This is a reproduction of a library book that was digitized
by Google as part of an ongoing effort to preserve the
information in books and make it universally accessible.

Google books

https://books.google.com



https://books.google.co.uk/books?id=nPdOAAAAMAAJ

Digitized by 600816






Digitized by (;00816



Digitized by GOOS[€



Map Projections—
A Working Manual

By JOHN P.SNYDER
7

U.S. GEOLOGICAL‘éURVEiY PROFESSIONAL PAPER 1395

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1987



U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

First printing 1987
Second printing 1989
Third printing 1994

Library of Congress Cataloging in Publication Data
Snyder, John Parr, 1926 —

Map projections—a working manual.

(U.S. Geological Survey professii)nal paper ; 1395)

Bibliography: p.

Supt. of Does. No.: I 19.16:1395
1. Map-projection—Handbooks, manuals, ete. 1. Title. II. Series: Geological Survey professional paper ; 1395.
GA110.8577 1987 526.8 87-600250

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, DC 20402



N 2905034659410
ERNER
o

Z’/f’l é»

y UNCAT .
’ PREFACE

This publication is a major revision of USGS Bulletin 1532, which is titled Map
Projections Used by the U.S. Geological Survey. Although several portions are
essentially unchanged except for corrections and clarification, there is consider-
able revision in the early general discussion, and the scope of the book, originally
limited to map projections used by the U.S. Geological Survey, now extends to
include several other popular or useful projections. These and dozens of other
projections are described with less detail in the forthcoming USGS publication An
Album of Map Projections.

As before, this study of map projections is intended to be useful to both the
reader interested in the philosophy or history of the projections and the reader
desiring the mathematics. Under each of the projections described, the nonmathe-
matical phases are presented first, without interruption by formulas. They are
followed by the formulas and tables, which the first type of reader may skip
entirely to pass to the nonmathematical discussion of the next projection. Even
with the mathematics, there are almost no derivations and very little calculus.
The emphasis is on describing the characteristics of the projection and how it is
used.

This professional paper, like Bulletin 1532, is also designed so that the user can
turn directly to the desired projection, without reading any other section, in
order to study the projection under consideration. However, the list of symbols
may be needed in any case, and the random-access feature will be enhanced by a
general understanding of the concepts of projections and distortion. As a result of
this intent, there is some repetition which will be apparent when the book is read
sequentially.

For the more complicated projections, equations are given in the order of
usage. Otherwise, major equations are given first, followed by subordinate
equations. When an equation has been given previously, it is repeated with the
original equation number, to avoid the need to leaf back and forth. Numerical
examples, however, are placed in appendix A. It was felt that placing these with
the formulas would only add to the difficulty of reading through the mathematical
sections.

The equations are frequently taken from other credited or standard sources,
but a number of equations have been derived or rearranged for this publication by
the author. Further attention has been given to computer efficiency, for example
by encouraging the use of nested power series in place of multiple-angle series.

I acknowledged several reviewers of the original manuscript in Bulletin 1532.
These were Alden P. Colvocoresses, William J. Jones, Clark H. Cramer, Marlys
K. Brownlee, Tau Rho Alpha, Raymond M. Batson, William H. Chapman, Atef A.
Elassal, Douglas M. Kinney (ret.), George Y. G. Lee, Jack P. Minta (ret.), and
John F. Waananen, all then of the USGS, Joel L. Morrison, then of the Uni-
versity of Wisconsin/Madison, and the late Allen J. Pope of the National Ocean
Survey. I remain indebted to them, especially to Dr. Colvocoresses of the USGS,
who is the one person most responsible for giving me the opportunity to assemble
this work for publication. In addition, Jackie T. Durham and Robert B. McEwen
of the USGS have been very helpful with the current volume, and several
reviewers, especially Clifford J. Mugnier, a consulting cartographer, have pro-
vided valuable critiques which have influenced my revisions. Other users in and
out of the USGS have also offered useful comments. For the plotting of all
computer-prepared maps, the personnel of the USGS Eastern Mapping Center
have been most cooperative.
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The depletion of the first printing of this professional paper has led to a
reprinting with some two dozen corrections known at this time. The most
significant corrections involve equations (7-15), (7-18), and (7-20) on pages 46 and
47, the footnote on p. 72, the last coefficient on p. 209, the numerical example on
pages 281 through 283, the resolution of the coordinate systems for Wyoming on
pages 373 and 374, and a coordinate for North Carolina on p. 376. I appreciate the
help of users in calling my attention to some of these corrections.

For the third printing of this book, another dozen or more corrections have
been included, all minor, but in a continuing effort to make this professional paper
still more reliable. Again I appreciate the input of users who pointed out some
of these corrections.

John P. Snyder
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SYMBOLS
If a symbol is not listed here, it is used only briefly and identified near the formulas in which it
is given.
Az = azimuth, as an angle measured clockwise from the north.
a = equatorial radius or semimajor axis of the ellipsoid of reference.

b = polar radius or semiminor axis of the ellipsoid of reference.
= a(l =N = ad - A"

¢ = great circle distance, as an arc of a circle.

e = eccentricity of the ellipsoid.

= (1 - b aH™
1 = flattening of the ellipsoid.
J = relative scale factor along a meridian of longitude. (For general perspective projections, h

is height above surface of ellipsoid.)



SYMBOLS ix

x~

= relative scale factor along a parallel of latitude.

n = cone constant on conic projections, or the ratio of the angle between meridians to the true
angle, called [ in some other references.

= radius of the sphere, either actual or that corresponding to scale of the map.

surface area.

= rectangular coordinate: distance to the right of the vertical line (Y axis) passing through
the origin or center of a projection (if negative, it is distance to the left). In practice, a
“false” x or “false easting” is frequently added to all values of x to eliminate negative
numbers. (Note: Many British texts use X and Y axes interchanged, not rotated, from this
convention.)

y = rectangular coordinate: distance above the horizontal line (X axis) passing through the
origin or center of a projection (if negative, it is distance below). In practice, a “false” y or
“false northing” is frequently added to all values of y to eliminate negative numbers.

2z = angular distance from North Pole of latitude ¢, or (90° — ¢), or colatitude.

z, = angular distance from North Pole of latitude &,, or (90° — &,).

2, = angular distance from North Pole of latitude &,, or (30° — &,).

In = natural logarithm, or logarithm to base e, where e = 2.71828.

6 = angle measured counterclockwise from the central meridian, rotating about the center of
the latitude circles on a conic or polar azimuthal projection, or beginning due south, rotating
about the center of projection of an oblique or equatorial azimuthal projection.

8’ = angle of intersection between meridian and parallel.

N = longitude east of Greenwich (for longitude west of Greenwich, use a minus sign).

Ao = longitude east of Greenwich of the central meridian of the map, or of the origin of the
rectangular coordinates (for west longitude, use a minus sign). If ¢, is a pole, A, is the
longitude of the meridian extending down on the map from the North Pole or up from the
South Pole.

A’ = transformed longitude measured east along transformed equator from the north crossing
of the Earth’s Equator, when graticule is rotated on the Earth.

p = radius of latitude circle on conic or polar azimuthal projection, or radius from center on
any azimuthal projection.

¢ = north geodetic or geographic latitude (if latitude is south, apply a minus sign).

&y = middle latitude, or latitude chosen as the origin of rectangular coordinates for a projection.

¢’ = transformed latitude relative to the new poles and equator when the graticule is rotated on
the globe.

&1, &, = standard parallels of latitude for projections with two standard parallels. These are true
to scale and free of angular distortion.

&, (without ¢,) = single standard parallel on cylindrical or conic projections; latitude of central point
on azimuthal projections.

w = maximum angular deformation at a given point on a projection.

5 X
1

1. All angles are assumed to be in radians, unless the degree symbol ( °) is used.

2. Unless there is a note to the contrary, and if the expression for which the arctan is sought has a tor over a d i . the
formulas in which arctan is required (usually to obtain a longitude) are so arranged that the Fortran ATAN2 function should be
used. For hand calculators and computers with the arctan function but not ATANZ2, the following conditions must be added to the
limitations listed with the formulas:

For arctan (A/B). the arctan is normally given as an angle between -90° and +90°, or between - n/2and + n/2. If B is negative, add
+ 180° or * = to the initial arctan, where the + takes the sign of A, or if A is zero, the + arbitrarily takes a + sign. If B is zero, the
arctan is = 90° or = /2, taking the sign of A. Conditions not resolved by the ATANZ2 function, but requiring adjustment for almost
any program, are as follows:
(1) If A and B are both zero, the arctan is indeterminate, but may normally be given an arbitrary value of 0 or of Ay, depending on the
projection, and
(2) If A or B ix infinite, the arctan is = 90° (or = 72) or 0, respectively, the sign depending on other conditions. In any case, the final
longitude should be adjusted. if necessary. sothat it is an angle between — 1807 (or — w)and + 180° (or + ). This is done by adding or
subtracting multiples of 360° (or 2n) us required. B

3. Where division is involved, most equations are given in the form A = B/C rather thanA = i This facilitates typesetting, and it also

is a convenient form for conversion to Fortran programming.

ACRONYMS

AGS American Geographical Society SOM Space Oblique Mercator

GRS Geodetic Reference System SPCS State Plane Coordinate System

HOM Hotine (form of ellipsoidal) Oblique Mercator UPS Universal Polar Stereographic

IMC International Map Committee USC&GS United States Coast and Geodetic Survey
IMW International Map of the World USGS United States Geological Survey

IUGG International Union of Geodesy and Geophysics UTM Universal Transverse Mercator

NASA National Aeronautics and Space Administration WGS World Geodetic System

Some acronyms are not listed, since the full name ix used through this bulletin.




Digitized by 600816 e



MAP PROJECTIONS—
A WORKING MANUAL

By JOHN P. SNYDER

ABSTRACT

After decades of using only one map projection, the Polyconic, for its mapping program, the U.S.
Geological Survey (USGS) now uses several of the more common projections for its published maps.
For larger scale maps, including topographic quadrangles and the State Base Map Series, conformal
projections such as the Transverse Mercator and the Lambert Conformal Conic are used. Equal-area
and equidistant projections appear in the National Atlas. Other projections, such as the Miller
Cylindrical and the Van der Grinten, are chosen occasionally for convenience, sometimes making use
of existing base maps prepared by others. Some projections treat the Earth only as a sphere, others as
either ellipsoid or sphere.

The USGS has also conceived and designed several new projections, including the Space Oblique
Mercator, the first map projection designed to permit mapping of the Earth continuously from a
satellite with low distortion. The mapping of extraterrestrial bodies has resulted in the use of stand-
ard projections in completely new settings. Several other projections which have not been used by
the USGS are frequently of interest to the cartographic public.

With increased computerization, it is important to realize that rectangular coordinates for all these
projections may be mathematically calculated with formulas which would have seemed too compli-
cated in the past, but which now may be programmed routinely, especially if aided by numerical
examples. A discussion of appearance, usage, and history is given together with both forward and
inverse equations for each projection involved.

INTRODUCTION

The subject of map projections, either generally or specifically, has been dis-
cussed in thousands of papers and books dating at least from the time of the Greek
astronomer Claudius Ptolemy (about A.D. 150), and projections are known to
have been in use some three centuries earlier. Most of the widely used projections
date from the 16th to 19th centuries, but scores of variations have been developed
during the 20th century. In recent years, there have been several new publica-
tions of widely varying depth and quality devoted exclusively to the subject. In
1979, the USGS published Maps for America, a book-length description of its
maps (Thompson, 1979). The USGS has also published bulletins describing from
one to three projections (Birdseye, 1929; Newton, 1985).

In spite of all this literature, there was no definitive single publication on map
projections used by the USGS, the agency responsible for administering the
National Mapping Program, until the first edition of Bulletin 1532 (Snyder, 1982a).
The USGS had relied on map projection treatises published by the former Coast
and Geodetic Survey (now the National Ocean Service). These publications did
not include sufficient detail for all the major projections now used by the USGS
and others. A widely used and outstanding treatise of the Coast and Geodetic
Survey (Deetz and Adams, 1934), last revised in 1945, only touches upon the
Transverse Mercator, now a commonly used projection for preparing maps. Other
projections such as the Bipolar Oblique Conic Conformal, the Miller Cylindrical,
and the Van der Grinten, were just being developed, or, if older, were seldom
used in 1945. Deetz and Adams predated the extensive use of the computer and



MAP PROJECTIONS—A WORKING MANUAL

pocket calculator, and, instead, offered extensive tables for plotting projections
with specific parameters.

Another classic treatise from the Coast and Geodetic Survey was written by
Thomas (1952) and is exclusively devoted to the five major conformal projections.
It emphasizes derivations with a summary of formulas and of the history of these
projections, and is directed toward the skilled technical user. Omitted are tables,
graticules, or numerical examples.

In USGS Bulletin 1532 the author undertook to describe each projection which
has been used by the USGS sufficiently to permit the skilled, mathematically
oriented cartographer to use the projection in detail. The descriptions were also
arranged so as to enable a lay person interested in the subject to learn as much as
desired about the principles of these projections without being overwhelmed by
mathematical detail. Deetz and Adams’ (1934) work set an excellent example in
this combined approach.

While Bulletin 1532 was deliberately limited to map projections used by the
USGS, the interest in the bulletin has led to expansion in the form of this profes-
sional paper, which includes several other map projections frequently seen in
atlases and geography texts. Many tables of rectangular or polar coordinates
have been included for conceptual purposes. For values between points, formulas
should be used, rather than interpolation. Other tables list definitive parameters
for use in formulas. A glossary as such is omitted, since such definitions tend to be
oversimplified by nature. The reader is referred to the index instead to find a
more complete description of a given term.

The USGS, soon after its official inception in 1879, apparently chose the Poly-
conic projection for its mapping program. This projection is simple to construct
and had been promoted by the Survey of the Coast, as it was then called, since
Ferdinand Rudolph Hassler’s leadership of the early 1800’s. The first published
USGS topographic “quadrangles,” or maps bounded by two meridians and two
parallels, did not carry a projection name, but identification as “Polyconic
projection” was added to later editions. Tables of coordinates published by the
USGS appeared in 1904, and the Polyconic was the only projection mentioned by
Beaman (1928, p. 167).

Mappers in the Coast and Geodetic Survey, influenced in turn by military and
civilian mappers of Europe, established the State Plane Coordinate System in the
1930’s. This system involved the Lambert Conformal Conic projection for States
of larger east-west extension and the Transverse Mercator for States which were
longer from north to south. In the late 1950’s, the USGS began changing quadran-
gles from the Polyconic to the projection used in the State Plane Coordinate
System for the principal State on the map. The USGS also adopted the Lambert
for its series of State base maps.

As the variety of maps issued by the USGS increased, a broad range of projec-
tions became important: The Polar Stereographic for the map of Antarctica, the
Lambert Azimuthal Equal-Area for maps of the Pacific Ocean, and the Albers
Equal-Area Conic for the National Atlas (USGS, 1970) maps of the United
States. Several other projections have been used for other maps in the National
Atlas, for tectonic maps, and for grids in the panhandle of Alaska. The mapping
of extraterrestrial bodies, such as the Moon, Mars, and Mercury, involves old
projections in a completely new setting. Perhaps the first projection to be origi-
nated within the USGS is the Space Oblique Mercator for continuous mapping
using imagery from artificial satellites.

It is hoped that this expanded study will assist readers to understand better
not only the basis for maps issued by the USGS, but also the principles and
formulas for computerization, preparation of new maps, and transference of data
between maps prepared on different projections.



1. CHARACTERISTICS OF MAP PROJECTIONS
MAP PROJECTIONS—GENERAL CONCEPTS
1. CHARACTERISTICS OF MAP PROJECTIONS

The general purpose of map projections and the basic problems encountered
have been discussed often and well in various books on cartography and map
projections. (Robinson, Sale, Morrison, and Muehrcke, 1984; Steers, 1970; and
Greenhood, 1964, are among later editions of earlier standard references.) Every
map user and maker should have a basic understanding of projections, no matter
how much computers seem to have automated the operations. The concepts will
be concisely described here, although there are some interpretations and formu-
las that appear to be unique.

For almost 500 years, it has been conclusively established that the Earth is
essentially a sphere, although a number of intellectuals nearly 2,000 years earlier
were convinced of this. Even to the scholars who considered the Earth flat, the
skies appeared hemispherical, however. It was established at an early date that
attempts to prepare a flat map of a surface curving in all directions leads to
distortion of one form or another.

A map projection is a systematic representation of all or part of the surface of a
round body, especially the Earth, on a plane. This usually includes lines delineat-
ing meridians and parallels, as required by some definitions of a map projection,
but it may not, depending on the purpose of the map. A projection is required in
any case. Since this cannot be done without distortion, the cartographer must
choose the characteristic which is to be shown accurately at the expense of others,
or a compromise of several characteristics. If the map covers a continent or the
Earth, distortion will be visually apparent. If the region is the size of a small
town, distortion may be barely measurable using many projections, but it can still
be serious with other projections. There is literally an infinite number of map
projections that can be devised, and several hundred have been published, most
of which are rarely used novelties. Most projections may be infinitely varied by
choosing different points on the Earth as the center or as a starting point.

It cannot be said that there is one “best” projection for mapping. It is even
risky to claim that one has found the “best” projection for a given application,
unless the parameters chosen are artificially constricting. A carefully constructed
globe is not the best map for most applications because its scale is by necessity too
small. A globe is awkward to use in general, and a straightedge cannot be
satisfactorily used on one for measurement of distance.

The details of projections discussed in this book are based on perfect plotting
onto completely stable media. In practice, of course, this cannot be achieved. The
cartographer may have made small errors, especially in hand-drawn maps, but a
more serious problem results from the fact that maps are commonly plotted and
printed on paper, which is dimensionally unstable. Typical map paper can expand
over 1 percent with a 60 percent increase in atmospheric humidity, and the
expansion coefficient varies considerably in different directions on the same sheet.
This is much greater than the variation between common projections on large-
scale quadrangles, for example. The use of stable plastic bases for maps is recom-
mended for precision work, but this is not always feasible, and source maps may
be available only on paper, frequently folded as well. On large-scale maps, such as
topographic quadrangles, measurement on paper maps is facilitated with rectan-
gular grid overprints, which expand with the paper. Grids are discussed later in
this book.

The characteristics normally considered in choosing a map projection are as
follows:
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1. Area.—Many map projections are designed to be equal-area, so that a coin
of any size, for example, on one part of the map covers exactly the same area of
the actual Earth as the same coin on any other part of the map. Shapes, angles,
and scale must be distorted on most parts of such a map, but there are usually
some parts of an equal-area map which are designed to retain these characteris-
tics correctly, or very nearly so. Less common terms used for equal-area projec-
tions are equivalent, homolographic, or homalographic (from the Greek homalos
or homos (“same”) and graphos (“write”)); authalic (from the Greek autos (“same”)
and ailos (“area”)), and equiareal.

2. Shape.—Many of the most common and most important projections are
conformal or orthomorphic (from the Greek orthos or “straight” and morphe or
“shape”), in that normally the relative local angles about every point on the map
are shown correctly. (On a conformal map of the entire Earth there are usually
one or more “singular” points at which local angles are still distorted.) Although a
large area must still be shown distorted in shape, its small features are shaped
essentially correctly. Conformality applies on a point or infinitesimal basis, whereas
an equal-area map projection shows areas correctly on a finite, in fact mapwide
basis. An important result of conformality is that the local scale in every direction
around any one point is constant. Because local angles are correct, meridians
intersect parallels at right (90°) angles on a conformal projection, just as they doon
the Earth. Areas are generally enlarged or reduced throughout the map, but they
are correct along certain lines, depending on the projection. Nearly all large-scale
maps of the Geological Survey and other mapping agencies throughout the world
are now prepared on a conformal projection. No map can be both equal-area and
conformal.

While some have used the term aphylactic for all projections which are neither
equal-area nor conformal (Lee, 1944), other terms have commonly been used to
describe special characteristics:

3. Scale.—No map projection shows scale correctly throughout the map, but
there are usually one or more lines on the map along which the scale remains true.
By choosing the locations of these lines properly, the scale errors elsewhere may
be minimized, although some errors may still be large, depending on the size of
the area being mapped and the projection. Some projections show true scale
between one or two points and every other point on the map, or along every
meridian. They are called equidistant projections.

4. Direction.—While conformal maps give the relative local directions cor-
rectly at any given point, there is one frequently used group of map projections,
called azimuthal (or zenithal), on which the directions or azimuths of all points on
the map are shown correctly with respect to the center. One of these projections
is also equal-area, another is conformal, and another is equidistant. There are also
projections on which directions from two points are correct, or on which direc-
tions from all points to one or two selected points are correct, but these are rarely
used.

5. Special characteristics.—Several map projections provide special characteris-
tics that no other projection provides. On the Mercator projection, all rhumb
lines, or lines of constant direction, are shown as straight lines. On the Gnomonic
projection, all great circle paths—the shortest routes between points on a sphere—
are shown as straight lines. On the Stereographic, all small circles, as well as
great circles, are shown as circles on the map. Some newer projections are spe-
cially designed for satellite mapping. Less useful but mathematically intriguing
projections have been designed to fit the sphere conformally into a square, an
ellipse, a triangle, or some other geometric figure.

6. Method of construction.—In the days before ready access to computers and
plotters, ease of construction was of greater importance. With the advent of
computers and even pocket calculators, very complicated formulas can be handled
almost as routinely as simple projections in the past.
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While the above six characteristics should ordinarily be considered in choosing
a map projection, they are not so obvious in recognizing a projection. In fact, if
the region shown on a map is not much larger than the United States, for example,
even a trained eye cannot often distinguish whether the map is equal-area or
conformal. It is necessary to make measurements to detect small differences in
spacing or location of meridians and parallels, or to make other tests. The type of
construction of the map projection is more easily recognized with experience, if
the projection falls into one of the common categories.

There are three types of developable! surfaces onto which most of the map
projections used by the USGS are at least partially geometrically projected. They
are the cylinder, the cone, and the plane. Actually all three are variations of the
cone. A cylinder is a limiting form of a cone with an increasingly sharp point or
apex. As the cone becomes flatter, its limit is a plane.

If a cylinder is wrapped around the globe representing the Earth (see fig. 1), so
that its surface touches the Equator throughout its circumference, the meridians
of longitude may be projected onto the cylinder as equidistant straight lines
perpendicular to the Equator, and the parallels of latitude marked as lines paral-
lel to the Equator, around the circumference of the cylinder and mathematically
spaced for certain characteristics. For some cases, the parallels may also be
projected geometrically from a common point onto the cylinder, but in the most
common cases they are not perspective. When the cylinder is cut along some
meridian and unrolled, a cylindrical projection with straight meridians and straight
parallels results. The Mercator projection is the best-known example, and its
pcrallels must be mathematically spaced.

If a cone is placed over the globe, with its peak or apex along the polar axis of
the Earth and with the surface of the cone touching the globe along some particu-
lar parallel of latitude, a conic (or conical) projection can be produced. This time
the meridians are projected onto the cone as equidistant straight lines radiating
from the apex, and the parallels are marked as lines around the circumference of
the cone in planes perpendicular to the Earth’s axis, spaced for the desired
characteristics. The parallels may not be projected geometrically for any useful
conic projections. When the cone is cut along a meridian, unrolled, and laid flat,
the meridians remain straight radiating lines, but the parallels are now circular
arcs centered on the apex. The angles between meridians are shown smaller than
the true angles.

A plane tangent to one of the Earth’s poles is the basis for polar azimuthal
projections. In this case, the group of projections is named for the function, not
the plane, since all common tangent-plane projections of the sphere are azimuthal.
The meridians are projected as straight lines radiating from a point, but they are
spaced at their true angles instead of the smaller angles of the conic projections.
The parallels of latitude are complete circles, centered on the pole. On some
important azimuthal projections, such as the Stereographic (for the sphere), the
parallels are geometrically projected from a common point of perspective; on
others, such as the Azimuthal Equidistant, they are nonperspective.

The concepts outlined above may be modified in two ways, which still provide
cylindrical, conic, or azimuthal projections (although the azimuthals retain this
property precisely only for the sphere).

1. The cylinder or cone may be secant to or cut the globe at two parallels instead
of being tangent to just one. This conceptually provides two standard parallels;
but for most conic projections this construction is not geometrically correct.
The plane may likewise cut through the globe at any parallel instead of touch-
ing a pole, but this is only useful for the Stereographic and some other perspec-
tive projections.

'A developable surface is one that can be transformed to a plane without distortion.
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Regular Cylindrical

Transverse Cylindrical

Regular Conic

Polar Azimuthal
(plane)

Oblique Azimuthal
(plane)

F1GURE 1.—Projection of the Earth onto the three major surfaces. In a few cases, projection is
geometric, but in most cases the projection is mathematical to achieve certain features.
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2. The axis of the cylinder or cone can have a direction different from that of the
Earth’s axis, while the plane may be tangent to a point other than a pole (fig.
1). This type of modification leads to important oblique, transverse, and equa-
torial projections, in which most meridians and parallels are no longer straight
lines or arcs of circles. What were standard parallels in the normal orientation
now become standard lines not following parallels of latitude.

Other projections resemble one or another of these categories only in some
respects. There are numerous interesting pseudocylindrical (or “false cylindrical™)
projections. They are so called because latitude lines are straight and parallel,
and meridians are equally spaced, as on cylindrical projections, but all meridians
except the central meridian are curved instead of straight. The Sinusoidal is a
frequently used example. Pseudoconic projections have concentric circular arcs
for parallels, like conics, but meridians are curved: the Bonne is the only common
example. Pseudoazimuthal projections are very rare; the polar aspect has concen-
tric circular arcs for parallels, and curved meridians. The Polyconic projection is
projected onto cones tangent to each parallel of latitude, so the meridians are
curved, not straight. Still others are more remotely related to cylindrical, conic,
or azimuthal projections, if at all.



MAP PROJECTIONS—A WORKING MANUAL
2. LONGITUDE AND LATITUDE

To identify the location of points on the Earth, a graticule or network of longi-
tude and latitude lines has been superimposed on the surface. They are commonly
referred to as meridians and parallels, respectively. The concept of latitudes and
longitudes was originated early in recorded history by Greek and Egyptian
scientists, especially the Greek astronomer Hipparchus (2nd century, B.C.). Clau-
dius Ptolemy further formalized the concept (Brown, 1949, p. 50, 52, 68).

PARALLELS OF LATITUDE

Given the North and South Poles, which are approximately the ends of the axis
about which the Earth rotates, and the Equator, an imaginary line halfway between
the two poles, the parallels of latitude are formed by circles surrounding the
Earth and in planes parallel with that of the Equator. If circles are drawn equally
spaced along the surface of the sphere, with 90 spaces from the Equator to each
pole, each space is called a degree of latitude. The circles are numbered from 0° at
the Equator to 90° North and South at the respective poles. Each degree is
subdivided into 60 minutes and each minute into 60 seconds of are.

For 2,000 years, measurement of latitude on the Earth involved one of two
basic astronomical methods. The instruments and accuracy, but not the principle,
were gradually improved. By day, the angular height of the Sun above the hori-
zon was measured. By night, the angular height of stars, and especially the
current pole star, was used. With appropriate angular conversions and adjust-
ments for time of day and season, the latitude was obtained. The measuring
instruments included devices known as the cross-staff, astrolabe, back-staff,
quadrant, sextant, and octant, ultimately equipped with telescopes. They were
supplemented with astronomical tables called almanacs, of increasing complica-
tion and accuracy. Finally, beginning in the 18th century, the use of triangulation
in geodetic surveying meant that latitude on land could be determined with high
precision by using the distance from other points of known latitude. Thus meas-
urement of latitude, unlike that of longitude, was an evolutionary development
almost throughout recorded history (Brown, 1949, p. 180—207).

MERIDIANS OF LONGITUDE

Meridians of longitude are formed with a series of imaginary lines, all intersect-
ing at both the North and South Poles, and crossing each parallel of latitude at
right angles, but striking the Equator at various points. If the Equator is equally
divided into 360 parts, and a meridian passes through each mark, 360 degrees of
longitude result. These degrees are also divided into minutes and seconds. While
the length of a degree of latitude is always the same on a sphere, the lengths of
degrees of longitude vary with the latitude (see fig. 2). At the Equator on the
sphere, they are the same length as the degree of latitude, but elsewhere they are
shorter.

There is only one location for the Equator and poles which serve as references
for counting degrees of latitude, but there is no natural origin from which to count
degrees of longitude, since all meridians are identical in shape and size. It thus
becomes necessary to choose arbitrarily one meridian as the starting point, or
prime meridian. There have been many prime meridians in the course of history,
swayed by national pride and international influence. For over 150 years, France
officially used the meridian through Ferro, an island of the Canaries. Eighteenth-
century maps of the American colonies often show longitude from London or
Philadelphia. During the 19th century, boundaries of new States were described
with longitudes west of a meridian through Washington, D.C., 77°03' 02.3" west
of the Greenwich (England) Prime Meridian (Van Zandt, 1976, p. 3). The latter
was increasingly referenced, especially on seacharts due to the proliferation of
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Longitude

Latitude
FIGURE 2.—Meridians and parallels on the sphere.

those of British origin. In 1884, the International Meridian Conference, meeting
in Washington, agreed to adopt the “meridian passing through the center of the
transit instrument at the Observatory of Greenwich as the initial meridian for
longitude,” resolving that “from this meridian longitude shall be counted in two
directions up to 180 degrees, east longitude being plus and west longitude minus”
(Brown, 1949, p. 283, 297).

The choice of the prime meridian is arbitrary and may be stated in simple
terms. The accurate measurement of the difference in longitude at sea between
two points, however, was unattainable for centuries, even with a precision suffi-
cient for the times. When extensive transatlantic exploration from Europe began
with the voyages of Christopher Columbus in 1492, the inability to measure
east-west distance led to numerous shipwrecks with substantial loss of lives and
wealth. Seafaring nations beginning with Spain offered sizable rewards for the
invention of satisfactory methods for measuring longitude. It finally became evi-
dent that a portable, dependable clock was needed, so that the height of the Sun
or stars could be related to the time in order to determine longitude. The study of
the pendulum by Galileo, the invention of the pendulum clock by Christian Huygens
in 1656, and Robert Hooke’s studies of the use of springs in watches in the 1660’s
provided the basic instrument, but it was not until John Harrison of England
responded to his country’s substantial reward posted in 1714 that the problem
was solved. For five decades, Harrison devised successively more reliable ver-
sions of a marine chronometer, which were tested at sea and gradually accepted
by the Board of Longitude in painstaking steps from 1765 to 1773. Final compensa-
tion required intervention by the King and Parliament (Brown, 1949, p. 208—240;
Quill, 1966).

Thus a major obstacle to accurate mapping was overcome. On land, the meas-
urement of longitude lagged behind that of latitude until the development of the
clock and the spread of geodetic triangulation in the 18th century made accuracy a
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reality. Electronic means of measuring distance and angles in the mid- to late-20th
century have redefined the meaning of accuracy by orders of magnitude.

CONVENTIONS IN PLOTTING

When constructing meridians on a map projection, the central meridian, usu-
ally a straight line, is frequently taken to be a starting point or 0° longitude for
calculation purposes. When the map is completed with labels, the meridians are
marked with respect to the Greenwich Prime Meridian. The formulas in this book
are arranged so that Greenwich longitude may be used directly. All formulas
herein use the convention of positive east longitude and north latitude, and nega-
tive west longitude and south latitude. Some published tables and formulas else-
where use positive west longitude, so the reader is urged to use caution in compar-
ing values.

GRIDS

Because calculations relating latitude and longitude to positions of points on a
given map can become quite involved, rectangular grids have been developed for
the use of surveyors. In this way, each point may be designated merely by its
distance from two perpendicular axes on the flat map. The Y axis normally coin-
cides with a chosen central meridian, y increasing north. The X axis is perpendicu-
lar to the Y axis at a latitude of origin on the central meridian, with x increasing
east. Frequently x and y coordinates are called “eastings” and “northings,”
respectively, and to avoid negative coordinates may have “false eastings” and
“false northings” added.

The grid lines usually do not coincide with any meridians and parallels except
for the central meridian and the Equator. Of most interest in the United States
are two grid systems: The Universal Transverse Mercator (UTM) Grid is described
on p. 57, and the State Plane Coordinate System (SPCS) is described on p. 51.
Preceding the UTM was the World Polyconic Grid (WPG), used until the late
1940’s and described on p. 127.

Grid systems are normally divided into zones so that distortion and variation of
scale within any one zone is held below a preset level. The type of boundaries
between grid zones varies. Zones of the WPG and the UTM are bounded by
meridians of longitude, but for the SPCS State and county boundaries are used.
Some grid boundaries in other countries are defined by lines of constant grid
value using a local or an adjacent grid as the basis. This adjacent grid may in turn
be based on a different projection and a different reference ellipsoid. A common
boundary for non-U.S. offshore grids is an ellipsoidal rhumb line, or line of con-
stant direction on the ellipsoid (see p. 46); the ellipsoidal geodesic, or shortest
route (see p.199)is also used. The plotting of some of these boundaries can become
quite complicated (Clifford J. Mugnier, pers. comm., 1985).
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3. THE DATUM AND THE EARTH AS AN ELLIPSOID

For many maps, including nearly all maps in commercial atlases, it may be
assumed that the Earth is a sphere. Actually, it is more nearly an oblate ellipsoid
of revolution, also called an oblate spheroid. This is an ellipse rotated about its
shorter axis. The flattening of the ellipse for the Earth is only about one part in
three hundred; but it is sufficient to become a necessary part of calculations in
plotting accurate maps at a scale of 1:100,000 or larger, and is significant even for
1:5,000,000-scale maps of the United States, affecting plotted shapes by up to 2/3
percent (see p. 27). On small-scale maps, including single-sheet world maps, the
oblateness is negligible. Formulas for both the sphere and ellipsoid will be dis-
cussed in this book wherever the projection is used or is suitable in both forms.

The Earth is not an exact ellipsoid, and deviations from this shape are continu-
ally evaluated. The geoid is the name given to the shape that the Earth would
assume if it were all measured at mean sea level. This is an undulating surface
that varies not more than about a hundred meters above or below a well-fitting
ellipsoid, a variation far less than the ellipsoid varies from the sphere. It is
important to remember that elevations and contour lines on the Earth are reported
relative to the geoid, not the ellipsoid. Latitude, longitude, and all plane coordi-
nate systems, on the other hand, are determined with respect to the gﬁgsmd

“The choice of the reference ellipsoid used for various regions of the Earth has
been influenced by the local geoid, but large-scale map projections are designed to
fit the reference ellipsoid, not the geoid. The selection of constants defining the
shape of the reference ellipsoid has been a major concern of geodesists since the
early 18th century. Two geometric constants are sufficient to define the ellipsoid
itself. They are normally expressed either as (1) the semimajor and semiminor
axes (or equatorial and polar radii, respectively), (2) the semimajor axis and the
flattening, or (3) the semimajor axis and the eccentricity. These pairs are directly
interchangeable. In addition, recent satellite-measured reference ellipsoids are
defined by the semimajor axis, geocentric gravitational constant, and dynamical
form factor, which may be converted to flattening with formulas from physics
(Lauf, 1983, p. 6).

In the early 18th century, Isaac Newton and others concluded that the Earth
should be slightly flattened at the poles, but the French believed the Earth to be
egg-shaped as the result of meridian measurements within France. To settle the
matter, the French Academy of Sciences, beginning in 1735, sent expeditions to
Peru and Lapland to measure meridians at widely separated latitudes. This estab-
lished the validity of Newton’s conclusions and led to numerous meridian measure-
ments in various locations, especially during the 19th and 20th centuries; between
1799 and 1951 there were 26 determinations of dimensions of the Earth.

The identity of the ellipsoid used by the United States before 1844 is uncertain,
although there is reference to a flattening of 1/302. The Bessel ellipsoid of 1841
(see table 1) was used by the Coast Survey from 1844 until 1880, when the bureau
adopted the 1866 evaluation by the British geodesist Alexander Ross Clarke
using measurements of meridian arcs in western Europe, Russia, India, South
Africa, and Peru (Shalowitz, 1964, p. 117—-118; Clarke and Helmert, 1911,
p. 807—808). This resulted in an adopted equatorial radius of 6,378,206.4 m and a
polar radius of 6,356,583.8 m, or an approximate flattening of 1/294.9787.

The Clarke 1866 ellipsoid (the year should be included since Clarke is also
known for ellipsoids of 1858 and 1880) has been used for all of North America until
a change which is currently underway, as described below.

“In 1909 John Fillmore Hayford reported calculations for a reference ellipsoid
from U.S. Coast and Geodetic Survey measurements made entirely within the
United States. This was adopted by the International Union of Geodesy and
Geophysics (IUGG) in 1924, with a flattening of exactly 1/297 and a semimajor
axis of exactly 6,378,388 m. This is therefore called the International or the

11



12

MAP PROJECTIONS—A WORKING MANUAL
TABLE 1.—Some official ellipsoids in use throughout the world’

Equatorial Polar Radius Flattening
Name Date Radius, a b, meters f Use
meters

GRS 80%____.___1980 6,378,137* 6,356,752.3 1/298.257 Newly adopted

WGS 728 ____.__1972 6,378,135*  6,356,750.5 1/298.26 NASA; Dept. of Defense;
oil companies

Australian_____ 1965 6,378,160* 6,356,774.7 1/298.25*  Australia

Krasovsky..... 1940  6,378,245*  6,356,863.0 1/298.3* Soviet Union

Internat’l ______ 1924 .

Hayford ... 1909} 6,378,388*  6,356,911.9 1/297* Re::)a:;&?er of the

Clarke®......... 1880 6,378,249.1 6,356,514.9  1/293.46** Most of Africa; France

Clarke ........_. 1866 6,378,206.4* 6,356,583.8* 1/294.98 North America; Philip-
pines

Airy* ___________1830 6,377,563.4 6,356,256.9 1/299.32** Great Britain

Bessel ._____.___1841 6,377,397.2 6,356,079.0 1/299.15** Central Europe; Chile;
Indonesia

Everest® ______1830 6,377,276.3 6,356,075.4  1/300.80** India; Burma; Paki-
stan; Afghan.; Thai-
land; etc.

Values are shown to accuracy in excess significant figures, to reduce computational confusion.
! Maling, 1973, p. 7; Thomas, 1970, p. 84; Army, 1973, p. 4, endmap; Colvocoresses, 1969, p. 33; World Geodetic,
1974.
2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth. WGS 84 has same dimensions
within accuracy shown.
3 World Geodetic System. Ellipsoid derived from adopted model of Earth.
* Also used in some regions with various modified constants.
* Taken as exact values. The third number (where two are asterisked) is derived using the following relationships:
b = a (1-f); f = 1-b/a. Where only one is asterisked (for 1972 and 1980), certain physical constants not
shown are taken as exact, but f as shown is the adopted value.
** Derived from a and b, which are rounded off as shown after conversions from lengths in feet.
t Other than regions listed elsewhere in column, or some smaller areas.

Hayford ellipsoid, and is used in many parts of the world, but it was not adopted
for use in North America, in part because of all the work already accomplished
using the older datum and ellipsoid (Brown, 1949, p. 293; Hayford, 1909).

There are over a dozen other principal ellipsoids, however, which are still used
by one or more countries (table 1). The different dimensions do not only result
from varying accuracy in the geodetic measurements (the measurements of loca-
tions on the Earth), but the curvature of the Earth’s surface (geoid) is not uniform
due to irregularities in the gravity field.

Until recently, ellipsoids were only fitted to the Earth’s shape over a particular
country or continent. The polar axis of the reference ellipsoid for such a region,
therefore, normally does not coincide with the axis of the actual Earth, although
it is assumed to be parallel. The same applies to the two equatorial planes. The
discrepancy between centers is usually a few hundred meters at most. Only
satellite-determined coordinate systems, such as the WGS 72 and GRS 80 men-
tioned below, are considered geocentric. Ellipsoids for the latter systems repre-
sent the entire Earth more accurately than ellipsoids determined from ground
measurements, but they do not generally give the “best fit” for a particular
region.

The reference ellipsoids used prior to those determined by satellite are related
to an “initial point” of reference on the surface to produce a datum, the name
given to a smooth mathematical surface that closely fits the mean sea-level sur-
face throughout the area of interest. The “initial point” is assigned a latitude,
longitude, elevation above the ellipsoid, and azimuth to some point. Once a datum
is adopted, it provides the surface to which ground control measurements are
referred. The latitude and longitude of all the control points in a given area are
then computed relative to the adopted ellipsoid and the adopted “initial point.”
The projection equations of large-scale maps must use the same ellipsoid parame-
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ters as those used to define the local datum; otherwise, the projections will be
inconsistent with the ground control.

The first official geodetic datum in the United States was the New England Datum, adopted in
1879. It was based on surveys in the eastern and northeastern states and referenced to the Clarke
Spheroid of 1866, with triangulation station Principio, in Maryland, as the origin. The first transconti-
nental arc of triangulation was completed in 1899, connecting independent surveys along the Pacific
Coast. In the intervening years, other surveys were extended to the Gulf of Mexico. The New
England Datum was thus extended to the south and west without major readjustment of the surveys
in the east. In 1901, this expanded network was officially designated the United States Standard
Datum, and triangulation station Meades Ranch, in Kansas, was the origin. In 1913, after the geodetic
organizations of Canada and Mexico formally agreed to base their triangulation networks on the
United States network, the datum was renamed the North American Datum.

By the mid-1920's, the problems of adjusting new surveys to fit into the existing network were
acute. Therefore, during the 5-year period 1927—-1932 all available primary data were adjusted into a
system now known as the North American 1927 Datum.”™" The coordinates of station Meades Ranch
were not changed but the revised coordinates of the network comprised the North American 1927
Datum (National Academy of Sciences, 1971, p. 7).

Satellite data have provided geodesists with new measurements to define the
best Earth-fitting ellipsoid and for relating existing coordinate systems to the
Earth’s center of mass. U.S. military efforts produced the World Geodetic Sys-
tem 1966 and 1972 (WGS 66 and WGS 72). The National Geodetic Survey is
planning to replace the North American 1927 Datum with a new datum, the
North American Datum 1983 (NAD 83), which is Earth-centered hased on both
satellite and terrestrial data. The IUGG in 1980 adopted a new model of the Earth
called the Geodetic Reference System (GRS) 80, from which is derived an ellip-
soid which has been adopted for the new North American datum. As a result, the
latitude and longitude of almost every point in North America will change slightly,
as well as the rectangular coordinates of a given latitude and longitude on a map
projection. The difference can reach 300 m. U.S. military agencies are developing
a worldwide datum called WGS 84, also based on GRS 80, but with slight
differences. For Earth-centered datums, there is no single “origin” like Meades
Ranch on the surface. The center of the Earth is in a sense the origin.

For the mapping of other planets and natural satellites, only Mars is treated as
an ellipsoid. Other bodies are taken as spheres (table 2), although some irregular
satellites have been treated as triaxial ellipsoids and are “mapped” ortho-
graphically.

In most map projection formulas, some form of the eccentricity e is used, rather
than the flattening f. The relationship is as follows:

e2=2—forf=1-(1-¢€2)12
For the Clarke 1866, e is 0.006768658. For the GRS 80, ¢? is 0.0066943800.

AUXILIARY LATITUDES

By definition, the geographic or geodetic latitude, which is normally the lati-
tude referred to for a point on the Earth, is the angle which a line perpendicular
to the surface of the ellipsoid at the given point makes with the plane of the
Equator. It is slightly greater in magnitude than the geocentric latitude, except
at the Equator and poles, where it is equal. The geocentric latitude is the angle
made by a line to the center of the ellipsoid with the equatorial plane.

Formulas for the spherical form of a given map projection may be adapted for
use with the ellipsoid by substitution of one of various “auxiliary latitudes” in
place of the geodetic latitude. Oscar S. Adams (1921) developed series and other
formulas for five substitute latitudes, generally building upon concepts described
in the previous century. In using them, the ellipsoidal Earth is, in effect, first
transformed to a sphere under certain restraints such as conformality or equal
area, and the sphere is then projected onto a plane. If the proper auxiliary

13
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TABLE 2.—Official figures for extraterrestrial mapping

|(From Davies, et al., 1983; Davies, Private commun., 1985.) Radius of Moon chosen so that all elevations are positive. Radius of
Mars is based on a level of 6.1 millibar atmospheric pressure; Mars has both positive and negative elevations.]

Equatorial
Body radius a*
(kilometers)
Earth’s Moon 1,738.0
Mercury 2,439.0
Venus 6,051.0
Mars 3,393.4*
Galilean satellites of Jupiter

Io 1,815
Europa 1,569
Ganymede 2,631
Callisto 2,400

Satellites of Saturn
Mimas 198
Enceladus 253
Tethys 525
Dione 560
Rhea 765
Titan 2,575
Iapetus 725

Satellites of Uranus
Ariel 665
Umbriel 555
Titania 800
Oberon 815
Miranda 250

Satellite of Neptune
Triton 1,600

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of 0.101929. Flattening f =
1 - (1 - €)% Unlisted satellites are taken as triaxial ellipsoids, or mapping is not expected in the near future.
Mimas and Enceladus have also been given ellipsoidal parameters, but not for mapping.

latitudes are chosen, the sphere may have either true areas, true distances in
certain directions, or conformality, relative to the ellipsoid. Spherical map projec-
tion formulas may then be used for the ellipsoid solely with the substitution of the
appropriate auxiliary latitudes.

It should be made clear that this substitution will generally not give the projec-
tion in its preferred form. For example, using the conformal latitude (defined
below) in the spherical Transverse Mercator equations will give a true ellipsoidal,
conformal Transverse Mercator, but the central meridian cannot be true to scale.
More involved formulas are necessary, since uniform scale on the central merid-
ian is a standard requirement for this projection as commonly used in the ellipsoi-
dal form. For the regular Mercator, on the other hand, simple substitution of the
conformal latitude is sufficient to obtain both conformality and an Equator of
correct scale for the ellipsoid.

Adams gave formulas for all these auxiliary latitudes in closed or exact form, as
well as in series, except for the authalic (equal-area) latitude, which could also
have been given in closed form. Both forms are given below. For improved
computational efficiency using the series, see equations (3—34) through (3—39).
In finding the auxiliary latitude from the geodetic latitude, the closed form may
be more useful for computer programs. For the inverse cases, to find geodetic
from auxiliary latitudes, most closed forms require iteration, so that the series
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form is probably preferable. The series form shows more readily the amount of
deviation from the geodetic latitude ¢. The formulas given later for the individual
ellipsoidal projections incorporate these formulas as needed, so there is no need to
refer back to these for computation, but the various auxiliary latitudes are grouped
together here for comparison. Some of Adams’ symbols have been changed to
avoid confusion with other terms used in this book.

The conformal latitude x, giving a sphere which is truly conformal in accord-
ance with the ellipsoid (Adams, 1921, p. 18, 84),

X = 2arctan [tan (/4 + &/2) [(1 — e sin )/(1 + e sin $)]2 ) — /2 (3-1)

1/2
_ 1+sind 1—esind \°¢ — TR (3-1a)
_2arCtan[(l—sin¢) (l + esin ¢ ) ]

= ¢ — (€%/2 + 5¢*/24 + 3¢%/32 + 281€%/5760 + . . .)sin 2
+ (5€%/48 + T¢%/80 + 697¢%11520 + . . .)sin 44
— (13€%/480 + 461¢%/13440 + . . .)sin 64 + (1237¢%/161280
+...)sin8 + ... 3-2)

with x and ¢ in radians. In seconds of arc for the Clarke 1866 ellipsoid,
X = ¢ — 700.0427" sin 2 + 0.9900" sin 4¢ + 0.0017" sin 64 3-3)

The inverse formula, for ¢ in terms of x, may be a rapid iteration of an exact
rearrangement of (3—1), successively placing the value of ¢ calculated on the left
side into the right side of (3—4) for the next calculation, using x as the first
trial . When ¢ changes by less than a desired convergence value, iteration is
stopped.

¢ = 2 arctan {tan (7/4 + x/2)[(1 + e sin $)/(1 — e sin d)]e2] — /2 3-4)

The inverse formula may also be written as a series, without iteration (Adams,
1921, p. 85):

b = x + (62 + 5¢*/24 + %12 + 13¢%/360 + ... ) sin 2x
+ (7¢*/48 + 29¢5/240 + 811€%11520 + . .. ) sin 4x
+ (7€%/120 + 81€*1120 + . .. ) sin 6x
+ (4279¢%/161280 + . ..)sin 8 + ... (3-5)

or, for the Clarke 1866 ellipsoid, in seconds,
& = x + 700.0420" sin 2x + 1.3859"” sin 4x + 0.0037" sin 6x (3—6)

Adams referred to x as the isometric latitude, but this name is now applied to
Y, a separate very nonlinear function of ¢, which is directly proportional to the
spacing of parallels of latitude from the Equator on the ellipsoidal Mercator
projection. Another common symbol for isometric latitude is . It is also useful for
other conformal projections:

¥ = In[tan(w/4 + &/2) [(1-e€ sin ¢)/(1 + e sin $)]¢? 3-7

Because of the rapid variation from ¢, ¥ is not given here in series form. By
comparing equations (3—1) and (3—7), it may be seen, however, that

¢ = In tan (w/4 + x/2) (3—-8)

so that x may be determined from the series in (3—2) and converted to & with
(3—8), although there is no particular advantage over using (3—7).

For the inverse of (3—7), to find ¢ in terms of s, the choice is between iteration
of a closed equation (3—10) and use of series (3—5) with a simple inverse of (3—8):

X = 2 arctan e¥ — w/2 3-9)

where e is the base of natural logarithms, 2.71828.

15
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For the iteration, apply the principle of successive substitution used in (3—4)
to the following, with (2 arctan e¥—m/2) as the first trial ¢:

¢ = 2 arctan [e¥[(1 + e sin ¢)/(1 — e sin $)1¢% — w/2 (3-10)

Note that e and e are not the same.

The authalic latitude B, on a sphere having the same surface area as the
ellipsoid, provides a sphere which is truly equal-area (authalic), relative to the
ellipsoid:

B = arcsin (q/qp) 3-11)
where
g = (1 — €% isin $/(1 — e?sin? d) — (1/(2¢)) In[(1 —e sin ¢)/(1 + esind)]! (3—12)

and g, is g evaluated for a ¢ of 90°. The radius R, of the sphere having the same
surface area as the ellipsoid is calculated as follows:

R,=a(q,/2)"* (3-13)

where a is the semimajor axis of the ellipsoid. For the Clarke 1866, Rq is
6,370,997.2 m.
The equivalent series for B (Adams, 1921, p. 85)

B = —(e%/3 + 31e*/180 + 59¢%/560 + . . . ) sin2d + (17¢*/360 + 61¢°/1260 + . . .)
sin 4¢ — (383¢%/45360 + . ..)sin6d + ... (3—14)

where B and ¢ are in radians. For the Clarke 1866 ellipsoid, the formula in seconds
of arc is:

B = & — 467.0129" sin 2¢ + 0.4494" sin 4¢ + 0.0005" sin 64 (3—15)

For ¢ in terms of B, an iterative inverse of (3—12) may be used with the
inverse of (3—11):

02 i 42 : _ :
<b=d>+(l e sin ¢)[ q sin ¢ —l—ln(l esm¢>](3_16)

o 9> .y + .
2 cos ¢ 1-¢6 1-é€%sind 2e 1 + esind
where
q=q, sin B @-17

g, is found from (3—12) for a ¢ of 90°, and the first trial ¢ is arcsin (¢/2), used
on the right side of (3—16) for the calculation of ¢ on the left side, which is then
used on the right side until the change is less than a preset limit. (Equation
(3—16) is derived from equation (3—12) using a standard Newton-Raphson itera-
tion.)

To find & from B with a series:

b =B + (%3 + 31¢*/180 + 517¢%/5040 + . . .) sin 2B
+ (23¢%/360 + 251€%/3780 + ... ) sin 48 (3-18)
+ (761¢%/45360 + . ..)sin6f + . ..

or, for the Clarke 1866 ellipsoid, in seconds,
b = B + 467.0127" sin 28 + 0.6080” sin 48 + 0.0011" sin 68 (3—19)

The rectifying latitude p (designated w by Adams), giving a sphere with correct
distances along the meridians, requires a series in any case (or a numerical inte-
gration which is not shown).

wo=mM2M, (3-20)

where
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M = a[(1 — €%/4 — 3e*/64 — 5¢%/256 — . . . )b — (3¢*/8 + 3¢*/32
+ 45€%/1024 + ... ) sin 2¢ + (15¢%/256 + 45¢5/1024 + . .. ) sin 4
— (35€%/3072 + ...)sin6d + ...] (8-21)

and M, is M evaluated for a ¢ of 90°, for which all sine terms drop out. M is
the distance along the meridian from the Equator to latitude ¢. For the Clarke
1866 ellipsoid, the constants simplify to, in meters,

M = 111132.089464° — 16216.94 sin 2¢ + 17.21 sin 4¢ — 0.02 sin 66 (3—22)

The first coefficient in (3—21) has been multiplied by 7/180 to use ¢ in degrees.
To use p properly, the radius R,, of the sphere must be 2M / for correct scale.
For the Clarke 1866 ellipsoid, R, is 6,367,399.7 m. A series combining (3—20)
and (3—21) is given by Adams (1921, p. 125):

p=cd— (3e,/2 — 9,%16 + ...)sin 2 + (15¢,%/16 — 15¢,*/32 + .. .)

sin 4¢ — (35¢,%48 — . . . ) sin 6¢ + (315e,%/512 — . . .)
sin8 + ... (3—-23)
where
e, =[1 -1 -eAHZ)Y1 + (1 - A2 3—-24)

and p and ¢ are given in radians. For the Clarke 1866 ellipsoid, in seconds,
p = ¢ — 525.3298" sin 2¢ + 0.5575” sin 4¢ + 0.0007" sin 6» (3—25)

The inverse of equations (3—23) or (3—25), for ¢ in terms of p, given M,
will be found useful for several map projections to avoid iteration, since a series
is required in any case (Adams, 1921, p. 128).

b =pn + (3¢,/2 — 27¢,%32 + .. .)sin 2p + (21¢,%/16 — 55¢,%/32 + .. .)
sin 4. + (151¢,%/96 — . . . ) sin 6 + (1097¢,%512 — .. .)
sin8u + ... (3—26)

where e, is found from equation (3—24) and p from (3—20), but M is given,
not calculated from (3—21). For the Clarke 1866 ellipsoid, in seconds of arc,

b = p + 525.3295" sin 2 + 0.7805" sin 4 + 0.0016" sin 6. (3—27)

The following closed and exact formulas, from which equations (3—20) through
(3—25) may be ultimately derived, are given as a matter of interest.

M =a@ - é)f [1/(1 — € sin? $)32] db (3-27a)

Equation (3—27a), the integral of (4—19) in a later chapter, may not be exactly
integrated. While Simpson’s rule may be used, it is not as satisfactory here as
it is in some other cases (equation (27—6a), etc.). However, (3—27a) may be
transformed to an elliptic integral of the second kind, for which the arithmetic-
geometric-mean (A.G.M.) iteration can provide any desired accuracy within com-
puter programming limitations (Messenger, T.J., pers. commun., 1984; Abram-
owitz and Stegun, 1964, p. 598—99):

M =al[f®Q - ¢ sind)2 dd — € sin b cos /(1 — € sin® $)12]  (3—27b)

The remaining auxiliary latitudes listed by Adams (1921, p. 84) are more useful
for derivation than in substitutions for projections:

The geocentric latitude d’g (designated & by Adams) referred to in the first
paragraph in this section is simply as follows:

¢, = arctan [(1 - €) tan ¢] (3—-28)
As a series,
by = & — ex8in 2¢ + (e:%/2) sin 4b — (e,%3)sin6d + ... (3-29)
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TABLE 3.—Corrections for auriliary latitudes on the Clarke 1866 ellipsoid

[Corrections are given, rather than actual values. For example. if the geodetic latitude is 50°N., the conformal latitude is 50° - 11'29.7" =
49° 48'30.3" N. For southern latitudes, the corrections are the same, disregarding the sign of the latitude. That is, the conformal
latitude for a ¢ of lat. 50° S. is 49° 48'30.3" S. From Adams, 1921)

Geodetic Conformal Authalic Rectifying Geocentric Parametric
(d) (x—¢) (B—d) (r—d) (g =) (n-¢)

90° . 0’ 00.0” 0' 00.0” 0' 00.0” 0’ 00.0" 0’ 00.0”
85 e -2 019 -1 21.2 -1 314 - 2 02.0 -1 00.9
80 - 4 00.1 -2 40.0 -3 00.0 - 4 00.3 -2 00.0
(1 T - 5 50.9 -3 53.9 -4 23.1 - 5 51.3 -2 55.4
(R -7 31.0 -5 00.6 -5 38.2 -7 314 -3 45.4
65 - 8 57.2 -5 58.2 -6 43.0 - 8 57.7 -4 28.6
60 -10 07.1 -6 44.8 -7 35.4 -10 07.6 -5 03.6
55 e -10 58.5 -7 19.1 -8 14.0 -10 58.9 -5 29.3
50 e -11 29.7 -7 40.1 -8 37.5 -11 30.2 -5 45.0
445 -11 40.0 -7 47.0 -8 45.3 -11 40.5 -5 50.2
40 -11 29.1 -7 39.8 -8 37.2 -11 29.4 -5 44.8
35 e -10 57.2 -7 18.6 -8 13.3 -10 57.4 -5 289
30 e -10 05.4 -6 44.1 -7 34.5 —-10 05.6 -5 03.0
25 - 8 55.3 -5 57.3 -6 41.9 - 8 55.4 -4 28.0
20 e -7 29.0 -4 59.7 -5 37.1 -7 29.1 -3 44.8
15 . - 5 49.2 -3 53.1 -4 222 - 5 49.2 -2 54.9
10 - 3 58.8 -2 394 -2 59.3 - 3 58.8 -1 59.6
5 -2 01.2 -1 209 -1 31.0 -2 01.2 -1 00.7
0 0 00.0 0 00.0 0 00.0 0 00.0 0 00.0

where ¢, and ¢ are in radians and e, = €*(2 — ¢). For the Clarke 1866 ellipsoid,
in seconds of are,

b, = & — 700.44" sin 24 + 1.19" sin 4¢ (3-30)

The reduced or parametric latitude n (designated 6 by Adams) of a point on
the ellipsoid is the latitude on a sphere of radius a for which the parallel has the
same radius as the parallel of geodetic latitude & on the ellipsoid through the
given point:

m = arctan [(1 — €%)12 tan ¢] (3-31)

As a series,
n=d—esin2 + (e,%2) sin 4 — (¢,3)sin6d + ... (3-32)

where ¢, is found from equation (3—24), and m and ¢ are in radians. For the Clarke
1866 ellipsoid, using seconds of arc,

n = ¢ — 350.22" sin 2b + 0.30" sin 44 (3-33)

The inverses of equations (3—28) and (3—31) for ¢ in terms of geocentric or
reduced latitudes are relatively easily derived and are noniterative. The inverses
of series equations (3—29), (3—30), (3—32), and (3—33) are therefore omitted.
Table 3 lists the correction for these auxiliary latitudes for each 5° of geodetic
latitude.

COMPUTATION OF SERIES
Most of the trigonometric series approximations throughout this book (for

example, equations (3—2) and (3—-5)) are given in terms of multiple angles. In this
arrangement, the coefficients converge to zero more rapidly, but handling by
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computer is normally somewhat slower than that occurring with nested trigono-
metric series. The latter are equivalent to power polynomials and require a mini-
mum number of computations of trigonometric functions from series built into the
software of most computers.

The pertinent series in this book fall into one of three forms (3—34), (3—36) and
(3—38), in which ¢ may be any variable, and fld) is the function:

If fld) = Asin2¢ + Bsindd + C sin 6d + D sin 8 (3—-34)

then  fld) = sin 2¢ (A’ + cos 2¢ (B’ + cos 2b (C’' + D' cos 2¢))) (3—35)

where
A =A-C
B’ =2B - 4D
C' =4C
D' =8D
If fle) =Asind + Bsin3d + C sinbdd + D sin 7 (3—36)
then fld) = sin b (A’ + sin®p (B’ + sin’d (C' + D’ sin®d))) (3-37
where
A" =A +3B +5C + 7D
B’ =-4B - 20C - 56D
C' =16C + 112D
D' =-64D
If Ad)=A + Beos2bd + C cos4d + D cos 66 + E cos 8 (3—38)

then  fld) = A’ + cos2b (B’ + cos2db(C’ + cos2db (D' + E’' cos2¢))) (3—39)
where

A" =A-C+E

B =B -3D
C' =2C - 8E
D' =4D
E' =8E

These are exact equivalents of the series as shown. First the primed coeffi-
cients are computed once for the full set of conversions from the original coeffi-
cients of (3—34), (3—36), or (3—38), then sin 2¢ and cos 2¢ are computed once for
each point in (3—35), or sin ¢ and sin?d once for each point in (3—37), or cos 2
once for each point in (3—39). Computation of fid) may then proceed from the
innermost nest outward with a speed up to 25—35 percent faster than that with
multiple-angle series.

For more efficient transformation of a great number of points from one set of
coordinates to another, polynomial approximations for the entire projection may
be considered. This is normally only practical for a limited region. For techniques
in determining the polynomial coefficients, the reader is referred to Snyder (1985a,
p. 5—6, 15—24).
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4. SCALE VARIATION AND ANGULAR DISTORTION

Since no map projection maintains correct scale throughout, it is important to
determine the extent to which it varies on a map. On a world map, qualitative
distortion is evident to an eye familiar with maps, after noting the extent to which
landmasses are improperly sized or out of shape, and the extent to which meridi-
ans and parallels do not intersect at right angles, or are not spaced uniformly
along a given meridian or given parallel. On maps of countries or even of continents,
distortion may not be evident to the eye, but it becomes apparent upon careful
measurement and analysis.

TISSOT'S INDICATRIX

In 1859 and 1881, Nicolas Auguste Tissot published a classic analysis of the
distortion which occurs on a map projection (Tissot, 1881; Adams, 1919, p. 153—163;
Maling, 1973, p. 64—67). The intersection of any two lines on the Earth is repre-
sented on the flat map with an intersection at the same or a different angle. At
almost every point on the Earth, there is a right angle intersection of two lines in
some direction (not necessarily a meridian and a parallel) which are also shown at
right angles on the map. All the other intersections at that point on the Earth will
not intersect at the same angle on the map, unless the map is conformal, at least
at that point. The greatest deviation from the correct angle is called w, the
maximum angular deformation. For a conformal map, w is zero. (In some texts, 2w
is used rather than w.)

Tissot showed this relationship graphically with a special ellipse of distortion
called an indicatrix. An infinitely small circle on the Earth projects as an infinitely
small, but perfect, ellipse on any map projection. If the projection is conformal,
the ellipse is a circle, an ellipse of zero eccentricity. Otherwise, the ellipse has a
major axis and minor axis which are directly related to the scale distortion and to
the maximum angular deformation.

In figure 3, the left-hand drawing shows a circle representing the infinitely
small circular element, crossed by a meridian A and parallel ¢ on the Earth. The
right-hand drawing shows this same element as it may appear on a typical map
projection. For general purposes, the map is assumed to be neither conformal nor
equal-area. The meridian and parallel may no longer intersect at right angles, but

(4)

Fi1GURE 3.—Tissot’s Indicatrix. An infinitely small circle on the Earth {A) appears as an ellipse
on a typical map (B). On a conformal map, (B) is a circle of the same or of a different size.
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there is a pair of axes which intersect at right angles on both Earth (AB and CD)
and map (A'B’ and C’'D’). There is also a pair of axes that on the map (E'F’ and
G'H’) intersect with the greatest angular deformation compared to the corre-
sponding axes on the Earth (EF and GH, not a right angle). The latter case has
the maximum angular deformation w. The orientation of these axes is such that u
+ n' = 90° or, for small distortions, the lines fall about halfway between A'B’
and C’'D’. The orientation is of much less interest than the size of the deforma-
tion. If a and b, the major and minor semiaxes of the indicatrix, are known, then

sin (w/2) = la — bl/(a + b) 4-1

If lines A and ¢ coincide with a and b, in either order, as in cylindrical and conic
projections, the calculation is relatively simple, using equations (4—2) through
(4—6) given below.

Scale distortion is most often calculated as the ratio of the scale along the
meridian or along the parallel at a given point to the scale at a standard point or
along a standard line, which is made true to scale. These ratios are called “scale
factors.” That along the meridian is called & and along the parallel, k. The term
“scale error” is frequently applied to (k—1) and (k—1). If the meridians and
parallels intersect at right angles, coinciding with a and b in figure 3, the scale
factor in any other direction at such a point will fall between % and k. Angle w may
be calculated from equation (4—1), substituting 2 and k in place of a and b. In
general, however, the computation of w is much more complicated, but is impor-
tant for knowing the extent of the angular distortion throughout the map.

The formulas are given here to calculate %, k, and w; but the formulas for ~ and
k are applied specifically to all projections for which they are deemed useful as the
projection formulas are given later. Formulas for w for specific projections have
generally been omitted.

Another term occasionally used in practical map projection analysis is “con-
vergence” or “grid declination.” This is the angle between true north and grid
north (or direction of the Y axis). For regular cylindrical projections this is zero,
for regular conic and polar azimuthal projections it is a simple function of longitude,
and for other projections it may be determined from the projection formulas by
calculus from the slope of the meridian (dy/dx) at a given latitude. It is used pri-
marily by surveyors for fieldwork with topographic maps. Convergence is not dis-
cussed further in this work.

DISTORTION FOR PROJECTIONS OF THE SPHERE

The formulas for distortion are simplest when applied to regular cylindrical,
conic (or conical), and polar azimuthal projections of the sphere. On each of these
types of projections, scale is solely a function of the latitude.

Given the formulas for rectangular coordinates x and y of any cylindrical projec-
tion as functions solely of longitude A and latitude ¢, respectively,

h = dy/(Rdd) 4-2)
k = dx/(R cos dd\) 4-3)

Given the formulas for polar coordinates p and 6 of any conic projection as
functions solely of ¢ and A, respectively, where n is the cone constant or ratio of 6
to (A - Ro),

>
|

= —dp/(Rdd) (4-4)
= np/(R cos ) (4-5)

ES
|
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Line of True Scale

Central Meridian

Scale error

Transverse Mercator Projection

FIGURE 4.—Distortion patterns on common conformal map projections. The Transverse Mercator and
the Stereographic are shown with reduction in scale along the central meridian or at the center of
projection, respectively. If there iz no reduction, there is a single line of true scale along the
central meridian on the Transverse Mercator and only a point of true scale at the center of the
Stereographic. The illustrations are conceptual rather than precise, since each base map projec-

tion is an identical conic.

Lambert Conformal Conic Projection

Fisure 4.—Continued.
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Oillique ﬁereographic P}ojectionl

FiGURE 4.—Continued

Given the formulas for polar coordinates p and 6 of any polar azimuthal projec-
tion as functions solely of & and A, respectively, equations (4—4) and (4—5) apply,
with n equal to 1.0:

h
k

—dp/(Rdd) 4-49)
p/(R cos &) (4-6)

Equations (4—4) and (4—6) may be adapted to any azimuthal projection cen-
tered on a point other than the pole. In this case &’ is the scale factor in the
direction of a straight line radiating from the center, and k' is the scale factor in a
direction perpendicular to the radiating line, all at an angular distance ¢ from the
center:

h’
kl

dp/(Rdc) 4-7
p/(R sin ¢) (4-8)

An analogous relationship applies to scale factors on oblique cylindrical and
conic projections.

For any of the pairs of equations from (4-2) through (4-8), the maximum
angular deformation w at any given point is calculated simply, as stated above,

sin (w/2) = |h — ki/(th + k) 4-9)

where |h—k| signifies the absolute value of (2—k), or the positive value without
regard to sign. For equations (4-7) and (4—-8), &’ and k' are used in (4-9)
instead of & and k, respectively. In figure 4, distortion patterns are shown for
three conformal projections of the United States, choosing arbitrary lines of true
scale.

For the general case, including all map projections of the sphere, rectangular
coordinates x and y are often both functions of both & and A, so they must be
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partially differentiated with respect to both ¢ and A, holding A and &, respectively,
constant. Then,

h = (/R) [(dx/8d)® + (dylod)?]12 (4-10)
k = [1/(R cos )] [(dx/aN)? + (dy/an)?]i2 4-11)
a' = (k% + k? + 2hk sin o')12 (4-12)
b' = (h? + k% — 2hk sin 6')12 (4-13)
where
sin 8’ = [(3y/8d) (dx/oN) — (3x/dd) (3y/oN)V(R?hk cos b) (4-14)

0’ is the angle at which a given meridian and parallel intersect, and a’ and b’ are
convenient terms. The maximum and minimum scale factors a and b, at a given
point, may be calculated thus:

(a’ + b')2 (4—12a)
(a' — b')2 (4—13a)

a
b

Equation (4—1) simplifies as follows for the general case:

sin (w/2) =b'/a’ (4—-1a)
The areal scale factor s:

s = hk sin 0’ 4-15)

For special cases:

(1) s = hk if meridians and parallels intersect at right angles (8’ = 90°);

(2) h = k and w = 0 if the map is conformal;

(3) h = 1/k on an equal-area map if meridians and parallels intersect at right
angles.?

DISTORTION FOR PROJECTIONS OF THE ELLIPSOID

The derivation of the above formulas for the sphere utilizes the basic formulas
for the length of a given spacing (usually 1° or 1 radian) along a given meridian or a
given parallel. The following formulas give the length of a radian of latitude (L)
and of longitude (L)) for the sphere:

Ly = R 4-16)
Ly = R cos & 4-17

where R is the radius of the sphere. For the length of 1° of latitude or longitude,
these values are multiplied by w/180.

The radius of curvature on a sphere is the same in all directions. On the
ellipsoid, the radius of curvature varies at each point and in each direction along a
given meridian, except at the poles. The radius of curvature R’ in the plane of the
meridian is calculated as follows:

R’ = a(1—e®)/(1—é? sin? &)3? (4-18)

“Maling (1973, p. 49-81) has helpful derivations of these equations in less condensed forms. There are typo-
graphical errors in several of the equations in Maling, but these may be detected by following the derivation closely.
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TABLE 4.—Lengths, in meters, of 1° of latitude and longitude on two ellipsoids of reference

Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid
(@) 1° lat. 1° long. 1° lat. 1° long.
90° 111,699.4 0.0 111,700.0 0.0
85 111,690.7 9,735.0 111,691.4 9,735.0
80 111,665.0 19,394.4 111,665.8 19,394.5
75 111,622.9 28,903.3 111,624.0 28,903.5
70 111,565.9 38,188.2 111,567.4 38,188.5
65 111,495.7 47,171.5 111,497.7 47,1779
60 111,414.5 55,802.2 111,417.1 55,802.8
55 111,324.8 63,996.4 111,327.9 63,997.3
50 111,229.3 71,698.1 111,233.1 71,699.2
45 111,130.9 78,849.2 111,135.4 78,850.5
40 111,032.7 85,396.1 111,037.8 85,397.7
35 110,937.6 91,290.3 110,943.3 91,292.2
30 110,848.5 96,488.2 110,854.8 96,490.4
25 110,768.0 100,951.9 110,774.9 100,954.3
20 110,698.7 104,648.7 110,706.0 104,651.4
15 110,642.5 107,551.9 110,650.2 107,554.8
10 110,601.1 109,640.7 110,609.1 109,643.7
S 110,575.7 110,899.9 110,583.9 110,903.1
0 110,567.2 111,320.7 110,575.5 111,323.9

The length of a radian of latitude is defined as the circumference of a circle of this
radius, divided by 2w, or the radius itself. Thus,

Ly = a(1-ed/(1—-€® sin? $)*? (4-19)

For the radius of curvature N of the ellipsoid in a plane perpendicular to the
meridian and also perpendicular to a plane tangent to the surface,

N = a/(1-¢® sin®$)2 (4-20)

Radius N is also the length of the perpendicular to the surface from the surface
to the polar axis. The length of a radian of longitude is found, as in equation
(4—17), by multiplying N by cos &, or

Ly = a cos d/(1—e? sin®p)'? (4—-21)

The lengths of 1° of latitude and 1° of longitude for the Clarke 1866 and the Inter-
national ellipsoids are given in table 4. They are found from equations (4—19) and
(4—21), multiplied by ©/180 to convert to lengths for 1°.
When these formulas are applied to equations (4—2) through (4—6), the values
of h and k for the ellipsoidal forms of the projections are found to be as follows:
For cylindrical projections:

h = dy/(R'dd)

= (1—¢€? sin$)*2 dy/[a(1-e)dd) (4-22)
k = dx/(N cos dd\)

= (1—€? sin? $)'2 dx/(a cos ¢ d\) (4-23)

For conic projections:

h

—dp/(R'dd)
= —(1-¢?sin%)*? dp/[a(1 —e?)dd] (4—24)



MAP PROJECTIONS—A WORKING MANUAL

k = np/(N cos ¢)
= np(1-e€? sin? )'?/(a cos ) (4-25)

For polar azimuthal projections:

h
k

—(1—€? sin®¢)*2 dp/[a(1—€?)dd] (4—24)
p(1—e? sin®$)?/(a cos ) (4-26)

Equations (4—7) and (4—8) do not have ellipsoidal equivalents. Equation (4—9)
remains the same for equations (4—22) through (4—-26):

sin (w/2) = \h—kl/(h+k) 4-9

For the general projection of the ellipsoid, equations (4—10) and (4—11) are
similarly modified:

h = [(3x/30)* + (3y/ad)212(1—€? sind)32/[a(1—e?)] (4-27)
k = [(8x/dN)? + (3y/an)?]V2(1—e? sind)?/(a cos &) (4-28)

Equations (4—12) through (4—15), (4—12a), (4—13a), and (4—1a), listed for the
sphere, apply without change, except that R? becomes a?(1—e?)/(1—e€%sin?¢)? in
(4-14).

Specific calculations are shown during the discussion of individual projections.

The importance of using the ellipsoid instead of the sphere for designing a pro-
Jjection may be quantitatively evaluated by determining the ratio or product of
some of the elementary relationships. The ratio of the differential length of a
radian of latitude along a meridian on the sphere to that on the ellipsoid is found
by dividing the equation (4—16) by equation (4—19), or

Cm = R(1-¢? sin® ¢)*2/[a(1-¢?)] (4-29)

A related ratio for the length of a radian of longitude along a parallel on the
sphere to that on the ellipsoid is found by dividing equation (4—17) by equation
(4-21), or

Cp = R(1-¢€? sin® $)"2/a (4-30)

From these, the local shape factor C; may be found as the ratio of (4—29) to
(4-30):

Cs = C/Cp = (1—€* sin® $)/(1-¢?) (4-31)
and the area factor C, is their product:
Cq = CnCp = R*(1-¢* sin” $)*/[a*(1-€?)] (4-32)

If h and k are calculated for the spherical version of a map projection, the actual
scale factors on the spherical version relative to the ellipsoid may be determined
by multiplying & by C,, and k by Cp. For normal cylindrical and conic projections
and polar azimuthal projections, the conformality or shape factor may be taken as
h/k (not the same as w) multiplied by C;, and the area scale factor hk may be
multiplied by C,.

Except for C,, which is independent of R/a, R must be given an arbitrary value
such as R, (see equation (3—13)), Ry (see second sentence following equation
(3—22)), or another reasonable balance between the major and minor semiaxes a
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TABLE 5.—Ellipsoidal correction factors to apply to spherical projections based on Clarke 1866

ellipsoid

Lat. (N&S) C.* C, C. C.*
90° 0.99548 0.99548 1.00000 0.99099
75 99617 99571 1.00046 .99189
60 .99803 .99633 1.00170 99437
45 1.00058 99718 1.00341 99775
30 1.00313 .99802 1.00511 1.00114
15 1.00499 .99864 1.00636 1.00363

0 1.00568 .99887 1.00681 1.00454
Multiply by** h k hik hk

*C,, = 1.0for 48.24°lat. and C, = 1.0 for 35.32° lat. Values of C,,, C,, and C, are based on a radius of 6,370.997 m for

the sphere used in the spherical map projection.
** h = scale factor along meridian.

k = scale factor along parallel of latitude.

For normal cylindrical and conic projections and polar azimuthal projections:

h/k = shape factor.

hk = area scale factor.

For example, if, on a spherical Albers Equal-Area Conic map projection based on sphere of radius 6,370,997 m,
h =1.00132and k = 0.99868 at lat. 45° N., this map has an area scale factor of 1.00132 x 0.99868 x 00.99775 = 0.99775,
relative to the correct area scale for the Clarke 1966 ellipsoid. If the ellipsoidal Albers were used, this factor would be
1.0.

and b of the ellipsoid. Using R, and the Clarke 1866 ellipsoid, table 5 shows the
magnitude of these corrections. Thus, a conformal projection based on the sphere
has the correct shape at the poles for the ellipsoid, but the shape is about %/3 of
1 percent (0.00681) in error near the Equator (that is, Tissot’s Indicatrix is an
ellipse with minor axis about %/; of 1 percent shorter than the major axis at the
Equator when the spherical form is compared to the ellipsoid).

A map extending over a large area will have a scale variation of several percent,
which far outweighs the significance of the less-than-1-percent variation between
sphere and ellipsoid. A map of a small area, such as a large-scale detailed topo-
graphic map, or even a narrow strip map, has a small-enough intrinsic scale
variation to make the ellipsoidal correction a significant factor in accurate mapping;
e.g., a 7.5-min quadrangle normally has an intrinsic scale variation of 0.0002
percent or less.

CAUCHY-RIEMANN AND RELATED EQUATIONS

Relatively simple equations provide necessary and sufficient conditions for any
map projection, spherical or ellipsoidal, to be conformal. These are called the
Cauchy-Riemann equations after two 19th-century mathematicians. The concept
had been devised, however, during the 18th century. These equations may be
written as follows:

Ax/ON = oy/oy (4—-33)
ox/aPp = —aylan 4-34)

where ¢ is the isometric latitude defined by equation (3—7) for the ellipsoid, or
with e = 0 in the same equation for the sphere. In the latter case, the above
equations simplify to

dx/(cos ¢ dN) = dy/dd (4-35)
dx/ad = —ay/(cos & IN) (4—36)

For the ellipsoid, equations (4—33) and (4—34) may be written
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dx/(cos & AN) = (1—e? sin® ¢) ay/[(1—€?) ad) 4-37
(1-¢? sind)ax/[(1-€®)ad] = —dy/(cos & aN) (4-38)

By substituting x’ in place of A and y' in place of ¥ in equations (4—33) and
(4—34), conditions are met for conformal transformation of one set of rectangular
coordinates (x', y') to another (x, y). That is,

ax/ox’ = doyldy’ (4-39)
ax/dy’ = —oy/ox’ (4—-40)

In this case, if (x', y') represents the transformation of the sphere or ellipsoid
onto a flat surface, this transformation must also be conformal. The double trans-
formation is used in a later chapter for the Modified-Stereographic Conformal
projections.

Analogous relationships may be obtained for equal-area transformations. The
following equation applies to the ellipsoid:

(82/8\) (8y/ad) — (9x/ad) (3y/dN) = a? (1—€) cos d/(1—€® sin®p)?  (4—41)
For the sphere, this simplifies to
(8x/8\) (3y/dd) — (8x/dd) (3y/dN) = RZ cos & (4-42)

For spherical pseudocylindrical equal-area projections, such as the sinusoidal, the
parallels are straight lines parallel to the Equator, so that (ay/oN) = 0. For the
many projections in this category, equation (4—42) simplifies further to

r = R? \ cos &/(dy/dd) (4—43)

in which y can be any function of ¢ for a chosen spacing of the parallels.
An equal-area transformation from one set of rectangular coordinates to another
must satisfy the following relationship:

(ox/ox’) (dy/dy’) — (dx/dy’) (dylox') = S (4—44)

where S is the area ratio of the (x,y) map to the (x’, ') map.

Most of the above equations (4—33) through (4—44) are difficult to use to derive
new projections, although they may be used to determine whether existing projec-
tions are conformal or equal-area. Equation (4—43), however, may be fairly read-
ily used to devise new projections which are pseudocylindrical and equal-area.
Equation (26—4), discussed later, is a general equation satisfying (4—39) and
(4—40), although it is not the only such equation. There is no known general
equation satisfying equation (4—44) except in a very elementary way.
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As discussed later, several map projections have been adapted to showing some
part of the Earth for which the lines of true scale have an orientation or location
different from that intended by the inventor of the basic projection. This is
equivalent to moving or transforming the graticule of meridians and parallels on
the Earth so that the “north pole” of the graticule assumes a position different
from that of the true North Pole of the Earth. The projection for the sphere may
be plotted using the original formulas or graphical construction, but applying
them to the new graticule orientation. The actual meridians and parallels may
then be plotted by noting their relationship on the sphere to the new graticule,
and landforms drawn with respect to the actual geographical coordinates as usual.

In effect, this procedure was used in the past in an often entirely graphical
manner. It required considerable care to avoid cumulative errors resulting from
the double plotting of graticules. With computers and programmable hand
calculators, it now can be a relatively routine matter to calculate directly the
rectangular coordinates of the actual graticule in the transformed positions or,
with an automatic plotter, to obtain the transformed map directly from the
computer.

The transformation most notably has been applied to the azimuthal and cylindri-
cal projections, but in a few cases it has been used with conic, pseudocylindrical,
and other projections. While it is fairly straightforward to apply a suitable trans-
formation to the sphere, transformation is much more difficult on the ellipsoid
because of the constantly changing curvature. Transformation has been applied to
the ellipsoid, however, in important cases under certain limiting conditions.

If either true pole is at the center of an azimuthal map projection, the projec-
tion is called the polar aspect. If a point on the Equator is made the center, the
projection is called the equatorial or, less often, meridian or meridional aspect.
If some other point is central, the projection is the oblique or, occasionally.
horizon aspect.

For cylindrical and most other projections, such transformations are called
transverse or oblique, depending on the angle of rotation. In transverse projections,
the true poles of the Earth lie on the equator of the basic projection, and the poles
of the projection lie on the Equator of the Earth. Therefore, one meridian of the
true Earth lies along the equator of the basic projection. The Transverse Merca-
tor projection is the best-known example and is related to the regular Mercator in
this manner. For oblique cylindrical projections, the true poles of the Earth lie
somewhere between the poles and the equator of the basic projection. Stated
another way, the equator of the basic projection is drawn along some great circle
route other than the Equator or a meridian of the Earth for the oblique cylindrical
aspect. The Oblique Mercator is the most common example. Further subdivisions
of these aspects have been made; for example, the transverse aspect may be first
transverse, second transverse, or transverse oblique, depending on the positions
of the true poles along the equator of the basic projection (Wray, 1974). This has
no significance in a transverse cylindrical projection, since the appearance of the
map does not change, but for pseudocylindrical projections such as the Sinusoidal,
it makes a difference, if the additional nomenclature is desired.

To determine formulas for the transformation of the sphere, two basic laws of
spherical trigonometry are used. Referring to the spherical triangle in figure 5,
with three points having angles A, B, and C on the sphere, and three great circle
arcs a, b, and ¢ connecting them, the Law of Sines declares that

sin A/sina = sin B'sin b = sin C/sin ¢ h-1

while by the Law of Cosines,

29
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C (N.Pole)

B(oA)

A (20,2
Fi1GURE 5.—Spherical triangle.

cos ¢ = cos b cosa + sin b sin a cos C 5-2)

If C is placed at the North Pole, it becomes the angle between two meridians
extending to A and B. If A is taken as the starting point on the sphere, and B the
second point, c¢ is the great circle distance between them, and angle A is the
azimuth Az east of north which point B bears to point A. When latitude ¢, and
longitude A\, are used for point A, and ¢ and \ are used for point B, equation (5—2)
becomes the following for great circle distance:

cos ¢ = sin ¢, sin & + cos b; cos & cos (A\—Ag) (5—-3)
While (5-3) is the standard and simplest form of this equation, it is not accu-
rate in practical computation for values of ¢ very close to zero. For such cases, the
equation may be rearranged as follows (Sinnott, 1984):
sin (c/2) = Isin®[(d—d,)/2] + cos &, cos & sin® [(A—Np)/2]t  (5—3a)
This equation is also exact, and is very accurate in practice for values of ¢ from 0
to nearly 180°.
Equation (5—1) becomes the following for the azimuth:
sin Az = sin (A—\() cos ¢/sin ¢ (5—-4)
or, with some rearrangement,
cos Az = [cos & sin & — sin &, cos & cos (A\—Ag))/sin ¢ (5—4a)
or, eliminating c,
tan Az = cos & sin (A—\y)/[cos &, sin ¢ — sin ¢, cos & cos (A\—Ay)] (5—4b)
Either of the three equations (5—4) through (5—4b) may be used for the azimuth,
depending on the form of equation preferred. Equation (5—4b) is usually preferred,

since it avoids the inaccuracies of finding an aresin near 90° or an arccos near 0°.
Quadrant adjustment as described under the list of symbols should be employed.
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¢'=-90°

FIGURE 6.—Rotation of a graticule for transformation of projection. Dashed lines show actual longi-
tudes and latitudes (A and ). Solid lines show the transformed longitudes and latitudes (A’ and
¢’) from which rectangular coordinates (x and y) are determined according to map projection
used.

In order to find the latitude ¢ and longitude A at a given arc distance ¢ and
azimuth Az east of north from (,, A¢), the inverse of equations (5—3) and (5—4b)
may be used:

& = aresin (sin ¢, cos ¢ + cos &, sin ¢ cos Az) (5-5)

A = Ag + arctan [sin ¢ sin Az/(cos &, cos ¢ — sin ¢, sin ¢ cos Az)] (5-6)

Applying these relationships to transformations, without showing some inter-
mediate derivations, formulas (5—7) through (5—8b) are obtained. To place the
North Pole of the sphere at a latitude a on a meridian B east of the central merid-
ian (A’ =0) of the basic projection (see fig. 6), the transformed latitude ¢’ and
transformed longitude A\’ on the basic projection which correspond to latitude ¢
and longitude A of the spherical Earth may be calculated as follows, letting the
central meridian A, correspond with A’ =f:

sin ¢’ = sin a sin ¢ — cos a cos ¢ cos (A — Ag) B-7
sin (\' — B) = cos ¢ sin (A — Ag)/cos ¢’ (5-8)

or
cos (A" — B) = [sin a cos ¢ cos (A — Ng) + cos a sin dJ/cos &' (5—8a)

or

tan (A’ — B) = cos ¢ sin (A — Ao)/[sin a cos ¢ cos (A — N\y) + cos a sin ]
(5—8b)
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Equation (5—8b) is generally preferable to (5—8) or (5—8a) for the reasons stated
after equation (5—4b).

These are general formulas for the oblique transformation. (For azimuthal pro-
jections, B may always be taken as zero. Other values of 8 merely have the effect
of rotating the X and Y axes without changing the projection.)

The inverse forms of these equations are similar in appearance. To find the
geographic coordinates in terms of the transformed coordinates,

sin ¢ = sinasind’ + cosacos¢’ cos (A’ — B) 5-9)
sin (A — \y) = cos ¢’ sin (A" — B)/cos ¢ (5-10)
or
cos (A — Ay) = [sin a cos ¢’ cos (A" — B) — cos a sin ¢')/cos & (5--10a)
or

tan (A — A\g) = cos ¢’ sin (A’ — B)/[sin a cos ¢’ cos (A" — B) — cos a sin &'] (5—10b)

with equation (5—10b) usually preferable to (5—10) and (5—10a) for the same
reasons as those given for (5—4b).

If o = 0, the formulas simplify considerably for the transverse or equatorial
aspects. It is then more convenient to have central meridian A, coincide with the
equator of the basic projection rather than with its meridian B. This may be
accomplished by replacing (A — \y) with (A — Ay — 90°) and simplifying.

If B = 0, so that the true North Pole is placed at (\' = 0, &' = 0):

sin &' = —cos ¢ sin (A — \y) (5—-11)

cos N’ = sin &/[1 — cos? & sin®(A — \)]'2 (5-12)
or

tan A’ = — cos (A — A\p)tan & (56—12a)

If B = 90°, placing the true North Pole at (A’ = 90°, ¢’ = 0):

sin ¢' = — cos & sin (A — Ay) (5-13)
cos X" =cos ¢ cos (A — N1 ~ cos® & sin® (A — A)]'2 (5—14)

or

tan A’ = tan &/cos (A — \,) (5—14a)

The inverse equations (5—9) through (5—10b) may be similarly altered.

As stated earlier, these formulas may be directly incorporated into the formu-
las for the rectangular coordinates x and y of the basic map projection for a direct
computer or calculator output. If only one or two projections are involved in a
package, this may be more efficient. For such transformations of several projec-
tions in one software package, it is often easier to calculate the transverse or
oblique projection coordinates by first calculating ¢’ and A’ for each point to be
plotted (using a general subroutine) and then calculating the rectangular coordi-
nates by inserting ¢’ and A\’ into the basic projection formulas. In still other cases,
a graphical method has been used.

While these formulas, or their equivalents, will be incorporated into the formu-
las given later for individual oblique and transverse projections, the concept
should help interrelate the various aspects or types of centers of a given projec-
tion. The extension of these concepts to the ellipsoid is much more involved tech-
nically and in some cases requires approximation. General discussion of this is
omitted here.
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS

Because of the hundreds of map projections already published and infinite num-
ber which are theoretically possible, considerable attention has been given to
classification of projections so that the user is not overwhelmed by the numbers
and the variety. Generally, the proposed systems classify projections on the basis
of property (equal-area, conformal, equidistant, azimuthal, and so forth), type
of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee (1944)
proposed a combination:

Conical projections
Cylindric
Pseudocylindric
Conic
Pseudoconic
Polyconic
Azimuthal

Perspective
Nonperspective

Nonconical projections
Retroazimuthal (not discussed here)
Orthoapsidal (not discussed here)
Miscellaneous

Each of these categories was further subdivided into conformal, authalic (equal-
area), and aphylactic (neither conformal nor authalic), but some subdivisions have
no examples. This classification is partially used in this book, as the section head-
ings indicate, but the headings are influenced by the number of projections
described in each category: Pseudocylindrical projections are included with the
“miscellaneous” group, and “space map projections” are given a separate section.

Interest has been shown in some other forms of classification which are more
suitable for extensive treatises. In 1962, Waldo R. Tobler provided a simple but
all-inclusive proposal (Tobler, 1962). Tobler’s classification involves eight cate-
gories, four for rectangular and four for polar coordinates. For the rectangular
coordinates, category A includes all projections in which both x and y vary with
both latitude ¢ and longitude A, category B includes all in which y varies with
both ¢ and A while x is only a function of A, C includes those projections in which
x varies with both ¢ and A while y varies only with ¢, and D is for those in which
x is only a function of A and y only of ¢. There are very few published projections
in category B, but C is usually called pseudocylindrical, D is cylindrical, and A
includes nearly all the rest which do not fit the polar coordinate categories.

Tobler’s categories A to D for polar coordinates are respectively the same as
those for rectangular, except that radius p is read for y and angle 6 is read for x.
The regular conic and azimuthal projections fall into category D, and the pseudo-
conical (such as Bonne’s) into C. Category A may have a few projections like A
(rectangular) for which polar coordinates are more convenient than rectangular.
There are no well-known projections in B (polar).

Hans Maurer’s detailed map projection treatise of 1935 introduced a “Linnaean”
classification with five families (“true-circular,” “straight-symmetrical,” “curved-
symmetrical,” “less regular,” and “combination grids,” to quote a translation)
subdivided into branches, subbranches, classes, groups, and orders (Maurer,
1935). As Maling says, Maurer’s system “is only useful to the advanced student
of the subject,” but Maurer attempts for map projections what Linnaeus, the
Swedish botanist, accomplished for plants and animals in the 18th century (Maling,
1973, p. 98). Other approaches have been taken by Goussinsky (1951) and Starostin
(1981).
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SUGGESTED PROJECTIONS

Following is a simplified listing of suggested projections. The recommendation
can be directly applied in many cases, but other parameters such as the central
meridian and parallel or the standard parallels must also be determined. These
additional parameters are often chosen by estimation, but they can be chosen by
more refined methods to reduce distortion (Snyder, 1985a, p. 93—109). In other
cases a more complicated projection may be chosen because of special features
in the extent of the region being mapped; the GS50 projection (50-State map)
described in this book is an example. Some commonly used projections are not
listed in this summary because it is felt that other projections are more suitable
for the applications listed, which are not all-inclusive. Some of the projections
listed here are not discussed elsewhere in this book.

Region mapped
1. World (Earth should be treated as a sphere)
A. Conformal (gross area distortion)
(1) Constant scale along Equator
Mercator
(2) Constant scale along meridian
Transverse Mercator
(3) Constant scale along oblique great circle
Oblique Mercator
(4) Entire Earth shown
Lagrange
August
Eisenlohr
B. Equal-Area
(1) Standard without interruption
Hammer
Mollweide
Eckert IV or VI
McBryde or McBryde-Thomas variations
Boggs Eumorphic
Sinusoidal
misc. pseudocylindricals
(2) Interrupted for land or ocean
any of above except Hammer
Goode Homolosine
(3) Oblique aspect to group continents
Briesemeister
Oblique Mollweide
C. Equidistant
(1) Centered on pole
Polar Azimuthal Equidistant
(2) Centered on a city
Oblique Azimuthal Equidistant
D. Straight rhumb lines
Mercator
E. Compromise distortion
Miller Cylindrical
Robinson
2. Hemisphere (Earth should be treated as a sphere)
A. Conformal
Stereographic (any aspect)
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B. Equal-Area

Lambert Azimuthal Equal-Area (any aspect)
C. Equidistant

Azimuthal Equidistant (any aspect)
D. Global look

Orthographic (any aspect)

3. Continent, ocean, or smaller region (Earth should be treated as a sphere for
larger continents and oceans and as an ellipsoid for smaller regions, especially
at a larger scale)

A. Predominant east-west extent

(1) Along Equator
Conformal: Mercator
Equal-Area: Cylindrical Equal-Area
(2) Away from Equator
Conformal: Lambert Conformal Conic
Equal-Area: Albers Equal-Area Conic
B. Predominant north-south extent
Conformal: Transverse Mercator
Equal-Area: Transverse Cylindrical Equal-Area
C. Predominant oblique extent (for example: North America, South America,
Atlantic Ocean)
Conformal: Oblique Mercator
Equal-Area: Oblique Cylindrical Equal-Area
D. Equal extent in all directions (for example: Europe, Africa, Asia, Australia,
Antarctica, Pacific Ocean, Indian Ocean, Arctic Ocean, Antarctic Ocean)
(1) Center at pole
Conformal: Polar Stereographic
Equal-Area: Polar Lambert Azimuthal Equal-Area
(2) Center along Equator
Conformal: Equatorial Stereographic
Equal-Area: Equatorial Lambert
Azimuthal Equal-Area
(3) Center away from pole or Equator
Conformal: Oblique Stereographic
Equal-Area: Oblique Lambert
Azimuthal Equal-Area
E. Straight rhumb lines (principally for oceans)
Mercator
F. Straight great-circle routes
Gnomonic (for less than hemisphere)
G. Correct scale along meridians
(1) Center at pole
Polar Azimuthal Equidistant
(2) Center along Equator
Plate Carrée (Equidistant Cylindrical)
(3) Center away from pole or Equator
Equidistant Conic
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CYLINDRICAL MAP PROJECTIONS
CYLINDRICAL MAP PROJECTIONS

The map projection best known by name is certainly the Mercator—one of the
cylindricals. Perhaps easiest to draw, if simple tables are on hand, the regular
cylindrical projections consist of meridians which are equidistant parallel straight
lines, crossed at right angles by straight parallel lines of latitude, generally not
equidistant. Geometrically, cylindrical projections can be partially developed by
unrolling a cylinder which has been wrapped around a globe representing the
Earth, touching at the Equator, and on which meridians have been projected
from the center of the globe (fig. 1). The latitudes can also be perspectively pro-
jected onto the cylinder for some projections (such as the Cylindrical Equal-Area
and the Gall), but not on the Mercator and several others. When the cylinder is
wrapped around the globe in a different direction, so that it is no longer tangent
along the Equator, an oblique or transverse projection results, and neither the
meridians nor the parallels will generally be straight lines.
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7. MERCATOR PROJECTION
SUMMARY

o Cylindrical.

o Conformal.

e Meridians are equally spaced straight lines.

o Parallels are unequally spaced straight lines, closest near the Equator, cutting
meridians at right angles.

e Scale is true along the Equator, or along two parallels equidistant from the
Equator.

o Loxodromes (rhumb lines) are straight lines.

o Not perspective.

« Poles are at infinity; great distortion of area in polar regions.

e Used for navigation.

e Presented by Mercator in 1569.

HISTORY

The well-known Mercator projection was perhaps the first projection to be
regularly identified when atlases of over a century ago gradually began to name
projections used, a practice now fairly commonplace. While the projection was
apparently used by Erhard Etzlaub (1462—1532) of Nuremberg on a small map
on the cover of some sundials constructed in 1511 and 1513, the principle remained
obscure until Gerardus Mercator (1512—94) (fig. 7) independently developed it
and presented it in 1569 on a large world map of 21 sections totaling about 1.3 by
2 m (Keuning, 1955, p. 17-18).

Mercator, born at Rupelmonde in Flanders, was probably originally named
Gerhard Cremer (or Kremer), but he always used the latinized form. To his
contemporaries and to later scholars, he is better known for his skills in map and
globe making, for being the first to use the term “atlas” to describe a collection
of maps in a volume, for his calligraphy, and for first naming North America as
such on a map in 1538. To the world at large, his name is identified chiefly with
his projection, which he specifically developed to aid navigation. His 1569 map is
entitled “Nova et Aucta Orbis Terrae Descriptio ad Usum Navigantium Emendate
Accommodata (A new and enlarged description of the Earth with corrections for
use in navigation).” He described in Latin the nature of the projection in a large
panel covering much of his portrayal of North America:

* * * In this mapping of the world we have [desired] to spread out the surface of the globe into a
plane that the places shall everywhere be properly located, not only with respect to their true direc-
tion and distance, one from another, but also in accordance with their due longitude and latitude; and
further, that the shape of the lands, as they appear on the globe, shall be preserved as far as possible.
For this there was needed a new arrangement and placing of meridians, so that they shall become
parallels, for the maps hitherto produced by geographers are, on account of the curving and the bend-
ing of the meridians, unsuitable for navigation * * *. Taking all this into consideration, we have some-

what increased the degrees of latitude toward each pole, in proportion to the increase of the parallels
beyond the ratio they really have to the equator. (Fite and Freeman, 1926, p. 77-78.)

Merecator probably determined the spacing graphically, since tables of secants
had not been invented. Edward Wright (ca. 1558—1615) of England later devel-
oped the mathematics of the projection and in 1599 published tables of cumulative
secants, thereby indicating the spacing from the Equator (Keuning, 1955, p. 18).

FEA'TURES AND USAGE

The meridians of longitude of the Mercator projection are vertical parallel
equally spaced lines, cut at right angles by horizontal straight parallels which are
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FIGURE 7.—Gerardus Mercator (1512—-94). The inventor of the most famous map projection, which is
the prototype for conformal mapping.

increasingly spaced toward each pole so that conformality exists (fig. 8). The
spacing of parallels at a given latitude on the sphere is proportional to the secant
of the latitude.

The major navigational feature of the projection is found in the fact that a
sailing route between two points is shown as a straight line, if the direction or
azimuth of the ship remains constant with respect to north. This kind of route is
called a loxodrome or rhumb line and is usually longer than the great circle path
(which is the shortest possible route on the sphere). It is the same length as a
great circle only if it follows the Equator or a meridian. The projection has been
standard since 1910 for nautical charts prepared by the former U.S. Coast and
Geodetic Survey (now National Ocean Service) (Shalowitz, 1964, p. 302).

The great distortion of area on the Mercator projection of the Earth leads to
mistaken concepts when it is the chief basis of world maps seen by students in
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7. MERCATOR PROJECTION

school. The classic comparison of areas is between Greenland and South America.
Greenland appears larger, although it is only one-eighth the size of South America.
Furthermore, the North and South Poles cannot be shown, since they are at
infinite distance from other parallels on the projection, giving a student an impres-
sion they are inaccessible (which of course they seemed to explorers long after the
time of Mercator). The last 50 years have seen an increased emphasis on the use
of other projections for world maps in published atlases.

Nevertheless, the Mercator projection is fundamental in the development of
map projections, especially those which are conformal. It remains a standard
navigational tool. It is also especially suitable for conformal maps of equatorial
regions. The USGS has recently used it as an inset of the Hawaiian Islands on the
1:500,000-scale base map of Hawaii, for a Bathymetric Map of the Northeast
Equatorial Pacific Ocean (although the projection is not stated) and for a Tectonic
Map of the Indonesia region, the latter two both in 1978 and at a scale of
1:5,000,000.

The first detailed map of an entire planet other than the Earth was issued in
1972 at a scale of 1:25,000,000 by the USGS Center of Astrogeology, Flagstaff,
Arizona, following imaging of Mars by Mariner 9. Maps of Mars at other scales
have followed. The mapping of the planet Mercury followed the flybys of Mariner
10 in 1974. Beginning in the late 1960’s, geology of the visible side of the Moon
was mapped by the USGS in quadrangle fashion at a scale of 1:1,000,000. The four
Galilean satellites of Jupiter and several satellites of Saturn were mapped follow-
ing the Voyager missions of 1979—81. For all these bodies, the Mercator projec-
tion has been used to map equatorial portions, but coverage extended in some
early cases to lats. 65° N. and S. (table 6).

The cloudy atmosphere of Venus, circled by the Pioneer Venus Orbiter begin-
ning in late 1978, is delaying more precise mapping of that planet, but the Merca-
tor projection alone was used to show altitudes based on radar reflectivity over
about 93 percent of the surface.

FORMULAS FOR THE SPHERE

There is no suitable geometrical construction of the Mercator projection. For
the sphere, the formulas for rectangular coordinates are as follows:

x=R (N = \p) (7-1)
y =R Intan (n/4 + $/2) (7-2)

or
y = (R/2) [In (1 + sin ¢)/(1 — sin ¢))] (7—-2a)

where R is the radius of the sphere at the scale of the map as drawn, and ¢ and A
are given in radians. There are also several other forms in which equation (7-2)
may be written, such as ¥y = R arcsinh (tan ¢) = R arctanh (sin ¢) = R In (tan
¢ + sec ¢). The X axis lies along the Equator, x increasing easterly. The Y axis
lies along the central meridian A, y increasing northerly. If (A — A\) lies outside
the range = 180° 360° should be added or subtracted so it will fall inside the
range. To use ¢ and A in degrees,

r=m R (\°—Xy°)/180° (7—1a)
y = R In tan (45° + ¢°/2) (7-2b)

Note that if ¢ is = w/2 or = 90°, y is infinite. For scale factors, application of
equations (4—2), (4—3), and (4—-9) to (7—1) and (7—2) or (7—2a) gives results
consistent with the conformal feature of the Mercator projection:
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TABLE 6.—Map projections used for extraterrestrial mapping

[From Batson, private commun., 1985)

Map format Map format
Body' Scale (see below)? Body! Scale (see below)?
Moon 1:5,000,000 F Galilean satellites of Jupiter
1:2,000,000 K
1:1,000,000 K Io } 1:25,000,000 A-1
Mercury 1:15,000,000 A-1 Europa 1:15,000,000 A-1
1:5,000,000 E-1 1:5,000,000 F
Venus 1:50,000,000 A-1 1:2,000,000 K
1:25,000,000 B-1 Ganymede ; 1:25,000,000 A-1
1:15,000,000 C Callisto 1:15,000,000 B-1
1:5,000,000 G 1:5,000,000 E-2
Mars 1:25,000,000 A-2 1:2,000,000 J
1:15,000,000 B-2
1:5,000,000 D Satellites of Saturn
1:2,000,000 H
1:500,000 L Mimas } 1:2,000,000 A-1
Enceladus
Satellite of Uranus Miranda
Ariel 1:10,000,000 A-1 Tethys 1:10,000,000 A-1
1:5,000,000 B-1 Dione } 1:5,000,000 A-1
Rhea 1:10,000,000 A-1
Satellite of Neptune 1:5,000,000 B-1
Triton (see Ganymede) Iapetus 1:10,000,000 A-1
TABLE 6.—Map projections used for extraterrestrial mapping - Continued
Matching parallel Quadrangle size Std. Parallels
Map format? Lat. range Projection® Scale Factor at Lat. N&S? Scale factor at Lat. N&S Long. x Lat. Lat., Lat.
A-1 57°S—-5T°N® MER 1.0000 0° 1.7883 56° 360° 114%
56° to pole PS 1.6354 90 1.7883 56 360 35
A-2¢ 57°S—-6T°N® MER 1.0000 0 1.9922 60 360 1148
56° to pole PS 1.8589 90 1.9922 60 360 35
B-1 57°S—-57°N MER 1.0000 0 1.7883 56 180 114
56° to pole PS 1.6354 90 1.7883 56 360 35
B-2* 57°S—-6T°N MER 1.0000 0 1.7819 56 180 114
56> to pole PS 1.6298 90 1.7819 56 360 35
C 57°S—-5TN MER 1.0000 0 1.7883 56 120 57
55° to pole PS 1.6354 90 1.7883 56 360 35
D* 30°S-30°N MER 1.0000 0 1.1532 30 45 30
30°-66°N&S LCC 1.1259 SP 1.1532 30 60 35 35.83°, 59.17°
1.1611 65
66° to pole PS 1.1067 90 1.1611 65 360 25
E-1 22°S-22°N’ MER 1.0000 0 1.0824 2.5 72 4’
21°-66°N&S® LCC 1.0494 SP 1.0824 22,5 90 45° 28°, 62°
1.0946 67.5
65° to pole PS 1.0529 90 1.0946 67.5 360 25
E-2 22°S-22°N MER 1.0000 13 1.0461 21.34 T2 44
21°-66°N&S LCC 1.0000 SP 1.0461 21.34 90 45 30°, 58°
1.0484 65.19
66° to pole PS 1.0000 90 1.0484 65.19 360 25
50°S—50°N MER 1.0000 34.06 1.1716 45 180 100
45° to pole PS 1.0000 90 1.1716 45 360 45
25°S—-25°N MER 1.0000 15.90 1.0612 25 40 25
25°—-76°N&S LCC 1.0000 SP 1.0612 25 30 25 34°, 713°
(below 50° lat.)
1.0179 7% 60 25

(above 50°

lat.)
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TABLE 6.—Map projections used for extraterrestrial mapping—Continued
parallel Quadrangle size Std. Parallels
Map format? Lat. range Projection’ Scale Factor at Lat. N&S? Scale factor at Lat. N&S Long. x Lat. Lat., Lat.
75° to pole PS 1.0000 90 1.0179 75 360 15
H* 30°S—-30°N MER 1.0000 27.476 1.0243 30 22.5 15
30°-65°N&S LCC 1.0000 SP 1.0243 30 22.5 17.6 35.83°, 59.17°
(below 47.5° lat.)
1.0313 65 30 17.5
(above 47.5° lat.)
65° to pole PS 0.9830 90 1.0313 65 45 12.5
(below 77.5° lat.)
180 12.5
(above 77.5° lat.)
J 22°S-22°N MER 1.0000 13 1.0461 21.34 36 22
21°-66°N&S LCC 1.0000 SP 1.0461 21.34 30 22.5 30°, 658°
(below 43.5° lat.)
1.0484 65.19 45 22.5
(above 43.5° lat.)
65° to pole PS 1.0000 90 1.0484 66.19 90 17.5
(below 82.5° lat.)
360 7.6
(above 82.5° lat.)
K 16°S-16°N MER 1.0000 11.012 1.0211 16 40 32°
16°-48°N&S LCC 1.0000 SP 1.0211 16 45 32 21.33°, 42.67°
48°-80°N&S LCC 1.0000 Nig none 2 32 53.33°, 74.6T°
80° to pole PS 1.0000 90 none 360 10
L! 82.5°S-82.5°N TM' 0.9960 CM none 5 5
(below 47.5° lat.)
6.67 5
(above 47.5° lat.)
82.5° to pole PS 1.0000 87.5 none 40 5
(below 87.5° lat.)
360 2.5
. (above 87.5° lat.)

Notes: ! Taken as sphere, except for Mars (ellipsoid, eccentricity = 0.101929).
Orthographic projection used for irregular satellites of Mars (Phobos and Dei

Lambert Azimuthal Equal-Area projection used in polar and eq

Oblique Stereographic projection used for basins and other regions of Mars, Moon, etc.

), of Jupi

for full h

of

Ithea), and Saturn (Hyperion).

2 Official format designations use only the letter. Numbers have been added for convenience in this table.
3 Abbreviations: MER = Mercator, PS = Polar Stereographic, LCC = Lambert Conformal Conic, TM = Transverse Mercator, SP = Standard Parallels.
4 Scale factors based on Mars ellipsoid.
5 Venus 1:50,000,000 originally 65°S. to 78°N. Mercator with no polar continuation.
¢ Originally 65°S.—65°N., 130° lat. quad range.
7 Originally 25°S.-25°N., 50° lat. quad range.

8 Originally 20°-70°N.&S., 50° lat. quad range.

? For Moon 1:1,000,000, quads are 20° long. x 16° lat.

1° Zones are 20° long. x 75° lat.

and satellites.
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h=k = secd = 1l/cos ¢ (7-3)

w=0

Normally, for conformal projections, the use of & (the scale factor along a
meridian) is omitted, and k (the scale factor along a parallel) is used for the scale
factor in any direction. The areal scale factor for conformal projections is k? or
sec? ¢ for the Mercator in spherical form.

The inverse formulas for the sphere, to obtain ¢ and A from rectangular coordi-
nates, are as follows:

& =7/2 — 2 arctan (e—¥'R) (7—-4)
or

¢ =arctan[sinh(y/R)] (7—4a)

A=x/R + )\ (7-5)
Heree = 2.7182818 . . . , the base of natural logarithms, not eccentricity. These

and subsequent formulas are given only in radians, as stated earlier, unless the
degree symbol is used. Numerical examples (see p.266) are given in degrees,
showing conversion.

FORMULAS FOR THE ELLIPSOID

For the ellipsoid, the corresponding equations for the Mercator are only a little
more involved (see p. 267 for numerical example):

x = a(A—X\p) (7-6)
1—-esin ¢ \<2
y =aln | tan(w/4 + ¢/2) < _ ) @-7
l+esiné
or
1 + sind 1—esindy
y = (a/2)In ( _— ) ( ———)
1 —sind¢ 1 + e sin ¢, (7—"Ta)

where a is the equatorial radius of the ellipsoid, and e is its eccentricity. Compar-
ing equation (3—7), it is seen that y = a¥. From equations (4—22) and (4—23), it
may be found that
h = k = (1—é® sin® $)'?/cos ¢ (7-8)
and of course w = 0. The areal scale factor is k%. The derivation of these equations
is shown in Thomas (1952, p. 1, 2, 85—90).
The X and Y axes are oriented as they are for the spherical formulas, and

(N = Ao) should be similarly adjusted. Thomas also provides a series equivalent
to equation (7—7), slightly modified here for consistency:

y/a = In tan (w/4+&/2) — (e +e'/4+€%8+ .. .) sin b
+ (eY12 + %16 + .. ) sin3d — (¢%80 + .. .)sinbd + ... (7T—Th)

The inverse formulas for the ellipsoid require rapidly converging iteration, if
the closed forms of the equations for finding ¢ are used:

& = m/2-2 arctan [t[(1—e sin ¢)/(1+e sin )] (7-9)
where

t = ey (7-10)
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TABLE 7.—Mercator projection: Rectangular coordinates

Latitude Sphere (R=1) Clarke 1866 ellipsoid (a=1)
(®) y k y k
90° Infinite Infinite Infinite Infinite
85 3.13130 11.47371 3.12454 11.43511
80 2.43625 5.75877 2.42957 5.73984
75 2.02759 3.86370 2.02104 3.85148
70 1.73542 2.92380 1.72904 2.91505
65 1.50645 2.36620 1.50031 2.35961
60 1.31696 2.00000 1.31109 1.99492
55 1.15423 1.74345 1.14868 1.73948
50 1.01068 1.55572 1.00549 1.565263
45 .88137 1.41421 .87658 1.41182
40 .76291 1.30541 15855 1.30358
35 .65284 1.22077 .64895 1.21941
30 .54931 1.15470 .54592 1.15372
25 .45088 1.10338 .44801 1.10271
20 .35638 1.06418 .35406 1.06376
15 .26484 1.03528 .26309 1.03504
10 17543 1.01543 17425 1.01532
5 .08738 1.00382 .08679 1.00379
0 .00000 1.00000 .00000 1.00000
z 0.017453 (A\~)\o) 0.017453 (A\-)\)

Note: r, y = rectangular coordinates.
¢ = geodetic latitude.
(A—Ag) = geodetic longitude, measured east from origin in degrees.
k = scale factor, relative to scale at Equator.
R = radius of sphere at scale of map.
a = equatorial radius of ellipsoid at scale of map.
If latitude is negative (south), reverse sign of y.

e is the base of natural logarithms, 2.71828 . . . ,
and the first trial $ = n/2—2 arctan ¢ (7-11)

Inserting the first trial ¢ in the right side of equation (7—9), & on the left side is
calculated. This becomes the new trial ¢, which is used on the right side. The
process is repeated until the change in ¢ is less than a chosen convergence factor
depending on the accuracy desired. This & is then the final value. For A,

N =xla + A (7-12)

The scale factor is calculated from equation (7—8), using the calculated &.

To avoid the iteration, the series (3—5) may be used with (7—13) in place of

(7-9):

b = x + (6%/2 + 524 + €%12 + 13¢%/360 + . . .)sin 2x + (7e*/48 + 29¢5/240 +
811¢%/11520 + . ..) sin 4x + (7¢%120 + 81e*1120 + . . .) sin 6x +
(4279¢%/161280 + .. .)sin 8x + . .. (3-5)

where

X = w/2-2 arctan t (7-13)
For improved computational efficiency using the series, see p. 19.

Rectangular coordinates for each 5° of latitude are given in table 7, for both the
sphere and the Clarke 1866 ellipsoid, assuming R and a are both 1.0. It should be



46

MAP PROJECTIONS—A WORKING MANUAL

noted that k for the sphere applies only to the sphere. The spherical projection is
not conformal with respect to the ellipsoidal Earth, although the variation is
negligible for a map with an equatorial scale of 1:15,000,000 or smaller. It should
be noted that any central meridian can be chosen as A, for an existing Mercator
map, if forward or inverse formulas are to be used for conversions.

MEASUREMENT OF RHUMB LINES

Since a major feature of the Mercator projection is the straight portrayal of
rhumb lines, formulas are given below to determine their true lengths and
azimuths. If a straight line on the map connects two points with respective lati-
tudes and longitudes (¢, \;) and (d,, ), the respective rectangular coordinates
(x,, ¥,) and (x,, y») are calculated using equations (7—1) and (7—2) for the sphere
or (7—6) and (7—7) for the ellipsoid, inserting the respective subscripts.

For the true (not magnetic) compass bearing or azimuth Az clockwise from
north along the rhumb line,

Az = arctan [(xz—x))/(y2—y1)] (7-14)
Transposing and using forward and inverse equations for the Mercator, latitude
or longitude along the rhumb line may be found for a given longitude or latitude,
respectively, knowing the initial point and the azimuth. For example,

Y2 = Yy + (xp — xy)/tan Az (7-15)
in which (x,, y,) are calculated for (¢,, A,) from (7—6) and (7—17), x, is calculated
from A, from (7—6), and &, is calculated from y, using (7—9) and (7-10).

For the true distance s along the rhumb line from ¢, to ¢,,

s = (My,—M,)/cos Az (7-16)
where M, and M,, the distances from the Equator along the meridian, are found
for ¢, and &, respectively, using equation (3—21) and the same subscripts on M
and ¢:

M = a[(1-¢%/4—3¢"/64—5¢5256— . . .) b— (3¢%/8 + 3¢%/32
+ 45€%1024 + .. .) sin 2 + (15€%/256 + 45¢5/1024 + .. .)
sin 4 — (35¢%/3072 + .. .)sin 6 + ...] (3-21)
but if &; = &,, equation (7—16) is indeterminate and
s = a(Az—\;) cos ¢/(1—e?sin®d)“ (7-17)
For the true distance s from initial latitude ¢, to latitude ¢, equation (7—16)
may be used with M instead of M,. To find (b,\) corresponding to a given distance
s from (&, A;) along the rhumb line, (7—16) may be inverted to give:
M = scos Az + M, (7-18)

If Az = 90° or 270°, & = &, and equation (7-20) is indeterminate, but A may be
found by transposing (7-17), using negative s for Az = 270°.
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M may be converted to ¢ using (3—26),

b = p + (3e,/2-27¢,%32 + . ..)sin 2pn + (21e,2/16—55¢,%/32 + .. .)
sin 4p. + (151¢,%/96— . . .) sin 6p. + (1097¢,%/512— .. .)sin 8p + . ..

(3—26)
where
ey = [1-(1-)")[1+(1-€*)"] (3-24)
and, in a rearrangement of (3—20) and (3—21),
p = Mlla (1-€?/4—3¢*/64—5¢%256— . . .)] (7-19)

Then for longitude A, rearranging (7—6), (7—17), and (7—14),

A=A + tan Az{ ln[tan (/4 + /2) (l'e—"‘i“d’)”z] —yl/a} (7—20)

1+e sin ¢,

MERCATOR PROJECTION WITH ANOTHER STANDARD PARALLEL

The above formulas are based on making the Equator of the Earth true to scale
on the map. Thus, the Equator may be called the standard parallel. It is also
possible to have, instead, another parallel (actually two) as standard, with true
scale. For the Mercator, the map will look exactly the same; only the scale will be
different. If latitude ¢, is made standard (the opposite latitude —d,; is also
standard), the above forward formulas are adapted by multiplying the right side
of equations (7—1) through (7—3) for the sphere, including the alternate forms,
by cos ¢,. For the ellipsoid, the right sides of equations (7—6), (7—7), (7—-8), and
(7—-"7a) are multiplied by cos ¢,/(1—¢? sin? ¢,)!2. For inverse equations, divide x
and y by the same values before use in equations (7—4) and (7-5) or (7—10) and
(7—12). Such a projection is most commonly used for a navigational map of part
of an ocean, such as the North Atlantic Ocean, but the USGS has used it for
equatorial quadrangles of some extraterrestrial bodies as described in table 6.
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8. TRANSVERSE MERCATOR PROJECTION
SUMMARY

e Cylindrical (transverse).

¢ Conformal.

e Central meridian, each meridian 90° from central meridian, and Equator are
straight lines.

e Other meridians and parallels are complex curves.

e Scale is true along central meridian, or along two straight lines equidistant
from and parallel to central meridian. (These lines are only approximately
straight for the ellipsoid.)

e Scale becomes infinite on sphere 90° from central meridian.

e Used extensively for quadrangle maps at scales from 1:24,000 to 1:250,000.

e Presented by Lambert in 1772.

HISTORY

Since the regular Mercator projection has little error close to the Equator (the
scale 10° away is only 1.5 percent larger than the scale at the Equator), it has been
found very useful in the transverse form, with the equator of the projection
rotated 90° to coincide with the desired central meridian. This is equivalent to
wrapping the cylinder around a sphere or ellipsoid representing the Earth so that
it touches the central meridian throughout its length, instead of following the
Equator of the Earth. The central meridian can then be made true to scale, no
matter how far north and south the map extends, and regions near it are mapped
with low distortion. Like the regular Mercator, the map is conformal.

The Transverse Mercator projection in its spherical form was invented by the
prolific Alsatian mathematician and cartographer Johann Heinrich Lambert
(1728—177) (fig. 9). It was the third of seven new projections which he described
in 1772 in his classic Beitrdige (Lambert, 1772). At the same time, he also de-
scribed what are now called the Cylindrical Equal-Area, the Lambert Conformal
Conic, and the Lambert Azimuthal Equal-Area, each of which will be discussed
subsequently; others are omitted here. He described the Transverse Mercator
as a conformal adaptation of the Sinusoidal projection, then commonly in use
(Lambert, 1772, p. 57—58). Lambert’s derivation was followed with a table of
coordinates and a map of the Americas drawn according to the projection.

Little use has been made of the Transverse Mercator for single maps of
continental areas. While Lambert only indirectly discussed its ellipsoidal form,
mathematician Carl Friedrich Gauss (1777—1855) analyzed it further in 1822, and
L. Kriiger published studies in 1912 and 1919 providing formulas suitable for
calculation relative to the ellipsoid. It is, therefore, sometimes called the Gauss
Conformal or the Gauss-Kriiger projection in Europe, but Transverse Mercator,
a term first applied by the French map projection compiler Germain, is the name
normally used in the United States (Thomas, 1952, p. 91-92; Germain, 18657, p.
347).

Until recently, the Transverse Mercator projection was not precisely applied to
the ellipsoid for the entire Earth. Ellipsoidai formulas were limited to series for
relatively narrow bands. In 1945, E. H. Thompson (and in 1962, L. P. Lee)
presented exact or closed formulas permitting calculation of coordinates for the
full ellipsoid, although elliptic functions, and therefore lengthy series, numerical
integrations, and (or) iterations, are involved (Lee, 1976, p. 92—-101; Snyder,
1979a, p. 73; Dozier, 1980).

The formulas for the complete ellipsoid are interesting academically, but they
are practical only within a band between 4° of longitude and some 10° to 15° of arc
distance on either side of the central meridian, because of the much more signifi-
cant scale errors fundamental to any projection covering a larger area.
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FIGURE 9.—Johann Heinrich Lambert (1728—77). Inventor of the Transverse Mercator, the Confor-
mal Conic, the Azimuthal Equal-Area, and other important projections, as well as outstanding
developments in mathematics, astronomy, and physics.

FEATURES

The meridians and parallels of the Transverse Mercator (fig. 19) are no longer
the straight lines they are on the regular Mercator, except for the Earth’s Equator,
the central meridian, and each meridian 90° away from the central meridian.
Other meridians and parallels are complex curves.

The spherical form is conformal, as is the parent projection, and scale error is
only a function of the distance from the central meridian, just as it is only a
function of the distance from the Equator on the regular Mercator. The ellipsoidal
form is also exactly conformal, but its scale error is slightly affected by factors
other than the distance alone from the central meridian (Lee, 1976, p. 98).
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F1GURE 10.—The Transverse Mercator projection. While the regular Mercator has constant scale along the Equator, the Transverse Mercator has
constant scale along any chosen central meridian. This projection is conformal and is often used to show regions with greater north-south
extent.
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The scale along the central meridian may be made true to scale, or deliberately
reduced to a slightly smaller constant scale so that the mean scale of the entire
map is more nearly correct. There are also forms of the ellipsoidal Transverse
Mercator on which the central meridian is not held at a constant scale, but these
forms are not used in practice (Lee, 1976, p. 100—101). If the central meridian is
mapped at a reduced scale, two straight lines parallel to it and equally spaced
from it, one on either side, become true to scale on the sphere. These lines are not
perfectly straight on the ellipsoidal form.

With the scale along the central meridian remaining constant, the Transverse
Mercator is an excellent projection for lands extending predominantly north and
south.

USAGE

The Transverse Mercator projection (spherical or ellipsoidal) was not described
by Close and Clarke in their generally detailed article in the 1911 Encyclopaedia
Britannica because it was “seldom used” (Close and Clarke, 1911, p. 663). Deetz
and Adams (1934) favorably referred to it several times, but as a slightly used
projection.

The spherical form of the Transverse Mercator has been used by the USGS
only recently. In 1979, this projection was chosen for a base map of North Amer-
ica at a scale of 1:5,000,000 to replace the Bipolar Oblique Conic Conformal
projection previously used for tectonic and other geologic maps. The scale factor
along the central meridian, long. 100° W., is reduced to 0.926. The radius of the
Earth is taken at 6,371,204 m, with approximately the same surface area as the
International ellipsoid, placing the two straight lines of true design scale 2,343 km
on each side of the central meridian.

While its use in the spherical form is limited, the ellipsoidal form of the Trans-
verse Mercator is probably used more than any other one projection for geodetic
mapping.

In the United States, it is the projection used in the State Plane Coordinate
System (SPCS) for States with predominant north-south extent. (The Lambert
Conformal Conic is used for the others, except for the panhandle of Alaska, which
is prepared on the Oblique Mercator. Alaska, Florida, and New York use both the
Transverse Mercator and the Lambert Conformal Conic for different zones.)
Except for narrow States, such as Delaware, New Hampshire, and New Jersey,
all States using the Transverse Mercator are divided into two to eight zones, each
with its own central meridian, along which the scale is slightly reduced to balance
the scale throughout the map. Each zone is designed to maintain scale distortion
within 1 part in 10,000. Several States beginning in 1935 also passed legislation
establishing the SPCS as a permissible system for recording boundary descrip-
tions or point locations. Several zone changes have occurred for use with the new
1983 datum. They are listed in Appendix C.

In addition to latitude and longitude as the basic frame of reference, the corre-
sponding rectangular grid coordinates in feet are used to designate locations
(Mitchell and Simmons, 1945). The parameters for each State are given in table 8.
All are based on the Clarke 1866 ellipsoid. It is important to note that, for the
metric conversion to feet using this coordinate system, 1 m equals exactly 39.37
in., not the current standard accepted by the National Bureau of Standards in
1959, in which 1 in. equals exactly 2.54 cm. Surveyors continue to follow the
former conversion for consistency. The difference is only two parts in a million,
but it is enough to cause confusion, if it is not accounted for.

Beginning with the late 1950’s, the Transverse Mercator projection was used
by the USGS for nearly all new quadrangles (maps normally bounded by meridi-
ans and parallels) covering those States using the TM Plane Coordinates, but the
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[T indicates Transverse Mercator; L, Lambert Conformal Conic; H, Hotine Oblique Mercator. Modified slightly and updated from
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TABLE 8.—U.S. State plane coordinate systems

Mitchell and Simmons, 1945, p. 45-47)

Area Projection Zones Area Projection Zones
Alabama ______ - T 2 Montana ________ L 3
Alaska __________ T 8 Nebraska ________ L 2

L 1 Nevada _______ _— T 3
H 1 New Hampshire __ T 1
Arizona _________ T 3 New Jersey ______ T 1
Arkansas ________ L 2 New Mexico ______ T 3
California _______ L 7 New York _______ T 3
Colorado ________ L 3 L 1
Connecticut ______ L 1 North Carolina ___ L 1
Delaware ________ T 1 North Dakota ____ L 2
Florida __________ T 2 Ohio ____________ L 2
L 1 Oklahoma _______ L 2
Georgia _________ T 2 Oregon __________ L 2
Hawaii __________ T 5 Pennsylvania _____ L 2
Idaho ___________ T 3 Puerto Rico &
Illinois __________ T 2 Virgin Islands __ L 2
}ndlana --------- E g RhodelIsland _____ T 1
AL T —— Samoa __________ L 1
Kansas__________ L 2 South Carolina ___ L 2
Kentucky ________ L 2 South Dakota ____ L 2
Louisiana ________ L 3 Tennessee _______ L 1
Maine ___________ T 2 Texas ___________ L 5
Maryland ________ L 1 Utah . _______ L 3
Massachusetts ————— L 2 Vemont ________ T l
Michigan! Virginia _________ L 2
obsolete _______ T 3 Washington ______ L 2
current ________ L 3 West Virginia _.___ L 2
Minnesota _______ L 3 Wisconsin _______ L 3
Mississippi —______ T 2 Wyoming _______ _ T 4
Missouri _________ T 3
Transverse Mercator projection
Zone Central meridian Scale reduction? Origin?® (latitude)
Alabama
East _______ 85°50"' W. 1:25,000 30°30" N.
West _______ 87 30 1:15,000 30 00
Alaska¢t
2 142 00 1:10,000 54 00
3 146 00 1:10,000 54 00
4 150 00 1:10,000 54 00
L 154 00 1:10,000 54 00
6 o 158 00 1:10,000 54 00
Y 162 00 1:10,000 54 00
R 166 00 1:10,000 54 00
9 170 00 1:10,000 54 00
Arizona
East _______ 110 10 1:10,000 31 00
Central _____ 111 55 1:10,000 31 00
West _______ 113 45 1:15,000 31 00
Delaware ______ 75 25 1:200,000 38 00
Florida¢
East _______ 81 00 1:17,000 24 20
West _______ 82 00 1:17,000 24 20
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TABLE 8.—U.S. State plane coordinate systems—Continued

Transverse Mercator projection — Continued

Zone Central meridian Scale reduction? Origin® (latitude)

Georgia .

East _______ 82°100 W. 1:10,000 30°00' N.

West _______ 84 10 1:10,000 30 00
Hawaii

1 155 30 1:30,000 18 50

2 156 40 1:30,000 20 20

8 158 00 1:100,000 21 10

L e 159 30 1:100,000 21 50

5 160 10 0 21 40
Idaho

East _______ 112 10 1:19,000 41 40

Central _____ 114 00 1:19,000 41 40

West _______ *:5 45 1:15,000 41 40
Illinois

Easi _______ 88 20 1:40,000 36 40

West _______ 90 10 1:17,000 36 40
Indiana

East _______ 85 40 1:30,000 37 30

West _______ 87 05 1:30,000 37 30
Maine

East _______ 68 30 1:10,000 43 50

West _______ 70 10 1:30,000 42 50
Michigan (old)*

East _______ 83 40 1:17,500 41 30

Central _____ 85 45 1:11,000 41 30

West _______ 88 45 1:11,000 41 30
Mississippi

East _______ 88 50 1:25,000 29 40

West _______ 90 20 1:17,000 30 30
Missouri

East _______ 90 30 1:15,000 35 50

Central _____ 92 30 1:15,000 35 50

West _______ 94 30 1:17,000 36 10
Nevada

East _______ 115 35 1:10,000 34 45

Central _____ 116 40 1:10,000 34 45

West _______ 118 35 1:10,000 34 45
New Hampshire _ 71 40 1:30,000 42 30
New Jersey _____ 74 40 1:40,000 38 50
New Mexico

East _______ 104 20 1:11,000 31 00

Central _____ 106 15 1:10,000 31 00

West _______ 107 50 1:12,000 31 00
New York*

East _______ 74 20 1:30,000 40 00

Central _____ 76 35 1:16,000 40 00

West _______ 78 35 1:16,000 40 00
Rhode Island ____ 71 30 1:160,000 41 05
Vermont _______ 72 30 1:28,000 42 30
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TABLE 8.—U.S. State plane coordinate systems—Continued

Transverse Mercator projection — Continued

Zone Central meridian Scale reduction? Origin® (latitude)
Wyoming
East _______ 105°10" W. 1:17,000 40°40' N.
East Central 107 20 1:17,000 40 40
West Central 108 45 1:17,000 40 40
West _______ 110 05 1:17,000 40 40

Lambert Conformal Conic projection

e
Zone Standard parallels Long. Origin Lat.

Alaska*

10 ___________ 51°50’ N. 53°50’ N. 176°00 W.5*  51°0¢’ N.
Arkansas

North _________ 34 56 36 14 92 00 34 20

South _________ 3318 34 46 92 00 32 40
California

I 40 00 41 40 122 00 39 20

nm o __ 38 20 39 50 122 00 37 40

m. . __ 37 04 38 26 120 30 36 30

v __ 36 00 37 15 119 00 35 20

Vo o 34 02 35 28 118 00 33 30

vI 32 47 33 53 116 15 32 10

2 | O 33 52 34 25 118 20 34 08%®
Colorado

North _________ 39 43 40 47 105 30 39 20

Central ________ 38 27 39 45 105 30 37 50

South _________ 37 14 38 26 105 30 36 40
Connecticut _______ 41 12 41 52 72 45 40 50
Florida*

North _________ 29 35 30 45 84 30 29 00
Iowa

North _________ 42 04 43 16 93 30 41 30

South _________ 40 37 41 47 93 30 40 00
Kansas

North _________ 38 43 39 47 98 00 38 20

South _________ 37 16 38 34 98 30 36 40
Kentucky

North _________ 37 58 38 58 84 15 37 30

South _________ 36 44 37 56 85 45 36 20
Louisiana

North _________ 31 10 32 40 92 30 30 40

South _________ 29 18 30 42 91 20 28 40

Offshore _______ 26 10 27 50 91 20 25 40
Maryland _________ 38 18 39 27 77 00 37 505
Massachusetts

Mainland ______ 41 43 42 41 71 30 41 00%4

Island _________ 41 17 41 29 70 30 41 00%
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TABLE 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection — Continued

Origin®
Zone Standard parallels Long. Lat.
Michigan (current)*

North _________ 45°29 N. 47°05' N. 87°00’ W. 44°47 N.

Central ________. 4411 45 42 84 20 43 19

South _________ 42 06 43 40 84 20 41 30
Minnesota

North _________ 47 02 48 38 93 06 46 30

Central ______ - 45 37 47 03 94 15 45 00

South _________ 43 47 45 13 94 00 43 00
Montana

North _________ 47 51 48 43 109 30 47 00

Central ________ 46 27 47 53 109 30 45 50

South _________ 44 52 46 24 109 30 44 00
Nebraska

North _________ 41 51 42 49 100 00 41 20

South _________ 4017 41 43 99 30 39 40
New York!

Long Island ____ 40 40 41 02 74 00 40 305
North Carolina _____ 34 20 36 10 79 00 33 45
North Dakota

North _________ 47 26 48 44 100 30 47 00

South _________ 46 11 47 29 100 30 45 40
Ohio

North _________ 40 26 41 42 82 30 39 40

South _________ 38 44 40 02 82 30 38 00
Oklahoma

North _________ 35 34 36 46 98 00 35 00

South _________ 33 56 35 14 98 00 33 20
Oregon

North _________ 44 20 46 00 120 30 43 40

South _________ 42 20 44 00 120 30 41 40
Pennsylvania

North _________ 40 53 41 57 77 45 40 10

South _________ 39 56 40 58 77 45 39 20
Puerto Rico and

Virgin Islands

) S 18 02 18 26 66 26 17 50

2 (St. Croix) ____ 18 02 18 26 66 26 17 50%-&
Samoa ____________ 14°16' S. (single) 170 00°" —
South Carolina

North _________ 33°46' N. 34 58 81 00 33 00

South _________ 32 20 33 40 81 00 31 50
South Dakota

North _________ 44 25 45 41 100 00 43 50

South _________ 42 50 44 24 100 20 42 20
Tennessee ________ 35 15 36 25 86 00 34 405
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TABLE 8.—U.S. State plane coordinate systems—Continued

Lambert Conformal Conic projection —Continued

Origin®
Zone Standard parallels Long. Lat.
Texas
North _________ 34°39 N. 36°11' N. 101°30’ W. 34°00' N.
Northcentral ___ 32 08 33 58 97 30 31 40
Central ________ 30 07 31 53 100 20 29 40
South central ___ 28 23 30 17 99 00 27 50
South _________ 26 10 27 50 98 30 25 40
Utah
North _________ 40 43 41 47 111 30 40 20
Central ________ 39 01 40 39 111 30 38 20
South _________ 37 13 38 21 111 30 36 40
Virginia
North _________ 38 02 39 12 78 30 37 40
South _________ 36 46 37 58 78 30 36 20
Washington
North _________ 47 30 48 44 120 50 47 00
South _________ 45 50 47 20 120 30 45 20
West Virginia
North _________ 39 00 40 15 79 30 38 30
South _________ 37 29 38 53 81 00 37 00
Wisconsin
North _________ 45 34 46 46 90 00 45 10
Central ________ 44 15 45 30 90 00 43 50
South _________ 42 44 44 04 90 00 42 00
Hotine Oblique Mercator projection
7o Center of projection Azimuth of Scale’
ne Long. Lat. central line reduction
Alaska?!
1 133°40’ W .6 57°00" N. arctan (- %) 1:10,000
Great Lakes (U.S. Lake Survey, not State plane coordinates)
1 (Erie, Ont.,
St. Lawrence R.)78 00% 44 00 55°40' 1:10,000
2 (Huron) 82 30% 43 00 350 37 1:10,000
3 (Michigan) 87 008 44 00 15 00 1:10,000
4 (Superior, Lake (88 50 47 12 285 41 1:10,000
of the Woods) [00.256"“e 21.554" 42.593"

Note.-All these systems are based on the Clarke 1866 ellipsoid and are based on the 1927 datum. Origin refers to rectangular
coordinates. For systems based on 1983 datum, see Appendix C.

! The major and minor axes of the ellipsoid are taken at exactly 1.0000382 times those of the Clarke 1866, for Michigan only. This
incorporates an average elevation throughout the State of about 800 ft, with limited variation.

2 Along the central meridian.

3 At origin, x = 500,000 ft, y = 0 ft, except for Alaska zone 7, r = 700,000 ft; Alaska zone 9, x = 600,000 ft; and New Jersey, r =
2,000,000 ft.

¢ Additional zones listed in this table under other projection(s).

® At origin, r = 2,000,000 ft, y = 0 ft, except (a) x = 3,000,000 ft, (b) x = 4,186,692.58, y = 4,160,926.74 &, (c) x = 800,000 ft, (d) x =
600,000 ft, (e) x = 200,000 ft, (f) y = 100,000 ft, (g) r = 500,000 ft, (h) r = 500,000 ft, y = 0, but radius to lat. of origin = —82,000,000 ft.

8 At center, (a) x* = 5,000,000 meters, y = —5,000,000 m; (b) x = —3,950,000 m, y = —3,430,000 m; (c) x = 1,200,000 m, y = —3,500,000
m; (d) x = —1,000,000 m, y = —4,300,000 m; (e) »r = 9,000,000 m, y = — 1,600,000 m (Berry and Bormanis, 1970).

7 At central point.
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central meridian and scale factor are those of the SPCS zone. Thus, all quadran-
gles for a given zone may be mosaicked exactly. Beginning in 1977, many USGS
maps have been produced on the Universal Transverse Mercator projection (see
below). Prior to the late 1950’s, the Polyconic projection was used. The change in
projection was facilitated by the use of high-precision rectangular-coordinate plot-
ting machines. Some maps produced on the Transverse Mercator projection sys-
tem during this transition period are identified as being prepared according to the
Polyconic projection. Since most quadrangles cover only 7% minutes (at a scale of
1:24,000) or 15 minutes (at 1:62,500) of latitude and longitude, the difference
between the Polyconic and the Transverse Mercator for such a small area is much
more significant due to the change of central meridian than due to the change of
projection. The difference is still slight and is detailed later under the discussion
of the Polyconic projection. The Transverse Mercator is used in many other
countries for official topographic mapping as well. The Ordnance Survey of Great
Britain began switching from a Transverse Equidistant Cylindrical (the Cassini-
Soldner) to the Transverse Mercator about 1920.

The use of the Transverse Mercator for quadrangle maps has been recently
extended by the USGS to include the planet Mars. Although other projections are
used at smaller scales, quadrangles at scales of 1:1,000,000 and 1:250,000, and
covering areas from 200 to 800 km on a side, were drawn to the ellipsoidal
Transverse Mercator between lats. 65°N. and S. The scale factor along the cen-
tral meridian was made 1.0. For the current series, see table 6.

In addition to its own series of larger-scale quadrangle maps, the Army Map
Service used the Transverse Mercator for two other major mapping operations:
(1) a series of 1:250,000-scale quadrangle maps covering the entire country, and
(2) as the geometric basis for the Universal Transverse Mercator (UTM) grid.

The entire area of the United States has been mapped since the 1940’s in
sections 2° of longitude (between even-numbered meridians, but in 3° sections in
Alaska) by 1° of latitude (between each full degree) at a scale of 1:250,000, with the
UTM grid superimposed and with some variations in map boundaries at coastlines.
These maps were drawn with reference to their own central meridians, not the
central meridians of the UTM zones (see below), although the 0.9996 central scale
factor was employed. The central meridian of about one-third of the maps coin-
cides with the central meridian of the zone, but it does not for about two-thirds,
the “wing” sheets, which therefore do not perfectly match the center sheets. The
USGS has assumed publication and revision of this series and is casting new maps
using the correct central meridians.

Transverse Mercator quadrangle maps fit continuously in a north-south direction,
provided they are prepared at the same scale, with the same central meridian,
and for the same ellipsoid. They do not fit exactly from east to west, if they have
their own central meridians; although quadrangles and other maps properly con-
structed at the same scale, using the SPCS or UTM projection, fit in all directions
within the same zone.

UNIVERSAL TRANSVERSE MERCATOR PROJECTION

The Universal Transverse Mercator (UTM) projection and grid were adopted
by the U.S. Army in 1947 for designating rectangular coordinates on large-scale
military maps of the entire world. The UTM is the ellipsoidal Transverse Merca-
tor to which specific parameters, such as central meridians, have been applied.
The Earth, between lats. 84° N. and 80°S., is divided into 60 zones each generally 6°
wide in longitude. Bounding meridians are evenly divisible by 6°, and zones are
numbered from 1 to 60 proceeding east from the 180th meridian from Greenwich
with minor exceptions. There are letter designations from south to north (see fig.
11). Thus, Washington, D.C., is in grid zone 18S, a designation covering a quad-
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rangle from long. 72° to 78° W. and from lat. 32°t0 40° N. Each of these quadrangles
is further subdivided into grid squares 100,000 meters on a side with double-letter
designations, including partial squares at the grid boundaries. From lat. 84° N.
and 80° S. to the respective poles, the Universal Polar Stereographic (UPS) projec-
tion is used instead.

As with the SPCS, each geographic location in the UTM projection is given x
and y coordinates, but in meters, not feet, according to the Transverse Mercator
projection, using the meridian halfway between the two bounding meridians as
the central meridian, and reducing its scale to 0.9996 of true scale (a 1:2,500
reduction). The reduction was chosen to minimize scale variation in a given zone;
the variation reaches 1 part in 1,000 from true scale at the Equator. The USGS,
for civilian mapping, uses only the zone number and the x and y coordinates,
which are sufficient to define a point, if the ellipsoid and the hemisphere (north or
south) are known; the 100,000-m square identification is not essential. The lines of
true scale are approximately parallel to and approximately 180 km east and west
of the central meridian. Between them, the scale is too small; beyond them, it is
too great. In the Northern Hemisphere, the Equator at the central meridian is
considered the origin, with an « coordinate of 500,000 m and a y of 0. For the
Southern Hemisphere, the same point is the origin, but, while x remains 500,000
m, y is 10,000,000 m. In each case, numbers increase toward the east and north.
Negative coordinates are thus avoided (Army, 1973, p. 7, endmap). A page of
coordinates for the UTM projection is shown in table 9.

The ellipsoidal Earth is used throughout the UTM projection system, but the
reference ellipsoid changes with the particular region of the Earth. For all land
under United States jurisdiction, the Clarke 1866 ellipsoid is used for the map
projection. For the UTM grid superimposed on the map of Hawaii, however, the
International ellipsoid is used. The Geological Survey uses the UTM graticule and
grid for its 1:250,000- and larger-scale maps of Alaska, and applies the UTM grid
lines or tick marks to its quadrangles and State base maps for the other States,
although they are generally drawn with different projections or parameters.

FORMULAS FOR THE SPHERE

A partially geometric construction of the Transverse Mercator for the sphere
involves constructing a regular Mercator projection and using a transforming
map to convert meridians and parallels on one sphere to equivalent meridians and
parallels on a sphere rotated to place the equator of one along the chosen central
meridian of the other. Such a transforming map may be the equatorial aspect of
the Stereographic or other azimuthal projection, drawn twice to the same scale on
transparencies. The transparencies may then be superimposed at 90° angles and
the points compared.

In an age of computers, it is much more satisfactory to use mathematical
formulas. The rectangular coordinates for the Transverse Mercator applied to the
sphere (Thomas, 1952, p. 6):

x = Y2Rky In [(1 + B)(1 — B)] 8-1)
or
x = Rk, arctanh B (8-2)
y = Rk, |arctan [tan d/cos (A — \o)] — dol (8-3)*
k = ky/(1 — B%)12 (84)
where
B = cos & sin (A — \g) (8-5)

(note: If B = = 1, x is infinite)

*if & = =90° and/or (A\—7,) = =90°,
y = Rk, (+x n/2—d&,), taking sign of ¢ in either case.
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798.366.2
Eastof C.M.

TABLE 9.—Universal Transverse Mercator grid coordinates

LATITUDE 48°00°00"
2016338

LATITUDE 48°07'30"
West of C.M.

U.TM. GRID COORDINATES * CLARKE 1866 SPHEROID

796.1944] 53654968

GRID COORDINATES FOR 7.5 MINUTE INTERSECTIONS

797643.7] 53317169 40000 | 2038056

202.356.3

|__40000
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and k, is the scale factor along the central meridian Ay. The origin of the coordi-

nates is at (¢, Ag)- The Y axis lies along the central meridian A\, y increasing

northerly, and the X axis is perpendicular, through ¢, at A, x increasing easterly.
The inverse formulas for (¢, \) in terms of (x, y):

¢ = arcsin [sin D/cosh (x/Rk)] (8—6)

A = A\ + arctan [sinh (x/Rk)/cos D] 8-7
where

D = y/(Rky) + &y, using radians 8-8)

Rectangular coordinates for the sphere are shown in table 10. Only one octant
(quadrant of a hemisphere) needs to be listed, since all other octants are identical
except for sign change. See p. 268 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, the most practical form of the equations is a set of
series approximations which converge rapidly to the correct centimeter or less at
full scale in a zone extending 3° to 4° of longitude from the central meridian. Beyond
this, the forward series as given here is accurate to about a centimeter at 7°
longitude, but the inverse series does not have sufficient terms for this accuracy.
The forward series may be used with meter accuracy to 10° of longitude. (Many
additional terms for use to 24° of longitude may be found in Army (1962).) Coordi-
nate axes are the same as they are for the spherical formulas above. The for-

TABLE 10.—Transverse Mercator projection: Rectangular coordinates for the sphere
[Radius of the Earth is 1.0 unit. Longitude measured from central meridian. y coordinate is in parentheses under x coordinate.

Origin of rectangular coordinates at Equator and central meridian. x increases east; y increases north. One octant of globe is
given; other octants are symmetrical)

Long. o o o 30° 40°
LN 0 10 20 0

90° ___ 0.0000 0.0000 0.0000 0.0000 0.0000
(1.57080) (1.57080) (1.57080) (1.57080)  (1.57080)
80 .00000 .03016 .05946 .08704 .11209
(1.39626)  (1.39886)  (1.40659)  (1.41926)  (1.43653)
70 .00000 .05946 11752 17271 .22349
(1.22173)  (1.22662)  (1.24125)  (1.26545)  (1.29888)
60 .00000 .08704 17271 .255641 .33320
(1.04720) (1.05380)  (1.07370)  (1.10715)  (1.15438)
50 .00000 11209 .22349 .33320 43943
( .87266) ( .88019) ( .90311) ( .94239) ( .99951)
40 .00000 .13382 .26826 40360 .53923
( .69813) ( .70568) ( .72891) ( .76961)  ( .83088)
30 .00000 151563 .30535 46360 .62800
( .52360) ( .53025) ( .55094) ( .58800) ( .64585)
20 .00000 .16465 33320 .50987 .69946
(.34907) ( .35401) ( .36954) ( .39786) ( .44355)
10 .00000 17271 .35051 .53923 .74644
(.17453) ( .17717)  ( .18549) ( .20086) ( .22624)
0 .00000 17543 .35638 .54931 716291
( .00000) ( .00000) ( .00000) ( .00000) ( .00000)
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mulas below are only slightly modified from those presented in standard refer-
ences to provide mm accuracy at full scale (Army, 1973, p. 5—7; Thomas, 1952,
p. 2—-3). (See p. 269 for numerical examples.)

r= koN[A+ (1 -T+C)A%6 + (5— 18T + T? + 72C — 58¢'%)A5/120] (8-9)
y= koM — My + Ntand [A%2 + 5 — T + 9C + 4C?

AY24 + (61 — 58T + T2 + 600C — 330e'%)A%/720]| (8-10)
k= koll +(1+ C)A%2 + (5—4T + 42C + 13C%—28e'?) A%/24

+ (61 — 148T + 16T?)A%/720] (8-11)

where ky, = scale on central meridian (e.g., 0.9996 for the UTM projection)

e =1 - ) (8-12)
N =a/l — € sin® ¢)2 (4-20)
T =tan%$ (8-13)
C =e%cos’d (8-14)
A =(N — \o) cos ¢, with A and A, in radians (8—15)
M =a[(l — %4 — 3¢*/64 — 5¢5/256 — . .. ) & — (3¢%/8 + 3¢%/32

+ 45€%/1024 + . . .) sin 2 + (15¢%/256 + 45¢5/1024

+...)sin4d — (35¢%3072 + ...)sin6d + ... ] (3-21)

with ¢ in radians. M is the true distance along the central meridian from the
Equator to ¢. See equation (3—22) for a simplification for the Clarke 1866 ellipsoid.

M, = M calculated for &, the latitude crossing the central meridian A, at the
origin of the x, y coordinates.

Note: If & = * w/2, all equations should be omitted except (3—21), from which
M and M, are calculated. Thenx = 0, y = koM — M), k = k.

TABLE 10.—Transverse Mercator projection: Rectangular coordinates for the sphere—Continued

Long. ° o o o o
Laone 50 60 70 80 90

90° 0.0000 0.0000 0.0000 0.0000 0.0000
(1.57080) (1.57080) (1.57080) (1.57080) (1.57080)
80 .13382 .16163 .16465 17271 17543
(1.45794)  (1.48286) (1.51056) (1.54019)  (1.57080)
70 .26826 .305635 .33320 .35051 .35638
(1.34097)  (1.39078)  (1.44695) (1.50768)  (1.57080)
60 .40360 .46360 .50987 .53923 .54931
(1.21544) (1.28976) (1.37584)  (1.47087)  (1.57080)
50 .53923 .62800 .69946 .74644 .76291
(1.07616) (1.17355)  (1.29132)  (1.42611)  (1.57080)
40 .67281 .79889 .90733 98310 1.01068
( 91711) (1.03341) (1.18375) (1.36673)  (1.57080)
30 .79889 .97296 1.13817 1.26658 1.31696
(.73182) ( .85707) (1.03599) (1.27864)  (1.57080)
20 .90733 1.13817 1.38932 1.62549 1.73542
( .61522) ( .62923) ( .81648) (1.12564)  (1.57080)
10 .98310 1.26658 1.62549 2.08970 2.43625
(.26773) ( .33904) ( .47601) ( .79305)  (1.57080)
0 1.01068 1.31696 1.73542 2.43625

( .00000) ( .00000) ( .00000) ( .00000) Inf.

61
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8. TRANSVERSE MERCATOR PROJECTION

TABLE 11.—Universal Transverse Mercator projection: Location of points with given scale factor

{x coordinates.in meters at various latitudes. Based on inversion of equation (8-16), using Clarke 1866 ellipsoid. Values are on or
to right of central meridian (x=500,000 m). For coordinates left of central meridian, subtract values of x from 1,000,000 m.
Latitude is north or south]

Scale factor

Lat. 0.9996 0.9998 1.0000 1.0002 1.0004 1.0006

80° _________ 500,000 627,946 680,943 721,609 755,892 786,096
70 e 500,000 627,871 680,836 721,478 755,741 785,927
60 _ 500,000 627,755 680,673 721,278 755,510 785,668
50 - 500,000 627,613 680,472 721,032 755,226 785,352
40 500,000 627,463 680,260 720,772 754,925 785,015
30 500,000 627,322 680,060 720,528 754,643 784,700
20 500,000 627,207 679,898 720,329 754,414 784,443
10 o __ 500,000 627,132 679,792 720,199 754,264 784,276
0 500,000 627,106 679,755 720,154 754,212 784,218

Equation (8—11) for k£ may also be written as a function of x and ¢:

k = ko[l + (1 + €2 cos® d)x?/(2k%N?)] (8—16)

These formulas are somewhat more precise than those used to compute the State
Plane Coordinate tables, which were adapted to use desk calculators of 30—40
years ago. Table 11 shows the variation of k with x.
To obtain UTM or SPCS coordinates, the appropriate “false easting” is added
to x and “false northing” added to y after calculation using (8—9) and (8—10).
For the inverse formulas (Army, 1973, p. 6, 7, 46; Thomas, 1952, p. 2—-3):

& = &, — (N, tan &/R)D?2 — (5 + 3T, + 10C, — 4C,% — 9¢'?>)D*/24

+ (61 + 90T, + 298C, +45T,% — 252¢'2 — 3C,2)D%/720] (8-17)
AN=X +[D-Q + 2T, + C)D*6 + (5 — 2C, + 28T,

- 3C,2 + 8¢'? + 24T,%)D%120)/cos &, (8—18)

where ¢, is the “footpoint latitude” or the latitude at the central meridian which
has the same y coordinate as that of the point (¢, \).
It may be found from equation (3—26):

by = n + (3,2 — 27¢,%32 + ... ) sin 2 + (21¢,%/16

— 55€,%/32 + .. .)sindp + (151¢,%96 + . .. )sin6p + (1097¢,4/512 — . . .)

sin8u + ... (3—26)
where

e; =[1-(1-")[1 + (1-€d%] (83—24)

p = M/la(1—e*4 — 3¢*/64 — 5¢5/256— . . . )] (7-19)

M =My + ylk, (8—20)

with M, calculated from equation (3—21) or (3—22) for the given d&,.

For improved computational efficiency using series (3—21) and (3—26), see
p. 19. From ¢, other terms below are calculated for use in equations (8—17) and
(8—18). (If &, = *m/2, (8—12), (8—21) through (8—25), (8—17) and (8—18) are
omitted, but & = +90°, taking the sign of y, while A is indeterminate, and may be
called A,. Also, k = k,.)
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e'? = e¥(1-¢?) (8-12)
C, =e?%cos? ¢, (8-21)
Tl = tan2 ¢1 (8_22)
N, = a/(1-¢* sin? ¢,)% (8—23)
R, = a(1-€®/(1—-¢€%sin®$,)372 (8-24)

To convert from tabular rectangular coordinates to ¢ and A, it is necessary to
subtract any “false easting” from x and “false northing” from y before inserting «
and y into the inverse formulas. To convert coordinates measured on an existing
map, the correct central meridian must be used for the Y axis on the Transverse
Mercator, but the X axis may cross it perpendicularly at any latitude chosen by
the user.

“MODIFIED TRANSVERSE MERCATOR"” PROJECTION

In 1972, the USGS devised a projection specifically for the revision of a 1954
map of Alaska which, like its predecessors, was based on the Polyconic projection.
The projection was drawn to a scale of 1:2,000,000 and published at 1:2,500,000
(map “E”) and 1:1,584,000 (map “B”). Graphically prepared by adapting coordi-
nates for the Universal Transverse Mercator projection, it is identified as the
“Modified Transverse Mercator” projection. It resembles the Transverse Merca-
tor in a very limited manner and cannot be considered a cylindrical projection. It
approximates an Equidistant Conic projection for the ellipsoid in actual con-
struction. Because of the projection name, it is listed here. The projection was
also used in 1974 for a base map of the Aleutian-Bering Sea Region published at
the 1:2,500,000 scale.

The basis for the name is clear from an unpublished 1972 description of the
projection, in which it is also stressed that the “latitudinal lines are parallel” and
the “longitudinal lines are straight.” The computations

were taken from the AMS Technical Manual #21 (Universal Transverse Mercator) based on the Clarke
1866 Spheroid.*** The projection was started from a N—S central construction line of the 153° longi-
tude which is also the centerline of Zone 5 from the UTM tables. Along this line each even degree
latitude was plotted from book values. At the plotted point for the 64° latitude, a perpendicular to the
construction line (153°) was plotted. From the center construction line for each degree east and west
for 4° (the limits of book value of Zone #5) the curvature of latitude was plotted. From this 64° latitude,
each 2° latitude north to 70° and south to 54° was constructed parallel to the 64° latitude line. Each degree
of longitude was plotted on the 58° and 68° latitude line. Through corresponding degrees of longitude
along these two lines of latitude a straight line (line of longitude) was constructed and projected to the
limits of the map. This gave a small projection 8° in width and approximately 18° in length. This
projection was repeated east and west until a projection of some 72° in width was attained.

For transferring data to and from the Alaska maps, it was necessary to deter-
mine projection formulas for computer programming. Since it appeared to be
unnecessarily complicated to derive formulas based on the above construction, it
was decided to test empirical formulas with actual coordinates. After careful
measurements of coordinates for graticule intersections were made in 1979 on the
stable-base map, it was determined that the parallels very closely approximate
concentric circular arcs, spaced in proportion to their true distances on the ellipsoid,
while the meridians are nearly equidistant straight lines radiating from the center
of the circular arcs. Two parallels have a scale equal to that along the meridians.
The Equidistant Conic projection for the ellipsoid with two standard parallels was
then applied to these coordinates as the closest approximation among projections
with available formulas. After various trial values for scale and standard parallels
were tested, the empirical formulas below (equations (8—26) through (8—32))
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were obtained. These agree with measured values within 0.005 inch at mapping
scale for 44 out of 58 measurements made on the map and within 0.01 inch for 54 of
them.

FORMULAS FOR THE “MODIFIED TRANSVERSE MERCATOR" PROJECTION

The “Modified Transverse Mercator” projection was found to be most closely
equivalent to an Equidistant Conic projection for the Clarke 1866 ellipsoid, with
the scale along the meridians reduced to 0.9992 of true scale and the standard
parallels at lat. 66.09° and 53.50° N. (also at 0.9992 scale factor). For the Alaska
Map “E” at 1:2,500,000, using long. 150° W. as the central meridian and lat. 58° N.
as the latitude of the origin on the central meridian, the general formulas (Snyder,
1978a, p. 378) reduce with the above parameters to the following, giving x and y
in meters at the map scale. The Y axis lies along the central meridian, y increas-
ing northerly, and the X axis is perpendicular at the origin, x increasing easterly.

For the forward formulas:

x =psin® (8—26)
y = 1.5616640 — p cos 0 (8-27

where
6° = 0.8625111(\° + 150°) (8—28)
p = 4.1320402 — 0.04441727¢° + 0.0064816 sin 2¢ (8-29)

For the inverse formulas:

A° = (1/0.8625111) arctan [x/(1.5616640 — y)] — 150° (8—30)
¢° = (4.1320402 + 0.0064816 sin 2 — p)/0.04441727 (8-31)

where
p = [2® + (1.5616640 — y)%]172 (8—-32)

For Alaska Map “B” at a scale of 1:1,584,000, the same formulas may be used,
except that x and y are (2,500/1,584) times the values obtained from (8—26) and
(8—27). For the inverse formulas, the given ¥ and y must be divided by
(2,500/1,584) before insertion into (8—30) and (8—32).

The equation for ¢, (8—31), involves iteration by successive substitution. If an
initial ¢ of 60° is inserted into the right side, ¢ on the left may be calculated and
substituted into the right in place of the previous trial ¢. Recalculations continue
until the change in ¢ is less than a preset convergence. If A as calculated is less
than —180°, it should be added to 360° and labeled East Longitude.

Formulas to adjust « and y for the map inset of the Aleutian Islands are omitted
here, but the coordinates above are rotated counterclockwise 29.79° and trans-
posed +0.798982 m for x and +0.347600 m for y.
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9. OBLIQUE MERCATOR PROJECTION

SUMMARY

e Cylindrical (oblique).

o Conformal.

e Two meridians 180° apart are straight lines.

e Other meridians and parallels are complex curves.

o Scale on the spherical form is true along chosen central line, a great circle at an
oblique angle, or along two straight lines parallel to central line. The scale on
the ellipsoidal form is similar, but varies slightly from this pattern.

e Scale becomes infinite 90° from the central line.

e Used for grids on maps of the Alaska panhandle, for mapping in Switzerland,
Madagascar, and Borneo and for atlas maps of areas with greater extent in
an oblique direction.

e Developed 1900—50 by Rosenmund, Laborde, Hotine, and others.

HISTORY

There are several geographical regions such as the Aldaska panhandle centered
along lines which are neither meridians nor parallels, but which may be taken as
great circle routes passing through the region. If conformality is desired in such
cases, the Oblique Mercator is a projection which should be considered.

The historical origin of the Oblique Meréator projection does not appear to be
sharply defined, although it is a logical generalization of the regular and Trans-
verse Mercator projections. Rosenmund (1903) made one of the earliest pub-
lished references, when he devised an ellipsoidal form which is used for topo-
graphic mapping of Switzerland. The projection was not mentioned in the detailed
article on “Map Projections” in the 1911 Encyclopaedia Britannica (Close and
Clarke, 1911) or in Hinks’ brief text (1912). Laborde applied the Oblique Mercator
to the ellipsoid for the topographic mapping of Madagascar in 1928 (Young, 1930;
Laborde, 1928). H. J. Andrews (1935, 1938) proposed the spherical forms for
maps of the United States and Eurasia. Hinks presented seven world maps on the
Oblique Mercator, with poles located in several different positions, and a conse-
quent variety in the regions shown more satisfactorily (Hinks, 1940, 1941).

A study of conformal projections of the ellipsoid by British geodesist Martin
Hotine (1898—-1968), published in 1946—-47, is the basis of the U.S. use of the
ellipsoidal Oblique Mercator, which Hotine called the “rectified skew orthomorphic”
(Hotine, 1947, p. 66—67). The Hotine approach has limitations, as discussed
below, but it provides closed formulas which have been adapted for U.S. mapping
of suitable zones. One of its limitations is overcome by a recent series form of the
ellipsoidal Oblique Mercator (Snyder, 1979a, p. 74), but other limitations result
instead. This later form resulted from development of formulas for the continuous
mapping of satellite images, using the Space Oblique Mercator projection (to be
discussed later).

While Hotine projected the ellipsoid conformally onto an “aposphere” of con-
stant total curvature and thence to a plane, J. H. Cole (1943, p. 16—30) projected
the ellipsoid onto a “conformal sphere,” using conformal latitudes (described earlier)
to make the sphere conformal with respect to the ellipsoid, then plotted the
spherical Oblique Mercator from this intermediate sphere. Rosenmund’s system
for Switzerland is a more complex double projection through a conformal sphere
(Rosenmund, 1903; Bolliger, 1967). Laborde combined the conformal sphere with
a complex-algebra transformation of the Oblique Mercator (Reignier, 1957,
p. 130).
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FIGURE 12.—Oblique Mercator projection with the center of projection at lat. 45° N. on the central
meridian. A straight line through the point and, in this example, perpendicular to the central
meridian is true to scale. The projection is conformal and has been used for regions lying along a
line oblique ‘to meridians.

FEATURES

The Oblique Mercator for the sphere is equivalent to a regular Mercator projec-
tion which has been altered by wrapping a cylinder around the sphere so that it
touches the surface along the great circle path chosen for the central line, instead
of along the Earth’s Equator. A set of transformed meridians and parallels rela-
tive to the great circle may be plotted bearing the same relationship to the
rectangular coordinates for the Oblique Mercator projection, as the geographic
meridians and parallels bear to the regular Mercator. It is, therefore, possible to
convert the geographic meridians and parallels to the transformed values and
then to use the regular Mercator equations, substituting the transformed values
in place of the geographic values. This is the procedure for the sphere, although
combined formulas are given below, but it becomes much more complicated for
the ellipsoid. The advent of present-day computers and programmable pocket
calculators make these calculations feasible for sphere or ellipsoid.

The resulting Oblique Mercator map of the world (fig. 12) thus resembles the
regular Mercator with the landmasses rotated so that the poles and Equator are
no longer in their usual positions. Instead, two points 90° away from the chosen
great circle path through the center of the map are at infinite distance off the
map. Normally, the Oblique Mercator is used only to show the region near the
central line and for a relatively short portion of the central line. Under these
conditions, it looks similar to maps of the same area using other projections,
except that careful scale measurements will show differences.

67



MAP PROJECTIONS—A WORKING MANUAL

TABLE 12.—Hotine Oblique Mercator projection parameters used for Landsat 1, 2, and 3 imagery

HOM Limiting Central Central Azimuth
zone latitudes latitude longitude' of axis
) 48°N-81°N 67.0983°N 81.9700°W 24.7708181°
2 23°N-48°N 36.0000°N 99.2750°W 14.3394883°
L S 23°S-23°N 0.0003°N 108.5069°W 13.001443°
4 23°S-48°S 36.0000°S 117.7388°W 14.33948832°
S 48°S-81°S 67.0983°S 135.0438°W 24.7708181°
. 48°S-81°S 67.0983°S 85.1220°E -24.7708181°
Y . 23° S-48°S 36.0000°S 67.8170°E -14.33948832°
8 23°S-23°N 0.0003°N 58.5851°E -13.001443°
9 23°N-48°N 36.0000°N 49.3532°E -14.33948832°
10 48°N-81°N 67.0983°N 32.0482°E -24.7708181°

! For path 31. For other path numbers p, the central longitude is decreased (west is negative) by (360°/251) x (p -
31).
Note: These parameters are used with equations given under Alternate B of ellipsoidal Oblique Mercator formulas,
with ¢, the central latitude, A, the central longitude, and o, the azimuth of axis east of north. Scale factor k, at center
is 1.0.

It should be remembered that the regular Mercator is in fact a limiting form of
the Oblique Mercator with the Equator as the central line, while the Transverse
Merecator is another limiting form of the Oblique with a meridian as the central
line. As with these limiting forms, the scale along the central line of the Oblique
Mercator may be reduced to balance the scale throughout the map.

USAGE

The Oblique Mercator projection is used in the spherical form for a few atlas
maps.For example, the National Geographic Society uses it for atlas and sheet
maps of Hawaii, the West Indies, and New Zealand. The spherical form is being
used by the USGS for maps of North and South America and Australasia in a new
set of 1:10,000,000-scale maps of Hydrocarbon Provinces.* For North America,
the central scale factor is 0.968, and the transformed pole is at lat. 10°N., long.
10°E. For South America, these numbers are 0.974, 10°N., and 30°E., respec-
tively; for Australasia, 0.978, 56°N., and 160°W. These parameters were chosen
after a least-squares analysis of over 100 points on each continent to determine
optimum parmaters for a common conformal projection.

In the ellipsoidal form it was used, as mentioned above, by Rosenmund for
Switzerland and Laborde for Madagascar. Hotine used it for Malaya and Borneo
and Cole for Italy. It is used in the Hotine form by the USGS for grid marks on
zone 1 (the panhandle) of Alaska, using the State Plane Coordinate System as
adapted to this projection by Erwin Schmid of the former Coast and Geodetic
Survey. The Hotine form was also adopted by the U.S. Lake Survey for mapping
of the five Great Lakes, the St. Lawrence River, and the U.S.-Canada Border
Lakes west to the Lake of the Woods (Berry and Bormanis, 1970). Four zones
are involved; see table 8 for parameters of these and the Alaska zones.

More recently, the Hotine form was adapted by John B. Rowland (USGS) for
mapping Landsat 1, 2, and 3 satellite imagery in two sets of five discontinuous
zones from north to south (table 12). The central line of the latter is only a close
approximation to the satellite groundtrack, which does not follow a great circle
route on the Earth; instead, it follows a path of constantly changing curvature.
Until the mathematical implementation of the Space Oblique Mercator (SOM)
projection, the Hotine Oblique Mercator (HOM) was probably the most suitable
projection available for mapping Landsat type data. In addition to Landsat,
the HOM projection has been used to cast Heat Capacity Mapping Mission (HCMM)

* These maps are no longer an active project.
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imagery since 1978. NOAA (National Oceanic and Atmospheric Administration)
has also cast some weather satellite imagery on the HOM to make it compatible
with Landsat in the polar regions which are beyond Landsat coverage (above lat.
82°).

The parameters for a given map according to the Oblique Mercator projection
may be selected in various ways. If the projection is to be used for the map of a
smaller region, two points located near the limits of the region may be selected to
lie upon the central line, and various constants may be calculated from the lati-
tude and longitude of each of the two points. A second approach is to choose a
central point for the map and an azimuth for the central line, which is made to
pass through the central point. A third approach, more applicable to the map of a
large portion of the Earth’s surface, treated as spherical, is to choose a location on
the original sphere of the pole for a transformed sphere with the central line as
the equator. Formulas are given for each of these approaches, for sphere and
ellipsoid.

FORMULAS FOR THE SPHERE

Starting with the forward equations, for rectangular coordinates in terms of
latitude and longitude (see p. 272 for numerical examples):

1. Given two points to lie upon the central line, with latitudes and longitudes
(d1,N1) and (ds,\,) and longitude increasing easterly and relative to Green-
wich. The pole of the oblique transformation at (¢,,A,) may be calculated
as follows:

A, =arctan [(cos ¢, sin ¢, cos A\, — sin ¢, cos bz cos Ap)/
(sin ¢, cos ¢s sin A, — cos ¢, sin b, sin A,)] -1
¢, =arctan [— cos (A, — A)/tan ¢,] 9-2)

The Fortran ATANZ2 function or its equivalent should be used with equation
(9—-1), but not with (9—2). The other pole is located at (—¢,,A\,xm). Using
the positive (northern) value of ¢,, the following formulas give the rectangular
coordinates for point (d,A), with k, the scale factor along the central line:

x = Rkoarctan |[tan ¢ cos ¢, + sin &, sin (A — Ag)V/eos (A—\o)| 9-3)
y = (R/2)kn[(1+A)/(1-A)] 9-4)
or
y =Rk, arctanh A (9—4a)
k =ky/(1-A% 9-5)
where
A = sin ¢, sin & — cos ¢, cos ¢ sin (A — Ag) (9—-6)

With these formulas, the origin of rectangular coordinates lies at

bo =0
Mo = A, + 2 (9-6a)

and the X axis lies along the central line, x increasing easterly. The trans-
formed poles are y equals infinity.
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2. Given a central point (¢,, A,) with longitude increasing easterly and relative to
Greenwich, and azimuth B east of north of the central line through (¢, A,),
the pole of the oblique transformation at (¢,, \,) may be calculated as follows:

¢, = aresin (cos &, sin B) 9-7
A, = arctan [— cos B/(— sin ¢, sin B)] + A, (9-8)

These values of ¢, and A, may then be used in equations (9—3) through
(9—6) as before.

3. For an extensive map, ¢, and A\, may be arbitrarily chosen by eye to give the
pole for a central line passing through a desired portion of the globe. These
values may then be directly used in equations (9—3) through (9—6) without
intermediate calculation.

For the inverse formulas, equations (9—1) and (9—-2) or (9—7) and (9—8) must
first be used to establish the pole of the oblique transformation, if it is not known
already. Then,

¢ =aresin [sin ¢, tanh (y/Rky) + cos &, sin (x/Rko)/cosh (y/Rk,)] (9-9)
A = \o + arctan {[sin ¢, sin (x/Rk,) — cos &, sinh (y/Rko))cos (x/Rko)|  (9—10)

FORMULAS FOR THE ELLIPSOID

These are the formulas provided by Hotine, slightly altered to use a positive
eastern longitude (he used positive western longitude), to simplify calculations of
hyperbolic functions, and to use symbols consistent with those of this bulletin.
The central line is a geodesic, or the shortest route on an ellipsoid, corresponding
to a great circle route on the sphere.

It is customary to provide rectangular coordinates for the Hotine in terms
either of (u, v) or (x, y). The (u, v) coordinates are similar in concept to the (x, y)
calculated for the foregoing spherical formulas, with u corresponding to x for the
spherical formulas, increasing easterly from the origin along the central line, but
v corresponds to —y for the spherical formulas, so that v increases southerly in a
direction perpendicular to the central line. For the Hotine, x and y are calculated
from (u, v) as “rectified” coordinates with the Y axis following the meridian
passing through the center point, and increasing northerly as usual, while the X
axis lies east and west through the same point. The X and Y axes thus lie in
directions like those of the Transverse Mercator, but the scale-factor relation-
ships remain those of the Oblique Mercator.

The normal origin for (u, v) coordinates in the Hotine Oblique Mercator is
approximately at the intersection of the central line with the Earth’s Equator.
Actually it occurs at the crossing of the central line with the equator of the
“aposphere,” and is, thus, a rather academic location. The “aposphere” is a sur-
face with a constant “total” curvature based on the curvature along the meridian
and perpendicular thereto on the ellipsoid at the chosen central point for the
projection. The ellipsoid is conformally projected onto this aposphere, then to a
plane. As a result, the Hotine is perfectly conformal, but the scale along the
central line is true only at the chosen central point along that line or along a
relatively flat elliptically shaped line approximately centered on that point, if the
scale of the central point is arbitrarily reduced to balance scale over the map. The
variation in scale along the central line is extremely small for a map extending
less than 45° in are, which includes most existing usage of the Hotine. A longer
central line suggests the use of a different set of formulas, available as a limiting
form of the Space Oblique Mercator projection. On Rosenmund’s (1903), Laborde’s
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(1928), and Cole’s (1943) versions of the ellipsoidal Oblique Mercator, the central
line is a great circle arc on the intermediate conformal sphere, not a geodesic. As
on Hotine’s version, this central line is not quite true to scale except at one or two
chosen points. *

The projection constants may be established for the Hotine in one of two ways,
as they were for the spherical form. Two desired points, widely separated on the
map, may be made to fall on the central line of the projection, or the central line
may be given a desired azimuth through a selected central point. Taking these
approaches in order:

Alternate A, with the central line passing through two given points.

Given:

a and e for the reference ellipsoid.

ko = scale factor at the selected center of the map, lying on the central line.

&o = latitude of selected center of the map.

(1, \;) = latitude and longitude (east of Greenwich is positive) of the first point
which is to lie on the central line.

(2, A\z) = latitude and longitude of the second point which is to lie on the

central line.

(b, \) = latitude and longitude of the point for which the coordinates are

desired.

There are limitations to the use of variables in these formulas: To avoid indeter-
minates and division by zero, ¢, or ¢, cannot be + ©/2, ¢, cannot be zero or equal
to ¢, (although &, may be zero), and ¢, cannot be —u/2. Neither ¢,, ¢;, nor ¢,
should be + /2 in any case, since this would cause the central line to pass through
the pole, for which the Transverse Mercator or polar Stereographic would proba-
bly be a more suitable choice. A change of 10-7 radian in variables from these
special values will permit calculation of an otherwise unsatisfactory condition.

It is also necessary to place both (b, \;) and (5, A;) on the ascending portion, or
both on the descending portion, of the central line, relative to the Earth’s Equator.
That is, the central line should not pass through a maximum or minimum between
these two points.

If e is zero, the Hotine formulas give coordinates for the spherical Oblique
Mercator.

Because of the involved nature of the Hotine formulas, they are given here in
an order suitable for calculation, and in a form eliminating the use of hyperbolic
functions as given by Hotine in favor of single calculations of exponential functions
to save computer time. The corresponding Hotine equations are given later for
comparison (see p. 274 for numerical examples).

B =[1+¢® cos* bo/(1—€?)]2 9-11)
A = aBky(1-€?)12/(1—€? sin® ¢g) 9-12)
to = tan (m/4—dy/2)/[(1—e sin dy)/(1+ e sin dg)le? (9-13)
1 — sin ¢ 1 + esin ¢y \¢ |2
or - [( 1 + sin & ) ( 1 — esin ¢ > (9-13a)

t, =same as (9—13), using ¢, in place of ¢,.
t, =same as (9—13), using ¢, in place of b,.
D = B(1—é®)2/[cos ¢o(1 — €2 sin? ¢g)12) (9-14)

If & = 0, D may calculate to slightly less than 1.0 and create a problem in the next
step. If D?<1, it should be made 1.

E =[D = (D? — 1)12]t,8, taking the sign of ¢, (9-15)
H =t,8 (9-16)

* Actually Laborde’s version begins with the Transverse Mercator, but it effectively becomes an Oblique
Mercator.
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L =tp 9-17)
F =E/H (9-18)
G =(F - UF2 (9-19)
J =(E? - LH)(E® + LH) (9-20)
P =(L - H)(L + H) (9-21)
Ao = (A\; + A)/2 — arctan |J tan [B(\, — \,)/2)/P)/B (9-22)
Yo = arctan {sin [B(\; — Ao)V/G} (9-23)
a, = aresin [D sin vy,] 9-24)

To prevent problems when straddling the 180th meridian with A, and A;, before
calculating (9—22), if (\; — \,) < — 180°, subtract 360° from A,. If (A, — Az)>180°, add
360°to A,. Also adjust Agand (A\; — Ap) to fall between = 180° by adding or subtracting
360°. The Fortran ATANZ2 function is not to be used for equations (9—22) and (9—23).
The above equations (9—11) through (9—24) provide constants for a given
map and do not involve a specific point (¢,\). Angle a, is the azimuth of the cen-
tral line as it crosses latitude ¢,, measured east of north. For point (¢, A), calcu-
late the following:

t = same as equation (9—13), but using ¢ in place of .

If & = =7/2, do not calculate ¢, but go instead to (9—30).

Q =Eits (9—-25)
S =(@Q - 1/Q)/2 (9—-26)
T =@ + 1/Q)2 (9-27)
V =sin [B(A — )] (9-28)
U =(-V cos vy + S sin yo)/T (9-29)
v =AIn[Q-U)1+U))2B (9-30)

Note: If U = =1, v is infinite; if & = *n/2, v=(A/B) In tan (w/4Fvyy/2)
u = A arctan {(S cos yo + V sin y)/cos [BON—A)1VB (9-31)
Note: If cos [B(N—Ag)]=0, u=AB(A—\o). If$ = =n/2, u = Ad/B.

Care should be taken that (A—\¢) has 360° added or subtracted, .if the 18(?th
meridian falls between, since multiplication by B eliminates automatic correction
with the sin or cos function.

The scale factor:

k = A cos (BuwA)(1—é*sin®d)V2/a cos ¢ cos [B(N—Xo)]) (9-32)

If “rectified” coordinates (x, y) are desired, with the origin at a distance
(2o, Yo) from the origin of the (u,v) coordinates, relative to the (X,Y) axes (see
fig. 13):

xr =vcosa, + usino, + Xo (9-33)
y =ucosa — vsina + Yo (9—34)
essentially repeated in Thomas (1952, p. 7-9),

« and v increasing in the directions shown in
relate to the foregoing formulas

The formulas given by Hotine and
modified for positive east longitude:
figure 13, and symbols consistent with the above,

as follows:®

“Hoti positive we re. and y corresponding to —v henfe.Al Th«;::as uses
otine uses i - In calculations of Alaska zone 1

. ; sponding to —v here. In ¢ .
sitive west longitude, y corresponding to u here. and x correspon € ! " !
?::?;&:ii;d«; ifpositivz, but « and r agree with u and v, respectively, here. UTIl}R a.in eq:atlrin; (?j?]d),é9—34),
(9-40), and (941) leads to a y axis parallel to the meridian at (¢, A). not the meridian through («=0. ¢=0). For the
f a, in these four equations.

st longitude, r corresponding to u he

latter case, use v, instead o
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Meridian of u,v origin

(o

Earth Equator on aposphere

———————— = — Earth Equator on ellipsoid
yo ) :)’
|
— L 5 x axis

origin \

of (x,y) )

x=0 Vaxis

y=0

Fi1GURE 13.—Coordinate system for the Hotine Oblique Mercator projection.

Equivalent to (9—11):

e? = F(1-¢)
B = (1+e'2 cos “dg)12

Equivalent to (9—12):
R’y = a(1—€®)/(1-¢? sin 2¢)32
Ny = al(1—€? sin 2¢p)12
A = Bko(R’oNo)l’z

Other formulas:

To = No Ccos (bo
¥, =In {tan (n/4+d,/2)[(1—e sin d,)/(1 +e sin ,)]?|

Note: ¢, is equivalent to (—In ¢,) using equation (9—13).
C = = arccosh (A/ry) — By,

Note: C is equivalent to In E, where E is found from equation (9—15); D, from
(9—-14), is (A/rg).

tan [V2B(\,—\;)] tanh [V2B(; + ) +C]

tan [V2B(A; +Ap)—BA,) = tanh [2B(y; — U2)]

The tanh in the numerator is J from equation (9—20), while the tanh in the de-
nominator is P from (9—21). The entire equation is equivalent to (9—22).
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tan Yo = sin [B(Al - Ao)]/sinh (Bll}l + C)

This equation is equivalent to (9—23), the sinh being equivalent to G from (9—19).
tanh (Bv/Ako) = |cos vy, sin [B(\ — Ag)] — sin vy, sinh (B + C)l/cosh (By + C)

This equation is equivalent to (9—30), with S the sinh function and T the cosh
function.

tan (Bu/Aky) = |cos yo sinh (B, + C) + sin yq sin [B(\ — \g)]J/cos [B(\ — Ao)]

This equation is equivalent to (9—31).

Alternate B. The following equations provide constants for the Hotine Oblique
Mercator projection to fit a given central point and azimuth of the central line
through the central point. Given: a, ¢, ko, &g, and (b, M) as for alternate A, but in-
stead of (¢;, Ay) and (b2, Ap), A, and a, are given,

where

(do, A) = latitude and longitude (east of Greenwich is positive), respectively, of
the selected center of the map, falling on the central line.
o, = angle of azimuth east of north, for the central line as it passes through
the center of the map (g, A.).

Limitations: ¢, cannot be zero or *= w/2, and the central line cannot be at a
maximum or minimum latitude at ¢,. If e = 0, these formulas also give coordinates
for the spherical Oblique Mercator. As with alternate A, these formulas are given
in the order of calculation and are modified to minimize exponential computations.
Several of these equations are the same as some of the equations for alternate A:

B =[1 + € cos* dpo/(1 — )= 9-11)
A =aBky (1 — e12/(1 - €%sin? ¢g) (9-12)
to = tan(m/4 — y/2)/[(1 — esindy)/(1 + esindy)]e2 9-13)
D =B( — €®12/[cos ¢y (1 — €2 sin? ¢)12] (9-14)

If ¢ = 0, D may calculate to slightly less than 1.0 and create a problem in the next
step. If D?<1, it should be made 1.

F =D *= (D? — 1)~ taking the sign of ¢, (9-35)
E =Fty (9—-36)
G =(F - UF)/2 9-19)
Yo = aresin (sin a /D) 9-37)
Ao = A, — [aresin (G tan v,))/B (9-38)

The values of « and v for center point (d,, A\.) may be calculated directly at this
point:

Uiy ry = * (A/B)arctan [(D* — 1)!%/cos o], taking the sign of &p.  (9—39)
Vigo, rp) =

These are the constants for a given map. Equations (9—25) through (9—32) for
alternate A may now be used in order, following calculation of the above
constants.

The inverse equations for the Hotine Oblique Mercator projection on the ellipsoid
may be shown with few additional formulas. To determine ¢ and A from x and y,
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or from u and v, the same parameters of the map must be given, except for ¢ and A,
and the constants of the map are found from the above equations (9—11) through
(9—24) for alternate A or (9—11) through (9-38) for alternate B. Then, if =
and y are given in accordance with the definitions for the forward equations, they
must first be converted to (u, v):

x — xo) cos o, — (¥ — Yo) sin a, (9—-40)
Y — Yo) cOs a, + (x — Zo) sin a, (9—-41)

v =(
u = (
If (u, v) are given, or calculated as just above, the following steps are performed
in order:

Q' = e-BuA 9-42)
where e = 2.71828 . . . , the base of natural logarithms
S =@ - Q)2 (9-43)
T =@ + 1/Q")/2 9-4)
V' =sin (Bu/A) (9—45)
U =(WV'cos yo + S’ sin yo)/T’ (9—46)
t =|ENQ + UYQA-U")hzs (9-47)

Butif U' = =1, ¢ = *90° taking the sign of U’, A may be called A, and
equations (7—9) and (9—48) below are omitted.

& = m/2 — 2 arctan [t[(1 — e sin $)/(1 + e sin )]?| (7-9)

Equation (7—9) is solved by iteration, using & = (w/2 — 2 arctan t) as the first
trial ¢ on the right side, and using the successive calculations of ¢ on the left side
as successive values of ¢ on the right side, until the change in ¢ is less than a chosen
convergence value.

A = Ao — arctan [(S' cos yo — V' sin vyg)/cos (Bu/A))/B (9—48)

Since the arctan (found as the ATANZ2 function) is divided by B, it is necessary to
add or subtract 360° properly, before the division.

To avoid the iteration, the series (3—5) may be used with (7—13) in place of
(7-9):

b = x + (%2 + 5e'/24 + €%/12 + 13¢%/360+ . .. ) sin 2x +
(7e*/48 + 29¢°/240 + 81111520 + . . . )sindy + (7¢%/120 + 81¢%/1120 + . . . )
sin 6x + (4279¢%161280 + ... )sin 8 + ... (8-5)

where
X = w2 — 2 arctan ¢ (7-13)

For improved computational efficiency using this series, see p. 19.

The equivalent inverse equations as given by Hotine are as follows, following
the calculation of constants using the same formulas as those given in his forward
equations:

tan [B(A — A\y)] = [sin vy, sin (Bu/A) + cos vy, sinh (Bv/A))/cos (Bu/A)
tanh (By + C) = [cos vy, sin (Bu/A) — sin vy, sinh (Bv/A))/cosh (Bv/A)
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10. CYLINDRICAL EQUAL-AREA PROJECTION
SUMMARY

e Cylindrical.

e Equal-area.

e Meridians on normal aspect are equally spaced straight lines.

o Parallels on normal aspect are unequally spaced straight lines, closest near the
poles, cutting meridians at right angles.

o On transverse aspect, central meridian, each meridian 90° from central meridian,
and Equator are straight lines. Other meridians and parallels are complex
curves.

e On oblique aspect, two meridians 180° apart are straight lines. Other meridians
and parallels are complex curves.

e On normal aspect, scale is true along Equator, or along two parallels equidis-
tant from the Equator.

e On transverse aspect, scale is true along central meridian, or along two straight
lines equidistant from and parallel to central meridian. (These lines are only
approximately straight for the ellipsoid.)

e On oblique aspect, scale is true along chosen central line, an oblique great circle,
or along two straight lines parallel to central line. Scale on ellipsoidal form is
similar, but varies slightly from this pattern.

e An orthographic projection of sphere onto cylinder.

e Substantial shape and scale distortion near points 90° from central line.

e Normal and transverse aspects presented by Lambert in 1772.

HISTORY AND USAGE

The fourth of the seven projections proposed by Johann Heinrich Lambert
(1772, p. 71—-172) and occasionally given his name, is the Cylindrical Equal-Area
(fig. 14). In the same work (p. 72—173), he described its transverse aspect (fig. 16),
which has hardly been used. Even the normal aspect has seldom been used except
as a textbook example of the most easily constructed equal-area projection, but
several modifications of the normal aspect have been published.

These modifications consist of compressing the projection from east to west and
expanding it in the same ratio from north to south, thereby moving the parallel of
no distortion from the Equator to other latitudes. The earliest such modification
is from Scotland: James Gall’s Orthographic Cylindrical, not the same as his pre-
ferred Stereographic Cylindrical, both of which were originated in 1855, has
standard parallels of 45° N. and S. (Gall, 1885). Walther Behrmann (1910) of Ger-
many chose 30°, based on certain overall distortion criteria (fig. 15). Very similar
later projections were offered by Trystan Edwards of England in 1953 and Arno
Peters of Germany in 1967; they were presented as revolutionary and original
concepts, rather than as modifications of these prior projections with standard
parallels at about 37° and 45°—47°, respectively (Maling, 1966, 1974).

The oblique Cylindrical Equal-Area projection has been proposed with particu-
lar parameters for maps of Eurasia and Africa (Thornthwaite, 1927) and of air
routes of the British Commonwealth (Poole, 1934). Different parameters are used
for fig. 17. The ellipsoidal form of the oblique and transverse aspects has appar-
ently been developed only recently (Snyder, 1985b).

FEATURES

Like other regular cylindricals, the graticule of the normal Cylindrical Equal-
Area projection consists of straight equally spaced vertical meridians perpendicu-
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lar to straight unequally spaced horizontal parallels. To achieve equality of area,
the parallels are spaced from the Equator in proportion to the sine of the latitude.
This is the simplest equal-area projection.

The normal Cylindrical Equal-Area for the sphere is a true perspective projec-
tion onto a cylinder tangent at the Equator: The meridians are projected from the
center of the sphere, and the parallels are projected with lines parallel to the
equatorial plane, or orthographically from infinity. Modifications such as
Behrmann’s, described above, are perspective projections onto a secant cylinder.
For oblique and transverse aspects, the projection may be perspectively cast on
a cylinder tangent or secant at an oblique angle, or centered on a meridian.

There is no distortion of area anywhere on the projections, and no distortion
of scale and shape at the standard parallels of the normal aspect, or at the standard
lines of the oblique or transverse aspects. There is extreme shape and scale dis-
tortion 90° from the central line, or at the poles on the normal aspect. These are
the points which have infinite area and linear scale on the various aspects of the
Mercator projection. This distortion, even on the modifications described above,
is so great that there has been little use of any of the forms for world maps by
professional cartographers, and many of them have strongly criticized the inten-
sive promotion in the noncartographic community which has accompanied the
presentation of one of the recent modifications.

The meridians and parallels of the transverse and oblique aspects which are
straight or curved on the Mercator projection are straight or curved, respectively,
on the Cylindrical Equal-Area, except that the curves are differently shaped.

In spite of the shape distortion in some portions of a world map, the projection
is well suited for equal-area mapping of regions which are predominantly north-
south in extent, or which have an oblique central line, or which lie near the Equa-
tor. This is true in the same sense that for mid-latitude regions which extend
predominantly east-west, the Albers Equal-Area Conic projection is recommended
for equal-area mapping. Actually, the normal Cylindrical Equal-Area is the limit-
ing form of the Albers when the Equator or two parallels symmetrical about the
Equator are made standard. If such regions to be mapped are smaller than the
United States, the ellipsoidal form should be considered.

FORMULAS FOR THE SPHERE
The geometric construction of the Cylindrical Equal-Area projection has been

described above. The forward formulas for the normal aspect are as follows, given
R, &s, A\, &, and A, to find x and y (see p. 278 for numerical examples):

xr =R (A=) cos by (10-1)
y = R sin d/cos b, (10-2)
h = cos d/cos (10—2a)
k =1/h (10—2b)

where &, is the standard parallel (N. or S.), or the Equator in Lambert’s original
form. The X axis lies along the Equator, x increasing easterly. The Y axis lies
along the central meridian A\, y increasing northerly, and the originis (¢ = 0%, A,).
If (\ — A\p) lies outside the range +180°, 360° should be added or subtracted so that
it will fall inside the range.

For the transverse aspect, given h, instead of ¢,

x = (R/hy) cos & sin (A—\g) (10-3)
y =R hy larctan [tan & / cos (A — N\ — &' (8-3)*

—————

*if & = =90° and/or (A—=\,) = =90°,
¥ = Rk, (= w/2-6,), taking sign of & in either case.
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rojection. The central meridian, long. 90° W., as well as long. 90° E., coincides with the
projection.

his central line.
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where h, is the scale factor (normally 1.0) along the central meridian Ao. The
origin of the coordinates is at (dg, A¢). The Y axis lies along the central meridian
No, ¥ increasing northerly, and the X axis is perpendicular, through &, at Ay, x
increasing easterly.

For the oblique aspect, the alternatives used for the Oblique Mercator projec-
tion are used here, with modification only in the formulas for the y coordinates:

1. Given two points to lie upon the central line, with latitudes and longitudes
(b1, N\1) and (2, A2), and longitude increasing easterly and relative to Green-
wich, the pole of the oblique transformation at (¢, A;) may be calculated as
follows:

Ap = arctan [(cos ¢, sin ¢, cos A —sin ¢, cos b, cos Ap)/
(sin ¢, cos ¢, sin Ay—cos b, sin b, sin \;)] 9-1
¢, = arctan [— cos (\p—A;)/tan ¢,] 9-2)

The Fortran ATANZ function or its equivalent should be used with equation
(9-1), but not with (9—2). The other pole is located at (- ¢p, A, = 180°).
Using the positive (northern) value of ¢, the following formulas provide the
rectangular coordinates for point (¢, N\), with kg as the scale factor along the
central line:

x = Rhy arctan {[tan & cos ¢, + sin &, sin (\—Ao)] /
cos (A—No)| (10-4)
¥y = (R/hy) [sin ¢y sin & — cos ¢, cos ¢ sin (A—Ao)] (10-5)

With these formulas for the oblique aspect, the origin of rectangular coor-
dinates lies at

No =Ap + 2 (9-6a)

and the X axis lies along the central line, r increasingly easterly. The trans-
formed poles are straight lines at y = R and are as long as the central line.

2. Given a central point (¢, A,) with longitude increasing easterly and stated
relative to Greenwich, and azimuth vy east of north of the central line through
(é2, \2), the pole of the oblique transformation at (¢, \p) may be calculated
as follows:

¢, = arcsin (cos ¢, sin v) 9-7
Ap = arctan [—cos y/(—sin ¢, sin y)] + A, (9-8)

These values of ¢, and A, may be used in equations (10-4) and (10-5) as
before.

For the inverse formulas, first for the normal aspect, given R, &g, A, x, and y,
to find ¢ and \:

¢ = arcsin [(y/R) cos ] (10-6)
A =x/(R cos bg) + Ao (10-7)

For the transverse aspect, given h, instead of ¢,,

¢ = arcsin {[1-(h, x/R)?]'% sin D! (10-8)
N =\ + arctan {(h, x/R)/[[1—(h, x/R)?)'* cos D] (10-9)
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where
D =y /(Rhy) + &y, using radians (10-10)

For the oblique aspect, equations (9—1) and (3—-2) or (9—7) and (9—8) must first
be used to establish the pole of the oblique transformation, if it is not known
already. Then

¢ = arcsin |(yho/R) sin &, + [1-(yhy/R)?]'* cos &, sin

[x/(Rho)]} (10-11)
A =X\o + aretan [[[1-(yho/R)?I"* sin &), sin [x/(Rho)]
— (yho/R) cos b, )[1-(yho/R)*1'™* cos [x/(Rho)]]| (10-12)

Note that the above equations for the oblique aspect may be used for the trans-
verse aspect, letting ¢, = 0°, except that the axes are rotated 90°.

FORMULAS FOR THE ELLIPSOID

In the following formulas, the ellipsoid is transformed onto the authalic
sphere, but the scale along the desired central line is made constant by variably
compressing the scale along this central line to match that along the same
path on the ellipsoid. To retain correct area, the distances perpendicular to the
central line are increased by the same ratio. For the oblique aspect, the central
line is not a geodesic, but is instead an oblique great circle on the authalic sphere.

For the forward formulas using the normal aspect, given a, e, &g, Ao, d, and A,
to find x and y (see p. 281 for numerical examples), the equations are given in the
order of computation:

ko = cos dy/(1—¢€? sin? d,)'? (10-13)
g =(1-¢? |sin $/(1—€® sin® ¢) — [1/(2e)]

In [(1—e sin $)/(1 +e sin $)]| (3-12)
x =aky (A=) (10-14)
y =a q/(2ko) (10—-15)

For the transverse aspect, the subsequent formulas for the oblique aspect may
be used, but the following are simpler for the transverse alone. Given a, e, hy,
Ao, &g, ®, and A, to find x and y, first q is calculated from ¢ using equation (3—12)
above. Then

B = arcsin (g/gp) 3-11)

where B is the authalic latitude corresponding to ¢, and g, is found as ¢ from
equation (3—12) for a ¢ of 90°.

B = arctan [tan B/cos (A—\o)] (10—-16)
gc =¢qp sin B, (10-17)
(1 —€esin’ o)’ [ g sin ¢, 1 1 — e sin ¢,
- g L (1oesinoey
e = dc+ 2 cos &, [1 - 1-é*sin¢, 2e " T esin ¢c)] 3-16)

Equation (3—16) requires iteration by successive substitution, using arcsin (g./2)
as the first trial ¢, on the right side, calculating ¢, on the left side, substituting
this new ¢, on the right side, etc., until the change in ¢, is negligible. This does
not converge if B, = = 90°, but then ¢, = B..
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x =acos B cos b sin (\—Ag)/[hg cos B, (1—€* sin® $.)*?] (10-18)
M, = a [(1-€%/4—3e%/64—5¢5/256 — . . )b,

— (3¢%/8 + 3¢%/32 + 45¢%1024 + . . .) sin 2¢,

+ (15¢%/256 + 45¢5/1024 + . . .) sin 4¢,

— (35¢5/3072 + . ..)sin 6d, + . . .] (3-21)
Yy =ho (M.—My) (10-19)

where h, is the scale factor along the central meridian A\, and B8, and ¢, are
authalic and geodetic “footpoint” latitudes, respectively, with the same y value at
the central meridian as the point (¢, \). Constant M, is the value of M, calculated
from (3—21) with latitude of origin &, in place of ¢.. To avoid iteration, equations
(10—17) and (3—16) may be replaced with the following series:

be = Be + (€43 + 31€*/180 + 517¢5/5040 + . . .) sin 2B,
+ (23¢%/360 + 251¢%/3780 + . . .) sin 4B,
+ (761545360 + . ..)sin 6B, + . .. (3-18)

For the oblique aspect, the location of the pole (¢,, A;) may be given, or it may
be computed as described under the section on formulas for the sphere above.
Points ¢,, &,, &, and $,, however, are replaced in equations (9-1), (9—2), (9-7)
and (9—8) with B,, B2, Bp and B, respectively, and B, is finally converted to ¢,
using equations (10—17) and (3—16), or just (3—18), and subscripts p instead of c.

If the ellipsoid is either the Clarke 1866 or the International, Fourier constants
may be taken from table 13. If it is a different ellipsoid, coefficients should be
calculated as described after these formulas. They may be converted to the specific
coefficients for the pole in use as follows:

B =b + azcos 2¢, + a, cos 4, + agcos b6, + . . . (10-20)
Ap =b, + a'y2cos 20, + a'ygcos ddp + a'ygcos b6y + ...  (10-21)
where
n = 2 and 4.

From ¢, B is determined using equations (3—12) and (3—11) above, and, if Bp was
not obtained earlier, it is calculated by substituting ¢, for ¢ in (3—12) and obtain-
ing B from (3—11). Then,

A’ = arctan |[cos B, sin B—sin B, cos B cos (A\—Ap)V/

[cos B sin ()\—)\p)]] (10-22)
x = ahg [BN' + Apsin 2\’ + A sin 4\ + Agsin 60+ .. .] (10-23)
F =B + 2A, cos 2\' + 4A,cos 4\' + 6Agcos 6N’ + . . . (10—-24)
y = (aqp/2)[sin B, sin B + cos B, cos B cos AN=Ap)V/(hoF) (10—-25)

The axes are as stated for the corresponding aspect of the spherical form. For
more efficient computation of series (10—23) and (10—24) see p. 19.

For the inverse formulas for the ellipsoid, the normal aspect will be discussed
first. Given a, ¢, &g, Ay, x, and y, to find d and A (see p. 284 for numerical
examples), k¢ is determined from (10—13), and

B = arcsin [2yko/(agp)] (10—-26)

where g, is found from (3-12), using 90° for ¢, then ¢ is found from B using
(10—17) and (3—16), or just (3—18), without subscripts, these equations being
listed under the forward equations above.
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TABLE 13.—Fourier coefficients for oblique and transverse
Cylindrical Equal-Area projection for the ellipsoid

General coefficients:
Coefficient Clarke 1866 Ellipsoid International Ellipsoid
b 0.9991507126 0.9991565046
a —0.0008471537 —0.0008413907
a, 0.0000021283 0.0000020994
ag —0.0000000054 —0.0000000053
by —0.0001412090 —0.0001402483
a'e —0.0001411258 —0.0001401661
a'y 0.0000000839 0.0000000827
a'y 0.0000000006 0.0000000006
by —0.0000000435 —0.0000000429
a'g —0.0000000579 —0.0000000571
a'y —0.0000000144 —0.0000000142
a'e 0.0000000000 0.0000000006
Coefficients for specific pole latitudes (Clarke 1866 ellipsoid):
¢L B A, A,

0° 0.9983056818 —0.0002822502 —0.0000001158
15 0.9984181201 —0.0002633856 —-0.0000001008
30 0.9987260769 —0.0002118145 —-0.0000000652
45 0.9991485842 —0.0001412929 —0.0000000290
60 0.9995732199 —0.0000706875 —0.0000000073
75 0.9998854334 —0.0000189486 —0.0000000005
90 1.0 0.0 0.0
Coefficients for specific pole latitudes (International ellipsoid):
b, B A, A,

0° 0.9983172080 —0.0002803311 —0.0000001142
15 0.9984288886 —0.0002615944 —0.0000000995
30 0.9987347648 —0.0002103733 —0.0000000644
45 0.9991544051 —0.0001403310 —0.0000000287
60 0.9995761449 —0.0000702060 -0.0000000072
75 0.9998862200 —0.0000188195 —0.0000000005
90 1.0 0.0 0.0

&, = latitude of pole of oblique aspect (0° for transverse, 90° for normal).
B’.’ A,, b, etc. = Fourier coefficients (see text for use).
Note: B is used with A’ in radians. Ag = —0.0000000001 for , = 0° to 20°, but is zero to ten places at higher
values of ¢,,.
4
Clarke 1866 ellipsoid: semimajor axis a = 6378206.4 m; eccentricity squared ¢ = 0.006768658.
International ellipsoid: a = 6378388 m; ¢ = 0.006722670.

N = Ao + x/(a k) (10-27)
For the transverse aspect, given a, e, kg, Ao, x, and y, to find ¢ and A:
M. = M, + ylhy (10-28)

where M, is found from ¢, using (3—21) and changing subscripts c to o.

pe = MJla(1—e%/4—3e%/64—5e¢5/256— . . . )] (7-19)
e, = [1-1-&)" Y1+ (1-€2)"] (3-24)
be = po + (3,/2—27¢,%/32+ . . . )sin2p, + (21e,%/16—55¢,%/32+ . . .)

sin 4p, + (151€,%/96— . . . ) sin 6. + (1097¢,%/512— . . .)

sin 8. + ... (3—-26)



MAP PROJECTIONS—A WORKING MANUAL

Authalic latitude B is determined for ¢. using equations (3—12) and (3—11), adding
subseripts ¢ to both B and ¢.

B’ = —aresin [k x cos B, (1-€? sin® b)"/(a cos b)) (10-29)
B = arcsin (cos B’ sin B.) (10-30)
N = Ao — arctan (tan B'/cos B,) (10-31)

Latitude ¢ is found from B using (10—17) and (3—16), or just (3—18), all without
subscripts c.

For the oblique aspect, given a, ¢, ho, dp, Ap, 2, and y, to find  and A, Fourier
coefficients are determined as described above for the forward oblique ellipsoidal
formulas, while the pole location (¢p, Ap) may be determined if not provided, as
described for the forward oblique spherical formulas, and g, is found from (3—12)
using 90° for ¢. From x, A\’ is determined from an iterative inverse of (10—23):

N = [x/(ahg)—Ap sin 2\'— A4 sin 4A'—Agsin 60— . . . VB (10-32)

Using a first trial A’ = x/(aheB), A’ may be found by successive substitution of
trial values into the right side of this equation and solving for a new A\’ until the
change in A’ is negligible.

Equation (10—24) above is used to find F' from \’. Then,

B’ = arcsin [2Fhoy/(aqp)] (10-33)
B = arcsin (sin B, sin B’ + cos By cos B’ sin \') (10-34)
A =\, + arctan [cos B’ cos \'/(cos By sin B’ —sin B, cos B’ sinA’)]  (10-35)

As before, ¢ is found from B using (10—17) and (3—16), or just (3—18), all without
subscripts c.

For the determination of Fourier coefficients, if they are not already provided,
equation (10—23) above is equivalent to the following equation which requires nu-
merical integration:

xl(a hy) = [N F d\' (10-36)
where

F = [sin® B, cos® &./[(1—€? sin® &) cos* B]
+ (1—¢? sin® &) gp° cos? By, cos? N'/(4 cos? b)) (10-37)

In order to compute coefficients B and A,, in (10—23),

B
An

/m)fo™2 F d\' (10—38)
[4/(7n)] fo™2 F cos n\’ d\’ (10—-39)

]

where 7 is 2, 4, and 6, successively. To compute coefficients which apply regard-
less of the value of ¢,, equations (10-38) and (10—39) may be rewritten as
equations (10—20) and (10—21), where

b = (2/m) [o™2 B do, (10-40)
ay = (@m) [™ B cos ndp ddyp (10-41)
by = (2/m) [o™2 A, ddp (10-42)
a'pm = /1) [ Ay cos m by ddy (10-43)
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and n has the values 2 and 4, while m = 2, 4, and 6. To determine the coeffi-
cients from (10—40) through (10—-43), double numerical integration is involved,
but this involves a relatively modest computer program: Choosing an interval of
9° (sufficient for 10-place accuracy) in both ¢, and \’, and starting with both op
and A\’ at 0°, F' is calculated from (10—37) as described below for each 9° of A’ from
0° to 90°, and the various values of F summed in accordance with Simpson’s rule as
applied to equations (10—38) and (10—39). Thus B, A,, A4, and Ag are computed
for ¢, = 0°. Similarly, the constants B and A, are computed for each 9° of ¢, toand
including 90°, and the various values are summed by applying Simpson’s rule to
(10—40) through (10—43), to obtain b, a,, etc.

To compute F from equation (10—37) for a given \’, first B, is found from
¢, using (3—12) and (3—-11), subscripting ¢ and B with p. Then,

Bc = arcsin (cos B sin A") (10—-44)
Now ¢, is found from B, using (10—17) and (3—16) or just (3—18). All variables

for (10—37) are now known, except that it is indeterminate if &, = 0° at the same
time that A’ = 90°. In that case, F = (g/2)".
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11. MILLER CYLINDRICAL PROJECTION
SUMMARY

e Neither equal-area nor conformal.

e Used only in spherical form.

e Cylindrical.

e Meridians and parallels are straight lines, intersecting at right angles.

e Meridians are equidistant; parallels spaced farther apart away from Equator.
e Poles shown as lines.

e Compromise between Mercator and other cylindrical projections.

e Used for world maps.

e Presented by Miller in 1942.

HISTORY AND FEATURES

The need for a world map which avoids some of the scale exaggeration of the
Merecator projection has led to some commonly used cylindrical modifications, as
well as to other modifications which are not cylindrical. The earliest common
cylindrical example was developed by James Gall of Edinburgh about 1855 (Gall,
1885, p. 119-123). His meridians are equally spaced, but the parallels are spaced
at increasing intervals away from the Equator. The parallels of latitude are
actually projected onto a cylinder wrapped about the sphere, but cutting it at lats.
45° N. and S., the point of perspective being a point on the Equator opposite the
meridian being projected. It is used in several British atlases, but seldom in the
United States. The Gall projection is neither conformal nor equal-area, but has a
blend of various features. Unlike the Mercator, the Gall shows the poles as lines
running across the top and bottom of the map.

What might be called the American version of the Gall projection is the Miller
Cylindrical projection (fig. 18), presented in 1942 by Osborn Maitland Miller
(1897—-1979) of the American Geographical Society, New York (Miller, 1942).
Born in Perth, Scotland, and educated in Scotland and England, Miller came to
the Society in 1922. There he developed several improved surveying and mapping
techniques. An expert in aerial photography, he developed techniques for convert-
ing high-altitude photographs into maps. He led or joined several expeditions of
explorers and advised leaders of others. He retired in 1968, having been best
known to cartographers for several map projections, including the Bipolar Oblique
Conic Conformal, the Oblated Stereographic, and especially his Cylindrical
projection.

Miller had been asked by S. Whittemore Boggs, Geographer of the U.S. Depart-
ment of State, to study further alternatives to the Mercator, the Gall, and other
cylindrical world maps. In his presentation, Miller listed four proposals, but the
one he preferred, and the one used, is a fairly simple mathematical modification of
the Mercator projection. Like the Gall, it shows visible straight lines for the
poles, increasingly spaced parallels away from the Equator, equidistant meridians,
and is not equal-area, equidistant along meridians, nor conformal. While the
standard parallels, or lines true to scale and free of distortion, on the Gall are at
lats. 45° N. and S., on the Miller only the Equator is standard. Unlike the Gall, the
Miller is not a perspective projection.

The Miller Cylindrical projection is used for world maps and in several atlases,
including the National Atlas of the United States (USGS, 1970, p. 330—331).

As Miller (1942) stated,

the practical problem considered here is to find a system of spacing the parallels of latitude such that
an acceptable balance is reached between shape and area distortion. By an “acceptable” balance is
meant one which to the uncritical eye does not obviously depart from the familiar shapes of the land
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areas as depicted by the Mercator projection but which reduces areal distortion as far as possible
under these conditions * * *. After some experimenting, the [Modified Mercator (b)] was judged to be
the most suitable for Mr. Boggs's purpose * * *,

FORMULAS FOR THE SPHERE

Miller’s spacings of parallels from the Equator are the same as if the Mercator
spacings were calculated for 0.8 times the respective latitudes, with the result
divided by 0.8. As a result, the spacing of parallels near the Equator is very close
to the Mercator arrangement.

The forward formulas, then, are as follows(see p.287 for numerical examples):

r = R(A=Xp) (11-1)
y = R[In tan (w/4 + 0.4¢)1/0.8 (11-2)

or
y = R[arcsinh (tan 0.8¢)]/0.8 (11-2a)

or
y = (R/1.6) In (1 + sin 0.84)/(1—sin 0.84)) (11-2b)

The scale factor, using equations (4—2) and (4-3),

h = sec 0.8 (11-3)
k = sec ¢ (11-4)

The maximum angular deformation w, from equation (4-9),
sin Y2w = (cos 0.8b—cos ¢)/(cos 0.8¢ + cos ¢) (11-5)

The X axis lies along the Equator, x increasing easterly. The Y axis lies along the

central meridian Aq, y increasing northerly. If (A—X\,) lies outside the range of

+180°, 360° should be added or subtracted so that it will fall inside the range.
The inverse equations are easily derived from equations (11—1) through (11—2a):

& = 2.5 arctan e(0-8¥/R)—57/8 (11-6)
or
¢ = arctan [sinh (0.8y/R)]/0.8 (11-6a)
where e is 2.71828 . . . , the base of natural logarithms.
AN =X + x/R 11-7

Rectangular coordinates are given in table 14. There is no basis for an ellipsoidal
equivalent, since the projection is used for maps of the entire Earth and not for
local areas at large scale.
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TABLE 14.—Miller Cylindrical projection: Rectangular coordinates

[Radius of sphere=1.0}

¢ v h k w
90° 2.30341 3.23607 Infinite 180.00°
85 2.04742 2.66947 11.47371 77.00
80 1.83239 2.28117 5.75877 51.26
75 1.64620 2.00000 3.86370 37.06
70 1.48131 1.78829 2.92380 27.89
65 1.33270 1.62427 2.36620 21.43
60 1.19683 1.49448 2.00000 16.64
55 1.07113 1.39016 1.74345 12.95
50 .95364 1.30541 1.55572 10.04
45 84284 1.23607 1.41421 7.7
40 73754 1.17918 1.30541 5.82
35 63674 1.13257 1.22077 4.30
30 .53962 1.09464 1.15470 3.06
25 .44547 1.06418 1.10338 2.07
20 .35369 1.04030 1.06418 1.30
15 .26373 1.02234 1.03528 72
10 17510 1.00983 1.01543 32

5 .08734 1.00244 1.00382 .08

0 .00000 1.00000 1.00000 .00
z 0.017453 (\° -X\°)

Note: z, y = rectangular coordinates.
& = geodetic latitude.
(\°—Ag°)= geodetic longitude, measured east from origin in degrees.
h = scale factor along meridian.
k = scale factor along parallel.
® = maximum angular deformation, degrees.

Origin of coordinates at intersection of Equator with Ay, X axis increases east, Y axis increases north. For southern
(negative) &, reverse sign of y.
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12. EQUIDISTANT CYLINDRICAL PROJECTION

SUMMARY

e Cylindrical.

o Neither equal-area nor conformal.

e Meridians and parallels are equidistant straight lines, intersecting at right
angles.

e Poles shown as lines.

e Used for world or regional maps.

e Very simple construction.

e Used only in spherical form.

e Presented by Eratosthenes (B.C.) or Marinus (A.D. 100).

HISTORY AND FEATURES

While the Equidistant Cylindrical projection has received limited use by the
USGS and generally has limited value, it is probably the simplest of all map
projections to construct and one of the oldest. The meridians and parallels are all
equidistant straight parallel lines, the two sets crossing at right angles.

The projection originated probably with Eratosthenes (275?—195? B.C.), the
scientist and geographer noted for his fairly accurate measure of the size of the
Earth. Claudius Ptolemy credited Marinus of Tyre with the invention about
A.D. 100 stating that, while Marinus had previously evaluated existing projections,
the latter had chosen “a manner of representing the distances which gives the
worst results of all.” Only the parallel of Rhodes (lat. 36°N.) was made true to
scale on the world map, which meant that the meridians were spaced at about
four-fifths of the spacing of the parallels for the same degree interval (Keuning,
1955, p. 13).

Ptolemy approved the use of the projection for maps of smaller areas, however,
with spacing of meridians to provide correct scale along the central parallel. All
the Greek manuscript maps for the Geographia, dating from the 13th century, use
the Ptolemy modification. It was used for some maps until the 18th century, but is
now used primarily for a few maps on which distortion is considered less impor-
tant than the ease of displaying special information. The projection is given a
variety of names such as Equidistant Cylindrical, Rectangular, La Carte
Parallélogrammatique, Die Rechteckige Plattkarte, and Equirectangular (Steers,
1970, p. 135—136). It was called the projection of Marinus by Nordenskisld
(1889).

If the Equator is made the standard parallel, true to scale and free of distortion,
the meridians are spaced at the same distances as the parallels, and the graticule
appears square. This form is often called the Plate Carrée or the Simple Cylin-
drical projection.

The USGS uses the Equidistant Cylindrical projection for index maps of the
conterminous United States, with insets of Alaska, Hawaii, and various islands
on the same projection. One is entitled “Topographic Mapping Status and Progress
of Operations (7%- and 15-minute series),” at an approximate scale of 1:5,000,000.
Another shows the status of intermediate-scale quadrangle mapping. Neither the
scale nor the projection is marked, to avoid implying that the maps are suitable
for normal geographic information. Meridian spacing is about four-fifths of the
spacing of parallels, by coincidence the same as that chosen by Marinus. The
Alaska inset is shown at about half the scale and with a change in spacing ratios.
Individual States are shown by the USGS on other index maps using the same
projection and spacing ratio to indicate the status of aerial photography.
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The projection was chosen largely for ease in computerized plotting. While the
boundaries on the base map may be as difficult to plot on this projection as on
the others, the base map needs to be prepared only once. Overlays of digital
information, which may then be printed in straight lines, may be easily updated
without the use of cartographic and photographic skills. The 4:5 spacing ratio is
a convenience based on computer line and character spacing and is not an attempt
to achieve a particular standard parallel, which happens to fall near lat. 37° N.

FORMULAS FOR THE SPHERE

The formulas for rectangular coordinates are almost as simple to use as the
geometric construction. Given R, Ay, ¢,, A, and ¢ for the forward solution, x and y
are found thus:

x =R (A—)p) cos &, (12-1)
y =R (12-2)
h =1 12-3)
k = cos ¢,/cos ¢ (12—-4)

The X axis coincides with the Equator, with x increasing easterly, while the Y
axis follows the central meridian A,, y increasing northerly. It is necessary to
adjust (A — \p), if it is beyond the range + 180°, by adding or subtracting 360°. The
standard parallel is ¢, (also —¢,;). For the inverse formulas, given R, A\, ¢,, ,
and y, to find ¢ and \:

¢ =y/R (12-5)
N =Ng + X/(R cos &;) (12-6)

Numerical examples are omitted in the appendix, due to simplicity. It must be
remembered, as usual, that angles above are given in radians.
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13. CASSINI PROJECTION

SUMMARY

e Cylindrical.

o Neither equal-area nor conformal.

e Central meridian, each meridian 90° from central meridian, and Equator are
straight lines.

e Other meridians and parallels are complex curves.

e Scale is true along central meridian, and along lines perpendicular to central
meridian. Scale is constant but not true along lines parallel to central meridian
on spherical form, nearly so for ellipsoid.

o Used for topographic mapping formerly in England and currently in a few other
countries.

e Devised by C. F. Cassini de Thury in 1745 for the survey of France.

HISTORY

Although the Cassini projection has been largely replaced by the Transverse
Mercator, it is still in limited use outside the United States and was one of the
major topographic mapping projections until the early 20th century. It was first
developed by César Francois Cassini de Thury (1714—1784), grandson of Jean
Dominique Cassini. The latter was an outstanding Italian-born astronomer who
changed his given names from Giovanni Domenico after being hired in 1669 for
astronomical research in Paris, and soon thereafter to begin the survey of France.
Cassini de Thury was the third of four generations involved in this project, the
first detailed survey of a nation. In 1745 he devised the projection which, with
some modifications, still bears the family name and was used for official topo-
graphic maps of France until its replacement by the Bonne projection in 1803.

Instead of showing meridians and parallels (except for the central meridian),
Cassini employed a system of squares with rectangular grid coordinates, the
meridian through Paris serving as one axis. The scale along this central meridian
was made correct according to the surveyed distance, thus approximately correct-
ing for the ellipsoid (Craig, 1882, p. 80; Reignier, 1957, p. 98—99). Mathematical
analysis by J. G. von Soldner in the early 19th century led to more accurate
ellipsoidal formulas, and the name Cassini-Soldner is often used for the form used

in topographic mapping.
FEATURES

The spherical form of the Cassini projection (fig. 19) bears the same relation to
the Equidistant Cylindrical or Plate Carrée projection that the spherical Trans-
verse Mercator bears to the regular Mercator. Instead of having the straight
meridians and parallels of the Equidistant Cylindrical, the Cassini has complex
curves for each, except for the Equator, the central meridian, and each meridian
90° away from the central meridian, all of which are straight.

There is no distortion along the central meridian, if it is maintained at true
scale, which is the usual case. If it is given a reduced scale factor, the lines of
true scale are two straight lines on the map parallel to and equidistant from the
central meridian. There is no distortion along them instead. This alternative is
rare enough that it is ignored in the discussion and formulas below.

By making a given point (such as Washington, D.C.) the pole on an oblique
Equidistant Cylindrical projection, the bearing and distance from that point to
any other on the Earth can be read directly as two rectangular coordinates
(Botley, 1951). This provides the same information as the oblique Azimuthal
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Equidistant projection centered on the same point. The oblique cylindrical has the
advantage of offering rectangular instead of polar coordinates, but the map is
much more distorted near the chosen point.

The scale is correct along the central meridian and also along any straight line
perpendicular to the central meridian. It gradually increases in a direction parallel
to the central meridian, as the distance from that meridian increases, but the
scale is constant along any straight line on the map which is parallel to the central
meridian. Therefore, the Cassini is more suitable for regions predominantly
north—south in extent, such as Great Britain, than for regions extending in other
directions. In this respect, it is also like the Transverse Mercator. The projection
is neither equal-area nor conformal, but it has a compromise of both features.

The ellipsoidal form is computed from series which are essentially modifica-
tions of those for the ellipsoidal form of the Transverse Mercator and are suitable
within only a few degrees to either side of the central meridian. The scale charac-
teristics described above for the spherical form apply to the ellipsoidal form, ex-
cept that the lines of constant scale paralleling the central meridian are not quite
straight.

USAGE

There has been little usage of the spherical version of the Cassini, but the ellip-
soidal Cassini-Soldner version was adopted by the Ordnance Survey for the official
survey of Great Britain during the second half of the 19th century (Steers, 1970,
p. 229). Many of these maps were prepared at a scale of 1:2,500. The Cassini-
Soldner was also used for the detailed mapping of many German states during the
same period.

Beginning about 1920, the Ordnance Survey began to change to the Transverse
Mercator because of the difficulty of measuring scale and direction on the Cassini.
Nevertheless, there are several maps still in print which are based on the older
projection in Great Britain, and the projection is used in a few other countries
such as Cyprus, Czechoslovakia, Denmark, the Federal Republic of Germany,
and Malaysia (Clifford J. Mugnier, personal comm., 1985).

A system equivalent to an oblique Equidistant Cylindrical or oblique Cassini
projection was used in early coordinate transformations for ERTS (now Landsat)
satellite imagery, but it was changed in 1978 to the Hotine Oblique Mercator, and
in 1982 to the Space Oblique Mercator projection.

FORMULAS FOR THE SPHERE

For the forward formulas, given R, &g, A, ¢, and A, to find x and y:

x =R arcsin B 13-1)

y = R [arctan [tan ¢/cos (A\—Ag)] — ol (13-2)

h' =1/(1-B?*» (13-3)
where

B =cos ¢ sin (A\—\¢) (8-5)

and ), is the central meridian. The origin of the coordinates is at (¢, A).The Y
axis lies along the central meridian \,, ¥ increasing northerly, and the X axis is
perpendicular, through ¢, at Ao, 2 increasing easterly. Equation (13-2) is sim_ilar
to corresponding equation (8-3)* for the spherical Transverse Mercator projec-
tion. The scale factor is &' in a direction parallel to the central meridian, while it
is 1 in a direction perpendicular to this meridian.

The inverse formulas for (b, \) in terms of (z, y):

¢ = arcsin [sin D cos (x/R)] (13—-4)
A = Ao + arctan [tan (x/R)/cos D] (13-5)

———

*if & = =90° and/or (\—Ay) = +90°,
y = R(= m/2-¢&,), taking sign of ¢ in either case.
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where
D =y/R + &, (13-6)

with ¢ and D in radians. See p. 288 for numerical examples.

FORMULAS FOR THE ELLIPSOID

For the ellipsoidal form, a set of series approximations is given for use in a
zone extending 3° to 4° of longitude from the central meridian. Coordinate axes are
the same as they are for the spherical formulas above. The formulas below are
adapted from those provided by Clifford J. Mugnier (pers. commun., 1979; see also
Clark and Clendinning, 1944).

x =N [A-TA%6-(8—T+8C)TA5120] 13-7)
y =M — My + Ntand [A%2 + (5—T+6C)A*24] (13-8)
8 =1+ x%cos? Az (1-¢? sin® ¢)%/[2a%(1-€?)] (13-9)
where
N =al(1-¢ sin® ¢)1 (4—20)
T =tan®¢é (8—13)
A = (A—\p) cos ¢, with X and A, in radians (8—-15)
C =¢é?cos® ¢/(1-€?) (8—-14)

M =a [(1-¢*/4—3¢/64—5€%/256—. . .) b — (3€%/8
+ 3¢%/32+45¢%/1024 +. . .) sin 26 + (15¢%/256
+ 45¢%/1024 +. . .) sin 4 — (35€%/3072+. . .)sin 6 + . ..] 3-21)

with ¢ in radians. M is the true distance along the central meridian from the
Equator to ¢.

M, = M calculated for ¢, the latitude crossing the central meridian A\, at the
origin of the x, y coordinates. The choice of ¢, does not affect the shape of the
projection.

s = the scale factor at an azimuth Az east of north for a given ¢ and .
For the inverse formulas:

& =d¢, — (N, tan ¢,/R)[D?%2-(1+3T,) D*/24] (13-10)
A =X + [D-T,D*3 + (1 + 3T,) T,D*15)/cos &, (13-11)

where ¢, is the “footpoint latitude” or the latitude at the central meridian which
has the same y coordinate as that of the point (¢, A).
It may be found as follows:

b1 = m + (36,/2-27€%/32+. . ) sin 2u, + (21e,2/16
— 55¢,%/32 + .. .)sin 4u, + (151¢,%/96 + . . .) sin 6y,

+ (1097¢,*/512 — . . ) sin 8u; + ... (3—-26) .
where
e, =[1-(1-€2"/[1+(1—€??] 3—24)
w1 = M,/[a(1-e*/4—3e*/64—5¢%/256—. . .)] (7-19)
M,=M, +y (13-12)

with M, calculated from equation (3—21) for the given ¢,. For improved compu-
tational efficiency using series (3—26), see p. 19.

From ¢,, other terms below are calculated for use in equations (13—10) and
(13-11). (If b, = = /2, & = * 90°, taking the sign of y, while A is indeterminate,
and may be called A,.)

T, =tan® ¢, (8—-22)
N, = a/(1—¢€® sin? ¢,)'* (8—23)
R, =a (1-e®/(1—-¢? sin? $,)32 (8—24)

D =xIN, (13-13)
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CONIC MAP PROJECTIONS
CONIC MAP PROJECTIONS

Cylindrical projections are used primarily for complete world maps, or for maps
along narrow strips of a great circle arc, such as the Equator, a meridian, or an
oblique great circle. To show a region for which the greatest extent is from east to
west in the temperate zones, conic projections are usually preferable to cylindri-
cal projections.

Normal conic projections are distinguished by the use of arcs of concentric
circles for parallels of latitude and equally spaced straight radii of these circles for
meridians. The angles between the meridians on the map are smaller than the
actual differences in longitude. The circular arcs may or may not be equally
spaced, depending on the projection. The Polyconic projection and oblique conic
projections have characteristics different from these.

The name “conic” originates from the fact that the more elementary conic
projections may be derived by placing a cone on the top of a globe representing
the Earth, the apex or tip in line with the axis of the globe, and the sides of the
cone touching or tangent to the globe along a specified “standard” latitude which
is true to scale and without distortion (see fig. 1). Meridians are drawn on the
cone from the apex to the points at which the corresponding meridians on the
globe cross the standard parallel. Other parallels are then drawn as arcs centered
on the apex in a manner depending on the projection. If the cone is cut along one
meridian and unrolled, a conic projection results. A secant cone results if the cone
cuts the globe at two specified parallels. Meridians and parallels can be marked on
the secant cone somewhat as above, but this will not result in any of the common
conic projections with two standard parallels. They are derived from various
desired scale relationships instead, and the spacing of the meridians as well as the
parallels is not the same as the projection onto a secant cone.

There are three important classes of conic projections: the equidistant (or simple),
the conformal, and the equal-area. The Equidistant Conic, with parallels equidis-
tantly spaced, originated in a rudimentary form with Claudius Ptolemy. It eventu-
ally developed into commonly used present-day forms which have one or two
standard parallels selected for the area being shown. It is neither conformal nor
equal-area, but north-south scale along all meridians is correct, and the projection
can be a satisfactory compromise for errors in shape, scale, and area, especially
when the map covers a small area. It is primarily used in the spherical form,
although the ellipsoidal form is available and useful. The USGS uses the Equidistant
Conic in an approximate form for a map of Alaska, identified as a “Modified
Transverse Mercator” projection, and also in the limiting equatorial form: the
Equidistant Cylindrical. Both are described earlier.

The Lambert Conformal Conic projection with two standard parallels is used
frequently for large- and small-scale maps. The parallels are more closely spaced
near the center of the map. The Lambert has also been used slightly in the oblique
form. The Albers Equal-Area Conic with two standard parallels is used for sec-
tional maps of the U.S. and for maps of the conterminous United States. The
Albers parallels are spaced more closely near the north and south edges of the
map. There are some conic projections, such as perspective conics, which do not
fall into any of these three categories, but they are rarely used.

The useful conic projections may be geometrically constructed only in a limited
sense, using polar coordinates which must be calculated. After a location is chosen,
usually off the final map, for the center of the circular arecs which will represent
parallels of latitude, meridians are constructed as straight lines radiating from
this center and spaced from each other at an angle equal to the product of the cone
constant times the difference in longitude. For example, if a 10° graticule is planned,
and the cone constant is 0.65, the meridian lines are spaced at 10° times 0.65 or 6.5°.
Each parallel of latitude may then be drawn as a circular arc with a radius
previously calculated from formulas for the particular conic projection.
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14. ALBERS EQUAL-AREA CONIC PROJECTION

SUMMARY

e Conic.

e Equal-Area.

e Parallels are unequally spaced arcs of concentric circles, more closely spaced at
the north and south edges of the map.

e Meridians are equally spaced radii of the same circles, cutting parallels at right
angles.

o There is no distortion in scale or shape along two standard parallels, normally,
or along just one.

e Poles are arcs of circles.

e Used for equal-area maps of regions with predominant east-west expanse,
especially the conterminous United States.

o Presented by Albers in 1805.

HISTORY

One of the most commonly used projections for maps of the conterminous
United States is the equal-area form of the conic projection, using two standard
parallels. This projection was first presented by Heinrich Christian Albers
(1773—-1833), a native of Liineburg, Germany, in a German periodical of 1805
(Albers, 1805; Bonacker and Anliker, 1930). The Albers projection was used for a
German map of Europe in 1817, but it was promoted for maps of the United
States in the early part of the 20th century by Oscar S. Adams of the Coast
and Geodetic Survey as “an equal-area representation that is as good as any other
and in many respects superior to all others” (Adams, 1927, p. 1).

FEATURES AND USAGE

The Albers is the projection exclusively used by the USGS for sectional maps of
all 50 States of the United States in the National Atlas of 1970, and for other
U.S. maps at scales of 1:2,500,000 and smaller. The latter maps include the base
maps of the United States issued in 1961, 1967, and 1972, the Tectonic Map of the
United States (1962), and the Geologic Map of the United States (1974), all at
1:2,500,000. The USGS has also prepared a U.S. base map at 1:3,168,000
(1 inch =50 miles).

Like other normal conics, the Albers Equal-Area Conic projection (fig. 20) has
concentric arcs of circles for parallels and equally spaced radii as meridians. The
parallels are not equally spaced, but they are farthest apart in the latitudes
between the standard parallels and closer together to the north and south. The
pole is not the center of the circles, but is normally an arc itself.

If the pole is taken as one of the two standard parallels, the Albers formulas
reduce to a limiting form of the projection called Lambert’s Equal-Area Conic
(not discussed here, and not to be confused with his Conformal Conic, to be
discussed later). If the pole is the only standard parallel, the Albers formulas
simplify to provide the polar aspect of the Lambert Azimuthal Equal-Area
(discussed later). In both of these limiting cases, the pole is a point. If the Equa-
tor is the one standard parallel, the projection becomes Lambert's Cylindrical
Equal-Area (discussed earlier), but the formulas must be modified. None of these
extreme cases applies to the normal use of the Albers, with standard parallels in
the temperate zones, such as usage for the United States.

Scale along the parallels is too small between the standard parallels and too
large beyond them. The scale along the meridians is just the opposite, and in fact
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FIGURE 20.—Albers Equal-Area Conic projection, with standard parallels 20° and 60° N. This illustra-
tion includes all of North America to show the change in spacing of the parallels. When used for
maps of the 48 conterminous States standard parallels are 29.5° and 45.5° N.

the scale factor along meridians is the reciprocal of the scale factor along parallels,
to maintain equal area. An important characteristic of all normal conic projections
is that scale is constant along any given parallel.

To map a given region, standard parallels should be selected to minimize varia-
tions in scale. Not only are standard parallels correct in scale along the parallel;
they are correct in every direction. Thus, there is no angular distortion, and
conformality exists along these standard parallels, even on an equal-area projection.
They may be on opposite sides of, but not equidistant from, the Equator. Deetz
and Adams (1934, p. 79, 91) recommended in general that standard parallels be
placed one-sixth of the displayed length of the central meridian from the northern
and southern limits of the map. Hinks (1912, p. 87) suggested one-seventh instead
of one-sixth. Others have suggested selecting standard parallels of conics so that
the maximum scale error (1 minus the scale factor) in the region between them is
equal and opposite in sign to the error at the upper and lower parallels, or so that
the scale factor at the middle parallel is the reciprocal of that at the limiting
parallels. Tsinger in 1916 and Kavrayskiy in 1934 chose standard parallels so that
least-square errors in linear scale were minimal for the actual land or country
being displayed on the map. This involved weighting each latitude in accordance
with the land it contains (Maling, 1960, p. 263—266).

The standard parallels chosen by Adams for Albers maps of the conterminous
United States are lats. 29.5° and 45.5°N. These parallels provide “for a scale error
slightly less than 1 per cent in the center of the map, with a maximum of 1V per
cent along the northern and southern borders” (Deetz and Adams, 1934, p. 91).
For maps of Alaska, the chosen standard parallels are lats. 55° and 65°N., and for
Hawaii, lats. 8° and 18°N. In the latter case, both parallels are south of the
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islands, but they were chosen to include maps of the more southerly Canal Zone
and especially the Philippine Islands. These parallels apply to all maps prepared
by the USGS on the Albers projection, originally using Adams’s published tables
of coordinates for the Clarke 1866 ellipsoid (Adams, 1927).

Without measuring the spacing of parallels along a meridian, it is almost impos-
sible to distinguish an unlabeled Albers map of the United States from other conic
forms. It is only when the projection is extended considerably north and south,
well beyond the standard parallels, that the difference is apparent without scaling.

Since meridians intersect parallels at right angles, it may at first seem that
there is no angular distortion. However, scale variations along the meridians
cause some angular distortion for any angle other than that between the meridian
and parallel, except at the standard parallels.

FORMULAS FOR THE SPHERE

The Albers Equal-Area Conic projection may be constructed with only one
standard parallel, but it is nearly always used with two. The forward formulas for
the sphere are as follows, to obtain rectangular or polar coordinates, given R, &,,
bo, do, Ao, &, and \ (see p. 291 for numerical examples):

x =psinb (14-1)
Yy =po—p cos B (14-2)
where

p = R(C—2n sin ¢)12/n (14-3)
8 =n(A—\p) (14-4)
po = R(C—2n sin by)12/n (14—-3a)
C =cos® ¢, + 2n sin ¢, (14-5)
n = (sin ¢, +sin ¢,)/2 (14-6)

o, Ag = the latitude and longitude, respectively, for the origin
of the rectangular coordinates.
&y, b, = standard parallels.

The Y axis lies along the central meridian Ay, y increasing northerly. The X axis
intersects perpendicularly at &¢,, x increasing easterly. If (A—\,) exceeds the
range *=180°, 360° should be added or subtracted to place it within the range.
Constants n, C, and p, apply to the entire map, and thus need to be calculated
only once. If only one standard parallel ¢, is desired (or if ¢; = ¢5), n=sin ¢,.
By contrast, a geometrically secant cone requires a cone constant » of sin [(d, +
,)/2], slightly but distinctly different from equation (14—6). If the projection is
designed primarily for the Northern Hemisphere, n and p are positive. For the
Southern Hemisphere, they are negative. The scale along the meridians, using
equation (4—4),

h = cos &/(C—2n sin d)12 (14-17)

If equation (4-5) is used, k will be found to be the reciprocal of k, satisfying
the requirement for an equal-area projection when meridians and parallels in-
tersect at right angles. The maximum angular deformation may be calculated
from equation (4—9). It may be seen from equation (14—7), and indeed from equa-
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tions (4—4) and (4—5), that distortion is strictly a function of latitude, and not of
longitude. This is true of any regular conic projection.

For the inverse formulas for the sphere, given R, &,, &s, &g, Ay, x, and y:
n, C and p, are calculated from equations (14—6), (14—5), and (14—3a), respec-
tively. Then,

& = arcsin {[C—(pn/R)?V/(2n)) (14-8)

N =Aot+0/n (14-9)
where

p =[x?+(po—y)]2 (14-10)

6 = arctan [x/(py—y)] (14-11)

Note: to use the ATANZ2 Fortran function, if n is negative, the signs of x, y,
and p, (given a negative sign by equation (14—3a)) must be reversed before in-
serting them in equation (14—11).

FORMULAS FOR THE ELLIPSOID

The formulas displayed by Adams and most other writers describing the ellip-
soidal form include series, but the equations may be expressed in closed forms
which are suitable for programming, and involve no numerical integration or iter-
ation in the forward form. Nearly all published maps of the United States based
on the Albers use the ellipsoidal form because of the use of tables for the original
base maps. (Adams, 1927, p. 1-7; Deetz and Adams, 1934, p. 93—99; Snyder,
1979a, p. 71). Given a, e, &,, b2, dg, Ao, ¢, and A (see p. 292 for numerical
examples): ‘

x =psin6 (14-1)
Y =po—pcos 6 (14-2)
where

p =a(C—ng)?n (14-12)
0 = n(A—X\p) (14-4)
po = a(C—ngo)?n (14—12a)
C =m®+nq, (14-13)
n = (mP?-my*)(g2—q)) (14-14)
m = cos &/(1—e? sin®d)12 (14-15)
g = (1—€?)lsin d/(1—¢€? sin®dp) — [1/(2¢)]

In[(1—e sin $)/(1 +e sin )| (3-12)

with the same subscripts 1, 2, or none applied to m and ¢ in equation (14—15),
and 0, 1, 2, or none applied to ¢ and & in equation (3—12), as required by equa-
tions (14—12), (14—12a), (14—13), (14—14), and (14—17). As with the spherical
case, p and n are negative, if the projection is centered in the Southern Hemi-
sphere. For the scale factor, modifying (4—-25):

= pniam (14-16)
= (C—ng)?m 14-17)
h =1k (14—-18)

While many ellipsoidal equations apply to the sphere if e is made zero, equation
(3—12) becomes indeterminate. Actually, ife=0, ¢=2 sin ¢. If ;, = ¢,, equation
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(14—14) is indeterminate regardless of e, but » = sin &,. The axes and limita-
tions on (A—\) are the same as those stated for the spherical formulas. Here, too,
constants n, C, and p, need to be determined just once for the entire map.

For the inverse formulas for the ellipsoid, given a, e, &y, by, by, Ao, x, and y:
n, C, and p, are calculated from equations (14—14), (14—-13), and (14—12a);
respectively. Then,

. (=ésinf )| ¢ sin ¢ 1 1-e sin ¢
b=o+ 2 cos & 1-¢? l—ezsinzd>+2eln 1+esin ¢ (3-16)

A=Ng+0/n (14-9)
where
g =(C-p*n?a®>)n (14-19)
p = [x%+(po— )2 (14-10)
0 = arctan [x/(py—y)] (14—11)

To use the Fortran ATAN2 function, if » is negative, the signs of x, y, and p,
must be reversed before insertion into equation (14—11). Equation (3—16) in-
volves iteration by first trying & = arcsin (¢/2) on the right side, calculating ¢ on
the left side, substituting this new ¢ on the right side, etc., until the change in
& is negligible. If

g = = 1-[(1-¢*)/2¢] In [(1—e)/(1 +e)] (14-20)

iteration does not converge, but & = *90°, taking the sign of q.
Instead of the iteration, a series may be used for the inverse ellipsoidal
formulas:

b =B + (*/3+31e'180+517¢%/5040+ . . . ) sin 2B + (23¢'/360
+ 251¢%/3780 + . . .) sin 4B + (761¢"/45360+ .. .)sin 6B+ ... (3-18)

where B, the authalic latitude, adapting equations (3—11) and (3—12), is found
thus:

B = arcsin (¢g/'1-[(1—¢*)/2¢] In [(1—e)/(1 +e)]) (14-21)

but g is still found from equation (14-—19). Equations (14-9), (14—-10), and
(14—11) also apply unchanged. For improved computational efficiency using the
series, see p. 19,

Polar coordinates for the Albers Equal-Area Conic are given for both the
spherical and ellipsoidal forms, using standard parallels of lat. 29.5° and 45.5° N.
(table 15). A graticule extended to the North Pole is shown in figure 20.

To convert coordinates measured on an existing map, the user may choose any
meridian for A, and therefore for the Y axis, and any latitude for &,. The X
axis then is placed perpendicular to the Y axis at &,,.
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TABLE 15.—Albers Equal-Area Conic projection: Polar coordinates

[Standard parallels: 29.5° and 45.5° N]

Projection for sshere (R=6,370,997 m) Projection for Clarke 1866 ellipsoid
(n=0.6028370) (a=6,378,206.4 m) (n=0.6029035)

Lat. P h k P h k
52° ___ 6,693,511 0.97207 1.02874 6,713,781 0.97217 1.02863
51 ____ 6,801,923 97779 1.02271 6,822,266 .97788 1.02263
50 ____ 6,910,941 .98296 1.01733 6,931,335 .98303 1.01727
49 ____ 7,020,505 .98760 1.01255 7,040,929 .98765 1.01251
48 ____ 17,130,555 99173 1.00834 7,150,989 99177 1.00830
47 ____ 7,241,038 .99538 1.00464 7,261,460 .99540 1.00462
46 ____ 7,351,901 .99857 1.00143 7,372,290 .99858 1.00143
455 __ 7,407,459 1.00000 1.00000 7,427,824 1.00000 1.00000
45 ____ 7,463,094 1.00132 99868 7,483,429 1.00132 .99869
44 ____ 7,574,570 1.00365 99636 7,594,829 1.00364 .99637
43 ____ 17,686,282 1.00558 99445 7,706,445 1.00556 99447
42 ____ 17,798,186 1.00713 99292 7,818,233 1.00710 99295
41 ____ 7,910,244 1.00832 99175 17,930,153 1.00828 99178
40 ____ 8,022,413 1.00915 99093 8,042,164 1.00911 .99097
39 ____ 8,134,656 1.00965 99044 8,154,230 1.00961 .99048
38 ____ 8,246,937 1.00983 99027 8,266,313 1.00978 .99031
37 ____ 8,359,220 1.00970 99040 8,378,379 1.00965 99044
36 ____ 8,471,472 1.00927 .99082 8,490,394 1.00923 .99086
35 ____ 8,583,660 1.00855 99152 8,602,328 1.00852 99155
34 ____ 8,695,753 1.00757 99249 8,714,149 1.00753 .99252
33 ___. 8,807,723 1.00632 99372 8,825,828 1.00629 .99375
32 ____ 8,919,539 1.00481 99521 8,937,337 1.00479 .99523
31 ____ 9,031,175 1.00306 99694 9,048,649 1.00305 .99696
30 ____ 9,142,602 1.00108 99892 9,159,737 1.00107 .99893
29.5 __ 9,198,229 1.00000 1.00000 9,215,189 1.00000 1.00000
29 ____ 9,253,796 .99887 1.00114 9,270,575 .99887 1.00113
28 ____ 9,364,731 .99643 1.00358 9,381,141 .99645 1.00357
27 ____ 9,475,383 .99378 1.00626 9,491,411 .99381 1.00623
26 ____ 9,585,731 .99093 1.00915 9,601,361 99097 1.00911
25 ____ 9,695,749 .98787 1.01227 9,710,969 .98793 1.01222
24 ____ 9,805,417 .98463 1.01561 9,820,216 .98470 1.01554
23 ____ 9,914,713 98119 1.01917 9,929,080 98128 1.01908
22 ____10,023,616 97757 1.02294 10,037,541 97768 1.02283

Note: p = radius of latitude circle, meters.

h
k
R
a
n

scale factor along meridians.

scale factor along parallels.

assumed radius of sphere.

assumed semimajor axis of ellipsoid.

cone constant, or ratio of angle between meridians on map to true angle.
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15. LAMBERT CONFORMAL CONIC PROJECTION

SUMMARY

o Conic.

o Conformal.

e Parallels are unequally spaced arcs of concentric circles, more closely spaced
near the center of the map.

o Meridians are equally spaced radii of the same circles, thereby cutting parallels
at right angles.

o Scale is true along two standard parallels, normally, or along just one.

e Pole in same hemisphere as standard parallels is a point; other pole is at infinity.

e Used for maps of countries and regions with predominant east-west expanse.

o Presented by Lambert in 1772.

HISTORY

The Lambert Conformal Conic projection (fig. 21) was almost completely over-
looked between its introduction and its revival by the U.S. Coast and Geodetic
Survey (Deetz, 1918b), although France had introduced an approximate version,
calling it “Lambert,” for battle maps of the First World War (Mugnier, 1983). It
was the first new projection which Johann Heinrich Lambert presented in his
Beitrdge (Lambert, 1772), the publication which contained his Transverse Merca-
tor described previously. In some atlases, particularly British, the Lambert Con-
formal Conic is called the “Conical Orthomorphic” projection.

FIGURE 21.—Lambert Conformal Conic projection, with standard parallels 20° and 60° N. North
America is illustrated here to show the change in spacing of the parallels. When used for maps of
the conterminous United States or individual States, standard parallels are 33° and 45° N.
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Lambert developed the regular Conformal Conic as the oblique aspect of a
family containing the previously known polar Stereographic and regular Mercator
projections. As he stated,

Stereographic representations of the spherical surface, as well as Mercator’s nautical charts, have the
peculiarity that all angles maintain the sizes that they have on the surface of the globe. This yields
the greatest similarity that any plane figure can have with one drawn on the surface of a sphere. The
question has not been asked whether this property occurs only in the two methods of representation
mentioned or whether these two representations, so different in appearances, can be made to approach
each other through intermediate stages. * * * if there are stages intermediate to these two represen-
tations, they must be sought by allowing the angle of intersection of the meridians to be arbitrarily
larger or smaller than its value on the surface of the sphere. This is the way in which I shall now pro-
ceed (Lambert, 1772, p. 28, translation by Tobler).

Lambert then developed the mathematics for both the spherical and ellipsoidal
forms for two standard parallels and included a small map of Europe as an exam-
ple (Lambert, 1772, p. 28—38, 87—89).

FEATURES

Many of the comments concerning the appearance of the Albers and the selec-
tion of its standard parallels apply to the Lambert Conformal Conic when an area
the size of the conterminous United States or smaller is considered. As stated
before, the spacing of the parallels must be measured to distinguish among the
various conic projections for such an area. If the projection is extended toward
either pole and the Equator, as on a map of North America, the differences be-
come more obvious. Although meridians are equally spaced radii of the concentric
circular arcs representing parallels of latitude, the parallels become further apart
as the distance from the central parallels increases. Conformality fails at each
pole, as in the case of the regular Mercator. The pole in the same hemisphere as
the standard parallels is shown on the Lambert Conformal Conic as a point. The
other pole is at infinity. Straight lines between points approximate great circle
arcs for maps of moderate coverage, but only the Gnomonic projection rigorously
has this feature and then only for the sphere.

Two parallels may be made standard or true to scale, as well as conformal. It is
also possible to have just one standard parallel. Since there is no angular distor-
tion at any parallel (except at the poles), it is possible to change the standard
parallels to just one, or to another pair, just by changing the scale applied to the
existing map and calculating a pair of standard parallels fitting the new scale. This
is not true of the Albers, on which only the original standard parallels are free
from angular distortion.

If the standard parallels are symmetrical about the Equator, the regular Mer-
cator results (although formulas must be revised). If the only standard parallel is
a pole, the polar Stereographic results.

The scale is too small between the standard parallels and too large beyond
them. This applies to the scale along meridians, as well as along parallels, or in
any other direction, since they are equal at any given point. Thus, in the State
Plane Coordinate Systems (SPCS) for States using the Lambert, the choice of
standard parallels has the effect of reducing the scale of the central parallel by
an amount which cannot be expressed simply in exact form, while the scale for the
central meridian of a map using the Transverse Mercator is normally reduced by
a simple fraction. The scale is constant along any given parallel. While it equals
the nominal scale at the standard parallels, it actually changes most slowly in a
north-south direction at a parallel nearly halfway between the two standard
parallels.

USAGE

It was only a couple of decades after the Coast and Geodetic Survey began
publishing tables for the Lambert Conformal Conic projection (Deetz, 1918a,
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1918b) that the projection was adopted officially for the SPCS for States of pre-
dominantly east-west expanse. The prototype was the North Carolina Coordinate
System, established in 1933. Within a year or so, similar systems were devised
for many other States, while a Transverse Mercator system was prepared for the
remaining States. One or more zones is involved in the system for each State (see
table 8) (Mitchell and Simmons, 1945, p. vi). In addition, the Lambert is used for
the Aleutian Islands of Alaska, Long Island in New York, and northwestern
Florida, although the Transverse Mercator (and Oblique Mercator in one case) is
used for the rest of each of these States.

The Lambert Conformal Conic is used for the 1:1,000,000-scale regional world
aeronautical charts, the 1:500,000-scale sectional aeronautical charts, and
1:500,000-scale State base maps (all 48 contiguous States* have the same standard
parallels of lat. 33° and 45° N., and thus match). Also cast on the Lambert are most
of the 1:24,000-scale 7%-minute quadrangles prepared after 1957 which lie in zones
for which the Lambert is the base for the SPCS. In the latter case, the standard
parallels for the zone are used, rather than parameters designed for the individual
quadrangles. Thus, all quadrangles for a given zone may be mosaicked exactly.
(The projection used previously was the Polyconic, and some recent quadrangles
are being produced to the Universal Transverse Mercator projection.)

The Lambert Conformal Conic has also been adopted as the official topographic
projection for some other countries. It appears in The National Atlas (USGS,
1970, p. 116) for a map of hurricane patterns in the North Atlantic, and the Lam-
bert is used by the USGS for a map of the United States showing all 50 States
in their true relative positions. The latter map is at scales of both 1:6,000,000
and 1:10,000,000, with standard parallels 37° and 65° N.

In 1962, the projection for the International Map of the World at a scale of
1:1,000,000 was changed from a modified Polyconic to the Lambert Conformal
Conic between lats. 84° N. and 80° S. The polar Stereographic projection is used in
the remaining areas. The sheets are generally 6° of longitude wide by 4° of latitude
high. The standard parallels are placed at one-sixth and five-sixths of the latitude
spacing for each zone of 4° latitude, and the reference ellipsoid is the International
(United Nations, 1963, p. 9—27). This specification has been subsequently used
by the USGS in constructing several maps for the IMW series.

Perhaps the most recent new topographic use for the Lambert Conformal Conic
projection by the USGS is for middle latitudes of the 1:1,000,000-scale geologic
series of the Moon and for some of the maps of Mercury, Mars, and Jupiter’s
satellites (see table 6).

FORMULAS FOR THE SPHERE

For the projection as normally used, with two standard parallels, the equations
for the sphere may be written as follows: Given R, &,, &,, &g, Ao, &, and A (see
p. 295 for numerical examples):

r =psin 0 (14-1)
Y =po — pcCos b (14-2)
where
p =RFitan" (n/4 + &/2) 15-1)
0 =n(A—X\p) (14-4)
po = RF/tan" (m/4 + &y/2) (15—1a)

3For Hawaii, the standard parallels are lats. 20° 40’ and 23° 20’ N.; the corresponding base map was not prepared
for Alaska.
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F =cos ¢, tan" (n/4 + ¢,/2)/n 15-2)

n =In (cos b, /cos dy)In[tan (w/4 + dbo/2)/tan (w/d + $,/2)] (15-3)
o, Ao = the latitude and longitude for the origin of the rectangular coordinates.
&, ¢, = standard parallels.

The Y axis lies along the central meridian A, ¥ increasing northerly; the X axis
intersects perpendicularly at &,, x increasing easterly. If (A—\() exceeds the
range + 180°, 360° should be added or subtracted. Constants n, F', and p, need to
be determined only once for the entire map.

If only one standard parallel ¢, is desired, equation (15—3) is indeterminate,
but 7 =sin ¢,. The scale along meridians or parallels, using equations (4—4) or
4-5),

k=h=cos &, tan*(m/4 + $,/2)/[cos b tan"(w/d + &/2)] (15—-4)

The maximum angular deformation w=0, since the projection is conformal. As
with the other regular conics, k is strictly a function of latitude. For a projection
centered in the Southern Hemisphere, n and p are negative.

For the inverse formulas for the sphere, given R, &,, &g, dbg, Ao, X, and y: n, F,
and p, are calculated from equations (15—3), (156—2), and (15—1a), respectively.
Then,

¢ =2 arctan (RF/p)'"—m/2 (15-5)
AN =0/ + A (14-9)

where

p = =[x® + (po—¥)?]'?, taking the sign of = (14-10)
0 =arctan [x/(po—y)] (14-11)

The Fortran ATANZ2 function does not apply to equation (15—5), but when it is
used for equation (14—11), and = is negative, the signs of z, y, and p, (negative
from equation (15—1a)) must be reversed before insertion into the equation. If
p=0, equation (15—5) involves division by zero, but ¢ is = 90°, taking the sign of n.

The standard parallels normally used for maps of the conterminous United
States are lats. 33° and 45° N., which give approximately the least overall error
within those boundaries. The ellipsoidal form is used for such maps, based on the
Clarke 1866 ellipsoid (Adams, 1918).

The standard parallels of 33° and 45° were selected by the USGS because of the
existing tables by Adams (1918), but Adams chose them to provide a maximum
scale error between latitudes 30.5° and 47.5° of one-half of 1 percent. A maximum
scale error of 2.5 percent occurs in southernmost Florida (Deetz and Adams,
1934, p. 80). Other standard parallels would reduce the maximum scale error for
the United States, but at the expense of accuracy in the center of the map.

FORMULAS FOR THE ELLIPSOID

The ellipsoidal formulas are essential when applying the Lambert Conformal
Conic to mapping at a scale of 1:100,000 or larger and impertant at scales of

1:5,000,000. Given a, e, ¢,, ba, dg, Ao, &, and A (see p. 296 for numerical examples):

x =psind (14-1)
Yy =pp—pcosO (14-2)
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k = pn/(am) (14-16)
= mlt"/(mtl") (15"'6)
where
p =aFt 15-7)
8 =n(\—\o) (14-4)
po = aFty (15—"7a)
n = (In m;=In my)/(In t,—In ¢,) (15-8)
m = cos &/(1—e? sin? $)'? (14-15)
t =tan (m/4—-d/2)/[(1—e sin $)/(1 +e sin ¢)]¢? (15-9)
or
1 — sind\/1 + esin d\|!2
1+ sin &/ \1 — e sin ¢ (15-9a)
F = ml/(ntl") (15_10)

with the same subscripts 1, 2, or none applied to m and & in equation (14-15),
and 0, 1, 2, or none applied to ¢ and ¢ in equation (15-9), as required by equations
(15—6), (15—17), and (15—8). As with other conics, a negative n and p result for
projections centered in the Southern Hemisphere. If & = * 90°, p is zero for the
same sign as n and infinite for the opposite sign. If &, = &,, for the Lambert with
a single standard parallel, equation (15—8) is indeterminate, but n =sin ¢,. Origin
and orientation of axes for x and y are the same as those for the spherical form.
Constants n, F, and p, may be determined just once for the entire map.

When the above equations for the ellipsoidal form are used, they give values
of n and p slightly different from those in the accepted tables of coordinates for a
map of the United States, according to the Lambert Conformal Conic projection.
The discrepancy is 35—50 m in the radius and 0.0000035 in n. The rectangular
coordinates are correspondingly affected. The discrepancy is less significant when
it is realized that the radius is measured to the pole, and that the distance from
the 50th parallel to the 25th parallel on the map at full scale is only 12 m out of
2,800,000 or 0.0004 percent. For calculating convenience 60 years ago, the tables
were, in effect, calculated using instead of equation (15-9),

t=tan (w/d—d,/2) (15-9b)

where ¢, is the geocentric latitude, or, as shown earlier,
&g =arctan [(1-e)tan ¢] (3—28)

In conventional terminology, the t of equation (15—9) is usually written as
tan ¥%Z, where Z is the colatitude of the conformal latitude x (see equation
(3-1)).

For the existing tables, then, &g, the geocentric latitude, was used for con-
venience in place of x, the conformal latitude (Adams, 1918, p. 6-9, 34). A com-
parison of series equations (3—3) and (3—30), or of the corresponding columns in
table 3, shows that the two auxiliary latitudes x and ¢, are numerically very
nearly the same.

There may be much smaller discrepancies found between coordinates as calcu-
lated on modern computers and those listed in tables for the SPCS. This is due
to the slightly reduced (but sufficient) accuracy of the desk calculators of 30—40
years ago and the adaptation of formulas to be more easily utilized by them. To
obtain SPCS coordinates, the appropriate “false easting” is added to x after cal-
culation using (14-1).
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The inverse formulas for ellipsoidal coordinates, given a, e, &;, ds, dg, Ao, x,
and y: n, F, and p, are calculated from equations (15-8), (15—10), (15—7a),
respectively. Then,

& =m/2-2 arctan |t[(1—e sin $)/(1 + e sin ‘)] (7-9)
where
t = (plaF)" (15—-11)
p = *[2%+(po—y)?]'?, taking the sign of n. (14-10)
N =0+ (14-9)
6 = arctan [x/(po—vy)] (14-11)

As with the spherical formulas, the Fortran ATAN2 function does not apply to
equation (7—9), but for equation (14—11), if n is negative, the signs of x, y, and
po must be reversed.

Equation (7—-9) involves rapidly converging iteration: Calculate ¢ from (15—11).
Then, assuming an initial trial ¢ equal to (w/2—2 arctan t) in the right side of
equation (7—9), calculate ¢ on the left side. Substitute the calculated ¢ into the
right side, calculate a new ¢, etc., until ¢ does not change significantly from the
preceding trial value of ¢.

To avoid iteration, series (3—5) may be used with (7—13) in place of (7—9):

d=x + (€2 + 5e¥24 + €512 + 13¢%/360 + . . .) sin 2x
+ (Te¥/48 + 29¢5/240 + 811¢*/11520 + . . .)
sin 4x + (7€%/120 + 81¢%/1120 + . . .) sin 6x
+ (4279¢%/161280 + .. .)sin8x + . .. (3-5)

where

x=m/2—-2 arctan ¢ (7-13)

For improved computational efficiency using the series, see p. 19.

If rectangular coordinates for maps based on the tables using geocentric lati-
tude are to be converted to latitude and longitude, the inverse formulas are the
same as those above, except that equation (15—9b) is used instead of (15—9) for
calculations leading to n, F, and py, and equation (7—9), or (3—5) and (7—-13), is
replaced with the following which does not involve iteration:

¢ =arctan [tan ¢g/(1 —-e?)] (15-13)
where

bg=m/2—2 arctan ¢ (15-14)

and t is calculated from equation (15—11).

Polar coordinates for the Lambert Conformal Conic are given for both the
spherical and ellipsoidal forms, using standard parallels of 33° and 45° N. (table 16).
The data based on the geocentric latitude are given for comparison. A graticule
extended to the North Pole is shown in figure 21.

To convert from tabular rectangular coordinates to ¢ and A, it is necessary to
subtract any “false easting” from x and “false northing” from y before inserting
x and y into the inverse formulas. To convert coordinates measured on an existing
Lambert Conformal Conic map (or other regular conic projection), the user may
choose any meridian for A, and therefore for the Y axis, and any latitude for .
The X axis then is placed perpendicular to the Y axis at ¢,
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16. EQUIDISTANT CONIC PROJECTION

16. EQUIDISTANT CONIC PROJECTION
SUMMARY

e Conic.

e Equidistant.

o Parallels, including poles, are arcs of concentric circles, equally spaced for the
sphere, at true spacing for the ellipsoid.

e Meridians are equally spaced radii of the same circles, thereby cutting parallels
at right angles.

e Scale is true along all meridians and along one or two standard parallels.

e Used for maps of small countries and regions and of larger areas with predomi-
nant east-west expanse.

e Rudimentary form developed by Claudius Ptolemy about A.D. 150.

HISTORY

The simplest kind of conic projection is the Equidistant Conic, often called
Simple Conic, or just Conic projection. It is the projection most likely to be found
in atlases for maps of small countries, with its equally spaced straight meridians
and equally spaced circular parallels. A rudimentary version was described by the
astronomer and geographer Claudius Ptolemy about A.D. 150. Probably born in
Greece about A.D. 90, he spent most of his life in or near Alexandria, Egypt, and
died about A.D. 168. His greatest works were the Almagest, describing his
scientific theories, and the Geographia, which dwelt on mapmaking. These were
revived in the 15th century as the most authoritative existing standards.

In developing this projection, Ptolemy did not discuss cones, and a cone would
not properly fit his specifications, but he said (Geographia, Book 1, ch. 20):

When we cast a glance upon the middle of the northern quarter of the globe in which the greatest part
of the oikumene [or ecumene, or inhabited world] lies, then the meridians give the impression of being
straight lines if we turn the globe thus that the meridians successively come out of their sideward
situation right before the spectator, so that the eye comes in their plane. The parallels give clearly the
impression of arcs of circles which turn their convex side to the south (Keuning, 1955, p. 9).

Ptolemy’s conic projection extends from latitudes approximating 63°N. to 16°S.
Although meridians north of the Equator fan out as straight radii from the center
of the circular parallels, they break at the Equator to connect with straight lines
to points along the southernmost parallel which are the same distance apart as
corresponding points at 16°N.

Johannes Ruysch (?—1533) modified this approach to continue meridians as
straight radii below the Equator in a world map of 1508, and Gerardus Mercator
made other modifications in the mid-16th century. The Equidistant Conic with
two standard parallels is credited to Joseph Nicolas De I'Isle (1688—1768), of an
illustrious French mapmaking family. He used it for a map of Russia in 1745.
There were differences in his approach, however, which resulted in meridians
which are not radii of the circular arcs representing the circles.

Several Scot (Murdoch), Swiss (Euler), English (Everett), and Russian
(Vitkovskiy, Kavrayskiy, and others) mathematicians published papers between
1758 and 1934 describing means of selecting the two standard parallels so that
distortion is minimized using various criteria. Each of them used the same basic
conic projection with concentric circular parallels and straight meridians for radii
(Snyder, 1978a). The name of one of them, V. V. Kavrayskiy (or Kavraisky), has
been mistakenly applied in some U.S. literature to the basic projection, but his
contribution did not occur until 1934.
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FEATURES

The Equidistant Conic projection (fig. 22) is neither conformal (like the Lam-
bert Conformal Conic) nor equal-area (like the Albers), but it serves as a compro-
mise between them. The Lambert parallels are more widely spaced away from
the central parallel, and the Albers parallels become closer together. The paral-
lels on the Equidistant Conic remain equally spaced on the spherical version (as
they are on the sphere) and nearly so on the ellipsoidal version (with the same
spacing as the distances along the meridians on the ellipsoid).

As on other normal conics, the meridians are equally spaced radii of the concen-
tric circular ares which form the parallels. The meridians are spaced at equal
angles which are less than the true angles between the meridians; the ratio is
called the cone constant, as it is on other conic projections. The poles are normally
also plotted as circular arcs.

Either one or two parallels may be made standard or true to scale. There is no
shape, area, or scale distortion along the standard parallels. While meridians are
at correct scale everywhere, the scale along the parallels between the standard
parallels (if there are two) is too small, and the scale along parallels beyond the
standard parallel(s) is too great.

If the one standard parallel is the Equator, the Equidistant Conic projection
becomes the Plate Carrée form of the Equidistant Cylindrical, but the formulas
must be changed. If the two standard parallels are symmetrical about the Equator,
the Equirectangular results. If the standard parallel is the pole, the Azimuthal
Equidistant projection is obtained.

FicUrE 22.—Equidistant Conic projection, with standard parallels 20° and 60° N. All of North Amer-
ica is included to show that parallels remain equidistant. Compare figures 20 and 21.
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USAGE

The Equidistant Conic projection is commonly used in the spherical form in
atlases for maps of small countries. Its only use by the USGS has been in an
approximate ellipsoidal form for Alaska Maps “B” and “E,” but the projection
name applied is “Modified Transverse Mercator” (see p. 64), due to the original
manner of construction. The formulas for the ellipsoidal version were apparently
first published in Snyder (1978a), although there may be several de facto usages
of the ellipsoidal form such as the above. For example, the New Mexico Planning
Survey in effect devised such a projection in 1936 for the mapping of that State,
calling it a “Modified Conic Projection” (Thomas E. Henderson, pers. comm.,
1985).

FORMULAS FOR THE SPHERE

For the Equidistant Conic projection with two standard parallels, given R, ¢,,
b2, &g, Ao, &, and A, to find x and y (see p. 298 for numerical examples):

x =psin@ (14-1)

= po—p Ccos O (14-2)

where

p =R (G-d) (16-1)
0 =n A=Ay (14—4)
po = R (G—dy) (16—-2)
G = (cos ¢y)/n+d, (16-3)
n = (cos &;—cos by (ba—dy) (16—4)

o, Ao = the latitude and longitude for the origin of the rectangular coordinates.
&;, b = standard parallels.

The Y axis lies along the central meridian A, y increasing northerly; the X axis
intersects perpendicularly at ¢,, x increasing easterly. If (A—\;) exceeds the
range *+180°, 360° should be added or subtracted. Constants n, G, and p, need
to be determined only once for the entire map.

If only one standard parallel ¢, is desired, equation (16—4) is indeterminate,
but # = sin &;. The scale & along meridians is 1.0. Along parallels, using equation
(4-5), the scale is

k = (G—d)n/cos ¢ (16—5)

The maximum angular deformation may be calculated from equation (4—9). As on
other regular conics, distortion is only a function of latitude.

For the inverse formulas for the sphere, given R, &,, b2, b, Ao, , and y, to find
¢ and A: n, G, and p, are calculated from equations (16—4), (16—3), and (16—2),
respectively. Then,

& =G - p/lR (16-6)
A =Ny + 0/ (14-9)

where
*[2% + (po—¥)?]'?, taking the signof n (14-10)

p =
8 = arctan [x/(po—y)] (14-11)
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To use the ATAN2 function, if n is negative, the signs of x, y, and p, (given a
negative sign by equation (16—2)) must be reversed before inserting them in
equation (14—11).

FORMULAS FOR THE ELLIPSOID

For mapping of regions smaller than the United States at scales greater than
1:5,000,000, using the Equidistant Conic projection, the ellipsoidal formulas should
be considered. Given a, e, ¢,, &y, dg, Ao, &, and A, to find x and y (see p. 299
for numerical examples):

x =psin@ (14-1)
Y =po—p COS O (14-2)
k = pn/(am) (14-16)
=(G—M/a)yn/m (16—-17)

where
=aG-M (16—8)
0 =n (A—X\g) (14-4)
po =aG—-M, (16-9)
n =alm,—my)/(My—M,) (16—10)
m = cos $/(1—€? sin® $)'2 (14-15)
G =my/n + M,/a (16—11)

M =a [(1-e%/4—-3¢*/64—5€5/256—. . )b
— (3¢%/8 + 3¢%/32 + 45¢5/1024 + . . .)sin2¢
+ (15€%/256 + 45€5/1024 + . . .) sin 4¢
— (35¢%/3072+. . .) sin 6 + . . .] 3-21)

with the same subscripts 1, 2, or none applied to m and ¢ in equation (14—15), and
0, 1, 2, or none applied to M and ¢ in equation (3—21). For improved computa-
tional efficiency using the series, see p. 19. As with other conics, a negative n and
p result for projections centered in the Southern Hemisphere. If &, = ¢,, for the
Equidistant Conic with a single standard parallel, equation (16—10) is indetermi-
nate, but » = sin ¢,. Origin and orientation of axes for x and y are the same as
those for the spherical form. Constants n, G, and p, may be determined just once
for the entire map.

For the inverse formulas for the ellipsoid, given a, e, ¢,, &z, b, Ao, x, and y, to
find ¢ and A: n, G, and p, are calculated from equations (16—10), (16—11), and
(16—9), respectively. Then

b = p + (3€,/2—27¢,%32+ . . .) sin 2n + (21e,%/16—55¢,%/32+ . . .)

sin4p + (151€,%96— . . .)sin 6 + (1097¢,%/512— . . .)sin 8u+ ... (3—-26)
where
er =[1 - (1-¢*)'2)[1+(1-€*'?) (3-24)
p = M/[a(1-e?/4—3e*/64—5¢%/256— . . .)] (7-19)
M=aG —p (16—12)
p = = [x®+(po—y)?]'2, taking the sign of n (14-10)
AN =X\ + 0/n (14-9)
0 = arctan [x/(py—y)] (14-11)

To use the ATANZ function, if n is negative, the signs of x, y, and p,, must be
reversed before inserting them in equation (14—11). For improved computational
efficiency using the series (3—26), see p. 19.
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Polar coordinates for the Equidistant Conic projection for a map of the United
States, assuming standard parallels of lat. 29.5° and 45.5°N., are listed in table 17
for both the spherical and ellipsoidal forms. A graticule extended to the North
Pole is shown in figure 22.

To convert coordinates measured on an existing Equidistant Conic map, the
user may choose any meridian for Ao and therefore for the Y axis, and any latitude
for ¢,. The X axis then is placed perpendicular to the Y axis at ¢,.

TABLE 17.—Equidistant Conic projection: Polar coordinates

{Standard parallels: 29.5°, 45.5°N|

Projection for sphere (R =6,370,997 m) Projection for Clarke 1866 ellipsoid
(n = 0.6067854) (a = 6,378,206.4 m) (n = 0.6068355)
Lat. P k p k
52° 6,636,493 1.02665 6,656,864 1.02656
51 6,747,688 1.02120 6,768,123 1.02113
50 6,858,883 1.01628 6,879,362 1.01622
49 6,970,078 1.01186 6,990,581 1.01182
48 7,081,272 1.00792 7,101,781 1.00790
47 7,192,467 1.00444 7,212,961 1.00442
46 7,303,662 1.00138 7,324,122 1.00137
45.5 7,359,260 1.00000 7,379,695 1.00000
45 7,414,857 0.99872 7,435,263 0.99873
4 7,526,052 .99646 7,546,384 .99648
43 7,637,247 199457 7,657,485 .99460
42 7,748,442 .99304 7,768,566 .99307
41 7,859,637 .99186 7,879,628 .99189
40 7,970,831 .99101 7,990,671 .99105
39 8,082,026 .99048 8,101,694 199052
38 8,193,221 .99026 8,212,697 .99030
37 8,304,416 .99035 8,323,682 .99039
36 8,415,611 .99073 8,434,648 .99077
35 8,526,806 .99140 8,545,594 .99144
34 8,638,001 .99235 8,656,523 199239
33 8,749,196 .99358 8,767,433 .99361
32 8,860,390 .99508 8,878,325 .99511
31 8,971,585 .99685 8,989,199 .99687
30 9,082,780 .99889 9,100,056 .99889
29.5 9,138,378 1.00000 9,155,478 1.00000
29 9,193,975 1.00118 9,210,896 1.00117
28 9,305,170 1.00373 9,321,720 1.00371
27 9,416,365 1.00654 9,432,527 1.00651
26 9,527,560 1.00960 9,543,318 1.00955
25 9,638,755 1.01291 9,654,093 1.01285
24 9,749,949 1.01648 9,764,854 1.01640
23 9,861,144 1.02030 9,875,600 1.02020
22 9,972,339 1.02437 9,986,332 1.02425
Note: p =radius of latitude circles, meters.
h = scale factor along meridians = 1.0.
k = scale factor along parallels.
R =assumed radius of sphere.
a = assumed semimajor axis of ellipsoid.
n = cone constant, or ratio of angle between meridians on map to true angle.
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17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION

SUMMARY

e Two oblique conic projections, side-by-side, but with poles 104° apart.

e Conformal.

e Meridians and parallels are complex curves, intersecting at right angles.

e Scale is true along two standard transformed parallels on each conic projection,
neither of these lines following any geographical meridian or parallel.

e Very small deviation from conformality, where the two conic projections join.

e Specially developed for a map of the Americas.

e Used only in spherical form.

e Presented by Miller and Briesemeister in 1941.

HISTORY

A “tailor-made” projection is one designed for a certain geographical area.
0. M. Miller used the term for some projections which he developed for the Amer-
can Geographical Society (AGS) or for their clients. The Bipolar Oblique Conic
Conformal projection, developed with William A. Briesemeister, was presented
in 1941 and designed specifically for a map of North and South America con-
structed in several sheets by the AGS at a scale of 1:5,000,000 (Miller, 1941).

It is an adaptation of the Lambert Conformal Conic projection to minimize scale
error over the two continents by accommodating the fact that North America
tends to curve toward the east as one proceeds from north to south, while South
America tends to curve in the opposite direction. Because of the relatively small
scale of the map, the Earth was treated as a sphere. To construct the map, a great
circle arc 104° long was selected to cut through Central America from southwest to
northeast, beginning at lat. 20° S. and long. 110° W. and terminating at lat. 45° N.
and the resulting longitude of about 19°59'36” W.

The former point is used as the pole and as the center of transformed parallels
of latitude for an Oblique Conformal Conic projection with two standard parallels
(at polar distances of 31° and 73°) for all the land in the Americas southeast of the
104° great circle arc. The latter point serves as the pole and center of parallels for
an identical projection for all land northwest of the same arc. The inner and outer
standard parallels of the northwest portion of the map, thus, are tangent to the
outer and inner standard parallels, respectively, of the southeast portion, touch-
ing at the dividing line (104°-31°=173°).

The scale of the map was then increased by about 3.5 percent, so that the linear
scale error along the central parallels (at a polar distance of 52°, halfway between
31° and 73°) is equal and opposite in sign (—3.5 percent) to the scale error along the
two standard parallels (now +3.5 percent) which are at the normal map limits.
Under these conditions, transformed parallels at polar distances of about 36.34°
and 66.58° are true to scale and are actually the standard transformed parallels.

The use of the Oblique Conformal Conic projection was not original with Miller
and Briesemeister. The concept involves the shifting of the graticule of meridians
and parallels for the regular Lambert Conformal Conic so that the pole of the
projection is no longer at the pole of the Earth. This is the same principle as the
transformation for the Oblique Mercator projection. The bipolar concept is unique,
however, and it has apparently not been used for any other maps.

FEATURES AND USAGE
The Geological Survey has used the North American portion of the map for the

Geologic Map (1965), the Basement Map (1967), the Geothermal Map, and the
Metallogenic Map, all retaining the original scale of 1:5,000,000. The Tectonic
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Map of North America (1969) is generally based on the Bipolar Oblique Conic
Conformal, but there are modifications near the edges. An oblique conic projec-
tion about a single transformed pole would suffice for either one of the continents
alone, but the AGS map served as an available base map at an appropriate scale.
In 1979, the USGS decided to replace this projection with the Transverse Merca-
tor for a map of North America.

The projection is conformal, and each of the two conic projections has all the
characteristics of the Lambert Conformal Conic projection, except for the impor-
tant difference in location of the pole, and a very narrow band near the center.
While meridians and parallels on the oblique projection intersect at right angles
because the map is conformal, the parallels are not ares of circles, and the meridi-
ans are not straight, except for the peripheral meridian from each transformed
pole to the nearest normal pole.

The scale is constant along each circular arc centered on the transformed pole
for the conic projection of the particular portion of the map. Thus, the two lines at
a scale factor of 1.035, that is, both pairs of the official standard transformed
parallels, are mapped as circular arcs forming the letter “S.” The 104° great circle
arc separating the two oblique conic projections is a straight line on the map, and
all other straight lines radiating from the poles for the respective conic projec-
tions are transformed meridians and are therefore great circle routes. These
straight lines are not normally shown on the finished map.

At the juncture of the two conic projections, along the 104° axis, there is actually
a slight mathematical discontinuity at every point except for the two points at
which the transformed parallels of polar distance 31° and 73° meet. If the conic
projections are strictly followed, there is a maximum discrepancy of 1.6 mm at the
1:5,000,000 scale at the midpoint of this axis, halfway between the poles or between
the intersections of the axis with the 31° and 73° transformed parallels. In other
words, a meridian approaching the axis from the south is shifted up to 1.6 mm
along the axis as it crosses. Along the axis, but beyond the portion between the
lines of true scale, the discrepancy increases markedly, until it is over 240 mm at
the transformed poles. These latter areas are beyond the needed range of the map
and are not shown, just as the polar areas of the regular Lambert Conformal
Conic are normally omitted. This would not happen if the Oblique Equidistant
Conic projection were used.

The discontinuity was resolved by connecting the two arcs with a straight line
tangent to both, a convenience which leaves the small intermediate area slightly
nonconformal. This adjustment is included in the formulas below.

FORMULAS FOR THE SPHERE

The original map was prepared by the American Geographical Society, in an
era when automatic plotters and easy computation of coordinates were not yet
present. Map coordinates were determined by converting the geographical coordi-
nates of a given graticule intersection to the transformed latitude and longitude
based on the poles of the projection, then to polar coordinates according to the
conformal projection, and finally to rectangular coordinates relative to the selected
origin.

The following formulas combine these steps in a form which may be programmed
for the computer. First, various constants are calculated from the above
parameters, applying to the entire map. Since only one map is involved, the
numerical values are inserted in formulas, except where the numbers are tran-
scendental and are referred to by symbols.

If the southwest pole is at point A, the northeast pole is at point B, and the
center point on the axis is C,
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Ag = —110°+arccos[cos 104°—sin(—20°)sin45°)/

[cos(—20°) cos 45°]! a7-1)
= —19°59'36" long., the longitude of B (negative is west long.)
n = (In sin 31°—In sin 73°)/[In tan (31°/2)—In tan (73°2)] 17-2)
= 0.63056, the cone constant for both conic projections
Fy=R sin 31°/[n tan”(31°/2)] 17-3)

=1.83376 R, where R is the radius of the globe at the scale of the map.
For the 1:5,000,000 map, R was taken as 6,371,221 m, the radius of a
sphere having a volume equal to that of the International ellipsoid.

ko=2/[1+nF, tan” 26°/(R sin 52°)] 17-4)

=1.03462, the scale factor by which the coordinates are multiplied to balance
the errors

F=kF, (17-5)

=1.89725 R, a convenient constant
Az, , = arccos {[cos (—20°) sin 45°~—sin (—20°) cos 45° cos
(A, +110°))/sin 104°! (17-6)
=46.78203°, the azimuth east of north of B from A
Az,, =arccos {[cos 45° sin (—20°)—sin 45° cos (—20°) cos

(A, +110°))/sin 104° 17-7
=104.42834°, the azimuth west of north of A from B
T =tan” (31°/2) + tan”(73°/2) 17-8)
=1.27247, a convenient constant
p.=VeF'T 17-9)
=1.20709 R, the radius of the center point of the axis from either pole
2,=2 arctan (T/2)"" (17-10)

=52.03888°, the polar distance of the center point from either pole

Note that z, would be exactly 52°, if there were no discontinuity at the axis. The
values of ¢, A, and Az are calculated as if no adjustment were made at the axis
due to the discontinuity. Their use is completely arbitrary and only affects posi-
tions of the arbitrary X and Y axes, not the map itself. The adjustment is included
in formulas for a given point.

.= aresin [sin (—20°) cos z, + cos (—20°) sin z.cos Az,,] (17-11)
=17°16'28" N. lat., the latitude of the center point, on the
southern-cone side of the axis
A, =aresin (sin zsin Az, /cos ¢,)—110° (17-12)
= —73°00'27" long., the longitude of the center point, on the
southern-cone side of the axis
Az, =aresin [cos (—20°) sin Az,,/cos b, ] (17-13)
=45.81997°, the azimuth east of north of the axis at the center point, relative
to meridian A, on the southern-cone side of the axis

The remaining equations are given in the order used, for calculating rectangu-
lar coordinates for various values of latitude ¢ and longitude A (measured east
from Greenwich, or with a minus sign for the western values used here). There
are some conditional transfers and adjustments which would apply only if a map
extending well beyond the regions of interest were to be plotted; these are omit-
ted to avoid unnecessary complication. It must be established first whether point
(d, N\) is north or south of the axis, to determine which conic projection is involved.
With these formulas, it is done by comparing the azimuth of point (b, A) with the
azimuth of the axis, all as viewed from B (see p. 301 for numerical examples):

z, = arccos [sin 45° sin & +cos 45° cos ¢ cos (A, —N)] (17-14)
= polar distance of (b, A) from pole B
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Azg=arctan {sin (\;—\)/[cos 45° tan d—sin 45° cos (\,—N)]i
= azimuth of (¢, A\) west of north, viewed from B

(17-15)

If Az, is greater than Az,, (from equation (17—7)), go to equation (17-23).

Otherwise proceed to equation (17-16) for the projection from pole B.

py=F tan"Vez,
k=pgn/(R sin z,)
= scale factor at point (4, \), disregarding
small adjustment near axis

a = arccos |[tan"Vez, +tan"¥2(104°—z,))/T|

If In (Azy,— Azp)! is less than «,
Py’ =py/cos [a—n (Az,,—Azy)]
If the above expression is equal to or greater than «,
Ps =Py

Then

x'=pg" sin [n (Azy,—Az,)]
y' =p, cos [n (Az,,—Az,)]-p,

(17-16)

17-17)

(17-18)

(17-19)

(17-20)

17-21
17-22)

using constants from equations (17—2), (17-3), (17—7), and (17-9) for rectangu-
lar coordinates relative to the axis. To change to nonskewed rectangular
coordinates, go to equations (17—32) and (17—33). The following formulas give

coordinates for the projection from pole A.

2, = arccos [sin (—20°) sin ¢ +cos (—20°) cos b cos (A +110°)]
polar distance of (¢, A) from pole A
Az, = arctan [sin (A +110°)/[cos (—20°) tan ¢—sin (—20°)
cos (A +110°)]!
= azimuth of (¢, \) east of north, viewed from A

p, = F tan"Vez,

k = p,n/R sin z, =scale factor at point (¢, A)

a = arccos |[tan"Vez, + tan"V2(104°—z,)/T!

If In (Az,,—Az,)! is less than a,

p,’ =palcos [a+n (Az,,—Az,)]
If the above expression is equal to or greater than a,

’

Pa =P4
Then

"=p, sin[n (Az,,—Az))]
y' =-p, cos[n (Az,,—Az,)]+p,
x=—x'cos Az.—y’ sin Az,
y=—y cos Az +x' sin Az,

(17-23)

(17-24)

(17-25)
(17-26)
17-27)

(17-28)

(17-29)

(17-30)
(17-31)
(17-32)
(17-33)

where the center point at (¢, A,) is approximately the origin of (x, y) coordinates,
the Y axis increasing due north and the X axis due east from the origin. (The
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meridian and parallel actually crossing the origin are shifted by about 3’ of are,
due to the adjustment at the axis, but their actual values do not affect the
calculations here.)

For the inverse formulas for the Bipolar Oblique Conic Conformal, the con-
stants for the map must first be calculated from equations (17—1)—(17-13).
Given x and y coordinates based on the above axes, they are then converted to the
skew coordinates:

x' = —x cos Az, +y sin Az, 17-34)
y' = —x sin Az,—y cos Az, (17-35)

If x' is equal to or greater than zero, go to equation (17—36). If 2’ is negative,
go to equation (17—-45).

py = [x%+(p,+y")*)2 (17-36)
Az,' = arctan [x'/(p, +y")] 17-37)
Let
Py =Py (17-38)
z, =2 arctan (p /F)" (17-39)
= arccos |[tan"Vez, + tan"V2(104°—2,))/ T} (17-40)

If 1Azl is equal to or greater than a, go to equation (17—42). If 1A2,'| is less
than a, calculate

Py =pg cos (a—Az,") (17-41)
and use this value to recalculate equations (17—-39), (17—40), and (17—41), repeat-
ing until p, found in (17—-41) changes by less than a predetermined convergence.

Then,

Azy=Az,, —Az)/'In (17-42)

Using Az, and the final value of z,,

¢ = arcsin (sin 45° cos z,+ cos 45° sin z, cos Az,) (17-43)
N = A\,—arctan Isin Az,/[cos 45°/tan z,—sin 45° cos Azl  (17-44)

The remaining equations are for the southern cone only (negative x'):

Py = [x'2+ (p.—y' )12 (17-45)
Az,' = arctan [x'/(p.—y")] (17—-46)
Let
Py=P, (17-47)
2, =2 arctan (p,/F)"" (17-48)
a = arccos {[tan"Vzz, +tan’”/z(104°—zA)]/T] (17-49)

If 1Az,'l is equal to or greater than «, go to equation (17—-51). If 1Az,'l is less
than a, calculate

p,=p, cos (a+Az,") (17-50)
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FiGURE 23.—Bipolar Oblique Conic Conformal projection used for various geologic maps. The Ameri-
can Geographical Society, under O. M. Miller, prepared the base map used by the USGS. (Pre-
pared by Tau Rho Alpha.)

and use this value to recalculate equations (17—-48), (17—49), and (17—-50), repeat-
ing until p, found in equation (17-50) changes by less than a predetermined
convergence. Then,

Az, =Az,,—Az,'/n (17-51)

Using Az, and the final value of z,,

¢ = aresin [sin (—20°) cos z, + cos 20° sin z, cos Az,] (17-52)
A\ = aretan (sin Az,/[cos (—20°)/tan z,
—sin (—20°) cos Az,]|-110° (17-53)

Equations (17—17) or (17—26) may be used for calculating k after ¢ and A are
determined.

A table of rectangular coordinates is given in table 18, based on a radius R of
1.0, while a graticule is shown in figure 23.
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17. BIPOLAR OBLIQUE CONIC CONFORMAL PROJECTION
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MAP PROJECTIONS—A WORKING MANUAL

18. POLYCONIC PROJECTION

SUMMARY

e Neither conformal nor equal-area.

o Parallels of latitude (except for Equator) are arcs of circles, but are not
concentric.

e Central meridian and Equator are straight lines; all other meridians are
complex curves.

e Scale is true along each parallel and along the central meridian, but no parallel
is “standard.”

e Free of distortion only along the central meridian.

e Used almost exclusively in slightly modified form for large-scale mapping in the
United States until the 1950’s.

e Was apparently originated about 1820 by Hassler.

HISTORY

Shortly before 1820, Ferdinand Rudolph Hassler (fig. 24) began to promote the
Polyconic projection, which was to become a standard for much of the official
mapping of the United States (Deetz and Adams, 1934, p. 58—60).

Born in Switzerland in 1770, Hassler arrived in the United States in 1805 and
was hired 2 years later as the first head of the Survey of the Coast. He was forced
to wait until 1811 for funds and equipment, meanwhile teaching to maintain
income. After funds were granted, he spent 4 years in Europe securing equipment.
Surveying began in 1816, but Congress, dissatisfied with the progress, took the
Survey from his control in 1818. The work only foundered. It was returned to
Hassler, now superintendent, in 1832. Hassler died in Philadelphia in 1843 as a
result of exposure after a fall, trying to save his instruments in a severe wind and
hailstorm, but he had firmly established what later became the U.S. Coast and
Geodetic Survey (Wraight and Roberts, 1957) and is now the National Ocean
Service.

The Polyconic projection, usually called the American Polyconic in Europe,
achieved its name because the curvature of the circular arc for each parallel on the
map is the same as it would be following the unrolling of a cone which had been
wrapped around the globe tangent to the particular parallel of latitude, with the
parallel traced onto the cone. Thus, there are many (“poly-”) cones involved,
rather than the single cone of each regular conic projection. As Hassler himself
described the principles, “[t]his distribution of the projection, in an assemblage of
sections of surfaces of successive cones, tangents to or cutting a regular succes-
sion of parallels, and upon regularly changing central meridians, appeared to me
the only one applicable to the coast of the United States” (Hassler, 1825,
p. 407—408).

The term “polyconic” is also applied generically by some writers to other
projections on which parallels are shown as circular arcs. Most commonly, the
term applies to the specific projection described here.

FEATURES

The Polyconic projection (fig. 25) is neither equal-area nor conformal. Along the
central meridian, however, it is both distortion free and true to scale. Each
parallel is true to scale, but the meridians are lengthened by various amounts to
cross each parallel at the correct position along the parallel, so that no parallel is
standard in the sense of having conformality (or correct angles), except at the
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FIGURE 24.—Ferdinand Rudolph Hassler (1770 -1843), first Superintendent of the U.S. Coast Survey
and presumed inventor of the Polyconic projection. As a result of his promotion of its use, it
became the projection exclusively used for USGS topographic quadrangles for about 70 years.

central meridian. Near the central meridian, which is the case with 7%2-minute
quadrangles, distortion is extremely small. The Polyconic projection is universal
in that tables of rectangular coordinates may be used for any Polyconic projection
of the same ellipsoid by merely applying the proper scale and central meridian.
U.S. Coast and Geodetic Survey Special Publication No. 5 (1900) replaced tables
published in 1884 and was often reprinted because of the universality of the
projection (the Clarke 1866 is the reference ellipsoid). Polyconic quadrangle maps
prepared to the same scale and for the same central meridian and ellipsoid will fit
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FiGURE 25.—North America on a Polyconic projection grid, central meridian long. 100° W., using a
10° interval. The parallels are arcs of circles which are not concentric, but have radii equal to the
radius of curvature of the parallel at the Earth’s surface. The meridians are complex curves formed
by connecting points marked off along the parallels at their true distances. Used by the USGS
for topographic quadrangle maps.

exactly from north to south. Since they are drawn in practice with straight
meridians, they also fit east to west, but discrepancies will accumulate if mosaick-
ing is attempted in both directions.

The parallels are all circular arcs, with the centers of the arcs lying along an
extension of the straight central meridian, but these arcs are not concentric.
Instead, as noted earlier, the radius of each arc is that of the circle developed
from a cone tangent to the sphere or ellipsoid at the latitude. For the sphere, each
parallel has a radius proportional to the cotangent of the latitude. For the ellipsoid,
the radius is slightly different. The Equator is a straight line in either case. Along
the central meridian, the parallels are spaced at their true intervals. For the
sphere, they are therefore equidistant. Each parallel is marked off for meridians
equidistantly and true to scale. The points so marked are connected by the curved
meridians.

USAGE

As geodetic and coastal surveying began in earnest during the 19th century,
the Polyconic projection became a standard, especially for quadrangles. Most
coastal charts produced by the Coast Survey and its successor during the 19th
century were based on one or more variations of the Polyconic projection
(Shalowitz, 1964, p. 138—141). The name of the projection appears on a later
reprint of one of the first published USGS topographic quadrangles, which
appeared in 1886. In 1904, the USGS published tables of rectangular coordinates
extracted from an 1884 Coast and Geodetic Survey report. They were called
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“coordinates of curvature,” but were actually coordinates for the Polyconic
projection, although the latter term was not used (Gannett, 1904, p. 37—48).

As a 1928 USGS bulletin of topographic instructions stated (Beaman, 1928,
p. 163):

The topographic engineer needs a projection which is simple in construction, which can be used to
represent small areas on any part of the globe, and which, for each small area to which it is applied,
preserves shapes, areas, distances, and azimuths in their true relation to the surface of the earth. The
polyconic projection meets all these needs and was adopted for the standard topographic map of the
United States, in which the 1° quadrangle is the largest unit * * * and the 15’ quadrangle is the average
unit. * * * Misuse of this projection in attempts to spread it over large areas—that is, to construct a
single map of a large area—has developed serious errors and gross exaggeration of details. For
example, the polyconic projection is not at all suitable for a single-sheet map of the United States or of
a large State, although it has been so employed.

When coordinate plotters and published tables for the State Plane Coordinate
System (SPCS) became available in the late 1950’s, the USGS ceased using the
Polyconic for new maps, in favor of the Transverse Mercator or Lambert Confor-
mal Conic projections used with the SPCS for the area involved. Some of the
quadrangles prepared on one or the other of these projections have continued to
carry the Polyconic designation, however.

The Polyconic projection was also used for the Progressive Military Grid for
military mapping of the United States. There were seven zones, A—G, with
central meridians every 8° west from long. 73° W. (zone A), each zone having an
origin at lat. 40°30’ N. on the central meridian with coordinates x=1,000,000
yards, y = 2,000,000 yards (Deetz and Adams, 1934, p. 87-90). Some USGS quad-
rangles of the 1930’s and 1940’s display tick marks according to this grid in yards,
and many quadrangles then prepared by the Army Map Service and sold by the
USGS show a complete grid pattern. This grid was incorporated intact into the
World Polyconic Grid (WPG) until both were superseded by the Universal Trans-
verse Mercator grid (Mugnier, 1983).

While quadrangles based on the Polyconic provide low-distortion mapping of
the local areas, the inability to mosaic these quadrangles in all directions without
gaps makes them less satisfactory for a larger region. Quadrangles based on the
SPCS may be mosaicked over an entire zone, at the expense of increased distortion.

For an individual quadrangle 7%z or 15 minutes of latitude or longitude on a
side, the distance of the quadrangle from the central meridian of a Transverse
Mercator zone or from the standard parallels of a Lambert Conformal Conic zone
of the SPCS has much more effect than the type of projection upon the variation
in measurement of distances on quadrangles based on the various projections. If
the central meridians or standard parallels of the SPCS zones fall on the
quadrangle, a change of projection from Polyconic to Transverse Mercator or
Lambert Conformal Conic results in a difference of less than 0.001 mm in the
measurement of the 700—800 mm diagonals of a 7%2-minute quadrangle. If the
quadrangle is near the edge of a zone, the discrepancy between measurements of
diagonals on two maps of the same quadrangle, one using the Transverse Merca-
tor or Lambert Conformal Conic projection and the other using the Polyconie, can
reach about 0.05 mm. These differences are exceeded by variations in expansion
and contraction of paper maps, so that these mathematical discrepancies apply
only to comparisons of stable-base maps.

Actually, the central meridian of a 7%2-minute Polyconic quadrangle may lie
along the edge of the map, since 15-minute quadrangles were frequently cut and
enlarged to achieve the less extensive coverage. This has a negligible effect upon
the map geometry.

Before the Lambert became the projection for the 1:500,000 State base map
series, a modified form of the Polyconic was used, but the details are unclear. The
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Polyconic was used for the base maps of Alaska until 1972. It has also been used
for maps of the United States; but, as stated above, the distortion is excessive at
the east and west coasts, and most current maps are drawn to either the Lambert
or Albers Conic projections. There are several other modified Polyconic projections,
in use or devised, including the Rectangular Polyconic and Bousfield’s modifica-
tion used for northern Canada (Haines, 1981). The best known is that used for the
International Map of the World, described on p. 131.

GEOMETRIC CONSTRUCTION

Because of the simplicity of construction using universal tables with which the
central meridian and each parallel may be marked off at true distances, the
Polyconic projection was favored long after theoretically better projections became
known in geodetic circles.

The Polyconic projection must be constructed with curved meridians and paral-
lels if it is used for single-sheet maps of areas with east-west extent of several
degree<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>