

THE

3 SMASH HITS . . . the 60 Series family Ruggedness - Safety - Overload Protection

caution opscive saftiy mulss
Ω

V תMA

These VOM's have X-TRA ${ }^{\text {TM }}$ rugged construction that can take a 5 ft . drop onto a concrete floor! They're safety engineered throughout with an unusual diode and multiple fuse arrangement providing overload protection for all ranges. Single selector switch reduces errors, in fact, the 60's eliminate over 90\% of costly repairs from VOM misuse.
MODEL 60 VOM- 28 ranges, approved by Mining Enforcement and Safety Administration (2G-2880), only $\$ 140.00$. Model 60 -A has $11 / 2 \%$ DC accuracy plus mirrored scale, only $\$ 151.00$.
MODEL 60-NA VOM- 50 ranges, $11 / 2 \%$ DC accuracy, mirrored scale, multiplier switch, only $\$ 191.00$
MODEL 64 FET-VO - FET design (high input impedance). Low-Power Ohms-LP $\Omega^{\text {tu }}$ - for in circuit testing, junction test circuit, exclusive MICRO POWER-TMP ${ }^{\text {me }}$ for long battery life under continuous operation, only $\$ 202.00$.
Prices include test leads, new screw-on insulated alligator clips for probes, batteries, spare fuses, instruction manual and 1 year warranty.
For a demonstration, contact your Triplett distributor, Mod Center or representative.
Triplett Corporation, Bluffton, Ohio 45817 (419) 358-5015, TWX (810) 490-2400.

We take
 the nail-biting out of mail-order shopping.

16K RAM KITS 13.95
Set of 8 NEC 4116200 ns . Guaranteed one full year.

DISKETTES

ALPHA DISKS
21.95

Single sided, certified Double Density 40 Tracks. with Hub-ring. Box of 10 . Guaranteed one full year.

VERBATIM DATALIFE
MD 525-01, 10, 16
MD 550-01, 10, 16
MD 557-01, 10, 16
MD 577-01, 10, 16
FD 32 or $34-9000$
FD 32 or $34-8000$
FD 34.4001

DISKETTE STORAGE

5y/" PLASTIC LIBRARY CASE 8" PLASTIC LIBRARY CASE. 2.50 LASTIC STORACE BINDEA w/ Inserts $\quad 3.50$ PAOTECTOR 54GE BINOER w/ inserts . . . 9.95 OTECTOR 5y" " (50 Disk Capacity) 21.95 PROTECTOR $8^{\prime \prime}$ (50 Disk Capacity).24.95

PRINTERS

ANADEX DP 9500. ANADEX OP 9501 C-ITOH 25 CPS PARALLEL C-ITOH 25 CPS SERIAL C-ITOH 45 CPS PARALLEL C-ITOH 40 CPS SERIAL EPSON MX-80. EPSON MX-80 F/T. EPSON MX-100 GRAPHIC EPSON GRAFTRAX IDS-445G PAPER TIGER DS-460G PAPER TIGER DS-560G PAPER TIGER NEC SPINWRITER 3510 S. RO NEC SPINWRITER 3530 P. RO NEC SPINWRITER 7710 S. RO NEC SPINWRITER 7730 P. RO NEC SPINWRITER 7700 D SELLUM NEC SPINWRITER 3500 SELLUM. OKIDATA MICROLINE 80 OKIDATA MICROLINE 82A OKIDATA MICROLINE 83 A OKIDATA MICROLINE 84 QUME $9 / 45$
MALIBU 200 DUAL MODE

APPLE HARDWARE

VERSA WRITER DIGITIZER
ABT APPLE KEYPAD

CROSOFT 2-80 SOFTWARD	
CROSOFT RAMCARD	
VIDEX 80×24 VIDEO CARD	
VIDEX KEY ${ }^{\text {a }}$ AARD ENHANCER II	
VIDEX ENHANCER REV 0.6	
VIDEX SOFT SWITCH	
M \& R SUPERTERM 80×24 VIDEO BD	315
NEC 12" GREEN MONTTOR	199
NEC 13" COLOR MONITOR	
SANYO 12 " MONITOR (B \& W)	249
SANYO 12" MONITOR (GREEN)	269
SANYO 13" COLOR MONITOR.	
SSM AIO BOARD ((NTERFACE) A \&	
SSM AIO BOARD (INTERFACE) KIT	
ZENTH 13 " HI RES GREEN MON.	
APPLE FAN	
T/G jorstick	
T/G PADDLE.	
VERSA E-Z Port	
MICRO SCI A4O W/ CONTHOLLER	
MICRO SCI A40 W/O CONTROLLER	
MICRO SCI ATO W/ CONTROLLER	
MICRO SCI ATO W/O CONTROLLER	
THE MILL-PASCAL SPEED UP.	
PROMETHEUS VERSACARO	
MODEMS	

MODEMS

NOVATION CAT ACOUSTIC MODEM NOVATION D-CAT DIRECT CONNECT NOVATION AUTO-CAT AUTO ANS NOVATION APPLE-CAT
UDS 103 LP DIRECT CONNECT
UDS 103 JLP AUTO ANS
HAYES MICROMODEM II (APPLE)
HAYES 100 MODEM (S-100)
HAYES SMART MODEM (RS-232)
HAYES CHRONOGRAPH
LEXICON LX-11 MODEM
299.00 159.00
299.00 299.00
129.00 129.00 99.00 29.00 315.00 199.00 399.00 249.00 249.00 269.00 469.00 165.00 135.00 139.00 .44 .95 54.95 34.95 .21 .95 .21 .95
479.00 479.00 409.00 629.00 549.00 329.00 229.00

SO-1 3-SOCKET.
53.95
53.9

BARE DRIVES
TANDON $51 / 4$ INCH

100-1 SINGLE HEAD 40 TRK	00
100-2 DUAL HEAD 40 TRK	299.00
100-3 SINGLE HEAD 80 TRK	299.00
100-4 DUAL HEAD 80 TRK.	429.00
TANDON THINLINE 8 INCH	
848-1 SINGLE SIDE	459.00
848-2 DUAL SIDE	549.00

MICRO PRO

APPLE CP/M ${ }^{*}$
WORDSTAR
259.00
$\begin{array}{r} \\ \hline . . . \\ \hline 15.00\end{array}$
DPELTAR 215.00
$\begin{array}{ll}\text { CALCSTAR } & 169.00 \\ & 239.00\end{array}$
CP/M ${ }^{\text {® }}$
WORDSTAR
SUPERSORT
MAILMERGE 110.00
DATASTAR $\quad 245.00$
SPELLSTAR 195.00
CALCSTAR $\quad 169.00$

MICROSOFT
 APPLE

FORTRAN*
165.00

BASIC COMPILER*	315.00
COBOL*	595.00
Z-80 SOFTCARD	299.00
RAMCARD	159.00
TYPING TUTOR	17.95
OLYMPIC DECATHLON	24.95
TASC APPLESOFT COMPILER	159.00
CP/M ${ }^{\text {© }}$	
BASIC 80	299.00
BASIC COMPILER	. 319.00
FORTRAN 80	. 369.00
COBOL 80	. 595.00

APPLE SOFTWARE
MAGIC WINDOW 79.00 DB MASTER (NEW) 179.00 PFS: PERSONAL FILING SYSTEM 79.00 PFS: REPORT 79.00
Z-TERM*
89.95

ASCII EXPRESS $\quad 63.95$
HAYDEN APPLESOFT COMPILER $\quad 149.00$
EASY WRITER-PRO 19900
EXPEDITER \| APPLESOFT COMPILER . . . 73.95 A-STAT COMP STATISTICS PKG. $\quad 119.00$ SUPER TEXT II..................... 129.00

PERSONAL SOFTWARE
DESKTOP PLAN II $\quad 159.00$
CCA DATA MGMT. SYSTEM 89.00
VISIPLOT $\quad 159.00$
VISITREND/VISIPLOT 199.00
VISIDEX
VISITERM $\quad 129.00$
VISICALC $3.3 \ldots \quad 159.00$
VISIFILES $\quad 199.00$
Alpha
Byte?
COMPUTER PRODUCTS

We built a reputation on our prices and your satisfaction.
We guarantee everything for 30 days. If anything is wrong, return the item and we'll make it right. And, of course, we'll pay the shipping charges.
We accept Visa and Master Card on all orders; COD orders, up to $\$ 300.00$.
Add $\$ 2.00$ for standard UPS shipping and handling on orders under 50 lbs . delivered in continental U.S. Call for shipping charges over 50 lbs . Foreign, FPO and APO orders, add 15% for shipping. Californians add 6% sales tax
Prices quoted are for stock on hand and subject to change without notice
To order, or for information, call: (213)706-0333

31245 LA BAYA DRIVE, WESTLAKE VILLAGE, CALIFORNIA 91362

Save on Scanners! NEW Rebates!

Communications Electronics," the world's largest distributor of radio scanners, celebrates 1982 with big savings on Bearcat scanners. Electra Company, the manufacturers of Bearcat scanners is offering consumer rebates on their great line of scanners, when purchased between February 1 and March 15, 1982.
With your scanner, you can monitor the exciting two-way radio conversations of police and fire departments, intelligence agencies, mobile telephones, energy/oil exploration crews, and more. Some scanners can even monitor aircraft transmissions! You can actually hear the news before it's news. If you do not own a scanner for yourself, now's the time to buy your new scanner from Communications Electronics. Choose the scanner that's right for you, then call our toll-free number to place your order with your Visa or Master Card.
We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanner orders every week. We also export scanners to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who prefers fact to fantasy and who needs to know what's really happening around you, order your scanner today from CE!

NEW! Bearcat ${ }^{\circledR} 350$

The Ultimate Synthesized Scanner!

Your final cost is a low $\$ 349$.
7-Band, 50 Channel • Alpha-Numeric • Nocrystal scanner • AM Aircraft and Public Service bands. © Priority Channel © AC/DC Bands: $30-50,118-136$ AM, 144-174, 421-512 MHZ. The new Bearcat 350 introduces an incredible The new Bearcat 350 introduces an incredible
breakthrough in synthesized scanning: AlphaNumeric Display. Push a button-and the Vacuum Fluorescent Display switches from "numeric" to word descriptions of what's being monitored 50 channels in 5 banks. Plus, Auto \& Manual Search, Search Direction, Limit \& Count. Direct Channel Access. Selective Scan Delay. Dual Scan Speeds. Automatic Lockout. Automatic Squelch. Non-Volatile Memory. Order your Bearcat 350 today

Bearcat 300

Your final cost is a low $\$ 299.00$

7-Band, 50 Channel • Service Search • Nocrystal scanner • AM Aircraft and Public Service bands. - Priority Channel © AC/DC The Bearcat 300 is the most advanced automatic scanning radio that has ever been offered to the public. The Bearcat 300 uses a bright green fluorescent digital display, so it's ideal for mobile applications. The Bearcat 300 now has these added features: Service Search, Display Intensity Control, Hold Search and Resume Search keys, Separate Band keys to permit lock-in/lock-out of any band for more efficient service search.

NEW! Bearcat ${ }^{\circledR} 350$

FREE Bearcat ${ }^{\circ}$ Rebate Offer
Bearcat 350 or $300 ;$; $\$ 25$ rebate on model 250 or $20 / 20: \$ 15$
rebate on model $210 X L$ - $\$ 10$ rebate on model 160 or $4-6$ rebate on model $210 \times L$; $\$ 10$ rebate on model 160 or $4-6$
Thin Scan. To get your rebate, mail rebate coupon with your Thin Scan. To get your rebate, mail rebate coupon with your
original dated sales receipt and the Bearcat model number from the carton to Electra You'll receive your rebate in four February 1982 . pobstmarked by March 31 1982 , imit of one rebate be household Coupon must accompany all rebate requests and may not be reproduced. Offer good only in the U.S.A Void where taxed or prohibited by law Resellers, companies clubs and organizations-both profit and non-profit-are not eligible for rebates. Employees of Electra Company, their advertising agencies, distributors and retailers of Bearcat Scanners are also not eligible for rebates. Please be sure to send in the correct amount for your scanner. Pay the listed CE price in this ad. Do not deduct the rebate amount since your rebate will be sent directly to you from Electra. Orders

Bearcat ${ }^{\ominus} 250$
ist price $\$ 429.95 /$ CE price $\$ 279.00 / \$ 25.00$ rebate 6-Band, 50 Channel © Crystalless o Searches Stores • Recalls e Digital clock • AC/DC Priority Channel e 3-Band e Count Feature. Frequency range 32-50, 146-174, 420-512 M Hz The Bearcat 250 performs any scanning function you could possibly want. With push button ease you can program up to 50 channels for automatic monitoring. Push another button and search for new frequencies. There are no crystals to limit what you want to hear. A special search feature of the Bearcat 250 actually stores 64 frequencies and recalls them, one at a time, at

NEW! Bearcat ${ }^{\ominus}$ 20/20

Your final cost is a low $\$ 264.00$
7-Band, 40 Channel © Crystalless e Searches AM Aircraft and Public Service bands - AC/DC Priority Channel © Direct Channel Access © Delay The Bearcat 20/20 automatic scanning radio replaces the Bearcat 220 and monitors 40 frequencies from 7 bands, including aircraft. A two-position switch, located on the front panel, allows monitoring

Bearcat ${ }^{\ominus}$ 210XL

List price $\$ 349.95 /$ CE price $\$ 229.00 / \$ 15.00$ rebate
Your final cost is a low $\$ 214.00$ Your final cost is a low $\$ 214.00$ 6-Band, 18 Channel - Crystalless © AC/DC The Bearcat $210 \times \mathrm{L}$ scanning radio is the second generation scanner that replaces the popular Bearcat 210 and 211 . It has almost twice the scanning capacity of the Bearcat 210 with 18 channels plus dual scanning speeds and a bright green fluorescent display. Automatic search finds new frequencies. Features scan
delay, single antenna, patented track tuning and more

Bearcat 160

List price \$299.95/CE price \$194.00/\$10.00 rebate $5-$ Band 16 Channel 184.00
5-Band, 16 Channel © AC only - Priority
Dual Scan Speeds o Direct Channel Access
The Bearcat 160 is the least expensive Bearcat The Bearcat 160 is the least expensive Bearcat crystalless scanner. Smooth keyboard. No buttons to punch No knobs to turn. Instead, finger-tip pads provide

NEW! Bearcat ${ }^{\ominus} 100$

The first no-crystal programmable handheld scanner
Allow 30-120 days for delivery after receipt of order due to the high demand for this product. List price $\$ 449.95 /$ CE price $\$ 299.00$ s-Band, 16 Channel o Liquid Crystal Display Search • Limit • Hold e Lockout - AC/DC Frequency range: $30-50,138-174,406-512 \mathrm{MHz}$.
The world's first no-crystal handheld scanner has The world's first no-crystal handheld scanner has compressed into a $3^{\prime \prime} \times 7^{\prime \prime} \times 11_{4}^{\prime \prime}$ case more scanning power than is found in many base or mobile scanners. The Bearcat 100 has a full 16 channels with frequency coverage that includes all public service bands (Low High, UHF and " T ' bands), the $2-$ Meter and 70 cm . Amateur bands, plus Military and Federal Government frequencies. It has chrome-plated keys for functions that are user controlled, such as lockout. manual and automatic scan. Even search is provided, both manual and automatic. Wow... what a scanner!
The Bearcat 100 produces audio power output of 300 milliwatts, is track-tuned and has selectivity of better than 50 dB down and sensitivity of 0.6 microvolts on kef and 1.0 microvolts on UHF. Power consumption is kept extremely low by using a liquid cryst
Included in our low CE price is a sturdy carrying case. earphone, battery charger/AC adapter, six AA ni-cad batteries and flexible antenna. For earliest delivery

TEST ANY SCANNER

Electronics scanner purchased from Communications any reason you are not completely satisfied, return it in

CIRCLE 48 ON FREE INFORMATION CARD

Bearcat $^{\text {® }}$ Four-Six ThinScan ${ }^{\text {™ }}$
List price \$189.95/CE price \$124.00/\$10.00 rebate Your final cost is a low $\$ 114.00$
The incredible, Bearcat Four-Six Thin Scan ${ }^{-1}$ is like having an information center in your pocket. This four band, 6 channel crystal controlled scanner has patented Track Tuning on UHF. Scan Delay and Channel Lockout. Measures $2^{3 / 4} \times 6 \frac{1}{4} \times 1$. Includes rubber ducky antenna. Order crystal certificate for each channel. Made in Japan.

Fanon Slimline 6-HLU

List price $\$ 169.95 / \mathrm{CE}$ price $\$ 109.00$
Low cost 6 -channel, 3 -band scanner
The Fanon Slimline 6-HLU gives you six channels of crystal controlled excitement. Unique Automatic Peak Tuning Circuit adjusts the receiver front end for maximum sensitivity across the entire UHF band. Individual channellockout switches. Frequency range 30-50, 146-175 and $450-512 \mathrm{MHz}$. Size $25 / 4 \times 6^{1 / 4} \times 1$. Includes rubber ducky antenna. If you don't need the UHF band, get the Fanon model 6-HL for \$99.00 each, and save money. Same high performance and features as the model HLU without the UHF band. Order crystal certificates for

OTHER SCANNERS \& ACCESSORIES

NEW! Regency \ddagger D810 Scanner $\$ 319.00$
 NEW! Regency \ddagger D810 Scanner NEW! Rgency D300 Scanner
 NEW! Rgency D300 Scanner.

 219.00 $\$ 169.00$

 219.00 $\$ 169.00$ $\$ 219.00$ $\$ 169.00$ $\$ 129.00$

NEW! Regency D100 Scanner
Regency M400 Scanner.
Regency M100 Scanner
Regency R1040 Scanner
SCMA-6 Fanon Mobile Adapter/Battery Charger CHB-6 Fanon AC Adapter/Battery Charger CAT-6 Fanon carrying case with belt clip AUC-3 Fanon auto lighter adapter/Battery Charger PSK-6 Base Power Supply/Bracket for SCMA-6 SP50 Bearcat AC Adapter
SP51 Bearcat Battery Charger
SP58 Bearcat 4-6 ThinScan carrying case MA506 Regency carrying case for H 604 . FB-E Frequency Directory for Eastern U.S.A. FFD Federal Frequency Directory for U.S.A. TSG"Top Secret" Registry of U.S. Government Freq ASD Frequency Directory for Aircraft Band B-4 12 V AAA Ni-Cad batteries (set of four) A-135cc Crystal certificate $\$ 169.00$
$\$ 129.00$
$\$ 25900$ $\$ 259.00$
$\$ 199.00$

INCREASED PERFORMANCE ANTENNAS

If you want the utmost in performance from your Scanner, it is essential that you use an external antenna. We have six base and mobile antennas specifically
designed for receiving all bands. Order \#A60 is a magnet mount mobile antenna. Order \#A61 is a gutter clip mobile antenna. Order \#A62 is a trunk-lip mobile clip mobile antenna. Order \#A62 is a trunk-lip mobile
antenna. Order \#A63 is a $3 / 4$ inch hole mount. Order \#A64 is a \% inch snap-in mount, and \#A7O is an all band \#A64 is atation antenna. All antennas are $\$ 35.00$ and $\$ 3.00$ for UPS shipping in the continental United States.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any scanner, send

 or phone your order directly to our Scanner Distribution in this ad. Michigan residents please add 4% sales tax Written purchase orders are accepted from approved government agencies and most well rated firms at a 10% surcharge for net 10 billing. All sales are subject to availability. acceptance and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without notice. Out of stock items will be placed on backorder automatically unless CE is instructed differently Free copies of warranties on these products are available Free copies of warranties on to ese products are available invited with a $\$ 2000$ surcharge for special handling in invited with a \$20.00 surcharge for special handing addition to shipping charges. All shipments are F. B. AnnArbor, Michigan. No COD's please. Non-certified and foreign Arbor, Michigan. No COD s please. Non-certified andforeign
Mail orders to: Communications Electronics, Box 1002. Ann Arbor, Michigan 48106 U.S.A. Add $\$ 7.00$ per scanner or phone product for U.P.S. ground shipping and handling, or \$14.00 for faster U.P.S. air shipping to some locations. If you have a Visa or Master Card, you may call anytime and place a credit card order. Order toll free in the U.S.A. Dial 800-521-4414. If you are outside the U.S. or in Michigan, dial 313-994-4444. Dealer inquiries invited. Order without obligation today Scanner Distribution Center ${ }^{-}$and CE logos are trademarks of Communications Electronics.
\dagger Bearcat is a federally registered trademark of Electra Company, a Division of Masco Corporation of Indiana. \ddagger Regency is a federally registered trademark of Regency
Electronics Inc. $A D \# 1121081$ Copyright 1982 Communications Electronics

SPECIAL FEATURE 39 DIGITAL AUDIO DISCS
Soon, for about the price of a good turntable, you'll be able to have true digital sound-reproduction in your listening room. Len Feldman

BUILD THIS
51 TELEPHONE IN-USE MONITOR
A simple device to tell you when a multi-phone system is in use. Christopher M. Dunn

59 UHF-TV ANTENNA PREAMP
How to get 25 dB of gain on UHF channels. Ray Pichulo

TECHNOLOGY

CIRCUITS AND COMPONENTS

4 VIDEO ELECTRONICS
Tomorrow's news and technology in this quickly changing industry. David Lachenbruch

23 SATELLITE/TELETEXT NEWS
The latest happenings in communications technology. Gary H. Arlen

47 AUTOMATIC ROAD INFORMATION SYSTEM
A new and practical use for FM SCA. Len Feldman
78 STATE-OF-SOLID-STATE
Musical IC's. Robert F. Scott

54 DESIGNING WITH OP-AMPS

How operational amplifiers work and how you can use them
in your own circuits. Joseph J. Carr

63 TROUBLESHOOTING DIGITAL CIRCUITS
An easy transition from working with analog-circuit problems to digital ones. Robert L. Goodman

66 ALL ABOUT PULSE GENERATORS
An introduction to a very useful tool for checking out digital logic-circuits. Charles Gilmore

70 HOBBY CORNER
Turn a calculator into a capacitance meter (or ohmmeter, speedometer. etc.). Earl "Doc" Savage, K4SDS

43 WHATEVER HAPPENED TO CHANNEL 1?
Why do TV tuners start with channel 2? David A. Ferre
52 TV-IF ALIGNMENT
A simple approach to what really isn't as complex a process
as it looks. Jack Darr
80 SERVICE CLINIC
Vertical-retrace-line problems. Jack Darr
81 SERVICE QUESTIONS
R-E's Service Editor solves technicians' problems. Jack Darr
COMPUTERS
76 COMPUTER CORNER
Games (computer) people play. Les Spindle
RADIO
74 COMMUNICATIONS CORNER
How speech scramblers work. Herb Friedman
EQUIPMENT REPORTS

26 Realistic PRO-2020 Programmable Scanner
35 GC Electronics Magnameter Microwave Oven Tester

DEPARTMENTS

ON THE COVER

So far, the only way you could hear real digital sound reproduced on your own equipment was to invest in a $\$ 3000$ PCM attachment for your VCR. Shortly, though, digital audio, using your existing amplifier and speakers, will be available for about the cost of a good turntable. New techniques-particularly in the area of laser scanning-will put 60 minutes of ultra-high-fidelity audio on one side of a disc you can hold in the palm of your hand. To find out what's in store, and how it works, turn to page 39.

GOOD UHF TELEVISION RECEPTION has always been more difficult to get than VHF. Part of the solution lies in a good antenna-system. An antenna-mounted preamplifier can also help. A preamp you can build that offers $25-\mathrm{dB}$ of gain is described starting on page 59.

OPERATIONAL AMPLIFIERS (OP-AMPS) are an important-but frequently misunderstoodmember of the IC family. Learn what makes them so useful and how to work with them beginning on page 54.

Radio-Electronics, (ISSN 0033-7862) Published monthly by Gernsback Publications, Inc., 200 Park Avenue South New York. NY 10003. Second-Class Postage Paid at New York. N.Y. and additional mailing offices. One-year subscription rate: U.S.A and U.S. possessions. $\$ 13.00$ Canada. $\$ 16.00$. Other countries. $\$ 20.50$ (cash orders only. payable in U.S.A currency.) Single copies $\$ 1.25$. 1982 by Gernsback Publications. Inc. All Rights

Subscription Service: Mail all subscription orders changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service. Box 2520 . Boulder. CO 80322.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs If their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our
possession or otherwise.

VIDEO ELECTRONICS

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

VCR DILEMMA

How to cope with the legal problems posed by the technological revolution is becoming a major political issue. Nowhere else is that as evident as it is in the case of home videotaping. In this instance, the immediate issue is whether private individuals who tape copyrighted programs off the air, or from cable TV, should pay for the privilegeand if so, how. The Appeals Court ruling in the Betamax case held that taping of such shows for personal viewing is a violation of the Copyright Law, and that manufacturers and sellers of VCR's are contributory infringers of the law. The three-judge court's decision indicated strongly that because Congress hadn't considered video technology when it passed the recent, revised, Copyright Law, perhaps congressional action would be necessary to cope with the problem.

Although the decision is being appealed to the Supreme Court, the action is likely to occur in Congress, where legislation has been introduced both to permit free taping and to add a fee to VCR's and/or videocassettes to be paid to the copyright holders of TV programs. The major antagonists are the electronics manufacturers, represented by the EIA, and the big movie companies, represented by Motion Picture Association of America. The EIA and its adherents argue that "time-shift" taping is merely another way of viewing a program at a more convenient time, accomplished in the privacy of the taper/viewer's home, and that the copyright owner of the program has already been paid for the televising of the show. The MPAA counters that home taping robs the copyright owner of his product without compensation and, at the very least, diminishes the value of the program in re-runs.

RENTABETA

In pre-recorded videocassettes, rental is becoming a major business. One study has indicated that for every program cassette sold, 20 are rented. But in the past, moviecassette rental was open only to the 3% of the population who owned video recorders. Now the opportunity is being extended to the other 97%-the non VCR owners-through Rentabeta, developed by Superscope.
The principle of Rentabeta is simple - "the take-home movie in a video player." The rental package includes a Toshiba portable VCR, specially modified so that it is a playonly machine, in a case which can be locked by the dealer so the cassette cannot be removed. The customer chooses the cassette he wishes, it's loaded by the dealer into the player, and he carries the entire package home. Although rentals are expected to differ from dealer to dealer, the suggested price for rental of a machine loaded with one cassette is $\$ 8$. Dealers may supply more than one cassette and leave the player unlocked so that the viewers can change cassettes themselves. Rentabeta players can be modified so they can't be rewound, permitting each cassette to be viewed only once. That has been suggested as a possible method of keeping positive track of the number of times each cassette has been viewed, so that producers of the rented movies can be paid royalties.

KODAK ANSWERS

 SONYResponding to Sony's Mavica electronic still-camera (see Radio-Electronics, January 1982), Eastman Kodak President Colby Chandler said that his company had the capability to build an all-electronic camera. However, the solid-state sensor alone would cost as much as an entire film-camera, and picture information per frame would be about one-quarter that of a 110 -size film frame or $1 / 20$ of a $35-\mathrm{mm}$ frame. He said that an electronic sensor with a million picture elements could made an acceptable 2×4-inch print, but he noted that a 110 frame has more than 2 million elements, and 35 mm over 10 million (while Sony's Mavica sensor has 280,000).
He hinted at a possible Eastman Kodak electronic film-viewing system combining chemical and electronic technology, in these words: "Along with their initial print order, users of such a system might receive an image carrier that drops easily into a videoplayer attached to a TV set. With a hand-held remote unit, consumers might have selective control of images on the TV screen. At the touch of a button, the user could enlarge its image and freeze it for closer viewing. At the touch of another, the viewer could encode the film frame. Now the image-as the viewer has chosen to see itwould return to view in the form selected, when next it is inserted in the player." He indicated that that is one product being evaluated for the consumer market. R-E

> ADVANCE IS PROUD TO INTRODUCE The (0) HITACHI Line of High Quality Oscilloscopes All Hitachi Instruments Are Backed by A Two-Year Warranty

V-202 \& V352

$20 \mathrm{MHz} \& 35 \mathrm{MHz}$ DUAL TRACE OSCILLOSCOPES

- V 15 NEE

1. Square CRT with internat graticule (illuminated scale
2. High-accueacy voltage axis and time axis set at $\pm 3 \%_{\%}$ (certified at 10° to $35^{\circ} \mathrm{C}$) S
3. High-sensitifiity $1 \mathrm{mV} /$ div
4. Low drift
5. Dynamic range 8 div.
6. TV sync-separằtor cirçuiteno ZHW 001090 - N
7. Built-in signal delay line (V-352)
8. X-Y operation
9. Sweep-time magnifier (10 times)
10. Trace rotation system
11. Fine-adjusting, click-positioning function

BLDCMRONTCS THE TEST EQUIPMENT SPECIALISTS

 TOLL FREE HOT LINE 800-223-0474AT LAST A 100 MHz OSCILLOSCOPE WORTH WAITING FOR WITH NO WAITING

- 20kV CRT supply
- Large, bright $8 \times 10 \mathrm{~cm}$ screen
- Four-trace operation (Ch1, Ch2, A trigger, B trigger)
- High sensitivity 500 uV/div (5 MHz)
- High accuracy $\pm 2 \%\left(+10^{\circ} \mathrm{C}\right.$ to $\left.35^{\circ} \mathrm{C}\right)$
- Alternate timebase-operation
- Full TV triggering

Type
Hitachi 150 BNB 31 rectangular mesh type tube $\frac{\overline{\mathrm{van}}}{\mathrm{\sigma}} \mathrm{th}$
metal backed phosprio
20 kV acceleration potential and
VERTICA OBEFLECID N (2) Identical Channels)

Bandwidth ard Rise lime
DC to at least 100 MHz and rise time 3.5 ns or less. DC to at least 5 MHz and rise time
70 ns or less at $10 \times$ magnification. Lower $\cdot 3 \mathrm{db}$ point, AC coupling 10 Hz or less. 10 x
probe: 1 Hz or less. : 1 Hz or less.
HORIZONTAL DEFF氏年TION
Timprata

control between steps $1:<2.5$
Time Base B
 sweep rate to 2 ns pain
Calibrated Sweep Delay
avoldntinuous calibrated control between 0.5 and $10 \times$ time base A setting.
V-550B 50 MHz , DUAL TRACE DELAYED SWEEP PORTABLE OSCILLOSCOPE

Delayed sweep permits $1,000 \mathrm{X}$ Magnification

Variable Hold-off Circuitry Facilitates Pulse Measurement

- Large, Bright $8 \times 10 \mathrm{~cm}$ Screen
- High Sensitivity $1 \mathrm{mv} / \mathrm{div}$ (10 MHz)
- Variable Trigger Hold-off
- Full TV Triggering
- $5 \mathrm{~ns} / \mathrm{div}$ Sweep Rate
- Single Sweep
- 3rd Channel Display (Trigger View)
- Automatic Focus Correction

WHAT'S NEWS

New device cuts HV transmission losses

A new type of thyristor (silicon controlled rectifier) that promises to slash operating costs of highvoltage direct current (HVDC) power-transmission lines, was described by GE scientist Victor Temple at the International Electron Devices Meeting at Washington, DC, last December. Thyristors are power semi-conductor-devices that are used to switch and control large amounts of electric power, turning it on and off in a few microseconds.
HVDC lines can carry twice as much power as AC lines with the same peak voltage rating,
thus slashing transmission costs. But the high costs of the converter stations that turn the AC into DC for long-distance transmission and back into AC for local distribution can cut deeply into those savings.

Thyristors for HVDC application are made from thin, .04inch thick slices of silicon that are three inches in diameter. Normally they are activated by an electrical gate current. The new thyristor is activated by weak pulses of light carried on fiber-optic cables. Because of its innovative design, it can handle large currents while consuming little power itself, thus reducing converter-station losses.

Light-activated thyristors are

GE's NEW THYRISTOR, inspected here by Dr. Victor A.K. Temple, promises great reductions in high-voltage DC power-line costs. Through its innovative design, it can handle large currents while consuming little power itself, reducing the conversion losses of HVDC transmission systems. Work on the device, still in the early developmental stage, is being sponsored by the Electrical Power Research Institute, the research arm of the electric utility industry.
not new, but all previous types have had the disadvantage that the weak gate signal activates only a small portion of the thyristor. The current pouring through heats that portion to unsafe temperatures, and may cause melting breakdown.
In the new thyristor, resistors inserted in the silicon wafer between amplifying stages limit the current to safe levels. A resistor is etched in the wafer between the gate-amplifying stage and the pilot-amplifying stage. Another resistor is inserted between the pilot and the main stage.
In addition to HVDC converter stations, GE's light-fired thyristor has potential power-control applications in heavy industry, such as steel mills, and in locomotives.

Tektronix opens direct mail center

On January 1, 1982, Tektronix opened a direct-order channel, through which purchasers, by calling a toll-free number, may obtain information or order instruments.

The National Marketing Center, in Beaverton, OR, will expand customer service as well as meet the needs of new electronics purchasers. By calling $1-800-547-1845$, customers can reach experienced sales engineers who will supply immediate technical consultation, applications assistance, and answers to a wide variety of measurement and safety problems.

The Center offers a direct contact for customers who purchase just one or two instruments and would not normally be served by a field service engineer.

The toll-free number will be staffed from 5 am EST till 8 pm EST.

Right to videotape supported by EIA

The right to private citizens to tape television programs for their own use must be protected
by law at once, testified Jack Wayman, Senior Vice President of the Consumer Electronics Group of the Electronic Industries Association, before the U.S. Senate Judiciary Committee. That legislation is necessary, he said, as a result of the recent court decision that holds it illegal for consumers to videotape selected programs off the air, even for private, non-commercial use.

Wayman pointed out that, in general, copyright owners are not damaged by private taping of TV. "Surveys show," he said, "that 70 to 90 percent of all VCR owners use their VCR's primarily to 'time shift'-to view programs they could not have watched at the time of transmission." That kind of taping indirectly benefits the copyright owner by increasing the broadcast audience and thus the value of the program to the broadcaster.

If Senate Bill 1758, legalizing private copying, is not passed immediately, Wayman said, some movie company might obtain an injunction against VCR's. That could cause severe economic damage not only to manufacturers, but to the dozens of American companies that distribute the product, and the more than 25,000 retail outlets that are now selling VCR's as well as blank and pre-recorded tapes. The industry could be paralyzed for a long time, while the matter remained in litigation, possibly going all the way to the Supreme Court.

The analogous right to record audio material has never been seriously challenged, as long as the recordings were not offered for sale, though drastic penalties have been imposed for selling such recordings.

Fort Worth will get
 \section*{a videotext system}

Tandy Corp/Radio Shack plan to install and operate an electronic information base (videotext) in the Forth Worth/Tarrant County area. Objectives will be to provide subscribers with continuously updated information, continued on page 12

Accurate, Timely, Thorough

RCA 1982 TELEVISION SERVICE DATA

Accurate because it is prepared by service-experienced RCA Technical Publications editors who work closely with the engineers who design RCA Consumer Electronics products... Timely because it is promptly mailed (postpaid) directly to subscribers when the product is introduced Thorough because it offers all of the following features that are essential for proficient servicing:

- Easy-to-Trace Schematics
- Circuit Board Composite Views
- Chassis and/or Instrument Layout Diagrams
- Instrument Disassembly/Reassembly Instructions
- Service Adjustment Procedures
- Replacement Parts Lists

And More

Your yearly subscription to RCA TELEVISION SERVICE DATA includes:

- Complete Service Data for all color and b/w TV models introduced during 1982
- Service Bulletins that keep you abreast of the latest circuit changes, recommended servicing procedures, and parts information
- Ten-Year RCA Service Data Index that references RCA Service Data by both model and chassis, and includes RCA Warranty Obligation Codes and a separate listing of RCA Service Bulletins
- Complete coverage of all color and b/w TV Models Introduced in 1982
- TV Service Bulletins
- Ten-year RCA Service Data Index
- Saddlestitched format with drilled holes for easy insertion in optional three-ring binders

WITH TWO DURABLE VINYL-COVERED, THREE-RING BINDERS

Only \$56.85*
WITHOUT BINDERS
Only \$44.95*

-INCLUDES RCA'S "PARTS INFORMATION SERVICE". . .

Quarterly mailings from RCA Distributor \& Special Products Division that give you replacement parts price schedules, Tuner - and Module-to-Chassis cross references, and other parts-related information that servicers and dealers have been asking for . . . making your 1982 RCA TELEVISION SERVICE DATA subscription an even bigger bargain.

RCA FIELD-SERVICE GUIDE

Key field-service information from regular RCA Color TV service data ... in a convenient, easy-to-use volume that covers two years of RCA Color TV models ... complete chassis and tuner schematic diagrams and board views ... chassis top and back views . . field-service adjustments . . . parts lists . . . model index . . . troubleshooting tips . . . quick find indexes and cross references . . . each volume $17^{\prime \prime} \times 11^{\prime \prime}$, Saddlestitched.

VOLUME 8 (1979-1980) RCA Color TV Chassis CTC 85, $-86,-87,-88,-89$, $-90,-91,-92,-93,-96-97$. $-99,-101$

Only \$12.95

1982 RCA SERVICE DATA SUBSCRIPTION ORDER FORM

CHECK APPROPRIATE BOX/INDICATE QUANTITIES AND PRICE TOTALS/ENCLOSE CHECK
MAIL TO: RCA TECHNICAL PUBLICATIONS 1.450
600 N. SHERMAN DRIVE INDIANAPOLIS, IN 46201

1982 SERVICE DATA SUBSCRIPTION

\square TELEVISION, WITH TWO BINDERS

\square ADDITIONAL TV DATA BINDERS

 FIELD-SERVICE GUIDE\square VOLUME 8

PRICE
$\$ 56.85$ ea. $\$ 44.95$ ea. \$ 5.95 ea . \$12.95 ea.

QUANTITY
\qquad
\qquad

PRICE TOTAL
\$
\$
\$
\$ \qquad

(Please Print)

STREET ADDRESS
CITY STATE ZIP CODE \qquad

Choose your training! Only NRI gives you so many ways to get started on your TY/ Video/AMudio servicing career.

Only NRI gives you such a choice of practical experience projects with your training in servicing TV, videocassette recorders and disc units, and audio systems. You can elect to build

NRI's 25" (diagonal) color TV with state-of-the-art fully-computerized programmable controls. Or, take your bench training on the latest model RCA programmable videocassette recorder
with exclusive videotaped lessons. Or concentrate on the world of audio as you work with a complete AM/FM stereo sound system. Any way you go, it's your choice... more choices than any other school.

Train with this programmable RCA videocassette recorder

Each Course Complete

No matter which hands-on training program you select, your NRI course is complete. You get all 58 lessons covering every aspect of the field. TV, audio, and videocassette are just a start. You learn to install and service car radios and stereo systems... antenna systems including satellite TV...video disc players...cable TV.. microprocessor controls and much more. NRI training is complete, thorough, and effective.

Learn at Home in Your Spare Time

NRI trains you at home, at your convenience. No need to quit your job or tie up your evenings with night

Learn by doing with NRI hands-on projects and professional instruments that you use and keep.
school pressures. NRI "fast-track" training makes learning easier.. Action Audio Cassettes guide you step by step... NRI "hands-on" projects give you practical bench experience as you progress. You not only get theory, you actually build and test electronic circuits using professional equipment included with your course.

Train as you assemble this fullycomputerized, programmable 25" diagonal color TV

Professional Instruments Included

You'll work with the famous NRI Discovery Lab, where theory comes alive, exploring concepts and learning by doing. You'll use the Beckman LCD digital multimeter to read currents and resistances, keep it for professional troubleshooting. You'll build a CMOS digital frequency counter, another valuable servicing tool. And, depending on which experience project you choose, you'll also build your own 5 " solid-state oscilloscope and a 10 function TV pattern generator. Use them for learning, use them for earning.

more than half had home-study training, and among them, it's NRI 3 to 1 over any other school. That's why, more than 67 years and a million and a quarter students later, NRI is still the leader. You can't beat the up-to-theminute training for effectiveness and value. See how NRI can do it for you.

Send for Free Catalog... No Salesman Will Call

Send today for our free, 100-page catalog which shows you all the kits and equipment you get, detailed lesson outlines, and convenient time payment plans. Or check out other fast-moving opportunity fields like Microcomputers \& Microprocessors, Electronic Design Technology, Digital and Communications Electronics, and more. Mail the postage-paid card today and choose your training. If card has been removed, please write.

NRI Schools
McGraw-Hill Continuing Education Center
3939 Wisconsin Ave.
Washington, D.C. 20016
We'll give you tomorrow.

WHAT'S NEWS

continued from page 6

on demand, 24 hours a day
News will be from local, regional, state, and national sources and will include sports, special events, business and financial news, and weather information.

Equipment used will be the TRS-80 Model II computer and the newly developed Communications Multiplexer.
According to Charles Phillips of Radio Shack, "We have not made a final decision on whether or not a subscription fee will be charged, but while much of the information will be free to the viewer, certain items will carry an access charge. We also plan to offer advertisers the opportunity to sponsor certain information pages.
The system will be offered to residents of the test area in early 1982.

RCA's Satcom III relays cable TV

The third RCA communications satellite, Satcom III-R, launched last November into a geosynchronous orbit 23,000 miles above the equator, is intended to serve customers in the cableTV industry. The 2,385 -pound satellite was placed in position at 132 degrees West. It was the 11th U.S. domestic commercial satellite to go into orbit.

Like the earlier Satcoms, Satcom III-R has 24 transponders each of which can carry 1,400 voice circuits, one FM/color TV transmission, or 64 million bits
per second of computer data.
The Satcom satellites cover all 50 states and Puerto Rico. More than 4,000 earth stations, serving 14 million homes, have access to those spacecraft. Without the spacecraft, thousands of miles of ground cables and microwave links would be required to perform the same service.

Satcom III-R is powered by two solar array panels and three nickel-cadmium batteries. Maximum output is 950 watts at 35 volts (regulated) at the beginning of service and 750 watts at the end of the satellite's 10year life. The batteries supply power during the two solar eclipse periods that take place each year.

New high-current cell supplies $5-15$ amperes

A new high-current lithium thionyl-chloride cell just announced by the Altus Corp of San Jose, CA, is capable of putting out 5 amperes continuously and up to 15 amperes in short pulses.

The new flat-disc cell, designated the AL250, has an opencircuit voltage of 3.5 volts, operates at temperatures from -40 to +70 degrees centigrade, and can stand prolonged storage at extreme temperatures without noticeable losses in capacity or response time. Its shelf life is estimated at more than 10 years.

The cell is said to be abso-

RCA's SATCOM III-R SATELLITE

ALTUS AL250, 3.5-VOLT, 5-AMPERE CELLS
lutely safe under abusive conditions, such as incineration, crushing, or penetration.

FCC urged to speed satellite TV licenses

The Satellite Television Corporation (STC), a subsidiary of COMSAT, has urged the FCC to process pending direct-broadcast satellite (DBS) applications on an individual basis.

Individual processing will "...eliminate the possibility that consideration of a few troublesome proposals would delay the issuance of authorizations to applicants whose DBS systems clearly will serve the public interest."

STC was the U.S. pioneer in proposing DBS service for the United States. If the FCC moves expeditiously to approve DBS applications in early 1982, STC will be able to initiate its DBS pay-TV service in late 1985, or early 1986.

STC has asked for FCC approval to offer a satellite-tohome subscription television service using DBS satellites. It would offer three channels of premium programming, without advertising. Individual subscribers would receive the scrambled signals using $21 / 2$ foot dish antennas.

New message service

 between U.S. citiesRCA Network Services, an operating unit of RCA Communications, Inc., has filed an application with the FCC to construct and operate a nationwide digital electronic message-service (DEMS) among the nation's fifty major metropolitan areas.

The company believes that the first six areas-Atlanta, Chicago, Houston, Los Angeles, New York, and San Franciscocould be operational within 15 months of FCC approval and that the entire network could be in operation in seven years.

The DEMS network will provide high-speed, end-to-end pri-vate-line and switched services to the public. It is designed to handle digital bit-streams at rates ranging from 2.4 kilobits/ second to 1.5 megabits/second, offering a flexible service to handle a wide variety of user applications: communicating word-processors, remote computer entry, high-speed facsimile, and videoconferencing.

RCA's proposed service will use satellite and microwave facilities for long-haul transmissions and the new Digital Transmission System (DTS) technology for transmission within cities.

Send for the all-new, free Heathkit Catalog today!

18c| = 4 - 1 1)

Hugo Gernsback (1884-1967) founder M. Harvey Gernsback, editor-in-chief Larry Steckler, CET, publisher Arthur Kleiman, managing editor Josef Bernard, K2HUF, technical editor Carl Laron, WB2SLR, assistant editor Jack Darr, CET, service editor

Leonard Feldman

contributing hi-fi/video editor
Robert F. Scott, semiconductor editor
Herb Friedman, communications editor
Gary H. Arlen, contributing editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Ruby Yee, production manager
Robert A. W. Lowndes, production associate
Joan Burwick, production assistant Joan Roman, circulation director
Arline R. Fishman,
advertising coordinator
Cover photo by Robert Lewis
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S.. New York. NY 10003
President: M. Harvey Gernsback
Vice President: Larry Steckler
ADVERTISING SALES 212-777-6400
Larry Steckler
Publisher
EAST
Stanley Levitan
Radio-Electronics
200 Park Ave. South
New York, NY 10003
212-777-6400
MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co., Inc.
540 Frontage Road-Suite 325
Northfield. Illinois 60093
312-446-1444
PACIFIC COAST
Mountain States
Marvin Green
Radio-Electronics
413 So. La Brea Ave
Los Angeles. Ca 90036
213-938-0166-7
SOUTHEAST
Paul McGinnis
Paul McGinnis Company
60 East 42 nd Street
New York. N. Y. 10017
212-490-1021

Nu영

Facts from Fluke on low-cost DMM's

Fora measurement like this, every millivolt matters.

In digital multimeters, accuracy and resolution go hand in hand. After all, an extra millivolt of resolution means nothing unless you can trust its accuracy. For critical measurements like checking avionics, calibrating medical systems, or simply verifying the performance of your circuit, it takes a precision DMM to fill the bill.

The new $41 / 2$-digit Fluke 8050A delivers 0.03% basic dc accuracy and 0.005% of full scale resolution. Measure ac and dc voltages with $10 \mu \mathrm{~V}$ of sensitivity. Or resolve 10 nA of current and 10 milliohms of resistance. All guaranteed for one full year.

That's the kind of perform ance you demand in a
bench/portable DMM. And it's from Fluke, the leader in DMM's with a thirty year reputation fer reliable, highquality precision instrumentation.

Of course, there's more to the 8050A story. With our hybrid True RMS converter you get honest, accurate ac answers to 50 kHz without missing any significant distortion components. A dB function features 16 selectable reference impedances. And the relative mode lets you make offset measurements in all instrument functions.

You'll also find all the other dependable Fluke features on the new 8050A. Conductance for those high resistance and leakage measurements to 100,000 Megohms. Extensive overload protection and safety features. A full line of accessories. And a low price of only $\$ 369$ U.S.

For all the facts on the new 8050A's accuracy and reliability, call toll free 800-426-0361; use the coupon below; or contact your Flukestocking distributor, sales office or representative.

LETTERS

UNICORN-1 ROBOT

I was impressed by the very thorough series of articles, "Unicorn-1 Robot," that appeared in Radio-Electronics, August 1980 through June 1981. However, there appear to be a few errors that should be noted.

In the March 1981 issue (page 65), the relay driver circuit will not work as explained in the text. As shown, the 2N2222 transistor and relay will be turned on in absence of a command. That is opposite the condition that is desired. In other words, what is required at the transistor base is a logic-low to de-energize the relay in the stand-by mode.

There are a couple of modifications that can be made without altering the printedcircuit boards. The choices are:

Latch Board: take the output signal from the Q pins 6 and 8 , or:

Relay Driver Board: drive the transistor directly from the decoder board or latch board by eliminating the octal inverter
(2813A) and placing jumper wire between input and output pins of the IC socket.
The suggestion to use PNP transistors is not recommended because that places 5 -volts across the base-emitter junction and the driver in series; that could damage the transistor.
In the April 1981 issue (page 68), Fig. 80, and (page 69), Fig. 82, the latch board input and output signals on pins 9 and 11 of the 7474 IC are reversed.
WALTER PALANKER,
Magnolia, NJ

PROGRAMMING FLAW

I am the proud owner of a new personal computer system, and because of that, your October 1981 issue of Radio-Electronics caught my eye. I got a lot out of that issue!
I did a lot of shopping around before I decided on the TRS-80, 16 K , color outfit. Along with it, I purchased some software continued on page 22

For truly superb FM-stereo reception...

- Transforms fuzzy stations into 'tape quality'
- Reduces multipath problems
- Up to twice the power of the conventional dipole antenna
- Receives from all directions
- Pulls in stations you never knew existed
Test it yourself' We offer an hor guarantee. If it doesn't measure refund of the purchase price.
The suggested list price for Stereo One is $\mathbf{\$ 6 9 . 9 5}$ BUY DIRECT AND SAVE $\$ 10.00$
Send your check or money order for

Send your check or money order for
$\$ 59.95+3.50$ (shipping and handling) to; (N.Y. residents, please add 7\% sales tax)

VISA \& MASTER CARD buvers may call toll free 1-800-448-8490 9-5 EST Mon-Fri N.Y. Residents please call 1-315-482-2589

- Sturdy, stainless steel and PVC construction
- Silver plated brass joints for ultra-sensitive signal passage
- Built to withstand weather stands just $76^{\prime \prime}$ tall
- May be mounted on a mast, windowsill, balcony. or just stand it in the corner

Dept. RE

Holland Street P.O. Box 219 Alexandria Bay,

ONLY Vector kits contain:

- Positive photo-resist coated AND uncoated copper laminate-no messy photo-reversal-no spraying, dipping, or baking.
- 4 types of art aids: rub transfers, ink, tape, cut and peel-use 1 or all. - 1:1 circuit art rub transfers-IC sets, pads, lines, connectors, symbols, letters, and numbers.
- Everything included-just add water and sunlamp or bright sunshine.
- Liquid etchant and developer-no dry chemical mixing problems.

AND
AProcess choices-make circuit on copper and etch for 1 card.
Make circuit on film, expose, develop and etch for 1 or many cards.

$32 \times$ A -1 kit makes 7 PC cards, $\$ 46.41,32 \times-1$ starter kit makes 2 cards, $\$ 18.24$ If not avaliable locally factory order-Includee $\$ 3.00$ shlipping. U.S. Onty
510177
Vector Electronic Co., 12460 Gladstone Av., SyImar, CA 91342

More ways to C the value... with B\&K-PRECISION

Now you can choose the capacitance measurement instrument you need from the industry's most complete line. For high-speed sorting, there's the 835 Digital Capacitance Comparitor; and for less specialized applications, the 830 Autoranging C-Meter and the 820 Manual Ranging C-Meter. All are GSA listed.

The 835 is a rugged production tool for isolating out-of-tolerance capacitors in the shortest possible time. Program-in acceptable high and low capacitance limits and then start testing. The 835 indicates "LO," "GOOD" or "HI." It also indicates capacitance values on an autoranging C-meter.

Combining autoranging and portability, the B\&K-PRECISION 830 C-meter offers features that are tough to match at any price. Resolution is 0.1 pF , with readings
displayed on a large 3-1/2-digit LCD display. Basic accuracy is 0.2%, much greater than the tolerance of most capacitors. Ease of operation is another strength of the 830 . Even untrained workers can quickly learn its operation, though its performance also makes it ideal for engineering lab use. A selectable "range hold" is also featured.

For field or bench applications suited to manual ranging, B\&K-PRECISION offers the 820 - the industry's best C-meter value. The 820 displays readings to a full 1 Farad on a 4-digit LED display. Accuracy is within 0.5%.

All of the B\&K-PRECISION C-measurement products are protected against charged capacitors. They all
also allow you to measure unmarked capacitors, verify capacitor tolerance, measure cable capacitance, select and match capacitors for critical applications, perform quality assurance, measure complex networks, set trimmer capacitors and check capacitance in switches and other components. Options include the CF-10 test fixture for volume sorting; and for the 830 and 820 , rechargeable batteries, AC charger and carrying case.

For immediate delivery or more details, see your local distributor, and see why B\&K-PRECISION continues to be the leading supplier of digital capacitance measurement instruments. For the name of your nearest distributor call toll-free 800-621-4627.

BK PRECISION DYNASCAN

6460 W. Cortland Street - Chicago, IL. 60635 • 312/889-9087
International Sales. 6460 W. Cortiand Streat. Chicago. IL. 60635 USA. TELEX:25-3475 Canadian Sales, Allas Electronics, Ontario

Learning
electronics is no picnic. 2
-20
At any level it takes work and a few sacrifices. But with CIE, it's worth it.

Whoever said, "The best things in life are free,' was writing a song, not living a life. Life is not just a bowl of cherries, and we all know it.

You fight for what you get. You get what you fight for. If you want a thorough, practical, working knowledge of electronics, come to CIE.

You can learn electronics at home by spending just 12 hard-working hours a week, two hours a day. Or, would you rather go bowling? Your success is up to you.

At CIE, you earn your diploma. It is not handed to you simply for putting in hours. But the hours you do put in will be on your schedule, not ours. You don't have to go to a classroom.
The classroom comes to you.

Why electronics training?

Today the world depends on technology. And the "brain" of technology is electronics. Every year, companies the world over are finding new ways to applv he wonders of electronics to control and program manufacturing, processing...even to create new leisure-time products and services. And the more electronics applications there are, the greater the need will be for trained technicians to keep sophisticated equipment finely tuned and operating efficiently. That means career opportunities in the eighties and beyond.

Which CIE training fits you?

Beginner? Intermediate? Advanced?
CIE home study courses are designed
for ambitious people at all entry
levels. People who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.

You can start where you fit and fit where you start, then go on from there to your Diploma, FCC License and career.

Many people can be taught electronics.

There is no mystery to learning electronics. At CIE you simply start with what you know and build on it to develop the knowledge and techniques that make you a specialist. Thousands of CIE graduates have learned to master the simple principles of electronics and operate or maintain even the most sophisticated electronics equipment.

CIE specializes exclusively in electronics.

Why CIE? CIE is the largest independent home study school that specializes exclusively in electronics. Nothing else. CIE has the electronics course that's right for you.

Learning electronics is a lot more than memorizing a laundry list of
facts about circuits and transistors. Electronics is interesting! It is based on recent developments in the industry. It's built on ideas. So, look for a program that starts with ideas and builds on them. Look to CIE.

Programmed learning.

That's exactly what happens with CIE's Auto-Programmed ${ }^{\oplus}$ Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you start to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of checking, testing, and analyzing projects.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to

YES...I want to learn from the specialists in electronics - CIE. Send me my FREE CIE school catalog...including details about the Associate Degree program...plus my FREE package of home study information.
Print Name
Address
Apt.
City
State \quad Zip
Age \qquad Phone (area code)
Check box for G.I. Bill bulletin on Educational Benefits: \square Veteran
\square Active Duty
MAIL TODAY!

LETTERS
continued from page 16

which included the "Computer Learning Lab." When I ran that particular program I discovered what I thought to be a major flaw in programming. That error was verified by my local dealer. I wrote to Tandy at the address listed in your magazine. That was over a month ago, and I thought that you might be interested to learn that no one has had the decency to acknowledge either the probable software problem or my letter.
Naturally, my impression is that the sales for Tandy stop short of customer service.

Thank you for your attention and for a truly informative magazine. MRS. WENDY C. LOOMIS, Binghamton, NY

Dear Mrs. Loomis:
Thank you for purchasing a Color Computer from Radio Shack. I am distressed to hear that you discovered a programming bug, notified Radio Shack, and that no one has gotten back to you to solve or confirm your problem.

Not having seen a copy of the article in the October 1981 issue of Radio-Electronics to which you referred, and not knowing which address you were told to write to, I cannot comment on why there has been no response to your problem.

The only programming error which we have found since releasing the "Color Computer Learning Lab" is in the chapter covering Sorts (Lesson 14). The sort routine, as shown in the manual and on the tape, will not sort the last value. Changing line 230 as follows will fix the problem:
230 FOR B $=A+1$ TO N.
That change should be made on pages 93 and 98 of your manual and to the program tape. Our customer-service group has this correction, and should have sent it to you. Any further problems concerning the Color Computer or the software for the Color machine should be sent to:
TRS-80 Customer Service, 400 Atrium, One Tandy Center, Ft. Worth, TX 76102.

You should include a phone number where possible, as sometimes it is quicker to call with the information or answer.
Radio Shack believes very strongly in support after sale. I am truly sorry for any inconvenience we may have caused you. Be assured that we will make every effort to assure that it does not happen again. BARRY O. THOMPSON,
Product Line Manager-Color Computer

VHS DECKS

Your magazine and several others continually state that Akai has the only VHS decks with stereo sound. That isn't so; we have several Panasonic NV-8200 VHS decks, as well as some Sony Beta SLO323 decks, both of which have two-channel audio, and have been giving us excellent service, since we put them into use last summer.

Also, with the increased interest in getting the best audio/video performance from one's own equipment, it might be interesting to your readers if you could come up with a circuit to add video and audio input jacks safely to existing receivers that lack this capability.
JIM CASSEDY,
Production Technician, Alcon Video/
Film Prods.,
San Francisco, CA

CX DECODER

There are a couple of small corrections to be made to the first part of the "CX Decoder" article, appearing in the December 1981 Radio-Electronics.
On page 46, the last sentence in the first paragraph of column 3 should read: "That higher bias also results in a higher gain in the peak mode than in the CX mode when expansion is not taking place." On the schematic, the value of R29 was left out; that should be 1 K . I'm sure that I confused the draftsman, because my schematic shows pin 11 of IC4 connected both to -15 volts and ground. In any case, pin 11 of IC4 should go to ground, and not to -15 volts.
We will pack an errata slip with each kit-part order to catch those three points. The only other potential problem that I noted is that the print of the PC board seems to have blurred lightly, and you may get complains of shorting between adjacent conductors, because the board is so tightly laid out.

Aside from that, I am delighted with the article.
JOEL M. COHEN

SATELLTE/TELETEXT NEWS

GARY ARLEN
CONTRIBUTING EDITOR

AUCTION SELLS TRANSPONDERS

In an unusual effort to allocate transponders aboard Satcom IV (which was due to go up in January), RCA Americom-which operates the satellite-sponsored an auction at swanky Sotheby Parke Bernet gallery in New York, better known for selling expensive art items. When the 45 -minute action was over, six companies had paid a total of $\$ 90.1$ million for the seven transponders which were being offered. The highest bid was $\$ 14.4$ million, offered by "Transponder Leasing Co." That bought transponder two, probably for future voice and data communications services. Some names were familiar, and all of them paid more than $\$ 10.7$ million per transponder. Among them were Home Box Office, which will operate on transponder 15; RCTV, the new service offering "The Entertainment Channel" of cultural and theatrical performances, which purchased transponder 11; Warner Amex Satellite will use transponder four; UTV Cable Network, a new entertainment and merchandising service, will have transponder 23; Inner City Broadcasting will go on transponder 16, and Bill Batts, an individual representing a Tennessee religious broadcasting group, will transmit on transponder three.

All of those allocations are in addition to the previous commitments-including some video as well as data services-which were already set for the new bird.

Meanwhile, some of the new Satcom IV residents are expanding their other transponder activities. HBO, of course, is well ensconced on several other current and future birds. RCTV recently entered into an agreement with Spanish International Network, which would give RCTV use of another Satcom IV transponder.

THE FCC'S TELETEXT NON-STANDARD

In keeping with official Washington's policy of "deregulation," the FCC has decided not to establish a formal teletext technical standard for the U.S., choosing instead to let the "marketplace" decide which format should be used. That means that competing French, British, and Canadian technologies will have to fight it out to win allies who will use their respective technologies on U.S. television stations. CBS says that it intends to begin transmitting teletext nationally during 1982; that could encourage its affiliates to adopt the French Antiope format, which CBS favors. Meanwhile, others are beginning to use other formats; for example, WKRC-TV Channel 12 in Cincinnati is planning to test the British Prestel format.

Although it won't adopt formal teletext standards, the FCC is currently considering a number of related technical issues. The Commission will consider the possibility of permitting teletext to be transmitted via lines 14 through 18, plus lines 20 and 21 of the vertical blanking-interval. The FCC is also considering possible future use of lines 10 13 , using a phased-in schedule, once it is confirmed that those lines won't cause visual degradation of regular video images on TV receivers.

AROUND THE SATELLITE CIRCUIT

The continuing scramble skyward by several leading program suppliers promises to offer ever-more attractive shows during the coming year. Among the newest entries is "The Disney Channel," a service due to get under way early next year (1983). It will use two transponders aboard Westar V, which will be launched this fall. Walt Disney Productions and Westinghouse Broadcasting are cooperating to develop the 16-hour-perday channel of pay-cable programming.
American Satellite Co. will provide all-digital satellite transmission for the Home Music Store, a new home-recording service offered by Digital Music Co. The electronic feed, due to get under way in July (1982) will provide cable-TV subscribers with master-tape-quality digital music for listening and licensed recording. Cable subscribers will need a special decoder to input the high-quality audio feed into their tape recorders. Music will be uplinked from Los Angeles to ASC's Westar transponders.
Comsat has proposed to provide the first full-time satellite TV service from the U.S. to an overseas location. The new service, due to begin in Fall 1982, will permit continuous video transmission from the U.S. to Australia, where it will be used by that nation's Channel 9. Comsat officials say that the type of international feed, which will be uplinked from a new facility in Southern California and travel via a Pacific Intelsat bird, is the forerunner of a "new kind of international TV service which will develop in the next few years.'

R-E

Introducing the Sinclair ZX81

If you're ever going to buy a personal computer, now is the time to do it.

The new Sinclair ZX 81 is the most powerful, yet easy-to-use computer ever offered for anywhere near the price: only $\$ 149.95^{*}$ completely assembled.

Don't let the price fool you. The ZX81 has just about everything you could ask for in a personal computer.

A breakthrough

in personal computers
The ZX81 is a major advance over the original Sinclair ZX80-the world's largest selling personal computer and the first for under $\$ 200$.

In fact, the ZX81's new 8K Extended BASIC offers features found only on computers costing two or three times as much.

Just look at what you get:

- Continuous display, including moving graphics
- Multi-dimensional string and numerical arrays
- Plus shipping and handling. Price includes connectors for TV and cassette, AC adaptor, and FREE manual

16K MEMORY MODULE:
Like any powerful, full fledged computer, the ZX81 is expandable. Sinclair's 16 K memory module plugs right onto the back of your ZX81 (or ZX80 with or without 8K BASIC). Cost is $\$ 99.95$, plus shipping and handling.

If you already own a ZX80

The 8K Extended BASIC chip used in the $Z \times 81$ is available as a plug-in replacement for your ZX80 for only $\$ 39.95$, plus shipping and handling-complete with new keyboard overlay and the ZX 81 manual.

So in just a few minutes, with no special skills or tools required, you can upgrade your $\mathrm{ZX80}$ to have all the powerful features of the ZX81. (You'll have everything except continuous display, but you can still use the PAUSE and SCROLL commands to get moving graphics.)

With the 8K BASIC chip, your ZX80 will also be equipped to use the ZX Printer and Sinclair software.

Order at no risk**

We'll give you 10 days to try out the ZX81. If you're not completely satisfied, just return it to Sinclair Research and we'll give you a full refund.

And if you have a problem with your ZX81, send it to Sinclair Research within 90 days and we'll repair or replace it at no charge.
"- Does not apply to ZX81 kits.

NEW SOFTWARE:Sinclair has published pre-recorded programs on cassettes for your ZX81, or ZX80 with 8K BASIC We're constantly coming out with new programs, so we'll send you our latest software catalog with your computer.

ZX PRINTER: The Sinclair ZX Printer will work with your ZX 8 or ZX80 with 8K BASIC. It will be available in the near future and will cost less than $\$ 100$.

ZX81 MANUAL: The ZX81
comes with a comprehensive 164-page programming guide and operating manual designed for both beginners and experienced computer users. A $\$ 10.95$ value, it's yours free with the ZX81.

RemoveVocals

Remove the lead vocal and substitute your own vorce with most stereo recordings us ing our new, low cost VOCAL ZAPPER ${ }^{\text {TM }}$ Great for practice, professional demos or Just for fun.

WITH THE

ZAPPR

FROM

12~A Electronics, Inc.
1020 W. Wilshire, Oklahoma City, OK 73116 - (405)843-9626
\square Rush my Vocal Zapper Kit, $\$ 24.95$ plus $\$ 3$ postage \& handling enclosed.
\square Send assembled Vocal Zapper, $\$ 39.95$ plus $\$ 3$ postage \& handling enclosed.
\square Send Free Catalog
name
address
city \qquad state \qquad
Visa $\square \mathrm{mC} \square$ card no.
PAIA Electronics dept 3 . 1020 W Wilshive Okla City OK 73116 CIRCLE 81 ON FREE INFORMATION CARD

EQUIPMENT REPORTS

CIRCLE 101 ON FREE INFORMATION CARD

THE INCREASING AVAILABILITY OF FRE-quency-synthesized scanners has been a boon to listening enthusiasts. One of the newest scanners is the Realistic PRO-2020 programmable AM/FM
scanner from Radio Shack (One Tandy Center, Fort Worth, TX 76102). Covering $30-50,108-136,138-174$, and $410-$ 512 MHz , it has one of the widest tuncontinued on page 34

On Your Calculator!"
 - Quick. •Guaranteed \bullet Easy. •Fun, Too!

INTRIGUED BY CALCULATORS? Then you can lems you suggest and it always GIVES ME A THRILL
step up your math skills fast! Use my new method in guidebook form. It's called CALCULATOR CALCULUS. This space-travel spinoff is sure-fire, so it has a simple guarantee - just return it for an immediate refund if you are not astounded at the problems you re solving with it!
But the point is - you won't want to send it back. For this is the easiest, fastest shortcut ever! The day you receive your copy in the mail you'll want to put it to work. It's that exciting and helpful.
My name is Dr. George McCarty. I teach math at the University of California. I wrote this guidebook to cut through the confusion. I guide you with examples you follow step-by-step on your calculator - you do simple exercises - then you solve practical problems with real precision!
POWER METHODS. Need to evaluate functions, areas volumes - solve equations - use curves, trig, polar coor dinates - find limits for sequences and series? It's all here! If you're in the biological, social or physical sciences. you'll be doing Bessel functions, carbon dating. Gompertz growth curves, half-life, future value, marginal costs. motion, cooling, probability, pressure - and plenty more (even differential equations).
Important numerical techniques? Those algorithms are here, too: rational and Pade approximation, bracketing, con tinued fractions. Euler's method, Heun's method, iteration functions, Newton's method, predictor-corrector, successiv substitutions, Simpson's method and synthetic division. LOOK AT WHAT USERS SAY: Samuel C McCluney, Jr., of Philadelphia writes:
"CALCULATOR CALCULUS IS GREAT! For ten years I have been trying to get the theory of calculus through my head, using home-study courses. It was not until I had your book that it became clear what the calculus was all about. Now I can go through the other books and see what they are trying to do. With your book and a calculator the whole idea becomes your book and a calculator the whole iaea oecomes EXPERIENCE. I program some of the iterative prob-
lems you suggest and it always GIVES ME A THRILL
to see it start out with a wild guess and then approuth the limit and stop.
Professor John A. Ball of Harvard College (author of the book Algorithms for RPN Calculators') writes: I wish I had had as good a calculus course,
Professor H. I. Freedman of the U. of Alberta, writing in Soc. Ind. Appl. Math Review, states: There can be no question as to the usefulness of this book....lots of exercises...very clearly written and makes for easy reading.

Tektronix Engineer Bill Templeton says "CALCU LATOR CALCULUS is the best, most clearly written book I have seen for improving your math skills."
I WANT YOU TO DO THIS. Get my complete kit, with a T1-35 calculator, plus its 200 p. Student Math Book, AND the guidebook, ALL for $\$ 44.95$ (for shipping to USA add $\$ 2$, or $\$ 5$ by AIR; Foreign $\$ 5$, or $\$ 10$ AIR; in Calif. add $\$ 2.70$ tax)

If you already have a scientific calculator, you can invest in the guidebook. CALCULATOR CALCULUS for only U.S. \$19.95 (to USA or foreign: add $\$ 1$ for shipping, or $\$ 4$ by AIR; in Calif. add \$1.20 tax).

As pennywise Ben Franklin said, "An investment in knowledge pays the best dividends." GET STARTED NOW - Tax deductible for professionals. MONEY-BACK GUARANTEE! Send for it today. Be sure to give me your complete mailing address with your check or money order. If you want to charge it (Visa or MC), tell me your card no. and exp. date. Prompt Seoye Wle Cory
shipment
suaranteed.
Thank you!
EduCALC Publications, Dept. G4 Box 974, Laguna Beach, California 92652 ,
Calif. (also AK and HI), call 714-497-3600; elsewhere TOLL FREE 24 -hour Credit Card orders: $800-854-0561$, Ext. 845; Dept. G4

Every 10 seconds, a burglary takes place somewhere in the United States. There was a 20% rise in violent crime during 1980, the highest in 10 years.

Luckily, we have two unique products to help keep you from becoming another crime statistic.

1. Portable intrusion alarm

How can you protect your home or business without spending a fortune on a perimeter security system? How about when you're sleeping in a hotel room, an easy mark for the growing population of hotel burglars?

Simply place the pocket-sized SensAlert ${ }^{m}$ in any room, aiming the sensor towards doors or windows. As soon as an intruder enters, the movement triggers a piercing alarm.

At home, a SensAlert in every room protects you while you're in the house. It's different from (and less expensive than) perimeter security systems, which are turned on while you're away. Even place SensAlert at your backyard gate while you sunbathe; the tone tells you someone's arrived.

Carry a SensAlert in your briefcase or pocket when you travel, to protect the entire hotel room, not just the door.

There's no installation and no electric wire; SensAlert is batteryoperated. It can be set to work either in the daytime or at night.

A free sign for your door knob is included with each order. It warns that the room is protected by SensAlert.

Put SensAlert in your desk drawer at the office. It will go off if anyone opens it while you're out.

A built-in light allows you to use SensAlert as an emergency flashlight. The alarm can also be triggered manually, for a distress signal.

2. Plug-in theft protection

Valuable electrical equipment is at the top of a burglar's hit list. Typewriters, adding machines, TV's, stereos, tape recorders, power tools.

It only takes a few seconds to unplug and carry off a TV or typewriter. A quick, easy theft and resale. You're vulnerable at home and at the office.

Before Alertmate ${ }^{\text {TMM }}$, you had two choices: bolt appliances to furniture, or invest in a costly and complex security system.

Now, you can simply plug the Alertmate into the wall outlet, secure it with one screw, and plug in the appliance.

If a thief pulls out the plug, a piercing alarm goes off. And keeps going. A definite theft deterrent! The only way to deactivate the alarm is to plug the appliance back in, or dial the correct number code. The alarm will also ring if the cord is cut.

A free sticker is included. It states that the equipment is protected by Alertmate, and gives you a space to write in the name of an individual who has the combination.

When you want to move equipment
yourself, you simply deactivate the alarm with the combination. Protect each piece of expensive equipment inexpensively and easily, with Alertmate.

30-day free trial

It could cost you over $\$ 1,000$ to install security systems giving you the same amount of protection as SensAlert and Alertmate.

1. Alertmate, the plug-in alarm for valuable equipment, is only $\$ 24.95$ including the free sticker plus $\$ 2.50$ postage and handling. 2. SensAlert, the portable intrusion alarm with flashlight, soft-tone feature, and free door hanger, is $\$ 39.95$ plus $\$ 2.50$ postage and handling. Order both at $\$ 64.90$ and pay the $\$ 2.50$ postage and handling only once: (Total: $\$ 67.40$) Batteries not included. Credit card holders: use our toll free number.

OrderToll Free: (800)423-6383 In California: (800) 352-6207

 4357 Chase Avenue

Los Angeles, CA 90066
© Copyright 1981 Sunshine Express

EOUPPMEIT AID TRAMME mo отilir schioo caniliatch.

NTS HOME TRANING INVITES YOU TO EXPLORE MICROCOMPUTERS, DIGITAL SYSTEMS AND MORE, WITTH STATE-OF-THE-ART EOUIPMENT YOU ASSEMBLE AND KEEP.

Without question, microcomputers are the state of the art in electronics. And NTS is the only home study school that enables you to train for this booming field by working with your own production-model microcomputer.

We'll explain the principles of troubleshooting and testing your microcomputer and, best of all, we'll show you how to program it to do what you want.

You'll use a digital multimeter, a digital logic probe and other sophisticated testing gear to learn how to localize problems and solve them.

We
believe
that training
on production-
model equipment,
rather than home-made learning devices, makes home study more exciting and relevant. That's why you'll find such gear in most of NTS's electronics programs.

For instance, to learn Color TV Servicing you'll build and keep the 25 -inch (diagonal) NTS/HEATH digital color TV.

In Communications Electronics you'll be able to assemble and keep your own NTS/HEATH 2-meter FM transceiver, plus test equipment.

But no matter which program you choose, NTS's Project Method of instruction helps you quickly to acquire practical know-how.

Send for the full color catalog in the electronics area of your choice-discover all the advantages of home study with NTS!

NTS also offers courses in Auto Mechanics, Air Conditioning and Home Appliances. Check card for more information.

THESE 1981 B\&K OSCILLOSCOPES ARE IN STOCK AND AVAILABLE FOR IMMEDIATE DELIVERY

PORTABLE
OSCILLOSCOPES
BATTERY OPERATED

Non-Linear Systems
Call For Our Prices
MS-215

Dual Trace 15 MHz

MS-15

Single Trace 15 MHz MS-230

Dual Trace 30 MHz

KEITHLEY MODEL 130 DIGITAL MULTIMETER

AC CURRENT
$2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2000 \mathrm{~mA}, 10 \mathrm{~A} \quad 3 \%$
\$125.
RESISTANCE

$200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 20 \mathrm{M}$ \&	$.5 \%$

FLபKER DIGITAL MULTIMETERS

Non－Linear Systems

ELUK星	НІкок
VIİAOA	tripletr
$\square^{\text {® }}$ PHILPS	WESTON
Simpon	BKRemsen
LeADER	\square

DDATA PRECISION

ELECTRONICS

THE TEST EQUIPMENT SPECIALISTS

TOLL FREE HOT LINE 800－223－0474 IN NEW YORK STATE 212－687－2224

New Low Distortion Function Generator BKX PRECISION

model 3010

－Generates sine，square and triangle waveforms
 wave outputs
－ 0.1 Hz to 1 MHz in six ranges
－Push button range and function selection
－Typical sine wave distortion under 0.5% from 0.1 Hz to 100 kHz
－Variable DC offset for engineering applications
VCO external input for sweep－frequency tests

New Sweep／Function Generator
BK PRECIIION
моое 3020
－Four instruments in one package－sweep generator，func－ tion generator，pulse generator． tone－burst generator．
－Covers $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$
－1000： 1 tuning range
－Low－distortion high－accuracy outputs
－Three－step attenuator plus vernier control
－Internal linear and log sweeps
－Tone－burst output is front－panel or externally programmable

V－151B 15 MHz Single Trace V－152B 15 MHz Dual Trace V－202 20 MHz Dual Trace V－301 30 MHz Single Trace V－302B 30 MHz Dual Trace V－352 35 MHz Dual Trace V－550B 50 MHz Dual Trace， Dual Time Base
V－1050 100 MHz Dual Trace， Dual Time Base

Call For
Special
REBATE OFFER

Special REBATE OFFER

SAVE UP TO \＄500 （o）HITACHI

We carry a full line of multimeters，oscilloscopes，frequency counters，audio and RF generators，power supplies and accessories．

Just call our Toll－Free number and one of our experts will answer all your questions about test equipment．

EQUIPMENT REPORTS

continued from page 26
ing ranges available on the program-mable-scanner market.

The PRO-2020 will scan up to 20 channels and has automatic up- and down-search capability as well. Mobile or fixed-station operation is possible, and a 9 -volt battery is used as a backup to hold memory in case of power failure.

The large fluorescent display indicates channel number, frequencies, scan status, search monitoring, and
other functions. A priority feature for any of the 20 channels is included. Functions, channel selections, etc. are entered using a large 24-button keypad; there is audible feedback (the scanner "beeps" at you) each time a programming key is pressed. A LOCK OUT key allows you to disable unwanted channels temporarily, and a built-in SKIP function lets the scanner jump over those unwanted channels, speeding up the scan rate.

Fast (9 channels/second) and slow (4 channels/second) search and scan speeds can be selected using the keypad. A keypad-selected DELAY function can be used if you want to keep the

ADMANCE IS PROUD TO INTRODUCE the KEITHLEY Line of High Quality Digital Multimeters Featuring The New 130 Hand-Held DMM

Rugged DMMs from Keithley - all feature large, bright LCD display, easy-to-use rotary switches, externally accessible battery and fuse, 10A current range, diode test capability, low battery indicator, cushioned components.
Model 131. Similar to Model 130, with increased accuracy
. ${ }^{5} 139$
m

	ACCURACY					SENSITIVITY				
	MODEL	DCV	DCA	ACV	ACA	Ω	DCV	DCA	ACV	ACA
130	0.5%	1%	1%	2%	0.5%	$100 \mu \mathrm{~V}$	$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~V}$	$1 \mu \mathrm{~A}$	$100 \mathrm{~m} \Omega$
131	0.25%	0.75%	1%	2%	0.2%	$10 \mu \mathrm{~V}$	$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~V}$	$1 \mu \mu$	$100 \mathrm{~m} \Omega$
135	0.05%	0.5%	1%	1.5%	0.2%	$100 \mu \mathrm{~V}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~V}$	$1 \mu \mathrm{~A}$	$100 \mathrm{~m} \Omega$

Case $\$ 10.00$ Shipping $\$ 3.00$
THE TEST EQUIPMENT SPECIALISTS TOLL FREE HOT LINE 800-223-0474

Model 130. Our most popular model, the price/performance champ. ${ }^{\text {s }} 125$

Model 135. First 41/2-digit DMM with hand-held
convenience
s235

CIRCLE 102 ON FREE INFORMATION CARD

FOR MANY YEARS, THE GC ELECTRONICS Co. has been making a huge variety of parts for electronics work. They've been around for longer than I can remember, at the same address, 400 S . Wyman, Rockford, IL 61101. Now, they've gone into the test-instrument field.

This one is the Magnameter, catalog No. 20-226. It's a specialized microwave oven tester, for analyzing the operation of the magnetron by reading secondary voltage and current. The meter has two ranges, with a toggle switch to select between the two. With the range switch in the HIGH position, the meter reads secondary voltages up to 10 kV . In the Low position, the meter reads up to 10 volts. That range is used to measure the plate current of the magnetron, by reading the voltage drop across the plate resistor. For those ovens with no plate resistor, a heavyduty 10 -ohm tester is included, encased in plastic with alligator clips on both ends. That can be connected in the ground loop of the power-supply circuit. If the oven has a plate resistor of a value other than 10 ohms. a handy conversion chart is included for reading current.

The construction of the instrument is good: the case is high-impact plastic. and the test leads are very heavily insulated: twice the size of ordinary ones. Rubber-booted alligator clips are used
on all three leads-ground, low. and high. After the tests are completed, a DISCHARGE switch on the side of the case can be depressed to short out any remaining charge left in the circuit. A neon lamp labelled HIGH VOLTAGE, and located on the front panel, glows whenever high voltages are present in the circuit-even if the oven is off.

The Magnameter is a compact instrument, and it comes with a tilt handle that can be used as a bail or stand. Testleads are permanently connected, and all connections are made with the microwave oven's power switch turned off. The test leads are long enough to let you set the meter on top of the micro-
wave-oven chassis
The two major faults associated with microwave ovens are shorted magnetrons and shorted power transformers. By disconnecting the plate lead to the magnetron and measuring the output voltage of the power supply, then reconnecting the plate lead and measuring the plate voltage and plate current, you can isolate those two faults very quickly. and that's the name of the game.

The Magnameter seems to be built to give good service for a long time. Listpriced at only $\$ 86.68$, it looks like quite a lot of meter for the money: it should come in handy if you're going into that end of the electronics business. R-E

WK-7	COMPLETE IC INSERTER/EXTRACTOR KIT

INDIVIDUAL COMPONENTS

MOS-1416	$14-16$ PIN MOS CMOS SAFE INSERTER
MOS-2428	$24-28$ PIN MOS CMOS SAFE INSERTER
MOS-40	$36-40$ PIN MOS CMOS SAFE INSERTER
EX-1	14-16 PIN EXTRACTOR TOOL
EX-2	$24-40$ PIN CMOS SAFE EXTRACTOR TOOL

DIGITAL

 AUDIO DISC

So far, digital-audio recording technology has confined itself to tape. Now, digital discs are about to make their debut.

THE SPRING OF 1981 WILL PROBABLY GO down in history as the time when a major revolution in the science of sound recording took place. During April and May of that year, Holland's Philips Company and Japan's Sony Corporation, in jointly held presentations in Europe and the United States, announced their plans for the introduction of what has come to be known as the compact digital audio disc, or C-DAD.
If the companies meet their production target-dates, Japanese and European music lovers should be able to purchase a new kind of disc player in late 1982, while U.S. audio enthusiasts will have to wait a bit longer-until the beginning of 1983 . From all indications, the long wait will be worthwhile, for the new digital C-DAD disc (sometimes acronyms become part of the language long before the item they represent is available) offers a level of performance that has been impossible to obtain with conventional analog records, no matter how carefully they were recorded and processed.

C-DAD format

The new Philips-Sony C-DAD disc is shown alongside a conventional LP record in Fig. 1. It is capable of playing one hour of stereophonic music per side, and can also hold up to four channels of audio on a side with reduced playing time.

Information on the C-DAD disc consists of approximately six billion digital
"bits," which are linearly encoded along a helical track of pits and flats. The tiny pits are about 0.6 microns in width and 0.2 microns deep. The pits and flats represent the "ones" and "zeros" in the digital code used to store the signals. A solid-state laser beam is used to sense the sequence of pits and flats using a spot of light with a diameter several times smaller than that of a human hair. As shown in Fig. 2, the laser beam reads the presence or absence of the pits contained in the disc's surface beneath a protective plastic coating. The scanning rate is approximately 4.3 million bits-per-second. Variations in the reflected light rays are then converted into digital code and

FIG. 1-THE 4.7-INCH DIAMETER C-DAD disc contains one hour of music on a side compared to a little over 20 minutes for a conventional 12 inch LP.
finally, through D/A conversion, back into a continuous audio waveform.

Since there is no physical contact between the pickup and the surface of the disc, the pickup must be guided by a dynamic-tracking servo system. The lack of physical contact also means that record wear is totally eliminated.
Unlike the turntables used to play today's analog records, the rotating platter that spins the C-DAD disc has a variable rotational speed- 200 rpm when the laser is at the circumference of the disc and around 500 rpm when it is 50 millimeters from the center, the inner radial limit. Scanning takes place from inside to outside and rotation is counterclockwise. The total storage capacity of the C-DAD dise is over 8 billion bits per side-far more than is necessary for the 60 minutes of playing time that has been standardized for the disc. That provides a great many additional possibilities for designing C-DAD players. Both the Philips and Sony prototype players that were shown last spring (see Fig. 3) were able to "read out" such additional useful information as the number of the selection being heard, its length, the sequence of numbers programmed to be heard, etc. Owners of C-DAD disc players will be able to make use of sophisticated programming circuitry, enabling them to determine which songs they want to hear and in what sequence they want to hear them.

Audio quality and performance

The frequency response of the sys-

FIG. 2-THE C-DAD SYSTEM uses a tightly focused laser beam to read digital information represented by a series of pits on the disc.

TABLE 1		
Specification	C-DAD disc	LP record
Frequency response	$20-20,000 \mathrm{~Hz}$	$30-20,000 \mathrm{~Hz}$
S/N ratio	More than 90 dB	More than 60 dB
Dynamic range	More than 90 dB	Max. $55 \mathrm{~dB}(1 \mathrm{kHz})$
Channel separation More than 90 dB	$25-35 \mathrm{~dB}$	
High-frequency		
distortion rate	Less than 0.05%	0.2%
Wow \& flutter	0%	0.03% (WRMS)
Playing time	60 Minutes	30 Minutes
Disc diameter	4.7 inches	12 inches

tem is absolutely flat from 20 Hz to $20,000 \mathrm{~Hz}$. The digital sampling-frequency is 44.1 kHz , which would theoretically give a response up to 22.05 kHz . Some margin, though, is left for high frequency cut-off filtering.
The signal-to-noise ratio for the 16 bit digitizing format is better than 90 dB (theoretically, it could be as high as 97.5 dB); dynamic range-the difference in level between softest and loudest sounds that can be handled-is also better than 90 dB . Channel separation is 90 dB as well, while total harmonic distortion, referred to peak levels, is 0.05% or less (0.03%, theoretical).

As with any true digital-sound system there is no measurable rumble or wow-and-flutter. Tracking, decoding, and rotational speeds are synchronized by a central clock generator inside the player and the clock is itself governed by information encoded in the track on the disc. Since the digital data representing the music is stored briefly in semiconductor memory in the player before being clocked out at a steady rate to the digital-to-analog converter, there can be no wow or flutter in the conventional sense.

There is also no audible intermodula-tion-distortion of the type that plagues conventional analog recordings to such a large degree. To fully appreciate the significance of these performance levels, see Table 1, which compares the

C-DAD system with conventional LP records.

Competing digital-disc systems

Of the many digital-audio disc systems that have surfaced over the last several years, two besides the C-DAD system have been successfully demonstrated and been under consideration by a 51 -member Digital-Audio Disc Council. That group deliberated about standardization for about three years
(and has only recently been disbanded) in Japan. The two other systems are:

1. A capacitance-pickup system, developed by JVC as an adjunct to its VHD videodisc system which is to be marketed in early 1982 and which has been given the name AHD (Audio High Density).
2. A mechanical "groove-type" system developed by Telefunken.

Discs for the variable-capacitance system (AHD) are made of conductive materials. As shown in Fig. 4, digital signals in the form of tiny pits are engraved in these discs. As a miniature metal electrode follows the pits, signals, represented by changes in electrostatic capacitance, are detected. To maintain the necessary accuracy, the pits are engraved on the surface of the disc along with pilot signals impressed on either side of the audio signal pits. Since there are no physical grooves impressed into its surface, the pilot signals are used as part of a dynamic-tracking servo system to keep the electrode stylus properly positioned along the signal track of the AHD audio disc.

In the mechanical system developed by Telefunken, playback is accomplished in a manner similar to that used by ordinary analog players (see Fig. 5). That is, signals cut into the grooves of the disc are first converted into mechanical vibrations as the stylus traces them and the vibrations are then transmitted through a pickup arm to a piezoelectric converter, where they are changed into electrical signals.

Table 2 offers a comparison of these two systems and the Sony-Philips CDAD one. Of the three, only the SonyPhilips and the JVC systems seem likely to reach the marketplace in the near future. JVC's argument in favor of its system is based largely upon the fact that a single player would be able to

FIG. 3-C-DAD PLAYER prototypes shown in 1981. Sony's is at left; Philips' at right.

FIG. 4-JVC'S AHD digital-audio disc system works on the same principles as its VHD videodisc system.

FIG. 5-THE MECHANICAL SYSTEM developed by Telefunken for digital discs is similar to that used for today's analog records.

FIG. 6-STAGES INVOLVED in the manufacture of C-DAD discs. Numbers in parentheses at right indicate how many of each piece are produced.

handle both its videodiscs (the VHD discs that are to be marketed in 1982) and the AHD digital-audio discs, since both use a capacitance-pickup principle. Of course, a digital-to-analog converter/processor would have to be added to the JVC system for decoding the digital-audio discs; the addition of such a D/A converter/processor would make the lower-cost argument somewhat questionable.

The JVC AHD disc, like its companion VHD disc, is a little over 10 inches in diameter and comes supplied in a "caddy" or holder that protects the
disc surface when it is not being played. The smaller, optically-tracked, C-DAD disc requires no such protective sleeve, of course, and is in no way affected by dirt or dust on its surface since the focal point of the laser beam is beneath the transparent surface of the disc. An important point that has been emphasized many times by Sony and Philips is that the small C-DAD disc and its correspondingly small player can easily be adapted for use in cars and other moving vehicles, since the vibration of a vehicle should have little or no effect upon laser tracking.

The trend towards C-DAD

There seems to be a growing trend towards endorsement of the C-DAD system by equipment manufacturers and "software" (recorded material) producers around the world. Matsushita Electric Company (whose line of brands includes Panasonic. Quasar. Technics and National), although committed to the JVC VHD system for videodiscs, has nevertheless indicated that it will produce disc players for the Sony-Philips system. Recently, the worldwide Polygram Group, one of the leading international record manufac-
turers, and CBS/Sony, Inc., the largest record company in Japan, announced plans to produce music programs in the C-DAD format. In 1982, for example, CBS/Sony will release more than 100 C-DAD albums in Japan simultaneously with the introduction of the C-DAD players. On the hardware side, companies such as Marantz have already demonstrated their own versions of players which are compatible with the Sony-Philips optical-laser disc system. And, while the 51 -member Digital Audio Council mentioned earlier did not specifically endorse the C-DAD system, its final report noted its compact size and its applicability to mobile use, which many interpreted as being just about as close to an endorsement as such a committee would ever be likely to come.

How C-DAD discs are made

Once you get past the hurdle of paying for a C-DAD optical-laser player (about the price of a high-end turntable), the software or discs themselves should be no more expensive, on a "per-minute-of-music" basis, than highquality LP records. The process of making digital discs is quite different from the process currently used to make analog LP records, but once it has been mastered, it should be possible to turn out the new discs on a massproduction basis that will reduce disc prices drastically.

Mechanical cutting-techniques are impractical for digital-disc production because the pits to be carved are far too small. Instead, the process shown in Fig. 6 is used. First, a glass plate coated with photo-resist material is exposed to a digitally-modulated laser beam. The plate is then developed to form pits corresponding to the presence or absence of digital signals. After a silvering process, that glass plate becomes the "master."

It is next pressed against a nickle plate to make an inverse copy (the pits become small bumps and the flats become depressions) of the photo-etched depressions on that plate. A digital master is thus produced which, in turn, is used as the "mother" for making production "stampers." Each stage inverts the surface of the disc (pits-bumps-pits-bumps, etc.). The stampers have bumps.

The final production stages are shown in Fig. 7. Using the stamper, C-DAD discs are produced in large quantities in much the same manner as conventional analog records. The sig-nal-bearing surface of each disc is then coated with a reflective material, followed by a coating of protective, transparent plastic. Aside from any labelling and packaging that may be required, that completes the manufacture of a single-sided disc.

FIG. 7-FINAL STAGE in C-DAD disc production involves adding a reflective layer to the surface and protecting it with a clear plastic coating.

"DIGITAL" vs. DIGITAL

FOR THE PAST SEVERAL YEARS 12 -INCH 'DIGITAL' discs have been available from companies such as Telarc, Teldec, London, and others.

It is a common misconception that those are true digital discs, but that is not the case.

True digital discs carry the audio information as a series of binary-coded numbers-that is the method used by the C-DAD.

Digitally-mastered discs-the 12inchers currently on the market-are so called because the master tapes from which they are produced are digitallyencoded. The discs themselves carry a conventional analog signal.

Those discs do have an advantage over ones recorded using analog processes all the way through-the quality of the master tapes is higher and some of that quality is carried over into the analog pressing. Dynamic range is greater, tape hiss is non-existent, etc. The discs themselves, though, are still prone to the shortcomings of analog recordings-surface noise, restricted dynamic range, tracking problems, and so forth.

While "digital" (digitally-mastered) discs certainly represent a tremendous improvement over their all-analog predecessors, their quality is still far removed from that obtainable from alldigital recordings.

R-E

For a two-sided disc, an additional process to combine two single-sided dises would be required, but it is entirely possible to produce such twosided discs.

Digital source-material

Recognizing the advantages of digital recording almost as soon as it was made available on a commercial basis to recording studios several years ago, many recording companies around the world have been producing digital master-tapes for release as digitallymastered, improved analog LP's (often erroneously referred to as "digital" records). Although many of those recordings have been praised as being clearly superior in sound quality to conventional LP's, they obviously cannot approach the performance levels that will be reached by C-DAD discs once they are made available. (See sidebar for more information.)
The fact that so many digital master tapes now exist in the archives of major recording studios bodes well for the future of true digital-discs. All those tapes can be used to make true digitalaudio discs, with no degradation in quality from master tape to disc. The Sony-Philips system, in fact, uses the same 16-bit PCM (Pulse Code Modulation) encoding currently being used for professional digital-audio purposes. Therefore, C-DAD recordings can be made in studios using existing PCM equipment. It is also possible to translate existing analog recordings, using PCM processors, to the C-DAD format. However, should that be done, the resulting product would not exhibit the increased dynamic range and other improvements made possible by digitalrecording technology.

R-E

WHEN A TELEVISION RECEIVER IS PURchased in the United States, you can take it anywhere in the country, plug it in, pull up the "rabbit ears," and tune in a station. That is possible because we have national broadcasting standards that are common throughout the country. Yet, at one time commercial television was going to be introduced to the American public without standards; fortunately, that "experiment" ended before it even started. But let's not get ahead of our story!

Up to 1934

During the first few months of 1933, RCA demonstrated the first successful all-electronic television system. Broadcasts were made from the RCA experi-
mental television transmitter, W2XBS, located at the top of the Empire State Building in New York City. The characteristics of that early all-electronic television system were modest:

Lines:	240
Frames:	24 per second
Scanning:	sequential (no inter- lacing)
	Bandwidth: 2 MHz
Video carrier:	AM modulated, full
sideband	

Yet, the results were far better than any mechanical television system had ever accomplished. For those experiments, the video carrier was at approximately 45 MHz .
It may be hard for us to appreciate

FIG. 1-HOW THE TELEVISION ALLOCATIONS have changed over the years. This chart shows the approximate frequencies of the channels; the exact frequencies are given in Table 1.
fully what RCA had accomplished in 1933. But to give you an idea: Many of the experimental television broadcasters were still using frequencies in the 2 to $3-\mathrm{MHz}$ range, and bandwidths of 100 kHz . In addition, the earlier systems were mechanical using gears, motors, mirrors, etc. As television advanced, each step pointed towards non-mechanical systems, and higher bandwidths and carrier freauencies.

The Federal Communications Commission was established by an act of Congress on June 22, 1934. It was about that time that a portion of the VHF radio spectrum was allocated to television for the first time (see Fig. 1). Previously, any frequency above 30 MHz was available to experimenters. Those experimenters included a number of pioneering amateur-radio operators; there were also experimental stations that included television. In 1934, the experimenters were moved to the frequencies above 110 MHz , while television was allocated two bands, 42-56 and $60-86 \mathrm{MHz}$. There were no channels associated with the allocations, but it was a beginning; television was making its first move.

1934 to 1938

Progress was slow for television during those years. The depression was at its worst, and even mighty RCA lost
money. But advances were made in RCA's all-electronic system. In June, 1936, RCA announced the start of a massive field test. A total of 100 experi-mental-television receivers were distributed to RCA employees for placement in their homes and offices (see Fig. 2). RCA then began regular television broadcasts from W2XBS, using their new Radio City television studios. Those studios were linked to the Empire State Building transmitter by an experimental $177-\mathrm{MHz}$ radio link and a coaxial cable. The composition of the television signal used for that test was as follows:

Lines:	343
Frames:	30 per second
Scanning:	interlaced (2:1)
Bandwidth:	5.75 MHz
Video carrier:	AM modulated, full sideband
Audio carrier:	AM modulated, full sideband

On June 15, 1936, the FCC began informal hearings concerning the radio spectrum above 30 MHz . There was an increasing demand for those frequencies and a new word began to be heard at the FCC; that word was standards. The Radio Manufacturers Association (RMA), the trade association for the radio and television equipment manufacturers, had formed a sub-committee on television. They attended the June, 1936 hearings because of their interest in the possible future commercialization of television. In addition to urging definite channel allocations, the RMA had a set of television channel standards to present (see Fig. 3-a). Although those standards were incomplete in some respects, one important recommendation that the RMA made to the Commission was that the bandwidth of a television channel should be 6 MHz the same bandwidth that is used today. The RMA television standards were:

Lines:	441			
Frames:	30 per second			
Scanning:	interlaced $(2: 1)$			
Bandwidth:	6 MHz			
Video carrier:	AM modulated, full			
sideband		\quad	Audio carrier:	AM modulated, full
:---	:---			
sideband				

It is interesting to note that the proposed 441 -line standard was beyond the capabilities of any system that had been demonstrated up to that point. It wasn't until eight months later, on February 11, 1937, that a manufacturer (Philco) gave a convincing demonstration of a television system that completely met the RMA standards.

The FCC hearings that had started on June 15, 1936, resulted in the allocation of 19 television channels, each with a bandwidth of 6 MHz . The new allocations, which are shown in Fig. 1 and Table 1, became effective October 13, 1938. The RMA revised and completed their set of television standards, which were essentially the same as the 1936

FIG. 2-ONE OF THE LAST in existence, this receiver was one of the ones used in RCA's test of the first all-electronic television system. The vertically-mounted picture tube was viewed through a mirror in the cabinet top.
standards except for one important difference: The video carrier would now be transmitted with a full upper sideband and only a partial lower sideband, as shown in Fig. 3-b. That vestigial sideband system was eventually adopted by the FCC and is used today.

Television now had allocations and channel numbers. Our mysterious Channel 1 was assigned to the 44 - to 50 MHz band as shown in Table 1. RCA's experimental station quickly received a permit for one of those new television allocations and selected Channel 1!

1938 to 1940

The television industry was generally pleased with the FCC allocation of 19 TV channels. They were hoping for a continuous band of frequencies to simplify tuner design, and were somewhat disappointed that 12 of the 19 channels were above 150 MHz ; those frequencies were virtually unused, and thought to be useful only for televisionrelay networks. But the seven channels between 44 and 108 MHz were enough to begin plans for commercial television operation. By then it was believed that the RMA standards would be adopted by the FCC and commercialization could begin. But not everybody agreed with the RMA standards, and the FCC wasn't about to approve any standard unless the television industry was in almost total agreement.

On October 20, 1938, just one week

FIG. 3-THE FIRST STANDARDIZATION of a television signal, the system shown in a featured full upper and lower sidebands. A later revision, shown in b, featured a reduced lower sideband. That vestigial sideband technique is the one is use today.

TABLE 1

Channel	Year				
	$1938-1940$	$1940-1946$	$1946-1948$	1948-PRESENT	
1	$44-50$	$50-56$	$44-50$	-	
2	$50-56$	$60-66$	$54-60$	$54-60$	
3	$66-72$	$66-72$	$60-66$	$60-66$	
4	$78-84$	$78-84$	$66-72$	$66-72$	
5	$84-90$	$84-90$	$76-82$	$76-82$	
6	$96-102$	$96-102$	$82-88$	$82-88$	
7	$102-108$	$102-108$	$174-180$	$174-180$	
7	$156-162$	$162-168$	$180-186$	$180-186$	
8	$16-168$	$180-186$	$186-192$	$186-192$	
9	$180-186$	$186-192$	$192-198$	$192-198$	
10	$186-192$	$204-210$	$198-204$	$198-204$	
11	$20-210$	$210-216$	$204-210$	$204-210$	
12	$23-216$	$230-236$	$210-216$	$210-216$	
13	$234-240$	$236-242$	-	-	
14	$240-246$	$258-264$	-	-	
15	$258-264$	$264-270$	-	-	
16	$264-270$	$282-288$	-	-	
17	$282-288$	$288-294$	-	-	
18	$288-294$				
19					

after the allocations became effective, RCA announced that regular television programming would begin as a "public service" on April 30, 1939. That date coincided with the opening of the 1939 New York World's Fair. A number of manufacturers began producing television receivers, and by the opening of the fair they were in the stores and ready for sale. The opening ceremonies of the fair were broadcast on Channel 1 by RCA's W2XBS, and featured the President of the United States. After that event, broadcasts were scheduled on a regular basis.

By the end of May 1939, large department stores, such as Macy's in New York, offered as many as nine different models for sale; those were supplied by three manufacturers (Andrea, DuMont, and RCA). Screen sizes for those telvision sets ranged from 5 to 14 inches, and prices ranged from $\$ 189.50$ to $\$ 600.00$. Most of the early sets were complete receivers, but one, the model TT- 5 from RCA (shown in Fig. 4), had no audio section; if audio was desired, it had to be connected to a compatible RCA receiver. Unfortunately, sales of those early television sets were not very good, and by the end of 1939 fewer than 400 of them had been sold in the New York area.

All of the major television broadcasters (incidently, the stations were still considered experimental) had adopted the RMA standards by the end of 1939. That included the stations in New York City, Chicago, Los Angeles, and Schenectady. The FCC was urged to adopt the RMA standards so that commercialization could begin. The FCC responded to the pressure from the TV industry by publishing rules for limited commercialization on December 22, 1939. It was a kind of Christmas present for the television industry.

FIG. 4-THIS EARLY TELEVISION SET, the RCA model $T T-5$, was one of the first offered for sale to the general public. It featured a five-inch screen, five-channel coverage, but no audio section; it sold for \$199.50 in 1939.

At the time those rules were published, the FCC also announced that hearings would be held in January, before establishing a date for limited commercialization. At those hearings, it was made clear to the FCC that many of the broadcasters did not agree that the RMA standards were the best. Philco urged the FCC to adopt their system of television with 605 lines and 24 frames-per-second. DuMont wanted standards that included 625 lines and 15 frames-per-second. In addition, there was some vague talk about something called color television. Nevertheless, in an order issued on February 29, 1940, the FCC ruled that limited commercialization could begin on September 1, but warned that nothing should be done to encourage a large public investment in television receivers. They refused to adopt any standards, with the implication that each of the broadcasters could use whatever standards they liked best, with the public deciding who had the best system.

RCA responded to the authorization for limited commercialization with full-
page newspaper ads in early March announcing the "arrival of television," and ordered the immediate production of 25,000 television receivers. The FCC realized that limited commercialization wasn't going to work, as the sale of thousands of television sets would, in effect, "freeze" the standards, making a change to other standards almost impossible. Within a few days of the RCA newspaper ads, the FCC's permission for limited commercialization was withdrawn.
Television was also about to undergo some more changes. Frequency Modulation (FM) had been introduced by its developer, Major Edwin H. Armstrong, in 1935. Shortly after its introduction, FM was granted five experimental frequencies between 42.6 and 43.4 MHz . By 1940, the FCC had 150 applications for experimental FM stations on file that could not be processed because of lack of frequencies. As a result of hearings held on March 18, 1940, the FCC assigned FM a continuous band of frequencies (that was done to simplify tuner design), and expanded the FM allocation to include the frequencies from 42 to 50 MHz . The new allocation included the $44-$ to $50-\mathrm{MHz}$ band that had previously been assigned to Channel 1.

But that is not what happened to Channel 1! The TV channels were renumbered with Channel 1 now assigned to $50-56 \mathrm{MHz}$ band and the remaining channels were shifted around the spectrum. But when the smoke cleared, the television industry had lost one channel, leaving them with 18 allocations.
The new FM channels and the changes in the television allocations became effective on June 20, 1940; commercial FM broadcasting was authorized to begin on January 1, 1941.

1940 to 1946

When the revised 18 -channel TV allocations went into effect, the television industry was unhappy, to say the least. The limited commercialization plan was suspended; the FCC continued its refusal to set television standards; a television channel was lost to FM, and, because of the changes in the allocations, many of the experimental TV broadcasters had to go off the air to complete extensive transmitter changes. For example, the RCA experimental transmitter, W2XBS, had beer. operating on the old Channel $1(44-50 \mathrm{MHz})$; because of the changes, they were forced to switch to the new Channel 1 (50-60 MHz).

However, soon after that things began to look up. A member of the RMA had met with the FCC to ask just what the television industry could do to win approval of a set of standards. The FCC replied that if the industry could agree on one set of standards, they would be
approved without delay. Quickly, the RMA organized the National Television Standards Committee (NTSC). The NTSC was open to all major interests in the television field whether they were associated with the RMA or not. Eventually, over 160 individuals became associated with the NTSC. On July 31, 1940, under the RMA's sponsorship and with the FCC's blessing, the NTSC held its first meeting.

With the opportunity to propose a set of standards to the FCC, you might have expected that the NTSC would simply have endorsed the existing RMA standards, but that is not what happened. Every aspect of the televi-sion-standards question was re-examined and discussed at length. On January 27, 1941, the NTSC met with the FCC and presented a progress report. The preliminary NTSC standard presented to the FCC at that meeting closely paralleled the RMA standards. That seemed to indicate that the RMA standards were essentially correct. There was one important difference, however: The audio carrier was to be FM. The FCC had one reservation about the proposed standard-they felt that the 441 -line standard recommended by the NTSC was too low. That standard went way back to the first RMA standards of 1936, when both video sidebands were transmitted. It was common knowledge that the vestigial sideband system in use since 1938 allowed a much higher line count and, accordingly, a better television picture. The NTSC agreed to re-examine that question and said that it would present more information at hearings that were to be held in March, 1941.

Those hearings were held on March 20, 1941. The NTSC standard that was presented at the hearing was almost identical to the one proposed earlier, except that the number of lines was increased to 525 lines. (Although the number of lines seemed to be random, it was not. The line count had to be an odd number and to be related to few multiples of odd numbers, such as $3 \times 3 \times 7 \times 7=441$ or $3 \times 5 \times 5 \times 7=525$, for example. That was necessary for generation of the synchronizing pulse.) The new standard was as follows:

Lines:	525
Frames:	30 -per-second
Scanning:	interlaced $(2: 1)$
Bandwidth:	6 MHz
Video carrier:	AM modulated, ves- tigial sideband
Audio carrier:	FM modulated, ± 75 later deviation $\pm 25 \mathrm{kHz}$ devia- tion)

Virtually all of the participants in the hearings (they went on for four days) agreed that the NTSC Standards were correct and should be adopted quickly. The FCC was convinced that the indus-
try had finally agreed and the NTSC Standards were adopted as the national standard in April 1941. The effective date was July 1, 1941; commercial television could finally begin!

When that "Opening Day" for commercial television finally arrived, only two television stations were licensed and ready for operation; WNBT (NBC, old W2XBS) transmitting on Channel 1, and WCBW (CBS, old W2XAX) transmitting on Channel 2. Both of those stations were in New York City. Soon after (on September 1, 1941) WPTZ in Philadelphia, transmitting on Channel 3 , came on the air. By the spring of 1942, a total of four commercial stations were in full operation and 10,000 television receivers had been sold.

Television's growth was halted by World War II, with the Defense Communications Board ordering the construction of new radio and television stations to end. Television programming was reduced to just four hours per week for the broadcasters already in operation (all devoted to war-related activities).

As the end of the war approached, the FCC was faced with a monumental task. The war effort had brought about an extraordinary leap in communications technology. Frequencies that had been thought to be useless were now in tremendous demand. The entire spectrum had to be re-examined, with new allocations made and old ones revised. The FCC began by holding hearings on September 28, 1944. They were promptly overwhelmed. The 18 -channel television allocations in effect since 1940 were attacked by one group as being wasteful of the valuable VHF spectrum, yet another group urged an increase to 26 channels. Others urged the FCC to move all of the television allocations to UHF frequencies immediately. But the television industry aruged that television had waited long enough and should develop now, using the existing allocations.

After hearings that were held on February 14, 1945, it became clear that no group was going to get everything it wanted. In the FCC's final decision, released on June 27, 1945, television's allocation was reduced to 13 channels, and FM was moved from the $42-50$ MHz slot to $88-106 \mathrm{MHz}$ (the band was later increased to $88-108 \mathrm{MHz}$). The television interests were very unhappy that they were left with only 13 channels, but the FM interests suffered a major blow because all of the existing stations had to go off the air and switch to new frequencies. In addition, 500,000 home-FM receivers were now obsolete.

The reduction to 13 television channels was accompanied by new and reorganized frequency allocations (see Table 1). Again the broadcasters had to go off the air to switch frequencies.

Our Channel 1 was still around, but it was moved back to the 44 - to $50-\mathrm{MHz}$ band that it had occupied from 1938 to 1940. In addition, there was a restriction for Channel 1: It could only be assigned as a community channel, and was limited to a maximum power of 1000 watts. Other TV channels were for metropolitan stations, with a maximum power of 50,000 watts permitted. All channels, except Channel 6 , were shared with fixed and mobile services-a fact that left the television interests concerned about interference. The changes became effective March 1, 1946.

1946 to 1948

Even with the reduced number of channels, the boom was on! Manufacturers quickly began producing television receivers, transmitters, antennas, etc. New television stations were being built all over the United States. The FCC had identified the top 140 metropolitan cities and assigned each at least one channel; a total of 400 were to be allotted. The FCC received many more applications than it had available channels. In an effort to provide the public with as many channels as possible, the FCC routinely threw away the "safety factor" of mileage between licensed transmitters. Television-receiver sales were doing very well, with 175,000 sold by the end of 1947. Manufacturers were selling television sets as fast as they could be made, even though the sets were rather expensive. (A typical set with a 10 -inch screen sold for $\$ 375$.)

But problems began to appear. Propagation theories at that time predicted that television signals would not be received over the horizon-but they were, quite readily. So, even with just 50 stations on the air, interference problems were beginning to appear. Meanwhile, the FCC had reduced the minimum distance between stations using the same channel to just 80 miles. An engineering study released by the FCC warned of interference problems if immediate action wasn't taken. That led to an FCC report, issued on May 5 , 1948, that ruled that television could no longer share its frequencies with fixed and mobile services, and that the 72 - to $76-\mathrm{MHz}$ band could be used for fixed radio services only.

But where could the mobile services be located if they could no longer share the television allocations, and could no longer use the $72-$ to $76-\mathrm{MHz}$ band? There was only one place to go-the television industry would have to give up another TV channel. But which channel would that be? The American Radio Relay League (an association of amateur radio operators) urged that Channel 2 be deleted so that the second harmonics of the $28-29.7-\mathrm{MHz}$ amateurradio band would not interfere with continued on page 89

NIEMV TIECMNOLOGY

 TRAFFIC BROADCAST ZONES

 TRAFFIC BROADCAST ZONES

 IN WEST GERMANY (ARI)

 IN WEST GERMANY (ARI)
 NEW USE FOR FM SCA AUTOMATIC ROAD INFORMATION SYSTEM Most people think of SCA as a means of piping mood music

 into stores and restaurants. West Germany has found a much more valuable way to use that service.

A FEW YEARS AFTER MAJOR ARMSTRONG FIRST DEMONSTRATED a workable system of widèband-FM radio broadcasting back in the 1930's. he demonstrated how a subcarrier could be used to modulate the main carrier of an FM station, and how that subcarrier could carry information that was totally different from what was being transmitted on the main carrier.

Many years later, in 1961, the basic techniques developed by Armstrong and modified by others resulted in the beginning of stereophonic broadcasting in the U.S.. using subcarrier techniques which, though somewhat different from those first proposed by Armstrong, nevertheless fall into the general category for multiplexed FM.

SCA

In 1954 -several years before stereo broadcasting beganthe Federal Communications Commission, concerned over

FIG. 1-AN FM-STEREO STATION that offers an SCA service does so at a frequency 67 kHz above the center frequency of its carrier.
the increasing economic plight of struggling FM stations, authorized what came to be known as SCA transmissions. (SCA stands for Subsidiary Communications Authorization.) In those pre-stereo days, FM stations were permitted to transmit one or more subcarriers at frequencies between 25 kHz and 75 kHz above the main carrier, and to modulate those subcarriers with virtually any sort of useful information for use on a point-to-point basis. In other words, the station could lease its subcarriers to companies. The companies leasing the subcarriers could then charge a rental fee for receivers provided to subscribers who wanted to hear whatever was being transmitted on the subcarriers.
The best known use of those subscriber-oriented services is for commercial-free background music. Such music, brought to us by such familiar names as Muzak, has been the butt of jokes and disparaging remarks almost from the day that SCA service began. Less familiar is the fact that SCA transmissions do not always consist of background music. In many parts of the country, SCA channels are used to provide a "talking book" service for the blind. And, with the shortage of regular radio-channel space becoming acute, some enterprising broadcasters are turning to SCA to provide foreign-language or ethnic programming for audiences whose numbers are too small to justify the assignment of a station-frequency by the FCC.
With the advent of FM stereo in 1961, the space available for SCA channels was sharply reduced. Figure 1 shows the modulation spectrum of an FM-stereo transmitter. All of the 6 frequencies given in the following discussion are referenced to the main carrier frequency. The sum $(\mathrm{L}+\mathrm{R})$ of the two Saudio channels occupies spectrum space from 30 Hz to. 15 kHz (the highest audio frequency permitted on FM), the stereo pilot-signal is found at 19 kHz , and the sidebands of the suppressed-carrier $38-\mathrm{kHz}$ AM subcarrier signal containing the difference ($\mathrm{L}-\mathrm{R}$ stereo information) occupy thespace from 23 kHz to 53 kHz . That leaves only the spectrum space from 53 kHz to 75 kHz for SCA or private subcarrier use. Some guard-band space must be provided for, so the first practical subcarrier will have a frequency of around 57 kHz . Stations transmitting in stereo and also providing an

SCA service generally select 67 kHz as their subcarrier frequency.

Auto road information

We recently learned about a new use for SCA, which is currently in service in West Germany. The new service is helping to solve road problems in that country. As most drivers know, there are AM and FM radio stations in almost every part of this country that broadcast traffic information as part of their regular programming. The same is true in West Germany and in other European countries. But the high density of traffic in Europe has caused problems that did not exist even a few years ago.

The traffic problems, of course, are worst during rush hours, weekend peaks, vacation periods, etc. When the capacity of a road is exceeded, traffic jams occur, leading to road acci-dents-rear-end collisions and the like. The authorities in West Germany reasoned that information supplied promptly to drivers would help keep traffic problems to a minimum. Indeed, way back in the 1960's the government-controlled Radio Broadcast Network began giving traffic information at the end of hourly news broadcasts. It was quickly realized, however, that even such an expanded information service would be of little use unless the information were of a local nature (so that drivers in the immediate area of a problem were informed of it), and unless drivers could be readily alerted to the problem.

As early as 1969. West Germany's well known Blaupunkt radio company began working on the problem and came up with a system that made it possible to distinguish a station that broadcast traffic news and information from the many other stations on the FM broadcast band. Some time later, that system was elaborated upon and became known as ARI (Automatic Road Iinformation). After extensive testing, the system was adopted in West Germany in 1974, and is in use today. Since then, the system has been submitted to the European Broadcasting Union (EBU) for adoptation as a standard and, after practical tests in Switzerland, has been recommended to all European countries for the dissemination of traffic information. Austria introduced the system in 1976. and trials in other European countries have also been taking place to assess ARI's merits.

The ARI system

The ARI system is used to identify stations that broadcast information about traffic conditions, as opposed to those that do not. That is especially useful to a driver who comes from another geographical area and is not familiar with local stations. Using a specially designed, ARI-equipped, radio, the driver can "tune out" stations that do not broadcast traffic information. leaving only the traffic-information stations audible.

One option in an ARI-equipped car radio automatically increases the volume to a predetermined level at the start of any traffic announcement. and returns it to its previous level at the conclusion of the announcement. Another option available in ARI-equipped radios provides a visual indication (similar to the familiar stereo-indicator light) when the driver tunes to a "traffic information" station. It is also possible to have traffic announcements override a cassette-tape program that the driver may be listening to while driving. with automatic return to the cassette when the announcement has been completed.

Still another version of the ARI-equipped radio provides an advance warning that a traffic announcement is about to be made, using a brief " signature tune" to avoid startling a driver whose radio had been muted before the announcement. A suitably equipped ARI car radio can even warn a driver when a station's signal strength falls below usable levels as he leaves the station's area of coverage. That is useful as it will allow him to tune to another ARI-equipped station in his new region of travel.

FIG. 2-THE ARI SYSTEM adds a $57-\mathrm{kHz}$ subcarrier to indicate the presence of an ARI station.

FIG. 3-THE PEAK AMPLITUDE of the $19-\mathrm{kHz}$ stereo pilot-signal plus the $57-\mathrm{kHz}$ ARI subcarrier does not exceed that of the pilot signal alone.

How ARI works

An important characteristic of the ARI system is its ability to identify the station or stations in a given area that provide traffic information on a regular basis. Ordinarily. a driver would find it difficult and time consuming to single out a traffic-news station from all the others on the FM band in most metropolitan regions. With the ARI system, those stations that broadcast traffic information and are part of the ARI network transmit a continuous $57-\mathrm{kHz}$ sub-carrier signal. known as the Station Identification signal (or "SK." from the German word "Senderkennung"). That signal, nestled between a normally used $67-\mathrm{kHz}$ SCA subcarrier. and the upper frequency of 53 kHz that is present during FM-stereo broadcasts, is derived by tripling the $19-\mathrm{kHz}$ pilot signal associated with stereo transmissions. The $57-\mathrm{kHz}$ signal is therefore locked to the stereo pilot-signal both in phase and frequency relationship.

The complete modulation spectrum of an FM transmitter operating in both stereo and ARI is shown in Fig. 2. Figure 3 illustrates an important aspect of the ARI system. The $57-\mathrm{kHz}$ subcarrier modulates the main carrier at half the level that the

FIG. 4-ALL THE FREQUENCIES AND TONES used in the ARI signal are derived from the $19-\mathrm{kHz}$ stereo pilot-tone.

FIG. 5-ZONE-IDENTIFICATION TONE (a) is added to message-identification tone (b) to produce complex waveform (c).
$19-\mathrm{kHz}$ pilot signal modulates the main carrier, or between four and five percent of total modulation. The waveform shown in Fig. 3-a represents the amplitude of the $19-\mathrm{kHz}$ pilot signal, while the one in Fig. 3-b is a representation of the $57-\mathrm{kHz}$ ARI station-identification signal (the third harmonic of 19 kHz). Figure $3-\mathrm{c}$ shows the algebraic addition of the two signals and it is clear that the peak amplitude of the resulting waveform is never greater than that of the original pilot signal. Thus, the combination of the pilot signal and the stationidentification signal does not increase the frequency deviation of the main carrier. That also means that signal-to-noise ratios and station coverage-areas are not affected by the addition of the station identification signal.

Area identification

The limited range of FM transmissions presents both advantages and disadvantages in a traffic-information system such as that. On the one hand, drivers can be certain that the traffic information they receive applies to the region in which
they are. But it is also possible that, in certain areas, they would be able to receive more than one traffic-news station. A driver would want to be sure that he had selected the right station.
To solve that problem, Blaupunkt developed a special zoneindicating system for ARI. The total area to be covered is divided into traffic areas that correspond closely to areas covered by local radio stations. As many as six different zone identifications can be used, designated by the letters " A " through " F ."
Each zone is assigned a very-low-frequency tone, which is used to modulate the $57-\mathrm{kHz}$ ARI subcarrier, as shown in Fig. 4. Extensive measurements and field observations have shown that no audible interference occurs as a result of that added modulation. Zone or area identification frequencies are derived by dividing down the $19-\mathrm{kHz}$ pilot tone; the values used in performing the division are also shown in Fig. 4. Depth of modulation of the $57-\mathrm{kHz}$ ARI subcarrier signal is limited to just 60%.

Traffic message signals

While many drivers want to stay tuned to traffic-news stations throughout their travels, there are others who would prefer to hear only the traffic announcements but not the rest of the program material. For example, they might wish to converse with fellow passengers, preferring to keep the radio's volume level low, or to listen to a cassette tape for part of their trip, even though their car radio remained tuned to an ARI station.
For that reason, it was decided to use a seventh low-frequency tone, at a frequency of 125 Hz , to modulate the $57-\mathrm{kHz}$ subcarrier and serve as a message-identification signal. The modulation level of that extra signal is set at half the value used for zone-identification tones and the tone is transmitted for the entire duration of the traffic message. Figure 5 shows how the modulating frequency of a zone or area identification adds to the 125 Hz "message identification" modulating frequency, with the latter having 50% of the amplitude of the former.

An important advantage of the ARI system is that all of the tones it uses, as well as the basic $57-\mathrm{kHz}$ subcarrier itself, are derived from the stereo pilot-frequency through division or multiplication of the $19-\mathrm{kHz}$ stereo pilot signal. Because of that relationship to the $19-\mathrm{kHz}$ stereo pilot-signal, the design of the ARI radio receiver is greatly simplified.

What's available

The simplest and least expensive type of ARI receiver is one in which only traffic-news station-identification is used. In that type of receiver, an indicator light comes on when the driver tunes to a traffic-information station. If he wishes, he can push a button to mute all other stations, allowing only the ARI-equipped one(s) to come through. A somewhat more sophisticated receiver is one that combines station identification and message indication. Still another type can interrupt the playing of a tape cassette when a traffic message begins, switching to FM reception for the duration of the message, and then switch back to the cassette.

The ultimate ARI system uses a car radio with signal-search capability combined with an ARI circuit. The signal-search feature is designed to stop only at traffic-information stations and, when leaving the area of the local transmitter, it automatically searches for another traffic-information station. If, having left one zone and entered another, no other station with the same identification letter can be received, a warning tone informs the driver that a new zone-letter should be selected.

Reports from West Germany indicate that the ARI system has proven to be of great benefit. With all industrialized countries looking for unused communications channels, SCA frequencies offer a convenient means for providing new and innovative forms of point-to-point communications. R-E

BUTTMD सEUIS

 TELEPHONE
 telepuon IN-USE MONITOR

Do you embarrass easily? This phone line monitor will eliminate unintentional eavesdropping by indicating when a phone line's in use.

How it works

Let's look at what happens to the telephone line when someone takes a phone off the hook. Normally, with all phones hung up, a potential of approximately 48 -volts DC exists across the two wires of the line. If any phone is picked up, it shunts across the line, and the voltage drops down to about six volts. That change is what is used to trip the monitor.

The circuit is shown in Fig 1. With the monitor connected across the phone line's red and green wires, and with all phones on-hook, a relatively strong potential is developed across resistor R2 (through R1 and R3-more about them later). That positive voltage keeps the base-emitter junction of transistor Q1 biased off. With Q1 off, there is no base current for transistor Q2; it is off, too. That keeps IC1 from flashing the LED because the return path back to the battery is not complete. This IC, an LM3909 is a low-power LED-flasher that needs only an electrolytic capacitor to flash an LED from

CHRISTOPHER M. DUNN

EVER PICK UP THE EXTENSION PHONE IN your home, only to find out that the line is already in use, and have someone get upset because you're interrupting his (or her) call? (It's always my sister talking to one of her boyfriends.) Well. if you have that annoying situation, or would just like to know when the phone line is in use, this simple and inexpensive device will do the trick.

What the phone-line monitor does is to flash an LED whenever a telephone connected to that line is off its hook. Most of the parts needed to build it can most likely be found in your junk box. and construction is simple-the monitor can easily go on a piece of perforated board.

FIG. 1-BOTH POLARITY AND VOLTAGE at phone lines must be known in order for monitor to work. Use a voltmeter to determine them.

FIG. 2-COMPONENT PLACEMENT is not critical. Board and batteries are held in place by doublesided foam tape. If you wish, an IC socket can be used to hold the transistors as well as the IC. Keep the transistor leads as short as possible.

PARTS LIST

All resistors $1 / 2$ watt, 10%
R1, R3-2.2 megohms*
R2-330,000 ohms
R4-33,000 ohms
Capacitors
C1- $470 \mu \mathrm{~F}, 10$ volts, electrolytic
Semiconductors
LED1-jumbo red LED
Q1-2N3906 or similar PNP-type
Q2-2N2222 or similar NPN-type
IC1-LM3909 LED flasher
B1, B2- $11 / 2$-volt "C" cell
Miscellaneous: perforated construction board, case, 16 -pin IC socket, doublesided foam tape, etc.
*See text

WARNING

Current FCC rules (Part 68) forbid direct connection of customerowned equipment that is not FCC type-approved to telephone company lines. To use unapproved equipment, an approved protective coupler must be installed. Check with your local phone company for details.
$11 / 2$ or 3 volts. I picked that arrangement for flashing the LED because the IC consumes so little power that, even if it were active continuously, the two " C " flashlight batteries would last well over a year.

When someone picks up a telephone. the phone-line voltage drops, and the potential across R2 practically disappears. That allows transistor Q1 to conduct, which, in turn. supplies base current to Q2, which also then conducts. When Q2 switches on, it provides the return path for IC1, and the LED starts flashing about three times a second. If all phones are hung up again. the voltage returns to 48 volts, shutting everything off.

Because the device connects directly to the phone line. I have taken precautions to insure that the line-monitor does not interfere with the normal operation of the phone system.

First. the unit is battery-operated. using two " C " cells. Under no circumstances should an external power supply be used. That insures that no hazardous voltages or earth grounds can be connected to the phone line.

Second, R1 and R3 provide 2.2 megohms of resistance on either side of the active circuit. (4.4 megohms total). While a single, large resistor could have been used in place of R1 and R3. I find it good practice to isolate as much as possible-again, as a safety precaution. Those resistors load down the line little, if at all.

Construction

The circuit can be built on perforated construction board and mounted in any small box (Fig. 2). The "C" cells may be held by battery clips, or soldered directly to wires from the board. Everything is held in place by double-sided foam tape. The LED is mounted in the lid of the box. In Fig. 2, you will notice that a 16 pin IC socket is used to hold both the IC and the two transistors. While I found that to be the most convenient way to mount those components, the socket is optional.

Don't be surprised if the monitor starts blinking at you as soon as you apply power. Remember, it's a high voltage that turns it off. With nothing connected to it, the monitor thinks it's seeing a low voltage (in this case, very low), and turns on.

installation

The values given for resistors R1 and R3 (2.2 megohms) are for telephone systems using 48 volts, as measured with all the phones on the hook. In some parts of the country the voltage used may be different and. if you are uncertain about its value in your area. check it out with a voltmeter. Be careful when you make that measurementthat voltage can be dangerous!

If you obtain a reading that is considerably different from 48 volts, take that reading and divide it by 22 . That will give you the correct value, in megohms, for R1 and R3.

The monitor will not work if it is hooked up backwards (R1 must go to the positive line), but it will not be harmed, either. Just reverse the leads to the phone, and you ll be in business.

With the monitor connected, before you pick up the phone, check to make sure the LED is not flashing. If it is. the line is in use. (It's probably my sister again.)

Also, check the November 1979 issue of Radio-Electronics for the Music-on-Hold adaptor. Build them in the same box for a super telephone addon.

HOW TO ALIGN VIDEO IF CIRCUITS

Aligning video-IF strips isn't as difficult as you may think. Here are some helpful hints.

JACK DARR SERVICE EDITOR

MANY TECHNICIANS CONSIDER VIDEO-IF alignment to be the most complex task they have to perform. But that's not true-the stages involved are not more complicated, it's just that there are more of them than in a radio! And, as the saying goes, "Complicated things are just a lot of simple ones strung together."

AM and FM radios have relatively narrow bandpasses- 10 kHz in the case of AM; from 200 to 250 kHz in the case of FM. Generally, they use cascaded circuits (one circuit right after the other) operating on a single frequency. VideoIF stages have bandpasses as wide as 5 MHz -they're known as controlledbandpass, wideband IF's-and in most respects are similar to the ones in radios, except that the tuned circuits are not all aligned on the same frequency.

The important thing in performing video IF-stage alignment is not gain, but rather the overall response of each stage. That is easy to adjust with a sweep generator, which we'll discuss shortly.

The video IF-strip consists of several cascaded amplifier stages, each with a tuned circuit at its input, output, or at both ends. Each stage has an ideal bellshaped curve representing its response. The cartoon in Fig. I shows how the tuned circuits in an IF stage work. Each resonant circuit in the stage "pushes the curve up" at its resonant frequency. Using several circuits gives us the wide bandwidth we need. (The two figures sitting on the ends of the curve and holding it down will be discussed later.)

Figure 2-a shows the overall response of one IF-stage, with one of the tuned circuits peaked at the wrong frequency. The dip in the curve caused by this misalignment is obvious. In Fig. 2-b the

FIG. 1-EACH RESONANT CIRCUIT in the IF strip works to give the bandpass curve the correct shape.

FIG. 2-AN OFF-FREQUENCY circuit will alter the shape of the curve. Retuning it will restore the curve to normal.
misaligned circuit has been retuned to the correct frequency and the overall response of the stage is now what was intended. That's how all the resonant circuits in an IF stage work-they alter both the height and the shape of the curve at the points they affect. When an IF stage is properly aligned, the resulting curve looks pretty much like the one in Fig. 2-b.

Traps

Shaping the response of an IF stage means not only boosting certain frequencies, but also attenuating or eliminating some of them. That's what the two figures sitting on the ends of the curve in Fig. 1 are doing.

Figure 3 shows the two types of resonant circuits used in curve shaping. The parallel-resonant circuit at the right of Fig. 3-a boosts the response at the resonant frequency, as shown in Fig. 3-b. The series-resonant circuit at the left of Fig. 3-a does the oppositeit removes signals at its resonant frequency. (It has a very low impedance at resonance.)

Series-resonant circuits are used to reduce the strength of, or get rid of entirely, unwanted signals at specific frequencies. When they perform that function, they are called traps.

Traps are never used within the bandpass range; they are used to shape the slopes of the ends of the curve and to insure that signals from other channels do not get into the IF strip. The major

FIG. 3-A SERIES-RESONANT circuit has low impedance and acts as a trap. A parallelresonant one reinforces the signal.

FIG. 4-A REPRESENTATIVE IF CURVE, showing all the key marker-frequencies.
difference between tuning traps and the other resonant circuits in the IF strip is that the traps are always adjusted to give minimum response. Because they determine the shape of the endpoints of the response curve, tuning the traps is always the first part of any TV-IF alignment procedure.

Sweep alignment

To align a TV-IF circuit properly, it is

FIG. 5-SWEEP AND MARKER SIGNALS are mixed in the marker adder to create a markedsweep curve to be fed to an oscilloscope.
important to be able to see the response of the entire curve. That way, the effect of any adjustment on the overall shape of the curve is instantly obvious. If you try using single-signal methods, and tuning each circuit for maximum, you can wind up with some very interesting results! Therefore, sweep-alignment equipment, which allows you to view the entire curve at once, is required.

The original sweep-frequency generators were called "wobbulators" because they wobbled (swept) the signal back and forth; the response-curve of the IF strip was displayed on an oscilloscope. What they didn't do was to locate, or mark, the critical frequencies on that curve.

There are nine different frequencies (see Fig. 4) that are critical to IF-strip
alignment, and it is important that adjustments be made exactly at those frequencies. To locate them, a marker generator is used.

Marker generators

In the early days, markers were placed on the curve by a tunable RF signal-generator. The disadvantage of that was that only one marker could be seen at a time. The signal generator had to be retuned each time a new frequency was checked. (There was a way around that. The critical points could be marked, one by one, on the screen of the oscilloscope with a grease pencil. That system worked fairly well as long as the sweep generator was not retuned.)

Another disadvantage was that when the marker frequencies were fed through the video-IF-strip together with the sweep signal, the curve could be badly distorted if the level of the marker signal was too high. The marker generator also had to be very accurately calibrated.

Current sweep-generators

The current generation of sweep generators makes alignment a lot simpler. They have two very useful features. First, they have separate, crystal-controlled, markers for each key frequency. Any, or all, of the markers can be used at any time.

The other feature is a circuit called a post-injection marker-adder (or just "marker adder," for short). The marker adder is actually separate from the sweep generator and only the sweep signal goes through the circuits being aligned. A small portion of that signal is fed to the marker adder, and the markers are added electronically at that point. The marker-adder's output is then fed to the scope. Figure 5 will give you an idea of how that works.

The crystal-controlled markers are extremely accurate because each one is generated by a separate circuit. Furthermore the markers cannot cause curve distortion in the IF stage because they never pass through it.

With today's equipment, and a little knowledge of what's going on, video-IF-strip alignment turns out to be a lot less complicated than you may have thought it to be.

R-E

DESIGNING CIRCUITS WITH OP-AMPS

Abstract

Perhaps the most universal integrated circuit is the operational amplifier. Here's how to design your own op-amp circuits

JOSEPH J. CARR

THE INTEGRATED CIRCLIT WAS INVENTed in the early 60 s. and has taken off like a rocket ever since. Devices have grown steadily in complexity. The early $\mu \mathrm{A} 703$. for example. contained only a few transistors and a couple of resistors. and was used extensively as an FM IF amplifier...and not much else. The $\mu \mathrm{A} 703$ was a real hit. but that device is now considered "low technology" and is no longer used.

We now have MSI and LSI (Medium S cale Integrated and Large Scale (Integrated) devices that may contain hundreds or thousands of transistors and other components on a single chip. They are even developing VLSI (Very Large Scale Integrated) circuits.

The biggest portion of the IC market are the digital IC's. but don 't count analog devices down and out quite yet: they are alive and kicking in many areas of technology and can out-perform devices made only a few years ago.

There are several technologies used for creating transistors and other components on a slab of semiconductor material. This slab is referred to as a substrate. There may be several layers of material in the integrated circuit of which the substrate is the bottom-most.

FIG. 1-AN INTEGRATED CIRCUIT is formed by diffusing layers of p-type and n-type material on a p-type substrate. The uppermost layer is an insulating layer of silicon dioxide. Connections to the n-type and p-type material are made through this layer and are indicated by vertical lines. The equivalent circuit is shown in b.

The usual substrate is approximately 6 mils thick. with a typical cross-sectional area being 50×50 mils. with some up to 160×160 mils. In Fig. 1-a. the substrate is shown as P-type semiconductor material.

The second layer is made of N-type material. and is grown as an extension of the P-type substrate crystal. In operation, that PN junction must be maintained at a reverse bias potential or the IC will be destroyed. That region is approximately 5 to 30 micrometers thick. The next region is P-type material, while the uppermost is again N -type material. Lastly. a layer of silicon dioxide is formed over the top of the silicon slab. The silicon dioxide is an insulating material and connections to the various regions are made through that layer. indicated in Fig. 1-a as vertical lines.

The equivalent circuit is shown in Fig. 1-b. In this case. a transistor is in series with a resistor and capacitor. The transistor is formed from elements of the second. third. and fourth layers of the substrate. Since the transistor is an NPN device. the collector and emitter terminals are connected to N -type (sec ond and fourth) layers of the substrate. The series resistor is formed by the re-

FIG. 2-OP-AMP INPUT CIRCUIT is actually a differential amplifier that requires a bipolar power supply.
sistance of a section of the N-type second layer. It is connected to the emitter section by depositing a metallized strip over the silicon dioxide.

The capacitor is formed by sandwiching the silicon dioxide between an N type layer and a metalization layer. The dielectric of the capacitor is the silicon dioxide layer.

Integrated circuits do not often contain capacitors because of the size and cost. In general. only small-value (pico-farad-range) capacitors can be integrated onto the substrate. Hybrid circuits. which use a combination of inte-grated-circuit technologies and discrete component techniques. often use small tiny capacitors called chip capacitors. Those capacitors are mounted on a ceramic substrate along with several unpackaged IC chips.

The operational amplifier

The operational amplifier is a linear integrated circuit that has an immense variety of applications. The op-amp can be used in relatively complex circuits. yet the design rules are easy to master. The typical operational amplifier has two inputs, called inverting and noninverting inputs. That is not a require-
ment in the definition of the operational amplifier. but it is true that almost all op-amps have two inputs: Only a few devices on the fringes of the linear IC market are op-amp-like. yet have but one input (the LM302 device, for example).

The operational amplifier was designed originally to perform mathematical operations in analog computers. That means that it had to operate on a variety of input-data values, and then be able to produce an output of either polarity depending upon the required answer.

As a result. operational amplifiers require a dual-polarity power supply. The positive $(+\mathrm{V})$ power supply is positive with respect to ground. while the negative $(-\mathrm{V})$ power supply is negative with respect to ground.

Figure 2 shows a typical input circuit for an operational amplifier. The two transistors (Q1 and Q2) of the differential pair are connected so that their emitters are fed from a single constant-current source (I_{3}). The constant-current source will produce a constant current. despite changes in the load resistance. Most IC constant-current sources are bipolar transistors. biased in a particular manner. In Fig. 2. the two emitter currents (I_{1} and I_{2}) are derived from the constant source I_{3}. We know from Kirchoff's current law that the following relationship holds true:

$$
\begin{align*}
& \mathrm{I}_{1}+\mathrm{I}_{2}-\mathrm{I}_{3}=0 \tag{1}\\
& \text { or } \tag{2}\\
& \mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}
\end{align*}
$$

For the purposes of this discussion. we are going to assume that the emitter and collector currents of the two transistors are equal (i.e.. $\mathrm{I}_{\mathrm{CI}}=\mathrm{I}_{\mathrm{C} 2}$ and $\mathrm{I}_{\mathrm{EI}}=$ $\mathrm{I}_{\mathrm{E}_{2}}$). In actual fact they are different by two to five percent. but that does not present a problem.

Let's assume that a voltage $\left(\mathrm{V}_{1}\right)$ is applied to the base of transistor Q1. What happens? How does the circuit respond? When V_{1} is made positive. the collector and emitter current of Q1 (I_{1}) will increase. That increase in current I_{1} must (by equations 1 and 2) cause a decrease in current I_{2}. Current I_{2} is the emitter current in the transistor Q_{2}. Since I_{2} decreases. the voltage drop across resistor R3 also decreases (i.e. I_{2} \times R3 decreases). The output voltage V_{o}^{-} is the difference between the collector potential and the voltage drop across resistor R3. so a reduction in I_{2} causes an increase in V_{0}. Here we have a positive increase in V_{1} causing an increase in output-potential V_{o}. The base of transistor Q1 is. therefore. the noninverting input.

FIG. 3-SCHEMATIC SYMBOL and industry standard pinout of an operational amplifier.

FIG. 4-BIPOLAR POWER SUPPLY can be built using batteries as shown.

FIG. 5-BASIC INVERTING AMPLIFIER. The gain is determined by the ratio of R2 and R1. Point A is called a virtual ground.

TABLE 1

1. Infinite input impedance
2. Infinite open-loop (no feedback) gain
3. Zero output impedance
4. Infinite bandwidth
5. Zero noise contribution
6. Both input voltages track each other.

Now let's examine what happens when an input voltage $\left(\mathrm{V}_{2}\right)$ is applied to the base of transistor Q2. When voltage V_{2} is positive, current I_{2} increases. When current I_{2} increases, the voltage drop across resistor R3 increases. The increased voltage drop across R3 causes a decrease in the output voltage. Therefore, the bass of transistor Q2 is the
inverting input: a positive input voltage produces a decrease in the output voltage.

Output-voltage V_{0} is normally zero when both input voltages $\left(\mathrm{V}_{1}\right.$ and $\left.\mathrm{V}_{2}\right)$ are equal.

Operational amplifier symbol

The operational amplifier symbol used in circuit diagrams is shown in Fig. 3. It consists of a triangle with the output at one apex, usually oriented horizontally. Some texts follow the IEEE convention of using the straight-back symbol (as shown here) for linear amplifier IC devices, and a similar version with a curve back for the operational amplifier. In Radio-Electronics, however, we use the more common conven-tion-as shown in Fig. 3.

The two inputs of the operational amplifier are labeled $(-)$ for the inverting input and (+) for the noninverting input. The $+V$ and $-V$ power-supply terminals may or may not be shown in some schematics. Many people delete the power-supply terminals on their drawings for the sake of simplicity. Make no mistake about it, however: The powersupply terminals are still to be connected! The pin-out numbers shown in the illustration were originally for the 741 device only, but that particular arrangement is now considered the "industry standard." Most commercial in-tegrated-circuit op-amps use that pinout.

The +V and -V power-supply terminals are not +V and ground, but two separate power supplies of opposite polarity with respect to ground. The $+V$ power supply is positive with respect to ground, while the -V power supply is negative with respect to ground. A battery version of the typical operational amplifier power supply is shown in Fig. 4. Note that this power supply has a ground connection, but there is no ground terminal on the operational amplifier symbol! The input and output potentials are measured with respect to ground, so the ground must come from the power supply.

Operational amplifier properties

A simple linear amplifier using an operational amplifier is shown in Fig. 5. We can analyze the operation of this circuit by using Kirchoff's current law and the basic properties of the operational amplifier. For purposes of discussion, we will consider the properties of an ideal operation amplifier. Table 1 lists the six basic properties of the ideal operational amplifier:

An infinite input impedance means that the input neither sinks nor sources current. The input impedance of any amplifier is given by $\mathrm{V}_{\text {in }} / \mathrm{I}_{\mathrm{in}}$. If the input
will neither accept (sink) nor generate (source) current, then $I_{i n}$ is zero and the input impedance is infinite. In actual operational amplifiers, which are not ideal, the input impedance is not quite infinite; but it's extremely high. Some low-cost cheapie operational amplifiers are only able to offer input impedances of 100,000 ohms, but most devices can boast 1 megohm or more. A few devices, such as the RCA BiMOS devices (which have MOSFET input transistors) have input impedances of 1.5 teraohms (1.5×10^{12} ohms)! That reflects input currents of picoamperes or nanoamperes.

Infinite open-loop gain means that the amplifier gain is infinite when there is no negative feedback present. In real operational amplifiers, the open-loop gain will be 20,000 for cheapies, and over $1,000,000$ for some premium devices.

An ideal operational amplifier is said to have a zero output impedance. In real operational amplifiers, however, we find output impedances of less than 200 ohms, with most under 75 ohms.

Infinite bandwidth means that the device will amplify all signals applied to the input, regardless of frequency. But. that is not the case in real operational amplifiers. Many devices operate into the HF region and some devices operate into the low VHF region. Most common operational amplifiers, however, are severely limited in frequency response. The popular 741 device, for example, has a frequency response of only a few kilohertz.

Zero noise-contribution means that the op-amp adds no noise to the signal it amplifies. Unfortunately, most operational amplifiers fall far short of that ideal: Some premium (high cost) devices offer very good noise performance, but most common operational amplifiers do not perform well as low noise-amplifiers.

Both input voltages track each other. What does that mean? It means that applying a voltage to one input requires us to treat the other input mathematically as if it, too, were connected to the same voltage. That is not merely some theoretical device used in mathematical formulas; it is real. If you apply 4 volts to the noninverting input, then you can measure 4 volts at the inverting input also! That phenomenon is one of the most important of the ideal properties!

Inverting-follower circuits

Figure 5 shows the circuit for the inverting-follower configuration. An inverting follower uses the inverting input of the operational amplifier. Note that the noninverting input is grounded in this circuit. That is the same as saying that the noninverting input is at zero potential. A result of ideal property No. 6 listed in Table 1 is that the inverting input must now be treated as if it were also at zero potential. The inverting input is essentially grounded, even though

FIG. 6-BASIC NON-INVERTING amplifier. The input signal is fed to the non-inverting input terminal.
not physically connected to ground. That confusing state of affairs is not made too much clearer by the name usually given to the phenomenon: "virtual ground." The virtual ground is treated as a ground even though it is not actually grounded through a piece of wire.
What do we know about the circuit in Fig. 5? We know that the currents are as follows:

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{V}_{\mathrm{in}} / \mathrm{R} 1 \tag{3}
\end{equation*}
$$

and,

$$
\begin{equation*}
\mathrm{I}_{2}=\mathrm{V}_{\mathrm{o}} / \mathrm{R} 2 \tag{4}
\end{equation*}
$$

we also know from Kirchoff's current law that:

$$
\begin{equation*}
\mathrm{I}_{1}=-\mathrm{I}_{2} \tag{5}
\end{equation*}
$$

So, by substituting equations 3 and 4 into equation 5, we obtain:

$$
\mathrm{V}_{\text {in }} / \mathrm{R} 1=-\mathrm{V}_{\mathrm{o}} / \mathrm{R} 2
$$

We can solve equation 6 for V_{o}, thereby obtaining the transfer equation for the inverting follower:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=-\mathrm{V}_{\text {in }} \times \mathrm{R} 2 / \mathrm{R} 1 \tag{7}
\end{equation*}
$$

The gain of any amplifier is the quotient $V_{o} / V_{\text {in }}$, which in this case is R2/R1. That relationship means that we can set the gain of the inverting-follower operational amplifier circuit by setting the ratio of two resistors! The absolute values of the resistors are not important, only their ratio. For example, if the feedback resistor (R2) is 100,000 ohms, and the input resistor is 1000 ohms, then the gain R2/R1 is $100,000 / 1,000$, or 100 .

There is a problem associated with the inverting follower. The input impedance is low, being limited to the value of input-resistor R1. That is because one end of R1 is grounded as a result of the "virtual" ground. The apparent solution to the problem is to use an input resistor that has a sufficiently high value. But that is not always possible, due to gain problems (remember, the open-loop gain is not infinite), and because certain problems with real operational amplifiers are made worse by using high-value resistors in the feedback and input circuits. Unless phase inversion is needed in the circuit, there may be good reason to opt for the non-inverting follower.

Non-inverting follower with gain

Figure 6 shows the circuit for the non-
inverting-follower configuration. In this circuit, the signal is applied directly to the non-inverting input of the operational amplifier. The feedback network is the same as in the inverting follower, except that R1 is now grounded.

Recall ideal property No. 6 listed in Table 1: Applying voltage $\mathrm{V}_{\text {in }}$ to the noninverting input has the effect of placing the other (inverting) input at the same potential. Since there is no phase inversion in the circuit, the output signal has the same polarity as the input signal, so:

$$
I_{1}=I_{2}
$$

By the same sort of reasoning as in the previous case:

$$
\begin{equation*}
\mathrm{I}_{1}=\mathrm{V}_{\text {in }} / \mathrm{RI} \tag{9}
\end{equation*}
$$

and:

$$
\mathrm{I}_{2}=\left(\mathrm{V}_{0}-\mathrm{V}_{\mathrm{in}}\right) / \mathrm{R} 2
$$

We can obtain the transfer equation for the circuit by substituting equations 9 and 10 into equation 8 , which yields:

$$
\begin{equation*}
\mathrm{V}_{\text {in }} / \mathrm{Rl}=\left(\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\text {in }}\right) / \mathrm{R} 2 \tag{11}
\end{equation*}
$$

Algebraically rearranging equation 11 yields:

$$
\begin{equation*}
V_{\text {in }} \times[(R 2 / R 1)+1]=V_{0} \tag{12}
\end{equation*}
$$

Equation 12 is the transfer equation for the non-inverting follower with gain circuit shown in Fig. 6. Note that the circuit will always have a gain of at least 1 , since the gain factor is $(R 2 / R 1)+1$.
The input impedance of the non-inverting-follower circuit is very high. being limited by the input impedance of the operational amplifier. Recall that typical operational amplifiers have an input impedance greater than 1 megohm, with some models offering impedances as high as 10^{12} ohms. The noninverting follower, therefore. is best suited for use with high-impedance circuits. In the case of some oscillator and timer circuits, it also relieves us of the problem of considering the effects of the input impedance of the amplifier on R-C time constants.

Unity gain non-inverting followers

In the non-inverting-follower circuit shown in Fig. 6, the feedback was only a fraction of the output signal and was set by a voltage divider consisting of R1 and R2. Let's investigate what happens when we feed back all of the output signal. We can accomplish that by connecting the output of the operational amplifier to the inverting input directly. as

FIG. 7-UNITY-GAIN AMPLIFIER has high input impedance and low output impedance. This circuit is used as a buffer.
shown in Fig. 7.
Substituting R1 $=0$ in equation 12 yields:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{in}} \tag{13}
\end{equation*}
$$

Thus, the gain of the circuit shown in Fig. 7 is equal to 1 . To understand why. recall ideal property No. 6. We know that if $\mathrm{V}_{\text {in }}$ is applied to the non-inverting input. then that same potential must also exist on the inverting input. But the inverting input is also connected to the output. so $\mathrm{V}_{\text {in }}$ must also exist on the output of the operational amplifier!

OK. but what's the use of a unity-gain amplifier? Aren't amplifiers supposed to amplify? The voltage amplification is nearly unity in that circuit (0.9999999). yet the output impedance is very low. Since the input impedance of the operational amplifier is very high. then it becomes obvious that the unity-gain follower can be used for impedance transformation without loss of amplitude between a high-impedance source and a low-impedance load. Also, the unitygain non-inverting follower can be used as a buffer stage to provide some isolation without either a change of amplitude, or phase inversion.

Differential amplifiers

The two input terminals of an operational amplifier are complementary; that is, they produce an equal but opposite effect on the output signal. If a voltage is applied to the non-inverting input, the output will have the same polarity as the input signal. But, if that same voltage is applied to the inverting input, then the output will have the opposite polarity. The gain of the amplifier in each case is the same. but the output polarity is opposite. The inputs of the operational amplifier are, therefore, differential. The actual input voltage seen by the op-amp is the difference between the potentials applied to the inverting and non-inverting inputs. We can, therefore, use the operational amplifier to make a differential amplifier.

An example of a simple operational differential amplifier (diff-amp) is shown in Fig. 8. This circuit is the simplest form of a diff-amp.

The gain of this circuit is:

$$
\begin{equation*}
\text { Gain }=\mathrm{R} 3 / \mathrm{R} 1 \tag{14}
\end{equation*}
$$

Provided that

$$
\begin{align*}
& \mathrm{R} 1=\mathrm{R} 2 \tag{15}\\
& \mathrm{R} 3=\mathrm{R} 4 \tag{16}
\end{align*}
$$

The ideal differential amplifier will not respond to a common-mode voltage (that is, a signal voltage applied equally to both inputs simultaneously). The real differential amplifier, however, will respond somewhat to a common-mode voltage and produce a small output voltage, called the common-mode error voltage. The ratio of the common-mode voltage (a voltage applied equally to both input terminals) to the commonmode error voltage (resulting error voltage that appears at the output of the

FIG. 8-DIFFERENTIAL AMPLIFIER circuit amplifies the difference between the two input signals.
op-amp) is called the common-mode rejection ratio (CMRR) and is expressed in dB . Some operational amplifiers have a CMRR of $120 \mathrm{~dB}(1,000,000: 1)$, while even garbage-grade blister-pack opamps have CMRR ratings in the range of 60 dB !

The differential amplifier is used extensively in circuits where noise pick-up is a factor. The human electrocardiogram signal, for example, is very weak (1 mV), yet interference from 60 Hz power lines can be several volts on an 8 -foot cable leading to the patient being monitored. The result is that the signal is completely swamped by $60-\mathrm{Hz}$ interference that is 1000 times greater! However, if we treat the electrocardiogram signal from the surface of a patient's body as a differential signal, we find that the $60-\mathrm{Hz}$ signal will be seen by the differential amplifier as a commonmode signal, whereas the electrocardiogram signal is seen as a differential signal. The gain of the amplifier may be 1000 for the differential signal and the amplifier will significantly attentuate the $60-\mathrm{Hz}$ components. The result is an electrocardiogram trace that is essentially free of $60-\mathrm{Hz}$ interference.

Operational amplifier problems

The properties of the ideal operational amplifier are never realized in practical devices. The ideal properties are closely approximated in some premium devices, but there is always some discrepancy. Those problems fall into several categories. We have already discussed the matter of frequency response and common-mode rejection ratios. We also find that there are several DC-offset problems that cause the output voltage to be non-zero at times when it should be zero.

There are several sources of offset voltage. One is the bias currents of the transistors used in the input circuit. Remember that the ideal operational amplifier has an infinite input impedance, which means that the input terminals will not sink any current. But real operational amplifiers are built from real transistors that require bias current. The bias current for some premium grade devices may be nanoamperes, or
even picoamperes, but in some cheapies the bias current may be a fraction of a milliampere! The error voltage generated at the output of the operational amplifier by this bias current is equal to:

$$
\mathrm{I}_{\text {bias }} \times \mathrm{R}_{\mathrm{f}}
$$

where R_{f} is the resistance of the feedback resistor. Also, the bias current will cause a voltage drop to appear at the input terminal that is equal to the product of the bias current and the parallel combination of the feedback and input resistances $[\mathrm{R} 1 \times \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)]$.

One method for reducing the error voltage caused by the input-bias current is shown in Fig. 9. That circuit works because the operational amplifier input circuit is symmetrical, meaning that identical currents will flow in both input terminals. If the value of resistor R3 is equal to the parallel combination of R1 and R2, then both input terminals see an equal resistance to ground. The bias current at each input terminal will then generate an equal error voltage at each input terminal and the common-mode rejection ratio will cancel the effect at the output terminal.

FIG. 9-INPUT BIAS CURRENT causes an error voltage to appear at the output of the op-amp. The voltage drop across resistor R3 (caused by the input bias current) cancels the output error voltage.

Unfortunately, input-bias currents are not the only source of offset voltages on the output line. There are actually several causes, some of them inside of the operational amplifier and others from outside sources (for example, the power supply). The circuits shown in Figs. 10 and 11 will allow us to cancel any type of offset voltage, including the offset voltage caused by the input-bias current.

The circuit shown in Fig. 10 is used with operational amplifiers that have offset compensation terminals. Those terminals allow us to balance the emitter currents of the input amplifier transistors to allow for offset variations.

Another, more universal, method for cancelling the offset voltage is shown in Fig. 11. In this circuit, which can be used whether or not the operational amplifier has offset-compensation terminals, we add a current to the input sum-

FIG. 10-OFFSET COMPENSATION terminals are provided on some op-amps. Potentiometer R1 is adjusted to eliminate offset errors that appear at the output.

FIG. 11-SIMPLE CIRCUIT for eliminating offset errors with op-amps that do not provide offset compensation terminals.

FIG. 12-SINGLE-POLARITY POWER SUPPLY can be used with an op-amp by biasing the noninverting input at half the power-supply voltage. In this case, resistors R3 and R4 are equal.
mation junction of the inverting follower (or the non-inverting follower, if desired) that exactly cancels the output offset voltage. Resistors R1 and R2 are the normal input and feedback resistors used in the amplifier, while R3 and R4 are part of the offset cancellation circuit. Potentiometer R4 is adjusted so that current I_{3} exactly cancels the normal offset voltage and no more (otherwise, the offset-cancellation voltage becomes an offset in its own right.)
The operational amplifier is designed to operate from bipolar power supplies.

During normal operation, the -V and +V power supply contributions to the output voltage depend upon the polarity of the input signal. When the input signal is zero, the respective contributions are zero. But what happens when the operational amplifier must be operated from a single-polarity power supply? In that case we must bias one input (usually the non-inverting input) to some potential between zero and the power-supply voltage. The output voltage will be equal to that potential when the input signal is zero, and will swing about the bias potential when the input signal is non-zero. In most cases (see Fig. 12) the non-inverting input is biased at one-half +V by making resistors R 2 and R 3 equal to each other.

"NO! NO! NO! That's not what I meant by trouble-shooting!"

SERVICE OUESTIONS

HALF RED-BLUE, HALF GREEN

I've got a Philco C7261TMA-1 whose screen is red-blue on the left and green on the right. I changed the picture tube (the old one was bad, anyhow), but that didn't help. Where do I go from here? L.B., Salt Lake City, UT

I've seen almost the same thingalso in a Philco. The left half was gold and the other blue. Try scoping all the B+ lines around the bandpass-amplifier stages-any point that has a bypass capacitor on it. You should see no signals at all. If you do, one of the bypasses isn't working and you will get feedback that upsets the color.
(Feedback: Thanks for the idea. The scope showed all kinds of signals on the $B+$ lines. I replaced both of the big filter capacitors and that cured the color problem and some others in the horizontal and vertical circuits.)

TOP-STRETCH CURE

My good buddy Bill Stiles, of Hollsboro, MO, has sent me another of his jewels. He had asked about top-stretch in an Admiral 12 H 10 and I suggested checking the $.039 \mu \mathrm{~F}$ capacitors in the vertical-output grid circuit.

He did, and although they checked out OK, he decided to replace C74 and C76 anyway. That cured the stretch!
(And showed up another problem. The vertical-centering control wouldn't work properly. A new one set everything right.)

If you run into this sort of problem in this or similar chassis, try new capacitors, even if the old ones look OK.

HOT RESISTOR

This RCA CTC-31A burns up R163 (the plate load-resistor from the horizontaloscillator plate to $\mathrm{B}+$) and then loses drive. A new resistor brings back the HV for about two minutes and then the resistor burns up again. The tubes, etc. all seem to check out. What's going on here?-B.C., Kent, OH

This sounds familiar-we ran into almost the same thing in a CTC-22 some time ago. The horizontal-oscillator plate in this set is fed by a "parallel path:" At turn-on, voltage is fed through R163 from B+; after the set warms up, the oscillator is fed through a pair of 220 K resistors in series from boost and R163 doesn't have to carry so much current.

Check to see whether one or both of the 220 K units are bad and replace what's necessary. If they were bad, R163 would have had to carry the full load, and it's only a $1 / 2$-watt type. Replace it with a 1 -watter just for luck.

ODD PICTURE

I've got a TS941 Quasar. I get a couple of black patches near the top of the rasterthey come and go, as well as writhe. Even-
tually the picture goes dark and narrow and compresses in the center, making a bright vertical streak. This is weird!-J.G., Oak Park, IL
It certainly is. I've heard of something like this before. The cause of the problem is usually a big $500 \mu \mathrm{~F}$ filter capacitor, Q508, located under the power-supply chassis. The negative connection breaks loose or becomes intermittent. Make sure the ground lead is good, and well soldered.

LOSS OF VIDEO

I've got good sound but no video in this RCA KCS-169B. The base of the video amplifier (Q3) is OK with no signal $(+2$ volts), but goes to -5.5 volts when signal is applied, cutting off that stage. Replacing the transistor did no good. The video signal to the base is too high (5.5 volts); it should be 2 volts. Any suggestions? W.M., Springville, NY

Yes! You should recheck the Q3's base circuit; that is L8, R22, R24, and R3 to ground. Apparently there is some positive voltage being fed into the control circuit from the detector-return circuit and R21 to ground. I'd say that this should go more positive with increasing signal strength since it comes off the detector cathode. That should prevent the base of Q3 from being driven into cutoff. Check the video-bias control to see if it does anything; it should. I'd also check the little choke for an open circuit, etc. Also check for bad solder joints.

R-E

UHF-TV
PREAMPLIFIER

This inexpensive antenna-

 mounted UHF-TV preamplifier can add more than 25 dB of gain to your system and pull in signals you never knew were there. You'll also learn how to optimize your UHF reception through other means.UNTIL RECENTLY, NOBODY SEEMED TO care too much about good UHF-TV reception, and most people were content to take whatever quality they could get. The situation became serious enough to warrant an investigation by a committee made up of FCC and industry representatives. They published their findings late in 1980, and their major conclusion was that the most direct way to improve UHF-TV reception was through effective receivingantenna systems.

Adding more gain

Antenna selection and feedline considerations were discussed in the July, 1981 issue of Radio-Electronics, and we 'll take a closer look at them in Part 2 of this article, but what happens if the proper antenna and feedline are used and we still don't get the results we want. What then? The next step is to consider a mast-mounted preamplifier.

First, let's clear up a common misconception about preamplifiers. Many people believe that a preamplifier aids reception by boosting the signal level: that's only partly true. What is more
important is that a preamplifier reduces the system noise-figure, which is the overall limiting factor to any receiving system's sensitivity.

There are two sources of noise-external and internal. External noise may be either atmospheric noise or manmade noise from electrical discharges. At UHF frequencies, external noise is very low. so the major noise source is internal-circuit noise. There is a great deal of room for improvement here. since a typical UHF tuner has a noisefigure of approximately 12 dB . The amount of noise introduced by the front end of a receiver plays a major part in establishing the overall receiver noisefigure, because each successive stage amplifies the noise introduced in the preceding stages.

The effect of gain on overall-system noise-figure can be calculated using the following formula:

$$
N_{T}=N_{1}+\frac{N_{2}-1}{G_{1}}+\frac{N_{3}-1}{G_{1} G_{2}}
$$

Where:
$\mathrm{N}_{\mathrm{T}}=$ overall-system noise-factor
$N_{1}=$ noise-factor of the first stage
$\mathrm{N}_{2}=$ noise-factor of the second stage $\mathrm{N}_{3}=$ noise-factor of the third stage $\mathrm{G}_{1}=$ power gain of the first stage $\mathrm{G}_{2}=$ power gain of the second stage Note that all numbers must be in terms of power gain, because the use of dB will resuit in large errors-especially when low noise-figures are involved. Noise-factor can be converted to noisefigure using the following formula:

$$
\mathrm{Nf}(\mathrm{~g})=10 \log _{10} \mathrm{~N}
$$

Where:
$\mathrm{g}=$ gain in dB
$\mathrm{N}=$ noise factor
$\mathrm{Nf}=$ noise figure
Noise-figure can be converted to noise-factor by using the formula:

$$
N=\frac{\log ^{-1} N f(g)}{10}
$$

In the same way, power gain (G) can be calculated from gain (g) as follows:

FIG. 1-PLACING A PREAMPLIFIER with a gain of 25 dB and a noise-figure of 3.5 dB at the antenna-end of a UHF receiving-system gives a total noise-figure of 3.96 dB .

FIG. 2-PLACING THE SAME PREAMP at the receiver-end of the system increases the noise-figure to 10.59 dB .

Now that we've introduced those relationships, let's look at a model of a typical receiving system. Figure 1 shows a block diagram in which we consider the feedline to be the first stage. (That is valid in our calculations, as you will see.) Gain can be negative as well as positive; in the case of the feedline, we consider the insertion loss to be negative gain. The noise-figure of the feedline is essentially equal to the loss.

Let's see what happens when we add a preamplifier with a gain of 25 dB and a noise-figure of 3.5 dB , first at the antenna as shown in Fig. 1, then with the amplifier at the input of the receiver as in Fig. 2.

With the preamp at the antenna, the total calculated noise-figure for the three elements shown in Fig. 1 is 3.96 dB . By putting the feedline ahead of the preamplifier, as shown in Fig. 2, the noise-figure increases to 10.59 dB . As you can see. the noise-figure is improved by 6.6 dB by putting the element with the lowest noise-figure (the preamp) first. A general rule of thumb in receiver design is that each stage should have at least 10 dB more gain than the noise-figure (in dB) of the subsequent stages of the receiver. By placing the preamp first we eliminate the noise-factor and attenuation effects of the feedline, because the preamp has a gain of more than 10 dB over the losses induced by the feedline.

Another benefit of having the preamplifier located at the antenna is improved flatness of the transmission line's VSWR (Voltage Standing Wave Ratio); even the best antenna designs do not have a constant feedpoint impedance over their frequency range. The result is that the VSWR of the feedline varies with frequency. Two adverse effects of a high VSWR are increased losses, and reflections that degrade picture quality-especially in the case of color. With the preamp, however, it is easy to design a broadband output-circuit, thus making the match to the line better and lowering the VSWR on the longest part of the feedline. The antenna will still exhibit whatever mismatch characteristics it has, but the resulting mismatch will occur only on the portion of the line between the antenna and preamplifier. That will be of little consequence, because of the short line-length involved, and the preamplifier will effectively buffer the remaining feedline to the set or distribution system.

Commercially available UHF preamps have gains ranging from 12 to 22 dB with noise-figures in the range of 3 to 8 dB . (You can perform gain and noise calculations as shown above using the appropriate figures).

A preamp you can build

You can improve your UHF reception for less than $\$ 35.00$. The preamp

All resistors $1 / 8$ watt, 5%
R1- 82,000 ohms
R2- 820 ohms
R3- 39,000 ohms
R4-390 ohms
Capacitors
C1, C2-3.3 pF chip capacitor
C3, C4-2.7 pF chip capacitor
C5, C6-680 pF, ceramic disc
C7-0.01 $\mu \mathrm{F}$, ceramic disc

Semiconductors

Q1, Q2-BFQ85 or BFR90
L1-L3-See text
L4-10 $\mu \mathrm{H}$ choke ($31 / 2$ turns No. 30 wirewrap wire through $1 / 8$-inch ferrite bead) J1. J2-bulkhead-mount female "F" connectors
Miscellaneous: Double-sided PC board (etched one side), enclosure, solder, etc.

A kit of all parts for the UHF preamp, including power supply and balun (the balun will be discussed next month), is available for $\$ 34.50$ plus $\$ 2.00$ for shipping and handling. An assembled version is available for $\$ 47.50$ plus $\$ 2.00$ for shipping and handling. Both are available from:

RaySon Electronics Corp.
1010 12th St., Suite 5
Sparks, NV 89431

Micromart
 508 Central Avenue Westfield, NJ 07090
 (201) 654-6008

Quest Electronics
P.O. Box 4430

Santa Clara, CA 95054
(800) 538-8196 (except CA)
(408) 988-1640

All suppliers accept MC and Visa. Please add sales tax where applicable.
that will do the job is unusual because, for its price, it provides exceptional gain (25 dB typically) with an exceptionally low noise-figure (only 3.5 dB , maximum). Its performance exceeds that of any of the under- $\$ 100$ commercial preamps tested by the FCC. While the device is intended to be used outdoors as an antenna-mounted unit, it can also deliver reasonable performance if used indoors at the TV receiver.

Several factors contribute to its high performance, the primary one being use of two microwave-type transistors. Those devices are useful up to 1.5 GHz and have a noise-figure of less than 2 dB over the entire UHF-TV spectrum. Figure 3 shows gain vs. frequency and noise-figure vs. frequency plots for the transistors. (They are actually integrated circuits that have broadband impedancematching networks right on the chip.) The devices have nominal input and output impedances of 75 ohms, so no tuning is required and circuits built around them are extremely stable.

b
FIG. 3-TRANSISTORS USED IN PREAMP show excellent gain-vs.-frequency (a) and noise-fig-ure-vs.-frequency (b) responses.

The second contributing factor to that preamp's performance is the PC board's design; the RF path on the board is actually a 75 -ohm transmis-sion-line section, or stripline. The use of stripline construction continues the 75 -ohm transmission line right to the input and output terminals of the transistors, thus insuring proper impedancematching to the devices for optimum performance. To take maximum advantage of the stripline construction, the RF coupling-capacitors are microwave chip-capacitors, which are designed to be integrated into the stripline with a minimum of disturbance in the line's characteristics. Stripline construction is used almost exclusively in microwave equipment and this preamp makes an ideal project for experimenters to gain experience with microwaveequipment construction techniques.

Figure 4 shows a schematic of the circuit. The input and output circuits are both 75 ohms. (Since we discussed the differences in losses between wet 300 -ohm twinlead and wet 75 -ohm coax earlier, there should be no doubt as to why the output cable to the TV set should be coaxial cable).

The first stage of the preamp is biased for a collector current of approximately 4 mA for the best noise-figure, and the second stage is biased for a collector current of approximately 10 mA for optimum gain. The input filter, consisting of $\mathrm{C} 1, \mathrm{C} 2$, and L1, is a high-pass filter that rejects anything below about 500 MHz . While that frequency falls

FIG. 4-FIRST STAGE OF PREAMP is biased for optimum noise-figure; second stage for optimum gain.

FIG. 5-HIGH-END RESPONSE of preamp is in excess of 25 dB .
around channel 20 , the rolloff characteristics are sufficiently broad for the amplifier to have a gain of 15 to 18 dB at the low end of the UHF band. Considering the overall response of a typical antenna, feedline and TV tuner, the low-end rolloff of the amplifier is more than offset by the higher response of the other system components. The amplifier's frequency response is shown in Fig. 5, a normalized response-curve for three prototypes tested. It should be noted that the high-end response is better than 25 dB even at channel 70 , a feature that is not found in many com-mercially-available amplifiers; many of them roll off sharply before channel 60 .

Preamp construction

Figure 6 is a foil pattern for the stripline preamplifier. For the stripline section to exhibit the desired characteristics, the board material must be glass-epoxy double sided material, $1 / 16$-inch thick.

FIG. 6-PREAMP IS CONSTRUCTED on doublesided PC board, only one side of which is etched.

FIG. 7-BARE PC BOARD shows where holes for " F " connectors, transistors and disc capacitors are drilled.

The three elongated " S "-shaped sections are inductors L1, L2, and L3; L4 is made by winding $31 / 2$ turns of No. 30 wire-wrap wire through a small ($1 / 8$-inch) ferrite bead. The bead should be located as close to J2 as possible.

The input and output connectors are F-type connectors that are soldered to the rear (unetched side) of the board, with the center pins passing through the board directly into the stripline sections. The copper around the two center-connector holes on the rear must be removed so the pin will not short out against it. That is easily done by hand with a $1 / 8$-inch or larger drill bit. Apply pressure gently while twisting it in the hole-the foil will be removed and the insulating glass-epoxy board exposed. Stop there-you don't want to weaken the material. Figure 7 shows the large and small holes that have to be drilled for the jacks, transistors, and disc capacitors.

Assembly is reasonably straightforward: Fig. 8 shows the component placement. The two emitter leads on the transistors are bent at right angles just beyond the point where they narrow. The base and collector leads are cut short at the same point. The transistors are inserted into the holes in the board from its etched side with the collector lead (marked by a dot on the case) facing down and toward the out-

FIG. 8-TRANSISTORS ARE MOUNTED from etched side of board. "F" connectors are mounted from unetched side.

FIG. 9-MOST COMPONENTS are tack-soldered to etched side of board. Exceptions are disc capacitors, transistors, and connectors.

FIG. 10-CLOSE UP OF BOARD shows choke L4 and small chip capacitor to its right. See text for details on soldering chip capacitors.
put connector (J2). The emitter leads must be passed through the board and soldered on both sides of it. The other transistor-leads should lie flat against the stripline section.

While it is possible to use $1 / 4$-watt resistors, $1 / 8$-watt units have been found to give better performance. Keep all leads as short as you can.

The chip capacitors have to be very carefully installed. They are extremely small and light, and the surface tension of molten solder will cause them to

FIG. 11-SIMPLE POWER SUPPLY for preamp. If desired, an off-the-shelf 9 -volt wall-plug DC supply can be used, or 12-volts taken from TV set providing it is not "hot chassis" type.

PARTS LIST-POWER SUPPLY

Capacitors

C1- $500 \mu \mathrm{~F}, 16$ volts, electrolytic
C2- 1000 pF, ceramic disc

Semiconductors

D1-D4-1N4001
L1-10 $\mu \mathrm{H}$ choke ($3^{1 / 2}$ turns No. 30 wirewrap wire through $1 / 8$-inch ferrite bead) T1- 12 volts, 50 mA or greater
F1- $1 / 4$ amp fuse
J1. J2-female "F" connectors
Miscellaneous: baluns (see text), wire, solder, etc.
stick to the tip of the iron. To mount them on the board, you should work slowly and carefully with a fine tip on the iron and fine-gauge solder. Apply a very small amount of solder to the PC board first, and then, with a pair of tweezers, carefully position one end of the capacitor against it. Heat the solder momentarily with the iron until the solder flows, and hold the capacitor in position with the tweezers while you remove the iron. That will tack one end of the capacitor to the board and then you can go ahead and solder the other end.

The two sides of the board have to be connected for best operation. That is easily done by forming two short lengths of wire (resistor leads, for example) into " U "'s, slipping them onto the board with one leg of the " U " on each side of it, and soldering. The "U"s should be located as close as possible to the input and output jacks.
The circuit can be assembled in less than an hour, and once it's together. it's ready to use. The completed board is shown in Fig. 9. (Note that two of the holes shown in Fig. 7 are not used.) A close-up view of coil L4 and one of the chip capacitors is shown in Fig. 10.
Since the preamp is a broadband device, there is no tuning or alignment required. It should be mounted in an enclosure; the two coaxial connectors secure it to that enclosure. The box can be either metal or plastic, and the
preamp can be used either indoors or outdoors. Best results are obtained when the preamp is mounted right at the antenna, but in many instances, good results can still be obtained with the preamp mounted indoors near the TV set. An interesting combination for indoor use has the stripline preamplifier with the $\$ 6.95$ Radio Shack 15-623 antenna. Georgia Tech engineers rated that antenna as "...significantly superior to other indoor antennas evaluated."

Power supply

The preamp requires approximately 12 -volts DC for operation. The voltage is not especially critical, and the preamp will operate reasonably well at any voltage between 9 and 15 volts; however, the best noise-figure is attained at 12 volts. The power is run up the feedline. Choke L4 on the preamp board prevents the output signal from flowing into the power bus, while C 4 blocks the DC from being short circuited by Q2.

The preamp requires only 15 mA for operation. Figure 11 shows the circuit for a power supply that can be used to power the unit, and a means for connecting the 12 -volts to the set end of the cable. J1 connects to the preamp and J2 connects to the set.

If you do not want to build your own supply, you can use a small wall-plug $D C$ supply. A 9 -volt, $100-\mathrm{mA}$ supply will deliver between 12 and 14 volts when lightly loaded. Surprisingly, 200mA supplies provided only 11 to 12 volts under the same conditions. However, either would be adequate-there is little difference in performance apparent with supply voltages between 9 and 15 volts.
If you're careful, power can also be "stolen" from the TV set itself if it is not of the hot-chassis type

You'll need to modify a commercially available balun for use with the preamp. We'll show you how to do that, and some things to consider when selecting an antenna and feedline, when we continue this article.

R-E

> Troubleshooting procedures and tools for digital logic-circuits are quite different from those used in analog work. Here's an introduction to working with digital IC's.

ROBERT L. GOODMAN

THE DIGITAL INTEGRATED-CIRCUIT HAS revolutionized the electronics industry and, in many areas, now dominates it. Because of the digital explosion, you will find more compact, complex, and powerful troubleshooting instruments and devices. Unfortunately, the digitalIC boom has given a big headache to the analog-circuit troubleshooter. Because of the fundamental differences between analog and digital circuits, the troubleshooting techniques and the types of instruments that must be used differ greatly from those required in analog work. One of the first, and most useful, tools you will encounter in troubleshooting digital-logic circuits is the logic probe.

About logic probes

Digital logic works using two voltage levels to express either an "on" or an "off" state. "On" is usually in the neighborhood of +5 volts, and is referred to as a logic-high state or "1." "Off" is at or near 0 volts, and is called a logic-low state or " 0 ." We'll go into more detail on the workings of digital logic later.

Logic probes quickly tell you howor whether-a digital circuit is operating at the point being tested by indicating what logic state is present. Suppose, for example, that a test point is supposed to go to a logic-high state under certain conditions. A logic probe will indicate whether or not the line actually does go high when it's supposed to, or whether
it is, perhaps, permanently at a logichigh level.

Some probes have a memory function and can be used to monitor a line for intermittent pulses, or noise spikes ("glitches') that can upset logic-circuit operation.

Logic probes are powerful troubleshooting tools because of their portability, low price, and simple operation.

FIG. 1-SOME OF THE logic probes and pulsers used for digital troubleshooting.

Most logic probes provide the following features:

- High or low pulse-indication
- Pulse-train indication
- Stretching capability for short pulses
- 10 nanosecond pulse-response
- Pulse memory
- Undefined logic-state indication
- Ability to test different logic-families

Figure 1 shows a few of the various logic probes that are available. From left to right they are the Global Specialties Corp. model $L P-1$ and $L P-2$ logic probes, the $D P-1$ pulser, and $\mathrm{B} \& \mathrm{~K}-$ Precision's model DP-50 logic probe.

Using a logic probe

Logic probes indicate logic states with lamps or LED's. Some use colored LED's in various patterns to show logic states. The LED's show whether a logic state is high, low, or alternating (pulsing); or whether an open circuit exists.

FIG. 2-GLOBAL SPECIALTIES' LP-2 logic probe, like most others, derives its power from the circuit under test through clip leads (top).

The Global Specialties $L P-2$ logic probe shown in Fig. 2 is protected against over-voltage and reverse voltage that might be applied to its power leads. To use the probe, connect its black-clip lead to the power-supply common (-) and the red-clip lead to V_{cc} of the system under test. In order to minimize the possibility of power-supply spikes or other spurious signals
from affecting the operation of the probe, connect the power leads as close to the point being tested as possible.

The B\&K-Precision DP-50 digital probe (shown in Fig. 3) is designed for quick analysis of digital circuits, and is compatible with TTL. DTL, RTL, CMOS and high-noise-immunity logic. Three LED's at the probe-tip indicate the presence of digital pulses, and high and low logic-states. Two switches allow you to select TTL or CMOS logicthresholds, and PULSE STRETCH or MEMORY modes. In the pULSE STRETCH mode. short-duration pulses are stretched for a clear visual indication. In the MEMORY mode, a single digital pulse will cause an LED to remain lit until the memory circuit is reset. The probe thus has the ability to "freeze" an indication of digital-logic action.

Pulse stretching

Probably one of the most important features of a logic probe is its ability to "stretch" a 10-nanosecond (ten-billionths of a second) pulse to 100 milliseconds so that the LED will stay illuminated long enough to be observed. That pulse stretching is accomplished by using the leading edge of the short pulse detected to trigger a flip-flop whose time delay is 100 ms . Single pulses flash the probe's LED's once, while trains of pulses will usually cause them to blink at a $10-\mathrm{Hz}$ rate, regardless of pulse-frequency. Generally, just knowing that pulse activity is present is enough. (If the pulse-frequency is important, use a frequency counter or oscilloscope.)

Digital vs. analog troubleshooting

When troubleshooting circuits containing analog devices, you usually need only test resistance, capacitance, or voltages. The total circuit may be quite complex, but each component in the circuit performs a simple task and its operation can usually be checked out easily. If necessary, each resistor, capacitor, diode, and transistor can be tested individually by using a signal generator, VTVM or DMM, diode checker, or scope, together with conventional troubleshooting techniques. With integrated circuits, though, it is impossible to check the individual components on the chip; you must troubleshoot the device as a whole.

A significant difference between circuitry made up of discrete components and digital IC's lies in the complexity of the functions performed by the latter. Instead of measuring simple characteristics, you need to observe complex and rapidly occurring digital signals and to determine whether they're correct.

Verifying proper digital-IC operation requires observing several inputs while simultaneously observing two or more outputs. Thus another difference between analog circuitry built from discrete components and digital IC's is the

FIG. 3-SWITCH-SELECTABLE threshold levels (TTL/CMOS) are common on logic probes such as B\&K-Precision's DP-50.
number of inputs and outputs for each component and the need to check them simultaneously.

Digital IC's contain many complex circuits. Should any portion of such an IC fail, it would be difficult to pinpoint the area of failure-and impossible to repair or replace it (you can rebuild picture tubes, but not IC's). Consequently, to troubleshoot circuits made up of digital IC's involves locating not a portion of an IC that's gone bad, but, rather, just the IC itself. Replacing it usually restores the circuit to working order.

For effective troubleshooting of digital circuits, it is necessary to take advantage of the digital nature of the signals involved. Tests and techniques to troubleshoot analog circuits do not do that and are inefficient when used for digital circuits.

TTL logic-signals

A typical TTL (Transistor-Transitor Logic-the most common digital-logic family) logic signal is shown in Fig. 4. The appearance of a similar pulse-train on the screen of an oscilloscope is shown in Fig. 5. The scope displays voltage with respect to time, but for digital pulses, exact values are not important. A digital signal exists in one of two or three states-high, low, or undefined (in-between states)-each determined by a threshold voltage. It is the value of the signal voltage with respect
to those thresholds that determines the logic-state of a digital signal.

As Fig. 6. shows, if the signal level is greater than 2.4 volts, it is considered to be a logic "high." For a logic-"low" the voltage must be below 0.8 volts. The precise value is not important as long as it is above or below the threshold, and not in the "undefined" area. When using a scope, you must always determine whether the signal meets the threshold requirement for the desired digital state; a logic probe will tell you that.

Each gate in a TTL logic family has a certain propagation-delay time, rise time, and fall time. Those times rarely change, so scope checks of timing parameters contribute very little to the troubleshooting process.

The circuit in Fig. 7, showing a simple TTL totem-pole device (the output transistors are "stacked" like a totem pole, hence the name), illustrates a problem created by the TTL logic-family In either state-high or low-it has a low output-impedance. In the low state that is about 5 or 10 ohms to ground.

That presents a problem for in-circuit pulse injection (used to determine how the device is operating by "force-feeding" it a pulse). A device used to inject a pulse at a point that is driven by a TTL output must have sufficient power to override the low-impedance output state. Most signal sources used for troubleshooting do not have that capability. Thus the troubleshooter is forced either to cut the printed-circuit runs or lift IC leads in order to pulse the circuit to be tested; that is time consuming and also can damage other circuits.

For those reasons a scope and traditional signal-sources are not very useful. And, since many diodes and transistors are packaged in the IC, diode checkers are largely useless. With the complexity of today's electronic circuits, it makes good sense to find the most efficient troubleshooting method. In most cases, oscilloscopes, diode checkers, and voltmeters are best suited for use with analog circuits, where they really shine. Special-purpose equipment, such as logic probes and pulsers (see below), should be used when working on digital equipment.

Logic probes provide a quick way not only to detect, but also locate, breaks in a PC run. Since an open signalpath may allow IC inputs after the break to "float" to an undefined state, a logic probe can be used to test the input of each IC for such a state. Once a floating input is detected, the logic

FIG. 4-TRAIN OF DIGITAL PULSES consists of a square wave whose values alternate between (approximately) 5 -volts and 0 -volts.

FIG. 5-DUAL-TRACE SCOPE shows two trains of pulses. Vertical lines in square wave are nearly invisible because transition between states is extremely fast.

FIG. 6-VOLTAGE THRESHOLDS determining logic states. Contrary to popular belief, a logic"high" is not always 5 -volts.
in the internal circuitry (often called the steering circuitry) of the IC.

In addition to those four internal failures, there are four types of faults that can take place in the circuitry external to the IC. They are: (1) a short between a signal path and V_{CC} or ground, (2) a short between signal paths, (3) an open signal path, and (4) a failure of an

FIG. 7-TWO-INPUT NAND GATE. Totem-pole configuration at output results in low impedance, making some conventional tests difficult to perform.
probe can be used to follow the circuit back from the input searching for the break. That can be done because the circuit before the break will show valid logic levels (either high, low, or pulsing) while the circuit after the break will probably show undefined levels.

IC failures

To troubleshoot digital-IC circuits, it is important to know what types of faults to expect. They can be divided into two main classes-those caused by failures inside the IC, and those caused by circuit failures outside the IC.
There are four types of internal ICfailure: (1) an open bond at either an input or output, (2) a short between an input or output and V_{CC} or ground, (3) a short between two pins, and (4) a failure
analog component, such as a resistor, capacitor, or semiconductor device.

Logic pulsers

Logic pulsers inject a single pulse of the proper amplitude and polarity into a circuit. If a point was at a logic-low," it will automatically be pulsed high, and if it was high it will be pulsed low. Pulsers are useful for forcing the inputs of digital IC's to change state so that the resulting outputs can be observed. Pulsers have a high current-output, but use a low duty-cycle to protect the IC's from damage.

In their many applications, digital IC's have certainly made our lives easier. Knowing how they work and how to troubleshoot them should make your life easier, too.

This Publication is available in Microform.

University Microfilms International

Please send additional information for
Name
Institution
Street
City
State_ \quad Zip_

300 North Zeeb Road
Dept. P.R.
Ann Arbor, Mi. 48106

Once found only in sophisticated design labs, the tremendous growth in the use of digital circuits and devices has made the pulse generator a valuable instrument for any service shop or experimenter's workbench.

NOT TOO LONG AGO THERE WERE FEW pulse generators outside of sophisticated design laboratories. Today, they are found in service shops. on experimenters benches. and anywhere else that electronics testing is done. Two factors have influenced the wider use of those instruments: need and lower prices. The dramatic growth in the use of logic circuits caused the need; the price-drop soon followed, and pulse generators are now truly low-cost signal sources.
Not long ago, few pulse generators were available for under $\$ 1000$. Now, there are many available for under $\$ 400$. Although many sophisticated, and expensive, pulse generators are still available, the lower-priced units have enough features to make them extremely useful.

Currently, the need for a pulse generator arises mostly from the extensive use of many different varieties of digital logic in industrial, laboratory, and consumer applications (although a pulse generator is also useful when working with analog circuits). It is not possible to service or design logic-based electronic systems using only a sine-wave generator or a square-wave generator. A sine-wave generator or square-wave generator cannot vary the pulse width of its output signal: it also cannot generate a wide enough range of frequencies. In addition, frequently the output impedance of a sine-wave generator or a square-wave generator is not low enough to drive logic circuits.

A more elaborate function generator with DC offset, variable symmetry control, and a wide frequency range may fulfill the need for a pulse generator

CHARLES GILMORE

partially, if the requirements are simple. When extensive use of logic circuits is involved, however, a function generator is not adequate. Function generators cannot produce pulses of less than 5% duty cycle, and low-cost or reasonably priced units do not provide the $10-$ MHz to $20-\mathrm{MHz}$ capability required of pulse generators used with TTL (Tran-sistor-Transistor Logic) or ECL (EmitterCoupled Logic) systems. Of course, the function generator contains many other features that may or may not be needed.

The basic pulse

Before discussing the pulse generator, it may help to review the basic

b
FIG. 1-THE TIMING AND AMPLITUDE relationships of a basic pulse are shown in a. A pulse with exaggerated leading and trailing edges is shown in b.
characteristics of a pulse. Figure 1 shows the basic timing and amplitude relationships of a pulse. In Fig. 1-a, the period between the start of each pulse is a length of time, T, that is considerably greater than the pulse width, t. Figure 1-b shows exaggerated leading and trailing edges to illustrate such parameters as rise-time and fall-time. The basic pulse parameters are explained in Table 1.

Basic pulse generator

Figure 2 shows a simplified block diagram of a pulse generator. The circuitry for each block is fairly conventional. Numerous outputs, special buffer amplifiers, and power supplies can be added to each stage to reach the level of sophistication needed for a particular application.

The basic pulse repetition rate is controlled by the repetition-rate genera-tor-a free-running astable multivibrator capable of covering the frequency range required by the pulse generator.

Pulse generators offer a switchselected alternate source for rate generation called the external trigger. Signals applied to the external trigger input pass through triggering circuitry much like that found in an oscilloscope. Those circuits establish the triggering amplitude and polarity. Additional inputs to the trigger amplifier may include a line-frequency source and a manual pushbutton for one-shot operation.

A second external amplifier can be used to gate the main repetition-rate generator in a manner similar to the gated mode of function generators. Signals from the gating amplifier permit

TABLE 1

Pulse period-pulse period T is the time between two pulses. It is measured between either the leading or trailing edges.
Repetition rate-indicates the number of pulses over a fixed period of time, usually 1 second. The repetition rate depends on the pulse period T : Repetition rate $=1 / T$.
Pulse width-the time between the 50% amplitude points of any single pulse is defined as the pulse width t.
Pulse amplitude-pulse amplitude A is the voltage to which the pulse rises above its own baseline, measured after any overshoot has been reduced to zero.
Pulse offset-the value and polarity of the difference between the pulse baseline and 0 volts.
Overshoot-that portion of a pulse at the end of the leading edge, where the leading edge extends above the normal pulse amplitude. Overshoot is usually expressed as a percent of total amplitude.
Undershoot-that portion at the end of the trailing edge where the trailing edge extends below the baseline. That is usually expressed as a percent of pulse amplitude.
Leading edge-the portion of the pulse where a negative-to-positive transition occurs.
Trailing edge-that portion of the pulse in which the positive-to-negative transition occurs.
Rise time-the time required for the pulse to pass from 10% of total amplitude to 90% of total amplitude (T_{r}).
Fall time-the time required at the trailing edge for the pulse to pass from 90% of full amplitude to 10% of full amplitude (T_{f}). Rise time and fall time are not necessarily equal.
Ringing-damped oscillation at the end of the leading or trailing edge of the pulse.

Duty cycle-the ratio of pulse width to the pulse period, expressed in percent. Sometimes that is referred to as the duty factor.
Pulse polarity-indicates whether the desired pulse extends positively or negatively with respect to the baseline. Pulse polarity is independent of the absolute DCvalue of the baseline.
the repetition-rate generator to output pulses only when a gating signal is applied; otherwise no pulses are generated. A burst of pulses can be produced in that mode.

Signals from the repetition-rate generator or from the trigger circuits are applied to the delay generator (if the pulse senerator has one). The delay generator is a wide-range monostable multivibrator.

Once the delay generator has completed its cycle, the main pulse generator is triggered. The pulse generator is also a monostable multivibrator with a wide dynamic range to generate the necessary pulse widths. That monostable multivibrator can be quite sophisticated.

It must cover an extremely wide range of pulse widths (typically 7 to 8 decades) and operate at fairly high duty-cycles. Some generators need to operate at duty cycles that are greater than 100%. The output stages of the monostable multivibrator may include independent charge and discharge switches so that independently variable rate times and fall times can be generated. That feature is usually found only on more expensive pulse generators.

The output of the monostable multivibrator is applied to one or two output amplifiers. Those amplifiers must be DC-coupled, variable-gain wideband amplifiers. On more sophisticated generators, where extremely close control

FIG. 2-SIMPLIFIED BLOCK DIAGRAM of a basic pulse generator is shown here. Many outputs, special buffer amplifiers, and power supplies can be added to each stage to make a more sophisticated instrument.
of pulse characteristics is desired, two amplifiers are used. One of the amplifiers handles the positive pulses: the other handles the negative pulses. In that manner, each amplifier can be tailored to its particular function. In other pulse generators, a single amplifier is used. In either case, extremely wideband amplifiers must be used to reproduce faithfully pulses whose rise times lie in the nanosecond range, without ringing or other aberrations.
Pulse amplitude is usually regulated solely by a variable-gain control that is part of the output amplifier. A few of the higher-priced pulse generators include a step attenuator at the output. As the output amplifier is DC-coupled. a DC offset signal can be applied to the amplifier, along with the pulses, so that the pulse baseline can be changed with reference to 0 volts. Normally, the offset voltage is unaffected by adjustments of the continuously variable output attenuator.
Pulse generators that include a delaygenerator frequently have a specialized mode referred to as a double- or twinpulse mode. In a double-pulse mode, the main pulse generator is triggered not only by the delay-generator output, but also by the signal directly, at the same time that the signal triggers the delay generator. The result is two pulses, the first, generated at the time of triggering. and the second, at the time the delay generator has completed its cycle.
There are many special applications that require a capability other than those offered by a standard pulse-generator. For such applications. certain portions of the basic pulse generator can be adapted to accommodate those special requirements.

Word generators

The word generator is one of those specialized versions. Its function is to generate a series of pulses that form a serial digital word. Usually, those generators are operated in either a one-shot or a repetitive mode. The pulse-generator circuitry (a simple monostable multivibrator) is replaced by a more sophisticated circuit that is capable of producing a series of pulses. Usually 8 . 16. or 32 pulses-per-trigger-signal are produced.

High-speed pulse generators

Two types of pulse generators fall into the high-speed category. Pulse generators whose repetition rates are in the $100-\mathrm{MHz}$ to $250-\mathrm{MHz}$ range are designed especially for working with extremely high-speed ECL circuitry.

They are particularly useful when designing or servicing complicated portions of high-speed computers and some instruments. Because of their high repetition rates, high-speed pulse generators require that all circuitry within the pulse generator perform many times better than the circuitry of a conventional pulse generator.

Pulse generators may also be required to produce pulses with extremely fast rise-times. The conventional pulse generator has typical rise times in the range of 5 to 7 nanoseconds. Rise times that are measured in hundreds of picoseconds are available with specialized pulse-generators. Pulse generators with those fast rise times generally do not have variable rise-time and fall-time capability.

Pulse-burst mode

The pulse-burst option permits you to select the number of pulses that are generated when a trigger signal is received. That mode differs from the word generator in that the logic state of each pulse is not controlled individually. However, you can trigger from 1 to 10.000 pulses in a single burst. The pulse-burst mode is particularly convenient when you are working with counters or other circuits where response to the wave-shape and repetition rate, as well as to a particular number of pulses. is important.

High-voltage generators

High-voltage outputs on pulse generators are becoming less and less common. However, pulse generators designed for certain communications, biological, or physiological applications, and those to be used with tubetype circuits, may have very high volt-age-signals. Usually, such pulse generators are severely limited in terms of rise time, pulse-repetition rate, and output impedance.

Pulse-repetition rate

The controls that vary the pulserepetition rate on most generators consist of a decade switch combined with a continuously variable control. Repeti-tion-rate specifications include the minimum and maximum frequency capability, and the number of decades involved. Maximum repetition rates of 10 to 20 MHz are typical of low-cost generators. A few of those generators have maximum repetition rates that extend to 50 MHz . The minimum repetition rates of pulse generators vary widely. Some low-cost generators can have a minimum repetition rate of as little as 0.1 Hz , while others have minimum repetition rates that are as high as 10 Hz .

The selection of a repetition rate must be made with the application in mind. If the generator is to be used for

TTL or ECL logic analysis or servicing, a maximum repetition rate of at least 10 MHz is a must; 20 MHz is certainly more desirable. .Minimum repetition rates are not tied to any particular logicfamily type, but depend on the application. For most applications, a minimum repetition rate of 5 to 10 Hz is sufficient. For special applications, however, lower repetition rates may be needed. Extremely low repetition rates can be obtained by triggering the pulse generator from an external low-frequency source, such as a function generator.

The repetition-rate specification is not always given as the frequency. Some manufacturers list it as a repetition rate or frequency; others supply the information as a pulse period or time specification. The conversion between pulse period T and frequency f is easily made by the relationship:

$$
T=1 / f
$$

Repetition-rate accuracy is rarely specified on low-cost pulse generators. Where it is specified, it is indicated as a percentage of the maximum range. The accuracy of the repetition-rate setting is very unreliable, and whenever an accurate pulse-repetition rate is needed, it should be obtained either by triggering the pulse generator from a known frequency source, such as a signal generator, or by measuring the repetition rate at the trigger output, using a digital frequency meter or oscilloscope. Extremely low repetition rates may require using a digital period meter.

Repetition-rate jitter refers to the consistency of the period from one set of pulses to another. Jitter is caused by noise in the pulse-repetition-rate generator, and is specified as a percentage of the repetition rate or period. Although not specified on many low-cost pulse generators, repetition-rate jitter is typically 0.1% to 0.5%. That specification may include a fixed minimum amount of jitter in addition to the percentage of repetition-rate setting. Repetition-rate jitter does not decrease dramatically with the increased price of a generator.

Pulse characteristics

The most important pulse characteristic in most applications is the pulse-width range, which is usually controlled in the same way as a repeti-tion-rate generator-that is, in decade steps with a continuously variable control covering the range between each step. Pulse-width controls frequently do not have accuracy specifications, and when such specifications are given, an accuracy of pulse-width settings on the order of 10% to 15% can be expected. Once again, like the pulserepetition rate, the pulse width must be closely monitored by a digital periodmeter, or by an oscilloscope, to achieve more precise settings. Pulse-width characteristics of generators cover a
fairly wide range.
The narrowest pulse obtainable varies between 10 and 15 nanoseconds. Almost all low-cost generators have the same minimum pulse width but the maximum pulse width varies widely from manufacturer to manufacturer. Typically, the maximum pulse width varies from 10 milliseconds to 10 sec onds. In most cases, narrow pulses are needed, and generators that produce pulses with minimum widths of 10 to 15 nanoseconds are suitable for use in most TTL (and some ECL) systems. For most general applications, a pulse generator is suitable if it can generate pulses with widths of at least 100 milliseconds. Pulses that are wider than that (from 100 milliseconds to 10 seconds) may be convenient for certain applications. but in general. they are not widely used.

Some manufacturers provide a pulsewidth jitter specification that is fairly similar to that of the pulse-repetition rate, and indicates the maximum variation in width from pulse to pulse that can be expected. Pulse-width jitter specifications normally range from 0.1% to $05 . \%$.

Pulse rise-time is an important specification. To be suitable for high-speed logic operation, pulse rise times and fall times must be less than 10 nanoseconds, with 5 to 7 nanoseconds being a typical specification.

The maximum duty cycle is usually listed as a pulse specification. Most pulse generators are limited to duty cycles of 70%. Some special-purpose pulse generators offer duty cycles of up to 100%. The maximum duty cycle usually decreases at the high repetitionrate settings.

Leading-edge and trailing-edge overshoot and undershoot are specified as a percentage of the maximum permissible output-amplitude. Those, like many other specifications, are only valid when the pulse generator output is terminated into its characteristic impedance.

Delay generator

Specifications for a delay generator are nearly similar to those for the main pulse generator. That is, they specify delay width, although the range of that width is usually much more limited than that of the main pulse generator itself. Jitter specifications can also be applied to the delay generator. Adjustments to the delay generator's operating parameters are made the same way as those that are made for the main-pulse pulse generator. The controls for both parameters (pulse width and jitter) are not interactive.

Next month, we ll continue our look at pulse-generator characteristics, and begin to look at some applications for those devices.

R-E

Here's why we're Number One.

When it comes to logic probes, more people purchase Global Specialties! Because you can spend twice as much and not get the speed, precision, flexibility and accuracy offered by our four logically-priced probes-including our remarkable new 150 MHz ECL Probe. Not to mention the versatility, reliability and durability we've become famous for.

But we don't stop there. When it comes to logic testing, Global Specialties does the complete job. With our DP-1 auto-sensing digital signal injector-for fast, easy stimulus-response testing, at an economical $\$ 83.00^{*}$. Plus a line of multi-channel Logic Monitors that provide an inside picture of circuit activity at up to 40 nodes simultaneously. And each product has an ideafilled applications manual-as well as an unmatched line of highly-functional accessories, to extend its versatility still more.
With Global Specialties, there's no need to compromise on performance. Or value. Discover for yourself why we're the number-one logical choice!
 profile power cords (instead of awkward, heavy or coiled cords)
Overload and AC-lineprotected highimpedance input Linear input impedance eliminates errors due to non-uniform loading

Complete line of interchangeable probe tips and grounding wires, including easy clip, banana plug. alligator clip jumpers and variety of power

Unsurpassed reliabilityperformance proven

All specs conservative and guaranteed

Half the price for equal (or better) performance

Circuit-powered with verse-voltage protection

Standard LP-1, only $\$ 50.00^{*}$, with latching memory-captures pulses as fast as 50 nsec , to 10 MHz , guaranteed
Economy LP-2, \$32.00*, guaranteed to $50 \mathrm{nsec}, 1.5 \mathrm{MHz}$
High-speed LP-3 with memory, only $\$ 77.00^{*}$, guaranteed to 10 nsec (6 nsec, typical) and 50 MHz !
New ECL LP-4 ${ }^{\dagger}, \mathbf{\$ 1 5 0 . 0 0}$, the new industry standard-with
memory, guaranteed to 4 nsec (2 nsec, typical) at 150 MHz ! tLP-4 probe exclusively for use with ECL. For DTL, TTL or CMOS, select LP-1, -2 or -3 .

HOBBYCORNER

Put that old calculator to good use

EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

HOW WOULD YOU LIKE TO OWN. FOR only $\$ 30$, a digital capacitance meter that will measure from a few picofarads to the largest value you are likely to encounter? Or. for the same price, a digital ohmmeter with an upper range that you can measure well into the multimegohms? How about a digital stopwatch/timer, a shutter-speed tester, a tachometer. a light meter, or a speedometer?

Some of those devices sound all but impossible for the price. You probably wouldn't believe it if I told you that you could have all of them for about $\$ 30$ total! Well. believe it because its true. Let's see how you can do it.

First of all. I'm allowing $\$ 10$ to buy a basic "four-banger" calculator. Even if you go out and buy a new one, that's more than enough money. When I started looking recently, I found five of the little things scattered around my home. You probably have several. yourself. Further. I saw an ad offering six manufacturers' rejects for one buck.

The only absolute restriction on the type of calculator is that it must have a "constant add" function: that is, each consecutive time the EQUALS key is pressed, the total is increased by one of the earlier entered digits (probably the last one entered).

Also. it is desirable that the calculator have a fast internal clock oscillator. That is more likely to be found in the cheaper models. The faster the clock. the shorter are the intervals between calculations.

Back to the cost. five dollars is allowed for the purchase of a few common capacitors, resistors, and switches. Of course. you'll only need the full $\$ 5$ in the unlikely event that you don't even own a junk box.

The final $\$ 15$ of your allotment will have to be spent. It is for a nifty little $R C$-III module from Kaltek (Box 7462 . Rochester. NY 14615). This amazing device measures approx. $3 / 4 \times 3 / 4 \times 3 / 8$ inch, and it makes the whole thing possible. The RC-III, plus a very few additional components will convert your four-banger into any of the instruments listed above plus a few others. Because of the small size and parts count. often everything will fit right into the calculator case.

Of course. you can build separate instruments, but with suitable switching or plug-in arrangements, you can have a multi-purpose instrument. And, by the way. whatever you build, the calculator will still have its original functions. Here's how the $R C$-lll does its magic.

Before I start, though. let me say that the manual that comes with the $R C-111$ is quite complete. It gives plenty of diagrams and information for building the instruments. If I miss a point in this brief account. you can bet that the manual didn't.

Two of the eight pins on the module are connected to the calculator (or other) battery. It will operate on any voltage from 3 - to 15 -volts DC. and that range takes in the battery voltage of almost all calculators.
Two of the module pins are connected across the constant add key of the calculator. That is usually the one marked " $={ }^{*}$, but all you have to do is to punch a little addition problem to determine which it is on yours.

Let's look at a simple circuit application for the $R C-I I I$, and then a few variations. Figure 1 is about as simple as they come. It is a timer or stopwatch. As you can see, the \pm and D / K pins are connected to the calculator battery and key, respectively.

The capacitor and pot connected to pins J. P. and C are adjusted to give a count rate appropriate to any given use. For the present application. you will want to adjust the rate to an interval of 1. 0.1 , or 0.01 second. In fact, you can increase the accuracy to maximum (decrease the interval to minimum) by making the rate just as fast as the cal-
culator will count-that's why the internal clock rate of the calculator can become important.

The switch can be of the push. slide. or toggle variety as you prefer. When pin S is positive. the $R C-I I I$ counts: when negative, it stops. All you have to do is enter " 1 " or " $1+1$ ", depending upon the calculator model. then operate the switch during the period to be timed. The readout shows units, tenths, or hundredths of seconds. Note that you will have to subtract one from the readout if you use a " $1+1$ " calculator. but most of us can do that in our heads!

A . $05 \mu \mathrm{~F}$ polystyrene-type capacitor located at pin C will provide very good accuracy. For the highest accuracy. you can eliminate the capacitor and pot, and feed pulses from a crystal timebase oscillator into pin J.

There you have a neat and simple timer. If you keep in mind the functioning of pin S. the circuit in Fig. 2 is easy to understand. With the switch in the RESET position. pin S is negative and nothing happens. When placed in the READ position, pin S goes positive and the calculator counts until capacitor C charges. At that time. pin S goes low. the counting stops, and the time can be read from the display.

Now. you don't care how many tenths or hundredths of a second it takes a capacitor to charge. What you do want to know is the value of the capacitor in micro- or picofarads. That's easy to arrange: Just adjust resistor R, or the
continued on page 72

MARCH SPECIALS

WE CARRY THE COMPLETE LINE OF ATARI SOFTWARE, PERIPHERALS AND ACCESSORIES.

$\$ 429.00$

PERSONAL COMPUTERS

If you're one of the millions who have bought a Shure V15 Type III, M97 Series, M95 Series, or M75 Series phono cartridge, we have a way of making it perform better than it ever has before. It's the Shure Hyperelliptical (HE) upgrade stylus (needle) series. We've taken all the high trackability/low distortion benefits of the HE stylus tip (first introduced on the famous V15 Type IV), and put them into styli that will match perfectly with your cartridge, for an audible improvement in your system's sound at an absolutely minimal cost to you!

Upgrading your phono cartridge with an HE replacement stylus will give a large return on a very small investment. You already owna phono cartridge with proven performance; now you can get even better performance from that same cartridge. Ask your dealer for the Shure HE replacement stylus that's right for you, and take advantage of the ROI factor.

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204 In Canada: A. C. Simmonds \& Sons Limited Manufacturer of high fidelity components, microphones, speakers, sound systems and related circuitry.

HOBBY CORNER
continued from page 70

capacitor connected to pin C , or the pot connected to pin P , so the calculator counts in microfarads or picofarads! Of course, you do that by using a known capacitor for C to calibrate your capacitance meter.

You are probably way ahead of meyes, the circuit in Fig. 2 is also an ohmmeter. Using a known capacitor C , the readout can be calibrated in the same manner as before to show the value of resistor R . The reading can be in ohms, kilohms, or megohms, depending upon your calibration scale.

Now you are well on your way. By controlling the module rate and the ontime with the polarity of pin S, you can measure all kinds of things. As you see, there is no problem in adjusting the module rate to your needs.

Pin S can be "switched" from minus to plus in a variety of ways. Two are shown in the examples above. Of course, a transistor switch can be used. Another way is with a magnetically operated reed switch. Then, too, the common photocell and the photo-transistor can be used to change the potential on pin S.

By using different switching methods on pin S, and having the actual switching controlled by various actions, you can have any of the instruments mentioned earlier. For example, you can see that a magnet on a bike wheel activating a reed switch will count the rotations of the wheel and you can calibrate that into miles-per-hour, feet-perminute, or whatever strikes your fancy. Several of those applications are illustrated in the $R C-111$ manual.

It should be obvious to you at this point that an old calculator and an $R C$ 111 module can team up to do a variety of jobs. If you come up with any unusual applications, I would be glad to hear of them.

"I originally built the robot to do simple tasks. Then I added to it, making it more and more sophisticated, until finally..."

PadioElectronies.

CALL NOW AND RESERVE YOUR SPACE

- $\$ 550$ for a 6 X frequency insertion.
- Reaches 211,387 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 212-777-6400 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 200 Park Ave. South, New York, NY 10003.

AMATEUR MICROWAVE RECEIVER SYS-
TEM (pictured) provides wide-band, high gain reception of amateur television transmissions from 2.1 GHz to 2.6 GHz . View on your television. Order MA1: \$169.95 MICROWAVE TELEVISION EDUCATION MANUAL includes detailed microwave downconverter, power-supply, and antenna plans: \$16.25. SUBSCRIPTION TELEVISION EDUCATION MANUAL: \$14.95. Add 5% shipping and handling. Informative catalog: $\mathbf{\$ 2 . 0 0}$. ABEX, P.O. Box $26601-$ RE, San Francisco, CA 94126-6601.
CIRCLE 71 ON FREE INFORMATION CARD

The Microbuffer II is an intelligent buffered parallel printer interface for the Apple II computer. Includes 16 K of on-board RAM Buffer memory size is user expandable to 32K. Compatible with Applesoft, CP/M, and Pascal. Includes advanced high resolution graphics print routines for the Epson MX-80 with Graphtrax, Anadex, IDS Paper Tiger, NEC Prowriter. Price: \$259. Contact Practical Peripherals, Inc., 31245 La Baya Dr., Westlake Village, Calif. 91362 (213) 706-0339.
CIRCLE 73 ON FREE INFORMATION CARD

AT LAST! COMPLETELY REPAIRABLE TEST PROBES. MICROPROBES from Huntron Instruments feature a needlesharp stainless steel point on a telescoping, length adjustable electrode insulated to withstand 1 KV right down to the ground tip. Super-Slim valox probe bodies and 5 foot superflex leads. All parts are replaceable! $\$ 9.95+\$ 3.50$ handling. Add CALIF. or WASH. tax. Visa/ Mastercharge accepted. Huntron Instruments, 15123 Hwy. 99 North-Lynnwood, WA 98037 (800) 426-9265.

CIRCLE 72 ON FREE INFORMATION CARD

This DYNAMIC NOISE REDUCTION SYSTEM is a significantly improved version of the NR-2 (featured in R.E. Aug./Sept. 79) employing the most advanced IC's to reduce the noise in your stereo system by up to 14 dB . Works with all program sources (including Dolby tapes) to make your sounds virtually noise free. AAS-450, \$189.00, VISA, M/C welcome. Advanced Analog Systems Inc., 790 Lucerne Dr., Sunnyvale, CA 94086, (408) 730-9786.
Dolby ${ }^{\circledR}$ is T.M. of Dolby Licensing, S.F. CA CIRCLE 78 ON FREE INFORMATION CARD

UNGAR'S NEW LIGHTWEIGHT DESOLDER-
ING PUMP, Economical, easy-to-use, one hand operation. Pump Number 7874 features easy-set plunger with built-in safety shield, press release switch, no-clog automatic tip cleaner and replaceable Teflon ${ }^{*}$ Tip \#7875. Pump is $3 / 4^{\prime \prime}$ D. $\times 81 / 2^{\prime \prime}$ L., made of aluminum with durable anodized finish. Suggested Resale: $\$ 14.95$ each. Available through your Ungar Distributor or contact...UNGAR, Division of Eldon Industries, Inc., P.O. Box 6005, Compton, CA 90220, (213) 774-5950, (800) 421-1538.

CIRCLE 75 ON FREE INFORMATION CARD

2300 MHz DOWNCONVERTER kit
for Amateur microwave reception. $\$ 35.00$ postpaid. Highest quality components Send SASE for information filled catalog of other converter kits, preamps, accessories and parts. VISA and MASTERCARD accepted.
SMP - Superior Microwave Products, Inc. PO Box 1241

Vienna, VA 22180 1-800-368-3028 1-703-255-2918
CIRCLE 76 ON FREE INFORMATION CARD

COMMUNICATIONS CORNER

Speech-scrambling techniques
 HERB FRIEDMAN, COMMUNICATIONS EDITOR

ONE OF THE REAL THRILLS OF SHORTwave listening is hearing the news before it's seen on TV or the headlines of the major newspapers (whatever "major" is supposed to imply). I can remember using a surplus $\mathrm{BC}-348$ receiver to "read the mail" on the overseas phone circuits and government transmitters, and "astounding" my friends and family when I told them of some new war or scandal that hadn't yet made the local papers or the "on-the-hour" newscast of the local radio stations. Today, it's somewhat more difficult to get the facts first-hand because much of what you'd like to know about is sent by radio teletype-called RTTY-or scrambled radio telephone. but it is still possible to monitor many of those transmissions.

To monitor RTTY you need to know the operating times and frequencies of the various transmissions; and if you don't want to spend most of your time fiddling with the dials, you also need to know the station's baud rate (speed of transmission) and shift frequency. I could take up this whole issue of RadioElectronics and still not give you enough information to get any enjoyment out of RTTY.

A better introduction to RTTY is an excellent handbook that I recently received in the mail; World Press Services Frequencies. That little gem is not only a handbook on how RTTY works, and the equipment that you'll need to receive it; it also lists the frequencies, times, baud rates, shift frequencies, etc. of the commercial press services such as UPI, XINHUA (China), Reuters. Tass (Russia), and so forth. It's a thorough job and the work was obviously a time consuming labor of love by the author. Thomas Harrington. W80MV.

Just keep in mind that while there's no law to stop you from reading the mail. you cannot divulge anything you hear to another party. The book is priced at $\$ 5.95$ and is published by Universal Electronics. Inc.: they are located at 1280 Aida Drive. Reynoldsburg. OH 43068.

Scrambled communications

Not all scrambled communications systems use sophisticated computer circuits, and many of the ones that don't can be easily monitored. That is particularly true of some of the systems that are commonly used on the UHF

FIG. 1

frequencies.
Among the earliest, and still effective means of scrambling communications so that the "average" SWL (ShortWave Listener) cannot monitor them is speech inversion. That system makes a transmitted signal sound like the "Donald Duck" chatter of SSB. In speech inversion, all that is done is to mix the voice frequencies and a steady carrier in a ring modulator.
To get a better idea of how speech inversion works, let's look at a simplified example. Assume that the voice frequencies are $300-2500 \mathrm{~Hz}$, and that the carrier is 3000 Hz , as shown in Fig. $1-\mathrm{a}$. When the voice signal and the carrier are mixed in a ring modulator, what comes out is the sum and difference frequencies. (A ring modulator is a balanced modulator. A four-quadrant multiplier IC can be used as a ring modulator.) When the sum is removed. you are left with the difference, which is an exact inversion of the original speech frequencies. When the speech is inverted, 300 Hz becomes 2700 Hz , and 2500 Hz becomes 500 Hz , as shown in Fig. 1-b. Anyone monitoring a signal that has been inverted in that manner will hear "garbage."

At the receiver, the scrambled signal is decoded by once again mixing the signal with a carrier in a ring modulator. That will re-invert the signal. If the carrier is 3000 Hz as before, the original $300-2500-\mathrm{Hz}$ input signal is recovered, as shown in Fig. 2. One problem with that scrambling system is that if someone assumes that the transmission is SSB and adjusts the BFO to "tune in" the signal, he may be able to decode the scrambling since one BFO setting will re-invert the signal in exactly the same manner as is done by the descrambler or decoder.

Several years ago, before the "age of the microprocessor," I experimented with an "unbreakable" scrambler. (At least. I thought it was unbreakable at the time.) In those experiments, I used a signal from a national radio network as the "carrier." The "receiving" station-rather than broadcasting the signal, a telephone hook-up was usedpicked up the same signal from a local radio station and used it for decoding a transmission.

Fortunately. I knew little about
scrambling at the time (which isn't all that much more than I know now) so I did not know that there were at least ten good reasons why the idea should not work. Of course the darned thing worked! The sound was somewhat garbled, but a message using some non-technical, simply constructed phrases could be understood. Had I known more about filters, and had the time to work on the thing, it probably would have proved commercially viable. But I was doing my experimentation just for fun. and once satisfied that my idea would more or less work, packed everything into a box and simply forgot about it.

Today, much scrambling is done using a microprocessor. Instead of the steady tone of a carrier, or the radiostation signal of my "Friedman Special," a constantly changing sampling rate is used to digitize a speech signal. The digital transmission also serves to program the microprocessor at the receiving station to decode the signal. When total security is required, the digitized transmission only serves to synchronize the microprocessor at the receiver. Since no key to the sampling sequence is transmitted, the scrambling is almost unbreakable. (I say "almost" because in electronics nothing is any better than "almost." By the time you read this, someone may very well be selling a 50 -cent IC that is capable of "breaking" all of the digital scramblers currently in use.)
Though the digital scramblers are essentially unbreakable, many scrambler users make things simple, to keep overall costs down and receiving problems at a minimum. They are not as interested in absolute security as in making their copy unintelligible to the general public. After all, anyone that really wants to break a scrambler code can probably do so.

One major problem for the SWL is that HF-circuit scramblers are usually used with SSB. That means that you need a second local oscillator, because the receiver's regular BFO is being used to receive the SSB signal. You can either mix the received audio in a ring modulator with a variable-frequency/ variable-level audio oscillator, or radiate a small tunable "IF frequency" into the antenna input, as was done in the early days of CB SSB. The whole thing is a lot of fun to try, although it is rather time-consuming when you're trying to establish the best "carrier" level in the descrambler.

If any of you give it a try, please drop me a line, in care of Radio-Electronics, and let me know how you make out. Perhaps some other readers will be interested in your results; we'll run the highlights of your experiments in future issues.

SOLID STATE IMAGER ACTUAL SIZE:

You can now afford to evaluate optical scanning techniques for your system application. For just \$98/\$125 RETICON offers the RL128G/RL256G self-scanning photodiode array with $128 / 256$ diodes on $25 \mu \mathrm{~m}$ (1 mil) centers and a complete interface circuit (model RC301) which allows the diode array to be operated over a wide range of scan rates and integration times to fit many system requirements. Just connect your standard power supply and get a wide dynamic range video signal out.

Applications include OCR, pattern recognition, noncontact size and position measurement, inspection for defects, spectrometer readouts and many more.

For higher resolution requirements, other RETICON self-scanning photodiode arrays are available with up to 4096 diodes in a linear configuration and 256×256 diodes in a matrix configuration.

This special offer valid only in the U.S. and Canada until May 31, 1982. Don't delay-evaluate this exciting new technology today!
For information call: (408) 738-4266 or Boston (617) 745-7400, Chicago (312) 640-7713, Los Angeles (714) 895-3367.

Please mail in this coupon or attach to your purchase order. Mail to: EG\&G Reticon, 345 Potrero Avenue, Sunnyvale, CA 94086 I enclose \$ \qquad for (include sales tax in CA, IL, MA and MD): \square S98 RC301 circuit card with 128 element array. \square S125 RC 301 circuit card with 256 element array.
Name
Address
City _ State___Z___ Zip
E
RE

TgEGzGRETICON

COMPUTER CORNER

Games (computer) people play.

LES SPINDLE*

DESPITE THE OFTEN-HEARD PHRASE "personal computer," microcomputers today are largely used as serious devices for practical business applications; the "computer-in-every-home" era still seems to be a considerable time away. To fuel the fires of home-computer sales, manufacturers and vendors try to impress upon consumers the image of the home computer as a practical device; but the largest percentage of software purchased by home users falls into the same category that predominated five years ago-fun and entertainment applications.
That should come as no surprise. The widespread use of some of the most sophisticated electronic developments of the last hundred years-television, radio, and the telephone-can still be attributed at least as much to their capabilities for providing amusement as to their use for communications.
Because of that, the computer-game industry is a booming business, with millions of dollars worth of game cassettes and disks being sold annually. Hundreds of software companies, large and small, release new offerings every month. Some examples of game software are shown in Fig. 1.

Electronic-game history

The computer-game scramble began in 1966, when Ralph Baer sold the rights to his video-game invention, Odyssey, to Magnavox. The game reached the market in 1972, and the phenomenon was on its way.

The early games were simple, ping-pong-type diversions with little challenge or variety. The next phase offered more options for players by using switches to select various modes of operation. In 1977, with Fairchild's Video Entertainment Center, programmability was added.

Most modern games are sophisticated and challenging, because they offer the possibility for the player not only to alter the existing games, but also to devise new ones. That's made possible by a microprocessor in each game console, and by the availability of ROM (ReadOnly Memory) cartridges containing the game elements.

All the games discussed so far have *Managing Editor, Interface Age magazine
been "dedicated" devices-all they can do is play games. The next step is a microcomputer system that permits you to expand your game-playing horizons beyond the limitations imposed by the dedicated game-machines. You can write your own games if you wish, and save the game results on cassette to determine your errors, or continue a game that had been started previously. And-perhaps the most important thingafter you've had your fill of game-playing, you can turn the computer to more practical applications.

Some manufacturers are turning out game consoles that are actually complete microcomputer systems, complete with keyboards and memory. The Interact, from Microelectronic Systems Corp., for instance, uses an 8080 microprocessor and offers some software in addition to games, including home and business applications-programs.

One popular computer that is especially suited for game-playing is the Apple II. While its capabilities extend far beyond that, it offers superb gamepotential for the computer enthusiast who appreciates the computer's entertainment value as well as its practical side. With a keyboard, game paddles,
excellent graphics capabilities, and a sound generator, the computer is the ideal choice for creating games and playing those created by others. Needless to say, there is a wealth of game software available for the Apple.

Game types

What kind of games can you expect to find for computers? There is a wide variety available, but a few popular formats tend to dominate the market. If you consider television to be a "sitcom factory" where one hit series spawns dozens of spinoffs, ripoffs, and imitations, you haven't seen anything until you've played the hundred-and-first version of a Space Invaders or Star Trek computer game. That doesn't seem to bother buyers, though; the formats that sell are the familiar ones.

At the simplest level, board-type games continue to be popular. Games such as tic-tac-toe, checkers, chess, and backgammon, hardly make extensive use of color graphics or other dazzling effects, but are formidable brain-teasers and entertain players for hours at a stretch. Several computerchess competitions are held by computer clubs and other organizations

FIG. 1
here and in other parts of the world
Guessing games provide some intellectual stimulation and, in some cases, are educational. Arithmetic calculations and problems in logic expand the programs into truly stimulating exercises. For example, one game challenges the player to search a grid of dots to locate a hidden object. Clues and hints are provided along the way to bring the astute player, step-by-step, closer to solving the puzzle.

Casino games satisfy the gambling instinct in computer buffs, creating exciting situations with poker, roulette, and blackjack competitions. While you can't win any money, you can't lose it, either.

Simulations

Computers are widely used to perform simulations-programs that mimic real-life events, and whose outcome can be changed by changing the values of the data used.

Simulations are used in business to make long-range financial decisions by posing hypothetical situations to the computer. The armed forces frequently make use of computer simulations, and medical schools often depend on simulations for training purposes-electrons are more expendable than lives.

Simulations are also widely used in games. The Star Trek games cast the player as captain of the starship Enterprise; the object is to seek out and destroy Klingon battle cruisers without being destroyed yourself.

Another popular simulation is Adventure, a game in which you explore a vast, complex, underground world filled with treasures, magic, and menaces. The game is highly addictive and, when you've exhausted one version of Adventure-if that's possiblethere are many more waiting.

Still another simulation puts you in the position of an air-traffic controller, guiding over 20 planes into, out of, and around your airport.

Home-computer versions of popular arcade games are also available. There are Space Invaders games to run on almost any machine. Missile Command and Pac-Man are two other games that have been adapted for microcomputers.

How do you select the best version of a game? Ask the man who plays one. Frequent your local computer club, follow the software reviews in computer magazines, and ask fellow computer owners whether you can try their games before investing in your own. You'll find the world of computer hobbyists game enthusiasts, in par-ticular-to be a friendly and cooperative brotherhood.

There's a saying: "You can tell the man from the boy by the price of his toy." Whoever coined that phrase must have been a computer buff.

R-E

Compare the best.

We'd like you to compare Keithley's new Model 179A general purpose bench TRMS multimeter to its closest competitor.

Dollar for dollar, feature for useful feature, we think our new 179A gives you more common sense utility for your money. What do you think?

KEITHLEY

Keithley Instruments, Inc.
28775 Aurora Road/Cleveland, Ohio 44139-9990/(216) 248-0400

STATE OF SOLID STATE

Play a tune with these new IC's

ROBERT F. SCOTT, SEMICONDUCTOR EDITOR

HARDLY A DAY PASSES THAT I DON'T read about some interesting new or improved semiconductor device, or of an innovative application for a more familiar one. But all too often, some of the most exciting devices are available only to equipment manufacturers, or are priced beyond the range of the average hobbyist.

That is not the case with a series of IC's available from Epson America. It has released a series of 24 melody-generator CMOS LSI devices. They are programmed to play selected melodies and to produce chime and alarm tones. They can be used in musical toys, to replace doorbells and chimes, as replacements for the mechanical devices

FIG. 1

	TABLE 1			
FUNCTION	S1	S2	S3	S4
Melody 1	on	off	off	on
Melody 2	on	off	off	on
Buzzer	-	on	off	on
Chime	-	off	on	on
Test mode/melody 1	on	on	on	on
Test model/melody 2	on	on	on	on

in music boxes, and to produce musical tones that are a pleasant change from the strident clanging of a gong or the rasping sounds of a buzzer used in many applications. The devices are nearly complete in themselves, requiring only a speaker, 1.5 -volt battery, and a few external parts for operation.
The 7910 series of IC's provides a selection of two preprogrammed tunes plus a chime and an alarm tone. The melody arrangements are diphonictwo notes sound at once. The 7930 series of IC's play only a single tune. The 7920's are simple 8-pin DIP devices, made by omitting the audio preamp/

FIG. 2
driver from the 7930 .
Figure 1 is a block diagram of a 7910 and Fig. 2 is a circuit that can be used to drive the IC. The built-in oscillatortwo series-connected inverters connected between pins 1,2 , and 3 (terminals $\mathrm{OS}_{1} \cdot \mathrm{OS}_{2}$ and OS_{3}) and tuned by $\mathrm{R}_{\mathrm{O}} 1, \mathrm{R}_{\mathrm{o}} 2$, and C_{0}-generates a nominal frequency of 47.5 kHz . That signal is processed by the various internal circuits to develop the notes, tempo, keying, shaping, and other controls needed to produce a specific melody, chime, or alarm.

Pin 4 (terminal mi) is the on-off control point. The tune starts at the beginning of the melody when that terminal is switched HIGH (connected to V_{DD}) and continues until the circuit to terminal MI is opened (switched to LOW). If the terminal is still switched HIGH when the tune ends, the tune is simply played over.

Control terminals CTL_{1} and CTL_{2} (pins 10 and 11), when connected to R1-C1 and R2-C2, regulate the time constant of the envelope. The overall tone can be changed by varying C1, C2, R1, and R2. Terminal CTL $_{3}$ (pin 12) is the unamplified output of the melody-generator section of the IC. Terminal $\mathrm{CLL}_{4}($ pin 13) is the input to the built-in audio preamplifier. In Fig. 2. R4 is the volume control. Terminals out ${ }_{1}$ and OUT $_{2}$ (pins 14 and 15) are the preamp outputs used to drive the complementary bipolar out-put-transistors.

Terminals SEL $_{1}$. SFI $_{2}$, and MSL (pins 5. 6. and 9) are used to control the output of the IC. The terminals are connectec to switches (S1-S3) that are used ts select melodies, chimes, or alarm, de pending on their setting. Table 1 show
the switch settings for a 7910 programmed for two melodies and two alarm sounds. In the melody test modes, the tempo of the selected melody is stepped up eight times. The switch settings for 7910's that have two melodies and no alarm, or no melodies and two alarm sounds, are similar to those in the table.

I ve mentioned the possibility of using a melody generator as a replacement for a doorbell. For that application, I suggest the $7910-\mathrm{O}, \mathrm{P}, \mathrm{X}$, or CH versions. Those are different 16 -note arrangements of Westminster chimes; the devices are suitable for use as doorbells since they are programmed to play through just once and then stop.

At present. there are fifteen different IC's in the 7910 series. seven in the 7930 series. and two in the 7920 series. The melodies available are too numerous to list here, but, to give you some idea of what is available, they range from "Jingle Bells" and "Silent Night" in the $7910-\mathrm{CU}$ to a Chopin nocturne and a Mozart minuet in the 7910-CE.

Sample quantities (1 to 9) of the 7910, 7930 , and 7920 cost $\$ 10, \$ 8$, and $\$ 7$ each, respectively. Circuit boards are available and cost $\$ 15$ for the 7910; boards for the 7930 and 7920 cost $\$ 10$. If you order the IC and circuit board together ($\$ 25$ for the $7910 . \$ 18$ for the 7930 and 7920), you get an evaluation kit that includes all parts; all you have to add are an 8 -ohm speaker and a $1.5-$ volt AA cell. To order any of those items, write to Epson America, 3415 Kashiwa St., Torrence, CA 90505. When ordering, include \$1 for shipping and handling. (California and New York residents, add appropriate sales tax.) Incidentally, tune lists and data sheets for the IC's are also available.

R-E

"Now if you're into satellite TV, this is the house for you!"

Heartdisease ondstroke willcauseholf ofolldeaths this year.

Give the gift of love.

WE'RE FIGHTING FOR YOUR LIFE

ADMANCE IS PROUD TO INTRODUCE Non-Linear Systems

High Quality Oscilloscopes Backed by A Two-Year Warranty

THE TEST EQUIPMENT SPECIALISTS
TOLL FREE HOT LINE
800-223-0474 VAN
NEW YORK, N.Y. 10036 212-687-2224

Non-Linear Systems' trio of miniscopes are accurate, affordable, portable. And there's one to match nearly every budget and need. Standard features on all models include an input impedance of 1 megohm with 50 pF ; maximum input voltage of 350 V ; trigger modes in auto, internal, external and line; slope that's + or - selectable; graticule (4×5 division of $0.25^{\prime \prime}$ each); dual power sources operating either internally from rechargeable lead acid batteries or externally from 115 VAC or 230 VAC (50-60 Hz) via plug-in transformer; handy size ($2.9^{\prime \prime} \mathrm{H} \times 6.4^{\prime \prime} \mathrm{W} \times 8.0^{\prime \prime} \mathrm{D}$) and weighs just 3 lbs.*

Check the chart below for details of model features and specifications.

The remarkable Touch Test 20 DMM. With the Touch Test 20 Non-Linear Systems introduces the 2 lb .4 oz . test lab. Now, with 20 key test functions at your fingertips (plus the ability to measure 10 electrical parameters and 44 ranges), you can take one lab to the field instead of a cumbersome collection of individual testers.
The new Touch Test 20 D M M features:

- Built in temperature measurement (including probe; F° and C°)
- Capacitance measurement
- DC Voltage ($200 \mathrm{MV}-1000 \mathrm{~V}$)
- AC Voltage ($200 \mathrm{MV}-1000 \mathrm{~V}$)
- DC Current ($200 \mu \mathrm{~A}-10 \mathrm{~A}$)
- AC current ($200 \mu \mathrm{~A}-10 \mathrm{~A}$)
- Resistance ($200 \Omega-20 \mathrm{M} \Omega$)
- Diode Test

SERVICE CLINIC

Vertical-retrace-line problems

JACK DARR, SERVICE EDITOR

OVER THE YEARS IVE RECEIVED A LOT of letters concerning vertical-retrace-line problems. That used to be one of the most "popular" complaints. The problem is easy to identify-there are four or five bright lines at the top of the screen, and they always start at the upper right corner and slant down toward the left. In the early 1950's, TV sets suffered a lot from that complaint, and it was frequently said that the sets came with built-in retrace lines. I've had quite a few letters about the problem recently, and the last one said, "Why don't you write a 'Service Clinic' column about it?" Always happy to receive inspiration, I accepted, and here it is.

Vertical blanking is simple. You feed a vertical-frequency pulse into one of the video circuits, or directly to the picture tube (see Fig. 1). That pulse must be exactly as long as the vertical-blanking interval, and with enough amplitude, and the right polarity, to cause the electron beam in the picture tube to be cut off.

Naturally, the pulse must be present during the vertical-blanking interval (which is the black horizontal bar between frames, as if you didn't know!)

A lot of different vertical-blanking circuits have been used. Early sets fed positive-going pulses to the cathode of the picture tube, or negative-going pulses to the grid. The important thing is
that the polarity of the pulse has to be in the direction of cutoff, and the amplitude high enough to cause full cutoff. One oddball circuit I remember fed rather-high-voltage negative pulses to the picture tube's screen grid! That was on a black-and-white tube set, of course. If you're restoring antiques, watch for it; usually pulses were fed in through capacitors, with shunt resistors. Check for leaky or open capacitors, or resistors whose values have drifted.
Later-model sets, especially solidstate ones, feed blanking pulses into one of the early video-amplifier stages. Very often the first video-stage is used. Popular circuits feed vertical-blanking pulses either into the base or emitter of that transistor. For NPN transistors, the pulse applied to the base is nega-tive-going (reverse biased) while a pulse to the emitter is positive-going. The pulses are often fed through series or shunt diodes; more about them later.

The actual vertical-blanking pulses can be picked off the vertical oscillatoroutput circuit at quite a few points. What's needed is a point that has a pulse of the proper polarity and amplitude. Sometimes the pulse is shaped by R-C networks. One of the older sets even took the pulse from the vertical yoke! Some solid-state sets use a verti-cal-blanking amplifier-transistor, for a higher-amplitude pulse, wave-shaping etc. You can find the pickoff point by

looking for a line that isn't used in the vertical circuitry, but goes out and away, usually toward the top of the schematic.

Other trouble sources

There are a few other things-not in the vertical circuits-that can cause retrace lines to show up. In older sets, if the brightness or contrast is too high, you may see retrace lines. That can be fixed by readjusting the controls. Also, if the AGC is set too far toward "whiteout," that can cause the lines to appear. Reset the AGC control and see if that helps.

In the cases just mentioned, the lines show up because the picture tube is simply being driven too hard for the normal blanking-pulse to cause it to be cut off. In recent sets, automatic bright-ness-limiter circuits have contributed a lot to curing the problem. But they can also be the cause of the lines: If you see retrace lines in a set with an ABL, make sure that the circuit's working.

Check the schematic to see if a ver-tical-blanking amplifier-transistor is used. If so, and you see retrace lines, use a scope on that stage to make sure it is working. An open transistor could be the source of your trouble. If the transistor is leaky, it can do strange things to the blanking pulse-make it wider, distort its shape, etc., which causes really odd symptoms on the screen.

Blanking diodes

Here's some more about the blanking diodes. Any defect in them causes problems. If a series diode is open, you'll lose the pulse entirely. A series diode that is shorted also causes odd problems. And leakage in those diodes really causes some oddball ones! One is "window-shading:" when the brightness is turned down, the raster goes dark from top to bottom just as though someone were pulling a shade down over it. That would be caused by the vertical-blanking diode. If the raster goes out from left to right, as if someone were pulling a drape across it, that usually means a leaky horizontal-blanking diode.

A shorted horizontal-blanking diode often produces the "jail bars" symp-tom-there will be five or six black ver-

FREQUENCY METER FOR MOBILE TRANSMITTERS/RECEVVERS

Portable • Solid State - Rechargeable Batteries
The $\mathbf{F M}-2400 \mathrm{CH}$ provides an accurate frequency standard for adjustment of mobile transmitters and receivers at predetermined frequencies.
The $\mathrm{FM}-2400 \mathrm{CH}$ with its extended range covers 25 to 1000 MHz ,
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .
Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$.
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (.000125\% special 450 MHz crystals available).

- Tests Predetermined Frequencies 25 to 1000 MHz
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) .690.49 RF crystals (with temp. correction) \$28.89 ea. RF crystals (less temp.
correction)
$\$ 21.92$ ea catalog price Write for catalog

INTERNATIONAL CRYSTAL MFG. CO., INC 0 North Loo Oklahoma City, Okia. 73102

Put Professional Knowledge and a

 COLLEGE DEGREE in your Electronics Career through DEGREE
No commuting to class. Study at your own pace, while continuing your present job. Learn from easy-to-understand lessons, with help from your home-study instructors whenever you need it.
In the Grantham electronics program, you first earn your A.S.E.T. degree, and then your B.S.E.T. These degrees are $a c$ credited by the Accrediting Commission of the National Home Study Council.

Our free bulletin gives full details of the home-study program, the degrees awarded, and the requirements for each degree. Write for Bulletin $R-82$.

Grantham College of Engineering 2500 So. LaCienega Blvd. Los Angeles, California 90034

tical bars in the picture; the picture will be seen between the bars. Those bars are due to the normally-present series of "ringing pulses" present on the horizontal part of the HV pulse; the shorted diode lets them get through. (It's supposed to clip them off and leave only the spike.)
There are even stranger problems, too. In one old set, we had what looked like retrace lines; closer examination showed that they didn't slant but were almost horizontal, and had flashes of color and bright points in them. After quite a bit of checking, the cause turned out to be a bad integrator circuit in the feedback loop. It was one of the ceramic-types, which looks like a ceramic capacitor with three leads. It was causing a very narrow and sharp top-foldover of the raster; the odd things seen, including the color, were the VITS signals, which are in the ver-tical-blanking interval.

An oscilloscope is the best piece of test equipment to use with that type of problem, or with any sync problemyou can follow the blanking pulses from their point of origin all the way to their destination, to make sure they get there, or to find the point where they drop out. When you find that point check voltages, components, etc. R-E

SERVICE QUESTIONS

THIS CAN'T HAPPEN!

This happened with a Magnavox T920 chassis: There was no vertical sync. The set worked fine on the test jig. but not in its cabinet. I tried a new yoke and convergence board with no luck. That left only the picture tube. I had another picture tube in a cabinet with the chassis out. so I used the Magnavox yoke and convergence assembly. slipped the chassis in. and it worked fine. So I replaced the picture tube and now everything's back to normal. I know this isn't supposed to happen. but it did!-W.S.. Houston, $T X$ I'm sure glad you didn't ask me why!

HOT FOLDOVER

I have a Sylvania EO-9 that develops a bad foldover after it has been run for a while. I've replaced the IC-300 V/H divider and checked many of the resistors and capacitors around it without any luck. I tried cooling things down and found that if I cooled the IC, the picture would straighten out and stay normal for five or ten minutes. I put the original IC back and found that the same thing happens. The schematic shows a voltage regulator, SC310, but I can't find it. Any help would be appreciated.-R.H. Susquehanna, PA

WE TAKE YOU BY THE HAND!

You'll learn all about computers: how to build, program, service, even play TV games-without knowing the first thing about it!

The New ELF II "Beginners" Package

Your own expandable micro-computer kit, 5 diagnostic analyzers plus circuit, programming, diagnostic manuals, even games you can play on TV. All only \$139.95.
Even if you don't know bits from bytes, now it's easy and inexpensive to build your own micro-computer, learn how it works, program it, service it-even play games with it on your TV! It's here in the New ELF II "Beginners" Package, only from Netronics. Only \$139.95. Here's the package: 1. your own micro-computer, the famous ELF II (featuring the RCA 1802 CMOS microprocessor) in kit form with step-by-step instructions on how to build it. Diagnostic Analysers including 2. your own Logic Probe, 3. Pulse Catcher, 4. 8 bit Test Registor, 5. Logic Analyzer, 6. Gate Arrays, 7. Non-Technical Manuals on how to use analyzers, how to get into the guts of the computer, what makes it tick, how to service it. 8. Sample Programs that teach you machine language programming plus how to correct or "debug" any programming mistakes. 9. TV games you can play. If your TV set has no video input, an optional converter (RF Modulator), is available. Then, once you've got this "Beginners" Package under your belt, keep on expanding your ELF II with additions like the Typewriter Key Board, added RAM, Full Basic Interpreter, Electric Mouth Talking Board, Color/Music, A/D-D/A Boards for Robot Controls and much, much more. We'll take you by the hand with the New ELF II "Beginners" Package. Only \$139.95. Mail or phone in your order today and begin.
Specifications: ELF II "Beginners" Package
64 K byes with DMA, interruph, 18 Revisters, ALU, 2Soprocessor addressable to 64 K bytes. Professional-Hex keyboard, fully decoded sothere's no exped to waste memory with keyboard scanning circuits, built in power recesulator, 5 slop plugs in expansion BUS (less connectors), stable crystal clock for timing purposes and a
double-sided, plated through PC Boand plus RCA 1861 video IC to ditiay any segment of memory on a video monitoror TV screen along with the logic and support circuitry youneed to learn every one of the RCA 1802 's capabilities. The diagnostic analyzers aid in underst anding and trooble shooting your ELF II, as well as other computer and microprocessor products.
Continental U.S.A. Credit Card Buyers Outside Connecticut
CALL TOLL FREE 800-243-7428
To Order From Connecticut or For Technical Assistance, Etc., Call (203) 354-9375
NETRONICS R\&D LTD,
333 Litchfield Road, New Milford, CT 06776
Please send the items checked below:
ㅁ ELF II "Beginners" Kit
$\$ 139.95$

- RF Modulator

S 8.95
Plus $\$ 3.00$ for postage, handling and insurance (\$6.00 Canada)
Connecticut Residents add sales tax
Total Enclosed \$
\square Personal Check Cashier's Check/Money Order \square Visa Master Charge (Bank No. Acct. No. Signature
\qquad Print
Name
Address
City
State
L_

Introducing the first no-crystal hand-held scanner.

The Bearcat 100.

Now! The one scanner you've always wanted-a no-crystal, fully synthesized hand-held scanner. The incredible, new Bearcat 100.

Push button controls tune in all police calls, fire calls, weather warnings, and emergency information broadcasts, the split second they happen. Automatically.

16 channels for storing frequencies. 8 band coverage-including high, low UHF and " T " public service bands; both the 70 cm and 2 meter amateur bands. Automatic and manual search, lockout, scan delay. Direct channel access. Flexible antenna, earphone, AC adapter/battery charger and carry case are included.

Dial 800-SCANNER (800-7225555 in Indiana) for your nearest Bearcat Scanner dealer, and go see the world's one and only handheld, no-crystal scanner.

It sounds as if your problem is in the voltages at the IC. You indicated that you measured +5.97 volts at pin three. the V_{CC} input. That's too high! The correct voltage should be +4.3 volts.

From the parts list. SC310 is a 4.3volt Zener diode. I'd say that it's either open or missing. Get a 4.3 - or 4.7 -volt Zener and tie it directly from pin three to ground. That should do the job. and the original IC may still be usable

BAD PICTURE TUBE?

We've got a GE 25YM that was damaged by lightning. We replaced some parts that obviously needed replacing. That didn't work-you turn the set on and the circuit breaker trips. Our old tester told us that the picture tube (25-EKP22) was shorted even though an ohmmeter didn't indicate anything was wrong. What's your opinion? $-J . P .$, Cortez, CO

I think your picture-tube tester is right. I've run into several sets with the picture tubes shorted so badly that they kill the HV and trip the breaker. (I didn't believe it the first time-the set would run with the HV lead disconnected. On a test jig it gave a perfect picture. So. we changed the picture tube and that was that.)

NO VIDEO, LOW VOLTAGE

I have no picture, only a raster with colored horizontal lines, on a Zenith

K1908C. Checking, I found only +50 volts on the supply to the video-output module, instead of the +238 volts shown on the schematic. The boost is a bit high, but the HV is normal. The +238 volts is derived from the flyback. Do you think the flyback is bad?-E.M., N. Olmsted, OH

No. not the flyback. Note that many other voltages that are derived from the flyback are OK: the boost. HV. etc. Your problem is either an open rectifier on the +238 -volt source. or something of that sort. Check any resistors that are in series with that supply, between it and the video-output module. The symptoms are not those of a short: that leaves only a bad diode or an open series-resistor as the likely cause.

HORIZONTAL RIPPLE

l've got a bad case of what looks like full-wave horizontal ripple in a Sylvania E01-9. I replaced the main filter capacitors, but it's still there. If I disconnect the degaussing coil, the ripple just gets worse. That shouldn't have anything to do with the filtering, should it?-J.T., Memphis, TN.

No-the degaussing coil isn't involved. I ran into that situation some time back and the problem turned out to be an open diode in the full-wave bridge rectifier. You have a similar case. so check all of the diodes and the solder joints.

R-E

NEW BOOKS

For more details use free

 information card inside back cover．USING MICROCOMPUTERS IN BUSINESS．A Guide for the Perp－ lexed，by Stanley S．Veit．Hayden Book Company，Inc．， 50 Essex Street，Rochelle Park，NJ 07662． 142 pp including appendices and index； 6×9 inches；softcover．\＄9．95．

This book，written by the man who opened the＂second－oldest computer store in the world，＂is an essential background refer－ ence for any purchaser of computer systems or software for a business．It describes the advantage of＂computerization＂and provides the potential user with the data necessary to make intelligent choices．

Chapters 1 and 2 cover various types of businesses and the programs they need，with reference to the ability of small com－ puters to handle those needs．They are followed by chapters on word processing；data－base management sytems；how to install a computer without disrupting your business；buying your system； computer languages；the limitations of the microcomputer；soft－ ware；where to find it and how to judge it，and what to do when the system goes down．The two final chapters deal with how a micro－ computer works and microcomputer memory．

The book has many photos and easy－to－follow diagrams，and is written in plain language，without technical jargon．It answers the most－often－asked questions about computers and offers advice， information，and warnings which have been proved valid．

CIRCLE 150 ON FREE INFORMATION CARD
WHY DO YOU NEED A PERSONAL COMPUTER？by Lance A． Leventhal and Irvin Stafford．John Wiley \＆Sons，Inc．，One Wiley Drive，Somerset，NJ 08873． 278 pp including appendices and index； $63 / 4 \times 10$ inches；softcover；$\$ 8.95$ ．

This is a non－technical，fully illustrated，down－to－earth intro－ duction to the world of personal computers．It offers detailed guidelines on the advantages and drawbacks of every type of personal computer；gives sources of equipment and information； provides a step－by－step introduction to the BASIC language， along with an easy－to－follow course in writing programs；infor－ mation on how to maintain a computer and what to do if it breaks down；a user－directed discussion of peripherals and interfacing， and an extended glossary．
The reader will learn how versatile personal computers are and the many everyday applications they can perform，as well as what will be needed for a useful system and how to select a system that meets the user＇s personal requirements．Innumerable low－cost personal computers are widely advertised；this book will help the reader to choose among the many offerings and understand what the advertisements really mean．

CIRCLE 151 ON FREE INFORMATION CARD
THE COMPLETE HANDBOOK OF MAGNETIC RECORDING，by Finn Jorgensen．TAB Books，Inc．，Blue Ridge Summit，PA 17214. 448 pp including appendix，additional reading list，and index； $51 / 8$ $\times 833 / 4$ inches；softcover；$\$ 10.95$ ．
This textbook of＂know－how＂and reference，covering all as－ pects of magnetic recording，is written both for the technically inclined person working in the field and for the equipment user who wants to get in－depth knowledge of magnetic recording equipment and principles．
Chapter 1 gives a brief history，followed by an introduction to recording equipment（chapter 2）．The rest of the book falls into three main sections：Fundamentals；Heads，Tapes，and Discs， and Equipment and Application．
The process of recording receives full attention，too：pulse recording and playback；noise；signal detection；equalization bits；error rates；coding；standards；measurements；recording with an AC－bias；amplitude and phase response；SNR improve－ ments；tape drives，and sound－film recording－all are covered in detail，along with FM and PCM recording（including analog－to－ digital conversion and high－density digital recording！）R－E

CIRCLE 152 ON FREE INFORMATION CARD

From

トロ円MEEッッ

HM307

The first portable scope with a component tester．

Oscilloscope Specifications：

Y Deflection
Bandwidth： $\mathrm{DC}-10 \mathrm{MHz}(-3 \mathrm{~dB})$
Overshoot：Less than 1\％
Sensitivity： $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
Input Imp： 1 M ohm／／ 25 pf
X Deflection
Timebase： $0.2 \mathrm{~s}-0.2 \mathrm{\mu s} / \mathrm{cm}$
Triggering： $2 \mathrm{~Hz}-30 \mathrm{MHz}(3 \mathrm{~mm})$
Auto＋level control
Bandwidth： $2 \mathrm{~Hz}-1 \mathrm{MHz}$

General Information

Component Tester：
Calibrator：
Power Supplies：
A．C．Input：
Weight：
Size：

For single components and in circuit $0.2 \mathrm{~V} \pm 1 \%$ for probe alignment
Regulated including high voltage $110,127,220,237$, VA．C．， $50-60 \mathrm{~Hz}$ 8－1／4 Lbs．
$4-1 / 2^{\prime \prime} \mathrm{H} \times 8-3 / 8^{\prime \prime} \mathrm{W} \times 10.7 / 16^{\prime \prime} \mathrm{D}$

For further information on HAMEG＇s full line of top performance oscilloscopes，contaot：

HAMEG，INC．

88 Harbór Rd，Port Washington，N．Y．， 11050 Telephone：516－883－3837

NEW PRODUCTS

For more details use free information card inside back cover.

GRAPHIC EQUALIZER, model EQ2400, is a stereo frequency equalizer for the home recordist or music listener. The user can listen to music "flat" while making and monitoring an equalized recording, or

CIRCLE 141 ON FREE INFORMATION CARD
can make and monitor an unequalized tape while listening to music that's equalized to suit the sonic characteristics of one's listening room.
There are ten linear slide controls for each stereo channel, each with true octave spacing calibrated to $\pm 15 \mathrm{~dB}$. That will not only improve the sound of the user's cartridge but also remove hiss, rumble, and surface noise.

The model EQ2400 has a frequency response of 10 to $100,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. Total harmonic distortion is less than $.01 \%$ and intermodulation distortion is less than $.02 \%$. There are two main, and two tapemonitor inputs, plus two main and two tape outputs, equalization and defeat selector, and tape-monitor controls. The model EQ2400 can be connected easily to any receiver, pre-amp, or integrated amplifier with tape monitor, signal processor, or pre-amp output. The model EQ2400 is priced at \$199.00. - Numark Electronics Corp., 503 Raritan Center, PO Box 493 , Edison, NJ 08817.

CASSETTE DECK, model ND-1000, is a two-motor, direct-drive system that assures accurate tape travel. Its three tape heads also add to tape-transport accuracy, while permitting off-the-tape monitoring as well. The transport also features full IC logic control, permitting smooth tape-function switching without

Reach for reliability

Solve over 178,000 solid state replacement problems using 1800 SK and KH types. RCA's new Replacement Guide puts the reliable answers at your fingertips.

From foreign to domestic components, RCA simplifies just about any replacement application, including integrated circuits, high-voltage triplers, rectifiers, thyristors and transistors. The guide uses a convenient dual numbering system, which
matches the right SK replacement to your consumer or MRO/Industrial needs. For example: SK3444/123A.

Pick up your copy of the 1982 RCA SK Replacement Guide. Nothing puts reliability within easier reach. See your RCA SK Distributor, or send a check or money order for $\$ 2.25$ to: RCA Distributor and Special Products Division, P.O. Box 597, Woodbury, N.J. 08096.
the need to go through the "stop" position. The IC logic permits all tape-mode functions to be turned on from across the room, with the addition of an optional remote-control unit.

CIRCLE 142 ON FREE INFORMATION CARD
The model ND-1000 accepts metal, normal, and CrO_{2} tapes, and applies accurate equalization with each. Other features include two 12 -section LED peaklevel displays for accurate monitoring, separate left and right level controls, and a front-panel output-level control. Its standard Dolby B noise-reduction system is augmented by an MPX filter for inter-ference-free off-the-air recording. There are also an automatic rewind function, a timer-activated record/playback function, and an automatic memory-stop/ memory-play function.

The model ND-1000 is priced at $\$ 650.00$. - Nikko Audio, 320 Oser Avenue, Hauppauge, NY 11787.

SPECTRUM ANALYZER, model ESA-1000, is the first such instrument to incorporate bandwidths and detector characteristics mandated by CISPR publications and recommended for FCC-compliance testing, both conducted and radiated. The
model ESA-1000 permits direct visual measurement of electric-field strength, in addition to the conventional spectrum-analyzer capability, to provide a "quick look" at its entire $100 \mathrm{kHz}-1000 \mathrm{MHz}$ coverage range. The instrument's scan-rate can be reduced, and accurate measurements taken, using the built-in quasi-peak detector.

CIRCLE 143 ON FREE INFORMATION CARD

There is a complete range of options, including a rechargeable battery pack for field use, and a digital memory module with capability to store data from a slow scan, as required by quasi-peak time constants, and then retrace the scan data at a fast rate for wide-dispersion viewing. The model ESA1000 is being marketed at a basic price/unit under $\$ 9000.00$.- Penril Corp., 5520 Randolph Road, Rockville, MD 20852.

EARTH STATION RECEIVER, model ESR24, covers a frequency range of 3.74.2 GHz , is designed for satellite-TV recep-

CIRCLE 65 ON FREE INFORMATION CARD

BASIC TRAINING

Learn to write concise, effective programs in BASIC with two great books from Sams. BASIC PROGRAMMING PRIMER, by Mitchell Waite and Michael Pardee, is an excellent, userfriendly guide to BASIC-language programming fundamentals. It's ideal for beginning or advanced computerists, and comes with a handy, tear-out reference card listing condensed BASIC commands.

BASIC PROGRAMMER'S

 NOTEBOOK contains a number of programming secrets and shortcuts usually known only to highly experienced programmers, as well as workable ways to trim both the size and the running time of some of your larger programs. Program statements are in Level II BASIC, but most of the concepts can readily be translated to other BASIC dialects.Complete your BASIC training with Sams, America's leader in the field of microcomputer knowledge!

tion, and features digital channel-display, preset and variable audio subcarrier selector, automatic frequency-control for stability, and full metering. For installation
 versatility, the down-converter module (supplied) may be mounted internally, or at the antenna. Accessories for the model ESR24 include remote control, a remote tuning-meter, and splash-proof housing. The styling makes it suitable for commercial or private installations. The model ESR24 is priced at under $\$ 1000.00$--R.L. Drake, Company, 540 Richard St., Miamisburg, OH 45342.

SPEAKERS, Ohm Walsh 2, have inverted transducers that radiate a measurable coherent wave front into the total frontal listening area. That special method of coherent sound-propagation provides

CIRCLE 145 ON FREE INFORMATION CARD
virtually pertect stereo imaging and energy response from any listening position. The speakers are finished in genuine walnut veneer on all four sides; they are also available in oak, teak, and rosewood veneers at increased cost. They measure $311 / 2 \times 111 / 2$ inches, can be driven by as little as 20 watts, and have a maximum power handling of 120 watts. The Ohm Walsh 2 speakers are priced at $\$ 275.00$ each. - OHM Acoustics Corp., 241 Taaffe Place, Brooklyn, NY 11205.

CW COMPUTER-INTERFACE, model MFJ1200, converts audio from your receiver to TTL or RS-232 so your computer can "understand" it. It also lets your computeroutput "key" your transmitter. When combined with a personal computer and an

COMPUTERS

Green Monitor	169.00	SO	
Leedex 100 Mon	139.00	T1-99/4	399.00
Visicalc	160.00	Epson MX-80	call us
Microsott 2/80	320.00	Color Monitor	call us
IDS 445G	call us	T1-810	1395.00
T1-745	1440.00	80 Column Boar	299.00

Texas Instruments

SCM TYPEWRITER SPECIALS

All units shipped in original cartons with accessories according to manufacturer's specification. Send money orders, personal check 2 weeks to clear in Illinois add 6% sales tax. Add $\$ 6.95$ minimum ship ping \& handling charges per unit. We ship UPS. Subject to availability. Written warranty for specific products can be obtained free upon request. Above prices are for mail order and prepaid only. Prices and specifications subject to change without notice. Send mail orders..

Nabik's, Onc.
519 DAVIS EVANSTON, ILL. 60201 TEL 312-869-6144
appropriate program, it can give you a complete and versatile CW keyboard/ reader combination.

CIRCLE 146 ON FREE INFORMATION CARD
For receiving CW, the model MFJ-1200 processes the received CW audio from your rig to provide a clean, computercompatible TTL or RS-232 level. First it limits the noise on incoming CW signals, then filters it to remove interfering signals, sends the desired signal through a detection stage, post-filters the detected signal, shapes the signal, and finally shifts the level of the signal to TTL or RS-232 so that your computer can use it.

For transmitting CW, the model MFJ1200 takes keyboard-generated CW at TTL or RS-232 output levels from your computer and drives high-voltage keying circuits to key your tube or solid-state transmitter (-300 volts, 10 mA maximum, +300 volts, 100 mA maximum).

The model MFJ-1200 has three red LED's to indicate tuning, transmit mode, and "on". A reverse/normal switch will invert the output level to the computer, if desired. It operates on 6 - to 9 -volts DC or 110 -volts AC, with the optional MFJ-1309 AC supply (\$9.95). The model MFJ-1200 is
priced at $\$ 69.95$, plus $\$ 4.00$ for shipping and handling.-MFJ Enterprises, Inc., PO Box 494, Mississippi State, MS 39752.

PARALLEL PRINTER INTERFACES, model A4P and model A8P (shown) are designed for the Atari line of microcomputers. They allow the Atari 400 or Atari 800 to drive a parallel ASCII printer directly. A cable assembly plugs into controller jacks 3 \& 4 on the front of the Atari microcomputer. A short (15-second) program is read into the computer from cassette; from then on, all printer data is directed to the paral-lel-printer interface, instead of to the Atari serial port. For example, LIST"P will list a BASIC program on the printer, LPRINT in a BASIC program will directly output to the printer, and LIST\#P: will list assembler

CIRCLE 147 ON FREE INFORMATION CARD
source listings on the printer
The program will remain in memory until the computer power is turned off-it is unaffected by SYSTEM RESET, BREAK, ESC OPTION. SELECT, or START. The interface

Enjoy the game now...tape pay TV for later!

The Switcher

 does it all for you.Suppose you want to watch the football game, but there's a great movie you've been waiting to see on pay TV. Which do you pass up?
With The Switcher-and your video recorder-you can enjoy the game-and tape the movie for viewing later. In fact, you can watch any program on regular TV channels while you tape pay TV or cable TV. You can even watch pay or cable TV as you tape "off air" from regular channels!

Installs in minutes

...no special tools!
The Switcher comes fully equipped with cables and hardware for easy installation you do yourself. Better yet, once it's installed, there's no plugging and unplugging to do. Just a touch of the controls gets you the viewing you want.

Take advantage of this incredibly low price!

 \& handling.

CALL TOLL-FREE 800-228-5600

(Nebraska residents call 800-642-8777)
Most switching devices run $\$ 89.95$ to $\$ 129.95$. A few, like The Switcher, are regularly just $\$ 69.95$. Now, for a limited time, we're offering The Switcher for only $\$ 39.95$ plus shipping and handling! Order yours today!

If you prefer, fill out the coupon below and mail to:

3001 Malmo Road Arlington Heights Illinois 60005

VIDEO PLAYGROUND, 3001 Malmo, Arlington Hts., IL 60005

םYES! Send me__Switcher(s) at only $\$ 39.95$ each plus $\$ 2.00$ each for shipping \& handling. (Illinois residents add 6\% sales tax.)
\square enclose check or money order -Master Card $\square V i s a ~ a c c o u n t ~ \# ~$
\qquad
Name (please print)

Address
City \qquad State \qquad

The Drake DM2350 Digital Multimeter is a convenient. small handheld liquid crystal display meter ideal for the serviceman or hobbyist. This $31 / 2$ digit meter is auto-ranging, auto-zeroing, has polarity indication, and an over-range warning signal. Battery life is greater than 300 hours with a "low battery" indicator. A continuity test sounds a signal when circuit resistance is less than 20 ohms. Dc accuracy is a basic 0.8%.
Batteries, probes, 20 amp current shunt, spare fuse and soft carrying case all included at $\$ 95.95$
Add $\$ 2.50$ shipping and handling per order
Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax. Charge card buyers may call toll free:

1-800-543-5613

C(1) DRAKE $\begin{aligned} & \text { In Ohio, or for } \\ & \text { intormation call: } \\ & 1.513-866-2421\end{aligned}$

R. L. DRAKE COMPANY

540 Richard Street, Miamisburg, Ohio 45342

CIRCLE 62 ON FREE INFORMATION CARD

You've turned a good idea into a piece of equipmentnow you need a good enclosure. Here's how PacTec can help you with our versatile enclosures:

- Attractiveyet inexpensive. \bullet Durable ABS construction.
- Many sizes, colors, accessories. - Built in
bosses and slots speed component
mounting. \bullet Available off-the-shelf from single unit to production quantities. See them at your PacTec Distributor. And ask him for your free catalog.

PAC MTEC
 subsidiary of La France Corp.

 Enterprise and Executive Avenues Philadelphia, PA 19153 (215) 365-8400DON'T FORGET

USE
YOUR
READER
SERVICE
CARD
works equally well with BASIC, DOS, or the Atari Assembler/Debug. It will work with virtually any program that directs printer data through the IOCB. It will work with machine-language programs that do not reside in or clear memory locations 0700 H to 07 AAH .

The model A4P is for the Atari 400 , while the model A8P is for the Atari 800 microcomputer. Both have the same price: \$69.95.-Macrotonics, Inc., 1125 N . Golden State Blvd., Suite G, Turlock CA 95380.

BUS-BAR SNAP-AROUND, model SPR1030, is designed and engineered for 3inch bus-bar measurements, as well as for use on round cable up to $2^{15} / 16$ inches OD. The scale, which rotates for easier readings, has continuous duty for every range.

There are five current ranges up to $1000-$ amps AC and three voltage scales up to 750 -volts AC (self-contained); the unit comes with a one-piece Ohmprobe for both resistance and continuity testing. Full-scale accuracy on signals from 50-400

CIRCLE 148 ON FREE INFORMATION CARD

Hz is $\pm 3 \%$. Safety features include shockresistant ABS plastic housings; twist and lock threaded voltage leads; fully insulated jaws, and the ability to withstand overloads. The model SPR-1030 comes with carrying case, voltage test leads, Ohmprobe fused battery attachment; battery; fuse, and operating instructions. It is priced at $\$ 124.95$. - A.W. Sperry Instruments, Inc., 245 Marcus Blvd., Hauppauge, NY 11787.

GRAPHIC PRINTER, model VIC 1515, is designed to go with the model VIC 20 personal computer. The model VIC 1515, which can print any of the alphabetic, numeric, and graphic characters common to the model VIC 20 , is a dot-matrix printer with a speed of 30 characters per second. It allows the model VIC 20 user to

CIRCLE 149 ON FREE INFORMATION CARD

Bean FCC LICENSED
 ELECTRONIC TECHNICIAN!

No costly School. No commuting to class. The Original Home-Study course that prepares you for the FCC Radiotelephone license exam in your spare time! Passing the exam is your "ticket" to thousands of exciting opportunities in Communications, Broadcasting, Mobile two-way systems, Microwave stations, Radar installations, Acrospace and more. NO NEED TO QUIT YOUR JOB OR GO TO SCHOOL You learn how to pass the FCC License exam at home at your own pace with this easy-to-understand, proven course. Within a few short weeks you could be on your way to being one of the highest paid workers in the electronics field. It's that easy! U.S. Federal law requires you to have an FCC License if you want to operate and maintain virtually any communications system - you don't need a College degree to qualify, but you DO need an FCC License. With this Home-Study course, you'll be ready to pass the FCC Government licensing exam in a remarkably short time. Send for FREE facts now. No a remarkably short time. Send MAIL COUPON TODAY obligation. No salesmen will call. MAIL COUPON TODAY!

COMmAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. E

P.O. Box 2223, San Francisco, CA 94126 Rush FREE facts on how I can prepare for my FCC License at home in my spare time.
NAME
ADDRESS
CITY STATE ZIP CIRCLE 64 ON FREE INFORMATION CARD

These filters protect any sensitive electronic equipment from power line transient damage and radio frequency interference. Both models offer common mode and differential mode surge suppression for power line "spikes". Rf interference is suppressed using both inductive and capacitive components. Ideal for computers, test equipment or TV.
LF2 a duplex outlet, 120V, 8 amps max $\ldots \$ 39.95$ LF6 three separately filtered duplex outlets,
120 V , total fused capacity 15 amps , power switch and indicator lamp $\$ 59.95$
Add $\$ 2.50$ shipping and handling per order.
Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax. Charge card buyers may call toll free

1-800-543-5613
In Ohio, or for information call: 1-513-866-2421

R. L. DRAKE COMPANY
 540 Richard Street, Miamisburg, Ohio 45342

 institutional and dealer inouiries invitedget hard copy for forms, program listings, mailing labels, charts, graphs, and more. Special enhancements also allow it to print extra-wide and reversed (white-onblack) characters. The VIC 1515 is priced at \$395.00.-Commodore Business Machines, Inc., 681 Moore Road, King of Prussia, PA 19406.

SATELLITE-TV ANTENNA, the Skyview IV, is a lightweight, 11-foot fiberglass para-bolic-antenna designed for lost-cost shipping, expandability, and ease of operation. It is expandable to 13 feet by adding extender panels. Installation requires only a simple, three-foot-square concrete pad and four holes.

CIRCLE 150 ON FREE INFORMATION CARD
The Skyview IV weighs 400 pounds, including mount, and has better protection against wind (125-mile-load survival rating), rough handling, and weather than conventional aluminum construction. It is easy to operate; it can be shifted from satellite to satellite with a simple hand-crank adjustment, and can receive all North American communications satellites.

The Skyview IV is priced at \$1945.00.
Also available is the Skyview IV System, a complete home satellite-TV receiving system based on the Skyview IV parabolic antenna and including a $D-2 X$ receiver, 120° LNA, RF modulator, and all cabling. The price is $\$ 4595.00$.-Downlink, Inc., 30 Park Street, Putnam, CT 06260.

R-E

CHANNEL 1?
continued from page 46

television reception. The television industry, although not pleased about losing yet another TV channel, agreed that 12 clear channels were preferable to 12 shared channels. If they had to lose a channel, they preferred that it be Channel 1, because its absence would have the least impact on commercializing television.

The FCC went along with the television industry's position, and on June 14, 1948, Channel 1 was deleted from the allocation plan. Channel l's frequencies were assigned to the fixed land and mobile services. At the same time, the FCC decided not to renumber the channels-that's what happened to Channel 1!

DMM's

From

- Full autoranging for $A C / D C$ volts, current and $\mathrm{Hi} /$ Lo Pwr. Ω for fast, easy use. Touch button diode test.
- Advanced Micro-Circuit design with reduced parts count for long term reliability.
- Heavy duty ABS plastic case with display window cover for rugged field use.
- Annunciators indicate " $A C$ " $m \mathrm{~V}, \mathrm{~mA}, \Omega$, $k \Omega$, plus numerical value for error free readings.
- Auto decımal, polarity and low battery indicator.
- Electronic or fuse overload protection for all functions, just in case . .
- Continuity beeper on Models ME-531 and ME-532 for "No-Look" circuit checkout.
- 10 Ampere AC/DC current ranges on ME531.
- Operates 300 hrs on two "AA" cells.
- Complete with batteries, spare fuse, test leads, full one year Itd. warranty.

MODEL ME-533	$\$ 75.00$
ME-532	85.00
ME-531	99.50

Available at selected Distributors or write/phone:
NORTH

1126 Cornell Avenue, Cherry Hill, NJ 08002 Tel. (609) 488-1060

SATELLITE TV TONIGIT LIVEI

-DISH ANTENNA - PREAMPLIFIER
-RECEEIVER
MOS COMPLETE REEVING SYSTEM REAOY ROR ITHOOK.UP SATELLITET.V. INC. P.O. BOX 3618 . DEPT. RE-3 SEND $\$ 9.95$ PLUS $\$ 250$ L 32 Q HAND 9.95 PLUS $\$ 2.50$ SHIPPING C.O.D. ORDER LINE (305) 845-3840 NAME ADDRESS

SATELLITE TELEVISION

SATELLITE TV antenna, 10 ft . fiberglass, complete, polar mount, $\$ 1950.00$, electronics at cos also. TRI-STAR COMMUNICATIONS, Box 843 Erie, MI 48133 (419) 726-1095
FREE $\$ 200$ value TVRO P.C. board set, when you oin our development group. Complete systems low as $\$ 700$. Newest low cost designs, antennas group purchasing, more. Info $\$ 1.00$, membership \$50. 509-534-8088 6-9 PM PST. COMPUTER SATELLITE SERVICES, 1604 N. Smith St., Spokane WA 99207
SATELLITE TV. Books, parts, low-noise microSATELLITE TV. Books, parts, low-noise micro-
wave transistors. Specs and catalog $\$ 2.00$. ELITE wLECTRONICS, RR1. St. George, Ontario, CanELECTRONIC
ada NOE 1NO

GEOSTATIONARY satellite TV antenna aiming angles. Azimuth and elevation (true and magnetic) coordinates calculated by digital compunetic) coordinates caiculated by digital compuaddress, your location's latitude and longitude (deg. min. sec,); or distance and direction from (deg. min. sec,); or distance and direction from
nearby town; or explicit geographical location in nearby town; or explicit geographical location in
your city; plus $\$ 6.50$ to: HUTSON INDUSTRIES, your city; plus $\$ 6.50$ to: HUTSON IND
SATELLITE equipment catalog. Over 25 of the best manufacturers and suppliers, LNA's, receivers, antennas and complete systems covered in detail. Four different sections. \$12.00. TMS CO P.O. Box 8369 , Roseville, MN 55113

$\$ 295$ SATELLITE

ANTENNA (1O FT. $\times 10$ FT.) FOR THE DO-IT-YOURSELFER JUST PUBLISHED - MAGNIFICENTLY ILLUSTRATED DIAGRAMS - GRAPHS - EXTENSIVE PHOTOGRISE AMPLIFIERS - RECEIVERS AND MORE,
THIS AMARING BOOK DESCRIBES THE ENTIRE FILLD OF SATELLTE TRANSMISSION AND RECEPTION WITH THE THONOUGHMESS OF AN ENCYCLOPEDIA. ONE CARETUL STEP AT A TIME OUR COMPREMEMSIIE BOOK HAS BEEN WRITTEN SO THAT EVEN A
BEGINMER CAN EASLY UNDRRSTAND THE SMMPUFYING TECM Beginmer can easily understand tie simplifying techmo-
LOGY because we made it so easy to Learn. now you can have a 100 mus Chanmil rece AND EUOY EVERTMING BEING TEECAST IN THE WORLD.

SATELLITE system, only $\$ 1925.00$ complete, receiver kits available, WESTCOM, 715 Washington. Ayden. NC 28513. Dealers wanted.
SATELLITE Receiver kit, Antenna Kit, IF Strips, Mixers, IC'S LNA'S. Hardware. Alignment service. LANEY SCIENTIFIC INSTRUMENTS, Box 20131. Jackson. MS 39209

SATELLITE super-mixer; DBM-4150A. Clean up your TVRO receiver! Near-theoretical perforyour TVRC; flat response, DC-1500IF, SMA connecmance; flat response, DC-1500IF, SMA connec-
tors: $\$ 69.50$ - CK/MO/COD. RIGEL SYSTEMS, 2974R Scott Blvd., Santa Clara, CA 95050 (408) 727-4231.
SATELLITE TELEVISION FEED HORN (BRASS), Standard CPR229 flange, for parabolic dish Standard CPRe2
f/D. -45 . Frequency $3.30-4.90 \mathrm{GHz} . \$ 30.00$ Post-f/D.3-.45, Frequency 3.30-4.90GHz. $\$ 30.00$ Postpaid check. FRIEDSAM TV HARDWARE, 112 West Main. Marshallville, GA 31057 (912) 967-2828.

To run your own classified ad, put one word on each of the lines below and send this form along with your check
for $\$ 1.65$ per word (minimum 15 words) to:
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003
ORDER FORM
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 10$.

(PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.)

Satellite TV

FOR THE HOME Sick of Network TV? Our receiver lets you get over 75 channels of television directly from earthorbiting cable TV satellites!: HBO, Showtime, super stations, sports and movies worldwide.
We don't just
sell information!
We Manufacture Hardware!

From offshore oil rigs. data links to hotels and backyard installations, we wrote the
book. Constantly upbook. Constantly up-
dated, our 94 Page technical information book and catalog gives you all t the facts. Inexpensive dishes, feeds, telemetry software, kits and more. Recommended reading by NASA, The Office of Consumer Affairs and quality companies like Rockwell/Collins. Send
$\$ 7.95$ today! $\$ 7.95$ today! CALL

24-hrs. C.O.D. Hotllne

- SPACECOAST

RESEARCH CORPORATION
P.O. Box 442-E, Altamonte Spgs, FL 3270

INTERESTED in Home Satellite TelevisionDon't buy anything until you've read the HOMESAT HANDBOOK \& BUYERS GUIDE. Our book tells everything about home satellite TV and may save you hundreds, even thousands of dollars in your selection and installation of a system \$7.50; also: Homesat Monthly Newsletter, orie year. $\$ 5$. Order both for only $\$ 12$. H \&GGHOMESAT SERVICES, Box 422, Seaford, NY 11873

SATELLITE TELEVISION EARTH STATION KIT LOW COST COMPLETE SYSTEM

Special Ollor \$2,995.00

Kit includes all electronic and mechanical parts needed to assemble a complete operating Earth Station. You provide the labor and hand tools.
Included in the kit are a 12 -foot fully steerable parabolic dish. low noise amplifier, antenna, rotator. receiver, modulator. low noise amplifier, antenna, rotator. rectiver, modulator.
necessary cables/connectors and complete assembly/ operating instructions. EVERYTHING - down to the last nut. bolt and screw is provided.

Illustrated Brochure with Complete Details - $\$ 2.00$ MICROTENNA ASSOCIATES 2335 South. 2300 West Salt Lake City. Utah 84119

SATELLITE TV

FANTASTIC 80 TV CHANNELS New antenna construction plans plus big 8×11 book loaded with aiming info, kits, LNAs and receivers at wholesale prices. Far better than cable TV! Enjoy crystal clear reception. Send $\$ 9.95$ today. Add $\$ 2.00$ for 1 st class (air mail) or call our
24 hr. COD order line (305) $862-5068$ Now. Global TV Electronics. P.O. Box 219-F, Maitland. FL 3275

SATELLITE TV Antenna - We make the best 10 foot fiberglass dish in the Midwest!!! Receive 75 TV channels direct from the satellite. We have openings for dealers. For complete spec's and openings fV dealers. For complete spec's and satellite TV information send $\$ 2.25$ for postage and handling to

Satellite Earth Station

complete systems from $\$ 2,200.00$
Send $\$ 4.00$ for our
complete 50 page color catalog TEI ELECTRONICS
P.O. Box 181108, Dept. 286A. Memphis, TN. 38118 901-795-4504

VISIT OUT INEW WESIBUKU SHOWROOM Outlet - Over $\mathbf{\$ 1 0 , 0 0 0 , 0 0 0}$ of devices in stock!
 133 Flanders Road, Westboro, Massachusetts (617) 366-0500

[^0]

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business - without investment. Write: BUSINESS, 92-R. Brighton 11th, Brooklyn. NY 11235

HIGHLY
 HIGHLY

ELECTRONIC FACTORY
Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts' Postcard will do, Barta-RE-W, Box 248, Walnut Creek, CA 94597.

WINNERS! Build on your technical skills to create a successful computer business. Free report tells how. SEABIRD PRESS, Box 461T, Lexingtells how. SEA
ton. MA 02173
LAWYER Business litigation, patents, appeals, JEROME FIELD, B 292. Brooklyn 11230. Phone (212) 434-0781. Eves. 434-1825

EDUCATION \& INSTRUCTION

UNIVERSITY degrees by mail! Bachelors. Masters. Ph'D's... Free revealing details. COUNSELING, Box 317-RE3, Tustin. CA 92680

ELECTROANIC TEGHNIGIANS

Highly Effective Home Study BSEE Degree Program for Experienced Electronic Technicians Our New Advanced Placement Program grants Credit for previous Schooling \& Prolessional ExFREE DESCRIPTIVE LITERATUREI
Cook's Institute of Electronics Engineering DESK 15, P.O. BOX 20345, JACKSON, MS 39209

SUBSCRIPTION television education manual Complete theory in circuits \$9.95. D \& S ENTERPRISES, PO Box 110901RE, Nashville. TN 37211

FREE KIT Catalog
 FUNCTION GENERATOR KIT $\$ 59.95$
 Phone 415-447-3433 TEST \& EXPER1Write or Phone for FREE C\& TALOG. MENNUIP DAGE SCIENIIFIC INSTRUMENTS

PLANS \& KITS

OSCILLOSCOPE performance from your unmodified television for less than $\$ 25$. Super simple. accurate. practical. Order Tele-Scope circuit board and plans $\$ 8.50$. Get two for dual trace \$15. MICROGRID, Box 613, Ithaca. NY 14850

KIRLIAN photography as a hobby. Complete plans for do-it-yourself machine. Includes easy instructions and ways to improve quality of prints. $\$ 5.00$ C.E.L.C. ELECTRONICS, P.O. Box 805. Missouri City. TX 77459

NEGATIVE ion generators. Send for free information to THE SEAWARD COMPANY, P.O. Box 2039. Burbank. CA 91507

MICROWAVE downconverter kit \$169:00. Includes everything. Informative catalog on subscription TV products $\$ 2.00$. J \& W ELECTRONICS, P.O. Box 61. Cumberland. RI 02864
SATELLITE TVRO parabolic aluminum dish. local materials $\$ 500$. Plans, formulas $\$ 10.00$. WARD MICROWAVE, Box 100. Conway. NC WARD
27820
DECODE Morse. RTTY, and ASCII signals from airwaves with new Code*Star. LED readout or connect with your computer/printer. Keyboard. other items also available. Kits or assembled. MICROCRAFT, Box 513R. Thiensville. WI 53092 (414) 241-8144

OUEREI KEYBOARD KITS

WERSI Organs are demonstrably superior in overall performance, to ALL commercially buift instruments, regardless of
price. Best of all, you save $1 / 2$ to $2 / 3$ the price. Best of all, you save $1 / 2$ to $2 / 3$ the cost with our easy
factory assembled).
And now - after 3 years in research the totally unprecedented "Pianostar" electronic piano (and much more!) has been unveiled to international raves! You have to hear it to believe it!
Explore the exciting world of WERSI,

Please specify Piano or Organ

MICROWAVE television "downconverters" under $\$ 50.00$. High quality, easily assembled. Catalogue: $\$ 2.00$ (refundable). NDS, Box 12652-R. Dallas. TX 75225
PCB. 15 c sq-in. Free drilling, Satisfaction guaranteed. INTERNATIONAL ENTERPRISE, 6452 Hazel Circle. Simi Valley. CA 93063

MUSICAL car horn 64 tunes. No chips to buy. Kit with case less horn. \$31.95. Factory assembled with horn. $\$ 41.95$. Add $\$ 2.50$ shipping. ELECwith horn, $\$ 41.95$. Add $\$ 2.50$ shipping. ELEC-
TRONIC SOUND, P.O. Box 401951 . Garland. TX 75040

MICROWAVE HORN ANTENNA KIT
 1.7-26 Ghz Frequency Range 17-19 1b Gain Kit w/Assembly Instructions \$9995* Down Converter Board \$1996. (w/Antenaa Kit $\$ 14.55$) Parts Kit for Board $\$ 2995^{\circ}$ (w/Antema or Board $\$ 24.96$

 2335 South 2300 West, Salt Lake City, Utah 84119

Chack or MO only - Allom $2-4$ Weeks Delivery (Cost includes stippingl Check or MO only - Allow 24 Weets D
TUtah Residents Please Rod 5 Sales Tax

PRINTED circuit boards from sketch or artwork Kit projects. Free details. DANOCINTHS INC. Box261. Westland. MI 48185
CABLE TV converters and equipment. Plans and parts. Build or buy. For information send $\$ 2.00$. C \& D ELECTRONICS, PO Box 21, Jenison. MI 49428
CATALOG of electronic designs. Radio. audio. telephone, self defense \& surveillance. Also 100 MPG carburetors. Free details. PETER-SCHMITT ENTERPRISES, \#131. Box 07071. Milwaukee. WI 53207-0071.
ELECTRONIC catalog. Over 4.500 items. Parts \& components. Everything needed by the hobbyist or technician. \$2.00 postage \& handling (United States only). refundable with first $\$ 15.00$ order T \& M ELECTRONICS, 474 East Main Street Patchogue. NY 11772 (516) 289-2520

MINI FM MIC

Compact size, only $2^{\prime \prime} \times 1^{\prime \prime} \times{ }^{3} /^{\prime \prime}$. Transmit to FM radio 88-108 MHz. Exceptional to 900 ft . Complete kit incl case, batter instructions. Only $\$ 13.95$. $\$ 18.95$ Add $\$ 1.55 .588 \mathrm{H}$. Send 18 C 18.95. Add S1.55 S8H ea Send 186 stamp for brochure.
S.E. Corp., Box 16969-R

Temple Terrace, FI 33687

ELECTRO-music kits. Touch-sensitive electronic pianos: string synthesizers: programmable drums and orchestral generators: electronic organ rotors. G\&R ADVANCED ELECTRONIC DESIGNS, INC., P.O. Box 38. Streetsville. Ontario. L5M 2B7.
SUBSCRIPTION TV PLANS: 2300 MHz Microwave Downconverter plus BONUS UHF system, both for $\$ 15.00$! Best systems available, no internal connections to TV. Parts, PCB's, Kits available, MC/VISA accepted. Other plans: Negative Ion Generator, Telephone Memory Dialer, UHF/VHF Antenna Amplifier, Wireless FM Intercom, $\$ 4.00$ each. Send SASE for more information. COLLINS ELECTRONICS, Box 5624, San Bernardino, CA 92412

CLMPUTER MARKET CENTER

COMPUTER MARKET CENTER ADVERTISING RATES $1^{\prime \prime}$ by 1 column ($15 / 8^{\prime \prime}$) $\$ 55.00 .11 / 2^{\prime \prime}$ by 1 column ($15 / 8^{\prime \prime}$) $\$ 82.50 .2^{\prime \prime}$ by 1 column ($15 / 8^{\prime \prime}$) $\$ 110.00$. All ads must be prepaid. Send order and remittances to Computer Market Center, Radio-Electronics Magazine, 200 Park Avenue South, New York, New York, 10003. Address telephone inquiries to 212-777-6400. Frequency rates are available.

TEXAS

USED COMPUTER TERMINALS PRINTERS, MODEMS, SURPLUS ELECTRONIC PARTS CATALOG $\$ 1.00$
RONDURE COMPANY
THE COMPUTER ROOM 2522 BUTLER STREET DALLAS, TEXAS 75235 (214) 630-4621

RETAILERS

An ad for your computer store in this space in Radio-Electronics COMPUTER MARKET CENTER puts you in touch with our computer audience. They use microcomputer equipment for both business and hobby interests. For further details call 212-777-6400.

BUY THIS SPACE

$\$ 55.00$ puts your ad in this space in front of 197,223 active Radio-Electronics readers. To place your ad write Computer Market Center, Radio-Electronics. 200 Park Avenue South, New York, New York 10003 or call 212-777-6400.

SUPPORT (MARCH OF DIMES

Ed McMahon here to wish USO a Happy Birthday. Thanks, USO for 40 years of championship service.

Ed McMahon
A0th
Take stock in America.
Buy U.S. Savings Bonds

LEARN ABOUT S.100 co

S-100 computers are the next logical step up after 'personal' computers, whether for business, professional, or scientific applications. These three books are a must for technicians, students, systems integrators, or anyone who wants to know more about S-100 computers.
'Interfacing to S-100/ IEEE 696 Microcomputers', by Sol Libes and Mark Garetz. Spells out operating requirements and characteristics with clarity and precision. 17 chapters cover busing techniques, parallel and serial interfacing, handshaking, bus signals and timing relationships, I/O ports, interrupts, A/D and D/A conversion, much more. Osborne/McGraw-hill; softcover; 321 pages. $\$ 15.00$
'Product User Manuals 1975-1980, Volume 1', by CompuPro. With schematics, test routines, operating information for 29 CompuPro products (RAM and ROM memories, motherboards, CPU 8085/8088 dual processor board, CPU-Z, interfacers, etc.). Also defines and explains the S-100 bus. Excellent reference on memories and CPU boards. Softcover; $8.5 \mathrm{in} \times 1$ in. format; 256 pages; $\$ 20$.
'Product User Manuals, Volume 2', by CompuPro. Similar to above, but covers System Support 1, Disk 1, RAM 17 CMOS memory,
ompuPro
OAKLAND AIRPORT, CA 94614-O355
division OODOU
ELECTRONICS
(415)562-O636 Interfacer 3, STD RAM, STD CPU, STD motherboard, and and more. Softcover; 8.5in. x 1 lin. format; 307 pages; $\$ 25$.

TERMS: Cal res add tax. Allow 10% shipping; excess refunded. VISA ${ }^{*}$ and Mastercard* orders ($\$ 25$ minimum) call (415) $562-0636,24 \mathrm{hrs}$. Include street adress for UPS. Prices subject to change without notice

CIRCLE 21 ON FREE INFORMATION CARD

m wavin CONVERTS MICROWAVE TO VHF TELEVISION
COMPLETE INSTRUCTIONS, HARDWARE, POWER SUPPLY
\& YAGI ANTENNA.
CLEAR-VUE ELECTRONICS
P.O. Box 600, Rochester, MI 48063/Ay
$313-375-9730$

FOR SALE

MICROWAVE receiver system. Write: "Dealers Wanted," Dept. RE, POB 4181, Scottsdale, AZ 85258 (602)941-9345
VARIETY electronic surplus parts and equipment in our monthly picture flyer. Send $\$ 2.00$ for 6 issues. STAR-TRONICS, POB 683, McMinnville, OR 97128
SCANNER/monitor accessories-kits and factory assembled. Free catalog. CAPRI ELECTRONICS, Route 1R, Canon, GA 30520
POLICE/fire scanners, scanner crystals, antennas, radar detectors. HPR, Box 19224, Denver, CO 80219
TEST equipment, new and used. Catalog $\$ 1.00$. PTI, Box 8756, White Bear Lake, MN 55110. (612) 429-2975
FREE speaker catalog! Woofers, mids, tweeters, hardware, crossovers, grille cloth, plans, kits, information, much more. Discount prices. UNIVERSAL SOUND, Dept. RE, 2253 Ringling BIvd., Sarasota, FL 33577. (813) 953-5363
SAVE up to 50% on name brand test equipment. Free catalog and price list. SALEN ELECTRONICS, Box 82-F, Skokie, IL 60077
TELEPHONE or office bugged? Latest detection equipment finds out fast. Literature $\$ 1.00$. CLIFTON, Box 220-M, Miami, FL 33168

THE Intelligence Library. Restricted technical secrets-books on electronic surveillance, lockpicking, demolitions, investigation, etc. Free brochures: MENTOR, Dept. Z, 135-53 No. Blvd., Flushing, NY 11354
PICTURE tube rebuilding equipment-we sell and buy new and used equipment. Free training. ATOLL TELEVISION, 6425 Irving Park, Chicago, IL 60634. Phone 312-545-6667
MICROWAVE 2 GHz . Best in the West! Downconverter kits $\$ 39.00$. Complete with antenna and control box $\$ 99.00$. Factory assembled 90 -day warranty $\$ 159.00$. GALAXY ELECTRONICS, 6007 N. 61st Ave., Glendale AZ 85301 (602) 247-1151
CHEMICALS, apparatus, project books, wide selection. Catalog $\$ 1.00$ send to: PIONEER Ltd. Ind, 14a Hughey St., Nashua, NH 03060
COLLECTOR items: full set Sam's Photofact. Volume 1-20, some TV repair manuals, assorted Rider manuals, all excellent condition. DOUG VAN DYCK, 617 N . Holly St., Medford, OR 97501 (503) 779-5612.

ELECTRONIC equipment, Panasonic gear, metal detectors, satellite TV systems. SCHAFFER ENTERPRISES, Box 1362, Brookings, OR 97415
2150 megahertz downconverters $\$ 99.95$ up, assembled. Details for SASE. GW ELECTRONICS, sembled. Details for SASE. GW
POB 688, Greenwood, IN 46142
REVERBERATION for organs and keyboards Simply connected to any electronic organ, even those with multiple outlet channels. Room size and reverberation time adjustable. Nothing comparable in this price range is offered on the market. Send for free brochure. DEVTRONIX ORGANS, INC., Dept. 60.6101 Warehouse Way. Sacramento. CA 95826

TOUCH-TONE Decoder chip. Only one chip needed to decode DTMF signals. Includes crystal and spec sheet. \$64.50. Send for fre catalog on others. NELRAD COMMUNICATIONS, Box 150. Webster. MN 55088.
TUBES. Retired repairman's stock. SASE for details. KA5DUE, 506 E. La Paloma Lane, Roswell. NM 88201
TI 58/59 users - have fun with your calculator. Two games available. Treasure Island - protect your gold from pirates. Sticks - whoever takes the last stick loses. $\$ 3.00$ each. PREMIER SIFTWARD, PO Box 12011. Austin. TX 78711

BIPOLAR $\pm 15 \mathrm{~V} @ 50 \mathrm{~mA}$ powersupply. 10 mV regulation. 0.1 mV ripple. Kit only $\$ 12.95$ plus $\$ 2.00$ shipping. SOUND CONCEPTS, Brookline. MA 02146
POWER-AMP sub-assemblies, 100 watts rms. 05% distortion, completely assembled and tested. for more information write to, CLAXTON AU DIO, 3174 Periwinkle. Memphis TN 38127
SYNTHESIZER module P11, 100 continuous direct binary coded channels at 10 KHz steps. 38 MHz out: with schematic. specs, application notes. ppos to PRESTON, 7 Doris Place. East Islip. NY 11730

COMPUTER SOFTWARE

HP-41C software. Electronics, engineering, business applications. Free information. SOFTWARE SPECIALISTS, INC., Dept. RE/1, Box 329, Springboro, OH 45066

CB RADIO

GET more CB channels and range! Frequency Expanders, boosters, speech processors, FM converters, ignition noise blankers, how-to oooks, plans, modifications. Catalog \$2. CB CITY, Box 31500 RE, Phoenix, AZ 85046

Abstract

\section*{WANTED}

WANTED, large quantities of surplus electronic parts/computer boards/motors, etc. Anything for the home constructor considererd. Send full details, samples, prices to: TRADE SURPLUS, 75/77 Hayfield Road, Salford, Manchester, M6 8QA, England. Telephone 061743 1184, Telex 665383 TRADA G.

COMPUTERS

SAVE 90\%. Build your own computer, CRT, and interfaces. Free details. DIGATEK CORPORATION, Suite E, 2723 West Butler Drive, Phoenix, AZ 85021

CASSETTES/REEL-TO-REEL TAPES

OPEN reel tape-mostly Ampex, used once, unspliced, unboxed. 1800' 50 reels; $\$ 65.00$. Sample: $\mathbf{\$ 2 . 0 0} .3600^{\prime} 10$ reels; $\mathbf{\$ 2 5 . 0 0}$. Sample: $\mathbf{\$ 2 . 5 0}$ New, premium C-60 cassettes; sample: $\$ 1.00$. AUDIO TAPES, Box 9584-G, Alexandria, VA 22304

ATTENTION WRITERS

DO you want to write your own book? We're looking for electronics writers to do just that. Obtain our electronics needs list, or send your own ideas, by writing to Liz Akers, Acquisitions Editor. TAB BOOKS, Inc.. Blue Ridge Summit PA 17214 (717-794-2191).

LOW TIM DC STEREO
 PRE-AMP KIT TA-10 20

incorporates brand-new D.C. design that gives a frequenci response from $0 \mathrm{~Hz}-100 \mathrm{KHz} \pm 0.5 \mathrm{dBl}$ Added features like tone defeat and loudness control let you tailor your own frequency supplies to eliminate power fluctuation Specifications: THD less than 005\% - TIM less than 005% - Frequency response: DC to $100 \mathrm{KHz} \pm$ $0.5 \mathrm{~dB} \bullet$ RIAA deviation: $\pm 0.2 \mathrm{~dB} \bullet \mathrm{~S} / \mathrm{N}$ ratio: better than 70 dB - Sensitivity Phono $2 \mathrm{MV} 47 \mathrm{~K} / \mathrm{Aux} .100 \mathrm{MV}$ $100 \mathrm{~K} \bullet$ Output level: $1: 3 \mathrm{~V} \bullet$ Max output. $15 \mathrm{~V} \bullet$ Tone control: bass $\pm 10 \mathrm{~dB} @ 50 \mathrm{~Hz} /$ /reble $\pm 10 \mathrm{~dB} @ 15 \mathrm{~Hz}$ • Power supply ± 24 D.C @ 0.5A
48 V CT Transformer C powe
ONLY $\$ 44.50$
Xformer
$\$ 4.50$ ea

100W CLASS A POWER AMP KIT

Dynamic Bias Class "A" circuit design makes this unit unique in its class. Crystal dear, 100 watts power output will satisfy the most picky fans. A perfect combination with he TA-1020 low TIM. stereo pre-amp
Specifications:

- Output power: 100 W RMS into 8 -ohm

125 W RMS into 4 -ohm

- Frequency response: $10 \mathrm{~Hz}-100 \mathrm{KHz}$
- T.H.D. less than 0.008%
- S/N ratio: better than 80dB
- Input sensitivity: IV max
- Power supply: $\pm 40 \mathrm{~V} @ 5 \mathrm{amp}$
- One channel, needs two for stereo \$51.95 Power transformer
dxatil
50 WATTS AUTO STEREO BOOSTER BY VERTRONIX
ications: - 50 watts RMS total (25 W -
- Frequency Response
$0.5 \mathrm{~dB} .20 \mathrm{~Hz} \sim 20 \mathrm{KHz}$
- T.H.D 0.2% at full rated output
- Input Impedance: 20 K ohms
- Crosstalk: Betterthan 90dB
- Sensitivity: 1.5 V for full rated output
Model V-Amp 500
REG. PRICE $\$ 119.00$ EACH OURSPECIALPRICE
- S/N Ratio: Greater than 95 dB
$\$ 55.00 \mathrm{EACH}$
- Speaker Load: $2 \sim 8$ ohms - Voltage Supply 9~18VD.C.
"FISHER" 30 WATT STEREO AMP
MAIN AMP ($15 \mathrm{~W} \times 2$) Kit includes 2 pcs. Fisher PA 301 Hybrid IC all electronic parts with PC Board. Power supply $\pm 16 \mathrm{~V}$ DC (not included). Power band with (KF 1\% \pm 3dB). Voltoge gain $33 \mathrm{~dB} .20 \mathrm{~Hz}-20 \mathrm{KHz}$.
Super Buy Only $\$ 18.50$

5W AUDIO AMP KIT
2 LM 380 with Volume Control Power Supply 618 V DC \$6.00 EACH

2 WATT AUDIO AMP
Pre assembled units. All you need is to hook up the speaker and the volume control. Supply voltage from 9N $15 V$ D.C. measures only $2^{\prime \prime} \times 31 / 2^{\prime \prime}$. making it good for portableor discrete applications Comes with hook up data.

BUY 2 FOR \$4.99

1 WATT AUDIO AMP All parts are pre-assembled on a mini PC Board. Supply Voltage $6 \sim 9 V$ D.C. SPECIAL PRICE $\$ 1.95$ ea.

NEW MARK III 9 Steps 4 Colors LED VU
Stereo level indicator kit with arc-shape display panellin This Mark III LED level indicator is a new design PC board with an arc-shape 4 colors LED display (change color from red. yellow. green and the peak output indicated by rose). The power range is very large from -30 dB to +5 dB . The Mark III Indicator is applicable to 1 watt-200 watts amplifier operating voltage is $3 \mathrm{~V}-9 \mathrm{~V}$ DC at max 400 MA . The circuit uses 10 LEDs per channel. It is very easy to connect to the amplifier. Just hook up with the speaker output!

IN KIT FORM $\$ 18.50$

MARK IV 15 STEPS LED

POWER LEVEL INDICATOR KIT

This new stereo level indicator kit consists of 364 -color LED (15 per channel) to indicate the sound level output of your amplifier from $-36 \mathrm{~dB}+3 \mathrm{~dB}$. Comes with a welldesigned silk screen printed plastic panel and has a selector switch to allow floating or gradual output indicating. Power supply is 6 12V D.C. with THG on board input sensitivity controls. This unit can work with any amplifier from IW to 200W:
Kit includes 70 pcs. driver transistors, 38 pcs. matched 4 color LED. all other electronic components. PC board and front panel.

MARKIV KIT
$\$ 31.50$

MARK V 15 STEPS LED

 POWER OUTPUTINDICATORKIT All functions same as Mark IV but this is with heavy duty aluminum front plate and case. Can be easily slot into the front panel of your auto, truck or boat. Operates on 12 V DC.
\$41.50 EACH KIT
SOLID STATE STEREO GRAPHIC EQUALIZER PRE AMP KIT TA-2500

Specifications

- Total Harmonic Distortion: Less than 0.05%
- Intermodulation Distortion: $(70 \mathrm{~Hz}: 7 \mathrm{KHz}=4: 1 \mathrm{SMPTE}$

Method) Less than 0.03%

- Frequency Response: Overall $10 \mathrm{~Hz} \sim 100 \mathrm{KHz}$ $+0.5 \mathrm{~dB} .-1 \mathrm{~dB}$
- RIAA Curve Deviation: (Phono) $+0.2 \mathrm{~dB},-0.2 \mathrm{~dB}$ ($30 \mathrm{~Hz} \sim 15 \mathrm{KHz}$)
- Channel separation (at rated output 1 KHz)
- Phono, Tuner, Aux and Tape Monitor better than 70dB - Phono. Tuner.Aux and Tape Monitor better than 70ab. - Input sensitivity and impedance (1 KHz for rated outpur)
Phono: 2 MV 47 K ohms Aux: 130 MV 50 K ohms $\begin{array}{ll}\text { Phono: } 2 \mathrm{MV} 47 \mathrm{~K} \text { ohms } & \text { Aux: } 130 \mathrm{MV} 50 \mathrm{~K} \text { ohms } \\ \text { Tuner: } 130 \mathrm{MV} 50 \mathrm{~K} \text { ohms } & \text { Tape: } 130 \mathrm{MV} 50 \mathrm{~K} \text { ohms }\end{array}$ Tuner: 130 MV 50 K ohms Tape: 130 MV 50 K oh
Graphic Equalizer control: 10 Band Slide Control Frequency Bands: $31.5 \mathrm{~Hz} ; \mathrm{G} 3 \mathrm{~Hz}: 125 \mathrm{~Hz} ; 250 \mathrm{~Hz}: 500 \mathrm{~Hz}$; $1 \mathrm{KHz} ; 2 \mathrm{KHz} ; 4 \mathrm{KHz} ; 8 \mathrm{KHz} ; 16 \mathrm{KHz}$ also with on pane selector for Phono. Tuner. Aux 1 and Aux 2
Power Supply: 117 VAC
Kit comes with all electronic components. transformer instructions and a $19^{\prime \prime}$ rack mount type metal cabinet.

ELECTRONIC DUAL SPEAKER PROTECTOR

Cutt off when circuit is shorted or over load to protect your amplifier as well as your speak ers. A must for OCL circuits

KIT FORM $\$ 8.75$ EA. For Detaile
Catalogue

PROFESSIONAL REGULATED VARIABLE D.C. POWER SUPPLY KIT

All solid state circuitry with high efficiency power transistor 2SD388 and I.C. voltage regulator MC1733. Output voltage can be adjusted from 0.30 V at 1 amp current limited or 0.15 V at 2 amp current limited. Internal resistance is less than 0.005 ohm ripple and noise less than 1 MV, dual on panel meter for voltage and amp reading, also with on board LED and audible over load indicator Kit comes with predrilled P.C. board, instructions. all necessary electronic components, transformer and a professional look metal cabinet. The best project for school and the most useful instrument for repairman Build one today
MODEL TR 88A $0 \sim 15$ V D.C. 2 amp
MODEL TR 88B $0 \sim 30 \mathrm{~V}$ D.C. 1 amp

\$59.50 PER KIT

REGULATED DUAL VOLTAGE

 SUPPLY KIT$\pm 4 \sim 30 \mathrm{~V}$ DC 800 MA adjustable. fully regulated by Fairchild 78MG and 79MG voitage regulator IC. Kit includes all electronic parts. filter capacitors. IC. heat sinks and P.C. board.
\$12.50 PER KIT
POWER SUPPLY KIT
0.30 V DC. REGULATED

Uses UA723 and ZN3055 Power output can be adjusted from 0-30V. 2 output can be adjusted from $0-30 \mathrm{~V}$. 2
AMP. Complete with PC board and all electronic parts Tranformer for Power
 Supply. 2 AMP $24 \mathrm{~V} \times 2 \$ 9.50$

0-30 Power Supply \$10.50 each

TA-323 6 WATTS TOTAL
30W + 30W STEREO AMP KIT
\star SPECIAL \star

EXCELLENT

 PRICE!MODEL 001-0034

Transformer (Optional) al)
This is a solid state all transistor circuitry with on board stereo pre-amp for most microphone or phone input. Power output employs 2 pairs matching Darlington Transistors. Driven by the popular 2N3053 Driver Transistors. Four built on board controls for and bass. Power supplies requires 48 VET 25 amp trans and bass. Power supplies requires 48 VET 2.5 amp transformer. T.H.D. of less than 0.1% between 100 Hz and 10 KHz at full power. (30 Watts +30 Watts loaded by $8 \sim$)
\$29.50 PER KIT $\$ 10.50 \mathrm{EACH}$

POCKET STEREO CASSETTE PLAYER WITH STEREO HEAD PHONE

This unit is a high fidelity stereo player
 which will give you years of listening plea sure and follow you wherever you go Made by the same company in Japan who use the "Big Name."
Complete set comes with 1 Stereo headphone, 3 AA size al kaline batteries. kaine batteries, case for player and 1 carrying case for storage of 4 cassette tapes and 1 demo tape.

[^1]OUR DIRECT IMPORT PRICE
\$67.50

FOR COMMERCIAL FREE

TV BOX BUILDERS

MC 1358

$\$ 2.50$ LM 7815
MC 1350
$\$ 2.00$ NE 565
MC 1330
2.00 NE 565

LM 1458
3.00 Connectors Set $\$ 1.00$ IC Socket Set
Sanyo UHF Tuner $\$ 35.00$ Matching Tran
Capacitors Set $\$ 12.50$ (Set of 4)
Resistors Set
$\$ 2.00$ Speaker Cab
Trim Pots:
Transformer
Trim Caps Set $\$ 13.50 \quad 18 V 800 \mathrm{MA}$
Pots and Knobs $\quad \$ 2.00$
We sell you all the above components in a package for $\$ 125.00$ and you will receive a free predrilled P.C. board and instructions at no charge

SANYO UHF VARACTOR TUNER

For UHF CH 1483
Tuning voltage $+1 \mathrm{~V} \sim+28 \mathrm{~V}$ D.C. Input impedance 75 OHM. I.F. band width $7 \sim 16 \mathrm{MHz}$. Noise figure 11.5 dB MAX. Size $258^{\prime \prime} \times 114^{\prime \prime} \times 74^{\prime \prime}$. Supply voltage 15 V D.C Sound I.F. $=58.0 \mathrm{MHz}$ Video L.F. $=62.5 \mathrm{MHz}$

All units are brand new from Sanyo.
MODEL 115-B-405A $\$ 35.00 \mathrm{EACH}$

Tuner is the most important part for the circuit. Don't let those $\$ 19.00$ tuners fool you

TV GAME BOARD

PLAYS 4 GAMES: TENNIS: HOCKEY: HANDBPLL AND JAI-ALAL
All boards complete with all parts ready to play. Requires 6 C size batteries and a small speaker for sound effects. The boards were surplus from a famous game manufac turer. They will play on all US standard black and white or color TV sets. (Regular price for these games were $\$ 39.50$ each)

OUR PRICE ONLY \$6.50 EACH

PART ≈ 57456

ELECTRONIC PIN BALL MACHINE

That sounds and plays like the real thing. All units are brand new but without the case. Func tions of the game include double flipper control, kicker control, $1-4$ players. 3 speed ball control, tilt switch, automatic score, extra bonus cave and many more. All solid state with LED panel, no moving parts. Requires 9 V battery to operate, speaker not included.

A perfect gift for yourself or friends
SPECIAL \$8.99 EACH SPEAKER \$1.25 EACH

ELECTRONIC MUSICAL TELEPHONE

 REST KITThis telephone rest can be used as a door charm, an audible indicator and for many other sound projects. The special custom made LC. is pre programmed with 4 special custom made LC is pre programmed with 4
musical tunes. Kit comes with a nice looking plastic case, musical tunes. Kit comes with a nice looking plastic case,
pre-drilled P.C. board, volume control, special sound IC. speakers and all electronic components and instructions. Ideal for home or school projects.

BUY NOW!

SPECIAL
PRICE! ONLY
\$15.50 PER KIT

DIGITAL TIMER/CLOCK

- 12 Hour green $0.5^{\prime \prime}$ display for time
- operated on $12 \sim 16 \mathrm{~V}$ contained in a compact plastic case (as seen in photo). Designed for VTR with push button switch for easy setting. Limited for easy setting L
NOW ONLY \$12.94

SANYO ANTENNA SIGNAL BOOSTER
This Booster is specially designed for UHF Channels (14-83). After installed this unit (between the antenna input cable and the UHF tuner) will have a minimum of 10 dB gain, that is approximately 2 times better than what you are
seeing now. Ideal for those who live in apartments that canseeing now. Ideal for those who live in apartmenis that can$11 / 2^{2} \times 1^{1}$. Supply voltage is 15 VDC.
\star NEW ITEM \star
MODEL 001-0076
\$12.50 EACH
13 FUNCTIONS LCD TIME MODULE

MODEL 001-0062
\$7.94 EACH

- Displays month, date and day of the week
- Displays hour, minute and second
- AM, PM Indicator
- Alarm 1 and Alarm 2 (Independent)
- 10 Hours Stop Watch down time
- Hour Charm Indicator
- Back light by touch of the switch
These modules are brand new and made by LITRONIX Designed for a man's watch. Can be used for many applicafions. Comes with 2 silver batteries and the ceramic round transducer
MATCHED PAIR POWER TRANSISTORS BY MOTOROLA
MJ2955 PNP150 Watts $\mathrm{BV}=60 \mathrm{~V} \quad \$ 3.50$ 2N3055 NPN L.C. $=15 \mathrm{~A}$ per pair

MJE2955 PNP90 Watts $\mathrm{BV}=60 \mathrm{~V} \mathbf{\$ 3 . 0 0}$ MJE3055 NPN
$\mathrm{C}=10 \mathrm{~A}$ per pair
MJ15003 NPN250 Watts BV $=140 \mathrm{~V} \$ 12.00$ MJ15004 PNP L.C. $=20 \mathrm{~A}$ per pair

All above parts guaranteed to be prime and come with data sheets.

QUIPMENT COOLING These fans are pulled out from used computers. But carefully cleaned by ultrasonic cleaner All in "like-new" condition. Size $411 / 16^{\prime \prime} \times 1-1 / 2^{\prime \prime} \times$ $411 / 16^{\prime \prime}$
MODEL MF505
$\$ 9.50 \mathrm{EACH}$
FLUORESCENT LIGHT DRIVER KIT
12 V DC POWERED
ights up $8 \sim 15$ Watt Fluorescent Light Tubes. Ideal for camper, outdoor, auto or boat. Kit includes high voltage coil. power transistor. heat sink. all other electronic parts and PC Board. light
$\$ 6.50$ Per Kit tube not included!

PRESS-A-LIGHT SELF

GENERATED FLASHLIGHT
Never worry about battery, EXCLUSIVE! $\$ 3.95$ ea. because it has none! Easy to carry in pocket and handy to use. Ideal for emergency light. It generates its own electricity If generates its own electricity by squeezing grip lever. Put one in your car, boat, camper
or home. You may need it some time!

No FCC license
CRYSTAL oUR PRICE

CONTROLLED WIRELESS $\$ 49.50$ ADDITIONA MICROPHONE (TRANSMITTER) AVAILABLE AT $\$ 28.00 \mathrm{EACH}$
 $\sim 18 \mathrm{KHz}$ response for flat 30 rolled 49 MHz AM Band for drift free performance. 100 MW output (range approx. $1 / 4$ mile) for reliable long range transmission. Powered by a 9 V radio battery (included).
Receiver: Extra controlled locks on 49 MHz transmitter signal With on pane
MURA WMS-49 VU meter monitors the signal strength from the microphone. Stan dard phone jackoutlet connection to a P.A or other phone input. 9 V battery included. This professional set is ideal for on stage. in field. church. in house or outdoor use

SUPER FM WIRELESS MIC KITMARK III
This new designed circuit uses high FEQ. FET transistors with 2 stages pre amp. Transmits FM Range (88120 MHz) up to 2 blocks away and with the ultra sensitive condensor microphone that comes with the kit, allows you to pick up any sound within 15 ft away! Kit includes all electronic parts. OSC coils. and P.C. Board, Power supply 9V D.C.

FMC-105 \$11.50 PER KIT

WEM-36 FM WIRELESS MICROPHONE

TEET MODEL WEM-36 is a factory assembled FM wireless microphone powered by two AA size batteries Transmits in the range of 88.108 MHz with 3 transistor circuits to meet with F.C.C. part 15 regulations. Element is built in a plastic tube type case with an omni-directional electret condenser microphone unit. By using a standard FM radio. signal can be heard anywhere on a one-acre lot Sound quality was judged "very good.

MODEL WEM-36
\$16.50 EACH
WHISTLE ACTIVATED SWITCH BOARD
All boards are pre-assembled and tested. Your whistle to its FET condenser microphone from a distance, as far as 30 feet away (sensitivity can be easily adjusted) will turn the switch on, then match your whistle to it again. then it turns off. Ideal for remote control toys. electrical appliance such as lights. coffee pots. TV. Hi-Fi. radio or other projects. Unit works on 9V D.C

Kit includes the Ultra Sonic Transducers. 2 PC Boards for transmitter and receiver. All electronic parts and instructions. Easy to build and a lot of uses such as remote control for TV. garage door. alarm system or counter. Unit operates by 9.12 DC.
\$15.50

ELECTRONIC SWITCH KIT

Als 1011

"In Harmony"

You know harmony means more than Just entertainment at the USO. It's volunteers working together to create a "back home" environment for servicemen and women stationed far from home. It's Informal classes...Intercultural understanding...and orientation Information. USO...It's sweet music.

Dixie Humming Birds

ANTAVING DEVICES

PPF-1. PHASOR PAIN FIELD - Is being tested by Gov't for riot control. Soon

 to come under weapons restrictions as an infernal machine. Easily hand-held Hazardous - Use with discretion, SOLD ONLY FOR ANIMAL CONTROL. $\$ 15.00$PPFF-1. $\$$ IPGS. IPG-3. INVISIBLE PAIN FIELD GENERATOR - Produces directional tield

of moderately intense pain to lower back of head up to 50 it Cigarette pack sized enclosure is easily hidden. $\$ 7.00$ ITG $\mathbf{3}$. | IPG-3 | PLANS | $\mathbf{\$ 7 . 0 0}$ IPG-3K | KIT | ... |
| :--- | :--- | :--- | :--- | :--- |
| IPG-30 | $\mathbf{\$ 3 9 . 5 0}$ | | | | IPG-30 ASSEMBLED FOR ANIMAL CONTROL. $\$$. $\$ 49.50$

HUG-1. HIGH POWERED ULTRASONIC GUN - Produces directional 130 HUG-1. HIGH PO WERED ULTRA SONIC GUN - Produces directional
dos of sound pressure energy at $20-24 \mathrm{kHz}$ Hand-held, intended lor lab use.
HUG-1 PARTICLE BEAM WEAPON LASERS - PLANS
LHP-2. BEGINNER VISIBLE RED NON-HAZARDOUS OPTICAL LHP-2. BEGINNER VISIBLE RED NON-HAZARDOUS OPTICAL DEVICE, Adjustable puise.
LHP-2.
PLANS. $\$ 7$ KIT. $\$ 39.50$ LP-3/LRG-3. LASER PISTOL AND RIFLE COMBINATION - $7-24$ watts LP-3/LRG-3
ol infrared energy LGU-1, VISIBLE RED LASER GUN for holography, special effects, cloud Writing, elC. PLANS,
LASER
C-1. BURNING/CUTTING CO2 LASER - $10-40$ watt cont $\$ 10.00$
RUB-1 WELDING/DRILLING RUBYIYA
PLANS
PASIVAG LASR, intense red
RUB-1 WELDNGD.... PLANS $\$ 15.00$
HPS-1. HIGH POWERED PORTABLE ENERGY SOURCE FOR LASERS \& MAGNETIC WEAPONS exploding wires, shock waves, etc.
HPS-1................ $\$ 8.00$ HIS INF-1. INFINITY TRANSMMITTER - Uses telephone lines tor selective home or office listening while away on business or vacation.
INF-1.
INS. SD-4. SEE IN THE DARK - Device, long range SD-4... PLANS . $\$ 10.00$ WPM-5. WIRELESS TELEPHONE TRANSMITER - Long range.
VWPM-5 PLANS $\quad \$ 10.00$ VWPM-5K KIT
 HOD-1/TT-6 ELECTRONIC TRACKING AND HOMING DEVICE
HOD-1/TT.6 PIANS
\$6.00 HOD-1KITT-6K KIT
 PSW-3. PHASOR STUN WAND - Produces energy capable of burning liesh. Intended as a last resort personnel detense weapon.
PSW-3 PLANS $88.00 \quad$ PSW-3K KIT $\mathbf{\$ 5 9 . 5 0}$ Send tor free catalog descriptions of above items, kits and parts, plus hundreds
more. We accept, Master Charge and VISA or when ordering send check or money order to: SCIENTIFIC SYSTEMS
DEPT. R8 BOX 716, AMHERST N.H. 03031

1 Amp TO-220 Voltage Regulators

PART \#	1.24	$25-99$	$100-499$
7805 (LM340T-5)	.85	.75	.65
7812 (LM340T-12)	.85	.75	.65
7815 (LM340T-15)	.85	.75	.65
7818 (LM340T-18)	.85	.75	.65

Linear Integrated Circuits					
8038	3.95	Lм393	97		
LF351	75	LM733	99	MC1458	59
LF353	1.29	LM741-8	35	MC151	39
LF357	1.39	LM741.	35	NE555	45
LM301	45	LM747		NE556	98
LM307	49	LM748	49	NE565	1.25
LM311	95	LM1310	2.49	NE5534	2.35
LM318	1.75	LM1458	69	NE5538	25
LM324	90	LM1800	2.49	SSM2010	7.50
LM339	79	LM1818	3.49	SSM2020	
LM358	90	LM1889	2.99	SSM203	7.50
LM377	2.49	LM2900	69	SSM2040	
LM380N-14	1.25	LM3900	89	SSM2044	5.75
LM381	1.89	LM3905	1.49	SSM2055	
LM383	3.29	LM3914	3.79	XR2206	5.19
LM384	1.95	LM3915	3.79	$\times \mathrm{R4136}$	
LM386		LM3916		XR4741	
87		LM4500		XR558	

$1 / 4$ WatL	
Package of 5	20
Package of 100 (one value)	1.65
Package of 1000 (one value)	12.00
$1 / 2$ Watt	
Package of 5	. 25
Package of 100 (one value)	. 1.75
Package of 1000 (one value)	15.00

Sampler box consisting of 5 each of all 145 standard 5\% values between 1 Ohm and 1 Meg Ohm.
$1 / 4$ Watt Sampler Box

$$
22.00
$$

$1 / 2$ Watt Sampler Box
27.00

Minimum Order $\$ 10.00$

Shipping
$10-24.99 \ldots . . .3 .00$ Above $50.00 \ldots$ FREE 25-49.99 1.50 C.O.D. Add 1.65

WESTLAND ELECTRONICS

37387 Ford Rd. - Westland, Mi 48185 Order Line - 1-800-521-0664 In Michigan - 313-728-0650
CIRCLE 26 ON FREE INFORMATION CARD

LO PROFILE DUAL BEAM FACE WIPE (TIN) SOCKETS					
		1.24	25-99	100-499	500 up
${ }_{8}^{6} \mathrm{PIN}$	${ }_{\text {LP }}^{\text {LP }}$. 09	. 0785	$\begin{aligned} & .070 \\ & .079 \end{aligned}$. 060
14 PIN	LP	. 15	. 135	. 120	112
16 PIN	LP	17	. 150	135	128
18 PIN	LP	19	. 170	. 150	144
20 PIN	LP	22	. 195	. 170	. 160
${ }_{22}$ PIN	LP	25	230	210	. 178
24 PIN	LP	26	240	220	. 195
28 PP (40 PIN	${ }_{\text {LP }}^{\text {LP }}$. .31	${ }_{4}^{290}$.270 .370	228 325
3 LEVEL WIRE WRAP DIP SOCKETS (TIN)					
		1.24	25.99	100-499	500 up
8 PIN	wwT	33	31	290	270
14 PIN	wwT	. 38	. 36	. 330	320
16 PIN	wwT	42	. 39	. 370	360
18 PIN	wwT	. 58	. 55	515	471
20 PIN	wwT	. 68	. 64	. 704	. 620
24 PIN	wwT	81	. 77	. 726	. 682
${ }^{28} 8 \mathrm{PIN}$	wwT	93	${ }^{87}$. 8138	798
40 PIN	wwt	1.27	1.20	1.136	1.092
D Subminiature Connectors - Compare These Prices!!PLUGSSOCKETS					
	1.9	10.24 25.99		1.9	$10.24 \quad 25.98$
	${ }_{1}^{1.95}$	${ }^{11.75}{ }^{4.60}$	(08) 9S	13.10	12.75 2.50
(0A15P	${ }_{2}^{2,65}$	2.10	(0A)15S	4.35	3.75 3.05
(0C)37P			(DC)375	8.85	$8.00 \quad 7.35$
(DD) 50 P	5.65	5.154 .65	(DD) $50{ }^{5}$	11.65	$10.80 \quad 9.65$

CYBERTONE like a super loud SONALERT this "warbling" alarm works from 9-12VDC and has variable rate and $4^{\prime \prime}$ liameter smoke or bular alal CT-1100.

> 25Amp STUD DIODES 200 V59. 600 V
> 200 ohm Carbon mike element 114" diameter
> 6 foot 3 wire Grey line cord. Rt angle plug. $\begin{aligned} & 79{ }^{4} \\ & .1 .49\end{aligned}$
> JOHNSON $\%$ " BUSHING Air Variable Capacitors.
> H182567 $2 \cdot 19$ 3pt, *189563 1.492pt, 1100. 107.1 23-14.2pt

Calender/Clock Chip and Vacuum-Fluorescent Display.
 high characters, AMMPM indicators, colon. Blue-green color
ideal for daylight operation.

 Line master chrome foot switch spor. 6 cord HGEM 3 Line master black foot switch spor 7 Amp wo-T. 51 -S

MOOSE ${ }^{\text {Tr }}$ National Somi LM 398 Regulator adjustable from .25.15V at 10 Amp . w/specs

WUC transmittor/receiver chip sot. National LM1871/72 has Fith encocse/Decode up 106 channeis of digital or analeg | 100 V |
| :--- |
| 25 Amp Bridge Rectifier (Rem. from Eq.) |
| 400 A |
| 400 Amp TRIAC w/Heat Sink RCA 405036 . |
| 5 Amp Q mode TRIAC. (isolated) | 400 V 35 Amp Q mode TRAC. (isolated)

80 V . 5 A Darlington TIP121 in T0-220 packag 200 V 4 A TO-202 TRIAC Q 2004 F3.
$4^{\prime \prime} 1135 / \mathrm{C},{ }^{3} 11.00 / \mathrm{K} \quad \mathrm{K}^{\prime \prime}+1.95 / \mathrm{C}, 15.75 / \mathrm{K}$

TTHATEM

7808 N. 27th Avenue Phoenix, Arizona 85021

ORDER TOLL FREE: 1-800-528-0183 (Order desk only)
TERMS: ${ }^{s} 10,00$ minimum order
Visa, MC, BAC, Check, M.O or UPS C.O.D U.S. Funds only. AZ residents add 5% sales tax. Prepaid orders over ${ }^{3} 50$ shipping prepaid.
OTHERS: Add 3.00 shipping \& handling, Add 1.50 for C.O.D. orders

Make Radio Shack Your Parts Place No Waiting! No Minimum Order! Low Prices!

Check These Test Equipment Values

Transistor Checker

Indicates "opens," "shorts," and relative current gain in PNP and NPN small-signal and power types. Socket, plus mini hook clips for in-circuit tests. Output for meter or scope, too. Requires "AA battery. A timesaver! 22-025

Crystal

 ElemMultipurpose highimpedance element response and leads 270-095

Touch-Tone* Pad 1695 Ideal for remote control, ham radio autopatching phone upgrading and more. Top quality! 277-1010

Red Mini Lamps

Cute incandescents for dial lights, model RRs, winken-blinkens and more. 6 V at 60 milliamps
272-1144
Pkg. of 6/99e

Phono Jack Board

Chassis-mount phenolic board with eight RCA-type jacks. Excellent for audio "patch bays," 274-370

Our Best Analog VOM

Electrolytic Kit

5VDC, 180 -Ohm Coil. Contacts rated 0.5 amp
$\mathbf{2 7 5 - 2 2 8}$ at 120VAC. PC mountable. 275-228 \qquad

"Analog/Digital" ICs

Low As
259

TL507. A to D chip converts analog processes to the signals required for
microprocessor controlling-up to 100 operations per second! Single supply. 8-pin DIP with ap notes 276-1789
DAC801. D to A IC gives you an analog output up to 20 volts peak-to-peak with -bit digital input. Interfaces with all popular logic families. Low power consumption. 16 -pin DIP with data. 276-1791
9400. A highly linear frequency-to-volt-age/voltage-to-frequency converter that operates up to 100 kHz . Ideal for mowith dit $276-1790$ upply. 14-pin

For meters, remote controllers, T-pads, more. Has compartment for 9V battery. Polystyrene. $1 / 8 \times 3 \% \times 5 \frac{1}{4} 4^{\prime \prime}$ 270-219

Solid Buss Wire

Prime CMOS ICs

Device	Cat. No.	Each
4001	$276-2401$.79
4011	$276-2411$.79
4013	$276-2413$.99
4017	$276-2417$	1.69
4027	$276-2427$	1.19
4042	$276-2442$	1.29
4049	$276-2449$.99
4050	$276-2450$.99
4066	$276-2466$	1.19
4070	$276-2470$.99
4081	$276-2481$.89
4511	$276-2447$	1.99
4528	$276-2496$	1.49
4553	$276-2498$	3.59

Fifty feet of pretinned 24-ga. copper on a spool. Ideal for perfboard and printed circuit projects. 278-1341
1.49

Magnet Wire

449
Set

Ideal for winding coils. 40 ft . of 22 -ga., 75 ft . of $26-\mathrm{ga}$., 200 ft . of 30 ga . 278-1345

(A) Wire-Wrapping Tool. $41 / 2^{\prime \prime}$ long, metal. 276-1570
国 30-Gauge Kynar Wire. 50 -foot spools. Choice of colors . . . Each, 2.39

Red	$\# 278-501$	White	$\# 278-502$

Red	$\# 278-501$	White	$\# 278-502$
Blue	$\# 278-503$	Yellow	N278-504

 position. Rated 20 amps at 12VDC. Mounts in 7/16" hole. 275-709 2.79

Piezo Buzzer 299

For 1.5 to 20 VDC
Loud 4.8 kHz signal gets attention. Ideal for battery- powered circuits$13 \mathrm{Bx}^{3} \mathrm{y}_{8}$ " With leads. 273-060 2.99

Text/Tape Electronics Course

DC Circuits Volume I. An easy-to-understand introduction to electricity, voltage, current, Ohm's law, parallel circuits and more. Fully illustrated. 480 pages. 62-2019 . Separately, 6.95 DC Circuits Volume II. Covers voltage dividers, capacitors, inductors, formulas and more. ilustrated. 508 pages. 62-2020 Separately, 6.95 DC Circuits Audio Learning Package. Six standard cassettes that reinforce the concepts presented in Volumes I and II. Learn electronics fundamentals at you own pacel 62-2401

CABLETV

 CONVERTERS AND OTHER GOOD STUFF!SMASHING ALL SALES RECORDS - OURNEW
30 CHANNEL CABLE TV CONVERTERI Converts mid \& super
band cable channels
for viewing on your
TV ent
No. $342 A E 0 A 7$ HOT NEW IMPORT! REMOTE CONTROL
 95 TVCONVER
 574.25
E2. 170

ETCO MKII WIRELESS -
THE ULTIMATE CABLE TV CONVERTER

VIDCOR 2000 CONVERTER ELIMINATES PROBLEMS
 WHEN VIDEOTAPING FROM CABLE TV

UNUSUAL FACTORY SURPLUS

 FACTORY SURPLUS UHF TUNERS 495 95 Brand new production surplus.
All polidstate. IJeal for expers.
ilmental wark build

MINIATURE FM WIRELESS MICROPHONE
 QUARTER-MILE WIRELESS MICROPHONE

 DUMPINGI NORELCO ENDLESS LOOP CASSETTES!

\square

IN STOCK - THE MURA
CORDLESS TELEPHONE SYSTEMI
\qquad

SALE OF GUARTZ BATTERY OPE CLOCK MOVEMENTS 95 Aearevot 1min ver wit Wert Cermuly, No. 39vasc

20 AMP REGULATED 12VDC POWER SUPPLY!

CIRCLE 30 ON FREE INFORMATION CARD

MicroComputers, VTR, Hi-Fi, Lasers, Spectrometers are often damaged or disrupted due to Power Pollution.
High Tech components may interact!
Our patented ISOLATORS eliminate equipment interaction, curb damaging Power Line Spikes, Tame Lightning bursts \& clean up interference.

Isolated 3-prong sockets; integral Spike/ Lightning Suppressor. 125 V, 15 A, 1875 W Total, 1 KW per socket.
ISO-1 ISOLATOR. 3 Isolated Sockets; Quality Spike Suppression; Basic Protection
$\$ 69.95$
ISO-3 SUPER-ISOLATOR. 3 DUAL Isolated Sockets; Suppressor; Commercial Protection \$104.95

ISO-17MAGNUM ISOLATOR. 4 QUAD Isolated Skts; Suppressor; Laboratory Grade Protection \$181.95 Master-Charge, Visa, American Express
TOLL FREE ORDER DESK 1-800-225-4876 (except AK, HL, MA, PR \& Canada)
SATISFACTION GUARANTEED!
Electronic Specialists. Inc.
171 South Main Street. Natick. MA 01760 Technical \& Non 800: 1.617.655.1532

CIRCLE 31 ON FREE INFORMATION CARD

STAMP OUT INFLATION WITH THIS

- BONUS OFFER -

5\% 10\% 15\% OFF - any kit or assembled product
HOW?
5% OFF - 50% deposit and pay balance before shipping date; 10% OFF - prepay 60 days: 15\% OFF - prepay 90 days.

WHY?

Inflation has finally caught up with us, however, by scheduling LARGE production runs we can DRASTICALLY REDUCE our costs which allow us to give YOU a HEFTY DISCOUNT and, more importantly, our prices are then even lower than before the price increase. But, if you just have to have it right away the prices are shown below.
OFFER TERMS: Return to us a copy of this ad stating the desired product and the discounted price terms. AaRON-GAVIN will send your completed order form for your signature, return to us and we will process your order. Orders must be postmarked no later than April 15, 1981.

FEATURING THIS MONTH $-K i t-\$ 84.00$

FREE 160 Page Book

We carry the Following:
TEST EQUIPMENT

- 8 \& k
- LEADER
- viz
- BECKMAN
- global specialties
- DATA PRECISION
- hickok

ELECTRONIC COMPONENTS

- JAPANESE \& MOTOROLA Transistors
- JAPANESE \& MO
IC's. FET. Diodes
- Capacitors
- Resistors

TOOLS

- Weller. Ungar. Xcellite. Vaco. etc.

FUJI-SVEA INC.

Solid state electronics means instant and accurate reading. DOT and or BAR Pattern display. Three (3) Color LED range display (each led white boardered). Three (3) position range switch! Allows you to track all the way down to -7 dB or up to +26 dB with only 3 dB separation. Nev "Hen for our new $\$ 600$ to $\$ 3,000$ SPECTRUM ANAL YZER 40 leds with only $1 / 2 \mathrm{~dB}$ senaration per band, also -71 to +26 dB .

STEREO GRAPHIC EQUALIZERS STEREO LED METERS


```
- Over }10\mathrm{ million components in stock to serve you
- Over 20,000 sq. ft. of warehouse in the East & West
- NO MINIMUM ORDERI
```


CIRCLE 27 ON FREE INFORMATION CARD

ADVANCED COMPUTER PRODUCTS

FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST AT FAIR PRICES!

1. Proven Quality Factor tested p
2. Guaranteed Satisfaction Call For Special School Discounts

\$24.95 TRS-80/APPLE \$24.95 MEMORY EXPANSION KITS
CENTRONICS PRINTER - Centronss compelete pratior - New low ince 32K STATIC RAM BOARD 2 or 4 MHz Expandable uses 2114 L 's \qquad S. 100 $\begin{array}{ll}32 \mathrm{~K} \mathrm{MHz} \mathrm{Kit} & . .289 .95 \\ 32 \mathrm{~K} 4 \mathrm{MHz} \mathrm{AsT} & .339,00\end{array}$ Bare Bd. w/all parts less mem99.95 NEW! from Zilog Tiny Basie \& debug program on the I.C. BIPOLAR CPU SALE Signetics 8×3008 bit CPU While stock lasts 14.95 ea. TOUC MULTIMETER $\$ 319^{95}$ BEECKMAN TECH 300 Digital Multimeter TECH 310 Digital Multimeter TECH 330 Digital Multimeter Q Cixhtativi icimi INTERSYSTEMS Th Proporop s.siog orx The new Series MHz Z-80A CPU and full-feature front panel, 20 -slot actively terminated motherboard, with 25 amp power supply $(50 / 60 \mathrm{~Hz}$ DPS-1, $\$ 1795$

HEADER CONNECTOR WITH EJECTOR
20 Pin $\$ 2.33$
26 pin $\$ 2.78 \quad 34$ pin $\$ 3.40$${ }^{20}$ pin $53.75 \quad 50$ pin 53.75 RIGHT ANGLE CONNECTOR WITH EJECTOR
 SOCKET CONNECTOR
 RIBBON CABLE (Price per 10 foet
20 pin $55.00 \quad 25$ pin $\$ 6.30$

 Users Guide. S15.00, Inter facing to s S-100/IEEE 696 MP's....sis.00, Some Common BASIC Proo S14.99. Practical Easic Proo S15.99, Some Common BASIC Proo - Atari Edition s14.9.9. Some Common
QASIC Programs - TRS. 80 Level II Edition S14.99. SCience Thd

 Language...S10.95.

CIRCLE 22 ON FREE INFORMATION CARD

ITinsely the first name in Counters !

9 DIGITS 600 MHz
 The CT- 90 is the most versatile, feature packed counter available for less than $\$ 300.00$! Advanced design features include, three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90, performance you can count on

s.
$\begin{array}{ll}\text { Range: } & 20 \mathrm{~Hz} \text { to } 600 \mathrm{MHz} \\ \text { Sensitivity: } & \text { Less than } 10 \mathrm{MV} \text { to } 150 \mathrm{MHz}\end{array}$ Less than 50 MV to 500 MHz
Resolution $\quad 0.1 \mathrm{~Hz}$ (10 MHz range)
1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display:
Time base. \quad Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Optional Micro-power oven- $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ $8-15$ VAC @ 250 ma

7 DIGITS 525 MHz \$99 $\frac{95}{\mathrm{w}}$ WIRED

SPECIEICATIONS:
Range: $\quad 20 \mathrm{~Hz}$ to 525 MHz
Sensitivity. Less than 50 MV to 150 MHz
Less than 150 MV to 500 MHz
Resolution: $\quad 1.0 \mathrm{~Hz}$ (5 MHz range)
10.0 Hz (50 MHz range)
100.0 Hz (500 MHz range)

Display: $\quad 7$ digits $0.4^{\prime \prime}$ LED
Time base: $\quad 1.0 \mathrm{ppm}$ TCXO $20-40^{\circ} \mathrm{C}$
Power. $\quad 12 \mathrm{VAC}$ @ 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters. Deluxe features such as, three frequency ranges - each with pre-amplification, dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy- that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack

PRICES:
CT-70 wired, 1 year warranty $\$ 99.95$ CT-70 Kit, 90 day parts warranty
AC-1 AC adapter
BP-1 Nicad pack + AC
adapter/charger
12.95

PRICES:
MINI-100 wired, 1 year
warranty AC-Z Ac adapter for MINI100
BP-Z Nicad pack and AC adapter/charger

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the-field" frequency checks and repairs.SPECIFICATIONS:
Range $\quad 1 \mathrm{MHz}$ to 500 MHzSensitivity: Less than 25 MVResolution 100 Hz (slow gate)1.0 KHz (fast gate)Display: $\quad 7$ digits, $0.4^{\prime \prime}$ LEDDisplay. $\quad 7$ digits, $0.4^{\prime \prime}$ LEDTime base $\quad 2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$

Power. $\quad 5 \mathrm{VDC} @ 200 \mathrm{ma}$

8 DIGITS 600 MHz \$15995

SPECIFICATIONS: Sensitivity: Less than 25 mv to 150 MHz Less than 25 mv to 150 MHz
Less than 150 mv to 600 MHz 1.0 Hz (60 MHz range) $10.0 \mathrm{~Hz}(600 \mathrm{MHz}$ range)
Display:
Time base:
Power.

8 digits $0.4^{\prime \prime}$ LED 0^{0} digits $0.4^{\prime \prime}$ LED 10 VAC or 12 VDC

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double-duty!

PRICES:
CT-50 wired, 1 year warranty $\$ 159.95$ CT-50 Kit, 90 day parts warranty
RA-1, receiver adapter kit $\quad 14.95$ RA-1 wired and pro- programmed (send copy of receiver schematic)

DIGITAL MULTIMETER \$99 $\frac{95}{\mathrm{w}}$

The DM-700 offers professional quality performance at a hobbyist price. Features include; 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overload protection up to 1250 volts on all ranges, making it virtually goof-proof The DM-700 looks great, a handsome, jet black, rugged ABS case with convenient retractable tilt bail makes it an ideal addition to any shop.

SPECIFICATIONS:

DC/AC volts: 100 uV to $1 \mathrm{KV}, 5$ ranges DC/AC
current $\quad 0.1 u \mathrm{~A}$ to $2.0 \mathrm{Amps}, 5$ ranges Resistance: 0.1 ohms to $20 \mathrm{Megohms}, 6$ range Input
impedance: $\quad 10 \mathrm{Megohms}$, $\mathrm{DC} / \mathrm{AC}$ volts Accuracy: $\quad 0.1 \%$ basic DC volts Power. $4^{\prime} C^{\prime}$ cells

For high resolution audio measurements, multiplies UP in frequency.

Great for PL tones
Multiplies by 10 or 100

- 0.01 Hz resolution'
$\$ 29.95$ Kit $\$ 39.95$ Wired

COUNTER PREAMP

$\$ 7.95$
15.95
15.95
12.95
3.95
14.95

ACCESSORIES

Telescopic whip antenna - BNC plug.
or measuring extremely weak signals from 10 to 1,000 MHz . Small size, powered by plug transformer-included.

- Flat 25 db gain
- BNC Connectors
- Great for sniffing RF with pick-up loop

ITIS9y glaht		IERMS	Sarisfaction quatanteed examine for 10 days if not pleaied eturn in original form lor refund Add 5 - for shipping
2575 BAIRD RD. © PENFIELD, NY 14526	PHONE ORDERS CA1 I 716-586-3950		mivionce to a moximum of $\$ 10$ Overseos add 15 , COD odd $\$ 2$ Orders under $\$ 10$ odd $\$ 1$. 50 NY reudenk odd 75 tox

(602) 266-9758 (602) 266-9758共 6835 North 16 th Street
Phoenix, Arizona 85016
TV BOX BUILDERS

Sanyo UHF Varactor	LM 301
Tuner \$34.95	LM 1458
Transformer 9 \&	LM 380
16.5V @ 1A...3.45	NE 565
LM $7812 \ldots .$.	MC1330
LM 7815 ... $\$ 1.15$	MC13
78L15..... \$1.05	C135
LM1800 \$2.45	741
LM1889 \$2.75	

Simple Simon was simple - But this one is a SNAP* P^{*} PRICE INCLUDES: 0^{2} PRICE INCLUDES:
I.C.s/Resistors/Capacitors/Variable Resistors/ Trim Cap/Coils/Transformer Diodes/ Regulator/Sony Varactor Tuner
Plus you get a FREE Drilled \& Etched $41 / 2 \times 5$ Printed Circuit Board w/assembly.

INSTRUCTIONS Minimum order $\$ 10.00$ C.O.D. Payment by cash or money order, company check.
C.O.D. $-\$ 2.25+\$ 2.35$ shipping

CREDIT CARDS - Master Charge \& Visa. SHIPPING MINIMUM $\$ 2.35+35 \mathrm{C}$ per $\$ 100.00$ for insurance.
*We do not sell these items for the use of receiving subscription type TV transmissions.

7294 N.W. 54th Street Miami, Florida 33166

SURPLUS ELECTRONICS CORP.

"TANK BATTLE" TV GAME
In just a short time and with a few minor parts, the most novice hobbiest can complete this exciting Tank Battle game. Create a fun-filled evening for the whole family. shoot shells and fragment when hit. Four distinct engine shoot shells and fragment when hit. Four distinct engine gunfire, shell bursts and tank explosions are realistic Aunfire, shell bursts and tank explosions are realistic. drawing. drawing
SOLD AS IS
$\$ 9.95$ ea.

C.B. SPECIAL

CONVERT THESE TO 10 METER FM New HYGAIN printed circuit board assembly with PLLO2A chip and 3 crystals. (Squelch pot, volume control and channel switch hot tincluded.) Boards sold as is, the way we bought them from the manutacturer. Board dimensions 6"x 612:
-9 $\$ 7.50$
${ }_{50-99} \$ 6.00$
$10-49 \$ 6.50$
100-UP $\$ 5.50$

COPPER

CLAD BOARD
(Double Side)
Size 9.25×10.75 Thickness . 062
$\$ 2.00$ ea.
DIP SWITCH

5 POSITION \$1.00 ea. 8 POSITION $\$ 1.50 \mathrm{ea}$ 10 POSITION $\$ 2.00$ ea. 12 POSITION $\$ 2.50$ ea.

AMP METERS

$21 / 4^{\prime \prime}$ square, no shunt required. Easy-to-read dial.
Movements: 0-6, 0-10, 0-17 $\$ 2.50$ ea.

SPEAKER
 $3^{\prime \prime}$ Diam. 80HM,
 5 Watts.
 $\$ 2.00$ ea.

COAX CONNECTORS

UG-273/U BNC-F/UHF-M $\$ 2.50$ UG-255/U BNC-M/UHF-F $\$ 3.00$ UG-146 A/UN-M/UHF-F UG-83B/U N-F/UHF-M UG-175 RG-58 Adapt UG-176 RG-59 Adapt UG-1094 BNC-F/Panel S0239 S0239
PL259

COAXIAL CABLE 50 OHM-RG 174
$\$ 4.95 / 100{ }^{\prime} \$ 3.00 / 50^{\prime}$

SCREW DRIVER KIT

 D.Handle stores four blades 2 single slot $5 / 32^{\prime \prime} \& 3 / 32^{\prime \prime}$ 1 phillips 1 scratch awl $6^{\prime \prime}$ long with one blade inserted $\$ 1.00 \mathrm{ea}$

Elpower EP 680 may be charged constant voltage or constant current. Battery is self-contained and requires no maintenance. Connections made with quick connect lugs. All plastic case siz
$51 / 2 \mathrm{~h} \times 2 \% \mathrm{w} \times 4 / 21$, weight 4 lbs .

Has 3 slide switches, 26 different keys, key pad removable by 4 screws $\$ 1.95$ ea. 5 /\$8.00

E. F. JOHNSON

 "S" METER

Edge Meter 250 UA, fits in $5 \%^{\prime \prime} \times 136^{\prime \prime}$ hole. Black background. Scale 1-20 Top, 0-5 Bottom.
$\$ 1.25$ ea. $\mathbf{5} / \$ 5.00$
TELEPHONE \& TTY
INTERFACE MODEM
MFGG by Aderson Jacosonn
DAA Modem Mod DC 230
Telephoene Coupler
Rated 300 Baud, half or full duplex. DAA level
adjustable 0 to $-3,-4$ to -6 , -7 to -10 , TTY adjustable 0 to $-3,-4$ to $-6 .-7$ to -10 . TTY
and DAA outputs brought out to 15 pin Molex and
connectors. FSK outs oscillator sents to 15 pin Molex
1070 Hz space connectors. FSK oscillator sends 1070 Hz space
and 1277 Hz mark Receives 2025 Hz space and 2225 Hz mark. Teiephoone coupleer has space and
 be recessed in desk or panet. Electronics in case,
$6 / / \mathrm{W} \times 12 \times 2 \%=. \mathrm{p}$. with $8-\mathrm{ft}, 3$ wirc U-ground
 cord and plug. Operates on 115 vac. $50 / 50 \mathrm{~Hz}, 1 / 2$
Amp. Supplied with connection sheet. Removed Ampm equilpment, excellection condition, QuaranIrom
teed.

	$45 \%^{\prime \prime}$ w $\times 73 / 6^{\prime \prime} \mid x 3 / 4^{\prime \prime}$ to $11 / 2^{\prime \prime} h$ Has a lip for recessed face plate and a felt bottom	NEW SPRITE FAN Mfg. by Rotron Inc., Model SU2A5. 115 v AC. 19 amps. (Impedance protected.) $31 / 4^{\prime \prime} \times 31 / 4^{\prime \prime} \times 13 / 4^{\prime \prime}$ $\$ 12.00$ ea.
		7' POWER CORD HEWLETT PACKARD TYPE
	IC SOCKETS GOLD-PLATED WIRE WRAP 14 pin 40 c ea. 16 pin 45c ea.	Molded 3 Prong Plug with molded receptacle Belden 16 AWG $\$ 3.00$ ea.
MODEM CABLE ASSEMBLIES $\$ 5.50$		
$\begin{array}{lll} \begin{array}{c} \text { Conn } \\ \& \\ \text { Hood } \end{array} & \text { 22 AWG } & \\ \frac{\text { HCond }}{} & \frac{\text { Length }}{} \\ \hline 25 \mathrm{P} & \frac{14}{14} & \frac{17^{\prime}}{} \\ 25 \mathrm{~S} & 10 & \end{array}$	5.4 AMPS MFG by ACDC Electronics Inc. Model OEM 24N5.4-1 Input $105-125$ vac $50 / 60 \mathrm{~Hz}$. Has $\$ 45.00$ volt adj and O.L. adj. Output terminals contain + out, + sen, - sen, - out, ac neut, ac line and GND. 13 LBS.	

TERMS: All material guaranteed unless otherwise stated. If you are not satisfied with our product, it may be returned within 10 days for a refund (less shipping). Please add $\$ 4.00$ for shipping and handling on all orders. COD\$ accepted for orders totaling $\$ 50$ or more. All orders shipped UPS unless otherwise specified. Florida residents please add 4\% sales tax. Minimum order, $\$ 15.00$. Foreign orders - US funds only, add 20% for shipping and handling.

16K Memory criean $8 / 15.95$

74LS00 SERIES

				74LS166	2.40	74LS293	1.85
74LS00	25	74LS85	1.15	74LS168	1.75	74LS295	1.05
74LS01	25	74LS86	40	74LS169	1.75	74LS298	1.20
74LS02	. 25	74LS90	. 65	74LS170	1.75	74LS324	1.75
74LS03	. 25	74LS91	89	74LS173	. 80	74LS352	1.55
74LS04	. 25	74LS92	. 70	74LS174	. 95	74LS353	1.55
74LS05	. 25	74LS93	. 65	74LS175	. 95	74LS363	1.35
74LS08	. 35	74LS95	. 85	74LS181	2.15	74LS364	1.95
74LS10	. 25	74LS96	. 95	74LS189	9.95	74LS365	. 95
74LS11	. 35	74LS107	. 40	74LS190	1.00	74LS366	. 95
74LS12	. 35	74LS109	. 40	74LS191	1.00	74LS367	. 70
74LS13	. 45	74LS112	. 45	74LS192	. 85	74LS368	. 70
74LS14	1.00	74LS113	. 45	74LS193	. 95	74LS373	. 99
74LS15	. 35	74LS114	. 50	74LS194	1.00	74LS374	1.75
74LS20	. 25	74LS122	. 45	74LS195	. 95	74 LS377	1.45
74LS21	.35	74LS123	. 95	74LS196	. 85	74 LS378	1.18
74LS22	25	74LS124	2.99	74LS197	. 85	74LS379	1.35
74LS26	. 35	74LS125	. 95	74LS221	1.20	74LS385	1.90
74LS27	. 35	74 LS 126	. 85	74LS240	. 99	74LS386	. 65
74LS28	. 35	74LS132	. 75	74LS241	. 99	$74 \mathrm{LS390}$	1.90
74LS30	25	74LS136	. 55	74LS242	1.85	74 LS393	1.90
74LS32	. 35	74 LS137	. 99	74LS243	1.85	74LS395	1.65
74LS33	. 55	74LS138	. 75	74LS244	. 99	74LS399	1.70
74LS37	. 55	74LS139	75	74LS245	1.90	74LS424	2.95
74LS38	. 35	74LS145	1.20	74LS247	. 76	74 LS447	. 37
74LS40	. 35	74 LS 147	2.49	74LS248	1.25	74LS490	1.95
74LS42	. 55	74LS148	1.35	74LS249	. 99	74LS668	1.69
74LS47	. 75	74LS151	. 75	74LS251	1.30	74LS669	1.89
74LS48	. 75	74LS153	. 75	74LS253	. 85	74 LS670	2.20
74LS49	. 75	74LS154	2.35	74LS257	. 85	74LS674	9.65
74LS51	. 25	74LS155	1.15	74LS258	. 85	74LS682	3.20
74LS54	. 35	74LS156	. 95	74LS259	2.85	74LS683	2.30
74LS55	. 35	74 LS157	. 75	74LS260	. 65	74LS684	2.40
74LS63	1.25	74LS158	. 75	74LS266	. 55	74LS685	2.40
74LS73	40	74LS160	. 90	74LS273	1.65	74LS688	2.40
74LS74	45	74LS161	. 95	74LS275	3.35	74LS689	2.40
74LS75	. 50	74LS162	95	74LS279	. 55	81LS95	1.69
74LS76	. 40	74LS163	. 95	74LS280	1.98	81LS96	1.69
74LS78	. 50	74LS164	. 95	74LS283	1.00	81 LS97	1.69
74LS83	. 75	74LS165	. 95	74LS290	1.25	81LS98	1.69

CRYSTALS	
32.768 KHZ	3.95
1.0 MHZ	4.95
1.8432	4.95
2.0	3.95
2.097152	3.95
2.4576	3.95
3.2768	3.95
3.579545	3.95
4.0	3.95
5.0	3.95
5.0688	3.95
5.185	3.95
5.7143	3.95
6.5536	3.95
8.0	3.95
10.0	3.95
14.31818	3.95
18.0	3.95
18.432	3.95
20.0	3.95
22.1184	3.95
32.0	3.95

MISC.

DISC CON-

 TROLLERS
$\begin{array}{ll}1771 & 24.9 \\ 1791 & 36.9\end{array}$

 $\begin{array}{ll}1791 & 36.95 \\ 1793 & 44.95 \\ 1797 & 54.95\end{array}$ UARTS$\begin{array}{ll}\text { AY3-1014 } & 6.95 \\ \text { AY5-1013 } & 3.95\end{array}$
$\begin{array}{ll}\text { AY5-1013 } & 3.95 \\ \text { TR1602 } & 4.95\end{array}$
IM6402

INTERFACE

8 T 26
8 T 26
8 T 28
8 T 95
8 T95
8 T96
8 196
8 T97
DM8131
DS8836
CIRCUITS

MM5369	3.95
MM5375	3.95
MSM5832	7.45
7207	7.50
7208	15.95

CONVERTERS
$\begin{array}{lr}\text { MC1408 L8 } & 4.95 \\ \text { DAC-0800 } & 4.95\end{array}$

DAC-0800	4.95
ADC-0804	4.95

March Specials

z-80A-CP Z-80A-PIO 8214 8216 6800
6810
TMS 40L44-20
4096×1 low power 200ns RAMS
By Texas Instruments - not equivalent part number made by another manufacturer as sold by others:
4.49 each
125.00/32 pcs.

Specials end March 28, 1982
Please state "March Specials" when ordering

800-538-5000 800-662-6279 (CALIFORNIA RESIDENTS)

CALL JDR BEFORE YOU BUY!
WE WILL BEAT ANY COMPETITORS' PRICES

6502

6502	
6502	6.95
$6502 \cdot A$	12.95
6504	6.95
6505	8.95
6507	9.95
6520	4.35
6522	9.95
6532	14.95
6551	11.85

Z80

$\begin{array}{ll}\text { Z80-CPU } & 8.95 \\ \text { Z80A.CPU } & 6.00\end{array}$ Z80A.CPU Z80-P10 Z80A.P10 Z80-CTC Z80A-CTC $\begin{array}{lr} & 8.65 \\ \text { Z80-DART } & 15.25\end{array}$ Z80A-DART 18.75 $\begin{array}{ll}\text { Z80-DMA } & 17.50 \\ \text { Z80A.DMA } & 27.50\end{array}$ $\begin{array}{ll}\text { Z80A-DMA } & 27.50 \\ \text { Z80-S10/0 } & 23.95\end{array}$ $\begin{array}{ll}\text { Z80-S10/0 } & 23.95 \\ \text { Z80A-S10/0 } & 28.95\end{array}$ Z80A-S10/0 28.95 Z80-S10/1 $\quad 23.95$ $\begin{array}{ll}\text { Z80A-S10/1 } & 28.95 \\ \text { Z80-S10/2 } & 23.95\end{array}$ $\begin{array}{ll}\text { Z80A-S10/2 } & 28.95 \\ \text { Z80-S10/09 } & 17.95\end{array}$ $\begin{array}{ll}\text { Z80-S10/09 } & 17.95 \\ \text { Z80A-S10/9 } & 22.95\end{array}$

Z80B-CPU 18.95 $\begin{array}{ll}\text { Z80B-P10 } & 17.95\end{array}$

Z867
Z6132
39.95
34.95

VISIT OUR RETAIL STORE!

2716 EPROMS 450NS (5V)

JDR MICRODEVICES, INC. TERMS: For shiphng include s2 0 . tor UPS Ground, 53.00 1224 S. Bascom Ave.
San Jose, CA 95128 for UPS Blue Label Air. $\$ 10.00$ minimum order. Bay Area residents add $61 / 2 \%$ sales tax. Californa residents add 6% sales tax. We reserve the right to limit quantities and sub-800-538-5000 - 800-662-6279 (CA) stitute manufacturer. Prices subje
(408) 995-5430 - Telex 171-110

CIRCLE 15 ON FREE INFORMATION CARD

MAR.SPECIAL SALE ON PREPAID ORDERS

(CHARGE CARDS COD OR PO'S NOT AVAILABLE)
MIKOS WIRE WRAP PROTOTYPE BOARD. ROOM FOR 5 REGULATORS, GLASS FILLED EPOXY, S100, OVER 3000 hOLES, PLATED THROUGH HOLE, ALL EDGE CONNECTOR PINS NUMBERED AND LABELED.
PCBD
\$27.95, 5 FOR
. $\$ 129.95$

74 LS' SERIES PRIME PARTS

	EA 5 FOR			EA 5 FOR			EA 5 FOR	
LSOO	25	1.23	LS132	75	3.56	LS197		4.04
LSO2	25	1.23	LS136	50	2.38	LS221	1.15	5.4
LSO4	25	1.23	LS138	75	3.56	LS240	1.80	8.5
LS05	25	1.23	LS139	75	3.56	LS243	1.75	8.3
LSO8	35	1.66	LS145	1.20	5.70	LS244	1.75	8.31
LS10	25	1.23	LS147	2.49		LS245	2.15	
LS13	45	2. 14	LS148	1.35		LS251	1.00	4.75
LS14	99	4.50	LS151	75	3.56	LS257	85	4.04
LS20	25	1.23	LS153	75	3.56	LS258	85	4.04
LS26	35	1.66	LS155	90	4.28	LS260	65	
LS27	35	1.66	LS156	90	4.28	LS266	46	2.19
LS30	25	1.23	LS157	75	3.56	LS279	50	2.38
LS32	35	1.66	LS158	75	3.56	LS290	80	3.80
LS37	55	2.50	LS160	90	4.28	LS293	80	3.80
LS38	35	1.66	LS161	95	4.51	LS295	1.05	4.99
LS42	55	2.50	LS162	. 95	4.51	LS367	70	3.33
LS74	45	2.14	LS163	95	4.51	LS368	70	333
LS75	50	2.38	LS164	. 95	4.51	LS373	1.85	8.79
LS85	1.15	5.46	LS166	1.75	8.31	LS374	1.80	8.55
LS86	40	1.90	LS173	80	3.80	LS377	1.45	6.89
LS90	60	2.85	LS174	95	4.51	LS378	1.18	5.6
LS92	60	2.85	LS175	95	4.51	LS620	2,25	
LS93	60	2.85	LS190	1.00	4.75	LS626	2.25	
LS122	45	2.14	LS191	1.00	4.75	LS629	1.44	
LS123	95	4.50	LS192	85	4.04	LS682	3.20	
LS125	90	4.28	LS193	95	4.51	LS683	2.30	
LS126	. 75	3.56	LS196	85	4.04	LS688	2.40	

QUANTITY OF 5 FOR MUST BE OF THE SAME DEVICE, THEY MAY NOT BE MIXED. AN ADDITIONAL 5\% OFF PURCHASES MONEY ORDER ONLY ON PREPAID ORDERS BY CHECK OR

VISA \propto MASTERCHARGE Seno account number interbank number expraton ofiter
VISA or MASTERCHARGE Send account number interoank number expration date and sign your order Approx postage will be added. Orders with check or money order wil
De sent post paid in US II you are not a regular customet, pease use charge cashier's check or postal money order Otherw, se there will be a two-week delay tor checks to cear Calif residents add 6°, tax Money back 30 -day ouarantee We cannot accept returned ICs that have been solderto to Prices subject to change without notice $\$ 20$ minimus orter. $\$ 2.00$ service charge on erfers lets than $\$ 20.00$

The Sound Choice from KEITHLEY A smart choice for field service, the 128 beeper DMM is designed
for the real world of hard knocks. The audible tone allows rapid troubleshooting. Use it for continuity checks, logic levels or hot
tests. Designed for maximum full function flexibility, the 128 is loaded with practical capabilities, not expensive frills. Model 128 only $\$ 139.00$ Case/Stand ... $\$ 10.00$ See/hear display. LCD, over/under array and audible tone. 5 Beeper operates on all DCV, ACA, DCA, Ohms and on all ranges for oach function.
Special diode test range permits testing
of LEDs and multiple of LEDs and multiple such as darlingtons. Unique adjustable beeper threahold can be user-set to suite the
different requirements of various applications.

Meter maintains OMM Ohm input resistance
even with the beeper on.

6500 SERIES MICROPROCESSOR IC's
$A=(2 \mathrm{MHz}) \quad B=(3 \mathrm{MHz}) \quad \mathrm{C}=(4 \mathrm{MHz})$

 \begin{tabular}{ll|ll|ll|ll}
P6502A \& 9.66 \& P6507 \& 8.09 \& P6820 \& 3.40 \& P6532 \& 10.82

P6502B \& 15.02 \& P6507A \& 8.82 \& P68820 \& 3.74 \& P6532A \& 11.87

\hline

P6502C \& 21.00 \& P6512 \& 8.82 \& P65821 \& 4.90 \& P65324 \& 11.87

P650.1 \& 17.51

\hline
\end{tabular}

ANCRONA P.O. Box 2208R, Culver City, CA 90230
\star SPECIAL \star COUPON

Bring this Coupon into one of our stores or mail to our Mail Order address shown below and receive the Special Discounts listed on this page with purchases of $\$ 50.00$ or more. Offer EXPIRES on April 30, 1982

MINIATURE DOT MATRIX IMPACT PRINTER

The Unique New Printer That Gives You All These Exciting Features.

- Disposable printing head - Simple interface

- Uses standard $21 / 4^{\prime \prime}$ adding
machine tape
- 21 column pringer
- 21-column printing at 25
- Easy to install and maintain

Model DP-822 \qquad
Dot Matrix Printer Control/Drive Card

A COMPLETE MICRO-
COMPUTER ON A BOARD Regular $\$ 401.00$ \star SPECIAL with COUPON * $\$ 368.00$
FEATURES

- 2-80 CPU with 158 instructions
- On-Board PROM Programmer

PROMS (2716, 2758, T12516)

- Port Examine and Change

Port Examine and Change

- 2-80 CPU Register and Change - 1 K Bytes of RAM (expandable to 2 K) - Simple Key Controlled

- Expansion Provision for

Two S-100 Connectors

\qquad
Up to 5 Programmable Breakpoints

- Switch Selectable PROM or Moni-- Wire Wrap Area for Custom Circuitry

Full ASCII Encoded Keyboards

P6504A	8.82	P6514	8.09	P6522	8. 40	P6591	40.00									
P6505	B.09	P6514A	8.82	P6522A	11.24	P1791.02	40.00									
P6505A	8.82	P6515	8.09	P6530-004	15.84	P1793.02	40.00		P6505	8.09	P6514A	8.82	P6522A	11.24	P1791.02	40.00
:---	:---	:---	:---	:---	:---	:---	:---									
PP505A	8.82	P6515	8.09	P6530-004	15.84	P1793.02	40.00									
P6506	8.09	P6520	3.40					* SPECIAL 20% DISCOUNT WITH COUPON *								

Minimum Order $\$ 10.00$. Add $\$ 2.00$ to cover postage and handling. Master Charge and VISA welcomed. Please include your charge card number, interbank number and expiration date. Some items are subject to prior sale. Not responsible for typos. Store pricing may vary from Mail Order pricing. We reserve the right to substitute manufacturer.

Atlanta, GA 30305 (404) 261-7100			1125 N.E. 82nd Ave. Portland, OR 97220 (503) 257-9464	$\begin{aligned} & \text { SANTA ANA } \\ & \text { 1300 E. Edinger Ave. } \\ & \text { Santa Ana. CA A2705 } \\ & \text { (114) } 547-8424 \end{aligned}$	(408) $243-4121$	$\begin{gathered} 4518 \text { E. Broadway } \\ \text { Tucson, AZ } 85711 \\ \text { (602) } 881-2348 \end{gathered}$

We start with a Mechanical UHF Tuner, add 2 coils and a diode, then peak it on our Spectrum Analyzer for maximum gain.

Frequency Range $470-899 \mathrm{MHz}$ channels $14-83$ Output Channel 3. Available on request: Ch 2 or 4.

PART

NO. DESCRIPTION
20. DESCRIPTION

Moditied High Gain UHFTuner
321 Pre-Drilled circuit
board, screen printed
layout. soldrmast on
foll side. needs only one jumper
$\$ 17.00$
B22 Complete parts kit
includes: All resistors
(30). PCB

Potentiometers (1.5 K .
3-10K). Power
Transformer ($1 \mathrm{~A} / 24 \mathrm{~V}$).
Panel Mount
Potentiometer (10 K
Integrated Circuits (7)
Diodes (4). Voltage
Regulator. Heat Sink
Electrolytic Capacitors
(6). Disc Capacitors (35). Variable

Capacitors (4), Coll K Capacitors (4). Coll Ki
 Sockels ($4-8$ pin.:-3 ${ }_{0}$ pin). Standotts, Hookup Wire, All mis Hookup Wire, All mas most complete and most complete and comprenensive 1 . page instruction Alltems indive seen All liems individually packaged CONVERTERS

Yearn of enjoyment are yours with our model DCV-1-A. Two preamp stages coupled with the yagi antenna/houting provide a typical syatem pain of 53d8.

WE CARRY A COMPLETE LINE INCLUDING PARABOLICS
DEALER INQUIRIES INVITED

FREE!
1982
DISCOUNT
ELECTRONICS CATALOG

JOIN THE PAK!

Send tor our Free catalog and become a member of our exclusive Pak. Our members receive Poly Paks' exciting catalog several times a year. We offer: Penny Sales, Free Premiums and Low. Low Prices on a wide variety of Electronic Products such as Computer Peripherals, Integrated Circuits, Speakers, Audio Equipment, Rechargeable Batteries, Solar Products, Semiconductors, and much. much more! Take advantage of our 25 years as America's foremost Supplier of discount electronics. RUSH ME YOUR FREE DISCOUNTCATALOG! NAME:
ADDRESS:
CITY:
STATE: \qquad ZIP:

CLIP AND MAIL COUPON TODAY TO:
POLY PAKS, INC.
P.O. Box 942, RA-3
S. LYNNFIELD, MA. 01940
(617) 245-3828

CIRCLE 32 ON FREE INFORMATION CARD

Limited time, Introductory offer!

Assembled $\$ 290.95$ \$249.95 KIT $\$ 249.95$ \$219.95 PACCOM 8085A TRAINING UNIT
Rated Best Value by instructors! LEARN COMPUTING FROM THE GROUND UP!

- Design and code microprocessor software. - Use logic and bit manipulation techniques. - Enter and execute programs on your own computer.
- Understand microprocessor architecture.
- Control programmable input/output ports.
- Implement real-time interrupt and data transfer. Design your own micro-computer Comes to you complete:
- Step by step instruction manual, operators manual
- 8085A sub-routine manual, 352 pg. Cookbook.
- 334 pg. Software Des. book, 190 programs. - Fully expandable, deluxe operating system. Hardware includes:
- Fully assembled.
- User determined BUS system.
- tested 8085A unit. 44 pin connector
- Wire wrap area for buffers, gates, etc. - Two EPROM sockets. 14803 NE AOTh. DEPT RE382 andmond, WA 98052
CALL 1-800-426-1044 TOLL-FREE
\square SEND FREE INTRO PLUS PARTS LIST
CIRCLE 33 ON FREE INFORMATION CARD

scr supar-buys

(1) FREE SCRAMBLER PLANS plus
a brochure describing our new UHF-VHF Conversion Kit are yours just by sending us your name,

FREE

 address and a 20 c stamp.(2) 9 -INCH BLACK AND WHITE CRT MONITOR. Ideal for microcomputer or security use. 22 transistors. Designed for excellent resolution. Frequency response -12 MHz . Continuous DC sponse -
restoration for superior contrast. ${ }^{12} \mathbf{~ M H z}$. Continuous 0 on. List Price $\$ 225.00$ each.
(3) UHF-VHF CONVERSION KIT. COMplete with PC board; all required components; cabinet with speaker; and comprehensive brochure incl. schematic, board layout, mounting and $\mathrm{s} 119_{\text {en }}^{95}$
hook-up diagrams
assembly and sats assembly and set-up instructions. All MHz Bandwidth. 40 or 80 character

$$
\begin{gathered}
\text { Our } \\
\text { Factory } \\
\text { Directet } \\
\text { Drico }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Oricet } \\
& \text { Price }
\end{aligned}
$$ matic, board layout, mounting and parts are industrial prime quality.

(4) NEW ZENITH ZVM-121 HIGHLEGIBILITY CRT MONITOR. Features $12^{\prime \prime}$ green phosphor CRT, with 15 widths are operator switch-selectable. Fully compatible with 80 -column Apple cards, etc.
$\underset{\text { Ouctory }}{\text { Our }}$
Factory
Direct
Dirrect
Price
${ }^{\mathbf{s}} 117_{\text {es }}^{95}$
(5) MITSUMI VARACTOR-TUNER. Channels 15-82. Modified for kit use.

S30 0

$$
\text { Standard versions. } \quad{ }^{\$} 28_{\mathrm{ea}}^{00}
$$

SCE
 (714) 527-2554 - [213) 596-7553
 ELECTRONICS INC.
 5303 Lincoln Ave., Cypress, CA 90630

$\$ 10.00$ MIN. ORDER HANDLING/SHIPPING $\$ 5.00$ Pay by CHECK, M.O., VISA, M/C, C.O,D. UPS ANYWHERE IN CONTINENTAL U.S. For Free Buyers Guide Catalog Circle No. 79

CIRCLE 35 ON FREE INFORMATION CARD
 30 MHZ DUAL TRACE OSCILLOSCOPE
AT THE LOWEST PRICES YOU CAN FIND!

Model V302B
List 995.00
Sale 815.00
See below for freight allowanc

- Signal delay line
- $5^{\prime \prime}$ CRT
- 12 ns rise time
- TV sync separator
- 1 my/division sensitivity (max.)
- Vertical magnifier (x5)
- Sweep magnifier (x10)
- X-Y operation
- Front panel trace rotation
- $\mathrm{CH} 1, \mathrm{CH} 2$, Add, Diff. display modes
- "Z" axis (intensity) modulation
- Two years parts and labor warranty
- Two -X10 probes included!

15 MHz dual trace AN EVEN GREATER VALUE!

- 5" CRT

- 24 ns rise time
- TV Sync separator
- $1 \mathrm{mV} /$ div sensitivity to 5 MHz
- Vertical and sweep magnifiers
- Front panel trace rotation
- Five modes of vertical deflection
- Two years parts and labor

List 735.00
Sale 599.95

ALL OTHER HITACHI SCOPES ON SALE
$50 \mathrm{MHz}, 100 \mathrm{MHz}, 35 \mathrm{MHz}, 20 \mathrm{MHz}$. Call for details Also available:
Leader Instruments, Beckman, Univolt, Fluke and other quality test equipment.

To order call toll free: (800) 423-5336 In Calif. (800) 423-5336
Local, Alaska, Hawaii (213) 701-5848
ORA Electronics
18215 Parthenia St. Northridge, CA 91325

TERMS: All items are subject to prior sale. Limited quantity on hand. Payment Visa, Mastercard accepted. Exact freight and insurance will be added C.OD orders accepted from recognized businesses.

Prepaid orders: Payment must be made with U.S currency Orders paid with personal or company check will be held for check to clear
Free freight policy: Prepaid orders paid by cashiers check will be shipped UPS freight free to any point in the continental U.S. (Alaska. Hawail. Canada excluded.)

CIRCLE 28 ON FREE INFORMATION CARD

4
 Components Express, Inc.

Have you kissed your computer lately? 1380 E. Edinger. Unit CC Santa Ana. CA 92705 (714) 558 -3972

BROAD BAND MICROWAVE RECEIVER SYSTEM 1.8GHZ to 2.4 GHZ

only
\$295.

PM

$\square=\square]_{\mathrm{ALARM}}$

With built-in-converter to channel 2,3 , or 4 of any standard TV set.

- $24^{\text {" }}$ Dish
- Feed-Horn Receiver
- Mounting Bracket

Mounting Clamp

- Instructions
- 300 Ohm to 75 Ohm Adapter Lip
RANGE: SCOPE:

Line of sight to 250 miles

- 750 Ohm to

300 Ohm Adapter

- 60 Feet Coax Cable
- with Connectors

3 Feet Coax Cable
with Connectors

Will receive within the frequency band from satelites, primary microwave stations, and repeater microwave booster stations.
CONTENTS: Completely packaged in $19^{\prime \prime} \times 19^{\prime \prime} \times 41 / 2^{\prime \prime}$ corrugated carton complete with list.
WARRANTY
180 days for all factory defects and electronic failures for normal useage and handling. Defective sub assemblies will be replaced with new or re-manufactured sub assembly on a 48 hour exchange guarantee.
This system is not a kit and requires no additional devices or equipment other than a TV set to place in operation.

[^2]
FUJITECH AUDIO KITS

LATEST AUDIO TECHNOLOGY

RROM JAPAN

Model A501 Power Amp
Pure Class A $25 \mathrm{~W}+25 \mathrm{~W}$
Switchable to Class AB 100W + 100W
Switchable to Bridge Class A 100W mono
Switchable to Bridge Class A 100W mono
Switchable to Bridge Class AB 300W mono
Switchable to Bridge Class AB 300 W
Frequency Response $5-200 \mathrm{KHz}(-1 \mathrm{~dB})$

- Frequency Response 5-200K

Signal-to-Noise Ratio 12
Non-magnetic Chassis
"Out-board" comprehensive protection circuitry
DC circuitry with limited use of NFB

- High Efficiency Fluid Convection Cooling
- THD under 0.007\%

Model A502 DC Stereo Control Center

- Direct DC coupling from Input to Output - DC servo circuitry
- Cascade FET Input in all stages
- Separate Moving Coil RIAA amplifier
- Distortion below 0.005\% (3V)
- Max Output 15 V
- Frequency Response $20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 0.2 \mathrm{~dB}$
- Maximum Phono Input
$M C=16 \mathrm{mv}$ RMS $(1 \mathrm{KHz})$
$\mathrm{MM}=270 \mathrm{mv}$ RMS (1 KHz)
: Built-in Headphone amplifier KIT ONLY

Model A1033 Integrated Tube Amplifier
Latest Japanese Design

- Distortionless Output Transformer using
special winding techniques
- Most circuitry on PCB for easy assembly
and humfree performance
- Output $30 \mathrm{~W} \times 2$ Ultra Linear
$15 \mathrm{~W} \times 2$ Tritchable to Triode)
$15 \mathrm{~W} \times 2$ Triode Output.
(near class A performance)
- THD under 0.4\%
- Frequency Response $30 \sim 30,000 \mathrm{~Hz}(-1 \mathrm{~dB})$
- Separate Pre-Out and Main-In KIT ONLY

$\$ 499.00$
Send $\$ 5.00$ for each assembly manual, refundable with order.

Monarchy Engineering, Inc.
380 Swift Avenue, Unit 21
South San Francisco, CA 94080
Visa or Mastercharge acceptable.

INTRODUCING OUR NEW STVA 14 Element CORNER REFLECTOR Yagi antenna

- SELECTABLE 75 or 300 Ohm IMPEDANCE
- NARROW PATTERN for adjacent interference rejection
- ANODIZED FINISH
- STURDY CONSTRUCTION

STVA-3 14.5 dB Selectable Corner Yagi Cut for Channels 60 thru 68. . . . $\$ 16.95$
STVA-4 14.5 dB Selectable Corner Yagi
Cut for Channels 44 thru 52. . . . \$16.95

VTR AGEESSORIIES

 SIIMPLE SIMON VIDEO Stablilizer

Simple Simon Video Stabilizer, Model VS-125, eliminates the vertical roll and jitter from "copy guard" video tapes when playing through large screen projectors or on another VTR. Simple to use, just adjust the lock control for a stable picture. Once the control is set, the tape will play all the way through without further adjustments. Includes 12 V power supply.
VS-125 Video Stabilizer wired
$\$ 54.95$

SIIMPLE SIMON VIDEO SWITCHING BOX

Excellent in isolation and no loss routing system. Simple Simons VSB-300 Video Switching Box enables you to bring a variety of video components together for easy viewing/dubbing. Also you gain the ability to record one channel while viewing another. Unit includes two F-type quick connector ended cables.
VSB-300 Video Switching Box wired \$19.95

Freq. Range UHF470 -889 MHz Antenna Input 75 ohms Channels 14-83 Output Chamel 3

1 VT1-SW Varactor UHF Tuner, Model UES-A58F
2 CB1-SW Printed Circuit Board, Pre-Drilled.
3 TP7-SW P.C.B. Potentiometers, 1-20K, 1-1K, and
5-10K olhms, 7 -pinces.

4 FR35-SW Resistor Kit, $1 /$ Watt, 5% Carbon Film, 32 -pieces 5.95
5 PTI-SW Pesisor ki, 4.95
5.95

6 PP2-SW Panel Mount Potentiometers and Knobs, 1-1KBT and 1-5KAT w/Switch

8 CES-SW Electrolytic Capacitor Kit, 9 -pieces. 5.95
$\begin{aligned} & 9 \text { CC33-SW Ceramic Disk Capacitor Kit, } 50 \text { W.V., } 33 \text {-pieces . . . } 7.95 \\ & 10 \text { CT-SW } \\ & \text { Varible Ceramic Trimmer Capacitor Kit, }\end{aligned}$
5-65pld, 6-pieces.
5.95

11 L4-SW Coil Kit, 18 mhs 2 -pieces, 22μ hs 1 -piece (prowound
inductors) and 1 T37-12 Fernite Torroid
Core with 3 ft . of \#26 wire.
12 ICS-SW I.C. Sockets, Tin inlay, 8 -pin 5 -pieces Wood Enclosure

14 MISC-SW Misc. Parts Kit Includes Hardware, ($8 / 32,8 / 32$ Nuts, \& Bolts), Hookup Wire, Ant. Terms, DPDT Ant. Switch, Fuse, Fuscholder, etc. .
$\begin{array}{r}9.95 \\ \hline 139.95\end{array}$
When Ordering All Items, (1 thru 14). Total Price
133.95
UHF ANTENNAS and ACCESSORIES

This unit is not available and serves many purposes and is available in Kit or Assembled form. Ideal for outdoor or indoor use. Input-output impedance is 75 ohms. Amplifier includes separate co-ax feed power supply. Easily assembled in 25 minutes. No coils, capacitors etc. to tune or adjust.
ALL-1 Complete Kit with power supply.
ALL-1 Wired and Tested with power suppl
\$24.95
Our New STVA 14.5 dB GAIN, 14 ELEMENT CORNER REFLECTOR YAGI ANTENNA

Available by Mail Order Only - Send Check or Money Order To:
SIMPLE SIMON ELECTRONIC KITS,' Inc.

Calif. Orders:

3871 S. Valley View, Suite 12
Las Vegas, Nevada 89103
Tel: (702) 322-5273

11850 S. Hawthome, Blvd.
Hawthome, Calif. 90250
Tel: (213) 675-3347

Minimum Order: $\$ 16.95$. Add 10\% Shipping and Handling on orders under $\$ 40.00$. For orders over $\$ 40.00$, add 5%. Minimum Shipping and Handling \$2.00. Catalog \$1.00. - VISA and Mastercard Acceptable -

QUALITY parts at DISCOUNT PRICES!

RECORD CHANGER DOES NOT INCLLDE BASE OR A.C. CORD.
$\$ 25.00$ EACH 4 for $\$ 90.00$

Free: 40 PAD FOR NEW 1982

COMPUTER GRADE
 APACITOR

1700 mfd .150 VDC \$2.00
$21 / 2^{\prime \prime}$ DIA $\times 4^{3 / 4^{4}} \mathrm{HIGH}$
$3,600 \mathrm{mfd}$.
 $13 / 8^{\prime \prime}$ ou $\times 4 \frac{\text { S }}{1 / 4^{*}}$ $12,000 \mathrm{mfd} .40 \mathrm{VDC} \$ 3.00$ $18,000 \mathrm{mfd} .75 \mathrm{VDC} \$ 4.00$ $2^{1} 1^{1 / 2}$ DIA $\times 4{ }^{4} 1 / 2^{\prime \prime}$
$20,000 \mathrm{mfd} .25 \mathrm{VDC}$ 2 "DIA. $\times 2$ 2" HIGH $\$ 2.00$
22,000 $22,000 \mathrm{mfd}$. 15 VDC $22,000 \mathrm{mdd} .40 \mathrm{VDC}$ L.E. D.'s
STANDARD JUMBO
DIFFUSED $\begin{array}{ll}\text { GREEN } & 10 \text { FOR } \$ 1.50 \\ \text { FOR } & 00\end{array}$ YELLOW 10 FOR $\$ 2.00$ FLASHER LED
5 VOLT OPERAT 5 Volt operation JUMBO SIZE 2 FOR $\$ 1.70$
BI POLAR LED SUB ${ }^{2}$ FOR SIII LED SUB $2^{\prime \prime}$ DIA. $\times 6^{\prime \prime}$ HIGH $\$ 3.00$ $25,000 \mathrm{mfd} .75 \mathrm{VDC} \$ 4.50$
3" DIA $\times 43 / 8^{\prime \prime} \mathrm{HIGH}$ CANNON XLRA-3-13 45.000 mfd .25 VDC 4", DIA. × $4^{\prime \prime}$ HIGH
$72,000 \mathrm{mfd} .15 \mathrm{VDCC}$
$2^{\prime \prime}$ CLAMPSTOFITCAPACITORS Soesen

PHOTO-FLASH

 170 MFD 330 VOLT$$
11 / 4^{\circ} \times 7 / 8^{\circ}
$$

$$
2 \text { for } \$ 1.50
$$

$$
10 \text { for } \$ 7.00
$$

750 MFD 330

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number Page

> 再

59 AMC Sales

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

ATTACH

Six weeks' notice

Your old ad-I dress and zip code

Your new address and zip code
name (please print)
address
city
state
Mall to: Radio-Electronics
SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COL'. 80322

WHAT'S THE KEY TO BUYING A COMPUTER?

Look beyond the computer. Look at how the total system-hardware, software, support, servicemeets your needs, today and tomorrow. That's the key. When you choose a computer source, you choose a long term partner who must stand by you with total support. And no one stands by you like Heath/Zenith.

Software

Including word processing, business applications, versatile utility programs, and the Heath Users' Group library of over 500 low-cost programs for home, work or play.
And a choice of three operating systems, including CP/M by Digital Research for compatibility with thousands of popular CP/M programs.

Languages

For your own custom programs, Microsoft languages are available in BASIC (compiler and interpreter), FORTRAN and COBOL.

Self-Study Courses

Learn at your own pace with Programming Courses that teach you to write and run your own programs in Assembly, BASIC, Pascal or COBOL.

For the business person, Computer Concepts for Small Business helps you evaluate the ways a computer can benefit your business. And for the novice, Personal Computing is a complete introduction to computer fundamentals and BASIC Programming.

Support

Before and after the sale we work with you to configure the system that serves you best. We help you get your system up and running smoothly. Assistance is always just a phone call away.

Service

Friendly, experienced technicians are available, either over the phone or at any of the 56 Heathkit Electronic Centers nationwide.

Visit your Heathkit Electronic Center*

See your telephone white pages for the store nearest you. And stop in today for a demonstration of how Heath/Zenith Computer Systems can serve you. If you can't get to a store, send $\$ 1.00$ for the latest Heathkit Catalog and the new Zenith Data Systems Catalog of assembled commercial computers. Write to Heath Co.,Dept. 020-874, Benton Harbor, MI 49022.

Pick a strong partner. Heath/Zenith \& You.

HEATH/ZENITH
Your strong partner
*Units of Veritechnology Electronics
Corporation in the U.S
Specifications subject to change without notice

D APBIL 24THIg3I A PRONDGSIONAL ND XPMND NTL TDSING LABOBATOBT RADAR DOHECTOR IN THIE WOJLD:

ESCORT, WHISTLER, FOX, JR. MICROWAVE, SUPER SNOOPER AND FUZZBUSTER ALL COMPETED IN THE CONTEST.

> THE BRAND NEW K4O RADAR DETECTOR USING A UNIQUE WAVE GUIDE COUPLED DIE CAST ANTENNA DETECTED X BAND RADAR AN AVERAGE OF 54\% FURTHER THAN ALL OTHER DETECTORS AND 67\% FURTHER ON THE K BAND FREQUENCY.

OUTPERFORMS ESCORT THE K40 OUTPERFORMED THE ESCORT 17% ON K-BAND AND 34% ON X-BAND. THE K4O AVERAGED 28\% MORE DISTANCE THAN ESCORT AND 60\% FURTHER THAN ALL OTHERS COMBINED.

-April 24, 1981 TKI International

[^0]: MAIL ORDERS SHOULD BE SENT TO:
 U.S.A. P.O. Box 1035, Framingham, Massachusetts, 01701

 Telephone orders \& inquiries (617) 366.0500
 CANADA \& FOREIGN 237 Hymus BIvd. Pointe-Claire. (Mili). Quebec. Canada H9R-5C7
 Foreign customers please remit payment on an international bank draft or inter-
 national postal money order payable in U.S. dollars
 Prices are in U.S dollars. Minimum order S10.00
 Add $\$ 3.00$ to cover postage \& handling VISA AND MASTERCARD ACCEPTED

[^1]: MODEL SWM-33

[^2]: Dealer inquiries invited

