HYDRAULIC REPORT

PROJECT ROUTE:

Interstate 55 (Stevenson Expressway)

SECTION:

LIMITS:

Station 618+00 to Station 630+00

WATERWAY CROSSING:

Flag Creek

MUNICIPALITY/COUNTY:

Indian Head Park/Cook County

JOB NUMBER:

P-91-762-10

EXISTING STRUCTURE NO.:

016-0003

PROPOSED STRUCTURE NO.:

n/a

Prepared for:

Illinois Department of Transportation

201 West Center Court Schaumburg, Illinois 6019-1096 Job No. P-91-762-10

Prepared by:

Christopher B. Burke Engineering, Ltd.

9575 West Higgins Road Rosemont, IL 60018 847-823-0500

CBBEL Project No. 11-203.00001

FINAL February 2017

Ilene A. Dailey, PE, CFM idailey@cbbel.com

Illinois Registered Professional Engineer

No. 062-047420

TABLE OF CONTENTS

Section 1 **NARRATIVE Project Description** a. Description of Existing Structure and Floodplain b. C. Field Observations d. Historical Observation/Records Other Studies & Affected Agencies e. f. **Datum Correlation** Sensitive Flood Receptors g. Hydrologic Methodology h. i. Hydraulic Methodology j. Summary of FIS Model and Duplicate Model k. Summary of Existing Hydraulic Analyses Summary of Natural Hydraulic Analyses I. **Proposed Structure Analysis** m. Scour Analysis n. Compensatory Storage Ο. Permit Requirements p. Freeboard/Clearance q. Conclusion r. Section 2 WATERWAY INFORMATION TABLE AND SUPPORTING CALCULATIONS Section 3 HYDRAULIC REPORT DATA SHEETS Section 4 **LOCATION MAP** USGS HYDROLOGIC INVESTIGATIONS ATLAS REGULATORY FLOOD MAPS Section 5 **PHOTOGRAPHS** Section 6 **HYDROLOGY** Section 7 STREAMBED PROFILE Section 8 ROADWAY PLAN AND PROFILE CROSS SECTION LOCATION MAP AND STREAM CROSS SECTION PLOTS Section 9 FACING DOWNSTREAM

BRIDGE CROSS SECTION PLOTS - EXISTING CONDITIONS

Section 10 BRIDGE LAYOUT / PLAN DRAWING PLOTS

Section 11

Section 12 BRIDGE CROSS SECTION PLOTS - PROPOSED CONDITIONS Section 13 HYDRAULIC ANALYSIS a. BASELINE (FEMA) WSP-2 MODEL b. FIS DUPLICATE c. EXISTING CONDITIONS d. NATURAL CONDITIONS e. PROPOSED CONDITIONS Section 14 SCOUR ANALYSIS Section 15 RIPRAP SIZING Section 16 PERMIT SUMMARY FORM (DISTRICT 1) - RELATED EXHIBITS AND **CALCULATIONS** Section 17 COMPENSATORY STORAGE Section 18 SURVEY NOTES Section 19 EWSE DATA Section 20 CORRESPONDENCE NOTES AND a. EXCEPRTS FROM 2011 HLR HYDRAULIC REPORT b. ISWS NOTES

c. STANTEC 2016 EDP

Section 21 CD

Tao 1

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 1
	NARRATIVE
S B	

SECTION 1

NARRATIVE

A. PROJECT DESCRIPTION

The Illinois Department of Transportation (IDOT) is currently preparing a Preliminary Engineering and Environmental Study (Phase 1) for the Interstate 55 (I-55) Managed Lanes Project. The project study area includes the I-55 corridor (Stevenson Expressway) from I-355 to I-90/94 at the east.

This project is proposed to add one managed lane in each direction within the existing median of the expressway. The term 'Managed Lanes' includes the implementation of travel lanes for High Occupancy Vehicle (HOV), High Occupancy Toll (HOT), Congestion Pricing, as well as other concepts to improve the overall flow of traffic. This project has been identified in the Chicago Metropolitan Area for Planning (CMAP) Go To 2040 Plan as a priority project.

This report requested by IDOT is to evaluate an existing bridge carrying I-55 over Flag Creek and Wolf Road, Structure Number 016-0003. The bridge is located in Indian Head Park, Cook County, Illinois. The subject 5-span steel bridge is located between South County Line Road and I-294. The total drainage area to the bridge is approximately 13.65 square miles. Refer to Exhibit 4.1 for the project location shown on the USGS Quadrangle Map.

B. DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN

SITE DESCRIPTION

The upstream limit of the study is located approximately 2675' northwest of the I-55 crossing. Flag Creek flows southerly through an open vegetated area in Indian Head Park in Cook County. The Creek crosses beneath the Joliet Road bridge, Structure Number 016-0393, located 1980 feet upstream of the I-55 crossing. Flag Creek then crosses under the 70th Place single-span bridge, Structure Number 016-1063, located 40 feet upstream of the I-55 bridge. Refer to Exhibit 4.1 for the general project location.

Downstream of I-55, Flag Creek jogs to the southeast. 270 feet downstream of the I-55 crossing, Flag Creek crosses under the 2-span bridge carrying Wolf Road, Structure Number 016-3016. After passing under Wolf Road, Flag Creek continues flowing southeast. Approximately 860 feet southeast of the I-55 crossing Flag Creek crosses under 72nd Street via double arch culverts. The study limits extend 1860 feet downstream of the I-55 culvert.

STRUCTURE DESCRIPTION

The existing bridge structure carrying I-55 (Stevenson Expressway) over Flag Creek and Wolf Road is located 5,350 feet northeast of County Line Road and 1,200 feet west of I-294. It was originally constructed as part of F.A.I. Route 55 Section 0202-602-HB, Project I-55-7(64)272, dated 1962. The bridge was reconstructed as part of FAI Route 55 Project NHI-55-7(187)275, dated 1995. Historic plan excerpts are provided in Section 8. The structure is noted as IDOT structure number 016-0003.

The structure is a five-span steel bridge crossing both Flag Creek and Wolf Road, which is parallel to the Creek in this area. It crosses with no skew relative to the expressway or the Creek. According to the survey the structure width is 143' out to out deck. The length is 276.5' face to face and the span lengths from west to east are 39.3' - 67.5' - 63.4' - 67.6' - 38.7'. There are concrete slopewalls at 2H:1V slope under the bridge as shown on the Bridge Cross Section Plots in Section 11.

Lin Engineering performed an inspection of the current conditions for the existing bridge in the fall of 2015. The report notes that the bridge is in overall good condition but may need rehabilitation for the substructure and expansion joints, and is suitable for reuse with minor repairs. This inspection report is to be found in the project report.

FLOODPLAIN DESCRIPTION

At the I-55 crossing, Flag Creek drains approximately 13.65 square miles of area that is comprised of a mix of residential and commercial properties. The Flag Creek channel is found to be between 75' and 125' in width and consists of a consistent cross section throughout the study limits. The channel consists of a silty bottom with trees and brush on the banks. The floodplain near the crossing includes the Wolf Road ROW, and beyond that is typically mowed grass that extends into industrial properties and residential yards.

There is a mapped Federal Emergency Management Agency (FEMA) floodplain and floodway for Flag Creek, extending upstream and downstream of the subject crossing. The Flag Creek floodplain is mapped as Zone AE by FEMA with defined base flood elevations. The Flood Insurance Rate Map (FIRM) Panel No. 17031C0469J for Cook County, Illinois and Incorporated Areas, effective August 19, 2008 is included in Section 4 as Exhibit 4.4

C. FIELD OBSERVATIONS

The Flag Creek field survey was performed by Lin Engineering in November 2012. CBBEL made a follow up site visit in November 2013. Upstream of the crossing under I-55, the overbank condition of the creek is mowed grass and the channel banks are lined with trees and brush. The streambed consists of exposed dirt, observed as clean and silty. Downstream of the

crossing, the creek consists of a clean, rocky channel also lined with trees and brush, with the overbank again as mowed grass. Approximately 950 feet downstream of the crossing, the floodplain turns into woods with no discernible limit for the edge of the floodplain. Photographs are included in Section 5.

D. HISTORICAL OBSERVATIONS/RECORDS

IDOT provided pavement flooding records that indicate flooding on the I-55 pavement at Wolf Road occurred on June 7, 1993. The pavement was listed as passable. There is no indication of the cause of the flooding, and based on gage data discussed below, Flag Creek is not believed to be the source of this flooding. Flooding records are provided in Section 20.

The 1964 Hydrologic Investigations Atlas HA-86 (Hinsdale), prepared by the United States Geological Survey (USGS) in cooperation with the Northeastern Illinois Metropolitan Area Planning Commission, is plotted on a 1953 USGS base map that predates the construction of I-55 and I-294. The portion of HA-86 showing the project area is provided as Exhibit 4.2, and the 1980 USGS Quadrangle map is provided as Exhibit 4.1. By comparing the two maps, the relocation of Flag Creek can be observed. Previously, Flag Creek flowed easterly through the existing twin box culvert structure under Wolf Road located north of I-55. Now, that Wolf Road culvert structure serves only to provide a local outlet toward relocated Flag Creek to the west.

The HA includes only the extreme storm events from October 1954, July 1957, and September 1961 with only the October 1954 and September 1961 floods mapped on the Flag Creek flood profile as shown on Exhibit 4.3. The flood profile in the vicinity of the I-55 crossing indicates a record storm level of approximately 636.0 NGVD 29 for the October 1954 event at the upstream Joliet Road (US Highway 66) crossing. The water surface elevation at the approximate location of I-55 is lower, at 634.0 NGVD 29 (= 633.7 NAVD 88). It is clear on the HA flood profile that between the 1954 and 1961 the channel location changed as compared to the roadways, with "End of channel improvement" noted downstream of Wolf Road on the 1961 profile.

This 1954 high water elevation of approximately 633.7 is well below the low beam elevation of the subject bridge (low beam = 646.33') and low pavement elevation in the floodplain of 646.34', all NAVD 88.

There are no current and functioning stream gages located in the project area. Stream gage USGS 05533000 FLAG CREEK NEAR WILLOW SPRINGS, IL is identified to be the only gage found on Flag Creek and is approximately 2 river miles downstream of the project vicinity. The drainage area at the gage is 16.5 square miles, whereas the drainage area at the project location is 13.65 square miles. The gage was established in 1949 and is currently active. The gage datum is 606.36 (NGVD29) and the peak gage height of 13.71 feet was recorded on September 14, 1961. The projected peak water surface elevation is therefore 606.36 + 13.71 = 620.07 and corresponds with a discharge of 2,680 cfs. Based on the USGS Gage Peak Streamflow Data

provided in Section 6, the June 7, 1993 flow in Flag Creek was only 791 cfs, which is well below the peak events of many other years.

E. OTHER STUDIES & AFFECTED AGENCIES

According to Federal Emergency Management Agency (FEMA) FIRM 17031C0469J for Cook County and Incorporated Areas, effective August 19, 2008, Flag Creek is mapped as Zone AE Special Flood Hazard Area (SFHA) with defined Base Flood Elevations at the proposed project site. The FIRM has been provided as Exhibit 4-3 in Section 4.

FEMA also retains a Flood Insurance Study, FIS 17031CV001G for Cook County and Incorporated Areas, revised August 19, 2008. Referring to the Cross Section Location Map in Section 9, five FIS cross sections were plotted off of the FIRM portraying their respective locations (cross sections A, H, I, J, and K).

In reviewing notes from Illinois State Water Survey (ISWS), it is believed that the effective regulatory model encompassing Cross Sections H-I is missing. A LOMR was completed and made effective that impacted the reach between cross sections H-I, unknown to what extent. Please refer to Section 20 for notes from the ISWS on this issue.

It should be noted that the WSP-2 model titled "MAIN STEM OF FLAGG CREEK" dated 22 Feb 80, matches the results of the published elevations for cross sections H and J. Regulatory cross section I does not correspond any cross section found in the WSP-2 model. The WSP-2 model does not include the 72nd Street, Wolf Road, I-55, or Joliet Road structures. It was found that that there are reach length issues with the WSP-2 model. The lengths found in the 1980 model do not match up with their published locations based on current stream alignment. For example, the total length from FIS cross section K (FC 039) to FIS cross section H (FC 033) in the WSP-2 is 1810', while per the FIRM, it is approximately 2860'. Therefore, the location of WSP-2 cross section Z cannot be accurately determined, as shown on the Google Earth exhibit at the end of Section 13.A. (The published locations are found in Section 4, and the modeled locations can be found in Section 13.A.) Since the flows and elevations found in the 1980 WSP-2 model match those of the published information at FIS cross section H, it is still utilized as the source of starting water surface elevations and flows.

In 2008 CBBEL submitted the 71st St. over Flag Creek Hydraulic Report to the Village of Burr Ridge, containing a full hydrologic and hydraulic analysis for the proposed 71st St. Bridge over Flag Creek. As part of this study CBBEL requested the current regulatory model from FEMA, and FEMA was unable to locate the regulatory model. 71st St. runs parallel to I-55 and is located approximately 75 ft. south (downstream) of the downstream face of the I-55 bridge over Flag Creek. It should be noted that the proposed 71st Street bridge has not been constructed as of the date of this report. The majority of the 2008 report provides redundant information that

has been updated as part of this current report, therefore the 2008 report has only been referenced and excerpts are not provided.

Another hydraulic report prepared by Hampton, Lenzini and Renwick Inc. (HLR) was completed in 2011 for the Joliet Road bridge over Flag Creek. This report performed detailed hydraulic analysis from just downstream of the 70th Place bridge to downstream of the I-294 crossing over Flag Creek, and was completed in NAVD 88. HLR's cross sections were inserted into the hydraulic analysis of I-55 over Flag Creek, in lieu of additional upstream survey. Since the proposed project has yet to be constructed, the HLR existing conditions were used. The HLR study appears to have utilized the FIS profiles near WSP-2 cross section X for their starting water surface elevations. The CBBEL model starts farther downstream, adding the missing bridges and correcting reach lengths. Once these corrections are included, the water surface profiles in the current CBBEL study are higher than those in the HLR report. See the 100-year comparison table at the beginning of Section 13 for the relative differences in base flood elevations.

F. DATUM CORRELATION

A stream survey was conducted by Lin Engineering with cross sections taken along Flag Creek. The Cross Section Location Map found in Section 9 shows the cross section locations and topography along the entire length of the hydraulic modeling. The North American Vertical Datum 1988 (NAVD 88) is the basis for the survey. Because the FEMA regulatory model used the National Geodetic Vertical Datum 1929 (NGVD 29), all cross sections transferred into the HEC-RAS model were converted to NAVD 88 by subtracting 0.28' from the given WSP-2 elevations. Supporting documentation from the NOAA VERTCON website is provided in Section 18. Since the 2011 HLR Study was done in NAVD 88 no additional conversion was needed.

G. SENSITIVE FLOOD RECEPTORS

Nine (9) potential flood receptors were identified upstream of I-55, as shown on the Cross Section Location Map in Section 9. The structure locations and low opening elevations taken from the 2011 HLR study are listed on Table G-1 below.

Sensitive Flood Receptor #	Low Opening Elevation	
1	644.16	
2	639.10	
3 *	635.62	
4	638.97	
5 *	635.71	
6	638.55	
7 *	634.50	

8	637.46	
9 *	633.69	

Table G-1 Sensitive Flood Receptors (*-indicates structure is located within the modeled floodplain)

Four of the subject potential flood receptors are located within the floodplain limits by elevation, as indicated by asterisks. The remaining five potential flood receptors are located just outside the floodplain limits.

H. HYDROLOGIC METHODOLOGY

This section summarizes the hydrologic methodology used to determine the peak flow rates for Flag Creek at the location of the I-55 crossing. The Flood Insurance Study (FIS) of Cook County, Illinois and Incorporated Areas, 17031CV001G and matching WSP-2 model were used to as the source of the peak flow rates for the 13.65 square mile watershed. The summary of these flow rates is found in Table H-1. The 1995 bridge reconstruction plans provided in Section 10 include a WIT showing flows that match the cross section 'X' flows listed below from the regulatory WSP-2 model, which is located at the downstream face of the I-55 bridge over Flag Creek. While the FIS model shows the change in flows downstream of I-55 bridge, the CBBEL model approach contains the change in flows upstream of the bridge. This approach is conservative and appropriate because of the tributary area entering Flag Creek just upstream of I-55 via the twin 10' (W) x 5' (H) box culvert structure under Wolf Road. The Stantec 2016 Existing Drainage Plan (EDP) sheet provided in Section 20.C shows the drainage flow paths in this area.

Location and Analysis Method	10-year Peak Flow (cfs)	50-year Peak Flow (cfs)	100-year Peak Flow (cfs)	500-year Peak Flow (cfs)
Flag Creek at Wolf Road, from FIS Summary of Discharges	1,260	2,000	2,400	3,350
Flag Creek discharge at cross section 'X', from Regulatory WSP-2	1,310	2,100	2,500	3,550

Table H-1 Peak Flow Summary

I. HYDRAULIC METHODOLOGY

Along with the issues discussed in Section E, the WSP-2 that corresponds to the FIS model does not include the existing subject structure over Flag Creek. Since there are multiple issues with the regulatory model, it is recommended that only one design WIT be prepared for this report.

The starting water surface elevations were taken from FIS cross section H (WSP-2 cross section FC 033). This FIS cross section is the included in the HEC-RAS model as the downstream cross section the model. The paper input and output of this WSP-2 is provided in Section 13.A.

Location and Analysis Method	10-year WSE (ft)	50-year WSE (ft)	100-year WSE (ft)	500-year WSE (ft)
FIS Cross Section "H", WSP-2 Cross Section FC033	628.52	629.02	629.42	630.22

Table I-1 Starting Water Surface Elevation Summary (NAVD 88)

Manning's n-values were obtained from the FIS cross sections. Manning's n-values for the additional Flag Creek cross sections were taken from the 2011 HLR report. These n-values were re-verified using field notes, aerial photography, and photographs. Base values for 'n' were adjusted using the FHWA methodology presented in Chapter 5 of the IDOT Drainage Manual, as follows:

$$n = (n_b + n_1 + n_2 + n_3 + n_4)*m.$$

Cobble Lined Channel

The cobble lined channel consists of a mixture of silt and light rocks, and has minor irregularities, alternates occasionally, minor obstructions, small vegetation, and minor meandering. Therefore,

$$n = (0.038 + 0.005 + 0.005 + 0.005 + 0.01)*(1) = 0.063$$

Heavy Vegetation

The floodplain with heavy vegetation consists of a mixture of silt and light rocks, and has minor irregularities, alternates occasionally, minor obstructions, large vegetation, and minor meandering. Therefore,

$$n = (0.038 + 0.005 + 0.0 + 0.005 + 0.032)*(1) = 0.080$$

Paved Surface

The floodplain that consists of a paved surface, no overgrowth, has no irregularity, negligible obstructions, and no vegetation. Therefore,

$$n = (0.013 + 0.00 + 0.000 + 0.000 + 0.000)*(1) = 0.013$$

Open Area with Dense Grass Cover

The floodplain with dense grass consists of a mixture of silt ground, and has minor irregularities, alternates occasionally, negligible obstructions, medium vegetation, and minor meandering. Therefore,

$$n = (0.025 + 0.0025 + 0.0 + 0.0025 + 0.02)*(1) = 0.050$$

Open Area with Light Grass Cover

The floodplain with dense grass consists of a mixture of silt ground, and has minor irregularities, alternates occasionally, negligible obstructions, small vegetation, and minor meandering. Therefore,

$$n = (0.018 + 0.001 + 0.0 + 0.001 + 0.01)*(1) = 0.030$$

Unpaved Commercial Property

The floodplain with unpaved surface, and has minor irregularities, alternates occasionally, appreciable obstructions, small vegetation, and minor meandering. Therefore,

$$n = (0.03 + 0.005 + 0.0 + 0.03 + 0.005)*(1) = 0.070$$

A comparison of the Manning's n-values at the FIS cross sections for each model is provided near the front of Section 13.

Contraction and expansion ratios and coefficients were determined in accordance with the IDOT Drainage Manual and HEC-RAS Hydraulic Reference Manual. Supporting documentation for the expansion ratio and ineffective area limits are provided at the front of Section 13.

J. SUMMARY OF FIS MODEL AND DUPLICATE MODEL

For comparison's sake, the WSP-2 with the starting water surface elevations and flows was input into HEC-RAS. With the known issues for this model, including missing LOMR data, missing structures, and reach length discrepancies as discussed in Section E above, it was anticipated to have issues duplicating the results of the WSP-2 model. The hardcopy of the FEMA WSP-2 model is provided in Section 13.A. The HEC-RAS plan titled FIS 29 is the exact duplicate of the WSP-2 model. This duplicate model's results did not match the FEMA results, and were greater than 1.0' higher than that of the paper WSP-2 model. To adjust for this discrepancy, a plan titled Mod FIS 29 was created, wherein the Manning's n-values were modified to account for the WSEL differences. By adjusting the Manning's n-values for the cross sections, the model was calibrated to match the WSP-2 water surface elevations within 0.20' for the majority of cross sections and storms. These models were prepared for comparison purposes only. The input/output and a summary table of differences are provided in Section 13.B, for the modified version only.

The Design Existing model results are higher than the published FIS results due to the addition of the 72nd Street, Wolf Road, I-55, and Joliet Road structures and the correction of the reach lengths. Summary tables comparing the results of the WSP-2 vs. the HEC-RAS converted vs. the HEC-RAS modified vs. the HEC-RAS existing conditions (including surveyed cross sections) are provided at the beginning of Section 13. Considering that the Existing model results in higher flood profiles, and corrects the issues with the regulatory model cited above, the use of the Existing model for design and future permitting is justified.

K. SUMMARY OF EXISTING CONDITIONS HYDRAULIC ANALYSIS

A new HEC-RAS plan, titled <u>Existing</u>, was created to represent exiting conditions at the I-55 crossing over Flag Creek. The existing conditions hydraulic analysis consists of surveyed cross sections, along with additional cross sections taken from the 2011 HLR Joliet Road over Flag Creek Hydraulic Report and FIS cross sections whose location can be verified. All existing structures within the study limits, both upstream and downstream, are included in the existing conditions model.

Proper ineffective areas were added into this existing plan based on contraction/expansion cones from each structure. Due to the close proximity between structures, many of these contraction/expansion cones intersect and overlap with each other. Also due to the variations in ineffective elevations and creek geometry, there are transitions in the effective areas for cross sections. In XS 10 and 11 on the east (left) side, the Wolf Road roadside ditch drains to the north. This ditch begins near the Wolf Road intersection with 71st Street/Ramp at approximate elevation 632 and flows north, in the opposite direction of Flag Creek flow. Therefore, the flow area in the ditch below elevation 632 is conservatively considered as ineffective. Also, the low area associated with the unnamed tributary entering Flag Creek upstream of I-55 from the east, and the effects of the Creek curvature are reflected by a tighter contraction cone than the standard 1:1 ratio on the left. In addition, the contraction/expansion cones for both 70th Place and I-55 apply at separate elevations.

The Cross Section Location Map can be found in Section 9 and presents the location of all cross sections, existing culverts, and existing bridges used in the model. The high water elevation for the Waterway Information Table (WIT) was obtained from the existing conditions plan in the HEC-RAS hydraulic model. The WIT and supporting calculations are provided in Section 2. Input/output for this existing plan are provided in Section 13.C.

The original 1963 Project I-55-7(62)272 plans show a proposed 48" RCP culvert crossing under I-55 at Station 1144+25. This culvert was not found by the surveyors, nor during Stantec field visits. Drainage for the area is provided by the existing twin box culverts under Wolf Road to the west as shown on the EDP in Section 20.C. The 72" x 44" CMPA culvert located under Ramp D

located south of I-55 is buried and proposed to be cleaned. The CMPA culvert is in a backwater area and provides no conveyance of Flagg Creek overflow downstream of I-55.

L. SUMMARY OF NATURAL CONDITIONS HYDRAULIC ANALYSIS

A HEC-RAS plan, titled <u>Natural</u>, was created to reflect the natural profile of the stream. The geometry information for the bridge carrying I-55 was removed. Because Flag Creek was relocated to its current position in the original design of I-55, the highway embankment was left in place as the 'natural' condition for the creek. The contraction and expansion coefficients and ineffective areas were verified and the natural water surface elevations determined for the Waterway Information Table. Input/output for this natural plan are provided in Section 13.D.

M. PROPOSED STRUCTURE ANALYSIS

There are no proposed improvements to the existing bridge as part of this project. Minor repair including rehabilitation of the substructure and expansion joints may be performed, which will not impact the hydraulics of the existing structure. See the Technical Memorandum in Section 20 for details of the bridge inspection and recommended repairs.

N. SCOUR ANALYSIS

Scour analysis for the existing bridge is included in Section 14. As shown on the historic plans provided in Section 10, both abutments are protected by concrete-lined spillthrough slopewalls. In addition, the east bank of the channel is also protected by a concrete slopewall. Therefore, the abutments are not subject to scour.

Contraction and pier scour calculations have been performed using spreadsheets incorporating the formulas from the current 2012 5th Edition of HEC-18. Only Pier 3 is within the channel. The eastern piers, Piers 1 and 2, are in the overbank and partially protected from channel scour by the channel slopewall and adjacent roadway pavements. However, in accordance with conservative design per the IDOT Drainage Manual, the scour depths for all piers are based on channel flows and velocities. The western pier, Pier 4, is embedded within the concrete slopewall and not subject to scour. Scour results are shown below in Table N-1.

	East (Left) Abutment	Pier 1	Pier 2	Pier 3	Pier 4	West (Right) Abutment
100						
Year	-	5.13	5.13	5.13	-	-
500						
Year	-	6.89	6.89	6.89	-	-

Note: Pier Scour includes contraction scour at each pier (0.83' for the 100-year event and 2.14' for the 500-year event). Pier 4 is embedded in concrete slopewall.

Table N-1 Scour Depth Summary

The calculations show that the total scour depth for the major storm events is shallow; and the concrete slopewalls minimize the potential for scour. Scour calculations and input values from HEC-RAS are provided in Section 14.

O. COMPENSATORY STORAGE

Section 1-302.03 of the IDOT Drainage Manual states that compensatory storage "facilities shall be provided whenever fill in the floodway is proposed and the hydraulic analysis indicates that there is a significant change in flood stage and/or velocity that will cause or contribute to flood damage." There is no work proposed below the 100-year elevation that would require compensatory storage. No compensatory storage is required.

P. IDNR-OWR FLOODWAY CONSTRUCTION PERMIT REQUIREMENTS

Flag Creek has regulatory floodway. Based on the current scope of the project there are no proposed modifications to the existing structure nor is there any proposed work below the 100-year floodplain other than minor repairs. Under the Part 3708 Rules, Section 3708.30 b), repair or maintenance of structures in existence as of November 18, 1987 are specifically exempt from requiring a permit. Based on the proposed scope of the project no permit is required.

Q. FREEBOARD/CLEARANCE

The IDOT Drainage Manual dated July 2011 states that a flood frequency of 50 year should be used for design purposes. The existing crossing was analyzed for the 50 year storm event, and checked for the 10 year, 100 year, and 500 year storm events. The Design Headwater Elevation (HWE) is based on the 50-year event and is shown on the Waterway Information Table located in Section 2.

Freeboard is calculated as the distance from the Existing Design HWE to the lowest edge of pavement of the roadway within the floodplain. The IDOT freeboard policy requires a minimum

freeboard distance of 3 feet for the 50-year storm event. The existing structure provides 11.84 feet of freeboard for the 50-year event, meeting the IDOT freeboard requirement.

Clearance is calculated as the distance from the Natural Design HWE to the low beam elevation within the floodplain. The IDOT clearance policy requires that the minimum clearance must be 2 feet for the 50-year storm event, and also the all-time WSE must be at or below the low beam elevation of the bridge. The existing structure provides 12.51 feet of clearance between the Natural Design HWE and the low beam elevation. The all-time WSE at the bridge is approximately 634.0 NGVD 29 (633.7 NAVD 88) recorded in October 1954, approximately 12.63 feet below the low beam elevation. Both of these findings demonstrate that the existing bridge meets the IDOT requirements for clearance.

R. CONCLUSION

The Hydraulic analysis has determined that the existing I-55 five-span bridge over Flag Creek meets IDOT Drainage Manual criteria for freeboard and clearance. There are no proposed modifications to this structure, other than minor repair or rehabilitation. No floodway construction permit and no compensatory storage volume are required for this project.

Tab 2

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 2
	WATERWAY INFORMATION TABLE AND SUPPORTING CALCULATIONS
	AND SUFF CICTING CALCULATIONS
_	
gB	

DESIGN Bridge Waterway Information Table

at Sta.

3077+00 (NB BL)

2-Yr. Flow Rate = 292 ft³/s

PROPOSED STRUCTURE

Route:	Interstate 55 (Stevenson Expressway)	Existing SN:	016-0003		
Waterway:	Flag Creek	Proposed SN:	-		
Section:		Prepared by:	EMB	Date:	9/28/2016
County:	Cook	Checked by:	IAD	Date:	9/28/2016

Existing Overtopping Elev. = 647.39

Drainage Area = 13.65 square miles Proposed Overtopping Elev. = N/A at Sta. N/A						,			
	Freq.	Discharge	Waterway Opening - ft ² N		Natural	Natural Head		- ft Headwater Elevation -	
Flood Event	Yr.	ft ³ /s	Existing	Proposed	H.W.E ft	Existing	Proposed	Existing	Proposed
_	10	1310	624	N/A	631.6	0.6	N/A	632.2	N/A
Design	50	2100	989	N/A	633.8	0.7	N/A	634.5	N/A
Base	100	2500	1122	N/A	634.5	0.8	N/A	635.3	N/A
Scour Design Check	500 ye	ar used as de	sign Check	N/A	-	-	N/A	-	N/A
Overtop Existing	>500	-	-	N/A	-	-	N/A	-	N/A
Overtop Proposed	>500	-	-	N/A	-	-	N/A	-	N/A
Max. Calc.	500	3550	1367	N/A	635.6	0.8	N/A	636.4	N/A

Datum: NAVD 88

All-Time H.W.E. & Date: 633.7 ft. October 1954 (NAVD 88)

Surveyed Normal Water Level: 624.11 ft. 11-30-2012

EXISTING STRUCTURE

5- Span Steel Bridge
Width= 143' Length=276.5' Face to Face
5 @ 39.3' - 67.5' - 63.4' - 67.6 - 38.7'
646.33 @ 5073+61 (SB BL)
0 (relative to road)
12.51'
621.8' (u/s) 623.3' (d/s)
646.34 @ 5079+00 (SB BL)
11.84'
- (u/s) - (d/s)

Type: There are no proposed modifications to the

Length Of Span: existing structure. # Spans: -Low Chord: -

10-Year Velocity through Existing Structure = 2 ft/s

10-Year Velocity through Proposed Structure = - ft/s

Skew: - (relative to road) Clearance: -

Bridge Flow Line: - (u/s)

Low E.O.P: -Freeboard: -

NOTE: THERE ARE NO PROPOSED MODFICATIONS TO THE EXISTING STRUCTURE.

Printed 9/28/2016 D1 PD0034 (Rev. 01/29/15)

Route: I-55 Computed: EMB Date: 9/28/2016
Waterway: Flag Creek

Checked: IAD Date: 9/28/2016

Calculate Created Head

	Natural I	H.W.E. (ft) ⁽¹⁾	Greatest Created Head (ft) ⁽²⁾ Upstream of Culvert		
Frequency	U/S Face of Structure	Approach Sect. (5' U/S)	From Summary Tables Comparing Natural WSE to Existing WSE	Existing Headwater Elevation (ft) ⁽²⁾ @ Upstream Face	
10-year	631.6	631.6	0.6	632.2	
50-year	633.8	633.8	0.7	634.5	
100-year	634.5	634.5	0.8	635.3	
500-year	635.6	635.6	0.8	636.4	

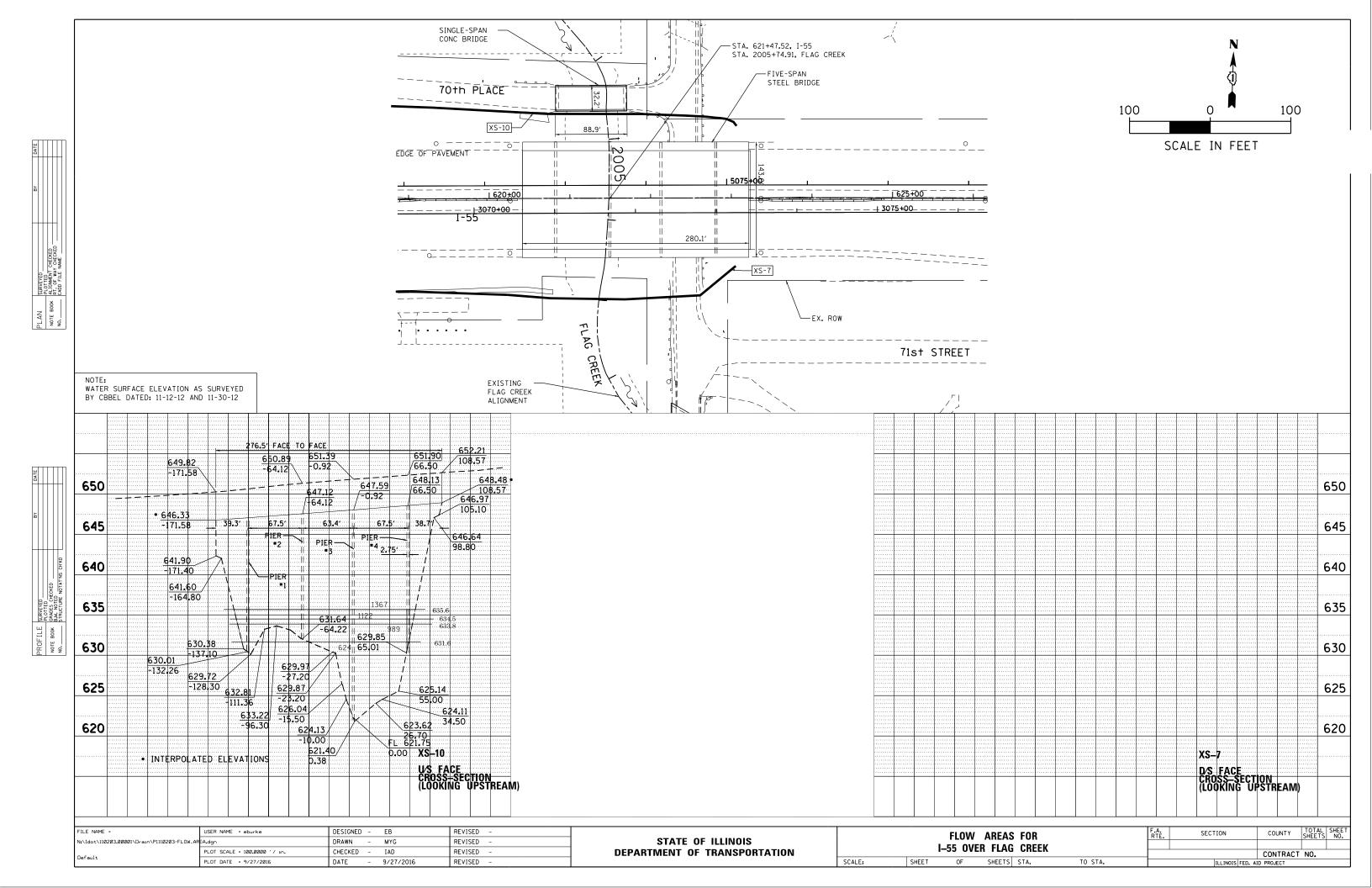
⁽¹⁾ The natural highwater elevation is the water surface elevation at the upstream side of the crossing as modeled in the stream natural condition, without the structure.

CALCULATE FREEBOARD AND CLEARANCE

CALCOLATE TREEDOARD AND CLEARANCE							
	Low Road Elevation (ft) ⁽³⁾						
Existing	Station	Proposed	Station				
646.34	5079+00 (SB BL)	N/A	N/A				
	Low Beam	Elevation (ft)					
Existing	Station	Proposed	Station				
646.33	5073+61 (SB BL)	n/a	n/a				
	Existing F	reeboard (ft)					
10-year	50-year ⁽⁴⁾	100-year	500-year				
14.15	11.84	11.00	9.93				
Natural Clearance (ft)							
10-year	50-year ⁽⁵⁾	100-year	500-year				
14.75	12.51	11.79	10.74				

CALCULATE EFFECTIVE WATERWAY OPENING AREA

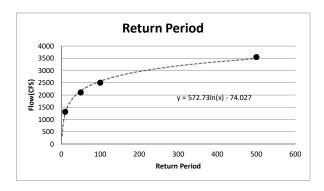
Structure Length (ft)


Existing	Proposed	
282.4	N/A	
Wate	rway Opening Area	a (ft²)
Frequency	Existing	Proposed
10-year	624.00	N/A
50-year	988.97	N/A
100-year	1155.25	N/A
500-year	1366.80	N/A

⁽²⁾ The created head is calculated at the cross section upstream of the bridge/culvert which has the greatest difference between the natural and proposed conditions. This difference in elevation is then added to the Natural H.W.E. at the U/S face of the structure. This method of calcuating created head is only required for bridges and some major culvert crossings. Also, the preferred created head should never be negative. headwater elevations = The natural highwater elevation + the created head

⁽³⁾ Low road elevation is calculated at the edge of pavement, and on the low side of the roadway.

⁽⁴⁾ Freeboard is calculated from the 50-year design headwater elevation to the proposed low road elevation in the floodplain.


⁽⁵⁾ Vertical clearance is calculated from the 50-year natural high-water elevation to the proposed low chord (beam) bridge elevation (2 ft minimum requirement)

Regression Equation - Solve for Q for 2 Year event I-55 over Flagg Creek

Input Data						
Return Period	Actual Q					
10	1310					
50	2100					
100	2500					
500	3550					

Calculated Data							
Return Period	Actual Q	Calculated Q					
2	-	291.77					
10	1310	1141.12					
50	2100	1990.46					
100	2500	2356.26					
500	3550	3205.61					

Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference	
4240	632.72	633.13	0.41	
_				
3755	632.58	633.02	0.44	
3380	632.5	632.95	0.45	
3327	632.46	632.91	0.45	
3288	632.46	632.91	0.45	
3245		BRIDGE	T	
3206	632.4	632.87	0.47	
3148	632.39	632.85	0.46	
3081	632.38	632.84	0.46	
2765	632.25	632.74	0.49	
2542	632.19	632.69	0.50	
12.1	632	632.54	0.54	
12	631.98	632.53	0.55	
11	631.83	632.41	0.58	
10.5		BRIDGE		
10	631.63	1.63 632.23		
9.5	631.6	632.21	0.61	
9	631.58	632.19	0.61	
8.5		BRIDGE	-	
8	631.52	631.53	0.01	
7	631.46	631.46	0	
6	631.27	631.27	0	
5.5		BRIDGE	,l	
5	630.97	630.97	0	
4	630.41	630.41	0	
3.5		BRIDGE		
3	630.05	630.05	0	
2	629.58	629.58	0	
1	629.06	629.06	0	
0.5	628.52	628.52	0	

Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference		
4240	634.79	635.22	0.43		
3755	634.73	635.19	0.46		
3380	634.62	635.1	0.48		
3327	634.56	635.04	0.48		
3288	634.55	635.03	0.48		
3245		BRIDGE	•		
3206	634.49	634.98	0.49		
3148	634.47	634.97	0.50		
3081	634.46	634.96	0.50		
2765	634.37	634.9	0.53		
2542	634.28	634.81	0.53		
12.1	634.07	634.07 634.65			
12	634.07	634.65	0.58		
11	633.95	634.57	0.62		
10.5		BRIDGE			
10	633.87	634.54	0.67		
9.5	633.83	634.5	0.67		
9	633.82	634.5	0.68		
8.5		BRIDGE			
8	633.78	633.78	0		
7	633.72	633.72	0		
6	633.56	633.56	0		
5.5		BRIDGE			
5	632.67	632.67	0		
4	631.93	631.93	0		
3.5		BRIDGE			
3	631.18	631.18	0		
2	630.45	630.45	0		
1	629.7	629.7	0		
0.5	629.02	629.02	0		

SUMM	IARY TABLE COMPARING 100-	YEAR NATURAL WSE TO EXIST	ING WSE	
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference	
4240	635.51	636.05	0.54	
3755	635.48	636.05	0.57	
3380	635.36	635.96	0.60	
3327	635.28	635.88	0.60	
3288	635.27	635.87	0.60	
3245		BRIDGE		
3206	635.2	635.75	0.55	
3148	635.18	635.73	0.55	
3081	635.16	635.72	0.56	
2765	635.1	635.7	0.60	
2542	634.98	635.69	0.71	
12.1	634.75	635.51	0.76	
12	634.75	635.51	0.76	
11	634.65	635.45	0.80	
10.5		BRIDGE		
10	634.6 635.27		0.67	
9.5	634.55	635.22	0.67	
9	634.54	635.22	0.68	
8.5		BRIDGE		
8	634.5	634.5	0	
7	634.44	634.44	0	
6	634.34	634.34	0	
5.5		BRIDGE		
5	633.45	633.45	0	
4	632.69	632.69	0	
3.5		BRIDGE		
3	631.67	631.67	0	
2	630.84	630.84	0	
1	630.04	630.04	0	
0.5	629.42	629.42	0	

SUMM	IARY TABLE COMPARING 500-	YEAR NATURAL WSE TO EXIST	ING WSE		
Cross Section	Natural Condition WSE	Existing Condition WSE	WSE Difference		
4240	636.7	637.3	0.60		
3755	636.72	637.33	0.61		
3380	636.58	637.22	0.64		
3327	636.43	637.08	0.65		
3288	636.42	637.08	0.66		
3245		BRIDGE			
3206	636.17	636.8	0.63		
3148	636.14	636.78	0.64		
3081	636.13	636.77	0.64		
2765	636.11	636.79	0.68		
2542	636.09	636.77	0.68		
12.1	635.79	636.57	0.78		
12	635.79	636.56	0.77		
11	635.69	635.69 636.51			
10.5		BRIDGE			
10	635.67	635.67 636.33			
9.5	635.59	636.28	0.69		
9	635.59	636.27	0.68		
8.5		BRIDGE			
8	635.54	635.54	0		
7	635.47	635.47	0		
6	635.39	635.39	0		
5.5		BRIDGE			
5	634.94	634.94	0		
4	634.03	634.03	0		
3.5		BRIDGE			
3	632.68	632.68	0		
2	631.72	631.72	0		
1	630.8	630.8	0		
0.5	630.22	630.22	0		

Tab 3

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 3
	<u>OLOTION O</u>
	HYDRAULIC REPORT DATA SHEETS
g B	

Hydraulic Report Data Sheets

Route Section County Exist SN Prop SN		Interstate 55 Flag Creek Cook 016-0003 n/a			P or D # PTB #	P-91-7 158-00			
				General Ir	nformation				
1.	Name o	f the Stream:	Flag Creek						
2.	Location	of the Structure:	SE Township	¼ of the 38N	SE Range	12E	1/4 of Section of the 3rd	19	P.M.
3.	Hydraul	ic Report Prepare	ed By: 🛭 Cor		ristopher B. I	Burke En	gineering, Ltd.		
4.	Hydraul	ic Report Approva	al Authority: 🛭 🖂	_			Hydraulics Shar copies of HR to E		
				Site Des	ign Data				
5.	Drainag	e Area (sq. mi.):	13.65 sq. m	i					
6.	Highway	y Classification:		Rural Urban Other		Principa Minor Ai Collecto Local	terial		
7.	Design	Frequency:	30 yr 🛭 5	0 Yr. 🔲 Otl	her				
8.		of Waterway Info		(WIT): <u>1</u>					
			Hve	drologic & Hy	draulic Ana	alvsis			
9.	Hydrolo	gy Modeling (che	·	: 🔲	USGS/Strea		⊠ FIS □] Gage	Data
10.	a. Methb. Manic. Sourd. Non-	ning's "n" values o If no, explain ce of Starting WS IDOT encroachm	AS WSF determined as position : E: FIS nents in Survey? ey accounted for	PRO Otler IDOT DM C		Yes [☐ No		

	f. Were the Expansion/Contraction cones properly addressed? Yes No N/A If No or N/A, explain:
	g. What Expansion and Contraction Rates were used? Expansion: 2(X:1) Contraction 1(X:1)
	IDNR – OWR Floodway Permit
11.	Is area experiencing urbanization or expected to urbanize within 10 years? Yes No
12.	Are there any sensitive flood receptors located upstream within possible backwater influence? Yes No If yes, list and describe critical upstream flood damageable properties and their elevations. There are 9 total. See XSC location map for their locations. 1-644.16, 2-639.1, 3-635.62, 4-638.97, 5-635.71, 6-638.55, 7-634.5' 8-637.46' 9-633.69
13.	Is there any History of Flooding or Overtopping problems? Yes No Sources of Observed Highwater: Hydrologic Atlas Hinsdale Quadrangle, HA-86. Elev. 634.0 NGVD 29 = 633.7 NAVD 88.
14.	Is the structure hydraulically connected to or within the floodway of an IDNR-OWR designated Public Body of Water? Yes No
15.	Required IDNR - OWR Permit type: Individual SWP #2 SWP #12 Floodway None Other
	Proposed Structure Data
16.	Project Scope (check all that apply): a. ☐ Complete Replacement b. ☐ Superstructure Replacement c: ☐ Superstructure Widening; Length of Pier Extension in the water:
17.	If a bridge is proposed, supply: Flow line elevation (ft): Preliminary low beam elevation (ft): Width of deck (ft): Total length from face to face of abutment (ft) Abutment type: Skew (degrees): Number of spans:
18.	If a culvert is proposed, supply: Type and size: Upstream invert elevation (ft): N/A Entrance type: N/A Skew (degrees): N/A
19.	If a three-sided structure is proposed, supply: Flow line elevation (ft): N/A Skew (degrees): N/A

	Span (ft): Height (ft):		N/A N/A		Length (ft): Number of sp	ans:	N/A N/A		
20.	a. Is the IDOT Clearance Policyb. Is the IDOT Freeboard Policy		\boxtimes	☐ No ☐ No	□ NA □ NA		Value (ft): Value (ft):	12.51 11.84	
21.	Type of streambed soil :	Clay	⊠ Silt	Sand	Loam				
22.	Scour/ Migration Problems: N Comments:	lone							
	Ice Concerns: N Comments:	lone							
	Debris Concerns: N Comments:	lone							
	Countermeasures Proposed:								

	Countermeasures i roposeu.										
	Existing Structure Data										
		Joliet Rd	70 th PL	I-55	Wolf Rd	72 nd St					
		Structure U/S	Structure U/S	Subject Structure	Structure D/S	Structure D/S					
23.	Distance from proposed structure: (ft.)	1518	35	0	268	1005					
24.	Type of structure:	2-Span concrete bridge	1-Span Concrete Bridge	5-Span Steel Bridge	2-Span Concrete Bridge	Double Arch Culvert					
25.	Low beam elevation:	635.52	627.98	646.33	629.03	632.91					
26.	Flow line elevation:	621.30	619.25	621.75	621.94	622.5					
27.	Maximum known high water elevation:	635.7	633.9	633.7	633.1	632.7					
28.	Date of maximum high water:	Oct, 1954	Oct, 1954	Oct, 1954	Oct, 1954	Oct, 1954					
29.	Cause (backwater, headwater, etc.):	Unknown	Unknown	Unknown	Unknown	Unknown					
30.	Does structure carry entire design flood flow?	Yes	No	Yes	Yes	Yes					
	If not, state area of additional waterway opening: (ft²)	N/A	390	N/A	N/A	N/A					
31.	Type and size of existing overflow structures:	N/A	Roadway Overtoppin	N/A	N/A	N/A					
32.	Has adverse scour occurred under or adjacent to the structure?	No	No	No	No	No					
33.	Classify type of scour and/or aggradation / degradation:	N/A	N/A	N/A	N/A	N/A					

Required Additional Data

Deviations from the General Procedures presented in IDOT DM CH. 2, CH.6, and CH.7: 34. No.

35. Information regarding high water from other streams, reservoirs, flood control projects, proposed channel changes, or other controls affecting proposed waterway area:

N/A

Site Inspection made by: Christopher B. Burke Engineering, Ltd. 36.

Date: November 2013

Remarks:

Inspected by Edmund Burke.

37. Prepared by: Edmund M. Burke

Ilene A Dailey

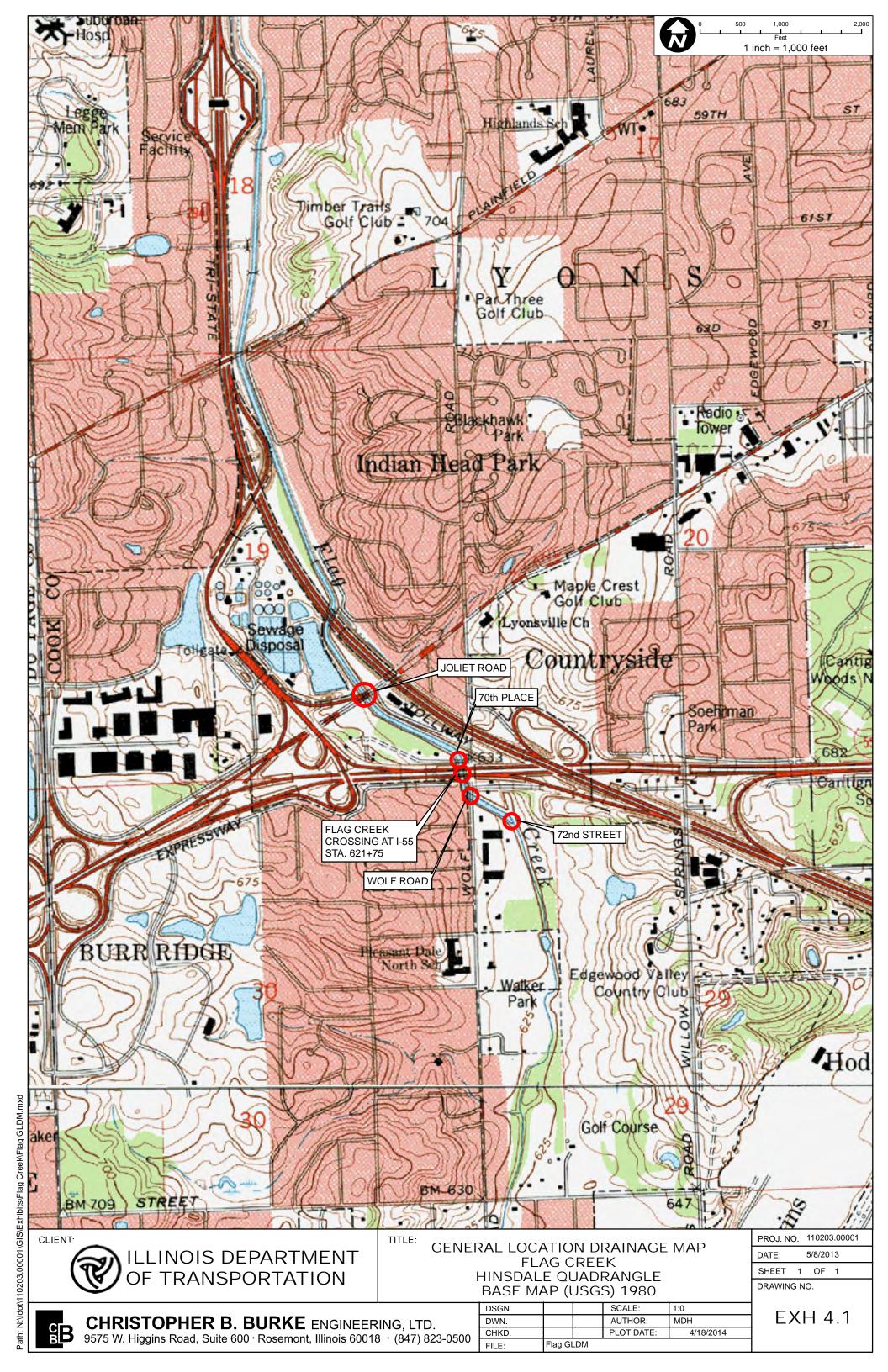
Date September 2016

Date 09/28/16

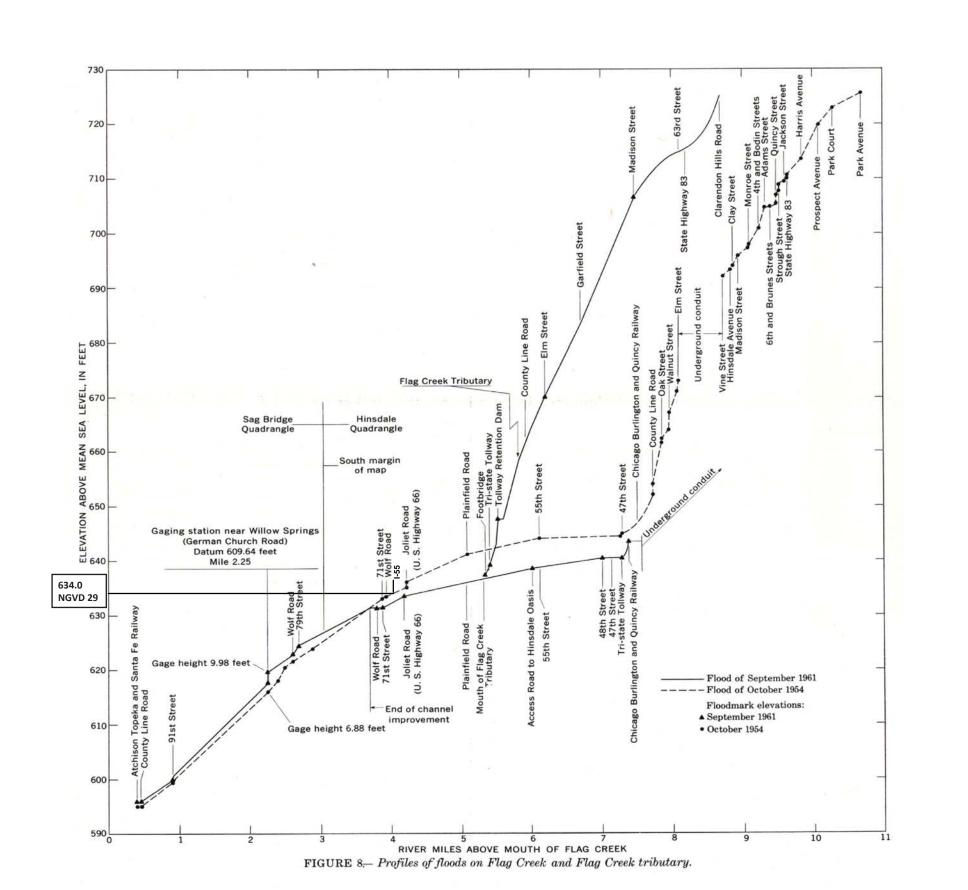
Hydraulic Report Checklist

The District or Consultant should complete the following checklist before submitting the Hydraulic Report for approval.

1.	\boxtimes	Title Page
2.	\square	Table of Contents
3.		Narrative - (as outlined in Section 2-601.01 Item #3)
4.		Waterway Information Table (WIT) - (as outlined in Section 2-601.01 Item #4)
5.		Hydraulic Report Data Sheets
6.		Location Map - should show the subject structure along with nearby location defining landmarks (cities, roads, highways, etc.)
7.		USGS Hydraulic Investigation Map (District 1 only)
8.		Photographs - (Minimum: U/S & D/S Structure Faces, Up & Down Channel, Up & Down Roadway Across Structure)
9.		Hydrology (map and calculations)
10.		Streambed Profile
11.	\boxtimes	Roadway Profile (existing and proposed)
12.		Cross Section Plots - with plan layout preferably overlayed upon an aerial photo with the contours
13.		Bridge Opening Plots
14.		Natural Condition Analysis When HEC-RAS modeling is being used, ALL
15.		Existing Condition Analysis Plans (Natural, Existing, & Proposed) shall be included in ONE Project File.
16.		Proposed Condition Analysis
17.		Scour Analysis – Existing and Proposed Conditions
18.		Compensatory Storage Calculations (if required)
19.	\boxtimes	Survey Notes (if available, No Electronic Point Files)
20.		Correspondence Notes
21	\boxtimes	CD with Project Files (Include pdf copy of the Hydraulic Report)


Tab 4

Hydraulic Report – Interstate 55 over Flag Creek


SECTION 4

LOCATION MAP/USGS HYDROLOGIC INVESTIGATIONS ATLAS /REGULATORY FLOOD MAPS

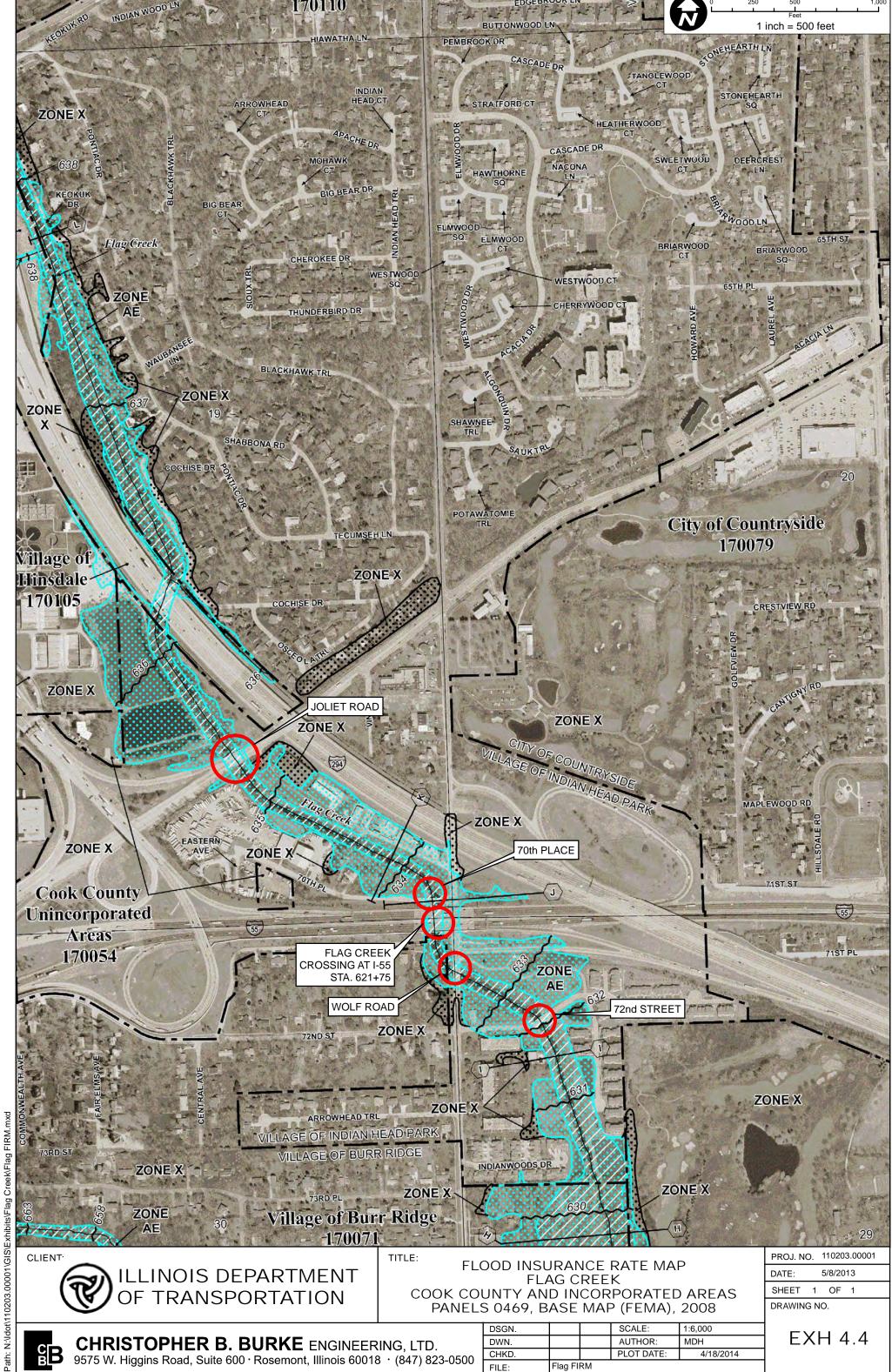
USGS HYDROLOGIC INVESTIGATIONS ATLAS
PROFILE OF FLOODS ON FLAG CREEK
HA-86
FLAG CREEK

PROJ. NO. 110203.00001

3 4

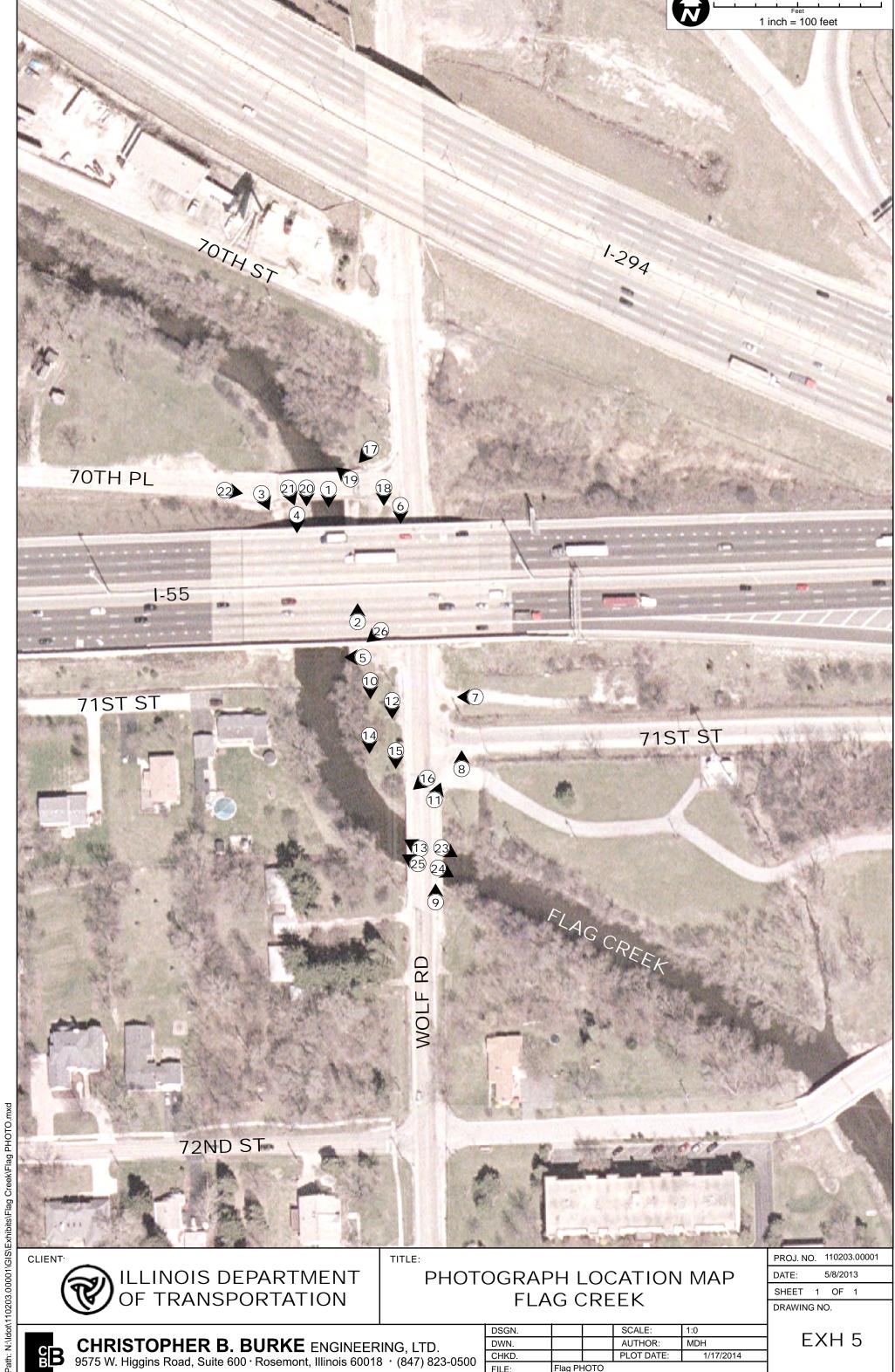
EXH

CHRISTOPHER B. BURKE ENGINEERING, LTD. 9575 W. Higgins Road, Suite 600 · Rosemont, Illinois 60018 · (847) 823-0500


INOIS DEPARTMENT TRANSPORTATION

ILLINOIS

OF


E B

CLIENT

Tab 5

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 5
	PHOTOGRAPHS
BB	

CHRISTOPHER B. BURKE ENGINEERING, LTD. 9575 W. Higgins Road, Suite 600 · Rosemont, Illinois 60018 · (847) 823-0500

DSGN. DWN. AUTHOR: MDH CHKD. PLOT DATE Flag PHOTO

FILE:

EXH 5

1. 70th Place Bridge looking South at I-55 Bridge over Flag Creek

2. East concrete slopewall under I-55 Bridge, looking North

- 3. 70th Place Bridge looking South-Southeast at I-55 Bridge over Flag Creek
- 4. Flag Creek under I-55, looking South, main channel

5. West embankment/floodplain of Flag Creek just South of I-55

6. Wolf Road looking South under I-55 Bridge

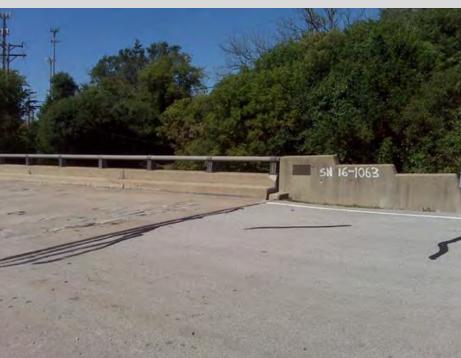
7. Access road looking West at Wolf Road and I-55 Bridge

8. Intersection of Wolf Road and 71st Street, looking North at I-55 Bridge

9. Wolf Road Bridge over Flag Creek, looking North

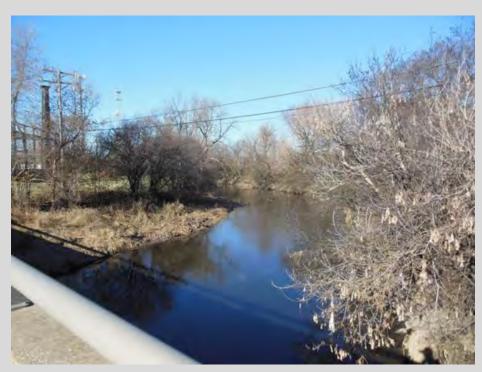
10. Wolf Road looking South at 71st Street intersection

11. 71st Street and access road, looking North-Northeast


12. Wolf Road looking South at 71st Street intersection and Wolf Road Bridge over Flag Creek

13. Flag Creek looing upstream, northwest from Wolf Road Bridge

14. Flag Creek eastern floodplain South of I-55 Bridge


15. Wolf Road looking South at bridge over Flag Creek

16. Wolf Road Bridge over Flag Creek

17. Debris pileup under 70th Place Bridge, looking South downstream

18. Looking South downstream at concrete slopewall under I-55 Bridge

19. Flag Creek looking upstream, northeast from 70th Place Bridge


20. Looking South under I-55 Bridge from 70^{th} Place Bridge

21. Flag Creek looking South downstream under I-55 Bridge in low-flow condition

22. Paved ditch outlet to Flag Creek along South side of 70th Place looking east.

23. Flag Creek looking downstream, southeast from Wolf Road Bridge

24. Flag Creek floodplain just East of Wolf Road Bridge

25. Flag Creek Looking northwest upstream from Wolf Road Bridge.

26. Flag Creek looking downstream, southeast, from under I-55 Bridge.

Tab 6

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 6
	HYDROLOGY
B	

COOK COUNTY, ILLINOIS AND INCORPORATED AREAS

Volume 1 of 5

COMMUNITY NAME	COMMUNITY NUMBER	COMMUNITY NAME	COMMUNITY NUMBER	COMMUNITY NAME	COMMUNITY NUMBER	COMMUNITY NAME	COMMUNITY NUMBER
ALSIP, VILLAGE OF	170055	EAST HAZEL CREST, VILLAGE OF	170085	LANSING, VILLAGE OF	170116	PROSPECT HEIGHTS, CITY OF	170919
ARLINGTON HEIGHTS,	170000	ELGIN, CITY OF	170087	LEMONT, VILLAGE OF	170117	RICHTON PARK, VILLAGE OF	170149
VILLAGE OF	170056	ELK GROVE VILLAGE,	.,,,,,,	LINCOLNWOOD, VILLAGE OF	171001	RIVER FOREST, VILLAGE OF	170151
BARRINGTON, VILLAGE OF	170057	VILLAGE OF	170088	LYNWOOD, VILLAGE OF	170119	RIVER GROVE, VILLAGE OF	170152
BARRINGTON HILLS, VILLAGE OF	170058	* ELMHURST, CITY OF	170205	LYONS, VILLAGE OF	170120	RIVERDALE, VILLAGE OF	170150
BARTLETT, VILLAGE OF	170059	ELMWOOD PARK, VILLAGE OF	170089	MARKHAM, CITY OF	175169	RIVERSIDE VILLAGE OF	170153
BEDFORD PARK, VILLAGE OF	171007	EVANSTON, CITY OF	170090	MATTESON, VILLAGE OF	170123	ROBBINS, VILLAGE OF	170154
BELLWOOD, VILLAGE OF	170061	* EVERGREEN PARK, VILLAGE OF	170733	MAYWOOD, VILLAGE OF	170124	ROLLING MEADOWS, CITY OF	170155
BENSENVILLE, VILLAGE OF	170200	FLOSSMOOR, VILLAGE OF	170091	MCCOOK, VILLAGE OF	170121	* ROSELLE, VILLAGE OF	170216
* BERKELEY, VILLAGE OF	171039	FORD HEIGHTS, VILLAGE OF	170084	MELROSE PARK, VILLAGE OF	170125	ROSEMONT, VILLAGE OF	170156
* BERWYN, CITY OF	171036	FOREST PARK, VILLAGE OF	170092	MERRIONETTE PARK,		SAUK VILLAGE, VILLAGE OF	170157
BLUE ISLAND, CITY OF	170064	FOREST VIEW, VILLAGE OF	170093	VILLAGE OF	170126	SCHAUMBURG, VILLAGE OF	170158
BRIDGEVIEW, VILLAGE OF	170065	* FRANKFORT, VILLAGE OF	170701	MIDLOTHIAN, VILLAGE OF	170127	SCHILLER PARK, VILLAGE OF	170159
BROADVIEW, VILLAGE OF	170067	FRANKLIN PARK, VILLAGE OF	170094	MORTON GROVE, VILLAGE OF	170128	SKOKIE, VILLAGE OF	171000
BROOKFIELD, VILLAGE OF	170066	GLENCOE, VILLAGE OF	170095	MOUNT PROSPECT, VILLAGE OF	170129	SOUTH BARRINGTON,	
BUFFALO GROVE, VILLAGE OF	170068	GLENVIEW, VILLAGE OF	170096	NILES, VILLAGE OF	170130	VILLAGE OF	170161
* BURBANK, CITY OF	170069	GLENWOOD, VILLAGE OF	170097	* NORRIDGE, VILLAGE OF	170131	SOUTH CHICAGO HEIGHTS,	
BURNHAM, VILLAGE OF	170070	GOLF, VILLAGE OF	170098	NORTH RIVERSIDE, VILLAGE OF	170135	VILLAGE OF	170162
BURR RIDGE, VILLAGE OF	170071	HANOVER PARK, VILLAGE OF	170099	NORTHBROOK, VILLAG EOF	170132	SOUTH HOLLAND, VILLAGE OF	170163
CALUMET CITY, CITY OF	170072	HARVEY, CITY OF	170100	NORTHFIELD, VILLAGE OF	170133	STEGER, VILLAGE OF	170713
CALUMET PARK, VILLAGE OF	170073	* HARWOOD HEIGHTS,		NORTHLAKE, CITY OF	170134	STICKNEY, VILLAGE OF	170164
CHICAGO CITY OF	170074	VILLAGE OF	170101	* OAKBROOK, VILLAGE OF	170214	STONE PARK, VILLAGE OF	170165
CHICAGO HEIGHTS, VILLAGE OF	170075	HAZEL CREST, VILLAGE OF	170102	OAK FOREST, CITY OF	170136	STREAMWOOD, VILLAGE OF	170166
CHICAGO RIDGE, VILLAGE OF	170076	HICKORY HILLS, CITY OF	170103	OAK LAWN, VILLAGE OF	170137	SUMMIT, VILLAGE OF	170167
* CICERO, TOWN OF	170077	HILLSIDE, VILLAGE OF	170104	* OAK PARK, VILLAGE OF	171037	THORNTON, VILLAGE OF	170168
COOK COUNTY		HINSDALE, VILLAGE OF	170105	OLYMPIA FIELDS, VILLAGE OF	170139	TINLEY PARK, VILLAGE OF	170169
(UNINCORPORATED AREAS)	170054	HODGKINS, VILLAGE OF	170106	ORLAND HILLS, VILLAGE OF	170172	UNIVERSITY PARK, VILLAGE OF	170708
COUNTRY CLUB HILLS, CITY OF	170078	HOFFMAN ESTATES, VILLAGE OF	170107	ORLAND PARK, VILLAGE OF	170140	WESTCHESTER, VILLAGE OF	170170
COUNTRYSIDE, CITY OF	170079	* HOMETOWN, CITY OF	171040	PALATINE, VILLAGE OF	175170	WESTERN SPRINGS, VILLAGE OF	170171
CRESTWOOD, VILLAGE OF	170080	HOMEWOOD, VILLAGE OF	170109	PALOS HEIGHTS, CITY OF	170142	WHEELING, VILLAGE OF	170173
* DEER PARK, VILLAGE OF	171028	INDIAN HEAD PARK, VILLAGE OF	170110	PALOS HILLS, CITY OF	170143	WILLOW SPRINGS, VILLAGE OF	170174
DEERFIELD, VILLAGE OF	170361	INVERNESS, VILLAGE OF	170111	PALOS PARK, VILLAGE OF	170144	WILMETTE, VILLAGE OF	170175
DES PLAINES, CITY OF	170081	JUSTICE, VILLAGE OF	170112	PARK FOREST, VILLAGE OF	170145	WINNETKA, VILLAGE OF	170176
DIXMOOR, VILLAGE OF	170082	KENILWORTH, VILLAGE OF	170113	PARK RIDGE, CITY OF	170146	WORTH, VILLAGE OF	170177
DOLTON, VILLAGE OF	170083	LA GRANGE, VILLAGE OF	170114	* PHOENIX, CITY OF	170147	* NO SPECIAL FLOOD HAZARD ARE	AS
* EAST DUNDEE, VILLAGE OF	170323	LA GRANGE PARK, VILLAGE OF	170115	POSEN, VILLAGE OF	170148	IDENTIFIED WITHIN COOK COUNT	

REVISED: AUGUST 19, 2008

Federal Emergency Management Agency

FLOOD INSURANCE STUDY NUMBER 17031CV001G

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the Community Map Repository. It is advisable to contact the Community Map Repository for any additional data.

The Federal Emergency Management Agency (FEMA) may revise and republish part or all of this FIS report at any time. In addition, FEMA may revise part of this FIS by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the Community Map Repository to obtain the most current FIS components.

Initial Countywide FIS Effective Date: November 6, 2000

Revised FIS Report Dates: December 20, 2002

February 4, 2004 June 2, 2005

November 16, 2006 April 16, 2007 August 19, 2008 occurred in 1986 and 2004, with crests at 11.95 feet and 11.76 feet, respectively (Reference 134).

Flooding along the West Branch, DuPage River in Hanover Park is frequent and severe. Rapid urbanization in the drainage areas since 1960 has led to increasing stormwater runoff, while at the same time, development in the floodplain in the north portion of the village has obstructed overbank flows during floods, raising water-surface elevations in the vicinity and generally worsening the damage conditions. A major storm in October 1954 caused record flooding in the Chicago area, but Hanover Park was sparsely developed at that time. Other significant floods occurred on June 10, 1967, and on September 6, 1970, when an estimated 2.7 inches of rain fell in the drainage areas. Peak discharges at the crest stage gage at Lake Street on the river reached 570 cfs in 1967 and 450 cfs in 1970. Damages in Hanover Park resulting from the 1970 flood were estimated at \$470,000. addition to flooding due to major storms, more frequent flooding occurs due to high waters in the river blocking storm sewer outlets and causing basement flooding (Reference 135). Data obtained from the recording gage located on the river near North Avenue in the village of Bartlett indicated that the June 1967 flood had a 1percent-annual-chance recurrence interval (Reference 136).

The Little Calumet River in Calumet City, Illinois, has had severe flooding in June 1981, December 1982, November 1990, and July 1996. The highest flood of record occurred in November 1990 when the river reached a stage between 20 and 21 feet. This flood was below the 1-percent-annual-chance recurrence interval.

The most severe historic floods on Flag Creek near Indian Head Park, and their approximate recurrence intervals (annual chance of exceedence) can be documented from USGS gage records for Flag Creek at the Willow Springs gage downstream of Indian Head Park. This gage (No. 05533000, drainage area 16.5 square miles) was established in 1949. Table 9, "Historical Flood Data (Flag Creek)" summarizes peak discharges and river stages for Flag Creek at Willow Springs (Reference 132).

Table 9 - Historical Flood Data (Flag Creek)

Flag Creek at Willow Springs, Illinois - USGS Gage Number 05533000 Datum of gage is 606.08 ft above NAVD 88

Flood Stage: N/A

Date	Peak Streamflow (cfs)	River Stage (feet)
September 14, 1961	2,680	13.71
July 18, 1996	2300	10.37
June 13, 1976	2230	10.22
July 2, 1983	1960	9.86
May 9, 1990	1910	9.87

N/A = Data not available

Table 14 - Summary of Discharges (Continued)

Peak Discharges (cubic feet per second) Flooding Source 10-Percent-2-Percent-1-Percent-0.2-Percent-Drainage Area and Location (square miles) Annual-Chance Annual-Chance Annual-Chance **East Pond and West Pond** Approximately 500 feet north of * 179th street 0.3 82 Elk Grove Boulevard Drainage Ditch At the mouth 200 233 325 1.7 125 Just downstream of Elk Grove Boulevard 1.5 104 164 194 295 Approximately 100 feet downstream of Ridge Avenue 80 1.3 125 148 205 Approximately 100 feet downstream of Victoria Lane 202 1.1 76 120 142 Approximately 100 feet downstream of Crest Avenue 0.9 59 93 110 156 Approximately 100 feet downstream of Love Street 64 89 0.5 34 54 Approximately 100 feet downstream of Tonne Road 0.2 14 23 27 39 Farmer's Creek At confluence with Des Plaines River 5.0 317 505 643 1,987 At Ballard Road 2.6 52 85 106 474 **Farrington Ditch** At Checker Road 0.6 95 162 200 290 Feehanville Ditch Just downstream of Wolf Road 1.2 158 268 317 443 Filsen Park Ditch At confluence with 76th Avenue Ditch 0.9 124 219 275 399 Flag Creek At the mouth 18.1 1,660 2,650 3,180 4,500 At 83rd Street 3,900 (German Church Road) 15.6 1,450 2,330 2,770 At a point approximately 900 feet upstream of 79th Street Ditch 15.3 1,420 2,300 2,720 3,850 At Wolf Road 2,000 13.7 1,260 2,400 3,350

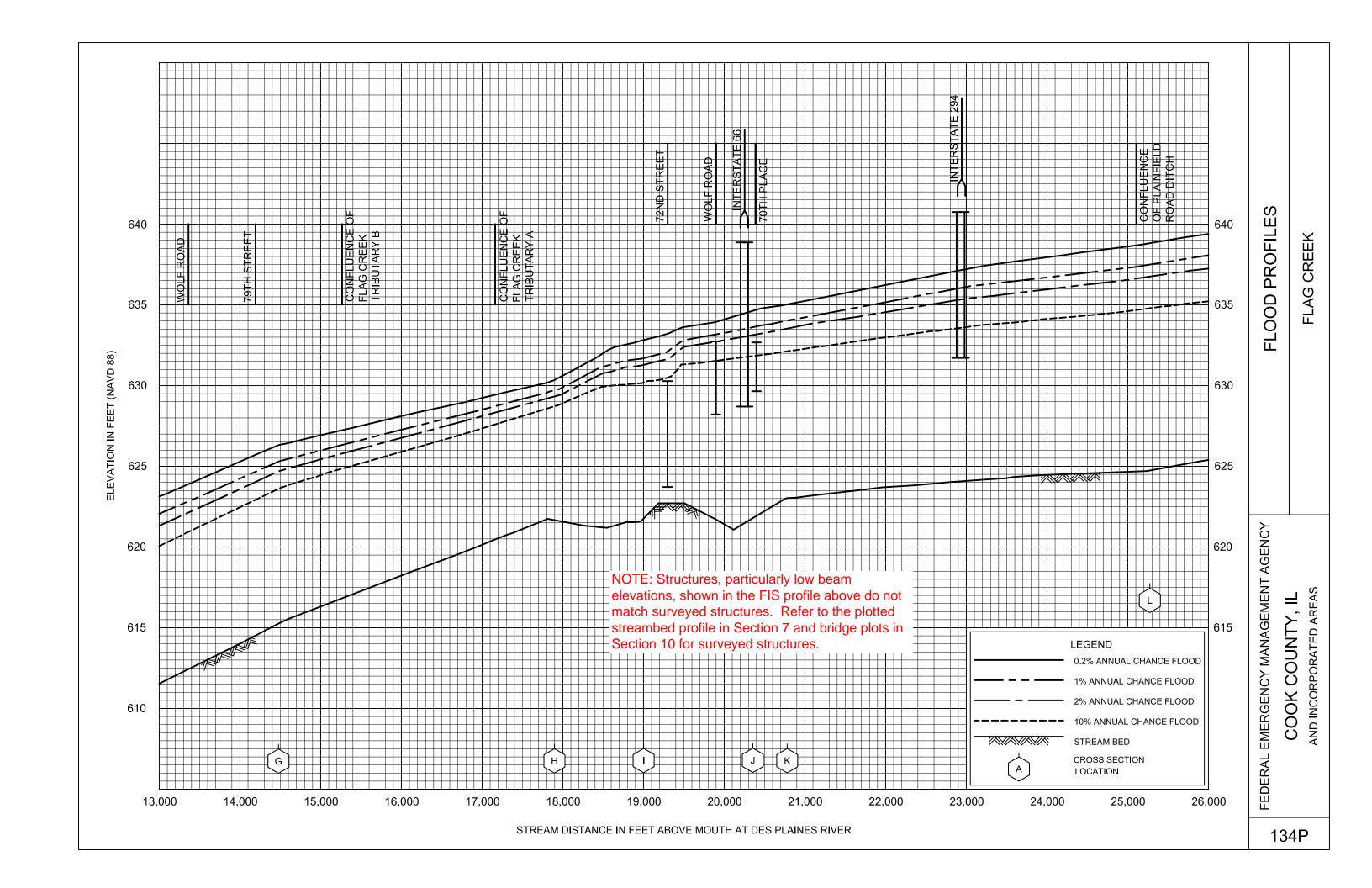
At a point approximately 0.25 mile upstream of confluence

^{*} Data not available

FLOODING SOU	FLOODING SOURCE FLOODWAY 1-PERCENT-ANNUAL-CHANCE-FLOOWAY WATER SURFACE ELEVATION (FEET NA			FLOODWAY				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE (FEET)
Flag Creek								
Α	3,000 ³	327	1,174	2.7	598.7	598.7	598.8	0.1
В	3,830 ³	100 ²	1,351	2.1	601.5	601.5	601.5	0.0
С	5,175 ³	420	1,233	2.3	603.4	603.4	603.5	0.1
D	8,330 ³	592	2,313	1.2	607.9	607.9	608.0	0.1
E F	8,850 ³	545	2,400	1.2	608.9	608.9	609.0	0.1
F	11,620 ³	203	962	2.9	618.9	618.9	619.0	0.1
G	14,475 ³	221	973	2.8	625.1	625.1	625.2	0.1
Н	17,900 ³	579	1,687	1.5	629.4	629.4	629.5	0.1
I	19,000 ³	163	985	2.9	631.5	631.5	631.6	0.1
J	20,370 ³	105	803	3.1	633.2	633.2	633.3	0.1
K	20,780 ³	80	605	4.0	634.0	634.0	634.1	0.1
L	25,280 ³	91	805	2.9	637.3	637.3	637.4	0.1
M	27,640 ³	78	624	3.3	639.2	639.2	639.3	0.1
N	29,540 ³	89	701	1.7	639.9	639.9	640.0	0.1
0	30,870 ³	50	469	2.5	640.4	640.4	640.5	0.1
Р	31,970 ³	50	454	2.4	640.8	640.8	640.9	0.1
Q	32,490 ³	82	663	1.5	640.9	640.9	641.0	0.1
R	33,330 ³	35	296	3.4	641.7	641.7	641.8	0.1
S	34,650 ³	142	674	1.2	642.0	642.0	642.1	0.1
Т	35,720 ³	68	564	1.3	642.1	642.1	642.2	0.1
U	36,680 ³	373	1,136	0.7	642.2	642.2	642.3	0.1
V	37,630 ³	97	631	1.2	642.2	642.2	642.3	0.1
<u> </u>							l	L

² Floodway width reflects constricted section, see FIRM panel for regulatory floodway

FEDERAL EMERGENCY MANAGEMENT AGENCY


COOK COUNTY, IL AND INCORPORATED AREAS

FLOODWAY DATA

FLAG CREEK

TABLE 19

³ Feet above mouth at Des Plaines River

Table

Graph

Tab-separated file

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:	
Surface Water	▼ United States	▼ GO

Click for News Bulletins

Peak Streamflow for the Nation

USGS 05533000 FLAG CREEK NEAR WILLOW SPRINGS, IL

Available data for this site Surface-water: Peak streamflow

Cook County, Illinois
Hydrologic Unit Code 07120004
Latitude 41°44'20", Longitude 87°53'47" NAD83
Drainage area 16.5 square miles
Contributing drainage area 16.5 square miles
Gage datum 606.36 feet above NGVD29

▼ GO

Output formats

eakfq (watstore) format					
eselect output for	<u>nat</u>				
Water Year	Date	Gage Height (feet)		Stream- flow (cfs)	
1951	Sep. 26, 1951		4.59		540
1952	Nov. 13, 1951		4.07		398
1953	Jun. 10, 1953		3.61		306
1954	Mar. 25, 1954		5.42		770
1955	Oct. 10, 1954		6.88	1	,300
1956	May 11, 1956		3.57		285

	USUS Surface Water for U	OA, FEAR SILEATHOW	
1957	Jul. 13, 1957	6.89	1,350
1958	Jun. 13, 1958	3.96	388 ^E
1959	Apr. 28, 1959	7.53	1,550
1960	Jan. 12, 1960	9.23	800
1961	Sep. 14, 1961	13.71	2,680
1962	Mar. 19, 1962	7.88	344 ^E
1963	Apr. 30, 1963	7.95	367
1964	Apr. 06, 1964	9.10	375
1965	Sep. 09, 1965	6.99	576
1966	May 12, 1966	8.98	975
1967	Apr. 01, 1967	7.79	816 ^D
1968	Aug. 17, 1968	7.26	648
1969	Apr. 17, 1969	7.88	803
1970	Jun. 21, 1970	6.52	400
1971	Feb. 18, 1971	5.34 ²	188 ^E
1972	Aug. 26, 1972	7.95	830
1973	Dec. 30, 1972	7.83	786
1974	Apr. 03, 1974	7.22	696
1975	Apr. 18, 1975	9.70	1,630
1976	Jun. 13, 1976	10.22	2,230 ^D
1977	Aug. 08, 1977	6.89	560
1978	Jul. 21, 1978	6.94	575
1979	Apr. 12, 1979	8.02	967
1980	Jul. 21, 1980	6.46	439
1981	Jun. 13, 1981	7.64	823
1982	Mar. 13, 1982	7.65	826
1983	Jul. 02, 1983	9.86	1,960
1984	Mar. 15, 1984	7.22	670 ^D
1985	Mar. 04, 1985	8.89	1,390
1986	Sep. 26, 1986	7.12	636
1987	Aug. 26, 1987	7.93	939
1988	Apr. 06, 1988	7.47	759 ^E
1989	Sep. 01, 1989	7.48	708 ^E
1990	May 09, 1990	9.87	1,910
doto uppo portavi	e/poek/eite no=05533000&grency c/t=USGS&format=htm	0.00	4 470

/16/2014		LISCS Surface	e Water for USA: Peak Streamflow	
10/2014	1991	100V. 2/, 1990	9.UZ	1,4/0
	1992	Sep. 09, 1992	8.10	1,100 ^{C,E}
	1993	Jun. 07, 1993	8.13	791 ^C
	1994	Aug. 11, 1994	7.31	569 ^C
	1995	Jan. 14, 1995	7.30	567 ^{C,E}
	1996	Jul. 18, 1996	10.37	2,300 ^C
	1997	Feb. 21, 1997	9.34	1,540 ^C
	1998	Sep. 07, 1998	8.71	1,160 ^C
	1999	Apr. 09, 1999	8.03	860 ^C
	2000	Apr. 20, 2000	7.29	633 ^C
	2001	Aug. 02, 2001	7.68	745 ^C
	2002	Oct. 13, 2001	8.30	962 ^C
	2003	May 09, 2003	7.16	600 ^C
	2004	Aug. 28, 2004	7.82	790 ^C
	2005	Jan. 13, 2005	7.50	692 ^{C,E}
	2006	Aug. 10, 2006	6.82	559 ^C
	2007	Oct. 03, 2006	9.00	1,490 ^C
	2008	Sep. 14, 2008	8.85	1,240 ^C
	2009	Dec. 27, 2008	9.01	1,330 ^C
	2010	Jul. 24, 2010	10.36	2,350 ^C
	2011	Jun. 09, 2011	9.02	1,580 ^C
	2012	Aug. 26, 2012	8.32	1,210 ^C
	2013	Apr. 18, 2013	10.57	2,610 ^C

[?] Peak Gage-Height Qualification Codes.

• 2 -- Gage height not the maximum for the year

Peak Streamflow Qualification Codes.

- C -- All or part of the record affected by Urbanization, Mining, Agricultural changes, Channelization, or other
- D -- Base Discharge changed during this year
- E -- Only Annual Maximum Peak available for this year

Questions about sites/data?
Feedback on this web site
Automated retrievals
Help
Data Tips
Explanation of terms
Subscribe for system changes
News

Accessibility

Plug-Ins

FOIA Privacy

Policies and Notices

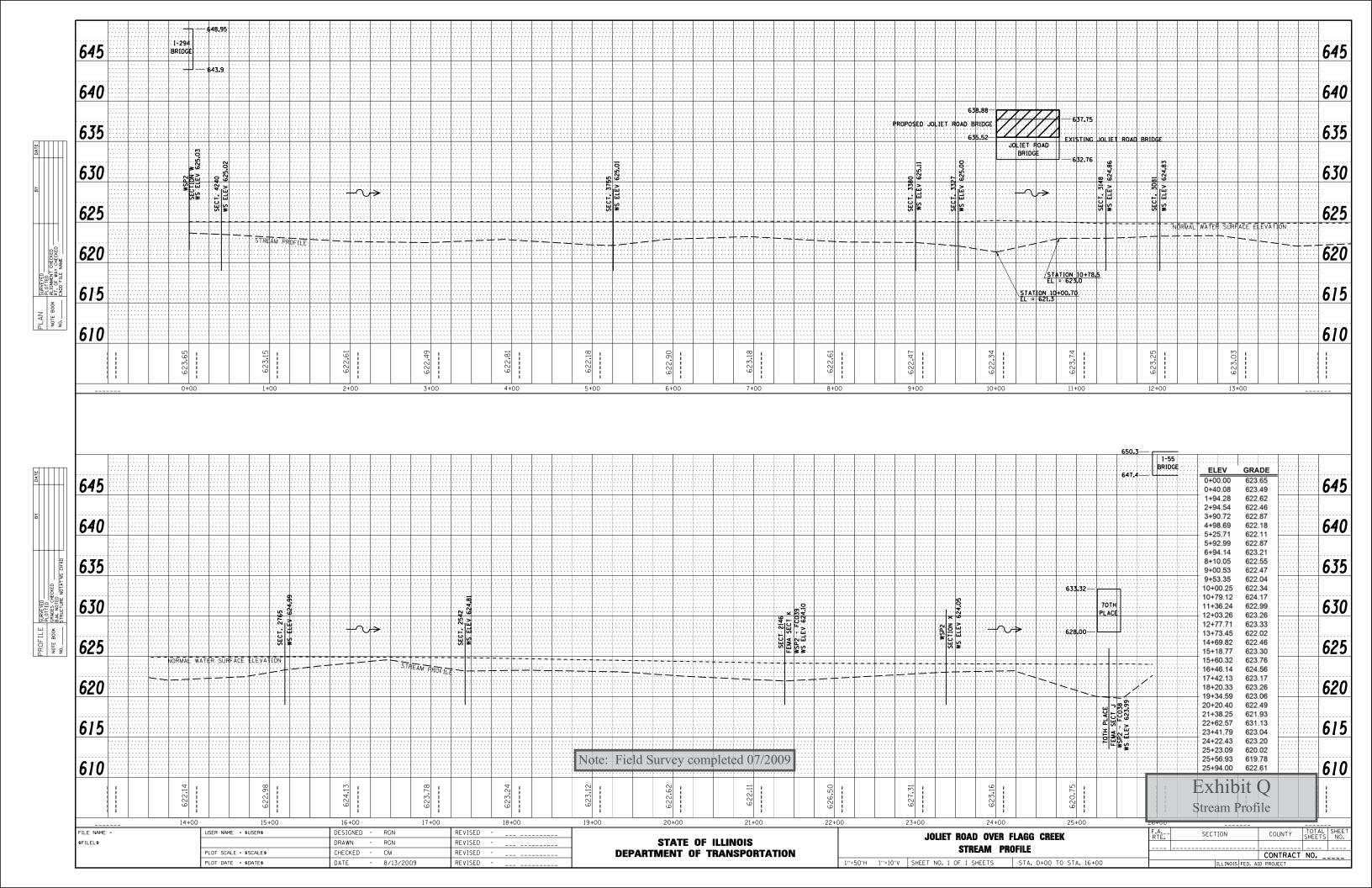
U.S. Department of the Interior | U.S. Geological Survey

Title: Surface Water for USA: Peak Streamflow URL: http://nwis.waterdata.usgs.gov/nwis/peak?

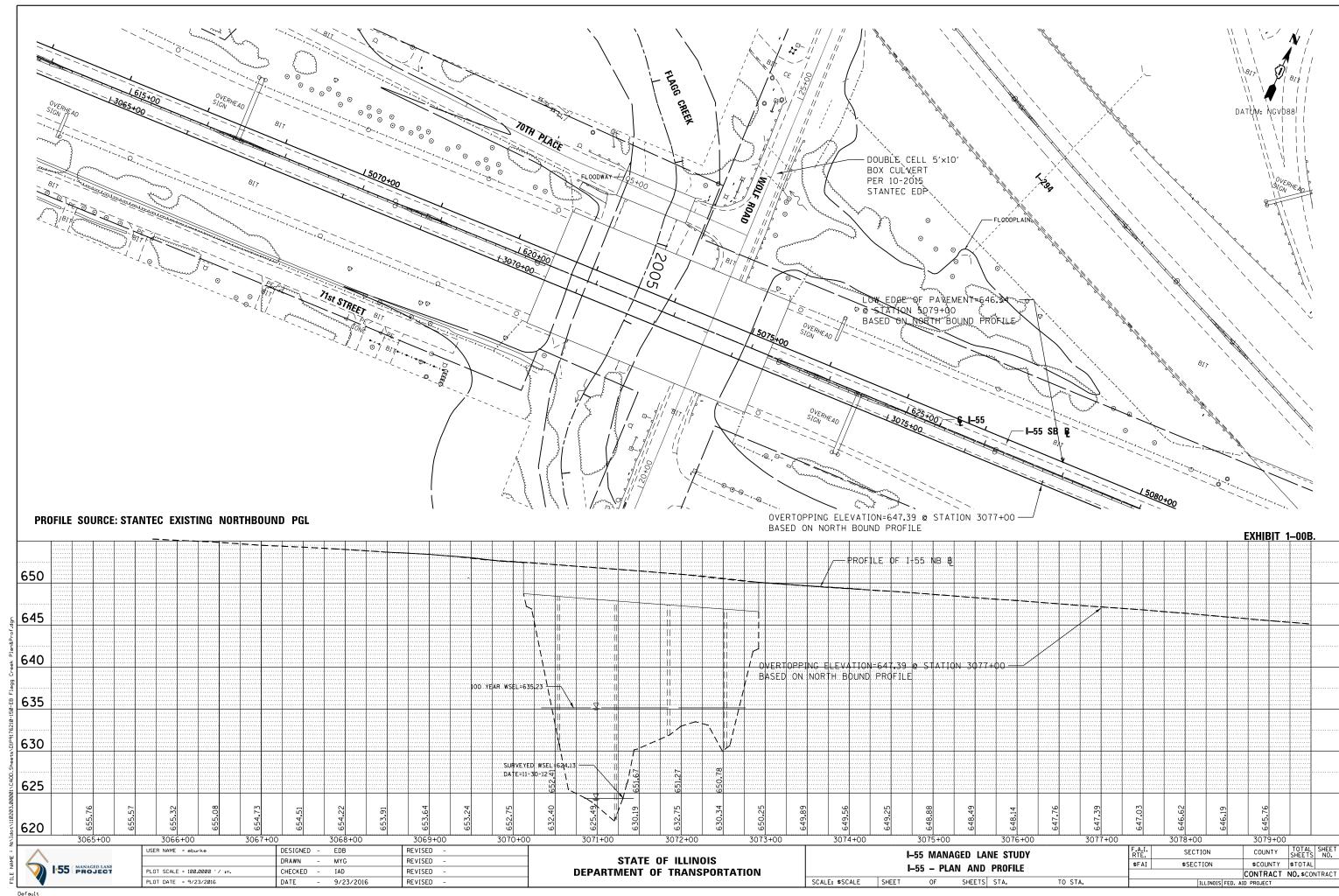
Page Contact Information: <u>USGS Water Data Support Team</u>

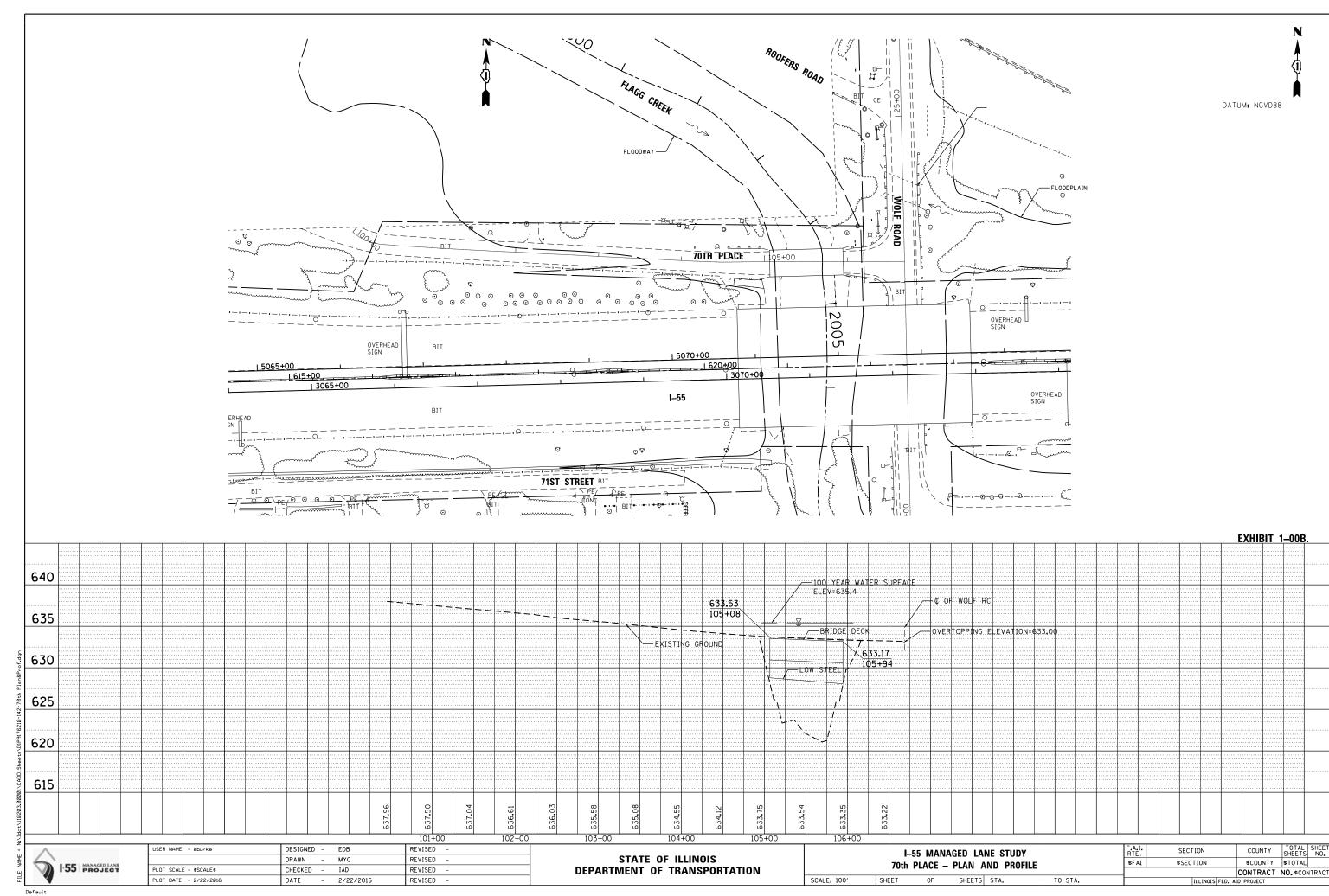
Page Last Modified: 2014-04-16 22:20:44 EDT

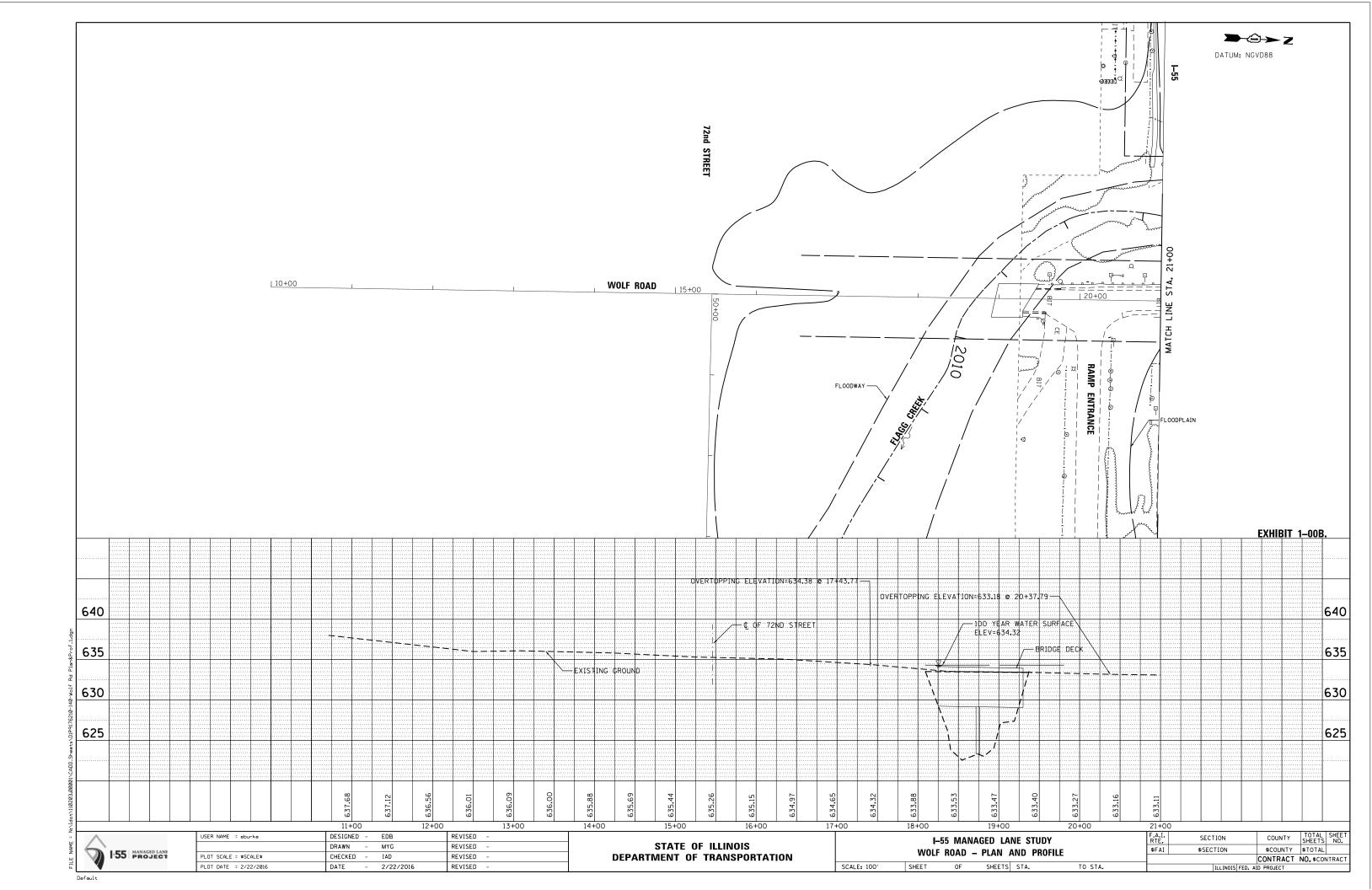
0.32 0.32 nadww01

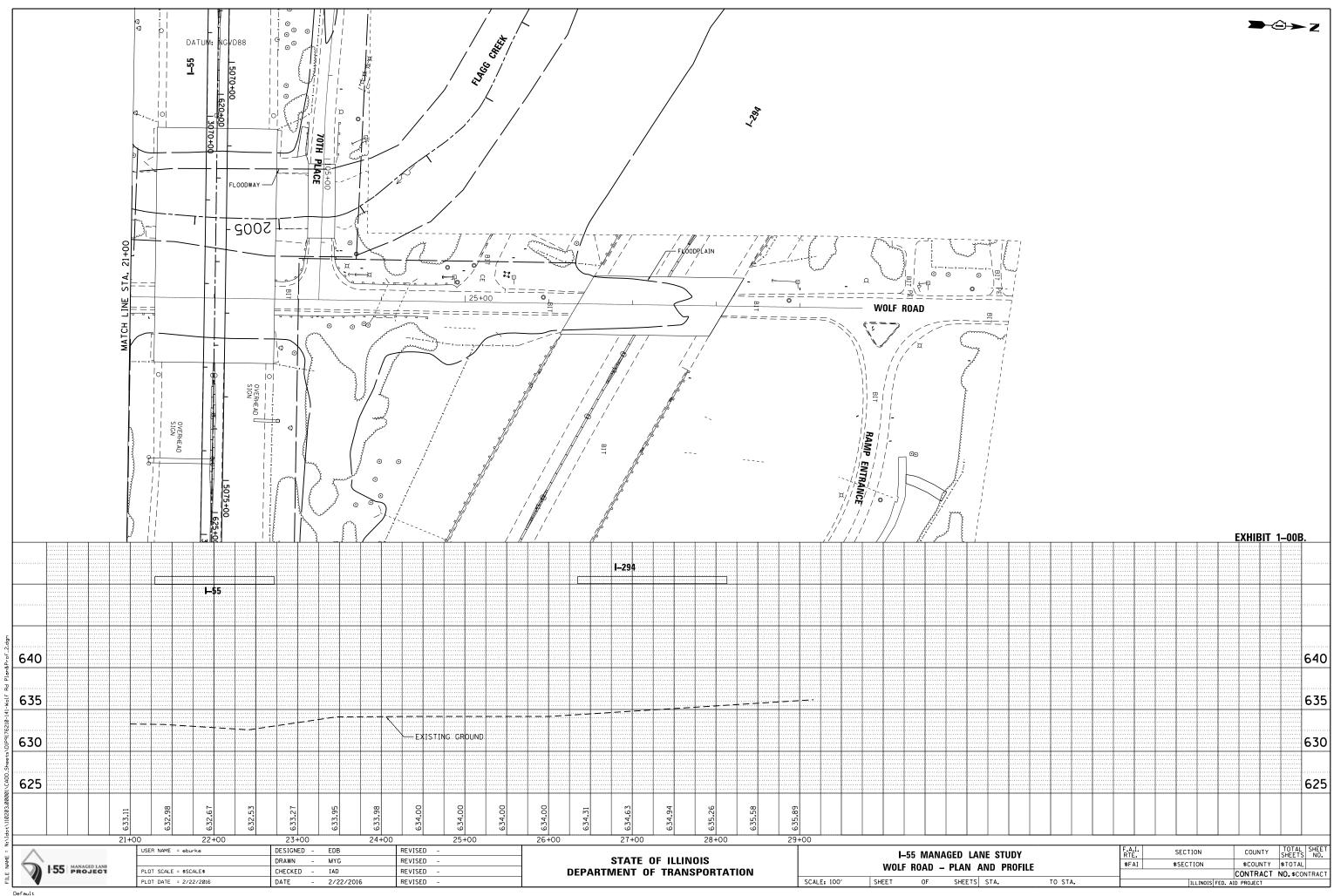


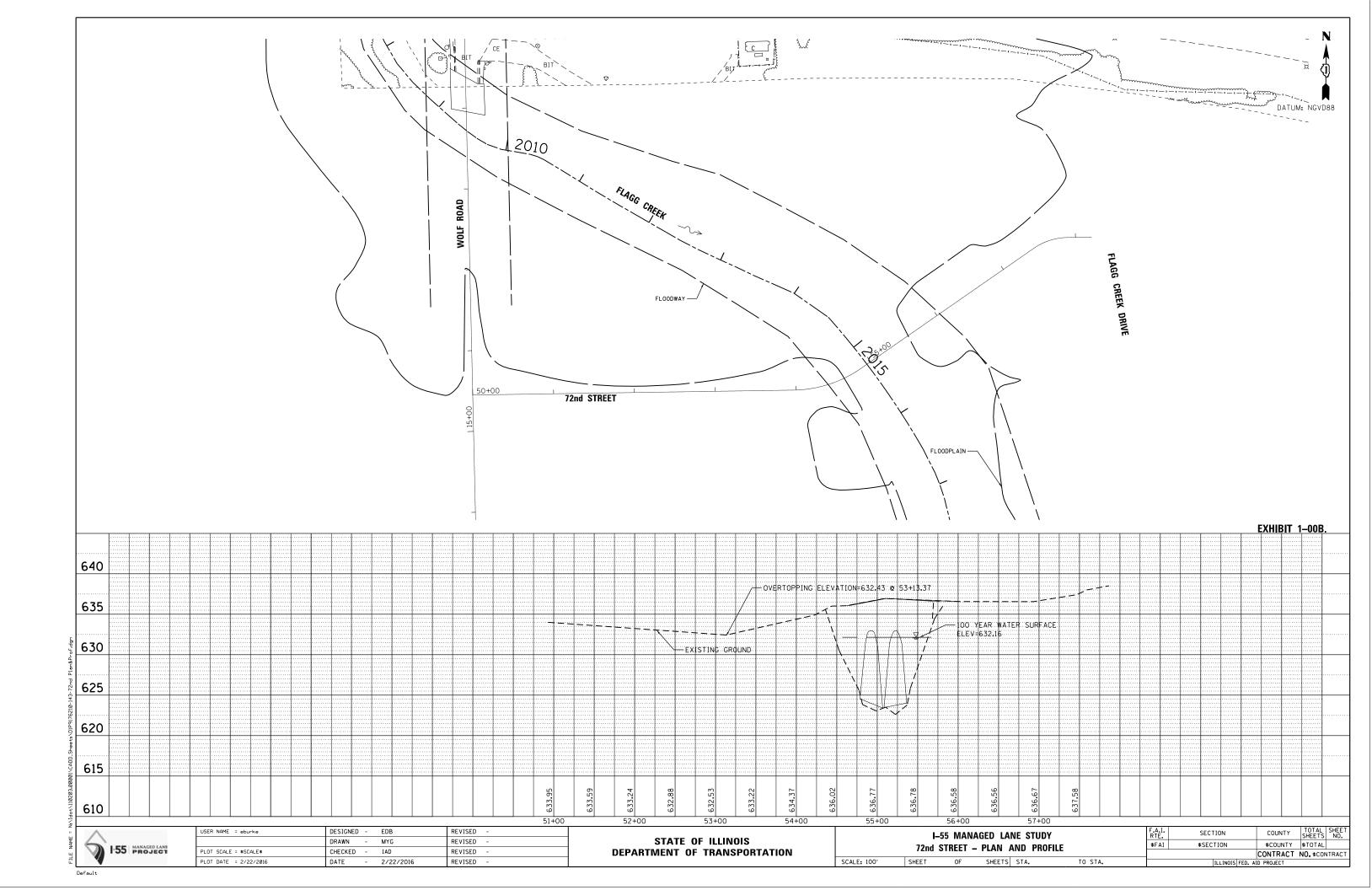
Tab 7

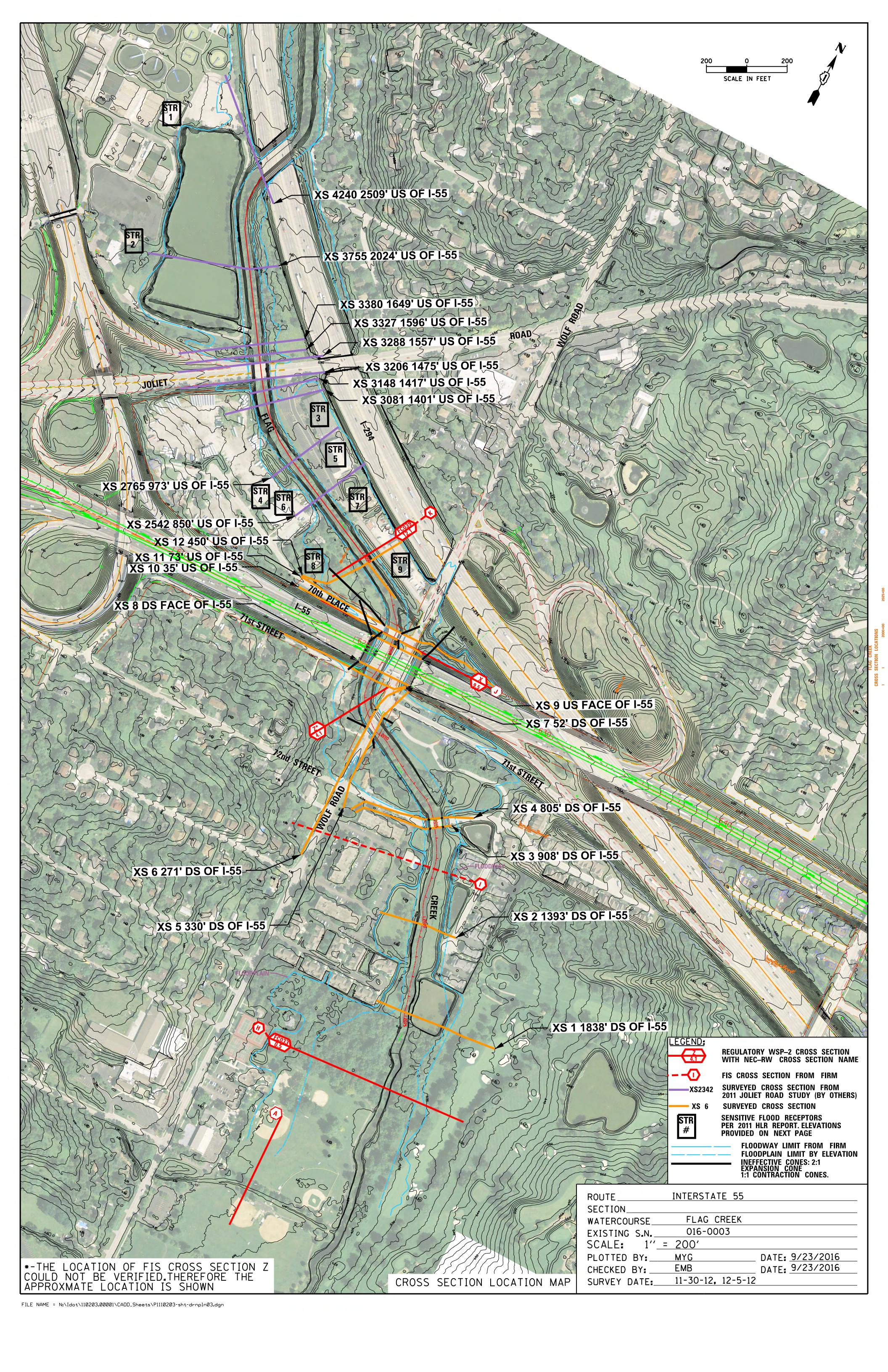

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 7
	STREAMBED PROFILE
C B	


*-THE LOCATION OF FIS CROSS SECTION Z COULD NOT BE VERIFIED. THEREFORE THE APPROXMATE LOCATION IS SHOWN

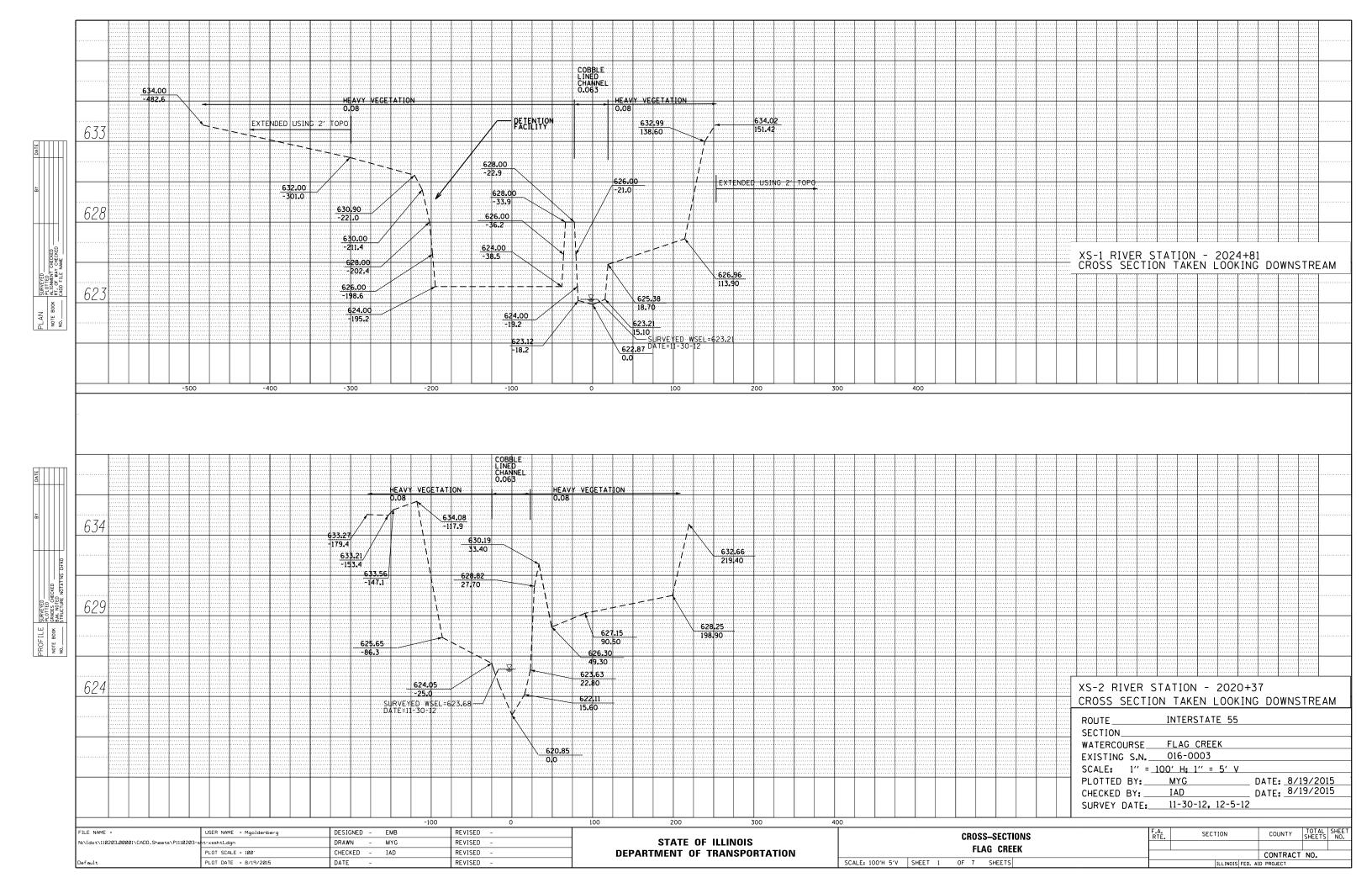

EXCERPT FROM 2011 HLR HYDRAULIC REPORT JOLIET ROAD OVER FLAGG CREEK

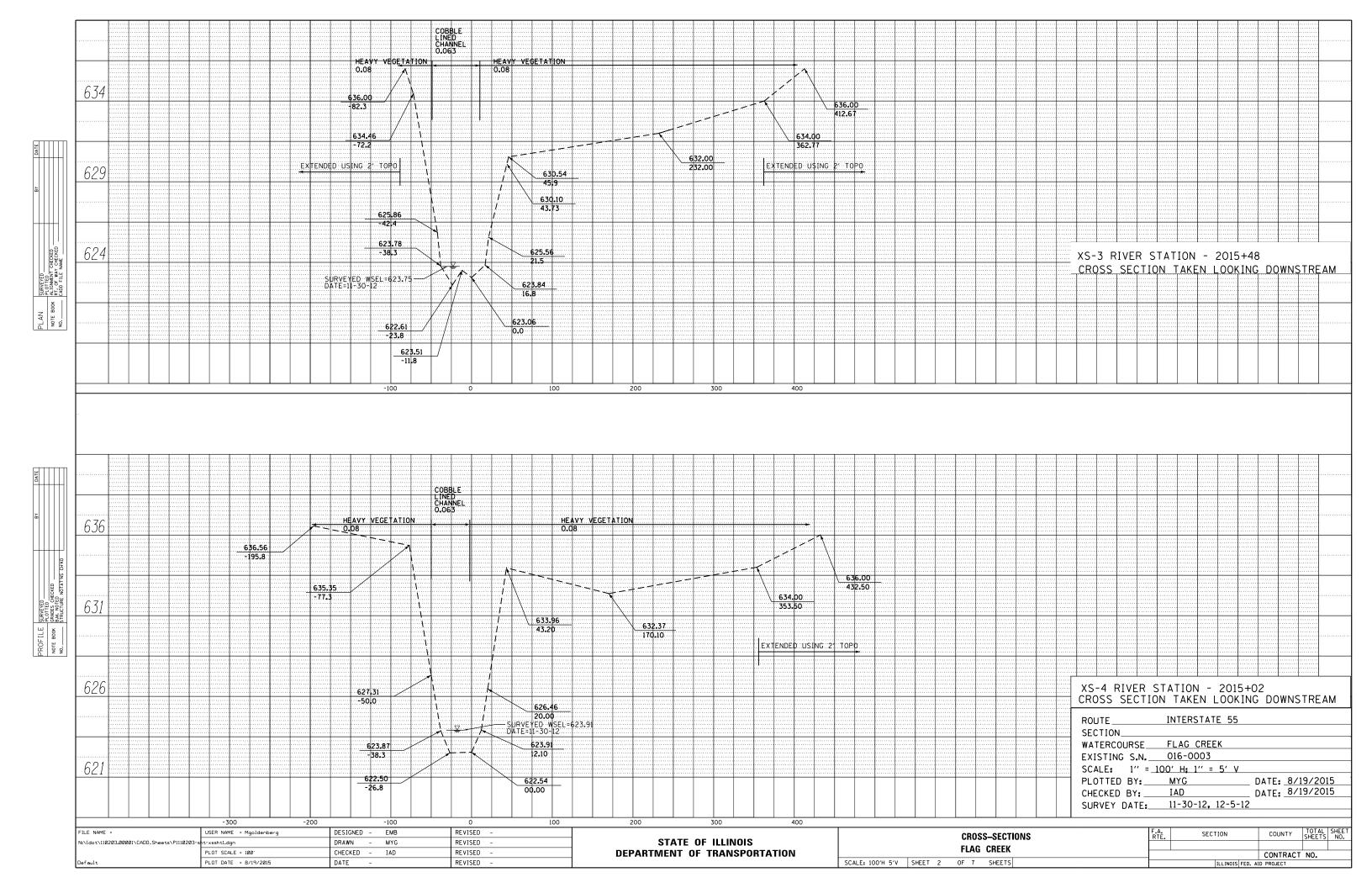


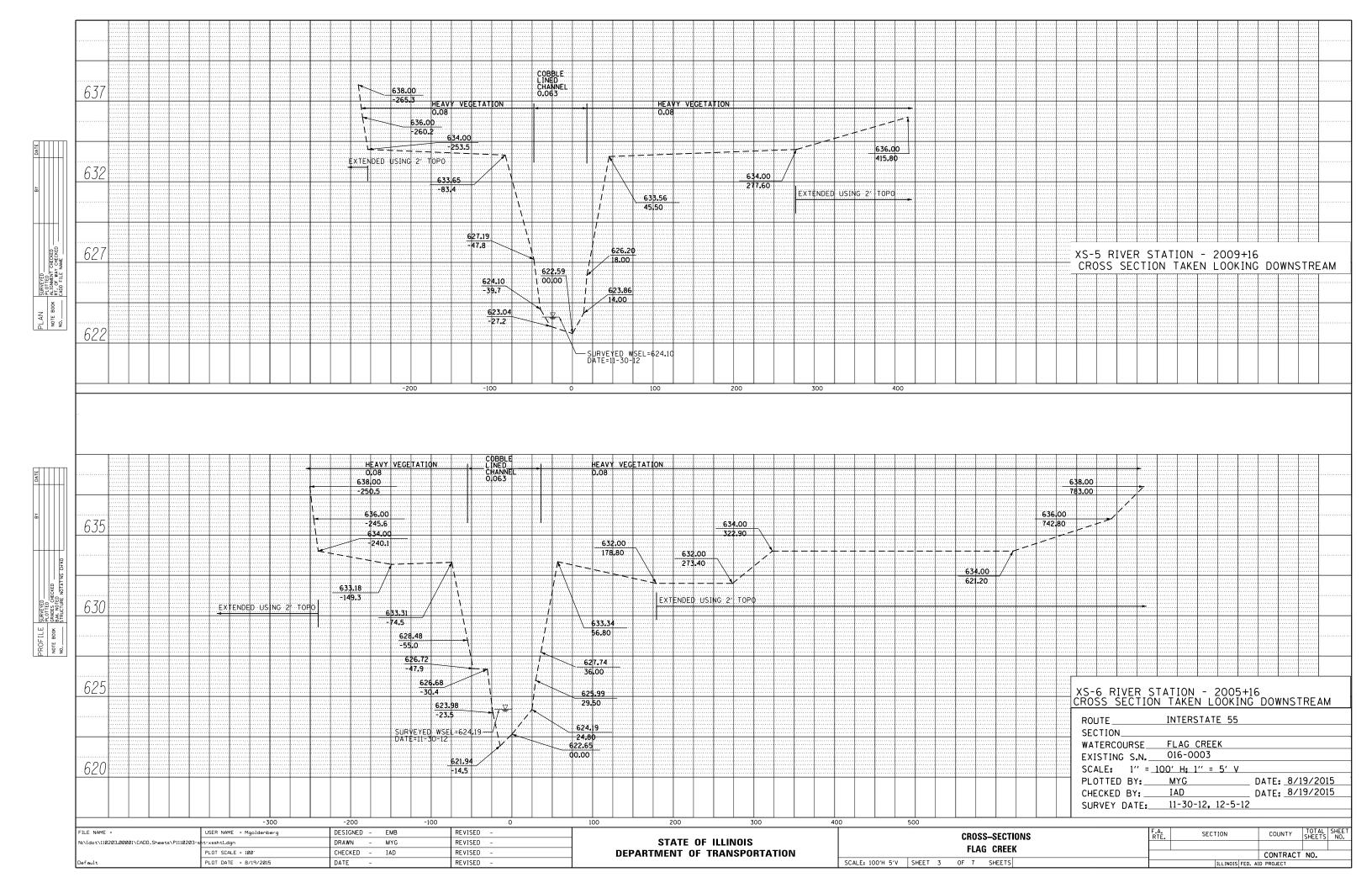

	Hydraulic Report – Interstate 55 over Flag Creek				
	SECTION 8				
	ROADWAY PLAN AND PROFILE				
C B					

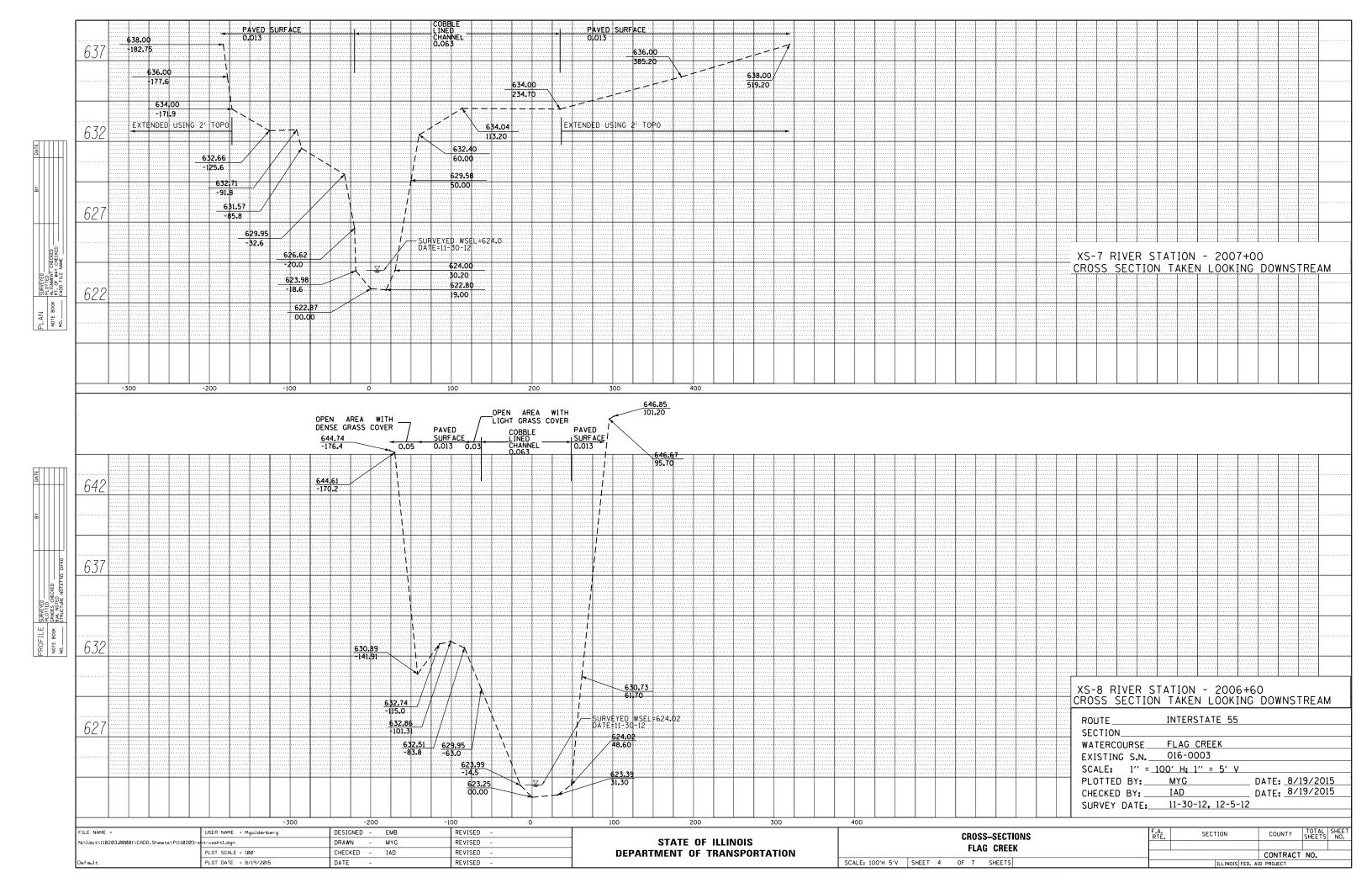


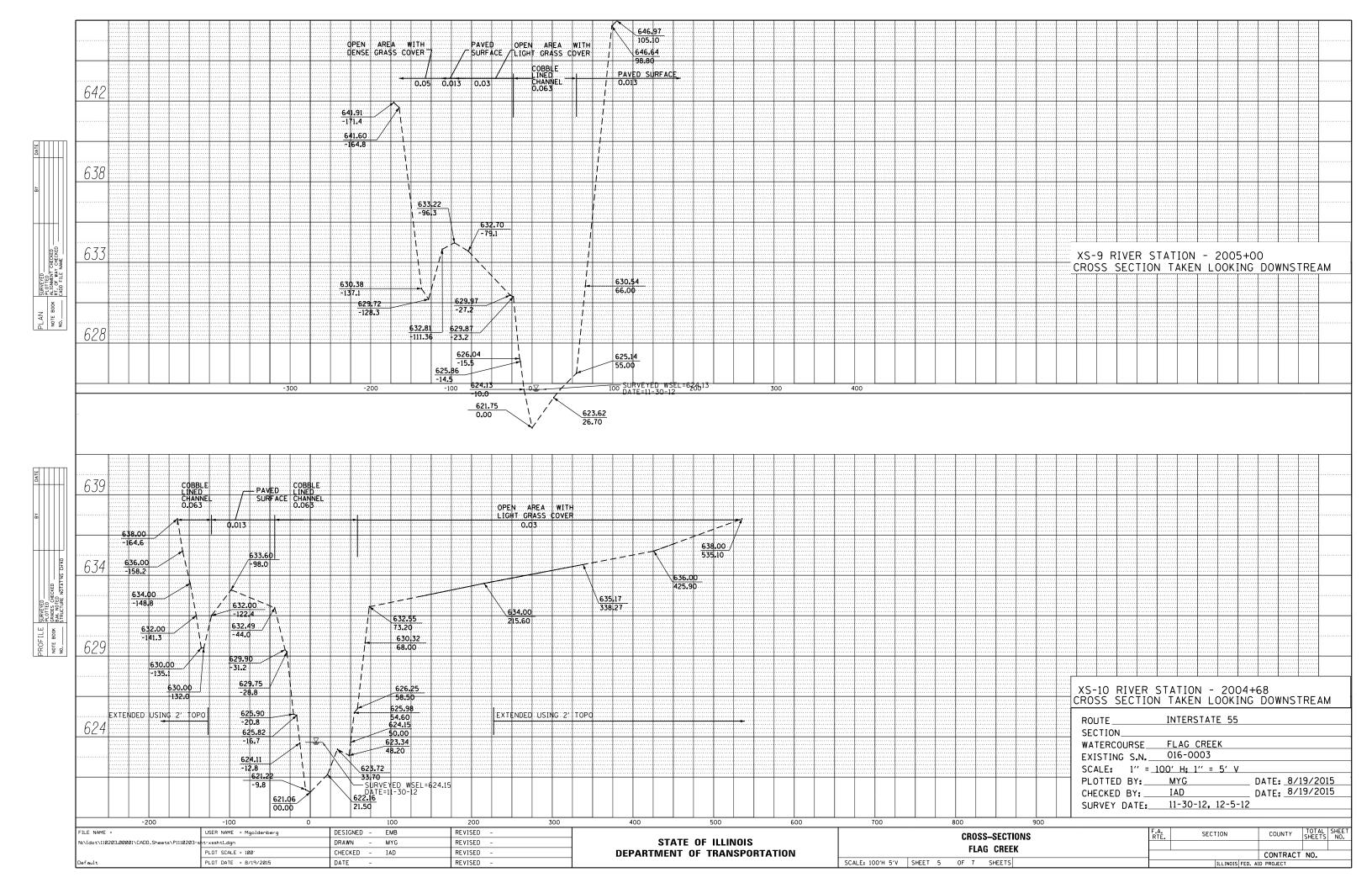
Hydraulic Report – Interstate 55 over Flag Creek

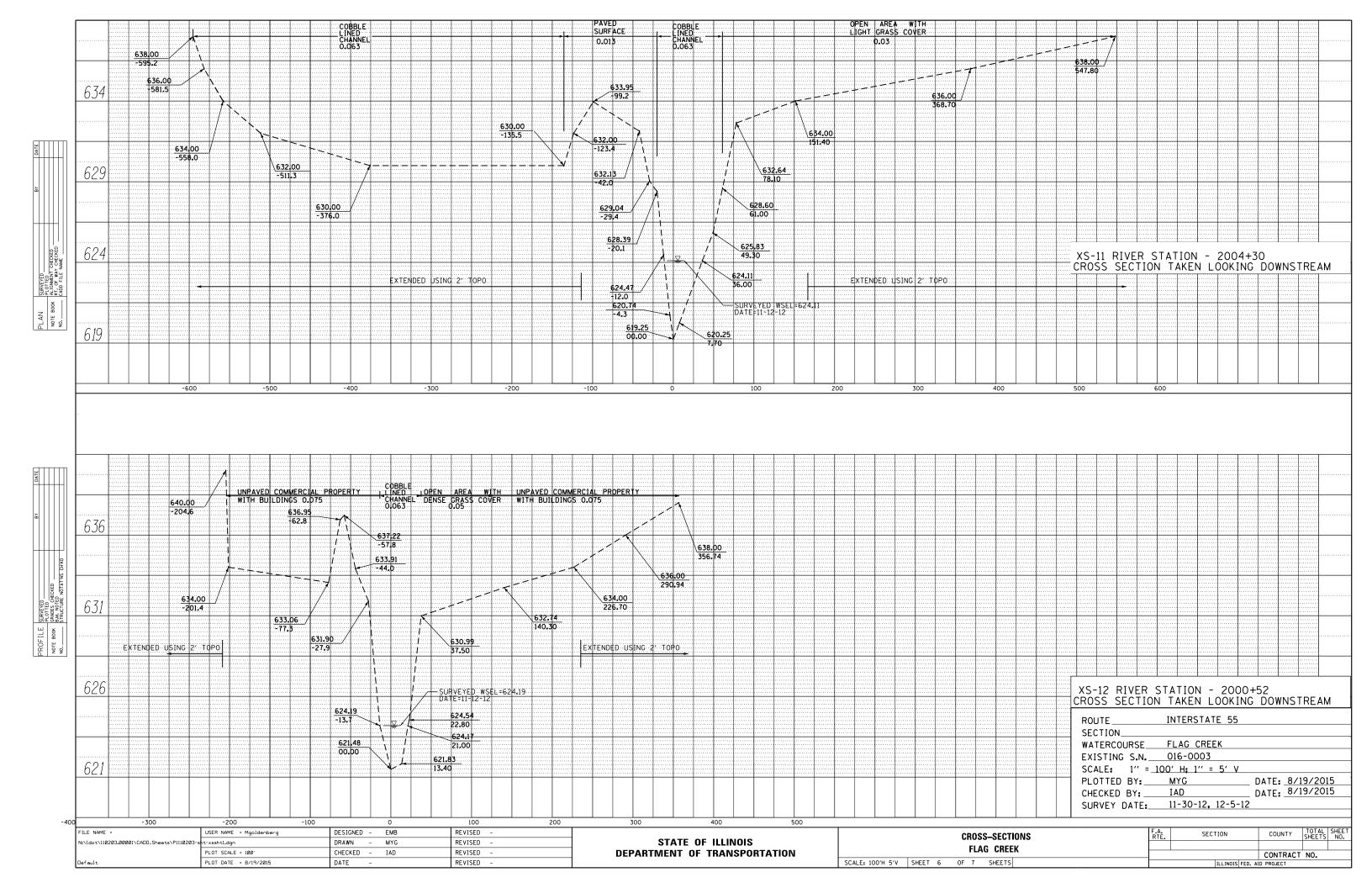

SECTION 9

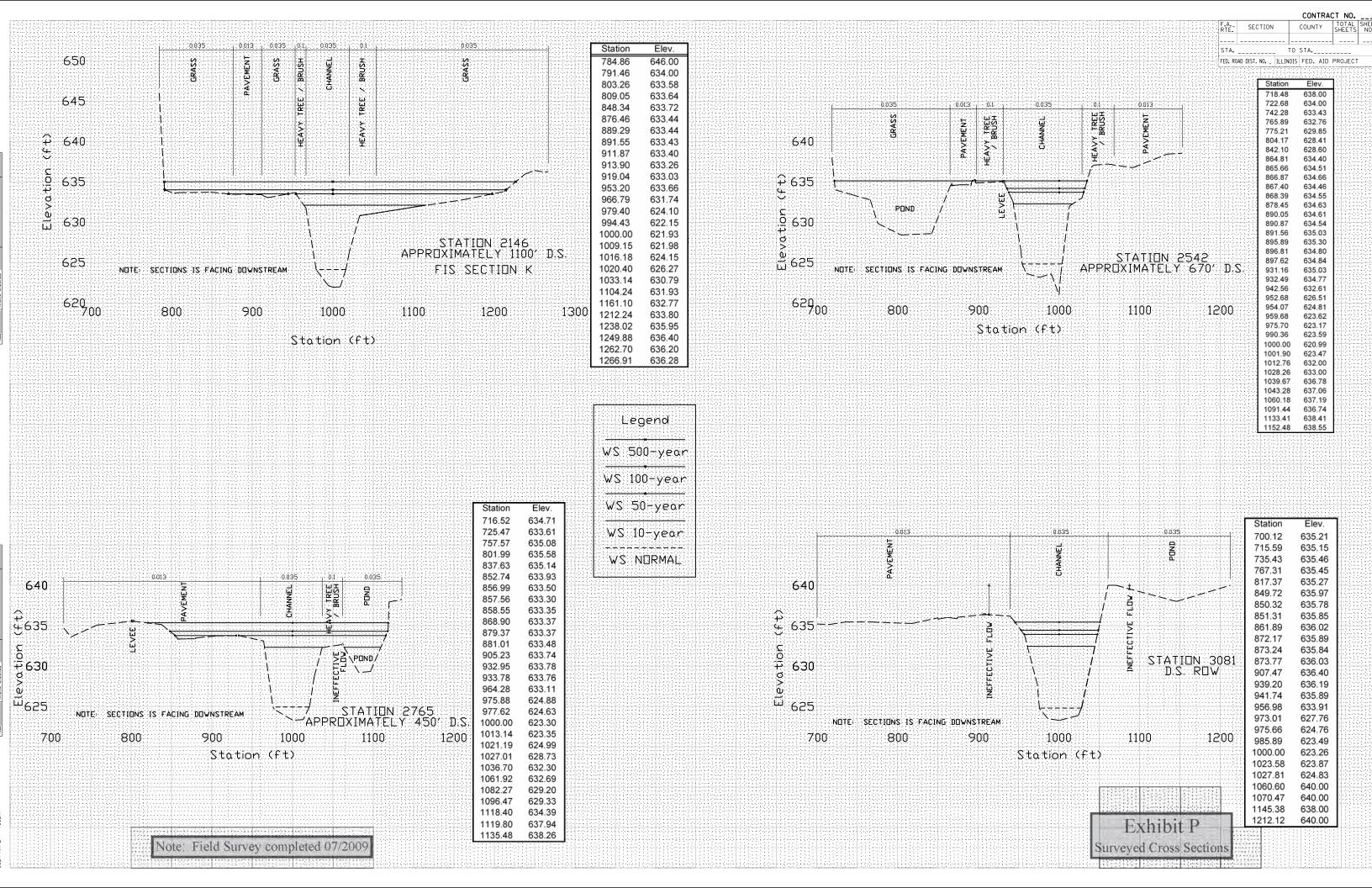

CROSS SECTION LOCATION MAP AND STREAM CROSS SECTION PLOTS FACING DOWNSTREAM

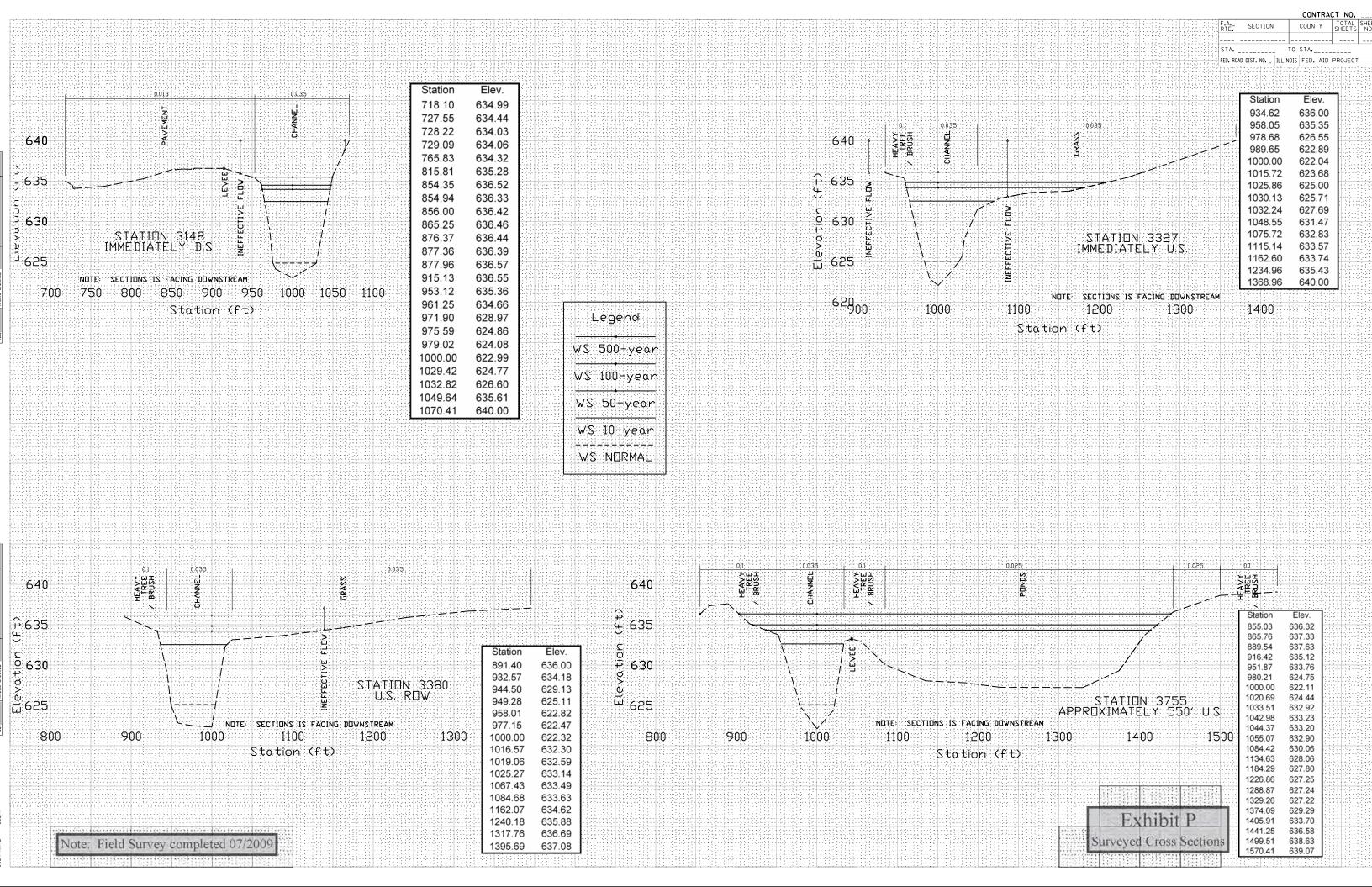


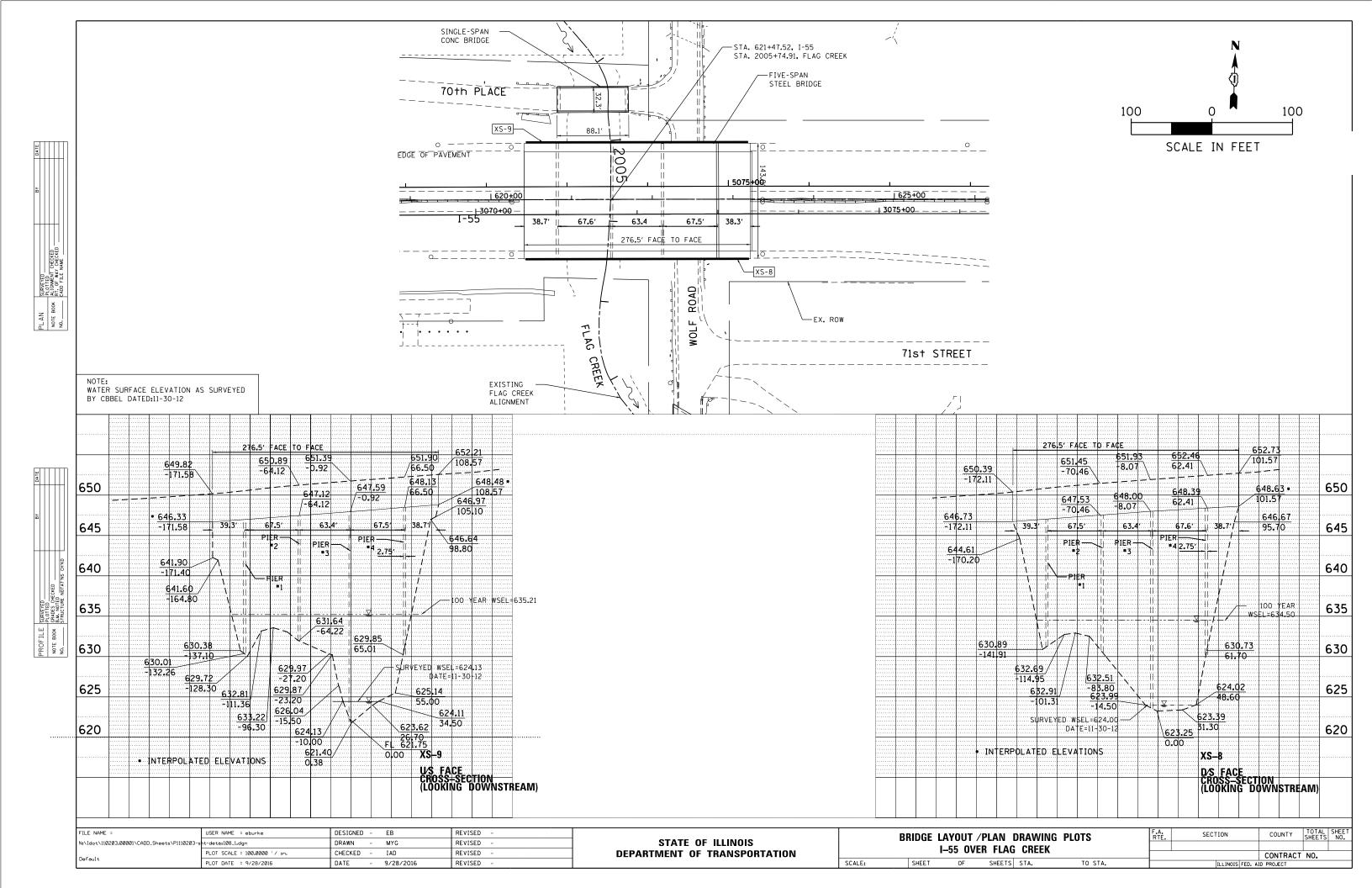



Structure No.	Structure Location	Flow	Offset	Low Elevation Opening	Comment
1	900 ft	U/S	West	644.16	Flagg Creek Water Reclemation District - Sand Filter Building
2	450 ft	U/S	West	639.1	Flagg Creek Water Reclemation District
3	300 ft	D/S	East	635.62	Commercial
4	475 ft	D/S	West	638.97	Commercial
5	550 ft	D/S	East	635.71	Commercial
6	600 ft	D/S	West	638.55	Commercial
7	800 ft	D/S	East	634.5	Commercial
8	915 ft	D/S	West	637.46	Residential
9	1150 ft	D/S	East	633.69	Commercial



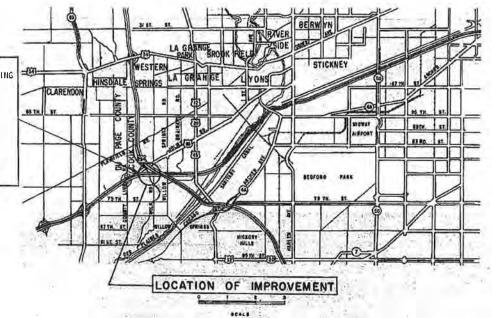






EXCERPT FROM 2011 HLR HYDRAULIC REPORT JOLIET ROAD OVER FLAGG CREEK

	Hydraulic Report – Interstate 55 over Flag Creek					
	SECTION 10					
	BRIDGE LAYOUT / PLAN DRAWING PLOTS					
CB						


INDEX OF SHEETS

- COVER SHEET
- SUMMARY OF QUANTITIES, GENERAL NOTES AND NAME PLATES
- PLAN AND PROFILE MAINLINE.
- PLAN AND PROFILE FRONTAGE ROADS 1 AND 5
- PLANS AND PROFILE, 70th PLACE
- TEST BORINGS
- GENERAL PLAN AND ELEVATION
- ABUTMENT DETAILS
- WINGWALL AND MISCELLANEOUS ABUTMENT DETAIL
- PIERS | AND 5
- PIERS 2 AND 6
- PIERS 3 AND 7
- SUPERSTRUCTURE SLAB DETAILS
- THEORETICAL GRADE ELEVATIONS AND MISCELLANEOUS DETAILS
- SUPERSTRUCTURE FRAMING PLAN
- BEARINGS AND EXPANSION GUARD DETAILS AT WEST ABUTMENT
- SLIDING PLATE EXPANSION GUARD DETAIL AT EAST ABUTMENT ALUMINUM HANDRAIL AND PARAPET DETAILS
- METAL HANDRAIL DETAILS
- STEEL PLATE BEAM GUARD RAIL POST SPACING
- GENERAL PLAN, ELEVATION AND DECK DETAILS 70th PLACE
- ABUTMENT DETAILS. 70th PLACE
- LOCATION OF BORROW FURNISHED BY THE STATE
- LOCATION OF BORROW CROSS SECTIONS
- MAINLINE CROSS SECTIONS (FRONTAGE ROAD NO. 1 INCLUDED)
- CROSS SECTIONS FRONTAGE ROAD NO. 5
- CROSS SECTIONS 70th PLACE
- **510** 1687-3
- STD 1086-2 STD 2183-1

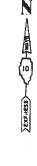
- CRITICAL PATH SCHEDULE CRITICAL PATH SCHEDULE DESCRIPTION

SECTION 0202 - 602 HB

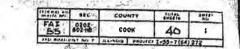
THE WORK UNDER THIS SECTION INCLUDES THE COMPLETE CONSTRUCTION OF THE 5-SPAN WEBEAM STRUCTURE CARRYING F.A.I. ROUTE 55 (SGUTHWEST EXPRESSWAY) OVER WOLF ROAD AND FLAG CREEK AT STATION 1140+41.64, SPANS 40'-4", 67'-6", 63'-3", 67'-6" AND 40'-4"; THE SINGLE SPAN PRESTRESSED CONCRETE I BEAM BRIDGE CARRYING 70th PLACE OVER FLAG CREEK; FRONTAGE ROADS NO. I AND NO. 5 AND 70th PLACE IMPROVEMENTS AND ALL APPURTENANT AND COLLATERAL WORK NECESSARY TO COMPLETE THE PROJECT AS SPECIFIED IN THE STAN-DARD SPECIFICATIONS, SUPPLEMENTAL SPECIFICATIONS

GROSS LENGTH OF PROJECT

(O. 0535 MILES)


STATE OF ILLINOIS DEPARTMENT OF PUBLIC WORKS AND BUILDINGS DIVISION OF HIGHWAYS PLANS FOR PROPOSED FEDERAL AID HIGHWAY

FA.I. ROUTE 55 SEC. 0202-602-HB


FLAG CREEK AND WOLF ROAD OVERPASS

SOUTHWEST EXPRESSWAY

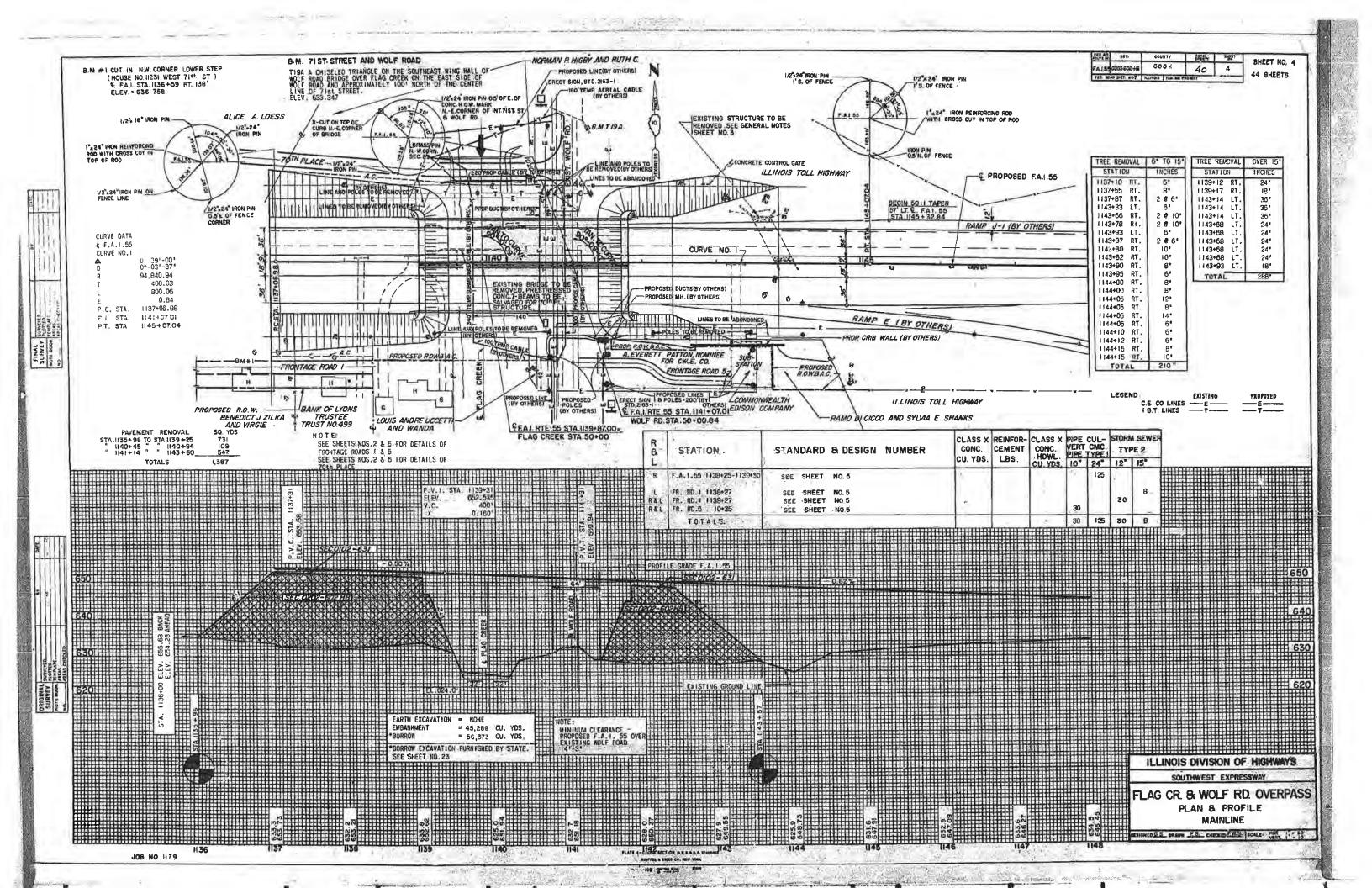
PROJECT I-55-7(64) 272 COOK COUNTY

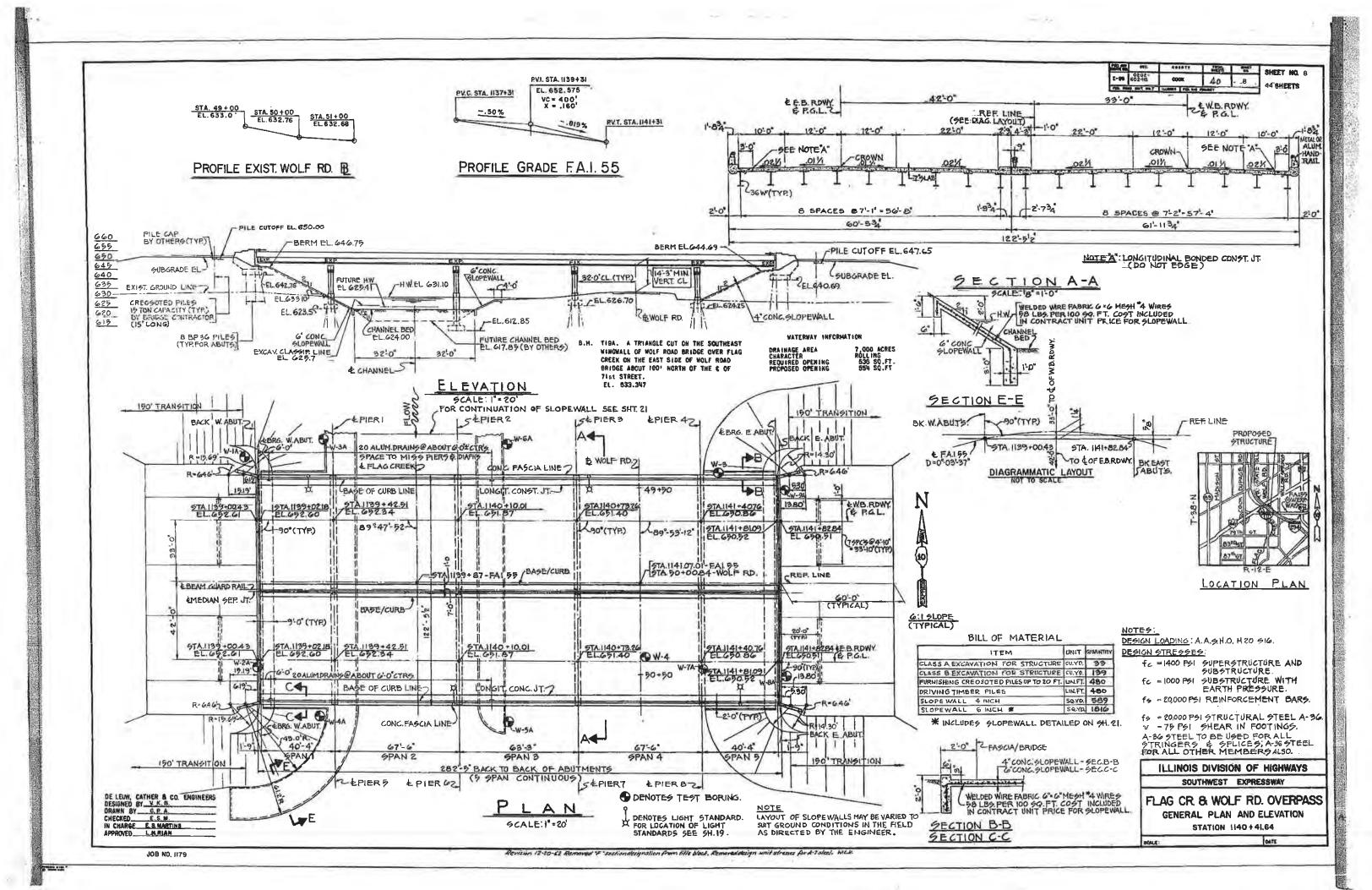
PLANS PREPARED BY DE LEUW, CATHER & CO. ENGINEERS CHICAGO.

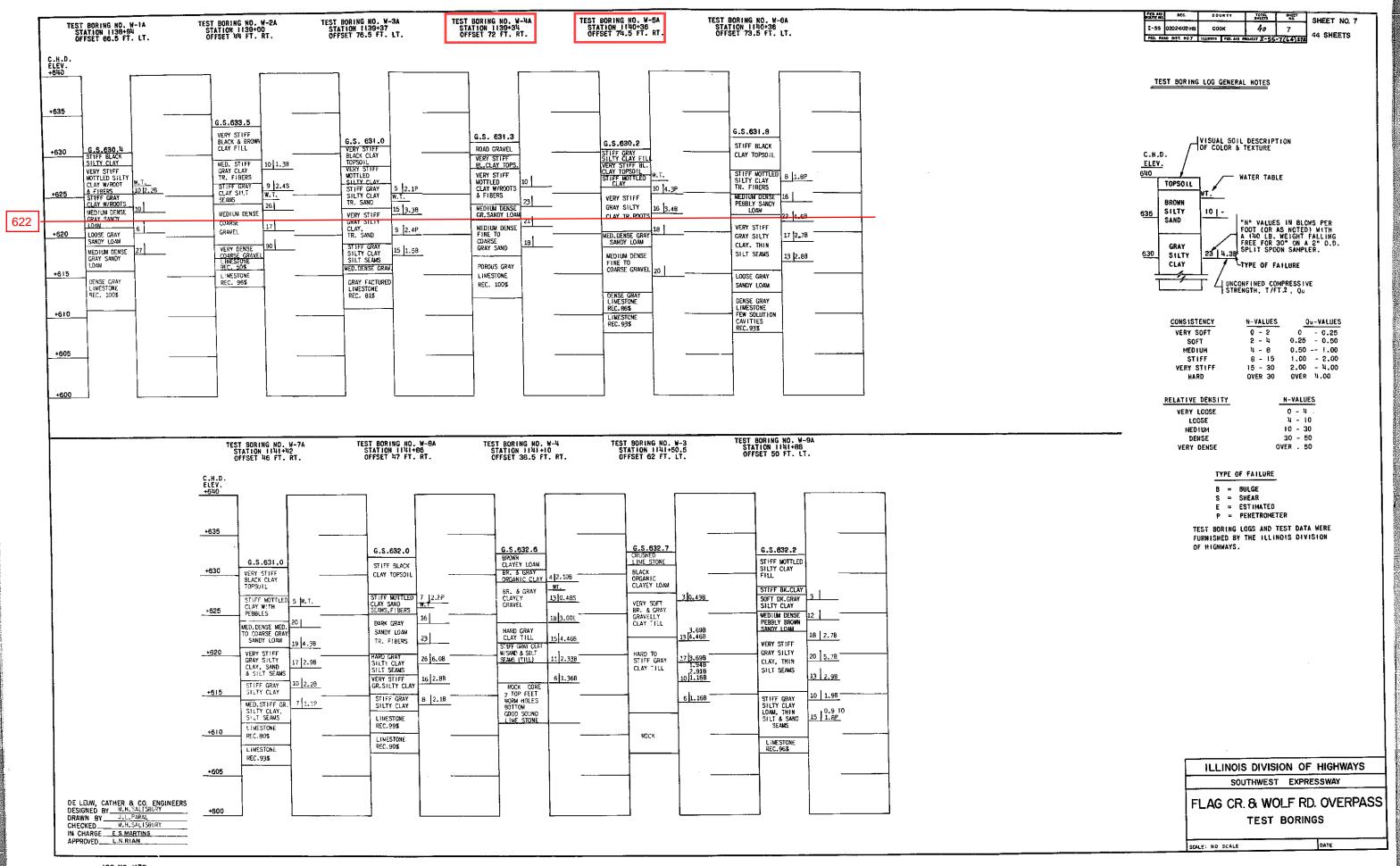
APPROVED

BETARTER	STATE OF		
*******	BIVIBIGE OF	BORRS AND SUI	C-01448
tusumren	12-19	-62	*
	merc	bell sel	773
casento De	ember 31	62	-
	auc	bala.	Sal
mais Dec	. Abend	TO OF MAND PLANT IS	NO CONTRA
	1	-	
	ember Ol	162 144	TO MEN
APPROVED AND	1	-	-
		catt mire	· spine
APPROVED AS	confer de	A SEN	1
		augest	1
_		1	Branch

DEPARTMENT OF COMMERCE DIVISION ENGINEER


REVI	EWED BY:
EXA	MINED BY Elment Brinksya
EXA	WINED BY: Refert & Knowst 12-14-62
ENT	RE SECTION INSPECTED AND
	BY: Merell blow 19-40


NET LENGTH OF PROJECT


282 41 FT. 282,41 FT.

(0.0535 MILES)

SECTION 0202- FARMETE BS

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

PLANS FOR PROPOSED FEDERAL AID HIGHWAY

FOR INDEX OF SHEETS, SEE DRAWING NO. 2

LIGHTING PLAN 1 INCH = 50 FT.
PROFILE HOR. 1 INCH = 50 FT.
PROFILE VERT 1 INCH = 5 FT.
CROSS-SECTIONS 1 INCH = 10 FT.

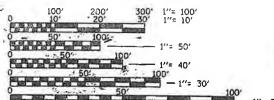
FAIROUTE 55 (STEVENSON EXPRESSWAY)

FOR UNDERGROUND UTILITY LOCATIONS CALL J.U.L.I.E. 1-800-892-0123 TOLL FREE

DESIGN DESIGNATION

6600 (1C) TRUNK 7000 (10) TRUNK

RICK


ENGINEER:

(PCC-20) - WB (PCC-20) - EB

PROJECT LOCATED IN THE VILLAGES OF INDIAN HEAD PARK, COUNTRYSIDE AND BURR RIDGE.

POSTED SPEED LIMIT = 55 MPH (I-55 EB) = 55 MPH (1-55 WB)

AVERAGE DAILY TRAFFIC = 62,700 VPD (I-55 E8) 1990

FULL SIZE PLANS HAVE BEEN PREPARED USING STANDARD ENGINEERING SCALES, REDUCED SIZED PLANS WILL NOT CONFORM TO STANDARD SCALES, IN MAKING MEASUREMENTS ON REDUCED PLANS, THE ABOVE SCALES MAY BE USED.

CONTRACT NO. 82686

SECTION (0101, 0101-639 & 0102-631)R & (0101-601HB & 0202-602HB)R

PROJECT: NHI-55-7(187)275 COOK COUNTY

C - 91 - 115 - 94

IMPROVEMENT BEGINS STA. 1095+00 WB B IMPROVEMENT BEGINS STA. 1095+00.00 EB B

IMPROVEMENT ENDS

STA. 1116+00 JOLIET ROAD

WESTBOUND INTERSTATE 55 OVER EASTBOUND JOLIET ROAD STA. 1112+81.01 WB B

STATION EQUATION

STA. 1129+76.71 WB I-55 (BACK) = STA. 1128+90.50 M/L 1-55 (AHEAD) STA. 1128+90.50 EB I-55 (BACK)

LYONS TOWNSHIP LOCATION MAP

PLANS PREPARED BY: GANNETT FLENING, INC. 222 S. RIVERSIDE PLAZA

SUITE 1860 CHICAGO, ILLINOIS 60606

INTERSTATE 55 OVER SCALE : 1" = 0.40 MILES

SN 016-0003 WOLF ROAD AND FLAGG CREEK STA. 1141+07.01 M/L 8

SCOPE OF WORK 1. RECONSTRUCT WB I-55 FROM COUNTY LINE ROAD TO

RAMP AB 2. CONSTRUCT OUTER AUXILIARY LANE BETWEEN RAMPS ALONG EB AND WB I-55 FROM COUNTY LINE ROAD TO I-294

PROVIDE PAVED MEDIAN WITH CONCRETE MEDIAN BARRIER FROMRAMP ABTO EAST PROJECT LIMITS.

4: RESURFACE EB AND WB I-55 FROM COUNTY LINE ROAD TO EAST PROJECT LIMITS

RESTRIPE WB JOLIET ROAD

LICENSE 11-30-95

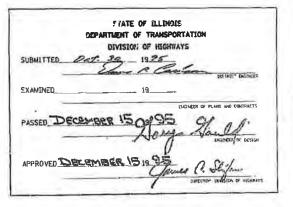
6. RECONSTRUCT BRIDGES

A. WB 1-55 OVER EB JOILIET ROAD

B. I-55 OVER WOLF ROAD AND FLAGG CREEK CONSTRUCT RETAINING WALLS AT BRIDGE OVER FLAGG CREEK

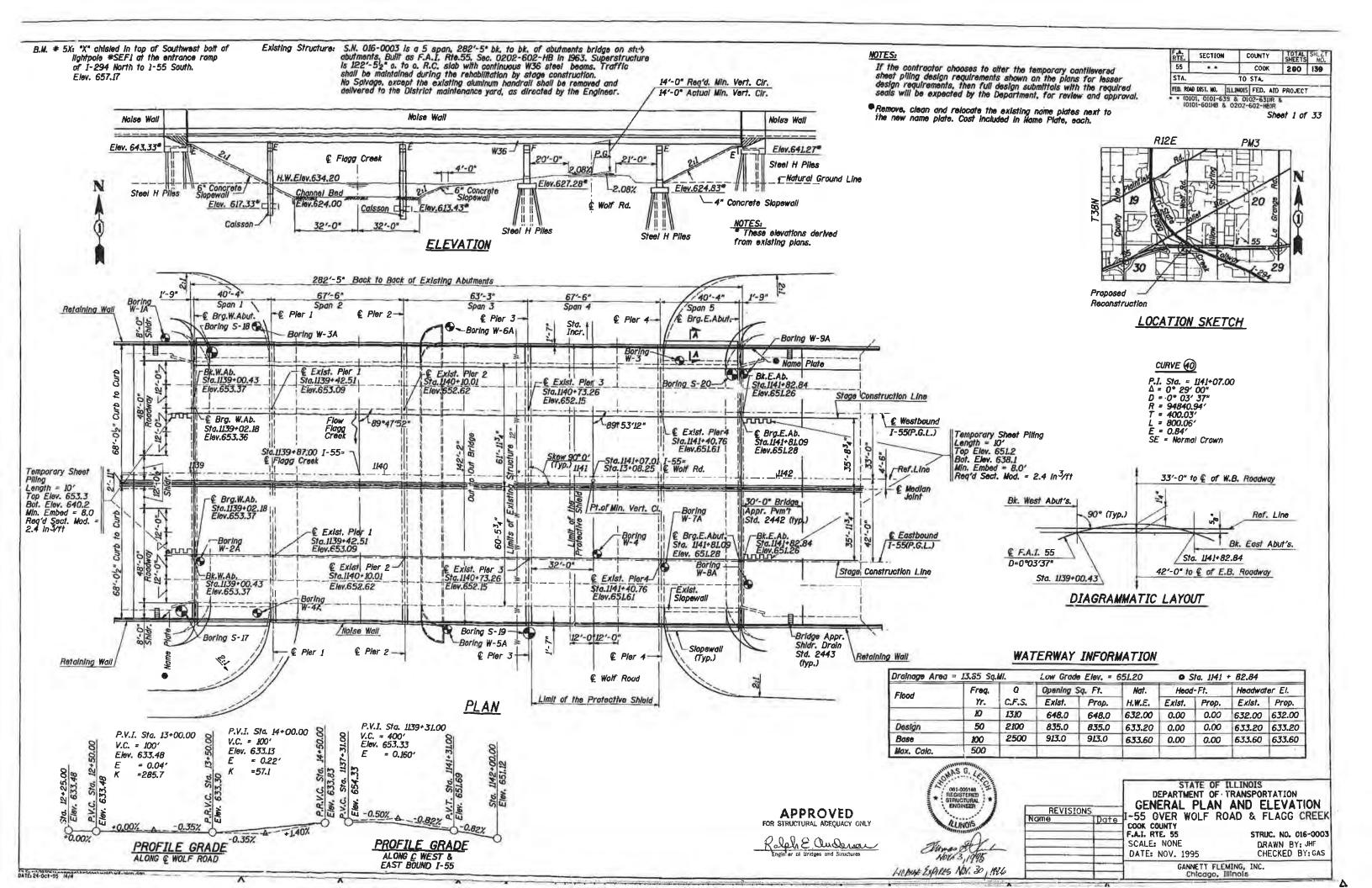
CONSTRUCT NOISE ABATEMENT WALL ON SOUTH SIDE FROM RAMP AB TO RAMP J

PERFORM VARIOUS GRADING, DRAINAGE, SIGNING, LIGHTING, SURVEILANCE, AND LANDSCAPING **IMPROVEMENTS**



11-30-95 PAGES: 1-97,172,173,241-244 PAGES: 174 TO 223 8 251-280 PAGES: 174 TO 223 8

223a thru 223e IMPROVEMENT ENDS STA. 1176+00,00 M/L B


SECTION COUNTY ** COOK 280 1 (0101-601HB & 0202-602HB)R

PRINTED UNDER THE AUTHORITY OF THE STATE OF ILLINOIS

NET LENGTH OF IMPROVEMENT 1-55 - 8,100.00 FEET = 1.534 MILES. NET LENGTH OF IMPROVEMENT EB JOLIET ROAD - 1401.92 FEET = 0.266 MILES. NET LENGTH OF IMPROVEMENT WB JOLIET ROAD - 1401.95 FEET = 0.266 MILES

GENERAL MOTES

- 1. Fasteners shall be high strength bolts. Bolts 34" 4, apan holes 15 " 4, unless otherwise noted.
- 2. Calculated weight of Structural Steel =117,022 lbs.
 Structural Steel (M270, Grade 36): 117,022 lbs.
- The inorganic Zinc rich Primer/Acrylic/Acrylic point system shall be used for shop and field painting of new Structural Steel except where otherwise noted. The color of the Acrylic finish coat shall be Munsell No. 2.5 YR 3/4, Reddish Brown.
- # 4. Field welding of construction accessories will not be permitted to the bottom Flange of beams or girders nor to the top flange for a distance equal to one-fourth the span length each way from the pier supports. Field welding in other areas will be permitted only when approved by the Engineer.
- * 5. Anchor boits shall be set before bolting diaphragms over supports.
- The main load carrying member components subject to tensile stress shall conform to the Supplemental Requirements for Notch Toughness Zone 2. These components are the wide flange beams and all splice plate material except fill plates.
- * 7. Reinforcement bars shall conform to the requirements of AASHTO M-31, M-42 or M-53 Grade 60.
- * 8. Slope well shall be reinforced with welded wire fabric, 6" x 6" W4.0 x W4.0, weighing 58 lbs. per 100 sq. ft.
- 9. Plan dimensions and details relative to existing structure have been taken from existing plans and are subject to nominal construction variations. It shall be the Confractor's responsibility to verify such dimensions and details in the field and make necessary approved adjustments prior to construction or ordering of materials. Such variations shall not be cause for additional compensation for a change in the scope of the work, however, the Contractor will be paid for the quantity actually furnished at the unit price bid for the work.
- Existing Plan elevations (dated 1962) plus a correction of +0.58' = New Plan Elevations (dated 1995).
- 11. Bearing seaf surfaces shall be constructed or adjusted to the designated elevations within a tolerance of 1/8 inch. Adjustment shall be made either by grinding the surface or by shimming the bearing. Two 1/8" adjusting shims, of the dimension of the bottom bearing plate, shall be provided for each bearing in addition to all other plates or shims.

DESIGN SPECIFICATIONS

1992 AASHTO Specifications with 1993 and 1994 Interim Specifications

LOADING

Dead Loads:

Includes 25 psf for Future Wearing Surface.

Live Loads:

HS20-44 or Alternate Military Load.

SEISMIC DATA

Selemic Performance Category (SPC) = A Bedrock Acceleration Coefficient = 0.04g Site Coefficient (S) = 1.0

DESIGN STRESSES

Superstructure:

f'c = 3,500 psi

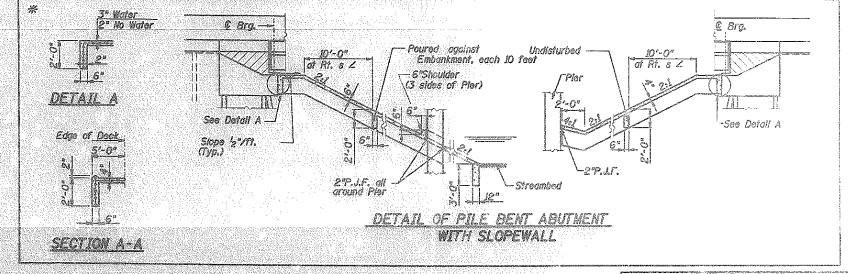
fy = 60,000 psi (Reinforcement)

is = 20,000 psi (Structural Steel, M270 Grade 36)

Substructure:

f'c = 3,500 psi

fy = 60,000 psi (Reinforcement)


- * 12. The confractor shall drive 4 steel test piles in a permanent location, one at each abuliment and one at Piers 3 and 4, as directed by the Engineer before ordering the remainder of piles.
- # 13. Bridge Seat Sealer shall be applied to the seat area of the west and east abutment.
- # 14. Cour of Removal of Existing Handrall and Existing Wearing Surface is incidental to "Removal of Existing Concrete Deck".
- # 15. For quantity of Temporary Concrete Barrier see Roadway Plans.

F.A. RTE.	SECTION	COUNTY	TOTAL SHEE
55	9 6	COOK	31 160
STA.		TO STA.	
FED. ROA	0 0/ST. 680. 11.5	INOIS FED. AID	PROJECT

• • Ю101-501-нв & Sheet Fi6 of 30 0202-602-ная

TOTAL BILL OF MATERIAL

ITEM	UNIT	STAGE I	STAGE II	TOTAL
Furnishing Structural Steel	L. Sum	0.08	0.09	0./7
Furnishing Elastomeric Bearing Assembly.Type II	Each	10	10	20
Furnishing Elastomeric Bearing Assembly.Type 111	Each	10	10	20
Field Neasurements	L. Sum			0.5

* STANDARDS

STATION 1141+07.01

BUILT 1996 BY

STATE OF ILLINOIS

F.A.I. AT. 55 SEC. 0202-602MB

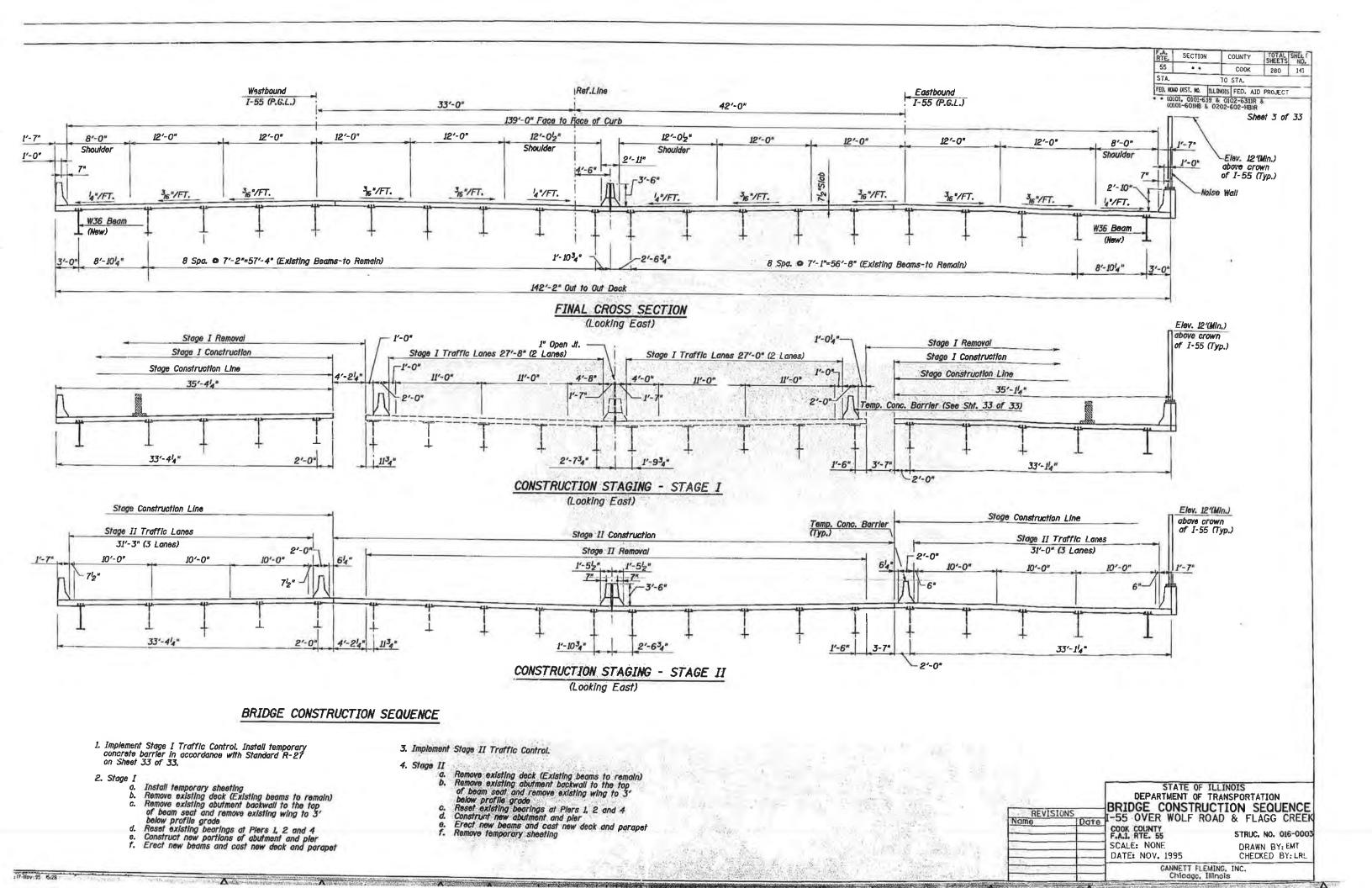
F.A. PROJ. STPI - 85-7 (185) 276

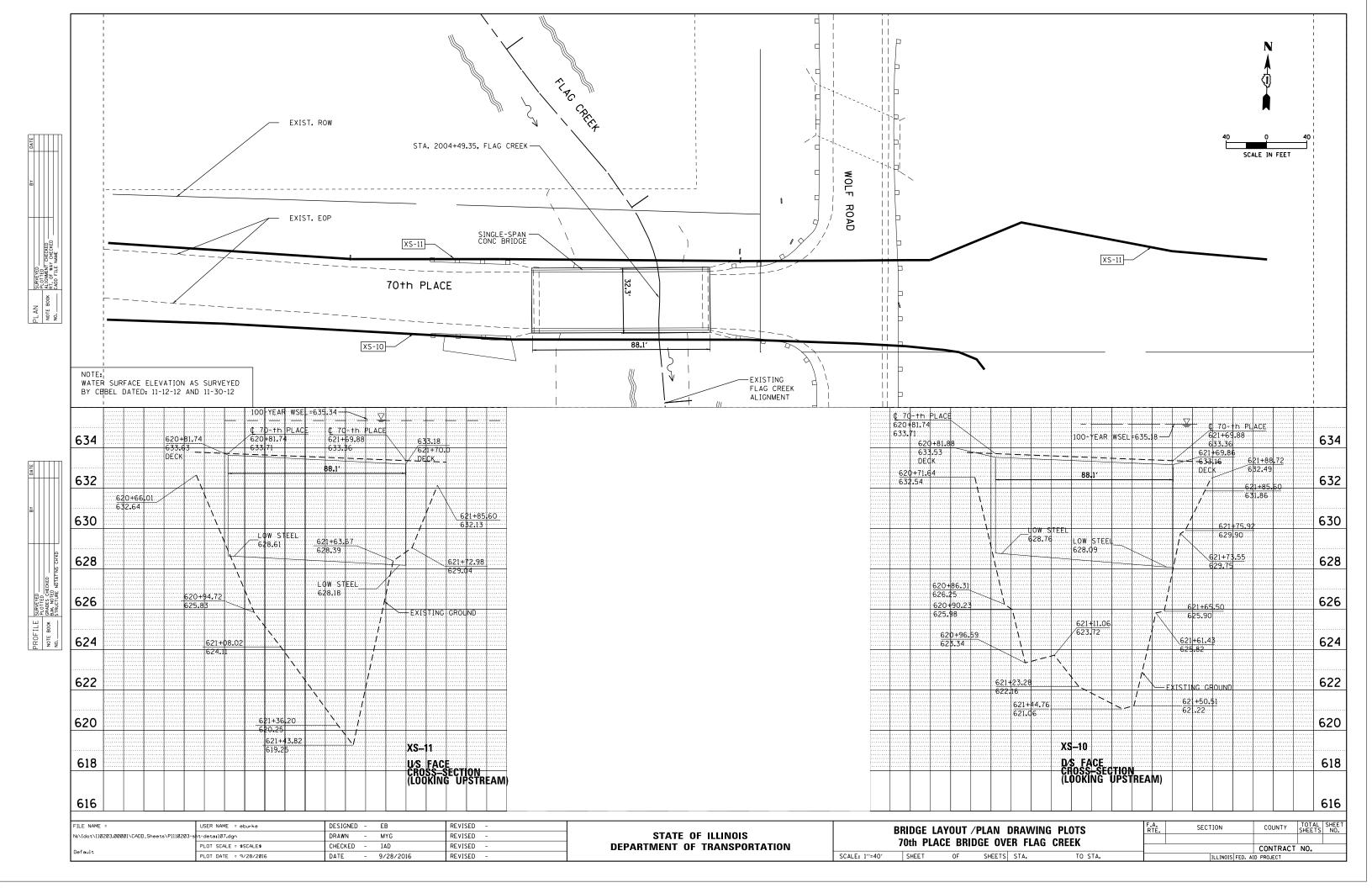
LOADING HS20

* NAME FLATE DETAIL

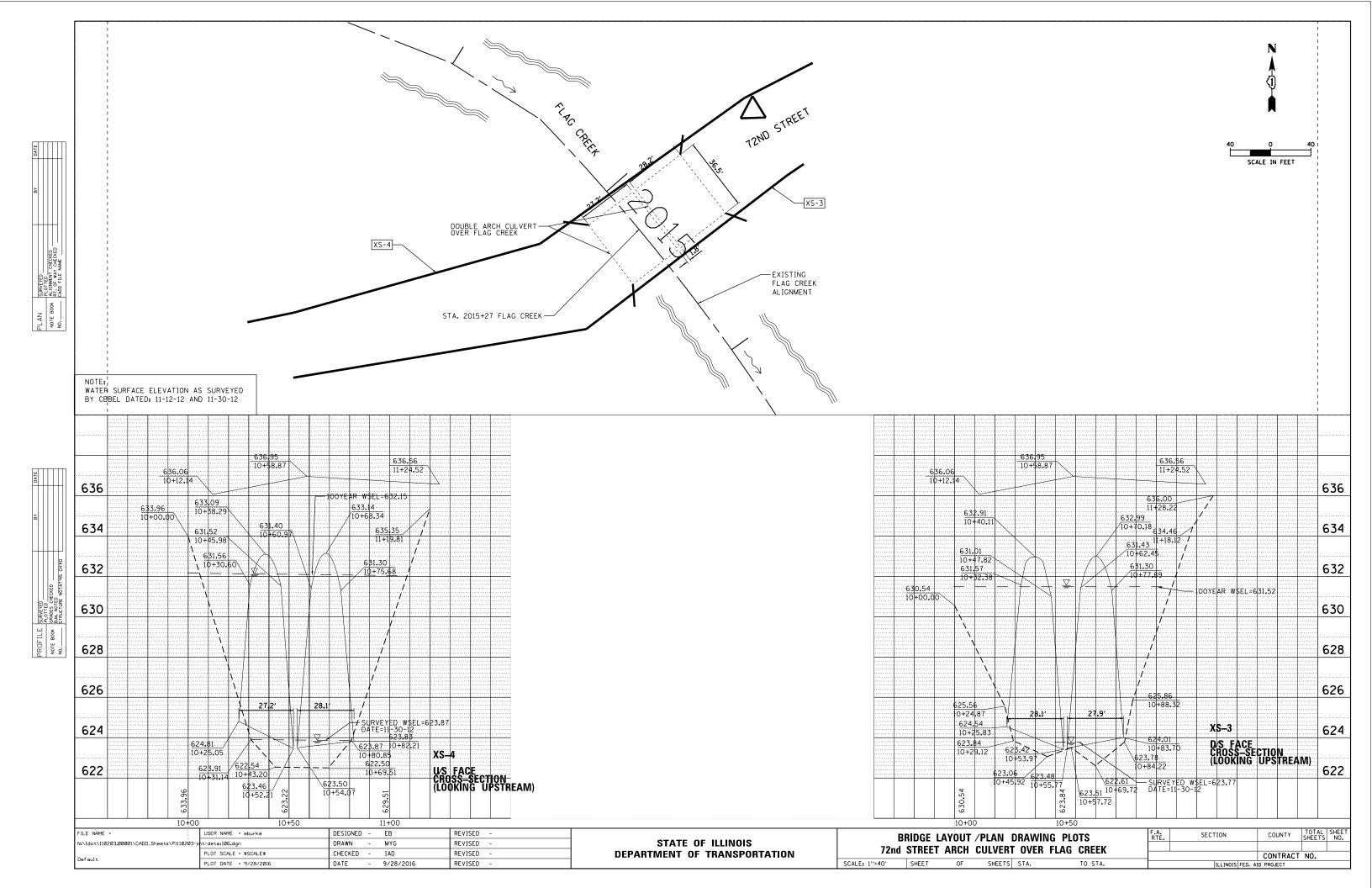
STR. NO. Q16-0003

2113 Name Plate for Bridges with Au more

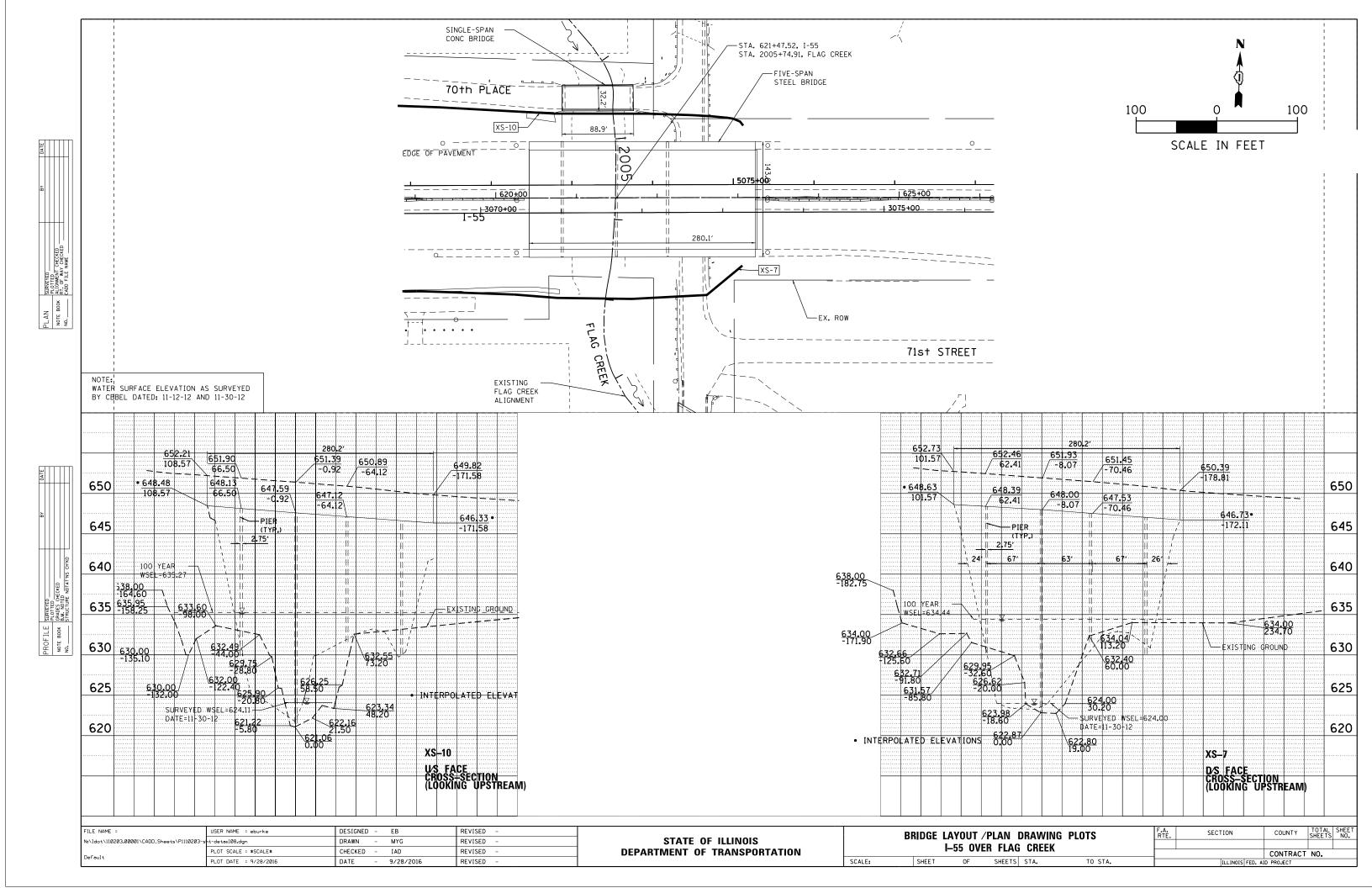

Note: All material marked with an "Fis for information only."


STATE OF ILLINOIS
DEPARTMENT OF TRANSPORTATION
GENERAL NOTES & BILL OF MATERIAL
NOTES & BILL OF MATERIAL
1-55 OVER WOLF ROAD & FLAGG CREEK
COOK COUNTY
F.A.I. RTE. 55
SCALE: NONE
DATE: SEPT. 1995
DATE: SEPT. 1995


CHECKED BY: GAS


GANNETT FLEMING, INC. Chicage, Illnois

ATE: 2-007-95 09:04



Hydraulic Report – Interstate 55 over Flag Creek	_
SECTION 11	
BRIDGE CROSS SECTION PLOTS – EXISTING CONDITIONS	
g B	

TAB 12

BRIDGE CROSS SECTION PLOTS – PROPOSED CONDITIONS

There are no proposed modifications to the existing culvert. Please refer to Section 11 for the existing culvert plots.

TAB 13

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 13
	HYDRAULIC ANALYSIS
_	
C B	

10 Year Event

		20 1001 210111	1	1
	Paper WSP-2	WSP-2 Duplicate	Mod WSP-2	Existing Model
4240	-	-	-	633.13
3755	-	ı	-	633.02
3380	-	•	-	632.95
3327	-	ı	-	632.91
3288	-	•	-	632.91
3245		Joliet Road	l Bridge	
3206	-	•	-	632.87
3148	-	•	-	632.85
3081	-	-	-	632.84
2765	-	•	-	632.74
2542	-	•	-	632.69
12.1	632.12	633.23	631.98	632.54
12	-	-	-	632.53
11	-	-	-	632.41
10.5		70th Place	Bridge	
10	-	-	-	632.23
9.5	631.62	633.00	631.45	632.21
9	-	•	-	632.19
8.5		I-55 Bri	idge	
8	-	-	-	631.53
7	-	•	-	631.46
6	-	•	-	631.27
5.5		Wolf Road	l Bridge	
5	-	•	-	630.97
4.1	631.02	630.58	630.93	-
4				630.41
3.5		72nd Stree	t Bridge	
3	-	-	-	630.05
2	-	-	-	629.58
1	-	-	-	629.06
0.5	628.52	628.52	628.52	628.52

50 Year Event

River Sta	Paper WSP-2	WSP-2 Duplicate	Mod WSP-2	Existing Model
4240	-	ı	-	635.22
3755	-	-	-	635.19
3380	-	•	-	635.1
3327	-	ı	-	635.04
3288	-	-	-	635.03
3245		Joliet Road	l Bridge	
3206	-	•	-	634.98
3148	-	-	-	634.97
3081	-	-	-	634.96
2765	-	-	-	634.9
2542	-	-	-	634.81
12.1	633.42	634.93	633.48	634.65
12	-	-	-	634.65
11	-	-	-	634.57
10.5		70th Place	Bridge	
10	-	-	-	634.54
9.5	632.82	634.67	632.77	634.5
9	-	-	-	634.5
8.5		I-55 Bri	idge	
8	-	-	-	633.78
7	-	-	-	633.72
6	-	-	-	633.56
5.5		Wolf Road	l Bridge	
5	-	-	-	632.67
4.1	632.02	631.53	631.92	-
4	-	-	-	631.93
3.5		72nd Stree	t Bridge	
3	-	-	-	631.18
2	-	-	-	630.45
1	-	-	-	629.7
0.5	629.02	629.02	629.02	629.02

100 Year Event

				100 TCai EVC	110				_
	FIS (WSP-2) XS	FIS Table 19	22 Feb 80	WSP-2		2011 HLR Model,	2016 CBBEL	Δ, CBBEL	
River Sta	Name	Reg. Elev.	Paper WSP-2	Duplicate	Mod WSP-2	NAVD 88	Existing Model	HLR	
4240			-	-	-	634.97	636.05	1.08	
3755			-	-	-	634.90	636.05	1.14	
3380			-	-	-	634.75	635.96	1.20	
3327			-	-	-	634.66	635.88	1.21	
3288			-	-	-	634.66	635.87	1.20	
3245					Joliet Road Bri	idge			
3206			-	-	-	634.39	635.75	1.35	
3148			-	-	-	634.36	635.73	1.37	
3081			-	-	-	634.34	635.72	1.38	
2765			-	-	-	634.19	635.70	1.50	
2542			-	-	-	634.06	635.69	1.62	
12.1	K (FC 039)	634.0	634.02	635.29	634.10	633.85	635.51	1.65	Approx. HLR XS 2146
12			-	-	-	-	635.51	-	
11			-	-	-	633.82	635.45	1.63	Approx. HLR XS 1762
10.5					70th Place Bri	dge			
10			-	-	-	-	635.27	-	
9.5	J (X)	633.2	633.22	634.97	633.34	633.6	635.22	1.62	Approx. HLR starting XS 17
9			-	-	-	n/a	635.22		_
8.5					I-55 Bridge	2]	
8			-	=	-	n/a	634.5		
7			-	-	-	n/a	634.44		
6			-	-	-	n/a	634.34		
5.5					Wolf Road Bri	dge		1	
5			-	-	-	n/a	633.45		
4.1	(Z)		632.02	631.92	632.31	n/a	-		
4			-	-	-	n/a	632.69		
3.5					72nd Street Br	idge		1	
3			-	-	-	n/a	631.67		
2			-	-	-	n/a	630.84		
1			-	-	-	n/a	630.04		
0.5	H (FC 033)	629.4	629.42	629.42	629.42	n/a	629.42	1	

500 Year Event

River Sta	Paper WSP-2	WSP-2 Duplicate	Mod WSP-2	Existing Model
4240	-	-	-	637.3
3755	-	-	-	637.33
3380	-	-	-	637.22
3327	-	-	-	637.08
3288	-	-	-	637.08
3245		Joliet Road	Bridge	
3206	-	-	-	636.8
3148	-	-	-	636.78
3081	-	-	-	636.77
2765	-	-	-	636.79
2542	-	•	-	636.77
12.1	635.02	636.11	635.43	636.57
12	-	-	-	636.56
11	-	•	-	636.51
10.5		70th Place	Bridge	
10	-	•	-	636.33
9.5	634.22	635.65	634.63	636.28
9	-	-	-	636.27
8.5		I-55 Bri	idge	
8	-	ı	-	635.54
7	-	ı	-	635.47
6	-	ı	-	635.39
5.5		Wolf Road	l Bridge	
5	-	•	-	634.94
4.1	633.12	632.75	633.13	-
4	-	ı	-	634.03
3.5		72nd Stree	t Bridge	
3	-	-	-	632.68
2	-	-	-	631.72
1	-	-	-	630.8
0.5	630.22	630.22	630.22	630.22

Manning's n Comparison

	WSP-2 Mod FIS Existing Mo			Mod FIS			xisting Mod	el	
Cross Section	LOB	Channel	ROB	LOB	Channel	ROB	LOB	Channel	ROB
12.1	0.075	0.05	0.075	0.05	0.05	0.05	0.075	0.05	0.075
9.5	0.08	0.063	0.08	0.077	0.077	0.077	0.08	0.063	0.08
4.1	0.08	0.063	0.08	0.09	0.075	0.09	1	-	-
0.5	0.08	0.063	0.08	0.09	0.073	0.09	0.08	0.063	0.08

Project #: 11-0203.00001

Stream: Flag Creek

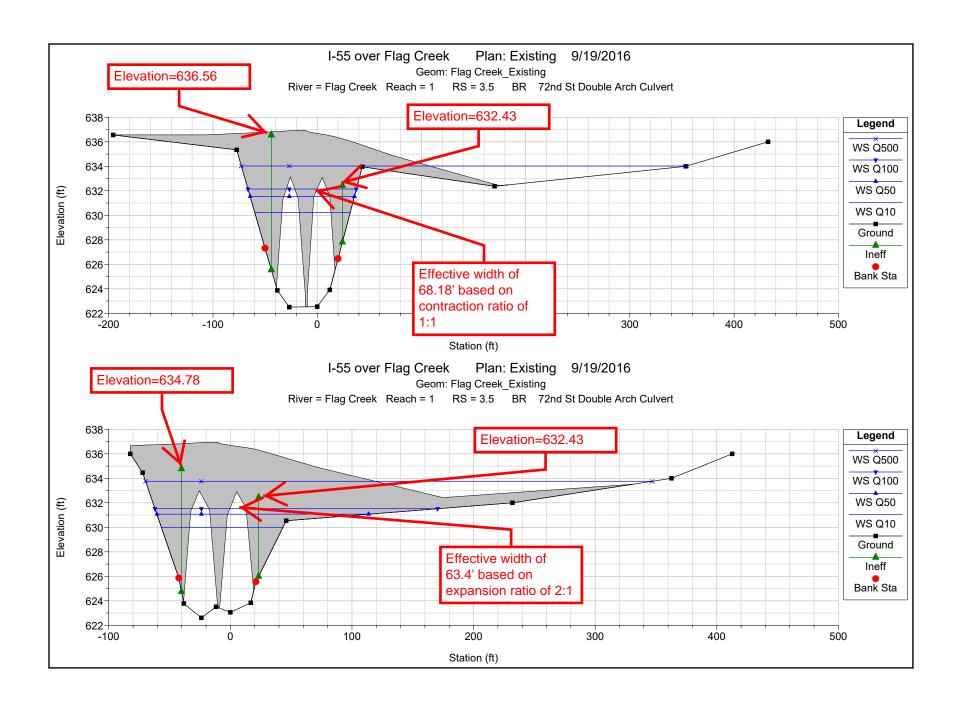
Route: I-55

By: EMB Ck: IAD

Date: 8/16/2016 9/19/2016

Structure: 72nd Street

Structure Opening Width: 57.18


Expansion Ratio: 2
Contraction Ratio: 1

Top of Structure Opening D/S:

Left Right
632.99 632.91

	Upstream	Downstream
Left Overtopping	636.56	634.78
Right Overtopping	632.43	632.43

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
5	530.3	1117.78	Wider than Channel Width
4	5.5	68.18	-
3.5 72nd Street	-	57.18	-
3	6.22	63.4	-
2	496.42	553.6	Wider than Channel Width

Project #: 11-0203.00001

Stream: Flag Creek

Route: I-55

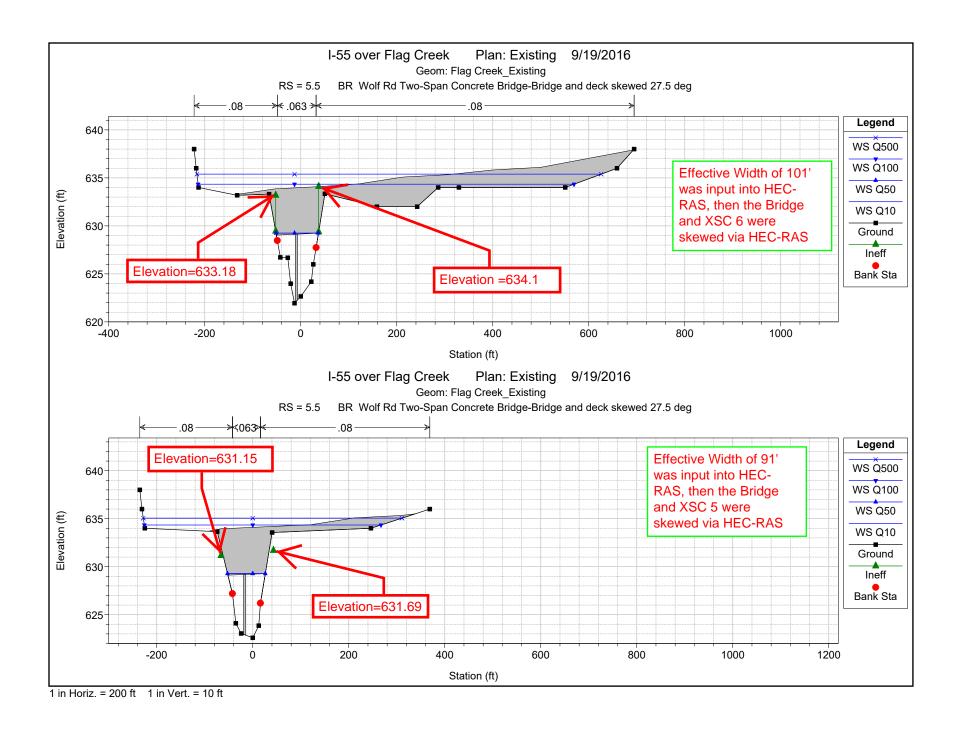
By: EMB Ck: IAD

Date: 8/16/2016 9/19/2016

Wolf Road Structure:

97 U/S Structure Opening Width:

91 D/S


Expansion Ratio: 2

Contraction Ratio: 1

Left Right Top of Structure Opening D/S: 629.12 629.28

	Upstream	Downstream
Left Overtopping	633.18	631.15
Right Overtopping	634.1	631.69

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
7	221.8	540.6	Wider than Channel Width
6	2	101	Cross Section Skewed in HEC-RAS
5.5 Wolf Road	1	91	Cross Section Skewed in HEC-RAS
5	18.2	109.2	Cross Section Skewed in HEC-RAS
4	543	634	Wider than Channel Width

Project #: 11-0203.00001 Stream: Flag Creek

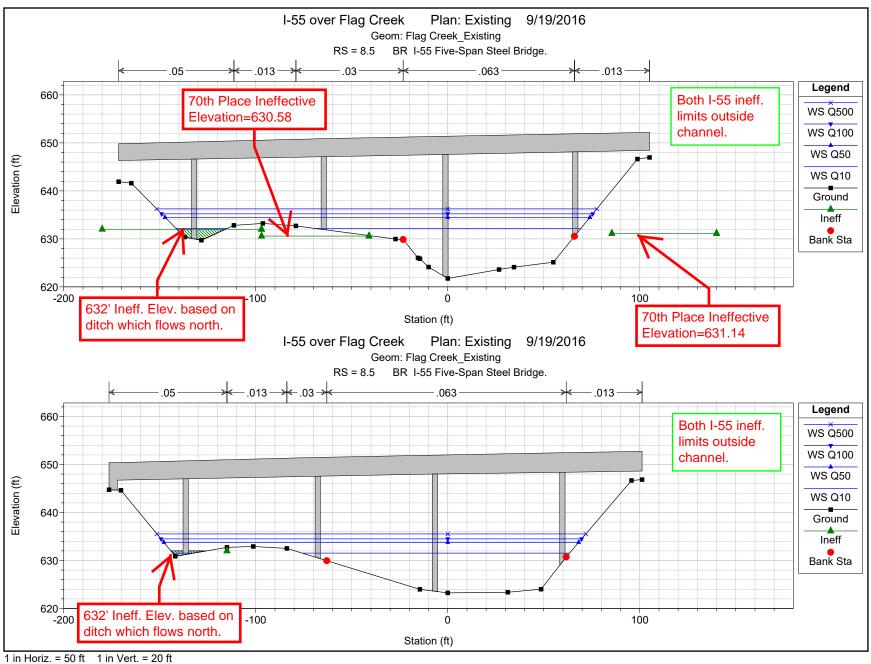
Route: I-55 Ву: EMB

8/16/2016 9/19/2016 Date:

I-55 Structure:

U/S 274 Structure Opening Width: 272 D/S

Expansion Ratio: 2 Contraction Ratio: 1


Left Right Top of Structure Opening D/S: 646.73 648.63

	Upstream	Downstream
Left Overtopping	650.39	648.56
Right Overtopping	652.73	650.68

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
11	74.3	422.6	-
10	36	346	-
			Left ineffective wider than channel width and 70th Place extends into XSC 9.
9.5	35	344	632' ineffective placed to prevent flow in dtich which flows to the north.
			Ineff. limits outside channel and 70th Place extends into XSC 9.
9	1	276	632' ineffective placed to prevent flow in dtich which flows to the north.
8.5 I-55 Bridge	-	272	-
			Both ineff. limits outside channel.
8	1.4	273.4	632' ineffective placed to prevent flow in ditch which flows to the north.
7	52.9	324.9	Left ineffective limits outside channel
6	272.7	544.7	Wider than Channel Width

Ck:

IAD

Project #: 11-0203.00001 Stream: Flag Creek

Route: I-55 By: EMB

Date: 8/16/2016

: IAD 9/19/2016

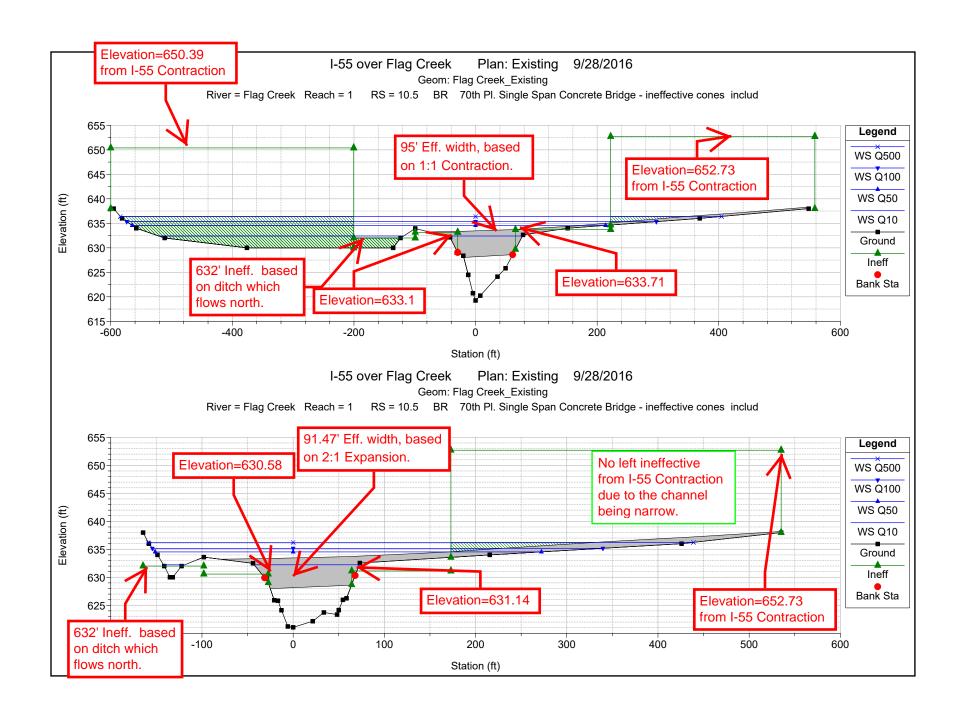
Ck:

Structure: 70th Place

Structure Opening Width: 88 U/S 89 D/S

Expansion Ratio: 2
Contraction Ratio: 1

Top of Structure Opening D/S:


Left Right
627.98 628.57

 Upstream
 Downstream

 Left Overtopping
 633.17
 630.58

 Right Overtopping
 633.71
 631.14

HEC-RAS Station	Distance To Structure	Effective Opening	Notes
12	380.77	849.54	Wider than Channel Width
11	3.5	95	overlaps with I-55 Ineffectives
10.5 70th Place Bridge	-	89	•
10	2.47	91.47	632' ineffective placed to prevent flow in dtich which flows to the north.
9.5	3.47	92.47	
9	37.47	126.47	632' Ineffective placed to prevent flow in dtich which flowing to the north.

Expansion Reach Lengths

In some types of studies, a high level of sophistication in the evaluation of the transition reach lengths is not justified. For such studies, and for a starting point in more detailed studies, Table B-2 offers ranges of expansion ratios, which can be used for different degrees of constriction, different slopes, and different ratios of overbank roughness to main channel roughness. Once an expansion ratio is selected, the distance to the downstream end of the expansion reach (the distance Le on Figure B-1) is found by multiplying the expansion ratio by the average obstruction length (the average of the distances A to B and C to D from Figure B-1). The average obstruction length is half of the total reduction in floodplain width caused by the two bridge approach embankments. In Table B-2, b/B is the ratio of the bridge opening width to the total floodplain width, nob is the Manning n value for the overbank, nc is the n value for the main channel, and S is the longitudinal slope. The values in the interior of the table are the ranges of the expansion ratio. For each range, the higher value is typically associated with a higher discharge.

Table B-2 Ranges of Expansion Ratios

		nob / nc = 1	nob / nc = 2	nob / nc = 4
b/B = 0.10	S = 1 ft/mile 5 ft/mile 10 ft/mile	$ \begin{array}{r} 1.4 - 3.6 \\ 1.0 - 2.5 \\ 1.0 - 2.2 \end{array} $	1.3 – 3.0 0.8 – 2.0 0.8 – 2.0	$ \begin{array}{c} 1.2 - 2.1 \\ 0.8 - 2.0 \\ 0.8 - 2.0 \end{array} $
b/B = 0.25	S = 1 ft/mile 5 ft/mile 10 ft/mile	$ \begin{array}{c} 1.6 - 3.0 \\ 1.5 - 2.5 \\ 1.5 - 2.0 \end{array} $	1.4 - 2.5 1.3 - 2.0 1.3 - 2.0	$ \begin{array}{c} 1.2 - 2.0 \\ 1.3 - 2.0 \\ 1.3 - 2.0 \end{array} $
b/B = 0.50	S = 1 ft/mile 5 ft/mile 10 ft/mile	1.4 – 2.6 1.3 – 2.1 1.3 – 2.0	1.3 – 1.9 1.2 – 1.6 1.2 – 1.5	1.2 - 1.4 1.0 - 1.4 1.0 - 1.4

Use expansion ratio = 2.0.

The ranges in Table B-2, as well as the ranges of other parameters to be presented later in this appendix, capture the ranges of the idealized model data from this study. Another way of establishing reasonable ranges would be to compute statistical confidence limits (such as 95% confidence limits) for the regression equations. Confidence limits in multiple linear regression equations have a different value for every combination of values of the independent variables (Haan, 1977). The computation of these limits entails much more work and has a more restricted range of applicability than the corresponding limits for a regression, which is based on only one independent variable. The confidence limits were, therefore, not computed in this study.

Extrapolation of expansion ratios for constriction ratios, slopes or roughness ratios outside of the ranges used in this table should be done with care. The expansion ratio should not exceed 4:1, nor

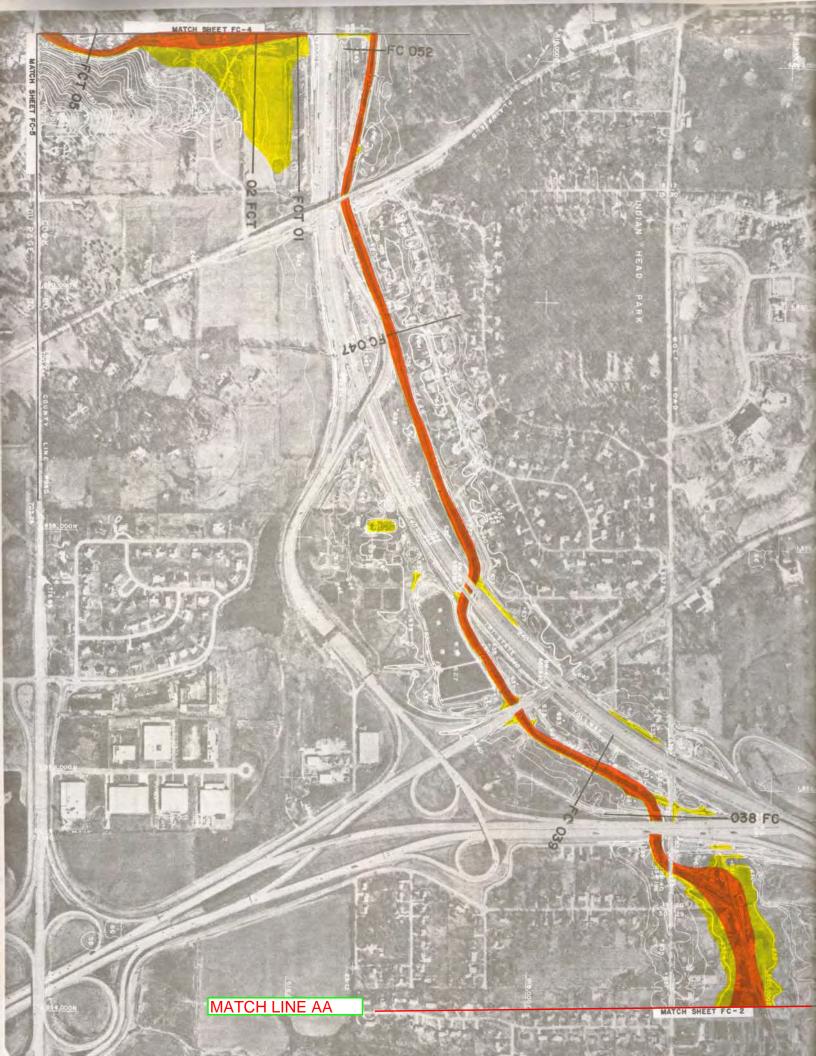
b = XS 5.5 BR U bridge opening width @ Q100 = 325'.

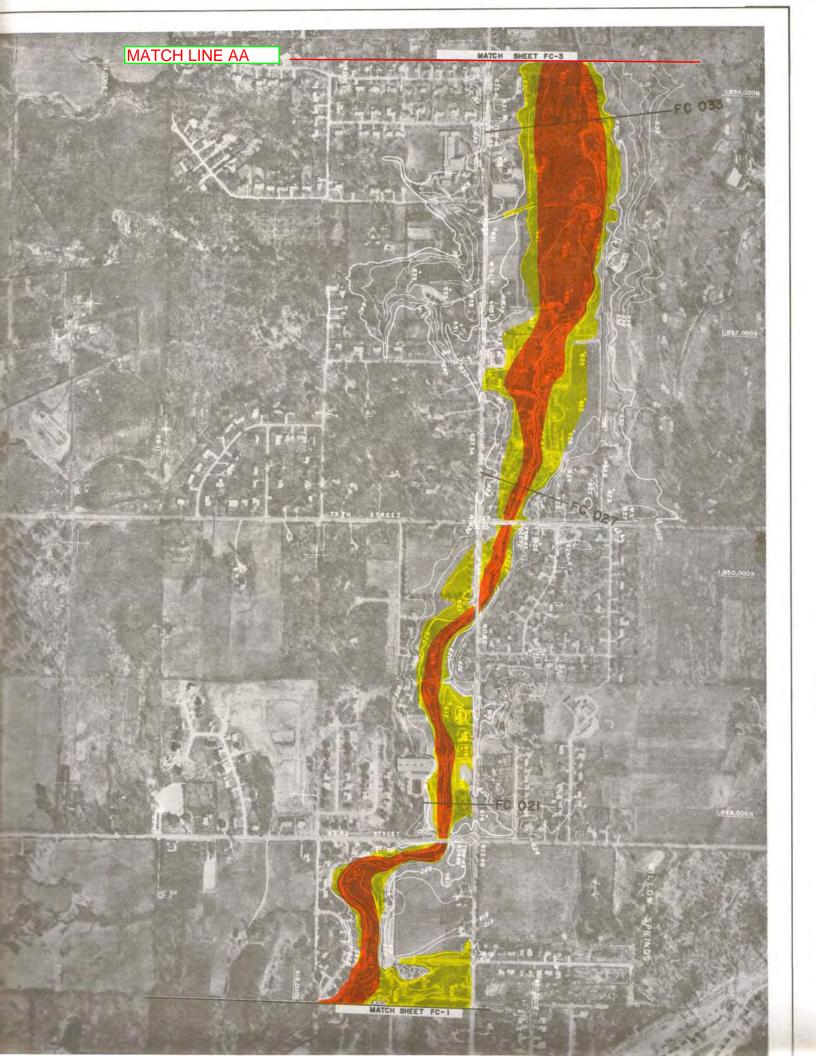
B = XS 7 FP width @ Q100 = 441'.

b/B = 0.74. Use ratios for b/B = 0.50.

S = .000639 U/S ft/ft = 3.4 ft/mile; = .001293 D/S ft/ft = 6.8 ft/mile. Use 5 ft/mile. nob/nc = 0.08/0.063 = 1.27:1. Use 1:1.

HEC-RAS Plan: Ex River: Flag Creek Reach: 1 Profile: Q100


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	3327	Q100	636.00	635.87	627.82	0.01	0.01	351.07	0.39	2399.61		2.86
1	3288	Q100	635.98	635.87	627.54			86.69		2400.00		2.68
1	3245 BR U	Q100	635.98	635.52	627.64			83.69		2400.00		2.89
1	3245 BR D	Q100	635.87	635.52	628.48			83.50		2400.00		3.10
1	3206	Q100	635.87	635.75	628.25	0.02	0.00	86.50		2400.00		2.89
1	3148	Q100	635.86	635.73	627.70	0.02	0.00	108.92		2400.00		2.89
1	12	Q100	635.62	635.50		0.09	0.04	459.66	196.06	2018.18	185.76	2.91
1	11	Q100	635.48	635.45	626.04	0.00	0.02	884.41	819.73	1339.97	240.30	1.30
1	10.5 BR U	Q100	635.46	635.38	626.04	0.03	0.04	822.71	1613.24	586.06	200.70	1.05
1	10.5 BR D	Q100	635.39	635.19	626.11	0.00	0.09	384.88	1329.37	860.83	209.81	1.47
1	10	Q100	635.30	635.27	626.12	0.00	0.01	504.03	553.36	1588.60	258.04	1.44
1	9.5	Q100	635.30	635.24	626.41	0.02	0.00	489.41	1040.81	912.50	546.69	0.94
1	9	Q100	635.27	635.22	627.04			224.59	752.92	1681.49	65.59	1.76
1	8.5 BR U	Q100	635.27	635.21	627.19			213.53	851.14	1612.62	36.24	1.77
1	8.5 BR D	Q100	634.56	634.50	627.03			208.08	355.57	2091.92	52.51	1.89
1	8	Q100	634.55	634.50		0.01	0.01	219.09	355.63	2100.53	43.83	1.82
1	7	Q100	634.53	634.44	627.46	0.09	0.00	441.28	987.64	1277.28	235.08	1.61
1	6	Q100	634.44	634.34	627.67			783.16	100.15	2097.66	302.19	2.68
1	5.5 BR U	Q100	634.43	634.34	627.98			325.21	327.16	2147.69	23.97	5.84
1	5.5 BR D	Q100	634.43	634.34	627.70			332.71	343.02	2100.57	55.23	6.51
1	5	Q100	633.66	633.45	627.39	0.72	0.01	113.02	135.17	2231.35	133.48	3.85
1	4	Q100	632.93	632.69	626.93	0.02	0.12	168.34		2409.59	90.41	4.01
1	3.5 BR U	Q100	632.79	632.15	627.10	0.52	0.02	17.54		2472.90		6.43
1	3.5 BR D	Q100	632.24	631.52	627.33	0.03	0.18	27.53		2472.90		6.84
1	3	Q100	632.03	631.67	627.12	0.93	0.10	251.96		2461.59	38.41	4.86
1	2	Q100	631.00	630.84		0.81	0.00	316.72	867.68	1547.99	84.33	3.73


HEC-RAS Plan: Ex River: Flag Creek Reach: 1 Profile: Q100

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q100	2400.00	623.49	636.05	628.25	636.16	0.000218	2.73	1043.98	639.19	0.16
1	3755	Q100	2400.00	622.11	636.04	628.03	636.08	0.000084	1.72	1937.01	528.14	0.10
1	3380	Q100	2400.00	622.32	635.95		636.02	0.000240	2.24	1229.14	354.16	0.12
1	3327	Q100	2400.00	622.04	635.87	627.82	636.00	0.000572	2.86	841.44	351.07	0.16
1	3288	Q100	2400.00	621.30	635.87	627.54	635.98	0.000216	2.68	894.56	86.69	0.15
1	3245		Bridge									
1	3206	Q100	2400.00	623.00	635.75	628.25	635.87	0.000268	2.89	831.52	86.50	0.16
1	3148	Q100	2400.00	622.99	635.73	627.70	635.86	0.000267	2.89	831.00	108.92	0.17
1	3081	Q100	2400.00	623.26	635.72	627.69	635.84	0.000278	2.75	871.72	108.33	0.17
1	2765	Q100	2400.00	623.30	635.69	628.22	635.76	0.000145	2.26	1310.18	418.05	0.13
1	2542	Q100	2400.00	620.99	635.68	627.45	635.72	0.000105	1.85	1596.78	315.46	0.11
1	12.1	Q100	2400.00	622.92	635.51		635.64	0.000568	3.10	1107.68	347.07	0.18
1	12	Q100	2400.00	621.48	635.50		635.62	0.000444	2.91	1169.66	459.66	0.16
1	11	Q100	2400.00	619.25	635.45	626.04	635.48	0.000122	1.30	2019.69	884.41	0.07
1	10.5		Bridge									
1	10	Q100	2400.00	621.06	635.27	626.12	635.30	0.000156	1.44	1683.93	504.03	0.08
1	9.5	Q100	2500.00	621.02	635.24	626.41	635.30	0.006926	0.94	1648.75	489.41	0.05
1	9	Q100	2500.00	621.75	635.22	627.04	635.27	0.000246	1.76	1379.71	224.59	0.09
1	8.5		Bridge									
1	8	Q100	2500.00	623.25	634.50		634.55	0.000314	1.82	1365.58	219.09	0.11
1	7	Q100	2500.00	622.80	634.44	627.46	634.53	0.000241	1.61	1213.69	441.28	0.09
1	6	Q100	2500.00	621.94	634.34	627.67	634.44	0.000639	2.68	1576.20	783.16	0.15
1	5.5		Bridge									
1	5	Q100	2500.00	622.59	633.45	627.39	633.66	0.001293	3.85	762.26	113.02	0.22
1	4	Q100	2500.00	622.50	632.69	626.93	632.93	0.001484	4.01	670.47	168.34	0.23
1	3.5		Bridge									
1	3	Q100	2500.00	622.61	631.67	627.12	632.03	0.002573	4.86	519.37	251.96	0.30
1	2	Q100	2500.00	620.85	630.84		631.00	0.001412	3.73	978.60	316.72	0.22
1	1	Q100	2500.00	622.89	630.04		630.18	0.002496	4.10	1037.85	338.30	0.28
1	0.5	Q100	2500.00	621.72	629.42	627.85	629.46	0.001323	2.78	1916.73	803.44	0.20

TAB A

Hydraulic Report – Interstate 55 over Flag Creek	
SECTION 13.A	
BASELINE (FEMA) WSP-2 MODEL	
SB S S S S S S S S S S S S S S S S S S	


```
TITLE HAIN STEN OF FLAGG CREEX
TITLE 10-50-100-500-YEAR FLOOD
   DISCHARGE -1.0
  STARTE FCOOLS
  OHITAUT
  ONTRUT $ 3180 FOR ASON 3180 FOR FRED FC001 4500 1180 FLOW FRED FC005 4500 1150 FLOW FRED FC015 3920 2030 FLOW FRED FC015 3910 2830
                                           26,000
                                           2600
                   3650
   FI DW-FRED FC015
                             2770
   FLOW-FRED FC021 3906
   FLOW-FRED FCOZY 3850
                                 -27201
T CH+FREQ FC031 3550
Vale DH-FRED Z 3550
SAF OW-FREC X 3550
  FION-FREQ PC039 13350
                                  2245C
                                            19 0
  FLOW-FRED FCS 47.
                                 $2300
                                                        1040
   P OW-FRED POSSES
                      4 8 9 0 6 M
   F ON THEO DAS
                    1000
   FLOW-FREDS1+019
                                                        5405
    ON FRED FCOS
   FIDWOFRED BOD
   FLOWSFREGIFOSSF
   FI OMPFRED 440
                      02010
   FLOWFRED BL-
   FI DY-FREGUR
                                 700.0 700.0
   REACH FOODS 3 18:13 a. REACH FOODS
                                                         700.00
                                  2250.0
             FC005
                        17:975
   REACH
                                   750.0
            DO7FC
   ROAD
                                  1350.0
             F4010
                        15:97
   REACHS
                                   3050.0 3000.0
                                                        3000.0
              FC615
                        15.79
    REACH
                                   3250.0 29.0.0 2950.0
                        15.61
   REACH
              FC021
                                                        2750.0
                                    2800 0 2720,0
   REACH
              FC027
                      - 15 28
                                                        3500:0
                                    3250.0
                         13.95
              FC033
    REACH
                                                         670.
                         13.9
                                    670
    REACH
                                    260.
              D3AFC'
                         2.7
    ROAD
                                              208 ..
                                    220.
                         15.3
    REACH
                                                         660.
                                    660
                                              600.
              FC039
                         13.31
    REACH
                                                         2200.
                                              22:0.
                                    24001
                         12.0
    REATH
                                                         1880.
                                    1880.
```

12.71

REACH

FC047

LIARZA

```
350 SEA -0367119 300 - 5091(
               519.0
              5.527 .0
               550.0
               304.0
               600.0
                      630.0000 800.0
              3750.0
              3000.0
 ENDTABLE ...
BEGHENT X
NVALUE 0.18
SEGHENT
                                      2000
HVALUE
          0.063
          0.00
BECHENT
                                         624
637
627
 NVALUE
                                                   1904
                                                              6625:3
                                                   经85数
                              *****************
                                                              SISTE
                                                    4000
                                          143 E
ENDTABLE

Brehent FC010

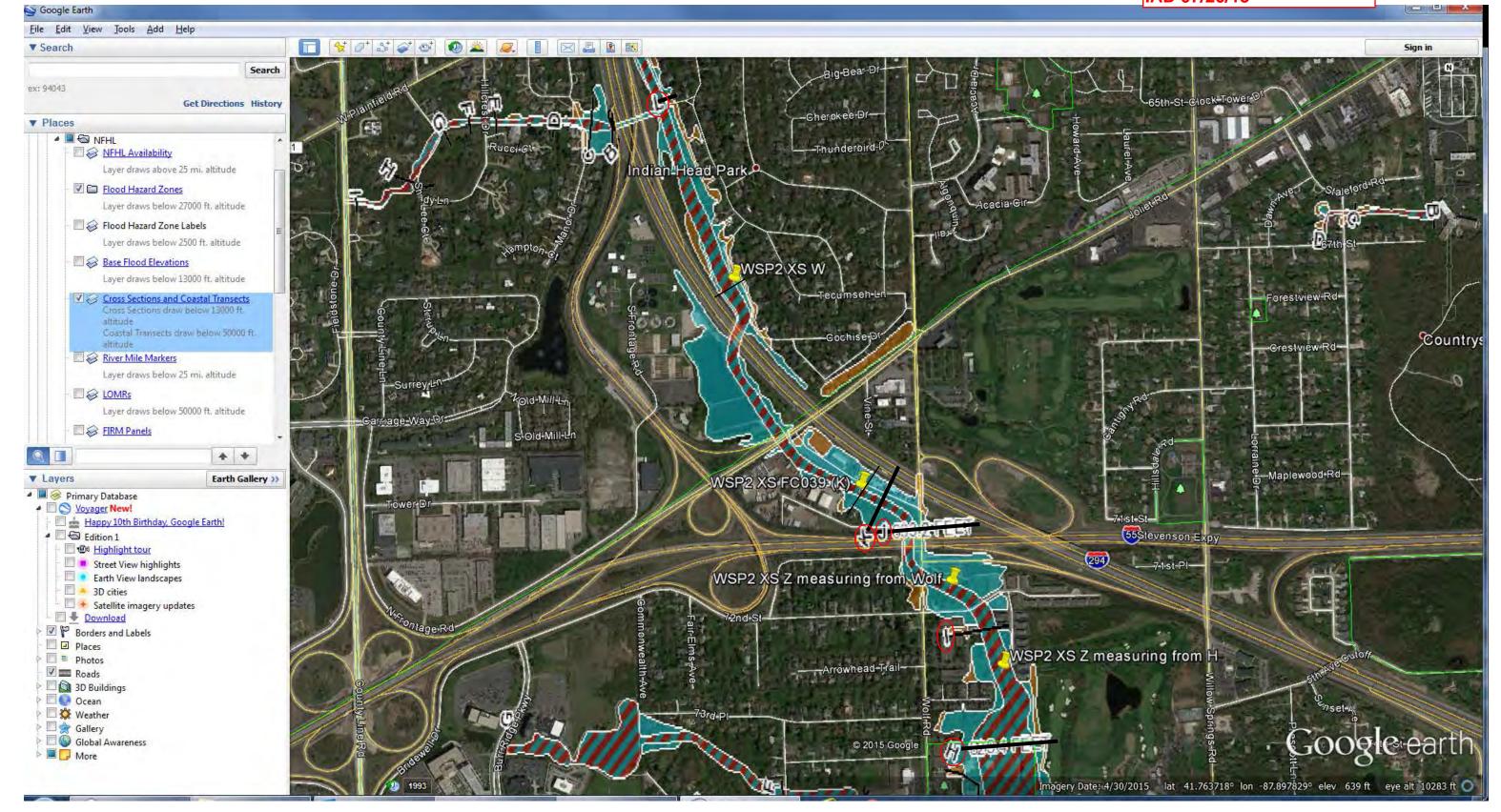
NVAUUE 0788

GROWNT FC019

BEGNENT FC019
                                         1013
                                          403
                          619.8 20.0 031.7 22310
610.8 210.0 030.7 22310
625.6 254.0 020.2 28210
625.4 274.0 623.1 400.9
623.4 174.0 032.1 400.9
  NVALUE . 0.015
                                                                    633.8FC039 F18
                                                                   $633.3FC039.323R
                                                                   5636,6FC03918312
                         630.8
                                                                   $623,9FC039,8427
                                                                   5635, 6FC039 65 72
                                                                   641.0FC039563
             290.0.
                           638.3
             665.0
   ENDTABLE
   SEGNENT H
   NVALUE
             0.08
   SEGMENT
             0.06
   NYEL UE
    SFORENT
              0.58
    NVALUE
              ₩ .
    SECTION
                        P34.
                                                                .626.0
              - 200 a
                                  50.
                        635.8
```


ZERG VAND 023,1 023,1 020,9 020,9	000.0 55223 1877.2 55 27	010 - 19 0000 - 19	3000	00 1 00 1 00 1	10 00 10:00 10:00 10:00 10:00 10:00	58362 58367 58362 58362	000257 000252 100224 300244
SEGHENT TABLE FOR SEC	1104 F0027	1	SEGVIO	T- 13			
DISEMBRETERS OS. VELOCITY FRS LEIE VELOCITY FRS 178 VELOCITY FRS 252 VELOCITY FRS 252 VELOCITY FRS	1020: 13.22 23.00: 3.25 27.20	1020 1057 1057 1073 1073 1074	1075	2043 1143 7023 1 60 1206 1 103			
ELEV DESCRIPTION LEVEL DESCRIPTION LEVEL DESCRIPTION	35875 77073	7009 9253 10334	20000 10001 10790;	13720. 24369.			
# # # # # # # # # # # # # # # # # # #	HAID SYET	JFFFLAGG CRES 1992 VEAR PLOS					AGE TO STATE OF THE STATE OF TH
HATING TABLE POR SECT	ION FC033	DA = 13	o 	FLOODED NNELFOLD NO	(eDAH	CRIT CRIT CLEY	FRICTION SLOPE
SANK FULL 625.2 ZERO DAMG 625.2	1204.8 1	811 4 310 0 100 0 550 0	3.02 6.83	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	627:2 627:6 627:1 627:7	.00147
SEGMENT TABLE FOR SEC	TOTAL	4 - 7	SEG NO	3.		Anna Page 10	
DISCHARGE CFS OISCHARGE CFS 151. YELOCITY FPS	1310, 1,59 2100,	291	2147 257 257 257	765. .92 1350. 1.16			HARZA SENGINEERING COMPANY

ELEA 1922 KD ETEA 1922 KD ETEA 1922 KD ETEA 1922 KD	1000 1000 35602 58725 60773 Y048726	9171 7417 7317 7319 7319	10376 10376 12162 13230 16270	20898 20898 20898 20898 20898 20898 20898				
- NGP8"REB (2E) F 195 * . REB (0) / 11/7 F	T0-30-100	OF PLACE THE	E K				FIGE 191	
RATING TABLE FOR SECTION 100 1 ELEV 100 1 EL	AREA 2018 19544 39182	0 PASSE 1 0 PASS	ANABE SAN ANAB SAN	8 FLOODEDEO ANKELD 200 200 600 800	00 00 00 00 00 00 00 00 00 00 00 00 00	10.05 50.00 100.00 510.00	ORIT PARCYIU ELEV DALOR 1243: 1043 27031: 10033 13027 10034 1313: 10031	
andhery France Foat Letta	_ 70 i AL	ATT ADM	3 E0 NO	And a		ocenegaeca1404		
DIDCHARGE CAS 98. VELOCITY FP8 P DISCHARGE CAS 151. VELOCITY FP8 186. VELOCITY FP8 0 DISCHARGE CAS 255. VELOCITY FP8	13:04 15:44 2:00 15:20 2:00 2:00 18:20 5:22	(数であり1.93 (数) (数)	1765 1765 1765 1766 1766 1766 1766 1766	1144 1144 1144 1144 1166 1176 1176				
1 ELEV 63131 KD 2 ELEV 63314 KD 3 ELEV 63314 KD	19799 29087 33878 34903	3918 8048.	18577 244811 24819 24819 32501	132. 690. 1011. 2140.		n in the		



0000 00000 00000 00000 00000 00000 00000	DOL DOC 10200 SHETRO 2000 TO STATE TO S	
CHITA CI. 00 MSCRITE CELTA CI. 00 MSCRITE CELTA CI. 00 MSCRITE CELTA CI. 00 MSCRITE CELTA CI. 00 MSCRITE	0000 0000 0000 0000 0000 0000 0000 0000 0000	
DERITO SI. DO ASURI ELEVIR INICIO EMBEDO		
HSPE XEQ 22 F 80 Sept 1774	PABEL OF THE OF THE PROPERTY O	
	TOADISECTORTOINE : //	
	7 17 531:17 2510:00 108 631:18 10:00 2 13:17 1	
BRIDGE TYP	PERE HINARDAD ELEVATION DE GERANDINE GERANDINE GERANDINO DE PENINO MOSE I	
WSPZ XER 22 F 80 REV 03711/74	PAGE 218 HAIN STEM OF ELAGO CREEK 10=30-160=500 YEAR FLOOD	
RATING TABLE FOR SECT NO. ELEV 0 621.1	AREA CFS DAMAGE - CHANNEL NONGOAH	
RATING TABLE FOR SECT NO. ELEY O 621.1 EANK FULL 625.1 1 631.7 2 631.1 3 633.5 4 534.5	116.0 4828	RZA no company aking se

COMPANY OF THE PARTY OF	TOTAL	PER NUM			
P8% VELDGITY PP8 DISCHARGE CES S6. VELOCITY PP 18% VELOCITY PS 18% VELOCITY PS 207 VELOCITY PS	1310. 2517 2100. 2.92 2500. 3384 1.90	259: 2730 1960 2510 2510 1155 1155 4:11	45 v - 24) - 76 i - 10 d - 11 1 - 15 0 - 13 0 - 13 0 - 13 0 - 13 0 - 13 0 - 14 1 - 15 0 - 15 0		
I ELEV 3319 KD	65515. 682 59877. 1287 76934 12807 198878 12807	058733462 114893	18 43 25 18 12 27 04 14 14 14 14 14 14 14 14 14 14 14 14 14		
NAME VIOLENT BOX	HARK STRHTOF PEAGG 10680-110580027EAR	OREEK TioOD		PA	
nating table for Section 90. Section 1906	AREA CARREST	1993 HREETENACREBIALOG TAMAGEL TORANNEL	DED-go-space 1 08M	7 RW	
EANK FULL 532:1 TERO DANG 532:1 1 632:4 2 633:7 3 634:1 4 635:3	120040 42147 120040 44041 120040 59943 240040 105244 335040	100 .00 100 .00 1115 .00 2.81 .00	400	0.850	.00109; 7.00123
CSN	TOTAL	SEG NO	3 D		
DISCHARGE CFS VELOCITY FPS DISCHARGE CFS VELOCITY FPS DISCHARGE CFS 150. VELOCITY FPS DISCHARGE CFS	2000. 7 2000. 7 1.64 .3 2400. 22 4 .00 - 23	1259. 2.04 1969. 1.66 2332. 4.05 287.	1: -38 24: -63 -45: -370 -139: 1.00		HARZA
T ELEV 632.4 KD	The state of the s	43760; 50637.	5. 501.		THE THE THE TOWN TOWN TO THE

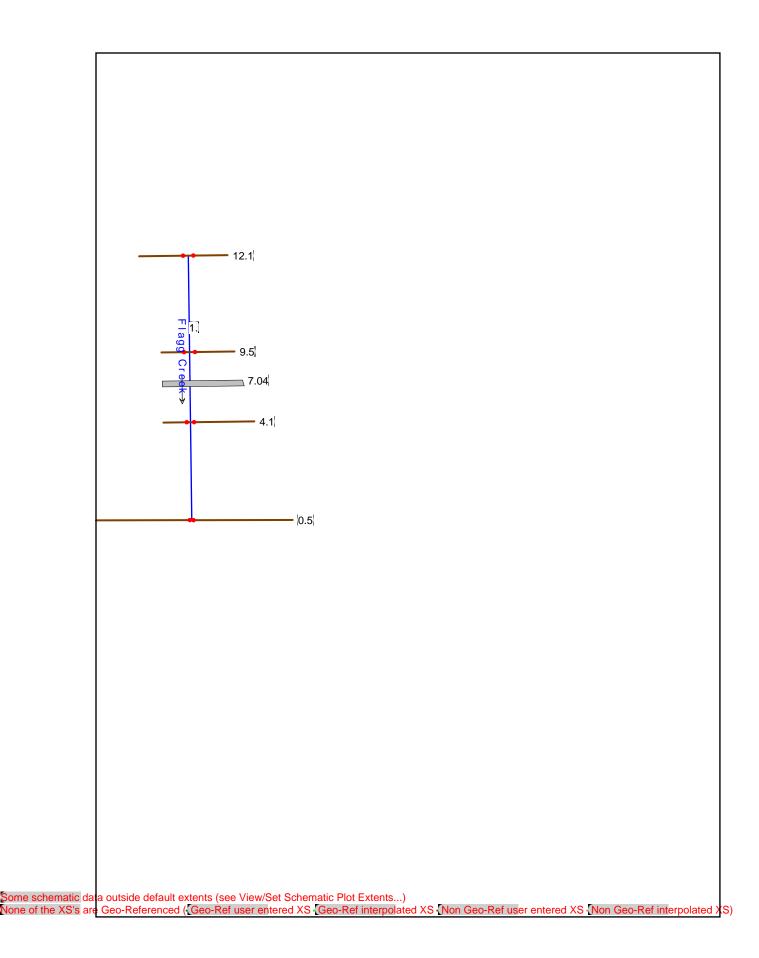
RIEV ZOISIS RD		180E	367713				3
HEBS ALO SS L. BD	HAIN BYERSOF/TLAGG -1-SCHIORGESIZAR	PREEK PLOOP			P	GEC -336	G
1 . 628.0 12. 038.0 84HC PULC 635.8 8 635.0	ARKA C78 170 170 170 170 170 170 170 1	BARAGEN TO CHANNE	0	CBN (1980)	2027 2027 2065 2066	100007 100001	
The company of the co	100131 2000 126031 31593 10031 7	100 100 100 126 126 100	A UNITED TO A REPORT OF THE PERSONS	100,000	100 E	00080 00083	(0
SEND STANDESCHARGE FOR	12.00 28.00	1268: 2111 2111 2111 2101 2101 2101	0.00 0.00 0.70 211 211 3412				J
258. VELOCITY PRS 2 ELEV 5.614 B KD 2 ELEV 5.615 KD 4 ELEV 5.615 KD 6 ELEV 6.718 KO	70007, 20003, 2000 81713, 2000	4 E E E E E E E E E E E E E E E E E E E	1158;				
	MAIN STEM OF FLAGS 10-50-100-500 YEAR	FLOOD			•	AGE: 248	
RATING TABLE FOR SECTION	ON FC047 DA	p. 12.7 Hereographical Chanki DAHAGE CHANKI	EC: NON-DAH	CSM	CRIT ELEV	FRICTION BLOPE LARZ ENGINEERING COM	((

FLAGG CREEK AT I-55 IDOT 11-0203 IAD 07/20/15

Note: Approximate locations of 1980 WSP2 cross sections W & FC 039 (K) determined using WSP2 reach lengths between FC 047 (L) and 038 FC (J). Location of WSP2 XS Z not possible to determine, as there is insufficient reach length in model vs. real world, between WSP2 XS 038 FC (J) & FC 033 (H). FIS XS I comes from a 2000 LOMR model that is not available.

TAB B

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 13.B
	MOD. FIS DUPLICATE (NGVD 29)
CBB	


10 Year								
Cross Section	Regulatory WSP-2 Output	Mod. HEC-RAS Duplicate	Difference					
FC033	628.8	628.8	0.0					
Z	631.3	631.21	-0.1					
Х	631.9	631.72	-0.2					
FC039	632.4	632.26	-0.1					

	50 Year								
Cross Section	Regulatory WSP-2 Output	Mod. HEC-RAS Duplicate	Difference						
FC033	629.3	629.3	0.0						
Z	632.3	632.2	-0.1						
X	633.1	633.05	-0.1						
FC039	633.7	633.76	0.1						

	100 Year									
Cross Section	Regulatory WSP-2 Output	Mod. HEC-RAS Duplicate	Difference							
FC033	629.7	629.7	0.0							
Z	632.6	632.59	0.0							
Х	633.5	633.62	0.1							
FC039	634.3	634.38	0.1							

500 Year									
Cross Section	Regulatory WSP-2 Output	Mod. HEC-RAS Duplicate	Difference						
FC033	630.5	630.5	0.0						
Z	633.4	633.41	0.0						
Х	634.5	634.91	0.4						
FC039	635.3	635.71	0.4						

Note: All Elevations in NGVD 1929

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	Х	XX	XXXX
Χ	Х	X	Χ	Х		Χ	Х	Х	Х	X
Χ	Х	X	Χ			Χ	X	Χ	X	X
XXX	XXXX	XXXX	X		XXX	XX	XX	XXX	XXXX	XXXX
Х	X	X	X			Χ	Χ	Χ	X	X
X	X	X	X	X		Χ	X	X	X	X
Χ	X	XXXXXX	XX	XX		Χ	X	X	Х	XXXXX

PROJECT DATA

Project Title: I-55 over Flag Creek Project File: I-550veFlagCreek.prj Run Date and Time: 7/20/2015 3:36:58 PM

Project in English units

Project Description:

2015 CBBEL Hydraulic Report for I-55 Over Flag Creek. All Models ran in NAVD

88. Conversion from NAVD 88 to NGVD 29= NGVD 29-0.28.

PLAN DATA

Plan Title: Mod. FIS 29

Plan File: N:\Idot\\\overline{110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek\I-550veFlagCreek.p06

Geometry Title: Mod FIS

Geometry File : N:\ldot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek\I-

550veFlagCreek.g05

Flow Title : WSP-2 Flows_29

Flow File : N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek\I-

550veFlagCreek.f01

Plan Description:

WSP-2 Cross section duplicated into HEC-RAS. Manning's N addjusted to match the results of the published WSP-2. Elevations all in NGVD 29

Plan Summary Information:

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Program Selects Appropriate method

Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: WSP-2 Flows 29

Flow File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek\I-550veFlagCreek.f01

River 0500	Reach	RS	Q10	Q50	Q100
Flagg Creek 3350	1.	12.1	1260	2000	2400
Flagg Creek 3550	1.	9.5	1310	2100	2500

Boundary Conditions

River	Reach	Profile	Upstream	Downstream
Flagg Creek = 628.8	1.	Q10		Known WS
Flagg Creek = 629.3	1.	Q50		Known WS
Flagg Creek = 629.7	1.	Q100		Known WS
Flagg Creek = 630.5	1.	Q500		Known WS

GEOMETRY DATA

Geometry Title: Mod FIS

Geometry File : N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek\I-

550veFlagCreek.g05

CROSS SECTION

RIVER: Flagg Creek

REACH: 1. RS: 12.1

TNPUT

Description: FC 39

233 633.3 245 625.6 254 624.2 274 623.2 282 623.9 290 625.6 500 638.3 541 639.3 594 641 260 624.6 267 624.4 304 632.1 400 635.8 605 641.3

ing's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .05 233 .05 304 .05 Manning's n Values

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 233 304 660 660 660 0 0 660

CROSS SECTION

RIVER: Flagg Creek

REACH: 1. RS: 9.5

INPUT

Description: FIS X

Station Elevation Data num= 11
Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

-200 85 300	636 625.3 636		636 621.3						631 634.9
Manning's Sta -200	n Value n Val .077	Sta	num= n Val .077	3 Sta 145	n Val .077				
Bank Sta:	Left 70	Right 145	Lengths	: Left (Channel 480	Right 480	Coef	f Contr.	Expan.
BRIDGE									
RIVER: Fla			RS: 7.0	4					
INPUT Description Distance: Deck/Roads Weir Coef: Upstream num=	from Ups way Widt ficient Deck/Ro	tream XS h	= 1 = 2	96 40 .7 s					
Sta 1 0 453 519		Lo Cord 628.5	430 494 519 603	Hi Cord 633.7 633.2 628.5 633.9 639.9		Sta 442 515 519 700 1000	633.5 633.7 634.9		
	_	Data Sta 430 519 544 594	num= Elev 633.7 633.7	25 Sta 442 519	634 628.5 622.5 626.7	453	633.7 626.7 622.8 628.5	494 527 569 600	633.2
Manning's Sta 0	n Value n Val .012	Sta	num= n Val .012	3 Sta 600					
Bank Sta:	Left 519	Right 600	Coeff C	ontr. 0	Expan.				
Downstream	m Deck/ 15	Roadway	Coordina	tes					
Sta 1 0 453		Lo Cord 628.5	430 494 519 603	Hi Cord 633.7 633.2 628.5 633.9 639.9		Sta 442 515 519 700 1000	633.5 633.7 634.9	628.5	
Downstream Station E: Sta 0 515	_	Data Sta 430	ection D num= Elev 633.7 633.7	25 Sta 442		Sta 453 519	633.7	494	
	623.4 624 633.9	544	622 625.5		622.5 626.7	559 600 900	622.8 628.5	569 600	623.3 622.8 633.7 637.8
Manning's Sta 0	n Value n Val .012	Sta	num= n Val .012	3 Sta 600					
Bank Sta:	Left 519	Right 600	Coeff C	ontr. 0	Expan.				

Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .98

Elevation at which weir flow begins = 633.2Energy head used in spillway design

Spillway height used in design

Weir crest shape = Broad Crested

Number of Bridge Coefficient Sets = 1

Low Flow Methods and Data

Energy

Selected Low Flow Methods = Highest Energy Answer

High Flow Method

Energy Only

Additional Bridge Parameters

Add Friction component to Momentum Do not add Weight component to Momentum

Class B flow critical depth computations use critical depth

inside the bridge at the upstream end

Criteria to check for pressure flow = Upstream energy grade line

CROSS SECTION

RIVER: Flagg Creek

REACH: 1. RS: 4.1

Description: FIS Z

ta Ele	ev
00 635.	5.5
40 630.).1

Manning's n Values num= ning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-222 .09 190 .075 240 .09

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 190 240 670 670 670 0 0

CROSS SECTION

RIVER: Flagg Creek

REACH: 1. RS: 0.5

TNPUT

Description: FIS 33

Station E	levation	Data	num=	25					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	641.7	100	638.9	200	635.6	300	633.3	400	631.6
500	629.2	545	627.7	600	627.5	678	626.5	680	625
686	622	690	622.2	695	622.4	698	623	704	626.2
800	626.5	900	627.1	1000	627.5	1100	627.4	1200	627.8
1300	630.1	1400	630.9	1500	631.8	1586	633	1598.9	633.5

ing's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .09 678 .073 704 .09 Manning's n Values

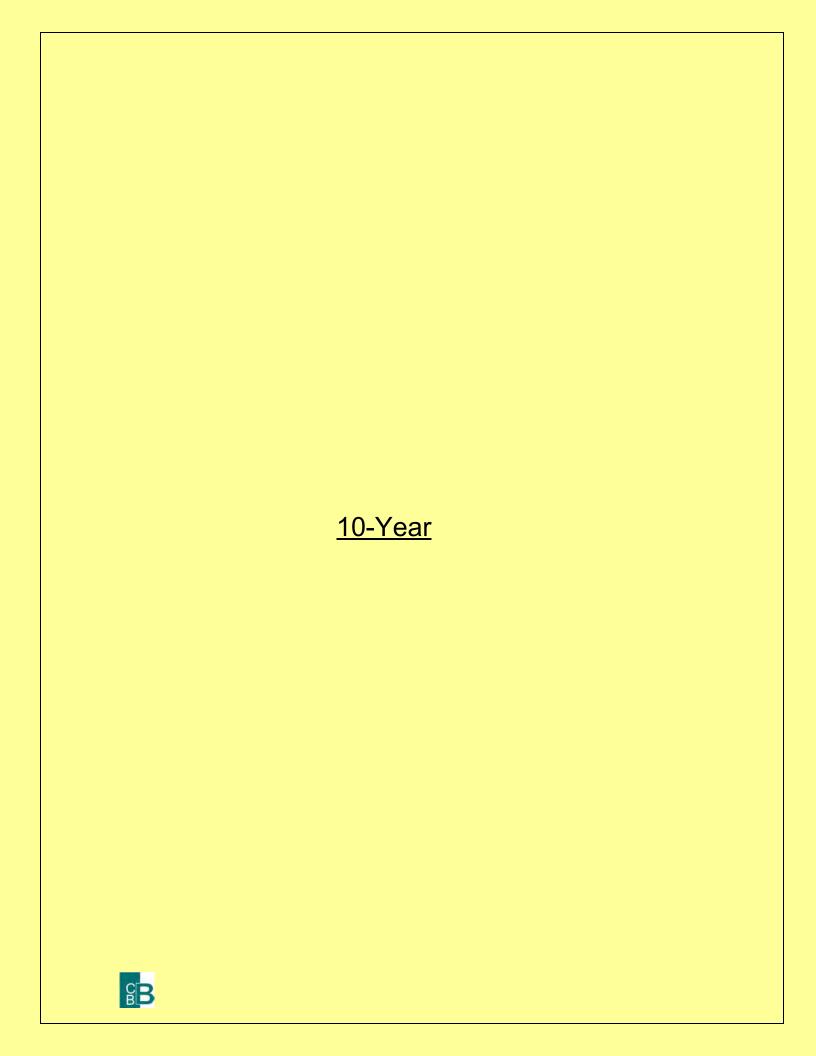
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 678 704 0 0 0 0

SUMMARY OF MANNING'S N VALUES

River:Flagg Creek

Reach	River Sta.	n1	n2	n3
1.	12.1	.05	.05	.05
1.	9.5	.077	.077	.077
1.	7.04	Bridge		
1.	4.1	.09	.075	.09
1.	0.5	.09	.073	.09

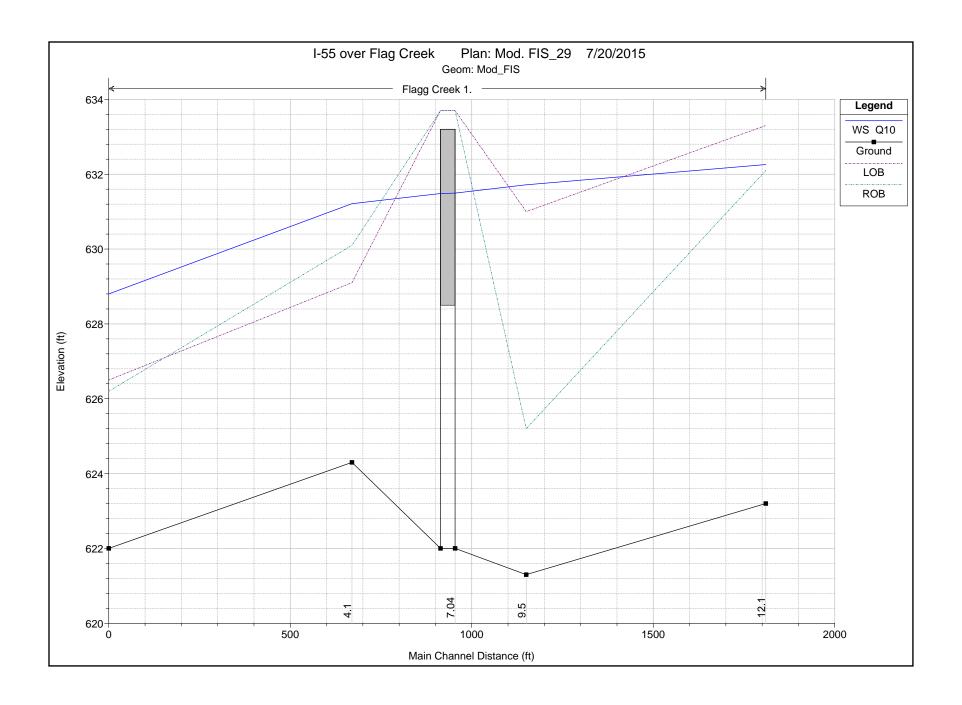
SUMMARY OF REACH LENGTHS

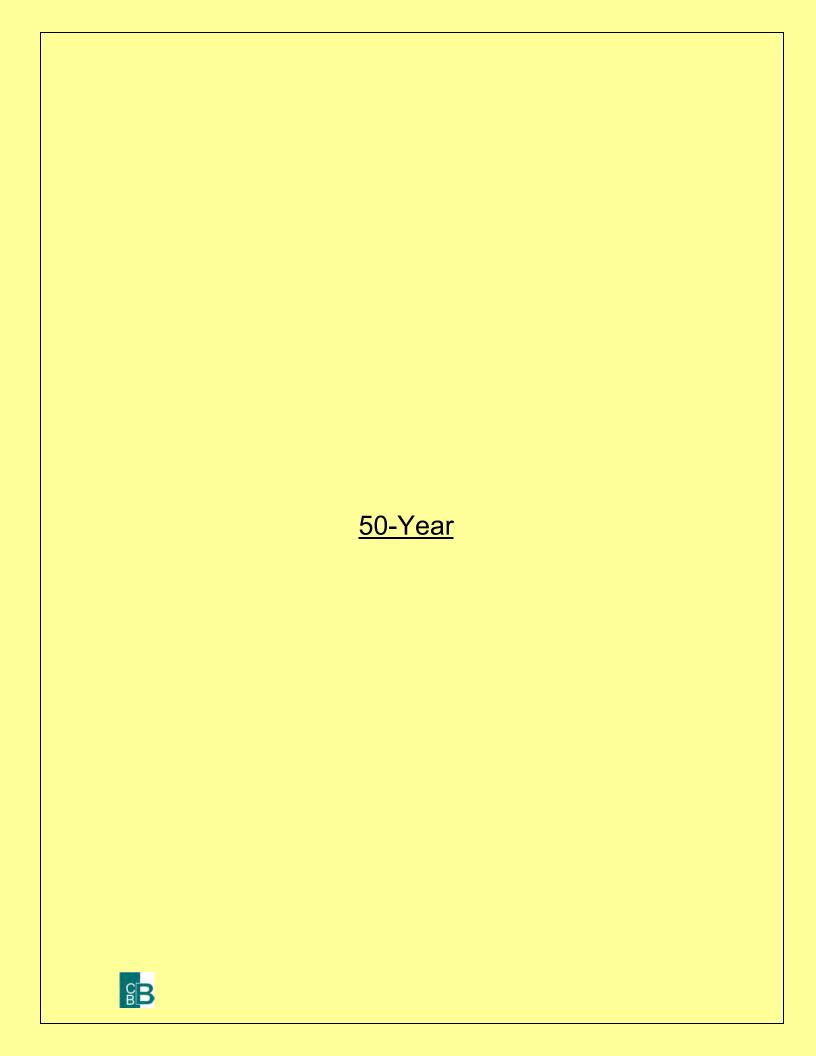

River: Flagg Creek

Reach	River Sta.	Left	Channel	Right
1.	12.1	660	660	660
1.	9.5	480	480	480
1.	7.04	Bridge		
1.	4.1	670	670	670
1.	0.5	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS

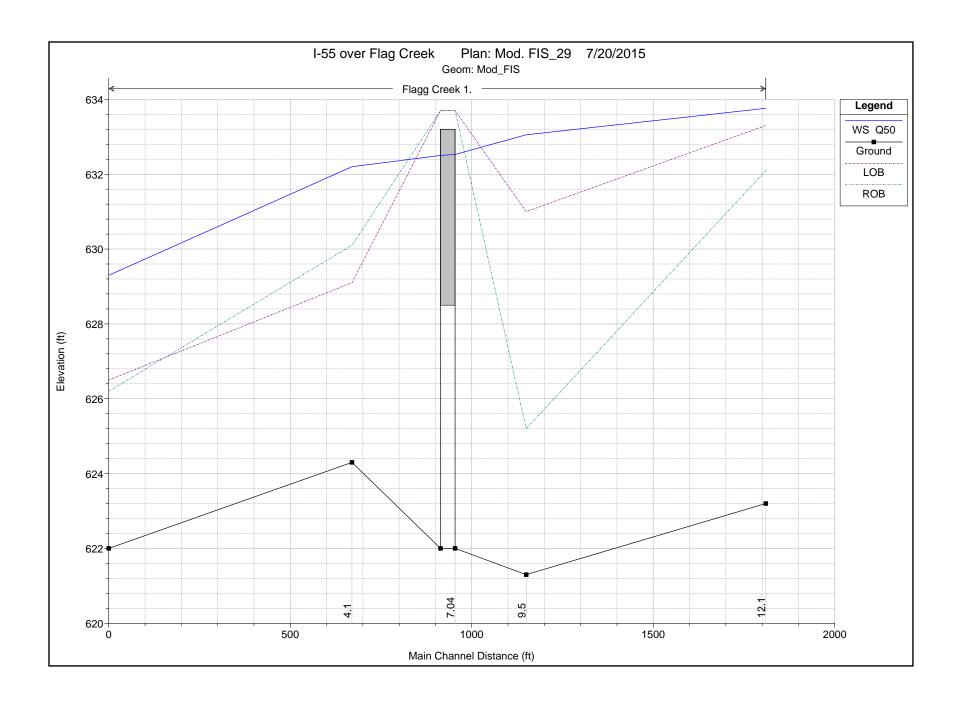
River: Flagg Creek


	Reach	River	Sta. C	ontr.	Expan
1.		12.1		0	0
1.		9.5		0	0
1.		7.04	Bridge		
1.		4.1		0	0
1.		0.5		0	0

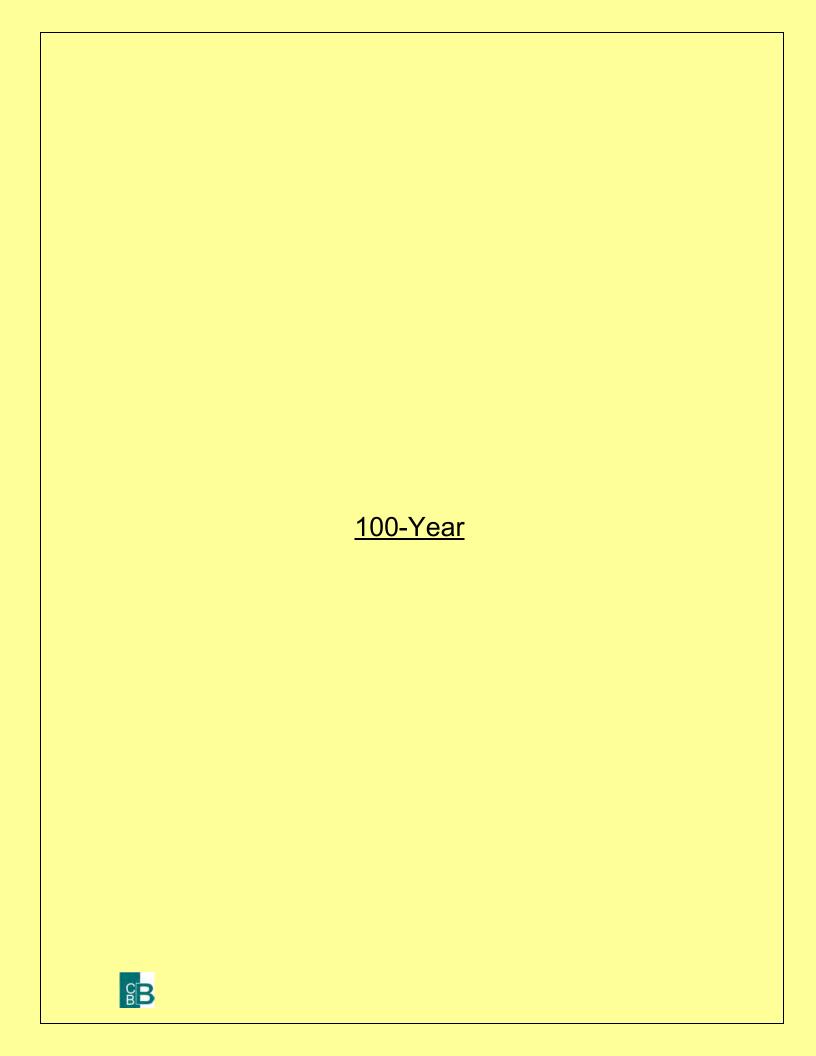

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1.	12.1	Q10	1260.00	623.20	632.26		632.39	0.000857	2.87	439.14	73.46	0.20
1.	9.5	Q10	1310.00	621.30	631.72	625.74	631.79	0.000945	2.24	614.05	112.85	0.14
1.	7.04		Bridge									
1.	4.1	Q10	1310.00	624.30	631.21		631.55	0.006493	4.74	310.16	112.90	0.36
1.	0.5	Q10	1310.00	622.00	628.80	627.75	628.83	0.001638	2.41	1227.18	731.48	0.18

HEC-RAS Plan: Mod FIS River: Flagg Creek Reach: 1. Profile: Q10

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1.	12.1	Q10	632.39	632.26	0.13	0.59	0.00		1259.95	0.05	73.46
1.	9.5	Q10	631.79	631.72	0.08	0.12	0.00	2.56	1251.88	55.56	112.85
1.	7.04		Bridge								
1.	4.1	Q10	631.55	631.21	0.33	2.72	0.00	43.38	1254.50	12.12	112.90
1.	0.5	Q10	628.83	628.80	0.03			183.49	339.42	787.09	731.48

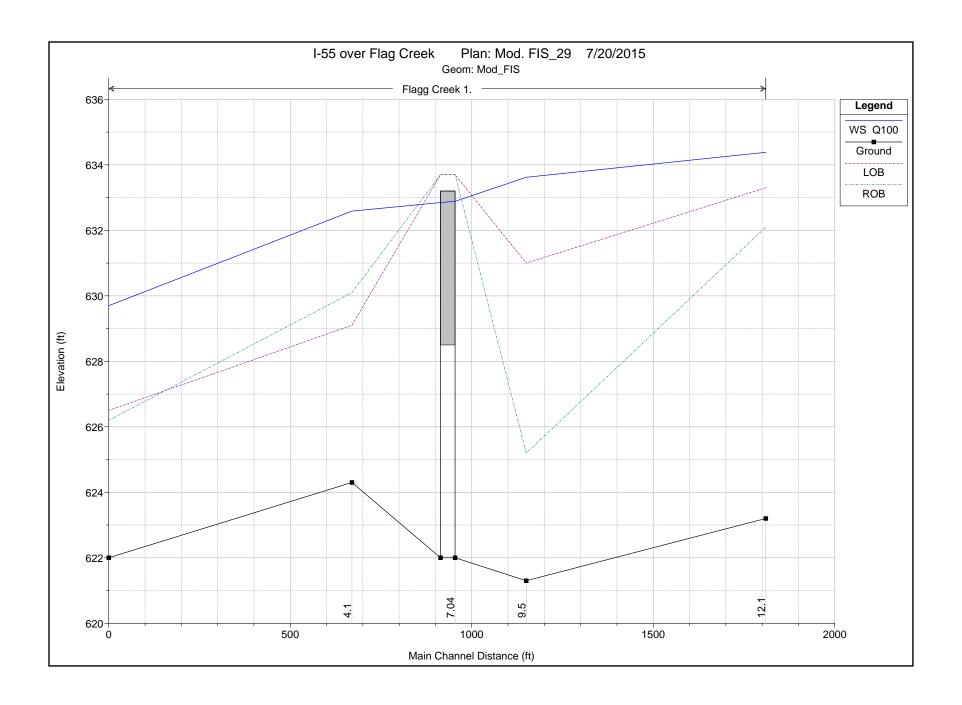


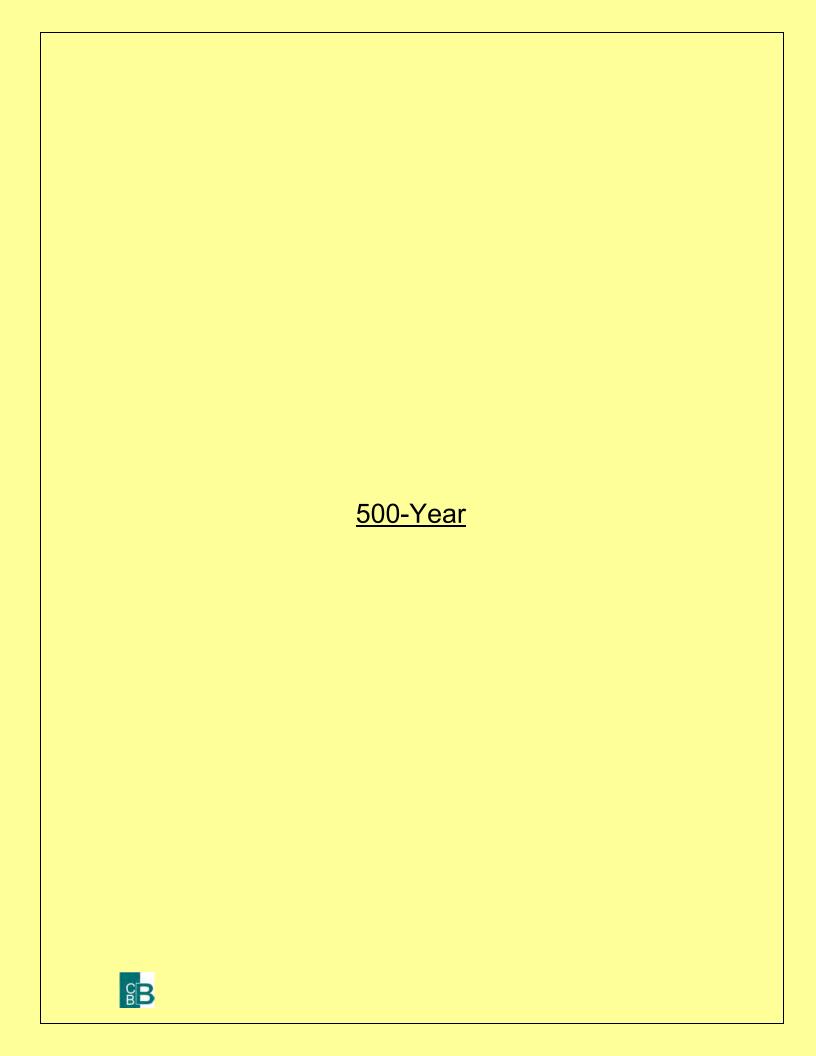
Location:	River: Flagg Creek Reach: 1. RS: 9.5 Profile: Q10									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
	or greater than 1.4. This may indicate the need for additional cross sections.									
Location:	River: Flagg Creek Reach: 1. RS: 7.04 Profile: Q10 Downstream									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
	or greater than 1.4. This may indicate the need for additional cross sections.									
Location:	River: Flagg Creek Reach: 1. RS: 4.1 Profile: Q10									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
	or greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.									
	This may indicate the need for additional cross sections.									



Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1.	12.1	Q50	2000.00	623.20	633.76		633.96	0.001054	3.61	581.89	120.02	0.23
1.	9.5	Q50	2100.00	621.30	633.05	626.67	633.18	0.001337	2.97	801.30	171.11	0.18
1.	7.04		Bridge									
1.	4.1	Q50	2100.00	624.30	632.20		632.68	0.007967	5.88	477.27	226.31	0.41
1.	0.5	Q50	2100.00	622.00	629.30	628.05	629.34	0.001986	2.82	1602.16	769.38	0.20

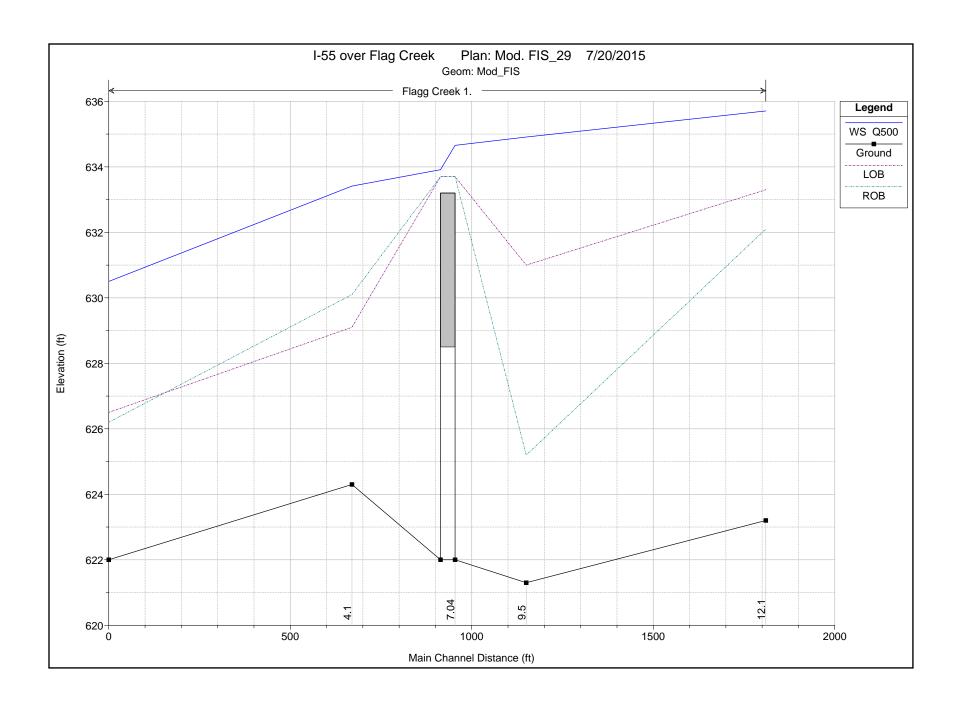
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1.	12.1	Q50	633.96	633.76	0.20	0.78	0.00	0.49	1969.01	30.50	120.02
1.	9.5	Q50	633.18	633.05	0.13	0.19	0.00	50.49	1959.60	89.92	171.11
1.	7.04		Bridge								
1.	4.1	Q50	632.68	632.20	0.48	3.33	0.00	180.27	1846.90	72.83	226.31
1.	0.5	Q50	629.34	629.30	0.04			327.43	433.04	1339.54	769.38


RS: 9.5 Profile: Q50
conveyance divided by downstream conveyance) is less than 0.7
dicate the need for additional cross sections.
RS: 7.04 Profile: Q50 Downstream
conveyance divided by downstream conveyance) is less than 0.7
dicate the need for additional cross sections.
RS: 4.1 Profile: Q50
ross-section.
conveyance divided by downstream conveyance) is less than 0.7
dicate the need for additional cross sections.
n 1.0 ft (0.3 m). between the current and previous cross section.
dditional cross sections.
r

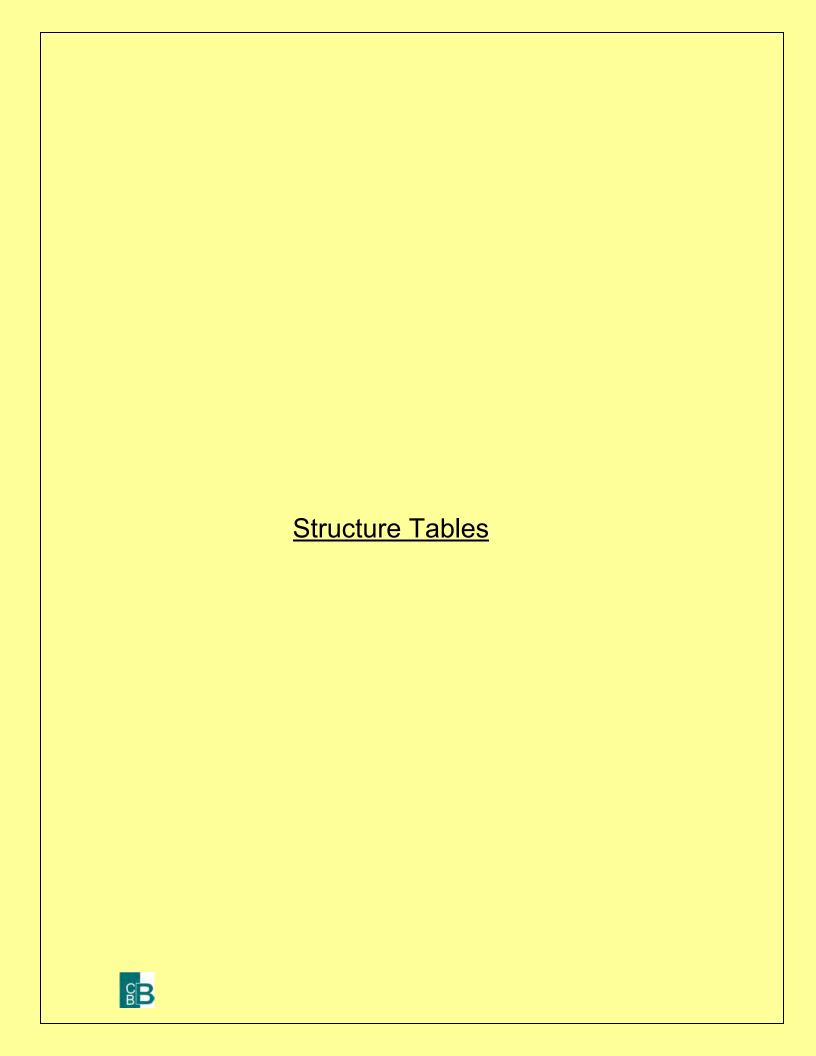

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1.	12.1	Q100	2400.00	623.20	634.38		634.61	0.001119	3.92	686.69	206.21	0.24
1.	9.5	Q100	2500.00	621.30	633.62	627.07	633.77	0.001480	3.25	910.88	216.64	0.19
1.	7.04		Bridge									
1.	4.1	Q100	2500.00	624.30	632.59		633.11	0.008363	6.27	574.36	275.12	0.43
1.	0.5	Q100	2500.00	622.00	629.70	628.16	629.74	0.001693	2.72	1916.75	803.44	0.19

HEC-RAS Plan: Mod FIS River: Flagg Creek Reach: 1. Profile: Q100

,											
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1.	12.1	Q100	634.61	634.38	0.23	0.84	0.00	16.41	2310.17	73.42	206.21
1.	9.5	Q100	633.77	633.62	0.15	0.23	0.00	95.99	2287.27	116.74	216.64
1.	7.04		Bridge								
1.	4.1	Q100	633.11	632.59	0.52	3.37	0.00	295.37	2091.49	113.14	275.12
1.	0.5	Q100	629.74	629.70	0.04			410.75	445.93	1643.32	803.44



Location:	River: Flagg Creek Reach: 1. RS: 12.1 Profile: Q100									
Warning:	Divided flow computed for this cross-section.									
Location:	River: Flagg Creek Reach: 1. RS: 9.5 Profile: Q100									
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for									
	additional cross sections.									
Location:	River: Flagg Creek Reach: 1. RS: 7.04 Profile: Q100 Downstream									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
	or greater than 1.4. This may indicate the need for additional cross sections.									
Location:	River: Flagg Creek Reach: 1. RS: 4.1 Profile: Q100									
Warning:	Divided flow computed for this cross-section.									
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7									
	or greater than 1.4. This may indicate the need for additional cross sections.									
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.									
	This may indicate the need for additional cross sections.									

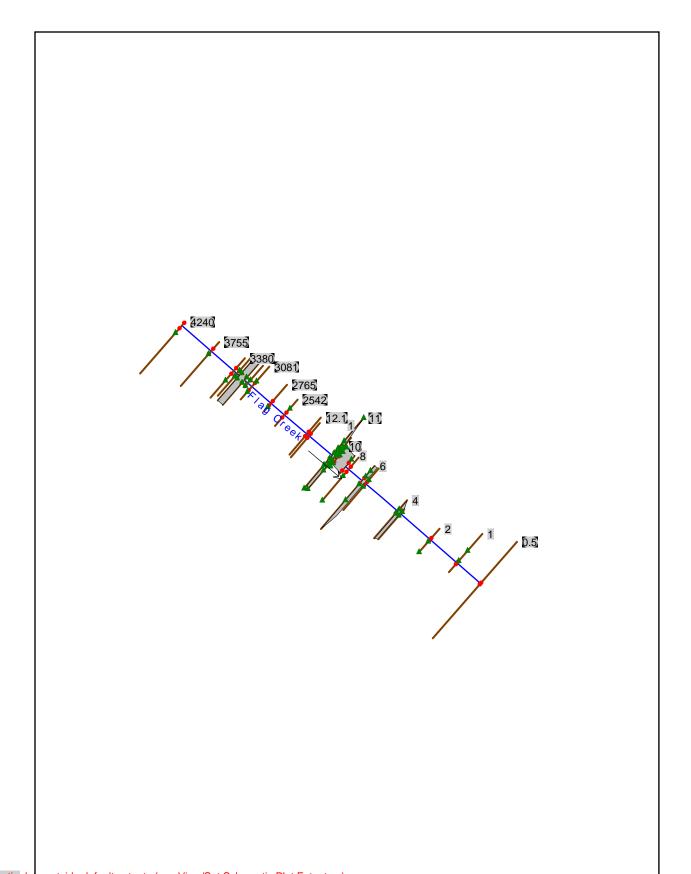


Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1.	12.1	Q500	3350.00	623.20	635.71		635.94	0.001041	4.18	1080.32	343.87	0.24
1.	9.5	Q500	3550.00	621.30	634.91	628.07	635.10	0.001653	3.75	1259.11	324.49	0.20
1.	7.04		Bridge									
1.	4.1	Q500	3550.00	624.30	633.41		633.98	0.008763	6.94	848.08	387.61	0.45
1.	0.5	Q500	3550.00	622.00	630.50	628.39	630.54	0.001510	2.78	2593.26	904.17	0.18

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1.	12.1	Q500	635.94	635.71	0.23	0.84	0.00	257.78	2852.51	239.71	343.87
1.	9.5	Q500	635.10	634.91	0.19	0.22	0.00	336.52	2996.63	216.85	324.49
1.	7.04		Bridge								
1.	4.1	Q500	633.98	633.41	0.56	3.44	0.00	698.14	2600.81	251.05	387.61
1.	0.5	Q500	630.54	630.50	0.04			646.04	513.86	2390.11	904.17

Location:	River: Flagg Creek Reach: 1. RS: 9.5 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Flagg Creek Reach: 1. RS: 7.04 Profile: Q500 Upstream
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: Flagg Creek Reach: 1. RS: 7.04 Profile: Q500 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
	surface was used.
Location:	River: Flagg Creek Reach: 1. RS: 4.1 Profile: Q500
Warning:	Divided flow computed for this cross-section.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section.
	This may indicate the need for additional cross sections.

Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)
1.	7.04	Q10	631.79	628.50	384.70		1310.00	633.21		0.24
1.	7.04	Q50	633.18	628.50	384.70		2100.00	633.21		0.51
1.	7.04	Q100	633.77	628.50	384.70		2500.00	633.21		0.67
1.	7.04	Q500	635.10	628.50	384.70		3550.00	633.21		1.12


Reach	River Sta	Profile	E.G. US.	W.S. US.	Br Sel Method	Energy EG	Momen. EG	Yarnell EG	WSPRO EG	Prs O EG	Prs/Wr EG	Energy/Wr EG
			(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
1.	7.04	Q10	631.79	631.72	Energy only	631.79						
1.	7.04	Q50	633.18	633.05	Energy only	633.18						
1.	7.04	Q100	633.77	633.62	Energy only	633.77						
1.	7.04	Q500	635.10	634.91	Energy only	635.10						

HEC-RAS Plan: Mod FIS River: Flagg Creek Reach: 1.

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1.	12.1	Q10	632.39	632.26		0.59	0.00	73.46		1259.95	0.05	2.87
1.	12.1	Q50	633.96	633.76		0.78	0.00	120.02	0.49	1969.01	30.50	3.61
1.	12.1	Q100	634.61	634.38		0.84	0.00	206.21	16.41	2310.17	73.42	3.92
1.	12.1	Q500	635.94	635.71		0.84	0.00	343.87	257.78	2852.51	239.71	4.18
1.	9.5	Q10	631.79	631.72	625.74	0.12	0.00	112.85	2.56	1251.88	55.56	2.24
1.	9.5	Q50	633.18	633.05	626.67	0.19	0.00	171.11	50.49	1959.60	89.92	2.97
1.	9.5	Q100	633.77	633.62	627.07	0.23	0.00	216.64	95.99	2287.27	116.74	3.25
1.	9.5	Q500	635.10	634.91	628.07	0.22	0.00	324.49	336.52	2996.63	216.85	3.75
1.	7.04 BR U	Q10	631.67	631.49	625.55	0.01	0.00			1310.00		3.41
1.	7.04 BR U	Q50	632.99	632.53	626.48	0.03	0.00			2100.00		5.46
1.	7.04 BR U	Q100	633.54	632.88	626.85	0.04	0.00			2500.00		6.50
1.	7.04 BR U	Q500	634.88	634.66	627.67	0.04	0.00	676.28	1466.15	2036.38	47.47	4.41
1.	7.04 BR D	Q10	631.66	631.48	625.55	0.12	0.00			1310.00		3.41
1.	7.04 BR D	Q50	632.96	632.50	626.48	0.29	0.00			2100.00		5.46
1.	7.04 BR D	Q100	633.50	632.85	626.85	0.40	0.00			2500.00		6.50
1.	7.04 BR D	Q500	634.85	633.91	627.67	0.87	0.00	597.72	304.99	3244.62	0.38	8.07
1.	4.1	Q10	631.55	631.21		2.72	0.00	112.90	43.38	1254.50	12.12	4.74
1.	4.1	Q50	632.68	632.20		3.33	0.00	226.31	180.27	1846.90	72.83	5.88
1.	4.1	Q100	633.11	632.59		3.37	0.00	275.12	295.37	2091.49	113.14	6.27
1.	4.1	Q500	633.98	633.41		3.44	0.00	387.61	698.14	2600.81	251.05	6.94
1.	0.5	Q10	628.83	628.80	627.75			731.48	183.49	339.42	787.09	2.41
1.	0.5	Q50	629.34	629.30	628.05			769.38	327.43	433.04	1339.54	2.82
1.	0.5	Q100	629.74	629.70	628.16			803.44	410.75	445.93	1643.32	2.72
1.	0.5	Q500	630.54	630.50	628.39			904.17	646.04	513.86	2390.11	2.78

TAB C

	Hydraulic Report – Interstate 55 over Flag Creek							
	SECTION 13.C							
	EXISTING CONDITIONS							
g B								

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XXXX			XXXX		XX		XXXX	
X	X	X	X	Х		Χ	X	X	Χ	X	
X	X	X	Χ			Χ	X	X	Х	X	
XXX	XXXX		Χ		XXX	XX	XX	XXX	XXX	XXXX	
X	X		X			Χ	X	X	Х	X	
X	X	X	X	Х		Χ	X	X	Х	X	
Х	Х	XXXXXX	XX	XX		Х	X	X	Х	XXXXX	

PROJECT DATA

Project Title: I-55 over Flag Creek Project File: I-550veFlagCreek.prj Run Date and Time: 9/28/2016 9:55:55 AM

Project in English units

Project Description:

2016 CBBEL Hydraulic Report for I-55 Over Flag Creek. All Models run in NAVD 88. Conversion from NAVD 88 = NGVD 29 - 0.28'.

PLAN DATA

Plan Title: Existing

Plan File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek iad\I-

550veFlagCreek.p02

Geometry Title: Flag Creek_Existing

Geometry File : $N:\sqrt{1000}.0000\sqrt{Drain\Model\HEC-RAS\I-55}$ over Flag Creek

iad\I-550veFlagCreek.g01

Flow Title : Existing_Flow

Flow File : N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek

iad\I-550veFlagCreek.f03

Plan Description:

Existing conditions for I-55 over Flag Creek. Cross sections 1-12 based on 2012 CBBEL surveyed cross sections. Cross sections 241-4240 from 2011 HLR Cross sections. Surveyed structures for I-55/Wolf Road/72nd Street from 2012 CBBEL Survey. Joliet Road provided from 2011 HLR Report. FIS cross sections whose location could be properly verified were included. Starting water surface elevations and flows provided from WSP-2 regulatory model. All elevations provided in this model are in NAVD 88.

Plan Summary Information:

Number of: Cross Sections = 25 Multiple Openings = 0 Culverts = 0 Inline Structures = 0 Bridges = 5 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: Existing Flow

Flow File : N:\Idot\ $\overline{110203.00001}$ \Drain\Model\HEC-RAS\I-55 over Flag Creek iad\I-550.0001

550veFlagCreek.f03

Flow Data (cfs)

River 0500	Reach	RS	Q10	Q50	Q100
Flag Creek 3350	1	4240	1260	2000	2400
Flag Creek 3550	1	9.5	1310	2100	2500

Boundary Conditions

River Downstream	Reach	Profile	Upstream
Flag Creek = 628.52	1	Q10	Known WS
Flag Creek = 629.02	1	Q50	Known WS
Flag Creek = 629.42	1	Q100	Known WS
Flag Creek = 630.22	1	Q500	Known WS

GEOMETRY DATA

Geometry Title: Flag Creek_Existing

Geometry File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek iad\I-

550veFlagCreek.g01

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 4240

INPUT

Description: Surveyed Cross Section

Just Downstream of I-294

 Station Elevation Data
 num=
 29

 Sta
 Elev
 Sta
 Elev

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
943.02 .1 963.35 .035 1053.07 .1 1246.42 .013

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 963.35 1053.07 485 485 485 .1 .3

Ineffective Flow num= 1 Sta L Sta R Elev Permanent 1129.87 1802 F

Right Levee Station= 1245.69 Elevation= 635.72

CROSS SECTION

RIVER: Flag Creek

RS: 3755 REACH: 1

TNPUT

Description: Surveyed Cross Section

1042.98 633.232 1044.37 633.199 1055.07 632.903 1084.42 630.058 1134.63 628.059 1184.29 627.801 1226.86 627.254 1288.87 627.235 1329.26 627.215 1374.09 629.294 1405.91 633.702 1441.25 636.583 1499.51 638.633 1570.41 639.073

num=

Manning's n Values num= 6
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
842 .1 951.87 .035 1033.51 .1 1084.42 .025 1441.25 .025
1499.51 .1

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
951.87 1033.51 375 375 375 .1 .3

Ineffective Flow num= 1
Sta L Sta R Elev Permanent
1042.98 1570.41 633.25 T

Right Levee Station= 1042.98 Elevation= 633.232

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3380

TNPUT

Description: Survey Cross Section

North ROW of Joliet Road

Station Elevation Data num=

tation Elevation Data num= 18

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

768.8 638 891.4 636 932.57 634.184 944.5 629.132 949.28 625.111

958.01 622.816 977.15 622.471 1000 622.319 1016.57 632.3 1019.06 632.586 1025.27 633.14 1067.43 633.486 1084.68 633.627 1162.07 634.615 1240.18 635.884 1317.76 636.687 1395.69 637.077 1422 644

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
768.8 .1 944.5 .035 1025.27 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 932.57 1025.27 53 53 53

Ineffective Flow num= 1 .1 .3

Sta L Sta R 1139.1 1422 Elev Permanent F

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3327

Description: Surveyed Cross Section

Upstream Face of Joliet Road Station Elevation Data num=

Station Elevation Data num= 19
Sta Elev Sta Elev Sta Elev Sta Elev Sta
738.62 638 890 636 922 634 928 632 934.62 Elev 636

958.05 635.351 978.68 626.551 989.65 622.889 1000 622.043 1015.72 623.677 1025.86 624.995 1030.13 625.714 1032.24 627.688 1048.55 631.47 1075.72 632.828 1115.14 633.565 1162.6 633.736 1234.96 635.425 1368.96 640

 Manning's n Values
 num=
 3

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 738.62
 .1 978.68
 .035 1048.55
 .035

 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 958.05 1048.55 39 39 39 .3 .5 Ineffective Flow num= 2 Sta L Sta R Elev Permanent 738.62 954.07 637.5 F 1046.13 1368.96 637.5 F CROSS SECTION RIVER: Flag Creek REACH: 1 RS: 3288 INPUT Description: Upstream Face of the Joliet Road Bridge The chanel section was adjusted for the 7.3 degree skew. 956.66 636.4 956.66 631 961.61 630.7 979.96 621.3 984.13 622.3 993.06 622.7 1000 624.3 1015.28 624.2 1025.59 624.7 1038.49 630.7 1043.35 631 1043.35 636.3 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35 Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
685.5 .035 956.66 .035 1043.35 .035 Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 956.66 1043.35 82 82 82 .3 .5 Bank Sta: Left 956.66 1043.35

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
685.5 956.66 637.5 F
1043.35 1409.21 637.75 F
Skew Angle = 7 3 82 82 Skew Angle = 7.3BRIDGE RIVER: Flag Creek REACH: 1 RS: 3245 Description: Joliet Road from 2011 HLR Study Distance from Upstream XS = 1 Distance from operion = 80
Deck/Roadway Width = 80
2.6 Upstream Deck/Roadway Coordinates num= 22 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 350.4 642.62 450.4 640.56 550.4 638.97 800.4 637.87 650.4 638.06 750.4 637.71

850.4 638.33 900.4 639.01 950.4 639.5 954 639.51 635.52 1000 639.75 635.52 1046.3 639.75 635.52 1050.4 639.75 1100.4 639.52 1150.4 639.27 1250.4 638.99 1200.4 639.04 1300.4 639.15 1350.4 639.61 1650.4 646.59 1450.4 641.27 1550.4 643.51

Upstream Bridge Cross Section Data

Station Elevation Data num= 24
Sta Elev Sta Elev Sta Elev Sta Elev

```
685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62
  956.66 636.4 956.66 631 961.61 630.7 979.96 621.3 984.13 622.3 993.06 622.7 1000 624.3 1015.28 624.2 1025.59 624.7 1038.49 630.7 1043.35 631 1043.35 636.3 1100.87 637.92 1150.18 638.15 1200.49 638.4
   1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
685.5 .035 956.66 .035 1043.35 .035
 Bank Sta: Left Right Coeff Contr. Expan.
956.66 1043.35 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
  685.5 956.66 637.5 F
1043.35 1409.21 637.75 F
 Skew Angle = 7.3
Downstream Deck/Roadway Coordinates
      num= 22
          Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
        350.4 642.62 450.4 640.56 550.4 638.97
       650.4 638.06
850.4 638.33
         650.4 638.06 750.4 637.71 800.4 637.87
850.4 638.33 900.4 639.01 950.4 639.5
954 639.51 635.52 1000 639.75 635.52 1046.3 639.75 635.52
     1050.4 639.75 1100.4 639.52 1150.4 639.27
    1200.4 639.04
1350.4 639.61
                                                             1250.4 638.99
1450.4 641.27
                                                                                                       1300.4 639.15
1550.4 643.51
     1650.4 646.59
 Downstream Bridge Cross Section Data
Downstream Bridge Cross Section 223
Station Elevation Data num= 23
Station Elev Sta 
    685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62 956.8 637.1 956.8 631.1 961.3 630.9 974.3 625.4 983.2 625.4 1000.2 623 1005 624.2 1025.3 624.1 1038.3 630.9 1043.3 631.7
  1043.3 636.7 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35

      Manning's n Values
      num=
      3

      Sta
      n Val
      Sta
      n Val
      Sta
      n Val

      685.5
      .035
      956.8
      .035
      1043.3
      .035

Bank Sta: Left Right Coeff Contr. Expan. 956.8 1043.3 .3 .5 Ineffective Flow num= 2
   Sta L Sta R Elev Permanent
685.5 956.8 637.5 F
1043.3 1409.21 637.75 F
                                                                                   = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
weir flow = .98
Upstream Embankment side slope
 Downstream Embankment side slope
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins
Energy head used in spillway design
 Spillway height used in design
Weir crest shape
                                                                                                          = Broad Crested
Number of Piers = 1
Pier Data
Pier Station Upstream=
                                                                     1000 Downstream= 1000
Upstream num= 2
Width Elev Width
                                                 Width Elev
        3 620 3 635.52

ynstream num= 2
Downstream
       Width Elev Width Elev 3 620 3 635.52
 Number of Bridge Coefficient Sets = 1
```

```
Energy
                                    Cd = 2
KVal = 1.25
            Momentum
            Yarnell
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
            Pressure and Weir flow
                   Submerged Inlet Cd
                    Submerged Inlet + Outlet Cd = .8
                   Max Low Cord
Additional Bridge Parameters
            Add Friction component to Momentum
            Do not add Weight component to Momentum
            Class B flow critical depth computations use critical depth
                  inside the bridge at the upstream end
            Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                                              RS: 3206
INPUT
Description: Downstream Face of Joliet Road Bridge
Station Elevation Data num= 23
Sta Elev Sta Elev Sta
                                                                           Elev Sta
                                                                                                          Elev Sta
     685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62 956.8 637.1 956.8 631.1 961.3 630.9 974.3 625.4 983.2 625.4 1000.2 623 1005 624.2 1025.3 624.1 1038.3 630.9 1043.3 631.7
   1000.2
   1043.3 636.7 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69
 1304.98 639.05 1357.01 639.61 1409.21 640.35
Manning's n Values
                                          num=
     Sta n Val Sta n Val Sta n Val 685.5 .035 956.8 .035 1043.3 .035
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
930.8 1043.3
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
685.5 956.8 637.5 F
1043.3 1409.21 637.75 F
                                                                 58 58 58
                                                                                                               .3 .5
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                                           RS: 3148
Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report
                      (2)
Downstream Face of Joliet Road
Station Elevation Data num=
                                                              25

        Sta
        Elev
        Sta
        Sta
        Elev
        Sta
        Elev
        Sta
        Elev
        Sta
        Elev
        Sta
        Sta
        Sta
        Sta<
   865.25 636.464 876.37 636.435 877.36 636.392 877.96 636.571 915.13 636.548 953.12 635.36 961.25 634.658 971.9 628.969 975.59 624.863 979.02 624.082
      1000 622.988 1029.42 624.774 1032.82 626.596 1049.64 635.605 1070.41 640
                                        num=
Manning's n Values
        ing's n Values num=
Sta n Val Sta n Val
714 .013 953.12 .035
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 953.12 1049.64 67 67 67 .1 .3
953.12 1049.64
Ineffective Flow num= 2
```

Low Flow Methods and Data

Sta L Sta R Elev Permanent 714 954.07 637.5 F 1046.13 1070.41 637.5 F

Left Levee Station= 915.13 Elevation= 636.548

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3081

TNPUT

Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report (3081)

South

ROW of Joliet Road

27 Station Elevation Data num= Sta Sta Elev Sta Elev Sta Elev Elev 640 700.12 635.213 715.59 635.15 735.43 635.461 767.31 635.449 668.73 817.37 635.27 849.72 635.974 850.32 635.78 851.31 635.845 861.89 636.024 872.17 635.891 873.24 635.837 873.77 636.034 907.47 636.397 939.2 636.187 941.74 635.886 956.98 633.907 973.01 627.756 975.66 624.761 985.89 623.489 1000 623.264 1023.58 623.869 1027.81 624.827 1060.6 640 1070.47 640 1145.38 638 1212.12 640

Manning's n Values

nning's n Values num= 3
Sta n Val Sta n Val Sta n Val
668.73 .013 939.2 .035 1060.6 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 939.2 1060.6 316 316 316 .1 .3
Ineffective Flow num= 2

Sta L Sta R Elev Permanent 668.73 913.07 F 1087.13 1212.12 F

Left Levee Station= 907.47 Elevation= 636.397

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 2765

Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report

(2765)

Approximatley 450' Downstream

Station Elevation Data num=

tion Elevation Data num= 31 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 695 638 696 636 716.52 634.71 725.473 633.61 757.57 635.078 Sta Elev 801.99 635.575 837.63 635.143 852.74 633.931 856.99 633.503 857.56 633.302 858.55 633.354 868.9 633.369 879.37 633.365 881.01 633.481 905.23 633.742 932.95 633.777 933.78 633.764 964.28 633.109 975.88 624.879 977.62 624.631 1000 623.299 1013.14 623.352 1021.19 624.989 1027.01 628.729 1036.7 632.295 1061.92 632.69 1082.27 629.198 1096.47 629.329 1118.4 634.385 1119.8 637.943 1135.48 638.26

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
695 .013 964.28 .035 1036.7 .1 1061.92 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 223 223 223 .1 .3

964.28 1036.7
Ineffective Flow num= 1
Sta L Sta R Elev Permanent 1061.92 1135.48 632.69 T

Left Levee Station= 801.99 Elevation= 635.58

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 2542

Sta 718.48			num=	37					
718.48	Elev	n Data Sta	Elev	Sta	Elev	Sta	Elev	Sta	El
004 45	638	722.68	634	742.28		765.89	632.763	775.21	629.8
804.17	628.408	842.1							
		868.39							
		895.89							
		942.56							
		990.36							
		1039.67							
		1152.48		1010.20		1000.10	007.13	1031.11	
Manning's				6					
Sta			n Val		n Val				
	.035	864.81	.013	897.62	.1	931.16	.035	1028.26	
Bank Sta	: Left	Right						f Contr.	Exp
	931.16 1				367.73	367.73		.1	
Ineffect	ive Flow	num=	= 1						
	Sta R		Permane	ent					
718.48	866.87	634.656	F						
Left Leve	ee	Station=	931.16	Ele	evation=	635.029			
CROSS SEC	CTION								
RIVER: F	lag Cree	k							
REACH: 1	-		RS: 12.	1					
INPUT									
Descript	ion: FIS	Cross Se	ction FC	:039					
		n Data		19					
Sta			Elev	Sta	Elev	Sta	Elev	Sta	E
	639.12		633.62				634.52		634
	633.02		625.32	-20					624
	622.92		623.62	16					
	638.02		639.02	320					
Manning's	s n Valu	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-274	.075	-41	.05	30	.075				
Bank Sta		-	Lengths		Channel	-	Coef	f Contr.	_
Bank Sta	: Left -41	Right 30	Lengths		35.17	Right 20	Coefi	f Contr.	_
Bank Sta	-41	-	Lengths			-	Coefi		_
CROSS SEC	-41 CTION	30				-	Coef		_
CROSS SEC	-41 CTION	30	Lengths RS: 12			-	Coef		_
CROSS SECRIVER: FREACH: 1	-41 CTION lag Cree	30 k	RS: 12	34.5	35.17	20		.1	_
CROSS SEC RIVER: FI REACH: 1 INPUT Descript:	-41 CTION lag Cree	30 k	RS: 12	34.5	35.17	20		.1	_
CROSS SECRIVER: F: REACH: 1 INPUT Descript: Station I	-41 CTION lag Cree ion: XS Elevatio	30 k 12, 377' n Data	RS: 12 Upstream	34.5 n of Nort 17	35.17	20 of 70th 1	Pl Bridge	.1	,
CROSS SECRIVER: F. REACH: 1 INPUT Descript: Station I	-41 CTION lag Cree ion: XS Elevatio Elev	30 k 12, 377' n Data Sta	RS: 12 Upstream num= Elev	34.5 of Nort 17 Sta	35.17 th face (20 of 70th I	Pl Bridge Elev	.1 e Sta	E.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6	-41 CTION lag Cree ion: XS Elevatio Elev 640	30 k 12, 377' n Data Sta -201.4	RS: 12 Upstream num= Elev 634	34.5 of Nort 17 Sta -77.3	35.17 th face (Elev 633.06	20 of 70th ! Sta -62.8	Pl Bridge Elev 636.95	.1 Sta -57.8	E] 637.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91	30 k 12, 377' n Data Sta -201.4 -27.9	RS: 12 Upstream num= Elev 634 631.9	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17	30 k 12, 377' n Data Sta -201.4 -27.9 22.8	RS: 12 Upstream num= Elev 634 631.9 624.54	34.5 of Nort 17 Sta -77.3	35.17 th face (Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17	30 k 12, 377' n Data Sta -201.4 -27.9 22.8	RS: 12 Upstream num= Elev 634 631.9	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74	RS: 12 Upstream num= Elev 634 631.9 624.54	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station ! Sta -204.6 -44 21 290.94	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636 s n Valu n Val	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74 es	RS: 12 Upstream num= Elev 634 631.9 624.54 638	34.5 n of North 17 Sta -77.3 -13.7 37.5	35.17 th face (Elev 633.06 624.19 630.99	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: FI REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21 290.94 Manning's	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636 s n Valu	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74 es	RS: 12 Upstream num= Elev 634 631.9 624.54 638 num= n Val	34.5 of North 17 Sta -77.3 -13.7 37.5	35.17 th face (Elev 633.06 624.19 630.99	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.

```
Sta L Sta R Elev Permanent
78.8 356.74
```

CROSS SECTION

RIVER: Flag Creek

RS: 11

TNPUT

Description: XS 11, Upstream (North) face of 70th Pl Bridge, mod ineff iad
 Sta
 Elev
 St Station Elevation Data num= 22 Sta Elev -595.2 -376 630 -29.4 629.04 -135.5 7.7 620.25 151.4 634 368.7 636 547.8 638 Manning's n Values num=

Sta n Val Sta n Val

-595.2 .063 -123.4 .013 4 Sta n Val Sta n Val -42 .063 78.1 .03 Expan. 53 38.3 50 coeff Contr. Expan. Bank Sta: Left Right Lengths: Left Channel Right bl num= 5 -29.4 61 Ineffective Flow

Sta L Sta R Elev Permanent -99.2 -29.4 633.17 F F 65.6 222.2 633.71 222.2 558 652.73 -600 -200.4 650.39 -200.4 -99.2 632 F F T

BRIDGE

RIVER: Flag Creek

REACH: 1 RS: 10.5

INPUT

Description: 70th Pl. Single Span Concrete Bridge - ineffective cones include ineffective limits from downstream I-55 bridge, and from roadside ditch along Wolf Road. Large leftside upstream ineffective area is remnant backwater floodplain at XS 11.

Distance from Upstream XS = 3.5Deck/Roadway Width = 32.333 Upstream Deck/Roadway Coordinates

num= 9

 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord

 -25
 633.36
 627.99
 62
 633.71
 628.61

 254.5
 635.44
 620
 347.7
 636.41
 620

 534.3
 638.18
 620
 626.3
 639.08
 620

 Sta Hi Cord Lo Cord -105 633.17 620 620 620 160 634.44 437.7 637.2

Upstream Bridge Cross Section Data

Station Elevation Data num= 22 Sta Elev Sta Elev -558 634 -511.3 632 Sta Elev Sta Elev Sta 638 -581.5 636 630 -123.4 632 -595.2 -376

 -99.2
 633.95
 -42
 632.13

 -4.3
 620.74
 0
 619.25

 -135.5 -29.4 629.04 7.7 620.25 -20.1 628.39 -12 624.468 36 624.11 49.3 625.83 61 628.597 78.1 632.64 151.4 634 636 547.8 638 368.7

Manning's n Values num=
Sta n Val Sta n Val
-595.2 .063 -123.4 .013 4 Sta n Val Sta n Val -42 .063 78.1 .03

Bank Sta: Left Right Coeff Contr. Expan. 61 .3 .5 num= 5 -29.4 61

Ineffective Flow Sta L Sta R Elev Permanent

```
      -99.2
      -29.4
      633.17
      F

      65.6
      222.2
      633.71
      F

      222.2
      558
      652.73
      F

     -600 -200.4 650.39
   -200.4 -99.2 632
Downstream Deck/Roadway Coordinates
                9
     Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -105 633.17 620 -25 633.36 627.98 62 633.71 628.57 160 634.44 620 254.5 635.44 620 347.7 636.41 620
                                                         620 626.3 639.08
    437.7 637.2 620 534.3 638.18
Downstream Bridge Cross Section Data
Station Elevation Data num= 27
Station Elev Sta Elev Sta Elev Sta
636 -148.8 634 -141.3
                                                                   Sta Elev
                                                                                        Sta Elev
    -164.6 638 -158.2 636 -148.8 634 -132 630 -122.4 632 -98 633.6
                                                                              632 -135.1
                                                                                                   630
                                                                  -44 632.49
                                                                                       -31.2 629.9
    -28.8 629.75 -20.8 625.9 -16.7 625.82 -12.8 624.11 -5.8 621.22
0 621.06 21.5 622.16 33.7 623.72 48.2 623.34 50 624.15
54.6 625.98 58.5 626.25 68 630.321 73.2 632.55 215.6 634
    425.9 636 535.1 638
Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
   -164.6 .063 -122.4 .013 -44 .063
                                                                    68 .03
Bank Sta: Left Right Coeff Contr. Expan.
-31.2 68 .3 .5

Ineffective Flow num= 4

Sta L Sta R Elev Permanent
-27.3 -98 630.58 F
64.17 173 631 14 F
   64.17 173 631.14
173 535.1 652.7
-98 -164.6 632
               173 631.14
                                        F
                                    F
T
Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .98
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                                        = Broad Crested
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
         Enerav
                         Cd = 0
         Momentum
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
         Pressure and Weir flow
             Submerged Inlet Cd
              Submerged Inlet + Outlet Cd =
                                                       .8
              Max Low Cord
Additional Bridge Parameters
         Add Friction component to Momentum
         Do not add Weight component to Momentum
         Class B flow critical depth computations use critical depth
               inside the bridge at the upstream end
         Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
                                  RS: 10
REACH: 1
```

INPUT

```
Description: XS 10, Downstream (South) face of 70th Pl Bridge
Station Elevation Data num= 27
   -164.6 638 -158.2 636 -148.8 634 -141.3 632 -135.1 630

-132 630 -122.4 632 -98 633.6 -44 632.49 -31.2 629.9

-28.8 629.75 -20.8 625.9 -16.7 625.82 -12.8 624.11 -5.8 621.22

0 621.06 21.5 622.16 33.7 623.72 48.2 623.34 50 624.15

54.6 625.98 58.5 626.25 68 630.321 73.2 632.55 215.6 624.15
                           Elev
   425.9 636 535.1 638
Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
Occupants
  -164.6 .063 -122.4 .013 -44 .063
                                                      68 .03
Bank Sta: Left Right Lengths: Left Channel Right
                                                            Coeff Contr. Expan.
       -31.2 68 ctive Flow num= 4
                                     1 1
                                                      1
                                                                      .3
Ineffective Flow
  Sta L Sta R Elev Permanent
   -27.3 -98 630.58 F
    14.17 173 631.14 F
173 535.1 652.7 F
-98 -164.6 632 T
   64.17
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                         RS: 9.5
TNPIIT
Description: FIS Cross section J WSP-2 Cross Section X Converted to NAVD 88
Station Elevation Data num= 13
   Sta Elev Sta Elev
                                     Sta
                                            Elev
                                                       Sta Elev
                                                                       Sta
                                                                     -115 632.82
44 631.92
                                                      -313 635.72
30 623.52
                    -315 635.72
-30 625.02
                                     -314 636.12
0 621.02
    -320
            638
     -45 630.72
     91 634.62
                    193 631.72 213
                                            636
    sta n Values num= 3
Sta n Val Sta n Val Sta n Val
-320 .08 -45 .063 ...
Manning's n Values
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
          -45 44
ve Flow num= 5
                                      22 34 34
                                                                      .3
                                                                              . 5
Ineffective Flow
   Sta L Sta R
                    Elev Permanent
           134 631.14 F
   64.67
    -45 -27.8 630.58
                               F
                             T
T
    -148
           -98
                   632
            -320 650.39
    -172
                               F
    172
           213 652.73
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                          RS: 9
TNPUT
Description: XS 9, Upstream (North) face of I-55 Bridge
Manning's n-values
            adjusted to reflect roadside ditch to left and gravel area to
             right of Wolf Road.
Station Elevation Data num=
    Sta Elev Sta Elev
                                     Sta
                                            Elev
                                                     Sta
                                                              Elev
                                                                      St.a
                                                                               Elev
  -171.4 \quad 641.91 \quad -164.8 \quad 641.6 \quad -137.1 \quad 630.38 \quad -128.3 \quad 629.72 \quad -111.36 \quad 632.81
                                   -27.2 629.97
0 621.75
                                                    -23.2 629.87
26.7 623.62
   -96.3 633.22
-14.5 625.86
     0.1 632.7
-10 624.13
55 625.14 66 67
                   -79.1
                           632.7
                                                                     -15.5 626.04
                                                                     34.5 624.11
                                   98.8 646.64 105.1 646.97
                     66 630.54
Manning's n Values
                          num=
                                      5
    Sta n Val Sta n Val Sta n Val Sta n Val
```

```
-171.4 .05 -111.36 .013 -79.1 .03 -23.2 .063 66 .013
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -23.2 66 145 145.4 145 .3 .5 Ineffective Flow num= 3
   Sta L Sta R Elev Permanent
-180 -97 632 T
-97 -41 630.58 F
85.47 140 631.14 F
BRIDGE
RIVER: Flag Creek
REACH: 1
TNPUT
Description: I-55 Five-Span Steel Bridge.
Distance from Upstream XS = 1
Deck/Roadway Width = 143
Weir Coefficient = 2.6
Upstream Deck/Roadway Coordinates
   num= 5
Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -171.458 649.82 646.33 -64.12 650.89 647.12 -.92 651.39 647.59
     66.5 651.9 648.13 108.57 652.21 648.48
Upstream Bridge Cross Section Data
Station Elevation Data num= 19

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev
-171.4 641.91 -164.8 641.6 -137.1 630.38 -128.3 629.72 -111.36 632.81
-96.3 633.22 -79.1 632.7 -27.2 629.97 -23.2 629.87 -15.5 626.04
-14.5 625.86 -10 624.13 0 621.75 26.7 623.62 34.5 624.11
55 625.14 66 630.54 98.8 646.64 105.1 646.97
Manning's n Values num= 5
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
-171.4 .05 -111.36 .013 -79.1 .03 -23.2 .063 66 .013
Sta L Sta R Elev Permanent
-180 -97 632 T
-97 -41 630.58 F
85.47 140 631.14 F
Downstream Deck/Roadway Coordinates
   num= 7
      Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
  -176.4 650.39 0 -172.11 650.39 0 -172.11 650.39 646.73
-70.46 651.45 647.53 -8.07 651.93 648 62.41 652.46 648.39
101.57 652.73 648.63
Downstream Bridge Cross Section Data
Station Elevation Data num= 14
Sta Elev Sta Elev Sta Elev Sta Elev
                                                                                                  Sta Elev
   -176.4 644.74 -170.2 644.61 -141.91 630.89 -115 632.74 -101.31 632.91

-83.8 632.51 -63 629.953 -14.5 623.99 0 623.25 31.3 623.39

48.6 624.02 61.7 630.73 95.7 646.67 101.2 646.85
Manning's n Values
   nning's n Values num= 5
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
-176.4 .05 -115 .013 -83.8 .03 -63 .063 61.7 .013
Bank Sta: Left Right Coeff Contr. Expan.  -63 \qquad 61.7 \qquad \qquad .3 \qquad .5  Ineffective Flow  \text{num} = \qquad 1 
  Sta L Sta R Elev Permanent -176.4 -115 632 T
```

```
Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .98
Elevation at which weir \bar{\text{flow}} begins =
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                                            = Broad Crested
Number of Piers = 4
Pier Data
Pier Station Upstream= -132.1 Downstream= -136.5
Upstream num= 2
Width Elev Width
                                    Elev
2.75 620 2.75
Downstream num= 2
                                      650
    Width Elev Width Elev 2.75 620 2.75 650
Pier Data
Pier Station Upstream= -64.6 Downstream= -67.7
Upstream num= 2

        Width
        Elev
        Width
        Elev

        2.75
        620
        2.75
        647.48

        Downstream
        num=
        2

   Width Elev Width Elev 2.75 620 2.75 647.53
Pier Data
Pier Station Upstream= -1.2 Downstream= -6.7
Upstream num= 2

Width Elev Width Elev 2.75 620 2.75 647.95

Downstream num= 2

Width Elev Width Elev 2.75 620 2.75 648.01
Pier Data
Pier Station Upstream= 66.4 Downstream= 59.7
Upstream num= 2

        Width
        Elev
        Width
        Elev

        2.75
        620
        2.75
        648.49

        Downstream
        num=
        2

        Width
        Elev
        Width
        Elev

        2.75
        648.39

Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
         Energy
                                 Cd = 2
KVal = 1.25
          Momentum
         Yarnell
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
          Pressure and Weir flow
              Submerged Inlet Cd
               Submerged Inlet + Outlet Cd =
                                                          .8
               Max Low Cord
Additional Bridge Parameters
          Add Friction component to Momentum
          Do not add Weight component to Momentum
          Class B flow critical depth computations use critical depth
              inside the bridge at the upstream end
          Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
```

RIVER: Flag Creek

REACH: 1 RS: 8

TNPUT

Description: XS 8, Downstream (South) face of I-55 Bridge

Manning's n-values

adjusted to reflect roadside ditch to left and gravel area to

right of Wolf Road.

Station Elevation Data num=

-176.4 644.74 -170.2 644.61 -141.91 630.89 -115 632.74 -101.31 632.91 -83.8 632.51 -63 629.953 -14.5 623.99 0 623.25 31.3 623.39 48.6 624.02 61.7 620.73

48.6 624.02 61.7 630.73 95.7 646.67 101.2 646.85

 Anning's n Values
 num=
 5

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 -176.4
 .05
 -115
 .013
 -83.8
 .03
 -63
 .063
 Manning's n Values Sta n Val 61.7

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -63 61.7 10.5 51.5 47.2 .3

Ineffective Flow num= 1
Sta L Sta R Flow Permanent . 5

Sta L Sta R Elev Permane -176.4 -115 632 T Elev Permanent

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 7

TNPIIT

Description: XS 7, 50' Downstream of South face of I-55 Bridge, In line with

71st St

Station Elevation Data num= 18
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 L82.75
 638
 -177.6
 636
 -171.9
 634
 -125.6
 632.66
 Sta Elev -91.8 632.71 Elev Elev -182.75
 -85.8
 631.57
 -32.6
 629.95
 -20
 626.62
 -18.6
 623.98
 0
 622.87

 19
 622.8
 30.2
 624
 50
 629.581
 60
 632.4
 113.2
 634.04

19 622.8 30.2 624 50 629.581 234.7 634 385.2 636 519.2 638 234.7 634 385.2

Manning's n Values num=
Sta n Val Sta n Val
-182.75 .013 -32.6 .063 3 Sta n Val 50 .013

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-32.6 50 4 219.8 981 .3 .5

Theffective Flow pure 1

50 num= 1 Ineffective Flow Sta L Sta R Elev Permanent 117.5 519.2 650.68 F

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 6

Description: XS 6, Upstream (West) face of Wolf Rd Bridge Cross Section Skewed

27.5 degrees

158.598 632 242.509

658.872 636 694.529 638

Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val

-222.196 .08 -48.786 .063 31.932

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-48.786 31.932 Ineffective Flow num= 2 24.2 59.2 84 .3 . 5 Sta L Sta R Elev Permanent -222.196 -52.245 633.18 F 37.343 694.529 634.1 F Skew Angle = 27.5BRIDGE RIVER: Flag Creek REACH: 1 RS: 5.5 Description: Wolf Rd Two-Span Concrete Bridge-Bridge and deck skewed 27.5 dearees Distance from Upstream XS = 2
Deck/Roadway Width = 39 Weir Coefficient = 2.6 Bridge Deck/Roadway Skew = 27.5 Upstream Deck/Roadway Coordinates num= 12 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -240.025 630 620-227.607 632.3 620-147.244 633.18 620 -52.955 633.86 629.03 42.133 634.1 629.25 119.977 634.37 212.404 635.08 620 307.757 635.33 620 398.144 635.82 499.973 636.1 620 702.654 638 620 725.805 638.5 Upstream Bridge Cross Section Data 158.598 632 242.509 632 286.416 634 329.525 634 551.011 634 658.872 636 694.529 638 Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val -222.196 .08 -48.786 .063 31.932 .08 Bank Sta: Left Right Coeff Contr. Expan.

Fight Sta: Left Right Coeff Contr. Expan -48.786 31.932 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent -222.196 -52.245 633.18 F
37.343 694.529 634.1 F

Skew Angle = 27.5

Downstream Deck/Roadway Coordinates num= 12

Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -240.025 630 620-227.607 632.3 620-147.244 633.18 620 -66.526 633.94 629.09 27.143 634.16 629.28 119.977 634.37 620 212.404 635.08 620 307.757 635.33 620 398.144 635.82 620 499.973 636.1 620 702.654 638 620 725.805 638.5 620

Downstream Bridge Cross Section Data

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-235.324 .08 -42.399 .063 15.966 .08

Bank Sta: Left Right Coeff Contr. Expan. -42.399 15.966 .3 .5

```
Ineffective Flow num=
   Sta L Sta R Elev Permanent
235.324 -66 631.15 F
43.2 368.819 631.69 F
  235.324
Skew Angle = 27.5
Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical
Maximum allowable submergence for weir flow =
                                                                                         .98
Elevation at which weir flow begins
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                                                              = Broad Crested
Number of Piers = 1
Pier Data
Pier Station Upstream= -9.048 Downstream= -16.853
Upstream num= 2

        Width
        Elev
        Width
        Elev

        4.75
        620
        4.75
        630.5

        Downstream
        num=
        2

     Width Elev Width Elev
4.75 620 4.75 630.5
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
            Energy
                                     Cd = 2
KVal = 1.25
            Momentum
             Yarnell
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
             Pressure and Weir flow
                    Submerged Inlet Cd
                    Submerged Inlet + Outlet Cd = .8
                    Max Low Cord
Additional Bridge Parameters
             Add Friction component to Momentum
             Do not add Weight component to Momentum
             Class B flow critical depth computations use critical depth
                  inside the bridge at the upstream end
             Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
                                             RS: 5
REACH: 1
Description: XS 5, Downstream (East) face of Wolf Rd Bridge Section Skewed 27.5
                    degrees

    Station Elevation Data
    num=
    13

    Sta
    Elev
    Sta
    El
   40.359 633.56 246.234
                                                  634 368.819
                                                                                636
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-235.324 .08 -42.399 .063 15.966 .08
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-42.399 15.966 737 524.8 376 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
Sta L Sta R Elev Permane
-235.324 -66 631.15 F
43.2 368.819 631.69 F
```

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS· 4

TNPUT

Description: XS 4, Upstream (North) face of 72nd St Double Arch Culvert

Station Elevation Data num= 12
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 -50
 627.314
 -38.3
 623.87
 -26.8
 622.5

 20
 626.463
 43.2
 633.96
 170.1
 632.37
 Sta Elev Sta Elev 195.8 636.56 -77.3 635.35 0 622.54 12.1 623.91 -195.8 636.56 353.5 634 432.5 636

nning's n Values num= Sta n Val Sta n Val -195.8 .08 -50 .063 Manning's n Values Sta n Val 20 .08

BRIDGE

RIVER: Flag Creek

REACH: 1 RS: 3.5

INPUT

Description: 72nd St Double Arch Culvert Distance from Upstream XS = 5.5 Deck/Roadway Width = 36.5 Weir Coefficient = 2.6 Weir Coefficient Upstream Deck/Roadway Coordinates

num= 21 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -197.7 636.57 620 -107.4 636.57 620 -39.5 636.83 623.83 -33 636.87 631.3 -25.7 636.91 633.14 -18.3 636.95 631.4

 -11.4
 636.95
 623.5
 -11.4
 636.95
 618
 -9.6
 636.84
 618

 -9.6
 636.84
 623.46
 -3.3
 636.73
 631.52
 4.8
 636.62
 633.09

 12.1
 636.51
 631.56
 17.6
 636.4
 624.81
 32
 636.06
 620

 72 634.89 620 174.9 632.43 620 400.5 634 00.8 635.33 620 614.3 636 620 665.4 638 620 500.8 635.33

Upstream Bridge Cross Section Data

Station Elevation Data num= 12 Sta Elev Sta Elev Sta Elev -50 627.314 -38.3 623.87 -26.8 622.5 20 626.463 43.2 633.96 170.1 632.37 Sta Elev Sta Elev -195.8 636.56 -77.3 635.35 0 622.54 12.1 623.91 353.5 634 432.5 636

Manning's n Values num= Sta n Val Sta n Val Sta n Val 20 .08 -195.8 .08 -50 .063

Bank Sta: Left Right Coeff Contr. Expan. -50 20 .3 ve Flow num= 2 Ineffective Flow Sta L Sta R Elev Permanent -195.8 -44 636.56 F 24.18 432.5 632.43 F

Downstream Deck/Roadway Coordinates

num= 21

Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -197.7 636.57 620 -107.4 636.57 620 -38.4 636.83 624

```
-32.6 636.87 631.3 -25.6 636.91 632.99 -17.1 636.95 631.43
   -10.4 636.95 623.49 -10.4 636.95 618 -8.8 636.84 618

-8.8 636.84 623.42 -2.5 636.73 631.01 5.2 636.62 632.91

12.9 636.51 631.57 19.5 636.4 624.54 32 636.06 620
      72 634.89 620 174.9 632.43 620 400.5 634
0.8 635.33 620 614.3 636 620 665.4 638
                                                                           62.0
   500.8 635.33
Downstream Bridge Cross Section Data
Station Elevation Data num= 13
    Sta Elev Sta
                                       Sta Elev
                            Elev
                                                        Sta
                                                                Elev
                                                                          Sta
             636 -72.2 634.46 -42.4 625.86 -38.3 623.78 -23.8 622.61
    -82.3
   Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-82.3 .08 -42.4 .063 21.05 .08
Bank Sta: Left Right Coeff Contr. Expan. -42.4 21.05 .3 .5
-42.4 21.05 .3

Ineffective Flow num= 2

Sta L Sta R Elev Permanent
                                           .5
   -82.3 -40.2 634.78 F
23.2 412.67 632.43 F
                                      = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
Upstream Embankment side slope
Downstream Embankment side slope
                                                        0 horiz. to 1.0 vertical
                                                     .98
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
                                               = Broad Crested
Weir crest shape
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
       Energy
       Momentum
                              Cd =
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
       Pressure and Weir flow
           Submerged Inlet Cd
            Submerged Inlet + Outlet Cd =
                                              .8
            Max Low Cord
Additional Bridge Parameters
       Add Friction component to Momentum
        Do not add Weight component to Momentum
       Class B flow critical depth computations use critical depth
           inside the bridge at the upstream end
        Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
                           RS: 3
REACH: 1
Description: XS 3, Downstream (ST)
Station Elevation Data num= 13
Station Elevation Sta
Description: XS 3, Downstream (South) face of 72nd St Double Arch Culvert
                                             Elev
                                                       Sta

        Sta
        Elev
        Sta
        Elev
        Sta
        Elev

        82.3
        636
        -72.2
        634.46
        -42.4
        625.86
        -38.3
        623.78

                                                                        -23.8 622.61
   -82.3
   Manning's n Values num= 3
Sta n Val Sta n Val Sta
-82.3 .08 -42.4 .063 21.05
                                       Sta n Val
                                              .08
```

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -42.4 21.05 535 490.2 444

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
-82.3 -40.2 634.78 F
23.2 412.67 632.43 F .3

CROSS SECTION

RIVER: Flag Creek

RS: 2 REACH: 1

TNPUT

Description: XS 2, 490' Downstream of South face of 72nd St Double Arch Culvert Station Elevation Data num= 17

Sta Elev Sta Elev Sta Elev Sta Elev -179.4 633.27 -153.4 633.21 -147.1 633.56 -117.9 634.08 -86.3 625.65 -25 624.05 -22.8 623.68 -16 622.74 0 620.85 15.6 622.11 22.8 623.63 27.7 628.82 33.4 630.19 49.3 626.3 90.5 627.15 198.9 628.25 219.4 632.66

anning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-179.4 .08 -25 .063 22.8 .08 Manning's n Values

 Bank Sta: Left
 Right
 Lengths: Left Channel
 Right
 Coeff Contr.
 Expan.

 -25
 22.8
 445
 444.93
 425
 .1
 .3

 Ineffective Flow
 num=
 1

 Sta L
 Sta R
 Elev
 Permanent

 33.4
 209
 630.19
 T

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 1

Description: XS 1, 935' Downstream of South face of 72nd St Double Arch Culvert Station Elevation Data num= 20

 Sta
 Elev
 St

nning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-482.6 .08 -21 .063 18.7 .08 Manning's n Values

Right Coeff Contr. Expan. Bank Sta: Left Right Lengths: Left Channel -21 18.7 390 391
Ineffective Flow num= 1

Sta L Sta R Elev Permanent -202.4 -33.9 628 T

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 0.5

Description: FIS Crossection H WSP2 Cross section FC033 converted to NAVD88

Station Elevation Data num= 25 Elev Elev Sta Elev Sta Sta Sta Elev Elev -686 641.42 -586 638.62 -486 635.32 **-**386 633.02 -286 631.32 -6 624.72 -186 628.92 0 621.72 -141 627.42 -86 627.22 4 621.92 9 622.12 -8 626.22 12 622.72 18 625.92 114 626.22 214 626.82 314 627.22 414 627.12 514 627.52 614 629.82 714 630.62 814 631.52 900 632.72 912.9 633.22

 Manning's n Values
 num=
 3

 Sta n Val
 Sta n Val
 Sta n Val

 -686
 .08
 -8
 .063
 18
 .08

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

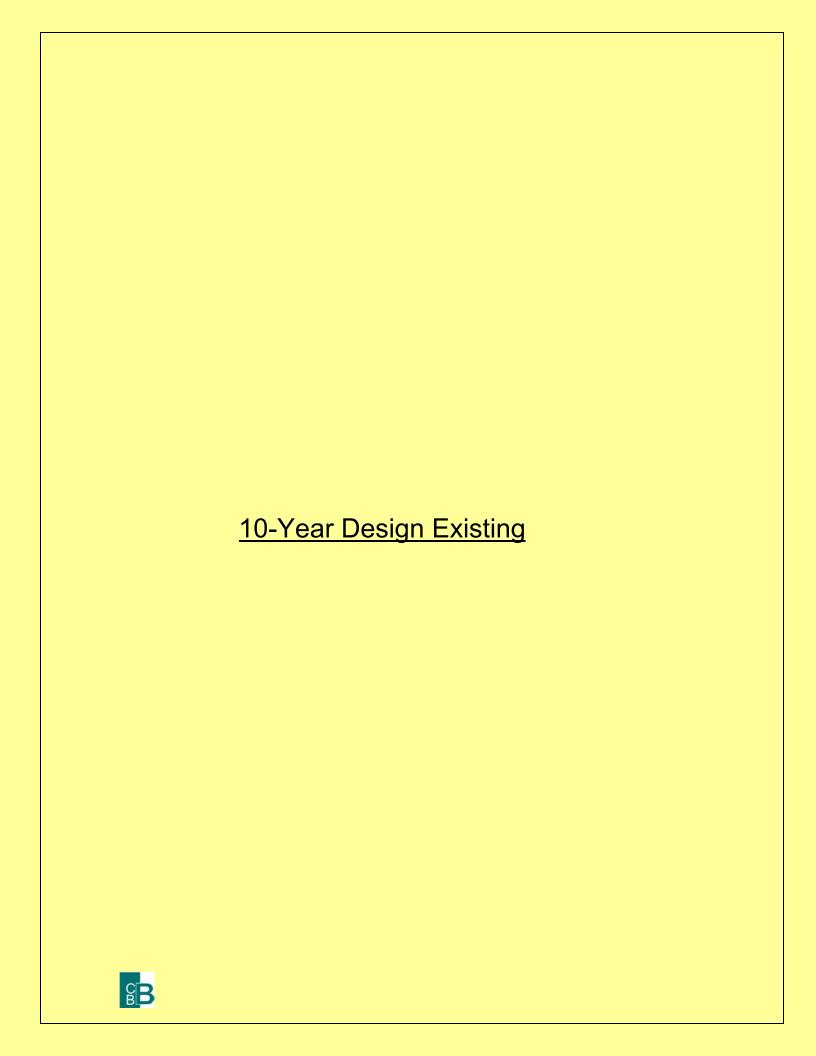
-8 18 0 0 0 .1 .3

SUMMARY OF MANNING'S N VALUES

River:Flag Creek

	Reach	River Sta.	n1	n2	n3	n4	n5	n6
1		4240	.1	.035	.1	.013		
1		3755	.1	.035	.1	.025	.025	
.1								
1		3380	.1	.035	.035			
1		3327	.1	.035	.035			
1		3288	.035	.035	.035			
1		3245	Bridge					
1		3206	.035	.035	.035			
1		3148	.013	.035				
1		3081	.013	.035	.035			
1		2765	.013	.035	.1	.035		
1		2542	.035	.013	.1	.035	.1	
.013								
1		12.1	.075	.05	.075			
1		12	.075	.05	.075			
1		11	.063	.013	.063	.03		
1		10.5	Bridge					
1		10	.063	.013		.03		
1		9.5	.08	.063	.08			
1		9	.05	.013	.03	.063	.013	
1		8.5	Bridge					
1		8	.05	.013	.03	.063	.013	
1		7	.013	.063	.013			
1		6	.08	.063	.08			
1		5.5	Bridge					
1		5	.08	.063	.08			
1		4	.08	.063	.08			
1		3.5	Bridge					
1		3	.08	.063	.08			
1		2	.08	.063	.08			
1		1	.08	.063	.08			
1		0.5	.08	.063	.08			

SUMMARY OF REACH LENGTHS

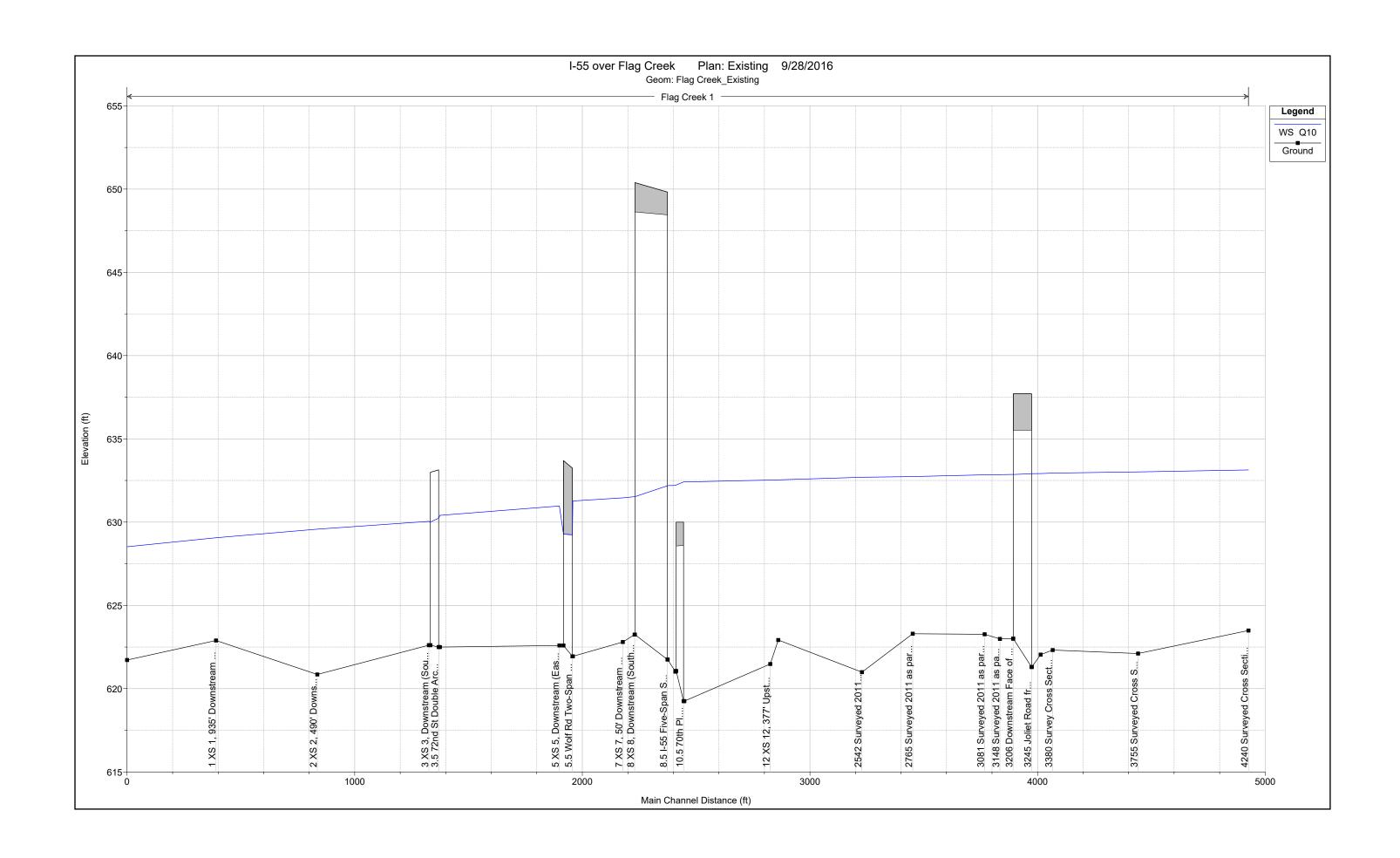

River: Flag Creek

	Reach	River	Sta.	Left	Channel	Right
1		4240		485	485	485
1		3755		375	375	375
1		3380		53	53	53
1		3327		39	39	39
1		3288		82	82	82
1		3245		Bridge		
1		3206		58	58	58
1		3148		67	67	67
1		3081		316	316	316
1		2765		223	223	223
1		2542		367.73	367.73	367.73
1		12.1		34.5	35.17	20

1	12	881	377.27	3.5
1	11	53	38.3	50
1	10.5	Bridge		
1	10	1	1	1
1	9.5	22	34	34
1	9	145	145.4	145
1	8.5	Bridge		
1	8	10.5	51.5	47.2
1	7	4	219.8	981
1	6	24.2	59.2	84
1	5.5	Bridge		
1	5	737	524.8	376
1	4	44	48.22	49
1	3.5	Bridge		
1	3	535	490.2	444
1	2	445	444.93	425
1	1	390	391	391
1	0.5	0	0	0

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Flag Creek

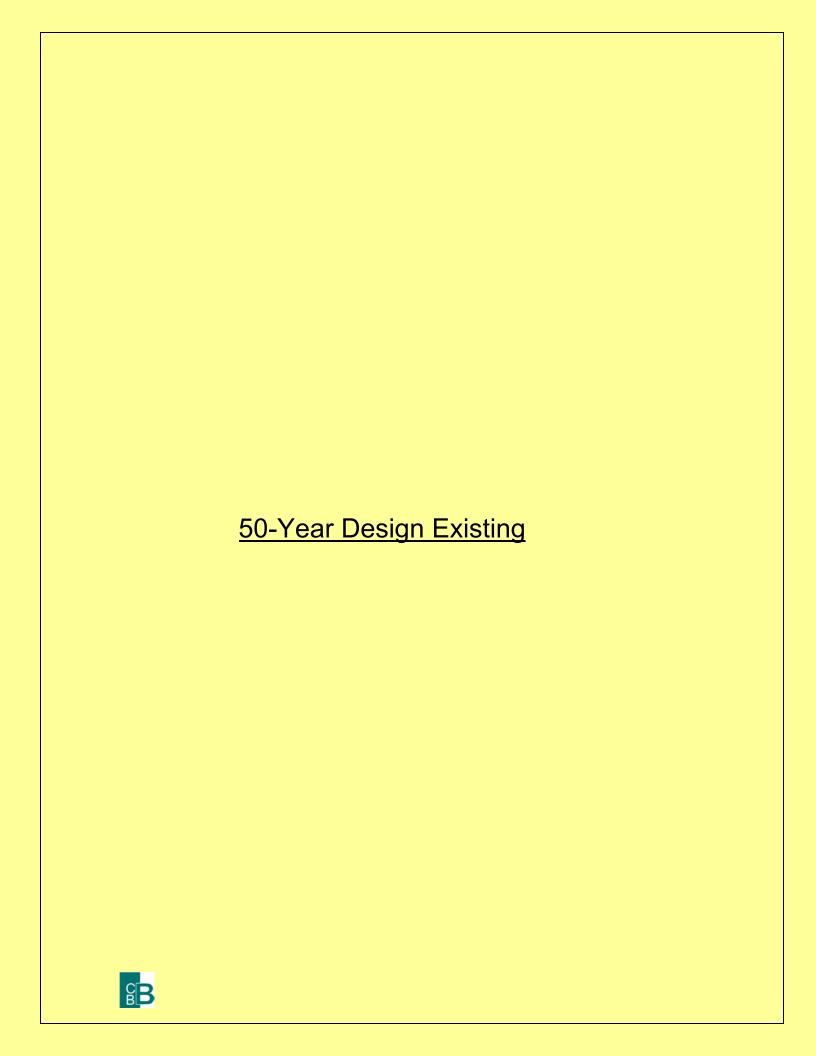
Reach	River	Sta. C	Contr.	Expan.
1	4240		.1	.3
1	3755		.1	.3
1	3380		.1	.3
1	3327		.3	.5
1	3288		.3	.5
1	3245	Bridge		
1	3206	- 3 -	.3	.5
1	3148		.1	.3
1	3081		.1	.3
1	2765		.1	.3
1	2542		.1	.3
1	12.1		.1	.3
1	12		.3	.5
1	11		.3	.5
1	10.5	Bridge		
1	10		.3	.5
1	9.5		.3	.5
1	9		.3	.5
1	8.5	Bridge	:	
1	8		.3	.5
1	7		.3	.5
1	6		.3	.5
1	5.5	Bridge	:	
1	5		.3	.5
1	4		.3	.5
1	3.5	Bridge	;	
1	3		.3	.5
1	2		.1	.3
1	1		.1	.3
1	0.5		.1	.3



HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q10

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q10	1260.00	623.49	633.13	626.87	633.20	0.000208	2.13	590.35	87.05	0.14
1	3755	Q10	1260.00	622.11	633.02	626.48	633.10	0.000229	2.27	554.74	82.33	0.15
1	3380	Q10	1260.00	622.32	632.95		633.00	0.000236	1.92	657.14	87.61	0.12
1	3327	Q10	1260.00	622.04	632.91	626.31	632.99	0.000408	2.15	586.14	120.82	0.14
1	3288	Q10	1260.00	621.30	632.91	626.18	632.97	0.000169	1.97	638.37	86.69	0.13
1	3245		Bridge									
1	3206	Q10	1260.00	623.00	632.87	626.94	632.94	0.000224	2.16	582.41	86.50	0.15
1	3148	Q10	1260.00	622.99	632.85	626.37	632.93	0.000196	2.15	585.19	79.88	0.14
1	3081	Q10	1260.00	623.26	632.84	626.32	632.91	0.000196	2.11	597.99	85.38	0.14
1	2765	Q10	1260.00	623.30	632.74	626.74	632.83	0.000283	2.51	510.63	146.45	0.17
1	2542	Q10	1260.00	620.99	632.69	625.98	632.78	0.000216	2.29	552.40	81.37	0.15
1	12.1	Q10	1260.00	622.92	632.54		632.64	0.000656	2.63	484.55	88.85	0.18
1	12	Q10	1260.00	621.48	632.53		632.62	0.000499	2.47	549.76	160.71	0.16
1	11	Q10	1260.00	619.25	632.41	624.48	632.45	0.000293	1.63	806.63	530.70	0.10
1	10.5		Bridge									
1	10	Q10	1260.00	621.06	632.23	624.79	632.26	0.000274	1.54	848.29	138.37	0.10
1	9.5	Q10	1310.00	621.02	632.21	625.08	632.26	0.000415	1.85	739.00	162.87	0.12
1	9	Q10	1310.00	621.75	632.19	625.82	632.24	0.000404	1.81	749.67	165.69	0.11
1	8.5		Bridge									
1	8	Q10	1310.00	623.25	631.53		631.57	0.000438	1.66	793.53	149.90	0.12
1	7	Q10	1310.00	622.80	631.46	626.00	631.54	0.000735	2.20	588.08	138.77	0.15
1	6	Q10	1310.00	621.94	631.27	626.05	631.36	0.000854	2.40	558.88	102.34	0.16
1	5.5		Bridge									
1	5	Q10	1310.00	622.59	630.97	625.96	631.09	0.001043	2.85	506.61	92.62	0.18
1	4	Q10	1310.00	622.50	630.41	625.60	630.53	0.001078	2.84	468.66	92.71	0.19
1	3.5		Bridge									
1	3	Q10	1310.00	622.61	630.05	625.82	630.20	0.001467	3.17	416.73	100.35	0.22
1	2	Q10	1310.00	620.85	629.58		629.65	0.000762	2.46	691.30	301.04	0.16
1	1	Q10	1310.00	622.89	629.06		629.16	0.001771	3.11	711.69	329.67	0.23
1	0.5	Q10	1310.00	621.72	628.52	627.52	628.55	0.001274	2.47	1227.21	731.48	0.19

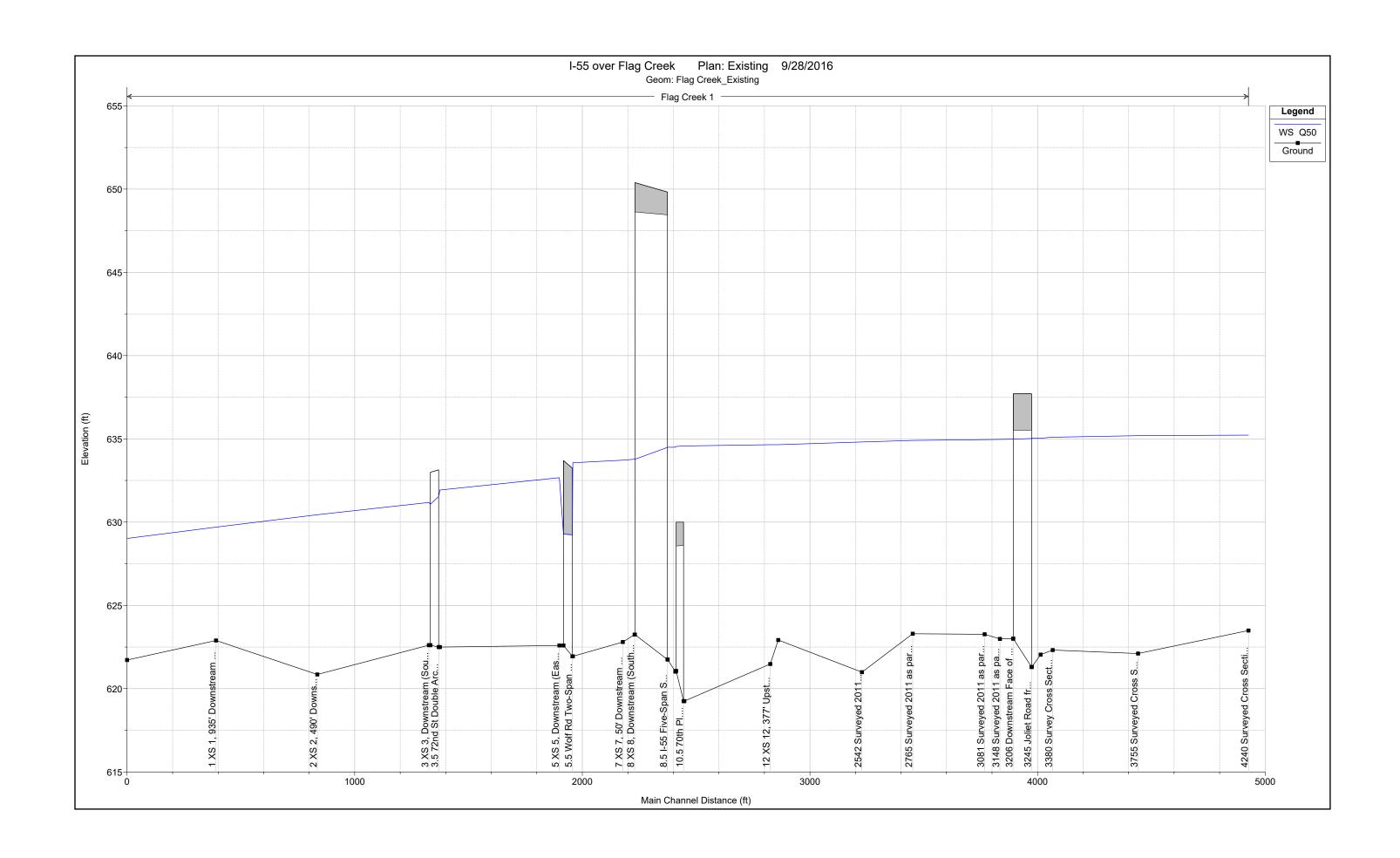
HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q10


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q10	633.20	633.13	0.07	0.11	0.00		1260.00		87.05
1	3755	Q10	633.10	633.02	0.08	0.09	0.01		1260.00	0.00	82.33
1	3380	Q10	633.00	632.95	0.06	0.02	0.00		1260.00		87.61
1	3327	Q10	632.99	632.91	0.07	0.01	0.01		1260.00		120.82
1	3288	Q10	632.97	632.91	0.06	0.00	0.00		1260.00		86.69
1	3245		Bridge								
1	3206	Q10	632.94	632.87	0.07	0.01	0.00		1260.00		86.50
1	3148	Q10	632.93	632.85	0.07	0.01	0.00		1260.00		79.88
1	3081	Q10	632.91	632.84	0.07	0.07	0.00		1260.00		85.38
1	2765	Q10	632.83	632.74	0.10	0.05	0.00		1259.18	0.82	146.45
1	2542	Q10	632.78	632.69	0.08	0.13	0.00		1258.85	1.15	81.37
1	12.1	Q10	632.64	632.54	0.11	0.02	0.00		1258.29	1.71	88.85
1	12	Q10	632.62	632.53	0.09	0.14	0.03	0.32	1235.41	24.27	160.71
1	11	Q10	632.45	632.41	0.04			7.83	1239.03	13.15	530.70
1	10.5		Bridge								
1	10	Q10	632.26	632.23	0.04	0.00	0.00	18.16	1238.66	3.18	138.37
1	9.5	Q10	632.26	632.21	0.05	0.01	0.00	11.42	1298.51	0.07	162.87
1	9	Q10	632.24	632.19	0.05			64.46	1240.29	5.25	165.69
1	8.5		Bridge								
1	8	Q10	631.57	631.53	0.04	0.03	0.01	8.92	1300.25	0.83	149.90
1	7	Q10	631.54	631.46	0.08	0.17	0.00	95.78	1196.14	18.09	138.77
1	6	Q10	631.36	631.27	0.09			7.38	1287.61	15.01	102.34
1	5.5		Bridge								
1	5	Q10	631.09	630.97	0.12	0.56	0.00	31.51	1239.35	39.14	92.62
1	4	Q10	630.53	630.41	0.12	0.01	0.04		1292.25	17.75	92.71
1	3.5		Bridge								
1	3	Q10	630.20	630.05	0.15	0.51	0.04		1293.02	16.98	100.35
1	2	Q10	629.65	629.58	0.07	0.49	0.00	422.70	874.44	12.85	301.04
1	1	Q10	629.16	629.06	0.10	0.58	0.02	157.59	718.46	433.94	329.67
1	0.5	Q10	628.55	628.52	0.03			182.09	346.89	781.02	731.48

Errors Warning	s and Notes for Plan : EX
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3380 Profile: Q10
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Flag Creek Reach: 1 RS: 3327 Profile: Q10
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
N	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
Training.	selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3148 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q10
Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q10
Warning:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q10 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
vvairiing.	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
Location:	bridge modeling method does not compute answers inside the bridge.
Note:	bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream
	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The
Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge.
Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10
Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section.
Note: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10
Note: Location: Warning: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section.
Note: Location: Warning: Note: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10
Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Warning: Location: Warning: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Note: Location: Warning: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Location: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Rea
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5 Profile: Q10 Multiple critical depths were found at this lo
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5 Profile: Q10 Yameli answer is not valid if the water surface is ab
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Note: Note: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The yarnell answer has been disrega
Note: Location: Warning: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Multiple critical depths were found at this location.
Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Note: Note: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8. Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The yarnell answer has been disrega

Errors Warnings and Notes for Plan : EX (Continued)

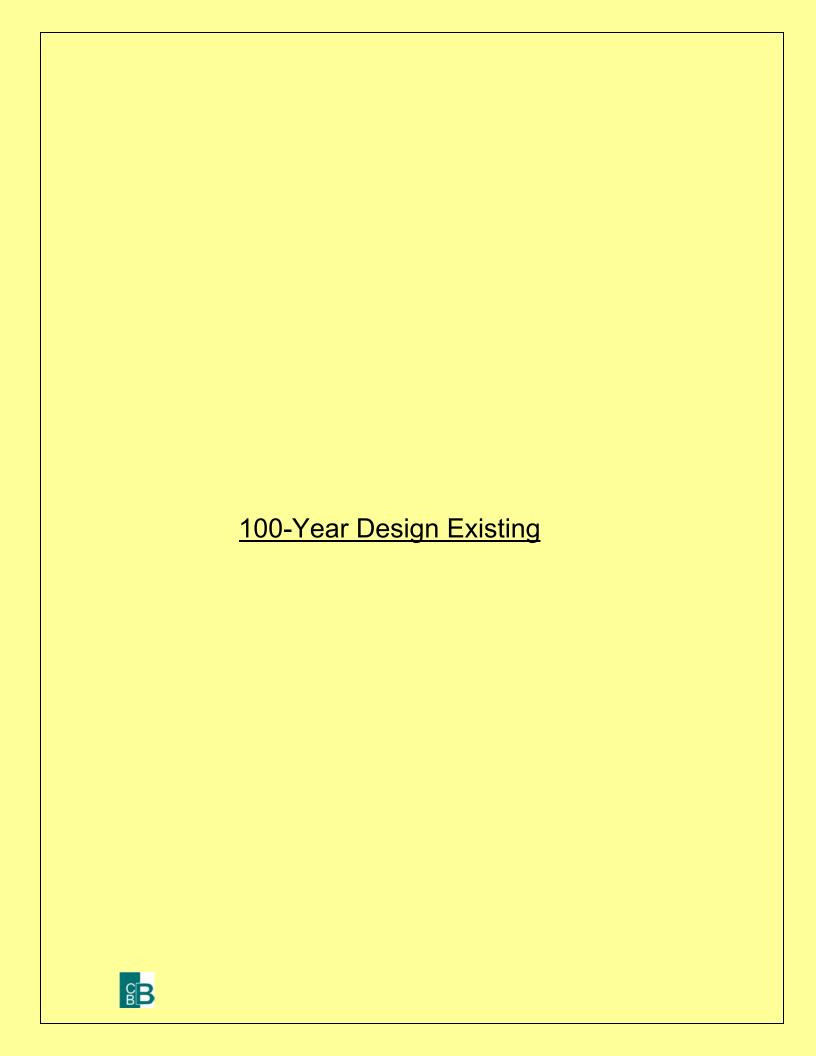
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q10
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 2 Profile: Q10
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.



HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q50

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q50	2000.00	623.49	635.22	627.81	635.32	0.000211	2.53	902.01	270.98	0.15
1	3755	Q50	2000.00	622.11	635.19	627.54	635.23	0.000111	1.87	1494.91	508.54	0.11
1	3380	Q50	2000.00	622.32	635.10		635.17	0.000253	2.17	1027.17	280.00	0.13
1	3327	Q50	2000.00	622.04	635.04	627.33	635.15	0.000523	2.61	766.50	287.33	0.16
1	3288	Q50	2000.00	621.30	635.03	627.09	635.13	0.000194	2.43	822.56	86.69	0.14
1	3245		Bridge									
1	3206	Q50	2000.00	623.00	634.98	627.85	635.09	0.000240	2.61	765.50	86.50	0.15
1	3148	Q50	2000.00	622.99	634.97	627.27	635.07	0.000236	2.63	761.34	90.77	0.16
1	3081	Q50	2000.00	623.26	634.96	627.24	635.06	0.000242	2.53	791.91	100.80	0.16
1	2765	Q50	2000.00	623.30	634.90	627.74	634.98	0.000183	2.40	995.27	278.00	0.14
1	2542	Q50	2000.00	620.99	634.81	626.97	634.93	0.000261	2.76	749.77	101.48	0.16
1	12.1	Q50	2000.00	622.92	634.65		634.79	0.000614	3.03	825.96	312.48	0.18
1	12	Q50	2000.00	621.48	634.65		634.76	0.000462	2.80	948.27	425.12	0.16
1	11	Q50	2000.00	619.25	634.57	625.57	634.61	0.000188	1.53	1506.59	778.56	0.08
1	10.5		Bridge									
1	10	Q50	2000.00	621.06	634.54	625.64	634.57	0.000179	1.47	1445.32	423.64	0.08
1	9.5	Q50	2100.00	621.02	634.50	626.01	634.56	0.000381	2.10	1334.19	429.17	0.12
1	9	Q50	2100.00	621.75	634.50	626.66	634.54	0.000264	1.74	1218.19	221.32	0.10
1	8.5		Bridge									
1	8	Q50	2100.00	623.25	633.78		633.82	0.000331	1.77	1208.50	216.06	0.11
1	7	Q50	2100.00	622.80	633.72	627.00	633.80	0.000334	1.80	1008.72	265.16	0.11
1	6	Q50	2100.00	621.94	633.56	627.28	633.68	0.000791	2.82	823.19	447.04	0.17
1	5.5		Bridge									<u> </u>
1	5	Q50	2100.00	622.59	632.67	626.96	632.85	0.001247	3.58	676.02	106.57	0.21
1	4	Q50	2100.00	622.50	631.93	626.52	632.14	0.001438	3.73	572.35	102.58	0.22
1	3.5		Bridge									<u> </u>
1	3	Q50	2100.00	622.61	631.18	626.73	631.47	0.002222	4.34	488.71	188.65	0.27
1	2	Q50	2100.00	620.85	630.45		630.58	0.001255	3.40	853.55	313.39	0.21
1	1	Q50	2100.00	622.89	629.70		629.84	0.002392	3.88	923.94	335.16	0.27
1	0.5	Q50	2100.00	621.72	629.02	627.80	629.06	0.001550	2.88	1602.20	769.39	0.21

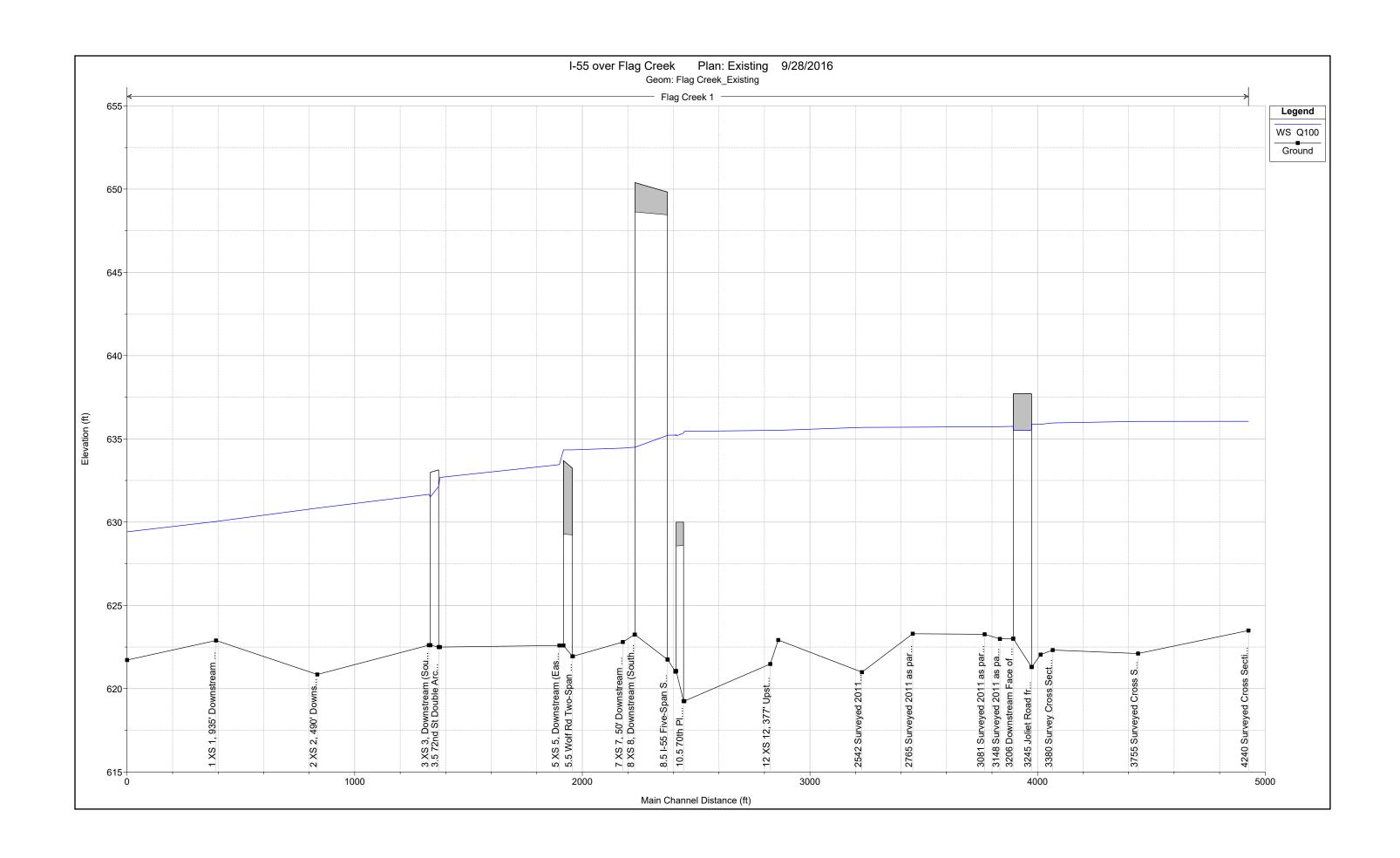
HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q50


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q50	635.32	635.22	0.10	0.07	0.02	0.42	1963.49	36.09	270.98
1	3755	Q50	635.23	635.19	0.04	0.06	0.00	3.41	1365.45	631.14	508.54
1	3380	Q50	635.17	635.10	0.07	0.02	0.00	1.33	1858.71	139.96	280.00
1	3327	Q50	635.15	635.04	0.11	0.01	0.01		2000.00		287.33
1	3288	Q50	635.13	635.03	0.09	0.00	0.00		2000.00		86.69
1	3245		Bridge								
1	3206	Q50	635.09	634.98	0.11	0.01	0.00		2000.00		86.50
1	3148	Q50	635.07	634.97	0.11	0.02	0.00		2000.00		90.77
1	3081	Q50	635.06	634.96	0.10	0.07	0.01		2000.00		100.80
1	2765	Q50	634.98	634.90	0.08	0.05	0.00	283.39	1584.28	132.33	278.00
1	2542	Q50	634.93	634.81	0.12	0.14	0.00		1955.82	44.18	101.48
1	12.1	Q50	634.79	634.65	0.14	0.02	0.01	31.36	1904.26	64.38	312.48
1	12	Q50	634.76	634.65	0.11	0.12	0.04	81.73	1789.02	129.25	425.12
1	11	Q50	634.61	634.57	0.03			426.13	1455.28	118.58	778.56
1	10.5		Bridge								
1	10	Q50	634.57	634.54	0.03	0.00	0.01	334.80	1519.54	145.66	423.64
1	9.5	Q50	634.56	634.50	0.06	0.01	0.01	139.66	1903.41	56.92	429.17
1	9	Q50	634.54	634.50	0.05			506.21	1550.39	43.40	221.32
1	8.5		Bridge								
1	8	Q50	633.82	633.78	0.05	0.01	0.01	191.82	1882.66	25.52	216.06
1	7	Q50	633.80	633.72	0.08	0.10	0.01	661.07	1319.26	119.67	265.16
1	6	Q50	633.68	633.56	0.12			28.08	2031.74	40.18	447.04
1	5.5		Bridge								
1	5	Q50	632.85	632.67	0.18	0.70	0.01	92.89	1910.53	96.59	106.57
1	4	Q50	632.14	631.93	0.21	0.02	0.09		2061.25	38.75	102.58
1	3.5		Bridge								
1	3	Q50	631.47	631.18	0.29	0.81	0.08		2069.05	30.95	188.65
1	2	Q50	630.58	630.45	0.13	0.75	0.00	726.07	1349.72	24.22	313.39
1	1	Q50	629.84	629.70	0.14	0.74	0.03	400.46	993.52	706.02	335.16
1	0.5	Q50	629.06	629.02	0.04			325.42	443.28	1331.30	769.39

Errors Warning	s and Notes for Plan : EX
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3380 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location: Warning:	River: Flag Creek Reach: 1 RS: 3327 Profile: Q50 Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
warriing.	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
	selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50 Downstream
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q50
Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 3148 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 12 Profile: Q50
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
1	additional cross sections.
Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50
Location: Note:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the energy is based on critical depth over the weir. The water surface has been projected.
Location:	River: Flag Creek Reach: 1 RS: 10 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 9.5 Profile: Q50
Warning:	Divided flow computed for this cross-section.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 9 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 8.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 7 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Note:	additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest valid, energy was used.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q50
	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q50

Errors Warnings and Notes for Plan : EX (Continued)

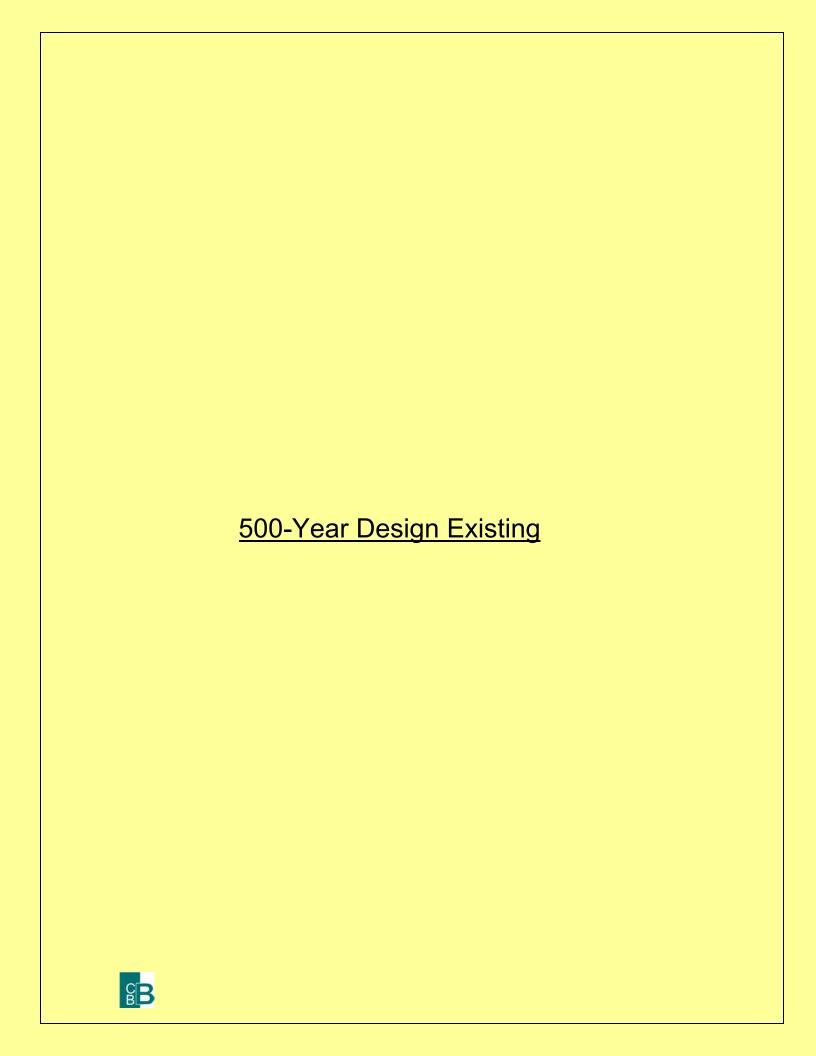
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q50 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.



HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q100

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q100	2400.00	623.49	636.05	628.25	636.17	0.000218	2.73	1044.84	639.77	0.16
1	3755	Q100	2400.00	622.11	636.05	628.03	636.08	0.000084	1.72	1939.68	528.25	0.10
1	3380	Q100	2400.00	622.32	635.96		636.03	0.000239	2.24	1230.47	354.80	0.12
1	3327	Q100	2400.00	622.04	635.88	627.82	636.00	0.000571	2.86	841.94	351.52	0.16
1	3288	Q100	2400.00	621.30	635.87	627.54	635.98	0.000216	2.68	895.03	86.69	0.15
1	3245		Bridge									
1	3206	Q100	2400.00	623.00	635.75	628.25	635.88	0.000268	2.88	831.98	86.50	0.16
1	3148	Q100	2400.00	622.99	635.73	627.70	635.86	0.000266	2.89	831.49	109.12	0.17
1	3081	Q100	2400.00	623.26	635.72	627.69	635.84	0.000277	2.75	872.29	108.38	0.17
1	2765	Q100	2400.00	623.30	635.70	628.22	635.76	0.000145	2.26	1312.50	418.15	0.13
1	2542	Q100	2400.00	620.99	635.69	627.45	635.73	0.000105	1.85	1598.55	315.48	0.11
1	12.1	Q100	2400.00	622.92	635.51		635.65	0.000566	3.10	1109.79	347.32	0.18
1	12	Q100	2400.00	621.48	635.51		635.62	0.000443	2.91	1171.25	459.91	0.16
1	11	Q100	2400.00	619.25	635.45	626.04	635.48	0.000141	1.39	1876.97	884.17	0.07
1	10.5		Bridge									
1	10	Q100	2400.00	621.06	635.27	626.12	635.30	0.000156	1.44	1682.05	503.40	0.08
1	9.5	Q100	2500.00	621.02	635.22	626.41	635.29	0.000380	2.20	1643.13	488.50	0.12
1	9	Q100	2500.00	621.75	635.22	627.04	635.27	0.000246	1.76	1379.71	224.59	0.09
1	8.5		Bridge									
1	8	Q100	2500.00	623.25	634.50		634.55	0.000314	1.82	1365.58	219.09	0.11
1	7	Q100	2500.00	622.80	634.44	627.46	634.53	0.000241	1.61	1213.69	441.28	0.09
1	6	Q100	2500.00	621.94	634.34	627.67	634.44	0.000639	2.68	1576.20	783.16	0.15
1	5.5		Bridge									
1	5	Q100	2500.00	622.59	633.45	627.39	633.66	0.001293	3.85	762.26	113.02	0.22
1	4	Q100	2500.00	622.50	632.69	626.93	632.93	0.001484	4.01	670.47	168.34	0.23
1	3.5		Bridge									
1	3	Q100	2500.00	622.61	631.67	627.12	632.03	0.002573	4.86	519.37	251.96	0.30
1	2	Q100	2500.00	620.85	630.84		631.00	0.001412	3.73	978.60	316.72	0.22
1	1	Q100	2500.00	622.89	630.04		630.18	0.002496	4.10	1037.85	338.30	0.28
1	0.5	Q100	2500.00	621.72	629.42	627.85	629.46	0.001323	2.78	1916.73	803.44	0.20

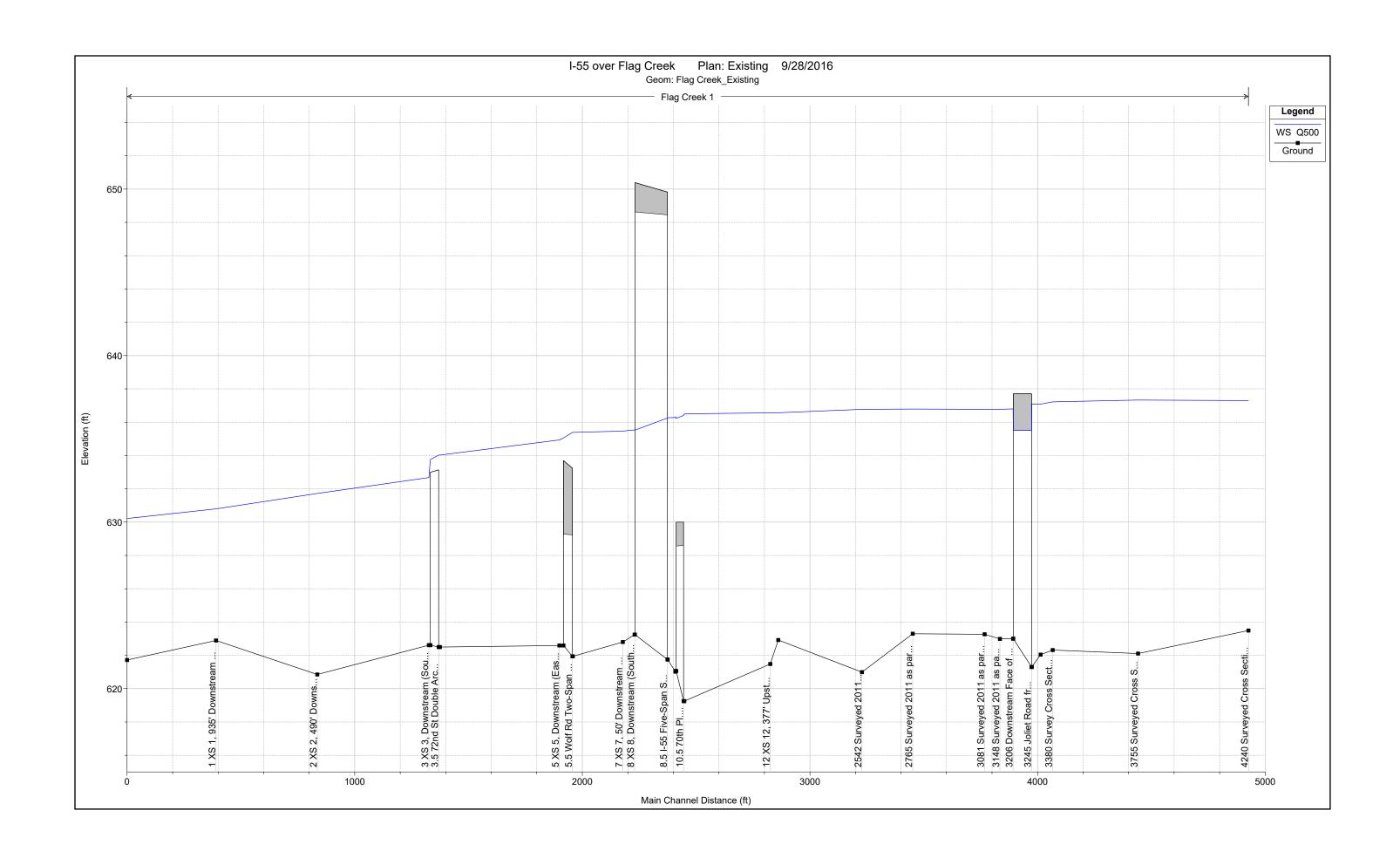
HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q100


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q100	636.17	636.05	0.11	0.06	0.02	1.58	2324.65	73.77	639.77
1	3755	Q100	636.08	636.05	0.03	0.05	0.00	10.28	1377.88	1011.84	528.25
1	3380	Q100	636.03	635.96	0.07	0.02	0.01	7.54	2095.10	297.36	354.80
1	3327	Q100	636.00	635.88	0.13	0.01	0.01	0.40	2399.60		351.52
1	3288	Q100	635.98	635.87	0.11				2400.00		86.69
1	3245		Bridge								
1	3206	Q100	635.88	635.75	0.13	0.02	0.00		2400.00		86.50
1	3148	Q100	635.86	635.73	0.13	0.02	0.00		2400.00		109.12
1	3081	Q100	635.84	635.72	0.12	0.06	0.02		2400.00		108.38
1	2765	Q100	635.76	635.70	0.06	0.03	0.01	583.45	1618.93	197.62	418.15
1	2542	Q100	635.73	635.69	0.04	0.08	0.01	908.24	1443.18	48.58	315.48
1	12.1	Q100	635.65	635.51	0.13	0.02	0.01	140.53	2134.09	125.39	347.32
1	12	Q100	635.62	635.51	0.11	0.10	0.04	196.76	2017.29	185.95	459.91
1	11	Q100	635.48	635.45	0.03	0.00	0.02	703.18	1439.10	257.72	884.17
1	10.5		Bridge								
1	10	Q100	635.30	635.27	0.03	0.00	0.01	552.30	1590.25	257.45	503.40
1	9.5	Q100	635.29	635.22	0.06	0.01	0.01	241.54	2131.93	126.53	488.50
1	9	Q100	635.27	635.22	0.05			752.92	1681.49	65.59	224.59
1	8.5		Bridge								
1	8	Q100	634.55	634.50	0.05	0.01	0.01	355.63	2100.53	43.83	219.09
1	7	Q100	634.53	634.44	0.09	0.09	0.00	987.64	1277.28	235.08	441.28
1	6	Q100	634.44	634.34	0.09			100.15	2097.66	302.19	783.16
1	5.5		Bridge								
1	5	Q100	633.66	633.45	0.21	0.72	0.01	135.17	2231.35	133.48	113.02
1	4	Q100	632.93	632.69	0.24	0.02	0.12		2409.59	90.41	168.34
1	3.5		Bridge								
1	3	Q100	632.03	631.67	0.36	0.93	0.10		2461.59	38.41	251.96
1	2	Q100	631.00	630.84	0.16	0.81	0.00	867.68	1547.99	84.33	316.72
1	1	Q100	630.18	630.04	0.15	0.69	0.03	553.10	1105.05	841.86	338.30
1	0.5	Q100	629.46	629.42	0.04			408.57	456.86	1634.57	803.44

Errors Warnings a	and Notes for Plan: EX
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q100
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q100
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Warning:	River: Flag Creek Reach: 1 RS: 3380 Profile: Q100 The conveyance still (unstrange conveyance divided by downstroom conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
warning.	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Flag Creek Reach: 1 RS: 3327 Profile: Q100
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q100
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q100 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note:	River: Flag Creek Reach: 1 RS: 3148 Profile: Q100 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q100
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 12 Profile: Q100
Warning: Warning:	Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
warning.	additional cross sections.
Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q100
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100
Note:	The weir over a bridge is submerged, the energy answer was used.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Multiple critical donths were found at this location. The critical donth with the lowest valid, water surface was used.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
umig.	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 10 Profile: Q100
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 9 Profile: Q100
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 8.5 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 7 Profile: Q100
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.

Errors Warnings and Notes for Plan : EX (Continued)

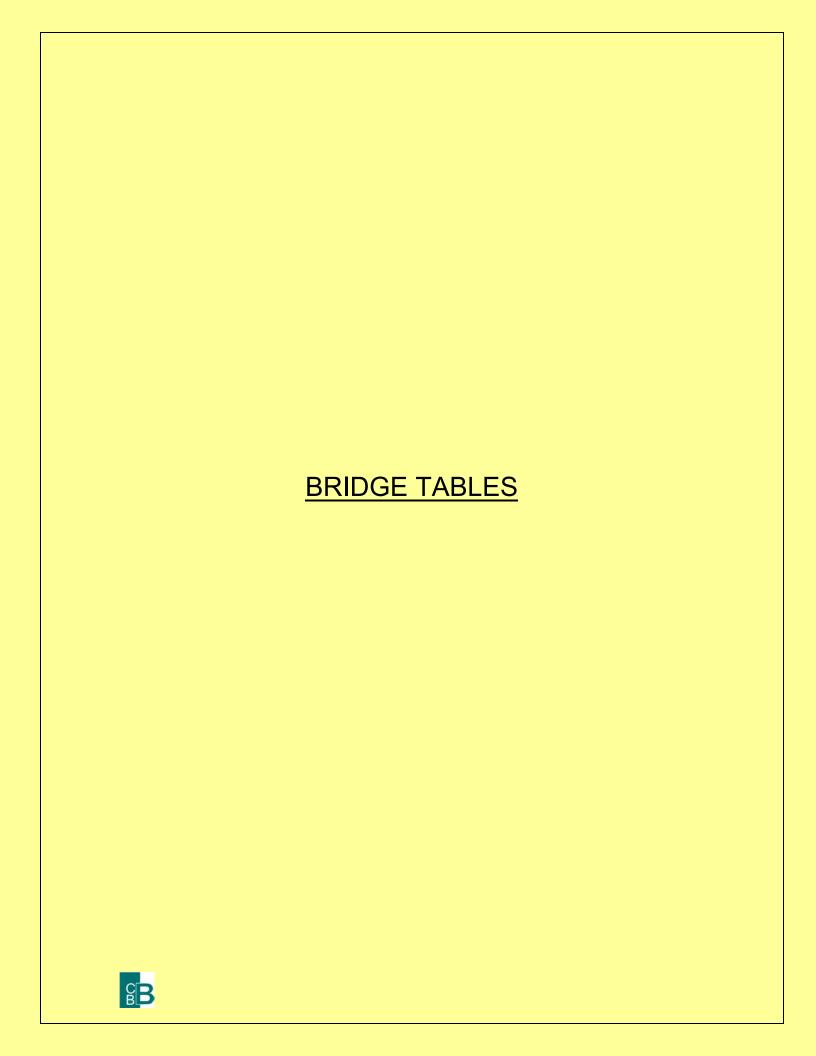
	Guita Notes for Flair : EX (Gorianded)
Location:	River: Flag Creek Reach: 1 RS: 6 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The
	selected bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q100
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	Notes(60): This is an inside cross section of a perched bridge that has energy, low flow inside of the bridge and weir flow over the embankment. The reported
	hydraulics are based on the flow and area inside of the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	Notes(60): This is an inside cross section of a perched bridge that has energy, low flow inside of the bridge and weir flow over the embankment. The reported
	hydraulics are based on the flow and area inside of the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q100
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.



HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q500

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q500	3350.00	623.49	637.30	629.21	637.46	0.000270	3.30	1262.73	793.37	0.18
1	3755	Q500	3350.00	622.11	637.33	629.08	637.36	0.000070	1.71	2649.55	588.33	0.09
1	3380	Q500	3350.00	622.32	637.22		637.31	0.000261	2.54	1589.87	579.79	0.13
1	3327	Q500	3350.00	622.04	637.08	628.89	637.28	0.000746	3.54	953.08	475.54	0.19
1	3288	Q500	3350.00	621.30	637.08	628.47	637.25	0.000295	3.35	999.50	147.52	0.17
1	3245		Bridge									
1	3206	Q500	3350.00	623.00	636.80	629.20	637.00	0.000380	3.63	922.64	91.15	0.20
1	3148	Q500	3350.00	622.99	636.78	628.64	636.98	0.000360	3.61	927.54	339.52	0.20
1	3081	Q500	3350.00	623.26	636.77	628.67	636.95	0.000376	3.37	1003.14	363.73	0.20
1	2765	Q500	3350.00	623.30	636.79	629.27	636.86	0.000110	2.11	1773.48	423.74	0.11
1	2542	Q500	3350.00	620.99	636.77	628.47	636.83	0.000118	2.11	1943.28	323.24	0.11
1	12.1	Q500	3350.00	622.92	636.57		636.73	0.000647	3.55	1507.59	404.91	0.19
1	12	Q500	3350.00	621.48	636.56		636.71	0.000543	3.43	1452.46	502.90	0.18
1	11	Q500	3350.00	619.25	636.51	627.00	636.54	0.000136	1.45	2322.55	998.98	0.07
1	10.5		Bridge									
1	10	Q500	3350.00	621.06	636.33	626.94	636.37	0.000158	1.54	2031.88	602.88	0.08
1	9.5	Q500	3550.00	621.02	636.28	627.42	636.36	0.000452	2.55	2148.56	529.23	0.13
1	9	Q500	3550.00	621.75	636.27	627.93	636.35	0.000285	2.02	1618.00	229.32	0.10
1	8.5		Bridge									
1	8	Q500	3550.00	623.25	635.54		635.62	0.000371	2.12	1595.26	223.45	0.12
1	7	Q500	3550.00	622.80	635.47	628.49	635.59	0.000201	1.58	1512.41	521.14	0.09
1	6	Q500	3550.00	621.94	635.39	628.56	635.47	0.000598	2.77	2428.25	842.26	0.15
1	5.5		Bridge									
1	5	Q500	3550.00	622.59	634.94	628.48	635.18	0.001390	4.38	1365.61	531.26	0.23
1	4	Q500	3550.00	622.50	634.03	627.91	634.35	0.001748	4.76	1039.16	427.38	0.26
1	3.5		Bridge									
1	3	Q500	3550.00	622.61	632.68	628.10	633.06	0.002690	5.36	959.91	342.17	0.31
1	2	Q500	3550.00	620.85	631.72		631.92	0.001719	4.38	1260.17	324.10	0.25
1	1	Q500	3550.00	622.89	630.80		630.97	0.002735	4.61	1299.29	349.52	0.30
1	0.5	Q500	3550.00	621.72	630.22	628.10	630.26	0.001183	2.85	2593.24	904.16	0.19

HEC-RAS Plan: EX River: Flag Creek Reach: 1 Profile: Q500


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q500	637.46	637.30	0.16	0.06	0.04	5.95	3180.18	163.87	793.37
1	3755	Q500	637.36	637.33	0.03	0.05	0.01	27.59	1547.37	1775.04	588.33
1	3380	Q500	637.31	637.22	0.09	0.02	0.01	35.19	2667.58	647.23	579.79
1	3327	Q500	637.28	637.08	0.19	0.02	0.01	3.82	3346.18		475.54
1	3288	Q500	637.25	637.08	0.17				3350.00		147.52
1	3245		Bridge								
1	3206	Q500	637.00	636.80	0.20	0.02	0.00		3350.00		91.15
1	3148	Q500	636.98	636.78	0.20	0.02	0.01		3350.00		339.52
1	3081	Q500	636.95	636.77	0.18	0.06	0.03	18.19	3331.81		363.73
1	2765	Q500	636.86	636.79	0.07	0.03	0.00	1377.90	1682.41	289.69	423.74
1	2542	Q500	636.83	636.77	0.05	0.09	0.01	1432.05	1832.24	85.71	323.24
1	12.1	Q500	636.73	636.57	0.16	0.02	0.00	384.55	2711.20	254.25	404.91
1	12	Q500	636.71	636.56	0.15	0.11	0.06	437.04	2613.61	299.35	502.90
1	11	Q500	636.54	636.51	0.03	0.00	0.02	1192.98	1635.46	521.57	998.98
1	10.5		Bridge								
1	10	Q500	636.37	636.33	0.05	0.00	0.01	1003.82	1858.50	487.68	602.88
1	9.5	Q500	636.36	636.28	0.08	0.01	0.00	538.62	2715.83	295.55	529.23
1	9	Q500	636.35	636.27	0.08			1314.16	2114.75	121.09	229.32
1	8.5		Bridge								
1	8	Q500	635.62	635.54	0.08	0.01	0.01	734.54	2724.37	91.09	223.45
1	7	Q500	635.59	635.47	0.13	0.10	0.02	1657.02	1382.47	510.52	521.14
1	6	Q500	635.47	635.39	0.08			280.42	2408.30	861.28	842.26
1	5.5		Bridge								
1	5	Q500	635.18	634.94	0.25	0.81	0.02	304.25	2918.26	327.49	531.26
1	4	Q500	634.35	634.03	0.32				3267.35	282.65	427.38
1	3.5		Bridge								
1	3	Q500	633.06	632.68	0.39	1.05	0.09		3049.15	500.85	342.17
1	2	Q500	631.92	631.72	0.20	0.94	0.01	1215.87	2005.37	328.77	324.10
1	1	Q500	630.97	630.80	0.18	0.67	0.04	974.24	1380.76	1195.00	349.52
1	0.5	Q500	630.26	630.22	0.04			643.25	526.98	2379.77	904.16

Errors Warnings a	and Notes for Plan : EX
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q500
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
NI-4-	additional cross sections.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 3380 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Training.	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Flag Creek Reach: 1 RS: 3327 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q500
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 3245 Profile: Q500
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
	selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q500 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3148 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
NI-4-	N. 10-11 - 20-11 - 10 5 1 - 4 0 2 1 - 20 Th 20-11 - 0 - 20 - 0 - 1 4 12 1 1
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500
Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500
Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section.
Location: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section.
Location: Note: Location: Warning: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Location: Note: Location: Warning: Warning: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note: Location: Warning: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Uccation: Warning: Warning: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Uarning: Warning: Warning: Warning: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Uccation: Warning: Warning: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Warning: Warning: Warning: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Warning: Location: Warning: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Location: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Warning: Location: Warning: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Warning: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Warning: Location: Warning: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Downstream The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for profile: G500 Downstream conveyance was used.
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream conveyance divided by downstream conveyance) is less than
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Warning: Location: Warning: Location: Note: Location: Note: Note: Location: Note: Location: Note: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. Th
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream conveyance divided by downstream conveyance) is less than
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Warning: Location: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Conveyance ratio
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Warning: Location: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream conveyance) is le
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Warning: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Dystream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Profile: Q500 Dystream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Warning: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Re
Location: Note: Location: Warning: Warning: Note: Location: Warning: Warning: Location: Warning: Location: Warning: Location: Warning: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Deptsream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Deptsream conveyance) is
Location: Note: Location: Warning: Warning: Note: Location: Warning: Location: Warning: Location: Warning: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: QS00 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Moreor Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Moreor Profile: QS00 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QS00 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Fla
Location: Note: Location: Warning: Warning: Warning: Warning: Warning: Warning: Warning: Location: Warning: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: QS00 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Riag Creek Reach: 1 RS: 2542 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: QS00 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for crifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were foun
Location: Note: Location: Warning: Warning: Warning: Warning: Warning: Warning: Warning: Warning: Location: Warning: Location: Note: Location: Note: Location: Warning: Warning: Warning: Note: Location: Warning: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 2155 Profile: Q500 Miduliple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2542 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The ornice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Dystream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Dystream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 The conveyanc
Location: Note: Location: Warning: Warning: Warning: Warning: Warning: Warning: Warning: Location: Warning: Location: Warning: Location: Warning: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 2765 Profile: QS00 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Riag Creek Reach: 1 RS: 2542 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: QS00 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: QS00 The weir over a bridge is submerged, the energy answer was used. Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for crifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QS00 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Multiple critical depths were foun

Errors Warnings and Notes for Plan : EX (Continued)

Errors Warning	s and Notes for Plan : EX (Continued)
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 6 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface is based on critical depth over the weir. The energy has been projected.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q500
Warning:	The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of
	error between computed and assumed values.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is below the minimum elevation for pressure flow. The sluice gate equations were used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy are based on critical depth over the weir.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q500
Warning:	The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 1 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
	

HEC-RAS Plan: EX River: Flag Creek Reach: 1

Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)
1	3245	Q10	632.97	635.52	774.90		1260.00	637.72		0.03
1	3245	Q50	635.13	635.52	774.90		2000.00	637.72		0.04
1	3245	Q100	635.98	635.52	774.90	635.87	2400.00	637.72		0.10
1	3245	Q500	637.25	635.52	774.90	637.08	3350.00	637.72		0.25
1	10.5	Q10	632.45	628.60	392.02		1260.00	632.01	62.38	0.19
1	10.5	Q50	634.61	628.60	392.02		2000.00	632.01	1029.49	0.04
1	10.5	Q100	635.48	628.60	392.02		2400.00	632.01		0.18
1	10.5	Q500	636.54	628.60	392.02		3350.00	632.01		0.17
1	8.5	Q10	632.24	648.45	4238.31		1310.00	650.40		0.67
1	8.5	Q50	634.54	648.45	4238.31		2100.00	650.40		0.72
1	8.5	Q100	635.27	648.45	4238.31		2500.00	650.40		0.72
1	8.5	Q500	636.35	648.45	4238.31		3550.00	650.40		0.73
1	5.5	Q10	631.36	629.24	325.83	631.27	1310.00	633.70		0.27
1	5.5	Q50	633.68	629.24	325.83	633.56	2100.00	633.70		0.82
1	5.5	Q100	634.44	629.24	325.83		2500.00	633.70	421.65	0.77
1	5.5	Q500	635.47	629.24	325.83		3550.00	633.70	2008.84	0.29
1	3.5	Q10	630.53	633.14	381.67		1310.00	632.44		0.33
1	3.5	Q50	632.14	633.14	381.67		2100.00	632.44		0.67
1	3.5	Q100	632.93	633.14	381.67		2500.00	632.44	27.10	0.90
1	3.5	Q500	634.35	633.14	381.67	634.83	3550.00	632.44	771.73	1.29

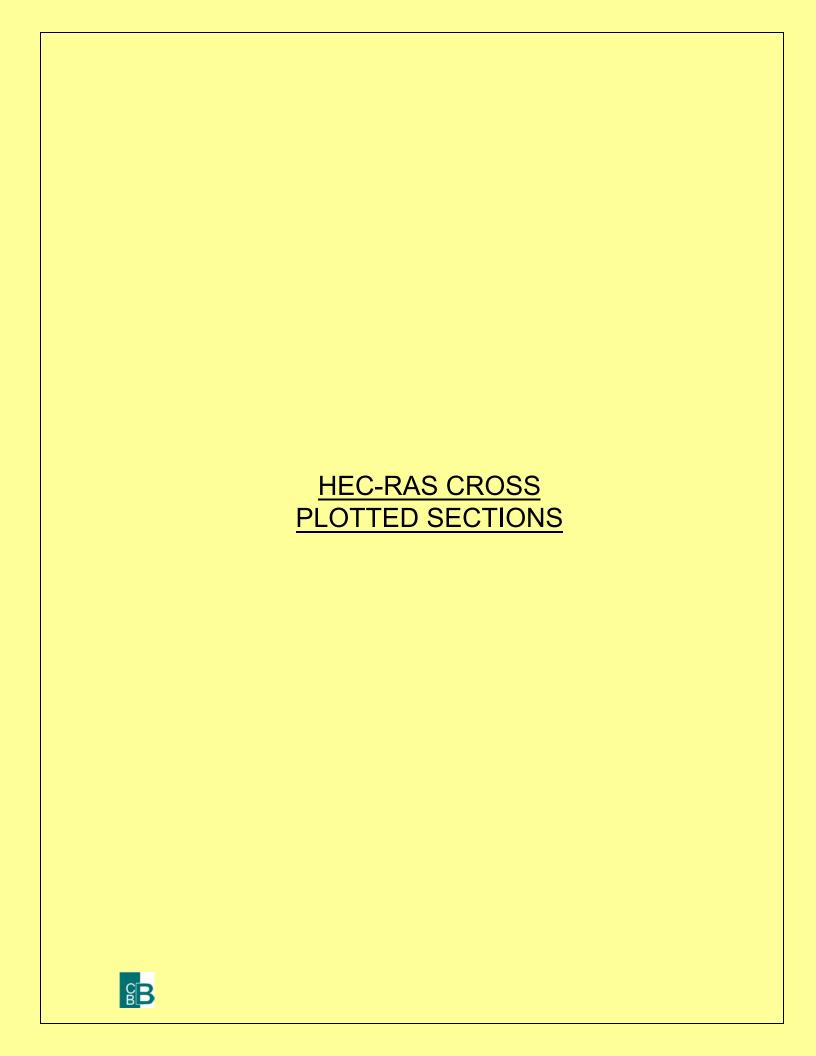
HEC-RAS Plan: EX River: Flag Creek Reach: 1

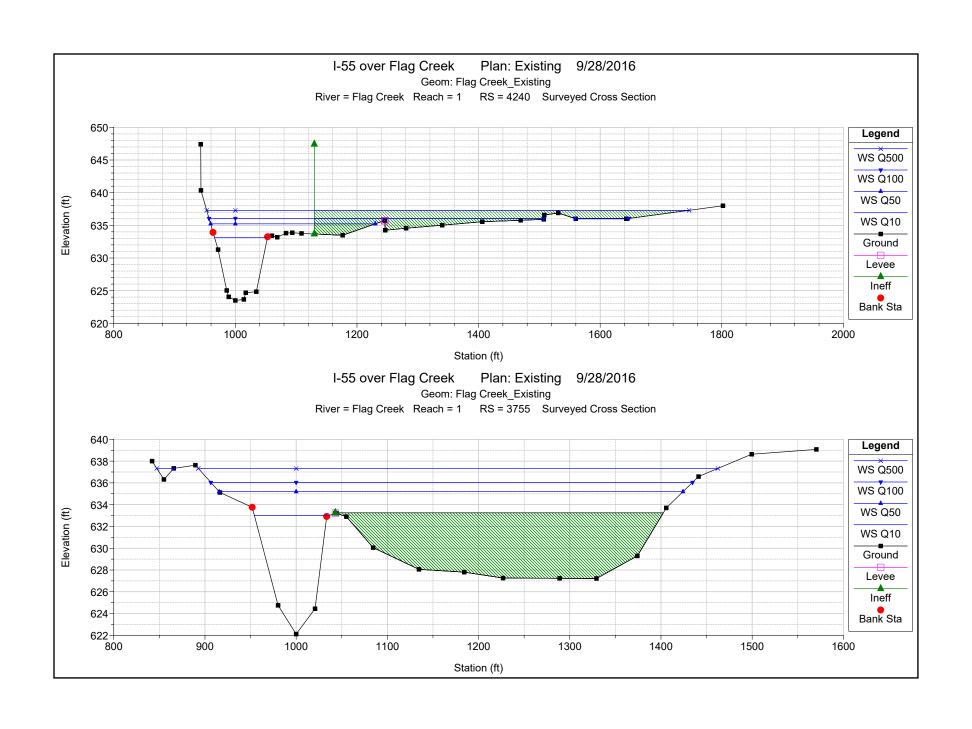
Reach	River Sta	Profile	E.G. US.	W.S. US.	Br Sel Method	Energy EG	Momen. EG	Yarnell EG	WSPRO EG	Prs O EG	Prs/Wr EG	Energy/Wr EG
			(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
1	3245	Q10	632.97	632.91	Energy only	632.97						
1	3245	Q50	635.13	635.03	Energy only	635.13						
1	3245	Q100	635.98	635.87	Press Only	635.96				635.98		
1	3245	Q500	637.25	637.08	Press Only	637.21				637.25		
4	10.5	0.40	200.45	200.44	- n	200 50				200.40	200.45	
1	10.5	Q10	632.45	632.41	Press/Weir	632.52				632.48	632.45	
1	10.5	Q50	634.61	634.57	Press/Weir	634.80				635.17	634.61	
1	10.5	Q100	635.48	635.45	Energy only					636.17	635.32	
1	10.5	Q500	636.54	636.51	Energy only	636.54				638.10	636.40	
1	8.5	Q10	632.24	632.19	Momentum	631.68	632.24	631.60				
<u>.</u> 1	8.5	Q50	634.54	634.50	Momentum	633.91	634.54	633.84				
<u>. </u>	8.5	Q100	635.27	635.22	Momentum	634.63	635.27	634.57				
1	8.5	Q500	636.35	636.27	Momentum	635.72	636.35	635.64				
_												
1	5.5	Q10	631.36	631.27	Press Only	631.67				631.36		
1	5.5	Q50	633.68	633.56	Press Only	634.40				633.68		
1	5.5	Q100	634.44	634.34	Press/Weir	635.26				634.88	634.44	
1	5.5	Q500	635.47	635.39	Press/Weir	636.35				637.82	635.47	
1	3.5	Q10	630.53	630.41	Energy only	630.53						
1	3.5	Q50	632.14	631.93		632.14						
<u>.</u> 1	3.5	Q100	632.93	632.69	Energy/Weir	632.95						632.93
1	3.5	Q500	634.35	634.03	Press/Weir	635.00				635.04	634.35	

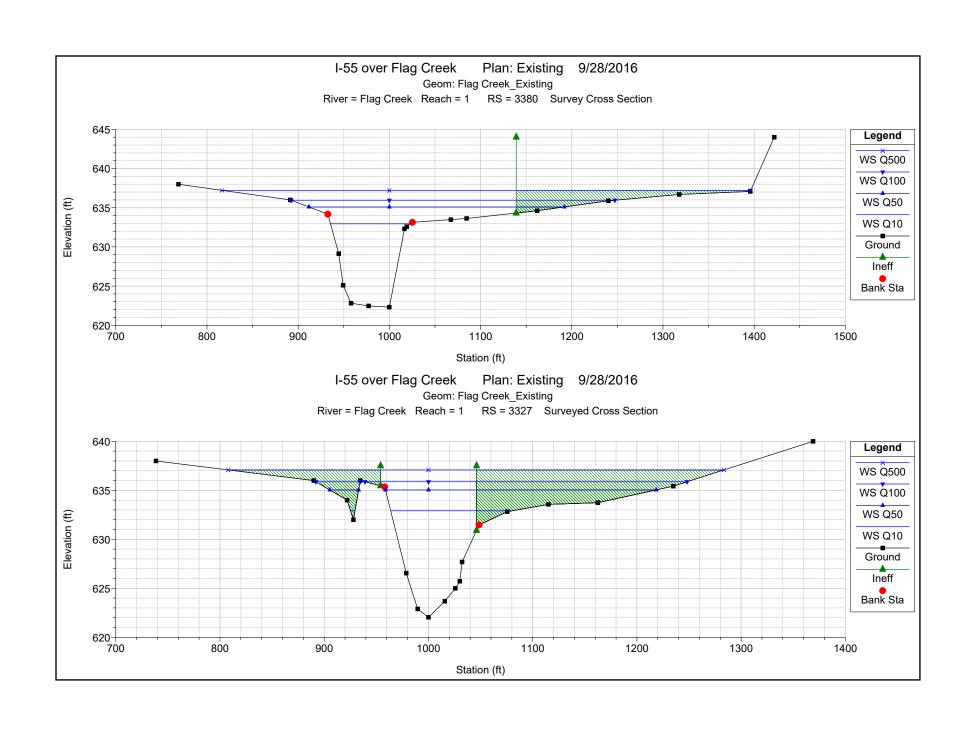
HEC-RAS Plan: EX River: Flag Creek Reach: 1

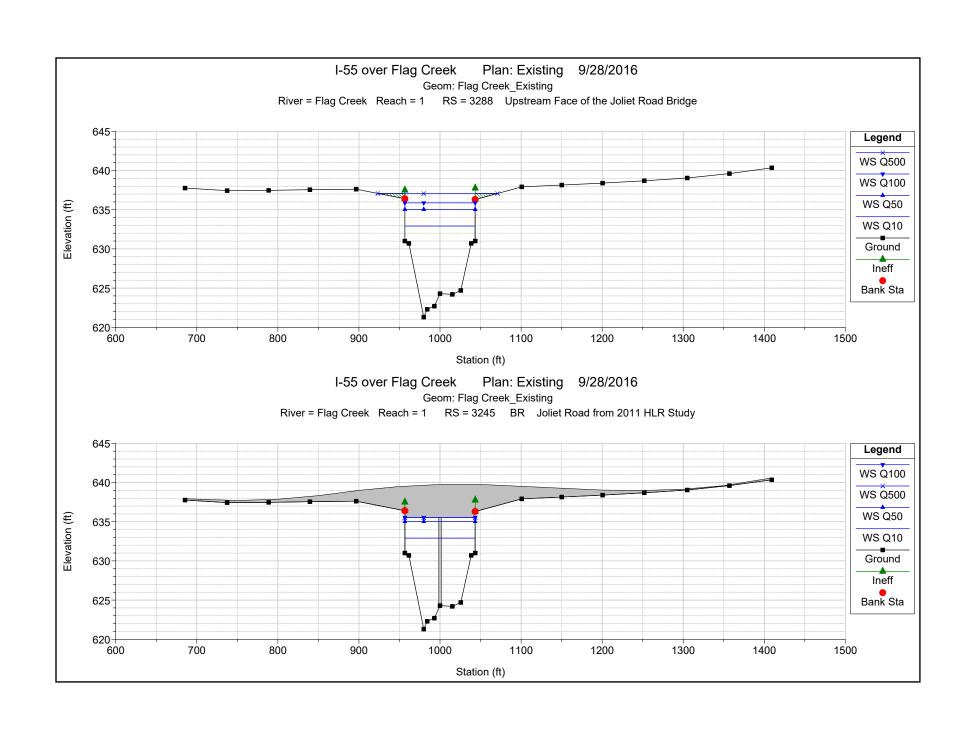
Reach	River Sta	a Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	3327	Q10	632.99	632.91	626.31	0.01	0.01	120.82		1260.00		2.1
1	3327	Q50	635.15	635.04	627.33	0.01	0.01	287.33		2000.00		2.6
1	3327	Q100	636.00	635.88	627.82	0.01	0.01	351.52	0.40	2399.60		2.86
1	3327	Q500	637.28	637.08	628.89	0.02	0.01	475.54	3.82	3346.18		3.54
1	3288	Q10	632.97	632.91	626.18	0.00	0.00	86.69		1260.00		1.97
1	3288	Q50	635.13	635.03	627.09	0.00	0.00	86.69		2000.00		2.43
1	3288	Q100	635.98	635.87	627.54			86.69		2400.00		2.68
1	3288	Q500	637.25	637.08	628.47			147.52		3350.00		3.35
1	3245 BR U	Q10	632.97	632.90	626.24	0.02	0.00	83.69		1260.00		2.06
1	3245 BR U	Q50	635.12	635.02	627.20	0.03	0.01	83.69		2000.00		2.53
1	3245 BR U	Q100	635.98	635.52	627.64			83.69		2400.00		2.89
1	3245 BR U	Q500	637.25	635.52	628.62			83.69		3350.00		4.03
1	3245 BR D	Q10	632.94	632.86	627.11	0.00	0.00	83.50		1260.00		2.28
1	3245 BR D	Q50	635.09	634.98	628.03	0.00	0.01	83.50		2000.00		2.74
1	3245 BR D	Q100	635.88	635.52	628.48			83.50		2400.00		3.10
1	3245 BR D	Q500	637.00	635.52	629.43			83.50		3350.00		4.32
1	3206	Q10	632.94	632.87	626.94	0.01	0.00	86.50		1260.00		2.16
1	3206	Q50	635.09	634.98	627.85	0.01	0.00	86.50		2000.00		2.61
1	3206	Q100	635.88	635.75	628.25	0.02	0.00	86.50		2400.00		2.88
1	3206	Q500	637.00	636.80	629.20	0.02	0.00	91.15		3350.00		3.63
1	3148	Q10	632.93	632.85	626.37	0.01	0.00	79.88		1260.00		2.15
1	3148	Q50	635.07	634.97	627.27	0.02	0.00	90.77		2000.00		2.63
1	3148	Q100	635.86	635.73	627.70	0.02	0.00	109.12		2400.00		2.89
1	3148	Q500	636.98	636.78	628.64	0.02	0.01	339.52		3350.00		3.61
1	12	Q10	632.62	632.53		0.14	0.03	160.71	0.32	1235.41	24.27	2.47
1	12	Q50	634.76	634.65		0.12	0.04	425.12	81.73	1789.02	129.25	2.80
1	12	Q100	635.62	635.51		0.10	0.04	459.91	196.76	2017.29	185.95	2.91
1	12	Q500	636.71	636.56		0.11	0.06	502.90	437.04	2613.61	299.35	3.43
1	11	Q10	632.45	632.41	624.48			530.70	7.83	1239.03	13.15	1.63
1	11	Q50	634.61	634.57	625.57			778.56	426.13	1455.28	118.58	1.53
1	11	Q100	635.48	635.45	626.04	0.00	0.02	884.17	703.18	1439.10	257.72	1.39

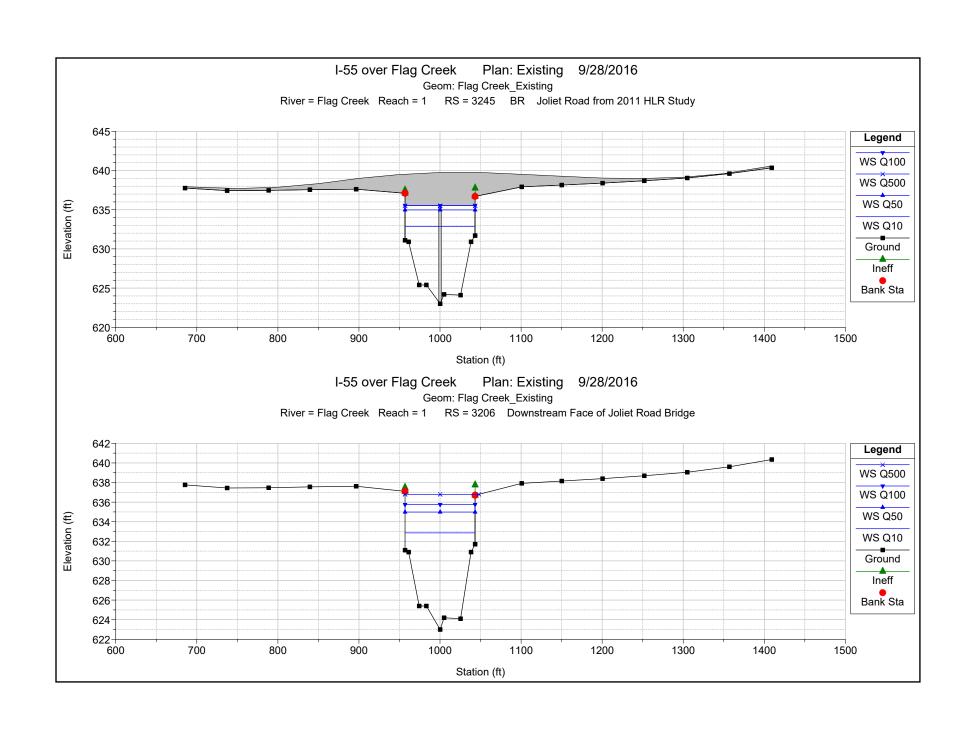
HEC-RAS Plan: EX River: Flag Creek Reach: 1 (Continued)

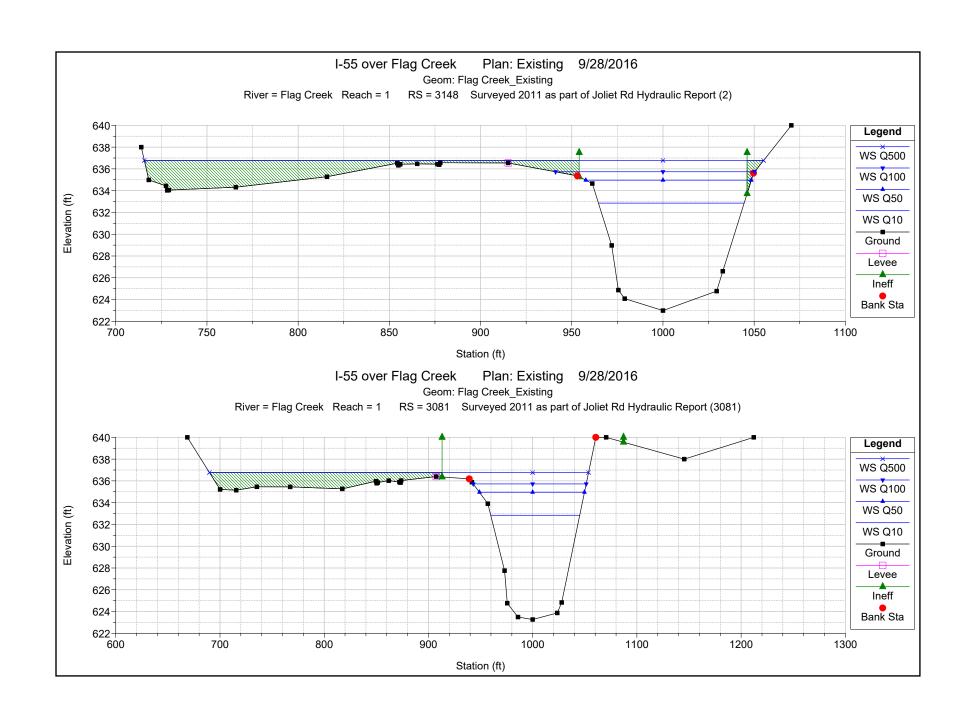

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	11	Q500	636.54	636.51	627.00	0.00	0.02	998.98	1192.98	1635.46	521.57	1.45
1	10.5 BR U	Q10	632.45	632.41	624.48			402.67	62.80	1197.62		3.06
1	10.5 BR U	Q50	634.61	634.57	625.57			737.45	690.39	852.33	95.23	1.74
1	10.5 BR U	Q100	635.45	635.34	626.04	0.04	0.03	819.17	1461.01	707.67	231.32	1.27
1	10.5 BR U	Q500	636.52	636.40	627.00	0.02	0.03	931.14	2062.19	695.78	592.04	1.07
1	10.5 BR D	Q10	632.26	632.23	624.79			23.22	62.80	1197.62		2.83
1	10.5 BR D	Q50	634.59	634.54	625.64			320.72	690.39	852.33	95.23	1.61
1	10.5 BR D	Q100	635.39	635.18	626.11	0.00	0.09	384.28	1328.55	862.85	208.60	1.47
1	10.5 BR D	Q500	636.46	636.24	626.93	0.00	0.09	490.03	1969.94	865.08	514.98	1.25
1	10	Q10	632.26	632.23	624.79	0.00	0.00	138.37	18.16	1238.66	3.18	1.54
1	10	Q50	634.57	634.54	625.64	0.00	0.01	423.64	334.80	1519.54	145.66	1.47
1	10	Q100	635.30	635.27	626.12	0.00	0.01	503.40	552.30	1590.25	257.45	1.44
1	10	Q500	636.37	636.33	626.94	0.00	0.01	602.88	1003.82	1858.50	487.68	1.54
1	9.5	Q10	632.26	632.21	625.08	0.01	0.00	162.87	11.42	1298.51	0.07	1.85
1	9.5	Q50	634.56	634.50	626.01	0.01	0.01	429.17	139.66	1903.41	56.92	2.10
1	9.5	Q100	635.29	635.22	626.41	0.01	0.01	488.50	241.54	2131.93	126.53	2.20
1	9.5	Q500	636.36	636.28	627.42	0.01	0.00	529.23	538.62	2715.83	295.55	2.55
1	9	Q10	632.24	632.19	625.82			165.69	64.46	1240.29	5.25	1.81
1	9	Q50	634.54	634.50	626.66			221.32	506.21	1550.39	43.40	1.74
1	9	Q100	635.27	635.22	627.04			224.59	752.92	1681.49	65.59	1.76
1	9	Q500	636.35	636.27	627.93			229.32	1314.16	2114.75	121.09	2.02
1	8.5 BR U	Q10	632.24	632.18	625.94			154.40	81.35	1228.00	0.65	1.87
1	8.5 BR U	Q50	634.54	634.49	626.81			210.28	577.65	1501.02	21.33	1.76
1	8.5 BR U	Q100	635.27	635.21	627.19			213.53	851.14	1612.62	36.24	1.77
1	8.5 BR U	Q500	636.34	636.25	628.10			218.23	1472.34	2002.79	74.87	2.00
1	8.5 BR D	Q10	631.58	631.53	625.87			138.87	7.11	1301.95	0.94	1.72
1	8.5 BR D	Q50	633.83	633.78	626.68			205.06	184.04	1885.63	30.33	1.84
1	8.5 BR D	Q100	634.56	634.50	627.03			208.08	355.57	2091.92	52.51	1.89
1	8.5 BR D	Q500	635.62	635.53	627.86			212.40	752.48	2687.73	109.80	2.18
1	8	Q10	631.57	631.53		0.03	0.01	149.90	8.92	1300.25	0.83	1.66
1	8	Q50	633.82	633.78		0.01	0.01	216.06	191.82	1882.66	25.52	1.77

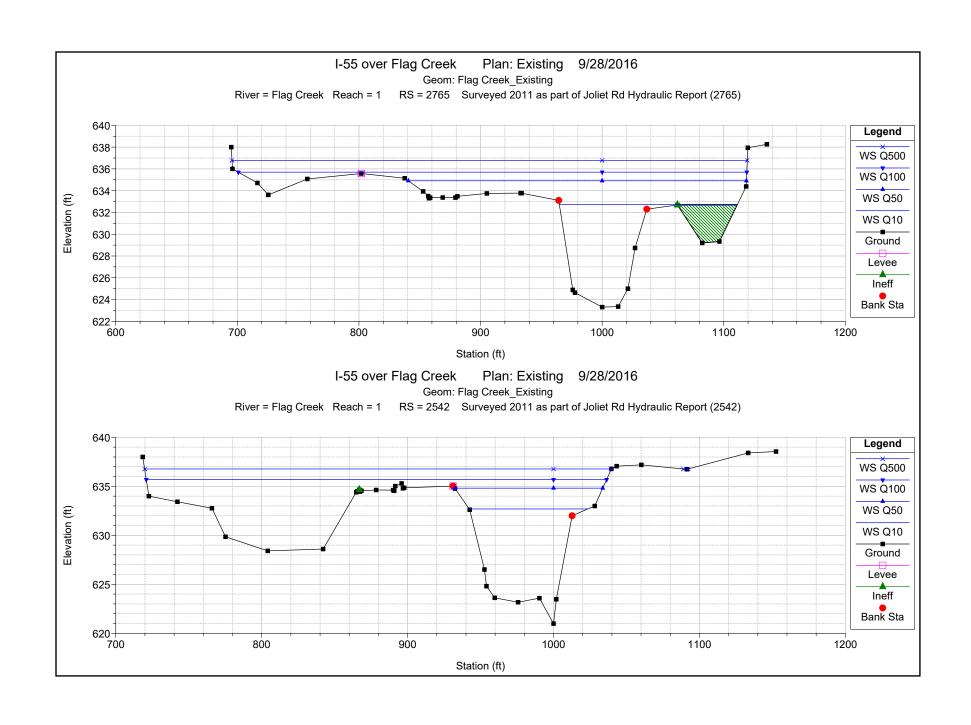

HEC-RAS Plan: EX River: Flag Creek Reach: 1 (Continued)

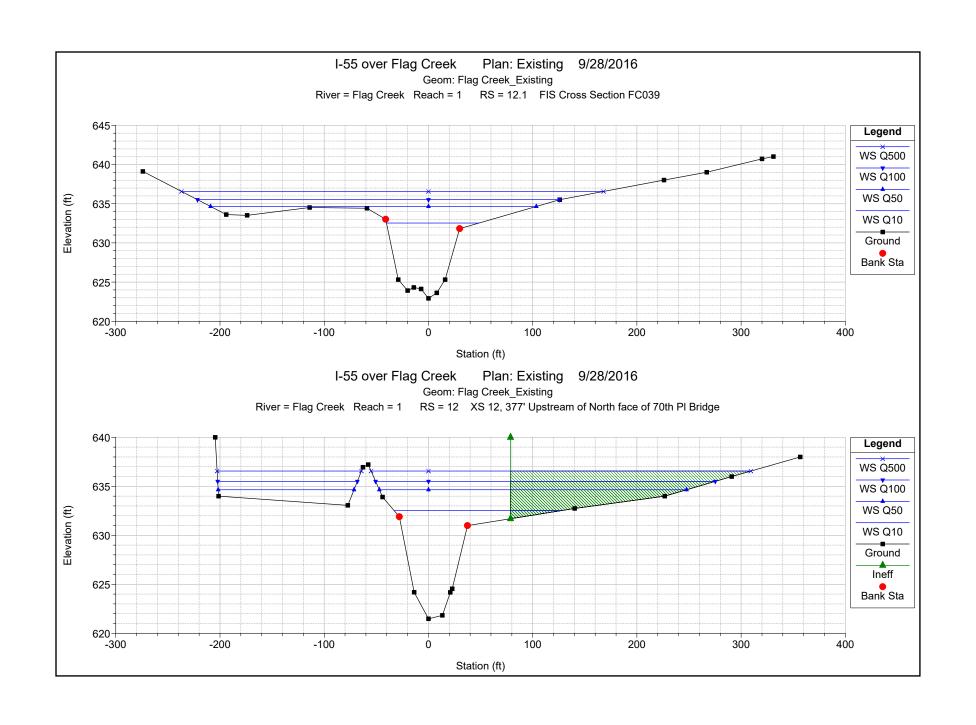

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	8	Q100	634.55	634.50		0.01	0.01	219.09	355.63	2100.53	43.83	1.82
1	8	Q500	635.62	635.54		0.01	0.01	223.45	734.54	2724.37	91.09	2.12
1	7	Q10	631.54	631.46	626.00	0.17	0.00	138.77	95.78	1196.14	18.09	2.20
1	7	Q50	633.80	633.72	627.00	0.10	0.01	265.16	661.07	1319.26	119.67	1.80
1	7	Q100	634.53	634.44	627.46	0.09	0.00	441.28	987.64	1277.28	235.08	1.61
1	7	Q500	635.59	635.47	628.49	0.10	0.02	521.14	1657.02	1382.47	510.52	1.58
1	6	Q10	631.36	631.27	626.05			102.34	7.38	1287.61	15.01	2.40
1	6	Q50	633.68	633.56	627.28			447.04	28.08	2031.74	40.18	2.82
1	6	Q100	634.44	634.34	627.67			783.16	100.15	2097.66	302.19	2.68
1	6	Q500	635.47	635.39	628.56			842.26	280.42	2408.30	861.28	2.77
1	5.5 BR U	Q10	631.36	629.24	626.39				0.29	1306.01	3.69	3.95
1	5.5 BR U	Q50	633.68	629.24	627.59				0.47	2093.61	5.92	6.33
1	5.5 BR U	Q100	634.43	634.34	627.98			325.21	327.16	2147.69	23.97	5.84
1	5.5 BR U	Q500	635.47	635.39	628.87			534.94	1086.06	1987.17	473.70	4.40
1	5.5 BR D	Q10	631.09	629.28	626.17				10.29	1276.31	23.39	4.24
1	5.5 BR D	Q50	632.85	629.28	627.24				16.50	2046.00	37.50	6.80
1	5.5 BR D	Q100	634.43	634.34	627.70			332.71	343.02	2100.57	55.23	6.51
1	5.5 BR D	Q500	635.47	635.05	628.84			437.03	1097.82	1952.23	496.88	5.10
1	5	Q10	631.09	630.97	625.96	0.56	0.00	92.62	31.51	1239.35	39.14	2.85
1	5	Q50	632.85	632.67	626.96	0.70	0.01	106.57	92.89	1910.53	96.59	3.58
1	5	Q100	633.66	633.45	627.39	0.72	0.01	113.02	135.17	2231.35	133.48	3.85
1	5	Q500	635.18	634.94	628.48	0.81	0.02	531.26	304.25	2918.26	327.49	4.38
1	4	Q10	630.53	630.41	625.60	0.01	0.04	92.71		1292.25	17.75	2.84
1	4	Q50	632.14	631.93	626.52	0.02	0.09	102.58		2061.25	38.75	3.73
1	4	Q100	632.93	632.69	626.93	0.02	0.12	168.34		2409.59	90.41	4.01
1	4	Q500	634.35	634.03	627.91			427.38		3267.35	282.65	4.76
1	3.5 BR U	Q10	630.48	630.24	625.67	0.20	0.01	34.13		1310.00		3.98
1	3.5 BR U	Q50	632.04	631.54	626.65	0.38	0.02	28.48		2100.00		5.67
1	3.5 BR U	Q100	632.79	632.15		0.52	0.02	17.54		2472.90		6.43
1	3.5 BR U	Q500	634.35	634.03	628.19	5.52		246.49		2778.27	772.54	7.07
			5550	3330	520.70			2.5.10			2.0 1	
1	3.5 BR D	Q10	630.28	630.00	625.89	0.02	0.06	35.44		1310.00		4.19

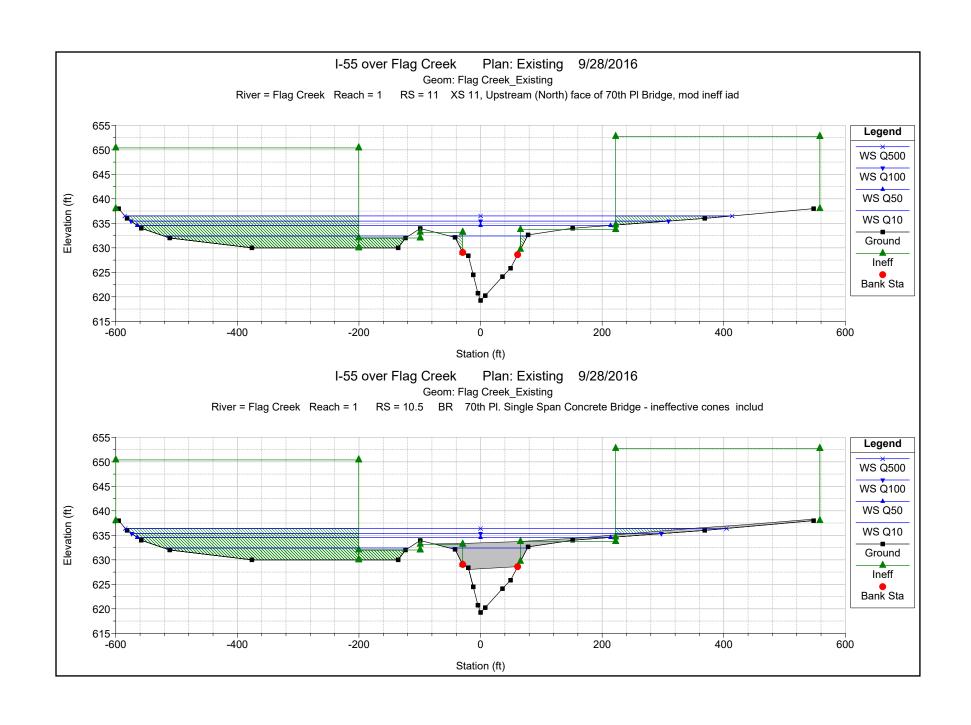

HEC-RAS Plan: EX River: Flag Creek Reach: 1 (Continued)

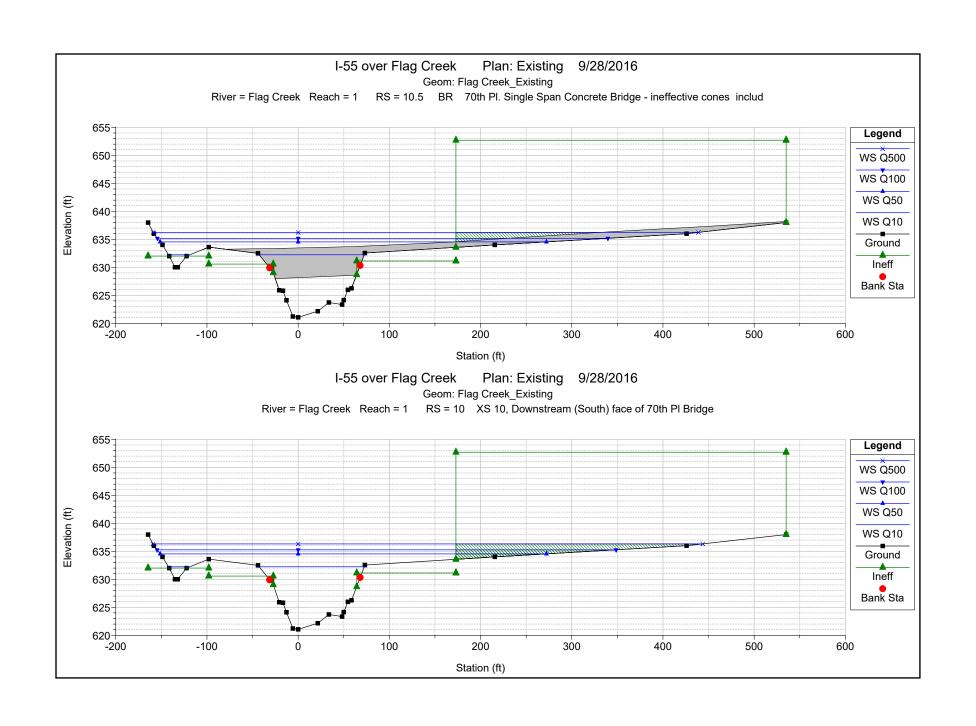

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	3.5 BR D	Q50	631.64	631.07	626.88	0.03	0.14	31.60		2100.00		6.03
1	3.5 BR D	Q100	632.24	631.52	627.33	0.03	0.18	27.53		2472.90		6.84
1	3.5 BR D	Q500	634.11	633.76	628.41			227.63		2778.27	772.54	7.28
1	3	Q10	630.20	630.05	625.82	0.51	0.04	100.35		1293.02	16.98	3.17
1	3	Q50	631.47	631.18	626.73	0.81	0.08	188.65		2069.05	30.95	4.34
1	3	Q100	632.03	631.67	627.12	0.93	0.10	251.96		2461.59	38.41	4.86
1	3	Q500	633.06	632.68	628.10	1.05	0.09	342.17		3049.15	500.85	5.36
1	2	Q10	629.65	629.58		0.49	0.00	301.04	422.70	874.44	12.85	2.46
1	2	Q50	630.58	630.45		0.75	0.00	313.39	726.07	1349.72	24.22	3.40
1	2	Q100	631.00	630.84		0.81	0.00	316.72	867.68	1547.99	84.33	3.73
1	2	Q500	631.92	631.72		0.94	0.01	324.10	1215.87	2005.37	328.77	4.38

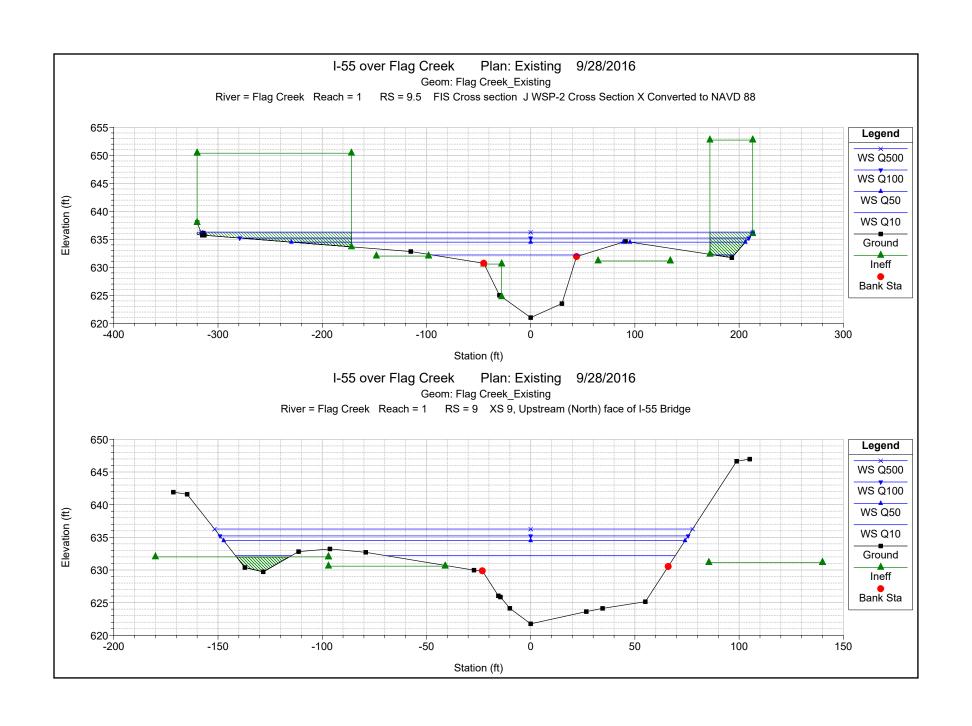


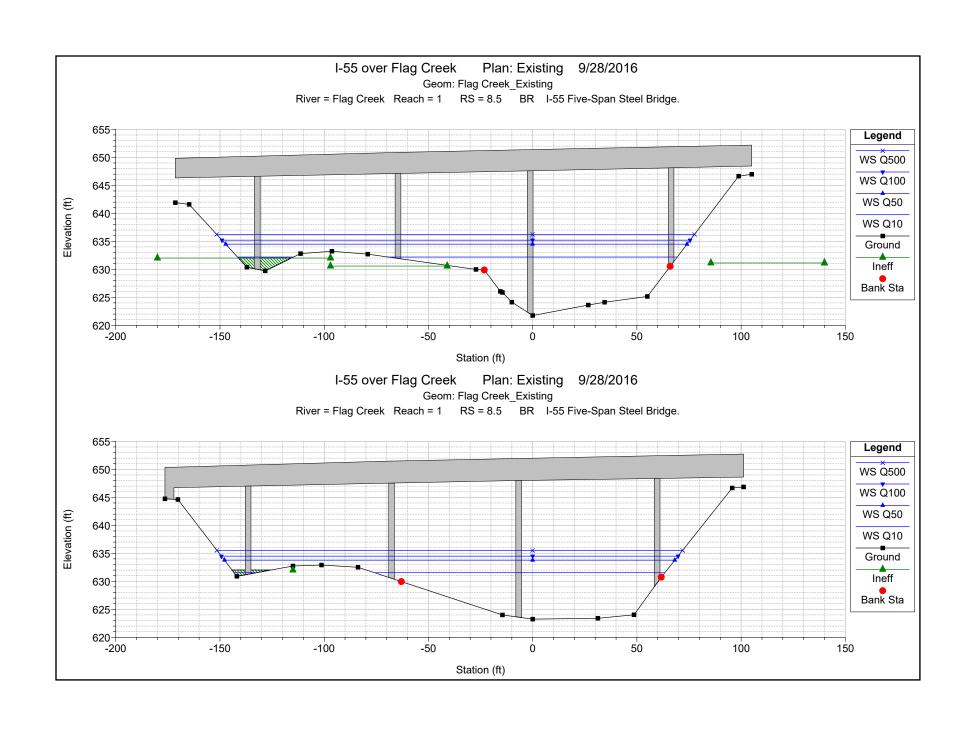


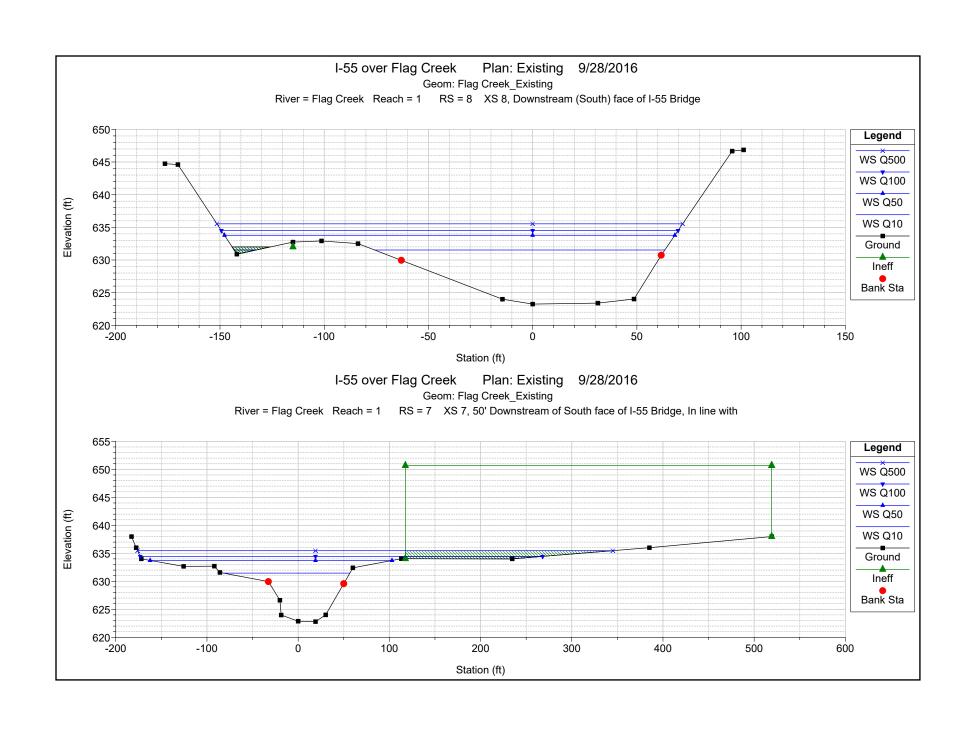


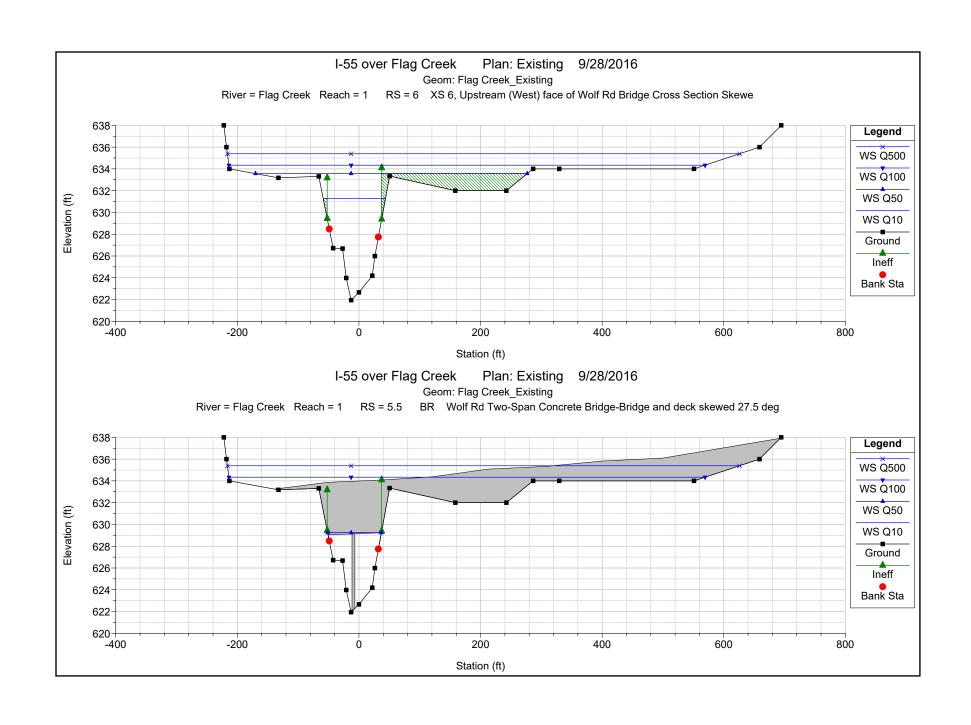


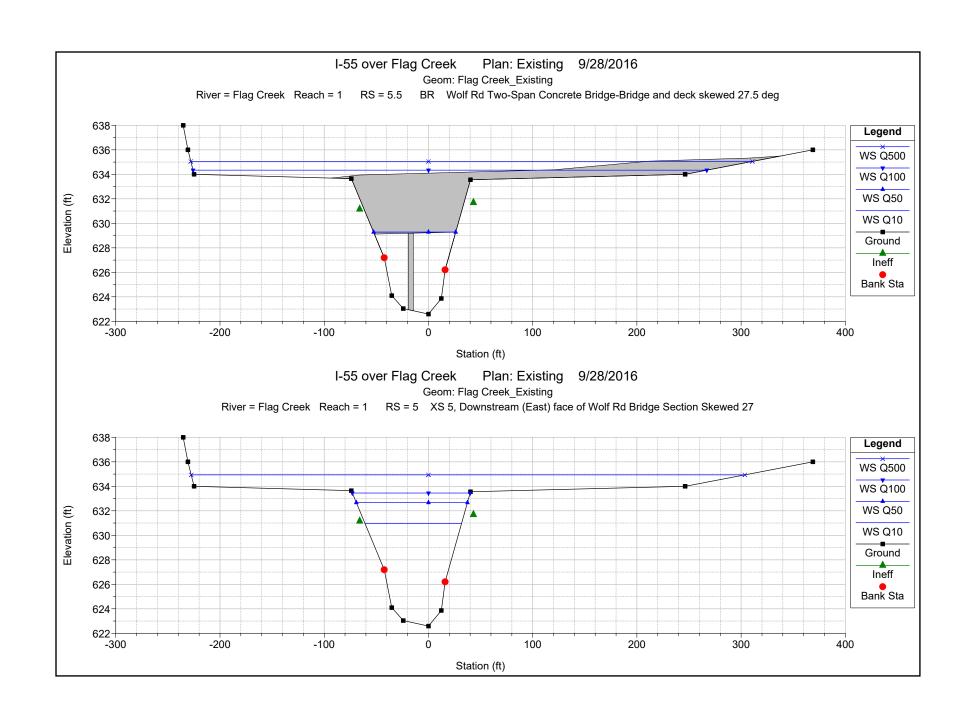


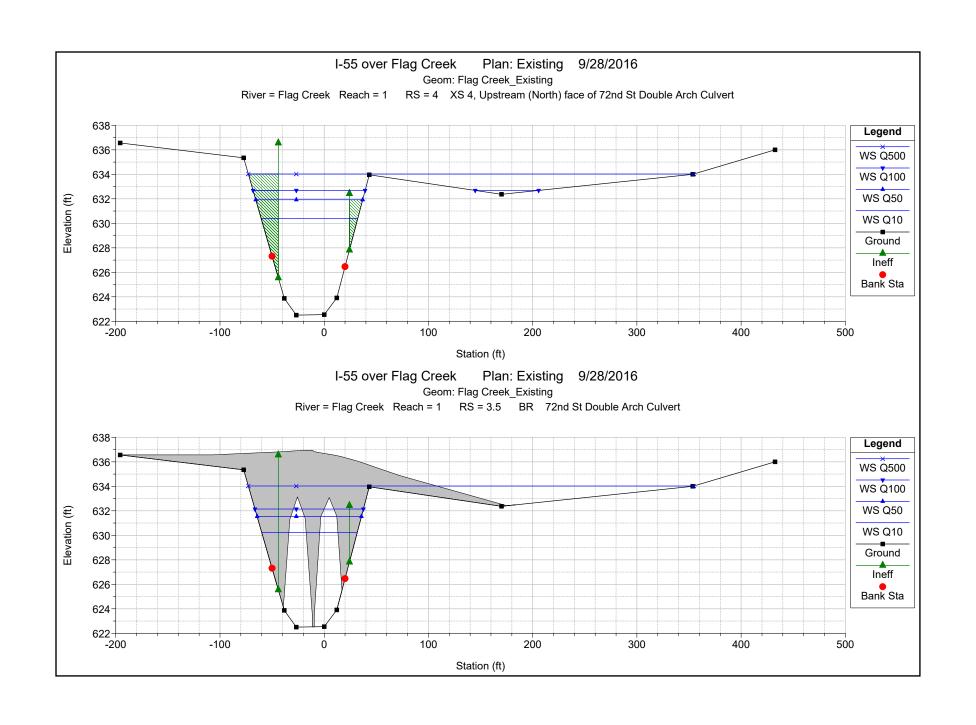


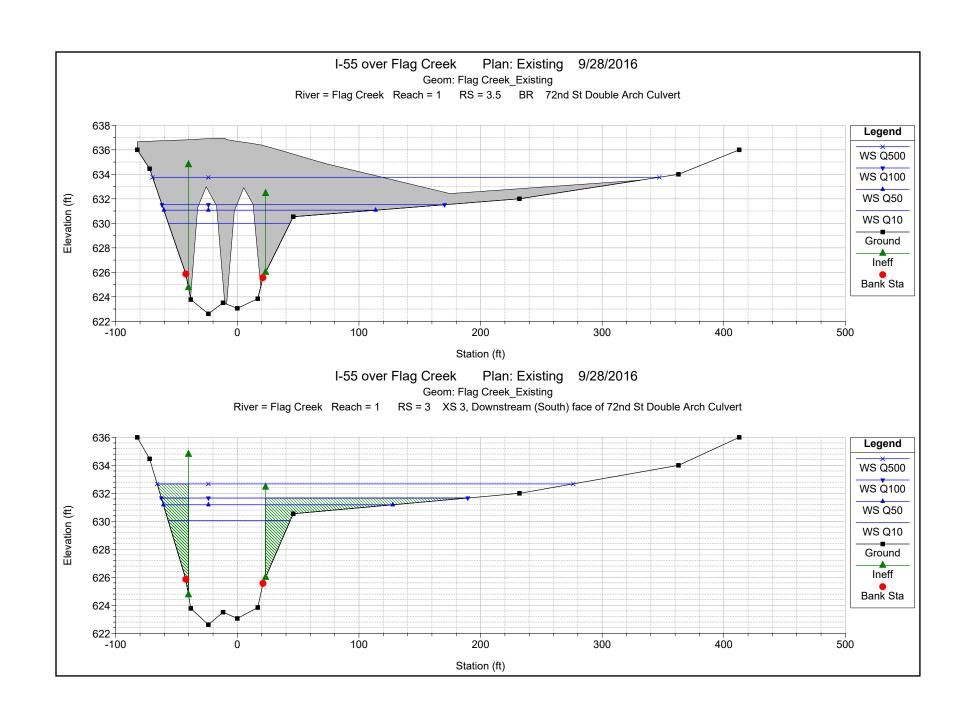


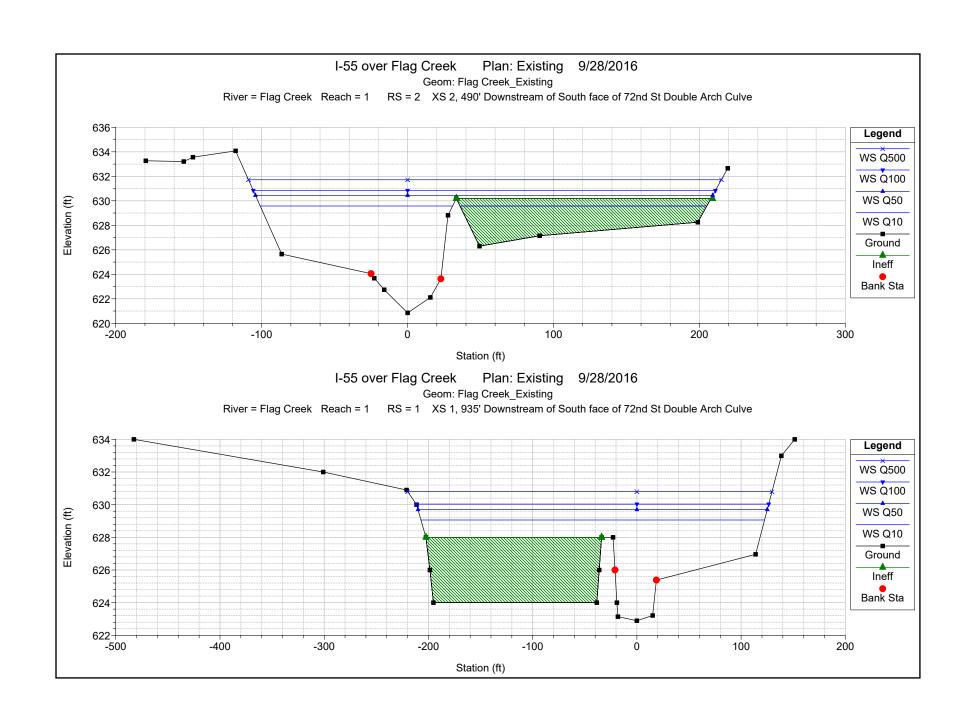


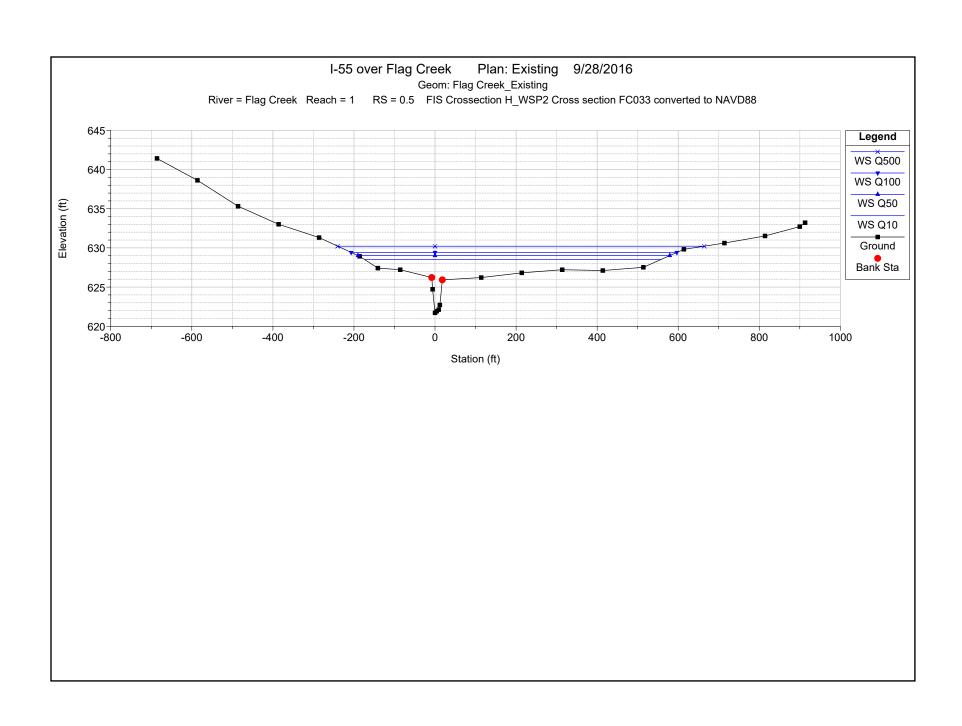


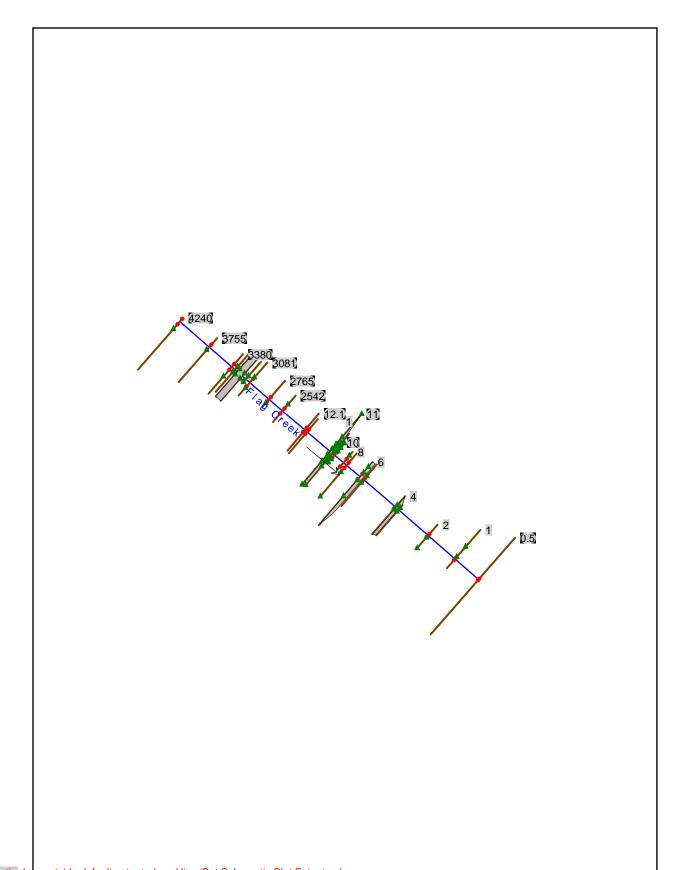












TAB D

	Hydraulic Report – Interstate 55 over Flag Creek
	CECTION 40 D
	SECTION 13.D
	NATURAL CONDITIONS
C B	
BL	

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

Х	Х	XXXXXX	XX	XX		XX	XX	Х	XX	XXXX
X	X	X	X	Х		Χ	X	X	Χ	X
X	X	X	Χ			Χ	X	X	Х	X
XXX	XXXX		X		XXX	XX	XX	XXX	XXX	XXXX
X	X		X			Χ	X	X	Х	X
X	X	X	X	Х		Χ	X	X	Х	X
X	Х	XXXXXX	XX	XX		Х	X	X	Х	XXXXX

PROJECT DATA

Project Title: I-55 over Flag Creek Project File: I-550veFlagCreek.prj Run Date and Time: 9/28/2016 1:25:13 PM

Project in English units

Project Description:

2016 CBBEL Hydraulic Report for I-55 Over Flag Creek. All Models run in NAVD 88. Conversion from NAVD 88 = NGVD 29 - 0.28'.

PLAN DATA

Plan Title: Natural

Plan File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek iad\I-

550veFlagCreek.p03

Geometry Title: Flag Creek_Natural

Geometry File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek

iad\I-550veFlagCreek.g03

Flow Title : Existing_Flow

Flow File : N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek

 $\verb|iad\I-550veFlagCreek.f03||$

Plan Description:

Natural conditions for I-55 over Flag Creek. Cross sections 1-12 based on 2012 CBBEL surveyed cross sections. Cross sections 241-4240 from 2011 HLR Cross sections. Surveyed structures for Wolf Road/72nd Street from 2012 CBBEL Survey. Joliet Road provided from 2011 HLR Report. FIS cross sections whose location could be properly verified were included. Starting water surface elevations and flows provided from WSP-2 regulatory model. All elevations provided in this model are in NAVD 88.

Plan Summary Information:

Number of: Cross Sections = 25 Multiple Openings = 0
Culverts = 0 Inline Structures = 0
Bridges = 4 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001

Computation Options

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

FLOW DATA

Flow Title: Existing_Flow

Flow File: N:\Idot\110203.00001\Drain\Model\HEC-RAS\I-55 over Flag Creek iad\I-

550veFlagCreek.f03

Flow Data (cfs)

River 0500	Reach	RS	Q10	Q50	Q100
Flag Creek 3350	1	4240	1260	2000	2400
Flag Creek 3550	1	9.5	1310	2100	2500

Boundary Conditions

River Downstream	Reach	Profile	Upstream
Flag Creek = 628.52	1	Q10	Known WS
Flag Creek = 629.02	1	Q50	Known WS
Flag Creek = 629.42	1	Q100	Known WS
Flag Creek = 630.22	1	Q500	Known WS

GEOMETRY DATA

Geometry Title: Flag Creek_Natural

 $\label{local_model_hec-RAS} \textbf{Geometry File: N:} Idot \\ 110203.00001 \\ \textbf{Drain} \\ \textbf{Model} \\ \textbf{HEC-RAS} \\ \textbf{I-55 over Flag Creek iad} \\ \textbf{I-100} \\ \textbf{I-1$

550veFlagCreek.g03

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 4240

INPUT

Description: Surveyed Cross Section

Just Downstream of I-294

5	Station	Elevation	n Data	num=	29					
	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
	943.02	647.412	943.48	640.344	963.35	633.911	971.53	631.283	985.77	625.018
	989.08	624.043	1000	623.49	1013.98	623.654	1017.05	624.678	1034.49	624.84
	1053.07	633.246	1060.13	633.409	1069	633.187	1083.3	633.804	1093.69	633.873
	1108.87	633.761	1176.51	633.478	1245.68	635.723	1246.42	634.241	1280.74	634.556
	1340.09	635.013	1406.16	635.549	1469.2	635.767	1507.24	635.917	1508.17	636.574
	1531.03	636.89	1560	636	1643	636	1802	638		

Manning's	n V	/alues	3	nur	n=	4					
Sta	n	Val	Sta	n	Val	Sta	n	Val	Sta	n	Val
943.02		.1	963.35		.035	1053.07		.1	1246.42		.013

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 963.35 1053.07 485 485 485 .1 .3

Ineffective Flow num= 1 Sta L Sta R Elev Permanent 1129.87 1802 F

Right Levee Station= 1245.69 Elevation= 635.72

CROSS SECTION

RIVER: Flag Creek

RS: 3755 REACH: 1

TNPUT

Description: Surveyed Cross Section

1042.98 633.232 1044.37 633.199 1055.07 632.903 1084.42 630.058 1134.63 628.059 1184.29 627.801 1226.86 627.254 1288.87 627.235 1329.26 627.215 1374.09 629.294 1405.91 633.702 1441.25 636.583 1499.51 638.633 1570.41 639.073

num=

Manning's n Values num= 6
Sta n Val Sta n Val Sta n Val Sta n Val Sta n Val
842 .1 951.87 .035 1033.51 .1 1084.42 .025 1441.25 .025
1499.51 .1

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
951.87 1033.51 375 375 375 .1 .3

Ineffective Flow num= 1
Sta L Sta R Elev Permanent
1042.98 1570.41 633.25 T

Right Levee Station= 1042.98 Elevation= 633.232

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3380

TNPUT

Description: Survey Cross Section

North ROW of Joliet Road

Station Elevation Data num=

tation Elevation Data num= 18

Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev

768.8 638 891.4 636 932.57 634.184 944.5 629.132 949.28 625.111

958.01 622.816 977.15 622.471 1000 622.319 1016.57 632.3 1019.06 632.586 1025.27 633.14 1067.43 633.486 1084.68 633.627 1162.07 634.615 1240.18 635.884 1317.76 636.687 1395.69 637.077 1422 644

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
768.8 .1 944.5 .035 1025.27 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 932.57 1025.27 53 53 53

Ineffective Flow num= 1 .1 .3

Sta L Sta R 1139.1 1422 Elev Permanent F

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3327

Description: Surveyed Cross Section

Upstream Face of Joliet Road Station Elevation Data num=

Station Elevation Data num= 19
Sta Elev Sta Elev Sta Elev Sta Elev Sta
738.62 638 890 636 922 634 928 632 934.62 Elev 636

958.05 635.351 978.68 626.551 989.65 622.889 1000 622.043 1015.72 623.677 1025.86 624.995 1030.13 625.714 1032.24 627.688 1048.55 631.47 1075.72 632.828 1115.14 633.565 1162.6 633.736 1234.96 635.425 1368.96 640

 Manning's n Values
 num=
 3

 Sta
 n Val
 Sta
 n Val
 Sta
 n Val

 738.62
 .1 978.68
 .035 1048.55
 .035

 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 958.05 1048.55 39 39 39 .3 .5 Ineffective Flow num= 2 Sta L Sta R Elev Permanent 738.62 954.07 637.5 F 1046.13 1368.96 637.5 F CROSS SECTION RIVER: Flag Creek REACH: 1 RS: 3288 INPUT Description: Upstream Face of the Joliet Road Bridge The chanel section was adjusted for the 7.3 degree skew. 956.66 636.4 956.66 631 961.61 630.7 979.96 621.3 984.13 622.3 993.06 622.7 1000 624.3 1015.28 624.2 1025.59 624.7 1038.49 630.7 1043.35 631 1043.35 636.3 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35 Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
685.5 .035 956.66 .035 1043.35 .035 Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 956.66 1043.35 82 82 82 .3 .5 Bank Sta: Left 956.66 1043.35

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
685.5 956.66 637.5 F
1043.35 1409.21 637.75 F
Skew Angle = 7 3 82 82 Skew Angle = 7.3BRIDGE RIVER: Flag Creek REACH: 1 RS: 3245 Description: Joliet Road from 2011 HLR Study Distance from Upstream XS = 1 Distance from operion = 80
Deck/Roadway Width = 80
2.6 Upstream Deck/Roadway Coordinates num= 22 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 350.4 642.62 450.4 640.56 550.4 638.97 800.4 637.87 650.4 638.06 750.4 637.71

850.4 638.33 900.4 639.01 950.4 639.5 954 639.51 635.52 1000 639.75 635.52 1046.3 639.75 635.52 1050.4 639.75 1100.4 639.52 1150.4 639.27 1250.4 638.99 1200.4 639.04 1300.4 639.15 1350.4 639.61 1650.4 646.59 1450.4 641.27 1550.4 643.51

Upstream Bridge Cross Section Data

Station Elevation Data num= 24
Sta Elev Sta Elev Sta Elev Sta Elev

```
685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62
  956.66 636.4 956.66 631 961.61 630.7 979.96 621.3 984.13 622.3 993.06 622.7 1000 624.3 1015.28 624.2 1025.59 624.7 1038.49 630.7 1043.35 631 1043.35 636.3 1100.87 637.92 1150.18 638.15 1200.49 638.4
   1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
685.5 .035 956.66 .035 1043.35 .035
 Bank Sta: Left Right Coeff Contr. Expan.
956.66 1043.35 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
  685.5 956.66 637.5 F
1043.35 1409.21 637.75 F
 Skew Angle = 7.3
Downstream Deck/Roadway Coordinates
      num= 22
          Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord
        350.4 642.62 450.4 640.56 550.4 638.97
       650.4 638.06
850.4 638.33
         650.4 638.06 750.4 637.71 800.4 637.87
850.4 638.33 900.4 639.01 950.4 639.5
954 639.51 635.52 1000 639.75 635.52 1046.3 639.75 635.52
     1050.4 639.75 1100.4 639.52 1150.4 639.27
    1200.4 639.04
1350.4 639.61
                                                             1250.4 638.99
1450.4 641.27
                                                                                                       1300.4 639.15
1550.4 643.51
     1650.4 646.59
 Downstream Bridge Cross Section Data
Downstream Bridge Cross Section 223
Station Elevation Data num= 23
Station Elev Sta 
    685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62 956.8 637.1 956.8 631.1 961.3 630.9 974.3 625.4 983.2 625.4 1000.2 623 1005 624.2 1025.3 624.1 1038.3 630.9 1043.3 631.7
  1043.3 636.7 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69 1304.98 639.05 1357.01 639.61 1409.21 640.35

      Manning's n Values
      num=
      3

      Sta
      n Val
      Sta
      n Val
      Sta
      n Val

      685.5
      .035
      956.8
      .035
      1043.3
      .035

Bank Sta: Left Right Coeff Contr. Expan. 956.8 1043.3 .3 .5 Ineffective Flow num= 2
   Sta L Sta R Elev Permanent
685.5 956.8 637.5 F
1043.3 1409.21 637.75 F
                                                                                   = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
weir flow = .98
Upstream Embankment side slope
 Downstream Embankment side slope
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins
Energy head used in spillway design
 Spillway height used in design
Weir crest shape
                                                                                                          = Broad Crested
Number of Piers = 1
Pier Data
Pier Station Upstream=
                                                                     1000 Downstream= 1000
Upstream num= 2
Width Elev Width
                                                 Width Elev
        3 620 3 635.52

ynstream num= 2
Downstream
       Width Elev Width Elev 3 620 3 635.52
 Number of Bridge Coefficient Sets = 1
```

```
Energy
                                    Cd = 2
KVal = 1.25
            Momentum
            Yarnell
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
            Pressure and Weir flow
                   Submerged Inlet Cd
                    Submerged Inlet + Outlet Cd = .8
                   Max Low Cord
Additional Bridge Parameters
            Add Friction component to Momentum
            Do not add Weight component to Momentum
            Class B flow critical depth computations use critical depth
                  inside the bridge at the upstream end
            Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                                              RS: 3206
INPUT
Description: Downstream Face of Joliet Road Bridge
Station Elevation Data num= 23
Sta Elev Sta Elev Sta
                                                                           Elev Sta
                                                                                                          Elev Sta
     685.5 637.76 737.35 637.44 788.63 637.47 839.46 637.56 896.59 637.62 956.8 637.1 956.8 631.1 961.3 630.9 974.3 625.4 983.2 625.4 1000.2 623 1005 624.2 1025.3 624.1 1038.3 630.9 1043.3 631.7
   1000.2
   1043.3 636.7 1100.87 637.92 1150.18 638.15 1200.49 638.4 1252.04 638.69
 1304.98 639.05 1357.01 639.61 1409.21 640.35
Manning's n Values
                                          num=
     Sta n Val Sta n Val Sta n Val 685.5 .035 956.8 .035 1043.3 .035
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
930.8 1043.3
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
685.5 956.8 637.5 F
1043.3 1409.21 637.75 F
                                                                 58 58 58
                                                                                                               .3 .5
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                                           RS: 3148
Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report
                      (2)
Downstream Face of Joliet Road
Station Elevation Data num=
                                                              25

        Sta
        Elev
        Sta
        Sta
        Elev
        Sta
        Elev
        Sta
        Elev
        Sta
        Elev
        Sta
        Sta
        Sta
        Sta<
   865.25 636.464 876.37 636.435 877.36 636.392 877.96 636.571 915.13 636.548 953.12 635.36 961.25 634.658 971.9 628.969 975.59 624.863 979.02 624.082
      1000 622.988 1029.42 624.774 1032.82 626.596 1049.64 635.605 1070.41 640
                                        num=
Manning's n Values
        ing's n Values num=
Sta n Val Sta n Val
714 .013 953.12 .035
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 953.12 1049.64 67 67 67 .1 .3
953.12 1049.64
Ineffective Flow num= 2
```

Low Flow Methods and Data

Sta L Sta R Elev Permanent 714 954.07 637.5 F 1046.13 1070.41 637.5 F

Left Levee Station= 915.13 Elevation= 636.548

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3081

TNPUT

Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report (3081)

South

ROW of Joliet Road

27 Station Elevation Data num= Sta Sta Elev Sta Elev Sta Elev Elev 640 700.12 635.213 715.59 635.15 735.43 635.461 767.31 635.449 668.73 817.37 635.27 849.72 635.974 850.32 635.78 851.31 635.845 861.89 636.024 872.17 635.891 873.24 635.837 873.77 636.034 907.47 636.397 939.2 636.187 941.74 635.886 956.98 633.907 973.01 627.756 975.66 624.761 985.89 623.489 1000 623.264 1023.58 623.869 1027.81 624.827 1060.6 640 1070.47 640 1145.38 638 1212.12 640

Manning's n Values

nning's n Values num= 3
Sta n Val Sta n Val Sta n Val
668.73 .013 939.2 .035 1060.6 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 939.2 1060.6 316 316 316 .1 .3
Ineffective Flow num= 2

Sta L Sta R Elev Permanent 668.73 913.07 F 1087.13 1212.12 F

Left Levee Station= 907.47 Elevation= 636.397

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 2765

Description: Surveyed 2011 as part of Joliet Rd Hydraulic Report

(2765)

Approximatley 450' Downstream

Station Elevation Data num=

tion Elevation Data num= 31 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 695 638 696 636 716.52 634.71 725.473 633.61 757.57 635.078 Sta Elev 801.99 635.575 837.63 635.143 852.74 633.931 856.99 633.503 857.56 633.302 858.55 633.354 868.9 633.369 879.37 633.365 881.01 633.481 905.23 633.742 932.95 633.777 933.78 633.764 964.28 633.109 975.88 624.879 977.62 624.631 1000 623.299 1013.14 623.352 1021.19 624.989 1027.01 628.729 1036.7 632.295 1061.92 632.69 1082.27 629.198 1096.47 629.329 1118.4 634.385 1119.8 637.943 1135.48 638.26

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
695 .013 964.28 .035 1036.7 .1 1061.92 .035

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 223 223 223 .1 .3

964.28 1036.7
Ineffective Flow num= 1
Sta L Sta R Elev Permanent 1061.92 1135.48 632.69 T

Left Levee Station= 801.99 Elevation= 635.58

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 2542

Sta 718.48			num=	37					
718.48	Elev	n Data Sta	Elev	Sta	Elev	Sta	Elev	Sta	El
004 45	638	722.68	634	742.28		765.89	632.763	775.21	629.8
804.17	628.408	842.1							
		868.39							
		895.89							
		942.56							
		990.36							
		1039.67							
		1152.48		1010.20		1000.10	007.13	1031.11	
Manning's				6					
Sta			n Val		n Val				
	.035	864.81	.013	897.62	.1	931.16	.035	1028.26	
Bank Sta	: Left	Right						f Contr.	Exp
	931.16 1				367.73	367.73		.1	
Ineffect	ive Flow	num=	= 1						
	Sta R		Permane	ent					
718.48	866.87	634.656	F						
Left Leve	ee	Station=	931.16	Ele	evation=	635.029			
CROSS SEC	CTION								
RIVER: F	lag Cree	k							
REACH: 1	-		RS: 12.	1					
INPUT									
Descript	ion: FIS	Cross Se	ction FC	:039					
		n Data		19					
Sta			Elev	Sta	Elev	Sta	Elev	Sta	E
	639.12		633.62				634.52		634
	633.02		625.32	-20					624
	622.92		623.62	16					
	638.02		639.02	320					
Manning's	s n Valu	es	num=	3					
Sta	n Val	Sta	n Val	Sta	n Val				
-274	.075	-41	.05	30	.075				
Bank Sta		-	Lengths		Channel	-	Coef	f Contr.	_
Bank Sta	: Left -41	Right 30	Lengths		35.17	Right 20	Coefi	f Contr.	_
Bank Sta	-41	-	Lengths			-	Coefi		_
CROSS SEC	-41 CTION	30				-	Coef		_
CROSS SEC	-41 CTION	30	Lengths RS: 12			-	Coef		_
CROSS SECRIVER: FREACH: 1	-41 CTION lag Cree	30 k	RS: 12	34.5	35.17	20		.1	_
CROSS SEC RIVER: FI REACH: 1 INPUT Descript:	-41 CTION lag Cree	30 k	RS: 12	34.5	35.17	20		.1	_
CROSS SECRIVER: F: REACH: 1 INPUT Descript: Station I	-41 CTION lag Cree ion: XS Elevatio	30 k 12, 377' n Data	RS: 12 Upstream	34.5 n of Nort 17	35.17	20 of 70th 1	Pl Bridge	.1	,
CROSS SECRIVER: F. REACH: 1 INPUT Descript: Station I	-41 CTION lag Cree ion: XS Elevatio Elev	30 k 12, 377' n Data Sta	RS: 12 Upstream num= Elev	34.5 of Nort 17 Sta	35.17 th face (20 of 70th I	Pl Bridge Elev	.1 e Sta	E.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6	-41 CTION lag Cree ion: XS Elevatio Elev 640	30 k 12, 377' n Data Sta -201.4	RS: 12 Upstream num= Elev 634	34.5 of Nort 17 Sta -77.3	35.17 th face (Elev 633.06	20 of 70th ! Sta -62.8	Pl Bridge Elev 636.95	.1 Sta -57.8	E] 637.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91	30 k 12, 377' n Data Sta -201.4 -27.9	RS: 12 Upstream num= Elev 634 631.9	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17	30 k 12, 377' n Data Sta -201.4 -27.9 22.8	RS: 12 Upstream num= Elev 634 631.9 624.54	34.5 of Nort 17 Sta -77.3	35.17 th face (Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17	30 k 12, 377' n Data Sta -201.4 -27.9 22.8	RS: 12 Upstream num= Elev 634 631.9	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74	RS: 12 Upstream num= Elev 634 631.9 624.54	34.5 of Nort 17 Sta -77.3 -13.7	35.17 th face of Elev 633.06 624.19	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: F: REACH: 1 INPUT Descript: Station ! Sta -204.6 -44 21 290.94	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636 s n Valu n Val	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74 es	RS: 12 Upstream num= Elev 634 631.9 624.54 638	34.5 n of North 17 Sta -77.3 -13.7 37.5	35.17 th face (Elev 633.06 624.19 630.99	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.
CROSS SEC RIVER: FI REACH: 1 INPUT Descript: Station I Sta -204.6 -44 21 290.94 Manning's	-41 CTION lag Cree ion: XS Elevatio Elev 640 633.91 624.17 636 s n Valu	30 k 12, 377' n Data Sta -201.4 -27.9 22.8 356.74 es	RS: 12 Upstream num= Elev 634 631.9 624.54 638 num= n Val	34.5 of North 17 Sta -77.3 -13.7 37.5	35.17 th face (Elev 633.06 624.19 630.99	20 of 70th I Sta -62.8 0	Pl Bridge Elev 636.95 621.48	.1 Sta -57.8 13.4	E] 637. 621.

```
Sta L Sta R Elev Permanent 78.8 356.74 F
```

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 11

INPUT

Description: XS 11, Upstream (North) face of 70th Pl Bridge Station Elevation Data num= 22

Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-595.2	638	-581.5	636	-558	634	-511.3	632	-376	630
-135.5	630	-123.4	632	-99.2	633.95	-42	632.13	-29.4	629.04
-20.1	628.39	-12	624.468	-4.3	620.74	0	619.25	7.7	620.25
36	624.11	49.3	625.83	61	628.597	78.1	632.64	151.4	634
368 7	636	547 8	638						

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
-595.2 .063 -123.4 .013 -42 .063 78.1 .03

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-29.4 61 53 38.3 50 .3 .5

Ineffective Flow num= 5

Ineffective Flow num= 5
Sta L Sta R Elev Permanent
-600 -200.4 650.39 F
-200.4 -99.2 632 T
-99.2 -29.4 633.17 F
65.6 222.2 633.71 F
222.2 558 652.73 F

BRIDGE

RIVER: Flag Creek

REACH: 1 RS: 10.5

INPUT

Description: 70th Pl. Single Span Concrete Bridge - ineffective cones include ineffective limits from downstream I-55 bridge, and from roadside ditch along Wolf Road. Large leftside upstream ineffective area is remnant backwater floodplain at XS 11.

Distance from Upstream XS = 3.5
Deck/Roadway Width = 32.333
Weir Coefficient = 2.6
Upstream Deck/Roadway Coordinates

 num=
 9

 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord

 -105 633.17 620 -25 633.36 627.99 62 633.71 628.61
 160 634.44 620 254.5 635.44 620 347.7 636.41 620

 437.7 637.2 620 534.3 638.18 620 626.3 639.08 620

Upstream Bridge Cross Section Data

Station	Elevation	Data	num=	22					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
-595.2	638	-581.5	636	-558	634	-511.3	632	-376	630
-135.5	630	-123.4	632	-99.2	633.95	-42	632.13	-29.4	629.04
-20.1	628.39	-12	624.468	-4.3	620.74	0	619.25	7.7	620.25
36	624.11	49.3	625.83	61	628.597	78.1	632.64	151.4	634
368.7	636	547.8	638						

Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
-595.2 .063 -123.4 .013 -42 .063 78.1 .03

Bank Sta: Left Right Coeff Contr. Expan. $-29.4 \qquad 61 \qquad .3 \qquad .5$ Ineffective Flow $\text{num} = \qquad 5$

Ineffective Flow num= 5
Sta L Sta R Elev Permanent

```
-600 -200.4 650.39 F
-200.4 -99.2 632 T
-99.2 -29.4 633.17 F
     65.6 222.2 633.71
               558 652.73
    222.2
Downstream Deck/Roadway Coordinates
                9
     Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -105 633.17 620 -25 633.36 627.98 62 633.71 628.57 160 634.44 620 254.5 635.44 620 347.7 636.41 620
                                                           620 626.3 639.08
    437.7 637.2 620 534.3 638.18
Downstream Bridge Cross Section Data
Station Elevation Data num= 27
Station Elev Sta Elev Sta Elev Sta
636 -148.8 634 -141.3
                                                                    Sta Elev
                                                                                          Sta Elev
    -164.6 638 -158.2 636 -148.8 634 -132 630 -122.4 632 -98 633.6
                                                                                632 -135.1
                                                                                                      630
                                                                    -44 632.49
                                                                                         -31.2 629.9

    -28.8
    629.75
    -20.8
    625.9
    -16.7
    625.82
    -12.8
    624.11
    -5.8
    621.22

    0
    621.06
    21.5
    622.16
    33.7
    623.72
    48.2
    623.34
    50
    624.15

    54.6
    625.98
    58.5
    626.25
    68
    630.321
    73.2
    632.55
    215.6
    634

    425.9 636 535.1 638
Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
   -164.6 .063 -122.4 .013 -44 .063
                                                                      68 .03
Bank Sta: Left Right Coeff Contr. Expan.
-31.2 68 .3 .5

Ineffective Flow num= 4

Sta L Sta R Elev Permanent
-27.3 -98 630.58 F
64.17 173 631.14 F
-98 -164 6 632 m
      -98 -164.6 632 T
173 535.1 652.7 F
Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .98
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
Weir crest shape
                                                         = Broad Crested
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
         Enerav
                         Cd = 0
         Momentum
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
         Pressure and Weir flow
             Submerged Inlet Cd
               Submerged Inlet + Outlet Cd =
                                                        .8
              Max Low Cord
Additional Bridge Parameters
         Add Friction component to Momentum
         Do not add Weight component to Momentum
         Class B flow critical depth computations use critical depth
               inside the bridge at the upstream end
         Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                                  RS: 10
```

INPUT

```
Description: XS 10, Downstream (South) face of 70th Pl Bridge
Station Elevation Data num= 27
   -164.6 638 -158.2 636 -148.8 634 -141.3 632 -135.1 630

-132 630 -122.4 632 -98 633.6 -44 632.49 -31.2 629.9

-28.8 629.75 -20.8 625.9 -16.7 625.82 -12.8 624.11 -5.8 621.22

0 621.06 21.5 622.16 33.7 623.72 48.2 623.34 50 624.15

54.6 625.98 58.5 626.25 68 630.321 73.2 632.55 215.6 624.15
                           Elev
   425.9 636 535.1 638
Manning's n Values num= 4
Sta n Val Sta n Val Sta n Val Sta n Val
Occupants
  -164.6 .063 -122.4 .013 -44 .063
                                                      68 .03
Bank Sta: Left Right Lengths: Left Channel Right
                                                            Coeff Contr. Expan.
       -31.2 68
ctive Flow num= 4
                                     1 1
                                                      1
                                                                      .3
Ineffective Flow
  Sta L Sta R Elev Permanent
   -27.3 -98 630.58 F
    4.17 173 631.14
-98 -164.6 632
   64.17
     -98 -164.6 632 T
173 535.1 652.7 F
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                         RS: 9.5
TNPIIT
Description: FIS Cross section J WSP-2 Cross Section X Converted to NAVD 88
Station Elevation Data num= 13
   Sta Elev Sta Elev
                                     Sta
                                            Elev
                                                      Sta Elev
                                                                      Sta
                                                                    -115 632.82
44 631.92
                                                      -313 635.72
30 623.52
                    -315 635.72
-30 625.02
                                    -314 636.12
0 621.02
    -320
            638
     -45 630.72
     91 634.62
                    193 631.72 213
                                            636
    sta n Values num= 3
Sta n Val Sta n Val Sta n Val
-320 .08 -45 .063 ...
Manning's n Values
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
          -45 44
ve Flow num= 5
                                      22 34 34
                                                                      .3
                                                                              . 5
Ineffective Flow
   Sta L Sta R
                    Elev Permanent
           134 631.14 F
   64.67
    -45 -27.8 630.58
                               F
                             T
    -148
           -98
                   632
            -172 650.39
    -320
                               F
           213 652.73
    172
CROSS SECTION
RIVER: Flag Creek
REACH: 1
                          RS: 9
TNPUT
Description: XS 9, Upstream (North) face of I-55 Bridge
Manning's n-values
            adjusted to reflect roadside ditch to left and gravel area to
            right of Wolf Road.
Station Elevation Data num=
    Sta Elev Sta Elev
                                     Sta
                                            Elev
                                                     Sta
                                                              Elev
                                                                      St.a
                                                                               Elev
  -171.4 \quad 641.91 \quad -164.8 \quad 641.6 \quad -137.1 \quad 630.38 \quad -128.3 \quad 629.72 \quad -111.36 \quad 632.81
                                   -27.2 629.97
0 621.75
                                                    -23.2 629.87
26.7 623.62
   -96.3 633.22
-14.5 625.86
     0.1 632.7
-10 624.13
55 625.14 66 67
                   -79.1
                           632.7
                                                                    -15.5 626.04
                                                                     34.5 624.11
                                   98.8 646.64 105.1 646.97
                     66 630.54
Manning's n Values
                          num=
                                      5
    Sta n Val Sta n Val Sta n Val Sta n Val
```

-171.4 .05 -111.36 .013 -79.1 .03 -23.2 .063 66 .013

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-23.2 66 145 145.4 145 .3 .5

Ineffective Flow num= 3

Sta L Sta R Elev Permanent -180 -97 632 T -97 -41 630.58 F 140 631.14 F 85.47

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 8

INPUT

Description: XS 8, Downstream (South) face of I-55 Bridge Manning's n-values

adjusted to reflect roadside ditch to left and gravel area to right of Wolf Road.

Station Elevation Data num=

Sta Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev -176.4 644.74 -170.2 644.61 -141.91 630.89 -115 632.74 -101.31 632.91 -83.8 632.51 -63 629.953 -14.5 623.99 0 623.25 31.3 623.39 -176.4 48.6 624.02 61.7 630.73 95.7 646.67 101.2 646.85

Manning's n Values

nning's n Values num= 5
Sta n Val Sta n Val Sta n Val Sta n Val
-176.4 .05 -115 .013 -83.8 .03 -63 .063 Sta n Val 61.7 .013

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. .3 . 5

-63 61.7 10.5 51.5 47.2

Ineffective Flow num= 1
Sta L Sta R Elev Permanent
-176.4 -115 632 T

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 7

TNDIIT

Description: XS 7, 50' Downstream of South face of I-55 Bridge, In line with 71st St

18 Station Elevation Data num=

 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev

 182.75
 638
 -177.6
 636
 -171.9
 634
 -125.6
 632.66
 Sta Elev -91.8 632.71 -182.75
 -85.8
 631.57
 -32.6
 629.95
 -20
 626.62
 -18.6
 623.98

 19
 622.8
 30.2
 624
 50
 629.581
 60
 632.4
 0 622.87 19 622.8 30.2 624 50 629.581 234.7 634 385.2 636 519.2 638 60 632.4 113.2 634.04

Manning's n Values num=
Sta n Val Sta n Val
-182.75 .013 -32.6 .063 3 Sta n Val 50 .013 .063

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.

-32.6 50 4 219.8 981 .3 .5

50 num= 1 Ineffective Flow Sta L Sta R Elev Permanent 117.5 519.2 650.68 F

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 6

Description: XS 6, Upstream (West) face of Wolf Rd Bridge Cross Section Skewed

27.5 degrees

27.5 degrees				
Station Elevation Data		T1. 01.	T3 - 01 -	71 -
Sta Elev Sta -222.196 638 -217.85	636-212.971	Elev Sta 634-132.431	633.18 -66.082	Elev 633.31
-48.786 628.479 -42.488				
0 622.65 21.998				
158.598 632 242.509		634 329.525	634 551.011	634
658.872 636 694.529	638			
Manning's n Values	num= 3			
Sta n Val Sta				
-222.196 .08 -48.786	.063 31.932	.08		
Bank Sta: Left Right	Lengths: Left	Channel Right	Coeff Contr.	Expan.
-48.786 31.932	24.2	59.2 84	.3	.5
Ineffective Flow num= Sta L Sta R Elev				
-222.196 -52.245 633.18				
37.343 694.529 634.1				
Skew Angle = 27.5				
BRIDGE				
DRIDGE				
DIVED. Flor Crook				
RIVER: Flag Creek REACH: 1	RS: 5.5			
1.011.011.	100. 0.0			
INPUT				
Description: Wolf Rd Two-	Span Concrete B	ridge-Bridge and	deck skewed 27.5	j
degrees				
Distance from Upstream XS	= 2			
Deck/Roadway Width Weir Coefficient	= 2.6			
Bridge Deck/Roadway Skew				
Upstream Deck/Roadway Co	ordinates			
num= 12 Sta Hi Cord Lo Cord	Sta Hi Cord	In Cord Sta	Hi Cord to Cord	
-240.025 630 620-				
-52.955 633.86 629.03				
212.404 635.08 620				
499.973 636.1 620	702.654 638	620 725.805	638.5 620	
Upstream Bridge Cross Sec	tion Data			
Station Elevation Data				
Sta Elev Sta				Elev
-222.196 638 -217.85 -48 786 628 479 -42 488				
-48.786 628.479 -42.488 0 622.65 21.998				
158.598 632 242.509				
658.872 636 694.529	638	22.2 020.020		001
Manning's n Values Sta n Val Sta	num= 3	n Val		
-222.196 .08 -48.786				
Bank Sta: Left Right -48.786 31.932	Coeff Contr.	Expan5		
-48./86 31.932 Ineffective Flow num=	. 3			
Sta L Sta R Elev	Permanent			
-222.196 -52.245 633.18				
37.343 694.529 634.1				
Skew Angle = 27.5				
Downstream Deck/Roadway	Coordinates			
= -				
num= 12				
Sta Hi Cord Lo Cord				
Sta Hi Cord Lo Cord -240.025 630 620-	227.607 632.3	620-147.244	633.18 620	
Sta Hi Cord Lo Cord -240.025 630 620- -66.526 633.94 629.09	227.607 632.3 27.143 634.16	620-147.244 629.28 119.977	633.18 620 634.37 620	
Sta Hi Cord Lo Cord -240.025 630 620-	227.607 632.3 27.143 634.16	620-147.244 629.28 119.977	633.18 620 634.37 620	

```
Downstream Bridge Cross Section Data
Station Elevation Data num= 13
Sta Elev Sta Elev
  -35.214 624.1 -24.127 623.04 0 622.59 12.418 623.86 15.966 626.2 40.359 633.56 246.234 634 368.819 636
Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-235.324 .08 -42.399 .063 15.966 .08
Bank Sta: Left Right Coeff Contr. Expan.
-42.399 15.966 .3 .5

Ineffective Flow num= 2
Sta L Sta R Elev Permanent
-235.324 -66 631.15 F
43.2 368.819 631.69 F
 Skew Angle = 27.5
Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical
Maximum allowable submergence for weir flow =
                                                                                                                       .98
 Elevation at which weir flow begins
Energy head used in spillway design
 Spillway height used in design
Weir crest shape
                                                                                                         = Broad Crested
Number of Piers = 1
 Pier Data
 Pier Station Upstream= -9.048 Downstream= -16.853
 Upstream num= 2

        Width
        Elev
        Width
        Elev

        4.75
        620
        4.75
        630.5

        Downstream
        num=
        2

      Width Elev Width Elev
4.75 620 4.75 630.5
 Number of Bridge Coefficient Sets = 1
 Low Flow Methods and Data
                Energy
                                                    Cd = 2
KVal = 1.25
                 Momentum
                 Yarnell
 Selected Low Flow Methods = Highest Energy Answer
High Flow Method
                 Pressure and Weir flow
                           Submerged Inlet Cd
                           Submerged Inlet + Outlet Cd = .8
                           Max Low Cord
Additional Bridge Parameters
                 Add Friction component to Momentum
                  Do not add Weight component to Momentum
                 Class B flow critical depth computations use critical depth
                        inside the bridge at the upstream end
                 Criteria to check for pressure flow = Upstream energy grade line
 CROSS SECTION
RIVER: Flag Creek
                                                            RS: 5
REACH: 1
 Description: XS 5, Downstream (East) face of Wolf Rd Bridge Section Skewed 27.5
                      dearees
Station Elevation Data
                                                              num=
                                                                                       13
         Sta Elev Sta Elev Sta Elev Sta Elev
```

-235.324 638 -230.8 -35.214 624.1 -24.127 40.359 633.56 246.234	623.04 0	622.59	12.418			
Manning's n Values Sta n Val Sta -235.324 .08 -42.399	n Val Sta					
Bank Sta: Left Right -42.399 15.966 Ineffective Flow num= Sta L Sta R Elev -235.324 -66 631.15 43.2 368.819 631.69 Skew Angle = 27.5	737 2 Permanent	Channel 524.8	Right 376	Coeff	Contr.	Expan. .5
CROSS SECTION						
RIVER: Flag Creek REACH: 1	RS: 4					
INPUT Description: XS 4, Upstre Station Elevation Data		of 72nd	St Doub	le Arch C	ulvert	
Sta Elev Sta -195.8 636.56 -77.3 0 622.54 12.1 353.5 634 432.5	Elev Sta 635.35 -50 623.91 20	Elev 627.314 626.463	Sta -38.3 43.2	Elev 623.87 633.96	Sta -26.8 170.1	Elev 622.5 632.37
Manning's n Values Sta n Val Sta -195.8 .08 -50	n Val Sta					
Bank Sta: Left Right -50 20 Ineffective Flow num= Sta L Sta R Elev -195.8 -44 636.56 24.18 432.5 632.43	44 2 Permanent	Channel 48.22			Contr.	Expan. .5
BRIDGE						
RIVER: Flag Creek REACH: 1	RS: 3.5					
INPUT Description: 72nd St Doub Distance from Upstream XS Deck/Roadway Width Weir Coefficient Upstream Deck/Roadway Co num= 21	= 5.5 = 36.5 = 2.6					
Sta Hi Cord Lo Cord -197.7 636.57 620 -33 636.87 631.3 -11.4 636.95 623.5 -9.6 636.84 623.46 12.1 636.51 631.56 72 634.89 620 500.8 635.33 620	Sta Hi Cord -107.4 636.57 -25.7 636.91 -11.4 636.95 -3.3 636.73 17.6 636.4 174.9 632.43 614.3 636	620 633.14 618 631.52 624.81 620		636.95 636.84 636.62 636.06 634	Lo Cord 623.83 631.4 618 633.09 620 620	
Upstream Bridge Cross Sec Station Elevation Data Sta Elev Sta -195.8 636.56 -77.3 0 622.54 12.1 353.5 634 432.5	num= 12 Elev Sta 635.35 -50	Elev 627.314 626.463		623.87	Sta -26.8 170.1	Elev 622.5 632.37

Manning's n Values num= 3

```
Sta n Val Sta n Val Sta n Val -195.8 .08 -50 .063 20 .08
Bank Sta: Left Right Coeff Contr. Expan.
           -50 20 .3 .5
ve Flow num= 2
Ineffective Flow
  Sta L Sta R Elev Permanent
-195.8 -44 636.56 F
24.18 432.5 632.43 F
Downstream Deck/Roadway Coordinates
  num= 21
  Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord -197.7 636.57 620 -107.4 636.57 620 -38.4 636.83 624 -32.6 636.87 631.3 -25.6 636.91 632.99 -17.1 636.95 631.43 -10.4 636.95 623.49 -10.4 636.95 618 -8.8 636.84 618 -8.8 636.84 623.42 -2.5 636.73 631.01 5.2 636.62 632.91 12.9 636.51 631.57 19.5 636.4 624.54 32 636.06 620
     72 634.89 620 174.9 632.43 620 400.5 634
00.8 635.33 620 614.3 636 620 665.4 638
                                                                              62.0
   500.8 635.33
Downstream Bridge Cross Section Data
Station Elevation Data num= 13
     Sta Elev Sta
                             Elev
                                         Sta Elev
                                                          Sta
                                                                   Elev
                                                                             Sta
             636 -72.2 634.46 -42.4 625.86 -38.3 623.78 -23.8 622.61
    -82.3
   Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-82.3 .08 -42.4 .063 21.05 .08
Bank Sta: Left Right Coeff Contr. Expan. -42.4 21.05 .3 .5
-42.4 21.05 .3
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
                                            .5
   -82.3 -40.2 634.78 F
23.2 412.67 632.43 F
                                         = 0 horiz. to 1.0 vertical
= 0 horiz. to 1.0 vertical
Upstream Embankment side slope
Downstream Embankment side slope
                                                        .98
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design
Spillway height used in design
                                                 = Broad Crested
Weir crest shape
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
       Energy
                               Cd =
       Momentum
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
        Pressure and Weir flow
            Submerged Inlet Cd
            Submerged Inlet + Outlet Cd = .8
            Max Low Cord
Additional Bridge Parameters
        Add Friction component to Momentum
        Do not add Weight component to Momentum
        Class B flow critical depth computations use critical depth
           inside the bridge at the upstream end
        Criteria to check for pressure flow = Upstream energy grade line
```

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 3

TNPUT Description: XS 3, Downstream (South) face of 72nd St Double Arch Culvert Station Elevation Data num= 13 Sta Elev Sta Elev Sta Elev -72.2 634.46 -42.4 625.86 -38.3 623.78 Sta Elev Sta -82.3 636 -72.2 Sta -23.8 622.61 -82.3 -11.8 623.51 0 623.06 16.8 623.84 21.05 625.56 45.9 630.54 232 632 362.77 634 412.67 636 Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-82.3 .08 -42.4 .063 21.05 .08 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -42.4 21.05
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
-82.3 -40.2 634.78 F
23.2 412.67 632.43 F 535 490.2 444 .3 CROSS SECTION RIVER: Flag Creek REACH: 1 RS: 2 TNPUT Description: XS 2, 490' Downstream of South face of 72nd St Double Arch Culvert Description: XS 2, 490 Downsell Station Elevation Data num= 17

Station Elevation Data Station Elev Sta Elev -179.4 633.27 -153.4 633.21 -147.1 633.56 -117.9 634.08 -86.3 625.65 -25 624.05 -22.8 623.68 -16 622.74 0 620.85 15.6 622.11 22.8 623.63 27.7 628.82 33.4 630.19 49.3 626.3 90.5 627.15 198.9 628.25 219.4 632.66 3 Sta n Val num= Manning's n Values Sta n Val Sta n Val 179.4 .08 -25 .063 22.8 -179.4 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. -25 22.8 445 444.93 425 .1 .3 -25 22.8
Ineffective Flow num= 1 Sta L Sta R Elev Permanent 33.4 209 630.19 CROSS SECTION RIVER: Flag Creek REACH: 1 RS: 1 Description: XS 1, 935' Downstream of South face of 72nd St Double Arch Culvert Station Elevation Data num= 20 Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 634 -301 632 -221 630.9 -211.4 630 -202.4 628 626 -195.2 624 -38.5 624 -36.2 626 -33.9 628 628 -21 626 -19.2 624 -18.2 623.14 0 622.89 623.21 18.7 625.38 113.9 626.96 138.6 632.99 151.4 634 Elev Sta Elev -482.6 -198.6 -22.9 15.1 623.21 3 Sta n Val Manning's n Values num= Sta n Val Sta n Val -482.6 .08 -21 .063 .08 18.7

390 391

Right Coeff Contr. Expan. 391 .1 .3

Ineffective Flow num= 1 Sta L Sta R Elev Permanent -202.4 -33.9 628 T T

Bank Sta: Left Right Lengths: Left Channel -21 18.7 390 391

CROSS SECTION

RIVER: Flag Creek

REACH: 1 RS: 0.5

INPUT

Description: FIS Crossection ${\tt H_WSP2}$ Cross section FC033 converted to NAVD88

 Station Elevation Data
 num=
 25

 Sta
 Elev
 Sta
 Elev

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
-686 .08 -8 .063 18 .08

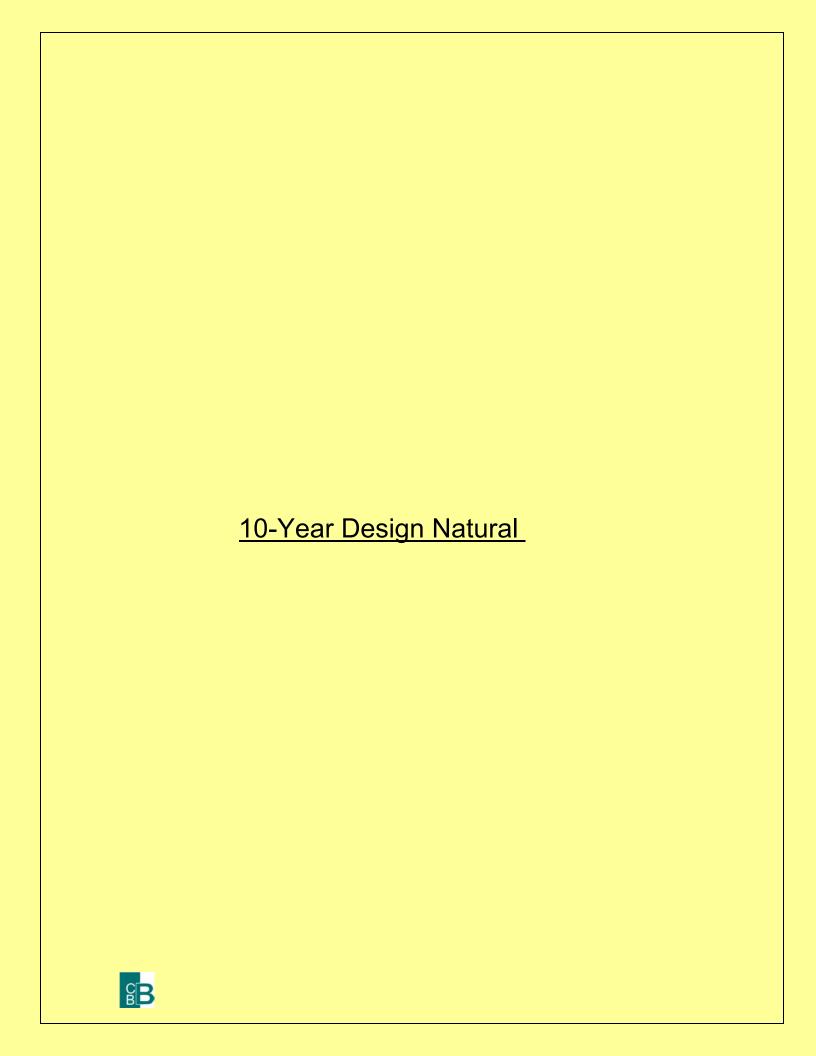
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
-8 18 0 0 0 .1 .3

SUMMARY OF MANNING'S N VALUES

River:Flag Creek

	Reach	River Sta.	n1	n2	n3	n4	n5	n6
1		4240	.1	.035	.1	.013		
1		3755	.1	.035	.1	.025	.025	
.1								
1		3380	.1	.035	.035			
1		3327	.1	.035	.035			
1		3288	.035	.035	.035			
1		3245	Bridge					
1		3206	.035	.035	.035			
1		3148	.013	.035				
1		3081	.013	.035	.035			
1		2765	.013	.035	.1	.035		
1		2542	.035	.013	.1	.035	.1	
.013								
1		12.1	.075	.05	.075			
1		12	.075	.05	.075			
1		11	.063	.013	.063	.03		
1		10.5	Bridge					
1		10	.063	.013	.063	.03		
1		9.5	.08	.063	.08			
1		9	.05	.013	.03	.063	.013	
1		8	.05	.013	.03	.063	.013	
1		7	.013	.063	.013			
1		6	.08	.063	.08			
1		5.5	Bridge					
1		5	.08	.063	.08			
1		4	.08	.063	.08			
1		3.5	Bridge					
1		3	.08	.063	.08			
1		2	.08	.063	.08			
1		1	.08	.063	.08			
1		0.5	.08	.063	.08			

SUMMARY OF REACH LENGTHS

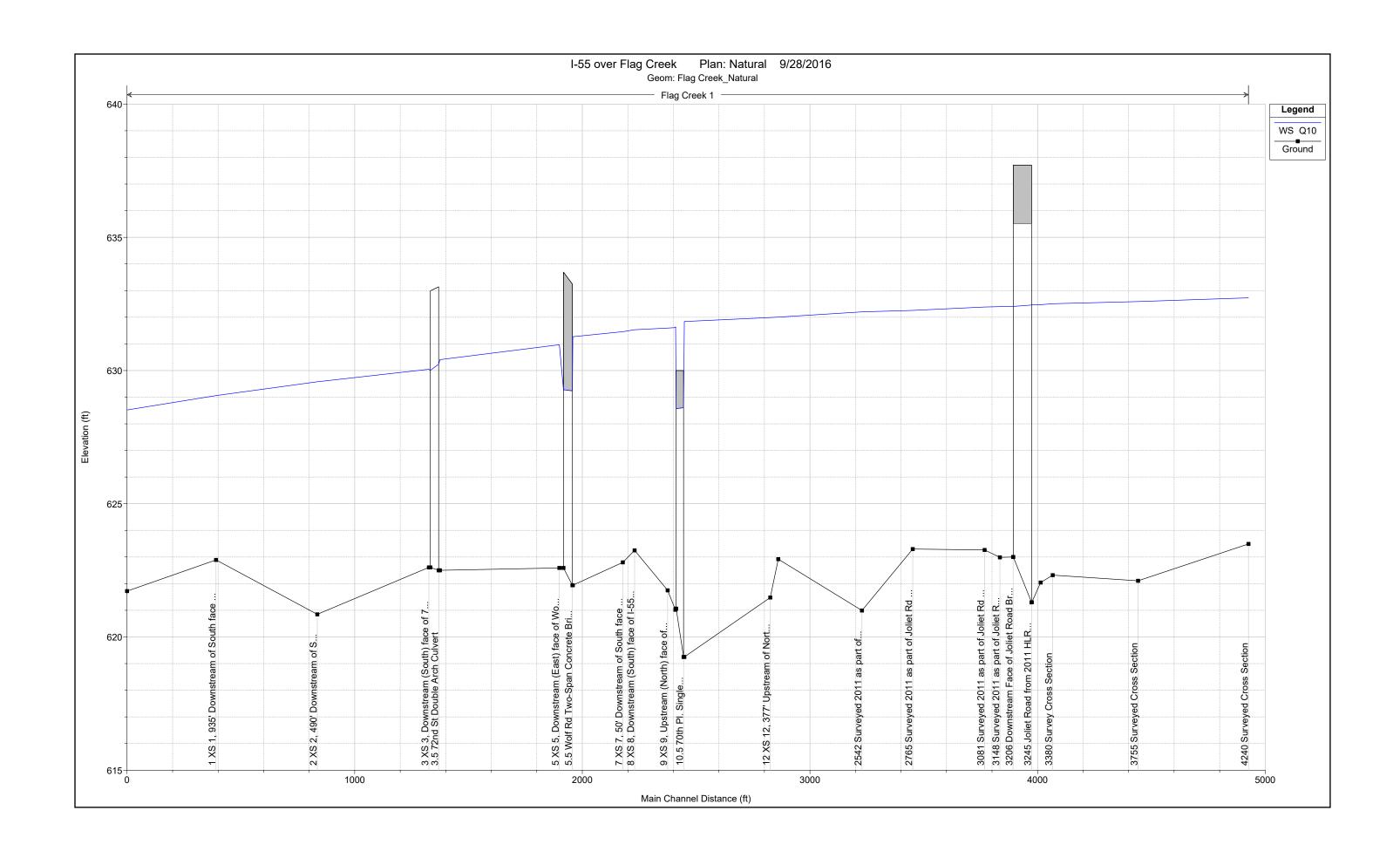

River: Flag Creek

Reach River Sta. Left Channel Right

1	4240	485	485	485
1	3755	375	375	375
1	3380	53	53	53
1	3327	39	39	39
1	3288	82	82	
			82	82
1	3245	Bridge	F.0.	F.0.
1	3206	58	58	58
1	3148	67	67	67
1	3081	316	316	316
1	2765	223	223	223
1	2542	367.73	367.73	367.73
1	12.1	34.5	35.17	20
1	12	881	377.27	3.5
1	11	53	38.3	50
1	10.5	Bridge		
1	10	1	1	1
1	9.5	22	34	34
1	9	145	145.4	145
1	8	10.5	51.5	47.2
1	7	4	219.8	981
1	6	24.2	59.2	84
1	5.5	Bridge		
1	5	737	524.8	376
1	4	44	48.22	49
1	3.5	Bridge		
1	3	535	490.2	444
1	2	445	444.93	425
1	1	390	391	391
1	0.5	0	0	0
_	0.5	U	U	U

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Flag Creek

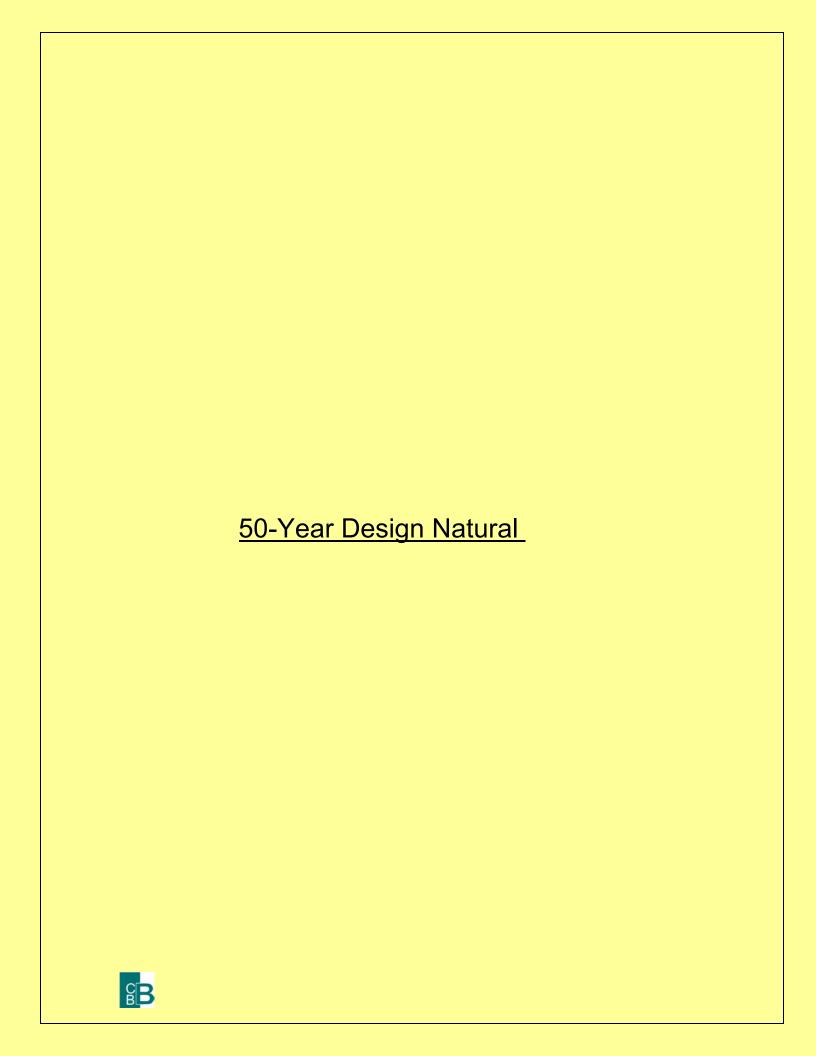
	Reach	River	Sta.	Contr.	Expan.
1		4240		.1	.3
1		3755		.1	.3
1		3380		.1	.3
1		3327		.3	.5
1		3288		.3	.5
1		3245	Brid		
1		3206		.3	.5
1		3148		.1	.3
1		3081		.1	.3
1		2765		.1	.3
1		2542		.1	.3
1		12.1		.1	.3
1		12		.3	.5
1		11		.3	.5
1		10.5	Brid	ge	
1		10		.3	.5
1		9.5		.3	.5
1		9		.3	.5
1		8		.3	.5
1		7		.3	.5
1		6		.3	.5
1		5.5	Brid		
1		5		.3	.5
1		4		.3	.5
1		3.5	Brid	ge	
1		3		.3	.5
1		2		.1	.3
1		1		.1	.3
1		0.5		.1	.3



HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q10

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q10	1260.00	623.49	632.73	626.87	632.81	0.000247	2.27	555.31	84.88	0.16
1	3755	Q10	1260.00	622.11	632.59	626.48	632.68	0.000273	2.42	520.93	77.46	0.16
1	3380	Q10	1260.00	622.32	632.51		632.57	0.000257	2.03	619.99	81.85	0.13
1	3327	Q10	1260.00	622.04	632.47	626.31	632.55	0.000481	2.29	549.81	105.95	0.16
1	3288	Q10	1260.00	621.30	632.47	626.18	632.53	0.000206	2.10	599.79	86.69	0.14
1	3245		Bridge									
1	3206	Q10	1260.00	623.00	632.41	626.94	632.49	0.000279	2.32	543.09	86.50	0.16
1	3148	Q10	1260.00	622.99	632.40	626.37	632.48	0.000235	2.29	549.09	78.17	0.15
1	3081	Q10	1260.00	623.26	632.38	626.32	632.46	0.000237	2.25	559.26	83.19	0.15
1	2765	Q10	1260.00	623.30	632.26	626.74	632.37	0.000353	2.69	467.65	115.82	0.19
1	2542	Q10	1260.00	620.99	632.20	625.98	632.29	0.000263	2.45	514.55	72.65	0.16
1	12.1	Q10	1260.00	622.92	632.01		632.13	0.000846	2.86	441.18	74.22	0.20
1	12	Q10	1260.00	621.48	631.99		632.10	0.000651	2.69	490.89	124.85	0.18
1	11	Q10	1260.00	619.25	631.84	624.48	631.89	0.000377	1.77	719.30	491.61	0.11
1	10.5		Bridge									
1	10	Q10	1260.00	621.06	631.64	624.79	631.68	0.000358	1.68	770.46	126.89	0.11
1	9.5	Q10	1310.00	621.02	631.61	625.08	631.67	0.000541	2.01	661.90	118.20	0.13
1	9	Q10	1310.00	621.75	631.59	625.82	631.66	0.000559	2.01	665.02	148.27	0.13
1	8	Q10	1310.00	623.25	631.53		631.57	0.000438	1.66	793.53	149.90	0.12
1	7	Q10	1310.00	622.80	631.46	626.00	631.54	0.000735	2.20	588.08	138.77	0.15
1	6	Q10	1310.00	621.94	631.27	626.05	631.36	0.000854	2.40	558.88	102.34	0.16
1	5.5		Bridge									
1	5	Q10	1310.00	622.59	630.97	625.96	631.09	0.001043	2.85	506.61	92.62	0.18
1	4	Q10	1310.00	622.50	630.41	625.60	630.53	0.001078	2.84	468.66	92.71	0.19
1	3.5		Bridge									
1	3	Q10	1310.00	622.61	630.05	625.82	630.20	0.001467	3.17	416.73	100.35	0.22
1	2	Q10	1310.00	620.85	629.58		629.65	0.000762	2.46	691.30	301.04	0.16
1	1	Q10	1310.00	622.89	629.06		629.16	0.001771	3.11	711.69	329.67	0.23
1	0.5	Q10	1310.00	621.72	628.52	627.52	628.55	0.001274	2.47	1227.21	731.48	0.19

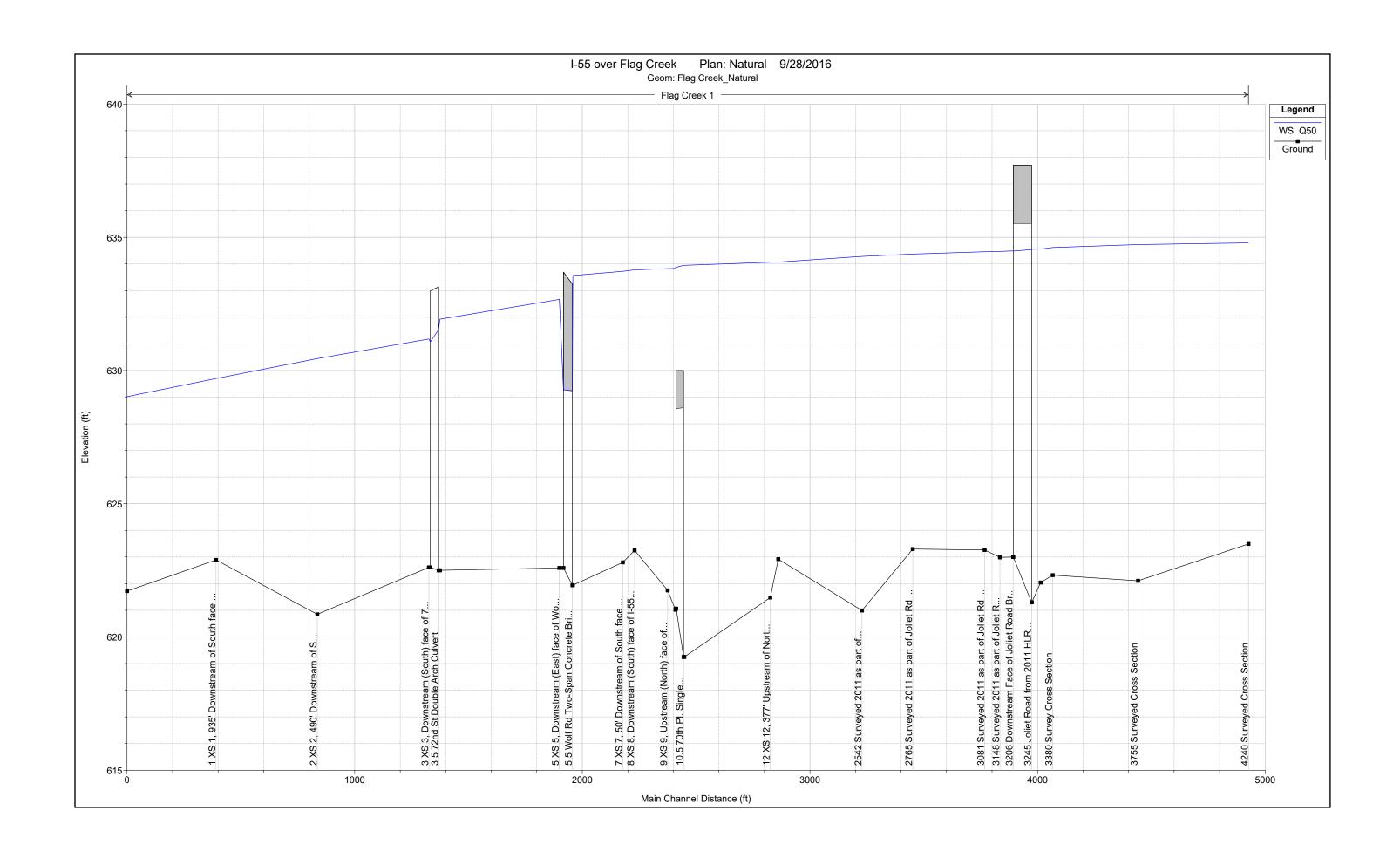
HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q10


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q10	632.81	632.73	0.08	0.13	0.00		1260.00		84.88
1	3755	Q10	632.68	632.59	0.09	0.10	0.01		1260.00		77.46
1	3380	Q10	632.57	632.51	0.06	0.02	0.00		1260.00		81.85
1	3327	Q10	632.55	632.47	0.08	0.01	0.01		1260.00		105.95
1	3288	Q10	632.53	632.47	0.07	0.00	0.00		1260.00		86.69
1	3245		Bridge								
1	3206	Q10	632.49	632.41	0.08	0.01	0.00		1260.00		86.50
1	3148	Q10	632.48	632.40	0.08	0.02	0.00		1260.00		78.17
1	3081	Q10	632.46	632.38	0.08	0.09	0.00		1260.00		83.19
1	2765	Q10	632.37	632.26	0.11	0.07	0.01		1260.00		115.82
1	2542	Q10	632.29	632.20	0.09	0.16	0.00		1259.95	0.05	72.65
1	12.1	Q10	632.13	632.01	0.13	0.03	0.00		1259.95	0.05	74.22
1	12	Q10	632.10	631.99	0.11	0.18	0.03	0.00	1249.86	10.14	124.85
1	11	Q10	631.89	631.84	0.05				1249.18	10.82	491.61
1	10.5		Bridge								
1	10	Q10	631.68	631.64	0.04	0.00	0.01	9.76	1248.89	1.36	126.89
1	9.5	Q10	631.67	631.61	0.06	0.02	0.00	3.34	1306.66		118.20
1	9	Q10	631.66	631.59	0.06	0.07	0.01	34.89	1273.26	1.85	148.27
1	8	Q10	631.57	631.53	0.04	0.03	0.01	8.92	1300.25	0.83	149.90
1	7	Q10	631.54	631.46	0.08	0.17	0.00	95.78	1196.14	18.09	138.77
1	6	Q10	631.36	631.27	0.09			7.38	1287.61	15.01	102.34
1	5.5		Bridge								
1	5	Q10	631.09	630.97	0.12	0.56	0.00	31.51	1239.35	39.14	92.62
1	4	Q10	630.53	630.41	0.12	0.01	0.04		1292.25	17.75	92.71
1	3.5		Bridge								
1	3	Q10	630.20	630.05	0.15	0.51	0.04		1293.02	16.98	100.35
1	2	Q10	629.65	629.58	0.07	0.49	0.00	422.70	874.44	12.85	301.04
1	1	Q10	629.16	629.06	0.10	0.58	0.02	157.59	718.46	433.94	329.67
1	0.5	Q10	628.55	628.52	0.03			182.09	346.89	781.02	731.48

vvaiilli	ngs and Notes for Plan : Nat
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3380 Profile: Q10
Note:	Manning's n values were composited to a single value in the main channel.
Location:	
	River: Flag Creek Reach: 1 RS: 3327 Profile: Q10
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
waiting.	
	selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q10 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3148 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q10
Warning:	Divided flow computed for this cross-section.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q10
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
NI-4	
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 11 Profile: Q10
	River: Flag Creek Reach: 1 RS: 11 Profile: Q10
Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10
Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location: Note: Location: Note: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location: Note: Location: Note: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream
Location: Note: Location: Note: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location: Note: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream
Location: Note: Location: Note: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location: Note: Note: Location: Note: Location: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section.
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Note: Location: Note: Note: Location: Note: Location: Warning: Note: Location: Ucation: Ucation: Ucation: Ucation: Ucation: Ucation: Ucation:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note: Location: Note: Note: Location: Note: Location: Warning: Note: Location: Ucation: Ucation: Ucation: Ucation: Ucation: Ucation: Ucation:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Warning: Note: Location: Warning:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section.
Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Uccation: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section.
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Location: Warning: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Warning: Warning: Warning: Note: Location: Warning: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section.
Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Varning: Note: Location: Varning: Location: Varning: Location: Varning: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10
Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth w
Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Varning: Note: Location: Varning: Location: Varning: Location: Varning: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10
Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth w
Location: Note: Location: Note: Note: Location: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid,
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 7 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, ene
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Note: Note: Note: Note: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Note: Note: Location: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Multiple critical de
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Location: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Note: Location: Note: Note: Note: Location: Note:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 5.5 Profile: Q10 Multiple critical de
Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location: Warning: Note: Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q10 Divided flow computed for this cross-section. Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9. Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 8 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 6 Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 5. Profile: Q10 Multiple critical depths were found at this location. The critical depth with the lowest, valid, w

Errors Warnings and Notes for Plan : Nat (Continued)

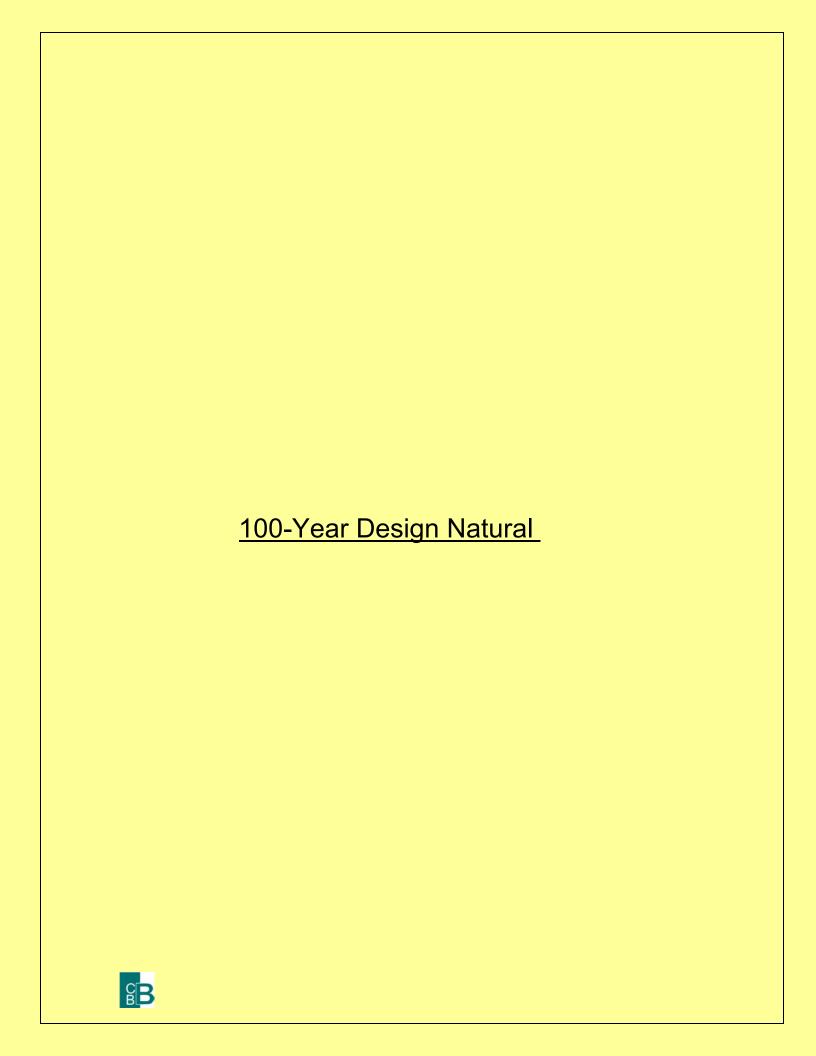
	ingo and riotor for rian rital (continuou)
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q10
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q10 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q10
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 2 Profile: Q10
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.



HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q50

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q50	2000.00	623.49	634.79	627.81	634.90	0.000254	2.68	828.45	256.30	0.16
1	3755	Q50	2000.00	622.11	634.73	627.54	634.79	0.000163	2.18	1263.62	491.95	0.13
1	3380	Q50	2000.00	622.32	634.62		634.70	0.000323	2.37	920.34	239.44	0.14
1	3327	Q50	2000.00	622.04	634.56	627.33	634.67	0.000602	2.76	724.58	256.98	0.17
1	3288	Q50	2000.00	621.30	634.55	627.09	634.65	0.000228	2.56	780.63	86.69	0.15
1	3245		Bridge									
1	3206	Q50	2000.00	623.00	634.49	627.85	634.61	0.000287	2.77	722.86	86.50	0.17
1	3148	Q50	2000.00	622.99	634.47	627.27	634.59	0.000270	2.78	718.75	85.92	0.17
1	3081	Q50	2000.00	623.26	634.46	627.24	634.57	0.000280	2.69	742.91	95.89	0.17
1	2765	Q50	2000.00	623.30	634.37	627.74	634.48	0.000273	2.82	848.94	271.09	0.17
1	2542	Q50	2000.00	620.99	634.28	626.97	634.42	0.000312	2.95	696.78	97.36	0.18
1	12.1	Q50	2000.00	622.92	634.07		634.24	0.000810	3.33	679.73	202.35	0.20
1	12	Q50	2000.00	621.48	634.07		634.20	0.000614	3.10	799.33	401.32	0.18
1	11	Q50	2000.00	619.25	633.95	625.57	633.99	0.000295	1.83	1268.48	705.33	0.10
1	10.5		Bridge									
1	10	Q50	2000.00	621.06	633.87	625.64	633.92	0.000287	1.78	1230.62	351.57	0.10
1	9.5	Q50	2100.00	621.02	633.83	626.01	633.91	0.000516	2.34	1095.53	345.08	0.13
1	9	Q50	2100.00	621.75	633.82	626.66	633.88	0.000399	2.04	1070.27	218.29	0.12
1	8	Q50	2100.00	623.25	633.78		633.82	0.000331	1.77	1208.50	216.06	0.11
1	7	Q50	2100.00	622.80	633.72	627.00	633.80	0.000334	1.80	1008.72	265.16	0.11
1	6	Q50	2100.00	621.94	633.56	627.28	633.68	0.000791	2.82	823.19	447.04	0.17
1	5.5		Bridge									
1	5	Q50	2100.00	622.59	632.67	626.96	632.85	0.001247	3.58	676.02	106.57	0.21
1	4	Q50	2100.00	622.50	631.93	626.52	632.14	0.001438	3.73	572.35	102.58	0.22
1	3.5		Bridge									
1	3	Q50	2100.00	622.61	631.18	626.73	631.47	0.002222	4.34	488.71	188.65	0.27
1	2	Q50	2100.00	620.85	630.45		630.58	0.001255	3.40	853.55	313.39	0.21
1	1	Q50	2100.00	622.89	629.70		629.84	0.002392	3.88	923.94	335.16	0.27
1	0.5	Q50	2100.00	621.72	629.02	627.80	629.06	0.001550	2.88	1602.20	769.39	0.21

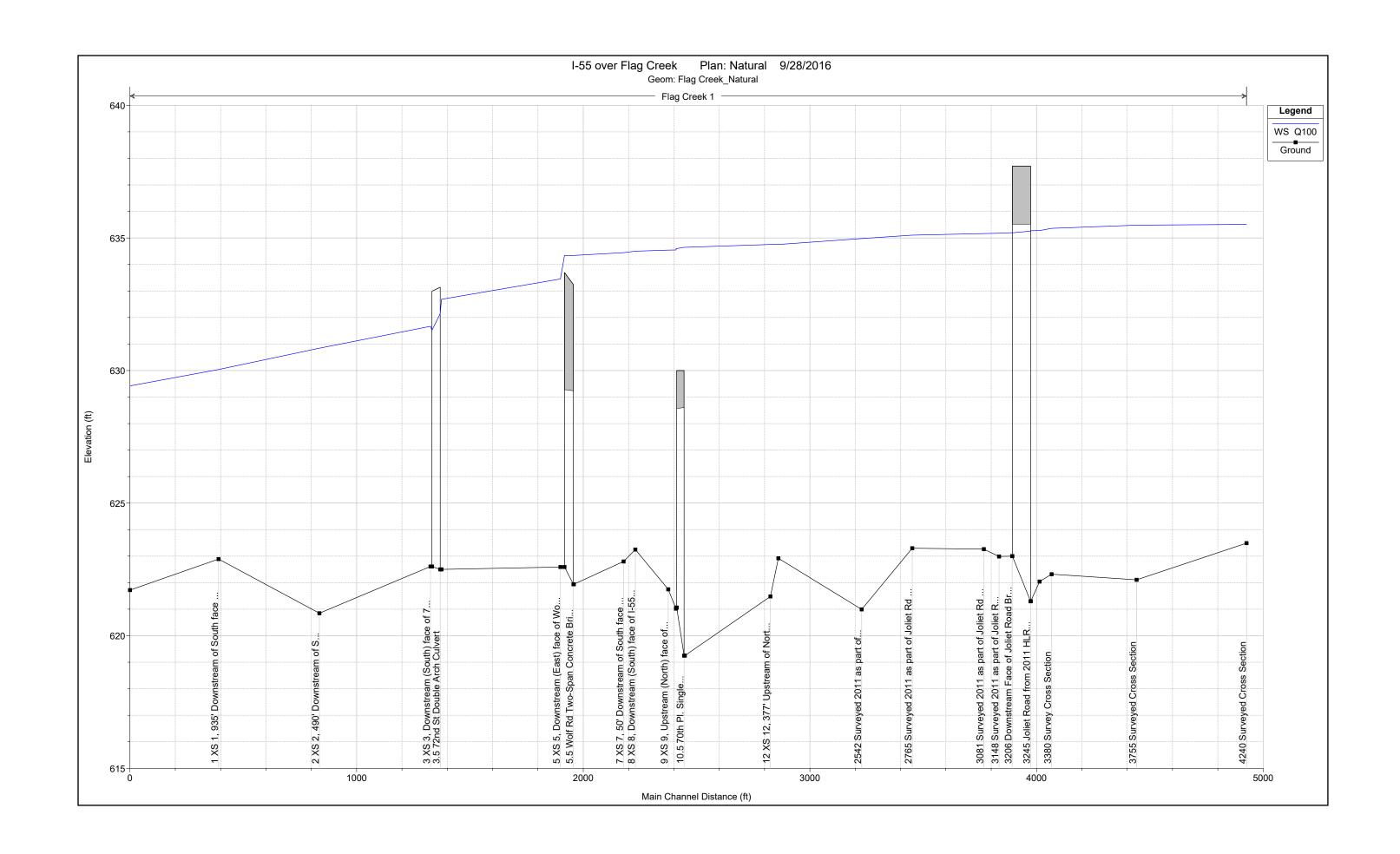
HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q50


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q50	634.90	634.79	0.11	0.10	0.02	0.16	1976.50	23.34	256.30
1	3755	Q50	634.79	634.73	0.06	0.08	0.00	1.43	1513.88	484.68	491.95
1	3380	Q50	634.70	634.62	0.08	0.02	0.00	0.20	1919.94	79.86	239.44
1	3327	Q50	634.67	634.56	0.12	0.01	0.01		2000.00		256.98
1	3288	Q50	634.65	634.55	0.10	0.00	0.00		2000.00		86.69
1	3245		Bridge								
1	3206	Q50	634.61	634.49	0.12	0.02	0.00		2000.00		86.50
1	3148	Q50	634.59	634.47	0.12	0.02	0.00		2000.00		85.92
1	3081	Q50	634.57	634.46	0.11	0.09	0.00		2000.00		95.89
1	2765	Q50	634.48	634.37	0.11	0.07	0.00	149.22	1749.72	101.06	271.09
1	2542	Q50	634.42	634.28	0.13	0.17	0.00		1969.05	30.95	97.36
1	12.1	Q50	634.24	634.07	0.17	0.02	0.01	8.27	1951.73	40.00	202.35
1	12	Q50	634.20	634.07	0.14	0.16	0.05	31.89	1860.44	107.67	401.32
1	11	Q50	633.99	633.95	0.05			273.57	1646.32	80.10	705.33
1	10.5		Bridge								
1	10	Q50	633.92	633.87	0.05	0.00	0.01	200.55	1726.21	73.24	351.57
1	9.5	Q50	633.91	633.83	0.08	0.01	0.01	93.87	1979.12	27.01	345.08
1	9	Q50	633.88	633.82	0.06	0.05	0.01	370.48	1697.06	32.45	218.29
1	8	Q50	633.82	633.78	0.05	0.01	0.01	191.82	1882.66	25.52	216.06
1	7	Q50	633.80	633.72	0.08	0.10	0.01	661.07	1319.26	119.67	265.16
1	6	Q50	633.68	633.56	0.12			28.08	2031.74	40.18	447.04
1	5.5		Bridge								
1	5	Q50	632.85	632.67	0.18	0.70	0.01	92.89	1910.53	96.59	106.57
1	4	Q50	632.14	631.93	0.21	0.02	0.09		2061.25	38.75	102.58
1	3.5		Bridge								
1	3	Q50	631.47	631.18	0.29	0.81	0.08		2069.05	30.95	188.65
1	2	Q50	630.58	630.45	0.13	0.75	0.00	726.07	1349.72	24.22	313.39
1	1	Q50	629.84	629.70	0.14	0.74	0.03	400.46	993.52	706.02	335.16
1	0.5	Q50	629.06	629.02	0.04			325.42	443.28	1331.30	769.39

Errors Warnings a	and Notes for Plan : Nat
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Notes	additional cross sections.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 3380 Profile: Q50
Note:	Manning's n values were composited to a single value in the main channel.
Location:	River: Flag Creek Reach: 1 RS: 3327 Profile: Q50
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 3288 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
	selected) method. If the Yarneli method was the only one selected, the program will default to an energy based solution.
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. River: Flag Creek Reach: 1 RS: 3245 Profile: Q50 Upstream
Location: Note:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q50 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3206 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3148 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Note:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q50
Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 2765 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50
Location: Warning:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section.
Location: Warning: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50
Location: Warning:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section.
Location: Warning: Location: Warning:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section.
Location: Warning: Location: Warning:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50
Location: Warning: Location: Warning: Warning: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50
Location: Warning: Location: Warning: Warning: Ucation: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location: Warning: Location: Warning: Warning: Location: Note: Location: Note: Note: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location: Warning: Location: Warning: Warning: Ucation: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location: Warning: Location: Warning: Warning: Location: Note: Location: Note: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream
Location: Warning: Location: Warning: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Note: Location: Note: Location: Location: Location: Location: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Note: Location: Note: Note: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modelling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Note: Location: Note: Location: Note: Location: Location: Location: Location: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Location: Location: Location: Location: Location: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modelling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Note: Note: Note: Note: Location: Note: Note: Location: Note: Note: Location: Note: Note: Location: Note: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Location: Location: Location: Location: Location: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Note: Note: Note: Note: Note: Note: Note: Note: Location: Note: Note: Location: Note: Location: Note: Location: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water s
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Location: Note: Note: Location: Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Divided flow computed for this cross-section. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Divided flow computed for this cross-s
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q50 Mul
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location: Note: Note: Note: Note: Location: Note: Location: Note: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9. Profile: Q50 Multiple critic
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: QSO Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: QSO Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: QSO Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QSO Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: QSO Multiple critical depths were found at this location. The critical depth with the lowest, valid, water
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Note: Location: Note: Location: Note: Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: QSO Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: QSO Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QSO Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: QSO Multiple critical depths
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location: Warning: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 More additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 More additional cross sections. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 More and this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 More and this location. The critical depth with the lowest was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 More and this location. The critical depth with the lowest was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modelling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q50 Multiple critical depths were found at this location. The critical depth
Location: Warning: Location: Warning: Warning: Warning: Location: Note: Location: Note: Note: Location: Note: Location: Note: Note: Location: Warning: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Warning: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12.1 Profile: QSO Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: QSO Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: QSO Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: QSO Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9.5 Profile: QSO Multiple critical depths were foun
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location: Warning: Note: Location: Warning: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location are critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, va
Location: Warning: Location: Warning: Warning: Warning: Warning: Location: Note: Location: Warning: Warning: Note: Location: Warning: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. The downstream water surface is above the minimum elevation required for crifice flow. The orifice flow equation was used for pressure flow. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy w
Location: Warning: Location: Warning: Warning: Warning: Warning: Warning: Location: Note: Location: Note: Note: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Note: Location: Warning: Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. River: Flag Creek Reach: 1 RS: 12 Profile: Q50 Divided flow computed for this cross-section. The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 1.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 1.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used for pressure flow. River: Flag Creek Reach: 1 RS: 1.5 Profile: Q50 Upstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Downstream Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge method does not compute answers inside the bridge. River: Flag Creek Reach: 1 RS: 10.5 Profile: Q50 Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 9 Profile: Q50 Divided flow computed

Errors Warnings and Notes for Plan : Nat (Continued)

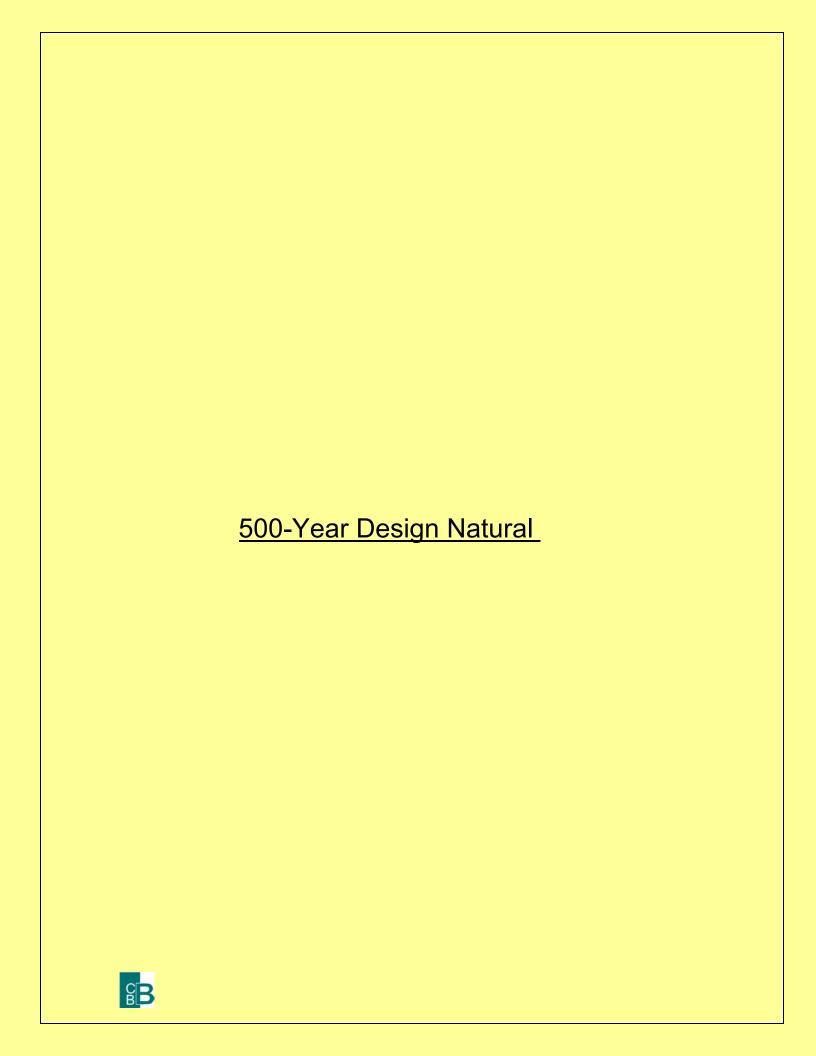
	g= =::= : : : : : : : : : : : : (+ = : : : : : = -)
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q50 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q50
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q50 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q50
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.



HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q100

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q100	2400.00	623.49	635.51	628.25	635.64	0.000270	2.92	950.98	280.69	0.17
1	3755	Q100	2400.00	622.11	635.48	628.03	635.53	0.000127	2.04	1643.34	515.20	0.12
1	3380	Q100	2400.00	622.32	635.36		635.45	0.000320	2.49	1087.81	302.19	0.14
1	3327	Q100	2400.00	622.04	635.28	627.82	635.42	0.000704	3.05	787.34	302.28	0.18
1	3288	Q100	2400.00	621.30	635.27	627.54	635.40	0.000259	2.85	843.03	86.69	0.16
1	3245		Bridge									
1	3206	Q100	2400.00	623.00	635.20	628.25	635.34	0.000321	3.06	784.28	86.50	0.18
1	3148	Q100	2400.00	622.99	635.18	627.70	635.33	0.000324	3.08	780.33	93.62	0.18
1	3081	Q100	2400.00	623.26	635.16	627.69	635.30	0.000327	2.95	813.13	102.86	0.18
1	2765	Q100	2400.00	623.30	635.10	628.22	635.20	0.000228	2.72	1050.86	280.56	0.16
1	2542	Q100	2400.00	620.99	634.98	627.45	635.14	0.000357	3.24	766.14	102.79	0.19
1	12.1	Q100	2400.00	622.92	634.75		634.94	0.000840	3.57	857.54	316.55	0.21
1	12	Q100	2400.00	621.48	634.75		634.90	0.000633	3.31	974.06	429.19	0.19
1	11	Q100	2400.00	619.25	634.65	626.04	634.70	0.000257	1.79	1536.50	787.17	0.10
1	10.5		Bridge									
1	10	Q100	2400.00	621.06	634.60	626.12	634.64	0.000246	1.73	1465.08	430.33	0.09
1	9.5	Q100	2500.00	621.02	634.55	626.41	634.63	0.000520	2.46	1325.99	435.13	0.14
1	9	Q100	2500.00	621.75	634.54	627.04	634.61	0.000364	2.05	1228.35	221.53	0.11
1	8	Q100	2500.00	623.25	634.50		634.55	0.000314	1.82	1365.58	219.09	0.11
1	7	Q100	2500.00	622.80	634.44	627.46	634.53	0.000241	1.61	1213.69	441.28	0.09
1	6	Q100	2500.00	621.94	634.34	627.67	634.44	0.000639	2.68	1576.20	783.16	0.15
1	5.5		Bridge									
1	5	Q100	2500.00	622.59	633.45	627.39	633.66	0.001293	3.85	762.26	113.02	0.22
1	4	Q100	2500.00	622.50	632.69	626.93	632.93	0.001484	4.01	670.47	168.34	0.23
1	3.5		Bridge									
1	3	Q100	2500.00	622.61	631.67	627.12	632.03	0.002573	4.86	519.37	251.96	0.30
1	2	Q100	2500.00	620.85	630.84		631.00	0.001412	3.73	978.60	316.72	0.22
1	1	Q100	2500.00	622.89	630.04		630.18	0.002496	4.10	1037.85	338.30	0.28
1	0.5	Q100	2500.00	621.72	629.42	627.85	629.46	0.001323	2.78	1916.73	803.44	0.20

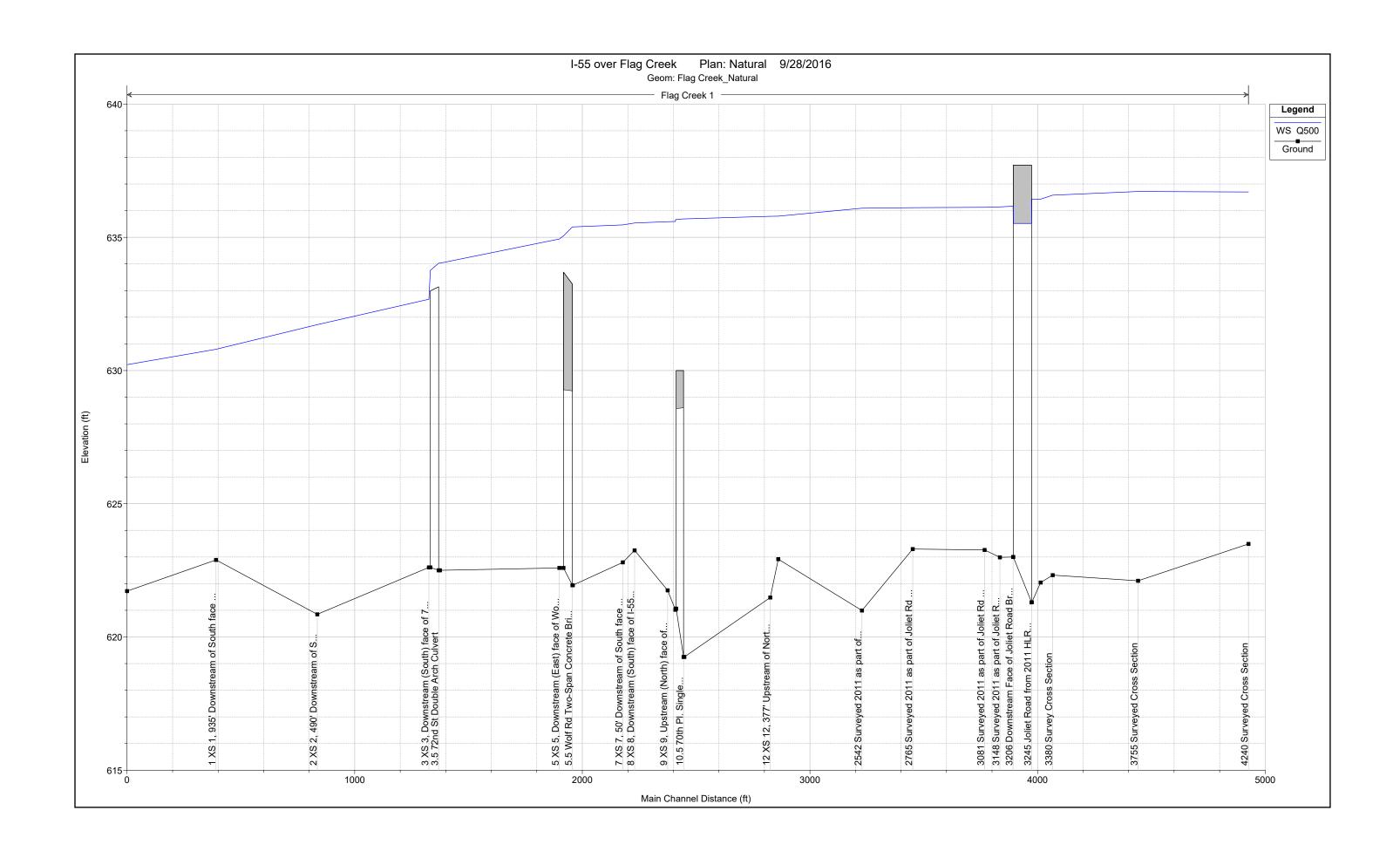
HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q100


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q100	635.64	635.51	0.13	0.09	0.02	0.80	2345.43	53.77	280.69
1	3755	Q100	635.53	635.48	0.05	0.07	0.00	6.13	1540.70	853.17	515.20
1	3380	Q100	635.45	635.36	0.09	0.02	0.01	2.93	2188.73	208.34	302.19
1	3327	Q100	635.42	635.28	0.14	0.02	0.01		2400.00		302.28
1	3288	Q100	635.40	635.27	0.13	0.00	0.00		2400.00		86.69
1	3245		Bridge								
1	3206	Q100	635.34	635.20	0.15	0.02	0.00		2400.00		86.50
1	3148	Q100	635.33	635.18	0.15	0.02	0.00		2400.00		93.62
1	3081	Q100	635.30	635.16	0.14	0.09	0.01		2400.00		102.86
1	2765	Q100	635.20	635.10	0.10	0.06	0.01	398.50	1830.81	170.70	280.56
1	2542	Q100	635.14	634.98	0.16	0.19	0.00		2342.08	57.92	102.79
1	12.1	Q100	634.94	634.75	0.19	0.02	0.01	48.06	2269.33	82.62	316.55
1	12	Q100	634.90	634.75	0.15	0.16	0.05	109.34	2131.54	159.12	429.19
1	11	Q100	634.70	634.65	0.04			530.34	1720.50	149.16	787.17
1	10.5		Bridge								
1	10	Q100	634.64	634.60	0.04	0.00	0.01	415.58	1802.08	182.34	430.33
1	9.5	Q100	634.63	634.55	0.09	0.01	0.01	187.73	2242.07	70.20	435.13
1	9	Q100	634.61	634.54	0.07	0.05	0.01	612.94	1834.51	52.55	221.53
1	8	Q100	634.55	634.50	0.05	0.01	0.01	355.63	2100.53	43.83	219.09
1	7	Q100	634.53	634.44	0.09	0.09	0.00	987.64	1277.28	235.08	441.28
1	6	Q100	634.44	634.34	0.09			100.15	2097.66	302.19	783.16
1	5.5		Bridge								
1	5	Q100	633.66	633.45	0.21	0.72	0.01	135.17	2231.35	133.48	113.02
1	4	Q100	632.93	632.69	0.24	0.02	0.12		2409.59	90.41	168.34
1	3.5		Bridge								
1	3	Q100	632.03	631.67	0.36	0.93	0.10		2461.59	38.41	251.96
1	2	Q100	631.00	630.84	0.16	0.81	0.00	867.68	1547.99	84.33	316.72
1	1	Q100	630.18	630.04	0.15	0.69	0.03	553.10	1105.05	841.86	338.30
1	0.5	Q100	629.46	629.42	0.04			408.57	456.86	1634.57	803.44

December Program Program Program 18.0 3240 Profiles of 100	Errors Warnings a	ind Notes for Plan: Nat
Watering The conveyagence and to light between conveyagence divided by downstream conveyagence) is seen than 0.7 or greater then 1.4. This may indicate the need for adults of the context		
belte: Malipe clinical depths are were found at this location. The critical depth with the lowest, valid, energy was used. Location: Row Flag Chee Reach 1: RB 2755 Profile C100 Marning: The convergence has beginned accessed to the control of		
Location. River Trag Creek Reach. 1 Ris 3755 Profite G100 Warring Company and to good great microrrespond read to good and the second of the		additional cross sections.
Marting The conveyance and option are for conveyance of wide of by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. Note: Martings critical applies were found at this location. The critical depth with the lowest, valid, energy was used. Location. The reflect applies were found at this location. The critical depth with the lowest, valid, energy was used. Note: Martings of the conveyance and option are conveyanced vided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for water of the conveyance into logative more conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for water of the conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Marting Divide for composition of a single value in the main channel. Note: Marting evident depth were found at this bodies. The critical depth with the lowest, valid, energy was used. Martings of the conveyance ratio of the bodies. The critical depth with the lowest, valid, energy was used. Martings of the conveyance and the conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional conveyance in the conveyance ratio of the lowest conveyance and the lowest con	Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Mote: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Flag Crise Reach: 1 RS 3380 Profite C100 Warning To conveyance into Location and Crise Reach: 1 RS 3380 Profite C100 Warning To Crise Reach: 1 RS 3380 Profite C100 Warning To Crise Reach: 1 RS 3380 Profite C100 Warning To Warning In values were competed for the strategy value in the main channel. Warning To Warning To Warning the Warning To Crise Reach: 1 RS 3287 Profite C100 Warning To Warnin	Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q100
Note: Control Note: Plag Crack Reach: 1 R5: 3300 Points: 0100 Warring: The conveyance and operation conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. 1 R5: 3300 Points: 0100 Warring: A make the conveyance and operation conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. 1 R5: 3227 Points: 0100 Warring: Divided for corripted for this cross-section. Warring: Divided for corripted for this cross-section. Note: Male Princip Cest Reach: 1 R5: 3227 Points: 0100 Warring: Divided for corripted for this cross-section. The critical eight with the lowest, valid, energy was used. Location. Note: Reach: 1 R5: 3228 Points: 0100 Warring: Divided for corripted for the cross-section. The critical eight with the lowest, valid, energy was used. Location. Rover Ring Creat Reach: 1 R5: 3228 Points: 0100 Warring: Divided for corripted for the cross-section of the cross-section of the cross-section of the cross-section. Rover Ring Creat Reach: 1 R5: 3238 Points: 0100 Warring: Rover Ring Creat Reach: 1 R5: 3238 Points: 0100 Warring: The Yeard method gives an involval answer. Em La upstream energy was less than the downstream energy. The program defaulted to the neat valid (user selected) method. If the Yarring involval are used involvation of the cross-section of the cross	Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Location: River Ting Creek Reach 1 RS 388 Profile G100 Morning To recoverage and option government of the company of the conveyage and option		additional cross sections.
Warning: The conveyance and cigesteam conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross societies. Note: Mainring's in value were composed to a single value in the main channel. Location: Note: File 2 order. Reach: 1 RS. 3327 Profice (1010) Warning: Divided flow complete for this cross-action. Mainring's in value were composed to a single value in the main channel. Location: Note: Margine conveyance and is controlled to a single value in the main channel. Location: Additional toxics sectors. Additional cross sectors. Add	Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Note: Mannings in values were composited to a single value in the main channel. Location: Rhow: Flag CoxeR Reach: 1 RS: 3327 Profile: C1000 Warning: The conveyance rato (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional control of the conveyance rato (upstream conveyance) will be the conveyance and the control of the conveyance rato (upstream conveyance) will be seen and control of the conveyance and the control of the control of the conveyance and the control of the cont		•
Mannings in values were composited to a single value in the main channel. Location. More Pring Croek Resourch 18: 83:32 Profile C100 Warning: Oblided thow complained for this cross-section. More Conveyages rate to playsteem conveyage divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Mornings in values were composited to a single value in the main channel. Note: Mornings in values were composited to a single value in the main channel. Note: Mortings critical depths were found at this southon. The ortifical depth with the lowest, valid, energy was used. Condition. Note: Mortings critical depths were found at this southon. The ortifical depth with the lowest, valid, water surface was used. Condition. Note: Mortings critical depths were found at this southon. The ortifical depth with the lowest, valid, water surface was used. Condition. Note: Variety and continued an invalid a family in the continued of the con		
Location Rever Flag Coek Reach: 1 RS 3322 Profile: 0100 Warning: The conveyance ratio (upstream conveyance) divided by downstream on the profile and control of the conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. Note: Mainting in values were composited to a single value in the main channel. Note: Multiple critical depths were found at its isociation. The critical depth with the lowest, valid, energy was used. Location: River: Flag Coek Reach: 1 RS 3288 Profile: 0100 Note: Multiple critical depths were found at its isociation. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Coek Reach: 1 RS 3245 Profile: 0100 Note: Multiple critical depths was a invaled answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user Varining: The the first formstream narver at the tridge, the upstream energy was less than the downstream energy. This is not physically possible, the information answer has been divergenced. Warning: Port for first first minima narver at the tridge, the upstream energy was consulted other than the downstream energy. This is not physically possible, the information answer has been divergenced. Varining: River: Plag Coek Reach: 1 RS 3245 Profile: 0100 Upstream. Note: Multiple critical depths with sever flag and the sociation. The critical depth with the lowest, valid, water surface was used. Location: River: Plag Coek Reach: 1 RS 3285 Profile: 0100 Upstream. Note: Multiple critical depths were found at its isociation. The critical depth with the lowest, valid, water surface was used. Location: River: Plag Coek Reach: 1 RS 3285 Profile: 0100 Published to the critical depth with the lowest, valid, water surface was used. Location: River: Plag Coek Reach: 1 RS 3286 Profile: 0100 Published Reach Published Coek Reach: 1 RS 3288 Profile: 0100 Published Reach Published Coek Reach: 1 RS 3288 Pr		
Warring To conveyage rate for lot cores-ectors. Warring Warring To conveyage rate for lot peters—conveyage divided by downstream conveyage is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note. Manings in values were composited to a single value in the main channel. Note. Manings in marked were composited to a single value in the main channel. Note. Manings in values were composited to a single value in the main channel. Note. Manings in values were composited to a single value in the main channel. Note. Mallips critical depths were found at this boation. The critical depth with the lowest, valid, energy was used. Warring The Yarried method gave an invalid answer. The upstream energy was to composite the program defaulted to the next valid (user sections). Warring The Yarried method gave an invalid answer. The upstream energy was composited lower than the downstream energy. The program defaulted to the next valid (user sections). Warring The Yarried method gave an invalid answer. The upstream energy was composited lower than the downstream energy. The is not physically possible, the number of the section of the sectio		
Warming. The conveyance rate (gesteam conveyance divided by domestream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The ordical depth with the lowest, valid, energy was used. Location. River. Flag Creak Reach: 1 RS: 3288 Profite: C1000 Note: Multiple critical depths were found at this location. The ordical depth with the lowest, valid, water surface was used. Location. River. Flag Creak Reach: 1 RS: 3288 Profite: C1000 Warming: The Yarmal mehod gave a invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user Yarming The Yarmal mehod gave as invalid answer. The upstream energy was consulted over the fine downstream energy. This is not physically possible, the international reasive that the day of the program defaulted to the next valid (user This yarmal mehod gave a invalid answer the control of the purpose control of the program defaulted to the next valid (user This yarmal mehod was the control of the purpose control of the program defaulted to the next valid (user International source that yarmal the purpose control of the purpose con		
Note: Mannings in values were composited to a single value in the main channel. Note: Mailtiple critical depths were found at this location. The critical depth with the lowest, valid, emergy was used. Location: Never Flag Creek Report. 1 RS 3285 Profile: Q100 Note: Mailtiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Never Flag Creek Report. 1 RS 3285 Profile: Q100 Warning: The Yarnell method gave an invasid answer. The upstream emergy was less than the downstream emergy. The program defaulted to the next valid (user selected profiled.) If the Yarnell method was the only one selected, the program will default to an energy based solution. Warning: For the final momentum answer at the bridge, the upstream emergy was computed lower than the downstream emergy. This is not physiologisely possible, the momentum answer as the ben diseageded. Note: Varnell answer is not valid if the water surface is above the low chord or if there is wair flow. The Yarnell answer has been disregarded. Note: Varnell answer is not valid if the water surface is above the low chord or if there is wair flow. The Parnell answer has been disregarded. Note: Mulliple critical depths were found at this bostion. The critical depth with the lowest, valid, water surface was used. Location: Rever Flag Croek Report. 1 RS 3285 Profile: Q100 Dispressor. Note: Mulliple critical depths were found at this bostion. The critical depth with the lowest, valid, water surface was used. Location: Rever Flag Croek Report. 1 RS 3260 Profile: Q100 Dispressor. Note: Mulliple critical depths were found at this bostion. The critical depth with the lowest, valid, water surface was used. Location: Rever Flag Croek Report. 1 RS 3260 Profile: Q100 Dispressor. Note: Mulliple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Rever Flag Croek Report. 1 RS 3260 Profile: Q100 Dispressor. Note: Mulliple critical		
Note: Miliple critical depths: were Comparisolet to a single value in the main channel. Note: Miliple critical depths: were County at this costant. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS 3288 Profile C 100 Note: Miliple critical depths: were County at this costant. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS 3245 Profile: 0.100 Warming: Profile Miliple critical depth was not valid and the variety of the Variety and the County of the Variety of the Variety and the Variety of the Variety o	_	
Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, vater surface was used. Note: The Yarnel method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user selected) method. If the Yarnel method was the only one selected, the program will default to an energy based solution. Warning: For the final momentum answer at the bridge, the upstream energy was less than the downstream energy. This is not physically possible, the momentum answer as the ben disregarded. Note: Momentum answer as not valid if the water surface is above the low chord or life their is were flow. The Yarnel answer has been disregarded. Note: Momentum answer as not valid if the water surface is above the low chord or life their is were flow. The Yarnel answer has been disregarded. Note: Momentum answer as not valid if the water surface is above the low chord or life the swir flow. The Yarnel answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, valer surface was used. Location. River: Flag Creek Reach: 1 RS: 3245 Profite: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, valer surface was used. Location. River: Flag Creek Reach: 1 RS: 3345 Profite: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location. River: Flag Creek Reach: 1 RS: 3345 Profite: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. River: Flag Creek Reach: 1 RS: 3545 Profite: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Loc		
Lication Nete: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Lication Nete: Taylor Ceek Reach: 1 RS 3245 Profile: 0100 Warning: The Yarnell method give an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user selected) method. If the Yarnell method give an invalid answer, The upstream energy was less than the downstream energy. The program defaulted to the next valid (user selected) method. If the Yarnell method give a few program will default to an energy based solution. Naming: For the final momentum answer at the being, the upstream energy. The program will default to an energy based solution. Naming: For the final momentum answer at the being, the upstream energy was compated over than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Note: Varied answer in sol valid if the water surface is above the low chord or if there is wer flow. The Yarnell answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Lication: Neve: Flag Creek Reach: 1 RS 3245 Profile: 0.100 Destream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Lication: Neve: Flag Creek Reach: 1 RS 3245 Profile: 0.100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Lication: Neve: Flag Creek Reach: 1 RS 3245 Profile: 0.100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical d		
Lication: River Flag Creek Reach : 1 RS :3245 Profile: 0100 Profile of 100 Profil		
Warning: The Yarnel method gave an invalid answer. The upstream energy was less than the downstream energy. The prosition of selected) method, if the Yarnel method was the only one selected, the program will default to an energy heade solution. Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the nonnerhum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the nonnerhum answer has been disregarded. Note: Varnel answer is not valid if the valer surface is above the low chord or if there is welf flow. The Yarnell answer has been disregarded. Note: Momentum answer is not valid fire valer surface is above the low chord or if there is welf flow. The Yarnell answer has been disregarded. Note: Momentum answer is not valid if the valer surface is above the low chord or if there is welf flow. The momentum answer has been disregarded. Note: Motified critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location. River, Flag Creek, Reach 1 1 RS 3245 Profile C100 Downstream. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location. Note: Page Creek Reach 1 RS		
selected) method. If the Yamel method was the only one selected, the program will default to an energy based soution. Note: Yamel answer is not valid if the water surface is above the low chord or if there is weri flow. The Yamel answer has been disregarded. Note: Morentum answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depths with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depths with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Note: Multiple critical depths were fo	Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q100
Warning: For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the momentum answer has been disregarded. Note: Varied lanswer is not valid if the water surface is above the low chord or if there is well flow. The Yarnell answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is well flow. The Yarnell answer has been disregarded. Location: River: Flag Creek Reach: 1 RS: 3245 Potfile: C100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3206 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3206 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 32148 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Note: River: Flag Creek Reach: 1 RS: 5258 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Note: River: Flag Creek Reach: 1 RS: 5258 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Note: River: Flag Creek Reach: 1 RS: 5258 Potfile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Note: River: Flag Creek Reach: 1 RS: 525 Potfile: C100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cr	Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
momentum answer has been disregarded. Note: Varied lanswer in sort valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3245 Profile: CI000 Downstream or Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3246 Profile: CI000 Downstream or Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3248 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3248 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3269 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: CI000 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 11 Profile: CI000 Note: Mu		selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Note: Momentum answer is not valid if the water surface is above the low chord or if there is wair flow. The Yarnell answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface as board. Note: Where Flag Creek Reach: 1 R St. 245 Profile: OI 00 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Where Flag Creek Reach: 1 R St. 2545 Profile: OI 00 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 R St. 255 F. Profile: OI 00 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 R St. 2542 Profile: OI 00 Warning: The conveyance ratio (upstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 R St. 12 Profile: OI 00 Warning: The conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need f		
Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Location: Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3245 Profile: Q100 Downstream. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3245 Profile: Q100 Downstream. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3149 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3014 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2755 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: All the conveyance ratio (upstheam conveyance) by least this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 15 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 105 Profile: Q100 Note:		
Location: River Filig Creek Reach: 1 RS: 3245 Profile: 0100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Filig Creek Reach: 1 RS: 3245 Profile: 0100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: River: Reach: 1 RS: 3245 Profile: 0100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: River: Reach: 1 RS: 3148 Profile: 0100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: River: Reach: 1 RS: 318 Profile: 0100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: River: Reach: 1 RS: 2758 Profile: 0100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: River: Reach: 1 RS: 2542 Profile: 0100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: River: Reach: 1 RS: 2542 Profile: 0100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Rips: Greek Reach: 1 RS: 11 Profile: 0100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3245 Profile: C100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3206 Profile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3148 Profile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3081 Profile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: C100 Warning: The conveyance ratio (upstream conveyance) siviled by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 124 Profile: C100 Warning: The conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Warning: Divided flow computed for this cross-section. Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 18 Profile: C100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.		>
Location: River Fing Creek Reach: 1 RS: 3245 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River Fing Creek Reach: 1 RS: 3206 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 3081 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 2562 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for a difficult of the critical depth were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 12 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for a difficult of the critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for a divided divided profile of the critical depth with the lowest, valid, water surface was used. Location: River Fing Creek Reach: 1 RS: 10.5 Profile: Q100 Warning: Divided flow computed for this cross-section. The critical depth with the lowest, valid, water surface was used. Note:		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3081 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: Q100 Marring: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Warning: Divided flow computed for this cross-section. Warning: Divided flow computed for this cross-section. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Marring: Multiple: Critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used f		
Location: River Fing Creek Reach: 1 RS: 3206 Frofie: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River Fing Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Fing Creek Reach: 1 RS: 2758 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Fing Creek Reach: 1 RS: 2758 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Fing Creek Reach: 1 RS: 2542 Profile: Q100 Marring: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Marring: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Fing Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Fing Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical d		·
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3091 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2752 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section inside the divided by downstream conveyance is less than 0.7 or greater than 1.4. This may indicate the need for the downstream exists and the conveyance is above		
Location: River Flag Creek Reach: 1 RS: 3148 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Flag Creek Reach: 1 RS: 3081 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. River Flag Creek Reach: 1 RS: 3081 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River Flag Creek Reach: 1 RS: 11.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above th		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 3881 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Momentum answer is not valid fire water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface		
Location: River: Flag Creek Reach: 1 RS: 3081 Profile: 0100 Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: 0100 Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: 0100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: 0100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: 0100 Note: Multiple ortical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 11 Profile: 0100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: Micross section inside the bridge at the upstream endinger or orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: 0100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: From the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. Note: River: Flag Creek Reach: 1 R		•
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2765 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Cre		
River: Flag Creek Reach: 1 RS: 2756 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Cocation: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Dystream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Downstream Note: Mu		
Location: River: Flag Creek Reach: 1 RS: 2542 Profile: Q100 Warning: The conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance) divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross-sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy ha	Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q100
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Warning: The conveyance flow or only the profile: Q100 Warning: Divided flow compute	Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
additional cross sections.	Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q100
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the l		
Location: River: Flag Creek Reach: 1 RS: 12 Profile: Q100 Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9. P		
Warning: Divided flow computed for this cross-section. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth		
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used		
Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Warning: The conveyance ratio (up	_	
Location: River: Flag Creek Reach: 1 RS: 11 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modelling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths wer	_	
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag C		
Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100		•
Note: Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded. Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, en		
Note: The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple		
Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Upstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Marning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional		•
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Marning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this loc		
bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Location: River: Flag Creek Reach: 1 RS: 10.5 Profile: Q100 Downstream Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.	Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Note: For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
selected bridge modeling method does not compute answers inside the bridge. Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Location: River: Flag Creek Reach: 1 RS: 10 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		,
Location: River: Flag Creek Reach: 1 RS: 9.5 Profile: Q100 Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Warning: Divided flow computed for this cross-section. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Location: River: Flag Creek Reach: 1 RS: 9 Profile: Q100 Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.	_	
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used. Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Location: River: Flag Creek Reach: 1 RS: 7 Profile: Q100 Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
additional cross sections. Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.	_	
Location: River: Flag Creek Reach: 1 RS: 6 Profile: Q100		
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.	Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location: River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100		•
Note: Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.		Varnell anguar is not valid if the water surface in above the law shord or if there is weir flow. The Varnell anguar has been disregarded

Errors Warnings and Notes for Plan : Nat (Continued)

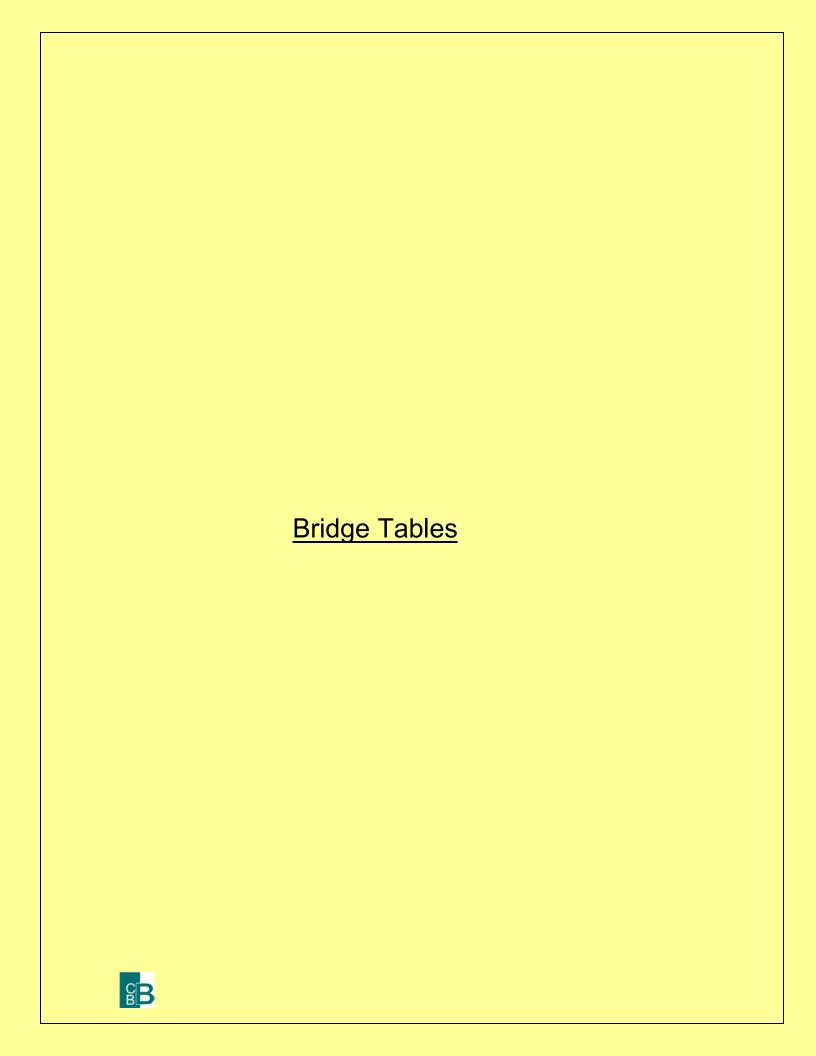
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q100 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The
	selected bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q100
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q100
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100
Warning:	For the final momentum answer at the bridge, the upstream energy was computed lower than the downstream energy. This is not physically possible, the
	momentum answer has been disregarded.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	Notes(60): This is an inside cross section of a perched bridge that has energy, low flow inside of the bridge and weir flow over the embankment. The reported
	hydraulics are based on the flow and area inside of the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q100 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	Notes(60): This is an inside cross section of a perched bridge that has energy, low flow inside of the bridge and weir flow over the embankment. The reported
	hydraulics are based on the flow and area inside of the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q100
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.



HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q500

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	4240	Q500	3350.00	623.49	636.70	629.21	636.89	0.000333	3.53	1157.70	724.40	0.20
1	3755	Q500	3350.00	622.11	636.72	629.08	636.76	0.000103	2.00	2301.23	553.28	0.11
1	3380	Q500	3350.00	622.32	636.58		636.69	0.000348	2.82	1395.60	451.80	0.15
1	3327	Q500	3350.00	622.04	636.43	628.89	636.65	0.000920	3.77	893.04	407.07	0.21
1	3288	Q500	3350.00	621.30	636.42	628.47	636.62	0.000358	3.55	942.82	92.11	0.19
1	3245		Bridge									
1	3206	Q500	3350.00	623.00	636.17	629.20	636.40	0.000458	3.86	868.03	86.50	0.21
1	3148	Q500	3350.00	622.99	636.14	628.64	636.37	0.000448	3.86	868.90	124.03	0.22
1	3081	Q500	3350.00	623.26	636.13	628.67	636.33	0.000481	3.65	916.62	112.52	0.23
1	2765	Q500	3350.00	623.30	636.11	629.27	636.21	0.000195	2.69	1486.60	423.14	0.15
1	2542	Q500	3350.00	620.99	636.09	628.47	636.16	0.000166	2.39	1725.94	317.12	0.13
1	12.1	Q500	3350.00	622.92	635.79		636.02	0.000956	4.10	1209.58	362.55	0.23
1	12	Q500	3350.00	621.48	635.79		635.98	0.000761	3.87	1244.64	471.15	0.21
1	11	Q500	3350.00	619.25	635.69	627.00	635.76	0.000232	1.81	1978.21	913.02	0.09
1	10.5		Bridge									
1	10	Q500	3350.00	621.06	635.67	626.94	635.72	0.000235	1.81	1813.57	547.36	0.09
1	9.5	Q500	3550.00	621.02	635.59	627.42	635.70	0.000637	2.91	1686.37	515.49	0.15
1	9	Q500	3550.00	621.75	635.59	627.93	635.68	0.000406	2.31	1462.14	226.23	0.12
1	8	Q500	3550.00	623.25	635.54		635.62	0.000371	2.12	1595.26	223.45	0.12
1	7	Q500	3550.00	622.80	635.47	628.49	635.59	0.000201	1.58	1512.41	521.14	0.09
1	6	Q500	3550.00	621.94	635.39	628.56	635.47	0.000598	2.77	2428.25	842.26	0.15
1	5.5		Bridge									
1	5	Q500	3550.00	622.59	634.94	628.48	635.18	0.001390	4.38	1365.61	531.26	0.23
1	4	Q500	3550.00	622.50	634.03	627.91	634.35	0.001748	4.76	1039.16	427.38	0.26
1	3.5		Bridge									
1	3	Q500	3550.00	622.61	632.68	628.10	633.06	0.002690	5.36	959.91	342.17	0.31
1	2	Q500	3550.00	620.85	631.72		631.92	0.001719	4.38	1260.17	324.10	0.25
1	1	Q500	3550.00	622.89	630.80		630.97	0.002735	4.61	1299.29	349.52	0.30
1	0.5	Q500	3550.00	621.72	630.22	628.10	630.26	0.001183	2.85	2593.24	904.16	0.19

HEC-RAS Plan: Nat River: Flag Creek Reach: 1 Profile: Q500


Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Vel Head	Frctn Loss	C & E Loss	Q Left	Q Channel	Q Right	Top Width
			(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft)
1	4240	Q500	636.89	636.70	0.19	0.08	0.04	3.94	3210.65	135.41	724.40
1	3755	Q500	636.76	636.72	0.04	0.06	0.01	21.18	1708.76	1620.06	553.28
1	3380	Q500	636.69	636.58	0.11	0.03	0.01	18.97	2794.64	536.40	451.80
1	3327	Q500	636.65	636.43	0.22	0.02	0.01	1.87	3348.13		407.07
1	3288	Q500	636.62	636.42	0.20				3350.00		92.11
1	3245		Bridge								
1	3206	Q500	636.40	636.17	0.23	0.03	0.00		3350.00		86.50
1	3148	Q500	636.37	636.14	0.23	0.03	0.01		3350.00		124.03
1	3081	Q500	636.33	636.13	0.21	0.09	0.03		3350.00		112.52
1	2765	Q500	636.21	636.11	0.09	0.04	0.01	1054.15	2011.20	284.65	423.14
1	2542	Q500	636.16	636.09	0.07	0.12	0.02	1332.85	1942.18	74.97	317.12
1	12.1	Q500	636.02	635.79	0.23	0.03	0.01	247.32	2908.46	194.22	362.55
1	12	Q500	635.98	635.79	0.20	0.17	0.07	318.98	2759.73	271.30	471.15
1	11	Q500	635.76	635.69	0.05			1038.41	1910.84	400.76	913.02
1	10.5		Bridge								
1	10	Q500	635.72	635.67	0.06	0.00	0.02	868.24	2068.66	413.10	547.36
1	9.5	Q500	635.70	635.59	0.11	0.02	0.01	406.27	2920.80	222.93	515.49
1	9	Q500	635.68	635.59	0.09	0.06	0.01	1162.61	2284.42	102.98	226.23
1	8	Q500	635.62	635.54	0.08	0.01	0.01	734.54	2724.37	91.09	223.45
1	7	Q500	635.59	635.47	0.13	0.10	0.02	1657.02	1382.47	510.52	521.14
1	6	Q500	635.47	635.39	0.08			280.42	2408.30	861.28	842.26
1	5.5		Bridge								
1	5	Q500	635.18	634.94	0.25	0.81	0.02	304.25	2918.26	327.49	531.26
1	4	Q500	634.35	634.03	0.32				3267.35	282.65	427.38
1	3.5		Bridge								
1	3	Q500	633.06	632.68	0.39	1.05	0.09		3049.15	500.85	342.17
1	2	Q500	631.92	631.72	0.20	0.94	0.01	1215.87	2005.37	328.77	324.10
1	1	Q500	630.97	630.80	0.18	0.67	0.04	974.24	1380.76	1195.00	349.52
1	0.5	Q500	630.26	630.22	0.04			643.25	526.98	2379.77	904.16

Errors Warnings	and Notes for Plan: Nat
Location:	River: Flag Creek Reach: 1 RS: 4240 Profile: Q500
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3755 Profile: Q500
Warning:	Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3380 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
Note:	additional cross sections.
Location:	Manning's n values were composited to a single value in the main channel. River: Flag Creek Reach: 1 RS: 3327 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
vvarning.	additional cross sections.
Note:	Manning's n values were composited to a single value in the main channel.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3288 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q500
Warning:	The Yarnell method gave an invalid answer. The upstream energy was less than the downstream energy. The program defaulted to the next valid (user
	selected) method. If the Yarnell method was the only one selected, the program will default to an energy based solution.
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3245 Profile: Q500 Downstream
Note: Location:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. River: Flag Creek Reach: 1 RS: 3206 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3148 Profile: 0500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 3081 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2765 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 2542 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location: Warning:	River: Flag Creek Reach: 1 RS: 12 Profile: Q500 Divided flow computed for this cross-section.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
warriing.	additional cross sections.
Location:	River: Flag Creek Reach: 1 RS: 11 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 10.5 Profile: Q500 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy have been projected from the downstream cross section. The
Lagation	selected bridge modeling method does not compute answers inside the bridge.
Location: Warning:	River: Flag Creek Reach: 1 RS: 10 Profile: Q500 The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
warning.	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 9.5 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 9 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
Location:	River: Flag Creek Reach: 1 RS: 7 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, energy was used.
	Diver Flag Coral, Decak 4 DC: C. Decflag OFOC
Location:	River: Flag Creek Reach: 1 RS: 6 Profile: Q500

Errors Warnings and Notes for Plan : Nat (Continued)

Erroro rranningo	valid Notes for Flair . Nat (Gorialnaed)
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500
Note:	Yarnell answer is not valid if the water surface is above the low chord or if there is weir flow. The Yarnell answer has been disregarded.
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is above the minimum elevation required for orifice flow. The orifice flow equation was used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 5.5 Profile: Q500 Downstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface is based on critical depth over the weir. The energy has been projected.
Location:	River: Flag Creek Reach: 1 RS: 5 Profile: Q500
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 4 Profile: Q500
Warning:	The energy equation could not be balanced within the specified number of iterations. The program selected the water surface that had the least amount of
	error between computed and assumed values.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500
Note:	Momentum answer is not valid if the water surface is above the low chord or if there is weir flow. The momentum answer has been disregarded.
Note:	The downstream water surface is below the minimum elevation for pressure flow. The sluice gate equations were used for pressure flow.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500 Upstream
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the upstream end, the water surface and energy have been projected from the upstream cross section. The selected
	bridge modeling method does not compute answers inside the bridge.
Location:	River: Flag Creek Reach: 1 RS: 3.5 Profile: Q500 Downstream
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Note:	For the cross section inside the bridge at the downstream end, the water surface and energy are based on critical depth over the weir.
Location:	River: Flag Creek Reach: 1 RS: 3 Profile: Q500
Warning:	The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.
Note:	Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Location:	River: Flag Creek Reach: 1 RS: 1 Profile: Q500
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for
	additional cross sections.

HEC-RAS Plan: Nat River: Flag Creek Reach: 1

Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)
1	3245	Q10	632.53	635.52	774.90		1260.00	637.72		0.04
1	3245	Q50	634.65	635.52	774.90		2000.00	637.72		0.05
1	3245	Q100	635.40	635.52	774.90		2400.00	637.72		0.05
1	3245	Q500	636.62	635.52	774.90	636.42	3350.00	637.72		0.22
1	10.5	Q10	631.89	628.60	392.02	631.84	1260.00	632.01		0.21
1	10.5	Q50	633.99	628.60	392.02		2000.00	632.01	709.91	0.08
1	10.5	Q100	634.70	628.60	392.02		2400.00	632.01	1252.87	0.05
1	10.5	Q500	635.76	628.60	392.02		3350.00	632.01	1605.07	0.04
1	5.5	Q10	631.36	629.24	325.83	631.27	1310.00	633.70		0.27
1	5.5	Q50	633.68	629.24	325.83	633.56	2100.00	633.70		0.82
1	5.5	Q100	634.44	629.24	325.83		2500.00	633.70	421.65	0.77
1	5.5	Q500	635.47	629.24	325.83		3550.00	633.70	2008.84	0.29
1	3.5	Q10	630.53	633.14	381.67		1310.00	632.44		0.33
1	3.5	Q50	632.14	633.14	381.67		2100.00	632.44		0.67
1	3.5	Q100	632.93	633.14	381.67		2500.00	632.44	27.10	0.90
1	3.5	Q500	634.35	633.14	381.67	634.83	3550.00	632.44	771.73	1.29

HEC-RAS Plan: Nat River: Flag Creek Reach: 1

Reach	River Sta	Profile	E.G. US.	W.S. US.	Br Sel Method	Energy EG	Momen. EG	Yarnell EG	WSPRO EG	Prs O EG	Prs/Wr EG	Energy/Wr EG
			(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
1	3245	Q10	632.53	632.47	Energy only	632.53						
1	3245	Q50	634.65	634.55	Energy only	634.65						
1	3245	Q100	635.40	635.27	Energy only	635.40						
1	3245	Q500	636.62	636.42	Press Only	636.58				636.62		
1	10.5	Q10	631.89	631.84	Press Only	631.95				631.89		
1	10.5	Q50	633.99	633.95	Press/Weir	634.30				634.51	633.99	
1	10.5	Q100	634.70	634.65	Press/Weir	634.96				635.51	634.70	
1	10.5	Q500	635.76	635.69	Press/Weir	635.99				637.44	635.76	
1	5.5	Q10	631.36	631.27	Press Only	631.67				631.36		
1	5.5	Q50	633.68	633.56	Press Only	634.40				633.68		
1	5.5	Q100	634.44	634.34	Press/Weir	635.26				634.88	634.44	
1	5.5	Q500	635.47	635.39	Press/Weir	636.35				637.82	635.47	
1	3.5	Q10	630.53	630.41	Energy only	630.53						
1	3.5	Q50	632.14	631.93	Energy only	632.14						
1	3.5	Q100	632.93	632.69	Energy/Weir	632.95						632.93
1	3.5	Q500	634.35	634.03	Press/Weir	635.00				635.04	634.35	

HEC-RAS Plan: Nat River: Flag Creek Reach: 1

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	3327	Q10	632.55	632.47	626.31	0.01	0.01	105.95		1260.00		2.29
1	3327	Q50	634.67	634.56	627.33	0.01	0.01	256.98		2000.00		2.76
1	3327	Q100	635.42	635.28	627.82	0.02	0.01	302.28		2400.00		3.05
1	3327	Q500	636.65	636.43	628.89	0.02	0.01	407.07	1.87	3348.13		3.77
1	3288	Q10	632.53	632.47	626.18	0.00	0.00	86.69		1260.00		2.10
1	3288	Q50	634.65	634.55	627.09	0.00	0.00	86.69		2000.00		2.56
1	3288	Q100	635.40	635.27	627.54	0.00	0.00	86.69		2400.00		2.85
1	3288	Q500	636.62	636.42	628.47			92.11		3350.00		3.55
1	3245 BR U	Q10	632.53	632.46	626.24	0.03	0.01	83.69		1260.00		2.19
1	3245 BR U	Q50	634.65	634.54	627.20	0.03	0.01	83.69		2000.00		2.67
1	3245 BR U	Q100	635.39	635.26	627.64	0.03	0.01	83.69		2400.00		2.97
1	3245 BR U	Q500	636.62	635.52	628.62			83.69		3350.00		4.03
1	3245 BR D	Q10	632.50	632.41	627.11	0.00	0.00	83.50		1260.00		2.45
1	3245 BR D	Q50	634.61	634.48	628.03	0.00	0.01	83.50		2000.00		2.91
1	3245 BR D	Q100	635.35	635.19	628.48	0.00	0.01	83.50		2400.00		3.21
1	3245 BR D	Q500	636.40	635.52	629.43			83.50		3350.00		4.32
1	3206	Q10	632.49	632.41	626.94	0.01	0.00	86.50		1260.00		2.32
1	3206	Q50	634.61	634.49	627.85	0.02	0.00	86.50		2000.00		2.77
1	3206	Q100	635.34	635.20	628.25	0.02	0.00	86.50		2400.00		3.06
1	3206	Q500	636.40	636.17	629.20	0.03	0.00	86.50		3350.00		3.86
1	3148	Q10	632.48	632.40	626.37	0.02	0.00	78.17		1260.00		2.29
1	3148	Q50	634.59	634.47	627.27	0.02	0.00	85.92		2000.00		2.78
1	3148	Q100	635.33	635.18	627.70	0.02	0.00	93.62		2400.00		3.08
1	3148	Q500	636.37	636.14	628.64	0.03	0.01	124.03		3350.00		3.86
1	12	Q10	632.10	631.99		0.18	0.03	124.85	0.00	1249.86	10.14	2.69
1	12	Q50	634.20	634.07		0.16	0.05	401.32	31.89	1860.44	107.67	3.10
1	12	Q100	634.90	634.75		0.16	0.05	429.19	109.34	2131.54	159.12	3.31
1	12	Q500	635.98	635.79		0.17	0.07	471.15	318.98	2759.73	271.30	3.87
							-			-		
1	11	Q10	631.89	631.84	624.48			491.61		1249.18	10.82	1.77
1	11	Q50	633.99	633.95				705.33	273.57	1646.32	80.10	1.83
1	11	Q100	634.70	634.65				787.17	530.34	1720.50	149.16	1.79

HEC-RAS Plan: Nat River: Flag Creek Reach: 1 (Continued)

Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	11	Q500	635.76	635.69	627.00			913.02	1038.41	1910.84	400.76	1.81
1	10.5 BR U	Q10	631.89	628.60	624.48					1260.00		3.21
1	10.5 BR U	Q50	633.99	633.95	625.57			650.71	600.01	941.11	5.78	2.17
1	10.5 BR U	Q100	634.69	634.65	626.04			745.05	833.48	1009.13	122.91	2.03
1	10.5 BR U	Q500	635.74	635.69	627.00			856.50	869.63	1071.42	357.88	1.81
1	10.5 BR D	Q10	631.68	628.57	624.79					1260.00		2.98
1	10.5 BR D	Q50	633.99	633.87	625.64			232.36	600.01	941.11	5.78	2.01
1	10.5 BR D	Q100	634.69	634.60	626.11			326.76	833.48	1009.13	122.91	1.88
1	10.5 BR D	Q500	635.72	635.67	626.93			432.80	869.63	1071.42	357.88	1.67
	10.0 BKB	Q000	000.72	000.07	020.00			402.00	000.00	107 1.42	007.00	1.07
1	10	Q10	631.68	631.64	624.79	0.00	0.01	126.89	9.76	1248.89	1.36	1.68
1	10	Q50	633.92	633.87	625.64	0.00	0.01	351.57	200.55	1726.21	73.24	1.78
1	10	Q100	634.64	634.60	626.12	0.00	0.01	430.33	415.58	1802.08	182.34	1.73
1	10	Q500	635.72	635.67	626.94	0.00	0.02	547.36	868.24	2068.66	413.10	1.81
1	9.5	Q10	631.67	631.61	625.08	0.02	0.00	118.20	3.34	1306.66		2.01
1	9.5	Q50	633.91	633.83	626.01	0.01	0.01	345.08	93.87	1979.12	27.01	2.34
1	9.5	Q100	634.63	634.55	626.41	0.01	0.01	435.13	187.73	2242.07	70.20	2.46
1	9.5	Q500	635.70	635.59	627.42	0.02	0.01	515.49	406.27	2920.80	222.93	2.91
1	7	Q10	631.54	631.46	626.00	0.17	0.00	138.77	95.78	1196.14	18.09	2.20
1	7	Q50	633.80	633.72	627.00	0.10	0.01	265.16	661.07	1319.26	119.67	1.80
1	7	Q100	634.53	634.44	627.46	0.09	0.00	441.28	987.64	1277.28	235.08	1.61
1	7	Q500	635.59	635.47	628.49	0.10	0.02	521.14	1657.02	1382.47	510.52	1.58
1	6	Q10	631.36	631.27	626.05			102.34	7.38	1287.61	15.01	2.40
1	6	Q50	633.68	633.56	627.28			447.04	28.08	2031.74	40.18	2.82
1	6	Q100	634.44	634.34	627.67			783.16	100.15	2097.66	302.19	2.68
1	6	Q500	635.47	635.39	628.56			842.26	280.42	2408.30	861.28	2.77
1	5.5 BR U	Q10	631.36	629.24	626.39				0.29	1306.01	3.69	3.95
1	5.5 BR U	Q50	633.68	629.24	627.59				0.47	2093.61	5.92	6.33
1	5.5 BR U	Q100	634.43	634.34	627.98			325.21	327.16	2147.69	23.97	5.84
1	5.5 BR U	Q500	635.47	635.39	628.87			534.94	1086.06	1987.17	473.70	4.40
1	5.5 BR D	Q10	631.09	629.28	626.17				10.29	1276.31	23.39	4.24

HEC-RAS Plan: Nat River: Flag Creek Reach: 1 (Continued)

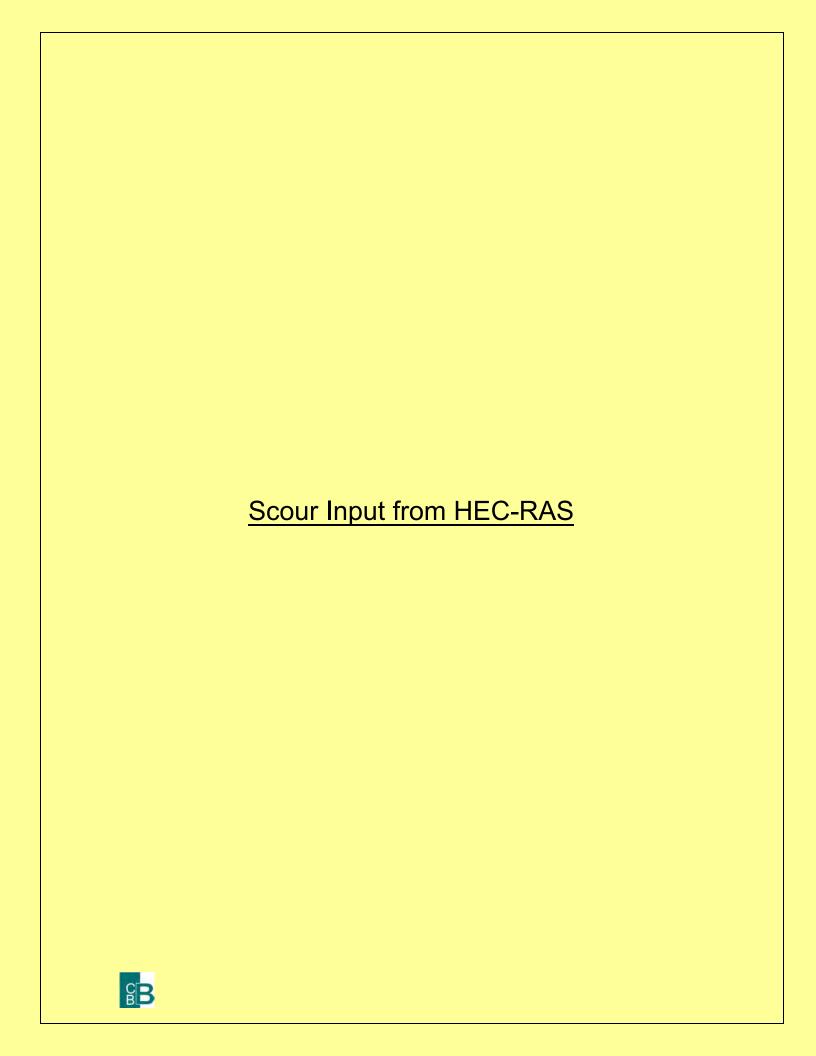
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
1	5.5 BR D	Q50	632.85	629.28	627.24				16.50	2046.00	37.50	6.80
1	5.5 BR D	Q100	634.43	634.34	627.70			332.71	343.02	2100.57	55.23	6.51
1	5.5 BR D	Q500	635.47	635.05	628.84			437.03	1097.82	1952.23	496.88	5.10
1	5	Q10	631.09	630.97	625.96	0.56	0.00	92.62	31.51	1239.35	39.14	2.85
1	5	Q50	632.85	632.67	626.96	0.70	0.01	106.57	92.89	1910.53	96.59	3.58
1	5	Q100	633.66	633.45	627.39	0.72	0.01	113.02	135.17	2231.35	133.48	3.85
1	5	Q500	635.18	634.94	628.48	0.81	0.02	531.26	304.25	2918.26	327.49	4.38
1	4	Q10	630.53	630.41	625.60	0.01	0.04	92.71		1292.25	17.75	2.84
1	4	Q50	632.14	631.93	626.52	0.02	0.09	102.58		2061.25	38.75	3.73
1	4	Q100	632.93	632.69	626.93	0.02	0.12	168.34		2409.59	90.41	4.01
1	4	Q500	634.35	634.03	627.91			427.38		3267.35	282.65	4.76
1	3.5 BR U	Q10	630.48	630.24	625.67	0.20	0.01	34.13		1310.00		3.98
1	3.5 BR U	Q50	632.04	631.54	626.65	0.38	0.02	28.48		2100.00		5.67
1	3.5 BR U	Q100	632.79	632.15	627.10	0.52	0.02	17.54		2472.90		6.43
1	3.5 BR U	Q500	634.35	634.03	628.19			246.49		2778.27	772.54	7.07
1	3.5 BR D	Q10	630.28	630.00	625.89	0.02	0.06	35.44		1310.00		4.19
1	3.5 BR D	Q50	631.64	631.07	626.88	0.03	0.14	31.60		2100.00		6.03
1	3.5 BR D	Q100	632.24	631.52	627.33	0.03	0.18	27.53		2472.90		6.84
1	3.5 BR D	Q500	634.11	633.76	628.41			227.63		2778.27	772.54	7.28
1	3	Q10	630.20	630.05	625.82	0.51	0.04	100.35		1293.02	16.98	3.17
1	3	Q50	631.47	631.18	626.73	0.81	0.08	188.65		2069.05	30.95	4.34
1	3	Q100	632.03	631.67	627.12	0.93	0.10	251.96		2461.59	38.41	4.86
1	3	Q500	633.06	632.68	628.10	1.05	0.09	342.17		3049.15	500.85	5.36
1	2	Q10	629.65	629.58		0.49	0.00	301.04	422.70	874.44	12.85	2.46
1	2	Q50	630.58	630.45		0.75	0.00	313.39	726.07	1349.72	24.22	3.40
1	2	Q100	631.00	630.84		0.81	0.00	316.72	867.68	1547.99	84.33	3.73
1	2	Q500	631.92	631.72		0.94	0.01	324.10	1215.87	2005.37	328.77	4.38

TAB E

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 13.E
	PROPOSED CONDITIONS
CB	

PROPOSED ANALYSIS

There are no proposed modifications to the existing structure. Please refer to the existing conditions analysis in Section 13 C.


TAB 14

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 14
	SCOUR ANALYSIS
CB	

SCOUR CALCULATIONS

Soil boring data is provided in the historic 1962 plans provided in Section 10. No current borings for the streambed at the structure are available.

1962 borings indicate a mix of soils at the streambed level, including stiff silty clay and sandy loam.

Plan: Ex Flag Creek 1 RS: 10 Profile: Q100

E.G. Elev (ft)	635.30	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.03	Wt. n-Val.	0.022	0.063	0.030
W.S. Elev (ft)	635.27	Reach Len. (ft)	1.00	1.00	1.00
Crit W.S. (ft)	626.12	Flow Area (sq ft)	336.63	1105.22	240.20
E.G. Slope (ft/ft)	0.000156	Area (sq ft)	336.63	1105.22	387.53
Q Total (cfs)	2400.00	Flow (cfs)	552.30	1590.25	257.45
Top Width (ft)	503.40	Top Width (ft)	123.55	99.20	280.65
Vel Total (ft/s)	1.43	Avg. Vel. (ft/s)	1.64	1.44	1.07
Max Chl Dpth (ft)	14.21	Hydr. Depth (ft)	2.72	11.14	2.29
Conv. Total (cfs)	191990.2	Conv. (cfs)	44181.4	127213.5	20595.3
Length Wtd. (ft)	1.00	Wetted Per. (ft)	124.79	102.52	105.46
Min Ch El (ft)	621.06	Shear (lb/sq ft)	0.03	0.11	0.02
Alpha	1.04	Stream Power (lb/ft s)	535.10	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	19.37	28.28	26.16
C & E Loss (ft)	0.01	Cum SA (acres)	4.85	3.21	15.65

Plan: Ex Flag Creek 1 RS: 10 Profile: Q500

E.G. Elev (ft)	636.37	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.05	Wt. n-Val.	0.021	0.063	0.030
W.S. Elev (ft)	636.33	Reach Len. (ft)	1.00	1.00	1.00
Crit W.S. (ft)	626.94	Flow Area (sq ft)	470.09	1210.33	351.46
E.G. Slope (ft/ft)	0.000158	Area (sq ft)	470.09	1210.33	741.26
Q Total (cfs)	3350.00	Flow (cfs)	1003.82	1858.50	487.68
Top Width (ft)	602.88	Top Width (ft)	128.04	99.20	375.64
Vel Total (ft/s)	1.65	Avg. Vel. (ft/s)	2.14	1.54	1.39
Max Chl Dpth (ft)	15.26	Hydr. Depth (ft)	3.67	12.20	3.35
Conv. Total (cfs)	266792.3	Conv. (cfs)	79944.0	148010.1	38838.3
Length Wtd. (ft)	1.00	Wetted Per. (ft)	129.41	102.52	105.46
Min Ch El (ft)	621.06	Shear (lb/sq ft)	0.04	0.12	0.03
Alpha	1.09	Stream Power (lb/ft s)	535.10	0.00	0.00
Frctn Loss (ft)	0.00	Cum Volume (acre-ft)	25.29	31.66	44.74
C & E Loss (ft)	0.01	Cum SA (acres)	6.53	3.19	20.73

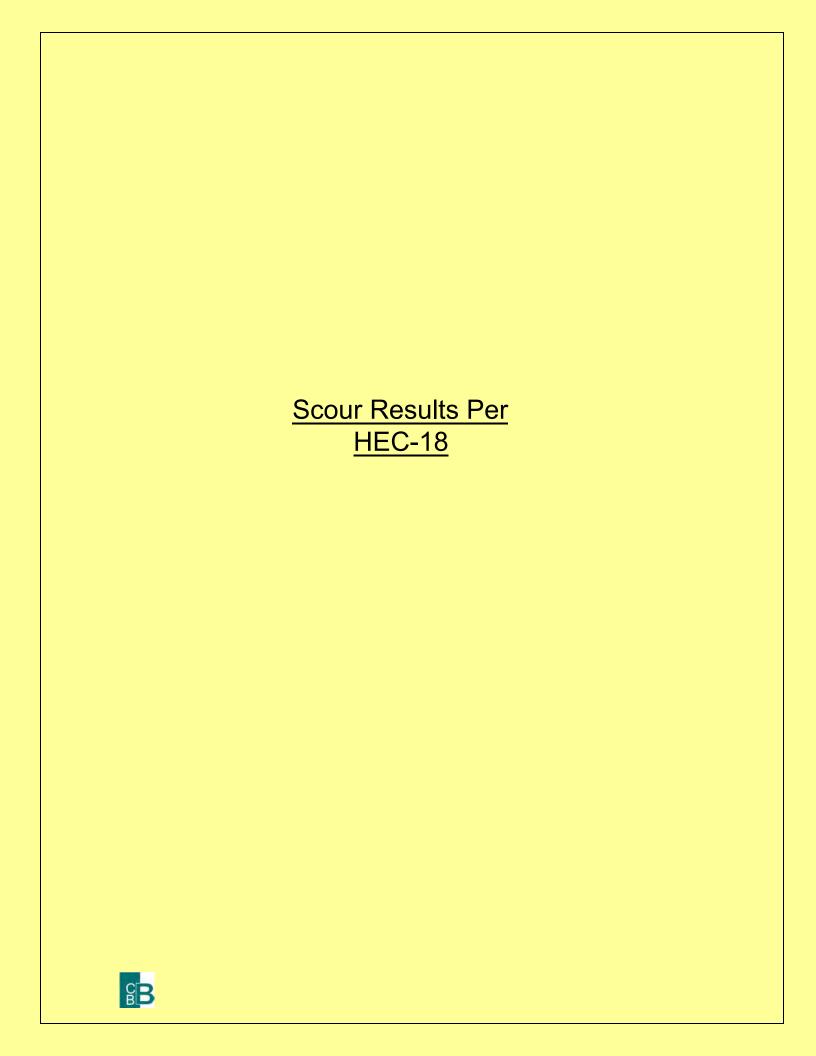
Plan: Ex Flag Creek 1 RS: 9 Profile: Q100

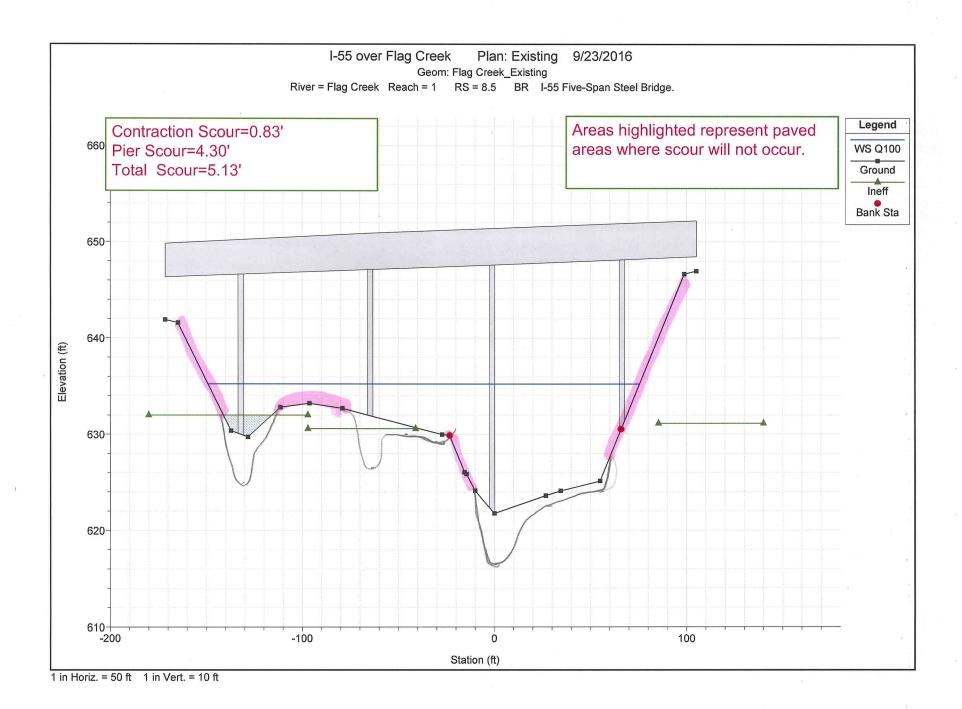
E.G. Elev (ft)	635.27	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.05	Wt. n-Val.	0.028	0.063	0.013
W.S. Elev (ft)	635.22	Reach Len. (ft)	1.00	1.00	1.00
Crit W.S. (ft)	627.04	Flow Area (sq ft)	401.72	955.68	22.31
E.G. Slope (ft/ft)	0.000246	Area (sq ft)	436.37	955.68	22.31
Q Total (cfs)	2500.00	Flow (cfs)	752.92	1681.49	65.59
Top Width (ft)	224.59	Top Width (ft)	125.85	89.20	9.54
Vel Total (ft/s)	1.81	Avg. Vel. (ft/s)	1.87	1.76	2.94
Max Chl Dpth (ft)	13.47	Hydr. Depth (ft)	3.19	10.71	2.34
Conv. Total (cfs)	159461.8	Conv. (cfs)	48024.9	107253.5	4183.5
Length Wtd. (ft)	1.00	Wetted Per. (ft)	127.18	92.08	10.62

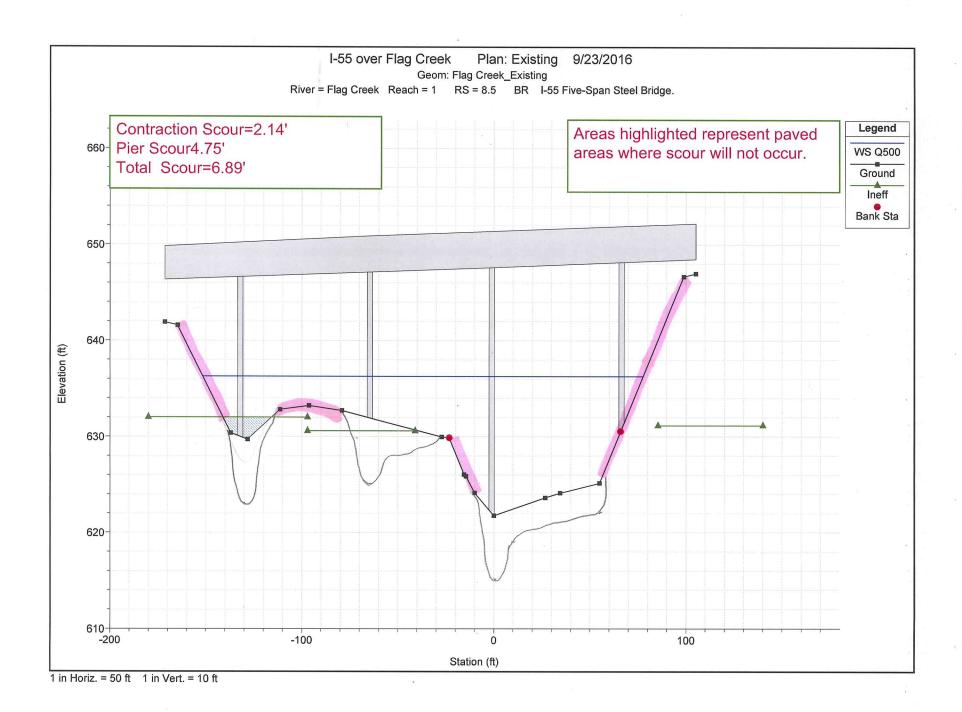
Plan: Ex Flag Creek 1 RS: 9 Profile: Q100 (Continued)

Min Ch El (ft)	621.75	Shear (lb/sq ft)	0.05	0.16	0.03
Alpha	1.03	Stream Power (lb/ft s)	105.10	0.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)	19.14	27.51	26.01
C & E Loss (ft)		Cum SA (acres)	4.75	3.14	15.58

Plan: Ex Flag Creek 1 RS: 9 Profile: Q500


E.G. Elev (ft)	636.35	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.08	Wt. n-Val.	0.027	0.063	0.013
W.S. Elev (ft)	636.27	Reach Len. (ft)	1.00	1.00	1.00
Crit W.S. (ft)	627.93	Flow Area (sq ft)	535.21	1049.34	33.45
E.G. Slope (ft/ft)	0.000285	Area (sq ft)	569.86	1049.34	33.45
Q Total (cfs)	3550.00	Flow (cfs)	1314.16	2114.75	121.09
Top Width (ft)	229.32	Top Width (ft)	128.44	89.20	11.67
Vel Total (ft/s)	2.19	Avg. Vel. (ft/s)	2.46	2.02	3.62
Max Chl Dpth (ft)	14.52	Hydr. Depth (ft)	4.17	11.76	2.87
Conv. Total (cfs)	210401.1	Conv. (cfs)	77887.3	125337.0	7176.9
Length Wtd. (ft)	1.00	Wetted Per. (ft)	129.98	92.08	13.00
Min Ch El (ft)	621.75	Shear (lb/sq ft)	0.07	0.20	0.05
Alpha	1.06	Stream Power (lb/ft s)	105.10	0.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)	24.96	30.81	44.52
C & E Loss (ft)		Cum SA (acres)	6.43	3.12	20.66


Plan: Ex Flag Creek 1 RS: 8.5 BR U Profile: Q100


E.G. Elev (ft)	635.27	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.06	Wt. n-Val.	0.027	0.063	0.013
W.S. Elev (ft)	635.21	Reach Len. (ft)	143.00	143.00	143.00
Crit W.S. (ft)	627.19	Flow Area (sq ft)	382.47	913.66	14.69
E.G. Slope (ft/ft)	0.000372	Area (sq ft)	411.63	913.66	14.69
Q Total (cfs)	2500.00	Flow (cfs)	851.14	1612.62	36.24
Top Width (ft)	213.53	Top Width (ft)	120.32	85.48	7.74
Vel Total (ft/s)	1.91	Avg. Vel. (ft/s)	2.23	1.77	2.47
Max Chl Dpth (ft)	13.45	Hydr. Depth (ft)	3.18	10.69	1.90
Conv. Total (cfs)	129578.0	Conv. (cfs)	44115.6	83583.9	1878.5
Length Wtd. (ft)	143.00	Wetted Per. (ft)	138.59	119.61	12.42
Min Ch El (ft)	621.76	Shear (lb/sq ft)	0.06	0.18	0.03
Alpha	1.04	Stream Power (lb/ft s)	105.10	0.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)	19.13	27.48	26.01
C & E Loss (ft)		Cum SA (acres)	4.75	3.14	15.58

Plan: Ex Flag Creek 1 RS: 8.5 BR U Profile: Q500

E.G. Elev (ft)	636.34	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.09	Wt. n-Val.	0.026	0.063	0.013
W.S. Elev (ft)	636.25	Reach Len. (ft)	143.00	143.00	143.00
Crit W.S. (ft)	628.10	Flow Area (sq ft)	509.20	1002.74	23.86
E.G. Slope (ft/ft)	0.000436	Area (sq ft)	538.36	1002.74	23.86
Q Total (cfs)	3550.00	Flow (cfs)	1472.34	2002.79	74.87
Top Width (ft)	218.23	Top Width (ft)	122.89	85.48	9.86
Vel Total (ft/s)	2.31	Avg. Vel. (ft/s)	2.89	2.00	3.14
Max Chl Dpth (ft)	14.49	Hydr. Depth (ft)	4.14	11.73	2.42
Conv. Total (cfs)	170051.3	Conv. (cfs)	70527.8	95937.3	3586.2
Length Wtd. (ft)	143.00	Wetted Per. (ft)	145.54	122.74	15.82
Min Ch El (ft)	621.76	Shear (lb/sq ft)	0.10	0.22	0.04
Alpha	1.11	Stream Power (lb/ft s)	105.10	0.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)	24.94	30.78	44.52
C & E Loss (ft)		Cum SA (acres)	6.43	3.11	20.66

Chapter 6.2.1 Critical Velocity for Clear Water vs. Live Bed Contraction Scour

Stream: Route \ County: S.N. :

user input

100-Year channel or overbank

Storm Event: 100-Year

V_c =

 K_u = 11.17 English units y = 11.14 Average depth of flow upstream of the bridge, ft D_{50} = 0.0007 Grain size, feet

V₁₀₀ = 1.44 Mean velocity, channel fps

If V_c > V₁₀₀, clear water scour exists.

If $V_{100} > V_c$, live bed scour exists.

$$V_c = K_u y^{1/6} D^{1/3}$$

1.48

Eq. 6.1

Chapter 6.2.1 Critical Velocity for Clear Water vs. Live Bed Contraction Scour Stream: Flagg Creek I-55\ Cook user input S.N. : 16-0003 Storm Event: 500-Year K_u = 11.17 English units 12.2 Average depth of flow upstream of the bridge, ft $D_{50} =$ 0.0007 Grain size, feet V₁₀₀ = Mean velocity, channel or overbank, fps

Eq. 6.1

V_c = 1.50 ft/s 100-Year channel or overbank

If $V_c > V_{100}$, clear water scour exists.

Route \ County:

If $V_{100} > V_c$, live bed scour exists.

 $V_c = K_u y^{1/6} D^{1/3}$

Chapter 6.4 Clear Water Contraction Scour

Stream: Route \ County: S.N. : Storm Event:

I-55\ Cook 16-0003	
16-0003	Flagg Creek
16-0003 100-Year	I-55\ Cook
100-Year	16-0003
	100-Year

user input

K _u =	0.0077	English units
Q	1612.62	Discharge Through Bridge
D ₅₀	0.0007	Median Diameter of bed material (ft. min size 0.0007')
D_m	0.0009	1.25*D ₅₀
W	85.48	Bottom Width of Contracted Section Less Piers Widths , ft.
Y ₂	11.52	Average Equilibrium depth in contracted section after scour depth, ft
y ο	10.69	Average Existing Depth (Hydraulic Depth) in Contracted Section, ft.
Уs	0.83	Scour Depth

 $y_s = y_2 - y_0 =$ (average contraction scour depth)

 $y_2 \, = \left[\frac{K_u \, Q^2}{D_m^{2/3} \, \, W^2} \right]^{3/7}$

Chapter 6.4 Clear Water Contraction Scour

Stream: Route \ County: S.N. :

Storm Event:

Flagg Creek
I-55\ Cook
16-0003
500-Year

user input

K_u = 0.0077 English units

Q 2002.79 Discharge Through Bridge

D₅₀ 0.0007 Median Diameter of bed material (ft. min size 0.0007')

D_m 0.0009 1.25*D₅₀

W 85.48 Bottom Width of Contracted Section Less Piers Widths , ft.

 ${
m Y}_{
m 2}$ 13.87 Average Equilibrium depth in contracted section after scour depth, ft

y₀ 11.73 Average Existing Depth (Hydraulic Depth) in Contracted Section, ft.

y_s 2.14 Scour Depth

$$y_2 \, = \left[\frac{K_u \, Q^2}{D_m^{2/3} \, \, W^2} \right]^{3/7}$$

 $y_s = y_2 - y_0 = (average contraction scour depth)$

Pier Scour

Pier # 1-2-3 EMB 9/26/2016

0500

Stream: Flagg Creek Route \ County: I-55\ Cook

S.N.: 16-0003

5.11 10 0005		<u> </u>	<u> </u>
Attack angle of flow (theta)	deg.	0	0
Length of pier (L)	ft	143	143
Width of pier (a)	ft	2.75	2.75
Average Velocity (V)	fps	2.22	2.73
Depth of flow at pier (y_1)	ft	10.69	11.73
Pier type code	(1 thru 5)	1	1

Ī			
(maximum = 12) L/a =	12	12	
$K_1 =$	1.1	1.1	
$K_2 =$	1.0	1.0	
$K_3 =$	1.1	1.1	
Fr =	0.120	0.140	
Depth of Pier Scour, $y_s =$	4.30	4.75	
_	{ft}	{ft}	•

0100

$$\frac{y_s}{a} = 2.0K_1K_2K_3\left(\frac{y_1}{a}\right)^{0.35}Fr^{0.43}$$

$$Fr = \frac{V}{\left(gy_1\right)^{\frac{1}{2}}}$$

assumptions \ directions:

- * The correction factor for pier nose shape is taken from HEC-18 Table 7.1. However, for an attack angle > 5 degrees, K_1 is equal to unity. In that case, use pier type code 2.
- * K₂ is computed with the formula located below Table 7.2.
- * K₃ is set at 1.1, which represents the absence of dunes or a dune bed configuration with crest heights under 10 feet. (See Table 7.3 from HEC-18.) Adjust this accordingly for dune heights > 10 feet.

NOTE: This spreadsheet computes pier scour under the assumption the footing or pile cap is not exposed by some combination of contraction scour, long-term degradation or stream migration. If that is not the case, then scour due to the footing or pile cap may control. See Ch. 6 of HEC-18.

TAB 15

	Hydraulic Report – Interstate 55 over Flag Creek		
	OFOTION 45		
	SECTION 15		
	RIPRAP SIZING		
S B			

RIPRAP SIZING

There are no proposed changes to the existing concrete slope walls at the abutments, therefore no riprap sizing is required.

Hydraulic Report – Interstate 55 over Flag Creek	
SECTION 16	
PERMIT SUMMARY FORM (DISTRICT 1) – RELATED EXHIBITS AND CALCULATIONS	

Permit Summary for Floodway Construction in Northeast Illinois

Ap	plicant Agency:	IDOT	County:	Соок	
Ro	ute:	I-55	Stream:	Flag Creek	
Section:		I-355 to I-94	SN:	016-0003	
to t Ex Pro	the existing bridge. isting Facility: The oposed Improveme	There is an existing 5 Span bridge carry multispan bridge has width of 480' and nt: There is no proposed modification to except for repairs that are exempt fro	length of 28 to the existing	32.4' ng structure nor is th	nere any work proposed below
1.		sed work classified as repairs such a surfacing, or the armoring or filling of a s		lacement,	⊠ Yes □ No
2.		ed work only consist of modifications to bove the regulatory 100-year flood prof		structure	⊠ Yes □ No
No		to question 1 or 2 is yes, no permit is questions 3 through 12 may be omitted	-		
3.		ed work below the regulatory 100-year fixisting structure by 12 feet or less?	flood profile	consist of	☐ Yes ☐ No
No	te: If yes, Region through 9 may	nal Permit No. 2 applies and questions 4 y be omitted.	1		
4.		I improvement, including the appro all and flood flows than the existing stru		ay, more	☐ Yes ☐ No
5.	Is a Channel Mod	ification proposed?			☐ Yes ☐ No
6.		dings or structures located upstream in thin the influence of the structure backv			☐ Yes ☐ No
		the backwater of the proposed impr the existing structure by more than 0.1		kceed the	☐ Yes ☐ No
		the proposed backwater exceed the nore than 0.1 foot?	e natural h	igh water	☐ Yes ☐ No
7.	Are transitions rec	quired for this project?			☐ Yes ☐ No
8.	Is the flood profile a downstream rec	eat the project site impacted by backwa seiving stream?	ter from		☐ Yes ☐ No
	If yes, list frequen	cy of starting elevation for analysis:			

Printed 2/22/2016 Page 1 of 3 D1 PD0024 (03/04/08)

9.	Is backwater from a downstream structure affecting the flood profile at the project site?			☐ Yes	□ No	
	9a. Was the existing downstream structure used in determining flood profile at the project site? documentation)	the analysis for years? (Attac		☐ Yes	□ No	
	9b. Is the downstream structure scheduled for improvement	in the next 5		☐ Yes	□No	
	9c. Was the proposed downstream improvement used in the	analysis?		☐ Yes	□No	
10.	Is a floodway map change required due to the proposed proj	ect?		☐ Yes	□ No	
11.	Will fill or material be placed in the floodway due to the propowork?	osed		☐ Yes	□ No	
	11a. If yes, is compensatory storage provided at the (Attach a copy of completed Attachment A)	project location	1?	☐ Yes	□ No	
	11b. If the answer to 11a is no, is compensatory storage pr location? If yes, give location and attach a co Attachment A.			☐ Yes	□ No	
	11c. Has compensatory storage relief been granted? (Attac Documentation)	ch		☐ Yes	□ No	
12.	Coordination based on Memorandum of Agreement had Agency(ies) (Attach documentation):.	as occurred wit	th	☐ Yes	□ No	
All	engineering analysis has been performed by me or under my	direct supervisio	on.			
Sig	nature: <u>Ment Daily</u> IL/P.E. #: e: <u>03/01/2016</u> P.E. Expi	·	062-47420			
Dat	e: 03/01/2016 P.E. Expi	ration Date:	11/30/2017			
	- A	W0041				
FOI	R DEPARTMENTAL USE ONLY					
ls a	permit required for this project?	Yes	□No			
If ye	es, specify type of permit:	☐ Floodway,	Regiona	al 1,	Regional 2	

<u>Permit Summary</u> (Attachment A - Compensatory Storage)

Part of Per	mit Summ	ary for Floodway Construction i	n Northeast Illinois:			
	Phase I	(Preliminary)	☐ Phase	e II (Final)		
Applicant A	gency:	IDOT	County:	Cook		
Route:		I-55	Stream:	Flag Creek		
Section:		I-355 to I-94	SN:	016-0003		
Provide the	following	information for Item 11:				
a.	Flood W	ater Elevations (Natural):	100-year 6 Normal 62		10-year 631.6 ft.	
b.	Determin	ne the amount of fill or material	peing placed in the fl	oodway:		
	1. B	etween the 100-year and 10-ye	ar flood elevation 0 c	cu. yds.		
	2. B	etween the 10-year and normal	water elevation 0 cu	. yds.		
C.		ne the volume being provided to n structures removal, excavation		ove item b:		
	1. B	etween the 100-year and 10-ye	ar flood elevation 0 c	cu. yds.		
	2. B	etween the 10-year and normal	water elevation 0 cu	. yds.		
d.		the exhibits the location and an e location of floodway and flood				
Attach	copy of ca	alculations and Exhibit(s) reflect	ing the above finding	J.		
All eng	ineering a	nalysis has been performed by	me or under my dire	ct supervision.		
Signature:		Une A Daily	IL/P.E. #:	062-4	17420	
Date:		03/01/2016	P.E. Expiration Da	ate:11/30	0/2017	

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 17
	COMPENSATORY STORAGE
S B	

COMPENSATORY STORAGE

There is no fill proposed below the 100-year floodplain elevations within the floodway. Therefore there is no required compensatory storage.

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 18
	SURVEY NOTES
C B	

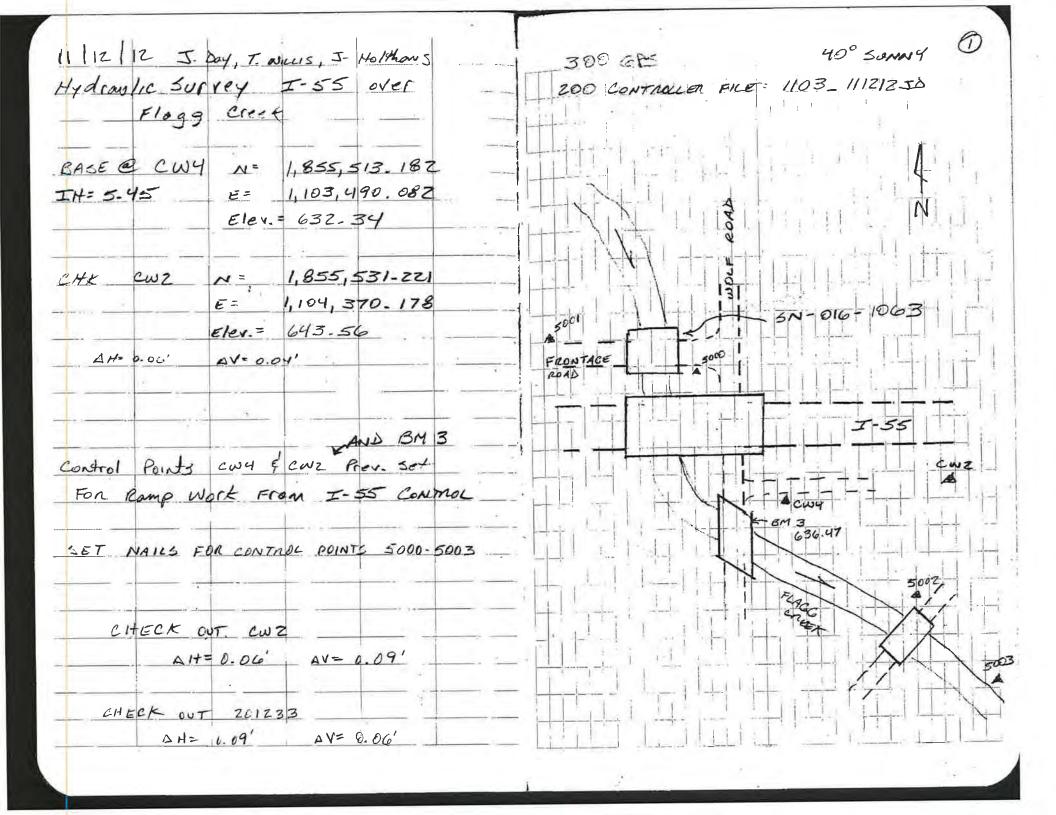
Questions concerning the VERTCON process may be mailed to NGS

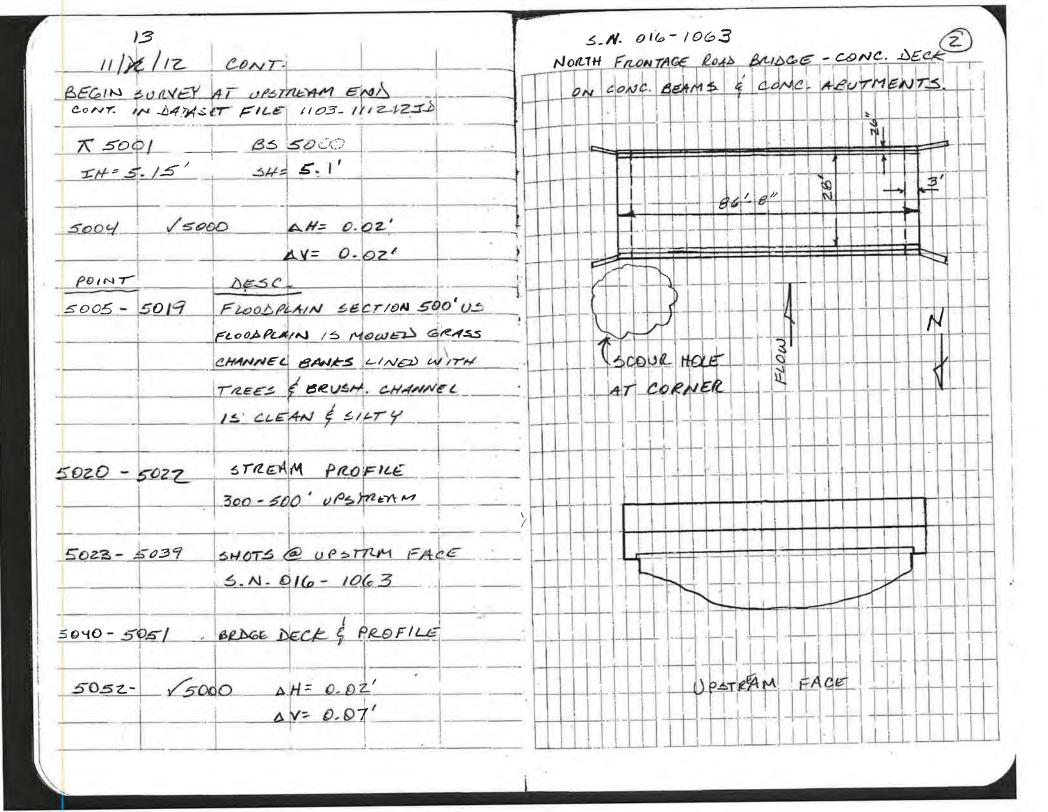
Latitude: 41 43 59

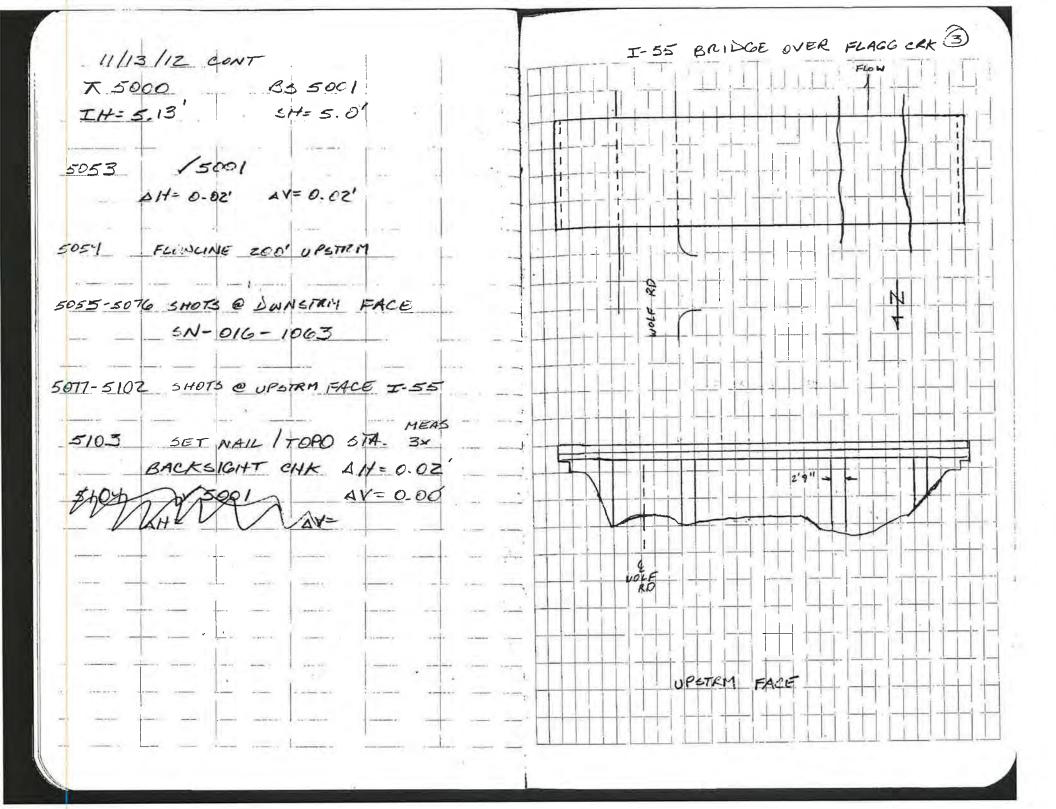
Longitude: 87 57 00

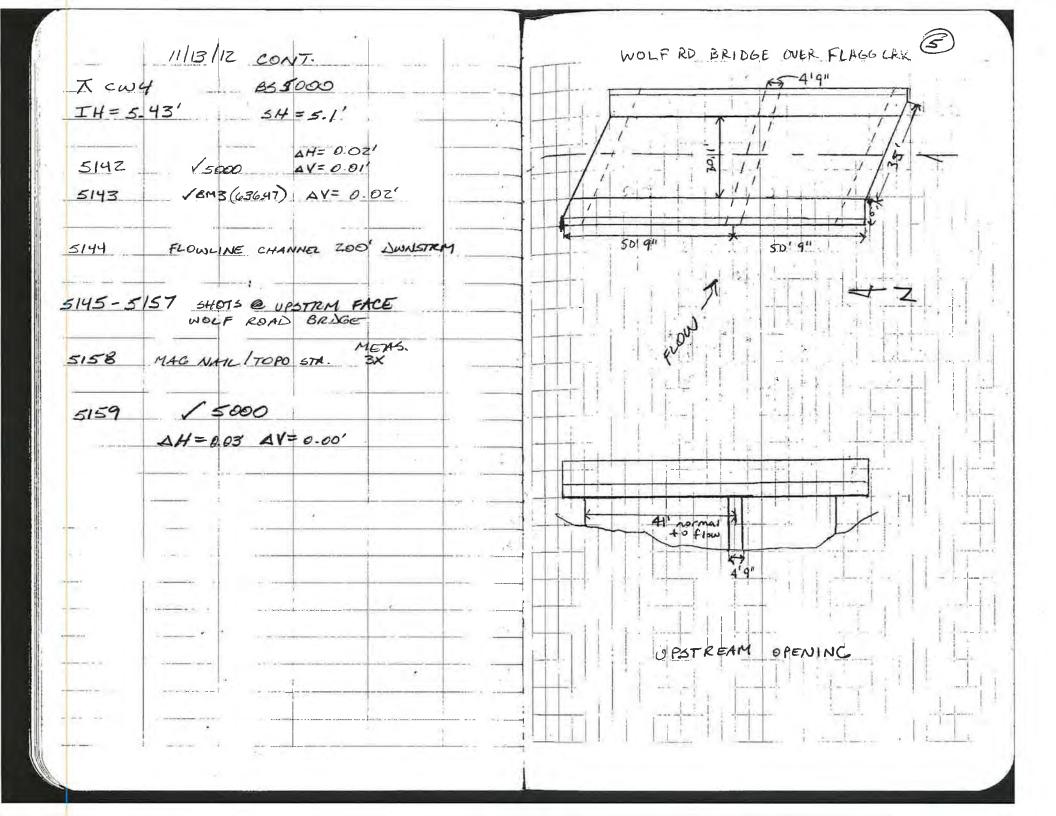
NGVD 29 height:

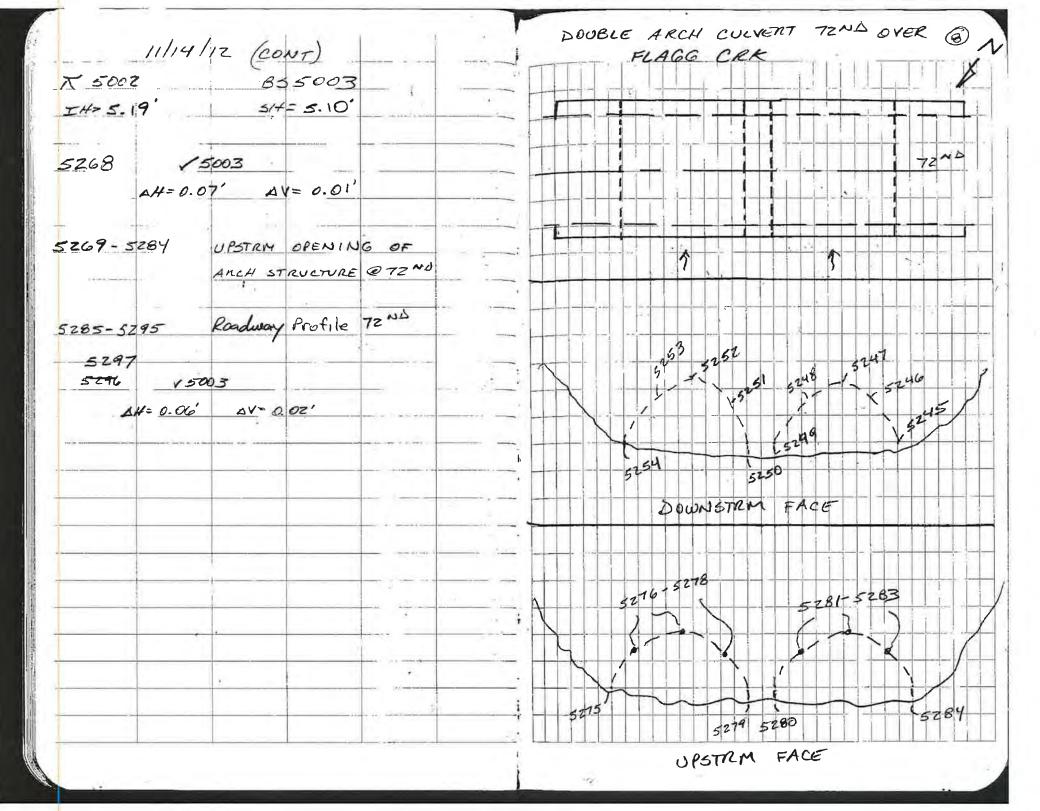
Datum shift (NAVD 88 minus NGVD 29): -0.086 meter = 0.28 Fees


Name	-111	ENGIN	EENIA	16	
Address.	576	OAKM	ONT	LANE.	
WESTM	ONT	IL	60559	7	
Phone	217-	415-	2581		


This book is published on a fine 50% cotton-content ledger paper, specially treated for maximum archival service, and protected by a water resistant surface sizing.


Projects			
448.50	iney I.55 over	Flagg Cik	J-10
			.,,,,,,,,,,,


5255 DANSHER • COUNTRYSIDE, ILLÎNOIS 60525 (708) 482-8888



	11/13/12 co	WT					4
X 5103		35 5000			11111111		
IH= 5.		5#= 5.1'					
5104	1 cw4						
AH	= 0.07' AV	= 0.00'					
5105-51	27 _ 3HOTS	@ DWNSTICM FACE					
	J=5,5	STRUCTURE					
5128-514	10 FLOOD 1	CLAIM SECTION @ ROW					
	- Lang	'EM OF I-55					4-1-1-1
		EL CLEAN & ROCKY				k-	
		BRUSH LINE CHANNEL					
1	FLOODP	LAIN URBAN/MOWES GRA	45.5				
20.11							
5141	1004						
100	AH= 004	DV= 0,01				14 111 11	
	-+-			++++			
			7			1 - 1 - 1 - 1	
			4				
	=+-	1					

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 19
	EWSE DATA
C B	

Hydraulic Report – Interstate 55 over Flag Creek

EWSE Data

Date of survey: November, 2012

Existing water surface elevation = 624.13

Streambed elevation = 621.75

Top of bank elevation = 630.54

There is no gaging station data at or near the I-55 crossing over Flag Creek.

April Elevation: 624.13 + 2.25 = 626.38

Maximum WSE: 626.38 – 3.75 = 622.63

One Foot above Streambed = 622.75 > 622.63, Use 622.75 as September Elevation

Preliminary EWSE = 0.75 (630.54 – 622.75) + 622.75 = 628.59

April Elevation = 626.38 < 628.59, *Use EWSE = 626.38*

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 20
	CORRESPONDENCE NOTES
C B	

STATE OF ILLINOIS DEPARTMENT OF TRANSPORTATION

DISTRICT ONE - OPERATIONS & COMMUNICATIONS CENTER

	神中间	OODING ***	1	DATE:	6/7/93	DAY: N	MONDAY	PAGE	/ OF 4
DISP. INIT.	INFORMANT/ TIME REC'D	DIRECTION & LOCATION	LANE #'s		PASSABLE (YES/NO)	P. Contraction of the Contractio	TIME	VERIFIED (NAME)	TIME / DATE DISP. INIT.
ME	ROCKYC 7999AM	SWI-550 WOLFS	ALC	?	1050	Sterenson; C KEN 1147Hes	1224	KUNT	1344 TAR 41845 OPEN
unr	HANECO.	25@ SHAGBARIC	per	3	YES	St. CHAS 1157+IRS. ROW		JOHN ST. CHANGS	6/9/93 1246 JAC
SAL	PD DIAME	4900 W. 15971 ST	fa	į	No	710 RC		#6]	17:30 6/7
AMA	WoodrageD 12:05	T253/754483rdi	all	> -	yes	Magoriallous		83CH Ly nap	Holeand ya 617
war	WILLAND SPRINGS PD#1 HOT	-1710 WILL SPRINGS	7-	3	-12:23	HILLSIDE	12:23	#2	17:26 6/2
mu	Cottrem	8Je Sw Huy	7	?	7.	ALSA		FRANK ALSIP	6/9/37 1219 TAC
JAB	12:10PM PC 913	I-55 SW @/Labrange Road	IANE 1\$2	71	yps	RON Stevenson C		RC681	12:50 6/7 Sma!
JAB	1213PM CPD.	I-94 NB &SB @ 87th St	ALL	11	yes	Eddie @ DAN RYAN		RYAN	478/43 1252 JA
SIMPLE	1217 1217	NB Kyana 95th	1-3	5	yes	RC653		ED Om ryn J	6/9/93 1252 TAC
MAK	ics36	NO MARTIN CARCINER	ALL	FET.	NO	RC 600	1233	RC 124	4-8-93 1:13 Am Par
COPI	ES TO: MR.	J. KOS, MR. MCDERMO	IT, M	R. M/	ARCOTTI	E, MR. WANG	, MR. SA		

TAKAHASHI SIZ UPDATED 12/92

RECEIVED

OCT 2 2 2012

Internet

CHRISTOPHER B. BURKE ENGINEERING, LTD.

1938 E Lincoln Highway • Suite 212 • New Lenox, Illinois 60451 • Tel.: 815-463-9050 • Fax: 815-463-9065

Stantec Consulting Services, Inc. 135 S. LaSalle Street, Suite 3100 Chicago, IL 60603

Attention:

Dustin Book, PE

Subject:

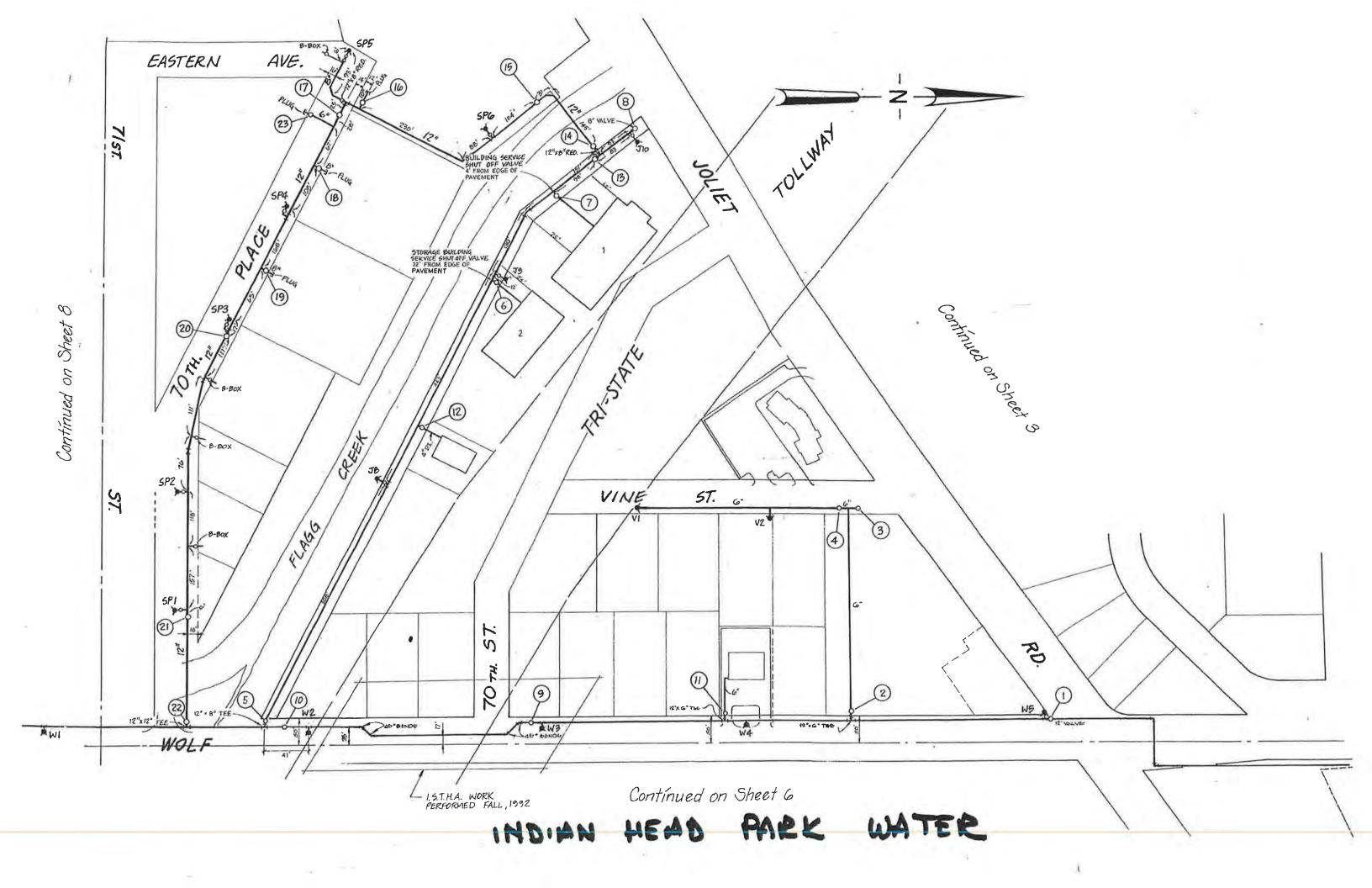
Indian Head Park

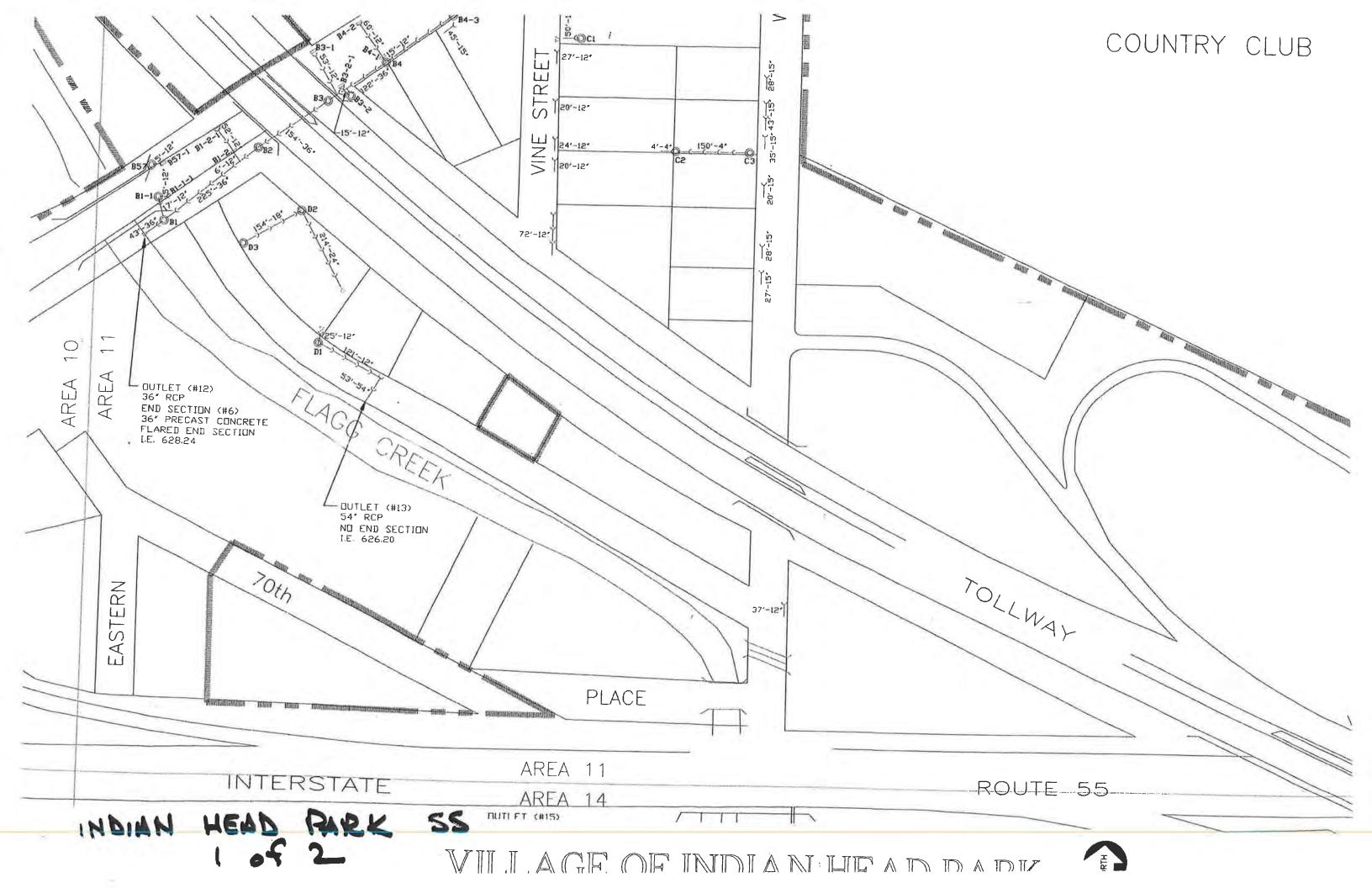
I-55 Managed Lanes Study

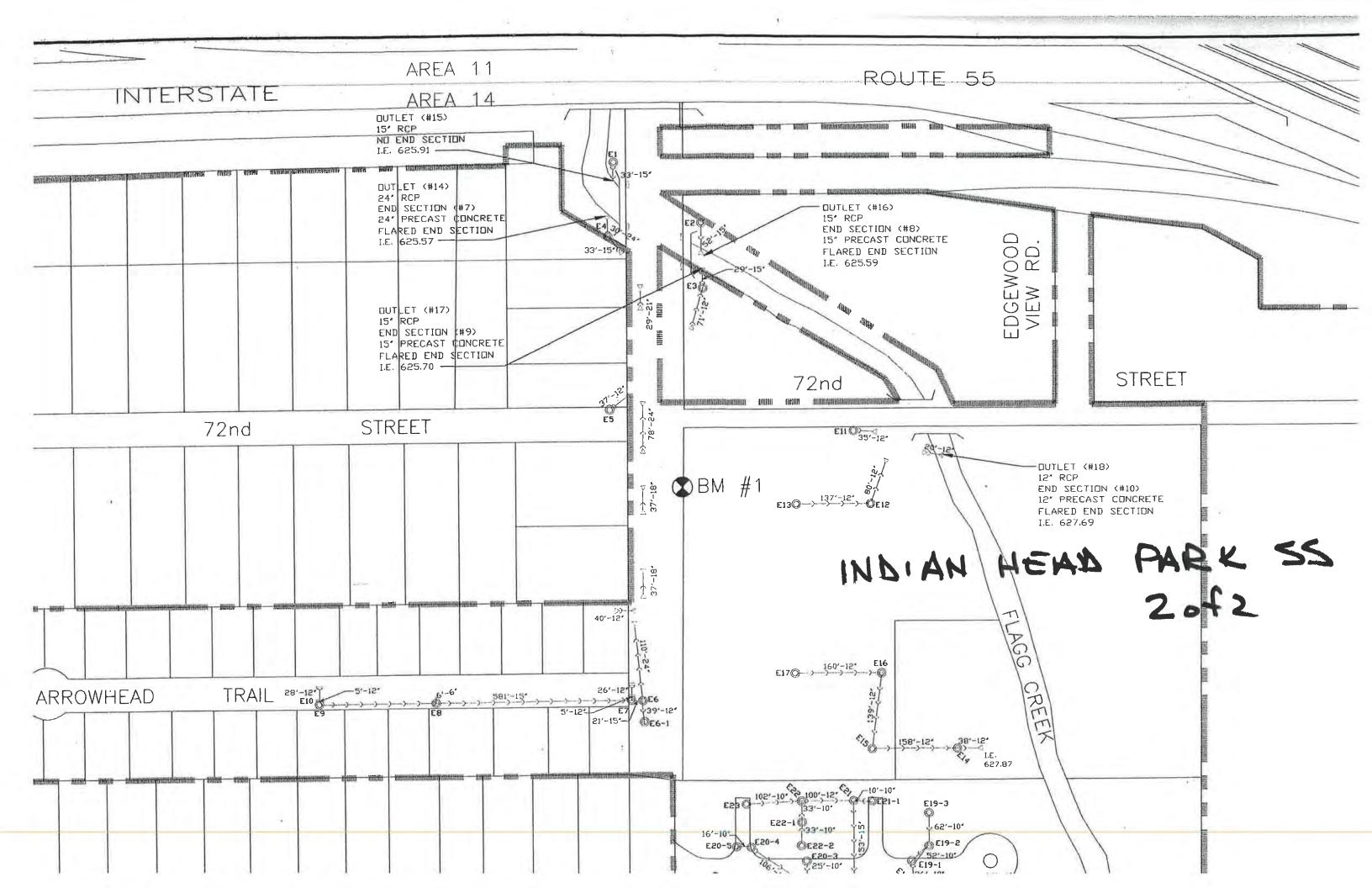
Dear Mr. Book:

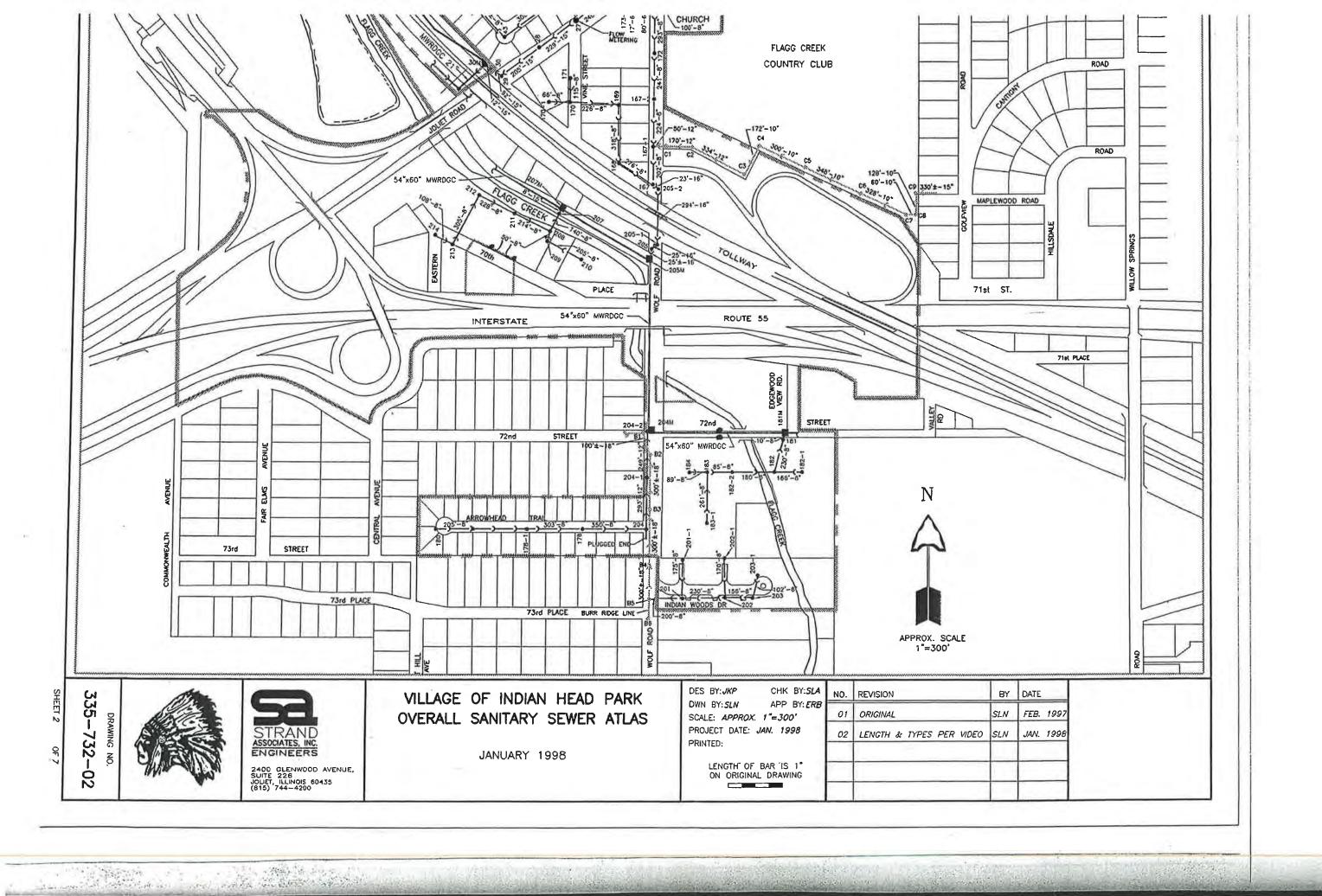
Per your request on October 12, 2012, you will find all available Village utility mapping attached. This includes water, sanitary sewer and storm sewer information. Please be advised that Village Ordinances are available on the Village website.

The Village has not experienced unusual flooding associated with I-55 or adjacent properties and has no current or proposed drainage improvements.


Should you have any further questions feel free to contact me directly or Mr. Ed Santen at the Village.


Sincerely,


Dave Vandervelde, PE Senior Civil Engineer


CC:

Ed Santen, Village of Indian Head Park Frank Alonzo, Village of Indian Head Park

Metropolitan Water Reclamation District of Greater Chicago

100 EAST ERIE STREET

CHICAGO, ILLINOIS 60611-3154

312.751.5600

Terrence J. O'Brien
President
Barbara J. McGowan
Vice President
Cynthia M. Santos
Chairman of Finance
Michael A. Alvarez
Frank Avila
Patricia Horton
Kathleen Therese Meany
Debra Shore
Mariyana T. Spyropoulos

BOARD OF COMMISSIONERS

CATHERINE A. O'CONNOR, Ph.D., P.E.

Director of Engineering

312,751.7905 f: 312,751,5681 Catherine,O'Connor@mwrd.org

October 31, 2012

Mr. Dustin Book, P.E. Transportation Engineer Stantec Consulting Services Inc. 135 South LaSalle Street, Suite 3100 Chicago, IL 60603-4139

Subject: I-55 Managed Lanes Study/Drainage Documentation

Dear Mr. Book:

Reference is made to your letter dated October 12, 2012, concerning the subject project. The Metropolitan Water Reclamation District of Greater Chicago (MWRD) has reviewed the request and submits the following:

<u>Local storm sewer plans</u>. Please contact each individual municipality for the most current plans. <u>Combined sewer atlas</u>. Enclosed are Sheets 15-18 of the MWRD Combined Sewer Atlas. <u>Utility plans</u>. Enclosed are the following documents depicting MWRD facilities:

- Southwest Side Intercepting Sewer 3, Sheets 1 and 2
- Southwest Side Intercepting Sewer 3A, Sheets 1, 7, and 8
- Southwest Side Intercepting Sewer 5, Sheets 1, 4, 5, 6, 7A, and 8
- Southwest Side Intercepting Sewer 9, Sheets 1, 21, and 22
- Southwest Side Intercepting Sewer 12, Sheets 1-6, 6A and 7-9
- Southwest Side Intercepting Sewer 15, Sheets 1, 6, and 7
- Southwest Side Intercepting Sewer 17C, Sheets 1, 16, 17, 17A, and 18
- Stickney-LASMA Solids Pipeline (87-138-2S), Sheets S1, S29, S30, S31, and S37-45
- Western Avenue Sewer, Sheets 1-7
- TARP Contract 73-160-2H, Sheets 3, 4, and 5
- TARP Contract 73-162-2H, Part 2, Sheets S12 and S20
- TARP Contract 75-125-2H, Sheets 9, 10, and 22
- MWRD Sewer Atlas Sheets 15-18
- MWRD TARP Atlas Sheets 15-18

Contour mapping. Contours can be obtained from Cook County.

<u>Current and proposed drainage improvements</u>. Please consult the "Cal-Sag Detailed Watershed Plan" and "Lower Des Plaines Detailed Watershed Plan" available at <u>www.mwrd.org</u>, Departments, Engineering, Stormwater Management. There are no current projects under design in the vicinity of I-55.

<u>Identification of flooding experiences associated with highway or adjacent properties</u>. Please see "Summary of Responses to Form B Questionnaire", Table 2.2.1, in Lower Des Plaines Detailed Watershed Plan.

Local ordinances. Please contact individual municipalities.

Watershed management plans or related studies. Please refer to the Lower Des Plaines Detailed Watershed Plan.

It is requested that during construction extra caution be taken to protect the safety and integrity of our facilities. No access hatches and manhole covers on MWRD structures and manholes within the project area shall be buried or covered. No debris shall enter MWRD structures, sewers, or facilities. MWRD personnel shall have 24 hour-a-day unrestricted access to all MWRD facilities.

Furthermore, MWRD manholes shall be located, protected and/or adjusted to grade, if necessary. Prior authorization is required to make any structural modifications, including manhole frame and lid adjustments. Authorization may be obtained by contacting Ms. Manju Sharma, Director of Maintenance and Operations, at (312) 751-5101. If MWRD facilities are required to be located in the field, please contact Mr. Rafiq Basaria, Senior Civil Engineer, at (708) 588-4080.

Also, we request that your planning team consider green infrastructure, especially in your drainage plan, as you further develop your project concept.

If you need additional information, please contact Mr. Joe Schuessler, Principal Civil Engineer, at (312) 751-3236.

Very truly yours,

Catherine A. O'Connor Director of Engineering

Catherin G. O'Connor

WSS:KMF:JMS
Enclosure(s)

cc (w/o encl): Ms. Manju P. Sharma, Director of Maintenance and Operations

Mr. John Murray, Supervising Civil Engineer

Book, Dustin

From: Paul May <pmay@burr-ridge.gov>

Sent: Wednesday, October 24, 2012 9:49 AM

To: Book, Dustin

Subject: FW: I-55 Managed lanes project - LDS

Attachments: I-55 drainage, Burr Ridge.png

Categories: I-55 Managed Lanes - Drainage

Dustin, the Village of Burr Ridge does not have any storm sewer that passes underneath I-55 (we do have watermain though). The primary drainage issue that I am aware of is near the intersection of Madison and I-55 where a variety of IDOT storm sewer crossings exist, some of which are blocked, and some of which are submerged. This condition results in flooding on both the north and south sides of I-55 at this location. The area long the north frontage road between Brush Hill Road and Hamilton Street also does not drain properly, and contributes to the aforementioned issue. CBBEL has performed a study for DuPage County in this area previously. Obviously, the Village of Burr Ridge would expect that the project through Burr Ridge would include attenuation of any additional flows, and would comply with the new DuPage County Stormwater ordinance.

Paul D. May, P.E. Director of Public Works

Village of Burr Ridge DPW 451 Commerce Street Burr Ridge, IL 60527

Phone: (630) 323-4733 #6000

www.burr-ridge.gov

Stantec Consulting Services Inc. 135 South LaSalle Street Suite 3100 Chicago IL 60603-4139

Tel: (312) 262-2300 Fax: (312) 262-2301

October 12, 2012

Attention:

<<Full_Name>>

<<Title>>

<<Local Agency>> <<Address 1>>

<<City>>, <<State>> <<Zip Code>>

Reference:

I-55 Managed Lanes Study / Drainage Documentation

Dear <<Salutation>>,

The Illinois Department of Transportation is currently preparing a Preliminary Engineering and Environmental Study (Phase 1) for the improvements for the I-55 Managed Lanes Project. The project study area includes I-55 (Stevenson Expressway) and extends from I-355 on the west to I-90/94 on the east.

This project is proposed to add one managed lane in each direction in the existing median of the expressway. Managed Lanes include High Occupancy Vehicle (HOV), High Occupancy Toll (HOT), Congestion Pricing, as well as other managed lane options. This project has been identified in the Chicago Metropolitan Area for Planning (CMAP) Go To 2040 Plan as a priority project.

As part of the overall project scope, we are preparing a Location Drainage Study of the existing and proposed drainage patterns within the study area. It is the intent of the drainage study to document the hydraulic investigation and provide recommendations as part of the roadway improvement. We are requesting your assistance to provide drainage information within the study area concerning both the existing conditions and any future planned improvements. This information will be to be incorporated into the study to identify existing deficiencies and to develop recommendations for the roadway facility.

In particular, we request the following:

- Local storm sewer plans
- Combined sewer atlas
- Utility plans
- Contour mapping
- Current and proposed drainage improvements
- Identification of flooding experiences associated with the highway or adjacent properties
- Local ordinances
- Watershed management plans or related studies

Stantec

October 12, 2012

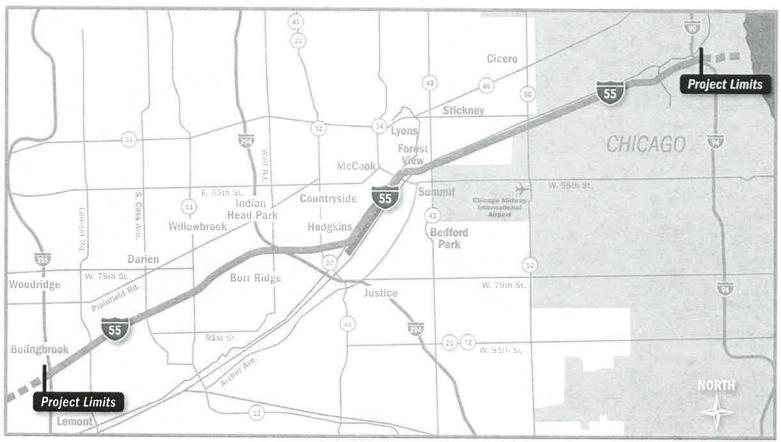
Reference:

I-55 Managed Lanes Study / Drainage Documentation

Please return any of the available requested information to my attention at the address or email provided below. If you have any questions or need additional information, please contact Dustin Book at 312-262-2233.

Thanks for your time and the information provided.

Regards,


STANTEC CONSULTING SERVICES INC.

Dustin Book, P.E.
Transportation Engineer
135 S. LaSalle Street, Suite 3100
Chicago, IL 60603-4139
Tel: (312) 262-2233
Fax: (312) 262-2301
dustin.dook@stantec.com

Attachment: Location Map

bd \\us1254-f02\workgroup\1786\active\178600037_idot_i-55\civil\drainage\let_20121012_stantec_djb_drainage intro_template.docx

Interstate 55 (Stevenson Expressway) extending from I-355 to I-90/94 Location Map

Stantec

October 12, 2012 Contact Listing:

Robert Mack
Drainage and Utilities Division Head
Cook County Highway Department
69 W. Washington Street, Rm #2300
Chicago, IL 60602-1369

John P. Kos Director DuPage County Division of Transportation 421 N. County Farm Road, #2-300 Wheaton, IL 60187-2553

Ralph Pukula Public Works Director Village of Lemont 16680 New Avenue Lemont, IL 60439

Dan Gombac
Director of Municipal Services
City of Darien
1041 S. Frontage Road
Darien, IL 60561

Paul May
Public Works Director / Village Engineer
Village of Burr Ridge
451 Commerce Street
Burr Ridge, IL 60527

Jim Essig
Superintendent of Public Works
City of Countryside
5315 South 9th Avenue
Countryside, IL 60525

Eric Rice Superintendent of Public Works Village of Hodgkins 8990 Lyon Street Hodgkins, IL 60525

Chester Strzelczyk
Village Administrator
Village of Summit
7321 West 59th Street
Summit, IL 60501

Steven Perrin
Superintendent of Public Works
Village of McCook
5000 Glencoe Avenue
McCook, IL 60525

Frank Yurka Village Administrator Village of Forest View 7000 W. 46th Street Forest View, IL 60402

Gabe Klein
Commissioner
Chicago Department of Transportation
30 N. LaSalle Street, Suite 1100
Chicago, IL 60602

Catherine O'Connor Director of Engineering MWRD Headquarters 100 East Erie Street Chicago, IL 60611

Ed Santen
Superintendent of Public Works
Village of Indian Head Park
11308 West 70th Place
Indian Head Park, IL60525

Ken White Director of Public Works Village of Justice 8748 West 82nd Place Justice, IL 60458

Joseph Lopez
Village Supervisor
Village of Stickney
6533 Pershing Road
Stickney, IL 60402

Sam Jelic Commissioner Town of Cicero 1620 S. Laramie Cicero, IL 60804

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 20.A
	2011 HLR HYDRAULIC REPORT EXCERPTS
BB	

Hydraulic Report

Joliet Road Bridge over Flagg Creek Cook County Section 430-B-BR-79

Prepared for:

Illinois Department of Transportation 201 West Center Court Schaumburg, Illinois 60196-1096

Date:

February 2011

Prepared by:

Hampton, Lenzini and Renwick, Inc. Civil Engineers a Structural Engineers Land Surveyors 380 Shepard Drive Elgin, Illinois 60123

Contents

HYDRAULIC REPORT OUTLINE **EXHIBIT A EXHIBIT B1** NARRATIVE PROJECT DESCRIPTION DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN HISTORICAL OBSERVATIONS / RECORDS **DATUM CORRELATION** SESITIVE FLOOD RECEPTOR HYDROLOGIC METHODOLOGY HYDRAULIC METHODOLOGY SUMMARY OF NATURAL AND EXISTING HYDRAULIC ANALSES PROPOSED STRUCTURE ANAYSIS SCOUR ANALYSIS COMPENSATORY STORAGE PERMIT REQUIREMENTS CONCLUSION HYDRAULIC REPORT DATA SHEET **EXHIBIT B2 EXHIBIT C LOCATION MAP EXHIBIT D HYDRAULIC ATLAS** WATERWAY INFORMATION TABLES AND CALCULATIONS **EXHIBIT E NOT USED EXHIBIT F DATUM CORRELATION EXHIBIT G EXHIBIT H** SCOUR EVALUATION SENSITIVE FLOOD RECEPTORS EXHIBIT I PROJECT OVERVIEW AND CROSS SECTION LOCATION **EXHIBIT J PHOTOGRAPHS EXHIBIT K** FEMA FLOOD INSURANCE STUDY EXHIBIT L **CONSTRUCTION PLANS – JOLIET ROAD BRIDGE - 1958 EXHIBIT M** CONSTRUCTION PLANS - AS-BUILT I-294 BRIDGE - 1994 **EXHIBIT N1** 70TH PLACE SURVEYED PLAN **EXHIBIT N2 BRIDGE PLAN AND PROFILES EXHIBIT O EXHIBIT P** SURVEYED CROSS SECTIONS STREAM PROFILE **EXHIBIT Q ANALYSIS EXHIBIT R ORIGINAL WSP2 MODEL EXHIBIT R1 DUPLICATE WSP2 MODEL EXHIBIT R2** EXISTING CONDITIONS WSP2 MODEL WITH JOLIET ROAD BRIDGE **EXHIBIT R3** PROPOSED CONDITIONS WSP2 MODEL **EXHIBIT R4** WSP2 MODEL COMPARISON **EXHIBIT R5** EXISTING CONDITIONS HEC-RAS MODEL **EXHIBIT R6** PROPOSED CONDITIONS HEC-RAS MODEL **EXHIBIT R7** NATURAL CONDITIONS HEC-RAS MODEL **EXHIBIT R8 HEC-RAS MODEL COMPARISON EXHIBIT R9 EXHIBIT S PERMIT SUMMARY** PERMIT SUMMARY FORM FOR FLOODWAY CONSTRUCTION **EXHIBIT S1** PERMIT SUMMARY (ATTACHMENT A – COMPENSATORY STORAGE) **EXHIBIT S2** COMPENSATORY STORAGE CALCULATIONS **EXHIBIT S3**

CORRESPONDENCE NOTES

SURVEY NOTES AND INFORMATION / DIGITAL DATA

EXHIBIT T

APPENDIX

HYDRAULIC REPORT OUTLINE (HRO)

In order to facilitate a more efficient and timely approval of Hydraulic Reports, a "Hydraulic Report Outline" shall be prepared and submitted with each hydraulic project. This Outline shall be submitted to the District Hydraulic Engineer along with the Hydraulic Report to aid in review of the report.

If any deviations from the procedural steps below are necessary, they must be documented in the outline. Hydraulic Reports prepared by a Qualified District Hydraulic Engineer or under his supervision, are exempt from the HRO requirement. To facilitate Pump Station Hydraulic Report reviews, the Checklist and Data Sheets from the IDOT Drainage Manual, 13-303 and 13-304, will be used. The Data Sheets must be signed by the consultant's QA/QC person or the District Hydraulic Engineer.

1	SN <u>016-0393</u> Route/Stream: County: Cook	_ (Existing); SN _Joliet Road / Flagg	 Creek	(Proposed)	
	County: Cook					
2	Prepared By:	⊠ Consultant: ☐ District	Hampton, L	enzini and F	Renwick	
3	Chapter 2 of the I	DOT Drainage	⊠Yes □ No)		
	Completed chec	klist (2-701.02) mus	st be attached	i.		
4	Design Considera	tions:				
	IDNR Ind	er limitations due to: dividual or Floodway e Flood Receptor(s)	Permit ⊠ Ye ⊠ Ye	s □ No		
	velocities		☐ Ye	s ⊠ No	ructure exceed na	atural channel
		earance policy met? eboard policy met?	_	s ⊠ No s □ No		
5	a. ☐ Comp b. ☐ Super c. ☐ Super the w d. ☐ Bridge e. ☐ New a	neck all that apply): elete replacement. rstructure replaceme rstructure replaceme rater, upstream e	ent and/or wide <u>ft.,</u> downstre	eam	h of pier extensio ft.	on in
6	Hydrology: Gage data utilize	□ USGS ⊠ FI d? □ Yes ⊠ No	S □ Other	-		
7	WIT: Attached co	opy of all completed	WIT(s)	⊠ Yes □		_
Pri	nted 11/11/2010				Exhibit A	BBS 2740 (02/27/08)

Hydraulic Report Outline

8.	Mod a.	deling: ☑ HEC RAS ☐ WSPRO ☑ Other WSP2								
	b.	N-values estimated according to Chapter 5 of Drainage Manual? ⊠ Yes ☐ No								
	C.	Source of starting WSE Flood Insurance Study, effective WSP2 model								
	d.	Non-IDOT encroachments in survey? ⊠ Yes □ No								
		If yes, are they accounted for? ⊠ Yes □ No								
	e.	Tail water controls(s)? ⊠ Yes □ No								
		If yes, list: Flood Insurance Study, WSP2 model data								
		Properly addressed? ⊠ Yes □ No								
	f.	Expansion/Contraction cones addressed per Chapter 7 of Drainage Manual? ☑ Yes ☐ No If N/A, explain:								
9.	Put Indi a. b. c.	NR-OWR Permit: Drainage Area 13.3 sq.								
10.	Giv	nsitive flood receptors Yes No ye type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations.								
10.	Giv Sei	ve type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I,								
10.	Giv Sei His	ve type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations.								
10. 11.	Giv Sei His So	re type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations. Story of flooding or overtopping problems: Yes □ No ☒								
	Giv Sei His So Sco Coi	ve type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations. story of flooding or overtopping problems: Yes □ No ☒ ources of observed highwater: IDOT our/migration problems: ☒ None/minimal □ Significant □ Severe								
	Giv Ser His So Cor Ice Cor	ve type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations. Story of flooding or overtopping problems: Yes □ No ☒ ources of observed highwater: □DOT our/migration problems: ☒ None/minimal □ Significant □ Severe mments: Existing concrete slope walls countermeasures present								
	Giv Ser His So Cor Ice Cor Cor De	## type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, insitive Flood Receptors for elevations and locations. ### story of flooding or overtopping problems: Yes □ No ☒ ources of observed highwater: □DOT ### our/migration problems: ☒ None/minimal □ Significant □ Severe ### mments: Existing concrete slope walls countermeasures present #### Debris concerns: None/minimal ☒ Significant □ Severe □ ### mments: Incidents of debris ### students of debris ### students of debris ### students of the general procedures presented above and in Chapters 6 and 7 of the general manage Manual: none								
11.	Giv Ser His So Cor Ice Cor Cor De	## type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 8 commercial and 1 residential structures. See Exhibit I, ensitive Flood Receptors for elevations and locations. 9 commercial end 1 residential structures. See Exhibit I, ensitive Flood Receptors elevations in the existing slopered Labove and in Chapters 6 and 7 of the existing slope Flood Receptors for elevations and locations. 9 commercial end 1 residential structures. See Exhibit I, ensitive Flood Receptors elevations and locations. 9 commercial end 2 residential structures. See Exhibit I, ensitive Flood Receptors elevations. 9 commercial end 2 residential structures. See Exhibit I, ensitive Flood Receptors elevations. 9 commercial end 2 residential structures. See Exhibit I, ensitive Flood Receptors elevations. 9 commercial end 2 residential structures. See Exhibit I, ensitive Flood Receptors elevations. 9 commercial end 2 residential structures. See Exhibit I, ensity elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial end 2 residential elevations. 9 commercial elevations. 9 commercial elevations. 9 commercial elevations. 9 commercial elevati								
11.	Giv Sei His So Coi Ice Coi Co De (At	## type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, insitive Flood Receptors for elevations and locations. ### story of flooding or overtopping problems: Yes □ No ☒ ources of observed highwater: □DOT ### our/migration problems: ☒ None/minimal □ Significant □ Severe ### mments: Existing concrete slope walls countermeasures present #### Debris concerns: None/minimal ☒ Significant □ Severe □ ### mments: Incidents of debris ### students of debris ### students of debris ### students of the general procedures presented above and in Chapters 6 and 7 of the general manage Manual: none								
11.	Giv Sei His So Coi Ice Coi Co De (At	ye type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, institute Flood Receptors for elevations and locations. Story of flooding or overtopping problems: Yes □ No ☒ burces of observed highwater: IDOT Our/migration problems: ☒ None/minimal □ Significant □ Severe mments: Existing concrete slope walls countermeasures present Scholberis concerns: None/minimal ☒ Significant □ Severe □ mments: Incidents of debris Functions from the general procedures presented above and in Chapters 6 and 7 of the ainage Manual: none trach supporting documents if necessary)								
11. 12. Prep	Giv Sei His So Coi Ice Coi Co De (At	re type, elevations and locations: 8 commercial and 1 residential structures. See Exhibit I, nsitive Flood Receptors for elevations and locations. Story of flooding or overtopping problems: Yes □ No ☒ our/migration problems: ☒ None/minimal □ Significant □ Severe mments: Existing concrete slope walls countermeasures present ### Properties concerns: None/minimal ☒ Significant □ Severe □ mments: Incidents of debris #### Incidents of debris #### Incidents of mone #### Incidents of the general procedures presented above and in Chapters 6 and 7 of the ainage Manual: none #### Incidents if necessary) ##### Incidents of mone #### Incidents of mone ##### Incidents of mone ###### Incidents of mone ###### Incidents of mone ########## Incidents of mone ###################################								

NARRATIVE

PROJECT DESCRIPTION

Joliet Road Bridge over Flagg Creek is located between I-55 and I-294 in the corporate limits of Village of Indian Head Park in Cook County (See Exhibit C, Location Map). The bridge is scheduled for the approach, abutments and pier to be elevated approximately 3 feet and replace the superstructure.

DESCRIPTION OF EXISTING STRUCTURE AND FLOODPLAIN

The exiting structure is a single pier, portland cement concrete open abutment bridge. The width of the structure is 92' with one 3' width pier and concrete slope walls located below the structure (See Exhibit M - Construction Plans - 1958, Exhibit O - Bridge Plan and Profile).

The FEMA flood insurance rate maps (FIRM) indicate that the floodplain and floodway are likely conveyed through the existing bridge, however the structure was never modeled as part of the existing hydraulic model. (See Exhibit L – FEMA Flood Insurance Study).

HISTORICAL OBSERVATIONS / RECORDS

USGS records indicate that the all time high water elevation at the structure was 635.7' in October 1954. The flood profile indicated that the structure had approximately 1' of head for this storm event. The structure was replaced in 1959.

IDOT District 1 Pavement Flooding List indicates that there is not a flood of record for this site.

DATUM CORRELATION

The survey for the Joliet Road Bridge and all necessary items including structures and cross sections were taken in NAVD88. The effective FEMA Flagg Creek WSP2 hydraulic model was created with a NGVD29 vertical datum. The WSP2 model was revised with surveyed data that was converted to NGVD29 so that the model remained consistent. The datum correlation from NGVD29 -0.282 ft = NAVD88. The HEC-RAS model is on the NAVD88 datum. (See Exhibit G-D Datum Correlation).

SENSITIVE FLOOD RECEPTOR

There are two structures associated with the Flagg Creek Water Reclamation District upstream of the Joliet Road Bridge over Flagg Creek (See Exhibit J, Project Overview and Cross Section Location). It appears that the buildings/structures could be a possible sensitive flood receptors according to the Flood Insurance Study Maps produced in 2008 with aerial background (See Exhibit L – FEMA Flood Insurance Study).

- Structure #1, Flagg Creek WRD (Sand Filter), located approximately 900' upstream, Low Elevation Opening = 644.16, Base Flood Elevation (HEC-RAS) = 634.94
- Structure #2, Flagg Creek WRD (Building), located approximately 450' upstream, Low Elevation Opening = 639.1, Base Flood Elevation (HEC-RAS) = 634.89

It should be noted that the lowest entry elevation is significantly higher than the 100-year regulatory water surface elevation. A list of the possible sensitive flood receptors and their low entry elevation can be found in the hydraulic report (See Exhibit I - Sensitive Flood Receptors)

HYDROLOGIC METHODOLOGY

The effective discharges from the FEMA flood insurance studies were used in the hydraulic analysis of the natural, existing/proposed structure for both the HEC-RAS and WSP2 models (See Exhibit L – FEMA Flood Insurance Study).

HYDRAULIC METHODOLOGY

Several models were used to examine the hydraulic properties of the Joliet Road Bridge. The effective hydraulic model used the WSP2 software.

WSP2 Model

The effective WSP2 hydraulic model (See Exhibit R1 – Original WSP2 Model) was obtained from the Illinois Department of Transportation so the existing/proposed bridge could be modeled for the purpose of obtaining an IDNR-OWR floodway permit, if needed. The model was modified so that it could run in the latest version of WSP2 (See Exhibit R2 – Duplicate WSP2 Model), since the FLOW-FREQ command in the original model was not valid in this version of WSP2. The duplicate model is also considered a natural conditions model since the Joliet Road Bridge is not present.

The duplicate model was modified further to include the Joliet Road Bridge, including the roadway deck profile and channel cross section, that had previously not been hydraulically modeled (See Exhibit R4 – Existing Conditions WSP2 Model with Joliet Road Bridge). The Proposed Conditions WSP2 Model modified the existing conditions model with the proposed roadway profile and the bridges increased low beam elevation. The existing and proposed overtopping elevation was determined by survey of the roadway median, approximately 200' east of the bridge, which would perform similar to a weir.

HEC-RAS Model

A HEC-RAS model was created with only surveyed cross sections and was used to confirm the hydraulic data in a modern hydraulic model (See Exhibit R6 – Existing Conditions HEC-RAS Model). This model included the surveyed structure information, cross sections and datum correlation to NAVD88. The existing and proposed overtopping elevation was determined by survey of the roadway median, approximately 200' east of the bridge, which would perform similar to a weir. The upstream and downstream WSEL, based on FEMA flood profiles, were used to create boundary conditions for the HEC-RAS model. Manning's coefficients were input into the model based on onsite visual inspection of the project and aerial photography of the area.

Review of the surveyed cross sections found that manipulation of the model was necessary to improve accuracy. The ineffective flow areas were placed at a 1:1 upstream and a 3:1 downstream horizontal slope from the bridge face. The lagoons from the Flagg Creek Water Reclamation District (Section 3755) and the commercial development stormwater detention facility (Section 2542 and 2765) were made as permanent ineffective flow areas since the depressional areas would not convey water in flooding events. Levees were placed within the model to ensure that the channel would fill before overflow isolated depressional pockets within the floodplain. Contour data was supplemented when necessary if additional points were needed in the cross section data.

The following summarizes the assumptions were made in the HEC-RAS hydraulic modeling:

- The lagoons for the wastewater treatment facility are ineffective flow areas.
- Stormwater detention facilities are ineffective flow areas.
- Upstream ineffective contraction for the Joliet Road Bridge is 1:1
- Downstream ineffective expansion for the Joliet Road Bridge is 3:1
- Effective FEMA flows were used for the 10, 50, 100 and 500-year storm events
- Upstream and Downstream starting WSEL were taken from the Effective FEMA flood profiles.
- A series of levees were used to ensure that the Flagg Creek channel was the first to convey stormwater.
- Contour data was used to supplement overbank survey if needed.

SUMMARY OF NATURAL AND EXISTING HYDRAULIC ANALYSES

The WSP2 model indicated that approximately 0.8 feet of backwater was created by the Joliet Road Bridge over Flagg Creek for the base flood. The HEC-RAS model indicated that the existing bridge creates 0.15 feet of backwater for the base flood (See Exhibit E – Waterway Information Table). The existing conditions bridge created 0.10 ft (HEC-RAS) and 0.58 ft (WSP2) of backwater for the design storm event when compared to natural conditions. The existing structure has -1.32 feet of freeboard and 2.46 feet of clearance.

PROPOSED STRUCTURE ANALYSIS

The proposed Joliet Road Bridge over Flagg Creek low chord will be elevated 2.98 feet (See Exhibit O, Bridge Plan and Profile). The structure layout will remain unmodified but the approach and bridge profiles will be elevated (See Exhibit O, Proposed Bridge Plan and Profile)

This modification reduces the headwater created by the Joliet Road Bridge over Flagg Creek 0.15 feet for the 100-year HEC-RAS evaluation (0.76 feet for the 100-year WSP2 evaluation). The modification creates a greater waterway opening allowing for the passing of larger flood events. The proposed conditions bridge created 0.0ft(HEC-RAS) and 0.04ft(WSP2) of backwater for the design storm event when compared to natural conditions. The proposed structure has 1.66 feet of freeboard and 2.86 feet of clearance.

SCOUR ANALYSIS

Scour analysis indicates that contraction and scour may occur (See Exhibit H, Scour Evaluation). The existing slope wall countermeasure should remain in place. The 1954 Joliet Road Bridge construction plans indicated the center pier footing was placed at elevation 613.68 (613.96 NGVD29). Scour evaluation indicated:

icated:	
Existing Conditions	Proposed Conditions
10-year storm event	10-year storm event
Pier scour depth = 0.64 ft	Pier scour depth = 0.64 ft
 Contraction scour depth = 3.83 ft 	 Contraction scour depth = 3.83 ft
■ Potential scour elevation = 618.53	 Potential scour elevation = 618.53
50-year storm event	• 50-year storm event
Pier scour depth = 2.02 ft	• Pier scour depth = 1.92 ft
 Contraction scour depth = 4.38 ft 	 Contraction scour depth = 4.39 ft
■ Potential scour elevation = 616.60	 Potential scour elevation = 616.69
100-year storm event	100-year storm event
• Pier scour depth = 2.63 ft	■ Pier scour depth = 2.46 ft
 Contraction scour depth = 4.63 ft 	 Contraction scour depth = 4.66 ft
 Potential scour elevation = 615.74 	 Potential scour elevation = 615.88

Exhibit B1
Narrative

500-year storm event,	500-year storm event,
 Pier scour depth = 3.93 ft 	Pier scour depth = 3.52 ft
 Contraction scour depth = 5.13 ft 	 Contraction scour depth = 5.19 ft
 Potential scour elevation = 613.94 	 Potential scour elevation = 614.29

The potential scour is calculated from the channel lowpoint (623.0) on the downstream section. Analysis indicates that scour could be a potential issue for storm events above the 500-year.

During the field review and survey of the Joliet Road Bridge, it was noted that the outlet from the Flagg Creek Water Reclamation District's lagoons had created a scour. The outlet is approximately 70' north of the Joliet Road Bridge. The scour continues from the lagoon outlet to the NE corner of the bridge. This scour can be seen in the upstream bridge section (Exhibit O, Bridge Plan and Profile, Upstream Face) but not the downstream section.

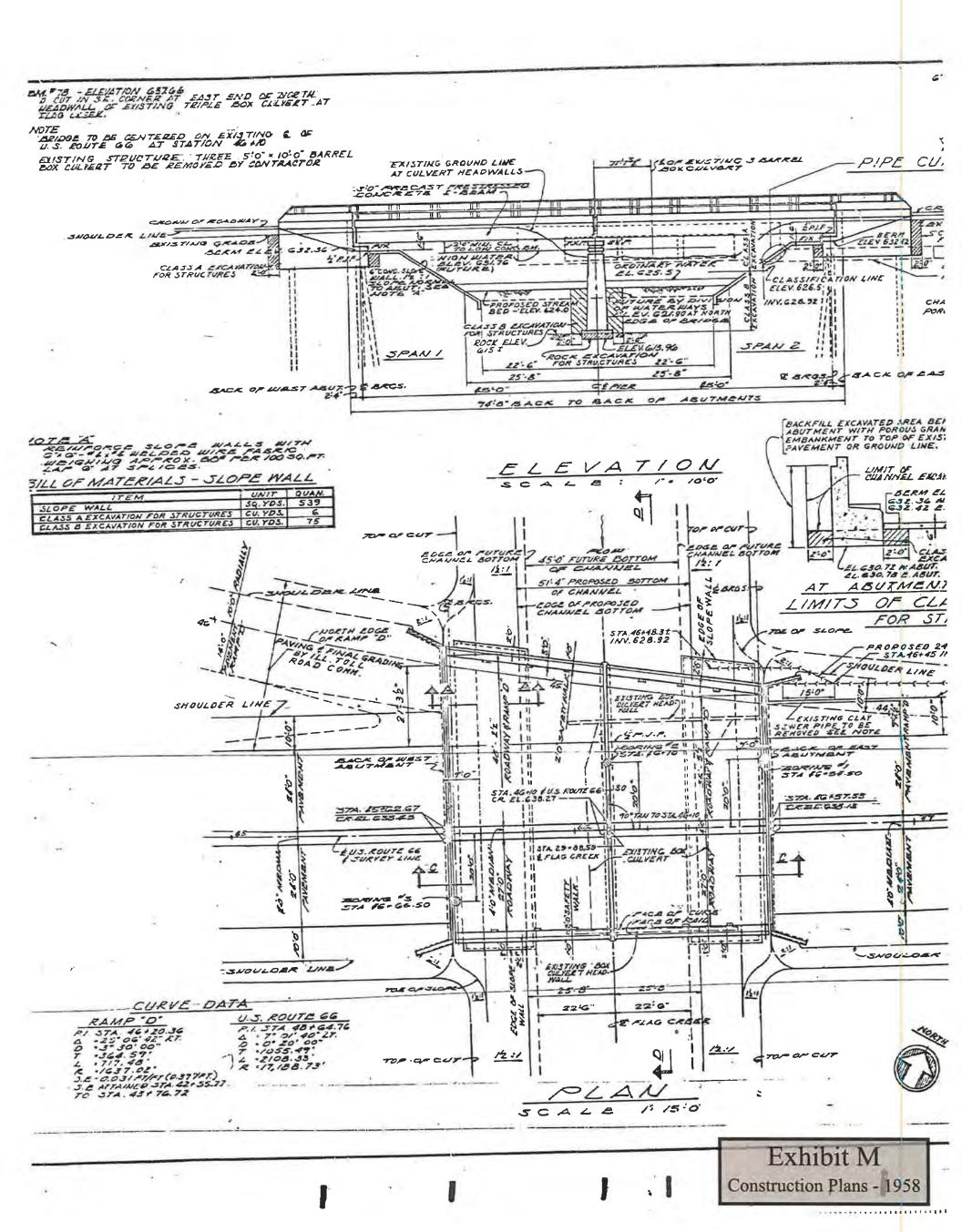
COMPENSATORY STORAGE

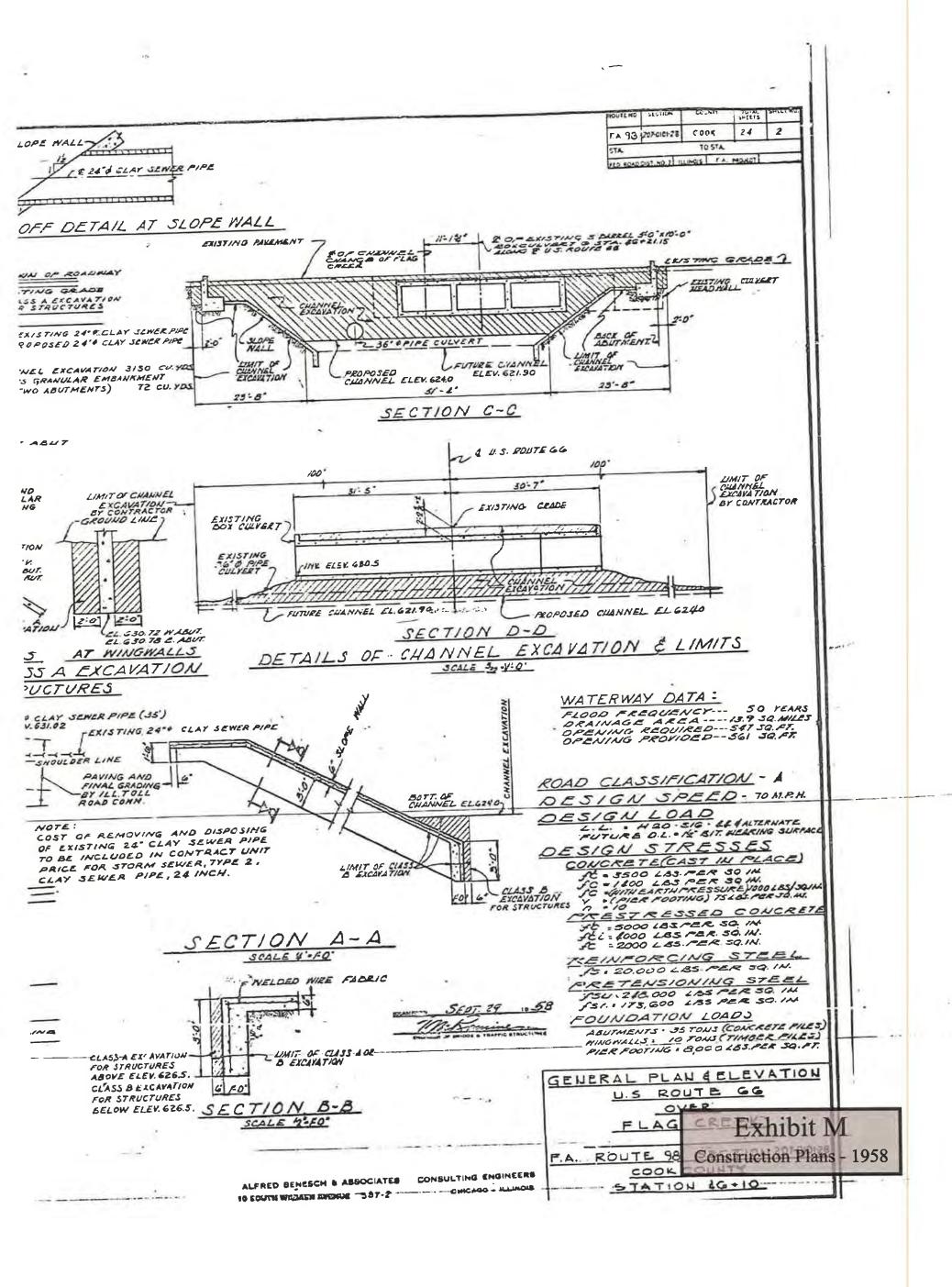
Compensatory Storage was evaluated for the improvement to the Joliet Road Bridge over Flagg Creek. The proposed roadway cross sections indicated that no fill would be placed within the regulatory floodway. The increase in the bridge low beam elevation created 450 cubic yards of compensatory storage between the 10 and 100-year water surface elevations.

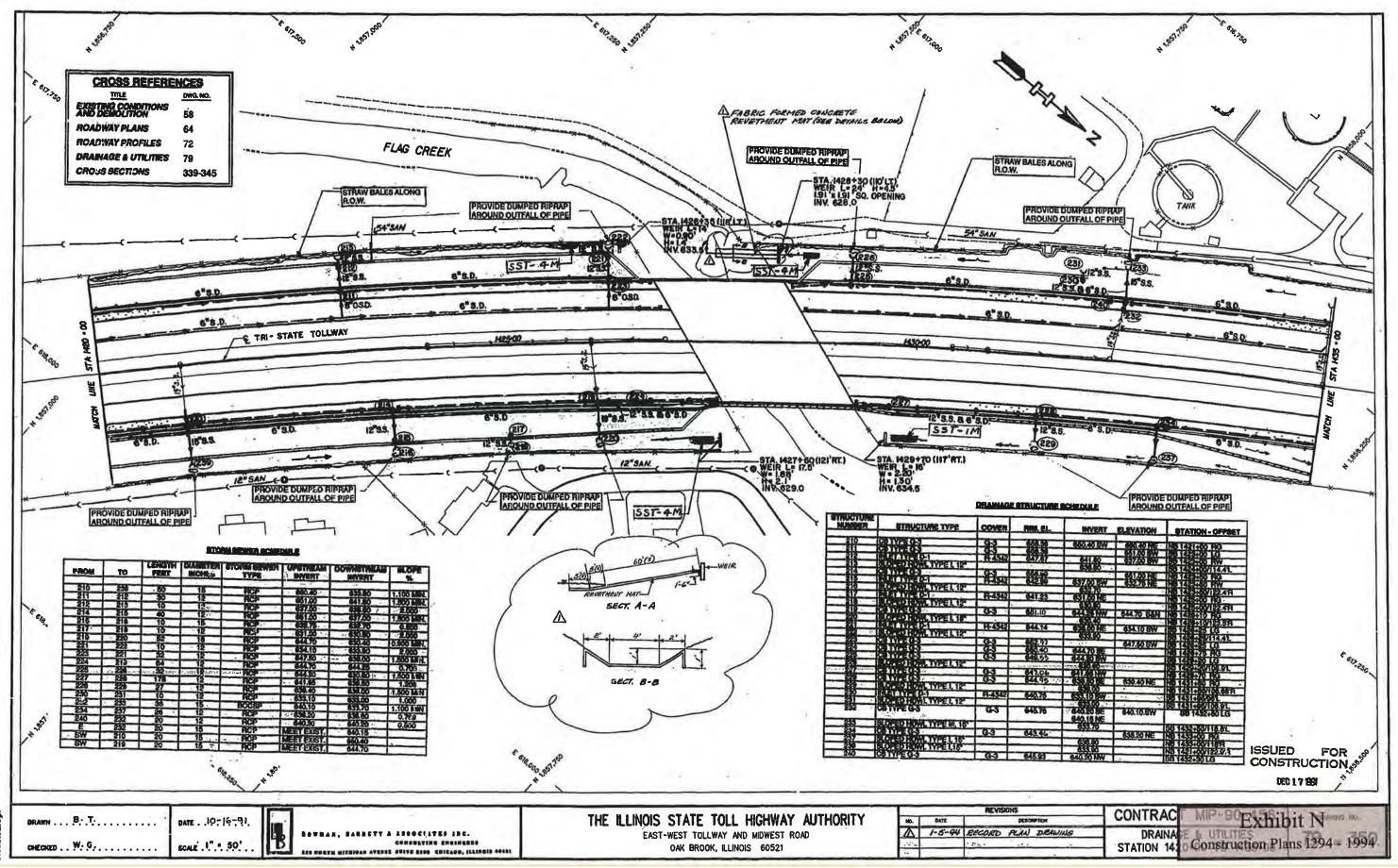
PERMIT REQUIREMENTS

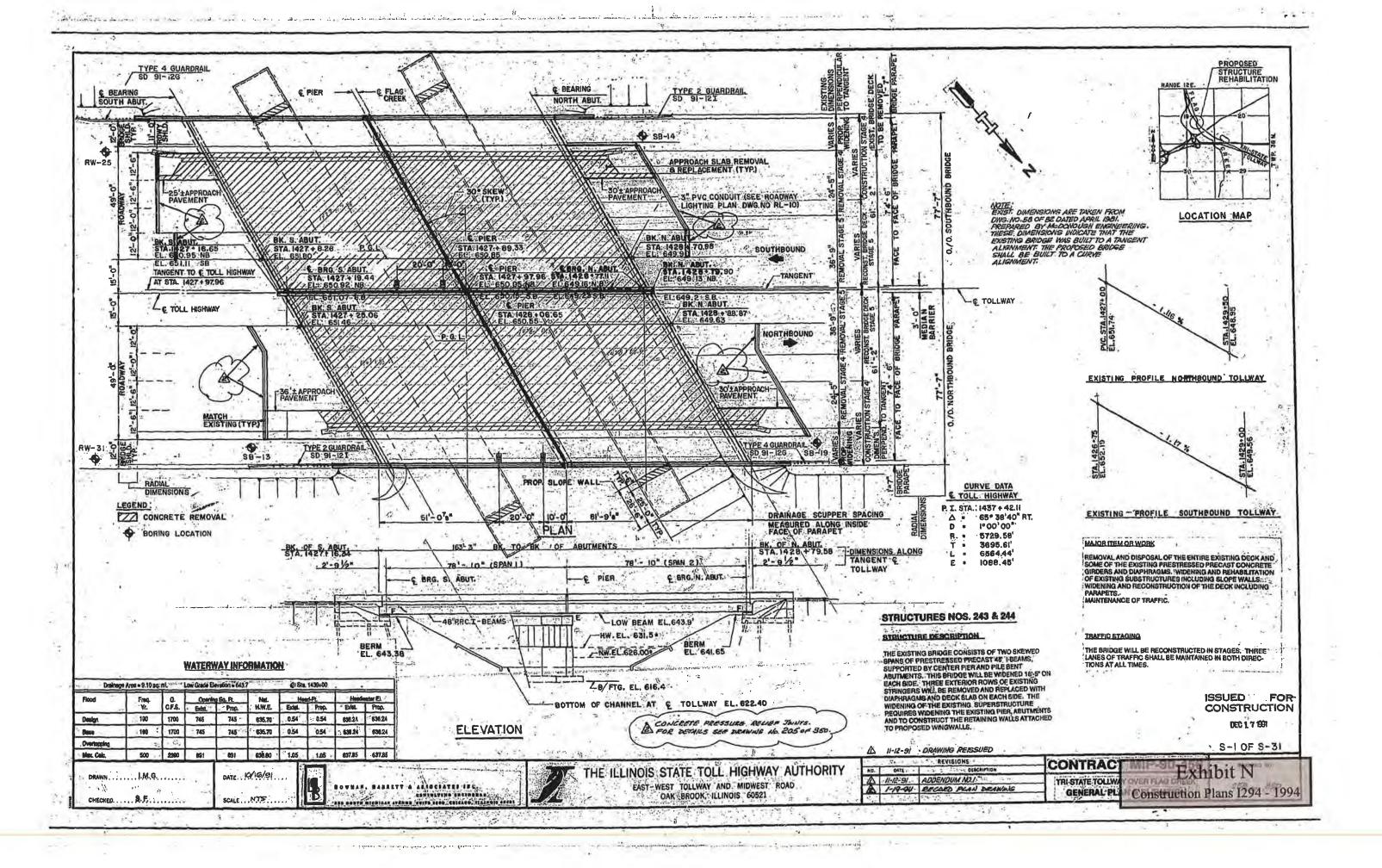
A floodway permit will be necessary since the superstructure replacement is not considered maintenance (See Exhibit F – Permit Summary Form for Floodway Construction). A portion of the existing and proposed bridge superstructure replacement will be located below the 100-year water surface elevation. The floodway permit is satisfied since the backwater created by the structure is less than 0.1 feet and no compensatory storage is required for the project.

CONCLUSION


The proposed revised Joliet Road Bridge will lower the created backwater on Flagg Creek floodway since the waterway opening will be increased. The Joliet Road Bridge:


- Does not meet the clearance criteria (HEC-RAS model).
 - O Low beam elevation = 635.52
 - o 50-year natural highwater = 633.86
 - O Clearance = 1.66 (less than 2 feet)
 - The proposed clearance was increased 2.98 feet compared to existing conditions
- Meets the freeboard criteria (HEC-RAS model).
 - Overtopping elevation = 636.72 (lowest edge of pavement from ramp profile, east of bridge)
 - o 50-headwater elevation = 633.86
 - o Freeboard = 2.86 feet (less than 3 feet)
 - The existing conditions had 2.46 feet of freeboard with an existing ramp elevation of 636.32 located 50' west of the bridge.


A design exemption will be required since the clearance and freeboard do not meet IDOT criterion.



Meut02.dan

FlaggCreek.rep

HEC-RAS Version 4.0.0 March 2008 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

х	х	xxxxxx	хх	XX		XX	xx	×	X	XXXX
X		X	Х	X		Х	Х	X	X	X
x		X	X			Х	Х	Х	X	X
XXX	oxxx	XXXX	X		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	Х			X	Х	Х	Х	X
x	X	X	X	X		Х	Х	Х	Х	X
x	X	XXXXXX	XX	XX		X	Х	X	Х	XXXXX

PROJECT DATA

Project Title: Flagg Creek Project File : FlaggCreek.prj Run Date and Time: 5/6/2010 7:35:46 AM

Project in English units

PLAN DATA

Plan Title: Flagg I-294 to I-55 Revised Plan File: p: $\2009\090111\$ order 1 - Joliet-Flagg Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.p02

Geometry Title: Flagg I-294 to I-55 Revised
Geometry File: p:\2009\090111\Work Order 1 - Joliet-Flagg
Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.g01

Flow Title : Flagg Creek - FEMA
Flow File : p:\2009\090111\work Order 1 - Joliet-Flagg
Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01

Plan Summary Information: Number of: Cross Sections = Culverts = 0 13 Multiple Openings = Inline Structures = Lateral Structures =

Bridges

Computational Information

water surface calculation tolerance = 0.01
Critical depth calculation tolerance = 0.01
Maximum number of iterations = 20

= 20 = 0.3

Maximum difference tolerance Flow tolerance factor

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Mixed Flow

FLOW DATA

 $\label{localizations} Flagg \ Creek - FEMA \\ Flow \ File: p:\2009\090111\work \ Order \ 1 - Joliet-Flagg \ Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01 \\ \\ Flow \ File: p:\2009\090111\work \ Order \ 1 - Joliet-Flagg \ Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01 \\ \\ Flow \ File: p:\2009\090111\work \ Order \ 1 - Joliet-Flagg \ Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01 \\ \\ Flow \ File: p:\2009\090111\work \ Order \ 1 - Joliet-Flagg \ Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01 \\ \\ Flow \ File: p:\2009\090111\work \ Order \ 1 - Joliet-Flagg \ Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.f01 \\ \\ Flow \ Flow \ Flow \ FlaggCreek\drainage\Calculations\HEC-RAS\FlaggCreek\drainage\Flow \ Flow \ Flow$

Flow Data (cfs)

100-year 2400 500-year 3350 50-year 2000 10-year 1260 River Reach I-294 to I-55 Flagg Creek

Boundary Conditions

Profile River

Upstream

I-294 to I-55 I-294 to I-55 10-year Known WS = 633.5Flagg Creek 50-year Known WS = 635.2Flagg Creek

Page 1

Exhibit R6 **Existing Conditions HEC-RAS** Model

Downstream

Known WS = 637

GEOMETRY DATA

Geometry Title: Flagg I-294 to I-55 Revised
Geometry File: p:\2009\090111\Work Order 1 - Joliet-Flagg
Creek\docs\drainage\Calculations\HEC-RAS\FlaggCreek.g01

CROSS SECTION

RIVER: Flagg Creek REACH: I-294 to I-55

RS: 4240

INPUT

Description: Surveyed Cross Section

Just Downstream of I-294 Station Elevation Data

Sta Elev 943.02 647.412 943.48 640.344 963.35 633.911 971.53 631.283 985.77 625.018 989.08 624.043 1000 623.49 1013.98 623.654 1017.05 624.678 1034.49 624.84 1053.07 633.246 1060.13 633.409 1069 633.187 1083.3 633.804 1093.69 633.873 1108.87 633.761 1176.51 633.478 1245.68 635.723 1246.42 634.241 1280.74 634.556 1340.09 635.013 1406.16 635.549 1469.2 635.767 1507.24 635.917 1508.17 636.574 1531.03 636.89

Manning's n Values num= 4
Sta n Val Sta n Val Sta
943.02 .1 963.35 .035 1053.07 n Val

.1 1246.42 Bank Sta: Left Right 963.35 1053.07 Ineffective Flow nu Lengths: Left Channel 485 485 Coeff Contr. Expan. Right 485

num= Sta L Sta R 1129.87 1531.03 Elev Permanent

Station= 1245.69 Elevation= 635.72 Right Levee

CROSS SECTION

RIVER: Flagg Creek REACH: I-294 to I-55

RS: 3755

Description: Surveyed Cross Section Station Elevation Data num=

Sta Elev Sta

Manning's n Values num= n Val Sta .1 1084.42 Sta n Val Sta 855.03 .1 951.87 n Val Sta .035 1033.51 Sta n Val n Val .025 1441.25

1499.51 Right 375 Bank Sta: Left Right 951.87 1033.51 Lengths: Left Channel Coeff Contr. Expan. Right

1 num= 1 Elev Permanent Ineffective Flow num-Sta L Sta R Elev 1042.98 1570.41 633.25

Right Levee Station= 1042.98 Elevation= 633.232

CROSS SECTION

RIVER: Flagg Creek REACH: I-294 to I-55 RS: 3380

INPUT

Description: Survey Cross Section North ROW of Joliet Road Station Elevation Data num= 16

Exhibit R6 **Existing Conditions** HEC-RAS Model

```
Sta Elev Sta
  Manning's n Values
Sta n Val Sta
1 944.5
                                                                                          n Val Sta
.035 1025.27
  Bank Sta: Left Right
932.57 1025.27
Ineffective Flow nu
Sta L Sta R Ele
1139.1 1395.69
                                                                                          Lengths: Left Channel
                                                                                                                                                                                                           Coeff Contr. Expan.
                                                                      _num=
                                                                                                                                 53
                                                                      Elev Permanent
   CROSS SECTION
  RIVER: Flagg Creek
REACH: I-294 to I-55
  Description: Surveyed Cross Section
   Upstream Face of Joliet Road
   Station Elevation Data
     Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 934.62 636 958.05 635.351 978.68 626.551 989.65 622.889 1000 622.043 1015.72 623.677 1025.86 624.995 1030.13 625.714 1032.24 627.688 1048.55 631.47 1075.72 632.828 1115.14 633.565 1162.6 633.736 1234.96 635.425 1368.96 640
                                                                                                                                                                                                                                         1000 622.043
  Manning's n Values num= 3
Sta n Val Sta n Val Sta
934.62 .1 978.68 .035 1048.55
                                                                                                                                                n Val
.035
  Bank Sta: Left Right
958.05 1048.55
Ineffective Flow nu
                                                                                         Lengths: Left Channel
                                                                                                                                                                                                              Coeff Contr.
                                                                                                                                                                           Right
                                                                                          2
                                                                                                                               39
                                                              _num=
         Sta L Sta R
934.62 954.07
                                                                      Elev Permanent
                                                           637.5
637.5
     1046.13 1368.96
  CROSS SECTION
  RIVER: Flagg Creek
REACH: I-294 to I-55
                                                                                         RS: 3288
  Description: Upstream Face of the Joliet Road Bridge
  The chanel section was
                                          adjusted for the 7.3 degree skew.
  Station Elevation Data
                                                                                                                    24
                                                                                         num=
           Sta Elev Sta
685.5 637.76 737.35
956.66 636.4 956.66
93.06 622.7 1000
943.35 631 1043.35
                                                                                        Elev Sta Elev Sta Elev
637.44 788.63 637.47 839.46 637.56
631 961.61 630.7 979.96 621.3
624.3 1015.28 624.2 1025.59 624.7
636.3 1100.87 637.92 1150.18 638.15
639.05 1357.01 639.61 1409.21 640.35
                                                                                                                                                                                                      Elev Sta
637.56 896.59
621.3 984.13
624.7 1038.49
638.15 1200.49
                                                                                                                                                                                                                                                                    Elev
                                                                                                                                                                                                                                                             637.62
622.3
630.7
         956.66
     993.06
1043.35
                                                                                                                                                                                                                                                                 638.4
     1252.04 638.69 1304.98
 Manning's n Values
                                                                                         num=
                                                                   Sta
           Sta n Val Sta
685.5 .035 956.66
                                                                                      n Val Sta
.035 1043.35
                                                                                                                                               n Val
.035
 Bank Sta: Left Right
956.66 1043.35
                                                                                         Lengths: Left Channel
                                                                                                                                                                           Right
                                                                                                                                                                                                           Coeff Contr. Expan.
956.66 1043.35
Ineffective Flow num= 2
Sta L Sta R Elev Permanent
685.5 956.66 637.5 F
1043.35 1409.21 637.75 F
Skew Angle = 7.3
                                                                                                                              82
 BRIDGE
 RIVER: Flagg Creek
REACH: I-294 to I-55
                                                                                         RS: 3245
```

INPUT

```
FlaggCreek.rep
 Description:
Distance from Upstream XS = Deck/Roadway Width = Weir Coefficient =
                                                    2.6
 Upstream Deck/Roadway Coordinates num= 15
     Sta Hi Cord Lo Cord
685.5 637.76
                           Lo Cord Sta Hi Cord Lo Cord 737.35 637.44 896.59 637.62 632.76 1046.13 637.74 632.54 1200.49 638.4
                                                                                Sta Hi Cord Lo Cord
788.63 637.47
954.07 637.48 632.98
       585.5 637.76
39.46 637.56
1000 637.75
50.18 638.15
    839.46
                                                                  632.54 1100.87 637.92
  1150.18
                                                                               1252.04 638.69
   1304.98 639.05
                                         1357.01 639.61
 Upstream Bridge Cross Section Data
 Station Elevation Data
                                          num=
                           Sta
737.35
                    Elev
                                                                      Elev
        Sta
                                                           Sta
                                                                                                Elev
                                                                                                                         Elev
                                         637.44 788.63
631 961.61
624.3 1015.28
636.3 1100.87
639.05 1357.01
     685.5
                                                                   637.47 839.46
630.7 979.96
624.2 1025.59
637.92 1150.18
                637.76
                                                                                           637.56 896.59
621.3 984.13
624.7 1038.49
                                                                                                        896.59
984.13
                                                                                                                      637.62
622.3
                636.4 956.66
622.7 1000
631 1043.35
    956.66
    993.06
                                                                                                                        630.7
  1043.35
                                                                                             638.15
                                                                                                       1200.49
  1252.04 638.69 1304.98
                                                                   639.61 1409.21
Manning's n Values
                                          num=
                                          n Val Sta
.035 1043.35
        Sta n Val Sta
85.5 .035 956.66
                                                                    n Val
Bank Sta: Left
                           Right
                                          Coeff Contr.
                                                                 Expan.
             956.66 1043.35
                                                                      . 3
 Ineffective Flow
                                                    2
                                 num=
  Sta L Sta R
685.5 956.66
1043.35 1409.21
                                Elev Permanent
                            637.5
637.75
                                                 F
 Skew Angle = 7.3
Downstream Deck/Roadway Coordinates
      num=
                     15
        Sta Hi Cord Lo Cord
                                               Sta Hi Cord Lo Cord
                                                                                     Sta Hi Cord Lo Cord
                           737.35 637.44
896.59 637.62
632.76 1046.13 637.74
1200.49 638.4
1357.01 639.61
 685.5 637.76
839.46 637.56
1000 637.75
1150.18 638.15
1304.98 639.05
                                                                                788.63 637.47
954.07 637.48
                                                                                                         632.98
                                                                  632.54 1100.87
                                                                                           637.92
                                                                              1252.04
                                                                                            638.69
                                                                              1409.21
                                                                                           640.35
Downstream Bridge Cross Section Data
Station Elevation Data
                                         num≕
               Elev Sta
637.76 737.35
637.1 956.8
623 1005
636.7 1100.87
                                         Elev Sta 637.44 788.63
                                                                   Elev Sta
637.47 839.46
630.9 974.3
624.1 1038.3
638.15 1200.49
                                                                                            Elev
637.56
625.4
630.9
                                                                                                        Sta
896.59
983.2
1043.3
                                                                                                                    Elev
637.62
625.4
631.7
     Sta
685.5
                                         631.1 961.3
624.2 1025.3
637.92 1150.18
     956.8
   1000.2
    1043.3
                                                                                              638.4 1252.04
                                                                                                                      638.69
  1304.98 639.05 1357.01
                                         639.61 1409.21
Manning's n Values
                                         num=
        Sta n Val
35.5 .035
                                 Sta
                                          n Val
                                                           Sta
                                                                    n Val
                                           .035 1043.3
                              956.8
Bank Sta: Left
956.8 1
Ineffective Flow
                                          Coeff Contr.
                       Right
1043.3
                                num=
   Sta L Sta R Elev Permanent
685.5 956.8 637.5 F
1043.3 1409.21 637.75 F
Upstream Embankment side slope
Downstream Embankment side slope
Maximum allowable submergence for weir flow
Elevation at which weir flow begins
Energy head used in spillway design
Spillway height used in design
                                                                                   O horiz. to 1.0 vertical
                                                                                   0 horiz. to 1.0 vertical
Weir crest shape
                                                                      = Broad Crested
Number of Piers = 1
Pier Data
Pier Station
                                                1000
                                                                                    1000
                        Upstream=
                                                            Downstream=
Upstream
                   num=
      Width
                   Elev
                                Width
                                            Elev
                                3 632.98
           3
                   620
Downstream
                      num=
```

Page 4

```
FlaggCreek.rep
              Width
                                       Elev
                                                               Width Elev
                                                                          3 632.98
                                          620
  Number of Bridge Coefficient Sets = 1
  Low Flow Methods and Data
                        Energy
  Selected Low Flow Methods = Highest Energy Answer
  High Flow Method
                       Energy Only
 Additional Bridge Parameters
Add Friction component to Momentum
                       Do not add weight component to Momentum
Class B flow critical depth computations use critical depth
                       inside the bridge at the upstream end
Criteria to check for pressure flow = Upstream energy grade line
  CROSS SECTION
 RIVER: Flagg Creek
REACH: I-294 to I-55
                                                                                   RS: 3206
  Description: Downstream Face of Joliet Road Bridge
  Station Elevation Data
                                                                                 num=
   Sta Elev Sta
685.5 637.76 737.35
956.8 637.1 956.8
1000.2 623 1005
1043.3 636.7 1100.87
1304.98 639.05 1357.01
                                                                                       Elev
                                                                                                                                                                        Sta
                                                                                                                                                                                              Elev
                                                                                                                                                                                                                                                Elev
                                                                                                                                                                                        637.56
625.4
                                                                                                                                                                                                             896.59
983.2
1043.3
                                                                                                                                                                                                                                          637.62
625.4
                                                                                   637.44 788.63
                                                                                                                                     637.47
                                                                                                                                                               839.46
                                                                                   631.1 961.3
624.2 1025.3
637.92 1150.18
                                                                                                                                                                 974.3
                                                                                                                                       630.9
                                                                                                                                                            1038.3
                                                                                                                                 624.1 1038.3
638.15 1200.49
                                                                                                                                                                                           630.9
                                                                                                                                                                                           638.4 1252.04
                                                                                   639.61 1409.21
                                                                                                                                    640.35
 Manning's n Values
                                                                                   num=
                                                                                  n Val Sta
.035 1043.3
          Sta n Val Sta 685.5 .035 956.8
                                                                                                                                       n Val
 Bank Sta: Left Right 956.8 1043.3
                                                                                  Lengths: Left Channel
                                                                                                                                                              Right
                                                                                                                                                                                              Coeff Contr.
  Ineffective Flow
                                                                num=
         Sta L Sta R
685.5 956.8
                                                               Elev Permanent
       685.5 956.8 637.5
1043.3 1409.21 637.75
 CROSS SECTION
 RIVER: Flagg Creek
REACH: I-294 to I-55
                                                                                  RS: 3148
 INPUT
Description: Surveyed Cross Section
Downstream Face of Joliet Road
Station Elevation Data num= 24

Sta Elev Sta Elev Sta Elev Sta

718.1 634.99 727.55 634.439 728.22 634.025 729.09

815.81 635.28 854.35 636.521 854.94 636.328 856

876.37 636.435 877.36 636.392 877.96 636.571 915.13

961.25 634.658 971.9 628.969 975.59 624.863 979.02

1029.42 624.774 1032.82 626.596 1049.64 635.605 1070.41
                                                                                                                                                            Sta Elev
729.09 634.056
856 636.417
915.13 636.548
979.02 624.082
                                                                                                                                                                                                               765.83 634.321
865.25 636.464
953.12 635.36
                                                                                                                                                                                                                      3.12 635.36
1000 622.988
Manning's n Values
                                                                                  num=
          Sta n Val Sta
718.1 .013 953.12
                                                                                   n Val
                                                                                      .035
Bank Sta: Left Right
953.12 1049.64
                                                                                  Lengths: Left Channel
                                                                                                                                                             Right
                                                                                                                                                                                             Coeff Contr.
                                                                                                                                                                                                                                            Expan.
Ineffective Flow num=
Sta L Sta R Elev
   neffective Flow
Sta L Sta R Elev Permano
718.1 954.07 637.5 F
1046.13 1070.41 637.5 F
1046.13 1070.41 637.5 F
1040.10 Permano
1040.10 Permano
1050.10 Permano

                                                                               Permanent
                                                                                                                       Elevation= 636.548
Left Levee
CROSS SECTION
```

RIVER: Flagg Creek

Exhibit R6
Existing Conditions
HEC-RAS Model

```
FlaggCreek.rep
 REACH: I-294 to I-55
                                                      RS: 3081
Description: Surveyed Cross Section
South ROW of Joliet Road
 Station Elevation Data
  Sta Elev Sta Elev 700.12 635.213 715.59 635.15 849.72 635.974 850.32 635.78 873.24 635.837 873.77 636.034 956.98 633.907 973.01 627.756 1023.58 623.869 1027.81 624.827
                                                                             Sta
                                                                                            Elev
                                                                       735.43 635.461 767.31 635.449
851.31 635.845 861.89 636.024
907.47 636.397 939.2 636.187
975.66 624.761 985.89 623.489
                                                                                                                                        817.37 635.27
872.17 635.891
941.74 635.886
1000 623.264
                                                                       1060.6
Manning's n Values
                                                       num=
                                       Sta
939.2
          Sta n Val
0.12 .013
                                                        n Val Sta
.035 1060.6
Bank Sta: Left Right 939.2 1060.6
                                                      Lengths: Left Channel
                                                                                                        Right
316
                                                                                                                            Coeff Contr.
                                                                           316
                                                                                            316
Ineffective Flow
                                                                   2
                                           num=
     Sta L Sta R
700.12 913.07
                                          Elev Permanent
                                                                 F
   1087.13 1212.12
                                 Station= 907.47
                                                                               Elevation= 636.397
Left Levee
CROSS SECTION
RIVER: Flagg Creek
REACH: I-294 to I-55
                                                      RS: 2765
Description: Surveyed Cross Section
Approximatley 450' Downstream
Station Elevation Data
                                                                           29
  Sta Elev Sta Elev
716.52 634.71 725.473 633.61
852.74 633.931 856.99 633.503
879.37 633.365 881.01 633.481
964.28 633.109 975.88 624.879
1021.19 624.989 1027.01 628.729
1096.47 629.329 1118.4 634.385
                                                                     Sta Elev Sta
757.57 635.078 801.99
857.56 633.302 858.55
905.23 633.742 932.95
977.62 624.631 1000
1036.7 632.295 1061.92
1119.8 637.943 1135.48
                                                                                                     801.99 635.575 837.63 635.143
858.55 633.354 868.9 633.369
932.95 633.777 933.78 633.764
1000 623.299 1013.14 623.352
1061.92 632.69 1082.27 629.198
Manning's n Values
                                                      num=
          Sta n Val Sta
5.52 .013 964.28
                                                       n Val Sta
.035 1036.7
                                                                                        n Val
                                                                                                                          n Val
.035
                a: Left Right
964.28 1036.7
                                                                                                       Right
223
                                                      Lengths: Left Channel
Bank Sta: Left
                                                                                                                            Coeff Contr.
                                                                                                                                                           Expan.
Ineffective Flow __num=
  Sta L Sta R Elev
1061.92 1135.48 632.69
                                         Elev Permanent
Left Levee
                                Station=
                                                     801.99
                                                                              Elevation= 635.58
CROSS SECTION
RIVER: Flagg Creek
REACH: I-294 to I-55
                                                     RS: 2542
Description: Surveyed Cross Section Approximatly 670' Downstream
Station Elevation Data
                                                    num=
                                                                      Sta Elev
742.28 633.429
354.81 634.4
                                                     Elev
          Sta Elev
                                                                                                                                              Sta
                                                                                                      Sta Elev Sta
765.89 632.763 775.21
865.66 634.506 866.87
890.05 634.609 890.87
897.62 634.844 931.16
954.07 624.809 959.68
1001.9 623.468 1012.76
                                  722.68 634
842.1 628.598
868.39 634.553
895.89 635.295
                                                                                                                                        775.21 629.851
866.87 634.656
890.87 634.544
931.16 635.029
959.68 623.62
                          638
    804.17 628.408
867.4 634.463
891.56 635.027
```

878.45 634.629 896.81 634.798 952.68 626.51 1000 620.992 932.49 634.773 942.56 632.614 952.68 626.51 954.07 624.809 959.68 623.62 975.7 623.167 990.36 623.587 1000 620.992 1001.9 623.468 1012.76 632 1028.26 632.995 1039.67 636.779 1043.28 637.063 1060.18 637.19 1091.44 636.739 1133.41 638.407 1152.48 638.552

n Val

num=

Sta

n Val Sta .013 897.62

Manning's n Values

1039.67

Sta n Val Sta 718.48 .035 864.81

Sta

931.16

n Val

.035 1028.26

FlaggCreek.rep

```
Bank Sta: Left Right
931.16 1012.76
Ineffective Flow nu
                                                  Lengths: Left Channel
                                                                                                 Right
396
                                                                                                                     Coeff Contr.
                                                                                                                                                 Expan.
                                                    1
                                                                       396
                                                                                     396
     Sta L Sta R Elev Ferman
718.48 866.87 634.656 T
54 Levee Station= 931.16
                                       Elev Permanent
                                                                        Elevation= 635.029
 Left Levee
 CROSS SECTION
 RIVER: Flagg Creek
REACH: I-294 to I-55
                                                   RS: 2146
 Description: Surveyed Cross Section Approximatly 1100'
                         Downstream
 Approximatly Section K-K from Original WSP2 Model Station Elevation Data num= 27
  Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 784.86 646 791.46 634 803.26 633.583 809.05 633.64 848.34 633.72 876.46 633.444 889.29 633.439 891.55 633.433 911.87 633.398 913.9 633.258 919.04 633.03 953.2 633.66 966.79 631.736 979.4 624.095 994.43 622.149 1000 621.933 1009.15 621.978 1016.18 624.145 1020.4 626.269 1033.14 630.792 1104.24 631.928 1161.1 632.77 1212.24 633.797 1238.02 635.952 1249.88 636.399 1262.7 636.198 1266.91 636.276
Manning's n Values
Sta n Val Sta
784.86 .035 876.46
1020.4 .1 1033.14
                                                   num=
                                                  n Val Sta
.013 911.87
                                                                       Sta
                                                                                   n Val
.035
                                                                                                  Sta
953.2
                                                                                                                  n Val Sta
                                                                                                                                                n Val
Bank Sta: Left Right 953.2 1033.14
                                                                                                Right
384
                                                  Lengths: Left Channel
                                                                                                                    Coeff Contr.
                                                                                                                                                 Expan.
CROSS SECTION
RIVER: Flagg Creek
REACH: I-294 to I-55
                                                  RS: 1762
Description: Copy of Surveyed Cross Section
Approximatly Upstream Face of 70th
Place Bridge
Adjusted to Stream Survey point Station Elevation Data num=

Sta Elev Sta Elev 776.25 650 844.45 630 1007.1 621.09 1046.6 626.69
                                               Elev Sta
630 860.45
626.69 1085.75
                                                                                    Elev Sta
632 962.7
634 1297.25
                                                                                                               Elev
627.03
                                                                                                                                     Sta
                                                                                                                                                   Elev
                                                                                                                                 986.3 619.49
Manning's n Values
                                                  num=
         Sta n Val Sta
5.25 .035 962.7
                                                   n Val Sta
.035 1046.6
                                                                                  n Val
                                                                       Sta
Bank Sta: Left Right 962.7 1046.6
                                                  Lengths: Left Channel
                                                                                                Right
                                                                                                                   Coeff Contr.
                                                                                                                                                Expan.
BRIDGE
RIVER: Flagg Creek
REACH: I-294 to I-55
                                                  RS: 1744
INPUT
Description:
Distance from Upstream XS =
Deck/Roadway Width =
Weir Coefficient =
                                                             2.5
28
                                                             2.6
Upstream Deck/Roadway Coordinates
num= 10
                                                                      630 Sta Hi Cord Lo Cord
630 860.45 632
3.15 628 1000 632
 Sta Hi Cord Lo Cord
776.25 650
956.15 633.09
1043.85 633.55 628
1297.25 636
                                                       Sta Hi Cord Lo Cord
                                                 844.45
962.7 6
                                                                633.15
                                       628 1046.6
```

Upstream Bridge Cross Section Data

Exhibit R6
Existing Conditions
HEC-RAS Model

```
FlaggCreek.rep
 Station Elevation Data
                                  num=
                                  Elev Sta
630 860.45
   Sta Elev Sta
776.25 650 844.45
                                                Sta
                                                         Elev
                                                                     Sta
                                                                              Elev
                                                                                          Sta
                                                                                                   Elev
                                                           632 962.7 627.03
634 1297.25 636
                                                                                       986.3 619.49
   1007.1 621.09 1046.6
                                  626.69 1085.75
Manning's n Values
                                  num=
   Sta n Val
776.25 .035
                                  n Val
                           Sta
                                                Sta
                                    .035 1046.6
                         962.7
Bank Sta: Left Right 962.7 1046.6
                                  Coeff Contr.
                                                     Expan.
Downstream Deck/Roadway Coordinates
 Sta Hi Cord Lo Cord
776.25 650
956.15 633.09
1043.85 633.55 628
                                      Sta Hi Cord Lo Cord
                                                                    Sta Hi Cord Lo Cord
                                  844.45 630
962.7 633.15
                                                                860.45 632
1000 633.32
                                                           628
                           628 1046.6
                                                          628 1085.75
                                           633.6
Downstream Bridge Cross Section Data
Station Elevation Data
                                  Elev Sta
630 860.45
   Sta Elev Sta
776.25 650 844.45
                                                         Elev
632
                                                          lev Sta
632 962.7
634 1297.25
                                                                              Elev
                                                                                          Sta
                                                                                                  Elev
                                                                           627.03
                                                                                       986.3 619.78
   1007.1 621.09 1046.6
                                  626.69 1085.75
Manning's n Values
                                  num=
   Sta n Val Sta
776.25 .035 962.7
                          Sta
                                  n Val
                                                Sta
                                    .035 1046.6
Bank Sta: Left Right
962.7 1046.6
                                  Coeff Contr.
Upstream Embankment side slope
                                                                   O horiz. to 1.0 vertical O horiz. to 1.0 vertical
Downstream Embankment side slope
Maximum allowable submergence for weir flow =
Elevation at which weir flow begins =
Energy head used in spillway design =
Spillway height used in design =
weir crest shape =
                                                        = Broad Crested
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
         Energy
Selected Low Flow Methods = Highest Energy Answer
High Flow Method
         Energy Only
Additional Bridge Parameters
         Add Friction component to Momentum
         Do not add Weight component to Momentum
Class B flow critical depth computations use critical depth
inside the bridge at the upstream end
         Criteria to check for pressure flow = Upstream energy grade line
CROSS SECTION
RIVER: Flagg Creek
REACH: I-294 to I-55
                                 RS: 1728
Description: Approximatly Downstream Face of 70th Place Bridge
                Stream Survey point
Station Elevation Data
                                 Elev
  Sta Elev Sta
776.25 650 844.45
1007.1 621.09 1046.6
                                     lev Sta
630 860.45
                                                        Elev
                                                                             Elev
                                                                                         Sta
                                                                                                  Elev
                                                          632
                                                                          627.03
                                                                                      986.3 619.78
                                 626.69 1085.75
Manning's n Values
                                 num=
                        Sta
                                 n Val Sta
.035 1046.6
  Sta n Val
776.25 .035
                                                       n Val
                       962.7
Bank Sta: Left Right
962.7 1046.6
                                 Lengths: Left Channel
                                                                Right
860
                                                                             Coeff Contr.
                                                                                                Expan.
                                              860
                                                        880
```

FlaggCreek.rep

SUMMARY OF MANNING'S N VALUES

River:Flagg Creek

Reach	River Sta.	n1	n2	n3	n4	n5	n6	n7
I-294 to I-55	4240	.1	.035	.1	.013			
I-294 to I-55	3755	.1	.035	.1	.025	. 025	.1	
I-294 to I-55	3380	.1	.035	.035				
I-294 to I-55	3327	.1	.035	.035				
I-294 to I-55	3288	.035	.035	.035				
I-294 to I-55	3245	Bridge		95				
I-294 to I-55	3206	.035	.035	. 035				
I-294 to I-55	3148	.013	.035	2000				
I-294 to I-55	3081	.013	.035	. 035				
I-294 to I-55	2765	.013	.035	1	035			
I-294 to I-55	2542	.035	.013	' 1	.035	.1	.013	
I-294 to I-55	2146	.035	.013	.035	1033	. 035	1	.035
I-294 to I-55	1762	.035	.035	.035			. 1	F022
I-294 to I-55	1744	Bridge	.033					
			035	035				
I-294 to I-55	1728	.035	.035	.035				

SUMMARY OF REACH LENGTHS

River: Flagg Creek

Reach	River Sta.	Left	Channel	Right
I-294 to I-55	4240	485	485	485
I-294 to I-55	3755	375	375	375
I-294 to I-55	3380	53	53	53
I-294 to I-55	3327	39	39	39
I-294 to I-55 I-294 to I-55	3288 3245	82 Bridge	82	82
I-294 to I-55	3206	58	58	58
I-294 to I-55	3148	67	67	67
I-294 to I-55	3081	316	316	316
I-294 to I-55	2765	223	223	223
I-294 to I-55	2542	396	396	396
I-294 to I-55	2146	384	384	384
I-294 to I-55 I-294 to I-55 I-294 to I-55	1762 1744 1728	34 Bridge 860	34 880	34 860

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Flagg Creek $% \left(1\right) =\left(1\right) \left(1\right$

Reach	River	Sta. (Contr.	Expan.
I-294 to I-55 I-294 to I-55	4240 3755 3380 3327 3288 3245 3206 3148 3081 2765 2542 2146 1762	Bridge	.1 .1 .1 .1 .1 .1 .1	.3 .3 .3 .3 .3 .3 .3
I-294 to I-55 I-294 to I-55	1744 1728	Bridge	.1	.3

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 20.B
	ISWS NOTES
B	

Flag Creek near 72nd St. / FIS 2000-2007 cross-section I

(Indian Woods Unit 2 and Flagg Creek Townhomes, Village of Indian Head Park)

The effective FIS profile and FIRM mapping from appx FIRM/FIS 2000 XS H to appx Interstate 55 (I-55), which includes 72nd St and FIS XS I*, is from LOMR 95-05-121P (6/26/1995) and overlapping LOMR 00-05-007P (2/3/2000).

The effective model (s) associated with these revisions are not included with the LOMRs on the FEMA Engineering Study Data Package (ESDP) CD 200105003A archive for the Cook County FIS 2000 countywide revision.

THE EFFECTIVE MODELS IN THIS REACH ARE NOT ON FILE AT ISWS.

Source models:

The documentation provided with LOMR 95-05-121P on the ESDP does not explicitly identify a model run. LOMR case number 95-05-121P was a follow-up to CLOMR 91-05-030R (1/27/1992), and also was processed originally as case number 94-05-259P, which was dropped for administrative reasons and restarted as case 95-05-121P. Any submitted models might be in the case files of any of these three case numbers in the FEMA Project Library.

LOMR 00-05-007P (2/3/2000) cites CLOMR 97-05-850R (8/6/1997) as the basis of the revision. CLOMR 97-05-850R (included here, also from the ESDP) cites a proposed conditions WSP-2 model run dated 5/2/1997. LOMR 00-05-007P does not cite a model run, which implies that as-built conditions were reflected by the proposed model without further revision. The 5/2/1997 proposed conditions model is likely to be the most recent version of a model in this reach.

However, note that it is not clear whether the 5/2/1997 model for LOMR 00-05-007P incorporated any modeling performed for the preceding LOMR 95-05-121P, even though the effective revised area overlapped. The cases were submitted by different study contractors. Therefore, it cannot be predicted whether the 5/2/1997 proposed conditions WSP-2 model alone accounts for the effective FIS modeling in this reach (i.e., near Indian Woods Drive).

*NOTE RE FIS PUBLICATION ERROR:

The first edition of the Cook County countywide FIS (11/6/2000) correctly incorporated the revised Floodway Data Table values at countywide FIS XS I from LOMR 00-05-007P. Subsequent revisions of the Cook County FIS (2002-2007) INCORRECTLY included PREVIOUS (pre- 00-05-007P) floodway data table values at countywide FIS XS I. A scan of the correct FIS 11/6/2000 version of the Flag Creek floodway data table is included here, as file FDT2000_correct_I.pdf.

-ws/ISWS 1/7/2008

The 23 FEB 78 WSP-2 model run of Flag Creek was the source of the Village of Indian Head Park 1979 FIS (in FC033-FC055).

This version of the model is **superseded** by FIS revisions in the following model reaches:

FC015 - FC027 by LOMR 915023 (and 92-05-003P) FC033 - Z by LOMRs 95-05-121P and 00-05-007P

FC055 - end of model by 02 AUG 78 WSP-2/FLDWY runs used for the Western Springs 1980 FIS (with added cross-sections above FC055)

In addition, a 21 FEB 80 WSP-2 trial run was performed during the Western Springs FIS study incorporating updated information within Indian Head Park and Western Springs above FC055 based on field reconnaissance. The 21 FEB 80 version of the WSP-2 represents "post-FIS" conditions compared to the 1978 model versions.

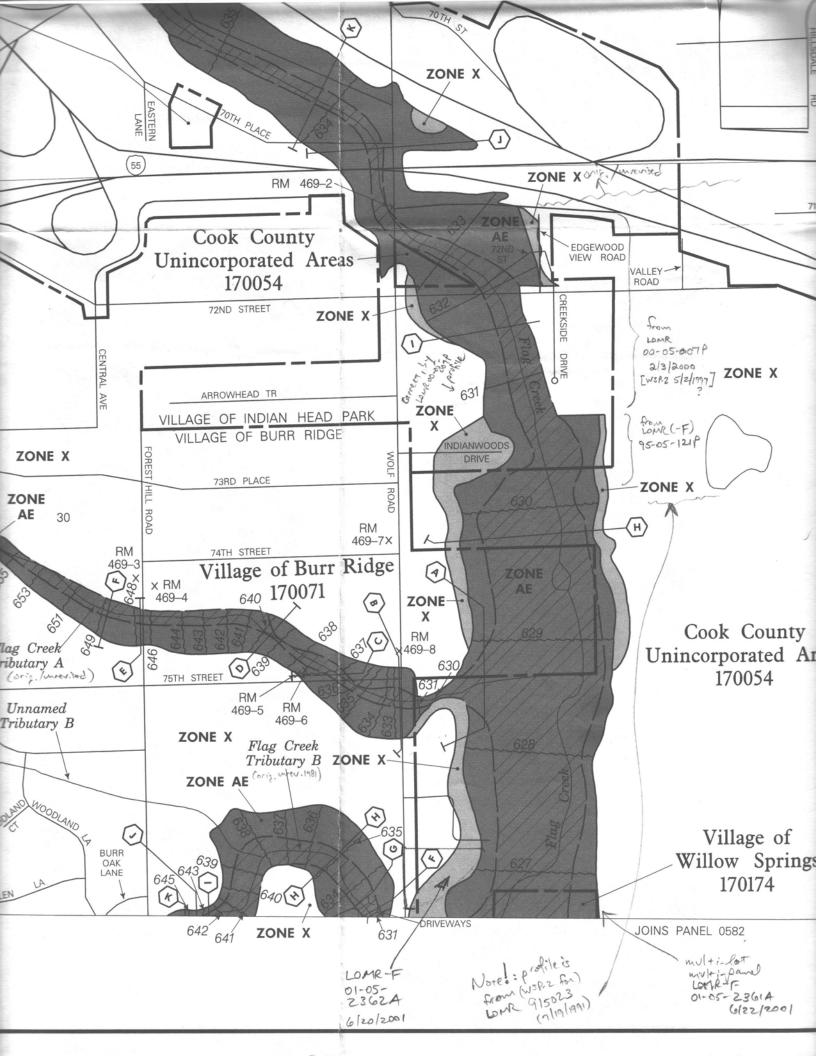
-ws/ISWS 1/8/2008

FLOODING SOU	FLOODWAY			BASE FLOOD WATER SURFACE ELEVATION (FEET NGVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Flag Creek B C D E F G H I N O P Q R S T U V	3,000 3,830 5,175 8,330 8,850 11,620 14,475 17,900 20,370 20,780 25,280 27,640 29,540 30,870 31,970 32,490 33,330 34,650 35,720 36,680 37,630	327 100 420 592 545 203 221 579 163 105 80 91 78 89 50 50 82 35 142 68 373 97	1,174 1,351 1,233 2,313 2,400 962 973 1,687 985 803 605 805 624 701 469 454 663 296 674 564 1,136 631	2.68 2.10 2.29 1.21 1.17 2.88 2.80 1.48 2.92 3.11 3.97 2.86 3.29 1.70 2.54 2.40 1.52 3.41 1.20 1.31 0.65 1.17	599.0 601.8 603.7 608.2 609.2 619.2 625.4 629.7 631.8 633.5 634.3 637.6 639.5 640.2 640.7 641.1 641.2 642.0 642.3 642.4 642.5 642.5	599.0 601.8 603.7 608.2 609.2 619.2 625.4 629.7 631.8 633.5 634.3 637.6 639.5 640.2 640.7 641.1 641.2 642.0 642.3 642.4 642.5 642.5	599.1 601.8 603.8 608.3 609.3 619.3 625.5 629.8 631.9 633.6 634.4 637.7 639.6 640.3 640.8 641.2 641.3 642.1 642.4 642.5 642.6 642.6	0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

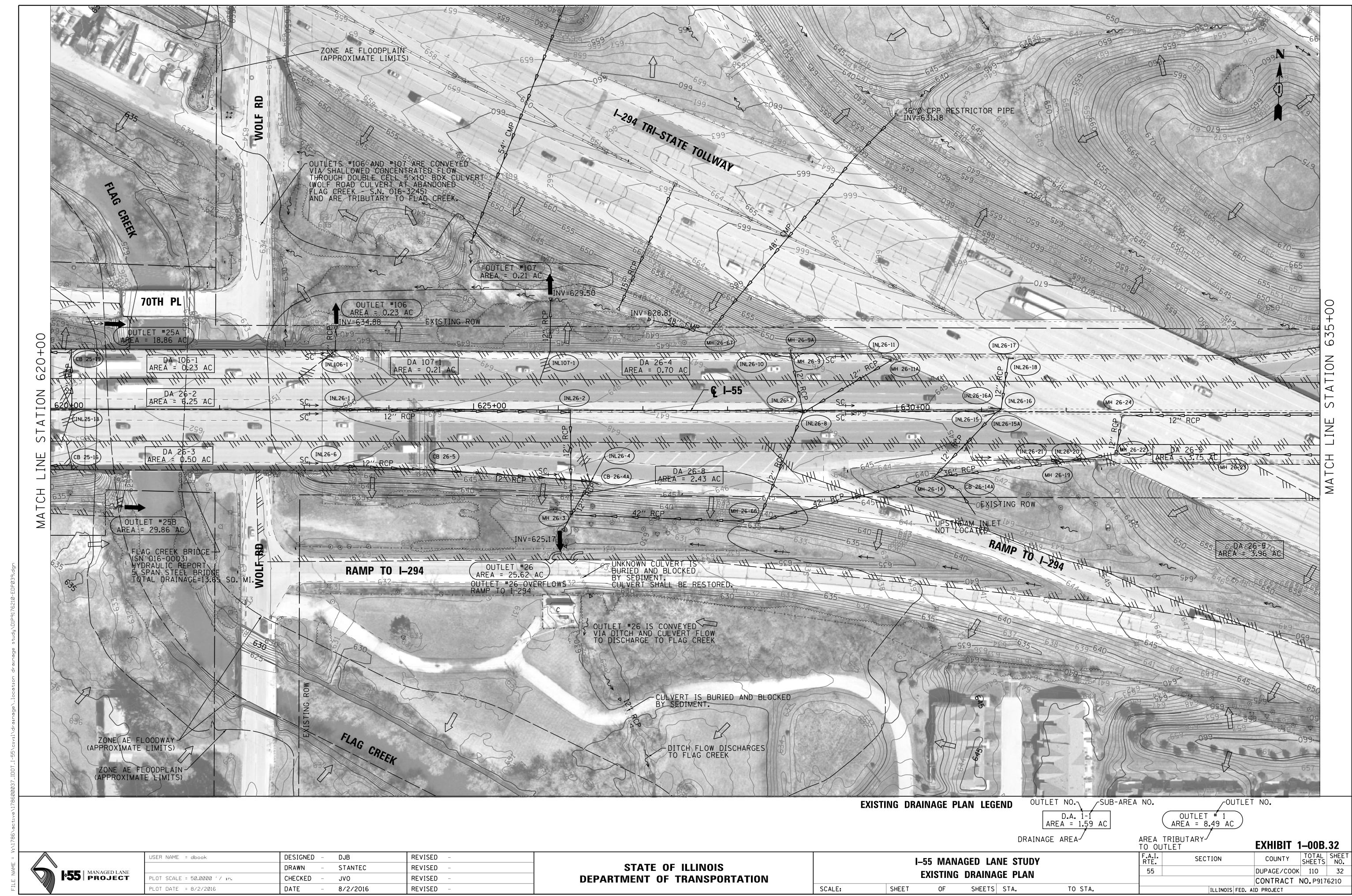
¹Feet above mouth

TABLE

FEDERAL EMERGENCY MANAGEMENT AGENCY


COOK COUNTY, IL

AND INCORPORATED AREAS


FIS 2000 —

FLOODWAY DATA

FLAG CREEK

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 20.C
	STANTEC 2016 EDP
	STANTEC 2010 EDP
S B	

Tab 21

	Hydraulic Report – Interstate 55 over Flag Creek
	SECTION 21
	CD
SB B	

CD POCKET INSERTED HERE