

δΓ

δφ(x)
= J(x) , and

δW

δJ(x)
= φ(x) , (2.40)

One notes that φ(x)|J=0 = ⟨ϕ(x)⟩. The generating functional Γ can be treated perturbatively in
powers of ℏ. A convenient way for deriving it consists in applying the background field method
which leads to an implicit expression for Γ, that can then be solved iteratively in the number
of φ-derivatives acting on Γ. From the definition of W [J ] 2,

e
1
ℏW [J ] =

∫
Dϕ e−

1
ℏ

(
S[ϕ]−Jϕ

)
, (2.41)

and multiplying both sides by e−Jφ and using Eq. (2.40) yields,

e−
1
ℏΓ[φ] =

∫
Dϕ exp

(
− 1

ℏ
(
S[ϕ]− δΓ

δφ
(ϕ− φ)

))
. (2.42)

2. From now on until the end of this section we display ℏ.



CHAPTER 2. NONLOCAL MODIFICATIONS TO GRAVITY 47

Performing the saddle point approximation,

δS[ϕ]

δϕ

∣∣∣∣
ϕ=ϕc

=
δΓ[φ]

δφ
(2.43)

and expanding the exponent in the integrand around that solution ϕ→ ϕc + ℏ1/2ϕ, leads to,

Γ[φ] =S[ϕc]−
δΓ

δφ
(ϕc − φ)

− ℏ log
[ ∫

Dϕ exp

(
− 1

2
S
(2),ϕc
12 ϕ1ϕ2

)(
1− ℏ

3!
S
(3),ϕc
123 ϕ1ϕ2ϕ3 +O(ℏ)

)]
, (2.44)

where we have written,

S
(N),ϕc
12...N ≡ δ(N)S[ϕc]

δϕ1ϕ2 . . . ϕN
. (2.45)

Solving then perturbatively for ϕc in terms of φ from the saddle point expansion in Eq. (2.37),
using the last relation of Eq. (2.40) and working recursively on the derivatives of Γ leads to the
generating functional of proper vertices,

Γ[φ] = S[φ] +
ℏ
2
Tr log

[
S(2),φ

S(2),0

]
+

ℏ2

8
⊗⊗⊗ b

b b

b

− ℏ2

12
⊗⊗⊗

b

b

b

b

b

b

+O(ℏ3) ,

(2.46)

with,

⊗⊗⊗
b

b b

b

1
2 3

N

= S
(N),φ
12...N , and bb = ∆φ

12 ≡
(
S
(2),φ
12

)−1
, (2.47)

and where the division by S(2),0 is equivalent to normal ordering, i.e. cancels the divergent
contribution from vacuum energy. Γ[φ] is sometimes called the quantum effective action, as
it corrects the classical dynamics given by the action S by quantum effects. This expansion
generically contains a finite part and a part that diverges in the ultraviolet regime (UV), at every
loop order. Furthermore, if the theory contains massless fields, it also diverges in the infrared
(IR). The UV divergences need to be regularized by counter-terms introduced in the original
“bare” action, while the IR ones can sometimes by cured at the level of scattering amplitudes in
including inelastic processes (as for instance bremsstrahlung in the case of Coulomb scattering)
or can signal the presence of new physics as in QCD. Regularisation methods are for instance
provided by lattice, dimensional or Pauli-Villars regularisation, or also Schwinger proper time
and zeta regularisation. Finite parts with operator structure already present in S rescale the
corresponding bare parameters and fields of the theory, they provide an energy scale dependence
to the renormalised parameters which therefore run as this energy scale is modified. Other
operators can be generated as well, together with their associated couplings and divergences,
new terms should then be added to the classical action for curing the latter. Theories in which
all divergences can be cured with a finite number of regulated operators are renormalisable.
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We now illustrate by an example how new operators in a theory can be generated by quantum
corrections, and in particular, that these operators can be nonlocal, i.e. susceptible of modifying
the behavior of the theory in both its UV and IR regime. In the latter case, they are therefore
relevant within a cosmological context.

2.2.2 Vacuum Polarisation Effects

Vacuum Induced Quantum Corrections to Light

In the framework of Quantum Electrodynamics (QED), the effective theory of a classical
electromagnetic field interacting with vacuum quantum fluctuations of the electron-positron field
via pair production, i.e. by taking into account the polarisability of the vacuum, is provided
by the Euler-Heisenberg theory (Heisenberg and Euler, 1936). It can be obtained in computing
the effective action for a classical electromagnetic field interacting with fermionic loops as we
outline below. The generating functional for QED is given by,

Z[j, η, η̄] =

∫
DAµDψDψ̄ exp

[
i

∫
d4x

(
− 1

4
FµνFµν + ψ̄

(
i /D −m

)
ψ − jµA

µ − iη̄ψ − ηψ̄

)]
,

(2.48)

where /D ≡ γµ(∂µ− ieAµ), η and η̄ are Grassmann numbers, and the gauge fixing term has been
omitted since it is irrelevant for the present discussion. As we are interested in the dynamics of
Aµ only, we consider rather the case where the fermionic sources are put to zero, η = η̄ = 0. In
that case, the integral over ψ and ψ̄ is Gaussian and can be carried out explicitly leading to,

Z[j, η = 0, η̄ = 0] =

∫
DAµ exp

(
iSeff [Aµ]− i

∫
d4x jµA

µ

)
, (2.49)

where,

Seff [Aµ] =

∫
d4x

[
− 1

4
FµνFµν

]
− iTr log

(
i /D −m

i/∂ −m

)
. (2.50)

Observe that this action is a truncation of the quantum effective action (2.46) at one-loop order,
where the fermions external legs have been removed because of the absence of fermionic sources.
In the case one is interested in the low-energy regime of the theory, that is, when the energy
of the electromagnetic field is much lower than the mass of the fermions, this one-loop effective
action reduced to the Wilson effective action. Expanding up to quadratic order in the fields one
gets [see e.g. (Parker, 1985; Dalvit and Mazzitelli, 1994; Dobado and Maroto, 1999)],

Seff [Aµ] =

∫
d4x

[
− 1

4
Fµν

(
1 +

e2(□)

8π2

)
Fµν +O(F 4)

]
, (2.51)

where,

e2(□) = e2(µ)

∫ 1

0
(1− t2) log

[
m2 − (1− t2)□/4

µ2

]
, (2.52)

with µ the renormalisation scale, e(µ) the associated renormalised charge and we recognise the
running of the coupling constant. The form factor induced by quantum averaging is nonlocal,
as it is non-polynomial in the d’Alembert differential operator. Considering the UV regime,
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where the mass of the fermions are light with respect to the typical energy scale, i.e. m2 ≪ −□,
it becomes,

e2(□) = 1− e2(µ)

12π2
log

(
−□
µ2

)
, (2.53)

where the log of the d’Alembertian is defined as,

log

(
−□
µ2

)
=

∫ ∞

0
dm2

[
1

m2 + µ2
− 1

m2 −□

]
. (2.54)

This shows how vacuum fluctuation of light fields leads to the presence of nonlocalities arising in
the corresponding form factors, due to the presence of particle creation. By taking the opposite
low-energy limit where the fermionic mass is assumed to be large m2 ≫ −□, the form factor
becomes an infinite series of local terms,

e2(□) ≃ 1 +
4 e2(µ)

15(4π)2
□
m2

, (2.55)

reflecting the decoupling of heavier particles, as stated by the Appelquist-Carazzone theorem
(Appelquist and Carazzone, 1975) 3. Adding higher order terms in the effective action (2.51) in
that regime leads to the Euler-Heisenberg effective action to second order in e2,

Seff [Aµ] =

∫
d4x

[
− 1

4
FµνFµν −

e2(µ)

15(4π)2
1

m2
Fµν□Fµν (2.56)

e4(µ)

90(4π)2
1

m4

((
FµνFµν

)2
+

7

4
(FµνF̃µν)

2

)]
, (2.57)

where F̃µν ≡ ϵµναβFαβ/2 is the Hodge dual of the Maxwell stress tensor.

As we shall outline next, similar effects arise when one considers the response of a classical
gravitational field to quantum vacuum fluctuations of a quantised massive scalar field.

Vacuum-induced Quantum Corrections to Gravity

In a similar spirit as in the above example, when treated perturbatively, quantum fluctua-
tions of the metric and of any matter field on curved spacetime induce higher order curvature
invariants such as R2, RµνR

µν , . . . , to the Einstein-Hilbert action (Stelle, 1978; Barvinsky and
Vilkovisky, 1990). Such higher-derivative corrections indicate the presence of an Ostrograsky
ghost (Ostrogradsky, 1850), which consequently ruins the unitarity of the theory at perturbative
level. However, this ghost has mass of the order of the Planck mass Mp, so that it is sensible to
use the resulting theory as a low energy effective field theory with UV cutoff Λ =Mp. However
when considered in such regimes, quantum gravitational effects induced by these local operators
are generically very small [see e.g. (Donoghue, 1994)]. Above that scale the theory requires an
appropriate UV completion.

The same semi-classical procedure as in the above QED example can be applied in the
case of a massive scalar field evolving on a curved background [see e.g. (Birrell and Davies,

3. In this case, the decoupling of heavy particles is explicit in the mass-dependent subtraction scheme
(Manohar, 1997).
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1984; Buchbinder et al., 1992; Mukhanov and Winitzki, 2007) for standard textbooks, see also
(Barvinsky and Mukhanov, 2002)],

SM [ϕ] = −1

2

∫
d4x

√
−g

[
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

]
, (2.58)

where ξ is a dimensionless constant for which the value ξ = 1/6, makes the coupling conformal,
i.e. the overall action becomes conformally invariant when the mass is set to zero. The relevant
generating functional in that case reads,

Z[J ] =

∫
DgµνDϕ exp

[
i

∫
d4x

√
−g
(

1

16πG

(
R− 2Λ

)
+

1

2
ϕ
(
□−m2 − ξR

)
ϕ− iJµνgµν

)]
,

and the classical evolution is given by,

Rµν −
1

2
gµνR+ gµνΛ = 8πGTµν , (2.59)

where,

Tµν(x) = − 2√
−g

δSM
δgµν(x)

. (2.60)

Carrying the integration over the Gaussian functional integral leads to the effective action,

Seff [gµν ] =
1

16πG

∫
d4x

√
−g
(
R− 2Λ

)
+
i

2
Tr log

(
□−m2 − ξR

)
. (2.61)

Defining,

Γ(1)[gµν ] ≡
1

2
Tr log

(
□−m2 − ξR

)
, (2.62)

we can write,

eiΓ
(1)[gµν ] =

∫
Dϕ exp

(
iSM [ϕ]

)
,

from which one can derive,

− 2√
−g

δΓ(1)

δgµν(x)
= − 2√

−g

∫
Dϕ

[
δSM/δg

µν(x)
]
exp

(
iSM [ϕ]

)∫
Dϕ exp

(
iSM [ϕ]

) , (2.63)

=

∫
Dϕ Tµν(x) exp

(
iSM [ϕ]

)∫
Dϕ exp

(
iSM [ϕ]

) , (2.64)

=
⟨0, out|Tµν(x)|0, in⟩

⟨0, out|0, in⟩
≡ ⟨Tµν(x)⟩in−out . (2.65)

Observe that here the computation is done in the context of the in-out formalism, appropriate
for computing scattering amplitudes. This typically leads to a complex vacuum expectation
value for the energy momentum tensor ⟨Tµν⟩in−out and therefore does not make much sense
once it enters into Einsteins’ equations. Instead, for obtaining a real vacuum expectation value,
the correct formalism to use is rather the in-in or closed time path formalism already mentioned
in Sec. 2.1. In this framework, the Feynman Green’s functions are turned into retarded ones
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making the overall evolution of the system causal 4. In such a framework, Eq. (2.61) leads to a
semi-classical dynamics for the metric,

Rµν −
1

2
gµνR+ gµνΛ = 8πG ⟨Tµν⟩in−in , (2.66)

The computation of the one-loop vacuum effective action Γ(1) can be done using the Schwinger-
De Witt heat kernel technique [see e.g. Ref. (Vassilevich, 2003) for a review] and the finite
part of the resulting one-loop contribution takes the form (Avramidi, 1986; Barvinsky and
Vilkovisky, 1987; Gorbar and Shapiro, 2003a; Codello and Jain, 2016),

Γ(1) =− 1

2(4π)2

∫
d4x

√
−g

{
m4

2

[
log

(
4πµ2

m2

)
+

3

2

]
+m2

(
ξ − 1

6

)[
log

(
4πµ2

m2

)
+ 1

]
R

+ Cµνρσ

[
1

60
log

(
4πµ2

m2

)
+ kW (□)

]
Cµνρσ +R

[
1

2

(
ξ − 1

6

)2

log

(
4πµ2

m2

)
+ kR(□)

]
R

}
.

where the form factors kW,R are nonlocal and have quite complicated expressions that we do not
report here, but can be found for instance in (Gorbar and Shapiro, 2003a). In the same limits
as those considered in the above QED example, the form factors acquire similar structures. In
the case where the scalar is massless m = 0, the form factors recombine with the finite parts
and read,

kW (□) = − 1

60
log

(
−□
4πµ2

)
, kR(□) = −1

2

(
ξ − 1

6

)2

log

(
−□
4πµ2

)
, (2.67)

while at finite mass but still in the UV regime −□ ≫ m2, they take the form (Codello and Jain,
2016),

kW,R(□) ∼ a1 log

(
−□
m2

)
+ a2

(
m2

−□

)
+ a3

(
m2

−□

)
log

(
−□
m2

)
+ a4

(
m2

−□

)2

+ . . . (2.68)

where the ai’s are real numbers. At low energies one also finds the expected higher derivative
structure,

kW (□) ∼ kR(□) ∼ −□
m2

. (2.69)

The same kind of corrections are also observed for massive spinor and vector fields (Gorbar and
Shapiro, 2003b). These quantum induced corrections are suppressed by the Planck scale M2

p in
the effective action, therefore they are expected to be irrelevant in the late-time cosmological
context were the typical energy scale of the Universe is much lower, H0 ∼ 10−61Mp. However, at
early time when the Universe was energetic enough, for instance in the course of an inflationary
period, these corrections can have significant effects on the expansion rate (Espriu et al., 2005).

One can conclude that gravitational corrections induced by quantum fluctuations of mas-
sive fields have generically a nonlocal structure. In the high energy limit with respect to the
masses of the particles at play, such corrections involve non-polynomial derivative operators,
characterising a genuine nonlocality, induced by long distance propagation of light particle in
loop processes. In the opposite low energy limit, the decoupling of heavy massive particles

4. Note that the use of such a formalism necessitates also to introduce an extra correction to the measure of
the generating functionals’ integral, so as to guarantee a correct unitary, real and causal evolution of the system
(DeWitt, 1967).
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leads to an infinite series of higher-order derivative (local) terms suppressed by powers of m2.
The structure of the form factors in either cases is very similar to that in QED, when quan-
tum fluctuations of the electron-positron field correct the classical dynamics of an interaction
electromagnetic field.

However, being suppressed by powers of the Planck mass Mp, they become relevant only
close to that scale, where perturbative methods break down as well. These effects are therefore
of none cosmological relevance and cannot be linked to dark energy physics. As we outline
below, another semi-classical effect induced by quantum corrections to the classical gravitational
dynamics giving raise to nonlocalities is provided by the conformal anomaly.

2.2.3 Conformal Anomaly

According to Noether’s theorem, any symmetry generator gives raise to a conserved current.
When a theory is globally invariant under coordinate dilatation xµ → eαxµ, the conservation of
the current jµD = xµT

µν implies the vanishing of the trace of the energy-momentum tensor of
the theory, Tµµ = 0, 5. In the presence of a curved background, vacuum quantum fluctuations
induce the so-called conformal anomaly, i.e. finite quantum corrections to the trace of the
vacuum expectation value of the renormalised energy-momentum tensor break the conformal
symmetry (Capper and Duff, 1974). Such an anomaly carries information about the nonlocal
structure of the gravitational effective action and, in particular, about the quantum corrected
dynamics of its conformal sector.

In computing vacuum fluctuations of a massless, conformally coupled scalar field [Eq. (2.58)
with m = 0, ξ = 1/6], the divergence one needs to cure into the renormalised effective action
reads [see e.g. (Deser et al., 1976; Birrell and Davies, 1984; Riegert, 1984; Barvinsky et al.,
1995) for derivations],

Γ
(1)
div =

1

2
(4π)−(4−ϵ)/2

(
µ

m

)ϵ
Γ

(
2

ϵ

)∫
d4−ϵx

√
−g

(
1

120
C2 − 1

360
E

)
, (2.70)

in using dimensional regularisation, where,

Γ

(
2

ϵ

)
=

2

ϵ
− γE +O(ϵ) , (2.71)

with γE ≃ 0.577 the Euler-Mascheroni constant, E is the Gauss-Bonnet term,

E ≡ RµνρσR
µνρσ − 4RµνR

µν +R2 , (2.72)

and C2 the square of the Weyl tensor,

C2 ≡ RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 . (2.73)

Computing the corresponding energy-momentun tensor and using the relations,

− 2√
−g

gµν
δ

δgµν

∫
d4−ϵx

√
−g CµνρσCµνρσ = −ϵ

(
CµνρσCµνρσ −

2

3
□R
)
, (2.74)

− 2√
−g

gµν
δ

δgµν

∫
d4−ϵx

√
−g E = −ϵE , (2.75)

5. Subtleties associated to the construction of such a current can be understood in solving the QED example
in Ex. 3.4 of (Maggiore, 2005).
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the divergent contribution to the vacuum expectation value of the energy-momentum tensor
becomes finite as ϵ→ 0,

⟨Tµµ ⟩div = − 2√
−g

gµν
δΓ

(1)
div

δgµν
(2.76)

= − 1

(4π)2

[
1

120

(
C2 − 2

3
□R
)
− 1

360
E

]
, (2.77)

and therefore the renormalised counterpart acquires a non-vanishing trace ⟨Tµµ ⟩ren = −⟨Tµµ ⟩div.
This is the origin of the trace, or conformal anomaly. It can be seen as a reminiscent of the fact
that the Weyl tensor and the Gauss-Bonnet terms are not scale invariant in dimensions other
than four. This anomaly persists in the case where more complicated geometrical structures
(tensor functions of the metric) are added to the original action and cannot be entirely removed.
However, there is still some freedom in modifying the action so as to modify the form of the
trace anomaly. Indeed, adding the conformally invariant

√
−g R2 term into the action, and

noticing that,

− 2√
−g

gµν
δ

δgµν

∫
d4x

√
−g R2 = −12□R , (2.78)

the coefficient of the ∼ □R term in Eq. (2.77) can therefore be adjusted at will. It is convenient
to choose it as,

⟨Tµµ ⟩ren = − 1

(4π)2

[
1

120
C2 − 1

360

(
E − 2

3
□R
)]

, (2.79)

so that under conformal decomposition gµν = e2σ ḡµν , the various quantities transform as,

√
−g C2 =

√
−ḡ C̄2 , (2.80)

√
−g
(
E − 2

3
□R
)

=
√
−ḡ
(
Ē − 2

3
□̄R̄
)
+ 4

√
−ḡ ∆̄4σ . (2.81)

where ∆4 is the Paneitz operator (Paneitz, 2008),

∆4 ≡ □2 + 2Rµν∇µ∇ν −
2

3
R□+

1

3
gµν∇µR∇ν . (2.82)

which is conformally covariant,

√
−g ∆4 =

√
−ḡ ∆̄4 . (2.83)

Now, by focusing on the conformal sector, i.e. by taking the metric ḡµν to be fixed, Eq. (2.65)
implies that,

δΓ(1)

δσ
=

√
−g ⟨Tµµ⟩ren , (2.84)

which can be integrated with respect to σ to give,

Γ(1) =
1

120

∫
d4x

√
−ḡ C̄2σ − 1

360

∫
d4x

√
−ḡ

[(
Ē − 2

3
□R̄
)
σ + 2σ∆̄4σ

]
, (2.85)
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where we discarded the irrelevant overall numerical factor. In solving Eq. (2.81) for σ and
replacing it back into the action leads to,

Γ(1) = Γanom[g]− Γanom[ḡ] , (2.86)

with,

Γanom[g] =
1

8

∫
d4x

√
−g

(
E − 2

3
□R
)
∆−1

4

[
2αC2 + β

(
E − 2

3
□R
)]

, (2.87)

where the coefficients α = 1/120 and β = 1/360, in the single massless scalar case that we
are considering here. In the case where several fields are integrated out, these coefficients are
modified by the corresponding number of scalar, spinor and vector fields. One can see that
the anomalous effective action (2.87) has a genuinely nonlocal structure, due to the long range
character of the massless fields quantum fluctuations. The anomaly induces the conformal factor
of the spacetime metric to become dynamical (Antoniadis et al., 1997). This has been considered
to play a relevant role in the understanding of the dark energy (Antoniadis et al., 2007; Mottola,
2010), and uncover other potentially detectable effects such as gravitational waves induced by
scalar excitations (Mottola, 2017).

2.3 Nonlocality Versus Gauge Symmetry in Massive Theories

In this section, we provide examples showing that (abelian) gauge theories whose gauge
symmetry is explicitly broken by a mass term can be recast in a nonlocal form, so that their
symmetry is recovered. This underlines an interesting interplay between locality and gauge sym-
metry. We first apply such a procedure on the Proca action describing massive electrodynamics
while we continue in applying the same method in Fierz-Pauli massive gravity.

2.3.1 Massive Electrodynamics

The theory describing massive spin-1 particles is provided by the Proca Lagrangian (Proca,
(1936),

Lproca[A] = −1

4
FµνFµν −

1

2
m2AµAµ −Aµj

µ. (2.88)

In the massless limit m→ 0, the theory acquires a U(1) gauge symmetry,

Aµ −→ Aµ − ∂µθ , (2.89)

where θ is an arbitrary smooth scalar fields. In the absence of sources, a residual gauge freedom
remains and this symmetry can be used to eliminate two components of the massless field Aµ.
For example the radiation, or Coulomb gauge conditions are provided by,

A0 = ∂iA
i = 0 , (2.90)

which implies the Lorentz gauge ∂µA
µ = 0. In that case, the theory therefore governs the dy-

namics of two modes being the helicity ±1 of the photon. When a source is present, the residual
gauge condition is lost and a third component of the field is non-vanishing and, although non-
dynamical, plays the role of the Coulomb potential induced by that source.
In the presence of a mass, this gauge symmetry is explicitly broken and can no longer be used to
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fix spurious degrees of freedom. However, according the representation theory of the Poincaré
group, a massive spin-1 particles is described by three degrees of freedom being the two trans-
verse helicity ±1 modes, similarly to the massless case, together with an additional longitudinal
helicity-0 mode. The vanishing of the forth component of the field Aµ is in fact enforced from
a condition that arises dynamically. Indeed, computing the Euler-Lagrange equations for the
Lagrangian (2.88) one finds,

∂µ
(
∂µAν − ∂νAµ

)
−m2Aν = jν , (2.91)

and applying ∂ν one finds,

m2∂νA
ν = −∂νjν . (2.92)

Therefore, if the current is conserved or is identically zero ∂νj
ν = 0, the Lorentz condition

emerges dynamically. In that case, going to the center of mass of the particle, its four-momentum
vector reads kµ =

(
m, 0⃗

)
and the condition (2.92) in Fourier space leads to A0 = 0. In that case,

the equations of motion (2.91) take the Klein-Gordon form for each component of the spatial
vector field Ai,

(□−m2)Ai = 0 , (2.93)

in accordance with the representation theory of the Poincaré group.

In the massive case however, a new gauge invariant theory can be constructed. This can
be realised in using the so-called Stueckelberg formalism (Stueckelberg, 1938) consisting in
introducing supplementary degrees of freedom so as to restore the broken symmetry. This is
done by considering the new Lagrangian,

Lproca[A] → Lstueck[A,ϕ] , (2.94)

obtained by performing the substitution,

Aµ → Aµ +
1

m
∂µϕ , (2.95)

where the scalar field ϕ, the so-called Stueckelberg field, has canonical dimension of mass. Ob-
serve that, since this introduction follows the pattern of the original gauge transformation of
the massless theory, Fµν is invariant. Writing down the explicit form of the new Lagrangian,
the extra terms arise only from the mass and the source term,

Lstueck[A,ϕ] = −1

4
FµνFµν −

1

2
m2AµAµ −

1

2
∂µϕ∂

µϕ−mAµ∂
µϕ−Aµj

µ +
1

m
ϕ∂µj

µ, (2.96)

where we have integrated by part the source term involving ϕ and until now we assume nothing
about whether or not the current is conserved. This gives rise to a theory that contains now more
(five) field components, but has the advantage of being gauge symmetric. Indeed, according
that the fields transform simultaneously under U(1) as,

Aµ → Aµ − ∂µθ , ϕ→ ϕ+mθ, (2.97)

the Lagrangian density do not change since the combination (2.95) is trivially invariant. Essen-
tially, the new field introduced plays to role of the Goldstone boson of the emergent spontaneous
symmetry breaking pattern, non-linearly realising the spontaneously broken U(1) symmetry.
This is an example of the Stueckelberg trick and shows that one can, by construction, always
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restore a gauge symmetry by introducing new field degrees of freedom. Now, consider the
corresponding equation of motion for Aµ and ϕ,

∂µF
µν = m2

(
Aν +

1

m
∂νϕ

)
+ jν , (2.98)

∂µ

(
Aµ +

1

m
∂µϕ

)
= − 1

m2
∂µj

µ . (2.99)

The latter can be solved formally in writing (Dvali et al., 2007) [see also (Hinterbichler, 2012)
for a review],

ϕ = −□−1

m

(
∂µj

µ −m∂µA
µ
)
, (2.100)

and replacing ϕ by this expression in the equation of motion for Aµ, (2.98), one obtains,

Lstueck[A] = −1

4
Fµν

(
1− m2

□

)
Fµν −Aµj̃µ , (2.101)

where we dropped an O(j2) term and the current has been redefined as,

j̃µ ≡
(
ηµν − ∂µ∂ν

□

)
jν , (2.102)

which reflects the gauge symmetry restoration. The equations of motion for Aµ read,(
1− m2

□

)
∂νF

µν = j̃µ . (2.103)

Such a procedure shows that one can recover a gauge symmetry explicitly broken by a mass
term by paying the price of nonlocality. In fixing the Lorentz gauge condition, one recovers the
local Klein-Gordon equations of motion for Aµ, sourced by a transverse current j̃µ. At high
energy compared to the mass scale, the nonlocal term becomes negligible −m2/□ ≪ 1 and one
recovers the behavior of a massless photon. In the infrared, this term becomes relevant and
suppresses the electrostatic potential, as expected for a massive particles with a Yukawa-type
potential. The operator in front of ∂νF

µν can be seen as a high-pass filter and, in the case of a
semi-classical approach as the one presented in the massless case in Sec. 2.2.2, one can see it as
de-electrifying the vacuum,

∂νF
µν =

□
□−m2

⟨0|j̃µ|0⟩ . (2.104)

This is the essence of the degravitation idea (Arkani-Hamed et al., 2002; Dvali et al., 2002)
[see also (Barvinsky, 2004; Dvali et al., 2007; Patil, 2009)], which states that such an operator
can be used to make the quantum vacuum energy gravitate less at low energies than at higher
ones, so as to provide an explanation of why the cosmological constant is so small, whereas the
vacuum energy at small scales is huge. Such an effect therefore supposes a running of Newton’s
constant G ≡ G(−□). In the following, we show how the very same procedure applies in the
linearised theory of massive gravity.
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2.3.2 Pauli-Fierz Massive Gravity

The Pauli-Fierz action of linear theory for a massive spin-2 field over Minkowski spacetime
coupled to a source Tµν is given by (Pauli and Fierz, 1939),

SFP + Sint =
1

2

∫
d4x

[
hµνEµν,ρσhρσ −m2(hµνh

µν − h2) + κhµνT
µν
]
, (2.105)

where the metric perturbation hµν ≡ gµν − ηµν , with |hµν | ≪ 1, and h ≡ hµνηµν , is coupled to
the matter fields Tµν , through the coupling constant κ ≡

√
32πG ∼M−1

p , and the Lichnerowicz
operator Eµν,ρσ, is defined as,

Eµν,ρσ ≡ 1

2
(ηµρηνσ + ηµσηνρ − 2ηµνηρσ)□+ (ηρσ∂µ∂ν + ηµν∂ρ∂σ)

−1

2
(ηµρ∂σ∂ν + ηνρ∂σ∂µ + ηµσ∂ρ∂ν + ηνσ∂ρ∂µ) . (2.106)

The relative coefficient between the two members of the mass term is the only one avoiding the
presence of an extra ghost [see (Hinterbichler, 2012; de Rham, 2014) for reviews]. The equations
of motion read,

□hµν−ηµν□h+ηµν∂ρ∂σhρσ+∂µ∂νh−∂ρ∂νhµρ−∂ρ∂µhνρ−m2 (hµν − ηµνh) = −κ
2
Tµν , (2.107)

to which the application of ∂µ leads to the dynamical constraint,

∂µ(h
µν − ηµνh) =

κ

2m2
∂µT

µν , (2.108)

which vanishes when the energy-momentum tensor is conserved at linear level ∂νT
µν = 0.

Taking instead the trace of Eq. (2.107) leads to,

3m2h = −κ
2
T . (2.109)

For the massless theory, the gauge symmetry is provided by infinitesimal diffeomorphisms xµ →
xµ + ξµ that induces,

hµν(x) −→ hµν − (∂µξν + ∂νξµ) . (2.110)

Using the same procedure as in the previous example, we restore the latter symmetry in the
massive theory by introducing a Stückelberg vector field Aµ through,

hµν → hµν +
1

m
(∂µAν + ∂νAµ) , (2.111)

which transforms as Aµ → Aµ +mξµ, so that the action is left invariant. It becomes,

SFP + Sint =

∫
d4x

[
1

2
hµνEµν,ρσhρσ −

m2

2
(hµνh

µν − h2)− 1

2
FµνF

µν

]
+

∫
d4x

[κ
2
hµνT

µν + 2mAνj
ν
]
, (2.112)

where Fµν ≡ ∂µAν − ∂νAµ and,
jν ≡ ∂µ(h

µν − ηµνh) . (2.113)



CHAPTER 2. NONLOCAL MODIFICATIONS TO GRAVITY 58

We then use the equations of motion of Aµ,

∂µF
µν = −mjν , (2.114)

together with the condition,
∂νj

ν = 0 , (2.115)

obtained by applying ∂ν to eq. (2.114), for integrating it out the Stückelberg field (Porrati,
2002). For doing so we separate Aν into its transverse and longitudinal parts,

Aν = AνT − ∂να , (2.116)

where ∂νA
ν
T = 0, and we have □AνT = −mjν . Thus, Eq. (2.115) allows us to fix the transverse

part to AνT = −m□−1jν , while the longitudinal part α remains arbitrary. The most general
solution of eq. (2.114) is given by (Dvali, 2006; Dvali et al., 2007),

Aν = −m□−1jν − ∂να , (2.117)

The transformation properties of the field α under linearised diffeomorphisms can be obtained
by observing that □α = −∂µAµ. Since under linearised diffeomorphisms Aµ → Aµ +mξµ, it
reads,

□α→ □α−m∂µξ
µ . (2.118)

Observe that the transformation property of (□α)/m, is the same as that of h/2. It is therefore
convenient to trade α for a new field N (Jaccard et al., 2013),

N ≡ h

2
− □α

m
, (2.119)

which is invariant under linearised diffeomorphisms and where α is fixed to some given value,
e.g. α = 0. Performing the replacement (2.117) in the action (2.112) and trading α for N we
find,

S =

∫
d4x

[
1

2
hµν

(
1− m2

□

)
Eµν,ρσhρσ − 2m2N

1

□∂µ∂ν(h
µν − ηµνh) +

κ

2
hµνT

µν

]
, (2.120)

where the scalar field N enters the action as a Lagrange multiplier. This action is the nonlocal
formulation of Fierz-Pauli massive gravity, where invariance under linearised diffeomorphism
is restored. Observe that the kinetic term features the same structure as in nonlocal massive
electrodynamics (2.101). However, it also presents an additional term enforcing the constraint,

∂µ∂ν(h
µν − ηµνh) = 0 . (2.121)

which is also a consequence of the local theory, as seen from (2.109). At the fully covariant level
the latter reads gµνR

µν = 0, in the presence of any sources. This conditions clearly leads to an
unacceptable physical theory and expresses the presence of the van Dam, Veltman, Zakharov
(vDVZ) discontinuity (Zahkarov, 1970; van Dam and Veltman, 1970) at linearised level, which
manifest itself also at fully nonlinear level in that case, since for GR one has R = −8πGT
(Porrati, 2002).

2.4 Infrared Nonlocal Modifications to Gravity

Along with the ones mentioned in the previous sections, other approaches involving nonlo-
calities motivated by different mechanisms have been developed as well for modifying GR in its
low energy regime. Here, we non-exhaustively provide a list of some models which we proposed
into that framework, presenting their structure, their main characteristics and their current
status in a cosmological context.



CHAPTER 2. NONLOCAL MODIFICATIONS TO GRAVITY 59

DGP Braneworld

Inspired by higher dimensional theories aiming to provide a solution to the hierarchy problem
(Antoniadis et al., 1998; Arkani-Hamed et al., 1998; Randall and Sundrum, 1999; Gregory
et al., 2000; Kogan and Ross, 2000; Parikh and Solodukhin, 2001), the Dvali-Gabadadze-Porrati
(DGP) model (Dvali et al., 2000; Dvali and Gabadadze, 2001) attracted a lot of interest at the
beginning of the twenty-first century. Aiming to modify the behavior of Einstein’s gravity on
infrared scales, the model describes the gravity induced on a 3 + 1 dimensional brane from
gravity present on a higher, 4 + 1 dimensional infinite ambient space, while matter fields are
confined on the brane. The action reads,

SDGP =
M3

5

2

∫
d5X

√
−G R(G) +

M2
p

2

∫
d4x

√
−g R(g) + SM

[
g, ψ

]
, (2.122)

where M5,Mp are the five and four dimensional Planck constants and XA, xµ (where A runs
from 0 to 4) are the coordinate systems on the bulk and the brane, respectively. The brane
metric gµν(x) is induced by the bulk one GAB. In a particular gauge where the brane is fixed
at X5 = 0 and the four other bulk coordinates coincide with the ones of the brane, this relation
reads,

gµν = Gµν(x,X
5 = 0) . (2.123)

In that case, the propagator intervening into the computation of the classical potential between
static masses on the brane implies [see e.g. (Deffayet et al., 2002)],

G̃DGP(k) =
−i

M2
pk

2 + 2M3
5k

, (2.124)

which translates into real space as a nonlocal quadratic form −□ +MDGP

√
−□, with the so-

called DGP scale, MDGP = 2M3
5 /M

2
p . The Källén-Lehmann spectral density computed from

this quadratic form describes a continuum of massless to infinitely massive gravitons [see e.g.
(Hinterbichler, 2012)]. Above the DGP scale, the k2 term dominates the propagator (2.124) and
the 1/r Newtonian potential is recovered (modulo small corrections), whereas in the infrared the
potential scales as 1/r2, so that the gravitational force weakens. Such a decrease is produced
by the four dimensional gravitons leaking out into the extra dimension below MDGP. The
model was shown to possess self-accelerating solutions (Deffayet, 2001; Deffayet et al., 2002) and
therefore is of potential relevance in a cosmological context. However, longitudinal gravitational
degrees of freedom acquire a negative kinetic term on the self-accelerating solution, leading to
the presence of ghost instabilities that render the model physically unacceptable (Luty et al.,
2003; Nicolis and Rattazzi, 2004; Charmousis et al., 2006; Gorbunov et al., 2006; Izumi et al.,
2007; Koyama, 2007).

Other modified gravity models featuring a nonlocal character where also introduced. Some
of them were inspired by first principle while other ones were introduced into a more phenomeno-
logical context for addressing the cosmological constant problem and cosmic acceleration. We
review some of them in the subsequent sections.

First Attempt at Nonlocal Modifications of Gravity

An early nonlocal modification to the theory of GR was given by C. Wetterich (Wetterich,
1998) on purely theoretical grounds. This model, although modifying the dynamics of GR at
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large scales, was not motivated for explaining cosmic acceleration, as it was not yet discovered
at the time. Instead, the theory was motivated by the fact that the linearised action for gravita-
tional fluctuations around Euclidean flat space is not bounded from below, and implies that no
generating functional with standard covariant measure can be well-defined. The corresponding
action reads,

Snl =
1

16πG

∫
d4x

√
−g

[
R− τ2

2
R

1

□− ξR
R

]
, (2.125)

where τ, ξ are real numbers. For τ2 ≥ 0, the action for small fluctuations becomes positive
semi-definite, while in four dimensions for τ ≥ 2/3, flat space provides its absolute minimum.
From the cosmological perspective, it has been shown later on that this model is irrelevant for
explaining cosmic acceleration (Koivisto, 2008a).

Implementation of Degravitation

Nonlocal models where then proposed as solutions to solve the cosmological constant and
to provide an alternative to cosmic acceleration. The degravitation idea outlined at the end of
Sec. 2.3.1, was implemented into an action by A. Barvinsky (Barvinsky, 2003). Starting from
the covariantisation of the Einstein-Hilbert action over flat space that has been rewritten in a
nonlocal form,

S =

∫
d4x

√
−g

[
Gµν□−1Rµν +O

(
R3
µν

) ]
. (2.126)

As such the degravitation mechanism can be obtained from the replacement,

1

□ −→
1 + F

(
L2□

)
□ , (2.127)

where the function F respects F(X ≫ 1) ≪ 1 and F(X → 0) ≫ 1, so as to be relevant for late
time cosmology, and L is the characteristic length scale where the infrared modification takes
place. The equation of motion takes the form,[

1 + F
(
L2□

)]
Gµν +O

(
R2
µν

)
= 8πGTµν , (2.128)

where the Bianchi identities are satisfied, i.e. the energy-momentum tensor of matter is con-
served, as the action (2.126) is diffeomorphism invariant. Formally, the commutator

[
∇µ,□−1

]
gives raise to an infinite number of powers of curvature terms which are compensated by the
covariant derivative of the O

(
R2
µν

)
term and higher orders. To our knowledge, no cosmological

considerations have been made for such a model, whose infinite curvature expansion makes it
seemingly difficult to handle in the presence of a FLRW background.

Deser-Woodard Model

A model which stimulated much interest in recent years has been proposed by S. Deser
and R. Woodard (Deser and Woodard, 2007), so as to modify gravity in what could seen as a
minimal nonlocal version of f(R) theories. They suggested a modified Einstein-Hilbert action
of the form,

SDW =
1

16πG

∫
d4x

√
−g R

[
1 + f

(
1

□R
)]

, (2.129)
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where f is a dimensionless free function 6. The introduction of this model was inspired by the
fact that such terms can be generated by quantum loop effects, as we have seen in Sec. 2.2.2,
and motivated in that it could provide an explanation for cosmic acceleration. Objectively, as
f(R) theories, this model has no predictive power as long as the function f is arbitrary. It has
been proposed that the form of this function is fixed so as to reproduce a ΛCDM background
cosmology (Deffayet and Woodard, 2009), but also other choices where explored (Koivisto,
2008a). In the former case, the model has the same number of parameters than ΛCDM and the
distortion function reads,

f̄ (ζ) = −2

∫ ∞

ζ
dζ1 ζ1ϕ (ζ1)− 6ΩΛ

∫ ∞

ζ
dζ1

ζ21
h (ζ1) I (ζ1)

∫ ∞

ζ1

dζ2
I (ζ2)

h (ζ2) ζ42
(2.130)

+2

∫ ∞

ζ
dζ1

ζ21
h (ζ1) I (ζ1)

∫ ∞

ζ1

dζ2
r (ζ2)ϕ (ζ2)

ζ52
,

where ζ and r are given by ζ ≡ 1 + z and,

r ≡ R̄/H2
0 , (2.131)

with R̄ the background Ricci scalar, and the functions ϕ (ζ) and I (ζ) read,

ϕ (ζ) = −6ΩΛ

∫ ∞

ζ
dζ1

1

h (ζ1)

∫ ∞

ζ1

dζ2
1

h (ζ2) ζ42
, I (ζ) =

∫ ∞

ζ
dζ1

r (ζ1)

ζ41h (ζ1)
. (2.132)

Furthermore, the dimensionless Hubble function h ≡ H/H0 appearing into the above is the one
of the cosmology one wants to recover, i.e. ΛCDM in the present case. The function f̄

(
□̄−1R̄

)
is then recovered in inverting the following relation,

□̄−1R̄ (ζ) = −
∫ ∞

ζ

dζ1ζ
2
1

h (ζ1)

∫ ∞

ζ1

dζ2
r (ζ2)

ζ42h (ζ2)
= −

∫ ∞

ζ

dζ1ζ
2
1

h (ζ1)
I (ζ1) . (2.133)

The same reconstruction technique has also been shown to apply for non-standard ΛCDM
cosmologies (Park and Shafieloo, 2017). To some general extent, this theory is free of ghost
instabilites (Koivisto, 2008b; Deser and Woodard, 2013a).
In the case where the background is fixed to ΛCDM in the nonlocal model, its distinction
from the latter resides in its linear and nonlinear perturbation features. The effect of linear
perturbations on the growth of structures has first been studied in (Dodelson and Park, 2014),
which arrived at the conclusion that current data redshift space distortion data rule out the
model at a level of 8σ, due to a strong excess of growth. However, a further analysis revealed
that the model was in fact viable for explaining the data in the same context (Nersisyan et al.,
2017b) and actually described a lower growth of structures than ΛCDM. This discrepancy has
been due to an error in the numerical computation code of the former group, as recognised in
(Park, 2018). A more quantitative analysis of the observational performance of this model with
respect to ΛCDM is currently under way (Amendola et al., 2018).

RT and RR Models

Since then, the exploration of possible nonlocal modifications to gravity has turned into an
expedition. Several phenomenological nonlocally modified gravity theories have flourished and
many model have been studied in a cosmological context. For instance, the quadratic action

6. Notice that Eq. (2.125) with ξ = 0 is a special case of this theory.
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of nonlocal massive gravity of Eq. (2.120) has been considered without the constraining term
controlled by N , since it is the latter that flaws the theory on physical grounds. In this case,
the equations of motion take the form,(

1− m2

□

)
Eµν,ρσhρσ = −16πGTµν , (2.134)

where hµν has been rescaled by κ so as to become dimensionless. Under canonical covariantisa-
tion Eµν,ρσhρσ → −2Gµν , but enforcing □η = ∂2 → □g ≡ gµν∇µ∇ν , violates energy momentum
conservation, since

[
∇µ,□−1

g

]
̸= 0. One way out of this situation is to add higher curvature

terms so as to compensate for this discrepancy, in the same way as in Eq. (2.128), or to extract
the transverse part of the corresponding expression (Porrati, 2002; Jaccard et al., 2013) [see
also (Modesto and Tsujikawa, 2013)] by writing,

Gµν −m2
(
□−1
g Gµν

)T
= 8πGTµν , (2.135)

where T denotes the covariant transverse extraction defined in Eq. (3.4). Cosmological, FLRW
background solutions of this model were investigated into (Foffa et al., 2014b), where it was
shown to be flawed by a growing mode present in the RD and MD era, spoiling the viability
of the cosmological evolution. Instead, the following theory does not exhibit these unwanted
features (Maggiore, 2014; Foffa et al., 2014b),

Gµν −
1

3
m2
(
gµν□−1

g R
)T

= 8πGTµν . (2.136)

At the fully nonlinear level, the transverse part extraction presents difficulties for being imple-
mented into an action. Nevertheless, in linearising the theory over Minkowski space one can
find,

S =
1

2

∫
d4x

[
hµνEµνρσhρσ −

2

3
m2hµνP

µνP ρσhρσ

]
, (2.137)

where Pµν is the linear transverse projector defined in Eq. (3.9). Remarking that Pµνhµν canon-
ically covariantises to ∼ □−1R, one can write the following action (Maggiore and Mancarella,
2014),

S =

∫
d4x

√
−g

[
R− 1

6
m2R

1

□2
R

]
. (2.138)

This model has therefore the same equations of motion as the one of Eq. (2.136), once linearised
over flat space, but its corresponding nonlinear corrections are generically different, as well as
the dynamics it induces for non-trivial backgrounds, as we will see below.

S =

∫
d4x

√
−g

[
R− 1

6
m2R

1

□2
R

]
. (2.139)

The nonlocal modified gravity models (2.136), (2.139) have been shown to provide a viable
cosmological background evolution and, in particular, both exhibit late time self-accelerating
solutions induced by a phantom dark energy component, i.e. with wde < −1. The theoretical
structure and cosmological implications of these two models are the main subject of this thesis
and will be presented in great details in the subsequent chapters.
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An extended model where the □ operator in Eq. (2.139), is promoted to the operator □ →
□−ξR, which is conformally covariant for the value ξ = 1/6 (Mitsou, 2015; Cusin et al., 2016a),

S =

∫
d4x

√
−g

[
R− 1

6
m2R

1

(−□+ ξR)2
R

]
, (2.140)

has also been shown to provide interesting FLRW background cosmologies. In particular, when
ξ is left as a free parameter, such a model interpolates between the one in Eq. (2.139) (ξ = 0)
and ΛCDM (ξ → +∞), as can be seen directly from the above action. A more sophisticated
version of the RR class of models is given in (Narain and Li, 2018), which has the structure of an
ultraviolet renormalisable theory, including similar nonlocalities at leading order in curvature.

Tensor Nonlocalities

Studies focusing on nonlocal structures similar to (2.139), but involving curvature tensors
such as the Ricci and Weyl tensors instead of the Ricci scalar have also been studied. Notice
that, in that case, studying the dynamics that such terms induce on an FLRW background is
sufficient since the Weyl tensor,

Cµνρσ = Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

3
gµ[ρgσ]νR , (2.141)

is the trace-free part of the Riemann one, and vanishes on the FLRW solution. Therefore, a
basis of curvature operators convenient for cosmological phenomenological studies is provided
by {R,Rµν , Cµνρσ}. Terms involving the Ricci tensor have been studied in (Ferreira and Maroto,
2013) through an action of the form,

S =
1

16πG

∫
d4x

√
−g

[
R− αRµν

1

□Rµν
]
, (2.142)

where α is a constant number, while more general structures involving the Weyl tensor where
considered in (Cusin et al., 2016b),

S =
1

16πG

∫
d4x

√
−g

[
R− µ1R

1

□2
R− µ2Cµνρσ

1

□2
Cµνρσ − µ3Rµν

1

□2
Rµν

]
. (2.143)

where the µi’s have dimension of mass-squared. Nonlocal models involving more complex struc-
tures for the Green’s function invoked were considered into (Nersisyan et al., 2017a), where the
action under interest reads,

S =
1

16πG

∫
d4x

√
−g

[
R− 1

6
M2Rµν△−1Rµν

]
, (2.144)

with,

△ ≡ m4 + α1□+ α2□2 + β1Rµν∇µ∇ν + β2R□+ γ
(
∇µRµν

)
∇ν , (2.145)

where m,α1, α2, β1, β2, γ are constant.

These developments have led to the same conclusions while examining the ∼ Rµν□−nRµν

terms with n = 1, 2, from a cosmological perspective. They concluded that these terms gener-
ically lead to the presence of a growing mode in the radiation era that prevents a viable cos-
mological evolution, unless the nonlocal terms in the actions are largely suppressed, a fact that
however makes the model quite unnatural. Nevertheless was noticed that in setting α1 = α2 = 0
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in Eq. (2.145), the resulting model (2.144) could in principle provide viable cosmological solu-
tions, behaving as a cosmological constant at late time (Nersisyan et al., 2017a). Furthermore,
although the contribution of the Weyl tensor vanishes on the FLRW background, its influence
sets in at the perturbative level. In (Cusin et al., 2016b), it was found that this term modifies
the tensor sector of the theory in a non-trivial way, but that these perturbations are unstable
at late time, grow faster for increasing frequency modes and therefore do violate bounds on the
primordial GW spectral density.

Another model involving tensor nonlocalities has been presented in (Cusin et al., 2016b) by
the action,

S =
1

16πG

∫
d4x

√
−g

(
R− 1

6
m2R

1

∆4
R

)
, (2.146)

where the Paneitz operator ∆4 is defined in Eq. (2.82). Cosmological consequences of this model
were worked out in the Appendix A of (Belgacem et al., 2018b) where it has been found that the
speed of the gravitational waves was significantly smaller (at order of tens of percents) than the
speed of light. In view of the recent observations of a neutron star binary coalescence (Abbott
et al., 2017h), combined with the observation of the γ-ray burst counterpart, providing a strong
constraint for the speed of GW cgw, being equal to the speed of light c to one part in 1015

(Abbott et al., 2017i), this model is ruled out on firm grounds. However, as we will discuss in
more detail below, the RT (2.136) and RR model (2.139), do not suffer from such discrepancy
as they feature cgw = c.

A Lattice Quantum Gravity Inspiration

A nonlocal gravity model inspired by non-perturbative quantum gravity computations based
on Regge’s lattice formulation (Hamber and Williams, 1995, 2005) has also been studied (Amen-
dola et al., 2017a). Quantum gravity computations on the lattice suggests the running of
gravitational couplings due to renormalisation group relevant effects induced by weak graviton
vacuum polarisation. The running of Newton’s constant is suggested to arise from the presence
of a non-trivial non-perturbative UV fixed point at Gc. Away from this fixed point, the running
of the coupling is thought to behaves as,

S =

∫
d4x

√
−g

[
1− cξ

(
1

ξ2□

)1/(2ν)

+O
(
(ξ2□)−1/ν

)]
R , (2.147)

where ν is the critical exponent β′(Gc) = −1/ν and, together with cζ ∼ O(1), is a finite number
determined from the theory. Typically, ν−1 ∈ [1, 4] (see above references and therein). Instead,
ξ ∼ m is a mass scale of the infrared modification. It is not predicted by the theory and requires
some more physical input motivated by theoretical assumptions/modeling or observations. The
latter characterises the behavior of the correlations length away from Gc as,

ξ−1 ∼ ΛUV exp

(
−
∫ G dG′

β(G′)

)
G→Gc= ΛUV|G−Gc|ν , (2.148)

where ΛUV is the UV cutoff that is fixed by the lattice spacing. Such effects are therefore of
particular relevance for late time cosmology. Cosmological considerations have been made in
(Hamber and Toriumi, 2011), where a slightly enhanced growth of structures and non-trivial
gravitational slip were found. The authors of (Amendola et al., 2017a) considered the case
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where ν = 1/4 and studied the action,

S =
1

16πG

∫
d4x

√
−g

(
1− M4

6

1

□2

)
R . (2.149)

They found that for ξ ∼ H−1
0 , the cosmology of this models is very similar to that of Eq. (2.139)

at late times, in that it gives raise to a phantom effective dark energy that produces a cosmo-
logically viable phase of accelerated expansion. Another, similar model was derived from a very
orthogonal direction into the context of bimetric gravity.

Another intriguing aspect that recently arose in background independent lattice quantum
gravity calculations, using Monte Carlo simulations in Causal Dynamical Triangulation, is the
“first-hand evidence for the presence of nonlocal terms which could affect the gravitational
dynamics at cosmic scales” (Knorr and Saueressig, 2018). Indeed, using the technique presented
in the latter reference, one can infer the relevance of several couplings in the quantum effective
action of gravity from correlation functions on the lattice. In particular, these techniques reveals
the existence of a mass-type operator of the nonlocal form for which the correction,

Γnonloc = − b2

96πG

∫
d4x

√
gRF(□)R , (2.150)

where b is a parameter with dimension of mass and,

R ≡ R+
1

2
(3)R , F(□) ≡ □−2 , (2.151)

provides a representative of the class of the relevant terms. Such nonlocal infrared relevant
terms have also been motivated in QCD from lattice computations (Boucaud et al., 2001; Capri
et al., 2005; Dudal et al., 2008), where it is in particular shown that the non-perturbative gluon
propagator in the IR is reproduced by nonlocal terms of the form,

Γ = −m
2

2
Tr

∫
d4x Fµν

1

□F
µν , (2.152)

where Fµν = F aµνT
a, □ab = Dac

µ D
µ,cb and Dab

µ = δab∂µ− gfabcAcµ, giving an effective mass m to
the gluon. Quite interestingly, these terms are similar to the form of the nonlocal correction to
gravity in the RR model (2.139). Indeed, in focusing on the conformal sector of the metric in
writing gµν = e2σηµν , we have that R = −6□σ +O(σ2), and therefore the term,

R
1

□2
R = 36σ2 +O(σ3) , (2.153)

provides a mass to the conformal mode of the graviton (Maggiore, 2015; Belgacem et al., 2018b).

Nonlocally coupled bimetric gravity

The authors of (Vardanyan et al., 2018) considered a theory of two dynamical metrics
interacting through a term inspired by the simplest version of the Deser-Woordard model, i.e.
with f(X) ∼ X, and introduced the action,

S =
M2
p

2

∫
d4x

√
−g R+

M2
f

2

∫
d4x
√

−f Rf −
M2
p

2

∫
d4x

√
−g α

(
Rf

1

□R+R
1

□Rf
)

+ SM [g, ψ] , (2.154)
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where matter is only coupled to gµν and Mp,Mf are the couplings, R,Rf the Ricci scalars and
□,□f the d’Alembertian operators for the metrics gµν , fµν , respectively, whereas α is a constant
number. Interestingly, in this model the Bianchi constraints impose that the Ricci scalar for the
metric fµν is constant over spacetime, Rf = m2. Settings this condition into the action (2.154)
implies,

S =
1

16πG

∫
d4x

√
−g

(
1 +

m2

□

)
R+ SM [g, ψ] , (2.155)

with a very similar structure than the action in Eq. (2.139). Background cosmological conse-
quences are very the same for both models as well.

Resummed Nonlocal Gravity Model

The similarities between the two theories given by (2.139) and (2.154), in terms of their
actions and FLRW background cosmological features appeals for them to be combined into some
sort of resummation. Indeed, working at an effective field theoretic level, low energy corrections
typically arise in an expansion suppressed by powers of ∼ −□/m2, that typically signals the
decoupling of heavier particles, and converges to zero as one goes in the far infrared. This is
typically the case for general relativistic quantum corrections in its low energy expansion in
powers of curvature, where the latter are suppressed by powers of the Planck massMp. Instead,
allowing for the presence nonlocal terms to appear, one can then compensate the curvature mass
dimensions with a nonlocal operator, e.g. □−1, and even turn it to an arbitrary negative power.
This means that the inclusion of any powers of operators ∼ □−1 is allowed from the effective field
theory point of view. Such models where already considered into the context of string-inspired
higher derivative theories of gravity (Capozziello et al., 2009). Furthermore, these terms are
typically non-negligible in the infrared, so that they can give raise to a divergent series. In
the view where one can write X = □−1R, the model (2.139) features a correction ∼ −m2X2

while the ones in (2.155) is corrected by ∼ +m2X. They can therefore be implemented in a
resummed version reading,

S =
1

16πG

∫
d4x

√
−g

[
R+ Λ2 log

(
1 +

1

□R
)]

, (2.156)

or also into a non-analytic structure such as,

S =
1

16πG

∫
d4x

√
−g

[
R− Λ2

(
e−R/□ − 1

)]
, (2.157)

whose behavior is to suppress the effect of Λ2 in the UV (−□2 ≫ 1), while making it effective
in the far infrared.

Summary

From the previous analysis, we have seen that nonlocal corrections are typically emerging
into the quantum effective action from different perspectives.

In a perturbative framework, they arise framework in the high energy limit when the theory
contains light particles, or generically when it contains light particles, such as gravitons or
photons, which also lead to the emergence of the conformal anomaly. However, these corrections
are mostly susceptible to affect the UV behavior of the theory, while they are irrelevant in the
IR, and therefore for cosmological applications.
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Nonlocal corrections of IR relevance from first principles are rather motivated by extra-
dimensions, in which the gravitons leak at large scales, or by non-perturbative quantum gravity
effects away from a non-trivial UV fixed point, which however still remain quite poorly under-
stood.

On more phenomenological grounds, we have presented various simplified models that have
already been proposed and embedded into a cosmological context for testing their capabilities of
explaining cosmic acceleration. We have seen that such a task is in general difficult to achieve,
as the phenomenological imperatives constrain the theory of being free of growing modes at
background and (linear) perturbation level, and to describe gravitational waves propagating at
the speed of light at the present epoch. In this sense, the models mentioned above provide good
candidates to inspire more fundamental studies, where such effect could be properly derived
from first principles.



Chapter 3

Aspects of Nonlocal Infrared
Modifications to General Relativity

In the previous chapter, we have seen that infrared corrections to the dynamics of GR can
be produced by different effects such quantum vacuum fluctuations of light matter, extra dimen-
sions or non-perturbative effects, such as those arising from gravitational vacuum polarisation.
There exists two strategies for understanding if these effects can be relevant for infrared grav-
itational physics. Either one guesses a given mechanism potentially able to do so, and works
it out ab initio, or one investigates the cosmological consequences of various terms selected in
through a more ad hoc, effective field theoretical approach. Understanding which corrections
generate viable cosmologies can then provide inspirations for bridging the gap with a funda-
mental understanding.

Subsequently, we present two phenomenological modified gravity models that have been
proposed by M. Maggiore (Maggiore, 2014) and M. Maggiore and M. Mancarella (Maggiore and
Mancarella, 2014) some years ago, for the second point of view. We introduce the theoretical
structure of the models, describe the physical degrees of freedom they contain, clarify some
subtleties associated with the presence of nonlocal operators into an action and perform a
degrees of freedom count and stability analysis from different perspectives. The phenomenology
of these models within a cosmological context is presented in the next chapter.

3.1 The RT Model

As briefly outlined in the previous chapter (see Sec. 2.4), variations of the nonlocal for-
mulation of Fierz-Pauli massive gravity lead to interesting phenomenological models exhibiting
self-accelerating solutions on an FLRW background. We review their origin in this section.

Consider the linearised action of Eq. (2.120), without the constraining term proportional to
the Lagrange multiplier N , so that condition Eq. (2.121) is no longer realised. In that case, the
action reads 1,

S =
1

2

∫
d4x

[
hµν

(
1− m2

□

)
Eµν,ρσhρσ + κhµνT

µν

]
. (3.1)

Investigating the degrees of freedom content of this theory, one finds that it carries 5+1 degrees of
freedom, as one could have expected. Indeed, this expression derives from the nonlocal version of

1. Observe that the canonical covariantisation of this action would lead to an action of the form (2.155), where
the sign of the mass squared has been changed.

68



CHAPTER 3. ASPECTS OF NONLOCAL INFRARED MODIFICATIONS TO GENERAL
RELATIVITY 69

the linearised theory for a massive spin-2 field, where the scalar condition
(
∂µ∂ν−ηµν□

)
hµν = 0,

has been removed 2. Beside of the four components of hµν that are annihilated by infinitesimal
diffeomorphism invariance xµ → xµ + ξµ, inducing,

hµν −→ hµν − (∂µξν + ∂νξµ) , (3.2)

the lack of this scalar condition makes it impossible to remove a fifth one for getting the
10− 5 = 5 degrees of freedom of a massive spin-2, and introduces one supplementary degree-of-
freedom into the theory. In (Jaccard et al., 2013), this was shown to be a scalar mode of mass
m2 which manifests itself in a mixture of a scalar and the helicity-0 mode of the massive spin-2
field. This additional mode has the wrong sign in front of its propagator, i.e. it is a tachyonic
ghost. However, as we will discuss below, there is no genuine degrees of freedom associated with
such a propagator, and therefore no corresponding particles to be put on the external lines of
scattering processes [see e.g. (Foffa et al., 2014a) along these lines]. As outlined in Sec. 2.4, a
covariantisation of the equations of motion deriving from this action is provided by,

Gµν −m2
(
□−1Gµν

)T
= 8πGTµν , (3.3)

where the transverse part extraction T of a symmetric tensor Wµν is defined as,

WT
µν =Wµν −∇µWν −∇νWµ , (3.4)

with Wν , a vector field defined by the nonlocal relation,

∇µW
µν = □W ν +∇µ∇νWµ . (3.5)

It was shown in (Foffa et al., 2014b), that this model exhibits runaway solutions during the
radiation domination era that spoils its cosmological viability. In particular, it was realised that
this growing modes originated from the Ricci tensor contribution included in the m2(□−1

g Gµν)
T

term of Eq. (3.3), basically because its non-zero values in RD makes its convolution with □−1
g

excessively grow. However, since R|FRW /H2 ≃ 0 during the RD epoch, the following model do
not have these problematic features,

Gµν −
1

3
m2
(
gµν□−1R

)T
= 8πGTµν , (3.6)

where the factor 1/3 is a convenient normalisation for the massm2. In the following, we will refer
to this model as the “RT” model. The extraction of the transverse part (3.4) makes it difficult
to be derived from an action as will be more clearly seen below. However, the linearisation of
this equations over flat space reads,

Eµνρσhρσ −
2

3
m2PµνP ρσhρσ = −κ

2
Tµν , (3.7)

2. Notice here that the procedure consisting in integrating out the Stückelberg fields from Eq. (2.112), does
not remove any degrees of freedom from the theory. Indeed, the Stückelberg fields are precisely introduced as
redundant, pure gauge fields for restoring an explicitly broken gauge symmetry. If one does not fix this gauge
freedom in any way, as is the case when integrating them out, there is no apparent reason why this procedure would
removes degrees of freedom of the theory. This was erroneously interpreted in (Dvali, 2006; Dvali et al., 2007),
which only focused on the tensorial structure of the propagator of (3.1), that reproduces the one of linearised
GR as m → 0. However, in the massive case the conservation of the source in Fourier space kµT̃

µν(k) = 0, where
kµ =

(
−ω, 0, 0, k

)
with ω =

√
k2 +m2, introduces mass dependent terms that couple the helicity-0 and helicity-1

modes to the source (Jaccard et al., 2013).
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where Eµνρσ is defined in Eq. (2.106). This equation can be integrated into the following action,

S =

∫
d4x

[
1

2
hµνEµνρσhρσ −

1

3
m2hµνP

µνP ρσhρσ +
κ

2
hµνT

µν

]
, (3.8)

where Pµν is the transverse projector defined as,

Pµν ≡ ηµν − ∂µ∂ν

□ . (3.9)

As expected from local Lagrange densities, the degrees of freedom content of the theory is read
from its propagator. In inserting a term fixing the Lorentz gauge at the level of the action,

Sgf = −
∫

d4x

(
∂νhµν −

1

2
ηµν∂

νh

)(
∂ρh

µρ − 1

2
ηµρ∂ρh

)
, (3.10)

which effectively sets,

∂νhµν −
1

2
ηµν∂

νh = 0 , (3.11)

in Eq. (3.7), yields a gauge fixed action of the form,

S =
1

2

∫
d4x hµν

[
Eµνρσ + Γµνρσ − 2

3
m2PµνP ρσ

]
hρσ , (3.12)

≡ 1

2

∫
d4x hµνQ

µνρσhρσ , (3.13)

where,

Γµνρσ ≡ 1

2

(
ηµρ∂ν∂σ + ηνσ∂µ∂ρ + ηνρ∂µ∂σ + ηµσ∂ν∂ρ

)
−
(
ηµν∂ρ∂σ + ηρσ∂µ∂ν

)
+

1

2
ηµνηρσ□ .

One can then invert the corresponding quadratic form Qµνρσ in Fourier space and one finds,

∆µνρσ(k) = − 1

2k2

[
(ηµρηνσ + ηµσηνρ)− ηµνηρσ

]
− 1

6

[
1

k2
+

1

−k2 +m2

]
P̄µνP̄ ρσ , (3.14)

where we have defined,

P̄µν ≡ ηµν + 2
kµkν

k2
. (3.15)

Therefore, from a naive inspection of the propagator, one concludes that the theory contains a
massless spin-2 particle, a massless scalar and a massive one which has the wrong sign in front
of its kinetic term, i.e. a ghost. Such pathologies are very frequent in the context of nonlocal
theories and should be interpreted in a correct way. Below, we will address a discussion on the
extent to which such pathologies are fatal for the fate of the theory.

3.1.1 No vDVZ Discontinuity, No Quantum Theory

Before we focus on the interpretation of the ghost pole present into (3.14), first observe that
the form of the propagator makes explicit the fact that the theory has no vDVZ discontinuity
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on flat space. Indeed, at a classical level where the propagator is chosen so as to be of the
retarded kind k2 → k2 = −(k0 + iϵ)2 − k⃗2, the massless limit m2 → 0 implies,

lim
ϵ→0+

1

k2
+

1

−k2 +m2
−→ 0 , (3.16)

so that the propagator of the healthy massless scalar cancels with the one of the ghost. Observe
that this is however not true in a quantum context where the propagator needs to be taken of
the Feynman kind. For a healthy scalar, the Feynman prescription reads (k0)2 → (k0)2 + iϵ
so as to make the path integral converge iS[ϕ] ∼ −ϵϕ2. However, in the case of a ghost one
obtains the opposite sign +ϵϕ2ghost, the path integral diverges and the unitarity of the quantum

theory is lost. Instead, if one makes the opposite, anti-causal choice (k0)2 → (k0)2 − iϵ for the
ghost, unitary is preserved but then the theory propagates negatives energies forward in time,
and positive energies backwards in time. In the former case the propagators cancel each other
as in the classical case, while in the latter one has,

lim
ϵ→0+

lim
m→0

(
− i

k2 − iϵ
− i

−k2 +m2 − iϵ

)
= lim

ϵ→0+

2ϵ

k4 − ϵ2
= 2πδ(k2) , (3.17)

which equals the real part of the Feynman propagator for massless particles. This shows that
either the vDVZ discontinuity is maintained at the quantum level, but then unitarity is lost
or, alternatively, unitarity can be preserve but then an anomalous vDVZ discontinuity appears
together with the propagation of negative energy particles forward in time. From these consid-
erations, we conclude that putting the theory (3.8) into a path integral is meaningless, i.e. it
cannot be quantised, and that is, this theory shall be considered to make sense at a classical
level only.

3.1.2 Interlude: Apparent Ghost in Nonlocal Theories and Auxiliary Initial
Conditions

Let us now address the ghost problem for nonlocal theories. The general idea is that both
of the extra scalar poles appearing into the Green’s function (3.14) are not genuine degrees of
freedom of the theory, in that their initial conditions are constrained by virtue of the nonlocal
structure of the action from which they derive.

Let us provide a simple example illustrating how the presence of nonlocalities into an action
can give raise to such poles. Consider a massless scalar field coupled to a source on flat space,

S =

∫
d4x

[
1

2
ϕ□ϕ− ϕJ

]
. (3.18)

Now we can insert the identity operator □□−1 = 1, into this action such as, after integration
by parts,

S =

∫
d4x

[
1

2

(
□ϕ
)
□−1

(
□ϕ)− ϕJ

]
. (3.19)

We can then introduce a new auxiliary field ψ as,

S =

∫
d4x

[
− 1

2
ψ□ψ + ψ□ϕ− ϕJ

]
, (3.20)
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so that in computing its equation of motion and solving for ψ one gets, ψ = □−1□ϕ = ϕ+ψ(h),
where ψ(h) is a homogeneous solution, □ψ(h) = 0, 3. In putting this solution back into the
action, one recovers the original action (3.18). Instead, introducing a new field ψ = ψ̄ + ϕ,
diagonalises the action,

S =

∫
d4x

[
− 1

2
ψ̄□ψ̄ +

1

2
ϕ□ϕ− ϕJ

]
, (3.21)

where one can see that the localised formulation of the (artificially made) nonlocal action (3.19),
leads to the presence of a ghost pole into the propagator. However, it is clear from the original
action (3.18), that such a pole does in fact not exist, i.e. that it is an artifact of the localisation
procedure 4. Actually, (3.21) is consistent with (3.18), since the ghost is completely decoupled
from the rest of the fields ϕ, J and therefore cannot influence them in any way. Within the
path integral formalism, this translates into the fact that no such fields can be sourced by the
presence of a term ψJψ, into the generating functional of the theory. The presence of such a
term is forbidden by the fact that ψ is only an auxiliary field, introduced for mathematical
convenience. Consequently, if ψ does not interact with any fields, its contribution factors out
from any n-point functions,

⟨0, out| . . . |0, in⟩
⟨0, out|0, in⟩

=

∫
DϕDψ . . . eiS[ϕ]+iS[ψ]−Jϕ∫

DϕDψ eiS[ϕ]+iS[ψ]
(3.22)

=

∫
Dϕ . . . eiS[ϕ]−Jϕ∫

Dϕ eiS[ϕ]
, (3.23)

i.e. the fields contribution decouples from the theory. Instead, if the ghost couples to ϕ, S[ψ] →
S[ψ] + Sint[ψ, ϕ] in (3.22), it can still not appear on the external legs, but can manifest itself
into internal lines as virtual particles. Interpreted classically, this means that the homogeneous
solution associated to the auxiliary fields introduced in localising the action are constrain to
vanish (Koshelev, 2009; Koivisto, 2010; Barvinsky, 2012; Deser and Woodard, 2013b; Maggiore,
2014; Foffa et al., 2014a,b; Maggiore and Mancarella, 2014; Dirian and Mitsou, 2014). In a
general context, at the quantum level, this implies that there is no creation and annihilation
associated with such fields. However, it is not clear how auxiliary fields can never be produced in
resonances whose rate, by virtue of the optical theorem, is related to the imaginary part induced
from loop quantum corrections to the masses of physical fields. In gauge theories, such process
is protected by gauge invariance and the S-matrix acquires a block diagonal form that prevents
unphysical states to be generated out of physical ones. Such a structure is characterised by
the presence of the BRST symmetry (Zinn-Justin, 2002), that ensures unitarity to be preserved
in any processes, and therefore forbidding the resonances of ghosts. A specific underlying
structure for nonlocal theories has however not yet been presented. Given that fact, again,
nonlocal theories should be considered only at a classical level, resulting from some form of
quantum averaging process giving raise to non-perturbative effects. Therefore, the additional
propagators they contain, associated with the presence of nonlocal operators into the action,
are seen as associated to auxiliary fields that do not reflect any physical reality. In this view, a
local representation of the corresponding theory, if it exists, is only a convenient mathematical
reformulation of the problem, where the homogeneous solution for the auxiliary fields need to
be fixed to zero.

3. A technical remarks here is that one generically has the identity □□−1 = 1, i.e. □−1 is always a right
inverse for □, however it is a left inverse only up to an homogeneous solution f (h), i.e. □−1□ = f (h).

4. A similar example has been given into (Foffa et al., 2014a) within the framework of GR linearised over flat
space.
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Observe however that vanishing homogeneous solutions for the auxiliary fields does not
necessarily imply the vanishing of their initial conditions. A simple example illustrating this
fact is provided in considering the nonlocal correction to the Einstein-Hilbert action reading,

∆S =

∫
d4x

√
−g R 1

□R . (3.24)

Such a nonlocal correction can be localised by invoking an auxiliary scalar field U as,

∆S =

∫
d4x

√
−g

[
RU + χ(□U −R)

]
. (3.25)

where χ is a Lagrange multiplier imposing the constraint □U = R, which can be formally solved
by writing U = □−1R + Uhom, with the homogeneous solution □Uhom = 0. Putting then this
solution for U into the action (3.25) reproduces the action (3.24), provided the homogeneous
solution Uhom, is put to zero. Now, for the sake of the argument, consider the metric in
synchronous gauge,

ds2 = −dt2 + hijdx
idxj . (3.26)

In that case we have,

R = −□ log h+O(∂µ) , (3.27)

where h is the determinant of the 3-metric hij , and we neglect terms containing derivative
number lower than two, as they do not affect our conclusion [the entire expression for this
quantity can be found in (Deser and Woodard, 2013a)]. Therefore, we can write the constraint
imposed by χ as, □U = −□ log h whose general solution reads,

U(t, x⃗) = − log γ(t, x⃗) + Uhom(t, x⃗) , (3.28)

where again Uhom, needs to be fixed to zero. Therefore, we see that, at initial time, the presence
of an operator of the form □(. . . ), into the source of the auxiliary field provides non-trivial initial
conditions to it. Moreover, these initial conditions are not free to choose, as they are related
to the ones of the determinant of the three metric (themselves constrained by the Hamiltonian
constraint). This needs to be contrasted with the situation where no such operator appear into
the source which we denote, say, S. In that case, the general solution with vanishing initial
homogeneous part reads, U = □−1S, where the Green’s function needs to be taken of the
retarded kind for causality reasons,

U(t, x⃗) = (□−1S)(t, x⃗) =

∫ t

−∞
dt′
∫

d3x⃗′
√
−g Gret

(
t− t′; x⃗− x⃗′

)
S(t′, x⃗′) . (3.29)

It is only in the case where the nonlocal effect starts at the initial time t = t0, that we then
have Gret

(
t0 − t′; x⃗ − x⃗′

)
= 0, for t′ < t0, so that the initial conditions for the auxiliary field

vanish. In the case where the nonlocal terms is non-negligible into the past, or if the source of
the auxiliary field propagating with □, contains an operator of the generic form □(. . . ), their
initial condition are generically non-vanishing.

In the following, we present a computation allowing to rewrite the nonlocal action (3.8) and
a local way, integrating-in such auxiliary fields. In order for this procedure to maintain causality,
we make use of the formalism for dissipative systems presented in Sec. 2.1, from nonlocal to
local formulation. Ultimately, we will see that this procedure is actually quite pedant, and that
more straightforward and simple ways can be used to obtain the very same result, we review it
however for completeness.
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3.1.3 Localisation using Dissipative Systems Techniques

We consider here the gauge fixed linearised action over flat space for the RT model (3.12),
as the resulting nonlocal action obtained from the techniques displayed in Sec. 2.1. In this view,
we introduce the fields h±µν ≡ h1µν ± h2µν , so that one can write,

S =
1

2

∫
d4x h−µν

[
Eµνρσ + Γµνρσ − 2

3
m2PµνretP

ρσ
ret

]
h+ρσ , (3.30)

≡ 1

2

∫
d4x h−µνQ

µνρσh+ρσ, (3.31)

with Pµνret , the transverse projector (3.9) where the Green’s function used is of the retarded type.
A causal evolution for h+µν can then be obtained by varying the action with respect to h−µν and
taking the physical limit h1µν → h2µν . The above action can be obtained from,

S =
1

2

∫
d4x

[
−H−

µν∆
µνρσH+

ρσ +H−
µνh

µν
+ +H+

µνh
µν
−

]
, (3.32)

in integrating out the auxiliary field H+
µν , using the equation of motion of H−

µν and putting the
homogeneous solution to zero (we will do so throughout the procedure). Here ∆µνρσ ≡ ∆µνρσ

ret (x)
is the quadratic form (3.14) in coordinate space, whose Green’s functions are fixed to be the
retarded ones and characterises the variational procedure that is used. The resulting action is
still nonlocal, so we iterate the process. In Eq. (3.32), we know that the quadratic form (3.13)
contains that of a massless spin-2, which can therefore be inverted independently. Writing,

S =
1

2

∫
d4x K−

µν

[
Eµνρσ + Γµνρσ

]
K+
ρσ +

1

6
H−
µν

(
−□−1

ret +
(
□+m2

)−1

ret

)
P̄µνretP̄

ρσ
retH

+
ρσ

+K−
µνH

µν
+ +K+

µνH
µν
− +H−

µνh
µν
+ +H+

µνh
µν
− , (3.33)

the next step is therefore to work on the remaining nonlocal scalar terms. Integrating-in two
scalars so as to invert their propagators one gets,

S =
1

2

∫
d4x

[
K−
µν

(
Eµνρσ + Γµνρσ

)
K+
ρσ +K−

µνH
µν
+ +K+

µνH
µν
− +H−

µνh
µν
+ +H+

µνh
µν
−

+
1

6

(
ϕ−□ϕ+ − ψ−(□+m2)ψ+ + (ϕ− + ψ−)P̄µνretH

+
µν + (ϕ+ + ψ+)P̄µνretH

−
µν

)]
. (3.34)

The last Green’s function contained in P̄µνret can be obtained via Lagrange multipliers imposing
the constraints,

χ± = P̄µνretH
±
µν

hom=0⇐⇒ □χ± =
(
□ηµν + 2∂µ∂ν

)
H±
µν . (3.35)

Therefore one arrives at,

S =
1

2

∫
d4x

{
K−
µν

(
Eµνρσ + Γµνρσ

)
K+
ρσ +K−

µνH
µν
+ +K+

µνH
µν
− +H−

µνh
µν
+ +H+

µνh
µν
−

+
1

6

[
ϕ−□ϕ+ − ψ−(□+m2)ψ+ + (ϕ− + ψ−)χ+ + (ϕ+ + ψ+)χ−

+ θ−
(
□χ+ −

(
□ηµν + 2∂µ∂ν

)
H+
µν

)
+ θ+

(
□χ− −

(
□ηµν + 2∂µ∂ν

)
H−
µν

)]}
, (3.36)
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The above action can be obtained from,

S =

∫
d4x

{
1

2
Kµν

(
Eµνρσ + Γµνρσ

)
Kρσ +Hµν

(
hµν +Kµν

)
+

1

6

[
− 1

2
∂µϕ∂

µϕ+
1

2
∂µψ∂

µψ − 1

2
m2ψ2 + (ϕ+ ψ)χ+ θ

(
□χ−

(
□ηµν + 2∂µ∂µ

)
Hµν

)]}
,

(3.37)

Furthermore, one can integrate out Kµν through the equation of motion for Hµν since it is a
Lagrange multiplier. One gets the constraint,

Kµν = −hµν +
1

6

(
□ηµν + 2∂µ∂ν

)
θ , (3.38)

and the integration leads to,

S =

∫
d4x

{
1

2

[
hµν

(
Eµνρσ + Γµνρσ

)
hρσ −

2

3

(
∂µ∂ν −□ηµν

)
hµν□θ − 1

6
θ□3θ

]
+

1

6

(
− 1

2
∂aϕ∂

aϕ+
1

2
∂aψ∂

aψ − 1

2
m2ψ2 + (ϕ+ ψ)χ+ θ□χ

]}
. (3.39)

Now, as the equation of motion of χ leads to the constraint □θ = −(ϕ+ ψ), one can integrate
over □θ and obtains,

S =

∫
d4x

[
1

2
hµνEµνρσhρσ +

1

3

(
∂µ∂ν −□ηµν

)
hµν(ϕ+ ψ)

− 1

6

(
− ∂µψ∂

µψ +
1

2
m2ψ2 − ∂µψ∂

µϕ

)]
. (3.40)

where we discarded the gauge fixing term Γµνρσ for convenience. This is the corresponding
localised action of the nonlocal equations of motion (3.7) that we started with. To see this more
clearly, we replace ϕ by ξ = ϕ+ ψ and the latter becomes,

S =

∫
d4x

[
1

2
hµνEµνρσhρσ +

1

3

(
∂µ∂ν −□ηµν

)
hµνξ − 1

6

(
ψ□ξ + 1

2
m2ψ2

)
− κ

2
hµνT

µν

]
, (3.41)

where we have coupled hµν to matter. We can now compute the equation of motion for ξ, ψ
and hµν respectively,

□ψ = 2(∂µ∂ν − ηµν□)hµν , (3.42)

□ξ = −m2ψ , (3.43)

Eµνρσhρσ +
1

3
(∂µ∂ν − ηµν□)ξ =

κ

2
Tµν , (3.44)

and focus on the subsystem including hµν only, i.e. to express its equation of motion in a
nonlocal way. To do so, one expresses ξ in terms of the latter. Discarding the homogeneous
solutions one gets,

ξ = −m2 2

□2

(
∂ρ∂σ − ηρσ□

)
hρσ , (3.45)

and putting this into the equation of motion for the metric perturbation leads to,

Eµνρσhρσ −
2

3
m2PµνP ρσhρσ =

κ

2
Tµν , (3.46)
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which is the equation of motion (3.7), that we started with. Observe also that (3.41) can be
diagonalised in performing the replacement,

h̄µν = hµν +
1

3

(
ηµν + 2

∂µ∂ν
□

)
ξ , (3.47)

in the action (3.41), which then becomes,

S =

∫
d4x

[
1

2
h̄µνEµνρσh̄ρσ +

1

6

(
− ψ□ξ + 1

2
ξ□ξ − 1

2
m2ψ2

)
− κ

2
h̄µνT

µν +
1

6
ξ

(
ηµν + 2

∂µ∂ν
□

)
Tµν

]
, (3.48)

and going back to ϕ = ξ − ψ instead of ξ one obtains,

S =

∫
d4x

[
1

2
h̄µνEµνρσh̄ρσ +

1

6

(
1

2
ϕ□ϕ− 1

2
ψ□ψ − 1

2
m2ψ2

)
− κ

2
h̄µνT

µν +
κ

12
(ϕ+ ψ)

(
ηµν + 2

∂µ∂ν
□

)
Tµν

]
, (3.49)

independently of whether or not the gauge fixing term is kept into (3.40). This shows in
particular that the structure of the propagators found in (3.14) is recovered directly into the
action, when auxiliary fields are integrated-in so as it is local. One should however note that
such a localisation procedure is not always possible [see e.g. (Mitsou, 2015)]. From the above
action, it is clear that the ghost field is ψ, which is carried by ξ and is present as well into
the “Jordan frame” action (3.41). This action admits a rather trivial canonical covariantisation
that we show now and that leads to the so-called “RR” model.

3.2 Covariantization: The RR model

The canonical covariant form of the linear action (3.41) is provided by,

S =
1

16πG

∫
d4x

√
−g

[
Rξ̃ − 1

2

(
ψ□ξ̃ + 1

12
m2ψ2

)]
+ SM [ψ, g] , (3.50)

where we extracted κ ≡ (32πG)1/2 from hµν , ξ and ψ so that they are dimensionless and
redefined,

ξ −→ ξ̃ = 1 +
ξ

6
. (3.51)

The equations of motion for ψ yields,

ψ = − 6

m2
□ξ̃ . (3.52)

which once inserted back into (3.50) leads to,

S =
1

16πG

∫
d4x

√
−g

[
Rξ̃ +

1

2m̃2

(
□ξ̃
)2]

+ SM [ψ, g] , (3.53)
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where we have defined m̃ ≡ αm, α ≡
√

1/3. Computing the equation of motion for ξ̃ one
obtains,

□2ξ̃ = −m̃2R , (3.54)

which is solved by,

ξ̃ =

(
1− m̃2

□2
R

)
, (3.55)

where the first term comes from the homogeneous solution of ξ̃ which from (3.51), is equal to
1 since the one of ξ is vanishing (as it is an auxiliary field). Integrating-out ξ̃ from the action
leads to the following nonlocal model,

S =
1

16πG

∫
d4x

√
−g

[
R− 1

2
m̃2R

1

□2
R

]
+ SM [ψ, g] . (3.56)

where,(
□−1R

)
(x) =

∫
d4y
√

−g(y)G(x, y)R(y) , □xG(x, y) =
1√

−g(x)
δ(4)(x− y) , (3.57)

and G(x, y) is a generic Green’s function. Observe that, as is clear from the procedure we
followed, this action has the same linearisation over Minkowski space than the RT model (3.6),
given in Eq. (3.8). However, at nonlinear level they differ significantly in their higher corrections
O(hnµν) with n > 2, as well as their dynamics on a different background, as we will see below in
the case of FLRW. The corresponding equations of motion are obtained using,

δR =
(
Rµν −∇µ∇ν + gµν□g

)
δgµν , (3.58)(

δ□
)
ϕ =

(
∇µ∇νϕ+∇µϕ∇ν −

1

2
gµν∇ρ∇ρ

)
δgµν , (3.59)

and read,(
1− m̃2

□2
R

)
Gµν + m̃2

[(
∇µ∇ν − gµν□g

) 1

□2
R+

1

4
gµν

(
1

□R
)2

− 1

2

(
gµρgνσ + gµσgνρ − gµνgρσ

)(
∇ρ 1

□R
)(

∇σ 1

□2
R

)]
= 8πGTµν , (3.60)

where the Green’s function is chosen to be of the retarded type,

G(x, y) ≡ Gret(x, y) . (3.61)

This condition is not sufficient for solving (3.57), as one still needs to specify initial conditions.
Invoking some local coordinates xµ (e.g. synchronous), where ∂0 is timelike and stating that
the nonlocal effects start at an initial time t0, one must impose that,

G(x, y)|x0=t0 = 0 , ∂0G(x, y)|x0=t0 = 0 , (3.62)

which is equivalent of fixing the homogeneous solution together with the Green’s function type
when solving, □ϕ = R. From general covariance, one can immediately check that Eq. (3.60),
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respects the Bianchi identities. This is easily checked in applying ∇µ to the latter equation and
using the relation

[
∇µ,∇ν

]
∇µ = Rµν∇µ.

We recall that this theory only makes sense in a classical context, where the Green’s function
are systematically all switched to their retarded cousins. As we will discuss below, together
with the RT model (3.6), the RR model gives raise to a late time phase of cosmic acceleration
without the need of a cosmological constant. Before getting to this, we address another method
for counting the degrees of freedom into the theory, which will highlight further the fact that
only massless tensor modes are propagating into the theories provided by Eqs. (3.6) and (3.56).

3.2.1 Degrees of Freedom Count and Stability

The strategy used here for counting the number of degrees of freedom is inspired by the one
used in (Deser and Woodard, 2013a) [see also (Dirian and Mitsou, 2014)] for establishing the
degrees of freedom count and dynamical stability of the f(□−1R) model present in Sec. 2.4.
Take the metric in synchronous gauge that we recall here,

ds2 = −dt2 + hijdx
idxj , (3.63)

chosen as the coordinate system where the initial conditions of the Green’s function (3.62) are
realised. In GR the dynamical equations are provided by the equations of motion for gij ,

Gij =
1

2
ḧij −

1

2
hij∂

2
t log h+O(∂2t ) , h ≡ hij , (3.64)

while the equations of motion for g00 and gi0 are the Hamiltonian and momentum constraints
respectively, constraining the initial conditions hij(t0), ḣij(t0). The latter reduce the number
of independent initial conditions of hij and therefore determines the degrees of freedom of the
theory. Therefore, if the correction to the (0µ) component of the equations of motion (3.60)
vanishes, the RR model has the same number of degrees of freedom as GR. The terms ∂nt □−mR
with n = 0, 1 and m = 1, 2 are zero when t = t0, because of the properties of the Green’s
function chosen. Moreover, the operator (∇0∇µ − g0µ□) does not contain second-order time
derivative when evaluated on the metric (3.63) and we can conclude that the nonlocal correction
to the (0µ) components of Eq. (3.60) vanishes. This means that the RR model propagates only
two degrees of freedom, which are the ones of a massless spin-2 field.

Concerning the stability of these modes, as investigating the stability of the dynamics of
GR is a very non-trivial task [see e.g. (Christodoulou and Klainerman, 1993) for a rigorous
treatment in the flat case], we study whether some necessary stability conditions are fulfilled.
An obvious such condition is that the nonlocal correction of the (ij) component of Eq (3.60)
does not significantly alter the dynamics of the propagating modes, e.g. that the overall sign
of the kinetic term (3.64) does not change, such as the degrees of freedom of the theory do not
turn ghostlike 5. Expressing the Ricci scalar as,

R = −□ log h+O(∂t) , (3.65)

so that □−1R only contains the fields hij and their first time derivatives. However, the latter
are inside an integral on time since the Green’s functions are retarded, so one needs two time
derivatives acting on □−1R to obtain second-order derivatives of hij . Thus, the only terms that
can contain two time derivative in the (ij) component of Eq. (3.60) are those proportional to

5. Notice that only the first term matters in (3.64), as the second one is constrained by the Hamiltonian
constraint.
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Gij , or those with at least to derivative acting on □−1R. As a consequence, only the first two
terms are concerned, and since we can write the second one as,

(∇i∇j − hij□)□−2R = ∇i∇j□−2R− hij□−1R , (3.66)

only the first one matters. Therefore the kinetic part of the dynamical equation reads,

1

2

(
1− m̃2

□2
R

)(
ḧij − hij∂

2
t log h

)
+O(∂t) = 8πGTij . (3.67)

Thus, if the term (1 − m̃2□−2R) becomes negative, then graviton becomes a ghost. The fact
that the theory does not feature a vDVZ discontinuity and that, for cosmological purposes, the
mass should be of the order of the horizon ∼ H0, the term m̃2□−2R ≪ 1 is very suppressed at
solar system scales. One must therefore study the behavior of this term into the cosmological
context. As has been shown in (Dirian and Mitsou, 2014), this term remains positive during
the whole past history of the Universe, and therefore the corresponding degrees of freedom are
stable. It only approaches dangerously zero into the very far future. This proves the stability
of gravitational waves in cosmological linear perturbation theory for both, the RT and the RR
model, as could have been already anticipated from the linearised action Eq. (3.8), together with
the conditions that no degrees of freedom are associated with the scalar pole of the corresponding
propagator.

3.3 Local RR in Einstein Frame

In the case of the RR model, one can also draw the same considerations about the number
of degrees of freedom and stability thereof, but at the fully nonlinear level. This can be done in
expressing the localised action for the RR action (4.13) into Einstein frame, where the kinetic
term for gravity

√
−gR is decoupled for the scalar sector. In order to do so, for realistic scenarios

ξ > 0, we defined a new field by ξ ≡ e
αφ
M , and the action becomes,

S =

∫
d4x

√
−g

[
M2e

αφ
M R+

1

2m̃2
e

2αφ
M

(
□φ+

1

3M
∇µφ∇µφ

)2]
, (3.68)

where one has defined M ≡ (16πG)−1. We can then go to the Einstein frame,

gµν = e−
αφ
M g̃µν , (3.69)

where the action reads,

S =

∫
d4x
√

−g̃
[
M2R̃− 1

2
∇̃µφ∇̃µφ+

1

2m2
e

2αφ
M
(
□̃φ
)2]

, (3.70)

where we have dropped a total derivative term 6. Furthermore, the initial conditions of the field
are,

φ(t0) = φ̇(t0) = φ̈(t0) =
...
φ(t0) = 0 . (3.71)

6. Note that, by the fact that ξ ≡ e
φ

3M , the canonical normalisation of φ only makes sense for m ̸= 0, so here
the GR limit m → 0 should rather be understood as φ → 0, m → 0.
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Since these are fixed, the RR model has the same degrees of freedom as GR. Finally, let us
integrate-in a second auxiliary field ψ into Eq. (3.72), so as to lower the derivative order of the
system,

S =

∫
d4x
√

−g̃
[
M2R̃− 1

2
∇̃µφ∇̃µφ+ ∇̃µφ∇̃µψ − m2

2
e−

2αφ
M ψ2

]
, (3.72)

and diagonalise the scalar sector φ = ϕ+ ψ to obtain the canonical form,

S =

∫
d4x
√

−g̃
[
M2R̃− 1

2
∇̃µφ∇̃µφ+

1

2
∇̃µψ∇̃µψ − 1

2
m2ψ2e−

2α(ϕ+ψ)
M

]
, (3.73)

with initial conditions reading,

ϕ(t0) = ϕ̇(t0) = ψ(t0) = ψ̇(t0) = 0 . (3.74)

As a consequence, one retrieves the kinetic structure read from the propagator (3.14) at the
covariant level, including a physical graviton and two auxiliary scalars, one of which is massless
while the other one is a massive ghost.

3.4 Stability re-Analysis and Future Singularity

From Eq. (3.73) we can extend the stability analysis perfomed in Sec. 3.2.1. From this
equation we see that the Einstein-Hilbert term has the good sign and therefore that all modes
of the metric g̃µν are well behaved. The deviation of GR is characterised by an extra, auxiliary
scalar sector to which the metric couples, whose initial conditions are constrained to vanish.
In effect, for linear perturbations around flat space without a source, ḡ = η, ϕ̄ = ψ̄ = 0,
the auxiliary fields are fixed to zero on the initial hypersurface and stay constant, as they do
not interact with anything. However, if nonlinearities or interactions with a source are taken
into account, the scalar degrees of freedom will get excited, and in particular, the infrared
perturbations of ψ will involve runaway solutions diverging as ∼ exp(

√
m2 − |k|2t) for |k| < m,

affecting the dynamics of the whole system. On phenomenological, cosmological grounds, the
mass of the m should be of the order of the Hubble constant today H0, so as to influence
only the far infrared regime of GR, that is, its dynamics at very large time and spatial scales.
Consequently, the unstable modes are at very large scales |k| < H0, mostly pushed behind the
horizon, and solar system scales are safe.

Spherically Symmetric Solution

Such a conclusion is supported by the works of Refs. (Kehagias and Maggiore, 2014; Mag-
giore and Mancarella, 2014), which showed that the static spherically symmetric solution goes
smoothly to the one of GR as m → 0 and that the corrections to the Newtonian potential
induced at small scales compared to the mass r ≪ m−1 are negligible. Indeed, for a static
spherically symmetric solution of the form,

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3.75)

the Newtonian limit r ≫ rS , where rS is the Schwartzchild radius, leads to,

A(r) = 1− rS
r

[
1 +

1

3
(1− cosmr)

]
(3.76)

B(r) = 1 +
rS
r

[
1− 1

3
(1− cosmr −mr sinmr)

]
(3.77)
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so that the corrections to GR are of the order O(m2r2). For a mass ∼ H0 and a radius of
r = 1 a.u., one finds the negligible amount m2r2 ∼ 10−30.

Big Rip from Phantom Dark Energy

On infrared scales however, linear perturbation theory on Minkowski space predicts the
appearance of instabilities on infrared scales ≳ H0. However, on such scales, the Hubble flow
is non-negligible and one has to consider a cosmological background instead. We specialise
therefore the RR model to flat homogeneous and isotropic FLRW background,

ds2 = −dt2 + a2(t) dx⃗2 , H ≡ ∂t log a , (3.78)

and use the same definitions and localisation procedure as is used in (Dirian et al., 2014). The
equations of motion for the two scalars a given by,

U = −□−1R , S = −□−1U = □−2R , (3.79)

where we consider vanishing initial conditions. We set the scale factor today a0 = 1 and
introduce the dimensionless variables V ≡ H2

0S, h ≡ H/H0 and use the number of e-folds as
time coordinates x = log a, where ∂x is denoted by a prime. The first Friedmann equation then
reads,

h2 =
Ω+ (γ/4)U2

1 + γ(−3V ′ − 3V + U ′V ′/2)
, (3.80)

which can be solve given the equations of motion for the auxiliary scalars,

U ′′ + (3 + ζ)U ′ = 6(2 + ζ) , (3.81)

V ′′ + (3 + ζ)V ′ = h−2U , (3.82)

where,

Ω ≡ ΩRe
−4x +ΩMe

−3x , (3.83)

ζ ≡ h′

h
=

1

2(1− 3γV )

[
h−2Ω′ + 3γ

(
h−2U + U ′V ′ − 4V ′)] . (3.84)

In Eq. (3.84), the amount of effective dark energy is controlled by the parameter γ ≡ m2/(9H2
0 )

and is fixed so as to close the Universe at present time. h(x = 0) = 1. Typical cosmological
studies need γ ∼ 10−2 [see e.g. (Dirian et al., 2014)]. We also define the total equation of state
w ≡ ρ/p, where ρ and p are the effective energy density and pressure, respectively. It is defined
through the Friedmann equations in the form of the once of GR,

H2 = 8πGρ , 2Ḣ + 3H2 = −8πGp , (3.85)

where the modified contribution of the RR model has been included into the source terms, so
that they represent the effective dark energy density and pressure. One has the relation,

w = −2

3
ζ − 1 . (3.86)

The bevahior of the total effective equation of state is shown in Fi. 3.1. We can see that, after
the usual MD and RD phase at w = 1/3 and w = 0, respectively, the equation of state drops



CHAPTER 3. ASPECTS OF NONLOCAL INFRARED MODIFICATIONS TO GENERAL
RELATIVITY 82

-15 -10 -5 0 5 10 15
-1.5

-1.0

-0.5

0.0

0.5

x

w
Hx

L

Figure 3.1 – The total equation of state parameter w(x). The three plateaux correspond to the
values for RD (purple), MD (green) and for the case of a cosmological constant (yellow).

below w < −1, during the present and future dark energy domination period. This behavior
is the one of a so-called phantom dark energy, and its phenomenology was first considered into
(Caldwell, 2002; Caldwell et al., 2003) [see also the more recent (Albarran et al., 2017)]. In
the latter references, it was realised that such a type of dark energy generically leads a future
singularity at finite time, a “Big Rip” at trip where the scale factor becomes infinite,

lim
t→t−rip

a(t) = ∞ . (3.87)

For constant w, such a fact can be computed from the continuity and the first Friedmann
equation,

ρ̇+ 3H(1 + w) = 0 , ȧ = a

√
8πG

3
ρ , (3.88)

where the first provide ρ = ρ0a
−3(1+w) and in inserting this into the second one gets,

ȧ = H0a
− 3

2
(1+w)+1 , (3.89)

that integrates to,

a(t) =

[
− 3

2
H0(1 + w)(t− trip)

] 2
3(1+w)

, (3.90)

where trip is the integration constant. As 1 + w < 0, the term in brackets is positive while the
exponent is negative, resulting in a Big Rip at trip. Proceeding perturbatively, one can find the
equivalent expression for the RR cosmology in the far future limit x≫ 1. In that case, one can
get (Dirian and Mitsou, 2014),

a(t) = exp

[
T 2

(trip − t)2

]
. (3.91)

It should be kept in mind that as w < −1, the Hubble parameter is growing in the future, and
therefore the Ricci curvature scale R grows as well. This means that close to the singularity, this
effective field theoretic description will not be valid anymore and therefore cannot be trusted.
As is also explicitly shown in (Dirian and Mitsou, 2014), such a background expansion leads
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Figure 3.2 – The linear perturbations of U and V as a function of x for the modes κ = 5× 10−3

(blue), κ = 5× 10−2 (purple), κ = 5× 10−1 (brown), κ = 5 (green).

to a domination of the Hubble friction at late times. At the present epoch, the perturbations
associated to the auxiliary fields δU , δV start to grow as the dark energy era sets in, as expected
for perturbations with a wrong sign for the kinetic term. However those fields are rapidly tamed
by the violent background expansion, and so do not represent instabilities. The behavior of these
perturbations can be seen in Fig. 3.2 for three different values of κ ≡ k/keq where keq = aeqHeq,
where the eq quantities are evaluated at radiation-matter equality.

Summary

In this chapter, we started by examining the theoretical structure of the so-called RT model
defined by the equation of motions in Eq. (3.6). It was show that its flat space propagator con-
tains one pole associated to a massless spin-2 field, beside of one massless scalar and a massive
one having a wrong sign in front of its kinetic term (3.14). This wrong sign is responsible for the
lack of vDVZ discontinuity into the model at classical level, whereas in a quantum mechanical
context, either the theory is continuous but unitarity is lost, or unitarity is preserved but an
anomalous discontinuity then appears (3.17). This led us to the conclusion that this model
can only be considered in a classical context and most probably results from some quantum
averaging process. We then addressed a discussion supported by an illustrative example aim-
ing to explain why the aforementioned scalar poles are not genuine degrees of freedom in the
nonlocal theory, but should rather be though as associated to additional auxiliary fields whose
homogeneous solutions are constrained. In Sec. 3.1.3, we then showed how the structure kinetic
structure of the propagator can be recovered into the action when additional, auxiliary fields are
introduced (3.41), and becomes local. We did so in using the variational principle for dissipative
system presented in Sec. 2.1, so as to preserve causality throughout the procedure. The local
action suggested a straightforward covariantisation that led to a different model than RT at
full nonlinear level, the so-called RR model (3.56). We then analysed the degrees of freedom
and stability of the RR model using different methods (see Secs. 3.2.1 and 3.4). In particular,
we showed that the presence of the ghost pole is irrelevant for classical UV physics, and that
the theory matches the prediction of GR at solar system scales. This is due to the fact that
the associated instability is supposed to develop on far infrared scales, where the flat solution
is not phenomenologically valid anymore. We saw that the cosmological FLRW solution for
the RR model features a future singularity at finite time, a “Big Rip”, due to the phantom
nature of the effective dark energy described by the model. Such a singularity originates from a
violent phase of accelerated expansion taking place at late time, that makes the Hubble friction
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dominate the kinetics of the scalar perturbations. Therefore, on the cosmological solution, no
instabilities associated to an unstable pole appears at the linear perturbation level in the RR
model. Concerning the RT model, such a stability analysis has not yet been presented, but, as
we will see below, this model meets difficulties in explaining a primordial inflationary phase, on
which ground it is a priori hard to believe it to be responsible for the generation of the presently
observed cosmic acceleration.

In the next chapter, we present in details the phenomenology associated with the RR and
RT models within a cosmological context.
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Chapter 4

Phenomenology of the RT and RR
Models

We expose the cosmological phenomenology of the RT and RR models that we recall here.
The RT model is defined by the equation of motion (see Sec. 3.1 for details),

Gµν −
1

3
m2
(
gµν□−1R

)T
= 8πGTµν , (4.1)

where the T operator denotes the covariant extraction of the transverse part defined in Eq. (3.4),
while the RR model is defined by the action (see Sec. 3.2),

S =
1

16πG

∫
d4x

√
−g

[
R− 1

6
m2R

1

□2
R

]
+ SM [ψ, g] . (4.2)

In these expressions, the operator □−1 is a formal notation for a Green’s function of the curved-
space d’Alembert operator □ ≡ gµν∇µ∇ν , SM [ψ, g] is the action of matter field collectively
denoted as ψ and,

Tµν(x) = − 2√
−g

δSM [ψ, g]

δgµν(x)
, (4.3)

is the associated energy-momentum tensor. Subsequently, we specialise these models to a cos-
mological context in writing the metric gµν in a FLRW background form. After presenting
the modified Friedmann equations, we then study the dark energy phenomenology associated
to both models at the background level, when the system is evolved forward in time starting
deep in RD. We will see that these models provide viable background cosmological solutions,
which is a quite non-trivial fact. In particular, we will see that both models lead to an effective,
dynamical phantom dark energy emerging at late time, producing cosmic acceleration. We then
address the issue of possible modification of the RD initial conditions by effects induced from
an earlier evolution phase, such as during inflation. Then, we turn to the study of linear pertur-
bations on this cosmological background and provide details on the dynamics of the system, in
particular, showing how it deviates from the one of ΛCDM. We will see that the perturbations
of these models are stable up to present time, and that they predict interesting features that
can be constrained with actually data. The confrontation of these models to observations is
reviewed in the next chapter.

86
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4.1 Localised Models

In order to compute the cosmological background evolution for the two models presented
hereabove, we start by localising the models in using auxiliary fields. Indeed, it is more conve-
nient to solve local differential equations rather than more complicate integro-differential ones.

Localisation of the RT Model

The localised version of the RT model we consider is given by (Maggiore, 2014),

Gµν +
1

3
m2(Xgµν)

T = 8πGTµν , (4.4)

−□X = R , (4.5)

where, from the second equation, one can write X = −□−1R, and plugging it into the first gives
back the original nonlocal theory. The transverse part in Eq. (4.4) is given by,

(Xgµν)
T = Xgµν +

1

2

(
∇µWν +∇νWµ

)
. (4.6)

The behavior of Wµ is obtained by applying ∇µ to this expression and solving,

2∇µ(−Xgµν) = −2∂νX = ∇µ
(
∇µWν +∇νWµ

)
, (4.7)

and therefore the total system of localized differential equations reads,

Gνµ +
1

3
m2

[
Xδνµ +

1

2

(
∇µW

ν +∇νWµ

)]
= 8πGT νµ , (4.8)

−□X = R , (4.9)

∂µX = −1

2
∇ν

(
∇µW

ν +∇νWµ

)
, (4.10)

∇µT
µ
ν = 0 . (4.11)

Observe that if the additional term in Eq. (4.8) is seen as an additional matter part, Eq. (4.10)
simply enforces its covariant conservation. Furthermore, it is the first derivative structure
∼ ∇W into Eq. (4.8) that makes its implementation into an action difficult 1.

According to the discussion in Sec. 3.1.2, for some coordinate system xµ where ∂0 is timelike,
the auxiliary fields X,Wµ have homogeneous solutions constrained to vanish on the initial hy-
persurface at x0in = tin. Moreover, we consider the “minimal” case where their initial conditions
are vanishing as well,

X(tin) = ∂0X(tin) = 0 , Wµ(tin) = ∂0Wµ(tin) = 0 , for all µ , (4.12)

which is phenomenologically motivated by the fact that the Ricci scalar is negligible on an
FLRW background during the epoch of radiation domination. Evolving the system forward in
time then amounts to solve the equations with a retarded Green’s function.

1. Indeed, if one tried to integrate straightforwardly these terms into an action one solution would be
gµν∇µWν , but this is a total derivative and vanishes under the integral. Nevertheless, one could imagine these
terms as seen as friction terms coming from a higher dimensional spacetime, much as FLRW background lead to
the appearance of single time derivatives ∂tϕ.
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Localisation of the RR Model

Here, we expose the localised version of the RR model,

S =
1

16πG

∫
d4x

√
−g

[
R− 1

6
m2R

1

□2
R

]
. (4.13)

which takes a different form than the one discussed in Sec. 3.2. It reads (Maggiore and Man-
carella, 2014),

S =
1

16πG

∫
d4x

√
−g

[
R

(
1− m2

6
S

)
− ξ1

(
□U +R

)
− ξ2

(
□S + U

)]
, (4.14)

where ξ1,2 are Lagrange multiplier, whose constraints applications leads back to the nonlocal
form (4.13). The equations of motion derived from Eq. (4.14) read,

Gµν −
1

6
m2Kµ

ν = 8πGTµν , (4.15)

□U = −R , □S = −U , (4.16)

where,

Kµ
ν ≡ 2SGµν − 2∇µ∂νS + 2δµν□S + δµν ∂ρS∂

ρU − (1/2)δµνU
2 −

(
∂µS∂νU + ∂νS∂

µU
)
, (4.17)

which is separately conserved ∇µK
µ
ν = 0, as can been checked using Eqs. (4.16).

Fluid Energy-Momentum Tensor

At cosmological scales, we interpret the matter distribution as being a continuum, i.e. a fluid.
The energy momentum tensor of a fluid in the rest frame of a freely falling observer uµ comoving
with it decomposes as,

Tµν = (ρ+ p)uµuν + gµνp+ πµν , uµ ≡ dxµ

dτ
, (4.18)

where dτ ≡
√
−ds2, is the observers proper time, uµ is therefore a unit timelike four-vector

uµuµ = −1, ρ the energy density, p the pressure and πµν the anisotropic stress in the fluid’s
rest frame. The latter are defined as,

ρ = uµuνT
µν , p =

1

3
hµνT

µν , πµν =

(
hµρh

ν
σ −

1

3
hµνhρσ

)
T ρσ , (4.19)

where hµν ≡ gµν + uµuν , is the induced metric, so that uµπµν = 0, gµνπµν = 0.

4.2 Cosmological Background Solutions

We now specialise the metric to a flat FLRW background in cosmic time t and comoving
cartesian spatial coordinates. The line element reads,

ds2 = ḡµνdx
µdxν = −dt2 + a2(t)dx⃗2 , H ≡ ȧ

a
, (4.20)

where the scale factor a(t) is related to the redshift z by 1+z = 1/a, H is the Hubble expansion
rate parameter and the dot ˙ denotes the derivative with respect to t. In this coordinate system,
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the observes’ proper time is the cosmic time so that one has uµ = ẋµ =
(
1, 0⃗
)
, and the energy

momentum tensor is given by,

T̄00 = ρ̄ , T̄ij = p̄ δij , π̄µν = 0 , (4.21)

where we use overbars to denote background quantities ρ̄, X̄, W̄µ, etc. Let us also define the
equation of state parameter p̄(t) = w(t)ρ̄(t). The conservation of energy momentum ∇νT

µν = 0
then implies,

∂tρ̄(t) = −3H[1 + w(t)]ρ̄(t) . (4.22)

We also define the dimensionless Hubble parameter h(t) = H(t)/H0 ≡ 100h0 kms−1Mpc−1,
where H0 ≡ H(t0) is the Hubble parameter at present cosmic time t0, i.e. the Hubble constant.
As it will sometimes be convenient to use, we define the number of e-folds x ≡ log a as alternative
time coordinate and we denote the derivatives with respect to it by a prime, e.g. ∂Ū/∂x ≡ Ū ′.
We also introduce the critical density of the Universe,

ρ̄c(t) ≡
3H(t)2

8πG
, (4.23)

to which the energy densities other than spatial curvature sum up, and we will denote ρ̄0 ≡ ρ̄c(t0)
its present value. The density fractions read Ωi(t) ≡ ρ̄i(t)/ρ̄0, where ρ̄i(t) is the energy density
of a given species e.g. radiation (i = R), matter (i = M), neutrinos (i = ν), dark energy
(i = de), etc, and sums up to one today, in the case of a flat Universe ΩK = 0. We will write the
total density fraction of matter as Ω(t), i.e. when dark energy and curvature density fractions
are not included. It is also useful to introduce the quantity γ ≡ m2/(9H2

0 ), related to the mass
appearing in the nonlocal models.

Recall that in such a geometry, the Einstein equations with a cosmological constant Λ lead
to the Friedmann equations,

H2 =
8πG

3
ρ̄+

Λ

3
, (4.24)

ä

a
= −4πG

3

(
ρ̄+ 3p̄

)
− Λ

3
, (4.25)

which can be solved once the relation p̄(ρ̄) is specified.

4.2.1 Background Solution for RT

Background Equations

On a FLRW background there is no preferred direction, so that all the spatial derivative
vanish and also W̄i = 0. From Eqs. (4.9) and (4.10) one gets,

Ẍ + 3HẊ = 6(Ḣ + 2H2) , (4.26)

Ẅ0 + 3HẆ0 − 3H2W̄0 = Ẋ , (4.27)

respectively, while the modified first Friedmann equation is obtained form the (00) component
of Eq. (4.8) which yields,

H2 − m2

9

(
X − Ẇ0

)
=

8πG

3
ρ̄ , (4.28)
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dividing by H2
0 , going to coordinate time x and choosing for convenience the new variable

S̄ = H0W̄0, the system reads,

h2 = Ω(x) + γȲ (x) , (4.29)

X̄ ′′ + (3 + ζ)X̄ ′ = 6(2 + ζ) , (4.30)

X̄ ′ = h
[
S̄′′ + (3 + ζ)S̄′ − 3S̄

]
, (4.31)

Ȳ (x) ≡
(
X̄ − hS̄′) . (4.32)

Late Time Phantom Dark Energy

The above system is solved from the specification of the matter content Ω(x), whereas the
initial conditions for the auxiliary fields are taken as vanishing, as we have already discussed in
Sec. 3.1.2 and will develop in more details below. From Eq. (4.29) one can identify the effective
dark energy density fraction,

Ωde(x) ≡ γȲ (x) . (4.33)

which replaces the one of the cosmological constant ΩΛ. Here, we consider for simplicity a dust
component wM = 0 with ΩM = 0.3175 and a radiation one wR = 1/3 with ΩR = 4.15×10−5/h0
(Ade et al., 2014a) so that Ω = ΩMe

−3x+ΩRe
−4x, and choose the reduced Hubble constant to be

h0 = 0.7. We integrate numerically the system forward in time using the Mathematica software
(Wolfram, 2010), and setting the initial conditions deep in RD, at xin = −15. The parameter γ
is tuned so as to close the Universe at present time 2, similarly to the way the value of Λ is set
in ΛCDM. In this case, this leads to the value γ ≃ 0.0504, corresponding to m ≃ 0.67H0. Thus,
as expected, the scale where the modification to GR sets in is in the far infrared ∼ H0. This is
also realised because of the fact that the auxiliary fields start with vanishing initial conditions.
Indeed, given that the background Ricci scalar R̄ is negligible compared to the total energy scale
during RD, R̄/H2 = 6(2+ζ) ∼ 0, the auxiliary field are therefore not sourced, as can be directly
seen from Eq. (4.30). However, once the scalar curvature becomes relevant, i.e. at the time of
radiation-matter equality xeq ∼ −8, the background auxiliary fields get excited, and give raise
to an effective dark energy component (4.33). We display the evolution of the auxiliary fields X̄
and S̄ in the right panel of Fig. 4.1 together with the Hubble parameter predicted by the model
(upper left panel) and its relative difference with the one in ΛCDM (lower left panel) for the
same fiducial cosmology. One can indeed see that the amplitude of the background auxiliary
fields monotonically grow from ∼ xeq until today. Moreover, one also notices that the amplitude
of the expansion rate is lowered at percent level at low redshift, once dark energy domination
sets in z ≲ 2. To understand this fact, we define ζ ≡ h′/h = ρ̄′/(2ρ̄) and use Eq. (4.24) together
with the energy density conservation Eq. (4.22), to generically write,

w(t) = −1− 2

3
ζ(t) . (4.34)

In the present case, during the period of dark energy domination, one obtains the effective dark
energy equation of state,

wde(x) = −1− Ȳ ′(x)

3Ȳ (x)
, (4.35)

2. This practically means that we tune γ, so as to set h(x = 0) ≃ 1, to a precision of several digits in the
simulation.
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Figure 4.1 – Upper left: Hubble parameter H as a function of log(1 + z) = −x in the ΛCDM
model (black), RT model (solid red), RR (solid blue), RRu0 (dashed black). Lower left: Relative
error between the Hubble parameters in RT (solid red), RR (solid blue) and RRu0 (dashed
black) with respect to ΛCDM. Right: Auxiliary fields X̄ (red) and S̄ (blue) as functions of
log(1 + z) = −x in the RT model.

which generically deviates from minus one, that is, the dark energy is dynamical. In Fig. 4.2, we
plot the corresponding energy density (left panel) and equation of state (right panel). Observe
from,

ρ̄′de(x) = −3[1 + wde(x)]ρ̄de(t) . (4.36)

that, since ρ̄′de is positive, as the auxiliary fields start to grow from zero until today, and ρ̄de is
positive as well, the equation of state must be smaller than minus one, wde(x) < −1, in order
to compensate for the minus sign in front of the second term. This is the case throughout the
whole evolution in this model and shows that the effective dark energy described by the RT
model is on the phantom side, and violates the null energy condition w ≥ −1. Furthermore,
solving for the evolution of the dark energy density fraction from the conservation equation
(4.36), one obtains,

Ωde(z) = Ωde exp

(
3

∫ z

0
dz′

1 + wde(z
′)

(1 + z′)

)
. (4.37)

At low redshift, when the dark energy is dominant, this can be approximated by,

Ωde(z ≈ 0) ≃ Ωde

(
1 + 3z δw0

)
, (4.38)

where we wrote wde(z ≈ 0) ≃ −1 + δw0, with |δw0| ≪ 1 and constant, which is a sensible
approximation for the present discussion. One can see that for the case of a phantom dark
energy δw0 < 0, the predicted density fraction Ωde(z) is generically smaller than ΩΛ at z ≳ 0
as shown in the left panel of Fig. 4.3, and this explains why the Hubble parameter that can be
written as,

H(z) = H0

[
Ω(z) + Ωde(z)

]1/2
, (4.39)
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Figure 4.2 – Left panel: Dark energy densities ρ̄de as functions of log(1 + z) = −x in the RT
model (red) and in RR (blue). Right panel: Dark energy equations of state wde as functions of
z for the RT model (red) and for RR (blue).

is smaller as well. In turn, the dark matter density fraction ΩM (z ≲ 2) is generically larger, and
we will see below how this influences the growth of large scale structures. Moreover, geometry-
dependent quantities are also affected, as for instance the luminosity distance that we show in
the right panel of Fig. 4.3, and is defined as,

DL(z) ≡ (1 + z)

∫ z

0

dz′

H(z′)
=

√
L

4πF
, (4.40)

Figure 4.3 – Left panel: The dark energy density franctions Ωde as a function of z for ΛCDM
(solid black), RT (solid red) and RR (solid blue) together with their respective cold dark matter
quantities (dashed).Upper right panel: Luminosity distance DL as a function of log(1+z) = −x
in the ΛCDM model (black), RT model (red) and RR (blue). Lower right panel: Relative error
between the luminosity distances in RT (red) and RR (blue) with respect to ΛCDM.

where L is the intrinsic luminosity of an object in the sky and F its energy flux, or also the
angular diameter distance DA(z) = DL(z)/(1 + z)2 ≡ x/δθ, where x is the physical distance
between two objects and δθ the observed angle between them. This means that into phantom
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dark energy models, at fixed redshift, luminous objects are pushed further away in the sky and
subtend a smaller angle compared to the ones in a ΛCDM cosmology. One can also fit the dark
energy equation of state in using the standard Chevallier-Polarski-Linder (CPL) parametrisation
(Chevallier and Polarski, 2001; Linder, 2003),

w(a) = w0 + wa(1− a) , (4.41)

and, in the case of the fiducial cosmology we are considering one obtains,

w0 ≃ −1.04 , wa ≃ −0.02 . (4.42)

Interestingly, the behavior of this dark energy is therefore very close to the one of ΛCDM, but
still leads to percent-level deviations in the background geometry.

4.2.2 Background Solution for RR

We now discuss the FLRW background evolution equations for the RR model (4.15) (Mag-
giore and Mancarella, 2014). Introducing the variable V̄ (x) = H2

0 S̄(x), the equations for the
auxiliary fields (4.16) read,

Ū ′′ + (3 + ζ)Ū ′ = 6(2 + ζ) , (4.43)

V̄ ′′ + (3 + ζ)V̄ ′ = h−2Ū , (4.44)

where,

h2 =
Ω(x) + (γ/4)Ū2

1− 3γ(V̄ ′ + V̄ − Ū ′V̄ ′/6)
, (4.45)

and,

Ω ≡ ΩRe
−4x +ΩMe

−3x , (4.46)

ζ ≡ h′

h
=

1

2(1− 3γV )

[
h−2Ω′ + 3γ

(
h−2Ū + Ū ′V̄ ′ − 4V̄ ′)] . (4.47)

Late Time (more) Phantom Dark Energy

In particular, one can identify the dark energy density fraction in that case,

Ωde(x) =
γ

4
Ū2 + 3γh2

(
V̄ ′ + V̄ +

1

6
Ū ′V̄ ′

)
, (4.48)

and find the equation of state wde(x) in using Eqs. (4.34) and (4.47). For the same fiducial
cosmology as the one specified in Sec. 4.2.1, one finds γ ≃ 0.0089247 corresponding a mass
m ≃ 0.283H0. Under the identification, Ū ↔ X̄ and V̄ ↔ S̄, the behavior of the auxiliary
fields are very similar to the ones in the RT model, and we refer the reader to the right panel of
Fig. 4.1, for a qualitative description. As we can see from the right panel of Fig. (4.2), for the
RR model, the dark energy equation of state is generically smaller than the one in RT. Using
the CPL parametrisation (4.41), one finds,

w0 ≃ −1.144 , wa ≃ −0.084 , (4.49)

given the fiducial cosmology assumed here. As a consequence, through the same reasoning as
the one outlined above, the dark energy density fraction in the RR model is lowered compared
to the one in RT, and therefore also ΛCDM, and this induces a larger deviation in the Hub-
ble parameter at late time. This fact also reverberates on geometrical quantities such as the
luminosity and angular diameter distance, as can be seen in the right panel of Fig. 4.3.
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4.2.3 RD Initial Conditions From Earlier Stages: RRu0

From this analysis, we see that the RT and RR nonlocal modified gravity models exhibit
self-accelerating solutions at late time. In both models, this is caused by a phantom effective
dark energy component, i.e. with an equation of state wde < −1, whose energy density departs
from zero as soon as the Universe enters in MD. Indeed, in RD the background Ricci scalar R̄
is negligible compared to the overall energy scale of the Universe, therefore the modifications to
gravity are negligible too, as can be seen directly from Eqs. (4.30) and (4.43). For this reason,
we adopted the point of view were the initial conditions for these background auxiliary fields are
set to zero deep in RD. Notice however that for this choice of initial conditions being legitimate
in RD, one needs to assume that the secular growth of the background auxiliary fields X̄, W̄0,
Ū , etc, induced in earlier stages of the Universe is negligible at that time. For the case of
inflationary scenarios, it can been argued that the modification to gravity does not show up,
as it is only IR relevant and therefore suppressed by the inflationary energy scale. In any case,
this question deserves further attention, and needs a detailed numerical study for been correctly
addressed [see (Maggiore, 2015; Cusin et al., 2016c; Belgacem et al., 2018a), where such scenarios
were considered along these lines]. Of course, the configuration reached by the auxiliary field
in RD is likely to depend on the particular inflationary scenario one considers, but also on
other processes affecting the scalar curvature into the early Universe. Examples are provided
by electroweak or QCD phase transitions, conformal anomalies, or during RD itself through the
presence of thermalised SM particles [see e.g. (Caldwell and Gubser, 2013)]. This issue was
recently anticipated in Ref. (Nersisyan et al., 2016) for the RR model, where the authors studied
the effect of varying the auxiliary fields’ initial conditions deep into RD over a broad range of
values. Interestingly, they unveiled the existence of a bifurcation into the associated dynamical
system, leading to another phenomenologically viable cosmology of the nonlocal model. This
other branch is reached in fixing the initial conditions for the field Ū below a given threshold
(roughly ≈ −15, see the reference for details) leading to an evolution that is radically different
from the one presented hereabove. In this second branch, the effective dark energy remains
non-phantom during the whole evolution, approaching a plateau at w = −1 at the present
epoch, leading to a de Sitter phase of expansion, while evolving toward a radiation-like fluid
w = −1/3 in the far future.

Here, we briefly review the results of previous works (Maggiore, 2014; Foffa et al., 2014b;
Maggiore, 2017), where the dependence on the initial conditions for background auxiliary fields
set in RD is considered to originate from an earlier inflationary phase, idealised by a de Sitter
geometry. This considerably simplifies the problem as one assumes a phase dominated by a
cosmological constant-like perfect fluid with equation of state w = −1, for which the function
ζ defined in Eq. (4.34) is therefore vanishing, ζ = 0. In the case of constant ζ, the background
equations for the auxiliary fields [Eqs. (4.30),(4.31) for RT and Eqs. (4.43),(4.44) for RR] can be
solved analytically and we refer the reader to the above references for detailed expressions. For
the present discussion, the most relevant conclusions are found into the evolution of X̄ ↔ Ū ,
since it is this field that dominates the dark energy density in both nonlocal models, a posteriori.
This fact can be seen for instance at late time from Eqs. (4.33), (4.48) and the right panel of
Fig. 4.1 [the derivative of S̄ ↔ V̄ is O(S̄) at that time]. Thus, we focus on solutions to the
equation of the form,

f̄ ′′ + (3 + ζ)f̄ ′ = 6(2 + ζ) , (4.50)

where f̄ ≡ X̄ in RT and f̄ ≡ Ū in RR [see Eqs. (4.30),(4.43), respectively]. As discussed above,
the nonlocal structure of the theory constrains the homogeneous solutions to vanish, so that
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one must fix f̄(xi) = f̄ ′(xi) = 0, where xi is the initial time when the de Sitter phase starts.
The solution for constant ζ = −3(1 + w)/2 can be written as,

f̄(x) =
2(1− 3w)

(1− w)
(x− xi) +

4

3

(1− 3w)

(1− w)2
(
e−

3
2
(1−w)(x−xi) − 1

)
. (4.51)

which vanishes in RD w = 1/3, as expected. Otherwise, for fluids with w < 1/3, this solution has
a constant mode which, together with an exponentially suppressed one, provide its homogeneous
solutions, while the source induces a linearly growing one. In particular, this implies that during
an early accelerated phase w < −1/3, the linearly growing mode will lead to a non-vanishing
initial condition at the exit of this phase, and will therefore provide non-zero initial conditions
deep in RD 3. In de Sitter phase w = −1, the solution reads,

f̄(x) = 4(x− xi) +
4

3

(
e−3(x−xi) − 1

)
, (4.52)

which, at the end of the de Sitter phase, can be therefore be rewritten as,

f̄(xf ) ≃ 4∆N , (4.53)

where ∆N ≫ 1, is the number of e-folds of the idealised inflationary scenario. For typical
inflationary theories consistent with data, ∆N ≃ 60 is a good approximation, (Ade et al.,
2015b), so that f̄(xf ) ≃ 240. It can be shown that the contributions of the other fields besides
the equivalent of f̄ in the RT and RR models are negligible at the end of such a phase (Maggiore,
2017). Assuming now that this solution smoothly connects with standard RD, i.e. taking this
value as initial conditions in RD, neglecting the “reheating phase” and eventual non-trivial
time derivative value for Ū(xf ) induced by this process, the model describes an expansion rate
having qualitatively the same behavior as ΛCDM at late time. This can be seen from the black
dashed line on the lower left panel of Fig. 4.1. In the following, we will denote this model by
RRu0 (where u0 is the initial value of Ū deep in RD). These conclusions are similar for the RT
model, which is even closer from ΛCDM at late time.

It is the lack of a fundamental understanding of the emergence of these nonlocal models
that makes the interpretation of these results difficult. Indeed, if the nonlocal corrections are
emerging at the low-energy effective level, their use in a highly energetic early Universe context
is not legitimated, and the above results cannot be trusted. However, if these terms emerge
from a mechanism valid on all scales, they should be legitimately considered for early physical
processes. As such, two phenomenological strategies are in order. Either one adopts the first
point of view and starts the evolution in both models deep in RD, assuming that the initial
conditions for the auxiliary fields provided by early processes are negligible, and therefore uses
the “minimal” version of the RT and RR models. Or one supposes that the nonlocal corrections
are valid at high energies as well, which makes it possible to supplement the nonlocal models
with a sector describing the physics of the early Universe, e.g. by a primordial inflationary
phase. In the latter case, observe that the RR model finds a sort of canonical embedding
into Starobinsky inflation when complemented with a term R2. This theory then describes an
inflationary phase at early times and a phase of cosmic acceleration at late time. In that case,
the action reads (Maggiore, 2015),

S =
1

16πG

∫
d4x

√
−g

[
R+

1

6M2
S

R

(
1−

Λ4
S

□2

)
R

]
, (4.54)

3. Notice that processes taking place in between the inflationary and radiation era, such as a reheating phase,
could affect this conclusion. However, the fact that the field is sourced by the Ricci curvature scalar, and contains
at least a constant homogeneous mode, would generically imply that the cannot be driven to zero in any way
and give raise to a non-vanishing value for it at the entrance of RD.
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where M2
S ≃ 1013GeV is the characteristic Starobinsky mass scale and ΛS ≡M2

Sm
2.

4.3 Linear Cosmological Perturbations in Nonlocal Gravity

In this section, we present how linear cosmological perturbation theory applies to the RT
(4.1) and RR (4.2) nonlocal models, following the work of (Dirian et al., 2014). Subsequently, we
introduce the framework and expose the corresponding equations of motion governing the linear
cosmological dynamics in the models. We then solve numerically these equations in a simplified
context, where perturbations of an early dominating radiation and a late time dominating dust
components are considered. We then present how various quantities deviate from the ones
predicted by a ΛCDM cosmology. Furthermore, as the effective dark energy described by both
nonlocal models is dynamical, it also gives raise to effective dark energy perturbations to which
we review the phenomenology.

4.3.1 Linear Perturbation Theory

Metric and Auxiliary Fields in the Newtonian Conformal Gauge

We set up the linear perturbative treatment over FLRW spacetime in the localised formula-
tion of both nonlocal model, whose corresponding equations are found in Secs. 4.1 and 4.1, for
the RT and RR model respectively. We write all the field variables present in these equations
as a FLRW background quantity (denoted with an overbar) plus an associated perturbation,
e.g. U = Ū + δU , where one imposes |δU/Ū | ≪ 1. The metric field is weakly perturbed as,
gµν = ḡµν + hµν , where hµν is the linear perturbation field. Focusing only on the scalar sector
for the moment, the perturbed line element is generically written as (Bardeen, 1980; Kodama
and Sasaki, 1984; Ma and Bertschinger, 1995),

ds2 = a(η)2
[
− (1 + 2ψ)dη2 + 2∂iB dη dx

i +
(
(1 + 2ϕ)δij + ∂i∂jE

)
dxidxj

]
, (4.55)

where η is the conformal time, whose derivative are denoted by a prime here, ∂ηψ ≡ ψ′, and
we have adopted the sign convention used in (Bardeen, 1980; Kodama and Sasaki, 1984), which
relates to the one used in (Ma and Bertschinger, 1995) in performing the replacement,

ψ → ψMB , ϕ→ −ϕMB . (4.56)

In this framework, invariance under (passive) diffeomorphisms xµ → x′µ(x), is realised at the
linearly perturbated level too, so x′µ(x) = xµ + ξµ, with ξµ infinitesimal. The background
geometry is kept fixed under infinitesimal coordinate transformation, so as its variation is re-
verberated on the fields perturbations. As such, the metric perturbation field transforms as,

hµν −→ hµν − Lξ
(
ḡµν + hµν

)
= hµν − Lξ ḡµν +O

(
h2µν
)
. (4.57)

as the associated Lie derivative Lξ along the vector field ξµ reads,

Lξhµν = ξρ∂ρhµν + 2∂(µξ
ρhρν) , (4.58)

Focusing on the scalar sector of the vector field ξµ ≡
(
A, ∂iC

)
, one can deduce the transforma-

tion properties of ψ, ϕ, B and E,

ψ → Ψ ≡ ψ − 1

a

(
aA
)′

, B → B − C ′ +A , (4.59)

ϕ→ Φ ≡ ϕ−HA , E → E − C . (4.60)
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Choosing C = E and A = E′ − B, we fix the so-called conformal Newtonian or longitudinal
gauge (Mukhanov et al., 1992), where the transformed field Enew = Bnew = 0. The line element
then reduces to,

ds2 = a2(η)
[
− (1 + 2Ψ)dη2 + (1 + 2Φ)δijdx

idxj
]
, (4.61)

and we define the potentials of (Ma and Bertschinger, 1995), as,

ψ ≡ Ψ , ϕ ≡ −Φ , (4.62)

In this gauge, one has redefined the new fields,

Ψ = ψ +
1

a

(
aE′ −B

)′
, Φ = ϕ−H(E′ −B) , (4.63)

which can easily be checked to be gauge invariant combinations. These are typically referred
to as the Bardeen potentials (Bardeen, 1980) and, being gauge invariant, are observable. This
transformation also applies to the additional auxiliary fields perturbations introduced in the
localisation of the RT and RR models. For instance, in the case of the RT model, one redefines,

δX → δXnew = δX − (E′ −B)X̄ ′ , (4.64)

δW0 → δW new
0 = δW0 −

(
(E′ −B)W̄0

)′
, δWi → δW new

i = δWi − ∂i(E
′ −B)W̄0 . (4.65)

Stress Energy Tensor and Conservation Equations

We also linearly perturb the energy momentum tensor for matter fluids defined in Sec. 4.1. The
definition of the observes’ velocity field uµ implies,

uµ(η) =
1

a

(
(1−Ψ), vi

)
, (4.66)

and to first order in perturbation the energy momentum tensor then reads,

T 0
0 = −(ρ̄+ δρ) , (4.67)

T 0
i = δijv

j(ρ̄+ p̄) , (4.68)

T ij = (p̄+ δp)δij + πij . (4.69)

Defining the longitudinal part of the velocity three-vector θ ≡ ḡij∂ivj = ∇̄iv
i, one can work out

the scalar transformation properties of each components,

δρ→ δρ−Aρ̄′ , θ → θ +∆A , δp→ δp− 3Ap̄′ , (4.70)

where ∆ ≡ δij∂i∂j , is the flat Laplace operator. The traceless-transverse π
i
j (helicity-2) is gauge

invariant in itself. Defining also the density contrast δ ≡ δρ/ρ̄, we can write the corresponding
gauge invariant quantity,

δ⋆ ≡ δ − 3H∆−1θ(1 + w) , (4.71)

where ∆−1 is the Green’s function of the Laplacian. In conformal time, the energy-momentum
conservation condition ∇µT

µ
ν = 0 for the background is given by,

ρ̄′ = −3H(1 + w)ρ̄ , (4.72)
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while for the linear perturbations, it is convenient to express the pressure perturbation as
(Sapone and Kunz, 2009; Albarran et al., 2017),

δp

ρ̄
≡ c2sδ − 3H(1 + w)

(
c2s − c2s,a

)
∆−1θ , (4.73)

= c2sδ
⋆ + 3H(1 + w)c2s,a∆

−1θ , (4.74)

where c2s is the rest frame sound speed of the fluid and the adiabatic sound speed is defined as,

c2s,a ≡
p̄′

ρ̄′
= w − w′

3H(1 + w)
, (4.75)

in particular, for fluids with constant equation of state one has c2s = c2s,a = w, and thus c2s =
δp/δρ. In that case, the time component of the conservation equation at linear order leads to,

δ′ = −
(
3Φ′ + θ

)
(1 + w) , (4.76)

while the divergence of the spatial component reads,

θ′ = −(1− 3w)Hθ −∆Ψ−∆σ − c2s
1 + w

∆δ , (4.77)

where one has defined,

(ρ̄+ p̄)σ ≡ 1

a2

(
∂i∂j

∆
− 1

3
δij
)
πij . (4.78)

We lower and raise the indices with the spatial background metric ḡij .

4.3.2 Linear Cosmological Perturbations in RT

In this section, for later convenience, we start by expressing the cosmological background
equations in conformal time and then present the corresponding linearised equations for the
cosmological perturbations.

Background Equations in Conformal Time

Applying the background metric Eq. (4.61) to the localised equations of motion for the RT
model written in Sec. 4.1 yields,

H2 − m2

9

[
a2X̄ − W̄ ′

0 +HW̄0

]
=

8πG

3
a2ρ̄ , (4.79)

H′ +
H2

2
+
m2

6

(
HW̄0 − a2X̄

)
= −4πGa2p̄ , (4.80)

for the modified Friedmann equation, whereas the evolution equations for the auxiliary fields
are given by,

X̄ ′′ + 2HX̄ ′ = 6(H′ +H2) , (4.81)

W̄ ′′
0 −

(
H′ + 4H2

)
W̄0 = a2X̄ ′ , (4.82)
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Linear Perturbations Equations

We will now expose the equations of motion at first order in perturbation. As vector com-
ponents generically decay and are negligible in the late Universe, we are only interested in the
scalar sector. We decompose the vector perturbations along their transverse and longitudinal
parts with respect to ∂i as δWi = δW T

i + ∂iδW . Moreover, we work in Fourier space as the
modes of field perturbations decouple at linear level and therefore generically write δWk ≡ δW ,
Ψk ≡ Ψ, etc. The modified Einstein equations lead to,

k2Φ+ 3H(Φ′ −HΨ)

− m2

6

[
a2δX − δW ′

0 +HδW0 + 2ΨW̄ ′
0 +

(
Ψ′ − 2HΨ

)
W̄0

]
= 4πGa2ρ̄δ , (4.83)

k2(Φ′ −HΨ) +
m2

6

[
k2HδW − 1

2
k2δW ′ + k2ΨW̄0 −

1

2
k2δW0

]
= −4πG(1 + w)a2ρ̄θ , (4.84)

k2(Ψ + Φ)− m2

3
k2δW = 12πG(1 + w)a4ρ̄σ , (4.85)

Φ′′ −Ψ(H2 + 2H′)−H(Ψ− 2Φ)′ +
k2

3
(Ψ + Φ) (4.86)

− m2

6

[
a2δX −

(
Φ′ − 2HΨ

)
W̄0 −HδW0 −

k2

3
δW

]
= −4πGc2sa

2ρ̄δ , (4.87)

which correspond to the (00), (0i), traceless and trace part of the (ij) components of the
modified Einstein equations. We will keep this order throughout. The equations governing the
dynamics of the auxiliary fields perturbations read,

δX ′′ + k2δX + 2HδX ′ = 2k2(Ψ + 2Φ) + 6Φ′′ − (6H− X̄ ′)(Ψ− 3Φ)′ , (4.88)

δW ′′
0 −

(
H′ + 4H2 − k2/2

)
δW0 =

[
k2Ψ+Ψ′′ − (8H2 + 2H′)Ψ−H(Ψ− 9Φ)′

]
W̄0

− k2/2δW ′ + 2Hk2δW + 3(Ψ− Φ)′W̄ ′
0 + 2ΨW̄ ′′

0 + a2δX ′ , (4.89)

δW ′′ − 2(H′ + 2H2 − k2)δW =

− 4HδW0 − δW ′
0 + 4W̄ ′

0Ψ+ 2
(
Ψ′ − Φ′ + 2HΨ

)
W̄0 + 2a2δX . (4.90)

where we used the auxiliary background equations to discard terms. We then use the conserva-
tion equations Eqs. (4.76) and (4.77) in Fourier space to close the system. It is also convenient
to express them in terms of e-folding time x = log a and, in that case, define the new variables,

V̄0 = e−xH0W̄0 , δV0 = e−xH0δW0 , δZ = H2
0δW , (4.91)

Using γ ≡ m2/(9H2
0 ) and ρ0 ≡ 3H2

0/(8πG), Eqs. (4.83)-(4.87) then become,

k̂2Φ+ 3(∂xΦ−Ψ) =
3

2h2ρ0

[
ρ̄δ + γρ0

(
δX − h∂xδV0 + 2hΨ∂xV̄0 + h∂xΨV̄0

)]
, (4.92)

k̂2
(
∂xΦ−Ψ

)
= − 3

2h2ρ0

[
ρ̄(1 + w)θ̂ + k̂2γρ0

(
h2δZ − h2

2
∂xδZ + hΨV̄0 −

h

2
δV0

)]
, (4.93)

k̂2(Ψ + Φ) =
9

2h2ρ0
e2xρ̄(1 + w)σ + 3k̂2γδZ , (4.94)

∂2xΦ+ (3 + ζ)∂xΦ− ∂xΨ− (3 + 2ζ)Ψ +
k̂2

3
(Φ + Ψ)

= − 3

2h2ρ0

[
c2sδρ̄− γρ0

(
δX − h(∂xΦ− 2Ψ)V̄0 − hδV0 −

k̂2

3
h2δZ

)]
, (4.95)
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where we have also introduced k̂ ≡ k/(exH) and θ̂ ≡ θ/(exH). The equations for the auxiliary
fields now read,

∂2xδX + (3 + ζ)∂xδX + k̂2δX +
[
2Ψ(3 + ζ)− (∂xΨ− 3∂xΦ)

]
∂xX̄

= 2k̂2(Ψ + 2Φ) + 6
[
∂2xΦ+ (4 + ζ)∂xΦ

]
− 6∂xΨ , (4.96)

∂2xδV0 + (3 + ζ)∂xδV0 + (k̂2/2)h(∂xδZ − 4δZ) =
[
2(3 + ζ)Ψ + 3(∂xΨ− ∂xΦ)

]
∂xV̄0

+
[
∂2xΨ+ (3 + ζ)∂xΨ+ 6∂xΦ

]
V̄0 −

[
(1/2)k̂2 − 3

]
(δV0 − 2ΨV̄0) + 2Ψ∂xV̄0 + h−1∂xδX , (4.97)

∂2xZ + (1 + ζ)∂xδZ + 2
(
k̂2 − (3 + ζ)

)
δZ =

2h−2δX − h−1
[
∂xδV0 + 5δV0 − 4Ψ∂xV̄0 − 2(∂xΨ− ∂xΦ+ 4Ψ)

]
, (4.98)

and the matter perturbation conservation equations are given by,

∂xδ = −(3∂xΦ+ θ̃)(1 + w) , (4.99)

∂xθ̃ = −
(
2− 3w + ζ

)
θ̂ + k̂2

[
Ψ+ σ +

c2s
1 + w

δ

]
, (4.100)

Tensor Perturbations

Next, we compute the evolution equations for linear tensor perturbations in the RT model
(Dirian et al., 2016). In that case, the line element in conformal time reads,

ds2 = a2(η)[−dη2 +
(
δij + hTTij

)
dxidxj ] , (4.101)

where hij,TT is the traceless-transverse tensor perturbation, δijhTTij = 0, ∂ihTTij = 0. For the RT
model, one finds,

∂2ηh
TT
ij +

(
2H− m2

3
W̄0

)
∂ηh

TT
ij −∆hTTij = 16πGa2 πij . (4.102)

Observe this equation is modified in its friction term, it is not exclusively driven by the Hubble
flow as in GR, but also by a contribution from the background auxiliary field W̄0. The source
here is the anisotropic stress tensor πij , which is non-vanishing when relativistic particles are
present during the evolution (Weinberg, 2004; Durrer and Kahniashvili, 1998). The fact that this
term vanishes in the present situation is due to the fact that we address a simplified treatment
to the description of the radiation component, effectively treating photon as non-relativistic
particles. A correct description is provided by writing the energy-momentum stress tensor in
terms of the phase-space thermal distribution function which evolve according to the Boltzmann
equation [see e.g. (Ma and Bertschinger, 1995)].
As the field W̄0 is positive at late time (see the S̄ background field in the right panel of Fig. 4.1),
its effect is to effectively decrease the background friction in Eq. (4.103). This implies the
prediction of a larger amplitude for the large scale GWs at present time, as one can see from
Fig. 4.4. A similar modification was also observed in (Deffayet and Menou, 2007), within the
framework of the DGP model (Dvali et al., 2000), that we describe in Sec. 2.4. As we will discuss
in Chapter 6, such a modified friction for GWs leads to the introduction of a modified notion
of luminosity distance, the GW luminosity distance, which is not equal to its electromagnetic
counterpart as in standard GR. Therefore, appreciating the difference between the distance-
redshift relation from luminous objects, e.g. distant SNIa or quasars, and the distance-redshift
relation provided by binary mergers, in particular binary neutrons stars coalescence, can provide
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a stringent test for GR and modified gravity theories. Furthermore, an aspect that became
recently very relevant for the viability of modified gravity theories is the propagation speed of
the gravitational waves that they describe. Indeed, the recent observations by the LIGO and
Virgo interferometers of the GWs from the binary neutron star (BNS) coalescence GW170817
(Abbott et al., 2017h), together with the observation of its γ-ray burst counterpart GRB170817A
by Fermi–GBM (Goldstein et al., 2017) and INTEGRAL (Savchenko et al., 2017), provide a
strong constraint on the present speed of GWs, |cgw/c− 1| = O

(
10−15

)
(Abbott et al., 2017i).

Therefore, models modifying the dispersion relation of GWs are typically ruled out. In our
case, decomposing the field perturbations on the tensor eigenfunctions of the Laplacian, e.g.

hTTij = H(T )Q
(T )
ij (Durrer, 2008), one can write,

∂2ηH
(T ) +

(
2H− m2

3
W̄0

)
∂ηH

(T ) + k2H(T ) = 16πGa2 π(T ) , (4.103)

trading the metric and matter fields for,

H(T )
(
η, x⃗
)
=

1

ã(η)
χ
(
η, k⃗
)
, π(T )

(
η, x⃗
)
=

1

ã(η)
π̃
(
η, k⃗
)
, (4.104)

and defining,
ã′

ã
≡ H

[
1− m2

6H
W̄0

]
, (4.105)

we obtain,

χ̃′′ +

(
k2 − ã′′

ã

)
χ̃ = 16πGa2 π̃ . (4.106)

At solar system scales, k ≫ 1, and the k2 term dominates the dispersion relation, showing that
the GWs propagate at the speed of light in the RT model. This model is therefore compatible
with the aforementioned observations.

4.3.3 Linear Perturbation Equations in RR

Scalar Perturbations

We now discuss in details the cosmological perturbations of the RR model, in the localised
version of its equations of motion (4.8), (Dirian et al., 2014). The modified Friedmann equations
in conformal time read,(

1− m2

3
S̄

)
H2 − m2

18

(
1

2
a2Ū2 + 6HS̄′ − S̄′Ū ′

)
=

8πG

3
a2ρ̄ , (4.107)(

1− m2

3
S̄

)(
H′ +

H2

2

)
− m2

12

(
1

2
a2Ū2 + 2HS̄′ + S̄′Ū ′ + 2S̄′′

)
= −4πGa2p̄ , (4.108)

while for the auxiliary equations one has,

Ū ′′ + 2HŪ ′ = 6
(
H′ +H2

)
, S̄′′ + 2HS̄′ = a2Ū . (4.109)

To first order in linear perturbations one obtains the modified Einstein equations,(
1− m2

3
S̄

)(
k2Φ+ 3H

(
Φ′ −HΨ

))
= 4πGa2ρ̄δ − m2

6

[
− 1

2
a2ŪδU

+
(
6HΨ− 3Φ′ −ΨŪ ′)S̄′ +

1

2

(
Ū ′δS′ + S̄′δU ′)− 3H2δS − 3HδS′ − k2δS

]
, (4.110)
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Figure 4.4 – Upper panel: Gravitational waves amplitude H(T ) as a function of log(1+ z) = −x
in the RT model (red) and in RR (blue) for wavenumber k = 10−3Mpc−1 (dashed) and k =
10−1Mpc−1 (solid) for the same fiducial cosmology. Lower panel: The absolute difference with
respect to ΛCDM in RT (red) and RR (blue).

(
1− m2

3
S̄

)
k2(Φ′ −HΨ)− m2k2

6

[
δS′ − S̄′Ψ−HδS

+
1

2

(
Ū ′δS + S̄′δU

) ]
= −4πGa2θ̂ρ̄(1 + w) , (4.111)(

1− m2

3
S̄

)
k2(Ψ + Φ)− m2k2

3
δS = 12πGa4ρ̄(1 + w)σ , (4.112)(

1− m2

3
S̄

)(
Φ′′ −Ψ(H2 + 2H′)−H(Ψ′ − 2Φ′) +

k2

3
(Ψ + Φ)

)
− m2

6

[
1

2
a2ŪδU − 2ΨS̄′′ +

(
2Φ′ − 2HΨ−Ψ′ −ΨŪ ′)S̄′ + δS′′ +HδS′ +

(
H2 + 2H′)δS

+
2k2

3
δS +

1

2

(
Ū ′δS′ + S̄′δU ′)] = −4πGa2c2s ρ̄δ , (4.113)

and the evolution of the auxiliary fields read,

δU ′′ + 2HδU ′ + k2δU −
(
Ψ′ − 3Φ′)Ū ′ = 6Φ′′ − 6H

(
Ψ′ − 3Φ′)+ 2k2

(
Ψ+ 2Φ

))
, (4.114)

δS′′ + 2HδS′ + k2δS −
(
Ψ′ − 3Φ′)S̄′ − 2Ψ

(
S̄′′ + 2HS̄′) = a2δU . (4.115)

The conservation equations used for closing the system are provided in Eqs. (4.76),(4.77) in real
space. Going to time x = log a and defining the new variables, V̄ ≡ H2

0 S̄, δV ≡ H2
0δS these
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become,(
1− 3γV̄

) (
k̂2Φ+ 3 (∂xΦ−Ψ)

)
=

3

2ρ0h2
ρ̄δ − 3γ

2

[
− 1

2h2
ŪδU +

(
6Ψ− 3∂xΦ−Ψ∂xŪ

)
∂xV̄ +

1

2

(
∂xŪ∂xδV + ∂xV̄ ∂xδU

)
− 3δV − 3∂xδV − k̂2δV

]
, (4.116)(

1− 3γV̄
)
k̂2(∂xΦ−Ψ) =

− 3

2ρ0h2
θ̂ρ̄(1 + w) +

3γk̂2

2

[
∂xδV − ∂xV̄Ψ− δV +

1

2

(
∂xŪδV + ∂xV̄ δU

) ]
, (4.117)

k̂2(Ψ + Φ)
(
1− 3γV̄

)
− 3γk̂2δV =

9

2ρ0h2
e2xρ̄(1 + w)σ , (4.118)(

1− 3γV̄

)(
∂2xΦ+ (3 + ζ)∂xΦ− ∂xΨ− (3 + 2ζ)Ψ +

k̂2

3
(Φ + Ψ)

)
= − 3

2ρ0h2
c2sρ̄δ −

3γ

2

(
1

2h2
ŪδU − 2Ψ∂2xV̄ +

[
2∂xΦ− 2(2 + ζ)Ψ− ∂xΨ−Ψ∂xŪ

]
∂xV̄

+ ∂2xδV + (2 + ζ)∂xδV +
2k̂2

3
δV + (3 + 2ζ)δV +

1

2

(
∂xŪ∂xδV + ∂xV̄ ∂xδU

))
, (4.119)

while the evolution equations for the auxiliary field perturbations are given by,

∂2xδU + (3 + ζ)∂xδU + k̂2δU − 2Ψ∂2xŪ −
[
2(3 + ζ)Ψ + ∂xΨ− 3∂xΦ

]
∂xŪ

= 2k̂2(Ψ + 2Φ) + 6
[
∂2xΦ+ (4 + ζ)∂xΦ

]
− 6
[
∂xΨ+ 2(2 + ζ)Ψ

]
, (4.120)

∂2xδV + (3 + ζ)∂xδV + k̂2δV − 2Ψ∂2xV̄ −
[
2(3 + ζ)Ψ + ∂xΨ− 3∂xΦ

]
∂xV̄ =

δU

h2
. (4.121)

Tensor Perturbations

The evolution equations for the tensor perturbations are also modified in the RR model. They
read,(

1− m2

3
S̄

)[
∂2ηH

(T ) + 2H∂ηH(T ) + k2H(T )

]
− m2

3
∂ηS̄∂ηH

(T ) = 16πGa2 π(T ) . (4.122)

and are characterised by a modification of the background friction, as for the case of the RT
model (4.103). This boosts the amplitude of the large scales modes GWs at late time, as can
be seen from Fig. 4.4. Additionally, they also feature an effective coupling to the source,

Geff,gw(η)/G ≡
(
1− m2

3
S̄

)−1

. (4.123)

In the far future as x → +∞, we have (m2/3)S̄(x) → 1− (Dirian and Mitsou, 2014), so that
Geff,gw(x) → +∞, and the tensor modes become strongly coupled to matter. However, as we
will see below (see Fig. 4.5), in the early past until today Geff,gw(x)/G − 1 ≲ 6%, so that
the coupling to the source can only mildly affect observable predictions. Observe that such a
modified coupling also appears in the scalar perturbation sector for the RR model, Eqs. (4.110)-
(A.22). Concerning the speed of the GWs in the RR model, performing the same manipulations
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as in Sec. (4.3.2), we find a similar expression as in Eq. (4.106), with,

ã′

ã
= H

[
1−

(
1− m2

3
S̄

)−1m2

6H
∂ηS̄

]
= H

[
1− 1

2H
∂η log

(
Geff,gw(x)/G

)]
, (4.124)

which, in the subhorizon limit, shows that the RR model also describes GWs propagating at
the speed of light. More details will be provided in Chapter 6.

4.3.4 Perturbation of Initial Conditions

Initial Conditions for Radiation and Dust

Regarding the matter content, as for the background evolution presented above, we assume a
simplified scenario where the evolution start into RD and evolves into a phase a matter (dust,
CDM) domination. Radiation has a sounds speed c2s,R = 1/3 while non-relativistic matter has

c2s,M = 0. In that case, the conservation equations reduce to,

∂xδM = −(3∂xΦ+ θ̂M ) , ∂xδR = −4

3
(3∂xΦ+ θ̂R) , (4.125)

∂xθ̂M = −(2 + ζ)θ̂M + k̂2Ψ , ∂xθ̂R = −(1 + ζ)θ̂R + k̂2
[
Ψ+

δR
4

]
. (4.126)

where {δR, θR}, {δM , θM} are the radiation and matter density contrast and velocity divergence,
respectively. Such a matter configuration implies that the anisotropic stress generically vanishes
σM,R = 0, however in this case, this does not imply that the gravitational potentials are pro-
portional to each other Ψ ̸= −Φ, since there an anisotropic stress component characterising the
effective dark energy perturbations in both nonlocal models [see Eqs. (4.94),(4.118)]. Taking
the derivative of the first equation of (4.125) and using the second one, one can compute the
growth equation,

δ′′M + (2 + ζ)δM = −
(
Φ′′ + (2 + ζ)Φ′)− k̂2Ψ . (4.127)

Concerning the initial conditions for the gravitational potential Ψ and the matter perturbations
δi and θi (i = R,M), we choose adiabatic initial conditions provided by early physics processes
such as inflation, integrating the system from RD at xin = −15. We are interested in the
perturbations whose wavelengths lie well outside the size of the Hubble horizon, i.e. k̂(x0) ≪
1, since at subhorizon scales the radiation, CDM perturbations do not grow. Moreover, the
primoridial spectrum is taken as been slightly tilted so that (Amendola and Tsujikawa, 2010),

A2(k) =
50π2

9

(
k

H0

)ns−1

δ2H , (4.128)

where ns ≃ 0.96 is the spectral index and δ2H ≃ 3.2× 10−10, the amplitude of the gravitational
potential. To second order in k2 the initial conditions for the Bardeen potentials and matter
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quantity read (Durrer, 2008),

Φ(xin) = −Ψ(xin) = A(k)
3
√
3

k̂in
j1
(
k̂in/

√
3
)
, (4.129)

≈ A(k)

(
1− k̂2in

30
+

k̂4in
2520

+O(k6)

)
, (4.130)

δR(xin) =
4

3
δM (xin) =

6A(k)

k̂3in

(
k̂in(6− k̂2in) cos

(
k̂in/

√
3
)
+ 2

√
3
(
k̂2in − 3) sin

(
k̂in/

√
3
))

,

≈ A(k)

(
2 +

7k̂2in
15

− 23k̂4in
1260

+O(k6)

)
, (4.131)

θM (xin) = θR(xin) = −3A(k)

2k̂in

(
6k̂in cos

(
k̂in/

√
3
)
+

√
3(k̂2in − 6) sin

(
k̂in/

√
3
))

, (4.132)

≈ A(k)

(
− k̂2in

2
+
k̂4in
20

+O(k6)

)
, (4.133)

where k̂in ≡ k̂(xin). We also define κ ≡ k̂eq = k/keq, where keq = aeqHeq is the size of the
horizon at matter-radiation equality. Choosing two different representative values κ = 0.1, 5,
allows us to follow the behavior of modes that were inside and outside the horizon at equality.
Indeed, as keq ≃ 0.014h0/Mpc ≃ 42H0, a value of κ = 0.1 corresponds to k/H0 = 4, i.e. a mode
that enters the horizon at late time z ≃ 1.5, whereas κ = 5 give k/H0 = 210, which entered so
horizon already in RD.

Initial Conditions for Auxiliary Field Perturbations

Concerning the auxiliary sector in both models, as discussed into Sec. 3.1.2, the correspond-
ing initial data are constrained at full nonlinear level, due to the nonlocal structure of the
underlying theory. At background level, we have seen in Sec. 4.2.3, that the lack of understand-
ing of the mechanism generating such nonlocal corrections, and therefore of their domain of
validity, the initial conditions of the auxiliary fields can be taken to vanish in RD, or be fixed
to a finite value provide by the evolution of the system during earlier stages of the Universe, to
which the nonlocal models are considered to make explicitly part. At linear perturbation level,
the situation is similar. Splitting the auxiliary fields into a background and linear perturbation
part, one imposes,

X(tin) ≈ X̄(tin) + δXk(tin) = constant , (4.134)

on the initial spacelike hypersurface Σtin . The linear perturbations should remain small,

δX(tin)/X̄(tin) ≪ 1 , (4.135)

so that perturbation theory remains valid. The issue is now to know whether or not one is
allowed to incorporate the nonlocal corrections into a model describing early Universe physics.
Indeed, in the case where these corrections originate from some low energy limit of a more
fundamental theory, these terms are not legitimate to be used for describing a highly energetic
phase such as during the early Universe. Without the knowledge of such an eventual, more
fundamental theory, this question therefore cannot be answered. In a bottom-up approach to
this question, two strategies can be adopted. The first is to consider that such corrections
are only relevant for infrared physics, and therefore do not contribute to the description of
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early Universe physics. In that case, one can safely set vanishing initial conditions for the
auxiliary field in RD, as their effects only become relevant once matter domination sets in. The
second strategy consists in assuming that such corrections make genuinely part of the model
describing early physics, and in that case one should concretely embed these corrections into the
corresponding theory, such as one describing an inflationary period. Then, the initial conditions
in RD for the auxiliary sector at background and linear perturbation level are directly provided
by inflationary physics, and for linear perturbations in the very same way than the primordial
curvature perturbation spectrum seeds the underlying dark matter distribution, and therefore
the gravitational potentials Φ and Ψ at that time. An approximate evaluation of the values of
the auxiliary fields at the exit of such an inflationary phase can be performed at the background
level, as reviewed in Sec. 4.2.3. At the level of linear perturbations, as is illustrated in Sec. 3.1.2
and discussed further in (Maggiore, 2017) [see also Sec. 3.2.1 of Ref. (Belgacem et al., 2018b)],
that the initial conditions for the auxiliary field perturbations in the RR model are related to
the ones of the gravitational potentials,

δUk(tin) ∼ Φk(tin) , δU ′
k(tin) ∼ Φ′

k(tin) . (4.136)

In the following, we review results of linear perturbation theory applied to both nonlocal
modified gravity models. We will only consider the “minimal” version of the above nonlocal
models, i.e. when the initial data of the auxiliary sector is constrained to vanish. We then
provide details on the dark energy phenomenology that both models describe.

4.4 Results of Linear Perturbation Theory

We integrate the linear perturbation equations for the scalar sector in the “minimal” version
of the RT and RR model, i.e. where the initial conditions of the auxiliary variables are overall
vanishing. The matter content is specified to be a simplified scenario involving an early radiation
phase (from xin = −15) and a late dust (CDM) dominated era, realised by perfect fluid fields.
As hereabove, the cosmological constant is set to zero in the case of the nonlocal models, Λ = 0
and fudged so as to close the Universe today in ΛCDM. We use the time-time component of
the Einstein equations for closing the system. Initial conditions for the other fields and fixed
fiducial cosmology are provided in the previous sections.

4.4.1 Indicators of Deviations from GR

We define a set of commonly used functions for appreciating the deviations to GR induced by
the nonlocal models at linear perturbation level [see e.g. (Kunz, 2012)].

RT Model

We first introduce the modified Poisson equations for the gravitational potential. This equa-
tion is generically used in composing the time-time and time-space component of the modified
Einstein equations. The case of the RT model yields,

k̂2Φ =
3

2h2

[
ΩRe

−4x

(
δR +

4

k̂2
θ̂R

)
+ΩMe

−3x

(
δM +

3

k̂2
θ̂M

)
+ γ

(
δX − h∂xδV0 −

3h

2
δV0 + 2hΨ∂xV̄0 + h∂xΨV̄0 + 3hΨV̄0 + 3h2δZ − 3h2

2
∂xδZ

)]
, (4.137)



CHAPTER 4. PHENOMENOLOGY OF THE RT AND RR MODELS 107

from which one can read,

Geff

G
(x) = 1 +

A(x)

B(x)
, (4.138)

with,

A(x) ≡ γ

(
δU − h∂xδV − 3h

2
δV + 2hΨ∂xV̄ + h∂xΨV̄ + 3hΨV̄ + 3h2δZ − 3h2

2
∂xδZ

)
,

B(x) ≡ ΩRe
−4x

(
δR +

4

k̂2
θ̂R

)
+ΩMe

−3x

(
δM +

3

k̂2
θ̂M

)
. (4.139)

Then the modified Poisson equation (4.147) can be rewritten as

k2Φ = 4πGeff(x; k)a
2ρ0

[
ΩRe

−4x

(
δR +

4

k̂2
θ̂R

)
+ΩMe

−3x

(
δM +

3

k̂2
θ̂M

)]
. (4.140)

This shows that Geff(x; k) plays the role of an effective time-dependent gravitational “constant”,
which also depends on the mode k. We show the plot of the effective Newton constant on the
left panel of Fig. 4.5. Not surprisingly, the effective Newton constant converges to G at small
scales (red dashed line), while it is enhanced at larger scales (blue solid line). One could have
expected this behavior as the nonlocal correction is generically modifying the theory in its
infrared regime, as seen directly from the corresponding covariant equations of motion. The
effective Newton constant can be interpreted as describing the effect of a fifth force induced by
new degrees of freedom beside the gravitational ones, and can be effectively interpreted as the
auxiliary fields in the present case. This affects the gravitational attraction of (dust) matter
and is therefore relevant for structure formation. Its features depend on the specific structure
of modified gravity model at hand and is one of its fingerprint. However, in the case of the RT
model, we see that this quantity is ∼ 1% and therefore this model will be harder to discriminate
compared to the ΛCDM one.
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Figure 4.5 – Effective Newton constant Geff/G(z, k) in the RT model (left panel) and in RR
(right panel). The blue solid lines correspond to κ = 0.1 while the red dashed lines are for
κ = 5. From (Dirian et al., 2014).

Together with Geff , a second indicator is the gravitational slip (Zhang et al., 2007; Amendola
et al., 2008b),

η(x, k) =
Φ +Ψ

Φ
. (4.141)
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which characterises the presence of anisotropic stress, and in particular the one induced by an
effective dark energy component as in both nonlocal models. Fig. 4.6 shows the gravitational
slip η (left panel) and the anisotropic stress π(z, k) ≡ Ψ + Φ (right panel). We see that both
quantities are very small on small scale (red dashed lines) and become larger on large scales
(solid blue lines), the RT model induces an anisotropic stress affecting the difference between
both gravitational potential are the level of 2% at present time.
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Figure 4.6 – Gravitational slip η (left panel) and the dimensionless anisotropic stress k3/2π
(right panel) in the RT model. The blue solid lines correspond to κ = 0.1 while the red dashed
lines are for κ = 5. From (Dirian et al., 2014).

Alternatively, two useful quantities are the functions µ(x, k) (Daniel et al., 2010) and Σ(x, k)
(Amendola et al., 2008b), which we define as,

Ψ = [1 + µ(x; k)]ΨGR , (4.142)

Ψ− Φ = [1 + Σ(x; k)](Ψ− Φ)GR , (4.143)

where the subscript denotes the same quantities computed in ΛCDM on the same fiducial cos-
mology. The quantity characterises the deviation to the gravitational potential in GR (modulo
dark energy anisotropic stress) and Σ provides access to the deviation in the lensing potential.
The advantage of this parametrisation is that it neatly separates the modifications to the motion
of non-relativistic particles, which is described by µ, from the modification to light propagation,
which is encoded in Σ. For modes well inside the horizon, the growth equation Eq. (4.127)
becomes,

δ′′M + (2 + ζ)δ′M = −k̂2(1 + µ)ΨGR . (4.144)

If one neglects the anisotropic stress induced by relativistic matter ΨGR = −ΦGR and using
k2ΦGR = 4πGa2ρM (δM )GR, where (δM )GR are the matter density perturbation in ΛCDM, one
can write,

δ′′M + (2 + ζ)δ′M − 3

2
(1 + µ)

ΩM (δM )GR

a3h2(x)
= 0 , (4.145)

which shows how the growth of structures is affected by µ. The quantities (Geff/G, η) and (µ,Σ)
are not independent and can be related to each other, the detailed relations are found in (Dirian
et al., 2014). We show how the growth function defined by,

g(z, k) ≡ δ log δM
δ log a

, (4.146)



CHAPTER 4. PHENOMENOLOGY OF THE RT AND RR MODELS 109

0.0 0.5 1.0 1.5 2.0

1.

1.002

1.004

1.006

1.008

1.01

1.012

z

g
�

g L

0.0 0.5 1.0 1.5 2.0
0.002

0.004

0.006

0.008

0.010

z

Μ

Figure 4.7 – Ratio of the growth function g(z, k) with respect to the one in ΛCDM (left panel)
and the deviation parameter µ (right panel) in the RT model. The blue solid lines correspond
to κ = 0.1 while the red dashed lines are for κ = 5. From (Dirian et al., 2014).

is affected into the RT model in the left panel of Fig. 4.7, while we show the plot of the deviation
parameter µ(z, k) in the right panel. We can see that the corresponding corrections to GR are
also at percent level in that model. For the RT model, the function Σ(z, k) is shown in the left
panel of Fig. 4.8. Overall, we see that, for fixed fiducial cosmology, the linear perturbations
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Figure 4.8 – Deviation parameter Σ(z, k) fo the RT model (left panel) and for the RR model
(right panel). The blue solid lines correspond to κ = 0.1 while the red dashed lines are for
κ = 5. From (Dirian et al., 2014).

of the RT model deviate from the ones in ΛCDM at ∼ 1–2% level. Supplemented by a quasi-
similar background evolution as well, it is quite surprising to find this model so close to ΛCDM,
while its theoretical structure is completely different. The tendency of the nonlocal model is
to induces a higher growth of structures at late time compared to ΛCDM, as witnessed by an
enhanced effective Newton constant, a higher growth function and a positive µ. This is also
partially because the Hubble parameter is lowered at late time (see the left panel of Fig. 4.1), so
that the CDM density fraction ΩM (z) is higher at late time, and structures are less smeared out
by the expansion and can more easily grow. Heavier structures also deepen the gravitational
potential well that increase in turn the lensing potential whose deviation to ΛCDM is provided
by Σ. Such trend will induces shift in the cosmological parameters inferred from the nonlocal
model, given the data, as we will discuss in details in the next chapter.
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RR Model

We now perform the same analysis in the framework of the RR model. In that case, one can
compute the modified Poisson equation,

(1− 3γV̄ )k̂2Φ =
3

2h2

[
ΩRe

−4x

(
δR +

4

k̂2
θ̂R

)
+ΩMe

−3x

(
δM +

3

k̂2
θ̂M

)]
− 3γ

2

[
− (k̂2 + 6)δV − 1

2h2
ŪδU +

(
3Ψ− 3Φ′ −ΨŪ ′)V̄ ′

+
1

2
Ū ′(δV ′ + 3δV ) +

1

2
V̄ ′(δU ′ + 3δU)

]
, (4.147)

and one can read the effective Newton constant,

Geff(x, k)

G
≡ 1

1− 3γV̄ (x)

[
1− P (x, k)

R(x, k)

]
, (4.148)

where,

P (x, k) ≡ 3γ

2

[
− (k̂2 + 6)δV − 1

2h2
ŪδU +

(
3Ψ− 3Φ′ −ΨŪ ′)V̄ ′

+
1

2
Ū ′(δV ′ + 3δV ) +

1

2
V̄ ′(δU ′ + 3δU)

]
, (4.149)

R(x, k) ≡ 3

2h2

[
ΩRe

−4x

(
δR +

4

k̂2
θ̂R

)
+ΩMe

−3x

(
δM +

3

k̂2
θ̂M

)]
. (4.150)

We show Geff/G(z, k) into the right panel of Fig. 4.5 4. We see that the deviation with respect
to ΛCDM is higher into this model, of the order of ∼ 6%. Moreover, in that case, the amplitude
of Geff increases with increasing values of k. This goes against the usually intuition that the
model provides stronger deviations in the infrared. We find that Geff saturates at the k values
considered in Fig. 4.5, i.e. when k is increased (decreased) , the red (blue) curve remains the
same. In particular, for increasing values of k, Geff does not smoothly converge to G, as in the
RT model (see left panel of the same figure). The reason for this is that, in the small scale limit
k ≫ 1, the effective Newton constant keeps a residual background dependence. This fact can
be seen in considering the leading contribution in k̂ = k/(aH), into Eqs. (4.120),(4.121), which
lead to,

δU = 2(Ψ + 2Φ) , δV = O
(

1

k̂2

)
Ψ , (4.151)

which yields,

Geff

G
(x, k ≫ 1) =

1

1− 3γV̄ (x)

[
1 +O

(
1

k̂2

)]
. (4.152)

Lunar Laser Ranging Constraints. As mentioned in (Barreira et al., 2014b), when taken at
face value, such a residual time-dependence is in conflict with Lunar Laser Ranging experiments
(LLR), putting bounds on the time variation of the Newton constant, Ġeff/G = (4 ± 9) ×
10−13yr−1 (Williams et al., 2004). The RR model with u0 = 0 (see Sec. 4.2.3) in the present

4. This connects to the discussion about gravitational wave-source coupling addressed in Sec. 4.3.3
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scenario predicts, Ġeff/G = 92 × 10−13yr−1, and therefore would be ruled out by such a test.
Nevertheless, LLR are performed on the Earth-Moon scale and it is not at all obvious that one
can extrapolate the solution on the largest cosmological scales, down to galactic and solar system
ones 5. Note however that the RR model with u0 = 250, potentially escapes this discrepancy as
it is very close from a ΛCDM cosmology.

In Fig. 4.9, we show the gravitational slip η (left panel) and the anisotropic stress π in
the RR model. Observe than η has the opposite sign as compared to the same quantity in
the RT model. It also describes a larger anisotropic stress generated by the effective dark
energy component (recall that for the matter content we are considering, the anisotropic stress
vanishes). The behaviors of the deviation parameter Σ(z, k), is shown in Fig. 4.8, while the
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Figure 4.9 – Gravitational slip η (left panel) and the dimensionless anisotropic stress k3/2π (right
panel) in the RT model. The blue solid lines correspond to κ = 0.1, the brown dot-dashed line
to κ = 1, while the red dashed lines are for κ = 5. From (Dirian et al., 2014).

growth function g(z, k) relative to that in ΛCDM and the deviation parameter µ are shown into
the left and right panel of Fig. 4.10, respectively. We see that for these functions as well, the
deviations with respect to GR are higher than in the RT model, of the order of 5− 10% level.
All deviations induced by the RR model with respect to ΛCDM saturate as k ≫ 1, except for
the gravitational slip shown in the left panel of Fig. 4.9. This can be seen from the expression
of the dark energy anisotropic stress that can be identified into Eq. (4.118).

In this section, we have introduced various useful functions for characterising deviations of
modified gravity models with respect to ΛCDM. These show that the nonlocal models describe
stable perturbations, and are therefore suitable for cosmological applications. In particular, we
have seen that the RT model is close to ΛCDM at background and linear perturbation level,
in that it presents overall deviations of percent level. As we will discuss in the next chapter,
discriminating such a model from ΛCDM by using current data is difficult. However, future
large scale structure surveys such as Euclid (Laureijs et al., 2011; Amendola et al., 2013), SKA
(Dewdney et al., 2009; Yahya et al., 2015), DESI (Levi et al., 2013; DESI Collaboration et al.,
2016a,b), are likely to be able to measure the aforementioned quantities (or slight variations
of them) at percent level precision. Together with complementary data from SNIa and CMB
observations, they prove to be able to put tight constraints of such small amplitude deviations

5. Work on this is in progress. It is interesting to observe that, in the case of scalar-tensor theories in which
the scalar degree-of-freedom has a shift symmetry, it can happen that such a residual time-dependence does not
decouple. In that case, the equations of motion for the scalar admit a separation of variable φ(r, t) = φ(r)+φ(t),
with φ̇ ∼ H(t), and the cosmological residual time dependence remains at small scales (Babichev et al., 2011). In
the RR nonlocal model, however there is no such a shift symmetry and this argument therefore does not apply.
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Figure 4.10 – Ratio of the growth function g(z, k) with respect to the one in ΛCDM (left panel)
and the deviation parameter µ (right panel) in the RR model. The blue solid lines correspond
to κ = 0.1 while the red dashed lines are for κ = 5. From (Dirian et al., 2014).

from the ΛCDM scenario. In the case of the minimal RR model, i.e. where the initial data of
the auxiliary fields are taken to be vanishing in RD, we have seen that such deviations were
much larger, of the order of 5–10%, and could therefore be quite well constrained be presently
available data. The RR model therefore also provides a good candidate for playing the role of
a target model, used to develop the theoretical and methodological tools the aforementioned
galaxy surveys are based on. In particular, it can be used for forecasting future constraints
obtained from such surveys, and therefore for predicting to what extent the model can be
distinguished from ΛCDM, given future data (Casas et al., 2018). Nevertheless, as we have
seen, the RR model possesses a residual background dependence that generically makes its
deviations with respect to ΛCDM finite and scale independent at small scales. In particular,
it features a time dependence in the effective Newton constant Geff(x, k) at the present time
which, interpreted at face value, is ruled out by constraint from LLR. However, such a residual
background dependence originates from the choice of the FLRW expanding solution, supposedly
not valid at solar system scales, where the latter experiments are realised. The question asking
whether or not such background dependence decouples as one enters into virialised structures
deserves further attention.

Before we turn to a more quantitative analysis aiming to constrain the RT and RR model
with current, high-precision data in the next chapter, we provide some more details on the dark
energy phenomenology described by the RT and RR models in a subsequent section.

4.4.2 Effective Dark Energy Perturbations

In Sect. 4.2, we have seen that, at the cosmological background level, the nonlocal corrections
of the RT and RR models can be interpreted as an effective dark energy energy with density
ρde and a equation of state wde = pde/ρde.

RT Model

The same effective fluid description can be applied to the linear perturbations induced by the
nonlocal terms. Observing that the linearised Einstein equations Eqs. (4.92)-(4.95) can be recast
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as,

k̂2Φ+ 3(Φ′ −Ψ) =
4πG

H2

∑
i

δρi, (4.153)

k̂2
(
Φ′ −Ψ

)
= −4πG

H2

∑
i

ρ̄i(1 + wi)θ̂i, (4.154)

k̂2(Ψ + Φ) =
12πGe2x

H2
ρ̄DE(1 + wDE)σDE, (4.155)

Φ′′ + (3 + ζ)Φ′ −Ψ′ − (3 + 2ζ)Ψ +
k̂2

3
(Φ + Ψ) = −4πG

H2

∑
i

δpi , (4.156)

where the sums over i run over radiation, matter and dark energy, one can extract,

δρde ≡ γρ0
(
δX − hδV ′

0 + 2hΨV̄ ′
0 + hV̄0Ψ

′) , (4.157)

Ωde(1 + wde)θ̂de ≡ k̂2γ

(
h2δZ − h2

2
δZ ′ + hΨV̄0 −

h

2
δV0

)
, (4.158)

Ωde(1 + wde)σde ≡
2

3
k̂2γe−2xh2δZ , (4.159)

δpde ≡ −γρ0
(
δX − h(Φ′ − 2Ψ)V̄0 − hδV0 −

k̂2

3
h2δZ

)
, (4.160)

which are respectively the density perturbation, peculiar velocity divergence, anisotropic stress
and pressure perturbation of the effective dark energy fluid. The equation of state wde is defined
into Eq. (4.35). We can also define the dark energy density contrast and the effective sound
speed for the dark energy perturbations 6,

δde ≡
δρde
ρ̄de

, ĉ2s,de(x) ≡
δpde(x)

δρde(x)
. (4.161)

In the left panel of Fig 4.11, we show the dark energy density constrast δde (red dashed line) as
compared to that of matter δM at large scales (κ = 0.1), while the right panel shows the same
quantities at small scales (κ = 5). We see from these plots that the RT model (similarly to the
RR model, see below) describes a clustering effective dark energy, which is generically the case
when wde(z) ̸= −1. We see that the dark energy density perturbation is negligible compared
to the one of dust matter. In Fig. 4.12, we show the velocity divergence for the effective dark
energy (left panel) as compared to the one of matter (right panel). Here also, the perturbation
associated to the nonlocal models are negligible compared to those of CDM.
In Fig. 4.13, we show its anisotropic stress (left panel) and its speed of sound (right panel).
Observe that the sound speed is very high at large scales, and could therefore share common fea-
tures with theories describing a dark energy with infinite sound speed (Afshordi et al., 2007a,b).
as discussed into the latter references., an infinite speed of sound does not always imply a loss
of causality. This can also be understood for the structure of the RT model, where causality
is imposed at the level of the equations of motion by taking the nonlocal operators (Green’s
functions) to be of the retarded kind.

6. We use a hat here to stress that this is not the usual rest-frame speed of sound. In any way, for large k̂ the
difference between the two definitions vanishes as can be seen form Eq. (4.74).
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Figure 4.11 – Left panel: Dimensionless density contrast of dark energy k3/2δde(z) (red dashed
line) compared to the one of matter k3/2δM (blue solid line) in the RT model for κ = 0.1. Right
panel: The same as for the left panel but for κ = 5. Inspired from (Dirian et al., 2014).
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Figure 4.12 – Left panel: Dimensionless dark energy velocity divergence k3/2Ωde(1+wde)θ̂de(z)
for κ = 0.1 (blue solid line) and κ = 5 (red dashed line). Right panel: Dimensionless velocity
divergence of dust matter k3/2ΩM θ̂M (z) for κ = 0.1 (blue solid line) and κ = 5 (red dashed
line). Inspired from (Dirian et al., 2014).

RR Model

In repeating the same steps as outlined above, one can find the effective dark energy perturbation
quantities for the RR model,

δρde ≡ ρ0γh
2

[
2V̄
(
k̂2Φ+ 3

(
Φ′ −Ψ

))
+

1

2h2
ŪδU −

(
6Ψ− 3Φ′ −ΨŪ ′)V̄ ′

− 1

2

(
Ū ′δV ′ + V̄ ′δU ′)+ 3δV + 3δV ′ + k̂2δV

]
, (4.162)

Ωde (1 + wde) θ̂de ≡ −γh2k̂2
[
2V̄ (Φ′ −Ψ) + δV ′ − V̄ ′Ψ− δV +

1

2

(
Ū ′δV + V̄ ′δU

)]
, (4.163)

Ωde(1 + wde)σde ≡
2

3
h2k̂2γe−2x

[
V̄ (Φ + Ψ) + δV

]
, (4.164)

δpde ≡ −ρ0γh2
[
2V̄

(
Φ′′ + (3 + ζ)Φ′ −Ψ′ − (3 + 2ζ)Ψ +

k̂2

3
(Φ + Ψ)

)

+
1

2h2
ŪδU − 2ΨV̄ ′′ +

(
2Φ′ − 2(2 + ζ)Ψ−Ψ′ −ΨŪ ′

)
V̄ ′

+ δV ′′ + (2 + ζ)δV ′ +
2k̂2

3
δV + (3 + 2ζ)δV +

1

2

(
Ū ′δV ′ + V̄ ′δU ′)] . (4.165)
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Figure 4.13 – Left panel: Dimensionless anisotropic stress of dark energy k3/2Ωde(1+wde)σde(z)
for κ = 0.1 (blue solid line) and κ = 5 (red dashed line), in the RT model for κ = 5. Right
panel: The speed of sound ĉ2s,de(z) for κ = 0.1 (blue solid line) and κ = 5 (red dashed line).
Inspired from (Dirian et al., 2014).
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Figure 4.14 – Left panel: Dimensionless density contrast of dark energy k3/2δde(z) (red dashed
line) compared to the one of matter k3/2δM (z) (blue solid line) in the RR model for κ = 5.
Right panel: The dimensionless velocity divergence k3/2Ωde(1 + wde)θ̂de(z) for κ = 0.1 (blue
solid line) and κ = 5 (red dashed line). Inspired from (Dirian et al., 2014).

We show the effective dark energy dimensionless density contrast (left panel) and velocity di-
vergence (right panel) in Fig. 4.14. We see that, compared to the same quantities in the RT
model (see Figs. 4.11,4.12), the dark energy density contrast is higher in RR, but still remains
negligible compared to that of matter. Observe that the velocity divergence acquires higher
values as one decreases the scale, and is however negligible compared to that of matter 7. This
is not the case for the anisotropic stress shown into the left panel of Fig. 4.15, which tends to
smaller values as the scale is lowered. Observe also from the right panel of the same figure that
the effective dark energy for the RR model has a negative sound speed at large scales.
As the dark energy is clustering, is also interesting to plot the power spectrum of dark energy

7. This can be seen in comparing the latter with the matter velocity divergence in the RT model shown the
right panel of Fig. 4.12, which is of the same order as the one found in RR.
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Figure 4.15 – Left panel: Dimensionless anisotropic stress of dark energy k3/2Ωde(1+wde)σde(z)
for κ = 0.1 (blue solid line) and κ = 5 (red dashed line), in the RR model for κ = 5. Right
panel: The speed of sound ĉ2s,de(z) for κ = 0.1 (blue solid line) and κ = 5 (red dashed line).
Inspired from (Dirian et al., 2014).

density perturbations at z = 0,

Pde(k) = (2π)3⟨|δ⋆de(k)|2⟩ , (4.166)

where the ⋆ denotes the gauge invariant quantity (4.71). The power spectrum in the RR model
is shown is shown in Fig. 4.16 where it can be compared with the one of matter. In particular,
we see that the dark energy density perturbations exhibit the same scale dependence as the
matter perturbations.
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Figure 4.16 – The dimensionless power spectrum for dark energy (purple dashed line) compared
to the one of dust matter (blue solid line) at present time z = 0. From (Dirian et al., 2014).

This section reviews the dynamical dark energy phenomenology induced by the RT and RR
nonlocal modified gravity models. In particular, we have seen that the density and velocity
divergence perturbations associated to the dark energy are negligible as compared to the ones
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of matter, and that both feature a small anisotropic stress. In that sense, we can conclude that
the effective dark energies described by both models is quite smooth, i.e. that its most relevant
modifications to GR are found at the background level.

Summary

In this chapter, we have presented the phenomenology of the nonlocal RT and RR models
in the cosmological context.

In Sec. 4.2, we have seen that the RT (4.1) and RR (4.2), nonlocal modified gravity mod-
els provide a phase of accelerated expansion at late time, without the need of a cosmological
constant Λ. In particular, we have shown that such an acceleration is caused by an effective
dynamical dark energy component, i.e. with time-dependent density ρ̄de ≡ ρ̄de(z) and equation
of state wde(z) ̸= −1, whose density fraction is fixed in tuning the mass parameter m appearing
in both models, so as to close the Universe at the present time. A dynamical dark energy
component generically implies that it is also clustering, that is, it features non-trivial linear cos-
mological perturbations. Furthermore, we have seen that the effective dark energy component
described by both models is on the phantom side, i.e. wde(z) < −1 (Maggiore, 2014; Maggiore
and Mancarella, 2014). As also discussed, this generically leads to a lower dark energy density
fraction Ωde(z) at late time, and therefore to a lower expansion rate H(z), as compared to the
one in the standard ΛCDM model, for the same fiducial cosmology. For the equation of state
today, as the RR model predicts w0

de ≃ −1.15, while the RT model gives w0
de ≃ −1.04, the

late time expansion rate in the former is therefore pushed to lower values than in the latter
(see Fig. 4.1). These overall deviations are of the order of a few percents, so their background
phenomenology is quite close from the one of ΛCDM.

In Sec. 4.3, following (Dirian et al., 2014), we have studied the linear cosmological perturba-
tions in the scalar and tensor sectors for both nonlocal models and shown that the perturbations
in both models are stable into their respective scalar and tensor sectors. In particular, we saw
that their linear tensor perturbations propagate at the speed of light, which implies that both
models are compatible with the recent observation of GWs from a BNS merger, together with
its optical counterpart. In addition, both models feature a modification of the Hubble fric-
tion term in their linear tensor evolution equation, that involves a lower damping of the GWs
amplitude they describe at late time. As we will discuss in Sec. 6, this can have profound im-
plications for observational constraints purposes. We then turned to the analysis of the linear
scalar perturbations described by both nonlocal models, in particular by using useful indicators
such as the µ, η,Σ parameters (see Sec. 4.4.1), at fixed cosmological parameter values. We have
seen that both models display percents-level deviations with respect to ΛCDM, in particular
showing that they describe an enhanced growth and lensing power, together with the presence
of an additional anisotropic stress component (slip) associated to their respective effective dark
energies. We have also seen that the linear perturbations associated with these effective dark
energies are small with respect to that of non-relativistic matter, which means that the effective
dark energy components in both models is quite smooth.

This shows that the nonlocal models provide good candidates for been constrained with
present and future cosmological data. Consequently, we now turn to the review of such ob-
servational constraints, where the models were implemented into a modification of the linear
Einstein-Boltzmann CLASS for being able to provide more realistic cosmological predictions.
Moreover, the models will also be compared to the ΛCDM one, as well as an extension of it,
within a Bayesian framework.



Chapter 5

Observational Contraints and
Bayesian Model Comparison

In this chapter, we review the results of works of (Dirian et al., 2015, 2016; Dirian, 2017) 1,
where observational constraints and Bayesian model comparison between nonlocal and ΛCDM
cosmologies were carried out. For doing so, both model have been implemented in a modified
version of the linear Einstein-Boltzmann solver CLASS (Blas et al., 2011), and cosmological
parameter inference was performed with the Markov Chain Monte Carlo (MCMC) code Mon-
tepython (Audren et al., 2013), interfaced with CLASS. An explanatory of the implementation
is provided in App. A together with the corresponding equations. The code itself is publicly
available on GitHuB (URL) and, in the case of the RR model, has been compared against a
modified version 2 of CAMB (Lewis), in the modified Einstein-Boltzmann code comparison pro-
gram of (Bellini et al., 2018). In the latter work, both codes were shown to agree at subpercent
level in CMB and matter power spectra.

In Sec. 5, we first present the data that we use into the subsequent analysis. We then
specify the cosmological framework considered for embedding the nonlocal gravity models into
cosmological statistical ones, and show the results drawn from observational constraints, that is,
their cosmological parameters inference and their performance when compared to the standard
ΛCDM model. We provide a comprehensive analysis of the deviations observed in parameter
inference when going from ΛCDM to the nonlocal models, and present the relevant structural
features for understanding these deviations. We will then perform Bayesian model selection
by using the Savage-Dickey density ratio method in Sec. 5.2, before we confront the models to
growth rate data in Sec. 5.3. We will see that an eventual tension into the RR nonlocal model
appears when constrained with CMB+BAO+SNIa data, and we subsequently find a way for
it to be resolved in Sec. 5.5. We will see that extending the initial baseline by allowing the
absolute neutrino mass to vary into the fit resolves this discrepancy and makes the nonlocal
model statistically equivalent to ΛCDM. In particular, we show that such an extension leads to
an interesting constraint on the absolute neutrino mass given the RR model, which is preferred
by growth rate data as well, as compared to the case where the mass is fixed to its initial
baseline value.

1. See also the earlier analysis of (Nesseris and Tsujikawa, 2014), where the RT model was constrained and
compared to ΛCDM given CMB, SNIa, BAO and growth rate data, different from those described below. However,
into this reference, the observational constraints were carried out by using the so-called CMB shift parameters
[see e.g. (Shafer and Huterer, 2014)], which are less robust under cosmology change compared to the ones inferred
from the CMB spectra themselves.

2. This version is not publicly available, but can been obtained on request (Barreira).
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5.1 Observational Constraints

We consider three cosmological models made of the nonlocal RT and RR modified grav-
ity, and standard ΛCDM. We perform cosmological parameter estimation through Bayesian
parameter inference given current, high precision complementary cosmological data. We start
by presenting the data and provide details about the parametrisation used into the models.
We then present our results and corresponding goodness-of-fit, before comparing them within
a Bayesian framework.

5.1.1 Datasets

The main datasets considered throughout the analysis are the same as the ones used in
the Planck 2015 analysis, in particular in (Ade et al., 2015d) for constraining the base ΛCDM
model, and in (Ade et al., 2015e) for constraining various effective dark energy parametrisations.
This choice has been made so as to consider the most conservative data up to date at the time,
where the systematic uncertainties are mostly under control. For completeness, we review them
briefly in this section, referring the reader to the original papers for more detailed explanations.

CMB. We consider the likelihoods given in the recent Planck 2015 analysis (Adam et al.,
2015) from measurements of the angular (cross-)power spectra of the CMB 3. In particular, we
take the (full-mission) lowTEB data for low multipoles (ℓ ≤ 29) and the high-ℓ Plik TT,TE,EE
(cross-half-mission) ones for the high multipoles (ℓ > 29) of the temperature and polarization
auto- and cross- power spectra (Ade et al., 2015e; Planck Wiki, 2015).

Furthermore, since the nonlocal models describe dynamical and clustering dark energies that
emerge at late time (see Secs 4.2, 4.3), we also include the temperature +polarization (T+P)
lensing data (where only the conservative multipole range ℓ = 40 − 400 is used), that provide
CMB constraints on late time cosmology, and more generically allow one to break degeneracies
in the primary CMB anisotropies (Aghanim et al., 2016c; Ade et al., 2015f).

In addition to CMB data, following the Planck analysis (Ade et al., 2015d,e), we also include
datasets from astrophysical measurements in a complementary perspective, i.e. so as to break
further CMB degeneracies and reach tighter constraints on the parameter space. In particular,
we consider the following datasets.

Type Ia Supernovae. Observations of distant SNIa provide powerful constraints on the
cosmological parameters, in particular independent from the ones inferred from CMB and BAO
data. They provide an estimate of the distance-redshift relation that can be represented by the
Hubble diagram Fig. 1.3. Essentially, it is the measurement of the SNIa’s redshift, obtained by
spectroscopic analysis of the light of the SNIa itself or of its host galaxy, and of its apparent
rest frame B-band peak magnitude m⋆

B, that allows one to access this relation via e.g.,

m⋆
B = 5 log10

(
dL

10Mpc

)
+
(
MB − α×X1 + β × C

)
, (5.1)

where dL ≡ H0DL is the Hubble free luminosity distance, MB, α, β are nuisance parameters
fitted simultaneously with the data and X1, C are the stretch and colour measures respectively
which, together with m⋆

B, are estimated from fitting SNIa spectral sequence models to specific

3. CMB data from the Planck 2013 nominal mission temperature data (Ade et al., 2014c) were used instead
in (Dirian et al., 2015).
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photometric data [see e.g. (Amanullah et al., 2010; Betoule et al., 2014) and references therein].
The parameterMB depends on the absolute magnitude of the SNIa and on the Hubble constant
H0, so distant SNIa do not provide any constraints on the latter. We consider the data of the
SDSS-II/SNLS3 Joint Light-curve Analysis (JLA) (Betoule et al., 2014), using the complete
(non-compressed) corresponding likelihoods. Combining these with the ones obtained from the
Planck data allows to put an independent constraint on the matter density fraction ΩM , and
breaks the geometric CMB degeneracy in the H0–ΩM plane. This proves to be particularly
useful in constraining the nonlocal models, as we will see in more details below.

Baryon Acoustic Oscillations. As discussed in detail in Sec. 4.2, the RR and RT nonlocal
models have a phantom dark energy equation of state, wde(z) < −1 for z ≥ 0. Thus, the
history of the growth of structures in the late universe is modified compared to a ΛCDM
scenario. To further test this feature, it is useful to build a distance ladder by using different
BAO scale measurements. As datasets, we consider the isotropic constraints provided by 6dFGS
at zeff = 0.106 (Beutler et al., 2011), SDSS -MGS DR7 at zeff = 0.15 (Ross et al., 2015) and
BOSS LOWZ at zeff = 0.32 (Anderson et al., 2014). These data provide measurements of the
low redshift acoustic-scale distance ratio DV(zeff)/rd, where,

DV (z) ≡
[
z(1 + z)2

DA(z)
2

H(z)

]1/3
, (5.2)

is the spatially-averaged dilation factor with DA(z), the angular diameter distance defined into
Sec. 4.2.1 and rd is the sound horizon at the drag epoch which can be obtained from Eq. (5.7),
evaluated at the drag redshift zd instead of the recombination one z∗. We also include the
anisotropic constraints from CMASS at zeff = 0.57 (Anderson et al., 2014). Anisotropic con-
straints separate the clustering effects into their longitudinal and transverse component relative
to the line-of-sight. This allows one to put separate constraints on the ratios H(zeff)/rd and
DA(zeff)/rd, and breaks the degeneracy in the DA-H plane which arises in isotropic constraints.

We will perform several analyses including different combinations of these datasets. First
we will constrain the models given the Planck 2015 likelihoods only, second we will join to them
the ones of JLA and BAO, and finally we will further add two different priors on H0 provided
by different local observations.

H0 prior. The values of H0 we will consider are H0 = 70.6 ± 3.3 km s−1Mpc−1 (Efstathiou,
2014) and H0 = 73.8 ± 2.4 km s−1Mpc−1 (Riess et al., 2011). In particular, we will use the
value H0 = 73.8 ± 2.4 km s−1Mpc−1, as an example of the impact of a high value of H0.
More recent analysis of local measurements have been done since then, and give H0 = 73.02±
1.79 km s−1Mpc−1 (Riess et al., 2016) and 73.48± 1.66 km s−1Mpc−1 (Riess et al., 2018). The
latter measurement features a tension with the Planck ΛCDM value of H0 found in (Aghanim
et al., 2016b), at 3.7σ, while the data used in the former have been re-analysed by using Bayesian
hyper-parameters, leading to H0 = 73.75 ± 2.11 km s−1Mpc−1, and exhibiting a tension with
Planck ΛCDM at 3.1σ (Cardona et al., 2017) [see also Sec. 1.3.8 for more details].

Redshift-Space Distortions. Finally, we will also dedicate a section where we compare
the three models using fσ8 growth rate data obtained from Redshift-Space Distortions (RSD)
measurements. The measurements used are those collected from 6dF GRS (Beutler et al.,
2012) at fσ8(0.067) = 0.423 ± 0.055, SDSS LRG (Oka et al., 2014) at fσ8(0.3) = 0.49 ± 0.08
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, SDSS MGS (Howlett et al., 2014) at fσ8(0.15) = 0.63+0.027
−0.24 , BOSS LOWZ (Chuang et al.,

2016) at fσ8(0.32) = 0.371 ± 0.091, BOSS CMASS (Samushia et al., 2014) at fσ8(0.57) =
0.441±0.0434 4, WiggleZ (Blake et al., 2012) at fσ8(0.44) = 0.413±0.08, fσ8(0.6) = 0.39±0.063,
fσ8(0.73) = 0.437 ± 0.072) and VIPERS (de la Torre et al., 2013) at fσ8(0.8) = 0.47 ± 0.08.
Such a constraint will be done a posteriori, that is, fσ8 data are fitted within each model, once
the normalisation of the power spectrum is fixed to its respective CMB+SNIa+BAO bestfit
obtained a priori.

5.1.2 Parameter Space and MCMC

The datasets outlined above will be used for constraining the three statistical models that
for definiteness we denote by MΛ, MRT and MRR and are associated to their respective cosmo-
logical models. For the consistency of our analysis, the initial conditions (inflationary scenario),
ionization history and matter content of the universe will be chosen following the Planck base-
line (Ade et al., 2014d, 2015d). In each of the nonlocal models we have a parameter, m2, that
replaces the cosmological constant in ΛCDM, so the nonlocal models have the same number of
parameters as ΛCDM. Furthermore, in the spatially flat case that we are considering, in ΛCDM
the dark energy density fraction ΩΛ can be taken as a derived parameter, fixed in terms of
the other parameters by the flatness condition. Similarly, in the nonlocal models m2 can be
taken as a derived parameter, fixed again by the flatness condition. Thus, not only the nonlocal
models have the same number of parameters as ΛCDM, but in fact these can be chosen so that
the independent parameters are exactly the same in the nonlocal models and in ΛCDM, which
facilitates the comparison.

For the neutrino content will use the same values used in the Planck 2015 baseline analysis
(Ade et al., 2015d), i.e. a massless component and a massive one with mass Mν . The prior on
the latter is set to,

P (Mν |ΛCDM) = δ(Mν/eV − 0.06) , (5.3)

which corresponds to the lower bound set by oscillations experiments under the assumption
of a normal mass hierarchy (see Sec. 5.5.6 for more details), and its temperature is tuned for
reproducing predictions from neutrino decoupling computations (Mangano et al., 2005). We
then fixe the effective number of massless neutrino species so as to reproduce a total effective
number of relativistic components of Neff = 3.046 in the early Universe [see e.g. (Lesgourgues
and Pastor, 2006)].

As independent cosmological parameters, we take the Hubble parameter today H0, the
physical baryon and cold dark matter density fractions today ωb = Ωbh

2 and ωc = Ωch
2,

respectively, the amplitude As of primordial scalar perturbations, the spectral tilt ns and the
reionization optical depth τre, so we have a continuous 6-dimensional parameter space. We
choose improper flat priors on all these parameters, except for τre which is taken to be bounded
from below at the value of 0.01, in accordance with Gunn-Peterson trough observations [see e.g.
(Becker et al., 2001)]. The corresponding vector in the base model parameter space is therefore
given by,

θbase =
(
H0, ωb, ωc, ln(10

10As), ns, τre
)
. (5.4)

This parameter space will be explored via a Metropolis-Hasting sampling algorithm. Our con-
struction of the MCMC proceeds in two steps. The first consists in constructing a chain using

4. Replacing the latter BOSS data by the more recent results of (Alam et al., 2016) does not significantly
affect the statistical conclusions drawn in our analyses.
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wide Gaussian proposal distributions, which for all three models is taken to be centered initially
on the Planck best fit values obtained for ΛCDM. The posterior distribution obtained then pro-
vides a new proposal distribution (covariance matrix) for a second run, where we restart from
the best-fit points of the latter posterior such that the burn-in is avoided. In order to get reli-
able results and well shaped final distributions, we constructed several (in general 3–7) chains of
2×105 trials each and adjusted the jumping factor so as to get an acceptance rate 0.2 < r < 0.4.
The convergence of the set of chains is checked through a Gelman-Rubin convergence diagnostic.
The best-fit points for each distribution are then refined by starting from the best-fit values of
the (final) global run, and constructing a “cold” chain, i.e. a chain controlled by a constant
temperature parameter T introduced into the MCMC acceptance probability as,

α(θn, θn+1) = min

{
1,

(
P (θn+1)

P (θn)

)1/T}
, (5.5)

where θn is the n-th point sampled in parameter space and P (θn) its likelihood. Therefore the
lower T is, the stronger the chain will converge towards the nearest maximum of the likelihood
distribution 5. In our analysis we choose T = 0.02, 6.

5.1.3 Results

Planck BAO+Planck+JLA

Param ΛCDM RT RR ΛCDM RT RR

100 ωb 2.225+0.016
−0.016 2.224+0.016

−0.016 2.227+0.016
−0.016 2.228+0.014

−0.015 2.223+0.014
−0.014 2.213+0.014

−0.014

ωc 0.1194+0.0014
−0.0015 0.1195+0.0014

−0.0015 0.1191+0.0014
−0.0015 0.119+0.0011

−0.0011 0.1197+0.0011
−0.00096 0.121+0.001

−0.001

H0 67.5+0.65
−0.66 68.86+0.69

−0.7 71.51+0.81
−0.84 67.67+0.47

−0.5 68.76+0.46
−0.51 70.44+0.56

−0.56

ln(1010As) 3.064+0.025
−0.025 3.057+0.026

−0.026 3.047+0.026
−0.025 3.066+0.019

−0.026 3.056+0.021
−0.023 3.027+0.027

−0.023

ns 0.9647+0.0048
−0.0049 0.9643+0.0049

−0.005 0.9649+0.0049
−0.0049 0.9656+0.0041

−0.0043 0.9637+0.0039
−0.0041 0.9601+0.004

−0.0039

τre 0.0653+0.014
−0.014 0.06221+0.014

−0.014 0.05733+0.014
−0.014 0.06678+0.011

−0.013 0.0611+0.011
−0.013 0.04516+0.014

−0.012

zre 8.752+1.4
−1.2 8.442+1.5

−1.2 7.932+1.5
−1.2 8.893+1.1

−1.2 8.359+1.2
−1.2 6.707+1.7

−1.2

σ8 0.8171+0.0089
−0.0089 0.8283+0.0092

−0.0096 0.8487+0.0097
−0.0096 0.817+0.0076

−0.0095 0.8283+0.0085
−0.0093 0.8443+0.01

−0.0099

χ2
min 12943.3 12943.1 12941.7 13631.0 13631.6 13637.0

∆χ2
min 1.6 1.4 0 0 0.6 6.0

BAO+Planck+JLA+(H0 = 70.6) BAO+Planck+JLA+(H0 = 73.8)

Param ΛCDM RT RR ΛCDM RT RR

100 ωb 2.229+0.014
−0.015 2.223+0.014

−0.014 2.215+0.014
−0.014 2.233+0.014

−0.014 2.226+0.014
−0.014 2.217+0.014

−0.014

ωc 0.1188+0.001
−0.0011 0.1197+0.001

−0.0011 0.1208+0.00099
−0.001 0.1185+0.00097

−0.0011 0.1194+0.001
−0.001 0.1207+0.00096

−0.00097

H0 67.75+0.48
−0.47 68.75+0.49

−0.48 70.57+0.54
−0.56 67.93+0.48

−0.43 68.91+0.49
−0.5 70.65+0.52

−0.54

log(1010As) 3.069+0.024
−0.024 3.056+0.026

−0.022 3.03+0.021
−0.021 3.077+0.026

−0.019 3.061+0.026
−0.022 3.031+0.018

−0.022

ns 0.9662+0.0042
−0.0042 0.9637+0.0041

−0.0042 0.9607+0.0039
−0.0041 0.9671+0.0041

−0.0041 0.9645+0.004
−0.0041 0.9611+0.0038

−0.004

τre 0.06883+0.012
−0.013 0.06099+0.014

−0.011 0.04701+0.011
−0.011 0.07275+0.014

−0.01 0.0641+0.013
−0.012 0.04791+0.01

−0.011

zre 9.081+1.2
−1.1 8.341+1.4

−1 6.922+1.3
−1.1 9.435+1.3

−0.85 8.636+1.3
−1.1 7.02+1.1

−1.2

σ8 0.8179+0.0089
−0.0089 0.8283+0.0095

−0.0089 0.8452+0.0085
−0.0086 0.8197+0.0096

−0.0075 0.8298+0.0095
−0.0086 0.8456+0.0081

−0.0088

χ2
min 13631.9 13631.9 13637.0 13637.5 13636.1 13638.9

∆χ2
min 0 0 5.1 1.4 0 2.8

Table 5.1 – Parameter tables of the means, standard deviations and (effective) χ2 goodness-
of-fit for the ΛCDM, RT and RR the models. The ∆χ2 values are taken with respect to the
lowest value within each dataset, where χ2 ≡ −2 lnL, with L being the likelihood function.

5. Observe that nothing guarantees that the corresponding maximum reached is the global one, but starting
the evaluation from the best-fit point obtained from the global run provides already representative best-fit values,
sufficient for the purpose of our study.

6. Notice that there is a typo here in (Dirian et al., 2016), where we wrote T = 50 instead of T = 1/50.
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Interpretation ∆χ2 lnB01

“inconclusive” 0 – 2 0 – 1
“weak” 2 – 6 1 – 2.5
“moderate-to-strong” 6 – 10 2.5 – 5
“strong” > 10 > 5

Table 5.2 – Scale used for comparing model M1 against model M0 in this work, i.e. for
interpetating their BIC difference ∆χ2

01 ≡ χ2
1−χ2

0 and their log-Bayes factors lnB01. Positivity
of the latter tends to favor M0. These scales are taken as a rule of thumb inspired by Secs. 2.6-
2.10 of Ref. (Burnham and Anderson, 2002) in accordance with the (more conservative) Jeffreys’
scale of Ref. (Trotta, 2008) [see also Ref. (Efstathiou, 2008) for a comparison of the latter with
the original scale proposed by Jeffrey].

In Table 5.1, we show the mean values together with their corresponding 1σ uncertainties
(68% confidence interval) and the χ2 goodness-of-fit for ΛCDM, the RT model and the RR
model, for different combinations of datasets. In the upper left table, we only use the Planck
CMB data presented in the previous subsection, while in the upper right table, we combine
them with BAO and JLA SNIa. In the two lower tables we further add a prior on H0, namely
H0 = 70.6 ± 3.3 for the lower left table and a high value H0 = 73.8 ± 2.4, for the lower right
table. Beside giving the mean values of our six cosmological parameters, we also give the de-
rived parameter values of σ8 and of the effective redshift to reionization zre. For illustration,
the triangle plot displaying the inferred distribution of the six cosmological parameters given
Planck 2015 CMB data is shown in Fig. 5.1.
Before we present the results from Bayesian model selection, we will make use of an approxi-
mation of it which is sensible enough for the statistical case we consider in this section. We use
the so-called Bayesian Information Criterion (BIC) that is given by [see e.g. (Trotta, 2008) for
more details],

BIC ≡ χ2 + k lnN , (5.6)

where χ2 is the goodness-of-fit, k is the number of parameters and N the number of data
points. The lower the BIC the better the model. Since k and N are equal within the models
that we compare throughout this work, we can therefore only use the difference ∆χ2

ij between
models Mi and Mj , as a BIC diagnostic. This criterion originates from an approximation of
the Bayesian evidence assuming gaussianity of the posterior, a likelihood dominated regime and
weak correlations between parameters. In the present case, we will see that the conclusions
drawn from this approximate version and from genuine Bayesian model selection are similar.
However, into the next section, we will see a case where the BIC diagnostic fails in giving the
right conclusions as compared to the Bayesian case. The interpretation of Bayes factor values
and their associated (approximate) ∆χ2

ij values we adopt in this work are found into Table 5.2.

We now turn to the interpretation of the data shown into Table 5.1, in particular commenting
on the various parameter shifts that one can observe in going from one model to the other. This
relies on the underlying structural features of the model that we discuss now.

Understanding the Parameter Shifts

The parameter shifts between the models can be understood by looking at their relevant
deviations when compared to each other. Focusing on the constraints for Planck -only, a first
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RT
RR

LCDM

Figure 5.1 – Triangle plot for Planck 2015. The dark shaded contours correspond to 1σ (68%
confidence interval) and the light shaded to 2σ (95% confidence interval) .

noteworthy point is that the differences between the results in the three cosmologies are statis-
tically non-significant (≲ 1σ) for all parameters in θbase, with the exception of the background-
related parameter H0 which undergoes the most significant shift (∼ 2σ in RT and ∼ 5σ in
RR). Notice also that σ8, derived at the linear level, undergoes a significant change in RR
(∼ 3σ), while it shifts to a milder level in RT (∼ 1σ). As noticed from nonlinear structure
formation studies in the case of the RR model (Barreira et al., 2014b), the σ8-enhancement
results from the stronger clustering in the RR nonlocal model, mostly induced by a lower ex-
pansion rate (see the red curve in the upper left panel of Fig. 5.14), that reduces the Hubble
friction to matter perturbations. This effect is supplemented by, although to a smaller extent, a
higher late time gravitational strength modelled by a time-dependent effective Newton constant
Geff(z, k) (see the right panel of Fig. 4.5). More clustering also increases the lensing power,
as shown into the lower left panel of Fig. 5.14, and in turn smooths out temperature fluctu-
ations more efficiently. Moreover, this requires a smaller primordial amplitude As that comes
together with a delayed reionization epoch, given that the CMB damping tail constrains well
the combination As e

−2τre at high-ℓ, 7. We illustrate the higher growth of the nonlocal models

7. Observe that the preference for a lower optical depth to reionization τre within the nonlocal models com-
pared to ΛCDM is consistent with the results found from the recent analysis of the Planck HFI data (Aghanim
et al., 2016b).
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Figure 5.2 – σ8 − Ωm 2-dimensional marginalised likelihood for ΛCDM (grey), RT (red), RR
(blue) Planck+BAO+JLA+(H0 = 70.6). Dark and light shaded contours corresponding to 1σ
and 2σ respectively.

in Fig. 5.2, where we plot the 2-dimensional marginalised likelihood in the σ8−Ωm plane, given
Planck+BAO+JLA+(H0 = 70.6) data.
Regarding the Planck constrains on H0, its mean values are inferred to be larger as the equa-
tion of state today w0

de becomes lower. In RT, we find H0 ≈ 68.86 ± 0.7 km s−1Mpc−1 for
w0
de ≃ −1.04, while in RR we have H0 ≈ 71.51±0.84 km s−1Mpc−1 for w0

de ≃ −1.15, and this is
to be compared to ΛCDM whose value reads H0 ≈ 67.50±0.66 km/s/Mpc with w0

de = −1. This
preference for higher H0 a fortiori originates from the late time emerging, quite smooth and
phantom nature of the nonlocal models’ effective dark energy, compared to that modelled by a
cosmological constant Λ. In the following, we attempt to provide a comprehensive explanation
of this fact.

As discussed in Sec. 4.2, at fixed cosmological parameters, a smaller equation of state at
late time implies a smaller dark energy fraction Ωde(z) and in turn a smaller expansion rate
H(z). From the point of view of Planck data, modifications to H(z) at low redshift alter the
predicted acoustic-distance scale ratio θ∗, which determines the position of the acoustic peaks
of the CMB temperature power spectrum. The scale θ∗ is measured to a very good precision
by Planck (≲ 0.1% at 1σ in the case of base ΛCDM) and is robust under cosmology change. It
is expressed as θ∗ ≡ r∗/DA(z∗), where r∗ is the sound horizon at the redshift of recombination
z∗ and DA(z∗) the comoving angular diameter distance to recombination defined as,

r∗ ≡
∫ ∞

z∗

cs
H(z)

dz , (5.7)

DA(z∗) ≡
∫ z∗

0

dz

H(z)
, (5.8)

where cs is the sound speed of the primordial plasma,

cs = 1/
√

3 [1 + 3Ωb/(4Ωγ)] , (5.9)

with Ωγ the photon density fraction today. For definiteness, we recall here the expression of the
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Figure 5.3 – Upper plot: temperature power spectrum (thick), and the separate contribution
from the late ISW contributions (dashed), for ΛCDM (black), RT (red) and RR (blue), using
the best fit values of the parameters determined from BAO+JLA+Planck. The black and red
lines are indistinguishable on this scale. The lower plot shows the residuals for ΛCDM and
difference of RT (red) and RR (blue) with respect to ΛCDM. Data points are from Planck 2015
(Ade et al., 2015d) (green bars). Error bars correspond to ±1σ uncertainty.

Hubble parameter defined by [see Eq. (4.39)],

H(z) =
[
100ω(z) +H2

0Ωde(z)
]1/2

, (5.10)

where we have used H0 ≡ 100h km s−1Mpc−1, denoted the dark energy density fraction present
in the Universe at redshift z by Ωde(z) and by ω(z) ≡ Ω(z)h2, the one including all the other
components, that is, the physical density fraction of CDM ωcdm(z), and of baryons ωb(z), in
the case of the baseline, but also other ingredients available in extensions of it, such as the
density fraction of massive neutrinos ων . For fixed cosmological parameter values, r∗ does not
change significantly from ΛCDM to RT or RR, because it is a function of early time background
configurations and does not depend on the particular (late time) dark energy modelling. At
late time however, such a modelling becomes important and the lower expansion rate in the
nonlocal models lead to a larger DA(z∗), which in turn lowers θ∗. The lower acoustic scale shifts
the CMB temperature power spectrum towards higher multipoles ℓ, yielding the poor fit to the
data, as seen in the case of the RR model in the upper right panel of Fig. 5.14.

In the case of the Planck baseline, this discrepancy can be resolved in shifting either the
background quantities H0, ωb or ωcdm (or equivalently Ωb or Ωcdm) present into the H(z)
expression Eq. (5.10). However, the shape information of the first CMB peaks such as their
position and their relative height provide strong, model-independent constraints on both ωb
and ωcdm [see e.g. (Ade et al., 2014a; Aghanim et al., 2016a) for more details] and there is
therefore only significant room for H0 to vary. Consequently, since the dark energy featured
by both nonlocal models is phantom, implying that Ωde is decreased compared to ΩΛ for fixed
parameter values, H0 is doomed to increase. For the case of the RR model, the blue curves in
Fig. 5.14 show the same as the green ones, but with H0 adjusted to H0 = 71.31 km s−1Mpc−1 so
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Figure 5.4 – The separate 1σ and 2σ contours for Planck CMB (blue), BAO (grey) and JLA
SNIa (red) in the (H0,Ωc) plane for the ΛCDM (upper left), RT (upper right) and RR (lower).

as to yield the same θ∗ as in the best-fitting ΛCDM model to Planck. This yields a cosmological
scenario that is very similar to the best-fitting RR model to Planck (red curves in Fig. 5.14). The
goodness-of-fit of the RR model given Planck is better than the base ΛCDM with ∆χ2 = 1.6,
as one can see from Table 5.1. As shown in Fig. 5.3, this is mostly because of the lower power
in the low-ℓ part of the CMB temperature power spectrum, induced by a smaller ISW effect
dominating at large-scales. Such a preference being “inconclusive” according to the classification
reported in our Table 5.2, both models are therefore statistically equivalent given Planck 2015
CMB data. The same conclusion applies to the RT model which is favored over ΛCDM with
∆χ2 = 0.2 Planck 2015 CMB data.

Appearance of a Tension in RR

However, once we join BAO and SNIe to CMB data, the ΛCDM and RT models remain
statistically indistinguishable, with ∆χ2

ΛCDM,RT = 0.6 in favor of ΛCDM, while the BIC diag-
nostic lies on the weak/moderate-to-strong boundary for evidence against the RR model with
χ2
ΛCDM,RR ≃ 6.0 (∼ 2.5σ), as compared to ΛCDM. As the most significant deviations in the

nonlocal models with respect to ΛCDM lies into their H0 values, the origin of this result can
be understood by looking at the two-dimensional marginalised likelihoods in the H0−Ωc plane,
shown in Fig. 5.4. We see that for the RT and ΛCDM models, the separate contours obtained
from CMB, BAO and SNIa are in agreement, while for the RR model, a tension appears between
CMB and SNIa and, although to a milder level, between CMB and BAO.

Below, we will perform an analysis of this issue and provide solutions for it to be resolved. For
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Data RT RR

Planck 5.17(4)× 10−2 9.35(7)× 10−3

Planck+BAO+JLA 5.15(4)× 10−2 9.21(7)× 10−3

Planck+BAO+JLA+(H0 = 70.6) 5.15(4)× 10−2 9.22(7)× 10−3

Planck+BAO+JLA+(H0 = 73.8) 5.17(4)× 10−2 9.24(7)× 10−3

Table 5.3 – Mean values for γ = m2/(9H2
0 ).

the moment, observe that the preference of the nonlocal models for higherH0 values is consistent
with those obtained from local measurements, unlike in the case of ΛCDM which is in tension
when the latter are joined with Planck. As such, including a higher prior for H0 into the global
fit to CMB+BAO+SNIa data, ameliorates the goodness-of-fit of the nonlocal models. For the
smaller value H0 = 70.6 ± 3.3 kms−1Mpc−1 given in (Efstathiou, 2014) the situation changes
little. The ΛCDM and RT model are still statistically equivalent, and the RR model is still
disfavored, although to a smaller extent since now it only shows weak evidence for being ruled
out (see Table 5.2). In the case of a higher value such as H0 = 73.8±2.4 kms−1Mpc−1 provided
by (Riess et al., 2011), the RT model displays weak evidence against ΛCDM, whereas the RR
model is brought to values of ∆χ2 approaching the lower bound of the weakly disfavored interval.
In all cases, ΛCDM and the RT model are statistically indistinguishable, with differences in favor
of one or the other depending on the datasets and priors used.

From the above results, we can also obtain the mean value for the derived parameter m2 of
the nonlocal models through,

γ =
m2

9H2
0

, (5.11)

that enters in the study of the cosmological evolution (see Sec. 4.2 for details). Based on the
values of the parameters given in Table 5.1, we find the values of γ given in Table 5.3.

Finally, by having also determined the best fit values of the cosmological parameters, it is
interesting to display explicitly how the CMB data are fitted by the three models. We use
for definiteness their respective bestfits determined from Planck+BAO+JLA. In Figs. 5.5, 5.6,
we show, for the three models, the fit to the EE spectrum, the BB spectrum and the lensing
potential, respectively.

Figure 5.5 – Left panel: As in Fig. 5.3 for the lensed BB spectra, instead of Planck 2015 the
data points are from the joint BICEP2+Keck+Planck (Ade et al., 2015c) (orange crosses).
Right panel: As in Fig. 5.3 for the lensed EE spectra.
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Figure 5.6 – The lensed ϕϕ spectra (lensing potential).

5.2 Bayesian Model Comparison

5.2.1 The Bayes Factor

In the previous section, in order to compare the performance of the RT, RR and ΛCDM
models, we have used the BIC diagnostic (5.6) by computing the differences ∆χ2

ij . This method
is not genuinely Bayesian, and only leads to sensible results if the assumptions outlined above
are satisfied by the posterior distributions under interest, so it is possible that the results
drawn from it are biased. The method for performing Bayesian model selection consists in the
computation of Bayes factors (Trotta, 2007). In this section, we use Bayes factors to compare
the three models of interest among each other, given the Planck+BAO+JLA data. Starting
from Bayes theorem,

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d|M)
, (5.12)

which says that the posterior distribution, i.e. the probability of the parameters θ given the
data d and the model M, P (θ|d,M), equals the product of the likelihood function P (d|θ,M)
by the prior P (θ|M), divided by the evidence P (d|M) (marginal likelihood). General Bayesian
model comparison is based on the model probability P (M|d). This number is however difficult
to interpret in absolute terms, and instead one considers relative model probabilities. Using
again Bayes theorem we can express the relative model probability for two models Mi and Mj

as,

P (Mi|d)
P (Mj |d)

=
P (d|Mi)

P (d|Mj)

P (Mi)

P (Mj)
≡ Bij

P (Mi)

P (Mj)
, (5.13)

i.e. up to the prior model probabilities P (M) the relative model probabilities are just given by
the Bayes factors Bij which are defined as the ratio of the evidences computed within the two
models Mi and Mj . The Bayes factors correspond to betting odds, their numerical value is
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conventionally translated into statements about the evidence of model i with respect to model
j using the Jeffreys’ scale. A way to interpret that scale is provided in Table 5.2 8.

For multi-parameter models, the computation of the respective evidences is in general nu-
merically expensive. However when the models to compare with each other can be nested
together, i.e. can be embedded in a larger model that reduces to one model in a limit, and to
the other model in another limit, this task is made easier by the Savage-Dickey density ratio
(SDDR) method. In our context this nesting is possible and the SDDR can be applied.

5.2.2 Model Nesting and Savage-Dickey Density Ratio

Our task is to calculate the Bayes factors BΛi constructed out of the evidence computed
assuming the ΛCDM model, our null hypothesis, and one of the two nonlocal models of interest
(i = RT,RR), the alternative hypothesis, for a given set of data. Computing the evidence for a
model is generally quite hard as it requires a high-dimensional integration. Marginalising Eq.
(5.12) over θ we find immediately that,

P (d|M) =

∫
dθ P (d|θ,M)P (θ|M) . (5.14)

If however two models are nested, it becomes possible to use the SDDR instead to find directly
the Bayes factor between the models. In order to be able to exploit the SDDR, we consider
the extended model constructed from each of the nonlocal models by adding a cosmological
constant. For the RT model, the equation of motion (4.1) is then modified into,

Gµν −
m2

3

(
gµν□−1R

)T
+ gµνΛ = 8πGTµν , (5.15)

while for the model RR the action (4.2) becomes,

S =
1

16πG

∫
d4x

√
−g

[
R− 2Λ− 1

6
m2R

1

□2
R

]
. (5.16)

Because of the absence of a vDVZ discontinuity, the model (5.15) reduces to ΛCDM in the limit
m2 → 0, and to the RT model in the limit Λ → 0, and similarly the model (5.16) reduces in
these limits to ΛCDM and to the RR model, respectively. Of course, the models (5.15) and
(5.16) could be interesting in their own right. However, we will only use them as a tool for
comparing the RT and RR models to ΛCDM.

These two models for gravity allow us to construct two associated statistical models, denoted
MΛ+RT and MΛ+RR respectively, which can be constrained by the data with the same method
described in the previous section. The only difference with respect to the analysis performed
previously is that now the total dark energy component is a mixture of the one induced by
the cosmological constant, ΩΛ, and the one induced by the nonlocal modification of gravity
ΩXi , which depends on the the mass parameter m. These models therefore have an extended
parameter space that we take to be spanned by

θ̃ = (H0, ωb, As, ns, τre,ΩΛ,ΩXi) . (5.17)

Observe that now the physical dark matter density fraction ωc is taken as a derived parameter,
and instead we vary the density fractions of the two types of dark energy. We choose to proceed

8. Some subtleties may appear in the use of the Jeffreys’ scale when comparing models with a different number
of parameters (Nesseris and Garcia-Bellido, 2013), which however is not our case.
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in this way in order to keep maximal control on the choice of prior for the latter, since this
condition can be very important when using the SDDR method (Wagenmakers et al., 2010)
that we discuss now.

Consider the nested model MΛ+i (where i = RT or RR). Since this model is a nesting of
MΛ and Mi, we assume (by continuity) that its likelihood function taken at ΩΛ = 0 reproduces
the one of Mi, and equivalently putting ΩXi = 0 reproduces the one of MΛ,

P
(
d|θ̄Λ,ΩΛ = 0,MΛ+i

)
= P

(
d|θ̄Λ,Mi

)
, (5.18)

P
(
d|θ̄Xi ,ΩXi = 0,MΛ+i

)
= P

(
d|θ̄Xi ,MΛ

)
, (5.19)

where θ̄j ≡ θ̃ \ {Ωj}, and that the same conditions hold on the prior. We can therefore write,

P (d|MΛ) =

∫
dθ̄ P

(
d|θ̄,MΛ

)
P
(
θ̄|MΛ

)
=

∫
dθ̄ P

(
d|θ̄Xi ,ΩXi = 0,MΛ+i

)
P
(
θ̄Xi ,ΩXi = 0|MΛ+i

)
= P

(
d|ΩXi = 0,MΛ+i

)
. (5.20)

Applying now Bayes theorem to the third equality,

P
(
d|ΩXi = 0,MΛ+i

)
=
P
(
ΩXi = 0|d,MΛ+i

)
P
(
d|MΛ+i

)
P
(
ΩXi = 0|MΛ+i

) , (5.21)

leads to the SDDR,

BΛ(Λ+i) ≡
P (d|MΛ)

P
(
d|MΛ+i

) =
P
(
ΩXi = 0|d,MΛ+i

)
P
(
ΩXi = 0|MΛ+i

) , (5.22)

which tells us that the Bayes factor of the comparison between the nested model MΛ+i and its
sub-model MΛ is equal to the ratio of the marginalised one-dimensional posterior distribution
and marginalised one-dimensional prior of ΩXi obtained from the extended model, evaluated
at the point where the simpler model is nested inside the extended model (i.e. at ΩXi = 0).
Intuitively, this can be understood as a measure of the amount by which the prior evolved into
the posterior through knowledge update given by new data. If the posterior grows at ΩXi = 0,
this means that this value tends to be preferred by the data, i.e. MΛ is preferred, and the Bayes
factor increases. Conversely, if the posterior decreases, a non-zero value of ΩXi is preferred.

The procedure outlined above allows us to compare MΛ (or equivalently Mi) with the
nested model MΛ+i. However, we eventually want to compare directly MΛ with Mi. This can
be done by comparing both to the extended model,

BΛi ≡ P (d|MΛ)

P (d|Mi)
=

P (d|MΛ)

P (d|MΛ+i)

P (d|MΛ+i)

P (d|Mi)

=
BΛ(Λ+i)

Bi(Λ+i)
=
P (ΩXi = 0|d,MΛ+i)

P (ΩΛ = 0|d,MΛ+i)
. (5.23)

The expression involving the ratio of the Bayes factors holds by statistical coherence, but in
the last identity we have assumed the similarity of the marginalised one-dimensional prior,
P
(
ΩXi = 0|MΛ+i

)
= P

(
ΩΛ = 0|MΛ+i

)
. This shows how the SDDR method greatly simplifies

the computation of the Bayes factor for the comparison of two models that can be nested
together. Indeed, one only needs to know the final posterior distribution of the nested model, for
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some set of data, which can be obtained by standard MCMCmethods as the one we use [although
occasionally multiple chains at different temperatures may be needed, see e.g. appendix A of
(Mukherjee et al., 2011) for an example in a different context]. Then, one has just to take the
ratio of two numbers, the marginalised 1d posterior of ΩΛ evaluated at ΩΛ = 0, and the same
for ΩXi , within the extended model. If the priors do not cancel then one just computes the
actual Bayes factors between the extended and the two nested models and uses their ratio.

The last point that we need to discuss is the choice that we made for the parameters to
vary for constructing the posterior distribution of the nested model, and their respective prior
distribution. In Bayesian inference the choice of a (subjective) prior is part of the approach
and should be chosen with care. In order to have sensible results, one needs to provide the
least informative prior given by the current knowledge, before seeing the data. Since in the
nested model we have two types of dark energies, ΩXi and ΩΛ, the flatness condition reads
ΩXi +ΩΛ +Ωc = 1−ΩR. In order to treat both type of dark energies on the same footing, we
choose to vary both ΩΛ and ΩXi and to take ωc as derived. For the same reason, we prefer to
impose a flat prior on ΩΛ and ΩXi rather than on, say, Λ and m2. It is natural to assume that
the density fractions vary in the interval [0, 1]. To avoid boundary effects that could affect the
determination of the SDDR, we actually extend the allowed range of values to,

ΩΛ ∈ [−0.2, 1.2], ΩXi ∈ [−0.2, 1.2] , (5.24)

with a uniform prior and we then remove values that lie outside [0, 1] from the chain. The prior
for both parameter being the same, the last equality in (5.23) therefore make sense, and this
formula can be applied in our case.

We can now compute the likelihoods of the nested model, perform the corresponding pa-
rameter estimation, and compute the Bayes factors using the SDDR. The results are shown in
Table 5.4 and illustrated into Fig. 5.7, where we show the one dimensional marginalised posteri-
ors on the dark energy density fractions Ωde and ΩΛ in the nested models in the case of the two
datasets considered, i.e. given Planck+BAO+JLA (left panel) and Planck+BAO+JLA+(H0 =
73.8± 2.4) (right panel).

Planck+BAO+SN Ia

RT+Λ
RR+Λ

RT+Λ
RR+Λ

Planck+BAO+SN Ia+H0=73.8

Figure 5.7 – One and two dimensional marginalised porteriors for the dark energy fraction Ωde

and ΩΛ in the nested models RT+Λ (red) and in RR+Λ (blue), given the Planck+BAO+JLA
(left panel) and the Planck+BAO+JLA+H0 = 73.8 (right panel) datasets.
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Planck+BAO+JLA

Param RT+ Λ RR+ Λ

100 ωb 2.225+0.014
−0.014 2.225+0.015

−0.015

H0 68.18+0.65
−0.68 68.28+0.79

−1

log(1010As) 3.059+0.017
−0.02 3.061+0.026

−0.025

ns 0.9646+0.004
−0.0041 0.9646+0.0044

−0.0044

τre 0.06323+0.0096
−0.011 0.06379+0.014

−0.013

ΩΛ 0.357+0.35
−0.33 0.538+0.24

−0.17

ΩX 0.3368+0.34
−0.35 0.1566+0.17

−0.24

Ωcdm 0.2569+0.0025
−0.023 0.2561+0.0076

−0.0072

zre 8.568+1
−1 8.604+1.4

−1.2

σ8 0.8217+0.033
−0.0012 0.8238+0.011

−0.012

χ2
min 13631.0 13630.8
BΛi 1.02 22.67

Planck+BAO+JLA+(H0 = 73.8± 2.4)

Param RT+ Λ RR+ Λ

100 ωb 2.23+0.013
−0.014 2.227+0.015

−0.015

H0 68.62+0.64
−0.58 69.08+0.92

−1

log(1010As) 3.066+0.017
−0.017 3.059+0.028

−0.026

ns 0.9656+0.0039
−0.0039 0.9649+0.0045

−0.0045

τre 0.06716+0.0092
−0.0092 0.06328+0.015

−0.014

ΩΛ 0.2445+0.13
−0.44 0.3993+0.21

−0.22

ΩX 0.454+0.42
−0.17 0.3025+0.22

−0.21

Ωcdm 0.2527+0.0035
−0.022 0.2501−0.00052

−0.03

zre 8.935+0.93
−0.86 8.537+1.5

−1.3

σ8 0.8257+0.036
−0.0017 0.8306+0.018

−0.035

χ2
min 13636.1 13635.4
BΛi 0.39 2.38

Table 5.4 – Best fit values and Bayes factors for the nested models. Left: using
Planck+BAO+JLA data. Right: adding also H0 = 73.8 ± 2.4 km s−1Mpc−1 of (Riess et al.,
2011).

As could have been expected, the mean values for the nested model MΛ+RT are always
intermediate between the values obtained for MΛ and those for MRT, compare with Table 5.1,
and the same for the nested model MΛ+RR. The conclusions drawn from the values of the Bayes
factors are fully consistent with that obtained in Section 5.1.3 simply using ∆χ2

ij . Namely,
without a prior on H0, the RT model and ΛCDM are statistically indistinguishable while, on
the scale of Table 5.2, the evidence of ΛCDM against the RR model is on “moderate-to-strong”.
Adding a high prior onH0 is preferred by the nonlocal models, so the log-Bayes factor for the RT
model becomes negative, but still the model shows inconclusive/weak evidence against ΛCDM,
with BRT,Λ ≃ 1/0.39 ≃ 2.6 (lnBRT,Λ = 0.9), and the RR model is now only slightly disfavored
with respect to ΛCDM, by a similar amount, BΛ,RR ≃ 2.4. Also the evidence of the RT
model with respect to the RR model can be computed easily, with BRT,RR = BRT,Λ/BRR,Λ =
BΛ,RR/BΛ,RT ranging from a value 22.67/1.02 ≃ 22.22 using Planck+BAO+JLA data, to a
value 2.38/0.39 ≃ 6.10, when adding the high prior on the Hubble constant, H0 = 73.8 ±
2.4 km s−1Mpc−1.

We have seen that, because the nonlocal models exhibit a phantom behavior, they lead to
a lower Hubble expansion rate at late time. As such, given Planck 2015 CMB data, it implies
that these models generically prefer a higher values of H0, because of the presence a geometric
degeneracy in the acoustic-distance scale ratio. Breaking this degeneracy by using SNIa and
BAO data allows to put stronger constraint on the underlying cosmological models and, in
particular, we have seen that this led to an internal tension into the RR model between CMB
and SNIa data. Such a tension reverberates into a “moderate-to-strong” evidence against the
model when compared to ΛCDM in a Bayesian way. This tension is mostly present into the
RR model rather than into the RT one, because the former features a stronger phantom dark
energy than the latter, and compared to ΛCDM. The RT model is statistically equivalent to
ΛCDM in all studied cases. In Sec. 5.1.3, we have seen that the nonlocal models also generically
preferred a higher values of σ8 as well. In order to test further such deviation, we constrain the
RT, RR and ΛCDM models using growth rate fσ8 data.
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Figure 5.8 – Upper left: linear matter power spectrum at z = 0 for ΛCDM (black), RT (red)
and RR (blue). Lower left: relative difference of RT (red) and RR (blue), with respect to
ΛCDM. Right: the same for z = 1

5.3 Growth Rate Data and Structure Formation

RSD probe the velocity field, and are usually expressed as a constraint on the combination
fσ8, where f ≡ d lnσ8/d ln a, is the growth function (Ade et al., 2015e), and σ8 is the variance of
the linear matter power spectrum in a radius of 8 Mpc today. The translation to fσ8 requires a
fiducial model, which is taken to be ΛCDM. This could lead to problems when using the data for
constraining modified gravity models, especially if they exhibit a significant scale-dependence.
However, the linear matter power spectrum of the RT and RR models look very much like that
of ΛCDM on the relevant scales, as can be seen from Fig. 5.8, which show the linear matter
power spectra at redshifts z = 0 (left panel) and z = 1 (right panel), respectively. For this
reason we expect that we can use the RSD data to provide at least a rough test of our nonlocal
models. Furthermore, since RSD are mostly degenerated with the Alcock-Paczynski (AP) effect,
measurements of fσ8 are often combined with measurements of the angular diameter distance
DA and the Hubble parameter H at the corresponding effective redshift, or some combination
of the latter. Whenever this is the case, we marginalise over these measurements and consider
only the ones associated to fσ8. From this point of view, the treatment which follows is only
illustrative of the constraints partially imposed by RSD on the models under consideration. Of
course, a more thorough study would consist in including the RSD datasets into a fit performed
with MCMC techniques, similarly to what we performed in the previous section for CMB, SNIa
and BAO data. For the purpose of our study, we fix the best-fit values of the models from the
Planck+BAO+JLA data and check if the predicted growth of perturbations agrees with the
marginalised fσ8 data. The results and the corresponding data used are shown in Fig. 5.9 9.
We find that the corresponding χ2 obtained from the data in Fig. 5.9 for ΛCDM, the RT and
RR models are,

χ2
min,ΛCDM = 3.9 , χ2

min,RT = 4.7 , χ2
min,RR = 6.5 . (5.25)

9. Notice that the data point of SDSS LRG analysed by (Oka et al., 2014) is taken to be the resulting data
from their “full fit” since other fits are explicitly based on ΛCDM-dependent priors such as the ones imposed on
σ8,nl (which is not applicable in our case, see ΩM–σ8 contours in fig. 5.2) or neglecting the AP effect which is
motivated by the fit using the fiducial cosmology.
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Figure 5.9 – Upper panel: Growth rate computed in ΛCDM (black), RT (red) and RR (blue)
constrained with various data points given in Sec. 5.1.1. Lower panel: Relative difference of the
growth rate computed in RT (red) and in RR (blue) with respect to ΛCDM.

We see that the nonlocal models generically predict a larger growth rate, although for the RT
model the difference with ΛCDM is again not statistically significant, even when combined
with the results found into Table 5.1. Joining these constraints to the Planck+BAO+JLA, the
goodness-of-fit become,

∆χ2
ΛCDM,RT = 0.6 + 0.8(post) = 1.4 , ∆χ2

ΛCDM,RR = 6.0 + 2.6 (post) = 8.6 , (5.26)

and in particular show that ΛCDM provides “moderate-to-strong” evidence against the RR
model, while is still statistically equivalent to the RT one.

We also compute several other quantities which are relevant for the comparison with struc-
ture formation (in particular for assessing the possibility of discriminating the models with
future observations), using for each model its own fiducial cosmology, e.g. the respective mean
values of the parameters obtained from Planck+BAO+JLA data. As we have seen in Sec. 4.4.1,
when studying structure formation and lensing, several indicators are used in the literature for
parametrising deviations from ΛCDM, in particular the functions µ (4.142) and Σ (4.143) 10.
In order to make contact with results in the literature (Ade et al., 2015e), it is convenient to
define them as,

Ψ = µ(k, z)ΨGR , (5.27)

Ψ− Φ = Σ(k, z)(Ψ− Φ)GR , (5.28)

where, again, the subscript denotes the quantities computed in GR, assuming a ΛCDM model,
or as,

−k2Ψ = 4πGa2µP (k, z)ρ∆ , (5.29)

−k2(Ψ− Φ) = 8πGa2ΣP (k, z)ρ∆ , (5.30)

10. The following results differ in particular from those presented in Sec.4.4.1, where instead a ΛCDM fiducial
cosmology for evolving the RT and RR models was used.
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[The subscript P in µP and ΣP indicates that these definitions agree with those of the Planck
analysis (Ade et al., 2015e)]. In these definitions, we compare the actual value of the grav-
itational potentials Φ and Ψ to the value expected in GR due to the matter and radiation
perturbations ρ∆ = ρm∆m+ρr∆r, where ∆ is the gauge invariant density perturbation defined
as δ⋆ in Eq. (4.71). In Fig. 5.10, we plot µP (k, z) (left panel) and ΣP (k, z) (right panel) for two
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Figure 5.10 – Deviations of the nonlocal models from ΛCDM for the gravitational potential
parametrised by µP (left panel) and ΣP (right panel).

representative momenta, as a function of z, for the three models. We see that, for the RT model,
the deviations from ΛCDM are tiny, below one percent, while for the RR model they reach a
maximum value up to 3–4% at the typical redshifts, say, z >∼ 0.5 relevant for observation of
structure formation. A discussed, a second useful pair of indicators is provided by gravitational
slip η and the effective Newton constant Geff/G. The slip function is given by,

ηP (k, z) = −Φ

Ψ
, (5.31)

This quantity is equal to one in ΛCDM when the anisotropic stress is negligible. The effective
Newton constant Geff is defined in Sec. 4.4.1. Observe that Geff(k, z)/G is the same as the
function Q(k, z) of (Ade et al., 2015e). We plot these quantities in Fig. 5.11, together with
the combination 2[µP (k, z)− 1] + [ηP (k, z)− 1], which is the one used in the Planck 2015 dark
energy paper (Ade et al., 2015e). Finally, we show the difference Ψ−Φ both at large and small
scales in Fig. 5.12.

What we learn from these figures is that, at the typical redshifts of interest for the comparison
with observations of structure formation, say z >∼ 0.5, as far as structure formation is concerned
the RT model differs from ΛCDM at a level of at most 1%, which is quite small compared to
existing experimental uncertainties, but could be observable with future missions such as the
Euclid (Amendola et al., 2013), SKA (Dewdney et al., 2009; Yahya et al., 2015) or DESI (Levi
et al., 2013; DESI Collaboration et al., 2016a,b) large scale structure surveys (see Sec. 5.5.4 for
more on this). In contrast, the RR model shows differences which, at z ≃ 0.5, can be as large as
6%, as for instance for the combination shown in the lower panel of Fig. 5.11. As we see from
the upper left panel of Fig. 5.11, these deviations go in the direction of producing a stronger
effective Newton constant, and therefore more structures. This contributes to explaining with
the growth displayed in Fig. 5.9, is stronger for the nonlocal models than for ΛCDM. A further,
and main reason, is that, for the same values of the cosmological parameters, the expansion rate
in the RT and RR model is generically lower than in ΛCDM as can be seen in the left panel of
Fig. 4.1, and this contributes also to the enhancement of clustering 11.

11. This fact was also noticed in (Barreira et al., 2014b), in the case of the RR model, where N -body simulations
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Figure 5.11 – The gravitational slip ηP (upper left), the effective Newton constant Geff(k, z)/G
(upper right) and the combination used in the Planck 2015 dark energy paper (Ade et al.,
2015e), for the nonlocal models. Solid lines correspond to large scales: k = 10−3Mpc−1 and
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Figure 5.12 – The difference of the potentials Ψ−Φ at large scales: k = 10−3Mpc−1 (left) and
at small scales: k = 1Mpc−1 (right), and their relative ratio to ΛCDM.

5.4 Interlude: Inflationary Instabilities of the RT Model

After the above analysis was accomplished, a study of the cosmological evolution of the RT
model, when initial conditions were fixed during a phase of primordial inflation, was performed
into (Belgacem et al., 2018a). In that reference, the authors found that, although the RT

revealed deeper gravitational potential wells and massive haloes slightly more abundant and concentrated. See
also (Barreira et al., 2015a,b), where lensing features of the RR model were analysed though N -body simulations.
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model has viable solutions at the background level, its linear cosmological perturbations develop
instabilities that makes it non-viable from such a phenomenological point of view.

In particular, they find that the auxiliary fields have runaway solutions that source the
metric potential so as Ψ ∼ Φ ∼ γe2∆N , where γ = m2/(9H2

0 ) ∼ O(10−4), and ∆N , is the
number of inflationary e-folds. A typically number of e-folds of ∆N ≃ 60, implies a value for
the gravitational potential at the end of inflation of the order of 1052, which, despite the fact
that it is larger than one and therefore cannot be trust at linear perturbation level, clearly
signals the appearance of a non-negligible growing mode, spoiling the condition Ψ ∼ Φ ∼ 10−4,
at the end of inflation.

In conclusion, because of this instability, the RT model cannot be considered as a valid
theory deriving for instance from a quantum effective action valid at all energy scales. This
is why we will therefore not consider the RT model further in the analyses presented below.
For the RR model, no instabilities are generated during an inflationary period, it therefore be
used for generating a viable power spectrum of primordial matter fluctuations (Belgacem et al.,
2018a).

5.5 Neutrino Mass Constraints in the RR Model

In this section, we analyse in more details the origin of the tension into the RR model and
find a solution for resolving it. In particular, we will see that changing the neutrino sector
of the aforeused baseline (see Sec. 5.1.2) from one dominant active mass-eigenstate to three
degenerated ones, whose absolute mass is taken as a free parameter, restores the concordance of
the nonlocal model to a non-negligible extent. Effectively, such a resolution exploits degeneracies
between modified gravity effects of the nonlocal model and those caused by a more massive
neutrino component. Similar degeneracies have already been noticed in local modified gravity
theories, for instance at linear level in TeVeS (Skordis et al., 2006), covariant galileons (Barreira
et al., 2014a), K-mouflage (Barreira et al., 2015) and recently in Horndeski models (Bellomo
et al., 2017), but also at the nonlinear one through N -body simulations of f(R) scenarios in
(Baldi et al., 2014).

5.5.1 Understanding the Tension

From the above discussion of Sec. 5.1.3, we have deduced that the late time phantom nature
of the RT and RR effective dark energies induces an increase in H0 given Planck data, as this
helps to resolve the mismatch with the CMB peaks position constraining the acoustic-distance
scale ratio θ∗ (c.f. Fig. 5.14 for case of RR). As such, the nonlocal models fit the Planck
CMB data as well as ΛCDM, and the RR model even finds slightly more consistency with
the data because of a lower a contribution from the late time ISW effect to the temperature
anisotropies auto-correlation spectrum (see Fig. 5.3), in a region that is however dominated by
cosmic variance.

The agreement with observations of the RR model however degrades when one joins the
BAO+JLA datasets to Planck. The observational tensions that arise in the analyses are better
illustrated in Fig. 5.13. The figure shows the 2d marginalised constraints in the H0 –Ωm plane
for ΛCDM (left panel) and RR (right panel), obtained individually using the Planck dataset
(red), SNIa data (grey) and BAO data (green). Contrary to ΛCDM, for the RR model, the
marginalised posterior suggests a ∼ 3 – 4σ level tension between Planck and SNIa data. Accord-
ing to the discussion in Sec. 5.1.3, this can be understood in looking at the luminosity distance
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Figure 5.13 – Two dimensional marginalised constraints on the H0 − Ωm plane in the ΛCDM
(top) and RR (bottom) models obtained with the Planck (red), BAO (green) and JLA (grey)
datasets. The blue contours are the same as the red ones, but for constraints in which

∑
mν is

a free parameter. For fixed colour, the two contour shades indicate 1σ and 2σ confidence level.
The BAO and JLAcontours do not change appreciably when

∑
mν varies so we do not display

them explicitly.

relevant for SNIa lightcurves,

DL(z) ≡ (1 + z)

∫ z

0

dz′

H(z′)
, (5.32)

where the expression for H(z) is found in Eq. (5.10). SNIa measurements only constrain the
total matter density Ωm, whereasH0 has been integrated out via marginalisation on the absolute
magnitude. Here the fact that the dark energy in the RR model is on the phantom side has
the net effect of raising ΩM towards higher values in RR than in ΛCDM, for fixed luminosity
distance, so as to compensate for a lower dark energy density fraction Ωde(z) compared to ΩΛ

at late time. This shift has already been seen in the previous section in Fig. 5.4 and is again
illustrated here by the grey contours in Fig. 5.13. We find ΩM |ΛCDM = 0.298 ± 0.035 and
ΩM |RR = 0.343 ± 0.033, exhibiting a ∼ 1σ shift between the two models, given SNIa JLA
data. However, this trend is inconsistent with Planck ’s preference, since the latter provides
tight constraints on ∼ Ωmh

2 from the CMB spectra shape information, which, together with
an increase in H0, forces ΩM to go down 12. This results in an overall dominant CMB-SNIa
tension in the RR model, that makes it non-concordant and disfavors it with respect to ΛCDM
by ∆χ2 = 6.0, given Planck+BAO+JLA data. Furthermore, a posteriori constraints from RSD
data have also been studied in Sec. 5.3, and they increase the overall tension even more, up to
∆χ2

∣∣
PBJ

+ ∆χ2
∣∣post
rsd

= 8.6 (∼ 3σ) compared to ΛCDM, providing strong evidence against the
nonlocal model when compared to ΛCDM, given Planck+BAO+JLA+(post) RSD data.

5.5.2 Solving the Tension in RR with Massive Neutrinos

The aforementioned tension can be solved by considering extensions of the initial model,
that is, allowing other physically relevant parameters, otherwise fixed, to vary. Adding such new
components will open new possibilities in the global parameter space and possibly provide an

12. This behavior is a generic one for reasonably smooth phantom dark energy, as indicated by the degenerate
directions in the Ωm –w0 plane while constraining w0CDM models given equivalent CMB and SNIa data as those
used in this work [see e.g. Fig. 16 of (Betoule et al., 2014)].
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Figure 5.14 – Hubble expansion rate (upper left), CMB temperature power spectrum (upper
right) and CMB lensing power spectrum (lower left) for a few illustrative RR cosmologies,
plotted as the relative difference to the best-fitting ΛCDM cosmology to the Planck dataset.
The red curve displays the prediction of the best-fitting RR model to the Planck dataset. The
green curves show the prediction of the RR gravity model with the same parameters as the
best-fitting ΛCDM model to Planck data. The remainder curves show the same as the green
ones, but with H0 = 71.31 km/s/Mpc (blue) or

∑
mν = 0.423 eV (cyan), which have been

adjusted to yield the same angular acoustic scale θ∗ = 0.010414 as ΛCDM. In the upper right
and lower left panels, the grey symbols with errorbars show the power spectra as measured by
Planck (Ade et al., 2015b).

access to a new global maximum of the posterior probability distribution. The consequence of
such a procedure is however the introduction of new degeneracies in the extended cosmological
model coming together with a loss of constraining power for fixed data combination.

The extension we consider in this work assumes three active massive species with degenerated
mass-eigenstates, i.e. the sum of their masses respects

∑
mν ≡ 3m0, where the absolute neutrino

mass m0 is taken to be a free parameter. Their temperature and the additional massless
neutrino component are fixed respecting the same conditions as those of the initial baseline (see
Sec. 5.1.2). We therefore adopt the following parametrisation,

θν =
(
H0, 100ωb, ωcdm, ln(10

10As), ns, τ,Σmν

)
, (5.33)

and the prior interval on the additional parameter is taken to be uniform and compact
∑
mν ∈

[0, 5] eV, consistent with existing data (see subsection 5.5.6 for more details and references on
the latter choice). The cosmological models denoted by ΛCDM and RR are parametrised by
θbase, while their extended versions build out of θν will be called νΛCDM and νRR respectively.
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The consideration of this extension is justified for three reasons. First, constraints on
∑
mν

coming from terrestrial experiments are very weak, therefore there no obvious reason to fix∑
mν = 0.06 eV on empirical grounds. Indeed, this value only corresponds to the smallest

mass-splitting measured by oscillations experiments (see subsection 5.5.6 for more details and
references). Second, an increase in neutrino masses would not alter the expansion rate at early
times if the neutrinos are still relativistic at photon decoupling, so that CMB anisotropies remain
unaffected, and raise the energy density of pressureless matter (after they turn non-relativistic),
which therefore increases the expansion rate during the matter dominated era. Third, the
free-streaming behavior exhibited by a more massive neutrino component helps to tame the
growth rate of structures and therefore potentially lowers the additional discrepancy caused
by the inclusion of RSD data [see e.g. (Archidiacono et al., 2017; Vagnozzi et al., 2017, 2018)
for analyses of the effects induced by massive neutrinos on cosmological observables]. Thus,
we can expect that the RR model would prefer a higher value of

∑
mν than 0.06 eV, with a

corresponding decrease of the CMB-SNIa tension. This is what is discussed in more details in
the following.

Planck

Param ΛCDM νΛCDM RR νRR

100ωb 2.225+0.016
−0.016 2.220+0.017

−0.017 2.227+0.016
−0.016 2.222+0.017

−0.017

ωcdm 0.1194+0.0014
−0.0015 0.1198+0.0015

−0.0016 0.1191+0.0014
−0.0015 0.1196+0.0015

−0.0016

H0 67.50+0.65
−0.66 66.12+2.1

−1.2 71.51+0.81
−0.84 69.57+2.5

−1.6

ln
(
1010As

)
3.064+0.025

−0.025 3.080+0.030
−0.034 3.047+0.026

−0.025 3.071+0.032
−0.035

ns 0.9647+0.0048
−0.0049 0.9637+0.0050

−0.0050 0.9649+0.0049
−0.0049 0.9639+0.0051

−0.0052

τ 0.06530+0.014
−0.014 0.07312+0.016

−0.018 0.05733+0.014
−0.014 0.06905+0.017

−0.018∑
mν [eV] 0.06 (fixed) < 0.50 (2σ) 0.06 (fixed) < 0.51 (2σ)

σ8 0.8171+0.0089
−0.0089 0.7949+0.033

−0.016 0.8487+0.0097
−0.0096 0.8212+0.038

−0.020

∆χ2
Planck 0 (χ2 = 12943.30) −0.04 −1.6 −1.6

Table 5.5 – Summary of the means, standard deviations and (effective) χ2 goodness-of-fit values
for the one-dimensional marginalised likelihood distributions of the ΛCDM, νΛCDM, RR and
νRR models obtained with the Planck dataset. The ∆χ2 values are taken with respect to the
ΛCDM χ2 values for each dataset, where χ2 ≡ −2 lnL, with L being the likelihood function.
All bounds shown correspond to 1σ unless explicitly stated otherwise.

Table 5.5 summarises the constraints on the νΛCDM and νRR models obtained with the
Planck dataset (third and fifth columns), that can be compared with the results found in
Sec. 5.1.3 for ΛCDM and RR that we report here for convenience (second and fourth columns).
We see that the goodness-of-fit in the RR case does not change under the variation of

∑
mν ,

however, H0 and σ8 are now shifted to a smaller extend as compared to the shift between the
RR and ΛCDM models. The cyan curves in Fig. 5.14 illustrate such facts in showing the same
as the blue curves, but instead of adjusting H0 to give the same θ∗ as in ΛCDM, one adjusts
the neutrino masses to

∑
mν = 0.42 eV. The upper left panel of Fig. 5.14 also confirms that

this drastically helps to improve the goodness-of-fit to Planck data compared to the RR model
when using the ΛCDM best-fitting parameters. This is a clear sign that the degenerate effects
of H0,

∑
mν and a late time phantom dark energy on θ∗ can therefore be exploited to try to

reconcile the Planck and JLA constraints given the RR nonlocal gravity.
Figure 5.13 illustrates better the beneficial impact of varying

∑
mν in the constraints given

the RR model compared to the ΛCDM one. The blue contours show the Planck constraints on
the H0–Ωm plane when

∑
mν is a free parameter [quoted “Planck (free Σmν)” for definiteness].
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Planck+BAO+JLA

Param ΛCDM νΛCDM RR νRR

100ωb 2.228+0.014
−0.015 2.229+0.014

−0.015 2.213+0.014
−0.015 2.221+0.014

−0.015

ωcdm 0.1190+0.0011
−0.0011 0.1189+0.0011

−0.0011 0.1210+0.0010
−0.0010 0.1197+0.0012

−0.0012

H0 67.67+0.47
−0.50 67.60+0.66

−0.55 70.44+0.56
−0.56 69.49+0.79

−0.80

ln
(
1010As

)
3.066+0.019

−0.026 3.071+0.026
−0.029 3.027+0.027

−0.023 3.071+0.032
−0.032

ns 0.9656+0.0041
−0.0043 0.9661+0.0043

−0.0043 0.9601+0.0040
−0.0039 0.9635+0.0043

−0.0045

τ 0.06678+0.011
−0.013 0.06965+0.014

−0.015 0.04516+0.014
−0.012 0.06880+0.017

−0.017∑
mν [eV] 0.06 (fixed) < 0.21 (2σ) 0.06 (fixed) 0.219+0.083

−0.084

σ8 0.8170+0.0076
−0.0095 0.8157+0.013

−0.011 0.8443+0.010
−0.0099 0.8215+0.017

−0.017

∆χ2
Planck 0 (χ2 = 12943.42) −0.14 −0.14 −1.52

∆χ2
BAO 0 (χ2 = 4.42) 0 2.48 2.38

∆χ2
JLA 0 (χ2 = 683.2) −0.12 3.56 2.5

∆χ2
total 0 (χ2 = 13631.04) −0.26 5.9 3.36

Table 5.6 – As for Table 5.5, but obtained with the Planck+BAO+JLA dataset.

For the nonlocal gravity model, the Planck contour is now overlapping the SNIa one. This
illustrates the fact that allowing

∑
mν to vary weakens the CMB-SNIa tension, as quantified

by the corresponding individual ∆χ2 values reported in Table 5.6.
A remarkable aspect of the combination of the Planck, BAO and JLA data in the constraints

given RR nonlocal gravity is the evidence for non-vanishing neutrino masses. Figure 5.15 shows
that

∑
mν > 0 at ∼ 2σ level, with the best-fit value

∑
mν ≈ 0.21 eV (see Table 5.6 for the

corresponding means value). As depicted above, such a shift is primarily caused by the relatively
smooth, late time and phantom nature featured by the effective dark energy described by the
RR nonlocal model. These constraints are very different than in νΛCDM for which the data
only sets an upper bound on

∑
mν . In the following, we will see that such a preference of

the νΛCDM model for lower values of
∑
mν reflects one of its weakness in a Bayesian model

comparison context, and therefore opens room for alternative dark energy models including
similarly a varying

∑
mν to compete with it.

5.5.3 Bayesian Model Comparison in ν-extended Models

In the following, we compare the νΛCDM and νRR models given Planck+BAO+JLA data
computing the associated Bayes factor BνΛ,νRR and set it side by side with the BIC diagnostic
(5.6) that is reported in Table 5.6. We recall that degrees of significance used in this work are
reported in Table 5.2 for definiteness of the discussion. A Bayes factor B01 comparing model
M0 against model M1 can be though of as telling betting odds of B01 : 1 in favor of the former
given the data.

For computing BνΛ,νRR we use a combination of statistical coherence and the Savage-Dickey
density ratio (SDDR) (see Sec. 5.2 for details) that exploits the nested structure of the overall
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Planck νΛCDM
Planck νRR
BAPJ νΛCDM
BAPJ νRR
Planck ΛCDM
Planck RR

Figure 5.15 – One and two dimensional marginalised constraints on the parameters
∑
mν , σ8

and ΩM in the νRR and νΛCDM models, obtained with the Planck and Planck+BAO+JLA
datasets. For fixed colour, the two contour shades indicate 1σ and 2σ limits. The dashed
and dot-dashed curved lines indicate the 1σ results obtained when

∑
mν is fixed to 0.06 eV

in ΛCDM and RR, respectively, given Planck CMB data. The vertical dashed line represents∑
mν = 0.06 eV.

models discussed here. This allows one to get BνΛ,νRR in a rather economic way in writing,

BνΛ,νRR ≡ P (d|MνΛ)

P (d|MνRR)
(5.34)

=
P (d|MνΛ)

P (d|MΛ)

P (d|MΛ)

P (d|MRR)

P (d|MRR)

P (d|MνRR)
(5.35)

=
BRR,νRR

BΛ,νΛ
BΛ,RR , (5.36)

where P (d|Mi) is the marginal likelihood (evidence) of the data d given the model Mi. The
factor BΛ,RR appearing above is one of the main results of Sec. 5.2 and has been computed to
be BΛ,RR = 22.7. The remaining factors are computed for the model i = Λ,RR through the
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SDDR,

Bi,νi =
P
(∑

mν = 0.06
∣∣ d,Mνi

)
P
(∑

mν = 0.06
∣∣Mνi

) , (5.37)

which is the ratio of the marginalised one-dimensional posterior distribution to the marginalised
one-dimensional prior of

∑
mν obtained from the extended model, evaluated at the point where

the simpler model is nested inside the extended model (i.e. at
∑
mν = 0.06). Since we chose

the same prior for both νΛCDM and νRR parameter spaces (in particular on
∑
mν) their

contribution simplifies. Eq. (5.36) then yields,

BνΛ,νRR =
P
(∑

mν = 0.06
∣∣ d,MνRR

)
P
(∑

mν = 0.06
∣∣ d,MνΛ

) BΛ,RR , (5.38)

and we find, given Planck+BAO+JLA data,

BνΛ,νRR =
1

12.5
× 22.7 = 1.8 = e0.6 , (5.39)

which is one of the main results of (Dirian, 2017). It tells that νRR is statistically equivalent
to νΛCDM with odds of 1.8 : 1 in favor of the latter, instead of being “moderately-to-strongly”
disfavored with odds 22.7 : 1, when the neutrino mass is fixed. The result is invariant under prior
changes on

∑
mν (as long as they are assumed to be equal) and leads to several implications.

This result shows that allowing
∑
mν to vary within [0, 5] eV helps to reconcile RR-gravity with

the data as already noticed above, but it also has the effect of penalising the ΛCDM cosmology.
This can be seen through the fact that applying the BIC method to compare νΛCDM against
νRR given Planck+BAO+JLA leads to biased results. Indeed, comparing the shifts endured
by the results of both methods in varying

∑
mν we obtain,

BIC : ∆χ2
∣∣
Λ,RR

= 5.9 → ∆χ2
∣∣
νΛ,νRR

= 3.4 , (5.40)

Bayes : lnBΛ,RR = 3.1 → lnBνΛ,νRR = 0.6 , (5.41)

all in favor of ΛCDM given Planck+BAO+JLA data. Referring to Table 5.2, one can see a
significant discrepancy between the results from the BIC differences and Bayes factors. While
the former announces a reduction from “weak”/“moderate-to-strong” only to “weak” evidence in
favor of νΛCDM, Bayesian model comparison tells that the latter “moderate-to-strong” evidence
is in fact comfortably reduced to an “inconclusive” one. These two results are discrepant
because of the loss of validity of the assumptions made in computing the BIC, which is only
an approximation of the Bayes evidence (see Sec. 5.1.3). In particular as, beside of the net
maximum likelihood shift encapsulated in ∆χ2 favoring the RR model, Occam’s razor further
penalises the νΛCDM one. Obviously one should therefore trust the result of Eq. (5.41).

In what follows, we address a rough analysis for trying to understand to which extent allow-
ing the absolute neutrino mass to vary is beneficial for the RR model, given Planck+BAO+JLA
data. Coming back to Eq. (5.37), in our present context we can write,

Bi,νi =
P
(∑

mν = 0.06
∣∣ d,Mνi

)
P
(∑

mν = 0.06
∣∣Mνi

) =
Li
Vi
Pi , (5.42)

where Li is the value of the marginalised 1d posterior for
∑
mν (normalised to its maximum)

at the nesting point, Vi is the volume of it and Pi is the upper bound of the prior on the sum
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of the neutrino masses,
∑
mν ∈ [0, Pi]. We find,

LRR =0.19 , VRR = 0.2 , (5.43)

LΛ = 1.0 , VΛ = 0.08 , (5.44)

where we have set Pi = 5 in either cases. One can then compute,

BΛ,νΛ = 12.5× 5 = 62.5 , BRR,νRR = 1× 5 , (5.45)

which in particular shows that the Λ-based model provides “moderate-to-strong” evidence with
odds of 62.5 : 1 for fixing

∑
mν = 0.06 eV. Although the latter has a non-negligible contribution

coming from the prior, it also has a non-negligible one from the likelihood (essentially originating
from boundary effects), which is a handicap when compared against models preferring higher
neutrino masses such as the RR one. As can be seen from Fig. 5.15, this is because the νΛCDM
marginalised posterior on

∑
mν hits the lower bound of the prior at 0.06 eV, which involves

a loss of posterior volume and a waste of prior one. This means that allowing the absolute
neutrino mass to vary in ΛCDM, does not extract relevant information from the data. In the
RR case the situation is different since non-vanishing neutrino masses are preferred at 2σ level,
exploiting therefore better the Planck+BAO+JLA data. This contributes to Occam’s razor
effect intrinsically taken into account in Bayesian model comparison and partially explains why
the RR nonlocal model undergoes a favorable and significant change when compared against
ΛCDM after allowing

∑
mν to vary [see Eq. (5.41)]. Moreover, this also explains why the BIC

difference effectively fails when comparing νΛCDM against νRR given Planck+BAO+JLA data,
because it is only sensitive to the maximum of the posteriors, not to their entire volume.

The RR nonlocal model described by the action (4.2) is therefore statistically equivalent
(given Planck+BAO+JLA data) to Einstein gravity supplemented by a cosmological constant Λ
when reconsidering the prior on the neutrino sector, that is, when one changes the cosmological
parametrisation from (5.4) to (5.33). This has been made possible exploiting an apparent
degeneracy at the background level between H0,

∑
mν and the phantom nature of the effective

dark energy described by the nonlocal model, which was illustrated in Fig. 5.13. In what follows
we provide an outlook motivating the use of additional data, in particular coming from galaxy
surveys, for being able to make a distinction between the νΛCDM and the νRR cosmological
models.

5.5.4 Constraints a Posteriori from Redshift-Space Distortions data

Apart from secondary CMB anisotropies such as ISW or lensing effects, the constraints on∑
mν mostly come from background-geometrical features when considering the Planck+BAO

+JLA dataset. However, massive neutrinos give rise to characteristic inhomogeneous and
anisotropic signatures induced by their thermal velocity flow. In particular, they do not cluster
inside regions delimited by their free-streaming scale. Below that scale, the neutrino perturba-
tions are smoothed out and this causes a suppression of the late time matter power spectrum at
mid-to-small cosmological scales, a decrease of the lensing power and of the growth of structures
in a scale-dependent manner within the linear regime (Hu et al., 1998; Lesgourgues and Pastor,
2014; Giusarma et al., 2018), as well as non-linear effects (Adamek et al., 2016; Inman and Pen,
2017). Additional data putting stronger constraints on these features are therefore relevant to
include into the global fit. Nevertheless, the presence of an appreciable fraction of massive neu-
trinos can have partial degenerate effects with a positive fifth force present in modified gravity
scenarios. A fifth force should be present at late time in the RR model and it was found in
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Figure 5.16 – Time evolution of the growth rate fσ8 for the best-fitting ΛCDM, RR and νRR
models to the Planck+BAO+JLA dataset. For the case of the νRR model (red), the solid and
dashed lines display the result at k = 0.01hMpc−1 and k = 0.5hMpc−1, respectively. For
the ΛCDM and RR models the growth rate is scale-independent (apart from the very small
scale-dependency induced by the small neutrino fraction,

∑
mν = 0.06 eV). The grey symbols

show the observational determination from the final BOSS DR12 release (Alam et al., 2016).
The black symbols show the forecasted precision for Euclid, centered around the ΛCDM result.

(Barreira et al., 2014b; Dirian et al., 2016) (see our Secs. 4.4.1 and 5.3) that it enhances the
growth of linear and non-linear structures compared to the one described by ΛCDM. As we
have seen in Sec. 5.3, constraints on the linear growth rate of structure modelled by fσ8 favored
the ΛCDM model over the nonlocal one and this was quantified by a BIC of ∆χ2 = 2.6. This
value was computed a posteriori, that is, given that fσ8 was derived from each model on its
Planck+BAO+JLA bestfit. In this part, we study the impact of a massive neutrino component
on the linear growth rate of structure using the same method.

The degenerate effects present between a massive neutrino fraction and linear growth rate are
well-illustrated from the degeneracy direction observed in the σ8 –

∑
mν plane in Fig. 5.15, where

one can see that they are anti-correlated: the higher the massive neutrino fraction Ων ∼
∑
mν ,

the lower σ8. Given Planck data, the mean value inferred on σ8 for ΛCDM is smaller than the
one provided by RR, in agreement with the higher growth within the nonlocal model, and their
mean values are generically smaller in the ν-extended case. For Planck only, we find that the
departure of the best-fit value of

∑
mν from the lower bound of the prior in RR cosmology

is caused by the addition of the Planck CMB lensing power spectrum which is sensitive to a
weighted projection of density fluctuations along the line-of-sight. Joining BAO+SNIa data
pulls the total matter density fraction ΩM to higher values, involving a stronger increase in
the absolute neutrino mass that preserves the value of σ8 close to the one inferred in ΛCDM.
Focusing on the growth, Fig. 5.16 shows the time evolution of fσ8 for the best-fitting ΛCDM, RR
and νRR models to the Planck+BAO+JLA dataset. As anticipated, the growth rate is lower
in νRR compared that in the RR model. The figure also displays the most recent observational
determinations of fσ8 from the DR12 BOSS analysis (Alam et al., 2016) (grey symbols with
errorbars). Using these data, the reduced χ2

red values for the ΛCDM, RR and νRR models are,
respectively 13, χ2

red = 0.58, χ2
red = 1.38 and χ2

red = 0.97. More pragmatically for comparison

13. These values do not consider the mid-redshift data point. This is because the associated galaxy sample
completely overlaps with those of the other two points which are independent. The number of degrees of freedom
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with previous results, we compute the corresponding χ2 values using the same data points as
in Sec. 5.3, that are listed in Sec. 5.1.1. The corresponding goodness-of-fit read,

χ2
ΛCDM = 3.9 , χ2

RR = 6.5 , χ2
νRR = 5.2 , (5.46)

which shows that the fit is indeed improved in going from RR to νRR with BIC values chang-
ing from ∆χ2 = 2.6 to ∆χ2 = 1.3, but still in favor of ΛCDM. Therefore, we can con-
clude that allowing

∑
mν to be a free parameter helps to decrease the discrepancy of the

RR nonlocal gravity model with growth rate measurements and brings down the total dis-
crepancy from ∆χ2

∣∣
PBJ

+ ∆χ2
∣∣post
rsd

= 8.5 (∼ 3σ) to ∆χ2
∣∣
PBJ

+ ∆χ2
∣∣post
rsd

= 4.6 (∼ 2σ) given
Planck+BAO+JLA+(post)RSD data, which induces a significant change in the (although ap-
proximated) statistical conclusion.

In turn, this shows that the data considered in this work do not possess enough constraining
power to clearly distinguish between ΛCDM and RR cosmologies. Nevertheless, the situation is
expected to be different for a survey like e.g. Euclid (Amendola et al., 2013). This is illustrated
by the black symbols in Fig. 5.16, which show an estimate of the forecast errorbars for this future
mission [taken from Fig. 3 of Ref. (Majerotto et al., 2012)], centred around the ΛCDM fiducial
cosmology. One notes that the difference between ΛCDM and νRR is larger than the forecast
precision of Euclid for z < 1, from which we can conclude that, despite partial degeneracies
between the effects of massive neutrinos and the RR-modifications to gravity, there is still room
for future RSD data to be used to help distinguishing between ΛCDM and RR cosmologies.

As a final remark, a larger fraction of massive neutrinos in cosmological models contributes
to an increased scale-dependence in the linear growth of structure. This may raise some concerns
when confronting models like the best-fitting νRR model to Planck+BAO+JLA against fσ8
values, because the latter are usually extracted from galaxy survey data using RSD models
assuming the growth to be scale-independent [see e.g. Ref. (Johnson et al., 2014) for an exception
to this fact and Ref. (Barreira et al., 2016) for a validation study of RSD modelling in DGP
gravity which exhibits scale-independent linear growth]. If the scale-dependence in the νRR is
non-negligible compared to the precision targeted, extra care is required in the analysis of the
data before observational constraints can be performed. To test such a fact, we plot in Fig. 5.16
the evolution of fσ8 in the νRR model for k = 0.01hMpc−1 (red solid) and k = 0.5hMpc−1

(red dashed). One notes that the k-dependence is small compared to the expected precision of
Euclid, which suggests that standard methods can be used to constrain the νRR model.

Contraints from Other Surveys and Forecasts. In addition, constraints using other
probes of the large scale structure such as the currently available galaxy clustering and cosmic
shear data of DES Y1 (Abbott et al., 2017j), or from future surveys such as SKA (Dewdney
et al., 2009; Yahya et al., 2015) or DESI (Levi et al., 2013; DESI Collaboration et al., 2016a,b),
together with weak gravitational lensing data such as those of CFHTLenS (Heymans et al.,
2012) or KiDS-450 (Kuijken et al., 2015), also prove to be of particular interest for constrain-
ing the ν-extended models. Indeed, measuring the cosmic shear induced by the large-scale
structure allows to put constraints on the nature of the dark energy as well as on the absolute
neutrino mass (Joudaki et al., 2016), although, given current data, to a smaller extent than
the Planck+BAO+JLA dataset considered in this work. Moreover, weak lensing measurements
reported in (Heymans et al., 2012; Kuijken et al., 2015) display a tension with Planck CMB
observations, given the ΛCDM model, and systematic issues first need to be correctly addressed
before these data can be used in combination with Planck for constraining modified gravity

is therefore two.
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models. However, such systematic issues have recently been pointed out into (Troxel et al.,
2018), where it was shown that taking into account survey boundary and masks effects into the
shape noise term of the cosmic shear analytic covariance matrix, improves agreement between
the KiDS-450 cosmic shear constraints and the results of Planck as well as DES Y1. A study of
forecast constraints from the future Euclid and SKA galaxy clustering and weak lensing surveys
and the galaxy clustering DESI survey is currently under way (Casas et al., 2018).

5.5.5 A Word on H0

As already noticed previously, another interesting outcome of the constraints on the RR
model relates to the preferred values ofH0. For the best-fitting ΛCDMmodel to the Planck+BAO
+JLA dataset, one finds H0 = 67.67+0.47

−0.50 km s−1Mpc−1 (c.f. Table 5.5), which lies ∼ 1σ below
the determination from local measurements discussed in Ref. (Efstathiou, 2014), which sets
H0 = 70.6 ± 3.3 km s−1Mpc−1 (note that this value becomes H0 = 72.5 ± 2.5 km s−1Mpc−1 if
other assumptions are made into the analysis). More recently, the work of (Riess et al., 2018)
sets a higher value of 73.48± 1.66 km s−1Mpc−1 [see also Refs. (Riess et al., 2011; Humphreys
et al., 2013; Riess et al., 2016)]. Furthermore, recent determinations of H0 using hyperparame-
ters, H0 = 73.75± 2.11 km s−1Mpc−1 (Cardona et al., 2017), or from gravitational lensing time
delay methods, H0 = 71.9+2.4

−3.0 km s−1Mpc−1 (Bonvin et al., 2017), are also significantly away
from the ΛCDM bestfit.

The seriousness of the above-mentionedH0 tensions is still subject to current debates and one
still needs to understand better the role of systematics before claiming the need of new physics
[see e.g. Refs. (Di Valentino et al., 2016; Luković et al., 2016; Bernal et al., 2016)]. Nevertheless,
taking the current measurements at face value, one notes that for the best-fitting νRR model
to the Planck+BAO+JLA dataset one has H0 = 69.49+0.79

−0.80 km s−1Mpc−1, which significantly
ameliorates the agreement with the local determinations and would therefore improve further
the global fit.

5.5.6 The Importance of Terrestrial Determinations of
∑

mν

The current constraints on neutrino masses that are independent of cosmology arise from
terrestrial experiments. The lower bounds on

∑
mν come from neutrino oscillations experiments

which, assuming a massless eigenstate, set
∑
mν ≳ 0.05 eV and

∑
mν ≳ 0.1 eV for normal and

inverted mass hierarchies respectively. The current best upper bounds are obtained by analysing
the high-energy part of the spectrum of Tritium β-decay in experiments such as MAINZ and
TROITSK and set the electron neutrino mass to mνe ≲ 2.2 eV (2σ) which corresponds to∑
mν ≲ 6.6 eV in our context. Future Tritium β-decay experiments such as KATRIN will

be sensitive to mass scales
∑
mν ≲ 0.6 eV at 90% confidence level. The sensitivity can be

even better if neutrinos turn out to be Majorana particles, in which case neutrinoless double
β decay experiments should be able to probe the region corresponding to

∑
mν ≳ 0.3 eV

with high precision 14 [see e.g. (Drexlin et al., 2013; Dell’Oro et al., 2016; Vergados et al.,
2016; Engel and Menéndez, 2017) for reviews]. These forecast sensitivities can therefore be
proven useful for confirming cosmological observations. As it has been shown throughout our
study, the determination of the absolute neutrino mass scale from cosmological probes depends
on the assumed cosmological model. As such, if terrestrial neutrino experiments will detect
non-minimal neutrino masses, we will need to modify the standard ΛCDM cosmological model.

14. Note that the quoted upper bounds assume specific models of nuclear matrix elements.
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5.6 Conclusions

In this chapter, we have perform observational constraints on the RT (4.1) and RR (4.2)
nonlocal models, and compared them to standard ΛCDM by using Bayesian model selection
techniques. For being able to do so, the nonlocal models have been implemented in a modified
version of the CLASS linear Einstein-Boltzmann solver (see App. A for details), that allowed us
to constrain these models with the MCMC cosmological parameter extraction code Montepython
interfaced with CLASS. For putting tight constraints on the models, we considered current, high
precision complementary data including Planck 2015 observations of temperature, polarisation
and lensing of the CMB, isotropic and anisotropic BAO data, distant SNIa from JLA, local
measurements of H0, as well as structure formation RSD data (see Sec. 5.1.1 for details).

In a first approach in Sec. 5.1.2, following (Dirian et al., 2015, 2016), we have consid-
ered to embed the modified gravity models into statistical cosmological ones in following the
Planck 2015 baseline, where, in particular, the cosmological parameter space is six dimensional.
Bayesian parameter inference then revealed that the nonlocal models where statistically equiv-
alent to ΛCDM given Planck 2015 data, and that only a small number of parameters were
significantly shifted when going form ΛCDM to the nonlocal models. Indeed, in Sec. 5.1.3, we
have seen that both models exhibit significantly higher values for H0 and σ8 (see Table 5.1)
and argued that such a fact was mostly due to the quite smooth, phantom nature of the late
time emerging effective dark energy present in the nonlocal models. Furthermore, in joining
SNIa and BAO data to those of Planck, we observed the appearance of a dominating CMB-SNIa
tension in the ΩM–H0 plane, provided the RR model. This tension disfavors RR with respect to
ΛCDM, while under the same circumstances the RT model was shown to remain equivalent to
the standard one, given CMB+BAO+SNIa data. We then performed Bayesian model selection
in Sec. 5.2, by using the Savage-Dickey density ratio method for nested models presented in
Sec. 5.2.2. We found that the conclusions drawn for such an analysis where equivalent to the
ones obtained from a rough comparison of the χ2 goodness-of-fit inferred from the models, given
the data. That is, the ΛCDM model shows “moderate-to-strong” evidence, with odds of 22 : 1,
against the RR nonlocal model, given Planck+BAO+JLA data, while provides “inconclusive”
conclusions compared to the RT model given the same data. In particular, we have seen that,
as the nonlocal model prefer a higher value of H0, adding a higher prior on H0 into the global
fit leads to the statistical equivalence of all the models among each other.

As such, and given that the nonlocal models also provide of different structure formation
history compared to ΛCDM, we have performed observational constraints considering growth
rate data from RSD measurements in Sec. 5.3. These constraints were done a posteriori,
that is, once the normalisation of the matter power spectrum has been set on the respective
Planck+BAO+JLA bestfit within each models. We found that the nonlocal models feature a
higher growth of structures modelled by fσ8, and that their fit to the data is less preferred than
the one of ΛCDM. Joining these results to the CMB+BAO+SNIa ones, we have concluded
that the RT model is statistically equivalent to ΛCDM, whereas the latter (and therefore both)
shows “moderate-to-strong” evidence against the RR model. Again, in either case, the addition
of a higher prior on H0 favors the nonlocal models, and tames the discrepancy displayed by the
RR one. Nevertheless, in (Belgacem et al., 2018a), the RT model has been shown to feature
instabilities at the level of linear perturbations during a primordial inflationary phase and, as a
consequence, we excluded it from our further analyses.

In Sec. 5.5, following (Dirian, 2017), we revisited the observational constraints of the RR
model discussed in the previous section. We have shown that the CMB-SNIa tension, which
degrades its performance in the framework of the initial baseline considered, mostly results from
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the quite smooth, late time and phantom nature of the effective dark energy described by the
nonlocal model. In fact, for fixed parameter values, the latter induces a decrease on the late time
Hubble expansion rate H(z ≈ 0) compared to that described by ΛCDM. Such a fact generically
implies a smaller acoustic scale θ∗ for the CMB, that is corrected by the inference of a higher
value of H0 given Planck data, as well as a larger luminosity distance that is compensated
by a larger ΩM given SNIa data. Since the shape information from CMB temperature power
spectrum constrains well ωM , which is a multiplicative combination of H0 and ΩM , the trends
inferred from the nonlocal model are contradictory and a tension appears, as illustrated in
Fig. 5.13. In Sec. 5.5.2, we have then shown that allowing the absolute neutrino mass to be
a free parameter, a fact that is allowed by current experimental bounds, resolved the tension
in the nonlocal gravity model. The ν-extended nonlocal model, denoted νRR, ends up to be
statistically equivalent to νΛCDM given CMB+BAO+SNIa data, with odds of 1.8 : 1 in favor
of νΛCDM. In Sec. 5.5.3, we have shown that the compatibility between νRR and νΛCDM was
caused by a better fit of the nonlocal model to the data, but also by the Occam’s razor effect
penalising the νΛCDM model, because of its preference for small absolute neutrino masses. As
a result, the absolute neutrino mass is inferred to be non-zero

∑
mν > 0 at ∼ 2σ level given the

nonlocal model, with the best-fitting value
∑
mν ≈ 0.21 eV. In the same perspective as in the

case of the initial baseline, we have then placed constraints from RSD data a posteriori on both
models in Sec. 5.5.4. These constraints have been shown to be improved as well by the presence
of a higher neutrino fraction Ων into the nonlocal cosmology. Further determinations from
local measurements of H0 were discussed, as these are in better agreement with the nonlocal
gravity model inferring a value of H0 = 69.49+0.79

−0.80 km s−1Mpc−1, which is ∼ 2σ above H0 =

67.67+0.47
−0.50 km s−1Mpc−1, inferred from ΛCDM given CMB+BAO+SNIa. This provides one

more example showing that the cosmological constraints on the absolute neutrino mass depends
on the assumed cosmological model, because of degenerate effects between modifications to
gravity and massive neutrinos. Still, our study also suggests that the use of additional data
coming from future galaxy redshift surveys could reduce such a degeneracy in the studied case
and potentially discriminate between the νΛCDM and νRR models. We have provided an
illustration to this fact in considering forecast constraints from Euclid RSD data. A more
quantitative analysis is left for future work [see e.g. (Casas et al., 2018)].

The studies performed in this chapter focused on constraining modifications to GR at the
background and linear scalar perturbation level. In the next chapter, we will see that comple-
mentary information to these constraints can be obtained from observations of GWs produced
by inspiralling binaries. As we will show, these potentially allow to constrain modifications
to GR at the background and linear tensor perturbation level, in particular through a modi-
fied notion of GW luminosity distance present in modified gravity theories, originating from a
modified propagation of GWs in the modified gravity model.
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Chapter 6

Modified Gravitational Wave
Propagation and Standard Sirens

In this chapter, we present our recent works (Belgacem et al., 2017, 2018b,c), and, in par-
ticular, closely follow that of (Belgacem et al., 2018c), where forecast constraints from next
generation GW interferometers such as LISA or the Einstein Telescope (ET ) (Sathyaprakash
et al., 2012) , were put on the RR model. Despite the fact that in this model the GWs prop-
agate at the speed of light, their propagation equations feature a modified friction term. We
show that modified gravity models having this characteristic give raise to a modified notion of
luminosity distance to the GWs source. Taking the RR model as a prototypical example, we
show that the deviation of the optical to GW distance-redshift relation can be parametrised by
a fitting function including two parameters (Ξ0, n), with n = 5/2 in the nonlocal model. We
evaluate the forecast sensitivity of ET to Ξ0 and find that it can be measured more accurately
than the dark energy equation of state parameter w0, in particular when the redshift-distance
relation is calibrated to other distance indicators such as CMB+BAO+SNIa. This enhances the
prospects for testing dark energy with standard sirens, and to discriminate gravity models from
ΛCDM. We illustrate this fact in forecasting the number of multi-messenger sources needed to
be detected by ET for being able to distinguish between the RR and the ΛCDM model.

6.1 Standard Sirens as a Probe of Dark Energy

In the last few years, the spectacular observations of the GWs from binary black-hole coa-
lescences by the LIGO/Virgo collaboration (Abbott et al., 2016a,b, 2017a,b,c), as well as the
observations of the GWs from the binary neutron star merger GW170817 (Abbott et al., 2017i),
of the associated γ-ray burst (Goldstein et al., 2017; Savchenko et al., 2017; Abbott et al., 2017g),
and the follow-up studies of the electromagnetic counterpart (Abbott et al., 2017f), have opened
the way for (multi-messenger) gravitational-wave astrophysics and cosmology.

It has long been recognised [see e.g. (Schutz, 1986, 2001)], that the detection of GWs from
coalescing compact binaries allows to access a measurement of their luminosity distance, making
them “standard sirens” (Holz and Hughes, 2005), which are the GW analogue of standard
candles. Recalling the expression of the luminosity distance as a function of redshift (see
Sec. 4.2 for more details),

DL(z) = (1 + z)

∫ z

0

dz′

H(z′)
, (6.1)
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with,

H(z) = H0

[
ΩM (1 + z)3 +Ωde(z)

]1/2
, (6.2)

where we have neglected the contribution of radiation, which is negligible at the redshifts rel-
evant for standard sirens. In the limit z ≪ 1, one recovers the Hubble law DL(z) ≃ H−1

0 z,
so from a measurement at such redshifts one can only get information on H0. This is the
case of GW170817, which is at z ≃ 0.01. Indeed, from the observation of GW170817 has
been extracted a value H0 = 70.0+12.0

−8.0 km s−1Mpc−1 (Abbott et al., 2017d), that rises to

H0 = 75.5+11.6
−9.6 km s−1Mpc−1, if one includes in the analysis a modelling of the broadband

X–ray to radio emission to constrain the inclination of the source, as well as a different estimate
of the peculiar velocity of the host galaxy (Guidorzi et al., 2017). The cosmological significance
of this measurement can be traced to the discrepancy between the local H0 measurement (Riess
et al., 2016) [see also (Riess et al., 2018) for a more recent estimate] and the value obtained
from the Planck CMB data (Ade et al., 2015d), which are in tension at 3σ level, corresponding
to odds of 10 : 1 for ΛCDM being the true model in a Bayesian framework (Feeney et al., 2017).
The current accuracy on H0 from the measurement with the single standard siren GW170817
is not accurate enough to arbitrate this tension. However, each standard siren provides an
independent measurement of H0, so with N standard sirens with comparable signal-to-noise
ratio, the error scales approximately as 1/

√
N . The analysis of (Chen et al., 2017; Feeney et al.,

2018) indicates that with about 50–100 standard sirens one could discriminate between the local
measurement and the Planck ΛCDM value.

The next generation of GW interferometers, such as the space interferometer LISA (Au-
dley et al., 2017), which is expected to fly by 2034, as well as third-generation ground-based
interferometer currently under study, such as ET (Sathyaprakash et al., 2012) in Europe and
Cosmic Explorer (Abbott et al., 2017e) in the US, will have the ability to detect standard
sirens at much higher redshifts. The information that one could get is then potentially much
richer, since the result is now in principle sensitive to the dark energy density fraction Ωde(z)
or, equivalently, to the dark energy equation of state wde(z) at those redshifts. Building up a
distance ladder from standard sirens then proves to provide an efficient way from probing the
nature of the dark energy. Several studies have been performed to investigate the accuracy that
one could obtain in this way on wde(z), for instance by provid ing forecasts on the w0, or on
the (w0, wa) parameters of the CPL parametrisation (4.41) parametrisation (Dalal et al., 2006;
MacLeod and Hogan, 2008; Cutler and Holz, 2009; Nissanke et al., 2010; Sathyaprakash et al.,
2010; Zhao et al., 2011; Del Pozzo, 2012; Nishizawa et al., 2012; Taylor and Gair, 2012; Camera
and Nishizawa, 2013; Caprini and Tamanini, 2016; Tamanini et al., 2016), or also by trying to
reconstruct the whole function wde(z), (Cai and Yang, 2017).

Below, following the recent works of (Belgacem et al., 2017, 2018b,c), we perform a more
complete analysis of the predictions of generic modified gravity models for standard sirens. As
the latter references illustrate, when the dark energy sector of a theory differs from a simple
cosmological constant, this can affect both the background evolution and the cosmological
perturbations. The change in the background evolution is expressed by a non-trivial dark
energy equation of state wde(z), while linear cosmological perturbations are affected in the
scalar, vector and in the tensor sector 1. In particular, modifications in the tensor sector can be
very important for standard sirens and, as we will see, their effect on the luminosity distance
can be more easily observed than that due to a non-trivial dark energy equation of state.

1. On cosmological solutions, vector perturbations usually only have decaying modes and are irrelevant, in
GR as well as in typical modified gravity models.
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In Sec. 6.2, we discuss the structure of cosmological perturbations in modified gravity the-
ories, studying in particular the tensor sector. As an explicit example, we will use the RR
model described in Sec. 3.2. This will also allow us to propose a simple parametrisation of
the effect of modified propagation on the luminosity distance, in terms of a single parameter
Ξ0 [or at most a pair of parameters (Ξ0, n)], that extends the pair (w0, wa) that parametrises
the modification of the background evolution. We will see that, among these four parameters,
Ξ0 can be the most important for observational purposes with standard sirens. In Section 6.3,
using parameter estimation through MCMC techniques, we study the accuracy with which we
can measure w0, wa and Ξ0, in different combinations, using the forecast sensitivity of ET, and
combining it with Planck 2015 CMB, BAO and JLA SNIa to reduce the degeneracies between
these parameters and H0 and ΩM . In Sec. 6.4, we turn to concrete forecast constraints on RR
nonlocal model and study the extent to which one will be able to discriminate it from ΛCDM,
as a function of the number of standard sirens observed by ET. Finally in Sec. 6.5, we will study
further observable effects related to modified GW propagation, due to the modification of the
transfer function that connects a primordial GW spectrum to that observed at later epochs.

6.2 GW Propagation in Modified Gravity

As we have illustrated in Sec. 4.2, at the cosmological background level, a convenient
parametrisation of the dark energy density evolution is provided by the CPL (w0, wa) parametri-
sation (4.41). At the level of linear scalar perturbations, deviations from a cosmological constant
can be encoded into various indicators such as µ, Σ, η (see Sec. 4.4.1 for more details), that can
also be parametrised in the same spirit, but possibly exhibiting a dependence on the wavenum-
ber, so as to be able to forecast constraints on the associated parameter space [see e.g. (Ade
et al., 2015e; Casas et al., 2017)].

When studying standard sirens, one is rather interested in the modification of the linear
perturbation equations in the tensor sector, i.e. in the modification of the propagation equation
of GWs over the cosmological background, such as Eq. (4.103) for the RT model and Eq. (4.122)
for RR. For definiteness, let us recall that in GR, tensor perturbations over a FLRW background
in conformal time satisfy,

h̃′′A + 2Hh̃′A + k⃗2h̃A = 16πGa2 σ̃A , (6.3)

where h̃A
(
η, k⃗
)
are the Fourier modes of the GW amplitude, A = +,× labels the two polari-

sations and the source term σ̃A
(
η, k⃗
)
is related to the helicity-2 part of the anisotropic stress

tensor [see e.g. (Maggiore, 2018)]. In a generic modified gravity model, each term in this equa-
tion could a priori be modified by a function of redshift and wavenumber. A modification to
the source term would induce a change in the production mechanism and therefore in the phase
of an inspiralling binary. To understand the effect of changes in the terms 2Hh̃′A or k⃗2h̃A, let
us first consider the free propagation in GR. We then set σ̃A = 0, and introduce a field χ̃A as,

h̃A
(
η, k⃗
)
=

1

a(η)
χ̃A
(
η, k⃗
)
. (6.4)

Then Eq. (6.3) becomes,

χ̃′′
A +

(
k⃗2 − a′′

a

)
χ̃A = 0 . (6.5)

For modes well inside the horizon, such as the GWs targeted by ground-based and space-borne
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detectors, the term a′′/a is totally negligible with respect to k⃗2, 2 and one gets a standard wave
equation showing that GWs propagate at the speed of light.

In contrast, the factor 1/a in Eq. (6.4), that was inserted to get rid of the Hubble friction term
proportional to h̃′A in Eq. (6.3), describes how the GW amplitude decreases in the propagation
across cosmological distances, from the source to the observer. In particular, for inspiraling
binaries, this factor combines with other factors coming from the transformation of masses and
frequency from the source frame to the detector frame, to produce a dependence of the GW
amplitude on the luminosity distance [see e.g. Section 4.1.4 of (Maggiore, 2007)],

h̃A
(
η, k⃗
)
∼ 1

DL(z)
. (6.6)

From this discussion, one see that tampering with the coefficient of the k⃗2h̃A term in Eq. (6.3)
is very dangerous, since this would modify the speed of propagation of GWs. This is by now
excluded, at the level of |cgw − c|/c = O(10−15) at z = 0, by the observation of GW170817
/GRB 170817A (Abbott et al., 2017g), and has ruled out a large class of scalar-tensor and
vector-tensor modifications of GR (Baker et al., 2017; Creminelli and Vernizzi, 2017; Ezquiaga
and Zumalacárregui, 2017; Sakstein and Jain, 2017). We next study the effect of modifying the
coefficient of the friction term, 2Hh̃′A. To do so, consider the propagation equation,

h̃′′A + 2H[1− δ(η)]h̃′A + k⃗2h̃A = 0 , (6.7)

where δ(η) is a function that parametrises the deviation from GR, and that we have taken to be
independent of the wavenumber. In this case, to eliminate the friction term, we must introduce
χ̃A
(
η, k⃗
)
from,

h̃A
(
η, k⃗
)
=

1

ã(η)
χ̃A
(
η, k⃗
)
, (6.8)

where,
ã′

ã
= H[1− δ(η)] . (6.9)

Then we obtain,

χ̃′′
A +

(
k⃗2 − ã′′

ã

)
χ̃A = 0 . (6.10)

Once again, inside the horizon, the term ã′′/ã is totally negligible, so GWs propagate at the
speed of light. However, now the amplitude of h̃A is proportional to 1/ã rather than 1/a. As
a result, rather than being just proportional to 1/DL(z), the GW amplitude observed today,
after the propagation from the source to the observer, will have decreased by a factor,

ãem
ãobs

≡ ã(z)

ã(0)
, (6.11)

instead of a factor aem/aobs = a(z)/a(0), where the labels refer to the emission time (at redshift
z) and the observation time at redshift zero, respectively. Therefore,

h̃A ∼ ã(z)

ã(0)

a(0)

a(z)

1

DL(z)
=
ã(z)

a(z)

1

DL(z)
, (6.12)

2. More precisely, for GWs from astrophysical sources with frequencies in the range of ground-based interfer-
ometer, (a′′/a)k⃗−2 corresponds to an effective change of the propagation speed ∆c/c = O(10−41) (with a weak
time dependence: since, in MD, a′′/a ∝ η−2 ∝ 1/a = 1+z, ∆c/c changes by a factor 1+z = O(1) in the propaga-
tion from the source at redshift z to us). Even if this gives rise to an integrated effect over the propagation time,
still this is totally negligible compared to the bound |cgw − c|/c < O(10−15) from GW170817, which of course
also comes from an effect integrated over the propagation time. For wavelengths comparable to the horizon size,
for which the term (a′′/a)k⃗−2 is not so small, one can use a WKB approximation, as in (Nishizawa, 2017).
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where DL(z) ≡ D em
L (z), is the usual notion of luminosity distance appropriate for electromag-

netic signals and, since only the ratios ã(z)/ã(0) and a(z)/a(0) enter, without loss of generality
we can choose the normalisations ã(0) = a(0) = 1. Then, we see that in such a modified gravity
model we must in general distinguish between the usual luminosity distance appropriate for
electromagnetic signal, D em

L (z), which is given by Eq. (6.1), and a GW luminosity distance
D gw
L (z), with,

D gw
L (z) =

a(z)

ã(z)
D em
L (z) . (6.13)

Standard sirens measure D gw
L (z), rather than D em

L (z). Eq. (6.9) can be rewritten as,

(log a/ã)′ = δ(η)H(η) , (6.14)

whose integration gives (Belgacem et al., 2017, 2018b),

D gw
L (z) = D em

L (z) exp

{
−
∫ z

0

dz′

1 + z′
δ(z′)

}
. (6.15)

To sum up, in modified gravity, all terms in Eq. (6.3) can in principle be different from GR. A
modification of the source term affects the phase of the binary waveforms; the recent BH–BH
observations, in particular of GW150914 and GW151226, have set some limit on such mod-
ifications, although for the moment not very stringent (Abbott et al., 2016d). A late time
modification of the k⃗2h̃A term changes the current speed of gravity, and is now basically ex-
cluded. A modification of the 2Hh̃′A term changes the amplitude of the GW signal received
from a source at cosmological distance. This is particularly interesting because it implies that
the luminosity distance measured with standard sirens is in principle different from that mea-
sured with standard candles or other electromagnetic probes such as CMB or BAO. This could
therefore provide a “smoking gun” signature of modified gravity.

In Sec. 4.3.3, we have seen that the modified propagation equation for tensors reads,

h̃′′A + 2H
(
1− 1

2H
∂η log

(
Geff,gw(η)/G

))
h̃′A + k⃗2h̃A = 16πGeff,gw(η) a

2 σ̃A . (6.16)

where,

Geff,gw(η)/G ≡
(
1− m2

3
S̄(η)

)−1

. (6.17)

First, we see that the coupling of gravitational waves to the source is modified by an effective
Newton’s constant Geff,gw(η). In Sec. 4.4.1, we have found that this was the small scale limit
of the effective Newton’s constant computed in the scalar sector, from the Poisson equation
Eq. (4.4.1). As such, the issue drawn into Sec. 4.4.1, about the residual time dependence of the
Newton’s constant in the small scale limit applies here as well, that is, does this dependence
get screened once one considers the system into cluster-scale virialised objects? If this is true,
the production mechanism of GWs will not be altered by the modification of GR provided by
RR, otherwise, this would induce a change in the phase of inspiralling binaries, as this function
differs from G at a few percent level at low redshifts (see the right panel of Fig. 4.5). Such a
question still deserves further attention.
Second, observe that the speed of gravity is unchanged and,

δ(η) =
1

2H
∂η log

(
Geff,gw(η)/G

)
⇔ δ(z) = −(1 + z)H ∂z log

(√
Geff,gw(z)/G

)
, (6.18)
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Figure 6.1 – The function δ(z) in the RR nonlocal model.
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Figure 6.2 – The ratio D gw
L (z)/D em

L (z) in the RR nonlocal model, as a function of redshift (left
panel) and as a function of the scale factor a (solid line), compared to the fitting function (6.20)
with n = 5/2 (dashed) (right panel).

which is shown in the left panel of Fig. 6.1 as a function of redshift. At large redshifts, this func-
tion goes to zero because the modifications to GR only appear close to the recent cosmological
epoch. The corresponding ratio of the gravitational and electromagnetic luminosity distances
is given by (Belgacem et al., 2017),

Dgw
L (z) = Dem

L (z)

√
Geff(z)

Geff(0)
. (6.19)

where we have replaced Geff,gw by Geff , in taking the subhorizon limit, valid for the processes
involved here. It is interesting to observe that this characteritic structure involving Geff , which
parametrises the modification of the growth of structures, is also recovered in a subclass of
Horndeski theories called “no slip gravity” (Linder, 2018). The ratio of the luminosity distance
from GWs to the one from optical sources is shown in Fig. 6.2. The fact that δ(z) goes to zero at
large z implies thatD gw

L (z)/D em
L (z) saturates to a constant value, while [D gw

L /D em
L ](z = 0) = 1,

because all notions of distance in cosmology become equivalent as z → 0. In the right panel of
Fig. 6.2, we show the same ratio as a function of the scale factor a, and we compare it with the
simple fitting function,

D gw
L (a)

D em
L (a)

= Ξ0 + an(1− Ξ0) , (6.20)

with n = 5/2 and Ξ0 = 0.970. Observe that the parametrisation (6.20) is such that, for
small a, i.e. at large redshift, D gw

L (z)/D em
L (z) goes to the constant value Ξ0, while at a = 1,
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D gw
L (z)/D em

L (z) = 1. Note that this simple parametrisation reproduces the exact function quite
well in that case.

Modified propagation equation of the form of Eq. (6.7) have also been previously found in
other modified gravity models. To the best of our knowledge this was first observed in (Deffayet
and Menou, 2007) within the DGP model (Dvali et al., 2000) described in Sec. 2.4. In this
case, the effect is due to the fact that gravity leaks into extra dimensions at scales larger than
the DGP scale, and this affects the 1/a behavior of the amplitude of a gravitational signal.
A more recent discussion of the modification to the GW luminosity distance induced by the
leakage of gravity into extra dimension is given in (Pardo et al., 2018), where this effect is
used to put constraints on the number of extra dimensions or on the associated screening scale.
Modification of the propagation equation has also been found in Einstein-Aether models and
in scalar-tensor theories of the Horndeski class in (Saltas et al., 2014; Lombriser and Taylor,
2016; Amendola et al., 2017b; Arai and Nishizawa, 2017; Linder, 2018). This indicates that a
modified propagation equation for the tensor modes of the form of Eq. (6.7) is quite generic
in alternatives to ΛCDM; see also (Gleyzes et al., 2015b) for a discussion within the effective
field theory approach to dark energy, and (Nishizawa, 2017) for a general formalism for testing
gravity with GW propagation.

Observe also that, when δ(z) > 0 at all redshifts, as in the RR model, (or more gener-
ally, when

∫ z
0 dz′/(1 + z′)δ(z′) > 0), we have Dgw

L (z) < Dem
L (z). Since the GW amplitude is

proportional to 1/Dgw
L (z), this means that a GW source is magnified with respect to the GR

prediction, and can therefore be seen to larger distances.

6.3 Measuring w0, wa, Ξ0 with Standard Sirens

We next discuss the prospects for measuring the dark energy equation of state and modified
GW propagation from experiments like LISA or ET.

6.3.1 Understanding the Role of Degeneracies

Before presenting the results of the MCMC analysis on the accuracy of w0, wa and Ξ0, given
forecasts of standard sirens together with data from other probes, it is useful to understand
in physical terms why the parameter Ξ0 [or, more generally, the function δ(z)], that describes
modified GW propagation, can be more relevant than the dark energy equation of state wde(z),
for studies of dark energy with standard sirens. To this purpose, let us first start from a
simple wCDM model, with a fixed value of w0, and let us ask how a set of measurements
of the luminosity distances with standard sirens could help in discriminating it from ΛCDM.
For wCDM, wde(z) = w0 is constant and the dark energy conservation equation implies [see
Eq. (4.37)],

Ωde = Ωde(1 + z)3(1+w0) , (6.21)

where Ωde is fixed in terms of ΩM by the flatness condition, ΩM +Ωde = 1. Thus,

DL(z;H0,ΩM , w0) =
1 + z

H0

∫ z

0

dz′√
ΩM (1 + z′)3 + (1− ΩM )(1 + z′)3(1+w0)

,

where we have written explicitly the dependence on the cosmological parameters. We first
consider,

∆DL

DL
≡
DL(z;H0,ΩM , w0)−DΛCDM

L (z;H0,ΩM )

DΛCDM
L (z;H0,ΩM )

. (6.22)
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Figure 6.3 – The relative difference ∆DL/DL between wCDM with w = −1.1 and ΛCDM (left
panel) and wCDM with w = −0.9 and ΛCDM (right panel). Green, dot-dashed curve: using
the same values of ΩM ,H0 for the two models. Magenta, dashed curve: using in each model its
own best-fit values of ΩM ,H0.

This is the relative difference between the luminosity distance in wCDM with a given value of
w0, and the luminosity distance in ΛCDM (where w0 = −1), at fixed ΩM , H0. For w0 = −1.1
(w0 = −0.9), this quantity is shown as the green, dot-dashed curve in the left panel (right panel)
of Fig. 6.3.

However, as the nature of the dark energy affects the Hubble parameter through a different
dark energy density (6.21), constraints from model independent distance scales, such as the
acoustic-distance scale ratio at recombination [see Eq. (5.7)], or the BAO/SNIa distance ladders,
will generically shift H0 and ΩM to compensate for the change in w. Therefore, the above
quantity is not the one relevant to observations and one musts not only use the chosen value
of w0 in Eq. (6.22), but also the predictions of wCDM for ΩM and H0, that are obtained by
constraining wCDM given distance indicators provided by CMB+BAO+SNIa data. Moreover,
this must be compared with the prediction of ΛCDM obtained in the same way. Thus the
relevant quantity, when comparing the predictions of wCDM with w0 fixed to the predictions
of ΛCDM is rather,(

∆DL

DL

)
≡
DL(z;H

w0
0 ,Ωw0

M , w0)−DΛCDM
L (z;H0,ΩM )

DΛCDM
L (z;H0,ΩM )

, (6.23)

where we have denoted by Hw0
0 ,Ωw0

M the values obtained from parameter estimation in wCDM
with the given w0, and by H0,ΩM the values obtained in ΛCDM (more precisely, one should use
the relative derived priors in the two models; in this discussion we will use the best-fit values for
making the presentation simpler). We quantify this statement by a series of MCMC constructed
for constraining both ΛCDM and wCDM (with w = −1.1 and with w0 = −0.9) given the same
dataset of cosmological observations. In particular, we use the CMB+BAO+SNIa dataset
described in detail in Sec. 5.1.1. Given these data, Bayesian parameter estimation for ΛCDM
gives the best-fit parameters 3,

H0 = 67.64 km s−1Mpc−1 , ΩM = 0.3087 , (6.24)

In contrast, for wCDM with w0 = −1.1, we get,

H0 = 70.10 km s−1Mpc−1 , ΩM = 0.2908 , (6.25)

3. These correspond to the best-fit values obtained from the distributions given in Sec. 5.1.3, given the
CMB+BAO+SNIa data (see the upper right panel of Table 5.1).
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while, for wCDM with w0 = −0.9, we find,

H0 = 65.66 km s−1Mpc−1 , ΩM = 0.3241 . (6.26)

The magenta dashed curves in Figs. 6.3 show the relative difference in luminosity distance (6.23),
obtained using for each model its own best-fit values of H0 and ΩM . We see two important
effects.

1. At redshifts z >∼ (1–2), the relative difference of luminosity distances becomes much
smaller (in absolute value) than that obtained by keeping ΩM and H0 fixed (and given by
the green dot-dashed curves), and this suppression is of about one order of magnitude.
For instance, for w0 = −1.1, keeping fixed ΩM and H0, the relative difference of lumi-
nosity distances at z = 2 is 1.77%, while, once parameter estimation in the respective
models is taken into account, this becomes −0.16%.

2. As z → 0, the green curves in the two panels of Fig. 6.3 go to zero. This is of course
a consequence of the fact that, for z ≪ 1, (6.1).(6.2) reduces to DL(z) ≃ H−1

0 z, and
to compute the green curves we have used the same value of H0 in the two models. In
contrast, the magenta curves do not go to zero, since for each model we are using its
own bestfit value of H0 given CMB+BAO+SNIa data. Observe that the fact that the
relative difference in Eq. (6.23) does not go to zero at z = 0 is precisely the reason that
allows the LIGO/Virgo measurement of H0 to have potentially interesting cosmological
consequences. Bayesian parameter estimation to the CMB data in different cosmolog-
ical models predict different values of H0, and therefore a local measurement of H0,
whether with standard candles or with standard sirens, can discriminate among different
cosmological models.

If GW propagation is the same as in GR, the feature that one needs to detect with standard
sirens, to distinguish the modified gravity model from ΛCDM, is then given by the magenta
lines in both panel of Fig. 6.3, which is much smaller (in absolute value) than the one that
would be obtained if H0 and ΩM were externally fixed quantities, determined independently of
the cosmological model (green dot-dashed lines).

Let us now assume that, in the modified gravity theory of interest, on top of a modified
dark energy equation of state, there is also a modified GW propagation. Then, for standard
sirens, the relevant quantity is the GW luminosity distance D gw

L (z) given in Eq. (6.15). In
particular, for models (such as the RR model), where the parametrisation (6.20) is valid at
redshifts z >∼ 0.5–1 relevant for LISA and ET, D gw

L (z) basically differs from D em
L (z) by the

factor Ξ0. In contrast, in ΛCDM the luminosity distance for standard sirens is the same as the
standard electromagnetic luminosity distance. Thus, the relevant quantity for discriminating a
modified gravity model from ΛCDM is now,(

∆DL

DL

)gw

≡
Dm,gw
L (z;Hm

0 ,Ω
m
M )−DΛCDM

L (z;H0,ΩM )

DΛCDM
L (z;H0,ΩM )

, (6.27)

where the superscript “m” denotes the quantities relative to the modified gravity model, given
the data. Writing, Dm,gw

L ≃ Ξ0D
m,em
L , we get,(

∆DL

DL

)gw

≃ (Ξ0 − 1)
Dm,em
L (z;Hm

0 ,Ω
m
M )

DΛCDM
L (z;H0,ΩM )

+
Dm,em
L (z;Hm

0 ,Ω
m
M )−DΛCDM

L (z;H0,ΩM )

DΛCDM
L (z;H0,ΩM )

≃ (Ξ0 − 1) +

(
∆DL

DL

)
. (6.28)
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Figure 6.4 – The relative difference ∆DL/DL between the nonlocal RR model and ΛCDM.
Green, dot-dashed curve: using the same values of ΩM ,H0 for the two models. Magenta,
dashed curve: using in each model its own best-fit values of ΩM , H0. Blue solid curve: the
relative difference using, for the RR model, the GW luminosity distance (and the respective
best-fit values of ΩM ,H0 for the two models).

The last term is the relative difference in the electromagnetic luminosity distances introduced
in Eq. (6.23). We have seen in the example of wCDM with w0 = −0.9 or −1.1 that, even
if w0 differ from −1 by 10%, eventually, because of the compensating effect of H0 and ΩM ,
this term in absolute value is only of order (0.1–0.2)%. Thus, if Ξ0 differs from one by more
than this, it will dominate the signal. This is indeed what happens in the RR model, where
wde(z) differs from −1 by about 15%, quite similarly to the wCDM model with w0 = −1.1, and
|Ξ0 − 1| ≃ 3%, as we see from Fig. 6.2. The situation for the relative difference of luminosity
distances in the RR model is illustrated in Fig. 6.4, where the green and magenta curves are
obtained as in Fig. 6.3, while the blue solid curve is the relative difference of luminosity distances
(6.27) where, for the RR model, we use the GW luminosity distance which is different than from
its optical counterpart, unlike in ΛCDM. We see that the features that allows us to distinguish
the RR model from ΛCDM, represented by the blue curve, is much larger in absolute value
than that obtained neglecting modified GW propagation, represented by the dashed magenta
curve. These results illustrates that, in modified gravity theories where GW propagation differs
from GR, the measurement of luminosity distances of standard sirens can be more sensitive to
modified propagation than to the dark energy equation of state. It implies that the prospects
for detecting deviations from ΛCDM, in particular for next generation intereferometers, are
better than previously expected.

6.3.2 Standard Sirens and Modified Gravity with ET

We now wish to determine more quantitatively the prospects for studying dark energy and
modified gravity with future GW experiments, performing parameter estimation forecasts for
standard sirens combined with CMB+BAO+SNIa real (prior) data. For definiteness, we will
focus on ET. At its projected sensitivity, ET could have access to binary neutrons star (BNS)
mergers up to redshifts z ∼ 8, corresponding to 105–106 events per year (Sathyaprakash et al.,
2010). However, only a fraction of the GW events will have an observed associated γ-ray burst.
Estimates of the probability of observing the γ-ray burst are quite uncertain, depending on
the opening angle of the jet (typically estimated between 5◦ and 20◦) and of the efficiency of
the network of existing and future γ-ray telescopes (Regimbau et al., 2015). A typical working
hypothesis is that ET might observe O(103) BNS with electromagnetic counterpart over a



CHAPTER 6. MODIFIED GRAVITATIONAL WAVE PROPAGATION AND STANDARD
SIRENS 162

three-year period (Sathyaprakash et al., 2010; Zhao et al., 2011) 4.
We then proceed as follows. We generate a catalog of BNS detections for ET, with Ns =

103 sources, all taken to have an electromagnetic counterpart. We choose a fiducial model,
that we take to be ΛCDM with H0 = 67.64 and ΩM = 0.3087, and we generate our simu-
lated data assuming that, for a source at redshift zi, the actual luminosity distance will be
DΛCDM
L (zi;H0,ΩM ). The measured value of the luminosity distance is then randomly extracted

from a Gaussian distribution centered on DΛCDM
L (zi;H0,ΩM ) and width σi ≡ ∆DL(zi) obtained

from an estimate of the error on the luminosity distance at ET. For this error, we assume the
expression given in (Zhao et al., 2011),

∆DL(z)

DL(z)
= 0.1449z − 0.0118z2 + 0.0012z3 . (6.29)

To generate our catalog of events, we use the standard expression of the number density of the
observed events between redshift z and z + dz, which is given by f(z)dz, where,

f(z) =
4πN r(z)D2

L(z)

H(z)(1 + z)3
, (6.30)

and r(z) is the coalescence rate at redshift z [see e.g. (Zhao et al., 2011)] 5. The normalisation
constant N is determined by requiring that the total number of sources Ns be given by,

Ns =

∫ zmax

zmin

dz f(z) . (6.31)

We take zmax = 2, as in (Zhao et al., 2011), to have a typical signal-to-noise ratio above 8, and
we also use a lower cutoff zmin = 0.03, to exclude sources for which a modelisation of the local
Hubble flow is necessary, before including them in the analysis. For r(z), we follow (Cutler and
Holz, 2009; Zhao et al., 2011; Cai and Yang, 2017) and we use the form r(z) = (1 + 2z), for
z ≤ 1, r(z) = (15 − 3z)/4 for 1 < z < 5, and r(z) = 0 for z ≥ 5, that is based on a fit to
the observationally determined star formation history discussed in (Schneider et al., 2001). A
sample of the luminosity distance of 1000 sources generated according to these distributions is
shown in the left panel of Fig. 6.5, while in the right panel, we show their number distribution,
as a function of redshift.

We then perform parameter estimation in using MCMC methods for constraining H0,ΩM ,
and different combinations of w0, wa and Ξ0, as specified below, assuming for the GW luminosity
distance the form Eq. (6.20) with n = 5/2, 6 and we study to what forecast accuracy we are
able to recover the values w0 = −1, wa = 0 and Ξ0 = 1 of our fiducial ΛCDM model.

4. Information of the redshift could also be obtained statistically, by exploiting the narrowness of the neutron
star mass function [see (Taylor and Gair, 2012) and references therein] or by using tidal effects in neutron
stars (Messenger and Read, 2012).

5. Equation (6.30) is derived by observing that the comoving volume between comoving distances Dc(z) and
Dc(z) + d(Dc) is 4πD2

c(z)d(Dc). One then uses d(Dc) = [d(Dc)/dz]dz = dz/H(z), and Dc(z) = DL(z)/(1 + z).
Thus the observed event distribution is proportional to 4π(dn/dtobs)D

2
L(z)/[H(z)(1+ z)2], where dn/dtobs is the

number of events per unit time in the observer frame. Time in the observer frame, tobs, is related to time in the
source frame, ts, by dtobs = (1+ z)dts, which provides the extra factor of (1 + z) at the denominator. Thus r(z)
is the number of event per unit time, with respect to the unit of time relevant at redshift z.

6. We expect that the precise choice of the value of n will be of limited relevance. Indeed, the parametrisation
(6.20) is meaningful for a class of theories where the modifications to GR start to become important only in
the recent epoch, so that δ(z) vanishes at large z. Then, D gw

L (z)/D em
L (z) goes to a constant at large z, as in

Fig. 6.2. Since most of the sources for ET or LISA are at z >∼ 0.5, in a first approximation one could even replace
D gw
L (z)/D em

L (z) just by its asymptotic constant value Ξ0. The value of n only determines the precise way in
which D gw

L (z)/D em
L (z) approaches unity as z → 0.
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Figure 6.5 – Left panel: a sample of 1000 sources distributed in redshift according to eq. (6.30),
and scattered in DL(z) according to the ET error estimate (6.29). The black and red curves
show the theoretical prediction for DL(z) and the 1σ ET error, respectively. The cosmological
model assumed is ΛCDM with ΩM = 0.3087 and H0 = 67.64. Right panel: the number
distribution of the sources as a function of the redshift.

As already discussed in (Zhao et al., 2011; Cai and Yang, 2017), because of the degeneracies
with H0 and ΩM , limited information can be obtained on w0 and wa by using only standard
sirens. Moreover, as can be seen for instance from the parameter dependence of Dgw

L (z) in
Eq. (6.28), this also extends to Ξ0. Indeed, by using 103 standard sirens and no other datasets,
using (w0,Ξ0) as extra parameters with respect to ΛCDM, and computing the corresponding
one-dimensional marginalised likelihoods for w0 or for Ξ0, we obtain that w0 and Ξ0 can be
measured with an error ∆w0 = 0.41 and ∆Ξ0 = 0.17, respectively, given ET forecast sensitivity.
As expected, this level of accuracy is not very interesting, particularly for w0, and we need other
cosmological datasets to break the degeneracies, so as to tighten these constraints. In particular,
we use the same CMB, BAO and SNIa datasets that we used here-above and in Sec. 5. We
examine separately the cases where we include only w0, the pair (w0, wa), or the two parameters
(Ξ0, w0), as extensions of the standard ΛCDM model.

(1) We first consider the wCDM model, where w0 is the only extra parameter. The left
panel of Fig. 6.6 shows the two-dimensional marginalised likelihood in (w0,ΩM ) plane, with
the separate contributions from standard sirens, Planck 2015 CMB data, BAO and JLA SNIa.
From the corresponding one-dimensional marginalised likelihood, we obtain ∆w0 = 0.049 given
CMB+BAO+SNIa, and

∆w0 = 0.032 , (6.32)

when joining also 103 standard sirens.

(2) We next consider the (w0, wa) CPL parametrisation [see Eq. (4.41)]. The right panel of
Fig. 6.6, shows the two-dimensional marginalised likelihood in (w0, wa) plane, again with the
separate contributions from standard sirens, CMB, BAO and SNIa. From the corresponding
one-dimensional marginalised likelihoods, we find that w0 and wa can be reconstructed with the
accuracy,

∆w0 = 0.099 , , ∆wa = 0.313 . (6.33)

Following (Huterer and Turner, 2001; Hu and Jain, 2004; Albrecht et al., 2006; Zhao et al.,
2011), it is convenient to express the results in terms of the constraint on w(z) at the best pivot
redshift zp, defined as the value of redshift for which w(z) is best constrained. For the (w0, wa)
parametrisation, the pivot scale factor ap is obtained by minimising ⟨(δw0+(1−a)δwa)2⟩, where
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Figure 6.6 – Two-dimensional marginalised likelihood in the (ΩM , w0) plane in wCDM (left
panel) and in the (w0, wa) plane in w0waCDM (right panel), with the contribution from
CMB+BAO+SNIa (red), the contribution from 103 standard sirens at ET (grey) and the over-
all combined contours (blue). Dark and light shaded regions represent 1 and 2σ uncertainties
respectively.

(∆w0)
2 = ⟨(δw0)

2⟩ and (∆wa)
2 = ⟨(δwa)2⟩. This gives,

1− ap = −⟨δw0δwa⟩
(∆wa)2

, (6.34)

and is in the cosmological past if the correlation ⟨δw0δwa⟩ is negative. One can then show
(Albrecht et al., 2006), that at the Fisher matrix level, i.e. assuming that the likelihood is
Gaussian in all parameters, the error on wp ≡ w(zp) is the same as the error on w0 in the
wCDM model, in which the dark energy equation of state is taken to be constant in time. For
the pivot redshift, given by 1 + zp = 1/ap, Eq. (6.34) gives,

zp = −
(
1 +

∆wa
ρ∆w0

)−1

, (6.35)

where,

ρ ≡ ⟨δw0δwa⟩
∆w0∆wa

, (6.36)

is the correlation coefficient of w0 and wa. The corresponding error on wp is then given by,

∆wp = ∆w0

√
1− ρ2 . (6.37)

Using the values for ∆w0 and ∆wa found in Eq. (6.33), the corresponding value ρ = −0.909
from parameter estimation, and inserting them into Eqs. (6.35),(6.37), one obtains,

zp = 0.402 , ∆wp = 0.041 . (6.38)

Observe that this value is larger but consistent with the one given in eq. (6.32). These results
can be directly compared with that of (Zhao et al., 2011), as we have followed their strategy
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for generating the catalogue of sources, through Eqs. (6.29), (6.30), and we are using the same
number of standard sirens, Ns = 103. With respect to (Zhao et al., 2011), we are performing
a Bayesian analysis, rather than a Fisher matrix analysis, and we are using the real Planck
2015 data rather than the forecasts [only available at the time when (Zhao et al., 2011) was
written], as well as more recent data for SNIa and BAO, so our inference results for the (w0, wa)
parametrisation can be considered as an updated of the results of (Zhao et al., 2011), that found
∆w0 = 0.045, ∆wa = 0.174 at a pivot redshift zp = 0.313.
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Figure 6.7 – The two-dimensional marginalised likelihood in the (Ξ0, w0) plane (left panel) and
in the (Ξ0,H0) plane (right panel), with the combined contribution from CMB+BAO+SNIa
(red), the contribution from 103 standard sirens at ET (grey), and the total combined result
(blue). Dark and light shaded regions represent 1 and 2σ uncertainties respectively.

(3) We finally introduce also the parameter Ξ0 in our extension of ΛCDM, writing the GW
luminosity distance as in Eq. (6.20) (with n = 5/2), and taking (Ξ0, w0) as the parameters that
describe the dark energy sector of the theory. The left panel of Fig. 6.7 shows the marginalised
two-dimensional likelihood in the Ξ0–w0 plane, displaying the limit from CMB+BAO+SNIa
(which is insensitive to Ξ0), the separate contribution from standard sirens, and the combined
limit from CMB+BAO+SNIa+standard sirens. The right panel of Fig. 6.7 and Fig. 6.8 show
the analogous marginalised two-dimensional likelihoods in the Ξ0–H0 and in the Ξ0–ΩM plane,
respectively. From the corresponding marginalised one-dimensional likelihoods we find,

∆Ξ0 = 0.008 , ∆w0 = 0.032 . (6.39)

We see that Ξ0 can be measured to a precision four times better than w0, consistently with the
discussion in Sec. 6.3.1. For the relative error on H0 we find ∆H0/H0 = 1.8 × 10−2 given the
combined CMB+BAO+SNIa data, whereas joining also 103 standard sirens at ET it reduces
to,

∆H0

H0
= 1.0× 10−2 . (6.40)

Note that by using only standard sirens, we get ∆H0/H0 = 2.8×10−2, which is of course larger
but still quite interesting.
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Figure 6.8 – The two-dimensional marginalised likelihood in the (Ξ0,ΩM ) plane, with the com-
bined contribution from CMB + BAO + SNIa (red), the contribution from 103 standard sirens
(grey), and the total combined result (blue).

6.4 Testing the RR model with ET

In the previous section, we considered generic parametrisation made of Ξ0, w0, wa, being
phenomenological parametrisations that are expected to describe a large class of models, al-
though in a less predictive manner. In that case, a natural way to proceed is to fix the number
of standard sirens to a plausible value, and compute the corresponding accuracy that can be
obtained on the parameters, as in Eq. (6.39). In this section, we consider a specific model,
namely the RR nonlocal model presented in Sec. 3.2, and we rather ask what is the minimum
number of standard sirens required to distinguish it from ΛCDM.

6.4.1 Testing the “Minimal” RR model

When, rather than a phenomenological parametrisation, we consider a concrete model, such
as the RR model, that gives a specific prediction for wde(z) and δ(z), the interesting question is
what is the minimum number of standard sirens required to distinguish it from ΛCDM. To this
purpose, we start by taking ΛCDM given CMB+BAO+SNIa data as fiducial cosmology, where
H0 = 67.64 and ΩM = 0.3087 [see Eq. (6.24)]. We then generate 104 samples each containing
103 BNS, distributed in redshift according to Eq. (6.30), and scattered in DL(z) according to
the estimate (6.29) of the ET error, with sources from zmin = 0.03 up to zmax = 2, where the
upper limit is chosen so as to obtain an average signal-to-noise ratio exceeding 8. Given a set of
simulated data Di ≡ DL(zi), with their error σi ≡ ∆DL(zi), we can write the χ2 goodness-of-fit
for ΛCDM,

χ2
ΛCDM =

Ns∑
i=1

[DΛCDM
L (zi;H0,ΩM )−Di]

2

σ2i
, (6.41)

Since the data Di have been extracted from a distribution that assumes that ΛCDM is the true
model, by construction for large Ns the reduced chi-square χ2

ΛCDM/Ns will be of order one.
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Figure 6.9 – Average and standard deviation of ∆χ2 = χ2
RR − χ2

ΛCDM. The horizontal line
corresponds to the threshold value ∆χ2 = 6.

Similarly, we can write down the χ2 for the prediction of the RR model,

χ2
RR =

Ns∑
i=1

[Dgw,RR
L (zi;H

RR
0 ,ΩRR

M )−Di]
2

σ2i
, (6.42)

where Dgw,RR
L is the GW luminosity distance of the RR model and HRR

0 and ΩRR
M , are the best-

fit values for the RR model obtained from CMB+BAO+SNIa, ΩM = 0.2993 and H0 = 69.44 7.
Since the data have been generated according to ΛCDM, for sufficiently large Ns the difference,

∆χ2 = χ2
RR − χ2

ΛCDM , (6.43)

will become sufficiently large to rule out the RR model. We want to compute the minimum
value of Ns for which ∆χ2 goes above a threshold for which one can attest that ΛCDM fits the
data significantly better than RR. We take this threshold value to be equal to 6. One can of
course also reverse the process, generating the data according to the GW luminosity distance
of the RR model, and ask what is the minimum value of Ns that is required to rule out ΛCDM,
to the same significance. We have found that the procedure is completely symmetric, within
our statistical uncertainty, and for definiteness, we show the results obtained by using ΛCDM
as the fiducial model.

The result is shown in Fig. 6.9. First of all, one can observe that ∆χ2 has a significant
variability among the 104 realisations of the data that we have generated. We therefore show
in Fig. 6.9 the average and the standard deviation of ∆χ2 over these realisations, along with
the reference line ∆χ2 = 6. One can see that, on average, we need about 200 standard sirens
to tell the two models apart. However, because of the large variability of ∆χ2, to exclude that
the result is due to statistical fluctuations, one would rather need about 400 sources in the
pessimistic case. On the other hand, from the variability of ∆χ2 over the different realisations,
it also follows that in the more optimistic case, O(50) standard sirens could already give a highly
significant value of ∆χ2.

In order to understand which sources contribute most to this result, we have repeated
the analysis limiting ourselves to sources with redshift 0.03 < z < 0.7, and to sources with
0.7 < z < 2. The results for ∆χ2 obtained with sources with 0.03 < z < 0.7 (0.7 < z < 2) is
shown in the left (right) panel of Fig. 6.10. One see that, on average, it is enough to a have

7. Of course, more accurately, one should compute a likelihood with the corresponding priors, both for ΛCDM
and for the RR model. However, this would not affect significantly the conclusions.
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Figure 6.10 – As in Fig. 6.9, restricting to sources with redshift 0.03 < z < 0.7 (left panel) and
0.7 < z < 2 (right panel).
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Figure 6.11 – As in Fig. 6.9, using the electromagnetic luminosity distance of the RR model.

about 40 standard sirens at 0.03 < z < 0.7, or about 350 at 0.7 < z < 2, to tell the two
models apart. Depending on the specific realisation, in the most optimistic case it is sufficient
to have about 15 standard sirens at 0.03 < z < 0.7, or about 150 at 0.7 < z < 2, while in the
most pessimistic case we need about 100 standard sirens at 0.03 < z < 0.7, or about 800 at
0.7 < z < 2. These results fully confirm the conclusions of the simpler analysis performed in
(Belgacem et al., 2017).

Furthermore, it is interesting to quantify how this result is affected by contributions from
the dark energy equation of state of the RR model and from the modified GW propagation. To
understand this point, we can artificially switch off the effect of modified GW propagation by
using Dem,RR

L instead of Dgw,RR
L in eq. (6.42). The corresponding result is shown in Fig. 6.11.

We see that in this case, the required number of sources is significantly higher. Indeed, the
average ∆χ2 goes above the threshold only with about 103 sources, while we found in Fig. 6.9
that, including also modified GW propagation, 200 sources are enough. Note also that, without
the effect of modified GW propagation, the 1σ lower bound does not even have a positive ∆χ2

with 103 sources. This clearly shows the importance of the effect of modified GW propagation.

6.4.2 The Model for Large Values of u0

In this subsection, we repeat the analysis for large values of the parameter u0. In the left
panel of Fig. 6.12, we show wde(z) for u0 = 250. We see that it is now much closer to the
ΛCDM value −1. Similarly, the right panel of the same figure shows the ratio D gw

L (a)/D em
L (a),
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Figure 6.12 – Left panel: the dark energy equation of state in the RR nonlocal model with
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Figure 6.13 – As in Fig. 6.9, for u0 = 250.

as well as the fitting function (6.20) with Ξ0 = 0.9978 and n = 5/2 (a slightly better fit could be
obtained with n ≃ 2.3). Determine the minimum number of standard sirens required to tell the
RR model with u0 = 250 apart from ΛCDM, Fig. 6.13 shows the result. In that case, on average,
almost 3×103 sources are needed (raising to about 6×103 in the most pessimistic case). This is
a large number of sources, but still within the number of standard sirens with electromagnetic
counterpart that could be observed with ET, depending on the precise sensitivity (as well as on
the capabilities of the γ-ray network). Furthermore, this study has been limited to standard
sirens with an electromagnetic counterpart, but further information can be obtained using
statistical methods, even in the absence of counterparts, see footnote 4.

6.5 Primordial GWs and Modified Transfer Function

A further consequence of modified GW propagation is that the GW transfer function that
connects a primordial GW spectrum to the one observed at the present epoch is modified.
Recall that the transfer function is defined by,

h̃A(η0, k) = TGW(k)h̃A(ηin, k) , (6.44)

where η0 is the present value of conformal time and ηin the initial value at which a primordial
GW spectrum is generated. Basically, in GR the transfer function is determined by the fact
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that, as long as a tensor mode is outside the horizon, it stays constant, while when it enters
inside the horizon it scales as 1/a(η) times oscillating factors [see e.g. Section 19.5 of (Maggiore,
2018)]. Therefore,

h̃2(η0, k) ≃
1

2
h̃2(ηin, k)

(
a∗(k)

a0

)2

, (6.45)

where a∗(k) is the value of the scale factor when the mode with wavenumber k re-enters the
horizon, a0 is the present value of the scale factor, and the factor of 1/2 comes from the average
over the oscillating factors. A more accurate expression can be obtained following numerically
the evolution across the super-horizon and sub-horizon regimes.

If the GW propagation is modified as in Eq. (6.8), inside the horizon the GW amplitude
scales as 1/ã rather than 1/a. As a result, the transfer function in modified gravity is related
to the GR transfer function by,

Tmodgrav(k) =
ã∗(k)

ã0

a0
a∗(k)

TGR(k) =
ã∗(k)

a∗(k)
TGR(k) , (6.46)

where, as in Eq. (6.12), we can set ã(0) = a(0) = 1, without loss of generality. Similarly to
Eq. (6.15), we can rewrite this as,

Tmodgrav(k) = TGR(k) exp

(∫ z∗(k)

0

dz′

1 + z′
δ(z′)

)
. (6.47)

In a model where δ(z) goes to zero at large redshifts, as the RR model, the integral saturates
to its asymptotic value already at small values of z, as shown in Fig. 6.2, so it is equal to its
asymptotic value 1/Ξ0, and is independent of k,

Tmodgrav(k) = TGR(k) exp

(∫ ∞

0

dz′

1 + z′
δ(z′)

)
,

= Ξ−1
0 TGR(k) . (6.48)

In the RR model, the factor Ξ−1
0 is larger than one and therefore enhances all GW spectra

compared to the GR predictions. In terms of the energy density fraction Ωgw, which is quadratic
in the GW amplitude, we have,

Ωmodgrav
gw = Ξ−2

0 Ωgw , (6.49)

and, in the RR model, Ξ−2
0 ≃ 1.06. Thus, for instance, the GW stochastic background generated

by single-field slow roll inflation, in GR, is given by [see e.g. eq. (21.355) of (Maggiore, 2018)],

Ωgw(f) =
π2

3H2
0

f2|TGW(f)|2 r(k∗)AR(k∗)

(
f

f∗

)nT
, (6.50)

where k∗ = 2πf∗ is the pivot scale, r is the tensor-to-scalar ratio and AR is the amplitude of the
scalar perturbations. In modified gravity, this could change both because of modification of the
production mechanism and because of modified GW propagation. In the RR model the effect of
the nonlocal term at the inflationary scale is negligible (Maggiore, 2017; Belgacem et al., 2018a)
and δ(z) = 0 with great accuracy at the inflationary scale, so there is no modification in the
generation of primordial GWs. However, the subsequent propagation is affected, and Eq. (6.51)
becomes,

Ωgw(f) =
π2

3H2
0

f2|TGW(f)|2 Ξ−2
0 r(k∗)AR(k∗)

(
f

f∗

)nT
. (6.51)
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In other words, a measurement of the primordial inflationary background will not constrain
directly the tensor-to-scalar ratio r, but rather the combination Ξ−2

0 r.
A similar correction enters in the ISW effect. The tensor contribution to the temperature

anisotropies in the direction n̂ is given by,

δT

T
(η0, n̂) = −1

2
ninj

∫ η0

ηdec

dη

(
∂hTT

ij

(
η, x⃗
)

∂η

)∣∣∣
x⃗=(η0−η)n̂

, (6.52)

where hTT
ij (η, x⃗) is the transverse-traceless metric perturbation at conformal time η and posi-

tion x⃗, and ηdec is the conformal time at decoupling. If hTT
ij

(
η, x⃗
)
is computed by evolving a

primordial GW background up to conformal time η, in modified gravity its value at conformal
time η will differ from the value in GR by a factor,

α(η) ≡ exp

(∫ z∗(k)

z(η)

dz′

1 + z′
δ(z′)

)
≃ exp

(∫ ∞

z(η)

dz′

1 + z′
δ(z′)

)
, (6.53)

so that Eq. (6.52) can be written as,

δT

T
(η0, n̂) = −1

2
ninj

∫ η0

ηdec

dη

(
∂[α(η)hTT,gr

ij (η,x)]

∂η

)∣∣∣
x⃗=(η0−η)n̂

,

where hTT,gr
ij (η, x⃗) is the value computed in GR, by evolving to conformal time η a given pri-

mordial perturbation.

6.6 Summary

In this chapter, we have reviewed the recent work of (Belgacem et al., 2018c), where standard
sirens and GWs propagation in modified gravity were studied. In particular, we have seen in
Sec. 6.2, that beside a non-trivial dark energy equation of state wde, modified gravity models also
typically modify the Hubble friction term of the propagation equations of GWs, which implies
that the notion of luminosity distance for GWs is modified compared to the one provided by
electromagnetic sources in those theories. This fact has been illustrated with an explicit example
provided by the RR nonlocal model. In such a case, the ratio of the GW to the electromagnetic
luminosity distance is well fitted by the parametrisation of Eq. (6.20), involving the pair (Ξ0, n).

In Sec. 6.3, we have then discussed to which extend the dark energy equation of state
parametrised by (w0, wa), and the modified propagation of the GWs parametrised by Ξ0, could
be measured by next generation GW experiments such as ET. In a first approach, we have
considered two artificial wCDM models with w = −0.9 and w = −1.1, to characterise the
amplitude of the deviation to ΛCDM that one should aim to detect for being able to distinguish
the models. We have seen that, at the redshifts of interest for e.g. LISA or ET, this deviation
into the luminosity distance is at sub-percent level, so it is quite small and therefore hard to
detect. This is principally due to the fact that one should first fix the parameters within each
models to their bestfit values to existing distance rulers, such as CMB+BAO+SNIa, so as to
get realistic predictions. However, in considering the RR model as a prototypical example, we
have seen that the feature induced in the GW-to-electromagnetic luminosity distance ratio by
the modified propagation of the GWs was much more significant, at a level of several percents,
which illustrates the fact that modified gravity models, and ΛCDM, can be more efficiently
tested in considering such an effect.
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In Sec. 6.3.2, we have analysed this fact more quantitatively by considering forecasts on
various combinations of the parameters (w0, wa,Ξ0), given the projected sensitivity of ET on
measurements of neutron star binaries. Our previous expectations were confirmed, since we have
found that the constraints on Ξ0 were better than the ones on w0, by one part in four. This
means that the constraints on modified gravity theories prove to be stronger as one considers a
modification of the propagation of GWs, rather than a modification to the background FLRW
solution by a non-trivial equation of state.

In Sec. 6.4, we have then considered ET forecast constraints to get a prediction on the
number of sources needed to be detected for distinguishing the RR model from ΛCDM. We
have seen that, if ET detects 200 sources in, say, the realistic case, or 400 in the pessimistic
case, one can reach a BIC ∆χ2 above a threshold of 6, and distinguish the RR nonlocal model
from ΛCDM. This analysis of course includes the modifying propagation of the GWs in the RR
model into the constraints, whereas only focus on the effect induced by a different dark energy
equation of state, the realistic case indicate that ET should detect about 103 sources to tell the
difference, where in the pessimistic case this number is orders of magnitude larger.

Finally, in Sec. 6.5, we have seen how a modification to the friction term in the propagation
equation of the GWs also affect the propagation of the primordial GWs spectrum to present
time. We have seen that, using the parametrisation Ξ0 presented previously, the GW density
fraction generated by single field slow-roll inflation is modified by a factor of Ξ−2

0 , and in this
sense, observations of the primordial inflationary background will no longer measure the tensor-
to-scalar ratio r alone, but the combination Ξ−2

0 r. Similarly, the ISW effect on, e.g. the CMB
temperature anisotropies, induced by GWs whose propagation equation is modified is affected
as well.



CHAPTER 6. MODIFIED GRAVITATIONAL WAVE PROPAGATION AND STANDARD
SIRENS 173



Chapter 7

Conclusions

As discussed in Chapter 1, the synergy between theoretical and observational efforts led
cosmologists to shape the current standard ΛCDM cosmological model. Given its minimal ver-
sion defined on a continuous six-dimensional cosmological parameter space, information from
current observations allow one to determine most of them at percent-level precision. The diver-
sity of high resolution complementary measurements developed through the years makes this
determination accurate and robust. A stunning consistency is found in the ΛCDM model given
different high-accuracy datasets, that suggests to consider its predictions as physically sensible.
However, both theoretical and observational objections still remain.

On the one hand, eighty five percent of the probed total matter into the present Universe
is dark and its nature, viz. its microscopic composition or a more exotic mechanism able to
mimic the dark matter, still remains unknown. Moreover, out of the present total cosmic energy
density, data infer that seventy percent of it is made of a dark energy component responsible
for the late time accelerated expansion. In the standard cosmological model, the dark energy
is described by the simplest solution deriving from general relativistic first principles, a dimen-
sionful number, the cosmological constant Λ. The origin of Λ goes back to Einstein’s epoch
and since then its history has been tormented. The observation of the light curves of distant
SNIa revealed the late time accelerated expansion of the Universe on firm statistical grounds,
a fact confirming earlier indications obtained with other cosmological probes, and led to the
introduction of a non-vanishing cosmological constant Λ into the standard cosmological model,
ΛCDM. The consistency of a cosmological constant with increasingly precise complementary
observations has been established more firmly through the years, in particular by cosmological
observations of the CMB and large-scale structures. However, a non-vanishing cosmological
constant raises fundamental theoretical questions such as its origin, naturalness and late time
domination.

On the other hand, the standard ΛCDM model still exhibits potentially significant obser-
vational tensions. The most remarkable one is provided by the difference in the values of H0

inferred from CMB observations and local Hubble flow measurements. A handful of local de-
terminations of H0 are larger than the ones inferred from most accurate CMB measurements
by several standard deviations. This tension is currently under debate and, if it happens to
be shown that all the systematics are under control, could be a hint for new physics. Other
discrepancies are also present, such as between predictions of the present amplitude of mass
fluctuation given primary CMB anisotropies and SZ clusters counts measurements, and also
between CMB anisotropies and weak lensing surveys. The conclusions are the same as for the
case of H0.

174
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As the cosmological constant only affects the behavior of GR at cosmological scales, the
existence of infrared relevant effects intrinsic to the theory, such as quantum gravitational
processes under the form of renormalisation group corrections, as well as classical kinematical
effects such as the backreaction of inhomogeneities on the cosmic background, can influence the
value of Λ in a non-trivial way, and therefore provide a better understanding of the nature of
the dark energy.

In this thesis, we focused on a particular class of modified gravity theories that prove to be
potentially useful in that context. The modifications to gravity we consider are realised through
the presence of nonlocal terms, typically modifying the theory of GR in its infrared regime,
while solar system scales are left unchanged. As presented in Chapter 2, such nonlocalities
are typically generated into the gravitational quantum effective action, as for instance through
radiative corrections induced by the presence of light or massless fields, but also by the conformal
anomaly as well as quantum fluctuations of the gravitational field itself, as suggested from
recent lattice quantum gravity computations. Moreover, nonlocal interactions can also arise
from extra-dimensions, as for instance in the DGP braneworld, and generate the degravitation
mechanism.

In chapter 3, the application of the degravitation idea to the theory of massive gravity
linearised over flat space led to the bottom-up construction of a phenomenological nonlocal
gravity model, the so-called RR model. This model is thought to emerge from a quantum
effective processes and is defined by the quantum effective action,

Γ =
1

16πG

∫
d4x

√
−g

[
R− 1

6
m2R

1

□2
R

]
+ SM [gµν , ψ] , (7.1)

whose linearisation over flat space is identical to the one of the RT model, whose construction
is described in Sec. (3.1). In both models, m is a mass scale whose origin still needs to be
determined, and whose value is fixed by observations. By analysing the kinematical structure
of these models, we have seen that their flat space propagators include the one of a massless
graviton, beside a massless scalar and a massive scalar pole having the opposite sign in front of
its kinetic term. The nonlocal structure of the theory implies that the two scalar poles are not
associated to degrees of freedom of the theory. Indeed, they correspond to two auxiliary fields
whose initial data are vanishing or constrained by those of the metric. Moreover, phenomeno-
logical considerations imply that the mass of the scalar needs to be of the order of the inverse
age of the Universe, i.e. ∼ H−1

0 . The classical instability associated to such an auxiliary field
taking place at scales larger than its “Compton” wavelength, it is not the flat solution that
makes sense anymore, but the cosmological FLRW one. We have seen that linear perturbations
on that background are stable in the case of the RR model, because of the domination of the
Hubble friction induced by a violent background expansion, ending into a Big Rip at large cos-
mic time. In fact, both theories describe a phantom effective dark energy component leading
to a viable accelerated phase of expansion in the late Universe.

In chapter 4, we analysed the phenomenological consequences of these models within the
cosmological context. We have seen that, for fixed cosmological parameters, the phantom nature
of the effective dark energies described by both models induces a lower Hubble expansion at
late time as compared to the ones described by ΛCDM, modifying therefore the notion of
cosmological distances. Linear cosmological perturbations were shown to be stable until present,
and the lower expansion rate reduces the Hubble friction to the growth of structures at late
time, which therefore enhances both the clustering and the lensing power. Both models also
describe a “fifth force” associated to the auxiliary degrees of freedom, which is characterised
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by an effective Newton constant in the infrared, also responsible for the enhancement of the
growth although to a milder level. We used different indicators to quantify their deviations with
respect to the linear perturbations described by ΛCDM, and found that they were all below ten
percent. We have then shown that the perturbations associated to both effective dark energies
were small with respect to those of dust matter, and therefore that the dark energies described
by both models are quite smooth.

Such facts allowed us to perform thorough observational constraints by implementing the
models in a modified version of the Boltzmann code CLASS. In chapter 5, we put observational
constraints on the nonlocal gravity models. We performed cosmological parameter estimation
and apply Bayesian model selection using the MCMC code Montepython to compare the non-
local models with standard ΛCDM. Overall, we have seen that both models are statistically
equivalent to ΛCDM given CMB, SNIa, BAO and growth rate data, and that they generically
prefer a higher values of the Hubble constant H0, in better agreement with local measurements.
Moreover, the RR model was shown to predict a higher value for the absolute mass of three
degenerated neutrino species. We emphasize that these are highly non-trivial results given the
high degree of constraints provided by the complementary cosmological data we considered.

In more details, we have seen that, given the standard (base) cosmological parametrisation,
the modified angular diameter distances described by the nonlocal cosmologies tend to infer
a higher value of H0, given Planck 2015 CMB data, so as to compensate for the lower dark
energy density fraction induced by the phantom nature of the effective dark energies described
by both nonlocal models. Given these data, the three cosmological models have been shown
to be statistically equivalent on Bayesian statistical grounds, through the use of the Savage-
Dickey density ratio method for nested models. When joining JLA SNIa data together with a
distance ladder built up from BAO observations at various redshifts, the performances of the
RT models still remain comparable to those of ΛCDM. However, the performances of the RR
model degrade, displaying a “moderate-to-strong” evidence with odds 22:1 in favor of ΛCDM,
because of a dominant CMB-SNIa tension appearing in theH0–ΩM plane. We have then applied
constraints on the models from RSD data, showing that their preference for a higher growth
rate handicapped them with respect to ΛCDM. Nevertheless, the preference of the nonlocal
models for a higher value of H0 given CMB data makes them more consistent with values
inferred from local measurements, and brings the nonlocal modes on the same level as ΛCDM
for explaining the data, when a higher prior on H0 is considered. We have then shown that the
aforementioned tension exhibited by the RR model can be resolved by considering an extension
of the initial baseline, allowing the absolute mass of three degenerated massive neutrino species
to vary into the global fit. We have demonstrated that, within this extension that is perfectly
allowed by current experimental bounds, the RR models explains the data at the same level
than ΛCDM, with a preference for a higher absolute neutrino mass, non-vanishing at 2σ level.
Indeed, in this extended baseline, the Bayes factor reduces to odds of 1.8:1 in favor of ΛCDM,
rendering the models indistinguishable given CMB+SNIa+BAO data. This fact is partially
due to a better goodness-of-fit of the nonlocal model, but also to Occam’s razor effect that
intrinsically penalises the ΛCDM models for its preference for (too) small absolute neutrino
masses, and leaves therefore some room for modified gravity models to compete with it. We
have also shown that a higher neutrino mass for the nonlocal model decreases the growth of
structures it describes at late time, therefore making the model more consistent with RSD data.
Overall, both models were shown to provide a good fit to the data, are statistically equivalent
to the standard ΛCDM (and the ν-extension of it) and prefer a higher values of H0 given CMB
data, in better agreement with the value obtained from local measurements. Nevertheless, in
a complementary study, the RT model has been shown to be plagued by instabilities at linear
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perturbation level in a primordial inflationary phase, so that it cannot be responsible for the
primordial power spectrum seeding the presently observed structures. This selects the RR
model as our theoretically preferred model.

In chapter 6, inspired by the fact that the RR model describes a modified propagation
for the GWs compared to ΛCDM, we have considered the potential of next generation GWs
interferometers to constrain modified gravity models. In particular, the measurement of the
luminosity distance from binary inspirals, referred to as standard sirens, provides a distance-
redshift relation complementary to optical surveys. This fact allowed us to put constraints on
the standard cosmological parameters and on the nature of the dark energy. The distance-
redshift relation from standard sirens equals the one from standard candles in ΛCDM, but
can be different for modified gravity theories affecting the propagation of linear tensor modes,
defining a luminosity distance for GW into the model. Taking the RR nonlocal model as a
prototypical example, we have shown that the ratio of the GW to the optical luminosity distance
is well parametrised by the pair (Ξ0, n), where Ξ0 is the value at which the ratio saturates at
high redshifts, while n parametrises the power of the scale factor at which it increases at low
redshifts. We have shown that, compared to the constraints that standard sirens are expected to
put on the dark energy equation of state today w0, the ones on Ξ0 were more powerful. Indeed,
we found that Ξ0 can be measured with an accuracy better than w0 by a factor of four, given
forecast data from the Einstein Telescope combined with recent CMB+BAO+SNIa data. This
result shows that measurements of the deviation between optical and GW luminosity distances
provide better constraints on modified gravity theories compared to those probing the equation
of state. We have seen that this statement is well illustrated in the case of the RR model,
which only needs the detection of ∼400 sources to be discriminated from ΛCDM, compared to
∼1000 when its modified tensor propagation is artificially put to zero, given the same data as
mentioned hereabove. This fact makes the prospects of next generation GW experiments better
than initially expected for being able to put tight constraints on the necessity to modify GR.
Finally, we have also seen that such modified propagation for tensors also affects the transfer
function of primordial GW to present time and the ISW effect to CMB temperature anisotropies.

In conclusion, we have studied a modified gravity model which is well motivated from the
field theoretical point of view, the RR model. Many efforts in the community have already
shown that it is not an easy task to build a model that describes a phase of late time cosmic
acceleration and which passes several other tests. In particular, linear cosmological perturba-
tions need to be stable and GWs are required to propagate at the speed of light, in accordance
with the recent detection of GWs from a binary neutron star inspiral together with its elec-
tromagnetic counterpart. Moreover, the predictive power of the model should be high enough
for competing against the standard ΛCDM model, given high resolution complementary cosmo-
logical observations, and the model still needs to feature significant deviations from ΛCDM so
as to be distinguishable in the light of future experiments. In this thesis, we have shown that
the RR model is able to accomplish these requirements and leads to several original predic-
tions. Indeed, we have shown the model prefers a higher value of the Hubble constant H0 and
infers a higher absolute mass for three degenerated neutrino species as compared to ΛCDM,
given recent CMB+SNIa+BAO data. These features prove to be potentially detectable with
future large scale structure surveys such as Euclid. Moreover, the model also describes a mod-
ified propagation of the GWs as compared to the theory of GR, potentially distinguishable
with next generation GWs interferometers such as the Einstein Telescope, as we have explic-
itly demonstrated. The RR model therefore provides an interesting benchmark for forecasting
the constraints from such future experiments, which could eventually lead to a detection of an
infrared modification to gravity within the near future.



Appendix A

Implementation of the nonlocal
models in CLASS

We expose the sets of equations of motion for the RT and RR models, at the cosmological
background and scalar and tensor linear perturbations level, in the format used for modifying
the CLASS code. The equations are written in conformal time and the perturbations are
implemented into conformal Newtonian gauge, but not in synchronous gauge. These can be
derived from the expressions presented in Secs. 4.3.2 and 4.3.3, together with the convention
(4.62). We also briefly comment on the global strategy used in the code for evolving them. The
code itself is publicly available (URL). Concerning the RR model, it has been tested against a
modified version 1 of the CAMB code (Lewis) and shown to agree at subpercent level in CMB
and matter power spectra (Bellini et al., 2018).

Since both nonlocal models have the same overall structure, that is, a set of modified Einstein
equations including auxiliary fields, along with second order differential equations governing the
evolution of the latter, their implementation in CLASS is similar. For both models, the mass-
related parameter γ ≡ m2/(9H2

0 ) is fixed by a trial-and-error using the bisection or the secant
method if the former does not converge.

A.1 Implementation of the RT model

We start by writing down the relevant cosmological background equations corresponding to
the RT model. These are implemented into the background module of CLASS, background.c.
In background functions(), the (00) component of Einstein equations is used to infer alge-
braically the Hubble parameter H ≡ a′/a2 in terms of the energy density of the matter compo-
nent that one wishes to take into account. In our case it reads 2,

H =
γV̄ H2

0

2a
+

[(
γV̄ H2

0

2a

)
+ γ
(
Ū − V̄ ′/a2

)
H2

0 +
8πG

3
ρ̄

]1/2
, (A.1)

where H0 is the present value of the Hubble parameter and Ū and V̄ denote the background
values of the auxiliary fields U and V . The derivative of the Hubble parameter is not computed
numerically, but rather obtained algebraically from the trace of the (ij) component of Einstein

1. This version is not publicly available, but can been obtained on request (Barreira).
2. Here H ≡ a′/a2, as used in the background module of CLASS.
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equations, in terms of the pressure,

H ′ = −3

2
a

[
H2 +

8πG

3
p̄+ γ

(
H

a
V̄ − Ū

)
H2

0

]
. (A.2)

As already mentioned above, in our case, the evolution of the auxiliary fields is dictated by a
set of second order differential equations,

Ū ′′ + 2aHŪ ′ = 6a
(
H ′ + 2aH2

)
, V̄ ′′ − a

(
H ′ + 5aH2

)
V̄ = a2Ū ′ , (A.3)

which needs to be integrated numerically directly within the code, in background derivs(), with
initial conditions Ū = Ū ′ = V̄ = V̄ ′ = 0, set deep into the radiation era. Once the matter
components have been specified, such that their energy density and pressure can be written
explicitly (for example by using their separate energy-momentum conservation together with
an equation of state, or their unperturbed phase-space distribution functions) the system closes
and the background evolution can be integrated.

Concerning the linear scalar perturbations, the set of equations needed includes the conser-
vation equation of each fluid component, along with the evolution equations for the auxiliary
fields perturbations and two independent components of the modified Einstein equations. For
the latter, in perturb einstein(), the code originally uses the divergence of the (0i) component
in order to extract ϕ′ algebraically. In our case we have 3,

ϕ′ = −Hψ + 4πG
a2

k2
(ρ̄+ p̄)θ +

3

2
γ

[
HδZ − 1

2
δZ ′ +

1

2
ψV̄ − 1

2
δV

]
H2

0 . (A.4)

The expression of ψ is obtained in terms of ϕ from the longitudinal-traceless part of the (ij)
component of Einstein equation,

ψ = ϕ− 12πG
a2

k2
(ρ̄+ p̄)σ + 3γδZH2

0 , (A.5)

and ϕ is obtained from (A.4) by numerical integration. The equations governing the dynamics
of the auxiliary fields are,

δU ′′ + k2δU + 2HδU ′ = (ψ′ + 3ϕ′)(Ū ′ − 6H) + 2k2(ψ − 2ϕ)− 6ϕ′′, (A.6)

δZ ′′ − 2(H′ + 2H2 − k2)δZ = 2a2δU − 4HδV − δV ′ + 3V̄ ′ψ +
(
ψ′ + 2ϕ′

)
V̄ , (A.7)

δV ′′ −
(
H′ + 4H2 − k2

2

)
δV = (A.8)

a2δU ′ − 1

2
k2δZ ′ + 2Hk2δZ +

[
k2

2
ψ −H(ψ′ + 9ϕ′)

]
V̄ + (ψ′ + 3ϕ′)V̄ ′ + a2Ū ′ψ ,

and are implemented into perturb derivs(). We see that they contain ψ′ and ϕ′′, which can also
be extracted algebraically from the equations. In particular, ϕ′′ is obtained from the trace of
the (ij) component of Einstein equations,

ϕ′′ = −ψ(H2 + 2H′)−H(ψ′ + 2ϕ′) +
k2

3
(ψ − ϕ)

− 3

2

[
γ

(
a2δU +

(
ϕ′ +Hψ

)
V̄ −HδV − k2

3
δZ

)
H2

0 − 8πG

3
a2δp

]
, (A.9)

3. Here we set, H ≡ a′/a.
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whereas ψ′ is obtained by taking the derivatives of (A.5),

ψ′ = ϕ′ − 24πG

k2
Ha2(ρ̄+ p̄)σ − 12πG

a2

k2
[
(ρ̄+ p̄)σ

]′
+ 3γδZ ′H2

0 . (A.10)

Within the version of CLASS that we used, the source term
[
(ρ̄+ p̄)σ

]
decomposes as

[
(ρ̄+ p̄)σ

]
=

4

3

(
ργσγ + ρurσur

)
+ (ρ+ p)ncdmσncdm , (A.11)

where γ, ur and ncdm denote the photon, ultra-relativistic particles and non-cold dark matter
(NCDM) components, respectively. Therefore to compute its corresponding time derivative one
needs, [

(ρ̄+ p̄)σ
]′
=

4

3

(
ρ′γσγ + ρ′urσur + ργσ

′
γ + ρurσ

′
ur

)
+
[
(ρ+ p)ncdmσncdm

]′
, (A.12)

and, since at background level each of the ultra-relativistic particles and photons components
is conserved, one can use the background conservation equation, ρ̄′ = −3H(ρ̄+ p̄) together with
the equation of state for ultra-relativistic particle p̄ = (1/3)ρ̄, to write,[

(ρ̄+ p̄)σ
]′
=

4

3
ργ
(
σ′γ − 4Hσγ

)
+

4

3
ρur
(
σ′ur − 4Hσur

)
+
[
(ρ+ p)ncdmσncdm

]′
, (A.13)

while the (massive) NCDM components have to be treated separately in terms of their phase-
space description. This form is quite convenient for being implemented into the code since the
various quantities have already been built into the original version.

A.2 Implementation of the RR model

In the case of the RR model, the general structure is the same as above and we only display
the relevant equations needed for the implementation in the code. At the background level, the
(00) component of the modified first Friedmann equation reads,

H =

(
1− 3γV̄

)−1{3γ

2a
V̄ ′ +

[(
3γ

2a
V̄ ′
)2

+

(
1− 3γV̄

)(
γ

4
Ū2H2

0 − γ

2a2
V̄ ′Ū ′ +

8πG

3
ρ

)]1/2}
.

(A.14)

From the (ij) component one gets,

H ′ = −3

2
a

{
H2 +

(
1− 3γV̄

)−1[8πG
3

p̄− γ

(
1

4
Ū2H2

0 + ŪH2
0 − H

a
V̄ ′ +

1

2a2
V̄ ′Ū ′

)]}
. (A.15)

The equation of the auxiliary fields are,

Ū ′′ + 2aHŪ ′ = 6a
(
H ′ + 2aH2

)
, V̄ ′′ + 2aHV̄ ′ = a2ŪH2

0 . (A.16)

To linear order in the scalar perturbations, the (0i) component of the modified Einstein equa-
tions leads to,

ϕ′ = −Hψ +
3

2

(
1− 3γV̄

)−1[8πGa2
3k2

(ρ̄+ p̄)θ − γ

(
δV ′ − V̄ ′ψ −HδV +

1

2

(
Ū ′δV + V̄ ′δU

))]
.

(A.17)
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The equation sourced by the anisotropic stress gives,

ψ = ϕ+

(
1− 3γV̄

)−1[
− 12πG

a2

k2
(ρ̄+ p̄)σ + 3γδV

]
, (A.18)

while the perturbation of the equations for the auxiliary field equations yields,

δU ′′ + 2HδU ′ + k2δU =
(
ψ′ + 3ϕ′

)
(Ū ′ − 6H) + 2k2

(
ψ − 2ϕ

)
− 6ϕ′′ , (A.19)

δV ′′ + 2HδV ′ + k2δV =
(
ψ′ + 3ϕ′

)
V̄ ′ + 2a2ψŪH2

0 + a2δUH2
0 . (A.20)

In order to solve the system, one has also to provide expressions of ψ′ and ϕ′′ obtained similarly
to the case of the RT model. One finds,

ψ′ = ϕ′ +

(
1− 3γV̄

)−1[
3γ(ψ − ϕ)V̄ ′ − 24πG

k2
Ha2(ρ̄+ p̄)σ − 12πG

a2

k2
[
(ρ̄+ p̄)σ

]′
+ 3γδV ′

]
,

(A.21)

and,

ϕ′′ = −ψ(H2 + 2H′)−H(ψ′ + 2ϕ′) +
k2

3
(ψ − ϕ)

− 3

2

(
1− 3γV̄

)−1{
γ

[
1

2
a2ŪδUH2

0 − 2a2ψŪH2
0 −

(
2ϕ′ − 2Hψ + ψ′ + ψŪ ′)V̄ ′

+ δV ′′ +HδV ′ +

(
H2 + 2H′ +

2k2

3

)
δV +

1

2

(
Ū ′δV ′ + V̄ ′δU ′)]− 8πG

3
a2δp

}
. (A.22)
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