Extraction of the ratio $|V_{ub}|/|V_{cb}|$ from a combined study of the exclusive decays.

Ipsita Ray

Based on JHEP 07 (2023) 024 In collaboration with Soumitra Nandi and Aritra Biswas.

September 19, 2023

The CKM matrix

$$V_{CKM} = V_{uL} V_{dL}^{\dagger}$$

 Parameterized by 4 parameters: three mixing angles and the CP-violating phase.

$$\sum_{k=1...3} V_{ik}^* V_{kj \neq i} = 0,$$

• Can be represented as triangles in the complex plane.

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Upto $\mathcal{O}(\lambda^3)$, complex numbers only in 1-3 and 3-1 matrix elements.

The Unitarity Triangle

• The one obtained for i = 1 and j = 3 involves the sum of three terms all of the same order in λ ,

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\alpha = \arg \left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right), \quad \beta = \arg \left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right), \quad \gamma = \arg \left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right)$$

The CKM matrix

- Precision determinations of the CKM elements necessary to probe the quark mixing mechanism of the Standard Model.
- Important ingredients in the theoretical predictions of several observables in the flavor sector.
- $V_{ub} \to \text{Source of CP violation within the SM} \to \text{Less precisely known.}$

$$V_{CKM} = \begin{pmatrix} 0.97435 \pm 0.00016 & 0.22500 \pm 0.00067 & 0.00369 \pm 0.00011 \\ 0.22486 \pm 0.00067 & 0.97349 \pm 0.00016 & 0.04182^{+0.00085}_{-0.00074} \\ 0.00857^{+0.00020}_{-0.00018} & 0.04110^{+0.00083}_{-0.00072} & 0.999118^{+0.000031}_{-0.000036} \end{pmatrix}$$

[PDG, 2022]

Measurements of $|V_{rb}|$

• The transition $b \to u(c)l\bar{\nu}$ provides two avenues for determining $|V_{xb}|$ -

- Experimental and theoretical techniques for these two approaches different and largely independent \rightarrow Important cross checks of our understanding.
- Mutual disagreement between exclusive and inclusive measurements.

$$|V_{ub}|^{exc} = (3.70 \pm 0.16) \times 10^{-3}, \quad |V_{ub}|^{inc} = (4.13 \pm 0.12^{+0.13}_{-0.14}) \times 10^{-3},$$

 $|V_{cb}|^{exc} = (39.4 \pm 0.8) \times 10^{-3}, \quad |V_{cb}|^{inc} = (42.2 \pm 0.8) \times 10^{-3},$

$|V_{xb}|$ from inclusive decays

- The theoretical description of inclusive $\bar{B} \to X_{u(c)} l \bar{\nu}$ decays based on the Heavy Quark Expansion (an expansion in Λ_{QCD}/m_b).
- Total decay rate hard to measure due to the large background from $\bar{B} \to X_c l \bar{\nu}$ transitions \to experimental cuts are necessary.
- In regions of phase space where $\bar{B} \to X_c l \bar{\nu}$ decays are suppressed, can't use HQE \to introduce non-perturbative distribution functions(SF).
- Different approaches to model the shape function \rightarrow extracted values of $|V_{ub}|$ model dependent.
- \bullet Recent analysis of the inclusive spectra with hadronic-tagging by Belle [arXiv:2102.00020] -

$$|V_{ub}|^{inc} = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3}$$
.

[Talks by M.Prim, K.Vos]

$|V_{xb}|$ from exclusive decays

- Exclusive determinations require knowledge of the form factors.
- Pseudoscalar meson in final state -

$$\langle M(p_M)|V_{\mu}|B(p_B)\rangle = f_{+}(q^2) \left[p_B^{\mu} + p_M^{\mu} - \frac{m_B^2 - m_M^2}{q^2}q^{\mu}\right] + f_0(q^2) \frac{m_B^2 - m_M^2}{q^2}q^{\mu}$$

• $f_+(q^2=0) = f_0(q^2=0) \rightarrow \text{cancel the divergence at } q^2=0.$

$|V_{xb}|$ from exclusive decays

- Exclusive determinations require knowledge of the form factors.
- Pseudoscalar meson in final state -

$$\langle M(p_M)|V_{\mu}|B(p_B)\rangle = f_{+}(q^2) \left[p_B^{\mu} + p_M^{\mu} - \frac{m_B^2 - m_M^2}{q^2}q^{\mu}\right] + f_0(q^2) \frac{m_B^2 - m_M^2}{q^2}q^{\mu}$$

- $f_+(q^2=0) = f_0(q^2=0) \rightarrow \text{cancel the divergence at } q^2=0.$
- Vector meson in final state -

$$\langle V(k)|\bar{f}\gamma_{\mu}(1-\gamma_{5})b|B(p)\rangle = -i\epsilon_{\mu}^{*}(m_{B}+m_{V})A_{1}(q^{2}) + i(2p-q)_{\mu}(\epsilon^{*}\cdot q)\frac{A_{2}(q^{2})}{m_{B}+m_{V}}$$

$$+iq_{\mu}(\epsilon^{*}\cdot q)\frac{2m_{V}}{q^{2}}\left[A_{3}(q^{2})-A_{0}(q^{2})\right] + \epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}p^{\rho}k^{\sigma}\frac{2V(q^{2})}{m_{B}+m_{V}}$$
with $A_{3}(q^{2}) = \frac{m_{B}+m_{V}}{2m_{V}}A_{1}(q^{2}) - \frac{m_{B}-m_{V}}{2m_{V}}A_{2}(q^{2})$ and $A_{0}(0) = A_{3}(0)$

Form factors

- Model-independent parametrization based on general properties of analyticity, unitarity, and crossing symmetry.
- Change of variables from q^2 to z maps the semileptonic region within a disc of radius |z| < 1 in the complex z plane.

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}},$$

where $t_{\pm} \equiv (m_B \pm m_f)^2$ and $t_0 \equiv t_+ (1 - \sqrt{1 - t_-/t_+})$

• Can be expanded as a simple power series in z:

$$P_i(q^2)\phi_i(q^2, t_0)f_i(q^2) = \sum_{k=0}^{\infty} a_i^{(k)}(t_0)z(q^2, t_0)^k$$

• $P_i(q^2)$ chosen to vanish at any subthreshold poles to ensure analyticity of $f_i(q^2)$.

Form factors

- For $\bar{B} \to M l \bar{\nu}_l$ decays, $m_l^2 \le q^2 \le (m_B m_M)^2$.
- BSZ parametrization (Bharucha et al. 1503.05534) -

$$f_i(q^2) = \frac{1}{1 - q^2/m_{R,i}^2} \sum_{k=0}^{N} a_k^i \left[z(q^2) - z(0) \right]^k$$

- Kinematic constraint $\rightarrow a_0^0 = a_0^+$
- BGL parametrization (Boyd et al. hep-ph/9412324) -

$$\mathcal{F}_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{j=0}^{N} a_j^i z^j,$$

 $q^2 = m_B^2 + m_F^2 - 2m_B m_F w.$

Form factors

Unitarity constraints -

$$\sum_{j=0}^{N} (a_j^{f_+})^2 < 1, \quad \sum_{j=0}^{N} (a_j^{f_0})^2 < 1, \quad \sum_{j=0}^{N} (a_j^g)^2 < 1$$

$$\sum_{j=0}^{N} (a_j^f)^2 + (a_j^{\mathcal{F}_1})^2 < 1, \quad \sum_{j=0}^{N} (a_j^{\mathcal{F}_2})^2 < 1.$$

 The kinematical constraints on the form factors, at zero and maximum recoil are given as

$$\mathcal{F}_1(1) = m_B(1-r)f(1),$$

 $\mathcal{F}_2(w_{max}) = \frac{1+r}{m_B^2(1+w_{max})(1-r)r}\mathcal{F}_1(w_{max}).$

References for $|V_{ub}|$ and $|V_{cb}|$ determinations

Mode	References		
$B \rightarrow \pi l \nu$	RBC/UKQCD(1501.05373), Fermilab/MILC(1507.01618),		
	JLQCD(2203.04938), LCSR(1811.00983, 2102.07233),		
	Belle(1012.0090, 1306.2781), BaBar(1005.3288, 1208.1253)		
$B \rightarrow \rho l \nu$	LCSR(1811.00983, 1503.05534, 1907.11092),		
	Belle(1306.2781), BaBar(1005.3288)		
$B \rightarrow \omega l \nu$	LCSR(1503.05534, 1907.11092), Belle(1306.2781),		
	BaBar(1205.6245, 1308.2589)		
$B_S \rightarrow K l \nu$	RBC/UKQCD(1501.05373), Fermilab/MILC(1901.02561),		
	HPQCD(1406.2279), LCSR(1703.04765)		
$B \rightarrow D l \nu$	HPQCD(1505.03925), Fermilab/MILC(1503.07237),		
	LCSR(1811.00983), Belle(1510.03657)		
$B \rightarrow D^* l \nu$	Fermilab/MILC(2105.14019), LCSR(1811.00983),		
	Belle(1809.03290,2301.07529)		
$B_S \rightarrow D_S l \nu$	HPQCD(1906.00701), Fermilab/MILC(1202.6346),		
	LCSR(1912.09335), LHCb(2001.03225)		
$B_s \rightarrow D_s^* l \nu$	HPQCD(2105.11433), LCSR(1912.09335), LHCb(2001.03225)		

 $R_{BF} = \mathcal{BR}(B_s \to K\mu\nu)/\mathcal{BR}(B_s \to D_s\mu\nu)$ from LHCb [2012.05143] in two bins of the $B_s \to K^-$ momentum transfer, $q^2 < 7 \text{ GeV}^2$ and $q^2 > 7 \text{ GeV}^2$.

Comparative study for extraction of $|V_{cb}|^{exc}$

Mode	Inputs	$\chi^2_{min}/{ m DOF}$	p-value (%)	$ V_{cb} \times 10^3$
$\bar{B} \rightarrow D l^- \bar{\nu}$	Experiment+Fermilab/MILC [6] +	33.0/47	93.9	41.4 ± 1.1
	HPQCD [7] + $LCSR$ [25]			
$\bar{B} \rightarrow D^* l^- \bar{\nu}$	Experiment+Fermilab-MILC [10] +	120.5/81	0.3	39.2 ± 0.8
	LCSR [25]			
$\bar{B}_s o D_s^{(*)} l^- \bar{\nu}$	Experiment+ HPQCD [23, 24] +	2.98/17	99.9	42.2 ± 1.3
	LCSR [26]			
	Experiment+ Fermilab/MILC [22] +	29.3/20	8.2	44.0 ± 1.3
	HPQCD [23, 24] +LCSR [26]			
All modes	All Experiments + All lattice + LCSR	273.9/156	1.7×10^{-6}	40.5 ± 0.6
	All Experiments + All lattice	163.2/150	21.8	40.3 ± 0.6
	(except $f_{+,0}^{B_s \to D_s}$ Fermilab/MILC [22])			
	+LCSR			

- JLQCD $(\bar{B} \to D^{(*)} l \nu) \to (40.5 \pm 0.8) \times 10^{-3}$
- Deviation from the inclusive determination of $(41.69 \pm 0.63) \times 10^{-3}$ obtained from the analyses of the q^2 moments and the differential rates (Bernlochner et al. 2205.10274) $\sim 1.4 \sigma$.
- Deviation from the inclusive determination of $(42.16 \pm 0.51) \times 10^{-3}$ obtained using lepton energy and hadronic invariant mass moments distributions (Bordone et al. 2107.00604) $\sim 2.1~\sigma$.
- $|V_{cb}| = (41.2 \pm 0.8) \times 10^{-3}$ [Martinelli et al. 2204.05925].

Plots for $B \to D^{(*)}$

Plots for $B_s \to D_s^{(*)}$

Comparative study for extraction of $|V_{ub}|^{exc}$

Mode	Fits with the Inputs	$\chi^2_{min}/{ m DOF}$	p-value(%)	$ V_{ub} \times 10^3$	$ V_{ub} / V_{cb} $
$\bar{B} \rightarrow \pi l^- \bar{\nu}$	(I) All Experiment+JLQCD	10.8/11	45.7	3.98 ± 0.42	0.098 ± 0.010
	(II) Fit-I + LCSR [25, 38]	16.3/29	97.2	3.73 ± 0.24	0.092 ± 0.006
	(III) All Experiment+Fermilab/MILC	11.7/12	46.6	3.78 ± 0.16	0.093 ± 0.004
	(IV) Fit-III + LCSR [25, 38]	24.2/30	76.2	3.84 ± 0.15	0.095 ± 0.004
	(V) All Experiment+RBC/UKQCD	11.0/11	44.3	3.75 ± 0.34	0.093 ± 0.009
	(VI) Fit-V + LCSR [25, 38]	17.5/29	95.3	3.57 ± 0.23	0.088 ± 0.006
	(VII) All Experiment+	27.2/17	5.5	3.69 ± 0.24	0.091 ± 0.006
	RBC/UKQCD+JLQCD				
	(VIII) All Experiment+ All Lattice	50.8/24	0.1	3.69 ± 0.13	0.091 ± 0.003
	(IX) Fit-VIII + LCSR [25, 38]	55.7/42	7.7	3.69 ± 0.12	0.091 ± 0.003
$\bar{B} \to \pi l^- \bar{\nu}$ and	(X) All Experiment + All Lattice	74.9/38	0.03	3.60 ± 0.11	0.089 ± 0.003
$\bar{B}_s \rightarrow K l^- \bar{\nu}$	(XI) Fit-(X) + LCSR [25, 38, 41]	95.5/57	0.1	3.50 ± 0.10	0.086 ± 0.003
	(XII) All Experiment+ All Lattice	58.8/32	0.3	3.74 ± 0.12	0.092 ± 0.003
	except inputs from				
	HPQCD on $B_s \rightarrow K$ [40]				
	(XIII) Fit-(XII) + LCSR [25, 38, 41]	88.4/51	0.1	3.52 ± 0.10	0.087 ± 0.003
$\bar{B} \rightarrow \rho l^- \bar{\nu}$	Experiment + LCSR [25, 36, 37]	31.2/41	86.6	3.22 ± 0.26	0.080 ± 0.007
$\bar{B} \rightarrow \omega l^- \bar{\nu}$	Experiment+LCSR [36, 37]	8.6/15	89.7	3.09 ± 0.33	0.076 ± 0.008
$\bar{B} \rightarrow \pi(\rho, \omega)l^-\bar{\nu}$	All inputs combined	99.6/100	49.4	3.58 ± 0.11	0.088 ± 0.003
	$B \rightarrow \pi$ and $B_s \rightarrow K$:	117.8/96	6.5	3.52 ± 0.10	0.087 ± 0.003
	Experiment + Lattice				
$\bar{B} \rightarrow \pi(\rho, \omega) l^- \bar{\nu}$ and	$B \rightarrow (\rho, \omega)$: Experiment				
	+ LCSR				
$\bar{B}_s \rightarrow K l^- \bar{\nu}$	For all modes: Experiment +	137.2/115	7.7	3.45 ± 0.09	0.085 ± 0.003
	lattice + LCSR				

Plots for $B \to \pi$


```
Combined V_{ub} modes B \rightarrow \pi 1 \nu (Expt+All Lattice)
B \rightarrow \pi 1 \nu (Expt+All Lattice+LCSR) B \rightarrow \pi 1 \nu (Expt+Only JLQCD)
+ FNAL/MILC + RBC/UKQCD + JLQCD + 1811.00983 + 2102.07233
```

Plots for $B_s \to K$

Plots for $B \to \omega$

Plots for $B \to \rho$

Comparative study for extraction of $|V_{ub}|/|V_{cb}|$

•
$$\frac{|V_{ub}|}{|V_{cb}|} = 0.079 \pm 0.006 \text{ (from } \frac{\Gamma(\Lambda_b \to p\mu\nu)}{\Gamma(\Lambda_b \to \Lambda_c\mu\nu)} \text{ [LHCb } 1504.01568])$$

Mode(s)	Inputs	$\chi^2_{min}/{ m DOF}$	$ V_{ub} \times 10^3$	$ V_{cb} \times 10^{3}$	$\frac{ V_{ub} }{ V_{cb} }$	Correlation (%)
						$[V_{ub} , V_{cb}]$
$\bar{B} \rightarrow \pi l^- \bar{\nu}$	Experiment+ All Lattice	171.1/156	3.61 ± 0.15	40.4 ± 0.6	0.089 ± 0.004	12.8
and	Experiment+All Lattice+LCSR	191.7/167	3.43 ± 0.12	40.4 ± 0.6	0.085 ± 0.003	14.1
$b \rightarrow c l^- \bar{\nu}$	Experiment+ All Lattice	176.1/166	3.57 ± 0.13	40.3 ± 0.6	0.089 ± 0.003	11.5
	+LCSR (without $f_+^{B_s \to K}$)					
$b \rightarrow c l^- \bar{\nu}$,	Experiment+Lattice+LCSR	231.8/225	3.34 ± 0.10	40.4 ± 0.6	0.083 ± 0.003	12.4
$b o u l^- \bar{\nu}$	Experiment+ All Lattice	219.5/224	3.51 ± 0.11	40.2 ± 0.6	0.087 ± 0.003	10.4
	+LCSR (without $f_+^{B_s \to K}$)					

Correlations in the $|V_{ub}|$ and $|V_{cb}|$ plane

Estimated values of R_{BF}

Experimental: R_{BF} (Low) = $(1.66 \pm 0.12) \times 10^{-3}$, R_{BF} (High) = $(3.25 \pm 0.28) \times 10^{-3}$				
Mode	Inputs	Predictions of R_{BF} (10 ⁻³)		
		$Low (q^2 < 7 \text{ GeV}^2)$	High $(q^2 > 7 \text{ GeV}^2)$	
$\bar{B} \rightarrow \pi l^- \bar{\nu}$	Experiment+All Lattice	1.67 ± 0.11	3.32 ± 0.20	
and	Experiment+All Lattice+LCSR	1.79 ± 0.10	3.17 ± 0.18	
$b ightarrow cl^- \bar{\nu}$	Experiment+All Lattice+LCSR	1.67 ± 0.11	3.30 ± 0.19	
	(without $f_+^{B_s \to K}$)			
$b \rightarrow c l^- \bar{\nu}$,	Experiment+All Lattice+LCSR	1.80 ± 0.10	3.08 ± 0.17	
$b \rightarrow u l^- \bar{\nu}$	Experiment+All Lattice+LCSR	1.63 ± 0.11	3.30 ± 0.19	
	(without $f_+^{B_s \to K}$)			

Conclusions

- We have extracted exclusive $|V_{ub}|$ from $\bar{B} \to (\pi, \rho, \omega) \ell^- \bar{\nu}_\ell$ and $\bar{B}_s \to K \mu^- \bar{\nu}_\mu$ decays separately as well as from a combined analysis, studying the impact of the various form factor inputs. From the combined analysis we obtain $|V_{ub}| = (3.52 \pm 0.10) \times 10^{-3}$.
- For the various $b \to cl\nu$ transitions also, we have studied $|V_{cb}|^{exc}$ determination from $\bar{B} \to D^{(*)} \ell^- \bar{\nu}_\ell$ and $\bar{B}_s \to D_s^{(*)} \ell^- \bar{\nu}_\ell$ decays. From the combined analysis we obtain $|V_{cb}| = (40.5 \pm 0.6) \times 10^{-3}$.
- We have also determined the ratio $|V_{ub}|/|V_{cb}|$ from the $b \to u(c)l\nu$ modes independently and also after introducing the inputs on the BRs $\mathrm{BR}(B_s \to K\mu\nu)/\mathrm{BR}(B_s \to D_s\mu\nu)$ in the 2 bins and compared the results. We have found a good agreement between the measured value of $\frac{|V_{ub}|}{|V_{cb}|}$ obtained by LHCb from the measurement of $\frac{\Gamma(\Lambda_b \to p\mu^-\bar{\nu}_\mu)}{\Gamma(\Lambda_b \to \Lambda_c\mu^-\bar{\nu}_\mu)}$ and our estimated values from the semileptonic mesonic decays.

