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PREFACE

This publication is a major revision of USGS Bulletin 1532, which is titled Map

Projections Used by the U.S. Geological Survey. Although several portions are

essentially unchanged except for corrections and clarification, there is consider

able revision in the early general discussion, and the scope of the book, originally

limited to map projections used by the U.S. Geological Survey, now extends to

include several other popular or useful projections. These and dozens of other

projections are described with less detail in the forthcoming USGS publication An

Album of Map Projections.

As before, this study of map projections is intended to be useful to both the

reader interested in the philosophy or history of the projections and the reader

desiring the mathematics. Under each of the projections described, the nonmathe-

matical phases are presented first, without interruption by formulas. They are

followed by the formulas and tables, which the first type of reader may skip

entirely to pass to the nonmathematical discussion of the next projection. Even

with the mathematics, there are almost no derivations and very little calculus.

The emphasis is on describing the characteristics of the projection and how it is

used.

This professional paper, like Bulletin 1532, is also designed so that the user can

turn directly to the desired projection, without reading any other section, in

order to study the projection under consideration. However, the list of symbols

may be needed in any case, and the random-access feature will be enhanced by a

general understanding of the concepts of projections and distortion. As a result of

this intent, there is some repetition which will be apparent when the book is read

sequentially.

For the more complicated projections, equations are given in the order of

usage. Otherwise, major equations are given first, followed by subordinate

equations. When an equation has been given previously, it is repeated with the

original equation number, to avoid the need to leaf back and forth. Numerical

examples, however, are placed in appendix A. It was felt that placing these with

the formulas would only add to the difficulty of reading through the mathematical

sections.

The equations are frequently taken from other credited or standard sources,

but a number of equations have been derived or rearranged for this publication by

the author. Further attention has been given to computer efficiency, for example

by encouraging the use of nested power series in place of multiple-angle series.

I acknowledged several reviewers of the original manuscript in Bulletin 1532.

These were Alden P. Colvocoresses, William J. Jones, Clark H. Cramer, Marlys

K. Brownlee, Tau Rho Alpha, Raymond M. Batson, William H. Chapman, Atef A.

Elassal, Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and

John F. Waananen, all then of the USGS, Joel L. Morrison, then of the Uni

versity of Wisconsin/Madison, and the late Allen J. Pope of the National Ocean

Survey. I remain indebted to them, especially to Dr. Colvocoresses of the USGS,

who is the one person most responsible for giving me the opportunity to assemble

this work for publication. In addition, Jackie T. Durham and Robert B. McEwen

of the USGS have been very helpful with the current volume, and several

reviewers, especially Clifford J. Mugnier, a consulting cartographer, have pro

vided valuable critiques which have influenced my revisions. Other users in and

out of the USGS have also offered useful comments. For the plotting of all

computer-prepared maps, the personnel of the USGS Eastern Mapping Center

have been most cooperative.
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The depletion of the first printing of this professional paper has led to a

reprinting with some two dozen corrections known at this time. The most

significant corrections involve equations (7-15), (7-18), and (7-20) on pages 46 and

47, the footnote on p. 72, the last coefficient on p. 209, the numerical example on

pages 281 through 283, the resolution of the coordinate systems for Wyoming on

pages 373 and 374, and a coordinate for North Carolina on p. 376. 1 appreciate the

help of users in calling my attention to some of these corrections.

For the third printing of this book, another dozen or more corrections have

been included, all minor, but in a continuing effort to make this professional paper

still more reliable. Again I appreciate the input of users who pointed out some

of these corrections.

John P. Snyder

iv



CONTENTS

Pane

Preface iii

Symbols viii

Acronyms ix

Abstract 1

Introduction 1

Map projections—general concepts 3

1. Characteristics of map projections 3

2. Longitude and latitude 8

Parallels of latitude 8

Meridians of longitude 8

Conventions in plotting 10

Grids 10

3. The datum and the Earth as an ellipsoid 1 1

Auxiliary latitudes 13

Computation of series 18

4. Scale variation and angular distortion 20

Tissot's indicatrix 20

Distortion for projections of the sphere 21

Distortion for projections of the ellipsoid 24

Cauchy-Riemann and related equations 27

5. Transformation of map graticules 29

6. Classification and selection of map projections 33

Suggested projections 34

Cylindrical map projections 37

7. Mercator projection 38

Summary 38

History 38

Features and usage 38

Formulas for the sphere 41

Formulas for the ellipsoid 44

Measurement of rhumb lines 46

Mercator projection with another standard parallel 47

8. Transverse Mercator projection 48

Summary 48

History 48

Features 49

Usage 51

Universal Transverse Mercator projection 57

Formulas for the sphere 58

Formulas for the ellipsoid 60

"Modified Transverse Mercator" projection 64

Formulas for the "Modified Transverse Mercator"

projection 65

9. Oblique Mercator projection 66

Summary 66

History 66

Features 67

Usage 68

Formulas for the sphere 69

Formulas for the ellipsoid 70

10. Cylindrical Equal-Area projection .76

Summary 76

History and usage 76

Features 76

Formulas for the sphere 77

Formulas for the ellipsoid 81

Page

11. Miller Cylindrical projection 86

Summary 86

History' and features 86

Formulas for the sphere 88

12. Equidistant Cylindrical projection 90

Summary 90

History and features 90

Formulas for the sphere 91

13. Cassini projection 92

Summary 92

History 92

Features 92

Usage 94

Formulas for the sphere 94

Formulas for the ellipsoid 95

Conic map projections 97

14. Albers Equal-Area Conic projection 98

Summary 98

History 98

Features and usage 98

Formulas for the sphere 100

Formulas for the ellipsoid 101

15. Lambert Conformal Conic projection 104

Summary 104

History 104

Features 105

Usage 105

Formulas for the sphere 106

Formulas for the ellipsoid 107

16. Equidistant Conic projection 111

Summary 111

History 111

Features 112

Usage 113

Formulas for the sphere 113

Formulas for the ellipsoid 114

17. Bipolar Oblique Conic Conformal projection 116

Summary 116

History 116

Features and usage 116

Formulas for the sphere 117

18. Polyconic projection 124

Summary i 124

History 124

Features 124

Usage 126

Geometric construction 128

Formulas for the sphere 128

Formulas for the ellipsoid 129

Modified Polyconic for the International Map of

the World 131

Formulas for the IMW Modified Polyconic 131

19. Bonne projection 138

Summary 138

History 138

Features and usage 138

v



vi MAP PROJECTIONS-A WORKING MANUAL

Pane

Formulas for the sphere - — 139

Formulas for the ellipsoid . — 140

Azimuthal and related map projections - 141

20. Orthographic projection - — 145

Summary - - - - 145

History 145

Features . - — 145

Usage 146

Geometric construction — — 148

Formulas for the sphere . — 148

21. Stereographic projection 154

Summary 154

History - 154

Features - 154

Usage — - 155

Formulas for the sphere — — 157

Formulas for the ellipsoid . — 160

22. Gnomonic projection — — 164

Summary . - 164

History -— -— 164

Features and usage — 164

Formulas for the sphere - - 165

23. General Perspective projection . — 169

Summary 169

History and usage — - — 169

Features - 170

Formulas for the sphere 173

Vertical Perspective projection 173

Tilted Perspective projection 175

Formulas for the ellipsoid 176

Vertical Perspective projection — 176

Tilted Perspective projection using "camera"

parameters 178

Tilted Perspective projection using projective

equations 178

24. Lambert Azimuthal Equal-Area projection 182

Summary — 182

History 182

Features — 182

Usage —- - 184

Geometric construction 184

Formulas for the sphere 185

Formulas for the ellipsoid — 187

25. Azimuthal Equidistant projection — 191

Summary 191

History — 191

Features - 192

Usage - - — 194

Geometric construction 194

Formulas for the sphere — 195

Formulas for the ellipsoid — 197

26. Modified-Stereographic Conformal projections 203

Summary 203

History and usage 203

Features 204

Formulas for the sphere 207

Formulas for the ellipsoid 208

Space map projections 213

27. Space Oblique Mercator projection 214

Summary 214

History - 214

Features and usage 214

Formulas for the sphere 215

Formulas for the ellipsoid and circular orbit 221

Formulas for the ellipsoid and noncircular orbit 225

28. Satellite-Tracking projections 230

Summary 230

History, features, and usage — - 230

Formulas for the sphere 231

Pseudocylindrical and miscellaneous map projections 239

29. Van der Grinten projection ._ 239

Summary - 239

History, features, and usage 239

Geometric construction 241

Formulas for the sphere 241

30. Sinusoidal projection 243

Summary 243

History — 243

Features and usage 243

Formulas for the sphere 247

Formulas for the ellipsoid 248

31. Mollweide projection — — 249

Summary - — 249

History and usage — — — 249

Features — - 249

Formulas for the sphere — 251

32. Eckert IV and VI projections — — 253

Summary — 253

History and usage — - 253

Features - - -- 256

Formulas for the sphere — - 256

References 259

Appendixes 263

A. Numerical examples — - 263

B. Use of map projections by

U.S. Geological Survey—Summary 371

C. State plane coordinate systems—changes

for 1983 datum - - —- 373

Index - - 377



CONTENTS
vii

ILLUSTRATIONS

P»fe

Figure 1. Projections of the Earth onto the three major surfaces 6

2. Meridians and parallels on the sphere 9

3. Tissot's indicatrix 20

4. Distortion patterns on common conformal map projections 22, 23

5. Spherical triangle 30

6. Rotation of a graticule for transformation of projection 31

7. Gerardus Mercator 39

8. The Mercator projection 40

9. Johann Heinrich Lambert 49

10. The Transverse Mercator projection 50

11. Universal Transverse Mercator grid zone designations for the world 62

12. Oblique Mercator projection 67

13. Coordinate system for the Hotine Oblique Mercator projection 73

14. Lambert Cylindrical Equal-Area projection 78

15. Behrmann Cylindrical Equal-Area projection 78

16. Transverse Cylindrical Equal-Area projection 79

17. Oblique Cylindrical Equal-Area projection 79

18. The Miller Cylindrical projection 87

19. The Cassini projection 93

20. Albers Equal-Area Conic projection 99

21. Lambert Conformal Conic projection 104

22. Equidistant Conic projection 112

23. Bipolar Oblique Conic Conformal projection 121

24. Ferdinand Rudolph Hassler 125

25. North America on a Polyconic projection grid 126

26. Typical IMW quadrangle graticule—modified Polyconic projection 137

27. Bonne projection 139

28. Geometric projection of the parallels of the polar Orthographic projection 146

29. Orthographic projection: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 147

30. Geometric construction of polar, equatorial, and oblique Orthographic projections 148

31. Geometric projection of the polar Stereographic projection 155

32. Stereographic projection: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 156

33. Geometric projection of the parallels of the polar Gnomonic projection 164

34. Gnomonic projection, range 60° from center: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 166

35. Geometric projection of the parallels of the polar Perspective projections, Vertical and Tilted 170

36. Vertical Perspective projection: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 171

37. Tilted Perspective projection 172

38. Coordinate system for Tilted Perspective projection 176

39. Lambert Azimuthal Equal-Area projection: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 183

40. Geometric construction of polar Lambert Azimuthal Equal-Area projection 185

41. Azimuthal Equidistant projection: (A) polar aspect, (B) equatorial aspect, (C) oblique aspect 193

42. Miller Oblated Stereographic projection of Europe and Africa 204

43. GS-50 projection: 50-State map 205

44. Modified-Stereographic Conformal projection of Alaska 205

45. Modified-Stereographic Conformal projection of 48 United States, bounded by a near-rectangle of constant scale 206

46. Two orbits of the Space Oblique Mercator projection 216

47. One quadrant of the Space Oblique Mercator projection 217

48. Cylindrical Satellite-Tracking projection 232

49. Conic Satellite-Tracking projection (conformality at lats. 45° and 70° N.) 233

50. Conic Satellite-Tracking projection (conformality at lats. 45° and 80.9° N.) 234

51. Conic Satellite-Tracking projection (standard parallel 80.9° N.) 235

52. Van der Grinten projection 240

53. Geometric construction of the Van der Grinten projection 241

54. Interrupted Sinusoidal projection 246

55. Mollweide projection 250

56. Eckert IV projection 254

57. Eckert VI projection 255

1-1402. Map showing the properties and uses of selected map projections, by Tau Rho Alpha and John P. Snyder In pocket



viii MAP PROJECTIOXS-A WORKING MANUAL

TABLES

pig«

Table 1. Some official ellipsoids in use throughout the world - 12

2. Official figures for extraterrestrial mapping 14

3. Corrections for auxiliary latitudes on the Clarke 1866 ellipsoid 18

4. Lengths of 1° of latitude and longitude on two ellipsoids of reference 25

5. Ellipsoidal correction factors to apply to spherical projections based on Clarke 1866 ellipsoid — 27

6. Map projections used for extraterrestrial mapping — 42, 43

7. Mercator projection: Rectangular coordinates 45

8. U.S. State plane coordinate systems 52-56

9. Universal Transverse Mercator grid coordinates 59

10. Transverse Mercator projection: Rectangular coordinates for the sphere 60, 61

11. Universal Transverse Mercator projection: Location of points with given scale factor 63

12. Hotine Oblique Mercator projection parameters used for Landsat 1, 2. and 3 imagery 68

13. Fourier coefficients for oblique and transverse Cylindrical Equal-Area projection of the ellipsoid 83

14. Miller Cylindrical projection: Rectangular coordinates - 89

15. Albers Equal.Area Conic projection: Polar coordinates 103

16. Lambert Conformal Conic projection: Polar coordinates 110

17. Equidistant Conic projection: Polar coordinates 115

18. Bipolar Oblique Conic Conformal projection: Rectangular coordinates 122, 123

19. Polyconic projection: Rectangular coordinates for the Clarke 1866 ellipsoid 132, 133

20. Modified Polyconic projection for IMW: Rectangular coordinates for the International ellipsoid 136

21. Comparison of major azimuthal projections 142-144

22. Orthographic projection: Rectangular coordinates for equatorial aspect 151

23. Orthographic projection: Rectangular coordinates for oblique aspect centered at lat. 40° N 152, 153

24. Stereographic projection: Rectangular coordinates for equatorial aspect 158, 159

25. Ellipsoidal polar Stereographic projection 163

26. Gnomonic projection: Rectangular coordinates for equatorial aspect 168

27. Vertical Perspective projection: Rectangular coordinates for equatorial aspect from geosynchronous satellite 174

28. Lambert Azimuthal Equal.Area projection: Rectangular coordinates for equatorial aspect 188, 189

29. Ellipsoidal polar Lambert Azimuthal Equal-Area projection „ 190

30. Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect 196, 197

31. Ellipsoidal Azimuthal Equidistant projection—polar aspect 198

32. Plane coordinate systems for Micronesia 200

33. Modified-Stereographic Conformal projections: Coefficients for specific forms 209, 210

34. GS-50 projection for 50 States: Rectangular coordinates for Clarke 1866 ellipsoid 212

35. Modified.Stereographic Conformal projection for Alaska: Rectangular coordinates for Clarke 1866 ellipsoid 212

36. Scale factors for the spherical Space Oblique Mercator projection using Landsat constants 221

37. Scale factors for the ellipsoidal Space Oblique Mercator projection using Landsat constants 226

38. Cylindrical Satellite-Tracking projection: Rectangular coordinates — 238

39. Conic Satellite-Tracking projections with two conformal parallels: Polar coordinates 238

40. Near-azimuthal Conic Satellite-Tracking projection: Polar coordinates 238

41. Van der Grinten projection: Rectangular coordinates 244, 245

42. Mollweide projection: Rectangular coordinates for 90th meridian 252

43. Eckert IV and VI projections: Rectangular coordinates for 90th meridian — 258

SYMBOLS

If a symbol is not listed here, it is used only briefly and identified near the formulas in which it
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A: = azimuth, as an angle measured clockwise from the north.

« = equatorial radius or semimajor axis of the ellipsoid of reference.

b = polar radius or semiminor axis of the ellipsoid of reference.

- «(1 - f) = «(1 - f2)'*.

r = great circle distance, as an arc of a circle.

e = eccentricity of the ellipsoid.

= (1 - fe.' n ')'/.

/ = flattening of the ellipsoid.

h - relative scale factor along a meridian of longitude. (For general perspective projections, h

is height above surface of ellipsoid.)



SYMBOLS ix

k = relative scale factor along a parallel of latitude.

n = cone constant on conic projections, or the ratio of the angle between meridians to the true

angle, called / in some other references.

R = radius of the sphere, either actual or that corresponding to scale of the map.

S = surface area.

x = rectangular coordinate: distance to the right of the vertical line (V axis) passing through

the origin or center of a projection (if negative, it is distance to the left). In practice, a

"false" x or "false easting" is frequently added to all values of x to eliminate negative

numbers. (Note: Many British texts use X and Y axes interchanged, not rotated, from this

convention.)

y = rectangular coordinate: distance above the horizontal line (X axis) passing through the

origin or center of a projection (if negative, it is distance below). In practice, a "false" y or

"false northing" is frequently added to all values of V to eliminate negative numbers.

z = angular distance from North Pole of latitude <p, or (90° - 1J>), or colatitude.

z, = angular distance from North Pole of latitude fa, or (90° - <J>i).

z2 = angular distance from North Pole of latitude fa, or (90° - fa).

In = natural logarithm, or logarithm to base e, where e = 2.71828.

6 = angle measured counterclockwise from the central meridian, rotating about the center of

the latitude circles on a conic or polar azimuthal projection, or beginning due south, rotating

about the center of projection of an oblique or equatorial azimuthal projection.

6' = angle of intersection between meridian and parallel.

X = longitude east of Greenwich (for longitude west of Greenwich, use a minus sign).

X„ = longitude east of Greenwich of the central meridian of the map, or of the origin of the

rectangular coordinates (for west longitude, use a minus sign). If fa is a pole, ko is the

longitude of the meridian extending down on the map from the North Pole or up from the

South Pole.

X' - transformed longitude measured east along transformed equator from the north crossing

of the Earth's Equator, when graticule is rotated on the Earth,

p = radius of latitude circle on conic or polar azimuthal projection, or radius from center on

any azimuthal projection.

<p = north geodetic or geographic latitude (if latitude is south, apply a minus sign).

fa = middle latitude, or latitude chosen as the origin of rectangular coordinates for a projection.

fa = transformed latitude relative to the new poles and equator when the graticule is rotated on

the globe.

4>,t <J>2 = standard parallels of latitude for projections with two standard parallels. These are true

to scale and free of angular distortion.

fa (without fa.) = single standard parallel on cylindrical or conic projections; latitude of central point

on azimuthal projections,

<o = maximum angular deformation at a given point on a projection.

1. All angles are assumed to be in radians, unless the degree symbol , J ) is used.

2. Unless there is a note to the contrary, and if the expression for which the arctan is sought has a numerator over a denominator, the

formulas in which arctan is required <usually to obtain a longitude, are so arranged that the Fortran ATAN2 function should be

used. For hand calculators and computers with the arctan function but not ATAN2, the following conditions must be added to the

limitations listed with the formulas:

For arctan ,A H,. the arctan is normally given as an angle between -90;and + 90°, or between - it/2 and + tt*2. If H is negative, add
± 180c or ± it to the initial arctan, where the ± takes the sign of A, or if A is zero, the ± arbitrarily takes a * sign. If H is zero, the

arctan is * 90° or ± tt 2. taking the sign of A. Conditions not resolved by the ATAN2 function, but requiring adjustment for almost

any program, are as follows:

'1, If A and H are both zero, the arctan is indeterminate, but may normally be given an arbitrary value of 0 or of X„. depending on the

projection, and

,2' If A or H is infinite, the ar1tan is * 90' <or * tt*2, or 0. respectively, the sign depending on other conditions. In any case, the final

longitude should be adjusted, ifnecessary. sothat it is an angle between - 1H0' <or-ir)and + 180' ,or + tt). Thisisdonebyaddingor

subtracting multiples of iiHO' <or 2tt) as required.

:,. Where division is involved, most equations are given in the form A = B'C rather than A = ~ . This facilitates typesetting, and it also

is a convenient form for conversion to Fortran programming.

ACRONYMS
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MAP PROJECTIONS—

A WORKING MANUAL

By John P. Snyder

ABSTRACT

After decades of using only one map projection, the Polyconic, for its mapping program, the U.S.

Geological Survey (USGS) now uses several of the more common projections for its published maps.

For larger scale maps, including topographic quadrangles and the State Base Map Series, conformal

projections such as the Transverse Mercator and the Lambert Conformal Conic are used. Equal-area

and equidistant projections appear in the National Atlas. Other projections, such as the Miller

Cylindrical and the Van der Grinten, are chosen occasionally for convenience, sometimes making use

of existing base maps prepared by others. Some projections treat the Earth only as a sphere, others as

either ellipsoid or sphere.

The USGS has also conceived and designed several new projections, including the Space Oblique

Mercator, the first map projection designed to permit mapping of the Earth continuously from a

satellite with low distortion. The mapping of extraterrestrial bodies has resulted in the use of stand

ard projections in completely new settings. Several other projections which have not been used by

the USGS are frequently of interest to the cartographic public.

With increased computerization, it is important to realize that rectangular coordinates for all these

projections may be mathematically calculated with formulas which would have seemed too compli

cated in the past, but which now may be programmed routinely, especially if aided by numerical

examples. A discussion of appearance, usage, and history is given together with both forward and

inverse equations for each projection involved.

INTRODUCTION

The subject of map projections, either generally or specifically, has been dis

cussed in thousands of papers and books dating at least from the time of the Greek

astronomer Claudius Ptolemy (about A.D. 150), and projections are known to

have been in use some three centuries earlier. Most of the widely used projections

date from the 16th to 19th centuries, but scores of variations have been developed

during the 20th century. In recent years, there have been several new publica

tions of widely varying depth and quality devoted exclusively to the subject. In

1979, the USGS published Maps for America, a book-length description of its

maps (Thompson, 1979). The USGS has also published bulletins describing from

one to three projections (Birdseye, 1929; Newton, 1985).

In spite of all this literature, there was no definitive single publication on map

projections used by the USGS, the agency responsible for administering the

National Mapping Program, until the first edition of Bulletin 1532 (Snyder, 1982a).

The USGS had relied on map projection treatises published by the former Coast

and Geodetic Survey (now the National Ocean Service). These publications did

not include sufficient detail for all the major projections now used by the USGS

and others. A widely used and outstanding treatise of the Coast and Geodetic

Survey (Deetz and Adams, 1934), last revised in 1945, only touches upon the

Transverse Mercator, now a commonly used projection for preparing maps. Other

projections such as the Bipolar Oblique Conic Conformal, the Miller Cylindrical,

and the Van der Grinten, were just being developed, or, if older, were seldom

used in 1945. Deetz and Adams predated the extensive use of the computer and

1



2 MAP PROJECTIONS—A WORKING MANUAL

pocket calculator, and, instead, offered extensive tables for plotting projections

with specific parameters.

Another classic treatise from the Coast and Geodetic Survey was written by

Thomas (1952) and is exclusively devoted to the five major conformal projections.

It emphasizes derivations with a summary of formulas and of the history of these

projections, and is directed toward the skilled technical user. Omitted are tables,

graticules, or numerical examples.

In USGS Bulletin 1532 the author undertook to describe each projection which

has been used by the USGS sufficiently to permit the skilled, mathematically

oriented cartographer to use the projection in detail. The descriptions were also

arranged so as to enable a lay person interested in the subject to learn as much as

desired about the principles of these projections without being overwhelmed by

mathematical detail. Deetz and Adams' (1934) work set an excellent example in

this combined approach.

While Bulletin 1532 was deliberately limited to map projections used by the

USGS, the interest in the bulletin has led to expansion in the form of this profes

sional paper, which includes several other map projections frequently seen in

atlases and geography texts. Many tables of rectangular or polar coordinates

have been included for conceptual purposes. For values between points, formulas

should be used, rather than interpolation. Other tables list definitive parameters

for use in formulas. A glossary as such is omitted, since such definitions tend to be

oversimplified by nature. The reader is referred to the index instead to find a

more complete description of a given term.

The USGS, soon after its official inception in 1879, apparently chose the Poly-

conic projection for its mapping program. This projection is simple to construct

and had been promoted by the Survey of the Coast, as it was then called, since

Ferdinand Rudolph Hassler's leadership of the early 1800's. The first published

USGS topographic "quadrangles," or maps bounded by two meridians and two

parallels, did not carry a projection name, but identification as "Polyconic

projection" was added to later editions. Tables of coordinates published by the

USGS appeared in 1904, and the Polyconic was the only projection mentioned by

Beaman (1928, p. 167).

Mappers in the Coast and Geodetic Survey, influenced in turn by military and

civilian mappers of Europe, established the State Plane Coordinate System in the

1930's. This system involved the Lambert Conformal Conic projection for States

of larger east-west extension and the Transverse Mercator for States which were

longer from north to south. In the late 1950's, the USGS began changing quadran

gles from the Polyconic to the projection used in the State Plane Coordinate

System for the principal State on the map. The USGS also adopted the Lambert

for its series of State base maps.

As the variety of maps issued by the USGS increased, a broad range of projec

tions became important: The Polar Stereographic for the map of Antarctica, the

Lambert Azimuthal Equal-Area for maps of the Pacific Ocean, and the Albers

Equal-Area Conic for the National Atlas (USGS, 1970) maps of the United

States. Several other projections have been used for other maps in the National

Atlas, for tectonic maps, and for grids in the panhandle of Alaska. The mapping

of extraterrestrial bodies, such as the Moon, Mars, and Mercury, involves old

projections in a completely new setting. Perhaps the first projection to be origi

nated within the USGS is the Space Oblique Mercator for continuous mapping

using imagery from artificial satellites.

It is hoped that this expanded study will assist readers to understand better

not only the basis for maps issued by the USGS, but also the principles and

formulas for computerization, preparation of new maps, and transference of data

between maps prepared on different projections.
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The general purpose of map projections and the basic problems encountered

have been discussed often and well in various books on cartography and map

projections. (Robinson, Sale, Morrison, and Muehrcke, 1984; Steers, 1970; and

Greenhood, 1964, are among later editions of earlier standard references.) Every

map user and maker should have a basic understanding of projections, no matter

how much computers seem to have automated the operations. The concepts will

be concisely described here, although there are some interpretations and formu

las that appear to be unique.

For almost 500 years, it has been conclusively established that the Earth is

essentially a sphere, although a number of intellectuals nearly 2,000 years earlier

were convinced of this. Even to the scholars who considered the Earth flat, the

skies appeared hemispherical, however. It was established at an early date that

attempts to prepare a flat map of a surface curving in all directions leads to

distortion of one form or another.

A map projection is a systematic representation of all or part of the surface of a

round body, especially the Earth, on a plane. This usually includes lines delineat

ing meridians and parallels, as required by some definitions of a map projection,

but it may not, depending on the purpose of the map. A projection is required in

any case. Since this cannot be done without distortion, the cartographer must

choose the characteristic which is to be shown accurately at the expense of others,

or a compromise of several characteristics. If the map covers a continent or the

Earth, distortion will be visually apparent. If the region is the size of a small

town, distortion may be barely measurable using many projections, but it can still

be serious with other projections. There is literally an infinite number of map

projections that can be devised, and several hundred have been published, most

of which are rarely used novelties. Most projections may be infinitely varied by

choosing different points on the Earth as the center or as a starting point.

It cannot be said that there is one "best" projection for mapping. It is even

risky to claim that one has found the "best" projection for a given application,

unless the parameters chosen are artificially constricting. A carefully constructed

globe is not the best map for most applications because its scale is by necessity too

small. A globe is awkward to use in general, and a straightedge cannot be

satisfactorily used on one for measurement of distance.

The details of projections discussed in this book are based on perfect plotting

onto completely stable media. In practice, of course, this cannot be achieved. The

cartographer may have made small errors, especially in hand-drawn maps, but a

more serious problem results from the fact that maps are commonly plotted and

printed on paper, which is dimensionally unstable. Typical map paper can expand

over 1 percent with a 60 percent increase in atmospheric humidity, and the

expansion coefficient varies considerably in different directions on the same sheet.

This is much greater than the variation between common projections on large-

scale quadrangles, for example. The use of stable plastic bases for maps is recom

mended for precision work, but this is not always feasible, and source maps may

be available only on paper, frequently folded as well. On large-scale maps, such as

topographic quadrangles, measurement on paper maps is facilitated with rectan

gular grid overprints, which expand with the paper. Grids are discussed later in

this book.

The characteristics normally considered in choosing a map projection are as

follows:
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1. Area.—Many map projections are designed to be equal-area, so that a coin

of any size, for example, on one part of the map covers exactly the same area of

the actual Earth as the same coin on any other part of the map. Shapes, angles,

and scale must be distorted on most parts of such a map, but there are usually

some parts of an equal-area map which are designed to retain these characteris

tics correctly, or very nearly so. Less common terms used for equal-area projec

tions are equivalent, homolographic, or homalographic (from the Greek homalos

or homos ("same") and graphos ("write")); authalic (from the Greek autos ("same")

and ailos ("area")), and equiareal.

2. Shape.—Many of the most common and most important projections are

conformal or orthomorphic (from the Greek orthos or "straight" and morphe or

"shape"), in that normally the relative local angles about every point on the map

are shown correctly. (On a conformal map of the entire Earth there are usually

one or more "singular" points at which local angles are still distorted.) Although a

large area must still be shown distorted in shape, its small features are shaped

essentially correctly. Conformality applies on a point or infinitesimal basis, whereas

an equal-area map projection shows areas correctly on a finite, in fact mapwide

basis. An important result of conformality is that the local scale in every direction

around any one point is constant. Because local angles are correct, meridians

intersect parallels at right (90°) angles on a conformal projection, just as they do on

the Earth. Areas are generally enlarged or reduced throughout the map, but they

are correct along certain lines, depending on the projection. Nearly all large-scale

maps of the Geological Survey and other mapping agencies throughout the world

are now prepared on a conformal projection. No map can be both equal-area and

conformal.

While some have used the term aphylactic for all projections which are neither

equal-area nor conformal (Lee, 1944), other terms have commonly been used to

describe special characteristics:

3. Scale.—No map projection shows scale correctly throughout the map, but

there are usually one or more lines on the map along which the scale remains true.

By choosing the locations of these lines properly, the scale errors elsewhere may

be minimized, although some errors may still be large, depending on the size of

the area being mapped and the projection. Some projections show true scale

between one or two points and every other point on the map, or along every

meridian. They are called equidistant projections.

4. Direction.—While conformal maps give the relative local directions cor

rectly at any given point, there is one frequently used group of map projections,

called azimuthal (or zenithal), on which the directions or azimuths of all points on

the map are shown correctly with respect to the center. One of these projections

is also equal-area, another is conformal, and another is equidistant. There are also

projections on which directions from two points are correct, or on which direc

tions from all points to one or two selected points are correct, but these are rarely

used.

5. Special characteristics.—Several map projections provide special characteris

tics that no other projection provides. On the Mercator projection, all rhumb

lines, or lines of constant direction, are shown as straight lines. On the Gnomonic

projection, all great circle paths—the shortest routes between points on a sphere—

are shown as straight lines. On the Stereographic, all small circles, as well as

great circles, are shown as circles on the map. Some newer projections are spe

cially designed for satellite mapping. Less useful but mathematically intriguing

projections have been designed to fit the sphere conformally into a square, an

ellipse, a triangle, or some other geometric figure.

6. Method of construction.—In the days before ready access to computers and

plotters, ease of construction was of greater importance. With the advent of

computers and even pocket calculators, very complicated formulas can be handled

almost as routinely as simple projections in the past.



1. CHARACTERISTICS OF MAP PROJECTIONS 5

While the above six characteristics should ordinarily be considered in choosing

a map projection, they are not so obvious in recognizing a projection. In fact, if

the region shown on a map is not much larger than the United States, for example,

even a trained eye cannot often distinguish whether the map is equal-area or

conformal. It is necessary to make measurements to detect small differences in

spacing or location of meridians and parallels, or to make other tests. The type of

construction of the map projection is more easily recognized with experience, if

the projection falls into one of the common categories.

There are three types of developable1 surfaces onto which most of the map

projections used by the USGS are at least partially geometrically projected. They

are the cylinder, the cone, and the plane. Actually all three are variations of the

cone. A cylinder is a limiting form of a cone with an increasingly sharp point or

apex. As the cone becomes flatter, its limit is a plane.

If a cylinder is wrapped around the globe representing the Earth (see fig. 1), so

that its surface touches the Equator throughout its circumference, the meridians

of longitude may be projected onto the cylinder as equidistant straight lines

perpendicular to the Equator, and the parallels of latitude marked as lines paral

lel to the Equator, around the circumference of the cylinder and mathematically

spaced for certain characteristics. For some cases, the parallels may also be

projected geometrically from a common point onto the cylinder, but in the most

common cases they are not perspective. When the cylinder is cut along some

meridian and unrolled, a cylindrical projection with straight meridians and straight

parallels results. The Mercator projection is the best-known example, and its

parallels must be mathematically spaced.

If a cone is placed over the globe, with its peak or apex along the polar axis of

the Earth and with the surface of the cone touching the globe along some particu

lar parallel of latitude, a conic (or conical) projection can be produced. This time

the meridians are projected onto the cone as equidistant straight lines radiating

from the apex, and the parallels are marked as lines around the circumference of

the cone in planes perpendicular to the Earth's axis, spaced for the desired

characteristics. The parallels may not be projected geometrically for any useful

conic projections. When the cone is cut along a meridian, unrolled, and laid flat,

the meridians remain straight radiating lines, but the parallels are now circular

arcs centered on the apex. The angles between meridians are shown smaller than

the true angles.

A plane tangent to one of the Earth's poles is the basis for polar azimuthal

projections. In this case, the group of projections is named for the function, not

the plane, since all common tangent-plane projections of the sphere are azimuthal.

The meridians are projected as straight lines radiating from a point, but they are

spaced at their true angles instead of the smaller angles of the conic projections.

The parallels of latitude are complete circles, centered on the pole. On some

important azimuthal projections, such as the Stereographic (for the sphere), the

parallels are geometrically projected from a common point of perspective; on

others, such as the Azimuthal Equidistant, they are nonperspective.

The concepts outlined above may be modified in two ways, which still provide

cylindrical, conic, or azimuthal projections (although the azimuthals retain this

property precisely only for the sphere).

1. The cylinder or cone may be secant to or cut the globe at two parallels instead

of being tangent to just one. This conceptually provides two standard parallels;

but for most conic projections this construction is not geometrically correct.

The plane may likewise cut through the globe at any parallel instead of touch

ing a pole, but this is only useful for the Stereographic and some other perspec

tive projections.

'A developable surface is one that can be transformed to a plane without distortion.



MAP PROJECTIONS—A WORKING MANUAL

7

FlOl'RE 1.—Projection of the Earth onto the three major surfaces. In a few cases, projection

geometric, but in most cases the projection is mathematical to achieve certain features.
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2. The axis of the cylinder or cone can have a direction different from that of the

Earth's axis, while the plane may be tangent to a point other than a pole (fig.

1). This type of modification leads to important oblique, transverse, and equa

torial projections, in which most meridians and parallels are no longer straight

lines or arcs of circles. What were standard parallels in the normal orientation

now become standard lines not following parallels of latitude.

Other projections resemble one or another of these categories only in some

respects. There are numerous interesting pseudocylindrical (or "false cylindrical")

projections. They are so called because latitude lines are straight and parallel,

and meridians are equally spaced, as on cylindrical projections, but all meridians

except the central meridian are curved instead of straight. The Sinusoidal is a

frequently used example. Pseudoconic projections have concentric circular arcs

for parallels, like conics, but meridians are curved: the Bonne is the only common

example. Pseudoazimuthal projections are very rare; the polar aspect has concen

tric circular arcs for parallels, and curved meridians. The Polyconic projection is

projected onto cones tangent to each parallel of latitude, so the meridians are

curved, not straight. Still others are more remotely related to cylindrical, conic,

or azimuthal projections, if at all.
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2. LONGITUDE AND LATITUDE

To identify the location of points on the Earth, a graticule or network of longi

tude and latitude lines has been superimposed on the surface. They are commonly

referred to as meridians and parallels, respectively. The concept of latitudes and

longitudes was originated early in recorded history by Greek and Egyptian

scientists, especially the Greek astronomer Hipparchus (2nd century, B.C.). Clau

dius Ptolemy further formalized the concept (Brown, 1949, p. 50, 52, 68).

PARALLELS OF LATITUDE

Given the North and South Poles, which are approximately the ends of the axis

about which the Earth rotates, and the Equator, an imaginary line halfway between

the two poles, the parallels of latitude are formed by circles surrounding the

Earth and in planes parallel with that of the Equator. If circles are drawn equally

spaced along the surface of the sphere, with 90 spaces from the Equator to each

pole, each space is called a degree of latitude. The circles are numbered from 0° at

the Equator to 90° North and South at the respective poles. Each degree is

subdivided into 60 minutes and each minute into 60 seconds of arc.

For 2,000 years, measurement of latitude on the Earth involved one of two

basic astronomical methods. The instruments and accuracy, but not the principle,

were gradually improved. By day, the angular height of the Sun above the hori

zon was measured. By night, the angular height of stars, and especially the

current pole star, was used. With appropriate angular conversions and adjust

ments for time of day and season, the latitude was obtained. The measuring

instruments included devices known as the cross-staff, astrolabe, back-staff,

quadrant, sextant, and octant, ultimately equipped with telescopes. They were

supplemented with astronomical tables called almanacs, of increasing complica

tion and accuracy. Finally, beginning in the 18th century, the use of triangulation

in geodetic surveying meant that latitude on land could be determined with high

precision by using the distance from other points of known latitude. Thus meas

urement of latitude, unlike that of longitude, was an evolutionary development

almost throughout recorded history (Brown, 1949, p. 180-207).

MERIDIANS OF LONGITUDE

Meridians of longitude are formed with a series of imaginary lines, all intersect

ing at both the North and South Poles, and crossing each parallel of latitude at

right angles, but striking the Equator at various points. If the Equator is equally

divided into 360 parts, and a meridian passes through each mark, 360 degrees of

longitude result. These degrees are also divided into minutes and seconds. While

the length of a degree of latitude is always the same on a sphere, the lengths of

degrees of longitude vary with the latitude (see fig. 2). At the Equator on the

sphere, they are the same length as the degree of latitude, but elsewhere they are

shorter.

There is only one location for the Equator and poles which serve as references

for counting degrees of latitude, but there is no natural origin from which to count

degrees of longitude, since all meridians are identical in shape and size. It thus

becomes necessary to choose arbitrarily one meridian as the starting point, or

prime meridian. There have been many prime meridians in the course of history,

swayed by national pride and international influence. For over 150 years, France

officially used the meridian through Ferro, an island of the Canaries. Eighteenth-

century maps of the American colonies often show longitude from London or

Philadelphia. During the 19th century, boundaries of new States were described

with longitudes west of a meridian through Washington, D.C., 77°03' 02.3" west

of the Greenwich (England) Prime Meridian (Van Zandt, 1976, p. 3). The latter

was increasingly referenced, especially on seacharts due to the proliferation of
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N. Pole
_

Figure 2.—Meridians and parallels on the sphere.

those of British origin. In 1884, the International Meridian Conference, meeting

in Washington, agreed to adopt the "meridian passing through the center of the

transit instrument at the Observatory of Greenwich as the initial meridian for

longitude," resolving that "from this meridian longitude shall be counted in two

directions up to 180 degrees, east longitude being plus and west longitude minus"

(Brown, 1949, p. 283, 297).

The choice of the prime meridian is arbitrary and may be stated in simple

terms. The accurate measurement of the difference in longitude at sea between

two points, however, was unattainable for centuries, even with a precision suffi

cient for the times. When extensive transatlantic exploration from Europe began

with the voyages of Christopher Columbus in 1492, the inability to measure

east-west distance led to numerous shipwrecks with substantial loss of lives and

wealth. Seafaring nations beginning with Spain offered sizable rewards for the

invention of satisfactory methods for measuring longitude. It finally became evi

dent that a portable, dependable clock was needed, so that the height of the Sun

or stars could be related to the time in order to determine longitude. The study of

the pendulum by Galileo, the invention of the pendulum clock by Christian Huygens

in 1656, and Robert Hooke's studies of the use of springs in watches in the 1660's

provided the basic instrument, but it was not until John Harrison of England

responded to his country's substantial reward posted in 1714 that the problem

was solved. For five decades, Harrison devised successively more reliable ver

sions of a marine chronometer, which were tested at sea and gradually accepted

by the Board of Longitude in painstaking steps from 1765 to 1773. Final compensa

tion required intervention by the King and Parliament (Brown, 1949, p. 208-240;

Quill, 1966).

Thus a major obstacle to accurate mapping was overcome. On land, the meas

urement of longitude lagged behind that of latitude until the development of the

clock and the spread of geodetic triangulation in the 18th century made accuracy a
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reality. Electronic means of measuring distance and angles in the mid- to late-20th

century have redefined the meaning of accuracy by orders of magnitude.

CONVENTIONS IN PLOTTING

When constructing meridians on a map projection, the central meridian, usu

ally a straight line, is frequently taken to be a starting point or 0° longitude for

calculation purposes. When the map is completed with labels, the meridians are

marked with respect to the Greenwich Prime Meridian. The formulas in this book

are arranged so that Greenwich longitude may be used directly. All formulas

herein use the convention of positive east longitude and north latitude, and nega

tive west longitude and south latitude. Some published tables and formulas else

where use positive west longitude, so the reader is urged to use caution in compar

ing values.

GRIDS

Because calculations relating latitude and longitude to positions of points on a

given map can become quite involved, rectangular grids have been developed for

the use of surveyors. In this way, each point may be designated merely by its

distance from two perpendicular axes on the flat map. The Y axis normally coin

cides with a chosen central meridian, y increasing north. The X axis is perpendicu

lar to the Y axis at a latitude of origin on the central meridian, with x increasing

east. Frequently x and y coordinates are called "eastings" and "northings,"

respectively, and to avoid negative coordinates may have "false eastings" and

"false northings" added.

The grid lines usually do not coincide with any meridians and parallels except

for the central meridian and the Equator. Of most interest in the United States

are two grid systems: The Universal Transverse Mercator (UTM) Grid is described

on p. 57, and the State Plane Coordinate System (SPCS) is described on p. 51.

Preceding the UTM was the World Polyconic Grid (WPG), used until the late

1940's and described on p. 127.

Grid systems are normally divided into zones so that distortion and variation of

scale within any one zone is held below a preset level. The type of boundaries

between grid zones varies. Zones of the WPG and the UTM are bounded by

meridians of longitude, but for the SPCS State and county boundaries are used.

Some grid boundaries in other countries are defined by lines of constant grid

value using a local or an adjacent grid as the basis. This adjacent grid may in turn

be based on a different projection and a different reference ellipsoid. A common

boundary for non-U. S. offshore grids is an ellipsoidal rhumb line, or line of con

stant direction on the ellipsoid (see p. 46); the ellipsoidal geodesic, or shortest

route (see p. 1 99) is also used . The plotting of some of these boundaries can become

quite complicated (Clifford J. Mugnier, pers. comm., 1985).
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For many maps, including nearly all maps in commercial atlases, it may be

assumed that the Earth is a sphere. Actually, it is more nearly an oblate ellipsoid

of revolution, also called an oblate spheroid. This is an ellipse rotated about its

shorter axis. The flattening of the ellipse for the Earth is only about one part in

three hundred; but it is sufficient to become a necessary part of calculations in

plotting accurate maps at a scale of 1:100,000 or larger, and is significant even for

1:5,000,000-scale maps of the United States, affecting plotted shapes by up to 2/3

percent (see p. 27). On small-scale maps, including single-sheet world maps, the

oblateness is negligible. Formulas for both the sphere and ellipsoid will be dis

cussed in this book wherever the projection is used or is suitable in both forms.

The Earth is not an exact ellipsoid, and deviations from this shape are continu

ally evaluated. The geoid is the name given to the shape that the Earth would

assume if it were all measured at mean sea level. This is an undulating surface

that varies not more than about a hundred meters above or below a well-fitting

ellipsoid, a variation far less than the ellipsoid varies from the sphere. It is

important to remember that elevations and contour lines on the Earth are reported

relative to the geoid, not the ellipsoid. Latitude, longitude, and all plane coordi

nate systems, on the other hand, are determined with respect to the ellipsoid.

The choice of the reference ellipsoid used for various regions of the Earth has

been influenced by the local geoid, but large-scale map projections are designed to

fit the reference ellipsoid, not the geoid. The selection of constants defining the

shape of the reference ellipsoid has been a major concern of geodesists since the

early 18th century. Two geometric constants are sufficient to define the ellipsoid

itself. They are normally expressed either as (1) the semimajor and semiminor

axes (or equatorial and polar radii, respectively), (2) the semimajor axis and the

flattening, or (3) the semimajor axis and the eccentricity. These pairs are directly

interchangeable. In addition, recent satellite-measured reference ellipsoids are

defined by the semimajor axis, geocentric gravitational constant, and dynamical

form factor, which may be converted to flattening with formulas from physics

(Lauf, 1983, p. 6).

In the early 18th century, Isaac Newton and others concluded that the Earth

should be slightly flattened at the poles, but the French believed the Earth to be

egg-shaped as the result of meridian measurements within France. To settle the

matter, the French Academy of Sciences, beginning in 1735, sent expeditions to

Peru and Lapland to measure meridians at widely separated latitudes. This estab

lished the validity of Newton's conclusions and led to numerous meridian measure

ments in various locations, especially during the 19th and 20th centuries; between

1799 and 1951 there were 26 determinations of dimensions of the Earth.

The identity of the ellipsoid used by the United States before 1844 is uncertain,

although there is reference to a flattening of 1/302. The Bessel ellipsoid of 1841

(see table 1) was used by the Coast Survey from 1844 until 1880, when the bureau

adopted the 1866 evaluation by the British geodesist Alexander Ross Clarke

using measurements of meridian arcs in western Europe, Russia, India, South

Africa, and Peru (Shalowitz, 1964, p. 117-118; Clarke and Helmert, 1911,

p. 807- 808). This resulted in an adopted equatorial radius of 6,378,206.4 m and a

polar radius of 6,356,583.8 m, or an approximate flattening of 1/294.9787.

The Clarke 1866 ellipsoid (the year should be included since Clarke is also

known for ellipsoids of 1858 and 1880) has been used for all of North America until

a~change which is currently underway, as described below.

"Tn 1909 John Fillmore Hayford reported calculations for a reference ellipsoid

from U.S. Coast and Geodetic Survey measurements made entirely within the

United States. This was adopted by the International Union of Geodesy and

Geophysics (IUGG) in 1924, with a flattening of exactly 1/297 and a semimajor

axis of exactly 6,378,388 m. This is therefore called the International or the
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Table 1.—Some official ellipsoids in use throughout the world'

Equatorial

Radius, a

meters

Polar Radius

6, meters

Flattening

Name Date / Use

GRS 802 1980 6,378,137*

6,378,135*

6,356,752.3

6,356,750.5

1/298.257 Newly adopted

WGS 723.... ...1972 1/298.26 NASA; Dept. of Defense;

Australian ...1965 6,378,160* 6,356,774.7 1/298.25*

oil companies

Australia

Krasovsky..

Internat'l ...

Hayford

....1940

...1924)

1909j

6,378,245*

, 6,378,388*

6,356,863.0

6,356,911.9

1/298.3*

1/297*

Soviet Union

Remainder of the

world+

Clarke4...... ...1880

1866

6,378,249.1

6,378,206.4*

6,356,514.9

6,356,583.8*

1/293.46**

1/294.98

Most of Africa; France

North America; PhilipClarke

pines

Great BritainAiry4 ...1830 6,377,563.4 6,356,256.9 1/299.32**

Bessel ...1841 6,377,397.2 6,356,079.0 1/299.15** Central Europe; Chile;

Indonesia

Everest4 ...1830 6,377,276.3 6,356,075.4 1/300.80** India; Burma; Paki

stan; Afghan.; Thai

land; etc.

Values are shown to accuracy in excess significant figures, to reduce computational confusion.

' Maling, 1973, p. 7; Thomas, 1970, p. 84; Army, 1973. p. 4, endmap: Colvocoresses, 1969, p. 33; World Geodetic.

1974.

2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth. WGS 84 has same dimensions

within accuracy shown.

3 World Geodetic System. Ellipsoid derived from adopted model of Earth.

4 Also used in some regions with various modified constants.

* Taken as exact values. The third number (where two are asterisked) is derived using the following relationships:

b = a (x—f); f = x—b/a. Where only one is asterisked (for 1972 and 1980). certain physical constants not

shown are taken as exact, but /as shown is the adopted value.

** Derived from a and 6, which are rounded off as shown after conversions from lengths in feet.

+ Other than regions listed elsewhere in column, or some smaller areas.

Hayford ellipsoid, and is used in many parts of the world, but it was not adopted

for use in North America, in part because of all the work already accomplished

using the older datum and ellipsoid (Brown, 1949, p. 293; Hayford, 1909).

There are over a dozen other principal ellipsoids, however, which are still used

by one or more countries (table 1). The different dimensions do not only result

from varying accuracy in the geodetic measurements (the measurements of loca

tions on the Earth), but the curvature of the Earth's surface (geoid) is not uniform

due to irregularities in the gravity field.

Until recently, ellipsoids were only fitted to the Earth's shape over a particular

country or continent. The polar axis of the reference ellipsoid for such a region,

therefore, normally does not coincide with the axis of the actual Earth, although

it is assumed to be parallel. The same applies to the two equatorial planes. The

discrepancy between centers is usually a few hundred meters at most. Only

satellite-determined coordinate systems, such as the WGS 72 and GRS 80 men

tioned below, are considered geocentric. Ellipsoids for the latter systems repre

sent the entire Earth more accurately than ellipsoids determined from ground

measurements, but they do not generally give the "best fit" for a particular

region.

The reference ellipsoids used prior to those determined by satellite are related

to an "initial point" of reference on the surface to produce a datum, the name

given to a smooth mathematical surface that closely fits the mean sea-level sur

face throughout the area of interest. The "initial point" is assigned a latitude,

longitude, elevation above the ellipsoid, and azimuth to some point. Once a datum

is adopted, it provides the surface to which ground control measurements are

referred. The latitude and longitude of all the control points in a given area are

then computed relative to the adopted ellipsoid and the adopted "initial point."

The projection equations of large-scale maps must use the same ellipsoid parame-

V. /
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ters as those used to define the local datum; otherwise, the projections will be

inconsistent with the ground control.

The first official geodetic datum in the United States was the New England Datum, adopted in

1879. It was based on surveys in the eastern and northeastern states and referenced to the Clarke

Spheroid of 1866, with triangulation station Principio, in Maryland, as the origin. The first transconti

nental arc of triangulation was completed in 1899. connecting independent surveys along the Pacific

Coast. In the intervening years, other surveys were extended to the Gulf of Mexico. The New-

England Datum was thus extended to the south and west without major readjustment of the surveys

in the east. In 1901, this expanded network was officially designated the United States Standard

Datum, and triangulation station Meades Ranch, in Kansas, was the origin. In 1913. after the geodetic

organizations of Canada and Mexico formally agreed to base their triangulation networks on the

United States network, the datum was renamed the North American Datum.

By the mid-1920's, the problems of adjusting new surveys to fit into the existing network were

acute. Therefore, during the 5-year period 1927-1932 all available primary data were adjusted into a

system now known as the North American 1927 Datum."" The coordinates of station Meades Ranch

were not changed but the revised coordinates of the network comprised the North American 1927

Datum (National Academy of Sciences, 1971, p. 7).

Satellite data have provided geodesists with new measurements to define the

best Earth-fitting ellipsoid and for relating existing coordinate systems to the

Earth's center of mass. U.S. military efforts produced the World Geodetic Sys

tem 1966 and 1972 (WGS 66 and WGS 72). The National Geodetic Survey is

planning to replace the North American 1927 Datum with a new datum, the

North American Datum 1983 (NAD 83), which is Earth-centered based on both

satellite and terrestrial data. The IUGG in 1980 adopted a new model of the Earth

called the Geodetic Reference System (GRS) 80, from which is derived an ellip

soid which has been adopted for the new North American datum. As a result, the

latitude and longitude of almost every point in North America will change slightly,

as well as the rectangular coordinates of a given latitude and longitude on a map

projection. The difference can reach 300 m. U.S. military agencies are developing

a worldwide datum called WGS 84, also based on GRS 80, but with slight

differences. For Earth-centered datums, there is no single "origin" like Meades

Ranch on the surface. The center of the Earth is in a sense the origin.

For the mapping of other planets and natural satellites, only Mars is treated as

an ellipsoid. Other bodies are taken as spheres (table 2), although some irregular

satellites have been treated as triaxial ellipsoids and are "mapped" ortho-

graphically.

In most map projection formulas, some form of the eccentricity e is used, rather

than the flattening /. The relationship is as follows:

e2 = 2f-f, or / = 1 - (1 - e2) 1/2

For the Clarke 1866, e- is 0.006768658. For the GRS 80, e~ is 0.0066943800.

AUXILIARY LATITUDES

By definition, the geographic or geodetic latitude, which is normally the lati

tude referred to for a point on the Earth, is the angle which a line perpendicular

to the surface of the ellipsoid at the given point makes with the plane of the

Equator. It is slightly greater in magnitude than the geocentric latitude, except

at the Equator and poles, where it is equal. The geocentric latitude is the angle

made by a line to the center of the ellipsoid with the equatorial plane.

Formulas for the spherical form of a given map projection may be adapted for

use with the ellipsoid by substitution of one of various "auxiliary latitudes" in

place of the geodetic latitude. Oscar S. Adams (1921) developed series and other

formulas for five substitute latitudes, generally building upon concepts described

in the previous century. In using them, the ellipsoidal Earth is, in effect, first

transformed to a sphere under certain restraints such as conformality or equal

area, and the sphere is then projected onto a plane. If the proper auxiliary
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Table 2.—Official figures for extraterrestrial mapping

[,From Davies, et al., 1983; Davies, Private commun., 1985., Radius of Moon chosen so that all elevations are positive. Radius of

Mars is based on a level of 6.1 millibar atmospheric pressure; Mars has both positive and negative elevations.]

Equatorial

Body radius a*

(kilometers)

Earth's Moon 1,738.0

Mercury 2,439.0

Venus 6,051.0

Mars 3,393.4*

Galilean satellites of Jupiter

Io 1,815

Europa 1,569

Ganymede 2,631

Callisto 2,400

Satellites of Saturn

Mimas 198

Enceladus 253

Tethys 525

Dione 560

Rhea 765

Titan 2,575

Iapetus 725

Satellites of Uranus

Ariel 665

Umbriel 555

Titania 800

Oberon 815

Miranda 250

Satellite of Neptune

Triton 1,600

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of 0.101929. Flattening/ =

1 - (1 - e2)' 2. Unlisted satellites are taken as triaxial ellipsoids, or mapping is not expected in the near future.

Mimas and Enceladus have also been given ellipsoidal parameters, but not for mapping.

latitudes are chosen, the sphere may have either true areas, true distances in

certain directions, or conformality, relative to the ellipsoid. Spherical map projec

tion formulas may then be used for the ellipsoid solely with the substitution of the

appropriate auxiliary latitudes.

It should be made clear that this substitution will generally not give the projec

tion in its preferred form. For example, using the conformal latitude (defined

below) in the spherical Transverse Mercator equations will give a true ellipsoidal,

conformal Transverse Mercator, but the central meridian cannot be true to scale.

More involved formulas are necessary, since uniform scale on the central merid

ian is a standard requirement for this projection as commonly used in the ellipsoi

dal form. For the regular Mercator, on the other hand, simple substitution of the

conformal latitude is sufficient to obtain both conformality and an Equator of

correct scale for the ellipsoid.

Adams gave formulas for all these auxiliary latitudes in closed or exact form, as

well as in series, except for the authalic (equal-area) latitude, which could also

have been given in closed form. Both forms are given below. For improved

computational efficiency using the series, see equations (3-34) through (3-39).

In finding the auxiliary latitude from the geodetic latitude, the closed form may

be more useful for computer programs. For the inverse cases, to find geodetic

from auxiliary latitudes, most closed forms require iteration, so that the series
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form is probably preferable. The series form shows more readily the amount of

deviation from the geodetic latitude <J>. The formulas given later for the individual

ellipsoidal projections incorporate these formulas as needed, so there is no need to

refer back to these for computation, but the various auxiliary latitudes are grouped

together here for comparison. Some of Adams' symbols have been changed to

avoid confusion with other terms used in this book.

The conformal latitude x, giving a sphere which is truly conformal in accord

ance with the ellipsoid (Adams, 1921, p. 18, 84),

x = 2 arctan |tan (it/4 + <J>/2) [(1 - e sin <J>)/(1 + e sin <J>)]e/2 | - tt/2 (3-1)

= <J> - (e2/2 + 5e4/24 + 3e,!/32 + 281e8/5760 + . . .)sin 2<i>

+ (5e4/48 + 7e6/80 + 697e8/11520 + . . .)sin 4<J>

- (13e'V480 + 461e8/13440 + . . .)sin 6<J> + (1237e8/161280

+ . . .)sin 8<J> + .. .

with x and <J> in radians. In seconds of arc for the Clarke 1866 ellipsoid,

x = <i> - 700.0427" sin 2<J> + 0.9900" sin 4<J> + 0.0017" sin 6<J> (3-3)

The inverse formula, for <J> in terms of x, may be a rapid iteration of an exact

rearrangement of (3-1), successively placing the value of <J> calculated on the left

side into the right side of (3-4) for the next calculation, using x as the first

trial <J>. When <J> changes by less than a desired convergence value, iteration is

stopped.

4> = 2 arctan |tan (tt/4 + x/2)[(1 + e sin <J>)/(1 - e sin <J>)]«/2| - tt/2 (3-4)

The inverse formula may also be written as a series, without iteration (Adams,

1921, p. 85):

<J> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + . . . ) sin 2x

+ (7e4/48 + 29e'V240 + 811e8/11520 + . . . ) sin 4x

+ (7e6/120 + 81e8/1120 + . . . ) sin 6x

+ (4279e8/161280 + . . . ) sin 8x + . . . (3-5)

or, for the Clarke 1866 ellipsoid, in seconds,

4> = x + 700.0420" sin 2x + 1.3859" sin 4x + 0.0037" sin 6x (3-6)

Adams referred to x as the isometric latitude, but this name is now applied to

,j/, a separate very nonlinear function of <J>, which is directly proportional to the

spacing of parallels of latitude from the Equator on the ellipsoidal Mercator

projection. Another common symbol for isometric latitude is t. It is also useful for

other conformal projections:

<J» = In |tan(ir/4 + <J>/2) [(1-e sin <£)/(1 + e sin 4>)]e'2\ (3-7)

Because of the rapid variation from <J>, 'J/ is not given here in series form. By

comparing equations (3-1) and (3-7), it may be seen, however, that

,J» = In tan (ir/4 + \/2) (3-8)

so that x may be determined from the series in (3-2) and converted to \ii with

(3-8), although there is no particular advantage over using (3-7).

For the inverse of (3-7), to find <J> in terms of <J», the choice is between iteration

of a closed equation (3-10) and use of series (3-5) with a simple inverse of (3-8):

x = 2 arctan e* - tt/2 (3-9)

where e is the base of natural logarithms, 2.71828.

(3- 1a)

(3-2)
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For the iteration, apply the principle of successive substitution used in (3-4)

to the following, with (2 arctan e^-ir^) as the first trial 4>:

4> = 2 arctan |e*[(1 + e sin <J>)/(1 - e sin <J>)F2 - it/2 (3-10)

Note that e and e are not the same.

The authalic latitude p, on a sphere having the same surface area as the

ellipsoid, provides a sphere which is truly equal-area (authalic), relative to the

ellipsoid:

p = arcsin (q/qp) (3-11)

where

q = (1 - e2) |sin 4>/(1 - e~ sin2 4>) - (1/(2e)) ln[(l -e sin <*>)/(1 + e sin <J>)]| (3-12)

and qp is q evaluated for a 4> of 90°. The radius Rq of the sphere having the same

surface area as the ellipsoid is calculated as follows:

R^aiqW1 (3-13)

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, Rq is

6,370,997.2 m.

The equivalent series for p (Adams, 1921, p. 85)

p = <J> - (e2/3 + 31e4/180 + 59e6/560 + . . . ) sin24> + (17e)/360 + 61e6/1260 + . . .)

sin 4* - (383e6/45360 + . . . ) sin 6<J> + . . . (3-14)

where p and <i> are in radians. For the Clarke 1866 ellipsoid, the formula in seconds

of arc is:

p = * - 467.0129" sin 24> + 0.4494" sin 4<J> + 0.0005" sin 64> (3-15)

For <J> in terms of p, an iterative inverse of (3-12) may be used with the

inverse of (3-11):

(1 - e2 sin2 4>)2

<J> = <J> +

2 cos 4>

where

sin <i>

1 — e2 1 — e2 sin2 4>

1 / 1 - e sin 4>\

In

2e \ 1 + e sin <J>/

(3-16)

q = qp sin p (3-17)

qp is found from (3-12) for a <J> of 90°, and the first trial 4> is arcsin ((//2), used

on the right side of (3-16) for the calculation of <f> on the left side, which is then

used on the right side until the change is less than a preset limit. (Equation

(3-16) is derived from equation (3-12) using a standard Newton-Raphson itera

tion.)

To find <J> from p with a series:

4> = p + (e2/3 + 31e4/180 + 517e,;/5040 + . . .) sin 2p

+ (23«<4/360 + 251e,'/3780 + . . . ) sin 4p (3-18)

+ (761e'745360 + . . . ) sin 6p + . . .

or, for the Clarke 1866 ellipsoid, in seconds,

<i> = p + 467.0127" sin 2p + 0.6080" sin 4p + 0.0011" sin 6p (3-19)

The rectifying latitude \x. (designated id by Adams), giving a sphere with correct

distances along the meridians, requires a series in any case (or a numerical inte

gration which is not shown).

ix. = it M/2Mp (3-20)

where
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M = a[(l - e2/4 - 3e4/64 - 5e6/256 -...)<J>- (3e2/8 + 3e4/32

+ 45e6/1024 + . . . ) sin 2<J> + (15e4/256 + 45e6/1024 + . . . ) sin 4<J>

- (35e6/3072 + . . . ) sin 6<J> + . . . ] (3-21)

and Mp is M evaluated for a <J> of 90°, for which all sine terms drop out. M is

the distance along the meridian from the Equator to latitude <i>. For the Clarke

1866 ellipsoid, the constants simplify to, in meters,

M = 111132.0894<J>° - 16216.94 sin 24> + 17.21 sin 4<J> - 0.02 sin 6<J> (3-22)

The first coefficient in (3-21) has been multiplied by ir/180 to use <J> in degrees.

To use \i. properly, the radius RM of the sphere must be 2Mp/it for correct scale.

For the Clarke 1866 ellipsoid, RM is 6,367,399.7 m. A series combining (3-20)

and (3-21) is given by Adams (1921, p. 125):

p. = <J> - (3«i/2 - 9ei3/16 + . . . ) sin 2<J> + (15e,2/16 - 15ei4/32 + . . . )

sin 4<J> - (35«i3/48 - . . . ) sin 6<J> + (315e,4/512 - . . . )

sin 8<J> + ... (3-23)

where

e! = [1 - (1 - e2)1/2]/[1 + (1 - e2)1/2] (3-24)

and u. and <J> are given in radians. For the Clarke 1866 ellipsoid, in seconds,

ti = 4> - 525.3298" sin 24> + 0.5575" sin 4<J> + 0.0007" sin 64> (3-25)

The inverse of equations (3-23) or (3-25), for <J> in terms of p., given M,

will be found useful for several map projections to avoid iteration, since a series

is required in any case (Adams, 1921, p. 128).

d> = n + (Zex/2 - 27ei3/32 + . . . ) sin 2p. + (21ei2/16 - 55e,4/32 + . . . )

sin 4u. + (151ei3/96 - . . . ) sin 6p. + (1097ei4/512 - . . . )

sin 8p. + . . . (3-26)

where ex is found from equation (3-24) and \l from (3-20), but M is given,

not calculated from (3-21). For the Clarke 1866 ellipsoid, in seconds of arc,

<J> = )jl + 525.3295" sin 2u. + 0.7805" sin 4^ + 0.0016" sin 6p. (3-27)

The following closed and exact formulas, from which equations (3-20) through

(3-25) may be ultimately derived, are given as a matter of interest.

M = a (1 - e2)V [1/(1 - e2 sin2 <J>)3/2] d<J> (3 -27a)

Equation (3-27a), the integral of (4-19) in a later chapter, may not be exactly

integrated. While Simpson's rule may be used, it is not as satisfactory here as

it is in some other cases (equation (27-6a), etc.). However, (3-27a) may be

transformed to an elliptic integral of the second kind, for which the arithmetic-

geometric-mean (A.G.M.) iteration can provide any desired accuracy within com

puter programming limitations (Messenger, T.J., pers. commun., 1984; Abram-

owitz and Stegun, 1964, p. 598-99):

M = a [J* (1 - e2 sin2<J>)1/2 - e2 sin <i> cos 4>/(1 - e2 sin2 <J>)1/2] (3-27b)

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are more useful

for derivation than in substitutions for projections:

The geocentric latitude <J>^ (designated ,J» by Adams) referred to in the first

paragraph in this section is simply as follows:

4>g = arctan [(1 - e2) tan 4>] (3-28)

As a series,

4> = <J> - e2 Sin 2<i> + (e22/2) sin 4<J> - (e23/3) sin 6* + . . . (3-29)
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Table 3.—Corrections for auxiliary latitudes on the Clarke 1866 ellipsoid

[Corrections are given, rather than actual values. F0r example, if the geodetic latitude is50°N., the conformal latitude is 50° - 11 '29.7" =

49" 4H 30..T' N. For southern latitudes, the corrections are the same, disregarding the sign of the latitude. That is, the conformal

latitude for a * of lat. 50' S. is 49" 4830.T S. From Adams, 1921]

Geodetic Conformal Authalic Rectifying Geocentric Parametric

'4>> (x -*) <P -*) -*) '*„ (n -<J>)

90° 0' 00.0" 0' 00.0" 0' 00.0" 0' 00.0" 0' 00.0"

85 7 - 2 01.9 -1 21.2 -1 31.4 - 2 02.0 -1 00.9

80 - 4 00.1 -2 40.0 -3 00.0 - 4 00.3 -2 00.0

75 7 - 5 50.9 -3 53.9 -4 23.1 - 5 51.3 -2 55.4

70 7 - 7 31.0 -5 00.6 -5 38.2 - 7 31.4 -3 45.4

65 - 8 57.2 -5 58.2 -6 43.0 - 8 57.7 -4 28.6

60 7 -10 07.1 -6 44.8 -7 35.4 -10 07.6 -5 03.6

55 -10 58.5 -7 19.1 -8 14.0 -10 58.9 -5 29.3

50 -11 29.7 -7 40.1 -8 37.5 -11 30.2 -5 45.0

45 -11 40.0 -7 47.0 -8 45.3 -11 40.5 -5 50.2

40 7 -11 29.1 -7 39.8 -8 37.2 -11 29.4 -5 44.8

35 7 -10 57.2 -7 18.6 -8 13.3 -10 57.4 -5 28.9

30 -10 05.4 -6 44.1 -7 34.5 -10 05.6 -5 03.0

25 - 8 55.3 -5 57.3 -6 41.9 - 8 55.4 -4 28.0

20

7

- 7 29.0 -4 59.7 -5 37.1 - 7 29.1 -3 44.8

15 7 - 5 49.2 -3 53.1 -4 22.2 - 5 49.2 -2 54.9

10 7 - 3 58.8 -2 39.4 -2 59.3 - 3 58.8 -1 59.6

5 - 2 01.2 -1 20.9 -1 31.0 - 2 01.2 -1 00.7

0 7 0 00.0 0 00.0 0 00.0 0 00.0 0 00.0

where <J>ff and 4> are in radians and e2 = e2/(2 - e2). For the Clarke 1866 ellipsoid,

in seconds of arc,

4>ff = <J> - 700.44" sin 2<J> + 1.19" sin 4* (3-30)

The reduced or parametric latitude n (designated 6 by Adams) of a point on

the ellipsoid is the latitude on a sphere of radius a for which the parallel has the

same radius as the parallel of geodetic latitude <i> on the ellipsoid through the

given point:

t) = arctan [(1 - e2)v2 tan <J>] (3-31)

As a series,

n = <J> - e, sin 2<J> + (e,2/2) sin 4<J> - (e,3/3) sin 6<J> + . . . (3-32)

where e, is found from equation (3-24), and n and <J> are in radians. For the Clarke

1866 ellipsoid, using seconds of arc,

't] = <J> - 350.22" sin 2* + 0.30" sin 4<i> (3-33)

The inverses of equations (3-28) and (3-31) for cJ> in terms of geocentric or

reduced latitudes are relatively easily derived and are noniterative. The inverses

of series equations (3-29), (3-30), (3-32), and (3-33) are therefore omitted.

Table 3 lists the correction for these auxiliary latitudes for each 5° of geodetic-

latitude.

COMPUTATION OF SKRIKS

Most of the trigonometric series approximations throughout this book (for

example, equations (3-2) and (3-5)) are given in terms of multiple angles. In this

arrangement, the coefficients converge to zero more rapidly, but handling by
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computer is normally somewhat slower than that occurring with nested trigono

metric series. The latter are equivalent to power polynomials and require a mini

mum number of computations of trigonometric functions from series built into the

software of most computers.

The pertinent series in this book fall into one of three forms (3- 34), (3 - 36) and

(3-38), in which <J> may be any variable, and./{<J>) is the function:

If f\4>) = A sin 2<J> + B sin 4<J> + C sin 64> + D sin 8<J> (3-34)

then J(4>) = sin 2<J> (A' + cos 2<J> (B' + cos 2<J> (C + D' cos 2<J>))) (3-35)

where

A' = A - C

B' = 2B - AD

C = 4C

D' =8D

If J(b) = A sin * + B sin 3<J> + C sin 5<J> + D sin 74> (3-36)

then /(<J>) = sin <J> (A' + sin2^ (B' + sin2<J> (C + D' siri%))) (3-37)

where

A' =A + 3B + 5C + 7D

fi' = -4B - 20C - 56D

C = 16C + U2D

D' = -64D

If J\<i>) = A + fi cos 24> + C cos 44> + D cos 6<J> + £ cos 8* (3-38)

then A4>) = A' + cos24>(fi' + cos2<J>(C" + cos24>(D' + £"cos2<J>))) (3-39)

where

A' = A - C + E

B' =B - 3D

C = 2C - 8£;

D' = AD

E, =8E

These are exact equivalents of the series as shown. First the primed coeffi

cients are computed once for the full set of conversions from the original coeffi

cients of (3-34), (3-36), or (3-38), then sin 2<J> and cos 2d> are computed once for

each point in (3-35), or sin <i> and sin2<J> once for each point in (3-37), or cos 2<J>

once for each point in (3-39). Computation of/(4>) may then proceed from the

innermost nest outward with a speed up to 25-35 percent faster than that with

multiple-angle series.

For more efficient transformation of a great number of points from one set of

coordinates to another, polynomial approximations for the entire projection may

be considered. This is normally only practical for a limited region. For techniques

in determining the polynomial coefficients, the reader is referred to Snyder (1985a,

p. 5-6, 15-24).
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4. SCALE VARIATION AND ANGULAR DISTORTION

Since no map projection maintains correct scale throughout, it is important to

determine the extent to which it varies on a map. On a world map, qualitative

distortion is evident to an eye familiar with maps, after noting the extent to which

landmasses are improperly sized or out of shape, and the extent to which meridi

ans and parallels do not intersect at right angles, or are not spaced uniformly

along a given meridian or given parallel. On maps of countries or even of continents,

distortion may not be evident to the eye, but it becomes apparent upon careful

measurement and analysis.

TISSOT'S INDICATRIX

In 1859 and 1881, Nicolas Auguste Tissot published a classic analysis of the

distortion which occurs on a map projection (Tissot, 1881; Adams, 1919, p. 153 — 163;

Maling, 1973, p. 64-67). The intersection of any two lines on the Earth is repre

sented on the flat map with an intersection at the same or a different angle. At

almost every point on the Earth, there is a right angle intersection of two lines in

some direction (not necessarily a meridian and a parallel) which are also shown at

right angles on the map. All the other intersections at that point on the Earth will

not intersect at the same angle on the map, unless the map is conformal, at least

at that point. The greatest deviation from the correct angle is called w, the

maximum angular deformation. For a conformal map, w is zero. (In some texts, 2w

is used rather than w.)

Tissot showed this relationship graphically with a special ellipse of distortion

called an indicatrix. An infinitely small circle on the Earth projects as an infinitely

small, but perfect, ellipse on any map projection. If the projection is conformal,

the ellipse is a circle, an ellipse of zero eccentricity. Otherwise, the ellipse has a

major axis and minor axis which are directly related to the scale distortion and to

the maximum angular deformation.

In figure 3, the left-hand drawing shows a circle representing the infinitely

small circular element, crossed by a meridian X and parallel <J> on the Earth. The

right-hand drawing shows this same element as it may appear on a typical map

projection. For general purposes, the map is assumed to be neither conformal nor

equal-area. The meridian and parallel may no longer intersect at right angles, but

7

Figure 3.—Tissot's Indicatrix. An infinitely small circle on the Earth \A) appears as an ellipse

on a typical map (B). On a conformal map. (B) is a circle of the same or of a different size.
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there is a pair of axes which intersect at right angles on both Earth (AB and CD)

and map (A'B, and CD'). There is also a pair of axes that on the map (E'F' and

G'H') intersect with the greatest angular deformation compared to the corre

sponding axes on the Earth (EF and GH. not a right angle). The latter case has

the maximum angular deformation w. The orientation of these axes is such that u.

+ p.' = 90°, or, for small distortions, the lines fall about halfway between A'B'

and CD'. The orientation is of much less interest than the size of the deforma

tion. If a and b, the major and minor semiaxes of the indicatrix, are known, then

If lines X and 4> coincide with a and b, in either order, as in cylindrical and conic

projections, the calculation is relatively simple, using equations (4-2) through

(4-6) given below.

Scale distortion is most often calculated as the ratio of the scale along the

meridian or along the parallel at a given point to the scale at a standard point or

along a standard line, which is made true to scale. These ratios are called "scale

factors." That along the meridian is called h and along the parallel, k. The term

"scale error" is frequently applied to (h-l) and (Ar-1). If the meridians and

parallels intersect at right angles, coinciding with a and b in figure 3, the scale

factor in any other direction at such a point will fall between h and k. Angle w may

be calculated from equation (4-1), substituting h and k in place of a and b. In

general, however, the computation of w is much more complicated, but is impor

tant for knowing the extent of the angular distortion throughout the map.

The formulas are given here to calculate h, k, and w; but the formulas for h and

k are applied specifically to all projections for which they are deemed useful as the

projection formulas are given later. Formulas for w for specific projections have

generally been omitted.

Another term occasionally used in practical map projection analysis is "con

vergence" or "grid declination." This is the angle between true north and grid

north (or direction of the Y axis). For regular cylindrical projections this is zero,

for regular conic and polar azimuthal projections it is a simple function of longitude,

and for other projections it may be determined from the projection formulas by

calculus from the slope of the meridian (dy/dx) at a given latitude. It is used pri

marily by surveyors for fieldwork with topographic maps. Convergence is not dis

cussed further in this work.

The formulas for distortion are simplest when applied to regular cylindrical,

conic (or conical), and polar azimuthal projections of the sphere. On each of these

types of projections, scale is solely a function of the latitude.

Given the formulas for rectangular coordinates x and y of any cylindrical projec

tion as functions solely of longitude X and latitude 4>, respectively,

Given the formulas for polar coordinates p and 6 of any conic projection as

functions solely of <J> and X, respectively, where n is the cone constant or ratio of 6

to (X - X0),

sin (w/2) = \a - b\/(a + b) (4-1)

DISTORTION FOR PROJECTIONS OF THE SPHERE

h = dy/(Rd<i>)

k = dx/(R cos <Jw/X)

(4-2)

(4-3)

h = -dp/(Rd$)

k = np/(R cos <J>)

(4-4)

(4-5)
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Transverse Mercator Projection

FIGURE 4.—Distortion patterns on common conformal map projections. The Transverse Mercator and

the Stereographic are shown with reduction in scale along the central meridian or at the center of

projection, respectively. If there is no reduction, there is a single line of true scale along the

central meridian on the Transverse Mercator and only a point of true scale at the center of the

Stereographic. The illustrations are conceptual rather than precise, since each base map projec

tion is an identical conic.

7

/
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Given the formulas for polar coordinates p and 6 of any polar azimuthal projec

tion as functions solely of <J> and X, respectively, equations (4-4) and (4-5) apply,

with n equal to 1.0:

h = -dp/(Rd<i>) (4-4)

k = p/(R cos (4-6)

Equations (4-4) and (4-6) may be adapted to any azimuthal projection cen

tered on a point other than the pole. In this case h' is the scale factor in the

direction of a straight line radiating from the center, and k' is the scale factor in a

direction perpendicular to the radiating line, all at an angular distance c from the

center:

h' = dp/(Rdc) (4-7)

k' = p/(R sin c) (4-8)

An analogous relationship applies to scale factors on oblique cylindrical and

conic projections.

For any of the pairs of equations from (4-2) through (4-8), the maximum

angular deformation id at any given point is calculated simply, as stated above,

sin (w/2) = \h - k\/(h + k) (4-9)

where \h — k\ signifies the absolute value of (h-k), or the positive value without

regard to sign. For equations (4-7) and (4-8), //' and k' are used in (4-9)

instead of h and k, respectively. In figure 4, distortion patterns are shown for

three conformal projections of the United States, choosing arbitrary lines of true

scale.

For the general case, including all map projections of the sphere, rectangular

coordinates x and y are often both functions of both $> and X, so they must be
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partially differentiated with respect to both <J> and X, holding X and 4>, respectively,

constant. Then,

h = (l/R) [{dx/d4>)2 + (dy/dbf]™ (4-10)

k = [l/(R cos <J>)] [(dx/dkf + (dy/dkf]w (4-11)

a' = (h2 + k1 + 2hk sin 6')i* (4-12)

b' = Or + k2 - 2hk sin 6')' * (4-13)

where

sin 6' = [(dy/d4>) (dx/dk) - (dx/d<i>) (dy/dk)]/(R2hk cos <i>) (4-14)

6' is the angle at which a given meridian and parallel intersect, and a' and b' are

convenient terms. The maximum and minimum scale factors a and b, at a given

point, may be calculated thus:

a = (a' + b')/2 (4- 12a)

b = (a' - b')/2 (4- 13a)

Equation (4-1) simplifies as follows for the general case:

sin (w/2) =b'/a' (4- 1a)

The areal scale factor s:

s = hk sin 6' (4-15)

For special cases:

(1) s = hk if meridians and parallels intersect at right angles (6' = 90°);

(2) /? = k and w = 0 if the map is conformal;

(3) h = l/k on an equal-area map if meridians and parallels intersect at right

angles.2

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID

The derivation of the above formulas for the sphere utilizes the basic formulas

for the length of a given spacing (usually 1° or 1 radian) along a given meridian or a

given parallel. The following formulas give the length of a radian of latitude (L^)

and of longitude (Lx) for the sphere:

L* = R (4-16)

Lk = R cos <J> (4-17)

where R is the radius of the sphere. For the length of 1° of latitude or longitude,

these values are multiplied by tt/180.

The radius of curvature on a sphere is the same in all directions. On the

ellipsoid, the radius of curvature varies at each point and in each direction along a

given meridian, except at the poles. The radius of curvature R' in the plane of the

meridian is calculated as follows:

R' = a(1-e2)/(1-c2 sin2 4>)** (4-18)

-'Malinn <1973, p. 49-81) has helpful derivations of these equations in less condensed forms. There are typo

graphical errors in several of the equations in Mating, but these may be detected by following the derivation closely.
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Table 4.—Lengths, in meters, ofl" oflatitude and longitude on two ellipsoids ofreference

Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid

1° lat. 1° long. 1° lat. 1° long.

90° 111,699.4 0.0 111,700.0 0.0

85 111,690.7 9,735.0 111,691.4 9,735.0

80 111,665.0 19,394.4 111,665.8 19,394.5

75 111,622.9 28,903.3 111,624.0 28,903.5

70 111,565.9 38,188.2 111,567.4 38,188.5

65 111,495.7 47,177.5 111,497.7 47,177.9

60 111,414.5 55,802.2 11 1,417.1 55,802.8

55 111,324.8 63,996.4 111,327.9 63,997.3

50 111,229.3 71,698.1 111,233.1 71,699.2

45 111,130.9 78,849.2 111,135.4 78,850.5

40 111,032.7 85,396.1 111,037.8 85,397.7

35 110,937.6 91,290.3 110,943.3 91,292.2

30 110,848.5 96,488.2 110,854.8 96,490.4

25 110,768.0 100,951.9 110,774.9 100,954.3

20 110,698.7 104,648.7 110,706.0 104,651.4

15 110,642.5 107,551.9 110,650.2 107,554.8

10 110,601.1 109,640.7 110,609.1 109,643.7

5 110,575.7 110,899.9 110,583.9 110,903.1

0 110,567.2 111,320.7 1 10,575.5 111,323.9

The length of a radian of latitude is defined as the circumference of a circle of this

radius, divided by 2tt, or the radius itself. Thus,

L.J, = a(1-e2)/(1-ez sin2 <J>)3"2 (4-19)

For the radius of curvature JV of the ellipsoid in a plane perpendicular to the

meridian and also perpendicular to a plane tangent to the surface,

N = a/(1-e2 sin2<J>)12 (4-20)

Radius N is also the length of the perpendicular to the surface from the surface

to the polar axis. The length of a radian of longitude is found, as in equation

(4-17), by multiplying N by cos <J>, or

Lx = a cos <J>/(1-e2 sin2^)"2 (4-21)

The lengths of 1° of latitude and 1° of longitude for the Clarke 1866 and the Inter

national ellipsoids are given in table 4. They are found from equations (4-19) and

(4-21), multiplied by ir/180 to convert to lengths for 1°.

When these formulas are applied to equations (4-2) through (4-6), the values

of h and k for the ellipsoidal forms of the projections are found to be as follows:

For cylindrical projections:

h = dyWd$)

= ( 1 - e2 sin2<J>)3 2 dy/[a( 1 - e2)d<i>] (4 - 22)

k = dx/{N cos <J>dX)

= ( 1 - e2 sin2 <J>)"2 dx/(a cos <J> dX) (4 - 23)

For conic projections:

h = -dp/(R'd<i>)

= -(1-e2sin2<J>)''2dp/[a(1-e2)d<J>] (4-24)
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k = np/(N cos <i>)

= np(1-e2 sin2 <J>)1/2/(a cos <J>) (4-25)

For polar azimuthal projections:

h = -(1-e2sin2<J>)a2dp/[a(1-e2)d<J>] (4-24)

k = p(1-e2 sin2<J>)1'2/(a cos <J>) (4-26)

Equations (4-7) and (4-8) do not have ellipsoidal equivalents. Equation (4-9)

remains the same for equations (4-22) through (4-26):

sin (w/2) = \h-k\/(h + k) (4-9)

For the general projection of the ellipsoid, equations (4-10) and (4-11) are

similarly modified:

h = [(ax/a<J>)2 + Oi//a<J>)2]12(1-e2sin2<J>)3'2/[a(1-e2)] (4-27)

k = [(dx/dk)2 + (dy/dkfV^l-e2 sin2<J>)1/2/(a cos <J>) (4-28)

Equations (4-12) through (4-15), (4- 12a), (4- 13a), and (4 -1a), listed for the

sphere, apply without change, except that R2 becomes a2(1-e2)/(1-e2sin2<J>)2 in

(4-14).

Specific calculations are shown during the discussion of individual projections.

The importance of using the ellipsoid instead of the sphere for designing a pro

jection may be quantitatively evaluated by determining the ratio or product of

some of the elementary relationships. The ratio of the differential length of a

radian of latitude along a meridian on the sphere to that on the ellipsoid is found

by dividing the equation (4-16) by equation (4-19), or

Cm = R(l-e2 sin2 ^FV[a(1-e2)] (4-29)

A related ratio for the length of a radian of longitude along a parallel on the

sphere to that on the ellipsoid is found by dividing equation (4-17) by equation

(4-21), or

Cp = R(l-e2 sin2 4>)1/2/a (4-30)

From these, the local shape factor Cs may be found as the ratio of (4-29) to

(4-30):

Cs = Cm/Cp = (l-e2 sin2 <J>)/( 1-e2) (4-31)

and the area factor Ca is their product:

Ca = CmCp = #2(1-e2sin2<J>)2/[a2(1-e2)] (4-32)

If h and k are calculated for the spherical version of a map projection, the actual

scale factors on the spherical version relative to the ellipsoid may be determined

by multiplying h by C„, and k by Cp. For normal cylindrical and conic projections

and polar azimuthal projections, the conformality or shape factor may be taken as

h/k (not the same as w) multiplied by Cs, and the area scale factor hk may be

multiplied by Ca.

Except for Cs, which is independent of R/a, R must be given an arbitrary value

such as Rq (see equation (3-13)), Rm (see second sentence following equation

(3-22)), or another reasonable balance between the major and minor semiaxes a
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Table 5.—Ellipsoidal correction factors to apply to spherical projections based on Clarke 1866

ellipsoid

Lat. (N&S) cv c. c. c.*

90° 0.99548 0.99548 1.00000 0.99099

75 .99617 .99571 1.00046 .99189

60 .99803 .99633 1.00170 .99437

45 1.00058 .99718 1.00341 .99775

30 1.00313 .99802 1.00511 1.00114

15 1.00499 .99864 1.00636 1.00363

0 1.00568 .99887 1.00681 1.00454

Multiply by** h k hJk hk

* Cm - 1.0 for 48.24° lat. andC„ = 1.0 for 35.32° lat. Values ofC^. C,,, and C„ are based on a radius of6,370.997 m for

the sphere used in the spherical map projection.

** A = scale factor along meridian,

k = scale factor along parallel of latitude.

For normal cylindrical and conic projections and polar azimuthal projections:

hJk = shape factor,

Iik = area scale factor,

For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m,

h = 1.00132 and* = 0.99868 at lat. 45° N., this map has an area scale factor of 1.00132 , 0.99868 , 00.99775 = 0.99775,

relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, this factor would be

1.0.

and b of the ellipsoid. Using Rq and the Clarke 1866 ellipsoid, table 5 shows the

magnitude of these corrections. Thus, a conformal projection based on the sphere

has the correct shape at the poles for the ellipsoid, but the shape is about 2/3 of

1 percent (0.00681) in error near the Equator (that is, Tissot's Indicatrix is an

ellipse with minor axis about 2/3 of 1 percent shorter than the major axis at the

Equator when the spherical form is compared to the ellipsoid).

A map extending over a large area will have a scale variation of several percent,

which far outweighs the significance of the less-than-1-percent variation between

sphere and ellipsoid. A map of a small area, such as a large-scale detailed topo

graphic map, or even a narrow strip map, has a small-enough intrinsic scale

variation to make the ellipsoidal correction a significant factor in accurate mapping;

e.g., a 7.5-min quadrangle normally has an intrinsic scale variation of 0.0002

percent or less.

CAUCHY-RIEMANN AND RELATED EQUATIONS

Relatively simple equations provide necessary and sufficient conditions for any

map projection, spherical or ellipsoidal, to be conformal. These are called the

Cauchy-Riemann equations after two 19th-century mathematicians. The concept

had been devised, however, during the 18th century. These equations may be

written as follows:

dx/dk = dy/dty (4-33)

dx/dty = -dy/dk (4-34)

where iJ/ is the isometric latitude defined by equation (3-7) for the ellipsoid, or

with e = 0 in the same equation for the sphere. In the latter case, the above

equations simplify to

dx/(cos <J> dk) = dy/d4> (4-35)

dx/d<J> = -dy/(cos <J> dk) (4-36)

For the ellipsoid, equations (4-33) and (4-34) may be written
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dx/(cos <J> dk) = (1-e2 sin2 <J>) dy/[(l-e2) a<J>] (4-37)

(1-c2 siiAWax/K1-e^a<M = -dy/(cos <J> aX) (4-38)

By substituting x' in place of X and 2/' in place of ,J» in equations (4-33) and

(4-34), conditions are met for conformal transformation of one set of rectangular

coordinates (x', y') to another (x, y). That is,

dx/dx' = dy/dy' (4-39)

dx/dy' = -dy/dx' (4-40)

In this case, if (x', y') represents the transformation of the sphere or ellipsoid

onto a flat surface, this transformation must also be conformal. The double trans

formation is used in a later chapter for the Modified-Stereographic Conformal

projections.

Analogous relationships may be obtained for equal-area transformations. The

following equation applies to the ellipsoid:

(ax/aX) (dy/d<i>) - (ax/a<J>) (dy/dk) = a2 (1-e2) cos ^/(1-e2 sin2<J>)2 (4-41)

For the sphere, this simplifies to

(dx/dk) (dy/d<i>) - (dx/d<i>) (dy/dk) = R2 cos 4> (4-42)

For spherical pseudocylindrical equal-area projections, such as the sinusoidal, the

parallels are straight lines parallel to the Equator, so that (dy/dk) = 0. For the

many projections in this category, equation (4-42) simplifies further to

x = R2 k cos ^/(dy/d^) (4-43)

in which y can be any function of <J> for a chosen spacing of the parallels.

An equal-area transformation from one set of rectangular coordinates to another

must satisfy the following relationship:

(dx/dx') (dy/dy') - (dx/dy') (dy/dx') = S (4-44)

where S is the area ratio of the (x,y) map to the (x', y') map.

Most of the above equations (4-33) through (4-44) are difficult to use to derive

new projections, although they may be used to determine whether existing projec

tions are conformal or equal-area. Equation (4-43), however, may be fairly read

ily used to devise new projections which are pseudocylindrical and equal-area.

Equation (26-4), discussed later, is a general equation satisfying (4-39) and

(4-40), although it is not the only such equation. There is no known general

equation satisfying equation (4-44) except in a very elementary way.
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5. TRANSFORMATION OF MAP GRATICULES

As discussed later, several map projections have been adapted to showing some

part of the Earth for which the lines of true scale have an orientation or location

different from that intended by the inventor of the basic projection. This is

equivalent to moving or transforming the graticule of meridians and parallels on

the Earth so that the "north pole" of the graticule assumes a position different

from that of the true North Pole of the Earth. The projection for the sphere may

be plotted using the original formulas or graphical construction, but applying

them to the new graticule orientation. The actual meridians and parallels may

then be plotted by noting their relationship on the sphere to the new graticule,

and landforms drawn with respect to the actual geographical coordinates as usual.

In effect, this procedure was used in the past in an often entirely graphical

manner. It required considerable care to avoid cumulative errors resulting from

the double plotting of graticules. With computers and programmable hand

calculators, it now can be a relatively routine matter to calculate directly the

rectangular coordinates of the actual graticule in the transformed positions or,

with an automatic plotter, to obtain the transformed map directly from the

computer.

The transformation most notably has been applied to the azimuthal and cylindri

cal projections, but in a few cases it has been used with conic, pseudocylindrical,

and other projections. While it is fairly straightforward to apply a suitable trans

formation to the sphere, transformation is much more difficult on the ellipsoid

because of the constantly changing curvature. Transformation has been applied to

the ellipsoid, however, in important cases under certain limiting conditions.

If either true pole is at the center of an azimuthal map projection, the projec

tion is called the polar aspect. If a point on the Equator is made the center, the

projection is called the equatorial or, less often, meridian or meridional aspect.

If some other point is central, the projection is the oblique or, occasionally.

horizon aspect.

For cylindrical and most other projections, such transformations are called

tra'isverse or oblique, depending on the angle of rotation. In transverse projections,

the true poles of the Earth lie on the equator of the basic projection, and the poles

of the projection lie on the Equator of the Earth. Therefore, one meridian of the

true Earth lies along the equator of the basic projection. The Transverse Merca-

tor projection is the best-known example and is related to the regular Mercator in

this manner. For oblique cylindrical projections, the true poles of the Earth lie

somewhere between the poles and the equator of the basic projection. Stated

another way, the equator of the basic projection is drawn along some great circle

route other than the Equator or a meridian of the Earth for the oblique cylindrical

aspect. The Oblique Mercator is the most common example. Further subdivisions

of these aspects have been made; for example, the transverse aspect may be first

transverse, second transverse, or transverse oblique, depending on the positions

of the true poles along the equator of the basic projection (Wray, 1974). This has

no significance in a transverse cylindrical projection, since the appearance of the

map does not change, but for pseudocylindrical projections such as the Sinusoidal,

it makes a difference, if the additional nomenclature is desired.

To determine formulas for the transformation of the sphere, two basic laws of

spherical trigonometry are used. Referring to the spherical triangle in figure 5,

with three points having angles A, H, and C on the sphere, and three great circle

arcs a, b, and c connecting them, the Law of Sines declares that

sin A/sin a = sin Baxn b = sin CVsin e (5-1)

while by the Law of Cosines,
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Figure 5.—Spherical triangle.

cos c = cos b cos a + sin b sin a cos C (5-2)

If C is placed at the North Pole, it becomes the angle between two meridians

extending to A and B. If A is taken as the starting point on the sphere, and B the

second point, c is the great circle distance between them, and angle A is the

azimuth Az east of north which point B bears to point A. When latitude 4>\ and

longitude Xo are used for point A, and <J> and X are used for point B, equation (5-2)

becomes the following for great circle distance:

cos c = sin <J>i sin <i> + cos fa cos <i> cos (X — X0) (5-3)

While (5-3) is the standard and simplest form of this equation, it is not accu

rate in practical computation for values of c very close to zero. For such cases, the

equation may be rearranged as follows (Sinnott, 1984):

sin (c/2) = !sin2[(<J>-d,)/2] + cos fa cos <i> sin2 [(X-X0)/2]|l* (5-3a)

This equation is also exact, and is very accurate in practice for values of c from 0

to nearly 180°.

Equation (5-1) becomes the following for the azimuth:

sin Az = sin (X— X0) cos 4>/sin c (5-4)

or, with some rearrangement,

cos Az = [cos fa sin <J> - sin fa cos <J> cos (X-X,,)]/sin c (5-4a)

or, eliminating c,

tan Az = cos <i> sin (X-X0)/[cos fa sin <J> - sin fa cos <J> cos (X-X0)] (5-4b)

Either of the three equations (5-4) through (5-4b) may be used for the azimuth,

depending on the form of equation preferred. Equation (5-4b) is usually preferred,

since it avoids the inaccuracies of finding an arcsin near 90° or an arccos near 0°.

Quadrant adjustment as described under the list of symbols should be employed.
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</>' = -90°

Figure 6.—Rotation of a graticule for transformation of projection. Dashed lines show actual longi

tudes and latitudes (X and <i>). Solid lines show the transformed longitudes and latitudes (X' and

4>') from which rectangular coordinates (x and y) are determined according to map projection

used.

In order to find the latitude 4> and longitude X at a given arc distance c and

azimuth Az east of north from (<J>i, X0), the inverse of equations (5-3) and (5-4b)

may be used:

4> = arcsin (sin 4>i cos c + cos 4>i sin c cos Az) (5-5)

X = X0 + arctan [sin c sin Az/(cos 4>i cos c - sin 4>i sin c cos Az)] (5-6)

Applying these relationships to transformations, without showing some inter

mediate derivations, formulas (5-7) through (5-8b) are obtained. To place the

North Pole of the sphere at a latitude a on a meridian p east of the central merid

ian (X' = 0) of the basic projection (see fig. 6), the transformed latitude d>' and

transformed longitude X' on the basic projection which correspond to latitude d>

and longitude k of the spherical Earth may be calculated as follows, letting the

central meridian Xo correspond with X' = p:

sin d>' = sin a sin d> - cos a cos d> cos (X — X0) (5-7)

sin (X' - p) = cos d> sin (X - X0)/cos q>' (5-8)

or

cos (X' - p) = [sin a cos d> cos (X - X0) + cos a sin <J>]/cos 4>' (5-8a)

or

tan (X' — p) = cos d> sin (X — X0)/[sin a cos 4> cos (X - X0) + cos a sin 4>]

(5 -8b)



MAP PROJECTIONS—A WORKING MANUAL

Equation (5-8b) is generally preferable to (5-8) or (5-8a) for the reasons stated

after equation (5-4b).

These are general formulas for the oblique transformation. (For azimuthal pro

jections, p may always be taken as zero. Other values of (3 merely have the effect

of rotating the X and Y axes without changing the projection.)

The inverse forms of these equations are similar in appearance. To find the

geographic coordinates in terms of the transformed coordinates,

sin <J> = sin a sin 4>' + cos a cos 4>' cos (X' - p) (5-9)

sin (X - X0) = cos <J>' sin (V - p)/cos <J> (5-10)

or

cos (X - Xo) = [sin a cos <i>' cos (X' - p) - cos a sin 4>']/cos <J> (5- 10a)

or

tan (X - X0) = cos <J>' sin (X' - p)/[sin a cos 4>' cos (X' - p) - cos a sin ] (5- 10b)

with equation (5- 10b) usually preferable to (5-10) and (5- 10a) for the same

reasons as those given for (5 -4b).

If a = 0, the formulas simplify considerably for the transverse or equatorial

aspects. It is then more convenient to have central meridian X0 coincide with the

equator of the basic projection rather than with its meridian p. This may be

accomplished by replacing (X - X0) with (X - Xo - 90°) and simplifying.

If p = 0, so that the true North Pole is placed at (X' = 0, 4>' = 0):

sin <i>' = -cos <J> sin (X - Xo) (5-11)

cos X' = sin 4>/U - cos2 4> sin2(X - X(,)]1 2 (5- 12)

or

tan X' = - cos (X - Xo)/tan 4> (5- 12a)

If p = 90°, placing the true North Pole at (X' = 90°, *' = 0):

sin <fr' = - cos 4> sin (X - Xo) (5-13)

cos X' = cos <J> cos (X - Xo)/[l - cos2 <i> sin" (X - X0)]12 (5-14)

or

tan X' = tan <J>/cos (X - Xo) (5- 14a)

The inverse equations (5-9) through (5- 10b) may be similarly altered.

As stated earlier, these formulas may be directly incorporated into the formu

las for the rectangular coordinates x and y of the basic map projection for a direct

computer or calculator output. If only one or two projections are involved in a

package, this may be more efficient. For such transformations of several projec

tions in one software package, it is often easier to calculate the transverse or

oblique projection coordinates by first calculating 4>' and X' for each point to be

plotted (using a general subroutine) and then calculating the rectangular coordi

nates by inserting <J>' and X' into the basic projection formulas. In still other cases,

a graphical method has been used.

While these formulas, or their equivalents, will be incorporated into the formu

las given later for individual oblique and transverse projections, the concept

should help interrelate the various aspects or types of centers of a given projec

tion. The extension of these concepts to the ellipsoid is much more involved tech

nically and in some cases requires approximation. General discussion of this is

omitted here.
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS

Because of the hundreds of map projections already published and infinite num

ber which are theoretically possible, considerable attention has been given to

classification of projections so that the user is not overwhelmed by the numbers

and the variety. Generally, the proposed systems classify projections on the basis

of property (equal-area, conformal, equidistant, azimuthal, and so forth), type

of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee (1944)

proposed a combination:

Conical projections

Cylindric

Pseudocylindric

Conic

Pseudoconic

Polyconic

Azimuthal

Perspective

Nonperspective

Nonconical projections

Retroazimuthal (not discussed here)

Orthoapsidal (not discussed here)

Miscellaneous

Each of these categories was further subdivided into conformal, authalic (equal-

area), and aphylactic (neither conformal nor authalic), but some subdivisions have

no examples. This classification is partially used in this book, as the section head

ings indicate, but the headings are influenced by the number of projections

described in each category: Pseudocylindrical projections are included with the

"miscellaneous" group, and "space map projections" are given a separate section.

Interest has been shown in some other forms of classification which are more

suitable for extensive treatises. In 1962, Waldo R. Tobler provided a simple but

all-inclusive proposal (Tobler, 1962). Tobler's classification involves eight cate

gories, four for rectangular and four for polar coordinates. For the rectangular

coordinates, category A includes all projections in which both x and y vary with

both latitude 4> and longitude X, category B includes all in which y varies with

both <J> and X while x is only a function of X, C includes those projections in which

x varies with both <i> and X while y varies only with 4>, and D is for those in which

x is only a function of X and y only of <i>. There are very few published projections

in category B, but C is usually called pseudocylindrical, D is cylindrical, and A

includes nearly all the rest which do not fit the polar coordinate categories.

Tobler's categories A to D for polar coordinates are respectively the same as

those for rectangular, except that radius p is read for y and angle 6 is read for x.

The regular conic and azimuthal projections fall into category D, and the pseudo-

conical (such as Bonne's) into C. Category A may have a few projections like A

(rectangular) for which polar coordinates are more convenient than rectangular.

There are no well-known projections in B (polar).

Hans Maurer's detailed map projection treatise of 1935 introduced a "Linnaean"

classification with five families ("true-circular," "straight-symmetrical," "curved-

symmetrical," "less regular," and "combination grids," to quote a translation)

subdivided into branches, subbranches, classes, groups, and orders (Maurer,

1935). As Maling says, Maurer's system "is only useful to the advanced student

of the subject," but Maurer attempts for map projections what Linnaeus, the

Swedish botanist, accomplished for plants and animals in the 18th century (Maling,

1973, p. 98). Other approaches have been taken by Goussinsky (1951) and Starostin

(1981).
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SUGGESTED PROJECTIONS

Following is a simplified listing of suggested projections. The recommendation

can be directly applied in many cases, but other parameters such as the central

meridian and parallel or the standard parallels must also be determined. These

additional parameters are often chosen by estimation, but they can be chosen by

more refined methods to reduce distortion (Snyder, 1985a, p. 93-109). In other

cases a more complicated projection may be chosen because of special features

in the extent of the region being mapped; the GS50 projection (50-State map)

described in this book is an example. Some commonly used projections are not

listed in this summary because it is felt that other projections are more suitable

for the applications listed, which are not all-inclusive. Some of the projections

listed here are not discussed elsewhere in this book.

Region mapped

1. World (Earth should be treated as a sphere)

A. Conformal (gross area distortion)

(1) Constant scale along Equator

Mercator

(2) Constant scale along meridian

Transverse Mercator

(3) Constant scale along oblique great circle

Oblique Mercator

(4) Entire Earth shown

Lagrange

August

Eisenlohr

B. Equal-Area

(1) Standard without interruption

Hammer

Mollweide

Eckert IV or VI

McBryde or McBryde-Thomas variations

Boggs Eumorphic

Sinusoidal

misc. pseudocylindricals

(2) Interrupted for land or ocean

any of above except Hammer

Goode Homolosine

(3) Oblique aspect to group continents

Briesemeister

Oblique Mollweide

C. Equidistant

(1) Centered on pole

Polar Azimuthal Equidistant

(2) Centered on a city

Oblique Azimuthal Equidistant

D. Straight rhumb lines

Mercator

E. Compromise distortion

Miller Cylindrical

Robinson

2. Hemisphere (Earth should be treated as a sphere)

A. Conformal

Stereographic (any aspect)



6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS

B. Equal-Area

Lambert Azimuthal Equal-Area (any aspect)

C. Equidistant

Azimuthal Equidistant (any aspect)

D. Global look

Orthographic (any aspect)

3. Continent, ocean, or smaller region (Earth should be treated as a sphere for

larger continents and oceans and as an ellipsoid for smaller regions, especially

at a larger scale)

A. Predominant east-west extent

(1) Along Equator

Conformal: Mercator

Equal-Area: Cylindrical Equal-Area

(2) Away from Equator

Conformal: Lambert Conformal Conic

Equal-Area: Albers Equal-Area Conic

B. Predominant north-south extent

Conformal: Transverse Mercator

Equal-Area: Transverse Cylindrical Equal-Area

C. Predominant oblique extent (for example: North America, South America,

Atlantic Ocean)

Conformal: Oblique Mercator

Equal-Area: Oblique Cylindrical Equal-Area

D. Equal extent in all directions (for example: Europe, Africa, Asia, Australia,

Antarctica, Pacific Ocean, Indian Ocean, Arctic Ocean, Antarctic Ocean)

(1) Center at pole

Conformal: Polar Stereographic

Equal-Area: Polar Lambert Azimuthal Equal-Area

(2) Center along Equator

Conformal: Equatorial Stereographic

Equal-Area: Equatorial Lambert

Azimuthal Equal-Area

(3) Center away from pole or Equator

Conformal: Oblique Stereographic

Equal-Area: Oblique Lambert

Azimuthal Equal-Area

E. Straight rhumb lines (principally for oceans)

Mercator

F. Straight great-circle routes

Gnomonic (for less than hemisphere)

G. Correct scale along meridians

(1) Center at pole

Polar Azimuthal Equidistant

(2) Center along Equator

Plate Carree (Equidistant Cylindrical)

(3) Center away from pole or Equator

Equidistant Conic
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CYLINDRICAL MAP PROJECTIONS

The map projection best known by name is certainly the Mercator—one of the

cylindricals. Perhaps easiest to draw, if simple tables are on hand, the regular

cylindrical projections consist of meridians which are equidistant parallel straight

lines, crossed at right angles by straight parallel lines of latitude, generally not

equidistant. Geometrically, cylindrical projections can be partially developed by

unrolling a cylinder which has been wrapped around a globe representing the

Earth, touching at the Equator, and on which meridians have been projected

from the center of the globe (fig. 1). The latitudes can also be perspectively pro

jected onto the cylinder for some projections (such as the Cylindrical Equal-Area

and the Gall), but not on the Mercator and several others. When the cylinder is

wrapped around the globe in a different direction, so that it is no longer tangent

along the Equator, an oblique or transverse projection results, and neither the

meridians nor the parallels will generally be straight lines.
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7. MERCATOR PROJECTION

SUMMARY

• Cylindrical.

• Conformal.

• Meridians are equally spaced straight lines.

• Parallels are unequally spaced straight lines, closest near the Equator, cutting

meridians at right angles.

• Scale is true along the Equator, or along two parallels equidistant from the

Equator.

• Loxodromes (rhumb lines) are straight lines.

• Not perspective.

• Poles are at infinity; great distortion of area in polar regions.

• Used for navigation.

• Presented by Mercator in 1569.

HISTORY

The well-known Mercator projection was perhaps the first projection to be

regularly identified when atlases of over a century ago gradually began to name

projections used, a practice now fairly commonplace. While the projection was

apparently used by Erhard Etzlaub (1462-1532) of Nuremberg on a small map

on the cover of some sundials constructed in 1511 and 1513, the principle remained

obscure until Gerardus Mercator (1512-94) (fig. 7) independently developed it

and presented it in 1569 on a large world map of 21 sections totaling about 1.3 by

2 m (Keuning, 1955, p. 17-18).

Mercator, born at Rupelmonde in Flanders, was probably originally named

Gerhard Cremer (or Kremer), but he always used the latinized form. To his

contemporaries and to later scholars, he is better known for his skills in map and

globe making, for being the first to use the term "atlas" to describe a collection

of maps in a volume, for his calligraphy, and for first naming North America as

such on a map in 1538. To the world at large, his name is identified chiefly with

his projection, which he specifically developed to aid navigation. His 1569 map is

entitled "Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate

Accommodata (A new and enlarged description of the Earth with corrections for

use in navigation)." He described in Latin the nature of the projection in a large

panel covering much of his portrayal of North America:

* * * In this mapping of the world we have [desired] to spread out the surface of the globe into a

plane that the places shall everywhere be properly located, not only with respect to their true direc

tion and distance, one from another, but also in accordance with their due longitude and latitude; and

further, that the shape of the lands, as they appear on the globe, shall be preserved as far as possible.

For this there was needed a new arrangement and placing of meridians, so that they shall become

parallels, for the maps hitherto produced by geographers are, on account of the curving and the bend

ing of the meridians, unsuitable for navigation * * *. Taking all this into consideration, we have some

what increased the degrees of latitude toward each pole, in proportion to the increase of the parallels

beyond the ratio they really have to the equator. (Fite and Freeman, 1926, p. 77-78.)

Mercator probably determined the spacing graphically, since tables of secants

had not been invented. Edward Wright (ca. 1558-1615) of England later devel

oped the mathematics of the projection and in 1599 published tables of cumulative

secants, thereby indicating the spacing from the Equator (Keuning, 1955, p. 18).

FEATURES AND USAGE

The meridians of longitude of the Mercator projection are vertical parallel

equally spaced lines, cut at right angles by horizontal straight parallels which are
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_

Figure 7.—Gerardus Mercator (1512-94). The inventor of the most famous map projection, which is

the prototype for conformal mapping.

increasingly spaced toward each pole so that conformality exists (fig. 8). The

spacing of parallels at a given latitude on the sphere is proportional to the secant

of the latitude.

The major navigational feature of the projection is found in the fact that a

sailing route between two points is shown as a straight line, if the direction or

azimuth of the ship remains constant with respect to north. This kind of route is

called a loxodrome or rhumb line and is usually longer than the great circle path

(which is the shortest possible route on the sphere). It is the same length as a

great circle only if it follows the Equator or a meridian. The projection has been

standard since 1910 for nautical charts prepared by the former U.S. Coast and

Geodetic Survey (now National Ocean Service) (Shalowitz, 1964, p. 302).

The great distortion of area on the Mercator projection of the Earth leads to

mistaken concepts when it is the chief basis of world maps seen by students in



_

FIGURE8.—TheMercatorprojection.Thebest-knownprojection.Alllocalangle8are8howncorrectly;therefore,8mall8hape8aree88entiallytrue,andit i8calledconformal.Sincerhumbline8are8hown8traightonthi8projection,iti8veryu8efulinnavigation.Iti8commonlyu8edto8howequatorial

region8oftheEarthandotherbodie8.
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school. The classic comparison of areas is between Greenland and South America.

Greenland appears larger, although it is only one-eighth the size of South America.

Furthermore, the North and South Poles cannot be shown, since they are at

infinite distance from other parallels on the projection, giving a student an impres

sion they are inaccessible (which of course they seemed to explorers long after the

time of Mercator). The last 50 years have seen an increased emphasis on the use

of other projections for world maps in published atlases.

Nevertheless, the Mercator projection is fundamental in the development of

map projections, especially those which are conformal. It remains a standard

navigational tool. It is also especially suitable for conformal maps of equatorial

regions. The USGS has recently used it as an inset of the Hawaiian Islands on the

l:500,000-scale base map of Hawaii, for a Bathymetric Map of the Northeast

Equatorial Pacific Ocean (although the projection is not stated) and for a Tectonic

Map of the Indonesia region, the latter two both in 1978 and at a scale of

1:5,000,000.

The first detailed map of an entire planet other than the Earth was issued in

1972 at a scale of 1:25,000,000 by the USGS Center of Astrogeology, Flagstaff,

Arizona, following imaging of Mars by Mariner 9. Maps of Mars at other scales

have followed. The mapping of the planet Mercury followed the flybys of Mariner

10 in 1974. Beginning in the late 1960's, geology of the visible side of the Moon

was mapped by the USGS in quadrangle fashion at a scale of 1:1,000,000. The four

Galilean satellites of Jupiter and several satellites of Saturn were mapped follow

ing the Voyager missions of 1979-81. For all these bodies, the Mercator projec

tion has been used to map equatorial portions, but coverage extended in some

early cases to lats. 65° N. and S. (table 6).

The cloudy atmosphere of Venus, circled by the Pioneer Venus Orbiter begin

ning in late 1978, is delaying more precise mapping of that planet, but the Merca

tor projection alone was used to show altitudes based on radar reflectivity over

about 93 percent of the surface.

FORMULAS FOR THE SPHERE

There is no suitable geometrical construction of the Mercator projection. For

the sphere, the formulas for rectangular coordinates are as follows:

x = R(k-k0) (7-1)

y = R In tan (ir/4 + 4>/2) (7-2)

or

y = (R/2) [In ((1 + sin <J>)/( 1 - sin <J>))] (7 -2a)

where R is the radius of the sphere at the scale of the map as drawn, and <J> and X

are given in radians. There are also several other forms in which equation (7-2)

may be written, such as y = R arcsinh (tan <J>) = R arctanh (sin <J>) = R In (tan

<J> + sec 4>). The X axis lies along the Equator, x increasing easterly. The Y axis

lies along the central meridian X0, y increasing northerly. If (X - X0) lies outside

the range ± 180°, 360° should be added or subtracted so it will fall inside the

range. To use <i> and X in degrees,

x = tt R (k°-k0°)/l80° (7- la)

y = R In tan (45° + <J>72) (7 -2b)

Note that if <J> is ± tt/2 or ± 90°, y is infinite. For scale factors, application of

equations (4-2), (4-3), and (4-9) to (7-1) and (7-2) or (7-2a) gives results

consistent with the conformal feature of the Mercator projection:
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TABLE 6.—Map projections used for extraterrestrial mapping

[From Bataon, private commun.. 1985]

Map format

(see below)2

Map format

(see below)2Body' Scale Body' Scale

Moon 1:5,000,000 F Galilean satellites of Jupiter

1:2,000,000 K

1:1,000,000 K Io > 25,000,000 A-l1

Mercury 1:15,000,000 A-1 Europa ) 1 15,000,000 A-l

1:5,000,000 E-1 1 5,000,000 F

Venus 1:50,000,000 A-1 1 2,000,000 K

1:25,000,000 B-1 Ganymede I 1 25,000,000 A-l

1:15,000,000 C Callisto I 1 15,000,000 B-1

1:5,000,000 G 1 5,000,000 E-2

Mars 1:25,000,000 A-2 1 2,000,000 J

1:15,000,000 B-2

1:5,000,000 D Satellites of Saturn

1:2,000,000 H

1:500,000 L Mimas ) 1:2,000,000 A-1

Enceladus /

Satellite of Uranus Miranda F

Ariel 1:10,000,000 A-l Tethys > 1 10,000,000 A-1

1:5,000,000 B-1 Dione f 1 5,000,000 A-1

Rhea 1 10,000,000 A-1

Satellite of Neptune 1 5,000,000 B-1

Triton (see Ganymede) Iapetus 1 10,000,000 A-1

Table 6.—Map projections usedfor extraterrestrial mapping - Continued

Matching parallel Quadrangle size Std. Parallels

Map format2 Lat. range Projection8 Scale Factor at Lat. N4S3 Scale factor at Lat. NftS Long. x Lat. Lat., Lat.

A-1 57°S-57°N6 MER 1.0000 0° 1.7883 56° 360° 114°°

55° to pole PS 1.6354 90 1.7883 56 360 35

A-2* 57°S-57°N6 MER 1.0000 0 1.9922 60 360
1146

55° to pole PS 1.8589 90 1.9922 60 360 35

B-1 57°s-57°n MER 1.0000 0 1.7883 66 180 114

55° to pole PS 1.6354 90 1.7883 56 360 35

B-2< 57°S-57°N MER 1.0000 0 1.7819 56 180 114

55°' to pole PS 1.6298 90 1.7819 56 360 35

C 57°S-57°N MER 1.0000 0 1.7883 56 120 57

55° to pole PS 1.6354 90 1.7883 56 86(1 35

D4 30°S-30°N MER 1.0000 0 1.1532 30 45 30

30°-65°N&S LCC 1.1259 SP 1.1532 30 60 35 35.83°, 59.17°

1.1611 65

65° to pole PS 1.1067 90 1.1611 66 360 25

E-l 22°S-22°N7 MER 1.0000 0 1.0824 22.5 72 44'

21°-66°N&S8 LCC 1.0494 SP 1.0824 22.5 90 45° 28°, 62°

1.0946 67.5

65° to pole PS 1.0529 90 1.0946 67.5 360 25

E-2 22°S-22°N MER 1.0000 13 1.0461 21.34 72 44

21°-66°N&S LCC 1.0000 SP 1.0461

1.0484

21.34

65.19

90 45 30°, 58°

65° to pole PS 1.0000 90 1.0484 65.19 360 25

F 50°S-50°N MER 1.0000 34.06 1.1716 45 180 100

45° to pole PS 1.0000 90 1.1716 45 360 45

G 25°S-25°N MER 1.0000 15.90 1.0612 25 40 25

25°-75°N&S LCC 1.0000 SP 1.0612 25 30 25 34°, 73°

(below 50° lat.)

1.0179 75 60 25

(above 50° lat.)
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Table 6.—Map projections used for extraterrestrial mapping—Continued

Matching parallel Quadrangle size Std. Parallel!
Map format2 Lat. range Projection Scale Factor at Lat. N&S Scale factor at Lat. N&S Long, x Lat. Lat., Lat.

75° to pole PS 1.0000 90 1.0179 75 360 15

H< 30°S-30°N MER 1.0000 27.476 1.0243 30 22.5 15

30°-65°N&S LCC 1.0000 SP 1.0243 30

1.0313 65

22.5 17.5

(below 47.5° lat.)

35.83°, 59.17°

30 17.5

(above 47.5° lat.)

65° to pole PS 0.9830 90 1.0313 65 45 12.5

(below 77.5° lat.)

180 12.5

(above 77.5° lat.)

J 22°S-22°N MER 1.0000 13 1.0461 21.34 36 22

21°-66°N&S LCC 1.0000 SP 1.0461 21.34

1.0484 65.19

30 22.5

(below 43.5° lat.)

30°, 58°

45 22.5

(above 43.5° lat.)

65° to pole PS 1.0000 90 1.0484 65.19 90 17.5

(below 82.5° lat.)

360 7.5

(above 82.5° lat.)

K 16°S-16°N MER 1.0000 11.012 1.0211 16
40 329

16°-48°N&S LCC 1.0000 SP 1.0211 16 45 32 21.33°, 42.67°

48°-80°N&S LCC 1.0000 SP none 72 32 53.33°, 74.67°

80° to pole PS 1.0000 90 none 360 10

82.5°S-82.5°N TM'0 0.9960 CM none 5 5

(below 47.5° lat.)

6.67 5

(above 47.5° lat.)

82.5° to pole PS 1.0000 87.5 none 40 5

■

(below 87.5° lat.)

360 2.5

(above 87.5° lat.)

Notes: ' Taken as sphere, except for Mars ,ellipsoid, eccentricity = 0.101929).

Orthographic projection used for irregular satellites of Mars (Phobos and Deimos), of Jupiter , Amalthea), and Saturn (Hyperion).

Lambert Azimuthal Equal.Area projection used in polar and equatorial aspects for full hemispheres of several planets and satellites.

Oblique Stereographic projection used for basins and other regions of Mars, Moon, etc.

2 Official format designations use only the letter. Numbers have been added for convenience in this table.

3 Abbreviations: MER = Mercator, PS 80Polar Stereographic, LCC =Lambert Conformal Conic, TM = Transverse Mercator, SP= Standard Parallels.

4 Scale factors based on Mars ellipsoid.

5 Venus 1:50,000,000 originally 65°S. to 78°N. Mercator with no polar continuation.

6 Originally 65°S.-65°N., 130" lat. quad range.

7 Originally 25°S.-25°N., 50° lat. quad range.

8 Originally 20°-70°N.&S., 50° lat. quad range.
* For Moon 1:1,000,000, quads are 20° long, x 16° lat.

'0 Zones are 20° long, x 75° lat.
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h = k = sec <J> = 1/cos <J> (7-3)

w =0

Normally, for conformal projections, the use of h (the scale factor along a

meridian) is omitted, and k (the scale factor along a parallel) is used for the scale

factor in any direction. The areal scale factor for conformal projections is k2 or

sec2 <i> for the Mercator in spherical form.

The inverseformulas for the sphere, to obtain 4> and X from rectangular coordi

nates, are as follows:

<J> = tt/2 - 2 arctan (e-y'R) (7-4)

or

<J> =arctan[sinh(?//#)] (7-4a)

k = x/R + X0 (7-5)

Here e = 2.7182818 . . . , the base of natural logarithms, not eccentricity. These

and subsequent formulas are given only in radians, as stated earlier, unless the

degree symbol is used. Numerical examples (see p. 266) are given in degrees,

showing conversion.

FORMULAS FOR THE ELLIPSOID

For the ellipsoid, the corresponding equations for the Mercator are only a little

more involved (see p. 267 for numerical example):

x = a(X-X0) (7-6)

(1-e sin <J> \) (7-7)

1 + e sin <J> /

or

(r 1 + sin <J> \ / l - e sin <J> ^) ( )

1 - sin 4> I \ 1 + e sin <i>/ _ (7-7a)

where a is the equatorial radius of the ellipsoid, and e is its eccentricity. Compar

ing equation (3-7), it is seen that y = aiJ/. From equations (4-22) and (4-23), it

may be found that

h = k = (1-e2 sin2 <J>)' -/cos <i> (7-8)

and of course w = 0. The areal scale factor is k2. The derivation of these equations

is shown in Thomas (1952, p. 1, 2, 85- 90).

The X and Y axes are oriented as they are for the spherical formulas, and

(X - X0) should be similarly adjusted. Thomas also provides a series equivalent

to equation (7-7), slightly modified here for consistency:

y/a = In tan (W4 + <J>/2) - (e2 + e4/4 + e6/8 + . . .) sin <J>

+ (e4/12 + e6/16 + . . .) sin 3<J> - (e6/80 + . . .) sin 5<J> + . . . (7- 7b)

The inverse formulas for the ellipsoid require rapidly converging iteration, if

the closed forms of the equations for finding <J> are used:

4> = tt/2-2 arctan \t[(l-e sin <J,)/(1 +e sin 4>)Y*\ (7-9)

where

t = e-»" (7-10)
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Table 7.—Mercator projection: Rectangular coordinates

Latitude

(*)

Sphere Clarke 1866 ellipsoid (a= 1)

y k y k

90° Infinite Infinite Infinite Infinite

85 _ _ 3.13130 11.47371 3.12454 11.43511

80 2.43625 5.75877 2.42957 5.73984

75 2.02759 3.86370 2.02104 3.85148

70 1.73542 2.92380 1.72904 2.91505

65 1.50645 2.36620 1.50031 2.35961

60 1.31696 2.00000 1.31109 1.99492

55 1.15423 1.74345 1.14868 1.73948

50 1.01068 1.55572 1.00549 1.55263

45 .88137 1.41421 .87658 1.41182

40 .76291 1.30541 .75855 1.30358

35 .65284 1.22077 .64895 1.21941

30 .54931 1.15470 .54592 1.15372

25 .45088 1.10338 .44801 1.10271

20 .35638 1.06418 .35406 1.06376

15 .26484 1.03528 .26309 1.03504

10 .17543 1.01543 .17425 1.01532

5 .08738 1.00382 .08679 1.00379

0 .00000 1.00000 .00000 1.00000

X 0.017453 (X- Xo) 0.017453 (X--Xo)

Note: x, y = rectangular coordinates.

4, = geodetic latitude.

(X-X(,) = geodetic longitude, measured east from origin in degrees.

k = scale factor, relative to scale at Equator.

R = radius of sphere at scale of map.

a = equatorial radius of ellipsoid at scale of map.

If latitude is negative (south), reverse sign of y.

e is the base of natural logarithms, 2.71828 . . . ,

and the first trial 4> = tt/2-2 arctan t (7-11)

Inserting the first trial <J> in the right side of equation (7-9), <J> on the left side is

calculated. This becomes the new trial 4>, which is used on the right side. The

process is repeated until the change in 4> is less than a chosen convergence factor

depending on the accuracy desired. This <J> is then the final value. For X,

X = x/a + X0 (7-12)

The scale factor is calculated from equation (7-8), using the calculated <J>.

To avoid the iteration, the series (3-5) may be used with (7-13) in place of

(7-9):

<J> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + . . .) sin 2\ + (7e4/48 + 29e'V240 +

811e8/11520 + . . .) sin 4x + (7e6/120 + 81^/1120 + . . .) sin 6x +

(4279^/161280 + . . .) sin 8x + . . . (3-5)

where

X = tt/2-2 arctan t (7-13)

For improved computational efficiency using the series, see p. 19.

Rectangular coordinates for each 5° of latitude are given in table 7, for both the

sphere and the Clarke 1866 ellipsoid, assuming R and a are both 1.0. It should be
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noted that A: for the sphere applies only to the sphere. The spherical projection is

not conformal with respect to the ellipsoidal Earth, although the variation is

negligible for a map with an equatorial scale of 1:15,000,000 or smaller. It should

be noted that any central meridian can be chosen as X0 for an existing Mercator

map, if forward or inverse formulas are to be used for conversions.

MEASUREMENT OF RHUMB LINES

Since a major feature of the Mercator projection is the straight portrayal of

rhumb lines, formulas are given below to determine their true lengths and

azimuths. If a straight line on the map connects two points with respective lati

tudes and longitudes (<J>i, X!) and (<J>2, X2), the respective rectangular coordinates

(xu yi) and (x2. i/2) are calculated using equations (7-1) and (7-2) for the sphere

or (7-6) and (7-7) for the ellipsoid, inserting the respective subscripts.

For the true (not magnetic) compass bearing or azimuth Az clockwise from

north along the rhumb line,

Az = arctan [(x2-xx)Ky2-yx)] (7-14)

Transposing and using forward and inverse equations for the Mercator, latitude

or longitude along the rhumb line may be found for a given longitude or latitude,

respectively, knowing the initial point and the azimuth. For example,

li2 = 2/1 + (x2 - x^/tan Az (7-15)

in which (.ri, yO are calculated for (<J>i, Xi) from (7-6) and (7-7), x2 is calculated

from X2 from (7-6), and <J>2 is calculated from y2 using (7-9) and (7-10).

For the true distance s along the rhumb line from <i>x to <J>2,

s = (A/2-M,)/cos Az (7-16)

where M., and Mu the distances from the Equator along the meridian, are found

for <J>2 and <J>i, respectively, using equation (3-21) and the same subscripts on M

and <J>:

M = a[(1-e2/4-3e4/64-5e6/256- . . .) 4>- (3c2/8 + 3e4/32

+ 45e'V1024 + . . .) sin 24> + (15e4/256 + 45e6/1024 + . . .)

sin 4<J> - (35e6/3072 + . . .) sin 6<J> + . . .] (3-21)

but if <I> i = <J>2, equation (7-16) is indeterminate and

s = a(X2-Xi) cos <J>/(1-e2sin2d>)^ (7-17)

For the true distance s from initial latitude <i>x to latitude <i>, equation (7-16)

may be used with M instead of M2. To find (<J>,X) corresponding to a given distance

s from (<J>i, X,) along the rhumb line, (7-16) may be inverted to give:

M = s cos Az + A/, (7-18)

If Az = 90° or 270°, <J> = 4>l and equation (7-20) is indeterminate, but X may be

found by transposing (7-17), using negative s for Az = 270°.
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M may be converted to <J> using (3-26),

4> = m. + (3e!/2-27e!3/32 + . . .) sin 2jjl + (21e,2/16-55ei4/32 + . . .)

sin 4)x + (151ei3/96- . . .) sin 6p. + (1097ei4/512- , . .)an8|i + ...

(3-26)

where

e, = [1-(1-e2)*]/[1 + (1-e2)^] (3-24)

and, in a rearrangement of (3-20) and (3-21),

ix. = M/[a (1-ez/4-3e4/64-5e8/256- . . .)] (7-19)

Then for longitude X, rearranging (7-6), (7-7), and (7-14),

k = kx + tan Az J In
(l-e sin fy'V®

1 + e sin <J>/

tan(ir/4 + <J>/2) ( x * y ] -j/^of (7-20)

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL

The above formulas are based on making the Equator of the Earth true to scale

on the map. Thus, the Equator may be called the standard parallel. It is also

possible to have, instead, another parallel (actually two) as standard, with true

scale. For the Mercator, the map will look exactly the same; only the scale will be

different. If latitude <J>i is made standard (the opposite latitude -<J>i is also

standard), the above forward formulas are adapted by multiplying the right side

of equations (7-1) through (7-3) for the sphere, including the alternate forms,

by cos <J>i. For the ellipsoid, the right sides of equations (7-6), (7-7), (7-8), and

(7-7a) are multiplied by cos ^/(1-e2 sin2 <J>i)1/2. For inverse equations, divide x

and y by the same values before use in equations (7-4) and (7-5) or (7-10) and

(7-12). Such a projection is most commonly used for a navigational map of part

of an ocean, such as the North Atlantic Ocean, but the USGS has used it for

equatorial quadrangles of some extraterrestrial bodies as described in table 6.
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8. TRANSVERSE MERCATOR PROJECTION

SUMMARY

• Cylindrical (transverse).

• Conformal.

• Central meridian, each meridian 90° from central meridian, and Equator are

straight lines.

• Other meridians and parallels are complex curves.

• Scale is true along central meridian, or along two straight lines equidistant

from and parallel to central meridian. (These lines are only approximately

straight for the ellipsoid.)

• Scale becomes infinite on sphere 90° from central meridian.

• Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000.

• Presented by Lambert in 1772.

Since the regular Mercator projection has little error close to the Equator (the

scale 10° away is only 1.5 percent larger than the scale at the Equator), it has been

found very useful in the transverse form, with the equator of the projection

rotated 90° to coincide with the desired central meridian. This is equivalent to

wrapping the cylinder around a sphere or ellipsoid representing the Earth so that

it touches the central meridian throughout its length, instead of following the

Equator of the Earth. The central meridian can then be made true to scale, no

matter how far north and south the map extends, and regions near it are mapped

with low distortion. Like the regular Mercator, the map is conformal.

The Transverse Mercator projection in its spherical form was invented by the

prolific Alsatian mathematician and cartographer Johann Heinrich Lambert

(1728-77) (fig. 9). It was the third of seven new projections which he described

in 1772 in his classic Beitrage (Lambert, 1772). At the same time, he also de

scribed what are now called the Cylindrical Equal-Area, the Lambert Conformal

Conic, and the Lambert Azimuthal Equal-Area, each of which will be discussed

subsequently; others are omitted here. He described the Transverse Mercator

as a conformal adaptation of the Sinusoidal projection, then commonly in use

(Lambert, 1772, p. 57-58). Lambert's derivation was followed with a table of

coordinates and a map of the Americas drawn according to the projection.

Little use has been made of the Transverse Mercator for single maps of

continental areas. While Lambert only indirectly discussed its ellipsoidal form,

mathematician Carl Friedrich Gauss (1777-1855) analyzed it further in 1822, and

L. Kriiger published studies in 1912 and 1919 providing formulas suitable for

calculation relative to the ellipsoid. It is, therefore, sometimes called the Gauss

Conformal or the Gauss-Rruger projection in Europe, but Transverse Mercator,

a term first applied by the French map projection compiler Germain, is the name

normally used in the United States (Thomas, 1952, p. 91-92; Germain, 1865?, p.

347).

Until recently, the Transverse Mercator projection was not precisely applied to

the ellipsoid for the entire Earth. Ellipsoidai formulas were limited to series for

relatively narrow bands. In 1945, E. H. Thompson (and in 1962, L. P. Lee)

presented exact or closed formulas permitting calculation of coordinates for the

full ellipsoid, although elliptic functions, and therefore lengthy series, numerical

integrations, and (or) iterations, are involved (Lee, 1976, p. 92-101; Snyder,

1979a, p. 73; Dozier, 1980).

The formulas for the complete ellipsoid are interesting academically, but they

are practical only within a band between 4° of longitude and some 10° to 15° of arc

distance on either side of the central meridian, because of the much more signifi

cant scale errors fundamental to any projection covering a larger area.

HISTORY

7
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FIGURE 9.—Johann Heinrieh Lambert (1728-77). Inventor of the Transverse Mercator, the Confor-

mal Conic, the Azimuthal Equal-Area, and other important projections, as well as outstanding

developments in mathematics, astronomy, and physics.

FEATURES

The meridians and parallels of the Transverse Mercator (fig. 10) are no longer

the straight lines they are on the regular Mercator, except for the Earth's Equator,

the central meridian, and each meridian 90° away from the central meridian.

Other meridians and parallels are complex curves.

The spherical form is conformal, as is the parent projection, and scale error is

only a function of the distance from the central meridian, just as it is only a

function of the distance from the Equator on the regular Mercator. The ellipsoidal

form is also exactly conformal, but its scale error is slightly affected by factors

other than the distance alone from the central meridian (Lee, 1976, p. 98).



_

Figure 10.—The Transverse Mercator projection. While the regular Mercator has constant scale along the Equator, the Transverse Mercator has

constant scale along any chosen central meridian. This projection is conformal and is often used to show regions with greater north-south

extent.



8. TRANSVERSE MERCATOR PROJECTION

The scale along the central meridian may be made true to scale, or deliberately

reduced to a slightly smaller constant scale so that the mean scale of the entire

map is more nearly correct. There are also forms of the ellipsoidal Transverse

Mercator on which the central meridian is not held at a constant scale, but these

forms are not used in practice (Lee, 1976, p. 100-101). If the central meridian is

mapped at a reduced scale, two straight lines parallel to it and equally spaced

from it, one on either side, become true to scale on the sphere. These lines are not

perfectly straight on the ellipsoidal form.

With the scale along the central meridian remaining constant, the Transverse

Mercator is an excellent projection for lands extending predominantly north and

south.

USAGE

The Transverse Mercator projection (spherical or ellipsoidal) was not described

by Close and Clarke in their generally detailed article in the 1911 Encyclopaedia

Britannica because it was "seldom used" (Close and Clarke, 1911, p. 663). Deetz

and Adams (1934) favorably referred to it several times, but as a slightly used

projection.

The spherical form of the Transverse Mercator has been used by the USGS

only recently. In 1979, this projection was chosen for a base map of North Amer

ica at a scale of 1:5,000,000 to replace the Bipolar Oblique Conic Conformal

projection previously used for tectonic and other geologic maps. The scale factor

along the central meridian, long. 100° W., is reduced to 0.926. The radius of the

Earth is taken at 6,371,204 m, with approximately the same surface area as the

International ellipsoid, placing the two straight lines of true design scale 2,343 km

on each side of the central meridian.

While its use in the spherical form is limited, the ellipsoidal form of the Trans

verse Mercator is probably used more than any other one projection for geodetic

mapping.

In the United States, it is the projection used in the State Plane Coordinate

System (SPCS) for States with predominant north-south extent. (The Lambert

Conformal Conic is used for the others, except for the panhandle of Alaska, which

is prepared on the Oblique Mercator. Alaska, Florida, and New York use both the

Transverse Mercator and the Lambert Conformal Conic for different zones.)

Except for narrow States, such as Delaware, New Hampshire, and New Jersey,

all States using the Transverse Mercator are divided into two to eight zones, each

with its own central meridian, along which the scale is slightly reduced to balance

the scale throughout the map. Each zone is designed to maintain scale distortion

within 1 part in 10,000. Several States beginning in 1935 also passed legislation

establishing the SPCS as a permissible system for recording boundary descrip

tions or point locations. Several zone changes have occurred for use with the new

1983 datum. They are listed in Appendix C.

In addition to latitude and longitude as the basic frame of reference, the corre

sponding rectangular grid coordinates in feet are used to designate locations

(Mitchell and Simmons, 1945). The parameters for each State are given in table 8.

All are based on the Clarke 1866 ellipsoid. It is important to note that, for the

metric conversion to feet using this coordinate system, 1 m equals exactly 39.37

in., not the current standard accepted by the National Bureau of Standards in

1959, in which 1 in. equals exactly 2.54 cm. Surveyors continue to follow the

former conversion for consistency. The difference is only two parts in a million,

but it is enough to cause confusion, if it is not accounted for.

Beginning with the late 1950's, the Transverse Mercator projection was used

by the USGS for nearly all new quadrangles (maps normally bounded by meridi

ans and parallels) covering those States using the TM Plane Coordinates, but the
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Table 8.—U.S. State plane coordinate systems

[T indicates Transverse Mercator; L. Lambert Conformal Conic; H, Hotine Oblique Mercator. Modified slightly and updated from

Mitchell and Simmons, 1945, p. 45-471

Area Projection Zones

Alabama T 2

Alaska T 8

L 1

H 1

Arizona T 3

Arkansas L 2

California L 7

Colorado L 3

Connecticut L 1

Delaware T 1

Florida T 2

L 1

Georgia T 2

Hawaii T 5

Idaho T 3

Illinois T 2

Indiana T 2

Iowa L 2

Kansas L 2

Kentucky L 2

Louisiana L 3

Maine T 2

Maryland _ L 1

Massachusetts L 2

Michigan1

obsolete T 3

current L 3

Minnesota L 3

Mississippi T 2

Missouri T 3

Area Projection Zones

Montana L 3

Nebraska _ L 2

Nevada T 3

New Hampshire T 1

New Jersey T 1

New Mexico T 3

New York T 3

L 1

North Carolina L 1

North Dakota L 2

Ohio L 2

Oklahoma L 2

Oregon L 2

Pennsylvania L 2

Puerto Rico &

Virgin Islands __
L 2

Rhode Island T 1

Samoa L 1

South Carolina L 2

South Dakota L 2

Tennessee L 1

Texas L 5

Utah _ L 3

Vermont T 1

Virginia L 2

Washington L 2

West Virginia L 2

Wisconsin L 3

Wyoming T 4

Transverse Mercator projection

Zone Central meridian Scale reduction2 Origin3 (latitude)

Alabama

East 85 W. :25,0001 30°30' N.

West 87 30 1

Alaska4

:15,000 30 00

2 142 00 1 10,000 54 00

3 146 00 1 10,000 54 00

4 _ 150 00 1 10,000 54 00

5 _ 154 00 1 10,000 54 00

6 158 00 1 10,000 54 00

7 162 00 1 10,000 54 00

8 166 00 1 10,000 54 00

9 _ 170 00 1 10,000 54 00

Arizona

East 110 10 1 10,000 31 00

Central 111 55 1 10,000 31 00

West 113 45 1 15,000 31 00

Delaware 75 25 1

Florida4

200,000 38 00

East 81 00 1 17,000 24 20

West__ 82 00 1 17,000 24 20



8. TRANSVERSE MERCATOR PROJECTION

Table 8.—U.S. State plane coordinate systems—Continued

Transverse Mercator projection -Continued

Zone Central meridian Scale reduction2 Origin* (latitude)

Georgia

East 82° Iff W. 1:10,000
30°W N.

West 84 10 1:10,000 30 00

Hawaii

1 7 155 30 1:30,000 18 50

2 156 40 1:30,000 20 20

3 158 00 1:100,000 21 10

159 30 1:100,000 21 50

5 ' 160 10 0 21 40

Idaho

East 112 10 1:19,000 41 4ff

Central 114 00 1:19,000 41 40

West V-5 45 1:15,000 41 40

Illinois

EasL 88 20 1:40,000 36 40

West 90 10 1:17,000 36 40

Indiana

East 85 40 1:30,000 37 30

West 87 05 1:30,000 37 30

Maine

East 68 30 1:10,000 43 50

West 70 10 1:30,000 42 50

Michigan (old)4

East 83 40 1:17,500 41 30

Central 85 45 1:11,000 41 30

West 88 45 1:11,000 41 30

Mississippi

East 88 50 1:25,000 29 40

West 90 20 1:17,000 30 30

Missouri

East 90 30 1:15,000 35 50

Central 92 30 1:15,000 35 50

West 94 30 1:17,000 36 10

Nevada

East 115 35 1:10,000 34 45

Central 116 40 1:10,000 34 45

West 118 35 1:10,000 34 45

New Hampshire 7 71 40 1:30,000 42 30

New Jersey 74 40 1:40,000 38 50

New Mexico

East 104 20 1:11,000 31 00

Central 106 15 1:10,000 31 00

West 107 50 1:12,000 31 00

New York4

East 74 20 1:30,000 40 00

Central 76 35 1:16,000 40 00

West 78 35 1:16,000 40 00

Rhode Island 71 30 1:160,000 41 05

Vermont 72 30 1:28,000 42 30
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Table 8.— U.S. State plane coordinate systems—Continued

Transverse Mercator projection - Continued

Zone Central meridian Scale reduction2 Origin3 (latitude)

Wyoming

East

East Central

West Central

West

105° 10" W.

107 20

108 45

110 05

1:17,000

1:17,000

1:17,000

1:17,000

40°40' N.

40 40

40 40

40 40

Lambert Conformal Conic projection

Zone Standard parallels : K

Long. Lat.

Alaska4

10 N. 53°5V N. 176°0<y W.5a
5l°W N.

Arkansas

North 34 56 36 14 92 00 34 20

South 33 18 34 46 92 00 32 40

California

I 40 00 41 40 122 00 39 20

II 38 20 39 50 122 00 37 40

III .. 37 04 38 26 120 30 36 30

IV 36 00 37 15 119 00 35 20

V 34 02 35 28 118 00 33 30

VI 32 47 33 53 116 15 32 10

VII 33 52 34 25 118 20 34 085b

Colorado

North 39 43 40 47 105 30 39 20

Central 38 27 39 45 105 30 37 50

South 37 14 38 26 105 30 36 40

Connecticut 41 12 41 52 72 45 40 50M

Florida'

North 29 35 30 45 84 30 29 00

Iowa

North 42 04 43 16 93 30 41 30

South 40 37 41 47 93 30 40 00

Kansas

North 38 43 39 47 98 00 38 20

South 37 16 38 34 98 30 36 40

Kentucky

North 37 58 38 58 84 15 37 30

South 36 44 37 56 85 45 36 20

Louisiana

North 31 10 32 40 92 30 30 40

South 29 18 30 42 91 20 28 40

Offshore 26 10 27 50 91 20 25 40

Maryland 38 18 39 27 77 00 37 50^

Massachusetts

Mainland 41 43 42 41 71 30
41 005d

Island 7 . 41 17 41 29 70 30
41 0056
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Table 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection -Continued

Zone Standard parallels

Origin6

Long. Lat.

Michigan (current)4

North

Central

South

Minnesota

North

Central

South

Montana

North

Central

South

Nebraska

North

South

New York4

Long Island

North Carolina

North Dakota

North

South

Ohio

North

South

Oklahoma

North

South

Oregon

North

South

Pennsylvania

North

South

Puerto Rico and

Virgin Islands

1

2 (St. Croix)

Samoa

South Carolina

North

South

South Dakota

North

South

Tennessee

45°29' N. 47°05' N. 87°00' W. 44° 47' N.

44 11 45 42 84 20 43 19

42 06 43 40 84 20 41 30

47 02 48 38 93 06 46 30

45 37 47 03 94 15 45 00

43 47 45 13 94 00 43 00

47 51 48 43 109 30 47 00

46 27 47 53 109 30 45 50

44 52 46 24 109 30 44 00

41 51 42 49 100 00 41 20

40 17 41 43 99 30 39 40

40 40 41 02 74 00 40
305f

34 20 36 10 79 00 33 45

47 26 48 44 100 30 47 00

46 11 47 29 100 30 45 40

40 26 41 42 82 30 39 40

38 44 40 02 82 30 38 00

35 34 36 46 98 00 35 00

33 56 35 14 98 00 33 20

44 20 46 00 120 30 43 40

42 20 44 00 120 30 41 40

40 53 41 57 77 45 40 10

39 56 40 58 77 45 39 20

18 02 18 26 66 26 17
505*

18 02 18 26 66 26 17
505f. «

14° 16' S. (single)
170 005h

— —

33°46' N. 34 58 81 00 33 00

32 20 33 40 81 00 31 50

44 25 45 41 100 00 43 50

42 50 44 24 100 20 42 20

35 15 36 25 86 00 34
405f
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Table 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection -Continued

Hotine Oblique Mercator projection

Zone

Center of projection

Long. Lat.

Azimuth of

central line

Alaska4

1 133°4(y W.68 57°00' N. arctan ( - %)

Great Lakes (U.S. Lake Survey, not State plane coordinates)

1 (Erie, Ont.,

St. Lawrence R.)78 006b

2 (Huron) 82 30<*

3 (Michigan) 87 00M

4 (Superior, Lake

of the Woods)

88 50

00.256"**

44 00

43 00

44 00

47 12

21.554"

55°40'

350 37

15 00

285 41

42.593"

Zone Standard parallels
Origin6

Texas

Long. Lat.

North 34°39' N. 36° 11' N. m°w w. 34°00' N.

North central 32 08 33 58 97 30 31 40

Central 30 07 31 53 100 20 29 40

South central 28 23 30 17 99 00 27 50

South 7 26 10 27 50 98 30 25 40

Utah

North 40 43 41 47 111 30 40 20

Central 39 01 40 39 111 30 38 20

South 37 13 38 21 111 30 36 40

Virginia

North 38 02 39 12 78 30 37 40

South 7 7 36 46 37 58 78 30 36 20

Washington

North 47 30 48 44 120 50 47 00

South 45 50 47 20 120 30 45 20

West Virginia

North 39 00 40 15 79 30 38 30

South 37 29 38 53 81 00 37 00

Wisconsin

North 45 34 46 46 90 00 45 10

Central 44 15 45 30 90 00 43 50

South 42 44 44 04 90 00 42 00

Scale7

reduction

1:10,000

1:10,000

1:10,000

1:10,000

1:10,000

Note. -All these systems are based on the Clarke 1866 ellipsoid and are based on the 1927 datum. Origin refers to rectangular

coordinates. For systems based on 1983 datum, see Appendix C.

' The major and minor axes of the ellipsoid are taken at exactly 1.0000382 times those of the Clarke 1866. for Michigan only. This

incorporates an average elevation throughout the State of about 800 ft. with limited variation,

2 Along the central meridian.

3 At origin, x = 500,000 ft, y = 0 ft, except for Alaska zone 7, x = 700,000 ft; Alaska zone 9. x = 600.000 ft; and New Jersey, jt =

2.000.000 ft.

4 Additional zones listed in this table under other projection(s).

6 At origin, x = 2,000,000 ft, y = 0 ft, except (a) x = 3,000,000 ft, (b) x = 4,186,692.58, y = 4,160,926.74 ft, (c) x = 800,000 ft, (d) x =

600,000 ft, (e) x = 200,000 ft, (f) y = 100.000 ft, (g) x = 500,000 ft, (h) x = 500,000 ft, y = 0. but radius to lat. of origin = -82,000,000 ft.

6 At center, (a) x = 5,000.000 meters, y = -5.000,000 m; (b) x = -3,950.000 m. y = -3.430.000 m; (c) x = 1,200.000 m, y = -3,500.000

m; (d) x = -1,000,000 m, y = -4,300,000 m; (e) x = 9.000,000 m, y = - 1,600,000 m (Berry and Bormanis, 1970).

7 At central point.
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central meridian and scale factor are those of the SPCS zone. Thus, all quadran

gles for a given zone may be mosaicked exactly. Beginning in 1977, many USGS

maps have been produced on the Universal Transverse Mercator projection (see

below). Prior to the late 1950's, the Polyconic projection was used. The change in

projection was facilitated by the use of high-precision rectangular-coordinate plot

ting machines. Some maps produced on the Transverse Mercator projection sys

tem during this transition period are identified as being prepared according to the

Polyconic projection. Since most quadrangles cover only 7V2 minutes (at a scale of

1:24,000) or 15 minutes (at 1:62,500) of latitude and longitude, the difference

between the Polyconic and the Transverse Mercator for such a small area is much

more significant due to the change of central meridian than due to the change of

projection. The difference is still slight and is detailed later under the discussion

of the Polyconic projection. The Transverse Mercator is used in many other

countries for official topographic mapping as well. The Ordnance Survey of Great

Britain began switching from a Transverse Equidistant Cylindrical (the Cassini-

Soldner) to the Transverse Mercator about 1920.

The use of the Transverse Mercator for quadrangle maps has been recently

extended by the USGS to include the planet Mars. Although other projections are

used at smaller scales, quadrangles at scales of 1:1,000,000 and 1:250,000, and

covering areas from 200 to 800 km on a side, were drawn to the ellipsoidal

Transverse Mercator between lats. 65°N. and S. The scale factor along the cen

tral meridian was made 1.0. For the current series, see table 6.

In addition to its own series of larger-scale quadrangle maps, the Army Map

Service used the Transverse Mercator for two other major mapping operations:

(1) a series of 1:250,000-scale quadrangle maps covering the entire country, and

(2) as the geometric basis for the Universal Transverse Mercator (UTM) grid.

The entire area of the United States has been mapped since the 1940's in

sections 2° of longitude (between even-numbered meridians, but in 3° sections in

Alaska) by 1° of latitude (between each full degree) at a scale of 1:250,000, with the

UTM grid superimposed and with some variations in map boundaries at coastlines.

These maps were drawn with reference to their own central meridians, not the

central meridians of the UTM zones (see below), although the 0.9996 central scale

factor was employed. The central meridian of about one-third of the maps coin

cides with the central meridian of the zone, but it does not for about two-thirds,

the "wing" sheets, which therefore do not perfectly match the center sheets. The

USGS has assumed publication and revision of this series and is casting new maps

using the correct central meridians.

Transverse Mercator quadrangle maps fit continuously in a north-south direction,

provided they are prepared at the same scale, with the same central meridian,

and for the same ellipsoid. They do not fit exactly from east to west, if they have

their own central meridians; although quadrangles and other maps properly con

structed at the same scale, using the SPCS or UTM projection, fit in all directions

within the same zone.

UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator (UTM) projection and grid were adopted

by the U.S. Army in 1947 for designating rectangular coordinates on large-scale

military maps of the entire world. The UTM is the ellipsoidal Transverse Merca

tor to which specific parameters, such as central meridians, have been applied.

The Earth, between lats. 84° N. and 80° S. , is divided into 60 zones each generally 6°

wide in longitude. Bounding meridians are evenly divisible by 6°, and zones are

numbered from 1 to 60 proceeding east from the 180th meridian from Greenwich

with minor exceptions. There are letter designations from south to north (see fig.

11). Thus, Washington, D.C., is in grid zone 18S, a designation covering a quad
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rangle from long. 72° to 78° W. and from lat. 32° to 40° N. Each ofthese quadrangles

is further subdivided into grid squares 100,000 meters on a side with double-letter

designations, including partial squares at the grid boundaries. From lat. 84° N.

and 80° S. to the respective poles, the Universal Polar Stereographic (UPS) projec

tion is used instead.

As with the SPCS, each geographic location in the UTM projection is given x

and y coordinates, but in meters, not feet, according to the Transverse Mercator

projection, using the meridian halfway between the two bounding meridians as

the central meridian, and reducing its scale to 0.9996 of true scale (a 1:2,500

reduction). The reduction was chosen to minimize scale variation in a given zone;

the variation reaches 1 part in 1,000 from true scale at the Equator. The USGS,

for civilian mapping, uses only the zone number and the x and y coordinates,

which are sufficient to define a point, if the ellipsoid and the hemisphere (north or

south) are known; the 100,000-m square identification is not essential. The lines of

true scale are approximately parallel to and approximately 180 km east and west

of the central meridian. Between them, the scale is too small; beyond them, it is

too great. In the Northern Hemisphere, the Equator at the central meridian is

considered the origin, with an x coordinate of 500,000 m and a y of 0. For the

Southern Hemisphere, the same point is the origin, but, while x remains 500,000

m, y is 10,000,000 m. In each case, numbers increase toward the east and north.

Negative coordinates are thus avoided (Army, 1973, p. 7, endmap). A page of

coordinates for the UTM projection is shown in table 9.

The ellipsoidal Earth is used throughout the UTM projection system, but the

reference ellipsoid changes with the particular region of the Earth. For all land

under United States jurisdiction, the Clarke 1866 ellipsoid is used for the map

projection. For the UTM grid superimposed on the map of Hawaii, however, the

International ellipsoid is used. The Geological Survey uses the UTM graticule and

grid for its 1:250,000- and larger-scale maps of Alaska, and applies the UTM grid

lines or tick marks to its quadrangles and State base maps for the other States,

although they are generally drawn with different projections or parameters.

A partially geometric construction of the Transverse Mercator for the sphere

involves constructing a regular Mercator projection and using a transforming

map to convert meridians and parallels on one sphere to equivalent meridians and

parallels on a sphere rotated to place the equator of one along the chosen central

meridian of the other. Such a transforming map may be the equatorial aspect of

the Stereographic or other azimuthal projection, drawn twice to the same scale on

transparencies. The transparencies may then be superimposed at 90° angles and

the points compared.

In an age of computers, it is much more satisfactory to use mathematical

formulas. The rectangular coordinates for the Transverse Mercator applied to the

sphere (Thomas, 1952, p. 6):

FORMULAS FOR THE SPHERE

x = V2Rk0 In [(1 + S)/(l - B)] (8-1)

or

y

k

Rk0 arctanh B

Rk0 |arctan [tan <J>/cos (X - X0)] - <J>0!

M1 - s2)1/2

(8-2)

(8-3)*

(8-4)

where

B = cos <J> sin (X - X0) (8-5)

(note: If B = ± 1, x is infinite)

* if <J> = ±90° and/or (X-X,,) = ±90°,

y = Rk0 (± n/2-*0), taking sign of * in either case.
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Table 9.—Universal Transverse Mercator grid coordinates

(J.T1& GRID COORDINATES • CLARKE 1866 SPHEROID

LATTTUT.IE WWW LATITUDE 4fri5'00*

tx
West ol CM.

E

East ol CM.

E N M

Wtsl ol CM.

E

East ol CM.

E N
OWOO"

07 30

1500

22 30

5 0 0.0 0 0.0
4 9 0.6 75.3

4 81.350.5

4 72,025.8

5 0 0.00 0.0

5 09.324.7

5 1 8.6 49.5

5 27.9 74.2

5.3 16.6 41 .3

5.316.088.9

5.3 1 6.1 1 1 .6

5.316.1 49 4

owoo»— 5 0 0.0 0 0.0
4 90.7 2 0.4

4 8 1.4 4 0.8
4 72.161.2

5 0 0.0 0 0 0
509.279.6
5 1 8.5 5 9.2

5 2 7.8 38.8

5.343.868.4
07 30

1500

22 30

5.343.875.9

5.343.898.6

5.3 43.936.3

3000

37 30

4500

52 30

4 62.701.1

4 53.3 76.4

4 4 4.051.8
4 34.727.1

5 37.298.9

5 46.623 6
5 5 5.9 4 8.2

5 65.272.9

5.316.202.3
5.3 1 6.2 70.3

5.3 16.353.5

5.316.4 51 .7

3000

37 30
4500

52 30

462.881.7
4 5 3.6 02.1

4 4 4.322.6

4 3 5.0 4 3.1

5 3 7.1 18.3

5 46.397.9

5 55.677.4
5 6 4.9 56.9

5.3 43.989.2

5.344.057.2

5.3 44.1 40.2

5.344.238.4

1 0000

07 30

1500

22 30

4 2 5.4 02.5

4 1 6.0 78.0

406.753.5

3 9 7.4 2 9.0

5 74.597.5
5 8 3.9 22.0

5.316.565.1

5.316.6 93 6

5.S16.837.3
5.3 1 6.996.1

10000

07 30

1500

22 30

4 25.763.7

4 1 6.484.3
4 0 7.2 0 4 .9

3 97.925.6

5 7 4.2 36.3
5 8 3.5 1 5 .7

5.344.351 .7

5.344.480.1

5.344.623.6

5.3 44.782.2

5 93.246.5
5 92.7 95.1

6 0 2.5 7 1 .0 6 02.074.4

3000

37 30

4500

52 30

3 88.1 04.5

3 7 8.7 80.2

3 69.455.9

3 60.1 31.6

6 1 1.8 95 5

6 21.219.8

6 30.544.1
6 3 9.8 68.4

5.3 17.169.9

5.317.359.0

5.317.563.1

5.317.782.4

3000

37 30

4500

52 30

3 88.646.3

3 7 9.3 67.1

3 70.088.0

3 60.808.9

6 1 1.353.7

6 20.632.9

6 2 9.9 I 2.0
6 39.1 91.1

5.3 4 4.955 9
5.3 45.144 8

5.3 45.34 8.7

5.3 45.56 7 8

200 00

07 30

1500

22 30

3 50,807.4

3 4 1,4 83.3

3 32.1 59.3
3 2 2.8 35.4

6 4 9.1 92.6

6 5 8.5 16.7

6 6 7.8 4 0.7
6 77.1 64.6

5.3 18.016 8

5.3 18.2 66.3

5.3 18.531 .0
5.318.810.8

20000
07 30

15 00

22 30

3 51.5 2 9.9

3 42.251.0
3 3 2.9 72.2

3 2 3.6 93.4

6 4 8.4 70.1

6 5 7.7 4 9.0

6 67.027.8
6 7 6.3 06.6

5.345.802.0

5.3 46.051 .3

5.3 46.31 5.7
5.3 46.595.3

3000

37 30

4500

52 30

3 1 3.5 11 .5
3 04.1 87.7

2 94.864.1

2 8 5.5 4 0.5

6 8 6.4 88.5 5.3 19.105 8

5.3 19.4 15.9

5.319.7 4 1.1

5.3 20.081 .5

3000

37 30

45 00

52 30

3 1 4.4 1 4.8

3 05.1 36.2
2 95,857.8

2 8 6.5 79.4

6 8 5.5 85.2 5.3 46.889.9
5.3 47.199.7

5.3 47.52 4.7

5.347.864.7

6 95.8 12.3
6 9 4.8 63.8

7 05.1 35.9

7 1 4.4 5 9.5
7 04.1 42.2

7 13.4 2 0.6

30000
07 30

1500

22 30

2 7 6.2 1 7.0

2 66.8 93.7

2 5 7.5 7 0.5

2 48.247.4

7 2 3.7 83.0
7 33.1 06.3

7 42.429.5

751,752.6

5.320,437.0

5.3 20,80 7.7
5.321,1 93.6

5.321,594 6

3 0000

07 30
15 00

22 30

2 7 7.3 0 1 .2

2 68.023.1

2 5 8.7 45.1

2 4 9.4 67.3

7 22.698.8

7 3 1.9 76.9

7 4 1.254.9
7 50.532.7

5.3 48,21 9.9

5.348.590.3
5.348.975.8

5.3 49.376.4

3000

37 30

45 00

52 30

2 38.924.4

2 2 9.6 0 1 5

2 2 0.2 7 8 .8
2 1 0.9 56.2

7 6 1.0 75.6
7 70.3 98.5

7 7 9.7 2 1 .2
7 89.043 8

5.3 22.010 8

5.322.442.1

5.322.888 6

5.3 23.350.3

3000

37 30
45 00

52 30

2 40.1 89 6 7 5 9.8 1 0.4

7 6 9.0 88.0

7 7 8.3 65.4

7 8 7.6 4 2 7

5.3 49.7 92.2
5.3 50.22 3.1

5.3 50.66 9.2
5.351.1 30.4

2 3 0.9 1 2.0
221,634.6

2 1 2.3 57 3

400 00 2 0 1.633.8 7 98.366.2 5.323.827.1 4 0000 2 0 3.080 2 7 96.9 1 9 8 5.351.606 8

LATITUDE 48"07'30" LATITU13E «8"22'30*

West of CM.

E

East Ol CM.

E

West ol CM. East ol CM.

EAX N 4.. E N

croow 5 00.00 0 0
4 90.697.8

4 8 1.3 95.6

4 72.093.5

5 0 0.0 0 0 0

5 09.302 2
5 1 8.6 04 4

5 2 7.9 06 5

5.529974 7 0W00"

07 30

15 00

22 30

5 0 0,00 0.0
4 90.7 43 0

4 81.486.1

4 72.2 2 9.2

5 0 0.00 0.0

5 09.257.0

5 1 8.5 1 3.9
5 2 7.7 7 0.8

5. 3 5 7.7 62 .3

5.3 57.76 9 9

5.3 57.7 92 .5

5.357.830.3

07 30

15 00

22 30

5.329.982.3

5.3 30.00 4 9

5.3 30.042.7

3000

37 30

45 00

52 30

4 62.791 3

4 5 3.4 8 9 2

i A 4.1 87.1

4 3 4 8 85.0

5 3 7.2 08 7

5 4 6.5 1 0.8

5 5 5.81 2 9

5 65.1 15.0

5.3 30.095.6
5.3 30.1 63 6

5,3 30.24 6 7
5.3 30.34 4 9

3000

37 30

45 00

52 30

4 6 2.9 72.2

4 5 3.7 15.3

4 4 4.4 58.5

4 3 5.2 0 1 .6

5 3 7.0 2 7 .8

5 4 6.2 84 .7
5 55.54 1 5
5 64.7 98 4

5.357.883 1

5.357.951 .0
5.358034.1

5.358.1 32 2

1 0000

07 30

1500

22 30

4 25.582.9

4 1 6.280 9

4 0 6.9 7 9.0
3 9 7.6 7 7.0

5 7 4.4 1 7.1
5 8 3.7 1 9.1

5.330,458.3

5.3 30,586 7
5.3 30.730 3

5.3 30,889.0

1 0000

07 30

1500

22 30

4 2 5.9 4 4 .8
4 1 6.6 8 8.0

4 07.4 31.3

3 9 8.1 74.6

5 74.055.2
5 8 3.3 1 2 0

5.358.245.4

5.3 58.3 73 8
5.35851 7.2

5.358.675.7
5 9 3.0 21.0 5 92.568.7

6 0 2.3 2 3.0 6 0 1.825.4

3000
37 30

4500

52 30

3 88,375.2
3 7 9.0 73 4

3 6 9.7 7 1 6

3 6 0.4 6 9.9

6 1 1,6 2 4.8
6 2 0.9 2 6 .6
6 30.228.4
6 39.530.1

5.331.062 8

5.331,251 .7

5.331,455 8

5.331.675.0

3000

37 30

45 00

52 30

3 8 8.9 1 8.0

3 7 9.6 6 1 .5

3 7 0.4 05.0

3 6 1.1 48.6

6 1 1.082.0
6 20.338 5

6 2 9.5 95.0
6 3 8.8 5 1 4

5.358849 4
5.3 59.038.1

5.359.242 0

5.359460 9

20000

07 30
15 00

22 30

3 5 1,1 68.3
3 4 1.8 6 6.8

3 3 2.5 65 3

3 23,264.0

6 4 8.8 J 1 .7
6 5 8.) 33.2

6 6 7.4 J 4 . 7
6 76.7 36.0

5.3 31,90 9.3
5.332.1 58.7

5.3 32.42 3.2
5.3 32.70 2.9

20000

07 30

1500

22 30

3 5 1,8 92.2

3 4 2.6 36.0

3 3 3.3 7 9.8

3 24.1 23.7

6 4 8.1 0 7 .8

6 5 7.3 64.0

6 6 6.6 20.2

6 75.8 76.3

5.3 59.6 95.0

5.359.944.2

5.3 60.20 8 5
5.3 60,4 8 7.9

30 00

37 30

45 00

52 30

3 1 3.962.7
3 0 4.6 6 1 .5

2 95.360.4
2 86.0 59 5

6 8 6.037 3 5.332.997 7

5.3 33.30 7 7

5.3 33.632 8

5.333.973 0

3000

37 30
45 00

52 30

3 1 4.867.7

3 05.6 1 1.9

2 9 6.3 56.1

2 8 7.1 00.4

6 85.1 32 3 5.3 60.782 4
5.361.092 0

5.3 61,416 8
5.361.756 7

6 95.338 5 6 94.388.1

7 04.6 39.6

7 1 3.9 4 0.5^

7 0 3.643 9
7 1 2.8 99.6

3 0000

07 30
1500

22 30

2 76.7 58 6

2 6 7.4 5 7 9

2 58.1 57 2
2 4 8.856.7

7 2 3.2 4 1 .4
7 32.5 42 2

7 4 1,842.8

75 I.I 43.3

5.334.328 4

5,334.698 9
5.335.084 6

5.3 35.4 85 4

3 00 00

07 30

1500

22 30

2 7 7.8 4 4 .9

2 6 8.5 89.5

2 59.334.2

2 5 0,0 7 9.1

7 22.1 55.1

7 3 1,4 1 0.5
7 40.665.8

7 4 9.9 2 0 .9

5.3 62.1 1 1 7

5.3 62.4 81 9

5.362.867.2

5.363.267 6

30 00

37 30

45 00

52 30

2 39.556 i

2 30.256.1
2 2 0.9 56 0

2 1 1,656.1

7 60.4 43 6

7 6 9.7 i 3 9
7 7 9.0 4 4.0
7 8 8.3 4 3 .9

5.3 35.901 4

5.3 36,332 5

5.3 36.778 8
5.3 37.2 40 3

3000

37 30

45 00

52 30

2 40.824.1

2 3 1,5 6 9.2

2 22.3 1 4 5

2 1 3.0 6 0.0

7 5 9.1 75.9

7 68.4 30 8
7 7 7,6 85 5

7 8 6.9 4 0.0

5.363.683.1

5.364,1 1 3 9

5.364.559 7

5.3 65.020 7

4.00 00 2 02.356 3 7 97.6 4 3.7 5,337.71 6 9 40000 2 0 3.8 05,6 7 96.1 94.4 5.365496 8

GRID COORDINATES FOR 75 MINUTE INTERSECTIONS
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and k0 is the scale factor along the central meridian X0. The origin of the coordi

nates is at (<J>0, X0). The Y axis lies along the central meridian X0, y increasing

northerly, and the X axis is perpendicular, through <J>0 at X0, x increasing easterly.

The inverse formulas for (<J>, X) in terms of (x, y):

<J> = arcsin [sin Z3/cosh (x/Rk0)] (8-6)

X = X0 + arctan [sinh (x/flA:0)/cos D] (8-7)

where

D = y/(Rk0) + <J>0, using radians (8-8)

Rectangular coordinates for the sphere are shown in table 10. Only one octant

(quadrant of a hemisphere) needs to be listed, since all other octants are identical

except for sign change. See p. 268 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, the most practical form of the equations is a set of

series approximations which converge rapidly to the correct centimeter or less at

full scale in a zone extending 3° to 4° of longitude from the central meridian. Beyond

this, the forward series as given here is accurate to about a centimeter at 7°

longitude, but the inverse series does not have sufficient terms for this accuracy.

The forward series may be used with meter accuracy to 10° of longitude. (Many

additional terms for use to 24° of longitude may be found in Army (1962).) Coordi

nate axes are the same as they are for the spherical formulas above. The for-

Table 10.—Transverse Mercator projection: Rectangular coordinates for the sphere

[Radius of the Garth is 1.0 unit. Longitude measured from central meridian, y coordinate is in parentheses under x coordinate.

Origin of rectangular coordinates at Equator and central meridian, x increases east; y increases north. One octant of globe !s

given; other octants are symmetrical]

^^Long.

Lat.^\
0° 10° 20° 30° 40°

90° 0.0000 0.0000 0.0000 0.0000 0.0000

(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)

80 .00000 .03016 .05946 .08704 .11209

(1.39626) (1.39886) (1.40659) (1.41926) (1.43653)

70 .00000 .05946 .11752 .17271 .22349

(1.22173) (1.22662) (1.24125) (1.26545) (1.29888)

60 _ __ .00000 .08704 .17271 .25541 .33320

(1.04720) (1.05380) (1.07370) (1.10715) (1.15438)

50 __. .00000 .11209 .22349 .33320 .43943

( .87266) ( .88019) ( .90311) ( .94239) ( .99951)

40 _ .00000 .13382 .26826 .40360 .53923

( .69813) ( .70568) ( .72891) ( .76961) ( .83088)

30 _ .00000 .15153 .30535 .46360 .62800

( .52360) ( .53025) ( .55094) ( .58800) ( .64585)

20 .00000 .16465 .33320 .50987 .69946

( .34907) ( .35401) ( .36954) ( .39786) ( .44355)

10 _ __ .00000 .17271 .35051 .53923 .74644

( .17453) ( .17717) ( .18549) ( .20086) ( .22624)

0 .00000 .17543 .35638 .54931 .76291

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
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mulas below are only slightly modified from those presented in standard refer

ences to provide mm accuracy at full scale (Army, 1973, p. 5-7; Thomas, 1952,

p. 2-3). (See p. 269 for numerical examples.)

x= k0N[A + (l-T + C)A3/6 + (5-l8T + T2 + 72C-58e,2)A5H20] (8-9)

y = k0 \M - M0 + N tan <J> [A2/2 + (5 - T + 9C + 4C2)

A4/24 + (61 - 58r + 712 + 600C - 330e'2)A"7720]| (8-10)

k = k0[l + (1 + C)A2/2 + (5 - 4T + 42C + 13C2 - 28e'2) A4/24

+ (61 - 14871 + 167*)As/720] (8-11)

where k0 = scale on central meridian (e.g., 0.9996 for the UTM projection)

e'2 =e2/(1 - e2) (8-12)

N = ai(l - e2 sin2 <J>)1* (4-20)

T =tan24> (8-13)

C = e,2 cos2 <J> (8-14)

A = (X - X0) cos 4>, with X and X0 in radians (8-15)

M = ai(l - e2/4 - 3e4/64 - 5e6/256 -...)<J>- (3e2/8 + 3e4/32

+ 45€6/1024 + . . .) sin 2<J> + (15e4/256 + 45e6/1024

+ . . . ) sin 44> - (35e6/3072 + . . . ) sin 6<J> + . . . ] (3-21)

with <i> in radians. M is the true distance along the central meridian from the

Equator to <J>. See equation (3-22) for a simplification for the Clarke 1866 ellipsoid.

M0 = M calculated for <J>0, the latitude crossing the central meridian X0 at the

origin of the x, y coordinates.

Note: If <J> = ± it/2, all equations should be omitted except (3-21), from which

M and M0 are calculated. Then x = 0, y = k0(M - M0), k = k0.

Table 10.—Transverse Mercator projection: Rectangular coordinates for the sphere—Continued

^\Long.

Lat.^\
50° 60° 70° 80° 90°

90° 0.0000 0.0000 0.0000 0.0000 0.0000

(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)

80 .13382 .15153 .16465 .17271 .17543

(1.45794) (1.48286) (1.51056) (1.54019) (1.57080)

70 .26826 .30535 .33320 .35051 .35638

(1.34097) (1.39078) (1.44695) (1.50768) (1.57080)

60 .40360 .46360 .50987 .53923 .54931

(1.21544) (1.28976) (1.37584) (1.47087) (1.57080)

50 .53923 .62800 .69946 .74644 .76291

(1.07616) (1.17355) (1.29132) (1.42611) (1.57080)

40 7 7 .67281 .79889 .90733 .98310 1.01068

( .91711) (1.03341) (1.18375) (1.36673) (1.57080)

30 .79889 .97296 1.13817 1.26658 1.31696

( .73182) ( .85707) (1.03599) (1.27864) (1.57080)

20 .90733 1.13817 1.38932 1.62549 1.73542

( .51522) ( .62923) ( .81648) (1.12564) (1.57080)

10 .98310 1.26658 1.62549 2.08970 2.43625

( .26773) ( .33904) ( .47601) ( .79305) (1.57080)

0 1.01068 1.31696 1.73542 2.43625

( .00000) ( .00000) ( .00000) ( .00000) Inf.
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Table 11.—Universal Transverse Mercator projection: Location ofpoints with given scale factor

[x coordin&teB-in meters at various latitudes. Based on inversion of equation i8-16), using Clarke 1866 ellipsoid. Values are on or

to right of central meridian U=500,000 m). For coordinates left of central meridian, subtract values of x from 1,000,000 m.

Latitude is north or south]

Scale factor

0.9996 0.9998 1.0000 1.0002 1.0004 1.0006

80° 500,000 627,946 680,943 721,609 755,892 786,096

70 500,000 627,871 680,836 721,478 755,741 785,927

60 500,000 627,755 680,673 721,278 755,510 785,668

50 500,000 627,613 680,472 721,032 755,226 785,352

40 500,000 627,463 680,260 720,772 754,925 785,015

30 500,000 627,322 680,060 720,528 754,643 784,700

20 500,000 627,207 679,898 720,329 754,414 784,443

10 500,000 627,132 679,792 720,199 754,264 784,276

0 500,000 627,106 679,755 720,154 754,212 784,218

Equation (8-11) for k may also be written as a function of x and <i>:

k = A:0il + (1 + e'2 cos2 <Wx^&VV2)] (8-16)

These formulas are somewhat more precise than those used to compute the State

Plane Coordinate tables, which were adapted to use desk calculators of 30-40

years ago. Table 11 shows the variation of k with x.

To obtain UTM or SPCS coordinates, the appropriate "false easting" is added

to x and "false northing" added to y after calculation using (8-9) and (8-10).

For the inverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 2-3):

<J> = <J>i- (AT, tan ^/RJitfft - (5 + 37\ + 10C, - 4C\2 - 9e'2)D4/24

+ (61 + 907\ + 298C, + 4571,2 - 252e'2 - 3CY)D6/720] (8-17)

k = k0 + [D- (l + 27\ + CJLP/G + (5 - 2d + 287\

- 3C,2 + 8e'2 + 247/12)D5/120]/cos 4>i (8-18)

where <J>i is the "footpoint latitude" or the latitude at the central meridian which

has the same y coordinate as that of the point (<J>, X).

It may be found from equation (3-26):

<J>i = pi + (3ei/2 - 27e,3/32 + . . . ) sin 2jjl + (21e,2/16

- 55e,4/32 + . . .)sin4p. + (151e,3/96 + . . . ) sin 6m- + (1097e,4/512 - . . . )

sin 8^ + . . . (3-26)

where

e, = [1-d-e^M1 + d-e2),/2] (3-24)

p. = M/[a(1-e2/4 - 3e4/64 - 5e6/256- . . . )] (7-19)

M = M0 + y/k0 (8-20)

with M0 calculated from equation (3-21) or (3-22) for the given <J>0.

For improved computational efficiency using series (3-21) and (3-26), see

p. 19. From <J>i, other terms below are calculated for use in equations (8-17) and

(8-18). (If <J>i = ±tt/2, (8-12), (8-21) through (8-25), (8-17) and (8-18) are

omitted, but <J> = ±90°, taking the sign ofy, while X is indeterminate, and may be

called X0. Also, k = k0.)
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e'2 cos2 <J>i

tan2 <J>i

a/(l-e2 sin2 <J>1),/2

a(1-e2)/(1-e2sin24>,)3/2

(8-12)

(8-21)

(8-22)

(8-23)

(8-24)

(8-25)

To convert from tabular rectangular coordinates to <J> and X, it is necessary to

subtract any "false easting" from x and "false northing" from y before inserting x

and y into the inverse formulas. To convert coordinates measured on an existing

map, the correct central meridian must be used for the Y axis on the Transverse

Mercator, but the X axis may cross it perpendicularly at any latitude chosen by

the user.

In 1972, the USGS devised a projection specifically for the revision of a 1954

map of Alaska which, like its predecessors, was based on the Polyconic projection.

The projection was drawn to a scale of 1:2,000,000 and published at 1:2,500,000

(map "E") and 1:1,584,000 (map "B"). Graphically prepared by adapting coordi

nates for the Universal Transverse Mercator projection, it is identified as the

"Modified Transverse Mercator" projection. It resembles the Transverse Merca

tor in a very limited manner and cannot be considered a cylindrical projection. It

approximates an Equidistant Conic projection for the ellipsoid in actual con

struction. Because of the projection name, it is listed here. The projection was

also used in 1974 for a base map of the Aleutian-Bering Sea Region published at

the 1:2,500,000 scale.

The basis for the name is clear from an unpublished 1972 description of the

projection, in which it is also stressed that the "latitudinal lines are parallel" and

the "longitudinal lines are straight." The computations

were taken from the AMS Technical Manual #21 (Universal Transverse Mercator) based on the Clarke

1866 Spheroid.*** The projection was started from a N-S central construction line of the 153° longi

tude which is also the centerline of Zone 5 from the UTM tables. Along this line each even degree

latitude was plotted from book values. At the plotted point for the 64° latitude, a perpendicular to the

construction line (153°) was plotted. From the center construction line for each degree east and west

for 4° (the limits of book value of Zone #5) the curvature of latitude was plotted. From this 64° latitude,

each 2° latitude north to 70° and south to 54° was constructed parallel to the 64° latitude line. Each degree

of longitude was plotted on the 58° and 68° latitude line. Through corresponding degrees of longitude

along these two lines of latitude a straight line (line of longitude) was constructed and projected to the

limits of the map. This gave a small projection 8° in width and approximately 18° in length. This

projection was repeated east and west until a projection of some 72° in width was attained.

For transferring data to and from the Alaska maps, it was necessary to deter

mine projection formulas for computer programming. Since it appeared to be

unnecessarily complicated to derive formulas based on the above construction, it

was decided to test empirical formulas with actual coordinates. After careful

measurements of coordinates for graticule intersections were made in 1979 on the

stable-base map, it was determined that the parallels very closely approximate

concentric circular arcs, spaced in proportion to their true distances on the ellipsoid,

while the meridians are nearly equidistant straight lines radiating from the center

of the circular arcs. Two parallels have a scale equal to that along the meridians.

The Equidistant Conic projection for the ellipsoid with two standard parallels was

then applied to these coordinates as the closest approximation among projections

with available formulas. After various trial values for scale and standard parallels

were tested, the empirical formulas below (equations (8-26) through (8-32))

"MODIFIED TRANSVERSE MERCATOR" PROJECTION
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were obtained. These agree with measured values within 0.005 inch at mapping

scale for 44 out of 58 measurements made on the map and within 0.01 inch for 54 of

them.

FORMULAS FOR THE "MODIFIED TRANSVERSE MERCATOR" PROJECTION

The "Modified Transverse Mercator" projection was found to be most closely

equivalent to an Equidistant Conic projection for the Clarke 1866 ellipsoid, with

the scale along the meridians reduced to 0.9992 of true scale and the standard

parallels at lat. 66.09° and 53.50° N. (also at 0.9992 scale factor). For the Alaska

Map "E" at 1:2,500,000, using long. 150° W. as the central meridian and lat. 58° N.

as the latitude of the origin on the central meridian, the general formulas (Snyder,

1978a, p. 378) reduce with the above parameters to the following, giving x and y

in meters at the map scale. The Y axis lies along the central meridian, y increas

ing northerly, and the X axis is perpendicular at the origin, x increasing easterly.

For the forward formulas:

x = p sin 6 (8-26)

y = 1.5616640 - p cos 6 (8-27)

where

6° = 0.86251 11(X° + 150°) (8-28)

p = 4.1320402 - 0.04441727<J>° + 0.0064816 sin 2<J> (8-29)

For the inverse formulas:

X° = (1/0.8625111) arctan [*/(1. 5616640 - y)] - 150° (8-30)

<J>° = (4.1320402 + 0.0064816 sin 2<J> - p)/0.04441727 (8- 31)

where

p = [x2 + (1.5616640 - yf]m (8-32)

For Alaska Map "B" at a scale of 1:1,584,000, the same formulas may be used,

except that x and y are (2,500/1,584) times the values obtained from (8-26) and

(8-27). For the inverse formulas, the given x and y must be divided by

(2,500/1,584) before insertion into (8-30) and (8-32).

The equation for <J>, (8-31), involves iteration by successive substitution. If an

initial 4> of 60° is inserted into the right side, <J> on the left may be calculated and

substituted into the right in place of the previous trial <J>. Recalculations continue

until the change in <J> is less than a preset convergence. If X as calculated is less

than -180°, it should be added to 360° and labeled East Longitude.

Formulas to adjust x and y for the map inset of the Aleutian Islands are omitted

here, but the coordinates above are rotated counterclockwise 29.79° and trans

posed + 0.798982 m for x and +0.347600 m for y.
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9. OBLIQUE MERCATOR PROJECTION

SUMMARY

• Cylindrical (oblique).

• Conformal.

• Two meridians 180° apart are straight lines.

• Other meridians and parallels are complex curves.

• Scale on the spherical form is true along chosen central line, a great circle at an

oblique angle, or along two straight lines parallel to central line. The scale on

the ellipsoidal form is similar, but varies slightly from this pattern.

• Scale becomes infinite 90° from the central line.

• Used for grids on maps of the Alaska panhandle, for mapping in Switzerland,

Madagascar, and Borneo and for atlas maps of areas with greater extent in

an oblique direction.

• Developed 1900-50 by Rosenmund, Laborde, Hotine, and others.

HISTORY

There are several geographical regions such as the Alaska panhandle centered

along lines which are neither meridians nor parallels, but which may be taken as

great circle routes passing through the region. If conformality is desired in such

cases, the Oblique Mercator is a projection which should be considered.

The historical origin of the Oblique Mercator projection does not appear to be

sharply defined, although it is a logical generalization of the regular and Trans

verse Mercator projections. Rosenmund (1903) made one of the earliest pub

lished references, when he devised an ellipsoidal form which is used for topo

graphic mapping of Switzerland. The projection was not mentioned in the detailed

article on "Map Projections" in the 1911 Encyclopaedia Britannica (Close and

Clarke, 1911) or in Hinks' brief text (1912). Laborde applied the Oblique Mercator

to the ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 1930;

Laborde, 1928). H. J. Andrews (1935, 1938) proposed the spherical forms for

maps of the United States and Eurasia. Hinks presented seven world maps on the

Oblique Mercator, with poles located in several different positions, and a conse

quent variety in the regions shown more satisfactorily (Hinks, 1940, 1941).

A study of conformal projections of the ellipsoid by British geodesist Martin

Hotine (1898-1968), published in 1946-47, is the basis of the U.S. use of the

ellipsoidal Oblique Mercator, which Hotine called the "rectified skew orthomorphic"

(Hotine, 1947, p. 66-67). The Hotine approach has limitations, as discussed

below, but it provides closed formulas which have been adapted for U.S. mapping

of suitable zones. One of its limitations is overcome by a recent series form of the

ellipsoidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations result

instead. This later form resulted from development of formulas for the continuous

mapping of satellite images, using the Space Oblique Mercator projection (to be

discussed later).

While Hotine projected the ellipsoid conformally onto an "aposphere" of con

stant total curvature and thence to a plane, J. H. Cole (1943, p. 16-30) projected

the ellipsoid onto a "conformal sphere," using conformal latitudes (described earlier)

to make the sphere conformal with respect to the ellipsoid, then plotted the

spherical Oblique Mercator from this intermediate sphere. Rosenmund's system

for Switzerland is a more complex double projection through a conformal sphere

(Rosenmund, 1903; Bolliger, 1967). Laborde combined the conformal sphere with

a complex-algebra transformation of the Oblique Mercator (Reignier, 1957,

p. 130).
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Figure 12.—Oblique Mercator projection with the center of projection at lat. 45° N. on the central

meridian. A straight line through the point and, in this example, perpendicular to the central

meridian is true to scale. The projection is conformal and has been used for regions lying along a

line oblique to meridians.

FEATURES

The Oblique Mercator for the sphere is equivalent to a regular Mercator projec

tion which has been altered by wrapping a cylinder around the sphere so that it

touches the surface along the great circle path chosen for the central line, instead

of along the Earth's Equator. A set of transformed meridians and parallels rela

tive to the great circle may be plotted bearing the same relationship to the

rectangular coordinates for the Oblique Mercator projection, as the geographic

meridians and parallels bear to the regular Mercator. It is, therefore, possible to

convert the geographic meridians and parallels to the transformed values and

then to use the regular Mercator equations, substituting the transformed values

in place of the geographic values. This is the procedure for the sphere, although

combined formulas are given below, but it becomes much more complicated for

the ellipsoid. The advent of present-day computers and programmable pocket

calculators make these calculations feasible for sphere or ellipsoid.

The resulting Oblique Mercator map of the world (fig. 12) thus resembles the

regular Mercator with the landmasses rotated so that the poles and Equator are

no longer in their usual positions. Instead, two points 90° away from the chosen

great circle path through the center of the map are at infinite distance off the

map. Normally, the Oblique Mercator is used only to show the region near the

central line and for a relatively short portion of the central line. Under these

conditions, it looks similar to maps of the same area using other projections,

except that careful scale measurements will show differences.
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Table 12.—Hotine Oblique Mercator projection parameters used for Landsat 1, 2, and 3 imagery

HOM Limiting Central Central Azimuth

zone latitudes latitude longitude( of axis

1 48°N-81°N 67.0983°N 81.9700°W 24.7708181°

2 23°N-48°N 36.0000°N 99.2750°W 14.3394883°

3 23°S-23°N 0.0003°N 108.5069°W 13.001443°

4 23°S-48°S 36.0000°S 117.7388°W 14.33948832°

5 48°S-81°S 67.0983°S 135.0438°W 24.7708181°

6 48°S-81°S 67.0983°S 85.1220°E -24.7708181°

7 23°S-48°S 36.0000°S 67.8170°E -14.33948832°

8 23°S-23°N 0.0003°N 58.5851°E -13.001443°

9 23°N-48°N 36.0000°N 49.3532°E -14.33948832°

10 48°N-81°N 67.0983°N 32.0482°E -24.7708181°

' For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (3607251) x (p .

31).

Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Mercator formulas,

with <J,0 the central latitude, X<, the central longitude, and oi0 the azimuth ofaxis east of north. Scale factor k0 at center

is 1.0.

It should be remembered that the regular Mercator is in fact a limiting form of

the Oblique Mercator with the Equator as the central line, while the Transverse

Mercator is another limiting form of the Oblique with a meridian as the central

line. As with these limiting forms, the scale along the central line of the Oblique

Mercator may be reduced to balance the scale throughout the map.

USAGE

The Oblique Mercator projection is used in the spherical form for a few atlas

maps.For example, the National Geographic Society uses it for atlas and sheet

maps of Hawaii, the West Indies, and New Zealand. The spherical form is being

used by the USGS for maps of North and South America and Australasia in a new

set of l:10,000,000-scale maps of Hydrocarbon Provinces.* For North America,

the central scale factor is 0.968, and the transformed pole is at lat. 10°N., long.

10°E. For South America, these numbers are 0.974, 10°N., and 30°E., respec

tively; for Australasia, 0.978, 55°N., and 160°W. These parameters were chosen

after a least-squares analysis of over 100 points on each continent to determine

optimum parmaters for a common conformal projection.

In the ellipsoidal form it was used, as mentioned above, by Rosenmund for

Switzerland and Laborde for Madagascar. Hotine used it for Malaya and Borneo

and Cole for Italy. It is used in the Hotine form by the USGS for grid marks on

zone 1 (the panhandle) of Alaska, using the State Plane Coordinate System as

adapted to this projection by Erwin Schmid of the former Coast and Geodetic

Survey. The Hotine form was also adopted by the U.S. Lake Survey for mapping

of the five Great Lakes, the St. Lawrence River, and the U.S. -Canada Border

Lakes west to the Lake of the Woods (Berry and Bormanis, 1970). Four zones

are involved; see table 8 for parameters of these and the Alaska zones.

More recently, the Hotine form was adapted by John B. Rowland (USGS) for

mapping Landsat 1, 2, and 3 satellite imagery in two sets of five discontinuous

zones from north to south (table 12). The central line of the latter is only a close

approximation to the satellite groundtrack, which does not follow a great circle

route on the Earth; instead, it follows a path of constantly changing curvature.

Until the mathematical implementation of the Space Oblique Mercator (SOM)

projection, the Hotine Oblique Mercator (HOM) was probably the most suitable

projection available for mapping Landsat type data. In addition to Landsat,

the HOM projection has been used to cast Heat Capacity Mapping Mission (HCMM)

* These maps are no longer an active project.
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imagery since 1978. NOAA (National Oceanic and Atmospheric Administration)

has also cast some weather satellite imagery on the HOM to make it compatible

with Landsat in the polar regions which are beyond Landsat coverage (above lat.

82°).

The parameters for a given map according to the Oblique Mercator projection

may be selected in various ways. If the projection is to be used for the map of a

smaller region, two points located near the limits of the region may be selected to

lie upon the central line, and various constants may be calculated from the lati

tude and longitude of each of the two points. A second approach is to choose a

central point for the map and an azimuth for the central line, which is made to

pass through the central point. A third approach, more applicable to the map of a

large portion of the Earth's surface, treated as spherical, is to choose a location on

the original sphere of the pole for a transformed sphere with the central line as

the equator. Formulas are given for each of these approaches, for sphere and

ellipsoid.

FORMULAS FOR THE SPHERE

Starting with the forward equations, for rectangular coordinates in terms of

latitude and longitude (see p. 272 for numerical examples):

1. Given two points to lie upon the central line, with latitudes and longitudes

(<J>i,Xi) and (<J>2,X2) and longitude increasing easterly and relative to Green

wich. The pole of the oblique transformation at (<J>P,XP) may be calculated

as follows:

kp = arctan [(cos <J>i sin <J>2 cos kx - sin <J>i cos <J>2 cos X2)/

(sin <J>i cos <J>2 sin X2 - cos 4>i sin <J>2 sin X,)] (9-1)

<J>p = arctan [- cos (Xp - X^/tan <J^] (9-2)

The Fortran ATAN2 function or its equivalent should be used with equation

(9-1), but not with (9-2). The other pole is located at (-4>p,kp±v). Using

the positive (northern) value of 4>p, the following formulas give the rectangular

coordinates for point (<J>,X), with k° the scale factor along the central line:

x = Rk0 arctan |[tan <i> cos <i>p + sin <J>P sin (X - X0)]/cos (X-X0)| (9-3)

y = (#/2)A:0ln[(1+/i)/(1-A)] (9-4)

or

y = Rk0 arctanh A

k = M1-AV

where

A = sin <J>p sin <J> - cos 4>p cos <J> sin (X - X0) (9-6)

With these formulas, the origin of rectangular coordinates lies at

<J>o =0

X0 =kp + tt/2 (9 -6a)

and the X axis lies along the central line, x increasing easterly. The trans

formed poles are y equals infinity.

(9 -4a)

(9-5)
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2. Given a central point (4>c, Xc) with longitude increasing easterly and relative to

Greenwich, and azimuth p east of north of the central line through (<J>r, Xc),

the pole of the oblique transformation at (4>p, kp) may be calculated as follows:

4>p = arcsin (cos <J>r sin p) (9-7)

Xp = arctan [- cos p/(- sin 4>c sin p)] + Xc (9-8)

These values of <J>P and kp may then be used in equations (9-3) through

(9-6) as before.

3. For an extensive map, <i>p and kp may be arbitrarily chosen by eye to give the

pole for a central line passing through a desired portion of the globe. These

values may then be directly used in equations (9-3) through (9-6) without

intermediate calculation.

For the inverse formulas, equations (9-1) and (9-2) or (9-7) and (9-8) must

first be used to establish the pole of the oblique transformation, if it is not known

already. Then,

<i> = arcsin [sin <J> tanh (y/Rk0) + cos <J>P sin (x/Rk0)/cosh (y/Rk0)] (9-9)

X = X0 + arctan [[sin <J>p sin (x/Rk0) - cos 4>p sinh (y/Rk0)]/cos (x/Rk0)\ (9- 10)

FORMULAS FOR THE ELLIPSOID

These are the formulas provided by Hotine, slightly altered to use a positive

eastern longitude (he used positive western longitude), to simplify calculations of

hyperbolic functions, and to use symbols consistent with those of this bulletin.

The central line is a geodesic, or the shortest route on an ellipsoid, corresponding

to a great circle route on the sphere.

It is customary to provide rectangular coordinates for the Hotine in terms

either of (u, v) or (x, y). The (u, v) coordinates are similar in concept to the (x, y)

calculated for the foregoing spherical formulas, with u corresponding to x for the

spherical formulas, increasing easterly from the origin along the central line, but

v corresponds to —y for the spherical formulas, so that v increases southerly in a

direction perpendicular to the central line. For the Hotine, x and y are calculated

from (u, v) as "rectified" coordinates with the Y axis following the meridian

passing through the center point, and increasing northerly as usual, while the X

axis lies east and west through the same point. The X and Y axes thus lie in

directions like those of the Transverse Mercator, but the scale-factor relation

ships remain those of the Oblique Mercator.

The normal origin for (u, v) coordinates in the Hotine Oblique Mercator is

approximately at the intersection of the central line with the Earth's Equator.

Actually it occurs at the crossing of the central line with the equator of the

"aposphere," and is, thus, a rather academic location. The "aposphere" is a sur

face with a constant "total" curvature based on the curvature along the meridian

and perpendicular thereto on the ellipsoid at the chosen central point for the

projection. The ellipsoid is conformally projected onto this aposphere, then to a

plane. As a result, the Hotine is perfectly conformal, but the scale along the

central line is true only at the chosen central point along that line or along a

relatively flat elliptically shaped line approximately centered on that point, if the

scale of the central point is arbitrarily reduced to balance scale over the map. The

variation in scale along the central line is extremely small for a map extending

less than 45° in arc, which includes most existing usage of the Hotine. A longer

central line suggests the use of a different set of formulas, available as a limiting

form of the Space Oblique Mercator projection. On Rosenmund's (1903), Laborde's
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(1928), and Cole's (1943) versions of the ellipsoidal Oblique Mercator, the central

line is a great circle arc on the intermediate conformal sphere, not a geodesic. As

on Hotine's version, this central line is not quite true to scale except at one or two

chosen points. *

The projection constants may be established for the Hotine in one of two ways,

as they were for the spherical form. Two desired points, widely separated on the

map, may be made to fall on the central line of the projection, or the central line

may be given a desired azimuth through a selected central point. Taking these

approaches in order:

Alternate A, with the central line passing through two given points.

Given:

a and e for the reference ellipsoid.

k0 = scale factor at the selected center of the map, lying on the central line.

<J>0 = latitude of selected center of the map.

(<J>i, X!) = latitude and longitude (east of Greenwich is positive) of the first point

which is to lie on the central line.

(<J>2, X2) = latitude and longitude of the second point which is to lie on the

central line.

(<i>, X) = latitude and longitude of the point for which the coordinates are

desired.

There are limitations to the use of variables in these formulas: To avoid indeter-

minates and division by zero, <J>0 or <J>i cannot be ± tt/2, 4>i cannot be zero or equal

to <J>2 (although <J>2 may be zero), and 4>2 cannot be -tt/2. Neither <J>0, 4>i, nor <J>2

should be ± it/2 in any case, since this would cause the central line to pass through

the pole, for which the Transverse Mercator or polar Stereographic would proba

bly be a more suitable choice. A change of 10-7 radian in variables from these

special values will permit calculation of an otherwise unsatisfactory condition.

It is also necessary to place both (fo, X!) and (<J>2, X2) on the ascending portion, or

both on the descending portion, of the central line, relative to the Earth's Equator.

That is, the central line should not pass through a maximum or minimum between

these two points.

If e is zero, the Hotine formulas give coordinates for the spherical Oblique

Mercator.

Because of the involved nature of the Hotine formulas, they are given here in

an order suitable for calculation, and in a form eliminating the use of hyperbolic

functions as given by Hotine in favor of single calculations of exponential functions

to save computer time. The corresponding Hotine equations are given later for

comparison (see p. 274 for numerical examples).

B =[1 + e2cos4<J>o/(1-e2)]i* (9-11)

A =aBM1-e2)1*/(1-e2sin2<J>0) (9-12)

t0 = tan (ir/4-<J>0/2)/[(1-e sin <J>0)/(1 + e sin <J>0)]»* (9-13)

or

Kl ~ sin <J>0 \ / 1 + e sin <fr0 VI12

1 + sin <J>0 A 1 " e sin <J>0 ) J (9-13a)

<i = same as (9-13), using <J>i in place of <J>0.

t2 = same as (9-13), using <J>2 in place of <J>0.

D = B(1-e2)1/2/[cos 4>0(1 - e2 sin2 <i>0»*] (9-14)

If o>0 = 0, D may calculate to slightly less than 1.0 and create a problem in the next

step. If D2<1, it should be made 1.

E =[D ±(D2 - 1)i*]<0B, taking the sign of <J>0 (9-15)

H (9-16)

* Actually Laborde's version begins with the Transverse Mercator, but it effectively becomes an Oblique

Mercator,
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L - V (9-17)

F = E/H (9-18)

G = (F - l/F)/2 (9-19)

J = (E2 - LH)/(E2 + LH) (9-20)

P = (L - H)/(L + H) (9-21)

*0 = (X, + X2)/2 - arctan \J tan [B(X, - X2)/2]/P!/B (9-22)

70 = arctan |sin [B(k^ - X0)]/G) (9-23)

«» = arcsin [D sin 70] (9-24)

To prevent problems when straddling the 180th meridian with ki and X2, before

calculating (9 -22), if(X! - X2) < - 180°, subtract 360° from X2. If(Xt - X2)>180°, add

360° to X2. Also adjust X0 and (k\ - X0) to fall between ± 180° by adding or subtracting

360°. The Fortran ATAN2 function is not to be used for equations (9-22) and (9-23).

The above equations (9-11) through (9-24) provide constants for a given

map and do not involve a specific point (<J>,X). Angle otr is the azimuth of the cen

tral line as it crosses latitude <J>0, measured east of north. For point (<J>, X), calcu

late the following:

t = same as equation (9-13), but using <J> in place of <J>0.

If <J> = ±tt/2, do not calculate t, but go instead to (9-30).

Q = E/V> (9-25)

S =(Q- VQ)/2 (9-26)

T =(Q + 1/Q)/2 (9-27)

V = sin [5(X - X0)] (9-28)

U = (-V cos 70 + S sin y0)/T (9-29)

v = A In [(1 - U)/(l + U)V2B (9-30)

Note: If U = ±1, v is infinite; if <J> = ±tt/2, v = (A/B) In tan (ir/4 + 7^2)

u = A arctan f(S cos y„ + V sin y0)/cos [B(k-k0)]\/B (9-31)

Note: If cos [B(X-X0)] = 0, u=AB(k-k0). If <J> = ±tt/2, u = A&B.

Care should be taken that (X-X0) has 360° added or subtracted, if the 180th

meridian falls between, since multiplication by B eliminates automatic correction

with the sin or cos function.

The scale factor:

k = A cos (Bu/A)a-e2sm%)v2/\a cos <J> cos [fi(X-X0)]| (9-32)

If "rectified" coordinates (x, y) are desired, with the origin at a distance

(x0, 2/0) from the origin of the (u.v) coordinates, relative to the (X,Y) axes (see

fig. 13):

x = v cos ae + u sin ac + x0 (9-33)

y = u cos ar - v sin af + y0 (9-34)

The formulas given by Hotine and essentially repeated in Thomas (1952, p. 7-9),

modified for positive east longitude, u and v increasing in the directions shown in

figure 13, and symbols consistent with the above, relate to the foregoing formulas

as follows:8

'Hotine uses positive west longitude, r corresponding to u here, and y corresponding to -v here. Thomas uses

positive west longitude, y corresponding to u here, and i corresponding to - inhere. In calculations of Alaska zone 1.

west longitude is positive, but it and v agree with )< and v, respectively, here. Using a, in equations (9-33). (9-34).

(9-40). and (9-41) leads to a y axis parallel to the meridian at i<J>,„ V), not the meridian through (ii=0, r=0). For the

latter case, use -y,, instead of a,, in these four equations.
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Meridian of u,v origin
7

Figure 13.—Coordinate system for the Hotine Oblique Mercator projection.

Equivalent to (9-11):

e'2 =e2/(1-e2)

B =(1+e'* cos 4<J>0)1,2

Equivalent to (9-12):

R,0 = a(1-e2)/(1-e2 sin 2<J>0)3*

iV0 = a/(1-e2 sin 2<p0)1/2

A =Bk0(R'oN0y*

Other formulas:

r0 = iV0 cos <J>0

iJ>„ = In |tan (ir/4 + <J>„/2)[(1-e sin 4>„)/(1 + e sin 4>n)H

Note: iJi„ is equivalent to (-In t„) using equation (9-13).

C = ± arccosh (A/r0) - B{\>0

Note: C is equivalent to In E, where E is found from equation (9-15); D, from

(9-14), is (A/r0).

The tanh in the numerator is J from equation (9-20), while the tanh in the de

nominator is P from (9-21). The entire equation is equivalent to (9-22).
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tan y0 = sin [B(kY - X0)]/sinh (BiK + C)

This equation is equivalent to (9-23), the sinh being equivalent to G from (9-19).

tanh (Bv/Ak0) = |cos y0 sin [B(k - X0)] - sin 70 sinh (B<i' + C)|/cosh (B,J/ + C)

This equation is equivalent to (9-30), with S the sinh function and T the cosh

function.

tan (Bu/Ak0) = |cos y0 sinh (B* + C) + sin y0 sin [B(k - X0)]|/cos [B(X - k0)]

This equation is equivalent to (9-31).

Alternate B. The following equations provide constants for the Hotine Oblique

Mercator projection to fit a given central point and azimuth of the central line

through the central point. Given: a, e, k0, 4>0, and (<J>, X) as for alternate A, but in

stead of (4>i, X,) and (<J>2, X-2). K and ac are given,

where

(<J>0, Xc) = latitude and longitude (east of Greenwich is positive), respectively, of

the selected center of the map, falling on the central line.

ac = angle of azimuth east of north, for the central line as it passes through

the center of the map (<J>0, K).

Limitations: <J>0 cannot be zero or ± ir/2, and the central line cannot be at a

maximum or minimum latitude at <J>0. If e = 0, these formulas also give coordinates

for the spherical Oblique Mercator. As with alternate A, these formulas are given

in the order of calculation and are modified to minimize exponential computations.

Several of these equations are the same as some of the equations for alternate A:

B = [1 + e2 cos4 <J>0/(1 - e2)]12 (9-11)

A = aBk0 (1 - e2)i2/(1 - ^sin2 <J>0) (9-12)

t0 = tan(ir/4 - <J>o/2)/[(1 - esin^)/(1 + e sin ^o)]"2 (9-13)

D = B(l - e2)i2/[cos <J>0 (1 - e2 sin2 <M"2] (9-14)

If <J>0 = 0, D may calculate to slightly less than 1.0 and create a problem in the next

step. If D2<l, it should be made 1.

F = D ± (Z)2 - 1)"2 taking the sign of <J>0 (9-35)

E =F<0B (9-36)

G =(F - 1/F)/2 (9-19)

7o = arcsin (sin aJD) (9-37)

X0 = X, - [arcsin (G tan y0)]/B (9-38)

The values of u and v for center point (<J>0, K) may be calculated directly at this

point:

«<*,. m = ± arctan [(D2 - 1)"2/cos ar], taking the sign of <J>0. (9-39)

These are the constants for a given map. Equations (9-25) through (9-32) for

alternate A may now be used in order, following calculation of the above

constants.

The inverse equations for the Hotine Oblique Mercator projection on the ellipsoid

may be shown with few additional formulas. To determine 4> and X from x and y,



9. OBLIQUE MERCATOR PROJECTION

or from u and v, the same parameters of the map must be given, except for 4> and X,

and the constants of the map are found from the above equations (9-11) through

(9-24) for alternate A or (9-11) through (9-38) for alternate B. Then, if x

and y are given in accordance with the definitions for the forward equations, they

must first be converted to (u, v):

v = (x - x0) cos a« - (y - y0) sin ac (9-40)

u = (y - y0) cos ae + (x - x0) sin ac (9-41)

If (u, v) are given, or calculated as just above, the following steps are performed

in order:

q, = e-wA) (9-42)

where e = 2.71828 .... the base of natural logarithms

S' = (Q' - 1/Q,)/2 (9-43)

r = (Q' + 1/Q')/2 (9-44)

V = sin (BuiA) (9-45)

U' = (V,cos 70 + S' sin y0)/T' (9-46)

t =\E/[(l + f/')/(1-t/')H1/B (9-47)

But if U' = ± 1, <i> = ±90°, taking the sign of U', k may be called X0, and

equations (7-9) and (9-48) below are omitted.

<J> = ir/2 - 2 arctan |<[(1 - e sin <J>)/(1 + e sin 4>)H (7-9)

Equation (7-9) is solved by iteration, using <J> = (it/2 - 2 arctan t) as the first

trial <J> on the right side, and using the successive calculations of <J> on the left side

as successive values of 4> on the right side, until the change in <J> is less than a chosen

convergence value.

X = X0 - arctan [(S, cos 70 - V' sin 70)/cos (BuiA)]/B (9-48)

Since the arctan (found as the ATAN2 function) is divided by B, it is necessary to

add or subtract 360° properly, before the division.

To avoid the iteration, the series (3-5) may be used with (7-13) in place of

(7-9):

<i> = \ + (e2/2 + 5e4/24 + e6/12 + 13es/360 + . . . ) sin 2\ +

(7e4/48 + 29e6/240 + 811e8/11520 + . . . )sin4x + (7e6/120 + 81e8/1120 + . . . )

sin 6x + (4279e8/161280 + . . . ) sin 8x + . . . (3-5)

where

x = tt/2 - 2 arctan t (7-13)

For improved computational efficiency using this series, see p. 19.

The equivalent inverse equations as given by Hotine are as follows, following

the calculation of constants using the same formulas as those given in his forward

equations:

tan [B(k - X0)] = [sin 70 sin (BuiA) + cos "y0 sinh (Bv/A)]/cos (BuiA)

tanh (fiili + C) = [cos 70 sin (BuiA) - sin 70 sinh (fii»/A)]/cosh (Bv/A)
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10. CYLINDRICAL EQUAL-AREA PROJECTION

SUMMARY

• Cylindrical.

• Equal-area.

• Meridians on normal aspect are equally spaced straight lines.

• Parallels on normal aspect are unequally spaced straight lines, closest near the

poles, cutting meridians at right angles.

• On transverse aspect, central meridian, each meridian 90° from central meridian,

and Equator are straight lines. Other meridians and parallels are complex

curves.

• On oblique aspect, two meridians 180° apart are straight lines. Other meridians

and parallels are complex curves.

• On normal aspect, scale is true along Equator, or along two parallels equidis

tant from the Equator.

• On transverse aspect, scale is true along central meridian, or along two straight

lines equidistant from and parallel to central meridian. (These lines are only

approximately straight for the ellipsoid.)

• On oblique aspect, scale is true along chosen central line, an oblique great circle,

or along two straight lines parallel to central line. Scale on ellipsoidal form is

similar, but varies slightly from this pattern.

• An orthographic projection of sphere onto cylinder.

• Substantial shape and scale distortion near points 90° from central line.

• Normal and transverse aspects presented by Lambert in 1772.

HISTORY AND USAGE

The fourth of the seven projections proposed by Johann Heinrich Lambert

(1772, p. 71-72) and occasionally given his name, is the Cylindrical Equal-Area

(fig. 14). In the same work (p. 72- 73), he described its transverse aspect (fig. 16),

which has hardly been used. Even the normal aspect has seldom been used except

as a textbook example of the most easily constructed equal-area projection, but

several modifications of the normal aspect have been published.

These modifications consist of compressing the projection from east to west and

expanding it in the same ratio from north to south, thereby moving the parallel of

no distortion from the Equator to other latitudes. The earliest such modification

is from Scotland: James Gall's Orthographic Cylindrical, not the same as his pre

ferred Stereographic Cylindrical, both of which were originated in 1855, has

standard parallels of 45° N. and S. (Gall, 1885). Walther Behrmann (1910) of Ger

many chose 30°, based on certain overall distortion criteria (fig. 15). Very similar

later projections were offered by Trystan Edwards of England in 1953 and Arno

Peters of Germany in 1967; they were presented as revolutionary and original

concepts, rather than as modifications of these prior projections with standard

parallels at about 37° and 45°-47°, respectively (Maling, 1966, 1974).

The oblique Cylindrical Equal-Area projection has been proposed with particu

lar parameters for maps of Eurasia and Africa (Thornthwaite, 1927) and of air

routes of the British Commonwealth (Poole, 1934). Different parameters are used

for fig. 17. The ellipsoidal form of the oblique and transverse aspects has appar

ently been developed only recently (Snyder, 1985b).

FEATURES

Like other regular cylindricals, the graticule of the normal Cylindrical Equal-

Area projection consists of straight equally spaced vertical meridians perpendicu
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lar to straight unequally spaced horizontal parallels. To achieve equality of area,

the parallels are spaced from the Equator in proportion to the sine of the latitude.

This is the simplest equal-area projection.

The normal Cylindrical Equal-Area for the sphere is a true perspective projec

tion onto a cylinder tangent at the Equator: The meridians are projected from the

center of the sphere, and the parallels are projected with lines parallel to the

equatorial plane, or orthographically from infinity. Modifications such as

Behrmann's, described above, are perspective projections onto a secant cylinder.

For oblique and transverse aspects, the projection may be perspectively cast on

a cylinder tangent or secant at an oblique angle, or centered on a meridian.

There is no distortion of area anywhere on the projections, and no distortion

of scale and shape at the standard parallels of the normal aspect, or at the standard

lines of the oblique or transverse aspects. There is extreme shape and scale dis

tortion 90° from the central line, or at the poles on the normal aspect. These are

the points which have infinite area and linear scale on the various aspects of the

Mercator projection. This distortion, even on the modifications described above,

is so great that there has been little use of any of the forms for world maps by

professional cartographers, and many of them have strongly criticized the inten

sive promotion in the noncartographic community which has accompanied the

presentation of one of the recent modifications.

The meridians and parallels of the transverse and oblique aspects which are

straight or curved on the Mercator projection are straight or curved, respectively,

on the Cylindrical Equal-Area, except that the curves are differently shaped.

In spite of the shape distortion in some portions of a world map, the projection

is well suited for equal-area mapping of regions which are predominantly north-

south in extent, or which have an oblique central line, or which lie near the Equa

tor. This is true in the same sense that for mid-latitude regions which extend

predominantly east-west, the Albers Equal-Area Conic projection is recommended

for equal-area mapping. Actually, the normal Cylindrical Equal-Area is the limit

ing form of the Albers when the Equator or two parallels symmetrical about the

Equator are made standard. If such regions to be mapped are smaller than the

United States, the ellipsoidal form should be considered.

FORMULAS FOR THE SPHERE

The geometric construction of the Cylindrical Equal-Area projection has been

described above. The forward formulas for the normal aspect are as follows, given

R, 4>s, X0, <]>, and X, to find x and y (see p. 278 for numerical examples):

x = R (X-X0) cos 4>s (10-1)

y = R sin <J>/cos <J>s (10-2)

h = cos <J>/cos <J>s (10 -2a)

A: = l/h (10 -2b)

where <J>S is the standard parallel (N. or S.), or the Equator in Lambert's original

form. The X axis lies along the Equator, x increasing easterly. The Y axis lies

along the central meridian X0, y increasing northerly, and the origin is (<J> = 0°, X0).

If (X - X0) lies outside the range ± 180°, 360° should be added or subtracted so that

it will fall inside the range.

For the transverse aspect, given h0 instead of <J>s,

x = (R/hit) cos 4> sin (X-X0) (10-3)

y = R h0 !arctan [tan 4> / cos (X - X0)] - 4>o1 (8-3)*

* if * = ±90° and/or (X-X0) = ±90°.

y = Rk„ (± ir/2-4>„), taking sign of * in either case.
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where h0 is the scale factor (normally 1.0) along the central meridian X0. The

origin of the coordinates is at (<J>0, X0). The Y axis lies along the central meridian

ko, y increasing northerly, and the X axis is perpendicular, through 4>0 at X0, x

increasing easterly.

For the oblique aspect, the alternatives used for the Oblique Mercator projec

tion are used here, with modification only in the formulas for the y coordinates:

1. Given two points to lie upon the central line, with latitudes and longitudes

(<J>i, Xi) and (<J>2, X2), and longitude increasing easterly and relative to Green

wich, the pole of the oblique transformation at (<J>p, Xp) may be calculated as

follows:

kp = arctan [(cos <i>x sin <J>2 cos kl -sin 4>i cos 4>2 cos X2)/

(sin <J>i cos d>2 sin X2— cos <J>i sin <J>2 sin Xi)] (9-1)

4>p = arctan [- cos (Xp-X^/tan (9-2)

The Fortran ATAN2 function or its equivalent should be used with equation

(9-1), but not with (9-2). The other pole is located at (- <J>p, Xp ± 180°).

Using the positive (northern) value of <J>p, the following formulas provide the

rectangular coordinates for point (<J>, X), with h0 as the scale factor along the

central line:

x = Rh0 arctan |[tan <J> cos <J>p + sin <J>p sin (X-X0)] /

cos (X-X0)| (10-4)

y = (R/h0) [sin <J>p sin 4> - cos <J>p cos <J> sin (X-X0)] (10-5)

With these formulas for the oblique aspect, the origin of rectangular coor

dinates lies at

<J>0 =0

X0 = Xp + tt/2 (9 -6a)

and the X axis lies along the central line, x increasingly easterly. The trans

formed poles are straight lines &ty = R and are as long as the central line.

2. Given a central point (<J>2, X2) with longitude increasing easterly and stated

relative to Greenwich, and azimuth 7 east of north of the central line through

(<J>2, X2), the pole of the oblique transformation at (<J>„, Xp) may be calculated

as follows:

<i>p = arcsin (cos 4>2 sin 7) (9-7)

Xp = arctan [-cos 7/(-sin 4>2 sin y)] + kz (9-8)

These values of <J>P and Xp may be used in equations (10-4) and (10-5) as

before.

For the inverse formulas, first for the normal aspect, given R, X0, x, and y,

to find 4> and X:

4> = arcsin [(y/R) cos <J>s] (10-6)

X = x/(R cos <[>s) + X0 (10-7)

For the transverse aspect, given h0 instead of <J>„

<J> = arcsin |[1-(/^ x/R)2](\' sin D\ (10-8)

X = X0 + arctan \(h0 x/R)/[[l-(h0 x/R)2]\- cos D] (10-9)
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where

D = y/(Rh0) + <J>0, using radians (10-10)

For the oblique aspect, equations (9- 1) and (9-2) or (9-7) and (9-8) must first

be used to establish the pole of the oblique transformation, if it is not known

already. Then

<i> = arcsin \(yhJR) sin <i>p + [l-(yh0/R'fY'' cos <i>p sin

[x/(Rh0)]\ (10-11)

X = k0 + arctan \[[l-(yhJR)2}^ sin 4>p sin [x/(Rh0)}

- (yh0/R) cos 4>pml-tyh0/Rf]" cos [x/(Rh0)]]\ (10-12)

Note that the above equations for the oblique aspect may be used for the trans

verse aspect, letting <J>p = 0°, except that the axes are rotated 90°.

FORMULAS FOR THE ELLIPSOID

In the following formulas, the ellipsoid is transformed onto the authalic

sphere, but the scale along the desired central line is made constant by variably

compressing the scale along this central line to match that along the same

path on the ellipsoid. To retain correct area, the distances perpendicular to the

central line are increased by the same ratio. For the oblique aspect, the central

line is not a geodesic, but is instead an oblique great circle on the authalic sphere.

For the forward formulas using the normal aspect, given a, e, <J>S, X0, <J>, and k,

to find x and y (see p. 281 for numerical examples), the equations are given in the

order of computation:

A:0 =cos<V(1-e2sin2<J>s)11! (10-13)

q = (1-e2) jsin <J>/(1-e2 sin2 <i>) - [1/(2e)]

In [(1-e sin <J>)/(1 + e sin <J>)]| (3-12)

x =ak0(k-K0) (10-14)

y = aq/(2k0) (10-15)

For the transverse aspect, the subsequent formulas for the oblique aspect may

be used, but the following are simpler for the transverse alone. Given a, e, h0,

X0, <J>0, <J>, and X, to find x and y, first q is calculated from <J> using equation (3-12)

above. Then

p = arcsin (q/qp) (3-11)

where p is the authalic latitude corresponding to <J>, and qp is found as q from

equation (3-12) for a <J> of 90°.

pc = arctan [tan p/cos (X-X0)] (10-16)

qc =9psinpc (10-17)

m (1-eW<M2 rj^ sinj^ +J_ /1-ssinfra-]

Tc c 2cos<J>c [I - e 1-e2sin2<J>c 2<? \l + e sin <J>c/J

Equation (3-16) requires iteration by successive substitution, using arcsin (qc/2)

as the first trial <i>c on the right side, calculating <J>c on the left side, substituting

this new 4>c on the right side, etc., until the change in <J>c is negligible. This does

not converge if pc = ± 90°, but then <i>c = pf.



MAP PROJECTIONS—A WORKING MANUAL

x = a cos p cos <J>c sin (k-k0)/[h0 cos pc (1-e2 sin2 <J>c)("2] (10-18)

Mc = o [(1-^-Se^-Se6^ - . . .)4>c

- (3e2/8 + 3e4/32 + 45e6/1024 + . . .) sin 2<J>c

+ (15e4/256 + 45e6/1024 + . . .) sin 4<J>c

- (35e6/3072 + . . .) sin 6<J>c + . . .] (3-21)

y = h0(Mc-M0) (10-19)

where h0 is the scale factor along the central meridian X0, and pc and <i>c are

authalic and geodetic "footpoint" latitudes, respectively, with the same y value at

the central meridian as the point (<J>, X). Constant M0 is the value of Mc calculated

from (3-21) with latitude of origin 4>0 in place of <J>c. To avoid iteration, equations

(10-17) and (3-16) may be replaced with the following series:

<J>c = pc + (e2/3 + 31e4/180 + 517e6/5040 + . . .) sin 2pc

+ (23e4/360 + 251e6/3780 + . . .) sin 4pc

+ (761e6/45360 + . . .) sin 6pc + . . . (3-18)

For the oblique aspect, the location of the pole (<J>p, Xp) may be given, or it may

be computed as described under the section on formulas for the sphere above.

Points <J>i, <J>2, 4>p and <J>2, however, are replaced in equations (9-1), (9-2), (9-7)

and (9-8) with pi, p2, pp and p2, respectively, and pp is finally converted to <i>p,

using equations (10-17) and (3-16), or just (3-18), and subscripts p instead of c.

If the ellipsoid is either the Clarke 1866 or the International, Fourier constants

may be taken from table 13. If it is a different ellipsoid, coefficients should be

calculated as described after these formulas. They may be converted to the specific

coefficients for the pole in use as follows:

B = b + a2 cos 2<J>p + a4 cos 4<J>p + a6 cos 6<J>p + . . . (10-20)

An =bn + a'n2 cos 2<J>p + a',,4 cos 4<J>p + a' n% cos 6<J>p + . . . (10-21)

where

n = 2 and 4.

From <J>, p is determined using equations (3- 12) and (3-11) above, and, if pp was

not obtained earlier, it is calculated by substituting <J>p for <J> in (3-12) and obtain

ing pp from (3-11). Then,

X' = arctan |[cos pp sin p-sin pp cos p cos (X-Xp)]/

[cos p sin (X-Xp)]J (10-22)

x = ah0 [Bk' + A2 sin 2X' -1- A4 sin 4X' + A6 sin 6X' + . . .] (10-23)

F = B + 2A2 cos 2X' + 4A4 cos 4X' + 6A6 cos 6X' + . . . (10-24)

y = (a(7p/2)[sin pp sin p + cos pp cos p cos (X-Xp)]/(A0F) (10-25)

The axes are as stated for the corresponding aspect of the spherical form. For

more efficient computation of series (10-23) and (10-24) see p. 19.

For the inverse formulas for the ellipsoid, the normal aspect will be discussed

first. Given a, e, <J>S, X0, x, and y, to find <J> and X (see p. 284 for numerical

examples), k0 is determined from (10-13), and

p = arcsin [2yko/(aqp)] (10-26)

where qp is found from (3-12), using 90° for <J>, then <J> is found from p using

(10-17) and (3-16), or just (3-18), without subscripts, these equations being

listed under the forward equations above.
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Table 13.—Fourier coefficients for oblique and transverse

Cylindrical Equal-Area projection for the ellipsoid

General coefficients:

Coefficient Clarke 1866 Ellipsoid International Ellipsoid

b 0.9991507126 0.9991565046

a* .0.0008471537 -0.0008413907

<*« 0.0000021283 0.0000020994

0.0000000054 -0.0000000053

bt 0.0001412090 -0.0001402483

a'22 0.0001411258 -0.0001401661

a'24 0.0000000839 0.0000000827

a'ze 0.0000000006 0.0000000006

64 .0.0000000435 -0.0000000429

a'42 .0.0000000579 -0.0000000571

a'44 800.0000000144
-0.0000000142

a '46 0.0000000000 0.0000000000

Coefficients for specific pole latitudes (Clarke 1866 ellipsoid):

B A,

0° 0.9983056818 -0.0002822502 -0.0000001158

15 0.9984181201 -0.0002633856 -0.0000001008

30 0.9987260769 -0.0002118145 -0.0000000652

45 0.9991485842 -0.0001412929 -0.0000000290

60 0.9995732199 -0.0000706875 -0.0000000073

75 0.9998854334 -0.0000189486 -0.0000000005

90 1.0 0.0 0.0

Coefficients for specific pole latitudes (International ellipsoid):

4,, B A, A,

0° 0.9983172080 -0.0002803311 -0.0000001142

15 0.9984288886 -0.0002615944 -0.0000000995

30 0.9987347648 -0.0002103733 -0.0000000644

45 0.9991544051 -0.0001403310 -0.0000000287

60 0.9995761449 -0.0000702060 -0.0000000072

75 0.9998862200 -0.0000188195 -0.0000000005

90 1.0 0.0 0.0

*p = latitude of pole of oblique aspect (0° for transverse, 90° for normal).

B, An, 6, etc. = Fourier coefficients (see text for use).

Note: B is used with X' in radians. Ae = -0.0000000001 for i,p = 0° to 20°, but is zero to ten places at higher

values of 4>p.

Clarke 1866 ellipsoid: semimajor axis a = 6378206.4 m; eccentricity squared e2 = 0.006768658.

International ellipsoid: a = 6378388 m; e2 = 0.006722670.

X = a0 + x/(a k0) (10-27)

For the transverse aspect, given a, e, ho, X0, and y, to find (p and a:

Mc = M0 + y/ho (10-28)

where M0 is found from 4>0 using (3-21) and changing subscripts c to o.

p.c = Mc/[a(1-e2/4-3e4/64-5e6/256- . . . )] (7-19)

ei = [1-(1-e2)'/']/[1+ (1-e2)*] (3-24)

4>c = ^c + (3e!/2-27e!3/32 + . . . )sin2^c + (21e,2/16-55e!4/32 + . . . )

sin 4p.c + (151ei3/96- . . . ) sin 6p.c + (1097e,4/512- . . . )

sin 8.xc (3-26)
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Authalic latitude pf is determined for <J>c using equations (3-12) and (3-11), adding

subscripts c to both p and 4>.

p' = -arcsin [h0 x cos pc (1-e2 sin2 <i>c)'Ma cos <J>f)] (10-29)

p = arcsin (cos p' sin pc) (10-30)

X = X0 - arctan (tan p'/cos pc) (10-31)

Latitude 4> is found from p using (10-17) and (3-16), or just (3-18), all without

subscripts c.

For the oblique aspect, given a, e, h0, <i»p, Xp, x, and y, to find <J> and X, Fourier

coefficients are determined as described above for the forward oblique ellipsoidal

formulas, while the pole location (<J>p, Xp) may be determined if not provided, as

described for the forward oblique spherical formulas, and qp is found from (3-12)

using 90° for <J>. From x, X, is determined from an iterative inverse of (10-23):

X' = [x/(ah0)-A2 sin 2X'-A4 sin 4X'-A6 sin 6X'- . . . ]/B (10-32)

Using a first trial X' = x/(ahji), X' may be found by successive substitution of

trial values into the right side of this equation and solving for a new X' until the

change in X' is negligible.

Equation (10-24) above is used to find F from X'. Then,

p' = arcsin [2Fh0y/(aqp)] (10-33)

p = arcsin (sin pp sin p' + cos pp cos p' sin X') (10-34)

X = kp + arctan [cos p' cos X7(cos pp sin p'-sin pp cos p, sin X')] (10-35)

As before, <J> is found from p using (10-17) and (3-16), or just (3-18), all without

subscripts c.

For the determination ofFourier coefficients, if they are not already provided,

equation (10-23) above is equivalent to the following equation which requires nu

merical integration:

x/(a h0) = /0V F dk' (10-36)

where

F = |sin2 pp cos2 <J>c/[(1-e2 sin2 <J>f) cos4 pc]

+ (1-e2 sin2 <J>c) qp2 cos2 pp cos2 X7(4 cos2 <J>c)},/2 (10-37)

In order to compute coefficients B and A„ in (10-23),

B = (2/it)/01r/2 F dk' (10-38)

An = [4/(irn)] f0"'2 F cos nX' dk' (10-39)

where n is 2, 4, and 6, successively. To compute coefficients which apply regard

less of the value of <J>p, equations (10-38) and (10-39) may be rewritten as

equations (10-20) and (10-21), where

b = (2/it) f0'"'2 B dtp (10-40)

an = (4/tt) JV/2 b cos n<i>p d<i>p (10-41)

bn = (2/ir) /o^2 An d4>p (10-42)

a,nm = (4/it) /o^2 An cos m <J>p d<i>p (10-43)
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and n has the values 2 and 4, while m = 2, 4, and 6. To determine the coeffi

cients from (10-40) through (10-43), double numerical integration is involved,

but this involves a relatively modest computer program: Choosing an interval of

9° (sufficient for 10-place accuracy) in both <J>p and X', and starting with both <J>p

and X' at 0°, F is calculated from (10-37) as described below for each 9° of X' from

0° to 90°, and the various values ofF summed in accordance with Simpson's rule as

applied to equations (10-38) and (10-39). Thus B, A2, A4, and A6 are computed

for 4>p = 0°. Similarly, the constants B and An are computed for each 9° of <J>p to and

including 90°, and the various values are summed by applying Simpson's rule to

(10-40) through (10-43), to obtain b, a?, etc.

To compute F from equation (10-37) for a given X', first pp is found from

4>p using (3-12) and (3-11), subscripting <J> and p with p. Then,

pc = arcsin (cos pp sin X') (10-44)

Now <J>c is found from pc using (10-17) and (3-16) or just (3-18). All variables

for (10-37) are now known, except that it is indeterminate if <J>p = 0° at the same

time that X' = 90°. In that case, F = (<7p/2)'/2.
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11. MILLER CYLINDRICAL PROJECTION

SUMMARY

• Neither equal-area nor conformal.

• Used only in spherical form.

• Cylindrical.

• Meridians and parallels are straight lines, intersecting at right angles.

• Meridians are equidistant; parallels spaced farther apart away from Equator.

• Poles shown as lines.

• Compromise between Mercator and other cylindrical projections.

• Used for world maps.

• Presented by Miller in 1942.

HISTORY AND FEATURES

The need for a world map which avoids some of the scale exaggeration of the

Mercator projection has led to some commonly used cylindrical modifications, as

well as to other modifications which are not cylindrical. The earliest common

cylindrical example was developed by James Gall of Edinburgh about 1855 (Gall,

1885, p. 119- 123). His meridians are equally spaced, but the parallels are spaced

at increasing intervals away from the Equator. The parallels of latitude are

actually projected onto a cylinder wrapped about the sphere, but cutting it at lats.

45° N. and S., the point of perspective being a point on the Equator opposite the

meridian being projected. It is used in several British atlases, but seldom in the

United States. The Gall projection is neither conformal nor equal-area, but has a

blend of various features. Unlike the Mercator, the Gall shows the poles as lines

running across the top and bottom of the map.

What might be called the American version of the Gall projection is the Miller

Cylindrical projection (fig. 18), presented in 1942 by Osborn Maitland Miller

(1897-1979) of the American Geographical Society, New York (Miller, 1942).

Bom in Perth, Scotland, and educated in Scotland and England, Miller came to

the Society in 1922. There he developed several improved surveying and mapping

techniques. An expert in aerial photography, he developed techniques for convert

ing high-altitude photographs into maps. He led or joined several expeditions of

explorers and advised leaders of others. He retired in 1968, having been best

known to cartographers for several map projections, including the Bipolar Oblique

Conic Conformal, the Oblated Stereographic, and especially his Cylindrical

projection.

Miller had been asked by S. Whittemore Boggs, Geographer of the U.S. Depart

ment of State, to study further alternatives to the Mercator, the Gall, and other

cylindrical world maps. In his presentation, Miller listed four proposals, but the

one he preferred, and the one used, is a fairly simple mathematical modification of

the Mercator projection. Like the Gall, it shows visible straight lines for the

poles, increasingly spaced parallels away from the Equator, equidistant meridians,

and is not equal-area, equidistant along meridians, nor conformal. While the

standard parallels, or lines true to scale and free of distortion, on the Gall are at

lats. 45° N. andS., on the Miller only the Equator is standard. Unlike the Gall, the

Miller is not a perspective projection.

The Miller Cylindrical projection is used for world maps and in several atlases,

including the National Atlas of the United States (USGS, 1970, p. 330-331).

As Miller (1942) stated,

the practical problem considered here is to find a system of spacing the parallels of latitude such that

an acceptable balance is reached between shape and area distortion. By an "acceptable" balance is

meant one which to the uncritical eye does not obviously depart from the familiar shapes of the land
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areas as depicted by the Mercator projection but which reduces areal distortion as far as possible

under these conditions * * *. After some experimenting, the [Modified Mercator (b)] was judged to be

the most suitable for Mr. Boggs's purpose * * *.

FORMULAS FOR THE SPHERt

Miller's spacings of parallels from the Equator are the same as if the Mercator

spacings were calculated for 0.8 times the respective latitudes, with the result

divided by 0.8. As a result, the spacing of parallels near the Equator is very close

to the Mercator arrangement.

The forward formulas, then, are as follows(see p. 287 for numerical examples):

x = #(X-X0) (11-D

y = R[ln tan (it/4 + 0.44>)]/0.8 (11-2)

or

y = #[arcsinh (tan 0.8<J>)]/0.8 (11-2a)

or

y = (fl/1.6) In ((1 + sin 0.8<J>)/(1-sin 0.84>)) (11-2b)

The scale factor, using equations (4-2) and (4-3),

h = sec 0.8<b

k = sec <b

The maximum angular deformation io, from equation (4-9),

sin V2w = (cos 0.8<J>-cos 4>)/(cos 0.84> + cos <J>) (11-5)

The X axis lies along the Equator, x increasing easterly. The Y axis lies along the

central meridian X0, V increasing northerly. If (X— X0) lies outside the range of

±180°, 360° should be added or subtracted so that it will fall inside the range.

The inverse equations are easily derived from equations (11-1) through (11 -2a):

eb = 2.5 arctan e(°-8^)-5ir/8 (11-6)

or

<J> = arctan [sinh (0.8y/R)]/0.8 (11 -6a)

where e is 2.71828 . . . , the base of natural logarithms.

X = X0 + x/R (11-7)

Rectangular coordinates are given in table 14. There is no basis for an ellipsoidal

equivalent, since the projection is used for maps of the entire Earth and not for

local areas at large scale.

(11-3)

(11-4)
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Table 14.—Miller Cylindrical projection: Rectangular coordinates

[ Radius of sphere =1.0]

0 y h k w

90° 2.30341 3.23607 Infinite 180.00°

85 . 2.04742 2.66947 11.47371 77.00

80 _ . _ _ _ 1.83239 2.28117 5.75877 51.26

75 1.64620 2.00000 3.86370 37.06

70 1.48131 1.78829 2.92380 27.89

65 1.33270 1.62427 2.36620 21.43

60 ._ _ 1.19683 1.49448 2.00000 16.64

55 1.07113 1.39016 1.74345 12.95

50 .95364 1.30541 1.55572 10.04

45 .84284 1.23607 1.41421 7.71

40 _ .73754 1.17918 1.30541 5.82

35 .63674 1.13257 1.22077 4.30

30 .53962 1.09464 1.15470 3.06

25 .44547 1.06418 1.10338 2.07

20 .35369 1.04030 1.06418 1.30

15 .26373 1.02234 1.03528 .72

10 .__ _ _ .17510 1.00983 1.01543 .32

5 .08734 1.00244 1.00382 .08

0 .00000 1.00000 1.00000 .00

x 0.017453 (X° -O

Note: x, y = rectangular coordinates.

4, = geodetic latitude.

(k°->*°)= geodetic longitude, measured east from origin in degrees.

h = scale factor along meridian.

k = scale factor along parallel.

u » maximum angular deformation, degrees.

Origin of coordinates at intersection of Equator with X0, X axis increases east, Y axis increases north. For southern

(negative) <J,, reverse sign of y.
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12. EQUIDISTANT CYLINDRICAL PROJECTION

SUMMARY

• Cylindrical.

• Neither equal-area nor conformal.

• Meridians and parallels are equidistant straight lines, intersecting at right

angles.

• Poles shown as lines.

• Used for world or regional maps.

• Very simple construction.

• Used only in spherical form.

• Presented by Eratosthenes (B.C.) or Marinus (A.D. 100).

HISTORY AND FEATURES

While the Equidistant Cylindrical projection has received limited use by the

USGS and generally has limited value, it is probably the simplest of all map

projections to construct and one of the oldest. The meridians and parallels are all

equidistant straight parallel lines, the two sets crossing at right angles.

The projection originated probably with Eratosthenes (2757-195? B.C.), the

scientist and geographer noted for his fairly accurate measure of the size of the

Earth. Claudius Ptolemy credited Marinus of Tyre with the invention about

A.D. 100 stating that, while Marinus had previously evaluated existing projections,

the latter had chosen "a manner of representing the distances which gives the

worst results of all." Only the parallel of Rhodes (lat. 36°N.) was made true to

scale on the world map, which meant that the meridians were spaced at about

four-fifths of the spacing of the parallels for the same degree interval (Keuning,

1955, p. 13).

Ptolemy approved the use of the projection for maps of smaller areas, however,

with spacing of meridians to provide correct scale along the central parallel. All

the Greek manuscript maps for the Geographia, dating from the 13th century, use

the Ptolemy modification. It was used for some maps until the 18th century, but is

now used primarily for a few maps on which distortion is considered less impor

tant than the ease of displaying special information. The projection is given a

variety of names such as Equidistant Cylindrical, Rectangular, La Carte

Parallelogrammatique, Die Rechteckige Plattkarte, and Equirectangular (Steers,

1970, p. 135-136). It was called the projection of Marinus by Nordenskiold

(1889).

If the Equator is made the standard parallel, true to scale and free of distortion,

the meridians are spaced at the same distances as the parallels, and the graticule

appears square. This form is often called the Plate Carree or the Simple Cylin

drical projection.

The USGS uses the Equidistant Cylindrical projection for index maps of the

conterminous United States, with insets of Alaska, Hawaii, and various islands

on the same projection. One is entitled "Topographic Mapping Status and Progress

of Operations (7'/2- and 15-minute series)," at an approximate scale of 1:5,000,000.

Another shows the status of intermediate-scale quadrangle mapping. Neither the

scale nor the projection is marked, to avoid implying that the maps are suitable

for normal geographic information. Meridian spacing is about four-fifths of the

spacing of parallels, by coincidence the same as that chosen by Marinus. The

Alaska inset is shown at about half the scale and with a change in spacing ratios.

Individual States are shown by the USGS on other index maps using the same

projection and spacing ratio to indicate the status of aerial photography.
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The projection was chosen largely for ease in computerized plotting. While the

boundaries on the base map may be as difficult to plot on this projection as on

the others, the base map needs to be prepared only once. Overlays of digital

information, which may then be printed in straight lines, may be easily updated

without the use of cartographic and photographic skills. The 4:5 spacing ratio is

a convenience based on computer line and character spacing and is not an attempt

to achieve a particular standard parallel, which happens to fall near lat. 37° N.

FORMULAS FOR THE SPHERE

The formulas for rectangular coordinates are almost as simple to use as the

geometric construction. Given R, X0, 4>u X, and <J> for the forward solution, x and y

are found thus:

x = R (k-k0) cos <J>i (12-1)

y =R4> (12-2)

h = 1 (12-3)

k = cos <J^/cos <J> (12-4)

The X axis coincides with the Equator, with x increasing easterly, while the Y

axis follows the central meridian X0, y increasing northerly. It is necessary to

adjust (X - X0), if it is beyond the range ± 180°, by adding or subtracting 360°. The

standard parallel is <J>i (also -<J>i). For the inverse formulas, given R, X0, x,

and y, to find <J> and X:

<i> =y/R (12-5)

X = X0 + x/(R cos <J>i) (12-6)

Numerical examples are omitted in the appendix, due to simplicity. It must be

remembered, as usual, that angles above are given in radians.
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13. CASSINI PROJECTION

SUMMARY

• Cylindrical.

• Neither equal-area nor conformal.

• Central meridian, each meridian 90° from central meridian, and Equator are

straight lines.

• Other meridians and parallels are complex curves.

• Scale is true along central meridian, and along lines perpendicular to central

meridian. Scale is constant but not true along lines parallel to central meridian

on spherical form, nearly so for ellipsoid.

• Used for topographic mapping formerly in England and currently in a few other

countries.

• Devised by C. F. Cassini de Thury in 1745 for the survey of France.

HISTORY

Although the Cassini projection has been largely replaced by the Transverse

Mercator, it is still in limited use outside the United States and was one of the

major topographic mapping projections until the early 20th century. It was first

developed by Cesar Francois Cassini de Thury (1714-1784), grandson of Jean

Dominique Cassini. The latter was an outstanding Italian-born astronomer who

changed his given names from Giovanni Domenico after being hired in 1669 for

astronomical research in Paris, and soon thereafter to begin the survey of France.

Cassini de Thury was the third of four generations involved in this project, the

first detailed survey of a nation. In 1745 he devised the projection which, with

some modifications, still bears the family name and was used for official topo

graphic maps of France until its replacement by the Bonne projection in 1803.

Instead of showing meridians and parallels (except for the central meridian),

Cassini employed a system of squares with rectangular grid coordinates, the

meridian through Paris serving as one axis. The scale along this central meridian

was made correct according to the surveyed distance, thus approximately correct

ing for the ellipsoid (Craig, 1882, p. 80; Reignier, 1957, p. 98-99). Mathematical

analysis by J. G. von Soldner in the early 19th century led to more accurate

ellipsoidal formulas, and the name Cassini-Soldner is often used for the form used

in topographic mapping.

FEATURES

The spherical form of the Cassini projection (fig. 19) bears the same relation to

the Equidistant Cylindrical or Plate Carree projection that the spherical Trans

verse Mercator bears to the regular Mercator. Instead of having the straight

meridians and parallels of the Equidistant Cylindrical, the Cassini has complex

curves for each, except for the Equator, the central meridian, and each meridian

90° away from the central meridian, all of which are straight.

There is no distortion along the central meridian, if it is maintained at true

scale, which is the usual case. If it is given a reduced scale factor, the lines of

true scale are two straight lines on the map parallel to and equidistant from the

central meridian. There is no distortion along them instead. This alternative is

rare enough that it is ignored in the discussion and formulas below.

By making a given point (such as Washington, D.C.) the pole on an oblique

Equidistant Cylindrical projection, the bearing and distance from that point to

any other on the Earth can be read directly as two rectangular coordinates

(Botley, 1951). This provides the same information as the oblique Azimuthal
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Equidistant projection centered on the same point. The oblique cylindrical has the

advantage of offering rectangular instead of polar coordinates, but the map is

much more distorted near the chosen point.

The scale is correct along the central meridian and also along any straight line

perpendicular to the central meridian. It gradually increases in a direction parallel

to the central meridian, as the distance from that meridian increases, but the

scale is constant along any straight line on the map which is parallel to the central

meridian. Therefore, the Cassini is more suitable for regions predominantly

north -south in extent, such as Great Britain, than for regions extending in other

directions. In this respect, it is also like the Transverse Mercator. The projection

is neither equal-area nor conformal, but it has a compromise of both features.

The ellipsoidal form is computed from series which are essentially modifica

tions of those for the ellipsoidal form of the Transverse Mercator and are suitable

within only a few degrees to either side of the central meridian. The scale charac

teristics described above for the spherical form apply to the ellipsoidal form, ex

cept that the lines of constant scale paralleling the central meridian are not quite

straight.

USAGE

There has been little usage of the spherical version of the Cassini, but the ellip

soidal Cassini-Soldner version was adopted by the Ordnance Survey for the official

survey of Great Britain during the second half of the 19th century (Steers, 1970,

p. 229). Many of these maps were prepared at a scale of 1:2,500. The Cassini-

Soldner was also used for the detailed mapping of many German states during the

same period.

Beginning about 1920, the Ordnance Survey began to change to the Transverse

Mercator because of the difficulty of measuring scale and direction on the Cassini.

Nevertheless, there are several maps still in print which are based on the older

projection in Great Britain, and the projection is used in a few other countries

such as Cyprus, Czechoslovakia, Denmark, the Federal Republic of Germany,

and Malaysia (Clifford J. Mugnier, personal comm., 1985).

A system equivalent to an oblique Equidistant Cylindrical or oblique Cassini

projection was used in early coordinate transformations for ERTS (now Landsat)

satellite imagery, but it was changed in 1978 to the Hotine Oblique Mercator, and

in 1982 to the Space Oblique Mercator projection.

FORMULAS FOR THE SPHERE

For the forward formulas, given R, <J>0, X0, <J>. and X, to find x and y:

x = R arcsin B (13-1)

y = R !arctan [tan <J>/cos (X-X0)] - <J>0) (13-2)

h' =1/(1-fl2)'* (13-3)

where

B = cos <J> sin (X-X0) (8-5)

and X0 is the central meridian. The origin of the coordinates is at (<J>0, X0).The Y

axis lies along the central meridian X0, y increasing northerly, and the X axis is

perpendicular, through 4>0 at X0, x increasing easterly. Equation (13-2) is similar

to corresponding equation (8-3)* for the spherical Transverse Mercator projec

tion. The scale factor is h' in a direction parallel to the central meridian, while it

is 1 in a direction perpendicular to this meridian.

The inverse formulas for (<J>, X) in terms of (x, y):

<i> = arcsin [sin D cos (x/R)] (13-4)

X = X0 + arctan [tan (x/R)/cos D] (13-5)

• if <J> = ±90° and/or (X-X0) = ±90°,

y = R(± ir/2-<J)0), taking sign of <i> in either case.
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where

D =y/R + <J>0 (13-6)

with <J>0 and D in radians. See p. 288 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, a set of series approximations is given for use in a

zone extending 3° to 4° of longitude from the central meridian. Coordinate axes are

the same as they are for the spherical formulas above. The formulas below are

adapted from those provided by Clifford J. Mugnier (pers. commun., 1979; see also

Clark and Clendinning, 1944).

x =N [A-TA3/6-(8-T + 8C)TA5/l20] (13-7)

y = M - M0 + N tan <J> [A2/2 + (5-r + 6C)A4/24] (13-8)

s = 1 + x2 cos2 Az (1-e2 sin2 <J>)2/[2a2(1-e2)] (13-9)

where

N =a/(1-e2 sin2 <J>)(* (4-20)

T = tan2<J> (8-13)

A = (X-X0) cos 4>, with X and X0 in radians (8-15)

C = e2cos2<J>/(1-e2) (8-14)

M = a [(1-e2/4-3e4/64-5e6/256-. . .) <J> - (3e2/8

+ 3e4/32 + 45e6/1024 + . . .) sin 24> + (15e4/256

+ 45e6/1024 + . . .) sin 4<J> - (35e6/3072 + . . .) sin 6<J> + . . .] (3-21)

with <J> in radians. M is the true distance along the central meridian from the

Equator to <J>.

M0 = M calculated for d>0, the latitude crossing the central meridian X0 at the

origin of the x, y coordinates. The choice of <J>0 does not affect the shape of the

projection.

s = the scale factor at an azimuth Az east of north for a given <i> and x.

For the inverse formulas:

<J> =<J>i - (AT, tan <J>,/#1)[Z)2/2-(1 + 37\) Z>4/24] (13-10)

X =X0 + [D-T^/S + (1 + 37\) T^/lSVcos <i>x (13-11)

where <J>i is the "footpoint latitude" or the latitude at the central meridian which

has the same y coordinate as that of the point (<J>, X).

It may be found as follows:

4>i = p., + (3e,/2-27e3/32 + . . .) sin 2m + (21e,2/16

- 55e,4/32 + . . .) sin 4^, + (1Sle^/96 + . . .) sin 6p.,

+ (1097e,4/512 - . . .) sin 8m + . . . (3-26)

where

e, =[1-(1-e2)"2Ml + (1-e2)(4] (3-24)

Hi =M,/[a(1-e2/4-3e4/64-5e6/256-. . .)] (7-19)

M, = M0 + y (13-12)

with M0 calculated from equation (3-21) for the given <J>0. For improved compu

tational efficiency using series (3-26), see p. 19.

From <J>i, other terms below are calculated for use in equations (13-10) and

(13-11). (If 4>i = ± ir/2, <J> = ± 90°, taking the sign of y, while X is indeterminate,

and may be called X0.)

7\ = tan2 4>, (8-22)

Ar, = a/(1 -e2 sin2 4>,)'- (8-23)

#, = a (1-e2)/(1-e2 sin2 <J>,)*- (8-24)

D =x/Nx (13-13)





CONIC MAP PROJECTIONS

CONIC MAP PROJECTIONS

Cylindrical projections are used primarily for complete world maps, or for maps

along narrow strips of a great circle arc, such as the Equator, a meridian, or an

oblique great circle. To show a region for which the greatest extent is from east to

west in the temperate zones, conic projections are usually preferable to cylindri

cal projections.

Normal conic projections are distinguished by the use of arcs of concentric

circles for parallels of latitude and equally spaced straight radii of these circles for

meridians. The angles between the meridians on the map are smaller than the

actual differences in longitude. The circular arcs may or may not be equally

spaced, depending on the projection. The Polyconic projection and oblique conic

projections have characteristics different from these.

The name "conic" originates from the fact that the more elementary conic

projections may be derived by placing a cone on the top of a globe representing

the Earth, the apex or tip in line with the axis of the globe, and the sides of the

cone touching or tangent to the globe along a specified "standard" latitude which

is true to scale and without distortion (see fig. 1). Meridians are drawn on the

cone from the apex to the points at which the corresponding meridians on the

globe cross the standard parallel. Other parallels are then drawn as arcs centered

on the apex in a manner depending on the projection. If the cone is cut along one

meridian and unrolled, a conic projection results. A secant cone results if the cone

cuts the globe at two specified parallels. Meridians and parallels can be marked on

the secant cone somewhat as above, but this will not result in any of the common

conic projections with two standard parallels. They are derived from various

desired scale relationships instead, and the spacing of the meridians as well as the

parallels is not the same as the projection onto a secant cone.

There are three important classes ofconic projections: the equidistant (or simple),

the conformal, and the equal-area. The Equidistant Conic, with parallels equidis-

tantly spaced, originated in a rudimentary form with Claudius Ptolemy. It eventu

ally developed into commonly used present-day forms which have one or two

standard parallels selected for the area being shown. It is neither conformal nor

equal-area, but north-south scale along all meridians is correct, and the projection

can be a satisfactory compromise for errors in shape, scale, and area, especially

when the map covers a small area. It is primarily used in the spherical form,

although the ellipsoidal form is available and useful. The USGS uses the Equidistant

Conic in an approximate form for a map of Alaska, identified as a "Modified

Transverse Mercator" projection, and also in the limiting equatorial form: the

Equidistant Cylindrical. Both are described earlier.

The Lambert Conformal Conic projection with two standard parallels is used

frequently for large- and small-scale maps. The parallels are more closely spaced

near the center of the map. The Lambert has also been used slightly in the oblique

form. The Albers Equal-Area Conic with two standard parallels is used for sec

tional maps of the U.S. and for maps of the conterminous United States. The

Albers parallels are spaced more closely near the north and south edges of the

map. There are some conic projections, such as perspective conics, which do not

fall into any of these three categories, but they are rarely used.

The useful conic projections may be geometrically constructed only in a limited

sense, using polar coordinates which must be calculated. After a location is chosen,

usually off the final map, for the center of the circular arcs which will represent

parallels of latitude, meridians are constructed as straight lines radiating from

this center and spaced from each other at an angle equal to the product of the cone

constant times the difference in longitude. For example, if a 10° graticule is planned,

and the cone constant is 0.65, the meridian lines are spaced at 10° times 0.65 or 6.5°.

Each parallel of latitude may then be drawn as a circular arc with a radius

previously calculated from formulas for the particular conic projection.
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14. ALBERS EQUAL-AREA CONIC PROJECTION

SUMMARY

• Conic.

• Equal-Area.

• Parallels are unequally spaced arcs of concentric circles, more closely spaced at

the north and south edges of the map.

• Meridians are equally spaced radii of the same circles, cutting parallels at right

angles.

• There is no distortion in scale or shape along two standard parallels, normally,

or along just one.

• Poles are arcs of circles.

• Used for equal-area maps of regions with predominant east-west expanse,

especially the conterminous United States.

• Presented by Albers in 1805.

HISTORY

One of the most commonly used projections for maps of the conterminous

United States is the equal-area form of the conic projection, using two standard

parallels. This projection was first presented by Heinrich Christian Albers

(1773-1833), a native of Liineburg, Germany, in a German periodical of 1805

(Albers, 1805; Bonacker and Anliker, 1930). The Albers projection was used for a

German map of Europe in 1817, but it was promoted for maps of the United

States in the early part of the 20th century by Oscar S. Adams of the Coast

and Geodetic Survey as "an equal-area representation that is as good as any other

and in many respects superior to all others" (Adams, 1927, p. 1).

FEATURES AND USAGE

The Albers is the projection exclusively used by the USGS for sectional maps of

all 50 States of the United States in the National Atlas of 1970, and for other

U.S. maps at scales of 1:2,500,000 and smaller. The latter maps include the base

maps of the United States issued in 1961, 1967, and 1972, the Tectonic Map of the

United States (1962), and the Geologic Map of the United States (1974), all at

1:2,500,000. The USGS has also prepared a U.S. base map at 1:3,168,000

(1 inch = 50 miles).

Like other normal conics, the Albers Equal-Area Conic projection (fig. 20) has

concentric arcs of circles for parallels and equally spaced radii as meridians. The

parallels are not equally spaced, but they are farthest apart in the latitudes

between the standard parallels and closer together to the north and south. The

pole is not the center of the circles, but is normally an arc itself.

If the pole is taken as one of the two standard parallels, the Albers formulas

reduce to a limiting form of the projection called Lambert's Equal-Area Conic

(not discussed here, and not to be confused with his Conformal Conic, to be

discussed later). If the pole is the only standard parallel, the Albers formulas

simplify to provide the polar aspect of the Lambert Azimuthal Equal-Area

(discussed later). In both of these limiting cases, the pole is a point. If the Equa

tor is the one standard parallel, the projection becomes Lambert's Cylindrical

Equal-Area (discussed earlier), but the formulas must be modified. None of these

extreme cases applies to the normal use of the Albers, with standard parallels in

the temperate zones, such as usage for the United States.

Scale along the parallels is too small between the standard parallels and too

large beyond them. The scale along the meridians is just the opposite, and in fact
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Figure 20.—Albers Equal-Area Conic projection, with standard parallels 20° and 60" N. This illustra

tion includes all of North America to show the change in spacing of the parallels. When used for

maps of the 48 conterminous States standard parallels are 29.5'' and 45.5° N.

the scale factor along meridians is the reciprocal of the scale factor along parallels,

to maintain equal area. An important characteristic of all normal conic projections

is that scale is constant along any given parallel.

To map a given region, standard parallels should be selected to minimize varia

tions in scale. Not only are standard parallels correct in scale along the parallel;

they are correct in every direction. Thus, there is no angular distortion, and

conformality exists along these standard parallels, even on an equal-area projection.

They may be on opposite sides of, but not equidistant from, the Equator. Deetz

and Adams (1934, p. 79, 91) recommended in general that standard parallels be

placed one-sixth of the displayed length of the central meridian from the northern

and southern limits of the map. Hinks (1912, p. 87) suggested one-seventh instead

of one-sixth. Others have suggested selecting standard parallels of conics so that

the maximum scale error (1 minus the scale factor) in the region between them is

equal and opposite in sign to the error at the upper and lower parallels, or so that

the scale factor at the middle parallel is the reciprocal of that at the limiting

parallels. Tsinger in 1916 and Kavrayskiy in 1934 chose standard parallels so that

least-square errors in linear scale were minimal for the actual land or country

being displayed on the map. This involved weighting each latitude in accordance

with the land it contains (Maling, 1960, p. 263-266).

The standard parallels chosen by Adams for Albers maps of the conterminous

United States are lats. 29.5° and 45.5°N. These parallels provide "for a scale error

slightly less than 1 per cent in the center of the map, with a maximum of VA per

cent along the northern and southern borders" (Deetz and Adams, 1934, p. 91).

For maps of Alaska, the chosen standard parallels are lats. 55° and 65°N., and for

Hawaii, lats. 8° and 18°N. In the latter case, both parallels are south of the



MAP PROJECTIONS—A WORKING MANUAL

islands, but they were chosen to include maps of the more southerly Canal Zone

and especially the Philippine Islands. These parallels apply to all maps prepared

by the USGS on the Albers projection, originally using Adams's published tables

of coordinates for the Clarke 1866 ellipsoid (Adams, 1927).

Without measuring the spacing of parallels along a meridian, it is almost impos

sible to distinguish an unlabeled Albers map of the United States from other conic

forms. It is only when the projection is extended considerably north and south,

well beyond the standard parallels, that the difference is apparent without scaling.

Since meridians intersect parallels at right angles, it may at first seem that

there is no angular distortion. However, scale variations along the meridians

cause some angular distortion for any angle other than that between the meridian

and parallel, except at the standard parallels.

FORMULAS FOR THE SPHERE

The Albers Equal-Area Conic projection may be constructed with only one

standard parallel, but it is nearly always used with two. The forward formulas for

the sphere are as follows, to obtain rectangular or polar coordinates, given R, <J>i,

<J>2i <J>0, X0. <J>, and X (see p. 291 for numerical examples):

x = p sin 6 (14-1)

y = Po-p cos e d4-2)

where

P = R(C-2n sin <J>)12/n (14-3)

6 = w(X-X0) (14-4)

p0 = R(C-2n sin 4>0)™in (14-3a)

C = cos2 4>\ + 2n sin <J>i (14-5)

n = (sin 4>i -(- sin <J>2)/2 (14-6)

<J>0, X0 = the latitude and longitude, respectively, for the origin

of the rectangular coordinates.

4>i, <i>2 = standard parallels.

The Y axis lies along the central meridian X0, y increasing northerly. The X axis

intersects perpendicularly at 4>,,, x increasing easterly. If (X— X0) exceeds the

range ±180°, 360° should be added or subtracted to place it within the range.

Constants », C, and p0 apply to the entire map, and thus need to be calculated

only once. If only one standard parallel <J>, is desired (or if <J>, = <J>2), /( = sin <J>m.

By contrast, a geometrically secant cone requires a cone constant n of sin [(<J>i +

4>2)/2], slightly but distinctly different from equation (14 — 6). If the projection is

designed primarily for the Northern Hemisphere, n and p are positive. For the

Southern Hemisphere, they are negative. The scale along the meridians, using

equation (4-4),

h = cos 4>/(C-2h sin (14-7)

If equation (4-5) is used, k will be found to be the reciprocal of h, satisfying

the requirement for an equal-area projection when meridians and parallels in

tersect at right angles. The maximum angular deformation may be calculated

from equation (4-9). It may be seen from equation (14-7), and indeed from equa
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tions (4-4) and (4-5), that distortion is strictly a function of latitude, and not of

longitude. This is true of any regular conic projection.

For the inverse formulas for the sphere, given R, <i>u <J>2, <J>0, X0, x, and y:

n, C and p0 are calculated from equations (14-6), (14-5), and (14-3a), respec

tively. Then,

<J> = arcsin \[C-(pn/Rf]/(2n)\ (14-8)

X =X0 + e/n (14-9)

where

p =[x2 + (P0-yfy (14-10)

6 = arctan [x/(p0-y)] (14-11)

Note: to use the ATAN2 Fortran function, if n is negative, the signs of x, y,

and p0 (given a negative sign by equation (14-3a)) must be reversed before in

serting them in equation (14-11).

FORMULAS FOR THE ELLIPSOID

The formulas displayed by Adams and most other writers describing the ellip

soidal form include series, but the equations may be expressed in closed forms

which are suitable for programming, and involve no numerical integration or iter

ation in the forward form. Nearly all published maps of the United States based

on the Albers use the ellipsoidal form because of the use of tables for the original

base maps. (Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93-99; Snyder,

1979a, p. 71). Given a, e, <J>i, <i>2, <J>0, ^0, <J>. and X (see p. 292 for numerical

examples):

x = p sin 6 (14-1)

y = p0-p cos 6 (14-2)

where

p =a(C-nqyVn (14-12)

6 = n(X-X0) (14-4)

p0 =a(C-nq0yyn (14-12a)

C = mf + nq^ (14-13)

n = (mi2-m22)/(q2-q\) (14-14)

m = cos <J>/(1-e2 sin2<J>)'2 (14-15)

q = (1-e2)lsin 4>/(1-e2 sin2<J>) - [1/(2e)]

ln[(1-e sin <J>)/(1 + e sin 4>)]| (3-12)

with the same subscripts 1, 2, or none applied to m and 4> in equation (14-15),

and 0, 1, 2, or none applied to q and <J> in equation (3-12), as required by equa

tions (14-12), (14-12a), (14-13), (14-14), and (14-17). As with the spherical

case, p and n are negative, if the projection is centered in the Southern Hemi

sphere. For the scale factor, modifying (4-25):

k = pn/am (14 — 16)

= (C-nqyVm (14-17)

h =l/k (14-18)

While many ellipsoidal equations apply to the sphere if e is made zero, equation

(3-12) becomes indeterminate. Actually, if e = 0, q = 2 sin <J>. If <J>! = 4>2, equation
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(14 — 14) is indeterminate regardless of e, but n = sin 4>i. The axes and limita

tions on (X-X0) are the same as those stated for the spherical formulas. Here, too,

constants n, C, and p0 need to be determined just once for the entire map.

For the inverse formulas for the ellipsoid, given a, e, <i>u <i>,>, <J>0, X,,. x, and y:

n, C. and p0 are calculated from equations (14-14), (14-13), and (14- 12a);

respectively. Then,

* = <J> +

(1-f- sin-4>)-

2 cos 4>

sin <i>

1-e2 1-f-sin2* 2e

1 h/1-e«m»\

2e \ 1 + e sin 4> J

(3-16)

k = X0 + e/n (14-9)

where

q = (C-p2n2/a2)/H

p = [.i^-Kp0-y)2]12

6 = arctan [jr/(p0-y)]

(14-19)

(14-10)

(14-11)

To use the Fortran ATAN2 function, if n is negative, the signs of x, y, and p0

must be reversed before insertion into equation (14-11). Equation (3-16) in

volves iteration by first trying <J> = arcsin U//2) on the right side, calculating 4> on

the left side, substituting this new <i> on the right side, etc., until the change in

<J> is negligible. If

q = ±|1-[(1-e2)/2e] In [(1-e)/(1 +p)]| (14-20)

iteration does not converge, but <i> = ±90°, taking the sign of q.

Instead of the iteration, a series may be used for the inverse ellipsoidal

formulas:

* = p + (e2/3 + 31e4/180 + 517eti/5040 +
. ) sin 2p + (23c4/360

+ 251e'73780+ . . .) sin 4p + (761e6/45360 + . . .) sin fip + (3-18)

where p, the authalic latitude, adapting equations (3-11) and (3-12), is found

thus:

p = arcsin (q; l-\(l-e2)/2e] In [(1-e)/(1 +e)\\) (14-21)

but q is still found from equation (14-19). Equations (14-9), (14-10), and

(14-11) also apply unchanged. For improved computational efficiency using the

series, see p. 19.

Polar coordinates for the Albers Equal-Area Conic are given for both the

spherical and ellipsoidal forms, using standard parallels of lat. 29.5° and 45.5° N.

(table 15). A graticule extended to the North Pole is shown in figure 20.

To convert coordinates measured on an existing map, the user may choose any

meridian for X0 and therefore for the Y axis, and any latitude for 4>o- The X

axis then is placed perpendicular to the Y axis at <J>0.
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Table 15.—Albers Equal-Area Conic projection: Polar coordinates

[Standard parallel*: 29.5° and 45.5° N]

Projection for sphere (i? = 6,370,997 m) Projection for Clarke 1866 ellipsoid(rt- 0.6028370) (a = 6,378,206.4 m) (n = 0.6029035)

Lat. p k k p k k

52° 7 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863

51 77 6,801,923 .97779 1.02271 6,822,266 .97788 1.02263

50 77 6,910,941 .98296 1.01733 6,931,335 .98303 1.01727

49 77

7

7,020,505 .98760 1.01255 7,040,929 .98765 1.01251

48 77

7

7,130,555 .99173 1.00834 7,150,989 .99177 1.00830

47 77

7

7,241,038 .99538 1.00464 7,261,460 .99540 1.00462

46 77

7

7,351,901 .99857 1.00143 7,372,290 .99858 1.00143

45.5

7

7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000

45 77

7

7,463,094 1.00132 .99868 7,483,429 1.00132 .99869

44 77

7

7,574,570 1.00365 .99636 7,594,829 1.00364 .99637

43 77 7,686,282 1.00558 .99445 7,706,445 1.00556 .99447

42 77 7,798,186 1.00713 .99292 7,818,233 1.00710 .99295

41 77 7,910,244 1.00832 .99175 7,930,153 1.00828 .99178

40 77 8,022,413 1.00915 .99093 8,042,164 1.00911 .99097

39 77 8,134,656 1.00965 .99044 8,154,230 1.00961 .99048

38 77 8,246,937 1.00983 .99027 8,266,313 1.00978 .99031

37 77 8,359,220 1.00970 .99040 8,378,379 1.00965 .99044

36 77 8,471,472 1.00927 .99082 8,490,394 1.00923 .99086

35

7

8,583,660 1.00855 .99152 8,602,328 1.00852 .99155

34 77 8,695,753 1.00757 .99249 8,714,149 1.00753 .99252

33 77 8,807,723 1.00632 .99372 8,825,828 1.00629 .99375

32 77 8,919,539 1.00481 .99521 8,937,337 1.00479 .99523

31 9,031,175 1.00306 .99694 9,048,649 1.00305 .99696

30 77 9,142,602 1.00108 .99892 9,159,737 1.00107 .99893

29.5 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000

29 77 9,253,796 .99887 1.00114 9,270,575 .99887 1.00113

28 77 9,364,731 .99643 1.00358 9,381,141 .99645 1.00357

27 77 9,475,383 .99378 1.00626 9,491,411 .99381 1.00623

26 9,585,731 .99093 1.00915 9,601,361 .99097 1.00911

25 9,695,749 .98787 1.01227 9,710,969 .98793 1.01222

24 77 9,805,417 .98463 1.01561 9,820,216 .98470 1.01554

23 77 9,914,713 .98119 1.01917 9,929,080 .98128 1.01908

22 10,023,616 .97757 1.02294 10,037,541 .97768 1.02283

Note: p = radius of latitude circle, meters.

h = scale factor along meridians.

k = scale factor along parallels.

R = assumed radius of sphere,

a = assumed semimajor axis of ellipsoid.

n = cone constant, or ratio of angle between meridians on map to true angle.
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15. LAMBERT CONFORMAL CONIC PROJECTION

SUMMARY

• Conic.

• Conformal.

• Parallels are unequally spaced arcs of concentric circles, more closely spaced

near the center of the map.

• Meridians are equally spaced radii of the same circles, thereby cutting parallels

at right angles.

• Scale is true along two standard parallels, normally, or along just one.

• Pole in same hemisphere as standard parallels is a point; other pole is at infinity.

• Used for maps of countries and regions with predominant east-west expanse.

• Presented by Lambert in 1772.

HISTORY

The Lambert Conformal Conic projection (fig. 21) was almost completely over

looked between its introduction and its revival by the U.S. Coast and Geodetic

Survey (Deetz, 1918b), although France had introduced an approximate version,

calling it "Lambert," for battle maps of the First World War (Mugnier, 1983). It

was the first new projection which Johann Heinrich Lambert presented in his

Beitrage (Lambert, 1772), the publication which contained his Transverse Merca-

tor described previously. In some atlases, particularly British, the Lambert Con

formal Conic is called the "Conical Orthomorphic" projection.

7

Figi ke 21.—Lambert Conformal Conic projection, with standard parallels 20° and 60° N. North

America is illustrated here to show the change in spacing of the parallels. When used for maps of

the conterminous United States or individual States, standard parallels are 33° and 45° N.
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Lambert developed the regular Conformal Conic as the oblique aspect of a

family containing the previously known polar Stereographic and regular Mercator

projections. As he stated,

Stereographic representations of the spherical surface, as well as Mercator's nautical charts, have the

peculiarity that all angles maintain the sizes that they have on the surface of the globe. This yields

the greatest similarity that any plane figure can have with one drawn on the surface of a sphere. The

question has not been asked whether this property occurs only in the two methods of representation

mentioned or whether these two representations, so different in appearances, can be made to approach

each other through intermediate stages. * * * if there are stages intermediate to these two represen

tations, they must be sought by allowing the angle of intersection of the meridians to be arbitrarily

larger or smaller than its value on the surface of the sphere. This is the way in which I shall now pro

ceed (Lambert, 1772, p. 28, translation by Tobler).

Lambert then developed the mathematics for both the spherical and ellipsoidal

forms for two standard parallels and included a small map of Europe as an exam

ple (Lambert, 1772, p. 28- 38, 87-89).

FEATURES

Many of the comments concerning the appearance of the Albers and the selec

tion of its standard parallels apply to the Lambert Conformal Conic when an area

the size of the conterminous United States or smaller is considered. As stated

before, the spacing of the parallels must be measured to distinguish among the

various conic projections for such an area. If the projection is extended toward

either pole and the Equator, as on a map of North America, the differences be

come more obvious. Although meridians are equally spaced radii of the concentric

circular arcs representing parallels of latitude, the parallels become further apart

as the distance from the central parallels increases. Conformality fails at each

pole, as in the case of the regular Mercator. The pole in the same hemisphere as

the standard parallels is shown on the Lambert Conformal Conic as a point. The

other pole is at infinity. Straight lines between points approximate great circle

arcs for maps of moderate coverage, but only the Gnomonic projection rigorously

has this feature and then only for the sphere.

Two parallels may be made standard or true to scale, as well as conformal. It is

also possible to have just one standard parallel. Since there is no angular distor

tion at any parallel (except at the poles), it is possible to change the standard

parallels to just one, or to another pair, just by changing the scale applied to the

existing map and calculating a pair of standard parallels fitting the new scale. This

is not true of the Albers, on which only the original standard parallels are free

from angular distortion.

If the standard parallels are symmetrical about the Equator, the regular Mer

cator results (although formulas must be revised). If the only standard parallel is

a pole, the polar Stereographic results.

The scale is too small between the standard parallels and too large beyond

them. This applies to the scale along meridians, as well as along parallels, or in

any other direction, since they are equal at any given point. Thus, in the State

Plane Coordinate Systems (SPCS) for States using the Lambert, the choice of

standard parallels has the effect of reducing the scale of the central parallel by

an amount which cannot be expressed simply in exact form, while the scale for the

central meridian of a map using the Transverse Mercator is normally reduced by

a simple fraction. The scale is constant along any given parallel. While it equals

the nominal scale at the standard parallels, it actually changes most slowly in a

north-south direction at a parallel nearly halfway between the two standard

parallels.

USAGE

It was only a couple of decades after the Coast and Geodetic Survey began

publishing tables for the Lambert Conformal Conic projection (Deetz, 1918a,



MAP PROJECTIONS—A WORKING MANUAL

1918b) that the projection was adopted officially for the SPCS for States of pre

dominantly east-west expanse. The prototype was the North Carolina Coordinate

System, established in 1933. Within a year or so, similar systems were devised

for many other States, while a Transverse Mercator system was prepared for the

remaining States. One or more zones is involved in the system for each State (see

table 8) (Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used for

the Aleutian Islands of Alaska, Long Island in New York, and northwestern

Florida, although the Transverse Mercator (and Oblique Mercator in one case) is

used for the rest of each of these States.

The Lambert Conformal Conic is used for the l:1,000,000-scale regional world

aeronautical charts, the 1:500, 000-scale sectional aeronautical charts, and

1:500,000-scale State base maps (all 48 contiguous States4 have the same standard

parallels of lat. 33° and 45° N., and thus match). Also cast on the Lambert are most

of the 1:24, 000-scale 7V2-minute quadrangles prepared after 1957 which lie in zones

for which the Lambert is the base for the SPCS. In the latter case, the standard

parallels for the zone are used, rather than parameters designed for the individual

quadrangles. Thus, all quadrangles for a given zone may be mosaicked exactly.

(The projection used previously was the Polyconic, and some recent quadrangles

are being produced to the Universal Transverse Mercator projection.)

The Lambert Conformal Conic has also been adopted as the official topographic

projection for some other countries. It appears in The National Atlas (USGS,

1970, p. 116) for a map of hurricane patterns in the North Atlantic, and the Lam

bert is used by the USGS for a map of the United States showing all 50 States

in their true relative positions. The latter map is at scales of both 1:6,000,000

and 1:10,000,000, with standard parallels 37° and 65° N.

In 1962, the projection for the International Map of the World at a scale of

1:1,000,000 was changed from a modified Polyconic to the Lambert Conformal

Conic between lats. 84° N. and 80° S. The polar Stereographic projection is used in

the remaining areas. The sheets are generally 6° of longitude wide by 4° of latitude

high. The standard parallels are placed at one-sixth and five-sixths of the latitude

spacing for each zone of 4° latitude, and the reference ellipsoid is the International

(United Nations, 1963, p. 9-27). This specification has been subsequently used

by the USGS in constructing several maps for the IMW series.

Perhaps the most recent new topographic use for the Lambert Conformal Conic

projection by the USGS is for middle latitudes of the 1:1,000,000-scale geologic

series of the Moon and for some of the maps of Mercury, Mars, and Jupiter's

satellites (see table 6).

For the projection as normally used, with two standard parallels, the equations

for the sphere may be written as follows: Given R, <J>i, <J>2, <J>0, X0, 4>, and X (see

p. 295 for numerical examples):

FORMULAS FOR THE SPHERE

x = p sin 6

y = po - p cos e

(14-1)

(14-2)

where

p = #F/tan" (ir/4 + <J>/2)

6 = n(X-X0)

p0 = RF/tan" (tt/4 + <V2)

(15-1)

(14-4)

(15-1a)

4For Hawaii, the standard parallels are lats. 20" 40' and 23° 20' N.; the corresponding base map was not prepared

for Alaska.
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F = cos <i>x tan" (tt/4 + ^/2)/n (15-2)

n = In (cos Vcos <J>2)/In[tan (ir/4 + <J>2/2)/tan (ir/4 + ^/2)] (15-3)

<J>0, X0 = the latitude and longitude for the origin of the rectangular coordinates.

<J>i , <J>2 = standard parallels.

The Y axis lies along the central meridian X0, y increasing northerly; the X axis

intersects perpendicularly at <J>0, x increasing easterly. If (X-X0) exceeds the

range ± 180°, 360° should be added or subtracted. Constants n, F, and p0 need to

be determined only once for the entire map.

If only one standard parallel 4>x is desired, equation (15-3) is indeterminate,

but n = sin <J>i. The scale along meridians or parallels, using equations (4-4) or

(4-5),

A: = /? = cos <J>i tan"(W4 + V2)/[cos <J> tan"(ir/4 + <i>/2)] (15-4)

The maximum angular deformation w = 0, since the projection is conformal. As

with the other regular conics, k is strictly a function of latitude. For a projection

centered in the Southern Hemisphere, n and p are negative.

For the inverseformulas for the sphere, given R, <J>i, <J>2, <J>0, X0, x, and y: n, F,

and p0 are calculated from equations (15-3), (15-2), and (15- la), respectively.

Then,

<J> = 2 arctan (RF/p)' "—n/2

k = 6/n -h X0

where

p = ±[ar2 + (p0-2/)2]12, taking the sign of n (14-10)

6 = arctan [x/(p0-j/)j (14-11)

The Fortran ATAN2 function does not apply to equation (15-5), but when it is

used for equation (14-11), and n is negative, the signs of x, y, and p0 (negative

from equation (15- la)) must be reversed before insertion into the equation. If

p = 0, equation (15-5) involves division by zero, but <J> is ± 90°, taking the sign of n.

The standard parallels normally used for maps of the conterminous United

States are lats. 33° and 45° N., which give approximately the least overall error

within those boundaries. The ellipsoidal form is used for such maps, based on the

Clarke 1866 ellipsoid (Adams, 1918).

The standard parallels of 33° and 45° were selected by the USGS because of the

existing tables by Adams (1918), but Adams chose them to provide a maximum

scale error between latitudes 30.5° and 47.5° of one-half of 1 percent. A maximum

scale error of 2.5 percent occurs in southernmost Florida (Deetz and Adams,

1934, p. 80). Other standard parallels would reduce the maximum scale error for

the United States, but at the expense of accuracy in the center of the map.

(15-5)

(14-9)

FORMULAS FOR THE ELLIPSOID

The ellipsoidal formulas are essential when applying the Lambert Conformal

Conic to mapping at a scale of 1:100,000 or larger and important at scales of

1:5,000,000. Given a, e, <J>i, 4>2, <i>o, X0, and X (see p. 296 for numerical examples):

x = p sin 6

y = p0 - p cos 6

(14-1)

(14-2)
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k = pn/(am)

= m\tn/(mt\n)

where

P

e

P0

n

m

t

aFt"

n(X-X0)

aFt0"

(In m,-ln m2)/(ln ^-ln t2)

cos <i>/(l-e2 sin2 <J>)1"2

tan (ir/4-<J>/2)/[(1-e sin 4>)/(1 + e sin <J>)],2

or

(1 - sin <J>\ /1 + e sin <J>\,

1 + sin <J>/ \1 — e sin <J> /

i j

F =w/i/(n<i")

(14-16)

(15-6)

(15-7)

(14-4)

(15-7a)

(15-8)

(14-15)

(15-9)

(15-9a)

(15-10)

with the same subscripts 1, 2, or none applied to m and <J> in equation (14-15),

and 0, 1,2, or none applied to t and <J> in equation (15-9), as required by equations

(15-6), (15-7), and (15-8). As with other conics, a negative n and p result for

projections centered in the Southern Hemisphere. If <J> = ± 90°, p is zero for the

same sign as n and infinite for the opposite sign. If <J>i = <J>2, for the Lambert with

a single standard parallel, equation (15-8) is indeterminate, but n = sin <i>^. Origin

and orientation of axes for x and y are the same as those for the spherical form.

Constants n, F, and p0 may be determined just once for the entire map.

When the above equations for the ellipsoidal form are used, they give values

of n and p slightly different from those in the accepted tables of coordinates for a

map of the United States, according to the Lambert Conformal Conic projection.

The discrepancy is 35-50 m in the radius and 0.0000035 in n. The rectangular

coordinates are correspondingly affected. The discrepancy is less significant when

it is realized that the radius is measured to the pole, and that the distance from

the 50th parallel to the 25th parallel on the map at full scale is only 12 m out of

2,800,000 or 0.0004 percent. For calculating convenience 60 years ago, the tables

were, in effect, calculated using instead of equation (15-9),

< = tan (ir/4-<J>ff/2) (15-9b)

where <i>g is the geocentric latitude, or, as shown earlier,

<J>„ = arctan [(1-e2)tan 4>] (3-28)

In conventional terminology, the t of equation (15-9) is usually written as

tan ViZ, where Z is the colatitude of the conformal latitude x (see equation

(3-D).

For the existing tables, then, 4>g, the geocentric latitude, was used for con

venience in place of x, the conformal latitude (Adams, 1918, p. 6-9, 34). A com

parison of series equations (3-3) and (3-30), or of the corresponding columns in

table 3, shows that the two auxiliary latitudes x and <J>V are numerically very

nearly the same.

There may be much smaller discrepancies found between coordinates as calcu

lated on modern computers and those listed in tables for the SPCS. This is due

to the slightly reduced (but sufficient) accuracy of the desk calculators of 30-40

years ago and the adaptation of formulas to be more easily utilized by them. To

obtain SPCS coordinates, the appropriate "false easting" is added to x after cal

culation using (14-1).



15. LAMBERT CONFORMAL CONIC PROJECTION

The inverse formulas for ellipsoidal coordinates, given a, e, <J>i, <J>2, <K>, ^o, x,

and y: n, F, and p0 are calculated from equations (15-8), (15-10), (15-7a),

respectively. Then,

4> = tt/2-2 arctan \t[(l-e sin <J>)/(1 + e sin 4>)]e'2| (7-9)

where

t =(p/aF)"" (15-11)

p = ±[ar2 + (p0-2/)2]1/2, taking the sign of n. (14-10)

X =6/n + X0 (14-9)

e = arctan [x/(p0-y)] (14-11)

As with the spherical formulas, the Fortran ATAN2 function does not apply to

equation (7-9), but for equation (14-11), if n is negative, the signs of x, y, and

p0 must be reversed.

Equation (7-9) involves rapidly converging iteration: Calculate t from (15-11).

Then, assuming an initial trial 4> equal to (ir/2-2 arctan t) in the right side of

equation (7-9), calculate <J> on the left side. Substitute the calculated <i> into the

right side, calculate a new <J>, etc., until <J> does not change significantly from the

preceding trial value of 4>.

To avoid iteration, series (3-5) may be used with (7-13) in place of (7- 9):

<J> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + . . .) sin 2x

+ (7e4/48 + 29e6/240 + 811eH/11520 + . . .)

sin 4x + (7eH/120 + 81e*71l20 + . . .) sin 6x

+ (4279e8/161280 + . . .) sin 8x + . . . (3-5)

where

x = ir/2 -2 arctan t (7-13)

For improved computational efficiency using the series, see p. 19.

If rectangular coordinates for maps based on the tables using geocentric lati

tude are to be converted to latitude and longitude, the inverse formulas are the

same as those above, except that equation (15-9b) is used instead of (15-9) for

calculations leading to n, F, and p0, and equation (7-9), or (3-5) and (7-13), is

replaced with the following which does not involve iteration:

4> = arctan [tan ^/(1-e2)] (15-13)

where

<J>„ = ir/2-2 arctan t (15-14)

and t is calculated from equation (15-11).

Polar coordinates for the Lambert Conformal Conic are given for both the

spherical and ellipsoidal forms, using standard parallels of33° and 45° N. (table 16).

The data based on the geocentric latitude are given for comparison. A graticule

extended to the North Pole is shown in figure 21.

To convert from tabular rectangular coordinates to <J> and X, it is necessary to

subtract any "false easting" from x and "false northing" from y before inserting

x and y into the inverse formulas. To convert coordinates measured on an existing

Lambert Conformal Conic map (or other regular conic projection), the user may

choose any meridian for X0 and therefore for the Y axis, and any latitude for 4>0.

The X axis then is placed perpendicular to the Y axis at <J>0.
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16. EQUIDISTANT CONIC PROJECTION

SUMMARY

• Conic.

• Equidistant.

• Parallels, including poles, are arcs of concentric circles, equally spaced for the

sphere, at true spacing for the ellipsoid.

• Meridians are equally spaced radii of the same circles, thereby cutting parallels

at right angles.

• Scale is true along all meridians and along one or two standard parallels.

• Used for maps of small countries and regions and of larger areas with predomi

nant east-west expanse.

• Rudimentary form developed by Claudius Ptolemy about A.D. 150.

HISTORY

The simplest kind of conic projection is the Equidistant Conic, often called

Simple Conic, or just Conic projection. It is the projection most likely to be found

in atlases for maps of small countries, with its equally spaced straight meridians

and equally spaced circular parallels. A rudimentary version was described by the

astronomer and geographer Claudius Ptolemy about A.D. 150. Probably born in

Greece about A.D. 90, he spent most of his life in or near Alexandria, Egypt, and

died about A.D. 168. His greatest works were the Almagest, describing his

scientific theories, and the Geographia, which dwelt on mapmaking. These were

revived in the 15th century as the most authoritative existing standards.

In developing this projection, Ptolemy did not discuss cones, and a cone would

not properly fit his specifications, but he said (Geographia, Book 1, ch. 20):

When we cast a glance upon the middle of the northern quarter of the globe in which the greatest part

of the oikumene [or ecumene, or inhabited world] lies, then the meridians give the impression of being

straight lines if we turn the globe thus that the meridians successively come out of their sideward

situation right before the spectator, so that the eye comes in their plane. The parallels give clearly the

impression of arcs of circles which turn their convex side to the south (Keuning, 1955, p. 9).

Ptolemy's conic projection extends from latitudes approximating 63°N. to 16°S.

Although meridians north of the Equator fan out as straight radii from the center

of the circular parallels, they break at the Equator to connect with straight lines

to points along the southernmost parallel which are the same distance apart as

corresponding points at 16°N.

Johannes Ruysch (7-1533) modified this approach to continue meridians as

straight radii below the Equator in a world map of 1508, and Gerardus Mercator

made other modifications in the mid-16th century. The Equidistant Conic with

two standard parallels is credited to Joseph Nicolas De l'lsle (1688-1768), of an

illustrious French mapmaking family. He used it for a map of Russia in 1745.

There were differences in his approach, however, which resulted in meridians

which are not radii of the circular arcs representing the circles.

Several Scot (Murdoch), Swiss (Euler), English (Everett), and Russian

(Vitkovskiy, Kavrayskiy, and others) mathematicians published papers between

1758 and 1934 describing means of selecting the two standard parallels so that

distortion is minimized using various criteria. Each of them used the same basic

conic projection with concentric circular parallels and straight meridians for radii

(Snyder, 1978a). The name of one of them, V. V. Kavrayskiy (or Kavraisky), has

been mistakenly applied in some U.S. literature to the basic projection, but his

contribution did not occur until 1934.



MAP PROJECTIONS—A WORKING MANUAL

FEATURES

The Equidistant Conic projection (fig. 22) is neither conformal (like the Lam

bert Conformal Conic) nor equal-area (like the Albers), but it serves as a compro

mise between them. The Lambert parallels are more widely spaced away from

the central parallel, and the Albers parallels become closer together. The paral

lels on the Equidistant Conic remain equally spaced on the spherical version (as

they are on the sphere) and nearly so on the ellipsoidal version (with the same

spacing as the distances along the meridians on the ellipsoid).

As on other normal conics, the meridians are equally spaced radii of the concen

tric circular arcs which form the parallels. The meridians are spaced at equal

angles which are less than the true angles between the meridians; the ratio is

called the cone constant, as it is on other conic projections. The poles are normally

also plotted as circular arcs.

Either one or two parallels may be made standard or true to scale. There is no

shape, area, or scale distortion along the standard parallels. While meridians are

at correct scale everywhere, the scale along the parallels between the standard

parallels (if there are two) is too small, and the scale along parallels beyond the

standard parallel(s) is too great.

If the one standard parallel is the Equator, the Equidistant Conic projection

becomes the Plate Carree form of the Equidistant Cylindrical, but the formulas

must be changed. If the two standard parallels are symmetrical about the Equator,

the Equirectangular results. If the standard parallel is the pole, the Azimuthal

Equidistant projection is obtained.

7

FlGl'RE 22.—Equidistant Conic projection, with standard parallels 20° and 60° N. All of North Amer

ica is included to show that parallels remain equidistant. Compare fibres 20 and 21.
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USAGE

The Equidistant Conic projection is commonly used in the spherical form in

atlases for maps of small countries. Its only use by the USGS has been in an

approximate ellipsoidal form for Alaska Maps "B" and "E," but the projection

name applied is "Modified Transverse Mercator" (see p. 64), due to the original

manner of construction. The formulas for the ellipsoidal version were apparently

first published in Snyder (1978a), although there may be several de facto usages

of the ellipsoidal form such as the above. For example, the New Mexico Planning

Survey in effect devised such a projection in 1936 for the mapping of that State,

calling it a "Modified Conic Projection" (Thomas E. Henderson, pers. comm.,

1985).

FORMULAS FOR THE SPHERE

For the Equidistant Conic projection with two standard parallels, given R, fa,

fa, 4>0. ^0, <J>, and X, to find x and y (see p. 298 for numerical examples):

x = p sin 6 (14-1)

y = p0-p cos 6 (14-2)

where

p = R (G-fa (16-1)

6 = n (X-X0) (14-4)

p0 =R (G-fa) (16-2)

G = (cos fa)/n + fa (16-3)

n = (cos 4>i-cos <J>2)/(<J>:,-<J>i) (16-4)

<J>0, X0 = the latitude and longitude for the origin of the rectangular coordinates.

4>i, fa = standard parallels.

The Y axis lies along the central meridian X0, y increasing northerly; the X axis

intersects perpendicularly at <J>0, x increasing easterly. If (X-X0) exceeds the

range ±180°, 360° should be added or subtracted. Constants n, G, and p0 need

to be determined only once for the entire map.

If only one standard parallel <J>i is desired, equation (16-4) is indeterminate,

but n = sin fa. The scale h along meridians is 1.0. Along parallels, using equation

(4-5), the scale is

k = (G-<J>)n/cos <J> (16-5)

The maximum angular deformation may be calculated from equation (4-9). As on

other regular conics, distortion is only a function of latitude.

For the inverseformulasfor the sphere, given R, fa, fa, fa, X0, .i*. and 2/, to find

<J> and X: n, G, and p0 are calculated from equations (16-4), (16-3), and (16-2),

respectively. Then,

<J> = G - p/R (16-6)

X = X0 + Q/n (14-9)

where

p = ±[x2 + (p0-2/)2]1'2,takingthesignofn (14-10)

6 = arctan [x/(p0-y)] (14-11)
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To use the ATAN2 function, if n is negative, the signs of x, y, and p0 (given a

negative sign by equation (16-2)) must be reversed before inserting them in

equation (14-11).

FORMULAS FOR THE ELLIPSOID

For mapping of regions smaller than the United States at scales greater than

1:5,000,000, using the Equidistant Conic projection, the ellipsoidal formulas should

be considered. Given a, e, fa, fa, <J>0, X0, 4>, and X, to find x and y (see p. 299

for numerical examples):

x = p sin 6 (14-1)

y = p0-p cos 6 (14-2)

k = pn/(am) (14-16)

= (G-M/a)n/m (16-7)

where

p = a G-M (16-8)

6 =n (X-Xo) (14-4)

p0 = a G-M0 (16-9)

n = a(m\-m2)/(M2-Mi) (16-10)

m = cos <J>/(1 — e2 sin2 <J>)1S
(14-15)

G = m\/n + M^/a (16-11)

M = a [(1-e2/4-3e4/64-5e6/256-. . .)<i>

- (3e2/8 + 3e4/32 + 45e'71024 + . . .) sin 2*

+ (15e4/256 + 45e6/1024 + . . .) sin 4<J>

- (35e6/3072 + . . .) sin 6<J> + . . .] (3-21)

with the same subscripts 1, 2, or none applied to m and <J> in equation (14-15), and

0, 1,2, or none applied to M and 4> in equation (3-21). For improved computa

tional efficiency using the series, see p. 19. As with other conics, a negative n and

p result for projections centered in the Southern Hemisphere. Ufa = fa, for the

Equidistant Conic with a single standard parallel, equation (16-10) is indetermi

nate, but n = sin fa. Origin and orientation of axes for x and y are the same as

those for the spherical form. Constants n, G, and p0 may be determined just once

for the entire map.

For the inverse formulas for the ellipsoid, given a, e, fa, fa, <J>0, X0, x, and y, to

find <J> and X: n, G, and p0 are calculated from equations (16-10), (16-11), and

(16-9), respectively. Then

<J> = p. + (3e,/2-27e,3/32+ . . .) sin 2p. + (21e,2/16-55e,4/32 + . . .)

sin4p. + (151e,3/96- . . .)sin6p. + (1097e!4/512- . . .)sin8p.+ . . . (3-26)

where

e, =[1 - (1-^PM1 + d-e2)1^] (3-24)

p. = M/[a(1-e2/4-3e4/64-5e6/256- . . .)] (7-19)

M = a G - p (16-12)

p = ± [or2 + (po-2/)2]1 % taking the sign of n (14-10)

X = X0 + 6/n (14-9)

6 = arctan [x/(p0-y)] (14-11)

To use the ATAN2 function, if n is negative, the signs of x, y, and p0, must be

reversed before inserting them in equation (14-11). For improved computational

efficiency using the series (3-26), see p. 19.



16. EQUIDISTANT CONIC PROJECTION

Polar coordinates for the Equidistant Conic projection for a map of the United

States, assuming standard parallels of lat. 29.5° and 45.5°N., are listed in table 17

for both the spherical and ellipsoidal forms. A graticule extended to the North

Pole is shown in figure 22.

To convert coordinates measured on an existing Equidistant Conic map, the

user may choose any meridian for X0 and therefore for the Y axis, and any latitude

for <J>0. The X axis then is placed perpendicular to the Y axis at <J>0.

Table 17.—Equidistant Conic projection: Polar coordinates

[Standard parallels: 29.5". 45.5°N/

Projection for sphere ,R = 6,370,997 m) Projection for Clarke 1866 ellipsoid

(n = 0.6067854) <« = 6,378.206.4 m, <« - 0.6068355)

Lat. P k P k

52° 6,636,493 1.02665 6,656,864 1.02656

51 6,747,688 1.02120 6,768,123 1.02113

50 6,858,883 1.01628 6,879,362 1.01622

49 6,970,078 1.01186 6,990,581 1.01182

48 7,081,272 1.00792 7,101,781 1.00790

47 7,192,467 1.00444 7,212.961 1.00442

46 7,303,662 1.00138 7,324,122 1.00137

45.5 7,359,260 1.00000 7,379,695 1.00000

45 7,414,857 0.99872 7,435,263 0.99873

44 7,526,052 .99646 7,546,384 .99648

43 7,637,247 .99457 7,657,485 .99460

.12 7,748,442 .99304 7,768,566 .99307

41 7,859,637 .99186 7,879,628 .99189

40 7,970,831 .99101 7,990,671 .99105

39 8,082,026 .99048 8,101,694 .99052

38 8,193,221 .99026 8,212,697 .99030

37 8,304,416 .99035 8,323,682 .99039

36 8,415,611 .99073 8,434,648 .99077

35 8,526,806 .99140 8,545,594 .99144

34 8,638,001 .99235 8,656,523 .99239

33 8,749,196 .99358 8,767,433 .99361

32 8,860,390 .99508 8,878,325 .99511

31 8,971,585 .99685 8,989,199 .99687

30 9,082,780 .99889 9,100,056 .99889

29.5 9,138,378 1.00000 9,155,478 1.00000

29 9,193,975 1.00118 9,210,896 1.00117

28 9,305,170 1.00373 9,321,720 1.00371

27 9,416,365 1.00654 9,432,527 1.00651

26 9,527,560 1.00960 9,543.318 1.00955

25 9,638,755 1.01291 9,654.093 1.01285

24 9,749,949 1.01648 9,764,854 1.01640

23 9,861,144 1.02030 9,875,600 1.02020

22 9,972,339 1.02437 9,986,332 1.02425

Note: p = radius of latitude circles, meters.

h. = scale factor along meridians = 1.0.

k = scale factor along parallels.

R = assumed radius of sphere.

a = assumed semimajor axis of ellipsoid.

n = cone constant, or ratio of angle between meridians on map to true angle.
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17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION

SUMMARY

• Two oblique conic projections, side-by-side, but with poles 104° apart.

• Conformal.

• Meridians and parallels are complex curves, intersecting at right angles.

• Scale is true along two standard transformed parallels on each conic projection,

neither of these lines following any geographical meridian or parallel.

• Very small deviation from conformality, where the two conic projections join.

• Specially developed for a map of the Americas.

• Used only in spherical form.

• Presented by Miller and Briesemeister in 1941.

HISTORY

A "tailor-made" projection is one designed for a certain geographical area.

0. M. Miller used the term for some projections which he developed for the Amer-

can Geographical Society (AGS) or for their clients. The Bipolar Oblique Conic

Conformal projection, developed with William A. Briesemeister, was presented

in 1941 and designed specifically for a map of North and South America con

structed in several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941).

It is an adaptation of the Lambert Conformal Conic projection to minimize scale

error over the two continents by accommodating the fact that North America

tends to curve toward the east as one proceeds from north to south, while South

America tends to curve in the opposite direction. Because of the relatively small

scale of the map, the Earth was treated as a sphere. To construct the map, a great

circle arc 104° long was selected to cut through Central America from southwest to

northeast, beginning at lat. 20° S. and long. 110° W. and terminating at lat. 45° N.

and the resulting longitude of about 19°59'36" W.

The former point is used as the pole and as the center of transformed parallels

of latitude for an Oblique Conformal Conic projection with two standard parallels

(at polar distances of 31° and 73°) for all the land in the Americas southeast of the

104° great circle arc. The latter point serves as the pole and center of parallels for

an identical projection for all land northwest of the same arc. The inner and outer

standard parallels of the northwest portion of the map, thus, are tangent to the

outer and inner standard parallels, respectively, of the southeast portion, touch

ing at the dividing line (104°-31° = 73°).

The scale of the map was then increased by about 3.5 percent, so that the linear

scale error along the central parallels (at a polar distance of 52°, halfway between

31° and 73°) is equal and opposite in sign (-3.5 percent) to the scale error along the

two standard parallels (now +3.5 percent) which are at the normal map limits.

Under these conditions, transformed parallels at polar distances of about 36.34°

and 66.58° are true to scale and are actually the standard transformed parallels.

The use of the Oblique Conformal Conic projection was not original with Miller

and Briesemeister. The concept involves the shifting of the graticule of meridians

and parallels for the regular Lambert Conformal Conic so that the pole of the

projection is no longer at the pole of the Earth. This is the same principle as the

transformation for the Oblique Mercator projection. The bipolar concept is unique,

however, and it has apparently not been used for any other maps.

FEATURES AND USAGE

The Geological Survey has used the North American portion of the map for the

Geologic Map (1965), the Basement Map (1967), the Geothermal Map, and the

Metallogenic Map, all retaining the original scale of 1:5,000,000. The Tectonic
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Map of North America (1969) is generally based on the Bipolar Oblique Conic

Conformal, but there are modifications near the edges. An oblique conic projec

tion about a single transformed pole would suffice for either one of the continents

alone, but the AGS map served as an available base map at an appropriate scale.

In 1979, the USGS decided to replace this projection with the Transverse Merca-

tor for a map of North America.

The projection is conformal, and each of the two conic projections has all the

characteristics of the Lambert Conformal Conic projection, except for the impor

tant difference in location of the pole, and a very narrow band near the center.

While meridians and parallels on the oblique projection intersect at right angles

because the map is conformal, the parallels are not arcs of circles, and the meridi

ans are not straight, except for the peripheral meridian from each transformed

pole to the nearest normal pole.

The scale is constant along each circular arc centered on the transformed pole

for the conic projection of the particular portion of the map. Thus, the two lines at

a scale factor of 1.035, that is, both pairs of the official standard transformed

parallels, are mapped as circular arcs forming the letter "S." The 104° great circle

arc separating the two oblique conic projections is a straight line on the map, and

all other straight lines radiating from the poles for the respective conic projec

tions are transformed meridians and are therefore great circle routes. These

straight lines are not normally shown on the finished map.

At the juncture of the two conic projections, along the 104° axis, there is actually

a slight mathematical discontinuity at every point except for the two points at

which the transformed parallels of polar distance 31° and 73° meet. If the conic

projections are strictly followed, there is a maximum discrepancy of 1.6 mm at the

1:5,000,000 scale at the midpoint of this axis, halfway between the poles or between

the intersections of the axis with the 31° and 73° transformed parallels. In other

words, a meridian approaching the axis from the south is shifted up to 1.6 mm

along the axis as it crosses. Along the axis, but beyond the portion between the

lines of true scale, the discrepancy increases markedly, until it is over 240 mm at

the transformed poles. These latter areas are beyond the needed range of the map

and are not shown, just as the polar areas of the regular Lambert Conformal

Conic are normally omitted. This would not happen if the Oblique Equidistant

Conic projection were used.

The discontinuity was resolved by connecting the two arcs with a straight line

tangent to both, a convenience which leaves the small intermediate area slightly

nonconformal. This adjustment is included in the formulas below.

FORMULAS FOR THE SPHERE

The original map was prepared by the American Geographical Society, in an

era when automatic plotters and easy computation of coordinates were not yet

present. Map coordinates were determined by converting the geographical coordi

nates of a given graticule intersection to the transformed latitude and longitude

based on the poles of the projection, then to polar coordinates according to the

conformal projection, and finally to rectangular coordinates relative to the selected

origin.

The following formulas combine these steps in a form which may be programmed

for the computer. First, various constants are calculated from the above

parameters, applying to the entire map. Since only one map is involved, the

numerical values are inserted in formulas, except where the numbers are tran

scendental and are referred to by symbols.

If the southwest pole is at point A, the northeast pole is at point B, and the

center point on the axis is C,
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kB= -110° + arccos | [ cos 104°- sin ( - 20°) sin 45°J/

[cos(-20°) cos 45°]1 (17-1)

= -19°59'36" long., the longitude of B (negative is west long.)

n = (In sin 31°-In sin 73°)/[In tan (3172)-In tan (7372)] (17-2)

= 0.63056, the cone constant for both conic projections

Fu = R sin 317[m tan"(3172)J (17-3)

= 1.83376 R, where R is the radius of the globe at the scale of the map.

For the 1:5,000,000 map, R was taken as 6,371,221 m, the radius of a

sphere having a volume equal to that of the International ellipsoid.

k0 = 2/[1 + nF0 tan" 267(# sin 52°)] (17-4)

= 1.03462, the scale factor by which the coordinates are multiplied to balance

the errors

F=k0F0 (17-5)

= 1.89725 R, a convenient constant

AzAB = arccos |[cos (-20°) sin 45°-sin (-20°) cos 45° cos

(XB+110°)]/sin 104°! (17-6)

= 46.78203°, the azimuth east of north of B from A

AzHA = arccos |[cos 45° sin (-20°) -sin 45° cos (-20°) cos

(Xw+110°)]/sin 104°! (17-7)

= 104.42834°, the azimuth west of north of A from B

T=tan" (3172) + tan"(7372) (17-8)

= 1.27247, a convenient constant

pc=V*FT (17-9)

= 1.20709 R, the radius of the center point of the axis from either pole

zr = 2 arctan (772)1 " (17-10)

= 52.03888°, the polar distance of the center point from either pole

Note that zc would be exactly 52°, if there were no discontinuity at the axis. The

values of <J>,„ Xc, and Azc are calculated as if no adjustment were made at the axis

due to the discontinuity. Their use is completely arbitrary and only affects posi

tions of the arbitrary X and Y axes, not the map itself. The adjustment is included

in formulas for a given point.

<i>c = arcsin [sin (—20°) cos zc + cos (-20°) sin zccos AzAU] (17-11)

= 17°16'28" N. lat., the latitude of the center point, on the

southern-cone side of the axis

Xc = arcsin (sin zrsin AzAfjeos <i>c) — 110° (17-12)

= -73°00'27" long., the longitude of the center point, on the

southern-cone side of the axis

Azc = arcsin [cos (-20°) sin AzAB/coa <J>c] (17-13)

= 45.81997°, the azimuth east of north of the axis at the center point, relative

to meridian Xc on the southern-cone side of the axis

The remaining equations are given in the order used, for calculating rectangu

lar coordinates for various values of latitude 4> and longitude X (measured east

from Greenwich, or with a minus sign for the western values used here). There

are some conditional transfers and adjustments which would apply only if a map

extending well beyond the regions of interest were to be plotted; these are omit

ted to avoid unnecessary complication. It must be established first whether point

(4>, X) is north or south of the axis, to determine which conic projection is involved.

With these formulas, it is done by comparing the azimuth of point (<i>, X) with the

azimuth of the axis, all as viewed from B (see p. 301 for numerical examples):

zs = arccos [sin 45° sin <i> + cos 45° cos <i> cos (X,<-X)|

= polar distance of (4>, X) from pole B

(17-14)



17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION

AzB = arctan lsin (X„-X)/[cos 45° tan <J>-sin 45° cos (X^-X)]; (17-15)

= azimuth of (<J>, X) west of north, viewed from B

If AzB is greater than AzBA (from equation (17-7)), go to equation (17-23).

Otherwise proceed to equation (17-16) for the projection from pole B.

pB = F tanni/22B (17-16)

k = pBn/(R sin zB) (17-17)

= scale factor at point (4>, X), disregarding

small adjustment near axis

a = arccos \[tan»V2zB + tanwl/2(104o-zB)]/7,i (17- 18)

If In (AzBA-AzB)\ is less than a,

P«' = P//coS (a-" (AzBA-AzB)] (17-19)

If the above expression is equal to or greater than a,

P«'=P«- (17-20)

Then

x, = pB' sin [n (AzBA-AzB)] (17-21)

y' = PB' cos [n (AzBA-AzB)]-pc (17-22)

using constants from equations (17-2), (17-3), (17-7), and (17-9) for rectangu

lar coordinates relative to the axis. To change to nonskewed rectangular

coordinates, go to equations (17-32) and (17-33). The following formulas give

coordinates for the projection from pole A.

zA = arccos [sin (-20°) sin <J> + cos (-20°) cos <J> cos (X + 110°)] (17-23)

= polar distance of (<J>, X) from pole A

AzA = arctan |sin (X + 110°)/[cos (-20°) tan <J>-sin (-20°)

cos (X + 110°)]) (17-24)

= azimuth of (<J>, X) east of north, viewed from A

pA= Ftan»V2ZA (17-25)

k = pAn/R sin zA = scale factor at point (<J>, X) (17-26)

a= arccos |[tan"1/22^+tan"I/2(104°-zA)]/7,| (17-27)

If In (AzAH-AzA)\ is less than a,

P/ = P.4/cos [« + n ^Azah~Aza^ (17-28)

If the above expression is equal to or greater than a,

pA' = pA (17-29)

Then

x' = pA sin [n (AzAB-AzA)] (17-30)

y' = -pA cos [n (AzAB-AzA)] + pc (17-31)

x = —x' cos Azc-y' sin Azc (17-32)

y = ~y' cos Azc + x' sin Azc (17-33)

where the center point at (4>c, kc) is approximately the origin of (x, y) coordinates,

the Y axis increasing due north and the X axis due east from the origin. (The
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meridian and parallel actually crossing the origin are shifted by about 3' of arc,

due to the adjustment at the axis, but their actual values do not affect the

calculations here.)

For the inverse formulas for the Bipolar Oblique Conic Conformal, the con

stants for the map must first be calculated from equations (17- 1) — (17- 13).

Given x and y coordinates based on the above axes, they are then converted to the

skew coordinates:

x' = -x cos Azc + y sin Azc (17-34)

y' = -x sin Azc-y cos Azc (17-35)

If x' is equal to or greater than zero, go to equation (17-36). If x' is negative,

go to equation (17-45).

pB' = k'2 + (Pr + .i/')2]'-' (17-36)

AzB' = arctan [x7(pc + y')] (17-37)

Let

P„ = PB' (17-38)

zB = 2 arctan (p^/F)1 " (17-39)

a = arccos |[tan" -Kan",/2(104o-zB)]/7'| (17-40)

If \AzB'\ is equal to or greater than a, go to equation (17-42). If \AzB'\ is less

than a, calculate

pB = pB' cos (a-AzB') (17-41)

and use this value to recalculate equations (17-39), (17-40), and (17-41), repeat

ing until ps found in (17-41) changes by less than a predetermined convergence.

Then,

AzB = AzBA-AzB'/n (17-42)

Using AzB and the final value of zB,

<J> = arcsin (sin 45° cos zB + cos 45° sin zB cos AzB) (17-43)

X = X„-arctan 1sin Az^\cos 457tan zK-sin 45° cos AzB]\ (17-44)

The remaining equations are for the southern cone only (negative x'):

PA' = W2+(pc-y,?Y* (17-45)

AzA' = arctan [x'/(pc-y')] (17-46)

Let

P, = Pa' (17-47)

zA = 2 arctan (p4/F)1 " (17-48)

a = arccos |ftan"1^ + tanni/2(104°-z/4)]/7,| (17-49)

If \AzA'\ is equal to or greater than a, go to equation (17-51). If \AzA'\ is less

than a, calculate

PA = PA' cos (a+Az/) (17-50)
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_

Figure 23.—Bipolar Oblique Conic Conformal projection used for various geologic maps. The Ameri

can Geographical Society, under 0. M. Miller, prepared the base map used by the USGS. (Pre

pared by Tau Rho Alpha.)

and use this value to recalculate equations (17-48), (17-49), and (17-50), repeat

ing until pA found in equation (17-50) changes by less than a predetermined

convergence. Then,

AzA=AzAB-AzA'/n (17-51)

Using Az^ and the final value of zA,

d> = arcsin [sin (-20°) cos zA +cos 20° sin zA cos AzA] (17-52)

X = arctan |sin AzA/[cos (-20°)/tan zA

-sin (-20°) cos A?j|-110° (17-53)

Equations (17-17) or (17-26) may be used for calculating k after <J> and X are

determined.

A table of rectangular coordinates is given in table 18, based on a radius R of

1.0, while a graticule is shown in figure 23.
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-.20401*
(-1.67949)(1.07737) (.91246) (.74880) (.58603) (.42294) (.25766) (.08782)

(-.08980) (-.27620) (-.48380)
(-.73406) (-.96476) (-1.14111) (-1.28862) (-1.42268) (-1.55124)

1020 — —
-0.18140

-.22126 -.26359 -.80732 -.32078 -.39231 -.48026 -.46280 -.48408 -.48812 -.38781 -.26583 -.14798 -.03499 .04042 .18569

— —

-.86567*(1.08634) (.98098) (.77644) (.62133)
(.46380)

(.80074) (.12988) (-.805222) (-.24918)
(-.47120)

(-.84124) (-1.1001) (-1.24800) (-1.32082) (-1.48363)
(-1.5920)

(-1.20055) (-1.81171)

1120 — —

-0.20973 -.24093 -.34310 -.40985 -.47485 -.53678 -.59421 -.64522 -.68204 -.72338 -.55209 -.37784 -.28054 -.09524 .03204 .16491 .29823

(1.09992) (.95806) (.81589) (.67112) (.52100) (.36240) (.19177) (.00499)

—

-0.23569 -.32673 -.41763 -.20739 -.59515 -.67999 -.78061 -.83496

—

_

— — — — — — — — — — —1220 —

-0.25892 (1.11769) -.37243 (.99311) -.48559 (.86677) -.59806
(.73520)

(.59654)
-.81920
(.44545)

— — — —

_

— —

—

-.20964

— — — —

_

— — — — — — — — — — — — —
180°

—

-0.0876 (1.13914) -.41182 (1.03535) -.54518 (.92849) (.81512) (.69140)

— — — —

_

—

— —

-.67943 -.81523

—

_

—

_ _

—

_ _

— — —

_

—

_

—1420

-0.29464 (1.16367) -.44372 (1.08381) -.59444 (1.00006) -.74851 (.20886)

— — — — — — —

_

— —

_

_

— — —

_ _

—

_ _ _ _ _ _

—

_ _

—

_

—
120°

-0.80808 (1.12057) -.46205 (1.13725) -.63138 (1.07999) -.80200 (1.01551)

_

—

_ _ _ _

— —

.

—

_

—

_

—

_

—

_ _ _

__.

_ _ _ _ . _

180°

_ _ _ _ _ _ _ _

beyondarbitrarymaplimits

_

beyondarbitrarymaplimits

120°

-0.14576 (1.24809) -.3103 (1.21204) -.48092 (1.19421) -.65416 (1.16623) -.83656
(1.13280)

_ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ _

Lat.W.Long.

20°
80

20 80 20
40

80
20 10 0'' -10 -20
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Table18.—BipolarObliqueConicConformalprojection:Rectangularcoordinates—Continued

Lat.W.Long.
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MAP PROJECTIONS—A WORKING MANUAL

18. POLYCONIC PROJECTION

SUMMARY

• Neither conformal nor equal-area.

• Parallels of latitude (except for Equator) are arcs of circles, but are not

concentric.

• Central meridian and Equator are straight lines; all other meridians are

complex curves.

• Scale is true along each parallel and along the central meridian, but no parallel

is "standard."

• Free of distortion only along the central meridian.

• Used almost exclusively in slightly modified form for large-scale mapping in the

United States until the 1950's.

• Was apparently originated about 1820 by Hassler.

HISTORY

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 24) began to promote the

Polyconic projection, which was to become a standard for much of the official

mapping of the United States (Deetz and Adams, 1934, p. 58-60).

Born in Switzerland in 1770, Hassler arrived in the United States in 1805 and

was hired 2 years later as the first head of the Survey of the Coast. He was forced

to wait until 1811 for funds and equipment, meanwhile teaching to maintain

income. After funds were granted, he spent 4 years in Europe securing equipment.

Surveying began in 1816, but Congress, dissatisfied with the progress, took the

Survey from his control in 1818. The work only foundered. It was returned to

Hassler, now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a

result of exposure after a fall, trying to save his instruments in a severe wind and

hailstorm, but he had firmly established what later became the U.S. Coast and

Geodetic Survey (Wraight and Roberts, 1957) and is now the National Ocean

Service.

The Polyconic projection, usually called the American Polyconic in Europe,

achieved its name because the curvature of the circular arc for each parallel on the

map is the same as it would be following the unrolling of a cone which had been

wrapped around the globe tangent to the particular parallel of latitude, with the

parallel traced onto the cone. Thus, there are many ("poly-") cones involved,

rather than the single cone of each regular conic projection. As Hassler himself

described the principles, "[t]his distribution of the projection, in an assemblage of

sections of surfaces of successive cones, tangents to or cutting a regular succes

sion of parallels, and upon regularly changing central meridians, appeared to me

the only one applicable to the coast of the United States" (Hassler, 1825,

p. 407-408).

The term "polyconic" is also applied generically by some writers to other

projections on which parallels are shown as circular arcs. Most commonly, the

term applies to the specific projection described here.

FEATURES

The Polyconic projection (fig. 25) is neither equal-area nor conformal. Along the

central meridian, however, it is both distortion free and true to scale. Each

parallel is true to scale, but the meridians are lengthened by various amounts to

cross each parallel at the correct position along the parallel, so that no parallel is

standard in the sense of having conformality (or correct angles), except at the
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Figure 24.—Ferdinand Rudolph Hassler (1770-1843), first Superintendent of the U.S. Coast Survey

and presumed inventor of the Polyconic projection. As a result of his promotion of its use, it

became the projection exclusively used for USGS topographic quadrangles for about 70 years.

central meridian. Near the central meridian, which is the case with 7Vfe-minute

quadrangles, distortion is extremely small. The Polyconic projection is universal

in that tables of rectangular coordinates may be used for any Polyconic projection

of the same ellipsoid by merely applying the proper scale and central meridian.

U.S. Coast and Geodetic Survey Special Publication No. 5 (1900) replaced tables

published in 1884 and was often reprinted because of the universality of the

projection (the Clarke 1866 is the reference ellipsoid). Polyconic quadrangle maps

prepared to the same scale and for the same central meridian and ellipsoid will fit
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Figure 25.—North America on a Polyconic projection grid, central meridian long. 100° W., using a

10° interval. The parallels are arcs of circles which are not concentric, but have radii equal to the

radius ofcurvature of the parallel at the Earth's surface. The meridians are complex curves formed

by connecting points marked off along the parallels at their true distances. Used by the USGS

for topographic quadrangle maps.

exactly from north to south. Since they are drawn in practice with straight

meridians, they also fit east to west, but discrepancies will accumulate if mosaick

ing is attempted in both directions.

The parallels are all circular arcs, with the centers of the arcs lying along an

extension of the straight central meridian, but these arcs are not concentric.

Instead, as noted earlier, the radius of each arc is that of the circle developed

from a cone tangent to the sphere or ellipsoid at the latitude. For the sphere, each

parallel has a radius proportional to the cotangent of the latitude. For the ellipsoid,

the radius is slightly different. The Equator is a straight line in either case. Along

the central meridian, the parallels are spaced at their true intervals. For the

sphere, they are therefore equidistant. Each parallel is marked off for meridians

equidistantly and true to scale. The points so marked are connected by the curved

meridians.

USAGE

As geodetic and coastal surveying began in earnest during the 19th century,

the Polyconic projection became a standard, especially for quadrangles. Most

coastal charts produced by the Coast Survey and its successor during the 19th

century were based on one or more variations of the Polyconic projection

(Shalowitz, 1964, p. 138-141). The name of the projection appears on a later

reprint of one of the first published USGS topographic quadrangles, which

appeared in 1886. In 1904, the USGS published tables of rectangular coordinates

extracted from an 1884 Coast and Geodetic Survey report. They were called
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"coordinates of curvature," but were actually coordinates for the Polyconic

projection, although the latter term was not used (Gannett, 1904, p. 37-48).

As a 1928 USGS bulletin of topographic instructions stated (Beaman, 1928,

p. 163):

The topographic engineer needs a projection which is simple in construction, which can be used to

represent small areas on any part of the globe, and which, for each small area to which it is applied,

preserves shapes, areas, distances, and azimuths in their true relation to the surface of the earth. The

polyconic projection meets all these needs and was adopted for the standard topographic map of the

United States, in which the 1° quadrangle is the largest unit * * * and the 15' quadrangle is the average

unit. * * * Misuse of this projection in attempts to spread it over large areas—that is, to construct a

single map of a large area—has developed serious errors and gross exaggeration of details. For

example, the polyconic projection is not at all suitable for a single-sheet map of the United States or of

a large State, although it has been so employed.

When coordinate plotters and published tables for the State Plane Coordinate

System (SPCS) became available in the late 1950's, the USGS ceased using the

Polyconic for new maps, in favor of the Transverse Mercator or Lambert Confor-

mal Conic projections used with the SPCS for the area involved. Some of the

quadrangles prepared on one or the other of these projections have continued to

carry the Polyconic designation, however.

The Polyconic projection was also used for the Progressive Military Grid for

military mapping of the United States. There were seven zones, A—G, with

central meridians every 8° west from long. 73° W. (zone A), each zone having an

origin at lat. 40°30' N. on the central meridian with coordinates x = 1,000,000

yards, y = 2,000,000 yards (Deetz and Adams, 1934, p. 87- 90). Some USGS quad

rangles of the 1930's and 1940's display tick marks according to this grid in yards,

and many quadrangles then prepared by the Army Map Service and sold by the

USGS show a complete grid pattern. This grid was incorporated intact into the

World Polyconic Grid (WPG) until both were superseded by the Universal Trans

verse Mercator grid (Mugnier, 1983).

While quadrangles based on the Polyconic provide low-distortion mapping of

the local areas, the inability to mosaic these quadrangles in all directions without

gaps makes them less satisfactory for a larger region. Quadrangles based on the

SPCS may be mosaicked over an entire zone, at the expense of increased distortion.

For an individual quadrangle IVz or 15 minutes of latitude or longitude on a

side, the distance of the quadrangle from the central meridian of a Transverse

Mercator zone or from the standard parallels of a Lambert Conformal Conic zone

of the SPCS has much more effect than the type of projection upon the variation

in measurement of distances on quadrangles based on the various projections. If

the central meridians or standard parallels of the SPCS zones fall on the

quadrangle, a change of projection from Polyconic to Transverse Mercator or

Lambert Conformal Conic results in a difference of less than 0.001 mm in the

measurement of the 700-800 mm diagonals of a 7V2-minute quadrangle. If the

quadrangle is near the edge of a zone, the discrepancy between measurements of

diagonals on two maps of the same quadrangle, one using the Transverse Merca

tor or Lambert Conformal Conic projection and the other using the Polyconic, can

reach about 0.05 mm. These differences are exceeded by variations in expansion

and contraction of paper maps, so that these mathematical discrepancies apply

only to comparisons of stable-base maps.

Actually, the central meridian of a 71/a-minute Polyconic quadrangle may lie

along the edge of the map, since 15-minute quadrangles were frequently cut and

enlarged to achieve the less extensive coverage. This has a negligible effect upon

the map geometry.

Before the Lambert became the projection for the 1:500,000 State base map

series, a modified form of the Polyconic was used, but the details are unclear. The
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Polyconic was used for the base maps of Alaska until 1972. It has also been used

for maps of the United States; but, as stated above, the distortion is excessive at

the east and west coasts, and most current maps are drawn to either the Lambert

or Albers Conic projections. There are several other modified Polyconic projections,

in use or devised, including the Rectangular Polyconic and Bousfield's modifica

tion used for northern Canada (Haines, 1981). The best known is that used for the

International Map of the World, described on p. 131 .

GEOMETRIC CONSTRUCTION

Because of the simplicity of construction using universal tables with which the

central meridian and each parallel may be marked off at true distances, the

Polyconic projection was favored long after theoretically better projections became

known in geodetic circles.

The Polyconic projection must be constructed with curved meridians and paral

lels if it is used for single-sheet maps of areas with east-west extent of several

degrees. Then, however, the inherent distortion is excessive, and a different

projection should be considered. For accurate topographic work, the coverage

must remain so small that the meridians and parallels may ironically but satisfac

torily be drawn as straight-line segments. Official USGS instructions of 1928

declared that

* * * in actual practice on projections of small quadrangles, the parallels are not drawn as arcs of

circles, but their intersections with the meridians are plotted from the computed x and ;/ values, and

the sections of the parallels between adjacent meridians are drawn as straight lines. In polyconic

projections of quadrangles of 1° or smaller meridians may be drawn as straight lines, and in large-scale

projections of small quadrangles in low latitudes both meridians and parallels may be drawn as

straight lines. For example, the curvature of the parallels of a projection of a 15' quadrangle on a scale

of 1:48,000 in latitudes from 0° to 30° is so small that it can not be plotted, and for a IVi quadrangle on a

scale of 1:31.680 or larger the curvature can not be plotted at any latitude (Beaman, 1928, p. 167).

This instruction is essentially repeated in the 1964 edition (USGS, 1964, p. 12-13).

The formulas given below are based on curved meridians.

FORMULAS FOR THE SPHERE

The principles stated above lead to the following forward formulas for rectangu

lar coordinates for the spherical form of the Polyconic projection, using radians

(see p. 303 for numerical examples):

If 4> is 0,

.r =R(k-k0)

y = -R&u

If <J> is not 0,

E = (X-X0) sin 4> (18-2)

x = ft cot 4> sins' (18-3)

y = #[<±> — <±>,, + cot <J> (1-cos E)] (18-4)

where <J><, is an arbitrary latitude (frequently the Equator) chosen for the origin of

the rectangular coordinates at its intersection with X,,, the central meridian. As

with other conics and the Transverse Mercator, the Y axis coincides with the

central meridian, y increasing northerly, and the X axis intersects perpendicu

larly at «J>0, x increasing easterly. If (X — X0) exceeds the range ±180°, 360° must be

added or subtracted to place it within the range. For the scale factor /? along the

meridians (Adams, 1919, p. 144 — 147):

(7-1)

(18-1)
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ft = (1 -cos2 <J> cos £)/(sin2 <J> cos D) (18-5)

where

D = arctan [(£?-sin E)/(sec2 <J>-cos E)] (18-6)

If <J> is 0, this is indeterminate, but h is then [1 + (X-X0)2/2]. In all cases, the scale

factor k along any parallel is 1.0.

The inverse formulas for the sphere are given here in the form of a Newton-

Raphson approximation, which converges to any desired accuracy after several

iterations, except that if lX-X0l >90°, a rarely used range, this iteration does not

converge, and if y = -R<fy0, it is indeterminate. In the latter case, however,

<i> =0

X = x/R + k0 (7-5)

Otherwise, if y=t= -R4>0, calculations are made in this order:

A = <J>0 + y/R

B = x*/R2+A2

Using an initial value of <i>n = A, <J>n + i is found from equation (18-9),

<J>» + 1 = K-WK tan <J>n + D-*»- V^n + fi) tan 4>J

[(<J>„-A)/tan 4>„-1] (18-9)

The new trial value of <J>„ + \ is successively substituted in place of ti>n, until <J>)l + j

differs from <J>„ by less than a predetermined convergence limit. Then <J> = <J>„ + j as

finally determined.

X = [arcsin (x tan <J>//2)]/sin <J> + X0 (18-10)

If <J> = ±90°, equation (18-10) is indeterminate, but X may be given any value, such

as X0.

FORMULAS FOR THE ELLIPSOID

The forward formulas for the ellipsoidal form of the Polyconic projection are

only a little more complicated than those for the sphere. These formulas are

theoretically exact. They are adapted from formulas given by the Coast and

Geodetic Survey (1946, p. 4) (see p. 304 for numerical examples):

If <J> is zero:

x =a(X-X0)

V = -M0

If <J> is not zero:

E = (X-X0) sin <J>

x = N cot <J> sin E

y = M-Mq +N cot <J> (1-cos E)

where

M = a[(1-e2/4-3e4/64-5e6/256-. . .) <J>-(3e2/8 + 3e4/32 + 45/71024

+ . . . ) sin 2<J> + (15e4/256 + 45e6/1024 + . . .) sin 4<J>-(35/V3072

+ . . . ) sin 6<J> + . . . ]

iV=a/(1-e2 sin2<J>)1/2

(18-7)

(18-8)

(7-6)

(18-11)

(18-2)

(18-12)

(18-13)

(3-21)

(4-20)
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and M0 is found from equation (3-21) by using <J>0 for <J> and M0 for M, with

<J>0 the latitude of the origin of rectangular coordinates at its intersection with

central meridian X0. See the spherical formulas for the orientation of axes. The

value of (X-X0) must be adjusted by adding or subtracting 360° if necessary to fall

within the range of ±180°. For scale factor h along the meridians (A; = 1.0 along

the parallels):

If <J> is zero,

ft = [M' + 1/2(X-X0)2]/(1-e2) (18-14)

If <J> is not zero (Adams, 1919, p. 144-146),

h = [l-e2 + 2(l-e2 sin2 <J>) sin2 V2 £7tan2 <J>]/[(1-e2) cos D] (18-15)

where

D = arctan \(E-sin E)/[sec2 <J>-cos E-e2 sin2 M1-e2 sin2 <J>)], (18-16)

M, = 1-e2/4-3e4/64-5e6/256- . . .-2 (3e2/8 + 3e4/32 + 45e6/1024

+ . . . ) cos 2<J> + 4 (15e4/256 + 45e6/1024+ . . .) cos 4<J>-6

(35<?6/ 3072+ . . . ) cos 64>+ (18-17)

For improved computational efficiency using this series, see p. 19.

As with the inverse spherical formulas, the inverse ellipsoidal formulas are

given in a Newton-Raphson form, converging to any desired degree of accuracy

after several iterations. As before, if lX— X01 >90°, this iteration does not converge,

but the projection should not be used in that range in any case. The formulas

may be calculated in the following order, given o, e, <J>0, X0, x, and y. First

M0 is calculated from equation (3-21) above, as in the forward case, with <J>0

for <J> and M0 for M.

If y = -M0, the iteration is not applicable, but

<J> =0

X =x/a + k0 (7-12)

If y ± -M0, the calculation is as follows:

A =(M0 + y)/a

B =x2/a2 + A2

Using an initial value of <J>„ = A, the following calculations are made:

C = ( 1 - e2 sin2 <J>n)1* tan <J>„ ( 18-20)

Then Mn and Mn' are found from equations (3-21) and (18-17) above, using

<J>„ for 4>, Mn for M, and Mn' for M' . Let Ma = Mn/a.

4>n + x = 4>„-[A(CMa + l)-Ma-V2(Ma2 + B)C]/le2 sin 2<J>„ (M2 + B-2AMa)/

4C + (A-Ma) (CMn'-2/sin 2<J>„)-Mn'] (18-21)

Each value of 4>„ + 1 is substituted in place of <J>„, and C, M,r Mn', and <J>,) + i are

recalculated from equations (18-20), (3-21), (18-17), and (18-21), respectively.

This process is repeated until 4>„ + j varies from <i>n by less than a predetermined

convergence value. Then <J> equals the final <J>„ + j.

(18-18)

(18-19)

X = [arcsin (xC/a)]/sin <J> + X0 (18-22)
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using the C calculated for the last <J>„ from equation (18-20). If <J> = ±90°, X is in

determinate, but may be given any value.

Table 19 lists rectangular coordinates for a band 3° on either side of the central

meridian for the ellipsoid extending from lat. 23° to 50° N. Figure 25 shows the

graticule applied to a map of North America.

MODIFIED POLYCONIC FOR THE INTERNATIONAL MAP OF THE WORLD

A modified Polyconic projection was devised by Lallemand of France and in

1909 adopted by the International Map Committee (IMC) in London as the basis

for the 1:1,000,000-scale International Map of the World (IMW) series. Used for

sheets 6° of longitude by 4° of latitude between lats. 60° N. and 60° S., 12° of longi

tude by 4° oflatitude between lats. 60° and 76° N. or S. , and 24° by 4° between lats. 76°

and 84° N. or S. , the projection differs from the ordinary Polyconic in two principal

features: All meridians are straight, and there are two meridians (2° east and west

of the central meridian on sheets between lats. 60° N. & S.) that are made true to

scale. Between lats. 60° & 76° N. and S. , the meridians 4° east and west are true to

scale, and between 76° & 84°, the true-scale meridians are 8° from the central

meridian (United Nations, 1963, p. 22-23; Lallemand, 1911, p. 559).

The top and bottom parallels of each sheet are nonconcentric circular arcs

constructed with radii ofN cot <J>, where N = a/(1 — e2 sin2 <J>)1 2. These radii are the

same as the radii on the regular Polyconic for the ellipsoid, and the arcs of these

two parallels are marked off true to scale for the straight meridians. The two

parallels, however, are spaced from each other according to the true scale along

the two standard meridians, not according to the scale along the central meridian,

which is slightly reduced. The approximately 440 mm true length of the central

meridian at the map scale is thereby reduced by 0.270 to 0.076 mm, depending on

the latitude of the sheet. Other parallels of lat. <J> are circular arcs with radii N cot

<J>, intersecting the meridians which are true to scale at the correct points. The

parallels strike other meridians at geometrically fixed locations which slightly

deviate from the true scale on meridians as well as parallels.

With this modified Polyconic, as with USGS quadrangles based on the rectified

Polyconic, adjacent sheets exactly fit together not only north to south, but east to

west. There is still a gap when mosaicking in all directions, in that there is a gap

between each diagonal sheet and either one or the other adjacent sheet.

In 1962, a U.N. conference on the IMW adopted the Lambert Conformal Conic

and Polar Stereographic projections to replace the modified Polyconic (United

Nations, 1963, p. 9-10). The USGS has prepared a number of sheets for the IMW

series over the years according to the projection officially in use at the time.

FORMULAS FOR THE IMW MODIFIED POLYCONIC

Since the projection was designed solely for this series, the formulas below are

based on the ellipsoid. They were derived in 1982 (Snyder, 1982b). The following

symbols are used in these formulas:

a = semimajor axis on the given reference ellipsoid

C = distance on the map of latitude <J> from latitude 4>i, measured along the

central meridian of longitude X0

C2 = distance on the map of latitude <J>2 from latitude <J> ! , measured along the

central meridian of longitude X0

e = eccentricity of the given reference ellipsoid

M = distance on the ellipsoid along any meridian from the Equator to <)>

M2 = ditto for 4>2

M\ = ditto for <J>i
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Table 19.—Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid

[y coordinates in parentheses under x coordinates. Italic indicates h]

Long. X

Lat. <t>

0° 1° 2° 3°

50° 0 71,696 143,379 215,037

(5,540,628) (5,541,107) (5,542,545) (5,544,941)

1.000000 1.000063 1.000252 1.000568

49 _ 0 73,172 146,331 219,465

(5,429,409) (5,429,890) (5,431,336) (5,433,745)

1.000000 1.000066 1.00026S 1.000592

48 0 74,626 149,239 223,827

(5,318,209) (5,318,693) (5,320,144) (5,322,564)

1.000000 1.000068 1.00027J, 1.000616

47 0 76,056 152,100 228,119

(5,207,028) (5,207,514) (5,208,970) (5,211,397)

1.000000 1.000071 1.000284 1.000640

46 0 77,464 154,915 232,342

(5,095,868) (5,096,354) (5,097,813) (5,100,244)

1.000000 1.000074 1.000295 1.000664

45 0 78,847 157,682 236,493

(4,984,727) (4,985,214) (4,986,673) (4,989,106)

1.000000 1.000076 1.000806 1.000688

44 0 80,207 160,401 240,572

(4,873,606) (4,874,092) (4,875,551) (4,877,982)

1.000000 1.000079 1.000816 1.000712

43° 0 81,541 163,071 244,578

(4,762,505) (4,762,990) (4,764,446) (4,766,872)

1.000000 1.000082 1.000827 1.000786

42 0 82,851 165,691 248,508

(4,651,423) (4,651,907) (4,653,358) (4,655,777)

1.000000 1.000084 1.000888 1.000760

41 0 84,136 168,260 252,363

(4,540,361) (4,540,843) (4,542,288) (4,544,696)

1.000000 1.000087 1.000848 1.000784

40 0 85,394 170,778 256,140

(4,429,319) (4,429,798) (4,431,235) (4,433,630)

1.000000 1.000090 1.000859 1.000808

39 0 86,627 173,243 259,839

(4,318,296) (4,318,772) (4,320,199) (4,322,577)

1.000000 1.000092 1.000869 1.000881

38 0 87,833 175,656 263,458

(4,207,292) (4,207,764) (4,209,180) (4,211,539)

1.000000 1.000095 1.000880 1.000855

37 0 89,012 178,015 266,997

(4,096,308) (4,096,775) (4,098,178) (4,100,515)

1.000000 1.000098 1.000890 1.000878

36 0 90,164 180,319 270,455

(3,985,342) (3,985,805) (3,987,192) (3,989,504)

1.000000 1.000100 1.000400 1.000901
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Table 19.—Polyconic Projection: Rectangular coordinates for the Clarke 1866 ellipsoid—Continued

Long. X

Lat. <t>

0° 1° 2° 3°

35 0 91,289 182,568 273,830

(3,874,395) (3,874,852) (3,876,223) (3,878,507)

1.000000 1.000103 1.000411 1.000924

34 7 0 92,385 184,762 277,121

(3,763,467) (3,763,918) (3,765,270) (3,767,524)

1.000000 1.000105 1.000421 1.000946

33 0 93,454 186,899 280,328

(3,652,557) (3,653,001) (3,654,333) (3,656,554)

1.000000 1.000108 1.000481 1.000969

32 0 94,494 188,980 283,449

(3,541,665) (3,542,102) (3,543,413) (3,545,597)

1.000000 1.000110 1.000440 1.000991

31 0 95,505 191,002 286,484

(3,430,790) (3,431,220) (3,432,507) (3,434,653)

1.000000 1.000112 1.000450 1.001012

30 0 96,487 192,967 289,432

(3,319,933) (3,320,354) (3,321,617) (3,323,722)

1.000000 1.000115 1.000459 1.001088

29 0 97,440 194,872 292,291

(3,209,093) (3,209,506) (3,210,742) (3,212,803)

1.000000 1.000117 1.000468 1.001054

28 7 0 98,363 196,719 295,062

(3,098,270) (3,098,673) (3,099,882) (3,101,897)

1.000000 1.000119 1.000477 1.001074

27° 0 99,256 198,505 297,742

(2,987,463) (2,987,856) (2,989,036) (2,991,002)

1.000000 1.000122 1.000486 1.001094

26 0 100,119 200,231 300,332

(2,876,672) (2,877,055) (2,878,204) (2,880,119)

1.000000 1.000124 1.000495 1.001118

25 0 100,951 201,896 302,831

(2,765,896) (2,766,269) (2,767,386) (2,769,247)

1.000000 1.000126 1.000508 1.001 132

24 0 101,753 203,500 305,237

(2,655,136) (2,655,497) (2,656,580) (2,658,386)

1.000000 1.000128 1.000511 1.001150

23 0 102,523 205,042 307,551

(2,544,390) (2,544,739) (2,545,788) (2,547,536)

1.000000 1.000180 1.000519 1.001168

Note: jt. y = rectangular coordinates, meters; origin at <J, = 0, X = 0. Y axis increasing north.

h = scale factor along meridian.

k = scale factor along parallel = 1.0.

X = longitude east of central meridian. For longitude west of central meridian reverse sign of x.
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R = radius of circular arc for latitude <J> as shown on map

R2 = ditto for <J>2

= ditto for 4>i

(x, y) = rectangular coordinates, with the origin at the intersection of 4>\ with

X0, the y axis coinciding with the meridian of longitude X0, y increasing

northerly, and the x axis perpendicular, x increasing easterly

X = longitude of any meridian (east longitude is positive)

X0 = longitude of central meridian

X, = longitude of true-to-scale meridian east of the central meridian, 2°

more than X0 for most quadrangles

<J> = any geodetic (or geographic) latitude on the quadrangle map

<J>2 = geodetic latitude of the northernmost parallel of a given quadrangle

map (north latitude is positive)

<J>i = geodetic latitude of the southernmost parallel of the quadrangle map

Care must be taken to use radians wherever angles are used without trigonomet

ric functions.

The following constants apply to the entire map, given a, e, <J>i, <J>2, ku and X0:

x„ = RnsmF„ (18-23)

yi =Ri (1-cosF!) (18-24)

T2 = R2 (1-cos F2) (18-25)

where n = 1 and 2, and

R„ = a cot 4>„/(1-e2 sin" d>„V2 (18-26)

F„ = (ki-k0) sin <J>n (18-27)

with subscripts as required above, but if <J>„ = 0, Rti is infinite and equations

(18-23) and (18-24) are indeterminate, but y\ = 0, T2 = 0, and

x„ =a(X,-X0) (18-23a)

Also for the entire map,

y2 = [(Ma-Mif - (x.^-x^y 2 + z/, (18-28)

C2 =y2- T2 (18-29)

P =(M2y\-M\y2)W2-M\) (18-30)

Q = (y2-yi)/(M2-MJ (18-31)

P' =(M2x\-M\x2)/(M2-M\) (18-32)

Q' =(x2-x\)/(M2-M\) (18-33)

where

M„ =a [d-e2/4-3e4/64-5//256- . . .) <J>„

- (3e2/8 + 3e4/32 + 45e6/1024 + . . . )sin2<J>„

+ (15f4/256 + 45e,i/1024+ . . . ) sin 4<J>„

- (35e6/3072+ . . .) sin 6<J>„ + . . . ] (3-21)

with subscripts as required above.

The following values are calculated for each point, given 4> and X; to find x and y:

xa =P' + <?' M (18-34)

ya =P + QM (18-35)

C =ya - R ± (R2-xa2y* (18-36)
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where the ± takes the same sign as <J>. If <J> = 0, equation (18-36) is indeterminate,

but C = 0. M and R are found from (3-21) and (18-26). respectively, omitting

subscripts n. Then

xb = R2 sin [(X-X0) sin <J>2] (18-37)

yb = C, + R2 \l - cos [(X-X0) sin <J>2]j (18-38)

xc = Ri sin [(X-X0) sin <J>i] (18-39)

but if <J>2 = 0,

or if <J>i = 0,

Then

= u2 + rc-2 \l - cos \_(\-\0) sin

= R\ sin [(X-X0) sin

= Ri | 1 - cos [(X-Xo) sin 4>i]

xb =a(X-X0) (18-37a)

yb =C2 (18-38a)

xc = a(X-X0) (18-39a)

yc = 0 (18-40a)

D = (xb-xc)/(yb-yc) (18-41)

B =xc + D (C + R-yc) (18-42)

x = \B ± D [R2 (1 +D2)-fi*]12t/(1 +D2) (18-43)

2/ =C + R ± (R2-x2y 2 (18-44)

where the ± in (18-43) and (18-44) takes the sign opposite that of <J>. If 4> = 0, B

and R are infinite, but

x = ct(X-X0) (18-45)

y =C (18-46)

For the inverse formulas for the IMW Modified Polyconic, given a, e, <i>2, <J>i.

Xi, X0, x and y, to find <J> and X:

Step 1: Constants are calculated: xu x2, y\t Mu M2, y2, C2, P, Q, P', and Q'

from above equations (18-23) through (18-33) and (3-21).

Step 2: A first trial (<J>, X), called (<J>(), X^) are calculated:

*(, =<J>2 (18-47)

X(, = [x/(a cos <i>u)] + X0 (18-48)

Step 3: The first test values of (x, y), called (x^, ytt), are calculated from (4>/,, X^),

using the latter as (4>, X) in equations (18-34) through (18-46).

Step 4: Test values 2/,,) are used with the given (x, y) to adjust (<J>l,, X^), to

provide second trial values of (4>^, X^):

4>,2 =[(*,,-<J>i) (y-yc)/(yt\-ycK + 4>i (18-49)

X,2 = [(X^-X0Jjt/x,,] + X0 (18-50)

Step 5: Step 3 is repeated, but using (4>/.,, Xf ,) as (4>, X) to obtain (xt.t, yt.). Step 4 is

then repeated, replacing subscripts (f1, f2) with (f2, (3), respectively. Steps 3

and 4 are repeated, changing subscripts, until the final (.<>„, yt„) vary from

(x, y), respectively, by an acceptable total absolute error, such as 1 meter

(0.001 mm at map scale).
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Table 20.—Modified Polyconic projection for IMW:

Rectangular coordinates for the International ellipsoid

Latitude Longitude difference (X - X„)

0° *r ±2° ±3°

Rectangular coordinates ( ±x, y) meters

40° 0.0 85395.9 170781.1 256144.8

443829.1 444308.8 445745.8 448140.6

39 0.0 86588.8 173167.1 259724.5

332842.0 333317.3 334743.2 337119.6

38 0.0 87781.4 175552.7 263303.7

221874.6 222345.9 223759.9 226116.3

37 0.0 88973.9 177937.9 266882.3

110927.3 111394.4 112795.5 115130.6

36 0.0 90166.1 180322.7 270460.3

0.0 462.5 1850.0 4162.2

Scale factors (k, k)

40° 0.999641 0.999730 1.000000 1.000449

1.000000 1.000000 1.000000 1.000000

39 0.999631 0.999723 1.000000 1.000462

0.999541 0.999541 0.999540 0.999540

38 0.999620 0.999715 1.000000 1.000474

0.999394 0.999393 0.999393 0.999392

37 0.999610 0.999707 1.000000 1.000488

0.999549 0.999549 0.999549 0.999548

36 0.999599 0.999699 1.000000 1.000501

1.000000 1.000000 1.000000 1.000000

Rectangular coordinates ( ±x, V) meters

0° ±2° ±4° ±6°

68° 0.0 83632.8 167177.9 250548.0

445868.7 447222.2 451281.3 458041.7

67 0.0 87188.5 174287.0 261205.5

334374.6 335774.8 339974.0 346967.9

66 0.0 90743.7 181395.1 271862.0

222898.0 224344.1 228680.9 235904.0

65 0.0 94298.3 188502.3 282517.5

111439.6 112930.7 117402.4 124850.3

64 0.0 97852.4 195608.5 293172.1

0.0 1535.1 6139.0 13807.1

Scale factors (h, k)

68° 0.999657 0.999743 1.000000 1.000429

1.000000 1.000000 1.000000 1.000000

67 0.999627 0.999720 1.000000 1.000466

0.999533 0.999532 0.999531 0.999528

66 0.999596 0.999697 1.000000 1.000504

0.999394 0.999393 0.999391 0.999387

65 0.999564 0.999673 1.000000 1.000545

0.999557 0.999556 0.999555 0.999552

64 0.999530 0.999647 1.000000 1.000587

1.000000 1.000000 1.000000 1.000000

Note: X„ is longitude of the central meridian of quadrangle, east being positive.

X is longitude.

h is scale factor along meridian.

k is scale factor along parallel.

Origin of rectangular coordinates occurs at minimum latitude and central meridian, y increasing northerly, x

increasing easterly and taking the sign of (X-X0).

Table applies to any quadrangle with the same latitude range.
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(X.) X,
,40°

,39°

38°

N. Lat.

37°

36°

-78° -77° -76° -75°

(W.) Long.

-74° -73° -72°

Figure 26.—Typical IMW quadrangle graticule—modified Polyconic projection drawn to scale. Para

llels are nonconcentric circular arcs; meridians are straight. Lines of true scale are shown heavy.

Standard projection for the International Map of the World Series (l:1,000,000-scale) until 1962.

Table 20 provides samples of rectangular coordinates calculated for each degree

of typical mid-latitude and far-northern quadrangles. In addition, scale factors h

(along the meridian) and A: (along the parallel) are shown for the same graticules.

The scale factors were calculated by comparing rectangular coordinates 0.01° of

latitude apart at constant longitude with the true distances, for h, and a similar

change in longitude at constant latitude, for k, rather than analytically. The linear

scale error is seen to change less than about 0.06 percent throughout the

quadrangle; the scale factor along any given parallel is almost constant, while a

given meridian varies up to 0.015 percent in scale. The table is based on the

International ellipsoid or spheroid, although the skeletal tables showing rectangular

coordinates of parallels 4>i and <J>2 and published in earlier technical papers are

based on an ellipsoid with a semimajor axis of 6378.24 km and semiminor axis of

6356.56 km. Figure 26 illustrates a typical graticule.



MAP PROJECTIONS—A WORKING MANUAL

19. BONNE PROJECTION

SUMMARY

• Pseudoconical. Equal-area.

• Central meridian is a straight line. Other meridians are complex curves.

• Parallels are concentric circular arcs, but the poles are points.

• Scale is true along the central meridian and along all parallels.

• No distortion along the central meridian and along the standard parallel.

• Used for atlas maps of continents and for topographic mapping of some countries.

• Sinusoidal projection is equatorial limiting form of Bonne projection.

• Used considerably by Bonne in mid-18th century, but developed by others

during the early 16th century.

HISTORY

The name of Rigobert Bonne (1727-1795), a French geographer, is almost

universally applied to an equal-area projection which has been used for both

large- and small-scale mapping during the past 450 years. During the late 19th

and early 20th centuries, the most conspicuous use of the Bonne projection was

for maps of continents in atlases.

The Italian Bernardus Sylvanus' world map of 1511 closely approaches the

Bonne projection, since its meridians are almost equally spaced along the equidis

tant and concentric circular parallels. De ITsle and Coronelli used the Bonne

principle for maps of about 1700. Bonne used the projection most notably for a

1752 maritime atlas of the coast of France (Reignier, 1957, p. 164). Continental

maps of Europe and Asia appeared on this projection by 1763, and the ellipsoidal

version replaced the Cassini projection for French topographic mapping begin

ning in 1803.

For maps of continents, the Bonne was preceded by its polar limiting form, a

cordiform (heart-shaped) world map devised by Johannes Stabius and given wider

notice by Johannes Werner about 1514. The Werner projection, as it is usually

called, was used in the late 16th century for maps of Asia and Africa by Mercator

and Abraham Ortelius, but the "Bonne" projection has less distortion because its

projection center is at the center of the region being mapped instead of at the

pole. Eventually the Werner projection was made obsolete by the Bonne.

FEATURES AND USAGE

Like the Equidistant Conic with one standard parallel, the Bonne projection

(fig. 27) has concentric circular arcs for parallels of latitude. They are equally

spaced on the spherical form and spaced in proportion to the true distance along a

meridian on the ellipsoidal form. The chosen standard parallel is given its true

curvature on the map by making the radius of its circular arc equal to the distance

between the parallel and the apex of a cone tangent at the parallel.

Unlike the parallels on the Equidistant Conic and other regular conic projections,

but like those on the Polyconic, each parallel is marked off for meridians at the

true spacings on either the spherical or ellipsoidal versions, beginning at the

straight central meridian. The individual meridians are then shown as complex

curves connecting these points. This results in an equal-area projection with true

scale along the central meridian and along each parallel, whether spherical or

ellipsoidal. The central meridian and the standard parallel are free of local angular

and shape distortion as well. The shape distortion increases away from either

line, and meridians do not intersect parallels at right angles elsewhere, as they do

on regular conic projections.
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_

Figure 27.—Bonne projection with central parallel at lat. 40° N. Called a pseudoconic projection, this

is equal-area and has no distortion along central meridian or central parallel. Popular in atlases

for maps of continents until mid-20th century.

The combination of curved meridians and concentric circular arcs for parallels

has led to the classification of "pseudoconic" for the Bonne projection and for the

polar limiting case, the Werner projection, on which the North Pole is the equiva

lent of the standard parallel. The limiting case with the Equator as the standard

parallel is the Sinusoidal, a "pseudocylindrical" projection to be discussed later;

the formulas must be changed in this case since the parallels of latitude are

straight. Modifications to the Bonne projection, in some cases resulting in non-

equal-area projections, were presented by Nell of Germany in 1890 and by Solov'ev

of the Soviet Union in the 1940's (Maling, 1960, p. 295-296).

Many atlases of the 19th and early 20th centuries utilized the Bonne projection

to show North America, Europe, Asia, and Australia, while the Sinusoidal (as the

equatorial Bonne) was used for South America and Africa. The Lambert Azi-

muthal Equal-Area projection is now generally used by Rand McNally & Co. and

Hammond Inc. for maps of continents, while the National Geographic Society

prefers its own Chamberlin Trimetric projection for this purpose.

Large-scale use of the Bonne projection for topographic mapping, originally

introduced by France, is current chiefly in portions of France, Ireland, Morocco,

and some countries in the eastern Mediterranean area (Clifford J. Mugnier, writ

ten commun., 1985).

FORMULAS FOR THE SPHERE

The principles stated above lead to the following forward formulas for rectangu

lar coordinates of the spherical form of the Bonne projection, given R, d^, X0, <p,

and X, and using radians in equation (19-1),
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p = R (cot fa +fa-fa)

E = R (X-XJ (cos <J>)/p

x = p sin £

2/ = /2 cot <J>i - p cos £

where <J>i is the chosen standard parallel. The Y axis coincides with X0, the central

meridian, y increasing north, and the X axis is perpendicular at (4>i, X0), x increas

ing east. If (X-X0) exceeds the range ±180°, 360° must be added or subtracted to

place it within range. If fa = 90°, the Werner projection results, but if <J> is also 90°,

equation (19-2) is indeterminate, and x and y are both zero.

The inverse formulas for the sphere, given R, fa, X0, x, and y, to find (<J>, X):

p = ±[x2 + (R cot fa - y)2V*, taking the sign of fa (19-5)

4> = cot <J>i + 4>i - p/R (19-6)

X = X0 + p | arctan [x/(R cot fa - y)]\/(R cos fa (19-7)

using the <J> determined from (19-6). If 4> = ±90°, (19-7) is indeterminate, but X

may be given any value, such as X0. When using the Fortran ATAN2 function

for equation (19-7), and fa is negative, the signs of x and (R cot fa-y) must

be reversed before insertion into the equation.

(19-1)

(19-2)

(19-3)

(19-4)

FORMULAS FOR THE ELLIPSOID

For the forward formulas, given a, e, fa, ^o, <J>, and X, to find x and y, the

following are calculated in order:

m = cos <J>/(1-e2 sin2 <J>)12 (14-15)

M =a[(1-e2/4-3e4/64-5efi/256-. . . .) <J>

-(3e2/8 + 3e4/32 + 45e6/1024+ . . .) sin 2<J>

+ (15e4/256 + 45e6/1024 + . . . ) sin 4<J>

-(35e6/3072 + . . . ) sin 6<J> + . . . ] (3-21)

p = aw?,/sin fa+Mx-M (19-8)

E = cm(X-X0)/p (19-9)

x = p sin E (19-10)

y = ammx/sin fa-p cos E (19-11)

where fa is the chosen central parallel, and mx and Mx are found from (14-15)

and (3-21), respectively, by using fa instead of 4>. Axes are the same as those

for the spherical form. If both <J> and fa are at the same pole, equation (19-9)

is indeterminate, but x and y are both zero.

For the inverse formulas for the ellipsoid, given a, e, fa, X0, x and y, to find

<J> and X, first mx and Mx are calculated as in the forward case from equations

(14-15) and (3-21) above. The following are then calculated in order:

p = ±[x2 + (cwn,/sin fa-y)2Y*, taking the sign of fa (19-12)

M = amj&m fa+Mx-p (19-13)

p. =M/[a(1-e2/4-3e4/64-5/V256-. . . )] (7-19)

«i =[1-(1-e2)1«]/[1 + (1-e2)1/2] (3-24)

<J> = p. + (3e,/2-27e,:732+. . .) sin 2p. + (21e,2/16

-55ei4/32+ . . .) sin 4p. + (151ei3/96- . . .) sin 6p.

+ U097V/512-. . .) sin 8p. + . . . (3-26)

From (14-15), m is calculated for fa then

X = X0 + p|arctan[.i7(a?n,/sin fa-y)]\/(am) (19-14)

When using the Fortran ATAN2 function for equation (19- 14), and fa is negative,

the signs of x and (aw^sin <J>i - y) must be reversed before insertion into the

equation. If4> = ±90°, (19- 14) is indeterminate, but X may be given any value, such

as X0.
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AZIMUTHAL AND RELATED MAP PROJECTIONS

A third very important group of map projections, some of which have been

known for 2,000 years, consists of five major azimuthal (or zenithal) projections

and various less-common forms. While cylindrical and conic projections are related

to cylinders and cones wrapped around the globe representing the Earth, the

azimuthal projections are formed onto a plane which is usually tangent to the

globe at either pole, the Equator, or any intermediate point. These variations are

called the polar, equatorial (or meridian or meridional), and oblique (or horizon)

aspects, respectively. Some azimuthals are true perspective projections; others

are not. Although perspective cylindrical and conic projections are much less used

than those which are not perspective, the perspective azimuthals are frequently

used and have valuable properties. Complications arise when the ellipsoid is

involved, but it is used only in special applications that are discussed below.

As stated earlier, azimuthal projections are characterized by the fact that the

direction, or azimuth, from the center of the projection to every other point on the

map is shown correctly. In addition, on the spherical forms, all great circles

passing through the center of the projection are shown as straight lines. Therefore,

the shortest route from this center to any other point is shown as a straight line.

This fact made some of these projections especially popular for maps as flight and

radio transmission became commonplace.

The five principal azimuthals are as follows:

1. Orthographic. A true perspective, in which the Earth is projected from an

infinite distance onto a plane. The map looks like a globe, thus stressing the

roundness of the Earth.

2. Stereographic. A true perspective in the spherical form, with the point of

perspective on the surface of the sphere at a point exactly opposite the point

of tangency for the plane, or opposite the center of the projection, even if the

plane is secant. This projection is conformal for sphere or ellipsoid, but the

ellipsoidal form is not truly perspective.

3. Gnomonic. A true perspective, with the Earth projected from the center onto

the tangent plane. All great circles, not merely those passing through the

center, are shown as straight lines on the spherical form.

4. Lambert Azimuthal Equal-Area. Not a true perspective. Areas are cor

rect, and the overall scale variation is less than that found on the major

perspective azimuthals.

5. Azimuthal Equidistant. Not a true perspective. Distances from the center

of the projection to any other point are shown correctly. Overall scale varia

tion is moderate compared to the perspective azimuthals.

A sixth azimuthal projection of increasing interest in the space age is the general

Vertical Perspective (resembling the Orthographic), projecting the Earth from

any point in space, such as a satellite, onto a tangent or secant plant. It is used

primarily in derivations and pictorial representations.

As a group, the azimuthals have unique esthetic qualities while remaining

functional. There is a unity and roundness of the Earth on each (except perhaps

the Gnomonic) which is not as apparent on cylindrical and conic projections.

The simplest forms of the azimuthal projections are the polar aspects, in which

all meridians are shown as straight lines radiating at their true angles from the

center, while parallels of latitude are circles, concentric about the pole. The

difference is in the spacing of the parallels. Table 21 lists for the five principal

azimuthals the radius of every 10° of latitude on a sphere of radius 1.0 unit,

centered on the North Pole. Scale factors and maximum angular deformation are

also shown. The distortion is the same for the oblique and equatorial aspects at

the same angular distance from the center of the projection, except that h and k

are along and perpendicular to, respectively, radii from the center, not necessar

ily along meridians or parallels.
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Table 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular

distortion for projection ofsphere with radius 1.0, North Polar aspect

Lat.

Radius

Orthographic

90° 0.00000 1.00000 1.0 0.000°

80 .17365 .98481 1.0 .877

70 .34202 .93969 1.0 3.563

60 .50000 .86603 1.0 8.234

50 .64279 .76604 1.0 15.23

40 .76604 .64279 1.0 25.12

30 .86603 .50000 1.0 38.94

20 .93969 .34202 1.0 58.72

10 .98481 .17365 1.0 89.51

0 1.00000 .00000 1.0 180.0

-10

-20

-30

- 40 (beyond limits of map)

-50

-60

-70

-80

-90

Lat. Stereographic

Radius k*

90° 0.00000 1.00000

80 .17498 1.00765

70 .35263 1.03109

60 .53590 1.07180

50 .72794 1.13247

40 .93262 1.21744

30 1.15470 1.33333

20 1.40042 1.49029

10 1.67820 1.70409

0 2.00000 2.00000

- 10 2.38351 2.42028

-20 2.85630 3.03961

-30 3.46410 4.00000

- 40 4.28901 5.59891

- 50 5.49495 8.54863

-60 7.46410 14.9282

-70 11.3426 33.1634

-80 22.8601 131.646

- 90 oo oo

There are two principal drawbacks to the azimuthals. First, they are more

difficult to construct than the cylindricals and the conics, except for the polar

aspects. This drawback was more applicable, however, in the days before comput

ers and plotters, but it is still more difficult to prepare a map having complex

curves between plotted coordinates than it is to draw the entire graticule with

circles and straight lines. Nevertheless, an increased use of azimuthal projections

in atlases and for other published maps may be expected.

Secondly, most azimuthal maps do not have standard parallels or standard

meridians. Each map has only one standard point: the center (except for the

Stereographic, which may have a standard circle). Thus, the azimuthals are suit

able for minimizing distortion in a somewhat circular region such as Antarctica,

but not for an area with predominant length in one direction.
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Table 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular

distortion for projection ofsphere with radius 1.0, North Polar aspect—Continued

Lat. Gnomonic

Radius h k

90° _ _ _ 0.00000 1.00000 1.00000 0.000°

80 .17633 1.03109 1.01543 .877

70 .36397 1.13247 1.06418 3.563

60 _ _ .57735 1.33333 1.15470 8.234

50. _ _ .83910 1.70409 1.30541 15.23

40 1.19175 2.42028 1.55572 25.12

30 1.73205 4.00000 2.00000 38.94

20 _ 2.74748 8.54863 2.92380 58.72

10 _ 5.67128 33.1634 5.75877 89.51

- 10

0 _ _ 00 00 00 _

-20

_ _

-30

-40 ~ _ _ _ (beyond limits of map)

- 50

-60

-70 _ _

-80

-90

_ _ _

— — — —

Lat.

Lambert Azimuthal Equal-Area

Radius h k w

90° _ _ _ 0.00000 1.00000 1.00000 0.000°

80 _ .17431 .99619 1.00382 .437

70 .34730 .98481 1.01543 1.754

60 .51764 .96593 1.03528 3.972

50 _ _ .68404 .93969 1.06418 7.123

40 .84524 .90631 1.10338 11.25

30 1.00000 .86603 1.15470 16.43

20 1.14715 .81915 1.22077 22.71

10 1.28558 .76604 1.30541 30.19

0 1.41421 .70711 1.41421 38.94

-10 ~ 1.53209 .64279 1.55572 49.07

-20 1.63830 .57358 1.74345 60.65

-30 1.73205 .50000 2.00000 73.74

-40 1.81262 .42262 2.36620 88.36

-50 1.87939 .84202 2.92380 104.5

-60 1.93185 .25882 3.86370 122.0

-70 1.96962 .17365 5.75877 140.6

-80 1.99239 .08716 11.4737 160.1

-90 2.00000 .00000 oo 180.0
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Table 21.—Comparison of major azimuthal projections: Radius, scale factors, maximum angular

distortion for projection ofsphere with radius 1.0, North Polar aspect

Lat.

Azimuthal Equidistant

Radius h k u

90° 0.00000 1.0 1.00000 0.000°

80 .17453 1.0 1.00510 .291

70 .34907 1.0 1.02060 1.168

60 .52360 1.0 1.04720 2.642

50 7 .69813 1.0 1.08610 4.731

40 7 .87266 1.0 1.13918 7.461

30 1.04720 1.0 1.20920 10.87

20 1.22173 1.0 1.30014 15.00

10 1.39626 1.0 1.41780 19.90

0 7 7 1.57080 1.0 1.57080 25.66

-10 1.74533 1.0 1.77225 32.35

-20 1.91986 1.0 2.04307 40.09

-30 2.09440 1.0 2.41840 49.03

-40 2.26893 1.0 2.96188 59.36

-50 2.44346 1.0 3.80135 71.39

-60 2.61799 1.0 5.23599 85.57

-70 2.79253 1.0 8.16480 102.8

-80 2.96706 1.0 17.0866 125.6

-90 3.14159 1.0 00 180.0

Radius = radius of circle showing given latitude.

ui = maximum angular deformation.

h = scale factor along meridian of longitude.

k = scale factor along parallel of latitude.

* For Stereographic, h = k and <0 = 0.
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20. ORTHOGRAPHIC PROJECTION

SUMMARY

• Azimuthal.

• All meridians and parallels are ellipses, circles, or straight lines.

• Neither conformal nor equal-area.

• Closely resembles a globe in appearance, since it is a perspective projection

from infinite distance.

• Only one hemisphere can be shown at a time.

• Much distortion near the edge of the hemisphere shown.

• No distortion at the center only.

• Directions from the center are true.

• Radial scale factor decreases as distance increases from the center.

• Scale in the direction of the lines of latitude is true in the polar aspect.

• Used chiefly for pictorial views.

• Used only in the spherical form.

• Known by Egyptians and Greeks 2,000 years ago.

HISTORY

To the layman, the best known perspective azimuthal projection is the

Orthographic, although it is the least useful for measurements. While its distor

tion in shape and area is quite severe near the edges, and only one hemisphere

may be shown on a single map, the eye is much more willing to forgive this

distortion than to forgive that of the Mercator projection because the Ortho

graphic projection makes the map look very much like a globe appears, especially

in the oblique aspect.

The Egyptians were probably aware of the Orthographic projection, and

Hipparchus of Greece (2nd century B.C.) used the equatorial aspect for astronomi

cal calculations. Its early name was "analemma," a name also used by Ptolemy,

but it was replaced by "orthographic" in 1613 by Francois d'Aiguillon of Antwerp.

While it was also used by Indians and Arabs for astronomical purposes, it is not

known to have been used for world maps older than 16th-century works by

Albrecht Diirer (1471-1528), the German artist and cartographer, who prepared

polar and equatorial versions (Keuning, 1955, p. 6).

FEATURES

The point of perspective for the Orthographic projection is at an infinite distance,

so that the meridians and parallels are projected onto the tangent plane with

parallel projection lines. All meridians and parallels are shown as ellipses, circles,

or straight lines.

As on all polar azimuthal projections, the meridians of the polar Orthographic

projection appear as straight lines radiating from the pole at their true angles,

while the parallels of latitude are complete circles centered about the pole. On the

Orthographic, the parallels are spaced most widely near the pole, and the spacing

decreases to zero at the Equator, which is the circle marking the edge of the map

(figs. 28, 29A). As a result, the land shapes near the pole are prominent, while

lands near the Equator are compressed so that they can hardly be recognized. In

spite of the fact that the scale along the meridians varies from the correct value at

the pole to zero at the Equator, the scale along every parallel is true.

The equatorial aspect of the Orthographic projection has as its center some

point on the Earth's Equator. Here, all the parallels of latitude including the
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Infinite perspective

N.1 Pole Plane of
.

projection

_

Figure 28.—Geometric projection of the parallels of the polar Orthographic projection.

Equator are seen edge-on; thus, they appear as straight parallel lines (fig. 29B).

The meridians, which are shaped like circles on the sphere, are projected onto the

map at various inclinations to the lines of perspective. The central meridian, seen

edge-on, is a straight line. The meridian 90° from the central meridian is shown as

a circle marking the limit of the equatorial aspect. This circle is equidistantly

marked with parallels of latitude. Other meridians are ellipses of eccentricities

ranging from zero (the bounding circle) to 1.0 (the central meridian).

The oblique Orthographic projection, with its center somewhere between the

Equator and a pole, gives the classic globelike appearance; and in fact an oblique

view, with its center near but not on the Equator or pole, is often preferred to the

equatorial or polar aspect for pictorial purposes. On the oblique Orthographic, the

only straight line is the central meridian, if it is actually portrayed. All parallels of

latitude are ellipses with the same eccentricity (fig. 29C). Some of these ellipses

are shown completely and some only partially, while some cannot be shown at all.

All other meridians are also ellipses of varying eccentricities. No meridian appears

as a circle on the oblique aspect.

The intersection of any given meridian and parallel is shown on an Ortho

graphic projection at the same distance from the central meridian, regardless of

whether the aspect is oblique, polar, or equatorial, provided the same central

meridian and the same scale are maintained. Scale and distortion, as on all azi-

muthal projections, change only with the distance from the center. The center of

projection has no distortion, but the outer regions are compressed, even though

the scale is true along all circles drawn about the center. (These circles are not

"standard" lines because the scale is true only in the direction followed by the

line.)

The Orthographic projection seldom appears in atlases, except as a globe in

relief without meridians and parallels. When it does appear, it provides a striking

view. Richard Edes Harrison has used the Orthographic for several maps in an

atlas of the 1940's partially based on this projection. Frank Debenham (1958) used

photographed relief globes extensively in The Global Atlas, and Rand McNally

has done likewise in their world atlases since 1960. The USGS has used it occasion

ally as a frontispiece or end map (USGS, 1970; Thompson, 1979), but it also

provided a base for definitive maps of voyages of discovery across the North

Atlantic (USGS, 1970, p. 133).

It became especially popular during the Second World War when there was

stress on the global nature of the conflict. With some space flights of the 1960's,

USAGE
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_

FIGURE 29.—Orthographic projection. (.4) Polar aspect. (B) Equatorial aspect, approximately the view of the Moon,

Mars, and other outer planets as seen from the Earth. (C) Oblique aspect, centered at lat. 40" N., giving the classic

globelike view.
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_

Figure 30.—Geometric construction of polar, equatorial, and oblique Orthographic projections.

the first photographs of the Earth from space renewed consciousness of the

Orthographic concept.

GEOMETRIC CONSTRUCTION

The three aspects of the Orthographic projection may be graphically constructed

with an adaptation of the draftsman's technique shown by Raisz (1962, p. 180).

Referring to figure 30, circle A is drawn for the polar aspect, with meridians

marked at true angles. Perpendiculars are dropped from the intersections of the

cuter circle with the meridians onto the horizontal meridian EE. This determines

the radii of the parallels of latitude, which may then be drawn about the center.

For the equatorial aspect, circle C is drawn with the same radius as A, circle B

is drawn like half of circle A, and the outer circle of C is equidistantly marked to

locate intersections of parallels with that circle. Parallels of latitude are drawn as

straight lines, with the Equator midway. Parallels are shown tilted merely for

use with oblique projection circle D. Points at intersections of parallels with other

meridians of B are then projected onto the corresponding parallels of latitude on

C, and the new points connected for the meridians of C. By tilting graticule C at

an angle 4>x equal to the central latitude of the desired oblique aspect, the corre

sponding points of circles A and C may be projected vertically and horizontally,

respectively, onto circle D to provide intersections for meridians and parallels.

FORMULAS FOR THE SPHERE

To understand the mathematical concept of the Orthographic projection, it is

helpful to think in terms of polar coordinates p and 6:

p = R sin c

6 = tt-Az= 180°-Az

(20-1)

(20-2)
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where c is the angular distance of the given point from the center of projection.

Az is the azimuth east of north, and 6 is the polar coordinate east of south. The

distance from the center of a point on an Orthographic map projection is thus

proportional to the sine of the angular distance from the center on the sphere.

Applying equations (5-3), (5-4), and (5-4a) for great circle distance c and azi

muth Az in terms of latitude and longitude, and equations for rectangular coordi

nates in terms of polar coordinates, the equations for rectangular coordinates for

the oblique Orthographic projection reduce to the following, given R, X0, <J>,

and X (see p. 311 for numerical examples):

x = R cos <J> sin (X-X0) (20-3)

y = R[cos4>i sin^-sin^ cos <J> cos (X-X0)] (20-4)

h, = cos c

= sin <J>i sin <J> + cos 4>\ cos <J> cos (X-X0) (20-5)

k' = 1.0

where <i>\ and X0 are the latitude and longitude, respectively, of the center point

and origin of the projection, h' is the scale factor along a line radiating from the

center, and k' is the scale factor in a direction perpendicular to a line radiating

from the center. The Y axis coincides with the central meridian X0, y increasing

northerly. All the parallels are ellipses of eccentricity cos <J>i. The limit of the map

is a circle of radius R.

For the north polar Orthographic, letting = 90°, x is still found from (20-3),

but

y = -R cos <J> cos (X-Xo) (20-6)

h =sin 4> (20-7)

In polar coordinates,

p = R cos <J> (20-8)

6 = X-X0 (20-9)

For the south polar Orthographic, with <J>i = -90°, x does not change, but

y = R cos 4> cos (X-X0) (20-10)

h = -sin <J> (20-11)

For polar coordinates, p is found from (20-8), but

6 = ir-X + X0 (20-12)

For the equatorial Orthographic, letting <J>i = 0, x still does not change from

(20-3), but

y = Rsm4> (20-13)

In automatically computing a general set of coordinates for a complete Ortho

graphic map, the distance c from the center should be calculated for each intersec

tion of latitude and longitude to determine whether it exceeds 90° and therefore

whether the point is beyond the range of the map. More directly, using equation

(5-3),

cos c = sin <i>i sin 4> + cos <J>i cos <J> cos (X-X0) (5-3)

if cos c is zero or positive, the point is to be plotted. If cos c is negative, the point

is not to be plotted.
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For the inverse formulas for the sphere, to find <J> and X, given R, 4>\t k0, x,

and y:

<J> = arcsin [cos c sin 4>i + (y sin c cos <J>i/p)] (20-14)

Ifp = 0, equations (20- 14) through (20- 17) are indeterminate, but 4> = <J>iandX =

k0. If 4>i is not ±90°,

X = X0 + arctan [x sin c/(p cos <i>\ cos c-y sin <J>i sin c)] (20-15)

If <J>, is 90°,

X = X0 + arctan [x/(-y)] (20- 16)

If <J>i is -90°,

k = k0 + arctan (x/y) (20 - 1 7)

Note that, while the ratio [x/(-y)] in (20-16) is numerically the same as (-x/y),

the necessary quadrant adjustment is different when using the Fortran ATAN2

function or its equivalent.

In equations (20-14) and (20-15),

p =(x2 + y2y- (20-18)

c = arcsin (p/R) (20-19)

Simplification for inverse equations for the polar and equatorial aspects is obtained

by giving <J>i values of ±90° and 0°, respectively. They are not given in detail here.

Tables 22 and 23 list rectangular coordinates for the equatorial and oblique

aspects, respectively, for a 10° graticule with a sphere of radius R = 1.0. For the

oblique example 4>\ = 40°.
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Table 22.—Orthographic projection: Rectangular coordinates for equatorial aspect

Long. 0° 10° 20° 30° 40°

Lat. y z

90° 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

80 .9848 .0000 .0302 .0594 .0868 .1116

70 .9397 .0000 .0594 .1170 .1710 .2198

60 .8660 .0000 .0868 .1710 .2500 .3214

50 .7660 .0000 .1116 .2198 .3214 .4132

40 .6428 .0000 .1330 .2620 .3830 .4924

30 .5000 .0000 .1504 .2962 .4330 .5567

20 .3420 .0000 .1632 .3214 .4698 .6040

10 .1736 .0000 .1710 .3368 .4924 .6330

0 .0000 .0000 .1736 .3420 .5000 .6428

Long. 50° 60° 70° 80° 90°

Lat. z

90° 0.0000 0.0000 0.0000 0.0000 0.0000

80 .1330 .1504 .1632 .1710 .1736

70 .2620 .2962 .3214 .3368 .3420

60 .3830 .4330 .4698 .4924 .5000

50 .49.24 .5567 .6040 .6330 .6428

40 .5868 .6634 .7198 .7544 .7660

30 .6634 .7500 .8138 .8529 .8660

20 .7198 .8138 .8830 .9254 .9397

10 .7544 .8529 .9254 .9698 .9848

0 .7660 .8660 .9397 .9848 1.0000

Radius of sphere = 1.0

Origin: (x, y) = 0 at (lat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical.
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Table 23.—Orthographic projection: Rectangular coordinates for oblique aspect centered at lat.

40° N.

[The circle bounding the hemisphere map has the same coordinates as the X =90° circle on the equatorial Orthographic projection.

The radius of the sphere = 1 .0. y coordinate in parentheses under x coordinate]

Long.
0° 10° 20° 30° 40°

Lat.

90° 0.0000 0.0000 0.0000 0.0000 0.0000

( .7660) ( .7660) ( .7660) ( .7660) ( .7660)

80 .0000 .0302 .0594 .0868 .11167

( .6428) ( .6445) ( .6495) ( .6577) ( .6689)

70 .0000 .0594 .1170 .1710 .21987

( .5000) ( .5033) ( .5133) ( .5295) ( .5514)

60 .0000 .0868 .1710 .2500 .32147

( .3420) ( .3469) ( .3614) ( .3851) ( .4172)

50 .0000 .1116 .2198 .3214 .41327

( .1736) ( .1799) ( .1986) ( .2290) ( .2703)

40 .0000 .1330 .2620 .3830 .49247

( .0000) ( .0075) ( .0297) ( .0660) ( .1152)

30 .0000 .1504 .2962 .4330 .55677

(-.1736) (-.1652) (-.1401) (-.0991) (-.0434)

20 .0000 .1632 .3214 .4698 .60407

(-.3420) (-.3328) (-.3056) (-.2611) (-.2007)

10 .0000 .1710 .3368 .4924 .6330in

(-.5000) (-.4904) (-.4618) (-.4152) (-.3519)

0 .0000 .1736 .3420 .5000 .64287

(-.6428) (-.6330) (-.6040) (-.5567) (-.4924)

-10 .0000 .1710 .3368 .4924 .63307

(-.7660) (-.7564) (-.7279) (-.6812) (-.6179)

-20 .0000 .1632 .3214 .4698 .60407

(-.8660) (-.8568) (-.8296) (-.7851) (-.7247)

-30 .0000 .1504 .2962 .4330 .5567

(-.9397) (-.9312) (-.9061) (-.8651) (-.8095)

-40 .0000 .1330 .2620 .3830 .4924

(-.9848) (-.9773) (-.9551) (-.9188) (-.8696)

-50 .0000

(-1.0000)

7 7 7

7 7 7 7

Origin: (x, y) = 0 at (lat. , long. ) = (40°, 0). Y axis increases north. Coordinates shown for central meridian (X = 0) and

meridians east of central meridian. For meridians west (negative), reverse signs of meridians and of x.

7

110° 120° 130° 140°

90° 0.0000 0.0000 0.0000 0.0000 0.0000

( .7660) ( .7660) ( .7660) ( .7660) ( .7660)

80 .1710 .1632 .1504 .1330 .1116

( .7738) ( .7926) ( .8102) ( .8262) ( .8399)

70 .3368 .3214 .2962 .2620 .2198

( .7580) ( .7950) ( .8298) ( .8612) ( .8883)

60 .4924 .4698 .4330 .3830 .3214

( .7192) ( .7733) ( .8241) ( .8700) ( .9096)

50 .6330 .6040 .5567 .4924 .4132

( .6586) ( .7281) ( .7934) ( .8524) ( .9033)

40 .7544 .7198 .6634 .5868

( .5779) ( .6608) ( .7386) ( .8089)

30 .8529 .8138

7

( .4797) ( .5734)

7 7 7

20 .9254

7 7 7

in 7 7 7
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Table 23.—Orthographic projection: Rectangular coordinates for oblique aspect centered at lat.

40° N.—Continued

Long.
50° 60° 70° 80° 90°

Lat.

90° 0.0000 0.0000 0.0000 0.0000 0.0000

( .7660) ( .7660) ( .7660) ( .7660) ( .7660)

80 .1330 .1504 .1632 .1710 .1736

( .6827) ( .6986) ( .7162) ( .7350) ( .7544)

70 .2620 .2962 .3214 .3368 .3420

( .5785) ( .6099) ( .6447) ( .6817) ( .7198)

60 .3830 .4330 .4698 .4924 .50007

( .4568) ( .5027) ( .5535) ( .6076) ( .6634)

50 .4924 .5567 .6040 .6330 .6428

( .3212) ( .3802) ( .4455) ( .5151) ( .5868)

40 .5868 .6634 .7198 .7544 .7660

( .1759) ( .2462) ( .3240) ( .4069) ( .4924)

30 .6634 .7500 .8138 .8529 .8660

( .0252) ( .1047) ( .1926) ( .2864) ( .3830)

20 .7198 .8138 .8830 .9254 .9397

(-.1263) (-.0400) ( .0554) ( .1571) ( .2620)

10 .7544 .8529 .9254 .9698 .9848

(-.2739) (-.1835) (-.0835) ( .0231) ( .1330)

0 .7660 .8660 .9397 .9848 1.0000

(-.4132) (-.3214) (-.2198) (-.1116) ( .0000)

-10 .7544 .8529 .9254 .9698

(-.5399) (-.4495) (-.3495) (-.2429)

7

-20 .7198 .8138 .8830

in

(-.6503) (-.5640) (-.4686)

7 7

-30 .6634 .7500

7 7

7

(-.7408) (-.6614)

7 7 7

-40

7 7 7

7 — — — — —

Long.
150° 160° 170° 180°

Lat7^\

90° 0.0000 0.0000 0.0000 0.0000

( .7660) ( .7660) ( .7660) ( .7660)

80 .0868 .0594 .0302 .0000

( .8511) ( .8593) ( .8643) ( .8660)

70 .1710 .1170 .0594 .0000

( .9102) ( .9264) ( .9364) ( .9397)

60 .2500 .1710 .0868 .0000

( .9417) ( .9654) ( .9799) ( .9848)

50 .3214 .2198 .1116 .0000

40

( .9446) ( .9751) ( .9937) (1.0000)



MAP PROJECTIONS—A WORKING MANUAL

21. STEREOGRAPHIC PROJECTION

SUMMARY

• Azimuthal.

• Conformal.

• The central meridian and a particular parallel (if shown) are straight lines.

• All meridians on the polar aspect and the Equator on the equatorial aspect are

straight lines.

• All other meridians and parallels are shown as arcs of circles.

• A perspective projection for the sphere.

• Directions from the center of the projection are true (except on ellipsoidal

oblique and equatorial aspects).

• Scale increases away from the center of the projection.

• Point opposite the center of the projection cannot be plotted.

• Used for polar maps and miscellaneous special maps.

• Apparently invented by Hipparchus (2nd century B.C.).

HISTORY

The Stereographic projection was probably known in its polar form to the

Egyptians, while Hipparchus was apparently the first Greek to use it. He is

generally considered its inventor. Ptolemy referred to it as "Planisphaerum," a

name used into the 16th century. The name "Stereographic" was assigned to it by

Francois d'Aiguillon in 1613. The polar Stereographic was exclusively used for

star maps until perhaps 1507, when the earliest-known use for a map of the world

was made by Walther Ludd (Gaultier Lud) of St. Die, Lorraine.

The oblique aspect was used by Theon of Alexandria in the fourth century for

maps of the sky, but it was not proposed for geographical maps until Stabius and

Werner discussed it together with their cordiform (heart-shaped) projections in

the early 16th century. The earliest-known world maps were included in a 1583

atlas by Jacques de Vaulx (c. 1555-97). The two hemispheres were centered on

Paris and its opposite point, respectively.

The equatorial Stereographic originated with the Arabs, and was used by the

Arab astronomer Ibn-el-Zarkali (1029-87) of Toledo for an astrolabe. It became a

basis for world maps in the early 16th century, with the earliest-known examples

by Jean Roze (or Rotz), a Norman, in 1542. After Rumold (the son of Gerardus)

Mercator's use of the equatorial Stereographic for the world maps of the atlas of

1595, it became very popular among cartographers (Keuning, 1955, p. 7-9;

Nordenskiold, 1889, p. 90, 92-93).

FEATURES

Like the Orthographic, the Stereographic projection is a true perspective in its

spherical form. It is the only known true perspective projection of any kind that is

also conformal. Its point of projection is on the surface of the sphere at a point just

opposite the point of tangency of the plane or the center point of the projection

(fig. 31). Thus, if the North Pole is the center of the map, the projection is from

the South Pole. All of one hemisphere can be comfortably shown, but it is impossi

ble to show both hemispheres in their entirety from one center. The point on the

sphere opposite the center of the map projects at an infinite distance in the plane

of the map.
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N. Pole Plane of projection
7

S. Pole

Figure 31.—Geometric projection of the polar Stereographic projection.

The polar aspect somewhat resembles other polar azimuthals, with straight

radiating meridians and concentric circles for parallels (fig. 32A). The parallels

are spaced at increasingly wide distances, the farther the latitude is from the pole

(the Orthographic has the opposite feature).

In the equatorial and oblique aspects, the distinctive appearance of the Stereo-

graphic becomes more evident: All meridians and parallels, except for two, are

shown as circles, and the meridians intersect the parallels at right angles (figs.

325, C). The central meridian is shown straight, as is the parallel of the same

numerical value, but opposite in sign to the central parallel. For example, if lat.

40° N. is the central parallel, then lat. 40° S. is shown as a straight line. For the

equatorial aspect with lat. 0° as the central parallel, the Equator, which is of

course also its own negative counterpart, is shown straight. (For the polar aspect,

this has no meaning since the opposite pole cannot be shown.) Circles for parallels

are centered along the central meridian; circles for meridians are centered along

the straight parallel. The meridian 90° from the central meridian on the equatorial

aspect is shown as a circle bounding the hemisphere. This circle is centered on the

projection center and is equidistantly marked for parallels of latitude.

As an azimuthal projection, directions from the center are shown correctly in

the spherical form. In the ellipsoidal form, only the polar aspect is truly azimuthal,

but it is not perspective, in order to retain conformality. The oblique and equato

rial aspects of the ellipsoidal Stereographic, in order to be conformal, are neither

azimuthal nor perspective. As with other azimuthal projections, there is no distor

tion at the center, which may be made the "standard point" true to scale in all

directions. Because of the conformality of the projection, a Stereographic map

may be given, instead of a "standard point," a "standard circle" (or "standard

parallel" in the polar aspect) with an appropriate radius from the center, balanc

ing the scale error throughout the map. (On the ellipsoidal oblique or equatorial

aspects, the lines of constant scale are not perfect circles.) This cannot be done

with non-conformal azimuthal projections. The Stereographic may also be modi

fied to produce oval and irregular lines of true scale (see p. 203 ).

USAGE

The oblique aspect of the Stereographic projection has been recently used in

the spherical form by the USGS for circular maps of portions of the Moon, Mars,

and Mercury, generally centered on a basin. The USGS is currently using the
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spherical oblique aspect to prepare l:10,000,000-scale maps of Hydrocarbon Prov

inces for three continents after a least-squares analysis of over 100 points on each

continent to determine optimum parameters for a common conformal projection.

For Europe, the central scale factor is 0.976 at a central point of lat. 55°N. and

long. 20°E. For Africa, these parameters are 0.941, 5° N. , and 20° E. For Asia, they

are 0.939, 45° N., and 105° E., respectively. *

The USGS has most often used the Stereographic in the polar aspect and

ellipsoidal form for maps of Antarctica. For 1:500,000 sketch maps, the standard

parallel is 71° S.; for its l:250,000-scale series between 80° and the South Pole, the

standard parallel is 80°14' S. The Universal Transverse Mercator (UTM) grid

employs the UPS (Universal Polar Stereographic) projection from the North Pole

to lat. 84° N., and from the South Pole to lat. 80° S. For the UPS, the scale at each

pole is reduced to 0.994, resulting in a standard parallel of 81°06'52.3" N. or S.

The UPS central meridian (as defined for X0 on p. ix ) is the Greenwich meridian,

with false eastings and northings of 2,000,000 m at each pole.

In 1962, a United Nations conference changed the polar portion of the Interna

tional Map of the World (at a scale of 1:1,000,000) from a modified Polyconic to the

polar Stereographic. This has consequently affected IMW sheets drawn by the

USGS. North of lat. 84° N. or south of lat. 80° S., it is used "with scale matching

that of the Modified Polyconic Projection or the Lambert Conformal Conic Projec

tion at Latitudes 84° N. and 80° S." (United Nations, 1963, p. 10). The reference

ellipsoid for all these polar Stereographic projections is the International of 1924.

The Astrogeology Center of the Geological Survey at Flagstaff, Ariz. , has been

using the polar Stereographic for the mapping of polar areas of every planet and

satellite for which there is sufficient information in this region (see table 6).

The USGS is preparing a geologic map of the Arctic regions, using as a base an

American Geographical Society map of the Arctic at a scale of 1:5,000,000. Drawn

to the Stereographic projection, the map is based on a sphere having a radius

which gives it the same volume as the International ellipsoid, and lat. 71° N. is

made the standard parallel.

FORMULAS FOR THE SPHERE

Mathematically, a point at a given angular distance from the chosen center

point on the sphere is plotted on the Stereographic projection at a distance from

the center proportional to the trigonometric tangent of half that angular distance,

and at its true azimuth, or, if the central scale factor is 1,

p = 2# tan y2c (21-1)

6 = .it-Az = 180°-Az (20-2)

A: = sec2'/2C (21 -1a)

where c is the angular distance from the center, Az is the azimuth east of north

(see equations (5-3) through (5-4b)), and 6 is the polar coordinate east of south.

Combining with standard equations, the formulas for rectangular coordinates of

the oblique Stereographic projection are found to be as follows, given R, k0, <J>i,

X0, <J>, and X (see p. 312 for numerical examples):

x = Rk cos 4> sin (X-X0) (21-2)

y = Rk [cos 4>i sin <J>-sin <J>i cos <J> cos (X-X0)] (21-3)

where

k = 2A:o/[1 + sin <i>x sin <J> + cos <J>i cos <i> cos (X — X0)] (21 —4)

and (<J>i, X0) are the latitude and longitude of the center, which is also the origin.

Since this is a conformal projection, k is the scale factor in all directions, based on

* These maps are no longer an active project.
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Table 24.—Stereographic projection: Rectangular coordinates for equatorial aspect (sphere)

[One hemisphere; y coordinate in parentheses under x coordinate]

v Long.
0° 10° 20° 30° 40°

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(2.00000) (2.00000) (2.00000) (2.00000) (2.00000)

80 .00000 .05150 .10212 .15095 .19703

(1.67820) (1.68198) (1.69331) (1.71214) (1.73837)

70 .00000 .08885 .17705 .26386 .34841

(1.40042) (1.40586) (1.42227) (1.44992) (1.48921)

60 .00000 .11635 .23269 .34892 .46477

(1.15470) (1.16058) (1.17839) (1.20868) (1.25237)

50 .00000 .13670 .27412 .41292 .55371

( .93262) ( .93819) ( .95515) ( .98421) (1.02659)

40 _ _ .00000 .15164 .30468 .46053 .62062

( .72794) ( .73277) ( .74749) ( .77285) ( .81016)

30 .00000 .16233 .32661 .49487 .66931

( .53590) ( .53970) ( .55133) ( .57143) ( .60117)

20 .00000 .16950 .34136 .51808 .70241

( .35265) ( .35527) ( .36327) ( .37713) ( .39773)

10 .00000 .17363 .34987 .53150 .72164

( .17498) ( .17631) ( .18037) ( .18744) ( .19796)

o .00000 .17498 .35265 .53590 .72794

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

a central scale factor of A:0, normally 1.0, but which may be reduced. The Y axis

coincides with the central meridian X0, y increasing northerly and x, easterly.

If 4>= -<J>i, and X = X0±180°, the point cannot be plotted. Geometrically, it is the

point from which projection takes place.

For the north polar Stereographic, with <J>i = 90°, these simplify to

x = 2R k0 tan (ir/4-<J>/2) sin (X-X0)

y = -2R k0 tan (it/4-<J>/2) cos (X-X0)

k = 2A:o/(1 + sin <J>)

p = 2R A:otan (W4-<J>/2)

e = x-x0

For the south polar Stereographic with <J>i = -90°,

x = 2R k0 tan (ir/4 + <J>/2) sin (X-X0)

y = 2R k0 tan (tt/4 + <J>/2) cos (X-X0)

A: = 2A0/(1-sin <J>)

p = 2R k0 tan (it/4 + <J>/2)

e = tt-X + X0

For the equatorial aspect, letting <J>i = 0, x is found from (21-2), but

y = R k sin <J> (21-13)

A: = 2Aco/[1 + cos<J>cos(X-Xo)] (21-14)

For the inverse formulas for the sphere, given R, k0, <J>i, X0, x, and y:

(21-5)

(21-6)

(21-7)

(21-8)

(20-9)

(21-9)

(21-10)

(21-11)

(21-12)

(20-12)

<J> = arcsin [cos c sin <i>x + (y sin c cos t^/p)] (20-14)
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Table 24.—Stenographic projection: Rectangular coordinates for equatorial aspect (sphere)—Con

tinued

\Long.
50° 60° 70° 80° 90°

Lat\

90° . 7 7 0.00000 0.00000 0.00000 0.00000 0.00000

(2.00000) (2.00000) (2.00000) (2.00000) (2.00000)

80 .23933 .27674 .30806 .33201 .34730

(1.77184) (1.81227) (1.85920) (1.91196) (1.96962)

70 .42957 .50588 .57547 .63588 .68404

(1.54067) (1.60493) (1.68256) (1.77402) (1.87939)

60 .57972 .69282 .80246 .90613 1.00000

(1.31078) (1.38564) (1.47911) (1.59368) (1.73205)

50 7 .69688 .84255 .99033 1.13892 1.28558

(1.08415) (1.15945) (1.25597) (1.37825) (1.53209)

40 .78641 .95937 1.14080 1.33167 1.53209

( .86141) ( .92954) (1.01868) (1.13464) (1.28558)

30 7 7 .85235 1.04675 1.25567 1.48275 1.73205

( .64240) ( .69783) ( .77149) ( .86928) (1.00000)

20 .89755 1.10732 1.33650 1.59119 1.87939

( .42645) ( .46538) ( .51767) ( .58808) ( .68404)

10 .92394 1.14295 1.38450 1.65643 1.96962

( .21267) ( .23271) ( .25979) ( .29658) ( .34730)

0 .93262 1.15470 1.40042 1.67820 2.00000

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere = 1.0.

Origin: (jt, y) = 0 at (lat. , long. ) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical.

If p = 0, equations (20-14) through (20-17) are indeterminate, but <J> = <J>i and

X = X0.

If <J>i is not ±90°:

X = X0 + arctan [x sin c/(p cos 4>i cos c-y sin <i>i sin c)] (20-15)

If <J>i is 90°:

k = X0 + arctan [x/( - y)] (20- 16)

If <J>, is -90°:

X = K0 + arctan (x/y) (20- 1 7)

In equations (20-14) and (20-15),

p = (x2 + y2y'2 (20-18)

c = 2 arctan [p/(2Rk0)] (21 - 15)

The similarity of formulas for Orthographic, Stereographic, and other azimuth-

als may be noted. The equations for k' (k for the Stereographic, k' = 1.0 for the

Orthographic) and the inverse c are the only differences in forward or inverse

formulas for the sphere. The formulas are repeated for convenience, unless shown

only a few lines earlier.

Table 24 lists rectangular coordinates for the equatorial aspect for a 10° grati

cule with a sphere of radius R = 1.0.

Following are equations for the centers and radii of the circles representing the

meridians and parallels of the oblique Stereographic in the spherical form:
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Circles for meridians:

Centers: x = -2R Mcos 4>! tan (X-X0)] (21-16)

y = -2R k0 tan <i>i (21-17)

Radii: p = 2R Mcos <J>i sin (X-X0)] (21-18)

Circles for parallels of latitude:

Centers: x = 0

y = 2Rko cos 4>i/(sin <J>i +sin <J>) (21-19)

Radii: p = 2R k0 cos <J>/(sin <J>i + sin <J>) (21-20)

Reduction to the polar and equatorial aspects may be made by letting 4>i = ±90° or

0°, respectively.

To use a "standard circle" for the spherical Stereographic projection, such that

the scale error is a minimum (based on least squares) over the apparent area of

the map, the circle has an angular distance c from the center, where

c = 2 arccos (l/ky- (21-21)

k = tan2 (p/2)/(-ln cos2 (p/2) ) (21-22)

and p is the great circle distance of the circular limit of the region being mapped

stereographically. The calculation is only slightly different if minimum error is

based on the true area of the map:

k = -In cos2 (p/2)/sin2 (p/2) (21-23)

In either case, c of the standard circle is approximately p/^/lT

FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal forms of the Stereographic projection are

nonperspective, in order to preserve conformality. The oblique and equatorial

aspects are also slightly nonazimuthal for the same reason. The formulas result

from replacing geodetic latitude <J> in the spherical equations with conformal lati

tude x (see equation (3-1)), followed by a small adjustment to the scale at the

center of projection (Thomas, 1952, p. 14-15, 128-139). The general forward

formulas for the oblique aspect are as follows; given a, e, k\t, 4>i. X0, <J>, and X (see

p. 313 for numerical examples):

x = A cos x sin (k~Kd (21-24)

y = A [cos xi sin x~sin xi cos x cos (X-X0)] (21-25)

ft=Acosx'(om) (21-26)

where

A = 2 a A;07ni/|cos xi [1 + sin xi sin x

-(-cos xi cos x cos (X-X0)]i (21-27)

x = 2 arctan itan (ir/4 + <J>/2)[(1-<? sin <J>)/(1 + <? sin <J>)]<2)

-W2 (3-1)

or
= 2 arctan

/l + sin <J>\ / 1 —e sin <J>V,

7\1-sin 4>/ \1 +e sin <J>/ _

1 2

- tt/2
(3- la)

rn = cos <J>/(1 -e2 sin2 <J,)1 2 (14-15)
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and xi and m! are x and m, respectively, calculated using <J>i, the central latitude,

in place of <J>, while k0 is the scale factor at the center (normally 1.0). The origin of

x and y coordinates occurs at the center (<J>i, X0), the Y axis coinciding with the

central meridian X0, and y increasing northerly and x, easterly. The scale factor is

actually k0 along a near-circle passing through the origin, except for polar and

equatorial aspects, where it occurs only at the central point. The radius of this

near-circle is almost 0.4° at midlatitudes, and its center is along the central meridian,

approaching the Equator from fo. The scale factor at the center of the circle is

within 0.00001 less than k0.

In the equatorial aspect, with the substitution of <J>i = 0 (therefore xi = 0), x is

still found from (21-24) and k from (21-26), but

y = Asin\ (21-28)

A = 2ak0/[l + cos x cos (X-X0)] (21-29)

For the north polar aspect, substitution of4>i = 90° (therefore xi = 90°) into equa

tions (21-27) and (14-15) leads to an indeterminate A. To avoid this problem,

the polar equations may take the form

x = psin(X-X0) (21-30)

y = - p cos (X-X0) (21-31)

A: = p/(a m) (21-32)

where

p = 2 ak0 t/[(l +e)»+" (1-e)(' -<.)]' /2 (21-33)

t = tan (tt/4 -<J>/2)/[(1-e sin <J>)/(1 + e sin <J>)]"2 (15-9)

or

(1-sin <J> \ / l + esin<J>y

1 -l- sin <J> / \ 1-e sin <J> /
(15-9a)

Equation (21-33) applies only if true scale or known scale factor k0 is to occur at

the pole. For true scale along the circle representing latitude 4>c,

p = amc t/tc (21-34)

Then the scale at the pole is

kp = (1/2) mc [(1 + e)»+" (1-e)"-«)]1-/(a tc) (21-35)

In equations (21-34) and (21-35), mc and tc are found from equations (14-15)

and (15-9), respectively, substituting <J>c in place of <J>.

For the south polar aspect, the equations for the north polar aspect may be

used, but the signs of x, y, <J>c, X, and X0 must be reversed to be used in the

equations.

For the inverse formulas for the ellipsoid, the oblique and equatorial aspects

(where <J>i is not ±90°) may be solved as follows, given a, e, k0, <J>i, X0, x, and y:

<J> = 2 arctan |tan (ir/4 + x/2)[(1 + e sin 4>)/(1-e sin <J>)H

- ir/2 (3-4)

X = X0 + arctan [x sin ce/(p cos xi cos ce—y sin xi sin ce)] (21-36)

where

x = arcsin [cos ce sin xi + (y sin ce cos xi^P)] (21-37)
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but if p = 0, x = xi and X = k0.

p = (x2 + 2/2)'2 (20-18)

ce = 2 arctan [p cos xi/(2 a k0 mi)] (21-38)

and TO! is found from equation (14-15) above, using <J>! in place of 4>. Equation

(3-4) involves iteration, using x as the first trial <J> in the right-hand side, solving

for a new trial <J> on the left side, substituting into the right side, etc., until 4>

changes by less than a preset convergence (such as 10 9 radians). Conformal lati

tude xi is found from (3-1), using <i>t for <J>. The factor ce is not the true angular

distance, as it is in the spherical case, but it is a convenient expression similar in

nature to c, used to find <J> and X.

To avoid the iteration of (3-4), this series may be used instead:

4> = x + (e2/2 + 5e4/24 + e6/12 + 13e8/360 + . . . ) sin 2x

+ (7e4/48 + 29e6/240 + 811e8/11520 + . . . )

sin 4x + (7e6/120 + 81e8/1120 + . . . )

sin 6x + (4279e*/161280 + . . . ) sin 8\ + . . . (3-5)

For improved computational efficiency using this series, see p. 19.

The inverse equations for the north polar ellipsoidal Stereographic are as fol

lows; given a, e, <J>c, k0 (if <J>f = 90°), X0. x< and y:

<i> = it/2-2 arctan \t[(l-e sin <J>)/(1 + e sin (7-9)

X = X0 + arctan [x/(-y)] (20-16)

Equation (7-9) for <J> also involves iteration. For the first trial, (tt/2-2 arctan t)

is substituted for <i> in the right side, and the procedure for solving equation (3-4)

just above is followed:

If 4>c (the latitude of true scale) is 90°,

If <J>c is not 90°,

In either case,

t = p[(1 + e)<i+«, (1-e)<i-"]12/(2a k0) (21-39)

t = ptc/(a mc) (21 -40)

p = (x2 + y2y* (20-18)

and tc and rnc are found from equations (15-9) and (14-15), respectively, listed

with the forward equations, using <J>c in place of <J>. Scale factor k is found from

equation (21-26) or (21-32) above, for the 4> found from equation (3-4), (3-5),

or (7-9), depending on the aspect.

To avoid iteration, series (3-5) above may be used in place of (7-9), where

x = 77/2-2 arctan t (7-13)

Inverse equations for the south polar aspect are the same as those for the north

polar aspect, but the signs of x, y, X0, <i>c, <J>, and X must be reversed.

Polar coordinates for the ellipsoidal form of the polar Stereographic are given in

table 25, using the International ellipsoid and a central scale factor of 1.0.

To convert coordinates measured on an existing Stereographic map (or other

azimuthal map projection), the user may choose any meridian for X0 on the polar

aspect, but only the original meridian and parallel may be used for X0 and <J>it re

spectively, on other aspects.
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Table 25.—Ellipsoidal polar Stereographic projection: Polar coordinates

[International ellipsoid; central scale factor =1.0]

Latitude Radius, meters k, scale factor

90° 0.0 1.000000

89 111,702.7 1.000076

88 223,421.7 1.000305

87 335,173.4 1.000686

86 446,974.1 1.001219

85 558,840.1 1.001906

84 670,788.1 1.002746

83 782,834.3 1.003741

82 894,995.4 1.004889

81 1,007,287.9 1.006193

80 1,119,728.7 1.007653

79 1,232,334.4 1.009270

78 1,345,122.0 1.011045

77 1,458,108.4 1.012979

76 1,571,310.9 1.015073

75 1,684,746.8 1.017328

74 1,798,433.4 1.019746

73 1,912,388.4 1.022329

72 2,026,629.5 1.025077

71 2,141,174.8 1.027993

70 2,256,042.3 1.031078

69 2,371,250.5 1.034335

68 2,486,818.0 1.037765

67 2,602,763.6 1.041370

66 2,719,106.4 1.045154

65 2,835,865.8 1.049117

64 2,953,061.4 1.053264

63 3,070,713.2 1.057595

62 3,188,841.4 1.062115

61 3,307,466.7 1.066826

60 3,426,609.9 1.071732
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22. GNOMONIC PROJECTION

SUMMARY

• Azimuthal and perspective.

• All meridians and the Equator are straight lines.

• All parallels except the Equator and poles are ellipses, parabolas, or

hyperbolas.

• Neither conformal nor equal-area.

• All great circles are shown as straight lines.

• Less than one hemisphere may be shown around a given center.

• No distortion at the center only.

• Distortion and scale rapidly increase away from the center.

• Directions from the center are true.

• Used only in the spherical form.

• Known by Greeks 2,000 years ago.

HISTORY

The Gnomonic is the perspective projection of the globe from the center onto a

plane tangent to the surface. It was used by Thales (636? -546?B.C.) of Miletus

for star maps. Called "horologium" (sundial or clock) in early times, it was given

the name "gnomonic" in the 19th century. It has also been called the Gnomic and

the Central projection. The name Gnomonic is derived from the fact that the

meridians radiate from the pole (or are spaced, on the equatorial aspect) just as

the corresponding hour markings on a sundial for the same central latitude. The

gnomon of the sundial is the elevated straightedge pointed toward the pole and

casting its shadow on the various hour markings as the sun moves across the sky.

FEATURES AND USAGE

The outstanding (and only useful) feature of the Gnomonic projection results

from the fact that each great-circle arc, the shortest distance between any two

points on the surface of a sphere, lies in a plane passing through the center of

the globe. Therefore, all great-circle arcs project as straight lines on this projec

tion. The scale is badly distorted along such a plotted great circle, but the route

is precise for the sphere.

Because the projection is from the center of the globe (fig. 33), it is impossible

to show even a full hemisphere with the Gnomonic. Thus, if either pole is the

point of tangency and center (the polar aspect), the Equator cannot be shown.

Except at the center, the distortion of shape, area, and scale on the Gnomonic

projection is so great that it has seldom been used for atlas maps. Historical

exceptions are several sets of star maps from the late 18th century and terrestrial

maps of 1803. These maps were plotted with the sphere projected onto the six

faces of a tangent cube. The globe has also been projected from the mid-16th to

N. Pole Plane of projection
_

Equator

Figure 33.—Geometric projection of the parallels of the polar Gnomonic projection.
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the mid-20th centuries, using the Gnomonic projection as well as others, onto the

faces of other polyhedra. Generally, the projection is used for plotting great-

circle paths, although the USGS has not used the projection for published maps.

The meridians of the polar Gnomonic projection appear straight, as on other

polar azimuthal projections, and parallels of latitude are circles centered about the

pole (fig. 34A). The parallels are closest near the pole, and their spacings increase

away from the pole much more rapidly than they do on the polar Stereographic.

The radii are proportional to the trigonometric tangent of the arc distance from

the pole.

On the equatorial aspect, meridians are straight parallel lines perpendicular to

the Equator, which is also straight (fig. 34/?). The meridians are closest near the

central meridian, and the spacing is rapidly increased away from it, the distance

from center in proportion to the tangent of the difference in longitude. The

parallels other than the Equator are all hyperbolic arcs, symmetrical about the

Equator.

Since meridians are great-circle paths, they are also plotted straight on the

oblique aspect of the Gnomonic, but they intersect at the pole (fig. 34C). They

are not spaced at equal angles. The Equator is a straight line perpendicular to the

central meridian. If the central latitude is north of the Equator, its colatitude (90°

minus the latitude) is shown as a parabolic arc, more northern latitudes are

ellipses, and more southern latitudes are hyperbolas. If the central latitude is

south of the Equator, opposite signs apply.

Various graphical constructions have been published, but they are not de

scribed here because of the ease of plotting or calculating coordinates by com

puter, and because they do not add significantly to the understanding of this

projection.

FORMULAS FOR THE SPHERE

A point at a given angular distance from the chosen center point on the sphere

is plotted on the Gnomonic projection at a distance from the center proportional

to the trigonometric tangent of that angular distance, and at its true azimuth, or

p = Rtanc (22-1)

6 = tt - Az = 180° - Az (20-2)

h' = 1/cos2 c (22-2)

k' = 1/cos c (22-3)

where c is the angular distance of the given point from the center of projection.

Az is the azimuth east of north, and 6 is the polar coordinate east of south. The

term k' is the scale factor in a direction perpendicular to the radius from the cen

ter of the map, not along the parallel except on the polar aspect. The scale factor

h' is measured in the direction of the radius. Combining with standard equations,

the formulas for rectangular coordinates of the oblique Gnomonic projection are

as follows, given R, 4>u X0, <J>, and X, to find x and y (see p.319 for numerical

examples):

x = Rk' cos <J> sin (X-X0) (22-4)

y = Rk' [cos<]>i sin <J>-sin <J>i cos4>cos(X-X0)] (22-5)

where k' is found from (22-3) above,

cos c = sin <J>i sin <J> + cos 4>i cos <J> cos (X— X0) (5-3)

and (fo, X0) are latitude and longitude of the projection center and origin. The Y

axis coincides with the central meridian X0, y increasing northerly. The meridians
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FIGURE 34.—Gnomonic projection, range from center. (A) Polar aspect. [H) Equatorial aspect. ((')

Oblique aspect, centered at lat. 40° N. All great-circle paths are straight lines on these maps.
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are straight lines, but the parallels are conic sections for which the eccentricity =

(cos fo/sin <J>). (If the eccentricity is zero, for <J>i = ± 90°, they are circles. If the

eccentricity is less than 1, they are ellipses; if equal to 1, a parabola; if greater

than 1, a hyperbolic arc.)

For the north polar Gnomonic, letting <J>i = 90°,

x = R cot <J> sin (X-X0) (22-6)

y = -R cot <J> cos (X-X0) (22-7)

In polar coordinates,

p = # cot <J> (22-8)

6 = X - X0 (22-9)

For the south polar Gnomonic, with <J>i = -90°

x = -R cot <J> sin (X-X0) (22-10)

y = R cot <i> cos (X-X0) (22-11)

In polar coordinates,

p =-ftcot<J> (22-12)

6 = tt - X + X0 (22-13)

For the equatorial Gnomonic, letting <J>i = 0,

x =#tan(X-X0) (22-14)

y = R tan <J>/cos (X-X0) (22-15)

In automatically computing a general set of coordinates for a Gnomonic map,

equation (5-3) above should be used to reject points equal to or greater than

90° from the center. That is, if cos c is zero or negative, the point is to be rejected.

If cos c is positive, it may or may not be plotted depending on the desired limits

of the map.

For the inverseformulasfor the sphere, to find <i> and X, given R, <J>i, X0, x, and y:

<J> = arcsin [cos c sin 4>x + (y sin c cos <J>,/p)] (20-14)

If p = 0, equations (20-14) through (20-17) are indeterminate, but 4> = <J>i, and

X = X0. If <J>i is not ± 90°,

X = X0 + arctan [x sin c/(p cos cos c - y sin <J>! sin c)] (20-15)

If <J>, is 90°,

X = X0 + arctan [x/(-y)] (20-16)

If <i>x is -90°,

X = X0 + arctan (x/y) (20-17)

In equations (20-14) and (20-15),

p = (x2 + y2)x2 (20-18)

c = arctan (p/R) (22-16)

Table 26 lists rectangular coordinates for the equatorial aspect for a 10° graticule

with a sphere of radius R = 1.0.
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Table 26.—Gnomonic projection: Rectangular coordinates for equatorial aspect

Long. 0° 10° 20° 30° 40° 50° 60° 70° 80°

X 0.0000 0.1763 0.3640 0.5774 0.8391 1.1918 1.7321 2.7475 5.6713

Lat. V

80° 5.6713 5.7588 6.0353 6.5486 7.4033 8.8229 11.3426 16.5817 32.6596

70 2.7475 2.7899 2.9238 3.1725 3.5866 4.2743 5.4950 8.0331 15.8221

60 1.7321 1.7588 1.8432 2.0000 2.2610 2.6946 3.4641 5.0642 9.9745

50 1.1918 1.2101 1.2682 1.3761 1.5557 1.8540 2.3835 3.4845 6.8630

40 0.8391 0.8520 0.8930 0.9689 1.0954 1.3054 1.6782 2.4534 4.8322

30 .5774 .5863 .6144 .6667 0.7537 0.8982 1.1547 1.6881 3.3248

20 .3640 .3696 .3873 .4203 .4751 .5662 0.7279 1.0642 2.0960

10 .1763 .1790 .1876 .2036 .2302 .2743 .3527 0.5155 1.0154

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0.0000

Radius of sphere = 1.0.

Origin: (x,y) = 0 at (lat.. long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical. 90th

meridian or pole cannot be shown.
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23. GENERAL PERSPECTIVE PROJECTION

SUMMARY

• Often used to show the Earth or other planets and satellites as seen from space.

• Orthographic, Stereographic, and Gnomonic projections are special forms of

the Vertical Perspective.

• Vertical Perspective projections are azimuthal; Tilted Perspectives are not.

• Central meridian and a particular parallel (if shown) are straight lines.

• Other meridians and parallels are usually arcs of circles or ellipses, but some

may be parabolas or hyperbolas.

• Neither conformal (unless Stereographic) nor equal-area.

• If the point of perspective is above the sphere or ellipsoid, less than one hemi

sphere may be shown, unless the view is from infinity (Orthographic). If

below center of globe or beyond the far surface, more than one hemisphere

may be shown.

• No distortion at the center if a Vertical Perspective is projected onto a tangent

plane. Considerable distortion near the projection limit.

• Directions from the center are true on the Vertical Perspective for the sphere

and for the polar ellipsoidal form.

• Known by Greeks and Egyptians 2,000 years ago in limiting forms.

HISTORY AND USAGE

Whenever the Earth is photographed from space, the camera records the view

as a perspective projection. If the camera precisely faces the center of the Earth,

the projection is Vertical Perspective. Otherwise, a Tilted Perspective projection

is obtained. Perspective views have also served other purposes.

With the complication of plotting coordinates for general perspective projec

tions, there was little known interest in them until the 18th century, except for

the well-known special cases of the Orthographic, Stereographic, and Gnomonic

projections, which are perspective from infinity, the opposite surface, and the

center of the sphere, respectively.

In 1701, the French mathematician Philippe De la Hire (1640-1718) found that

if the point of perspective is placed 1.71 times the radius of the globe from the

center in a direction opposite that of the plane of projection, the Equator on the

polar Vertical Perspective projection has exactly twice the radius of the 45th

parallel. The other parallels are not quite proportionally spaced, but this repre

sented a use of geometric projection to achieve low distortion. Several other

scientists, such as Antoine Parent in 1702 and various mathematicians of the late

19th century, extended this approach to obtain low-distortion projections which

meet other criteria.

Of special interest was British geodesist A.R. Clarke's use of least squares to

obtain in 1862 the Vertical Perspective projection with minimum error for the

portion of the Earth bounded by a given spherical circle. He determined parame

ters for several continental areas, and he also presented the "Twilight" projection,

with a bounding circle 108° from the center and centered to show much of the land

mass of the Earth in one map. All these low- and minimum-error perspective

projections were based on "far-side" points of perspective, and they were pro

jected onto a secant plane to reduce overall error (Close and Clarke, 1911, p.

655-656; Snyder, 1985a).

Space exploration beginning in 1957 led to a renewed interest in the perspective

projection, although Richard Edes Harrison had used several perspective views

in a World War II atlas of 1944. Now the concern was for the pictorial view from

space, not for minimal distortion. Albert L. Nowicki of the U.S. Army Map Serv

ice presented the AMS Lunar Projection, which is a far-side Vertical Perspec
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Point of perspective
7

FIGURE 35.—Geometric projection of the parallels of the polar Perspective projections. Vertical and

Tilted. Distance of point of perspective from center of Earth may be varied, as may the angle of

tilt. For "far-side" projection, "point of perspective" would be shown below Equator and usually

below South Pole on this drawing.

tive based on a perspective center about 1.54 times the radius from the center,

to show somewhat more than one hemisphere of the Moon. This recognized the

fact that more than half the Moon is seen from the Earth over a period of time.

Nowicki called this a "modified Stereographic" projection (Nowicki, 1962). This

name has been applied elsewhere to "far-side" Vertical Perspectives, none of

which are conformal; it is applied later in this book to complex-algebra modifica

tions of the Stereographic which are conformal but not perspective.

The Tilted Perspective projection is more complicated to compute, but since it

has been the projection used in effect for most space photographs, such as those

from the manned Gemini and Apollo space missions, it has been analyzed in recent

literature.

Weather maps issued by the U.S. National Weather Service have regularly

been based on a Vertical Perspective projection as seen from geosynchronous

satellites near the Equatorial plane and 42,000 km from the Earth's center. The

USGS has not used the Perspective projection to date for published maps.

FEATURES

The general Perspective projection (excepting the three common forms) should

be considered primarily as a basis for a view of the Earth from space. The various

historical studies described above and leading to low-error azimuthal projections

have little practical value, since nonperspective azimuthal projections, like the

Azimuthal Equidistant, may be used instead.

It is therefore of little interest to compute distortion at various locations on the

map. There is no distortion at the center of projection with the Vertical Perspec

tive onto a tangent plane (figs. 35 and 36), but there is shape, area, and scale

distortion almost everywhere else on perspective maps (except that the Stereo

graphic is conformal). The rapidity with which distortion increases varies with the

location of the point of perspective and with the tilt of the plane to the line con

necting this point with the center of the Earth (figs. 35 and 37). For the Vertical

Perspective, this plane is perpendicular to this line.
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Floi'RE 36.—Vertical Perspective projection. (A) Polar aspect, from 2.000 km above the Earth's surface. (6)

Equatorial aspect, from geosynchronous satellite, 35,800 km above the Earth's surface. (C) Oblique

aspect, centered at lat. 40° N., from 2. (MX) km above the Earth's surface.
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Figure 37.—Tilted Perspective projection. Eastern seaboard viewed from a point about 160 km

above Newburgh, N.Y. Parameters using symbols in text: <J>i = 41° 30' N. lat. . X„ = 74° 00' W.

long., w = 55°. y = 210°. P = 1.025. 1° graticule.

While the equations listed below are generally suitable for "far-side" Perspec

tive projections (from below the surface), using negative distances to the points

of perspective, the features are described for "near-side" Perspectives. For many

perspective maps, one parallel of latitude is shown as a straight line (on the equa

torial Orthographic aspect, all are straight). Its location is computed from formu

las given below. The central meridian is also straight, as are all meridians on

vertical polar aspects. Parallels of latitude on vertical polar aspects are concen

tric circles. Nearly all other meridians and parallels are elliptical arcs, except that

certain angles of tilt may cause some meridians and parallels to be shown as pa

rabolas or hyperbolas.
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The horizon or limit of the map is outlined by one of the conic sections, depend

ing on the angle of tilt and the location of the point of perspective. For the sphere,

if there is no tilt, the outline is a circle. It is an ellipse, parabola, or hyperbola if

the cosine of the tilt angle is greater than, equal to, or less than, respectively, the

radius of the sphere divided by the distance from its center to the point of

perspective.

For pictorial and small-scale usage, the spherical equations are adequate. For

special large-scale applications, such as Landsat returned-beam-vidicon (RBV)

and Space Shuttle Large-Format-Camera images and photographs, the ellipsoidal

equations are necessary. The formulas are given below for several possible

alternatives.

FORMULAS FOR THE SPHERE

Vertical Perspective Projection

A point at a given angular distance c from the center, and at an azimuth Az east

of north is plotted in accordance with the following polar coordinates (6 is meas

ured east of south):

p = fl(P-1) sin c/(P-cos c) (23-1)

6 = it - Az = 180° - Az (20-2)

h' = (P-1) (P cos c-1)/(P-cos cf (23-2)

k' = (P-1)/(P-cos c) (23-3)

P is the distance of the point of perspective from the center of the Earth, divided

by the radius R of the Earth as a sphere. It is positive in the direction of the cen

ter of the projection (for the "view from space") and negative in the opposite direc

tion (for a far-side perspective such as those by Clarke and Nowicki (above), or

the Stereographic, for which P = -1). In terms of the height H of the point of

perspective above the surface, P = H/R + 1, or H = R(P-l). The term k' is the

scale factor in a direction perpendicular to the radius from the center of the map,

not along the parallel, except in the polar aspect. The scale factor h' is measured

in the direction of the radius.

Combining with standard equations, the formulas for rectangular coordinates

of the oblique Vertical Perspective projection are as follows, given R, P, 4>u X0, <J>,

and X, to find x and y (see p. 320 for numerical examples):

x = R k' cos <J> sin (X-X0) (22-4)

y = R k' [cos <J>i sin <J> - sin fa cos § cos (X-X0)] (22-5)

where k' is found from (23-3) above,

cos c = sin fa sin <J> + cos <J>i cos 4> cos (X-X0) (5-3)

and (<J>i, X0) are latitude and longitude of the projection center and origin. The Y

axis coincides with the central meridian X0, M increasing northerly. The map limit

is a circle ofradius R[(P- 1)/(P + 1)]"2. Meridians and parallels are generally ellipti

cal arcs, but the central meridian and the latitude whose sine equals P sin <J>1 are

straight lines. For automatic plotting, equation (5-3) should be used to reject

points for which cos c is less than 1/P. These are beyond the range of the map,

regardless of whether P is positive or negative.

Because of the number of other equations below, the simplified equations for

polar and equatorial aspects are not given here. They may be obtained by enter

ing the appropriate values of <J>i in equations (22-4), (22-5), and (5-3). Table 27

shows rectangular coordinates for a hemisphere as seen from a geosynchronous

satellite.
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Table 27.—Vertical Perspective projection: Rectangular coordinates

for equatorial aspect from geosVnchronous satellite

ly coordinate in parentheses under x coordinate]

Long.

Lat.

0° 10° 20° 30° 40° 50° 60° 70° 80°

80° 0.0000 0.0263 0.0517 — — — — — _

( .8586) ( .8582) ( .8572) — — — — — —

70 .0000 .0531 .1044 0.1520 0.1943 0.2301 0.2581 — —

( .8412) ( .8405) ( .8385) ( .8351) ( .8306) ( .8251) ( .8189) — —

60 .0000 .0796 .1563 .2271 .2896 .3418 .3820 0.4094 —

( .7953) ( .7943) ( .7914) ( .7867) ( .7804) ( .7727) ( .7641) ( .7547) —

50 .0000 .1048 .2054 .2979 .3789 .4458 .4967 .5304 —

( .7203) ( .7191) ( .7156) ( .7100) ( .7026) ( .6936) ( .6835) ( .6727) —

40 .0000 .1275 .2496 .3614 .4587 .5382 .5978 .6363 —

( .6171) ( .6159) ( .6123) ( .6065) ( .5988) ( .5895) ( .5792) ( .5682) —

30 .0000 .1465 .2867 .4146 .5252 .6149 .6813 .7232 —

( .4884) ( .4872) ( .4840) ( .4787) ( .4717) ( .4634) ( .4542) ( .4444) —

20 .0000 .1610 .3148 .4548 .5753 .6725 .7436 .7879 0.8055

( .3384) ( .3375) ( .3350) ( .3311) ( .3258) ( .3195) ( .3125) ( .3052) ( .2977)

10 .0000 .1701 .3324 .4798 .6065 .7082 .7822 .8277 .8452

( .1732) ( .1727) ( .1714) ( .1692) ( .1664) ( .1630) ( .1593) ( .1553) ( .1513)

0 .0000 .1732 .3384 .4884 .6171 .7203 .7953 .8412 .8586

( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000) ( .0000)

Radius of sphere = 1.0. Radius of bounding circle = 0.8588. Point of perspective is P = 6.62 radii from center (35,800 km above Earth's surface). See fig. 36B.

Origin: U, y) = 0 at (lat. , long. ) = 0. Y axis increases north. Other quadrants ofhemisphere are symmetrical. Dashes indicate invisible graticule intersections. Poles

and 90th meridians are also invisible.
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For the inverse formulas for the Vertical Perspective projection of the sphere,

given R, P, <J>i, X0, x, and y, to find <J> and X:

<J> = arcsin [cos c sin <J>i + (1/ sin c cos <JVp)] (20-14)

If p = 0, equations (20-14) through (20-17) are indeterminate, but <J> = <J>i and

X = X0.

X = X0 + arctan [x sin c/(p cos <J>i cos c-y sin <i>x sin c)] (20-15)

In equations (20-14) and (20-15),

p =(x2 + y2)v2 (20-18)

c = arcsin |[P-(1-p2(P + 1)/(P2(P-1))r2]/

[P(P-1)/p + p/(P(P-1))]| (23-4)

In (23-4), if P is negative and p is greater than P(P-1)/P, c must be subtracted

from 180° to place it in the proper quadrant.

Tilted Perspective Projection

The following equations are used in conjunction with the equations above for

the Vertical Perspective. While they may be combined, it is easier to follow and

more practical to program separately these equations to follow (for forward) or

precede (for inverse) those above. For the forward equations, given R, P, <J>i, X0,

w, 7, <J>, and X, (x,y) is first calculated from equations (5-3), (23-3), (22-4), and

(22-5) in order, then

where

xt = (x cos 7 - y sin 7) cos <n/A (23-5)

y, = (y cos 7 + x sin y)/A (23-6)

A =\(y cos 7 + x sin 7) sin 10///J + cos w (23-7)

H = R{P-l) (23-8)

7 is the azimuth east of north of the Y axis, the most upward-tilted axis of the

plane of projection relative to the tangent plane, and w is the upward angle of tilt,

or the angle between the Yt axis and the tangent plane. The Xt axis lies at the

intersection of the tangent and tilted planes. The rectangular coordinates (xt, yt)

lie in the tilted plane, with the origin at (<J>i, X0) and the Yt axis oriented at azimuth

7 rather than due north (see fig. 38).

Restated in terms of a camera in space, the camera is placed at a distance RP

from the center of the Earth, perpendicularly over point X0). The camera is

horizontally turned to face 7 clockwise from north, and then tilted (90° -w) down

ward from horizontal, "horizontal" meaning parallel to a plane tangent to the

sphere at (<J>i, X0). The photograph is then taken, placing points (4>, X) in positions

(xt, yt), based on a scale reduction in R. The straight meridian and parallel of the

Vertical Perspective are also straight on the Tilted form.

If the tilted plane is perpendicular to the line connecting the point of perspec

tive and the horizon, w = arcsin (1/P). Points for which cos c (equation (5-3)) is

less than (1/P) are beyond the map limits, as on the Vertical Perspective, but the

map limit is now a conic section of eccentricity equal to sin w/( 1 - 1/P2)1 2. This limit

may be plotted by inserting the (x,y) coordinates of the circle representing the

Vertical Perspective map limit into equations (23-5) through (23-7) for final

plotting coordinates (xt, yt), after stating the original equations for the circle in

parametric form,
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Figure 38.—Coordinate system for Tilted Perspective projection. The north (N) arrow lies in the

vertical plane for the equatorial or oblique aspect. See figure 35 for projection of points onto

these planes.

x = R[(P-l)/(P + DP sin 6 (23-9)

y = R[(P-l)/(P + l)]v2 cos 6 (23-10)

in which 6 is given successive values from 0° to 360°.

For the inverse equations for the Tilted Perspective projection of the sphere,

given R, P, fa, k0, m, y, xt and yt, first H is calculated from (23-8), and (x,y) are

calculated from these equations:

M = Hxt/(H-yt sin w) (23-11)

Q = Hyt cos u>/(H-yt sin w) (23-12)

x =Mcos7 + Qsin7 (23-13)

y = Q cos 7 - M sin y (23-14)

Then these values oi(x,y) are inserted in equations (20-14) through (20-18) and

(23-4) for inversing the Vertical Perspective, to obtain (<J>, X).

It is also possible to use projective constants Kx-Ku for the sphere as well as

the ellipsoid in equations below, but this is not often done for the sphere. If de

sired, the formulas below may be used for the sphere if the eccentricity is made

zero.

FORMULAS FOR THE ELLIPSOID

Vertical Perspective Projection

Because of the increased number of equations, they are given in the order of

use. Given a, e2, P, fa, X0, h0, 4>, X, and /i, to find x and y (For numerical

examples see p. 323 ):
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N = a/( 1 - e2 sin2 4>)"2 (4 - 20)

Nx = a/(1 -e2 sin2 4>i)1/2 (8-23)

C = [(N + h)/a] cos <J> (23-15)

S = |[iV(1-e2) + h]/a\ sin <J> (23-16)

4> = <J>i - arcsin [A^e2 sin 4>i cos 4>i/(PcO] (23-17)

H =Pa cos <frycos <J>i - AT, - /?0 (23-18)

K = H/[P cos (<J>,-<J>ff) - S sin 4>i - C cos 4>i cos (X-X0)] (23-19)

x = #C sin (X-X0) (23- 19a)

2/ = ATP sin (4>i~<V + S cos <J>! - C sin 4>i cos (X-X0)] (23- 20)

where P = the distance of the point of perspective from the center of the Earth,

divided by a, the semimajor axis.

H = the height of the point of perspective in a direction perpendicular to the

surface of the ellipsoid at nadir point (4>i, X0), but measured from the height h0 of

the nadir above the ellipsoid, not above sea level.

4>ff = the geocentric latitude of the point of perspective, measured as the angle

between the direct line from the center to this point, and the equatorial plane, not

as the geocentric latitude corresponding to 4>i.

h = the height of (4>, X) above the ellipsoid. The use of h makes these formulas

more general, but for most plotting of graticules it would be zero.

If H is given rather than P, the latter may be computed as follows:

P = (cos <h/cos 4>ff) (H + Nx + h0Va (23-21)

Since 4>ff is calculated from P in equation (23-17), iteration is involved, with 4>i

as the first trial value of 4>ff. The comments following the forward formulas for the

sphere apply approximately here. The straight parallel is the latitude 4> whose

sine equals Pa sin 4>^[N(l—e2) + h], if h is a constant, such as zero. This is an

iterative calculation with successive substitution of 4>, starting with 4>i as a trial.

The central meridian X0 is also straight.

For the inverse formulas for the Vertical Perspective projection of the ellip

soid, given a, e2, P, 4m, ^0, h, .r, and y, to find 4>. X:

Equations (23-17) and (23-18) are used to compute 4> and H (or (23-21) to

compute P if H is given), then

B =Pcos(d>i-V (23-22)

D =P sin (4m-4,.) (23 - 23)

L = l-e2 cos2 4M

G = l-e2 sin2 4>i (23-25)

J = 2e2 sin <h cos 4>i (23 - 26)

u = - 2BLH - 2DGy + BJy + DHJ (23-27)

v =LH2 + Gy2 - HJy + (1-e2)/ (23 - 28)

If h is zero, E = 1 in the next equation (23-29). It h is not zero, use a first trial

E = 1.

Then,

t = P2 (1-e2 cos2 <J> ) - E (1-e2) (23-29)

K' =[- u + {u2-Atv)mV2t (23-30)

X = aUB-H/K') cos 4>i - (y/K'-D) sin 4>J (23-31)

Y =ax/K' (23-32)

S = (y/K'-D) cos 4>i + (B-H/K') sin 4>i (23 -33)

X = X0 + arctan (Y/X) (23- 34)

If h is not zero, 4> may be initially estimated at arcsin S to calculate a trial 4> from

equation (23-35) and then E from (23-36). Equations (23-29) through (23-36)
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are iterated using the latest values of <J>, E, and h (based on the height above the

ellipsoid at the trial <J>, X) until 4> changes by a negligible amount.

<J> = arcsin \S/[(l-el)/Q.-e2 sin2 <J>)12 + h/a]\ (23-35)

E = [1/(1 -e2 sin2 4>)x* + hJaf - e2 sin2 <i>[l/(l-e2 sin2 <J>) - h2/(a2-a2e2)] (23-36)

If h is zero, no iteration or previous estimate for <J> is necessary, and 4> may be

found as follows:

<J> = arctan |S/[(1-e2) (1-e2-S2)]1/2| (23 -37)

Tilted Perspective Projection Using "Camera" Parameters

Given a, e2, P, 4>u w, 7, <J>, X, and ft, to find xt and 2/(, first (x, 2/) are

calculated from (23-15) through (23-20), then (xt, y,) from (23-5) through (23-7),

but (23-8) is not used. Definitions following each of these sets of formulas apply,

but the limits (horizons) of the map do not precisely follow the spherical formulas

given. The ellipsoidal form is unnecessarily complicated to extend to the map

limits in any case.

For the corresponding inverseformulas, given a, e2, P, <J>i, X0, h0, w, 7, h, xt and

yt, to find <J> and X, first (x, y) are calculated using (23-11) through (23-14), then

(<J>, X) are calculated from (23-17), (23-18), and (23-22) through (23-37).

Tilted Perspective Projection Using Projective Equations

When a photograph or other plane image is obtained from space, projective

equations with 11 constants may be used to find the rectangular coordinates of

any point of known latitude, longitude, and height above the ellipsoid, in the plane

of the image, instead of directly using the orientation of the camera or sensor. The

3-dimensional rectangular coordinates of a point on or off the Earth's surface can

be found from the following equations, taking the semimajor axis a of the Earth

as 1.0:

A" = C cos X (23-38)

Y = C sin X (23-39)

Z =S (23-40)

where C and S are found from equations (23-15) and (23-16) respectively, the X

and Y axis lie in the Earth's equatorial plane, with the X axis intersecting the

prime meridian (X = 0), and the Z axis coincides with the Earth's polar axis. The

values ofX, Y, and Z increase from the origin at the center ofthe Earth toward X =

0, X = 90°, and the North Pole, respectively, but they are dimensionless in the

above equations.

The projective equations are as follows,

x\ =(KxX + K2Y + K3Z + K4)/(KrJ( + K6Y + K7Z + l) (23-41)

y; ={KBX + K9Y + Kx0Z + Kn)/(KbX + KsY + K7Z + 1) (23 - 42)

where (xt', yt') are coordinates in the tilted plane, but relative to any pair of

perpendicular axes and any origin, rather than those of (xt, yt) as described

following (23-8). Constants in the denominators are dimensionless, but those in

the numerators are in the same units as (x/, yt').

The 11 constants Kn may be determined either from points on the "space

photograph" or from the parameters of the "camera." Although least squares and
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other corrections are used in determining these constants in analytical photogram-

metry for highest precision, the approach given here is confined to the use of

measurements which are assumed to the precise. The reader is referred to other

texts for the least-squares approach.

To determine K\-Ku from six widely spaced identified points on the image,

equations (23-41) and (23- 42) may be transposed as follows:

XK\ + YK2 + ZK3 + K4 - xt'XK5-xt'YK6-xt'ZK7

+ 0Ka + 0K9 + OK\0 + 0KU = xt' (23-43)

0K\ + 0K2 + OK* + 0K4 - yt'XK5-yt'YK6-yt'Z^

+ XKS + YK9 + ZKW + Ku = yt' (23-44)

Using a separate pair ofthese two equations for each of the six points, and omitting

one of the twelve equations, the equations are suitable for solution as eleven

simultaneous equations with eleven unknowns (K\—Kn), using standard pro

grams. A less satisfactory but usable procedure involving only seven simultaneous

equations is detailed in Snyder (1981c, p. 158).

To determine K\ —Kn from parameters of the projection, first H is found from

(23-18), then

u = P[sin(<J>i-<J>ff) cos y sin <d + cos (<J>,-<J>ff) cos w] (23--45)

F = (sin <J>i sin X0 cos y — cos X0 sin y)/U (23--46)

V = (sin 4>i sin k0 sin y + cos X0 cos y) cos a>/U (23--47)

M = (sin <J>i cos X0 sin y - sin X0 cos y) cos cj/f/ (23--48)

N = (sin <J>i cos X0 cos y + sin X0 sin y)/U (23--49)

W = (-sin y cos w cos 6 - cos y sin 6)/{/ (23--50)

T = (-sin 7 cos <d sin 6 + cos 7 cos 6)/f/ (23--51)

K5 = —N sin w — cos <J>i cos X0 cos w/£/ (23--52)

K6 = -F sin w - cos fa sin X0 cos u>/U (23 -53)

K7 = (cos fa cos y sin w - sin <J>i cos to)/f/ (23 -54)

Ki = H (M cos 6 + N sin 6) + K5x0 (23 -55)

K2 = H(V cos 6 + F sin 6) + K6x0 (23--56)

K3 = HW cos <J>i + K7x0 (23 -57)

K4 = HWF sin (fa-4>g) + x0 (23--58)

Ke = H (M sin 6-iV cos 6) + Kay0 (23 -59)

K9 = H (V sin %-F cos 6) + K6y0 (23--60)

^10
= HT cos <J>i + K7y0 (23--61)

= OTP sin (fa-4>g) + 2/o (23 -62)

where, to review the meanings of previously defined symbols,

(<J>i, X0) = latitude and longitude of the projection center and origin

fa = geocentric latitude of the point of perspective, found from equa

tion (23-17)

y = azimuth east of north of the Yt axis, or the most upward-tilted

axis of the plane of projection

oj = upward angle of tilt

P = distance from the center of the Earth to the point of perspective,

divided by a, the semimajor axis.

New symbols are as follows:

6 = clockwise angle through which the (Xt, Yt) axes are rotated for

the arbitrary axes (Xt,, Yt') used for the constants K^-Ku. This

may be made zero to retain the (Xt, Yt) axes.
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(#0, Vo) = offsets of the (Xt, Yt) axes to establish a different origin for the

(Xt, Yt') axes. They may also be set at zero to retain the (Xt,

Yt) axes.

The two sets of axes are related as follows:

xt' = xt cos 6 - yt sin 6 + x0 (23-62a)

yt' = yt cos 6 + xt sin 6 + y0 (23-62b)

For inverse computations using projective constants, given Kx—Kn, xt', and

yt, to find <i> and X, the following are calculated in order:

A, = xt'Kb-K, (23-63)

A2 = xt'KG-K2 (23 -64)

A3 = xt'K7-K3 (23 - 65)

A4 = K4-xt' (23- 66)

A6 = yt'K5-K8 (23-67)

A8 = yt'K6-Kg (23 - 68)

A7 = yt'K7~Kxo (23 - 69)

A6 = Kn-yt (23-70)

A9 = A!Ag—A4A5 (23-71)

Aw = AxA7—A^A5 (23-72)

An = A2A5—AxA6 (23-73)

Ax2 = A2A7—ASA6 (23-74)

Ax3 — A2A8—A4A6 (23- 75)

A14 = A102 + An2/(1-e2) + A122 (23- 76)

■^15 = AqA!q + Ax2Ax3 (23-77)

■^16 = A9 —EAn +A!3 (23-78)

where E is found from (23 -36) if h is not zero, or E = 1 if A is zero. Then

S = (A15/A14) ± [(A15/A14)2-A16/A14]^ (23- 79)

and <J> is found from (23-35) if h is not zero, or (23-37) if h is zero, taking one

sign in (23- 79) for the latitude desired, and the opposite sign for the latitude

hidden from view at the same coordinates. The same sign applies throughout the

map, once it is determined for a point for which the latitude is obviously right or

wrong.

X = arctan [(A9-A10S)/(A12S-A13)] (23-80)

In this case the ATAN2 function is not used, but 180° must be added to or sub

tracted from X if the denominator has the same sign as An.

If h is not zero, E is initially assumed to be 1. After trial values of <J> and X are

determined above, an h suitable for that point may be used with the new <J> in

calculating E\ then A16, S, <J> and X are recalculated. Iteration continues until the

change in the calculated <J> is negligible.

If h is zero, since E = 1 and (23-37) is explicit in <J>, no iteration is required.

Finally, to compute "camera" parameters from given constants Kx-Ku

(Bender, ca. 1970, p. 26-27), given a, e2, and an assumed h0, first the following

three simultaneous equations are solved for X0, Y0, and Z0, the space coordinates

of the point of perspective divided by a (see description of axes following (23-40)):

E.xX0 + K2Y0 + K3Z0 = —K4

KgX0 + K$Y0 + KU1Z0 = —Ku (23-81)
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Then the coordinates (xp, yp) of the principal point of the "space photograph"

are found as the point where a perpendicular dropped from the point of perspec

tive strikes the plane of the map:

xp = (#,#5 + K2K6 + K3K7)/(K52 + K62 + K72) (23 -82)

yp = (KsK* + KtK9 + K7K\0)/(K52 + K62 + K72) (23-83)

The parameters reviewed after equation (23-62) are then found as follows (except

that <i>g is an intermediate latitude described after (23-20)):

k0 = arctan (iy*0) (23-84)

P = (X02 + y02 + Zq2)14 (23 - 85)

4>g = arcsin (Z0/P) (23-86)

<J>i =<J><, + arcsin |e2 sin fa cos fa/[P(l-# sin2 fa)*]\ (23-87)

which is solved for fa, with <J>ff as the first approximation for fa, and iterating with

successive substitution.

H = a[P cos <J>ff/cos fa- l/(l- e2 sin2 fa)*-hjd] (23-88)

using for h0 the height at (<J>i, X0)- The forward equations (23-15), (23-16), and

(23-38) through (23-40) are now used to calculate X, Y, and Z for (fa, X0, K)-

Substituting these values and K\-Kn into (23-41) and (23-42), x0 is found as

xt', and y0 &syt'. Then

w = arcsin \[(x0-xpf + (yp-y0?T-/H\ (23-89)

6 = arctan [(x0-xp)/(yp-y0)] (23-90)

Then, (xt', yt') are calculated for (<J>i + 0.02°, k0) from (23-41) and (23-42) and

the necessary preceding equations, in order to obtain the direction of the Yt axis,

and from this value of (xt', yt') are calculated

xt = (xt'-x0) cos 6 + (yt'-y0) sin 6 (23-91)

Vt = (yt'-y0) cos 6 - (xt'-x0) sin 6 (23 - 92)

7 = - arctan [xt/(yt cos w)] (23 - 93)
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24. LAMBERT AZIMUTHAL EQUAL-AREA PROJECTION

SUMMARY

• Azimuthal.

• Equal-Area.

• All meridians in the polar aspect, the central meridian in other aspects, and the

Equator in the equatorial aspect are straight lines.

• The outer meridian of a hemisphere in the equatorial aspect (for the sphere)

and the parallels in the polar aspect (sphere or ellipsoid) are circles.

• All other meridians and parallels are complex curves.

• Not a perspective projection.

• Scale decreases radially as the distance increases from the center, the only

point without distortion.

• Scale increases in the direction perpendicular to radii as the distance increases

from the center.

• Directions from the center are true for the sphere and the polar ellipsoidal

forms.

• Point opposite the center is shown as a circle surrounding the map (for the

sphere).

• Used for maps of continents and hemispheres.

• Presented by Lambert in 1772.

HISTORY

The last major projection presented by Johann Heinrich Lambert in his 1772

Beitrage was his azimuthal equal-area projection (Lambert, 1772, p. 75-78). His

name is usually applied to the projection in modern references, but it is oc

casionally called merely the Azimuthal (or Zenithal) Equal-Area projection. Not

only is it equal-area, with, of course, the azimuthal property showing true direc

tions from the center of the projection, but its scale at a given distance from the

center varies less from the scale at the center than the scale of any of the other

major azimuthals (see table 21).

Lambert discussed the polar and equatorial aspects of the Azimuthal Equal-

Area projection, but the oblique aspect is just as popular now. The polar aspect

was apparently independently derived by Lorgna in Italy in 1789, and the

latter was called the originator in a publication a century later (USC&GS, 1882,

p. 290). G. A. Ginzburg proposed two modifications of the general Lambert Azi

muthal projection in 1949 to reduce the angular distortion at the expense of creat

ing a slight distortion in area (Maling, 1960, p. 206). A common modification was

devised by Ernst Hammer in 1892 and is called the Hammer or Hammer-Aitoff

projection. It consists of halving the vertical coordinates of the equatorial aspect

of one hemisphere and doubling the values of the meridians from center. It re

tains equality of area, but it is no longer azimuthal.

FEATURES

The Lambert Azimuthal Equal-Area projection is not a perspective projection.

It may be called a "synthetic" azimuthal in that it was derived for the specific pur

pose of maintaining equal area. The ellipsoidal form maintains equal area, but it is

not quite azimuthal except in the polar aspect, so the name for the general ellip

soidal form is a slight misnomer, although it looks like the spherical azimuthal

form and has most of its other characteristics.

The polar aspect (fig. 39A), like that of the Orthographic and Stereographic,

has circles for parallels of latitude, all centered about the North or South Pole,

and straight equally spaced radii of these circles for meridians. The difference is,
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Figure 39.—Lambert Azimuthal Equal-Area projection. (A) Polar aspect showing one hemisphere; the

entire globe may be included in a circle of 1.41 times the diameter of the Equator. (S) Equatorial aspect;

frequently used in atlases for maps of the Eastern and Western hemispheres. (C) Oblique aspect;

centered on lat. 40° N.
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once again, in the spacing of the parallels. For the Lambert, the spacing between

the parallels gradually decreases with increasing distance from the pole. The

opposite pole, not visible on either the Orthographic or Stereographic, may be shown

on the Lambert as a large circle surrounding the map, almost half again as far as

the Equator from the center. Normally, the projection is not shown beyond one

hemisphere (or beyond the Equator in the polar aspect).

The equatorial aspect (fig. 398) has, like the other azimuthals, a straight Equa

tor and straight central meridian, with a circle representing the 90th meridian

east and west of the central meridian. Unlike those for the Orthographic and

Stereographic, the remaining meridians and parallels are uncommon complex

curves. The chief visual distinguishing characteristic is that the spacing of the

meridians near the 90th meridian and of the parallels near the poles is about 0.7

of the spacing at the center of the projection, or moderately less to the eye.

The parallels of latitude look considerably like circular arcs, except near the 90th

meridians, where they exhibit a noticeable turn toward the nearest pole.

The oblique aspect (fig. 39C) of the Lambert Azimuthal Equal-Area resembles

the Orthographic to some extent, until it is seen that crowding is far less pro

nounced as the distance from the center increases. Aside from the straight central

meridian, all meridians and parallels are complex curves, not ellipses.

In both the equatorial and oblique aspects, the point opposite the center may be

shown as a circle surrounding the map, corresponding to the opposite pole in the

polar aspect. Except for the advantage of showing the entire Earth in an equal-

area projection from one point, the distortion is so great beyond the inner hemi

sphere that for world maps the Earth should be shown as two separate hemispheri

cal maps, the second map centered on the point opposite the center of the first

map.

USAGE

The spherical form in all three aspects of the Lambert Azimuthal Equal-Area

projection has appeared in recent commercial atlases for Eastern and Western

Hemispheres (replacing the long-used Globular projection) and for maps of oceans

and most of the continents and polar regions.

The polar aspect appears in the National Atlas (USGS, 1970, p. 148-149) for

maps delineating north and south polar expeditions, at a scale of 1:39,000,000.

It is used at a scale of 1:20,000,000 for the Arctic Region as an inset on the 1978

USGS Map of Prospective Hydrocarbon Provinces of the World.

The USGS has prepared six base maps of the Pacific Ocean on the spherical

form of the Lambert Azimuthal Equal-Area. Four sections, at 1:10,000,000, have

centers at 35° N., 150° E.; 35° N., 135° W.; 35° S., 135° E.: and 40° S., 100° W. The

Pacific-Antarctic region, at a scale of 1:8,300,000, is centered at 20° S. and 165° W.,

while a Pacific Basin map at 1:17,100,000 is centered at the Equator and 160° W.

(The last two maps were originally erroneously labeled with scales that are too

small.) The base maps have been used for individual geographic, geologic, tec

tonic, minerals, and energy maps. The USGS has also cooperated with the Na

tional Geographic Society in revising maps of the entire Moon drawn to the spheri

cal form of the equatorial Lambert Azimuthal Equal-Area.

GEOMETRIC CONSTRUCTION

The polar aspect (for the sphere) may be drawn with a simple geometric con

struction: In figure 40, if angle AOR is the latitude 4> and P is the pole at the

center, PA is the radius of that latitude on the polar map. The oblique and equa

torial aspects have no direct geometric construction. They may be prepared

indirectly by using other azimuthal projections (Harrison, 1943), but it is now

simpler to plot automatically or manually from rectangular coordinates which are

generated by a relatively simple computer program. The formulas are given

below.
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Figure 40.—Geometric construction of polar Lambert Azimuthal Equal-Area projection.

FORMULAS FOR THE SPHERE

On the Lambert Azimuthal Equal-Area projection for the sphere, a point at a

given angular distance from the center of projection is plotted at a distance from

the center proportional to the sine of half that angular distance, and at its true

azimuth, or

p = 2 R sin (c/2) (24-1)

6= tt-Az = 180° -Az (20-2)

fc' = cos(c/2) (24- 1a)

k' = sec (c/2) (24 -1b)

where c is the angular distance from the center, Az is the azimuth east of north

(see equations (5-3) through (5-4b)), and 6 is the polar coordinate east of south.

The term k, is the scale factor in a direction perpendicular to the radius from the

center of the map, not along the parallel, except in the polar aspect. The scale

factor h' in the direction of the radius equals l/k'. After combining with standard

equations, the formulas for rectangular coordinates for the oblique Lambert Azi

muthal Equal-Area projection may be written as follows, given R, fa, X0, 4>,

and X:

x = R k' cos 4> sin (X-Xo) (22-4)

y = R k' [cos fa sin 4> - sin 4>i cos<pcos(X-X0)] (22-5)

where

k' = |2/[1 + sin fa sin 4> + cos fa cos 4> cos (X-X0)]}12 (24-2)
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and (4>u X0) are latitude and longitude of the projection center and origin. The Y

axis coincides with the central meridian X0, y increasing northerly. For the point

opposite the center, at latitude — <J>i and longitude X0 ± 180°, these formulas give

indeterminates. This point, if the map is to cover the entire sphere, is plotted

as a circle of radius 2/2.

For the north polar Lambert Azimuthal Equal-Area, with <J>, = 90°, since k, is k

for the polar aspect, these formulas simplify to the following (see p. 332 for nu

merical examples):

x = 2R sin (ir/4-<J>/2) sin (X-Xo) (24-3)

y = -2R sin (ir/4-<J>/2) cos (X-X0) (24-4)

k = sec (ir/4-<J>/2) (24-5)

h = l/k = cos (ir/4-<J>/2) (24-6)

or, using polar coordinates,

p = 2/2 sin (it/4 - <J>/2) (24-7)

6 = X-X0 (20-9)

For the south polar aspect, with <J>i = -90°,

x = 2# cos (it/4 - <J>/2) sin (X- X0) (24 - 8)

y = 2# cos (ir/4-<J>/2) cos (X-X0) (24-9)

k = 1/sin (-rr/4-<J>/2) (24-10)

h = sin (tt/4- 4>12) (24-11)

or

p = 2/2 cos (it/4 - <J>/2) (24-12)

6 = ir - X + X0 (20-12)

For the equatorial aspect, letting <J>i = 0, x is found from (22-4), but

y = Rk' sin <J> (24-13)

and

k, = |2/[1 + cos <J> cos (X - X0)]|i^ (24-14)

The maximum angular deformation w for any of these aspects, derived from

equations (4-7) through (4-9), and from the fact that h' = l/k' for equal-area

maps:

sin (w/2) = (k'2-l)/(l+k'2) (24-15)

For the inverse formulas for the sphere, given R, <J>i, X0, x, and y:

<J> = arcsin [cos c sin <J>i + (y sin c cos 4>i/p)] (20-14)

If p = 0, equations (20-14) through (20-17) are indeterminate, but <J> = <J>i and

X = X0.

If <J>i is not ±90°:

X = X0 + arctan [x sin c/(p cos <J>! cos c - y sin 4>i sin c)] (20-15)
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If ^ is 90°:

X = X0 + arctan [x/(-y)] (20-16)

If 4>, is -90°:

X = X0 + arctan (x/y) (20-17)

In equations (20-14) and (20-15),

p = (x2 + 2/2)"2 (20-18)

c = 2 arcsin [p/(2R)] (24-16)

It may again be noted that several of the above forward and inverse equations

apply to the other azimuthals.

Table 28 lists rectangular coordinates for the equatorial aspect for a 10° graticule

with a sphere of radius R = 1.0.

FORMULAS FOR THE ELLIPSOID

As noted above, the ellipsoidal oblique aspect of the Lambert Azimuthal Equal-

Area projection is slightly nonazimuthal in order to preserve equality of area. To

date, the USGS has not used the ellipsoidal form in any aspect. The formulas

are analogous to the spherical equations, but involve replacing the geodetic lati

tude <J> with authalic latitude p (see equation (3-11)). In order to achieve correct

scale in all directions at the center of projection, that is, to make the center a

"standard point," a slight adjustment using D is also necessary. The general for

ward formulas for the oblique aspect are as follows, given a, e, <J>i, X0, <J>, and X

(see p. 333 for numerical examples):

x = B D cos p sin (X-X0) (24-17)

y = {B/D) [cos p! sin p - sin p, cos p cos (X-X0)] (24-18)

where

B = Rq\2/[l + sinp,sinp + cosp^ospcosa-M!"2 (24-19)

D = a mx/(Rq cos pi) (24-20)

Rq = a(qjJ2)™ (3-13)

p = arcsin (q/qp) (3-11)

q = (1-e2) |sin 4>/(1-e2 sin2 <J>) - [1/(2 e)] In

[(1-e sin <J>)/(l + e sin <J>)]| (3-12)

m = cos <V(1-e2 sin2 <J>)''2 (14-15)

and pi is found from (3-11), using qx for q, while qx and qp are found from (3-12)

using <J>i and 90°, respectively, for <[>, and rn, is found from (14-15), calculated for

<J>i. The origin occurs at (<J>i, X0), the Y axis coinciding with the central meridian

X0, and y increasing northerly. For the equatorial aspect, the equations simplify

as follows:

x = a cos p sin (X-X0)|2/[1 + cos p cos (X-X0)]|'^ (24-21)

y = (Rq2/a) sin p |2/[1 + cos p cos (X-X0)]l1/2 (24-22)

For the polar aspects, D is indeterminate using equations above, but the follow

ing equations may be used instead. For the north polar aspect, 4>x = 90°,
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Table 28.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial

aspect (sphere)

[One hemisphere; y coordinate in parentheses under jc coordinate]

Long.
0° 10° 20° 30° 40°

LaL

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(1.41421) (1.41421) (1.41421) (1.41421) (1.41421)

80 .00000 .03941 .07788 .11448 .14830

(1.28558) (1.28702) (1.29135) (1.29851) (1.30842)

70 .00000 .07264 .14391 .21242 .27676

(1.14715) (1.14938) (1.15607) (1.16725) (1.18296)

60 .00000 .10051 .19948 .29535 .38649

(1.00000) (1.00254) (1.01021) (1.02311) (1.04143)

50 .00000 .12353 .24549 .36430 .47831

( .84524) ( .84776) ( .85539) ( .86830) ( .88680)

40 77 .00000 .14203 .28254 .41999 .55281

( .68404) ( .68631) ( .69317) ( .70483) ( .72164)

30 .00000 .15624 .31103 .46291 .61040

( .51764) ( .51947) ( .52504) ( .53452) ( .54826)

20 77 77 .00000 .16631 .33123 .49337 .65136

( .34730) ( .34858) ( .35248) ( .35915) ( .36883)

10 .00000 .17231 .34329 .51158 .67588

( .17431) ( .17497) ( .17698) ( .18041) ( .18540)

0 .00000 .17431 .34730 .51764 .68404

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere= 1.0.

Origin: (*, 2/) = 0 at (lat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical.

x = p sin (X-X0) (21-30)

y= -p cos (X-Xn) (21-31)

k = p/(a m) (21-32)

where

p = a(qrp-9)'* (24-23)

and qp and q are found from (3-12) as before and m from (14-15) above. Since

the meridians and parallels intersect at right angles, and this is an equal-area

projection, h = l/k.

For the south polar aspect, (<J>i = -90°), equations (21-30) and (21-32) remain

the same, but

y = p cos (X-X0) (24-24)

and

p = a(qp + q)™ (24-25)

For the inverse formu las for the ellipsoid, the oblique and equatorial aspects

(where 4>i is not ±90°) may be solved as follows, given a, e, <J>i, X0, and y.

^^(1-^sin^y

2 cos 4>

2 q sin <p 1 fl-e sin <pVl

l=? 1-<r'sin2<J>+ Te ln ^l + esin<J^J (3~16)

X = X0 + arctan [x sin ce/(D p cos p, cos ce - D2y sin pt sin ce)] (24-26)

where

q = qp [cos ce sin p, + (Dy sin ce cos (Vp)] (24-27)
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Table 28.—Lambert Azimuthal Equal-Area projection: Rectangular coordinates for equatorial

aspect (sphere)—Continued

v Long.
50° 60° 70° 80° 90°

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(1.41421) (1.41421) (1.41421) (1.41421) (1.41421)

80 77 .17843 .20400 .22420 .23828 .24558

(1.32096) (1.33594) (1.35313) (1.37219) (1.39273)

70 .33548 .38709 .43006 .46280 .48369

(1.20323) (1.22806) (1.25741) (1.29114) (1.32893)

60 .47122 .54772 .61403 .66797 .70711

(1.06544) (1.09545) (1.13179) (1.17481) (1.22474)

50 .58579 .68485 .77342 .84909 .90904

( .91132) ( .94244) ( .98088) (1.02752) (1.08335)

40 .67933 .79778 .90620 1.00231 1.08335

( .74411) ( .77298) ( .80919) ( .85401) ( .90904)

30 .75197 .88604 1.01087 1.12454 1.22474

( .56674) ( .59069) ( .62108) ( .65927) ( .70711)

20 .80380 .94928 1.08635 1.21347 1.32893

( .38191) ( .39896) ( .42078) ( .44848) ( .48369)

10 . .83488 .98731 1.13192 1.26747 1.39273

( .19217) ( .20102) ( .21240) ( .22694) ( .24558)

0 77 . .84524 1.00000 1.14715 1.28558 1.41421

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

but if p = 0, then q = qp sin pi, and X-X0.

p - [(x/Df + (DyfY* (24 - 28')

ce = 2 arcsin (p/2 Rq) (24-29)

and D, Rq, qp, and p, are found from equations (24-20), (3-13), (3-12), (3-11),

and (14-15), as in the forward equations above. The factor ce is not the true

angular distance, as c is in the spherical case, but it is a convenient number

similar in nature to c, used to find <J> and X. Equation (3- 16) requires iteration by

successive substitution, using arcsin (7/2) as the first trial d> on the right side,

calculating <J> on the left side, substituting this new d> on the right side, etc., until

the change in <J> is negligible. If, in equation (24-27),

q= ±|1-[(1-e2)/(2 e)] In [(1-e)/(1 (14-20)

the iteration does not converge, but d> = ±90°, taking the sign of q.

To avoid the iteration, equations (3-16), (24-27), and (14-20) may be re

placed with the series

d> = p + (e2r,i + 31e4/180 + 517e,!/5040 + . . .) sin 2p

+ (23e4/360 + 251e6/3780 + . . .) sin 4p + (761e6/45360 + . . .)

sin 6p + . . . (3-18)

where p, the authalic latitude, is found thus:

p = arcsin [cos ce sin p, + (Dy sin ce cos p!/p)] (24 - 30)

Equations (24-26), (24-28), and (24-29) still apply. In (24 - 30), if p = 0, 3 =

pi. For improved computational efficiency using this series, see p. 19.
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Table 29.—Ellipsoidal polar Lambert Azimuthal Equal-Area projection (International ellipsoid)

Latitude Radius, meters h k

90° 0.0 1.000000 1.000000

89 111,698.4 .999962 1.000038

88 223,387.7 .999848 1.000152

87 335,058.5 .999657 1.000343

86 446,701.8 .999391 1.000610

85 558,308.3 .999048 1.000953

84 669,868.8 .998630 1.001372

83 781,374.2 .998135 1.001869

82 892,815.4 .997564 1.002442

81 1,004,183.1 .996918 1.003092

80 1,115,468.3 .996195 1.003820

79 1,226,661.9 .995397 1.004625

78 1,337,754.7 .994522 1.005508

77 1,448,737.6 .993573 1.006469

76 1,559,601.7 .992547 1.007509

75 1,670,337.9 .991446 1.008628

74 1,780,937.2 .990270 1.009826

73 1,891,390.6 .989018 1.011104

72 2,001,689.2 .987691 1.012462

71 2,111,824.0 .986289 1.013902

70 2,221,786.2 .984812 1.015422

h = scale factor along meridian.

k = scale factor along parallel.

The inverse formulas for the polar aspects involve relatively simple transforma

tions of above equations (21-30), (21-31), and (24-23), except that <J> is found

from the iterative equation (3-16), listed just above, in which q is calculated as

follows:

q = ±[qp -(p/a)2] (24-31)

taking the sign of fa. The series (3-18) may be used instead for <J>, where

0 = ± arcsin {1-p2/[a2[1-((1-e2)/(2 «)) In ((1-e)/(1 + «))]]) (24 -32)

taking the sign of fa. In any case,

p = (x2 + /)i'2 (20-18)

while

X = Xo + arctan [x/(-y)] (20-16)

for the north polar case, and

X = X0 + arctan (x/y) (20-17)

for the south polar case.

Table 29 lists polar coordinates for the ellipsoidal polar aspect of the Lambert

Azimuthal Equal-Area, using the International ellipsoid.

To convert coordinates measured on an existing Lambert Azimuthal Equal-

Area map (or other azimuthal map projection), the user may choose any meridian

for X0 on the polar aspect, but only the original meridian and parallel may be used

for X0 and fa, respectively, on other aspects.
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25. AZIMUTHAL EQUIDISTANT PROJECTION

SUMMARY

• Azimuthal.

• Distances measured from the center are true.

• Distances not measured along radii from the center are not correct.

• The center of projection is the only point without distortion.

• Directions from the center are true (except on some oblique and equatorial

ellipsoidal forms).

• Neither equal-area nor conformal.

• All meridians on the polar aspect, the central meridian on other aspects, and

the Equator on the equatorial aspect are straight lines.

• Parallels on the polar projection are circles spaced at true intervals (equidistant

for the sphere).

• The outer meridian of a hemisphere on the equatorial aspect (for the sphere) is

a circle.

• All other meridians and parallels are complex curves.

• Not a perspective projection.

• Point opposite the center is shown as a circle (for the sphere) surrounding

the map.

• Used in the polar aspect for world maps and maps of polar hemispheres.

• Used in the oblique aspect for atlas maps of continents and world maps for avia

tion and radio use.

• Known for many centuries in the polar aspect.

HISTORY

While the Orthographic is probably the most familiar azimuthal projection, the

Azimuthal Equidistant, especially in its polar form, has found its way into many

atlases with the coming of the air age for maps of the Northern and Southern

Hemispheres or for world maps. The simplicity of the polar aspect for the sphere,

with equally spaced meridians and equidistant concentric circles for parallels of

latitude, has made it easier to understand than most other projections. The pri

mary feature, showing distances and directions correctly from one point on the

Earth's surface, is also easily accepted. In addition, its linear scale distortion is

moderate and falls between that of equal-area and conformal projections.

Like the Orthographic, Stereographic, and Gnomonic projections, the Azimuthal

Equidistant was apparently used centuries before the 15th-century surge in scien

tific mapmaking. It is believed that Egyptians used the polar aspect for star

charts, but the oldest existing celestial map on the projection was prepared in

1426 by Conrad of Dyffenbach. It was also used in principle for small areas by

mariners from earliest times in order to chart coasts, using distances and direc

tions obtained at sea.

The first clear examples of the use of the Azimuthal Equidistant for polar maps

of the Earth are those included by Gerardus Mercator as insets on his 1569 world

map, which introduced his famous cylindrical projection. As Northern and South

ern Hemispheres, the projection appeared in a manuscript of about 1510 by the

Swiss Henricus Loritus, usually called Glareanus (1488-1563), and by several

others in the next few decades (Keuning, 1955, p. 4-5). Guillaume Postel is given

credit in France for its origin, although he did not use it until 1581. Antonio

Cagnoli even gave the projection his name as originator in 1799 (Deetz and

Adams, 1934, p. 163; Steers, 1970, p. 234). Philippe Hatt developed ellipsoidal

versions of the oblique aspect which are used by the French and the Greeks for

coastal or topographic mapping.
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Two projections with similar names are called the Two-Point Azimuthal and the

Two-Point Equidistant projections. Both were developed about 1920 independ

ently by Maurer (1919) of Germany and Close (1921) of England. The first pro

jection (rarely used) is geometrically a tilting of the Gnomonic projection to pro

vide true azimuths from either of two chosen points instead of from just one. Like

the Gnomonic, it shows all great circle arcs as straight lines and is limited to one

hemisphere. The Two-Point Equidistant has received moderate use and interest,

and shows true distances, but not true azimuths, from either of two chosen points

to any other point on the map, which may be extended to show the entire world

(Close, 1934).

The Chamberlin Trimetric projection is an approximate "three-point equidis

tant" projection, constructed so that distances from three chosen points to any

other point on the map are approximately correct. The latter distances cannot be

exactly true, but the projection is a compromise which the National Geographic

Society uses as a standard projection for maps of most continents. This projection

was geometrically constructed by the Society, of which Wellman Chamberlin

(1908-76) was chief cartographer for many years.

An ellipsoidal adaptation of the Two-Point Equidistant was made by Jay K.

Donald of American Telephone and Telegraph Company in 1956 to develop a grid

still used by the Bell Telephone system for establishing the distance component of

long distance rates. Still another approach is Bomford's modification of the Azi

muthal Equidistant, in which the usual circles of constant scale factor perpen

dicular to the radius from the center are made ovals to give a better average scale

factor on a map with a rectangular border (Lewis and Campbell, 1951, p. 7,

12-15).

FEATURES

The Azimuthal Equidistant projection, like the Lambert Azimuthal Equal-

Area, is not a perspective projection, but in the spherical form, and in some of the

ellipsoidal forms, it has the azimuthal characteristic that all directions or azimuths

are correct when measured from the center of the projection. As its special

feature, all distances are at true scale when measured between this center and

any other point on the map.

The polar aspect (fig. 41A), like other polar azimuthals, has circles for parallels

of latitude, all centered about the North or South Pole, and equally spaced radii of

these circles for meridians. The parallels are, however, spaced equidistantly on

the spherical form (or according to actual parallel spacings on the ellipsoid). A

world map can extend to the opposite pole, but distortion becomes infinite. Even

though the map is finite, the point for the opposite pole is shown as a circle twice

the radius of the mapped Equator, thus giving an infinite scale factor along that

circle. Likewise, the countries of the outer hemisphere are visibly increasingly

distorted as the distance from the center increases, while the inner hemisphere

has little enough distortion to appear rather satisfactory to the eye, although the

east-west scale along the Equator is almost 60 percent greater than the scale at

the center.

As on other azimuthals, there is no distortion at the center of the projection

and, as on azimuthals other than the Stereographic, the scale cannot be reduced

at the center to provide a standard circle of no distortion elsewhere. It is possible

to use an average scale over the map involved to minimize variations in scale error

in any direction, but this defeats the main purpose of the projection, that of provid

ing true distance from the center. Therefore, the scale at the projection center

should be used for any Azimuthal Equidistant map.

The equatorial aspect (fig. 4lB) is least used of the three Azimuthal Equidis

tant aspects, primarily because there are no cities along the Equator from which
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_

Figure 41.—Azimuthal Equidistant projection. (A) Polar aspect extending to the South Pole: commonly

used in atlases for polar maps. (B) Equatorial aspect. (O Oblique aspect centered on lat. 40° N. Distance

from the center is true to scale.
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distances in all directions have been of much interest to map users. Its potential

use as a map of the Eastern or Western Hemisphere was usually supplanted first

by the equatorial Stereographic projection, later by the Globular projection (both

graticules drawn entirely with arcs of circles and straight lines), and now by the

equatorial Lambert Azimuthal Equal-Area.

For the equatorial Azimuthal Equidistant projection of the sphere, the only

straight lines are the central meridian and the Equator. The outer circle for one

hemisphere (the meridian 90° east and west of the central meridian) is equidis-

tantly marked off for the parallels, as it is on other azimuthals. The other merid

ians and parallels are complex curves constructed to maintain the correct dis

tances and azimuths from the center. The parallels cross the central meridian at

their true equidistant spacings, and the meridians cross the Equator equidis-

tantly. The map can be extended, like the polar aspect, to include a much-distorted

second hemisphere on the same center.

The oblique Azimuthal Equidistant projection (fig. 41C) rather resembles the

oblique Lambert Azimuthal Equal-Area when confined to the inner hemisphere

centered on any chosen point between Equator and pole. Except for the straight

central meridian, the graticule consists of complex curves, positioned to maintain

true distance and azimuth from the center. When the outer hemisphere is included,

the difference between the Equidistant and the Lambert becomes more pro

nounced, and while distortion is as extreme as in other aspects, the distances and

directions of the features from the center now outweigh the distortion for many

applications.

USAGE

The polar aspect of the Azimuthal Equidistant has regularly appeared in com

mercial atlases issued during the past century as the most common projection for

maps of the north and south polar areas. It is used for polar insets on Van der

Grinten-projection world maps published by the National Geographic Society and

used as base maps (including the insets) by USGS. The polar Azimuthal Equidis

tant projection is also normally used when a hemisphere or complete sphere

centered on the North or South Pole is to be shown. The oblique aspect has been

used for maps of the world centered on important cities or sites and occasionally

for maps of continents. Nearly all these maps use the spherical form of the

projection.

The USGS has used the Azimuthal Equidistant projection in both spherical and

ellipsoidal form. An oblique spherical version of the Earth centered at lat. 40° N.,

long. 100° W., appears in the National Atlas (USGS, 1970, p. 329). At a scale of

1:175,000,000, it does not show meridians and parallels, but shows circles at

1,000-mile intervals from the center. The ellipsoidal oblique aspect is used for the

plane coordinate projection system in approximate form for Guam and in nearly

rigorous form for islands in Micronesia.

GEOMETRIC CONSTRUCTION

The polar Azimuthal Equidistant is among the easiest projections to construct

geometrically, since the parallels of latitude are equally spaced in the spherical

case and the meridians are drawn at their true angles. There are no direct geomet

ric constructions for the oblique and equatorial aspects. Like the Lambert Azi

muthal Equal-Area, they may be prepared indirectly by using other azimuthal

projections (Harrison, 1943), but automatic computer plotting or manual plotting

of calculated rectangular coordinates is the most suitable means now available.
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FORMULAS FOR THE SPHERE

On the Azimuthal Equidistant projection for the sphere, a given point is plotted

at a distance from the center of the map proportional to the distance on the sphere

and at its true azimuth, or

p = Rc (25-1)

6 = tt -Az = 180° -Az (20-2)

where c is the angular distance from the center, Az is the azimuth east of north

(see equations (5-3) through (5 -4b)), and 6 is the polar coordinate east of south.

For k' and h' , see equation (25-2) and the statement below. Combining various

equations, the rectangular coordinates for the oblique Azimuthal Equidistant

projection are found as follows, given R, <i>u X0, 4>, and X (see p. 337 for numerical

examples):

x = R k' cos 4> sin (X-X0) (22-4)

y = R k' [cos 4>i sin 4> - sin 4>i cos 4> cos (X-X0)] (22-5)

where

k' = c/sin c (25-2)

cos c =sin <J>i sin <J> + cos 4>i cos 4> cos (X-X0) (5-3)

and (<J>i, X0) are latitude and longitude of the center of projection and origin. The

Y axis coincides with the central meridian X0, and y increases northerly. If cos c =

1, equation (25-2) is indeterminate, but/:' = 1, andx = y = 0. Ifcose = -1, the point

opposite the center (— 4>i. X0 ± 180°) is indicated; it is plotted as a circle of radius

ttR. The term k' is the scale factor in a direction perpendicular to the radius from

the center of the map, not along the parallel, except in the polar aspect. The

scale factor h' in the direction of the radius is 1.0.

For the north polar aspect, with 4>i = 90°,

x = #(tt/2-<J>) sin (X-X0) (25-3)

y = - R (tt/2- <J>) cos (X-X0) (25-4)

k = (ir/2-4>)/cos 4> (25-5)

h = 1.0

p =«(it/2-4>) (25-6)

6 = X - X0 (20-9)

For the south polar aspect, with 4>i = -90°,

x = #(tt/2 + 4>) sin (X-X0) (25-7)

y =R (it/2 + 4>) cos (X-X0) (25-8)

k = (tt/2 + ^)/cos 4> (25-9)

h =1.0

p =«(ir/2 + 4>) (25-10)

6 = tt - X + X0 (20-12)

For the equatorial aspect, with 4>i = 0, x is found from (22-4) and k' from (25-2),

but

y = R k' sin <J> (25-11)
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Table 30.—Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect

(sphere)

[One hemisphere; R = l. y coordinates in parentheses under x coordinates]

Long.
0° 10° 20° 30° 40°

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)

80 __ __ _. .00000 .04281 .08469 .12469 .16188

(1.39626) (1.39829) (1.40434) (1.41435) (1.42823)

70 . .00000 .07741 .15362 .22740 .29744

(1.22173) (1.22481) (1.23407) (1.24956) (1.27137)

fiO .00000 .10534 .20955 .31145 .40976

(1.04720) (1.05068) (1.06119) (1.07891) (1.10415)

50 .00000 .12765 .25441 .37931 .50127

( .87266) ( .87609) ( .88647) ( .90408) ( .92938)

40 .00000 .14511 .28959 .43276 .57386

( .69813) ( .70119) ( .71046) ( .72626) ( .74912)

30 .00000 .15822 .31607 .47314 .62896

( .52360) ( .52606) ( .53355) ( .54634) ( .56493)

20 .00000 .16736 .33454 .50137 .661*2

( .34907) ( .35079) ( .35601) ( .36497) ( .37803)

10 .00000 .17275 .34546 .51807 .69054

( .17453) ( .17541) ( .17810) ( .18270) ( .18943)

0 .00000 .17453 .34907 .52360 .69813

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

and

cos c = cos <J> cos (X-A.o) (25-12)

The maximum angular deformation w for any of these aspects, using equations

(4-7) through (4-9), since h' = 1.0:

sin V2w = (A:'-1)/(A:' + 1) (25-13)

= (c -sin c)/(c + sin c) (25-14)

For the inverse formulas for the sphere, given R, <J>i, X0, x, and y:

<J> = arcsin [cos c sin <J>i + (y sin c cos <J>,/p)] (20-14)

If p = 0, equations (20-14) through (20-17) are indeterminate, but <J> = <i>x and

X = X0.

If <J>, is not ±90°:

X = X0 + arctan [x sin c/(p cos <J>i cos c-y sin <J>i sin c)] (20-15)

If d>i is 90°:

X = X0 + arctan [x/(-y)] (20-16)

If <J>i is -90°:

X = X0 + arctan (x/y) (20-17)

In equations (20-14) and (20-15),

p = (x2 + 2/2)* (20-18)

c = p/R (25-15)
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Table 30.—Azimuthal Equidistant projection: Rectangular coordinates for equatorial aspect

(sphere)—Continued

\Long.
50° 60° 70° 80° 90°

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)

80 _ _ .19529 .22399 .24706 .26358 .27277

(1.44581) (1.46686) (1.49104) (1.51792) (1.54693)

70 .36234 .42056 .47039 .50997 .53724

(1.29957) (1.33423) (1.37533) (1.42273) (1.47607)

60 .50301 .58948 .66711 .73343 .78540

(1.13733) (1.17896) (1.22963) (1.28993) (1.36035)

50 .61904 .73106 .83535 .92935 1.00969

( .96306) (1.00602) (1.05942) (1.12464) (1.20330)

40 .71195 .84583 .97392 1.09409 1.20330

( .77984) ( .81953) ( .86967) ( .93221) (1.00969)

30 .78296 .93436 1.08215 1.22487 1.36035

( .59010) ( .62291) ( .66488) ( .71809) ( .78540)

20 .83301 .99719 1.15965 1.31964 1.47607

( .39579) ( .41910) ( .44916) ( .48772) ( .53724)

10 .86278 1.03472 1.20620 1.37704 1.54693

( .19859) ( .21067) ( .22634) ( .24656) ( .27277)

0 — .87266 1.04720 1.22173 1.39626 1.57080

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

Radius of sphere = 1.0.

Origin: (j\ y) = 0 at (lat., long.) = 0. Y axis increases north. Other quadrants of hemisphere are symmetrical.

Except for (25-15), the above inverse formulas are the same as those for the

other azimuthals, and (25-2) is the only change from previous azimuthals among

the general (oblique) formulas (22-4) through (5-3) for the forward calculations

as listed above.

Table 30 shows rectangular coordinates for the equatorial aspect for a 10° grati

cule with a sphere of radius R = 1.0.

FORMULAS FOR THE ELLIPSOID

The formulas for the polar aspect of the ellipsoidal Azimuthal Equidistant pro

jection are relatively simple and are theoretically accurate for a map of the entire

world. However, such a use is unnecessary because the errors of the sphere

versus the ellipsoid become insignificant when compared to the basic errors of

projection. The polar form is truly azimuthal as well as equidistant. Given a, e, <J>i,

X0, dj, and X, for the north polar aspect, 4>! = 90° (see p. 338 for numerical examples):

x = p sin (X-X0) (21-30)

y = -p cos (X-X0) (21-31)

k = p/(a m) (21-32)

where

p = Mp-M (25-16)

M = a [(1-e2/4-3e4/64-5e6/256- . . . )<J>-(3e2/8 + 3e4/32

+ 45e*V1024 + . . . ) sin 2 d> + (15e4/256 + 45/V1024 + . . . )

sin 4 <J> - (35/V3072 + . . . ) sin 6 d> + . . . ] (3-21)

with Mp the value of M for a <J> of 90°,

and m = cos <J>/(1-e2 sin2 d>)12 (14-15)
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Table 31.—Ellipsoidal Azimuthal Equidistant projection (International ellipsoid)—Polar Aspect

Latitude Radius, meters h k

90° 0.0 1.0 1.000000

89 111,699.8 1.0 1.000051

88 223,399.0 1.0 1.000203

87 335,096.8 1.0 1.000457

86 446,792.5 1.0 1.000813

85 558,485.4 1.0 1.001270

84 670,175 0 1.0 1.001830

83 781,860.4 1.0 1.002492

82 893,541.0 1.0 1.003256

81 1,005,216.2 1.0 1.004124

80 1,116,885.2 1.0 1.005095

79 1,228,547.5 1.0 1.006169

78 1,340,202.4 1.0 1.007348

77 1,451,849.2 1.0 1.008631

76 1,563,487.4 1.0 1.010019

75 1,675,116.3 1.0 1.011513

74 1,786,735.3 1.0 1.013113

73 1,898,343.8 1.0 1.014821

72 2,009,941.3 1.0 1.016636

71 __ _ 2,121,527.1 1.0 1.018560

70 2,233.100.9 1.0 1.020594

h - scale factor along meridian.

k = scale factor along parallel.

For improved computational efficiency using this series, see p. 19.

For the south polar aspect, the equations for the north polar aspect apply,

except that equations (21-31) and (25-16) become

y = p cos (X-Xo) (24-23)

p = Mp + M (25-17)

The origin falls at the pole in either case, and the Y axis follows the central

meridian a.,,. For the north polar aspect, X0 is shown below the pole, and y increases

along X0 toward the pole. For the south polar aspect, X0 is shown above the pole,

and y increases along X0 away from the pole.

Table 31 lists polar coordinates for the ellipsoidal aspect of the Azimuthal

Equidistant, using the International ellipsoid.

For the oblique and equatorial aspects of the ellipsoidal Azimuthal Equidistant,

both nearly rigorous and approximate sets of formulas have been derived. For

mapping of Guam, the National Geodetic Survey and the USGS use an approxima

tion to the ellipsoidal oblique Azimuthal Equidistant called the "Guam projection."

It is described by Claire (1968, p. 52-53) as follows (changing his symbols to

match those in this publication):

The plane coordinates of the geodetic stations on Guam were obtained by first computing the

geodetic distances [c] and azimuths [Az] of all points from the origin by inverse computations. The

coordinates were then computed by the equations: [x = c sin Az and y = c cos Az]. This really gives a

true azimuthal equidistant projection. The equations given here are simpler, however, than those for

a geodetic inverse computation, and the resulting coordinates computed using them will not be

significantly different from those computed rigidly by inverse computation. This is the reason it is

called an approximate azimuthal equidistant projection.

The formulas for the Guam projection are equivalent to the following:

x = a (X-X0) cos d)/(1-f2 sin2 <J>)1-

y = M - Mx + x2 tan <J> (1-e2 sin2 <b)'-7(2a)

(25-18)

(25-19)
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where M and M\ are found from equation (3-21) for <J> and <J>i. Actually, the

original formulas are given in terms of seconds of rectifying latitude and geodetic

latitude and longitude, but they may be written as above. The x coordinate is thus

taken as the distance along the parallel, and y is the distance along the central

meridian X0 with adjustment for curvature of the parallel. The origin occurs at (*i ,

X0). the Y axis coincides with the central meridian, and y increases northerly.

For Guam, <J>, = 13°28'20.87887" N. lat. and X0 = 144°44'55.50254" E. long., with

50,000 m added to both x and y to eliminate negative numbers. The Clarke 1866

ellipsoid is used. The above formulas provide coordinates within 5 mm at full scale

of those using ellipsoidal Polyconic formulas (p. 129) for the region of Guam.

A more complicated and more accurate approach to the oblique ellipsoidal

Azimuthal Equidistant projection is used for plane coordinates of various individ

ual islands of Micronesia. In this form, the true distance and azimuth of any point

on the island or in nearby waters are measured from the origin chosen for the

island and along the normal section or plane containing the perpendicular to the

surface of the ellipsoid at the origin. This is not exactly the same as the shortest

or geodesic distance between the points, but the difference is negligible (Bomford,

1971, p. 125). This distance and azimuth are plotted on the map. The projection is,

therefore, equidistant and azimuthal with respect to the center and appears to

satisfy all the requirements for an ellipsoidal Azimuthal Equidistant projection,

although it is described as a "modified" form. The origin is assigned large-enough

values of x and y to prevent negative readings.

The formulas for calculation of this distance and azimuth have been published in

various forms, depending on the maximum distance involved. The projection

system for Micronesia makes use of "Clarke's best formula" and Robbins' inverse

of this. These are considered suitable for lines up to 800 km in length. The

formulas below, rearranged slightly from Robbins' formulas as given in Bomford

(1971, p. 136-137), are extended to produce rectangular coordinates. No itera

tion is required. They are listed in the order of use, given a central point at lat. fa,

long. X0, coordinates x0 and y0 of the central point, the Y axis along the central

meridian X0, y increasing northerly, ellipsoidal parameters a and e, and 4> and X.

To find x and y:

N\ = a/(1-e2sin24>,)12 (4-20a)

N = a/(1-e2 sin2 4>)12 (4-20)

ili = arctan [(1-e2) tan <J> + e2Ni sin fa/(N cos <J>)] (25-20)

Az = arctan !sin (X-X0)/[cos fa tan iJj - sin <J>! cos (X-X0)]| (25-21)

The ATAN2 Fortran function should be used with equation (25-21), but it is

not applicable to (25-20).

If sin Az = 0,

s = ± arcsin (cos fa sin i)i - sin fa cos .\i) (25-22)

taking the sign of cos Az.

If sin Az * 0,

8 = arcsin [sin (X-X0) cos iJi/sin Az] (25-22a)

In either case,

G = e sin fa/(l-e2)^ (25-23)

H = e cos <J>i cos Az/d-e2)1/2 (25-24)

c = .V, 8\l-f?H\l-H2)/§ + (si/S)GH0.-2H2)

+ (s4/120)[//2(4-7#V3G2(1-7#2)] - (sr'/4S)GH (25-25)



Table32.—PlanecoordinatesystemsforMicronesia:Clarke1866ellipsoid

Group

Islands

StationatOrigin

Ax

Meters

LatN.

LongE.

CarolineIslands MarianaIslands. MarshallIslands.

Yap

Palau

Ponape

TrukAtoll

Saipan

Rota

MajuroAtoll

YapSecor

ArakabesanIs.

Distad(USE)

TrukSecorRM

Saipan
Astro Dalap

9<,32,48.898"

V 6< 7*
802

12 7'

21'04.3996" 5754.025" 2722.3800" 11205.6830" 0758.8808"

05214.0"

138°10-07. 134°2701. 808°12'33. 801°50217. 145°44229. 145°08203. 171°22234.

084" 8080"
4772" 8530" 9720"

8040"

5"

39,987.92 20,000.00 80,180.82 60,000.00 28,657.52 5,000.00 85,000.00

60,080.98 120,000.00 80,747.24 20,000.00 67,199.99 5,000.00 40,000.00

*80.V80=rectan0ul-ocoordin-te8ofcenterofprojection.

<t>,,X80=geodeticcoordin-te8ofcenter80fprojection.
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x = c sin .Az + x0 (25-26)

2/ = c cos Az + y0 (25-27)

where c is the geodesic distance, and Az is azimuth east of north.

Table 32 shows the parameters for the various islands mapped with this

projection.

Inverse formulas for the polar ellipsoidal aspect, given a, e, fa, X0, x, and y:

<J> = (jl + (3c!/2 - 27 e^/32 + . . . ) sin 2p. + (21 - 55 e^/32 + . . . ) sin

4jx + (151ei3/96- . . . )sin6p. + (1097ei4/512 - . . . )sin8p. + . . . (3-26)

where

e, =[1 - (1-e2)12]/[1 + (1-e2)1*2] (3-24)

p. = M/[a(1-e2/4-3e4/64-5e6/256- . . . )] (7-19)

M = Mp - p for the north polar case, (25-28)

and

M = p - Mp for the south polar case. (25 -29)

For improved computational efficiency using series (3-26) see p. 19. Equation

(3-21), listed with the forward equations, is used to find Mp for <J> = 90°. For either

case,

p = (x2 + y2y* (20-18)

For longitude, for the north polar case,

X = X0 + arctan [x/(-y)] (20-16)

For the south polar case,

X = X0 + arctan (x/y) (20-17)

Inverse formulas for the Guam projection (Claire, 1968, p. 53) involve an itera

tion of two equations, which may be rearranged and rewritten in the following

form consistent with the above formulas. Given a, e, fa, k0, x, and y, Mx is

calculated for fa from (3-21), given with forward equations. (If false northings

and eastings are included in x and y, they must be subtracted first.)

Then, first assuming <J> = fa,

M = M, + y - x2 tan <J> (1-e2 sin2 <J>)1/2/(2 a) (25-30)

Using this M, p. is calculated from (7-19) and inserted into the right side of

(3-26) to solve for a new <J> on the left side. This is inserted into (25-30), a new M

is found, and it is resubstituted into (7-19), p. into (3-26), etc., until <J> on the left

side of (3-26) changes by less than a chosen convergence figure, for a final <J>.

Then

X = X0 + x (1-e2 sin2 fav2/(a cos fa (25-31)

The inverse Guam formulas arbitrarily stop at three iterations, which are suffi

cient for the small area.



MAP PROJECTIONS—A WORKING MANUAL

For the Micronesia version of the ellipsoidal Azimuthal Equidistant projection,

the inverse formulas given below are "Clarke's best formula," as given in Bomford

(1971, p. 133) and do not involve iteration. They have also been rearranged to

begin with rectangular coordinates, but they are also suitable for finding latitude

and longitude accurately for a point at any given distance c (up to about 800 km)

and azimuth Az (east of north) from the center, if equations (25-32) and (25-33)

are deleted. In order of use, given a, e, central point at lat. fa, long. X0, rectangu

lar coordinates of center x0, y0, and x and y for another point, to find <J> and k:

c = [(z-xo)2 + (y - yofV- (25 -32)

Az = arctan [(x-xo)/{y-y0)~\ (25 -33)

Nx = a/a-e2 sin2 fa)1/"2 (4- 20a)

A = - e2 cos2 fa cos2 Az/(1-e2) (25 -34)

B = 3e2 (l-A) sin <J>i cos fa cos Az/(1-e2) (25 -35)

D = c/AT, (25 -36)

E = D - A (1 + A)Z)3/6 - B(l + 3A)Z)4/24 (25 -37)

F = 1 - AE2/2 - BE'% (25 -38)

,d
= arcsin (sin <J>i cos E + cos <J>i sin E cos Az) (25 -39)

X = k0 + arcsin (sin Az sin £/cos (25 -40)

*
= arctan [(l-e2F sin <J>i/sin ,Jj) tan 4i/(1-e2)] (25 -41)

The ATAN2 function of Fortran, or equivalent, should be used in equation (25-33),

but not (25-41).

To convert coordinates measured on an existing Azimuthal Equidistant map (or

other azimuthal map projection), the user may choose any meridian for X0 on the

polar aspect, but only the original meridian and parallel may be used for X0 and fa,

respectively, on other aspects.
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26. MODIFIED-STEREOGRAPHIC CONFORMAL PROJECTIONS

SUMMARY

• Modified azimuthal.

• Conformal.

• All meridian and parallels are normally complex curves, although some may be

straight under some conditions.

• Scale is true along irregular lines, but map is usually designed to minimize scale

variation throughout a selected region.

• Map is normally not symmetrical about any axis or point.

• Used for maps of continents in the Eastern Hemisphere, for the Pacific Ocean,

and for maps of Alaska and the 50 United States.

• Specific forms devised by Miller, Lee, and Snyder, 1950-84.

HISTORY AND USAGE

Two short mathematical formulas, taken as a pair, absolutely define the con-

formal transformation of one surface onto another surface. These formulas (see

p. 27) are called the Cauchy-Riemann equations, after two 19th-century mathe

maticians who added rigorous analysis to principles developed in the middle of the

18th century by physicist D'Alembert. Much later, Driencourt and Laborde

(1932, vol. 4, p. 242) presented a fairly simple series (equation (26-4) below

without the R), involving complex algebra (with imaginary numbers), that fully

satifies the Cauchy-Riemann equations and permits the formation of an endless

number of new conformal map projections when certain constants are changed.

The advantage of this series is that lines of constant scale may be made to

follow one of a variety of patterns, instead of following the great or small circles

of the common conformal projections. The disadvantage is that the length of the

series and the computations become increasingly lengthy as the irregularity of

the lines of constant scale increases, but this problem has decreased with the

development of computers.

Laborde (1928; Reignier, 1957, p. 130) applied this transformation to the

mapping of Madagascar, starting with the Transverse Mercator projection and

applying the complex equation up to the third-order or cubic terms. Miller (1953)

used the same order of complex equation, but began with an oblique Stereo-

graphic projection. His resulting map of Europe and Africa has oval lines of

constant scale (fig. 42); this projection is called the Miller Oblated (or Prolated)

Stereographic. He subsequently (Miller, 1955) prepared similar projections for

Asia and Australasia, each precisely conformal, but he linked them with noncon-

formal "fill-in" projections to provide a continuous map (in several sheets) of the

land masses of the Eastern Hemisphere.

Lee (1974) designed a map of the Pacific Ocean, also using an oblique Stereo-

graphic with a third-order complex polynomial. The third-order polynomials used

by Laborde, Miller, and Lee make relatively moderate computational demands,

because several of the coefficients are zero, and the complex algebra can be

readily simplified to equations without imaginary numbers. Recently Reilly (1973)

and the writer (Snyder, 1984a, 1985a) have used much higher order complex

equations, but modern computers can readily handle them. Reilly used sixth-

order coefficients with the regular Mercator for the new official New Zealand

Map Grid, while the writer, beginning with oblique Stereographic projections,

used sixth-order coefficients for a map of Alaska and tenth-order for a map of the

50 United States (figs. 43, 44). For these sixth- and tenth-order equations, only

one coefficient is zero, but the othercoefficients were computed usingleast squares.

The projection for Alaska was used in 1985 by Alvaro F. Espinosa of the USGS to
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Figure 42.—Miller Oblated Stereographic projection of Europe and Africa, showing oval lines of

constant scale. Center of projection lat. 18° N., long. 20° E.

depict earthquake information for that State. The "Modified Transverse Mercator"

projection is still being used by the USGS for most maps of Alaska.

In addition, the writer (Snyder, 1984b) used oblique Stereographics as bases

with third- to fifth-order equations, most coefficients remaining zero, to surround

maps with lines of constant scale which are nearly regular polygons or rectangles

(fig. 45). This minimizes error within a map as conventionally published.

FEATl'RES

The common feature linking the endless possibilities of map projections dis

cussed in this chapter is the fact that they are perfectly conformal regardless of

the order of the complex-algebra transformation, and regardless of the initial

projection, provided it is also conformal.

Chebyshev (1856) stated that a region may be best shown conformally if the

sum of the squares of the scale errors (scale factors minus 1) over the region is a

minimum. He further declared that this results if the region is bounded by a line

of constant scale. This was proven later. Thus the Stereographic is suitable for

regions approximately circular in shape, but regions bounded by ovals, regular

polygons, or rectangles may be mapped with nearly minimum error by suitably

altering the Stereographic with the complex-algebra transformation.

If the region is irregular, such as Alaska, the region of interest may be divided

into small elements, and the coefficients may be calculated using least squares to

minimize the scale variation for the region shown. The resulting coefficients for
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Figl re 43.—GS-50 projection, with lines of constant scale factor superimposed. All 50 States, including islands and

passages between Alaska, Hawaii, and the conterminous 48 States are shown with scale factors ranging only from

1.02 to 0.98.

7

Figure 44.—Modified-Stereographic Conformal projection of Alaska, with lines of constant scale superimposed. Scale

factors for Alaska range from 0.997 to 1.003, one-fourth the range for a corresponding conic projection.
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Figure 45.—Modified-Stereographic Conformal projection of 48 United States, bounded by a near-

rectangle of constant scale. Three lines of constant scale are superimposed. Region bounded by

near-rectangle has minimum error.

the selected projections are given below, but the formulas for least-squares sum

mation are not included here because they are lengthy and are only needed to

devise new projections. For them the reader may refer to Snyder (1984a, 1984b,

1985a).

The reduction of scale variation by using this complex-algebra transformation

makes the ellipsoidal form even more important. This form is also simpler in these

cases than for the Transverse Mercator and some other projections, because the

lines of true scale normally do not follow a selected meridian, parallel, or other

easily identifiable line in any case. Therefore, use of the conformal latitude in

place of the geographic latitude is sufficient for the ellipsoidal form. This merely

slightly shifts the lines of constant scale from one set of arbitrary locations to

another. The coefficients have somewhat different values, however.

The meridians and parallels of the Modified-Stereographic projections are gen

erally curved, and there is usually no symmetry about any point or line. There are

limitations to these transformations. Most of them can only be used within a

limited range, depending on the number and values of coefficients. As the dis

tance from the projection center increases, the meridians, parallels, and shore

lines begin to exhibit loops, overlapping, and other undesirable curves. A world

map using the GS50 (50-State) projection is almost illegible, with meridians and

parallels intertwined like wild vines.

Within the intended range of the map, the Modified-Stereographic projections

can reduce the range of scale variation considerably when compared with stand

ard conformal projections. The tenth-order complex-algebra modification used

for the 50-State projection has a scale range of only ±2 percent (or 4 percent

overall) for all 50 States placed in their relative geographical positions, including

all islands, adjacent waters, water channels connecting Alaska, Hawaii, and the

other 48 States, and nearby Canada and Mexico (fig. 43). A Lambert Conformal

Conic projection previously used with standard parallels 37° and 65° N. to show the

50 States has a scale range of + 12 to -3 percent (or 15 percent overall). The

sixth-order modification for the Alaska map, called the Modified-Stereographic

Conformal projection, has a range of ±0.3 percent (or 0.6 percent overall) for

Alaska itself, while a Lambert Conformal Conic with standard parallels 55° and 65°

N. ranges from +2.0 to -0.4 percent, or 2.4 percent overall.
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The bounding of regions by ovals, near-regular polygons, or near-rectangles of

constant scale results in improvement of scale variation by amounts depending on

the size and shape of the boundary. The improvement in mean scale error is about

15 to 20 percent using a near-square instead of the circle of the base Stereo-

graphic projection. Using a Modified-Stereographic bounded by a near-rectangle

instead of an oblique Mercator projection provides a mean improvement of up to

30 percent in some cases, but only 5 to 10 percent in cases involving a long narrow

region. For fig. 45, the range of scale is ±1.1 percent (or 2.2 percent overall)

within the 48 States, while the Lambert Conformal Conic normally used has a

range of +2.4 to -0.6 percent (or 3.0 percent overall).

The improvement for the region in question is made at the expense of scale

preservation outside the region. The regular conic projections maintain the same

scale range around the entire world between the same latitude limits, even though

most of that region is not shown on the regional maps described above.

FORMULAS FOR THE SPHERE

The Modified-Stereographic conformal projections which have a scale range of

more than 5 percent, such as regions bounded by rectangles 80° by 40° in spherical

degrees, may satisfactorily be computed for the sphere instead of the ellipsoid. As

stated above, development of coefficients is not shown here. For the calculation of

final rectangular coordinates, given R, 4>i, k0, Ax through Am, Bx through Bm,

4>, and X, and to find x and y (see p. 344 for numerical examples):

k' = 2/[1 + sin <J>, sin <J> + cos 4>! cos d> cos (X -X0)] (26-1)

x' = k' cos 4> sin (X-X0) (26-2)

y' = k' [cos 4>i sin 4> - sin <J>! cos 4> cos (X-X0)] (26-3)

in

x + iy = R £ (A, + iBj) (x' + iy')J (26-4)

./ = 1

k = j v j (Aj + iBj) {x' + iy'V 1 | A:' (26-5)

where k' is the scale factor on the base Stereographic map, (x', y') are rectangu

lar coordinates for a globe of radius 1 on the base map, (x, y) are rectangular

coordinates on the final map, k is the scale factor on the final map, (<J>i, X0) are the

central latitude and longitude of the projection, (<J>, X) are the latitude and longi

tude of the point to be plotted, R is the radius of the sphere, (Aj, Bj) are the

coefficients for / =1 to j=m, the order of the equation, and i2 is -1. Equations

(26-1) through (26-3) are similar to the forward equations listed under the

regular Stereographic projection, but there are slight differences. The formulas

for this projection as published in Snyder (1984a, 1985a) introduce R (and a for the

ellipsoid) at the wrong points, although answers are correct.

For the practical computation of equations (26-4) and (26-5), Knuth's (1969)

algorithm is recommended instead of them. Let

r = 2x'; s' = (.v'f + (y'f; g0 = 0; gf = Af + iBf, a! = gm;

b\ = gm-\; Ci = mgm; d, = (m-1)grTO_i; 0/ = bj-i + ra,_l;

bj = gm-j ~ s'aj-\; cj = dj-i + rcj-\; dj = (m-j)gm-j - s'cj-\ (26-6)

After j is given the value of successive integers from 2 to 'n for ay and bj and 2 to

(m— 1) for Cj and dj, then
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x + iy = R [(x' + iy') am + bm] (26-7)

F2 + /F, = (x, + iy,)cm-i + dm-i (26-8)

^ = (F22 + F,2)12 A:' (26-9)

For the Modified-Stereographic Conformal projections with ovals, near-regular

polygons, or near-rectangles as bounding lines of constant scale, since there are

only two or three non-zero coefficients, plus a possible rotation, equations (26-4)

and (26-5) may be simplified to avoid a need for the use of i or Knuth's algorithm.

The above formulas are more general, however, once they are programmed. For

the simplified forms, the reader is referred to Miller (1953) and Snyder (1984b). If

k is not being calculated in the above formulas, the four equations of (26-6) which

include c or d, as well as (26-8) and (26-9), may be omitted. For constants, see

table 33.

For inverse equations, given R, <J>i, X0, -Ai through A,,,, B\ through Bm, x, and

y, to find and X, first a Newton-Raphson iteration may be used as follows to find

(*', yl:

1 (x' + iy') = - f(x' + iyl/(F2 + iFi) (26-10)

where

f(x, + iyl = 1(A, + iBjHx, + iyl'-(x + iy)/R (26-11)

F2 + iF\ = I j(Aj + iBj)(x, + iy,)t-! (26-12)

and the first trial value of or' is (x/R) and of y, is (y/R). The Knuth algorithm is

equally suitable here, using all of the equations in (26-6), assigning j values

which are described following those equations, and replacing equations (26-11)

and (26-12) with (26-13) and (26-8), respectively.

f(x, + iy') = (x' + iy')am + bm - (x + iy)/R (26- 13)

After the trial values of (x\ y') are adjusted with (26-10) until the change in

each is negligible (3-4 iterations are normally enough), the final (x', y') is con

verted to (<J>, X) without iteration as follows:

P =[(x')2 + (//')2F (26-14)

c = 2 arctan (p/2) (26-15)

<J> = arcsin [cos c sin <i>\ + (y' sin c cos 4>i/p)] (26-16)

X = X0 + arctan [x' sin c/(p cos 4>i cosc- y' sin <J>i sin c)] (26-17)

If p = 0, equations (26-16) and (26-17) are indeterminate, but <J> = <J>i and X = X0-

FORMULAS FOR THE ELLIPSOID

For higher precision maps taking greater advantage of the reduced scale varia

tion available with Modified-Stereographic Conformal projections, the ellipsoidal

formulas should be used. Given a, e, <J>i, X0. A, through Am, B, through B„„ <i>,

and X, to find x and y (special numerical examples are not given, but examples of

the ellipsoidal Stereographic, p. 313, and of the spherical Modified-Stereographic

p. 344 , are sufficiently similar):
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Table 33.—Modified-Stereographic Conformal projections: Coefficients for specific forms

Taking the Earth as a sphere:

Miller Oblated Stereographic projection for Europe and Africa (fig. 42):

R = 6,371,221 m at full scale

m = 3

4>, = 18°N. lat.

Xo = 18°E. long, as c0nstructed (20° in Miller (1953))

A, = 0.924500

A3 = 0.019430

A2, Bu B2, B3 = 0

Lee Oblated Stereographic projection for the Pacific Ocean:

R = Not stated

m = 3

= 10°S. lat.

X0 = 165°W. l0ng.

A, = 0.721316

A3 = -0.00881625

B3 = -0.00617325

A2, Bu B2 =0

GS50 projection for the 50 States (fig. 43; ellipsoidal formulas and constants should

normally be used):

R = 6.370,997 m at full scale

in = 10

<J>i = 45°N. lat.

*0 = 120°W. long.

A, = 0.9842990 Si = 0

A2 = 0.0211642 B2 = 0.0037608

As = -0.1036018 Bs = -0.0575102

A4 = -0.0329095 B4 = -0.0320119

A6 = 0.0499471 Bb = 0.1223335

As = 0.0260460 B« = 0.0899805

A7 = 0.0007388 B- = -0.1435792

Aa = 0.0075848 Bs = -0.1334108

A9 = -0.0216473 B9 = 0.0776645

Al0 = -0.0225161 Bio = 0.0853673

Modified-Stereographic Conformal projection for Alaska (fig. 44; ellipsoidal formulas

and constants should normally be used):

R = 6,370,997 m at full scale

m = 6

<[>i = 64°N. lat.

= 152°W. long.

A, = 0.9972523 B\ = 0

A2 = 0.0052513 B, = -0.0041175

As = 0.0074606 B3 = 0.0048125

A, = -0.0153783 »4 = -0.1968253

A5 = 0.0636871 = -0.1408027

A, = 0.3660976 s6 = -0.2937382

Modified-Stereographic Conformal projection for United States bounded by near-rectangle

(fig. 45):

R = 6,370,997 m at full scale

m =5

<J>, = 39°N. lat.

\o = 96°W. 1ong.

A, = 0.98879

Aa = -0.050909

A8 = 0.085528

A2, A4, Bi, B2, B3, B*t Bs = 0



210 MAP PROJECTIONS—A WORKING MANUAL

Table 33.—Modified-Stereographic Conformal projections: Coefficients for specific forms—Continued

Taking the Earth as an ellipsoid:

GS50 projection for the 50 States:

a = 6,378,206.4 m at full scale (Clarke 1866 ellips.

e2 = 0.00676866

m = 10

<J>i
= 45°N. lat.

*o
= 120°W long.

A, = 0.9827497 Si = 0

A2 = 0.0210669 Bi = 0.0053804

A3 = -0.1031415 B3 = -0.0571664

A, - -0.0323337 B4 = -0.0322847

AB = 0.0502303 Bs = 0.1211983

A« = 0.0251805 B6 = 0.0895678

A7 = -0.0012315 B1 = -0.1416121

A8 = 0.0072202 B8 = -0.1317091

A9
-

-0.0194029 B9 = 0.0759677

Axo = -0.0210072 Bxo = 0.0834037

Modified-Stereographic Conformal projection for Alaska:

a = 6.378,206.4 m at full scale (Clarke 1866 ellipsoid)

e2 = 0.00676866

m = 6

*i = 64°N. lat.

X0 = 152°W long.

A, = 0.9945303 fi,

A2 = 0.0052083 B2

A3 = 0.0072721 B3

A4 = -0.0151089 B4

A5 = 0.0642675 B&

Afi = 0.3582802 B6

= 0

= -0.0027404

= 0.0048181

= -0.1932526

= -0.1381226

= -0.2884586

x = 2 arctan |tan (tt/4 + 4>/2)[(1-e sin <J>)/(1 + e sin 4>)]' - - tt/2 (3 -1)

m = cos 4>/(1-e2 sin2 <J>)12 (14- 15)

s = 2/[1 + sin xi sin \ + cos xi cos x cos (X-X0)] (26- 18)

k' = s cos \/m (26- 19)

x' = s cos x sin (X-X0) (26- 20)

y' = s [cos xi sin x ~ sin xi cos x cos (X-X0)] (26- 21)

where xi is found as x (the conformal latitude) from equation (3-1) by substitut

ing $>x for <J>. The (.,80', y') thus found are converted to (or, i/) with unchanged

equations (26-4) and (26-5), or (26-6) through (26-9) as listed under spherical

formulas with accompanying explanations, except that R in (26-4) or (26-7) is

replaced with o, the semimajor axis of the ellipsoid of eccentricity e, and the

constants used must be those for the ellipsoidal projection.

For inverse equations, given a, e, $>u X0, A! through Am, Bx through Bm, x, and

y, to find 4> and X, the Newton-Raphson iteration of spherical equations (26-10)

through (26-13) is used unchanged to find (.*.', y') except that R is replaced with

a, and ellipsoidal constants must be used. After convergence, the final (x', y') is

converted to (<J>, X) without iteration. Equations (26-14), (26-15), and (3-1) are

used to calculate p, c, and xi as before.

Then,
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x = arcsin [cos c sin xi + (y, sin c cos xi/p)] (26-22)

<J> = 2 arctan |tan (tt/4 + x/2)[(1 + e sin 4>)/(1-<? sin <J>)]^| - it/2 (3-4)

X = X0 + arctan [x' sin c/(p cos xi cos c - sin xi sin c)] (26-23)

If p = 0, equations (26- 22) and (26- 23) are indeterminate, but x = xo and X = X0-

Equation (3-4), which should not use the ATAN2 function or equivalent, involves

iteration by successive substitution, using x as the first trial 4> on the right side of

the equation, calculating <J> on the left, using the new value of 4> on the right side,

and so forth, until the change in <J> is negligible. Tables 34 and 35 list representa

tive rectangular coordinates for the ellipsoidal forms of the 50-State and Alaska

projections, to be used in the above formulas.
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Table 34.—GS50 projection for 50 States: Rectangular coordinates for Clarke 1866 ellipsoid

[ y coordinate in parentheses below x coordinate; He <scale factor, in italics. Equatorial radius of ellipsoid.

a = 1 unit; eccentricity is based on Clarke 18H6 ellipsoid. Origin 45°.\. lat., 120"W. long.. Y axis north from origin ]

Longitude

Latitude 165° -165° -150° - 135° -120°

75° -0.29450 -0.26954 -0.22462 -0.16629 -0.09888 -0.02577

(0.68122) (0.62252) (0.57777) (0.54832) (0.53514) (0.53917)

0.9691,0 0.93350 0.94680 0.98600 1.04351 1.11926

60 -0.56708 -0.47652 -0.37432 -0.25945 -0.13450 -0.00285

(0.55579) (0.44931) (0.36467) (0.30448) (0.26964) (0.26061)

1.11056 1.03320 0.99720 0.98684 0.99638 1.01989

45 -0.78438 -0.65970 -0.51358 -0.35313 -0.18060 0.00000

(0.40816) (0.25882) (0.14804) (0.06723) (0.01707) (0.00000)

1.10999 1.01071 0.97599 0.96761 0.97461 0.98441

30 -0.99437 -0.82970 -0.64556 -0.44699 -0.23176 -0.00042

(0.18093) (0.05909) (-0.06996) (-0.16831) (-0.23587) (-0.26080)

0.92437 0.991,89 0.98110 0.97955 1.01526 1.02960

15 -1.26654 -0.99879 -0.77655 -0.54614 -0.30348 0.00686

(0.37724) (-0.17525) (-0.29355) (-0.40445) (-0.50718) (-0.54997)

5.35283 1.26758 1.02533 0.96750 1.17269 1.24078

Longitude

Latitude -105° -90° -75° -60° -45°

75° 0.05019 0.12669 0.20199 0.27474 0.34149

(0.56135) (0.60290) (0.66601) (0.75568) (0.88349)

1.21871, 1.35483 1.55468 1.87521 2.42649

60 0.13189 0.26642 0.39828 0.52663 0.66111

(0.27713) (0.31778) (0.37908) (0.45182) (0.50581)

1.05301 1.09131, 1.12313 1.11492 1.17353

45 0.18215 0.35975 0.52792 0.68068 0.78758

(0.01665) (0.06457) (0.14091) (0.24688) (0.42634)

0.99055 0.99558 0.99806 1.02418 1.44787

30 0.22878 0.44683 0.65324 0.83776 1.04409

(-0.23806) (-0.17878) (-0.08678) (0.03834) (0.00223)

1.0021,9 0.99481 1.00384 0.87806 2.72764

15 0.28360 0.53662 0.76638 1.12680 0.56142

(-0.49621) (-0.43117) (-0.31713) (0.21682) (1.25008)

1.0021,0 1.10194 0.84755 2.88781 16.99865

Table 35.—Modified-Stereographic Confortnal projection for Alaska: Rectangular coordinates for Clarke 1866 ellipsoid

[ y 1oordinate in parentheses beiow j* coordinate; k <scale factor, in italics. Equatorial radius of ellipsoid, a ~ 1 unit; eccentricity is based on Clarke 1866 ellipsoid. Oripn: 64" Lat., - 152° Long..

J' axis north from origin ]

Longitude

Latitude 170° 180° -170° -160° -150° -140° -130°

75° -0.16211 -0.12311 -0.08081 -0.03641 0.00892 0.05402 0.09772

(0.24589) (0.22161) (0.20445) (0.19469) (0.19248) (0.19786) (0.21074)

1.01917 1.01147 1.00600 1.00306 1.00264 1.00459 1.00866

70 -0.21520 -0.16271 -0.10647 -0.04782 0.01192 0.07140 0.12928

(0.17360) (0.14228) (0.12028) (0.10779) (0.10494) (0.11178) (0.12827)

1.03059 1.01497 1.00535 1.00062 0.99993 1.00304 1.01023

65 -0.26675 -0.20094 -0.13124 -0.05888 0.01475 0.08813 0.15975

(0.09941) (0.06222) (0.03605) (0.02112) (0.01767) (0.02578) (0.04536)

1.03421 1.01364 1.00273 0.99805 0.99768 1.00108 1.00982

60 -0.31591 -0.23765 -0.15521 -0.06968 -0.01744 0.10427 0.18895

(0.02389) (-0.01813) (-0.04808) (-0.06536) ( -0.06946) ( -0.06013) (-0.03772)

1.02672 1.00804 0.99991 0.99758 0.99834 1.00020 1.00527

55 -0.36252 -0.27315 -0.17873 -0.08047 0.01999 0.12022 0.21725

(-0.05185) (-0.09835) (-0.13210) (-0.15191) ( -0.15683) ( -0.14611) (-0.12045)

1.00925 1.00166 0.99931 1.00127 1.00536 1.00467 0.99738

50 -0.40740 -0.30816 -0.20222 -0.09163 0.02232 0.13669 0.24590

(-0.12654) (-0.17828) (-0.21616) (-0.23888) ( -0.24516) ( -0.23284) (-0.20230)

0.98940 1.00073 1.00245 1.00955 1.02260 1.02237 0.99239
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SPACE MAP PROJECTIONS

One of the most recent developments in map projections has been that involving

a time factor, relating a mapping satellite revolving in an orbit about a rotating

Earth. With the advent of automated continuous mapping in the near future, the

static projections previously available are not sufficient to provide the accuracy

merited by the imagery, without frequent readjustment of projection parameters

and discontinuity at each adjustment. Projections appropriate for such satellite

mapping are much more complicated mathematically, but, once derived, can be

handled by computer.

Several such space map projections have been conceived, and all but one have

been mathematically developed. The Space Oblique Mercator projection, suitable

for mapping imagery from Landsat and other vertically scanning satellites, is

described below, and is followed by a discussion of Satellite-Tracking projections.

The Space Oblique Conformal Conic is a still more complex projection, currently

only in conception, but for which mathematical development will be required if

satellite side-looking imagery has been developed to an extent sufficient to en

courage its use.
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27. SPACE OBLIQUE MERCATOR PROJECTION

SUMMARY

• Modified cylindrical projection with map surface defined by satellite orbit.

• Designed especially for continuous mapping of satellite imagery.

• Basically conformal, especially in region of satellite scanning.

• Groundtrack of satellite, a curved line on the globe, is shown as a curved line

on the map and is continuously true to scale as orbiting continues.

• All meridians and parallels are curved lines, except meridian at each polar

approach.

• Recommended only for a relatively narrow band along the groundtrack.

• Developed 1973-79 by Colvocoresses, Snyder, and Junkins.

HISTORY

The launching of an Earth-sensing satellite by the National Aeronautics and

Space Administration in 1972 led to a new era of mapping on a continuous basis

from space. This satellite, first called ERTS-1 and renamed Landsat 1 in 1975,

was followed by two others, all of which circled the Earth in a nearly circular

orbit inclined about 99° to the Equator and scanning a swath about 185 km (offi

cially 100 nautical miles) wide from an altitude of about 919 km. The fourth and

fifth Landsat satellites involved circular orbits inclined about 98° and scanning

from an altitude of about 705 km.

Continuous mapping of this band required a new map projection. Although

conformal mapping was desired, the normal choice, the Oblique Mercator projec

tion, is unsatisfactory for two reasons. First, the Earth is rotating at the same

time the satellite is moving in an orbit which lies in a plane almost at a right angle

to the plane of the Equator, with the double-motion effect producing a curved

groundtrack, rather than one formed by the intersection of the Earth's surface

with a plane passing through the center of the Earth. Second, the only available

Oblique Mercator projections for the ellipsoid are for limited coverage near the

chosen central point.

What was needed was a map projection on which the groundtrack remained

true-to-scale throughout its course. This course did not, in the case of Landsat

1, 2, or 3, return to the same point for 251 revolutions. (For Landsat 4 and 5, the

cycle is 233 revolutions.) It was also felt necessary that conformality be closely

maintained within the range of the swath mapped by the satellite.

Alden P. Colvocoresses of the Geological Survey was the first to realize not

only that such a projection was needed, but also that it was mathematically feasi

ble. He defined it geometrically (Colvocoresses, 1974) and immediately began to

appeal for the development of formulas. The following formulas resulted from the

writer's response to Colvocoresses' appeal made at a geodetic conference at The

Ohio State University in 1976. While the formulas were derived (1977-79) for

Landsat, they are applicable to any satellite orbiting the Earth in a circular or

elliptical orbit and at any inclination. Less complete formulas were also developed

in 1977 by John L. Junkins, then of the University of Virginia. The following

formulas are limited to nearly circular orbits. A complete derivation for orbits

of any ellipticity is given by Snyder (1981b) and another summary by Snyder

(1978b).

FEATURES AND USAGE

The Space Oblique Mercator (SOM) projection visually differs from the Oblique

Mercator projection in that the central line (the groundtrack of the orbiting

satellite) is slightly curved, rather than straight. For Landsat, this groundtrack
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appears as a nearly sinusoidal curve crossing the X axis at an angle of about 8°.

The scanlines, perpendicular to the orbit in space, are slightly skewed with

respect to the perpendicular to the groundtrack when plotted on the sphere or

ellipsoid. Due to Earth rotation, the scanlines on the Earth (or map) intersect the

groundtrack at about 86° near the Equator, but at 90° when the groundtrack makes

its closest approach to either pole. With the curved groundtrack, the scanlines

generally are skewed with respect to the X and V axes, inclined about 4° to

the Y axis at the Equator, and not at all at the polar approaches.

The orbit for Landsat 1, 2, and 3 intersected the plane of the Equator at an

inclination of about 99°, measured as the angle between the direction of satellite

revolution and the direction of Earth rotation. Thus the groundtrack reached

limits of about lat. 81° N. and S. (180° minus 99°). The 185-km swath scanned by

Landsat, about 0.83° on either side of the groundtrack, led to complete coverage

of the Earth from about lat. 82° N. to 82° S. in the course of the 251 revolutions.

With a nominal altitude of about 919 km, the time of one revolution was 103.267

minutes, and the orbit was designed to complete the 251 revolutions in exactly

18 days. Landsat 4 and 5, launched in 1982 and 1984, respectively, scanned the

same width, but with an orbit of different radius and inclination, as stated above.

As on the normal Oblique Mercator, all meridians and parallels are curved lines,

except for the meridian crossed by the groundtrack at each polar approach. While

the straight meridians are 180° apart on the normal Oblique Mercator, they are

about 167° apart on the SOM for Landsat 1, 2, and 3, since the Earth advanced

about 26° in longitude for each revolution of the satellite.

As developed, the SOM is not perfectly conformal for either the sphere or ellip

soid, although the error is negligible within the scanning range for either. Along

the groundtrack, scale in the direction of the groundtrack is correct for sphere or

ellipsoid, while conformality is correct for the sphere and within 0.0005 percent

of correct for the ellipsoid. At 1° away from the groundtrack, the Tissot Indicatrix

(the ellipse of distortion) is flattened a maximum of 0.001 percent for the sphere

and a maximum of 0.006 percent for the ellipsoid (this would be zero if conformal).

The scale 1° away from the groundtrack averages 0.015 percent greater than that

at the groundtrack, a value which is fundamental to projection. As a result of the

slight nonconformality, the scale 1° away from the groundtrack on the ellipsoid

then varies from 0.012 to 0.018 percent more than the scale along the groundtrack.

A prototype version of the SOM was used by NASA with a geometric analogy

proposed by Colvocoresses (1974) while he was seeking the more rigorous mathe

matical development. This consisted basically of moving an obliquely tangent

cylinder back and forth on the sphere so that a circle around it which would nor

mally be tangent shifted to follow the groundtrack. This is suitable near the Equa

tor but leads to errors of about 0.1 percent near the poles, even for the sphere. In

1977, John B. Rowland of the USGS applied the Hotine Oblique Mercator (de

scribed previously) to Landsat 1, 2, and 3 orbits in five stationary zones, with

smaller but significant errors (up to twice the scale variation of the SOM) result

ing from the fact that the groundtrack cannot follow the straight central line of

the HOM. In addition, there are discontinuities at the zone changes. This was

done to fill the void resulting from the lack of SOM formulas.

For Landsat 4 and 5, the final SOM equations replaced the HOM for mapping.

Figures 46 and 47 show the SOM extended to two orbits with a 30° graticule and

for one-fourth of an orbit with a 10° graticule, respectively. The progressive ad

vance of meridians may be seen in figure 46. Both views are for Landsat 4 and

5 constants.

FORMULAS FOR THE SPHERE

Both iteration and numerical integration are involved in the formulas as pre

sented for sphere or ellipsoid. The iteration is quite rapid (three to five iterations



Figure46.—TwoorbitsoftheSpaceObliqueMercatorprojection,8hownforLandsat5,path815(left)and31.Designedforanarrowbandalongground-
track,whichremainstrueto8cale.NotetherotationoftheEarthwithsucces8iveorbits.Scanline8,extended15°fromgroundtrack,areshort

line8nearlyperpendiculartoit.
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required for ten-place accuracy), and the numerical integration is greatly simpli

fied by the use of rapidly converging Fourier series. The coefficients for the

Fourier series may be calculated once for a given satellite orbit. [Some formulas

below are slightly simplified from those first published (Snyder, 1978b).]

For the forward equations, for the sphere and circular orbit, to find (x, y) for a

given (<J>, X), it is necessary to be given R, i, P2, Pi, X0, 4>, and X, where

R = radius of the globe at the scale of the map.

i = angle of inclination between the plane of the Earth's Equator and the

plane of the satellite orbit, measured counterclockwise from the Equa

tor to the orbital plane at the ascending node (99.092° for Landsat 1, 2,

3; 98.20° for Landsat 4, 5).

P2 = time required for revolution of the satellite (103.267 min for Landsat

1, 2, 3; 98.884 min. for Landsat 4, 5).

Pi = length of Earth's rotation with respect to the precessed ascending node.

For Landsat, the satellite orbit is Sun-synchronous; that is, it is always

the same with respect to the Sun, equating I\ to the solar day (1,440

min). The ascending node is the point on the satellite orbit at which

the satellite crosses the Earth's equatorial plane in a northerly

direction.

X0 = geodetic longitude of the ascending node at time t = 0.

(<J>,X) = geodetic latitude and longitude of point to be plotted on map.

t = time elapsed since the satellite crossed the ascending node for the orbit

considered to be the initial one. This may be the current orbit or any

earlier one, as long as the proper X,, IS Used.

First, various constants applying to the entire map for all the satellite's orbits

should be calculated a single time (see p. 347 for numerical examples):

B =(2/ it) jV- [(#-S2)/(1 + S2)1W (27-1)

A„ =[4/(™)]/0"2[(tf-S2)/(1 + S2)12] cos nX' dk' (27-2)

for n = 2 and 4 only.

Cn = \4(H + D/Oirn)]/0-* + S2)12] cos nk' dk' (27-3)

for n = 1 and 3 only.

For calculating A„, B, and C„, numerical integration using Simpson's rule is

recommended, with 9° intervals in X' (sufficient for ten-place accuracy). The terms

shown are sufficient for seven-place accuracy, ample for the sphere. For H and S

in equations (27-1) through (27-3):

H = 1-(P2/P,) cos / (27-4)

5 = (PJPi) sin j cos X' (27-5)

To find x and y, with the X axis passing through each ascending and descending

node (wherever the groundtrack crosses the Equator), x increasing in the direc

tion of satellite motion, and the Y axis passing through the ascending node for

time t = 0:

x/R =Bk' + A2 sin 2k' + A4 sin 4X' + . . .

-fS/(1 + S2)12] In tan (tt/4 + 4>72) (27-6)

y/R =C\ sin X' + C3 sin 3X' + . . .

+ [1/(1 + S2)12] In tan (tt/4 + <J>72) (27-7)

where B, A„, and C„ are constants calculated above, S is calculated from (27-5)

for each point, and
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X' = arctan (cos i tan kt + sin i tan <J>/cos X;) (27-8)

X, =k-k0 + (P.JPJk" (27-9)

<J>' = arcsin (cos i sin <J> - sin i cos <J> sin kt) (27-10)

X0 = 128.87° - (3607251)p (Landsat 1, 2, 3 only) (27-11)

= 129.30° - (3607233)p (Landsat 4, 5 only) (27- 11a)

p = path number of Landsat orbit for which the ascending node occurs at

time t = 0. This ascending node is prior to the start of the path, so that

the path extends from V4 orbit past this node to 5/4 orbit past it.

X' = "transformed longitude," the angular distance along the groundtrack,

measured from the initial ascending node (t = 0), and directly propor

tional to t for a circular orbit, or X' =360° t/P2.

k, = a "satellite-apparent" longitude, the longitude relative to X0 seen by the

satellite if the Earth were stationary.

<J>' = "transformed latitude," the angular distance from the groundtrack,

positive to the left of the satellite as it proceeds along the orbit.

Finding X' from equations (27-8) and (27-9) involves iteration performed in

the following manner: After selecting 4> and X, the X' of the nearest polar ap

proach, kp', is used as the first trial X' on the right side of (27-9); X^ is calculated

and substituted into (27-8) to find a new X'. A quadrant adjustment (see below)

is applied to X', since the computer normally calculates arctan as an angle be

tween -90° and 90°, and this X' is used as the next trial X' in (27-9), etc., until X'

changes by less than a chosen convergence factor. The value of X^' may be deter

mined as follows, for any number of revolutions:

kp' = 90° x (4 N + 2 ± 1) (27-12)

where N is the number of orbits completed at the last ascending node before the

satellite passes the nearest pole, and the ± takes minus in the Northern Hemi

sphere and plus in the Southern (either for the Equator). Thus, if only the first

path number past the ascending node is involved, kp' is 90° for the first quadrant

(North Pole to Equator), 270° for the second and third quadrants (Equator to

South Pole to Equator), and 450° for the fourth quadrant (Equator to North Pole).

For quadrant adjustment to X' calculated from (27-8), the Fortran ATAN2 or

its equivalent should not be used. Instead, X' should be increased by kp' minus

the following factor: 90° times sin kp' times ± 1 (taking the sign of cos ktp, where

ktp = k-k0 + (PJPO^p')- If cos X^, is zero, the final X' is X^'. Thus, the adder to the

arctan is 0° for the quadrant between the ascending node and the start of the path,

and 180°, 180°, 360°, and 360°, respectively, for the four quadrants ofthe first path.

The closed forms of equations (27-6) and (27-7) are as follows:

x/R = S0x' [(H-S2)/(l + S2)1 W-[S/(1 + S2)1/2]

In tan (ir/4 + 4>72) (27 -6a)

y/R =(H + 1) /0X'[S/(1 + S2y'2]dk' + [l/(l + S2)12]

In tan (it/4 + 4>72) (27 -7a)

Since these involve numerical integration for each point, the series forms, limit

ing numerical integration to once per satellite, are distinctly preferable. These

are Fourier series, and equations (27-2) and (27-3) normally require integration

from 0 to 2tt, without the multiplier 4, but the symmetry of the circular orbit per

mits the simplification as shown for the nonzero coefficients.

For inverseformulasfor the sphere, given R, i. P2, Pu X0, x, and y, with <J> and

X required: Constants B, A„, C„, and X0 must be calculated from (27-1) through

(27-3) and (27-11) just as they were for the forward equations. Then,
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X =arctan [(cos i sin X'-sin i tan <J>')/cos X']-(/yP,)X' + X0 (27-13)

<J> =arcsin (cos i sin <J>' + sin i cos <J>' sin X') (27-14)

where the ATAN2 function of Fortran is useful for (27-13), except that it may be

necessary to add or subtract 360° to place X between long. 180° E. ( + ) and 180° W.

(-), and

X' = [x/R + Sy/R-A2 sin 2 X'-A4 sin 4 X'-S(C, sin X' + Cs sin 3 k')]/B

(27-15)

In tan(ir/4 + <J>72) = (1 + S2)1/2(2//fl-C, sin X'-C3 sin 3X') (27-16)

Equation (27-15) is iterated by trying almost any X' (preferably x/(BR)) in the

right side, solving for X' on the left and using the new X' for the next trial, etc.,

until there is no significant change between successive trial values. Equation

(27-16) uses the final X' calculated from (27-15).

The closed form of equation (27-15) given below involves repeated numerical

integration as well as iteration, making its use almost prohibitive:

(x + Sy)/R = j* [(//-S2)/(1 + S2)1/S!]dX'

+ S (H + 1) /0k [S/(I + S2Y2]dk' (27-15a)

The following closed form of (27-16) requires the use of the last integral calcu

lated from (27- 15a):

Intan(W4 + <J>72) = (1 + S'2y2\(y/R)-(H + DJV [S/(1 + Sa)12]dX'l (27- 16a)

The original published forms of these equations include several other Fourier co

efficient calculations which slightly save computer time when continuous mapping

is involved. The resulting equations are more complicated, so they are omitted

here for simplicity. The above equations are as accurate and only slightly less

efficient.

The values of coefficients for Landsat 1, 2, and 3 (P2/P, = 18/251; i = 99.092°) are

listed here as examples:

A2 = -0.0018820

A4 = 0.0000007

B = 1.0075654142 for X' in radians

= 0.0175853339 for X' in degrees

c, = 0.1421597

= -0.0000296

It is also of interest to determine values of <i>, X, or X' along the groundtrack,

given any one of the three (as well as P.,, Pu i, and X0). Given <J>,

X' =arcsin (sin <J>/sin i) (27-17)

X =arctan [(cos i sin X')/cos k']-(P2/Px)k' + X0 (27-18)

If 4> is given for a descending part of the orbit (daylight on Landsat), subtract

X' from the X' of the nearest descending node (180°, 540°, . . .). If the orbit is

ascending, add X' to the X' of the nearest ascending node (0°, 360°, . . .). For a

given path, only 180° and 360°, respectively, are involved.

Given X,

X' = arctan (tan X,/cos i) (27-19)

X, =X-X0 + (P2/Pi)X' (27-9)

<i> = arcsin (sin i sin X') (27-20)
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Table 36.—Scale factors for the spherical Space Oblique Mercator projection using Landsat 1, 2,

and 3 constants

X
h k u° k k u>°

0° 1.000154 1.000151 0.0006 1.000152 1.000154 1.000151 0.0006 1.000152

5 1.000153 1.000151 .0006 1.000151 1.000154 1.000151 .0006 1.000152

10 1.000153 1.000151 .0006 1.000151 1.000155 1.000151 .0006 1.000153

15 1.000153 1.000151 .0006 1.000150 1.000155 1.000151 .0006 1.000153

20 1.000152 1.000151 .0006 1.000150 1.000156 1.000151 .0006 1.000154

26 1.000152 1.000151 .0006 1.000150 1.000156 1.000151 .0006 1.000154

30 1.000152 1.000151 .0005 1.000149 1.000156 1.000151 .0005 1.000154

35 1.000152 1.000150 .0005 1.000149 1.000156 1.000151 .0005 1.000154

40 1.000152 1.000150 .0005 1.000150 1.000156 1.000151 .0005 1.000154

45 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0005 1.000154

50 1.000152 1.000150 .0004 1.000150 1.000156 1.000151 .0004 1.000154

55 1.000152 1.000150 .0004 1.000150 1.000155 1.000151 .0004 1.000154

60 1.000153 1.000151 .0003 1.000151 1.000155 1.000151 .0003 1.000154

65 1.000153 1.000151 .0003 1.000151 1.000155 1.000151 .0003 1.000153

70 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 1.000153

76 1.000153 1.000151 .0002 1.000152 1.000154 1.000151 .0002 1.000153

80 1.000153 1.000151 .0001 1.000152 1.000153 1.000152 .0001 1.000153

85 1.000153 1.000152 .0001 1.000152 1.000153 1.000152 .0001 1.000152

90 1.000152 1.000151 .0001 1.000152 1.000152 1.000152 .0000 1.000152

Notes: X' = angular position along groundtrack, from ascending node.

<J>' = angular distance away from groundtrack, positive in direction away from North Pole.

h = scale factor along meridian of longitude.

k = scale factor along parallel of latitude,

bi = maximum angular deformation.

m4 = scale factor along line of constant 4> '.

mx = scale factor along line of constant X'.

= sec <(>', or 1.000152 at V = V.

If<J>' = 0°, A, k, and mt = 1.0, while w=0.

Given X', equations (27-18) and (27-20) may be used for X and 4>, respectively.

Equations (27-6) and (27-7), with 4>' =0, convert these values to x and y. Equa

tions (27-19) and (27-9) require joint iteration, using the same procedure as that

for the pair of equations (27-8) and (27-9) given earlier. The X calculated from

equation (27-18) should have the same quadrant adjustment as that described

for (27-13).

The formulas for scale factors h and k and maximum angular deformation w are

so lengthy that they are not given here. They are available in Snyder (1981b).

Table 36 lists these values as calculated for the spherical SOM using Landsat

constants. Although calculated for Landsat 1, 2, and 3, they are almost identical

for 4 and 5.

FORMULAS FOR THE ELLIPSOID AND CIRCULAR ORBIT

Since the SOM is intended to be used only for the mapping of relatively narrow

strips, it is highly recommended that the ellipsoidal form be used to take advan

tage of the high accuracy of scale available, especially as the imagery is further

developed and used for more precise measurement. In addition to the normal

modifications to the above spherical formulas for ellipsoidal equivalents, an addi

tional element is introduced by the fact that Landsat is designed to scan vertically,

rather than in a geocentric direction. Therefore, "pseudotransformed" latitude <J>"

and longitude X" have been introduced. They relate to a geocentric groundtrack

for an orbit in a plane through the center of the Earth. The regular transformed

coordinates dp' and X' are related to the actual vertical groundtrack. The two
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groundtracks are only a maximum of 0.008° apart, although a lengthwise displace

ment of 0.028° for a given position may occur.

If the eccentricity of the ellipsoid is made zero, the formulas reduce to the

spherical formulas above. These formulas vary slightly, but not significantly,

from those published in Snyder (1978b, 1981b). In practice, the coordinates for

each picture element (pixel) should not be calculated because of computer time

required. Linear interpolation between occasional calculated points can be devel

oped with adequate accuracy.

For the forward formulas, given a, e, i, P2, Pu X0, Ro, <J>, and X, find x and y. As

with the spherical formulas, the X axis passes through each ascending and descend

ing node, x increasing in the direction of satellite motion, and the Y axis intersects

perpendicularly at the ascending node for the time t = 0. Defining terms,

a, e = semimajor axis and eccentricity of ellipsoid, respectively (as for other

ellipsoidal projections).

R0 = radius of the circular orbit of the satellite.

i, P2, Pu X0, <J>. X are as defined for the spherical SOM formulas. For constants

applying to the entire map (see p. 354 for numerical examples):

B = (2/tt)/0"2[(//J-S2)/(72 + S2)I2]dX"
(27.-21)

- [4/(irN)]/0"2[W-S2)/(/2 + S2)"2] cos nk"dk" (27--22)

c„ - [4/(ir»)]/0" -[5(// + J)/(/2 + S2)"2] cos nk"dk" (27--23)

J - (1-e2)3 (27--24)

W = [(l-e2 cos2 if/d-e2)2]-! (27--25)

Q
= e2 sin2 ?7(1-e2) (27--26)

T = e2 sin2 ?'(2-e2)/(1-e2)2 (27.-27)

Jn
= U/tO/0" 2 <J>" sin nk'dk' (27--28)

mn = (4/tt)/0"--(X"-X') sin nk'dy (27.-29)

where <i>" and k" are determined in these last two equations for the groundtrack

as functions of X', from equations (27 -43), (27 - 34), (27-35), and (27-36).

To calculate A„, B, and C„, the following functions, varying with X", are used:

(P2/Px) sin i cos X" |(1 + T sin2 X")/[U + W sin2 X")

(1 + Q sin2 X")]!12

" 1 + Q sin2 X"

W sin2 X"

1 + U'sin2X"

L(l + Q sin2 X")2

- (P2/Px) cos ?'

]

(27-30)

(27-31)

These constants may be determined from numerical integration, using Simp

son's rule with 9° intervals. For circular orbits, A„ if n is odd, C„ if n is even,

j„ if ti is even, and mn if n is odd are all zero. The above integration to ir/2

is suitable, due to symmetry, only for non-zero coefficients. Integration to 2tt

would be necessary to show that other coefficients are zero.

To find x and y from 4> and X:

x/a = Bk" + A2 sin 2X" + A4 sin 4X" + . . . - [S/(/2 + S2)1 2]

In tan (tt/4 + <J>72) (27-32)

y/a = C, sin X" + C3 sin 3X" + . . . + [J/(/2 + S2)12]

In tan (tt/4 + <J>72) (27-33)

where

X" = arctan [cos i tanX? + (l-e2) sin i tan <J>/cos kt] (27-34)

k, = k-k0 + (P2/Px) X" (27-35)
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4>" = arcsin |[(1-e2) cos i sin <J>-sin i cos 4> sin X,]/

(1-e2 sin2 <J>)1"2l (27-36)

X0 = 128.87° - (3607251)p (Landsat 1, 2, 3 only) (27-37)

= 129.30° - (3607233)p (Landsat 4, 5 only) (27-38)

Equations (27-34) and (27-35) are iterated together as were (27-8) and

(27-9). Equation (27-30) is used to find S for the given X" in equations (27-32)

and (27-33). For improved computational efficiency using these and subsequent

series, see p. 19.

The closed forms of equations (27-32) and (27-33) are given below, but the

repeated numerical integration necessitates replacement by the series forms.

x/a = /0W-W + S2)1" ] dX"-[S/(/2 + S2)1-]

In tan (it/4 + 4>72) (27 - 32a)

y/a = /0k"[S(# + J)/(S2 + S2)1 2] dk" + [J/(J2 + S2)"2]

In tan (ir/4 + 4>72) (27- 33a)

While the above equations are sufficient for plotting a graticule according to the

SOM projection, it is also desirable to relate these points to the true vertical

groundtrack. To find 4>" and X" in terms of 4>' and X', the shift between these two

sets of coordinates is so small it is equivalent to an adjustment, requiring only

small Fourier coefficients, and very lengthy calculations if they are not used. The

use of Fourier series is therefore highly recommended, although the one-time cal

culation of coefficients is more difficult than the foregoing calculation of A„, B,

and C„.

4>" = 4>'+.;'! sin k'+j3 sin 3X' + . . . (27-39)

X" = X' + wasin2X' + »n4sin4X' + . . . (27-40)

For a circular orbit, X' is 2-nt/P2, where t is the time from the initial ascending

node.

The equations for functions of the satellite groundtrack, both forward and in

verse, are given here, since some are used in calculating /„ and mn as well. In

any case a, e, i, P2, Pu X0, and R0 must be given. For X' and X, if 4> is given:

4>ff = 4>-arcsin !ae2 sin 4> cos 4>/[«,, (1-e2 sin2 4>)1"2]| (27-41)

X = arcsin (sin 4>^/sin 0 (27-42)

where 4></ is the geocentric latitude of the point geocentrically under the satellite,

not the geocentric latitude corresponding to the vertical groundtrack latitude 4>.

X = arctan [(cos i sin X')/cos k']-(P2/Px)k' + X0 (27-43)

If X of a point along the groundtrack is given, to find X' and 4>,

X' = arctan (tan X,/cos i) (27- 19)

X, = X-X0 + (/y^i) X' (27-35)

These two equations are iterated as a group, but the first trial X' and the quadrant

adjustments should follow the procedures listed for equation (27-8).

4> = arcsin (sin i sin X') + arcsin !ae2 sin 4> cos 4>/

[R0 (l-e2 sin2 4>)12]! (27-44)

Iteration is involved in (27-44), beginning with a trial 4> of arcsin (sin i sin X').
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If X' of a point along the groundtrack is given, <J> is found from (27-44), and

(27-43) provides X. Only (27-44) requires iteration for these calculations.

Inverse formulas for the ellipsoidal form of the SOM projection, with circular

orbit, follow: Given a, e, P2, Pu X0, R0, x, and y, to find 4> and X, the general

Fourier and other constants are first determined as described at the beginning of

the forward equations. Then

X = X,-(P2/P,) X" + X0 (27-45)

where

X( = arctan (V7cos X") (27-46)

V = sin2 <J>7(1-e2)] cos i sin X"-sin i sin <J>" [(1 + Q sin2 X")

(1-sin2 <i>")-U sin2 W 2|/[1-sin2 <J>" (1 + U)] (27-47)

U = e2cos2 //(1-e2) (27-48)

while X" and <i>" are found from (27-51) and (27-52) below.

4> = arctan 1(tan X" cos kt-cos i sin X,)/[(1-e2) sin i]\ (27-49)

If / = 0, equation (27-49) is indeterminate, but

4> = arcsin !sin 4>"/[(1 -e2)2 + e2 sin2 <J>"]12| (27-50)

No iteration is involved in equations (27-45) through (27-50), and the ATAN2

function of Fortran should be used with (27-46), but not (27-49), adding or sub

tracting 360° to or from X if necessary in (27-45) to place it between longs. 180° E.

and W.

Iteration is required to find X" from x and y:

k" = [x/a + (S/J)(y/a)-A2 sin 2 X"-A4 sin 4 X"

-(S/y)(C, sin X" + C3 sin 3 k")]/B (27-51)

using equation (27-30) and various constants. Iteration involves substitution of a

trial k" = x/a B in the right side, finding a new X" on the left side, etc.

For <J>", the X" just calculated is used in the following equation:

In tan (ir/4 + 4>72) = (1 +S2//2)1'- (y/a-C\ sin X"-C3 sin 3 X") (27-52)

The closed forms of equations (27-51) and (27-52) involve both iteration and

repeated numerical integration and are impractical:

x/a + (S/JXy/a) = f0^(HJ-S2)/^ + S2)1 2]dX"

+ (S/J) JV"[S(// + /)/(/2 + S2)1 -]dk" (27 -51a)

In tan (ir/4 + <J>72) = [l +(S//)2]12!i//o-/0k, [S(H + J)/

(/2 + S2)12]dX"' (27-52a)

For 4>' and X' in terms of <J>" and X", the same Fourier series developed for

equations (27-39) and (27-40) may be used with reversal of signs, since the cor

rection is so small. That is.

<J>' = <J>"— sin X"-j3 sin 3 X"- . . . (27-53)

X' = X"-»i2 sin 2 X"-m4 sin 4 X"- . . . (27 - 54)

Equations (27-53) and (27- 54) are, of course, not the exact inverses of (27-39)

and (27-40), although the correct coefficients may be derived by an analogous
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numerical integration in terms of X", rather than X'. The inverse values of <i>' and

X' from (27-53) and (27-54) are within 0.000003° and 0.000009°, respectively, of

the true inverses of (27-39) and (27-40) for the Landsat orbits.

The following values of Fourier coefficients for the ellipsoidal SOM are listed

for Landsat orbits, using the Clarke 1866 ellipsoid (a = 6,378,206.4 m and e2 =

0.00676866) and a circular orbit:

Landsat 1, 2, 3 Landsat 4, 5

B = 1.005798138 1.004560314 for X" in radians

= 0.0175544891 0.017532885 for X" in degrees

A2 = -0.0010979201 -0.0009425101

A4 = -0.0000012928 -0.0000012678

A6 = -0.0000000021 -0.0000000021

c,= 0.1434409899 0.1375926735

ca = 0.0000285091 0.0000299489

c5 = -0.0000000011 0.0000000004

R = 7,294,690 7,081,000 meters

i = 99.092° 98.20°

P2/P, = 18/251 16/233

3i = 0.00855567 0.00619893 for <J>" and <J>' in degrees

k = 0.00081784 0.00061698
n

.;>>
= -0.00000263 -0.00000308

ti

ni2 = -0.02384005 -0.01901574 for X" and k' in degrees

m4 = 0.00010606 0.00011587
tr

m6 = 0.00000019 0.00000024
"

Additional Fourier constants have been developed in the published literature

for other functions of circular orbits. They add to the complication of the equations,

but not to the accuracy, and only slightly to continuous mapping efficiency. A

further simplification from published formulas is the elimination of a function F,

which nearly cancels out in the range involved in imaging.

As in the spherical form of SOM, the formulas for scale factors h and k and

maximum angular deformation w are too lengthy to include here, although they

are given by Snyder (1981b). Table 37 presents these values for Landsat con

stants for the scanning range required. Values for Landsat 4 and 5 are nearly

identical with those shown for 1, 2, and 3.

FORMULAS FOR THE ELLIPSOID AND NONCIRCULAR ORBIT

The following formulas accommodate a slight ellipticity in the satellite orbit.

They provide a true-to-scale groundtrack for an orbit of any eccentricity, if the

orbital motion follows Kepler's laws for two-bodied systems, but the areas scanned

by the satellite as shown on the map are distorted beyond the accuracy desired if

the eccentricity of the orbit exceeds about 0.05, well above the maximum reported

eccentricity of Landsat orbits (about 0.002). For greater eccentricities, more

complex formulas (Snyder, 1981b) are recommended. If the orbital eccentricity is

made zero, these formulas readily reduce to those for a circular orbit.

For the forward formulas, given a, e, i, P2, Pu X0. a', e', y, <J>, and X, find x and

y. Again, the X axis passes through each ascending and descending node, x

increasing in the direction of satellite motion, and the Y axis intersects perpendic

ularly at the ascending node for the time t = 0. Defining terms,

a', e' = semimajor axis and eccentricity of satellite orbit, respectively.

7 = longitude of the perigee relative to the ascending node.

a and e are as defined for the ellipsoidal/circular formulas, and P2, Pu X0, 4>,
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Table 37.—Scale factors for the ellipsoidal Space Oblique Mercator projection using Landsat 1, 2,

and 3 constants

*" h k 0>°
sin xk ui

0° 1° 1.000154 1.000151 0.0006 0.000005

0 1.000000 1.000000 .0000 .000000

-1 1.000154 1.000151 .0006 .000005

15 1 1.000161 1.000151 .0022 .000019

0 1.000000 1.000000 .0001 .000000

-1 1.000147 1.000151 .0011 .000010

30 1 1.000167 1.000150 .0033 .000029

0 1.000000 1.000000 .0001 .000001

-1 1.000142 1.000150 .0025 .000021

45 1 1.000172 1.000150 .0036 .000031

0 .999999 1.000000 .0001 .000001

-1 1.000138 1.000150 .0031 .000027

60 1 1.000174 1.000150 .0031 .000027

0 .999999 1.000000 .0002 .000001

-1 1.000136 1.000150 .0028 .000025

75 1 1.000174 1.000152 .0019 .000016

0 .999999 1.000000 .0001 .000000

-1 1.000135 1.000150 .0019 .000016

90 1 1.000170 1.000156 .0008 .000007

0 .999999 1.000000 .0000 .000000

-1 1.000133 1.000151 .0010 .000009

Notes: X' = angular position along geocentric groundtrack, from ascending node.

<J>" = angular distance away from geocentric groundtrack, positive in direction away from North Pole.

h = scale factor along meridian of longitude.

k = scale factor along parallel of latitude.

u> = maximum angular deformation,

sin ¥:u = maximum variation of scale factors from true conformal values.

and X are as defined for the spherical SOM formulas. For constants applying to

the entire map (a numerical example is not given for the non-circular orbit):

= [l/(2.n)]J0H(HJ-S2)/(J2 + S2y-]dk" (27--55)

B2 = [ 1/(2tr)]/0^[S(H + J)/(f2 + S2)'W (27-
8056)

An = [1/(irn)]/0^[(^-S2)/(/2 + S2)'*] cos nk"dk" (27--57)

A'n = [1/(.rr«)]/„2-[(//J-S2)/(/2 + S2)12] sin nX'dk" (27-
8058)

Cn = [1/(irH)]/0^[S(//+J)/(/2-l-S2)i2] cos nk"dk" (27-
8059)

C'„
= [l/(-nn)]S0HS(H + J)/(fi + S2)i2] sin nk"dk"

(27--60)

J = (1-e2)3 (27-
8024)

w = [(1-e2 cos2 02/(1-e2)2]-1 (27-
8025)

Q = e2 sin2 ?'/(1-e2) (27--26)

T = e2 sin2 j (2-e2)/(l-e2f (27-.27)

= B,/(B,2 + B22)^ (27- 61)

s, = B2/(B,2 + B22)'2 (27-.62)

jn = (1/ir)/0^ <J>" sin nk'dk' (27-
8063)

j'n = (I/tO/02'' <J>" cos nk'dk' (27-.64)

mn = (1/ir)/0MX"-X') sin nk'dk' (27-.65)

m'„ = (1/ir)/0MX"-X') cos nk'dk' (27-.66)

where <i>" and X" are determined in these last four equations for the groundtrack

as functions of X', from equations (27-69a), (27-87), (27-86), (27-85), (27-88),

and (27-34), (27-74) through (27-76), and (27-36).

To calculate A„, A'„, B„, C,„ and C'„, the following functions, varying with X",

are used:

S =(/y/>i)£'sin?'cosX";(1 + 7/shrX")/[(1 + Wsin2X")

(1 + Q sin2 X")];12 (27-67)
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1 + Q sin2 X" 1 1 if 1 + W sin2 X"

H = i T »/ .2 > J L . n .2 v»v2 ~ (P2/POL' cos ?' (27-67a)
1 + Vv sin X J [(1 + Q sin X )

L' =(1-e' cos E')2/(l-e'2)^ (27- 68)

£' = 2 arctan |tan [(X"--y)/2] [(1-e')/(1 + e')]1/2| (27-69)

These constants may be determined from numerical integration, using Simp

son's rule with 9° intervals. Unlike the case for circular orbits, integration must

occur through the 360° or 2ir cycle, as indicated. Many more terms are needed than

for circular orbits.

To find x and y from <J> and X:

x/a =x'Hx + y'Sx (27-70)

y/a = y'Hx - x'S, (27-71)

where

x' = Bxk" + 2 A„ sin nX" - 2 A'„ cos nk" + 2 A'n - [S/(/2 + S2)' 2!

In tan (tt/4 + <J>72) (27- 72)

i/' =B2X" + 2C„ sin mX" ~ i!C'„ cos nX" + 2C'n + [J/(J2 + S2)' 2]

In tan (ir/4 + <J>72) (27 - 73)

X" = arctan [cos i tan X< + (1 - e2) sin i tan 6/cos X(] (27-34)

X, =X - X0 + {P2/Px){L + i) (27-74)

L =E' - e' sin £" (27-75)

E' = 2 arctan !tan [(X"-7>/2] [(1-e')/(1 + c')JI2| (27-76)

<J>" = arcsin ![(1-e2) cos i sin <J> - sin i cos <J> sin X^|/

(1-e2 sin2 <J>)i*! (27-36)

Function £7' is called the "eccentric anomaly" along the orbit, and L is the

"mean anomaly" or mean longitude of the satellite measured from perigee and

directly proportional to time.

Equations (27- 34), (27 - 74) through (27-76), and (27-36) are solved by special

iteration as described for equations (27-8) and (27-9) in the spherical formulas,

except that X" replaces X', and each trial X" is placed in (27-76), from which

E' is calculated, then L from (27-75), X, from (27-74), and another trial X"

from (27-34). This cycle is repeated until X" changes by less than the selected

convergence. The last value of X/ found is then used in (27-36) to find <J>".

Equation (27-67) is used to find S for the given X" in equations (27-72) and

(27-73).

The closed forms of equations (27-72) and (27-73) are (27-32a) and (27-33a),

respectively, in which the repeated numerical integration necessitates replace

ment by the series forms.

As in the case of the circular orbit, it is also desirable to relate these points

to the true vertical groundtrack. To find <J>" and X" in terms of <J>' and X',

the following series are employed:

<J>" =4>' +J£Jn sin nk' + 2J, cos /?X' - 2 j'„ (27-77)

X" = X' +2 w„sinnX' +2 m'„cosnk' -2 m'„ (27-78)

n=I h 80 1 n =. 1

For X' in terms of time t from the initial ascending node,

X' =7 + 2 arctan |[tan (£72)] [(1 + e')/(1-6')]12

E' = e' sin E' + L0 + 2-nt/P2

(27-79)

(27-80)
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L0 =E'0 - e' sin E'0 (27-81)

E'o = -2 arctan |[tan (7/2)] [(1-e')/(1 + e')H (27-82)

Equation (27-80) requires iteration, converging rapidly by substituting an initial

trial E' = L0 + 2-at/P2 in the right side, finding a new E' on the left, substituting

it on the right, etc., until sufficient convergence occurs.

The equations for functions of the satellite groundtrack, both forward and in

verse, are given here, since some are used in calculating jn and mn as well. In

any case a, e, i, P2, Pu X0, a', e', and y must be given. For X' and X, if <J>

is given:

X' = arcsin (sin 4>^/sin i) (27-83)

4>ff = <J> - arcsin \ae2 sin <J> cos 4>/[R0(l-e2 sin2 <J>)"2]| (27 -84)

R0 = a' (1-e' cos £") (27-85)

E' = 2 arctan |tan [(k'-y)/2] [(1-e')/(1 + e')H (27-69a)

where 4>9 is the geocentric latitude of the point geocentrically under the satellite,

not the geocentric latitude corresponding to the vertical groundtrack latitude <J>,

and R0 is the radius vector to the satellite from the center of the Earth.

These equations are solved as a group by iteration, inserting a trial k' = arcsin

(sin <J>/sin i) in (27-69a), solving (27- 85), (27- 84), and (27-83) for a new k',

etc. Each trial k' must be adjusted for quadrant. If the satellite is traveling

north, add 360° times the number of orbits completed at the nearest ascending

node (0, 1, 2, etc.). If traveling south, subtract k' from 360° times the number of

orbits completed at the nearest descending node (1/2, 3/2, 5/2, etc.). For k,

k = arctan[(cos?' sinX')/cosX'] - (P^P^L + y) + k0 (27-86)

L =E' - e' sin £" (27-87)

using the X' and E' finally found just above.

If k of a point along the groundtrack is given, to find X' and

k' = arctan (tan X,/cos i) (27-19)

X, =X-X0 + (P2/^i)(£ + 7) (27-74)

and L is found from (27-87) and (27-69a) above. The four equations are iterated

as a group, as above, but the first trial X' and the quadrant adjustments should

follow the procedures listed for equation (27-8).

<J> = arcsin (sin i sin X') + arcsin \ae2 sin <J> cos <i>/

[#0(1-e2 sin2 (27- 88)

where R0 is determined from (27-85) and (27-69a), using the X' determined just

above. Iteration is involved in (27 - 88), beginning with a trial 4> of arcsin (sin i

sin X').

If X' of a point along the groundtrack is given, <J> is found from (27-88), (27-85),

and (27-69a), while X is found from (27-86), (27-87), and (27-69a). Only (27-88)

requires iteration for these calculations.

Inverse formulas for the ellipsoidalform of the SOM projection, with an orbit

of 0.05 eccentricity or less, follow: Given a, e, i, P2, Pu X0, a', e', 7, x, and y,

to find 4> and X, the general Fourier and other constants are first determined as

described at the beginning of the forward equations for noncircular orbits. Then

X = X, - {P2/Px) (L + y) + X0 (27-89)
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where

X, = arctan (V7cos X") (27-46)

V = ![1-sin2 4>7(1 -e2)] cos i sin X" - sin ?' sin 4>" [(1 + Q sin2 X")

(1-sin2 <]>") - t/ sin2 <J>"]i -sin2 <J>" (1 + t/)] (27-47)

U = e2 cos2 ?'/(1 -e2) (27-48)

while L is found from (27-87), E' from (27-76), and X" and <J>" from (27-90)

and (27-91) below.

<J> = arctan |(tan X" cos X, - cos i sin X,)/[(1-e2) sin i]\ (27-49)

If i = 0, equation (27-49) is indeterminate, but

4> = arcsin |sin <J>7[(1-e2)2 + e2 sin2 <J>"]^| (27-50)

No iteration is involved in the above equations, and the ATAN2 function of

Fortran should be used with (27-46), but not (27-49), adding or subtracting

360° to or from X if necessary in (27-89) to place it between longs. 180°E. and W.

Iteration is required to find X" from x and y:

X" = \x' + (S/J) y' - 2 [A„ + (S/J)C„] sin n X" + 2 [A'„ + (S/J)C'n]
n = 1 h=1

cos nk" - 1 [A',, + (SU)C'„y[Bx + (S/J)B2] (27-90)

using equations (27-67), (27-92), (27-93), and various constants. Iteration in

volves substitution of a trial X" = x'/Bx in the right side, finding a new X" on

the left side, etc.

For 4>", the X" just calculated is used in the following equation:

In tan (ir/4 + 4>72) = (1 +S2//2M2/'-B2 X" -I C„ sin n X" + 1

C'„ cos n k" - t C'„) (27-91)

«= i

where

x' =(.v/a)Hx-(y/a)Sx (27-92)

y' =(y/a)Hx + (,r/a)S! (27-93)

The closed forms of equations (27-90) and (27-91) involve both iteration and

repeated numerical integration and are impractical:

x' + (SU)y' = /0xW</-S2)/(«/2 + ,S2)i'2]dX"

+ (S/J)J0nS(H + J)/(S2 + S2»'2]dk" (27 -90a)

In tan (tt/4 + 4>72) = [1 + (S/Jf]^y'-J^[S(H+J)/

(/2 + S2)12]dX"| (27-91a)

For <i>' and X' in terms of 4>" and X", the same Fourier series developed for

equations (27-77) and (27-78) may be used with reversal of signs, since the

correction is so small. That is,

KM n

<i>' = 4>" -2 /'„ sin n k" - 1 j'n cos n X" + 2 j'„ (27-94)
« = ' n = 1 « = 1

X' = X" - 2 ra„ sin nk" - 1 m'n cos n k" + i m'n (27-95)

As with the circular orbit, equations (27- 94) and (27-95) are not the exact in

verses of (27-77) and (27-78), although the correct coefficients may be derived

by an analogous numerical integration in terms of X", rather than X'.
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28. SATELLITE-TRACKING PROJECTIONS

SUMMARY

• All groundtracks for satellites orbiting the Earth with the same orbital param

eters are shown as straight lines on the map.

• Cylindrical or conical form available.

• Neither conformal nor equal-area.

• All meridians are equally spaced straight lines, parallel on cylindrical form and

converging to a common point on conical form.

• All parallels are straight and parallel on cylindrical form and are concentric

circular arcs on conical form. Parallels are unequally spaced.

• Conformality occurs along two chosen parallels. Scale is correct along one of

these parallels on the conical form and along both on the cylindrical form.

• Developed 1977 by Snyder.

HISTORY. FLA I IRKS. AND USAGE

The Landsat mapping system which inspired the development of the Space

Oblique Mercator (SOM) projection also inspired the development of a simpler

type of projection with a different purpose. While the SOM is used for low-

distortion mapping of the strips scanned by the satellite, the Satellite-Tracking

projections are designed solely to show the groundtracks for these or other satel

lites as straight lines, thus facilitating their plotting on a map. As a result, the

other features of such maps are minimal, although they may be designed to reduce

overall distortion in particular regions.

The writer developed the formulas in 1977 after essentially completing the

mathematical development of the formulas for the SOM. The formulas for the

Satellite-Tracking projections, with derivations, were published later (Snyder,

1981a). Arnold (1984) further analyzed the distortion. These formulas are confined

to circular orbits and the spherical Earth. Because of the small-scale maps result

ing, the ellipsoidal forms are hardly justified.

Charts of groundtracks have to date continued to employ the Lambert Con-

formal Conic projection, on which the groundtracks are slightly curved. The

writer is not aware of any use of the new projection, except that a Chinese map

of about 1982 claims this feature.

The projections were developed in two basic forms, the cylindrical and the

conic, with variations of features within the latter category. The cylindrical form

(fig. 48) has straight parallel equidistant meridians and straight parallels of lati

tude which are perpendicular to the meridians. The parallels of latitude are in

creasingly spaced away from the Equator, and for Landsat orbits the spacing

changes more rapidly than it does on the Mercator projection. The Equator or

two parallels of latitude equidistant from the Equator may be made standard,

without shape or scale distortion, as on several other cylindrical projections.

The groundtracks for the various orbits are plotted on the cylindrical form as

diagonal equidistant straight lines. The descending orbital groundtracks (north to

south) are parallel to each other, and the ascending groundtracks (south to north)

are parallel to each other but with a direction in mirror image to that of the

descending lines. The ascending and descending groundtracks meet at the north

ern and southern tracking limits, lats. 80.9° N. and S. for Landsat 1, 2, and 3. The

map projection does not extend closer to the poles, although the mapmaker can

arbitrarily extend the map using any convenient projection. The extension does

not affect the purpose of the projection.

The groundtracks are not shown at constant scale, just as the straight great-

circle paths on the Gnomonic and straight rhumb lines on the Mercator projection

are not at constant scale. The complete tracks appear to be a sequence of zig-zag
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lines, although for Landsat normally only the descending (daylight) groundtracks

should be shown to reduce confusion, since interest is normally confined to them.

While the cylindrical form of the Satellite-Tracking projections is of more inter

est if much of the world is to be shown, the conic form applies to most conti

nents and countries, just as do the usual cylindrical and conic projections. On each

conic Satellite-Tracking projection, the meridians are equally spaced straight lines

converging at a common point, and the parallels are unequally spaced circular

arcs centered on the same point. There are three types of distortion patterns

available with the conic form:

1. For the normal map (fig. 49) of a continent or country, there can be confor-

mality or no shape distortion along two chosen parallels, but correct scale at

only one of them. The groundtracks break at the closest tracking limit, but

the map cannot be extended to the other tracking limit in many cases, since

it extends infinitely before reaching that latitude.

2. If one of the parallels with conformality is made a tracking limit, the ground-

tracks do not break at this tracking limit, since there can be no distortion

there (fig. 50).

3. If both parallels with conformality are made the same, the projection has just

one standard parallel. If this parallel is made the tracking limit, the conic

projection becomes the closest approximation to an azimuthal projection

(fig. 51). For Landsat orbits, the cone constant of such a limiting projection

is about 0.96, so the developed cone is about 4 percent less than a full circle,

and the projection somewhat resembles a polar Gnomonic projection. With

orbits of lower inclination, the approach to azimuthal becomes less.

For each of the conics, the straight groundtracks are equidistant, they have

constant inclinations to each meridian being crossed at a given latitude on a given

map, and they are not at constant scale. They are also all tangent to a circle slightly

smaller than the latitude circle for the tracking limit in case 1 above, and tangent

to the tracking limit itself in cases 2 and 3. As in the case of the cylindrical form,

any extension of the map from the tracking limit to a pole is cosmetic and arbi

trary, since the groundtracks do not pass through this region.

FORMULAS FOR THE SPHERE

Forward formulas (see p. 360 for numerical examples):

For the Cylindrical Satellite-Tracking projection, R, i, P2, Pu Kh <J>i, and

X must be given, where

R =radius of the globe at the scale of the map.

i =angle of inclination between the plane of the Earth's Equator and the

plane of the satellite orbit, measured counterclockwise from the Equa

tor to the orbital plane at the ascending node (99.092° for Landsat 1, 2,

3; 98.20° for Landsat 4, 5).

P2 =time required for revolution of the satellite (103.267 min for Landsat 1,

2, 3; 98.884 min. for Landsat 4, 5).

Px =length of Earth's rotation with respect to the precessed ascending node.

For Landsat, the satellite orbit is Sun-synchronous; that is, it is always

the same with respect to the Sun, equating Px to the solar day (1,440

min). The ascending node is the point on the satellite orbit at which the

satellite crosses the Earth's equatorial plane in a northerly direction.

k0 =central meridian.

<fr, =standard parallel (N. and S.).

(<J>, X)=geodetic latitude and longitude of point to be plotted on map.
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FIGURE 48.—Cylindrical Satellite-Tracking projection (standard parallels 30° N. and S.). Landsat 1,

2, 3 orbits. Groundtracks (paths 15, 30, 45, etc.) are shown as straight diagonal lines. They con

tinue broken at tracking limits (not shown).

=[(P2/Px) cos2<J>i-cos ?'Kcos^-cos2;)12 (28-1)

F' = UP.JPx) cos2d>-cos ?]/(cos24>-cos2 ?')1- (28- la)

k' = -arcsin (sin 4>/sin i) (28-2)

h =arctan (tan X' cos i) (28-3)

L = kt - (P,/P,)X' (28-4)

X =i2(X-X0) COS <J>i (28-5)

y =R L cos 4>i/FV (28-6)

k =cos 4>i/cos <p (28-7)

h =kF'/Fx' (28-8)

Geometrically, F' is the tangent of the angle on the globe between the ground-

track and the meridian at latitude 4>, and F{ is the tangent of this angle both on

the globe and on the map at latitude <J>i. Scale factors /? and k apply along the meri

dian and parallel, respectively. If the latitude is closer to either pole than the

corresponding tracking limit, equation (28-2) cannot be solved, and the point

cannot be mapped using these formulas. The X axis lies along the Equator, x

increasing easterly, and the Y axis lies along the central meridian, y increasing

northerly. If (X-X0) lies outside the range ± 180°, 360° should be added or sub

tracted so it will fall inside the range.

For the Conic Satellite-Tracking projection with two parallels having confor-

mality, R, i, P2, Pu k0, <J>0, 4>i, <p2, <J>, and X must be given, where the symbols

are defined above, except that <i>.> is the other parallel of conformality, but with

out true scale, and 4>„ is the latitude crossing the central meridian at the desired

origin of rectangular coordinates. For constants which apply to the entire map,

=arctan \[(P2/Px) cos2 4>„ - cos j]/(cos2 4>,, - cos2 ?')1*! (28-9)

*n
= -arcsin (sin <J>„/sin i) (28 -2a)

=arctan (tan k„' cos 0 (28 -3a)

Ln = k,„ - (P2/P,)X„' (28-4a)

n =(F2-f1V(L2-L1) (28-10)

S0 =Fi - n L, (28-11)

Po =R cos <J>i sin Fx/[n sin («L0 + s0)] (28-12)
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FluURE 49.—Conic Satellite-Tracking projection (conformality at lats. 45° and 70° N.). Landsat 1, 2, 3

orbits. Groundtracks (paths 15, 30, 45, etc.) are shown as diagonal straight lines. They continue

broken (not shown) at tracking limit, the smallest incomplete circle. The complete circle is the

circle of tangency.
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Figure 50.—Conic Satellite-Tracking projection (conformality at lats. 45° and 80.9° N.). Landsat 1. 2, 3

orbits. Diagonal groundtracks (paths 15, 60. 105, etc.) are straight, unbroken even at the tracking

limit, which is the same as the circle of tangency (inner circle).
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Figure 51.—Conic Satellite-Tracking projection (standard parallel 80.9" N.). Landsat 1, 2, 3 orbits.

Groundtracks are as described on Fig. 50. The nearest approach to an azimuthal projection for

these orbits. Inner circle is tracking limit and circle of tangency.
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in which subscript n in equations (28-9) and (28-2a) through (28-4a) is made 0,

1, or 2 as required for (28—10) through (28—12), and subscript n is omitted for

calculating F and L for formulas below.

For plotting each point (<J>, X),

p =R cos <J>i sin Fx/[n sin (nL + s0)] (28-13)

6 =n (X-X0) (14-4)

x =p sin 6 (14-1)

y =p0 — P cos 6 (14-2)

If n is positive and L is equal to or less than (-.s,/h), or if n is negative and L is

equal to or greater than (—Sq/m), the point cannot or should not be plotted. The

limiting latitude <J> for L = (-s0/n) may be found using (28-20) through (28-22)

below.

In addition, ps, the radius of the circle to which groundtracks are tangent on

the map, and scale factors h and k, defined above, are found as follows:

ps =R cos <J>i (sin Fx)/n (28-14)

k = pn/(R cos 4>) (28-15)

h =k tan F/tan (nL + s0) (28-16)

Radius ps may be inserted into equations (14-1) and (14-2) in place of p for

rectangular coordinates. The Y axis lies along the central meridian X,„ y increas

ing northerly, and the X axis intersects perpendicularly at <i>0, x increasing easter

ly. Geometrically, F! is the inclination of the groundtrack to the meridian at lati

tude <J>i, and n is the cone constant.

For the conic projection with one standard parallel, <J>i = <i>2, but equation (28-10)

is indeterminate. The following may be used in its place:

n = sin <J>i [(F2/Pi)(2 cos2 ?'-cos2 <J>i) - cos i]/\\(P2/Px) cos2 ^-cos i]

[(F2/P1)[(P2/F1) cos2 4>i - 2 cos i] + 1]! (28-17)

For the conic projection with one standard parallel <J>i which is equal to the upper

tracking limit, equation (28—17) may be considerably simplified to the following:

n = sin i/[(P2/Px) cos i - 1 f (28-18)

Other equations for the conic form remain the same.

Inverse Formulas (see p. 362 for numerical examples):

For the cylindrical form, the same constants must be given as those listed for

the forward formulas (R, i, P2, Pu X0, and <J>i), and Fx must be calculated from

equation (28-1). For a given (x, y), to find (4>, X):

L =y Fx'/(R cos <J>i) (28-19)

k, =L + (/VP,) k' (28-20)

X' =arctan (tan X,/cos i) (28-21)

<J> = - arcsin (sin X' sin 0 (28-22)

X = X0 + x/(R cos 4>,) (28-23)

Equations (28-20) and (28-21) must be iterated as a pair, using (-90°) as the first

trial X' in equation (28-20), solving for X,, inserting it into (28-21), finding a new

X' without using the equivalent of the Fortran ATAN2 function, and using it in

(28-20), until X' changes by a negligible amount. This final X' is used in (28-22)

to find <i>.
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A generally faster solution of (28- 20) and (28-21) involves the use of a Newton-

Raphson iteration in place of those two equations, although equations are longer:

AX' = - (X'-arctan A)/[1 - (A2+ 1/cos2 i) (P2iPx) cos i/(A2+ 1)] (28-25)

The first trial X' is again (-90°) in equation (28-24) and (28-25). The adjustment

Ak' is added to each successive trial until reasonable convergence occurs.

For any of the conic forms, the initial constants R, i, P,, Pu X(', <J>0, and 4>, alone

or both <J>i and <J>2 must be given. In addition, all constants in equations (28-9)

through (28-12), (28-2a) through (28-4a), and (28-17) or (28-18) if necessary

must be calculated. For a given (x, y), to find (<J>, X),

p = ± [x2 + (p,-yfy-, taking the sign of n (14-10)

6 = arctan U./(p0-2/)] (14-11)

L = [arcsin (R cos <J>i sin /y(P" ))-s0]/« (28-26)

From L, X' and then 4> are found using equations (28-20) through (28-22), or

(28-24), (28-25), and (28-22), with iteration as described above. Then

A = tan [L + (P2/Px) X']/cos i" (28-24)

X = X0 + 6/n (14-9)

Sample coordinates for several of the Satellite-Tracking projections are shown in

tables 38 through 40.
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Table 38.—Cylindrical Satellite-Tracking projection: Rectangular coordinates

UnriVat 1, 2. 3 orbits: ?' = MMM?

/':; = HW.2H7 min.

/', = 1440.0 min.

Globe radius: R = 1.0

*' o -so. »45'

13.O9724 13.96868' 15.71115°

• 0.017453X o.oi.'iiisx" 0.01234U

^* 2 k 2 *

TL* 7.23571 > 6.32830 5.86095 5.48047 4.23171 '. 4.47479

8O 5.35080 55.0714 5.75877 4.33417 44.6081 4.98724 3.12934 32.2078 4.07207

Ti, 2.34465 6.89443 2.92380 1.89918 5.58452 2.53209 1.37124 4.03212 2.06744

<ill 1.53690 3.18846 2.00000 1.24489 2.58266 1.73205 0.89883 1.86473 1.41421

50 1.09849 2.01389 1.55572 0.88979 1.63126 1.34730 0.64244 1.17780 1.10006

4,1 0.79741 1.49787 1.30541 0.,54591 1.21328 1.13052 0.46636 0.87601 0.92306

30 0.56135 1.23456 1.15470 0.45470 1.00000 1.00000 0.32830 0.72202 0.81650

2d 0.35952 1.09298 1.06418 0.29121 0.88532 0.92160 0.21026 0.63921 0.75249

10 0.17579 1.02179 1.01543 0.14239 0.82766 0.87939 0.10281 0.59758 0.71802

0° 0.00000 1. 0(X100 1.00000 0.00000 0.81000 0.86603 O.OOOOO 0.58484 0.70711

" Tracking limit. 80.908' = <180 - i'

See text for other symbols.

Table 39.—Conic Satellite-Tracking projections with two conformal parallels: Polar coordinates

.andsat 1. 2. 3 orbits (?', Pi, /,, same as Table 38)i

30"

Globe radius: R = 1.0

45' 45

60' 70" 80.908'

H 0.49073 0.69478 0.88475

Fx 13.9S8B8' 15.71115' 15.71115s

P» 0.42600 0.2753S 0.21642

4 i' 2 k P / t p 2 k

TL* 0.50439 X 1.56635 0.28663 • 1.26024 0.21642 1.21172 1.21172

8O 0.59934 3.72928 1.69373 0.33014 1.93850 1.32093 0.23380 1.08325 1.19121

70 0.98470 1.61528 1.41283 0.57297 1.16394 1.16394 0.40484 0.90832 1.04727

lid 1.22500 1.20228 1.20228 0.75975 1.00596 1.05572 0.55875 0.87290 0.98871

30 1.41806 1.03521 1.08260 0.93154 0.97914 1.00689 0.71504 0.93344 0.98421

45 1.50659 0.99771 1.04556 1.01774 1.00000 1.00000 0.79921 1.00000 1.00000

40 1.59281 0.98135 1.02035 1.10669 1.04212 1.00374 0.89042 1.09569 1.02K40

30 1.76478 1.00000 1.00000 1.30060 1.19708 1.04342 1.10616 1.40901 1.13008

20 1.94551 1.08181 1.01599 1.53188 1.47984 1.13263 1.39852 2.00877 1.31675

10 2.14662 1.23677 1.06965 1.82978 1.98371 1.29091 1.84527 3.28641 1.65780

o 2.38332 1.49781 1.16956 2.25035 2.94795 1.56351 2.66270 6.72124 2.35583

-10 2. (57991 1.94172 1.33539 2.92503 5.10490 2.06361 4.79153 22.2902 4.30472

-20° 3.08210 2.75586 1.60953 4.26519 11.6380 3. 15356 29.3945 898.207 27.6759

ML** -60.65 i,i = ./.) -38.52° (p = *) -21.86" (p = *)

' Trackinitljir.it. 8o.90K" = UNO - iI

Minimum latitude, at infinite radius

See text for other symlw.ls.

Table 40.—Near-Azimuthal Conic Satellite-Tracking projection: Polar coordinates

Landsat i. 2. :i orbits ti. I'x same as Table 38)

Globe radius: H = 1.0

4, . 80.908*
=■ 0.98543

F, = -90

p, = 0.1B31W

<!> p k

TL* 0. 16368 1.00000 1.00000

.8(1 0.17953 1.00076 0.99813

Til 0.35986 1.09115 1.01579

C,<l 0.57095 1.36647 1.10243

50 0.85650 1.99000 1.28641

40 1.31643 3.53452 1.65907

30 2.28682 8.83705 2.54931

20° 6.22402 58.0828 6.39449

ML** 13.70' (p = x)

" Tracking limit. 80.908' - ,18,1' . i)

*" Minimum latitude, of infinite radius

See text for other symbols.
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PSEUDOCYLINDRICAL AND MISCELLANEOUS

MAP PROJECTIONS

29. VAN DER GRINTEN PROJECTION

SUMMARY

• Neither equal-area nor conformal. Not pseudocylindrical.

• Shows entire globe enclosed in a circle.

• Central meridian and Equator are straight lines.

• All other meridians and parallels are arcs of circles.

• A curved modification of the Mercator projection, with great distortion in the

polar areas.

• Equator is true to scale.

• Used for world maps.

• Used only in the spherical form.

• Presented by van der Grinten in 1904.

HISTORY, FEATURES, AND USAGE

In a 1904 issue of a German geographical journal, Alphons J. van der Grinten

(1852-?) of Chicago presented four projections showing the entire Earth. Aside

from having a straight Equator and central meridian, three of the projections

consist of arcs of circles for meridians and parallels; the other projection has

straight-line parallels. The projections are neither conformal nor equal-area (van

der Grinten, 1904; 1905). They were patented in the United States by van der

Grinten in 1904.

The best-known Van der Grinten projection, his first (fig. 52), shows the world

in a circle and was invented in 1898. It is designed for use in the spherical form

only. There are no special features to preserve in an ellipsoidal form. It was used

by the National Geographic Society for their standard world map until 1988,

printed at various scales and with the central meridian either through America or

along the Greenwich meridian; this use has prompted others to employ the projec

tion. The U.S. Department of Agriculture adopted the projection as the base map

for economic data in the 1940's, and this led to frequent use in geography text

books (Wong, 1965, p. 117). The USGS has used one of the National Geographic

maps as a base for a four-sheet set of maps of World Subsea Mineral Resources,

1970, one at a scale of 1:60,000,000 and three at 1:39,283,200 (a scale used by the

National Geographic), and for three smaller maps in the National Atlas (USGS,

1970, p. 150-151, 332-335). All the USGS maps have a central meridian of long.

85° W., passing through the United States.

Van der Grinten emphasized that this projection blends the Mercator appear

ance with the curves of the Mollweide, an equal-area projection described later.

He included a simple graphical construction and limited formulas showing the

mathematical coordinates along the central meridian, the Equator, and the outer

(180th) meridian. The meridians are equally spaced along the Equator, but the

spacing between the parallels increases with latitude, so that the 75th parallels

are shown about halfway between the Equator and the respective poles. Because

of the polar exaggerations, most published maps using the Van der Grinten

projection do not extend farther into the polar regions than the northern shores of

Greenland and the outer rim of Antarctica.

The National Geographic Society prepared the base map graphically. General

mathematical formulas have been published in recent years and are only useful

with computers, since they are fairly complex for such a simply drawn projection

(O'Keefe and Greenberg, 1977; Snyder, 1979b).



_

Figlre52.—VanderGrintenprojection.Aprojectionre8emblingtheMercato0butnotconformal.U8edbytheUSGSfor8pecialworldmap8,modifyinga

ba8emappreparedbytheNationalGeographicSociety.Thi8illu8trationi8preparedbycomputer.
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Figure 53.—Geometric construction of the Van der Grinten projection.

GEOMETRIC CONSTRUCTION

The meridians are circular arcs equally spaced on the Equator and joined at the

poles. For parallels, referring to figure 53, semicircle CDB is drawn centered at

A. Diagonal CD is drawn. Point E is marked so that the ratio of EA to AD is the

same as the ratio of the latitude to 90°. Line FE is drawn parallel to CB, and FB

and GB are connected. At H, the intersection of GB and AD, JHL is drawn

parallel to CB. A circular arc, representing the parallel of latitude, is then drawn

through JKL.

FORMULAS FOR THE SPHERE

The general formulas published are in two forms. Both sets give identical

results, but the 1979 formulas are somewhat shorter and are given here with

some rearrangement and addition of new inverse equations. For the forward

calculations, given R, X,„ <J>, and X (giving true scale along the Equator), to find x

and y (see p. 363 for numerical examples):

x = ± ^R\A(G-P2) + \A\G-F-f-(P2 + A~)(G'--P2)y-,HP'~ + A2) (29-1)

taking the sign of (X-X0). Note that (X-X0) must fall between + 180° and -180°; if

necessary, 360° must be added or subtracted. The X axis lies along the Equator,

x increasing easterly, while the Y axis coincides with the central meridian X0.

y = ±ttRPQ-A[(A2+ 1)(PZ + A2)-Q2]I2i/(P2 + A2) (29-2)

taking the sign of 4>,

where

A = \/2 I tt/(X- X0)- (X- X0)/-rr 1 (29-3)

G = cos 6/(sin 6 + cos 6-1) (29-4)

P = G(2/sin B-1) (29-5)

6 = arcsinl24>/irl (29-6)

Q =A- + G (29-6a)

But if 4, = 0 or ±90°, or X — X0, these equations are indeterminate. In that case, if

<J> = 0,
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x = R(k-k0) (29-7)

and

y = 0

or if X = X0. or 4> = ±90°

x = 0

and

y=±-nR tan (6/2) (29-8)

taking the sign of 4>. It may be noted that absolute values (symbol 1 1) are used in

several cases. The origin is at the center (<J> = 0, X = X0).

For the inverse equations, given R, X0, x , and y, to find 4> and X: Because of the

complications involved, the equations are given in the order of use. This is closely

based upon a recent, noniterative algorithm by Rubincam (1981):

X = x/(ttR) (29 -9)

Y = ij/(txR) (29- 10)

Cl
= -lYKl+XZ+Y2)

(29- 11)

= c,-2y2+z2 (29- 12)

c3 = - 2c, + i+2r-+(r2 + y2)2 (29- 13)

d = V-/c3 + (2c2;Vc33-9ciC2/c32)/27 (29- 14)

a, = (c,-c22/3c3)/c3 (29- 15)

nt\ = 2(-ai/3)l2 (29- 16)

= (1/3) arccos (3d/a\m^ (29- 17)

= ±tt[ — mi cos (6i + tt/3)— ca/3c:i] (29- 18)

taking the sign of y.

k = ir}X2 + Y2- 1 + [1 + 2(X2- F2) + (X2 + Y2)2]1 2\/2X + X0 (29-19)

but if X = 0, equation (29-19) is indeterminate. Then

X = k0 (29-20)

The foi'mulas for scale factors are quite lengthy and are not included here.

Rectangular coordinates are given in table 41 for a map of the world with unit

radius of the outer circle, or R = l/tt. The longitude is measured from the central

meridian. Only one quadrant of the map is given, but the map is symmetrical

about both X and Y axes.
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30. SINUSOIDAL PROJECTION

SUMMARY

• Pseudocylindrical projection.

• Equal-area.

• Central meridian is a straight line; all other meridians are shown as equally

spaced sinusoidal curves.

• Parallels are equally spaced straight lines, parallel to each other. Poles are

points.

• Scale is true along central meridian and all parallels.

• Used for world maps with single central meridian or in interrupted form with

several central meridians.

• Used for maps of South America and Africa.

• Used since the mid-16th century.

HISTORY

There is an almost endless number of possible projections with horizontal straight

lines for parallels of latitude and curved lines for meridians. They are sometimes

called pseudocylindrical because of their partial similarity to cylindrical projections.

Scores of such projections have been presented, purporting various special

advantages, although several are strikingly similar to other members of the group

(Snyder, 1977). While there were rudimentary projections with straight parallels

used as early as the 2nd century B.C. by Hipparchus, the first such projection

still used for scientific mapping of the sphere is the Sinusoidal.

This projection (fig. 54), used for world maps as well as maps of continents and

other regions, especially those bordering the Equator, has been given many

names after various presumed originators, but it is most frequently called by the

name used here. Among the first to show the Sinusoidal projection was Jean

Cossin of Dieppe, who used it for a world map of 1570. In addition, it was used by

Jodocus Hondius for maps of South America and Africa in some of his editions of

Mercator's atlases of 1606-1609. This is probably the basis for one of the names

of the projection: The Mercator Equal-Area. Nicolas Sanson (1600-67) of France

used it in about 1650 for maps of continents, while John Flamsteed (1646-1719) of

England later used it for star maps. Thus, the name "Sanson-Flamsteed" has

often been applied to the Sinusoidal projection, even though they were not the

originators (Keuning, 1955, p. 24; Deetz and Adams, 1934, p. 161).

While maps of North America are no longer drawn to the Sinusoidal, South

America and Africa are still shown on this projection in recent Rand McNally

atlases.

FEATURES AND USAGE

The simplicity of construction, either graphically or mathematically, combined

with the useful features obtained, make the Sinusoidal projection not only popular

to use, but a popular object of study for interruptions, transformations, and

combination with other projections.

On the normal Sinusoidal projection, the parallels of latitude are equally spaced

straight parallel lines, and the central meridian is a straight line crossing the

parallels perpendicularly. The Equator is marked off from the central meridian

equidistantly for meridians at the same scale as the latitude markings on the

central meridian, so the Equator for a complete world map is twice as long as the

central meridian. The other parallels of latitude are also marked off for meridians

in proportion to the true distances from the central meridian. The meridians
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Table 41.—Van der Grinten projection: Rectangular coordinates

[y coordinate in parentheses under x coordinate]

-^Long.
0° 10° 20° 30° 40°

90° 0.00000 0.00000 0.00000 0.00000 0.00000

(1.00000) (1.00000) (1.00000) (1.00000) (1.00000)

80 .00000 .03491 .06982 .10473 .13963

( .60961) ( .61020) ( .61196) ( .61490) ( .61902)

70 .00000 .04289 .08581 .12878 .17184

( .47759) ( .47806) ( .47948) ( .48184) ( .48517)

60 ' .00000 .04746 .09495 .14252 .19020

( .38197) ( .38231) ( .38336) ( .38511) ( .38756)

50 .00000 .05045 .10094 .15149 .20215

( .30334) ( .30358) ( .30430) ( .30551) ( .30721)

40 .00000 .05251 .10504 .15764 .21031

( .23444) ( .23459) ( .23505) ( .23582) ( .23690)

30 .00000 .05392 .10787 .16185 .21588

( .17157) ( .17166) ( .17192) ( .17235) ( .17295)

20 .00000 .05485 .10972 .16460 .21951

( .11252) ( .11256) ( .11267) ( .11286) ( .11313)

10 .00000 .05538 .11077 .16616 .22156

( .05573) ( .05574) ( .05577) ( .05581) ( .05588)

0 .00000 .05556 .11111 .16667 .22222

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

-^Long. 10o° 110° 120° 130° 140°

Lat. -■-—

90°

80.

70.

60.

50.

40.

30.

20.

10.

0.

0.00000

(1.00000)

.34699

( .66917)

.43163

( .52588)

.47903

( .41762)

.50899

( .32792)

.52871

( .25001)

.54168

( .18026)

.54979

( .11635)

.55419

( .05668)

.55555

( .00000)

0.00000

(1.00000)

.38069

( .68174)

.47493

( .53621)

.52754

( .42525)

.56059

( .33317)

.58218

( .25333)

.59626

( .18209)

.60499

( .11716)

.60967

( .05688)

.61111

( .00000)

0.00000

(1.00000)

.41394

( .69548)

.51810

( .54756)

.57608

( .43366)

.61228

( .33894)

.63575

( .25697)

.65091

( .18411)

.66022

( .11804)

.66516

( .05710)

.66667

( .00000)

0.00000

(1.00000)

.44668

( .71035)

.56110

( .55992)

.62463

( .44282)

.66404

( .34524)

.68939

( .26094)

.70562

( .18631)

.71548

( .11901)

.72066

( .05734)

.72222

( .00000)

0.00000

(1.00000)

.47882

( .72631)

.60385

( .57328)

.67313

( .45275)

.71585

( .35207)

.74310

( .26523)

.76038

( .18869)

.77077

( .12005)

.77617

( .05760)

.77778

( .00000)
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Table 41.—Van der Grinten projection: Rectangular coordinates—Continued

Long. 50o 60o 70o 8qo 9Qo

90° . . . 0.00000 0.00000 0.00000 0.00000 0.00000

(1.00000) (1.00000) (1.00000) (1.00000) (1.00000)

80 .17450 .20932 .24403 .27859 .31293

( .62435) ( .63088) ( .63863) ( .64760) ( .65778)

70 .21498 .25821 .30152 .34488 .38827

( .48946) ( .49473) ( .50100) ( .50828) ( .51657)

60 .23800 .28594 .33403 .38225 .43059

( .39073) ( .39462) ( .39925) ( .40462) ( .41074)

50 .25293 .30385 .35492 .40614 .45750

( .30940) ( .31208) ( .31527) ( .31897) ( .32319)

40 , .26308 .31596 .36897 .42210 .47535

( .23829) ( .24000) ( .24202) ( .24436) ( .24703)

30 .26998 .32415 .37841 .43275 .48718

( .17373) ( .17468) ( .17581) ( .17711) ( .17860)

20 .27445 .32944 .38446 .43953 .49464

( .11347) ( .11389) ( .11439) ( .11497) ( .11562)

10 .27697 .33239 .38782 .44327 .49872

( .05597) ( .05607) ( .05620) ( .05634) ( .05650)

0 .27778 .33333 .38889 .44444 .50000

( .00000) ( .00000) ( .00000) ( .00000) ( .00000)

"~-~^Long.

Lat. ~\

150° 160° 170° 180°

90° 0.00000 0.00000 0.00000 0.00000

(1.00000) (1.00000) (1.00000) (1.00000)

80 .51028 .54101 .57093 .60000

( .74331) ( .76130) ( .78021) ( .80000)

70 .64631 .68843 .73013 .77139

( .58762) ( .60293) ( .61919) ( .63636)

60 .72156 .76988 .81804 .86603

( .46344) ( .47488) ( .48707) ( .50000)

50 .76768 .81951 .87132 .92308

( .35942) ( .36729) ( .37569) ( .38462)

40 .79686 .85066 .90448 .95831

( .26986) ( .27482) ( .28010) ( .28571)

30 .81518 .87003 .92490 .97980

( .19125) ( .19398) ( .19690) ( .20000)

20 .82609 .88143 .93678 .99216

( .12117) ( .12237) ( .12365) ( .12500)

10 .83168 .88721 .94274 .99827

( .05788) ( .05817) ( .05849) ( .05882)

0 .83333 .88889 .94444 1.00000

( .00000) ( .00000) ( .00000) ( .00000)

Radius of map = 1.0. Radius of sphere = 1/tr.

Origin: (x, y) 0 at (lat. long) = 0. 5' axis increases north. One quadrant given. Other quadrants of world map are

symmetrical.
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connect these markings from pole to pole. Since the spacings on the parallels are

proportional to the cosine of the latitude, and since parallels are equally spaced,

the meridians form curves which may be called cosine, sine, or sinusoidal curves;

hence, the name.

Areas are shown correctly. There is no distortion along the Equator and central

meridian, but distortion becomes pronounced near the outer meridians, especially

in the polar regions.

Because of this distortion, J. Paul Goode (1862-1932) of the University of

Chicago developed an interrupted form of the Sinusoidal in 1916 with several

meridians chosen as central meridians without distortion and a limited expanse

east and west for each section. The central meridians may be different for North

ern and Southern Hemispheres and may be selected to minimize distortion of

continents or of oceans instead. Ultimately, Goode combined the portion of the

interrupted Sinusoidal projection between about lats. 40° N. and S. with the

portions of the Mollweide or Homolographic projection (described later) not in

this zone, to produce the Homolosine projection used in Rand McNally's Goode's

Atlas (Goode, 1925).

In 1927, the Sinusoidal was shown interrupted in three symmetrical segments

in the Nordisk Varlds Atlas, Stockholm, serving as the base for the Sinusoidal

as shown in Deetz and Adams (1934, p. 161). It is this interrupted form which

served in turn as the base for a three-sheet set by the USGS in 1978 at a scale of

1:20,000,000, entitled Map of Prospective Hydrocarbon Provinces of the World.

With interruptions occurring at longs. 160° W. , 20° W., and 60° E., and the three

central meridians equidistant from these limits, the sheets show (1) North and

South America; (2) Europe, West Asia, and Africa; and (3) East Asia, Australia,

and the Pacific; respectively. The maps extend pole to pole, but no data are shown

for Antarctica. An inset of the Arctic region at the same scale is drawn to the

polar Lambert Azimuthal Equal-Area projection. A similar map is being pre

pared by the USGS showing sedimentary basins of the world.

The Sinusoidal projection is normally used in the spherical form, adequate for

the usual small-scale usage, but the ellipsoidal form has been used for topographic

mapping in Ecuador (C. J. Mugnier, pers. comm., 1985).

FORMULAS FOR THE SPHERE

The formulas for the Sinusoidal projection are perhaps the simplest of those for

any projection described in this bulletin, except for the Equidistant Cylindrical.

For the forward case, given R, Xi„ 4>, and X, to find x and y (see p. 365 for

numerical examples):

x = R(k-kt)) cos 4> (30-1)

y = R4> (30-2)

h = [1 + (X-Xo)2 sin2 <J>]12 (30-3)

k = 1.0

6' = arcsin (l/h) (30-4)

<o = 2 arctanlMiU-X0) sin <J>l (30-5)

where 6' is the angle of intersection of a given meridian and parallel (see equation

(4-14)), and h, k, and w are other distortion factors as previously used. The X

axis coincides with the Equator, with x increasing easterly, while the Y axis

follows the central meridian k0, y increasing northerly. It is necessary to adjust

(X-X,,), if it falls outside the range ± 180°, by adding or subtracting 360°. For the

interrupted form, values of x are calculated for each section with respect to its

own central meridian X0.
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In equations (30-1) through (30-5), radians must be used, or <i> and X in

degrees must be multiplied by ir/180°.

For the inverse formulas, given R, X0, x, and y, to find <J> and X:

4> = y/R (30-6)

X = X0 + x/(R cos <J>) (30-7)

but if <J> = ±tt/2, equation (30 — 7) is indeterminate, and X may be given an arbitrary

value such as X0.

FORMULAS FOR THE ELLIPSOID

The ellipsoidal form may be made by spacing parallels along the central

meridian(s) true to scale for the ellipsoid and meridians along each parallel also

true to scale. The projection remains equal-area, while the parallels are not quite

equally spaced, and the meridians are no longer perfect sinusoids. Specifically,

given a, e, X(„ <i>, and X, to find x and y (see p. 366 for numerical examples):

x = a (X-X0) cos 4>/(1-e2 sin2 <J>)180- (30-8)

y = M (30-9)

where

M = a [(1-c2/4-3e4/64-5e6/256- . . .) 4>

-(3e2/8 + 3^/32 + 45/V1024+ . . .) sin 2 <J>

+ (15e4/256 + 45e(V1024+ . . .) sin 4 <i>

-(35e6/3072+ . . .) sin 6 <J>+ . . .] (3-21)

Axes are the same as those for the spherical form above.

For the inverse formulas, given a, e, X0, x, and y, to find <i> and X:

$ = p. + (3e,/2-27ei3/32+ . . .) sin 2p. + (21ei2/16

-55e,4/32+ . . .) sin 4p. + (151e,3/96- . . .) sin 6^

+ (1097e,'/512- . . .) sin 8>x+ ... (3-26)

where

and

Then

e, = [1-(1-e^Ml+(1-e2)1-'] (3-24)

ix = M/[a( 1-c2/4-3e4/64-5e'V256- . . .)] (7-19)

M= y (30-10)

X = X0 + x (1-e2 sin2 4>)1-/(a cos <J>) (30-11)

but if <J> = ± tt/2, equation (30- 1 1) is indeterminate, and X may be given an arbitrary

value such as X0.
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31. MOLLWEIDE PROJECTION

SUMMARY

• Pseudocylindrical.

• Equal-area.

• Central meridian is a straight line; 90th meridians are circular arcs; all other

meridians are equally spaced elliptical arcs.

• Parallels are unequally spaced straight lines, parallel to each other. Poles are

points.

• Scale is true along latitudes 40°44' N. and S.

• Used for world maps with single central meridian or in interrupted form with

several central meridians.

• Inspiration for several other projections.

• Presented by Mollweide in 1805.

HISTORY AND USAGE

The second oldest pseudocylindrical projection which is still in use (after the

Sinusoidal) was presented by Carl B. Mollweide (1774-1825) of Halle, Germany,

in 1805 (Mollweide, 1805). It is an equal-area projection of the Earth within an

ellipse. It has had a profound effect on world map projections in the 20th century,

especially as an inspiration for other important projections. It lay dormant untilJ.

Babinet reintroduced it in 1857 under the name "homalographic." It has been

called Babinet's Equal-Surface or the Elliptical projection, but it is most often

called the Mollweide, Homalographic, or Homolographic.

J. Paul Goode, after interrupting the Sinusoidal projection, made similar inter

ruptions of the Mollweide in 1916 to minimize distortion of continents or oceans.

Ultimately he combined them to produce the Homolosine projection.

Other projections directly inspired by the Mollweide have been the Van der

Grinten, described earlier, and the Boggs Eumorphic, in which the y coordinates

of the Sinusoidal and Mollweide are arithmetically averaged, and the x coordi

nates are derived to maintain equality of area (Boggs, 1929). J. Fairgrieve in 1928

(Steers, 1970, p. 172) was the first of several to use the oblique aspect, and John

Bartholomew applied the name "Atlantis" to a transverse Mollweide centered on

the Atlantic Ocean and used as the frontispiece in The Times Atlas of 1958.

Allen K. Philbrick (1953) combined the Sinusoidal and Mollweide in a manner

different from the Goode Homolosine, using both normal and oblique aspects.

Less direct inspiration by the Mollweide has led to several other projections,

especially pseudocylindrical, some of which have lines for poles.

Some other projections showing the world in an ellipse, especially the Hammer

and the Briesemeister, originate from the Lambert Azimuthal Equal-Area

projection, not the Mollweide. Another projection occasionally seen is identical

with the Mollweide, except that the parallels are equally spaced, and therefore

the projection is not equal-area. It was first used in a rudimentary form in the

16th century.

FEATURES

Unlike the Sinusoidal projection, which has been satisfactorily used for conti

nental maps, the Mollweide projection (fig. 55) is normally used as a world map,

and occasionally for a very large region such as the Pacific Ocean. This is because

only two points on the Mollweide are completely free of distortion unless the

projection is interrupted. These are the points at latitudes 40°44'12" N. and S. on

the central meridian(s).
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The world is shown in an ellipse with the Equator, its major axis, twice as long

as the central meridian, its minor axis. The meridians 90° east and west of the

central meridian form a complete circle. All other meridians are elliptical arcs

which, with their opposite numbers on the other side of the central meridian,

form complete ellipses which meet at the two poles. The central meridian is the

.niajor axis of meridian ellipses less than 90° from it, and a portion of the Equator is

the minor axis. Meridians greater than 90° have the reverse arrangement for their

axes. Meridians are equally spaced along the Equator and along all other parallels.

The 90th meridians form a circle.

The parallels of latitude are straight parallel lines, but they are not equally

spaced. Their spacing may be determined from the facts that the projection is

equal-area and that the 90th meridians are circular. As a result, the regions along

the Equator are stretched 23 percent in a north-south direction relative to east-

west dimensions. This stretching decreases along the central meridian to zero at

the 40°44' latitudes, and becomes compression nearer the poles. The distortion

near the outer meridians is considerable at high latitudes, but less than that on

the Sinusoidal. The distortion along the Equator led Bromley (1965) to propose

flattening the projection in a north-south direction and expanding east-west, to

provide an Equator free of distortion, but the Equator thereby becomes 2.47

times as long as the central meridian.

Because the Mollweide projection is normally used at a small scale, there is

little justification for an ellipsoidal form.

FORMULAS FOR THE SPHERE

The forward formulas for the Mollweide require iteration, but they are other

wise relatively simple. Given R, X0. <J>, and X, to find x and y (see p. 367 for

numerical examples):

x = (812/it) R (X-X0) cos 6 (31-1)

i/ = 212Psin6 (31-2)

where

26 + sin 26 = tt sin <J> (31-3)

The X axis coincides with the Equator, x increasing easterly, and the Y axis

coincides with the central meridian, y increasing northerly. Angle 6 is not a polar

coordinate here; it is a parametric angle, geometrically the angle as seen from the

center of the map between the Equator and the position of latitude <i> on the 90th

meridian circle.

Equation (31-3) may be solved with rapid convergence (but slow at the poles)

using a Newton-Raphson iteration consisting of the following instead of (31-3):

A6' = -(6' + sin 6'-ir sin <J>)/( 1+ cos 6') (31-4)

With <J> as the first trial 6', A6' is calculated from (31-4), this value is added to

the preceding trial 6' to obtain the next trial 6', and the calculation is repeated

with (31-4) until A6' is less than a predetermined convergence value. Then, using

the final 6', 6 is calculated as follows:

6 = 672 (31-5)

Note that all these formulas are in terms of radians.

For the inverse formulas, given R, X(„ x, and y, to find 4> and X, no iteration is

required:



MAP PROJECTIONS—A WORKING MANUAL

6 = arcsin [y/(2™ R)] (31-6)

4> = arcsin [(26 + sin 26)/tt] (31-7)

X = X0 + irx/(81* R cos 6) (31 -8)

If <J> is ±90°, equation (31-8) is indeterminate, but X may be made X0. Table 42

lists the rectangular coordinates of the 90th meridian for a sphere of radius

(1/21/2), to make the maximum values equal to 1.0. The x coordinates for other

meridians are proportional, and y coordinates are constant for a given latitude.

Table 42.—Mollweide projection: Rectangular coordinates for the 90th meridian

Latitude J-

90° 0.00000 1.00000

85 .20684 0.97837

80 .32593 .94539

75 .42316 .90606

70 .50706 .86191

65 .58111 .81382

60 .64712 .76239

55 .70617 .70804

50 .75894 .65116

45 .80591 .59204

40 .84739 .53097

35 .88362 .46820

30 .91477 .40397

25 .94096 .33850

20 .96229 .27201

15 .97882 .20472

10 .99060 .13681

5 .99765 .06851

0 1.00000 .00000

Radius of sphere: W 2 = 0.707 unit. For other meridians, use same but change x proportionately. Central meridian

is zero. For meridians west of central meridian, change sign of x. For southern latitudes, change sign of y.
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32. ECKERT IV AND VI PROJECTIONS

SUMMARY

• Pseudocylindrical.

• Equal-area.

• Central meridian is a straight line; 180th meridians of Eckert IV are semi

circles; all other meridians are equally spaced elliptical arcs on Eckert IV and

sinusoidal curves on Eckert VI.

• Parallels are unequally spaced straight lines, parallel to each other. Poles are

straight lines half as long as the Equator.

• Scale is true along latitudes 40°30' N. and S. on Eckert IV and 49°16' on Eckert

VI.

• Used for world maps.

• Presented by Eckert in 1906.

HISTORY AND USAGE

In 1906 Max Eckert (1868-1938) of Kiel, Germany, presented a set of six new

projections in which all the poles are lines half as long as the Equator, and in

which all parallels of latitude are straight lines parallel to each other. The central

meridian on each is also half the length of the Equator (Eckert, 1906). Numbers 4

and 6 are of most significance and are discussed here in detail.

Of the six projections, nos. 2, 4, and 6 are equal-area, and nos. 1, 3, and 5 are

not equal-area but have equally spaced parallels. For nos. 1 and 2, the meridians

are straight lines broken at the Equator, and those projections are therefore little

more than novelties with graticules composed entirely of straight lines, but with

unnecessary distortion especially at the Equator. The meridians on nos. 3 and 4

are elliptical arcs, while on 5 and 6 they are sinusoidal curves, with the exception

of the straight central meridians, and (on 3 and 4) semicircular outer meridians.

No. 3, with equidistant parallels and elliptical arcs has occasionally been identi

fied as the same as the Ortelius projection, named for the famous cartographer

Abraham Ortelius who used a somewhat similar projection in 1570 for his world

map. The border, the central meridian, and the parallels of the two projections

are shown almost identically, and the meridians on each are equally spaced along

the Equator. The shapes of most meridians, however, are different. On the

Ortelius, they are circular arcs, semicircles for meridians at or more than 90° from

the central meridian, and circular arcs intersecting the central meridian at the

poles within 90° of the central meridian.

The most commonly used of Eckert's six projections have been his nos. 4 and 6,

which are more often designated with Roman numerals IV and VI, respectively.

In the United States, Eckert IV (fig. 56) has been used in several atlases to show

climate and other themes. It has also been used as an inset on other maps, such as

wall maps of the world by the National Geographic Society. It ranked third as an

equal-area world map projection used in U.S. textbooks between 1940 and 1960,

after the Goode Homolosine and Sinusoidal (Wong, 1965, p. 101). The Eckert VI

(fig. 57) is much less used in the United States, although it has occasionally

appeared in textbooks and atlases. It has been more popular in the Soviet Union,

having been used for several world distribution maps in the 1937 Atlas Mira

(World Atlas). An almost identical equal-area projection was presented by

Karlheinz Wagner in 1932 and independently by V. V. Kavrayskiy in 1936; theirs

does not require the iteration in computations which is required by Eckert VI

(Maling, 1960, p. 297; Snyder, 1977, p. 62).

There have been numerous other pseudocylindrical projections with lines for

poles, and Eckert's were not the first, but they are the most popular. Some have
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been obtained by averaging a cylindrical projection with the Sinusoidal or

Mollweide projection, and others are derived by stipulating that the poles be lines

of some other length in proportion to the length of the Equator. Instead of the full

sinusoid or full semiellipse, a portion of these curves or of some other mathemati

cal curve has been used for the meridians (Snyder, 1977).

FEATURES

The Eckert IV projection is bounded by two semicircles representing the 180th

meridians and two straight lines connecting the ends of the semicircles. These

straight lines represent the two poles, which are half the length of the Equator.

Meridians are equally spaced semiellipses ranging in eccentricity from zero for

the outer circular meridians to 1 for the straight central meridians. The parallels

are straight lines parallel to the Equator and spaced to provide correct area

within the border. They are therefore unequally spaced and closer together near

the poles. There is a north-south stretching of shape at the Equator amounting to

40 percent relative to east-west dimensions. This stretching decreases along the

central meridian to zero at latitudes 40°30' N. and S. and becomes flattening

beyond these parallels. The scale is correct only along these two parallels, and the

only points free of distortion are at the intersection of these two points with the

central meridian. Nearer the poles, the geographical features of the map are

flattened in a north-south direction.

The Eckert VI projection of the world is bounded by two sinusoidal curves

which have the same shape as the 90th meridians of the Sinusoidal projection.

Like the border of the Eckert IV, these curved meridians are connected with two

straight lines connecting the ends of the curves. These straight lines, half the

length of the Equator, are the poles. The other meridians are equally spaced

sinusoids, except for the straight central meridian, and the other parallels are

straight and parallel to each other. To preserve area, the parallels must be

unequally spaced, farther apart at the Equator than at the poles. As a result,

there is a 29 percent north-south stretch at the Equator, relative to east-west

dimensions. Other general comments concerning distortion of the Eckert IV apply

to Eckert VI, but the latitudes of true scale are 49°16' N. and S.

These projections are for world maps, not regional maps, and there is no need

for the ellipsoidal forms.

FORMULAS FOR THE SPHERE

The forward formulas for both Eckert IV and Eckert VI require iteration.

Given R, X0, <i>, and X, to find x and y (see p. 368 for numerical examples):

Eckert IV:

x = \2/[ir(4 + ir)]1-/2(X-X0)(1 + cose) (32-1)

= 0.4222382 R (X-X0) U+cos 6) (32-1a)

y = 2[ir/(4 + tt)]12 sin 6 (32-2)

= 1.3265004 R sin 6 (32 -2a)

where

6 + sin 6 cos 6 + 2 sin 0 = (2 + tt/2) sin 6 (32-3)

The X axis coincides with the Equator, .*80 increasing easterly, and the Y axis

coincides with the central meridian, y increasing northerly. Angle B is a paramet

ric angle, not a polar coordinate. Equation (32-3) may be solved with rapid

convergence (but slow at the poles) using a Newton-Raphson iteration consisting

of the following instead of (32-3):
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A6 = - [6 + sin 6 cos 6 + 2 sin 6 - (2 + tt/2) sin <J>]/

[2 cos 6 (1 + cos 6)] (32-4)

With (<J>/2) as the first trial 6, A6 is calculated from (32-4), this value is added to

the preceding 6 to obtain the next trial 6, and the calculation is repeated with

(32—4) until A6 is less than a predetermined convergence value. Note that all

these formulas are in terms of radians.

Eckert VI:

x =R (X-X0) (1 + cos e)/(2 + ir)1'-' (32-5)

y =2#e/(2 + ir)12 (32-6)

where

6 + sin e = (1+ir/2) sin <J> (32-7)

Axes are as described above for Eckert IV; 6 is parametric, but not the same as

6 for Eckert IV. Equation (32—7) may be replaced with the following Newton-

Raphson iteration, treated in the same manner as equation (32—4) for Eckert IV,

but with 4> as the first trial 6:

A6 = - [6 + sin 6 - (1 + tt/2) sin <J>]/(1 + cos 6) (32-8)

For the inverse formulas, given R, X0, x, and y, to find <J> and X, no iteration is

required (see p. 368 for numerical examples):

Eckert IV:

6 = arcsin [y (4 + tr)1 V(2tt*W)] (32-9)

= arcsin [ y/{ 1 . 3265004# ) ] (32- 9a)

4> = arcsin [(6 + sin 6 cos 6 + 2 sin 6)/(2 + tt/2)] (32- 10)

X =X0 + [ir(4 + ir)]1-x/[2/2(1 + cos 6)] (32-11)

= X0 + x/l0.4222382# (1 + Cos 6)] (32-11a)

Eckert VI:

6 =(2 + ir)1V(2i2) (32-12)

<J> = arcsin [(6 + sin 6)/(1 + ir/2)] (32-13)

X =X0 + (2 + tt)12a7[/2(1+cos 6)] (32-14)

Table 43 lists the rectangular coordinates of the 90th meridian for a sphere of

radius [(4 + ir)"2/(2'ir1/2)] for Eckert IV and radius [(2 + tt)1 -/tt1 -] for Eckert VI, to

make maximum values equal to 1.0. The x coordinates for other meridians are

proportional, and y coordinates are constant for a given latitude.



MAP PROJECTIONS—A WORKING MANUAL

Table 43. — Eckert TV and VI projections: Rectangular

coordinates for 90th meridian

Eckert IV Eckert VI

Latitude V .l. y

90° 0.50000 1.00000 0.50000 1.00000

85 .55613 0.99368 .50487 0.99380

SO .60820 .97630 .51916 .97560

75 .65656 .94971 .54198 .94648

70 .70141 .91528 .57205 .90794

65 .74291 .87406 .60782 .86164

60 .78117 .82691 .64767 .80913

55 .81625 .77455 .69004 .75180

50 .84822 .71762 .73344 .69075

45 .87709 .65666 .77655 .62689

40 .90291 .59217 .81817 .56090

35 .92567 .52462 .85724 .49332

30 .94539 .45443 .89288 .42454

25 .96208 .38202 .92430 .35488

20 .97573 .30779 .95087 .28457

15 .98635 .23210 .97207 .21379

10 .99393 .15533 .98749 .14269

5 .99848 .07784 .99686 .07140

0 1.00000 .00000 1.00000 .00000

Radius of sphere: (4 + ir)12 (2ir1'2) = 0.75386 unit for Eckert IV.

(2 + tt)1 2/w = 0.72177 unit for Eckert VI.

For other meridians, use same y. but change j* proportionately. Central meridian is zero. For meridians west of

central meridian, change sign of x. For southern latitudes, change sign of y.
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APPENDIXES

APPENDIX A

NUMERICAL EXAMPLES

The numerical examples which follow should aid in the use of the many formu

las in this study of map projections. Single examples are given for equations for

forward and inverse functions of the projections, both spherical and ellipsoidal,

when both are given. They are given in the order the projections are given. The

order of equations used is based on the order of calculation, even though the

equations may be originally listed in a somewhat different order. In some cases,

the last digit may vary from check calculations, due to rounding off, or the lack of

it.

AUXILIARY LATITUDES (SEE P. 15-18)

For all examples under this heading, the Clarke 1866 ellipsoid is used: a is not

needed here, e2 = 0.00676866, or e = 0.0822719. Auxiliary latitudes will be calculated

for geodetic latitude 4> = 40°:

Conformal latitude, using closed equation (3-1):

x = 2 arctan |tan (45° + 4072) [(1-0.0822719 sin 40°)/(1 +0.0822719

sin 40°)]0OH22719'2|-90°

= 2 arctan !2.1445069 [0. 8995456]" wu:,60|- 90°

= 2 arctan (2.1351882)-90°

= 2 x 64.9042961°-90°

= 39.8085922° = 39°48'30.9"

Using series equation (3-2), obtaining x first in radians, and omitting terms

with e* for simplicity:

x = 40°xit/180°-(0.00676866/2 + 5x0.006768662/24 -l-3x0.006768663/

32) x sin (2 x 40°) + (5 x 0. 006768662/48 + 7 x 0. 00676866^/80) x sin

(4x40°)-(13x0.00676866;V480) sin (6x40°)

= 0. 69813 17 - (0. 0033939) x 0. 9848078 + (0. 0000048) x 0. 342020 1

- ( . 0000000) x ( - 0. 8660254 )

= 0.6947910 radian

= 0.6947910 x 1807ir = 39.8085923°

For inverse calculations, using closed equation (3-4) with iteration and given

x = 39.8085922°, find <J>:

First trial:

<i> = 2 arctan |tan (45° + 39.808592272) [(1+0.0822719 sin 39.8085922°)/

(1-0.0822719 sin 39. 8085922°) I00822719/2|- 90°

= 2 arctan |2.1351882 [1.1112023]0O4U360|-90°

= 129.9992366°-90°

= 39.9992366°
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Second trial:

<J> = 2 arctan 12.1351882 [(1+0.0822719 sin 39.9992366°)/(1 -0.0822719

sin 39.9992366°)]°041I:,60|-90°

= 2 arctan (2. 1445068) -90°

= 39.9999970°

The third trial gives <J> = 40.0000000°, also given by the fourth trial.

Using series equation (3-5):

<J> =39.8085922° xtt/180° + (0.00676866/2 + 5 x 0.006768662/24

+ 0.00676866:V12) sin (2 x 39.8085922°) + (7 x0.006768662/48 + 29

x0.00676866:,/240) sin (4x39.8085922°) + (7 x 0.006768663/120)

sin (6x39.8085922°)

= 0.6947910 + (0. 0033939) x 0.9836256 + (0.0000067) x 0.3545461

+ (0. 0000000) x ( - 0.8558300)

= 0.6981317 radian

= 0.6981317x1807tt = 40.0000000°

Isometric latitude, using equation (3-7):

i)j = In |tan (45° + 4072) [(1-0.0822719 sin 40°)/(1 +0.0822719

sin 40°)]° '**>m\

= In (2.1351882)

= 0.7585548

Using equation (3-8) with the value of x resulting from the above examples:

i]i = In tan (45° + 39.808592372)

= In tan 64.9042962°

= 0.7585548

For inverse calculations, using equation (3-9) with i\> = 0. 7585548:

x = 2 arctan e0 V^H-90o

= 2 arctan (2.1351882)-90°

= 39.8085922°

From this value of x. <i> may be found from (3-4) or (3-5) as shown above.

Using iterative equation (3-10), with 6 = 0.7585548, to find <J>:

First trial:

<J> = 2 arctan e0 75855w-90°

= 39.8085922°, as just above.

Second trial:

4> = 2 arctan |e0-7M554« [(1+0.0822719 sin 39.8085922°)/(1 -0.0822719

sin 39.8085922°)]"tw'--7192|-90°

= 2 arctan (2.1351882x 1.0043469)-90°

= 39.9992365°

Third trial:

4>=2 arctan le073^ [(1 + 0.0822719 sin 39.9992365°)/(1 -0.0822719

sin 39.9992365°)]" W--7I!,- -90°

= 39.9999970°
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Fourth trial, substituting 39.9999970° in place of 39.9992365°:

<J> = 40.0000000°, also given by fifth trial.

Authalic latitude, using equations (3-11) and (3-12):

q = (1 -0. 00676866) |sin 407( 1 - 0. 00676866 sin2 40°) -

[1/(2x0.0822719)] In [(1-0.0822719 sin 40°)/(1 + 0.0822719 sin

40°)]|

= 0.9932313 (0.6445903- 6.0774117 In 0.8995456)

= 1.2792602

qp = (1-0.00676866) !sin 907(1-0.00676866 sin2 90°)-[1/

(2x0.0822719)] In [(1-0.0822719 sin 90°)/(1 +0.0822719 sin 90°)]|

= 1.9954814

p = arcsin (1.2792602/1.9954814)

= arcsin 0.6410785

= 39.8722878° = 39°52'20.2"

Determining p from series equation (3-14) involves the same pattern as the

example for equation (3-5) given above.

For inverse calculations, using equation (3-17) with iterative equation (3-16),

given p = 39.8722878°, and gp= 1.9954814 as determined above:

q = 1.9954814 sin 39.8722878°

= 1.2792602

First trial:

<J> = arcsin (1.2792602/2)

= 39.762435°

Second trial:

4> = 39. 7642435° + (1807ir) l[(1-0.00676866 sin2 39.7642435°)2/(2 cos

39.7642435°)] [1.2792602/(1 -0.00676866) -sin 39.76424357

(1-0.00676866 sin2 39.7642435°)

+ [1/(2x0.0822719)] In [(1-0.0822719 sin 39.7642435°)/

(1 + 0.0822719 sin 39.7642435°)]]

= 39.9996014°

Third trial, substituting 39.9996014° in place of 39.7642435°,

<J> =39.9999992°

Fourth trial gives the same result.

Finding 4> from p by series equation (3-18) involves the same pattern as the

example for equation (3-5) given above.

Rectifying latitude, using equations (3-20) and (3-21):

M = a [( 1 - 0. 00676866/4 -3 x 0. 006768662/64 - 5 x 0. 006768667256) x 40°

x it/180°- (3 x 0.00676866/8 + 3 x0.006768662/32 + 45 x 0.006768667

1024) sin (2x40°) + (15x0.006768662/256 + 45x0.0067686671024)

sin (4x40°)-(35x0.0067686673072) sin (6x40°)]

= a[0.9983057 x 0.6981317-0.0025426 sin 80° + 0.0000027 sin 160°

-0.0000000 sin 240°]

= 0.6944458a

Mp = 1. 5681349a, using 90° in place of 40° in the above example.

H = 90°x0.6944458a/1. 5681349a

= 39.8563451° = 39°51'22.8"
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Calculation of ljl from series (3-23), and the inverse <J> from (3-26), is similar to

the example for equation (3-2) except that eA is used rather than e. From equa

tion (3-24),

e, = [1-(1 -0.00676866)1 2]/[1 + (1-0.00676866)1-]

= 0.001697916

Geocentric latitude, using equation (3-28),

4>g = arctan [(1-0.00676866) tan 40°]

= 39.8085032° = 39°48'30.6"

Reduced latitude, using equation (3-31),

,q = arctan [(1-0.00676866)1 2 tan 40°]

= 39.9042229° = 39°54' 15.2"

Series examples for <i>g and n follow the pattern of (3-2) and (3-23).

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID (SEE P. 24-25 )

Radius of curvature and length of degrees, using the Clarke 1866 ellipsoid at

lat. 40° N.:

From equation (4-18),

R' = 6378206.4 (1 -0.00676866)/(1 -0.00676866 sin" 40°):!2

= 6,361,703.0 m

From equation (4-19), using the figure just calculated,

= 6361703.0 x ir/180° = 111,032.7 m, the length of 1° of latitude at lat. 40° N.

From equation (4-20),

N = 6378206.4/(1-0.00676866 sin2 40°)1 -

= 6,387,143.9 m

From equation (4-21),

Lx = [6378206.4 cos 407(1-0.00676866 sin2 40°)1 -'] tt/180°

= 85,396.1 m, the length of 1° of longitude at lat. 40° N.

MERCATOR PROJECTION (SPHERE)-FORVVARD EQUATIONS (SEE P. 41. 44 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 180° W. long.

Point: <i> = 35° N. lat.

X = 75° W. long.

Find: x, y, k

Using equations (7-1) , (7-2), and (7-3),

x = ttx1.0x[(-75°)-(-180°)]/180°= 1.8325957 units

y = 1.0xln tan (45° + 3572)= 1.0 x In tan (62.5°)

= In 1.9209821 =0.6528366 unit

h =k = sec 35° = 1/cos 35° = 1/0.8191520 = 1.2207746
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MERCATOR PROJECTION (SPHERE)- INVERSE EQUATIONS (SEE P. 44)

Inversing forward example:

Given: R, X0 for forward example

x = 1.8325957 units

y = 0.6528366 unit

Find: <J>, X

Using equations (7-4) and (7-5),

4> = 90°-2 arctan (e"0-652*3661 ")

= 90°-2 arctan (0. 5205670) = 90°-2x 27.5° = 35°

= 35° N. lat., since the sign is " + "

X = (1.8325957/1.0) x1807t: + (- 180°)

= 105°- 180° = -75° = 75° W. long., since the sign is "-"

The scale factor may then be determined as in equation (7-3) using the newl;

calculated <J>.

MERCATOR PROJECTION (ELL I PSOID)- FORWARD EQUATIONS (SEE P. 44 )

Given: Clarke 1866 ellipsoid: a = 6378206.4 m

e2 = 0.00676866

or e =0.0822719

Central meridian: X0 = 180° W. long.

Point: <J> = 35° N. lat.

X = 75° W. long.

Find: x, y, k

Using equations (7-6), (7-7), and (7-8),

(-75°)- (-180°)] x ir/180° = 11688673.7 m

"tan (45° + mW1 ~ 0-0822719 sin 35° \—"-I

\1 + 0.0822719 sin 35° / J

x = 6378206.4 x

y = 6378206.4 In

I

= 6378206.4 In [1.9209821 x 0.9961223]

= 6378206.4 In 1.9135331 = 4,139,145.6 m

k = (1-0.00676866 sin2 35°)12/cos 35°

= 1.2194146

MERCATOR PROJECTION (ELLIPSOID)- INVERSE EQUATIONS (SEE P. 44-45 )

Inversing forward example:

Given: a, e, k0 for forward example

x = 11688673.7 m

y = 4139145.6 m

Find: 4>, X

Using equation (7-10),

f = e-4139145.6^378206.4 = Q. 5225935
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From equation (7-11), the first trial <i> = 90° - 2 arctan 0.5225935 = 34.8174484°.

Using this value on the right side of equation (7-9),

<J> = 90° -2 arctan |0.5225935[( 1-0.0822719 sin 34.8174484°)/

(1+0.0822719 sin 34.8174484°)]0 08227m|

= 34.9991687°

Replacing 34.8174484° with 34.9991687° for the second trial, recalculation using

(7-9) gives <J> = 34.9999969°. The third trial gives <J> = 35.0000006°, which does not

change (to seven places) with recalculation. If it were not for rounding-off errors

in the values of x and y, <J> would be 35° N. lat.

For X, using equation (7-12),

X =(11688673.7/6378206.4) x 1807ir + (-180°)

= -75.0000001° = 75.0000001° W. long.

Using equations (7-13) and (3-5) instead, to find <J>,

x = 90° -2 arctan 0.5225935

= 90° -55.1825516°

= 34.8174484°

using t as calculated above from (7-10). Using (3-5), \ is inserted as in the

example given above for inverse auxiliary latitude x:

<J> = 35.0000006°

TRANSVERSE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEE P. 58)

Given: Radius of sphere: R = 1.0 unit

Origin: <J>0 = 0

X0 = 75° W. long.

Central scale factor: A:0 =1.0

Point: <J> = 40°30' N. lat.

X = 73°30' W. long.

Find: x, y, k

Using equations (8-5), (8-1), (8-3), and (8-4) in order

B = cos 40.5° sin [(-73.5°)-(-75°)]

= cos 40.5° sin 1.5° = 0.0199051

x = '/2 x 1.0 x 1.0 In [(1 + 0.0199051)/(1 -0.0199051)]

= 0.0199077 unit

pl.0x 1.0 !arctan [tan 40.57cos 1.5°]-0|

= 40.5096980° W180° = 0.7070276 unit

k = 1.0/(1 -0.01990512)1'2 = 1.0001982

TRANSVERSE MERCATOR (SPHERE) -INVERSE EQUATIONS (SEE P 60 1

Inversing forward example:

Given: R, <J>0, X0, /c0 for forward example
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x = 0.0199077 unit

y = 0.7070276 unit

Find: 4>, X

Using equation (8-8),

D = 0.7070276/(1.0x 1.0) + 0 = 0.7070276 radian

For the hyperbolic functions of (x/Rk0), the relationships

sinh x = (e*-e~x)/2

and

cosh x = (e* + e-x)/2

are recalled if the function is not directly available on a given computer or calcu

lator. In this case,

From equation (8-6), with D in radians, not degrees,

<J> = arcsin (sin 0.7070276/1.0001982) = arcsin (0.6495767/1.0001982)

= 40.4999995° N. lat.

From equation (8-7),

X = -75° + arctan [0.0199090/ cos 0.7070276]

= -75° + arctan 0.0261859 = -75° + 1.4999961° = -73.5000039°

= 73.5000039° W. long.

If more decimals were supplied with the x and y calculated from the forward

equations, the <J> and X here would agree more exactly with the original values.

TRANSVERSE MERCATOR (ELLIPSOID)-FORWARD EQUATIONS (SEE P. 60-61, 63)

Given: Clarke 1866 ellipsoid: a = 6378206.4 m

e2 =0.00676866

Origin (UTM Zone 18): <J>0 = 0

k0 = 75° W. long.

Central scale factor: A:0 = 0.9996

Point <J> = 40° 30' N. lat.

X = 73° 30' W. long.

Find: x, y, k

sinh (x/Rk0)

7

cosh (x/Rk0)

Using equations (8-12) through (8-15) in order,
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e'2 = 0.00676866/(1-0.00676866) = 0.0068148

N =6378206.4/(1-0.00676866 sin2 40.5°)1/2 = 6387330.5 m

T = tan2 40.5° = 0.7294538

C = 0.0068148 cos2 40.5° = 0.0039404

A = (cos 40.5°) x [(-73.5°) - (-75°)] W180° = 0.0199074

Instead of equation (3-21), we may use (3-22) for the Clarke 1866:

M = 111132.0894 x (40.5°) - 16216.94 sin (2x40.5°) + 17.21 sin (4x40.5°)

- 0.02 sin (6x40.5°)

= 4,484,837.67 m

M0 = 111132.0894 x 0° - 16216.94 sin (2x0°) + 17.21 sin (4x0°) - 0.02 sin (6x0°)

= 0.00 m

Equations (8-9) and (8-10) may now be used:

x =0.9996 x 6387330.5 x [0.0199074 + (1-0.7294538 + 0.0039404)

x 0.01990743/6 + (5- 18 x 0.7294538 + 0.72945382 + 72 x 0.0039404

- 58 x 0.0068148) x 0.01990745/120]

= 127,106.5 m

y =0.9996 x |4484837.7 -0 + 6387330.5 x 0.8540807x[0.01990742/2

+ (5-0.7294538 + 9x0.0039404 + 4 x0.00394042) x 0.01990744/24

+ (61 -58 x 0. 7294538 + 0. 72945382 + 600 x 0. 0039404-330

x 0.0068148) x 0.01990746/720])

= 4,484,124.4 m

These values agree exactly with the UTM tabular values, except that 500,000.0

m must be added to x for "false eastings." To calculate k, using equation (8-11),

k = 0.9996 x [1 + (1+0.0039404)x0.01990742/2 + (5- 4 x 0.7294538 + 42

x 0.0039404 + 13 x 0.00394042 - 28 x 0.0068148) x 0.01990744/24

+ (61 -148 x 0. 7294538+ 16 x0.72945382) x 0.01990746/720]

= 0.9997989

Using equation (8-16) instead,

k = 0.9996 x [1 + (1 + 0.0068148 cos2 40.5°) x 127106.52/

(2 x 0.99962 x 6387330.52)]

= 0.9997989

TRANSVERSE MERCATOR (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 63-64 )

Inversing forward example:

Given: Clarke 1866 ellipsoid: a = 6378206.4 m

e2 = 0.00676866

Origin (UTM Zone 18): <J>0 = 0

K = 75°W. long.

Central scale factor: k0 = 0.9996

Point: X = 127106.5 m (false eastings omitted)

y = 4484124.4 m

Find: X

Calculating AT0 from equation (3-22),
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M0 = 111132.089x0°-16216.9 sin (2x0°) + 17.2 sin (4x0°) - 0.02 sin

(6x0°)

= 0

From equations (8-12), (8- 20), (3- 24), and (7-19) in order,

e,2 = 0.00676866/(1-0.00676866) = 0.0068148

M = 0 + 4484124.4/0.9996 = 4485918.8 m

e, = [1-(1-0.00676866))'411 + (1-0.00676866)'a]

= 0.001697916

jjl = 4485918.8/[6378206.4x(1-0.00676866/4-3x0.006768662/64

-5x0.00676866;V256)]

= 0.7045135 radian

From equation (3-26), using p. in radians, omitting the last term,

4>i =0.7045135 + (3x0.001697916/2-27x0.0016979163/32) sin

(2x0.7045135) + (21 x0.0016979162/16-55x0.0016979164/32)

sin (4 x 0.7045135) + (151x0.001697916796) sin (6x0.7045135)

= 0.7070283 radian

= 0. 7070283 x1807tt

= 40.5097362°

Now equations (8-21) through (8-25) may be used:

C, = 0.0068148 cos2 40.5097362° = 0.0039393

71, = tan2 40.5097362° = 0.7299560

N\ = 6378206.4/(1-0.00676866 sin2 40.5097362°)' -'

= 6387334.2 m

= 6378206.4 x(1-0.00676866)/(1 -0.00676866 sin2 40.5097362°)"

= 6,362,271.4 m

D = 127106.5/(6387334.2x0.9996) = 0.0199077

Returning to equation (8-17),

* = 40.5097362°-(6387334.2x0.8543746/6362271.4)x[0.01990772/2

-(5 + 3x0. 7299560 + 10 x 0. 0039393-4 x 0. 00393932- 9

x 0.0068148) x0.01990774/24 + (61 + 90x0.7299560 + 298

x 0. 0039393 + 45 x 0. 72995602- 252 x 0. 0068148-3

x 0. 00393932) x 0.01990776/720] x 1807tt

= 40.5000000° = 40°30' N. lat.

From equation (8-18),

X =-75° + ![0.0199077-(1+2 x 0.7299560 + 0.0039393)x0.01990773/6

+ (5 - 2 x 0. 0039393 + 28 x 0. 7299560-3 x 0.00393932 + 8

x 0.0068148 + 24 x 0.72995602) x 0.01990775/120]/cos

40.5097362°i x 1807tt

= -75° + 1.5000000° = -73.5° = 73°30' W. long.
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OBLIQUE MERCATOR (SPHERE)- FORWARD EQUATIONS (SEE P. 69-70)

Given: Radius of sphere: R = 1.0 unit

Central scale factor: k0 = 1.0

Central line through: 4>i = 45° N. lat.

<J>2 = 0° lat.

X, = 0° long.

X2 = 90° W. long.

Point: 4> = 30° S. lat.

X = 120° E. long.

Find: x, y, k

Using equation (9-1),

kp = arctan ! [cos 45° sin 0° cos 0° - sin 45° cos 0° cos (-90°)]/

[sin 45° cos 0° sin (-90°) - cos 45° sin 0° sin 0°]

= arctan |[0-0]/[-0.7071068-0]; = 0°

Since the denominator is negative, add or subtract 180° (the numerator has neither

sign, but it doesn't matter). Thus,

kp = 0° + 180° = 180°

From equation (9-2),

4>p = arctan [-cos (180°-0°)/tan 45°]

= arctan [ + 1/0.7071068] = 45°

The other pole is then at <i> = -45°, X = 0°. From equation (9 -6a),

X0 = 180° + 90° = 270°, equivalent to 270° -360° or -90°.

From equation (9-6),

A = sin 45° sin (-30°) - cos 45° cos (-30°) sin [120° - (-90°)]

= 0. 7071068 x ( - 0. 5) - 0. 7071068 x 0. 8660254 x ( - 0. 5)

= -0.0473672

From equation (9-3),

x = - 1.0x1.0 arctan [tan (-30°) cos 457cos (120° + 90°) + sin 45° tan (120° + 90°)]

= 0.7214592

Since cos (120° + 90°) is negative, subtract it, or x = -2.4201335 units

From equation (9-4),

y = (1/2) x 1.0x1.0 In [(1-0.0473672)/(1 + 0.0473672)]

= -0.0474026 unit

From equation (9-5),

k = 1.0/[1-(-0.0473672)2])* = 1.0011237

If the parameters are given in terms of a central point (for equations (9-7)

and (9-8)), we shall assume certain artificial parameters (calculated with different

formulas) which give the same pole as above:
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Given: Radius of sphere: R =1.0 unit

Central scale factor: k0 =1.0

Azimuth of central line: p = 48.8062990° east of north

Center: <J>c = 20° N. lat.

kc = 68.6557771°W. long.

Using equations (9-7) and (9-8),

<J>p = arcsin (cos 20° sin 48.8062990°)

= 45.0°N. lat.

kp = arctan [-cos 48.80629907(-sin 20° sin 48.8062990°)]

-68.6557771°

= 0°

Since the denominator of the argument of arctan is negative, add -180° to kp,

using "-" since the numerator is "-":

kp = 180°W. long.

OBLIQUE MERCATOR (SPHERE)-INVERSE EQUATIONS (SEE P. 70)

Inversing forward example:

Given: Radius of sphere: R = 1.0 unit

Central scale factor: k0 = 1.0

Central line through: 4>i = 45° N. lat.

4>2 = 0° lat.

= 0° long.

X2 = 90° W. long.

Point: x = -2.4201335 units

y
= -0.0474026 unit

Find: <J>, X

First, <J>p and kp are determined, exactly as for the forward example, so that X0

again is -90°, and <J>p = 45°. Determining hyperbolic functions, if not readily

available,

y/Rk0 =-0.0747026/(1.0x1.0) = -0.0474026

e-o.o474026 = 0.9537034

sinh (y/Rk0) = (0.9537034-1/0.9537034)/2

= -0.0474203

cosh (y/Rk0) = (0.9537034 + 1/0.9537034)/2

= 1.0011237

tanh (y/Rk0) = (0.9537034 - 1/0. 9537034)/(0. 9537034 + 1/0.9537034)

= -0.0473671

From equation (9-9),

4> = arcsin |sin 45° x (-0.0473671) + cos 45° sin

[(-2.4201335/(1.0x 1.0))x1807it]/1. 0011237

= arcsin (-0.5000000)

= -30° = 30°S. lat.
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From equation (9-10),

X = -90° + arctan |[sin 45° sin [ -2.4201335 x 1807(irx1. 0x1.0)]

- cos 45° x (-0. 0474203) ]/cos[ -2.4201335x1807

(irx 1.0x1.0)])

= -90° + 30.0000041°

= - 59.9999959°

but the main denominator is -0.7508428, which is negative, while the numerator

is also negative. Therefore, add (-180°) to X, so X = -59.9999959° - 180° =

-239.9999959° = 240° W. long. = 120° E. long.

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- FORWARD EQUATIONS

(SEE P. 71-74 )

For alternate A:

Given: Clarke 1866 ellipsoid: a

e2

or e

Central scale factor: k<,

Center: 4>0

Central line through: <J>i

4>2

x2

False coordinates: x0

y0

Point: <J>

X

Find: x, y, k

Following equations (9-11) through (9-24) in order:

B = [1 + 0.00676866 cos4 407(1-0.00676866)]1-

= 1.0011727

A = 6378206.4x1.0011727 x 0.9996x(1-0.00676866)12/

(1-0.00676866 sin2 40°)

= 6,379,333.2 m

t0 = tan (45°-4072)/[(1-0.0822719 sin 40°)/

(1 + 0.0822719 sin 40°)]° 0822719*

= 0.4683428

U = tan (45°-47.572)/[(1 -0.0822719 sin 47.5°)/

(1+0.0822719 sin 47.5°)]° 0X22719 2

= 0.3908266

t, = tan (45°-25.772)/[(1 -0.0822719 sin 25.7°)/

(1 + 0.0822719 sin 25. 7°)]°"8227192

= 0.6303639

D = 1.0011727 x (1-0.00676866)12/[cos 40° x

(1-0.00676866 sin2 40°)1 2]

= 1.3043327

E = [1.3043327 + (1.30433272-1)12]x0.4683428) 0011727

= 1.0021857

using the " + " sign, since <J>o is north or positive.

= 6378206.4 m

= 0.00676866

= 0.0822719

= 0.9996

= 40° N. lat.

= 47°30' N. lat.

= 122° 18' W. long. (Seattle, Wash.)

= 25°42' N. lat.

= 80°12' W. long. (Miami, Fla.)

= 4,000,000.0 m

= 500,000.0 m

= 40°48' N. lat.

= 74W W. long. (New York City)
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H = 0.39082661 0011727 = 0.3903963

L = 0.63036391 0011727 = 0.6300229

F = 1.0021857/0.3903963 = 2.5670986

G = (2.5670986- 1/2. 5670986)/2 = 1.0887769

J = (1.00218572-0.6300229 x 0.3903963)/(1.00218572 + 0.6300229

x0.3903963) = 0.6065716

P = (0. 6300229- 0. 3903963)/(0. 6300229 + 0. 3903963)

= 0.2348315

X0 = V2[(-122.3°) + (-80.2°)] - arctan |0.6065716 tan [1.0011727

x (-122.3° + 80.2°)/2]/0.2348315|/1.0011727

= - 101.25° - arctan (-0.9953887)/1. 001 1727

= - 56.4349628°

7o = arctan |sin [1.0011727x(- 122.3° + 56.4349628°)]/1.0887769|

= -39.9858829°

ac = arcsin [1.3043327 sin (-39.9858829°)]

= -56.9466070°

These are constants for the map. For the given 4> and k, following equations

(9-25) through (9-34) in order:

t = tan (45°-40.872)/[(1 -0.0822719 sin 40.8°)/(1 + 0.0822719 sin

40 8°)]° 0822719'2

= 0.4598671

Q = 1.0021857/0.45986711 0011727 = 2.1812805

S = (2. 1812805- 1/2. 1812805)/2 = 0.8614171

T = (2.1812805 + 1/2. 1812805)/2 = 1.3198634

V = sin [1.0011727x (-74° + 56.4349628°)]

= -0.3021309

U = [0.3021309 cos (-39.9858829°) + 0.8614171 sin (-39.9858829°)]/

1.3198634

= -0.2440041

v = 6379333.2 In [(1 +0.2440041)/(1-0.2440041)]/(2x 1.0011727)

= 1,586,767.3 m

u = [[6379333.2 arctan |[0.8614171 cos (-39.9858829°)

+ (-0.3021309) sin (-39. 9858829°) ]/cos [1.0011727x(-74°

+ 56.4349628°)]l/1.0011727]]xir/180°

= 4,655,443.7 m

Note: Since cos [1.0011727 x (-74° + 56.4349628°)] = 0.9532664, which is positive,

no correction is needed to the arctan in the equation for u. The (ir/180°) is inserted,

if arctan is calculated in degrees.

k = 6379333.2 cos [1.0011727x4655443.7x1807(itx6379333.2)]

x (1-0.00676866 sin2 40.8°F/[6378206.4 cos 40.8° cos

[1.0011727x(-74° + 56.4349628°)]|

= 1.0307554

x = 1586767.3 cos (-56.9466070°) + 4655443.7 sin (-56.9466070°)

+ 4000000

= 963,436.1 m

y = 4655443.7 cos (-56.9466070°) - 1586767.3 sin (-56.9466070°)

+ 500000

= 4,369,142.8 m
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For alternate B (forward):

Given: Clarke 1866 ellipsoid: a = 6378206.4 m

e2 = 0.00676866

or e = 0.0822719

Central scale factor: k0 = 1.0

Center: <J>0
= 36° N. lat.

= 77.7610558° W. long.

Azimuth of central line: = 14.3394883° east of north

Point: = 38°48'33.166" N. lat.

= 38.8092128°

X = 76°52' 14.863" W. long.

-76.8707953°

Find: u, v (example uses center of Zone 2, Path 16, Landsat mapping, with Hotine

Oblique Mercator).

Using equations (9-11) through (9-39) in order,

B = [1+0.00676866 cos4 367(1 -0.00676866)]"2

= 1.0014586

A = 63780206.4 x 1.0014586 x 1.0 x (1-0.00676866)1/2/(1-0.00676866

sin2 36°) = 6,380,777.0 m

t0 = tan (45°-3672)/[(1 -0.0822719 sin 36°)/(1 +0.0822719 sin

3g°)]0.082Z719/2

= 0.5115582

D = 1.0014586 x (1-0.00676866)ir'!/[cos 36°

x (1-0.00676866 sin2 36°)"2]

= 1.2351194

F = 1.2351194 + (1.23511942-1)1* = 1.9600471

using the " + " sign since <J>0 is north or positive.

E = 1.9600471x0.5115582' 0014586 = 1.0016984

G = (1.9600471- 1/1. 960047D/2 = 0.7249276

70 = arcsin [(sin 14.3394883°)/1.2351194]

= 11.5673996°

X0 = -77.7610558° - [arcsin (0.7249276 tan 11. 5673996°)]/1. 0014586

= -86.2814800°

w,36 -7-7fi i = + (6380777.0/1.0014586) arctan [(1.23511942-1)12/

"cos 14.3394883°] x tt/180°

= 4,092,868.9 m

Note: The it/180° is inserted, if arctan is calculated in degrees. These are con

stants for the map. The calculations of u, v, x, and y for (<J>, X) follow the same

steps as the numerical example for equations (9-25) through (9-34) for alternate

A. For <J> = 38.8092128° and X = -76.8707953°, it is found that

u = 4,414,439.0 m

v = -2,356.3 m

OBLIQUE MERCATOR (HOTINE ELLIPSOID)- INVERSE EQUATIONS

(SEE P. 74-75 )

The above example for alternate A will be inverted, first using equations (9-11)

through (9-24), then using equations (9-40) through (9-48). Since no new equa
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tions are involved for inverse alternate B, an example of the latter will be omitted.

As stated with the inverse equations, the constants for the map are chosen as in

the forward examples.

Inversing forward example for alternate A:

Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

or e = 0.0822719

Central scale factor: = 0.9996

Center: <J>0 = 40° N. lat.

Center line through: ♦i = 47° 30' N. lat.

Xi = 122° 18' W. long.

<J>2 = 25° 42' N. lat.

X2 = 80° 12' W. long.

False coordinates: x0 = 4,000,000.0 m

= 500,000.0 m

Point: X = 963,436.1 m

y = 4,369,142.8 m

Find: <J>, X

Using equations (9-11) through (9-24) in order, again gives the following

constants:

B = 1.0011727

A = 6,379,333.2 m

E = 1.0021857

X0 = -56.4349628°

7o = -39.9858829°

ac = -56.9466070°

Following equations (9-40) through (9-48) in order:

v = (963436.1-4000000.0) cos (-56.9466070°) - (4369142.8

-500000.0) sin (-56.9466070°)

= 1,586,767.3 m

u = (4369142.8-500000.0) cos (-56.9466070°) + (963436.1

-4000000.0) sin (-56.9466070°)

= 4,655,443.7 m

Q' = e-<1.0011727xl58fi767.3/K)793;M.2)

= g- 0.2490273

= 0.7795587

S' = (0.7795587- 1/0.7795587)/2 = -0.2516092

T = (0.7795587+ 1/0. 7795587)/2 = 1.0311679

V = sin [(1.0011727x4655443.7/6379333.2)x1807ir]

= sin 41.8617535° = 0.6673356

U' = [0.6673356 cos (-39.9858829°) - 0.2516092 sin (-39.9858829°)]/

1.0311679

= 0.6526562

t = |1.0021857/[(1+0.6526562)/(1-0.6526562)]"2|1/1 0011727

= 0.4598671

The first trial 4> for equation (7-9) is

<J> = 90° -2 arctan (0.4598671) = 40.6077096°
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Calculating a new trial 4>:

«J> = 90° - 2 arctan |0.4598671 x [(1-0.0822719 sin 40.6077096°)/

(1 + 0.0822719 sin 40.6077096°)]00822719/2|

= 40.7992509°

Substituting 40.7992509° in place of 40.6077096° and recalculating, <J> =

40.7999971°. Using this <i> for the third trial, <i> = 40.8000000°. The next trial gives

the same value of <J>. Thus,

4> = 40.8° = 40°48' N. lat.

X = -56.4349628° - arctan ([-0.2516092 cos (-39.9858829°)

- 0.6673356 sin (- 39. 9858829°) ]/cos [(1.0011727

x 4655443.7/6379333.2) x 1807ir]t/l. 0011727

= - 74.0000000° = 74"00' W. long.

Using series equation (3-5) with (7-13), to avoid iteration of (7-9), and begin

ning with equation (7-13),

x = 90° -2 arctan 0.4598671

= 40.6077096°

Since equation (3-5) is used in an example under Auxiliary latitudes, the calcula

tion will not be shown here.

CYLINDRICAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS

(SEE P. 77, 80 )

Normal aspect:

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 75° W. long.

Standard parallel: <J>, = 30° N. & S. lat.

Point: <j> = 35° N. lat.

X = 80° E. long.

Find: x, y

Using equations (10-1) and (10-2),

x = -nx 1.0 x [80°-(-75°)J x (cos 30°)/1 80° = 2.3428242 units

y = 1.0 x sin 357cos 30° = 0.6623090 unit

Transverse aspect:

Given: Radius of sphere: R = 1.0 unit

Origin: <J><, = 20° S. lat.

X0 = 75° W. long.

Central scale factor: h0 = 0.98

Point: $> = 25° N. Lat.

X = 90° W. long.

Find: x, y

Using equations (10-3) and (8-3),

x = (1.0/0.98) x cos 25° sin [(-90°) -(-75°)]

= (1.0/0.98) x cos 25° sin (-15°)

= -0.2393569 unit
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y= 1.0 x 0.98 x !arctan [tan 257cos (-15°)] - (-20°)| x ir/180°

= 0.98 x 45.7692621° x ir/180° = 0.7828478 unit

Oblique aspect:

Given: Radius of sphere: R = 1.0 unit

Central scale factor: h0 = 0.98

Central line through: <i>x = 30° N. lat.

<J>2 = 60° N. lat.

X, = 75° W. long.

X2 = 50° W. long.

Point: <J> = 30° S. lat.

X = 100° W. long.

Find: x, y

Using equation (9-1),

Xp = arctan |[cos 30° sin 60° cos (-75°) -sin 30° cos 60° cos (-50°)]/

[sin 30° cos 60° sin (-50°)-cos 30° sin 60° sin (-75°)]|

= arctan |[0.1941143-0.1606969]/[-0.1915111-(-0.7244444)p

= arctan (0.0334174/0.5329333)

= 3.5880129° = 3.5880129° E. long.

Since the denominator is positive, 180° is not added to the result.

From equation (9 -6a),

X0 = 3.5880129° + 90° = 93.5880129°

From equation (9-2),

<J>p = arctan |-cos [3.5880129°-(-75°)]/tan 30°

= -18.9169858° = 18.9169858° S. lat.

The other pole is then at 18.9169858° N. lat. and 176.4119871° W. long. From

equations (10-4) and (10-5), calculating the arctan in radians:

x = 1.0x0.98 arctan |[tan (-30°) cos (-18.9169858°)

+ sin (-18.9169858°) sin (-100°-93.5880129°)]/

cos (-100°-93.5880129°)|

= 0.98xarctan [-0.6223338/(-0.9720102)]

= 0. 98 x(0. 5694937 + tt), adding it since denominator is negative.

= 3.6368646 units

y = (1.0/0.98) [sin (-18.9169858°) sin (-30°)-

cos (-18.9169858°) cos (-30°) sin (-100°-93.5880129°)]

= -0.0309947 unit

To locate a pole given a central point using equations (9-7) and (9-8), refer to

the numerical example given under the forward spherical equations for the Oblique

Mercator projection (p. 272).

CYLINDRICAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS

(SEE P. 80 )

Inversing forward examples:

Normal aspect:

Given: R, X0, <J>s for forward example
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x = 2.3428242 units

y = 0.6623090 unit

Find: <J>, X

Using equations (10-6) and (10-7),

<J> = arcsin [(0.6623090/1. 0)xcos 30°]

= 34.9999988° = 35° N. lat, if there were no round-off errors.

X = [2.3428242/(1.0xcos 30°)]x1807ir + (-75°)

= 80° E. long., ignoring round-off errors.

Transverse aspect:

Given: R, 4>0, X0, h0, for forward example

x = -0.2393569 unit

y = 0.7828478 unit

Find <J>, X

Using equation (10-10), (10-8), and (10-9) in order,

D = 0.7828478/(1. 0 x 0.98) + (-20°)x-rr/180°

= 0.4497584

<J> = arcsin |[1-(0.98x(-0.2393569)/1.0)2]1/2

xsin (0.4497584 radians)!

= 25° N. lat., ignoring round-off errors.

X = -75° + arctan |[0.98x(-0.2393569)/1.0]/

[[1-(0.98x(-0.2393569)/1.0)2F cos (0.4497584 radians)])

= -90° = 90° W. long.

Oblique aspect:

Given: R, h0, and central line through same points as forward example,

x = 3.6368646 units

y = -0.0309947 unit

Find <J>, X

First, 4>p and kp are determined exactly as for the forward example, so that X0

again is 93.5880129°, and <J>p is -18.9169858°. Using equations (10- 11) and (10-12),

yhJR = -0.0309947 x 0.98/1.0

= -0.0303748

x/(Rh0) =3.6368646/(1.0x0.98)

= 3.7110863

<J> = arcsin |- 0.0303748 xsin (-18.9169858°)

-(- [1-(-0.0303748)2F

x cos (-18.9169858°)

x sin (3.7110863 radians))

= arcsin (-0.5) = -30° = 30° S. lat.

X = 93.5880129° + arctan ![[1-(-0.0303748)2]1 2

x sin (-18.9169858°)

x sin (3.7110863 radians)

- ( -0. 0303748) x cos (-18.9169858°)]/

[[1-(-0.0303748)2F x cos (3.7110863 radians)])

= 260° or - 100° = 100° W. long.
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CYLINDRICAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS

(SEE P. 81-82)

Normal aspect:

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

or e = 0.0822719

Standard parallel: <J>S = 5° N. & S. lat.

Central meridian: X0 = 75° W. long.

Point: <J> = 5°

X = 78° W. long.

Using equations (10-13), (3-12), (10-14), and (10-15) in order,

k0 = cos 57[1 -0.00676866 x sin2 5°]w

= 0.9962203

q = (1-0.00676866) x |sin 57( 1-0. 00676866 x sin2 5°)

-[1/(2 x 0.0822719)] x In [(1-0.0822719xsin 5°)/

(1 + 0. 0822719 x sin 5°)]l

= 0.1731376

x =6,378,206.4 x 0.9962203 x [-78°-(-75°)] x tt/180°

= -332,699.8 m

y =6,378,206.4 x 0.1731376/(2x0.9962203)

= 554,248.5 m

Transverse aspect:

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

Central meridian

Latitude of origin

Scale factor at X0

Point

e2 = 0.00676866

or e = 0.0822719

X0 = 75° W. long.

4>0 = 30° N. lat.

h0 = 0.99

<J> = 40° N. lat.

X = 83° W. long.

Find: x, y

Using equations (3-12) and (3-11),

q = (1-0.00676866) x |sin 407(1-0.00676866 x sin2 40°)

-[1/(2x0.0822719)] x In [(1 -0.0822719 x sin 40°)/

(1 + 0.0822719xsin 40°)]}

= 1.2792602

Inserting 90° in place of 40° in the same equation,

qp = 1.9954814

p = arcsin (1.2792602/1.9954814)

= 39.8722878°

Using equations (10-16) and (10-17),

pc = arctan [tan 39.87228787cos [-83°-(-75°)]

= 40.1482125°

qc = 1.9954814 x sin 40.1482125°

= 1.2866207
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For the first trial 4>c in equation (3-16),

4>c = arcsin (1.2866207/2)

= 40.0391089°

Substituting into equation (3-16),

<J>f =40.0391089° + [(1-0.00676866 sin2 40.0391089°)2/

(2 cos 40.0391089°)] x |1.2866207/(1 -0.00676866)

-sin 40. 03910897(1 -0.00676866 sin2 40.0391089°)

+ [1/(2x0.0822719)] In [(1-0.0822719

sin 40.0391089°)/(1 + 0.0822719 sin 40.0391089°)]; x 1807ir

= 40.2757321°

Substituting 40.2757321° in place of 40.0391089° in the same equation, the new trial

<J>c is found to be 40.2761382°. The next iteration results in no change to seven

decimal places. Thus,

^ = 40.2761382°

Using equation (10-18),

x = 6,378,206.4 x cos 39.8722878° x cos 40.2761382°

x sin [-83°-(-75°)]/[0.99xcos 40.1482125°

x (1 -0.00676866 x sin2 40.2761382°)1 2]

= -687,825.8 m

Using equation (3-21),

Mc =6,378,206.4 x [(1-0.00676866/4-3x0.006768662/64

-5 x 0.006768663/256) x 40.2761382° x tt/180°

- (3 x 0.00676866/8 + 3 x 0. 006768662/32

+ 45 x 0.006768663/1024) x sin (2x40.2761382°)

+ (15 x 0.006768662/256 + 45 x 0.006768663/1024)

x sin (4x40.2761382°) - (35x0.006768663/

3072) x sin (6x40.2761382°)]

= 4,459,980.0 m

Substituting <J>0 = 30° in the same equation in place of 40.2761382°,

M0 = 3,319,933.3 m

Using equation (10-19),

y = 0.99 x (4,459,980.0-3,319,933.3)

= 1,128,646.2 m

Oblique aspect:

Given: Clarke 1866 ellipsoid:

or

Central scale factor:

Central line through:

a = 6,378,206.4 m

e2 = 0.00676866

e = 0.0822719

ho = 1.0

= 30° N. lat.

4>2 = 10° N. lat.

X, = 141.2613464° W. long.

k2 = 176.6877075° E. long.
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Point: <J> = 42° N. lat.

X = 77° W. long.

Find: x, y

To find the position of the pole, equations (3-12) and (3-11) are used as in the

examples for the normal and transverse aspects just above, to determine p! from

<J>i and p2 from <i>2- The results are

pi = 29.8877623°

p2 = 9.9557113°

Inserting these values in place of <i>i and 4>2 in equations (9-1) and (9-2), listed

under spherical formulas for the projection,

Xp=arctan [(cos 29.8877623° sin 9.9557113° cos (-141.2613464°) -

sin 29.8877623° cos 9.9557113° cos 176.6877075°)/

(sin 29.8877623° cos 9.9557113° sin 176.6877075° -

cos 29.8877623° sin 9.9557113° sin (-141.2613464°))]

=arctan (0.3730609/0.1221562)

= 71.8693268°, not adding 180° since denominator is positive.

pp =arctan [-cos (71.8693268°- (-141.2613464°))/tan 29.8877623°]

= 55.5374608°

Using equations (10-17) and (3-16), with subscript p instead of c, <J>p is found by

iteration as in the example for <i>c under the transverse aspect. Finally,

4>p = 55.6583959°

Using equations (10-20) and (10-i;1), and table 13 for the Clarke 1866 ellipsoid,

the specific Fourier coefficients are calci lated:

B =0.9991507126 + (-0.0008471537) cos (2 x 55.6583959°)

+ (0.0000021283) cos (4 x 55 65* 3959°)

+ (-0.0C0C000054) cos (6 x 55.6583959°)

= 0.99945,/' 1

A2 = -0.0001412J90 + (-0.0001411258) cos (2 x 55.6583959°)

+ (0.0000000839) cos (4 x 55.6583959°)

+ (0.0000000006) cos (6 x 55.6583959°)

= -0.0000900

A4 = -0.0000000435 + (-0.0000000579) cos (2 x 55.6583959°)

+ (-0.0000000144) cos (4 x 55.6583959°)

+ (0) cos (6 x 55.6583959°)

= -0.0000000

Equations (3-12) and (3-11) are again used to determine p from <J>, giving

p = 41.8710109°
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From equation (10-22),

k' = arctan ![cos 55.5374608° sin 41.8710109°

- sin 55.5374608° cos 41.8710109° cos (-77°

-71.8693268°)]/cos 41.8710109° sin (-77°-71.8693268°)]i

= arctan [0.9032359/( -0.3849775)]

= -66.9153117° + 180° = 113.0846883°

adding 180° because the denominator is negative.

Using equations (10-23) through (10-25), using qp as computed above for the

transverse aspect,

x =6,378,206.4 x 1.0x[0.9994571x113.0846883°xir/180°

+ (-0.0000900) x sin (2x113.0846883°)

+ (-0.0000000) x sin (4x113.0846883°)

= 12,582,246.4 m

F =0.9994571 + 2 x (-0.0000900) x cos (2 x 113.0846883°)

+ 4 x (-0.0000000) x cos (4x113.0846883°)

= 0.9995817

y =(6,378,206.4x1.9954814/2) x [sin 55.5374608°

x sin 41.8710109° + cos 55.5374608° x cos 41.8710109°

x cos (-77°-71.8693268°)]/(1.0 x 0.9995817)

= 1,207,233.0 m

CYLINDRICAL EQUAL-AREA (ELLIPSOID)- INVERSE EQUATIONS

(SEE P. 82-84 )

Inversing forward examples:

Normal aspect:

Given: a, e2, 4>s, and Xo as in forward ellipsoid examples

x = -332,699.8 m

y = 554,248.5 m

Find: 4>, X

After k0 and q are determined from (10-13) and (3-12) as in the forward normal

and transverse examples,

A:0 = 0.9962203

qp = 1.9954814

then, from (10-26),

p = arcsin [2 x 554,248.5 x 0.9962203/(6,378,206.4x1.9954814)]

= 4.9775164°

Using equations (10-17) and (3-16), with subscript c omitted, 4> is found from p

by iteration as in the example for 4>c under the forward transverse ellipsoid exam

ple. Finally,

4> = 5° N. lat.
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From (10-27),

X=-75° + [-332,699.8/(6,378,206.4x0.9962203)] x 1807ir

= -78° = 78° W. long.

Transverse aspect:

Given: a, e2, k0, <J>0, h0 as in forward ellipsoid example:

x = -687,825.8 m

y = 1,128,646.2 m

Find: <J>, X

After M0 is calculated from (3-21), using <J>0 = 30° in place of <i>c, as in the forward

ellipsoid example,

M0 = 3,319,933.3 m

From (10-28),

Mc = 3,319,933.3 + 1,128,646.2/0.99

= 4,459,980.0 m

From (7-19), (3-24) and (3-26),

p.c = 4,459,980.0/[6,378,206.4 x (1-0.00676866/4

-3 x 0.006768662/64 - 5 x 0.006768667256)]

= 0.7004398 radians = 40.1322426°

e, = [1-(1-0.00676866)"2]/[1 +(1-0.00676866)12]

= 0.0016979

<J>c = [0.7004398 + (3x0.0016979/2-27x0.00169793/32)

sin (2 x 40.1322426°) + (21 x0.00169792/16

-55 x 0.0016979/32) sin (4x40.1322426°)

+ (151x0.00169793/96) sin (6x40.1322426°)

+ (1097x0.00169794/512) sin (8 x 40.1322426°)] x 1807tt

= 40.2761378°

Using (3-12) and (3-11), with qp calculated as in the forward example,

qc =(1-0.00676866) x lsin 40.27613787(1

-0.00676866 x sin2 40.2761378°) - [1/(2

x 0.0822719)] In [(1-0.0822719 x sin 40.2761378°)/

(1 + 0.0822719 x sin 40.2761378°)]!

= 1.2866207

pc = arcsin (1.2866207/1.9954814)

= 40.1482122°

From equations (10-29) through (10-31),

p' = - arcsin [0.99 x (-687,825.8) x cos (40.1482122°)

x (1-0.00676866 x sin2 40.2761378°)1 7

(6,378,206.4 x cos 40.2761378°)]

= 6.1315692°
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p = arcsin (cos 6.1315692° sin 40.1482122°)

= 39.8722875°

X = -75°-arctan (tan 6.1315692°/cos 40.1482122°)

= -75°-8°= -83° = 83° W. long.

Using (10- 17) and (3-16), with subscript c omitted, 4> is found from p by iteration

as in the example for <J>c under the forward transverse ellipsoid example. Finally,

<J> = 40° N. lat.

Oblique aspect:

Given: a, e2, h,h calculated pole location (4>p, Xp), calculated Fourier coefficients

B, A2, and A4 as in the forward oblique ellipsoid example, and Rq as calculated

for the forward normal ellipsoid example,

x = 12,582,246.4 m

y = 1,207,233.0 m

Find <J>, X

First qp = 1.9954814, as found from (3-12) in the forward transverse example.

To solve for X' from (10-32), the first trial X' is found as described:

X' = [12,582,246.4/(6,378,206.4x1.0 x 0.9994571)]x1807tt

= 113.0884082°

Using equation (10-32),

X' = [12,582,246.4/(6,378,206.4x1. 0)x1807it

-(-0.0000900) x sin (2x113.0884082°)

-(-0.0000000) x sin (4x113.0884082°)]/

0.9994571

= 113.0846878°

Substituting 113.0846878° in place of 113.0884082° in this equation, X' is calculated

to be 1 13.0846883°. The next iteration yields no change to seven decimal places, so

that

X' = 113.0846883°

Equation (10-24) is used to calculate F just as it was in the forward oblique

example, so F is again

F = 0.9995817

From equations (10-33) through (10-35),

p' = arcsin [2 x 0.9995817x1.0x1,207,233.0/

(6,378,206.4x1.9954814)]

= 10.93083763°

p = arcsin (sin 55.5374608° sin 10.93083763°

+ cos 55.5374608° cos 10.93083763°

sin 113.0846883°)

= 41.8710109°
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X = 71.8693268° + arctan [cos 10.93083763°

cos 113.08468837(cos 55.5374608°

sin 10.93083763° - sin 55.5374608°

cos 10.93083763° sin 113.0846883°)]

= 71.8693268° + arctan [-0.3849775/(-0.6374127)]

= 71.8693268° + 31.1306732° + 180°, adding 180°

because of the negative denominator. Thus,

X = 283°, or -77°, or 77° W. long.

Using (10-17) and (3-16), 4> is found from p as previously, dropping subscript c

and with iteration, to produce

<J> = 42° N. lat.

The computation of Fourier coefficients is not shown here, since it is lengthy and

is not needed unless a different ellipsoid is desired. An example of computation of

Fourier coefficients is given under the Space Oblique Mercator projection.

MILLER CYLINDRICAL (SPHERE)- FORWARD EQUATIONS (SEE P. 88 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 0° long.

Point: 4> = 50° N. lat.

X = 75° W. long.

Find x, y, h, k

Using equations (11-1) through (11-5) in order,

x = 1.0x[-75°-0°]xir/180°

= -1.3089969 units

y = 1.0x[lntan(45° + 0.4x50°)]/0.8

= (In tan 65°)/0.8

= 0.9536371 unit

or

y = 1.0x|arcsinh [tan (0.8x50°)])/0.8

= arcsinh 0.8390996/0.8

= 0.9536371 unit

h = sec (0.8x50°) = 1/cos40° = 1.3054073

k = sec 50° = 1/cos 50° = 1.5557238

sin Vfew = (cos 40° - cos 50°)/(cos 40° + cos 50°)

= 0.0874887

w = 10.0382962°

MILLER CYLINDRICAL (SPHERE)- INVERSE EQUATIONS (SEE P. 88)

Inversing forward example:

Given: R, X0 for forward example

x = - 1.3089969 units

y = 0.9536371 unit

Find: <J>, X
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Using equations (11-6) and (11-7),

<J> = 2.5 arctan e<0-8*0-9536*" 1 ,o' - (5it/8) x 1807w

= 2.5 arctan e°™****-l.9634954 x1807it

= 2.5 arctan (2. 1445069) - 1.9634954 x 1807tt

= 2.5 x 65.0000006° - 112.5000000°

= 50.0000015° = 50° N. lat.

or

<J> = arctan [sinh (0. 8 x 0.953637 1/1. 0)]/0. 8

= (arctan 0.8390997)/0.8

= 50.0000015° = 50° N. lat.

X =0° - (1.3089969/1.0) x 1807-tt

= 0° - 74.9999978° = 75° W. long.

CASSINI (SPHERE)-FORWARD EQUATIONS (SEE P. 94 )

Given: Radius of sphere: R = 1.0 unit

Origin: 4>0 = 20° S. lat.

X0 = 75° W. long.

Point: <J> = 25° N. lat.

X = 90° W. long.

Find: x, y, h,

Using equations (8-5), and (13-1) through (13-3) in order,

B = cos 25° sin [-90°- (-75°)]

= -0.2345697

x = 1.0 x arcsin (-0.2345697) x tt/180°

= -0.2367759 unit

y = 1.0 x {arctan [tan 257cos [-90°-(-75°)]]-(-20°)|xir/180°

= 1.0 x 45.7692621° x tt/180° = 0.7988243 unit

h' = 1/[1-(-0.2345697)2]1-

= 1.0287015

CASSINI (SPHERE)- INVERSE EQUATIONS (SEE P. 94-95 )

Inversing forward example:

Given: R, <J>0, X0 for forward example

x = -0.2367759 unit

y = 0.7988243 unit

Find: <J>, X

Using equations (13-6), (13-4), and (13-5) in order,

D = (0.7988243/1.0)x1807tt + (-20°)

= 25.7692610°
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<J> = arcsin |sin 25.7692610° cos [(-0.2367759/1.0) x 1807ir]1

= arcsin 0.4226182

= 25° N. lat.

X = -75o + arctan|tan[(-0.2367759/1.0)x1807ir]/cos25.7692610°!

= -75° + arctan (-0.2679492)

= -75° + (-15°) = -90° = 90° W. long.

GASSINI (ELLIPSOID)-KORVVARD EQUATIONS (SEE P. 95 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Origin: <J>0 = 40° N. lat.

X0 = 75° W. long.

Point: 4> = 43° N. lat.

X = 73° W. long.

Find: x, y, s at Az = 30° east of north

Using equations (4-20), (8-13), (8-15), (8-14), and (3-21) in order,

N = 6,378,206.4/(1 -0.006768662 x sin2 43°)1*

= 6,388,270.3 m

T = tan2 43° = 0.8695844

A = [-73° - (-75°)]x(tt/180°)x cos 43°

= 0.02552906

C = 0.00676866 x cos2 437(1-0.00676866)

= 0.003645081

M = 6,378,206.4 x [(1-0.00676866/4 - 3 x 0.006768662/64

- 5 x 0. 006768663/256) x 43° x ir/180° - (3 x 0. 00676866/

8 + 3 x 0. 006768662/32 + 45 x 0.006768663/1024)

sin (2 x 43°) + (15 x 0. 006768662/256 + 45

x0.00676866:71024) sin (4x43°) -(35 x 0. 006768663/

3072) sin (6x43°)]

= 4,762,504.8 m

Substituting 40° for 43° in equation (3-21),

M0 = 4,429,318.9 m

Using equations (13-7) through (13-9) in order,

x = 6,388,270.3 x [0.02552906-0.8695844 x 0.02552906''/

6- (8- 0. 8695844 + 8 x 0. 003645081 ) x 0. 8695844

x 0.025529067120]

= 163,071.1 m

y = 4,762,504.8 - 4,429,318.9 + 6,388,270.3 x tan 43°

x [0.025529062/2 + (5-0.8695844 + 6x0.003645081)

x 0.02552906724]

= 335,127.6 m

s = 1 + 163,071. 12 cos2 30° x (1-0.00676866 x sin2 43°)2/

[2 x 6,378,206.42 x (1-0.00676866)]

= 1.0002452
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CASSINI (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 95 )

Inversing forward example:

Given: a, e2, <J>0, X0 as in forward example

x = 163,071.1 m

y = 335,127.6 m

Find: 4>, X

Calculating M0 from equation (3-21) as in the forward example for <J>0

M0 = 4,429,318.9 m

Using equations (13-12), (7-19), and (3-24) in order,

Mi =4,429,318.9 + 335,127.6

= 4,764,446.5 m

Hi = 4,764,446.5/[6,378,206.4 x (1-0.00676866/4

- 3 x 0.006768662/64 - 5 x 0.006768663/256)]

= 0.7482562 radians = 42.8719240°

C! = [1-(1-0.00676866)12]/[1 + (1-0.00676866)^]

= 0.001697916

Using equations (3-26), (8-22), (8-23), (8-24), and (13-13) in order,

<J>i =42.8719240° + [(3x0.001697916/2-27x0.0016979163/

32) sin (2x42.8719240°) + (21x0.0016979162/16

- 55 x 0.0016979164/32) sin (4x42.8719240°)

+ (151x0.0016979163/96) sin (6x42.8719240°)

+ (1097x0.0016979164/512) sin (8x42.8719240°)] x 1807ir

= 43.0174782°

7\ = tan2 43.0174782°

= 0.8706487

AT, = 6,378,206.4/(1-0.00676866 sin2 43.0174782°)"2

= 6,388,276.9 m

R' =6,378,206.4 x (1-0.00676866)/(1 -0.00676866

x sin2 43.0174782°)^

= 6,365,088.8 m

D = 163,071.1/6,388,276.9

= 0.0255266

Using equations (13-10) and (13-11) in order,

4> = 43.0174782° - (6,388,276.9xtan 43.01747827

6,365,088.8) x [0.02552662/2 - (1+3 x 0.8706487)

x 0.02552664/24] x 1807ir

= 43° N. lat.

X = -75° + |[0.0255266 -0.8706487 x 0.025526673

+ (1+3x0.8706487) x 0.8706487 x 0.0255266715]/

cos 43.0174782°! x 1807ir

= -73° = 73° W. long.
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ALBERS CONICAL EQUAL-AREA (SPHERE)- FORWARD EQUATIONS (SEE P. 100)

Radius of sphere: R = 1.0 unit

Standard parallels: = 29° 30' N. lat.

<J>2 = 45° 30' N. lat.

Origin: <J>0 = 23° N. lat.

= 96° W. long.

Point: = 35° N. lat.

X = 75° W. long.

Find: p, 6, x, y, k, h, w

From equations (14-6), (14-5), (14-3), (14-3a), and (14-4) in order,

n = (sin 29.5° + sin 45.5°)/2

= 0.6028370

C = cos2 29.5° + 2 x 0.6028370 sin 29.5°

= 1.3512213

p = 1.0 x (1.3512213-2 x 0.6028370 sin 35°)^/0. 6028370

= 1.3473026 units

p0 = 1.0 x (1.3512213-2x0.6028370 sin 23°)) 2/0.6028370

= 1.5562263 units

6 = 0.6028370 x[(- 75°)- (-96°)]

= 12.6595771°

From equations (14-1), (14-2), and (14-7) in order,

x = 1.3473026 sin 12.6595771°

= 0.2952720 unit

y = 1.5562263 - 1.3473026 cos 12.6595771°

= 0.2416774 unit

h = cos 357(1.3512213-2x0.6028370 sin 35°)12

= 1.0085547

and

k = 1/1.0085547 = 0.9915178

From equation (4-9),

sin i/2o> = 11.0085547- 0.99151781/(1.0085547 + 0.9915178)

w =0.9761189°

ALBERS CONICAL EQUAL-AREA (SPHERE)- INVERSE EQUATIONS (SEE P. 101)

Inversing forward example:

Given: R, <J>i, <J>2, 4>0, f°r forward example

x = 0.2952720 unit

y = 0.2416774 unit

Find: p, 6, <i>, k
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As in the forward example, from equations (14-6), (14-5), and (14-3a) in order,

n = (sin29.5° + sin45.5°)/2

= 0.6028370

C = cos2 29.5° + 2 x 0.6028370 sin 29.5°

= 1.3512213

p0 = 1.0 x (1.3512213-2x0.6028370

sin 23°)'*/0. 6028370

= 1.5562263 units

From equations (14-10), (14-11), (14-8), and (14-9) in order,

p = [0.29527202 + ( 1.5562263 - 0.2416774 )2]i*

= 1.3473026 units

6 = arctan [0.2952720/(1.5562263 - 0.2416774)]

= 12.6595766°. Since the denominator is positive,

there is no adjustment to 6.

<J> =arcsin |[1.3512213-(1. 3473026x0.6028370/1. 0)2]/

(2x0.6028370);

= arcsin 0.5735764

= 35.0000007° = 35° N. lat.

X = 12.659576670.6028370 + (-96°)

= 20.9999992-96°

= -75.0000008° = 75° W. long.

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS (SEE P. 101)

Given: Clarke 1866 ellipsoid:

or

Standard parallels:

Origin:

Point:

Find: p, 6, x, y, k, h, to

From equation (14-15),

a = 6378206.4 m

e2 = 0.00676866

e = 0.0822719

<h = 29° 30' N. lat.

<J>2 = 45° 30' N. lat.

<J>0 = 23° N. lat.

= 96° W. long.

= 35° N. lat.

= 75° W. long.

m ! = cos 29. 57( 1 - 0. 00676866 sin2 29. 5°)' "2

= 0.8710708

m2 = cos 45.57(1-0.00676866 sin2 45.5°)1/*

= 0.7021191

From equation (3-12),

<7i = (1-0.00676866) |sin 29.57(1-0.00676866 sin2 29.5°)

-[1/(2x0.0822719)] In [(1-0.0822719 sin 29.5°)/

(1+0.0822719 sin 29.5°)]|

= 0.9792529

Using the same formula for q2 (with <J>2 instead of

q2 = 1.4201080
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Using the same formula for q0 (with <J>0 instead of <i>i),

q0 = 0.7767080

From equations (14-14), (14-13), and (14- 12a) in order,

n = (0.87107082-0.70211912)/(1.4201080-0.9792529)

= 0.6029035

C = 0.87107082 + 0.6029035 x 0.9792529

= 1.3491594

p0 = 6378206.4 x (1.3491594 -0.6029035 x 0.7767080)'*/0.6029035

= 9,929,079.6 m

These are the constants for the map. For 4> = 35° N. lat. and X = 75° W. long.

Using equation (3-12), but with <J> in place of <J>i,

q = 1.1410831

From equations (14-12), (14-4), (14-1), and (14-2) in order,

p =6378206.4 x (1.3491594- 0.6029035x 1.14 10831) 1/2/0. 6029035

= 8,602,328.2 m

e =0.6029035 x [-75°-(-96°)] = 12.6609735°

x = 8602328.2 sin 12.6609735° = 1,885,472.7 m

y = 9929079.6 - 8602328.2 cos 12.6609735°

= 1,535,925.0 m

From equations (14-15), (14-16), (14-18), and (4-9) in order,

m = cos 357( 1-0.00676866 sin2 35°)12

= 0.8200656

k = 8602328.2 x 0.6029035/(6378206.4 x 0.8200656)

= 0.9915546

h = 1/0.9915546 = 1.0085173

sin Vko = 11.0085173 - 0.99155461/(1.0085173 + 0.9915546)

w =0.9718678°

ALBERS CONICAL EQUAL-AREA (ELLIPSOID)-INVERSE EQUATIONS

(SEE P. 102 )

a = 6378206.4 m

e2 =0.00676866

e =0.0822719

4>, = 29° 30' N. lat.

<J>2 = 45° 30' N. lat.

4>„ = 23° N. lat.

X0 = 96° W. long.

x = 1,885,472.7 m

y = 1,535,925.0 m

Inversing forward example:

Given: Clarke 1866 ellipsoid:

or

Standard parallels:

Origin:

Point:
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Find: p, 6, 4>, X

The same constants n, C, p0 are calculated with the same equations as those

used for the forward example. For the particular point:

From equation (14-10),

p = [1885472.72 + (9929079.6- 1535925.0)2])*

= 8,602,328.3 m

From equation (14-11),

6 =arctan [1885472.7/(9929079.6-1535925.0)]

= arctan 0.2246441

= 12.6609733°. The denominator is positive; therefore 6 is not

adjusted. From equation (14-19),

q = [1.3491594-(8602328.3x0.6029035/6378206.4)2]/0.6029035

= 1.1410831

Using for the first trial * the arcsin of (1.1410831/2), or 34.7879983°, calculate a

new <J> from equation (3-16),

<i> = 34.7879983° + [(1-0.00676866 sin2 34.7879983°)2/(2 cos

34.7879983°)] x |1. 1410831/(1-0.00676866) - sin 34.78799837

(1-0.00676866 sin2 34.7879983°) + [1/(2 x 0.0822719)] In

[(1-0.0822719 sin 34.7879983°)/(1 + 0.0822719 sin

34. 7879983°)] i x 1807ir

= 34.9997335°

Note that 1807ir is included to convert to degrees. Replacing 34.7879983° by

34.9997335° for the second trial, the calculation using equation (14-19) now pro

vides a third <J> of 35.0000015°. A recalculation with this value results in no change

to seven decimal places. (This does not give exactly 35° due to rounding-off errors

in x and y.) Thus,

<J> = 35.0000015° N. lat.

For the longitude use equation (14-9),

X =(-96°) + 12.660973370.6029035

= -75.0000003° or 75.0000003° W. long.

For scale factors, we revert to the forward example, since 4> and X are now known.

Series equation (3-18) may be used to avoid the iteration above. Beginning

with equation (14-21),

3 = arcsin [1.1410831/!1-[(1-0.00676866)/(2x0.0822719)] In

[(1-0.0822719)/(1 + 0.0822719)])]

= 34.8781793°

An example is not shown for equation (3-18), since it is similar to the example

for (3-5).
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LAMBERT CONFORMAL CONIC (SPHERE)-FORWARD EQUATIONS

(SEE P. 106-107 )

Given: Radius of sphere: R = 1.0 unit

Standard parallels: <]>i = 33° N. lat.

<J>2 = 45° N. lat.

Origin: <J>0 = 23° N. lat.

X0 = 96° W. long.

Point: <J> = 35° N. lat.

X = 75° W. long.

Find: p, 6, x, y, k

From equations (15-3), (15-2), and (15- la) in order,

n = In (cos 337cos 45°)/In [tan (45° + 4572)/tan (45° + 3372)]

= 0.6304777

F = [cos 33° tan0MM777 (45° + 3372)]/0. 6304777

= 1.9550002 units

p0 = 1.0 x 1.9550002/tan° 6304777 (45° + 2372)

= 1.5071429 units

The above constants apply to the map generally. For the specific <i> and X, using

equations (15-1), (14-4), (14-1), and (14-2) in order,

p = 1.0 x 1.9550002/tan0™4777 (45° + 3572)

= 1.2953636 units

6 = 0.6304777 x [(-75°)-(-96°)]

= 13.2400316°

x = 1.2953636 sin 13.2400316°

= 0.2966785 unit

y = 1.5071429 - 1.2953636 cos 13.2400316°

= 0.2462112 unit

From equation (15-4),

k = cos 33° tan06304777 (45° + 3372)/[cos 35° tan0 *aiM777

(45° + 3572)]

= 0.9970040

or from equation (4 — 5),

A. = 0.6304777 x 1.2953636/(1.0 cos 35°)

= 0.9970040

LAMBERT CONFORMAL CONIC (SPHERE)- INVERSE EQUATIONS

(SEE P. 107 1

Inversing forward example:

Given: R, <J>i, <J>2, <J>0, k0 for forward example

x = 0.2966785 unit

y = 0.2462112 unit
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Find: p. 6, 4>, X

After calculating n, F, and p0 as in the forward example, obtaining the same

values, equation (14-10) is used:

p =[0.29667852 + (1.5071429-0.24621 12)2]1 2

= 1.2953636 units

From equation (14-11),

6 = arctan [0.2966785/(1.5071429-0.2462112)]

= 13.2400329°. Since the denominator is positive, 6 is not

adjusted.

From equation (14-9),

X = 13.240032970.6304777 + (-96°)

= -74.9999981° = 74.9999981° W. long.

From equation (15-5),

<J> = 2 arctan (1.0 x 1.9550002/1.2953636)1 06304777 -90°

= 34.9999974° N. lat.

LAMBERT CONFORMAL CONK: (ELLIPSOID)- FORWARD EQUATIONS

(SEE P. 107-108 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 =0.00676866

or e = 0.0822719

Standard parallels: 4>i = 33° N. lat.

4>2 = 45° N. lat.

Origin: 4>0 = 23° N. lat.

X0 = 96° W. long.

Point: 4> = 35° N. lat.

X = 75° W. long.

Find: p, 6, x, y, k

From equation (14-15),

m , = cos 337( 1 - 0. 00676866 sin2 33°)1 2

= 0.8395138

m2 = cos 457( 1-0. 00676866 sin" 45°)1 *

= 0.7083064

From equation (15-9),

f, = tan (45°-3372)/[(1 -0.0822719 sin 33°)/(1 + 0.0822719 sin 33°) f-WB719*

= 0.5449623

t2 = 0.4162031, using above with 45° in place of 33°.

to = 0.6636390, using above with 23° in place of 33°.

From equations (15-8), (15-10), and (15-7a) in order,

n = In (0.8395138/0. 7083064)/ln (0.5449623/0.4162031)

= 0.6304965
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F = 0.8395138/(0.6304965 x 0.5449623° a*04965)

= 1.9523837

p0 = 6378206.4 x 1.9523837 x 0.6636390° 6304965

= 9,615,955.2 m

The above are constants for the map. For the specific 4>, X, using equation

(15-9),

t = 0.5225935, using above calculation with 35° in place of 33°.

From equations (15-7), (14-4), (14-1), and (14-2) in order,

p = 6378206.4 x 1.9523837 x 0.5225935° 6304965

= 8,271,173.9 m

6 =0.6304965 x [-75°-(-96°)] = 13.2404256°

x = 8271173.9 sin 13.2404256°

= 1,894,410.9 m

y = 9615955.2 -8271173.9 cos 13.2404256°

= 1,564,649.5 m

From equations (14-15) and (14-16),

m = cos 357( 1-0.00676866 sin2 35°F

= 0.8200656

A: =8271173.9 x 0.6304965/(6378206.4 x 0.8200656)

= 0.9970171

LAMBERT CONFORMAL CONIC (ELLIPSOID)-INVERSE EQUATIONS

(SEE P. 109 )

Inversing forward example:

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

or e = 0.0822719

Standard parallels: 4>i = 33° N. lat.

4>2 = 45° N. lat.

Origin: <J>0 = 23° N. lat.

X0 = 96° W. long.

Point: X = 1,894,410.9 m

y = 1,564,649.5 m

The map constants n, F, and p0 are calculated as in the forward example, obtain

ing the same values. Then, from equation (14-10),

p = [1894410.92 + (9615955.2 - 1564649.5)2]"2

= 8,271,173.8 m

From equation (14-11),

G = arctan [1894410.9/(9615955.2 - 1564649.5)]

= 13.2404257°. The denominator is positive; therefore 6 is not adjusted.

From equation (15-11),

t =[8271173.8/(6378206.4 x 1.9523837)]"° 6304965

= 0.5225935
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To use equation (7-9), an initial trial <J> is found as follows:

<J> = 90° - 2 arctan 0.5225935

= 34.8174484°

Inserting this into the right side of equation (7-9),

<J> = 90° - 2 arctan |0.5225935 x [(1-0.0822719 sin 34.8174484°)/

(1 + 0.0822719 sin 34.8174484°)]0 0822719/2

= 34.9991687°

Replacing 34.8174484° with 34.9991687° for the second trial, a <J> of 34.9999969° is

obtained. Recalculation with the new <J> results in 4> = 35.0000006°, which does not

change to seven decimals with a fourth trial. (This is not exactly 35°, due to

rounding-off errors. ) Therefore,

4> = 35.0000006° N. lat.

From equation (14-9),

X = 13.240425770.6304965 + (-96°)

= -75.0000013° = 75.0000013° W. long.

Examples using equations (3 — 5) and (7-13) are omitted here, since compara

ble examples for these equations have been given above.

EQUIDISTANT CONIC (SPHERE)-FORWARD EQUATIONS (SEE P. 113)

Given: Radius of sphere: R = 1.0 unit

Standard parallels: 4>i = 29° 30' N. lat.

<J>2 = 45° 30' N. lat.

Origin: <J>0 = 23° N. lat.

k0 = 96° W. long.

Point: <J> = 35° N. lat.

X = 75° W. long.

Find: p, 6, x, y, k

From equations (16-4), (16-3), (16-2), (16-1), and (14-4) in order,

n = (cos 29.5°-cos 45.5°)/[(45.5°-29.5°) x ir/180°]

= 0.6067853

G = (cos 29.5°)/0.6067853 + 29.5° x ir/180°

= 1.9492438

p0 = 1.0 x (1.9492438 - 23° x tt/180°)

= 1.5478181 units

p = 1.0 x (1.9492438- 35° x ir/180°)

= 1.3383786 units

6 = 0.6067853 x [-75°- (-96°)]

= 12.7424921°

Using equations (14-1), (14-2), and (16-5) in order,

a- = 1.3383786 sin 12.7424921°

= 0.2952057 unit

y = 1.5478181 - 1.3383786 cos 12.7424921°

= 0.2424021 unit
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k = (1.9492438 - 35° x tt/180°) x 0.6067853/cos 35°

= 0.99140

EQUIDISTANT CONIC (SPHERE)-INVERSE EQUATIONS (SEE P. 113)

Inversing forward example:

Given: R, <i>u <J>2, <J>0, for forward example

x = 0.2952057 unit

y = 0.2424021 unit

Find: p, 6, 4>, X

Calculating n, G, and p0 as in the forward example,

n =0.6067853

G = 1.9492438

p0 = 1.5478181 units

Using equations (14-10) and (14-11) in order,

p = + [0.29520572 + (1.5478181 -0.2424021)2F

= 1.3383786 units, positive because n is positive

6 = arctan [0.2952057/(1.5478181-0.2424021)]

= 12.7424933°, not adding 180° since denominator is positive

Using equations (16-6) and (14-9) in order,

4> = [1.9492438 - 1.3383786/1.0] x 1807ir

= 35° N. lat.

X = -96° + 12.742493370.6067853

= -75° = 75° W. long.

EQUIDISTANT CONIC (ELLIPSOID)- FORWARD EQUATIONS (SEE P. 114)

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Standard parallels: <J>i = 29° 30' N. lat.

<J>2 = 45° 30' N. lat.

Origin: <J>0 = 23° N. lat.

X0 = 96° W. long.

Point: <J> = 35° N. lat.

X = 75° W. long.

Find: p, 6, x, y, k

From equations (14-15) and (3-21),

m = cos 357(1-0.00676866 sin2 35°)12

= 0.8200656

M =6,378,206.4 x [(1-0.00676866/4-3x0.006768662/64

- 5 x 0.006768667256) x 35° x tt/180° - (3x0.00676866/

8 + 3 x 0.006768662/32 + 45 x 0.0067686671024)

sin (2x35°) + (15x0.006768662/256 + 45 x 0.006768667

1024) sin (4x35°) - (35x0.0067686673072)

sin (6x35°)]

= 3,874,395.2 m
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Using the same equations, but with <J>i = 29.5° in place of 35°,

to, = 0.8710708

M! = 3,264,511.2 m

Similarly, with <J>2 = 45.5° in place of 35°,

TO2 = 0.7021191

M2 = 5,040,295.0 m

and with <J>0 = 23° in place of 35°,

M0 = 2,544,389.8 m

Using equations (16-10), (16-11), (16-9), (16-8), and (14-4) in order,

n = 6,378,206.4 x (0.8710708 - 0.7021191)/(5,040,295.0 - 3,264,511.2)

= 0.6068355

G = 0.8710708/0.6068355 + 3,264,511.2/6,378,206.4

= 1.9472543

p0 = 6,378,206.4 x 1.9472543 - 2,544,389.8

= 9,875,599.9 m

p = 6,378,206.4 x 1.9472543 - 3,874,395.2

= 8,545,594.4 m

6 = 0.6068355 x [-75°-(-96°)]

= 12.7435458°

Constants n, G, and p0 apply to the entire map.

Using equations (14-1), (14-2), and (16-7) in order,

x = 8,545,594.4 x sin 12.7435458°

= 1,885,051.9 m

y = 9,875,599.9 - 8,545,594.4 x cos 12.7435458°

= 1,540,507.6 m

k = (1.9472543-3,874,395.2/6,378,206.4)

x 0.6068355/0.8200656

= 0.99144

EQUIDISTANT CONIC (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 114 )

Inversing forward example:

Given: a, e2, <J>i, <J>2, <J>0, X0 for forward example

x = 1,885,051.9 m

y = 1,540,507.6 m

Calculating n, G, and p0 as in the forward example,

n = 0.6068355

G = 1.9472543

p0 = 9,875,599.9 m
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Using equations (14-10), (14-11), (16-12), (7-19), (3-24), and (3-26) in order,

p = + [1,885,051. 92 + (9,875,599.9- 1, 540, 507. 6)2]12

= 8,545,594.4 m

6 =arctan [1,885,051.9/(9,875,599.9-1,540,507.6)]

= 12.7435461°, not adding 180° since denominator is positive.

M = 6,378,206.4 x 1.9472543 - 8,545,594.4

= 3,874,395.4 m

p. = 3,874,395.4/[6,378,206.4 x (1-0.00676866/4

- 3 x 0.006768662/64 - 5 x 0.00676866:,/256)]

= 0.6084737 radians = 34.8629767°

e, = [1-(1-0.00676866),2]/[l + (1-0.00676866)1 2 ]

= 0.001697916

<i> =34.8629767° + [(3x0.001697916/2-27x0.001697916a/

32) sin (2x34.8629767°) + (21 x0.0016979162/16

- 55 x 0.001697916)/32) sin (4x34.8629767°)

+ (151x0.001697916:V96) sin (6x34.8629767°)

+ (1097x0.001697916-)/512) sin (8x34.8629767°)]

x 1807-rr

= 35° N. lat.

Using equation (14-9),

k = -96° + 12.743546170.6068355

= -75° = 75° W. long.

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-FORWARD EQUATIONS

(SEE P. 118-120 )

This example will illustrate equations (17-14) through (17-23), assuming prior

calculation of the constants from equations (17-1) through (17-13).

Given: Radius of sphere: R = 6,370,997 m

Point: <J> = 40° N. lat.

X = 90° W. long.

Find: x, y, k

From equations (17-14) and (17-15),

zB = arccos |sin 45° sin 40° + cos 45° cos 40° cos [(-19°59'36")

-(-90°)]1

= 50.22875°

AzB = arctan 'sin (-19°59'36" + 90°)/[cos 45° tan 40° - sin 45° cos

(-19°59'36" + 90°)]|

= 69.48856°

Since 69.48856° is less than 104.42834°, proceed to equation (17-16).

From equations (17-16) through (17-22),

pH = 1.89725 x 6370997 tan0 ''303,5 (Vix 50. 22875°)

= 7,496,100 m

k = 7,496,100 x 0.63056/(6370997 sin 50.22875°)

= 0.96527
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a = arccos|[tan063056(,/2x50.22875°) + tan0 63056 1M 104°

-50.22875°)]/1.27247|

= 1.88279°

n(AzBA-AzB) = 0.63056 x (104.42834° - 69.48856°) = 22.03163°

This is greater than a, so pB' = pH.

x' = 7,496,100 sin [0.63056 (104.42834°-69.48855°)]

= 2,811,900 m

y' = 7,496,100 cos [0.63056 (104.42834°-69.48855°)]

-1.20709 x 6,370,997

= -741,670 m

From equations (17-32) and (17-33),

x = -2,81 1,900 cos 45.81997° + 741670 sin 45.81997°

= -1,427,800 m

y = 741,670 cos 45.81997° + 2811900 sin 45.81997°

= 2,533,500 m

BIPOLAR OBLIQUE CONIC CONFORMAL (SPHERE)-INVERSE EQUATIONS

(SEE P. 120-121 )

Inversing the forward example:

Given: Radius of sphere: R = 6,370,997 m

Point: x = -1,427,800 m

y = 2,533,500 m

Find: 4>, X

From equations (17-34) and (17-35),

x' = -(-1,427,800) cos 45.81997° + 2,533,500 sin 45.81997°

= 2,811,900 m

y' = -(-1,427,800) sin 45.81997° - 2,533,500 cos 45.81997°

= -741,670 m

Since x' is positive, go to equations (17-36) through (17-44) in order:

p'B= [2,811, 9002 + (1.20709 x 6,370,997 - 741.670)2]"2

= 7,496,100 m

Az'„ = arctan [2,811,900/(1.20709 x 6,370,997 - 741,670)]

= 22.03150° (The denominator is positive, so there is no

quadrant correction.)

pB = 7,496,100 m

zB = 2 arctan [7,496,100/(1. 89725x6,370,997)]1 0 63056

= 50.22873°

a = arccos |[tan° 63056 (V2 x 50.22873°)

+ tan063056 V,( 104° -50. 22873°)]/ 1.27247|

= 1.88279°

Since Az'H is greater than a, go to equation (17-42).

AzB = 104.42834° - 22.0315070.63056

= 69.48876°
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4> = arcsin (sin 45° cos 50.22873° + cos 45° sin 50.22873° cos

69.48876°)

= 39.99987° or 40° N. lat., if rounding off had not

accumulated errors.

X = (-19°59'36")-arctan !sin 69.488767[cos 457tan 50.22873°

- sin 45° cos 69.48876°]!

= -89.99987° or 90° W. long., if rounding off had not

accumulated errors.

POLYCONIC (SPHERE)-FORWARI) EQUATIONS (SEE P. 128-129 )

Find: x, y, h

From equations (18-2) through (18-4),

E = (-75° + 96°) sin 40°

= 13.4985398°

x = 1.0 cot 40° sin 13.4985398°

= 0.2781798 unit

y = 1.0 x [40° x ir/180° - 30° x ir/180° + cot 40° (1-cos 13.4985398°)]

= 0.2074541 unit

From equations (18-6) and (18-5),

D = arctan i(13.4985398° x tt/180° - sin 13.4985398°)/(sec2 40° -

cos 13.4985398°)]

= 0.17018327°

h = (1-cos2 40° cos 13.4985398°)/sin2 40° cos 0.17018327°

= 1.0392385

Inversing the forward example:

Given: Radius of sphere: R = 1.0 unit

Origin: <J>0 = 30° N. lat.

X0 = 96° W. long.

Point: a. = 0.2781798 unit

y = 0.2074541 unit

Find: <i>, k

Since 2/ * -1.0 x 30° x it/180°, use equations (18-7) and (18-8):

Given: Radius of sphere:

Origin: <J>0 = 30° N. lat.

X0 = 96° W. long.

<J> = 40° N. lat.

X = 75° W. long.

R = 1.0 unit

Point:

POLYCONIC (SPHERE)-INVERSE EQUATIONS (SEE P. 129 )

A = 30° x ir/180° + 0.2074541/1.0

= 0.7310529

B = 0.27817982/1. 02 + 0.73105292

= 0.6118223

Assuming an initial <J>„ = A = 0.7310529 radians, it is simplest to work with

equation (18-9) in radians:
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<J>n + i = 0.7310529 - [0.7310529 x (0.7310529 tan 0.7310529 + 1)

-0.7310529- '/2(0.73105292 + 0.6118223) tan 0.7310529]/

[(0.7310529 - 0.7310529)/tan 0.7310529-1]

= 0.6963533 radian

Using 0.6963533 in place of 0.7310529 (except that the boldface retains the value

of A) a new <J>„ + 1 of 0.6981266 radian is obtained. Again substituting this value,

0.6981317 radian is obtained. The fourth iteration results in the same answer to

seven decimal places. Therefore,

<J> = 0.6981317 x 1807it = 40.0000004° or 40° N. lat.

From equation (18-10),

X = [arcsin (0.2781798 tan 4071.0)]/sin 40° + (-96°)

= -75.0000014° = 75° W. long.

POLYCONIC (ELLIPSOID)-FORWARD EQUATIONS (SEE P. 129-130 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Origin: <J>o = 30° N. lat.

X0 = 96° W. long.

Point: <J> = 40° N. lat.

X = 75° W. long.

Find: x, y, h

From equation (3-21),

M =6,378,206.4 x [(1-0.00676866/4 - 3 x 0.006768662/64

-5 x 0.006768663/256) x 40° x tt/180° - (3 x 0.00676866/8

+ 3 x 0.006768662/32 + 45 x 0.006768663/1024)

sin (2x40°) + (15 x 0.006768662/256 + 45 x 0.006768663/1024)

sin (4x40°) - (35 x 0.006768663/3072) sin (6x40°)]

= 4,429,318.9 m

Using 30° in place of 40°,

M0 = 3,319,933.3 m

From equation (4-20),

N = 6,378,206.4/(1-0.00676866 sin2 40°)1-

= 6,378,143.9 m

From equations (18-2), (18-12), and (18-13),

£' = (-75° + 96°) sin 40°

= 13.4985398°

x = 6,387,143.9 cot 40° sin 13.4985398°

= 1,776,774.5 m

y = 4,429,318.9 - 3,319,933.3 + 6,387,143.9 cot 40°

(1-cos 13.4985398°)

= 1,319,657.8 m
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To calculate scale factor h, from equations (18-16) and (18-15),

D = arctan |(13.4985398° x ir/180° - sin 13.4985398°)/[sec2 40°

- cos 13.4985398° - 0.00676866 sin2 407(1-0.00676866

sin2 40°)]|

= 0.1708380522°

h = [1-0.00676866 + 2(1-0.00676866 sin2 40°) sin2

y2(13.4985398°)/tan2 40°]/( 1-0.00676866) cos 0.1708380522°

= 1.0393954

POLYCONIC (ELLIPSOID)- INVERSE EQUATIONS (SEE P. 130-131 )

Inversing the forward example:

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Origin: <J>0 = 30° N. lat.

X0 = 96° W. long.

Point: x = 1,776,774.5 m

y = 1,319,657.8 m

Find: <i>, k

First calculating M0 from equation (3-21), as in the forward example,

M0 = 3,319,933.3 m

Since y * M0, from equations (18-18) and (18-19),

A =(3,319,933.3 + 1,319,657.8)/6,378,206.4

= 0.7274131

B = 1,776,774.52/6,378,206.42 + 0.72741312

= 0.6067309

Assuming an initial value of <J>„ = 0.7274131 radian, the following calculations are

made in radians from equations (18-20), (3-21), (18-17), and (18-21):

C = (1-0.00676866 sin2 0.7274131)12 tan 0.7274131

= 0.8889365

Mn =4,615,626.1 m

M'n = 1 - 0.00676866/4 - 3 x 0.006768662/64 - 5 x 0.006768663/256

- 2 x (3x0.00676866/8 + 3 x 0.006768662/32 + 45

x 0.0067686671024) cos (2 x 0.7274131) + 4 x (15

x 0.006768667256 + 45 x 0.0067686671024) cos (4

x 0.7274131) - 6 x (35 x 0.006768663/3072) cos (6

x 0.7274131)

= 0.9977068

Ma = 4,615,626.1/6,378,206.4 = 0.7236558

<J>n + I =0.7274131 - [0.7274131 x (0.8889365 x 0.7236558 + 1)

- 0.7236558 - 1/2(0.72365582 + 0.6067309) x 0.8889365]/

[0.00676866 sin (2x0.7274131) x (0.72365582 + 0.6067309

- 2 x 0.7274131 x 0. 7236558)/(4 x 0.8889365)

+ (0.7274131 - 0.7236558) x (0.8889365 x 0.9977068

- 2/sin (2x0.7274131)) - 0.9977068]

= 0.6967280 radian
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Substitution of 0.6967280 in place of 0.7274131 in equations (18-20), (3-21),

(18-17), and (18-21), except for boldface values, which are A, not <J>„, a new

4>„ + j of 0.6981286 is obtained. Using this in place of the previous value results in a

third <J>„ + 1 of 0.6981317, which is unchanged by recalculation to seven decimals.

Thus,

<J> = 0.6981317 x 1807it = 40.0000005° = 40° N. lat.

From equation (18-22), using the finally calculated C of 0.8379255,

X = [arcsin (1,776,774.5 x 0.8379255/6,378,206.4)]/sin 40° + (-96°)

= -75° = 75° W. long.

MODIFIED POLYCONIC ( I MW)- FORWARD EQUATIONS (SEE P. 131, 134-135)

International ellipsoid: a -- 6,378,388.0 m

2
= 0.00672267e =

Northernmost lat. of quad: <J>2 == 40° N. lat.

Southernmost lat. of quad: - 36° N. lat.

Central meridian: = 75° W. long.

Meridian true to scale: k,-= 73° W. long.

Point: 4> -- 39° N. lat.

X == 76° W. long.

For constants applying to entire map, using equations (18-26) and (18-27) for

n = 1,

#, = 6,378,388.0 x cot 367(1-0.00672267 x sin2 36°)1 -

= 8,789,311.0 m

F\ = [-73°- (-75°)] sin 36°

= 1.1755705°

Using <J>2 = 40° for n = 2 in the same equations,

R2 = 7,612,045.9 m

F2 = 1.2855752°

Using equations (18-23) through (18-25) for n = 1 and 2,

Xi =8,789,311.0 x sin 1.1755705°

= 180,322.7 m

^2 = 7,612,045.9 x sin 1.2855752°

= 170,781.1 m

=8,789,311.0 x (1-cos 1.1755705°)

= 1,849.957 m

T2 = 7,612,045.9 x (1-cos 1.2855752°)

= 1,916.033 m

Using equation (3-21) for n = 1,

M, = 6,378,388 x [(1-0.00672267/4 - 3 x 0.006722672/64

- 5 x 0.006722673/256) x 36° x -rr/180° - (3 x 0.00672267/

8 + 3 x 0.006722672/32 + 45 x 0.006722673/1024)

sin (2x36°) + (15x0.006722672/256 + 45

x 0.006722673/1024) sin (4x36°) - (35x0.006722673/

3072) sin (6x36°)]

= 3,985,606.6 m
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Repeating the calculation for n = 2 and 4>2 = 40°,

M2 = 4,429,605.0 m

Using equations (18-28) through (18-33) in order,

y2 = [(4,429,605.0-3,985,606.6)2 - (170,781.1 - 180.322.7)2]12

+ 1,849.957

= 445.745.8 m

C., =445,745.8 - 1,916.033

= 443,829.8 m

P =(4,429,605.0 x 1,849.957 - 3,985,606.6 x 445,745.8)/

(4,429,605.0 - 3,985,606.6)

= -3,982,836.2 m

Q = (445,745.8 - 1,849.957)/(4,429,605.0 - 3,985,606.6)

= 0.9997691

P' =(4,429,605.0 x 180,322.7 - 3,985,606.6 x 170,781.1)/

(4,429,605.0 - 3,985,606.6)

= 265,974.0 m

Q' =(170.781.1 - 180,322.7)/(4,429,605.0 - 3,985,606.6)

= -0.02149016

The above constants apply to the entire quadrangle. The following values are for

the specific point. Using equations (3-21) and (18-26) without subscripts, for

<J> = 39°,

M = 4,318,576.8 m

R = 7,887,159.9 m

Using equations (18-34) through (18-40) in order,

xa =265,974.0 + (-0.02149016) x 4,318,576.8

= 173,167.1 m

ya = -3,982,836.2 + 0.9997691 x 4,318,576.8

= 334,743.2 m

C =334,743.2 - 7,887,159.9 + (7,887, 159.92- 173, 167. 12)'2

= 332,842.0 m

xb = 7,612,045.9 sin [(-76°- (-75°)) sin 40°]

= -85,395.9 m

yh =443,829.8 + 7,612,045.9 x |1-cos [(-76°- (-75°)) sin 40°]|

= 444,308.8 m

xc = 8,789,311.0 sin [(-76°- (-75°)) sin 36°]

= -90,166.1 m

yc = 8,789,311.0 x |1- cos [(-76°- (-75°)) sin 36°]|

= 462.5 m

Using equations (18-41) through (18-44),

D = [-85,395.9-(-90,166.1)]/[444,308.8-462.5]

= 0.01074735

B = -90,166.1 + 0.01074735 x (332,842.0 + 7,887,159.9 -462.5)

= -1,827.9 m

x = {-1,827.9-0.01074735 x [7.887.159.92 x (1 +0.010747352) -

(- 1,827. 9)2]' "M 1 + 0.010747352)

= -86,588.8 m

y =332,842.0 + 7,887,159.9 - [7,887,159.92 - (-86,588.8)2])-;

= 333,317.3 m
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MODIFIED POLYCONIC (IMW)- INVERSE EQUATIONS (SEE P. 135)

Inversing forward example:

Given: a, e2, <J>2, <J>i, X0, k\ for forward example

x = -86,588.8 m

y = 333,317.3 m

These constants are calculated exactly as in the forward case, and have the same

values for this example: xu x2, yu Mu M2, y2, C2, P, Q, P', Q'- The first trial

<J> and X, or 4>ti and Xa, are found from equations (18-47) and (18-48):

4>(i = 40°

Xn = [-86,588.8/(6,378,388.0 x cos40°)] x 1807-ir + (-75°)

= -76.0153586°

Calculating x, y for these trial values of X, exactly as in the forward case,

results in the following test values:

yc = 476.8 m

xa = -86,707.4 m

yn = 444,323.6 m

The new trial <J> and X are found from equations (18-49) and (18-50):

<W2 = [(40°-36°) x (333,317.3-476.8)/(444,323.6-476.8)] + 36°

= 38.999598°

X(2 = [(-76.0153586°-(-75°)) x (-86,588.8)/(-86,707.4)] + (-75°)

= -76.0139694°

Calculating x, y from these trial values, and then recalculating 4>, X:

yc = 475.5 m

x,2 = -87,798.8 m

y,2 = 333,286.1 m

4>« = 38.9998792°

X('3 = -75.9999952°

The next iteration produces the following:

yc = 462.5 m

xtz = -86,588.5 m

yt3 = 333,303.9 m

4>M = 38.9999997°

XM = -75.9999984°

Then

yc = 462.5 m

xt4 = -86,588.7 m

ytA = 333,317.3 m

4>t5 = 38.9999996°

X,5 = -76.0000001°
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And finally, since there is no significant change,

yc = 462.5 m

= -86,588.8 m

2/(5 = 333,317.3 m

<i>te = 38.9999996°

\,6 = -76.0000001°

Thus, <J> = 39° N. lat. and X = 76° W. long.

BONNE (SPHERE) -FORWARD EQUATIONS (SEE P. 139-140)

Given: Radius of sphere: R = 1.0 unit

Standard parallel: <J>i = 40° N. lat.

Central meridian: X0 = 75° W. long.

Point: <J> = 30° N. lat.

X = 85° W. long.

Find: x, y

Using equations (19-1) through (19-4) in order,

p = 1.0 x [cot 40° + (40° -30°) x W180°]

= 1.3662865 units

E = 1.0 x [-85° - (-75°)] cos 3071.3662865

= -6.3385344°

x = 1.3662865 sin (-6.3385344°)

= -0.1508418 unit

y = 1.0 cot 40° - 1.3662865 cos (-6.3385344°)

= -0.1661807 unit

BONNE (SPHERE)- INVERSE EQUATIONS (SEE P. 140)

Inversing forward example:

Given: R, 4>u ko for forward example

x = -0.1508418 unit

y = -0.1661807 unit

Find: <J>, X

Using equations (19-5) through (19-7) in order,

p = [(-0.1508418)2 + (1.0 cot 40°-(-0.1661807))2P

= 1.3662865 units

<J> = (cot 40°) x 1807ir + 40° -(1.3662865/1.0) x 180%ir

= 30° N. lat.

X = -75° + 1.3662865 x !arctan [-0.1508418/(1.0 cot 40°

- (-0.1661807))]|/(1.0 cos 30°)

= -75° + 1.3662865 x |arctan [-0.1508418/1.3579343])/

cos 30°

= -85° = 85° W. long., not adding 180° to the arctan because

the denominator is positive.
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BONNE (ELUPSOID)-FORWARD EQUATIONS (SEE P. 140 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Standard parallel: <J>, = 40° N. lat.

Central meridian: X0 = 75° W. long.

Point: <J> = 30° N. lat.

X = 85° W. long.

Find: x, y

Using equations (14-15) and (3-21),

m = cos 307( 1-0.00676866 sin2 30°)'-

= 0.8667591

M = 6,378,206.4 x [(1 -0.00676866/4 - 3 x 0.006768662/64

-5x0.006768663/256) x 30° x tt/180° - (3x0.00676866/8

+ 3 x 0.00676866-/32 + 45 x 0.00676866:,/1024)

sin (2x30°) + (15x0.006768662/256 + 45 x 0.006768663/

1024) sin (4x30°) - (35x0.00676866:,/3072) sin (6x30°)]

= 3,319,933.3 m

Using the same equations, but with 4>, = 40° in place of 30°,

mx = 0.7671179

M! = 4,429,318.9 m

Using equations (19-8) through (19-11) in order,

p = 6,378,206.4 x 0.7671179/sin 40° + 4,429,318.9 - 3319933.3

= 8,721,287.6 m

E = 6,378,206.4 x 0.8667591 x [-85° - (-75°)]/8,721,287.6

= -6.3389360°

x = 8,721,287.6 sin (-6.3389360°)

= -962,915.1 m

y = 6,378,206.4 x 0.7671179/sin 40°-8,721,287.6 cos (-6.3389360°)

= -1,056,065.0 m

BONNE (ELLIPSOID)-INVERSE EQUATION'S (SEE P. 140)

Inversing forward example:

Given: a, e'2, <J>i, X0 for forward example

x = -962,915.1 m

y = -1,056,065.0 m

Find: 4>, X

Using equations (14-15) and (3-21), w! and M, are calculated as in the forward

example:

w, = 0.7671179

M, = 4,129,318.9 m

Using equations (19-12), (19-13), (7-19), (3-24), and (3-26) in order,
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[(-962.915.1)2 + (6,378,206.4 x 0.7671179/sin 40° - (-1,056,065.0))2]

8,721,287.6 m

6,378,206.4 x 0.7671179/sin 40° + 4,429,318.9-8,721,287.6

3,319,933.3 m

|3,319,933.3/[6,378,206.4 x (1-0.00676866/4

- 3 x 0.006768662/64 - 5 x 0.00676866;V256)]! x 1807ir

29.8737595°

[ 1 - ( 1 - 0.00676866)^]/[ 1 -I- ( 1 - 0. 00676866)*]

0.001697916

29.8737595° + [(3 x 0.001697916/2 -27 x 0.001697916732)

sin (2 x 29.8737595°) + (21 x 0.0016979162/16

- 55 x 0.0016979164/32) sin (4 x 29.8737595°)

+ (151 x 0.0016979163/96) sin (6 x 29.8737595°)

+ (1097 x 0.0016979164/512) sin (8 x 29.8737595°)] x 1807ir

30° N. lat.

Using equation (14-15),

m = cos 307(1-0.00676866 x sin2 30T

= 0.8667591

Using equation (19-14),

X = -75° + 8721287.6 x |arctan [-962,915.1/

(6,378,206.4 x 0.7671179/sin 40° - (-1,056,065.0))]!/

(6,378,206.4 x 0.8667591)

= -85° = 85° W. long.

ORTHOGRAPHIC (SPHERE) -FORWARD EQUATIONS (SEE P. 148-149)

Given: Radius of sphere: R = 1.0 unit

Center: <J>i = 40° N. lat.

X0 = 100° W. long

Point: <J> = 30° N. lat.

X = 110° W. long.

Find: x, y

In general calculations, to determine whether this point is beyond viewing, using

equation (5-3),

cos c = sin 40° sin 30° + cos 40° cos 30° cos (-110° + 100°)

= 0.9747290

Since this is positive, the point is within view.

Using equations (20-3) and (20-4),

x = 1.0 cos 30° sin (-110° + 100°)

= -0.1503837

y = 1.0 [cos 40° sin 30° - sin 40° cos 30° cos (-110° + 100°)]

= -0.1651911

Examples of other forward equations are omitted, since the formulas for the

oblique aspect apply generally.

P =

M =

V-

ex =

<J> =
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ORTHOGRAPHIC (SPHERE)-INVERSE EQUATIONS (SEE P. 150)

Inversing forward example:

Given: Radius of sphere: R = 1.0 unit

Center: 4>i = 40° N. lat.

X0 = 100° W. long.

Point: x = -0.1503837 unit

y = -0.1651911 unit

Find: <J>, X

Using equations (20-18) and (20-19),

p = [(-0.1503837)2 + (-0.1651911)2]"2

= 0.2233906

c = arcsin (0.2233906/1.0)

= 12.9082572°

Using equations (20-14) and (20-15),

<i> = arcsin [cos 12.9082572° sin 40° + (-0.1651911 sin

12.9082572° cos 4070.2233906)]

= 30.0000007°, or 30° N. lat. if rounding off did not occur.

X = -100° + arctan [-0.1503837 sin 12.90825727(0.2233906

cos 40° cos 12.9082572° + 0.1651911 sin 40° sin

12.9082572°)]

= -100° + arctan [-0.0335943/0.1905228]

= -100° + (-9.9999964°)

= -109.9999964°, or 110° W. long. if rounding off did not

occur

Since the denominator of the argument of arctan is positive, no adjustment for

quadrant is necessary.

STEREOGRAPHIC (SPHERE)-FORW'ARD EQUATIONS (SEE P. 157-158)

Given: Radius of sphere: R = 1.0 unit

Center: <J>i = 40° N. lat.

ko = 100 W. long.

Central scale factor: k0 = 1.0

Point: 4> = 30° N. lat.

X = 75° W. long.

Find: x, y, k

Using equations (21-4), (21-2), and (21-3) in order,

k = 2 x l.0/[1 + sin 40° sin 30° + cos 40° cos 30° cos (-75° + 100°)]

= 1.0402304

x = 1.0 x 1.0402304 cos 30° sin (-75° + 100°)

= 0.3807224 unit

y= 1.0x 1.0402304 [cos 40° sin 30° -sin 40° cos 30° cos (-75° + 100°)]

= -0.1263802 unit

Examples of other forward equations are omitted, since the above equations are

general.
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STEREOGRAPHIC (SPHERE)- INVERSE EQUATIONS (SEE P. 158-159)

Inversing forward example:

Given: Radius of sphere:

Center:

Central scale factor:

Point:

Find: <J>, X

Using equations (20-18) and (21-15),

p = [0.38072242 + (-0.1263802)2]"2 = 0.4011502 units

c = 2 arctan [0.4011502/(2x1.0x1.0)]

= 22.6832261°

Using equations (20-14) and (20-15),

d> = arcsin [cos 22.6832261° sin 40° + (-0.1263802)

sin 22.6832261° cos 4070.4011502]

= arcsin 0.5000000 = 30° = 30° N. lat.

X = -100° + arctan [0.3807224 sin 22.68322617(0.4011502

cos 40° cos 22.6832261° + 0.1263802 sin 40° sin 22.6832261°)]

= -100° + arctan (0.1468202/0.3148570)

= -100° + 25.0000013°

= -74.9999987° = 75° W. long.

except for effect of rounding-off input data. Since the denominator of the argu

ment of arctan is positive, no quadrant adjustment is necessary. If it were negative,

180° should be added.

STEREOGRAPHIC (ELLIPSOID)- FORWARD EQUATIONS (SEE P. 160-161 )

Oblique aspect:

Given: Clarke 1866 ellipsoid:

or

Center:

Central scale factor:

Point:

Find: x, y, k

From equation (3-1),

xi = 2 arctan !tan (45° + 4072) [(1-0.0822719 sin 40°)/

(1+0.0822719 sin 40°)]0082271*2l -90°

= 2 arctan 2.1351882 - 90°

= 39.8085922°

\ =2 arctan itan (45° + 3072) [(1-0.0822719 sin 30°)/

(1+0.0822719 sin 30°)]° °822719/2| - 90°

R = 1.0 unit

<J>i = 40° N. lat.

X0 = 100 W. long.

k0 = 1.0

x = 0.3807224 unit

y = -0.1263802 unit

a = 6,378,206.4 m

e2 = 0.00676866

e = 0.0822719

<[>i = 40° N. lat.

X0 = 100° W. long.

k0 = 0.9999

<J> = 30° N. lat.

X = 90° W. long.
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= 2 arctan 1.7261956 - 90°

= 29.8318339°

From equation (14-15),

nt

cos 407(1-0.00676866 sin2 40°)"2

0.7671179

cos 307(1-0.00676866 sin2 SO°)'*

0.8667591

From equation (21-27),

A = 2 x 6,378,206.4 x 0.9999 x 0.7671179/|cos 39.8085922°

[1x sin 39.8085922° sin 29.8318339° + cos 39.8085922°

cos 29.8318339° cos (-90° + 100°)]|

= 6,450,107.7 m

From equations (21-24), (21-25), and (21-26),

x = 6,450,107.7 cos 29.8318339° sin (-90° + 100°)

= 971,630.8 m

y = 6,450,107.7 [cos 39.8085922° sin 29.8318339°

- sin 39.8085922° cos 29.8318339° cos (-90° + 100°)]

= -1,063,049.3 m

k = 6,450,107.7 cos 29.83183397[6,378,206.4 x 0.8667591]

= 1.0121248

Polar aspect with known k0:

Given: International ellipsoid: a = 6,378,388.0 m

Find: x, y, k

Since this is the south polar aspect, for calculations change signs of x, y, <J>, X,

and X0 (4>c is not used): X0 = 100° E. long., <J> = 75° N. lat., k = 150° W. long. Using

equations (15-9) and (21-33),

t = tan(45° - 7572)/[(1 -0.0819919 sin 75°)/(1 + 0.0819919 sin 75°)]° °819919/2

= 0.1325120

p =2 x 6,378,388.0 x 0.994 x 0.1325120/[(1 +0.0819919)/l+0 0819919i

x (1-0.0819919)|1-00819919I]1/2

= 1,674,638.5 m

Using equations (21-30) and (21-31), changing signs of x and y for the south

polar aspect,

or

Center: South Pole

e2 = 0.00672267

e = 0.0819919

<J>i = 90° S. lat.

Central scale factor:

Point:

X0 = 100° W. long. (meridian

along pos. Y axis)

&0 = 0.994

<J> = 75° S. lat.

X = 150° E. long.

x= -1,674,638.5 sin (-150° -100°)

= -1,573,645.4 m
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y = + 1,674,638.5 cos (- 150° - 100°)

= -572,760.1 m

From equation (14-15),

From equation (21-32),

m = cos 757(1-0.00672267 sin2 75°)1*

= 0.2596346

k = 1,674,638.5/(6,378,388 x 0.2596346)

= 1.0112245

Polar aspect with known <J>c not at the pole:

Given: International ellipsoid: a = 6,378,388.0 m

e2 = 0.00672267

or e = 0.0819919

Standard parallel: <J>c = 71° S. lat.

X0 = 100 W. long. (meridian

along pos. Y axis)

Point: <J> = 75° S. lat.

X = 150° E. long.

Find: x, y, k

Since <J>c is southern, for calculations change signs of x, y, 4>c, <J>, X, and X0: 4>c =

71° N. lat., <J> = 75° N. lat., X = 150° W. long., Xo = 100° E. long. Using equation

(15-9), t for 75° has been calculated in the preceding example, or

t = 0.1325120

For tc, substitute 71° in place of 75° in (15-9), and

tc = 0.1684118

From equations (14-15) and (21-34),

mc = cos 717(1-0.00672267 sin2 71°)1/2

= 0.3265509

p - 6,378,388.0 x 0.3265509 x 0.1325120/0.1684118

= 1,638,869.6 m

Equations (21-30), (21-31), and (21-32) are used as in the preceding south polar

example, changing signs of x and y.

x = -1,638,869.6 sin (- 150° - 100°)

= -1,540,033.6 m

y = + 1,638,869.6 cos (- 150° - 100°)

= -560,526.4 m

k = 1,638,869.6/(6,378,388.0 x 0.2596346)

= 0.9896255

where m is calculated in the preceding example.
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STEREOGRAPHIC (ELLIPSOID)-INVERSE EQU ATIONS (SEE P. 161-162 )

Oblique aspect (inversing forward example):

Clarke 1866 ellipsoid: a = 6,378,206.4 m

<? = 0.00676866

or e = 0.0822719

Central: <h
= 40° N. lat.

X0 = 100° W. long.

Central scale factor: *0
- 0.9999

Point: X 971,630.8 m

y
= -1,063,049.3 m

Find: <J>, X

From equation (14-15),

mi = cos 407(1-0.00676866 sin2 40°)1 2

= 0.7671179

From equation (3-1), as in the forward oblique example,

x, = 39.8085922°

From equations (20-18) and (21-38),

p =[971,630.82 + (-1,063,049.3)2],s

= 1,440,187.6 m

ce = 2 arctan [1,440,187.6 cos 39.80859227(2 x6,378.206.4

x 0.9999 x 0.7671179)]

= 12.9018251°

From equation (21-37),

x = arcsin [cos 12.9018251° sin 39.8085922°

+ (-1,063,049.3 sin 12.9018251° cos 39.8085922° 1,440.187.6)]

= 29.8318337°

Using x as the first trial 4> in equation (3-4).

4> =2 arctan tan (45° + 29. 8318337° '2) x [(1 + 0.0822719

sin 29.8318337°) (1-0.0822719 sin 29.8318337°)F"^"-

-90°

= 29.9991438°

Using this new trial value in the same equation for 4>. not for x.

4> =2 arctan tan (45° + 29.8318337° 2) x [(1 + 0.0822719

sin 29.9991438°) (1-0.0822719 sin 29.9991438°)]" *e-,:'*2

-90°

= 29.9999953°

Repeating with 29.9999953° in place of 29.9991438°. the next trial <J> is

* = 29.9999997°
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The next trial calculation produces the same <J> to seven decimals. Therefore,

this is <J>.

Using equation (21-36),

X = -100° + arctan [971,630.8 sin 12.90182517

(1,440,187.6 cos 39.8085922° cos 12.9018251°

+ 1,063,049.3 sin 39.8085922° sin 12.9018251°)]

= -100° + arctan (216,946.9/1,230,366.8)

= -100° + 10.0000000°

= -90.0000000° = 90° W. long.

Since the denominator of the arctan argument is positive, no quadrant adjust

ment is necessary. If it were negative, it would be necessary to add or subtract

180°, whichever would place the final X between + 180° and - 180°.

Instead of the iterative equation (3-4), series equation (3-5) may be used

(omitting terms with e8 here for simplicity):

<J> = 29.8318337° x tt/180° + (0.00676866/2 + 5 x 0.006768662/24

-I- 0.006768663/12) sin (2 x 29.8318337°) + (7 x 0.006768662/48

+ 29 x 0.006768667240) sin (4 x 29.8318337°) + (7

x 0.006768667120) sin (6 x 29.8318337°)

= 0.5235988 radian

= 29.9999997°

Polar aspect with known k0 (inversing forward example):

Given: International ellipsoid: a

e2

or e

Center: South Pole 4>i

Xo

Central scale factor: k0

Point: x

y

= 6,378,388.0 m

= 0.00672267

= 0.0819919

= 90° S. lat.

= 100° W. long. (meridian along pos. Y axis)

= 0.994

= -1,573,645.4 m

= -572,760.1 m

Find: <J>, X

Since this is the south polar aspect, change signs as stated in text: For cal

culation, use 4>c = 90°, X0 = 100° E. long., x = 1,573,645.4 m, y = 572,760.1 m.

From equations (20-18) and (21-39),

p = (1,573,645.42 + 572,760. 12)1 2

= 1,674,638.5 m

t = 1,674,638.5 x [(1 + 0.0819919)"

(1-0.0819919)" 00,*19Q'O/]12/(2 x 6,378,388.0 x 0.994)

= 0.1325120

To iterate with equation (7-9), use as the first trial d>,

4> = 90° - 2 arctan 0.1325120

= 74.9031975°

Substituting in (7-9),

<J> = 90° - 2 arctan |0. 1325120 x [(1-0.0819919 sin 74.9031975°)/

(1 + 0.0819919 sin 74.9031975°)]0 081991*"'!l

= 74.9999546°
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Using this second trial <J> in the same equation instead of 74.9031975°,

<J> = 74.9999986°.

The third trial gives the same value to seven places, so, since the sign of <J> must

be reversed for the south polar aspect,

4> = - 74.9999986°, = 75° S. lat., disregarding effects of rounding off.

If the series equation (3-5) is used instead of (7-9), \ is first found from (7-13):

x = 90° - 2 arctan 0. 1325120

= 74.9031975°

Substituting this into (3-5), after converting \ to radians for the first term, <J> is

found in radians and is converted to degrees, then given a reversal of sign for the

south polar aspect, giving the same result as the iteration.

From equation (20-16),

X = + 100° + arctan[1,573,645.4/(-572,760.1)]

= 100° + (-69.9999995°)

= 30.0000005°

However, since the denominator of the argument of arctan is negative, 180° must

be added to X (added, not subtracted, since the numerator is positive), then

the sign of X must be changed for the south polar aspect:

X = -(30.0000005° + 180°)

= -210.0000005°

To place this between + 180° and - 180°, add 360°, so

X = + 149.9999995° or 150° E. long., disregarding effects of rounding off.

Polar aspect with known <J>c not at the pole (inversing forward example):

Given: International ellipsoid: a

e2

or e

Standard parallel: 4>c

X0

Point: x

y

= 6,378,388.0 m

= 0.00672267

= 0.0819919

= 71° S. lat.

= 100° W. long. (meridian along pos. Y axis)

= -1,540,033.6 m

= -560,526.4 m

Find: <J>, X

Since this is south polar, change signs as stated in text. For calculation, 4>c =

71° N. lat., X0 = 100° E. long., x = 1,540,033.6, y = 560,526.4. From equations

(15-9) and (14-15), as calculated in the corresponding forward example,

tc = tan (45° - 7172)/[(1 -0.0819919 sin 71°)/

(1 + 0.0819919 sin 7 1°)]° 0819919/2

= 0.1684118
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mc = cos 717(1-0.00672267 sin2 ll°)m

= 0.3265509

From equations (20-18) and (21-40),

p = (1,540,033.62 + 560.526.42)"2

= 1,638,869.5 m

t = 1,638,869.5 x 0.1684118/(6,378,388.0 x 0.3265509)

= 0.1325120

For the first trial <i> in equation (7-9),

4> = 90° - 2 arctan 0.1325120

= 74.903197°

Substituting in (7-9),

<J> = 90° - 2 arctan |0. 1325120 [(1 - 0.0819919 sin 74.903197°)/

(1 + 0.0819919 sin 74.903197°)]00819919/2|

= 74.9999586°

Replacing 74.903197° with 74.9999586°, the next trial <J> is

<J> = 75.0000026°

The next iteration results in the same 4> to seven places, so changing signs,

4> = -75.0000026° = 75° S. lat., disregarding effects of rounding off.

The use of series equation (3-5) with (7-13) to avoid iteration follows the same

procedure as the preceding example. For X, equation (20-16) is used, calculating

with reversed signs:

X = +100° + arctan[1,540,033.6/(-560,526.4)]

= 100° + (-69.9999997°)

= 30.0000003°

Since the denominator in the argument for arctan is negative, add 180°:

X = 210.0000003°

Now subtract 360° to place X between +180° and -180°:

X = -149.9999997°

Finally, reverse the sign to account for the south polar aspect:

X = + 149.9999997° = 150° E. long., disregarding rounding off in the input.

GNOMONIC (SPHERE)-FORWARD EQUATIONS (SEE P. 165, 167)

Given: Radius of sphere: R = 1.0 unit

Center: 4>i = 40° N. lat.

X0 = 100° W. long.

Point: <J> = 30° N. lat.

X =110° W. long.
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Find: x, y

Using equation (5-3),

cos c = sin 40° sin 30° + cos 40° cos 30° cos [- 110°-(-100°)]

= 0.9747290

Since cos c is positive (not zero or negative), the point is in view and may be

plotted. Using equations (22-3) through (22-5) in order,

jfc' = 1/0.9747290

= 1.0259262

x = 1.0 x 1.0259262 cos 30° sin [-110°

= -0.1542826 unit

y = 1.0 x 1.0259262 x |cos 40° sin 30°

cos 30° cos [-110° - (-100°)]|

= -0.1694739 unit

Examples of other forward equations are omitted, since the above equations are

general.

GNOMONIC (SPHERE)- INVERSE EQUATIONS (SEE P. 167)

Inversing forward example:

Given: R, fa, X0 for forward example

x = -0.1542826 unit

y = -0.1694739 unit

Find: <J>, X

Using equations (20-18) and (22-16),

p = [( -0. 1542826)2 + ( -0. 1694739)2]1 2

= 0.2291823 unit

c = arctan (0.2291823/1.0)

= 12.9082593°

Using equations (20-14) and (20-15),

4> = arcsin [cos 12.9082593° sin 40° + (-0.1694739

sin 12.9082593° cos 4070.2291823)]

= 30° N. lat.

X = -100° + arctan [-0.1542826 sin 12.90825937

(0.2291823 cos 40° cos 12.9082593° - (-0.1694739)

sin 40° sin 12.9082593°)]

= -100° -l- arctan (-0.03446529/0.1954624)

= -110° = 110°W. long., not adding 180° to the arctan, because the denomi

nator is positive.

VERTICAL PERSPECTIVE (SPHERF)-FORWARD EQUATIONS (SEE P. 173)

Given: Radius of sphere: R = 6,371 km

Height of perspective point: H = 500 km

Center of projection: $>x - 39° N. lat.

X0 = 77° W. long.

- (-100°)]

- sin 40°
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Point: <J> = 41° N. lat.

X = 74° W. long.

Find: x, y

First H is converted to P as described after equation (23-3):

P =500/6,371 + 1

= 1.0784806

Using equation (5-3),

cos c = sin 39° sin 41° + cos 39° cos 41° cos [-74°-(-77°)]

= 0.99858702

Since cos c is greater than I/P, the point is within range and may be plotted. Using

equations (23-3), (22-4), and (22-5) in order,

k' = (1.0784806-1)/(1. 0784806-0.99858702)

= 0.98231426

x = 6,371 x 0.98231426 cos 41° sin [-74°-(-77°)]

= 247.19409 km

y = 6,371 x 0.98231426 x |cos39°sin41°-sin39°cos41°cos[-74°-(-77°)]l

= 222.48596 km

VERTICAL PERSPECTIVE (SPHERE)- INVERSE EQUATIONS (SEE P. 175)

Inversing forward example:

Given: R, H, <]>i, X0 for forward example

x =247.19409 km

y =222.48596 km

Find: 4>, k

The conversion of H to P is made as in the forward example, so that

P = 1.0784806

Using equations (20-18), (23-4), (20-14), and (20-15) in order,

p = [247.194092 + 222.485962]12

= 332.57318 km

c =arcsin |[ 1.0784806 - (1-332.573182 x (1.0784806 + 1)/

(63712 x (1.0784806-1)))12]/[6,371 x (1.0784806-1)/

332.57318 + 332.57318/(6,371 x (1.0784806-1))]|

= 3.0461860°

4> = arcsin [cos 3.0461860° sin 39° + (222.48596 sin 3.0461860°

cos 397332.57318)]

= 41° N. lat.

X = -77° + arctan [247.19409 sin 3.04618607(332.57318

cos 39° cos 3.0461860° - 222.48596 sin 39° sin 3.0461860°)]

= -77° + arctan (13.1361245/250.652184)

= - 74° = 74° W. long. , not adding 180° to the arctan because the denominator is

positive.
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TILTED PERSPECTIVE (SPHERE)-FORWARD EQUATIONS (SEE P. 175-176 )

Using forward example for Vertical Perspective (sphere), but applying tilt:

Radius of sphere: R = 6,371 km

Height of perspective point: H - 500 km

Center of projection: 4>i = 39° N. lat.

= 77° W. long.

Tilt of plane: io = 30°

Azimuth of upward tilt:
■y = 50° east of north

Point: = 41° N. lat.

X = 74° W. long.

Find: xt, yt

First, x,y is calculated exactly as in the forward Vertical Perspective (sphere)

example, so that

x =247.19409 km

y = 222.48596 km

Using equations (23- 7), (23 -5), and (23-6) in order,

A = |(222.48596 cos 50° + 247.19409 sin 50°) sin 307500| + cos 30°

= 1.1983983

xt = (247.19409 cos 50° - 222.48596 sin 50°) cos 3071.1983983

= - 8.3400123 km

yt = (222.48596 cos 50° + 247.19409 sin 50°)/1. 1983983

= 277.34759 km

TILTED PERSPECTIVE (SPHERE)- INVERSE EQUATIONS (SEE P. 176)

Inversing forward example:

Given: R, H, 4>u k0, w, 7 for forward example

x, = -8.3400123 km

yt = 277.34759 km

Find: <J>, X

Using equations (23-11) through (23-14) in order,

M = 500 x (-8.3400123)/(500-277.34759 sin 30°)

= -11.5408351

Q = 500 x 277.34759 cos 307(500-277.34759 sin 30°)

= 332.372874

x = -11.5408351 cos 50° + 332.372874 sin 50°

= 247.19409 km

y = 332.372874 cos 50° - (-11.5408351) sin 50°

= 222.48596 km

These values of x and y are used to calculate 4> and X exactly as for the Vertical

Perspective (sphere) inverse equations, so

4> = 41° N. lat.

X = 74° W. long.
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VERTICAL PERSPECTIVE (ELLIPSOID)-FORWARD EQUATIONS (SEE P. 176-177 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Height of perspective point: H = 500,000 m

Center of projection: 4>i = 39° N. lat.

h> = 77° W. long.

Height of center above ellipsoid: K = 200 m

Point: = 41° N. lat.

X = 74° W. long.

h = 100 m

Find: x,y

Since H is given, P is computed from equations (8- 23), (23 - 21) and (23-17),

using <J>i as the first trial <J>?:

AT, = 6,378,206.4/(1 -0.00676866 sin2 39°)1/2

= 6,386,772.6 m

P = (cos 397cos 39°) (500,000 + 6,386,772.6 + 200)/6,378,206.4

= 1.0797664

<i>g = 39° - arcsin [6,386,772.6 x 0.00676866 sin 39° cos 397

(1.0797664 x 6,378,206.4)]

= 38.8241050°

Substituting 38.8241050° in place of the second 39° only in the equation for P, the

second iterations produce

P = 1.0770938

<J>ff = 38.8236686°

The next iterations produce

P = 1.0770872

4>0 = 38.8236675°

There is no change in the next iteration; therefore, these values are final. Using

equations (4-20), (23-15), (23-16), (23-19), (23-19a), and (23- 20) in order,

N = 6,378,206.4/(1-0.00676866 sin2 41°)12

= 6,387,517.6 m

C = [(6,387,517.6+ 100)/6,378,206.4] cos 41°

= 0.7558232

S =|[6,387,517.6x(1-0.00676866) + 100]/6,378,206.4) sin 41°

= 0.6525799

K = 500,000/[1. 0770872 cos (39° -38. 8236675°)

-0.6525799 sin 39° - 0.7558232 cos 39° cos (-74°- (-77°))]

= 6,264,070.9 m

x =6,264,070.9 x 0.7558232 sin [-74°- (-77°)]

= 247,786.2 m

y =6,264,070.9 x [1.0770872 sin (39° -38. 8236675°)

+ 0.6525799 cos 39° - 0.7558232 sin 39° cos (-74°-(-77°))]

= 222,134.1 m
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VERTICAL PERSPECTIVE (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 177-178)

Inversing forward example:

Given: a, e2, H, <J>i, X0, K for forward example

x = 247,786.2 m

y =222,134.1 m

Find: <J>, X

Equations (23-21) and (23-17) are used to compute P and 4>g, just as in the forward

equations, so that

P = 1.0770872

4>0 = 38.8236675°

Then, using equations (23-22) through (23 -28) in order,

B = 1.0770872 cos (39°-38.8236675°)

= 1.0770821

D = 1.0770872 sin (39° -38. 8236675°)

= 0.00331482

L = 1- 0.00676866 cos2 39°

= 0.9959120

G = 1- 0.00676866 sin2 39°

= 0.9973193

J =2 x 0.00676866 sin 39° cos 39°

= 0.00662075

u = - 2 x 1.0770821 x 0.9959120 x 500,000 - 2 x 0.00331482

x 0.9973193 x 222,134.1 + 1.0770821 x 0.00662075

x 222,134.1 + 0.00331482 x 500,000 x 0.00662075

= -1,072,553.2 m

v =0.9959120 x 500.0002 + 0.9973193 x 222,134.12

- 500,000 x 0.00662075 x 222,134.1 + (1-0.00676866)

x 247,786.22

= 3.584366 x 1011 m2

For the initial trial, since h may not be zero, £7 = 1. Using equations (23-29)

through (23 - 34) in order,

t = 1.07708722 x (1-0.00676866 cos2 38.8236675°)

- 1.0 x (1-0.00676866)

= 0.1621193

K' =|-(- 1,072,553.2) + [(-1,072,553.2)2 - 4 x 0.1621193

x 3.584366 x 10uH/(2x0.1621193)

= 6,262,797.2 m

X =6,378,206.4 x [(1.0770821-500,000/6,262,797.2) cos 39°

-(222,134.1/6,262,797.2-0.00331482) sin 39°]

= 4,814,079.9 m

Y = 6,378,206.4 x 247,786.2/6,262,797.2

= 252,352.3 m

S = (222,134.1/6,262,795.7-0.00331482) cos 39°

+ (1.0770821-500,000/6,262,795.7) sin 39°

= 0.6525753
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X = - 77° + arctan (252,352.3/4,814,079.9)

= -73.9993222°

For a first trial <J>, use arcsin S, or 40.7360514°. For this trial <J> and X, select h.

It will be taken as 100 m, for the sake of this example, in order to repeat the

forward example. Using equations (23-35) and (23-36),

4> = arcsin |0.6525753/[(1-0.00676866)/(1 -0.00676866

sin2 40.7360514°)i2 + 100/6,378,206.4]|

= 41.0004168°

E = [1/(1-0.00676866 sin2 41.0004168°)^ + 100/6,378,206.4]2

- 0.00676866 sin2 41.0004168° x [1/(1-0.00676866 sin2 41.0004168°)

- 1002/(6,378,206.42- 6,378,206.42x 0.00676866)]

= 1.0000314

Using this value of E in equation (23-29), and the above value of 4> (41.0004168°)

in the right side of equation (23-35), each equation (23-29) through (23- 35) is

recomputed, with the following results:

t =0.1620882

K' = 6,264,074.3 m

X = 4,814,189.6 m

Y = 252,300.9 m

S =0.6525799

X = -74.0000011°

4> =40.9999978°

E = 1.0000314

The next iteration produces

X = -74.0000011°

4> =40.9999991°

The next produces no change in X or <J> to seven decimal places. Thus,

X = 74° W. long.

<J> = 41° N. lat.

TILTED PERSPECTIVE (ELLIPSOID)-"CAMERA" PARAMETERS FROM PROJECTIVE

CONSTANTS (SEE P. 178 )

Using forward example for Vertical Perspective (ellipsoid), but applying tilt:

Given: a, e2, H, 4>u X0, h0 for forward Vertical Perspective (ellipsoid) example

Tilt of plane: w = 30°

Azimuth of upward tilt: y = 50° east of north

Point: <J> = 41° N. lat.

X = 74° W. long.

h = 100 m
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Find: xt, yt

First, x and y are calculated exactly as for the forward Vertical Perspective

(ellipsoid) example, giving

x = 247,786.2 m

y = 222,134.1 m

Using equations (23-7), (23-5), and (23-6) in order,

A = |(222,134.1 cos 50° + 247,786.2 sin 50°) sin 307500,000| + cos 30°

= 1.1986257

xt = (247,786.2 cos 50°-222, 134.1 sin 50°) cos 3071.1986257

= -7,868.693 m

yt = (222,134.1 cos 50° + 247,786.2 sin 50°)/1.1986257

= 277,484.7 m

TILTED PERSPECTIVE (ELLIPSOID WITH "CAMERA"

PARAMETERS)- INVERSE EQUATIONS (SEE P. 178 )

Inversing forward example:

Given: a, e2, H, Kh h0, a>, y for forward example

xt = -7,868.693 m

yt = 277,484.7 m

Using equations (23-11) through (23-14) in order,

M =500,000 x (-7,868.693)/(500,000 - 277,484.7 sin 30°)

= -10,890.694 m

Q = 500,000 x 277,484.7 cos 307(500,000-277,484.7 sin 30°)

= 332,600.29 m

x = -10,890.694 cos 50° + 332,600.29 sin 50°

= 247,786.2 m

y = 332,600.29 cos 50° - (-10,890.694) sin 50°

= 222,134.1 m

Then <J> and X are calculated from x and y exactly as for the inverse Vertical

Perspective (ellipsoid) example, giving

X = 74° W. long.

4> = 41° N. lat.

TILTED PERSPECTIVE (ELLIPSOID WITH PROJECTIVE

EQUATIONS)-FORWARD (SEE P. 178-180 )

An example is not given to solve equations (23-43) and (23-44), solving 11 simul

taneous equations, since it is tedious but also fairly standard in approach. The ex

amples below determine constants /C, —Ku for the example used above, and then

apply them to find rectangular coordinates.

Given: parameters for forward Tilted Perspective (ellipsoid) example, repeated

here:
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Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Height of perspective point: H = 500,000 m

Center of projection: 4>, = 39° N. lat.

X0 = 77° W. long.

Height of center above ellipsoid: h0 = 200 m

Tilt of plane: w = 30°

Azimuth of upward tilt: 7 = 50° east of north

To produce the same rectangular coordinates, the (Xt, Yt) axes are assumed to

coincide with the (Xt', F,') axes; thus,

6 = 0°

xo = 0

2/o = 0

First P and <i>g are calculated by iteration from H, etc., exactly as they are in

the forward Vertical Perspective (ellipsoid) example above, resulting in

P = 1.0770872

4>g =38.8236675°

Using equations (23-45) through (23-62) in order,

U = 1.0770872 x [sin (39°-38.8236675°) cos 50° sin 30°

+ cos (39°-38.8236675°) cos 30°]

= 0.9338458

F = [sin 39° sin (-77°) cos 50° - cos (-77°) sin 50°]/0. 9338458

= -0.6066034

V = [sin 39° sin (-77°) sin 50° + cos (-77°) cos 50°] cos 3070.9338458

= -0.3015228

M = [sin 39° cos (-77°) sin 50°-sin (-77°) cos 50°] cos 3070.9338458

= 0.6813973

N = [sin 39° cos (-77°) cos 50° + sin (-77°) sin 50°]/0. 9338458

= -0.7018436

W = [-sin 50° cos 30° cos 0° - cos 50° sin 0°]/0. 9338458

= -0.7104106

T = [-sin 50° cos 30° sin 0° + cos 50° cos 0°]/0.9338458

= 0.6883231

K5 = -(-0.7018436) sin 30° - cos 39° cos (-77°) cos 3070.9338458

= 0.1887983

K6 = -(-0.6066034) sin 30° - cos 39° sin (-77°) cos 3070.9338458

= 1.0055359

K7 = (cos 39° cos 50° sin 30° - sin 39° cos 30°)/0. 9338458

= -0.3161523

= 500,000 x [0.6813973 cos 0° + (-0.7018436) sin 0°]

+ 0.1887983 x 0

= 340,698.6 m

K2 = 500,000 x [-0.3015228 cos 0° + (-0.6066034) sin 0°]

+ 1.0055359 x 0

= -150,761.5 m

K3 = 500,000 x (-0.7104106) cos 39° + (-0.3161523) x 0

= -276,046.4 m
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#4 = 500,000 x (-0.7104106) x 1.0770872 sin (39° - 38.8236675°) + 0

= -1,177.4 m

KH = 500,000 x [0.6813973 sin 0° - (-0.7018436) cos 0°] + 0.1887983 x 0

= 350,921.8 m

Kc, = 500,000 x [-0.3015228 sin 0° - (-0.6066034) cos 0°] + 1.0055359 x 0

= 303,301.7 m

Kw = 500,000 x 0.6883231 cos 39° + (-0.3161523) x 0

= 267,463.7 m

Ku = 500,000 x 0.6883231 x 1.0770872 sin (39° -38. 8236675°) + 0

= 1,140.8 m

To test these constants K\ -Kn, equations (23-15), (23- 16), and (23- 38) through

(23-42) may be used, remembering that x't = xt and y't = Ht in this example.

Using the same point previously used,

<J> = 41° N. lat.

X = 74° W. long.

h = 100 m

Find: xt, y,

Calculating C and S exactly as in the forward Vertical Perspective (ellipsoidal)

example,

C = 0.7558232

S = 0.6525799

Using (23-38) through (23-40),

X = 0.7558232 cos (-74°)

= 0.2083331

Y = 0.7558232 sin (-74°)

= -0.7265439

Z = 0.6525799

Using equations (23-41) and (23-42), first calculating the denominator,

den. = 0.1887983 x 0.2083331 + 1.0055359 x (-0.7265439)

+ (-0.3161523) x 0.6525799 + 1

= 0.1024523

x, = [340,698.6 x 0.2083331 + (-150,761.5) x (-0.7265439)

+ (-276,046.4) x 0.6525799 + (-1,177.4)]/0. 1024523

= -7,868.7 m

y, = [350,921.8 x 0.2083331 + (303,301.7) x (-0.7265439)

+ 267,463.7 x 0.6525799 + 1,140.8]/0. 1024523

= 277,484.8 m

These values agree with the results in the forward Tilted Perspective (ellipsoid)

example.

TILTED PERSPECTIVE (ELLIPSOID WITH

PROJECTIVE EQUATIONS)- INVERSE (SEE P. 180)

Inversing forward example:

Given: K\ —Ku as determined just above
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xt = -7,868.7 m

yt = 277,484.8 m

Find: <J,, X

Using equations (23-63) through (23 - 77) in order, since xt = x't and yt = y't

by choice in the example for calculating Kn,

Ax = -7,868.7 x 0.1887983-340,698.6

= -342,184.2 m

A2 = -7,868.7 x 1.0055359 - (-150,761.5)

= 142,849.2 m

A3 = -7,868.7 x (-0.3161523) - (-276,046.4)

= 278,534.1 m

A4 = -1,177.4 - (-7,868.7)

= 6,691.3 m

A5 = 277,484.8 x 0.1887983 - 350,921.8

= -298,533.1 m

A6 = 277,484.8 x 1.0055359-303,301.7

= -24,280.8 m

A7 = 277,484.8 x (-0.3161523) - 267,463.7

= -355,191.2 m

As = 1,140.8 - 277,484.8

= -276,344.0 m

A9 = -342,184.2 x (-276,344.0) - 6,691.3 x (-298,533.1)

= 9.655812 x 1010 m2

Ax0 = -342,184.2 x (-355,191.2) - 278,534.1 x (-298,533.1)

= 2.046925 x 10" m2

A„ = 142,849.2 x (-298,533.1) - (-342,184.2) x (-24,280.8)

= -5.095372 x 1010 m2

A12 = 142,849.2 x (-355,191.2) - 278,534.1 x (-24,280.8)

= -4.397575 x 1010 m2

A13 = 142,849.2 x (-276,344.0) - 6,691.3 x (-24,280.8)

= -3.931305 x 1010 m2

A14 = (2.046925 x 1011)2 + (-5.095372 x 1010)2/( 1-0.00676866)

+ (-4.397575 x 1010)2

= 4.644686 x 1022 m4

A15 = 9.655812 x 1010 x 2.046925 x 1011 + (-4.397575) x 1010

x (-3.931305) x 10 10

= 2.149354 x 1022 m4

Assuming E = 1 for the first trial, using equations (23 - 78), (23 - 79). (23 -80), and

(23 -35), with a trial " + " sign for the "±" in equation (23-79),

A16 = (9.655812 x 1010)2 - 1.0 x (-5.095372 x 1010)2 + (-3.931305 x 1010)2

= 8.272705 x 1021 m4

S = [2.149354 x 1022/(4.644686 x 1022)]

+ \[2. 149354 x 1022/(4.644686 x 1022)]2

- 8.272705 x 1021/(4.644686 x 1022)!"2

= 0.6525751

X = arctan !(9.655812 x 1010 - 2.046925 x 1011 x 0.6525751)/

[-4.397575 x 1010 x 0.6525751 - (-3.931305 x 1010)]|

= arctan [-3.7019109 x 1010/(1. 0615571 x 1010)]

= -73.9992678°

The first trial <J> is arcsin S = 40.7360359°. It is assumed that h = 100 for this

example based on <J> and k.
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<i> = arcsin |0.6525751/[(1-0.00676866)/(1 -0.00676866

x sin2 40.7360359°)1 2 + 100/6378206. 4 j

= 41.0004013°

Since <J> and X place the approximate point at a reasonable location, the trial " + "

sign is satisfactory.

A second trial E is now calculated from equation (23-36):

E = [1/(1-0.00676866xsin2 41.0004013°)1-+ 100/6,378,206.4]2

-0.00676866 x sin2 41.0004013° [1/(1-0.00676866xsin2 41.0004013°)

-1002/(6,378,206.42- 6,378,206.42 x 0.00676866)]

= 1.0000314

This is substituted in place of 1.0 for E in equation (23-78) and AUi, S, X, and <i>

are recalculated until <i> changes by a negligible amount. Finally, disregarding

round-off errors in the above example,

4> = 41° N. lat.

X = 74° W. long.

TILTED PERSPECTIVE <ELLlPSOID)-"CAMERA"

PARAMETERS FROM PROJECTIVE CONSTANTS

(SEE P. 180-181 )

Using constants calculated in forward example for Tilted Perspective (ellipsoid

with projective equations):

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Height of center above ellipsoid: h0 = 200 m

Constants Kx—Ku previously calculated

Find: H, <J>i, X0, <u, y, 6, x0, y0

The three simultaneous equations (23-81) are set up as follows:

340,698.6 X0 + (-150,761.5) Y0 + (-276,046.4) Z0 = -(-1,177.4)

350,921.8^ + 303,301.7 Y0 + 267,463.7 Z0 = -1,140.8

0.1887983 X0 + 1.0055359 Y0 + (-0.3161523) Z0 = -1

Solving these three equations for the three unknowns,

X0 = 0.1887645

y0 = -0.8176291

Z0 = 0.6752538

Using equations (23-82) through (23-86),

xp = [340,698.6x0.1887983 + (-150,761.5)xl. 0055359

+ (-276,046.4) x (-0.3161523)]/[0.18879832

+ 1.00553592 + (-0.3161523)2]

= -0.06961613 m

yp = [0.1887983 x 350,921.8+1.0055359 x 303,301.7

+ (-0.3161523) x 267,463. 7M0.18879832

+ 1.00553592 + (-0.3161523)2]

= 250,000.04 m
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k0 =arctan (-0.8176291/0.1887645)

= -77° = 77° W. long., not adding 180° since the denominator is positive.

P = [0.18876452 + (-0.8176291)2 + 0.67525382],"2

= 1.0770873

4>g = arcsin (0.6752538/1.0770873)

= 38.8236777°

Using equation (23-87), with 4>g as the first approximation for fa,

fa = 38.8236777° + arcsin 10.00676866 sin 38.8236777°

cos 38. 82367777[ 1.0770873 x (1-0.00676866 sin2 38.8236777°)1 -]i

= 38.9997744°

Substituting this value for fa in the same equation, and leaving the first use of

4>f/ intact, since it is part of the equation, the second iteration gives,

fa = 39.0000099°

The next iteration gives

fa = 39.0000102°

and the next gives no change to seven decimals. Therefore, disregarding round

off errors,

fa = 39° N. lat.

Using equation (23- 88),

H = 6.378,206.4 x [1.0770873 cos 38. 82367777cos 39°

-1/(1-0.00676866 sin2 39°)1 2 - 200/6,378,206.4]

= 500,000.0 m

Using equations (23-15), (23-16). (23-38) through (23- 40), (23- 41), and

(23-42), coordinates x0 and y0 are found for fa and Xo:

C = [1/(1-0.00676866 sin2 39°)1 2 + 200/6,378,206.4] cos 39°

= 0.7782141

S = [(1-0.00676866)/(1-0.00676866 sin2 39°)1-

+ 200/6,378,206.4] sin 39°

= 0.6259200

X = 0.7782141 cos (-77°)

= 0.1750601

}, = 0.7782141 sin (-77")

= -0.7582685

Z = 0.6259200

•r0 =[340,698.6 x 0.1750601 + (-150,761.5) x (-0.7582685)

+ (-276,046.4) x (0.6259200) + (-1,177.4)]/[0. 1887983

x 0.1750601 + 1.0055359 x (-0.7582685) + (-0.3161523)

x (0.6259200) + 1]

= 0.04 m, actually zero if round-off had not occurred.

yo = -0.03 m similarly from (23-42) as i/t\ actually zero
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Using equations (23-89) and (23 - 90),

w =arcsin |[(0.04-(-0.06961613))2 + (250,000.04 -(-0.03))2]12/

500,000)

= 29.9999447°, actually 30° without round-off.

6 =arctan [(0.04-(-0.06961613))/(250,000.04-(-0.03))]

= 0.0000256°, actually 0° without round-off.

Calculating (xt', yt') for (<J>i + 0.02°, X0) just as coordinates (x0, y0) were calculated

above,

xt = [-1,698.034 - 0.04] cos 0° + [1,645.247-(-0.03)] sin 0°

= -1,698.07 m

y, = [1,645.247-(-0.03)] cos 0°-[- 1,698.034-0.04] sin 0°

= 1,645.28 m

7 = - arctan [-1,698.07/(1,645.28 cos 30°)]

= 49.99997°, actually 50° without round-off.

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)-FORWARD EQUATIONS

(SEE P. 186 )

Given: Radius of sphere: R = 3.0 units

Center: ^ = 40° N. lat.

Find: x, y

Using equation (24-2),

k, = |2/[1 + sin 40° sin (-20°) + cos 40° cos (-20°) cos (100°+ 100°)]^

= 4.3912175

Using equations (22-4) and (22-5),

x = 3.0x4.3912175 cos (-20°) sin (100° + 100°)

= -4.2339303 units

y = 3.0x4.3912175 [cos 40° sin (-20°) - sin 40° cos (-20°) cos (100°+ 100°)]

= 4.0257775 units

Examples for the polar and equatorial reductions, equations (24-3) through

(24-14), are omitted, since the above general equations give the same results.

LAMBERT AZIMUTHAL EQUAL-AREA (SPHERE)-INVERSE EQUATIONS

(SEE P. 186-187 )

Inversing forward example:

xt' = -1,698.034 m

yt' = 1,645.247 m

Using equations (23-91) through (23-93),

Point: <J>

100° W. long.

20° S. lat.

100° E. long.

Given: Radius of sphere: R

Center: <i>\

= 3.0 units

= 40° N. lat.

= 100° W. long.
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Point: x = -4.2339303 units

y = 4.0257775 units

Find: <J>, X

Using equations (20-18) and (24-16),

p = [(-4.2339303)2 + 4.02577752P

= 5.8423497 units

c = 2 arcsin [5.8423497/(2 x 3.0)]

= 153.6733917°

From equation (20-14),

<J> = arcsin [cos 153.6733917° sin 40° + 4.0257775

sin 153.6733917° cos 4075.8423497]

= -19.9999993° = 20° S. lat., disregarding rounding-off effects.

From equation (20-15),

X = -100° + arctan [-4.2339303 sin 153.67339177

(5.8423497 cos 40° cos 153.6733917°

-4.0257775 sin 40° sin 153.6733917°)]

= -100° + arctan [-1.8776951/(-5.1589246)]

= -100° + 20.0000005°

= -79.9999995°

Since the denominator of the argument of arctan is negative, add 180°:

X = 100.0000005° = 100° E. long., disregarding rounding-off effects.

In polar spherical cases, the calculation of X from equations (20- 16) or (20- 17)

simpler than the above, but the quadrant adjustment follows the same rules.

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)- FORWARD EQUATIONS

(SEE P. 187-188)

Oblique aspect:

Given: Clarke 1866 ellipsoid: a

e2

or e

Center: <h

Xo

Point: <J>

X

Find: x, y

Using equation (3-12),

q = (1-0.00676866) |sin 307(1-0.00676866 sin2 30°)- [1/

(2x0.0822719)] In [(1-0.0822719 sin 30°)/

(1+0.0822719 sin 30°)]|

= 0.9943535

Inserting <J>i = 40° in place of 30° in the same equation,

= 6,378,206.4 m

= 0.00676866

= 0.0822719

= 40° N. lat.

= 100° W. long.

= 30° N. lat.

= 110° W. long.

(7, = 1.2792602
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Inserting 90° in place of 30°,

qp = 1.9954814

Using equation (3-11),

p = arcsin (0.9943535/1.9954814)

= 29.8877622°

p, = arcsin (1.2792602/1.9954814)

= 39.8722878°

Using equation (3-13),

Rq = 6,378,206.4 x (1.9954814/2)"2

= 6,370,997.2 m

Using equation (14-15),

7^ = cos 407(1-0.00676866 sin2 40°)1/2

= 0.7671179

Using equations (24-19) and (24-20),

B = 6,370,997.2 x !2/[1 + sin 39.8722878° sin 29.8877622°

+ cos 39.8722878° cos 29.8877622° cos (-110°+ 100°)F2

= 6,411,606.1 m

D = 6,378,206.4x0.7671179/(6,370,997.2 cos 39.8722878°)

= 1.0006653

Using equations (24-17) and (24-18),

x =6,411,606.1 x 1.0006653 cos 29.8877622° sin (-110° + 100°)

= -965,932.1 m

y = (6.411,606. 1/1. 0006653)[cos 39.8722878° sin 29.8877622°

- sin 39.8722878° cos 29.8877622° cos (-110° + 100°)]

= -1,056,814.9 m

Polar aspect:

Given: International ellipsoid: a

a

or e

Center: North Pole 4>i

X,.

Point: 4>

X

Find: <J>, X, h, k

Prom equation (3-12),

q = (1-0.00672267) lsin 807(1-0.00672267 sin2 80°)

-[1/(2x0.0819919)] In [(1-0.0819919 sin 80°)/

(1+0.0819919 sin 80°)]

= 1.9649283

= 6,378,388.0 m

= 0.00672267

= 0.0819919

= 90° N. lat.

= 100° W. long. (meridian along

neg. Y axis)

= 80° N. lat.

= 5° E. long.
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Using the same equation with 90° in place of 80°,

qp = 1.9955122

From equation (14-15),

m = cos 807( 1-0.00672267 sin2 80°)1 2

= 0.1742171

Using equations (24-23), (21-30), (21-31), and (21-32),

p =6,378,388.0 x (1.9955 122 -1.9649283)12

= 1,115,468.3 m

x = 1,115,468.3 sin (5° +100°)

= 1,077,459.7 m

y = -1,115,468.3 cos (5°+ 100°)

= 288,704.5 m

A: = 1,115,468.3/(6,378,388.0 x 0.1742171)

= 1.0038193

h = 1/1.0038193 = 0.9961952

LAMBERT AZIMUTHAL EQUAL-AREA (ELLIPSOID)-INVERSE EQUATIONS

(SEE P. 188-190)

Oblique aspect (inversing forward example):

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

or e =0.0822719

Center: <t>i = 40° N. lat.

X0 = 100° W. long.

Point: x = -965,932.1 m

y = -1,056,814.9 m

Find: <J>, X

Since these are the same map parameters as those used in the forward example,

calculations of map constants not affected by 4> and X are not repeated here.

qp = 1.9954814

p, = 39.8722878°

Rq = 6,370,997.2 m

D = 1.0006653

Using equations (24-28), (24-29), and (24-27),

p = |[-965,932.1/1.0006653f + [1.0006653x(-1,056,814.9)]2!12

= 1,431,827.1 m

ce = 2 arcsin [1,431,827.1/(2x6,370,997.2)]

= 12.9039908°

q = 1.9954814 [cos 12.9039908° sin 39.8722878°

+ 1.0006653x(-1,056,814.9) sin 12.9039908°

cos 39.872287871,431,827.1]

= 0.9943535
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For the first trial 6 in equation ,3— 16-.

o = arcsin <0.99435352i

= 29.8133914•

Substituting into equation 3— 16 '.

c. = 29.8133914- - [-1-0.00676866 sin2 29.8133914• r

;2 cos 29.8133914= '] x 0.9943535 1-0.00676866)

- sin 29.8133914= (1-0.00676866 sin2 29.8133914)

- [1<2 x 0.0822719 j In [, 1-0.0822719

sin 29.8133914\. < 1 ~ 0.0822719 sin 29.8133914-.] * 180= -

= 29.9998293-

Substituting 29. 9998293= in place of 29.8133914" in the same equation, the new trial

6 is found to be

6 - 30.iX*Xm>2=

The next iteration results in no change to seven decimal places: therefore.

6 = 30- N. lat.

Using equation (24-26).

X = -100° -- arctan -965.932.1 sin 12.9039908• I 1.(X"06653

x 1.431.827.1 cos 39.8722878° cos 12.9039908=

-1.00066532 (-1.056.814.9) sin 39.8722878-

sin 12.9039908-]

= -100- - arctan (-215.710.0 1,223.352.4)

= -100- - 9.9999999-

= -109.9999999- = 110" W. long.

Since the denominator of the argument for arctan is positive, no quadrant ad

justment is necessary.

Polar a-*ftect (inversing forward example):

Given: International ellipsoid: a = 6.378.388.0 m

e2 = 0.00672267

or e = 0.0819919

Center: North Pole 6, = 90• X. lat.

Xo = 100= W. long, (meridian

along neg. 1" axis)

Point: x = 1.077.459.7 m

y = 288.704.5 m

Find: 6. X

First qu is found to be 1.9955122 from equation (3-12). as in the corresponding

forward example for the polar aspect. From equations (20-18) and (24-31).

p = (1. 077.459. 72 - 288.704.52)0-'

= 1.115.468.4 m

q= - [1.9955122 - (1.115.468.4 6.378.3S8.0)2]

- 1.9649283
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Iterative equation (3-16) may be used to find <J>. The first trial 4> is

<J> = arcsin (1.9649283/2)

= 79.2542275°

When this is used in equation (3-16) as in the oblique inverse example, the next

trial <J> is found to be

<J> = 79.9744304°

Using this value instead, the next trial is

d> = 79.9999713°

and the next,

4> = 80.0000036°

The next value is the same, so

4> = 80° N. lat.

From equation (20-16),

X = -100° + arctan [1,077,459. 7/(-288,704.5)]

= -174.9999978°

Since the denominator of the argument for arctan is negative, add 180°, or

X = 5.0000022° = 5° E. long.

AZIMUTHAL EQUIDISTANT (SPHERE)-FORWARD EQUATIONS

(SEE P. 195-196)

Given: Radius of sphere: R = 3.0 units

Center: fa = 40° N. lat.

X0 = 100° W. long.

Point: <J> = 20° S. lat.

X = 100° E. long.

Find: x, y

Using equations (5-3) and (25-2),

cos c = sin 40° sin (-20°) + cos 40° cos (-20°) cos (100° + 100°)

= -0.8962806

c = 153.6733925°

k' = (153.6733925° x ir/180°)/sin 153.6733925°

= 6.0477621

Using equations (22-4) and (22-5),

x = 3.0 x 6.0477621 cos (-20°) sin (100° + 100°)

= -5.8311398 units

y = 3.0 x 6.0477621 [cos 40° sin (-20°) - sin 40° cos (-20°)

cos (100° + 100°)]

= 5.5444634 units
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Since the above equations are general, examples of other forward formulas are

not given.

AZIMUTHAL EQUIDISTANT (SPHERE)-INVERSE EQUATIONS (SEE P. 196-197 )

Inversing forward example:

Given: Radius of sphere: R = 3.0 units

Center: <J>i = 40° N. lat.

X0 = 100° W. long.

Point: x = -5.8311398 units

if = 5.5444634 units

Find: <J>, X

Using equations (20-18) and (25-15),

p = K-5.8311398)2 + 5.54446342]1*

= 8.0463200 units

c = 8.0463200/3.0

= 2.6821067 radians

= 2.6821067 x 1807ir = 153.6733925°

Using equation (20-14),

4> = arcsin (cos 153.6733925° sin 40° + 5.5444634 sin

153.6733925° cos 4078.0463200)

= -19.9999999°

= 20° S. lat., disregarding effects of rounding off.

Using equation (20-15),

X = -100° + arctan [(-5.8311398) sin 153.67339257(8.0463200

cos 40° cos 153.6733925° - 5.5444634 sin 40°

sin 153.6733925°)]

= -100° + arctan [(-2.5860374)/(- 7. 1050794)]

= -100° - arctan 0.3639702

= -80.0000001°

but since the denominator of the argument of arctan is negative, add or subtract

180°, whichever places the final result between + 180° and - 180°:

X = -80.0000001° + 180°

= 99.9999999°

= 100° E. long., disregarding effects of rounding off.

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- FORWARD EQUATIONS

(SEE P. 197-201 )

Polar aspect:

Given: International ellipsoid: a = 6,378,388.0 m

e2 = 0.00672267

Center: North Pole <J>i = 90° N. lat.

k0 = 100° W. long. (meridian

along neg. Y axis)

Point: <J> = 80° N. lat.

X = 5° E. long.
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Find: x, y, k

Using equation (3-21),

M =6,378,388.0 x [(1-0.00672267/4 - 3 x 0.00672267764 - 5

x 0.006722673/256) x 80° x tt/180° - (3 x 0.00672267/8

+ 3 x 0.00672267-/32 + 45 x 0.00672267:V1024) sin (2 x 80°)

+ (15 x 0.006722672/256 + 45 x 0.006722673/1024) sin (4 x 80°)

- (35 x 0.006722673/3072) sin (6 x 80°)]

= 8,885,403.1 m

Using the same equation (3-21), but with 90° in place of 80°,

Mp = 10,002,288.3 m

Using equation (14-15),

m = cos 807(1-0.00672267 sin2 80°)1 2

= 0.1742171

Using equations (25-16), (21-30), (21-31), and (21-32),

p = 10,002,288.3 - 8,885,403.1

= 1,116,885.2 m

x = 1,116,885.2 sin (5° + 100°)

= 1,078,828.3 m

y = -1,116.885.2 cos (5° + 100°)

= 289,071.2 m

k= 1,116,885.2/(6,378,388.0 x 0.1742171)

= 1.0050946

Oblique aspect (Guam projection):

Given: Clarke 1866 ellipsoid: a

e2

Center: <J>,

\0

False origin: x0

2/0

Point: 4>

X

Find: x, y

Using equation (25-18), after converting angles to degrees and decimals: (<i>i =

13.472466353°, X0 = 144.748750706°, <J> = 13.339038461°, X = 144.635331292°),

x = [6,378,206.4 x (144.635331292° - 144.748750706°)

cos 13.3390384617(1-0.00676866 sin2 13.339038461°)1 -\

x w/180°

= -12,287.52 m

Since 50,000 m is added to the origin for the Guam projection,

x= -12,287.52 + 50,000.0

= 37,712.48 m

= 6,378,206.4 m

= 0.00676866

= 13°28'20.87887" N. lat.

= 144°44' 55. 50254" E. long.

= 50,000 m

= 50,000 m

= 13°20'20.53846" N. lat.

= 144°38'07. 19265" E. long.
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From equation (3-21),

M =6,378,206.4 x [(1-0.00676866/4 - 3 x 0.006768662/64 - 5

x 0.006768663/256) x 13.339038461° x tt/180° - (3

x 0.00676866/8 + 3 x 0.006768662/32 + 45 x 0.006768663/

1024) sin (2 x 13.339038461°) + (15 x 0.006768662/256

+ 45 x 0.006768663/1024) sin (4 x 13.339038461°)

- (35 x 0.006768663/3072) sin (6 x 13.339038461°)]

= 1,475,127.96 m

Substituting fa = 13.472466353° in place of 13.339038461° in the same equation,

M! = 1,489,888.76 m

Using equation (25-19), and using the x without false origin,

y = 1,475,127.96 - 1,489,888.76 + (-12.287.52)2 tan 13.339038461°

x (1-0.00676866 sin2 13.339038461°)1/2/(2 x 6,378,206.4)

= -14,758.00 m

Adding 50,000 meters for the false origin,

y = 35,242.00 m

Oblique aspect (Micronesia form):

Clarke 1866 ellipsoid: o == 6,378,206.4 m

e2-= 0.00676866

Center: Saipan Island: fa -- 15°11'05.6830" N. lat.

^0 -= 145°44'29.9720" E. long.

False origin: *0 -= 28,657.52 m

2/o -= 67,199.99 m

Point: Station Petosukara <J> -= 15°14'47.4930" N. lat.

X -- 145°47'34.9080" E. long.

Find: x, y

First convert angles to degrees and decimals:

fa = 15.18491194°

X0 = 145.7416589°

<J> = 15.24652583°

X = 145.7930300°

From equations (4-20a), (4-20), (25-20), and (25-21) in order,

Ari = 6,378,206.4/(1-0.00676866 x sin2 15. 18491 194°)1 2

= 6,379,687.9 m

W =6,378,206.4/(1-0.00676866 x sin2 15.24652583°)1"2

= 6,379,699.7 m

ili = arctan [(1-0.00676866) tan 15.24652583°

+ 0.00676866 x 6379687.9 sin 15.184911947

(6,379,699.7 x cos 15.24652583°)]

= 15.2461374°

Az = arctan |sin (145.79303° - 145.7416589°)/

[cos 15.18491194° x tan 15.2461374°

- sin 15.18491194° x cos (145.79303° - 145. 74 16589°)] I

= 38.9881345°
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Since sin Az + 0, from equation (25-22a),

s = arcsin [sin (145.79303° - 145.7416589°) x cos 15.24613747

sin 38.9881345°]

= 0.001374913 radians, since s is used only in radians.

From equations (25-23) through (25-27) in order,

G = 0.0067686612 sin 15.184911947(1-0.00676866)1-

= 0.02162319

H = 0.006768661 2 cos 15. 18491 194° cos 38.98813457

(1-0.00676866)12

= 0.06192519

c =6,379,687.9 x 0.001374913 x |1-0.0013749132 x0.061925192

x (1-0.061925192)/6 + (0.0013749133/8) x 0.02162319

x 0.06192519 x (1 -2 x 0.061925192) + (0.0013749134/120)

x [0.061925192 x (4-7x0.061925192) - 3 x 0.021623192

x (1-7 x 0.061925192)] - (0.001374913r>/48) x 0.02162319

x 0.06192519)

= 8,771.52 m

x = 8,771.52 x sin 38.9881345° + 28,657.52

= 34,176.20 m

y =8,771.52 x cos 38.9881345° + 67,199.99

= 74,017.88 m

AZIMUTHAL EQUIDISTANT (ELLIPSOID)- INVERSE EQUATIONS

(SEE P. 201-202 )

Polar aspect (inversing forward example):

Given: International ellipsoid: a

e2

Center: North Pole: <J>i

K

Point: x

y

Find: 4>, X

= 6,378,388.0 m

= 0.00672267

= 90° N. lat.

= 100° W. long. (meridian along

neg. Y axis)

= 1,078,828.3 m

= 289,071.2 m

Using equation (3-21), as in the corresponding forward example,

Mp = 10,002,288.3 m

Using equations (20-18), (25-28), and (7-19),

p = (1,078,828.32 + 289,071. 22)12

= 1,116,885.2 m

M = 10,002,288.3 - 1,116,885.2

= 8,885,403.1 m

p. = 8,885,403. 1/[6,378,388.0 x (1 -0.00672267/4 -3x0.006722672/64

- 5 x 0.006722673/256)]

= 1.3953965 radians

= 1.3953965 x 1807ir = 79.9503324°

Using equations (3-24) and (3-26),

e, = [1-(1-0.00672267)12]/[1 + (1-0.00672267)1-]

= 0.0016863
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4> = 1.3953965 radians + (3x0.0016863/2-27x0.0016863;,/32)

sin (2x79.9503324°) + (21x0.0016863-/16- 55

x 0.00168634/32) sin (4 x 79.9503324°) + (151

x 0.0016863:,/96) sin (6x79.9503324°)

= 1.3962634 radians

= 1.3962634 x 1807ir = 79.9999999°

= 80° N. lat., rounding off.

Using equation (20-16),

X =-100° + arctan [1,078,828.3/(-289,071.2)]

= - 100°-74.9999986° + 180°

= 5.0000014°

= 5° E. long., rounding off.

The 180° is added because the denominator in the argument for arctan is negative.

Oblique aspect (Guam projection, inversing forward example):

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Center: <J>i = 13.472466353° N. lat.

X0 = 144.748750706° E. long.

False origin: x0 = 50,000 m

y0 = 50,000 m

Point: .c = 37,712.48 m

y = 35,242.00 m

Find: <J>, X

First subtract 50,000 m from x and y to relate them to actual projection origin:

x = -12,287.52 m, y = -14,758.00 m. Calculation of M, from equation (3-21)

is exactly the same as in the forward example, or

M, = 1,489,888.76 m

From equation (25-30), the first trial M is found from an assumed 4> = 4>\:

M = 1,489,888.76 + (-14,758.00) - (- 12,287.52)2 tan 13.472466353°

x(1-0.00676866 sin2 13.472466353°),"2/(2x 6,378,206.4)

= 1,475,127.92 m

Using equation (7-19) and the above trial .1/.

p. = 1,475, 127.92/[6,378,206.4 x (1 -0.00676866 4-3 xo.006768662/

64 - 5 x 0. 006768663/256)]

= 0.2316688 radian

Using equation (3-24),

e, = [l-(1-0.00676866)1-]/[l+(1-0.00676866)1-'l

= 0.0016979

Using equation (3-26) in radians, although it could be converted to degrees,
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<J> = 0.2316688 + (3 x 0.0016979/2 - 27 x 0.00169793/32)

sin (2x0.2316688) + (21x0.00169792/16-55

x 0.00169794/32) sin (4x0.2316688) + (151

x 0.00169793/96) sin (6x0.2316688)

= 0.2328101 radian

= 0.2328101 x 1807tt = 13.3390381°

If this new trial value of <i> is used in place of in equation (25-30), a new value

of M is found:

M = 1,475,127.95 m

This in turn, used in (7-19), gives

(x = 0.2316688 radian

and from (3-26),

<t> = 13.3390384°

The third trial, through the above equations and starting with this value of <J>,

produces no change to seven decimal places. Thus, this is the final value of <J>.

Converting to degrees, minutes, and seconds,

4> = 13°20'20.538" N. lat.

Using equation (25-31) for longitude,

X = 144.748750706° + [(-12,287.52) x (1-0.00676866

sin2 13.3390384°)1 2/(6,378,206.4 cos 13.3390384°)] x 1807ir

= 144.6353313°

= 144°38'07.193" E. long.

Oblique aspect (Micronesia form, inversing forward example):

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Center: Saipan Island <J>, = 15.18491194° N. lat.

X0 = 145.7416589° E. long.

False origin: x0 = 28,657.52 m

y0 = 67,199.99 m

Point: x =34,176.20 m

y = 74,017.88 m

Find: 4>, X

From equations (25-32) through (25-41) in order,

c = [(34,176.20 - 28,657.52)2 + (74,017.88-67,199.99)2]1 2

= 8,771.51 m

Az = arctan [(34, 176.20-28,657.52)/(74, 017.88-67, 199.99)]

= 38.9881292°

AS = 6,378,206.4/(1-0.00676866 sin2 15. 18491194°)1 2

= 6,379,687.9 m
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A = -0.00676866 cos2 15.18491194° cos2 38.98812927

(1-0.00676866)

= -0.0038:34730

B = 3 x 0.00676866 x (1 + 0.003834730) sin 15.18491194° cos

15.18491194° x cos 38.98812927(1-0.00676866)

= 0.004032465

D = 8,771.51/6,379,687.9

= 0.001374913

E = 0.001374913 + 0.003834730 x (1-0.003834730) x 0.0013749133/6

- 0.004032465 x (1-3 x 0.003834730) x 0.0013749134/24

= 0.001374913. This is in radians for use in equation (25- 38).

For use as degrees in equations (25-39) and (25-40),

E = 0.001374913 x 1807ir = 0.07877669°

F = 1 + 0.003834730 x 0.0013749132/2 - 0.004032465

x 0.0013749133/6

= 1.000000004

iji = arcsin (sin 15.18491194° cos 0.07877669° + cos 15.18491194°

x sin 0.07877669° cos 38.9881292°)

= 15.2461374°

X = 145.7416589° + arcsin (sin 38.9881292° sin 0.078776697

cos 15.2461374°)

= 145.7416589° + 0.0513711°

= 145.7930300°

= 145° 47 34.908" E. long.

<J> = arctan [(1-0.00676866x1.000000004 sin 15. 184911947sin

15.2461374°) x tan 15.24613747(1-0.00676866)]

= 15.2465258°

= 15°14'47.493" N. lat.

MODIFIED-STEREOGRAPHIC CONFORMAL (SPHERE)-FORWARD EQU ATIONS

(SEE P. 207-208 )

Using Modified-Stereographic Conformal projection of Alaska (spherical form)

example:

Given: Radius of sphere: R = 1.0 unit

Order of equation: m = 6

Center: <J>i = 64° N. lat.

Xo = 152° W. long.

Constants A!—A6: See Table 33, using constants for sphere.

B!—B6: See Table 33, using constants for sphere.

Point: <J> = 60° N. lat.

X = 150° W. long.

Find: x, y, k

Using equations (26-1) through (26-3) in order,

k' = 2/!1 + sin 64° sin 60° + cos 64° cos 60° cos [-150°-(-152°)])

= 1.0012864

x' = 1.0012864 cos 60° sin [-150°-(-152°)]

= 0.01747220

>/' = 1.0012864 x |cos 64° sin 60° - sin 64° cos 60° cos [-150° - (-152°)]!

= -0.06957209
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Using equations in (26-6), with j = 2, in order,

r =2x0.01747220

= 0.03494439

s' =0.017472202 + (-0.06957209)2

= 0.00514555

90 =0

ai =A6 + iB6

= 0.3660976 + (-0.2937382)/

bi = A5 + iB5

= 0.0636871 +(-0.1408027)1

c, =6x(A6+/B6)

= 2. 1965856 + ( - 1 . 7624292)/

d, = 5x(A5 + /B5)

= 0.3184355 + (-0.7040135)1

a2 = bi + rai

= 0.0636871 +( -0.1408027)/ + 0.03494439 x [0.3660976 + (-0.2937382)/]

= 0.07648016 + (-0. 15106720);

b2 = A4 + iB^-s'a\

= -0.0153783 + (-0. 1968253)/-0.00514555x [0.3660976 + (-0.2937382)/]

= -0.01726207 + (-0.19531385)/

c2 = di +

= 0.3184335 + (-0.7040135)/ + 0.03494439 x [2. 1965856 + (-1.7624292)/]

= 0.39519385 + (-0.76560052)/

d2 = 4x(A4 + /£4)-s'c1

= 4x[-0.0153783 + (-0.1968253)/]-0.00514555x[2.1965856 + (- 1.7624292)/]

= -0.07281585 + (-0.77823253)/

Incrementing j to 3, 4, and 5 for the four variables aj, bj, cj, and dj in the same set

of equations,

at=b2 + ra2 = -0.01458952 + (-0.20059281)/

63 = A3 + iBa-s'a2 = 0.00706707 + 0.00558982 i

c3 =d2 + rc2 = -0.05900604 + (-0.80498597)/

d:i =3x(A3+/B:i)-s'c2 = 0.02034831+0.01837694/

a4 = 63 + ra3 = 0.00655725 + (-0.00141977)/

b4 = A2+iB2-s'a3 = 0.00532637 + (-0.00308534)/

c4 =da + rca = 0.01828638 + (-0.00975281)/

d4 =2x(A2+iB2)-s'e:i = 0.01080622 + (-0.00409290)/

a-, = b4 + ra4 = 0.00555551 + (-0.00313495)/

bh = A\ + iBl-s'a4 = 0.99721856 + 0.00000731/

c5 =d4 + rc4 = 0.01144523 + (-0.00443371)/

d5 = lx(At + iBJ-s'^ = 0.99715821 + 0.00005018/

Incrementing j to 6 for a, and bj only,

a6 =65 + ra5 = 0.99741269 + (-0.00010224)/

=g0-s'a5 = -0.00002859 + 0.00001613/

Using equations (26-7) through (26-9) in order, and with the relationship Z2 = - 1,

x + iy = 1 x ;[0.01747220 + (-0.06957209)/][0.99741269

+ (-0.00010224)/] + ( -0.000002859) + 0.00001613/
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= 0.01742699 + 0.00000711?'2-0.06939387?-0.00002859 + 0.00001613?

= 0.01739129- 0.06937775?'

x = 0.01739129 unit

y = -0.06937775 unit

F2 + iFx = [0.01747220 + (-0.06957209)?][0.01144523

+ (-0.00443371)?'] + 0.99715821+0.00005018?

= 0.99704972 + (-0.00082355)?'

k = [0.997049722 + (-0.00082355)2]1-x1. 0012864

= 0.9983327

MODIFIED-STEREOGRAPHIC CONFORMAL (SPHERE)-

INVERSE EQUATIONS (SEE P. 208)

Inversing forward example:

Given: R, m, <J>i, X0, Ax-Ar„ and B!-B6 for forward example

x = 0.01739129 unit

y = -0.06937775 unit

Find: 4>, X

Using the Knuth algorithm equations (26-6) with (26-10), (26-13), and (26-8),

but not in that order, the first trial x' = 0.01739129/1, and trial y' = -0.06937775/1.

Except for the values of x' and y' , equations (26-6) are used in the same manner

as they were in the forward example, resulting in

r?,; = 0.99741192 + (-0.00010209) i

b6 = -0.00002841 + 0.00001606 ?'

c5 = 0.01144135 + (-0.00445277) i

d5 = 0.99715864 + 0.00004934 i

Using equations (26-13), (26-8), and (26-10) in order,

f{x' + iy') = [0.01739129 + (-0.06937775) ?'] [0.99741192

+ (-0.00010209) i] + (-0.00002841) + 0.00001606 i

- [0.01739129 + (-0.06937775)

= -0.00008051 + 0.00019384 ?'

F2 + ?'F, = [0.01739129 + (-0.06937775) ?'] [0.01144135

+ (-0.00445277) i] + 0.99715864 + 0.00004934 i

= 0.99704869 + (-0.00082188)?

A (or' + iy')= - [-0.00008051 + 0.00019384 ?']/[0.99704869 + (-0.00082188) i]

= -0.00008091 + 0.00019435 i

The division in equation (26-10) uses the relationship that

(a + bi)/(c + di) = (ac + bd)/(c2 + rf2) + [(bc-ad)/(c2 + d2)] ?'

Adding A (x' + iy') to (x' + iy'),

x' = 0.01739129 - 0.00008091

= 0.01747220

y' = -0.06937775 + 0.00019435

= -0.06957210
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Repeating the above steps with the new values of (a-', y,), the new

A + iy') = 0.00000000 + 0.00000000 t

Thus there is no change to eight decimals, so equations (26-14) through (26-17)

may be used in order,

p = [0.017472202 + (-0.06957210)*]1*

= 0.07173252

c =2 arctan (0.07173252/2)

= 4.1082095°

* = arcsin [cos 4.1082095° sin 64° + (-0.06957210

sin 4.1082095° cos 6470.07173252)]

= 60° N. lat.

X = -152° + arctan [0.01747220 sin 4.10820957

(0.07173252 cos 64° cos 4.1082095°

- (-0.06957210) sin 64° sin 4.1082095°)]

= - 150° = 150° W. long. , not adding 180° to the arctan because the denominator

is positive.

SPACE OBLIQUE MERCATOR (SPHERE) -FORWARD EQUATIONS

(SEE P. 218-219 )

Given: Radius of sphere: R = 6,370,997.0 m

Landsat 1, 2, 3 orbit: i = 99.092°

P2/P{ = 18/251

Path = 15

Point: <J> = 40° N. lat.

X = 73° W. long.

Find: x, y for point taken during daylight northern (first) quadrant of orbit.

Assuming that this is only one of several points to be located, the Fourier

constants should first be calculated. Simpson's rule may be written as follows,

using X' as the main variable:

If

F = fahf^)dk'

a close approximation of the integral is

F = (AX73)[/(X'a) + 4/(X'a + AX') + 2/(X'a + 2AX') + 4/(X'a + 3AX')

+ 2/(X'a + 4AX') + . . .+ 4/(X'fe - AX') +/(X'b)]

where / (X') is calculated for X' equal to a, and for X' at each equal interval

AX' until k' = b. The values / (X') are alternately multiplied by 4 and 2 as the

formula indicates, except for the two end values, and all the resulting values are

added and multiplied by one-third of the interval. The interval AX' must be

chosen so there is an even number of intervals.

Applying this rule to equation (27-1) with the suggested 9° interval in X', the

function/(X') = (//-S-)/(1+S2)1-' is calculated foraX' of 0°, 9°, 18°, 27°, 36°, . . .,

81°, and 90°, with ten 9° intervals. The calculation for X' =9° is as follows, using

equations (27-4) and (27-5):
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H = 1 - (18/251) cos 99.092°

= 1.0113321

S = (18/251) sin 99.092° cos 9°

= 0.0699403

/(X') = (1.0113321 - 0.06994032)/(1 + 0.06994032)1-

= 1.0039879

To calculate B, the following table may be figuratively prepared, although a

computer or calculator program would normally be used instead (H is a constant):

X' s /<X') Multiplier Summation

0° 0.0708121 1.0038042 x1 = 1.0038042

9 .0699403 1.0039879 x4 = 4.0159516

18 .0673463 1.0045212 x2 = 2.0090423

27 .0630941 1.0053522 x4 = 4.0214087

36 .0572882 1.0064001 x2 = 2.0128001

45 .0500717 1.0075627 x4 = 4.0302507

54 .0416223 1.0087263 x2 = 2.0174526

63 .0321480 1.0097770 x4 = 4.0391079

72 .0218822 1.0106114 x2 = 2.0212227

81 .0110775 1.0111474 x4 = 4.0445895

90 .0000000 1.0113321 x1 = 1.0113321

Total = 30.2269624

To convert to B, again referring to equation (27-1) and remaining in degrees for

the final multipliers, since they cancel,

B = (2/180°) x (973) x 30.2269624

= 1.0075654

This is the Fourier coefficient B for equation (27-6) with X' in radians. To use

X' in degrees, multiply B by tt/180°:

B = 1.0075654 x tt/180

= 0.017585334

Calculations of A,t and C„ are similar, except that the calculations of the func

tion involve an additional trigonometric term at each step. For example, to calcu

late C3 for X' = 9°, using equation (27-3) and the S found above from equation

(27-5),

/IX') = [S/(1 + S2)12] cos3X'

= [0.0699403/(1 + 0.06994032)12] cos (3 x 9°)

= 0.06216542

The sums for An corresponding to 30.2269624 for B are as follows:

forA2: -0.0564594

for A4: 0.000041208

To convert to the desired constants,

A2 = [4/(180°x2)] x (973) x (-0.0564594)

= -0.00188198

A4 - [4/(180°x4)] x (973) x (0.000041208)

= 0.0000006868
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The sums for C„:

for d: 1.0601909

forC3: -0.0006626541

To convert,

C, = [4x(1. 0113321 + 1)/(180°x1)] x (973) x (1.0601909)

= 0.1421597

C3 = [4x(1. 0113321 + 1)/(180°x3)] x (973) x (-0.0006626541)

= -0.0000296182

These constants, rounded to seven decimal places except for B, will be used

below:

Using equation (27-11),

k0 = 128.87° - (3607251) x 15

= 107.36°

To solve equations (27-8) and (27-9) by iteration, determine k'p from equation

(27-12) and the discussion following the equation, with N = 0:

k'p = 90° x (4x0 + 2-1)

= 90°

Then

kt = -73° - 107.36° + (18/251) x 90°

' =-173.9058167°

cos k, = -0.9943487

Using k'p as the first trial value of k' in equation (27-9), using extra decimal

places for illustration:

k, = -73° - 107.36° + (18/251) x 90°

= -173.9058167°, as before.

Using equation (27-8),

k' = arctan [cos 99.092° tan (-173.9058167°) + sin 99.092°

tan 407cos (-173.9058167°)]

= -40.36910525°

For quadrant correction, from the discussion following equation (27-12), using

the sign of cos ktp as calculated above,

k' = -40.36910525° + 90° - 90° sin 90° x (-1)

= -40.36910525° + 180°

= 139.6308947°

This is the next trial k'. Using equation (27-9),

kt = -73° - 107.36° + (18/251) x 139.6308947°

= -170.3466291°
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Substituting this value of X, in place of -173.9058167° in equation (27-8),

k' = -40.9362858°

The same quadrant adjustment applies:

X' = -40.9362858° + 180°

= 139.0637142°

Substituting this in equation (27-9),

X, = -170.3873034°

and from equation (27-8),

k' = 139.0707998°

From the 4th iteration,

k, = -170.3867952°

k' = 139.0707113°

From the 5th iteration,

k, = -170.3868016°

k, = 139.0707124°

From the 6th iteration,

k, =-170.3868015°

k' = 139.0707124°

Since k' has not changed to seven decimal places, the last iteration is taken as the

final value. Using equation (27-10), with the final value of X(,

' = arcsin [cos 99. 092° sin 40° - sin 99. 092° cos 40° sin

(-170.3868015°)]

= 1.4179606°

From equation (27-5),

S = (18/251) sin 99.092° cos 139.0707124°

= -0.0534999

From equations (27-6) and (27-7),

x = 6,370,997x!0.017585334x139.0707124° + (-0.0018820)

sin (2x139.0707124°) + 0.0000007 sin (4x139.0707124°)

-[-0.0534999/(1 + (-0.0534999)2)i 2] In tan

(45°+ 1.417960672)|

= 15,601,233.74 m

y = 6,370,997x|0.1421597 sin 139.0707124° + (-0.0000296)

sin (3 x 139.0707124°) + [1/(1 + ( - 0.0534999)2)' *]

In tan (45°+ 1.417960672) |

= 750,650.37 m
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SPACE OBLIQUE MERCATOR (SPHERE)- INVERSE EQUATIONS

(SEE P. 219-221 )

Inversing forward example:

Given: Radius of sphere: R = 6,370,997.0 m

Landsat 1, 2, 3 orbit: i = 99.092°

= 18/251

Path = 15

Point: X = 15,601,233.74 m

y = 750,650.37 m

Find: 4>, X

Constants Ao, A4, B, Cu C3, and Xo are calculated exactly and have the same

values as in the forward example above. To solve equation (27-15) by iteration,

the first trial X' is x/BR, using the value of B for X' in degrees in this example:

X' = 15,601,233.74/(0.017585334x6370997.0)

= 139.2518341°

Using equation (27-5) to find S for this trial X',

S = (18/251) sin 99.092° cos 139.2518341°

= -0.0536463

Inserting these values in the right side of equation (27-15),

X' = |15,601,233.74/6,370,997.0 + (-0.0536463)

x750,650.37/6,370,997.0-(-0.0018820) sin (2x139.2518341°)

-0.0000007 sin (4x 139.2518341°)-(-0.0536463)

x [0.1421597 sin 139.2518341° + (-0.0000296)

sin (3x 139.2518341°)]|/0.017585334

= 139.0695675°

Substituting this new trial value of X' in (27-5) for a new S, then both in (27-15)

for a new X', the next trial value is

X' = 139.0707197°

The fourth value is

k' = 139.0707124°

and the fifth does not change to seven decimal places. Therefore, this X' is the

final value. The corresponding S last calculated from (27-5) is

S = (18/251) sin 99.092° cos 139.0707124°

= -0.0534999

Using equation (27-16),

In tan (45° + 4> 72) = [1 + (-0.0534999)2]' - x [750650.37/

6370997.0-0.1421597 sin 139.0707124°

-(-0.0000296) sin (3x139.0707124°)]

= 0.02475061



352 MAP PROJECTIONS—A WORKING MANUAL

tan (45° + <J> ' 12) = e° ,a*730S'

= 1.0250594

45° + <J>72 = arctan 1.0250594

= 45.7089803°

<J>' =2x(45.7089803°-45°)

= 1.4179606°

Using equation (27-13),

X = arctan [(cos 99.092° sin 139.0707124°- sin 99.092°

tan 1.4179606°)/cos 139.0707124°]-(18/251)

139.0707124° + 107.36°

= arctan [-0.1279654/(-0.7555187)] + 97.3868015°

= 9.6131985° + 97.3868015°

= 107.0000000°

Since the denominator of the argument of arctan is negative, and the numerator

is negative, 180° must be subtracted from X, or

X = 107.0000000° - 180° = -73.0000000°

= 73° W. long.

Using equation (27-14),

<J> = arcsin (cos 99.092° sin 1.4179606° + sin 99.092°

cos 1.4179606° sin 139.0707124°)

= 40.0000000°

= 40° N. lat.

For groundtrack calculations, equations (27-17) through (27-20) are used,

given the same Landsat parameters as above for R, i, P2/Pu and path 15, with

X0 = 107.36°, and* = 40° S. lat. on the daylight (descending) part ofthe orbit. Using

equation (27-17),

X' = arcsin [sin (-40°)/sin 99.092°]

= -40.6145062°

To adjust for quadrant, subtract from 180°, which is the X' of the descending node:

k' = 180°-(-40.6145062°)

= 220.6145062°

Using equation (27-18),

X = arctan [(cos 99.092° sin 220.6145062°)/cos 220.6145062°]

-U8/251)x220.6145062°+ 107.36°

= arctan [0.1028658/( -0.7591065)] + 91.5390394°

= 83.8219462°

Since the denominator of the argument for arctan is negative, add 180°, but 360°

must be then subtracted to place X between + 180° and - 180°:

X = 83.8219462 + 180° -360°

= -96.1780538°

= 96°10'40.99" W. long.
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If X is given instead, with the above X used for the example, equations (27-19)

and (27-9) are iterated together using the same type of initial trial X' as that

used in the forward example for equations (27-8) and (27-9). In this case, as

described following equation (27-12), k'p is 270°, but this is only known from the

final results. If X 'p = 90° is chosen, the same answer will be obtained, since there is

considerable overlap in actual regions for which two adjacent k'p's may be used.

If X'p = 450° is chosen, the X' calculated will be about 487.9°, or the position on

the next orbit for this X. Using k'p = 270° and the equation for ktp following equa

tion (27-12),

ktp = -96.1780538° - 107.36° + (18/251) x 270°

= -184.1755040°

for which the cosine is negative. From equation (27-9), the first trial kt is the

same as ktp. From equation (27-19),

X ' = arctan [tan ( - 184. 1 755040°)/cos 99. 092°]

= 24.7970120°

For quadrant adjustment, using the procedure following (27-12),

X' =24.7970120 + 270°-90° sin 270° x (-1)

= 204.7970120°

where the (-1) takes the sign of cos ktp.

Substituting this as the trial X' in (27-9),

kt = -96. 1780538°- 107.36° + (18/251)x204.7970120°

= -188.8514155°

Substituting this in place of -184.1755040° in (27-19),

X' =44.5812628°

but with the same quadrant adjustment as before,

X' =224.5812628°

Repeating the iteration, successive values of X' are

X' = 219.5419815°, then

= 220.8989682°, then

= 220.5386678°, then

= 220.6346973°, then

= 220.6091287°, then

= 220.6159384°, etc.

After a total of about 16 iterations, a value which does not change to seven decimal

places is obtained:

X' =220.6145063°
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Using equation (27-20),

<J> = arcsin (sin 99.092° sin 220.6145063°)

= -40.0000000°

= 40° S. lat.

SPACE OBLIQUE MERCATOR (ELLIPSOID) -FORWARD EQUATIONS

(SEE P. 222-224 )

While equations are also given for orbits of small eccentricity, the calculations

are so lengthy that examples will only be given for the circular Landsat 1, 2, or 3

orbit.

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

= 0.00676866

Landsat 1, 2, 3 orbit: i = 99.092°

= 18/251

R0 = 7,294,690.0 m

Path = 15

Point: 4> = 40° N. lat.

X = 73° W. long.

Find: x, y for point taken during daylight northern (first) quadrant of orbit.

The calculation of Fourier constants for the map follows the same basic proce

dure as that given for the forward example for the spherical form, except for

greater complications in computing each step for the Simpson's numerical inte

gration. The formula for Simpson's rule (see above) is not repeated here, but an

example of calculation of a function/ (X") for constant A2 at k" = 18° is given below,

as represented in equation (27-22).

/ (X") = [ (HJ-S2)/^ + S2Y 2] cos 2X"

Using equations (27- 24) through (27-27) in order,

J = (1-0.00676866)3

= 0.9798312

W = [(1-0.00676866 cos2 99.092°)2/(1-0.00676866)2]-1

= 0.0133334

Q = 0. 00676866 sin2 99. 0927( 1 - 0. 00676866)

= 0.0066446

T = 0.00676866 sin2 99.092° x (2-0.00676866)/(1-0.00676866)2

= 0.0133345

Using equations (27-30) and (27-31),

S = (18/251) sin 99.092° cos 18°x[(1 + 0.0133345

sin2 18°)/(1 + 0.0133334 sin2 18°) (1 + 0.0066446 sin2 18°)]"2

= 0.0673250

H = [(1 + 0.0066446 sin2 18°)/(1 + 0.0133334 sin2 18°)]1/2

x [(1 + 0.0133334 sin2 18°)/(1 + 0.0066446 sin2 18°)2

-(18/251) x 1.0 cos 99.092°]

= 1.0110133
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Calculating the function / (X") as given above,

/(X") = [(1.0110133 x 0.9798312-0.06732502)/(0.97983122

+ 0.06732502)12] cos (2x18°)

= 0.8122693

In tabular form, using 9° intervals in X", the calculation of A2 proceeds as follows,

integrating only to 90° for the circular orbit:

k" H S /(X") Multiplier Summation

0° 1.0113321 0.0708121 1.0035971 xl = 1.0035971

9 ... 1.0112504 0.0699346 0.9545807 x4 = 3.8183229

18 ... 1.0110133 0.0673250 0.8122693 x2 = 1.6245386

27 1.0106439 0.0630509 0.5904356 x4 = 2.3617425

36 ... 1.0101782 0.0572226 0.3106003 x2 = 0.6212007

45 ... 1.0096617 0.0499888 0.0000000 x4 = 0.0000000

54 ... 1.0091450 0.0415321 -0.3110197 x2 = -0.6220394

63 1.0086787 0.0320636 -0.5919529 x4 = -2.3678116

72 ... 1.0083085 0.0218167 -0.8151437 x2 = -1.6302874

81 1.0080708 0.0110417 -0.9585531 x4 = -3.8342122

90 ... 1.0079888 0.0000000 -1.0079888 xl = -1.0079888

Total = -0.0329376

To convert to A2, referring to equation (27-22),

A2 = [4/(180° x 2)]x(973)x(-0.0329376)

= -0.0010979

Similar calculations of A4, B, Ci, and C:l lead to the values given in the text

following equation (27 - 54):

B = 0.0175544891 for X" in degrees

A* = -0.0000013

C, = 0.1434410

C3 = 0.0000285

Since the calculations of ./,, and m„ are not necessary for calculation of x and y

from <i> and X, or the inverse, and are also lengthy, they will be omitted in these

examples. The examples given will, however, assist in the understanding of the

text concerning their calculations. The other general constant needed is X0, deter

mined from (27-37), as in the forward spherical formulas and example:

X0 = 128.87°-(3607251) x 15

= 107.36°

For coordinates of the specific point, equations (27-34) and (27-35) are

iterated together. Except for the additional factor of (1-e2) in (27-34), the pro

cedure is identical to the forward spherical example for solving (27-8) and

(27-9). The calculations of X';, and the first trial X, are identical with that exam

ple since <J> and X have been made the same. The sign of cos X^, is also negative.

X'p =90°

X, =-173.9058167°
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Using equation (27- 34),

X" = arctan [cos 99.092° tan (-173.9058167°) + (1-0.00676866)

sin 99.092° tan 407cos (-173.9058167°)]

= -40.1810005°

For quadrant correction,

X" = -40.1810005° + 90° - 90° sin 90° x (-1)

= 139.8189995°

Successive iterations give

(2) kt =-170.3331395°

X" = 139.2478915°

(3) kt = -170.3740954°

X" = 139.2550483°

(4) kt = -170.3735822°

X" = 139.2549587°

(5) X( = -170.3735886°

X" = 139.2549598°

(6) X, = -170.3735885°

X" = 139.2549598°

These last values do not change within seven decimal places in subsequent

iterations.

Using equation (27-36) with the final value of kt,

V = arcsin |[(1-0.00676866) cos 99.092° sin 40°-sin 99.092°

cos 40° sin (-170.3735885°)]/(1 -0.00676866

sin2 40°)1/2}

= 1.4692784°

From equation (27-30), using 139.2549598° in place of 18° in the example for cal

culation of Fourier constants,

S = -0.0535730

From equations (27-32) and (27-33),

x = 6,378,206.4 x |0.0175544891 x 139.2549598° + (-0.0010979)

sin (2x139.2549598°) + (-0.0000013) sin (4 x 139.2549598°)

-[-0.0535730/(0.97983122 + (-0.0535730)2)i*] In tan (45°

+ 1.469278472))

= 15,607,700.94 m

y =6,378,206.4x10.1434410 sin 139.2549598° + 0.0000285

sin (3 x 139.2549598°) + [0.9798312/(0.97983122

+ (-0.0535730)2)12] In tan (45° + 1.469278472))

= 760,636.33 m

For calculation of positions along the groundtrack for a circular orbit, these

examples use the same basic Landsat parameters as those in the preceding exam

ple, except that <J> = 40° S. lat. on the daylight (descending) part of the orbit. To

find X', <J>ff is first calculated from equation (27-41):
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4>g = (-40°) - arcsin |6,378,206.4x0.00676866 sin (-40°) cos

(-40°)/[7,294,690.0x(1-0.00676866 sin2 (-40°))1*]

= -40° - (-0.1672042°)

= -39.8327958°

From equation (27-42),

X' = arcsin [sin (-39.8327958°)/sin 99.092°]

= -40.4436361°

To adjust for quadrant, since the satellite is traveling south, subtract from

Vi x 360°:

X' = 180° - (-40.4436361°)

= 220.4436361°

Using equation (27-43),

X = arctan [(cos 99.092° sin 220.4436361°)/cos 220.4436361°]

-(18/251) x 220.4436361° + 107.36°

= arctan [0.1025077/( -0.7610445)] + 91.5512930°

= 83.8800995°

Since the denominator of the argument for arctan is negative, add 180°, but 360°

must also be subtracted to place X between + 180° and - 180°:

X = 83.8800995° + 180° - 360°

= -96.1199005°

= 96°07'11.64" W. long.

If X is given instead, with the above X used in the example, equations (27-19)

and (27-35) are iterated together with X' in place of X" in the latter. The tech

nique is the same as that used previously for solving (27-8) and (27-9) in the

forward spherical example. See also the discussion for the corresponding spheri

cal groundtrack example, using equations (27-19) and (27-9), near the end of the

inverse example. Since the formulas for the circular orbit are the same for ellip

soid or sphere for this particular calculation, the various iterations are not shown

here. With X = -96. 1 199005°, X' is found to be 220.4436361°. To find the correspond

ing <]> from equation (27-44), a trial <J> = arcsin (sin 99.092° sin 220.4436361°) =

-39.8327958° is inserted:

* = arcsin (sin 99.092° sin 220.4436361°) + arcsin 16,378,206.4

x 0.00676866 sin (-39.8327958°) cos (-39.8327958°)/

[7,294,690.0 x (1-0.00676866

sin2 (-39.8327958°))1/2]}

= -39.9998234°

Substituting -39.9998234° in place of -39.8327958° in the same equation, a new

value of <J> is obtained:

<J> = -39.9999998°

With the next iteration,

<J> = -40.0000000°
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which does not change to seven decimal places. Thus,

* = 40° S. lat.

SPACE OBLIQUE MERCATOR (ELLIPSOID) - INVERSE EQUATIONS

(SEE P. 224-225 )

This example is also limited to the circular Landsat orbit, using the parameters

of the forward example.

Inversing forward example:

Given: Clarke 1866 ellipsoid: a = 6,378.206.4 m

e2 = 0.00676866

Landsat 1, 2, 3 orbit: i = 99.092°

= 18'251

Ro = 7,294.690.0 m

Path = 15 (thus X0 = 107.36° as in forward

example)

Point:
05•

= 15,607,700.94 m

.'/ = 760.636.33 m

Find: *, X

All constants J. W, Q, T, A„, B. and C„. as calculated in the forward example,

must be calculated or otherwise provided for use for inverse calculations.

To find X" from equation (27-51) by iteration, the procedure is identical to that

given for (27-15) in the inverse spherical example, except for the use of differ

ent constants. For the initial X" = x/aB,

k" = 15,607.700.94 (6,378,206.4 x 0.0175544891)

= 139.3965968°

Using equation (27- 30) to find S for this value of k",

S = (18/251) sin 99.092° cos 139.3965968° x [(1 + 0.0133345

sin2 139. 3965968°), (1 + 0.0133334 sin2 139.3965968°)(1

+ 0.0066446 sin2 139.3965968°)]; -

= -0.0536874

Inserting these values into (27-51),

k" = 15.607,700.94/6,378,206.4 + (-0.0536874 0.9798312)

x (760,636.33 6.378.206.4) - (-0.0010979) sin (2

x 139.3965968°) -(-0.0000013) sin (4 x 139.3965968°)

- (-0.0536874 0.9798312) x [0.1434410 sin 139.3965968°

+ 0.0000285 sin (3 x 139.3965968°)] 0.0175544891

= 139.2539963°

Substituting this new trial value of k" into (27-30) for a new S, then both into

(27—51), the next trial value is

k" = 139.254966;?°
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and the fourth trial value is

k" = 139.2549597°

The fifth trial value is

X" = 139.2549598°

which does not change with another iteration to seven decimal places. Therefore,

this is the final value of X". The corresponding S last calculated from (27-30)

using this value of X" is -0.0535730. Using equation (27-52),

In tan(45° + <J>72) = [1 + (-0.0535730)2/0.97983122F

x [760,636.33/6,378,206.4 -0.1434410 sin

139.2549598°-0.0000285 sin (3 x 139.2549598°)]

= 0.0256466

tan (45° + <J>72) = e° 0256466

= 1.0259783

45° + 4>72 = arctan 1.0259783

= 45.7346392°

<J>" = 2 x (45.7346392°-45°)

= 1.4692784°

Using equations (27-48), (27-47), and (27-46) in order,

U = 0.00676866 cos2 99.0927(1-0.00676866)

= 0.0001702

V = |[1-sin2 1.46927847(1-0.00676866)] cos 99.092°

sin 139.2549598°-sin 99.092° sin 1.4692784°

x [(1 + 0.0066446 sin2 139.2549598°) x (1-sin2 1.4692784°)

-0.0001702 sin2 1.4692784°P|/

[1-sin2 1.4692784° (1+0.0001702)]

= -0.1285013

X, = arctan (-0.1285013/cos 139.2549598°)

= arctan [-0.1285013/(-0. 7576215)]

= 9.6264115°

Since the denominator of the argument for arctan is negative, and the numerator

is negative, subtract 180°:

X, = 9.62641 15°- 180°

= -170.3735885°

Using equation (27-45),

X = -170.3735885°-(18/251)x 139.2549598° + 107.36°

= -73.0000000°

= 73° W. long.

Using equation (27-49),

4> = arctan |[tan 139.2549598° cos (-170.3735885°) -cos 99.092°

sin (-170.3735885°)]/[(1-0.00676866) sin 99.092°]|

= 40.0000000°

= 40° W. lat.
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SATELLITE-TRACKING (SPHERE) -FORWARD EQUATIONS (SEE P. 231-232, 236)

Cylindrical form:

Given: Radius of sphere: R = 1.0 unit

Landsat 1, 2, 3 orbit: i = 99.092°

= 18/251

Map parameters: = 90° W. long.

= 30° N. and S. lat.

Point: = 40° N. lat.

x = 75° W. long.

Find: x, y, h, k

Using equation (28-1),

FY = [(18/251) cos2 30°-cos 99.092°]/(cos2 30°-cos2 99.092°)1 -

= 0.2487473

Repeating this for 40° in place of 30°, using equation (28- la),

F' = 0.2669577

Using equations (28-2) through (28-8) in order,

X' = -arcsin (sin 407sin 99.092°)

= -40.6145062°

kt = arctan [tan (-40.6145062°) cos 99.092°]

= 7.7170932°

L = 7.7170932°-(18/251)x(-40.6145062°)

= 10.6296873°

x = 1.0 x [-75° - (-90°)] cos 30° x it/180°

= 0.2267249 unit

y = 1.0 x 10.6296873° x (ir/180°) cos 3070.2487473

= 0.6459071 unit

k = cos 307cos 40°

= 1.1305159

h = 1.1305159 x 0.2669577/0.2487473

= 1.2132788

Conic Form (two parallels with conformality):

Given: Radius of sphere: R = 1.0 unit

Landsat 1, 2, 3 orbit: i = 99.092°

18/251

Map parameters: K>
= 90° W. long.

<J>,, = 30° N. lat.

4>i
- 45° N. lat.

<J>2
= 70° N. lat.

Point: <J, 40° N. lat.

k = 75° W. long.

Find: x, y, p„ A\ h

Using equation (28-9) for an n of zero,

F0 = arctan |[(18/251) cos2 30°-cos 99.092°]/(cos2 30°-cos2 99.092°)12|

= 13.9686735°
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Repeating this for <J>i (45°) and 4>2 (70°), in place of 30°,

Using equations (28-2a) through (28-4a) for an n of zero,

X'o = -arcsin (sin 307sin 99.092°)

= -30.4218063°

X,° = arctan [tan (-30.4218063°)cos 99.092°]

= 5.3013386°

L0 = 5.3013386°-(18/251) x (-30.4218063°)

= 7.4829821°

Repeating these equations for an n of 1 and then 2,

X', = -45.7337490°

Xn = 9.2086865°

L, = 12.4883976°

X'2 = -72.1102281°

X,2 = 26.0835377°

L2 = 31.2547891°

Using equations (28-10) through (28-12),

n = (28.7497148°- 15.7111447°)/(31. 2547891°- 12.4883976°)

= 0.6947830

s0 = 15. 71 11447° -0.6974830x12.4883976°

= 7.0344182°

p0 = 1.0 cos 45° sin 15.71 114477[0. 6947830 sin (0.6947830 x 7.4829821°

+ 7.0344182°)]

= 1.3005967 units

These constants apply to the entire map. For the point (<J>, X), using equations

(28-9) and (28-2a) through (28-4a) in order for an omitted n, or a <J> of 40°

Since n is positive and L is greater than (-sJn), the point may be plotted.

Using equation (28-13), the calculation is the same as that for p0, except that

L is used in place of L0:

Using equations (14-4), (14-1), and (14-2) in order,

6 =0.6947830 x [-75° -(-90°)]

= 10.4217452°

x = 1.1066853 sin 10.4217452°

= 0.2001910 unit

y = 1.3005967 - 1.1066853 cos 10.4217452°

= 0.2121685 unit

F\ =

F2 =

15.7111447°

28.7497148°

F

k'

It

L

= 14.9469825°

= -40.6145062°

= 7.7170932°

= 10.6296873°

p = 1.1066853 units
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Using equations (28-14) through (28-16) in order,

ps = 1.0 cos 45° sin 15.711144770.6947830

= 0.2755908 unit

k = 1.1066853 x 0.6947830/(1. 0xcos 40°)

= 1.0037357

h = 1.0037357 tan 14.94698257tan (0.6947830x10.6296873° + 7.0344182°)

= 1.0421246

SATELLITE-TRACKING (SPHERE)- INVERSE EQUATIONS (SEE P. 236-237 )

Inversing forward examples:

Cylindrical form:

Given: R, i, P2/Pu X0, 4>i as in forward example

x = 0.2267249 unit

y = 0.6459071 unit

Find: <J>, X

Calculate Fx from (28-1), exactly as in the forward example:

F,' = 0.2487473

Using equation (28-19),

L =[0.6459071x0.2487473/(1.0 cos 30°)] x 1807ir

= 10.6296860°

Using equations (28-24) and (28-25) rather than (28-20) and (28-21), and

first trial X' of (-90°),

A = tan [10.6296860° + (18/251)x(-90°)]/cos 99.092°

= -0.4620014

Ak' = -[-90°-arctan (-0.4620014)]/[1-((-0.4620014)2+ 1/cos2 99.092°)

(18/251) cos 99.0927((-0.4620014)2+ 1)]

= 47.3862943°

X' = -90° + 47.3862943°

= -42.6137057°

Replacing (-90°) in (28-24) and (28- 25) with (-42.6137057°),

AX' = 1.9959795°

X' = -40.6177262°

Repeating the iteration successively gives

AX' =0.0032237°

X' = -40.6145026°

AX' = -0.0000000

Since there is no change to seven decimals,

X' = -40.6145026°



APPENDIX A: NUMERICAL EXAMPLES

Using equations (28- 22) and (28- 23),

X

- arcsin fsin (-40.6145026°) sin 99.092°]

40° N. lat., neglecting round-off errors

-90° + [0.2267249/(1.0cos30°)] x 1807ir

-75° = 75° W. long.

Conic form (two parallels with conformality):

Given: R, i, P2/Pu X0, <J>0, 4>i, <J>2 as in forward example

Find: <J>, X

Calculate F0, Fu F2, V. X(0, L0, X,', X(!, Lu X2', X<2, L2, n, s0, and p0 exactly as in

the forward example. Using equations (14-10), (14-11), and (28-26) in order

p = [0.20019102 + (1.3005967- 0.2121685)2]"2

= 1.1066853 units

6 =arctan [0.2001910/(1.3005967 - 0.2121685)]

= 10.4217462°

L = [arcsin (1.0 sin 45° sin 15.71114477

( 1 . 1066853 x 0. 6947830)) - 7. 0344 182°]/

0.6947830

= 10.6296877°

With (-90°) as the first trial X' in (28-24) and (28-25), calculating as in the in

verse cylindrical example,

Replacing (-90°) as the trial X' with (-42.6137104°), and successively iterating,

the result converges to

Using equations (28-22) and (14-9),

<J> = - arcsin [sin (-40.6145076°) sin 99.092°]

= 40° N. lat., disregarding round-off errors.

X = -90° + 10.421746270.6947830

= -75° = 75° W. long.

VAN DER GRINTEN (SPHERE)- FORWARD EQUATIONS (SEE P. 241-242 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 85° W. long.

Point: <J> = 50° S. lat.

X = 160° W. long.

x = 0.2001910 unit

y = 0.2121685 unit

A

AX'

X'

-0.4620016

47.3862896°

-42.6137104°

y = -40.6145076°
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Find: x, y

From equations (29-6), (29-3), (29-4), (29-5), and (29-6a) in order,

6 = arcsin /2x(-50°)/180°/

= arcsin 0.5555556

= 33.7489886°

A =V2\ 1807[(-160°)-(-85°)]-[(-160°)-(-85°)]/180°/

= V2 I -2.4000000-(-0.4166667) I

= 0.9916667

G = cos 33.74898867(sin 33.7489886° + cos 33.7489886° - 1)

= 2.1483315

P -2.1483315 x (2/sin 33.7489886°- 1)

= 5.5856618

Q =0.99166672 + 2.14&3315 = 3.1317342

From equation (29-1),

x = -ttx1.0x!0.9916667x(2.1483315-5.58566182)

+ [0.99166672x(2. 1483315- 5.58566182)2

-(5.58566182 + 0.99166672)x(2.14833152- 5.58566182)H/

(5.58566182 + 0.99166672)

= -1.1954154 units

taking the initial "-" sign because (X-X0) is negative. Note that tt is not con

verted to 180° here, since there is no angle in degrees to offset it. From equation

(29-2),

y = —irx1.0x|5.5856618x3.1317342-0.9916667

x [(0.99166672 + 1) x (5.58566182 + 0.99166672)

-3. 13173422]i a!/(5.58566182 + 0.99166672)

= —0.9960733 units, taking the initial "— " sign because 4> is

negative.

VAN DER GRINTEN (SPHERE)-INVERSE EQUATIONS (SEE P. 242 )

Inversing forward example:

Given: Radius of sphere: R

Central meridian: X0

Point: x

y

Find: <J>, X

Using equations (29-9) through (29-19) in order,

X = -1.1954154/(irx1.0)

= -0.3805125

Y = -0.9960733/(irx1.0)

= -0.3170600

c, = -0.3170600xf1 +(-0.3805125)2 + (-0.3170600)2]

= -0.3948401

c2 = -0.3948401-2x(-0.3170600)2 + (-0.3805125)2

= -0.4511044

= 1.0 unit

= 85° W. long.

= -1.1954154 units

= -0.9960733 unit
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G;, = -2x(-0.3948401)+1 + 2x(-0.3170600)2

+ [(-0.3805125)2 + (-0.3170600)2]2

= 2.0509147

d = (-0.3170600)2/2.0509147 +. |2x(-().4511044):V2.0509147:!

- 9 x ( - 0. 394840 1 ) x ( - 0. 45 1 1044 )/2. 0509 147" |/27

= 0.0341124

a, = [-0.3948401-(-0.4511044)-/(3x2.0509147)]/2.0509147

= -0.2086455

w, = 2x(0.2086455/3)'-'

= 0.5274409

9, = (1/3) arccos [3x0.0341 124/(-0.2086455x 0.5274409)]

= (1/3) arccos (-0.9299322)

= 52.8080831°

<J> = -180°x[ -0. 5274409 x cos (52.8080831° + 60°)

-(-0.4511044)/(3 x2.0509147)]

= -50° = 50° S. lat., taking the initial "-" sign because y is

negative.

X = 180°x (-0.3805125)2 + (-0.3170600)2 - 1 +

[1 + 2x((-0.3805125)2 - (-0.3170600)2)

+ ((-0.3805125)" + (-0.3170600)2)2]i*'/

[2 x (-0.3805125)] + (-85°)

= -160° = 160° W. long.

SINUSOIDAL (SPHERE)-FORWARD KOI A I IONS (SEE P. 247 )

Given: Radius of sphere: R - 1.0 unit

Central meridian: X0 = 90° W. long.

Point: ,J> = 50° S. lat.

X = 75° W. long.

Find: x, y, h, k, 6'. oj

From equations (30-1) through (30-5) in order.

x = 1.0 x [-75°-(_90°)]x cos (-50°) x ir/180°

= 0.1682814 unit

y = 1.0 x (-50°) x tt/180°

= -0.8726646 unit

h = |1 + [-75°-(-90°)]2 x(ir/180°)2 x sin2 (-50°) j12

= 1.0199119

k = 1.0

H' = arcsin (1/1.0199119)

= 78.6597719°

w =2 arctan l(1/2)[-75°-(-90°)] x (ir/180°) x sin (-50°) i

= 11.4523842°

SINUSOIDAL (SPHERE)- INVERSE EQUATIONS (SEE P. 248 )

Inverting forward example:

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 90° W. long.

Point: .»80 = 0.1682814 unit

y = -0.8726646 unit

Find: 4>, X
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From equations (30-6) and (30-7),

4> =(-0.8726646/1.0) x 1807it

= -49.9999985°

= 50° S. lat. rounding off.

X = -90° + [0.1682814/(1.0 x cos(-49.9999985°)] x 1807tt

= - 75.0000007°

= 75° W. long.

SINUSOIDAL (ELLIPSOID)- FORWARD EQUATIONS (SEE P. 248 )

Given: Clarke 1866 ellipsoid: a = 6,378,206.4 m

e2 = 0.00676866

Central meridian: X0 = 90° W. long.

Point: 4> = 50° S. lat.

X = 75° W. long.

Find: x, y

Using equations (30-8), (3-21), and (30-9) in order,

x = 6,378,206.4 x [-75° - (-90°)] x (it/180°) cos (-50°) )/

(1-0.00676866 sin2 (-50°))12

= 1,075,471.5 m

M = 6,378,206.4 x [(1-0.00676866/4-3x0.006768662/64

-5 x 0.006768663/256) x (-50°) x tt/180° - (3 x 0.00676866/8

+ 3 x 0.006768662/32 + 45 x 0.006768663/1024) sin (2 x (-50°))

+ (15 x 0.006768662/256 + 45 x 0. 006768663/1024) sin (4 x (-50°))

- (35 x 0.006768663/3072) sin (6 x (-50°))]

= -5,540,628.0 m

y = -5,540,628.0 m

SINUSOIDAL (ELLIPSOID)-INVERSE EQUATIONS (SEE P. 248 )

Inversing forward example:

Given: a, e2, X,, for forward example

x = 1,075,471.5 m

y = -5,540,628.0 m

Using equations (30-10), (7-19), (3-24), (3-26), and (30-11) in order,

M = -5,540,628.0

jjl = -5,540,628.0/[6378206.4 x (1-0.00676866/4

-3 x 0.006768662/64 - 5 x 0.006768663/256)]

= -0.8701555 radians = -49.8562390°

e, = [1-(1-0.00676866)1-]/[1 +(1-0.00676866)1-]

= 0.001697916

<J> = -49.8562390° + [(3x0.001697916/2-27x0.001697916732)

sin (2 x( -49.8562390°)) + (21 x0.0016979162/16

-55x0.0016979164/32) sin (4 x( -49.8562390°))

+ (151x0.0016979163/96) sin (6 x( -49.8562390°))

+ (1097x0.0016979167512) sin (8x(-49.8562390°))]x 1807.rr

= -50° = 50° S. lat.

X = -90° + [1075471. 5 x (1-0.00676866 sin2 (-50°))12/

(6,378,206.4 x cos (-50°))] x 1807tt

= -75° = 75° W. long.
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MOLLWEIDE (SPHERE)- FORWARD EQUATIONS (SEE P. 251 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 90° W. long.

Point: <i> = 50° S. lat.

X = 75° W. long.

Find: x, y

From equation (31-4), using <i> or -50° as the first trial 6',

A6' = -[(-50°) x ir/180° + sin (-50°) - it sin (-50°)]/

[1 + cos (-50°)] x 1807tt

= -26.7818469°

The next trial 6' = -50°-26.7818469° = -76.7818469°. Using this in place of -50°

for 6' (not <J>) in equation (31-4), subsequent iterations produce the following:

A6' = -4.3367097°

6' = -81.1185566°

A6* = -0.1391597°

6' = -81.2577163°

A6' = -0.0001450°

6' = -81.2578612°

A6' = -0.0000000°

Since there is no change to seven decimal places, using (31-5),

6 = -81.257861272

= -40.6289306°

Using (31-1) and (31-2),

x = (81*/it) x 1.0 x [-75°- (-90°)] cos (-40. 6289306°) x tt/180°

= 0.1788845 unit

y = 21"2 x 1.0 sin (-40.6289306°)

= -0.9208758 unit

MOLLWEIDE (SPHERE)- INVERSE EQUATIONS (SEE P. 251-252 )

Inversing forward example:

Given: Radius of sphere: R

Central meridian: X0

Point: x

II

Find: <J>, X

Using equations (31-6) through (31-8) in order,

6 = arcsin [-0.9208758/(2^ x 1.0)]

= -40.6289311°

<t> = arcsin|[2 x (-40.6289311°) x ir/180° + sin[2 x ( -40.628931 l°)]]/ir|

= -50° = 50° S. lat., neglecting round-off errors

X = -90° + |it x 0.1788845/[812 x 1.0 cos (-40.6289311°)]; x 1807ir

= -75° = 75° W. long.

= 1.0 unit

= 90° W. long.

= 0.1788845 unit

= -0.9208758 unit
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ECKERT IV (SPHERE)-FORWARD EQUATIONS (SEE P. 256-257 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 90° W. long.

Point: <J> = 50° S. lat.

X = 75° W. long.

Find: x, y

From equation (32-4), using (<J>/2) or -25° as the first trial 6,

A6 = -[(-25°) x tt/180° + sin (-25°) cos (-25°) + 2 sin (-25°)

-(2 + tt/2) sin (-50°)]/[2 cos (-25°) x (1+cos (-25°))]

= -17.7554344°

The next trial 6 = -25°- 17.7554344°= -42.7554344°. Using this in place of -25°

for 6 in equation (32-4), subsequent iterations produce the following:

Ae = -2.9912099°

e = -45.7466443°

Ae = -0.1113894°

e = -45.8580337°

A6 = -0.0001573°

e = -45.8581910°

A6 = -0.0000000°

Since there is no change to seven decimal places, 6 = -45.8581910°. Using (32- la)

and (32-2a),

x = 0.4222382 x 1 x [-75°-(-90°)] x (it/180°) x [1 + cos(-45.8581910°)]

= 0.1875270 unit

y = 1.3265004 x 1 x sin (-45.8581910°)

= -0.9519210 unit

ECKERT IV (SPHERE)-INVERSE EQUATIONS (SEE P. 257 )

Inversing forward example:

Given: Radius of sphere: R

Central meridian: X0

Point: x

V

Find: <J>, X

Using equations (32 -9a), (32-10), and (32- 11a) in order,

6 = arcsin [-0.9519210/(1.3265004x1)]

= -45.8581937°

<J> = arcsin [(-45.8581937° x tt/180° + sin (-45.8581937°)

cos (-45.8581937°) + 2 sin (-45.8581937°))/

(2 + tt/2)]

= -50.0000027° = 50° S. lat., disregarding round-off errors.

X = -90° + |0. 1875270/(0.4222382x1

x (1 + cos (-45.8581937°))]| x 1807tt

= -74.9999991° = 75° W. long.

= 1.0 unit

= 90° W. long.

= 0.1875270 unit

= -0.9519210 unit
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ECKERT VI (SPHERE)- FORWARD EQUATIONS (SEE P. 257 )

Given: Radius of sphere: R = 1.0 unit

Central meridian: X0 = 90° W. long.

Point: <J> = 50° S. lat.

X = 75° W. long.

Find: x, y

From equation (32-8), using <J> or -50° as the first trial 6,

AG = 50° x 7t/180° + sin (-50°) - (1 + it/2) sin (-50°)]/

[1 + cos (-50°)]) x 1807ir

= -11.5316184°

The next trial 6 = -50°- 11.5316184° = -61.5316184°. Using this in place of -50°

for 6 (but not <J>) in equation (32-8), subsequent iterations produce the following:

A6 = -0.6337921°

6 = -62.1654105°

A6 = -0.0021049°

6 = -62.1675154°

AG = -0.0000000°

Since there is no change to seven decimal places, 6 = -62. 1675154°. Using (32-5)

and (32-6),

x = 1 x [-75° - (-90°)] x (it/180°) x [1 + cos (-62. 1675154°) ]/(2 + tt)1"2

= 0. 1693623 unit

y = 2 x 1 x (-62.1675154°) x (it/180°)/(2 + tt)12

= -0.9570223 unit

ECKERT VI (SPHERE)-INVERSE EQU ATIONS (SEE P. 257 )

Inversing forward example:

Given: Radius of sphere: R

Central meridian: Xo

Point: x

y

Find: <J>, X

Using equations (32-12), (32-13), and (32-14) in order,

6 = (2 + tt)12 x (-0.9570223) x (1807tt)/(2x1)

= -62.1675178°

<J> = arcsin [(-62.1675178° x tt/180° + sin (-62.1675178°))/(1 + tt/2)]

= -50.0000021° = 50° S. lat., disregarding round-off errors.

X = -90° + (2 + tt)12 x 0.1693623 x (1807tt)/[1x(1 + cos (-62.1675178°))]

= -75° = 75° W. long.

= 1.0 unit

= 90° W. long.

= 0.1693623 unit

= -0.9570223 unit





APPENDIX B

USE OF MAP PROJECTIONS BY U.S. GEOLOGICAL SURVEY—SUMMARY

Note This list is not exhaustive. For further details, see text.

Class/Projection Maps

Cylindrical

Mercator Northeast Equatorial Pacific

Indonesia (Tectonic)

Other planets and satellites

Transverse Mercator IV2' and 15' quadrangles for

22 States

North America

Universal Transverse Mercator 1° lat. x 2° long. quadrangles

of U.S. metric quadrangles and

County maps.

"Modified Transverse Mercator" Alaska

Oblique Mercator Grids in southeast

Alaska

Landsat Satellite Imagery

Miller Cylindrical World

Equidistant Cylindrical „ United States and some State Index

Maps

Cotiic

Albers Equal-Area Conic United States and sections

Lambert Conformal Conic IV2 and 15' quadrangles for

32 States

Quadrangles for Puerto Rico, Virgin

Islands, and Samoa

State Base Maps

Quadrangles for International

Map of the World

Some other planets and satellites

Some State Index Maps

Bipolar Oblique Conic

Conformal North America (Geologic)

Polyconic Quadrangles for all States

Modified Polyconic Quadrangles for International

Map of the World

Aziniuthal

Orthographic (oblique) Pictorial views of Earth

or portions

Stereographic (oblique) Other planets and satellites

(polar) Antarctica

Arctic regions

Other planets and satellites

Lambert Azimuthal Equal-Area

(oblique) Pacific Ocean

(polar) Arctic regions (Hydrocarbon

Provinces)

North and South Polar regions

(polar expeditions)
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Azimuthal Equidistant (oblique) World

Quadrangles for Guam and

Micronesia

Space

Space Oblique Mercator Satellite image mapping

Miscellaneous

Van der Grinten

Sinusoidal (interrupted)

World (Subsea Mineral Resources,

misc.)

World (Hydrocarbon Provinces)
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STATE PLANE COORDINATE SYSTEMS—CHANGES FOR 1983 DATUM

This listing indicates changes for the NAD 1983 datum

from projections, parameters, and origins of zones as

described in table 8 for the NAD 1927 datum, it is im-

portant to understand that State plane coordinates based

oh"the datum cannot be correctly converted tocoordinates

drTtheJ983 datum meifelyJ^Jlsinginy^je formulas to

convertJrom 1927 rectangular coordinates to latitude and

longitude, and then using forward formulas with this

latitude anH longitude, to convert. t.o 1 9ftX rectanffilgrmnr-

dlnates. Due to readjustment of the survey control net

works and toj^chang^of^ejh^sc^^

longitude also change slightly from one datum to_the

other.

These changes have been approved by the National

Geodetic Survey (William M. Kaula, James Stem, pers.

comm., 1986). They are given in the same order as the

entries in table 8, except that only the changes are shown.

All parameters not listed remain as before, except for the

different ellipsoid and datum. Because most coordinates

at the origin have been changed, and because they vary

considerably, they are presented in the body of the table

rather than as footnotes. Samoa is not being changed to

the new datum.

[L indicates Lambert Conformal Conic]

Area Projection Zones

California L 6

Montana L 1

Nebraska L 1

Puerto Rico and Virgin Islands L 1

South Carolina L 1

Transverse Mercator projection

Coordinates of origin (meters)

Zone X y Other Changes

Alabama

East 200,000 0

West 600,000 0

Alaska, 2-9 500,000 0

Arizona, all 213,360 0 Origin in Intl. feet1

Delaware 200,000 0

Florida

East, West 200,000 0

Georgia

East 200,000 0

West 700,000 0

Hawaii, all 500,000 0

Idaho

East 200,000 0

Central 500,000 0

West 800,000 0

Illinois

East 300,000 0

West 700,000 0

Indiana

East 100,000 250,000

West 900,000 250,000

Maine

East 300,000 0 Lat. of origin 43°40' N.

West 900,000 0

Mississippi

East 300,000 0 Scale reduction 1:20,000,

Lat. of origin 29° 30' N.

West 700,000 0 Scale reduction 1:20,000,

Lat. of origin 29°30' N.

373
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Transverse Mercator projection

Coordinates of origin (meters)

Zone X y Other changes

Missouri

East 250,000 0

Central 500,000 0

West 850,000 0

Nevada

East 200,000 8,000,000

Central 500,000 6,000,000

West 800,000 4,000,000

New Hampshire 300,000 0

New Jersey 150,000 0 Central meridian 74°30' W.

New Mexico

Scale reduction 1:10,000.

East 165,000 0

Central 500,000 0

West 830,000 0

New York

East All parameters identical with above New Jersey zone.

Central 250,000 0

West 350,000 0

Rhode Island 100,000 0

Vermont 500,000 0

Wyoming

East 200,000 0 1 C Lat. of origin (each zone)

East Central 400,000 100,000 1 1 40°30' N.

West Central 600,000 0 1 1 Scale reduction (each zone)

West 800,000 100,000 J L 1:16,000.
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Lambert Conformal Conic projection

Coordinates of origin (meters)

Zone i y Other changes

Alaska, 10 1,000,000 0

Arkansas

North 400,000 0

South 400,000 400,000

California Zone 7 deleted.

1-6 2,000,000 500,000

Colorado, all 914,401.8289 304,800.6096

Connecticut 304,800.6096 152,400.3048

Florida, North 600,000 0

Iowa

North 1,500,000 1,000,000

South 500,000 0

Kansas

North 400,000 0

South 400,000 400,000

Kentucky

North 500,000 0

South 500,000 500,000

Louisiana

North 1,000,000 0 Lat. of origin 30°30' N.

South 1,000,000 0 Lat. of origin 28° 30' N.

Offshore 1,000,000 0 Lat. of origin 25° 30' N.

Maryland 400,000 0 Lat. of origin 37°40' N.

Massachusetts

Mainland 200,000 750,000

Island 500,000 0

Michigan GRS 80 ellipsoid used

without alteration.

North 8,000,000 0

Central 6,000,000 0 Long, of origin 84° 22' W.

South 4,000,000 0 Long, of origin 84°22' W.

Minnesota, all 800,000 100,000

Montana 600,000 0 Standard parallels, 45°00'

(single zone) and 49°00' N.

Long, of origin 109°30' W.

Lat. of origin 44° 15' N.
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Lambert Conformal Conic projection

Zone

Coordinates of origin (meters)

* y_

Nebraska

(single zone)

New York

Long Island

North Carolina

North Dakota, all

Ohio, all

Oklahoma, all

Oregon

North

South

Pennsylvania, all

Puerto Rico and

Virgin Islands

South Carolina

(single zone)

South Dakota, all

Tennessee

Texas

North

North Central

Central

South Central

South

Utah

North

Central

South

Virginia

North

South

Washington, all

West Virginia, all

Wisconsin, all

500,000

300,000

609,601.22

600,000

600,000

600,000

2,500,000

1,500,000

600,000

200,000

609,600

600,000

600,000

200,000

600,000

700,000

600,000

300,000

500,000

500,000

500,000

3,500,000

3,500,000

500,000

600,000

600,000

0

0

0

0

0

0

0

0

200,000

0

0

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

1,000,000

2,000,000

3,000,000

2,000,000

1,000,000

0

0

0

Standard parallels, 40°00' and

43°00' N.

Long, of origin 100°00' W.

Lat. of origin 39° 50' N.

Lat. of origin 40° 10' N.

(Two previous zones identical

except for x and y of origin.)

Standard parallels,

32° 30' and 34° 50' N.

Long. of origin 81°00' W.

Lat. of origin 31°50' N.

Lat. of origin 34° 20' N.

Central meridian 98°30' W.

note: All these systems are based on the GRS 80 ellipsoid.

■For the International foot. 1 in = 2.54 cm, or 1 ft = 30.48 cm.
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[Italic page numbers indicate major references]

Page

Acronyms ix

Adams, O.S 2. 13-18, 98. 99. 100

Aeronautical charts 106

Africa, maps of 76. 138, 139. 157. 243

Alaska, maps of 2. 57

Albers Equal-Area Conic projection 99

Modified-Stereographic Conformal projection 203,

205, 206, 209. 210, 212

"Modified Transverse Mercator" projection 64-65.

97. 113, 371

Polyconic projection 128

State Plane Coordinate System 51. 52. 54,

56. 66. 68. 373, 375

Albers, H.C 98

Albers Equal-Area Conic projection 27. 77, 98-103

features 98-100, 105, 112

formulas, ellipsoid 101-102. 292-294

sphere 100-101, 291-292

history 98

polar coordinates 103

usage 2. 35. 97, 98-100. 128. 371

American Geographical Society 86. 116. 117. 157

American Polyconic projection 124

American Telephone & Telegraph Co. 192

AMS Lunar projection 169

Analemrna projection 145

Antarctica, maps of 2. 157, 371

Aphylactic projections 4

Aposphere 66

Arab cartographers 145. 154

Arctan function, general U

Arctic regions, maps of 157, 184, 371

Arithmetic-Geometric Mean (AGM) iteration 17

Army Map Service 57, 127. 169

Asia, maps of 138. 139. 157. 203

Astrogeology, USGS Center of 41. 157

ATAN2 function, Fortran, general ix

Atlantic Ocean, maps of 47. 249

"Atlantis" projection 249

Adas Mira 253

August projection 34

Australasia, maps of 68. 139. 203

Authalic latitude

See latitude, authalic

Authalic projections 4

Auxiliary latitudes

See latitude, auxiliary

Azimuth, calculation, on sphere 30

on e\lipsoid 199. 201. 202

symbols viii

Azimuthal Equal-Area projection . . 182

Azimuthal Equidistant projection 5, 112. 191-2Q2

features 141. 192. 194

formulas, ellipsoid 197-202. 338-344

sphere 195-197, 337-338

geometric construction 194

history 191-192

polar coordinates 144, 198

rectangular coordinates 196-197

usage 34, 35. 194. 372

Azimuthal projections 4, 5, 7, 33, 141-202

scale and distortion 21, 23, 26

transformation 31-32

See also Azimuthal Equidistant projection, Gnomonic

projection, Lambert Azimuthal Equal-Area

projection. Orthographic projection.

Stereographic projection, Vertical Perspec

tive projection

B

Babinet, J 249

Babinet's Equal-Surface projection 249

Bartholomew, J 249

Basement Map 1 16

Bathymetric Map 41

Behrmann. W 76, 77

Bessel ellipsoid 11. 12

Bipolar Oblique Conic Conformal projection 1, 51,

86. 116-123

features and usage 116-117, 371

formulas, sphere 117-121, 301-303

history 116

rectangular coordinates 122-123

Board of Longitude 9

Boggs, S.W 86

Boggs Eumorphic projection 34, 249

Bomford, G 192

Bonne. R 138

Bonne projection 7, 33, 138-140

features 138-139

formulas, ellipsoid 140, 310-311

sphere 139-140, 309

history 92. 138

usage 139

Borneo, maps of 66. 68

Bousfield's Modified Polyconic projection 128

Briesemeister, W.A 116

Briesemeister projection 34, 249

Bromley, R.H 251

Cagnoli. A 191

Calculator, pocket 2. 4, 29. 67

Carte Parallglogrammatique. La 90

Cassini, J.D. or G.D 92

Cassini de Thury, C.F 92

Cassini projection 92-95

features 92-94

formulas, ellipsoid 95, 289-290

sphere 94-95, 288-289

history 92

usage 94, 138

Cassini-Soldner projection 57, 94

See also Cassini projection

Cauchy-Riemann equations 27-28, 203

Central projection 164

Chamberlin, W 192

Chamberlin Trimetric projection 139, 192

Clarke, A.R. 11. 169. 173

Clarke 1866 ellipsoid 11, 13, 65. 62.

83, 103, 115, 212. 225

corrections for auxiliary latitudes

using 15-18

dimensions 11. 12

distortion of sphere vs 27

formulas using 15-18

length of degree using 25

use. Guam projection 199

maps of U.S. 11, 100. 110, 125, 212

Mercator projection tables 46

Micronesia mapping 200

Polyconic projection tables 132-133

State Plane Coordinate System 51. 56

Universal Transverse Mercator projection 58. 59

"Clarke's best formula" 199. 202

Classification of projections 3-7. 33

Close, C.F 192
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Coast Survey 126

See also Survey of the Coast, United States Coast and

Geodetic Survey

Cole. J.H 66. 71

Columbus, C 9

Colvocoressea. A.P. 214, 215

Computer 1, 4, 29, 67

Cone, basis of projection 5, 6, 7, 33

Cone constant ix. 21

See also specific conic projection

Conformal latitude

See latitude, conformal

Conformal projections 2. 4, 27-28, 34, 35

See also Bipolar Oblique Conic Conformal projection,

Lambert Conformal Conic projection, Mer.

cator projection, Modified-Stereographic

Conformal projections. Oblique Mercator

projection, Space Oblique Mercator projec

tion, Stereographic projection, Transverse

Mercator projection

"Conic projection" I11

"Modified" 113

Conic (conical) projections 5. 7, 21, 97-140. 142

scale and distortion 21, 25

transformation 31, 32

See also Albers Equal-Area Conic projection, Bipolar

Oblique Conic Conformal projection, Equi

distant Conic projection, Lambert Con

formal Conic projection, Poly conic

projection, Satellite.Tracking projections

Conical Orthomorphic projection 104

Conrad of Dyffenbach 191

Continents, maps of 35

See also specific continent

Convergence of meridians 21

Coordinates, polar 21, 23

rectangular ix, 21

See also specific projection

Cordiform projections 138, 154

Coronelli. V.M 138

Cossin, J. 243

Curvature, radius of 24, 25, 266

total 70

Cylinder, basis of projection 5, 6, 7, 33

Cylindrical Equal.Area projection 37. 76-85. 98

features 76-77

formulas, ellipsoid 81-85, 281-287

sphere 77, 80-81, 278-280

history 48

usage 35

Cylindrical projections 5. 7. 21, 33, 37-95. 97. 142, 371

scale and distortion 21, 25

transformation 31-32

See also Cassini projection, Cylindrical Equal.Area

projection, Equidistant Cylindrical projec

tion, Gall Cylindrical projection, Mercator

projection, Miller Cylindrical projection,

Oblique Mercator projection, Satellite-

Tracking projections. Simple Cylindrical

projection, Transverse Equidistant Cylin

drical projection, Transverse Mercator

projection

I,

d'Aiguillon, F 145, 154

DAlembert, J.L 203

Datum 11-13

North American Datum <NAD) 1927 13, 56

North American Datum (NAD) 1983 13, 373-376

Debenham. F 146

Deetz. C.H 2

Deformation, maximum angular 20-21, 23-24. 142-144.

221. 226

De la Hire. P 169

De I'Isle. J.N I11, i38

Distortion of maps

See deformation, maximum angular; scale

Donald. J.K 192

Durer. A. 145

E

Easting, false ix, 10, 63, 64

Eccentricity of ellipsoid

See ellipsoid, eccentricity

Eckert, M 253

Eckert IV and VI projections 253-258

features 256

formulas, sphere, Eckert IV 256-257, 368

Eckert VI 257, 369

history 253, 256

rectangular coordinates 258

usage 34, 253, 256

Edwards, T 76

Egyptian cartographers 145, 154, 169, 191

Eisenlohr projection 34

Electronic surveying 10

Ellipsoid. Earth taken as 10, 11-18

eccentricity, symbols viii, 13

flattening 11, 12, 13

scale and distortion 11. 24-27

Stereographic projection characteristics . 155

See also Bessel ellipsoid: Clarke 1866 ellipsoid; Inter

national ellipsoid; latitude, auxiliary; specific

projection

Elliptical integrals 17

Elliptical projection 249

Equal.area projections 4. 28. 34, 35

See also Albers Equal.Area Conic projection, Bonne

projection, Cylindrical Equal.Area projec

tion, Eckert IV and VI projections, Lambert

Azimuthal Equal-Area projection,

Mollweide projection, Sinusoidal projection

Equatorial projections 7, 29, 32, 141

Azimuthal Equidistant 192, 194

Gnomonic 165

Lambert Azimuthal Equal.Area 184

Orthographic 145-146

Stereographic 155

Equiareal projections 4

Equidistant Conic projection 64, 97, 111-115

features 112. 138

formulas, ellipsoid 114. 299-301

sphere 113-114. 298-299

history 111

polar coordinates 115

usage 35, 113

Equidistant Cylindrical projection 90-91, 92, 94, 97, 247

formulas, for sphere 91

history and features 90-91

usage 35. 371

See also Cassini projection

Equidistant projections 4, 34, 35

See also Azimuthal Equidistant projection, Cassini

projection, Equidistant Conic projection,

Equidistant Cylindrical projection

Equirectangular projection 90, 112

Equivalent projections 4

Eratosthenes 90

ERTS satellite imagery 94. 214

Espinosa, A.F 203

Etzlaub, E 38

Euler, L I11

Eurasia, maps of 66. 76

Europe, maps of 2, 98, 138. 139, 157

Everett. J.D I11

Extraterrestrial mapping 2, 13, 14

Lambert Conformal Conic projection 42-43. 371

Mercator projection 41-43, 371

Perspective projections 169

Stereographic protection, oblique 43, 155

polar 42-43, 157

Transverse Mercator projection 42-43

F

Fairgrieve, J 249

False eastings and northings ix, 10, 63, 64

Ferro as prime meridian 8

Flamsteed. J 243

Fourier series 82-84. 218. 219. 220, 223. 224.

225. 229. 347-349. 354

France, maps of 8, 92, 104. 138. 139

French Academy of Sciences 11



INDEX

Galilean satellites of Jupiter

See Jupiter satellites

Galileo 9

Gall, J 76. 86

Gali IStereographic) Cylindrical projection 37. 76. 86

Gauss. C.F 48

Gauss Conformsi projection 48

Gauss-Kruger projection 48

Geodesic distance, calculation 199. 201, 202

Geodesic path 10. 70. 81

Geodetic Reference System IGRS) 12. 13

Geodetic triangulation 9

Geographia 90, 1 1 1

Geoid, Earth taken as 11.12

Geologic maps 98. 116. 371

Geosynchronous satellites 170

Geothermal Map 116

Germain, A 48

Ginzburg. G.A 182

Glareanus, H 191

Globular projection 184. 194

Gnomic projection 164

Gnomonic projection 164-168, 169. 192

coordinates, polar 143

rectangular 168

features 4. 141. 164-165

formulas, sphere 165. 167. 319-320

history 164

usage 35. 164-165

Goode, J.P 247, 249

Goode Homolosine projection 34. 247. 249. 253

Goode s Atlas 247

Great Britain, maps of 57, 94

Great Lakes, maps of 56. 68

Great-circle distance 30, 39

Great-circle paths 4, 35. 67. 81, 164. 165

Greenwich as prime meridian . . t ix, 8-9. 10. 157

GRS 80 ellipsoid .12. 13, 376

Grids . '0

declinati0n J1

See ok. btate Plane Coordinate Systr.u. ^. - vi.-;e

Merrst?r, Universal; H orid Poly^onic Grid

GS50 Projection 206. 209. >\0, 212

Guam projection 194. 198-199. 201, 372

Il

If:

34. Is.!

Hammer, E.

Hammer projection

Hammer-Aitoff projection

Hammond, Inc 139

Harrison, J 9

Harrison. R E 146. 169

Hassler, F.R 2. 124

Hatt. P 191

Hawaii, maps of 41, 68. 99

Hayford. J.F 11

Hayford ellipsoid 11-12

See also International ellipsoid

Heat Capacity Mapping Mission IHCMM) imagery 68

Hemispheres, maps of 34-35, 182. 184, 191. 194

Hipparchus 8, 145. 154. 243

Homalographic projections 4, 249

Homolographic projections 4, 249

Homolosine projection 34, 247. 249. 253

Hondius, J. 243

Hooke. R 9

Horizon aspect of projections, definition 29

Horologium projection 164

Hotine, M. 66, 68, 70-75

Hotine Oblique Mercator iHOM) projection

See Oblique Mercator projection, Hotine

Huygena. C 9

Hydrocarbon Provinces, maps of 157, 184. 247. 371. 372

I

Ibn-el-Zarkali

Index maps, topographic

Indicatrix. Tissot's

Indonesis, maps of

International ellipsoid 11-12. 82. 83, 136. 157

dimensions 11-12

length of degree using 25

use with polar projections 163, 190

use in Universal Transverse Mercator projection 58

International Map Committee 131

International Map of the World (1MWI 106. 128,

131-137. 157. 371

International Meridian Conference 9

International Union of Geodesy and Geophysics iIUGGI

11, 13

Interrupted projections 34. 246. 247. 249, 372

Inverse equations, for auxiliary latitudes . 15-18

for projections

See specific projection

for transformations 32

Isometric latitude 15. 27. 264-265

Italy, map of 68

Junkins, J.L. 214

Jupiter satellites, maps of

Lambert Conformal Conic projection 42-43, 106

Mercator projection 41-43

Orthographic projection 43

reference spheres 14

Stereographic projection 42-43

Kavrayskiy, V.V 99, 111, 253

Kepler's laws 225

Knuth algorithm 207, 208, 346

Kruger, L. 48

Laborde, J

Lagrange projection

Lallemand, C

Lambert, J.H

66. 68, 70, 203

34

131

48, 49. 76. 104. 105. 182

20

154

90-91. 371

21. 27. 215

41. 371

Lambert Azimuthal Equal-Area projection 2. 98,

182-190, 192. 249

coordinates, polar 143, 190

rectangular 188-189

features 141. 182. 184

formulas, ellipsoid 187-190,333-337

sphere 185-187. 332-333

geometric construction 184-185

history 48. 182

usage 2. 35. 43, 139, 184. 194. 247, 371

Lambert Conformal Conic projection 104-110,

116. 117

features 22. 105. 112

formulas, ellipsoid 107-109. 296-298

sphere 106-107. 295-296

history 48. 104-105

polar coordinates 110

usage 2. 35, 97. 105-106. 128, 206. 207. 230. 371

in extraterrestrial mapping 42-43, 106

in International Map of the World 106.131.157

in State Plane Coordinate System t t 2. 51,

52. 54-56. 127. 371, 373, 375-376

Lambert Cylindrical Equal-Area projection

See Cylindrical Equal-Area projection

Lambert's Equal-Area Conic projection 98

Landsat imagery, Hotine Oblique Mercator projec

tion 68. 69, 371

Oblique Cassini projection t.. 94

Perspective projections 173

Satellite-Tracking projections 230

Space Oblique Mercator projection 94, 214-225

Latitude, authalic 16. 18. 82. 102. 187-190. 265

auxiliary 13-18, 263-266

See also latitude: authalic, conformal. geocentric,

isometric, parametric, reduced

conformal 15-16, 18. 66. 108. 160-162. 263-264

footpoint 63. 82. 95

geocentric 17-18. 108. 266

geodetic ix, 8, 13

length of degrees 24-25. 266

scale and distortion 21-27
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geographic

See latitude, geodetic

isometric 15, 27. 264-265

measurement of 8

parametric or reduced 16

"pseudotransformed" 221

rectifying 16-17. 265-266

reduced 18. 266

standard

See parallels, standard

See also specific projection

transformed ix. 31, 219

Least squares, use of 99, 203, 204

Lee. L.P 33, 48. 203, 209

L'lale

See De l isle

London as prime meridian 8

Longitude 8-10

geodetic 8-10

length of degree 24-25, 266

scale and distortion 21-27

See also specific projection

measurement of 8-9

"pseudotransformed" 221

"satellite-apparent" 219

transformed ix, 31, 219

Lorgna. A.M 182

Loritus, H 191

Loxodromes

See rhumb lines

Ludd. W 154

M

McBryde projections 34

McBryde.Thomas projections 34

Madagascar, maps of 66. 68, 203

Malaya, maps of 68

Maps for America 1

Marinus of Tyre 90

Mars, maps of 2

Lambert Conformal Conic projection 42-43, 106

Mercator projection 41-43

reference ellipsoid 13, 14

Stereographic projection 42-43, 155

Transverse Mercator projection 42-43, 57

Mars satellites, maps of 43

Maurer, H 33, 192

Meades Ranch, Kans 13

Mercator, G 38. 39. 111, 138. 154. 191

Mercator, R 154

Mercator Equal.Area projection 243

Mercator projection 37. 38-47, 48-50, 66, 67,

68, 77, 86. 92, 105. 145, 203

features 4. 38-41

formulas, ellipsoid 14, 15, 44-45. 267-268

sphere 41, 44. 266-267

history 38

oblique

See Oblique Mercator projection

rectangular coordinates 45

Transverse

See Transverse Mercator projection

usage 34. 35. 38-43, 371

in extraterrestrial mapping 41-43

with another standard parallel 47

Mercury, maps of 2

Lambert Conformal Conic projection 42, 106

Mercator projection 41. 42

reference sphere 14

Stereographic projection 42. 155

Meridian

central ix, 10, 31

See also specific projection

prime ix, 8-9, 10, 157

Meridian aspect of projection 29

Meridians

See longitude

Meridional aspect of projection 29

Metallogenic Map 116

Metric conversion 51, 376

Micronesia, mapping of . 194, 199-201, 202, 372

Miller. O.M 86, 116, 203, 209

Miller Cylindrical projection

features 86-87

formulas, sphere 88, 287-288

history 86-87

rectangular coordinates 89

usage 1, 34, 371

Mineral Resources, maps of 239, 372

Modified Polyconic projection 106, 127. 128,

131-137. 157, 371

coordinates, rectangular 136

formulas, ellipsoid 131, 134-135. 306-309

Modified-Stereographic Conformal projections .28.

203-212

coordinates, rectangular 212

features 204-207

formulas, ellipsoid 208,210-211

sphere 207-208, 344-347

history 203

usage 203-204

Modified Stereographic projection 170

"Modified Transverse Mercator"' projection

See Transverse Mercator, "Modified"

Mollweide. C.B 249

Mollweide projection 239, 247. 249-252

features 249, 251

formulas, sphere 251-252, 367

history 249

rectangular coordinates 252

usage 34. 249

Moon, maps of Earth's 2

Lambert Azimuthal Equal.Area projection 184

Lambert Conformal Conic projection 42-43, 106

Mercator projection 41-43

reference sphere 14

Stereographic projection 42. 155

Murdoch, P I11

National Aeronautics and Space Administration

(NASA) 214. 215

National Atlas 2. 86. 98. 106, 184. 194. 239

National Bureau of Standards 51

National Geodetic Survey 198, 373

See also United States Coast and Geodetic Survey

National Geographic Society 139, 184. 192, 194. 239, 253

National Mapping Program 1

National Ocean Service 1, 39, 124

See also United States Coast and Geodetic Survey

National Oceanic and Atmospheric Administration

,NOAA) 69

Nell. A.M 139

Neptune satellite, maps of 42-43

reference sphere 14

New England Datum 13

New Mexico Planning Survey 113

New Zealand, maps of 68, 203

Newton, 1 11

Newton-Raphson iteration 129. 130, 208, 210,

237. 251. 256, 257

Nordisk Varids Atlas 247

North America, ellipsoid 11

maps of 11. 51, 68. 116-117. 139, 371

naming 38

North American Datum

See under datum

Northing, false ix, 10, 63, 64

Nowicki, A.L 169-170. 173

Oblated Stereographic projection 86. 209

Oblique Conformal Conic projection 116-117

See also Bipolar Oblique Conic Conformal projection

Oblique Equidistant Conic projection 117

Oblique Mercator projection 29, 66-75, 116, 203

features 67-68, 215

formulas, ellipsoid 70-75. 274-278

sphere 69-70, 272-274

history 66

Hotine <HOM). formulas 70-75

usage, satellite imagery 68-69. 214, 215

State Plane Coordinate System 51, 371
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U.S. Lake Survey 56, 68

usage (other than Hotine) 34. 35, 68-69

Oblique projections 7, 23, 29, 34, 35, 37. -41

Azimuthai Equidistant 34, 194

Cylindrical Equal-Area 35. 76, 79-84

Equidistant Cylindrical 94

Gnomonic 165

Lambert Azimuthai Equal-Area 35, 184

Orthographic 146

Stereographic 35, 155

31-32

See aiso Bipolar Oblique Conic Conforms! projection,

Oblique Coniormal Conic projection, Oblique

Equidistant Conic projection, Oblique Mer-

cator projection, Space Oblique Mercator

projection

Ordnance Survey 57, 94

Ortelius, A. 138. 253

Ortelius projection 253

Orthographic Cylindrical projection 76

Orthographic projection 145-153, 159. 169, 182. 184, 191

coordinates, polar 142

rectangular 151-153

features 141, 145-146

formulas, sphere 148-150, 311-312

geometric construction 148

history 145

usage 35. 43, 146. 147. 371

Orthomorphic projections 4

Pacific Ocean, maps of 2. 184. 203, 249. 371

Paper maps, distortion 3

Parallels, standard ix, 5. 21. 97. 142

Albers Equal-Area Conic projection . . t 98-103

Bipolar Oblique Conic Conforms! projection 1 16- 117

Bonne projection 138-140

Equidistant Conic projection 111-115

Lambert Conformal Conic projection 105-108

Mercator projection 47

Stereographic projection 155, 157

Parallels of latitude

See latitude

Parent. A. 169

Pans, meridian of 92

Perspective come projections 97

Perspective projection 5. 33, 141, 169-181

coordinates, rectangular 174

features 170-173

formulas, tilted, ellipsoid 178-181. 323-325

sphere 175-176, 322

vertical, ellipsoid 176-178, 323

sphere 173, 175. 320-321

projective equations 178-181. 325-332

history 169-170

usage 169-170

See also Gnomonic projection, Orthographic projec

tion, Stereographic projection

Peters, A 76

Philadelphia as prime meridian 8

Philbrick, A.K 249

Plane as basis of projection 6. 6. 7

See also azimuthai projections, Perspective projection

Planets, maps of

See extraterrestrial mapping

Planisphaerum projection 154

Plastic maps, distortion 3

Plate Carrie 35. 90, 92. 112

Polar azimuthai projections 5, 29, 141

Azimuthai Equidistant 192

Gnomonic 165

Lambert Azimuthai Equal-Area 182. 184

Orthographic 1 45

Stereographic 155

See also Stereographic projection, Polar

Polyconic Grid. World 10, 127

Polyconic projection 7. 33, 124-137, 199

features 97, 124, 138

formulas, ellipsoid 129-131, 304-306

sphere t«a-l29' 303-304
l/B 128

history 124

modified 106, 127. 128. 131-137. 157. 306-309, 371

rectangular 128

rectangular coordinates 132-133, 136

usage 2. 57. 64. 106. 126-128. 371

Postel. G 191

Principio, Md 13

Progressive Military Grid 127

Prolated Stereographic projection 203

Pseudoazimuthal projections 7

Pseudoconic projections 7. 33, 139

Pseudocylindrical projections 7, 28. 33, 34, 243-258

transformation 31-32

See also Eckert IV and VI projections, Mollweide pro

jection, Sinusoidal projection

Ptolemy, C 1. 8, 90, 97, 111. 145, 154

Quadrangles 2. 126-128, 371, 372

See also State Plane Coordinate System

geometric construction

R

Rand McNally & Co 139. 146. 243

Rechteckige Plattkarte, Die 90

Rectangular projection 90

Rectified skew orthomorphic projection 66

Rectifying latitude 18

Reilly, W.l 203

Rhumb lines 4, 10, 34, 35, 38, 39

calculation of 46-47

Robinson projection 34

Robbins' geodesic inverse 199

Rosenmund. M 66. 68. 70

Rowland. J.B 68, 215

Roze, J 154

Rubincam, D.P 242

Ruysch. J I11

Sanson, N 243

Sanson-Flamsteed projection 243

Satellites, artificial

imagery from 2. 68-69. 94, 170, 173, 372

figure of Earth from 12

See aiso Landsat imagery

Satellites, natural, maps of

See Mars, Moon, Jupiter, Saturn, Uranus, Neptune

Satellite-Tracking projections 213, 230-238

coordinates, polar 238

rectangular 238

features 230-231

formulas, sphere, conic 232. 236. 237.

360-362. 363

cylindrical 231-232. 236-237,

360. 362-363

history 230

usage 230

Saturn satellites, maps of

Mercator projection 41-42

Orthographic projection 43

reference spheres 14

Stereographic projection 42

Scale error 21

See also scale factor

Scale factor 21

areai 24

calculation 21, 23-26

See also specific projection

Scale of maps 4

See also scale factor

Schmid, E 68

Selection of projections 34-35

Series, computation of 18-19

Shape distortion 4, 20-27

See also specific projection

Simple Conic projection I11

Simple Cylindrical projection 90
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Simpson's rule 17. 85. 218. 347. 354

Singular points in conformsi projections 4

Sinusoidal projection 7. 48. 139. 243-248,

249. 251. 256

features 243-244

formulas, ellipsoid 248. 366

sphere 247-248. 365-366

history 243

34. 243, 247. 253, 372

. J.G. von 92

Solovev, M.D 139

South America, maps of 68. 116. 139. 243

Soviet Union or Russia, maps of I11

Space map projections 213-238

Space Oblique Conformal Conic projection 213

Space Oblique Mercator projection 66, 68, 70.

213, 214-229. 230

features 214-215

formulas, ellipsoid, circular orbit 221 -225. 354-359

noncircular orbit 225-229

sphere 215. 218-221. 347-354

history 214

usage 2. 94, 215. 372

Space photography 169, 175, 178-181

Sphere. Earth taken as 3, 11

formulas for projections

See specific projection

scale and distortion 21, 23-24

Spheroid, oblate

See ellipsoid

Stabius, J 138, 154

Standard circle 155. 160

Standard parallels

See parallels, standard

Stat* base maps 2. 106. 127. 371

Stat* Plane Coordinate System ISPCS) 10. 51-57.

127, 373-376

using Hotine Oblique Mercator projection 51, 52.

56. 68

using Lambert Conformal Conic projection 2. 51,

52. 54-56. 105-106. 108. 375-376

using Transverse Mercator projection .... 2. 51,

52-54, 373-374

Stereographic Cylindrical projection (Gall) 37. 76. 86

Stereographic projection 5, 58, 71. 154-163,

169. 182. 184, 194. 203

coordinates, polar 142. 163

rectangular 158

features 4, 23, 141, 154-155

formulas, ellipsoid 160-162. 313-319

sphere 157-160, 312-313

history 154

modified 170

See also Modified-Stereographic Conformal

projections

Oblated 203

Polar 2. 35. 105. 106. 131. 157. 161-163, 165, 371

Universal 58, 157

See also Stereographic projection: features; for

mulas: history

Prolated 203

usage 34. 35. 58. 106. 131. 155. 156

in extraterrestrial mapping 42-43, 155, 157, 371

Suggested projections 34-35

Survey of the Coast 2. 124

See also Coast Survey, United States Coast and

Geodetic Survey

Switzerland, maps of 66. 68

Sylvanus, B 138

"Tailor-made" projection 116

Tectonic maps 2. 41. 98. 116

Thales 164

Theon 154

Thompson, E.H 48

Tilted Perspective projection

See Perspective projection

Times Atlas, The 249

Tissot. N.A 20

Tissot's indicatrix 20-21, 27. 215

Tobler, W.R 33

"Topographic Mapping Status 90

Topographic maps 3

See also quadrangles

Transformation of graticules 29-32

See also specific projection

Transverse Equidistant Cylindrical projection 57

Transverse Mercator projection 1, 29, 48-65,

66. 68. 71. 92. 94

features 22. 49-51

formulas, ellipsoid 14. 60-61. 63-64, 269-271

sphere 58. 60-61. 268-269

history 48

"Modified" 64-65. 97. 113, 204, 371

rectangular coordinates 60-61

Universal IUTMI 10, 57-58. 59. 62. 64.

106. 127. 157, 371

usage . .... 1. 84, 35. 43, 51-54, 57-58. 371

in State Plane Coordinate System . 2. 51,

52-54. 106. 127. 373-374

Transverse projections 7. 29, 76, 77, 79, 81

See also Transverse Equidistant projection.

Transverse Mercator projection

Tsinger, N.J. IN.Ya.) 99

"Twilight" projection 169

Two-Point Azimuthal projection 192

Two-Point Equidistant projection 192

U

United Nations (UNI 157

United States, maps of 5. 371

Albers Equal-Area Conic projection 98-101. 103

Datums used 11-13

Ellipsoids used 11-13

Lambert Conformal Conic projection 106, 108, 110

Modified-Stereographic Conformal projection 203-

210. 212

Polyconic projection 124, 127-128

States 2

Boundaries 8

Plane Coordinate System

See State Plane Coordinate System

Topographic quadrangles

See quadrangles

Universal Transverse Mercator Grid

See Transverse Mercator, Universal

See also Alaska. Hawaii

United States Coast and Geodetic Survey 1. 2.

11. 39. 68. 98. 104. 105. 124-126. 129

See also Coast Survey, Survey of the Coast

United States Department of Agriculture 239

United States Lake Survey 56. 68

United States National Weather Service 170

United States Standard Datum 13

Universal Polar Stereographic projection . . 58. 157

Universal Transverse Mercator IUTMI projection

See Transverse Mercator projection, Universal

Uranus satellites, maps of 42

14

V

Van der Grinten, A.J 239

Van der Grinten projection 1.194.239-242.244-245.249

features 239

formulas, sphere 241-242. 363-365

geometric construction 241

history 239

rectangular coordinates 244-245

usage 239. 372

Vaulx. J. de 154

Venus, maps of

Lambert Conformal Conic projection 42

Mercator projection 41-42

reference sphere 14

Stereographic projection 42

Vertical Perspective projection

See Perspective projection

Vitkovskiy, V.V I11



INDEX 383

w

Wagner. K 253

Washington, D.C., meridian 8

Universal Transverse Mercator (UTMI zone 57-58

Werner. J 138. 154

Werner projection 138, 139

West Indies, maps of 68

World, maps of 34, 371, 372

Azimuthal Equidistant projection 191

Cylindrical Equal-Area projection 76

Eckert IV and VI projections 253

Equidistant Cylindrical projection 90

Homolosine projection 257. 259, 253

Mercator projection 36

Miller Cylindrical projection 86

Mollweide projection 249

Van der Grinten projection 239

World Geodetic System IWGS) 12. 13

World Polyconic Grid 10. 127

Wright. E 38

Z

Zenithal Equal.Area projection 182

Zenithal projections 4

♦U.S. G.P.O. :1994-301-077:80095
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MISCELLANEOUSINVESTIGATIONSSERIES

Pseudo-Cylinders

Sinusoidal

:oncave

"on.

EqualArea

Meridian-aresinu-oidalcurves,curvedconcavetowardastraightcentral

EckertNo.6 EqualArea

Meridiansaresinusoidal

MAP1-1402

curvesconcai

Miscellaneous

VanDerGrinten

Compromise

Meridi
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