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Preface

Poincaré (1890) was the first who pointed out the complicated dynamics that the existence

of a homoclinic point could involve. Forty years later, Birkhoff (1927) proved that there

were infinitely many periodic points, with arbitrarily large periods, in a neighborhood of

a transversal homoclinic point q. Smale (1967) explained Birkhoff’s results placing his

geometrical device in a neighborhood of q, the so-called horseshoe map.

The horseshoe map is a diffeomorphism f defined on the sphere S2 with a compact

invariant set� given as the product of two Cantor sets. In addition, the set� is hyperbolic,

transitive and the dynamics of f restricted to � is topologically conjugate to a Bernoulli

shift. This allows to prove that the set of periodic points of f is dense in � and also

that � contains an infinite number of periodic points with arbitrarily large period. Both,

diffeomorphisms like the horseshoe map and also those introduced earlier by Anosov (1967)

on the torus T 2, belong to a wider class of systems, the so-called axiom A, uniformly

hyperbolic diffeomorphisms or, simply, hyperbolic diffeomorphisms. The non-wandering

set of a uniformly hyperbolic diffeomorphism f decomposes as a pairwise disjoint finite

union of basic sets, which can be seen, in the most tangled scenario, as the invariant set

of a horseshoe map. The invariant set � of a horseshoe map contains an expansive dense

orbit which implies exponential dependence on the initial conditions and, consequently,

uncertainty. Mainly due to this fact, chaotic dynamics was understood as the presence

of horseshoes. However, � is not an attractor and therefore it is not observable. We say

attractor to refer to any compact invariant set whose stable set has either non-empty interior

(or positive Lebesgue measure). A repeller is an attractor for the backwards dynamics.

Nowadays, at least for families of dissipative systems, chaotic dynamics is mostly

understood as the persistence of strange attractors. An attractor is said strange if it contains

an expansive and dense orbit. Expansivity means that the orbit has at least one positive

Lyapunov exponent. Given a parametric family of dynamical systems, a property, as for

instance the existence of strange attractors, is said persistent if it occurs for parameter

values in a positive Lebesgue measure set. Persistence of a dynamics is physically relevant



because it means that the phenomenon is observable with positive probability. As we

will explain later, for families of diffeomorphisms on surfaces, homoclinic bifurcations

are, as long as they involve the creation or destruction of horseshoes, a well-understood

gateway to the emergence of persistent strange attractors. This fact allows to find, via

Poincaré maps, vector fields in R3 with suspended persistent strange attractors close to a

recurrent orbit. Hence, for families of differential equations in R3, a typical context for

many real-world models, the persistence of strange attractors can be proved near many

homoclinic or heteroclinic cycles. None of these configurations is easy to find in a given

vector field and therefore, the presence of strange attractors is usually concluded by means

of numerical methods. Singularities of a vector field, that is, the equilibrium points, are

the only elements of the phase portrait that can be easily determined, sometimes even

algebraically. For this reason, the main goal of this book is to provide criteria for the

existence of homoclinic cycles, and consequently the persistence of strange attractors, in

generic unfoldings of some (non-hyperbolic) singularity of a vector field. In short, we are

proposing a feasible and manageable route to access the study of dynamic complexity in a

given family of vector fields: the study of singularities of low codimension.

Singularities for which all eigenvalues of the linearization have a non-zero real part

are said hyperbolic. Let us consider a family X� of vector fields on Rn, with � 2 Rk ,

such that p0 2 Rn is a hyperbolic singularity when � D �0. Implicit Function Theorem

and Hartman–Grobman Theorem imply that, for � close enough to �0, there exists an

equilibrium point p�, with p�0
D p0, such that the phase-portraits of X� and X�0

are

locally equivalent. That is, given a family X� of vector fields, hyperbolic singularities, if

exists, they are (generically) present in codimension zero subsets of the parameter space.

In this sense we say that hyperbolic singularities are of codimension zero.

Dealing with non-hyperbolic singularities, the number of degeneracy conditions im-

posed, either at the level of linear or at the level of higher order terms, determines the

codimension of the singularity. Let X� be a family of vector fields, with � 2 Rk , and

assume that there is a singularity at p0, when � D �0, of codimension c 6 k. Codi-
mension c means that, generically, the singularity persists for parameter values in a set

of codimension c in the parameter space. Note also that singularities of codimension c
are avoidable in k-parameter families with k < c, but generic if k > c. In short, the

codimension of a singularity coincides with the smallest number of parameters which are

required to give generic unfoldings. It is clear that the smaller the codimension the more

abundant the singularity is.

Given a dynamical behavior, either chaotic or not, it is of great interest to determine

the singularity of lowest codimension which unfolds that behavior. We can understand this

singularity as the seed from which that dynamics emerges. Given a family of vector fields,

we will want to study if it contains the good seeds to guarantee that a certain dynamics is

present. From the perspective of applications, looking for seeds is a much more manageable

task than trying to directly detect a certain global phenomenon. Bearing in mind this idea,

seeds were found in Drubi, Ibáñez, and Rodríguez (2007) to prove that the coupling of

simple dynamics can lead to the persistence of strange attractors: A thought-provoking idea

in biology and in other branches of science. From a more theoretical point of view, linking



singularities and dynamics allows to transfer the study of the dynamical complexity to the

analytical hierarchy that the notion of codimension introduces in the set of the singularities.

In this book, we propose a journey through singularities, unfolding, bifurcations and

strange attractors. The first stage is a walk through essential results in the context of

diffeomorphisms. After that, we see how these results can be applied to flows of vector

fields via Poincaré return maps. In this way, the persistence of strange attractors in fam-

ilies of diffeomorphisms which unfold a homoclinic tangency lead to the persistence of

suspended strange attractors in families of vector fields. We explain how these attractors

are formed from homoclinic bifurcations, mostly around a Shilnikov homoclinic orbit or

around a bifocal homoclinic orbit, and from heteroclinic bifurcations as, for instance, in

neighborhoods of Bykov cycles. All these global configurations will be introduced later.

These structures are difficult to detect in a phase space, but we prove that they arise in

generic unfoldings of certain singularities. As already mentioned, proceeding in this way,

we provide results that allow to conclude the persistence of strange attractors from the

presence of certain singularities in a given family.

The first example of strange attractor was the solenoid: a hyperbolic strange attractor

built by Smale (1967) on the solid torus. From this example, the term strange attractor

was used by Ruelle and Takens (1971) to provide an explanation for the nature of the

turbulence. However, solenoids do not appear naturally in families of dynamical systems.

On the contrary, other examples such as the attractors found numerically by Lorenz (1963)

and Hénon (1976) arise in simple families of quadratic vector fields and diffeomorphisms,

respectively. Because of their inherent dynamics, these attractors looked like strange

attractors, but they did not have the properties of hyperbolic attractors. This is why during

the 70s, some relevant questions were raised: Do non-hyperbolic strange attractors really

exist?,…If they exist, How abundant are they?, How do they arise?,…Or better, Which

bifurcations are related with their emergence?

Obviously, the answer to the above questions had to be sought outside the set of

uniformly hyperbolic systems. It was learned very soon that these systems were not dense

in the set of regular dynamical systems. In the space of C 1 diffeomorphisms defined on

a compact manifold M with dimension n > 3, open sets of non-uniformly hyperbolic

C 1 diffeomorphisms were constructed from the existence of robust heterodimensional

cycles (see Abraham and Smale (1970) and Simon (1972)). A diffeomorphism has a

heterodimensional cycle associated with two transitive hyperbolic sets if these sets have

different indices (dimension of the stable bundle) and their invariant manifolds meet

cyclically. These cycles are not possible for n D 2, but open sets of non hyperbolic C r

diffeomorphisms, with r > 2, are obtained from robust homoclinic tangencies between the

invariant manifolds of a non-trivial basic set (a horseshoe), Newhouse (1970). Namely, in

this paper, Newhouse proved that there exists an open set U of C r diffeomorphisms with

r > 2 where diffeomorphisms having homoclinic tangencies associated with hyperbolic

periodic points are dense. Hence, the uniformly hyperbolic diffeomorphisms are not dense.

Each of these open sets U is called a Newhouse domain and it contains a residual set R
such that every f 2 R has infinitely many periodic attractors or repellers (Newhouse

phenomenon) Newhouse (1974). In fact, the open set U is arbitrarily close to each C r



diffeomorphism that has a homoclinic tangency Newhouse (1979). New and maybe more

clear proofs of Newhouse results were presented in the book of Palis and Takens (1993)

where also can be found a parametric version of this result, see Robinson (1983).

All in all, homoclinic tangencies are a route of access to new non-hyperbolic dynamics.

Therefore, they could well be the gateway to the existence of strange attractors. On the

other hand, a phenomenon such as the Newhouse could occur for infinite strange attractors.

In this context, Palis formulated several conjectures which have been collected in Palis

(2000), a part of them were aimed at answering the previous questions.

The first analytical proof of the existence and persistence of non-hyperbolic strange

attractors was given in 1991 for the Hénon family

Ha;b.x; y/ D .1 � ax2
C y; bx/; (1)

in a remarkable work authored by Benedicks and Carleson (1991). Consider generic C1

one-parameter families f� of surface diffeomorphisms that unfold homoclinic tangencies

between the invariant manifolds of a saddle-type periodic point for � D �0. Using

the ideas in Benedicks and Carleson (1991), Mora and Viana (1993) proved that strange

attractors or repellers are persistent in f� for � close to �0. The starting point of the proof

in Mora and Viana (1993) is a renormalization which allows to show that, as it happens

with (1), the family f� is a good unfolding of the quadratic limit family fa.x/ D 1� ax2,

in a neighborhood of the tangency point. Attraction or repulsion depends on whether

f is dissipative, or not, at point p. As Palis had conjectured, homoclinic bifurcations

(cycles and tangencies) become a generic mechanism to create non-hyperbolic dynamics

and, in particular, for families of dissipative diffeomorphisms persistent strange attractors.

Together, genericity and persistence imply the abundance of strange attractors in dynamical

models. Some advance on this conjecture has been done in Crovisier and Pujals (2015)

and Pujals and Sambarino (2000).

Regarding coexistence, an analogue to the Newhouse phenomenon was proved in

Colli (1998) for strange attractors. Colli proved that in the Newhouse domains U of C r

diffeomorphisms for r > 3 large enough, diffeomorphisms exhibiting infinitely many

coexisting strange attractors form a dense subset of U . In fact, this result is achieved from
the existence of residual sets of one-parameter families unfolding homoclinic tangencies

analogous to the parametric version of the Newhouse phenomena. Namely, any generic one-

parameter family .f�/� unfolding a homoclinic tangency at � D �0 has an open set I of

parameter value arbitrarily close to� D �0 such that f� exhibits infinitely many coexisting

strange persistent attractors for � in a dense set of I . Although each of these attractors
is persistent in the family .f�/�, like in the Newhouse phenomenon, the coexistence of

infinitely many of them is not persistent. At this point an open question remains: Are there

k-parameter families with infinitely many attractors, either strange or not, for values of

the parameter in a positive Lebesgue measure set E � Rk? In a new conjecture, Palis

claimed that the Lebesgue measure of the possible set E is generically zero for families of

one-dimensional dynamics and surface diffeomorphisms. Although the Palis conjecture

remains still open, some advances in the opposite direction have been made by Berger

(2016, 2017) for families of surface endomorphisms (in fact, local diffeomorphisms) and



higher dimensional diffeomorphisms.

The above mentioned strange attractors are one-dimensional, namely, they are the

closure of the one-dimensional unstable manifold involved in a homoclinic tangency.

To obtain two-dimensional strange attractors, that is, strange attractors where the sum

of the Lyapunov exponents is positive, diffeomorphisms defined on a three-dimensional

manifold and with a tangency involving an unstable manifold of dimension two are required.

Homoclinic tangencies in this case were studied extensively in S. V. Gonchenko, V. S.

Gonchenko, and Tatjer (2007) and Tatjer (2001). For a certain class of these tangencies, the

so-called Tatjer tangencies in the sequel, a suitable renormalization and some subsequent

simplifications allow to reduce the study of the dynamics in a neighborhood of the point of

tangency to the study of the dynamics of the quadratic limit family given by

T˛;ˇ .x; y/ D .˛ C y2; x C ˇy/. (2)

Numerical evidences in Pumariño and Tatjer (2007) show that the dynamical behavior of

the above family is rather complicated. The attractors found for a large set of parameters

seem to be two-dimensional strange attractors. Moreover, in Pumariño and Tatjer (2006)

, a curve of parameters .˛.t/; ˇ.t// was constructed in such a way that the respective

map T˛.t/;ˇ.t/ has an invariant region in R2 which is homeomorphic to a triangle. An

analytical proof of the existence of two-dimensional strange attractors for T˛;ˇ .x; y/ in (2)
is a formidable challenge. Up to now, the existence of these attractors have been proved

for families of Expanding Baker Maps defined on a triangle, see Pumariño, Rodríguez,

Tatjer, et al. (2014, 2015) and Pumariño, Rodríguez, and Vigil (2017, 2018, 2019). These

piecewise linear maps are generalizations to R2 of the tent maps. It is remarkable to recall

that the one-dimensional tent map gave a deep insight to prove of the existence of strange

attractors for the limit family fa.x/ D 1 � ax2 in (1) (see Benedicks and Carleson (1985)

and Jakobson (1981)).

The brief review of results about diffeomorphisms that we have just furnished is basic

to understand the contents of the first part of this book, but these results are still a step

behind real-world applications. Models are usually families of differential equations, rather

than families of diffeomorphisms. Therefore, a new question arises: How strange attractors

appear in families of differential equations Pu D X�.u/?
A partial answer to the above question is well known for the flow of a vector field X

in a neighborhood of a periodic orbit 
 . Given a cross section ˙ at a point p 2 
 \˙ ,

the flow of X allows to define a first return map ˘ on ˙ ; this map is said the Poincaré

map. Periodic points, strange attractors and, in general, invariant sets of f correspond to

periodic orbits, strange attractors and invariant sets of X . This method is part of a more

general process called suspension (not necessarily linked to a periodic orbit). See Katok

and Hasselblatt (1995). Given a diffeomorphisms f defined on ˙ is about looking for a

vector field X whose flow defines f as a first return map on ˙ . Then, one says that the

vector field X was built by suspension from diffeomorphism f and the possible strange

attractors of f correspond to strange attractors of X , which are said suspended strange

attractors. Compare also with the Perturbation Principle of a Poincaré map in Pugh and

Robinson (1983).



An immediate application of the Poincaré map is useful for non-autonomous differential

equations of the type

Pu D X.u/C Y.t; u; �/ u 2 R2

where Y.t; u; �/ satisfies Y.t; u; �0/ � 0 and it is a regular T -periodic perturbation of

the Hamiltonian vector fields X.u/, which has a homoclinic loop. Early research for

these families was clearly driven by the pioneering work of Melnikov (1963), aimed at

searching for transversal homoclinic orbits. Later, the ideas in Melnikov (1963), together

with the exponential dichotomies (see appendices A and B) and the Lyapunov–Smith

method, rounded off an analytical approach that was used in Chow, Hale, and Mallet-Paret

(1980) to prove that if the Hamiltonian equation Rx C q.x/ D 0 has a homoclinic orbit,

then there must be a region R in the space of parameters .�1; �2/, where the perturbed
non-autonomous equation

Rx C q.x/ D ��1 Px C �2f .t/

also exhibits a transversal homoclinic orbit and periodic orbits with arbitrarily large period.

In fact, these results are consistent with the well-known formation of horseshoes in a

neighborhood of a transverse homoclinic point. Currently, after Mora and Viana (1993), we

know that the formation or destruction of these horseshoes, and consequently of homoclinic

tangencies, leads to the persistence of strange attractors (repellers). The regionR is limited

by two curves C1 and C2 which intersect at .�1; �2/ D .0; 0/. Therefore, given a curve in
the parameter space crossing either C1 or C2, strange attractors (repellers) will be persistent

for the corresponding one-dimensional family.

The same analytical approach was applied in Costal and Rodríguez (1985) and Costal

and Rodríguez (1988) to the case of two-parameter families of T -periodic three-dimensional

vector fields

Pu D X.u/C Y.t; u; �1; �2/; u 2 R3: (3)

Note that the Melnikov function had to be defined for a larger dimension. The conclusions

are then like those in Chow, Hale, and Mallet-Paret (1980), but now the Poincaré map is

a diffeomorphism in dimension three. Notice that here there is a proposal of dynamical

models where two-dimensional persistent strange attractors may exist.

More examples focused on the dynamics close to a homoclinic or heteroclinic cycle

can be found in the literature. An early example is the family of quadratic vector fields of

Lorenz (1963). It exhibits a double homoclinic orbit to a saddle-node equilibrium point.

However, we will be interested in the results that were given in the case of homoclinic orbits

to a saddle-focus, that is, those involving a equilibrium point with complex eigenvalues. In

case that the eigenvalues �˛˙ i! and � satisfy ı D ˛=� < 1, we will refer to a Shilnikov
homoclinic cycle. Dynamics associated with this type of cycles and its presence in generic

unfoldings of low dimensional singularities are essential to illustrate the philosophy of the

book.

Shilnikov homoclinic orbits are the simplest ones that yield infinitely many bifurcations

and very complicated dynamics Shilnikov (1967). In fact, Shilnikov results are an extension

of Birkhoff (1927) to a neighborhood of a homoclinic orbit� , where he proves the existence



of a countable set of periodic solutions of saddle type. Again, a simpler geometric proof

can be obtained by taking a return map˘ on any local transverse section˙ at p 2 ˙ \� .

According to Shilnikov (1970) and Tresser (1984), ˘ defines not only one but infinitely

many linked horseshoe maps. In this way, it was shown that, for any n 2 N and for any

local transverse section ˙ to the homoclinic cycle � , the return map ˘ has a compact

invariant hyperbolic set on which it is topologically conjugate to the full shift on n symbols.

The following warning must be given: the return map ˘ is not a diffeomorphism in

a neighborhood of p 2 ˙ since, at least ˘.p/ is not defined. However, this does not
prevent us to be able to justify the presence of infinitely many horseshoes. In fact, ˘ is

defined as the composition of two maps ˚ W ˙0 ! ˙1 and 	 W ˙1 ! ˙0, where ˙0 and

˙1 are sections which are transverse to the vector field at p0 and p1, respectively. One of

them, say 	 , is a diffeomorphism, but the other, that is ˚ , is defined by the flow near the

equilibrium point but it is not defined at p0. It is precisely˚ the map which, under the open

condition ı < 1, explains the arising of infinitely many horseshoes by the composition of

both maps. When we consider a one-parameter family X� of vector fields such that X0

has a Shilnikov homoclinic cycle, an infinite amount number of these horseshoes appear or

disappear generically when � ¤ 0 is close to 0. This mechanism of creation or destruction

of horseshoes injects infinitely many homoclinic bifurcations for a sequence of parameter

values �k which tends to � D 0 as k tends to 1. Then, if the family X� is sufficiently

regular one can apply the results in Mora and Viana (1993) to conclude that close to each

�n there exist strange attractors (or repellers) for parameter values in positive Lebesgue

measure set Ek . Attractors correspond to the dissipative case 1=2 < ı < 1.
Coexistence of strange attractors corresponds to intersections between the sets Ek .

For this it is convenient that many horseshoes are created or destroyed simultaneously.

This is easier to happen when the Shilnikov cycle remains, that is � D 0, but the sign
of ı � 1 changes. This was a motivation to study in Pumariño and Rodrı́guez (1997)

saddle-focus homoclinic cycles with ı D 1. Although this is a resonance condition, there
are results of C 1 linearization which allow us to replace the map ˚ by its linear part and to

get an expression of ˘ which only depends on the diffeomorphism 	 . Taking one of the
coefficients of its linear terms as bifurcation parameter, a family ˘a is given. Associated

with this family there is a sequence of invariant rectangles Rk . Restricted to Rk and after

a convenient renormalization, the family ˘a transforms into a family Ta;b whose limit

family is

ha.x/ D x C ��1 log.a cos x/

This is not the quadratic family, ideas and techniques in Benedicks and Carleson (1991)

Mora and Viana (1993) were adapted in Pumariño and Rodrı́guez (1997) to prove the

existence of strange attractors in each rectangle Rk with k arbitrarily large and for values

of a 2 Ek , with Ek a positive Lebesgue measure set. Later, it was proved in Pumariño

and Rodrı́guez (2001) the existence of infinite sets Ek with a non-empty intersection and,

therefore, the coexistence of infinitely many persistent strange attractors. The translation

of these results to a family of vector fields was done in Pumariño and Rodrı́guez (1997)

as well as in Pumariño and Rodrı́guez (2001) in the simplest possible way, that is, using

piecewise regular vector fields. Results can be stated for C 3 families of vector fields which



are linear in the neighborhood of the equilibrium point. Unlike Mora and Viana (1993),

where Sternberg linearization results are required, only C 3 smoothness is needed in order

to Ta;b be a good C 3 unfolding of the family 	a.x; y/ D .ha.x/; 0/.
Inside the set of C1 families of vector fields with a saddle-focus homoclinic orbit

verifying ı D 1, those families that can be constructed from Pumariño and Rodrı́guez

(2001) have simultaneously infinitely many persistent attractors, but they are not generic

because the vector fields have to be linear in a neighborhood of the equilibrium point.

In this same setting for 1=2 < ı < 1, using Colli (1998), Homburg (2002) proved the

existence of generic families with infinitely many coexisting attractors, but the coexistence

of these attractors is not a persistent property. The possible persistence of the coexistence

of infinitely many strange attractors for these families of vector fields is, as far as we know,

an open question.

Dynamics that we have described are all of them global in a neighborhood of the

homoclinic cycle. The existence of these cycles is an essential ingredient. They are

codimension one bifurcations which are difficult to detect in families of vector fields.

Unlike transversal homoclinic tangencies that can be obtained for (3), homoclinic cycles

for autonomous perturbations

Pu D X.u/C Y.u; �1; �2/, u 2 R3 (4)

do not persist. LetX andY be enough smooth vector fields withY.u; 0; 0/ D Y.0; �1; �2/ D

0 and such that X has a homoclinic cycle. By means of the extension of the Melnikov

function previously mentioned, the use of the exponential dichotomies and the Lyapunov–

Schmidt reduction, it is proved in Rodríguez (1986) the persistence of the homoclinic cycle

for parameter values on a curve �1 D �1.s/, �2 D �2.s/ with �1.0/ D �2.0/ D 0 and
P�1.0/ and P�2.0/ well determined. Control on P�1.0/ and P�2.0/ and a suitable choice of
the vector field X allow to define quadratic families in (4) with Shilnikov cycles. All these

ideas were used to prove in Ibáñez and Rodríguez (1995) the presence of these cycles in

generic unfoldings of a nilpotent singularity of codimension four in R3. Ten years later, a

similar result was proved for the three-dimensional nilpotent singularity of codimension

three in Ibáñez and Rodríguez (2005) with a different approach. By n-dimensional nilpotent

singularity of codimension nwe understand a vector fieldX such thatX.0/ D 0 and whose
lineal part is linearly conjugate to

x2

@

@x1

C x3

@

@x2

C � � � C xn

@

@xn�1

:

.

As follow fromDumortier and Ibáñez (1996), under generic assumptions, any unfolding

of the three-dimensional nilpotent singularity of codimension three can be written as

y2

@

@y1

C y3

@

@y2

C
�
�1 C �2y2 C �3y3 C y2

1 C "�y1y2 CO."2/
� @

@y3

: (5)

where .�1; �2; �3/ 2 S2, .y1; y2; y3/ 2 K � R3, with and arbitrarily big compact set,

� ¤ 0 and " 2 RC.



In Ibáñez and Rodríguez (2005) we prove that there exists a point . O�1; O�2; O�3/ 2 S2

such that the corresponding vector field in the limit family obtained when " D 0 exhibits a
Bykov cycle, that is, a heteroclinic cycle consisting of two orbits connecting two saddle-

focus equilibrium points with different stability index. In Barrientos, Ibáñez, and Rodrı́guez

(2011) it is argued that family (5) is a generic unfolding of the cycle and, consequently

(see details in Chapter 3), Shilnikov bifurcations are contained in the bifurcation diagram

of the family. In Chapter 5 we include some details about the proof of the existence of

the Bykov cycle. We conclude that strange attractors can emerge from codimension three

singularities.

Since strange attractors only can appear for n-dimensional vector fields if n > 3 any
attempt to reduce the codimension of the singularity must be restricted to those with a n-
dimensional center manifold with n > 3. Nowadays it is clear that there exist codimension

two singularities which generically unfold persistent strange attractors. Namely, as we

will recall in Chapter 5, they can emerge from some Hopf–Zero singularities. There is

a detail that makes a difference regarding genericity. All generic conditions which are

required to guarantee that strange attractors appear in an unfolding of the three-dimensional

nilpotent singularity of codimension three can be traced on a finite jet. On the contrary, the

result about the existence of Shilnikov bifurcations in generic unfoldings of a Hopf–Zero

singularity requires conditions which involve the full jet of the singularity.

Dimension three is the smallest dimension in which strange attractors can appear for

flows of vector fields. These attractors are one-dimensional and, as we have already

argued, Hopf–Zero singularities and nilpotent singularities become seeds for some of

them. However, there exist attractors which can demand higher codimension singularities.

For instance, the dynamics of the Lorenz attractor, which was proved to be strange by

Tucker (2002), was previously explained by means of the geometric Lorenz attractor

Guckenheimer and Williams (1979) and Williams (1979). In Dumortier, Kokubu, and Oka

(1995) it was proved that a unfolding of the singularity x2@=@x1 � x3
1@=@x2 C x2

1@=@x3

contains geometric Lorenz attractors. The codimension of this singularity is very high. We

do not know if the Lorenz attractor can be generically unfolded from a lower codimension

singularity. A similar question could be posed for the spiral attractor, which according

to the numerical simulations in Arneodo, Coullet, and Tresser (1981) (see also Pacifico,

Rovella, and Viana (1998)), seems to exist in the neighborhood of a network consisting of

two Shilnikov homoclinic orbits.

Two-dimensional strange attractors for vector field flows can only exist in dimension

n > 4. These are suspended flows from three-dimensional diffeomorphisms that in turn

possess such strange attractors. We have proposed as a mechanism for the formation

of these two-dimensional strange attractors in families of diffeomorphisms the presence

of certain class of Tatjer tangencies (involving a dissipative periodic point with two-

dimensional unstable manifold). After an adequate renormalization in a neighborhood

of the tangency point and some simplifications, the family of diffeomorphism becomes

a good unfolding of the limit family (2). The dynamics that were numerically observed

in Pumariño and Tatjer (2006) and Pumariño and Tatjer (2007) for this family are very

promising. Strange attractors seem to exist, either simply connected, connected but not



simply connected and not connected. For families of Expanding Baker Maps inspired

by (2), see Pumariño, Rodríguez, Tatjer, et al. (2013) and Pumariño, Rodríguez, Tatjer,

et al. (2014), the analytical proof of the existence of this type of strange attractors was

possible. See Pumariño, Rodríguez, Tatjer, et al. (2015) and Pumariño, Rodríguez, and

Vigil (2017, 2018, 2019) for the proof of the persistence of these strange attractors and the

existence of a renormalization process that allows the successive duplication of the number

of strange attractors. A challenging and hard process remains to be done in order to prove

the persistence of strange attractors for family (2) and its unfoldings. We claim that this

persistence is true.

We prove in Chapter 4 that for perturbations of vector fields that break a bifocus

homoclinic cycle, under some extra assumptions, one could obtain Tatjer tangencies. A

bifocus homoclinic cycle of a vector field in dimension n D 4 involves a homoclinic orbit

to a bifocus equilibrium point, i.e., with two pairs of complex eigenvalues �˛1 ˙ i!1

and ˛2 ˙ i!2 with �˛1 < 0 < ˛2. However, the class of Tatjer tangencies that we will

get do not involve a dissipative periodic point with two-dimensional unstable manifold.

But, although this tangencies does not allow two-dimensional strange attractors, we can

still obtain one-dimensional strange attractors and attracting invariant tori. Therefore, the

neighborhood of a bifocus homoclinic orbit, despite being extremely rich and chaotic, does

not seem to be the simplest scenario where two-dimensional strange attractors can appear.

As we have anticipated, the proof of the existence of two-dimensional strange attractors on

a flow and, additionally, the search for a singularity of low codimension from which these

attractors can emerge, is a hard and challenging problem.

The dynamics near a bifocus homoclinic cycle was again studied by Shilnikov (1967,

1970) (see also Devaney (1976b), Fowler and Sparrow (1991), Ibáñez and Rodrigues (2015),

and Wiggins (2013)), who proved the existence of a countable set of periodic solutions

of saddle type. Once again, the existence of these periodic orbits is well understood from

the existence of three-dimensional horseshoe maps. All this dynamics is found in generic

unfoldings of the nilpotent singularity of codimension four in R4, once it was proved

in Barrientos, Ibáñez, and Rodrı́guez (2011) that in such unfoldings there are bifocus

homoclinic cycles. These cycles appear by continuation of similar homoclinic orbits

present in the limit family of the nilpotent singularity which is a reversible Hamiltonian

vector field. In Chapter 4 we will show that suspended robust heterodimensional cycles also

appear by perturbation of conservative (Hamiltonian) and reversible bifocus homoclinic

cycles.

Just now we can emphasize the interest of the study of the unfolding of singularities.

Attention can be directed towards the study of the complexity that arises through the

coupling of systems. For example, in cell growth the dynamics become more and more

complicated in a space of very high dimension. Adescription of the dynamics in these cases

is unattainable. A proposal, perhaps naive, could be to attend to the possible singularities

that arise from the coupling provided that a catalogue of the new dynamics emerging from

the new singularities is available. Restrictions on the model that come from structurally

stable properties could make the problem manageable.

This book is written as notes for a course of the 32nd BrazilianMathematics Colloquium.



Therefore, it is not a compilation of many results that are known about chaotic dynamics for

low-dimensional flows. These notes aim to acknowledge the relationship between certain

singularities of low codimension and the existence of certain relevant dynamics, especially

the persistence of strange attractors. In this way, both concepts, attractor and singularity, can

evoke the singular attractors: those whose internal orbits are accumulated on a singularity.

The canonical example of such attractors is the Lorenz attractor, already mentioned above.

After this example, the singular attractors have been studied in several relevant articles

Araujo et al. (2009), Bonatti, Pumariño, and Viana (1997), and Morales, Pacifico, and

Pujals (1999, 2004), among others. For further details we address to Bonatti, Dı́az, and

Viana (2005, Ch. 9) where relationship between the existence of singular attractors and the

presence of cycles is explained.

This book consists of two parts. A first part will be mainly devoted to the study

certain (homo)heteroclinic cycles (global bifurcations) of vector fields motivated by its

presence in the second part of the book which deals with the unfolding of non-hyperbolic

singularities (local bifurcations). Namely, after a revision in Chapter 1 of some result on

local linearization around a equilibrium point, we study in Chapter 2 the dynamics near

saddle-focus homoclinic cycles. Bykov cycles will also be dealt in Chapter 3 with mainly

due to their role as organizing center in the formation of the saddle-focus homoclinic orbits

for the unfolding of nilpotent singularities which are the focus of Chapter 5. Since both,

generic unfoldings of nilpotent singularities and its limit families also present bifocus

homoclinic cycles we dedicate Chapter 4 to study of this global bifurcations. The second

part, Chapter 5, will be devoted to the study of the singularities of a vector field (local

bifurcations). We will consider the nilpotent singularities of codimension n in Rn, with

n D 3 or n D 4 and we will prove that generic unfoldings of these singularities display
Bykov cycles and Shilnikov homoclinic orbits if n D 3, and bifocus homoclinic orbits in

the case n D 4. We will also study whether either the local codimension of the strange

attractors in R3 is exactly three or a singularity of two codimension, the Hopf–Zero, can

be taken as seed of strange attractors in R3. Results on dichotomy and continuation of

(homo)heteroclinic orbits, which will be required for the exposition of this second part,

will be collected in two appendices.
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1 Local results of
linearization

Consider a differential equation of the form

Pu D X.u/; u 2 Rn (1.1)

whereX is a sufficiently smooth vector field. In what follows '.t; u/ denotes the associated
flow that we will assume defined for every t 2 R. Each set 
 D f'.t; u/ W t 2 Rg for

u 2 Rn is said to be a orbit of (1.1) and we will write 
.t/ to represent the parametrization

of 
 . A heteroclinic cycle of (1.1) is a finite collection of equilibria fO1; : : : ; Ong together

with a set of heteroclinic orbits f
1; : : : ; 
ng such that

lim
t!�1


j .t/ D Oj and lim
t!C1


j .t/ D Oj C1

for j D 1; : : : ; n where OnC1 � O1. This means that the unstable manifold W u.Oj /
intersects the stable manifoldW s.Oj C1/. When n D 1, we say that the set � D fO1g[
1

is a homoclinic cycle.

The destruction (or creation) of these cycles are called heteroclinic or homoclinic

bifurcations and involve interesting dynamic transitions in a neighborhood of � . We refer

to them as global bifurcations (they do not necessarily occur close to an equilibrium point).

The goal of homoclinic and heteroclinic bifurcation theory is to investigate the recurrent

dynamics near a homo/heteroclinic cycle. More precisely, we are interested in finding

all orbits that stay in a fixed tubular neighborhood of a given homo/heteroclinic cycle � ,

for all time. A natural way for approaching this problem is to use first-return maps (or

Poincaré maps), a technique we proceed to explain.



2 1. Local results of linearization

˙2

˙1

O
˚ 	

Figure 1.1: In the classical approach, we consider two cross-sections ˙1 and ˙2 and

write the first return map˘ D 	 ı˚ which is the composition of transition maps between

the cross sections: the local map ˚ and global maps 	 .

1.1 The Poincaré map

Denote by ˙ a cross section to � . Suppose that � \˙ D fpg. Starting with an initial

condition u0 2 ˙ , we then follow the solution '.t; u0/ until it hits ˙ again, say at time

t D t0, and define the first-return map ˘ in such a way that

˘.u0/ D '.t0; u0/ 2 ˙:

The iteration of ˘ reports on the dynamics of the vector fields near � : periodic points

correspond to periodic orbits and invariant set, in general, correspond to invariant sets of

the vector field. Even the asymptotic behavior of the orbits of X can be followed from the

application˘ . Moreover, attractors forX can be constructed by suspension from attractors

of ˘ .

A remarkable difference arises between first return maps around a periodic orbit and

a singular cycle � (a cycle which contains a singularity as homo/heteroclinic cycles).

Since � contains some equilibrium point, hardly the Poincaré map ˘ is defined in a

neighborhood of p because there is no finite time t > 0 such that '.t; p/ 2 ˙ . Actually,

the closer an orbit to � is, the more time it spend near the equilibrium points of � , spoiling

most finite time error estimates for ˘ . This difficulty is saved by considering ˘ as a
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composition of maps defined by means of cross sections ˙i to � . Part of these maps are

defined by the flow of the vector field near some equilibrium point Oj and they are said

local maps. These local maps are the main factors in the dynamics of ˘ , while the rest of

applications ˘i defined away from Oj are diffeomorphisms and they have less relevance.

Certainly, except for questions related to the nature of the cycle (for instance in the double

cycle Lorenz (1963)) the dynamics of ˘ and therefore that of the vector field close to � ,

depends only on the character of the equilibrium points.

The local return map

Consider two cross sections, say ˙1 and ˙2 that are, respectively, transverse to the local

stable and local unstable manifold of a hyperbolic equilibrium point O that for simplicity

we assume the origin in Rn. The local transition map ˚ is the first-return map from ˙1 to

˙2. Understanding ˚ requires solving the linear differential equation

Pu D DX.O/u (1.2)

for u 2 Rn close to O . The asymptotics of an orbit passing near O are, to a large extent,

determined by the linearization (1.2) of (1.1) around the hyperbolic equilibrium point O .

The closest eigenvalues to the imaginary axis will typically dominate the asymptotics as

they give the slowest possible exponential rates: we therefore call them the leading stable

and unstable eigenvalues ofDX.O/. More precisely, denote the eigenvalues ofDX.O/
by �i and �j for i D 1; : : : ; s, j D 1; : : : ; u with uC s D n, repeated with multiplicity

and ordered by increasing real part so that

Re�1 6 � � � 6 Re�s < 0 < Re �u 6 � � � 6 Re �1: (1.3)

The eigenvalues with Re�s and Re �u are the leading stable and unstable eigenvalues,

respectively. The quotient between of the absolute value of the real part of the leading

stable eigenvalue and the real part of the leading unstable eigenvalue, i.e.,

ı D
jRe�sj

Re �u

> 0

is often referred to as the saddle quantity or saddle index.

The classical Hartman–Grobman Theorem states that there is a continuous coordinate

change near the hyperbolic equilibrium O that transforms (1.1) into (1.2). Using such

coordinates, the return map on a cross section is a homeomorphism but it is not clear how

expansions and contractions in the new coordinates may be derived; they are essential

for the bifurcation study. Assuming that the vector field is C 2, Belitskii (1973) derived

an eigenvalue condition (sometimes called non-resonant conditions) which ensures the

existence of a continuously differentiable coordinate change that linearizes the vector field

near a hyperbolic equilibrium. Namely Belitskii proves the following result:
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Theorem1.1. IfX is aC 2 vector field andO is a hyperbolic equilibrium point of (1.1)with

eigenvalues ordered as in (1.3) and such that for each � 2 fRe�i W i D 1; : : : ; sg[fRe �j W

j D 1; : : : ; ug it holds

� 6D Re�i C Re �j for all i D 1; : : : ; s and j D 1; : : : ; u.

Then there is a local coordinate transformation of class C 1 between (1.1) and (1.2).

Also C 1 linearization of (1.1) can be derived from the recent work of Newhouse (2017)

for C 1C˛ vector fields, that is, for C 1 vector fields X with ˛-Hölder derivativeDX for

0 < ˛ 6 1. closest

Theorem 1.2. LetX be a C 1C˛ vector field andO a hyperbolic equilibrium point of (1.1)

such thatDX.O/ is bi-circular, that is, if the set consisting of the real parts of the eigenval-
ues ofDX.O/ is a two element set fa; bg with a < 0 < b. Then there is a local coordinate
transformation of class C 1 between (1.1) and (1.2).

In the particular, this result applies to C r vector fields with r > 1 when O is a saddle-

focus in dimension n D 3 or a bifocus in dimension n D 4 which are the framework

that we are considering in this book. Also C 1 linearization can be followed from the

papers of Samovol (1982, 1988) for three-dimensional flows. For higher-dimensional

flows, under the assumption that leading eigenvalues are simple and unique (up to complex

conjugation), the homoclinic center-manifold theorem Sandstede (1993) gives a three-

dimensional homoclinic center manifold (if the homoclinic orbit is not in a specific form

called flip configuration). This allows a geometric reduction to the three-dimensional case;

although the homoclinic center manifold is, in general, only continuously differentiable

with Holder continuous derivatives, we can stillC 1 linearize (Shashkov and Turaev (1999)).

For higher regularity of the linearization, one must go to the works of Samovol (1979),

Sell (1985), and Sternberg (1958) for sufficiently smooth vector fields. Namely, Sternberg’s

result ensures the following:

Theorem 1.3. Let X be a C r vector field and O a hyperbolic equilibrium point of (1.1)

with eigenvalues denoted by �i , i D 1; : : : ; n such that

�i 6D

nX
kD1

mk�k for all non-negative integers mk with

nX
kD1

mk > 1:

Then (1.2) is C ` linearizing with ` D `.r/. Moreover, `.r/ ! 1 as r ! 1. In particular

if r D 1 then ` D 1.

Actually the above result follows by a similar result for diffeomorphisms applying the

technique of Sternberg (1957) which implies that aC r vector field hasC r linearization near

the singularity O if and only if its time-one map has such a linearization at O . To be more

specific the above result is a consequence of the following theorem for diffeomorphisms:
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Theorem 1.4. Let f be aC r diffeomorphism defined in some neighborhood of the originO
of Rn. Assume thatO is a hyperbolic fixed point of f with eigenvalues �i for i D 1; : : : ; n
satisfying that

�i 6D �
m1

1 � � ��mn
n for all non-negative integers mk with

nX
kD1

mk > 1:

Then f is C ` linearizing near O with ` D `.r/. Moreover, `.r/ ! 1 as r ! 1. In

particular if r D 1 then ` D 1.

If the non-resonant condition is not met, the vector field may still be transformed into

normal form (see for instance Chen (1963)). Structure preserving normal forms (e.g. in the

class of equivariant, conservative or reversible differential equations) are another important

topic: we will not discuss this here but refer to Bonckaert (1997) for Sternberg’s theorem

in a specific approach. Useful expansions for ˚ may be hard to obtain if the normal form

is not linear though problems involving one-dimensional unstable separatrices are often

tractable.

Another approach used in Deng (1989b) is the use of Shilnikov variables introduced

by Shilnikov in 1968 to compute the local transition map near equilibria to leading order.

Instead of solving an initial value problem, solutions near the equilibrium are found using

an appropriate boundary value problem. The analysis of the resulting integral formulae

leads to asymptotic expansions for the solutions.



2
Saddle-focus
homoclinic

cycles

In three dimensions, a homoclinic orbit to a saddle-focus equilibrium point is the simplest

cycle that yield infinitely many transitions and very complicated dynamics. At the mid 60’s,

under an eigenvalue condition that states that the expanding real eigenvalue dominates the

complex conjugate contracting eigenvalues, Shilnikov proved analytically the existence

of infinitely many periodic orbits of saddle type in each neighborhood of the homoclinic

orbit Shilnikov (1965, 1967). This set of closed trajectories is similar to the extremely

intrincated set of periodic orbits, mostly with a very long period, founded by Birkhoff

(1927) near a homoclinic point of a diffeomorphism. In order to explain Birkhoff’s result,

Smale placed in Smale (1967) his geometrical device, the horseshoe, in a neighborhood of

a transversal homoclinic point. Analogously, the periodic solutions found by Shilnikov are

contained in suspended horseshoes that accumulate onto the homoclinic orbit as Tresser

(1984) explained geometrically (see also Shilnikov (1970)). Adeeply study of the unfolding

of saddle-focus homoclinic orbits was done in Glendinning and Sparrow (1984) (see

also Gaspard, Kapral, and Nicolis (1984)). They showed that there are sequences of

parameters accumulating on the homoclinic bifurcation value at which the system has

more geometrically complicated homoclinic bifurcations as well as a periodic orbit winds

its way to infinite period. Dynamical features beyond hyperbolic suspended horseshoes

and secondary homoclinic bifurcations, including the existence of periodic and strange

attractors accumulating onto the homoclinic orbit, were described in later papers S. V.

Gonchenko, Turaev, Gaspard, et al. (1997), Homburg (2002), Ovsyannikov and Shilnikov

(1987), and Pumariño and Rodrı́guez (1997, 2001).
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In this chapter we will study the dynamics associated with the unfolding of saddle-focus

homoclinic cycles describing the aforementioned results, among others, paying special

attention to the existence of strange attractors.

2.1 Setting

Consider a differential equation

Pu D X.u/; u 2 R3 (2.1)

where X is a C r vector field with r > 1. We assume that the associated flow satisfies the

following hypotheses:

(S1) There is an equilibrium point O with eigenvalues ofDX.O/,

� and �˛ ˙ !i where �; ˛ > 0 and ! 6D 0.

(S2) There is (at least) one trajectory 
 biasymptotic to O .

The homoclinic cycle is given by � D fOg [ 
 . Thus the equilibrium O possesses a

two-dimensional stable manifoldW s.O/ and a one-dimensional unstable manifoldW u.O/
which intersect non-transversely. See Figure 2.1 for an illustration. If we restrict the system

to the local stable manifold, the equilibriumO is a stable focus, i.e., the orbits spiral around

O as t ! 1. This is why O is called a saddle-focus.

We will consider different conditions on the saddle quantity (also called by saddle

index) which is the absolute value of the quotient between of the real part of the contracting

eigenvalue over the real part of the expanding eigenvalue, i.e.,

ı D
˛

�
> 0:

Namely, we study the above configuration under the assumptions:

(S3) ı < 1 (Shilnikov condition)

(S4) ı > 1

(S5) ı D 1 (resonant condition).

A topological invariant or a modulus is a function of the vector field X that is in-

variant under topological equivalence. The saddle quantity ı, whether larger than one

(condition (S4)) or not (condition (S3)), is always a topological invariant of saddle-focus

homoclinic orbits Arnold et al. (1999), Ceballos and Labarca (1992), Palis (1978), Ro-

drigues (2015), and Togawa (1987). Also the absolute value of the frequency ! was also

showed to be a topological invariant Dufraine (2001) for (S1) and (S2).
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Later, we will see that condition (S4) implies that � is attracting and the dynamics in

a small tubular neighborhood of this homoclinic cycle is simple. Shilnikov discovered

in Shilnikov (1965) that, when (S3) holds, the dynamics near the homoclinic solution �
involves infinitely many periodic solutions arbitrarily close to the cycle. For this reason (S3)

is usually called Shilnikov condition. In particular, we will refer us to � (resp. 
) as
Shilnikov homoclinic cycle (resp. orbit) when (S1)–(S3) are satisfied. A geometric and nice

explanation of the organization of these periodic orbits into infinitely many horseshoes

has been given by Tresser (1984). Throughout the present chapter these results will be

clarified.

W u
loc
.O/

W s
loc
.O/

O




Figure 2.1: Saddle-focus homoclinic cycle � D fOg [ 
 .

In order to study the bifurcation theory of the above configuration, we consider a

k-parameter family unfolding generically the homoclinic orbit 
 in (S2). In fact, it suffices

to consider k D 1 since homoclinic orbits have codimension one (see in the appendix

comments after Proposition A.21 and below Remark B.5). Thus, we will consider a generic

one-parametric unfolding of (2.1) given by

Pu D X�.u/
def
D X.u/C Y.u; �/; u 2 R3; � 2 Œ�"; "� (2.2)

where Y is of class C r with r > 1 such that Y.0; �/ D Y.u; 0/ D 0 and " > 0 small
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enough. The word generic (in the unfolding) means that when � 6D 0, the stable and
unstable manifolds of O split with non-zero speed with respect to the parameter. This

system may be recast into the form

8<: Px D �˛x � !y C P.x; y; z; �/
Py D �!x C ˛y CQ.x; y; z; �/
Pz D �z CR.x; y; z; �/

(2.3)

where P;Q;R are C r smooth along with their first derivatives vanishing at the origin

for all � and ! D !.�/, ˛ D ˛.�/ and � D �.�/ are positive. In this coordinates

.x; y; z/ 2 R3, the local unstable manifold W u
loc
.O/ is tangent to the z-axis and the local

stable manifold W u
loc
.O/ is a surface tangent to the plane defined by z D 0. In order to

determine the nature of the dynamics near � we reduce its analysis to that of a Poincaré

map on a small cross-section transversal to � .

2.2 First-return map

Since X is a C r vector field with r > 1, according to Newhouse (2017) (see §1.1) we can
C 1 linearize (2.3) aroundO . In the usual cylindrical coordinates .r; �; z/, the linearizations
take the form 8̂<̂

:
Pr D �˛r

P� D !

Pz D �z

(2.4)

on a cylindrical neighborhood V of O of height " > 0 and smaller radius. The local

stable manifold W s
loc
.O/ of O (defined by z D 0 in this coordinates) divides V into

two connected components, say V ˙, well defined by the sign of the z-component. The

boundary @V of V can be written as @V D In [ Out where In is the cylinder wall and

Out D OutC [ Out� consists in the top and bottom caps of the cylinder distinguished

by the sign of z. In the cylindrical coordinates Out˙ corresponds to .r; �/ with z D ˙"
respectively. Solutions starting at V ˙ nW s

loc
.O/ leave in positive time the region of linear

coordinates through Out˙ respectively. We choose that the homoclinic orbit 
 meets OutC.

Hence the trajectories starting at V � wanders away from the region that we are considering

(a small neighborhood of � ) and is of no further interest in this local analysis.
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OutC

V C

V �

Out�




Figure 2.2: Cylindrical neighborhood of O .

The solution of (2.4) starting at a point .r; �; z/ in V nW s
loc.O/ is given by

r.t/ D re�˛t �.t/ D !t C � z.t/ D ze�t :

The time of flight T > 0 for this solution to reach Out is found by solving the equation

" D jzj exp.� T /. Rescaling the variables, we may take " D 1. Thus, this trajectory meets

Out at

Nr D r jzjı N� D �
!

�
ln jzj C � Nz D ˙" (2.5)

where recall that ı D ˛=� > 0.
Now, inside of V we choose a small two-dimensional rectangle ˙ transverse to 


and also to W s
loc
.O/ intersecting it on a radial line out from O . Changing coordinates

by a rotation around the z-axis if necessary, one can assume ˙ � f� D 0g. That is, the
coordinates on ˙ are .r; z/ with � D 0 and r , jzj enough smaller. Hence, in rectangular

coordinates

˙ � fy D 0g
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i.e., ˙ is in the xz-plane. Moreover, the radial coordinate r restricts to ˙ coincides with

the rectangular coordinate x. Thus, restricting the local map (2.5) to ˙C D ˙ \ V C we

get that

. Nr; N�/ D ˚.x; z/ D

�
xzı ;�

!

�
ln z

�
2 OutC: (2.6)

Local geometry. Now, the main goal is to study the geometry of the local dynamics near

the saddle-focus. First we introduce the concept of a vertical and horizontal line.

Definition 2.1. A smooth curve ˇ is called vertical line on ˙ if ˇ could be parameterized

by a function ˇ W Œ0; 1� ! ˙ such that ˇ.0/ 2 W s
loc
.O/ and ˇ.s/ has z-component

monotonic and x-component bounded.

The definition of vertical line may be relaxed: the components do not need to be

monotonic for all s 2 Œ0; 1�. We use the assumption of monotonicity to simplify the

arguments.

Definition 2.2. Let a 2 R,D be a disc centered at p 2 R2.

1. A spiral onD around the point p is a smooth curve S W Œa;1/ ! D satisfying that

S.s/ ! p as s ! 1 and such that if S.s/ D .r.s/; �.s// is its expression in polar
coordinates around p then

lim
s!1

j�.s/j D 1

r.s/ is bounded by two monotonically decreasing maps converging to zero as s ! 1

and �.s/ is monotonic for some unbounded subinterval.

2. A double spiral onD around the point p is the union of two spirals accumulating on

p and a curve connecting the other end points.

3. The region bounded by the double spiral onD around the point p is often called by

snake region around p. Part of snake region is called a curl.

Making use of (2.5), the next result characterizes the local dynamics near the saddle-

focus, which is depicted in Figure 2.3.

Lemma 2.3. A vertical line ˇ on ˙ is mapped by the local map into a spiral on Out˙

accumulating on the point defined by Out˙ \W u
loc
.O/.

Proof. Let ˇ be a vertical line on˙ . Write ˇ.s/ D .x.s/; z.s//, where s 2 Œ0; 1�. Without

loose of generality, we can assume that z > 0 is an increasing map as function of s and
z.0/ D 0. Using (2.6), the function ˚ maps the vertical line ˇ into the curve on OutC.

This curve ˚ ıˇ is a spiral accumulating on the point defined by OutC \W u
loc
.O/ because

z.s/ converges monotonically to zero as s ! 0 and x.s/ is bounded.
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ˇ

˚.ˇ/

Figure 2.3: Local dynamics near O: a vertical line ˇ is mapped by ˚ into a spiral on

Out accumulating on the point defined by Out \W u
loc
.O/.

Global map. Recall that the cross-section ˙ to � was chosen as a small rectangle

contained in the plane y D 0. For � 2 Œ�"; "�, the global map from OutC to ˙ , say 	 ,
may be represented, by using regular coordinates on OutC

.x; y/ D .r cos �; r sin �/

as the composition of a rotation of the coordinate axes and a change of scales. After a

rotation and a uniform rescaling of the coordinates, we assume, without loss of generality,

that for � D 0 the homoclinic orbit meets ˙ at .x; y; z/ D .1; 0; 0/. Moreover, since (2.3)

is a generic unfolding when � 6D 0, the cycle � is broken with non-zero velocity. Hence,

on some open set U � OutC contained the point W u
loc
.O/ \ OutC, the map 	 may be

written as �
x
z

�
D

�
1
�

�
C

�
a1 a2

a3 a4

��
x
y

�
C � � � (2.7)

where ai D ai .�/ 2 R, the dots represents higher order terms and

det

�
a1 a2

a3 a4

�
¤ 0:

The first-return. Let us denote by ˘�
def
D 	 ı ˚ the first-return map from ˙C to ˙

when it is well defined. Combining (2.6) and (2.7) the first-return take the form . Nx; Nz/ D
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˘�.x; z/ where

Nx D 1C a1xz
ı cos .� ln z/C a2xz

ı sin .� ln z/C � � �

Nz D �C a3xz
ı cos .� ln z/C a4xz

ı sin .� ln z/C � � �
(2.8)

with � D �!=� and ı D ˛=�. Up to high order terms, this first-return map may be

approximated by

Nx D 1C axzı cos .� ln z � '1/ Nz D �C bxzı cos .� ln z � '2/ (2.9)

where a D

q
a2

1 C a2
2, b D

q
a2

3 C a2
4 and '1 D arctan a2=a1, '2 D arctan a3=a4.

2.3 Horseshoes

We will study ˘� for � D 0. For simplicity of notation, we write ˘ instead of ˘0. The

following lemma is illustrated in Figure 2.4.

Lemma 2.4. The image of ˙C under ˘ is a region bounded by a double spiral accumu-

lating on � \˙ (snake region).

Proof. Observe that the vertical boundaries of˙C are vertical lines. Then, using Lemma 2.3,

the image of ˙C on OutC is a region bounded by a double spiral accumulating on

W u
loc.O/ \ OutC. Thus, ˚.˙C/ is a snake region on OutC. Since the map 	 is a (local)

regular diffeomorphism by the flow box theorem, preserves the spiraling shape and then

˘.˙C/ is contained in a region bounded by two spirals accumulating on � \˙ .
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Figure 2.4: The image of˙C by˘ is a region bounded by a double spiral accumulating

on � \˙ (snake region).

The preimage of W s
loc.O/ \˙ by the first-return map ˘ could be approximated by

solving Nz D 0 in (2.9). This provides an infinite sequence of lines given by

`k W zk.x/ D e
��k�

! .1CO.1// � e
��k�

! (2.10)

for k 2 N sufficiently large and x close to 1. As k ! 1, these lines accumulate on z D 0.
They are the intersection of the global manifold W s.O/ with ˙C. This is why the stable

manifold is self-limiting here and has an helicoid form.

Let us select in the upper section ˙C the strips Rk bounded by the lines `k such

that its image is still in ˙C. By construction, the images of ˙C under ˘ which do not

belong to the union of Rk fall into the region ˙� D ˙ \ V � after some interaction and

thus comes out of our analysis. Without lose of generality, we can assume the strip Rk
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˘.Rk/

Rk

(a) Assumption (S3)

˘.Rk/

Rk

(b) Assumption (S4)

Figure 2.5: (a) The horseshoe (b) Attracting structure of � .

in ˙C is bounded by the lines `2k�1 and `2k and satisfies ˘.Rk/ � ˙C. Having into

account (2.10), each strip Rk may be approximated by the reparametrization

Rk 7! Œ1 � �; 1C �� � Œz2k ; z2k�1� where zi D e
�i��

!

and � > 0 is small enough. On the other hand, ˘.Rk/ D 	 ı ˚.Rk/ is a curl, part of a
bigger snake region (see Lemma 2.4). Note that the map 	 adds only a bounded distortion

factor to the picture induced by the local map ˚ . Hence the image by 	 of the half-curl

˚.Rk/ is also a half-curl in ˙C of the same order. Therefore, ˘.Rk/ D 	 ı ˚.Rk/
lies in an annulus in ˙ centered at .x; z/ D .1; 0/ and with inner and outer radius given,
respectively, by

rin
k � .z2k/

ı and rout
k � .z2k�1/

ı : (2.11)

The following result shows the existence of infinitely many suspended horseshoes in any

neighborhood of � .

Theorem 2.5. Let ˘ W ˙C ! ˙ be the first-return map of a vector field under the

hypotheses (S1)–(S3). Then there is a sequence of hyperbolic compact invariant sets �k

in ˙C of ˘ such that the restriction of ˘ to �k is topologically conjugate to a full shift

on two symbols.

Proof. The height of the top boundary ofRk may be estimated by z2k�1 while that the inner

radius r ini of the curl ˘.Rk/ is approximated by .z2k/
ı . Since, by condition (S3), ı < 1



16 2. Saddle-focus homoclinic cycles

then we have that 2k � 1 > 2kı or equivalently z2k�1 < .z2k/
ı for any k large enough.

Therefore, for each k large enough, the intersection ˘.Rk/ \Rk ¤ ; and consists of two

connected components of the intersection as Figure 2.5 shows. It is geometrically evident

that this configuration provides a Smale horseshoe, i.e., a hyperbolic set topologically

conjugate to the full shift of two symbols.

The following result shows that under the assumption (S4) instead of (S3) the dynamics

near � is simple. Namely, the cycle attracts all trajectories starting in a small neighborhood

T of � and remaining forward in this neighborhood.

Theorem 2.6. Under the hypotheses (S1), (S2) and (S4), there are no periodic orbits in

any small neighborhood T of � . Moreover, the cycle attracts the trajectories that remains

forward in T .

Proof. Observe that, since ı > 1 (condition (S4)), for every k large enough, .2k�1/ı > 2k
or, equivalently .z2k�1/

ı < z2k . This means as Figure 2.5 shows that the outer radius

of the image of Rk by ˘ belongs below the bottom boundary of Rk and concludes the

theorem.

Linked horseshoes. The set of all orbits that lie in a (fixed) small neighborhood T of

� is larger, and much more complicated, than the union of the hyperbolic sets �k in

Theorem 2.5. Observe that each of these sets live in ˘.Rk/ \Rk . However, different Rk

can interact and provide initial conditions of orbits jumping between different strips and

providing new invariant dynamics in T . See Figures 2.6. For a jump from Ri to Rj , with

i > j , we need that

z2j �1 < r
in
i � .z2i /

ı or equivalently 2j � 1 > 2iı: (2.12)

As a consequence since ı < 1 we get that for every n > 1, we find a larger k such that

2k � 1 < 2.k C n/ı and, consequently, ˘.Ri / \ Rj has two connecting component

for all i; j 2 fk; : : : ; k C ng. Hence, the maximal invariant set in the union of Ri for

i D k; : : : ; k C n is a horseshoe in N D 2n symbols, i.e., a hyperbolic invariant set of ˘
topologically conjugate to the full shift of N D 2n symbols. Consequently one gets the

following extension of Theorem 2.5.

Theorem 2.7. Let ˘ W ˙C ! ˙ be the first-return map of a vector field under the

hypotheses (S1)–(S3). Then there is sequence of hyperbolic compact invariant sets ˝k in

˙C of ˘ accumulating on � \˙ such that the restriction of ˘ to ˝k is topologically

conjugate to a full shift on k symbols.

Also the relation (2.12) suggests that the structure of the set of orbits that lie in T
strongly depends on the saddle index ı < 1 (hypothesis (S3)). Every orbit that remains in

T in forward time has a natural coding a sequence of non-zero integers ks . More precisely,

fixed ı 6 � 6 1, one associates the symbols Ci or �i to the two horizontal strips of the
rectangle Ri whose image under˘ cuts vertically the rectangles Rk for k > �i . Let �.�/
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be the set of such sequences .ks/s in .Z n f0g/N . The following theorem due to Shilnikov

in Shilnikov (1970) (see also Tresser (1984)) describes the dynamics near � by means of

subshift of finite type (a Markov chain) in infinite number of symbols:

Theorem 2.8. Let ˘ W ˙C ! ˙ be the first-return map of a vector field under the

hypotheses (S1)–(S3). Then for each � with ı 6 � 6 1 there is an invariant set ˝.�/ in
˙C of ˘ such that the restriction of ˘ to ˝.�/ is topologically conjugate to the shift

map on �.�/. Moreover, the restriction of˘ to the intersection of˝.�/ with any compact
subset in ˙C nW s

loc.O/ is hyperbolic.

Rk

RkC1

˘.Rk/

˘.RkC1/

Figure 2.6: Linked horseshoes.

The dynamics described by Theorem 2.8 has several important properties. First, the

suspension of ˝.ı/, i.e., as an invariant set of the system of differential equations, is not

hyperbolic since its closure contains the equilibrium O . However, the restriction of this

set to any compact set in ˙C nW s
loc
.O/ is hyperbolic. Secondly, the set ˝.ı/ does not,

typically, admit a symbolic description with finitely many symbols. And, moreover, the

set ˝.ı/ does not necessarily contain all solutions in the neighborhood T . Note that ˝.ı/
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� < 0

� D 0

� > 0

G

z

Figure 2.7: Intersection of G.z/ with Nz D z � � under the assumption (S4).

depends sensitively on the ı < 1. In particular, for any two, arbitrarily close saddle index
ı1 and ı2, if ı1 > ı2, one can always find sequences in �.ı2/ which are not in �.ı1/.
Thus, orbits with certain codings will disappear in T at an arbitrarily small increase of ı.
This means bifurcations of non-hyperbolic periodic orbits and homoclinic tangencies occur

within T .

As mentioned above, for fixed compact set K in ˙C nW s
loc
.O/, the set ˝.ı/ \ K is

hyperbolic and thus persists for all systems which are sufficiently C 1-close, even when the

homoclinic loop splits. The complete set ˝.ı/ does not entirely survive the breakdown of
the loop; in fact, an infinitely many horseshoes close to � disappear as we see below.

2.4 Unfolding the homoclinic connection

Under the assumptions (S1), (S2) and (S4) we have seen in Theorem 2.6 that for � D 0 the
cycle � attracts all the orbits that remains forward in a small tubular neighborhood of � .

Thus there is no periodic orbits near � . For � 6D 0, a local analysis due by Glendinning
and Sparrow (1984) provides the following:

Theorem 2.9. Let X� be a one-parameter family of vector fields unfolding at � D 0 the
homoclinic cycle � of a vector field under the assumptions (S1), (S2) and (S4). Then an

attracting periodic orbit appears for � > 0, collides � when � D 0 and disappears for
� < 0.

Proof. To study the fixed points of the first-return map, one needs to impose that .x; z/ D
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˘�.x; z/. Hence, imposing that Nx D x, solving x as function of z and substituting into
Nz D z in (2.9) gives

.z � �/.1 � azı cos.� ln z � '1// D bzı cos.� ln z � '2/: (2.13)

Solving (2.13) gives us the z-component of the fixed point. Substituting after that into (2.9)

one gets the x-component of the fixed point. When z is small we can assume that 1 �

azı cos.� ln z�'1/ is close to 1. Thus, the z-component of the fixed point will be modeled

by the equation

z � � D bzı cos .� ln z � '1/ :

Recall that the bifurcation parameter � controls the splitting of the homoclinic loop � .

Note that the original loop � exists at � D 0. Under the assumption (S4), the graph of the

one-dimensional map

G.z/ D bzı cos .� ln z � '1/

is shown in Figure 2.7. Variations of � move the graph Nz D z � � up or down, so that an

attracting fixed point appears for � > 0, collides with z D 0 for � D 0 and disappears for
� < 0 concluding from this theorem.

As we have showed above, the dynamics for (S1), (S2) and (S4) for � 6D 0 is still
simple (the possible structures of the maximal invariant set is described in Shilnikov

et al. (2001, Thm. 13.11)). Similar scenario can be found under the assumption that the

equilibrium point has pure real eigenvalues (see Rodrigues (2017) and Shilnikov et al.

(2001)). Amajor difference between these situations and the one described by (S1)–(S3)

is that for Shilnikov homoclinic cycles, it is not necessary to break the connection to

have complicated dynamics. Infinitely many horseshoes are always present in any tubular

neighborhood of a Shilnikov homoclinic cycle and even strange attractor could be appears

in its gaps (see §2.5). On the other, to study how these horseshoes are formed or destroyed

when we break the connection we need to understand the unfolding of (2.8) for � 6D 0.

Assume now (S1)–(S3). We know that the image of the stripRk by˘� is also contained

in an annulus with inner and outer radius given by rin
k

and rout
k

in (2.11) but now centered

at .x; z/ D .1; �/. Hence, in order to get a Smale horseshoe for ˘� restricts to Rk for k
large enough, it is necessary that

z2k�1 < �C rin
k � �C .z2k/

ı and z2k > �C rout
k � �C .z2k�1/

ı :

As we have seen, both conditions hold for� D 0when ı < 1 and k large enough. However,
if � < 0 there is k1 > 0 such that z2k�1 > �C .z2k/

ı for all k > k1. Similarly, if � > 0
we violated the second condition for all k large enough. Thus infinitely many horseshoes

are destroyed. In particular only a finite number of periodic point of a given period survived

for � 6D 0.
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Subsidiary homoclinic orbits As we break the homoclinic orbit cycle � , also called as

principal homoclinic cycle, other homoclinic orbits of a different nature could arise. Hence

the Shilnikov scenario is repeated for these loops (see Figure 2.8). This phenomenon has

been noted by Glendinning and Sparrow (1984). When � is broken up for � > 0, the set
W u.O/ intersects ˙C at the point .x; z/ D .1; �/. Therefore, this point may be used as

a new initial condition for the Poincaré return map. If the z-component of return of this

point is zero, a new homoclinic orbit is found which pass twice through V before falling

back into the origin.

Definition 2.10. A n-pulse homoclinic orbit to O (with respect to neighborhood V of O)

is a homoclinic solution that passes n � 1 times through V , before falling into O .

Figure 2.8: Subsidiary homoclinic orbits.

As suggested in Figure 2.8, we may state the following result:

Proposition 2.11 (Glendinning and Sparrow (1984)). Let X� be a one-parameter family

of vector fields unfolding at � D 0 the homoclinic cycle � of a vector field under the

assumptions (S1)–(S2). Then, for any tubular neighborhood T of � ,

(i) there are infinitely many values of� converging to zero for which n-pulse homoclinic
orbits provides (S3) holds;

(ii) the only homoclinic is the principal cycle provides (S4) holds.
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2.5 Strange attractors

Unless otherwise stated, in this section we will be considering a C1-family of vector fields

X� satisfies the assumptions (S1) and (S2). By C1-family we understand in both, in the

dynamics and in the parameters. Actually, all the result stated holds if the family is C r for

some r sufficiently large.
In the case that� is a Shilnikov homoclinic cycle, that is, under the assumptions (S1)–(S3),

the existence of infinitely many suspended horseshoes was showed in Theorem 2.5 and 2.7.

When these horseshoes are generated or destroyed the stable and unstable manifold of its pe-

riodic points inevitably present a homoclinic tangency. The unfolding of these homoclinic

tangencies lead to complicate dynamics such as persistent strange attractors (or repellers).

See definition below. Namely, we will study here the genesis of this attractors in two

situations: in the unfolding of the homoclinic orbit (� 6D 0), i.e., when under perturbations
there is no a homoclinic orbit, and when we still keep a Shilnikov homoclinic cycle but

changing its internal configuration (by means of the parameter ı).

Definition 2.12. A strange attractor is a compact invariant set � of a differentiable dy-

namics f having a dense orbit (transitivity) with at least one positive Lyapunov exponent

(sensitive dependence on initial conditions), i.e., there is z 2 � such that ff n.z/ W n > 0g
is dense in � and

lim inf
n!1

1

n
log kDf n.z/k > 0

and whose stable setW s.�/ D fx W d.f n.x/;�/ ! 0g has non-empty interior. A strange

repeller is strange attractor for f �1. A vector field possesses a (suspended) strange

attractor if a first return map to a cross section does.

Obviously, strange attractors are always non-trivial (i.e., non-periodic). However, they

could be still hyperbolic as for instance the Plykin attractor or the Smale solenoid. One

of the first examples of a non-hyperbolic strange attractors was given (numerically) by

Hénon (1976) for the family

Ha;b.x; y/ D .1 � ax2
C y; by/

at the parameters a D 1:4 and b D 0:3. This family for b > 0 can be easily written as

Ha;b.x; y/ D .1 � ax2
C

p
by;

p
bx/

For b D 0 the dynamics of the corresponding Hénon map is given by the limit family

of quadratic maps fa.x/ D 1 � ax2. The compact interval Œ1 � a; 1� for 1 < a 6 2 is
an invariant set of fa. But also of the so-called tent map ha.x/ D 1 � a jxj. For any

parameter a, it is easy to find dense orbits of ha which are clearly expansive. However

this is not true for the family fa. Mainly because the derivatives are arbitrarily small

near 0, there appear sinks for many values of the parameter a. For other values it was
proved in Benedicks and Carleson (1985) that there exists 0 < " � 1 and a positive
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Lebesgue measure set E � .2� "; 2/ such that the orbit ff n
a .0/ W n > 0g is expansive and

dense in Œ1 � a; 1� for every a 2 E. Hence Œ1 � a; 1� is a strange attractor of fa for every

a 2 E. The results in Benedicks and Carleson (1985), see also Jakobson (1981), were key

to prove the existence of strange attractors for the family of Hénon maps in Benedicks

and Carleson (1991). For b > 0, the mapsHa;b are diffeomorphisms with a saddle fixed

point p. When b goes to zero the unstable manifold W u.p/ of p approaches the segment

` D
˚
.x; 0/ 2 R2 W x 2 Œ1 � a; 1�

	
and it is natural to think that the dynamics of Ha;b

along W u.p/ are close to the dynamics of fa. From this idea, a network of complicated

arguments allow to check that for b arbitrarily small (0 < b � 1) and a 2 E (where E
is again a positive Lebesgue measure set close to a D 2) there exists an expansive orbit
that is dense in the closure of W u.p/ and consequently, the closure of W u.p/ is a strange
attractor of Ha;b . After a careful reading of the intricate arguments in Benedicks and

Carleson (1991) it is natural to think that an extension of its conclusions could be possible

for some other family Fa;b whose family of limit maps was also the quadratic family fa.

Families of this type will be called Hénon-like families:

This family can be include in the following definition:

Definition 2.13. AC r -family .ga/a of diffeomorphisms with r > 3 is said to beHénon-like
family if g is C 3-close enough to the family .˚a/a of endomorphisms of R2 given by

˚a.x; y/ D .1 � ax2; 0/

on a sufficiently large rectangle in R � R2 (say, Œ�4; 4� � Œ�10; 10�2).

Hénon-like maps are (strongly) area-contracting everywhere in their domain and so

they can not have non-trivial hyperbolic attractors. This lack of hyperbolicity prevents to

find attractors which persist under perturbations. Hence, the question that arises is whether

such attractors could survive not for all perturbations but, at least, for most. Since, it is

not known how to introduce a notion of measure for the space of dynamics (at least in

dimension large than one1), Kolmogorov in his plenary talk ending the ICM 1954 proposed

to consider finite parametric families (actually, finite number of functional, see Hunt and

Kaloshin (2010)).

Definition 2.14. Let P be a property of a dynamics. A parametric family .f�/� exhibits

persistently the property P if P is observed for f� in a set of parameter values � with

positive Lebesgue measure. The propertyP is said to be typical (in the sense of Kolmogorov)

if there is a Baire generic set of parameter families of dynamics exhibiting the property P
persistently.

Mora andViana (1993) proved that any Hénon-like family .g�/� has a set of parameters

with positive Lebesguemeasure for which g� has a strange attractor. Thus, strange attractors

coming from a Hénon-like family, which are called Hénon-like strange attractors, are

always non-hyperbolic and persistent. Moreover, attractors appear typically (in the sense

of Kolmogorov) in the unfolding of two-dimensional homoclinic tangencies as we will

explain below.

1For one-dimensional dynamics the Malliavin–Shavgulidze measures has been proposed as a good analogous
to Lebesgue measure. See Triestino (2014)
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Generic unfoldings of the homoclinic connection. First of all, we will deal with the

case of generic unfoldings of a Shilnikov homoclinic orbit as in system (2.2). That is,

when the stable and unstable manifold of O split with non-zero velocity with respect to the

parameter �. As mentioned, there exist infinitely many horseshoes �k for the first-return

map ˘� for the value of the parameter � D 0. If � 6D 0 only a finite number of these

horseshoe survive. In particular, as � grows from a negative value to � D 0 an infinite
number of horseshoes is generated and then after � goes through � D 0 these horseshoes
should be destroyed. Thus, for many parameters �0 arbitrarily close to � D 0 we find a
periodic point p in one of the horseshoe of ˘�0

so that the stable and unstable manifold

of p have an homoclinic tangency which is in turn broken when the parameter � varies.

Then the family ˘� is an unfolding of the homoclinic tangency at � D �0 and one can

apply the following theorem from Mora and Viana (1993).

Theorem 2.15. Let .f�/� be a C1 one-parameter family of diffeomorphisms on a surface

and suppose that f�0
has a homoclinic tangency associated with some periodic point

p. Then under generic (even open and dense) assumptions, there is a positive Lebesgue
measure set E of parameter values near �0 such that for � 2 E the diffeomorphism f�

exhibits a Hénon-like strange attractor, or repeller, near the orbit of tangency.

Another similar result, usually called as Newhouse phenomenon is the co-existence of

infinitely many hyperbolic periodic sinks (or sources) for a local residual set of C 2 diffeo-

morphisms containing the diffeomorphism displaying the tangency in the closure Newhouse

(1979). Based in Newhouse original work, Robinson (1983) proved the following paramet-

ric version of the Newhouse phenomenon:

Theorem 2.16. Let .f�/� be a C1 one-parameter family of diffeomorphisms on a surface

and suppose that f�0
has a homoclinic tangency associated with some periodic point p.

Then under generic (even open and dense) assumptions, there are non-trivial intervals

I arbitrarily near � D �0 such that for a residual set of parameters � in I , the diffeo-
morphism f� has infinitely many hyperbolic periodic sinks (or sources) near the orbit of

tangency.

Although the above theorems are stated for surface diffeomorphisms they are local

results and thus could be applied to the Poincaré map associated with X�. The proof

of both results need a renormalization process that is performed from a C 2 linearization

of f� near p� where p� is the continuation of the periodic point p�0
involved with the

homoclinic tangency. For this reason, f� needs to be sufficiently smooth in both the

dynamics and the parameters. Namely, according to Sternberg (1958) C 2 linearizing

�-dependent coordinates exist provided that the family f� is sufficient regular and some

generic (even open and dense) non-resonant conditions are satisfied for the eigenvalues of

f� at p� (c.f. §1.1 and see Palis and Takens (1993, pg. 47)). Actually, all this process could

be performance by C r families with r large enough (possibly r > 3 as stated in Robinson
(1983)).

On the other hand, observe that to prove the existence of infinitely many horseshoes in a

neighborhood of the Shilnikov homoclinic cycle � we have considered C 1 linearization of
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X� nearO . Hence the first-return map that we have obtained in this linearizing coordinates

(i.e., (2.8)) is only C 1 conjugate to the Poincaré map associated with X�. Actually we

have proved the existence of horseshoes using (2.9) which is only a C 1 approximation

of this first-return map in linearizing coordinates. But this C 1 approximation and C 1

conjugation are enough to conclude that the Poincaré map associated with X�, which is as

regular as the vector field, have infinitely many horseshoes for � D 0 and finitely many for

� 6D 0. Therefore, since we are considering a C1 family X� in order to avoid the above

mentioned difficulties (C r families with r > 3 maybe it suffices) applying Theorem 2.15

and Theorem 2.16 to this Poincaré map we get the following:

Theorem 2.17. Let .X�/� be a C1 one-parameter family of three-dimensional vector

fields and assume that X0 satisfies (S1)–(S3). Then under generic (even open and dense)

assumptions, for every neighborhood T of the homoclinic cycle � it holds that

(i) there are non-trivial intervals I of parameters arbitrarily near � D 0 such that for a
residual set of parameters � 2 I , the vector field X� has infinitely many hyperbolic

periodic attractors, or repeller, in T ;

(ii) there is a set E of parameters with positive Lebesgue measure and arbitrarily near

� D 0 such that for every � 2 E, the vector field X� has suspended Hénon-like

strange attractors, or repeller, in T .

Another comment must also be done regarding the presence of attractors or repellers,

according to the determinant ofD˘� less than one or greater than one. It is not difficult

to see that the determinant ofD˘� at a point p D .x?; z?/ in some of the horseshoe �k

only contains terms of order z2ı�1
? . Hence we need to distinguish two sub-types of the

hypothesis (S3):

(S3a) 0 < ı < 1=2 (expansiveness)

(S3b) 1=2 < ı < 1 (dissipativeness).

The map ˘� will be area expanding (hypothesis (S3a)) or area contracting (hypothe-

sis (S3b)) for z? sufficiently small. Consequently, we get persistent strange attractors

for (S3b) and persistent strange repeller for (S3a).

Non-generic unfoldings of the homoclinic connection. Denote by S1 the set of C1

vector fields X such that the system (2.1) satisfies the condition (S1), (S2) and (S5).

Observe that S1 is the intersection of two codimension one submanifolds in the open

set of C1 vector fields X satisfying (S1). Namely the submanifolds of vector fields

satisfying (S2) and (S5) respectively. Thus, S1 is a codimension two submanifold of

three-dimensional smooth vector fields. For a regular two-parameter families X� that are

transversal to S1 at � D 0 one gets a curve �.a/ in the two-parameter space emanating

from � D 0 so that on this curve the familyX�.a/ has a Shilnikov homoclinic cycle �a (see

Remark B.5 in Appendix B). For each a, the two-parameters family X� could be seem as a
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generic unfolding of �a breaking the connection. Thus, as before, since infinitely many

horseshoe are created and destroyed, infinitely many homoclinic bifurcations takes place

for a sequence of parameters �n going to � D 0. Each of these bifurcations is the seed
of persistent Hénon-like strange attractors like those discussed above. Its persistence is

proven by means of a renormalization that only guarantees the infinitesimal size of the

attractors. For � D 0 these attractors could simply collapse. It seems, then, justified to

study the possible persistence of strange attractors for families Xa in S1.

In view of this, we will focus on non-generic unfoldings of the homoclinic connection

of a vector field in S1. Namely we will consider one-parameter families Xa having a

saddle-focus homoclinic cycle � with ı.a/ D 1 for each a in a real interval I . That is,
such that Xa 2 S1 for all a 2 I . In this framework, one has to notify that no value of

the parameter verifies the non-resonance conditions in Sternberg (1958) (see §1.1) and,

therefore, one cannot be sure the existence of a C r linearization with r > 1. This extra
regularity would be needed to carry on (by the conjugation) the results on the existence

of persistent strange attractors from the first-return map in linearizing coordinates to the

Poincaré map associated withXa 2 S1. Thus, in order to avoid this difficulty, Pumariño and

Rodríguez in Pumariño and Rodrı́guez (1997) and Pumariño and Rodrı́guez (2001) consider

special one-parameter C1 families of vector fields Xa in S1 defined by joining smoothly

(by a C1-bump function) a linear field in a given neighborhood of origin with a family

of fields defined by suspension from a one-parameter family of linear diffeomorphisms

between two cross sections to cycle � . Namely, in Pumariño and Rodrı́guez (1997, 2001)

the authors prove the following result.

Theorem 2.18. There is a one-parameter family of vector fields Xa in S1 such that for

every neighborhood T of the homoclinic cycle � it holds that

(i) there is an open set P of parameter such that for every a 2 P the vector field Xa

has infinitely many periodic attractors in T ;

(ii) there is a set E of parameters with positive Lebesgue measure such that for every

a 2 E the vector field Xa has infinitely many strange attractors.

We must notify that actually the proof of the above result not need a higher class than

C 3. The family Xa in the previous statement is chosen linear in the neighborhood V of

the origin so that the expression for the local map ˚ is the same as (2.6) with ı D 1 and
! D �1. Outside of V , if no restriction is made, 	 is given again by (2.7) with � D 0.
Proceeding in this way, four parameters ai already appear. These are four parameters that,

unlike what happened in the previous cases, will now play an essential role. To have a

one-parameter family Xa as simple as possible the vector fields out of the neighborhood

V are taken, by means of a suspension process, in such a way that a1 D a4 D 0, a2 D 1,
a3 D a and the non-linear terms disappear from (2.7). Thus, the family of first-return map

resulting in (2.8) is

˘�;a.x; z/ D .1C xz sin.��1 log z/; axz cos.��1 log z//: (2.14)
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In order to prove that Xa has infinitely many strange attractor it is sufficient to prove

that ˘�;a does. With this in mind, we will introduce some changes of variables which will

allows us to prove that the restriction of ˘�;a to the rectangle Rk given in §2.3 for k large

enough is C 3 close to family F�;a.u; v/ D .f�;a.u/; 0/ of endomorphisms of R2 where

f�;a is the one-dimensional map

f�;a.u/ D ��1 log aC uC ��1 log cosu: (2.15)

By means of new coordinates u D ��1 log z C 2�k and v D b�1=2.x � 1/ with
b D exp .�2��k/ for some k large enough (2.14) becomes in

˘�;a;b.u; v/ D .f�;a.u/C ��1 log.1C
p
b v/;

p
b.1C

p
b v/e�u sinu/:

The maps ˘�;a;b has a forward invariant set given by

Uk D

n
.u; v/ W u 2 I; �

p
b e.`� �

2 /� 6 v 6
p
b e.`C �

2 /�
o

which is contained in the rectangleRk in the new variables and where I � .��=2; �=2/ is
a forward invariant interval for the one-dimensional map (2.15) and ` is the smallest of the

lengths of the connected components of I n f�;a.I /. In Pumariño and Rodrı́guez (1997), it

is proved that the restriction of ˘�;a;b to Uk for k large enough exhibits persistent strange

attractors. That is, there exists a set Ek of positive Lebesgue measure such that for every

a 2 Ek the map ˘�;a;b has a strange attractor contained in Uk . This was obtained by

proving that the family ˘�;a;b is a good unfolding of the two-dimensional map

F�;a;b.u; v/ D .f�;a.u/; 0/

and that the unimodal family f�;a W I ! I has similar properties to the quadratic family.

A good unfolding provides that the first return map ˘�;a;b is C 3 close to the family F�;a

for b sufficiently small. On the other hand, the similarity of f�;a with the quadratic family

allows to conclude the persistence of strange attractors for f�;a.

The jump from the unimodal family f�;a to the two-dimensional first-return map

˘�;a;b is long and laborious. It requires a careful transfer to this scenario the scheme

developed in Benedicks and Carleson (1991) and Mora and Viana (1993) for the Hénon

and Hénon-like families, respectively. All this to get an expansive orbit that will turn out

to be dense in the unstable manifold of a saddle fixed point of ˘�;a;b . Once proved that

for each a 2 Ek there was a strange attractor in Uk the persistence of the coexistence of

infinitely many strange attractors follows by proving that there are infinitely many sets

Ek whose intersection has a positive Lebesgue measure. In fact, the goal of Theorem 2.18

and, firstly, of the book Pumariño and Rodrı́guez (1997) was in its day the challenge of

understanding the hard task developed first by Benedicks and Carleson (1991) and later by

Mora and Viana (1993) and applying their ideas to the case of families of vector fields in

S1.
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Asmentioned, when in a two parameter familyX� unfolding generically a vector field in

S1 for � D 0, infinitesimal persistent Hénon-like strange attractors could be obtained which

could simply collapse for � D 0. In addressing this problem, two questions emerged: one

good and the other not. Regarding the first, a renormalization was possible in rectangles Uk

whose size depended on f�;a and it did not collapse (possible non-infinitesimal attractors).

Regarding the second, the family of return maps ˘�;a;b was not now a Hénon-like family:

the limit family f�;a is quite different from the quadratic family that appears as a limit

family in the Hénon-like case. In order to overcome this difficulty, a thorough review

of Benedicks and Carleson (1991) and Mora and Viana (1993) was necessary to verify that

all the ideas in these references could be applied to the new case. This work offers the

conviction of a certain universality in the methodology of Benedicks and Carleson (1991),

which can be found in the later papers by Wang and Young (2001, 2008).

In the time that elapsed between the writing of Pumariño and Rodrı́guez (1997)

and Pumariño and Rodrı́guez (2001), Colli (1998) proved the following result:

Theorem 2.19. In the set of C1 one-parameter families of diffeomorphisms unfolding

a homoclinic tangency at the parameter value � D 0 there exists a residual set R such

that if .f�/� is inR then there is a sequence of parameter intervals In with In ! 0 and a
dense subsetDn in In so that f� has infinitely many Hénon-like strange attractors for all

� 2 Dn.

This result says nothing about persistence of the coexistence of these infinitely many

attractors. It was an open question whether there exists a k-parameter family f D .fa/a
which has infinitely many attractor (strange or not) for values of the parameter a in a

positive Lebesgue measure set E.f / � Rk . Palis claimed that the measure the set E.f /
is generically zero for families f D .fa/a of one-dimensional dynamics and surface

diffeomorphism Palis (2000) and Palis and Takens (1993).

Theorem 2.18 (see also Pumariño and Rodrı́guez (2001, Thm. B), for diffeomorphisms)

provided a first example of a family of dynamical systems Xa with persistent coexistence

of infinitely many strange attractor. Since Xa is not generic, this family is not a coun-

terexample to the possible extension of the above conjecture to three-dimensional vector

fields. Although the Palis conjecture remains still open, some advances in the opposite

direction have been made by Berger in Berger (2016, 2017) for families of surface en-

domorphisms (in fact, local diffeomorphisms) and higher dimensional diffeomorphisms.

Namely, Berger constructed open sets of families of the above described dynamics (in

suitable and well-defined topologies) such that residually in these open sets any family

exhibits simultaneously infinitely many hyperbolic periodic attractors for all parameter

value.

The persistence of coexistent strange attractors is physically relevant because it means

that these attractors can be seen in applications. If we ignore this property, results of coexis-

tence of infinitely many attractors may be found in the literature. For example, denote by S0

the codimension one submanifold of dissipative C1 vector fields X that have a Shilnikov

homoclinic cycle � D � .X/, i.e., satisfying (S1),(S2) and (S3b). In Ovsyannikov and
Shilnikov (1987) it was proved the following:
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Theorem 2.20. For each " > 0, the following sets are dense in S0:

(i) the open set of vector fields X in S0 that have an attracting 2-periodic hyperbolic
orbit in an "-neighborhood of � .X/;

(ii) the set of vector fields X that possess infinitely many attracting 2-periodic orbits in
an "-neighborhood of � .X/;

(iii) the set of vector fields X that have an orbit of homoclinic tangency to a hyperbolic

periodic orbit in an "-neighborhood of � .X/.

Using Colli (1998) and Ovsyannikov and Shilnikov (1987), one can get the following

(see Homburg (2002) and Homburg and Sandstede (2010)):

Theorem 2.21. For each " > 0 there exists a dense subset D � S0 such that each vector

field X 2 D has infinitely many coexisting strange attractors in a "-neighborhood of

� .X/.

Astronger result for non-generic unfoldings of Shilnikov homoclinic orbits was obtained

by Homburg (2002). For families of vector fields in S0 Homburg proved the next theorem.

Theorem 2.22. Consider a one-parameter family Xa of vector fields in S0 such that

@ı

@a
.0/ 6D 0:

Let ˙ be a cross-section transverse to the homoclinic cycle �a and ˘a the corresponding

first-return map of Xa. Denote by Tn a decreasing sequence of tubular neighborhoods of

�a. Then there is an interval of parameters I containing a D 0 such that the following
holds for n large enough:

(i) there is an open and dense set Pn of I with Lebesgue measure going to zero as

n ! 0 for which ˘a has an attracting 2-periodic orbit in Tn. Furthermore, the set

of parameter values a 2 I for which ˘a has infinitely many 2-periodic attractors is

also dense in I but has zero measure.

(ii) there is a dense setEn of I with positive Lebesgue measure going to zero as n ! 0 for
which ˘a has a Hénon-like strange attractor in Tn intersecting ˙ in two connected

components.

Figure 2.9 shows the unstable manifold of a fixed point p of ˘ in Rk . The idea of

Homburg to prove the above result consisted in observe the interaction of this unstable

manifold with other stripRi so that˘a.Rk/\Ri is not fully as illustrated in the same figure.

The second iterated of ˘a restricted to Rk maps this strip into a horseshoe shape with

the fold inside Rk . This figure shows the possibility of occur homoclinic tangencies and

therefore after the unfolding the emergence of attractors by varying the internal parameter ı.
However, Homburg does not prove directly here the occurrence of tangencies. He proved
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Ri

Rk

Figure 2.9: Unstable manifold of a fixed point p of ˘a in Rk .

that after a renormalization processes around this fold the limit family is a good unfolding

of a strong dissipative Hénon map and thus, Hénon-like attractors appear.

On the other hand, Homburg also studied the density of the orbits caught by the

attractors. Denote byDn the set of points x 2 ˙ \ Tn in the above theorem for which the

positive orbit of x leaves Tn. Then it is proved in Homburg (2002) that

lim
n!1

jDnj

j˘a \ Unj
D 1.

This result establishes that the large number of attractors do not trap most orbits in an

small enough neighborhood of the Shilnikov cycle � . In order to recover the orbits that

escape can be assumed the existence of a double Shilnikov loop � ˙ D fOg [ 
C [ 
�.

See Arneodo, Coullet, and Tresser (1981) and also Pacifico, Rovella, and Viana (1998).

In the following section we will consider this kind of configurations and we will show

that in such a case, the dynamics could be non-trivial even in the simply case of the

assumption (S4).

2.6 Switching

As we have seem, the scenario described by the assumptions (S1), (S2) and (S4) provides

simple dynamics around the homoclinic cycle � D fOg [ 
 . However the situation



30 2. Saddle-focus homoclinic cycles

Figure 2.10: If the orbit returns to ˙�, then it is reinjected following another different

homoclinic orbit.

could be different if we assume that (2.1) has a homoclinic network (i.e, a finite union of

homoclinic orbits associated with the same equilibrium point). Observe that orbits that

start in˙C D ˙ \ V C will reach OutC, and then follow the homoclinic orbit 
 until they

will return once again to ˙ . Trajectories that start in ˙� D ˙ \ V � may (or not) return

to ˙ . As illustrated in Figure 2.10, the existence of a second homoclinic orbit allows to

introduce another different global map and thus we will have two different first-return

maps to ˙ . Therefore, we will assume the following hypothesis.

(S2’) There are two different trajectories 
C and 
� biasymptotic to O .

The homoclinic network is given by � ˙ D fOg [ 
C [ 
�. This kind of configuration

usually holds under symmetry assumption. For instance, if system (2.1) satisfies (S2) and

f is Z2-symmetric under the action of �Id. That is,

f .�x/ D �f .x/ for all x 2 R3:

In this case, the additional homoclinic orbit is given by 
� D �Id.
C/ where 
C D 
 .
We address the reader to Golubitsky, Stewart, and Schaeffer (2012) for more details about

equations with symmetry.

The goal of this section is to show that under the assumptions (S1), (S2’) and (S4), the

dynamics that remain forward is a tubular neighborhood of the network � ˙ still could be
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very complicated. To do this we introduce the notion of switching in a general context.

That is, for any homoclinic network

� D fOg [ 
1 [ � � � [ 
m

of a differential equation associated with a equilibrium point O with m > 2. Associated
with this network, we consider small cross-sections Si transverse to 
i . Let us denote by

˘ the first-return map on the collection of these pairwise disjoint cross-sections

S D S1 [ � � � [ Sm

defined by following the homoclinic orbit 
i if the initial condition is in Si .

Definition 2.23. The homoclinic network � exhibits infinite switching if for each tubular

neighborhood T of � and every! D .!i /i2N 2 f1; : : : ; mgN , there exists a flow trajectory

� and a point x! D �.t0/ for some time t0 such that

�.t/ 2 T for all t > t0 and ˘ i .x!/ 2 S!iC1
for all i > 0.

We call x! the starting point of the realization � for the infinite path !1 D .
!i
/i2N of

homoclinic connections.

An infinite path on � can be considered as a pseudo-orbit of (2.1) with infinitely

many discontinuities. Switching near � means that any pseudo-orbit in � can be realized.

For another equivalent definition and extension of the notion of switching see Aguiar,

Labouriau, and Rodrigues (2010), Homburg and Knobloch (2010), Ibáñez and Rodrigues

(2015), and Rodrigues (2016). Observe that if � exhibit infinite switching (or switching

for short) then in any tubular neighborhood T of the network we find a set of forward

orbits so that ˘ restrict to the set of starting points of this trajectories semi-conjugate to

the full unilateral shift onm symbols. Because of this, the first-return map restricted to this

set of orbits has positive topologically entropy which can be seen as an indicator of chaos.

Complex behavior near a homoclinic network is often connected to the occurrence of

switching, a term which has also been used to describe simpler dynamics where there is one

change in the choices observed in trajectories. This is the case described in Kirk and Silber

(1994). In fact, there are several examples in the literature where the existence of infinite

switching leads to complicate behavior near the network, see Aguiar, Labouriau, and

Rodrigues (2010), Labouriau and Rodrigues (2012), Rodrigues (2013a), and Rodrigues and

Labouriau (2014). In general, infinite switching is related with the existence of suspended

horseshoes in its neighborhood. See for example the works Ibáñez and Rodrigues (2015),

Labouriau and Rodrigues (2012), and Rodrigues (2013b). In these articles, the authors

proved the existence of infinitely many initial conditions that realize a given forward

infinite path. These solutions lie on the sequence of suspended horseshoes that accumulate

on the network. So, one could think a priori that infinite switching seems to be connected

with the existence of suspended horseshoes. However in the following result we will see

that this is not necessarily true.
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Theorem 2.24 (Holmes (1980), Rodrigues (2016), and Tresser (1984)). Under the assump-

tions (S1), (S2’) and (S4) the following conditions hold:

(i) there are no suspended horseshoes in any small neighborhood of the homoclinic

network � ˙;

(ii) the homoclinic network � ˙ attracts all the trajectories in a small neighborhood of

the network;

(iii) there is infinite switching near the homoclinic network � ˙.

Indeed, item (i) is a immediately consequence of item (ii). On the hand, item (ii) follows

from Theorem 2.6 since now the trajectories starting near the network remain close to � ˙

in forward time. In what follows we will prove item (iii) following Rodrigues (2016).

First of all, similarly to §2.2, we consider a cross-section˙ in V transversal to both 
C

and 
� at points qC and q� respectively. We write ˙C D ˙ \ V C and ˙� D ˙ \ V �.

For each homoclinic orbit 
C and 
� we can construct a first-return map ˘ to ˙ starting

on ˙C and ˙� and following the corresponding trajectory respectively. This first-return

consists in two maps that could be modeled as in (2.8). The difference between these two

maps is only in the global map. However, as before, still the global map from Out� to

˙ preserves the spiraling shape on Out� which is obtained by the method described in

Lemma 2.3. This property will be the unique tool that we need.

Lemma 2.25. For any vertical line ˇ on ˙ there are sequences .ˇ˙
i /i2N of non-empty

compact subsets of ˇ accumulating on ˇ \W s
loc
.O/ such that ˘.ˇ˙

i / is a vertical line in

˙˙ for all i 2 N.

Proof. By Lemma 2.3, the image of ˇ under ˚ is a spiral accumulating on Out\W u
loc
.O/.

In its turn, this spiral is mapped by the global map into another spiral in˙ accumulating on

� ˙ \˙ . The curveW s
loc
.O/ cuts transversely this spiral into infinitely many points. Thus

we find infinitely many vertical lines ž˙
i on ˙˙ contained in this spiral as illustratively is

showed in Figure 2.11. Consider the non-empty compact set ˇ˙
i D ˘�1. ž˙

i / � ˇ. By

construction, it follows that ˘.ˇ˙
i / is a vertical line on ˙

˙.
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ˇ

ˇ�
i

ˇ�C
ij

Figure 2.11: Illustration of the inductive construction ˇ
j1:::jn

i1:::in
.

By an inductive process using the above lemma, we get sequences of non-empty

compact sets ˇ
j1:::jn

i1:::in
where i1; : : : ; in 2 N and j1; : : : ; jn 2 fC;�g for all n 2 N such

that

• ˇ
j1:::jn

i1:::in
� ˇ

j1:::jn�1

i1:::in�1
� ˇ,

• ˘n.ˇ
j1:::jn

i1:::in
/ is a vertical line on ˙jn .

Indeed, the case n D 1 follows immediately from Lemma 2.25. Assume constructed

ˇ
j1:::jn

i1:::in
for n > 1. Hence, since ˘n.ˇ

j1:::jn

i1:::in
/ is a vertical line on ˙ , applying again

Lemma 2.25 one finds sequences of non-empty compact sets

žj1:::jnjnC1

i1:::ininC1
� ˘n.ˇ

j1:::jn

i1:::in
/ for inC1 2 N and jnC1 2 fC;�g

which are sent by the first-return map into a vertical line on ˙jnC1 . Therefore, taking

ˇ
j1:::jnjnC1

i1:::ininC1
D ˘�n. žj1:::jnjnC1

i1:::ininC1
/

it is easy to see that the required properties hold.
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Finally, we will prove item (iii) in Theorem 2.24. Fix any small tubular neighborhood

T of � ˙. Consider the section S˙ D T \ ˙˙. We restrict the above return map ˘
to S D SC [ S�. By the attracting character of the network, trajectories starting in S
remain in T for all positive time. Let us take sequences ! D .!n/n2N 2 fC;�gN and

i D .in/n2N where in 2 N. Consider j D .jn/n2N with jn D !nC1 for all n 2 N and a

vertical line ˇ on S!1 . By the inductive construction above, we get a non-empty compact

set

ˇ
j
i D

1\
nD1

ˇ
j1:::jn

i1:::in
� ˇ

such that for every x 2 ˇ
j
i holds that

x 2 ˇ � S!1 and ˘n.x/ 2 ˘n.ˇ
j1:::jn

i1:::in
/ � Sjn D S!nC1 for all n 2 N:

This proves that � ˙ exhibits infinite switching.



3 Bykov cycles

We have seen in the previous chapter that the existence of Shilnikov homoclinic orbits

provides one of themain criteria for the occurrence of chaos involving suspended horseshoes

and non-hyperbolic strange attractors. In this section, we study Bykov cycles in a three-

dimensional phase space, which consist of heteroclinic cycles associated to two saddle-foci

with different Morse indices (dimension of the unstable manifold); one of the heteroclinic

connections is determined by the intersection of two-dimensional invariant manifolds

and it is assumed to be transverse. The other heteroclinic connection corresponds to the

coincidence of two branches of the one-dimensional invariant manifolds. These cycles

were first studied by Bykov (1999, 2000) (see also Fernández-Sánchez, Freire, Pizarro,

et al. (2003), Fernández-Sánchez, Freire, and Rodrı́guez-Luis (2002), and Glendinning and

Sparrow (1986)) and recently there has been a renewal of interest on this type of heteroclinic

bifurcation in different contexts. Other types of cycles associated to equilibria whose

linearization of the vector field has real eigenvalues were previously explored in Bykov

(1993) and Kokubu (1991). These cycles are associated with intermittent dynamics and

are used to model stop-and-go behaviour in various applications.

As shown in Bykov (1999, 2000), spirals in a two-dimensional parameter space are

organized around T [erminal]-points corresponding to a codimension two Bykov cycle.

For this reason, Bykov cycles are also known as T -points. The spirals are related with
Shilnikov homoclinic bifurcations and have been located in several models frommany fields.

Bykov cycles arise in the Lorenz equations Glendinning and Sparrow (1986), (reversible)

systems that model the propagation of calcium waves, Michelson system Dumortier,

Ibáñez, and Kokubu (2001a), Ibáñez and Rodríguez (2005), and Lamb, Teixeira, and
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Webster (2005), Josephson junctions Van den Berg, van Gils, and Visser (2003), electronic

oscillators Fernández-Sánchez, Freire, and Rodrı́guez-Luis (2002), Hopf–zero bifurcation

Dumortier, Ibánez, Kokubu, and Simó (2013) and Lamb, Teixeira, and Webster (2005) and

in generic unfoldings of nilpotent singularities of codimension three Barrientos, Ibáñez, and

Rodrı́guez (2011) and Ibáñez and Rodríguez (2005). See also the approaches of Labouriau

and Rodrigues (2015), Lamb, Teixeira, and Webster (2005), Oldeman, Krauskopf, and

Champneys (2001), and Rodrigues (2013b) and references therein.

The comparison between the two ways the flow turns around the two saddle-foci

determines two types of Bykov cycles: either both saddle-foci have the same chirality

or it is different. We will study the recurrent dynamics in both cases. The existence of

horseshoes for the return map follows under both assumptions. However, when chirality

is different, homoclinic tangencies between the invariant manifolds of hyperbolic fixed

points are also exhibited. This means that, when the chirality is different, persistent strange

attractors do exist in a neighborhood of the cycle. Existence of Shilnikov homoclinic orbits

in generic unfoldings will be also argued.

3.1 Setting

Consider a differential equation

Pu D X.u/; u 2 R3 (3.1)

where X is a C r vector field with r > 1. We assume that the associated flow satisfies the

following hypotheses:

(BC1) There are two different equilibriaO1 andO2 with eigenvalues ofDX.O1/
andDX.O2/ respectively,

�1; �˛1 ˙ !1i and � �2; ˛2 ˙ !2i

where �j ; ˛j > 0 for j D 1; 2 and !1!2 6D 0.

(BC2) There are two heteroclinic orbits 
1!2 and 
2!1 such that


1!2 � W u.O1/ \W s.O2/ and 
2!1 � W u.O2/ t W s.O1/;

where the symbol t means that the two manifoldsW u.O1/ andW
s.O2/meet transversely.

The assumption (BC2) asks that the one-dimensional manifold W u.O1/ and W
s.O2/

meets along 
1!2 while the two-dimensional manifolds W u.O2/ and W
s.O1/ intersect

transversely along one trajectory 
2!1. The heteroclinic cycle

� D fO1; O2g [ 
1!2 [ 
2!1

is illustrated in Figure 3.1 and we refer to it as a Bykov cycle.
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1!2


2!1
O2

O1

Figure 3.1: Illustration of a Bykov cycle.

3.2 Return maps

We will analyze the dynamics near � , using local maps that approximate the dynamics

near and between the two equilibria in the cycle.

Cross-sections. We need a workable expression of the Poincaré map at a suitable cross

section inside a tubular neighborhood of the Bykov cycle. First of all, as in §2.2, since

the vector field is regular enough, we can consider linear C 1 coordinates around O1 and

O2. In these coordinates, we consider two cylindrical neighborhoods V1 and V2 of O1 and

O2, respectively, with base-radius " and height 2" > 0 (see Figure 3.2). Their boundaries
consist of three components:

� The cylinder wall parametrized by x 2 S1 and jyj 6 " with the usual cover

.x; y/ 7! ."; x; y/:

Here y represents the height of the cylinder and x is the angular coordinate,

measured from the point x D 0 in the intersection of the connection 
2!1

with the wall of the cylinder. In these coordinates the local stable and local

unstable manifolds of O1 and O2 correspond to y D 0, respectively.

� Two discs, the top and the bottom of the cylinder. We assume that the

connection 
1!2 goes from the top of one cylinder V1 to the top of the other,

and we take a polar covering of the top disc

.r; '/ 7! .r; '; "/
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InC.O1/OutC.O2/

OutC.O1/
InC.O2/

Out�.O1/In�.O2/

Figure 3.2: Local cylindrical coordinates in V1 and V2, near O1 and O2.

where 0 6 r 6 " and ' 2 S1. In these coordinates the local unstable and

local stable manifolds of O1 and O2, respectively, correspond to r D 0.

Consider the cylinder wall of V1. As mentioned, the local stable manifold W s
loc
.O1/

meets this wall at the circle parametrized by y D 0. The top part of the wall of V1 is

denoted by InC.O1/ and corresponds to points with y > 0. Trajectories starting at interior
points of InC.O1/ go into the cylinder in positive time and come out through the top

disc, denoted OutC.O1/. Trajectories starting at interior points of OutC.O1/ go inside the
cylinder in negative time. Moreover,W u

loc
.O1/\ OutC.O1/ corresponds with the positive

z-axis intersecting OutC.O1/ at the origin of coordinates r D 0. Analogous results hold
for y < 0.

Reversing the time, we get dual results for O2. In this case, the z-axis correspond to
W s

loc
.O2/ and meets the top disc of the cylinder, InC.O2/, at the origin of its coordinates.

Moreover, the intersection of W u
loc
.O2/ with V2 is parametrized by the circle y D 0.

Trajectories starting at interior points of InC.O2/ go into V2 in positive time and leave

the cylinder through its wall with y > 0, that we denote by OutC.O2/. Analogous results
hold for y < 0.

Local maps. In cylindrical coordinates .�; �; z/, the linearization of the dynamics at O1

and O2 is specified by the following equations:8<: P� D �˛1�
P� D !1

Pz D �1z

and

8<: P� D ˛2�
P� D !2

Pz D ��2z:

(3.2)

The above systems are like those studied in (see § 2.2). Rescaling the variables in order

to take " D 1, it easily follows that a trajectory whose initial point is .x; y/ 2 In.O1/ n
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W s
loc
.O1/ leaves V1 through Out.O1/ at the point

.r; '/ D ˚1 .x; y/ D

�
yı1 ; �

!1

�1

logy C x

�
(3.3)

where ı1 D ˛1=�1 > 0. By reversing the time, the analysis of the second system in (3.2)

is analogous and thus a point .r; '/ 2 In.O2/ nW u
loc
.O2/ leaves V2 through Out.O2/ at

the point

.x; y/ D ˚2 .r; '/ D

�
�
!2

˛2

log r C '; rı2

�
(3.4)

with ı2 D �2=˛2 > 0.

Global maps. As shown in Figure 3.3, points in OutC.O1/ near W
u.O1/ are mapped

into InC.O2/ along a flow-box around the connection 
1!2. Up to a change of coordinates,

corresponding to homotheties and rotations which leave invariant the local expressions of

the flows in neighborhoods of the equilibria, consistently with hypothesis (BC2), we may

assume that the transition

	1!2 W OutC.O1/ ! InC.O2/

is a linear map given, in rectangular coordinates X D r cos' and Y D r sin', by:

. NX; NY / D 	1!2.X; Y / D .aX; a�1Y / (3.5)

for some constant a > 1. Note that the map 	1!2 is given in rectangular coordinates.

To compose this map with ˚2, it is required to change again the coordinates. Indeed, in

appropriate coordinates . Nr; N'/ D 	2!1.r; '/, we get:

Nr D r

q
a2 cos2 ' C a�2 sin2 ' and N' D arctan

�
a2 tan'

�
:

Note that a circle of radius r < 1 in OutC.O1/, centered at the origin, is mapped by

	1!2 into an ellipse centered at the origin of InC.O2/ with major axis of length a r > r
and minor axis of length r=a 6 r .

On the other hand, as we may observe in Figure 3.3, in In.O1/, the set W
u.O2/ is

now described by a curve of the form ˇ.s/ D .0; s/. In particular, the set W u.O2/ crosses
In.O1/ from the top to the bottom. In view of this, we may suppose that the map

	2!1 W Out.O2/ �! In.O1/

is given, in the suitable coordinates of Out.O2/ and In.O1/, by

. Nx; Ny/ D 	2!1.x; y/ D .y;�x/ : (3.6)
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W s.O1/

W u.O2/

V1V2

O1O2

Figure 3.3: Transition map.

The Poincaré map Let

˘ D 	2!1 ı � W In.O1/nW
s
loc.O1/ ! In.O1/ (3.7)

with

� D ˚2 ı 	1!2 ı ˚1 W In.O1/nW
s
loc.O1/ ! Out.O2/;

be the first return map to In.O1/. For a D 1, by a straightforward calculation, it is not
difficult to see that the map ˘ may be written as

˘.x; y/ D

�
yı ; K! lny � x

�
: (3.8)

where

K! D
!2 ˛1 C !1 ˛2

�1 ˛2

and ı D ı1ı2: (3.9)

Chirality There are two different possibilities for the geometry of the flow around � ,

depending on the direction trajectories turn around the heteroclinic connection from O1 to

O2.

Let V1 and V2 be small disjoint neighbourhoods ofO1 andO2 with disjoint boundaries

@V1 and @V2, respectively. Trajectories starting at @V1 near W s.O1/ go into the interior
of V1 in positive time, then follow the connection from O1 to O2, go inside V2, and then

come out at @V2 as in Figure 3.4. Let ˚ be a piece of trajectory like this from @V1 to @V2.

Now join its starting point to its end point by a line segment as in Figure 3.4, forming a

closed curve, that we call loop. Observe that this loop and the cycle � are disjoint closed

sets.

Definition 3.1. We say that the two saddle-foci O1 and O2 in � have the same chirality if

the loop of every trajectory is linked to � in the sense that the two closed sets cannot be

disconnected by an isotopy. Otherwise, we say that O1 and O2 have different chirality.
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O1O2 O2 O1

(a) Different chirality. (b) Same chirality.

Figure 3.4: Illustration of a Bykov cycle with the two kinds of chirality.

We will study Bykov cycles under the following two assumptions on the chirality (see

Figure 3.4):

(BC3) The saddle-foci O1 and O2 have the same chirality.

(BC3) The saddle-foci O1 and O2 have different chirality.

Under hypotheses (BC1), (BC2) and (BC3), we will show that, in a small neighborhood

of the Bykov cycle, there exists a sequence of uniformly hyperbolic suspended horseshoes

accumulating on the cycle. The periodic solutions giving n loops around the cycle will
accumulate on special trajectories called n-pulses (compare with Definition 2.10). “Far”

from the cycle, under additional hypotheses on the way the cycle is obtained, the authors

of Labouriau and Rodrigues (2016), have shown the existence of homoclinic tangencies to

a periodic solution and strange attractors.

On the other hand, under hypotheses (BC1), (BC2) and (BC3), we will show that, in

a small neighborhood of the Bykov cycle, besides the sequence of uniformly hyperbolic

suspended horseshoes and n-pulses which accumulate on the cycle, we also find hetero-

clinic tangencies, sinks and strange attractors. Different chirality of the equilibria is quite

involving and brings richer dynamics to the problem.

3.3 Bykov cycles with same chirality

In the present section, we consider a class of vector fields satisfying hypotheses (BC1)–(BC3).

That is, we study Bykov cycles where the saddle-foci have the same chirality. These cy-

cles appear in the Michelson (reversible) system Dumortier, Ibánez, and Kokubu (2005),

Ibáñez and Rodríguez (2005), and Lamb, Teixeira, and Webster (2005), in the reversible

Hopf-zero bifurcation Dumortier, Ibánez, Kokubu, and Simó (2013), in Z2 symmetric

systems Fernández-Sánchez, Freire, and Rodrı́guez-Luis (2002) and in generic unfoldings

of any three-dimensional nilpotent singularity of codimension three Barrientos, Ibáñez,

and Rodrı́guez (2011) and Ibáñez and Rodríguez (2005). See also Chapter 5.
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In this section, assuming that a D 1 is not a loss of generality Rodrigues (2013b). The
dynamics near a Bykov cycle where the saddle-foci have the same chirality is characterized

by the existence of infinitely many suspended horseshoes accumulating on the cycle.

Another characteristic is the presence of infinitely many heteroclinic orbits from O2 to

O1. Namely, for each n 2 N we will find a heteroclinic orbit hitting a cross-section to the

cycle at precisely n 2 N points. These trajectories are called n-pulse heteroclinic orbits.

Theorem 3.2 (Bykov (2000), Knobloch, Lamb, and Webster (2014), and Labouriau and

Rodrigues (2012)). Under the assumptions (BC1),(BC2) and (BC3), any tubular neigh-

borhood T of the Bykov cycle � contains the following:

1. infinitely many n-pulses heteroclinic orbits from O2 to O1, for each n 2 N;

2. a sequence of hyperbolic compact ˘ -invariant sets �k in In.O1/ such that the

restriction of˘ to�k is conjugate to the full shift of k symbols, for k > 2. Moreover,

˘ restricted to the union � of the sets �k is topologically conjugate to a full shift

over an infinite number of symbols.

We sketch the proof of Theorem 3.2. Item (1) is a direct consequence of Aguiar,

Labouriau, and Rodrigues (2010), picking the segment ˇ asW u.O2/\In.O1/. The image

of the segment ˇ, under the Poincaré map, contains infinitely many segments accumulating

on itself and crossing transversally W s.O1/ \ In.O1/.
Now we prove item (2). If R1 � In.O1/ is a rectangle containing 
2!1 on its border

as sketched in Figure 3.5, the initial conditions that returns to In.O1/ are contained in a
sequence of horizontal strips accumulating on the stable manifold of O1, whose heights

tend to zero Rodrigues (2013b). Each one of these horizontal strips lying on the rectangle

R1 � In.O1/, is mapped under � D ˚2 ı	1!2 ı˚1 into a horizontal strip across Out.O2/.
By (BC2), they are mapped by 	2!1 into vertical strips across R1 crossing transversely

the original rectangles. This gives rise to a sequence of uniformly hyperbolic horseshoes,

accumulating on the heteroclinic cycle � .

Although the results of Lamb, Teixeira, and Webster (2005) used reversibility, many of

the results on the dynamics near the heteroclinic cycle do not rely on the reversibility of

the system. Their results on the existence of horseshoes, similar to our Proposition 3.2, are

independent of any Shilnikov condition on the saddle-values since the proof relies only on

the geometry of the flow near the cycle.

The countable family of horseshoes .�k/k2N , whose union builds the set �, is con-
tained in a compact set inside In.O1/. Therefore, given k 2 N, any sequence pk

n in � of

periodic points with period k by the Poincaré map ˘ has accumulation points. Next result

clarifies these accumulation points:

Theorem 3.3 (Bessa, Carvalho, and Rodrigues (2017)). Any accumulation point of pk
n lies

in W s.O1/ \W u.O2/ and its solution by the flow associated with X is a .k � 1/–pulse
connection.

In Bessa, Carvalho, and Rodrigues (2017) and Labouriau and Rodrigues (2016), the

authors extend the description of the dynamics around a Bykov cycle where the saddle-foci

have the same chirality, but in the context of a network consisting of two Bykov cycles.
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V1V2

W s.O1/W u.O2/

�

Figure 3.5: Chain of horseshoes near the Bykov cycle.

3.4 Bykov cycles with different chirality

In this section, we consider the set B of C r vector fields, with r > 1, satisfying the

hypotheses (BC1), (BC2) and (BC3). That is, our object of study is the set of Bykov cycle

whose saddle-foci have different chirality.

Remark 3.4. As we show in §5.6, Bykov cycles where the saddle-foci have the same

chirality are exhibited in generic unfoldings of three-dimensional nilpotent singularities of

codimension three. As far as we know, no singularity has been discovered unfolding Bykov

cycles where the saddle-foci have different chirality.

In this case, Theorem 3.2 is still valid, but the proof is not so straightforward as

Theorem 3.2 because the horizontal border of the strips may reverse the orientation. The

complete and detailed proof is performed in §5.3 of Labouriau and Rodrigues (2015).

The next result says that heteroclinic tangencies occur densely, when the parameters

that determine the linear part of the vector field at the equilibria lie in a set of full Lebesgue

measure (see (3.11)). The tangencies lie near the cycle, in contrast to the findings of

Knobloch, Lamb, and Webster (2005) and Lamb, Teixeira, and Webster (2005) for cycles

with the same chirality.

Theorem 3.5 (Labouriau and Rodrigues (2015)). There is an open set U of vector fields

within B such that for any X 2 U, and any tubular neighborhood T of the Bykov cycle,
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there exists Y 2 B arbitrarily C r close to Y for which W u.O2/ and W
s.O1/ have a

tangency inside T .

We sketch the main steps of the proof of Theorem 3.5. It relies on the geometry of the

map

� D ˚2 ı 	1!2 ı ˚1 W In.O1/ ! Out.O2/:

Denote by ˇ.s/ D .0; s/ 2 In.O1/, s > 0, a vertical segment in In.O1/. Let

.xˇ .s/; yˇ .s// D �.ˇ.s// D ˚2 ı 	1!2 ı ˚1.ˇ.s//:

Taking into account (3.3), (3.5) and (3.4), we get that

xˇ .s/ D �g2ı1 ln s �
g2

2
lnC. N'/C N' and yˇ .s/ D sıC.'/

ı2
2 (3.10)

where

ı1 D
˛1

�1

ı2 D
�2

˛2

ı D ı1ı2 g1 D
!1

�1

g2 D
!2

˛2

and

' D �g1 ln s; C.'/ D a2 cos2.'/C a�2 sin2.'/ N' D arctan
�
a2 tan.'/

�
:

Remark 3.6. The hypothesis (BC3) may be introduced, in local linear equations (3.2),

assuming that !1 > 0 and !2 < 0. Thus, g1 > 0 and g2 < 0.

Lemma 3.7 (Labouriau and Rodrigues (2015)). Let b D
j!2j

!1

˛1

˛2
. The following assertions

hold:

1. if a D 1, then xˇ .s/ and yˇ .s/ are both monotonic functions of s;

2. if a > 1, then yˇ .s/ is not a monotonic function of s;

3. lims!0C yˇ .s/ D 0 for all a > 1;

4. if b > 1, then lims!0C xˇ .s/ D �1;

5. if 0 < b < 1, then lims!0C xˇ .s/ D 1.

The authors of Labouriau and Rodrigues (2015) noticed that, when a > 1, the coordinate
map xˇ is not a monotonic function of s because the curve � ı ˇ reverses the direction

of its turning around Out.O2/. This reversion happens infinitely many times. This is the

notion illustrated in Figure 3.6 and formalized in the following definition:

Definition 3.8. We say that a vector field X in B has the dense reversals property if for

the vertical segment ˇ.s/ D .0; s/ 2 In.O1/, s > 0, the projection into W
u

loc
.O2/ of the

points where � ı ˇ has a vertical tangency, is dense in W u
loc
.O2/ \ Out.O2/.
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V1 V2

W s.O1/W u.O2/

Out.O2/

Figure 3.6: The birth of tangencies for cycles with different chirality.

Note that Case 1 of Lemma 3.7 rules out reversals when a D 1. We need some

additional assumptions on the intrinsic parameters of a Bykov cycle

P D .!1; ˛1; �1; j!2j; �2; ˛2; a/ ;

determined by the eigenvalues of the linearization of the vector field at the equilibria and

the constant a > 1 which appears in (3.5). The open set U in Theorem 3.5 corresponds to

an open set C of parameters P Namely,

C D

8̂<̂
:P W

2!1.a
2 � a�2/

˛1 �

q
!2

1 C 4˛2
1

<
˛2

j!2j
�
a2˛1

!1

<
2!1.a

2 � a�2/

˛1 C

q
!2

1 C 4˛2
1

9>=>; : (3.11)

Now define the set D as fP 2 C W b … Qg, where b was given in the statement of Lemma

3.7. The next result, which concludes the proof of Theorem 3.5, shows that the dense

reversals property is a persistent property in B.

Lemma 3.9 (Labouriau and Rodrigues (2015)). Let X 2 B with intrinsic parameters

P 2 D, then X has the dense reversals property.

The same idea to prove Theorem 3.5 has been used in Bessa and Rodrigues (2016)

to show the existence of Cocoon bifurcations in conservative systems. The tangencies

of invariant manifolds coexist with transverse intersections that generate the hyperbolic

horseshoes.
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Theorem 3.10 (Bykov (1999, 2000) and Labouriau and Rodrigues (2015)). C 2 arbitrarily

close to any X whose parameters P lies in D, there is a vector field in B, where the

non-hyperbolic dynamics cannot be separated by an isotopy from the maximal hyperbolic

set that appears in any tubular neighborhood of the cycle.

According to Theorem 3.5, there is an open set U � B where, densely, the two-

dimensional invariant manifolds of two hyperbolic saddle-fociO1 andO2 meet tangentially.

From now on, we will make use of the following additional hypothesis:

(BC4) ı1 D ˛1=�1 > 1 and ı2 D �2=˛2 > 1.

Property (BC4) implies that the first return map to In.O1/, when well defined, is

dissipative (determinant of D˘ less than one). It is required to prove the existence of

strange attractors in the unfolding of the heteroclinic tangencies in Theorem 3.5. An explicit

example with a two parametric vector field satisfying (BC1)–(BC2) and (BC3)–(BC4)

has been given in Labouriau and Rodrigues (2015).

The following technical lemma is the key to link Lemma 3.9 with strange attractors:

Lemma 3.11 (Labouriau and Rodrigues (2017)). Let X� be a one-parametric family of

vector fields in B under the extra assumption (BC4) unfolding generically a heteroclinic

tangency between W u.O2/ and W
s.O1/ for � D 0. Then there exists a sequence of real

numbers �j ! 0 for which the first return map to In.O1/, has a homoclinic tangency

associated with a dissipative hyperbolic periodic orbit.

The idea of the proof is quite standard. Assume that X� unfolds generically at � D 0
a heteroclinic tangency between W u.O2/ and W

s.O1/. Theorem 3.2 says that there is

a suspended horseshoe � in a rectangle (say R1 � In.O1/) near the two-dimensional

connection O2 ! O1. Within this rectangle, the local stable foliation associated with

� is horizontal as W s.O1/ \ In.O1/ and the local unstable foliation associated with �
is vertical as W u.O2/ \ In.O1/. The lines corresponding to the unstable manifolds of

the periodic solutions of � are very close to W u.O2/ \ In.O1/ and their first return

map to In.O1/ have the same shape as the line ˘.W u.O2/ \ In.O1//. Analogously,
the lines corresponding to the stable manifolds of the periodic solutions of � are very

close to W s.O1/ \ In.O1/. Hence near the point of tangency between W u.O2/ and
W s.O1/, there are infinitely many lines corresponding to the stable and unstable manifold

of periodic orbits lying in �. In particular, near � D �0, there is at least one pair of

invariant manifolds of a periodic point of � meeting tangentially. The dissipativeness

follows from Property (BC4).

In particular, as consequence of the result described in §2.5 we get:

Corollary 3.12. There is an open set U of vector fields within B and satisfying the extra

assumption (BC4) such that arbitrarily close to any X 2 U, there is a vector field whose

flow exhibits exhibiting infinitely many sinks and persistent strange attractors near the

cycle � .
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3.5 Breaking the one-dimensional connection

Since the transversality of the two-dimensional invariant manifolds W u.O2/ and W
s.O1/

is persistent under small perturbations, a generic unfolding of a Bykov cycle is charac-

terized by the break of the connection along the one-dimensional invariant manifolds,

a phenomenon of codimension two (see Appendix A). When the connection along the

one-dimensional invariant manifolds breaks, the horseshoes in Theorem 3.2 are destroyed

and hence the same mechanisms explaining the genesis of strange attractors in the unfold-

ing of Shilnikov cycles are valid to provide a source of sinks and strange attractors (see

Theorem 2.17).

To be more precise, we consider a two-parameter family of differential equations

Pu D X�.u/; u 2 R3; � 2 R2; (3.12)

where the flow of (3.12) has a Bykov cycle for � D .0; 0/ and the connection 
1!2 from

O1 to O2 unfolds generically.

Theorem 3.13 (Bykov (1999, 2000)). If k�k is sufficiently small, then there exist two

bifurcation curves `1 and `2 such that if � 2 `j , then the system (3.12) has a homoclinic

curve associated with the saddle-focus Oj , j D 1; 2.

Note that if Shilnikov condition (S3b) is met for the saddle-foci, then strange attractors

appear.

The above result establishes a correspondence between tangencies in the bifurcation

diagram and in the phase space. Each of the curves of Theorem 3.13 has a form of a spiral

winding toward the origin. The lines `1 and `2 may be interpreted as ˚�1
2 .W s

loc.O1/ \

Out.O2// and 	1!2 ı ˚1.W
u
loc.O2/ \ In.O1//.

As explored in Bykov (1999, 2000), deeper results may be stated with respect to the

relative position of the curves `1 and `2. Defining G as

G D
˛2

1

�2
1 !

2
1

C
�2

2

˛2
2 !

2
2

�
2 ˛1 �2

�1 ˛2 !1 !2

E C .1 � E2/;

where E D
1
2

�
a2 C

1
a2

�
> 1; one gets:

Theorem 3.14 (Bykov (1999, 2000)). For every generic two-parametric family as in

(3.12), there exists a sequence .�j /j 2N of parameters, for which the flow of X�j
has

the coexistence of two homoclinic cycles associated with O1 and O2. If G > 0, then at

each point � D �j , the curves intersect transversally. If G < 0, by any arbitrarily small
perturbation of the family (3.12), one may obtain a tangency of `1 and `2 arbitrarily close

to � D 0.
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Historical remark

Bykov never comments on the chiralities of the nodes, assuming implicitly that they satisfy

either (BC2) or (BC3). Therefore, in the cross sections, the spirals corresponding to the

two-dimensional invariant manifolds of the saddle-foci are oriented in the same way. This

explains the orientation of the spirals of Figure 2 of Bykov (2000) in contrast to those

shown in Figure 11 of Knobloch, Lamb, andWebster (2014), that turn in opposite directions

because the nodes have the same chirality. Bykov’s condition G < 0 in Theorem 3.2 of

Bykov (2000) is analogous to our condition (3.11) that defines the set A where tangencies

are dense.



4
Bifocus

homoclinic
cycles

The homoclinic cycle to a bifocus equilibrium provides one of the main examples of the

occurrence of chaotic dynamics in four-dimensional vector fields. The striking complexity

of the dynamics near homoclinic cycles has been discovered and investigated by Shilnikov

under non-resonant condition in Shilnikov (1967, 1970). Namely, Shilnikov proved the

existence of a countable set of periodic solutions of saddle type. Later the existence of

three-dimensional horseshoes explaining geometrically the presence of this periodic obits

was presented in Ibáñez and Rodrigues (2015) and Wiggins (2013).

The spiraling geometry of the non-wandering set near the homoclinic cycle associated

with the non-resonant bifocus has been partially described in Fowler and Sparrow (1991)

where the authors studied generic unfoldings of these cycles. On the other hand the reso-

nant case includes Hamiltonian and reversible systems. The presence of two dimensional

horseshoes in any neighborhood of a non-degenerate Hamiltonian bifocal homoclinic

orbit was obtained by Devaney (1976a). This result was extended by citelerman1991com-

plex,L97,lerman2000dynamical (see also Koltsova and Lerman (2009)) for nearby level

sets. Also infinitely many secondary bifocal homoclinic orbits accompanying the primary

connection have been find in the Hamiltonian case. In the reversible context this result

was extended for non-degenerate symmetric bifocal homoclinic orbits by Härterich (1998).

In fact, the similarity between reversible and Hamiltonian has been demonstrated in many

cases Devaney (1976b). For instance, both reversible and Hamiltonian homoclinic orbits

are accompanied by a one-parameter family of periodic orbits Devaney (1977). In the

general context, the complete understanding of the structure of this spiraling set is a hard

task.
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In this chapter we will study the non-resonant configuration as well as the Hamiltonian

and reversible setting. These resonant configurations appear in the limit family of generic

unfoldings of nilpotent singularities while the non-resonant case emerges from these

families into the unfolding as showed in Chapter 5. We will focus in explaining the

aforementioned results and show how strange attractors, attracting invariant tori, robust

heterodimensional cycles and robust tangencies can be obtained by perturbation these

cycles following the recent works Barrientos, Ibáñez, and Rodríguez (2016), Barrientos,

Raibekas, and Rodrigues (2019), and Rodrigues (2018).

4.1 Setting

Consider a differential equation

Pu D X.u/; u 2 R4 (4.1)

whereX is aC r vector field with r > 1 as large as necessary. We assume that the associated

flow satisfies the following hypotheses:

(B1) There is an equilibrium point O with eigenvalues ofDX.O/

�˛1 ˙ i!1 and ˛2 ˙ i!2 where �˛1 < 0 < ˛2 and !1; !2 > 0.

(B2) There is (at least) one non-degenerate homoclinic orbit 
 . That is,


 � W s.O/ \W u.O/

and

dimTxW
s.O/ \ TxW

u.O/ D 1 for all x 2 
 .

The homoclinic cycle is given by � D fOg [ 
 . The equilibrium O possesses

two-dimensional stable and unstable manifolds, W s.O/ and W u.O/ respectively, which
intersect non-transversely along 
 . If we restrict the system to W s.O/, the equilibrium O
is a stable focus, i.e., the orbits spiral around O as t ! 1. Similar behavior occurs when

we restrict the system toW u.O/. For this reasonO is called bifocus. Similarly � is called

non-degenerate bifocus homoclinic cycle. Sometimes in the literature this configuration

has also been referred as non-degenerate bifocal homoclinic cycle (or orbit).

We will consider different conditions on the saddle index

ı D
˛1

˛2

> 0:

Namely, we study the above configuration under the assumptions

(B3) ı 6D 1 (Shilnikov condition)
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(B4) ı D 1 (resonant condition).

Shilnikov (1967) discovered that, when (B3) holds, the dynamics near to � involves

infinitely many periodic solutions arbitrarily close to the cycle. For this reason (B3)

is usually called Shilnikov condition and when � satisfy this condition is called non-

degenerate Shilnikov bifocus homoclinic cycle. On the other hand, the resonant case (B4)

includes Hamiltonian and reversible systems. Devaney (1976a) and Devaney (1977) (see

also Belyakov (1984a), Härterich (1998), and Lerman (1991)) showed that in these resonant

cases the 
 is also accompanied by infinitely many periodic orbits and moreover, infinitely

many secondary homoclinic orbits. Throughout the present chapter these results will be

clarified.

4.2 Local map: spiraling geometry

Since X is a C r vector field with r > 1 large enough, under non-resonant conditions on
the eigenvalues, we can get a linearize (4.1) around O as smoothly as necessary (see §1.1).

That is, there exists a neighborhood V of O such that, if .x1; x2; y1; y2/ is in V , the
system (4.1) is orbitally equivalent to the linear system8̂̂̂<̂

ˆ̂:
Px1 D �˛1x1 � !1x2

Px2 D !1x1 � ˛1x2

Py1 D ˛2y1 � !2y2

Py2 D !2y1 C ˛2y2:

(4.2)

Using (4.2), we may define bipolar coordinates .rs; �s; ru; �u/ near the bifocusO . Namely,

x1 D rs cos �s x2 D rs sin �s and y1 D ru cos �u y2 D ru sin �u:

The local invariant manifolds are given by

W s
loc.O/ D fru D 0g and W u

loc.O/ D frs D 0g:

NearO , in bipolar coordinates .rs; �s; ru; �u/, the dynamics is governed by the differential

equations

Prs D �˛1rs P�s D !1 Pru D ˛2ru P�u D !2:

whose explicit solutions starting at a point .rs; �s; ru; �u/ is given by

rs.t/ D rse
�˛1t �s.t/ D �s C !1t ru.t/ D rue

˛2t �u.t/ D �u C !2t:

As illustrated in Figure 4.2, in order to construct the local return map we consider two

sections near the origin, ˙ s and ˙u, which are solid tori defined by

˙ s
D frs D "g and ˙u

D fru D "g (4.3)
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rs D "

x1

x2

W s
loc
.O/

O







O

y2

y1
ru D "

W u
loc
.O/

qs

qu

Figure 4.1: Coordinates near O .

x1

x2

˙ s

�s

y2

y1

˙u

�u

Figure 4.2: Cross-sections near O .
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where " > 0 is chosen sufficiently small such that

fqs
g D 
 \˙ s

� W s
loc.O/ and fqu

g D 
 \˙u
� W u

loc.O/:

Trajectories starting at ˙ s and ˙u go outside of V in negative and positive time, respec-

tively. For convenience, we write .�s; ru; �u/ and .r
�
s ; �

�
s ; �

�
u / for the coordinates in ˙

s

and ˙u respectively.

The time of flight inside V of a trajectory with initial condition .�s; ru; �u/ in ˙
s n

W s
loc.O/ is given by

1

˛2

ln

�
"

ru

�
:

Recalling the variables, we may take " D 1. Thus, we may define the map ˚ W ˙ s n

W s
loc
.O/ ! ˙u,

r�
s D rı

u ��
s D �s �

!1

˛2

ln ru ��
u D �u �

!2

˛2

ln ru: (4.4)

A similar calculation provides that the inverse map ˚�1 W ˙u nW u
loc
.O/ ! ˙ s of the

local map ˚ is given by

�s D ��
s C

!1

˛1

ln r�
s ru D .r�

s /
1=ı �u D ��

u C
!2

˛1

ln r�
s : (4.5)

Spiralling geometry Now we describe the spiraling behavior of solutions near O . We

address the reader to Definition 2.2 to recall the notion of spiral. Additional definitions are

needed:

Definition 4.1. A two-dimensional manifold S embedded in R3 is called a spiraling sheet

accumulating on a curve C if there are neighborhoods U � R3, W � R2 of C and .0; 0/
respectively, a spiral S � R2 around the origin, a non-degenerate closed interval I and a

diffeomorphism � W U ! I �W such that

�.S \ U/ D I � .S \W / and C D ��1.I � f0g/:

The curve C is also called the basis of the spiraling sheet.
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Figure 4.3: Spiralling sheet

Up to a diffeomorphism, we may think on a spiraling sheet accumulating on a curve as

the cartesian product of a spiral and a curve. In fact, concerning Definition 4.1, we will

consider that the curve C lies on the invariant manifolds of O , when restricted to the above

cross sections. Each cross-section to C intersects the spiraling sheet S into a spiral. Note

also that the diffeomorphic image of a spiraling sheet contains a spiraling sheet.

Definition 4.2. Given two spiraling sheets S1 and S2 accumulating on the same curve

C � R3, any region limited by S1 and S2 inside a tubular neighborhood of C is said a

scroll accumulating on C.
The following result will be essential in the sequel. It shows that a set diffeomorphic to

a disc transverse to W s
loc
.O/ \˙ s is sent by ˚ into a spiraling sheet.

Proposition 4.3 (Härterich (1998) and Ibáñez and Rodrigues (2015)). For � > 0 arbitrarily
small, let � W D � R2 ! R be a C 1 map defined on the disc D D f.u; v/ 2 R2 W 0 6
u2 C v2 6 � < 1g and let

F D f.�s; ru; �u/ 2 ˙ s
W �s D �.ru cos �u; ru sin �u/; 0 6 ru 6 �g

and

F�
D f.r�

s ; �
�
s ; �

�
u / 2 ˙u

W ��
u D �.r�

s cos ��
u ; r

�
s sin ��

u /; 0 6 r�
s 6 �g:

Then the sets˚.F nW s
loc
.O// and˚�1.F� nW u

loc
.O// are spiraling sheets accumulating

on W u
loc
.O/ \˙u and W s

loc
.O/ \˙ s respectively.

As a consequence of the above proposition it follows that:

Remark 4.4. The image or the pre-image by ˚ of any cylindrical neighborhood C of a

segment in W s
loc
.O/ \˙ s or W u

loc
.O/ \˙u is a scroll in ˙u or ˙ s respectively.

We observe the duality in the spiraling geometry behavior showed in the previous propo-

sition. This follows from the relative symmetry of ˙ s and ˙u and the expressions (4.4)

and (4.5) for ˚ and ˚�1 respectively.
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4.3 Shilnikov bifocus homoclinic cycles

Nowwe will consider the vector fieldX in (4.1) under the assumptions (B1)–(B3). In order

to describe the dynamics near the homoclinic cycle � we will need first to characterize the

global map.

Global map. Recall that 
 intersects˙ s and˙u at qs and qu respectively. Without loss

of generality we can assume that qs D .0; 0; 0/ and qu D .0; 0; 0/ in the coordinates of
the corresponding cross-sections. Therefore, we can choose two neighborhoods V s � ˙ s

and V u � ˙u of qs and qu respectively such that the map 	 W V u ! V s generated by

the global flow near � is a diffeomorphism. Now we define local rectangular coordinates:

y1 D ru cos.�u/ y2 D ru sin.�u/ zs D �s in ˙ s

and

x1 D r�
s cos.��

s / x2 D r�
s sin.��

s / zu D ��
u in ˙u.

Following Fowler and Sparrow (1991), the global map 	 could be approximated by the

linear transformation 0@ y1

y2

zs

1A D A

0@ x1

x2

zu

1A
whereA is a invertible matrix. Moreover, according to the non-degenerate condition in (B2)

this matrix must to satisfy that v and Av are non-collinear vectors where v D .0; 0; 1/T .
That is, v cannot be an eigenvector of A.

First-return map. In order to provide a well defined first-return map, we consider a

cylindrical neighborhood

C u
D f.r�

s ; �
�
s ; �

�
u / 2 V u

W j��
u j 6 "; ru 6 �g � ˙u

of qu for some small enough constant "; � > 0. Then we consider the set

S D ˚�1.C u
nW u

loc.O// � ˙ s

and define the first return map as˘ W S ! ˙ s by˘ D 	 ı˚ . Observe that according to

Remark 4.4 the set S is a scroll on ˙ s .

4.3.1 Horseshoes

Now we will show the existence of suspended horseshoes for a vector field under the

assumptions (B1)–(B3). In particular, we have two possibilities for hypothesis (B3):

(B3a) ı > 1 (negative divergence),
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(B3b) ı < 1 (positive divergence).

The relative symmetry of the cross sections as well as the local and the global maps and their

inverses allow us to get a similar first-return map around � for the vector field induced by

reversing time. Thus, we may reduce (B3b) from (B3a) and vice versa. To be more specific,

consider that ˘ is the first-return map of the vector field X under the assumption (B3b).

We observe that ˘�1 D ˚�1 ı 	�1 D 	 ı z̆ ı 	�1 where z̆ D 	�1 ı ˚�1 is the

first-return map defined on ˙u for the vector field �X . Since the saddle index of the

equilibrium point O for the vector field X is ı < 1 (assumption (B3b)) then the saddle

index for �X is ı > 1. Moreover, the analytic expression of z̆ is similar as the first-return

map of X but with ı > 1 (assumption (B3a)). Thus, the result proved for ı > 1 holds for
z̆ and consequently, by the conjugation for ˘�1.

Given � 2 S1, for k large enough, consider

C u
k D f.r�

s ; �
�
s ; �

�
u / 2 C u

W akC1 6 r�
s 6 akg � ˙u

where

ak D e
�˛1
!2

.�C2�k/
: (4.6)

Hence, from (4.5) we have

Sk D ˚�1.C u
k / � f.�s; ru; �u/ 2 ˙ s

W bkC1 6 ru 6 bkg

where

bk D .ak/
1=ı

D e
�˛2
!2

.�C2�k/
: (4.7)

Observe S is the union of the sets Sk . Moreover, when ı > 1 (assumption (B3a)) is easy to

check that bkC1 > ak for any k large enough. Similarly, when ı < 1 (assumption (B3b))

then akC1 > bk for all k large enough.

The next results gives the existence of suspended horseshoes in the neighbourhood of

� .

Theorem 4.5. Let ˘ W S ! ˙ s be the first-return map of a vector field under the

assumptions (B1)–(B3). Then there is a sequence of hyperbolic compact invariant sets �k

in S of ˘ such that the restriction of ˘ to �k is topologically conjugate to the full shift

on two symbols.
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(a) Sk \ ˘.Sk/ (b) projection along �s direction
in the case (B3a)

Figure 4.4: Horseshoe.

Proof. As we have remarked above, we can reduce (B3b) to (B3a) and vice versa. Hence,

in order to explain the construction of the horseshoes we assume ı > 1 (condition (B3a)).
Having into account that the map 	 adds only a bounded distortion factor to the picture

induced by the local map˚ we can assume that 	.C u
k
/ and C u

k
are of the same order. Thus,

in view that under the assumption (B3a) one has that bkC1 > ak for k large enough and by

means of an appropriate choice � to rotate Sk , we get that Sk and˘.Sk/ D 	.C u
k
/ intersect

as Figure 4.4 shows. The lateral view (projection along �s direction) of this intersection

may seem similar to the horseshoes finding in the Shilnikov picture studied Chapter 2.

In particular, Sk \˘.Sk/ consists in two component V 1
k
and V 2

k
which could be seen as

a vertical slab as in the Smale horseshoe picture. On the other hand, H 1
k

D ˘�1.V 1
k
/

and H 2
k

D ˘�1.V 2
k
/ are those horizontal which fully intersect V 1

k
and V 2

k
. An analysis

of these intersections is done in Ibáñez and Rodrigues (2015) and Rodrigues (2018) (see

also Shilnikov (1967) and Wiggins (2013)) where it is rigorously proved that the restriction

of ˘ to the maximal invariant set �k in Sk is topologically conjugate to the full shift of

two symbols. The hyperbolicity of this set follows from Shilnikov (1970) (see Afraimovich

et al. (2014)).

The effects of the complicate local map are reflected along the direction �s and �u.

Namely, there are enormous stretching (in the �u direction) and contraction (in the �s

direction). The radial direction ru could be consider as the neutral direction in comparison
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W s
loc

.O/

W u.O/

W s .P / P

˙s

	.˙u/

(a) Assumption (B3a)

W s
loc

.O/

W u.O/

W u.P /

P

˙s

	.˙u/

(b) Assumption (B3b)

Figure 4.5: Invariant manifold of a periodic point for the return map.

with the two previous directions. When ı > 1 (assumption (B3a)) we see contraction

and while if ı < 1 (assumption (B3a)), we have expansion. Fowler and Sparrow (1991,

Sec. 5.1) provide the following asymptotic estimates1 for the eigenvalues �s; �c and �u of

the full first return-map ˘ :

j�sj D O.ak/ � 1 j�c j D O.1/ j�uj D O.
1

bn

/ � 1 (4.8)

where ak and bn are the constant given above in (4.6) and (4.7). Moreover, as commented

above, if ı > 1 (assumption (B3a)) then

j�sj < j�c j < 1 < j�uj

and if ı < 1 (assumption (B3b)) then

j�sj < 1 < j�c j < j�uj:

Figure 4.5 illustrates the stable and unstable manifolds of a periodic point of ˘ in a

horseshoe �k .

1In the notation of Fowler and Sparrow (1991) "1 D ak for the estimate of j�s j and "1 D �, "2 D ", h D 1
and Nr2 D bn for the estimation of j�uj.
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Linked horseshoes Similar as in the case of Shilnikov homoclinic cycles studied in

Chapter 2, the horseshoes �k , �kCn can be heteroclinically related. More precisely, for

any n, we can find k such that ˘.Si / \ Sj for all i; j 2 fk; : : : ; k C ng. By a similar

argument (see Ibáñez and Rodrigues (2015), Rodrigues (2018), and Shilnikov (1970))

the maximal invariant set in the union of Si for i D 1; : : : ; k C n is a horseshoe in

N D 2n symbols. In particular, we also get sequence of hyperbolic compact invariant sets

˝k accumulating on the cycle � \ ˙ s such that ˘ restrict to ˝k is conjugate to a full

shift on k symbols. Moreover, according to Shilnikov (1970) and Deng (1989a, 1993)

(see Afraimovich et al. (2014)) similar symbolic description as in Theorem 2.8 can be also

applied here.

Remark 4.6. The periodic points in the horseshoes ˝k are homoclinically related. That

is, for any pair of periodic points P andQ in ˝k an ˝n respectively, W s.P / intersects
transversally W u.Q/ and vice versa. In particular, all the horseshoes belong to the same
homoclinic class. Recall that the homoclinic class of a hyperbolic periodic point P is

defined as the closure of hyperbolic periodic pointsQ whose stable and unstable manifolds

intersect cyclically with those of P .

4.3.2 Nearby Tatjer homoclinic tangencies

An important open question related to bifocus homoclinic cycles is what type of dynamics

could be appeared after breaking the connection. We are particularly interested in the

occurrence of strange attractors and attracting invariant tori. Under extra assumptions we

will show that Tatjer homoclinic tangencies S. V. Gonchenko, V. S. Gonchenko, and Tatjer

(2007) and Tatjer (2001) associated with dissipative saddles of the first-return map could be

appeared for small perturbations of the vector field which, in principle, no longer have the

original homoclinic cycle. As we will explain later, unfolding generically these tangencies

introduced by Tatjer (2001), one concludes the presence of strange attractors and attracting

invariant tori.

Creation of non-transverse equidimensional cycles. First of all, we will explain how

homoclinic tangencies appear after an arbitrarily small perturbation of the first-return map.

In fact, these tangencies will be obtained from a kind of heteroclinic tangencies, the so-

called non-transverse equidimensional cycles. Namely, we will say that a diffeomorphism

f has a non-transverse equidimensional cycle if there are two homoclinically related

periodic saddles P andQ having a heterodimensional tangency Y . See Figure 4.6.
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P
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f n.D/

W u.Q/

W s.P /

Figure 4.6: Non-transverse equidimensional cycle.
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(a) global view
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W u.P /

W s
loc
.Q/

W s
loc
.Q/

(b) projection along the	.��
u / direction. Before
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Figure 4.7: Unstable manifold of P and stable manifold ofQ.
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Proposition 4.7 (Rodrigues (2018)). Let ˘ W S ! ˙ s be the first-return map of a

vector field satisfying the hypotheses (B1)–(B3). Then ˘ can be C r approximated by

diffeomorphisms having a non-transverse equidimensional cycle associated with periodic

points in the horseshoes.

Proof. We assume the case ı < 1 (hypothesis (B3b)) to explain the construction. The

case ı > 1 is analogous. Notice that horseshoes ˝k accumulates on � \˙ s as well as

the invariant manifolds of its periodic points. In particular, the local unstable manifold

of one of this periodic points, say P , may be seen as a two-dimensional disc crossing

transversallyW s
loc
.O/\V s . Thus, using Proposition 4.3, the set˘.W s

loc
.P // is a spiraling

sheet accumulating on 	.W u
loc
.O/ \ V u/. On the other hand, the local stable manifold

of a saddle point in ˝k accumulates on W s
loc
.O/ \ V s . Thus, by an arbitrarily small

perturbation breaking the homoclinic connection we find a tangency between theW s
loc
.P /

and some saddle pointQ. Indeed, this kind of perturbation unfolds the quasi-transverse

intersection between W s
loc
.O/ \ V s and 	.W u

loc
.O/ \ V u/ in ˙ s and hence we find a

pointQ in some horseshoe ˝k for k large enough so that for a small perturbation W u.P /
and W s.Q/ has a tangency. See figure 4.7.

As a consequence of the above proposition we get easily a homoclinic tangency. To

see this, observing Figure 4.6 we only need to apply �-lemma to a small discD inW u.P /
containing the transversal intersection between W s.Q/ and W u.P /. The iterates of this
disc will be close enough to W u.Q/ and then after an arbitrarily small C r perturbation

of the homoclinic tangency Y we can perform a homoclinic tangency associated with P
obtaining the following:

Corollary 4.8. Let ˘ W S ! ˙ s be the first-return map of a vector field under the

hypotheses (B1)–(B3). Then ˘ can be C r approximated by diffeomorphisms having a

homoclinic tangency associated with a periodic point in a horseshoes.

We want to remark the following important fact:

Remark 4.9. The above results hold for generic one-parameter unfoldings of the ho-

moclinic orbit. Namely, in this case one gets a sequence of parameters �k converging

to � D 0 (corresponding to the cycle) such that homoclinic tangencies (non-transverse
equidimensional cycles) are obtained for � D �k .

However, these homoclinic tangencies are not enough to conclude the existence of

Newhouse phenomenon and persistent strange attractors from its generic unfoldings as we

did in §2.5. For diffeomorphisms in dimension three, the existence of these reach dynamics

from a generic unfolding of a homoclinic tangency associated with a periodic saddle P
has only been showed under extra assumptions. The sectional dissipativeness of the saddle

point P is one of them (see S. V. Gonchenko, Turaev, and Shilnikov (1993), Palis and

Viana (1994), and Viana (1993)). That is, if �1, �2 and �3 are the eigenvalues ofDf.P /
then it requires that j�i�j j < 1 for all i; j 2 f1; 2; 3g. However, in view of (4.8), we are

not under this condition. Another condition was introduced by Tatjer in Tatjer (2001) (see

also S. V. Gonchenko, V. S. Gonchenko, and Tatjer (2007)). In order to provide a rigorous

definition we need some preliminary results.
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P

Y

`uu.Y /

f n.Y /

Figure 4.8: Tatjer homoclinic tangency (type I)

Tatjer homoclinic tangencies. Let P be a hyperbolic saddle fixed point of a three

dimensional diffeomorphism f . For simplicity of the exposition we have chosen a fixed

point but all the terminology and concepts are valid if P is a periodic point. Suppose that

theDf.P / has real eigenvalues �s , �cu and �uu satisfying the

j�sj < 1 < j�cuj < j�uuj:

Thus the tangent space at P has a dominated splitting of the form Es ˚Ecu ˚Euu given

by the corresponding eigenspaces. The unstable manifold W u.P / is tangent at P to the

bundle Eu D Ecu ˚Euu. On the other hand, according to Hirsch, Pugh, and Shub (1977),

the extremal bundle Euu can be also integrated providing a one-dimensional manifold

W uu.P / called strong unstable manifold. Moreover, this bundle can be uniquely extend to

W u.P / providing a foliation Fuu.P / of this manifold by one-dimensional leafs `uu.Y /
containing Y 2 W u.P /. We assume additionally that the center-stable bundle Es ˚Ecu

is also extended and integrated along the stable manifold W s.P / of P . Although the

extended center-stable bundle is not unique any center-stable manifold contains W s.P /
and any two of these manifolds are tangent to each other at every point of W u.P /.

Definition 4.10. A three-dimensional diffeomorphism as above has a Tatjer homoclinic

tangency associated with P (which corresponds to the type I in Tatjer (2001)) if

(T1) W s.P / andW u.P / have a quadratic tangency at Y which does not belongs

to the strong unstable manifold W uu.P / of P ,
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(T2) W s.P / is tangent to the leaf `uu.Y / of Fuu.P / at Y ,

(T3) W u.P / is transverse to center-stable manifold at Y .

Remark 4.11. If P has stable index (dimension of the stable bundle) equals to two, the

above definition of Tatjer homoclinic tangency applies to f �1.

In figure 4.8 we illustrate the condition (T3) around the point NY D f n.Y / 2 W s
loc
.P /

for n > 0 large enough. At this point, condition (T3) can be read as the transversality

between W u.P / and the surface S corresponding to the center-stable manifold tangent

to Es ˚ Ecu at NY . We must also notify that originally Tatjer (2001) includes the extra

assumption of C 1 linearazing coordinates around P . Later in S. V. Gonchenko, V. S.

Gonchenko, and Tatjer (2007) the results in Tatjer (2001) were generalized without this

assumption.

Remark 4.12. The conditions (T1) and (T3) are generic. This means that by an arbi-

trarily small perturbation one can always assume that a homoclinic tangency under the

assumption (T2) is, in fact, a Tatjer tangency (type I).

Although (T1) is a codimension one condition, we must observe that tangency requires

in (T2) is a condition of codimension

dimR3
� dimŒTYW

u.P /C TY `
uu.Y /� D 2:

For more details about tangencies of large codimension see also Barrientos and Raibekas

(2017).

The next theorem summarized some of the main results in S. V. Gonchenko, V. S.

Gonchenko, and Tatjer (2007) and Tatjer (2001) associated with Tatjer homoclinic tangen-

cies:

Theorem 4.13. Let f be a three-dimensional C r diffeomorphism with r > 5 which has a
Tatjer homoclinic tangency associated with a saddle periodic point whose eigenvalues are

�s , �c and �u with

j�sj < 1 < j�uj; j�sj < j�c j < j�uj and j�s�c�uj < 1 (dissipativeness).

Assume that either

(Case A) j�c j < 1 j�c�uj > 1 j�s�uj < 1 (4.9)

(Case B) j�c j > 1: (4.10)

Then, for every two-parameter family f� unfolding the homoclinic tangency of f at � D 0
it holds that

1. there is a sequence of the parameter values�n converging to� D 0 such that f� has

an n-periodic smooth normally-hyperbolic attracting invariant circle for � D �n

for n large enough.
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2. there is a set E of parameter values accumulating on � D 0 and with positive

Lebesgue measure for which f� has a Hénon-like strange attractor near the orbit of

tangency.

The role played by the saddle-node bifurcations in the two-dimensional scenario

(see e.g. Yorke andAlligood (1983)) will be played in the above theorem by the Bogdanov–

Takens bifurcation for three-dimensional diffeomorphisms Broer, Roussarie, and Simó

(1996). For such bifurcation of periodic points, the corresponding spectrum has one unipo-

tent eigenvalue (double eigenvalue equal to 1 with associated eigenspace of dimension

1). The attracting invariant circles in the above theorem are generated by this bifurcation.

On the other hand, the persistent strange attractor are generated in the Case A (i.e., if (4.9)

holds) applying Viana (1993) to the limit family of return maps

Fa;b.x; y; z/ D .z; bz; aC y C z2/ (4.11)

which is, essentially, the Hénon maps with two parameters. In fact, the computation of the

above limit family obtained after a renormalization process is one of the main results in

the works of Tatjer. In the Case B (i.e., if (4.10) holds) the limit family is

Fa;b.x; y; z/ D .z; aC by C z2; y/: (4.12)

In this case the strange attractors are obtained using again the Bogdanov–Takens bifurcation

to find near a generic homoclinic tangencies of dissipative periodic points and then apply

the results in Mora and Viana (1993) and Viana (1993).

We must point out that the strange attractors obtained above are topologically one-

dimensional (one direction of expansivity). As we have comment, they arise from the limit

return maps in (4.11) and (4.12) but using Viana (1993) and are essentially Hénon-like. In

fact, since only in Case B, (4.10), we have a two-dimensional unstable manifold, this case

should be the natural setting in which topologically two-dimensional strange attractors (two

direction of expansivity) show up. However, as far as we know, no proof of the existence

of strange attractors in this case was given. The existence of such attractors was shown

in Viana (1997), but for a simpler case. See this reference for the a more rigorous definition

of strange attractors with more than one expansive direction.

For a proof of the existence of two-dimensional strange attractors of Fa;b in (4.12) it

is very important to note that for each .a; b/ 2 R2, every point .x; y; z/ 2 R3 goes by

one iteration of Fa;b into the surface Ca;b D f.x; y; z/ W y D aC bz C x2g. Hence, it is

enough to study the dynamics of Fa;b on Ca;b . Then, it is not difficult to check that the

map Fa;b restricted to Ca;b is conjugate to the family of endomorphisms defined on R2 by

Ta;b.x; y/ D .aC y2; x C by/:

The dynamical behavior of this family is rather complicated as it was numerically pointed

out in Pumariño and Tatjer (2007). The attractors found for a large set of parameters seem

to be two-dimensional strange attractors (at least, the sum of the Lyapunov exponents being

positive). Moreover, in Pumariño and Tatjer (2006), a curve of parameters .a.t/; b.t// has
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been constructed in such a way that the respective map Ta.t/;b.t/ has an invariant region

in R2 which is homeomorphic to a triangle. In analogy with the well-known relationship

between the quadratic map and the tent-map, authors in Pumariño, Rodríguez, Tatjer,

et al. (2013) and Pumariño, Rodríguez, Tatjer, et al. (2014) introduced a family �t of

piecewise linear maps defined on the triangle of vertices .0; 0/, .1; 1/ and .2; 0/. Namely,

�t D At ı F where

At D

�
t t
t �t

�
and F.x; y/ D

(
.x; y/ if x < 1,

.2 � x; y/ if x > 1.

In fact, �t belongs to a large family called expanding baker maps which generalized to the

plane the notion of tent-map. Observe that on y D 0 this family is reduced to

ht .x/ D

(
tx if x < 1,

t .2 � x/ if x > 1

which is a reparametrization of the tent-map on Œ0; 2�. The name of expanding baker map is

given by its geometric behavior: first folding along the line x D 1 and after that expanding
according to At . One of the main differences between �t and the classical models of

baker’s transformations is that bakers use a knife to knead the bread while the bakers of

�t knead without using a knife.

Coming back to Ta.t/;b.t/, the model �t exhibits the same types of possible strange

attractors observed numerically for its quadratic analogous: simply connected, non-simply

connected and non-connected. In Pumariño, Rodríguez, Tatjer, et al. (2015) it was analyti-

cally proved that�t has indeed a simply connected strange attractor for 2�1=2.
p
2C1/1=4 <

t 6 1. Renormalization operators and the proof of the existence of any number of non-

connected strange attractors were developed in Pumariño, Rodríguez, and Vigil (2017) and

Pumariño, Rodríguez, and Vigil (2018). See also Pumariño, Rodríguez, and Vigil (2019)

for a view of the current state of the subject.

Although the dynamics of the quadratic family Ta;b is more complicated than the

expanding baker maps (even in dimension one for ten-map) it seems natural to assume

that Ta;b presents persistent strange attractors. However, the existence of strange attractors

has not been proved for Ta;b . We claim that the families of return maps unfolding Tatjer

homoclinic tangencies given in (4.12) have persistent two-dimensional strange attractors.

The proof of such a result needs to overcome the long bridge from the results of Benedicks

and Carleson (1985) to those of Benedicks and Carleson (1991) and after that Mora and

Viana (1993).
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Y

f �m.Y /

f n.X/

Q

W s.P /

f n.`uu.X//

W s.Q/

Figure 4.9: Perturbation proceeded to create Tatjer tangencies.

Tatjer tangencies fromnon-transverse equidimensional cycles. Recently, Kiriki, Nakano,

and Soma (2017) have explained how it is possible to create Tatjer homoclinic tangencies

from of a non-transverse equidimensional cycle with extra assumptions. Namely they as-

sume that the periodic saddle P andQ involved in the equidimensional cycle has different

signature. Namely, P has real eigenvalues while Q has a pair of non-real eigenvalues.

The idea behind of the proof of the creation of a Tatjer tangency after arbitrarily small

perturbation is showed in Figure 4.9. Basically consists again in to use the �-lemma on

a small discD contained in the unstable manifold of W u.P / transverse at X to W s.Q/.
Now the presence of non-real eigenvalues ofQ allows to f n.`uu.X/\D/ rotates around
Q. Hence, perturbing if necessary the frequency of the complex eigenvalue to be irrational,

the tangent space of f n.`uu.X/\D/ at f n.X/ is arbitrarily close to the tangent space of
W s.P / at f �m.Y / for m > 0 large enough. Then by a small C r perturbation one gets a

Tatjer homoclinic tangency associated with P (see Remark 4.12). Summarizing we have:

Theorem 4.14 (Kiriki, Nakano, and Soma (2017)). Let f be a three-dimensional C r

diffeomorphisms having a non-transverse equidimensional cycle associated with periodic

saddles P andQ where P has real eigenvalues andQ has a pair of non-real eigenvalues.
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Then f can be C r approximated by diffeomorphisms having a Tatjer tangency associated

with P .

In order to apply this idea to the non-transverse equidimensional cycle obtained in

Proposition 4.7 for a perturbation of the first-return map we will need the following

assumption:

(B5) There exists a hyperbolic point Q with a pair of non-real eigenvalues

homoclinically related to a periodic point in one of the horseshoes.

Observe that this hypothesis could be obtained from a non-dominated context as it is proved

in Bonatti, Dı́az, and Pujals (2003, Lemm 1.9 and proof of Prop. 2.1) for homoclinic classes

(see also Bessa, Rocha, and Varandas (2018, Thm. 2.8) where under stronger assumptions

this type of results are revisited). Non-dominated dynamics is a natural assumption due to

the plethora of bifurcations which arise when the cycle is broken. However, the main tool

to go from non-dominated dynamics to periodic saddles with non-real eigenvalues in the

above references is the Frank’s lemma which only allows us to provide a C 1 approximation.

Theorem 4.15 (Rodrigues (2018)). Let ˘ W S ! ˙ s be the first-return map of a vector

field under the assumptions (B1)–(B3) and (B5). Then, ˘ can be C r approximated by

diffeomorphisms having a Tatjer tangency associated with a hyperbolic periodic point P
in a horseshoe. Moreover, under the assumption (B3a) then the Tatjer homoclinic tangency

is associated with a dissipative fixed point in the Case A of Theorem 4.13.

Proof. Recall that all the periodic points in the horseshoes are homoclinically related

(see Remark 4.6). On the other hand, since from the assumption (B5) the pointQ with non-

real eigenvalues values is homoclinically related with a periodic point in a horseshoe, by

standard arguments using �-lemma, we can assume that the non-transverse equidimensional

cycle obtained in Proposition 4.7 is associated with the continuation ofQ and a fixed point

P in a horseshoe�k from Theorem 4.5 for k large enough. Now, Theorem 4.14 concludes

that by an arbitrarily small C r perturbation we obtain a Tatjer homoclinic tangency. Finally,

from (4.8) and sinceP 2 �k , we conclude that the eigenvalues ofP are �s , �c and �u with

j�sj D O.ak/ � 1, j�c j D O.1/ and j�uj D O.1=bk/ � 1. Under the assumption (B3b),

we have that j�c j < 1 and bk > bkC1 > ak . Thus,

j�s�c�uj < 1 j�s�uj < 1 and j�c�uj > 1:

That is, P is a dissipative fixed point in the assumptions of the Case A of Theorem 4.13.

This concludes the proof of the theorem.

As a consequence of the above theorem and Theorem 4.13, we get the following:

Corollary 4.16. A vector field under the assumptions (B1), (B2), (B3a) and (B5) can be

C r approximated with r > 5 by vector fields with suspended Hénon-like strange attractors
and attracting invariant tori.
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Some observations must be done. First, observe that in order to get attractors near of

the bifocus homoclinic cycle seems necessary that the vector field has negative divergence

(condition (B3a)) so that the flow near the equilibrium contracts volume. Under the

condition (B3b), the Tatjer homoclinic tangency is associated with a fixed point P of the

first-return map ˘ which expands volume and has two-dimensional unstable manifold.

Consequently, Case B in Theorem 4.13 is not possible. However, by considering ˘�1, the

point P is now dissipative and it is not difficult to see that meets again the Tatjer conditions

in Case A of Theorem 4.13. This implies the following remark:

Corollary 4.17. A vector field under the assumptions (B1), (B2), (B3b) and (B5) can

be C r approximated with r > 5 by vector fields with suspended strange repellers and

repelling tori.

The second remark is concerned to the condition (B5). This hypothesis is imposed

on the initial vector field under the assumptions (B1)–(B3) in order to provide a readable

explanation of the idea behind the construction of Tatjer homoclinic tangencies. One

would expect to take out this condition by proving that periodic points with non-real

eigenvalues appear after breaking the connection in the process of creation and destruction

of infinitely many horseshoes. These points would be homoclinically related with the

horseshoes that survive after the perturbation and one could expect to create a non-transverse

equidimensional cycle with different signature after arbitrarily small perturbation.

4.4 Conservative bifocus homoclinic orbits

Now, we will consider that X in (4.1) is a Hamiltonian vector field. That is,

(BH) There exists a smooth functionH W R4 ! R such that

X.v/ D J � rH.v/; v 2 R4

where rH is the gradient ofH and J is the Poisson matrix.

Under the assumption (BH), the eigenvalues of O in (B2) are of the form

�˛ ˙ i! ˛ ˙ i! with ˛! 6D 0:

Indeed, this follows from the fact that in this case DX.O/ is a Hamiltonian matrix and

thus if � is an eigenvalue, then so are ��, N� and �N�. Therefore, we are in the resonant
case (B4).

We will assume that (4.1) satisfies (BH), (B1) and (B2). Under these assumptions

� D fOg [ 
 is usually refer as (non-degenerate) conservative bifocus homoclinic cycle.

By translating our coordinate frame, we can assume H.O/ D 0. The two-dimensional

invariant manifolds W s.O/ and W u.O/ are both contained inH�1.0/. This level set is a
smooth three-dimensional submanifold near every point, except for the bifocus equilibrium

O , where it has a singularity. Hence, the stable and unstable manifolds of any bifocus

equilibrium point generically intersect each other transversally in the level set. Thus we

must to have the following remark:
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Remark 4.18. The assumption (B2) is actually satisfied for any generic Hamiltonian

system with a bifocus equilibrium point.

In this section, we will provide a symbolic description of the hyperbolic sets lying in

a neighborhood of the non-degenerate homoclinic orbit 
 . To this end, we will study the
Poincaré return map through an appropriate cross-section.

4.4.1 The first-return map

Since X is a smooth Hamiltonian vector field, in order to describe the local behavior of the

flow near the bifocus equilibrium, we can use the Moser’s normal form (see Moser (1958)

for the analytic case, Lyčagin (1977) for C1 vector fields or Banyaga, de la Llave, and

Wayne (1996) and Bronstein and Kopanskii (1996) for some sufficiently smooth cases).

These results guarantee that, in some neighborhood V of p, there exist local symplectic

coordinates .x1; x2; y1; y2/ such that the Hamiltonian takes the form

H.x1; x2; y1; y2/ D h.�; �/ D ˛� C !�C � � �

where

� D x1y1 C x2y2 � D x1y2 � x2y1

h is a smooth function and dots stand for higher order terms in �; �. We will work locally

in these coordinates for which, in the neighborhood V , we have the following differential
equations: 8̂̂̂<̂

ˆ̂:
Px1 D �Hy1

D �h�x1 C h�x2

Px2 D �Hy2
D �h�x1 � h�x2

Py1 D Hx1
D h�y1 C h�y2

Py2 D Hx2
D �h�y1 C h�y2:

(4.13)

This system could be view as Hamiltonian analogous of the linear system (4.2). Introducing

bipolar coordinates .rs; �s; ru; �u/, (4.13) can be written as

Prs D �h�rs P�s D �h� Pru D h�ru P�u D �h�: (4.14)

In these bipolar coordinates invariant manifolds in V are linear. Namely,

Remark 4.19. The stable (resp. unstable) manifold coincides with the stable (resp. unsta-

ble) subspace ru D 0 (resp. rs D 0). Moreover, the functions � and � are first integrals of
the Hamiltonian vector field in (4.13).

Cross-sections. Similar as §4.2 the solid tori

˙ s
D frs D "g and ˙u

D fru D "g

are cross-sections for the flow of (4.14) in V . Let us denote fqsg D 
\˙ s and fqug D 
\

˙u. Without loss of generality, we can assume that qs D ."; 0; 0; 0/ and qu D .0; 0; "; 0/.
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In order to avoid confusion we will denote by .�s; ru; �u/ and .r
�
s ; �

�
s ; �

�
u / the variables

on ˙ s and ˙u respectively.

On the other, according to Remark 4.19, since h� and h� are functions of � and �, they
also remain constant along the orbits of (4.14) in V . Taking into account this observation,
equations in (4.14) can be integrated. Following the calculation in §4.2, for an initial

condition

x10 D rs0 cos �s0 x20 D rs0 sin �s0 y10 D ru0 cos �u0 and y20 D ru0 sin �u0

we get the local map ˚ W ˙ s nW s
loc
.O/ ! ˙u given by

r�
s D ru0 ��

s D �s0 �
!0

˛0

log
"

ru0

��
u D �u0 �

!0

˛0

log
"

ru0

(4.15)

where ˛0 D h�.�0; �0/ and !0 D h�.�0; �0/ being

�0 D x10y10 C x20y20 and �0 D x10y20 � x20y10:

We will use the local invariance of the functions � , � to introduce new coordinates .�s; �; �/
and .��; ��; ��

u / on˙
s and˙u, respectively. These coordinates are given in the following

way:

� D "ru cos.�u � �s/ ��
D "r�

s cos.��
u � ��

s /

� D "ru sin.�u � �s/ ��
D "r�

s sin.��
u � ��

s /:
(4.16)

Thus, denoting � D �u � �s , it holds that

�2
C �2

D .ru"/
2 cos� D

�p
�2 C �2

and sin� D
�p

�2 C �2
:

Note that �.�; �/ is simply the polar angle of the point .�; �/. Similar expressions follow

for the coordinates on ˙u. So, we obtain that

˙ s
D f.�s; �; �/ W �s 2 S1; j�j; j�j 6 "g;

˙u
D f.��; ��; ��

u / W ��
u 2 S1; j��

j; j��
j 6 "g:

Submanifolds ˙ s , ˙u are foliated by levels H D c into 2-dimensional annuli ˙ s
c ,

˙u
c , respectively. In the neighborhood V of p, one may regard equation h.�; �/ D c to be

uniquely solved with respect to �,

� D ac.�/ D ˛�1c � ˛�1!�C � � �

This allows us to replace � by a new coordinate c in each cross-section ˙ s and ˙u. Thus,

for each c 2 R with jcj small enough,

˙ s
c D f.�s; �/ W �s 2 S1; j�j 6 "g and ˙u

c D f.��
u ; �

�/ W ��
u 2 S1; j��

j 6 "g:
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Remark 4.20. The intersection of the stable (resp. unstable) manifold of p with ˙ s (resp.

˙u) is given by c D 0 and � D 0 (resp. �� D 0).

Observe that the submanifolds ˙ s
c and ˙u

c are symplectic ones with respect to a

restriction of the differential form ˝ D dx1 ^ dy1 C dx2 ^ dy2. Moreover, since c is
preserved by the flow, a straightforward calculation shows that restrictions of the form ˝
to each annulus are given by 2-forms d�s ^ d� and d��

u ^ d��, respectively. Hence these

new coordinates are symplectic on ˙ s
c and ˙u

c . It means that, in particular, the local map

and the global map restricted to the annuli ˙ s
c and ˙u

c , respectively, are symplectic and

hence both of them preserve area and orientation in these coordinates.

Localmap. Next, we look for the expression of�s restricted to the annuli˙ s
c . From (4.15)

and (4.16) we conclude that

��
D "ru0 sin.�u0 � �s0/ D �0: (4.17)

Now, since h.ac.�/; �/ D c, we get a0
c.�/ D �h�.ac.�/; �/=h�.ac.�/; �/. In particular,

evaluating at the initial point, it follows a0
c.�0/ D �!0=˛0 and also

ru0 D "�1
q
ac.�0/2 C �2

0 and �u0 � �s0 D �.ac.�0/; �0/
def
D �c.�0/:

Thus, substituting into (4.15), we obtain

��
u D �s0 C a0

c.�0/ log

�
"2=

q
ac.�0/2 C �2

0

�
C�c.�0/: (4.18)

Therefore, removing in (4.17) and (4.18) the subscript zero which indicates the evaluation

at the initial point, we obtain the following expression of the local map ˚ restricted to the

annulus ˙ s
c :

˚c W ˙ s
c ! ˙u

c ; .��
u ; �

�/ D ˚c.�s; �/ D .�s C bc.�/; �/ (4.19)

where

bc.�/ D a0
c.�/ log

�
"2=

p
ac.�/2 C �2

�
C�c.�/:

Note that �c.�/ is a bounded smooth function everywhere except at � D 0 for c D 0,
where the lateral limits as � ! 0 are respectively �0.0C/ D � � arctan.˛=!/ and
�0.0�/ D � arctan.˛=!/. The local map ˚c is symplectic, discontinuous along the circle

� D 0 for c D 0 and smooth for c 6D 0.

If �s D u.�/ is a function defined for j�j small enough, then the image by˚c of its graph

is a curve in the annulus˙u
c , which is the graph of a function �

�
u D u.��/Cbc.�

�/mod 2�
with �� D �.
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Remark 4.21. It follows from Lerman (1991, 1997, 2000) there is " > 0 so that for c 6D 0
the map

' W Œ�"; "� ! R given by '.�/ D u.�/C bc.�/

is a unimodal function with critical point at

�c D
!2 � ˛2

!.!2 C ˛2/
c CO.c2/

and critical value

'.�c/ D .!=˛/ log jcj CE.c/

where E.c/ is a bounded function

Global map. Recall that 
 intersects ˙ s and ˙u at qs D .0; 0; 0/ and qu D .0; 0; 0/,
respectively. Therefore, we can choose two neighborhoods V s � ˙ s and V u � ˙u

of qs and qu, respectively, such that the map 	 W V u ! V s generated by the global

flow near 
 is a diffeomorphism. This map is represented as a family of symplectic maps

	c W V u
c ! V s

c defined for every c with jcj small enough and where V u
c D ˙u

c \ V u and

V s
c D ˙ s

c \ V s . These symplectic diffeomorphisms have the form

	c.�
�
u ; �

�/ D .Pc.�
�
u ; �

�/; Qc.�
�
u ; �

�//; with det
D.Pc ;Qc/

D.��
u ; �

�/
� 1 (4.20)

and where Pc andQc are smooth functions. According to Remark 4.20 the intersections of

W s
loc
.O/ andW u

loc
.O/ with˙ s

0 and˙u
0 are given by � D 0 and �� D 0, respectively. The

non-degeneracy condition in these coordinates means that the image of the segment �� D 0
on˙u

0 is transversal at the point .0; 0/ 2 ˙ s
0 to the segment � D 0 on˙ s

0 . This is expressed

as .@Q0=@�
�
u /.0; 0/ 6D 0. Therefore, the existence of a non-degenerate homoclinic orbit 


means that

P0.0; 0/ D Q0.0; 0/ D 0 and
@Q0

@��
u

.0; 0/ 6D 0: (4.21)

Up to higher order terms, one can assume that 	c W V u
c ! V s

c is given by

.�s; �/ D 	c.�
�
u ; �

�/ D

�
˛c ˇc

�c ıc

��
��

u

��

�
C

�
Ac

Bc

�
(4.22)

where from (4.20) and (4.21) it holds

˛cıc � ˇc�c D 1; A0 D B0 D 0 and �0 D
@Q0

@��
u

.0; 0/ 6D 0:

Note that �c 6D 0 if jcj is small enough.
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Poincaré returnmap. Wehave to study the dynamics of˘c D 	cı˚c in a neighborhood

of � D 0 on the annulus˙ s
c . Thus, wewill consider this map defined on the stripS1�Œ�"; "�

where " > 0 is such that Remark 4.21 can be applied. Notice that ˘c is only well defined

on

Sc D .˚c/
�1.V u

c / \ .S1
� Œ�"; "�/

and ˘c.Sc/ � V s
c but it is not necessarily a subset of Sc . Namely, the first-return map

˘c W Sc � ˙ s
c ! ˙ s

c is given by

˘c.�s; �/ D .ˇc�C ˛c�s C ˛cbc.�/C Ac ; ıc�C �c�s C �cbc.�/C Bc/: (4.23)

In fact, we will consider ˘c restricted to the maximal invariant set �c in Sc . That is,

�c D

\
n2Z

˘n
c .Sc/:

In order to simplify the study of the dynamics of ˘c j�c
we will introduce the map

Fc W Œ�"; "�2 ! Œ�"; "� � S1; Fc.�
�; �/ D .�; ���

C 'c.�// (4.24)

where 'c W Œ�"; "� ! R is given by

'c.�/ D .˛c C ıc/�C �cbc.�/C �cAc C .1 � ˛c/Bc : (4.25)

Let ˝c be the maximal invariant set of Fc in Œ�"; "�
2.

Proposition 4.22. The restriction ˘c j�c
is C r conjugate to Fc j˝c

.

Proof. In Figure 4.10 we show how to define .��
1 ; �1/ D Fc.�

�; �/. Let us explain this
construction in three steps:

1) If jcj is small enough then, for each .��; �/ 2 Œ�"; "�2, with " > 0 small enough, there

exists two unique points .�s; �/ D H s.��; �/ 2 ˙ s
c and .��

u ; �
�/ D Hu.��; �/ 2

˙u
c such that .�s; �/ D 	c.�

�
u ; �

�/. Namely, from (4.22) we get

�s D
˛c

�c

�C .ˇc �
˛cıc

�c

/ ��
C Ac �

˛c

�c

Bc and ��
u D ��1

c .� � ıc �
�

� Bc/:

2) Using the local map ˚c given in (4.19), the image of .�s; �/ 2 ˙ s
c by ˚c is

.��
u1; �

�
1/ D .�s C bc.�/; �/ 2 ˙u

c :

3) The coordinate �1 comes from 	c.�
�
u1; �

�
1/ D .�s1; �1/. Namely, substituting

in (4.22)

�1 D
�
�c�

�
u1 C ıc�

�
1 C Bc

�
D
�
�c�s C �cbc.�/C ıc�C Bc

�
D
�
.�cˇc � ˛cıc/ �

�
C .˛c C ıc/ �C �cbc.�/C �cAc C .1 � ˛c/Bc

�
:
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Fc
.��; �/ .��

1 ; �1/

H s

Hu

.�s; �/
.�s1; �1/

˘c

H s

Hu

˚c	c 	c

.��
u ; �

�/ .��
u1; �

�
1/

Figure 4.10: Conjugation

The coefficient of �� is �det.D	c/ and hence

.��
1 ; �1/ D Fc.�

�; �/ D .�; ���
C 'c.�//; .�; ��/ 2 Œ�"; "�2; (4.26)

where 'c is given in (4.25).

By construction, the mapH s , as defined in the first step, provides a conjugation between

˘c j�c
and Fc j˝c

.

On the other hand, the function

 c W Œ�"; "� ! R;  c.�/ D ��1
c 'c.�/

can be written in the form u.�/C bc.�/ with

u.�/ D ��1
c .˛c C ıc/�C Ac C ��1

c .1 � ˛c/Bc :

Hence Remark 4.21 is valid for c . In particular, it follows that 'c for jcj > 0 is a unimodal

function with critical point �c ! 0 and '.�c/ ! �1 as c ! 0.

In what follows, we will study the family (4.26). Since the dynamical behavior of (4.26)

for both positive and negatives values of the parameter c is quite similar, for simplicity, we

restrict ourselves to the family Fc with parameter c > 0.



4.4. Conservative bifocus homoclinic orbits 75

�

��

� D �ı C 'c.�
�/

"

�"

Figure 4.11: Image by Fc of the vertical segment �� D ı.

4.4.2 Bidimensional horseshoes

The following theorem shows the existence of a dynamically increasing family of horse-

shoes (i.e., a continuous family of hyperbolic basic sets conjugate to increasing full shift

dynamics) for the one-parametric family of maps Fc . The corresponding version of this the-

orem for the Poincaré return map˘c was proved in Lerman (2000, Thm. 1). First we need

introduce same espace of symbols. Namely we will consider an alphabet f1; 2; : : : ;˙1g

consisting of all positive integers and two additional symbols C1 and �1. Let ˙� be

the set of bi-sequences in such alphabet satisfying the following rule: only C1 can follow

C1 and only �1 can precede �1.

Theorem 4.23. For the family Fc given in (4.24), there are " > 0, c0 > 0 and � > 0 such
that for every positive c 6 c0, the maximal invariant set

�c D

\
n2Z

F n
c .f.�

�; �/ 2 Œ�"; "�2 W j� � �c j > �c2
g/

is a hyperbolic set conjugate to the full shift of n.c/ symbols where n.c/ ! 1 as c ! 0.
Moreover, the restriction of F0 to

˝0 D

\
n2Z

F n
0 .Œ�"; "�

2/
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is conjugate to the Bernoulli shift map � W ˙� ! ˙�.

The proof of this result follows from standard arguments to construct horseshoes as

illustrated in Figure 4.11. More details in Barrientos, Ibáñez, and Rodríguez (2016).

A bi-sequence of the type .: : : ;�1;�1; �1; : : : ; �n;1;1; : : :/ corresponds to a ho-
moclinic orbit of a point p that emerges from �� D 0 on ˙u

0 (the trace of W u
loc
.O/) and

then flows through a neighborhood of 
 intersecting n times the section˙ s
0 before reaching

� D 0 (the trace ofW s
loc
.O/). We refer to such a homoclinic orbit as a n-pulse homoclinic

orbit (see Definition 2.10). Consequently the following corollary also holds:

Corollary 4.24 (Belyakov (1984b) and Lerman (2000)). Under the assumption (BH), (B1)

and (B2), for each tubular neighborhood T of � and n 2 N there exist non-degenerate

n-pulse bifocus homoclinic orbits in T .

4.4.3 Nearby heterodimensional cycles and tangencies

The goal of this section is to explain howC 1 robust heterodimensional cycles andC 1 robust

homoclinic tangencies could be obtained by arbitrarily small perturbation of first return map

of (4.1) under the assumptions (BH), (B1) and (B2). We will define properly below these

objects, but we address the reader to Bonatti, Dı́az, and Viana (2005) to see the dynamical

consequences of such configurations. As usual, we will use the term suspended in order to

empathized that cycles and tangencies will be obtained for the Poincaré first-return map.

First of all we recall the formal definition of these concepts.

A diffeomorphism f has a homoclinic tangency associated with a transitive hyperbolic

set � if there is a pair of points x; y 2 � such that the stable manifoldW s.x/ of x and the

unstable manifoldW u.y/ of y have some non-transverse intersection. The tangency is said

to be C 1 robust if there is a C 1 neighborhood U of f such that, for every diffeomorphism

g 2 U , the continuation �g of � has a homoclinic tangency.

A diffeomorphism f has a heterodimensional cycle if there exist two transitive hyper-

bolic sets � and � with different stability indices such that

W s.�/ \W u.� / ¤ ; and W u.�/ \W s.� / ¤ ;:

This cycle is said to be C 1 robust if there is a C 1 neighborhood U of f such that, for every

diffeomorphism g 2 U , there is a heterodimensional cycle associated with the continuations

�g and �g of � and � respectively.

Theorem 4.25. Under the assumptions (BH), (B1) and (B2), every C 1 neighborhood of

X contains vector fields with both, (suspended) C 1 robust heterodimensional cycles and

(suspended) C 1 robust homoclinic tangencies.

This theorem is a consequence of a useful criterium to yield C 1 robust heterodimen-

sional cycles and homoclinic tangencies that we explain below. To do this, we need first

introduce some additional concepts of diffeomorphisms.
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Let f be a diffeomorphism with a n-periodic point p. Assume that there is a Df -
invariant partially hyperbolic splitting Ess ˚ Ec ˚ Euu defined over the orbit O.p/ of
p such that Ec has dimension one, every eigenvalue � ofDf n.p/ corresponding to Ess

satisfies j�j < 1, and every eigenvalueˇ ofDf n.p/ corresponding toEuu satisfies jˇj > 1.
The partial hyperbolicity means that if �c is the eigenvalue ofDf

n.p/ corresponding to
Ec , then j�j < j�c j < jˇj for every pair of eigenvalues � and ˇ corresponding to Ess and

Euu, respectively. If the periodic point p is not hyperbolic, either �c D 1 or �c D �1.
We say that p is a saddle-node in the first case and a flip in the second one. The strong

stable manifold W ss.p/ of p for f is the unique f n-invariant manifold which is tangent

to Ess
p and satisfies dimW ss.p/ D dimEss

p . The strong unstable manifold W uu.p/ of p
for f is defined in a similar way, but considering the bundle Euu

p . The periodic point p
has a strong homoclinic intersection if there is

x 2 W ss.p/ \W uu.p/ with x ¤ p.

We refer to x as a strong homoclinic point. A strong homoclinic intersection or point is

said quasi-transverse if

TxW
ss.p/C TxW

uu.p/ D TxW
ss.p/˚ TxW

uu.p/:

Otherwise, it is said tangential.

The following criterion was obtained in Barrientos, Ibáñez, and Rodríguez (2016)

as consequence of previous results due to Bonatti and Díaz (Bonatti and Dı́az (2008,

Theorem 2.4), Bonatti and Dı́az (2012, Theorem 4.9) (see also Bonatti and Dı́az (2012,

Proposition 5.4) and Barrientos, Ki, and Raibekas (2014, TheoremA)).

Theorem 4.26. Let f be a diffeomorphism with both, quasi-transverse and tangential

strong homoclinic intersections associated with a saddle-node periodic point. Then there

are diffeomorphisms arbitrarily C 1 close to f with both, a C 1 robust heterodimensional

cycle and a C 1 robust homoclinic tangency.

Now, we will apply this criterion to get Theorem 4.25. We recall that the Poincaré

return map ˘ defined on a transversal section, the solid torus ˙ s , of a non-degenerated

bifocus homoclinic orbit 
 of a Hamiltonian vector field X can be written, in appropriate

coordinates, as

˘.� s; �; c/ D .˘c.�
s; �/; c/; � s

2 S1; j�j 6 "; jcj 6 c0

for "; c0 > 0 small enough. Here ˘c is the symplectic map on the annulus ˙ s
c D ˙ s \

H�1.c/ given in (4.23). In fact, this map ˘c is only well defined, for " > 0 small enough,

on the domain

Sc D .˚c/
�1.V u

c / \ .S1
�; Œ�"; "�/

with V u
c D V u \˙u \H�1.c/ for a neighborhood V u of the transversal intersection qu

between the homoclinic orbit 
 and a solid torus ˙u.
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Set I D Œ�c0; c0�. In Proposition 4.22, for each c 2 I , we have shown that ˘c

restricted to the maximal invariant set �c in Sc is C r conjugate to the restriction of Fc

given in (4.24) to its maximal invariant set ˝c . Therefore, it follows that ˘ restricted to

�c Ì I def
D f.z; c/ W c 2 I and z 2 �cg

is C 1 conjugate to

f W ˝c Ì I ! ˝c Ì I; f .z; c/ D .Fc.z/; c/

where˝c Ì I def
D f.z; c/ W c 2 I and z 2 ˝cg. According to Theorem 4.23, for each c 2 I ,

c 6D 0, there is a hyperbolic basic set �c of Fc in Œ�"; "�
2 such that F j�c

is conjugate to

the Bernoulli shift of n.c/ > 2 symbols. Moreover, since the number of symbols n.c/
associated with the families of horseshoes �c goes to infinite as c ! 0 necessarily the
creation and destruction of these horseshoes is by means of homoclinic tangencies. We

fix c at one of these bifurcation values for which Fc has a non-transversal homoclinic

intersection associated with a saddle fixed point pc 2 �c . Hence, P D .pc ; c/ is a
saddle-node fixed point of f with a tangential strong homoclinic intersection. Moreover,

since �c is a horseshoe of Fc , W
s.pc/ meets transversally W u.pc/ in a point qc ¤ pc

and hence,

Q D .qc ; c/ 2 W ss.P / \W uu.P / with Q 6D P:

Thus, f has both, a quasi-transverse and a tangential strong homoclinic intersection.

Applying Theorem 4.26 we complete the proof of Theorem 4.25.

4.5 Reversible bifocus homoclinic orbits

Here we will give a rigorous description of the dynamics around of a reversible (not

necessarily conservative) non-degenerate bifocus homoclinic orbit. Specifically, we will

assume that (4.1) satisfies the following property:

(BR) The vector fieldX isR-reversible. That is, there a linear mapR W R4 ! R4

such that

R2
D id and X ıR D �R ıX:

As a consequence of (BR), if u.t/ is a solution of (4.1), then so is Ru.t/. We say that a

trajectory of (4.1) is reversible or symmetric if it is invariant under the involution R. We

also assume thatO is a bifocus equilibrium as in (B1). Moreover, we suppose that we have

at least one non-degenerated homoclinic orbit 
 as in (B2) but with the extra assumption

that this orbit is symmetric:

(B2’) There is a non-degenerate homoclinic orbit 
 to O such that R.
/ D 
 .
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Observe that the reversibility of the homoclinic orbit in (B2’) implies that R.O/ D O .

Consequently, the derivativeDX.O/ is also R-reversible. Indeed, since R ıX D �X ıR,
differentiating both sides of the equality and using that R is linear and R.O/ D O , it

follows that R ıDX.O/ D �DX.O/ ıR. This reversibility of the linear part of X at O
bring as a consequence that

dimFix.R/ D 2 where Fix.R/ D fu W R.u/ D ug (4.27)

and the eigenvalues ofDX.O/ are exactly of the form

� ˛ ˙ i! and ˛ ˙ i! where ˛ > 0 and ! 6D 0. (4.28)

In particular we are under the assumption (B4). To see (4.27) and (4.28), without loss of

generality we can take R4 D E ˚ F where F D Fix.R/ and E D fu W R.u/ D �ug.

Since DX.O/ is R-reversible we have that DX.O/F � E and DX.O/E � F . Hence,
since DX.O/ is a hyperbolic linear matrix, dimF D dimE and therefore dimFix.R/
must to be equal two. Finally, (4.28) follows from the fact that, by the R-reversibility of
DX.O/,

detŒDX.O/ � �I � D detŒDX.O/C �I �

and then if � is a zero of the characteristic polynomial, then �� is also a zero of the same

polynomial.

The cycle � D fOg[
 under the assumptions (BR), (B1) and (B2’) is usually referred

as (non-degenerate) reversible bifocus homoclinic cycle. The similarity between reversible

and Hamiltonian systems has been demonstrated in many cases. For instance, both re-

versible and Hamiltonian homoclinic orbits are accompanied by a one-parameter family

of periodic orbits Devaney (1976a), Devaney (1977), and Vanderbauwhede and Fiedler

(1992). Also, as we have shown in Corollary 4.24 that in any tubular neighborhood of a

non-degenerate Hamiltonian bifocus homoclinic orbit there are infinitely many secondary

homoclinic orbits. That is, other bifocus homoclinic orbits which make several excur-

sions along the primary homoclinic orbit. These results were extended for non-degenerate

reversible bifocus homoclinic cycles by Härterich (1998) showing that the secondary

homoclinics are also reversible and non-degenerate.

Theorem 4.27 (Härterich (1998)). Under the assumptions (BR), (B1) and (B2’), in any

tubular neighborhood of � , there exist infinitely many reversible non-degenerate homo-

clinic orbits to O . Moreover, each homoclinic orbit is accumulated by a one-parameter

family of reversible periodic orbits.

We fix a tubular neighborhood T of � and N > 1. According to Theorem 4.27 we

can find N different reversible non-degenerate homoclinic orbits 
i in T . Observe that for

N D 1 we are only claimed the presence of a unique homoclinic orbit and Theorem 4.27

is not used. Consider the network

�N D fOg [ 
1 [ � � � [ 
N :

We will perform a similar analysis to that of Barrientos, Raibekas, and Rodrigues (2019),

Härterich (1998), and Ibáñez and Rodrigues (2015) and study the first return map over a

cross-section transverse to the homoclinic network �N .



80 4. Bifocus homoclinic cycles

O

W u
loc
.O/

W s
loc
.O/

Fix.R/

˙u

˙

˙ s

	 s

	u

V u
i

V u
j

Vi

Vj

V s
i

V s
j

˚

Figure 4.12: First return map ˘ D 	u ı ˚ ı 	 s on the section ˙ .

4.5.1 The first-return map

Without restriction, we can assume that the linear involution R in (BR) is given by

R.x1; x2; y1; y2/ D .y1; y2; x1; x2/. Thus, using bipolar coordinates .rs; �s; ru; �u/, the
two-dimensional set of fixed points by R is written as

Fix.R/ D frs D ru; �s D �ug:

Analogously to §4.2, we consider the three-dimensional cross-sections near the origin,

˙ s and ˙u, which are solid tori defined in (4.3). Observe that we have ˙u D R.˙ s/.
Moreover, we choose this section small enough so that

fqs
i g D 
i \˙ s

� W s
loc.O/ for all i D 1; : : : ; N :

By reversibility we also have that qu
i D R.qs

i / so that

fqu
i g D 
i \˙u

� W u
loc.O/ for all i D 1; : : : ; N .

As in (4.4), we get a local map ˚ W ˙ s nW s.O/ ! ˙u defined by

r�
s D ru ��

s D �s �
!

˛
ln ru ��

u D �u �
!

˛
ln ru: (4.29)

We can make use of the reversibility in the construction of the global Poincaré map by

taking a R-invariant cross-section ˙ containing the points

fqi g D 
i \ Fix.R/ for i D 1; : : : ; N .
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A global map 	u between ˙u and ˙ is induced by the flow along 
i . To be more specific,

given any neighborhood Vi of qi in ˙ , there exists a neighborhood V u
i � ˙u of qu

i and a

map �i W V u
i ! R such that

'.�i .q
u
i /; q

u
i / D qi and 	u

i .x/
def
D ' .�i .x/; x/ 2 Vi

for all x 2 V u
i and i D 1; : : : ; N . By taking the sets Vi � ˙ small enough we can obtain

that V u
i are pairwise disjoint compact neighborhoods of qu

i in ˙u for all i D 1; : : : ; N .

Moreover, we can also take Vi such that R.Vi / D Vi . Hence, 	
u is defined as

	u
jV u

i
D 	u

i for all i D 1; : : : ; N :

By reversibility, 	 s is the semi-global map between ˙ and ˙ s given by

	 s
D R ı .	u/�1

ıR:

Finally, we introduce the Poincaré first return map on ˙ following the homoclinic

network �N as ˘ D 	u ı ˚ ı 	 s (see Figure 4.12). Observe that ˘ is actually defined

as the composition of three maps: first 	 s which is well defined from V D R.V / � ˙ to

˙ s , then ˚ W ˙ s nW s
loc
.O/ ! ˙u and finally 	u W V u ! ˙ where

V D V1 [ � � � [ VN � ˙ and V u
D V u

1 [ � � � [ V u
N � ˙u:

On the other hand,

V s
i

def
D 	 s

ıR.Vi / D R.V u
i /

is a compact neighborhood of qs
i in ˙ s for i D 1; : : : ; N . Moreover, we also have that ˘

is a reversible map, i.e., R ı˘ ıR D ˘�1.

4.5.2 Switching

We take discs

Di � Vi \ Fix.R/ � ˙ centered at qi for all i D 1; : : : ; N .

Now, we introduce the local stable and unstable manifolds of O in ˙ as

W u
i D 	u

�
W u

loc.O/ \ V u
i

�
and W s

i D .	 s/
�1 �

W s
loc.O/ \ V s

i

�
for i D 1; : : : ; N . Observe that the orbits starting in W s

i (resp. W u
i ) goes directly to O , in

forward (resp. backward) time. We will need the following basic result.

Lemma 4.28. If x 2 W s
i \˘n.Fix.R// for some n > 0 then the associated solution is

a reversible homoclinic orbit. Similarly, if x 2 Fix.R/ \˘n.Fix.R// for n > 1 then the
associated solution is a reversible periodic orbit.
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W s
i

W s
j

W u
i

W u
j

Si i

Sij

qi

qj

Fix
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ii
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ij
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ii
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ij

Figure 4.13: Spiralling geometry for the return map on section ˙ .

Proof. We prove that x 2 W s
i \˘n.Fix.R//. We have that˘�n.x/ 2 Fix.R/ and hence,

by the reversibility,˘�2n.x/ 2 W u
i . Thus the orbit associated with x is a homoclinic orbit.

Similarly, if x 2 Fix.R/\˘n.Fix.R// then˘n.x/ D R ı˘�n ıR.x/ D R ı˘�n.x/ D

˘�n.x/. Therefore, ˘2n.x/ D x.

IfR is a measurable set of Fix.R/ \ T let us denote by A.R/ its usual area.

Proposition 4.29. For any k > 1, n 2 Zk�1 and i 2 f1; : : : ; N gk there exist pairwise

disjoints compact sets diffeomorphic to a disc

Dnm
ij � Fix.R/ for all m 2 Z and j D 1; : : : ; N

such that

1. Dnm
ij � Dn

i ,

2. ˘k.Dnm
ij / � Vj ,

3. there is qnm
ij 2 Dnm

ij such that ˘k.qnm
ij / 2 W s

j and

4. there is � < 1 such that A.Dnm
ij / < � � A.Dn

i /.

This result follows by induction applying Proposition 4.3 and Lemma 4.28 as illustrated

in Figure 4.13. See Barrientos, Raibekas, and Rodrigues (2019) for more details.
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Let

H D fqn
i W i 2 f1; : : : ; N g

k ; n 2 Zk�1; k 2 Ng:

According to Lemma 4.28 and Lemma 4.29 the flow orbit associated with any point q 2 H
is a reversible non-degenerate homoclinic orbit. In particular, for N D 1, this observation
proves the existence of infinitely many non-degenerate bifocus homoclinic orbits in any

tubular neighborhood of � D fOg [ 
 as Theorem 4.27 asserted. Moreover, one also can

find a one-parameter family of reversible periodic orbits accumulating on q. Indeed, by
construction we can find, k > 1 and a small neighborhood D of q in Fix.R/ such that

	 s ı˘k�1.D/ is diffeomorphic to a two-dimensional disc transverse toW s
loc
.O/. Hence,

˘k.D n fqg/ contains a spiraling sheet which intersect transversally Fix.R/ into a spiral.
By Lemma 4.28, this curve is formed by initial condition of periodic orbits. In particular,

this provides a one-parameter family of periodic orbits accumulating on q as indicated in
Theorem 4.27.

Now, consider

K D

\
k2N

[
n2Zk�1

[
i2f1;:::;N gk

Dn
i : (4.30)

From Proposition 4.29 it follows that K is an non-empty set and K � H . Moreover, for

any pair of sequences i D .ik/k2N 2 ˙C

N D f1; : : : ; N gN and n D .nk/k2N 2 ZN , there

is a unique point xn
i 2 K such that

fxn
i g D

\
k2N

D
n1:::nk�1

i1:::ik
: (4.31)

In fact, we have the following:

Remark 4.30. Any point in K is uniquely identified by a pair .i; n/ 2 ˙C

N � ZN .

On the other hand, Proposition 4.29 and Equation (4.31) imply that

˘k.xn
i / 2 VikC1

for all k > 0:

Since xn
i 2 Fix.R/, then by the reversibility we also have that ˘�k.xn

i / 2 VikC1
for all

k > 1. Recalling the notion of switching in Definition 2.23, we have proved the following

result:

Proposition 4.31. The network �N exhibits switching by reversible trajectories. Moreover,

the starting point of the orbit realization can be taken in K.

But dynamics around the network �N is still more complicated. A trajectory� is said

to be a super-homoclinic orbit to �N if� is a bi-asymptotic connection to �N , that is it

accumulates on the network �N in forward and backward time. We say that the homoclinic

network �N exhibits symmetric super-homoclinic switching if any tubular neighborhood T
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of �N and for each ! 2 ˙C

N we find a super-homoclinic orbit in T realizing ! with starting

point x! 2 Fix.R/. Observe that since x! belongs to Fix.R/, then the super-homoclinic

orbit also follows the sequence ! in backward time. Similarly, when any prescribed finite

path is realized by a reversible homoclinic (resp. periodic) orbit starting in Fix.R/, we say
that �N exhibits symmetric homoclinic (resp. periodic) switching.

Theorem 4.32 (Barrientos, Raibekas, and Rodrigues (2019)). Under the assumption (BR),

(B1) and (B2’), for any tubular neighborhood T of� and forN > 2, there are different non-
degenerate reversible bifocus homoclinic orbits 
1; : : : ; 
N in T such that the homoclinic

network �N D fOg [ 
1 [ � � � [ 
N exhibits symmetric super-homoclinic, homoclinic and

periodic switching.

As we have showed in §4.3.1 and §4.4.2, in the presence of a non-degenerate Shilnikov

or conservative bifocus homoclinic cycle we can find suspended horseshoes on any number

of symbols arbitrarily close to the connection. However, nothing is known in general about

the presence of horseshoes in a neighborhood of a reversible bifocus homoclinic cycle

� D f0g [ 
 . Homburg and Lamb studied in Homburg and Lamb (2006) this situation

under the extra assumption that there is an orbit 
a0
in the one-parameter family 
a of

accompanying periodic orbits to 
 whose stable and unstable manifolds intersect in a

reversible bi-asymptotic orbit �a0
to 
a0

. They concluded that the non-wandering set of

the return map describing the dynamics near �a0
is contained in a set with a lamination of

one-dimensional leaves parameterized by a subshift of finite type, that is similar as in the

Hamiltonian case. On the other hand, in the general case, observe that Theorem 4.32 also

concludes, in particular, the presence of sets of initial conditions arbitrarily close to the

cycle � whose dynamics is semi-conjugate to the unilateral shift on N -symbols for any

N > 2 and have a dense set of periodic orbits. This could be seen as a weak result on the
presence of chaotic dynamics near of a non-degenerate reversible bifocus homoclinic orbit.

See Barrientos, Raibekas, and Rodrigues (2019).

4.5.3 Nearby heterodimensional cycles

The goal of this section is to explain the following result on the creation of heterodimensional

cycles by arbitrarily small perturbation in the reversible case.

Theorem 4.33. Every vector fieldX under the assumption (BR), (B1) and (B2’) can beC 1

approximated by vector fields exhibiting suspended C 1 robust heterodimensional cycles.

Proof. In order to prove the theorem, we consider the intersection point qi 2 ˙ of the non-

degenerate homoclinic orbit 
i with Fix.R/. As we have shown, this point is accumulated

by a one-parameter family .pa/a of reversible periodic orbits pa of˘ . It follows from (4.8)

that ˚ s.pa/ have two clearly hyperbolic directions for the return map 	 s ı˘ ı .	 s/�1.

Namely, there are enormous stretching in the �u-direction and contraction in the �s-direction.

This implies that if pa is close enough to qi the strong stable and strong unstable local

manifolds W ss
loc
.pa/ and W

uu
loc
.pa/ of pa for ˘ are one-dimensional manifolds parallel

to W s
i and W u

i respectively. On the other hand, as a consequence of the reversibility, we
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are under the assumption (B4) (i.e., ı D 1) and thus the radial direction is neutral. This
direction corresponds exactly with spiral family of periodic orbits. Thus, pa are saddle-

node periodic points of ˘ . Now we will prove that by an arbitrarily small perturbation

we can create a strong homoclinic intersection associated with some periodic point pa

close enough to qi . From Theorem 4.26 (c.f. Bonatti and Dı́az (2012, Thm. 2.4)) one gets

a diffeomorphism C 1 arbitrarily close to ˘ with a C 1 robust heterodimensional cycle

concluding the proof of the theorem.

Then, in order to provide the strong homoclinic intersection, observe that the image

by (4.29) of a small segment in˙ s parallel to theW u.O/ is a helix surroundW u
loc
.O/\˙u.

In fact, if we assume that the small segment joints ru D bkC1 with ru D bk then its image

joints r�
s D akC1 with r�

s D ak where ak and bk are given in (4.6) and (4.7) respectively.

Thus, since W uu
loc
.pa/ can be taken arbitrarily close to W

u
i , we can see 	 s.L/ as a small

segment in˙ s as above (joining ru D bkC1 with ru D bk for k large) whereL is a compact

disc in W ss
loc
.pa/ n fpag. Hence OL D ˚ ı 	 s.L/ is an helix surround W u

loc
.O/ \ ˙u

joining r�
s D akC1 with r�

s D ak . Thus ˘.L/ D 	u. OL/ contains a piece Li of a helix

contained in a cylinder centered at W s
i with inner radius akC1 and outer radius ak . In

fact, since ı D 1 we have ak D bk and thus we can say that the order of the proximity of

W ss
loc
.pa/ and Li to qi is the same. By means of a small perturbation of ˘ supported on a

neighborhood of L we can connect W ss
loc
.pa/ and Li � ˘.L/. From the non-degenerate

condition of 
i this intersection is quasi-transverse and the perturbation does not affect

the saddle-node pa. Therefore, we get a strong homoclinic intersection associated with a

saddle-node periodic point as required and complete the proof.

Another constructive proof of the above result can be explained as follows. Since

W u
i and W s

i are quasi-transverse and the unstable manifold of the one-parametric family

.pa/a of periodic orbits pa surrounded qi is a spiraling sheet accumulating onW u
i we can

find a small disc transversally intersecting W s
i . Hence, the image of this disc by ˘ is a

spiraling sheet accumulating on W u
j for j 6D i . Observe that the point fqj g D ˙ \ 
j is

also accumulated by a one-parameter family . zpa/a of the periodic orbits zpa. Moreover,

the stable manifold of this one-parameter family is a spiraling sheet accumulating on W s
j .

In particular, from the non-degenerate condition (quasi-transversality between W u
j and

W s
j ) we have a transversal intersection between these spiraling sheets, i.e., between the

unstable manifold of the family .pa/a and the stable manifold of the family . zpa/a. On
the other hand, by the same argument as in the proof of the above theorem one shows that

we can find a strong stable local manifold W ss
loc
.p/ of a periodic point p D pa arbitrarily

close of the strong unstable manifold W uu. zp/ of a periodic point zp D zpa. Then by a

small perturbation we can connect both. In fact, perturbing the saddle-nodes p and zp we

can assume that both are hyperbolic with different indices so that the transversal spiral

sheets corresponding to the unstable and stable manifolds of .pa/a and . zpa/a are now the

unstable and stable manifolds of p and zp respectively. Then we obtain a heterodimensional

cycle (of co-index one) associated with zp and zq. The C 1 robustness can be obtained now

from Bonatti and Dı́az (2008, Thm. 1.5).

An interesting final remark is the following:
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Remark 4.34. The heterodimensional cycles obtained in the above theorem (even in

Theorem 4.25) are obtained without breaking the homoclinic connection. Thus one gets

vector fields satisfying (B1) and (B2) having suspended heterodimensional cycles. Of

course, these vector fields are neither Hamiltonian nor reversible.

The existence of heterodimensional cycles near the Shilnikov bifocus homoclinic cycles

(where there is no resonance of the eigenvalues) is an open problem as well as its existence

for generic unfoldings of nilpotent singularities where these kinds of cycles are present.

See Chapter 5.



5 Singularities
and chaos

In this chapter we pay attention to the study of singularities of vector fields and their

unfoldings. Our main goal is to provide a catalogue of singularities for which results are

available that guarantee the genesis of chaotic dynamics in their neighborhood, but we

also provide a very general overview about the state of the art regarding the unfolding of

certain singularities. We must emphasize again that chaotic behaviors are not easy to detect

in given models, but singularities are, definitely, much more manageable objects.

It is also remarkable that, besides a purely academic interest and the unquestionable

benefits of having elementary criteria to prove the existence of chaos, a huge number of

real-world applications lead to models consisting of families of vector fields, the main

setting along this whole chapter.

If we are going to deal with local bifurcations of low codimension, it appears natural to

recall first the results about classification of singularities and also the analysis of some of

the most elementary bifurcations. Thus, with simple examples, reader familiarizes with

some of the basic concepts in local bifurcation theory: singularity, unfolding, codimen-

sion,…Later, we focus on nilpotent singularities, that is, singularities for which the linear

part does not vanish but all eigenvalues are zero. The unfolding of the two-dimensional

nilpotent singularity of codimension two is nothing more than the well-known Bogdanov–

Takens bifurcation. In spite of being a classic bifurcation diagram, we include a brief

discussion focused on the appearance of a homoclinic bifurcation curve. This provides

a good illustration for some of the ideas required in higher dimensional cases. Nilpotent

singularities with dimensions three and four are the core of this chapter. In §5.6, we see

how the three-dimensional nilpotent singularity of codimension three unfolds, generically,
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Bykov cycles which, as showed in Chapter 3, give rise Shilnikov homoclinic orbits, and

hence, as explained in Chapter 2, also persistent non-hyperbolic strange attractors. §5.7

deals with the unfolding of the four-dimensional nilpotent singularity of codimension

four. We show how bifocus homoclinic cycles are exhibited. The emergence of chaos in a

neighborhood of these cycles is discussed in Chapter 4. To conclude, we deal with other

singularities which also imply the existence of strange attractors, mainly with Hopf–Zero

singularities. Nevertheless, because the required techniques to show the existence of chaos

are quite different to those employed with nilpotent cases, a complete discussion has been

discarded.

5.1 Classification of singularities

Given a vector field X , any point where X equals 0 is said to be a singularity. In this

respect, singularity and equilibrium are the same thing, but we often refer as singularities to

vector fields themselves, when they exhibit an equilibrium point with specific properties.

The first step to study singularities is their classification. To do this we need to introduce

a topology and an equivalence relation with dynamical meaning. Notions of germ, k-jet
equivalence and C 0 equivalence come into play.

Consider C1 vector fields X and Y on Rn with X.0/ D Y.0/ D 0. We say that X
and Y are germ-equivalent if there exists a neighborhood U of 0 such that X jU D Y jU .

This relation is obviously an equivalence and the corresponding classes are called germs.

Let Gn be the set of all germs in 0 of C1 vector fields.

GivenX , Y 2 Gn, they are said to be k-jet equivalent, with k 2 N [ 1, if their Taylor

expansions at 0 up to order k are equal. It is again an equivalence relation and we call

k-jets to the corresponding classes. Given X 2 Gn, its class of equivalence is said to be

the k-jet of X and denoted by jkX . The set of k-jets in Gn is denoted by J n
k
. It should

be noticed that there exists a one-to-one correspondence between J n
k
and the space of

vector fields on Rn exhibiting a singularity at 0 and whose components are polynomials of

degree less than or equal to k. Therefore we can consider J n
k
endowed with the Euclidean

topology. Let jk be the projection map of Gn on the quotient set J n
k
. We consider Gn

endowed with the coarsest topology which makes continues jk for all k 2 N.

A set A � Gn is said to be analytic (resp. algebraic) if there exists k 2 N and an

analytic (resp. algebraic) set eA � J n
k
such that A D j�1

k
.eA/. The codimension of A is

defined as the codimension ofeA as subset of a finite dimensional space. Regular manifolds

in Gn are similarly defined.

With regard to a dynamical classification, given X , Y 2 Gn, they are said C 0 equiv-

alent if for some representatives eX and eY of X and Y , respectively, there exist open

neighbourhoods U and V of 0 2 Rn and a homeomorphism h W U ! V such that h sends
orbits of eX to orbits of eY preserving the sense, but not necessarily the parametrization.

If parametrization is preserved, we say that X and Y are C 0 conjugated. Notions of C 0

equivalence and C 0 conjugacy permit to identify behaviors which are qualitatively the

same.
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The topological classification of singularities hangs on being able to stratify the space

of germs as

Gn
D V n

0 � V n
1 � V n

2 � � � � � V n
k :

The set V n
i is a closed algebraic or analytic set of codimension i , for i D 0; : : : ; k and

V n
i�1 n V n

i is a regular manifold of codimension i � 1, for all i D 1; : : : ; k. Each X 2

V n
i�1 n V n

i is V n
i�1-stable. Namely, there exists an open neighborhood U of X in Gn such

that, if Y 2 U \ .V n
i�1 n V n

i /, then Y is C 0 equivalent to X .

A germ X belongs to the stratum V n
1 if at least one eigenvalue ofDX.0/ has real part

equal zero. Hence V n
0 n V n

1 consists of hyperbolic singularities and stability in V n
0 n V n

1

follows from the Hartman–Grobman Theorem. Subsequent strata are characterized by

extra degeneracies, either at the level of the 1-jet or at the level of higher order expansions.
In Takens (1974b), Takens provided the classification of singularities with codimension

less or equal than two for arbitrary n:

Gn
D V n

0 � V n
1 � V n

2 � V n
3 ; (5.1)

with respect to a weak notion of C 0 equivalence where one only requires that the phase

portraits reduced to the stable and unstable sets are preserved. Given a vector field with

X.0/ D 0, the stable (resp. unstable) set of 0 consists of all points x 2 Rn whose forward

(resp. backward) orbit tends to 0 as t tends to 1 (resp. �1).

Takens classification was extended to singularities up to codimension four in Dumortier

(1977) for planar vector fields:

G2
D V 2

0 � V 2
1 � V 2

2 � V 2
3 � V 2

4 � V 2
5 ;

and in Dumortier and Ibáñez (1996, 1998, 1999) for three-dimensional vector fields:

G3
D V 3

0 � V 3
1 � V 3

2 � V 3
3 � V 3

4 � V 3
5 :

The notion of C 0 equivalence is used in both extensions. As expected, the stratifications

provided in Dumortier and Ibáñez (1996, 1998, 1999) and Dumortier (1977) up to codimen-

sion two are the same as in Takens (1974b). We remark that a semialgebraic classification

is not possible in G3 at the level of singularities of codimension four Dumortier and Ibáñez

(1998).

One of the ultimate goals of Bifurcation Theory is to elucidate the different dynamics

that can emerge close to singularities at the different levels of stratification. To do that,

given a singularity of codimension k, that is, a singularity in V n
k

nV n
kC1

, one has to study its

generic k-parameter unfoldings. Genericity means that the family intersects transversely

the stratum of codimension k.

Remark 5.1. Although all classification results are stated for C1 vector fields, they are

also valid for C r vector fields if r is big enough.

Remark 5.2. Reduction to a center manifold, reduction to a normal form and blowing-up

are three basic techniques not only for the classification of singularities, but also to study

their unfoldings. They will be illustrated later on.
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5.2 Center manifolds and normal forms

In the next section we will present the two elementary bifurcations of codimension one:

the saddle-node bifurcation and the Hopf bifurcation. For a greater generality we will refer

to the reduction to the center manifold and we will also use the reduction of a singularity

to a normal form. These are two essential techniques in Bifurcation Theory. Due to this

reason, in this section we recall very briefly the main results about such techniques.

5.2.1 Center manifolds

When working with partially hyperbolic singularities, a reduction to a center manifold is

required.

Consider a system �
Px D Ax C F.x; y/
Py D By CG.x; y/;

(5.2)

where x 2 Rp and y 2 Rq , A (resp. B) is a matrix whose eigenvalues have non-zero

(resp. zero) real part, F 2 C kC1.RpCq;Rp/, G 2 C kC1.RpCq;Rq/, with k > 1, and
both F and G are of order o.k.x; yk/.

Theorem 5.3 (Carr (1982)). There exists " > 0 and a C k function

h W fu 2 Rq
W kuk < "g ! Rp

with h.0/ D 0 andDh.0/ D 0, such that the manifold

W c
D f.h.u/; u/ W u 2 Rq; kuk < "g

is invariant under the flow of system (5.2).

W c is said to be a center manifold of the equilibrium .0; 0/ 2 RpCq . Center manifolds

may not be unique, but their tangent space at the origin is uniquely determined by the

eigenspace associated with eigenvalues with real part equal zero.

Theorem 5.4 (Kirchgraber and Palmer (1990)). System (5.2) is C 0 equivalent (in a neigh-

borhood of .0; 0/ 2 RpCq) to�
Pu D Au
Pv D Bv CG.h.v/; v/

(5.3)

with .u; v/ 2 Rp � Rq and h is as given in Theorem 5.3.

Second equation in system (5.3) is said to be the reduction to center manifold of system

(5.2). Note that both results can be applied to families of vector fields because, given a

family X� defined in a neighborhood of 0 2 Rn for parameter values � in a neighborhood

of 0 2 Rk and with X0.0/ D 0, one can apply Theorem 5.3 and Theorem 5.4 to the system�
Px D X�.x/
P� D 0:
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Remark 5.5. It must be remarked that even if a vector field is C1, associated center

manifolds do not have to beC1 van Strien (1979), but there will exist aC k center manifold

for any given k. One-dimensional center manifolds are an exception, but regularity is not
essential for our discussion and so, we do not enter in more details. An extended discussion

can be found for instance in Broer, Dumortier, et al. (1991).

5.2.2 Normal forms

LetX D LCF be a vector field withL linear and F a C r vector field such that F.0/ D 0
andDF.0/ D 0.

The Normal Form Theory seeks to obtain simplified expressions of a vector field in

the neighborhood of an equilibrium point. With that goal, the following adjoint action is

considered:

adL W 	 ! ŒL; 	� ; (5.4)

where 	 is a vector field and ŒL; 	� is also a vector field defined as

ŒL; 	� .x/ D D	.x/L.x/ �DL.x/	.x/: (5.5)

Let H m be the space of vector fields whose components are homogeneous polynomials

of degree m. Denote by admL the linear operator given by the restriction of adL to H m

and write

H m
D Bm

˚ G m;

where Bm is the image of admL and G m is some complement.

Theorem 5.6. Up to an analytic change of coordinates X can be written as

X D LC g2 C � � � C gr CR

where gi 2 G i for each i D 2; : : : ; r and R.x/ D o.kxkr /.

There are many references where a proof of Theorem 5.6 can be found. Simple

arguments are given, for instance, in Guckenheimer and Holmes (2002), Kuznetsov (2004)

or Broer, Dumortier, et al. (1991). See also the original proof can be seen in Takens (1974b).

Remark 5.7. It follow from the Borel Theorem for representations of1-jets that theorem is

valid for r D 1 (see Broer, Dumortier, et al. (1991) for additional details). In Broer (1981)

it is argued that there are structures, like volume-preserving properties or reversibility

which can be preserved by reduction to normal form.

The Normal Form Theorem can be extended to unfoldings of singularities. The simplest

approach is to consider a reduction based in the decomposition of H m by the image

of admL and some complement G m, but assuming that coefficients in the polynomial

expressions depend on parameters. This setting is enough for our purposes. More elaborated

results are provided in Broer, Dumortier, et al. (1991).
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5.3 Some elementary singularities

Given a n-dimensional singularity X , that is, a vector field in Rn such that X.0/ D 0, and
a family of vector fields X�, on Rn, with � 2 Rk , such that X0 D X , we say that X� is an

unfolding of the singularity.

5.3.1 Saddle-node bifurcation

Consider a C1 vector field X defined in a neighborhood of 0 2 Rn such that X.0/ D 0
andDX.0/ has eigenvalues

f0; �1; : : : ; �p; �1; : : : ; �qg;

with p C q D n � 1, Re�i < 0 for all i D 1; : : : ; p and Re �i > 0 for all i D 1; : : : ; q.
Note that X belongs to the stratum V n

1 in the Takens classification (5.1).

As already discussed in §5.2, in this case we know that there exists a one-dimensional

invariant manifold W c , the center manifold, which is tangent at 0 to the eigenspace

associated with the zero eigenvalue. Moreover, X is C 0 conjugate to the vector field

eX.x/ @
@x

�

pX
iD1

yi

@

@yi

C

qX
iD1

zi

@

@zi

with eX.0/ D 0 and eX 0.0/ D 0. The one-dimensional vector field

eX.x/ @
@x

(5.6)

is the reduction of X to the center manifold and it is given by the restriction of X to the

invariant manifold W c . As already mentioned in §5.2, smoothness of the reduction is

always a delicate point, but when W c is one-dimensional, it is known that eX is C1 (see

comments in Broer, Dumortier, et al. (1991) and Kuznetsov and Meijer (2019) and also

a nice proof in Dumortier, Llibre, and Artés (2006)). Therefore, to understand the local

behaviour around this n-dimensional singularity, one only needs to study a one-dimensional

vector field.

In the sequel we assume that eX 00.0/ ¤ 0. This condition characterizes a singularity of
codimension one. It is straightforward that (5.6) is locally C 0 equivalent to the vector field

u2 @

@u
(5.7)

and therefore, there is a unique topological type. Figure 5.1 shows the (trivial) behaviour

exhibited by the flow of (5.7).

In the sequel we restrict to the one-dimensional case. Let eX� be a C1 k-parameter

family such that eX0 D eX , that is, an unfolding of the singularity (5.6). It can be written as:

eX� W
�
a0.�/C a1.�/uC a2.�/u

2
C r.�; u/

� @
@u

(5.8)
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Figure 5.1: Phase-portrait of the vector field in (5.7).

where a0, a1 and a2 are C1 functions and r.�; u/ D O.juj3/. Taking into account the
conditions defining the singularity, it follows that a0.0/ D a1.0/ D 0 and a2.0/ ¤ 0.

Applying the Malgrange Preparation Theorem (see Chow and Hale (1982)) we know

that there exists a C1 function '.�; u/ with '.0; 0/ > 0 such that

a0.�/C a1.�/uC a2.�/u
2

C r.�; u/ D '.�; u/
�
Oa0.�/C Oa1.�/u˙ u2

�
: (5.9)

Clearly, identity provides a C1-equivalence between eX� and

�X� W
�
Oa0.�/C Oa1.�/u˙ u2

� @
@u
: (5.10)

Moreover, introducing Nu D �u we can reduce the study to the case with C sign. Now we

consider the change of coordinates Nu D uC Oa1.�/=2 to obtain the C
1-equivalent family

Y� W
�
za0.�/C Nu2

� @
@ Nu
: (5.11)

Finally, assuming the generic hypothesis za0
0.0/ ¤ 0, we can introduce a new parameter

� D za0.�/ to get the �-dependent family:�
�C Nu2

� @
@ Nu
: (5.12)

Figure 5.2 shows the bifurcation diagram associated with the above family.

�

Nu

Figure 5.2: Saddle-node bifurcation.
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5.3.2 Hopf bifurcation

Let X be a C1 vector field defined in a neighborhood of 0 2 Rn such that X.0/ D 0 and
DX.0/ has eigenvalues

f!i;�!i; �1; : : : ; �p; �1; : : : ; �qg;

with p C q D n � 2, ! ¤ 0, Re�i < 0 for all i D 1; : : : ; p and Re �i > 0 for all
i D 1; : : : ; q. It easily follows that inside the space of n � n matrices, the subset given by

those with a pair of pure imaginary eigenvalues has codimension one. Hence, bearing in

mind the Takens classification (5.1), the germ of X belongs to the stratum V n
1 .

In this case, we know that there exists a two-dimensional invariant manifold W c ,

the center manifold, which is tangent at 0 to the eigenspace associated with the pair of

imaginary eigenvalues. Moreover, X is C 0 conjugate to the vector field

!

�
u
@

@v
� v

@

@u

�
C F.u; v/

@

@u
CG.u; v/

@

@v
�

pX
iD1

yi

@

@yi

C

qX
iD1

zi

@

@zi

;

with F.0; 0/ D G.0; 0/ D 0 andDF.0; 0/ D DG.0; 0/ D 0. The two-dimensional vector

field

R D !

�
u
@

@v
� v

@

@u

�
C F.u; v/

@

@u
CG.u; v/

@

@v
(5.13)

is the reduction of X to the center manifold and it is given by the restriction of X to the

invariant manifold W c . Vector field R can be assumed to be C r with r arbitrarily large.
To understand the local behaviour around this n-dimensional singularity, we need to study

the planar vector field R.
One can compute a normal form to get an equivalent but simplified expression of R.

With this regard, it is more convenient to introduce complex coordinates z D uC iv and
Nz D u � iv to transform (5.13) into:

eR D !i

�
z
@

@z
� Nz

@

@ Nz

�
C eF .z; Nz/

@

@z
C eG.z; Nz/

@

@ Nz
: (5.14)

with eF .0; 0/ D eG.0; 0/ D 0 and DeF .0; 0/ D DeG.0; 0/ D 0. The adjoint action of the
linear part

L D

�
z
@

@z
� Nz

@

@ Nz

�
(5.15)

on elementary monomials is simple:�
L; zi

Nzj @

@z

�
D .i � j � 1/zi

Nzj @

@z�
L; zi

Nzj @

@ Nz

�
D .i � j C 1/zi

Nzj @

@ Nz
:
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˛1 < 0 ˛1 > 0

Figure 5.3: Local topological types of (5.17) when ˛1 ¤ 0.

It easily follows that for each degree m > 2 fixed, all monomials with zi Nzm�i @
@z
, with

2i � m � 1 ¤ 0, and zi Nzm�i @
@ Nz
, with 2i � m C 1 ¤ 0, are removable by an analytical

change of coordinates. Hence, one can assume that

eR D !i.

�
z
@

@z
� Nz

@

@ Nz

�
C z

 
kX

sD1

as.z Nz/s

!
@

@z
C Nz

 
kX

sD1

Nas.z Nz/s

!
@

@ Nz
C o.k.z; Nz/k2kC1/

(5.16)

with k arbitrarily large and as D ˛s C iˇs .

Recovering cartesian coordinates we obtain:

R D

 
! C

kX
sD1

ˇs.u
2

C v2/s

!�
u
@

@v
� v

@

@u

�
C

 
kX

sD1

˛s.u
2

C v2/s

!�
u
@

@u
C v

@

@v

�
C o

�
k.u; v/k2kC1

�
:

(5.17)

The generic condition ˛1 ¤ 0 characterizes a singularity of codimension one with two

topological types which depend on the sign of ˛1 (see Figure 5.3).

Consider now a C r -unfolding R�, with � 2 Rk and k > 1 such that R0 D R, with R
as given in (5.13). Because detDR.0/ D !2 ¤ 0, the singularity persists for small enough

values of � and we can assume thatR�.0/ D 0 for all �. On the other hand, again for small

�, eigenvalues ofDR�.0/ are of the form �.�/˙ i�.�/, with �.0/ D ! ¤ 0. Without loss

of generality, we can also assume that

DR�.0/ D

�
�.�/ ��.�/
�.�/ �.�/

�
:
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Finally, we can redo a reduction to normal form, but in this case for the family. In any case,

the adjoint action that we have to use is the same one that we have already considered for

the reduction of the singularity itself, that is, the action of (5.15). It easily follows that we

can write R� as:

R� D

 
�.�/C

kX
sD1

ˇs.�/.u
2

C v2/s

!�
u
@

@v
� v

@

@u

�
C

 
�.�/C

kX
sD1

˛s.�/.u
2

C v2/s

!�
u
@

@u
C v

@

@v

�
C o

�
k.u; v/k2kC1

�
:

(5.18)

Nowwe imposer�.0/ ¤ 0. Without loss of generality one can assume that @�
@�1
.0/ ¤ 0.

Hence we can consider .�; �2; : : : ; �n/ as new parameters. Introducing polar coordinates

in (5.17) one can easily determine the phase portrait of (5.16), but now we only refer

to Kuznetsov (2004, Chapter 3) or Broer, Dumortier, et al. (1991, Chapter 7) to state that,

for .�2; : : : ; �k/ small and fixed, the above family is locally C 0 equivalent to

u
@

@v
� v

@

@u
C
�
�C �.u2

C v2/
� �
u
@

@u
C v

@

@v

�
: (5.19)

with � D ˙1. Bifurcation diagrams for (5.19) are depicted in Figure 5.4. If � D �1
(resp. � D C1), there is an attracting (repelling) periodic orbit when � > 0 (resp. � < 0).
This periodic orbit collapses with the singularity when � D 0 and disappears, transferring
its character, either attracting or repelling, to the equilibrium point. The case � D �1
(resp. � D C1) is said supercritical (resp. subcritical) Hopf bifurcation.

5.4 Nilpotent singularities

Consider a C1 vector field X defined in a neighborhood of 0 2 Rn such that X.0/ D 0

and DX.0/ is linearly conjugate to
Pn�1

kD1 xkC1
@

@xk
. As argued in Drubi, Ibáñez, and

Rodríguez (2007), introducing appropriate C1 coordinates, X can be written as

n�1X
kD1

xkC1

@

@xk

C f .x1; : : : ; xn/
@

@xn

; (5.20)

where f .x1; : : : ; xn/ D O.k.x1; : : : ; xn/k
2/. If @f

@x2
1

.0/ ¤ 0 we refer to X as the n-

dimensional nilpotent singularity of codimension n. The 2-dimensional nilpotent singularity

of codimension two, also named Bogdanov–Takens singularity, was already classified in

Takens (1974b), whereas the 3-dimensional nilpotent singularity of codimension three
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� < 0, � D �1 � D 0, � D �1 � > 0, � D �1

� < 0, � D 1 � D 0, � D 1 � > 0, � D 1

Figure 5.4: Bifurcation diagrams for a Hopf bifurcation.

was classified in Dumortier and Ibáñez (1996). In both cases there is a unique topological

type. Classification of n-dimensional nilpotent singularities of codimension n with n > 4
remains as an open problem.

According to Drubi, Ibáñez, and Rodríguez (2007), any generic n-parameter unfolding

of a n-dimensional nilpotent singularity of codimension n can be written as

n�1X
kD1

xkC1

@

@xk

C

 
�1 C

nX
kD2

�kxk C x2
1 C h.x; �/

!
@

@xn

; (5.21)

where � D .�1; : : : ; �n/ 2 Rn, x D .x1; : : : ; xn/ 2 Rn and

h.0; �/ D 0;
@h

@xi

.0; �/ D 0 for i D 1; : : : ; n;
@2h

@x2
1

.0; �/ D 0;

h.x; �/ D O.k.x; �/k2/; h.x; �/ D O.k.x2; : : : ; xn/k/:

Of course, the required generic conditions involve derivatives of the family with respect to

parameters.

Techniques of reduction to normal allows to get further reductions in expression (5.21),

but we do not need them for our purposes. Normal forms in the 2-dimensional case were
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already derived in Takens (1974a,b) (see also Broer, Dumortier, et al. (1991)). Normal

forms in the 3-dimensional case are considered in detail in Dumortier and Ibáñez (1996).

Extending the blowing-up techniques used in Dumortier and Ibáñez (1996) for dimen-

sion three, we can rescale variables and parameters by means of

�1 D "2n�1

�k D "n�kC1�k for k D 2; : : : ; n; (5.22)

xk D "nCk�1yk for k D 1; : : : ; n;

with " > 0 and �2
1 C � � � C �2

n D 1 to write, after dividing by ", (5.21) as

n�1X
kD1

ykC1

@

@yk

C

 
�1 C

nX
kD2

�kyk C y2
1 C "�y1y2 CO."2/

!
@

@yn

(5.23)

where

� D
@2h

@x1@x2

.0; 0/

and .y1; : : : ; yn/ 2 K, where K � Rn is an arbitrarily big compact. As an extra non-

degeneracy condition we assume that � ¤ 0.
When one uses rescaling techniques, the first step to study the dynamics arising in

the unfolding of a singularity is to understand the dynamics exhibited by the limit family

obtained when " D 0. Namely, we should be interested in the family:

n�1X
kD1

ykC1

@

@yk

C

 
�1 C

nX
kD2

�kyk C y2
1

!
@

@yn

: (5.24)

In subsequent sections we will extend on details about the unfoldings in the cases of

phase space with dimensions 2, 3 and 4. Here we establish some generalities to which we

will refer later.

When �1 > 0 there are no singularities. In fact, dynamical behaviour for (5.24) is

rather simple under such restriction because, as one can easily check, the function

L.y1; : : : ; yn/ D yn �

n�1X
kD1

�kC1yk :

is strictly increasing along the orbits and, as a consequence, the maximal compact invariant

set is empty. Even more, when �1 D 0,

dL

dt
D y2

1 > 0:

and hence limit sets must be contained in the plane y1 D 0. Since the maximal invariant

set contained in fy1 D 0g consists only of the equilibrium point .0; 0/ then any forward
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bounded orbit must have !-limit f.0; 0/g. Similarly, any backward bounded orbit has

˛-limit f.0; 0/g. We conclude that one only needs to study the case �1 < 0.
Family (5.24) also exhibits some symmetries. Namely, up to a change of sign, it is

invariant with respect to the transformation:

.�; y/ !
�
�1; .�1/

n�1�2; .�1/
n�2�3; : : : ; �n�1;��n;

.�1/ny1; .�1/
n�1y2; : : : ; yn�1;�yn

�
:

It follows that we can consider a reduced set of parameters with �1 < 0 and �n 6 0.
Moreover, for parameter values on the set

T D f.�1; : : : ; �n/ 2 Sn�1
W �n�2i D 0 with i D 0; : : : ; b.n � 2/=2cg

system (5.24) is time-reversible with respect to the involution

R W .y1; : : : ; yn/ !
�
.�1/ny1; .�1/

n�1y2; : : : ; yn�1;�yn

�
:

The manifold T has dimension b.n � 1/=2c and we refer to it as the reversibility set of
the limit family.

To conclude this section about generalities regarding the unfolding of n-dimensional

nilpotent singularities of codimension n, we observe that the divergence of the limit family

equals �n. Hence, if �n D 0, family (5.24) is volume-preserving. In fact, assuming that n
is even, one can introduce appropriate coordinates to write the family as a Hamiltonian

system. Namely, the following result is proved in Barrientos, Ibáñez, and Rodrı́guez (2011):

Theorem 5.8. Introducing the new variables

q D S � .y1; y3; : : : ; yn�1/
t ; p D .y2; y4; : : : ; yn/

t ;

with 0BBBBBBB@

��3 ��5 : : : ��n�1 1

��5 : :
:

: :
:

0
::: : :

:
: :
:

: :
: :::

��n�1 : :
:

: :
: :::

1 0 : : : : : : 0

1CCCCCCCA
the family

n�1X
kD1

ykC1

@

@yk

C

 
�1 C

m�1X
kD1

�2kC1y2kC1 C y2
1

!
@

@yn

:

transforms into
@H

@p

@

@q
�
@H

@q

@

@p



100 5. Singularities and chaos

where

H.p; q/ D
1

2
hSp; pi C V.q/:

The potential V is defined as

V.q/ D �
1

3
q3

m �
1

2

m�1X
kD1

�2kC1bkC1q
2
m �

1

2

bm=2cX
j D1

bm�2j C1q
2
m�j

�

m�1X
kD1

m�1X
iDm�k

�2kC1bi�mCkC1qiqm �

bm=2cX
j D1

m�j �1X
iDj

biqiqm�j � �1qm

where, given b1 D 1,

bi D

i�1X
lD1

�2.m�iCl/C1bl for i D 2; : : : ; m.

Regarding Hamiltonian vector fields, the following result will be useful in the next

sections.

Proposition 5.9. Given a enough smooth functionH W R2n ! R, consider the Hamilto-

nian vector field XH .u/ D JrH.u/ where J is the Poisson matrix, that is,

J D

�
0 �I
I 0

�
where I is the n � n identity matrix. Let p.t/ be a solution of the Hamiltonian equation
Pu D XH .u/. Then  .t/ D rH.p.t// is a solution of the adjoint variational equation

Pw D �DXH .p.t//w.

Proof. Note that

P .t/ D D2H.p.t// Pp.t/ D D2H.p.t//JrH.p.t//

D �D2H.p.t//J � .t/ D �DXH .p.t//
� .t/:

5.5 Nilpotent of codimension two in R2

Consider C1 vector fields X defined in a neighborhood of 0 2 R2 such that X.0/ D 0
andDX.0/ is linearly conjugate to

x2

@

@x1

: (5.25)
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1


2

Figure 5.5: Topological type of the Bogdanov-Takens singularity. Orbits 
1 and 
2

are such that !.
1/ D f.0; 0/g and ˛.
2/ D f.0; 0/g. Excepting these two orbits, the

phase-portrait shows a flow-box around the singularity.

As explained in §5.4, X can be written as

x2

@

@x1

C f .x/
@

@x2

;

where x D .x1; x2/ and f .x/ D O.kxk2/. The condition @2f

@x2
1

.0/ ¤ 0 characterizes

the two-dimensional nilpotent singularity of codimension two. As follows from Takens

(1974b) (see also Broer, Dumortier, et al. (1991)), two-dimensional nilpotent singularities

exhibit a unique topological type (see Figure 5.5).

Any generic two-parameter unfolding of this singularity can be written as

x2

@

@x1

C
�
�1 C �2x2 C x2

1 C h.x; �/
� @

@x2

; (5.26)

where � D .�1; �2/, h.0; �/ D 0, @h
@xi
.0; �/ D 0, for i D 1; 2, @2h

@x2
1

.0; �/ D 0,

h.x; �/ D O.k.x; �/k2/ and also h.x; �/ D O.k.x2/k/. The local bifurcation diagram
for family (5.26) was determined independently by Bogdanov (1975) and Takens (1974a)

and unfoldings of the two-dimensional nilpotent singularity of codimension two are called

Bogdanov–Takens bifurcations. Given an arbitrary unfolding (5.26), there exists a local

homeomorphism in the phase-space, depending continuously with respect to the parameters,

and also a local homeomorphism in the parameter space such that family (5.26) changes

into (see Broer, Dumortier, et al. (1991)):

x2

@

@x1

C
�
�1 C �2x2 C x2

1 C x1x2

� @

@x2

: (5.27)



102 5. Singularities and chaos

Hopf

Hom
SN�

SNC

�1

�2

Figure 5.6: Bogdanov-Takens bifurcation. Three codimension one bifurcations are

unfolded. Vertical axis is a line of saddle-bifurcation. For parameters along the positive

(resp. negative) vertical axis, labelled SNC (resp. SN�), the equilibrium point has a

one-dimensional center manifold and a one-dimensional unstable (resp. stable) invariant

manifold. Red and blue curves corresponds toHopf bifurcation and homoclinic bifurcation,

respectively. For parameters in between these curves, the system exhibits a unique

attracting limit cycle (plotted in red in the corresponding phase-portrait). Homoclinic

loop is plotted in blue colour in the phase-portrait corresponding to the homoclinic

bifurcation curve. Equilibrium points are plotted in magenta.
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Figure 5.6 provides and sketch of the bifurcation diagram for family (5.27).

As already explained, the Bogdanov–Takens bifurcation is well-known from the lit-

erature. Nevertheless it is a quite illustrative example of part of the ideas used in higher-

dimensions to prove the existence of homoclinic orbits or heteroclinic cycles. Due to that

reason, we include here the proof of the existence of homoclinic bifurcation curve in any

generic unfolding of the two-dimensional nilpotent singularity of codimension two.

Theorem 5.10. There exists a curve Hom (see Figure 5.6) in R2 with an end at the origin

such that for each .�1; �2/ 2 Hom, the system (5.26) exhibits a homoclinic orbit.

Blowing-up coordinates and parameters in (5.26) as done in (5.22)

�1 D "4�1; �2 D "�2;

x1 D "2y1; x2 D "3y2;
(5.28)

we get, after rescaling time by a factor ", the expression (5.23) for n D 2,

y2

@

@y1

C
�
�1 C �2y2 C y2

1 C "�y1y2 CO."2/
� @

@y4

; (5.29)

where we assume that

� D
@2h

@x1@x2

.0; 0/ ¤ 0:

As usual, we consider y D .y1; y2/ varying in an arbitrarily big compact in R2 and � 2 S1.

The first goal is to understand the dynamics exhibited by the limit family

y2

@

@y1

C
�
�1 C �2y2 C y2

1

� @

@y2

; (5.30)

obtained by taking " D 0 in (5.29). Note that, as already discussed in §5.4, one only needs
to consider �1 < 0 and �2 6 0.

When �2 D 0 (5.30) is time-reversible with respect to the involution

R W .y1; y2/ ! .y1;�y2/:

Under the restriction �1 < 0, it is more convenient to consider a directional rescaling

of the parameters. We use the same formulas as in the spherical rescaling defined in (5.28),

but we take �1 D �1 and assume that �2 2 R to obtain

y2

@

@y1

C
�
�1C �2y2 C y2

1 C "�y1y2 CO."2/
� @

@y2

: (5.31)

When �2 D 0 and " D 0 the system has the first integral:

H.y1; y2/ D
y2

2

2
�
y3

1

3
C y1:
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Figure 5.7: Level curves ofH .

Level curves of the HamiltonianH are given in Figure 5.7.

There are two equilibrium points P˙ D .˙1; 0/. The equilibrium P� is a center

whereas PC is a saddle. Note that there is a homoclinic orbit to PC (see Figure 5.7) and

we are interested in the existence of homoclinic orbits when " > 0.
We will consider family (5.31) as an unfolding of the homoclinic orbit exhibited by the

system when �2 D 0 and " D 0. Moreover, we consider the family (5.31) written as

Px D f .x/C g.�; x/ (5.32)

where

� D .�1; �2/ D .�2 C �"; "/

varies in a neighborhood of .0; 0/ 2 R2,

x D .x1; x2/ D .y1 � 1; y2/

f .x1; x2/ D .x2; 2x1 C x2
1/

g.x1; x2/ D .0; �1x2 C �2�x1x2 CO.�2
2//:

Note that there is a translation of coordinates to move the saddle from .1; 0/ to .0; 0/.
Bifurcations exhibited when �2 > 0 correspond to bifurcations observed in any generic
unfolding of the two-dimensional nilpotent singularity of codimension two.

We will prove that for parameter values along a curve through the origin, there exist

homoclinic orbits, that is, the unfolding of the homoclinic connection exhibited for the

system when � D 0 inside family (5.31) is generic.

Note that the unperturbed system Px D f .x/ satisfies the following properties:

(H1) There is a first integral

�H.x1; x2/ D
x2

2

2
�
x3

1

3
� x2

1 :
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(H2) The system is time reversible with respect to the involution

R W .x1; x2/ ! .x1;�x2/:

(H3) There exists a homoclinic orbit


 D fp.t/ D .p1.t/; p2.t// W t 2 Rg;

such that p1 is and even function and p2 is an odd function. Moreover p1.t/ < 0
and p2.t/ > 0 for all t 2 .0;1/.

(H4) According to Definition A.22, the homoclinic orbit 
 is non-degenerate and,

as follows from Proposition A.15 and Proposition A.21, the dimension of the

space of bounded solutions for the variational equation�
Pz1

Pz2

�
D Df.p.t//

�
z1

z2

�
D

�
0 1

2C 2p1.t/ 0

��
z1

z2

�
and also for the adjoint variational equation�

Pw1

Pw2

�
D �Df.p.t//�

�
w1

w2

�
D

�
0 �2 � 2p1.t/

�1 0

��
w1

w2

�
equals one. The function f .p.t// is a bounded solution of the variational

equation and, according to Proposition 5.9,

 .t/ D r �H.p.t// D .�2p1.t/ � p1.t/
2; p2.t///

is a bounded solution of the adjoint variational equation.

To study the persistence of the homoclinic orbit 
 we consider the splitting function

�1 W � ! R as defined in Lemma B.1. For each �, �1.�/ provides the displacement

function between the one-dimensional invariant manifolds on f .p.0//?, Hence, for each
� such that �1.�/ D 0, there is a homoclinic orbit at the origin.

Let

D��
1.0/ D r�1.0/ D

�
�1

�1
.0/ �1

�2
.0/

�
:

The bifurcation equation �1.�/ D 0 can be studied by means of the Implicit Function

Theorem. Namely, if rankD��
1.0/ D 1, then the system has homoclinic orbits for

parameter values on a curve H containing � D 0. According to Theorem B.2

�1
�i
.0/ D

Z 1

�1

�
 .t/;

@g

@�i

.0; p.t//

�
dt

and it easily follows that

�1
�1
.0/ D

Z 1

�1

p2.t/
2 dt;

�1
�2
.0/ D �

Z 1

�1

p1.t/p2.t/
2 dt:
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It is straightforward that �1
�1
.0/ ¤ 0. On the other hand, since p1 is even and p1.t/ < 0

for all t 2 Œ0;1/, then �1
�2
.0/ ¤ 0.

As r�1.0/ ¤ .0; 0/, there exists a curve H corresponding to parameter values

for which the systems exhibits a homoclinic orbit. Moreover, because �1
�1
.0/ ¤ 0, H

intersects the plane �2 D 0 transversely. This concludes the proof of Theorem 5.10.

5.6 Nilpotent of codimension three in R3

In this section we consider C1 vector fields X defined in a neighborhood of 0 2 R3 such

that X.0/ D 0 andDX.0/ is linearly conjugate to

x2

@

@x1

C x3

@

@x2

: (5.33)

As explained in §5.4, X can be written as

x2

@

@x1

C x3

@

@x2

C f .x/
@

@x3

where x D .x1; x2; x3/ and f .x/ D O.kxk2/. The condition @2f

@x2
1

.0/ ¤ 0 characterizes

the 3-dimensional nilpotent singularity of codimension three. Any generic three-parameter

unfolding of this singularity can be written as

x2

@

@x1

C x3

@

@x2

C
�
�1 C �2x2 C �3x3 C x2

1 C h.x; �/
� @

@x3

(5.34)

where � D .�1; �2; �3/,

h.0; �/ D 0;
@h

@xi

.0; �/ D 0; for i D 1; 2; 3;
@2h

@x2
1

.0; �/ D 0

and

h.x; �/ D O.k.x; �/k2/; h.x; �/ D O.k.x2; x3/k/:

Our main result in this section is the following:

Theorem 5.11. There exists a curve B � R3 with an end at the origin, such that for each

.�1; �2; �3/ 2 B, system (5.34) exhibits a Bykov cycle.

Blowing-up coordinates and parameters in (5.34) as done in (5.22)

�1 D "6�1; �2 D "2�2; �3 D "�2;

x1 D "3y1; x2 D "4y2; x3 D "5y3;
(5.35)



5.6. Nilpotent of codimension three in R3 107

we get, after rescaling time by a factor ", the expression (5.23) for n D 3,

y2

@

@y1

C y3

@

@y2

C
�
�1 C �2y2 C �3y3 C y2

1 C "�y1y2 CO."2/
� @

@y3

(5.36)

where we assume that

� D
@2h

@x1@x2

.0; 0/ ¤ 0:

As usual, we consider y D .y1; y2; y3/ varying in an arbitrarily big compact in R3 and

� D .�1; �2; �3/ 2 S2. When appropriate, we will also use directional blow-ups, by simply

assuming that a convenient �i equals one in (5.35) and the other parameters vary in R2.

Given this scenario, the first big challenge is to understand the dynamics exhibited by the

limit family

y2

@

@y1

C y3

@

@y2

C
�
�1 C �2y2 C �3y3 C y2

1

� @

@y3

(5.37)

obtained by taking " D 0 in (5.36). Note that, as already discussed in §5.4, one only needs
to consider �1 6 0 and �3 6 0.

Elementary bifurcations in the limit family were already studied in Dumortier, Ibáñez,

and Kokubu (2001b). Note that there is a unique equilibrium point at P0 D .0; 0; 0/ when
�1 D 0 and two equilibria

P˙ D .˙
p

��1; 0; 0/

when �1 < 0. Figure 5.8 shows a partial bifurcation diagram.

When .�1; �2; �3/ D .0;�1; 0/ system (5.37) exhibits an equilibrium point at .0; 0; 0/
where the linear part has a pair of pure imaginary eigenvalues and the other equals 0.
Equilibria with such eigenvalues are said Hopf–Zero singularities. Dynamics arising in

the neighborhood of a Hopf–Zero singularity are discussed in Guckenheimer and Holmes

(2002) and Kuznetsov (2004) and the arising of chaotic dynamics close to this singularity

is explained in §5.8. There is a Bogdanov–Takens singularity at .�1; �2; �3/ D .0; 0;�1/.
Details about the unfolding of the Bogdanov–Takens singularity are included in §5.5.

Elementary Hopf and saddle-node bifurcations were described in §5.3.

As explained in Dumortier, Ibáñez, and Kokubu (2001b), when �2 > 0 the dynamics is

rather simple because there is a Lyapunov function, that is, there exists a scalar function

defined on the phase space which is increasing along the orbits. It is proved that the system

is gradient-like and hence, the maximal invariant set consists of the equilibrium points

P˙ and heteroclinic orbits from P� to PC, which are saddles with stability indices 1 and
2, respectively. Existence of at least one heteroclinic connection is proved in Dumortier,

Ibáñez, and Kokubu (2001b), but in spite of the intersection between the 2-dimensional

invariant manifolds is likely to be unique, there is no a proof of this fact remains as an

open problem.

We are particularly interested in the dynamics close to the reversibility curve

T D f.�1; �2; �3/ 2 S2
W �3 D 0g:
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HZ
K

BTC

BT�

HopfC

Hopf�

HomC

Hom�

SN1

SN2

SN3

�2

�3

Figure 5.8: Partial bifurcation diagram for the limit family (5.37). There are three

local bifurcations of codimension two: a Hopf-Zero bifurcation (labelled HZ) when
.�1; �2; �3/ D .0;�1; 0/ and two Bogdanov-Takens bifurcation (labelled BTC and

BT�) when .�1; �2; �3/ D .0; 0;˙1/. There are three lines of saddle-node bifurcation:
SN1 D f.�1; �2; �3/ 2 S2 W �1 D 0;�1 < �2 < 0; �3 < 0g, SN2 D f.�1; �2; �3/ 2

S2 W �1 D 0;�1 < �2 < 0; �3 > 0g and SN3 D f.�1; �2; �3/ 2 S2 W �1 D

0; 0 < �2 > 1; �3 6 0g. Two Hopf bifurcation curves join HZ with BTC and BT�,

respectively. There are two curves of homoclinic bifurcation with end points at BTC and

BT�, respectively. The point K correspond to the parameter value where we prove the

existence of a Bykov cycle.
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As already explained, the dynamics when �2 > 0 is simple, and we can pay attention only

to the hemisphere with �2 < 0. Under this assumption it is more convenient to consider

a directional rescaling of the parameters. We use the same formulas as in the spherical

rescaling defined in (5.35), but we take �2 D �1 and assume that .�1; �3/ D . N�1; N�3/ 2 R2

to obtain

y2

@

@y1

C y3

@

@y2

C
�
N�1 � y2 C N�3y3 C y2

1 C "�y1y2 CO."2/
� @

@y3

; (5.38)

When N�3 D 0 and N�1 6 0, family (5.38) becomes the well knownMichelson systemMichel-

son (1986), the equation satisfied for the traveling waves of the Kuramoto–Shivashinsky

equation in one-dimensional media, Kuramoto and Tsuzuki (1976):

ut C uxxxx C uxx C
1

2
u2

x D 0;

where t > 0 and x 2 R. In order to use results from the literature we introduce new

variables and parameters

Oy1 D �2y1; Oy2 D �2y2; Oy3 D �2y3; c D
p

�2 N�1

to get

Oy2

@

@ Oy1

C Oy3

@

@ Oy2

C

�
c2

� Oy2 C N�3 Oy3 C
1

2
Oy2
1 � 2"� Oy1 Oy2 CO."2/

�
@

@ Oy3

: (5.39)

Taking N�3 D 0 and " D 0 in the above expression we obtain the precise equation studied
by Michelson in Michelson (1986):

Oy2

@

@ Oy1

C Oy3

@

@ Oy2

C

�
c2

� Oy2 �
1

2
Oy2
1

�
@

@ Oy3

: (5.40)

It is quite common to write (5.40) as a family of third order differential equations

x000.t/C x0.t/ D c2
�
1

2
x2;

with x D Oy1.

We already know that system (5.40) is reversible with respect to the involution

R W . Oy1; Oy2; Oy3/ ! .� Oy1; Oy2;� Oy3/: (5.41)

Let Q˙ D .˙
p
2c; 0; 0/ be the equilibrium points of the system. The following are

essential features of the Michelson system:
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(M1) QC and Q� are equilibrium points of saddle-focus type. Eigenvalues are,

respectively, f��; �˙ i!g and f�;��˙ i!g, with � > 0, � > 0 and ! ¤ 0. As

divergence equals zero, � D
�
2
. Note that in case that a homoclinic orbits exist,

they satisfy the Shilnikov condition regarding the ratio of the local expansion

versus contraction.

(M2) It follows from Kuramoto and Tsuzuki (1976) that for c D cK D
p
˛, with

˛ D 15
p
11=193, (5.40) exhibits a heteroclinic orbit �1 fromQ� toQC, that is,

one of the branches ofW u.Q�/ coincides with one of the branches ofW
s.QC/.

The explicit solution along this heteroclinic connection is given by

p.t/ D .p1.t/; p2.t/; p3.t//;

with
p1.t/ D ˛.�9 tanhˇt C 11 tanh3 ˇt/;
p2.t/ D Pp1.t/;
p3.t/ D Rp1.t/;

(5.42)

where ˇ D
p
11=19=2. Note that p1 and p3 are odd functions whereas p2 is

an even function. The orbit of p is shown in Figure 5.9 (blue line) and graphs

of pi , with i D 1; 2; 3 are given in Figure 5.10 (left panel).
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Q� QC

�1
�2

Oy1

Oy2

Figure 5.9: Bykov cycle in the Michelson system. Red: Intersection between the two-

dimensional invariant manifolds. Blue: Intersection between the one-dimensional invari-

ant manifolds.
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ŷ1

ŷ2
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ŷ3

Figure 5.10: Graphs of the solutions which parametrize the connections forming the

Bykov cycle in the Michelson system. Left: Components of the solution corresponding to

W s.QC/ \W u.Q�/ (the one-dimensional invariant manifolds). Right: Components
of the solution corresponding to W s.Q�/ \W u.QC/ (the two-dimensional invariant
manifolds). Note that Oy1 and Oy3 are odd functions and Oy2 is an even function.

In the next section we will see how to prove that, when c D ck , there also exists an

orbit �2 � W s.Q�/ \W u.QC/ along which the two-dimensional invariant manifolds

intersect transversally, at least from a topological point of view (see Figure 5.9).

5.6.1 A Bykov cycle in the Michelson system

The main result in this subsection is the following:

Theorem 5.12. The Michelson system (5.40) exhibits a Bykov cycle for the parameter

value c D cK .

Bykov cycles are considered in §3. It follows from (M2) that there exists a heteroclinic

connection �1 fromQ� toQC. Here we prove that there exits a heteroclinic connection

�2 fromQC toQ� (see Figure 5.9 and Figure 5.10).

The existence of �2 for c large enough has been proved in Dumortier, Ibáñez, and

Kokubu (2001b) and Michelson (1986). A result of existence is given in Jones, Troy,

and MacGillivray (1992) for c D 1 and Lau (1992) provides numerical evidences of the

existence and transversality of � for all c > 0. However, there is no result valid for all
c > 0. We will prove the existence and topological transversality when c D cK using

techniques which are similar to those in Jones, Troy, and MacGillivray (1992), but also

using the knowledge from Dumortier and Ibáñez (1996) about the behaviour of solutions

of the Michelson system at infinity.

Remark 5.13. An extensive use of computer assisted proofs allows to obtain a deep

understanding of the Michelson systems for several values of c. See Kokubu, Wilczak, and
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Zgliczyński (2007) and Wilczak (2003, 2005) and references therein. See Lau (1992) for the

notion of cocoon bifurcation linked to the Michelson system and also Dumortier, Ibáñez,

and Kokubu (2006).

Our first step is to understand how the unbounded orbits of system (5.40) escape to

infinity. The behaviour of the Michelson system at infinity was studied in Dumortier,

Ibáñez, and Kokubu (2001b). The proof of the result below can be found in Dumortier,

Ibáñez, and Kokubu (2001b, Theorem 3).

LetD D f.x; y/ 2 R2 W x2 C y2 6 1g and denote C D D � Œ0; 1�.

Theorem 5.14. Consider the limit family X� given in (5.37). There exists a continuous

map

	 W C � S2
! A � R3

such that for all � 2 S2, the domain V� D 	.C; �/ is homeomorphic to C and:

• 	.@D � Œ�1; 1�; �/ consists of regular orbits of X� ,

• 	.D � f�1; 1g; �/ is everywhere transverse to X� which point inwards (resp. out-

wards) V� on 	.D � f�1g; �/ (resp. on 	.D � f1g; �/).

• The maximal compact invariant set of X� is contained in V� .

Following Dumortier, Ibáñez, and Kokubu (2001b) we refer to 	.C � Œ�1; 1�; �/,
	.D � f�1g; �/ and 	.D � f1g; �/ as, respectively, the traffic regulator, the inset and the
outset.

The phase-directional rescaling provides the behaviour at the infinity of vector fields

in the family rescaling. The key of the proof of Theorem 5.14 is that there exists two

equilibrium points at the infinity: a repeller �QC and an attractor �Q�. All unbounded

forward (resp. backward) orbits tend to �Q� (resp. �QC) when time tends to 1. Although it

is not stated in Theorem 5.14, the inset 	.D � f�1g; �/ (resp. the outset 	.D � f1g; �/) is
contained in a fundamental domain of the repeller (resp. attractor). This means that there

are no orbits connecting the outset with the inset traveling outside the traffic regulator.

For future use we need to determine a fundamental domain of the attractor at the infinity.

With that goal we consider the function

H. Oy1; Oy2; Oy3/ D Oy2
3 C Oy2. Oy2 � 2c2

C Oy2
1/ (5.43)

and observe that dH
dt

D 2 Oy1 Oy2
2 . ThereforeH is strictly decreasing along orbits as long as

they are contained in the region with Oy1 < 0 and y2 ¤ 0. Now, define the unbounded set

K D f. Oy1; Oy2; Oy3/ 2 R3
W Oy1 < 0; Oy2 < 0;H. Oy1; Oy2; Oy3/ < 0g:

We can get a better understanding of the shape of K if we write

H. Oy1; Oy2; Oy3/ D

�
Oy2 �

�
c2

�
Oy2
1

2

��2

C Oy2
3 �

�
c2

�
Oy2
1

2

�2

:
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Given h0 > 0, let us define

'. Oy1/ D

�
c2

�
Oy2
1

2

�2

� h0:

Whenever '. Oy1/ > 0, for each Oy1 fixed, the setH D �h0 is a circle with center at

C. Oy1/ D

�
Oy1;

�
c2

�
Oy2
1

2

�
; 0

�
and radius R. Oy1/ D

p
'. Oy1/.

If 0 < h0 6 c4, '. Oy1/ > 0, when

Oy1 2

�
�1;�

p
2

q
c2 C

p
h0

�
[

�
�

p
2

q
c2 �

p
h0;

p
2

q
c2 �

p
h0

�
[

�
p
2

q
c2 C

p
h0;1

�
;

and therefore the level surface H D �h0 has three components. Note that Oy2 > 0 on
the component correspondent to the middle interval. Therefore, the only of the three

components which is contained in K is that correspondent to the left interval. On the other

hand, if c4 < h0, '. Oy1/ > 0 when

Oy1 2

�
�1;�

p
2

q
c2 C

p
h0

�
[

�
p
2

q
c2 C

p
h0;1

�
and the level surface has two components. It is straightforward to check that Oy2 < 0 on
the component correspondent to the left interval. Hence such component is the only one

contained in K. Finally, we conclude that K could be written as:

f. Oy1; Oy2; Oy3/ 2 R3
W Oy1 < �

p
2c;H. Oy1; Oy2; Oy3/ < 0g:

Lemma 5.15. The set K satisfies the following properties:

1. It is positively invariant.

2. All forward orbits of (5.40) contained in K are unbounded.

3. Let 
 D f. Oy1.t/; Oy2.t/; Oy3.t// W t 2 I g be an orbit of (5.40), where I D .��; �C/
is the maximal interval of existence of the solutions. If 
 is forward unbounded, there

exists Nt > 0 such that . Oy1.t/; Oy2.t/; Oy3.t// 2 K for all t > Nt and moreover

lim
t!�C

Oy1.t/ D lim
t!�C

Oy2.t/ D lim
t!�C

Oy3.t/ D �1:
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Figure 5.11: Components of the level surface H D �h0 for 0 < h0 6 c4. The

component in red colour belongs to the set K.

4. Let f. Oy1.t/; Oy2.t/; Oy3.t// W t 2 I g be an orbit of (5.40) with Oy1.0/ D Oy3.0/ D 0.
There exists q > 0 such that if Oy2.0/ < �q then Oy2.t/ < 0 for all t > 0 and there
exists Ot > 0 such that . Oy1.t/; Oy2.t/; Oy3.t// 2 K for all t > Ot .

Proof. Let .p1; p2; p3/ 2 K and define h0 D �H.p1; p2; p3/ < 0. As already argued,
the component ofH D �h0 contained in K is a surface foliated by circles which shrink

to a point as Oy1 tends to �
p
2
p
c2 C

p
h0 from the left. Since H decreases along the

forward orbits on the whole surface, hence the forward orbit of .p1; p2; p3/ is contained in

Kh0
D f. Oy1; Oy2; Oy3/ 2 K W Oy1 < 0; Oy2 < 0;H. Oy1; Oy2; Oy3/ 6 �h0g:

Therefore the set K is invariant by the forward flow.

On the other hand, suppose that the forward orbit of .p1; p2; p3/ is bounded, hence

its !-limit is non-empty and must be contained in the set of points where dH
dt

vanishes,

but this set does not intersect Kh0
. It follows that all forward orbits with initial point in

K are unbounded and K is contained in basin of attraction of �Q�, the above mentioned

attractor at the infinity. In fact, as we prove below, K contains a fundamental domain of

such attractor. This implies that any unbounded orbit of the Michelson system must cross

K.

Take the following change of coordinates

�y1 D
u

"3
�y2 D

v

"4
�y1 D

w

"5
(5.44)

where " 2 .0;1/ and u2 Cv2 Cz2 D 1. Note that for each .u; v; w/ 2 S2 fixed, the above

expression provides a curve .�y1."/;�y2."/;�y3."// in R3 such that k.�y1."/;�y2."/;�y3."//k
tends to 1 as " tends to 0. Using (5.44) we obtain a vector field on S2 � .0;1/ which
we can extend to S2 � Œ0;1/. Note that the restriction of such vector field to S2 � f0g
corresponds to the “infinity” of the Michelson system.
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Since we are not interested in the “whole infinity”, but only in the neighborhood of the

attractor, we can consider a convenient chart on the sphere u2 C v2 C w2 D 1. Namely,

we take v D �1 in (5.44) and assume .u;w/ 2 R2. After division by " we get:

P" D
1

4
"w;

Pu D �1C
3

4
uw;

Pw D �
1

2
u2

C
5

4
w2

C "2
C c2"6:

(5.45)

As expected, the plane " D 0 is invariant for the above system and gives the behaviour at the

infinity of (5.40), at least when Oy2 < 0 because of our choice v D �1. It is straightforward
that there are only two equilibrium points

�Q˙ D

 
0;˙

p
6

3
101=4;˙

2
p
6

3
10�1=4

!

and also that �Q� is an attractor and �QC a repeller. In the new coordinates the functionH

is given byH."; u;w/ D �H."; u;w/="10 with

�H."; u;w/ D w2
� u2

C "2
C 2c2"6:

Moreover, the set K transforms into

�K D f."; u; w/ 2 R3
W " > 0; .u="3;�1="4; w="5/ 2 Kg

D f."; u; w/ 2 R3
W " > 0; u < 0; �H."; u;w/ < 0g:

Since �H.�Q�/ < 0 and the second component of �Q� is negative too, there exists r > 0

such that B.�Q�; r/ \ f."; u; v/ 2 R3 W " > 0g � �K. Given a fundamental domainD of

the attractor contained in B.�Q�; r/, it follows that all orbits in f."; u; v/ 2 R3 W " > 0g

tending to �Q� as t ! 1 must cut D \ f."; u; v/ 2 R3 W " > 0g � �K and therefore, as

already said before, all the unbounded orbits of the Michelson system must enter in K.

Taking into account that the attractor has been found in the chart with v D �1 and also that
the u and w-components of the attracting equilibrium point are negative, it also follows

that any unbounded forward orbit is such that all its components tend to �1.

Studying the phase portrait of the planar vector field obtained by taking " D 0 in (5.45),

it follows that .0; 0; 0/ belongs to the basin of attraction of �Q�. Hence, there exists a > 0

such that, for " 2 .0; a/, the forward orbit of ."; 0; 0/ intersects �K. Property (4) follows

taking into account that the " axis is sent to the negative Oy2-axis by the change (5.44) when

v D �1. In particular we can take q D �1=a4.
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Oy1 D 0
Oy1 > 0

t D 0

t D a

t D b

Oy2

Oy3

Figure 5.12: Illustration of Lemma 5.16. Left panel: Forward orbits of the Michelson

system with initial condition on the positive Oy3-axis as long they stay in the region Oy1 > 0.
Right panel: Individual orbit projected on the plane with coordinates . Oy2; Oy3/.

The following result is one of the main ingredients in the proof of the existence of a

heteroclinic orbit connecting the equilibrium points along the two-dimensional invariant

manifolds:

Lemma 5.16. Let . Oy1.t/; Oy2.t/; Oy3.t// be a solution of (5.40) for c D cK with Oy1.0/ D

Oy2.0/ D 0 and Oy3.0/ > 0. Then there exist values a > 0 and b > a such that

• Oy2.t/ > 0 for all t 2 .0; a/,

• Oy2.a/ D 0,

• Oy3.t/ < 0 for all t 2 Œa; b�,

• Oy1.b/ D 0.

Lemma 5.16 is entirely technical and the proof is not provided here (see Ibáñez and

Rodríguez (2005, Lemma 3.1)). The result is illustrated in Figure 5.12.

Let us define the setD given by all values 
 < 0 such that the forward orbit of .0; 
; 0/
in the Michelson system (5.40) cuts the region with Oy1 > 0. We can state the following

result (see Proposition 3.2 in Ibáñez and Rodríguez (2005)), which is valid for all c > 0,
not only for c D cK .

Proposition 5.17. For any c > 0, the setD is non-empty, open and bounded from below.

Moreover 
0 D infD does not belong toD.
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Proof. To prove that the setD is non-empty we first pay attention to the orbit of the origin.

Let . Oy1.t/; Oy2.t/; Oy3.t// be the solution of (5.40) satisfying Oy1.0/ D Oy2.0/ D Oy3.0/ D 0.
Since Oy0

3.0/ D c2 > 0, there exists " > 0 such that for any � with 0 < � < c2, Oy0
3.t/ > �

for all t 2 .0; "�. It follows that, for all t 2 .0; "�,

Oy0
2.t/ D Oy3.t/ > � t;

and therefore

Oy0
1.t/ D Oy2.t/ > �

t2

2
;

and

Oy1.t/ > �
t3

6
:

Hence Oy1."/ > 0. Because of the continuity with respect to the initial conditions, for

ı > 0 small enough, any solution . Oy�
1 .t/; Oy�

2 .t/; Oy�
3 .t// with Oy�

1 .0/ D Oy�
3 .t/ D 0 and

Oy�
2 .t/ D �ı satisfies that Oy�

1 ."/ > 0 and we conclude that the set D is non-empty. To

prove that D is open an argument of continuity is also enough. Indeed, if a point of the

Oy2-axis is such that its forward orbit cuts the region Oy1 > 0, all orbits starting close enough
also cut such region.

To see thatD is bounded below, we observe that, as stated in Lemma 5.15 (see item 4),

there exists q > 0 such that all forward orbits starting on a point .0; y0; 0/ with y0 < �q
are contained on the region with Oy2 < 0. Since Oy0

1 D Oy2, it follows that Oy1 < 0 along such
forward orbit. Hence �q is a lower bound of D and there exists 
0 D infD. Note that


0 … D becauseD is open.

From now on, U.t/ D . Ny1.t/; Ny1.t/; Ny1.t// will be the solution of (5.40) with initial
condition U.0/ D .0; 
0; 0/. We will show that, al least when c D cK , the orbit of

.0; 
0; 0/ is a heteroclinic connection given as the intersection of the two-dimensional

invariant manifolds. The argument is valid for all c for which a result as that in Lemma

5.16 is valid. Note that, in particular, we will find a heteroclinic connection at the initial

condition on the Oy2-axis determined by infD for all c close enough to cK .

Theorem 5.18. If c D cK then limt!˙1 U.t/ D Q�.

Proof. First we will prove that Ny1.t/ < 0 for all t > 0. Since 
0 … D (see Proposition

5.17) , it follows that Ny1.t/ 6 0 for all t > 0. Assume that there exists Nt > 0 such that
Ny1.Nt / D 0. Since Ny0

1 D Ny2, there must be Ny2.Nt / D 0. Otherwise, if Ny2.Nt / > 0, Ny1.t/ would
be strictly positive for t > Nt close enough to Nt and if Ny2.Nt / < 0, Ny1.t/ would be strictly
positive for t < Nt close enough to Nt , in either case we get a contradiction with the fact that
Ny1.t/ 6 0 for all t > 0. Even more, Ny3.Nt / < 0 since otherwise, as follows from Lemma

5.16 Ny1.t/ would be strictly positive for t > Nt close to Nt . Therefore we have an orbit

connecting the negative Ny2-axis with the negative Ny3-axis. Its image by the reversibility

mapR given in (5.41) is and orbit connecting the positive Ny3-axis with the negative Ny2-axis.

This contradicts Lemma 5.16.
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Assume now that the orbit of .0; 
0; 0/ is forward unbounded. It follows from Lemma

5.15 that there exists Nt > 0 such that U.t/ 2 K for all t > Nt . By the continuity of the

flow with respect to the initial conditions, there exists 
 > 
0 such that the forward orbit

. Ny�
1 .t/; Ny�

2 .t/; Ny�
3 .t// of .0; 
; 0/ also enters K and stays there for all t > Nt while it is also

satisfied that Ny�
1 .t/ < 0 for all t 2 .0; Nt �. Therefore 
 > 
0 is a lower bound ofD and we

have a contradiction. Note that, because of the reversibility, if the forward orbit of a point

in the Oy2 axis is forward bounded, the backward orbit is also bounded.

Provided that U.t/ is a bounded solution, the !-limit L of the orbit of .0; 
0; 0/ is
non-empty. On the other hand, because Ny1 < 0 along the orbit, the functionH as defined

in (5.43) is decreasing and hence L must be contained in the set

C D f. Oy1; Oy2; Oy3/ 2 R3
W Oy1 6 0;H. Oy1; Oy2; Oy3/ 6 
0.
0 � c2/g:

Moreover L must be contained in the set of points where dH
dt

D 0. Therefore L is either

contained in the plane Oy1 D 0 or in the plane Oy2 D 0 with Oy1 < 0. The only invariant

set contained in that union of planes is the equilibrium pointQ�. Taking into account the

reversibility, we get the required result.

To conclude with our study of �2, we will prove that the intersection between the two

dimensional invariant manifolds along �2 is locally unique and topologically transversal.

Given " > 0, let us define

D D f. Oy1; Oy2; Oy3/ 2 R3
W Oy1 D 0;

q
. Oy1 � 
0/2 C Oy2

3 < "g:

and also˘u and˘ s as the connected components ofW u.QC/\f Oy1 D 0g andW s.Q�/\
f Oy1 D 0g, respectively, which contain the point .0; 
0; 0/. Note that if " is small enough,

both, ˘u and ˘ s split the disc D into two connected components. We say that the

intersection between the two dimensional invariant manifolds is locally unique if ˘ s \

˘u D f.0; 
0; 0/g. We say that the intersection is topologically transversal if the two

components of ˘u n f.0; 
0; 0/g (resp. ˘
s n f.0; 
0; 0/g) are not contained in the same

component ofD n˘ s (resp.D n˘u).

Theorem 5.19. The intersection of the two-dimensional invariant manifolds along � is

locally unique and topologically transversal.

Proof. Note that due to the reversibility, we only need to show that ˘ s \ f Oy3 D 0g D

f.0; 
0; 0/g and also that the two segments given by .D \ f Oy3 D 0g/ n fp0g belong to

different components ofD n˘ s .

Since the vector field is analytic, invariant manifolds are also locally analytic. Hence

one canwrite˘ s as the graph of an analytic function, either defined for Oy2 in a neighborhood

of 
0 or for Oy3 defined in a neighborhood of 0. In any case, the local uniqueness follows
because the zeroes of an analytic function are isolated.

Now, notice that W u.Q�/ splits into two branches. One of them corresponds to the

heteroclinic connection withQC and intersects the plane Oy1 D 0. A local linear analysis
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at Q� shows that the other branch is contained in K and hence Oy1 < 0 along the orbit.

As follows from our study, if " is small enough, orbits starting at one of the components

D n˘ s will intersect Oy1 D 0 following the bounded branch of W u.Q�/. We callD1 to

this component. On the other hand, orbits starting at the other component will enter in K
without crossing again the plane Oy1 D 0. Denote byD2 this component.

Assume that .D\f Oy3 D 0g/n fp0g � D1. Hence there exist points .0; 
; 0/ 2 D with


 < infD. Otherwise, if we assume that .D \ f Oy3 D 0g/ n fp0g � D2 then there exist

lower bounds ofD which are larger than infD. In either case we get a contradiction.

˘u

˘ s

Oy2

Oy3

p0

Figure 5.13: Illustration of the transversality and local uniqueness. ˘ s D W s.Q�/\B"

and ˘u D W u.QC/ \ B". The point p0 D .0; 
0; 0/ corresponds to the intersection of
� with Oy1 D 0.

5.6.2 Bykov cycles in the unfolding

To prove Theorem 5.11 we have to study the splitting function determined when moving

parameters the connection along the one-dimensional invariant manifolds breaks. With

that goal in mind, we consider the family (5.39) written as

Px D f .x/C g.�; x/; (5.46)

where

� D .�1; �2; �3/ D
�
c2

� c2
K ; N�3; "

�
;

varies in a neighborhood of .0; 0; 0/ 2 R3,

f .x1; x2; x3/ D

�
x2; x3; c

2
k � x2 �

1

2
x2

1

�
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and

g.x1; x2; x3/ D .0; 0; �1 C �2x3 � 2�3�x1x2 CO.�2
3//:

Bifurcations exhibited when �3 > 0 correspond to bifurcations observed in any generic
unfolding of the three-dimensional nilpotent singularity of codimension three.

We will prove that for parameter values along a curve arising from the origin, there are

heteroclinic orbits connecting the equilibrium points along the one-dimensional invariant

manifolds, that is, the unfolding of the heteroclinic connection �1 inside family (5.46) is

generic.

Since dim .TPW
u.P / \ TPW

s.P // D 1, where P 2 
1 is an arbitrary point, the

heteroclinic orbit �1 is non-generic of codimension two in the sense of Definition A.22.

Hence (see Proposition A.15 and Proposition A.21 ), the variational equation0@ Pz1

Pz2

Pz3

1A D Df.p.t//

0@ z1

z2

z3

1A D

0@ 0 1 0
0 0 1

�p1.t/ �1 0

1A0@ z1

z2

z3

1A
with p.t/ D .p1.t/; p2.t/; p3.t// as given in (5.42), has a unique (up to multiplicative

constants) bounded solution f .p.t//. Moreover, the adjoint variational equation0@ Pw1

Pw2

Pw3

1A D �Df.p.t//�

0@ w1

w2

w3

1A D

0@ 0 0 p1.t/
�1 0 1
0 �1 0

1A0@ w1

w2

w3

1A (5.47)

has a pair of linearly independent bounded solutions.

Let '.t/ D .'1.t/; '2.t/; '3.t/// and  .t/ D . 1.t/;  2.t/;  3.t/// be two linearly
independent bounded solutions of the adjoint variational equation. Since '.t/ ^  .t/ is a
bounded solution of the variational equation, it follows that the plane determined by '.t/
and  .t/ is orthogonal to f .p.t// for all t 2 R. Therefore all solutions of the adjoint

variational equation with initial conditions on f .p.0//? are bounded solutions.

Note that the adjoint variational equation is time-reversible with respect to the involu-

tions:

R1 W .w1; w2; w3/ ! .�w1; w2;�w3/

and

R2 W .w1; w2; w3/ ! .w1;�w2; w3/

On the other hand, p.0/ D .0;�9˛ˇ; 0/ and hence f .p.0// D .�9˛ˇ; 0; c2
K C 9˛ˇ/. It

easily follows that

f .p.0//? D

�
.0;�1; 0/ ;

�
1; 0; 1C

c2
K

9˛ˇ

��
:

Let ' and  the linearly independent bounded solutions of the adjoint variational equations

with '.0/ D .0;�1; 0/ and  .0/ D .1 C c2
K=9˛ˇ; 0; 1/. Our choice is such ' and  



5.6. Nilpotent of codimension three in R3 121

satisfy nice parity properties. Namely, '.0/ belongs to the fixed points for the involution
R1 and hence '1 and '3 are odd function, whereas '2 is an even function. Similarly,  .0/
belongs to the fixed points for the involutionR2 and hence  2 is an odd functions, whereas

 1 and  3 are even functions.

To study the persistence of the heteroclinic orbit �1 we consider the splitting function

�1.�/ which provides the displacement between W u.Q�
�/ and W

s.Q�
C/ on f .p.0//

?,

whereQ�
� andQ�

C are the continuation with respect to � of the equilibrium pointsQ� and

QC, respectively. Note that

�1
D .�1

1 ; �
1
2 / W � � R3

! R2

and �1.�/ D 0 means that there are branches of the one-dimensional invariant manifolds

which are coincident.

Let

D��
1.0/ D

�
�1

1;�1
.0/ �1

1;�2
.0/ �1

1;�3
.0/

�1
2;�1

.0/ �1
2;�2

.0/ �1
2;�3

.0/

�
The bifurcation equation �1.�/ D 0 can be studied by means of the Implicit Function

Theorem. Namely, if rankD��
1.0/ D 2 the system has heteroclinic orbits connecting the

equilibrium points along the one-dimensional invariant manifolds for parameter values

along a curve H through � D 0 where the tangent subspace is given by the intersection of
the planes:

�1
1;�1

.0/�1 C �1
1;�2

.0/�2 C �1
1;�3

.0/�3 D 0

�1
2;�1

.0/�1 C �1
2;�2

.0/�2 C �1
2;�3

.0/�3 D 0:

According to Theorem B.2

�1
1;�1

.0/ D

Z 1

�1

˝
'.s/;D�1

g.0; p.s//
˛
ds D

Z 1

�1

'3.s/ ds

�1
1;�2

.0/ D

Z 1

�1

˝
'.s/;D�2

g.0; p.s//
˛
ds D

Z 1

�1

'3.s/p3.s/ ds

�1
1;�3

.0/ D

Z 1

�1

˝
'.s/;D�3

g.0; p.s//
˛
ds D

Z 1

�1

�2�'3.s/p1.s/p2.s/ ds

�1
2;�1

.0/ D

Z 1

�1

˝
 .s/;D�1

g.0; p.s//
˛
ds D

Z 1

�1

 3.s/ ds

�1
2;�2

.0/ D

Z 1

�1

˝
 .s/;D�2

g.0; p.s//
˛
ds D

Z 1

�1

 3.s/p3.s/ ds

�1
3;�3

.0/ D

Z 1

�1

˝
 .s/;D�3

g.0; p.s//
˛
ds D

Z 1

�1

�2� 3.s/p1.s/p2.s/ ds:

From the parities of the components of p, ' and  , it follows that

�1
1;�1

.0/ D �1
2;�2

.0/ D �1
2;�3

.0/ D 0:
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Later we will argue that

�1
1;�2

.0/ ¤ 0 �1
1;�3

.0/ ¤ 0 �1
2;�1

.0/ ¤ 0: (5.48)

As already mentioned, by the Implicit Function Theorem, there exists a bifurcation curve

H � � corresponding to parameter values for which the system exhibits a heteroclinic

connection along the one-dimensional invariant manifolds. Moreover, the vector�
0;�

��1;�3

�1;�2

; 1

�
is tangent toH at � D 0. Therefore,H intersects the plane �3 D 0 and so, this bifurcation
curve is observed in any generic unfolding of the three-dimensional nilpotent singularity of

codimension three. On the other hand, since �2 is a topologically transverse intersection

between the two-dimensional invariant manifolds, it is persistent for � nearby enough to

� D 0. Thus, we conclude that H is not only a bifurcation curve for heteroclinic orbits

along the one-dimensional invariant manifolds, but also a bifurcation curve corresponding

to parameter values for which the system exhibits a topological Bykov cycle. So, we

have proved Theorem 5.11. It follows from the bifurcation theorem that fixing �3 the

family (5.39) is a generic unfolding a Bykov cycle. As argued in Chapter 3, any generic

unfolding of a Bykov cycle contains a spiral-shaped Shilnikov bifurcation curve. Hence

family (5.39) exhibits a spiraling-sheet bifurcation surfaceH C corresponding to parameter

values for which the system has a Shilnikov homoclinic orbit toP �
C. Note that the Shilnikov

condition is open and hence it follows from property (M1). Moreover, the trace of the

linear part at P �
C is given by �2 and hence the dissipative condition is also satisfied in

H C \ f� 2 R3 W �2 < 0g.

Remark 5.20. Note that there also exists a spiraling-sheet bifurcation surface H � corre-

sponding to parameter values for which the system has a Shilnikov homoclinic orbit to P �
� .

Coexistence of strange attractors and repellers is plausible.

All we need to do to conclude the whole argumentation is to prove that indeed in-

equalities in (5.48) are satisfied. Taking into account the parity properties of the bounded

solutions ' and  , one only needs to prove that:

�1
1;�2

.0/ D 2

Z 1

0

'3.s/p3.s/ ds ¤ 0

�1
1;�3

.0/ D �4�

Z 1

0

'3.s/p1.s/p2.s/ ds ¤ 0

�1
2;�1

.0/ D 2

Z 1

0

 3.s/ ds ¤ 0:

Each bounded solution of the adjoint variational equation (5.47) satisfies an orthogo-

nality condition with respect to f .p.t//. Namely

p2.t/w1.t/C p3.t/w2.t/C .c2
K � p2.t/ �

.p1.t//
2

2
/w3.t/ D 0:
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Taking into account such condition we can write (5.47) as

Pw1.t/ D �
1

p2.t/

�
p3.t/w2.t/C .c2

K � p2.t/ �
.p1.t//

2

2
/w3.t/

�
Pw2.t/ D

1

p2.t/

�
p3.t/w2.t/C

�
c2

K �
.p1.t//

2

2

�
w3.t/

�
Pw3.t/ D �w2.t/:

The last two equations in the above system are decoupled and we can write them as:

A.t/ew0.t/ D B.t/ew.t/ (5.49)

with ew.t/ D .w2.t/; w3.t// and

A.t/ D

�
p2.t/ 0
0 1

�
B.t/ D

0@ p3.t/ c2
K �

.p1.t//
2

2
0 �1

1A :
It easily follows that p2.t/ vanishes at t D t�

˙
D ˙.1=ˇ/ tanh�1.

p
3=11/. Hence A.t/ is

singular and equation (5.49) must treated as an algebraic differential equation. Numerical

integration is required to prove that inequalities (5.48) are satisfied. We do not provide the

details about this computation; they can be found in Barrientos, Ibáñez, and Rodrı́guez

(2011). One has to split the integrals in Œ0;1/ in two, one in Œ0; t0� and the other in Œt0;1/
in such a way that t�C 2 Œ0; t0� and the integrals in Œt0;1/ are small. Integrals in Œ0; t0� can
be approached combining a numerical method to solve (5.49) with a numerical method to

compute the integrals. Matlab, for instance, provide numerical methods to solve algebraic

differential equations. Hence, the value of the integrals in the finite interval Œ0; t0� can be
approached with an error as small as required. On the other hand, the integrals in Œt0;1/
can be made as small as needed by choosing t0 large enough. Hence the result follows.

5.7 Nilpotent of codimension four in R4

Consider C1 vector fields X defined in a neighborhood of 0 2 R4 such that X.0/ D 0
andDX.0/ is linearly conjugate to

x2

@

@x1

C x3

@

@x2

C x4

@

@x3

: (5.50)

As explained in §5.4, X can be written as

x2

@

@x1

C x3

@

@x2

C x4

@

@x3

C f .x/
@

@x4
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where x D .x1; x2; x3; x4/ and f .x/ D O.kxk2/. The condition @2f

@x2
1

.0/ ¤ 0 char-

acterizes the four-dimensional nilpotent singularity of codimension four. Any generic

four-parameter unfolding of this singularity can be written as

x2

@

@x1

C x3

@

@x2

C x4

@

@x3

C
�
�1 C �2x2 C �2x3 C �4x4 C x2

1 C h.x; �/
� @

@x4

(5.51)

where � D .�1; �2; �3; �4/,

h.0; �/ D 0;
@h

@xi

.0; �/ D 0; for i D 1; : : : ; 4;
@2h

@x2
1

.0; �/ D 0;

and

h.x; �/ D O.k.x; �/k2/; h.x; �/ D O.k.x2; x3; x4/k/:

Our main result in this section is the following:

Theorem 5.21. There exists a hypersurface FF in the parameter space such that for

each .�1; �2; �3; �4/ 2 FF , system (5.51) exhibits a bifocus homoclinic orbit.

Blowing-up coordinates and parameters in (5.51) as done in (5.22)

�1 D "8�1; �2 D "3�2; �3 D "2�3; �4 D "�4;

x1 D "4y1; x2 D "5y2; x3 D "6y3; x4 D "7y4;
(5.52)

we get, after rescaling time by a factor ", the expression (5.23) for n D 4,

y2

@

@y1

C y3

@

@y2

C y4

@

@y3

C
�
�1 C �2y2 C �3y3 C �4y4 C y2

1 C "�y1y2 CO."2/
� @

@y4

(5.53)

where we assume that

� D
@2h

@x1@x2

.0; 0/ ¤ 0:

As usual, we consider y D .y1; y2; y3; y4/ varying in an arbitrarily big compact in R4 and

� 2 S3. The first big challenge is to understand the dynamics exhibited by the limit family

y2

@

@y1

C y3

@

@y2

C y4

@

@y3

C
�
�1 C �2y2 C �3y3 C �4y4 C y2

1

� @

@y4

(5.54)

obtained by taking " D 0 in (5.53). Note that, as already explained in §5.4, one only needs
to consider �1 6 0 and �4 6 0.
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Local bifurcations arising in the limit family are discussed in Drubi (2009). There is

a unique equilibrium point at P0 D .0; 0; 0; 0/ when �1 D 0 and two equilibria P˙ D

.˙
p

��1; 0; 0; 0/ when �1 < 0. As expected, we find surfaces of saddle-node bifurcation
and also surfaces of Hopf bifurcation. Regarding codimension two local bifurcations,

there appear several cases of Hopf–Zero, Hopf–Hopf and Bogdanov–Takens bifurcations.

There also appear two codimension three local bifurcations: a three-dimensional nilpotent

singularity of codimension three and a Hopf–Bogdanov–Takens singularity. Most of

these singulrities been already mentioned in different contexts along this chapter. Only

the Hopf–Hopf and the Hopf–Bogdanov–Takens singularities appear by the first time in

our discussion. Dynamics arising in the neighborhood of a Hopf–Hopf singularity are

discussed in Guckenheimer and Holmes (2002) and Kuznetsov (2004) and the arising of

chaotic dynamics close to this singularity is explained in §5.8. Hopf–Bogdanov–Takens

singularities are four-dimensional of codimension three characterized by a linear part which

is linearly conjugate to

y
@

@x
� v

@

@u
C u

@

@v
:

These singularities have not yet been classified. The only contribution in this regard is

Drubi, Ibáñez, and Rivela (2019a), where a formal classification is provided. We say

formal in the sense that topological types are determined for a truncated normal form, but

the effect of higher order terms is not yet understood. Numerical evidences of the existence

of chaotic dynamics in the unfolding of Hopf–Bogdanov–Takens singularities are provided

in Drubi, Ibáñez, and Rivela (2019a).

For parameter values on the reversibility curve

T D f.�1; �2; �3; �4/ 2 S3
W �2 D �4 D 0g

local bifurcations are depicted in Figure 5.14

The characteristic equations at the equilibrium points P˙ are given by

r4
� �3r

2
� 2

p
��1 D 0:

It is straightforward thatPC is always hyperbolic for parameter values onT . Nevertheless,

the local behaviour in a neighborhood of P� is much richer. Local bifurcations at P� are

depicted in Figure 5.14. It easily follows that:

• When .�1; �2; �3; �4/ D .0; 0; 1; 0/ the linear part atP� has a double zero eigenvalue.

The other two are C1 and �1. At this point there is a Bogdanov–Takens bifurcation
(see BT in Figure 5.14).

• When .�1; �2; �3; �4/ D .0; 0;�1; 0/ the linear part at P� has a double zero eigen-

value and a pair of pure imaginary eigenvalues. At this point we find a Hopf–Bogda-

nov–Takens bifurcation (see HBT in Figure 5.14).

• When .�1; �2; �3; �4/ D . N�1; 0; N�3; 0/, with �
2
3 D 8

p
��1 and �3 > 0, the linear

part at P� has a couple of double real eigenvalues, (see BD in Figure 5.14).
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HBT BT

BDHH

S RH H

DF

�3

�1

Figure 5.14: Partial bifurcation diagram of the limit family (5.54) restricted to the

reversibility curve.

• When .�1; �2; �3; �4/ D . N�1; 0; N�3; 0/, with �
2
3 D 8

p
��1 and �3 < 0, the linear

part at P� has a couple of double pure imaginary eigenvalues, (see HH in Figure

5.14). This a degenerated Hopf–Hopf bifurcation.

• For parameter values in between BT and BD, the linear part has four non-zero real

eigenvalues (see the arc denoted by S R in Figure 5.14).

• For parameter values in between BD and HH, the linear part has four complex

eigenvalues �˙!i and ��˙!i with � ¤ 0 (see the arc denoted by DF in Figure

5.14).

• For parameter values in between HH and HBT, the linear part has four pure imaginary

eigenvalues ˙!1i and ˙!2i with !1 ¤ !2 (see the arc denoted by H H in Figure

5.14).

We are interested in the existence of homoclinic orbits to a bifocus. This is only possible

at P� for parameter values close to the arc DF .

As in the previous cases of nilpotent singularities, it is more convenient to consider a

directional rescaling of the parameters. We use formulas as in (5.52) and in this case we

assume that �1 D �1 and .�2; �3; �4/ D . N�2; N�3; N�4/ 2 R3 to obtain

y2

@

@y1

C y3

@

@y2

C y4

@

@y3

C
�
�1 � y2 C N�2y2 C N�3y3 C N�4y4 C y2

1 C "�y1y2 CO."2/
� @

@y4

:

(5.55)
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The equilibrium points when " D 0 are now Q˙ D .˙1; 0; 0; 0/. In fact this two equi-
librium points are the only equilibria for " > 0 because h.x; �/ D O.k.x2; x3; x4k/ in
(5.51).

To compare with results already available in the literature we need to translate P� to

the origin. Introducing new coordinates

x1 D .y1 C 1/=2 x2 D y2=2
5=4 x3 D y3=2

3=2 x4 D y4=2
7=4

and multiplying by a factor 21=4 we get the following family

x2

@

@x1

C x3

@

@x2

C x4

@

@x3

C
�
�x1 C �2x2 C �3x3 C �4x4 C x2

1 C N"�x1x2 CO.N"2/
� @

@x4

(5.56)

with

�2 D 2�3=4. N�2 � "�/ �3 D 2�1=2
N�3 �4 D 2�1=4

N�4 N" D 21=4":

The limit family restricted to the reversibility curve �2 D �4 D 0 reads as follows:

x2

@

@x1

C x3

@

@x2

C x4

@

@x3

C
�
�x1 C �3x3 C x2

1

� @

@x4

: (5.57)

The associated fourth order differential

u.iv/.t/C Pu00.t/C u.t/ � u.t/ D 2 D 0 (5.58)

where u D x1 and P D ��2 has been extensively studied in the literature because it

provides the equation for the traveling waves of the one-dimensional Korteweg–de Vries

equation:

ut D uxxxx � buxxx C 2uux :

In Amick and J. F. Toland (1992) authors prove that (5.58) can be written as a Hamilto-

nian system (as we have stated in Theorem 5.8 in a more general setting). The hypothesis

required in Hofer and J. Toland (1984, Theorem 2) are satisfied and therefore, for each

P 6 �2, there exists an even solution u of (5.58) with u.t/ ! 0when t ! ˙1 satisfying

that u.t/ > 0, u0.t/ < 0 and .P=2/u0.t/C u000.t/ > 0 for all t 2 .0;1/. They also prove
that for all P 6 �2 any such even solution is unique. Note that this solution corresponds
to a homoclinic orbit for system (5.57) when �3 > 2. According to Buffoni, Champneys,

and J. F. Toland (1996), the intersection between the invariant manifolds is transversal

for the restriction to the level surface of the hamiltonian function which contains it and,

consequently, it is non degenerate in the sense of Definition A.22. Moreover, again in

Amick and J. F. Toland (1992), the persistence of such homoclinic solutions is argued for

P > �2 but close enough to �2. On the other hand, in Amick and J. F. Toland (1992,

Sect. 2) author checked all hypothesis required in Champneys and J. F. Toland (1993,
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Thm. 4.4) to conclude that a Belyakov–Devaney bifurcation takes place at P D �2. It
consists in the emerging from the primary homoclinic solution and for each n 2 N of a

finite number of n-modal secondary homoclinics (or n-pulses) which cut n times a section

transversal to the primary homoclinic orbit Belyakov (1984b), Belyakov and Shilnikov

(1990), and Devaney (1976a). A more detailed description of the known catalogue of

homoclinic solutions in (5.58) is provided in Barrientos, Ibáñez, and Rodrı́guez (2011).

Remark 5.22. It follows that the conservative and reversible system (5.57) exhibits homo-

clinic orbits to the origin for parameter values close to the BD point along the curve DF ,

that is, it displays bifocus homoclinic orbits (see Figure 5.14).

We consider family (5.57) as an unfolding of the unique homoclinic orbit exhibited by

the system at the Belyakov–Devaney bifurcation point

.�2; �3; �4; N"/ D .0; 2; 0; 0/:

Namely, we write (5.57) as

Px D f .x/C g.�; x/; (5.59)

where

� D .�1; �2; �3; �4/ D .�2; �3 � 2; �4"/

varies in a neighborhood of .0; 0; 0; 0/ 2 R3,

f .x1; x2; x3; x4/ D .x2; x3; x4;�x1 C 2x3 C x2
1/

and

g.x1; x2; x3; x2/ D .0; 0; 0; �1x2 C �2x3 C �3x4 C �4�x1x2 CO.�2
4//:

Bifurcations exhibited when �4 > 0 correspond to bifurcations observed in any generic
unfolding of the four-dimensional nilpotent singularity of codimension four.

We will prove that for parameter values along a surface through the origin, there exist

homoclinic orbits, that is, the unfolding of the homoclinic connection exhibited for the

system when � D 0 inside family ( 5.57) is generic.

Note that the unperturbed system Px D f .x/ satisfies the following properties

(BD1) There is a first integral

H.x1; x2; x3; x4/ D
1

2
x2

1 �
1

3
x3

1 � x2
2 C x2x4 �

1

2
x2

3 :

(BD2) The system is time reversible with respect to the involution

R W .x1; x2; x3; x4/ ! .x1;�x2; x3;�x4/:

(BD3) The linear part of the vector field at the equilibrium point .0; 0; 0; 0/ has a pair
of double real eigenvalues C1 and �1.
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(BD4) There exists a non-degenerate homoclinic orbit


 D fp.t/ D .p1.t/; p2.t/; p3.t/; p4.t// W t 2 Rg;

such that p1 and p3 are even functions, p2 and p4 are odd functions and,

moreover, p1.t/ > 0, p2.t/ < 0 and p4.t/ � p2.t/ > 0 for all t 2 .0;1/.

(BD5) According to Proposition A.15 and Proposition A.21, since 
 is non-degenerate

in the sense of Definition A.22, the dimension of the space of bounded solutions

for the variational equation0B@ Pz1

Pz2

Pz3

Pz4

1CA D Df.p.t//

0B@ z1

z2

z3

z4

1CA D

0B@ 0 1 0 0
0 0 1 0
0 0 0 1

�1C 2p1.t/ 0 2 0

1CA
0B@ z1

z2

z3

z4

1CA
and also for the adjoint variational equation0B@ Pw1

Pw2

Pw3

Pw4

1CA D �Df.p.t//�

0B@ w1

w2

w3

w4

1CA
D

0B@ 0 0 0 1 � 2p1.t/
�1 0 0 0
0 �1 0 �2
0 0 �1 0

1CA
0B@ w1

w2

w3

w4

1CA
equals 1. The function f .p.t// is a bounded solution of the variational equation
and, since the system is Hamiltonian

 .t/ D rH.p.t// D .p1.t/ � p1.t/
2; p4.t/ � 2p2.t/;�p3.t/; p2.t///

is a bounded solution of the adjoint variational equation (see Proposition 5.9).

To study the persistence of the homoclinic orbit 
 we consider the splitting function

�1 W � ! R as defined in Lemma B.1. For each � such that �1.�/ D 0, there is a
homoclinic orbit at O .

Let

D��
1.0/ D r�1.0/ D

�
�1

�1
.0/ �1

�2
.0/ �1

�3
.0/ �1

�4
.0/

�
:

The bifurcation equation �1.�/ D 0 can be studied by means of the Implicit Function

Theorem. Namely, if rankD��
1.0/ D 1, then the system has homoclinic orbits at O for

parameter values on a hypersurface H containing � D 0. As follows from Theorem B.2

�1
�i
.0/ D

Z 1

�1

�
 .t/;

@g

@�i

.0; p.t//

�
dt:
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It easily follows that

�1
�1
.0/ D

Z 1

�1

p2.t/
2 dt

�1
�2
.0/ D

Z 1

�1

p2.t/p3.t/ dt

�1
�3
.0/ D

Z 1

�1

p2.t/p4.t/ dt

�1
�4
.0/ D �

Z 1

�1

p1.t/p2.t/
2 dt:

It is straightforward that �1
�1
.0/ ¤ 0. Sincep2 is even andp3 is odd, the productp2.t/p3.t/

is odd and hence �1
�2
.0/ D 0. Because p1 > 0 it follows that �

1
�4
.0/ ¤ 0. Finally, taking

into account that p2 and p4 are odd functions and integrating by parts,

�1
�3
.0/ D 2

Z 1

0

p2.t/p4.t/ dt D lim
t!1

p2.t/p3.t/ � p2.0/p3.0/ �

Z 1

0

p3.t/
2 dt ¤ 0:

Since ��4
.0/ ¤ 0, the hypersurface H intersects the hyperspace �4 D 0 transversely.

The only pending question is to show that H contains parameter values arbitrarily close

to 0 2 � and with �4 > 0 for which the system exhibits bifocal homoclinic orbits.

When working with a Belyakov–Devaney bifurcation, the equilibrium point at the

origin O satisfies that dimW s.O/ D dimW u.O/ D 2 for all parameter values close

enough to 0, but there four different cases must be distinguished:

• On both,W s.O/ andW u.O/, the equilibrium point s of focus type. We refer to this

as the FF -case.

• On both,W s.O/ andW u.O/, the equilibrium point is of node type. We refer to this

as the N N -case.

• OnW u.O/ andW s.O/, the equilibrium point is of node and focus type, respectively.

We refer to this as the NCF�-case.

• OnW u.O/ andW s.O/, the equilibrium point is of focus and node type, respectively.

We refer to this as the FCN�-case.

The characteristic polynomial ofDf.O/CDxg.�;O/ is given by

Q.r; �/ D r4
� a3.�/r

3
� a2.�/r

2
� a1.�/r � a0.�/;

with

a0.�/ D �1CO.�2
4/ a1.�/ D �1 CO.�2

4/

a2.�/ D 2C �2 CO.�2
4/ a3.�/ D �3 CO.�2

4/:
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The condition to have a double real eigenvalue is

Q.r; �/ D DrQ.r; �/ D 0:

Note that .�1; 0/ and .1; 0/ are solutions of the above equations. It easily follows that

rDrQ.1; 0/ D .8;�1;�2;�3; 0/

and hence there exists a regular function Or.�/ defined in a neighborhood of e� of � D 0
such that r.0/ D 1 and

DrQ.r.�/; �/ D 0

for all � 2 �. Substituting inQ.r; �/ D 0 we get the equation

F.�/ D Q. Or.�/; �/ D 0:

with F.0/ D 0. Again it is straightforward that

rF.0/ D .�1;�1;�1; 0/

and hence, there exist a hypersurface DC in the parameter space for which the equilibrium

point at the origin has a double positive eigenvalue. It contains the origin of parameters

where the tangent space is given by

�1 C �2 C �3 D 0:

Similarly, one can prove that there exist a hypersurface D� in the parameter space for

which the equilibrium point at the origin has a double negative eigenvalue. It also contains

the origin of parameters an there, the tangent space is given by

�1 � �2 C �3 D 0:

Let N D D�1.0/, NDC D .1; 1; 1; 0/ and ND� D .1;�1; 1; 0/ be normal vectors to H ,

DC and D� at � D 0. Denote also N�4D0 D .0; 0; 0; 1/ a normal vector to �4 D 0.
Since rank.NH ; ND� ; N�4D0/ D 3, there exist a surface H � D H \D� transverse

to �4 D 0 corresponding to parameter values for which the equilibrium point at the origin in

system (5.59) has a double negative eigenvalue. Also, since rank.NH ; NDC ; N�4D0/ D 3,
there exist a surface H C D H \DC transverse to �4 D 0 corresponding to parameter

values for which the equilibrium point at the origin in system (5.59) has a double positive

eigenvalue.

On the other hand, rank.NH ; ND� ; NDC ; N�4D0/ D 4 if and only if ��1
.0/���3

.0/ ¤

0. Note that

��1
.0/ � ��3

.0/ D

Z 1

�1

p2.t/.p2.t/ � p4.t// dt:

From (BD4) we know that p2 and p4 are odd functions al also that p2.t/ < 0 and

p4.t/ � p2.t/ < 0 for all t 2 .0;1/. Hence p2.p2 � p4/ is an even function and
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p2.t/.p2.t/ � p4.t// > 0 for all t 2 R. It follows that ��1
.0/ � ��3

.0/ > 0. Therefore,

there exists a curve H ˙ D H \ D� \ DC transverse to �4 D 0 corresponding to

homoclinic orbits to a an equilibrium point with a pair of double real eigenvalues, one

positive an the other negative.

Summarizing, we have proved the following result:

Theorem 5.23. There exist a bifurcation hypersurface H � R4 providing parameter

values for which the system (5.59) exhibits a homoclinic orbit to the origin. On H there

exist bifurcation surfaces H C and H � corresponding to parameter values for which

the linear part at the origin has a double positive (resp. negative) real eigenvalue. They

intersect along a bifurcation curve H ˙ corresponding to parameter values for which the

origin has a pair of double real eigenvalues, one positive and the other negative. The union

of the surfaces H C and H � splits H into four regions:

• H FF : Homoclinic orbits to a focus-focus (the bifocus case),

• H N CF� : Homoclinic orbits to a (repelling-attracting) node-focus,

• H FCN � : Homoclinic orbits to a (repelling-attracting) focus-node,

• H N N : Homoclinic orbits to a node-node.

All these bifurcations are transverse to �4 D 0 and hence they are also present in any

generic unfolding of the four-dimensional nilpotent singularity.

5.8 Further chaotic scenarios

In the previous two sections we have proved that chaos is generically unfolded by n-
dimensional nilpotent singularities of codimension n when n D 3 and n D 4. In fact, since
any n-dimensional nilpotent singularity of codimension n unfolds generically .n � 1/-
dimensional nilpotent singularities of codimension n�1 (see Drubi, Ibáñez, and Rodríguez
(2007)), the result is also valid for any n > 5. Now we discuss the existence of lower

codimension examples. We will explain how some codimension two Hopf–Zero singulari-

ties also unfold Shilnikov bifurcations and hence strange attractors. Nevertheless, when

comparing this scenario with the nilpotent examples, we will point out two principal differ-

ences. First, genericity must be understood in a delicate way because it cannot be traced

on any finite jet of the singularity. Second, as we will explain later, the techniques required

to prove the existence of homoclinic orbits are much more involved that those used in the

previous cases. Namely, a bifurcation equation is not available in the case of the unfolding

of Hopf–Zero singularities.

The lowest codimension singularities in R3 with a three-dimensional center manifold

are those ones whose linear part is linearly conjugated to

� !y
@

@x
C !x

@

@y
: (5.60)
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with ! > 0. We refer to them as Hopf–Zero singularities. Classification of these singu-

larities is due to Takens (1974b). He proved that, up to C1-equivalence, the 2-jet of any

singularity with part lineal (5.60) can be written in the following normal form:

Px D �y � axz

Py D x � ayz

Pz D cz2
C b.x2

C y2/

To normalize the rotation speed ! one needs to consider a time-rescaling. It should also be

noticed that this rescaling is not always considered in literature (see for instance Broer and

Vegter (1984), Guckenheimer and Holmes (2002), Kuznetsov (2004)).

The degeneracy conditions imposed on the linear part and the open conditions a ¤ 0,
b ¤ 0 and c ¤ 0 characterize a stratum of codimension two in the space of germs of

singularities of vector fields on R3. Coefficient c can be normalized by a scaling of

coordinates and we can write (5.60) as

Px D �y � axz

Py D x � ayz

Pz D z2
C b.x2

C y2/

Introducing cylindrical coordinates x D r cos �; y D r sin � , we get � 0 D 1 and hence the
following reduced system on the plane

Pr D �arz

Pz D z2
C br2

(5.61)

Hopf-zero singularities of codimension two are 2-jet determined with respect the local

topological equivalence Dumortier and Ibáñez (1998). As follows from the Takens classifi-

cation Takens (1974b), there are six topological types (compare also with Guckenheimer

and Holmes (2002)):

• Type I: a > 0 and b > 0,

• Type II: a 2 .�1; 0/ and b > 0,

• Type III: a < �1 and b > 0,

• Type IV: a > 0 and b < 0,

• Type V: a 2 .�1; 0/ and b < 0,

• Type VI: a < �1 and b < 0.
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Figure 5.15: Topological type corresponding to Hopf-Zero singularities of Type I.

In the discussion below we are only concerned with Type I. Figure 5.15 shows the phase

portrait of the reduced vector field (5.61) when a > 0 and b > 0.
Generic unfoldings of Hopf–Zero singularities can be written in the following normal

form
Px D �y C �2x � axz C A.x; y; z; �1; �2/

Py D x C �2y � ayz C B.x; y; z; �1; �2/

Pz D �1 C z2
C b.x2

C y2/C C.x; y; z; �1; �2/

(5.62)

where A;B;C are C1 or C! and of order O.jx; y; z; �1; �2j
3/. Truncating at second

order and taking again cylindrical coordinates we obtain

Pr D �2r � arz

Pz D �1 C z2
C br2

P� D �1:

(5.63)

When �2 D 0, family (5.63) has a first integral

H.r; z/ D r
2
a

�
�1 C z2

C
b

1C a
r2

�
: (5.64)

Figure 5.16 shows the phase portrait of the reduced system when �1 < 0 and �2 D 0
obtained from (5.63 when the � -component of the vector field is skipped out. The truncation

of (5.62) at second order has two equilibrium pointsP˙ D .˙
p

��1; 0; 0/. It follows from
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.�
p

��1; 0/

.C
p

��1; 0/

r

z

Figure 5.16: Phase portrait of the reduced 2-jet for �1 < 0 and �2 D 0. There is

a heteroclinic connection from .C
p

��1; 0/ to .�
p

��1; 0/ along the x-axis. This

corresponds to the connection between PC and P� along the one-dimensional invariant

manifolds. There is another heteroclinic connection from .�
p

��1; 0/ to .C
p

��1; 0/.
This corresponds to the invariant globe which contains the two-dimensional invariant

manifolds through PC and P�.

the study of (5.64) that dimW u.PC/ D dimW s.P�/ D 2. These manifolds coincide on

a invariant globe contained in the set of points whereH.r; z/ D 0. Moreover the branches

of the one-dimensional invariant manifolds W s.PC/ and W u.P�/ which are contained
inside the globe are also coincident (see Figure 5.17).

When higher order terms are considered, all these invariant structures: the common

branch shared by the one-dimensional invariant manifolds and the globe formed by the

two-dimensional ones, can be destroyed. Clearly, there is a chance for the existence of

Shilnikov homoclinic bifurcations, but rigorous arguments are quite involved. The first

obstacle regards to the rotational symmetry exhibited by any higher-order normalization.

As follows from Broer and Vegter (1984, LemmaA) such rotational symmetry implies that,

under generic assumptions involving third order terms, any truncated family, written in

normal form, exhibits an invariant globe for parameter values along a curve with an end at

the origin. Hence, conditions for the existence of Shilnikov bifurcations cannot be traced

on any finite jet of the singularity.

The chance for the existence of Shilnikov bifurcations was already pointed out in

Guckenheimer (1981) and Guckenheimer and Holmes (2002). In Gaspard (1993) a class

of families of the form X C "Y , where X is the second order truncation in (5.62) and " is
a small parameter, was considered. It was proved the occurrence of Shilnikov bifurcations

near the codimension two point. However, it must be remarked that generic unfoldings of

a Hopf–Zero singularity cannot be written in that particular form.

The question about the existence of Shilnikov bifurcations was treated in Broer and

Vegter (1984) for C1 unfoldings. It was proved that for any C1 unfolding of a Hopf–Zero
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PC

P�

Figure 5.17: Invariant manifolds exhibited by the family obtained by truncation of (5.62)

at second order for �1 < 0 and �2 D 0. In red colour the connection along the

one-dimensional invariant manifolds. In grey colour the invariant globe formed by the

two-dimensional invariant manifolds.

singularity there exists a flat perturbation leading to a family which exhibits the Shilnikov

phenomena. Because the argument involves a flat perturbation, no usable criteria are

provided and, moreover, the problem remained open for the case of analytic unfoldings.

Generic unfoldings of the Hopf–Zero singularity of Type I were considered in Dumortier,

Ibánez, Kokubu, and Simó (2013). Introducing a scaling parameter " D
p

��1 and scaling

variables and time, one obtains either a singular perturbation problem with a pure rotation

when " D 0 or a family with rotation speed tending to 1 as " ! 0. In any of the two

approaches there is a clear limit for the invariant manifolds of the two equilibrium points

corresponding to the poles of the invariant globe. In any case, one can apply the results in

Bonckaert and Fontich (2003, 2005) to prove that, when the scaling parameter tends to

0, the invariant manifolds have a limit position, given by the invariant manifolds of the

equilibrium points at the 2-jet level, at least when one considers restrictions to z > 0 or
to z 6 0. Therefore, for any generic unfolding of the Hopf–Zero singularity of Type I, a
splitting distance is well defined for both, the one-dimensional and the two-dimensional

invariant manifolds. Using conjectured formulas for the splitting functions and some extra

conditions, existence of Shilnikov homoclinic bifurcation points is proven for general

unfoldings.

Explicit formulas for the splitting functions were obtained in Baldomá, Castejón, and

Seara (2013, 2018a,b). The case of the one-dimensional splitting was solved in Baldomá,

Castejón, and Seara (2013). It turns out that the distance between the one-dimensional

invariant manifolds is exponentially small with respect to " and also that the coefficient in
front of the dominant term depends on the full jet of the singularity. The splitting function

for the two-dimensional invariant manifolds was obtained in Baldomá, Castejón, and Seara
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(2018a,b). The mean free terms in the asymptotic formula are exponentially small with

respect to " and coefficients, which now they also depend on an angular variable, depend

again on the full jet of the singularity. Note that because constants involved in the dominant

terms depend on the full jet of the singularity, their computation can only be done by means

of numerical techniques (some examples are included in Dumortier, Ibánez, Kokubu, and

Simó (2013)).

Conclusive results are given in Baldomá, Ibáñez, and Seara (2019). Putting together

Baldomá, Castejón, and Seara (2013, 2018a,b) and Dumortier, Ibánez, Kokubu, and Simó

(2013) and with some extra work, general results for the existence of Shilnikov homoclinic

bifurcations in generic analytic unfoldings of a Hopf–Zero singularity of Type I. Namely,

it is proved that under generic and checkable hypothesis, any analytic unfolding of a Hopf–

Zero singularity within the appropriate class contains Shilnikov homoclinic orbits, and as

a consequence chaotic dynamics.

Remark 5.24. There is yet another singularity of codimension two that is likely an or-

ganizing center of chaotic behaviors: the Hopf–Hopf singularity. Namely, we refer to

four-dimensional singularities whose 1-jet is linearly conjugate to

!1

�
x1

@

@y1

� y1

@

@x1

�
C !2

�
x2

@

@y2

� y2

@

@x2

�
:

with !1 ¤ !2. These singularities were classified in Takens (1974b) and according

to Guckenheimer and Holmes (2002) and Kuznetsov (2004) there is a topological type

for which, similarly to what happens with the Hopf–Zero singularity, the second order

truncation of any generic unfolding exhibits a configuration which could explain the arising

of chaotic dynamics. For a convenient choice of parameters, the truncated system has an

equilibrium point P and two periodic orbits �1 and �2, such that

dimW u.P / D dimW s.P / D 2

dimW u.�1/ D dimW s.�1/ D 2

dimW u.�2/ D dimW s.�2/ D 2:

Moreover,

.W u.P / n fP g/ � W s.�1/;

.W u.�1/ n f�1g/ � W s.�2/;

.W u.�2/ n f�2g/ � W s.P /:

Remark 5.25. Regarding to the genesis of chaotic dynamics from local bifurcations, other

singularities of great interest are the so-called Hopf–Bogdanov–Takens singularities. We

are now referring to four-dimensional singularities whose 1-jet is linearly conjugated to:

y1

@

@x1

C !

�
x2

@

@y2

� y2

@

@x2

�
:
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with ! ¤ 0. A formal classification of these singularities is described in Drubi, Ibáñez,

and Rivela (2019a) at their lowest level of degeneracy: codimension three. How strange

attractors are unfolded is illustrated with numerical explorations in Drubi, Ibáñez, and

Rivela (2019b).



A Exponential
Dichotomy

A.1 Hyperbolic linear vector fields

A hyperbolic matrix A is a n by n real matrix whose eigenvalues all have non-zero real

part. It follows that zero cannot be an eigenvalue of A, and thus every hyperbolic matrix is

invertible. The transformation f .x/ D Ax on Rn is called hyperbolic linear vector field

and the differential equation Px D Ax is named hyperbolic linear system. The qualitative

behavior of the solution of a hyperbolic linear system determines a decomposition of Rn

into two invariant subspaces Es and Eu usually called the stable and unstable bundle

respectively Markley (2011). These subspace satisfy Rn D Es ˚ Eu so that for each

x 2 Rn, there is a unique decomposition x D xs C xu with xs 2 Es and xu 2 Eu. Let P
be the projection of Rn into Es defined by x 7! xs . Consequently, I �P is the projection

on Eu sending x to xu. If X.t/ denotes the fundamental matrix of the system Px D Ax,
then X.t/X�1.s/x with t 2 R defines a solution so that for t D s takes the value x and

X.t/X�1.s/Px D PX.t/X�1.s/x;

X.t/X�1.s/.I � P /x D .I � P /X.t/X�1.s/x:
(A.1)

Moreover, there are positive constants K, L, ˛ and ˇ such that

kX.t/X�1.s/P k 6 Ke�˛.t�s/ for all t > s;

kX.t/X�1.s/.I � P /k 6 Le�ˇ.s�t/ for all s > t:
(A.2)
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Both properties can be written equivalently in a common expression:

Proposition A.1. Conditions (A.1) and (A.2) are equivalent to the existence of an idem-

potent matrixQ such that

kX.t/QX�1.s/k 6 Ke�˛.t�s/ for all t > s;

kX.t/.I �Q/X�1.s/k 6 Le�ˇ.s�t/ for all s > t:
(A.3)

Proof. Let Q.s/ D X.s/QX�1.s/. Hence (A.3) is equivalent to

kX.t/X�1.s/Q.s/k 6 Ke�˛.t�s/ for all t > s;

kX.t/X�1.s/.I � Q.s//k 6 Le�ˇ.s�t/ for all s > t:
(A.4)

In order to conclude (A.1) and (A.2) it suffices to prove that Q.Ns/ D P for all Ns 2 R. But

this is evident from the uniqueness of the projection on the stable and unstable subspaces:

inequalities (A.4) imply that Q.Ns/ and I � Q.Ns/ are the projections on the stable and

unstable subspace Es and Eu respectively.

Conversely, from (A.1) follows X�1.s/PX.s/ D X�1.t/PX.t/ for all s; t 2 R.

Thus, it must to be a constant matrix. Denote by Q this idempotent matrix. Hence

X.t/X�1.s/P D X.t/QX�1.s/ and (A.3) follows from (A.2).

The notion of hyperbolicity expressed in terms of conditions (A.3) can be extended to a

non-autonomous linear differential equation of the form Px D A.t/x. In this context it is be
called exponential dichotomy. We study more deeply this property in the following section.

The classical references for the study of exponential dichotomies are Coppel (1978), Z. Lin

and Y.-X. Lin (2000), Massera and Schäffer (1966), and Palmer (1984, 2000).

A.2 Exponential dichotomy

Let X.t/ be a fundamental matrix of the linear system

Px D A.t/x; x 2 Rn; (A.5)

where A.t/ is defined and continuous on an interval J � R.

Definition A.2. System (A.5) has an exponential dichotomy on J if there is a projection

P W Rn ! Rn (an n by n matrix P with P 2 D P ) and positive constants K, L, ˛ and ˇ
such that for every s; t 2 J ,

kX.t/PX�1.s/k 6 Ke�˛.t�s/ for t > s;

kX.t/.I � P /X�1.s/k 6 Le�ˇ.s�t/ for s > t:
(A.6)
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This definition is independent of the fundamental matrix X.t/. Indeed, for any other
fundamental matrix Y.t/ there is a non-singular matrixM of constant coefficients such

that Y.t/ D X.t/M . In this way, takingQ D M�1PM we have a new projection which

allows us to replace P D MQM�1 in (A.6) to obtain

kY.t/QY �1.s/k 6 Ke�˛.t�s/ for t > s;

kY.t/.I �Q/Y �1.s/k 6 Le�ˇ.s�t/ for s > t:

Let us define P.s/ D X.s/PX�1.s/ for each s 2 J . Notice that, according with

the above definition, P.s/ is the projection corresponding to the fundamental matrix

Y.t/ D X.t/X�1.s/ of (A.5) and we can give an alternative definition of exponential

dichotomy.

Definition A.3. System (A.5) has an exponential dichotomy on J if for all s 2 J there is

a projection P.s/ W Rn ! Rn and positive constants K, L, ˛ and ˇ independents of s
such that for all t 2 J the matrix X�1.t/P.t/X.t/ has constant coefficients and

kX.t/X�1.s/P.s/k 6 Ke�˛.t�s/ for all t > s;

kX.t/X�1.s/.I � P.s//k 6 Le�ˇ.s�t/ for all s > t:

The continuity of the projection follows from its definition as P.s/ D X.s/PX�1.s/.
On the other hand, taking s D t in Definition A.2, P.t/ and I � P.t/ are both uniformly

bonded for all t 2 J . This actually means that the angle between the subspaceR.P.t//
and N .P.t//, range and kernel of P.t/ respectively, remains uniformly bounded away

from zero for all t 2 J . In order to justify this observation we introduce the notion of angle
between complementary subspaces as follows:

DefinitionA.4. LetE and F be vector subspaces of Rn such that Rn D E˚F . Consider

the unique linear map L W E? ! E so that F D fv C Lv W v 2 E?g where E?

denotes the orthogonal space to E. Finally, the angle between E and F is defined as

ang.E; F / D kLk�1.

Notice that the above definition of angle is an approximation of the geometrical notion

of smaller angle between subspaces. Indeed, assume thatE and F are two one-dimensional

subspaces in R2 with a small geometric angle ˛ and take v 2 E? with jvj D 1. Then

˛ � tan˛ D
jvj

jLvj
>
�
supf

jLvj

jvj
W jvj D 1g

��1

D kLk
�1:

The following proposition follows by observing that P.t/ projects onR.P.t// along
the direction N .P.t// as Figure A.1 shows:

Proposition A.5. If the linear system (A.5) has an exponential on J with projection P.t/
and constant K > 0 as in Definition A.3 then

ang.R.P.t//;N .P.t/// > K�1 for all t 2 J:
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v

u D P.t/u

w

P.t/v

P.t/w

R.P.t//

N .P.t//

R.P.t//?

Figure A.1: Geometric interpretation of the projection P.t/.

Proof. It suffices to note that

N .P.t// D R.I � P.t// D fv � P.t/v W v 2 R.P.t//?g:

Thus, ang.R.P.t//;N .P.t/// D k � P.t/k�1 > K�1.

Although the notion of exponential dichotomy is stated for any J � R, the most

interesting cases are when J is not bounded. We are particularly interested in J D Œ�;1/
or J D .�1; � �. In such cases the notions of stable and unstable subspaces can be

introduced in terms of the ranges of the projections of the exponential dichotomies.

Definition A.6. Suppose J D Œ�;1/ (resp. J D .�1; � �) in system (A.5). For each

t0 2 J the stable (resp. unstable) subspace for initial time t D t0 is defined as

Es
t0

D f� 2 Rn
W jX.t/X�1.t0/�j ! 0 as t ! 1g

.resp. Eu
t0

D f� 2 Rn
W jX.t/X�1.t0/�j ! 0 as t ! �1g/:

In the following proposition we relate the stable and unstable subspaces with the range

and kernel of the projection in the exponential dichotomy.

Proposition A.7. Assuming that system (A.5) has an exponential dichotomy on J then

i) if J D Œ�;1/, Es
t0
coincides with the range R.P.t0// of P.t0/ for all t0 2 J .

Furthermore

R.P.t0// D f� 2 Rn
W sup

t>t0

jX.t/X�1.t0/�j < 1g;
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and for all t0; t1 2 J it follows that Es
t1

D X.t1/X
�1.t0/E

s
t0
.

ii) if J D .�1; � �, Eu
t0
coincides with the kernel N .P.t0// of P.t0/ for all t0 2 J .

Furthermore

N .P.t0// D f� 2 Rn
W sup

t6t0

jX.t/X�1.t0/�j < 1g;

and for all t0; t1 2 J it follows that Eu
t1

D X.t1/X
�1.t0/E

u
t0
.

Proof. According to Definitions A.6 and A.3 it follows that

R.P.t0// � Es
t0

� f� 2 Rn
W sup

t>t0

jX.t/X�1.t0/�j < 1g:

To prove the reciprocal inclusion, take � 2 Rn so that

sup
t>t0

jX.t/X�1.t0/�j < 1:

Then for every t > t0,

j.I � P.t0//�j D j.I � P.t0//X.t0/X
�1.t/X.t/X�1.t0/�j

D jX.t0/X
�1.t/.I � P.t//X.t/X�1.t0/�j

6 Le�ˇ.t�t0/
jX.t/X�1.t0/�j;

which tends to zero as t ! 1. Hence .I �P.t0//� D 0 and thus we have � 2 R.P.t0//.
On the other hand, since x 2 Es

t0
if and only if P.t0/x D x,

P.t1/X.t1/X
�1.t0/x D X.t1/X

�1.t0/P.t0/x D X.t1/X
�1.t0/x:

This is equivalent to X.t1/X
�1.t0/x 2 Es

t1
and, consequently it holds

Es
t1

D X.t1/X
�1.t0/E

s
t0
. By similar arguments one can show the second item and thus

we conclude the proof.

From the above proposition it follows that the linear flow sends Es
t0
and Eu

t0
to Es

t1
and Eu

t1
, respectively. Accordingly, once Es

t0
and Eu

t0
are fixed, the stable and unstable

subspaces are determined for all t . Therefore, the projections are also determined for each

t 2 J once they are defined for t D t0. The same observation follows taking into account

the uniqueness of solutions for the equation

P 0.s/ D X 0.s/PX�1.s/CX.s/P.X�1.s//0 D A.s/P.s/ � P.s/A.s/:

Remark A.8. The existence of an exponential dichotomy on .�1;1/ determines univo-
cally P and I � P as the respective projections on the stable and unstable subspaces.

However, the projections for a dichotomy on Œ�;1/ or on .�1; � � are not univocally

determined. This is because one of the conditions in (A.6) is verified independently of the

choice of I � P or P .
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The following result collects the difference between an exponential dichotomy on

Œ�;1/ or .�1; � � and on .�1;1/.

LemmaA.9. Assume system (A.5) with J D .�1;1/.

i) If (A.5) has an exponential dichotomy on the interval Œ�;1/ (resp. on .�1; � �) for
some � 2 R then it has exponential dichotomy on Œt0;1/ (resp. on .�1; t0�) for all
t0 2 R.

ii) The system (A.5) has exponential dichotomy on .�1;1/ if and only if it has an

exponential dichotomy on both intervals, Œt0;1/ and .�1; t0�, and its corresponding
stable and unstable subspaces satisfy Rn

D Es
t0

˚Eu
t0
.

Proof. Suppose that (A.5) has an exponential dichotomy on Œ�;1/. The proof for .�1; � �
is analogous. It is clear that for every t0 > � system (A.5) has an exponential dichotomy

on Œt0;1/. If t0 < � , by Grönwall’s lemma follows

kX.t/X�1.s/k 6 e
R t

s kA.u/k du for any s 6 t:

In particular, for t0 6 t; s 6 � it holds

kX.t/X�1.s/k 6 e
R �

t0
kA.u/k du

D N.t0/:

If t0 6 s 6 � 6 t then

kX.t/PX�1.s/k 6 kX.t/PX�1.�/kN.t0/

6 N.t0/Ke
�˛.t��/

6 N.t0/Ke
�˛.t0��/e�˛.t�s/:

If t0 6 s 6 t 6 � then

kX.t/PX�1.s/k 6 N.t0/
2
kX.�/PX�1.�/k 6 N.t0/

2K:

Hence, in both inequalities we conclude

kX.t/PX�1.s/k 6 zK.t0/e
�˛.t�s/

for any t; s 2 Œt0;1/ with t > s where zK.t0/ D N.t0/
2Ke�˛.t0��/. In the same way, we

also get

kX.t/.I � P /X�1.s/k 6 zL.t0/e
�ˇ.s�t/

for any t; s 2 Œt0;1/ with s > t where zL.t0/ D N.t0/
2Le�ˇ.t0��/.
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On the other hand, if the system (A.5) has exponential dichotomy on .�1;1/ then
for every t0 2 R it has an exponential dichotomy on both intervals, Œt0;1/ and .�1; t0�,
with the same projection P.t0/. Thus, Rn

D R.P.t0//˚ N .P.t0// D Es
t0

˚Eu
t0
.

Reciprocally, suppose that (A.5) has an exponential dichotomy on both, Œt0;1/ and
.�1; t0�. Moreover, assume that the corresponding stable and unstable subspaces satisfy

that Rn D Es
t0

˚Eu
t0
. Then, there are projections P W Rn

! Es
t0
and I �Q W Rn

! Eu
t0

such that
kX.t/PX�1.s/k 6 Ke�˛.t�s/ for t > s;

kX.t/.I � P /X�1.s/k 6 Le�ˇ.s�t/ for s > t;

with t; s > t0 and

kX.t/QX�1.s/k 6 zKe�z̨.t�s/ for t > s;

kX.t/.I �Q/X�1.s/k 6 zLe� ž.s�t/ for s > t:

with t; s 6 t0. IfP D Q we get exponential dichotomy on .�1;1/. However, in general,
it might not be like that. Nevertheless, since Rn D Es

t0
˚Eu

t0
, we will prove that there is a

projection OP such that

kX.t/ OPX�1.s/k 6 OKe�˛.t�s/ for t > s;

kX.t/.I � OP /X�1.s/k 6 OLe� ž.s�t/ for s > t;
(A.7)

with t; s 2 .�1;1/. Indeed, let OP W Rn
! Es

t0
be the projection whose kernel is Eu

t0
.

SinceR. OP / D R.P / then OPP D P and P OP D OP . Hence,

P � OP D P.P � OP / D .P � OP /.I � P /:

Thus, for s; t > t0

kX.t/.P � OP /X�1.s/k D kX.t/PX�1.t0/X.t0/.P � OP /X�1.s/k

6 Ke�˛.t�t0/
kX.t0/.P � OP /X�1.s/k

6 Ke�˛.t�t0/
kX.t0/.P � OP /X�1.t0/kkX.t0/.I � P /X�1.s/k

6 KLe�˛.t�t0/e�ˇ.s�t0/
kX.t0/.P � OP /X�1.t0/k:

It follows that for t > s > t0,

kX.t/ OPX�1.s/k 6 kX.t/PX�1.s/k C kX.t/.P � OP /X�1.s/k

6 .1C LkX.t0/.P � OP /X�1.t0/k/Ke
�˛.t�s/:

Similarly, for s > t > t0

kX.t/.I � OP /X�1.s/k 6 .1CKkX.t0/.P � OP /X�1.t0/k/Le
�ˇ.s�t/:
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Therefore, (A.5) has an exponential dichotomy on Œt0;1/with projection OP , the exponents

˛, ˇ being unaltered and new constants K and L multiplied by a factor 1CLkX.t0/.P �

OP /X�1.t0/k and 1CKkX.t0/.P � OP /X�1.t0/k respectively. On the other hand, since

N . OP / D N .Q/ by a similar argument we get that (A.5) has also an exponential dichotomy

on .�1; t0� with the same projection OP , unaltered exponents z̨, ž and similar constants

multiplied by a factor. Therefore we get (A.7) and so the dichotomy on .�1;1/.

Although in general, as stated in the previous proposition, having an exponential

dichotomy on an interval of semi-infinite length is not enough to have an exponential

dichotomy on the entire real line. However, in the particular case that the matrix A.t/ is
periodic these notions are equivalent:

PropositionA.10. Assume that the linear system (A.5) is also periodic. Then, the following

statements are equivalent:

i) System (A.5) has exponential dichotomy on .�1;1/,

ii) System (A.5) has an exponential dichotomy on Œt0;1/,

iii) System (A.5) has an exponential dichotomy on .�1; t0�,

iv) Floquet multiplies of (A.5) have different module from one.

Proof. The equivalence between (i) and (iv) follows from Floquet’s theory Chicone (2006):

there is a time-dependent change of coordinates, which transforms the periodic system

Px D A.t/x in a linear system of constant coefficients. Therefore, we have an exponential

dichotomy on .�1;1/ if and only if this autonomous linear system is hyperbolic. In turn,

this is equivalent to having all the Floquet multipliers lie off the unit circle. On the other

hand, (i) implies (ii) and (iii).

Reciprocally, suppose that (A.5) has an exponential dichotomy on Œt0;1/ with pro-
jection P . The case .�1; t0� is followed in a similar way. The translated equation

Px D A.t C kT /x has for fundamental matrix Xk.t/ D X.t C kT /X�1.kT / where T > 0
and k 2 N large enough. Denoting Pk D P.kT / D X.kT /PX�1.kT /, it follows that

kXk.t/PkX
�1
k .s/k 6 Ke�˛.t�s/ for t > s > t0 � kT;

kXk.t/.I � Pk/X
�1
k .s/k 6 Le�ˇ.s�t/ for s > t > t0 � kT:

Hence kPkk 6 K and thus, there is a subsequence Pkj
! Q, whereQ is also a projection.

By taking T as the period of A.t/, we actually have that Xk.t/ D X.t/X�1.0/. Thus,
Xk.t/ ! X.t/X�1.0/ D Y.t/ and for any t; s 2 .�1;1/ it holds

kY.t/QY �1.s/k 6 Ke�˛.t�s/ for t > s;

kY.t/.I �Q/Y �1.s/k 6 Le�ˇ.s�t/ for s > t;

Since Y.t/ is a fundamental matrix of (A.5) then the above inequalities imply that (A.5)

has exponential dichotomy on .�1;1/.
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The next result Palmer (2000, Lemma 7.4) states that exponential dichotomy is a robust

property by perturbing small enough A.t/.

Proposition A.11. Suppose that (A.5) has an exponential dichotomy on J with projection

matrix function P.t/, constantsK1,K2 and exponents ˛1, ˛2. Let ˇ1 and ˇ2 be such that

0 < ˇ1 < ˛1 and 0 < ˇ2 < ˛2. Then there exists ı0 D ı0.K1; K2; ˛1; ˛2; ˇ1; ˇ2/ > 0
such that if B.t/ is a continuous matrix function with

kB.t/k 6 ıt 6 ı0 for all t 2 J ,

the perturbed system

x0
D ŒA.t/C B.t/�x

has an exponential dichotomy on J with constants L1, L2 exponents ˇ1, ˇ2 and projection

matrix Q.t/ satisfying that
kQ.t/ � P.t/k 6 Nıt ;

where L1, L2, N are constants depending only on K1, K2, ˛1, ˛2.

As we advanced in Remark A.8, the projections of an exponential dichotomy on a

half-bounded interval are not univocally determined. That is, there is no uniqueness when

choosing the complement in Rn to the range or the kernel of the projection. One can

choose the orthogonal complement. The study of the exponential dichotomy for the adjoint

equation, which will be done in the next section, will allow to establish this orthogonal

complement.

A.3 Dichotomy for the adjoint equation

Let X.t/ be a fundamental matrix of the linear equation (A.5)

Px D A.t/x; x 2 Rn, t 2 J :

It is easy to see that the transpose of its inverse X�1.t/� is a fundamental matrix of the

adjoint equation

Pw D �A.t/�w; x 2 Rn, t 2 J (A.8)

where A.t/� denotes the transposed matrix of A.t/. From this relation between the funda-

mental matrices of both equations we can conclude the following result:

Proposition A.12. If the equation (A.5) has an exponential dichotomy on J with projec-

tion matrix P.t/ then the adjoint equation (A.8) has exponential dichotomy on J with

projection matrix I � P.t/�. Moreover, for each t0 2 J

Rn
D R.P.t0//?R.I � P.t0/

�/ D R.P.t0//? N .P.t0/
�/;

Rn
D R.I � P.t0//? R.P.t0/

�/ D N .P.t0//? R.P.t0/
�/:
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Proof. Taking transposed matrix in Definition A.2,

kX�1.t/�.I � P �/X.s/�k 6 Le�ˇ.t�s/ para t > s;

kX�1.t/�P �X.s/�k 6 Ke�˛.s�t/ para s > t;

with s; t 2 J . Since X�1.t/� is a fundamental matrix of (A.8), we get that this equation

has and exponential dichotomy on J with projectionQ D I � P �. On the other hand,

< P.t0/x; .I � P.t0/
�/w >D x�P.t0/

�.I � P.t0/
�/w D 0:

Thus, R.I � P.t0/
�/ � R.P.t0//

?. In order to prove the equality and conclude then

that Rn
D R.P.t0//?R.I � P.t0/

�/, it suffices taking into account that dimR.I �

P.t0/
�/ D dimR.I � P.t0//. Therefore,

dimR.P.t0//C dimR.I � P.t0/
�/

D dimR.P.t0//C dimN .P.t0// D n:

Same arguments conclude that Rn
D R.I � P.t0//? R.P.t0/

�/.

As done in Definition A.6 we can define now the stable and unstable subspaces for

adjoint equations.

Definition A.13. Suppose that J D Œ�;1/ (resp. J D .�1; � �) in system (A.5). For

each t0 2 J the stable (resp. unstable) subspace for initial time t D t0 of the adjoint

equation (A.8) is defined as

Es�
t0

D fw 2 Rn
W jX�1.t/�X.t0/

�wj ! 0 when t ! 1g

.resp. Eu�
t0

D fw 2 Rn
W jX�1.t/�X.t0/

�wj ! 0 when t ! �1g/:

The following result about the relationship between the invariant subspaces of the

equation Px D A.t/x and its adjoint follows as a straight consequence of Proposition A.7

and Proposition A.12.

Proposition A.14. Suppose that the linear system (A.5) has an exponential dichotomy in

J .

1. If J D Œt0;1/ then

Es
t0

D R.P.t0// D fx 2 Rn
W sup

t>t0

jX.t/X�1.t0/xj < 1g;

Es�
t0

D N .P.t0/
�/ D fw 2 Rn

W sup
t>t0

jX�1.t/�X.t0/
�wj < 1g;

and Rn D Es
t0

?Es�
t0
.
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2. If J D .�1; t0� then

Eu
t0

D N .P.t0// D fx 2 Rn
W sup

t6t0

jX.t/X�1.t0/xj < 1g;

Eu�
t0

D R.P.t0/
�/ D fw 2 Rn

W sup
t6t0

jX�1.t/�X.t0/
�wj < 1g;

and Rn D Eu
t0

?Eu�
t0

.

In short, if the linear equation Px D A.t/x has exponential dichotomy in J D Œt0;1/
(resp. .�1; t0�) then the forward (resp. backward) bounded solutions of this equation and
its adjoint are those which tend to zero exponentially when t ! 1 (resp. t ! �1). On

the other hand, from the decompositions of Rn given in Proposition A.14 it follows that, if

Px D A.t/x has m linearly independent forward (resp. backward) bounded solutions, then

the adjoint equation Pw D �A.t/�w has n�m linearly independent forward (resp. backward)

bounded solutions. Hence, by denoting

E�
t0

D Es�
t0

\Eu�
t0

D ŒEs
t0

CEu
t0
�?

we obtain the following result:

Proposition A.15. If the linear equation (A.5) has an exponential dichotomy in Œt0;1/
and in .�1; t0� then the number of linearly independent bounded solutions of the adjoint
equation (A.8) is

dimE�
t0

D n � dimEs
t0

� dimEu
t0

C dimEs
t0

\Eu
t0
:

In the following section, we will use knowledge on exponential dichotomy of the linear

system (A.5) to characterize the of bounded solutions of the complete linear equation. This

characterization will be useful in the next chapter where we study the bifurcation equation

of (homo)heteroclinic connection of a non-linear differential equation.

A.4 Complete linear equation

Consider the complete linear equation

Px D A.t/x C b.t/; x 2 Rn, t 2 J (A.9)

where b.t/ belongs to the Banach space C r
b
.J;Rn/ of bounded continuous Rn-valued

functions whose derivatives up to order r exist and are bounded and continuous. We are

interesting to study the bounded solutions of (A.9). To this goal, the following theorem

proved in Palmer (1984, lem. 4.2) and Palmer (1988) establishes the existence of bounded

solutions for the complete linear equation from the existence of bounded solutions for

the adjoint equation (A.9). First, recall that a linear operator is said to be Fredholm if its

kernel is finite dimensional and its range is closed with finite codimension. The difference

between the dimension of the kernel and the codimension of the range is called index.
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TheoremA.16. Let A.t/ be a bounded and continuous matrix on .�1;1/. The linear
equation (A.5) has an exponential dichotomy on Œt0;1/ and on .�1; t0� if and only if the
linear operator

L W x.t/ 2 C 1
b .R;R

n/ 7! Px.t/ � A.t/x.t/ 2 C 0
b .R;R

n/

is Fredholm. The index of L is dimEs
t0

C dimEu
t0

� n. Moreover, b 2 R.L/ if and only ifZ 1

�1

< w.t/; b.t/ > dt D 0

for all bounded solutions w.t/ of the adjoint equation (A.8).

Assume, for instance, that the linear equation Px D A.t/x has exponential dichotomy

on .�1;1/ being A.t/ a bounded and continuous matrix defined on the real line. Then

Rn
D Es

t0
˚ Eu

t0
and from this follows that the index of L in Theorem A.16 is zero.

Moreover, the constant solution w D 0 is the unique bounded solution of the adjoint

equation Pw D �A.t/�w. Therefore, R.L/ D C 0
b
.R;Rn/, and hence, the kernel of L is

the trivial space zero. Consequently, for every b.t/ in C 0
b
.R;Rn/ there is a unique bounded

solution x.t/ of the complete linear equation Px D A.t/x C b.t/.
However, the above situation is not the case if the linear equation Px D A.t/x has

only an exponential dichotomy on Œt0;1/. The following lemma characterize the positive

bounded solutions of the complete linear equation in this case.

Lemma A.17. Assume that the linear equation (A.5) has an exponential dichotomy on

J D Œt0;1/. Let b 2 C 0
b
.J;Rn/. Then, xC.t/ is a positive bounded solution of (A.9) if

and only if

xC.t/ D X.t/X�1.t0/P.t0/x
C.t0/

C

Z t

t0

X.t/X�1.s/P.s/b.s/ ds

�

Z 1

t

X.t/X�1.s/.I � P.s//b.s/ ds:

(A.10)

Proof. Since X.t/ is the fundamental matrix of (A.5), the solutions of the complete linear

equation (A.9) are of the form

x.t/ D X.t/X�1.t0/x.t0/CX.t/

Z t

t0

X�1.s/b.s/ ds:

By means of the projection P associated with the exponential dichotomy of (A.5) on

J D Œt0;1/, these solutions can be written as

x.t/ D X.t/PX�1.t0/x.t0/CX.t/.I � P /X�1.t0/x.t0/ (A.11)

CX.t/

Z t

t0

PX�1.s/b.s/ ds CX.t/

Z t

t0

.I � P /X�1.s/b.s/ ds:
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On the other hand, according to the exponential dichotomy

kX.t/PX�1.s/k 6 Ke�˛.t�s/ for t > s > t0;

it follows that

jX.t/PX�1.t0/x.t0/j 6 Ke�˛.t�t0/
jx.t0/j

jX.t/

Z t

t0

PX�1.s/b.s/ dsj 6
Z t

t0

Ke�˛.t�s/
jb.s/j ds:

Thus, the first and third term of (A.11) are bounded for t > t0.
If we assume that x.t/ is bounded, necessarily then the sum

X.t/.I � P /X�1.t0/x.t0/CX.t/

Z t

t0

.I � P /X�1.s/b.s/ ds (A.12)

D X.t/Œ.I � P /X�1.t0/x.t0/C

Z t

t0

.I � P /X�1.s/b.s/ ds�

is also bounded. However, the exponential dichotomy

kX.t/.I � P /X�1.s/k 6 Le�ˇ.s�t/ for s > t > t0;

implies that

jX.t0/.I � P /X�1.t0/x.t0/j D

D jX.t0/.I � P /X�1.t/X.t/.I � P /X�1.t0/x.t0/j

6 Le�ˇ.t�t0/
jX.t/.I � P /X�1.t0/x.t0/j:

Hence,

jX.t/.I � P /X�1.t0/x.t0/j > jX.t0/.I � P /X�1.t0/x.t0/jL
�1eˇ.t�t0/

is not bounded and since

jX.t/.I � P /X�1.t0/x.t0/j 6 kX.t/kj.I � P /X�1.t0/x.t0/j;

it follows that the matrix X.t/ is not bounded. Therefore, from (A.12) we get that the

solution x.t/ only can be bounded if it holds

.I � P /X�1.t0/x.t0/C

Z 1

t0

.I � P /X�1.s/b.s/ ds D 0:

Consequently, from (A.11) we obtain that if xC.t/ is a bounded solution of (A.9) then (A.10)
holds.
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Conversely, to verify that xC.t/ given in (A.10) is a bounded solution of (A.9) it

suffices to see that

LCb.t/ D

Z t

t0

X.t/X�1.s/P.s/b.s/ ds

�

Z 1

t

X.t/X�1.t0/.I � P.s//b.s/ ds

is a particular bounded solution of the above complete linear equation. Indeed, by the

Leibniz rule

d

dt
LCb.t/ D A.t/LCb.t/C b.t/;

and using the dichotomy estimates

jLCb.t/j 6
Z t

t0

Ke�˛.t�s/
jb.s/j ds C

Z 1

t

Le�ˇ.s�t/
jb.s/j ds 6 zK C zL

for all t > t0, where the constant zK and zL not depend on t .

In the same way, a similar result to the negative bounded solutions of the complete

linear equation follows.

Lemma A.18. Assume that the linear equation (A.5) has an exponential dichotomy on

J D .�1; t0�. Let b 2 C 0
b
.J;Rn/. Then, x�.t/ is a positive bounded solution of (A.9) if

and only if

x�.t/ D X.t/X�1.t0/.I � P.t0//x
�.t0/

C

Z t

�1

X.t/X�1.s/P.s/b.s/ ds

�

Z t0

t

X.t/X�1.s/.I � P.s//b.s/ ds:

(A.13)

Remark A.19. Notice that the functions given in (A.10) and (A.13) are both solutions

of (A.9) for any continuous function b.t/ on Œt0;1/ and .�1; t0�, respectively. On the
other hand, to prove that both functions are bounded solutions of this equation we need to

use that b.t/ is also bounded.

The main application of exponential dichotomies is in the context of the variational

equations along certain bounded solutions of a non-linear differential equation. For this

reason, the following section focuses on study the exponential dichotomy for this type of

equations.
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A.5 Dichotomy for the variational equation

Linear differential equations of the form of (A.5) arise in the study of the flow around of a

solution 
 D fp.t/ W t 2 J g of a non-linear equation Px D f .x/. It is well know that the

differential of the flow along p.t/ is given by the solution of the initial matrix problem:

PX D Df.p.t//X; X.0/ D Id:

This solution is a fundamental matrix of the variational equation

Px D Df.p.t//x; x 2 Rn; t 2 J:

Special orbits of Px D f .x/ are the equilibrium points, the periodic orbits and the (homo)het-

eroclinic connections, all of them defined on J D .�1;1/. Dichotomy of equilibrium

points correspond to notion of hyperbolicity as we see in §A.1. We are interested in studying

the exponential dichotomy of the (homo)heteroclinic solutions to apply the results in the

next chapter. Dichotomy of periodic orbits and non-stationary hyperbolic solutions are

studied in Palmer (1984, 1996, 2000).

Let pC and p� be a pair of hyperbolic equilibrium points of a non-linear equation

Px D f .x/ where x 2 Rn and f is a regular enough vector field. Assume that it has a orbit


 D fp.t/ W t 2 .�1;1/g connecting pC and p�. That is,

lim
t!1

p.t/ D pC and lim
t!�1

p.t/ D p�:

The trajectory 
 is called heteroclinic orbit if pC 6D p� and homoclinic orbit if pC D p�.

Consider the variational equation

Px D Df.p.t//x; x 2 Rn; t 2 .�1;1/: (A.14)

According to Proposition A.11, equation (A.14) has the same exponential dichotomy than

Px D Df.pC/x on Œt0;1/. Analogously, (A.14) has the same exponential dichotomy

of Px D Df.p�/x on .�1; t0�. That is, if the stable (resp. unstable) subspace of Px D

Df.pC/x (resp. Px D Df.p�/x) has dimension k then (A.14) has an exponential di-

chotomy on Œt0;1/ (resp. .�1; t0�) with stable subspace Es
t0
(resp. unstable subspace

Eu
t0
) with dimension k. In fact we have the following result:

PropositionA.20. Let p.t/ be a solution of the equation Px D f .x/ parametrizing an orbit
on the stable (resp. unstable) manifold of an equilibrium point p. Hence the variational
equation Px D Df.p.t//x has an exponential dichotomy on Œt0;1/ (resp. .�1; t0�).
Moreover,

R.P.t0// D Tp.t0/W
s.p/ (resp. N .P.t0// D Tp.t0/W

u.p/).

Notice that in the case of a (homo)heteroclinic orbit, there is no exponential dichotomy

on .�1;1/. Indeed, since f .p.t// is a solution of (A.14), the stable subspace Es
t0
and



154 A. Exponential Dichotomy

the unstable subspace Eu
t0
have the subspace generated by the vector f .p.t0// which we

denote by spanff .p.t0//g. Thus, according to Lemma A.9, the variational equation (A.14)

does not have exponential dichotomy on .�1;1/.
As we have already noticed, the number of linearly independent forward (resp. back-

ward) bounded solutions of the variational equation (A.14) is given by the dimension of

the stable (resp. unstable) subspace of the equation Px D Df.pC/x (resp. Px D Df.p�/x).
That is, such number coincides with the dimension ofW s.pC/ (resp.W

u.p�/). Therefore,
taking into account that

Es
t0

D Tp.t0/W
s.pC/ and Eu

t0
D Tp.t0/W

u.p�/;

we can conclude, from Proposition A.15, the following result.

Proposition A.21. If p.t/ is a (homo)heteroclinic solution connecting two equilibrium

points pC and p� then the number of linearly independent bounded solutions of the adjoint

variational equation

Pw D �Df.p.t//�w; w 2 Rn; t 2 .�1;1/

is the codimension of Tp.t0/W
s.pC/C Tp.t0/W

u.p�/, that is,

c D n � dimW s.pC/ � dimW u.p�/

C dimTp.t0/W
s.pC/ \ Tp.t0/W

u.p�/:

The above number c is called codimension of the (homo)heteroclinic orbit 
 D fp.t/ W

t 2 .�1;1/g (or of the tangency between the corresponding invariant manifolds of pC

and p�). Observe that

c D d � .sC � s�/ > 0

where s˙ are the stability indices of p˙ and

d D dimTp.t0/W
s.pC/ \ Tp.t0/W

u.p�/ > 1:

The number d is called dimension of tangency along the connection 
 . If 
 is a homoclinic

orbit, i.e., pC D p�, then the codimension of 
 coincides with the dimension, i.e., c D d . If
c D 0 then 
 must be a heteroclinic orbit and the connection between the invariant manifold

of pC and p� is transversal. Thus, persistent under perturbations. When c > 0 indicates
that we have a bifurcation as in the case of homoclinic orbits. If s� D sC the heteroclinic

connection is said to be equidimensional. Otherwise, 
 is said to be heterodimensional.

Definition A.22. A (homo)heteroclinic orbit 
 is non-degenerate if

dimTpW
s.pC/ \ TpW

u.p�/ D 1;

with p 2 
 . Otherwise 
 is said to be degenerate.



B Continuation
of connections

B.1 Introduction

Let Px D f .x/ be a nonlinear equation, where x 2 Rn and f is a regular enough vector field.

Assume that it has an orbit 
 D fp.t/ W t 2 Rg connecting two hyperbolic equilibrium

points pC and p�. Recall that if pC D p�, 
 is said homoclinic and otherwise heteroclinic.

Consider a family

Px D f .x/C g.�; x/ (B.1)

with � 2 Rk and g regular enough, such that g.0; x/ D 0. For any � small enough, family

(B.1) has hyperbolic equilibrium points pC.�/ and p�.�/, continuation of pC and p�,

respectively, and the stability index is preserved. In order to study the persistence of the 

for � small enough we introduce the change of variables x D z C p.t/ in (B.1) to obtain

Pz D Df.p.t//z C b.�; t; z/ (B.2)

where

b.�; t; z/ D f .p.t/C z/ � f .p.t// �Df.p.t//z C g.�; p.t/C z/:

Notice that b.0; t; 0/ D Dzb.0; t; 0/ D 0 for all t 2 R.
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Persistence of (homo)heteroclinic orbits in (B.1) implies the existence of bounded

solutions for (B.2) which, in turn, implies the existence of bounded solutions for a equation

as

Pz D Df.p.t//z C b.t/ (B.3)

where b belongs to the space C 0
b
.R;Rn/.

Since f is regular (f 2 C r ; r > 1) and p.t/ is a bounded solution, Df.p.t// is a
bounded and continuous matrix on .�1;1/. On the other hand, according to Propo-

sition A.20 the variational equation Pz D Df.p.t//z has an exponential dichotomy on

.�1; t0� and Œt0;1/. Thus, we are in the assumptions of Theorem A.16 and conse-

quently, (B.3) has a bounded solution if and only ifZ 1

�1

< w.t/; b.t/ > dt D 0

for all bounded solution w.t/ of the adjoint variational equation.
According to Proposition A.21, the adjoint variational equation Pw D �Df.p.t//�w

has c linearly independent bounded solutions wi where c is the codimension of 
 . Then
the persistence of the (homo)heteroclinic orbit 
 requires the fulfillment of the c conditionsZ 1

�1

hwi .t/; b.t/i dt D 0 for i D 1; : : : ; c:

The question is the sufficiency of such conditions. When c D 1 the sufficiency could be
followed from Chow, Hale, and Mallet-Paret (1980). In general, for c > 1, the techniques
to be used follow the first steps of the Lin’s method in X.-B. Lin (1990) and Sandstede

(1993).

B.2 Bifurcation equation

The persistence of the (homo)heteroclinic connection as the continuation of 
 D fp.t/ W t 2

.�1;1/g is given by certain bifurcation equation which we will obtain as a consequence
of the Lin’s method. For k�k small enough, one has to look for solutions pC

�
.�/ and

p�
�
.�/ of (B.1), contained in the stable and unstable invariant manifolds of the equilibrium

points pC.�/ and p�.�/, respectively (see Figure B.1). Initial values p
˙
�
.t0/ will belong

to a section ˙t0 transverse to the (homo)heteroclinic orbit 
 . Namely ˙t0 D p.t0/ C

ff .p.t0//g
?. Moreover the condition

�1.�/ D p�
� .t0/ � pC

�
.t0/ 2 E�

t0

will be required where E�
t0

D Es�
t0

\ Eu�
t0

D ŒEs
t0

C Eu
t0
�? � ff .p.t0//g

?. Under these

assumptions there will exist two unique solutions p˙
�
.�/ for each �. The jump �1.�/

measures the displacement between the stable and unstable invariant manifolds on the

section ˙t0 in the direction of the subspace E�
t0
. In the two following sections we will

deduce the bifurcation equation �1.�/ D 0 in the cases that 
 is a non-degenerate and

degenerate (homo)heteroclinic connection.
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p�
�
.t/

pC

�
.t/


pC

�
.t0/

p�

�1.�/

p�
�
.t0/

p.t0/CE�
t0

pC

p.t0/ p.t0/CEt0

Figure B.1: Non-degenerate heteroclinic orbit in R3 where the 1-dimensional mani-

folds coincide. In this case, Es
t0

D Eu
t0

D Et0 (1-dimensional), Es�
t0

D Eu�
t0

D E�
t0

(2-dimensional) and ˙t0 D p.t0/ C E�
t0
. For simplicity, we have assume that the

perturbation satisfies p�.�/ D p� and pC.�/ D pC for all �.

B.3 Non-degenerate connections

In this subsection we assume the following hypothesis: - The (homo)heteroclinic orbit


 D fp.t/ W t 2 .�1;1/g is non-degenerate and of codimension c > 1.
According to Proposition A.21, the number of linear independent bounded solutions of

the adjoint variational equation is equal to c. At the same time this number coincides with

the dimension of E�
t0

D ŒEs
t0

CEu
t0
�?. Moreover, since 
 is non-degenerate

Et0 D Es
t0

\Eu
t0

D Tp.t0/W
s.pC/ \ Tp.t0/W

u.p�/

has dimension one. Namely, it is the space generated by the vector Pp.t0/ D f .p.t0//.
Thus,

c D n � dimW s.pC/ � dimW u.p�/C 1:

We introduce W ˙
t0

as the orthogonal complement of Et0 in the tangent space to the

stable and unstable manifold of pC and p� respectively. That is,

Es
t0

D Et0?W C
t0

and Eu
t0

D Et0?W �
t0
:

Then

Rn
D spanff .p.t0//g ˚ W C

t0
˚W �

t0
˚E�

t0
: (B.4)

Finally we take the transversal section to 
 at p.t0/ given by

˙t0 D p.t0/C ff .p.t0//g
?

D p.t0/C ŒW C
t0

˚W �
t0

˚E�
t0
�:
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W u
�

p.t0/CW C
t0

p.t0/CE�
t0

W s
� �1.�/

q�

p.t0/CW �
t0

pC

�
.t0/

p�
�
.t0/

Figure B.2: Non-degenerate (homo)heteroclinic orbit

Figure B.2 shows the transversal section˙t0 . The curvesW
s

�
andW u

�
are, respectively,

W s.pC.�// \ ˙t0 and W u.p�.�// \ ˙t0 . A priori the curve W s
�
does not met W u

�
.

However, the projection along the direction E�
t0
of both curves on p.t0/C ŒW �

t0
˚W C

t0
�

have a unique transversal intersection point q�. Now, q� CE�
t0
meets, respectively, W s

�

andW u
�
at pC

�
.t0/ and p

�
�
.t0/. These two points define the vector �

1.�/. The persistence
of the connection holds if �1.�/ D 0 which provides a set of c D dimE�

t0
conditions.

The proof of the next result can be found in Sandstede (1993, Lem. 3.3) and Knobloch

(2004, Lem. 2.1.2). Namely, in Knobloch (2004) only the first item is proved and, moreover,

the proof is developed for the degenerate case although the non-degenerate one follows in

a similar manner. The second item is proved in Sandstede (1993) for the non-degenerate

case. We include here a complete and simplified proof of this result.
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Lemma B.1. There is ı > 0 such that for every � 2 Rk with j�j < ı,

1. there exists a unique pair of solutions pC

�
.t/ and p�

�
.t/ of (B.1) parameterizing

orbits on W s.pC.�// and W
u.p�.�//, respectively, such that p

˙
�
.t0/ 2 ˙t0 and

�1.�/ D p�
� .t0/ � pC

�
.t0/ 2 E�

t0
:

Writing the solutions as p˙
�
.t/ D p.t/Cz˙

�
.t/, then z˙

�
.�/ are, respectively, forward

and backward bounded solutions of the equation (B.2). They depend regularly on �
and the functions z˙

0 are identically zero.

2. for " > 0 small enough, there exists a (homo)heteroclinic solution p�.t/ such that

kp�.t0/ � p.t0/k < " if and only if �
1.�/ D 0.

That is, the components �1
i .�/ of the vector �

1.�/ in a basis fwi W i D 1; : : : ; cg
of E�

t0
satisfy

�1
i .�/ �

Z t0

�1

< wi .s/; b.�; s; z
�
� .s// > ds

C

Z 1

t0

< wi .s/; b.�; s; z
C

�
.s// > ds D 0

being wi .s/ D X�1.s/�X.t0/
�wi for i D 1; : : : ; c bounded linearly independent

solutions of the adjoint variational equation.

Proof. The solutionsp�.t/ of (B.1) can be written asp�.t/ D p.t/Cz�.t/where z�.t/ is a
solution of (B.2). Let Yt0 D W C

t0
˚W �

t0
˚E�

t0
. Assuming p�.t0/ 2 ˙t0 then z�.t0/ 2 Yt0 .

In order to get that p�.t/ parametrizes an orbit inW s.pC.�// (resp. W
u.p�.�//), the

function z�.t/ have to be a positive (resp. negative) bounded solution of (B.2). Now if we

assume that zC.t/ and z�.t/ are a pair of positive and negative bounded solutions of (B.2)
respectively, then b.�; z˙.�/; �/ 2 C 0

b
.J˙;R

n/ where JC D Œt0;1/ and J� D .�1; t0�.
Thus, according to Lemma A.17 and Lemma A.18 it must be met that

zC.t/ D X.t/X�1.t0/PC.t0/z
C.t0/

C

Z t

t0

X.t/X�1.s/PC.s/b.s; z
C.s/; �/ ds

�

Z 1

t

X.t/X�1.s/.I � PC.s//b.s; z
C.s/; �/ ds

(B.5)

and
z�.t/ D X.t/X�1.t0/.I � P�.t0//z

�.t0/

C

Z t

�1

X.t/X�1.s/P�.s/b.s; z
�.s/; �/ ds

�

Z t0

t

X.t/X�1.s/.I � P�.s//b.s; z
�.s/; �/ ds

(B.6)
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where PC.t0/ and I �P�.t0/ are the corresponding projection matrix on the stable space

Es
t0

D Tp.t0/W
s.pC/ and unstable space E

u
t0

D Tp.t0/W
u.p�/, respectively.

Conversely, according to Remark A.19, the solutions zC.t/ and z�.t/ of the integral
equations (B.5) and (B.6) are both solutions of (B.2), but not necessarily bounded. The

existence of positive and negative bounded solutions of (B.5) and (B.6) will be proved as

an application of Implicit Function Theorem.

Let �C D PC.t0/z
C.t0/ 2 W C

t0
and �� D .I � P�.t0//z

�.t0/ 2 W �
t0
. Equa-

tions (B.5) and (B.6) can be written in the form

z˙
D H ˙.z˙; �˙; �/ (B.7)

where H ˙ W C 0
b
.J˙;Rn/ � W ˙

t0
� Rk ! C 0

b
.J˙;Rn/. In order to apply the Implicit

Function Theorem to the equation (B.7) notice first that H ˙.0; 0; 0/ D 0. On the other
hand,

DzH ˙.z˙; �˙; �/ W C 0
b .J˙;R

n/ ! C 0
b .J˙;R

n/

is the null function for z˙ D �˙ D � D 0. Indeed, for any h 2 C 0
b
.JC;R

n/ it holds that

DzH C.z; �; �/h.t/ D

Z t

t0

X.t/X�1.s/PC.s/Dzb.s; z.s/; �/h.s/ ds

�

Z 1

t

X.t/X�1.s/.I � PC.s//Dzb.s; z.s/; �/h.s/ ds:

SinceDzb.s; 0; 0/ D 0 thenDzH C.0; 0; 0/ D 0. Similarly it follows thatDzH �.0; 0; 0/ D

0. Therefore, there exists ı˙ > 0 such that for every �˙ 2 W ˙
t0

and � 2 Rk with j�˙j,

j�j < ı˙ there is a unique z˙.�˙; �/ 2 C 0
b
.J˙;R

n/ so that

z˙.�˙; �/ D H ˙.z˙.�˙; �/; �˙; �/ and z˙.0; 0/ D 0:

Now, consider the condition z�.��; �; /.t0/ � zC.�C; �/.t0/ 2 E�
t0
. Since Yt0 D

W C
t0

˚W �
t0

˚E�
t0
, we can write

z˙.�˙; �/.t0/ D �˙
C w�.�˙; �/C %˙.�˙; �/

where w�.�˙; �/ 2 W �
t0

and %˙.�˙; �/ 2 E�
t0
. From (B.5) and (B.6), and having into

account that

X.t/X�1.s/P˙.s/ D P˙.t/X.t/X
�1.s/;

it follows that z�.��; �/.t0/ and z
C.�C; �/.t0/ are, respectively,

��
C P�.t0/

Z t0

�1

X.t0/X
�1.s/b.s; z�.��; �/.s/; �/ ds;

�C
� .I � PC.t0//

Z 1

t0

X.t0/X
�1.s/b.s; zC.�C; �/.s/; �/ ds:

(B.8)
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Thus wC.��; �/C %�.��; �/ and w�.�C; �/C %C.�C; �/ are, respectively,

P�.t0/

Z t0

�1

X.t0/X
�1.s/b.s; z�.��; �/.s/; �/ ds;

� .I � PC.t0//

Z 1

t0

X.t0/X
�1.s/b.s; zC.�C; �/.s/; �/ ds:

(B.9)

Recall that z˙.0; 0/ D 0 and hence w˙.0; 0/ D %˙.0; 0/ D 0. On the other hand,

applying thatDzb.t; 0; 0/ D 0 in (B.9) we get that

D��%�.0; 0/ D D�%
�.0; 0/ D 0;

D��w˙.0; 0/ D D�w
˙.0; 0/ D 0:

(B.10)

The condition z�.��; �/.t0/ � zC.�C; �/.t0/ 2 E�
t0
is equivalent to the system of

two equations �˙ � w˙.��; �/ D 0 which we write in the form F.�; �/ D 0 where
� D .�C; ��/ 2 W C

t0
�W �

t0
. We have that F.0; 0/ D 0 and according to (B.10) it follows

thatD�F.0; 0/ D I . Hence, applying again the Implicit Function Theorem we get � as a

function of �. We conclude that there exists ı > 0 (ı < ı˙) such that for any � 2 Rk with

j�j < ı there is a unique �˙.�/ 2 W ˙
t0

so that

�˙.�/ � w˙.��.�/; �/ D 0 and �˙.0/ D 0:

Now consider the functions z˙
�
.t/ D z˙.�˙.�/; �/.t/. The uniqueness, boundedness

and regularity respect to � of z˙
�
.t/, and thus of p˙

�
.t/ D p.t/Cz˙

�
.t/, are following from

the Implicit Function Theorem. Also we have that z˙
0 D 0 and since for j�j small enough

z˙
�
is close to z˙

0 D 0 we get that supt2J˙
jp˙

�
.t/ � p.t/j is arbitrarily small. This means

that the orbits parameterized by p˙
�
.t/ are close to the orbit 
 which is given by p.t/. So,

together the hyperbolicity of the equilibria p˙.�/ we get that limt!˙1 p˙
�
.t/ D p˙.�/.

Thus, for each � with j�j < ı, the solutions p˙
�
.t/ parameterize, respectively, orbits

in the stable manifold W s.pC.�// and in the unstable manifold W u.p�.�// such that

p˙
�
.t0/ 2 p.t0/C Yt0 D ˙t0 and

�1.�/ D p�
� .t0/ � pC

�
.t0/ D z�

� .t0/ � zC

�
.t0/ 2 E�

t0
:

This proves the first item of the lemma.

In order to prove the second item notice that if �1.�/ D 0 then a (homo)heteroclinic

orbit of (B.1) is given by

p�.t/ D

(
p�

� .t/ para t 6 t0;

pC

�
.t/ para t > t0:

where p˙
�
.t/ are the solutions in the first item. On the other hand, if p�.t/ is a solu-

tion parametrizing a (homo)heteroclinic connection such that p�.t0/ 2 ˙t0 with j�j



162 B. Continuation of connections

and jp�.t0/ � p.t0/j small enough, its restriction to the intervals J� D .�1; t0� and
JC D Œt0;1/ define a pair of solutions p˙

�
.t/ in the assumption of the first item. That

is, p˙
�
.t0/ 2 ˙t0 and p�

�
.t0/ � pC

�
.t0/ D 0 2 E�

t0
. This makes obvious the reciprocal

implication.

To conclude the proof of the second item we will consider a base fwi W i D 1 : : : cg of
E�

t0
D Es�

t0
\Eu�

t0
D ŒEs

t0
CEu

t0
�?. Then

�1.�/ D

cX
iD1

< wi ; �
1.�/ > wi :

Form (B.8) and having into account that < wi ; �
˙ >D 0, it follows

�1
i .�/

def
D< wi ; �

1.�/ >

D< wi ;P�.t0/

Z t0

�1

X.t0/X
�1.s/b.s; z�

� .s/; �/ ds >

C < wi ; .I � PC.t0//

Z 1

t0

X.t0/X
�1.s/b.s; zC

�
.s/; �/ ds >

Thus, �1
i .�/ is given byZ t0

�1

< ŒP�.t0/X.t0/X
�1.s/��wi ; b.s; z

�
� .s/; �/ ds > (B.11)

C

Z 1

t0

< Œ.I � PC.t0//X.t0/X
�1.s/��wi ; b.s; z

C

�
.s/; �/ ds > :

Thus, since P�.t0/
� W Rn

! Eu�
t0

and I � PC.t0/
� W Rn

! Es�
t0

we get that

ŒP�.t0/X.t0/X
�1.s/��wi D Œ.I � PC.t0//X.t0/X

�1.s/��wi D wi .s/:

Substituting in (B.11) we obtain that

�1
i .�/ �

Z t0

�1

< wi .s/; b.s; z
�
� .s/; �/ > ds

C

Z 1

t0

< wi .s/; b.s; z
C

�
.s/; �/ > ds D 0:

This concludes the second item and proves of the lemma.

According to the above statement the persistence of a (homo)heteroclinic orbit follows

from the analysis of the bifurcation equation �1.�/ D 0. The existence of non-zero

parameter values � 2 Rk such that �1.�/ D 0 follows from the Implicit Function

Theorem whenD��
1.0/ has rank c < k. Thus, the following result follows:
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TheoremB.2. Let �1.�/ D 0, with � 2 Rk , be the bifurcation equation of (B.1). If k > c
and rankD��

1.0/ D c, then (B.1) has a (homo)heteroclinic orbit for each parameter

value � on a regular manifold of dimension k � c with tangent subspace at � D 0 given by
the solutions of the system

kX
j D1

�1
ij �j D 0 i D 1; : : : ; c

where

�1
ij �

@�1
i

@�j

.0/ D

Z 1

�1

< wi .s/;D�j
g.0; p.s// > ds

for i D 1; : : : ; c and j D 1; : : : ; k.

Remark B.3. Note that, when k 6 c, � D 0 is the unique value of � 2 Rk for which there

is a (homo)heteroclinic orbit


� D fp�.t/ W Pp�.t/ D f .p�.t//C g.�; p�.t//; t 2 Rg

such that supt2R kp�.t/� p.t/k is small enough. If k > c the (homo)heteroclinic connec-
tion persists for parameter values on a manifold of codimension c. We say that there is
(homo)heteroclinic bifurcation of a non-degenerate orbit at � D 0 which is of codimen-
sion c.

B.3.1 Heteroclinic connections

In the case that 
 is a heteroclinic orbit (pC 6D p�/, under the assumption (B.3) we have

that the codimension of 
 is c D s� � sC C 1 where s˙ are the stability indices of p˙.

Since c > 0 implies that s� > sC � 1. and we have the following remark:

Remark B.4. Every non-degenerate heteroclinic orbit to hyperbolic equilibrium point of

stability indices s˙ with s� > sC � 1 persists under k-parameter perturbations for value
of the parameter on a manifold of dimension k � .s� � sC C 1/.

The bifurcation equation is �1.�/ D 0 where �1 W Rk
! Rc with c D s� � sC C1 6

k. Let wi .s/, i D 1; : : : ; c be linearly independent bounded solutions of the adjoint

variational equation Pw D �Df.p.t//�w. It follows from Theorem B.2 that under the

generic condition

rangeD�1.0/ D c; D�1.0/ D .�1
ij /iD1;:::;c; j D1;:::;k

where

�1
ij D

Z 1

�1

< wi .s/;D�j
g.p.s/; 0/ > ds

the tangent space at � D 0 to the .k � c/-dimensional manifold of parameters for which

there exist heteroclinic orbits continuation of the primary 
 is

�1
i1 �1 C � � � C �1

ik �k D 0 para i D 1; : : : ; c:
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B.3.2 Homoclinic connections

In the case that 
 is a homoclinic orbit (pC D p� D p/ then

dimE�
t0

D dimTp.t0/W
s.p/ \ Tp.t0/W

u.p/ D dimEt0 :

Under the assumption (B.3) we have that dimEt0 D 1 and thus the bifurcation is of

codimension c D 1. This means the following:

Remark B.5. Every non-degenerate homoclinic orbit to a hyperbolic equilibrium point

persists under k-parameter perturbations for value of the parameter on a hypersurface of
dimension k � 1.

In this case, the bifurcation equation is �1.�/ D 0 where �1 is an scalar function.

Let w.s/ be the unique bounded (linearly independent) solution of the adjoint variational
equation Pw D �Df.p.t//�w. Under the generic condition

r�1.0/ D .�1
�1
; : : : ; �1

�k
/ 6D 0

where

�1
�j

D

Z 1

�1

< w.s/;D�j
g.p.s/; 0/ > ds; for j D 1; : : : ; k,

the tangent hyperplane at � D 0 to the hypersurface of parameters for which there exist

homoclinic orbits continuation of the primary orbit 
 is �1
�1
�1 C � � � C �1

�k
�k D 0.

It is worth noting that all homoclinic orbits in low dimension (n 6 3) are non-degenerate.
However, this does not occur in dimension n > 4 where degenerate homoclinic orbits

could appeared. In the next section we will explain how to deal with this case.

B.4 Degenerate connections

We study the persistence of connections under the hypothesis: - The (homo)heteroclinic

orbit 
 D fp.t/ W t 2 .�1;1/g is degenerate and of codimension c > 1.

The study of the persistence of a (homo)heteroclinic orbit under the hypothesis (B.4)

differs from the study of persistence under the assumption (B.3)mainly in the decomposition

of the cross section ˙t0 . Since the dimension of the space Et0 D Tp.t0/W
s.pC/ \

Tp.t0/W
u.p�/ is greater than one, we introduce the subspace Ut0 which is the orthogonal

complement to the vector field direction in Et0 . That is,

Et0 D spanff .p.t0//g?Ut0 :

Hence, we get the following decomposition:

Rn
D spanff .p.t0//g ˚ Ut0 ˚ W C

t0
˚W �

t0
˚E�

t0
: (B.12)
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˙t0

Ut0

W s
�

p�.u; �/.t0/

pC.u; �/.t0/

u

W u
�

uCE�
t0

Figure B.3: Degenerated (homo)heteroclinic connection.

As in decomposition (B.4), the spaces W ˙
t0

are the orthogonal complement of Et0 in the

tangent space to the stable and unstable manifold of pC and p� respectively. However,

the common tangent Ut0 provides that the dimension of

E�
t0

D ŒEs
t0

CEu
t0
�? D Œspanff .p.t0//g ˚ Ut0 ˚ W C

t0
˚W �

t0
�?

increases with respect to the dimension of its analog in decomposition (B.4). In short, we

will consider as cross section to 
 at p.t0/ the following:

˙t0 D p.t0/C ff .p.t0//g
?

D p.t0/C ŒUt0 ˚W C
t0

˚W �
t0

˚E�
t0
�:

The following result is similar to Lemma B.1. We provide a sketch of the proof. To see

more details we refer to Knobloch (1997) and Knobloch (2004, Lem. 2.1.2).

Lemma B.6. There is ı > 0 such that for every u 2 Ut0 , � 2 Rk with juj, j�j < ı,

1. there exists a unique pair of solutions pC.u; �/.t/ and p�.u; �/.t/ of (B.1) parame-
terizing orbits onW s.pC.�// andW

u.p�.�//, respectively, such thatp
˙.u; �/.t0/ 2

˙t0 and

�1.u; �/ D p�.u; �/.t0/ � pC.u; �/.t0/ 2 E�
t0
:

Writing the solutions as p˙.u; �/.t/ D p.t/ C z˙.u; �/.t/, then z˙.u; �/.�/ are,
respectively, forward and backward bounded solutions of the equation (B.2). They

depend regularly on u an � and the functions z˙.0; 0 are identically zero.
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2. for " > 0 small enough, there exists a (homo)heteroclinic solution p.u; �/.t/ such
that

jp.u; �/.t0/ � p.t0/j < " if and only if �
1.u; �/ D 0.

That is, the components �1
i .u; �/ of the vector �1.u; �/ in a basis fwi W i D

1; : : : ; cg of E�
t0
satisfy

�1
i .u; �/ �

Z t0

�1

< wi .s/; b.s; z
�.u; �/.s/; �/ > ds

C

Z 1

t0

< wi .s/; b.s; z
C.u; �/.s/; �/ > ds D 0:

being wi .s/ D X�1.s/�X.t0/
�wi for i D 1; : : : ; c bounded linearly independent

solutions of the adjoint variational equation. Moreover, if R denotes the projection

on Ut0 according to decomposition (B.12) then R.p˙.u; �/.t0/ � p.t0// D u.

Proof. The decomposition (B.12) of the transversal section ˙t0 forces to write

PC.t0/z
C.t0/ D uC

C �C
2 Ut0 ˚W C

t0

and

.I � P�.t0//z
�.t0/ D u�

C ��
2 Ut0 ˚W �

t0
:

Then, (B.7) is written as z˙ D H ˙.z˙; u˙ C �˙; �/ where

H ˙
W C 0

a .J˙;R
n/ � .Ut0 ˚W ˙

t0
/ � Rk

! C 0
a .J˙;R

n/:

The rest of the proof can be reformulated in terms of the Liapunov–Schmidt reduction, for

the equation

F.uC
C �C; u�

C ��; zC; z�; �/ D 0 (B.13)

defines from .Ut0 ˚W C
t0
/�.Ut0 ˚W �

t0
/�C 0

a .JC;R
n/�C 0

a .J�;R
n/�Rk toC 0

a .JC;R
n/�

C 0
a .J�;R

n/ � Yt0 by means of�
zC

� H C.uC
C �C; zC; �/; z�

� H �.u�
C ��; z�; �/; z�.t0/ � zC.t0/

�
:

Since F.0/ D 0 and the restriction of F to � D 0 is a non-linear Fredholm operator at

.uC C �C; u� C ��; zC; z�/ D 0, the persistence of the (homo)heteroclinic connection,

given by (B.13) is reduced to the bifurcation equation �1.u; �/ D 0.

From the above lemma, it follows that the bifurcation equation �1.u; �/ D 0 depends
on the space Ut0 . Because of this dependency, the analysis of persistence of (homo)hetero-

clinic connections in the parameter space is not followed as in Theorem B.2.
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p.t0/C Ut0

p.t0/CW C
t0

p.t0/CW �
t0

W s
�

W u
�

U�

Figure B.4: Degenerate (homo)heteroclinic orbit.

In Figure B.4 we represent p.t0/CŒUt0 ˚W C
t0

˚W �
t0
�, whereUt0 ˚W ˙

t0
are the tangent

spaces ofW s.pC/\˙t0 andW u.p�/\˙t0 , respectively. ByW
s

�
andW u

�
we denote the

invariant manifolds W s.pC.�// \˙t0 and W s.p�.�// \˙t0 , which meet transversally

on p.t0/C ŒUt0 ˚W C
t0

˚W �
t0
� along the manifold U� with dimU� D dimUt0 . Notice

that fixed Ou 2 Ut0 , at the section u D Ou we have the same picture as in Figure B.2. In

order to incorporate the space E�
t0
in the picture, in Figure B.3 is represented the particular

case with Ut0 D W C
t0

D W �
t0

and dimUt0 D 1. In this case dimE�
t0

D 2.

Remark B.7. Since b.t; 0; 0/ D Dzb.t; 0; 0/ D 0, from Lemma B.6 it follows that

�1.0; 0/ D 0 and Du�
1.0; 0/ D 0. This is the analytic description of the fact that

the stable and unstable manifolds of pC and p�, respectively, are tangent to the space Ut0 .

The dimension of this space measure the degree of degeneration, d.
/, of the (homo)hete-
roclinic orbit 
 :

d.
/ D dimTp.t0/W
s.pC/ \ Tp.t0/W

u.p�/ D 1C dimUt0 :

Now, if .u; �/ 2 U � Rk is the solution of the bifurcation equation �1.u; �/ D 0, the
degree of degeneration of the corresponding orbit 
.u; �/ follows also from the bifurcation

equation (see Knobloch (2004, Lem. 5.1.2)) as

d.
.u; �// D 1C dimN .Du�
1.u; �//:
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