Extraction of the ratio $\left|V_{u b}\right| /\left|V_{c b}\right|$ from a combined study of the exclusive decays.

Ipsita Ray

Based on JHEP 07 (2023) 024

In collaboration with Soumitra Nandi and Aritra Biswas.

September 19, 2023

The CKM matrix

$$
V_{C K M}=V_{u L} V_{d L}^{\dagger}
$$

- Parameterized by 4 parameters: three mixing angles and the CP-violating phase.

$$
\sum_{k=1 \ldots 3} V_{i k}^{*} V_{k j \neq i}=0
$$

- Can be represented as triangles in the complex plane.

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Upto $\mathcal{O}\left(\lambda^{3}\right)$, complex numbers only in 1-3 and 3-1 matrix elements.

The Unitarity Triangle

- The one obtained for $\mathrm{i}=1$ and $\mathrm{j}=3$ involves the sum of three terms all of the same order in λ,

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

$$
\begin{equation*}
(0,0) \tag{1,0}
\end{equation*}
$$

$$
\alpha=\arg \left(-\frac{V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right), \quad \beta=\arg \left(-\frac{V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right), \quad \gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
$$

The CKM matrix

- Precision determinations of the CKM elements necessary to probe the quark mixing mechanism of the Standard Model.
- Important ingredients in the theoretical predictions of several observables in the flavor sector.
- $V_{u b} \rightarrow$ Source of CP violation within the SM
\rightarrow Less precisely known.

$$
V_{C K M}=\left(\begin{array}{ccc}
0.97435 \pm 0.00016 & 0.22500 \pm 0.00067 & 0.00369 \pm 0.00011 \\
0.22486 \pm 0.00067 & 0.97349 \pm 0.00016 & 0.04182_{-0.00075}^{+0.00085} \\
0.00857_{-0.00018}^{+0.00020} & 0.04110_{-0.00072}^{+0.000083} & 0.999118_{-0.000036}^{+0.000031}
\end{array}\right)
$$

[PDG, 2022]

Measurements of $\left|V_{x b}\right|$

- The transition $b \rightarrow u(c) l \bar{\nu}$ provides two avenues for determining $\left|V_{x b}\right|$ -

- Experimental and theoretical techniques for these two approaches different and largely independent \rightarrow Important cross checks of our understanding.
- Mutual disagreement between exclusive and inclusive measurements.

$$
\begin{aligned}
\left|V_{u b}\right|^{e x c}=(3.70 \pm 0.16) \times 10^{-3}, & \left|V_{u b}\right|^{i n c}=\left(4.13 \pm 0.12_{-0.14}^{+0.13}\right) \times 10^{-3} \\
\left|V_{c b}\right|^{e x c}=(39.4 \pm 0.8) \times 10^{-3}, & \left|V_{c b}\right|^{i n c}=(42.2 \pm 0.8) \times 10^{-3}
\end{aligned}
$$

$\left|V_{x b}\right|$ from inclusive decays

- The theoretical description of inclusive $\bar{B} \rightarrow X_{u(c)} l \bar{\nu}$ decays based on the Heavy Quark Expansion (an expansion in $\Lambda_{Q C D} / m_{b}$).
- Total decay rate hard to measure due to the large background from $\bar{B} \rightarrow X_{c} l \bar{\nu}$ transitions \rightarrow experimental cuts are necessary.
- In regions of phase space where $\bar{B} \rightarrow X_{c} l \bar{\nu}$ decays are suppressed, can't use HQE \rightarrow introduce non-perturbative distribution functions(SF).
- Different approaches to model the shape function \rightarrow extracted values of $\left|V_{u b}\right|$ model dependent.
- Recent analysis of the inclusive spectra with hadronic-tagging by Belle [arXiv:2102.00020] -

$$
\begin{aligned}
\left|V_{u b}\right|^{\text {inc }}=(4.10 \pm 0.09 \pm & 0.22 \pm 0.15) \times 10^{-3} \\
& {[\text { Talks by M.Prim, K.Vos }] }
\end{aligned}
$$

$\left|V_{x b}\right|$ from exclusive decays

- Exclusive determinations require knowledge of the form factors.
- Pseudoscalar meson in final state -

$$
\left\langle M\left(p_{M}\right)\right| V_{\mu}\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{M}^{\mu}-\frac{m_{B}^{2}-m_{M}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{M}^{2}}{q^{2}} q^{\mu}
$$

- $f_{+}\left(q^{2}=0\right)=f_{0}\left(q^{2}=0\right) \rightarrow$ cancel the divergence at $q^{2}=0$.

$\left|V_{x b}\right|$ from exclusive decays

- Exclusive determinations require knowledge of the form factors.
- Pseudoscalar meson in final state -

$$
\left\langle M\left(p_{M}\right)\right| V_{\mu}\left|B\left(p_{B}\right)\right\rangle=f_{+}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{M}^{\mu}-\frac{m_{B}^{2}-m_{M}^{2}}{q^{2}} q^{\mu}\right]+f_{0}\left(q^{2}\right) \frac{m_{B}^{2}-m_{M}^{2}}{q^{2}} q^{\mu}
$$

- $f_{+}\left(q^{2}=0\right)=f_{0}\left(q^{2}=0\right) \rightarrow$ cancel the divergence at $q^{2}=0$.
- Vector meson in final state -

$$
\begin{aligned}
\langle V(k)| \bar{f} \gamma_{\mu}\left(1-\gamma_{5}\right) b|B(p)\rangle= & -i \epsilon_{\mu}^{*}\left(m_{B}+m_{V}\right) A_{1}\left(q^{2}\right)+i(2 p-q)_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{A_{2}\left(q^{2}\right)}{m_{B}+m_{V}} \\
& +i q_{\mu}\left(\epsilon^{*} \cdot q\right) \frac{2 m_{V}}{q^{2}}\left[A_{3}\left(q^{2}\right)-A_{0}\left(q^{2}\right)\right]+\epsilon_{\mu \nu \rho \sigma} \epsilon^{* \nu} p^{\rho} k^{\sigma} \frac{2 V\left(q^{2}\right)}{m_{B}+m_{V}} \\
\text { with } A_{3}\left(q^{2}\right)= & \frac{m_{B}+m_{V}}{2 m_{V}} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{V}}{2 m_{V}} A_{2}\left(q^{2}\right) \text { and } A_{0}(0)=A_{3}(0)
\end{aligned}
$$

Form factors

- Model-independent parametrization based on general properties of analyticity, unitarity, and crossing symmetry.
- Change of variables from q^{2} to z maps the semileptonic region within a disc of radius $|z|<1$ in the complex z plane.

$$
z\left(q^{2}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}},
$$

where $t_{ \pm} \equiv\left(m_{B} \pm m_{f}\right)^{2}$ and $t_{0} \equiv t_{+}\left(1-\sqrt{1-t_{-} / t_{+}}\right)$

- Can be expanded as a simple power series in z:

$$
P_{i}\left(q^{2}\right) \phi_{i}\left(q^{2}, t_{0}\right) f_{i}\left(q^{2}\right)=\sum_{k=0}^{\infty} a_{i}^{(k)}\left(t_{0}\right) z\left(q^{2}, t_{0}\right)^{k}
$$

- $P_{i}\left(q^{2}\right)$ chosen to vanish at any subthreshold poles to ensure analyticity of $f_{i}\left(q^{2}\right)$.

Form factors

- For $\bar{B} \rightarrow M l \overline{\nu_{l}}$ decays, $m_{l}^{2} \leq q^{2} \leq\left(m_{B}-m_{M}\right)^{2}$.
- BSZ parametrization (Bharucha et al. 1503.05534) -

$$
f_{i}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{R, i}^{2}} \sum_{k=0}^{N} a_{k}^{i}\left[z\left(q^{2}\right)-z(0)\right]^{k}
$$

- Kinematic constraint $\rightarrow a_{0}^{0}=a_{0}^{+}$
- BGL parametrization (Boyd et al. hep-ph/9412324) -

$$
\mathcal{F}_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{j=0}^{N} a_{j}^{i} z^{j},
$$

- $q^{2}=m_{B}^{2}+m_{F}^{2}-2 m_{B} m_{F} w$.

Form factors

- Unitarity constraints -

$$
\begin{gathered}
\sum_{j=0}^{N}\left(a_{j}^{f_{+}}\right)^{2}<1, \quad \sum_{j=0}^{N}\left(a_{j}^{f_{0}}\right)^{2}<1, \quad \sum_{j=0}^{N}\left(a_{j}^{g}\right)^{2}<1 \\
\sum_{j=0}^{N}\left(a_{j}^{f}\right)^{2}+\left(a_{j}^{\mathcal{F}_{1}}\right)^{2}<1, \quad \sum_{j=0}^{N}\left(a_{j}^{\mathcal{F}_{2}}\right)^{2}<1 .
\end{gathered}
$$

- The kinematical constraints on the form factors, at zero and maximum recoil are given as

$$
\begin{aligned}
\mathcal{F}_{1}(1) & =m_{B}(1-r) f(1) \\
\mathcal{F}_{2}\left(w_{\max }\right) & =\frac{1+r}{m_{B}^{2}\left(1+w_{\max }\right)(1-r) r} \mathcal{F}_{1}\left(w_{\max }\right) .
\end{aligned}
$$

References for $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ determinations

Mode	References
$B \rightarrow \pi l \nu$	$\begin{gathered} \text { RBC/UKQCD(1501.05373), Fermilab/MILC(1507.01618), } \\ \text { JLQCD(2203.04938), LCSR(1811.00983, 2102.07233), } \\ \text { Belle(1012.0090, 1306.2781), BaBar }(1005.3288,1208.1253) \end{gathered}$
$B \rightarrow \rho l \nu$	LCSR(1811.00983, 1503.05534, 1907.11092), Belle(1306.2781), BaBar(1005.3288)
$B \rightarrow \omega l \nu$	LCSR(1503.05534, 1907.11092), Belle(1306.2781), $\operatorname{BaBar}(1205.6245,1308.2589)$
$B_{S} \rightarrow K l \nu$	$\begin{gathered} \text { RBC/UKQCD(1501.05373), Fermilab/MILC(1901.02561), } \\ \operatorname{HPQCD}(1406.2279), \operatorname{LCSR}(1703.04765) \end{gathered}$
$B \rightarrow D l \nu$	HPQCD(1505.03925), Fermilab/MILC(1503.07237), LCSR(1811.00983), Belle(1510.03657)
$B \rightarrow D^{*} l \nu$	$\begin{gathered} \text { Fermilab/MILC(2105.14019), LCSR(1811.00983), } \\ \text { Belle(1809.03290,2301.07529) } \end{gathered}$
$B_{s} \rightarrow D_{s} l \nu$	HPQCD(1906.00701), Fermilab/MILC(1202.6346), LCSR(1912.09335), LHCb(2001.03225)
$B_{s} \rightarrow D_{s}^{*} l \nu$	HPQCD (2105.11433), LCSR(1912.09335), LHCb (2001.03225)

$R_{B F}=\mathcal{B R}\left(B_{s} \rightarrow K \mu \nu\right) / \mathcal{B R}\left(B_{s} \rightarrow D_{s} \mu \nu\right)$ from LHCb [2012.05143] in two bins of the $B_{s} \rightarrow K^{-}$momentum transfer, $q^{2}<7 \mathrm{GeV}^{2}$ and $q^{2}>7 \mathrm{GeV}^{2}$.

Comparative study for extraction of $\left|V_{c b}\right|^{\text {exc }}$

Mode	Inputs	$\chi_{\text {min }}^{2} /$ DOF	p-value (\%)	$\left\|V_{c b}\right\| \times 10^{3}$
$\bar{B} \rightarrow D l^{-} \bar{\nu}$	Experiment+Fermilab/MILC [6] + HPQCD [7] + LCSR [25]	33.0/47	93.9	41.4 ± 1.1
$\bar{B} \rightarrow D^{*} l^{-} \bar{\nu}$	Experiment+Fermilab-MILC [10] + LCSR [25]	120.5/81	0.3	39.2 ± 0.8
$\bar{B}_{s} \rightarrow D_{s}^{(*)} l^{-} \bar{\nu}$	$\begin{gathered} \text { Experiment+ HPQCD }[23,24]+ \\ \text { LCSR }[26] \end{gathered}$	2.98/17	99.9	42.2 ± 1.3
	Experiment+ Fermilab/MILC [22] + HPQCD [23, 24] + LCSR [26]	29.3/20	8.2	44.0 ± 1.3
All modes	All Experiments + All lattice + LCSR	273.9/156	1.7×10^{-6}	40.5 ± 0.6
	$\begin{gathered} \text { All Experiments + All lattice } \\ \text { (except } f_{+, 0}^{B_{s} \rightarrow D_{s}} \text { Fermilab/MILC [22]) } \\ + \text { LCSR } \\ \hline \end{gathered}$	163.2/150	21.8	40.3 ± 0.6

- JLQCD $\left(\bar{B} \rightarrow D^{(*)} l \nu\right) \rightarrow(40.5 \pm 0.8) \times 10^{-3}$
- Deviation from the inclusive determination of $(41.69 \pm 0.63) \times 10^{-3}$ obtained from the analyses of the q^{2} moments and the differential rates (Bernlochner et al. 2205.10274) $\sim 1.4 \sigma$.
- Deviation from the inclusive determination of $(42.16 \pm 0.51) \times 10^{-3}$ obtained using lepton energy and hadronic invariant mass moments distributions (Bordone et al. 2107.00604) ~2.1 σ.
- $\left|V_{c b}\right|=(41.2 \pm 0.8) \times 10^{-3}$ [Martinelli et al. 2204.05925].

Plots for $B \rightarrow D^{(*)}$

$$
\begin{array}{lll}
\text { Combined mode analysis } & \lceil\text { HPQCD } \\
\text { Individual mode analysis } & \mp \text { FNAL/MILC } & \square 1811.00983
\end{array}
$$

Plots for $B_{s} \rightarrow D_{s}^{(*)}$

Comparative study for extraction of $\left|V_{u b}\right|^{e x c}$

Mode	Fits with the Inputs	$\chi_{\text {min }}^{2} / \mathrm{DOF}$	p-value(\%)	$\left\|V_{u b}\right\| \times 10^{3}$	$\left\|V_{u b}\right\| /\left\|V_{c b}\right\|$
$\bar{B} \rightarrow \pi l^{-} \bar{\nu}$	(I) All Experiment+JLQCD (II) Fit-I + LCSR [25, 38] (III) All Experiment+Fermilab/MILC (IV) Fit-III $+\operatorname{LCSR}[25,38]$ (V) All Experiment+RBC/UKQCD (VI) Fit-V $+\operatorname{LCSR}[25,38]$	$\begin{aligned} & 10.8 / 11 \\ & 16.3 / 29 \\ & 11.7 / 12 \\ & 24.2 / 30 \\ & 11.0 / 11 \\ & 17.5 / 29 \end{aligned}$	45.7 97.2 46.6 76.2 44.3 95.3	$\begin{aligned} & 3.98 \pm 0.42 \\ & 3.73 \pm 0.24 \\ & 3.78 \pm 0.16 \\ & 3.84 \pm 0.15 \\ & 3.75 \pm 0.34 \\ & 3.57 \pm 0.23 \end{aligned}$	$\begin{aligned} & 0.098 \pm 0.010 \\ & 0.092 \pm 0.006 \\ & 0.093 \pm 0.004 \\ & 0.095 \pm 0.004 \\ & 0.093 \pm 0.009 \\ & 0.088 \pm 0.006 \end{aligned}$
	$\begin{gathered} \text { (VII) All Experiment+ } \\ \text { RBC/UKQCD+JLQCD } \\ \text { (VIII) All Experiment+ All Lattice } \\ \text { (IX) Fit-VIII + LCSR }[25,38] \end{gathered}$	$\begin{aligned} & 27.2 / 17 \\ & 50.8 / 24 \\ & 55.7 / 42 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 0.1 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 3.69 \pm 0.24 \\ & 3.69 \pm 0.13 \\ & 3.69 \pm 0.12 \end{aligned}$	$\begin{aligned} & 0.091 \pm 0.006 \\ & 0.091 \pm 0.003 \\ & 0.091 \pm 0.003 \end{aligned}$
$\begin{gathered} \bar{B} \rightarrow \pi l^{-} \bar{\nu} \text { and } \\ \bar{B}_{s} \rightarrow K l^{-} \bar{\nu} \end{gathered}$	$\begin{gathered} \text { (X) All Experiment }+ \text { All Lattice } \\ \text { (XI) Fit-(X) }+ \text { LCSR }[25,38,41] \\ \text { (XII) All Experiment + All Lattice } \\ \text { except inputs from } \\ \text { HPQCD on } B_{s} \rightarrow K[40] \\ \text { (XIII) Fit-(XII) }+ \text { LCSR }[25,38,41] \end{gathered}$	$\begin{aligned} & 74.9 / 38 \\ & 95.5 / 57 \\ & 58.8 / 32 \\ & \\ & 88.4 / 51 \\ & \hline \end{aligned}$	$\begin{gathered} 0.03 \\ 0.1 \\ 0.3 \\ \\ 0.1 \end{gathered}$	$\begin{aligned} & 3.60 \pm 0.11 \\ & 3.50 \pm 0.10 \\ & 3.74 \pm 0.12 \\ & \\ & 3.52 \pm 0.10 \end{aligned}$	$\begin{aligned} & 0.089 \pm 0.003 \\ & 0.086 \pm 0.003 \\ & 0.092 \pm 0.003 \\ & 0.087 \pm 0.003 \end{aligned}$
$\bar{B} \rightarrow \rho l^{-} \bar{\nu}$	Experiment + LCSR [25, 36, 37]	31.2/41	86.6	3.22 ± 0.26	0.080 ± 0.007
$\bar{B} \rightarrow \omega l^{-} \bar{\nu}$	Experiment+LCSR [36, 37]	8.6/15	89.7	3.09 ± 0.33	0.076 ± 0.008
$\bar{B} \rightarrow \pi(\rho, \omega) l^{-} \bar{\nu}$	All inputs combined	99.6/100	49.4	3.58 ± 0.11	0.088 ± 0.003
$\bar{B} \rightarrow \pi(\rho, \omega) l^{-} \bar{\nu} \text { and }$$\bar{B}_{s} \rightarrow K l^{-} \bar{\nu}$	$\begin{gathered} B \rightarrow \pi \text { and } B_{s} \rightarrow K: \\ \text { Experiment }+ \text { Lattice } \\ B \rightarrow(\rho, \omega): \text { Experiment } \\ + \text { LCSR } \end{gathered}$	117.8/96	6.5	3.52 ± 0.10	0.087 ± 0.003
	For all modes: Experiment + lattice + LCSR	137.2/115	7.7	3.45 ± 0.09	0.085 ± 0.003

Plots for $B \rightarrow \pi$

Combined $V_{u b}$ modes
$\mathrm{B} \rightarrow \pi 1 v($ Expt + All Lattice $)$
$\mathrm{B} \rightarrow \pi 1 v($ Expt + All Lattice+LCSR $) \quad \mathrm{B} \rightarrow \pi 1 v($ Expt+Only JLQCD $)$
FNAL/MILC - RBC/UKQCD \lceil JLQCD $\quad 1811.00983$
2102.07233

Plots for $B_{s} \rightarrow K$

[^0]
Plots for $B \rightarrow \omega$

Plots for $B \rightarrow \rho$

$$
\begin{aligned}
& \mathrm{B} \rightarrow \rho 1 v(\text { Expt }+ \text { LCSR }) \\
& \square \text { Combined } \mathrm{B} \rightarrow(\pi, \rho, \omega) \mathrm{l} v \text { modes } \\
& \text { Combined analysis with } \mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{~K} 1 v \\
& 1811.00983 \\
& 1503.05534 \\
& 1907.11092
\end{aligned}
$$

Comparative study for extraction of $\left|V_{u b}\right| /\left|V_{c b}\right|$

- $\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=0.079 \pm 0.006\left(\right.$ from $\left.\frac{\Gamma\left(\Lambda_{b} \rightarrow p \mu \nu\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)}[\operatorname{LHCb} 1504.01568]\right)$

Mode(s)	Inputs	$\chi_{\min }^{2} / \mathrm{DOF}$	$\left\|V_{u b}\right\| \times 10^{3}$	$\left\|V_{c b}\right\| \times 10^{3}$	$\frac{\left\|V_{u b}\right\|}{\left\|V_{c b}\right\|}$	Correlation (\%) $\left[\left\|V_{u b}\right\|,\left\|V_{c b}\right\|\right]$
$\bar{B} \rightarrow \pi l^{-} \bar{\nu}$ and $b \rightarrow c l^{-} \bar{\nu}$	Experiment+ All Lattice	171.1/156	3.61 ± 0.15	40.4 ± 0.6	0.089 ± 0.004	12.8
	Experiment+All Lattice+LCSR	191.7/167	3.43 ± 0.12	40.4 ± 0.6	0.085 ± 0.003	14.1
	$\begin{aligned} & \text { Experiment+ All Lattice } \\ & + \text { LCSR (without } f_{+}^{B_{s} \rightarrow K} \text {) } \end{aligned}$	176.1/166	3.57 ± 0.13	40.3 ± 0.6	0.089 ± 0.003	11.5
$\begin{aligned} & b \rightarrow c l^{-} \bar{\nu} \\ & b \rightarrow u l^{-} \bar{\nu} \end{aligned}$	Experiment+Lattice+LCSR	231.8/225	3.34 ± 0.10	40.4 ± 0.6	0.083 ± 0.003	12.4
	Experiment+ All Lattice + LCSR (without $f_{+}^{B_{s} \rightarrow K}$)	219.5/224	3.51 ± 0.11	40.2 ± 0.6	0.087 ± 0.003	10.4

Correlations in the $\left|V_{b b}\right|$ and $\left|V_{c b}\right|$ plane

Estimated values of $R_{B F}$

Experimental : $R_{B F}$ (Low) $=(1.66 \pm 0.12) \times 10^{-3}, R_{B F}$ (High) $=(3.25 \pm 0.28) \times 10^{-3}$			
Mode	Inputs	Predictions of $R_{B F}\left(10^{-3}\right)$	
		Low ($q^{2}<7 \mathrm{GeV}^{2}$)	High ($q^{2}>7 \mathrm{GeV}^{2}$)
$\begin{gathered} \bar{B} \rightarrow \pi l^{-} \bar{\nu} \\ \quad \text { and } \\ b \rightarrow c l^{-} \bar{\nu} \end{gathered}$	Experiment+All Lattice	1.67 ± 0.11	3.32 ± 0.20
	Experiment+All Lattice+LCSR	1.79 ± 0.10	3.17 ± 0.18
	Experiment+All Lattice+LCSR (without $f_{+}^{B_{s} \rightarrow K}$)	1.67 ± 0.11	3.30 ± 0.19
$\begin{aligned} & b \rightarrow c l^{-} \bar{\nu} \\ & b \rightarrow u l^{-} \bar{\nu} \end{aligned}$	Experiment+All Lattice+LCSR	1.80 ± 0.10	3.08 ± 0.17
	Experiment+All Lattice+LCSR (without $f_{+}^{B_{s} \rightarrow K}$)	1.63 ± 0.11	3.30 ± 0.19

Conclusions

- We have extracted exclusive $\left|V_{u b}\right|$ from $\bar{B} \rightarrow(\pi, \rho, \omega) \ell^{-} \bar{\nu}_{\ell}$ and $\bar{B}_{s} \rightarrow K \mu^{-} \bar{\nu}_{\mu}$ decays separately as well as from a combined analysis, studying the impact of the various form factor inputs. From the combined analysis we obtain $\left|V_{u b}\right|=(3.52 \pm 0.10) \times 10^{-3}$.
- For the various $b \rightarrow c l \nu$ transitions also, we have studied $\left|V_{c b}\right|^{e x c}$ determination from $\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}$ and $\bar{B}_{s} \rightarrow D_{s}^{(*)} \ell^{-} \bar{\nu}_{\ell}$ decays. From the combined analysis we obtain $\left|V_{c b}\right|=(40.5 \pm 0.6) \times 10^{-3}$.
- We have also determined the ratio $\left|V_{u b}\right| /\left|V_{c b}\right|$ from the $b \rightarrow u(c) l \nu$ modes independently and also after introducing the inputs on the BRs $\mathrm{BR}\left(B_{s} \rightarrow K \mu \nu\right) / \mathrm{BR}\left(B_{s} \rightarrow D_{s} \mu \nu\right)$ in the 2 bins and compared the results. We have found a good agreement between the measured value of $\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}$ obtained by LHCb from the measurement of $\frac{\Gamma\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}$ and our estimated values from the semileptonic mesonic decays.

Thank
you!

[^0]: $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K} 1 v\left(\right.$ Lattice $\quad \mathrm{B}\left(\mathrm{B}_{\mathrm{s}}\right) \rightarrow \pi(\mathrm{K}) 1 v($ Expt+Lattice +LCSR$) \quad \mathrm{B}\left(\mathrm{B}_{\mathrm{s}}\right) \rightarrow \pi(\mathrm{K}) 1 v$ (Expt+Lattice)
 $\mathrm{B}\left(\mathrm{B}_{\mathrm{s}}\right) \rightarrow \pi(\mathrm{K}) 1 v\left(\right.$ Expt + Lattice without $\left.\mathrm{HPQCD}{ }^{\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{K} l v}\right) \quad+\mathrm{HPQCD} \quad+\mathrm{RBC} / \mathrm{UKQCD}$

 - FNAL/MILC
 1703.04765

