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Preface

The StatisticalMethod in Business is primarily a basic text

for an introductory cour«e m business statistics The material has

proved suitable for undergraduates, primarily juniors, and for first-

year graduate students The book is also adaptable for a course in

economic statistics

The point of \ lew is expressed b) the subtitle, Apphcatim 0/ Prob-

ability and Inference to Business and Other Problems The statistical

method is seen as a unified body of thought concerned with the basic

human problem_pf uncertainty and Uie corollary problems o f risk tak -

ing and decision making The emphasis throughout the text is on a

method of thought rather than a collection of methods, or a collection

of mechanical tricks of the trade

The spirit of the book can be best expressed by saying that we

continually ask questions that T\e cannot completely ansver This

seems to be a perfectly logical result of any serious investigation of

4 rantiind <ii d^aJm^ wdJi uncertainty It wauM aeam cnntEadmtery

to be certain about how to deal with uncertainty Such a spirit has

a price The reader will often fee! confused and frustrated, and ^ e

hope that such feelings are a consequence of the inherent nature of

the problem rather than the uncertainty of fuzzy prose

Partially to compensate for the difficulties inherent n the subject

matter an attempt has been made to minimize the role of those parts

of the statistical method which trouble beginning students but which

cause no trouble in practical problems We really know how to

calculate many things in many ^ays It is a chore to learn these

calculations, however, and difficultly with tins chore can easily dis-

tract a person from coming to grips with the more fundamental diffi-

culties of the general philosophy of the statistical method Therefore,

the mathematical demands of the book are quite modest and can

easily be satisfied by the entrance requirements of most colleges

Controversy about how best to handle problems of uncertainty is

Vli
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luhcirnt m iht We niskem effort to the conliov«si«

ihst mvohe the underljm? ph»lesoplw« guidicg people m their w
of lie twUrticAl method Some fee! that wntfovei^’ does cot be-

long in an introductory treslroent- Our feeling is contrary.

\fo^t itudenta get only as istroducUoa, and, il the mtiodiicLm is

swnliied of all the conflicts that plague and \ita!i:e the subject, the

student IS either being fed pap” or he u being indoctrinated In

frithtr ca*e he is ilbprepared to handle any of the infectious ideas he

u hhely to be fed u-hpo be leaves theahelter of the textbook.

Although our onenution u pnroanly toward business problems, we

try to take maximum adtaatnge of the icrsatihty of the statisbca!

meUiod by miroducmg many concepts m a nonbusicess setting We

thus draw on the general eipennice of the reader to clarify an idea

before we attempt lo apply itto relali'oly strange business situaticma.

The scope of bufine^j statistics has grown substantially in recent

jears The proliferation of specialised techniques and apphcatipus

has expanded the matcnals wcif beyond the space limits imposed by

the typical course and book The adienl of the electronic computer

proffli^e* to accelerate this proliferation More than ei'er, therefere,

we must leai*e out many topics that «ould be essential in a more

Cftended coNerage For example, we have lubstantially reduced the

ipace deitited to collection of data tables, and charts Tha reduction

intends DO discounting of the practical significance of these topics It

raereh reflects our judgment that these topics can best be handled

f/‘ewteri?

The omission of some traditional topics has made room tor other

thing! The most significant of these topics are

1 The statistical method is presented aa an intepal part 0/ the

whole process by which human beings acquire and use knowledge

Such a prescaUtion provides a realistic appraisal of the role that

can actually be played by the etatislical method

2. A chapter is devoted to the problem of pooling aecinnulated

knoB ledge mth new information U is here that we make an
acquaintance with "Bayesian analysis,” a? it 15 currently called

3 A chapter is aI*o devoted to the problem of making inferences

about future samples from information supplied by past samples
This is the genera! problem of inference that makes special cases
of the two traditional problema:

a Inferences about a BatupJe from a known universe
b Inferences about a universe from a knowa sample
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4 An introduction i8 provided to an approach to tune senes fore-

casting that develops a rational base for explicitly estimating

the degree of uncertainty involved m a forecast Traditional

analysis results in forecasts witii undetermined error allowances

Our approach to statistical inference is sufficiently different to war-

rant mention here The apptroaob is basically pragmatic We start

with a known umverse (We choose to me attribute data rather than

the customary continuous variables because of convenience of exposi-

tion and also because attribute data bni^ out losues that get lost when

we use continuous variables
) We then generate all possible random

samples from this universe Bach sample is used to make inferences

about the mean of the universe as though we did not already know

the mean All such inferences are then analyzed to see if they make

sense in view of the known facts We are next led step by step to

a method of making inferences that seems to work reasonably well

This process confronts us with the philosophical and practical im-

plication of Bayes’s theorem and Bayes’s postulate that the "equal

distribution of ignorance rule’ is applicable to the problem of infer-

ence We obtain an mfereoce method that is fundamentally Bayesian

with a slight modification in the mechanics of calculating probabilities

The problems and questions at the end of each chapter are designed

to supplement the text m addition to guiding the student m his evalua-

tion of how well he has grasped the mam features of the exposition

Generally there is only one problem or question of a given type It

is relatively easy to make variations to provide any desired degree

of rfapiVcsfion for purposes of tfriff, extra emphabTs on ceristn points,

etc Some of the problems antrcipate material of later chapters

Other problems tend to go beyond the text coverage

Most of the problems are not practical m any real sense Practical

problems become quite complex and involve many issues other than

the statistical ones The problems are generally not trivial, however

Their solution has practical significance to real-life problems Some

of the problems are "for fun ” Statistics is not an easy subject, and

any opportunity to have fun or make fun helps considerably m the

struggle

The material in the book is more than sufficient for a one-semester

or one-quarter course With minor supplementation and/or with

more intensive coverage of problem materials the book is sufficient for

two semesters One very useful way to supplement the text is to

assign students special projects to give them personal experience with

real data A very popular project require each student to forecast
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Uic 'ales ol some corapan> ,
saj , b} quarters for the next j ear and then

by annual totals 2 years hracCj 5 years hence, and 10 years hence

Such a project is much more challenging if the students are required

to slate ihcir fom;a»ts iMlh a meaningful error band and r^ith «ome

percentage of confidence that the actual nill fall nithin the stated

band The struggle to «ct meaningful and defensible error bands is

\cr> educational and abo quite sobering

Mo‘t of the matcml of the book has been used m some uay with

man\ students In fact students ha\c fitunulated much of the de-

velopment because they moisted that they understand nhat they nere

doing and whi they were doing it I am happy to acknowledge my

indebtedne«s to the more persi«teot of the students which I am sure

will «urpn*e «ome of them

Students arc not the only persons who have helped roe Professor

Albert Bennett at Drown Umvcr«ily fir«t stimulated ray interest in

ftiti«tic3 and Professor Arthur Tebbutt nurtured and sustained this

interest fir*t at Brown and sub-cqucntly at Northwestern Several

colleagues have contributed much to my understanding of statistics

and of the many problems of practical application I feel particularly

indebted to Arthur Aublc John Dilhngcr Loring Farwell Zenon

Mslinow«ki John 0’^cll and Zenon Szatrow^ki

A ‘pccial debt cxi’ls to tho^e who kindly gave their time to read

vnnou'* parts of the manuscript with cnlieal care Foremost among
thc*e have been Boris Pari and Dirk Van Alslync of Northwestern,

ilUaro Clarcy of Bradley University Moms Hamburg of the Uni-

vcr^ilv of Penn*'} luma and Eugene Lemer of City College of New
\QSk

I al«o wi<h to thank Deans Donham and Anderson for making it

po'Mble for me to hive the uninterrupted time needed to pul the
finishing touches on a labor of many years

Finally there are tho*o persons who^'c help over the \nrs has been
'0 unstinting ami personal that it would be unduly sentimental to say
more than ju*t thanks By naming none, I mean to include all

Frederick A Ekebud
Fvanslon /[ftnou

Apnisi.m;
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chapter I

The nature of the statistical

method

The statistical racUiod has been called many things, vie

choose to call it a method for making inferences about unknoii'n

events on the basis of a systematic aDal}5is of post esrpenence In-

ferences are simply guesses dipified by the prior exercise of logical

thought, undignified guesses can sometimes be just as effective

make inference® about the mknovm rather than the knonn

simply because it is our ignorance about an event tliat forces us to

guess Since there is much that we do not knov about all the prob-

lems that beset us, ue find ourselves continually guessing We e^en

guess about something we could know if we took the time and

trouble to learn We apparently enjoy guessing Other\M«e how

do we explain the widespread popularity of games of chance, games

that we have created in order to make guessing synonymous with

entertainment? We have no shortage of opportunities to apply the

statistical method, our shortage is more of effectne techniques and

m a willingness to apply the technique® we do have

The statistical method makes inferences from past expenence or

from knowledge about past events because that is the only kind of

expenence there is have no crystal balls that enable us to see

future events before the} happen Hence, the starting place for all

inferences is some record of the past It js understood, of course,

that no inference is any better than the quality of the historical data

on which It IS based

Although it IS more common to think of “inferring the unknown"

m the context of the pa«t and the future, we find ourselves dealing

with many problems in which the “unknown” is a current fact (to

somebody) or in which the unknown is itself some historical event

For example, when we play cards, our hand is known to us but un-

known to our opponents {unless they peek) Thus they must make

1
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!cc1‘10I15 OQ sfcMT

i«i. 5ocs baSfd ca guesses about them Sttailarly, busiaessmen must

niVe gu'^Mrs about Ute resources o( theit competitors, and \ice versa

rhe police (!tt«U\e lOve'Ugatiog a crime must maVe guesses about

i^e various ncuu that base already occurred A jur> may haie

;U lame problem at A later dau

AlUiousA Uie atatisucal method is of uidcapread applicability and

its manj features that 8ppl> with equal force regardless of the area

if application, we put much greater emphasis on applications in the

business area This empha«is becomes more noticeable in the later

ihapicT* The earlier chapters are dominated by our cflorts to un-

cover the fundamentals o1 the alalialical method, iundatnenUls Ihul

apply to all sorts of problems Thus out illuslraticms tend tc be

jomewhat varied, vilh the particular hope that they refer to events

that have alread) come mto the Mpenences of moet of the renders

1.1 A Simple Gome

Games can be fun and also loformative, particularly when they

reveal the problems of guessmg lo their starkest simplicity Let us

look at a series of games cf increasing complexity m order to uncover

many of the essential features of the challenge lo the statistical

method

The game u played uith a conventional deck of playing cards

6uU does not count m the game The deck is knmn to contain four

r« <r?8|, foa* fi, four ll'a fiacks) four 12*8 fqueen^), and

four 13 a (kings) The method of play w as foliows*

} A pbjer s^-Ipcii an) number be nuhes and places a wager of SI 00
U A card IS drawn from ibe deck If n w the number be selected, he

win! SI3 00, inriuding the $1 h? bet If « is not hvs nutnber, he losa
hwll

The proWan « vtr, timplc, Minely, iht dctEraimation ol what
number to call Suite », tnoir itit wttl! art m tbe dt*, all w
bic to be fotcOTfd , » Wbat catd wU be dtam cut at any
Siita time tic bji. ,c, «! „yj of to ajiice out v.hal
cart 0 ill be dfaira Ti e » iplest and quickest « ay is to not, try to
tad out and KUct as t ,^0m do not bow which of tbo thirteen
cards will be d„„, j,
that beeaort bc do not too* itlich card mil be drann, m ndl
Btflimi. that each cart b, the aame chanec of being drawn Or, in
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other words, we would assume liiat m a long senes of drawings, each

of the thirteen cards would have b^n drawn about the same pro-

portion of tunes as each ottier CEttd It, therefore, really makes no

difference to us which card we select

On the other hand, we may decide to “smarten up’’ by studying

the drawing process and its results Let us first consider the results

of some drawings Let us assume we have observed the resulte of

45 consecutive drawings " (Each card is replaced after it is drawn,

and thvs the deck is the same /or each drawing
)

Table 1 1 lists the

results

What can we find out from studying these results? We might first

Ignore the order of drawing and count the number of times each

card was drawn Table 1 2 shows the results

The most interesting feature of this experience is tie large number

of 7's and 8’s and the few lO’s and 12’8 The question is whether

this expenence just happened as jt did and has no practical signifi-

cance, or whether it suggests that perhaps some of these cards have

higher chances of being drawn than others there is

no way to give a definite answer to this question We must talk

entirely m terras of probabMm For example, even it the expecta-

tion were that these cards would come up equally often in the long

run, we know that they wouldn’t come up equally often m only 45

drawings The question really is whether it is reasonable to tolerate

as many, say, as seven S’s in 45 drawings and still believe that the

chances of an 8 are no better than any other card or whether we

should decide that this is enough evidence to justify the belief that

S wriV came isgf imv cites is the fatsre becaase it has ems up mne

often m the past (or at least dunng our experience of the past)

Before we can rationalize such questions we must estimate the

probabilities that certain things could happen if certain conditions

prevailed Here, for example we might start with the as^mption

TABIE 1 1

Results of 45 Drowm^s from Pioymg Cord Deck

8 7 13 6 4 10 13 6 7 5

5 316133847
1 6 4 8 8 9 7 8 9 1

7 2 5 9 2 8 5 8 7 12

2 11 1 n 7
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TABLE U
UmUt .t Tlmti Eo.l, Co-J Wo. Drown In 45 Drowlnjl

Card Frequency

oo« 5

two 3

three 3

four 3

5

SIX 3

SeNCD 7

tigU 7

nine 3

ten 1

eleven 2

twelve 1

thirteen 2

45

that the conditions surrounding the card drawings are such that each

card doca ha\e the same chance of being dfav\Ti as each other card

If this IS *0 the probabtlit> is only about 1 out of 50 of getting as

man) as jeicn S’s m 45 drawings (How to calculate such probabili-

ties IS di«cus«cd later ) This «eems unlikel> enough to cau«e us to

mpcct (hst perhaps th€ mtuaptioa ts not correct Perh&ps ne

fhould a<njme that the probabilitj of an 8 w greater than for the

other cards (wuh the exception of the 7) On the other hand, the

probabi!it> is about 1 out of 4 ^at at least one card will come up 7

or more times in 45 drawing? Here, the card “happened” to be an

S and a 7

\Vc could cab itc the iiroDabilities f r other possible assump-

tions, but It IS Lot important for us to do so now It is more im-

portant for us to look briefly at the problem of deciding what
meaning ae sho/U attach to the probabilities we have already cal-

culated To do ihis roost cffectuely we should (onnalire out de-

scnptions a little more Fir«t, let us wnlc exactly what we know
about the^e card draw mgs \\ e know that

1 Each card enili la the deck the same number of tunes as each other
card,
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2 The eards are numbered 1 through 13 (there are no 26 ’b, etc )

,

3 Forty five consecutive drawings resulted in the numbers shown in
Table 1

2

Unfortunately, we do not know enough about the cards to be able

to tell exactly what card will be drawn next Hence we must sup-

plement our knowledge with some behef, assumption^ or hypothesis

But, we might assume all manner of things How do we decide

what hypothesis we should really adopt? The most important cri-

terion m judging the quality of an hypothesis is that it miisf be

consistent with the jack This criterion seems obvious, and that

it is It is, however, the kuid of obvious thing that we need to be

continually reminded of We all have a tendency to retain hypotheses

that have groira dear to us even when the fects no longer support

them

We test the usefulness of a hypothesis by calculating the probabil-

ity that the given factual events could have occurred if the hypothesis

were true For example, let us set up the hypothesis that the cards

are equally likely From this we calculate by standard procedures

(discussed m latei pages) that there are only two chances out of

100, or 02, of getting seven or more 8’s Suppose we decide that

only 02 is very rare m our judgment and that the facte are incon-

sistent with the hypothesis Obviously, then, we discard the hypothe-

sis, or belief, because we must retain the facts But possibly we do

not think 02 is very rare, and we are perfectly willing to continue

to accept the hypothesis on the grounds that the occurrence of as

many as seven 8’s was just a “matter of chance” Of course

we might decide this either nay and either way might he correct

To help us decide we have to deteraime how important the 02 is

to vs Suppose we conclude that our hypothesis was wrong, namely,

we conclude that the chances are greater than 1/13 of getting an 8

Naturallj would now bet on the 8 What would this policy cost

U8 if, m truth, the chances of an 8 were no greater than 1/13? This

would obviously depend on the conditions of the game If the 8

were paid off at the same rate as all other numbers, and if the 8 had

the same chance as all the other numbers, and if we always played

the 8 because we erroneously believed the 8 were more likely, our

erroneous belief costs us nothing

If, on the other hand, we pay more for an 8 because we believe

it IS more likely, and if, in fact, it is not we would be paying a

penalty for our erroneous behef

Let us now sumrasnre the kind of policy we might adopt for

playing this game in the light of what we know about it and of what
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„ og^•. chom to f-t" »• l»-potoTT

c^cc<€ S (or 7) as loag as we do not hare to pay a premium

fo* ly * f^oire our o h«r numbers do this because the facta

(CIKI Ss n 45 tnaU) suggest to us that there is a greater chance

fc* aa S than (o’- mo«t of the other numbers E\ cn if we are wrong

IP Lh s belief this decision wts us flolhing bccau'c we are quite

•ure that the chances of an 8 are cm the eudence no loiter than

fo- anv oie' number Thus we have nothing to lo«e by choosing

S and we mig^t have «omethiiig to gam This is obuou'ly a aery

good position to be in fo- an} situation

But !*t us «jppo‘‘e we have to pa) a prenuum to play 8 How

I gh a ptmium would we be viUmg to pay? If pre^^ed of course,

we would be willing to ps' as much as we fAouphf it were worth

We mght believe for example that *ini.e S has occurred more

than /tficc a* often as most of the Dumbers we would be willing to

pay ftpice as much for the pnulege of choo«mg it The point is

ver> einple Peop'e decide things according to trAof Mey ic/ieuc

to 6e fn;e Their «ucce« will gcnerall) be directly related to how

c o^ly thei* beliefs are con»istetit with the facta But we are never

able to test how well a belief coincides with the facts except on a

prehaWity bisi* Thus we are alwavrs be*et with uncertatniy

\\e hare dehberatelv a«ked questroos to which there is no defini

tivean«wcr \\ c come up therefore with no definitive answer But

we are cot doing this juH to pla) games The essenfwf chareefgr-

ub/' of all prachfol prohf^m u that they do not hate definitive

cisverj But the) mu«t be dealt with as though thej do have

an<wr^ Hence we n5U«( cAoose an answer based upon what we
bfhcie ard we hope that what we believe is corimfeat tnfh the

Although we hope never to eliminate all confuuon because

to do so would be to throw the problem awa> too, we do hope to

uncovc- 'v'te’nalic wajs of working ourselves through the con-

fusion m n*h a manner that we will at least be confused about the

ngHthinp

More c' an effort might have been made to gam additional

knowledge about the game and its results, and if the«e efforts were
-omewhat *ucce*«fu! there would be Ie^» uncertainty For example,
wh> stop at 45 sample drawings’ A\*hv not make 100 or 1000?
'thy not mdeed"^ There j? no question about the fact that more
d-Tiwmgs wi provude irore mfomiation and would enable us to have
mo^ confidei-f m our ultimate selection' But additional drawings
take addiUoiil time and time is costh Somewhere we have to
'top 'todvirg a problem and start .ohing it- "toere this point
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should be is a matter of judgment again, but there are ways of

assessing the situation to guide us in exercismg this judgment. Such
ways are also discussed in later pages

We should mention that additional things could be done to gam
more knowledge other than just adding to the number of sample

trials For one, we could examine the tnals we already have to see

if there is any evidence of systmaiic order to the numbers For

example, were there more lai^e numbers near the end of the trials?

Was a large number generally followed by a small number? And
so forth There is almost no end to this sort of analysis

Another, and quite different, tiling we might do to gam more

knowledge about these card drawmgs is to study very carefully not

only the results of the drawings but also those other things that were

going on while the drawings were being made For example, was

there any relationship between the number of times the deck was

shuSed and the number drawn? Between the distribution of the

bets and the number drawn (maybe a certain amount of ‘ cheating”

IS going on) ? And so forth It is likely we could gam increased

knowledge by such assoaatxon of one thing with another This is

something we discuss at considerable length later, however, we have

to ignore this method of gaming knowledge m this problem because

we are given no information on those things that might have been

going on during the drawings

1.2 A Little More Complex Gome

Simple as the last game was, we managed to run into trouble as

we tried to figure out a policy to help us choose a card Even though

we knew exactly what was m the deck, and even though we had the

experience of 45 drawmgs, tile nature of the problem still left us with

some uncertainty about bow often we diould expect a given card to

be drawn We saw the possibility of several different policies we

might adopt in choosing a card, but no policy we could select gave

us any assurance that it was the best policy

Now let us make the game a bttie more like real-life problems and

therefore more complicated We now consider the same game, but

without any knowledge of what is m the deck All we know about

the deck is that there are 100 cards m it, and each card has a num-

ber of any size whatsoever on it Our problem is still the same as

before, namely, what number will be drawn? But now we have no

way of predicting what will come out of the deck based upon what
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• lnotf 1* m It. So let U9 mo^e immfdialelj to the consideration

how would interpret am cxpcnence we might ha\e with cards

at wc might hau ob erred beng drawn

Suppose the fir'l card drarm is a 17 It li then returned to the

ch ^\hat number would we «eleet lor the next drawing and hou

^(h fonfdencc would we ha\c la otir selection?

Uc wou'd ha\c to select 17 on the ‘'itnplc argument that that is

e onU number that we know is in the deck Anj other number

‘‘eftciraai notctcnexi*t

How much confidence ehouW we hare m this selection? This de

D is on bow nan) 1? s we thmk there arc m the deck Our present

lowirdge indicates there ma> be an>where from 1 to lOO 17 8 For

li rei«on we would hesitate slronglj to bet an>thmg on our choice

r unle*s we were paid off at odds of at least 99 to 1

Ut U5 qmcklj *\iramante the progr^s we have eo far made m
iin ng knowledge about the cards that might come out of this deck,

efore we hsd seen an) card wc would hi\e to admit that our

wwledpcwasml orO orconier«c|>ihaioungnorance was infinite

fomebod) had a*kcd us what we thought the probabilit' was of

awing n\ a we would ha\e had to admit that as far as we

lew It was somewhere between 0 and I But now that we ha\e

en a 17 w e ha\ c reduced our ignorance somewhat e could now

N ihit the probahiltt\ of a 17 is somewhere betwreen 01 and 1 00

that the profaabiliij of a 2o i« somewhere between 0 and 99 If

i wi'hed to cxprc»3 this decrease in ignorance mathematicallj we

uid es) that knowledge of the 17 has enabled us to reduce our

norance from a range cf 1 to a range of 99 or a reduction of l^o

^oi^ let us draw another card Suppose it is again a 17 ^^hat

« this tell us’ It certa niy does not tell us definitely that there

p at Jca«t two I" s in die deck because we might ha\e drawn the

me 17 again On the other hand is it reasonnbk to a'^sume that

^ ha\e drawn two 17 s m a raw if there is onij one of them in the

ck’ The probabii tj of two 17 a id a row if there is onl) one in

? deck IS on!) 01 X 01 or 0001 or ] out of 10000 This is such
are eictjt under the h\jiothe<!5of onl) tj't 17 that wre may decide
reject this h)potlic'»i- m fa\or of one that would make two 17s
a TOW appear to l« le<3 rare For mmpjc w e might assume that
rt are ten 17 s m the deck If this were 50 the probabilit) of two
a row would be I X I, or 01 This sWl « not Ver^ often but it

tainlj H conMdcrahlj more often than 0001
)f course we could make manj different a^sumpiions about Ur
nber of 17 s m the dock Each a'^'nimption would make it jios^ihlt-
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for us to calculate the probability of drawing two 17’s in a row

Table 1 3 lists some of such assumptions and their associated proba-

bilities Which assumption should we adopt? Again we discover

that it depends on judgment about what is at stake To make the

situation more concrete, let us assume we are offered the following

choice of wagers If we select 17, we would be paid off at 9 to 1 if it

came up on the third draw On the other hand, if we selected “not

17” and 17 did not come up, we would be paid off at 1 to 9 What

bet should we take? Obviously, if we believe that there are at least

ten 17’s, we take the first bet, if we thmk there are fewer than ten

17’s, we take the second Or perhaps we are so confused that we do

not wish to take either!

TABLE 1 3

Relationship between Hypothesis about the Number of 17's in the Deck

and the Probability of Getting Two 1 7 s m a Row

Hypothesis

No of 17’8

m Deck

Probability

of Two 17’8

maRow

1 0001

2 0004

3 0000

4 0016

6 0025

6 0036

7 0049

8 0064

9 0081

10 0100

11 0121

12 0144

13 0169

14 0196

15 0225

20 0400

25 0625

30 0900

40 1600

60 fSiSff



Ij
WE SJAllSIlC/kl RRHOO IN BUSINESS

The lujl dcci'ion ot lalmg no poMUon is, oi come, periectly

nroptr \\ e haMi m tStct decided not to plaj this game The de-

moo to aioid a 'dMisioo" is one that all of us make manj times a

day m all sorts of problem situations Sometimes it is the proper

thing to do, o'her times, howeier, it is indieatiie ol an unmllingness

to lace up to a problem that is going to lie decided one nay or an-

other whether we participate m it or not Al'o there is the fact that

we will neier really giie ourselves a chance to make a cDrrecl de-

cision, 0/ ony amq\inct unless we are willing to take the risk ol

msking an inoorrect decision There is much truth in the old proietb

nothing\e!ilured,nothmggamcd” All business decisions arc made

in a contcit which luggesta the possibility that the decision may be

wrong \t c just hope that on the aicrage our decisions ate based on

correct hypotheses olten enough to remit in a reasonable net profit

lot the company

Let us decide that we believe that there are at least ten 17’s in the

deck This means that now we think the probability ot a 17 on the

nen drawing is between 10 and 10 Note that the range of our

uncertainly about the probability ol a 17 is less than before the

second 17 was drawn Then it was 01 to 1 0 ,
now it is 10 to 1 0, or

9 097e l«s Thus the knowledge gained by the second drawing

enabled us to reduce our ignorance another 9 097o (IVe should also

note thsi now we would estimate the probability of a 25 as some-

where between 0 and 90 instead ol between 0 and 99

)

tlTien could we be sure that we knew the probability of drawing

a 17? The answer is that we never could More drawings would

enable us to decrease our ignorance, but we could never really reduce

our Ignorance to lero, although we might gel very close to sero

Table 1 4 gives us some idea ol the rate at which additional draw-

ings would decrease our ignorance about the probability of a 17

This tabic assumes that we keep getting 17’8 This assumption

makes it conside-abiy easier to make the necessary calculations to

illustrate the pm eiple, any other assumptions could be made
Figure n shows the material of Table 1 4 in graphic form Here

it IS quite easy to see that the rate of reduction of ignorance declines
rather substanlially after about 20 trials In other words, a law of
hminishing returns sets in, additional investment of time to gam
mote knowledge tesulla m n smaller rate ot return There would
rome a time, of course, in nny practical situation where further m-
lotment to increase knowledge would not be justified by the return
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TABU 14

Rate at Which Ignorance about the Probability of a 17 is Reduced by

Additional Drawings

(It IS assumed titat a 17 is drawu each time)

Number Estimated Pmb- 'Range

of abihly of a 17 on of

Drawmgs ‘ the Next Draw * Ignorance

0 OGOOD-l 0000 10000

1 0100-1 0000 9900

2 2000-10000 9000

3 2154-10000 7846

4 3163-1 0000 6837

5 3081-1 0000 6019

6 4642-10000 5358

7 5180-10000 4820

8 5623-10000 4377

9 5995-10000 4005

10 6310-10000 3690

11 6580-1 0000 3420

12 68I3-I OOOO 3187

13 7016-1 0000 2984

14 7196-1 0000 2804

25 7357-1 0000 2643

16 7499-1 0000 2501

17 7644-10000 2356

18 7743-1 0000 2257

19 7847-1 0000 2163

20 7943-10000 2057

25 8318-10000 1682

30 85?6-10000 1424

40 8913-10000 1087

50 9120-1 0000 0880

iOO 9550-10000 0450

500 9903-10000 0092

woo 9954-10000 0046

* The probabibty band is estimated such that the lower limit would lead to a

probabihty of 01 for the given sequence of I7’s For example, the probabibty

oil$ 17’sm a row is 01 if there are 68 IT’sm the deck
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fi* 1 1 Ra'f »i whifli ipnoraoce Bboul the probability of a I 7 w reduced bj

addiliooal draviopi

1 3 Comparing the Two Gomes

Ucfore we introduce a third game let us briefly summarize and

compare the problem ‘ituations created bj the two games so far

(li«cti "cd

we note that our decision problem was basicallj the same

m bo'h narach we bad to select tlie number that we thought

would occur m the next drawing In neither ca*e did we know wlnt

would occur

Second we note tiiat m both ca^es we became concerned with how

ofU.n ttc thought a gnen number might be drawn In other words

wp became concern* d w ith the probability that a gn en number w ould

occur on a given draw

Third we note that the real differenn between the two games

showed up whin we tnod (o f«!liniate the probabilities of anj given

rumbtr occumng In tiic first game we knew what was m the deck

From dll'* knowledge we were able to directly estimate probabilities
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Some people might sa} that from this information we would know
the probabilities We prefer not to take this position for reasons
that are brought out later In fact, we also looked at 45 trials from
the first game This additional information, although lery welcome
caused us to haie some doubt that the probabilities inferred from
the cards in the deck were exactly the same as the probabilities we
would infer from what w e had observed come out o! the deck There-

fore, let us not forget that we had some uncertainty about what the

probabilities were that a given number would be drawn

Our problem of estimating the probabilities m the second game
were much more serious however, than they were m the first game

because we knew absolutely nothing about what was tn the deck

except insofar as we could infer what was in the deck based on our

experience with what had been drawn out of the deck The greater

uncertainty considerably complicated our problem of deciding on a

definitive policy for selecting a number to bet on

1.4 A Third Game with a Little More Complexity

Disconcerted as we may feel because of our uncertainty about

what strategies we should employ m the two previous games, we now

have to accept that there is even worse to come

The third game is exactly the same as the second except that now

we are going to play a game in which the deck is changed after each

drawing At no time do w e know what is in any deck^ and at no time

do we know if the succeeding deck is the same as or different from

the last deck For example, if we get a 17 out of the first drawing

from the first deck, we have no assurance that the second deck will

even have a 17 m it Similarly, we have no assurance that the second

deck does not have all 17’s

Just so we ma) more clearly appreciate the enormity of the prob-

lem now facing us, imagine oursehes sitting down to a friendly!’}

game of bridge played w ith an unknown deck The only information

w'p could obtain about the deck is what we are able to observe and

remember as the hands are being played And to make it worse, the

physical deck is changed after each deal and we do not know whether

the cards are the same as before, bigger than before, more hearts

than before, etc Also keep in mind that, while we were learning by

experience, we have been bidding and playing ]ust as though we

knew what we were doing'

CoDSidenng the challenge that most people believe the game of
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b'-idge to be under il3 present nilw oI a known and consfant deck,

.mspoc U.C challenge ol Iht game with an imArwim and possibly

eAun^in; deck A first reaction probably is that such a game t^ouIu

be impossible, and no ordmar^* people could or would play such a

game But let u5 analyte the aitufltion First, let us note that all

the pla)eH are presumably equally ignorant We would not be

plnjing against Bomeonc who necessarily knew more than ue did

The other person wpenences the fiame tv^ingcs ol (ear as we do

His piej«es are jUst as wild as ours. As soon as we realize hia pre*

dicament, ^le are not quite so upset about our predicament. We may

even have room in our heart for compassion for that other person 1

The third game brings to the forefront one of the most significant

features that predominates m many practical situations, and that is

that how much we know about a situation is often not as important

as how much we know compered to competitors In fact, it is a

commonplace observation that if a business is easy to learn, m the

sense that we feel as though we know what we are doing in such a

bujioeis, man) people enter the business The resulting competition

makes It no easier to make a profit than if we had gone into a more

diiEeutt business, where the difficulties served to reduce the number

of people who thought they knew something about it

If wc grant that there may be some sense in playing such a game,

the next question is to determine how we go about gaining as much

knowledge as possible as the game proceeds The answer is very

simple We analyze the results of the game as they unfold We
relate the figures to each* other to try to discover any tyitem or

paWem that mav exist As we think we have discovered such pat-

terns, we begin to incorporate them into our decision-making rules

If we can discover patterns sooner than our competitors, we will gam
an advantage If, on the other hand, we act on patterns that are

not really there, we might find ourselves at a disadvantage

How we proceed to analyze experience in order to abstract most
effectively any B}’stems or patterns of behavior is the challenge of

the remainder of this book Tliere are many routine procedures
which we can follow that expenence suggests will generally be very
helpful Such routines are explained and discussed On the other
hand, there is no routine procedure that can be developed to substi-
tute for all persona! judgment Our basic problem is that of un-
certainty, the same kind of uncertainty we have experienced as we
tried to figure out how to play these games We can never reduce
this uncertainty to zero, and, therefore, the need to exercise faith
and courage in our hypotheses will always be present. We might
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express our purpose as the one of learning hcF to reduce uncertsinty

and to cope with uncertainty, rather than the one of ehminating un-

certainty

?.5 A Pracficaf Example

Counterparts of the problems of playing our third game exist m
many practical situations Let us examine a relatively simple

practical illustration for such analc^ous problems

Manufacturing operations often result in the occasional produc-

tion of unsatisfactory units of product Such units are then rejected

and often become classified as scrap An excessively high produc-

tion of such scrap is to be avoided if the company is to keep its costs

under control The control of scrap has two parts to it One task

IS to be able to identify when the scrap rate has become too high

The other task is to know what to do to reduce the scrap when it is

too high The second bask usually involves such things as quality

of raw materials, engineering aspects of the production process, tram-

ing and supervision of workers, etc These factors are outside the

bounds of this book We are concerned, however, with the first task,

that of deciding when the scrap rate is too high

If we were to interview the typical shop foreman m order to find

out how he was able to decide when the scrap rate was too high, we

would very likely find that he based his decisions on ' expenence
”

Ei8 expenence would have given him an idea of the capabilities of

the materials, men, and machines to produce a certain proportion of

satisfactory units of product He would be unreasonable to expect

a scrap rate below the minimum dictated by these capabilities He

would have discovered that efforts to reduce scrap below such a

minimum level resulted m reductions m the over-all rate of production,

excessive anxieties on the part of workers, etc

He also would have learned thatfhere would be a minimum amount

of unavoidable fiuctuatwn m the daily scrap rate even though the

production process was still operating properly

In a particular machine shop that had been doing fairly standard

work over a penod of several months we found that the foreman bad

decided that a daily scrap rate of 2 5 to 7 5% was satisfactory If

the daily rate went below 2 5fa, he checked to see if the workers had

become so concerned about producing scrap that they had slowed

down their rate of production If the daily rate went above 7 5%,

he checked to find the cause of this excessive rate He felt that a
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ra'c bctttctn 257c and 75^ was about right His attempt-; to pin-

point the cau«e<» of the lower and higher rates within this range were

pmerallN unsuccessful Such attempts al^o consumed ‘^orae of his

time that lie could more profitabl) appl> o!«ewhere Thej al«o

rau-'ed some irritations among the worker'; who felt that ho was

getting too fu'«j and wa< trjmg to do the impo'^sible

Our inlere'^t in the foreman'* problem is centered on the relation-

ship of his cxpcncnco to his deeision to control dailj scrap between

25‘> and 75^ Wc lookwi at a record of 45 da>s of experience as

reproduced m Table 1 5 The mo®t notable and possiblj di'JCourag-

ing feature of the«c «rrap percentages is that thej Nar) For ex-

ample, dunng thi*; 9 week period the scrap percentage has been as

low 93 f4lh dax of the 8th wcekl and as high as 12 37 (4th daj

of the 5th week) This is the \anation that the foreman would like

to control

Let ua now put Una scrap control problem in terms analogous to

Uio«e of our simple card games Let us imagine that the produchon

process that has generated ihe<c scrap percentages is like our deck

TABU 1 5

Ptr(«ntaB« of Strap Praduevd

\\»l

roof %0t %of
Day Scrap ^eck Da) Scrap ^«k Day Scrap

\ 1 CSB 4 I 536 7 1 561
2 402 2 612 2 797
3 3 572 3 607
4 042 4 763 4 827
5 4 41 5 576 5 168

2 1

2

3

713

IICO

7^1

5 1

2

3

73S

611

841

8 1

2

3

347

62S

082
4 96 4 1237 4 03

5 G19 5 490 5 863

3 1

2

3

4

5

Ij43

S0>

603

3^1

SM

G 1

2

3

4

5

583

674

850

623

707

9 1

2

3

4

5

7C9

483

290

799

692
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of cards Tins process, just like our deck, has all sorts of scrap per-

centages in It Each day one of tiiese percentages occurs, just as

though it were drawn out of a deck by a random selection procedure

If we compare the scrap percentages on two successive days, we are

uncertain as to whether any observed difference is due to chance or

whether it is due to a change m tiie production process itself, and

thus the equivalent of a change m the deck Natural!}
,
if it repre-

sents a change that indicates a worsening m the process, the foreman

would like to initiate coiTecta\e procedures Otherwise he would

prefer to leave it as it is

The question is How can he tell the nature of the given vanation?

It IS obvious that every time the foreman initiates corrective pro-

cedures he IS taking the nsk that he will be searching for a will-o’-

the-w isp, or that he w ill change to an actually poorer process On the

other hand, every time he leaves the process as it is, he takes the nsk

that the process has actually gone out of control and will continue

to produce an unsatisfactory rate of scrap on the average No matter

what he decides, he takes the n«k of doing the wrong thing If this

kind of nsk bothers him, he perhaps should return to his former job

as a machine operator

1.6 Our Task

The concepts and methods of trying to gam understandmg of prob-

lems like the scrap problem are going lo be the subject of practically

all the discussion m the remamder of this book Such concepts and

methods have a much wider aoplication than to just problems like

that of the scrap percentage We find that most of the concepts are

quite simple We have been using most of them through most of

our lives Our attempt to put labels on these concepts and to

formalize their relationships causes us no trouble if we form the

habit of continually relating our discussion to our own familiar

problems The methods we use and/or refer to vary from things that

are common knowledge to the fifth-grader to things that are best

handled by professionals

Actually, the pnraary virtues needed for successful analysis of

historical experience of the scrap percentage sort are patience, per-

sistence, and imagination These are frequently more important than

knowledge of fancy methods or the ability to articulate about con-

cepts The work routine in the analysis of data has only tw 0 basic

parts First, we ask a question about the data, second, we answer
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Oie question bj tearraBpiig the data For ex&iflpU, «e might ask

Hot? o(tcii has the wrap percentage been oier 90? Ue ansivor

the queibon by a «imple count of the relative frequencies of the

\a'ious Bcrap percentages Or, ne m ght ask 'Are the scrap per

tcnlagca getting an) larger as time pawa?* ^Ve might try to answer

this question by comparing the average daily percentage during the

Iftit two vreeU vrith that during the erst two w eeks Or, we mi^t

aslc “Are the acrap percentages any higher m general on Fnday

than they arc on Tue*day? Uc answer this by comparing the

average Friday percentage with the average luesday percentage

And so lorOi

Patience and persistence become necessary because the value of

many que*ticns cannot be determined until after they have been

ar*wcrpd, and by then all the work of rearrangement has been done

including that part of it that «e now wish we had tot bothered to

do IL IS easv to be di'couraged tf out first questions lead W fruitless

remits this la particularly true if we are being judged by the results

wc produce rather than by the nine and effort we put in

fmsginatioQ is needed to help us think of good questions and also

of vancus ways of rcairangiog the data Too much imagination, of

ii'c may get us into UuuMe because we never run out of sew

quesuons and new methods and hence we may spend too much tune

with the esiae data thus leaving ourselves no time to accumulate

some additional evidence Sometimes it is better to get impatient

and to quit an analysis after a moderate amount of effort. Uc-

fortunately there is no way to avoid the risks and consequeaces of

quitting too icon or loo late because we have no way ut predetermin-

ing what IS too eoon or too late

U Tba Notions of Umvunu and Sample

Let us take a imnute now to formalitc a few terns From now on
we refer to our deck as a imtvtrte * This term applies whether our

dl«k la real or whelher it » a figment of our imagmation as m the

case of the scrap producing process More formally
,
a universe js ‘a

collecticm of things which MHUins all the things which we think
might occur under lotce particular circumstances ‘ Rarely, most

‘ Tile word ‘'population" u aUo commoBly used lo mean ihe ewne thug We
iwel^ ufc ihe lenn horeter, we occaaoBAlly use population We
•hould be prepared f« both la »wt»gv w vtaVatital
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often m games of chance v>e might deal Rith a universe that we
know contains certain things

A sample is a part oi the universe It might contain onlj one

item or it might contain all the itemc and thus be the same as the

unnerve A sample as large as a \im\er<^ is generalh on}} a con

ceptual po'^sibiiity rather than a realitj The sample may refer to

some items that are m the universe or it maj refer to items that are

to be generated by the universe or it may refer to items that lia\e

already been generated by the universe Thusue would refer to our

45 scrap percentages that ha\e occurred over a 9 week period as a

sample of the scrap percentage^ that miglifc ha^e been generated by

the universe of scrap percentages

e have more to say later about different classes of universes and

samples and the relationships between tbem

1 8 A Concepfval Scheme

e are now ready to propose a conceptual scheme to help us in

our thinking about problems of the «ort described above problems

that are characterized by uncertainty and which are therefore prime

subjects for the statistical method

e conceive of our problem as one of predicting what sample will

occur at some defined period of time In order to do this we must

somehow develop a picture of what univer«e this sample will come

out of The only basis we have for developing thi« picture is cur

experience with past samples Each of the past samples came from

Its own past universe Possibly such past universes are identical

perhaps they are not At any rati^ we infer what these past unn erses

were like on the basis of the sample that we have observed

Starting now at the other end of the sequence we proceed in our

analysis as follows

1 We examine hstoned samples of evidence

2 We infer from these earapies (he cond tion': we think prevailed m the

histoncal mverses out of which these sample' came

3 Wc infer from these historical imver«es the future vniverse out of

which we think our sample item will come This future umvcr'e may

or ma) not be the 'ame as the past universe'

4 predict the 'ample we think will occur Since se cannot know

e\actl} what wail occur we express the prediction m -pTobablity ian

gu!^e Generally this involves three numbers Two of the number'

specj/j the Imits mthm nhei i e think the fOmpJe will occur The

third number expresses the confidence we have or tl e probabilitj that

the sample will be w ithin the limits
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For o>mpIe, titer laalyiis ol our past espcneocs mill tlie scrap

pcrccotagCi uc wight come up uith the sUtenient that “we are 60^

coafiacnt that tomorrow'a ttttp percentage mil be between 4 ^ and

G3;t " By expressing it this nay «e make clear the degree of un-

certainty ne feel about nhat the scrap percentage really will be. It

also Setscs to remind us that since nc really do not knoiv why the

scrap percentage mil lary betnccn475o and 637^1 there would be

no point in investigating the cause ol a scrap percentage, say, of

5 bcb At the same time, stnee this range ol uncertainty about scrap

tells us what we do nol kmc about ocrap, it seta our sights lor finding

out more it we nte ol a wind to leam more In other words, it tells

us what there still is to leam

Contiait this "Ibrtc-numliettd answer sysUm" With the typical

ajsletn of expressing answers when we do not know the exact answer

For example, let us suppose we were asked right now for the correct

time Without looking at our watch or at a clock, or without asking

somebody else, wbat would we say? Unless we were very unusual,

»e would probably say something like “8 30" or possibly "nbout

S 30
"

Bui, of course, we really do not know the exact time, even

though we have used an exact number in expressing it. We perhaps

think we coier ounebea when we say ''about,’’ and m a sense we do

But how big 15 the “about''? Is it plus or ramus one minute, or is

It plus or minus twenty minutes? How can one tell how uncertain

«e are about the time if we dou’t tell him?

Can we be rare that the time is "8 30 plus or mines 20 amte)"?
For example, would *c bet JIOOO to a dune that it isf If We were

really sure, we certainly would make such a bet because it would be

like finding a dime The chances are that we wouldn’t be sure But
if we arc not eurc, how confident are we? 90^? 59%? How can

one tell how confident we are if we don’t tell him?

The tune example is, ol course gcnersllv trivial, unless we are
running a railroad But we ell have n- ,nB we deal with that
are iraportant-tniportant enough, .j sc tl,at we really should do
some aeulc thiukrag about Diem Is our tlim..ing never gets beyond
the “about," or the ''ususlly," o- le '/airly often" stage, we arc
being sloppy Naturally il is lup easy |o pn down out thintang
about a probhin to a point where ue can achieve a range and a per-
centage confidence But it can be done As n matter of fact, every
bu-iness decision that involiea money now or ultimately (and which
one does not?) tniplies n degree of confidence on the part of the man
who makes the decision whether or nol he realises what that degree
01 c nndence a



THE NATURE OF THE STATISTICAL METHOD 21

It IS particularly important for professional analysts to develop

the habit of expressing the results of their analyses m the form of

a range and a percentage confidence They generally are the only

ones who have intimate knowledge of tiic evidence u«ed m the analy-

sis They are really the only ones who can give a reasonably accurate

idea of what degree of uncertain^ is associated with the analysis

and the eMdence If they tell the sales \ice president that the eM-

dence suggests that ‘ sales next year should be about $56,500,000,"

how does the vice president know whether he should be reailv pre

pared for sales as low as 551 000000 or as high as 560,000,000? He

will not know unless they tell him Nevertheless he is going to make

many decisions based on what he thinks would be a reasonable maxi-

mum and minimum But what be thinks may not be consistent with

what the evidence suggests Since people seem to ha\e a rather

natural reluctance to pm themselves down unless they ha\e to, mcc

presidents probably are not going to get specifically stated confidence

or tolerance limits unless they insist on them

Probably another reason whywe seem to have a natural reluctance

to specify limits to our estimates is that to do so is an explicit con-

fession of Ignorance It is bad enough to pm our own thinking down

to a point where we are conscious of our ignorance, it is even worse

to confess it to the boss

PROBLEMS AND QUESTIONS

1 1 You very likely feel thaf you have some prior knowledge about the

prohflhil^ry of a 7 out of an ord/nary esrd dark yba 2?s> have

bad some actual expenenee with card drawings, or perhaps read a book

about them, or perhaps a "more cxpenenced hand told you about them

Or perhaps you used ‘ logic’ to figure out the probability of a 7 on the basis

of die content of the deck and your impressions about the drawing process

(a) Considering only your prior Jmowiedge, what is vour reaction to the

statement that “the probability of a 7 on a sin^e drawing from an ordmary

deck is 1/13’’’

(6) Given the additional knowledge that is shown m Table 1 1, would you

make any modifications in > our reactions’ Explain

1 2(a) What do you understand is meant by the statement the proba-

bility of a head on the toss of a com is 1/2

(b) Assume that the statement given in (a) is correct How many heads

should we exiiectm 10 tones’ lOOtosses’ 1 000,000 tosses’

1 3 Analyze the results given m Table 1 1 for anv evidence of svstem

or pattern to the results For example, arc the numbers getting bigger’

Are they aiternatelv getting bigger and then smaller’ And 'o forth (Note

The order in which the numbers occurred is from left to right beginning

with the first row

)

1 4 Giveri the information m Ihble II and any pnor knowledge you
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th cl j-cu bjur nhJt odi iradd }oii pn tint tie nest card drawn wiU

bra!’ Eaplain.
t v jj

IJ Cocndcr tic problm of our second Bsme, the one m wnicn no did

CO! bo* lie con'cnl of the decl but in which we did feel that the dccl

ruconjiint

(fl) How nuny 17 5 la & row would you wish to see before you would be

wtlluj? to bet 50 cents at e\en mow) that the next card was a 17? (Hint

IW ifct malenal of Tab’w 1.3 and H to help >our thinking) Explain

jour answer

( 6 ) Supfwsc the stake nas mercased to $500 \\ouid this change in

rai« base ani effect on jour ansucr id (a)’ Explain

I 6 Out'iae the historj of jour experience with some e\ent that jou

ha\e had to deal with o\cr tunc This eseat might be jour problem of

jettifig up in the morning at some desired tune or jour problem of hitting

a golf bail so it lands m some presented limits, such as the fairwaj Be

as fpeaSc as j-ou can about anj progress jou might have made m reducing

unccrtaifltj about the e\ent Al«o explain how jou can tell whether a

departure from the planned event just happened or whether it indicates

a seed for an adjustment m \our planning activities (For example, if

JOU hit the golf ball into the rough do joti adjust jour mng etc on the

next ihot or do jou continue as before on the assumption that the bad

thot was just luck’)

\ 7 Take «me problem that jx^i have had, possibly the same one jou

referred to m Que^uon d and express rt m terms of the third game That

1* identif) the deck or universe, mdicate the nature of the event generat-

ing procc^ Has this unnerve bwn shifting over time? How can jou tell?

Are j-ou wre of this’ If jou are not sure, how confident are jou that the

LBiveiw y ihifnng or has ihifled, the way jxiu say it has’ U«e numbers
n exp'esfing ihu confidence

1 8 Answer the following questions about the history of scrap per-
centages as giv en m Table 1 .5

(a) How often was the scrap percentage

1 Le^lhant.S'e’

2 Lc^athanfifife’

3 MorethsnSfi'^c’

i Moreth3nS4«^j7

5 Be(»een20‘^cand36'^’

6 Between and

(6) \fnlc tie best pica jm cui tbwit the probibility !bat Iht nen
I icrip pmenugc will V« higher thin 84% Eiplam the basis of jour

CflmiatKi probability
‘

ic) Am that ,00 ir going to bet tl on the eorreetness of jonr praba-

(d) ^'’hatwasthe"average'serapperccntage’

» acme other way? fVTi,
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(ff) Were the percentages higher the last two weeks than they were the

first two weeks'^ How much higher^ Or lower?

{h} Were Monday perceatages higher or lower than the Friday per-

centages? Would you be willing to jto on a continuation of this differ-

ence if you were the foreman ?

1.9 What percentage of future scrap percentages would you expect to

have the values indicated by the ax parts to Question 1 8a? (Hint Keep

m mind that you cannot passiWy know these answers You must do some

guessing So do not come up with a "one-number" answer

)

1 10 Were the differences you discovered between the first two weeks’

percentages and those of the last two weeks sufficiently great to cause you

to believe that the universe of scrap percentages had shifted between those

twopenods? Ei^ilatn and justify your answer

1 1 1 Answer the followmg questions to the best of your ability Use

only iheknoidedge you nciDhave

() HowheavyisaWoondot?

() What IS the temperature right now m Rangoon ?

(c) What IS today^s closing price of General Motors common stock on the

New York Stock Exchange?

(d) How much do you weigh?

(e) How much does a fi-fooWal] adult American male weigh ?

(/) How much does the first string defensive tackle of the Chicsgo Bears

Professional Football Club weigh?



Some fundamental concepts

2 ] Variation, or Differences

T{i« ym\€rsal existrnce of urwtwn is one of the most

sipiifc^nt a*pec» of oureoxiromnent Msdn scicnUsts belje%e that

there arc no rnc objecii or tvo p'lrts oi an} object, cvactf> ahhe

The wmccfc of epparent identity of objects is not looked at as evi-

dence of true identity, but ool) as evidence of xnadequate perceptm

Advance in anj sre-v of man’s knowledge has generally proceeded

hard is hand nub the devetopmeat of more refined measuring instni

raent! mcludvns sot only physical measuring instruments such as

e!«trosic twcrc'copcs but aho the more abstract measuring instru-

irf*i3 such as intclhgeace te^ts It \i obvious that cannot taU

into aeeoint differences we cannol even perceive Our lack o5 pie-

ci'ion of raeafureinent m tie «ocia1 science* fincluding business) is

one of the prime caures of fni'tration m that area a frustration in

marked cciDlrs»t to our apparent succe«8 in the phvsical area In

feet Arrii? s<^aciste scKaci wifi piw'^wn and on ffirs baj/s

ndifule the idea that the social 'ciences are scientific at a!! This

IS a niKtake It is preferabk associate science with a method of

jnquif} rather than with lb' uracj of the ob'ervalions made in

the inquiry

The universal exisu^ of* latwn is at once & probiem und an

Dpportunitv Th'* pro <es because universal sanation puts

us on the horns cf u dilc If trv to act at all times as though

all things are dife ot cun each other, no would probab!) freeie

into a stateol inart,^,. Th» would happen because we would believe

that our past expenenfe provided us with no guide to the future By
definition, so to speak the future is automaticall} different from

the put On the other hand if we act as though some things are

the same when actually fh^ are different, our action is subject to
TAr f>V<fnnta «•> «l.l i1 . .. i >
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toadstools are the same is not only subject to error, but also to

error of some consequence

The opportunity arises because universal variation provides man

with an unlimited number of objects, botii animate and inanimate,

which can combine or be combined m an unlimited number of com-

bmationg and for the potential creation of new realities In fact, it

18 here that we find t^e baas of progress—and also the basis of

retrogression One of the sirongest arguments for a democratically

organized society is that it allows for the fullest possible develop-

ment of individual differences and hence for the greatest potential

progress At the same time, of course, there is the companion risk

of retrogression

2.2 What Differences Make a Difference?

The preceding paragraphs have pointed out that we believe we

live in a world of universal variation where everything is different

from everything else and where everything today is different from

what It was yesterday Although this notion of universal variation

18 a very fundamental pinlosophieal truth, it can cause all kinds of

trouble if we try to act on it m the solution of all routine problems

We now have to face up to the probl^ of how we can tell when it

IS appropriate to act as thou^ things were the same when we believe

they are truly different

The answer is quite simple We treat ^ings as the same when

their differences ' don't make any difference ” Casual observation

of the behavior of anybody, including ourselves, wih soon convince

us that a difference which makes no difference to a person will be

Ignored or assumed away It is absolutely essential that a person

Ignore some differences in order to have the time and energy to pay

attention to others It is a mixed blessing that people differ widely

on what diSerences they think make a difference It can be good in

that in a relatively free society somebody is paying particular atten-

tion to almost any area of differences 1hat we can think of, plus a

lot more areas that w e cannot think of Einstein, for example, spent

a good part of his lifetime studying differences that even he could

not see but only suspect The average person thought him strange

for spending so much of his time on such supposedly meaning-

less differences, rather than on so-called important differences such

as the sharpness of the crease in his trousers It turned out, of
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rettiR t! al Wif difetncts "ta conecniEd flilk liid fair to make

(]UHc a (iifTcrtnre to all of ua

Di«|S[Esmcnt <* »hat diflcreocea make a diilcrente ran be bad

l*5a.>« (mb (IbsftMOitM ofton leads to disagreeabl(i)e«3 and con-

fiicl. Mativ people Iiaic real difficulty in pemiittiag others to ignore

d ffettnecs uhich to them are quite important and vice versa Part

o( tl c piobicra of gnnritif up ii to gm a sense of values or a recog-

nition of uliBt iliflereticcs really make a dilTerencc to the adults

ilint !• The eiit jear old elild is tcij eoncemed abmt to sue

difference bctaeeti tao pieces of pie and cates not one nhit for hnn

Ills friend feels about nho gets nhieh p cee The adult is veij much

more eoncemed about hoit his fnend feels than he is conceineii about

tl c (lie of the pieces of pie Educatots ate atifl faced with tl e prob-

Icni land teem to be as raj stilled as cter in finding a solution I of

how to peisuade students that ceita n diffeitnccs mate a difference

other than in the teacher a mind Should the student be dnlled in

die detailed differencei on the thcor} tl at he has to lir<t know what

the diffctencts are before he can undetatand their irapwtanecT Or

should he be plunged into situations a here the diflerentes do make a

differcnee on the thcor) that he mil soon be sHraulated to find out

alist these diffetenct* ace that arc causing all his trouble? Or sbouW

there be a raixUite of these too theone*, a th otheis in proportions

lafiaitel) lanedf Or should the teacher not nnsic time trying to

coni nee the student of the impottasice of the dillcreneca under dis

eu'sion and eoneentratc raoHly on Uie grade nerve The teacher

m effeet tells the student that the difference beUecn a grade of A
and a grade of B (a difference the etodetit does appreciate) is eqoiva

lent to a recognition of the differcnee betoecn a logarithm and a

quBiirauc equation {a difference many students would not realJ) up

predate) This indirect technique foi getting people to pay atten-

tion to differences they might othermsc ignore is quite common in

our somty The witker is taught the importance of noticing the

difference beta ecn n piston el 3 006 in in drain tec end one of 3 DOS in

by a“oeisting sue! difference mth saj, a differcnee of 38 50 in h s

payrhpck The thi is taught the difference between earning $100
nnd steal ng 5100 by associating such a difference mth the difference

between freedora and a jail cell )(fC(.€>2S’3 fc'
Most people ore not aware of any conseions process whereby they

Mie a d fference, <i nfiwfe the iroportnncc of the diffetcnce and then
dtarit to Ignore or consider the difference in their daily affairs Most
of the differmees to the objects around ua are ignored simply because
they arc not ei en pcrcciv ed Part of the ability to perceive seems to

117
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be mbom Sorae people have a better “ear for music” than others

regardless of comparative training and of effort applied The other

part of perception ability seems to be related to how much a person

practices or studies To a very large eictent we perceive only those

differences we have been told to look for It is the rare person who

makes it a practice of perceiving differences even where be had not

been told to expect them The average person acquires most of his

ideas of what differences exist and which ones are important from

other people his parents, his teachers, fais companions, etc To a

very considerable extent these ideas are preyed onto a person before

he IS ready to consciously and willingly accept them, and certainly

before he has had the experiences that enable him to judge for him-

self whether the differences are really important or are just sham

differences It is necessaiy that this be the procedure if man is going

to make any progress Each of us has to be brought up to date, so

to speak, before we can proceed to make our o^n contributions to

the determination of what differences make a difference As an

anonymous person once expressed it, “this world -Rould never have

gotten anyplace if each of us had to reinvent the wheel

"

But like most good things, the procedure of rather forcibly passing

on man's accumulated wisdom from one generation to another has

its bad side too The elements of wisdom in one age may not be

applicable m another, a possibility known to any teenager But

what we have learned at great pam in one age is not lightly tossed

aside, especially if it has become part of the stock-in-trade of a pro-

fessional teacher Sellers of knowledge, as it were, can be just as

tenacious in presenung a market for tbeir brand of knowledge as the

seller of buggy whips was m trying io preserve his market Also

there is the problem that some of man's ideas about what differ-

ences make a difference have been wrong Although good and worka-

ble ideas probably have a better chance of surviving than bad or

wrong ideas, this doesn't mean that bad ideas cannot do a great deal

of harm before they do die

Each person, then, has a substantial personal responsibility as he

tries to find out what differences exist, which ones really do make a

difference, and which ones can be safely ignored He must put con-

siderable faith in the knowledge and integrity of others so he can be

brought up to date At the same tune he must preserve a sufficient

degree of skepticism and of indepeadeat judgment so he can do some

of his own sorting and some of his own seeking

We are continually concerned with differences or variation in the

pages to follow Most of our concern, however, is with the observe-
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Uou inii o!
a™

ft, probt® <!( the of the differences It here the question

ol laportince « more or less » technicul one, that is, subject to ob-

icliie araljsis, irc haie ionietoE to ea> H, hoocier, the question

ol importance reiolies around a aloe judgments, ne meieb cal! at-

tention to the problem and male no effort to soUe it

2.3 KintJs of Knowledge

Since o-e are going to deiole considerable tune to the problem of

boo- to best use the the knoaledge are hate and also to the problem

ol hoar to acquire additional knorcledge, it is useful at this point to

take a tea minutes to discuss the various buds of knot ledge that

»e hate occasion to deal with This discussion also makes it possible

torus to be more eicplicit about the kind ol approach we are planning

to u<e ID later pages

KoovrUdga of Vthy

The nost useful kind of knowledge is that which tells us why an

et ent occurs If we know why, in the sense that we know the couse,

or causes of the ctent we have taken the first step in learning how

to phyficaUi/ control the etent Gnen this kmd of control, we can

Uicn make the etenl happen or not happen as we tee fit, or perhaps

we can then control the mleosity of the esent

Knowledge of why does not neecssani) lead to ability to physically

control the erent We may know the causes of an erent but be

unable to control lhc*c cau'es, thus being unable to control the event

For example we might know the cau'es of a tornado without being

able to affret such causes and thi s prevent a tornado or alter the

path of a tornado But, ol course, knowing the causea, ne would

better be able to predict the path of a tomato, then we could take

step, to remove things and persons from iiiat path

At we would expect knooledge of why something occurs is most
dificult to find out 1\ e actually koovr the causes of very few things

that happen 11 e naturally have bad greater success with man-made
things Sime man has built an automobile, he knows the causal
system that makes an automobile behave the way it was designed
to behave If the automobile does not behave properly, we can u'e
our knowledge ol its causal system to fairly quickly put our finger
on the dflcullv and then make the proper repair lie have a bit
more diffcultv when we find that the human body is not working
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properly, or when the economic or political systems are not working

properly Since we did not build these systems, we are never quite

sure of the causal connections among the parts In fact, we even

have disputes about whether such systems are or are not working

properly, with some people pointmg with alarm and others recom-

mending relaxed patience "With the human body, we have ap-

parently discovered that some parts, like the tonsils and the ap-

pendix, are quite supeifiuous, at least in the sense that the body

seems to function the same both with and ^itiiout such organs

Whether that is because these organs are really superfluous, or

whether other organs, as yet unknown to us, take over their functions

vhen tiiey are removed, or whether they really do make a difference

that we have not yet been able to perceive are questions still to be

answered

One of the theoretical advantages of a planned, engineered, regu-

lated, or built society, in contrast to a relatively free society that

grew witiiout planning, is that we would be able to fix it when it

broke down because we would know what it was made of Such a

society Tiould have to be quite simple, however, because we could

not understand it otherwise People would also have to agree on

^^hat kind of society we would build, and this is very difficult to

accomplish without help from the military Incidentally, the use of

force to control events is quite common, whether it is the playpen to

restrict the movements of the child or the atomic submarine to modify

the behavior of nations

The paucity of Icnowledge that man has of why things happen as

they do has not deterred him from acting as though he did know

why Although such behavior appears to be arrogant and dangerous,

and, in fact, is often just that, there seem to be good psychological

reasons for behaving that way We seem to have an almost patho-

logical need to act "logically” and “sensibly ” But how can we act

"logically” if we don't know why? We cannot, of course So we

invent reasons, preferably good ones, that is, reasons acceptable to

our boss, or to our parents, or to our conscience, etc Most of the

time these reasons are at best trivial and superficial, and at worst

they are wrong

Notions of why something happens are essentially theoretical or

hypothetical Generally speaking we do not know why We believe

or assume why. The tendency of most of us to not state the assump-

tions under which we act, and often to not even be aware that we

have made any assumptions, leads us to believe that we really know

when actually we should only assume that we know This tendency
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»-i atJbli'li eolid blocks to further leamiog b«au<e, it we already

'know,'' there i- 'nothiDg further to learn" and ue wont make the

Knowledge of Wh«n

Mo»t people are eingularly umufonucd about the causal ayslem

ehicb makes it po<siMe to turn a small switch and witness, iti the

comfort of their Iitoj room ei cats which are taking place thousands

ofmilcs awaj They really haie no teed to know It is tufficicnt tor

their purpo'cs if they know that moat of the lime, whan they turn

the switch the picture appears on the teleiision 'et It tor some un-

known reason or reasons the «et docs not work properly, a telephone

call will bnng a scniceman who moat of the time will correct the

diScultj tor le<a than tlO Although ihe eerviceman is more sophisti-

estedoa tecKwtal television mallera than the t^pieal user, even he

IS ijrpnsmgly ignorant of a good part of the causal system that gets

a p Clare at the (lick of a switch He aill likely work from a manual

that was wntten by the engineers of the manufatturer The manual

usually has many phrases like

tthea you Cad flip-flop, the difficulty may be corrected by replacing tube

No 8Ate or by turning the hold knob to the ngbt If none of these works

the dfficulty is then likely to be with the antenor section cl the sphencal

(ssciUator Do not attempt to adpat this Replace the whole section Re
turn the replaced section to the factory

Thus even the tepaiiman knows little of the (henry or the vuhy,

of the mecha*usm he works on His knowledge consists slmost ex-

clusively of the when you see this you will likely see this” kind
This IS obviously a very useful kind of bowledge It is equally

obvious It IS not ot the same kind or of the same order as that
possessed by the electronics engineer whose, in turn, is not of the
same order as that ol the theoretical pbvsicist

hnowledge of when is acquired n ossooohnp things with each
other, usually as a result ol observation of past events \\ e associate

run with clouds, basketball playen, with tall men, Cadillacs with
wealthv owners, July (m Chicago) with heat, etc At least by the
time he is bom, and may be sooner, the baby starta associating events
with each other The sounds of footsteps, ot clinking pans, of agitated
water, etc soon become associated with being fed, being bathed,
being cuddled, etc Even the mo't unimaginative baby soon learns
to associate the sounds be him«elf can make and the actions that
pnerally follow He then makes his first attempts to control what
happens by consciously making selected vocal sounds, or nones



50ME FUNDAMENTAL CONCEPTS 31

It IS pnmarily our koowiedge of when Uiat enables us to reduce

many activities of life to a routine Such knowledge enables us to

predict events and thus plan for them It is essential that we reduce

many decisions to routine in order to release the conscious mind so

it can reflect on decision problems m new areas Most "controls" in

business are basically routine decision-makers based on ossocwhon

or knowledge oj when which enable people to make decisions without

the pam of conscious mental activity Thus the executive can dele-

gate many of his decigim without also delegating the decision-

making iunction

Knowledge of How Often

When we play any one of tiie great number of conventional card

games, we do have some knowledge about the card that is going to

be dealt to us One thing we know for sure, for example, is that we

will not be dealt the “17 of hearts ” But we do not know the causal

system that results m the particular card selected, or at least we are

not supposed to know Hence we really do not know why we get the

card we do, although we may have some superstitions about why

Also we do not know when we will get a certain card because, if the

game is honest, there is no relationship between how the cards are

shuffled, cut, and dealt and the particular card drawn at a particular

time The knowledge that we do possess is very real, however, and

we may call it knowledge of how often a given card will be dealt

We would expect, for example, that the Ace of Spades will be dealt

on the average 1/52 of the time This does not mean that exactly

one out of every 52 cards dealt to us will be the Ace of Spades It

means only that in the long run we would expect that 1/52 of all our

thousands of cards would be Aces of Spades

Knowledge of how often is obviously inferior to knowledge of

when and knowledge of why If we know only how often something

will happen, we do not know its schedule for happening and our

problem of planning is more difficult Since there is no schedule

known to us, the event is never really “due” or “overdue” to happen

We can deal with such events only on a probability basis, and most

people find this somewhat disconcerting

Despite its obvious inferiority to knowledge of why and of when,

knowledge of how often is still of considerable value The most

striking illustration of its usefulness is the insurance business, one

of the most stable and predictable of all businesses An insurance

company bases its rates not on tofto is going to die and when he is

going to die, but on how often ' somebody’ is going to die m a given
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I,™ potiod Ik oidM to l®d stsbiWy to their predictions, and thus

(0 bs'f some control otcr ihcir income and outgo, the insurance

ccnpjnt Kill ti) to hate as manj policj holders ns practical, tlius

ccning as clo'c as po'siblc to that long ran

This same kind o( knonWgc al<o underlies all honestly operated

coumercial gambling games The proprietor, or anj body else, does

not knoK nho will «in nor uhoi any giien person mil mn, but he

docs knott quite accurately how often anybody uiUmn He quite

naturally sets up the game *o that this hoa often is infrequent enough

•0 he the proprietor is the only likely tsinner in the long run In-

cidenlall) the commercial gambling operation » about as close to

a pure iliu-tration ol how often knon ledge that man can imagine

The game is dtlibtmleiy designed to reduce to tero any knowledge

ol why or whan something mil happen Thus, unless the game

breaks doan or becomes unperlcct, it is literally impossible to desise

a sy'tein to htat the game A proper aystem requires knon ledge of

nhen a giten etent will occur The only nay we can beat a game

ol chance is to be lucky To be emart helps not at all

Blending the Various Kinds of Knowledge

Mo*t situations ne encounter in real life find us using knowledge

ol more than one kind W e find that any decision ne make, or any

action ne take i« based on tome ol each kind of knowledge He
rarely knon exactly why anything happens, although ne often act

as though ne do Our knowledge ol when is usually iinperlect in

tl c sense ihst ne don t know exactly when but only about when As

a niai'cr of fact exen nhen ne say or act as though ne knon that

•oinethmg will hapfien at about a certain time, in reality ne are not

sure It nil! happen at that tunc or any other tune H hen a railroad

es‘abli‘hes a schedule, it specifies the tunes ne might use as a guide

to tlie true tunes It dots not guarantee the time and it takes no
icspon'ibilrt) nhatsoexer lor any mconienience, expen'e, or distress

ne max be cau'ed bx its failure to be on time

In reality, all knowledge is fundamentally ot how often, with the

counting ot how often under certain restneted conditions ‘ To il-

'Up lie the l0-lJll0M ihsl define whjt it u Ihsl is to be counled For
euraple «s miEht dsdde to count the nlstixe Iiequtnry ot noontime tempers-
luiM s! Midnix aiiporl n Cliicaco tor eiery day dnnog a 3->ear period tXe
nxlsl I find My ihsi a noonlime lempeiatuif ol 48’ to 50* occurred Sq of the
lone noirf,,, », couitad [fnpenitares only lot the month ot July,
Ire mieht find thil a noonlime lempetalure ot 48* to 50* occurred only 1/2 ot
iq of the lime ’null the chuiEe la natnelive eondrtiona thanses the telalive
frwjufflfy of ihw tpmpi*r5iurfs
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TABIE 2 I

Aduol T/me «F Arnvel of th» ’6 OS PM. Trein"

(Recorded only to the nea^t minute)

Time of

Arrival

ftequency

of

OcciUTeii(»

6 00 or eariier 6

601 0

602 2

6-03 1

604 4

6 05 19

6 06 12

607 8

6-08 7

6-09 9

610 6

611 3

612 5

613 0

614 2

6 15 or later 16

100

lustrate, let us look at the problem of the railroad schedule We

might ask the question “Exactly wken does the 6 05 p m tram

arnve? ’ The answer would be that it arrives at different times, or

at least it has arnved at different times m the past Let u' look at

Table 2 1 which gives us the record of the last lOO arrivals measured

to the nearest minute

It IS obvious that it would be mcorrect to answer the question of

w hen this train arm es by stating a speci^c time All v, e really know

IS how often the train has arnved at certain specified tunes (Note

Sometimes a change in conditions docs not change the relative frequency of

some phenomenon. In this case the conditions are irrelei ant for the purpose

For example I/I3(h of ail the cards in a deck are 68 Also l/13th of all the

red cards aie 6s Knowledge of card color is therefore irrelevant if we are

interested in the csid number Knoniedge of the month is not irrelevant if

we are interested m Chicago temperatures
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l.ro» DSit .1 has ret amaed a* «onc other time- 1 Some

pn,-v sr^^fs to t!.e qi-e- ion of »ha ihia tram lias armed might

I It hi* &'n\Td betffWT 6^^
h^h *

5
6^15 6l2576<^o‘

Ftc

in othc'wo*^5 lhe»e arc tne^j difc^ent ans^ei^ might propcrij

gnttot^''qit?<*ion E^e'^ one is correct la the «cn«c that c\ erj one

i» rci‘ h Kjtb the facu Which one a per'On actualii gues de-

{x-’d* O'* hott much confdenee he would like to ha\e m his answer

The moTi co'ifide’’ee he would like to ha\e the broader niu«t be his

co\c'agp 0^ the tanovi’* thing* that might happen If he wishe* to

Ik* «u»e i^a* hi' an i\cr i* correct he rtallv «hould answer that the

C Cj or reasbe nner This lead' of co\ir«c to

a n-’icatou- ar<\e' whch although it h correct i* no answer at all

w'n It cone* to pi'7nR *otncbod\ *omc idea of when he should plan

to be a’ the I’ation to meet the tram So in order to make the

ar*wt?' practKalb u«''ful u is necc<*an to be le«s than «urc that

the ar«wc’ coie** all po-'* bihtje* Or to u*c word' we ha\e u^ed

beVe rr to’meciio’i wuh the «enip control problem to give a rcalij

u*e 111 ar*wcT to the quoHion of when the tram arn\c< means that

re fin.* giie an answer that might be wrong We al«o must give

an an wjf liiat interi.*eL« when a* co\c"ing «ome range of value**

rati er than <o'’ e «pecihc ' slue

Again we ''ojld remind our'chc* that poonle ijpicallj do not

thirk and cenamh do not talk in the tenns indicated above To
the typical pt-'on the 6 Oo arrives at about 6 Oo*" and that i*

all Uvst if that \ all it « evident Uiat the quMion of the time is

e^nnuallv tnMal to il e people concerned or ihrt *omehow about
’

hs* aquifi'd a gencrallv urdcr^tood meaning so that it requires no
fur he- 'jiecif cation Perhaps "about is understood to mean no
(uTtlpr anav than pfu? o- minus 15 mmute-* In moH cverjdav
ftfain tertam eonventions have grown up wheh lead to gcnerallj

acccp'cd toVrances bv which the group lives

2 4 Amount of Knowledge

Tslilf 22 p-cralj the rworil of the li=t lOO amials of the ' S 15
r M tain for the >me railroad TTk nio=t important thms to note
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TABLE 2 2

Actual Time of Arrival of fhe "8 ISPfA" Troin

(Recorded only to the nearest mmute)

fVequency

Time of of

Arrival Occurrence

8 10 or earlier 12

811 3

812 1

813 5

814 3

815 11

816 7

817 4

818 6

819 8

829 7

8 21 6

8 22 5

8 23 3

8 24 4

8-25 or later 15

100

here is that there has been greater variation m the arrival time of

the “8 15” than there has been in that of the “6 05 ” We can see

this if we compare the percentage of time that the two trains have

arrived within specified minutes o/ the schedule time Table 23

summarizes this comparison In a sense, then, we know more about

when the “6 05” will arnve than we do about when the "8 15” will

arrive We know more because we are able to state the arrival time

with greater confidence For example, we are 53% confident that the

"6 05
”

will arrive within 35 nunutes of its scheduled time, wiiereas

we are only 37% confident that the “8 15” will arrne within those

limits If we wished, we could quantify tiie amount by which this

knowledge is greater and say ttiat it is 43% greater
[
[53 - 37)/37]

Actually we generally do not wish to quantify differences m knowl-

edge this way, but it suffices at the moment to illustrate the fact that
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TABU 55

Cewp«^^»t^sfA^ri«lTlm*^•ftl^• ^05 ondlfi* 8 >5

%t)! Amvals

Departure from

Scbtdult e-ou SI5

Plaa of m nus $mu«ittt 19 11

lA 35 21

25 44 20

35 53 37

45 62 4S

Iheie are quantifiable differences m the amount of knowledge we

migbl hR^ c As ^re shall “cc in a moment wre find it more con^ ement

to mti'uie i^noroncc than we do to measure liwcledfic

? 5 A Word about Ignorance

\tc are all anew of the fact that ipwjratice w the antithesis of

knoirlcdge Complete iguoraoce would be the oquivalent of wto

knowledge and xice \er«a Thus rt is possible to talk equally well

ifl term* of ignorance as in terms of knowledge Let us take n look

first at a case of Kro know ledge or of complete ignorance \\ e may

recall that one of the question* at the cud of the last chapter a*Ked

how a Wooadot u We probably had no idea what a

‘’U oondol 18 and hcucc no idea of how heavy one is It may weigh

onl> 0503 or On the other band it might weigh T3 million tons cr

c\cn more ft ma> even have a uegalive weigl t and if it were not

lied to the earth would have soared into space Thus we are forced

to admit that the we „ht of a ttoondot usomewhore between minus

infmitj and plus ml nitv pounds This is of course a large range

of uneertaintj
,
or ol igncraocc

Now let ua look utwmcthmgwcktiov exactly Since it is so hard

to find ifiustrat ons of exact or complete knowledge except for things

that we have defined that way, let us take something that we know
In dcfitiihon \ good example w the value of a playing card \\ o

kaoff that the " of clubs is exactly the 7 of clubs and not the G'/j

of clubf b«au*c it is *0 written on Ihe card W hen wc play carrfs

we have no problem that perhaps this particular D of eiuhs is one of
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the biggest 6’8 and hence is really bigger than this particular 7 of

dubs Tvbich happens to be one of the smallest 7’s Anybody who

argued this way would be thrown out of the gamel We can say,

therefore, that we have sero ignorance about the value of the card,

or we have complete knowledge

When we know something, but not everything, ve find that we

can state answers only within certain limits We found this to be

so in the scrap problem, m ibe various games, and m the arrival

time of the trams The range of uncertamty we had m any of the

above really expressed the deffree 0} tgmwce we had about the par*

ticular phenomenon We "do not know when the tram will arrive

between the limits of 6 00 p m and 6 10 p m
,
although we are

reasonably
(68 0̂ )

confident it will arrive some time within those

limits
’’

If perchance the railroad were to improve its operations

that we could then say that "the 6 05 will arrive 68 fo of the time

between 6 02 and 6 08, ’ we would now be l^s ignorant than before

about the arrival time If we wished, we could say that we were

40% less Ignorant
[
(10 - 6)/10]

Whenever we desire to improve our accuracy of estimation in a

problem, or what amounts to the same thing, to reduce our range of

Ignorance, we take steps to tiy to learn, something After taking

such steps, we quite naturally are interested to see whether we had

any success m our efforts to learn We find that it is very convenient

to then measure the amount by which this learning process reduced

our ignorance We find it very difficult to specify what we knov

and then to jneasure bow much we have added to our knov ledge It

is much easier to specify what we do not know and then measure

how much we reduce what we do not know

There 15 also a psychological advantage m concentrating on our

Ignorance rather than on our knowledge When we are aware of

how much we do not know we are psychoh^icaliy receptive to the

need for reducing this ignorance Also we are aware of how much

reduction is possible By concentratmg on what we know, we might

easily be satisfied with that and make no effort to learn more

2.6 Luck, Chance, and Rondomness

We are all familiar with luck, tiiat pixy fbat makes footballs take

funny bounces and that largely accounts for the success of the other

fellow ' Let us analyze what we call luck to see if it has any relation-

ship to what we have been talking about before Basically, it seems
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«c u?e luck as an antonym for skill. We use Iuck>* to charac-

e a person who has achieved success with no apparent benefit

kill or knowledge We picture an ignorant person blundering

g but somehow becoming the recipient of good fortune. In

tice, then, it seems that we use luck as a s>'noDym for ruccesj/ul

iiior bcjfd on ignorance WTien a person acts or decides in

rance, wc say that the outcome is m the hands of Lady Luck)

n other wonis, the outcame is not under the control of the person

ig or deciding

bance also refers to some sort of pixy that determines events

which we have no control A game of chance is a game so de-

ed that skill and knowledge are not factors in the outcome. It

imctimes called a fair game because nobody has any advantage

anybody else, regardless of a person's age, sex, education, ex-

mce, wealth, etc. If skill and knowledge do become factors in

me of chance, then it is no longer a game of pure chance, although

e may still be chance elements m the game The winner of a

e of pure chance is lucky and the loser is unlucky The fact that

games have results independent of a person’s skill and knowU

IS such a game's mam attraction Anybody might win; and it

3 reflection on a person's intelligence to lose, although it is sur-

ng that so many people, particularly children, take considerable

ona! satisfaction m winning, even impi}'ing that mnning some-

or other make? them a kind of superior being,

essence, luck and chance refer to the same pixy,

indom IS a word that we use frequently in subsequent pages,

talk about random samples, random cients, random processes,

Although we eventually give rather specifically-worded defini-

> of these things, it is lufflcient for our present purposes to simply

that random events are caused by the saraf [)i3cy that causes

ce events In fact, we use the words chance and random inter*

gcably.

)W these are all important vords and phrases WTien we use

we should have some 'u^rty clear idea of what they mean,
question !? Exactly v n i

^
or who, is this pixy that goes around

mining these strokes of for.rJRe? The best and most straight-

ird answer is that this pixy is a whole collection of factors and
s that combine to produce the given result The forces are
• and/or are at the moment indiscernible. The pixy is no magic
5mic forie.

u! take a look at the problem of determining whether a coin
ng to come up heads or tails, or what is the Earae problem,
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whether the coin that has rolled under the bed has come up heads

or tails It IS clear that whether the com comes up beads or tails

depends on such mundane factors as (1) how a person holds the

com, (2) the amount of friction between the fingers and the com,

(3) the angle of release of the com, (4) the force of release of the

com, (5) the direction of release, (6) the humidity of the air, (7) the

density of the air, (8) the velocity and direction of the wind, (9) the

resiliency and uniformity of the surface the coin strikes, etc If we

had precise knowledge of all these factors, and of tho^e not mentioned,

it IS veiy' likely that ue could rather successfully predict the re®ult

of the toss In other words, the result of the toss follows rather

directly from these and similar forces It does not follow from seme

cosmic force whose nature is forever hidden from man The forces

exist, even though we are ignorant of them We may be ignorant

because we are at the moment incapable of measunng these forces

Or, more likely in this case, we are ignorant of these forces because

we have decided that the cost of measunng them is too great con-

sidering the value of being able to predict the result of a com toss

We must admit that the view that luck, chance, and random all

refer to a collection of presently unmeasured forces is essentially

philosophical in the sense that it represents a faith or a belief I

have never tried to really measure the forces affecting the toss of a

com Nor do I know anybody who has But I have faith that the

forces exist, and they exist completely irrespective of whether I know

what they are or how they behave I have faith that they are there

be wj aV.O.L'

desire to the point that makes us want to measure them The validity

of this view cannot be easily proved or demonstrated All we can

do IS argue for the practicality of this way of looking at chance

The most important practica] argument ig that as long as we have

this belief we do not find the door of knowledge shut to us If, on

the other hand, we adopt the view that luck, chance and random are

absolute forces nhose nature is forever hidden from us, it is only

natural for us to stop trying to add to our knowledge Our progress

will stop as soon as we decide that there is no more to know We are

probably all familiar with at least one person who has decided that

he has no more to discover or learn

Another way of expressing this particular view of the nature of

chance is to say that chance has nothing whatever to do with the

event itself Esther chance refers to man’s knowledge about the

event In other words, chance is a personal thing, it is a product of

the human mind, a pure mventaon, it does not exist m the sense that
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» ttoM exi'U' The ^es'herm til its aspects lias gone on tor centuries

ard aiU probably go on for many more centuries, quite oblnious of

ahat man has Uo«n about the weather and has been sajing about

the weather U is highU doubtful that man's increasing knon ledge

of the weather, an increase that has considerably improaed man’s

ability to forecast the weather, thereby enabling man to label weather

phenomena as being due le>s and lea to chance, has in any sigmhcant

» a' affected the weather hen we find ourseli es labeling an et ent

as a chance eient, what « e arc really doing is confessing our ignorance

about the ei eat Bm since human beings do not like to confess their

ipionnce, the' proicct their ignorance to the event and blame their

inability to uadcrataad the event on the event rather than on their

own ignorance Tins represents a certain kind of cleverness, but it

abo rc'ulta m a certam amount of self-delusion

Another notable and interesting feature of this way of looking at

chance is that it is now possible, and fopicoi, for tw o different people

to lahtl the same event as chance or as not chance because they

happen to have different amounts of knowledge about the event

Thus the two people might logically act differently with respect to

the event For example, if we and a friend (some friend!) toss a

com to >ee who pays for the dinner, and if our friend (who is doing

the to'ungl knows what he is doing, the com comes up heads because

that was what he had decided on But we think he does not know,

10 wq think the to*s is random He thinks of the event as being en-

tirely predetetramed wq think of it ns being chance tVe both act

raiionallv eon'idenng what each of us knows But he is going to

win, not lieeause he is any smarter than we ate in the aense that he

liimks more logically or more rapidly, but bccau'P he knows some-

thing we do not An advantage in knowledge will often offset an
advantage in intedigenl u'e of knowledge The most clever guesser

I'atthcmercv ofeomconewhoknowa

2.7 Conscious vs. Subconscious Knowledge

So far we hne talked about knowledge in an essentially abstract
way tVe ban made no reference really to the person who has it

and to where tc has it Although we treat such matters more
elaborately m the next chapter, it is n«ctu! to call our attention here
to the most obvious of all the distmetions that can be made in the
vanou! tlorage facilities that pun has for his knowledge The dis-
Unction I! between aintcwiu knowledge, which is essentially knowl-
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edge we know we have and can transmit to others and suhcorwacm

knowledge, which is knowledge tiiat we cannot specifically identify

and cannot pass on to others Some wit once said that conscious

knowledge is the kind we talk about but do not use whereas sub-

conscious knowledge is the kind we use but do not talk about' The

same kind of distinction is being made to a certain extent when we

say that a person knows how to do it, but can't do it," whereas an-

other person ' can do it, but doesn t know how to do it " This prob-

ably sounds somewhat like doubletalk A good example of what is

meant would be a superathlete like Babe Ruth He could and did

hit a baseball quite well but he did not know how he did it in the

sense that he could explain to somebody else how to hit a baseball

There have been many successful busmesmien who could run a busi-

ness, their success proved it But they were complete failures when

it came to knowing how they ran their business m the sense that they

could help their successors to run the business

We are all aware of the fact that we do some things with conscious

thought and some tilings with no apparent thought at all We also

know that we frequently do some things better if we do not think

about them For example, most of us typically walk with far more

grace than we exhibit if we walk across a stage before 1000 people

We would hesitate to try to assess the relative importance to us

of our conscious knowledge and of our subconscious knowledge In

later pages our discussions are almost exclusively confined to con-

scioiK knowledge This is not because we consider it more important,

but only because this is the only kind we can talk directly about

2.8 Knowledge, Ignorance, and Decision*making

We become conscious of the problem of making decisions only

when we are aware of alternatives or choices and we are aware of

alternatives only ^ hen we are aware that we do not know exactly

what to do Hence we have to take action despite a certain amount

of Ignorance and therefore uncertainty Fortunately many of our

problems are trivial enough or have enough room for error that we

do not have to overly concern ourselves with how to best make our

choices In fact, often the problem is so trivial or we are so indif-

ferent to it, that we deliberately leave the decision to chance even

though we know how to do better For example, most people just

go to the bus stop and wait for the bus with no thought of the bus

schedule This is because the bus generally runs often enough so
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Ihsl *e I«1 n cm sStnl to wait the 10 minute or so that might

be U- ramnuni interval But il the po-'siWe waiting Ume is

b'c c-tnEh to be vahible to f, »e take the Ume, trouble, and

Pf-U« morev n««ai5 to gather more specific knowledge of the

bt! schedule and thus p'an our amial at the stop so we save some

fli

Sian? 60 Kaaj prop’e wutfullj hope that there must be some

fo'TajU »hcreb) we can make deeifions about man} matters, it is

ujcful to rtmind ou«ehes that this tnll alwaja be a hope rather

than a ftalu} There can be do complete formula for decision-

making fo' the 'inplc reason that the problem of decision arises only

when we are partial!} ignorant, and il we are partial!} ignorant, we

are bound to be som^'Khat uncertain about the deeuion to make

But, although »c hau no complete formula, we do ha\e wa}s of

a!ial}iing what we do know ao we get the most out of it without at

the <Mne time getting loo much out of it' It may sound Burpming,

bit It is Dcicrthele** true that we often ba%e as much n'k of getting

too much out of what we know as we have of getting too little

2.9 Probability

The essential tool ;a dealing with problems m which we ha\e only

partial knowledge la the probabilii} calculus Since this connotes

natheaauci w some people it all sc«ns quite forbidding But it

does not n?allj have to be this waj Acluallj we all u<e probability

concepts e\er) da} with no ihoaghl about the mathematics of it

In lacl, the cat l\ing in the bu«hes waiting for the unwary rabbit is

iui''g p-obibiUt} coQcepta ra the fclecUon of the particular bu'h, the

particular tune, etc The cat does not knoir he is going to catch a

rabbit, but he 6gure3 he has a ‘ prelt} good chance" based on his

pa«t experience

Exact!} what do we mean when we make such statements as "the

probabiht) of a head on the to«s of a com u 1/2 or 5"? We might
rrnn either on? of two things We might be talking stnctly in

ab^rsctioM Then we would be thinking of a "fair" com, which by
deSniUon is so conrtructed and lo thrown that each side has exactly
the Mire chance of coming up Me might iramediatelv infer from
thi! that the com would lopcally ftka>s stand on end, thus guing
us 1/2 head and 1/2 tail! But we do not want to mean this, so we
add the further condition that the com cannot stand on end I It must
come up beads tails How often will it come up heads? M'e
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answer this by m effect pictunng a com teetering on its edge but

unable to really stay on its edge Sometimes it falls one way, some-

times the other But by definitaon, so to speak, it will fall one way
just as often as it will fall the other way tn. the long run If the com

alternates heads and tails, thus apparently coming as close as possible

to the condition of an equal number of heads and tails, we quite

logically recognize this system m the reailte and treat the com toss

as a completely solved problem with no uncertainty and no need

for probability calculations It should be clear, then, that the con-

cept of the long ran is of the essence in understanding what le meant

by probability But before we tackle the problem a little bit more

let us look at the other way we might interpret the statement that

“the probability of a head on the toss of a coin is 5
”

The second way to start lookmg at the problem of probabilities

for com tosses is to start with real coins that are actually going to be

tossed, rather than with abstract coins that exist only m our imagi-

nations If somebody asks whether we would guess heads, tails, or

edge, we might take a scientific, or at least an apparently scientific

approach, to the problem We study the coin and the tossing process

Let us say we do this with our hands and our eyes and our other

unaided senses Let us suppose further that after about 15 minutes

of such study we have come to the following conclusions

1 It must be almost impossible for this com to be tossed and end up on

its edge because ve have found Ji almost impossible to stand the com

on Its edge So let us for the moment rule out this possibility

5 IK? xf Aw-od jw te aijipnrl lb? beM jial the mn jp nmra

likely to come up heads than it is to come up tails, and vice versa

So let us assume for the moment that the com is just as likely to come

up beads as it is to come up tails Or, m other words let us assume

that the probability of a head is 5

There are two very important aspects to note about this second

approach to the problem of what we might mean when we talk about

probabilities first, note that we make very clear that whatever

we say about the probability we say only on the basis of assumptions

we are making, and furthermore, we emphasize the tentative charac-

ter of the assumptions by the qtifihfymg phrase, for the moment

In other words, we are prepared to change our assumptions whenever

additional evidence suggests the possible superiority of other assump-

tions And, of course, if we change our assumptions, we change the

probabilities The fact that we would do this tells us that we really

are not associating the probabilities vnth the coin, but rather with

the assumptions that we choose to make about the com Thus we
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ire rtslK tinng probabilitj statements to our degree of knowledge

abort «o-a(tluograthtr than to the eometbing Itself

Second note that ae amred at the equal chance h>pothcsis fay

inili!Kl.oa In a tcn'c we never really «aid that heads and tails

»cte cquallv lAclv What we said was that we could tee no evidence

that euggevts that one is more likel) than the other In fact, we are

quite convinced that either heads is more likcl} than tails or that

tails !• more liVelv than heads It is incredible to us that this com,

or any com is so perfectly balanced that it is tnily just as likely to

come up one way as the other But unfortunately for us, at the

Bomtnl we Ju't do not know which is more likely Therefore we

tentaiivelj a'"umc that they are equally likely But we are going

to change that assumption a* soon as we have enough additional

eiidence

lie might raise a question as to why all this fuss about these two

posiible wavs of looking at the probability statement when they

both cone out at the same place and result m a probability of 5 for

a head The point is that the fir«t way of looking at the statement

takes the probability as a given amt unchangeable and true fact,

whereas the second way "sy s the same thing but treats it as a deduced

end tentotiie aittimptioii The second viewpoint is strongly pre-

ferred to the first for tnttiv reasons that ate obvious in view of tie

discussion in the preceding pages Later discussion also reveals nd-

ditionsl adiantagcs

This is a good tune to pumie a little further tie notion that addi-

tional evidence might cau«e us to change our hypothesis about the

probahiEity of a head on the Iflse ot w go-ew eova Kwo’i.vw^ owly

what we could find out about the com bv examining it with our un-

aided senses we decided that the prohabiliti of a head (or of a tail)

is 5 If we now had to call the result of a toss in advance it is a

matter of indilTercnee to us whether we call heads or tails W e might
even to-s another com and use its result to tell us whit to call on this

cnel Let us suppose we decided to call head The com is tossed

and It docs conic up liesd- flenow have sume additional knowledge
about thii -on t\e have now had some actual experience with the
tossing of this com Priot to this everything was speculation Mhat
can we raa e of this expenence? It seems appropriate to make two
ob»enatiOL<

] fjscp Wf to (tit (be com has ctme up hfads when m we ha\e
more coefidence that it can again We eaanot say the same thing about
aih became we have not yet seen tal. n. the result 0/ 0 to.,

2 It la truth ihfit IS a greater probabiMy oI heads than ot tails we
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should see more heads than tails as a result of the to^'ing And to
have seen more beads than tads

This evidence and the observabons we made horn the evidence

now lead us to state a new tentabve hypothesis about the probability

of a head We now might say that “if the probability of a head is

different from that of a tail, it is more likely to be in favor of heads

than to be in favor of tails " We would now lean, ever so gently,

toward calling heads ratlier than tads on the next toss We say,

ever so gently, because the leaning is based on very slim evidence,

namely, only one toss But let us notfoigefc that shm as the ev'dence

of only one toss is, it is evidence and m should not ignore it Just

for fun, let us quantify the extent of the leaning that we now feel by

stating that we believe now that the probabildy of a head is at least

as high as 50001 The difference between 50000 and 50001 may

seem very trivial, and it does seem difficult to see how we can take

much practical advantage of such a small difference, but the point,

however, and this is not trivial, is that every shred of evidence should

tell us something we did not know before, even if only a shred It

is not proper to let additional evidence accumulate and then ipore

It When we ignore additional knowledge, we are letting our knowl-

edge become sterile, which is wasteful But even worse, we are fail-

ing to take advantage of opportunities to alter our behavior to in-

crease our rate of success m our acts and decisions

Let us pursue further the logic behind our leaning toward calling

heads on the next toss because we believe that if there is a difference

m the probabilities, it is in favor of heads Let us suppose that our

original hypothesis is still correct, namely, that the probability of

a head is the same as that of a tail Then it is a matter of indiffer-

ence to us whether we call heads or tails But, if our second hypothe-

sis of a little higher probability for heads la correct, we should call

heads rather than tails So now we have two hypotheses to guide

(or confuse] us One is, call heads or tails, it makes no difference

The other is, call heads Anyone cmi see that if we call heads, we are

being consistent with both hypotheses Or, m other words, we have

nothing to lose by calling heads jf lie first hypothesis is true, and we

have something to gam by calling heads if the second hypothesis is

true And we all know that we are hvmg m the best of all worlds

when we can make decisions that cost us nothing but yet which might

lead to a gam!

How do we feel if the second toss also results m a head? We

should now lean even more to a behef that the probability of a head
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ffior, lh.n J, ESy eu. « h.gh « JCOl And the more hends in

a row ve get \\U this, the more ^ e would lean m this direction, h or

Mimple, I for one would be willing to bet |6 to ?4 that the Uth toss

wraW alto be a head if the first 10 losses hsd been heads! Would

you take this bet?

Suppose the second toss had turned out to be tails ^ ow, of course,

we would be back to our ongmal hypothesis before we had seen any

toiaca, namely, that of equal probability for heads and tails. Our

cipcnencM with the two tosses would ha%e tended to confirm what

wo had believed on the basis of just examining the com

We are now ready to state a general poliQ’ for problems that In*

\ol\e unccrtaintj Wc can do this best by seUmg down a Bcrieg of

propositions that seem to make eense

1 Smcp we do not iwie whai we should do or decide, we must base our

action on something that wc behfie u m dose to the truth as we can

fct of lAenwmrtf

2 W’t prefer to label ruch a belief as a hppoihena Technically, a bypotb-

ni is “woettutig assumed for the purpose of argomect ’’ We have

this preference because this word tends to remind us that we axe basing

our action on asumptioa and not on lad It reduces the possibility

that we mil develop mch a elrong attachment to our beliefs that we

wiii eootiDue to hold them in the face of Eubstantial contradictory

evidence Or, even worse, we become so convinced that ear beliefs are

njbt that we no longer conuoue to aecianubte additional evidence

3 Our hypothesis should be as consistent as possible with all the knowl-

edge at our command In this connection we should keep in mmd
that fact and (jptneve have an almost aicred quality about them

\t‘henevcr we find our hypotheses somewhat incocsisleat with our

eipencnce, there should be no question about which should give

potiDd, namelj, our hj-potbew We cannot deny the fact that "ex-

penencf is the best tescKef,” and we should alwajs listen when
cxpenecce speak*

4 Eince we cannot state or calculate a probability until we have adopted
some hypothens, it is proper to slate that ail probabilities are Aypo*
lActiCfll in character They are not Jactud They tdl us how often
we should cjpect something to bsppen, or to be true, provided our
airvfflplKirj ti corrct If our assumption la incorrect, then things are
not going to happen the Rs) weetpecttbemlo

Although we may be rather well persuaded that these propositions

do mute a kind at ime, »e may sttll be bothered by some other
lotion! TC hold about probability, Botions that we are not sure arc
coniiitent mih thrio propositiona For example, no tnay have m
the pait bad an iarlmatraa to belicic that if a senea of coin tases
bad eboan more to* than taila, it waa lopcal to call taila now be-
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cause tails ‘Vaa due ” Oar rcasoniDg probably went something like

this

1 The probability of a head is 5 Thus, m the long run there should

be as many heads as tails

2 We have bsd more heads than tails If we are going to end up with

as many (ails as heads, we are going to have to have more tails than

heads in the remaining tosses

3 Therefore ‘tails IS due

'

TJie troubJe starts with the first statement This statement implies

that we know that there will be an equal number of heads and tails

;i3 the }0Dg jvn But ne do not knov ibis at all, nor is there any

way we could know tins Moreover, the statement errs in referring

to the number of heads and tails Probabibty statements should and

do refer only to the proportion expected m ttie long run, and even

then cot to any exact proportion for any exact and Bnite number of

events Suppose somebody t^wsed a com 1,000,000 times and got

exactly 500 000 heads end 500,000 tails and toen claimed that this

was evidence of a fair com fairly tossed What would be your re-

action? My reaction would be that this is evidence of something

quite the contrary I would be veiy suspicious that he was so de-

tonnmed to prove that this was a fair com fairly tossed that he con-

trolled the tos«es and made the results conform to what he thought

I would expect them to be In other words, his results are "too good

to be true/ and I just do not believe tliera I might expect the results

of 1,000,000 tosses to be such that the proportion, of heads is in the

neighborhood oi 5, say between 490 and hCa Bull certain’iy don’t

expect the proportion to be exactly 5 Recognition that things can

be too good to be true is one of the problems of the card sharp who

knows how to manipulate the deal To allay suspicion, he will deal

so the results will appear to look like chance But he might easily

overdo this and make them look too much like chance, and he will,

therefore, be suspected by an intelligent opponent

The second statement tends to collapse now, but it is also based

on another notion that frequently causes trouble, the very kmd of

trouble that is exhibited by the third statement This notion is that

somehow the universe out of which tile sample items are being taken

has only so many items in it, and that as we draw certain items there

must be fewer of them left Sometames the conditions of the problem

are exactly this way, the most notable case being that of card games

For example, when we deal cards, we find that the longer we do not

deal the Ace of Spades the greater is tiie probability that it will be
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ihc Cfst eatd In W, >1 Ate ot Spades is not among the first 51

card' dealt, it is certain to be the Sfind card

But the conditions of the coin tossing ate certainly not this way

No lasltcr ho« many limes we toss the com, and no matter how

man) heads we get, wc base not changed the proportion of heads in

the uniufc unlcu tlie to»lng process wears a bins Into the com

Ite cannot deal cut all the heads the way we can deal out all the

cards In fact, it is reasonable to assume that the mechanical act

of tos'ing a com is completely independent of the probability of

getting heads and tails on subsequent tosses It is nea er appropriate

to bcliese that heads is due because it has not armed yet

Met practical problems are more analogous to the com-tossing

situation tlian the)' arc to the card-drawing situation It is much

more appropnatc for us to look for the sort of thing we have already

tien than to look for what we have nol seen If we see a basketball

player mi's 25 shots lo a row’, he is not “due” to start making baskets

if an)thing, he is “due” to be dropped Irom the first team Siiuilarly,

if a businessman fails m file consccutiyc businesses which he has

tried lo run, he will not now make a million because he has already

lost So much He is probably a lety bad businessman, and you

would be wcll-adnscd not to invest any of your money in his next

'cnture But these judgments are self-evident when expressed this

way Anj problems we lend to have in this area probably stem from

the fact that moat of our conscious experience with pcobabiUty has

been with cani games, and we unthinkingly apply what arc perfectly

good card game principles lo other problems in probability which

ace subject lo cathet different conditions

2.10 Real Difforontes vs. Apparent o' Stotistical

DIfforenees

Suppose wc base l«o decks of ordinaiy playing cards and we
deal flic Cards out of each deck at random The two acts of five

cards will almost cerlainly be diferenl from each other For ex-
ample, the nv erage sue of the numbers on one set w ill be larger than
Hist of Ihc numbers on the other eet This is a difference in fact and,
if uc wen plaving a game that depended on the average size of the
numbers, one hand would be better than the other; and this difference
in the numbers probably would be Uanslated into a diHercnce in the
scores cl the plaj ers How c> cr, tf o e w ere to repeat this experiment
many times, we have a feeling that the dilteiencea between the hands
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would 'tend to average out’ In other words, differences like this

tend to disappear in the long run In dealing with differences of

this type, we must have two pohcieB one for the skort-nin, where

the differences will exist and will have to be dealt with as such, and

one for the long-run where the differences will tend not to exist and

where we might ignore them

Now let us consider two other decks of cards One is an ordinary

deck, with the numbers running from 1 to 13 The other deck, how-

ever, has numbers running from 3 to 15 We again deal sets of five

cards from each deck and compare the numbers Agam we will find

them almost always different Sometimes the cards from the first

deck will be larger Other fames the cards from the second deck

will be Jailer In general, bower er, knowing what we know about

the two decks, we would expect the cards in the second deck to

average two units higher Thus all the differences between the five

card hands will noi average out

It should be clear, then, that any observed difference between two

things or two groups of things might very well be made up of some

combination of two distinct and important kinds of differences one

the kind that will tend to average out m the long run, and the other

the kind that will persist into the long run The differences that we

believe will average out we cafi apparent, siaitsiical, chance, or

random differences The differences that we do not expect to average

out we call real or siatieUcally significant differences It is essential

m practical problems that we try to separate these two differences

For example, if we base a long-run policy on a difference that tends

to average out in the long-run, this policy must fail because the dif-

ference 18 bound to disappear Unfortunately, it is not at all easy

to separate these differences All of us make daily mistakes in

classifying differences We label one difference as chance and go on

and Ignore it when actually it is real and will persist We label

another difference as real when it is actually chance We say much

m subsequent pages about the problems and techniques in identifying

differences

2 1 1 Practically-significant Differences vs. Statistically-

significant Differences

We spent some time earlier on the question of what difference

makes a difference? In that discussion we tacitly assumed that we

were dealing with real or siatisitoally-stffmficmt differences We
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(rtmuilfdire thtl ont piece of cake »as really larger than another,

b,t .e me pot -0 tore that to difference "niailc anj difference to

ii< ' Since » e are non in danger of getting oureclt cs tangled up in

RDii* brins thc*e Mrmt \'im about differences togetber

and tn to clanfi their distinctton- At the same tune, let us add a

fourth tjpc of difference that we ha^< ofca«wn to mti across The

(oarth b ?c ft c cai! a sHom differctice because it is a difference that

fte tio not thinfv exi'W at all erther m the shott-run or m the Wng-

m n 11 kind of difference an^ because human beings are not

perfect in their perceptions Ue Bot only fail to note differences

that do exi't fte note differences that do not exist ?or example, j!

a person were a-^ked to count the number of pennies in a bushel

ballet he ftould come up nilh a certain answer But ne do not

tru«t him or hia counting ability compleiel), “o ne have somebody

else check bis count. He counts 17 pennies fcftcr than the first person

did W hat happened lo these 17 peniuea? Of did nothing happen to

them and nil this difference means w that either one or the other, or

both.cannotcountaccuratelv

So noft let us lui m proper order the questions ft e might ask of an

obiened difference

1 Does thu ihiffrenec reilly exi't of n it due only to errors in pcreeptioi: ?

ff it redi} exuu thenftes*k

2 fi tfiH i chance difference the kind that exists only in the shorMun, w
3 fa this a real and pcrmsneni difference that will per‘i8l into the long-

run f

And finallj, if we decide that there is a chance and/or a real difference

10 be toUferned ft it!i, ft c ask

4 Itliat difference does thu differenfe make to os’ \Ybftt gans and
h<f<s srt sisocated with st? Or a it of such tnvial consequence to

us that we can ignore it’

To sutnrtianie non, wc can «ay that

1 Shan dificreoces are thoee that »e do not think really enst at all

2 Chanct differences exat but only la the ehort-run Thej tend to
81 frage out in ihelon/rnin

3 cr rid diffettnces exist in both the short and
lonj*run

4 Prattxca^y tiffmficant djfJerenees ate non sham difTcrences that make a
dmertnee lo us, and we therefore must pay auention to them

2.12 Sfiorf-run vi. long-run in Decision-making

“ li"i! steak
gfiod restamnt Now the check appears amounting to
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SIO Eacii of you had intended to pay half, but your fnend has found

that this dinner and your eongemality have stimulated his sportmg

blood He suggests that you and he toss a com to see who pays the

whole check You have absolutely no reason to believe that this will

not be a fair proposition You are convinced that your best hypothe-

sis is that you are just as likely to win and pay nothing as you are

to lose and pay 810 Of course, you could turn down his offer and

pay 85 What decision are you gomg to mafce^ Because you are

intelligent and systematic, you decide to analyze your problem as

rationally as possible

The first thing you do is set down your alternatives

Probtt

bilityl Net

Amount Would Eicpected

Decision I'd Pay Pay It Cost

1 Refuse offer to toss S5 100 S5

com

^ lin™
80
810

50

50
Totalis

This analjsis reveals that the net expected cost is going to be $5

whether you pay for your own or whether you toss a coin It looks as

though it makes no difference whether you toss or not You are just

about to accept his offer to toss when a horrible thought occurs to

you The thought is that although to toss for 810 dinner checks will

cost you $5 on the average and in the long-rm, this particular toss

IS certainly going to result in your actually spending SO or SfO So

now you must face up to the question of whether you can afford to

spend 810 right now, m the short-run, for this dinner You don't

bother to ask yourself whether you can afford to spend 80' You

know you can do that Let us suppose you happen to have just 810

m your pocket, plus a nickel that you can use for the tossing Now

you make up another table of your alternatives

Money I

Would

Decision Jfeve Left

1 Refuse offer to 8 505

toss com

SIO 05
2 Toss com

llf lose 8 05
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We csn iw quite eure that when you walk out of thrs restaurant

jo*j will have one of tho<e three amounts of money in your pocket

Then; « ab^oluteU no qucftion in our mind nhich amount you would

prefer But, unfortunalclyt m order to get a chance at the mojt pre*

(erred amount, you ni\i«t take a chance on ending up with the leojf

pTferird amount And now we rcalire something ehe- the }5 you

ml! gam if you win is not worth as much to you as the you will

Io«c if tlie to«* goes against you

So now you are just about to turn down his offer, when another

thought flashes through your mind You a«k yourself “I wonder

what kind of a sport he will think I am if 1 refuse to toss for the

ch«k^’ “Uc'a willing to taU exactly the same nsk that Im on the

verge of turning down, ao hell probably think I have no sporting

blood at all if 1 turn him down
”

‘TJon 1 don’t know what to do I

never should have tried to get rational about this in the first place
”

Mhat you mil finally do will depend on your penonal evaluation

of the worth to you of his opinion about your sporting blood and

the amounl by which y ou diifount J5 won compared to $5 lost The

wealthier you are, tlic less you will tend to discount the f'S and the

more likely vou are to accept the offer to toss, unless, of coursC; you

arc convinced that one of tlie reasons you are wealthy is because you

fiav c made it a practice to never engage m unnecessary* gambles, such

as this

MoH people are willing to toss a com to sec who pays for the

“cokM," probably because the amount involved is trivial (although

the principle of discounting still applies), and because they would

like to be considered as having at least that amount of sporting

blood lory few people, however, are willing to toss coins for SlOO

bifl* The reason is that, although such a practice will result m a

person’s breaking even in the hmp*nm, he is ahinsl certain to be a

winner or a loirr in the '^lortTun end ver w of us can afford to

lake that ri'k In fac xhatwill tend '
' jappen is that mo®t of us

would go broke in the shoit-run end thus never hat c a chance to

break ctenm the long m
But actually thr eu lation ct . be even worse than this We may

even havt "edge" in the long-run, in the sense that the "game"
/ators us s.y, bj' 5fJ> Thus, we arc almost certain to win in the
long-run, 1) f sumic If, however, wc get greedy and try to win
too fast in (he short-runi wc are almost certain to run into a streak
of bad luck and get wiped out and thus never get to ecc the long-run
Many bu«incE«mcn make this mistake of trying to make money too

and end up going broke and selling out to somebody who is less
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greedy and thus better able to survive The first rule of success in

any venture is survival That is why it is essential to hold back

some of our resources, some reserves so to speak, to protect ourselves

against an unfortunate outcome to our current short-run commit-

ments The age old proverb, “don’t put all of your eggs in one

basket/’ expresses this pnnciple

PROBLEMS AND QUESTIONS

2 1 Describe bnefly the differences you are able to find between

(c) Two 'identical ’ dinmg room chairs

(b) Two identical automobiles—«ame manufacturer, same model, same

body style same color same tnm, or m short, exactly the same m every

technical feature

(c) Two "identical ’ nails

(d) Tt\o ‘identical pencils

(e) Two drawersm the same file cabinet

(/) Two signatures that you have written

(g) Two peas in the same pea pod

(A) Two identical twins of youracquamtauce

2 2 Descnbe briefly the important characteristiis that are exactly the

same for any two objects that you are familiar wiUi as jar as you knou)

Might these identical charactenstics be different if you compared them

with a microscope or other instrument’

2 3 Give an illustration of a difference that ‘doesn't make any differ

ence’ to you Describe the nature of the difference and how jou know

that It exists Explain wh) it doesn’t make any difference to you

2 4 Describe a difference which you think makes a difference but which

your mother, or your father, or jour brother, etc
,
thmks makes no differ-

ence at all Try to explain the ba«iis of such a difference in taste or opinion

2 5 Outline some simple causal sjstem you are familiar with For ex

ample, the causa! system that makes it possible for the light to light when

JOU flick the switch or the causa! "yslem that makes it possible for your

ball point pen to make a visible line

State what causes what and also the sequence of action if there is one

Does this system always work’

How do you tell when it isn't working’

How do ) ou diagnose the difficulty or difficulties if it isn t w orking’

How do you repair the difficulty’

Are you sure that ail your answers to the above are correct?

2 6 In each of the following cases indicate whether knowledge about the

first element of the pair would help you m estunatmg the second element

State the waj m which it would help Be as qiecific as possible Note any

assumptions you are making

() A man s height—the same man’s weight

() Speed of an automobile—distance required to stop it

(c) July 1, 1960 New York City—noonday temperature New York City

id) December I 1973 New York Gty^-coonday temperature, New York

City
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(() Color of pIJjTiig card-umber on fare III cird

(I) Mjii(lut!ii(-«mem>n«iQ
, ,

S7 D<KnbeKiiiethios)ou!«'efe“™«i<l'in»E'i'‘A!tw«t Explain

bow thu adibuoiial InowWse baa cnaMed ym lo brlHf toBtiol your ac-

tiyiLMandploblms //oirmncAbetlc.f BeM specific as possible

J I Dncnbe soneibitis J-ou bave imlcofncd during tbe last wrek, that

u, aomrihing tbal )ou used to ibinb «as true, but which you now think is

untrue Do )ou feel that jon are now better od even though in a Kiise you

now know less than )ra might have thought )ou didl Explain

J 9 Uimg no other knowledge than what you already have, answer the

following guestiona by giving the fairest value and the highest value you

would expect Select these laluca as though you were going to bet d to 1

that tbe aniwer will be mtbin the stated himla and as Umfh you really

expected wiucbody to take the bet Id other words, dont etafe lunita so

broad that only a tool would bet against you

llrvyr wre *^1 f
*

( 6 )
.

“

(c)

mild ol NiliowJ Ojwot

(</] Kov vmy sutomobiles were eoM m tbe United SUtes during 1960?

(e) Wbai wvl! the Gtcb3 UiUon»l Product be m the Umied States dunng

the current calendar jear?

(/) How many ganee wiU your Uvonte basVetbaU team win this season?

2 id IThat role doea chaoce play m dctennmmg the following events?

Split jour an!»tr into t*o parts In one part indicate the role of chance

within the lunita of your knowledge In tbe other part indicate what you
thifti the role of chance would have been m the mind of an ‘ eirpert” in the

gt' en field In some casei you may be tbe "expert
”

(o) Vour going to college

(h) The number of Buicka sold by General Motors dunng the calendar
year 19W

fc) The grade jou received m that math course you had vn yout firai

year of high school

(d) The grade you are going to receive in this course
(ej The time you got out of bed this rooming
2 11 Wntc a hnef essay-no mow than 1000 wotd^n one of the

following pick out the one that you know best how to do
(of How to dm e an automobile

(6) How to ret the dumer table

(cl How to walk

(d) How to walk across the street

(<) Howtosnwle

(H How to bit a golf ball

(c)
'* »

(A)

(0

(;)

(A) mJUi. a

fast four,PM, Tbe mult, were, in order, 26, 8, 19, 28 If you .re going
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to make a p!ay, what number would you bet ou for the nert spm of the

wheel The wheel has 48 numbera running from 1 to 48 Explain the lope

of your selecfoDn

2 13 (a) A card is to be drawn from an ordinary deck What is the

probability that it wU be the 4 of diamondsT Explain

(b) A card has already been drawn from an ordinary deck It is lying

face down on the table What is the pnAability that it w the 4 of diamonds^

Explam

214 A combat pilot is defimtdy exposed to a nsk when he flies a mis-

aoE Most nations have a policy of Inrntmg the number of mmons a

pilot will be asked to fly before be is given some sort of relief What is the

rationale behind such a pobey’

1! you were a flight commander and bad a partictderly important mission

coming up, would you prefer to use pilots who bad already survived many

missions or would you prefer jnJots who bad flown reiativdy few missions?

Explam

2 IS If you were a baseball manager and needed the best batter (the

one most likely to get a hit) you could get in a crucial spot which of the

following two batters would you choose? Explam your choice

One has made eight consecutive bits This batter has never hit safely

nine times m a row to your knowledge In fact, he had never hit safely

more than five times m a row unbi this last streak Nine consecutive bits

js a club record made S years ago by a player now retired

The other has gone hitless in ei^t straight turns He had never gone

hitiess this long before as far as you know, although be has gone hitless as

many ss seven times m a row Quite frequently

2 16 Does the saying 'The pitcher went to the well once too often’

(and got broken) mean that the greater the number of times the pitcher

goes to the well, the greater is the probability it will get broken?

Suppose you have two pitchers One is brand new and has never "been

to the well ” The other has ‘been to the well” 1612 times You are a guest

at the house and have been asked to go to the well to gel a pitcher of water

The last thing in the world you want to do is break the pitcher Which

pitcher do you take (As far as you know, the pitchers have equal value

to your hostess

)

2 17 Suppose )ov were offered the pnvdege of being the propnetor of

a game that was so designed that on the average m the Icng-run you would

retain 10 cents per dollar bet on the game The rules of the game were

such that you paid off a winner at odds of 8 to 1 although the odds against

winning were 9 to 1 You would have to supply the capital necessary to

operate the game Winning and losing m the game is a matter of chance

The unit of bettingm the game is 81

It IS obvious that a person should be able to earn some money m the

long run by operating this game Tberrfore this privilege must have some

Value

What IS the maxmiura pnee you would be mllmg to pay for the privilege

of operating this game’ Assume that you have estunated your potential

volume of business as averagmg 10 plays pCT hour, 8 hours per day and

5 days per week

Hint This is a deceptively difficult problem to work out in a com
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r.o (sialDin-fr Bjt doMll*il«oonjmi loo qmUv Remmlwr

ihi* pn\al/trt el ib« *ort hsve b«a bought and «otd manj times b^ people

tit 1 'll imi dao )0» Tht5 omtd »t Hit wsvtei mlmuieli

Scr-c£t!j»qu«tic*a}OU»'illhawtoatL.i»erare

1 Uow ru h capita! aiU I n«d to g»e me a reasonable! T) chanee

o' n.ni> ns ere ^ ear s pla) » Two ynr^ pla> ' Etc

2 If I tooV iba «aine cspUal and maaied it in United otates goierti

w-i builds I could care 40^e «itb practtcalij no n^k at all VTiat

enra n‘ks do I take when I trj to raise the expected return bj bujing

kour tbsknu about the pnce )ou ofiet lor tbs pnvtlese should help to

rhnf) JO r und^retand ng of the problem of following a policy that gi\e«

jou a fair ehinre of «ur\ivirg the <hort nm ncL««itudes of chance at the

«me I re at jou trj to make a fair aierage return m the long run This

i« of foury a proUem that per>-3d« all of bimnc'5 and irith a coinplexitv

fat iTW’rr than the compUntj of thu nmple gime situation

211 Apcca pu"rh pressopentonin j-ouf facton is engineered to turn

out SJte lereptable pieces It has been discovered that to reduce the d^

freiuf pieces below 5tc ''ould wt too much in labor materials and tools

lenwJic imp^tions are made to pre ent eome preventable cau«e from

pushiriR the percent defectives beher than 5^ Ubenever there is strong

reivm to believe that the ppfcentage of dcfectnts is more than 5^^, the

P'oere* IS ‘topped aod the operator tocto for the cause Of course some-

t eves the operate! is fooled b> h» m«l«lon tesulta and goes loobni fw
and do«ni fnd an) thus lo*nng valuable production time Other

tiTfs he n fooietl into ietting the proecs run when be should have stopped

it t*'uj producing too much scrap

() Sjppnse the bsi itupection of ten pieces revealed one piece defective

the process be stopped for a search for the trouble 1 Explain

jour decision

() Suppose an inspection of ten pieces revealed two defectives’

fc) FturdefHtives?

Id) Suppw' an impection of five pieces reveals one defective? Do jou
note 4py d Terence between ten pieces with two defectives and five pieces
wulj oiK* d-fecliv e' IVhat is the difference’

Hint One wa> to approach thu proWein ” to start with the hjpothe«i3
ibl the universe of piccex has def^ ire* Thus the pTobabilU) that
an) piece will be defective would be ^ or Go and the probabilit) that a
piece wouU be gattflactor) wre ^ ne J<)/20 or i)5 The basic calculation
ncedM to anf*er part (a, to calculate the probability of getting ten
peer* with cTrf derceme out of a univer t with 1,% defect ves This is
lone by nultipKing the probibibties for the ten separate nieces togetherm do (dfffttiifjX 15 (jMd/xroxOoXiloXJlSxtoxSSXIS
X 55 oriotalnilaie 55X (5o) • which tqials t
2 15 5Vlat a (he pncdol "litiiifeTO lo busmen polic) oi our mabihii

10 Kt cicnti ftccpi mihin gonie most of error’ Or m other words ifjm d, oot know mclij i.h.1 ! jour labor cost was goioR to be pet onit ofrr* donrj the neit focal jear, ,hat steps would jot, take to protect
Soutwif sfami iinfaiorible labor eon aonatioKi Supjxwo oou had It.



chapter 3
Sources of knowledge

It IS self-evident that knowledge does not exist in the

abstract It can be used only insofar as it becomes part of the

chemistry of the human body and thus can have some influence over

the behavior of the human being (The same thing can be said of

any living object We are going to confine our attention, however,

primarily to the use of knowledge by human beings ) Man s knowl-

edge of the chemistry of the human body is not complete, so it is not

possible for us to specify exactly how the human body acquires,

stores, and uses knowledge Our treatment of the subject is further

handicapped by our own inexperUiess in the genera) fields of study

such as biology, physiology, psychology, neurology, etc, and we

approach the subject somewhat apologetically It is essential that

we make some approach, however, if we are to get an idea of the

limitations of the methods of solving problems that we are going to

talk about m later chapters We have occasion to state rather often,

for example, that formal statisfacal methods can be used successfully

only to solve part of most practical problems It is important that

we have some idea of what part we are solvmg and what part we

must neeessanly leave to solution dences that cannot easily be

formalized and communicated

3.1 Perception Devices

Human Senses

It IS customary to believe that the human body becomes aware of

its environment through the medium of the five senses We some-

times talk of a “sixth” sense as a sense ihat we cannot identify spe-

cifically, or are even sure exists but which we find convenient to

appeal to when we cannot otherwise identify how the apparent per-

ception took place Specialists in the field have been able to make

57
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Bue ii.c(ul tubclM«ifiraUoiH of the seo-cs that relate the gn en

Kiue to »hat it « that is being perceneii For example, the abilitj

to !oe color ii not the same as the ability to see the disUncc ot an

oncoming object

Our interest m the icn^es a not m the ‘peci&c characteristics Qt

each hot rather in certam general choratlcnstics ol all ol them The

fir*t charactcn*tic ac note is that each sense has a liiiitteiJ rtinpc

There are sounds that «c cannot hear odors ’ «e cannot smell,

etc Mans Crsl inkling that this »as so probabl) came Irom his

ob'cnation ol the bchatiot ol animals Animals frequently acted

as though they could hear things at could nob Thus one of the pn

losrj reasons man had (or domesticating the dog uas to supplement

his own limited "cnscs The reason it is important to recognize this

limitation of our lenses is that it serves to remind us that there are

probabl} all kinds of things going on around us of uhich ue are not

an arc This recognition is both humbling and a challenge, n chal-

lenge to It) to extend the range ol our senses by one device or an-

other And, of course, see hate had some success m meeting that

challenge

A seeond general characteristic to note is that the range ot percep-

tion lurwi from pmm to person At the same time, we note that

(ottuaslel), this sanation usually is not unilcrm lor all senses II

pctxon A has a wider peteepUse range than B schen it comes to seeing,

he might base a narrower range when it comes to hearing In lact

there la some esndenec that weakness m one sense is often associated

with strength in other senses The rare end gifted person is the one

whohas wide rangem all his senses

A third thing we note about our senses is that their range, or acuity,

unnci oier time lot each of us Tratntng can sharpen them On the

other hand, fatigue can dull them The aging process also affecte

them, u’ually adierscly Some of the vanatior appears random to

us, in other words we cannot explain it, nc can we predict it

Fourth IS the faewr of the degree ui control we have over our
senses Somcofthuetntroliseol-dorii We are able to deliberately

focus our tookmg, uut islenmg out stuffing etc We arc also able
to rai<e and lower our threshold of conscuiusness For example, the
student (ludiei with the radio on beesu'e he doesn't "heat Ihc radio

”

The citj -dweller has almost permanently raised his threshold of con-
•ciousness against "eit) noi'cs' that would mean sleepless nights for
the newt) -armed farai-bo) Our ability to control is limited, how-
ever There is alwaas a sound, or anight, ot an odor, or a touch that
will reach our con<ciousncss no matter how high we try to raise out
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When we mention consciousaess, we are Jed to wonder about the

degree to which our senses still receive messages even though we

are not consciously aware of them Although we have considerable

uncertainty about the process by whidi subconscious learning goes

on, we have substantial evidence that it does In fact, some psy-

chologists have been so impressed by this evidence that they are

inclined to believe that practically all e^eehve learning takes place

at the subconscious level In other words, they believe that we do

what we are, not what we say or what we thznk we are And what

we really are is buned in our subconscious They behe^e that we

cannot, and will not take any voluntary action that is not consistent

with the condition of our subconscious

Another interesting charactenstic of our senses is their 'power, both

absolute and relative, to convey knowledge Is a picture really

worth a thousand words? If we were restncted to the use of only

one of our senses to learn all we could about an elephant, would we

rather see, hear, touch, smell, or taste one? Fortunately, we do not

have to make choices hke this Most of us are able to use our senses

all together, and here we find another interesting property of our

senses It is not unusual to find that the senses seem to stimulate

each other to greater effort To hear a noise makes you want to see

what produced it The infant crawling on the rocky beach first sees

the stones, then feels them, then bangs them together, then puts them

m his mouth, then cries when his mother takes them away and moves

him back on the sand ’ On the other hand, sometimes we find some

senses completely dominaUng others To feel the cnsp cool air,

smell the smoke of the campfire, hear the steak sisshng, by now that

steak 18 predestined to taste good, even with dirt

This 18 perhaps enough discussion of the human senses to remind

us of some important truths These truths are going to be persistently

relevant, even though not always explicitly mentioned, as we pursue

the problem of building and usmg statistical controls in business

Again we use the simple technique of a list of “propositions" that we

take as having a reasonable measure of truth

1 The environment in which we operate has an infinite number of varia-

tions

2 Our knowledge of this enviromneDt is useful to us only insofar as it is

part of the chemistry of the body

3 We acquire this knowledge oiriy through the medium of our senses,

including both those known to us and possibly others not known to us

at this tune

4 Our senses have certain limitatjoBs

(o) Limited range
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(6) Vinablf r^rformacce

j Tfoa pcPOQ to person

u From tunc to time

uj From place to place

(e) Ia\oluaiar) to «eme extent

(d) Subject to actual error

6 Hence our kBowiedge of our environment is ceecssanly limited and in

some CIVS incorrect

6 Thu aU our actions are subject to errors caused by what v\e do not

know and bj thoje thinRs (hat «e know but which are not true

7 Fortusatel) ne arc not as bad off as the above might lead us to believe

W t are not reallv aware of most of the mistakes w e arc making because

Our perceptions are too narrow for tis to realize they are mistakes We

are not disturbed bj what we do not know, because we do not know

enough Ignorance is truly bliss, if we do not have somebody remind-

ing us how Ignorant w e are

Augmenting the Human Sontes

The more intelligent of men across the centuries hate been fully

alerted to the limitations of their own unaided senses, and they took

steps to do something about them We hat e already mentioned man’s

earl) u«e of the dog Another animal that quickly comes to mmd
as one we hate used m recent decades to supplement our senses is

the mou*e The mou«c has been used b> the coal miner to detect the

dctelopi&g presence of gas m the tunnels But the most spectacular

achtetemeota of man in augmenting his senses have not been through

the u«e of animals Thej hate been through the creation of physical

instruments Most of these mstruroenta are so commonplace toda)

that ne do not fully appreciate their fundsmenlal importance to the

dctelopment and msinlensncc o/ a tomp]t% cmlmUoii

3.2 Memory Devices

We not onl) hate the proh.em of properlj exposing our natural
anti augmented !cn«M tc the phenomena around us, we hate the
further problem of 6iv.«.g what we hate thus learned Also, ve not
only hate to store tlicm until the day we need them, but we have to
knoft where nc hate stored them, and we have to know how to gam
access to tlus storage place And none of this happens easily and
autoraali'ally

Sloroge Fflclhlles of Ih# Human Body
The problem of the human memory has been the subject of much

n^eareh One theory hypothesizes that we ncter actually forget
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anything Eveiy stimulus is reputed to make some impression how -

ever faint, on the nervous system, and this impression never really

disappears even though the coikcious mmd may never be able to re*

call it Even if this is true, we still do not know if it affects behavior

by acting through the lower nervous system Wfe do know, however

that we may never be able to communjcate this knowledge because

we are never able to get it into the conscious nervous centers The

inability to communicate is often disastrous in many practical situa

tions For all practical purposes it is just as though we did not have

the knowledge assuming we do

Augmenting the Human Memory

Man has been equally ingenious m augmentmg his memory as he

has been in augmenting the range of his senses Record-keeping and

picture-making go back through the ages The twentieth century

has witnessed the developm^it of sound-recording to add to the sub

stantial improvements that have taken place m the printing and

photographic arts In fact, we are now running into the problem of

providing storage facilities for the ever-mounting volume of paper

Business has developed record-keeping to a fine art It would be

difficult to exaggerate the profound importance of the almost revolu-

tionary developments that have taken place in the IP^O’s and 2950's

in the communication and record-keeping arts Executives of today

know m hours and minutes what executives of yesterday knew m
weeks and months, if they ever knew at all This has substantially

incivssed the spsn o! eHectn’e crntrol of the singk exmtive team

and has made possible the substantial growth that has taken place

m the size of individual businesses Of course, it has also paved the

way /or big organizations of all including political organiza-

tions If we fear bigness m any institution, we are not so sure that

further advances in the communication and recording arts is an un-

mixed blessing

3.3 Sampling Problems in the Perception and

Recording of Historical Data

Two Distinef Kinds of Sampling Problems

Fe previously had occasion to define a sample as an item or a group

of items that has actually occurred We now add the qualifying

phrase, asjar asm know ITiib serves to remind us that it is entirely

possible that the phenomenon we are dealing with may actually hai e
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(Momd Eso; ua«s wthout our Imounis it Although uo oecos

(sn'r BOU i»U stlion 0 Ithio the Imutj of ith«t u e Uon ,
we do not

wsrt wbe <o piMimpluous as to bcliett that we know all that there

» to t»ow Owe o! out ampbiiE ptobto H that ir/iof tre tiwir «

eejy 0 impli 0/ tfhal tnu oiotlobfe fo be foiotm, atid, (uithemore

O'hc; people hate different <amp!es {tom outa This is the aampling

p-oblem that predomiaatea when the Gallup Poll asks the opinums

of Iffl people m a citj in otderto draw conclusions about the opinions

of all the people to the ntt This is al'o the problem when we sample

a bowl of soup for «alliness by tasting one spoonful of it hVhal

bothers us of cour-e n that ichot ire Inoif may be tigrujicantly dif-

Um!, to 03 from nhat was oioilnWr to be inoim ff it is signifi-

cantli different then «e will likel} act incorrectly Gallup says A

mil win botaclually Bwill

The other kind ol sampling pioblem an'cs because irhol octuelly

hoppreu at anv lime is not the only thing that could hove hoppened

at that tunc For eiample let us suppose we throw a dart at a target.

This IS tot a tatnple of throws that we hate made at this target This

IS the sstale rectitd beeatt'e wo hate aotuiUy thwwn tt just this onee

Cut »e 'till bate a earapling problem ai soon os we try to u'c this

npenenee to predict the result of our nest throw This problem

trees becau'c ws do not lull} ondnatanii why that particular result

ol the throw mg occurred Within the limits ol out knowledge, wo

can cs-il) coocciic of different pcaible re'ulta that might have oc-

curred as we io"cd this dart In addition bccau'e we can conceive

of scseral ptwible thing) that might base occurred, eseti though they

did not, we can now conceive of several possible things that might

occur on the neat tos*

It ts impottaat to note that both kinds of sampling proUenis base
csaetly the same ba=ic root out igtioratice On the one hand, we
art Ignorant of things that base actually happened or that esist, on
the other hand we are ignorant of the generating mechanism that

prodocei the results even when we know all the results Fortunately,
It K usuails not netf'ary to try to separate these two problems m
practical wtuatioss M e generally lamp their manifestations together
and treat them as one problem ttbat is necessary, however, is to

reeogniio that either or both cl these eampling problems will eicist in
«\ cry ptftclit&l situation _

6^113
SflmpI# Ctneroltng

In order to improve our understanding nf the problem of sampling
errors we must think about the various distinguishable processes
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that might regulate the occurrence of sample items We start by

looking at the various kinds of vmverm out of which the samples

might come Actually we have already done this, but now we are

going to formalize and organize tiie treafeient

The Wofure of the Universe, or Population, or Generofmg Source

from WJj/ch Semples MJgltf Come "We have previously defined a

universe as a “collection of things which contains all the things which

v,e think might occur under the specified conditions of the problem

at hand “ We retain this definition Universes can be classified

vith respect to whether they are known or wiknmim, real or hypo-

thetical, and finite or mfmie We make these distinctions not be-

cause we believe that practical problems involve all possible combi-

nations of these types, rather we do it to clarify our thinking about

the problems of sampling For example, we have occasion later to

make believe we have certain types of universes in order to develop

certain principles in a simple and easily understood context b
addition, we discover that some types are simpler to work with than

others, and we find it practical to sacnfice a little accuracy to save

effort as we work on actual problems

The difference between a toown and an unknown universe should

be self-evident All of the conventional games of chance illustrate

known universes The reason we know them is very simple we con-

structed the games It js Quite difficult to think of any other illustra-

tions of known universes In most practical problems, if not all we

can only guess about what is in the universe In fact, the reason we

frequently take a sample is to help us in making this guess

A ml universe is one which emts, in the usual meaning of the

terra It has a physical existence . It can be seen and touched, etc

The universes of some games of chance exist in this sense, but not of

most of them Whenever the game deals with single events, as in

roulette, the universe is real But if the game deals with combm-

tions of events, as is true for most card games and some dice games,

the universe does not really exist For example where is the universe

out of which we are going to ‘ draw” a sample of five pennies, which

m effect is what we are doing when we toss five pennies^ If we

think about it we will discover that there are 32 different combina-

tions of the five pennies that might occur But those combinations

do not exist except in our mind If we wished, we might put each

combination on a slip of paper, put the slips in a bowl, and draw one

out at random We have now converted the hypothetical universe

of coin tosses into a real universe of slips of paper The primary
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dffral Y TDO-v KOP'T hiT'' Mprulirti"!

WDstelj mo't p-oHcnis iniolic b\potlielicsl uiiHcrscs is that thEj

tin cotltnplate the mnrr^e onlj if thfj think about it and work

A /mTf unncrse is a uniter'e that has a limited number of items

in it If we draw items out of this uniaerse and do not replace them,

we will I'cntoall) cshau't all the items and the uimersc will ha\c

iSi-apjvartd An wjimlt nnistM,on'heotiiet Uaniis mevhausUblc

Tic teal iiBiKirtimce of the distinction lies in the fact that lampbng

mil out rep'orement /mm a /iaite miierse auses Ik mnerae itselj

to ehaogt Tomorron s possibilities therefore, arc different from

jfs'crdaj s because of jc'terda} a samples A simple illustration of

a tliiite uniirrse i* a deck of cards as used in most card games Tor

example if ne ptaj poker and do not rerogniic that the cards alread)

dealt in a hand ha%e something U> do with the cards that might occur

cn till nei' deal we are doing a lot to encourage people to mute us

to phj «illi them but little to enhance our chances of « inning But

flow about tossing coins or tfirowmg dice’ Hon many tlirons ate

t! ere in a pair of dice? Do ne change the unllc^e of possibilities

(ter) time «c thron the dice’ Of course ne do not (except for the

niglihli taclor of near! How big is the umierse of pitches m the

aim of a major league pilehcrf To nbal extent does some sampling

ithronirgl strengthen the arm and enlarge the unitetsc? To nhnt

exUnl does sampling lire the arm and contract the unt\cr«c? To

nliai exlini docs rest replace' the unixerse’ To nhat extent docs

age change the unnerse’ These and similar questions can be asked

olwiit all sorts of pnelicsl actiulics and the ansners are important

to uslxeau'c tlie ansners ne giie tell u* nhat to expect toiiiorron

?urpn'ingi\ enough although the rone pt of the infinite puxzles

many jieople nc find it much ea«ier to nork nith problems if ne
Wicie that tlic umterse is infinite than it ne behexe il is finite In
fact man) pre' im‘iustdonotcxisltotuailwebelie\etheum\erse
IS infinite T i example L. us look at the problem nt (arming It

the farmer fielieies that his farm has soil nith an inexhaustible
'uppl) of those ibemieils lliat his com crop "takes out" of it he
nomes not at all about the ptoHera of the optimum combination of
u«c, tcM sat nmeaal be should adopt Hia philosophy is that ‘ there
is alnays more where that came Itom ’ Our society has to eon-
tmualli MTeslIe null the is'Ucs of consenntion and leplaecment of
natural resources \I hat makes thc«c issues “is'ucs" is that ne do
not knon ihc actual extent of the itsources ne haic, and ne do not
knon the future late of use ffe must guess, and different people
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pess differently This problem is further complicated by the ques

tion of how far into the future our thinkiog proceeds

Portimatelj; we hare many problems where the universe though

finite IS so big considering the rate of use or of sampling that oui

answers turn out to be essentially the same whether we treat the

ucjversfi as finite or infinite For example Jet us suppose we partici

pate in a lottery with a total of 1,000,000 contestants There are

100 pnzes the prizes graded down m value from the 1st to the 100th

The first sample determines the winner of the first prize etc No

person can wm more than one prize It is obvious that our chances

of winning the 100th pnze (assuming we have not won apnor prize)

are greater than were our chances of winning the first prize 1 out of

‘only’ 999,901 compared to 1 out of 1000,000 But what is the

practical significance of tins 'greater chance’? Most people would

agree that it has none A difference this small we often call ‘of the

second order of smalls," that is, too small to bother with We par-

ticuiarJy do not bother with it if it is a bother and we find that

frequently the mathematics of dealing with finite universes are much

more bothersome than the mathematics of dealing witli infinite uni

verses

Ways by Which Samples Might Come oirf of o Universe To have

some understanding of what is jn a universe does not reallj tell us

very much about what is going to come out of that uni\ erse unless w e

have some idea of the ‘coming out' process There arc in general

two ways m which samples may be said to come out of a universe

one is 6v a ranem process ancf the other is hy a sj/si'emotic or non

random proce” It is quite impossible to tell exact!} which process

really prev ^lis in a given care In fact, if we adopt the philosophical

view expressed in the preceding chapter we would saj that there is

no such thing as a true raudoro process AVhat exist are precedes

that look to us like what random procesres would look like if there

were any In other words, we have created in our minds a model

of what i random process is Whenever we see a process that looks

like this model, we treat the process as though it w ere a random

process Although we hav e stated it several time' in preceding pages

it IS worth repeating When emr present ignorance prevents us from

identifying any process as systematic, we temporarily treat the

process as though it were nonsystematic or random Tomorrow we

may be smarter and treat it a little differently In the meantime we

follow tile very simple, but profound, rule of action '\Ve do the best

we can with what we know turn We wa^ no time trying to do the
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rapo^lMe cl remiiicfic!; Inoirialgc »' * j”""® *“'

r tin'' o! sy-'fiMtic 1 anstion is a good spar to larltict atady But

Uit mart su-?icloa is n*el(“5 to »> ! >t »'« “

to cs (ten To *ay that somelhiiifi is * biased,’ but then be unable

to s'alc lie dircrtion and raagiiitoiie of the bias is to say nothing

thiit we can use

Aclual!) row creating ‘bing” random models for man)

The item generating processes in al( so called games of chance

arc random pwcwes in the scn'c that lhe«fi proce^«es are designed

to frustrate man’s be^t efforts to detect an) ostcmatJC behavior to

ihcpmctss This 1 * not as hard to do BS It may •>eem All w do is

deign out all ific 8)8tcmatic \an'itiona ne about, thus auto-

raaticall) leaving onfj tho«e vanatioos that «e do not knon about

and Uic^e arc random bj definition Of course if such a design tvas

attcmpied by a rclati;e!) ignorant man nith the u«c of relaUvely

crude matcnals and relaluel) crude tools, it isliUl) that his process

viojW ha;e some fjjicmalic \anatioaa detectable by a relatively

inoaJfdgeable man wth relalnelj sharp tools One of the most

mtcrtttwg developments of the la«l couple of decades, considerably

•linulatcd bj the birth and growth of (he electronic data processing

raacfiine has been the u*e of random processes to generate tables of

random number* Appendix B gives sample pages from such tables

These tables are created by developing a process of genemting the

digits 0 through ‘9 one after the other in such a way that the

orrfir of the digiw is such (hat u defies the world’s best minds to dis*

cover an> wav of predicting some numbers in the table by referring

to any other numbers in the table \ou might try such predictions

tttth the rampie pages m Appendix B If jou happen to hit some

fflrrecllj, and jou will U:«t
5 our*'s>?tcin' in other parts of the table

before you decide that you arc smart rather than lucky

It H probably obvious that most samples we deal with are not

fofirciou*!} selected by us They just happen However, there are

occa*ions when we do coii*Cioudy select e "ample Sometimes we
select a ‘good’ or billed sample such a* when we select our clothes

for a Job icUrview and wc do not think it ts appropjiale “to be our-

whe« Rcieclion wil! reveal that most of our conicioug aample

wlfctionsare (uajcdia our favor, insofar as we know where our favor
» Part of grow mg up is to learn how to bisa our own samples and
dKcouflt (he bias of the other felfow'sl Bui there are times when
wc want a “completely unbiased ’ israpfe because we want to get as
cIo*e to the (ruth as is humanly po*sible with only part of the record

It IS then (hat we micht be able tn nmfif *hrv t.«r
» raadoni
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numbers The important prelimmaty, however, is to be able to

separately identify each item in the universe and attach a number
to it different from the number we attach to every other item This

IS what was done, for example in preparing ttie selective service draft

The highest number so assigned then determines the number of digits

we include in every number we pick out of tiie random number table

For example, if the highest number we assigned was 4684, we would

then select four-digit sequences from the table The number 8 would

be 0006, the number 48 would be 0048, etc We can start anywhere

we wish in the table and go m any direction we wish The only rule

IS to proceed in some manner which is independent of the numbers

we find Do not look for any numbers or pass over any numbers

because of any personal likes or dislikes It is usually a good idea

to select a random start by selecting a page number, a column num-

ber, and a row number by some random process, such as drawing

cards out of a deck Then proceed systematically through the table,

by taking the numbers m the same order in which we read the words

in a book Or, to be doubly cautious, we could use one table of

random numbers to give the p^e, column, and row m another table'

The possibilities are almost limitless once we start by using one

table of random numbers to help make random selections m another

table

Tables of random numbers undoubtedly would be used much more

m practice than they are if it were not for the difficulties often en-

countered as we try to identify and number each item in the universe

Certain characteristics of the universe must be known or we cannot

identify an item when we see one The imiverae must be finite at

least, and preferably not very large, or we will be overwhelmed by

the numbenng job Sometimes it may take so long to perform the

numbering job that we no longer need to know what it was we were

sampling to find out'

There are times when we already know the pertinent characteristics

of the universe, or at least we think we do We nevertheless prefer

to work with only a sample of this universe, usually for reasons of

economy or time For example, a company may wish to measure

changes over time in the average pnees it charges for the many

items in its product line The company certainly knows the items in

its line and needs no sample of items to find out what these are We

may decide, however, that we can derive a reasonably accurate index

of prices by using only a sample of Ihc items We would deliberately

select this sample so it would be a "cross-section” of the full line

We call such a sample a purposive sample to distinguish it from a
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i5-c!5ffiU**clcf!cd wmple The principal feature that dminguishes

ft
«anp!e from a random sample :! embodied m the role of

« e pervin doing the selection In a purposiie selection a particular

Ucn u inrluded m the sample beeause the tdectof decides that U is

r^'t^estatae o! Uie unnerve In a random selection a particular

iirn is included becau’e of the cto /orffs operating, the wishes

ol tU per^n miolwd pi^umiUj have nothing to do with il,

Whether a pufT'o*!^* eample is imlj' reprcsentAtive depends cn the

sod skill of the selector and not particularly on the sire

of the ramp’e « on the sanahililj of the items in the unuerse, the

luo factor* that are relevant m judging the probable accuracy of a

random sample

Sire end Direction of Errors in Using Samples to Represent u Universe

U ibWiW be triraeuloU! indeed if o sample of any kind from a

uiM'c'tc of any kind were to lead to mctlj the same conclusion*

«c viculd gel if wc were to contemplate the whole unit Er«e W'e must,

therefore, hue •cme coccero hi the errors we are going to make

nfin we ii«c samples Itwould of eour^, be \cr5’ to deUrmine

the wr and dmcnon cfthjseiTonfweUew the UDiMTsoand could

dirwtlv eompare the conclusion wc get from the unncrc with the

fODcIuNOn oc gel from the particular ‘ample we ha\c M to do

this would make no practical sen*e beeau«e who would be u*ing con-

clu«ions from «amrlc' if Ik knew the unuerte'^ (Before We saj “no

ore’ tac quickl} we mu't note that statisticians have bwn known

to do till*, hut not for the solution to practical problems Rather

l/e\ art doing rc*e3rch info the sanous wajs m which Samples might

differ from a uniicrsc From this re«C3rch they hope to Icam pnnci-

pW that can be u^ed when we do not know the unu'erse ]

Anoflicr relafuch easy thing to do is to compare the an'swcr that

we get from a ‘ample wjUj the an^er that would haie been pcriect,

tiiitielj, With the rcsuU that actuallj occurred lad which the sample
was u*<vi fo preiiict. This is the * second-gu sing" technique There
are ocasioji^ a J we U'c them, when tins technique la the only one
spiiamil}y atai/aWc (o a**cfls (he giie of sampling errors

The typical prolhin that we try to sohe is that of estimating the
probable range of the sampjjpg erwr from only the irforamtion pro-
'iJ«f in the sample ,kelf At first glance this may seem like quite a
trick men Jikea bit 0/ chstfotam^m But we see that it is not that

» FAea iht «cro. we «ouW probaW) still do it because in most
prob'ems the information m tljewmpfo is (he only information we
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have, Bud ji we dJd not ba^e our estunatioii of the sample error on

that information, v, e ould base it oa nothing

Logical deduction and expenments with actual sampling processes

confirm iihat common sense suggests as the prime determinants of

the size of sampling errors From a very early age we have all felt

better about our conclusions when our conclusions were ba«ed on more

rather than less evidence Our mtuition tells us that sample errors

should be smaller the larger the sample, and our intuition is right

What our intuition does not tell us, however is the rate at which

the sample error gets smaller as the size of the sample gets larger

Fortunately, we have been able to U‘ mathematical logic and expert

mental eMdence to help us disco\er the relationship between size of

error and size of sample We discuss these results later In the

meantime w e continue to rely on our intuition

The other factor that oar intuition tells us is ^niportant ;n drawing

conclusions from any evidence is the factor of the consistency of the

evidence If everj item of evidence introduced in a murder tnal

points directly and unequivocally at the accused as guilty, the jury

IS going to easily satisfj itself that it knows what to decide If, on

the other hand, the defense attorney has succeeded m introducmg

evidence that could point in other directions, the jury is going to have

problems because of a greater concern that they might make an error

in deciding the verdict Again, we find that our intuition is sound

The more consistent tlie evidence, the mailer is the sample error apt

to be

In a general way, we can say that the size of sample error v'anes

inversely as does the size of the sample and the consistency of the

sample Since we find it more convenient to measure the incon-

sistency of the evidence, or its vmatwn, we ace more hkely to say

that the size of the sample error vanes directly with the variation in

the evidence Intuition with respect to the rate at which sample

error declines as the degree of vanaUon declines is probably going

to give us the correct answer this time So we feel very safe if we

let ourseh es rely on intuition for a little longer

It should go without saying, assuming we have agreed to this point,

that we real'y cannot predict sample error as exactly as some of the

preceding paragraphs may imply When wc said, for example, that

the size of tlie sample error vanes inversely with the size of the

sample, we did not mean it literally We should hav e qualified it by

adding, probably Although m gmieral, or in the long-run, or on the

average we find the sample error declmii^ as the sample size in-

creases, it may actually increase m size as toe sample size increases,
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e*ptciAllj fo: ' eo* Kuall increases in i cry Email samples Or, we can

ssv that “as the sue ot a sample increases, mcrca'cs m sample error

l«ome rare- and dccteastt m sample error become more frequent'

Another IhinKthat should go without 6a>ing is that the abo%e dis-

cwsion of sample error makes *iens; od1> when we are talking about

rar-dom errors The bia=etj impre<9ion we gne of the usual slate oI

ou-drc'«wSenwe spruce up for a job interMCW does not get any

lc«5 U\c more jobmlcr\iewa we ba\e In fact, it maj e\en get greater

as each job mtenicw leaches us how to gne an e\en more biased

inprc^ioa the nat tune Similar comments appl> to what we called

a purpome sample a sample delibciatel> selected b) a pci«nn to

conform to h» idea of what the universe looks like The error m this

kifid cf sample tends to remain the Earoe no matter how big the

sample is 1\ hen the fclcctor adds items to this kind of a sample, he

ju*t adds items like the ones he had before, so, of course, the sample

remma wscntiall) the eame Purposise tamples hate another that*

aclensu- that we should mention Since the 'elector has essentially

the same kind of a problem that the expert card dealer has, narael)

that of erraUflg a sample that looks good he tends to make the

•ame kind of error that the card dealer does He makes the sample

look too good He lends to deltberatelj leave out all ‘ extreme"

V allies concentrating his results around what he thinks is the average

Kc also tends to trj to achieve 'ome «emblanee of “balance " The

di«*nbution of the items in his aarople tends to be quite symmetncal

even when the items are not«\imnetncall> di'lnbuted in the Universe

The prohfcni of the dirccfum of the error m a sample, in contrast

to iti probable rue is quite another matter If we know the direction

ol the error we v^oufd of courge adjust our conclu« on m the same
dirtttion and thui ehmmalc the error If w e do not know the direc-

tion of the error but have good grounds for su^p^cting the direction,

apflin we adju't m that Qircclion albeit 'oraewhat gropingly If we
bie no bt<i! -hsUoc^ 'or dctermmr? or su^ptcling the direction

ol the sample error m ai ahle to ir »lve no adjustment for direction

and must plan our actieiti t for both directions of error, or even more
directions if there on irorc than too directions to our problem, as
there would be, for eaample in esalualing the effeets of artillery fire

3 4 Some Piodical Considerations in Designing
Samples

Althonsh prseticall) all the •smples we connder arc samples that
JU't arire in the normal course of business there is sonie ncc.nn
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for US to refer to designed samples tiiat are intended for specific pur-

poses It js, therefore, wor^Ffwle to oonader some of the highlights

of the problem of efficiently designing samples, and it can be only

the highlights The field of sample design has expanded tremendously

in recent years If a person is not a specialistm this field, he is likely

to be somewhat behind the latest developments Many new tools

have been developed to facilitate the design of expenments in almost

all of the physical and social sciences Market research techniques

and methods have experienced similar advances

The fimdamentel purpose ^at guides all practical sample designs

IS "to buy the most and best information at the lowest possible price
”

This IS, of course like saying that ' the way to make money m the

stock market la to buy cheap and sell dear” Most of us know what

we are trying to accomplish The tnck is to figure out how to ac

complish it Nevertheless, it is a good idea to occasionally remind

ourselves of this fundamental objective of sample design It is sur-

prising how often we can get m a rut and forget that information

costs money

The Economics of Sample Design

The collection of information does cost money, and generally the

cost goes up as ne try to collect more Nobody will consciously pay

this cost unless he feels that the information gamed is worth it The

problem of balancing this cost against value received is complicated

by the fact that usually we can make only relatively poor advance

(tef <?/ Ah? ?'<fih\? -?/ U ^ismi A?* ii? Ahv

Ve cannot really assess the value of information until we have it,

and even then we have problems, and ve cannot get it until we have

paid for it If we insist on guarantees of our money’s worth before

we spend any money on research, we will never do any research

The so-called best guess about the probable gams from collecting

some information then becomes the budget guide that tells us the

limits within which we should tiy to keep our expenses This does

not mean that we should spend all tiie mon^ although often ve do

spend all of it Research gets us involved in the kind of steps that

lead from one to the other, and before we know it "we have gone too

far to stop now ”

The uncertainties about the value of our research efforts make us

certain about one thing we should use all the devices we can to

make the data collection process more #cient So let us turn to

some of the more prominent ways we can make our sampling more

efficient
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Stroiifying the Universe

We noici abo'o th-vt «snp’mg errors w Ic « tlie more con«i<tcnt

ll < K\ ijci a or the v anatmn lO Ihe t\ idcnce If ^ e could «:orne*

low cut dovsn the poicnlril simtion in our sample cMdonce, v<c

Vioali Und to cut down (mi errors v^itlrout l&MUg to mcrca«e the

([jantitv of our 'ample Tor example if we were dealing with an

o'llnnra deck of ph)»ng (ard» we would ha' c to contfnd with cards

1

1

ou’’ sample that miRhl 'ar) all the waj from I to J3 Let us sup-

pose that wt were mterc*ted in estimating the arithmetic mean of

tN unuere from Uie infoimalion n a sample «a> of fi%c cards

Hirt wp krow the unnerve ha** a mean of 7 But what kind of esli

nl3'^ nighi we get from thi« ‘ample of fi'c card* W e might {though

u i‘ unlikcK ) get an estimate as low as 1 2 (‘ample of four Aces and

ore deuce i or as high as 12 8 (a ‘ample of four Kings and one Queen)

Tls 1
* wp might ha'c an error in our e‘timale of as much as 5 8 in

(lU er direction

How can wc cut down this potential error and ‘till u*e onlj a

‘ample of fi\« canis’ lit should he ob\iou« that we could cut il

down li) mcreaung the ‘lit of the ‘ample ) The answer is that we

could cut It down h' sphlimg up the unnerve of cards into a «cl of

‘uhuni'cr^c* each with onl) certain card* in jt and then we could

fclccl part of the sample from each of the ‘ubumveres Suppose,

fo' example wc di'idc the uni'er‘e of card® into the following fi\e

‘uburner'cs each hating onl> the cards specified

Sub-

unner^ Cards

A 1.2

C 3 4 5

c C 7 8

D 9 10 II

E 12 n

Xow let u‘ select our sample of ti\e cards b> drawing one from
suhunnertc A, one from aubunitcr'c B etc The lowest possible
anthmctic mean we could get in our ‘ample is now the mean of 1,

3

6 9, 12 or tt talue of G2 The highest possible mean would be 78
It IS oh'ious that this is a considerable iniprotcmcnt oter the limits
ofl^ and 12^ that we had More ve stratified the unuerse

Tins IS 'crj well but we do not usually know the ujincrsc And
Qw cannencatlj di'idclheunncreeupinto coiwcmentpartaif we
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do not know what is in the umversc? For example, if we wanted to

accelerate our rate of learning about fiie deck of 100 unknown cards

we struggled with in Chapter 1, how would we go about dividing that

deck into subdecks so that the smallest numbers would be in one

subdeck, etc ? The answer is tiiat we could not possibly do it, except

by luck, as long as we did not have access to the number side of the

card, unless we vere able to detect some distinguishable features on

the backs of the cards that bore some relationship to what was on

the number-side or unless as we say, the cards were somehow

“marked” and we knew the markings Let us assume that the backs

of the cards do contain all sorts of distinguishable marks For ex-

ample some of the backs are red in color, some blue, etc Suppose

we sample one card of each color and find the following

Color Numbo’

Red 36

Blue 8

Green 23

Black 30

White 106

The first thing we note is that the numbers are certainly different

for the different colors, and we are tempted to believe that the white

cards have the big numbers and the blue cards the little numbers

But a disturbing tiiought crosses our mind even if the numbers are

the same for all the colors, we are almost certain to find the numbers

different on 5 different cards as long as there are different numbers

in the deck For example, if we divide an ordinary deck of cards into

the subuniverses of clubs diamonds hearts, and spades and then

draw one card from each subuniverse we are almost certain to get

four different numbers, and it would be a mistake to assume from

this that the numbers are different from suit to suit

So we seem to be at a dead end as long as we are restricted to this

small sample of only one item from each subuniverse A larger

sample would help to decide flic issue For example, if the next

white card were to be an 84 and the next blue card a 3, we w ouid now

be more inclined toward the hypoUiesis that white cards have larger

numbers than blue cards Incidentally, as long as our information

about the universe was restricted to what we could guess from sam-

ples, we could never be sure that the white cards had larger numbers
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l•lIl) th( yae einis, ulthouEh, P'Oi Isrge enough jaraplos, -ac might

Wi'tuitusutecanbo"

^Olt se are reidj to inoic into the real world and talk about

Itraufiration ol uniursca aa it actuall) dota and mual taka place

n real talbcr than tnakc-bclic'c proHema Suppo'e «c are a manu-

lacturt- of a ajrup that nc fell to tranchi'cd bottlcra who make it

ip into a carbonated aolt drink ’ \Yc would like to find out more

than «c pre'cntl} know about the family rate of consumption of

toft drmb in the L’nilcd Stales It would, of course, be ridiculous for

us to contcmplale polling eacry family in the United States So we

mu*l sample There arc many questions we are going to have to

acawer about probable benehts to us of the information, costs per

intcraiew etc But the only question we are contemed with at the

moment is the one ol Ihc potcnual value of stratification of the uni-

verse ol larailics /or the piirpoic ol Jfadinj cut that rate oj coruump-

Iwno/io/tdnnki

In order to gel the moat po«sible value out of our analogy of the

card deck we can imagine our univcrc of families as a deck ol cards

with the rale ol consumption of soft drinks on the number side”

(the unknown side) snd all other characteristics of these families

wntten on ihe op tide, ’ the one we can see and examine and sort

b) il we wi'b to \t hat are some ol Ihc'e distinguishable character-

I'lict that we might know about? We could make quite a long hat,

parlieularl) if we had the United States Census volumes handy

Some things that quickly come to mmd are geographical location,

age of family head number ol children in family, ages of children

W c can undoubtedly think el many more W e now ask questions of

I'nn'kind ‘Buppo'c we eorted our cards (families) by geographical

location Would we logically expect to find the cate of consumption

generally higher in tome locations than in others?
' We would prob

ably answer this question in the affirmative So now, instead of

thinking of our sampling problem as eefecting lamihea from the um-
icre of United States families we think ol it as selecting samples

Irarn a eubunivcr«e ol Southeast lamihes etc II we are correct in

ouf hy pothcjis that the rate of consumption vanes from one location

to another we will find tJiat our final sampling errors will be less

than il w c had not stratified If we arc wrong, w c will not reduce our
sampling errors and will have, in one sense, wasted time and money
sorting the families On the other hand, it w ould not really be w Bste-
lul because we would have at least found out, say, that geography
IS Ml related to the contmnplion ol aolt dnnks Although it is al-
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most always more valuable to find out what is true, we should not

underrate the value of finding out what is not true

Another point we should note about the value of stratification is

that at the same time that we are stratifying to reduce sampling

errors, we are identifying charactensties of the universe that may be

helpful m their own right In other words, it not only makes sense

to classify our families by locataon m order to reduce sampling errors

in our estimates of soft dnnk consumption, but also it makes sense to

us as a manufacturer to do the same thing in our efforts to better

0£ganr?e our marketing activjhes

Geographical Ciuslermg of Samples

The usual methods of random sampling frequently scatter the

sample items rather widely throughout some geographic area Al-

though this la ideal from the point of view of providing maximum

accuracy for a given sample sm it is quite expensive to pay the

expenses of the interviewing staff It is, therefore, often desirable to

sacrifice a little accuracy in order to save money The sample is

designed to yield dusters of items so an interviewer can concentrate

his efforts in a relatively small area It is surprising how a well-

worked out cluster design can save interviewer expense with only

relatively moderate loss of accuracy The Federal Government, for

example, has through such means found it financially feasible to

collect many statistics that had heretofore been prohibitively ex-

pensive

Seqcienfial Sampling

One of the basic problems m determining the size of a sample we

need for a given problem is that we do not have much information

to guide us until after we have collected the sample items Then, of

course it is too late If the collection problems are such that it is

much more economical to collect all the sample items at once, rather

than one after another, it is usually wise to err on the high side in

predetermining the mmimura sample size It is much more discon-

certing to discover that the sample is too small, than it is to discover

that it 38 too large Most sampling problems in marketing research

are of this type

There are occasions, however, when the sampling and/or the test-

ing process are so expensive that we wish to definitely minimize the

size of the sample Consider Uie problem of toting the Atlas missile,

for example The test samples are veiy ejqiensive and time-consum-

mg to build In addition, they are no good after they are tested
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\\ e »Muur .Mpic to b, b.6««h to 6.^ e us the tod of assurances

»e B«<i before ae decide that the AUas is uow ‘ operational, buUe

do no' a ant the ample to be an) farter than ae need to decide this

So »hst ae do is test the samples one oi a ime After each test ae

select one of three pcsible decisions tl) ae abandon the Atlas

pmicei 121 ae cisssil) the Atlas as operational, or (3) ae test on

other sample

njodific&tioiii can be niad£ in the sainplfi design to take

adiantagc ol the ba«K idea that proffipW sequential sampling Col

Ifction and testing methods ma) be such that there are certain con

vcnicrt or economical «amptc sues For example perhaps 'ample

lots of tea items eacli arc technieallj eon\enienL \Nhat xse can do

IS tert ifgueners of lots of ten items each We tvould then be able

to come to a final deci'ion m our problem i^ith an excels of items of

no more than n ne

The notions and maihcroatics of sequential eampbng ^ere de

s doped earl) in World War II and vere considered an important

eonmbution to the laniartic production record of American industry

The armed forces of tlie United Stales ha\e been ^eIy aggressive m
their e^orts to encourage American industiy to develop and adopt

more efwent methods of dwpnnR and testing samples and the work

ba»ed on the notion* of sequential sampling has played a leading wle

in lhe*€ cflorti

Selection In Some Ptesenbed Order

SoBictimcb the univcR? under invcsUgation is kno’an to exist in

some geographical alphabetical chronological or other order For

example a umverse ot telephone suhseiibers is listed alphabetically

w the telephone book Potato plante are found in a geographical

order in a potato field A univer'e of random numbers is found in a

random order m a table of random numbers If nc uould like to

select a random sample from such ordered situations the question of

how to do It most cRicicfttl) and conveniently immediately an«c8

We nould have no problem with a table of random numbers no
miUer nhat order ? l took thcin in because the numbers arc already
m a random ordf r by design But let us suppose vve acre interested

rn lamplmg telcpiore eub'cnbcra m order to find out their ages

pul I ne get a valid sanipic bj taking -aj every SOtli name iti the
book? Let o? jele t the first name faj u<e of a table of random num
Iters and then take ev ery 50th name after that h this Itkelj (o lea I

to a aample of too man) old people? Too man) young people? And
50 forth We probftbl} would *ay no l>ecau«c we have no reason to



SOURCES OF KNOWLEDGE T1

believe that there would be any relaUon^ip between the alphabetical

character of a subscriber’s name and his age In other words, it may
be perfectly logical to argue that an alphabetml order of telephone

subscribers leads to a random order of ages of telephone subscribers,

and the u^e of an alphabetical order might be perfectly valid for

sampling ages

On the other hand, let us suppose that by some quirk of fate com-

pletely beyond our comprehensioD, an alphabetical listing of sub-

scribers automatically listed the subscnbecs in order of age What

happens to our sample if wc select e%ery 50th name with a random

start? We «hould end up with an almost perfect cross section of the

age distribution' In other word**, our sampling errors would be at a

rainimum In effect, what has happened is that the alphabetical

listing has neatly stratified the unnerse for us by age, and we recall

that effoctnc stratification can be a very useful device to cut down

sampling error

The practice of not noticing the order m which data arise or samples

arc selected can be a \ cry senous shortcoming to any study Knowl-

edge of relevant order or system m phenomena is very precious In

fact, it 18 what we arc always searching for if we are searching for

anything Nevertheless wc arc all guilty of the habit of assuming

that no relevant order eyets, we do not, therefore, keep track of the

order, and it ne\ er can exist as far as wc are concerned Most of us,

for example, arc very careless about dating events as they happen

We assume that chronological order does not count Unfortunately

for us it often counts more than wc had thought Even statisticians

arc guilty of this shortcoming Rarely, if ever, have we seen a statis-

tician treat a senes of coin tosses as a fimc senes He treats the

sales of a company as a time senes, but he automatically assumes

that tiie chronological order of the com tosses is irrelevant We can-

not deny, however, that the com tosses actually occurred chrono-

logically in exactly the same sense that the company’s sales did

We wust alu-ays be alert to order as we observe events We can

decide on their relevance taler

The only time we can really get into trouble when we sample in

some prescribed order is when the record being sampled also corre-

sponds to the same order in the following sense Suppose, again for

reasons beyond our comprehension, that eveiy 50th telephone sub-

scriber IS a retired farmer, and that farmers do not retire until they

are 70 years of age The resultant sample would contain nothing

but ages 70 years and over and would, of course, be most misleading

Fortunately, only rarely do wc find that the rhythm of the selection
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onitr Uprnu to nmoii' »'«' •>>' *5'*''“ “

xt iwdjag ^ ^
.

This di5W«)on of order brags up wother important consideraUon

m sample <l«ign, Md that » the absolute necessit) of getting clearly

in mind exactly vbat it is we we sampling For example, sometimes

wt hear wme one {a> that the) are going to lal^e a ‘ sample of people
”

But what are people,' or what is a 'person ? A person’ is all

sorts of things He tj a height,' he is a "consumer of canned peas,”

he IS an admirer of Richard Nimp/ he is a
‘ late sleeper on week-

ends ” etc Thus no one e'cr really sBinples '
people " What be does

sample tj "characteri'tics of people, ’ and generally only \ ety few

at a lime If «e are to effectn’el) solve ouf problems of efficient

sample deign, we must pa) specific attention to exactly what- it is

%t arc going to nea'ure For example an ordered selection of telC'

phone njbeenbers might be a reasonably acceptable sample for study*

ing the age distribution ol family heads in the community It would

he wmewhal leas acceptable if wc were studying the income distnbu*

lion of family heads on the grounds that the v ery low income fsimlies

would lead to be excluded from telephone 6Ub*cnbership and the

hook Similar!) wemightfiodthatalmostany bticUtofwaterfrom

the Atlantic Ocean would be an acceptable sample for detecting the

ealinc content of the Atlantic Ocean But )i)St auy bucket would not

be fawfsciorj if we were sampling the temperature of the Atlantic

Ocean

Thi Problem of "Nonreiponw'

As Robert Bums said ' The best laid plans of mice and men oft

gang’ ftglie ’ And sampling plans are no exception It is one thing

to plan to find out something about a per'OD who has been scientifi*

tally selected iti a sample It is quite another thing to actually do

it. Some people arc not at home when we call even with many calls

Some people do not share our cnihusiasra about ‘'research” and the

importance of their role in it Some people lack the means of effec-

tive communjcatjoa such as would be true for recent iraraigranta

As the result of these and similar Fnislrations, the final sarople of

data will not conform to all the epecifications of the onginal design

The question that now arises is whether there is any reason to

believe that the items (hat did not get included are significanlly dif-

fcrtnl from Iho^e that did The answer to thw question is con-

siderably complicated by the fact that we do not have any real infor-

mation about the missing items, for if we did they would not be
missing Several courses of action would now be open We might
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Bssuiue that sines we knew of no mason to significant differ-

ences, there are none This is, of course, highly presumptuous on our

part and generally not advisable We could check the opinions of

others who have had more expenence m similar problems This

might bolster our hypothesis of “no agmficance” and make us less

presumptuous if we adopt it We might assume results for the missing

cases that are about as different from the available data as common

sense suggests is possible Then we pool the assumed results and the

actual results and compare our final conclusions with those we would

get if we Ignored the missing cases If the conclusions are the esme,

our problem of mmng data haa disappeared If the conclusions are

different, we have now defined the magnitude of our problem of miss-

ing data and should be in an improved position to decide the next

step For example, we may now decide to expend a little more time,

effort, and money on further follow-up of the missing cases By

using our early successes here m further compansons of the kind we

have just made, we will be able to more rationally decide when this

follow-up program has gone far cnou^

If our best efforts still leave us uncertain about the true significance

of the missing data, only one appropriate course of action is left we

must admit uncertainty, and come up with a range of final conclu-

sions sufficiently broad to cover the range of our uncertainty

PROBLEMS AND QUESTIONS

3 1 Illustrate the fact that each of your five senses has a limited range

by reporting the results of an expenment you perform with each of them

Use your own ingenuity to set up an expenment that “proves" the limited

range and also uses quanUtiei to measure these limits For example you

might report that you were able to read a given sign with the naked eye at

a maxunum distance of S7 feet However, with the aid of eyeglasses or

binoculars you were able to read the sip at a raanroum distance of feet

3 2 Suppose an attacking airplane is outside the range of your ability

to perceive its esstence In otlrer words, m one sense the plane does not

exist as far as you are concerned If you were charged with the responsi-

bility of defending a city against this ‘nonoastent” plane, how would you

go about It?

3.3 Suppose a competitor of yours has allocated SlO.OOOjOflO to be used

to promote his business at the expense of yours Unfortunately for you,

however, he doesn’t tel! you this Thus, in a sense, this $10,000,000 alloca-

tion does not exist as far as you are concerned How do you defend your

company against this “attack"^

S 4 Compare the perceptive abiliiies of ym five senses with those oi

another person Report on the mefisured differences

3 S Consider these two circumstances

(o) Mr A lets oily rags accumulate ra his basement One night fns house
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nuVi ftt « sm< l» 1“' »« 1*™“' ^

l!.) \!r B laVn thUntt pwaiHiai' lo pm ml l*" ">11 ® l>" i"

p,i Imt 111! b«nf cnti uwbf'W to U' i*?
•'*

f*'’

itif CVS fo ft f imiouJ C'ff PB« performed ftn heroic act as

firs'ativWsliyw* ^ ,,

[ti lEsur enn.«idrritifir of thf«e t^o W-'es «« >f you can note anj reUtion-

.»j,p 10

1

our problm of what lo do about the -tioneitistent plane and the

iv^netticnt prohoi>on fund

J6 Veiforei eTpcntienu and/or Leep records o>er a short period of

U"'<‘ to di‘('o\pr m unatKins that you are able to detect in the percep-

tive iMlitirt of ^our five «pn«w Dutingtash smcng lanatwns awuted

Kith

(a) ratipu^ptcrioration

(ft) rninmu-tmprovesient

(el Afc -loth dctenoratwm and improvement

Report on jour di'Wene* /n cddition what is there about the

{»TOrr*v th.ll wdificreoi from fat^WMnd/or training’

3 7 ContraM lour ability to hear fiery word your mother said when

rh* wsi eirf^iiunj' to you eiacllj irhy you should dme the car as she fiaid

\outhouU antlcuctly nhj sou should come borne when she said you should,

nth jour abilitv to hesr her ciery word as you listened jn the upstairs hail

to her sQttti locc report to low father on the progress she had made so

far ofl the children s Chn'ltnts pre^nt list

does thu tell vou about your ability to (Otiirol your sensory per-

eepuons’

3 1 Yoci Berra was a vrelUkiwim catcher for the New York Yankees

fofmanMesrv ^^fa}be le etill b'J Thrs episode has been purported to

half occurred ear^ to his major league career He was such an eager

batter tiui he often iwune; at, and hit quite veil, pitches that were outside

the at/rie me Since it » ivasetall soenJege to help the pilcber by swing-

tnc at ‘Iwd pitches, 'J op was sdiised by his coaches to curb hia eagerness

anJ to fwinj otily at "MnVe}’ In fact Uiey uyed bun to jd i^n Ip the

larters boa and think about what the piteher was doing, what Yogi uas

doing, etc So Yogi went up to the box and started thinking While he

fraf thinking (he pitcher pul over three called stnkes \ ogi came back to

(be bench muilcrujg How «n they expect a man to hit and think at the

ssmetime?”

ifiH epLsftle from the point of view ©f the general human prob-
lem that t^e foiticicuis Wind can oajj few things at a time, in

some ca«p? on/j one, whereas many cf otir activities ini olve the Bimilianeous
wuimii I of almost founllw thing* Consider ako the problem that it

II difficult toimprotf our performance of eomplex duties without application
of ihetOJi.vjouTfflind to Jj^detarffo/fiosedudo

3 9 II should be obiwis (o jou that joy are only a imple 0} vhot you
mght halt bm, both for better and for worse It should be patticulariy
obvjoui if you hip bwhpry ajrd eetm Ako, as you look back oitf (he
road you iraieltcd you can recall maji} forks in the read and (he many
choices you nude that caibed you to forego iranj other choices Without
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wjling' }our flUJofcjograpJi} skitdi bneBy tbs usuvcrss or universes

out of which you Mac
What Vad of a siapje are j«a? RandofflJ* Puiposire? Biased?
What unnerse do you see ahead of you JO years from noiw’
3 10 Identify the fdJoRjug laaver^ mtb mpect to whether they are

real or hjpothetjeai jaono or unknoiva mi fimts or isfisite

(a) Thetinjver'EOulofwhjchyouarea^ple

(h) The unl^ ercc of graics of ssod on thebeadi at Atlantic City

(c) The unnerve of sajea of I960 flambler cars out of nhich the actual

sales came

(d) The universe of fw^hihtjes for head and tad combmatioss if one

tosse® five coins at once

(c) The universe of words oul of which this string of 13 is a sample.

(/) The universe of scrap percentages out of which todays percentage

came

(g) The universe of voten oul of which the last Gallup Poll sample was

taker

(h) The universe of voter opmwns out of which the last Gallup Poll

sample of opinions w as taken

(i) The universe of opinion* out of which vour present opinion about

questions lih this came

3 11 Suppo'fl «e select a sample of 100 from a universe that contains

1000 items in each of the following two waje

1 Wc draw cut the first lUro at random Record the result Replace

the Item m the universe Draw out the second item at random Hccoid

Replace And «o forth until we have recorded the 100 sample items

2 e draw oul all 100 items at once again at random (Incidentalij

would this be the equivalent of drawing them out one at a time but without

replacement’)

I^Tiich sample would you expect to have the smaller samphng error?

Why’

Would jou be willing to bet $1 to a dime that it actually does have a

smaller simphng error’ Why or whj not’

3 12(o) The performance of a batter on a given turn at bat is obviously

only a sample of what he might have done Is it a random sample’ Ex

plain

ib) Suppose you have the results of ten successive times at bat for a

given player Would you judge that all these samples came from the same

universe’ Explain

313(fl) The performance of a bou*ewifc in ^le baking of bscuits is

obviouslv only a sample of what "be might have done Is it a random

«amp!e’ Explain

(6) Suppose you have the results of ten suC’C'sive ‘bakings for the

same housewife (That is, you have the recorded results not the biscuits

themselves
)

Would you judge that these ten samples all came from the

samcuniver®e’ Explain

3 14(a) The performance of a student on an aamination is obviously

only a sample of what he might have done Is it a random sample’ Ex

plain Would your answer be any different for a surprise exam than for

one announced 10 w eeks in advance’
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lb) II )C0 bid Ibt rt^« ft in > P™
pjj/fl » 1 P'ra t®*®'

taro? Mii'ttwf Etpliifl ... . ,

3 IJIal 'Hie pumber of hourt of Me for a p\eo elKtronic tuU is

TOu,l) mlj . swplt ol .ta) 11 miM ^ 1' " ‘ “”1*'’

i) SurTfiM >ou bid ihe dils on tte hours of life of tea electronic tubes

bknj ftV wwrMlj fron the production line Would you judge tbt Ml ten

lulf^uroeffotalhesameumserK’ EipUic

3\6 Le; us gel ourselves mcel) confused about such n simple matler

ujtefengtliQfaroom „ « ^

(a) An architect dripied the house that eoatams the room He specihed

tht the room should be H5 ft long fiouever, he might haie specified

some other lenpfi Ifcnec this apccificatioa is only a asmple of what il

ni?hi hsie been Win kmd of a universe’ Win lucd of a sample?

(6j The carpetKer hurJds the hotJ!>e and makes Ihe room 1 4 5S36 fl Ices

(Do Ml uk UJ how ue know thu > He might have made it longer or

ihorter IVhai kind of a umveroT What kind cf a sample?

(g) Tht bujer of ihe hou«c ciMSures the Jenjth of the room and gets

(11 anjiTff of 14i5 inches IVhat kind of a universe? What kind of a

umple^

(di The bujeri wife measures the length of the room a week later and

gets an anfucr of M 4 f«t W*hat bod of a universe? IrYhlt kind ol a

laaple?

(el Iftwlntgutheroom^

J

1

7 Afiaf) le art 25 consectHive numbers you find any place you would

like to look in the table of random numbers m Appendix It Ja there any

ij^tea to Ihe scciutncc? Lut sfl 'Heniative" aystcras you can find

Sc'ecf lorae other eection of the table wd test your aj stems Report

flit) our fWilw

3 18 Toss an ordnar) com Ifi times >n a row Keep track of the

chfcmalopnl order of the resultant heads and tails Plot the result! o!

the tosses on a graph with "tune" on the borjzonta) ans Ewmme the

graph tor endenee ijin tfcft wsdJa vwwd suiba ' Vsta”
If jcu think you hiie found a "aystem, ’

test it by lossuig the com five

more times and recording the results on the graph

\\ hat concfusiocs do
)
ou draw from this esperiraent?

3 UiWiJd }(ni gue» that the site ol random wniphtig errors would
greater or I«3 for a rample of 1(10 diametera of ‘ 1/2 inch diameter ' bolti

than for a sample of fiSO dismeters of 'I8-mch diameter' wood telephone
poles? Exptam

320 Suppose you fancied yourself a budding artat wjih oil cobra You
finally get a chance lo eho* your work lo a %eil retpected cnljc He asks
you to bring him a ‘sample cf your work” KTiat kind of a eample do
you eel«t? Out of what utnvme or univtrsea did you select U’ What
km^ of sLsmen to ihev tjnestious do }oii think the cntiff would give?

3 31 TTie tales manager of your company is taken ill and you. theS 1? Tf'i"" 'l^ties, at least tcm.
poranly TtTiat kind of n lanple of your work are you going to give?
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Are you going to run the shop” as you thuik the sales juanager irould

if he were there’ Or are you going to tun it as you would li you were
sales manager’ Or are you goMg to “seiae your big chance" and run the

shop with an expenditure of oiergy, smcenty, etc, that you know you
could not mamtam over any protractd penod of tune’

How can the president tell which lusd of & sample you are giving’

3 22 Why do most purchasers look below the top layer when they buy
abssketoffruit?

3 23 At some time or other you must have been told to "be yourself”

by gome well- or othenvise-meanii^ person Almost everybody has Ap-
parently your resent behavior impressed them as not a '%ood" sample

of what they thought your true nature (umverse) was What was your

reaction at the time’ Did you agree with their anplied evaluation’ Did

you protest tlmt the sample of behavior certainly was typical of your

nature’ Etc

What difference, if any, was there between your outward reaction, the

one you wanted the person to get, and yoar inward reaction ’

3 24 Suppose you are throwing darts at a target for the first time

Your first toss lands 12 mcheg to the right of the bullseye You would

Quite naturally like to make your second toss closer Do you assume that

you missed 12 inches to the nght because you "aimed wrong ’ and hence

you will nmv adjust your aim 12 inches to the left of the bullseye’ Or do

you assume that you missed 12 inches, and it just happened to be to the

nght, because you haven’t yet mastered the art of throwing darts’ So you

dim your second toss the same place you thought you aimed the first one

How do you decide a question like this’ (This is the same problem the

artillery captain faces as he tries to figure out what the reports of the

spotter mean from the point of wew of any po^bie adjustments in the

aim of the gun

)

3.25 If you were on a jury and if a conviclion on the given charge

meant the death sentence, woid you he less jncliaed to lote guilty than

if conviction resulted in a sentence of 5 years m prison’ If yes, how do you

justify a position that m effect says that ‘ whether a man is guilty or not

depenck on the seventy of the pumshroent The more severe the pua

ishment, the less likely he is tobe guilty’ ’

Would this problem disappear if we could be me that a man was or

was not guilty’

3 26 A sample survey is to be made of American housewives to find out

about brand preferences for coffee purchases It is decided to stratify the

universe according to geographical location, age of housewife, years of

formal schooling of housewife, and number of people Imng in household

It lb decided to use three divisions for each steatifying factor The divisions

are listed below

Age of Number in

Locations

..fiV V.

Housewife Education Household

Northeast Under 25 Less than 10 years Under 3

South 25 to 40 10 to 14 years 3 to 5

West Over 40 Over 14 years Over 5
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0‘ ‘ iJU itt tvjihUe to god out tow niB) bousewim thens are

n of »tfgonf< Froni the<e figures Jl

^
pos-

r' • to eiJra-iif the pToyor*«in ®f hwasewixes ta each catecof> For ex

i-i-v Ift u« eav there arc SS*^ of the housew\es m the United States

LT 'f Ci jears o! age V>e wiS to dc^ wit Tatop^e that A 'atll end np

with J. of the fccuMinTes uadrr 25 j-ears of age al'O Thus, if coffee

fracf p^efeream ha\e anjthiag to do with age of housewife, our results

we'll be ih’own cS because we will h3\e the nght age distribution of

tojwira m our suaple

Si.p’ON* oJt final *aapl< tnatched the proper proportions of hcusewixes

ui tif fojr categones of itralification Is this a 'ufficient condition, or

tb-mld 0 r final proportions be conect down to the proportion 'ay of

bmnewiio c5d»>r 25 end Iniag m the corthfsat ard bving owr 14 jears

cf for'nal choo’irff end in household? with three to fi\e merabersf Or,

«i Q h'T words IS* ead of filling m our quotas m tbe^ four categones

:'if’»pr'‘df!itl\ cnis* we fill them in fimultaiseou*!) thus ending up real])

with SI wpanie quotas ’

Hist ire the aniea involied here’ (The fir^t thing jou had better do

y rsahe p,w \-ou know where thiyie 81 *cparaie quotas come from ‘You

fin do this b) drawing a tree cf all the pos5ibilitie«

)

317 Surpo«e sou were euperxijmg a fur\e> acd had decided to use

"eh«ie’s of people in \our sample ui Older to 6a\e some inoM> Do>ou
feel loiter or wo^e about lour oserall sampling errors if jcu find prac

tirahr no wnafion inthin elTuters and quite a bit of vamtioa between

clis e*«’ How woa d iou feel if the reser^ were true namely, quitd a bit

cf Mruiiofl anthio clu'ters but practicall) no sanation between clustefl^

The I lL*tratwri bebw *liould elsrdj }our thinkiDg about the meaning of

tai at on aiihin a cluater and sanation between clusters

Rcniltaui Remits w Re‘u!Uin Results in

Ga«t«A aasterB Cluster C Cluster D

5 7 1 I

5 7 2 2

5 7 3 3

5 7 4 4

5 ' 5

(oI 2"S(nThTO'“'“‘’''‘"’
oatlheydoksve^tmta

ta,nC»ndDh5>«,u,l„l»l»(.WBi,„, butr>o^.mt.on
wf-'yen them

‘ZV ,’) J™ ® » >' tom tnp)

iilfh 7m, ‘tf
*'!I""’™ thil hejds and tails ate etjuills

l>» itteltvano ol ' «h,cb to nil

'
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You nevertheless do have a deeiaon problem after each toss You must

decide whether to make another wager on the agreed upon terms, or to

request some change in the terms (Be careful that your request for a

change m the terms does not imply that you think your friend is cheating

unless you do not care whether or not you enjoy his company for the next

17 hours

)

What decision do you make after each toss if the follownng represents

the sequence of heads and tails? Justify your deciaon in each case

T,T,H,T,T T H T,T,T,T H T,T,T,T T,T,H

(Hint Calculate the probability that the sequence could have happened

up to the given pomt i/ your hypothesis of equal probability for heads and

tails is correct

)

3 29 Suppose we had established control procedures for a given job that

instructed the operator to let the process run if he found no more than

two defectives m a sample of ten He is instructed to take such a sample

every 15 mmutes Suppose he reports to you after about an hour that

he h^ taken four samples sc far and has found exactly two defects m each

one This worries him very much because he knows that the process is

designed to yield only 5% defectives m the long run He has stopped the

machine to come to talk to you What is your reaction ^

3 30 Suppose you have a problem such that a telephone book provides

an excellent source of all the names of Uie people m the universe you are

concerned with You would like to take a rondom sample of 200 names

by the most e$cient process possible What are the comparative merits

of using a table of random numbers to pick out 200 numbers which you

can use to locate names m the book and of taking every 25th name after

a random start (there are approxunatcly 5000 names in the book) ’ Which

method would you recommend^ Woid the characteristic of the people

you were studying make any difference in your recommendation^ Explain

and u'fustrate



chapter *t

The use of numbers

aw the raw matenals of most statistical analysis

The fundamental notions underlying the statistical method can also

be applied to non numerical data but the pottcr of the statistical

method is much more ciident vihcn tie can quantify our data

Since we ha\c all been trained m the use of numbers since early

childhood, il ma) «eem redundant for us to review the fundamental

notions underljing the creation of numbers We find, however, that

It 15 V erv ea*) to be so mesmented by the intricacies of the manipula-

tion of numbers that we often lo«e eight of the ba^ic meaning of the

numbers A brief review of once familiar ideas will remind us of the

irhcrent charactcnnics of our raw matenals and curb any tendencies

we might have to u^e elaborate anal)tical techniques on rather in«

adequate numencal data

4.1 Counting and the Number System

The idea of eountinp things is one of the most important ideas man
ever had Of course, the earliest man probabl) had some idea of

amount, and some ideas about more or fess There is plenty of evi-

dence (0 suggest that most animals can handle these ideas of more or

Ie«3 Bui very few of the lower animals, if any, can actually count

For example, the mother cat probably know s all her six kittens And
if one IS missing she will probably realize he is gone because she

cannot find this particular kitten among Uie ones she secs But can

she tell that one is mi^smg becau*e all she can see is five? Even if

she can do this, and thus in a sense knows she has six kittens, there

13 still conMderable doubt that she w able to brag to her neighbor

cat that she Ins sv kittens while her neighbor has only file

The fundamental origin of all numbers is the procc^ of counting

This counting may be of ciufenf and eeparate thmg«, or it may be of
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standard things that we have created, like an “inch
” Man un-

doubtedly learned how to count the natural things in his environment

before he learned how to correlate these things and count how many
of one thing were contained in one unit of another thing For ex-

ample, he probabi) knew that he Bad tiiree caves in which to seek

shelter before he knew that one cave was three times as deep as an-

other because it had three tunes as many spear lengths

Number Systems

Most of us ha\e been trained in the use of the “tens" system of

numbering and think of the 10 numbers as running from 1 to Id

Actually, of course, the 10 numbers that form our system are 0, 1,

2 9 What we call 10 is really a combination of the two num-

bers, 0 and 1 Originally the system did ran from one to ten, with the

basic idea coming from the fingers of the two hands But it was the

invention of the concept of nothing or 0 that really opened the door

to the comprehensive development of the system that we know todaj'

The child has some difficulty counting very high at the begmnmg be-

cause he does not grasp the system Thus he has to memorize his

counting Eventually however, be does grasp the system, and then

he has no trouble counting until he is bored or exhausted At that

time he also becomes at least semiconscious of the idea that our num-

ber system is such that there is no limit to how kgk we con count

This limitless range of our number system is \eiy important because

it means that t'le.e cannot be so many of something that we cannot

specifically identify "how many” with our system Similarly, there

can never be too few of something for us to specifically identify

Eventually the concept of negative numbers was created This

meant that the range of our number system was truly infinite The

idea of less than nothing, or say, of -5, is elusive to say the least

But this is not rcall} the idea behind negative numbers The idea

behind negative numbers is the idea of "take aways” or of subtrac-

tion We also use negative numbers to identify direction from some

specified point For example, if wc move forward 5 feet from where

w e now are w e might say that our movement w as plus 5 feet If we

move backward, we might say ourmovmncnt was minus 5 feet But

note that we could haTe called the forward movement minus and the

backward movement plus This brings us to a fundamental point

about the use of numbers The actual number and the sipn, whether

plus or minus, almost always depends on the particular origin of

measurement we have chosen This number has meaning only for

that origin Serious confusion results if we tiy to interpret the num-
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»uli no knonlcdse, or mth ucoirect InonWgc ol the oripn

of mewrcmcnt. If I Uli Jon tint I hs'e En'«f >>“1l

[

'“I ^
jlill bsic no idea oi Ahere Im am unit's you knCA Ahere 1 abb

Wore I wed ,, j * ..

U u impoitaW lo remember that neptae qi^niities do not wally

tx\< Atankjustunrioteontara minus 2 galbns of gasoline ” The

pnnai) Naloc of the concept nf the regatiu number is m the rnampu-

laim of nMinkrs bj the processes of nddition, subtraction, raultipli

taiion and division The result of the manipulation, or the flUsiter,

filmo’t akajs IS a ponfiie number The important rule of interpre-

tation ol ansn er« a nilc eas> to stale but sometimes difficult to applj

,

n that ihc si^n of the answer must roaU sense m the problem at

hand For example if we arc working on all the cost figures relev ant

10 n given product in our plant and we finally come up with a unit

co'l of mmua $3 23 we should check over our figuring before wc tell

the bw that there is monej to he made in manufacturing this product

evu if wc have to pay people to take jt away On the other hand,

if w c tall) all the rev enues and expenses of the company during a

period and discover that the company had a profit of mmui $8647,

wc have a figure which may very well be true even though somewhat

dnconcening

Man has invented many other number systems than the ‘tens

«v stem Some electronic computers for example, arc based on thi

liinarj or ‘two number’ system This system has nothing but “0

and J in it In fact the development of the electronic compute;

as nc know it would be impossible without the binary number system

Tbf lens svjtem Would be just about hopelessly awkward Thi

logic bchinil tie binary system is quite simple An electric circuil

IS either open or it js rioted The problem of controlling a switch

JO tl at a cirruii is either open or cl'> ed is a lot simpler than the

p/oWem ?i) of control! ng and measuring the voltage of a current

'0 that one voltage represents O another voltage 1 etc through all

(he numfjprr cf the derJm'iI system Smee wc actualiy operate on a

licciraal svslcm the problem of using the electronic computer became
one of tfsii«l3ttng & nimbef m (fte decimal system to one in the

binary s'^tem \\ e can illustrate the numbers m the binary system
V Ag (heir equivalents in the decimal system for a few numbers

in Tab! A\ Me might not«, incidentally, that each dipil m the

( inirv 1 umber corresponds to a circuit m the computer Koto that
It lakes ihrce circuits (o rcpr^ent the numkn 4 through 7, IG circuits

(0 iTpre«ent ihe number 10 000 etc

If a person is of an inquisitive ftim of romd, he might note the role

< Pint,

1

1,

1

(lit "poAcrs of fwo ’ He mi;ht CTen he able to
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TABLE 4

1

Decimal System Equivalents of Binary Numbers

Binary Decunal

Number NunAer

0 0

1 1

10 2

n 3

100 4

101 5

no 6

111 7

1000 8

lOOOO 16

lOQOOO 32

1000000 64

10000000 128

develop a formula for easy conversion of any number tn the decimal

system to its corresponding number m the binary system, or vice

versa

Wc mention these other number systems and illustrate the binary

system not to be confusing, but to remind us that number systems

including the familiar decimal system, are inventions that man has

iiracfe to finn stjiVh h!S pnjbhtts Becam they are mventfians,

just like automobiles for example, they are subject to improvements

or even replacement, if they cannot solve our problems as well as

they might It is unlikely, however, that there will be an early re-

placement or significant modification of our decimal system Too

many people understand this system, or at least thmk they do, to

tolerate the introduction of a new system Our cmhzation will

probably have to decline as did ancient Chma before a new civiliza-

tion could be built on a new system of counting

4.2 Units of Counting

It IS possible to count, the way a child counts to 100 for his proud

parents, without really counting anything at all All we do is sound

out or write the symbolism we have adopted for th v m

'
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u our tufflbtr ly-tOT Thu kwd «I touiil.iig hottevci, is oi Mile

0- M praelicjl i slue To be o! s«loe ouf must touat lomt-

t>m), majbe itoncs, ot horses, ot ltd coipustlcs, or degrees o! best,

tie In prsrticalJtothtlUumiien
hue tiiiiti attached to them The

timber la loeamiiglcas il we do not kaow the unit, or if we know the

wrong uait. For eiainple, eontra'i. the problem of defining the mean-

ing of I with the problem of defining the meaning of se'en books

One ol the first things a young' er learns about eounting is that he

should alwsjs count like things joi toiiike things For example, we

should not add apples and oranges and certainly not apples and

hfl-aes There arc times when v e wonder whether sueh things should

be taught in grade school It is certainly true that we ehould be care

ful ol what we count It is equally true, however that we should

realise that we taiciy if ever have the opportunity to tounl things

that arc obiolnlelp alike or identical We frequently have the op-

portunity to count things that are essentially dike, or whose diffet-

enecs ' do not make a difietenee But it is often important to rcalite

thst to act as though things are the same, say for purposes of count-

ing does not make them the tame It takes more perception and

more imsgination to recognise that apples ate dijrrcnt jrm each

otkr than it docs to rccogmre that apples are different from oranges,

but It certainly ehould not be said that it is proper to odd apples but

not apples and oranges As a matter ol fact from the point of view

of certain units ot nulnlion possessed by both apples and oranges, a

giiea apple can be more like a given orange than like another applel

Il should be obvious that whether we should count things together

as though they had the same unit depends on the puTpose of the

count The issue is whether the differences being ignored mnke any

di/feocncc to the purpose For example we might properly count all

ihcartictfi In a house as though they were the same, giving equal at-

tention to n thimble and to a diian Or we might count the pieces

of bedroom furniture, or the orhefes 0/ clofkmp, or the footweer, or

the /kocj. Of the fou cs' thorr or the pairs 0] black leather shoes, or

the pain of llatk teathrr shoes that need pofqbinp

Probably most l! the mislakcs that are made m counting are not
t«ause people cannot count but becan*c they do not understand the
rtings they are counting well enough to know one when they see one
TOey include things they should not mi they crclude things they
should include
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We think of such object as being integral objecte, and we expect

the final count to be a “whole number" or an “integer ” We normally

do not think of “1/2 of a pereon’ or "3 1/2 table lamps ' There are

times, of course, when we do find it sensible to split some units and

use only parts of the whole in our counting “1/2 an apple,” for

example, might make sense in some contexts Rarely, however, do

we find it apparently proper to thmlr of fractional parts of living

organisms, pnmanly, we suppose, because we suspect that the frac-

tionalization of a Imng oi^anism generally kills it This attitude

18 often a mistake, however, because tiie purpose behind the count

sometimes makes the need for menfol fractumahzation quite impera-

tive A group of boys choosing sides for a baseball game show much

more alertness to this need at times than do many adults The boys’

objective is to make up “fair” sides When they add up" the boys

on one side they want about the same answer as when they “add up”

the boys on the other side But they really do not count ‘ boys,

'

although it may seem eo to tbe naked eye What they count is “base-

ball skill” Boy 1 has one unit of such stall Boy 2 has 175 units,

boy 3 only 5 units They then select boys so that the “stall points
’

add up Sometimes this leads to more boys on one side than on tbe

other, which may strike an onlooker as "unfair
”

The same boys

will go to school and grow up and get excited because the population

of Hokay is greater than that of the United States

The essential point being made with the above illustration is that

we are almost never solely concerned wiUi the integral units we are

counting Rarely do we count the number of people because we are

interested in the number of people What we are usually interested

JD J8 some cAaractenstic that people have, and we are counting the

people to somehow add up the characteristic We would be very

foolish, however, to assume that one set of 10 people add up to the

same amount of this charactensbc as another set We may wonder

why it IS done this way instead of counting the characteristic directly

The answer is quite simple We count the obvious integral unit be-

cause we know how te and because tliere is little room for disagree-

ment about the answer Of course, it may not be the right answer

for the underlying question, but it is tiie right answer for the question

we are asking, namely, “how many people are there?” We as human

beings have such a strong uige for the sense of security we get when

we “know something,” that we have a great tendency to ask our-

selves questions to which we do know the answer, albeit both the

question and the answer do not reflect a realistic appraisal of what

IS really at issue For example, the boys would have to defend their

decision to have an unequal number of boys on the two teams Most
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r„p!c sjtomstieslly cJwne thst the seme number to e aide

mibe« » (air EUM Almo-t snjone ran eount boys, the countms oi

bwhal! ikillpomt! is quite «=»ther matter

Sttmilotii Uniii

t\ c ate ro« led to tlie problems o( tountioE ifaiuiani, or ubstrocl

HM Tbe-e are units that io out raall) exist lo a natural and

obnou< state at least not alter ihej base been subjected to a cer-

ts a amoou ol rebremesv Tbt) e« basically creaUora ot man

L*jal!> tliej tnanilesi ttcmsclaea m some pAyncol form, usually

calM a irsosunap lastnimcnt Sometimes hoacser, the phj'sical

iM'mment tabes oa such complex characleri'tiea that the typical

pet-on docs not thinb ot tt as a phpncui measuring instrument An

example would be the testing procedure for mea-uring a per-on's

“IQ All ot the measurable acmities in intelligence testing are

phtsical in character although we Ihmk of the testing as measuring

merjol sctmtie* Dut if ae think about it ae realiee that physical

acmity u piohahU the onlt kind that can go on e'cn if ae hate

decided lo call -one kinds of physical actmtics mental aetinlies

It 13 eoneeitable for example that someone ‘ome day mil disetner

tl c chemical ba*i> of mental acuvily and thereby lay the ground

oo’t for making all ol us geniuses' Ot at Ica't geniuses by today s

jndardi

Man crcaled (tendon) units m an attempt to moderate the mam
disadtantape ol the u-e o' naturol units namely the vonolion m
pstural unit* the have already commented bneHy on some of the

problems of eounbrg natural units The loot originally a man 3

real loot and tl erebs xara ing Irom man to man came to be replaced

bv a • aodard loot very tarelnlly defined and oppronnolelp

equalled by all lie Ivsit rulers etc all over the world ttith our

lopct tile machnes we have lat outdone nature when it cornea to

creating e"cntially timilar units ot an object The advantages we
gam from thi- are obvious as ace the n-ks and disadvantages ttc

aho try to s'aitdardiic people to a considerable extent, \\ c standard-

lie tfitliooks teaching methods etc

Despite the sceniing smulanty ol our standard units the tact is

that our s'andard units al'o vary All fool rulers are defined alike

hut thev still arc not of the exact length In fact it is very unlikelv

that anv two of them are exactly the «ame length We cannot prove
the validity of this statement but the validity of the contrary stale-

me-it cannot be proved either RecognitKin of the lack f stnrl
Identity

, although important from the point of v icw of rcmii g u<
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that there is still standardizing to be done if we wish to and are able

to, does not gainsay the fact that oar foot rulers are considerably

more alike than our feet And tius last pomt illustrates a very im-

portant pnnciple in the mterpretatiOD of ihe value of suggested

standard units The principle is {bat we should not ask if a unit of

counting IS per/ecf We should ask if it is better than competing units

Direct Counting vs Indirect Counting

We have already hinted several tones that there are occasions

when we seemingly are counting one thing when we are actually mter-

ested in counting something else Our youngsters, for example, were

seemingly counting boys, but actually they were counting “ball-

players” w hich are not exactly the same as boys, although they might

look the same to the uninifeated It is now hme to point out that

indirect counting is not the exception, but rather the rule It is more

subtly true when ve count natural units because we find it so easy

to delude ourselves It is obviously true when we count standard

units simply because we really do not count standard units for their

own sake
,
we count standard units because we believe that the natural

object involved has the given number of the standard units For

example, suppose we decide to measure the number of inches in the

length of a room (Incidentally, how many rooms hai e we ever

seen with inches m them’) We take a steel tape and stretch it from

one end of the room to the other We then read off the answer and

announce that ve have measured the length of the room But we

did not do that at all What we did was measure the length of the

steel tape' (And actually the manufacturer of the tape did most of

the hard work ) We believe ttiat v/e placed the tape in such a posi-

tion relative to the length of the room that we also measured the

length of the room when we measured the length of the tape When

w e announce the ' count ” there is little doubt that we read the num-

ber off the tape correctly There is considerable doubt that we placed

the tape correctly

Similarly when we check the thermometer to measure the tempera-

ture, V e do not really measure the quantity of heat in the air What

w'e measure is the height of a column of colored liquid in a glass tube

We believe that the degree of heat m tiie air correlates closely enough

with the height of the liquid so that if we know the height of the liquid

V e have a satisfactory guess about the heat in the air And most of

the time it is

The more we think about it, the more we realize that practically

all the familiar numbers of our experience were not the result of
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coanUDS NHnething ol .nttten Whst™ mbs some,

thiiig Ills' »c s-e oble to ctAmi \\t to ss«ume that the thing we

m shit to cosnl « the tame M the thing in nhich »e are rcall)

ffiteteileil ThedM'ie sample i*. of course, the nay all of us nsso-

tnU: happiness witJi raonej

Thus the question W hat do the numbers mean? is alft aj & rele

van. « e ehould deiclop the habit of o'lting three questions about

the numbers «c find Fust Exactly « hat » as counted or meas-

ured? Second Exaell) uhat is it that « purported to have been

measured at the same Ufflc? Third How close is the relationship

betucen the two IbingsT Alter answering these questions, we arc

no*, in a position to u'C the given numbera more intelligently

After n have trained our«ehe5 to ask the three questions given

about the numbers ae find, ae ehould start to develop the habit ol

asking the folloaing three qoe«tions about the problem) ac find

Fir'l What is there about out problem that ae could understand

belter it we could measure it quanhlafiielyf ’ Second ‘ What other

thingshavealreadj been measured or might be measured, that a ould

give us some knowledge of the quantitative vanatvon ol the thing ae

ate interested in’’ And finally Hoa close is this relationship be-

ta ecn the tao things?

Inlil man cjuonli/'eif a phenomenon m bis environment, he made

little or no pregres m understanding the phenomenon, controlling the

phenomenon etc This has obviously been true in dealing with

p'v steal phenomena It has been less obi lously true but neverthe-

less almost equal!) true m our dealings aith what are called psycho-

logical, sociological and other related phenomena In fact as pointed

out earlier the evidenee is mounting that almost every phenomenon

has a physical ba'c or it not a physical base it has physical mani-

festations and the more quickly ae quantity these physical mam
fesintions the better arc ae going to be able to deal with such prob-

lems We should not use the obvious limitations of quantification

to hold back its development and its extension into many areas here-

tofore held somewhat sacred as though to use numbers to charactenie

the variation in something is somehow to defile it Business affairs

have not been immune to man's persistent struggle to improve his

undetstanding by quantilying the relevant phenomena in many
respects business has pioneered developments in quantification, al-

though not from uny motive other than personal profit The relent-
less dnve of competitive pressure has forced business to continually
extend the scope of its ‘accounting" (Note count m the root of
this word ) The number of numbers generated by one day’e business
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ID the United States ig fantasbc And tiiere seems to be no end as

each firm toes to gam a coropetjtive adiaatage by creating nen nm-
bers before its competitors do The poor felloR uho tnes to run his

business “by the seat of his pants” stands no more chance today

than a fighter pilot “flying by tiie seat of his pants" would against a

jet pilot Hho knows only what he is told by the mynad dials in front

of him Very few pilots, for example can compete successfully

against an altimeter when it comes to figunng out ho\s high the plane

IS

4.3 Some Special Problems in Counting and

Measuring

Choice of Units

The unit that we count is, of course, at the heart of the counting

process We must knofl the unit well enough so that we can toll one

from the other when we see them One of the most interesting agiects

of the counting process, and one of its most valuable, is that we can

count anything upon which we set our mind It is entirely up to us

to decide what unit we are going to count Since this is so, it is ab-

solutely essential that v e consciously define the unit we have decided

to use in a given case If two people use different unite in the same

application, tiiey are bound to get different numbers even though they

may get identical answers, because the answer invohes both the num-

ber and the unit

Since the choice of the unit is completely within our command,

common sense suggesto that we sfioui’a' choose •'gooo'’ units ffhat

are some of the desirable qualities of a unit, not necessarily in order

of importance’ One desirable quality is that the unit be jamikar,

or generally understood Of course, it cannot be familiar when it is

first adopted, but, once a unit has attained a substantial degree of

farailianty, either becau'e of toaditeonal u‘«ge or through education,

substantial disadvantages develop, at least temporanJy, li we change

the unit Such a change considerably weakens one of the greatest

values of numbers, namely, added precision in communication be-

toeen people We could communicate a strong impression of our

independence and mdmduality by adopting our prn ate set of unite of

length, weight, etc, but we certainly could not communicate any

notions about height weight etc The rule of familiarity puts a

handicap on the process of introducing new units that might be better

on many other accounts The calendar currently u«ed on ranch of
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tijff psrUi H an illusUaUon of a umt of mcaiunng Ume that is Kainly

rfwmmcndcd by familianty

urAjomtly of the me of the umt is probably the most

important obj«ti\e quality of a umt of measure, note Uo

a'pecli to the problem of unifonnity A unit might ^ar^' from ele-

ment to clement at one raoment of time, or all units might vary over

tune The human foot as a umt of length IS an example This vanes

from por*oa to person (and also from left foot to right foot) at any

moment of time It also has vanod over Ume, there is substantial

eMdcDcc that peoples' feet, particularly m the United Stales, are

getting longer In our choice of standard units, ive trj’ to keep both

tvpcs of \analion to a minimum IVc arc not altvays too successful,

ho*c\er, particularly when ^e deal with some of the more complex

units Our most notable recent failure has been the shrinkage in the

\alue of the dollar o\er the last few decades Students are particu-

hrly alert to the deficiencies in uniformity of lest grade units, both

from student to student and over time The roost notable simple

thing that we continue to measure with obviously nonuniform units

IS the month Wc ha\ e mhented a calendar that is not as serviceable

as the American Indian's concept of the moon Users of business

data find ihcir tasks considerably comphented because of our present

calendar tyslem The months not only have different numbers of

da)<. they ha\e different numbers of holidays, worsdays, Sundays,

etc It would be simpler if each week had the same number of work-

d.ays, each month the same number of weeks, etc It has been seri-

ouMy suggested, and strongly supported by all working statisticians,

*wt viart, ‘mq/iwmg Viie sAuation

A unit should af*o be of a sire that leads to numbfrs that are con*

icwnt to irorfc talh It is impractical to measure the quantity of

coal in ounces because it is generally purchased and used in amounts

that would result in awkwardly large numbers Similarly, the as-

tronomer meamres distances between stars in light-years rather than

m feel and the computer engineer measures time on the computer
in milliseconds rather than in hours The mathematics student, on
the other hand, measures the time it takes him to do his homework
calculations in hours

The perum who is doing the work is the best judge of the size of

number that is the mo't convenient to work w ith Some people like

all the numbers to be between 1 und 100, and all the numbers integers
at that! If a person abhors fractions, decimal or common, he can
always axed them by choosing a email enough unit Probably con-
vention and habit are the prime determinants of what is convenient
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for most people we have been used to acd what we have been

taught m school are generally ea^ for as Aaj'thmg else js strange

and hence difficult

Another useful attribute of a unit is that it be a part of a system

of unite of different sizes that are easilj converted into one another

For example, the money system of tiie United States has units of

cents, nickels, dimes, quarters, half dollars, etc These are easily

converted into each other Our system of volume measures, on the

other hand, has a set of units that are quite awkward m conversion

from one to the other We go irojn teaspoons, tablespoons, cups,

pints, quarts, gallons, etc
,
up to barrels Generally speakmg, we find

that the most convenient units are those that are based on the decimal

system, thus making it possible to shift units by shifting the decimal

pomt

Choice of Origin

The origin of measurement, or the value a«sociated with “0,” is

often a matter of arbitrary choice Sometiraes what is being counted

or measured has a natural origin, a point where 0 makes sen^e For

example, if we are measuring the length of a board, it makes sense

to start at one end of the board, call that 0, and count the number of

feet to the other end Some things we measure, however, do not have

any naiural ongin, or, if they do, ue do not know where it is For

example, where is the origin of time^ Western civilization has

chosen to measure time forward and backward from the birth of

Christ We probably date most of the significant events in our life-

time with reference to our age, a number which we find convenient

to measure from our birthday as the ongm

Common sense suggests that we clioose a convenient ongm if we

have a choice Since the choice of origin is what deterrames where

the positive and negative numbers are going to occur, the most im-

portant factor in the choice is the intapretation we wish to put on

the negative numbers For example, the theory of profit measure-

ment and the accounting system that results determine the 0 point,

or the point of 0 profit Many people misinterpret the conventional

measurement of profit because they do not really understand the

meaning of 0 profit The most common uusmterpretation, probably,

IS to confuse the profit scale with the cash scale and to assume tliat

0 profit means 0 cash

We have further occasion to consider the problem of ongm when

we discuss the concept of the scale below
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Cen««pf of th» Stot#

\\6 are all familiar with that ncaaunng mstruraent called the

Ksle In cninrooTi Msage it vs a dewce tfi measure weight. \\ e use

the term in a more general senie to refer to any measuring device

that has the tftin features of an ongm of measurement and a unit

oi mcawKment In this setve, wi ordmarTi' fool ruler is a scale It

Las an origin at one end (usually not marked as 0 honever) and is

dll ided up into inches and fractions of inches The same loot ruler

»ould suit be a scale if we decided to place the ongm in the middle

and mark oil the inches plus and minus from that point The second

scale i^culd now have a -4 nherc the fttst one had a +2, etc. It

should be oliMQUs that the second ruler is as good for measuring the

length of a room as «ou[d be the first However, it U also obvious

Uiat the numbers in the final answer will be diflerctit unless we choose

to translate tlic result on the second ruler into the same result we

would get if we used the first ruler This could be done very simply

bj adding C to every number that had been read Irom the second

ruler to adiust for the fact that the ongm of the second ruler was

di*placcd iix units from the origin of the first ruler

It we wished, we could multiply each number on the ordinary

ruler b) 10, say, resulting in OO whereas w-e had 9 before For con-

venience «c might call the new nmnbCTs ‘dinches ” We could now

measure the Icngtli of the room with this lulct, gtUitig a result m
dinchrs instead of inches The room is still the same length How*

ever, our numerical answer would be ten tunes as big as if we had

measured it la inches We could then convert the answer from

dmehes to inches by dividing the nuinl^r of dirches by 10

lie could, of course, shift the origin and change the unit at the

same time, llius getting a completely new scale And, knowing the

relation'hip between the ongmal scale and the new scale, w'e could

Iranilute a result from one scale into itj equivalent on the other

scale Eillier sv Ic would be equally good for meaBunng a given

phenomenon ^aturally we should know which scale we are using

when w c interpret the final result

lie find the ability lo shift back and forth from one scale to an-

other a grest convenience in perfomuog certain calculations. The
usual routini IS to take the rwulla of one scfllc that is wry convenient
for rneasuting and interprcUtroa, translate these ttsulla into nnothcr
scale that is very convenient for calculations, and finally translate

the mulSa of the calculation back into the onguial scale. The final

results can be quite misleading, and aomctimcs quite ridiculous, U we
err in the translation process
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It IS interesting to note that the whole concept of a scale drawing

or flcale mode! flows directly from this concept of the scale and of

changing the origin and unit of tiie scale We construct a scale

drawing whenever we measure somethii^ m conventional units, such

as feet and mches and then arbitranly change the unit so that say,

one inch on the ongmal scale becomes equal to 100 gmches on the

new scale The dimensions of ihe actual object are then measured

on the original scale A set of numbers results The model is then

drawn by using the same numbers (inch^) as though they were

gmches The model should Uien have all the appropriate ]}roportiOTis,

although it should be only 1/lOOth the size of the actual

The 100 PereeRt Seale A scale that has found wide application

m many practical problems is the percentage scale This is an arbi-

trarily created scale that runs from 0 to 100, although we see shortly

that it is sometimes more convenient to think of it as running from

0 to 1 It can be used successfully only where the notion of all, or

total, and the notion of 0 make sense and also where it makes sense

to think of the vanous parts that make up this total

We also use such a percentage scale at tunes when we are trying

to approximate the intensity of attitudes or feelings For example,

a person might attempt to coraraumcate the strength of his 'likmg"

for Brand A cigarettes by making a marir on a lOOfo scale as shown

in Fig 4 1 We can think of the 100% as being the 'total amount

of affection" the person has for cigarettes Since this particular

person has a 65% liking for Brand A it is evident that he definitely

prefers Brand A to any other brand because the maximum "hking"

available for whatever brand is in second place is only 35%

A special case of the 100% scale is often used when we are inter-

ested m the decision a person will make because of some attitude or

feeling he has Since a person either votes for a candidate or does

not vote for him, only two results are possible The issue now is to

determine what value on the 100% scale we should assign a favorable

vote and an unfavorable vote The convention has been adopted of

assigning a value of 100% to a favorable vote or a favorable purchase

and a value of 0 to all other possible decisions For example, if a per-

son likes Brand A cigarettes more than any other brand, and hence

buys Brand A, we would assign a decision rating of 100 to Brand A

and a decision rating of 0 to all other brands

Generally speaking there are significant matoematical advantages

to be denved by using a scale from 0 to 1, witii decimal fractions oc-

cupying the intermediate values, instead of the 0 to 100% scale This
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wculsi retan ihst wc would be dealing with pTopcrtions rather than

with percentages The likmg for Brand A referred to would be ex>

presvd as 65 instead of GSfc B’e find 05/<: easier to say than .65,

but ne find r>5 easier to manipuUte mathematically U is no prob-

lem to ‘lijfl back and forth from one scale to another because the

numbers on if.e percentage scale arc exaeffy fiXT times file sire of tibf

numbers on liie proportion scales

The rnathcm.atical advantages of the 0 to 1 scale are particularly

important when we are dealing wjth the decision problem just given.

A decision in favor of something oould be called 1 instead of 100.

If wc were dealing with many such decisions, some favorable and

some unfavorable (O), wc would hai’e a collection of nothing but Vs

and 0*9 These work very mcely in eerUiin matliematical derivations.

Till* choice i*' also con«istent with many of the practices of our demo-

cratic traditions. IVhen citizens vote, they must make definite

choice Verson 1 may actually be quite undecided, but leans a shade

toward candidate A, say, with a preference rating of -51. He must

giic hi* trfio/c \ote to A, however Person 2 on the other hand has

an unquaIif<Ni preference of 1.00 for candidate A. He is very’ happy

to give hi* tthole vote to A, and may even wish he had two or more
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votes to give The record ^ows both of these votes exactly the

same, namely as unqualified votes for A The truth rvould show

candidate A with a total preference of 1 51 and candidate B with a

total preference of 49 The results of the election show candidate

A with 2 votes and candidate B with 0 votes, a result w hich seems

substantially away from the tautb, which it is if we consider only

those who voted for candidate A It is quite evident that there is a

bias m our measurement in favor of candidate A However, if we

consider the votes for candidate B, we would find a similar bias m
favor of B If we add all the results together, we find these biases

somewhat offsetting each other If A ended up with 53^ of the vote

we might say, with caution, that the citizenry apparently had an

average preference of 53 for A and an average preference of 47 for

B What this means is impossible to determme, however, from the

available information It might mean that feeling was quite moder-

ate for both candidates with most people actually not overly con-

cerned about which candidate won Or feelings might run quite

strong, with about of the people 100?i> for A and unalterably

opposed to B, and with about 47% of the people having equally

strong but opposite feelings The latter situation is explosive and

mightlead to a revolution

These two extreme possibilities are illustrated m Tig 4 2 Part

A shows a distribution of moderate opinions and Part B a diatnbu-

tion of extreme opinions

Thus It 18 obvious that we pay a pnce in lost information when

Part 4

Horferate opinions

i

1

1

r
i i
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j

q
I I /I I

0 20 40 60 80 100 120

fntensfiy of feeling forX oragaasfjff

Parts

Strong (fpmns

tnteasbf of feeling forA orsgamsiS

Fig 4 2 Two of the many posable distributions of intenatj of opinion that

might prevail on the asuroptioa of sn ‘average" preference ol 52%
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ct«f Etc coavcnMce of reeisHms a decKion, a preference, or

s rate a> thooph it acre 1 Or 0, Trith no provision for recording intcr-

ECdiatc opuiioiu It ij a good practice in work over which we have

some control to ark ounclvcs ahether this convenience of recording

only fs and O's is worth the sacrifice of laformation. With the advent

c! the voting machine, it is conceivable, though not likely, tliat eomc-

day we may cast our vote by cegiatenng a degree of preference rather

than lust giving tic whole vote to oac candidate and nothing to the

o'vhfn

Tb? tcchnicjue of wjigoing a value of 1 or 0 to something accord*

mg to trhetlicr a given thing is or is not true is used commonly. Its

u«e IS cot restricted to just those casca m nhich a decision is being

made cither for or against somcibing, as m voting, or as in marking

True^Falsc ciucsUoni We also use it at times when the variable

being measured actually takes on a great number, if not an infinite

number, of values. For example, wc might arbiiranly select a mini-

mum height, ray. 6 feet, and label all men that height or more as

lall men We then collect figures on whether a man is tall or not tail

If he 11 tall, nancly, C feet tali or taller, we assign a value of 1. If

he i> not tali, we assign a value of 0 Naturally we do not have as

much wfortnaiion about the heights ol a group of men if all we know

i! that IS^ of them are tall and 827c of them ate not tall as if Tke

knen the heights of the individual men mlhin 1/2 inch. But for

some purposes, this rttinctcd information might be enough, in which

«*« there would be no point in collecting any more, and at much

greater expense For example, a basketball coach may ver)‘ well

w ifh to m.ake his initial sort of the men into lall and not tall players.

When wt arburanly select certain boundarj- points, such as in

the height problem above, and then sort our Hems into the siic

classes marked off by those boundaries, we arc classifying these

Items acfordmg to certain cftnfnifcj By definition, so to speak, an

Item cither has the atlnbule or it does not This is true regardless

o! the number of attributes we might be sorting for. Let us suppose

we are going to sort some apples according to size. Actually, of

course, the apples have all kinds of sues, probably as many sizes as

apples. But we arbitrarily define the boundaries between five size

cfasipj Let us now toot at how an apple sorting machine will sort

the apples by size The apples are fed onto a screen which has holes

large coeugh to kt the sinaficst apples fall througli. This screen
makes the decision of whether the apples are “smallest” or “not
smallest The 'not smallest” apples are *lien passed along through
the machine until Ihej* reach another screen. This screen has larcer
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holes than the first one, but still holes not large enough to accept any

apples larger than those medium small or smaller’ Th^ screen

then decides which apples fall into tile medium small class and which

do not The sorting procera continues through larger and larger

screens until all the apples have been placed in one of the five size

classes Note that the machine never had to make a decision any

more compUcated than to decide that an apple did or did not fall

into a given class The ability to narrow a decision to only two

possibilities is not only highly effective when we use machines to do

the deciding, but it is also highly effective when human beings are

makmg the decisions

Again we remind ourselves that the advantages gamed by narrow-

ing our decision problem to a few categories or attnbutes are not

without a price, the price being the assumption that some differences

do not make any difference whereas other differences, equally small

or even smaller, make a substantial difference For example, some

of the smallest apples differ more m size among themselves than do

some of the smallest compared to the medium small The same

thing happens when we grade students A, B, C, etc There is a greater

difference among the B students than there is between some of the A

students and some of the B students But as any student knov s,

our rating systems attach quite a bit of significance to the difference

between an A and a B, but no significance to the difference between

two B's The use of a percentage scale for grading solves some of

these problems as it creates others

The analysis of attribute classijicatm data has a theory of its own

For those interested, one of the more comprehensive discussions of

attribute analysis is in (1 D' Tule and* AT O’ AentfaiY, An introauc-

tion to the Theory of Statistics, Chapters I to 5

The Problem of "Twice os Much"

As soon as we begin to measure things, we take the next step and

start comparing the sizes of the numbers that we get For example,

we might compare the distances between towns by saying that ‘it is

tmee as jar from Town A to Town B as it is from Town A to Town

C ” And just about everybody knows what this means But what

do we mean if wc say that "today is twice as cold as yesterday,” or

' Joe isn’t half as smart as Toro ” We definitely know how to meas-

ure distance in a meaningful way, or, more particularly, with a

meaningful origin If one distance measured is 25 miles and the

other 50 miles, we have no trouble dividu^ M by 25 and getting 2

which tells us that one is twice as mneh as the other But if yester-
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a.j . fO-F >nd «dsy< i. «"F is it reulU

w co’J ipcja> ' Su-’IW »t was 2 F \ e^tenlar and 1 F toda> ? Of

,
P;w,.Ajf>.-IQi!l05a'’dTGmsI22 How much than Jw

*

Thu* wo *«• that it makes <en'e to compare the relatue sires of

n^'^hc^ we get h j ii makc< no *en«c at all to compare others

Gr-cnl!* 'peaking it is appropnaw to compare the relative sires of

ni.'nbc's it Lhi»e is » rcaiingful onpn and if nc know where it is

0 Kenr^e we get rather *ilK an«ncr« and we get answers which

dfpnd cntirclv on the arbitrary 'clccaon of origin that we made

Fc- exa^'p'e i* i* po* ihle to make an> degree of coldnc s twice as

cold as an} o 1 c» degree of coWnc* bv judicious selection of the

origin of rrea^urement Wheneur we can get an\ answer we want,

l* A ftT, c* 11 pcnerallv moanirzless

ScQlet with AppQfenlly Unequot Unift

We (rc<tucntlv *ec fcslc* of mea«urc that *een\ to ha\e units or

dii'oa* that are unorjual in «iie The mo*t common illustration

o' ‘ich a «fa!c \* the ho\i«cho!d mea«unng cup Such a cup is u*e(i

to rr'arjre the folunc or cut ic content of the cup or fraction tliercof

Tie ‘cale or in ‘ex mu l be «howa vcmcall) on the »ide of the cup

lowc c If the cup IS shaped «o that the side makes a 90® angle

wi h tl e ba«e and if both the ba*e and tlie *ides have straight sur*

face* no p’obltn in making the index exists 1! we w^hed to mcas

urv M we would mcrelv divide the vertical «urfacc itito eight eqiwl

part* Uarclv however do wc find measuring cups w th llit^e prop

cTlit-' } cr afUirtic and other teasoo’ tl e 'ides do noV make a 90®

a’’g[e w th tl c bi t I suallv the mouth of the cup is larger than the

base and it tali'* more vertical distance to make 1/8 of a cup near

the bottom of the cup than u docs near the top Thus the divisions

marked on the fide of Uie cup are not equal But this is quite proper

bccau'c tlie divi«ior4 arc not rcall> intended to measure the icrttcof

distance Thej are intended to measure the i lame contained by tlic

cup tf filled to the given point

The technique of u«mg one Kale such as a v ertical fcalc, to meas-
ure 'ometiiirg according to another *cale (not shown) ^uch as a
tolurae fcafe, is quite cocnmonlv u*ed U verj often result m a

i>jWe scale that has vneqwit divisions, even ‘hough the scale actu-

a!l> rcpJTSinlcd but not shown, would have equal divi'ions If we
Use a «caJe inth unequal duisons which cannot be translated into
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a meaningful scale with egnat division'^ we have a serious problem

of interpretation

The analysis of business problems k often helped by the use of a

logarithmic or log scale It is also sometimes called a ratio scale

The purpose is to compare a set of numbem with respect to their

reloiwe sizes rather than with respect to tbeir actual numerical

difference For example, 1000 is tunce as large as 500, as is 2 com-

pared to 1 laterestiagly enough, Ae logantkm of 1000 is 3 whereas

of 500 it is 2 698970, giving us a di§erence tn logarithm of 301030

The logarithm of 2 is 301030 and the logarithm of 1 is 0, also giving

U8 a difference of 301030 Thus if one number is twice the size of

another the difference in their logarithms will be 301030, regardless

of how big or small the numbero are If one number is three times

as large as another, the difference in liieir logarithms will be 477121,

and so forth Hence, whenever we are mterested in the relative

sizes of numbers, we find that the logarithms of these numbers show

equal di5er$nees whenever the reJatne differences are equal even

though the actual differences between the numbers m the pairs are

quite unequal, just as we saw m the example above

Since it would be vejy tiresome to actually look up bganthms to

compare relative sizes or actually calculate the relative differences

by dividing one number by another it has seemed appropnate to

construct what we call a logarithmic scale This is a scale so con-

structed that the distances between the numbers listed on the scale

18 according to the differences between the loganthras of the num-

bers rather than acco^iing to tiie differences between the numbers

themselves An illustration should make this clear Table 42

shows the logarithms of the first 20 mtegere

There are several interestmg things to note about this table First

the difference between successive loganthras declines even though

the difference between the successive number equivalents remains

constant This makes sense because the relative differences between

successive numbers should be smalfer as the numbers get bigger

Eventually, of course, the relatave difference between successive

numbers gets to be practically 0 Note also that the loganthmic

differences between the logs of 1 and 2 3 and 6 2 and 4, 4 and 8,

5 and 10, 7 and 14 etc are all 301030 Those between 1 and 3 2

and 6, 6 and 18, etc are all 477121

If we now make up a scale that is actually laid out so that equal

distances represent equal loganlhm, but, instead of making an index

to the scale by writing down the loganthni we wnte down the num-
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TABLE 43

loffflriflimi ol Rr»t30lftl*5»f»

DJITOM
bjlTOO locwilto bctaeen

SutOTirt «( Suectsiie

^umbt^ ^lrobm Nmnbw Uguithnu

0000000

1 .301030 0301030

1 477121 176091

1 C02060 124839

5 1 60SWO 096910

6 1 778151 078181

: 1 S45M8 066947

8 1 IKIOdM 057892

1 951243 051153

10 1 toooooo M5757

It 1 1011393 W1393

13 1 1 079181 037788

13 1 1 113013 034762

H 1 1 146123 033185

IS 1 1 176WI 029963

16 1 idoiido 02S029

17 1 I23W49 026329

n 1 1255273 024824

18 1 1278754 023481

20 1 U0I03Q 022276

her that has such a loganlhin, we would then have a logmthmK

scaU fjgure 4 3 shows the successive stages in the construction of

a logAnlhaic scale Part 4 shows an ordinary equal division scale

with loganlhmie v alufs along the vertical axis Note that equal

distances along the scale are matched with equal differences between

the logarithms Part B shows exactly the same scale as m 4 except

lor the change from an index in loganUims to an index of their

number ejniMiItnlj For mmple, Uie loganthm 301030 lias bwn
rfplated by 2, ita number equivalent, the bsarilhm 12W120 by 16,

lU number equnalmt, etc Part C ahow the aatne acale and mart-

less M B but aith additional divisions and marlungs (or the inter-

inniiale numbeti

Part C IS the charartenstic form of the loganlhmie scale Ready-
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made scales of this type can be purchased Figure 4 4 reproduces

some samples of such commercially available paper We should

cote some of the most important characteristics of loganthmic

scales First, 0 or any negative number is neu^- marked on the

index The technical reason is that there is no logarithm for either

0 or for negative numbers Another way to see the logic of no 0

and no negative numbers is io measure fhe relative increase, say, from
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Tff 4 4 Simpirsofloganlfamicecalfs

0 to 25, or from -8 to 12-1 It is clear that these measurements

cannot logically be made

Another thing we note u that if T\e ^ish to change the scale be-

cause our problem js dealing with numbers that start in the neighbor-

hood of 220, we change the markings supplied b> the manufacturer

by mt/ffipfjftWj; e\erj gnen index bj a constant, saj, by 200 Figure

4 5 illustrates such a change It is wrong to add or lubfroct numbers
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or bOoi, we can do thu b} oaltipIjioE b) some [raetion, or. it we

C'tfer bi dii'idtoo by eotne oppropriote riurnbor

A lurthtr point to oote is that il would not oaVe sen'e to continue

to bat e a separate hue to show each natural number as » e proceeded

up tbe scale of numbers Part C in Fig 4 3 begins to demonstrate

p-ottt-i nuite e-Wy The lines ea-entuatty gel to close that we

eanrot dis'ingurt them, and it becomes necessary to start skipping

some nuitibcn as we go up the number scale, and the further we go

up, the more numbers we haae to skip Certain conientions haic

g-own up about changing the frequency of subdivisions as we go up

the number scale The most predomintnt eonaention is that based

on ibt noUon of a cycle A cycle is a span o! numbers eovenng a

rarge of tenfold, such as 1 to 10 100,000 to 1,000,000, etc Com-

Irfrcialli aiailable loganthmic scale paper is told with one-cycle,

two-crelo etc The number of cyelea neec'saty for the charting of

a giun problem depends on the range ol the numbers to be plotted

If the tsrge«t number is less than 10 tunes the smallest, one cycle is

enough, i! the largest is between 10 times the smallest and 100 times

thesnsllcl two cycles are necessary, etc

Sooetines we would like to compare the relative changes m two

or more sets ol numbers, such as the eompsnson ol the changes in

sales 01 cr tune ol two business 6ms It the two senes are quite

dil'e’cut in nsgnilude, the two Imes would be so lar apart on the

ehsrt that detailed eeiupanson would be most difficult Figure 4 6

illuslrelcs the probem ffe can improie the situation by using two

different scales on the same chart, one for the plotting of one senes

and (ne for the other Figure 47 illustrates tbe improiement oier

Fig 4 5 by the ure ol two scales We could compare any number

of senes with the use of any number ol loganthmic scales on the

same chart.

Incidentally, it is generally not appropnate to use several different

scales, or multiple scales, on the same chart if wc ate using ordinaiy

equal-spaced graph paper the kind we call onthmefic scale paper
We would alleinpt 10 compare sea eral senes this way only » hen w e are

intcnNtcd in comparing the refoute or percenroge variations, and
these are pmperly eompaicd only with the use of loganthmic scales

The use of multiple anthmctic scales results in distortions

A substitute for commercially-prepared loganthmic paper can be
nadi by osmg Ihe scales on a slide rule as a guide since the pnncipsl
scales 03 a slide nde sre loganfhmic seslei The C and D scales
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Rg 4 4 Comparative sales of Pure Oil Company and Standard Oil of New

Jersey—1960 to 1959 (From 1959 Annual Kqiorts

)

show one cycle, the A and B scales show two cycles, and the K scale

shows three cycles

There are many other possibilities for special purpose scales in

addition to the log scale The most common of these are the re-

ciprocal scale, the square root scale, and the probability scale The
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disUncfs on a reciprocal scale are spaced according to the differences

bctacen the reciprocals of numbers. For example, the distance bo-

tftccD I and 5 would be as the difference between 1 and 1/5; that

between 5 and 10 as the difference between 1/5 and l/lO, etc There

are \cry few occasions to use such a scale in the analysis of business

pfoblcnn A squarc-Tooi scale is such that the divisions between the

numbers is proportional to the differences between the square roots

of the numbers For example, (he distance between I and 4 woufd

be proportional to Uie difference between 1 and 2, the square roots

of 1 and 4, respectively, etc The square-root scale has found some

interesting applications in business problem analysis For example,

there IS !ome evidence that the comparative degree of fluctuation

of a common stock pnee is proportional to the square root of the

price In other words, a $100 stock would fluctuate compared to a

$50 slock JD the ratio ol about lO to 7 (the square roots of 100 and

50, rc-pectnelyi instead of a ratio of about 2 to 1 as the actual

prices Would i’ dicate If the rule applied exactly, and if all other

factors remained the same, we would expect the $50 stock to rise

to $57 w hile the $100 stock was nring to $1 10

The probability scale is really a normal curx’e scale, the normal

curve being a special type of distiibutioa which is widely applied
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ID probability analysis We touch upon the normal cur^e and on
the probabi/ity scalem {aterpages

4.4 Accuracy in Counting and Measuring

The numbers 'which result from the counting process are usually

not strictly accurate If we are counting integral unite, such as

boxes or chairs, we make mistakes in idenUjymg the units, and we
make mistakes in the actual counting When we use standard unite,

we find that the object being measured almost always has a size that

does not correspond to a whole number of units, thu? involving us

in fractional units, and our perceptive abilities are not sharp enough,

even with the aid of instruments, to determine the exact size of the

object bemg measured J\irthennore, as pomfed out earlier, we do

not measure the object directly anyway, thus leaving room for further

error as we purport to measure one thing by measunng something

else

It IS a good idea to be conscious of the limitations of the aacumy

of the numbers with which we deal Generally speaking v e do not

know exactly how accurate our numbers are If we did, we would

make the appropnate corrections Our experience does give us usu-

ally some idea, however, of the probable magnitude of the errors

Ideally we would like to state our measurements m the form of the

confidence we have, or the probability, that the true answer falls

within a certain range For example, if we were to measure the

the room is between 14 45 and 14 65 feet long We would base such

aa answer either on repeated independent measurements of the room,

treating each measurement as a sample of all possible masurements,

or we might measure it only once and use our accumulated expen-

ence over the years with many measurements of this type to estimate

the probable error we are subject to here In any event, we would

do our best to indicate to anyone concerned, mcludmg ourselves, the

limits to accuracy of our basic numberfi

Vnhrtunately, common practice does not yet approach this ideal

Most numbers originate with no indication of their accuracy The

implication is that they are 100% accurate, although everybody

knows that is not true Physical scientests, of course, have been

doing a good job in this connection for many years, and it is to them
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iJ-jl »t cw ewe «t 1*1' coo\eauom th>l h«\ e stown up sround the

coaetpu «! iiiaf.cint diftU and precuwii o( numbeii

SJgnffiwnf

A digit « dfficcd M fviu/^foni it it is correct withm 1/2 oi jte

unit For wample. if vt (tale the leagth of the room aa being Ui

f«l, It IS understood that the true Icogth is beUecn 14 45 and 1455

feel It is geacrallj wnmed that «e are ccriam that the true

Jtngih ’Kould be within this range It would be more appropriate

perhaps if we coasideffd it procticotljf certow rather than certain

K careful worker never records a dipt unless he feels it is eignificant

ID the above Mii«e

The location of the decimal point has nothing to do with the num-

ber of significant dipla The decimal point depends only on the

flic of the unit, and the sire of the unit is strictly an arbitrary

choice A convention has grown up which makes it possible to

ndicatc e)faf)> the number of significant dipts without cojnplica-

UOM introduced b> the location of the decimal point. This conven-

tion 18 to show all the significant dipu, put the decimal point before

the fast digit, and muliiplj b) the power of tea that will put the

decimal point where it belongs for the desired unit of measure For

wample *uppo«e we have a count with four-dipt accuracy which

rcmfla « 4,820000 if we consider the unit of measure ^Ye make

It clear that cni) four of the (e\ea dipU are significant b> record-

ing the ff<uh as 452 G X It^ If we had left the number as 4,826,000,

it It vcij possible that someone might assume that the last three

leros are jignificant Another wa) to indicate that only the first

four dipts arc significant is to write 4S26 thousands It is generally

a good idea to assume that any leroa at Uie end of a number arc

not significant unless we believe that the person who created the

number is a ver> careful worker Zeros at the bepnmng of a
number should never be counted w significant For example the

number OOOSS has only two aipiificant dipts The number 000380,

however, ihowhf haie three aignificaot digits and would have if

recorded b) a careful worker

Predsloii

The prffMirm of a number refers to the number o! decimal places

to whieh It IS recorded The number 00038 is more preewe than the

number 3S6, although 386 has more significant dipta Precision is

thus aS5(?cis(ed With the unit of measure and not with accuracy per

se The rrsion wc think of precision as akin to accuracy is that we



THE USE OF NUMBERS
115

are normally thinking of two tbngs measured m the same unit In

that case, the more precise number will generally also have more
significant digits, such as 369 48 feet vs 468 5 feet

4,5 Accuracy of the Results of Calculations from

Numbers

The manipulation of partially accurate numbers by the standard

methods of anthmetic creates tiie problem of the accuracy of the

final results The fundamental rule governing the accuracy of calcu-

lated results IS that the results cannot be any more accurate than

the least accurate number included m the calculation Certain

arbitrary rules have been adopted to help us abide by this general

dictum Although the rules are not perfect m application, they

work well enough for most problems and they are certainly much

better than no rules at all

Accuracy of Results of Addition and Subtraction

Rule The least accurate number contained m addition and sub-

traction problems is the least prectse number

Thus the answer is no more precise than the least precise number

included The following three examples illustrate the application

of the rule The digits that have been marked out are those that

37 8027 00378 14,806 29

48603 29 186,000 26 8

261 832 40 87 006

06 9,426 2 973 48

489029847 195,46707372 15,806 570

Rounded 48902 98 195,000 15,806 6

must be dropped Note the rounding operation If the leftmost

digit being dropped is less than 5, no change is made in the last digit

retained If the leftmost digit being dropped is more than 5, the

last retained digit is raised by 1 Note tiiat Uiis rule of rounding

IS consistent with the convention tiiat the last significant digit should

be correct within 5 If the leftmost digit bemg dropped is exactly

5, followed by nothing but zeroes (as far as we know)
,
we then adopt

a rule that in the long run will result m rounding up about as often

as m rounding down This rule is to round to the nearest even

cumber The rule might just as well be to round to the nearest odd
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r-j-Ur The impo'tiini point is W be consistent. The rollowmg

eximrlc* ilio'trstc the npplicauon of the rounding rules The second

number in the eolamn is rounded from the first one in each case

37^7 G23S5 €2395 43S2 4186571

37,503 623 S 624 0 43S 4187

Generally speaking, the results of addition are a little more ac-

curate than these rules permit us to show The increased accuracy’

n-u!la becau*e the process of addition pro\ides the opportunity for

aome of the erfO's in the crigma! numbers to aserage out. We Rould

expect to ha\e about as raati} numbeft with plus errors as i\e ha\e

with errors This apparent gain m accuracy is not enough,

howdcr, to justify adding another digit. What it amounts to \ii

If vt had 8 total, say, of 12^684, we ^ould think of it as having

a Inie xaluc between 12.S46 835 and 12,846845 The averaging of

errora process may have actually reduced the range to aoraclhing

between 12,546^ and 12,646 842 We still cannot confidently put

a digit in the third decimal place even though we have greater than

rorraal accuracy m the second decimal place

Ateuraey of Results of MultlpHcotlofl, Division, $quor{n0, Square

Koot), Etc.

Rule The fc<wl accurate number contained in multiplication, and

similar problems. ha« the ftual ngnxficttnt di^ti

The application of this rule w illustrated m the examples below.

Note particularly the tliird example The number 5 here is an abso-

I.iitc miraher
, nnl, ibr. cftaidk •it c.'iiujk’nrg vi 'K

real!} has an unlimited number of significant digits Thus the num*

ISfiW OiW8 C3 8100

X318 X6I X5

lil?S8l6 d8<»Z8 3192030
ttounded 1550 •18 319203

or 155X10^

IxT S plAcrt DO teitriclionj od tbc «eciirac)' of the fins! eesult The
nuDiher at digits m the final anaaer then depends on the meon/red
naraber aith the feaeet eisnifitanl diBila The reason no mention
nas made pi abwiato imniberj m the di'cuss.on ot addition and
eubtracljcin iraa that we almost neier have occasion to use absolute
narabers in these operation! Their uie ,s quite common, however,
in nwUjplication and division
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Since we generally do not multiply more than two numbers to-

gether at a time, we cannot rely on the law of averages to help re-

duce our final errors, it is entirely possible that our final answer is

less accurate than these significant digit rules suggest For example,

if we multiply 4 6 by 8 3, tfie rules suggest an answer of 38 If,

however, we are very unlucky, 4 6 may actually be as high as 4 65

and 8 3 as high as 8 35 If tbis were so, the final answer would be

39 instead of 38 Thus, m a sense, we can actually lose accuracy

when we multiply Fortunately, we have to be very unluclgr for

this to happen, so we do not worry about the problem very often.

4.6 Size Comparisons Based on Relative Frequency

of Occurrence

One of the reasons we measure thmgs is to facilitate compansons

We have already referred to such compansons as “twice as long,”

“twice as heavy, etc We have also pointed out that there are

some scales used that have no meaningful origin and hence no basis

of making comparative statements of this type We are still in-

terested m compansons however Another way of comparing thmgs

quantitatively is by reference to their relative frequency of occur-

rence An Amencan male who is 6 feet 4 inches tall is not con-

sidered tall because he is 6 feet 4 mches Rather he is considered

tall because relatively few men are taller It is not his size, but the

ranty of his size that is important Actually a man of 6 feet 4 inches

IB only about Sfo taller than a man of average height There are

many dogs that are easily twice as big as many other dogs, but they

still would not be considered big dogs because there are so many of

them, and also there are many dogs still larger What makes a

grade of 95 on a test worth so much more than a grade of 75 is the

rarity of the 95 The students are very quick to recognize the

cheapening of the value of a 95 that takes place if 30^o of the class

achieve®' 95 or better

This question of “how big is big?" is not always easy to answer

because of the various ways we can answer it getting apparently

quite different results each fame For example, one of the contmumg

issues in Amencan society has been the matter of “big business

"

Is a business big because ite annual sales volume is 810,000,000 more

a year than its average competitor’s, or than its average customer’s?

Or because its volume is 75 more? Or because its volume is the

largest of any company in the indusby? What should we compare
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Ttili’ U1 lit t*-"! coapiaies «rt pnata compsred nth departmtot

Itotj but »3e !l«l eoapimts are PTgmra compared to United

5t«l
, , c j I .

la all probltsi! iDvolving the of people we find whst

IS lopo-tATt I! not, la), hoir much bcloic acertiEc a pcr>on is, but

rather it is tht issue o! hose many people are above him or below

him. Fo- erinp'e, it the as craet salea of a ealesman in our company

are 1225 COO per year, we rcalK do not know how bad a salesman la

wbo Klla llinodi) until we know how many salesmen sell more or

leas than {IIOOOQ The JllOjOOO fipire might be at the bottom, or

there may be 40f« of the sale-men sellmg less The distinction would

make quite a diffeienec to us if we were the salesman, or the sales

Ou' ability to measure the reUlne frequency of things according

to some Idle of oeanirc can be a \erj potent tool of analysis and

confol We iaa> not know the ongm of our scale ra a meaningful

and we na) not really know what is implied by a difference

m one unit m our scale but if our scale still makes it possible to

rack people in the proper order and la the pmper frequency, we art

ftill able to make intelligent decisions based on measurcaenU de^

nied faa rjch a scale For example, we really do not know what

a fonditioQ ol itro intelligence » Nor do we know what 100 units

of inielligesee » Kor do we know how much more intelligence is

repwnted b> 125 units than by 120 units What we think we

know IS that the a%erage score on a p%pD teal for mtelligence is

100 We al«o think that scores on such a teat will enable us to

preip^rl) fcrj. people in order of intelligence We also think we are

nghl wh^ we aay a perwn who scores 150 is ter} intelligent be-

cau*e te*5 few people have been able to achiete such a high score

But iL IS fallac ous to eaj that a person who scores 150 is twice as

inteliigcnlas a pe-«on who scores 75

The of percentile ranking familiar to alrawt every school

child in America, u an illu«lration of rating or rneasuring with refer-

ence to rank, or relati^ e frequency of occurrence along eome scale

riOBUMS AND QUISnONS

* t Dehae bncSj but accuntel) the meaning of the following words
AM perasej I/poaFible.iasic yourdeCnitwa mere understandable by nying
cumbr's m it.

(o) Usual]} col more than $40

(6) Ahswtalwaji between 60* and 7£r
(c) AppreximawJyfi^

(d) Mwt of the time o>er2SO fret
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{&) Fairly close to 4 pounds

{/) Good chance of xsin tfiffionw

4 2 A driving rule often suggested by safety engineers is that One
should leave one car length betireen iai^lf and the car just ahead for

every 10 miles of speed Tlius at 50 mph one slmuld leave five car lengths

How many feet are there in a carler^ ’

4 3 The professional golfer wiB often mflire the following suggestions

Quantify the underlined words for exemple how many pounds of hand

pressure should one apply to bdd a club firmly^

() Eoldtheclub^rmly butnotmadeathgnp

() Shift most of the wegbt to the left foot as you swing at the ball

4 4 A new salesman is told by the sales manager to spend more time

trying to sell those products with a large gross margm than on those

products with a small gross margin

How much more time should he spendt

4 5 You are told by the doctor to soak your injured wnst in hot water

How hot?

4 6 Soft music has been discovered to be a factor m mcreasing pro

duction in many plants and offices How soft should it be ^

4 7(o} Measure the length of a room by pacing it off Record the

result

{6} Measure the length of the same room by usmg a foot rule Record

result

(c) Measure the length of the same room by usmg a device (a piece of

string IS a possibihty) that will stretch from one end to the other Record

the rMuIt

(d) Which result IS the most accurate’ Explam

(fi) How long Jg the room’ Howdoyouknowthis’

4 6 What 18 the value of the pair of eboes you now have on or last

wore? How did you measure this?

4 9 Count the exact nuraber of books you have in your room as of this

moment. Have somebody else mdependeDtiy count the number of books

Compare the results If they are different how do you explain the

difference?

How many books are there really m the room’ How do you know’

4 10 Suppose you worked in a super market and were asked to count

the amount of cash in one of the ca^ registers before you took over the

cashier duty Would you count the checks that some people had pr^ented

for payment’ Why or why not’ Would you count ^e value of the soap

coupons in the drawer’ Why or why not’ Would you count the register

slip that had been signed on the bade by fte customer because she had

inadvertently left her pocket book st home’ Whj or why not’

How much cash is there m ^e drawer’

4 ? I What IS actually being measured wlm you measure the following

things’ How accurate IS the measurement’

(o) You weigh yourself on a bathroom scale

(h) You determine the distance between two cities by noting the odometer

reading on your automobile both at &e beginning and at the end of your

tnp
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(c) \o« d(*<rsPc the toabfr of Woc)dM as iht wtlfcsth >'oui

(iur'-^ndsosuacabs raiES»to3the^of>our r^io

(cf) \m tefiwrf vour bood p-cssare b) goiag to the doctor ind ubng

b.-a to ciwn»t It tzi then to yw »hit««

(0 Yoyb<fit»otA»l»Iltsuw let* wh-cbohcia lighter

(/) Yea ^^e t«fo ipp'icanU for i job » ‘dencal iW lest One scored

rtihdttet>\btT73 _ ^

41J “nic fdloiOES tmti are la eonimon use L\'ajiiite each from the

j«»e; of vifw of ibe dfSinWe qulities o! a good unit

to)

(t) Dollar

(«i Mile

(d) Degrees rahreaheit

(f) Miauie

4 11 H >-00 are asVed lo e^iunate the Visa vnth uo retcreuee to a cloek

or inteh, wbi i* lb raeni, if MT, of ai^tas if^^ estimate in ttlati\fly

‘fouiid'lffses.sycbas ‘3oclock,’ or*3 15," etc rather ibao as "3 27j/2 I

414 IcreTptttthefdlflWMigfompinsQftS

(a) John IS i^c tilfet Tom

<6) JohauoQljhallasacmWcasTom

(e) Boiliag »nter u ilciort rvcq times as bet as ice at sea les'ri

(<f) Su’i't Ton rwnied a grade of CO on the enra and John only a g»de

of 60, It w e^^dent thit Tom be^ 50*< more than John

\t) John e shirt uonl) about half as red as Toms

(/) Cowunffi' pne« are almost twice as high today as they were

tweaty yean ago

4 15 Collect £;jres on the annual dollar ulea of the Doited States Steel

CoTi and of the ITbeeling Steel Co for the last 20 years

(a) Plot both *<n?soQ the same loKanthnsKtcale

(A) Plot both *enes on the same graph but with multiple scales Design

lb o: ibiijU K-Cn ‘A ’.b VF'j rt-nci ot data u t>\'aa aa

posnt’e

(c) Commeri on the ecnparative effcctireness of the two gnphs in

eonpanrix the rebtire varutiona m the sales of the Iwo companies

(cf) IVhat did you find out about the history of the sales of the two

eo'^pisies’

{<) ow do >ou «p<rei to prow isster o^er the not 5 yearsT On
whit fvjdenee do you ba^ your deorwi^
4 u If j-ou jik j-our hortM< to pour you oiil\ ' half a gla«3 of wine,'

do yoi erpeet the wre« to b? half way up the nde or do >tw expect ati

arotint cf wine eiynl to half the cubic eouteat of the glass’ How css
she tell which you eipecl*

4 »7 One of the arti of de^sning pMbt;es for products » to create
the lUunoa of a greater quantiti of product than is actually in the pseksge
Ow delate sped is to direct the perona attention to one scale of measure
by which the ijuiatitt is o>ff»tated and away from the true reale

fTfiirlt *ifn* <k.t C-J .1 t .i, t .. t
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or tho'e near the borderline’ Why’ How ciouid you tell which were

which’

4 19 Assume that your total affection for v^tables can be represented

by 1
' Make up a scale rumung from 0 to 1 and mark off on the scale

the degree of affection jou have for various kinds of vegetables Do there

degrees of affection ^ary from time to time or from situation to situation’

Explain

4 20 Worker A has been averaging only 20 assembhes an hour in a

radio factory compared with an average of 30 aKerabhes for the whole

group How good a worker is A’

4 21 The company economist forecast the comi»ny sales for a given

year as 577 500 000 The actual sales turned out to be $83634916 How
good a forecast was this’

4 22 A student receiied a grade of 68 m his math class with the

class averaging 79 He received a grade of 72 in his English class with the

class averaging 77 In what subject did he do the better job’ Explam

How much better’

4 23 The abihty to make decisions or decisiveness is generally con

Eidered to be one of the desirable quabties of a buaness executive ^lais

how you would measure the degree to which a person has this quahty or

attnbute Indicate the basic unit of measure the origin (if any) and

whether jour measure js basKahy a ranking or rating device rather than

one which results in numbers which can be meaningfully compared

4 24 Perform the indicated calculations and round the result to the

appropnate number of significant d^ts

(a) Addition

A 348049 B 478 000 C 7310846

350891 36387 90000

614 357 781005 86091

360 1 18429063 2437 8429

(6) Subtraction

A 46182 B 738 126 C 1136284

-12 07396 -181 -24375 19

(c) Mulbphcation

C 4 3894A 1439 563 B 175 000

X3 41 X375 X6

(d) Division

A 283)94873 B 6 937)0068 C 8)14 92715

(e) Square root

A 274183^ B 497« C 004283«

(f)
Logarithm

C 4839260A 347 B 124

(ff)
Antiloganthm

C -18174A 28 B 2079367

(k) Reciprocal

A 1 B 1 C 1

347
^ 006

•»
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4 25 It hj beta fors<»bil indiuowJ To estibbib di'scj ol rtydenis

la it? wb»l3 iffcrdag to c;« V^T»at is tie lope behmd tha !>'Jlcn

d fo'-'W *0 a 5)-stK2 that «?ubl^w cla»« actording to abilii) lo learn’

4 26 A graeraton or io SRO many puhLc school jjttma in the United

S'vitw sp'it the prades into two part, with & student moving through ^

grade m two **ep? rather than oce aa is more common todaj Thus a

>oj‘g''e* progressed throvsh 16 itep? on hu wa> through granmur school

ir*’«d of 5 s*f,nj WTut are tH eomp3«t»f nenw of 16 rs 8 stops?

U’bt would >t)u ihmk cf a two-*tep sj'stcm, with a student spending 4

)farstnwchstep’

4 2? If )su were dwfnng an ideal giading sjslcm how manj catN

gnn*3 wod(l 30 je«tjb'uh* Foreumple would >ou be satisfied vnth a twew

caiegorj sj-^'en with grade* of pass and fail/ or would you like a

ty«tfnwuh M), lOOtatfgones’ Explain

4 2t llTut are the eomparatue ments of a wage and salary plan based

cn oaI> a \e^ liniicd number of worker categories and one on as

man) eategones as there ire workers? Or, m other words, should all

workersoathe sine jobgrtpaidthesameamount?

4 29 Hentj Ford made millions of dollars selling automobiles while

efenng only & (ew bod^ *tjl« and no choce of color horsepower, trans-

ni*$fioa «te Todavs cunufactuiers offer many bod) itjlM. many colors

and color coffibiaatioas msnj horsepower options etc They don’t offer

c'crybody a diferenl ear but the) certainly come considerably tloscr than

Ford ererdid

ItTist are the busne^s aspeeti of trying to cc>^er the range of a nurket
With jwt a few models and trjmg to cover it with many models?

IVhj dent toothpaste minufseturera each offer *c\eral different models,
itfeiftsi) with respect to daw?
430 lUv do high priced renauranls generally offer a more varied fare

than low pneed restaurants?



chapter ^
Elements of probability

calculations

We defined probabiht^ as “the rdative irequency with

which we expect an event to occur over the tndefimte long rm "

We use the notion of probabibty to help us deal with events which,

as far as we know, occur on no predictable tune schedule and be-

cause of no known and controllable causes We emphasize again

that probabilities are based on bypothcscs which we hold We aaght

base these hypotlieses on ail kinds of evidence, such as certain physi-

cal characteristics of the event in question, our past experience with

the event, or even hunch and intuition Each person is his own boss

m selecting hypotheses The only operating rule is that a person

must accept both the rewards and the losses associated with his

hypotheses

5.1 The Fundamental Assumption of Randomness

All mathematical manipulatione of probabilities are based on the

assumption that the events occur m a random manner, a random

manner is such that as far as we know there is no relation between

the characteristic being sampled and the way in which the sample

is selected After we have established the randomness of the occur-

rence of the events, and we do this quicker the less knowledge we

have, the only other element needed for calculating probabilities is

a hypothesis about the relative frequency of the items in the uni-

verse The relohve quality of the final results will depend on how

much knowledge the person has compared to other people When-

ever something is treated as though it were random, it is treated on

a base of ignorance If knowledge were not costly to acquire and

if knowledge were always possible to acquire, the ideal practice

would be to never assume anythmg as random

123
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Ojr di>ra<-ion of thf conreptof niidoBnea in Cfispfor 2 poio

W

cut t^st s lopcal OT‘«iucncC of otir dcfinitioti of raodomntsj h

“tsth t\{st to tte uoiter-t has the wme chalice of occumne ’’ The

notion of equal chance la shat foraia the basis of the nHthematical

models used I” prohabililj calculations There is nothing magical

or mjstcriou! about ihis’model It is Eomelhing that men hate

created and ohich seems to sorb It is not a proper question to ask

itbciher this model 15 nght or irrong lo a git cn problem In a een'c,

It IS alsajs strong In another sense, it is always right The only

lair question to ask is ahelher the model storks belter than any

other solution method currently atnilable We ate quite sure it

does not oork as srell as some methods we hope to hate available

lOyesrs from nose

5.2 The Notion of Equol Chance or Equol Probabilily

A usinersc, rcgardlc's of ita general characlor,' is conceited of as

eoPMsting ol a uuiaber of tndundaol members, each member separate

and dl'tinct from each other member and separately identiSnble.

An ordinary plaving card uraterso, tor example has 52 separate and

distmet members A coin utiitetsc has Wo separate and distinct

laeiiiber! It is events such as these that stc are thinking about

a hen ne think ol equal chance Thus, fundamentally, the proba-

hilitv ol any specific etent occnnng is 1/A', with N being the total

number of all these inditidual ctenta in the universe Any proba-

liiiity that we work with that is greater thnn 1/A', such as 15/A', is

a dfnird probshility That is, it is dented from the basic proba-

fcililics of 1/A' We can gel probabilities greater than l/iV only

liceau'c we hate decided to ignore certain differences between indi-

tidual meats and group some cteota together as though they were

(he same For example, we might ipiotc the diflctvnccs in suits be-

tween cards in a deck and say that the probability of an 8 is 4/52

Or, If we are tossing 3 different coins at the same time, tie might

Ignore the individual character of Ihc coins and say that the proha-

hihtv of getting two beads and one tail is 3/8, thus assuming that

we do not cm which coins have heads ami which coin has the tails

lint the prohabilily of any giicn coroliinalion of two heads and one

tail would he only 1/S

Since 10 most prolilcms it is absolutely (w'cntnl that »e do com-

‘Ttievsaeiolimdiofuno erses were diwiused la Chapter J
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bme some items and treat them as all of the same kind, for the samff

reasons that the automobile manufacturer does treat some of his

customers as though they all had the same preferences, most practi

cal problems m probability ealculations consist of formmg the

proper combmations of items Thig is toe problem that makes proba-

bility calculation so fascinating and difScu]^ too The rest of tbs

chapter is concerned rvith toe mam outlmes of the available tech-

niques for attacking the problem of calculating the probability of

combmations or groups of items

5.3 Simple Events vs. Complex Events

The King of Hearts is a simple event If we have a set of five

caids, such as a set containing the King of Hearts, toe Eight of

Spades, the Three of Diamonds, the Jack of Spades, and the Nine

of Hearts, we have a complex event In general, we can say that a

simple event is one that contains only one of the individual items

la tfie"bas2C~U2nyerse A complex event is omTthat coaisine fwi's

iJiM one 61 the individual elemeni< m muvgrpe"' Tfip indi-

vidual items m a complex event do not have to be different m the

terms of the problem For example if we toss three corns at the

same time and get three heads, we have a complex event because we

have three heads The fact that they arc all heads is irrelevant to

this defimiion

Most events we deal wito in practice are complex This is true

even m games that we create Practically all card games involve

hands of more than one card Most dice games consist of tossmg

more than one die In more practical affaire we find that a simple

event provides so little information on which to base a decision that

we automatically find ourselves dealing with complex events as a

matter of choice The baseball manager likes to see the rookie bat

more than once before making a decision about him The teacher

likes to ask toe student more toan one quesfaon before determining

the grade The automatic screw machme operator wants to test

more than one bolt before he decides to stop the machme for adjust-

ment

The best way to think about toe probabilities of complex events

18 to first think about the universe oj complex events that is gener-

ated by the universe of simple evenis This idea is best communi-

cated by an illustration Let us use the rather simple case of com

tossmg A simple event is the toss of one com The universe of
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equal probabihUw eoDtaios one bcJid {ID And one tail (T) U nc

Ufts two coins or one com twice, we ha\c the complex e^cnt of the

rwulm of ti^o coin tossca This iim\er5e of equal probabilities

coatairs four eunti, ////, UT, TU, and TT The probabilitj,

tlscrtfore, of an> one of these four complex c\ cuts is 1/4 Table 6

1

hslfl the inncrscs of equal probabilities for one com, two coins,

three coins four coma and fi\e corns

The most notable feature of complex e\cnta quite e\ident from

llie table u that the more complex the event the more events in the

uniurse In fact the number of events mtreases much (aster than

the number of Hems in the event For example five times as manj

coins rc'ulw in 10 times as man> events It is cas) to see why a

card game with naan) cards in a hand has many more possibilities

than a game with onlj a few cards m a hand In this sense, the

game of bndge is much more complex than the game of poker An

obvious and important con*equencc of Uus phenomenon namely an

ircrcsjc m the number of po«sibilitics as the complexity of the event

incrcs*«, « that a compki aent u alwoyi less likely to occur than

a nmpic ewnf from the «arne basic unnerve

Agsm we remind ourselves that, bec4u«e of the equal probability

assumption the probabilit} of any cieni is lAV with N being the

number of cvenis in the universe The onl) wb> we can get proba*

bihtics greater than I/jN is to deiennvnc the probability of combina-

tions of events For example m the ca^e of to'smg four coins, we

find the probabiht) of UIIHT to be 1/A' or 1/16 but the proba-

bilitj of three heads and one tail with no concern (or which corns

are heads and which one tails » 4/16 because there are four events

with throe heads and one tail

Since the probabilitj of a single event is always 1/A', the deter-

mination of such a probability depends only on the determination

ofiV Tlic first step m detcrroi ng A is to find Ha value for simple

cvcnla This involves the d'’ jminalion of the number of different

disUngui«h8ble rclucj of Uie thing being measured For example

in com toi'ing there are onh two po*sible results (we toss the coin

again if it lands on end) \\ e might arbitrarily a«»ign a value of 1

to & hc'id and a value of 0 to a tail In card drawing there are 52

po»'ibIe results if the suit is cmsidcred important If the suit is

not imiJortant, there arc only 13 possible results

IITien we leave game devices and turn to phenomena of the real

world the problem of dctenmning the value of A for simple events

b''coraes considerably more difficult in one sen*e and considerably

ra*icr m another For example, suppose we ask ourselves the quea-
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TABLE S I

Universes of Equolly Probable Events for Tosses of Varying Numbers of Coins

I Com 2 Coins SOoms 4 Coins 5 Coins

H m HUB BHHB HBHBH
T HT BBT BBBT HHHHT

TB BTB BBTH HBBTH
2 Events TT BTT BTBB RBWB

TBH TBHH BTBBH
4 Events THT HBTf THBHH

TTB BTHT BHHTT
TTT HTTH HHTHT

TTBB HBTTH
8 Events THHT HTBHT

THTH BTHTH
BTT7 BTTBH
THTT thbbt
TTKT THHTB
rm THTHH
TTTT TTBBB

ttthb
16 Events TTHTB

TTHBT
man
Tamr
rnna
aanf
amn
HITBT
HTTta
nna
tttht
TTHfT
THTfT
HTTTT
jtjijTjry

32 Events
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T CT ho» tta) diSctnt htighta mijhl a pfW be! ’ c thinl

o! thjl fit perflii Bight be «”y et ‘t e*

bt ''j 1/ we we’e able to meaeu’e the pertons met height In

(act WT h ejjct Bci’urmnt we wnjU find that there ate no two

p-op'e in the world 0! the raine height It this i" atarUing, keep in

rrjd that a peraoa Bight eonecnahh be 5 7JS002741174S329406 feet

tall a height which i< a little different iroia 573S092741174S329I07

'ee‘ Thos we eojid eonaider that A is equal to mfinitt and that

t>.c pwbabili \ that a perwm » anj giaen height is 1/k, which la

p-acticalK 0 11 we do not tnea'ure the«c eienta cjsclly, but round

the inea''jreTient to a certain number of signiEeant digits we dis-

coier that come of the eienta do hue the tome toluet by our meoa-

urenerlr I! we treat ihoe latter lalues as our basic eienta, we

row di'COif that the basic eienta ate nol equally proboble becau'e

!<'"„e ot them occur more often than others Thus we are forced to

rtcogniie that War inability to measure exactly nutomaticaUi throws

ome iirplc ei’cnts into the same class and forces us to treat them

as IhoJgh thee w ere identical

In rio.1 practical problems we really do not bale any occasion to

deal with indindual simple eienta We deal with combinations or

g-oups ot such cicnt." with the laiious eombinalions or groups hal-

ing dittc-cn probabilities We could now moic to a discussion ol

how to de'srmme these lanous group probabilities, but we do not

mole to such p-actical problems now howeicr because experience

suggests that the oiersimplifications ot games of chance make it

pos«ib!e to understand some ba'ic principles of probability cilcula

tion better than if thei were discussed to tlie context of a practical

problem In fact many of the techniques eientually used m prac-

tical problems originated from Uimking s jiubted by the proba-

bility problems of games of chance In addition many people find

games of ehance mterestmg m their own right.

l' After we haie determired the number of equally probable simple

licnts we haie to deal wuth we are in a position to denie thenum
lier of equally probable complex eienta tliat can be generated by

the-c simple events One way to determine the total number 13 to

I«f all the possible complex eienta This can be iciy time consum
mg It can also be lery frustrating as we try to aioid Icaiing out
am ei eats or listing any ci rat more than once Tlie aieragc person
does not find il easi to li*t the eienta that might happen when we
toss onli fire coins let alone 10 com', particularly it we do nol
know how mam ciems there should be in the list A simpler way to
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find out the total number of events is to me a logical procedure

Let us work out a logical procedure for determining the number of

complex events for a few com and card problems

' One logical approach is to draw a free of all the possibilities

Figure 5 1 shows the tree for toe possible results for the tossing of

four coins This is rather easy to do correctiy because all we do is

have any given branch generate too branches, and each of these

generates two branches, etc
,
until we have the desired number of

stages Each event can be determined by tracrag all possible paths

iwm the trunk to toe tipmost branch For example, working along the

left branches, we have the events HHUH, HHHT, HHTH, HHTT
A simple count reveals that toere are 16 tips and hence 16 of the

four-corn evcnt-s If we were interested m fi'ie coins, ne would

split each of the four-coin branches into two branches And so

forth Of course, draw mg trees soon gets tedious, and is, therefore,

a rather impractical method Nevertheless, the technique of draw-

ing trees is very valuable m helping us think through a problem,

even if ail we do is to draw certain parts of the tree to get some

jjlea of the dimensions of toe problem

Reflection about the problem just given reveals the obvious fact

that we can calculate the number of complex events for a given

stage by multiplying the number of possibilities at the preceding

stage by 2 The possibilities for successive stages would be one

com—2, two coins—2 X 2, or 4, three corns—4 X 2, or 8, four coins

(4lh com)

(3rcl coin)

(2nd com)

(1st com)
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X 2. or 1C, tic Another way to conceive of this calculation is

lo number of basic po*«ic3 (2) to the power equal to

the number of coins For example, the number of possibilities for

four coins nould be 2'. or 2 X 2 X 2 x2, or 16 The number of

po'stbililifs for fight com' would be 2', or 256

Kow let us lew!, at the problem of playing cards We again start

with l*e device of the tree but we are not going to draw Uie whole

tree Iwcau^e thi« tree starts out with 52 branches from Ik mam

trunk 51 branches from each of these, etc We simulate the missing

branches bj putting a sign on the end of a branch to indicate how

nany limnchr^ arc represented b> that one (See Fig 5 2

)

The moot notable difference between the coin problem and the

card problem, other than the fact that there arc many more possi-

bihlits to count with the cards, is that a given card can occur only

cncf m the complex event whereaa a given value of the coin, such as

a head can occur as many times as items in the complex event.

Larh branch of the com tree kept generating tuo new branches, and

this process of generation could go on indefinitely But each branch

of ilie card tree generates one /etrer branches than iU parent

Eventually the card tr« reaches the limit to its growth, namely

after 52 generations The com tree has no limit The cau.*e of this

difference between coins and cards is the difference m the character

of tlip universes and/or the difference in the way the vanous parts

of liio complex event are chosen In an earlier chapter wo made a

divimclion between finite and infimie universes In that sense

the com universe is infinite because a single com can be tossed

rrpcatftllv The card universe is finite We cannot continue

indefinitely lo draw cards out of a dock unless we replace them as

wo go The real eignificance of the distinction between finite and

mfinite universes is now evident, if it was not earlier That is, the

probabilities of the vanous parts of a complex event are xndependent

of each other if ik univ orsc is wAmte, but they are not independent

of each other if the universe is fimte For example, the probability

of a head on the oss of a fifth com, or on the fifth loss of a single

com, IS just the Bvme no matter wliat the result is on the toss of the

third com But the probability of the Ace of Spades on tlie filth

card definitely depends on what was on tlic first card, the secend

card, etc, provided of course we know what was on the first card,

etc tt'hat actually happens when we draw sarapira from a finite

universe is tliat the removal of the eomple chan^a the universe and
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legend C Oubs

D OiaitiorKis

B Hearts

S Spades

Fig 5 2 Tree of possibififaes for the drawing of 5 carda from an ordinary deck

(Note The number in the “foliage" rcfew to the number of ' branches ' that

might have been chosen at that particular drawing in addition to the one that

sss chosen Tiie vertical branches represent those chosen )

aJi the probab;Jjtie5 of the items staU in it, and at the same feme, of

course, reduces to 0 the probability that a drawn item will be drawn

again This is why a poker hand with two Aces of Spades is con-

sidered quite remarkable and suspicious

Because we realize what a tedious job we would have if we tried
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to (in® the tr» ol all the possibilities from draamg fise cards from

a ('eel il u fortunate that tic can calculate hon many there arc

ritier ‘imply "e u‘c the "sroe line ol reisoning He did tilth the

eo ns t\e thmk ol each stage uhich He might call the parent, as

arothc- ‘tage tihich »e niieht call the childrtn Ol

cour'i jenerdaj s children become tomorrow s parents The prob-

Irni 1 ! to calculate the number ol etenU in nnj giten generation

tte talvc ll c p’ohlem generation bt generation The first generation

of ca-dt might be anr one of the 52 cards in the docl Each one

of thcee poxibilities might generate an} one of 51 possibilities e

d'op from 52 to 51 because in a 'cnsc a parent cannot reproduce

Its onn likrne‘< Tliua the second generation contains 52 X 51 or

2C.52 iios ihli eienu Then each possibility in the second generation

can beget onh 50 possibilities for the third generation Thus the

thir 1 generation contains 2G52 X 50 or 132 600 II is apparent that

thi number o' possibilities increases at a fairly rapid pace It is

ohu lus «hy It IS unlikely that nc would eter sec a duplicate draw-

ing of n ranis from a deck considering that there are 52 X 51 X 50

X « y IS / 47 X lb X 15x44 X MX ^X II X lOdillcrmtpos-

fibilitic'loragnendraning

Inti lentally although to ante and calculate 52 x 51 X X 40

IS far less tedious than to construct the whole tree or to list all the

po ibilities It !• still too tedious for most mathematicians, who hate

tic mil resting fault of being willing to go to great lengths to avoid

work (\t fir*' some ol the things done 'eera strange and compli

fated and not worthwhile but after the initial shyness it is apparent

that they result m a aubstantinl economy ol eHort
) Many prob-

hms in prohahilits require multiplication ol sequences like 52 X 51,

tie To ceonomiic in w riling the symbol
i (exclamation point) has

been cl o'cn to mean multiply consecutis cly by the next lower num-
ber srd then the next lower number until I is reached ' For ex

ample 5 'means to determine the product, of 5 4 3 2 1 52' means

to dctcmiioc tht product ol 52, 3 2 1 521/391 means to

determine the product of 52, 5* e e and then diaide the result by

ll c product of 39, 35 3,2 1 Note that this would give exactly

the same answer os 52 X 51 X X 40 Instead of writing 52 X
51 X 50 X 49 X 45 X 47 X 46 X 45 X 44 X 43 X 42 X 41 X 40, we
write 52'/39'

To sue tie actual tedium of calculating say, 391, we can u«c the

table giscn in Appendix C The name applied to I is factorial, and
we say 391 as 39 factorial
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5.4 Systems for Calculating the Probabilities of

Combinations of Items

As alrsady indicated, most problems arc more concerned with

groups or combinations of events than with single events of equal

probability Now we must not only determine the number of all

the equally bkely events (N), but we must also determine the num-

ber of such events that fall into the given group We call this num-

ber C, and the probability of an event being in such a group we will

ca!lG/N

The Technique of listing ond Counting

The most direct way to determine the probability that one item

out of a given group of items will occur is to list all the events,

count all of them that fall into a given group, and divide the number

in the group (C) by the total number (N) For example, if we look

at the list of events for the tossing of five coins as shown m Table

5 1, we are able to count five cases of four heads and one tail If

we form all the groups which would result if we ignore which par-

ticular com IS heads or tails, we would get the probabilities as shown

in Table 52 We find that the 32 equally probable events can be

combined into six groups As wc would logically expect, the proba-

bility of an item being in a given group is the sum of the probabili-

TABIE S 2

PfobobiJrlies cf fieiulls of Tos$es of 5 Coins—Order of Coins Ignored

Number of Probabihty of

Bventem Iten Being m
Group Group (0 Group (C/N)

5ff, or ] 1/32 or 03125

5 5/32“ 15625

3H, 2T ID 10/32
“

31250

2H, ST 10 10/32
‘

31250

IH, 4T 5 5/32" 15625

OH, 5T 1 1/32" 03125

Totals 32

w
32/32 100000
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uts ol eicb of l!ie items m the group In general, the probabihlj

of s group Item is «iual to or greater than the probability of a single

ittni

aL«o note that now lca\e the equa!!) probable c\cnta be-

hind and are dealing wiih different probabilities for the various

groups But, do not forget that these unequal probabilities are still

ba^cd on the a*suraption of equal probabilities for the mdiudual

e\cnis All wc ha\e done is take 32 equally probable e\enta and

combine them into six groups or combinations It so happens that

the probabilities are diflerent for fiome of the groups because they

encompassed difftrcnt numbers of items Although this is what

almost aha>8 happens in practice it docs not have to be that way

For example if we take the 52 cards m a deck and form the 13

groups which result if wc ignore the suit, we find that each of the

group* IS equall) probable although each group probability (1/13)

IS greater than the item probabilities (1/52)

The Binomial Thoorom System of Counting

The 8\*tcm of listing and counting has obvious limitations For-

tunately, we have other s> stems of counting and of calculating prob-

abilities of combinations o( items The binomial theorem, probablj

familiar jn at least a limited way, is one such sjslem

The simplest exprc«sion of the binomial theorem is illustrated by

(a + 6)’ = a* + 2a6 + 6’ The binomial may be raised to any

power, of course For example (o + 6)^ = c® 4- 5o‘b -f 10a*6* +
lOa^b* 4. Sob* + b* It IS possible to dcnvc each term of the ex-

pansion from the preceding term This system is To get the coelfi-

cifnt of a term multiply the coefficient of the preceding term by the

exponent of a and divide this product by / more than the exponent

of 6 Then decrease the exponent of o b\ 1 and increase the exponent

of b by 1

To get the third term m the a^ovc expansion from the second

term, we multiply the coefTicieui 5 by the exponent of a 4 giving a

product of 20 We divide this by 2 which is 1 more than the coef-

ficient of b The rc'ult is 10, the coefficient of the third term We
tlicn reduce the coefficient of a from 4 u> 3 and rai*e the coefficient

of b from Ho 2

The system just given for expanding the binomial is reasonably

efficient if we need all the terms in the expansion If wc wish only

certain fpceific term* however we prefer a system that enables us

to derive a term without needinj; a reference to a preceding term or

to any other term We illustrate Ihi^- system by using the binomial
cTnnn«inTi In enlrtilate the probabilities of the various outcomes of



aEMENTS OF PROBABILITY CALCULATIONS 135

the tossing of five corns The basic binomial is
( + 5T)^ The

values of the vanous terras can be calculated ag shown m Table 5 3

Let us first look at column 2 because this shows the relationship

to the system we have already used of deriving a term from the

preceding term The first term has a coefficient of 1 with the 5H
raised to the 5th power and the 5J* to the 0th power (Any expres-

sion raised to the 0th power = 1 ) The second terra has a coefficient

of 5/1, which 18 the exponent of 5fl m the first term divided by one

more than the exponent of 5T in the first term The exponent of

bH 18 then reduced from 5 to 4 and that of the 5T is raised from

0 to 1

We now derive the third term as shown m column 2 We get the

coefficient of the third term by multiplying the coefficient of the

second terra, which is (5/1 ), by the exponent of 5H m the second

terra, which is 4, and then by dividing by one more than the coeffi-

cient of 5T in the second term, which is 2 We then lower the ex-

ponent of 5H by 1 and raise that of bT by 1

All other terms are similarly derived Note that we have enclosed

the two parts of the coefficient in parentheses m each case so that

it 18 clear what part is the coefficient of the preceding term and what

part is the new factor

Columns 3 and 4 are precisely the same as column 2 except for the

shorthand introduced for f^e expression of the coefficients Column

3 uses the factorial notation referred to on page 132 We should

gf the Binomial Exparuion to Cakviote the Probabilities of the

Various Outcomes on the Tossing of 5 Coins

V&lUB

Essie Tem SborUwod 1 Sbortiund 2 of Term

(2) (3) (4) (5)

(i)(is)‘(sn' - JiCsm’itD’ -
(gj

(Emh-ST)’ - 0312Sfi>r'’

= lE625B<r‘

-
(

(f|)(|)iiW«n- - -
(

- iseaEfl'T*

° 03125£f®r^

The Use

Tem
No
(l>



IHE SIMISTICAL MHHOD IN lUSINtSS

U tU^ to ralt lit traf<l\Uon from the coeSoents of column

2 to tJ 0*0 of columi 3 bj ipplyms out knowledge «bout facloml

Bo’ation

Xow ftiniiro the cocHtcients of the Minous terms aa shoo in

(^umn 3 »n<l note that tho possess & ser> simple sj'Stem The

rummtor « alwa\u 51 Bis corresponds to the number oj cams m our

pTol)’em If «e were to toRs 20 coins the numemtor would be 20*

The denoTimator alR-ais consists of the fw factorial numbers that

correspond to the exponents attached to the parenthetical terms con-

tauiins the // and the T If we were to toss 20 coins, and h-c were

interested in the rrobabilit' of petting 7 heads and 13 tails, we would

20'

lis\-c to ci'aluate the term ( 5//)’(5T)'*

The notation shown m column 4 is eimply a further economiiing

on the sliorlband of column 3 Since the two numbers m the de-

nominator alwa)^ add to the number in the numerator, there is no

point w ^Tiurg both of these numbers IS understood to

5’ .
S'

, ,
51

(
5

'

mean—• Since u the equimlcnt of —- I

3!2' St” 213' V3
IS the equivalent of

Sfflilarb.^^^ulhequivalentof^^^ Terms such as a

known as tjfurr>iai ctxfinmU

Column 5 of Tab’e 5 3 shows the results of the indicated arithmetic

Be decimal fractions gii e the probabilit) of getting the particular

fOTjhaiatJfla of heads and tails proctdtd the bssx prohshihfj’ of each

is 5

Dinmuil Tables Although the use of ihe binomial c-^pansion is

certainly an unproiemeat oier the listing and counting system, it is

oInioM that the catculauons are euU quite tedious. For example if

we torawf 50 coins and inshed the probability of getting 37 heads and

50^
13 laib, nn «ouId hue to nulralc the term (5//)”(6Tl'’,

IV , , , .
37113!

which is a fomiidahfe (a^ Fortunately, tables are available on bi*

nomial probabilities' Sample pages from such tables are shown in

» Toilet 0} rw pinonw/ /’roiwJTiiry i)iilf*u£iOT, hationaJ Bureau of Stand

^ Arrhfd Milhfraaljrt Bmes S UB CovcrorntBl PnnUcg OfSre 1950
Tl« Ttjtuse \U binomial probaWrti« tw basic probabihUM from S}\

to JO ui ivpa d £} aad for aampfr attt frotn 2 to 49

KoDif IltrT) C,«>.;q9 fijnOTBiaf TafcfM John ftiley and Sons New \ofk
1952 Thu rolunjc p,-w tuwmtif MaWiUw for bwic prcbibilities from
ill to JO ifl itcps of J)l and for ttmple «*« of iO to 100 w itepa of 5
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Appendix D For example, lie table tells us that there is a probability

of about 0071 of getting 39 heads on the toss of 100 coins

The tables also give the cumulafzve probabilities, that is, the

probabilities of getting a result, say, no lai^er than the one specified

For example, the probability of getting 39 or fewer heads on the

toss of 100 coins is about 0176 This is the sum of the probabilities

of getting exactly no heads, exactly one bead, exactly two heads, etc

Since binomial probabililaes have certam symmetrical properties,

the tables provide only the minimum amount of mforraation This

economizes on the size of the book of tables, but it does require a

little adaptation on the part of the user An example of the sym

metry is evident if we compare the distribution of ( 4^ -f 6F)® with

that of ( 6X -f-
47)® These are muTor images of each other as

shown m Table 5 4 and Fig 5 3 The bwomial tables show only the

TABLE 5 4

Comparing the (4X+ 6Y76,nomia(wrthlfi6(6X+ 4Y7 Binomial

A Gmn P® = 4, n *» 5

P(X a X), P(X£X),

or or or

j y P(y) Ptr^y) p(7 2 y)

0 5 0778 10000 0778

1 4 2592 9222 3370

2 3 3456 6630 6826

3 2 2304 3174 9130

4 1 0768 0870 9898

5 0 0102 0102 lOOOO

B Given PCX) = 6,n = 5

P(X) P(X ^ X), F(X 5 X),

or or or

X r F(7) P(7S7) PCVST)

0 5 0102 10000 0102

1 4 0768 9898 0870

2 3 2304 9130 3174

3 2 3455 6826 6630

4 1 2592 3370 9222

5 0 0778 07T8 10000

sfOTE P(X) means probability ofX, FIX g X) means prob-

ability ofX equal to orgreater than that specifiea, etc
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(£X* <y)* tksSTis.'tcr

1

X
0 5

1
2 3

3 J

< 1
1

^ j: J0 0 0 J0 40 40 ,<0

PreSaiaUj PtttaW^

Tt- 54 C«=rw2|! ( 4V -v 61 )* buoaoJ the (i\ + <1 )* buomiil

( 4 \ j. 61 )» di<*nbytJon U our problem requires the ( 6A’ + 41')*

djinbj'joi we niu«t rterehsnge Y and >

SiEiU’* ijxinjclrT must be u<od if we use the tables for the tumu-

Isti'c probabilities For example, the National Bureau of Standards

Tab'es that the probabiliU of ftro or mere .V’e is &630 if the

bi* c probability an A is 4 and if a sample of 5 is UVen Sup*

pose we wu’^ed the probabili’) of one or fever X's The NBS tables

do not guc th« rorJl direct!), but it is sei} ea«j to den\e bj sub*

tractrg the probability of htro cr rwre X's which is 6630, from 1,

thus gr*tng a probebility of one or fever X's of ^70 If the basic

probabili*) had been 6 m«tead of 4, a little more juggling would be

required Tuv or nore A*’8 is the same as one or /eirer F’s Hence,

if we have a basic A probability of 6 and we wi«h the probability of

two or more Vs, we find the probabilitj of one or fewer F's with a

bis c probabiht) of 6 and subtract this from 1 But, the probability

of one or fewer Ts with a basic probability of 6 la the same as the

probabihlj of four or more A s wiuh a basic probabiht) of 4 Thus

we aTive at the probabilit) of two or more X's with a ba*je proba*

bili’y of 6 by subtracting from 1 the probability of four or more

A'

t

with a basic probabiht) of 4 This rounds confusing to keep
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straight, but it becomes easier after working with tbp tahip? n hif

(The metenal .n Table 54 .ay be ofZ mITZZX,
these steps of adaptation

)

Model Frequency DistribuHons as Systems of Approximofe Counting

Tables of^the binomial distribution have beep available only in

recent years Before then a person had ffl do his own calculating

or use approximation methods We find, therefore that statistical

theory and statistical practice has been largely developed m terms

of approxmuite methods of calculating probafaihties Such approxi-

mate methods would have likely been worked out even if bmoimal

tables had been available over the last half ceatuiy or so because of

certain limitations in the practacality of binomial tables Since each

combination of basic probability (usually called p) and sample size

(usually called N) results in a different distnbution binomial tables

rather quickly become unwieldy m size if they are to cover a reason-

able number of the p,i\^ combmatJons that are hkely to occur in

practice For example, the NBS tables cover 387 oversize pages

despite the fact that at least half the combinations are left to be

worked out by the user from the matenal given m the tables In

addition, most practical problems are not perceived clearly enough

to justify the calculation of probabilities to several digits of ac-

curacy Most of the time we need only a rattier moderate accuracy

of estimation

For these and other reasons, we find that approximation methods

have and will continue to dominate the calculation of probabilities

The most renowned approximation curve is that called the normal

It has also been called the Gaussian curve and the normal law oj

error Its economical use of space can be immediately appreciated by

reference to Appendix I, a table of the normal curve that is sufficiently

accurate for most practical problems we are bkely to encounter

The Normoi Curve as an Approximaffen to the Binomial Figure

54 shows some pictures of the normal curve The differences in

their apparent shapes are caused by the use of different vertical and

horizontal scales The most commonly used standard shape is

shown as B Here it has the appearance of a bell, and the normal

curve IS often referred to as a bell-shaped curve It is important,

however, to remember that the normal curve has no actual standard

shape In plotting a distribution to see if it looks normal, care

should be taken in choice of scales so that we do not mislead our-

selves The best way to check fte nonnafifiy of a distribution is to
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fit a normal cune lo the d><tnbulion and evaluate the accuracj' oi

the fit or to plot the distribution on probability paper.

Table 5^ and Fig 5.5 compare the binomial and normal curvf

prohabilitics-for the lo»«jng of 2, 5, 10, 15, and 20 coin< (We discuss

the mctlod of eilimaling the norma! nir\e probabilities Ehortly.)



TABLE 5 5

Binomiol and Normo! Curve Probobilihes for Tossing of 2, 5, 10 15 and
20 Cams

2 Co™
10 Cons

Proportion Bmoimal Nonna!

of Expecta- Curve

Heads tion Expectation

0 250 208

5 500 564

10 250 208

1000 980

5 Corns

Proportion Bmonual Normal

of Expecta- Curve

Heads tion Expectation

0 031 029

2 156 145

4 312 323

6 312 323

8 166 145

10 031 029

90S 994

15 Corns

Proportion Bmomiai Normal

ol Expects- Curve

Heads tm ExpeciatioB

0 000 000

0667 000 001

1333 003 004

2000 014 014

2667 042 040

3333 092 090

4000 153 153

4667 196 198

5333 196 198

6000 153 153

6667 092 099

7333 042 040

£000 014 014

mi 003 004

9333 000 001

10000 000 000

1000 1000

Proport-jon

of

Heads

Binomial

Expecta*

tion

Normal

Curve

Expectation

0 001 002
1 010 010
2 044 042

3 117 114

4 205 207

5 246 252
6 205 207

7 117 114

8 044 042

9 010 010

10 001 002

1000 1002

20 Coins

Proportion Binomial

of Expecta

Heads tion

Normal

Curve

Expectation

0 000 000

05 000 000

10 000 000

16 001 001

20 005 005

25 015 015

30 037 036

35 074 073

40 120 120

45 160 161

50 176 178

55 160 161

60 120 120

65 074 073

70 037 036

75 015 015

80 005 005

£5 001 001

90 000 000

95 000 000

100 000 000

1000 1000
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It u quit* evident tlint the nonn&l cune probabilities are quite close

estimates for ns few as fire coins The estimates are so close for

W coins that the two distributions appear as one ra Fig 55 The
binomial and normal distributions get closer together as the number
of coins or sue of sample incres'cs In fact, it can be proved

malhemaUeall} that the binomial docs approach the normal distn-

bution as N increases, with the two coinciding exactly when N
reaches infinity

A ICO quick way U) check the applicability of a nomial approxi-
niatiOD to a gi^en distnbubon ta to plot the distribution on normal
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probability scales Paper wjtii such scales is available commercially

Figure 5 6 illustrates the use of such paper for checking the normality

of the distnbutiODs of the coins Table 5 6 shows the cumitlatm

binomial probabilities on which 5 6 is based A normal distnbu-

tion would appear as a straight line on a probability scale Note

that the line is practically strmghtm the case of the 20-com distnbu-

tion

B, Si Cumulative bimraiil JiatabutioM of com tomes te tossae of 2 5,

10 15, and 20 come



TABU 5i

CtmvtaHr* Blnofniel frobobltlt!** forTetilfts af 7, $i 10, 15, ond 20 Coins

(Tlf cunukU\'C probibilitlei are tho« for the occurrence

of no rnore thim the specif^ number of heods

)

(Rounding enow prevent wme cumulative

prebabilili« from iwhing exactly 1.)

2 Coins 10 Coma

Proportion Cumulative

of Heads Prohabilitiea

0 250

.5 750

10 \m

SCotaa

Proportion

(i Heads

Cumulative

Probsbibties

0 .031

2 187

4

8 ill

& 907

10 99S

20Ck»as

Proportion

of Heads

Cumulative

Probabilities

0 w
JDS .000

.10 (00
15 001

20 .(08

2S .CSl

20 058
J5 .132

.40 552
45 .412

.50 388

.55 .7(3

CO iC$
.65 .912

.70 .979

.75 .991

.80 .990

35 1000
.90 lOOO
.95 1.000
IXB 1 IWi

Proportion Cutnulaln’e

of Heads Probabilities

0 .001

1 .Oil

5 .055

3 .172

.4 .377

.5 .623

6 .828

7 .015

3 .089

.9 .909

10 1000

15 Coins

ProMrtion

of needs

Cumula^

Prebabibl

0 .000

0067 000
.1333 .003

2000 .017

2CC7 .059

2333 .151

.4000 .301

.4667 .600

5333 .693

6000 i49
.6667 .941

7333 .983

iOOO .997

i067 1.000

.9333 1000
1 0000 1.000
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Before we get too excited, however, about the accuracy of the

normal curve as an estimator of the binomial let us look at some

cases m which the basic probability, or p equals soraethmg other

than 5 Dice throws offer a oommon example Given equal likeli-

hood for each of the six sides on a die we have a basic probability

of 1/6, or 1667, of getting a 6, say Table 5 7 and Fig 5 7 compare

the binomial and normal curve probabilities for the throwing of 2
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3Diff
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0
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02S

1000
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f
IQOO
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5, 10 IS, and 20 dice Altioi^h we again note that the accuracy of

the normal curve approximation improves with increasing N, just

as it did with the coins, we must admit that Che errors are still rela-

tively large even when N is 20 It would be even worse if p were

smaller than 1667 {or larger than 8333) The convergence of the

bmomia) to the normal as N mcreases is still true, even when p
departs from 5, but the sample size has to be larger for a reasonable

approximation the further the departure of p from 5

Once many people thought the normal distribution described the

true state of nature It even acquired the stature of a law to some

(the normal law of error) Many students have been graded accord-

ing to the normal curve, and are still being so graded There is

nothing inherently wrong with such an application as long as we

are aware of what we are doing Today, we are far less inclined to

new the normal curve as anything more than a fairly versatile ap-

proximation device, with no presumption that the errors we en-

coiuiter are due to the failure of the data to cooform to the law We

are more inclined to view the errors as simply errors m the use of

an approximation device

Co/cu/ofmg Normal Curve ProbabihV/es The mathematical equa-

tion for a normal curve is the somewhat formidable looking

<r\/2ir

The meaning of each of the termsw

Y - the height of the ordinate for some given value of x

N = the total frequency ra the distribution This becomes 1 if we

use relative frequencies, or probabilities

t = the size of the class interval used for tallying frequencies It is

much more convenient if ne use intervals of constant length

<r = (sigma) the staTidorddcmahonofalltlie items in the distribution

This measures the degree of variation among the x’s and is

explained below

T = the familiar constant with a value of 3 14159, n hich is the ratio

of the circumference of a czrele to the diameter

e = another constant w ith a value of 2 71828 It is the base of the

Napenan or natural system of logarithms (Common log-

arithms use the base 10

)

X = & distance along the X-axis measured from the anlhmehc man

as an origin rather then from 0 as an origin
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n Iff fill n lh« values for the two con«Uinta * ncd c and assume

ire are wtii relative fiequencie^ the equaUon sirnphfiw to

—!^27!82S"*''*'*
2mr

S ftce tl'c fflection of i is wbitrai), the onij two unknowiifl in this

an* the anthmttic man of the unn enc of po^'ihililics and

t^e Kardortf rffi-wtien around that mean The arithmetic moan is

\tT) familiar havtnj; been explained probably as early as the fifth

crad*- It 15 commonfj thought of as 'the aiTraec ' There are

oDier averages lioircAcr and vre generally saj mean uben vc are

refcrimg to the arithmetic average or arithmetic mean It is calcu-

lated bv dividing the turn of a set of quantities by the number of

well quanlilios m the set If we u*e the Greek letter I (pronounced

sjpms) ahifh » the equivalent of the English S (the first letter of

Uic uord lum) to t gnifj ‘ take the sum of,” and if wc use V to

represent the values of the vanous quantities and ^ to represent

the number of quantities (he calculation of the anthmetic mean can

be fj-mboliied in ehortliand as follows

Anihmcuc mean
N

11 c can x/mpltfj evert more bj using to represent the mean of A

in the unirerse ^ (pronounced mu) a the Greek letter that corns

iponiis to ihft English n If ise Here referring to the mean m a sample

of A values we would sjmboUtc it aUH m. Insofar as possible we

trj to u*** Greek letters to sjmbolixe values calculated from a universe

and English letters to 8>rabolire those calculated from a lampte

Another common a a) to ajmbolwe the anthmctic mean « as X
(pronounced \ bar) or as f, or X aa the case may be Although X is

Used to fjmboliie the anibmeiie mean of a sample it is al«o

Uvd a hen w c are talking in general terms that w, vv hen the distinction

between sample and univ erse is of no importance The context should

makeil dear in anywieocav
The ttanierd deviatm u probably a new concept Its purpose w

to mcanire the efeyree of tonofion ic a let of numbers (consider the

iKo /offowing groups of numberi » quite obvious from direct

obsenatton that the numbers in Group A have less variation than

tlio^ in Croup B The standard deviation of the Group A number*

It J d that of Group B 1 ! 4 1, almost three times as great
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Group A Group B

1

2

1

4

3 6

4 9

5 13

The method of calculating the standard deviation is very mterest-

iDg Table 58 shows the calculation of the staodard deviation of

the numbers m Group A The steps in the calculation are

1 Calculate the anthmetic mean

2 Measure the deviation of each item from the anthmetio mean

3 Square each of these deviaftone

4 Determine the sum of these squared devtaUoQB

5 Dmde the sum of squared deviations by the number of items

6 Take the square root of Ibe result

The logic of the first two steps is probably self-evident We must

measure the deviations from some ongin, and the roean seems to be

as good as any

The reason for squaring the deviations is probably not so obvious

The deviations are squared ra order to solve the problem that the

deviations themselves will always add to 0 when they are measured

from the arithmetic mean, and this will happen regardless of how

big the deviations are The sum of the deviations cannot be used,

therefore to reflect degree of vanation m all the numbers unless

TASIE 5 8

Calculation oF the Standard Deviotion

X-n, (X-m,)*

X “ (x) = {!)*

(1) (2) (3)

1 -2 4

2 -1 1

3 0 0

4 1 1

5 2 4

15 0 10 =*1414
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ire dwidc to isso'e the plus and mmus eigns U ignore the sipis,

the lun of l^e dmaUons Kill reflect tJie variation! m the nvirabers,

bat »hfn wc do this we create wme fcnous algebraic problems

We later refer to the oierogc rfeiaoTum, which w what it is called

wheo«e Ignore rigns

If we arc going to use sound mathematical methods to measure

the \afiaUon, the easiest way is to tgmn the deviations, thus solv-

ing Uic problem of sipa This maVes the results all posiUve We

then take rteps 4 and 5, which together eoosiat of taking the an‘tA-

Tvtic neon oj the STuarei of the demtions Step 6 is forced by

step 3 Actually step 3 leads to rather peculiar umU of measure.

For eianipie, if cur onginai tiambcrs wtw m uwts of pounds, Uie

uniu of the Miuared deviations are square pounds At the end of

step 5 we would itili be in units of square pounds So logically we

take the square root of cur result This returns our computation to

units of pounds

The process of going from pounds to square pounds and back

again to pounds is what we were talking about in the preceding

chapter when we pointed out that H w sometiiDcs convenient to

ihift from one unit of measure to another II also erophasires the

extreme importance of being always conscious of the unite of the

cumbertwiUi which wedeal

5Ifflpfi'fy/n3 the Cofewloflon of the Slondord Dev/oflon. Although

the calculation routine of the atandani delation is not very difficult,

particularly if w? have a calculator and perhaps also a slide rule

and a set of tables of squares and cqvarc roots, there arc occasions

when we can aignificantly save tune and effort by using a simple

short-cut dcMCC Before looking at this dcvucc, we should be aware

that short-cut calculations arc exactly like short-cut routes from one

part of town to another There are always more steps in the short-

cut than there are in the “long way around ” Short-cuts are seem-

ingly complicsted until we become familiar with them Knowing
this, we should not let Duniel\ea be o'crwhclmed at the introduction

ofaihort-cuL

Table 5 9 repeats the calculation of the standard deviation for the

Mine data given m Tabic 55 Kotc ^at the answer is exactly the

same as m Table 55. The short-cut method sa^es one column of

calculation and adds an extra step in the fommla. Let us total up
to sec what the net saving is, if anything The column saved

eofltalced five subtractions. We added a divUion (division of
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TABtE S 9

4 16 -1414

5 25

15 65

hy N), & squaring {ihe squaring of %X/H) and a subtraction

i%X^/N - [2X/A^]®} Thus we traded five subtractions for one

division, one squaring, and one subfcracbon This certainly does not

seem like much which it is not m this particular case But let us

suppose we bad 75 items to handle instead of five We would now

save 75 subtractions and stsU add only one division one squaring,

and one subtraction a rather substantial net profit We may even

do better however Usually the arithmetic mean has decimal frac

tions Our deviations then have decimal fractions and they are

more tedious to square than the onginal items

A simple way to remember short-cut formula is the square

root of the mean of the squares minus the square of the mean Note

that the right-hand term m the formvh, 2X/N is the anihmeiic

mean Those interested and mathematically mclraed should be

able to derive this short-cut formula from the basic formula given

in Table 5 8

Using the Normal Curve to Sstimafe ProbabihUes We are now

ready for the problem of calculating the probabilities of combina

tions of events fay using the normal curve as an approximation de

vice We illustrate the procedure by estunatmg the probabilities for

the results of tossing 10 corns Table 5 10 shows all the necessary

calculations Column 2 shows tiie baste data winch we have arbi

trariiy chosen to measure as the proportion of heads showing on a

given toss of 10 coins We could just as well have used the proper

tion of tails Columns 3 and 4 show tiie relative frequencies as they

would be deternuDfid either by listing all the possibilities or by ex-
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panding the binomial Column 5 has the calculations necessaiy for

determining the arithmetic mean Each term is the sum of all the

events in a given class and is calculated by multiplying the value of

the events iti a class by the number of events For example, there

are 04S945 of tlie tosses that will result in 2 heads, or, about 439

tosses out of 10,000 v-ill show two heads and eight tails Since all

the events in a class are the same, we sum them by multiplymg their

common value by the number of them We then add all the class

sums to determine the total sura, which is 50000 We then divide

by the total number of items, which is 1 (see the total of column 4,

getting an arithmetic mean of 5 We thus discover the very im-

portant result that the arithmetic mean of the distribution of com-

plex events will be exactly the same as the arithmetic mean of the

simple eunte which generated the complex events In other words

we expect the average proportion of heads to be 5 in the long run

regardless of how many coins ue toss

Column 6 shows the class sums of the squares of the p values

For example, the third result of 001758 is the square of 2 multiplied

by 043945 (Actually the calculation was performed by multiplymg

008789 by 2, or /p by p This is easier since ve already have the

/p m column 5 ) The total of these class sums of squares gives us

275001, which is now used to calculate the standard deviation The

formula is

Wjm
N \N/

This IS the equivalent formula to the one we used earlier of

17e hai’c replaced A' with p because we are now working with pro

portions (based on a scale that runs only from 0 to 1) instead of

variables (based on a scale that presumably runs indefinitely) We

introduced / because our date have already been grouped into classes

and / tells us tee number of events m the given class We could

ha^ e used j in tlie first formula, but since il would have been 1 in

each case because the events were kept separate from each other,

ne left it out entirely The stendaid dcMation was calculated to

be 1581, as siiown at tlie bottom of tlie teble It is interesting to



THE SMIISTICAI METHOD IN lUSINESS

rott thsl Uiis TOull Ot 15SI could sUo lio'c been obtained by

taWatinc

vbith CTiuals

J
ffrd " ftp)

n

Tins 18
,
ol count a much more cfficiCBt ^ t) lo calculate the slaudard

delation for problems of this sort iVe discover in a later chapter

that Ihia is the « a\ r\ c normally do it

N’ow iliat^ehavc the nnthmciic mean and the etandard dotation,

ftc arc rend) to calculate probabilities from the normal cu^^e

Columns 7 through 10 show llic necessary calculations Column 7

calculates the deviations from the mean These arc the I's m the

quation lor the normal curve Fortunately, from no’n on vc can

take advantage of a table to considerably simplify our work The

table prov ides us aith the \ alues of

c>"

for vanous values of 7 (r Column 8 shows the calculation of x/if for

each value of r given in column 7 Column 9 shows the values from

the table (inside front cover of book) for each value of x/a

Our next step is to calculate i/25000<7 which is tlic value of Y

when X equals 0 It is aho the value of Y eorresponding to the

arithmetic mean of A, or of p in tins ca«e Since this value of F is

premier than for anj other value of x U is iisuall) called the moxi*

mum ordmte Performing the indicated calculation vielda a result

of 2^i23, as shown m the hoiiom of Table 5 lO hen we muUipl)

each value in column 9 bj 2523, we gel the expected value of Y for

each value of p as sliown in column 10 Thc«e are the normal curve

cftimales that we arc fceking

Column 11 IS a duplicate of column 4 with the figures rounded to

four decimal places

By comparing the nonna! cune figures of column 10 with the

binomial figures of column 11 we tan quickly assess the closeness

of the approximation The clo«enc« is even more remarkable if we

round l>oth sets of figures to two decimal places We then find
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exact agreement in all but two of the 11 classes, and these differ by
only 01

The Poisson !>}str}bufion os an >ipprox/motfon #o Probabilities

We have already noted how the nonma] curve is & poorer approxima-

tion to the probabilities of dice throws than of com tosses The

difficulty 18 caused by the skewness, or asymmetry, that develops

when the basic probabibly departs from 5 Mathematical statis-

ticians have developed other approximate distributions than the

normal to handle such problems One of the most useful of these,

and the only one we discuss, is the Poiasm distnbution, after S D
Poisson, who first published itm Pansm 1837

Let U6 mtroduce the Poisson distribution by applying it to the

simple problem of estimating the probability of getting five 4 s on

the toss of 12 dice We assume a basic probability of a 4 of 1/6

nhich we call p We then calculate the arithmetic mean number of

4’s we would expect on the tossing of 12 dice We call the number

of dice N Thus we have Np=\2x 1/6 = 2 Np k usually ab-

breviated to m, a practice we follow At this point of our analysis,

we can see that the getting of jive 4’s on the toss of 12 dice is an

above average occurrence, considering we would expect all such out-

comes to have a mean of 2

A Poisson estimate of the probability of five 4’s is made by solving

or

2
*

c® 5*

The binomial probability of getting five 4*6 cm the toss of 12 dice

would be

m\/i y/5 y
Vs/VeV \67

or 0284pY P identify the

probability of the event we are interested in—the occurrence of a 4 in

this case—and we use q to refer to "not p," or to all other events that

might occur
)

Thus we see tiiat the Poisson probability of 03609

IS too high by 0077, or by 27% This is not a small error, and it is

probably too large for most practical problems It is, however, not

significantly worse than a normal curve estimate, which is 021

Table 5 11 and Fig 6 8 compare the Poisson, binomiaf, and normal

curve probabilities for all possible Dumber of 4's The most striking

feature of the comparison is iJiat tiie Poisson and normal approxima-

tions tend to be on opposite sides of fJie binomial (We remind our-

selves that the binomial is takra as tiie truth ) The most important
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TAtlC $11

twRiIal Pslmn tind Nefmol Pr«l«b;il.#s for Iht Oaufrtnet of 4 l on

th« Throwing of 12 DIco

Nf) of

4 1 (3ffUf

w-j;

Biflcniil

Proba

lllltT

Poiwon

Pruba

bilitv

Normal

Proba

bility

Error

in

Poisson

Error

m
Norma)

0 112 135 093 023 019

1 ^9 571 531 002 035

2 2'^j 5Tl 509 025 013

1 197 ISO 231 017 031

4 0^ 093 001 OOt

5 02s 030 021 COS 007

6 007 012 003 005 OOt

7 001 003 000 002 001

S 000 001 COO 001 000

P 000 m COO 000 000

10 m 000 000 000 000

u <xo (xa 000 000 000

12 000 000 000 000 000

ToIaIj 099 999 9Sl 0S4 120

(caiure for u« however is ihit the Poisson approximations are closer

in general than arc the normal Note that the total error is onl}

0>f /or the Poi^^n compircd with 120 for the normal

Actiiall)
, of cou^c, wc w ould probablj use neiUier the Poisson nor

tlio normal as an approximation m a problem as eas) as this to

handle with the binomial t\e have already discovered tliat wc find

the normal curve a prartical device when the sample gets too large

to 1)0 handicfl convcnientl) with the binomial, a point that is reached

rather quickly if wc do not have a table of binomial probabilities

handv The same reasoning applies to the Poisson In fact, we arc

mo't likclv to use Iht Poi *011 when the sample is extremely large,

in some cases practically infinite m size Such a statement should

k explamwl, but first wc mu«t return to our formula for the Poisson

and examine some of 1L1 general properties

Wc estimated the Poi»«on probability of five -I's on the throw of

12 dice b\ the expression
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-— Binomial

No'm^a
*— Poisson a

—
jproximation

iproximalion

1

i 4 6 S 10

Prc?iortionof4's

Rj 5 a Binomial, Poisson and normal probahlities for the occurrence of 4's

on the toss of 12 dice

We can put this in general form by replacing the numbers with

symbols, giving us

m*

The constant 2 71828 is e, m is Np, or Uie size of sample multiplied

by the basic probability, and c is the number of times the event in

question is taken to occur Tlie most remarkable property of this

formula is not evidenced by what is m it but rather by what is not

in It, at least not m it explicitly This property is the independence

of the formula from N, the me of the sample Our formula for the

normal curve had the same proper^, but then ne were dealing with

a disfcnbution that always has the same form except for scales of

measure variations The Poisson distribution takes many different

forms very similar to the way the binomial takes many forms In

fact, one form of the Poisson is the normal form, the limit it ap-

proaches as m increases An m of 20, for example, yields a Poisson

distribution that is so close to norma) that only a very unusual prac-

tical problem would not be satasfied by a noi mal approximation to

the Poisson
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Hence the beat «a> to comprehend the mcatimg and uscfqlnejs of

U f Poi^n dj*tnbutjoii la to concentrate on the role and meaning

of the n Of the Ap Table 512 liaU a^eral problem ailuations

which woyld rt?iiU in exactly the Mme Poiwon distribution but m
quite different binomial distributions This follow from the fact

that n or Ap remains constant at 5 for all the combinations of A'

ard p listed Thus it is obtious that the constant Posson cannot

po^ibl) be an equally good estimate of all these quite different

binomials The best estimate would occur for a binomial that had

an infinitcij large A paired with a \try small p so that A’p would

still f^ual 5 T^c bc*l wa) to think of this is to imagine that nc

continue to extend Table 5 12 with larger and larger V’a paired with

smaller and smaller pa but never disturb the product of 5 in the

process

This charact«n*Uc of the Poisson makes it most applicable when

we have a ver) large S paired with a very small basic probability

and IS what has earned it the label at timea as the law of rare events

In a practical scn'c we find it most applicable when we deal with

an event that is ver) unlikely to happen at a given exposure, but

which nevertheless does happen because of the tremendous number

cf expomres Innirancc companies and safety councils find a great

use for the Poisson because they frequently deal w iih the probability

of the occurrence of acetdenu For example chances of getting killed

bj lightning arc ver) small w aroall that we can afford to ignore

the pos'ibility unless of course we lake steps to suhslanlially in^

crease the probabilitj say by holding steel rods m our hands m the

TABU 5 13

lilatleaiMp Bitwt«n lh« Blnomlol end PeliMn Diilributlont for an Np
Canitont of 5

Aa
s P orm Binomial Poisson

10 Jfi S (J0p + ^)»

25 SQ 6 (aop + ^)«
100 05 5 (j(»p+ Oi])”'

11

500 01 6 (Olp+ OO,)!" •

5000 001 5 (O01p+ 9Wj)‘“ ••

6000000 000001 5 (000001p+ M0«95)‘«»
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middle of an open field dunng a tiiunder stonn However, people

get hlled by lightning almost eveiy day around the earth, some

days more than others We attnbote such deaths, despite the low

probability, to the very hgh exposure rate, which is the equivalent

of our N If we were to tally the nundier of days on which no per-

sons were killed by lightning, the number of days on which one person

was killed, etc
,
we would very likely discover that the distnbution

of the tallies would conform qmte closely to a Poisson distnbution

Proetico/ Mefhods of Caieuiafiag Po'nson ProbabtUUes Although

the direct application of the Poiason formula is somewhat easier than

the direct application of the bmomiai, particularly for cases of

large N, it still is tedious miough to justify the use of calculation

aids The most prominent of the tables of Poisson probabilities are

those prepared by Molina^ Appendix F contains selections from

the tables published by Hartley We have reproduced these tables

rather than Molina’s because of their inclusion of the x* (chi, pro-

nounced “ki”) distribution, a distnbution we have occasion to refer

to ID a later chapter

We illustrate the use of Appendix F by showing how to get the

Poisson probabilities for our earlier example of the number of 4'8

we might get if we tossed 12 dice Let us first find the probability

of getting five 4*8 Thus we have an m of 2 and a c of 5 We first

search the top rows of Appendix F until we find the column headed

by an m of 2 0 The entries in this column tell us the probability

of getting a c less than that specified in the extern nght column

(Pay no attention to the extreme left column headed by v This is

used when we use the taWe for / esiimales ) For mmp\e, the

94735 that is opposite the c of 5 is the probability of getting 4 or

fewer occurrences of the specified event Since we are interested in

the probability of exactly 5, we can achieve our objective by subtract-

ing the probability oHiOr fewer from the probability of 5 or fewer

(Alternatively, we can think of 4 or fewer as the same as fewer than

5, etc ) The latter probability is opposite the c of 6 and is shown

as 98344 Thus the probability of eroc% jive 4'b is 98344 •- 94735,

or 03609, the same result we denved by formula

Perhaps it seems curious tiiat the table lists the cumidative proba-

bilities or the probabilities of all the c's below a specified value,

rather than the probabilities for specific c values The reason is the

factor of convenience Most practical problems require us to esti-

J Molina E C Pouson't Eijmenlvil Bmomial Umit, D Van Nostrand Co

Princeton NJ 1949
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Til? L^^ probibiliUM for of c probabihtj

of A c Itit tf’on A certain ^aluc, or riore than e certain \aluc, or

bflirecn Uo certain \al\ifs Uawiy (fo find tt necesaaty to c*ti.

rnate the pT)babilit> of a ijko/c c aalue, wcept for illuslratiu pur-

poses IP a rlau*uca textbook E\en then it is itlaUael) Bimple to

lake the di'^crcnce between two of the tabled aalucs We illustrate

tor'' of the tjpical practical problems below Al^ try some on j our

QSTi later by doing pome of the problems at the end of the chapter

Mim Thorndike has constructed a chart, or nomagraph, to repre-

tent the Poisson tables A reproduction w shown m Appendix E.

Thi* liA* been found to be \eo useful and conxcnient for many

sampling problems in statistical qualilv control ^>.OTk Katurall)

il doea rot permit the accuracy of the table*, but it is accurate

enough for mo*l situations Koto that this chart u*cs the pn instead

of the n or \p we ha\c been u*mg We can illustrate tlie use of

ific char* b^ redo ng our fiie 4 a on the U)*8 of 12 dice problem The

honronlal axis ihows the lalue of pn or A^p, or m which is 2 in our

case lie lUrt ai tins point and trace the \rrtical line upward until

we touch Uie diagonal curbed hue corresponding to a c of 5 Wc then

read horuontally from this point to find the indicated probability on

the \ertical axis (A ruler of some kind is u«cful to guide the eye

)

We estimate a probability of about 9S2 This is the estimated

pfobabilili of getting j^te or fevst d’a on the to’s of 12 dice (Note

that the tables refermi to earlier associated the probability with

fewer than fixe rather than ^te or fevtr This illustrates a common

pmblcm in ^latlsUc^l work namely a lack of standardiiaUon m the

u^e of term* symbols etc) Jf we now go back to the urtical Imc

alKitc the np of 2 and read across from where it strikes the c = 4

diagonal we find an estimate of about 94G which is the probability

of four or fewer 4 * The difference between 9S2 and 046, or 030

is the estimated probability o( exactly fi\e 4'a on the toss of 12 dice

This is of course, \cry clo'crothc 03509 we denied from the table

(We ha'.c to admit that our ability u? read a chart accurately is

considerably improied by pnor knowledge of the correct answer!)

5om« Pfoet/fol frobfemi fnvofWnp the Pq/jjon D/jtnbuf/on

/ rempfe A A bolt mamifacturcr has a boUmaking machine which
when productmg large lots, turns out an average of O^I defectue
bolt? But the machine and the matenals are subject to \anations
which can fead to an undesirably high proportion of defectives

When such a situation is pu»pcctcd strongh enough, the machine
is stopped and any indicated ndm^nents are made in the process
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There are several issues we would have to discuss before we could

haudJe such a problem with reasonable intelligence, a discussion we
get mto m later chapters One factor that we are sure is mvolved
however, is the probability that a given number of defectives might

occur m a sample even though the process is producing only 04 de

fectives on the average Suppose, for example, that the quality in

gpector takes a sample of 50 bolts at random and finds that there

are four defectives m the sample What is the probability of getting

at least four defectives in a sample of 50 if the basic probability is

04? We quickly calculate our Np of 60 X 04 and get 2 In our

table in Appendix F we find tiiat there is a Poisson probability of

85712 of getting fewer than fow defectives We subtract 85712

from 1 and find an estimated probability of 1429 of getting af least

four defectives m a sample of 50 even though the process is averag-

ing 04 (Whether or not we should recommend stopping the ma-

chine “because the process js producing too many defectives’ is a

very interesting question we pursue later

)

{It IS interesting to note that the binomial probability of this

event js J391 and the norma) curve probability is 0743, the latter

an obviously poor estimate

)

Example B An automobile manufacturer periodically inspects

the paint surface of a finished car for evidences of surface blemishes

If the number appears excessive, steps are taken m the surface

preparation processes, or the paint mixing or the paint application

and other operations to correct the apparent lack of minimum quality

What makes this a very interesting problem is that we have no wav

of determining the size of the sample Most of the blemishes are

very small, less than 1/8 inch in diameter The paint surface con-

tains thousands of square inches Thus there are almost countless

opportunities for a blemish to occur, particularly if we consider that

a given 1/8 inch of surface can overlap with many other potential

1/8 inches of surface It is also evident that the probability that any

1/8 of surface will have a blemish must be very small If it were

not, the whole surface would have quite a few blemishes, and the

manufacturer's reputation would bem jeopardy

Let u’’ suppose that the manufacturer has set a standard of an

average of five minor blemishes per automobile (Large or con-

spicuous blemishes are cau^t in the more cursory lOO^o inspection

that is made of every ear ) What is the probability that a ear

might have af least nine blemishes even though the process is still

averaging only five per car? We miter the Toisson tables at m = 5

and find the entry opposite c = 9, or 93191 We subtract this from
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1 wd pet ai cstiraatc of CRS of geltiriE R cv uith ftt Icait nine

b’pmi*h« ncn though the tufrage will be only ftt c

ttc arc no* able to contrast thw estimate with the binomial or

normal eunc c**imat« because to make the latter must know

the lepiralc \Blun of A and p, and thus it is ncccs'ary to use a

Poison f'Umatc whether we wjsh to or not Fortunately, this is

a scry good example of the most appropriate conditions for the u«e

of the Poisson—a^cr) largcA witha\cn amaflp

Frmple C A manufacturer of aamtary napkins has 10 inde-

pendent automatic machines to make the product The loss of pro-

duction when a machine breaks down is *o serious that the company

maintains an cict cnlh machine as a atandb) \\ hen a gu cn machine

breaks down the operotor calls the maintenance department and

then resumes production on the spare machine The onginal tna-

cliine then becomes the spare when it has been repaired Occasion-

ally however a second machine will break down while a first ma

chine is still being repaired In fact there arc sometimes three or

more machines all down at the same time When such bottlenecks

develop the operators are 'off production” a considerable cost to

the eompan) c\en though the operators can be diverted to less pro

ductit e duties m another department

Tlic compam t problem is to find the best possible combination

of number of spare machines to ha\c available (it could always add

a twelfth machine for example) and number of maintenance men

to have in order to speed up repairs when a breakdown occurs This

IS ohviousl) a very complicated problem, and well beyond our modest

goal« It IS called the queuing problem and is quite common m busi-

ness, a* wc cin flt{c<t from cxpencnces in waiting for service in a

bank, a restaurant or on a telephone call to a business concern with

limited switchtxiard capacity One feature of the problem that we

can work on however, is the determination of the probability that

a givin numlxr of breakdowns might occur in a given time interval

We use some simplifying assumptions to facilitate our calculations,

assumptions that wc do not explicitly specify but which become

obvious in serioudy solv mg the problem

Let us assume that expenence of the company has been that it

takes 2 hours on the average to repair a machine Thus, if break-

downs are spaced so Uiat then* never is more than one breakdown

in a given 2-hour interval, the company i& never without a machine

for an operator The company*8 cxpcncncc has been that machine

breakdowns have averaged one every 5 hours, or 4 per 2-hour period
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What ifi the probabihtj of having two or more machmes down
during a given 2-liour period? We have an JVp of 4 and a c of 2
Appendix f tells that there is a probability of 93845 of fewer than
two breakdowns, or 062 of at least two Similar ealcnlations

could be made for othernumbws 0/ breakdon ns
Note that this is also a problem m which we have no way of de-

termining N and p separately Any given 2-liour period contains

countless opportunities for a machme to break down It might

break donn dumg the first minute, or the 274th second, or the 4826th

millisecond, eto In other words, a 2-liour repair period might start

at any moment during a given 2-h(mr clock period The probability

of a breakdown at any moment is veiy small, of course

5.5 Discrete vs. Continuous Variables

Our calculation of probabilities has so far been restncted to vana-

bles that assume only specific sizes, such as five 4’s on the toss of 12

dice, or three blemishes m a paint surface or six defective bolts We

restneted oui^elves m order to simplify the introduction to the

problem of estimating probabilities

We take note that, theoretically, dnctly specific numencal

values exist m only a very small proportion of our practical prob-

lems, and even then they exist as stnctly specific values only by

definition, so to speak Practically all the measurements we make

are subject to error Hence our numbers are rounded to some degree

of accuracy Such a number is not really a specific value but rather

IS the center of some range of values For example, a person meas

ured as 61 feet tall might be anywhere from 6 05 feet to 6 15 feet tall

If we had a distribution of men’s heights and were calculating the

probability that a man would be 6 1 feet tall, we would calculato the

probability that he was between 6 05 and 615 feet tall An exact

height vould have to be earned out to an infinite number of decimal

places There would be an infinite number of sucli exact heights

available The probability of any one of them would be 1/eo, or 0

When we deal with a pbenoramion that vanes by infinitesimal

amounts over its full range, such as is true for human heights, or

weights, wc call such a phenomenon a continuous variable 4s we

have just seen the probability of some speafic value of a continuous

vanable would be 0 To get a probability of more than 0 we must

combine several such specific values into a range or class of values
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K rtrtam amount of fueh grouping aulomaticall) takes plaee when

we u«c rounded number*, as we must because of our limited abilities

of pereeplion

We call a phenomenon a duerefeaanablc if iU nature is such that

only certain n alues of it exist witliin the range of its co\ crage Other

\ alues ju«t do not cxi«t at all For example the 7 1/2 of hearts ju<t

does not rxi«t in a deck A family just cannot ha\e 4 1/2 children

We are tempted to sa> that a paint surface ]ust cannot ha>c 4 1/2

blemishes, or that a sample of 50 bolls just cannot ha\c 41/2

defective bolts But second thought reveals that in a ecn*e they

can, even though our method of measurement does not recogniie

them A blemi*h becomes a blelm«h only when the observer is able

or vMlhng to sec il A defect m the paint surface has to be of a

certain intenvit} to be recorded It is also obv lous that some defects

or blcmuhes arc wor*c than others Thus a defect is not a specific

and unchanging thing like the 7 of hearts It is actually a range

of thinp One set of seven defects would not be the same as some

oUicr sets W e treat them as the same for convenience of recording,

It would be incorrect to consider them os really the same

The binomial and Poi*sod distributions are di«crclc in the sense

{Ur+Syj'Orttributen fW+ syj* Dijlnbutan
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that thej prOMde the probabilities for onlj spcci'ic o

variable The m between \flue« do not dcif* and ha^c no p"o

bilit) If wc wi'hcd to b** ven technical we would draw a char

the binomifli or Poi«on as abown jn Fi^ o 94 ratbr than rhi

in Fig o95 The thin honrontal lines repre ent the probabilities

the specific -value's indicated on the vertical a\i« The blank «p!

in between the lines do not reprc«cnt anvthmc: Compare Fig

with Fig 5 10 and note what happens as the power of the bino*

increases The line' get closer together bf'cauce there are no'

greater number of specific values on the horizontal aM« F we r

the power of the bmomia! high enough the line, would loud (

Rg S An -Ulprailc roetl od of chtn np n re tc d •t'nbuden
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oUitr And KOuld mslcf a wild black area as sboira in Fig 5,11. In

elect, the binotnisl dislnbulion has become cmtmtms. (The same

Ihicg happens to the Poisson as jV, and hence m, increases, given a

speciSc p.) It is at this point that the binomial becomes the nomal

diftnbnlion, sthich is a contmuoui dulribution.

It should he obvious, cow, that the accuracy ol the normal curve

(a continuous dislnbulion) as an approiimation to the binomial (a

discrete dislnbulion) depends on how discrete the binomial is 1(

the gaps between the event values are verj- large, the binomial is

very discrete and the nonnal is a poor approximation; it the gaps

are very small, the binomial is almost continuous and the normal

15 a good approximation

IVe also note that we 6nd it convenient at times to treat a discrete

distnhution as though it were eonlinuous Similarly, we sometimes

I

Sif. SIS Ilhutrstioo of how the disrrete bmomul distribution approtchre a

continuous distribuuon la the sue of ample incresaea
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Fis- Illustration of how the discrete binomial distribution becomes con-

tinuous when the sample becomes mfiiutely large

consider ‘it convenient to do the reverse. Cultivate the habit of

being conscious of whether the variable is discrete or continuous,

and then note whether it is treated consistently with what it is or

whether some approximation device is being used.

Nonnal Curve Estimates of Coi'n-Toss Prebabilftles Assuming a

Continuous Distribution

Let us look at the problem of estimating the probabilities of the

various results that might happen when we toss 10 coins. Instead

of treating the results of the tosses as a discrete vanable as in our

normal curve estimates shown in Table 5.10, we now treat them as

though they were coniinuous. Table 5.13 shows the necessary calcu-

lations.

Column 1 shows the results of the tosses in ranges, or intervals,

of values instead of in the specific values as shown earlier. For

example, instead of saying that the proportion of heads was .40, we

say it was between .35 and up to but not including .45 (The reason

we specify the limits to the intervals as having the lower limit in-
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TAtll 513

Hoftnol CwfTt »» IM frebaWflUti for iKt lotHlh *f TouIi»fl

to Cc]RM*Uit «l Ctfmv1ortv« for o C«n)lnvout VorlobU

Pro-

portioa

of

llrads

P

(1)

Distance

fmm Mon
toFurttier

UniiV

(^.

Distance m
Standard

DevuUoa

Dmta

xh

(3)

Troportion of

Area from

Mean to

Further Limit f

«)

Esti-

mated

Proba.

bilily

u
(5)

-05- OS' 55 349 4907 002

05-15 15 2^ 4078 on

15-35 55 251 4S54 044

25-35 25 4420 114

35-15 15 05 ,3299 ,203

051 ,32) 1255)
15-55

051 ,321 12551
,251

55-65 15 05 ,3289 ,203

65-75 55 1,58 4429 114

75-J5 55 251 4864 014

55-05 15 285 4978 on
05-105 55 34S 4997 002

999

• Lower Limit Inclusive, I, • 1581

1 8« table of normal cunt aroa on tnaide rear cover

clusne, ^^hich la the latne as saying upper limit exclusive, or o{

faying, 35 up to but not including 45, i5 to rcmo\e the ambiguity

of where to put a talue of 45 Of course, that w not really a prob-

lem here because Ihcie are no such Naluea, but m a really continuous

fcnea it would be a problem
) Id effect, we are treating each actual

\alue, fuch as 40, as though it were the middle of a range of >alues

Al«o, we make the lanous ranges just large enough to barely touch

each other Thus, when wc finish, our senes runs conlmuouslj from

one end to the other It is probably surpnsmg that our first interval

runs from - 05 to 05 fince a minus proportion of beads is a literal

impossibility, however, it is necc'^arj to engage m this fiction in

order to complete the fenes, so to speak If we did not do this, the

0 value would be restnetod to only half the interval of all the other

values, and this would lead to incorrect estimates of the probabilities

What we now try' to do is estimate the probabilities for each of

the«e intenals lie do not do this directly because the tables of
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the normal curve are not set up this way Actually 'we are gomg
to do the same kind of thing we did when we used the Poisson Tables

to estimate the probability of exactly five 4’s We are gomg to de-

termine two probabilities which straddle the mterval, and then we

are going to take the difference between them The process is illus-

trated m Fig 5 12 We would like to estimate the probability for

the interval from 1 to 2 This mvoWes determining the area of the

shaded section of the distnbution (Recall that the total probability,

or the total area, is 1 00 ) The table gives us the area projected by

the distance between 0 and 1, and also the area projected by the dis-

tance from 0 to 2 If we take the difference between these two values,

we have the area (probability) projected by the mterval from 1 to 2

Just as we used the normal curve before, we now take our origin

of measure at the arithmetic mean, which is 50 m this case We
measure the distance from the mean to the further limit of the given

interval These distances are shown m column 2 Note that the

middle interval contains two such distances because the mean is in-

side that interval We divide each of these distances, or deviations,

by the standard deviation (This is the same standard deviation we

calculated in Table 5 10 ) These resulte are m column 3 We pro-

ceed to the table of normal curve areas on the mside rear cover, which

gives us the area under the normal curve from the mean to any

specified point, and look up the required areas These are shown in

column 4 We take the difference between each of a pair of these

to get the final probabilities- as shown in column 5 For example,

column 4 tells us that the area from the mean to 25 is 4429 and the

area from the mean to 35 is 3289 Therefore, the area between 25

and 35 is the difference, or 114

The estimates shown m column 5 are not quite the same as those

shown m column 10 of Table 5 10, but they are reasonably close

We now refer to some of the important features of the table of

normal curve areas as presented on the inside of the rear cover

A C

Rs 5 12 Estimating a probability as a dfierence between two other probabil-

ities
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Note Ulit (lie p^I^s^!lllt|es m liif body of Ibe (iblc run from 0000

to 4W97 The litter probsbihtj li \cr5 clo'c to 5, »nd nould be

5 il ne rounded O'OOOO? a little The rea«on the table (tops in the

ncishborhood of 5 instead of 1 0 is that it cotert onlj bol/ of the

full distribution But this is really all that Is nece^aty because the

other ball aould be taaclly the same emec the dMribtition is per-

fcetlj symmetrical

The probability never really reaches h because the normal curve

theorcticallv has an infinite range, there being no upper or loner

limit along the honiontal aais The assumption of an infinite range

IS not really bother'ome in practice, where most ol the series we

work with do have a finite range, because the probabilities arc very

close to 5 for values of r/s of 35 or more This is the basis of the

statement that events more than 35 standard deviations from the

mean almost nci er happen
”

It IS a good idea to memorise a few of the values from this table

Some useful things to know are-

1 About 2/3 ol the eases are included wilhin one standard dcnalion of

the mean (Actually it is 6520 which is twice 3413

)

2 Al«ut 10 out ol 00 cases arc withm two standard devTstions of the

mean (Aeluallyiiis 0544 whichistwicc 4772)

3 Only about 3 esses out of 1000 will be more than thtee standard do*

visuons from the mean

S 6 Some Miscellaneous Aspects of Probability

Calculations

Indirect Colculatlon of Probablfltlei

If we were interested m the probability of getting at least three

heads on the toss ol 10 coins, we could determine this by adding to-

gether the probabilities of three heads, lour heads, etc , up to the

probability ol 10 heads On the other hand, we could also get the

same answer by adding together the probabilities ol no heads one

head, and two heads, and then subtracting this total from 1 0 The

second way would be considerably quicker The fundamental prin-

ciple that makes it possible to calculate the prabahihly ol at least

three heads in two ways is that the probability that something will

happen, or is true, plus the probability that it w ill not happen or is

false, equals 1 0 Kalutally, we should ehoo'c the caster of the two

ways

There arc some problems in probability that are quite deceptive if
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we try to calculate the probabiliiy directly It is much better to

calculate that the event will not happen and subtract this from 1

0

than to try to calculate the probabibty that it will happen Con-
sider this apparently simple problem Suppose two dice are going

to be tossed A person offers to bet SI that at least one 1 or one 2

will appear Our first mclmation is to take this bet because we
figure that we have four numbers (3, 4, 5, 6) on our side and he has

only two numbers on his, thus giving us 2 chances to his 1 If we

had time to list the 36 equally probable things that can happen

when we toss two dice, we would find that we would be foolish to

take this bet How can we easily calculate the probability of getting

at least one 1 or one 2? We do it by first calculating the probability

that we will not The probability that the first die does not have

a 1 or a 2 IS 2/3 The probability that the second die also does not

have a 1 or a 2 IS also 2/3 The probability that neither of them

has a 1 or a 2 is 2/3 X 2/3, or 4/9 Hence, the probability that at

least one 1 or one 2 will show is 5 out of 9, and our friend was hoping

to take a little advantage of us by offering us only an even bet

A similar problem that has become a classic is what is called the

“birthday problem ” Suppose there were 30 people in a room Some-

body offers to bet us that at least two of the people have their birth-

day on the same day m the same month Immediately, we think of

365 days m the year and only 30 people, and we are vety happy to

take the bet But we will probably lose because actually there are

seven chances out of 10 that at least two of the people do have the

same birthday Here again we find it much more desirable to calcu-

late the probability indirectly It is a very difficult and tedious task

to cafcufate directly the pro6a6ifity that at feast two people have

the same birthday It is not so difficult to calculate the probability

that it will not be true, and to subtract the result from 1 0 Let us

take the 30 people in order The first person can have any birthday

out of the 365 possibilities (we ipore leap day as a very minor

modification) The second person has only 364 days left for his

birthday if he is not going to duplicate the 1st person’s The third

person has only 363 possibilities without duplication, etc We can

now calculate the probability of no duplications as follows

365 364 363 336
y y

365 365 365 365
which equals

365'

335 '365’“

This gives an answer of 294 When we subtract this from 10, we

get 706 Of course this calculatioii is not the sort of thing we can
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do to our head, but it certainly w easier than the direct calculation,

or easier than listing the 305** different combinations of 30 birtlidays

that can exist.*

The moral of the examples juit gM*en is not to jump too fast in

picking out the method of calculating probabilities The shortest

way to the correct answ cr is often the indirect way.

Cenditlonol Probobllitlfti

We have seen lliat v,e cannot calculate any probabilities until we

know, or assume, certain ctmdittbw The two pnmaiy condition*

arc y, the sire of the sample, and p, the basic probability if we arc

working with the bmomtal The normal cur\e rwiuircs knowledge

about n, the mean, and #, the standard deviation The Poi«son re-

quires knowledge of .Vp, or m, the mean number of occurrences ex-

pected in the long run Thus it is proper to state that all prohobih-

tier ore conditional Given the conditions, which arc really the base

of knomUdge from which the probabilities arc calculated, we usually

find rather general agreement on what the probabilities arc in a

guen situation In other words, the rnechanics of calculation an?

generally not controversial Disagreement arises because different

people tend to assume different conditions, either legilimaloly be-

cause of different know ledge bases, or illegitimately because of failure

to a5<ess properly the available information After asserting the

conditional character of all probabilities, we now find it nccessar)' to

recognize that certain conscntions have grown up about the labeling

of vanous types of probabilities These con\entions have appropn-

aled the adjective conditional lor a more restrictive type of proba-

bility than that which we have been talking about For example,

suppose we are a^ked to estimate the probability that an adult

American male cho«en at random will weigh between 170 and ISO

pounds Our offhand guess might be a probability of .11. But, if

we arc now p\cn the arfdifionaf information that the man in question

is 5'ir' tall, we would rcw«e this probability of .11 to, say, .28. It

is this fatter probabilitj (liat ih tj'picafly railed a condffiona/ proba^

hility, in this case tlic "probability that an adult American male

weigh* between 170 and ISO pounds gxien the condition that he is

S'll" tall.”

If we adopt this conventional nomenclature, we call the “proba-

* If you would like to know llw probabihtjoi for oilier lhan 30 people and

you do not *ub to do your o»n alcubtioni, j-ou can find a partial krtmn in

Introiluclum ta Finiie Itathfmalta by Kemeay, Snell, and Thoropwjn, rrcutice

nal!,l957,p 115
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bility that an adult Amencan male weighs 170 to 180 pounds” the

uncoTiditional ’prohab'dity But, v,e might ask what we should call

the “probability that an adult Amencan weighs 170 to 180 pounds,”

or the “probability that an Amencan weighs 170 to 180 pounds,” or

the “probabibty that a human bemg weighs 170 to 180 pounds,” etc

It IS immediately apparent that all probabilities have restrictive

conditions of some sort

Hence we prefer to think of all probabilities as conditional proba-

bilities This helps to prevent one of the most common errors made

in the application of probability concepts, namely, the failure to be

alert to the particular conditions which must necessarily surround

any probability For example, it is not uncommon for cardplayers

to appeal to the laws of probability in selecting a particular strategy

Such a policy presumably makes their action scientific However, it

18 scarcely scientific if the particular probability calculation is based

on conditions which do not prevail The probability of a 5-card

deal from a deck having all five cards of the same suit is only 1 out

of 500 But, if we are playing against an opponent who obviously

has at least four spades because the four are facing upward, and if

this opponent has been betting as though the fifth card is also a

spade, we would be well advised to substantially revise our notion

of the probability that that particukiT hand has five spades m it

The 1 out of 500 is rather completely irrelevant under the given

conditions (Of course, if we happen to have been lucky enough to

have visually spotted what our opponent’s fifth card is, the informa-

tion conditions are now such that we know whether he has five spades

or not, thus pushing the probability to either 1 or 0 The motive for

cheating m games of chance is to acquire additional information

in order to improve probability estimates

)

Since many practical problems provide us with alternative sets of

conditions which we may analyze and use, it is useful to have some

terminology to distinguish between two separate conditional proba-

bilities We prefer to use the terms of conditional and subcondi-

tional For example, the group of all 5'H" adult American males

is a subgroup, or subset, of the group of adult American males

Hence it seems appropriate to call probabilities dealing with this

subgroup subconditional and those associated with the larger group

conditional Of course, if our problem shifts so we also become con-

cerned with the even larger group of Amencan males, the probabili-

ties associated with the now subgroup of adult Amencan males be-

come subconditional
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SvtxondHienol PreboblPlIet o/k! Subvnhrertci U is probabl) ap*

p&rtQi thM the notion of proup and mbproup is prccivlj the same

as unlicrc and rjbiJBi\er?e and of ict and subset that vc encoun-

tered earlier Thus a eubeondiUonal probability is simpl) a proba-

bihly for a unnerse that is lub^diarj' to a larger uiuvcr*e that has

alread) been referred to in the given context.

Soma UwM Shorthand

Di'cuMions of pmbabilit) ate generally more satisfactorj if the

appropriate conditions are specified for any gi\cn calculation or

indicated calculation For example, \^e might make frequent u^c

of a statement such as, the probability of fi\e heads on the to«3 of

12 corns IS 19336 gi\en that the probability of a head on the toss

of one com is 5 This is somenhat tedious to write out Hence ne

have adapted some simple shorthand In shorthand the abo\c state-

ment becomes

I2,p“ 5) - 19336

l\c u^e capital P to stand for probabi)it> We then enclose m
parentheses what it is we are getting the probabilit) of The first

element within the parentheses olw8>8 refers to the specific event

in question, such as fiu heads, or //*, in this case We then erect

a teriical line This line is really the symbol for the word given

Ever} thing to the nght of this line refers to the conditions that arc

presumed to define the unuerse out of which the specific event is to

come, or has come The necc^^ary and sufficient conditions in tins

case arc the number of corns, or, more generally, the me oj the

iamplc, and the hum probabtiiTp of getting a head on the to«5 of

one coin We can take these two conditions and proceed to ex-

pand the appropnate binomial from which we can get the probability

The fundamental challenge of roost practical problems is to specifj

the appropnalc conditions, (hc) arc tho«e that satisf) the practical

conditions of the problem and 8l«o arc manageable from a calcula-

tion point of view Sometimes wc real!) do not know how to cal-

culate the probabilities for some seta of conditions Then we must

modif> the conditions so we can make an estimate These modifica-

tions naturall) distort our concept of an ideal solution In other

cases we know bow to calculate the probabilil} for the conditions,

but we find it too tedious Again we modif) and accept a less than

ideal solution
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Some Useful Theorems in Probobdily Calculations

Suppose we are going to draw cards from an ordinary deck with

the fundamental assumption that each card is equally likely Let

us call these conditions X What is the probability that the drawn

card will be a spade? In symbols, we can answer by saying

?(S| Z) = 5 = if (S stands for spade

)

A useful way to picture this probl^n is shown m Fig 5 13 The

large enclosure represents all the cards in the deck Each of the

smaller subensclosures represents the number of spades, hearts, etc

Note that the subenclosures do not overlap at any points This is

because it is impossible for a card to be bo(h a spade and a heart,

for example, at the same time Such events are mutually exclusive

events If we know that a given event has occurred, such as a spade,

we know that all other mutually exclusive events have not occurred

Now consider the problem of the probability of the drawn card

being a 4 Figure 5 14 shows the distribution of the 13 mutually

Rfl 5 13 Diagram of distnbution of cards m a deck by suit, and then by num-

ber witim suit
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Hi ] 14 Diicrtm of diitributioa of eardi by bumb«f, afid tb» by luit «ithm

eumb«r

Mclusuc c\ents tthich diude ft deck by card number In symbols

neha\e

“ A " A
Uc next consider the problem of the probability of the cards

being both a spade and a 4 Figure 5 15 ebowg the distribution of

the 52 cards classified by suit and b) number These are, of course,

also mutuall) exclusne events Inf}rabol3wehave

P(Sftnd4|A)-A

We could b1«o calculate this probabilitj by referring back to Figs

5 13 and 5 14 \\c no^ consider the sampling operation as having

firo itages For example, we can consider the first stage m Fig 5 13

as that of selecting the mt The probability that this selection will

be a spade is 1/4 Then, g\un that we have selected a spade, we

can calculate the probabilitj that we would select a 4 m the second

stage This would be 1/13 If we now multiplj thc<e two probabiU

Hies together, we have 1/4 x 1/13 = 1/52, the same answer we ob«
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tamed above Similarly, we could have first selected the number

(see Fig 5 14) and secondly selected the suit We would then have

the probability of getting the 4 of spades as 1/13 X 1/4 = 1/52,

again the same answer as above

Vt^hen we combine several stages this way, we call the final proba-

bility a pint, or compound, probability We can symbolize the

above operations as

PiS and 4IX) = P{5|X) P(4lS, X) = f ^ ^
or?(4|X) J

=

Smce, in the case of a card deck, the probability of a 4 is inde-

pendent of the suit, we could have calculated the same ansv er by

just multiplying the probability of a spade by the probability of a

4, namely

PlSmi MX) = ?(S|X) P(4|X) = 1 tV = jV

Suppose, however, that all the 4*6 m the deck were also spades, but

with there still being 13 spades and four i’s m the deck We would

r,g 515 Diagram of distnbutioB of cards by suit and number
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fill! obiAin the fame answer as before ilv>t assumed independence

of suit and number This is obvimisl) wrong The firt formula

mil gi\e ibe correct ansiicr because it will allov for the fact that,

fcnonn;? that we ha\c a spade, the probabllit\ of a 4 is novi 4/4

In aymbols ^ e would ha% e

P(5and 4in - Tflll') P(5H, 1*) - A i

orP(sin wis.n-i*-A
(V«u Un fgbttit4t«<l r Isr X wro^iM l2M(ia»r* iji iIm to«il imm tt Cbt d«k)

If nc let j) represent the suit end B the mirnber end .V the cen-

tal eosditioM m the utmer»e, eso tmte the more Ecticral (o:-

muls (or the probability ot tiro joint cients

Pld nnd Bl.V) - PldlA") i>(B|.4,,Y)

orB(B|.V) Brd|B.X) (61)

Since this tonnula iniolics the mulltplitalm of probabilitiea, it

IS olten called the muKiptetion dieortm. \Vc haic \i>ed it many

litnea in the precedmB pagea without rtaliirag it as such Our use

has so (ar been restricted to ca<es ol independent cienla where

PM|A'I = /’(d|BAI.(orwaiiiplc

Suppo'e now ae eomider the problem of the probability that the

drawn card will be a spade or a 4, with the or undemtood to nbo in-

clude a spade and a 4 or the 4 of spades in common parlance Figure

5 16 diagrams ihi« The laigest tneloaure again reprc'cnta the w hole

deck The larger ot the two subcnclosurcs rclere to all the spades in

llic deck, the smaller to all the 4'a Note that the two subcnclosurcs

oierlap becau'c one of the 4s is al*o a spade The eicnls spade

and 4, are not mutually cxclusiic Hence we will not get the correct

probahilitj of a spade or a 4 it we siraplj add the probability of

a spade to that ol a 4 \Vc would then be double-comling the over-

lap Hence the correct procedure is

P(S or 4|.V) - B(S|A-) -t- P(4| AT - P(S and 4| A")

- P(S|A') 4- P(4|.Y) - P(S|AT P(4iS,A')

The general formula would be

or^laY) M P(AlX} + P(ItlX) - P(AIX) P(DIA,X} (52)

If 44 and B were mutual!) exclusnc, then P{B\A^) would be 0

and the EubtracUon term would drop out This is so when we deal
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Rg 5 Diagram of the overlap between the eet of all spades and the set of all

4 8 in a playing carddccL

With classified events within tiie same univeree, such as the weights

of people If we have a person who weighs 145 pounds (A), the

probability that he also weighs 185 pounds (B) is 0 Hence the

probability that a person weighs either 145 pounds or 185 pounds

18 the simple sum of the probabilities of each of these occurrences

The formula shown as Eq 5 2 is known as the addition, f/ieorem

or the theorem for adding the probabilities of alternative events

The formula applies whether or not the events are mutualh ex

elusive Since we are generally dealing with mutually exclusive

events, we often use the formula without the subtraction terra

PROBLEMS AND QUESTIONS

5 I Would vou classify the followup samirfes as random? Explain

() A teaspoon of coffee from a cup to tert the coffee s sweetness

() A thermometer reading of the air temperature m your back yard

to determine the air temperature in your city

(c) A 3 hour date with a member of the opposite 'ex to test her (him)

for long run compatibihby

(d) A handful of ball beanies from the top of a barrel of ball beanngs
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to for Axtnt* daiwtfr of iQ ibr ball bMor^i m the brTtl Tbf

bi^Ttl bis Iwi shippfd IICO rail^s w i ndrtad car and heart has l'«n

ecr^'slenb’c fhakiny

(f) The Wtdaesdi) ttl« of a roperoarkel as a basis of e^’imatias W
aaaual'cJorrc

(/) The \\«!ac«di) lalfs of two wjxrmarletJ in the same cit} for the

purpose of csrapannj; thnf rriaiitt annual voiiaacs

(ff)
\our answer to part (&) of lha qurtKn as a basis of ludgmj’ j-our

peseial tindfr‘’io6n5 of the oranm^ of random sampling

S 5(oj Construel a tree to show aQ the possible rtsulta from the tossiiif;

of 6 co*n?

(M Lts* all the posnt^e r«ulu of toississ 6 COIRS

{e) How mail} pofsibihUes are there?

id) How nan) poupa can \tm make out of there possibilities if we

ip'ore wh ch CO n IS beads and which lads m a pvtn complcs event?

(c) Lst the proups and rtate the relative frequenej, or probability, of

each poup
5J(fl) Li^ all the complex events that can oeeur when you roll three

diceatatnc tDepiucat'l lEximple 14 6 )

(6 ) DetcrmiretberamoftheSnumberameachfVTnt

ie) Combine all lie nunben rota a poup and bsi all the groups and

the Itlitire frequenej of each

(d) Can )'ou tbmlt of anj wi) you might have been able to determine

the relatist frrqjcac} of each group other b} listing’

5 4 Wliat u the total number of poEnbilniea for a simple drawn from

each of the foOowitc uai^erres’ Sbor pur method of calculation

(

a

1 Sanip*e of one toss of 7 coins from a unn erw* cf 7 coins

(b) Sample of one throw of 6 dice from a universe of 6 dice

(c) Sample of one toss of 4 coins and 3 dice from a universe of 4 coma

and 3 dice

td) Sample of 13 cards from t dreV ol 52 cards

(e) Sample of 10 names drawn from a telephone book with 5000 names if

1 \ name w replaced afierbcingdrawn

2 Anameisnotreplacedaflerbeingdrewn

{/) Sample of fi\e anis from an anthill to determine the avenge length of

aO the ants in the anthill (How mam ants m an anthilP)

(j?) Sample of one trip through a mare that has the following requence of

Btrmber of choices at the fuccewix-e turning pomw 3, 2, 4, 5, 3

S5 Evaluate tbe following ^ou may lire tables if wijh

I'll 1/15? r

(0)7! (i)«' (c)^ W6" (flSTlS-’.ji,

5 6 U*e the binomial theorem to calcubtc the probabilities of the various

combinatioM that result from the tos*jRg ofm coins

5 7 Evaluate ibe following

KD '‘’CD «('D ‘MJ.)
5 1 Hre binwnjal terms to calculate the probabilities of the following

(a) Sa heads on the toss of 9 coins
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(6) 50 heads on the toss of 100 corns (Note how small this is even

though it IS the most probable result

)

(c) Eighth’s on the roll of 12 dice

(d) 26 5 s on the roll of 130 dice

(e) Four defectives in a samite of 10 bolts if the probability of a defective

IS 2

(/) Would five defectives in a sample of 10 bolts be quite convincing evi-

dence that the process was generating more than 20% defectives’ Show
calculations and explain basis of decision

5 9 Use the normal curve to approximate the probabilities of getting

the various results from the tossing (rf 6 come Let 0 herds be 0, one head

267. two heads 333, etc You can check your result for the calculation of

the standard deviation b> seemg if jt agrees with

Vi 167 X 833)/6

5 1 0 Calculate the standard deviation of the following sets of numbers

without the use of any short cute

(c) 2 (6)27 (c) 324 (<0 2 (You may find it more con-

4 34 571 6 vement to group the like items

)

7 41 068 3

9 46 249 5

13 58 3

(e) 1286 4

2572 3

3858 5

5144 4

6430 4

5 T 1 Calculate the standard deviation of the same senes as in Problem

10 With the use of any short cute you find bandy

5 12 Calculate the standard deviation of the senes in Problem lOe by

taking the folloiwcg steps

() Diwde each number by 1286

(bj Calculate the standard deviation of the reliant senes by the short

cut method

(c) MufMi/ the result by 1286

(d) Compare your answer and the amount of work ivith what you did

m Problems lOc and lie

5 13 Use the Pois&on fonnufa

y, = 2 71828- -r
cl

or the Poisson Table to estimate the following probabilities (Remember

that a number raised to a negative power is the same as 1 divided by that

number to the same positive power

)

(o) The probabilit) of seven 5 « on the roff of 100 dice

() The probability of two defects m a sample of 10 welds if the welding

operation is supposed to be generatmg only 2% defects

(c) The probability of two or fewer defects under same conditions as in

(6 )
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(rf) Tbc probib lit) of thrw or oiort dtfecta under lAme conditions u is

(b)

(e) Th'’ probsb Iitj tlal tbert will be do more ihsn 3 defects m the nr*

fsce of & p^e of piste g'sss if n - J

t/) TV p’otabiliW that eiactl) fsco proyAe out of 1000 policjholdeia irdl

be killed by sn accident that la a proba^t) of SXfXXA of Vppemng to

a perron If j our compso) had to pa) clsum on im such accidents irould

)cu feel that )ou had an) evidence that the accidcaU hs\e been “ngged,**

ird that the eonpan) woidd be justified in spending a litUe money on an

in>T«'i?atioa* Explain

514 the Thorcdike Chan for the following problems

() All the parts of Problem 13

() TV probabilit) of 26 or more 6

1

on the roll of 130 di«T (^Miat

u the diffcrenec between rolling 10 dice 13 times and rollirg 130 dice at

once?)

le) The probabilit) of t«o or more 68 on the roll of 10 dice? Why are

} our SQSwen different in ( b ) and (e) t

id) The probabilit) of between t»o and four machine breakdowns in an

hour out of a total of 20 machines if the probabilit) of a breakdown is

5 15 Use the normal curte to estimate the probabilities of the various

rrults from the to'Mng of s« corns Let 0 heads be - 083 to one head

f)S3-550,etfl

Compare jour remits with those >ou got m Problems 2, 6, and 9

5 16 tff* the normal curve to estimate the following probabilities

(a) Probsbditt of a sample ^alue of 6 or more if the universe has a mean

of 4 and a etandard delation of I

A

(b) Probability of sample talue of less than 8 if m - 10 and i 3
(cl Probability of sample value of between 5 and 0 if m « IS and i 4 7

(d) Probability of aaraple value of 6 or more if m * Sandi < Ih
5 17 Identify the following variables as being cither discrete or con*

tinuous

(o) Th* numVr of rooms in a bouse

(6) The number of rooms in a bouse for purpose of getting an idea of

the amount of living space in the bouse

(c) The annual sales of a company from year to year

(tf) The rate of time lost accidenla per 1000 man hours of exposure

(e) The proportion of people who indicate a preference for a given brand

of tooth paste

(/) Manual dextent) of a group of workers

5 ii In grading some examinaoon papers an instructor discovers that

two students who eat next to each other had identical wording in one of the

answers The answer was wrong It contained 12 words What kind of

evndcoce b this that the (wo itudcnta cooperated with each other m some
wa) during the examination?

5 19 \\hal 18 the probability that at least one 6 will show up cn the roll

of 2 dice? Show jTJur calculations

5 20 WTiat 13 the probabilit) tbt at least three cards out of five pla)ing

cards will be hearts? Showcileulaljon*

5 21 What IS the probability that it least three cards out of five playing

cards will be the same suit 7 Show calculations
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5 22 The probability that aiy one component in a rocket wiE fail is

001 The rocket has 500 component parts

(o) What IS the probability that the rocket will function properly^

(6) If it were desired to have a rocket that gave a 9 probability of a

successful finng, how many parte would it be necessary to eliminate^ {The

(c) The probability of successful firing could also be improved by re-

ducmg the probability of failure of a component part To what level must

tbe probabihty of a component failure be reduced in order to give a 9

probability of a successful finng?

5.23 The probability that a trailer truck will fail to negotiate a given

curve on a highway is 000001 if the truck does not exceed a speed of 30

mph coming into the curve The probability of failure increases to

001 at 40 mph, 01 at 50 mph and to 1 at 60 mpb A given truck failed

to negotiate the curve, crakied through the guard rail and struck and

senousiy injured two people In the inveet^tion the driver claimed that

he was not traveling over 30 mph and that something went wrong with the

steering What is the probability that the driver was lymg, or at least

inaccurate in his perception of his true speed? (There is no way to check

the steering

)

How fast would you estimate that the dnver was really traveling? How

much confidence do you have m the correctness of your estimate? {Make

sure that your estimate covers some range

)

5.24 Your firm manufactures a product that must be protected from

temperalure variations It is relatively expensive to provide this protection

There are times when very little protection is n«ded because of tbe actual

temperature prevaibng The decision on how much artificial protection to

use IS based on the weather forecast for tbe cntical time period Two sources

of such forecasts are used, the loc^ office of the United States l^eather

Bureau and a local private forecasting service A check of the past record

of these two sources reveals that they both have had a record of success

of 9 m forecasting the temperature within a tolerable range

(c) If both forecasters agree on a given forecast, wliat is the probabihty

of a correct decision if you follow their advice? ^at critical assumption

did you make m calculating this probability?

(b) Suppose the two forecasters diragree How good a decision tech-

nique would it be to flip a com to see which forecaster you will follow? Can

you thmk of a better way to make the decision?

(c) A careful check of the historical records reveals that the two fore-

casters agree on their forecasts 98% of the time Are their forecasts in-

dependent of each other? Ebiplam (Note Independent does not neces-

sarily refer only to the issue of whether there is or is not any actual com-

mumcation or coUaboration betwcen,the two forecasters It is conceivable,

for example, that both use essentaaJly the same evidence and essentially the

same techniques for analyzing that evidence Their answers would thus

tend to agree even though the peojEe involved operated independently of

each other We are concerned with whether their answers are independent

}

5 25 Your company has a warehouse right on the waterfront at an

eastern United States port A hurricane has been moving up the coast
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*iib fc njmnily prolttbility of XO of a»i5in)j rains and tidal

fiyyls thai wi'l rf«tih in 4 foot of arsi« on ibc fini floor of the w«rfhou*o

Yo'4 art* rr'];«n‘.b!e for dfndinK trhfthfr (o «prnd ih^ monej to ha\f lb?

wirtboo*?* cnpiird on th<* Cr^t floor The conipiny has no hurricane in*

nrance

U'hat fsrtor' would jou weich m makinR >our dccinen? WTiat rroba*

tiliii'i would k important? Explain



analytical tools

chapter

Some useful

Our discussion of the normal curve introduced the arith-

metic mean and the standard deviation, the two most commonly

used analytical tools in statistical work These are only two

members of a family of analytical tools It is now important for

us to introduce other members and show how each of the various

tools can play a special role in a particular problem Thus fortified,

we will be able to pursue further study of the statistical method

without being distracted by the necessity to stop and explain a tool

that the current problem makes useful

The various tools we discuss are all aimed at our basic problem

of dealing with an event that might have all kinds of values, the

typical situation m all decision problems The distnbuhon of such

possible values is our main concern We have already discovered

that we can deal with such distnbutions m many ways We dis-

CALvese.d tfcA iWu

easy to understand, it is very tedious, and sometimes impossible, to

complete Hence we searched for shorthand ways of summarizing

such a list One shorthand way was the binomial theorem system

of counting Although the binomial theorem system was more

efficient than the listing system, it also gets very tedious, although

tables are now available that can help considerably to expedite the

routine work We then discovered tiiat we could often make useful

approximations to a distribution by such model distributions as the

Poisson and the normal In the case of ^e normal, we discovered

that all we needed were the anthmetic mean and standard deviation

of the desired distribution and a table of the normal curve, a table

that can be conveniently summarized on one page of a book iVe

could then estimate the relative frequencies, or probabilities, for

any desired values within the distnbutaop

If our practical problems were all such that normal curve approxi-

mations were adequate, we could stop our discussion with the anth-

185
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rnctic nfifl and the aiacdard de\jalK»n infortuaalely Una is nol

fo \!any e\cnla in bu^intaa and w>3oraic probleins hft\e dislnbu

tioM tlial do cot fall mlo convcmtnt patterns It is then that wc

must irTproM^c and u*c other acalvUcsd dmccs, such as the median

n place of the anihroctit mean, and qnartdtt and deciles m place

of the standard dcMstion Such other analjtical dcMccs arc our

concern in this chapter

Since the crucial issu* in man} practical problems is that of

decidng when Can use llic mean and standard delation mth

rrajonsble impunit) rather than being forced b> the shape of the

rc!e\ant distributions to report to less coa\enicnt devices, we also

find It n«e*»ar\ lo pa> parucuUr attenhon to tho*e dcMces that

help us to gam a qu ck impression of the shape of the relevant fre«

quency distributions We have already used some cAcrfi of fre^

quenc) distributions as such a device In this chapter we elaborate

a bit on the u*e of charts to represent a picture of a distribution

We al«o refer to some mathemohcal tools for measunng the degree

to which a distribution lacks s}mmetr} If a distribution is not

symmetrica) we ea> that it is skeued and we call measures of lack

ofs}mmctri measures of rheu-nesj

^ince we cannot aofllyic a frequency di«tnbution until we ha\e

one wo also discuss the proee«s o! constructing frequency distribu-

tions from real data rather than from artibcisl data such as the

hjpothetical results of com tosses

6 1 Averoges

It has been customary to introduce children to the average’ in

the fifth grade m the Amencan school s>8lcm The average is de-

fined as the mm of the set cf numb«s divided by the number of

numbers m the set This earlj indoctnnation has rather thoroughly

implanted in our culture the notion that there is such a thing as tht

a\cragc Actual!), of counp the problem is not quite so simple

At the same time that the child rofculafes the a\eragc in the ap-

proacd waj, he fAwiU of an overage as something that connotes

ordmaiy, or u«\ial, or middle The mthtmtval properties of his

calculation are generally of no concern In fact the t>pical )ounR-

eler is not at all aware of wlmt tho*c mathematical properties imply

W c become concerned with the subject of a\ erages because w e often

reprcicnl a set of numbers b) a single number, or aacrage It is

important that we know what il « about the set that wc are repm-
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aenting, and also that what we are representing makes practical

sense in our problem. We should mention, too, that the subject of

averages is''veiy important in its own right, quite apart from any

particular' use we hiakc of averages in this book. We have been

dealing with averages in one form or another almost continuously

since we became aware of our environment We should now find it

useful to try to organize our notions about averages as they affect

our day-to-day conduct

Three General Purposes Dictate the Choice of an Average

Although there are many more than three different averages, there

really are only three general purposes for which averages are used.

Any particular average will be found to fall under one of these

three purposes:

1. The purpose requires the average to be as dose as pssible to all the

Items of the group Such an average is often called a least-error value

2. The purpose requires the average to coincide exactly wth the event

being predicted. In other words, being close dees not count Common
sense suggests that the best value to choose from the group la the one

that occurs most often. Such an average is often called the most

probable value.

3. The purpose expresses no interest m uidtvtdud items {The above

two purposes are very much interested in individual items ) Rather

it expresses an interest in combinations of items. The combination

of items that is most meaningful, and hence most commonly used, is

the total of the items.

The ieost-frror Va/ue. Although we deplore the practice, it is

very common to make a single-valued estimate of something, such

as the company sales for the coming year. (We much prefer that

the sales forecast be expressed as a range of expectation with an

associated probability m order to reflect explicitly the degree of un-

certainty involved.) It is obviously important for the forecast to

be close to the true value. The size of the error does make a dif-

ference. Hence we wish the forecast to be as close as possible to

what is likely to happen.

We can wake the problem more concrete by taking a much over-

simplified example. Let us assume that our analysis of ail pertinent

(as far as we know) factors affecting our company’s sales led us to

believe that any one of the following sales volumes might occur

with equal probability:

12, 14, 17, 18, 24 (millions of dollars)
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W lin^ forwan would wc make, kctpmR m mind that wc uant our

to he as dec aa poa«»ble to the nght answer? A useful

approach to the problem is to put there 6 posMbillties in perspective

b) placing them along a «ca!c as follosra.

0 12 14 17 18 21

• t I
,
—L-_l , L-

i I I I I

A B C D E

It IS ohvjou^'lj foolish to select a value such as A because we can

gel clo'-cr 10 all five of the possible results by moving to the right

until wt reach 12 If we then move from 12 to B, we get further

nwa> from 12, but we get clow to the other four possibilities U
we quanlifj the value of such a movement from 12 to B, we can sa)

that for each infrcajc in error of $1000 with respect to 12, we dc-

rrffne our irror a total of $1000 vcilh respect to 14, 17, 18, and 24,

thu* giving 118 a net decrease of $3000 It pays, therefore, to move

to 14 U wo eonlinuo past 14 to the point C we would now be mov-

ing uwnj from two of the pos'ibilitics and closer to three of them

1 lib Ri\e< u« a net reduction in error of $1000 It is, therefore,

wortiiwliilc to move to 17 If we proceed from 17 to D, we would

move awaj from three of the po«8ibilitics and toward only two, thus

inrrffifui/j (iror l»j $1000 and the value that gives us the feajf

dctiofton from all the possible values, lliercforc, is 17

\\t can now ?av that the lensUcrror value is the one that has

as inan> values above it m sue as it has l>elow it in sue Such a

V ilui i< ciIIcjI the mrdton If there ere an eien number of possi-

l)iIitKi, there 18 no single median Any value either equal to or

Intwifn the two middle values would satisfy the least-error criterion

\4c can see that this i* *o if we eliminate 18 from our set of po«8i-

lulilics Note that anv movement between 14 and 17 results in

moving clo'tr lo luo of the items and further away from fuo of tlic

items, rc'ultmg m a net change of total error of scro Sometimes we

art indiffirint to which of Uic set of least-error values we ehoo«c

So wt would be m tins particular example’ which assumes that only

the “pecifitd lUms could occur However, in most practical prol>-

' If m truth odI) tlicw four items could occur we muht fetill arevir* for either

H or 1?, ruthcr than for any value m betwefo on the groundv ihst the eilremrs

are equally pood as lie indietwren values as far ss mmifnutnp error ii con*

terntx) Bui tl cy have an additional advantape Chotre of cither of the*f, or

both iH-rmibi us to rnjqv ih'- thnil of bcinp mcily npl I an imrwibility if

«c rh(>cm' a value that nnnot occur Such a thrill han some value to moat

people cvcnilonlv j'*>cholwaI



SOME USEFUL ANALYTICAL TOOLS 189

leins no such limitations exist Gaps in tiie sample information are

due to liimtations m the size of the sample not to the fact that cer

tain values cannot occur Thus we can imagine values in this in

difference range e must make an assumption about the w ay these

values are distributed In the absence of specific information to the

contraiy ^e usually apply the equal distribution of ignorance rule

and assume that the missing items are equally spaced thioughout

the indifference range The next step is to apply the least-error

concept to these equally spaced items This concept suggests that

the middle value among all these imagined possibilities is the best

one to use Vi e usually calculate the middle value by taking half

the sum or the arithmetic mean of the two middle values m the

sample Here v e would get 15 5

The Most Protofafe Value If our problem is such that our an

swer must be exactly nglit prudence suggests that we should be

right as often as possible with no concern for the amount of erroi

when we are wrong The proper value to select for such a problem

is the one that is expected to have the highest probability of occur

ring We call such a value the mode Since the value that has

occurred most often is the most likely ^alue to occur most often

in the future (we assume no shifts m the unnerse) the mode is

simply tlic most frequent Aalue that has oceuned

Although the mode has often been called the most logical of all

the averages connoting What is usuafiy thought as aveiage there

arc really very few practical situations in which it is proper to use

the mode Since its use should be limited to those cases where we

must be exactly right it can logically be used only when we con tell

whether we are exactly nght Our limited abilities of perception

make it impossible to know when we are exactly right except wheie

we have set up certain defined rules or standards Toi example

we know we are exactly nght when we guess the 4 of spades and

it occurs know tins because the 4 of spade‘s is vhit it is by

definition There is no 4 00078 of spades for example But if we

guess a man s height as 6 feet how can we ever be sure that he is

6 feet tall?

We say therefore tliat ne should use the mode only when we

arc dealing with things ti at are so defined that w e \m e no tioublc

distinguishing one thing from another Even then wc would not use

tile mode unless it was clear that the size of an error is of no sig

nificance One of the best ways to test n hether w e w isl a least mor

value or a most probable value in a given problem is to imagine
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Ihil *c have already made an estimate and are nov. comparing it

with the actual result. Or better «un, compare Uo hypothclictl

MUmstw with a presuned actual \aluc For example, suppo’c we

haac two sales estimates of |3 miUiou and $15 million dollars Tlie

actual happens to be $H 7 million If we feel better with an csti-

male of $15 million than we do with an estimate of $5 million, it is

clear that it i* importAnt to us to be close If $15 million is no

belter than $5 million, it is not important to be clo»e, and “a miss

IS as pood as a mile ' It is, of course, \er> important to be clo^c

with a sales forecast

Cowb]flo#Ie/ij of /fems-Tofoli If we were trying to estimate lljc

fofol cost of a group of Hems which we had produced, we could

make such an cHimnie by multiplying the number of items m the

group by the anthmeiic mean cost of an U«n \\ e defined tlie arith-

metic mean as

ft IS clear from this definition tliat K X » Z\ It is equally clear

tliai LY/.T = A’

Thus we see that the most important characteristic of Uic anth-

metit mean w its algebraic relationship to the (olol and to the

number of items Although most of us first learned to calculate

the anihmciic mean as the average/’ there is really nothing m-

licrcot in lU calculation that results in a value that could properly

k called an aiiragc m the sense of a typical or u'sual item The

antliraelie mean kcomes an average m the typical sense only by

coincidence, certainly not by definition The coincidence occurs

when the distribution of items happens to be lymmefncaf Figure

G 1 gius illustrations of symmrtncnl distributions A single-humped

symmctncal distribution such as m A would have ita mean, median,

ami mode all equal to each other Tlius we might cafeufafe the

mean even though we want the median, and no harm w done A
rectangular distribution as in /I would have the mean equal to the

median al*o, but the distribution has os many modes as it ha.s items

because each itun occurs equally often A bimodal distribution as

in C again has the median equal to the mean The two modes sug-

gest the possibility that two overlapping di^ributions, inch with

its own mode, haw been combined and perhaps had better bo sepa-

rated if at all po^^iblc An example of auch a bimodal distribution
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B
Rectangular

C
Btmodal

P

X

Rg 6

1

Three examples of symmetrical distributions

wouJd be a djstnbutton of the heights of adult humans wth no dis-

tinction as to sex

Figure 6 2 shows some examples of asymmetrical, or skewed, dis-

tributions Part A, with positive skewness, is a type of distribution

that occurs quite often in business and economic data Note that

the mean is larger than the median, wluch m turn is larger than the

mode If the skewness is only moderate, we find that the distance

between the mode and median is about twice that between the me-

dian and the mean, a relationship that makes it possible to estimate

any one of these from the other two Part B illustrates what is

called a reverse-tf distribution, a distribution with substantial posi-

tive skewness The above relationship among the median, mean,

and mode would not hold in this case A negatively-skewed distri-

bution as in C IS more a curiosify than a fact in business data It

IS so rare that, if we see one, we should suspect the method of col-

lecting the data, or we should suspect that artificial restraints have

been put on the phenomenon being measured

The fact that the mean mght be equal to the median has been

the cause of considerable chaos in the use of averages For reasons

we examine shortly, the mean rather completely dominates the choice

of average to use What causes chaos is that usually no explicit
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sLitcmtnt 19 made in to whether the mean n selected Iwau^e it «

the mean and la the correct \aluc to u<c when ftC arc interested in

the totfll, or whcilicr the mean w selected because we believe the

dialnbutJon is sufficiently symmetrical to make the mean a reason-

able Apjiroximalion to the mcdion, the value that we rcnllj want

The Harmonic Mean lo i?epr«fnt a Total Although the anth*

meiic mean fortunatelj satisfies most problems that require knowl-

edge of the total, there arc circumstances under which it is not ap-

propriate We can be«t understand the circumstances by reeopiit-

mg that almost all measurements ore really rates, and that all rates

can be cxprc«scd m two ways, with one way being the reciprocal

of the othir For example, a production rate for a man can be ex-

pressed ns A' pieces per hour or as Y hours per piece Thus 20

pieces per hour would be the exact equnalcnt of 05 hours per piece

In our automobile 30 miles per hour is the equivalent of 03333 hours

jicrinile

Table G 1 contrasts the two wB)sof presenting the production rates

of three workers Note that the first way, pieces per hour, shows

the oufpuf laryxng from worker to worker and the tme constant

The second way shows llie time laryin^ and the output consfonf

Suppo«c we had the problem of estimating how long it would take
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TABLE 6

1

Contrasting Ways of Showing Production Rotes of Workers

Pieces Houre

Man per Hour per Piece

^ 3 33333

S 4 25000

0 6 16667

these three men, or any given number of similar raen^ to fill a pro-

duction order of 200 pieces We would suppose that we could solve

such a problem by using the average output per man per hour or

the average hours per man per piece The proper average m each

case would seem to be the arithmetic mean because ve aie inter-

ested in the total output or the total time The mean pieces per

hour IS 4 3333 The mean hours per piece is 2500 Dividing 200

pieces by 4 3333 pieces per hour, we find that it will take 46 154 man-

hours to turn out 200 pieces Multiplying 200 pieces by 2500 hours

per piece, we find that it will take 50 man-hours to turn out 200

pieces Something is wrong with at least one of these calculations

The 50 hours calculated from the anUimetic mean of 2500 hours per

piece IS ^rong here This calculation assumes that each man will

produce the sam number of pieces during the production period

Such an assumption would be correct if work rules were such that

each man is assiped the same quota and would quit for the day

when fie fiati tfffecf firs qcfufa Mast} wuck txrks sre not o/ tiVib"

but rather such that each man works the sam amount of time, Mith

the fast workers producing more than the slow workers during tliat

time

Note the assumption of equal number of pieces results in more

man-hours than the assumption of equal amounts of time Tins is

as we would expect If we restrict the output of fast workers to the

same amount as for slow workers, we would obviously reduce tlie

over-all average rate of output, or conversely increase the average

time required

Having concluded that the anthmetic mean of pieces per hour

gives us the right answer and the anthmetic mean of hours per piece

the wrong answer m this case, we next must decide vhat we should

do if our data are expressed as hours per piece Probabi} t!ie easiest

thing to do, and the most logical, would be to convert the data to
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piefM p*r hour and w the anthmeUc mean If had pome

cogent rcajon for Itie final aniwef to be cxprcaacd in hours per piece,

we could con\e't back hj taking the reciprocal of tlie antliraclic

mean of p eccj per hour The reciprocal of -1^333 pieces per hour

IS 23077 hours per piece Note that 200 pieces multiplied b> J3077

hours per piece i^ill pue ua a total man-hours of 46 154, the same

remit a3dmding2O0b> 4 3333

Hie pwe^ of taking reciprocals of a set of numbers bccau«c Uic

wrong factor is constant in the ongina! set, taking the anthmetic

meari of the reciprocals, and then converting back to the ongmal

form b} taking the reciprocal of the arithmetic mean, remits in

caleulalmg the harmonu: mean of the original set of numbers Thus

wc would call 23077 tlie harmonic mean of the three numbers, 3333,

25000 and 1GG67 Using familiar symbols, wc can express the

fomiula for the harmonic mean as

_L jj_

E- E-
Z I

“F
Uecaum the harmonic mean is rather strange to most people, we

should not use it if wc can avoid it Ue should simpl) convert our

data and use the more familiar arithmetic mean The following

routine maj help to decide when such conversion is needed

1 Tint, find out wbt factor u varying in the rraf rtuatwn In our

problem it would be output per worker, not hours of work

2 Second find out what factor is vaomg in the senes of data In our

problm It would be output per wtirker if wc had the pieces per hour

data, It wou'd be hours of work if wc bd the hours per piece data

3 Third, if the answers to the abote two questions are the same, a* they

woull be if we bd the pieces per hour data, the anlhraelic mean of

the pven data is correct If tb answers arc dilTerent, the given data

must be ronverted by taking reciprocab of the numliers The anlh

metic mean of ihe«e reciprtx*al5 would then pve a correct answer

Other Combfnotlonj of /terns Although to add a set of numlicrs

IS certain!) the most common and most meaningful wa> to combine

numbers, it is not the only way Another thing we could do is

muf/ipfy a set of numbers For example, our pieces per hour data

could be added to get a total of 13 pieces per hour, Uic) could Iv

multiplied together to get the product 72
"* Wc u'c the question

mark because wc have a definite problem of unite here Tlie unit

implied by our mathematics would be cubic pieces or, if >ou prefer,
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pieces cubed Just to state such units is to reveal their ridiculous

character

Thus we can say that the product of a set of numbers usually

makes no sense if the various numbers have some unit attached to

them unless our ultimate mteren resulte m the disappearance of this

unit The unit disappears only when we are basically concerned

with rates of change from one number to another or with ratios of

elements m one set to corresponding elements m another set For

example, let us suppose we had an investment fund that had the

values as shown m column 2 of Table 6 2 Then let us suppose we
made the vague request that we would hke to know the average

value of the fund dunng this penod We say vague because we

have failed to state our purpose, and without the purpose we can

calculate several answers

Before we discuss the eight different answers shown in the lower

section of Table 6 2, let us explain the logic of the use of the

logarithms We use the logs as a calculation tool to simplify the

multiplying of the numbers t<^ether, and, even more important to

simplify the taking of the proper root of the resultant product Turn

to column 4 for clarification of the procedure Here we determine

the total of the loganthms of mh of the fund values The total

of loganthms is really the roatoematical equivalent of the product

of the fund values We then divided the total of the loganthms by

5, thus getting the antiimetic mean of the logarithms To divide

the total of logarithms by 5 js the mathematical equivalent of taking

the 5th root of the product of the fund values We then took the

antilogarithm of 2067432 and got a value of Sn6,800 The result

of this routine of calculation is the geometric mean In familiar

symbols the routine can be summarized as

or

Geometric Mean = Xn

Q = antilog

21ogZ

~Y~

It IS clear that the geometnc mean is strictly a function of the

product of the items If this product has no meaning, it is ex-

tremely difficult to attach any significance to the nth root of that

product As pointed out above, this product usually has no meaning

if the numbers multiplied togettier have some unit attached to them,

such as dollars, bushels, pounds, feet, quarts, etc

Now let us turn to the discussion of the eight answers The

arithmetic mean of the five fund values is $117,600 This has no
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TABIE 6 2

AlUmotlw Way* *1 DtUfflilnlrt® Vdwt of on Inwtmonl Fvnd

V«ir

0)

Value of

Fund—End

of Year

JIOOO

(2}

Ratio of

Fund Value

to that

in rrcffd*

ing Year

(3)

Loftanllima

of

Fund

Values

W

Loganlhms

of

Ratios

(5)

1955 100 _ 200CO0O _
m 109 lOSOO 2W3424 .033424

1957 115 loots 2 000008 0272CS

19iS 125 1CS70 2 09C910 030230

19M HO 11200 2HQ123 049218

ToIaIi 5S8 4^18 10337ICO 140140

Anili Mean 1 17 6 105795 5CCJ4K .030535

Mfdmn 115 10S350 2(KW!0S .034827

AnUlo^nnlhma

Mean lie 60 10S78

Median US 10835

Value of Fund at End of lfl57 if

0) Anthmeiic mean lolue had prevailed

117 0

(2) Median rofiK had prc\ailed

115

(3) Orometnc mean wliie had prevailed

11680

(4) Gfoinctnc medun tolw had prevailed

115

(5) Antlime lie mean role of cAwje bad prevailed

.

]OOX(IOS795)*

(G) Median role of fAjuje bad prevailed

118301

100 X (1 08350)'

(7) Georoctric mean rale of cAonpe had prevailed.

117.397

100X(I0S78)' 118331

(8) Cwmctnc m«fian roM of eA«n{< liad prevailed;

115
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Significance as such because the from \7h1eh it came has no
significance The lack of meaning in tiie total is quite clear when
we realize that we might as well have evaluated the fund every 6

months, or even every week, giving us a total about twice as big,

or 52 times as big

The TMdian of $115,000 would have significance if we thought that

our experience with this fund would be of value m predicting our

expenence with a new fund also starting out at $100,000 If we had

no way of predicting how long we would be able to let such a fund

accumulate, other than that we would definitely liquidate it at the

end of 4 complete years, if not sooner, we might argue that the

best smgle estimate of the value of the fund at this relatively un-

known liqmdation date would be $115,000 We might add that this

solution assumes that the tme order of the varying rates of accu-

mulation IS of significance The medmn rate of change of the fund,

Ignoring the time order, is +8 35% (See column 3 ) If we let this

compound for 2 years, we get an expected value of the fund at the

end of 2 years of $117,400 (See solution 6

)

The geometTv: mean value of the fund of $116,800 has no practical

significance because the product on which it is based has no sig-

nificance

The geometric median value of the fund of $115,000 has the same

significance as the median because it is, of course, exactly the same

answer Examine the way these two measures were calculated and

see that they will always yield the same answer

The arithmetic mean rate of change of 8 795% has no significance

because the total on which it is based has none (It should go with-

out saying that a ratio of 1 08795 is the equivalent of a rate of

change of 8795% }
The fund value of $118,400, therefore, i\hich

IS based on this rate of change also has no practical significance

(See solution 5

)

The geometric mean rate of change of 878% has at least mathe-

matical significance, even though its practical significance is illusory

If this rate had prevailed in each of the 4 years of accumulation,

instead of the actual rate, the fund would have still bad a value of

$140,000 at the end of 1959 That this is so makes it clear that

we went to considerable extra work in calculating this rate We

could have obtained the same answer more economically by taking

the 4th root of the ratio of the 1959 fund to the 1955 fund, or
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•n-u cslnilstioa u furthtr simplified bj using logstithns llie an-

surf b-’irg

log HO — lop 100

anlilcR
4

It IS Sf-J ta-} to p-osc that tht<c t«o methods p\c the sane

aes-scr b) proMig that the producl ol the ratios in eolnnm 3 15 ei-

act!) the same as the ratio of HO to 100 Let us nnto out all the

unii" of the ratios and tale their produet

lOS 115 12j ho HO

ioo
^ l5 ^ 115

^ 125
"

100

Vow t>ti kit tU wren IMtesl liOMMvt

^\}lfrT! ha\e we ended up, then, in our attempt to answer the

que'iUon 0! Whnt was the a\efnpe >alue of the fund? ' It ecems

It ts (air 10 «a5 wc ha\e ended m a itate of confusion We appar-

cnih wt out to illustrate Uic ii<c of the prodwt of a ^ct of numbers

and of it^ don\ntj\e concept the gaomtinc mean We seem to hR^c

diinon«ifsted that neither the product nor the geometric mesn of

tl fund >slu« has an> meaning ^\c did go a step further, how-

c\cr m calculating the product of the rotio! of eucccssi\e fund

talui's Thi« product does hase at least mathemstieal meaning

Note that when wc took the ratios wc canceled out the unit For

cjample 1 O^OO m column 3 has no unit Hence the product of such

ration <loe< not cau«c us to tnd up with *uch absurd answen as m
quinlic dollars which is what wc get when we take the product of

the five fund valuer Wc a!«o dwovered that the prtxluct of the«c

ratio! IS ifie mathematical equivalent of the single ratio of HO to

100 Thus if we know what this ratio means we know what llic

product of all the indiv idual ratios mcaru

Part of our confusion was caused b} our not knowing whj we

wanted to know the average value of the fund Not knowing, we

Irl our imagination run and hence developed eight diflcrent averages

Uc iliminatcd three bccau*c thc> were based on meaningless totals

or products Tbev are numbered (1), (3), and (5) in the table

SincL tliree of Uic remaining five turned out to be the same, wc arc

noA redued to onl) three open to consideration To choo«e among

lliC'C we must a^k and answer w!i\ anvbod) would wish to know tlic

a\ cragL v nlue of sucli a fund e discU'^ed one po<^''ible purport w hen

wc wire considenng the median value and the mctlian rate of change

There we di^covired liial $115000 was an appropriate answer if we
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assumed that the time order of the rates of change was indicative

of the bud of time order that might prevail m the future If not, an
answer of 8117,400 was appropriate

The only remaining possibility is the use of the geometric mean
rate of change This would be jneaningfui OTily if the investment

conditions were such that the fund must be committed for 4 years

with no possibility of liquidation at a prior date This is, of course,

a very rare situation The closest thu^ to it occurs with the Senes

E bonds of the Pederal Government The advertised rate of interest

on such bonds is the average rate of return only if the bonds are

held to maturity Redemption at any pnor date results in a rate

of return less than the advertised rate Thus the advertised rate

IS really the manmum rate we might earn if we bought such bonds

We would really be quite foolish if we purchased such bonds as

though the maximum rate were the average rate The reader is left

to figure out an appropriate average rate for Senes E bonds to

compare with the expected rate of return on an alternative invest*

ment

Clear-cut examples of the proper use of the geometnc mean are

not easy to find We tiy again in the chapter on index numbers

In the meantime, we should not accept unthinbngly any presumably

correct use of the geometnc mean

Other factors in the Choice of an 4ppropr/crfe Average Al-

though the three purposes mentioned dominate the choice of an

average and shoidd prevail over any other consideration, there are

times when the distribution is sufficiently symmetrical for the three

svojiagos, mean, and moder te be practJcaltv the

same size It is then that other cntena enter the arena of choice

Relative Stability in Samplmg Figure 6 3 compares a distribu-

tion of means of random samples with one of medians The samples

each contained three items The universe was symmetncal Note

the greater spread of the medians This illustrates a very important

weakness of the median compared to the mean the median m

general is more subject to sampling errors than the mean Thus

it iB entirely possible for the mean of a random sample to be a better

estimate of the median of the universe than the median of the sam-

ple would be

Therefore, whenever it is reasonable to assume that tlie universe

is symmetncal, we definitely prefer to use the mean of the sample

as our average, even though our purpose requires the least-error

value or the median
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T>i i3 Comp^n.'OQ of distrilrntton^ of mc&os of Ttnifoni s&mpfts katt mMi&M
of raniiom iam|i!rx (Univrrw rooniln of t>i« numUn 1, 3, 3, 4 All l^ibl^

wmpW of 3 f'fh <fe iftctud<sl in Ui< tlmnbuUooi

)

Siucephbtc lo Aljibrmc Mompulofm AnoUicr wcaUnws of tlie

iTKdi’in 18 Uiflt It bears no precise algebraic relationship lo the dis*

tnbution from v^liich it is caieulated ficnee it becomes very diSi*

cult to manipulate the median fnotheinatica!)j'. The mean, on the

oilier hand, has a precise relationship to the fofal and the number

ol Hems in the disinbulion U is not surprising, Ihcrrlore, that the

IwMC Alruflurc of malhomalical statwtjcs is built around the anlli-

melic mean It cannot he overemphasized, however, tlmt the funda*

mental &««umpUon underlying this inathrmatical structure is that

the unuerse is at Ica^t syrnmefnefll We say at least because some*

times ilio c\en more rcstrictuc assumption of nomolify has to be

made

Again we conclude stating ilial we prefer the menu to the median

as a feQJt*f}Tor value »/ Uic appropriate assumptions are reasonable

Trontfofmlng Data fo Make Them Symmefrfc0f. Our preference

for the mean over the mMian can at times be so strong tlmt we

male an effort to cuuvert a akewed distTihution into one that is

reasonably symmetrical This conTCrsion slmuld not be carried out

by any arbitrary throning away of some of the items of evidenof,

a technique pomctimes used m lime study Uather it should be

done by Uie application of a standard mathematical procedure.

Table 63 illustrates such a mathematifa) transfonnation of data.

The original series, X, h definitely skewei}, Kole Uial the aritb'
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TABLE 6 3

Transforming a Skewed Senes to o Symmetrical Series by the Use of

Lsgonthms

X LogX

1 000000

2 301030

4 602060

8 903090

16 1204120

32 1 505150

64 1 806180

127 6321630

x~ 18 14 903090

Medjan(Md) = 8 903090

Gm = 8 (antJog of 903090)

metic mean of 18 14 is substantially larger than the median of 8

The distribution of the logarithms of X is symmetrical, however

Note that the median and mean of the logs are both equal to 903090

Also note that m this case the geomelnc mean of the original data

will equal the median

We can do other tilings ^an use logarithms We find many phys-

ical phenomena that seem to follow a square root law in the sense

that one variable varies as the square root of another variable

Then we might find it convenient to work with the square roots of

the original items rather than with the items themselves Another

possible transformation device is the reciprocal, iihich we used in

the calculation of the harmonic mean We can also combine loga-

rithms with reciprocals, etc

The work involved m doing this sort of thing can be quite sub

stantial and very frustrating if our efforts turn out to be fruitless

The use of special graph paper, constructed on the same principles

as logarithmic paper and probability paper, can facilitate our efforts

to make a skewed senes reasonably syrametncal Wc must confess,

ho^\ever, that relatively little success has been had in transforming

skewed business data into ^mmetncal data by some simple device

We should hesitate to devote much time to a search for a proper

transformation unless we have very strong reasons to prefer the

arithmetic mean to the median
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Alofh«fnof/<oE Ffoptrtici of Meon and Mtdian. Wc alrtidy hast

Dokd lhat the median is a least-i'fror xalue (p 18S) and that the

fum of the denation' around Uic mean equals 0 (p 149). We now

noU- that the moan n a error value These three

mathematical properties arc illustrated in Table 6 4

Column 2 illustrates Uiat the sum of the deviations from the mean

equals 0 Thw » tJic propert> that maltes it possible to u«e short-

cut methods of caleulalinp: the mean It also considerably simplifies

much of the mathematics of manipulaiinR the arithmetic mean It

al«o tells us that the mean dindes a ecncs into tao parts so that

the sum of all the items aboxe the mean equals the sum of all the

items Ivlow the mean It is Uiua analojtoua to the center of grax ity.

It should be clear that this nould mean nothini; in a practical prob-

1cm unless it were meaningful to add the items in a senes

Column 3 illustrates the proce«s of Reltmg the sum of the iTuflrci

of tlie dciialions from the mean This is fundamental to the cal-

culaiion of the standard dnintion and the squanng is done to b>s.

tematicalK conxert all the minus signs to plus signs The sum of

ihc'c squared deviations 338, is the smallest sum of squared dcxia-

tions It IS possible to pet nilh this lencs of fisc numbers If wc

measure these squared deviations from any other value than 10^

Uie arithmetic mean, nc find their sum to be larger than 338 For

example, column 6 measures tliem from tlie median, or 7 in this

ca»e, resulting in a sum of 383 It is easily proved by the u<e of

calculus that the sum of the squared deviations is a minimum when

TABLE 6 4

lllvilratlea «f MathffflotUal PrQptrtUi pf Iht Arilhmatlc M*an end Iht

Mtdian

.V

()

x-x
(2)

(V-,T)’

(3)

lA'-Xl

w
IX-Mdl

(S)

(A' - Md)'

(0)

2 -8 8 5 25

4 "8 30 6 3 9

7 -3 9 3 0 0
12 2 4 2 5 25

23 15 2:!5 15 18 321—
M

a - 10.

0

Ml-7

338 34 31 383
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they are measured from the anthmetic meau Thjs explains why
the mean is often called the least-squares value

Although the least-squares property is very useful in calculations,

it should not be interpreted as having any other practical signifi-

cance If least-squares estimates have any practical use, it is be-

cause they are the same as anthmefac-mean estimates, not because

they are least squares As a matter of fact, rarely does a squared

error make any sense at all For example, we would hesitate to

tell our boss that the given sales estimate was expected to be accu-

rate with 80% confidence witbm a range of 300,000,000 square dol-

lars If a squared error makes no sense, then, of course, it makes

no sense as such to minimize them

Column 5 illustrates the calculation of the sura of the deviations

around the median, with the directwn of the deviaticm bein^ ignored,

thus making all the signs plus We proved by the use of a graph

{p 188) that this sum is a mmimum when it is measured from the

median Note that the sum is 34 if we measure from the mean m this

case

The fact that we generally are interested in a Imt-error value

even though we usually calculate a leasl^squares value is a persistent

complication in the application of statistical methods It forces us

to be continually alert to the shape of the distribution with which

we work, the fundamental requirement being that the distribution

be essentially symmetrical

A2 ?/^qventy S$f)es

We have already had substantial contact with frequency senes in

our study of coin and dice throws The frequency series arose be-

cause we had decided to treat some individual events as though they

were the same even though they were conceptually or actually

different For example, if we toss five coins and get a result of

HHTTH, this IS obviously different from a result of THHTH This

difference makes a difference to us, however, only if the order of the

heads and tails counts If the order does not make a difference to

us, we find it desirable to treat these two events as the same, thus

giving us a freQuency of 2 for the event of three heads and two tails

Another interesting thing we discovered m our analysis of the

frequency distributions of corns and dice was the tendency of such

distnbutions to conform quite well to the normal, or Gaussian, dis-
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tribytior. UV achieved confidersble economy of time and effort by

unng ihe ootmal dlstnbution as an approximation device.

Fra^ancy Distrlbutlont of Coin Totslftfi Dots

We now direct, our attention to the conslniction of frequency acrien

from actual lample data We ean illustrate one of the problems

that ari'C! by cxatnmmf; some actual resulu of a coin tossing experi-

ment Table 05 compare* the umverse of long-run cxpecUitions

rilh tno eepawte nperimento m tossing five coins 100 times.

First note that the tno experiments >Melded dtlTercnl results, the

ino»l notable difference bemg the tkevness in the (iral distribu-

tion If ne assume that both of these experimental distributions

were generatwi by the same universe, and this seems reasonable

since the same set of five coins vas used for both, we ean explain

these different results only by labeling tliem due to fluctuations of

random rampling (This is really another way of saying that the

djffcrrnecs ^cre due to rewons unknown.) Hence we might assume

that the differences arc strictly short-run and would disappear if

we made the sample large enough in each case In fact, wc might

go eifn further and assume that both of these distributions would

then be Uie same as the hypolhesited universe.

TABU a.5

Unlvtn# at Un9^n EiptclglloRi Cempertd with Rnulli of Tvo Eiporimtnft

la thoTeisIag of 5 Coins IbOTlmot

Univerae Actual

Xoraber of Frequency for 100 Tosses

Heads KxpceUncy* Expenraent#! Experiment #2

0 3 C 2

I 16 17 19

2 31 33 29

3 31 33 30

4 IG 8 1?

2 3 3 3

100 100 100

• Buttl upon th« kyjMthoij tkt U« pmlabikty ot » head B .5 lot t«b o(

the 5 coins.
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We are thus brought to what is the real problem for us The
typical practical situation finds us in possession of onl> one set of

results of the kind shown in Expenment 1 or 2 We are quite sure

that if we obtained another set, tiie results would be different from

the first, and that both irould be different from the unknown uni

verse of long-run expectations Our typical problem then, is mak-
mg the best guess we can about the universe distribution from the

information provided by one sample distribution In doing this we
must answer questions like this Is the universe really symmetrical

even though the sample shows some skewness? (Cf Experiment 1

)

Does the universe have a basically smooth distribution as we pro-

ceed from one frequency class to another? Does the universe haie

about the same degree of vanataon m it as the sample, or might the

sample have left out a proper sliare of extreme items? And so forth

It should be obvious that our answers to these and similar ques

tions are subject to uncertainty Therefore we concentrate on com-

ing up with not a single answer to such questions but really a set

or class of answers, with the set big enough to properly reflect the

degree of ignorance we have about the location of the true answer

An Important Qualification In order to simplify our discussion

over the next several pages, we are going to assume away the prob

lem that the universe may be changing over the period under study

We are going to treat our sample items as though they all came from

the same universe This would be a very dangerous assumption m
most practical problems, and we do not make it later But for the

moment it will enable us to concentrate on other issues

Some Actual Data

Table 6 6 lists the first 200 chaise sales on a given day in a neigh

borhood hardware store in the order in which they actually occurred

Since we are assuming that no shifts were taking place in the urn

verse during the day that is, there were no tendencies for the sales

to get larger or smaller m any systematic way as the da> progressed,

we Ignore the chronological order henceforth The important thing

is how often sales of various sizes occurred

The Facts as We Find Them Figure 64 portrays graphically

the 200 unit sales in order of size The tiers are used m order to

concentrate the data m a reasonably small area for more effcctne

comprehension of their pattern of variation

The most important point to note about the unit sales the uana

tion in their jreguency as we progress along the scale from 0 Tiie

density appears to increase until we reach 5200 to §2 50 and then



m Wf STATtSTICAL METHOD IN BUSINESS

TUU 6.i

UaK CK<t(^ SoUi ftf NttghborKoMl HanfwDr* St»»t In Ofdff of Occurrtnet

\M 200 lliO 154

75 U5 300 123

153 257 139

^2 539 552 135

91 3116 lIH 859

208 203 509 174

3^ 430 1235 512

193 238 458 590

401 1778 105 72

257 470 196 309

liO 20Q £3 2634

191 5^ 3233 695

361 800 214 421$

115 1030 616 60

3^ U48 391 31

1017 217 255 711

137 5(H 179 liO

1097 216 207 146

61 492 19 «5 m
ICO 263 63S 1003

67 1100 275 101

40 435 41 2M
215 2550 209 1263

523 325 217 212

207 217 314 540

200 190 225 975
1C7 1758 569 7125
245 374 306 400
0^ 367 51 504
202 1206 215 HO
1301 3416 026 102

100 400 250 303
691 650 55 474
190 4 75 355 109
249 1790 ii 1455
491 3695 554 234
330 14 49 1516 528
202 3 93 101 220
246 179 407 219
115 102 423 231
350 777 415 no
1200 610 1509 102
250 610 124 1383
419 858 144 5&l
261 70 210 316
203 7^ 593 237
54S 237 250 232
16S 402 106 325
34S 670 563 303
35 30 543 379
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il i)«rca«c< rather npd!) There relali\elj te^ instanef^

vlcrcm a pvm unit tale oecurred more than once There ^\crc

mc} unit talcs that did cot occur at all, e^en within the range of

higli bctnwn 5200 and J250 \\h> did thii^e "gaps'* ap-

pear? Is It beeauv; unit 'ales of lhc*c amounta ju«t do rot occur

bcesu*c the) do not exist in the un»\er*e? Or w it because our

sample is to small that it would he «npo«s\blc for all the diSerent

unit sales to appev? For example, 200 items could not pos^ibl)

cover cvcr> unit sate across a range of HOOO Or is jt a combina-

tion of the«e ttt-o exphaator) cau««? In other words, perhaps some

of the gaps arc due to the finailne*s of the sample, whereas others

arc due to the pneing sj stem u^od in the store which makes it almost

impossible (or certain prices to appear, and hence certain combina-

lions of prices when the cu*tomcr bu>s more than one item

The bc<t waj to answer iho«e questions is to enlai^c the sample

of data and see what happens If the gaps tend to disappear as the

sample enlarges, we have evidence that thej were not caused by

anv re^lnetions on the items themselves, but rather b) the small-

new of the sample If we add another «amplc of 200 items to our

onginal 200, we find that man) of the gaps do tend to fill up as

can be «ccn in Fig 65 We note, however that there does seem

to be cvndence of bunching around $1, $2, $3, and It We suspect

that this IS a result of price strategj The concentration around the

even dollar marb lends to disappear as the unit of sale incrcn«e8

This u probabi) bccau«c the unit sale is more likely to be made up

of ici cral items as the amount of the sale increases, and hence it is

IcM affected bj pnee strategy Considerations

If we were to increase the sample size even more, we could be

still mere confident about an) conclusions we might make about

the probable pattern of distribution in the universe Wc would,

however, never be able to avoid completely the problem of guessing

Three senous restrictions uniall) prevent our enlarging a sample

very much in practical problems One rcstnction is impeded by the

fact that we increase the ri'k ol a change in tic unucrc as we

enlace the sample if it- takes time for sample items to accumulate,

thus po*Mbl) invalidating any conclusions ba«cd upon the assump-

tions of a single unn erse A second re«tnclion is economic It eo»ts

mone) to collect more data, and somclimea the increased accuracy

is not worth the co*t. And final!) there is the fact that in many
problems there is no way we can enlarge the sample except by wait-

ing for the future to become the past, and by then it is loo late to

do an) thing about the problem we were working on
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Combxning Item. It is possible to get effects \ery similar to

tbovi that result (rom enlarging the sample by igTionng some of the

differences between the iiiea of the ilcroi For example, if we u*c

our 200 Hems to cover the range from 10 to, say, ISO, with attention

paid to differences as small aa 1 cent, we would ha\e only 200 Hems

to co\er 5000 possible results Obaiously we arc going to ha\c gaps

in the coverage If, on the other hand, we were to decide to round

each unit sale to the nearest II, we would now have only 50 possible

results It would no longer be impossible for our 200 items to cover

all the possibilities Thus, if we conceive of the mam purpo'e of

enlarging the sample as being to increase the rofw of tlie number

of Hems to the number of possible rcaults, we can achieve the same

purpose by dccreannfl the number of possibilities and keeping the

sample sue constant

Let us expenment with this technique by applying it to our 200

unit sales Table G7 shows the various results we get if we group

the unit sales into classes, or internals Column \ Bpeciiies the unit

sale Columns 2 through 10 shew the frequency for each interval

of unit sales, with the length of the interval m each ease being

specified at the head of the column The frequency in a given in*

terval is placed opposite the unit sales that would be at the middle

of the given mterv'al For example, the 26 m column 4 is placed

opposite 1100, which is the middle of the interval running from

1 625 up to but not including IU75
The rca«on we expenment with several different inlen-als is that

we really have no simple entenon for scleclmg any one ns the best

The onfy general rule is an interval too narrow results in irrcgulari-

lies in the distribution of llie kind generally associated with sampling

fluctuations, and an interval too wide covers up too much of the detail

needed to confidently establish the general pattern of the universe.

The practical problem is, of course, to find the length of interval

that is neither too narrow nor too wide. One of the best ways to

judge w here this medium might be » to study a chart of the distribu-

tions we get for vanous selected intervals Figure 66 is such a chart

The distribution for the smallest interval, 125, shows marked ir-

regularities The frequencies follow a iig-*ag path as they progress

toward the peak Tlic 1 50 distribution is somewhat improved, al-

though it shows a disconcerting dip between |1 and 12. The 175
distnbution shows comforting smoothness until it gets above the

17 50 mark The dislnbutions with inten'als larger than $ 75 do not

show a significant increase in smoothness In fact, the |100 and

1125 distributions show a disturbing discontinuity bctw'een 14 and
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TABLE 67

Fraquancy of Unit Charge Seles of a Nalgfaborheed Hordwere Store Selected

Intervals

Dollar Length of Interval

TJmt

Sales ?25 50 75 1 00 1 25 1 50 2 00 2 50 3 00
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TABlt 67 (C«ntlflv*if)

TS 100 tis IJO 200 5.V) 300
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TABLE 6 7 (CoMinusd)

Dollar Lengtii of Interval

Unit

Sales $25 50 75 1 00 1 25 1 50 2 00 2 50 3 00
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TABLE 6 7 (Conllnutd)

Dollar Len^ of laUrval

Unit

Sales 50 75 IW 155 150 200 260 000
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TABLE 6 7 (ConHnudd/

Dollar Ungth of Interval

Umt - ——

—

Sales $25 50 75 1 00 1 25 1 50 2 00 2 50 3 00
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TABLE 6.7 (Ccntlnvtd)

Dollar Length of loterv*^ '

Unit

Sales *.25 .50 .75 1.00 1.25 U50 2 00 2.50 3.00
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TABLE i.7 (C«nHRV«<t}

BoDar Length of loteml

Umt —
SftStt J5Q liJQ liS 15Q 200 2JW
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TABLE 6 7 (Continued)

Dollar Length of Interval

Unit —
Sales $25 50 75 1 00 1 25 1 50 2 00 2 50 3 00
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TABLE 6 7 (Continued)

Dollar Lenglh of Inter^-al

Unit

Sales S25 .75 IQO 155 liO 200 2.50 30Q

42625

4275

42.S75

4300

43 125

43.25

43.375

4350

B c 0 0

0

0 0

1

70.50

70.625

70 T5

70875

71 OQ

71.125

71.25

71575

71.50

71.625

Totals-

B
B

I g

B

B

g 1 i
TTequratnt&’artihiuvriivypiKfi'b

the cudpomt of the inten-ai

i6 All tie distnbulions make the po'^itive ekewness quite clear.

Practically al! of them show a peak at, or \ er>’ close to, a unit sale

of S200.

Let us select the distnbuUon with an interval of $ 75 as the best

of those So far considered, and then a^l ourselves why we think it

is the best Our basic argument would be that it provides the opfi-

mum combination oj moothneu and detail A smaller mten’al

gi\ es us more detail, which would be good, but only at the sacrifice

of smoothness A larger interval giv« us less detail, which is bad,

and with no significant increase m smoothness. We now ask our-

selves why we put so much emphasb on smoothness. First, and

more importantly, we believe that most umi’mes are smooth in their
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Fr0 6 6 Graphic preseotation of unit charge sales of neighborhood hardware

store-frequencies for selected intervals

distributions This is not usually supported by direct evidence be-

cause we are always dealing with samples, and samples are always

irregular to some extent We have found, hott ever, just as we did

when we enlarged our sample of unit sales to 400, that larger samples

generally are more regular in disfaibution form than are smaller

samples We reason, therefore, that still larger samples would be

even smoother, and that the universe itself would be definitely de-

void of irregularities

Second, we put so much emphasis on smoothness of the distribu-

tion because it is convenient A universe is much easier to deal with

if it has a regular shape Such regulanty is necessary, in fact, if we

are going to represent the distnbufaon by some mathematical model,

as we did in an earlier chapter when we used the model of the normal

curve to represent the various specific forms of the binomial In

fact the pull of convenience is so strong that we are frequently will-
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mg to sacrifice a little accuracy to acbieve it For example, with

the uml charge ealea vre have teasou to suspect that the uiiiver''e

might actually contain some untoward bunching around the e\en

dollar pomts If this la true, the distribution would show some

lumpmess as illustrated in Fig 6 7 This kind of lurapmess would

present quite a problem if we were to try to represent the distnbution

with a mathematical model We might arbitrarily smooth out thb

lumpmess on the basis that the resulting errors would be relatively

trivial We can, of course, overdo this and sacnfice too much for

convenience

Some Useful Criteria In Selecting Intervals for a Frequency Series

Purpose Behind Construefion of Frequency Series Two basic pur-

poses might prompt the construction of a frequency senes first to

facilitate our understanding of the nature of the distnbution, and

second to present the data m a form convenient for the use of

others The primary significance of the difference between the two

purpo'ea lies in the (act that the person who constructs the frequency

Ecnea from the original data ka* the ongrnnl data m his possession

and can always fall back on the onginal data for some parts of his

analr«is On the other hand if the frequency senes is all we ha^e

to work with any final conclusions roust necessanlj be directly de-

termined by the frequency senes rather than by the onginal data

Insofar as the frequency senes does not adequately desenbe the

onginal data such final conclusions are subject to error

Bff 4.7 liJustratron of

»

Jumpy frequency distnbution
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When we construct a frequency senes from the original data, we

are usually concerned with trying to discover the general shape of

the universe In addition, we are usually hopeful that the general

shape conforms reasonably well to some standard distribution like

the normal Our procedure is very simiUir to what we have done

with the unit sales data to this pomt In addition we often chart

the ongmal data in a cumidahve frequency form to facilitate smooth-

mg and to compare the result with a standard distribution We
found it very convenient to chart our binomial distnbutions in a

cumulative form to see better what was happening as we increased

the size of our samples

Presentation of data in Ihe form of a frequency senes provides

two advantages It enables the presentation of masses of data in a

very small space and it preanalyses the data It is most appropnate

only when the sample of data is fairly large, say, at least 150 items

If the sample is much less than 150, the economy of space provided

by the frequency senes is less spectacular and the nsks of error m
the preanalysis increase With small amounts of data it is usually

better to make our own mistakes by constructing a senes ourselves

than to restnct our analysis to only what can be done with the pre-

constructed frequency senes Occasionally it is necessary to present

even small samples m the form of frequency senes in order to con-

ceal the identity of the specific items Such concealment is often

required in order to get cooperation from the suppliers of the ongmal

information For example, a woman might be willing to admit her

age IS between 30 and 40 years although she would not admit the

exact year

Sometimes the sample of data is so large that we feel that for all

practical purposes the resultant distnbution will look very much

like the umverse Then, if we have no reason to believe that the

universe has gaps in it or has some points of unusually heavy con-

centration, we often will preset the intervals and collect the data by

just tallying the proper interval locationa Thus we never actually

record a specific item

Intervals Should Be of Constant length If at All Reasonable One

of the points of interest m studyrng a frequency senes is what hap-

pens to the frequency from interval to interval If the intervals

themselves have varying lengths, it is very difiicult to separate that

part of the change in frequency due to the change in interval length

from that part due to a real change m frequency It is obvious, for

example, that large intervals will tend to have greater frequencies
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than small intervals Equal sired intervals 7, ill also considerably

facilitate the anal} sis of the senes, whether by mathematics or by

charts, as we see later

Unfortunately, there are many senes m business and economic

data which are so skewed m their distributions that adherence to

the equal internal rule creates more problems than it solves Our

unit sales senes illustrates the dilemma An interval small enough

in size to present a reasonable amount of detail m the areas ivhere

the bulk of the data falls results in a great number of empty intervals

in the higher ranges of the data The compromise solution is to

lengthen the mter\als as the data thin out and e\en possibly to pro

^ide what is called an open end to cover all the items that fall abo\e

a certain value (or below a certam value if the data are skeined

negati\ely, which is very rare in business data) These compromises

will force some modification of analytical procedures, but the prob-

lems are certainly not insurmountable For example, it should be

pointed out that the length of the intervals usually has no effect

whatsoever on the cumulative frequency chart

inlervo/s Should be Alufuol/y Exclusive The intervals should be

j defined that a particular item can fall m only one interval, and

there must be an interval for every possible item Unfortunately, it

is much more difficult to unequivocally define an interval than we

might imagine It is important here to keep clearly m mmd the

distinction between a dwrete variable, one that vanes in steps, and

a continuous vanable, one that theoretically and actually vanes by

infinitesimal amounts If a senes is discrete, there would be paps

m the data themselves, and we solve our problem of unequivocally

defined intervals by matching the gaps between items of data with

gaps between the intervals For example, if we were classifying

families by number of children m them, we might use intervals as

follows

0-1 children

2-3 “

4-5 ‘

etc

If the senes is continuous, such as m a distribution of heights of

human beings, the limits of adjacent intervals theoretically butt

against each other, with nothing at all m between We know, how-

ever, that limitations of perception result in rounded measurements,

thus presenting the appearance of gaps For example, if our meas
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urernents are rounded to one decimal place, there is no measurement

recorded between 58' and 59' We know, nevertheless, that the

5 8 might actually be as large as 5 85 and 5 9 as small as 5 85, thus

theoretically eliminating the gap

A theoretically perfect solution to the problem of intervals for a

continuous senes cannot be achieved without using footnotes because

there is no other way to state the intervals so that no one 'mH be

misled To make our discu^on concrete, let us assume we have

measurements rounded to one decimal place If we wnte our inter-

vals, say, as 1 00-1 95, 2 00-2 95, etc
,
there would be no problem

where to put a given item All the numbers from 1 0 to 1 9 go into

the 100-195 interval, all those from 20 to 2 9 into the 200-295

interval, etc The true intervals, however, would be 95-1 95, 1 95-

2 95, etc
,
and the midpoints of the intervals would be 1 45, 2 45, etc

This follows from the fact that the number, 1 0, might actually be as

small as 95 If we state the interval as 100-195, a person using

the senes might make two incorrect assumptions He may assume

the data are accurate to two decimal places, and he may assume the

midpoint 18 1 475 If we state the interval as 95-1 95, he again

may assume 2-deoimal-piace accuracy In addition, he may be con-

fused by the fact that the upper limit of one interval is also the lower

limit of the next interval We can elimmate both problems by using

footnotes For example, the footnotes may read

1 Lower limit of interval is included, upper limit excluded

2 Data actually accurate to only one decimal place

Some people prefer to eliminate the first footnote by stating the

intervals as " 95 up to but not including 1 95 ” etc This method

takes quite a bit of space in the body of the table, however

locofion of fhe Anfhmehc Meon and Median in a Frequency Dis-

frifaufion It IS an advantage to know the arithmetic mean and the

median of a senes before we select the class boundaries If the

median and the mean are almost equal in size, this indicates that

the over-all distribution will be fairly symmetrical We should then

select boundaries for the interval containing the median and the

mean so that they will be as close as possible to the midpoint of that

interval If the mean and the median are significantly different in

size, the distribution is skewed in the direction of the mean For

example, the arithmetic mean income per family m the United States,

and m every other country, is significantly larger than the median,

particularly before taxes are deducted This difference is caused by
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the skewness in the direction of the hjgh incomes Figure 6.8 illus-

trates the aituation Note that the peak frequency is k» the left of

the median, which is to the left of the mean Also note that the

distance from the median to the mean \i about half as large as the

distance from the median to the mode, the value associated with

the peak frequency This approximate 2 to 1 ratio of these distances

15 fairly typical of moderately skewed wnes This ratio does not

hold too well, however, if the skewness is as large, say, as m our unit

sales senes Our first sample of 200 has an anthmetic mean of $5 72

and a median of only $3H If the 2 to I ratio prevailed, the mode

would be only $l 85, Figure 6 2 shows that a better estimate of the

mode would place it somewhere between $2 OQ and $2.50 Our second

sample of 200 has an arithmetic mean of $4 90 and a median of $3 42

The 2 to 1 ratio would place the mode at $2 68, a figure which seems

to be too high

Logic suggests that the mode of the distnbution should be near

the center of the interval m which it falls and that the interval which

contains the mode should also have the highest frequency. Un-

fortunately, there is no simple way to atimate the mode until we

^e already selected our intervala and tallied the items Since such

i prior Selection influences the location of the mode, we run some

Rg t.8 Distribution of family income m Vermont, 1959 (Source- United

States Census of Population, 1960-^Veniwmt; p 69

)
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nsk of reasoQing m a circle The ideal solution would be to select

many intervals which differ both m size and boundaries for the same

size, and select the final distnbutaon wbeh resulted m the best

compromise between smoothness and detail, with no explicit concern

for the mode The mode of the resultant distribution would then

be about as good an estimate of the true mode as we might make

But an approach like this involves considerable labor, hence it is

seldom used Rather we trust to luck and postconstruetion analysis

to locate the mode

A-ctually we are not overly concerned with the location of the

mode except as a criterion for the selection of interval boundaries

As we have seen^ the mode has practically no use m business prob-

lems and almost never has to be calculated for its own sake

Interval Boundaries and Midpoints Should Be Rehtively Round

Numbers This condition has a very appealing ring, and there are

occasions when it has merit However, we cannot achieve this objec-

tive without introducing some bias to the results we get from calcu*

latiOQS of the distribution For example let us suppose we decided

to round our intervals from 95-1 95 to 1 0-2 0 This would have the

obvious raent of stating our intervals with the same number of

decimal places as the data, thus eliminating the need for a footnote

on accuracy It also results in round numbers It mil, however,

put numbers into the interval that uould be rmsured as running

from 1 0 to 1 9 but which actually would run from 95 to 1 95 (In

this and subsequent discussion we are assuming that the upper limit

18 excluded from the interval ) The typical person probably would

assume that the midpoint of an interval running from 1 0 to 2 0

would be 1 5 instead of the true midpoint of 1 45 He would also

assume that the interval ran from 1 0 to 2 0 If he uses the 1 5 in-

stead of the 1 45 m his calculations, his results would have an up

ward bias in some cases Of course, this bia« is only 05, and many

people may be willing to have it m a given problem for the con-

venience of the round numbers Nevertheless a careful worker should

know that the bras is there and know what he is ignoring if he so

decides If we are constructing the frequency distribution for others

to use, we definitely should provide mformation about any bias

The primary argument for relatively round numbers is conveni-

ence of calculation This is not so important as a few years ago

With modem calculators and modem methods of shortcut calcula-

tion we are better advised to be more concerned with the accuracy

of our data than with the “roundness” of our numbers An example
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of how easy it is to sohe the problem of round numbers when we

are at the calculation stage would be the rounding of 1 45 to 1 50, 2 45

to 2 50, etc
,
by adding 05 to all the numbers before performing a

calculation Then when we have finished, we merely swhfrocf 05

from our answer if appropriate We say “if appropriate” because

there are some calculations, such as the standard deviation, that

would be unaffected by the addition of 05 to all the numbers

The Problem of tumplness or Discentmuifies in fhe Cofo. We

have already noted the possibihty that our unit sales data had an

apparent tendency to concentrate around the even dollar points, par-

ticularly at the lower values of the senes We used Fig 6 7 to illus-

trate the problem W e decided to ignore the problem m our treat-

ment of the unit sales data It is important nevertheless, that we

now note what we would have done if we had not decided to ignore

the problem

AVe would have done two things First, we would have selected

intervals in such a way that tfie dollar points would have been

reasonably close to interval midpoints Second, we would have made

the intervals small enough so that intervals adjacent to those that

had the dollar points would have appropriately low frequencies, thus

highlighting the fact that the dollar.pomt concentrations did exist

The resultant lumpiness would then be quite obvious, and appropri-

ately so It would be inappropriate to worry about midpoints cor

responding to concentration points and then choose intervals so

broad that the lumpiness gets smoothed over, thus encouraging

people to assume that the senes has no concentration points other

than the “Single one around the mode

6.3 Charts of Frequency Series or of Probability

Distributions

AVe have already used charts extensively in our discussions AVe

have found them a very useful tool to help us acquire a mental

picture of the way m which a variable may be varying and to com-

pare the particular distnbution with some pattern we might have

m mind, thus helping us to decide whether any conformity to a

pattern ig close enough to justify the hypothesis that the pattern is

a fair representation of the senes of data involved It is possible

sometimes to make probability calculations to test the conformity

of fact With hypothesis Even these calculations, however, involve
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some assumptions about the shape of the distribution we are dealing

with, a shape best suggested by loobng at a chart Thus we 6nd

charts helpful even if only prelimmaiy to usmg mathematical calcu-

lations

One of the most important functions of a chart is to provide guid-

ance for tnterpolatin^ between given items in order to infer the values

of items which we do not yet have but which we suspect can occur

nevertheless In fact, the whole process of inference is essentially

a process of interpolating, and practically all statistical methods are

interpolation methods In a sense th^e is no need to be persuaded

to practice the art of interpolation, or the related art of extrapola-

tion We all seem to have an intuitive urge to read between the

lines, so to speak Where we may need a little persuasion is to

consider the possibility that apparently new and strange interpola-

tion methods may be useful additions to our present stock of tried

and true methods I

Figure 6 9 illustrates five alternative ways of picturing a frequency

distribution Each has its counterpart in the presentation of a

cumulative frequency distribution as shown m Fig 6 10 Fart A pre-

sents only the coordinate dots The location of the dot with respect

to the variable is no problem for the cumulative distribution It is

for the noncumulative form, however The problem exists because

the dot must represent an interval, such as from 95 up to but not

including 1 95 Where should we place dot in the interval"? The

convention is to place the dot at the midpoint of the interval If

the items were symmetrically distributed through the interval, the

midpoint would correspond to both the median and the mean of the

items in the interval. But, of course, the items are rarely symmetri-

cally distributed, either actually or theoretically, with the possible

exception of the middle interval m an over-all symmetrical distribu-

tion What the midpoint represents, then, is really a concession to

convenience The determination of the median or mean of the inter-

val requires some assumptions about the over-all distribution Un-

less the assumption of normality is reasonable, we find ourselves

getting into a veritable maze of difficulties in trying to locate the

median or mean, and we choose to struggle along with the midpoint

and its obvious bias In general the midpoints are too far away from

the center of the distnbution Note also that the bias in the

lower half tends to balance that of the upper half Thus, we can

see that a standard deviation calculated from the midpoints would

be too large, but an arithmetic mean would be about right

Part B of Fig 6 9 uses a vertical bar to represent the frequency
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Fi| Alternative forms of freqven^dMtnljutioa charts

Fig 6 10 Alternatve forms of ciiinulative frequency distribution charts (no of

cases with value kss than specified X)
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m an interval Tie assumption of an even distribution mthin an

mterval, implied by the use of tie midpoint m Part A, is nov made
explicit The result is the appearance of a set of steps as v, e go from

interval to mtei^al This type of chart is called a Awto pro ?« Its

apparent counterpart m Fig 6 10 requires connecting the dots v ith

straight lines Such a linear change m the total, or cumulati\e, fre-

quency IS the equi\ alent of a'^suming that the frequency, m an inter-

val IS equally spaced

The use of vertical lines as m Part C of Fig 6 9 is particular!)

appropriate when we are dealing with a discrete senes '\\ e used

this form when chartmg some of our binomial distributions This

mode of presentation emphasizes that there are gaps in the data and

that there is no need to solve the problem of how best to interpolate

between recorded items

The cumulative distnbution counterpart of Part C of Fig 69

consists of steps as we proceed from one value to the nexi This

mode of presentation is consistent with the idea that the frequencies

change m jumps when we are dealing with a discrete senes Thi«

follows from the fact that there would be no A’ values falling be

tw een those for w hich the frequencies are given

Part D of Fig 69 is the result of connecting the midpoints given

in Part A This form is usually called a frequency polygon The

use of such connecting straight lines represents a relativ ely crude

attempt at providing a basis for interpolating between the recorded

frequencies This method of interpolation assumes that the inter-

mediate frequencies change at rates that are related to the frequencies

that straddle the point of interest This assumption is general!)

more valid than the assumption of equal frequencies that is implied

by the u«e of a histogram as m PartB of Fig 6 9

The cumulative distnbution counterpart of the frequency poljgon

requires that the points be connected with curved lines as shown m
Part D of Fig 6 10 There is no simple way to draw the exact curve

that would correspond to the polygon line The curves m Part D of

Fig 6 10 have just been drawn by eye

Part E represents an attempt to draw a picture of the distnbution

of the universe from the sample dots shown in Part A Note that

no attempt is made to draw the curve through the sample dots

Ratlier, the curve generally goes between the dots It may seem

curious that no obvious attempt was made to draw the curve so it

was a little less dispersed than the dots, thus tending to offset some

of the bias caused by placing the dots at midpoints The reason i«

that samples tend to understate ttie dispersion of a univ'erse We
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have occasion to explain this understatement later By drawing our

curve in between the dots, we are letting the overstatement of dis*

persion caused by the use of imdpomts balance somewhat the under-

statement caused by the use of a sample

The curve shown m Part E of Fig 6 10 is probably the best basis

for interpolating the frequencies of submtervals The estimated fre-

quency would be calculated by taking the difference between the

cumulative frequencies indicated for the two boundaries of the sub-

mterval For example, let us estimate the frequency for the sub-

interval between S4 50 and $5 00 for our distribution of unit charge

sales Figure 611 shows the cumulative distribution of such sales

and also a smooth curve fitted by eye to that distnbution The

smooth curve indicates 68 75% of the sales falling below $5 00 and

647o falling below 54 50 Thus we estimate that 4 757^ of the sales

would fall between $4 50 and $5 00

Ra 611 Cumulative frequency distribution of 200 unit charge sales of a

neighborhood hardware store with smooth curve fitted by eye to represent the

universe of such sales
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Charting Frequency Series v«lh Unequal Intervals or with Open

Ends

If a frequency distribution has unequal intervals, adjustments

must be made m the recorded frequencies before ive can draw a

proper chart In effect we mi^t recreate the frequencies that would

have existed if equal intervals had been used We can now see one

of the advantages of equal intervals in the first place Table 6 8

shows the distribution of the 200 charge sales of our hardware store

as it might typically be presented for the use of others Note that

an interval of $ 75 is used until we get to a value of S7 375 The

interval then increases to a width of $1 50 It stays at SI 50 until

we teach S14 875, where it increases to a width of S3 00 The senes

TABLE 6 8

Balalive Frequency Untf Charge Sales of o Neighborhood Hardwore Store

(200 Unit Sales in Sample)

Dollar Proportion of

Unit Sales Unit Sales

Under 625* 030

625-1 375 130

1 375-2 125 150

2125-2875 145

2 875-3 625 085

3 625-4 375 085

437»-5125 065

5125-5S75 065

5 875-6626 045

6 625-7 376 020

7 375-8 875 025

8875-10375 020

10375-11 875 025

11 875-13375 020

13375-U875 020

14875-17 875 020

17 875-20 875 010

20 875 and over t 040

1000

* Lower Limit Inclusive Salcsactually occurred only to nearest cent

t Arithmetic mean of items in lius class is S38 02
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TAeiE 6 9

Raviiivn of Tobli 6 I DIiMbuiton loEquolItt Ungth of InUrvali

Dollar Proportion of

Unit Sale? Unit Sales

- 125-625 • MOO

625-1 375 1300

1 375-2 125 1600

2125-2875 1450

2 875-3625 osso

3 625-4 375 0850

4 375-5 125 K50

5 125-5 875 0650

5875-6 625 0150

6 625-7 375 0200

7375-8 125 0125

8 125-8 875 0125

8875-0625 0100

2625-10375 WOO
10 875-Jl 125 0125

11 125-11 875 0125

11 875-12 625 OlOO

12 625-13 375 OlOO

13375-14 125 OlOO

14 125-14 875 0100

14875-15625 0050m
16 375-17 125 0050

17 125-17875 0050

17 875-18 625 0025

18625-19375 0025

19375-20 125 0025

20125-20875 0025

20875 and overt 0400

lOOOO

• Lower Limit Inclusive Original data accurate to nearest cent

t The highest sample item was g71 25 Anthoetic Mean of items m this class

IS 538 02
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then becomes open after $21 875 The simplest assumption we can

make about the frequencies in the extrs-wide mtervaJs is that they

are equalJy spaced We mi^t assume that the §SS75 to $9 625

intierval has a frequency of 1 0%, just half the frequency m the full

interval Common sense suggests tiiat there probably would be

sbghtly more than 1 0% of the frequency m the lower half and

slightly less than 1 0% m the upper half of the mterval We are,

however, well out on the tail of this distribution, thus making the

curve fairly close to honaontaj Hence the assumption of equal

frequency is not so bad In fact, considenng the errors m plotting

a graph and the limited perceptive abibty of the eye, it is entirely

possible that the difference between the assumed equal distribution

and the so-called truth is within the limits of these crudities We
would not say this if we were interpolating m th^ mtenor ranges of

the data, however Fortunately we rarely find the extra-large inter-

vals in the interior ranges

II we follow this policy of equally distributing the frequencies m
the larger intervals, we get frequencies as shown m Table 6 9 and

m Fig 6 12 Note what we did on the chart with the open ends

We closed the lower end by assuming that there would be no sales

of less than 0 This seems reasonable, although there might be some

logic to mcluding “sales returns” in the unit sales distribution as

though they were negative sales We attached an arrow at the

upper end to mdicate that the distnbution continues Thus we have

spread the 4 Ofo of the sales that were $21 STS or more over an in-

H® 6 12 Grapilic preBeDtation of freq«en<y distnbution of unit charge iaJes

of a neighborhood hardffare stoi® lit has heeo assumed that the frequencies

in the extra large mtervala are equally dietnbuted See Tables 65 and 69)
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definite range This indefiniteness bothers some people because they

think that the upper limit of the senes should be explicitly stated

We handled the problem by appending a footnote to the table which

specifies the highest unit sale in our sample of 200 and also the

antbraeUc mean of all the sales m tiie open class This appended

information can be \ery useful to a person who would like to make

some calculations from the given distnbution It can be a veiy

challenging ta^^k to estimate the arithmetic mean of a distribution

with open ends if there is no specific information about the total of

the items in the open class

6.4 Interpolating in a Frequency Series

^\'hen we interpolate m a frequency senes, we assume that each

item within an interval occupies its own individual space and that

all the spaces are equal For example, the interval $1 375 to 2 125

of our unit sales senes contains 15% of the 200 items Hence we

divide the mter\al into 15 equal spaces, with each of the given items

assumed to be located at the middle of its space (If we were work-

ing with the 200 items instead of the percentage of items, we would

have divided the interval into 30 spaces The principles and final

answers would remain the ‘same ) See Fig 6 13 If we wished to

estimate the value below which 25% of the sales occurred, we would

proceed as follows Since the two intervals below $1 376 contain a

total of 16% of the items (see Table 68), we must proceed another

97e to reach the 257o point. We go nine spaces into the interval,

$1 375 to 2 125, or 9/15 of the whole interval Since the interval is

$75 long, we go a distance of 9/15 X $75, or $45 We then add

this to the value of the lower boundary, $1 376, and get a final esti-

mate of $1 825 as the value below which 25% of the sales fell

Any point below (or above) which some given percentage of cases

IS estimated to fall is called a percentile For example, $1 825 would

he the 25th percentile, the point below which 25% of the ca«es are

$U75 J2125

Kg 4.13 Illustration of spacing assumption for mterpolating m & frequency

series
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estimated to fall and above which are estimated to fall It

has become somewhat of a convention to count the percentiles from
the bottom of a series Thus a student scoring at the 95th percentile

on a test would be scoring hi^er than one who scored at the 5th

percentile We have already noted that the 50th percentile is spe-

cially named as the median The 25th and 75th percentiles are

called the first and third guaTtile$, respectively The 30th, 20th, etc

percentiles are often called the first, second, etc decdes

All of these percentile measures are generally calculated by the

method just described for the 25th percentile Note that the funda-

mental assumption is that the interval that contains the indicated

percentile has as many equal spaces as there are items m that interval

This assumption is not sUictly correct, but the errors m using it are

considered to be small, particularly in view of the difficulties caused

by a more realistic assumption

6.5 Shortcut Calculation Methods

We found a short-cut method of calculating the standard devia-

tion quite advantageous (p 150), and now we generalize this short-

cut procedure to better appreciate its versatility

Suppose we wish to calculate the anthmetic mean of the following

five numbers 50, 75, 100, 150 225 Following the definition of the

mean, we would add these five numbers and divide by 5, getting a

total of 600 and a mean of 120 If we divide each of the numbers

by 25f WB would get the senes 2, S, i,
fi.

9 The mean of the latter

senes is 4 S, which when multiplted by 25 would give us 120 If we

let k represent a number such as 25, what we have done can be ex-

pressed as

Of course, k can be any value we wish it to be, including a decimal

fraction Thus it is proper to divide (or multiply) all the numbers

in a series by any arbitrary number, take the mean of the result,

and then multiply (or divide) by the arbitrary number to return to

the original units of the senra We should be no more bothered by

this process with arbitrary numbers than by the same process that

we use when we convert dollars to cents and back again, or feet to

inches and back again, etc
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Let US now subtract 100 from each of our five numbers, resulting

m the senes -50, -25, 0, SO, 125, and then take the anthmetic

mean of the resultant five numbers, getting a result of 20 If we now

add the 100 back in, vie get a final result of 120 If we let C repre-

sent a number such as 100, what we have done can be expressed as

2(y-0

C can be any arbitrary number, either positive or negative

If we wish we can subtract 100 from all our numbers and divide

the resultant senes by 25, getting a final senes of -2, -1, 0, 2, 5

and a mean of 8 If we multiply 8 by 25 and add 100, we again

end up with 120 Note that the order in which we make these adjust-

ments 13 important. If we had added 100 and multiplied by 25, we

would have obtained a ndiculous answer

These processes of shifting the ongm of measure (subtracting C)

and changing the unit of measure (dividing by k) can be combined

into a single formula as

X « C + fe

The tnck m practice is to choose values for C and K bo that the

calculation of the mean is expedited We illustrate bow this can be

done m the next section

The same transformations can be used to expedite the calculation

of the standard deviation Interestingly enough, however, the value

of the standard deviation is not affected by adding or subtracting C,

and we do not have to reverse the process at the end of the calcula-

tion

Table 6 10 illustrates the application of these transformations to

the calculation of the standard deviation These seem confusing at

first but study this table column by column and any confusion

should clear up Columns 1 through 3 show the calculation of the

mean and standard deviation by straightforward application of their

definitions Column 4 shifts the ongm of measure from 0 to 100

The result is called d for convenience of reference Column 5 calcu-

lates d-d Note that it tums out to be exactly the same as i m
column 2 It can be seen that the standard deviation of d is exactly

the same as the standard deviation of X, thus venfying that the stand-

ard deviation is independent of the ongm of measure of the senes In
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TABLE 6 10

Shortcut Mfilhodi of Calcuioitng the Standard Deviation

X-X,
or

X'-C.or

X-100 X fX /X xy
X X »d d~a 25 (25“ 25) (25''25/

{1} (2) (3) (4) (5) (6) (7) (S) (9) (10)

60 -70 4,900 -50 -70 2 -28 784 -2 4

75 -45 2,025 -25 -45 3 -18 324 -1 1

100 -20 400 0 -20 4 -8 64 0 0

150 30 900 50 30 6 12 144 2 4

225 105 11,025 125 i05 9 42 1764 5 25

600 0 19,250 100 0 24 0 30 80 4 34

ZX 600 -
A Anti Mean = r— =— = 120«J

N 5

B loC +S^.lOO + lJi.lM

0 X-C + ji-l.l00+t25«=l!»

—
N
—

" 'IT

25 X 2 482 « 62 05

F

*= 25 X 2482 » 6205

column 6 we show the results of dividii^ X by 25 If we divide the

sum of this column by 5, we 4 8^ which is 1/25 of the mean of X

Columns 7 and 8 carry out the necessary calculations to detennme

the standard deviation of J/25 We Hnd this standard deviation

to be 2 482, which la 1/25 of the standard deviation of X

We are now ready for columns 9 and 10 Column 9 is the result

of dmdmg d (see column 4) 1^ 25 Note that column 9 does not

add to 0, which it would if d had been measured from the mean of

120 instead of 100 Column 10 squares the column 9 values The
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sum of column 10 is not the proper sum for the determmalion of the

standard deviation because the deviations were not measured from

the mean, A correction must be made to allow for the error The

sue of the error is equal to the difference between the mean and the

origin actually u*ed The mean is 48 (Remember that all our

numbers ha\e been divided b> 25, thus explammg how we get from

120 to 4 8 ) We measured our deviations from 4 0, or from 100/25,

and each \ alue m column 9 is too large by 8 Smce we squared each

of thc«e values, we also ‘squared the error We correct this error by

subtracting ,8*, or from the mean of the \alues m column 10

The square root of this yields 2 482, which when multiplied by 25

gives us the correct standard deviation of 62 05

The whole process can be summanied by the formula

Note that we must finally multiply by to reverse the ongmal

division by k No such reversal is secessaiy to adjust for the sub-

traction of C, because the standard deviation is mdependent of the

ongm of measure The second term under the radical u always

subtracted from the first term The first term can never be too small

because of the lea«t squares property of the mean There are two

values that might be cho«en for C that are worth commenting on

WTien C equals 0, the formula reduces to the equivalent of the

fonnufa we u«ed m the precedmg chapter (p 150)
,
the only difference

being the change m the unit by use of k We expressed that formula

as “the ‘square root of the mean of the squares mmus the square of

the mean
"

When C equals the mean, the formula reduces to the calculation

of the de%nations from the mean itself Note that the second term

under the radical becomes equal to 0 then because the operation

within die parentheses would be the summation of the deviations

from the mean, which we hai e learned always equals lero

66 Calculating the Mean and Standard Deviation

From a Frequency Series

The calculation of the mean and standard deviation from a fre-

quency senes m\ohe3 only nunor modifications of the procedures
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hitherto discussed Table 6 11 illustrates tiie procedures by applying

them to our hardware store umt sales series Column 3 is the mid-

pomt of each interval witii the exception of the last interval, which

IS represented by the anthmebc mean of the items in that interval

The fundamental assumption is that the midpoints are reasonable

approximations to the means of items within intervals We know

that the midpoints tend to be too small in the lower intervals and

too large m the upper intervals, but we expect that these errors will

come close to canceling Column 4 gives the estimates for the total

of the items within an interval and is calculated by multiplying the

frequency by the midpoint The total of this column gives us the

estimated total of all the items Division by N, the total frequency,

gives us the estimate of the anthmetic mean, a value of $5 72

Column 5 shows the deviation of each midpoint from the mean

Hence we are now assuming that the midpoint is an adequate repre-

sentation for each item within an interval to measure its deviation

from the mean However, we know that the true mean or median

of an interval is actually closer to the general mean than the mid-

point Thus the deviations from the midpoint are too large, and

the standard deviation based on them is in general too lai^e At-

tempts have been made to develop a correction for this error, the

most notable that of Sheppard Sheppard's correction formula should

be applied only when N is fairly large, say, 1000 or more, and also

when the distribution is not very skew Neither condition is satisfied

by our distnbution, so we make no attempt to correct our standard

deviation

Column 6 multiplies each deviation by its frequency This column

si'mM sdd CoJsm

7 18 the product of columns 5 and 6 and gives us the sum of the

squares of the deviations from the mean This sum is then divided

by N, or 1, giving a result of 679339 square dollars We call this

result, namely the mean of the squares of the deviations from the

mean, the variance, a concept we run across frequently in later pages

The square root of the vanance gives us ttie standard deviation, or

$761

The calculations to this point are the result of following the

straightforward definitions of the mean and standard deviation The

remainder of the columns illustrate the application of various short-

cut devices, some of which seem not to be really short-cuts

Column 8 can be used m place of columns 5, 6, and 7 in getting

the standard deviation Column 8 is the product of columns 3 and

4 If we divide the sum of this column by 1 and subtract the
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TABU

Calculation of the Arithmetic Mean and the Standard Deviation from the

OoUtr

Unit Site!

(1)

Propertloo

(»f Sibf

/
(2)

Midpoint

o(

Intarva]

t

X
(3>

fT

W

X-I
or

s

(5)

ft

(6)

ft*

(7)

tJpder 825 * n3o 3125 000375 -6 4084 - 162102 876875

625-1 375 130 10000 130000 -4 7189 - 813457 2894842

1 375-2 125 160 17500 282500 -3 6686 -6S533S 2 362825

2 125 2 875 145 26000 382500 -3 2189 -488740 1502389

2 875-3 625 085 3 2500 270250 -2 4686 -200858 SI8U3

3 625-1 375 085 40000 340000 -17189 - 148108 251142

4-375-5 125 085 4 7500 308750 - 6686 -.082978 061016

5 125-5 875 085 55000 357S00 - 2189 - 014228 003115

5 875-6 82S 04S 8.2500 281250 5311 023900 012693

6«25-7 875 020 70000 140000 12811 XaS622 032824

7 375-8 875 025 81250 203125 2 4081 060152 144732

8875-10375 m 08350 162600 8 6081 078122 405152

10375-11 S7S 025 111250 ^8125 S4061 135152 730815

11 875-13 37S 020 126250 .252500 6 6081 138122 953884

I3jr5-i4 srs OM 14 1350 msoQ 8 4061 16S122 1413250

14 875-17 875 020 18 3750 327500 10 6581 413122 2471049

17^75-20 875 010 16 3760 163750 13 6581 138581 1484891

20 875 end av«r 1 040 33 0200 1620800 824011 1462044 41734442

lOOO 6718625 000027 67933882

. z/r 8 718025 nr—^ -»72 I«C + -jj-» 4 75 + 6880 - 85 72

, l:/a - .v@V K ’ nr • 4 76 475X 3 683801

IfT 933$S2 • 4 78 + CSW 15 72
' ; -I7«t

* lAver Linut IneluBTe

t Except for bit IntoiVkl

1 38 020 la nlhmfltie meto o( itemi m uterral

square of the arithmetic mean, we get the vanance The square

root of this then gives us the standard deviation of $7 61, the same

answer as before This calculation saves 18 subtractions and 18

multiplications over the first method and adds only one multiplica-

tion and one subtraction, a net saving of 34 operations

The remaining columns do not enable us to save on the number

of operations They merely result in transforming the given num-

bers into other numbers which we hope are easier to work with, either

because the new numbers are smaller or because they are “rounder,’'

or both
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611

Frequency Distribution of the Unit Soles of a Neighborhood Hardware Store

X-C^-X
fX^ (C = 47S) sx

(8) (9) (10)

x-c
(X -X) k d

(t = 375) (fc = 75)

(11) (12) (12a)

fd

(13)

/4’

(14)

002930 “44375

130000 - 3 7500

450375 -3 0000

906250 -2J500

897812 -1 5000

I 360000 - 7500

1 466562 0

1960250 7500

1 757812 I 5000

980000 2^500

1 650391 3 3750

1 852812 4^750

3094141 03750

3 187812 7 8760

3 990312 9 3750

5 362812 116250

8 753906 14 6250

57^20816 33 2700

•- 133125 -54064

“487500 - 4 7189

“ 450000 -3 9689

-J26250 -3 2189

- 127500 -24689

-063750 “17189

0 -9689

048760 - 2189

067500 5311

(K6000 1 2811

084376 2 4061

097500 3 6061

169376 5 4061

157600 6 6061

1S7S00 84061

232500 10 6561

146250 12 6561

1330800 32^11

-118333 -59167

-10 -60
-8 -40
-6 -30
-4 -20
-2 -10

0 0

2 10

4 20
6 30
9 46

13 65

17 86

21 10 5

25 12 5

31 15 6

39 19 5

88 72 44 36

- 354999 4 200810

-1300000 13 000000

-1200000 9 600000

- 870000 S 220000

- 340000 1 360000

- 170000 340000

0 0

130000 260000

180000 720000

120000 720000

225000 2 025000

260000 3 380000

42S000 7 225000

420000 8 820000

500000 12500000

620000 19 220000

390000 15210000

8 548800 814 849536

2 583801 418 650346

-V90 639993 - 5 7189*

= *7 61

= 375V4I86503- 66760

= 375X20297 = 57 61

In column 9 we subtract S4 75 from each of the X values The

reason is to try to get the sum of column 10 as close to 0 as we can

We try to select the number we subtract so it is as close to the mean

as possible but still keep it reasonably round and also equal to the

midpoint of one of the intervals Note that S4 75 is the midpoint

of an interval and that it is in the neighborhood of the mean We

might as well have chosen to subtract |5 50 This maneuver does

not seem to help us much here because all we have accomplished is

to replace columns 3, 4, and 5 with columns 9 10, and 11 to reduce

the sum of column 4, S5 718925, to the sum of column 10, S 968925
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This seems scarcely worthwhile, m fact, here it was a bad bargain

(We merely note that columns 5 and H turn out to be identical, a

result we should expect

)

Actually we knew that columns 9, 10, and 11 would turn out to be

a poor bargam, rarely does it turn out otherwise The mam purpose

of doing these calculations was to demonstrate their uselessness and

to prepare the groundwork for column 12 Column 12 divides each

value ID column 9 by 1 375 If we ignore the first and last figures,

we not« that we have finally achieved some nice numbers to work

with It was no accident that we chose to divide by S 375 This is

half the size of the primary interval of 1 75 If all the intervals had

been the same width, we would have divided by S 75 But the ex

istence of the variable width intervals causes the kind of problem

shown m column 12a Note that column 12 eliminates most of the

decimal fractions shown m 12a We now carry out the calculation

of the mean and standard deviation as though we were working with

the variable d instead of the vanable X We find that d has a mean

of 25838 and a standard deviation of 20297 Note that we have

attached no unit to either of these numbers Actually they are in

“umts of 1 375,
’ which is the equivalent of “half a class interval' for

most of the intervals

Since d = (X - C)/k, we can convert d to X by solving that

equality for X This gives us X = C + kd, or 75 + $ 375 X
2 5838, or $5 72 the same answer as by the direct calculation

Since the standard deviation w independent of the origin of meas-

ure, we convert 20 297 merely by multiplying by $ 375, again getting

$761

In actual practice, if we were to use the short-cuts as indicated

in columns 12, 13, and 14, columns 4 through 11 would be eliminated

entirely Since column 3 is needed only to help measure the devia-

tions in units of $ 375, we can also eliminate this if i\e are able to

do this mentally Column 3 would definitely be eliminated if we

were working with equal intervals In fact, the advantages of equal

mtervals are so substantial in performing the above type of calcula-

tions that it IS worth seeing how easy the job would have been if we

had used equal mtervals in our unit sales senes Table 6 12 shows

a senes with $500 intervals used throughout Note that all the

calculations m the table are easily done m our head Note particu-

larly how simple the d column is if we use the class interval of $5 00

as a unit On the other hand, also note that the senes is not very

descnptive of the bulk of the detail in the senes, burying 68fo of

I
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TABLE 6 12

Illustration of Effect of Equol Intervals on Ease of Calculations from o Fre

quency Series (Data are unit sales of o hardware store 200 items m
sample

)

Dollar

Unit Sales

Proportion

of Sales

/ d fi /i'

0-5" 680 -2 -1360 2720

5-10 175 -1 -175 175

10-15 075 0 0 0

15-20 030 1 030 030

20-25 000 2 0 0

25-30 010 3 030 090

30-35 015 4 060 240

3540 005 5 025 125

40-45 005 6 030 180

45-50 000 7 0 0

o0-55 000 8 0 0

55-60 000 9 0 0

60-65 000 10 0 0

65-70 000 11 0 0

70-75 005

1000

12

fX~C\
L k )

060

-1300

^ -130

720

4280

C *=31250

A = 500
N

• = 1250 +500—

p

= 3600

II ^1^ -m -5V4 28 -(-U)'

= 5 X 1 6093 = $805

• Lower Limit Inclusive

the items in the 0 to S5 00 mteml In addition, the mean and

standard deviation are both somewhat larger than appropriate

The Problem of Open Ends

Although our series of unit sales had an open end, we were provided

with the arithmetic mean of the items m the open class Usually such

mformation is not available If it is not, we must make some estimate
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of this value or give up the idea of calculating the mean or standard

delation from such an open-end senes Theories that might be

useful m makmg such estimates are outside the range of this book

Fortunately, open ends become necessary only when a distnbution

has extreme skewness Then the arithmetic mean would be a rela-

tively poor approximation to a least-error value, and, unless our

purpose dictated the mean because we were interested in the total

of the senes, it would be mappropnate to use the mean anyway We

would then prefer the median, which fortunately would not be

bothered by the open end unless the median happened to fall in the

open class, a very unlikely circumstance

6.7 Ofher Measures of Variation

The only measure of variation we have considered so far is the

standard deviation The standard deviation is a very useful meas-

ure provided the distnbution is normal, or nearly so We can then

use tables of the normal curve to estimate probabilities based on the

standard deviation If the distnbution is not approximately nor-

mal, or cannot be transformed into a nearly normal form, the stand-

ard deviation has limited practical meaning It then becomes

necessary to use other deuces to estimate the proportions of cases

that fall between given values of the senes

The Quortile Deviation

The quartiie deviation, or semi-interquartile range, is commonly

used when skewness makes Uie standard deviation inappropriate

It IS usually stated as half the distance between the Ist and 3rd

quartiles For example, the Ist quartiie of our unit sales distnbu-

tion IS SI 825 and the 3rd qaartile is J5817 Half the difference

between these is 81 996 If we compare this with the standard de-

viation of $7 612, we can see how inappropriate the standard devia-

tion IS for estimating relative frequencies m this unit sales distribu-

tion The normal curve indicates 676 of a standard deviation

would include of the cases if laid off on either side of the

mean Here it would mean 50% of the cases would fall between

858 and 81086 Actually this band would contain about 86% of

the cases.

The quartiie de\iation is often used m conjunction with the

median, the argument being that the median plus and minus one

quartiie deviation should cover 50% of the cases The median of
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OUT unit sales senes is S3 27 'Hius we would expect 50% of our

unit sales to fall between $128 and $527 Actually 56^0 of the

cases are within this band Again the problem is caused by the

substantial skewness in this senes In a case such as this it would

be preferable to state merely that it is estimated 50% of the cases

fell between the two quartiles of $1 825 and $5 817 without trying

to relate the quartile deviation to the mean or the median, relation-

ships which are meaningful only when the distnbution is at least

reasonably symmetrical, if not reasonably normal

The Range

The range is the difference between the smallest and largest value

m the senes, it covers 100% of the sample cases It has very little

applicability for its own sake ana is very erratic from sample to

sample Rarefy does it make practical sense to try to encompass

all the possibilities within the scope of our expectation To do so

would be to tiy to protect ourselves against all eventualities, a policy

that usually leads to inaction aod frustration

The range has been found very useful m recent years m statistical

quality control applications The range is a rather good basis for

estimatmg the standard deviation if the sample is small, say less

than 16, and if the universe is thought to be approximately normal

The advantages of the range are its relative ease of calculation and

relatively simple concept, two great advantages when we are dealing

with routine calculations which must be performed hastily by ordi-

nary shop workers

Olher Measures of Relative Frequency

Although tradition has concentrated pnmanly on the standard

deviation (in conjunction with the normal curve)
,
the quartile de-

viation, and the range as devices for stating the relative frequency

of cases within specified limits, the percentiles can also be used as

a basis for a so-called measure of dispersion We could, for example,

directly determine the range within which the middle 80% of the

cases fell by using tfie 10th and 90th percentiles

The Average or Mean Deviation

The average, or mean, deviation is the arithmetic mean of the

deviations from the median with the signs of the deviations being

Ignored It is sometimes calculated from the mean rather than the

median, although the median is preferred because the median mini-

mizes such deviations Table 613 shows the calculation of the
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TABLE 613

Calculation of the Average Deviation of Unit Charge Sale* «f Hardware

Store

Proper- Midpoint

Dollar tion of of

Unit bales Sales Interval t

/ X IX-Mdl /|X-Mdl Cum/

0-625 * 030 3125 2 9575 088725 030

625-1 375 130 lOOOD 2.2700 295100 160

1 375-2 125 150 17500 15200 228000 310

2 125-2 875 145 25000 7700 111650 455

287W625 085 32500 0200 001700 540

3625-4 375 085 4 0000 7300 062050 625

4375-5 125 065 4 7500 HSOO 096200 690

5 125-5 875 065 55000 22300 144950 755

5875-6625 045 62500 29800 134100 800

6 625-7 375 020 70000 37300 074600 820

7 376-8875 025 81250 4 8560 121375 845

8878-10378 020 96250 6 3550 127100 865

10376-11 875 025 11 1250 7 8550 196375 890

11 876-13375 020 126250 93660 187100 910

13 375-14 875 020 14 1250 108550 217100 930

14 875-17 876 020 163750 13 1050 262100 950

17 875-20 875 010 193750 16 1050 161050 960

20 875 and over 040 380200t 34 7500 1390000 1000

1 000 3 899275

Median = Md = 2 875 + X 75 Average Deviation ^ A

D

085

« 2875'f 397
_ 2/|X-Md|
-

AT

= $327.
3899275

1

= $3 90

•LLI

t Except last interval

t Anthmetic mean of interval
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average deviation for the unit sales series The average deviation

from the median is $3 90 If it had been measured from the mean,

it would have been $4 54

We should never really use the average deviation as a basis of

estimating the frequency of cases between specified limits It can

be used when the distribution is essentially normal, but then the

standard deviation would be much preferred Its preferred use is

as a basis for estimating the total error in a senes of estimates

Since it is an arithmetic mean of the deviations, it has all the

properties and uses of the anthmetie mean, including an algebraic

relation to the total In this use it is a logical companion to the

median The median minimizes the error of estimate and the aver-

age deviation tells the size of this mmiraum error

The Median Deviation

As we might expect, we could calculate the median of the devia-

tions from the median A little reflection convinces us that this

gives the same answer as the quartile deviation if the distribution

18 symmetrical In the unit sales the median deviation is $1 80,

compared with a quartile deviation of S200, the difference caused

by the skewness m the senes The median deviation would be pre-

ferred to the quartile deviation in a skewed senes because it does

accurately indicate the range around the median within which 50fo

of the items fell

Measures of Relative Variation

iv: tia we. w.

the units of the given senes As such they are affected by this unit

There are times when it is useful to be able to compare the vana-

tions m different senes independent of their units of measure We

did something like this when we compared the sales of two com-

panies on a logarithmic scale (p 112) The simplest way to eliminate

the effects of the unit is to divide the measure of vanation by some

average, preferably the average most logically connected with the

given measure of variation For example, if we divide the standard

deviation of the unit sales by the anthmetac mean of the sales, we

get 1 33 This measure is given the special name of the coefficient

of vanation, and is usually symbolized by V

II e might also divide the quartile deviation by the median, get-

ting $2 00/83 27, or 61, or the average deviation by the median,

getting $3 90/S3 27, or 1 19, or tiie median deviation by the median,

getting 81 80/$3 27, or 55



250 THE STATISTICAL METHOD IN BUSINESS

Measures of relative variation are also useful when we are com-

paring the variations of two senes which have quite different mag-

mtudcs even when measured in the same units For example, a

neighborhood drugstore has an anthmetic mean unit charge sale

of 82 64 and a standard deviation of $2 12 This results in a co-

efl5cient of variation of 80 If we compare this with the V for the

hardware store unit charge sales of 1 33, we get the impression that

there is about 657o greater vanation in the hardware store sales

than in the drugstore sales If we compare the two standard devia-

tions of $2 64 and $761, we get the impression that there is about

iSSfo greater variation m the hardware store sales

6.8 Measuring Skewness

The importance of the skewness of a distribution should be clear

because we have been forced to refer to it so many tunes in preced-

ing pages We would naturally expect, therefore, that the measure-

ment of the degree of skewness would play a key role in almost

any statistical analysis Surprisingly enough, we rarely find the

degree of skewness being calculated Most people seem to be willing

to rely on some visual impression of the degree of skewness, and

others seem quite satisfied with intuitive notions they have without

even a visual examination of a chart

There are probably two major re^ns for the rather general dis

regard of the quantitative determination of skewness One reason

is that we 'have 'had little success in developing a measure of slew-

ness that is completely satisfactoty from the theoretical point of

view and from the point of view of being easy to calculate and

understand An associated factor is that we have had even greater

difBculty in developing a simple way of measunng the sampling

errors in any given measure of skewness

The second reason is psychological The existence of skewness is

a substantial inconvenience in most statistical analysis Most of

the generally known statistecal measures and most of the easily

available tables, such as the normal curve, assume a reasonable

conformity to at least a symmetrical distnbution, and in some cases

a normal distribution As soon as we explicitly realize that our

distnbution is significantly skewed, we also have to recognize that

almost all of the techniques we know are inapplicable except with

a degree of error Thus there is a great tendency to look the other

way, as it were, when the issue of skewness comes up and make
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believe that it is not really an issue at all In other words, we find

it more comfortable to assume that a universe is essentially sym-

metncal if we do not know how much skewness there is in the

sample than if we do 1

A good measure of skewness should have three properties It

should.

1 Be a pure number m the sense that its value is independent of the

units of the senes and also of the d^ree of venation m the senes,

2 Have a value of zero when the distribution is symmetncal, and

S Have some meamngful scale of measure so that we could easily mter-

pret the measured value

Thus an ideal measure of skewness might be one which varied

in size from 0 to 1 and in which fractional values, such as 35, could

be meaningfully interpreted as representing, say, Z5% skewness on

a known linear scale of skewness, or as representing an amount of

skewness that could be placed m some ranking of the amount of

skewness we find from expenence in various senes An example of

the experience type of scale would be the way we measure the sig-

nificance of a batting average of 325 Most every American boy

knows that this is a high batting average in the sense that very few

ballplayers are able to achieve it Similarly, we might be able to

say that a skewness of 35 is very high because there are relatively

few times in which a value of that or more has occurred However,

if we measure skewness on a Imear scale from 0 to 1, with no knowl-

edge of how often we might find certain values, it would be perfectly

appropriate to assume ^at a skewness of 35 is moderately small

Of the several methods of measunng skewness that have been

developed we discuss three formulas, the first is

Mean — Median
Sk =

s

This formula obviously satasfies the requirement of being a pure

number because the unit of the senes cancels out m the division It

also has a value of zero in a ^mmetncal distnbution Although it

18 not obvious, it can be proved that this ratio has a maximum value

of I

If we apply this formula to our umfc sales data, we get

85 72-S327

$761
4-32

The question now is to determine how much skewness is represented

by 32 It 18 moderately low on 0 to 1 scale Unfortunately, we



252 the statistical method in business

find that skewness is rarely measured, and we have no ready stand-

ard to ludge whether 32 is high or low on an experience scale We

might say somewhat authoritatively that we suspect that 32 is ac-

tually quite high, a Talue that is rarely exceeded The knowledge

that a sample of ^ eights of adult American females yields a skewness

of 17 and the distribution of family incomes m the United States,

before taxes, for the year 1947 was estimated to be 19 may be helpful

The second measure of skewness we refer to is based on an ex-

tension of the ideas underlying the calculation of the mean and the

standard deviation The sum of the deviations from the mean

always equals zero If, however, we ctihe these deviations, the

Bum of the eahes dehmleiy equals itYo if the dielTihution is syra-

metrical but probably does not equal zero if the distribution is

skewed Furthermore, we can say that m general the likelihood

of the sum's being zero is (ess the greater the departure from sym-

metry, and we are able to say that the sum of the cubes of the

deviations from the mean is a function of the degree of skewness

More particularly, n e say that

where

N

Table 614 illustrates the calculation for our unit sales senes

Note that the short-cut method was used and that both
fj^

and s

were left in units of f 375 The answer of 3 15 is somewhat difficult

to mterpret There is no limit to the value of yi so we cannot be

helped by relating 3 15 to ita potential limiting value Again we

have rather limited expenence to tell us how often a y; of 3 15 occurs

A guide might be the fact that the weights of a sample of adult

Amencan females has a yi of 95 and the distribution of United

States family income m 1947 had a yi of 8 76

The third measure of skewness we refer to is based on the notions

of the mean and the median as is the first one However, instead

of considermg the values of these m the units of the given senes,

we now refer to their -percentile equivalents The median is equiv

alent to the 50th percentile by definition The mean would also

be equivalent to the 50th percentile if the distribution were sym-
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TABLE 6 14

Calculation of Coefficient of Skewness of Unit Charge Sates of Hordware Store

{Note Thifi table is a contmuatioa of Table 6 11 The additional mfonnation

required is fd\ which is calculated as ftough it were Column 15

of Table 6 11)

Jd^

(15)

- 49 709445

-130000000

- 76800000

- 31 320000

- 5440000

- 680000

0

520000

2880000

4 320000

18 225000

43 940000

122825000

186 220000

312 500000

595820000

593 190000

27933 450834

29518 941389

CoefBcient of skewness = 71 =
l^i

2/(X - X)^

= 29,518 9414 - 3 X 418 6503 X 2 5838 + 2 X
2 5838*

= 26,3083144

26,3083144

20297’

metrical Departure of the mean from the 50th percentile can thus

be taken as e\idence of skewness The specific formula we use is

where P„ is the percentile equivalent of the mean This measure

has a maximum value of 1 and a mmimura \alue of 0
,
if we ignore

signs The sign indicates the direction of the skewness just as for

the first two measures

If w e apply this formula to our unit sales senes, we first calculate

P„ We do this by matching the mean of S5 72 with its percentile

equivalent We can see from Table 611 that S5 72 falls m the

interval S5 125 to 85 875 Since 69% of ^e cases ha\e a value less
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than $5125 and ToSfo hare a value le«s than $5 875, we know

immediately that the value of falls between 69^ and 75^^^

A Imear interpolation gi\e3 us an climated value for of

$572 - $5125
+ rz: X 6 5% = 697o + 52% = 74 2%

$ in

Substitutmg 74J2^ in our formula, we get a skewness coefBcient of

742 - 50
= 484, or 48 4%

50

The simplest wa) to mterpret the magnitude of the skewness based

on this percentile concept is to refer back to We can say, for

example, that the skewness of unit sales is such that there are about

three chances out of four that a gi'en sale will be less than the

arithmetic mean (ignonng sampling errors in our mformation). Or,

if we prefer, we can say that the odds are 3 to 1 in fa\or of an item

being less than the mean Contra^d; this with the 1 to 1 odds for

a •'vmmetncal distribution

The income distribution had a of 64, and tbe female weight

distribution had a P. of 56

6.9 Kurtosia

If we further extend the idea of raising de\nations from the

mean to some power, we might raise these deviations to the /ourM

power and then take the anthmetic mean of the results We could

then take the jourih root in order to get back to the original units

of the senes Tbe term moment has been applied to such measures

based on -various powers of the deviations A general formula often

where K refers to the particular power used If we wish, we can

take the I;th root of Note that the square root of the second

moment about the mean is the familiar standard deviation, we re-

ferred to the third moment in our discussion of measures of skewness

The fourth moment, or is the basis of measuring a char-

acteristic of a frequency senes called kurtosis The most commonly
used formula for kurto'ns is
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This IS a pure number also Note that the numerator would have

the same unit as the denominator The 3 is subtracted because a

normal curve yields a value of 3 for the ratio of to /i2
^ Thus 72

has a value of zero for a normal curve If a curve has a relatively

high proportion of cases m the tails compared with the normal curve,

then 72 will be positive because of the greater effect of extremes on

the value of m than on the value of m Tigure 6 14 illustrates a

curve with a positive kurtosis and compares it with a normal curve

Figure 6 15 shows the same distribution on probability paper

We have little occasion to calculate the kurtosis of a distnbu-

fig 6 14 Comparative shapes of normal carve and of curve with positive

kurtosis (leptokurtic curve) (Note Both curves have tlie same standard

deviations

)
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Uon. Although it ha' con'iderable importance m theoretical stati'

tic', it 15 lerj tedious to calculate and seiy difficult to interpret m

mo't applied problem' It mil ha\e its greatest 'igniBcance to us

when we consider the t distribution later In fact the distnbution

illustrated mFipeMande 15 isat distribution

Rg 615 Compsrative shapes of raroulstive normal air\c and of fiimulatjve

Up’olumc cun fr—probability scale (^ote Both curves have the same

standard demtiotw

)
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6.10 The Predominance of the Arithmetic Meorr

Review the vanous calculations referred to m this and earlier

chapters and note that the process of adding a senes of numbers and

then dividing by the number of numbers appears over and over

again We can illustrate tiiiB point by gathenng together several

of the measures that involve this process

sy

The circled areas call attentfon to this process of taking the anth-

metic mean of some variable The essential process is one of doing

something, as it were, to an onginal set of numbers and then takmg

the arithmetic mean of the result Often, we undo what we did and

return to the original unite of the series In fact, if we do not undo

it or if we do not convert to a pure number, we end up with

reasonably absurd units that defy practical interpretation

It is very helpful m trying to understand statistical formulas to

remember that practically all the formulas consist of two parts One

part involves transforming the unite of the senes, by taking loga-

rithms, or by squanng, for example, and then possibly transforming

back after the other part of the formula teikes the arithmetic mean

Some formulas are working formulas and, for example, might omit

the process of dividing by N because it happens to conveniently can-

cel out m the total operation But the mean is certainly buned some-

where in the formula, and it is usually worthwhile to dig it out be-
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cause It 13 a fact that the essentially statistical part of the analysis

takes place ivhere the mean is taken, and if we do not know where

the mean is taken and of what it is taken, we are in a position to

rather completely misunderstand the import of what we are doing

We have occasion to introduce additional tools m later chapters

We try to call attention to where the averaging process takes place

and its significance m the given analysis The fact that the funda-

mental statistical operation consists of taking the anthmetic mean

should greatly simplify the seemingly complex formulas

PROBLEMS AND QUESTIONS

6 1 State the average you would use in each of the foUowmg situations

Give specific reasons for your selection In some of the cases yon will feel

that an average is only a partial answer to the problem Do not let such

a feeling deter you from selecting the best possible average

(o) The average height of grammar school children for determining the

best height for a drinking fountam

(6) The average temperature dunng a wmter day for estimating the

heating needs to mainiam an indoor temperature of 72*F

(c) The average muzzle velocity of a 16' artillery shell for purposes of

estimatmg the best range setting to strike a given target

(d) The average daJy sales of newspapers m a given drugstore to make

the best possible estimate of the appropriate number of papers to order

(Note Assume that the sales figures to be averaged have not been affected

by any “out of stock ’ limitations

)

(e) The average calonc content of one pound of round steak for in-

clusion m a table of caloric contents of various foods

(/) The average speed in miles per hour of three ferry boats for eati-

matmg the number of trips that the boats can make between two nver

pomts during a 24-hour period

(ff) The average daily attendance at a movie theater for purposes of

estimating

1 The total monthly revenue,

2 The number of ushers needed on any given day

(A) The average of your examination grades m a course for purpose of

determining your course grade

6 2 In your high school algebra course there were probably such prob-

lems as “If John takes 6 days to dig a ditch, Tom takes 4 days to dig the

same ditch, and Harry 3 days to dig this ditch, bow many days will it take

for all three men together to dig the ditch?" The answer came from solving

forX in the equation

6^4^3 X
Show the analogy between this kind of a problem and the need for the

harmomc mean m some cases when we are interested m the total of some

items
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6 3 Given the variable X find a value M so that 2(X - M)^ is a mini-

mum {You will need ability with calculus to solve this problem

)

6 A Given the vamble Y and thatM - (2Y)/Y, prove that 2(Y -• M)
- 0 (You can do this with dementaiy a^bra

)

6 5 Below are presented the 200 additional umt charge sales referred to

in the tert

Sample of 200 Unit Charge Sales of a Neighborhood Hardware

Store (This sample of 200 occurred immediately after

—

m tune—the 200 sales referred to in the text

)

(Data listed m order of sire The chronological order is

assumed to be irrelevant

)

$ 20 114 174 244 343 4.75 632 1004

35 114 179 2 47 346 476 6 45 1038

41 122 179 250 349 4 81 647 1038

47 130 180 254 349 483 656 1045

51 130 183 255 350 4 94 674 1046

56 135 185 255 357 4 95 679 10 65

70 137 188 259 358 495 680 1091

71 140 191 270 3 59 507 690 1095

72 144 192 275 379 510 695 1159

85 148 195 275 379 513 708 1171

87 160 195 280 387 526 7 09 1190

88 150 196 285 390 528 720 1206

93 154 200 293 390 531 785 1237

94 164 200 296 395 534 789 1242

98 154 202 298 400 535 8-22 1294

98 155 205 308 403 543 827 IS 15

100 157 2 07 308 404 543 882 1404

100 157 207 308 409 549 833 1429

102 158 222 308 410 550 839 1552

102 159 223 310 412 5 53 895 1553

102 160 228 313 413 587 927 1675

103 160 231 317 460 594 945 23 96

105 164 237 328 465 619 956 2640

106 173 240 34} 470 621 983 27 44

109 174 240 342 472 621 983 3291

(fl) Construct the best frequency senes you can of such data using equal

intervals Defend your choice of intervals by the use of appropriate charts

(b) Construct the best frequency senes you can of such data using vana

ble sized intervals if you wish Defend your choice of intervals

(c) Use charts to compare your two frequency senes with the ones given

m the text for the first 200 unit charge sales Assume that the proprietor

had only the information provided by one of these two sets of 200 Use

what you have found out about the other 2(X) to estimate the errors he

would make if he assumed that his sample of 200 represented the pattern

of the universe

6 6 It was pointed out m the tert that the process of "rounding num
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bers by combmmg them mto intervals produced effects similar to those re*

sultu^ from enlarging the sample Common sense suggests that we couldn’t

make such apparent gams without some price Discuss what we lost when

we combined items into intervals How would you try to balance the value

of what you lost against the cost of adding more items to your sample? Do

you suspect that there might be a sort of ' law of dimiiushing returns"

operatmg on cither the cost or gam function? Explain

6 7 Was there any evidence of “lumpmess" m your distribution of 200

itemsi’ IWiat significance would this evidence have to you as the propnetor

of a small hardware store’ Would it make any difference to you if your

wife (rather than a hired clerk) was the bookkeeper’

6 8 The construction of a frequency series obviously results m some steps

b^ng taken to use tbe sample of data as a basis for estimating the distnbu*

tjon of items in the tiniverse It is equally obvious that only some steps are

taken unless one carries his analysis to the jmint of drawing a smooth curve

and then reconstructs his frequencies to conform to this smooth curve

How would you explain what your frequency senes does represent if you

find that it is somewhere between an exact replica of the original sample

and an estimate of the universe’

6 9 The assumption that items are equally spaced through some interval

is an application of the "equal distribution of ignorance" rule, or the "rule

of insufficient reason' to use unequal spaces Analyze the logic behind tbe

equal distribution of ignorance rule as a device to choose among alterna-

tives when you have insufficient knowledge to rationally weight the alterna-

tives What other rule or rules ought you apply ’

8 10 Suppose you were using some sample evidence to make an estimate

of some characteristic of a universe, such as the mean of the universe If

one method of estimation gave you the same chance of your estimate being

too high as it did of its being too low while another estimate was such that

the arithmetic mean of such estimates (if you were to make many of them)

would equal the desired universe value, which method would you choose’

Give reasons (Assume that the distnbution of estimates is skewed so that

the two methods would give different answers

)

4 1 1 Calculate the following measures from your frequency senes of the

second group of 200 unit sales

(o) Anthraetic mean

(6) Median

(c) Semi-mterquartile range

(d) Median deviation

(c) Mean deviation

(/) Standard deviation

((?) Range within which the middle 60% of the cases fall

(k) Percentile equivalent of the mean

{\) Coefficient of skewness by each of three methods given in text

(;) Coefficient of variation

4 12 Give a practical interpretation of each of your answers m 11

4 13 What differences exist between the sample of 200 analyzed in tbe

text and the sample you analyzed’ Do you judge that they are real differ-

ences which should be considered by the proprietor m his planning? Or

are they of a sort that would cause you to be willing to combine the two
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samples as though they both came from the same universe’ Defend your

conclusions

6 14 Suppose the coefficient of skewness for a sample of 200 unit sale*: of

a different hardware store turned out to be 36 when measured bv the

formula

How much less skewness does this distnbufaon have compared with the one

used in the text’ Compared with the one you amilyzed’



chapter /

Making inferences about the

unknown, or the problem of

intelligent guessing

noft ha\e most of the tools and ideas we need to tackle

the central issue of any practical problem that m\ olves uncertainty,

namelj, how to make the most intelligent guesses can about the

things do not know Since we try to work out methods of guess-

ing that conform to some simple rules of logic, ^e dignify such guesses

calling them inferences We warn, however, that ne are, m /act,

guessing and our methods should be judged by whether or not they

work as well as by whether or not the> appear logical

7.1 A Simple Example of Our Baste Problem

It 43 helpful now to reMew some of the material from the intro

ductory chapter Again i\e use the device of a simplified example

to dramatize the mam issues

Suppose there are 10 fish bowls on a table The bowls have been

pamted so we cannot ^ee the contents Each bow 1 contains a large

number of small balls about the size of marbles Some of the balls

are purportedly white The rest of them are nonwhite We are to

select any one of the bowls we wish and set it aside We are then

offered a bet of $5 to f2 that a random sample of S' e balls from

this bowl will have one, two, or three white balls Or, if we wished,

we could accept the bet the otiier way around, namely, $2 to ?5 that

a random sample of five balls will contain four or five white balls

To help us decide which bet we would like to take, we are permitted

to draw a random sample of five balls from any one of the remaining

nine bowls, or, if we wished, we could select our total of five balls

262
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from the nine bowls in any combinafeon we wished, such as one ba]l

each from five of the bowls

This 18 quite obviously a guessu^ game Unless we peek, or cheat,

or have inside in/ormawon, there is no way that we can make a com-

pletely rational choice m this situation But let us head into the

problem to see if we can be rational about some parts of it

The firet decision we have to make is our choice of one of the 10

bowls Since we presumably know nothmg about the contents of

any of the bowls, we have no rational basis of choice Hence we

choose one by any method we wish, including a hocus-pocus method

if that gives us any psychological satisfaction The important thmg

IS to not kid ourselves that our method is rational

The second decision is to choose our informational sample of five

balls from the remaining nine bowls Again we are handicapped

by complete lack of knowledge of the contents of the bowls We
must therefore proceed by assumption, hypothesis, or guess We
do not know that, perhaps, the 10 bowls all have the same propor-

tion of white balls, or that the proportions are all different We
would prefer that the bowk were all the same because we would

then find that our five informational balls would definitely be rele-

vant to the first bowl that we had selected If the bowls are differ-

ent, we might be up against an extreme situation in which the first

bowl has all white balls whereas the bowl from which we select the

informatmal balk has no white balk We can avoid being misled

by such a situation by selecting our five informational balls from

five different bowk, one ball from each

Suppose we select one ball from each of five bowls and find that

four of the five are white

We must now decide whether to bet S2 against $5 that a sample

of five balk from the first bowl will contain four or five white balls,

or to bet S5 against 82 that the sample will contain one, two, or

three white balls If we knew the proportion of white balls in the

first bowl, our problem would be much simpler For example, if we

knew that the bowl contained 50% white balk, we could expand the

binomial ( 5W + 5C)® and easily estimate the probability of getting

four or more white balls m a sample of five (It is 1875 ) Since

odds of 2 to 5 are fair if the probability of four or more is 2857, we

would prefer to bet against four or more at these odds Hence we

would bet 85 against 82 that there will be three or fewer white balls

( 2857 is calculated by dividing 2 by 7, 7 being the total chances

associated with 2 to 5 odds

)

Since we do not know the proportion of white balls in the bowl, we
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must or infer The only basis we ha\e for such an inference

IS the informational sample of fi'e balls, four of them being white

Common sense indicates that we should be more inclined to belie;e

that the bowl contains a relatively large proportion of white balls,

gi\eQ this sample with (out white balls, than we would be if our

sample had contained only one white ball The issue, however, is

whether this inclination is strong enough to push the probability of

four or more white balls from the first bowl beyond 2857, the dmd*

mg line between the two bets The answer is not at all easy to de-

termme m a rational manner Its determination miolves those

logical procedures that fall under statistical mference, the topic

that concerns us in this and succeeding chapters Before outlining

our plan of attack, we find it profitable to rexiew the conceptual

scheme we introduced m the first chapter

7.2 Another Look at Our Conceptual Scheme

Figure 7 1 presents a diagram that illustrates the flow of ideas

as we move from historical data to inferences about future samples

The broad arrows mdieate the direction of flow The whole process

of mference starts with the so called histoncal facts They might

be the number of white balls m a sample of five Or thej might be

the output of a worker dunng bis firet month on the job Or they

TIk world

0(
"""

imagtnaton

|

ncal s, Fut

erw untv

.

ure

erse

’

The world Historicel Future

of sample sample

reality

Kfl 7 1 Flow diagram for infemng unknown and/or future CNcnta from known
and/or historical ents
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might be the various prices of a pompany's common stock during the

last two weeks, etc These facts are then treated as though they

were only a sample oj what could have happetied We might have

had a sample with four white balls instead of two white balls Or

the worker might have produced 847 units instead of 769, etc We
find it easy to recognize that the universe, or generating mechanism,

which produced the particular sample facts might have all sorts of

charactenstics The universe might contain 70^0 white balls, or

40^, or 26fo, etc The worker might be capable of averaging 826

pieces per month, or 806, or 904, etc There w no way that we vnll

ever be able to know such a characteristic of the universe unless ve

are dealing with games or the like Hence we can deal with such

a characteristic only by using our imagination

Note that we separate the world of reality, where we find our

sample facts, from the world of imagination, where we find our

inferences about the kinds of universes which we believe have gen-

erated the past samples and/or will generate the future samples

One of our very real practical problems is to judge whether the

universe that v ill generate the future sample facts is the same as

that which generated the past sample facts We do not know, for

example, whether our 10 bowls have different proportions of white

bails We do nob know whether our worker is improving with prac-

tice or worsening with age But we must make decisions about such

events that are based on some sort of assumption about the pre-

vailing conditions

After delving into the world of imagmation, we must return to the

world' of reafity and make a decision about the kind of future samp/e

facts we expect to encounter Our success in anticipating these sam-

ple facts is the real test of whether our imaginings have been worth-

while The most elegant logic will be usel^s if the forecasts are not

reasonably accurate

The process of going from historical facts to inferences about

future facts can be very haphazard unless we discipline our thinking

by insisting that we assign probabilitm to the truth of the various

inferences we make In fact, the attempt to assign probabilities m
some rational manner distinguishes the statistical method from other

methods we might use to amve at decisions Any decision in prac

tical affairs necessarily implies some probabilities quite irrespective

of whether the decision-msker has consciously assigned them or not

Sometimes we feel a sense of frustration as we try to explicitly

assign probabilities m any pracfcica] situation When we do, we

should remind ourselves that everybody else does too
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Another way of picturing our conceptual scheme is m the form

of a tree diagram like that shown in Fig 72 We start at the ex*

treme left with the facts, the historical sample, or From these

/acts we make inferences about the various historical universes that
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might have generated these facts, or f/j We have restricted these

inferences to only three in order to make the tree manageable ivithm

the bounds of the page Note that we have assigned probabilities

to each of these inferences Also note that these probabihties add

to 1, as they must because our mferences should cover all the possi-

bilities and one of them must be true

The next set of branches shows the various inferences we might

make about the juture universe, or Uf We show the associated

probabilities only for the topmost set Note that again the three

branch probabilities add to 1 (Ignore the number m the parentheses

for the moment

)

Finally we come to the last set of branches These show the

vanous future samples that we infer from the particular future

universe that we had previously mferred These branches are la-

beled Sf Again note that the assigned probabilities add to I

Now let us consider the probabilities that are shown in parentheses

These are the probabilities that our particular inferences to that point

are correct Let us trace out the inferences along the topmost branches

We start with a probability of 25 that Vh, is true Then, given that

Uhl ^ ^ probability of 20 that U/n is true

The probability that both Uhi t//„ arc true would be 25 X 20, or

05, as shown m parentheses This is a joinl, or cmpound, probability

Finally, given that Uhi and l//„ are true, there is a probability of 10

that *?/„, IS true The joint probability that CfA„ Uf^^, and iS/j,, are all

true would be 25 X 20 X 10, or 005

If we were to assign probabilities to all the branches m this tree

and calculate all the joint probabilities, we would find that the final

joint probabilities at the extreme right of the tree would add to 1

This would mean the actual future sample must have some one of

the vanous possible values shown m the list of S/s Similarly, we

would find that the joint probabilities jwsociated with the occurrence

of the vanous future universes would also add to 1 because this

future universe must take on one of the listed values

Since we are basically interested m future samples in our practical

problems, it would be nice if we could avoid all the intervening steps,

and associated arithmetic, between the histoncal facts and our in-

ferences about future samples Our tree would then look like Fig

73 We find that there are occasions under which we are able to

make such direct inferences However, we could not understand and

appreciate such occasions until we have learned to “climb the tree”

by taking advantage of the "footholds” provided by the mtervenmg

branches
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Fig 74 Tree diagram illustrating the paths of tnfereoce when we go from past

eartiples directly to infereuces about future samplca

7*3 How We Are Going to Study Our Problems of

Inference

Although the conceptual scheme just given is quite simple, our

attempts to formalize the procedure, and particularly to quantify the

relevant probabilities, will very likely be troublesome if we try to

do too much at once We are, therefore, going to take the stages

one at a time insofar as practicable This chapter is basically con

cemed with the exposure of the fundamental problems that develop

as ue try to infer the characteristics of a universe from information

supplied by a sample, the next chapter develops a method of han-

dling these problems In both chapters we ignore the possibility

that the universe may be shifting, or that the vanous samples may

have come from different universes
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In Chapter 9 we discuss tiie relationship of probabilities to the

practical problem of decision-makmg, confining our attention to

problems that involve actions based on certain beliefs we might hold

about a univeTse

In Chapter 10 we consider the problem of pooling all the informa-

tion we might have about a problem in making inferences about a

umi'erse For example, past expenence may lead to the belief that

the universe of com tosses is so constituted that 50% of the tosses

^ill be heads in the long run Suppose we then observe a sample

of 10 tosses which shows 80% heads How do we relate our original

expenence and belief with this result? Do we now believe that these

coins will produce more than 50% heads when they are tossed? Or

do we basically ignore the neu sample evidence and continue to be-

lieve u hat we believed before we saw it^ This is the issue of relat-

ing old information to new, or the issue of pooling information

In Chapter 11 we give explicit consideration to the problem of

making mferences about future samples We consider both the

method that works through inferences about universes and the

direct method which goes directly from the past sample to the future

sample

In Chapter 12 we apply all the ideas and techniques we have de-

veloped in Chapters 7 through 11 to the problem of making infer-

ences about a continuous variable, such as the unit sales of a hard-

ware store, or the size of the Federal Debt, or the height of an adult

American male Prior to this we confine ourselves to the problem

of inferences about attribute data These are data that are meas-

ured m such a way that they can take on only values of 1 or 0 We

approach our problems of mferences with attribute data because

we then gam the advantages of simplicity of understanding At the

same time, we can also uncover quite vmdly some problems in infer-

ence that get obscured, or are assumed away, if we work with con-

tinuous variables

7.4 The Behavior of Random Samples From a Known

Universe

The best way to begin our speculations about the kind of universes

from which a given sample came is to study the reverse process,

namely, the kinds of samples that can come from a known universe

We have already discussed this problem (Chapter 5) of the proba-
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bilities of getting \anous sample results from a gi>en unnerse We

now supplement the earlier analysis

The Basic Model We Use

We are going to try to develop most of the basic laeas involved

m making inferences about a universe by referring to a simple model

of a imiTrerse We u«e this model universe to generate sample in-

formation, and we then take the sample information and generate

mferences about the universe from which the«e samples came and

check these mferences against the known characteristics of the uni-

verse We should thus be able to see quite clearly whether our meth-

ods of makmg mferences work and m exactly what waj they work

At the same tune we can check other possible systems of making

mferences

The model omverse we use consists of an infinite number of ob-

jects, each subject to a simple test of being satisfactory for some

purpose These objects could be some specified part for an auto-

mobile, for example We happen to know that or 30, of all

the parts are satisfactory We call a satiafactop’ part A Thus 70

of the parte are not satisfactory, we call these A (not A) Smce we

would like to treat our problem mathematically, we must assign

numbers to the factor of a part's being satisfactory or not satisfac-

tor) We arbitrarily assip a value of I to a satisfactory part and

a value of 0 to an unsatisfactory one (The assignment of the^

particular numbers considerably simplifies our subsequent calcula-

tions without sigmficantly prejudicing our results Thus we can

learn qmte a bit at a relatively small cost m arithmetical labor

)

Let us DOW examme this universe quantitatively The objects are

identifiable by the number 1 or the number 0 Of all the objects ^0

are I’s and 70 0 a Let us call this vanable (from 1 to 0) X We
can now cany out the familiar calculations as shown m Table 7

1

Although all these calculations are pretty familiar by now, we

review certain features becau'^e of their pertmence to what follows

Note that P IS the relative frequency and thus adds to 1 We also

use P to mean probability, a usage consistent with our mterpretation

of a probability as a relatn e frequency of occurrence m the indefinite

long run One of the conveniences of using relative frequencies is

illustrated in the calculation of the arithmetic mean, etc Note Uiat

we divide the sums of the PX% etc by / to get the arithmetic means

Although the calculations for the mean, the vanance, the crude

skewness, and the coefficient of skewness are all earned out m a

straightforward way m the table, we indicate the alternative ways
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TABLE 71

Analysfs and Summary Descriptian of Universe of Automobile Part 3496

Condi Value Relative

tion of of Fre- X-X
Part Part quency or

X P PX X Px Pi’ Pi'

A 0 70 0 -30 -21 063 - 0189

A 1 30 30 70 21 147 1029— — — —
100 30 0 210 084

ff/ = 21

<r.- 46

L.= 084 * ffr(T — ?r)

« Trr = TT - ir*

084

(2I)»'
=^ = 873
yrr

of calculating these results with sole reference to ir and r It is cus-

tomary to label the anthmetJc mean of the numbers 1 and 0 m a

universe as ir (This assumes, of course, ^at only the numbers 1

and 0 can occur } The value of v also is always equal to the pro-

portion of the given element m the universe r is then taken to equal

1 - ff, orm this case 70

Verify each of the calculations m Table 7 1 by substituting the

values of 30 and 70 for r and t, respectively, m the appropnate

formulas The ease of doing this should make clear one of the ad-

vantages we pick up by restricting our model to values of 1 and 0

Figure 74 shows where we now stand The top part of the figure

indicates our universe of satisfactory parts, or the domain of

knowledge We have also listed the results of the analysis made in

Table 7 1 The lower part of the picture is the domain of ignorance

This is where all the samples from this universe are We hope to

illuminate this area by making inferences about the kinds of sam-

pjes we might get from this known universe

The Results of Drawing Random Samples

We are going to imagine taking samples of five items from our

universe and assume that these samples are selected in such a way

that we are unable to detect any relationship between the process

of selection and the results we get We treat these samples, therefore,

as though they were generated by a random process We have pre-
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SUMMARY OF KNOWLEDGE.

jr = 3 (Proportion of X s

iit the universe)

Ooman
of

knowledge

21 (Variance of

X s in the universe)

^ “ 873 (ftelat ve

skewness ofXs
in the un verse)

t, = 084 = FT(f - it) (Crude

skewness of X s

in the un verse)

Domain

of

Ignorance

Fig 7 4 Our present state of knowledge about auto part 3496

viously defined a random process as one m which ue are ignorant

of any relationship between the process and the results, and our

notion of randomness is simply a model we have constructed to treat

something we do not know anything about We do not argue that

there is no relationship between the process of selection and the

results that occur We merely note that ue know of no such rela-

tionships, and we must treat the process as though there were none

It IS not surprising then, that since randomness is a result of ig-

norance, we find ourselves making random errors

W e could, of course, actually construct a model universe of the

type we have defined We could then actually draw samples of fiie

items out of this universe and study the sample results and make

conclusions about the kinds of samples we can get from this universe
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Such conclusions would be based on experience The more such

samples we had, and hence the more expenence we had, the more

specific could be our conclusions Such an experiment would be

quite tedious for us to perform Some probably would not be satis-

fied even if we took 1000 such samples We could considerably speed

up such an experiment by smidating the drawmg process on an

electronic computer We would program (give it instructions) the

computer so it would search a table of random numbers for sets of

five items The computer could conduct the search, and find results,

at a prodigious rate, tlius spewing out random samples of 5 far faster

than we could draw them, say, out of a big bowl We could then

program the computer to analyze the samples and indicate in a

summary way what resulted

We are neither going to actually draw the samples nor are we

going to program the computer m this way We are going to assume

that we know enough about what the results would be so that we do

not wish to waste our time or computer time on such an experiment

Our problem is so simple that it was experimentally analyzed years

ago We are reasonably well satisfied that the binomial theorem,

for example, predicts quite well the kinds of results the experiment

gives In fact, it gives us better results than the experiment The

experiment must somehow end before all possible samples have been

selected and the results of the experiment will always be a fraction

of what could be The binomial theorem enables us to proceed im-

mediately to an estimate of what would happen if we actually did

carry out all possible experiments

It is worth noting that there are many prohfems m probability and’

inference that we do not understand very well in the sense that we

do not have any ready formulas to predict the outcomes of infinite

experiments These are the problems for which we should use the

computer to help us search out likely formulas As pointed out

earlier, most of the logical inventions in probability and statistics

were initially a response to observable phenomena, and the clues to

vhat a good formula should look like came from experience If we

can learn how to simulate expenence on the computer, the potential

rate of progress is amazing It is now possible to have the computer

generate more expenence in a few hours than heretofore we have

been able to generate m years or decades, however, we can remind

ourselves that the computer can do only what we tell it, although

certainly very quickly It even makes mistakes m a hurry'

Our procedure is to exploit the bmorniaJ theorem to indicate what

kinds of samples of 5 will come out of this universe in the long run
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Figure 75 continues the analog) begun m Fig 74 We find that

only nx different kinds of samples can occur, the distinguishing

feature being the number of satisfactor) parts in the sample a num-

ber which can run from 0 to 5 Each of these results is pictured in

the lower part of the diagram We ha\e calculated the mean, the

\anance the crude skeoess, and the coefficient of skewne'^s for each

possible sample

lie ha^e abo noted the relative frequency with which would

expect each of the‘*e samples in the long run These are shown along

the light raj leadmg to a given sample For example, the extreme

left ra) shows Pip = Ojir = 3 W = 5) = 16807 This is shorthand

for the probability of getting 0 satisfactory parts, given that there

are 3 satisfactory parts m the unnerte and that we are taking

samples of 5 is etjual to 16807 If we change 0 to something else,

•saj to 2 as we do for the next ray to the right, there is a change in

the probabilil) e^ en though r and N remain the same Similarly, if

ue change t we change the probabilit), or if we change N Since

each of these factors does make a difference in the probability, it is

a good idea to cultivate the habit of explicitly specif) mg them It

IS \ er) eas) to make rather serious blunders in the use of probabilities

if ne misinterpret the conditions which necessani) must accompany

an) statement of probabilit) (It is conventional to use capital P

to signify probability The e\cnt we are getting P for is enclosed m
parenthe«es The first item m parentheses is the exent itself, here,

p = 0 (This IS small p and refers to the proportion of I’s m the

gu en sample if onl) 1 s and O’s can occur ) We then draw a x ertical

line to separate the eient from the conditions under which the e\ent

is pre umably being generated These conditions are e'isential

There is no way that a probability can be calculated except for «ome

given conditions
]

The diagrams at the \er) bottom of Fig 7 5 summarise the results

from the«:e six possible ‘»aniples Section A summarizes the \anou«

xalues for the sample means, here called the sample p’s This is the

distnbution u e pay most attention to Part B ‘'umraanzes the sample

vananceg Part C summarizes the sample skewnesses All of the«e

distributions take into account the relative frequenc) with which

each sample is expected to occur

Smee we are gomg to make only passmg references to the dis-

tributions of the vanance and of the skewness, let us make such refer-

ences first The most important thing to note about the sample xan-

ances is that their arithmetic mean is less than the \ anance in the

unnerse Note that the universe xanance is 21 and the mean of
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the sample variances is 168 Note also that there is a known exact

relatiorulup between these two values, tins relationship being that

Xj,, = tt{N - l)/N An explanation for this relationship la given

later We should not be surprised to find Xp, less than vr Consider

a universe with a t of 5 It would have a variance of 5 X 5, or 25

This is the maximum possibU canance for any imiveree, or sample,

that contains only Ts and 0 s Samples from this universe of r « 5

thus have some cases of a sample variance Iws than 25, but no cases

of a sample variance more than 25 Thus the mean of such variances

must necessarily be fwj than 25, and hence less than the variance of

the universe A parallel argument would hold for all other universes

The variance of the sample variances is 0071232 This is con-

siderably less than the universe vanance of 51 We do not show a

formula for deriving the vanance of the variances from the informa-

tion m the universe because the formula includes elements that are

outside the scope of this book We merely note that the formula in

volves more than just the sue of the sample and the vanance of the

universe It is interesting to note, for example, that the vanance of

the sample vanances from one universe might be larger than they

are from another universe, for the game N, even though the variance

in the first universe is malUr than the vanance of the second uni

verse

tp<i, or the crude skewness of the sample vanances, is calculated

to be - 000644 Again we show no formula for the reason just given

Note that the skewness is negative for these sample vanances even

though the universe itself has positive skewness

We show only the ariMm^^ic mean of the crude gkeimess m the vanous

samples It turns out to be 04032 Compare this with the crude

skewness of 084 m the universe It is clear, then, that if we use the

skewness m the sample as an estimate of the skewness m the universe,

we are on the average too low The appropriate correction factor is

shown as embodied m the formula for estimatmg Xj from L itself

If we multiply a given sample I by - 3N + 2), we get esti-

mates of L so that the arithmetic mean of all such estimates equals L
It IS interestmg to note what happens if i\r is 2 The correction factor

turns out to be 4/0 This implies that we should mcrease our estimate

of skewness quite substantially What it really means is that we have

created a bit of nonsense because we are dividmg by 0, an illegitimate

arithmetical operation Actually, a sample of only two items provides

us with no mformation at all about the skewness m the umverse All

samples of two items are axUomaticaUy symmetrical regardless of how

much skewness there is in the universe It should be obvious then^



PROBLEM OF INFERENCES 277

that it IS a bit of nonsense to base any estimate of skewness on only two

items

Now let us return to the disfaibutaon of sample means, here called

p’s Since we are going to be spending quite a bit of time with such

distributions, it is a good idea to make very clear exactly how we

have calculated the summary results shown at the base of Part A

Table 72 shows the detail of the calculations The important

features of each column are as follows

Column 1 These are the oriy posable proportions of satisfactory units

that can occur m samples of 5 These proportions are the

equivalent of samples havmg 0 satisfactory units, 1 satisfactory

umt etc
,
up to a maximum of 5 satisfactory units

Column 2 These are the prohatnlities of getting samples with the given

p's Thus we are saying that we expect to get samples with 0

satisfactory units 16807 of the time w the long run The

TABLE 7 2

Analytii of Diitribulion of Scrmple Arithmetic Meant (p't) for Simple Random

Samples of 5 Itemi Each from a Universe with an Arithmetic Mean (ir) of 3

Sample

p

(1)

P

(2)

Pf

(3)

(p-f) Pip -v)
(4) (5)

P(T-
(6)

p]> Pip-f?
(7)

0 16807 0 -3 -050421 0161263 - 00453789

2 36015 072030 -

1

-036015 0036015 - 00036015

4 30870 123480 1 030870 0030870 00030870

6 13230 079380 3 039690 0119070 00357210

8 02835 022680 5 mm QQ70875 00354375

10 00243 002430 7 001701 0011907 00083349

100000 300000 0 0420000 00336000

^ .s _ on - . i ._ Q42 ; 1

TT
1

3X7
Xp - TT, 0 V "Ud 5

Ip = 00336 =
rri 7rT(r — tt) 3X7(7- 3) 084

m
1

25 25

K,
00336 00336

" 008607“

X
'

r - IT

“ 042« VW Vn VV X Vin-

7- 3 4 4

Vs X 7 X 3 vT05
“

10247
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probabilities given here were taken from a table of the binomial

At leaat check them against the table, or possibly check them

by calculating the binomial itself

'

Column 3 This is the multiplication of each p by its corresponding P, or

multiplymg each sample mean by the relative frequency of its

expected occurrence The sum of this column is the arithmetic

mean of all the sample means

N B A very important characteristic of the means of ran

dom samples is now apparent, namely, that the anthmetw mean

of all sample meant u equal to the mean of the timverse

Column 4 Here we show the deviations of each sample mean from the

universe mean Since they are not yet weighted by their

probabilities, the sum of column 4 is meaningless

Column S Here we multiply each deviation m column 4 by its proba

bility m column 2 We sum these weighted deviations and get

0 This IS as we expect because we know that the sum of the

devictuins from the arithmetic mean always equals 0

Column 6 Here we have the weighted squared deviations They were

calculated by multiplying column 4 by column 6 The sum is

the sum of all the squared deviations Since N equals 1, this

18 also the mean of the squared deviations and hence what we

call the variance If we were to take the square root of this,

we would have the standard deviation of the sample p*8

Note that we could have calculated the same result of 042

by dividing the farwnce of the universe (ft, or .21) by the

number of items m the sample (here 5) This is a very im

portant result and is olmyt true Its truth is quite independent

of the shape of the universe We almost always calculate the

vanance of sample means by this formula rather than by the

tedious process of a direct calculation from a distribution of

all possible sample means as we did here

Column 7 Here we make the next Ic^cal step after squanng the devia

tions Now we cube them (Although we do not do it here,

or elsewhere we should note that the next logical step is to

raise these deviations to the 4th power The omission of this

step, and of the steps up to even higher powers of deviations,

is what prevented us from saying very much about the distn*

butions of sample variances and sample skewnesses We would

need these higher powers to say more

)

We are interested in the cubes of deviations because they

indicate something about skewness The sum of the cubes is

0 if there is no skewness Here we find a result of 00336 This

indicates a positive skevmess m the distribution of sample

means

The calculations below the columns show that we could have

obtained this same result by dividing the crude skewness in

the universe (I,) by the square of the sample size This is

also a very important result Again we emphasize that it is

always true and is completely independent of the distribution

form of the umverse We can now see why we asserted in an
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earlier chapter that the Donnal curve is a rather good approici-

matjon to the distribution of sanple means even though the

universe is quite skewed provided the sample is reasonably

large The crude Newness of sample means vanes mversely 3=

the square of the smnple aze

The coefficient of ^ewne«s of sample means is also calculated

,

it IS 3904 Again we find that we could have calculated this

directly from the universe mfonnation, using the universe K
and dividing it by the sgaare root of N Note that the rela-

tive skewness does not disappear m fast as does the crude

skewness The reaEon re quite ample The rdative skewness

IS calculated by dmdiog the crude skewness by the cube oj

the standard demtum As N increases we find the crude

skewness decreasing quite rapidly in the numerator of the

ratio But, also as N increases, we find the standard deviation

decreasing m the deimanator of the ratio The net result is

that the ratio does not decrease with IV as rapidly as does the

numerator

Now that we, to an extent, understand the behavior of samples as

they are generated by a random process from a known umverse, we

are in a better position to infer what is an unknown universe on the

basis of a known sample

7.5 Inferring the Mean of a Universe from Information

Provided by a Random Sample

The typical practical situation is illustrated in Fig 7 6 All of our

knowledge is in the sample domain Our problem is to make in-

ferences about the universe domain from this sample mformation

We first must face a philosophical issue The characteristics of

the universe are m fact fijedm the same sense that the charactenstics

of a deck of playing cards are fixed Several different samples could

have been drawn from this single universe We might argue, there-

fore, that the universe is a constant and the sample is a variable

This argument is relevant only if we know the universe and are

guessing about the sample If we do not know the universe, the situ-

ation 18 quite different We now have a case in which we know the

sample and are guessing about the universe Therefore as far as we

know, the universe might have several charactenstics and the sample

has only the speafic charactenstics givrai Hence we must treat the

universe as though it were a variable and the sample as though it

were a constant

Some analysts object to treatmg a constant universe as though it
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0 1

? • p « .40

l^aip^a 24

n^. 7 i Our present state of knowledge about part 3496.

were a variable We answer this objection by pointing out that we

must always treat a problem in terms of what we know about the

situation, not in terms of what tiie situation really is If our knowl-

edge is scanty, prudence requires that we allow for all the possibh

values some unknown constant might have. We should understand,

then, that when we treat a universe as though it were a variable, we

do not do this because we think the universe really is a variable but

because w-e do not know the precise value of the relevant constant

Summary Characteristics of Our Sample

Note that we have calculated the same summary figures for our

sample of five auto parts as we did for our univeree. We find that

the sample has a mean of .4, or satisfactory parts. It has a

variance of .24, a crude skewness of .048, and a coefficient of skew-

ne^ of .403. What might we now say about the universe from which

this sample came?
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If \ve say that
‘

the universe has a mean of 4 ” we are making a

statement about the mean which wJI be right on the average, m the

sense that the arithmetic mean of all such statements would give u®

the true universe mean We are able to say this because we have

already learned that the arithmetic mean oj all possible sample

means is equal to the mean of the imverse (See the previous sec-

tion )

Similarly, we could say that “the umverse has a variance of 30”

(the sample variance of 24 tames N/{N — 1), or times 1 25) We
make this adjustment in the sample vanance because we have dis-

covered that the arithmetic mean of sample variances is too small

(See Section 74) After making this adjustment, we can now say

that the anthmetic mean of all such estimates oj the umverse van-

ance will equal the true universe vanance

It may seem absurd to make an estimate of the universe variance

of 30 when we know that the maximum possible vanance of the

universe is 25 (The vanance of a distnbution of I s and

equal to rr, and rr can never be larger than 25 ) And it w absurd

in a way We are led into such an absurd statement if ne insist that

our estimates have their anthmetic mean correspond to the truth,

or the unn erse value that is being estimated It is thus apparent

that we should attach no magical properties to any method of making

estimates that satisfies the arithmetic mean criterion It is quite

clear here that «e should abandon the anthmetic mean cntenon for

another general cntenon that comes to better terms with common

Si’iTce farther disea^m ef this is hsyead the seeps ef

this book, we merely advice an adjustment of the sample variance

for its downward bias up to the logical kaxmum oj M, but no

further Thus, in this case, we would adjust the sample vanance of

24 up to the maximum value of 25

A parallel line of reasoning leads us first to estimate that the um-

\erse has a crude skewness of 100 [This is the sample crude skew-

ness multiplied by - 3Ar 21 ]
Again we find our estimate

larger than a knoi^n maximum, m this case a maximum of 0967

Hence ve would reduce the estimate to 0967 We make no attempt

to make tiie best single estimate of co^cient of skenness in the

universe

If we now combine these so-called best single estimates of the

mean, variance, and skewness and come up with a universe that has

a mean of 40, a variance of 25, and a crude skewness of 0967, v.e

vould have a “best single estimate” of the universe We find the

task of constructing such a umverse quite formidable, almost like
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constructing a Frankenstein monster, with a leg from here, a head

from there, a torso from somewhere else, etc We are sure, however,

that the resultant universe does Dot conform to any customary

bmomial distributions because this combination of mean \anance,

and skewness is a logical impossibility for a binomial distribution

We feel confident that we could eventually find a distribution form

that would have these characteristics, at least approximately But

we are not going to bother to look for it because we are quite sure

we would have no practical use for it after we found it because it

would be only a tangle estimate of the unknown universe Such a

smgle estimate is almost certainly wrong (we are certan it is in

this case) To have an estimate that is almost certainly wrong, and

to not know its margin of error, is to have no reliable base for rational

action What we could try to do, of course, is first make this best

estimate, then make a next best, and a second next best, etc until

we have a whole collection of estimates of this universe Such an

approach is conceptually possible, and it probably would be some-

what rewarding Honever, it would involve some very formidable

challenges, and we must confess that we are not quite up to them

here, and not just because thw » an introductory book

We are actually going to lower our sights somewhat and not even

try to desenbe the universe fully We are going to confine ourselves

to the relatively modest task of estimating the mean of the universe

We take up the parallel task of estimating the vanance of a universe

in a later chapter (Chapter 12) Nowhere do we try to estimate

both of these things at the same time

One Approach to Inferences About the Universe Mean

We stast reasoning about the mean of the universe with the bat

mgk estimate iw have at the moment and that is a mean of 40

But we are quite sure that the true mean might he larger than 40 or

smaller than 40 The problem, then, is to detenmne how much

larger or how much smaller, and then to determine how often it might

be a given amount larger or a given amount smaller In other words

we would like the equivalent of a probability distribution of the

possible values of the unknown umverse mean How do we go about

generating such a distnbution?

The simplest and most straightforward approach to the problem

of generating a probability distribution of the unknown universe

mean based on information supplied by a random sample is to let

the sample act as though it were th umverse and let the unknown

and hence variable, universe act os though it u'cre the sample What
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we are going to do, then, is follow a consistent procedure of letting

knowledge beget inferences We have previously used the procedure

to let our knowledge about a universe beget inferences about a sample

We are now going to let our knowledge about a sample beget infer-

ences about a universe We have no trouble doing this consistently

as long as we concentrate on knowledge and inference as the keys,

rather than on universe and sample, which are not the keys, although

the distinction between universe and sample is certainly relevant to

many things we are going to do

We call an inferred probability distribution of tne unknown uni-

verae mean the inference distributum of the unknovm universe mean,

and we call the probabilities in such a distribution the inference

ratios We use inference here rather than probability m order to

reduce the possibility of misunderstanding Thus we plan to use

inference when our knowledge is in the sample domain and we are

making statements about the universe We use probability when

our knowledge is in the universe domain and we are making state-

ments about the sample

Figure 7 7 pictures a possible set of inferences about v (we call

such an inference ir;) Note that we have done exactly what we did

m Fig 7 5 We ha%e used information in the domain of knowledge

to generate inferences in the domain of ignorance The inference

ratios referred to m the rays leading to the various possible values of

r/ are taken directly from a table of the binomial distnbution, in this

case for a mean (p) of 4 and N of 5, it would be good to verify them

We comment only on the leftmost one It is written IWi = 0[p = 4,

W = 5) - 0778 This is shorthand for “the inference ratio of a

value ol TT/ ol t), given a sample oi hve items wi'tn a mean o'l 4, is

equal to 0778
"

Again we have the problem of some absurd answers If v really

had a value of 0, of course, all samples would have p’s of 0 Simi-

larly, if really had a value of 1, all samples would have a p of 1

Our inference ratios of 0778 and 0102 are thus apparently nothmg

but nonsense because common sense su^ste they should have values

of 0 Nonsense or not, we now arc going to work with the inference

ratios of 0778 and 0102 because we find it very convenient and also

because we can discover some properties of inferences that would be

obscured otherwise Actually, our problem is caused by working

with very small samples and because we have arbitranly restricted

the values of our basic data to I’s and O’s If we worked with larger

samples and/or continuous vanables, the problem of absurd answers

would disappear Perhaps we would be more tolerant of these ab-
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surdities if imagined that a case of of 0 is really a case of w/ of

0 to 1 Similarly, a tt/ of 2 represents the range from 1 to 3, etc

,

up to a ff; of 1 representing the range from 9 to 1 We have merely

decided to arbitrarily represent these ranges by certain specific values

Figure 78 shows the inferences of Fig 7 7m the form of a single

distribution Here we show »/ along the horizontal axis It runs

from a mmimura of 0 to a maximum of 1 We indicate the location

of the sample p of 4 by the arrow The vertical axis shows the in

ference ratios {Keep in mind that these are the equivalent of proba-

bilities )

We would like to think that the distribution of Fig 78 is a fair

representation of the likely values of the unknown ir, but we must

admit that at this stage it has only one property that gives us any

comfort, namely, it is that this distribution has a mean of 4, thus

equal to the sample mean, and we know that the universe mean does

Domain

of

knowltdge

Sample domain

ps 40

24

|s04S
Ai=406

Rg 77 Tentative mfereneea about rj based on a random sample
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Fie 7 8 Inference distribution of v, based on a sample of 5 with a p of 4

equal the arithmetic mean of all the sample means If, say, oi

inference distribution had a mean different from 4, we would 1

concerned because we would fear that the arithmetic mean of i

such inferences would not be the universe mean It is proper, the

for us to do a little more testing before we accept Fig 7 8 as a fa

and proper picture of the likely values of «•/

Summary of All Possible Inferences that Could be Made from /

Possible Samples

make this test by considering all the other possible samp

results and making inferences about w from each of them, and th(

we overage all these inferences

Figure 7 9 shows all such possible mference distributions, mclui

mg that from a p of 4 Table 73 shows Uie same information :

tabular form Let us turn our attention to the table The columi

are headed by the various selected values ofn The rows are ident

fied by the various possible sample p’s Since our samples conta

only five items each, we know that there are no other possible valui

of p than the ones listed No such restriction applies to the r/s "W

know that n- m truth might have a value of 36947, or any other vah

of an infinite set of values running from 0 to 1 We show only tl
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Rj 79 Inference distnbuticms of FjbMed on all possible Values of pm samples

of five items

vahw of 0, 2, 4, 6, 8, and 1 It is obvious, then, that we are letting

each of these six selected values represent a set of values In essence,

rve are letting 0 represent 0 to 1, 2 represent 1 to 3, etc These are

quite crude intervals We justify their use at the moment because
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TABLE 73

Matrix of Inference Ratios for All Possible Values of Based on All Possible

Values of p for Somples of 5 items

[The body of tlje matrix shows /(*/!?, N = 5}]

V 0 2 4 6 8

i

10 2

0 10000 0000 0000 0000 0000 0000 10000

2 3277 4096 2048 0512 0064 0003 10000

4 0778 2592 3456 2304 0768 0102 1 0000

6 0102 0768 2304 3456 2592 0778 10000

8 0003 0064 0612 2048 4096 3277 10000

:j
0000 0000 0000 0000 OOOO 1 0000 1 0000

they keep our model as simple as possible, we use more refined inter-

vals later The crudities cause us no real fa-ouble now with respect

to the mam purposes of our present investigations

Examine the row identified by p equal to 4 and you will see the

same set of inference ratios /or the various values of irj that we

showed m Figs 77 and 78 The other rows give the appropriate

ratios for the other values of p All of these ratios are obtainable

from a table of the binomial We should spot check these against

such a table in order to satisfy ourselves that we understand exactly

how they are determined Note that each row has a sum of 1 0000

This should be so because v nmt have some value, and we claim that

we have included that value somewhere in the row We show no

sums for the columns Such sums would imply equal weights for

each value of p, and we know that such equal weights would not be

true under any circumstances

Averaging the Inference Botios We are now ready to average

these inferences as soon as we determine the appropriate weights

to use The appropriate weights would depend on the relative fre-

quency with V hich we would expect the various values of p to occur

These relative frequencies depend on the true value of v in the uni-

\erse Since ve started out with a universe with a ir of 3, let us
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TABIE 7 4

Probability Vector of All Poisible Values of p for Samples of 5 from a

Universe with Or of 3

f(p|T- 3,JV = 5)

0 1681

2 3602

4 3087

6 1323

8 0284

IQ 0023

10000

assume that our “unknown’' universe does have a » of 3 Table 7 4

shows the expected relative frequency, or probability, of the vanous

values of p for samples of five from a universe with ir equal to 3

We can now see where our inferences lead us Table 7 4 indicates

that we get a sample p of 0 in 16fil of all samples from a universe

with a rr of 3 This means that we make the inference about t shown

in the first row of Table 73 1681 of the time Similarly, we make

the inference shown in the second row (p = 2) 3602 of the time, etc

If we now multiply each row of inferences shown m Table 7 3 by its

relative frequency of occurrence shown in Table 7 4, w e have weighted

each inference about ir according to the relative frequency with which

we would be making such an inference Table 7 5 sho^s the results

of such a multiplication (Note that we have called Table 73a
matrix of inference ratios, and Table 74a probability vector These

are terms used m matrix algebra, a subject which may be unfamiliar

If so, it IS sufficient to know that a matrix is essentially a fable vnth

roiLS and columns A vector is simply a special case of a matrix that

has only one row, or, it could also have only one column Thus we

talk about a row vector, which is a matrix with only one row, and a

column vector, which is a matrix with only one column Thus we

might call Table 73a matrix and Table 74a column vector Those

exposed to matrix algebra will note that Tables 73 through 77 are

parts of a ‘system of matrix midtiphcatum

)

All of the inference ratios m Table 7 5 are the result of multiplying

the corresponding unit m Table 73 by the appropriate row proba-

bility given in Table 7 4 For example, 1681 in the upper left-hand
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TABLE 7 5

Matrix of Weighted Inference Ratiet for All Possible Values of :r, Given

ihai v= 3, N=:S

[The body of the matnx shows /{ir/|p - 5 r =
3]

p 0 2 4 6 S 10

0 1681 0000 0000 0000 CKXW 0000
1

1681

2 im 1475 0738 0184 0023 0001 3601

4 0240 0800 ICS7 0711 0237 0031 3086

6 0013 0102 U305 0457 0343 0103 1323

8 0000 0002 0015 0058 0JJ6 0093 0284

10 0000 0000 0000 0000 0000 0023 0023

3114 2379 2125 1410 0719 0251 9998

comer of Table 7 5 is the result of multiplying 1 0000 from Table 7 3

by 1681 from Table 74, 1476 just southeast of the 1681 is the

result of multiplying 4096 from Table 73 by 3602 from Table 74,

0738 in column 3, row 2 of Table 7 5 is the result of multiplying 2048

in column 3, row 2 of Table 7 3 by 3602 in the second row of Table

7 4, etc Note that the rows add to Uie same probabilities as we had

m Table 7 4 (except for slight rounding errors) This is as we would

expect because we started with rows that each added to 1 0, and 1

multiplied by any number should give us the number

Another way to visualize the matenal of Table 7 5 is m the form

of a tree Figure 7 10 shows the senes of branches We start with a

universe with a rr of 3 This universe is then used to generate samples

of five items each These samples could have the p values indicated

by the six branches emanating from the trunk They would occur

with the long run frequency indicated at each branch These corres-

pond to the probabilities given m Table 7 4 Then, given a particular

sample p, we could generate inferences about tt These inferences

are shown by the six branches that emanate from each of the sample

p’s Tw 0 probabilities are designated for each of these 36 branches

The first one is the probability (or mference ratio) of the particular

TTi, given the value of p Note that these probabilities add to 1
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Within each set oj six branches Tliese probabilities correspond to

those m Table 73 The probabilities shown at the hps of the

branches, and labeled the joint probabiliUes, are the result of multi-

plying the probability of the n by the probability of the p that gen-

erated the inference These are the probabilities that correspond to

those shown in Table 7 5 Note that all 36 of these together add to 1

Our primary interest m Table 7 5 is in the column totals Here we

have the average {arithmetic meim) of all the different inferences we

might make about tt based on all the possible samples of five items

we could get from the universe Let us call this collection of column

totals the average inference ratio vector for estimates of t, in this

case the inferences based on samples of five items each In Table 7 6

ve rewr'te this average inference ratio vector as a column vector

We then analyze this vector by calculating the mean, \anance, and

skewness

The first and most important thing to note is that the arithmetic

mean of all the inferences about v is equal to 300, the value of r in

the universe In other words, if we use the binomial based on the

sample p’s to generate estimates of », ve find that the arithmetic

mean of all such estimates will equal the n in the universe Thus

any errors we make in estimating » will average out in the arithmetic

TABLE 7 6

Analysis of Average Inference Ratio Vector of Estimates of vj Based on

Samples of 5, Gtven that r — 3

tt; I IXn in - vr) lin - n) lin - viY l{n - tiY

0 3114 0 -3 - 09342 028020 - 0084078

2 2379 04768 -1 - 02379 002379 - 0002379

4 2125 08500 1 02125 002125 0002125

6 1410 08460 3 04230 012690 0038070

8 0719 05752 5 03595 017975 0089876

10 0261 02510 7 01757 012299 0086093

9998 • 29980 - 00014

1

075494 0129706

Departure from 1 0000 due to rounding ernira

t
' » 0

“ “ 11 (1

Wi = 2998 = 300

ffri
- 0765 - ITT X

2N
1 = 21 X 9 X 4
N

Lr, = 0130
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mean sense This seems to be a reasonably desirable feature of any

estimating procedure.' Although we should be quite pleased to find

the arithmetic mean of our inferences equaling the true value of r,

we should not then automatically assume that the inference ratios

that accompany these estimates are meaningful in any probability

or relative frequency sense In fact, it is easily demonstrated that

there are many different distributions of that will average out at

the true value However, these different distributions would give

quite different inference ratios and hence would give quite different

impressions of the chances that the true ir falls within any specified

limits within the distribution We examine this problem as soon as

we finish commenting on the variance and skewness of this average

inference ratio vector

The variance of this average inference ratio vector is .0755 Note

that this same result could have been obtained by multiplying the

universe variance of rr by the expression

2Ar-l 2

2N

This expression looks more formidable than it actually is. Note that

the first half (2N - l)/2N is practically equal to 1 if N is any size

at all. For example, \i N = 10, then (2N - 1)/2N = .95. Thus if

N is large, we can treat this part as equal to 1, thus leaving us with

2/N. As a matter of fact, if we had used the {N - 1) binomial in-

stead of the (N) binomial in generating our inferences, we would have

found that the vanance of the average inference ratio vector would

have been exactly irf(2/iV) ’ The variance of sample means (p's)

' We might also argue that it would be a desirable feature to make estimates

that have a miaimum error is the eeaae that the sum of all possible errors, signs

Ignored, is as small as possible It is the median of a set of numbers that

rnimmites the sum of the deviati<«s if the signs are ignored If the distribu-

tion is symmetrical, the mean will equal the median and we can simultaneously

have estimates that have miumum error and errors that will average out If

the distribution is skewed, it is imposible to satisfy both these desirable con-

ditions at the same time We must then ijake a choice Since the distribution

we are working with is skewed, we face such a choice here We have chosen to

satisfy the condition of averaging out our errors rather than of mmimizing them

We make this choice mostly for convenience

* We may ask why anybody would consider using N - 1 instead of N in mak-

mg inferences about w For example, although we had samples of S items, we

might have used 4 to generate the bmomial The logic for using 4 would be this



PROBLEM OF INFERENCES
293

IS equal to irr/N Hence we can say tiiat the vanance of the average

inference ratio vector tends to equal twice the vanance of sample p's

Another way to look at it is this Each sample is the basis of a distri-

bution of sample p's, or of v/s Each of these distributions has a

Variance of pQ/N When we add all ttiese distributions together to

get the total, or average, mferraice ratio vector, we find that this

total distribution tends to have tunce the vanance of its members

We merely note that the average mference ratio vector has a crude

skewness of 0130 Since the crude skewness of the universe is 084,

this makes the average inference ratio vector skewness about 1/6 of

the universe skewness The formula that expresses the exact rela-

tionship IS quite forbidding We note only that the skewness tends

to disappear quite rapidly as N increases

7.6 Checking the Accuracy of the Probabilities Implied

by the Inference Rotio Distributions

The second test we must apply to our inference ratio distributions

IS that of determining their accuracy m estimating the probability

that TT does in fact fall within specified values of n (The first test,

discussed above, established that the inferences did in fact average

out to the correct value of # ) In applying this test of the accuracy

of the specific inference ratm we use a much larger sample than be-

fore This larger sample makes it possible to see things that are

somewhat obscured if we use a sample of only five items Table 7 7

shows the inference matrix for all possible samples of 50 items from

a universe that contains an unknown number of I’s and O’s The

numbers m the body of the matrix (reading horizontally) are taken

from tables of the binomial distribution The probabilities are

The vanance of a bmomial distnbution vnnea mversely with N That is the

Jaiger the N, the smeller the vanance The lanances of random samples are

m general loo small In fact, the average sample variance is equal to the

unn erse \ anance X Since we base each of our mference ratio

(listnbutions on the sample information these distributions in general ha\e

vanances which are smaller than they wcmld be if they were based on tlie

\ anance m the universe If we widi to correct for this deficiency we should

use JV - 1 for our binomial inference raUo distributions Incidentally if we

do use - 1 instead of we find that the mean of all our inferences will be

the true v just as m using N However, our average inference ratio vector ml!

have a larger variance than if we had used N
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rounded to the nearest thousandth in order to accentuate the genera)

pattern of the matrix m a limited space Verify at least one of these

horiiontal lectors for a selected p in order to solidify understanding

of what we are doing

A sample of 50 items might ha\e a p running from 0 to I in steps

of 02 The«e 51 different possibilities arc shown m both the leftmost

and nghtmost \ ertical columns The true uni\ eree t might hai c any

\alue running from 0 to 1 Me ha\e chosen to identify only the spe

cific \ allies marked off by steps of 02 Me choose only these in

order to simplif) our comparisons of the hontontal tectors and the

^ertlcal \ectors Me might just as well haie chosen more or fewer

values lor »/ Keep in mind that, in reality, each 'jelected ti is a

reprcsenfatiie of a class of ti These classes can be considered as

bounded bj the points midway between the specific r/s The topmost

and bottomrDO‘5t rows show these various v alues of *;

For each value of p we have generated a distribution of inference

ratios for the value of *f U appears as though ‘*ome values of »/

ft'*' impowiMe fora given value of p For example, a p of 06 yields

probability for a t; of 2S This is of course, not strictly true,

but \t M fntf if we round our probabilities to thousandths

Each of the«e inference ratios is supposedly an estimate of the

probability that the given sample came from the 'pecified universe

For example suppose we have a sample with a p of 36 The hon

rental vector at p = 36 indicates there is a probability of 101 that

this •'ample came from a universe with a r of 32 Our problem is

this close fo the truth w/hwtn/crenec ratio of lOlf

Rather than try to answer this specific question about the accuracy

of 101 referred to above let us concentrate on the vertical and

hontcntal vectors that intersect at p = 50 and »/ = 50 They are

marked off m the center of the matrix For convenience we have

reproduced just this part of the raalnx in Fig 7 11 It is useful to

refer back to the full matrix penodically as we explain the meaning

of these mter«ecting vectors The honzonlal vector serves a double

duty
,
it is the distribution of xnference ratios for various values of

Ti giicri a sample p of 50 and if we interchange the p a and irs in

our matrix, it is al o the probabflify distribation for the various

values of p we would expect from a universe with a t of 50 These

two di«lnbutions are identical becau*e we have cho'^en to act as

though kncurlcdge abciui a sample provides exactly the same inference

ba«e for speculation about the universe as Inendedge about the imi-

imc provides for speculation about samples
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SOVectv

Fig 711 Companson of inference and probability vectora—ir = J*f»50

(See Table 77)

The vertical vector at ni = 50 is nothing more than a cross section

of the horizontal vectors More particularly, here it represents the

various probabilities that would have been assigned to the truth of

a of 5 given the various specified sample p's The arrows connect

terms of the vectors which should have the same values ij our theory

of inference were perfect For example, if we are given & ir of 36,

we would assign a probability of 016 (the sixth term m from the left

on the horizontal vector) to the occuirence of a random sample of

50 items with a p of 50 Conversely, given a sample of 50 with a p

of 36, we would expect to assign a probability of 016 to the existence

of & universe with a ff of 50 We note, however, that our inference

method has actually assigned a probability of 015 to a of 50,

given a p of 36
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015 13 close enough to 016 to prevent too much consternation

If we check all the terms of the two vectors, we find that m no

case IS there a difference of more than 002 It should be recognized,

however, that m one case the estunate missed by 50^0 This was a

sample p of 70 (or of 30) where we expected a probability of 002

and estimated one of 001 As a practical matter we would have to

admit, nevertheless, that these Mtimated probabilities are certainly

close enough for just about any problem we could think of Un-

fortunately our theory of inference does not work this well all the

tune!

Figure 7 12 clearly substantiates the fact that our theory of infer-

ence is not foolproof Here we show the intersecting vectors for a p
and »/ of 92 It is rather discouragmgly evident that some of the

misses are quite large For example, with a « of 9S we assigned a

probability of 067 to the occurrence of a sample with a p of 92

Conversely, we assigned a probability of only 0t5 to the existence

of a universe with a ir of 92 when we were given a sample with a p

of SS

In Fig 7 13 we have the intersecting vectors for a p and wj of 20

Note that the estimates here are better in general than for the 92

vectors, but worse than for the 50 vectors

»/

Rq 7M Comparison of inference and probability vectors ira52 M = 50

(See Table 77)
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The Cause of the Errors in the Inference {Ratios

Figure 7 14 cieariy demaslntes that the errors in the in/erenDe

ratios are definitely systematic Note that the inference ratios are

always below or equal to tJie direct probabilities for values of p

below 20 and always above or equsf to the direct probabilities for

values of p above 20 (We are confining our attention to the inter-

secting vectors at tt and p of 20 ) It looks as though a simple cor-

rective action would be to rotate the distnfaution of inference ratios

clockwise This would bnng the two distributions into almost per-

fect agreement To accomplish this, however, we would have to alter

all our horizontal vectors because the vertical vectors are simply

cross sections of the horizontal vectors If we alter these honzontal

vectors, we do two things that we do not like to do First, we would

have abandoned the binomial distribution as our inference distribu-

tion, and we are reluctant to do this because we do not have at band

any other simple class of disfcnbutions to substitute for the bmomial
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Rg 714 ComparisoD oi coavtrse and direct probabilities for samples of 50 with

» = 50 (See Table 77)

and still do the required job Second, we would end up with inferences

that wmld not average cut at the true value of ir We must admit

that there is no inherent magic in averaging out at w but to do so

does give us a sense of security that we hesitate to abandon until \\e

have something else

Let us examine the condition that would definitely make the inter

seding vectors identical Table 78 illustrates an ideal inference

matrix wherein all the inference ratios are exactly equal to their

companion direct probabilities The fundamental condition to ac*

complish this is that all the horizontal vectors must have the same

probabilities Thus the vectors differ only with respect to their

means All the vectors have the same vanance and the same skcu'^

ness Our problems would be solved if we could eliminate the corre-

lation that exists among the mean, variance, and skewness in our

samples A mean of 50 i3 accompanied by the maximum vannn'‘e

of 25 and by 0 skewness It is impossible to have a sample with a

mean of 50 and, say, with a variance of 20 or with a skewness of

068 As the mean departs from 50, the variance decreases and the

skewness increases If it were possible for any given mean to be

paired with any given variance and with any given skewness, we

would find that our horzontal vectors would average out to have the
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TABLE 7 8

IdeoJ fnferencs Mafrijces

Sjuimetnca} Probabdity and Inference Vectors

301

0 1 5 n IS 30 18 11 5 1 0

'

0 1 5 n IS 30 18 11 5 1 0

0 1 5 11 18 30 18 n s 1 0

0 i 5 1! 18 30 18 111 5 1 0

0 1 5 n 18 30 18 li 5 1 0

0 1 5 11 18 30 18 11 5 I 0

0 1 5 11 18 30 18 11 5 1 0

0 1 5 11 18 30 18 11 5 1 0

0 I 5 U 18 30 18 n 5 1 0

0 I 0 11 18 30 18 11 6 1 0

0 I 5 11 18 so 18 n 5 1 0

Skewed laference and Probability Vectors

0 1 2 4 6 9 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20 12 5

1

1 0

0 1 2 4 6 9 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20
i

12 5 1 0

0 1 2 4 6 a 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20 12 5 1 0

0 12 4 6 9 15 25 20 12 5 1 0

0 12 4 6 9 15 25 20 12 5 1 0

0 1 2 4 1 6 9 15 25 20 12 5 1 0

0 1 ' 2 4 6 0 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20 12 5 1 0

0 1 2 4 6 9 15 25 20 12 5 1 0

same variance and same skewness, thus satisfying our desired con-

dition We say average out because indimdwl honzontal vectore

would sonietinies have mall variance and sometimes large variance

due to fluctuations of sampling The same would be true of skewness

In Table 7 7 we note that the variances of the horizontal vectors
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are essentially the same near U^e center of the matrix This explains

why our inference ratios are good Mtimates of the direct probabilities

if Tf equals 50 The estimates would be almost as good if v equaled

48, or 46, etc We begin to get significantly poorer estimates only

when the variance begins to decline significantly

It IS also important to note that the inference ratios do not become

poor estimates until we get near the tails of the distributions The

maximum probability for a given vector is always exactly correct,

the next adjacent probabilities are nearly correct, the next a little

less correct, etc Thus we do not begin to make large errors until

we get to the small probabilities, the very ones that are not so likely

to occur For example, if ir equals 30, we find a probability of 122

that a sample p of 30 will occur When a p of 30 does occur, we

assign a probability of 122 to a «•/ of 30, and we have assigned the

exactly correct probability If our sample happens to have a p of

28, we assign a probability of 117 to the existence of a ir/ of 30

This compares with the direct probability of 119, if we get a p of

26, we assign an inference ratio of 100 instead of the correct 105 >

out sample has a p of 22, wc an mfatanot ratm of 052 W
the existence of a iri of 30 instead of the correct 060 But note that,

although we make a relatively large error m our estimate of the

probability of ff/ of 30 when we have a sample p as low as 22, we do

not make this error very often became apof M does not occur very

often It IS appropriate to state that this method of stating inference

ratios 18 such that the cases of small errors occur more frequently

than the cam of large errors Therefore our total errors are model*

ately small

The Importance of the Size of the Sample to the Accurocy of

Inference Ratios

The errors m the inference ratios decline as the sample size in-

creases The decline is not because the variances in the honzontal

vectors become more umfona, beeauw they feet do not heeom«

more uniform The relative differences between the variances remain

precisely the same regardless of the size of the sample For example,

the variance associated with a p of 5 is always about twice as large

as the variance associated with a p of 146 regardless of the size of ^
(See Table 7 9 and note that the relative sizes of the numbers are

the same m columns 2, 3, 4, and 5 ) What does happen as N increases

IS that the relevant horizontal vectors are so close together with

respect to a given p that we become concerned only with a very small
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TABLE 7 9

Variances of Binomial for Vcrrious Voloes of p and Various Sues of Samples

p P3
W* P_? II.
25 5 100

(1) (2) (3) (4) (5)

0 0 0 0 0

05 0475 19 0095 000475

10 0900 36 0180 000900

15 1275 51 0255 001275

20 1600 64 0320 001600

25 1875 75 0375 001875

30 2100 8i 0420 002100

35 2275 91 0455 002275

40 2400 96 0480 002400

45 ^75 99 0495 002475

50 2500 100 0500 002500

* This column expreses each value of p? aa a ratio to

the pq of 25 that is associated with a p of 5

segment of the total matrix, and the variances of the horizontal

vectors are then practically the same For example note the case

of a p of 3 If N equals 1, we get a variance of 21 and a standard

deviation of 458 If we use the normal curve probabilities as a

crude basis of estimating the range of the bufh of the prohahiiities

around a p of 30, we find that plus and minus 1 standard deviation

of 458 would be necessary to cover about 2/3 of the cases Thus we

would be running across the vectors from a p of 0 (we rule out p

values of less than 0) to the neighborhood of a p of 75 Such a

range of p vectors certainly gives us plenty of opportunity to be dis-

tressed by the changes in the vanances But now consider the case

if equals 10 000 Here we have a standard deviation of only 00458

If we go to plus and minus 3 of these, we should include about 9975

of all the frequencies (The normal curve estimate would be quite

good witli such a large sample ) Thus we would find our relevant p

vectors all within the span of a p of 285 and a p of 315 It should

be obvious that the variances of these vectors would be practically

identical and that our inference ratios would be almost exactly tlie

same as the direct probabilities
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7J A Summary of the Properties of the Binomial

Distribution as on Estimator of the Probability

Distribution of the Value of the Unknown it

We uncovered several concepts and ideas m our exploration of what

happens if we use the binomial distribution as an estimator of the

value of the unknown r Since we encounter these concepts and

ideas again and again, it is useful to summarize them in order to fix

them in our minds

1 Does {he probability distnbuuoa of an unknom universe value east?

We have found that there is a distribution of the unknown v that has

many of the piopertieg of a probability distribution We have not

learned as yet how to estimate the probabilities precisily, but we have

demonstrated that we can estimate them close enough for many practi-

cal problems We would argue that such estimated probabilities are

subject to exactly the same kinds of interpretations as are the proba

bilities generated from a known universe about an unknown sample

or samples

2 The binomial distnbutwns have the property that the arithmetic mean

of all the inferred distributions results in the exact true value of the

unknown ir This means that repeated estimates produce erron which

average out m the arithmetic mean sense This seems to be a useful

property of an estimating procedure and one we would always try to

have if it IS possible without sacnficing some other useful properties

We see other useful properties shortly

3 Our use of the bmomial inferences required that we make no assump-

tions whatsoevcT about the mean, vanance, or skewness of the universe

other than what was implied by the sample itself In other words, we

did not impose any restrictions on our inferences owing to any notions

we might have about the universe, either by assumption or from prior

knowledge The importance of our not making any assumptions be-

comes clearer in later discussion when we do make some assumptions

4 The binomial distributions are veiy handy to work with, they have

known properties and can be generated by a relatively simple formula

The tedium of calculating binomial probabilities can be relieved by

tables

5 The binomial distnbution is diswU It provides probabilities for

only certain specific values of however, other values of ir/ are

possible If we wish to use the binomial distribution to estimate

probabilities for the other values of tj, we must interpolate between

the specific discrete values We woi:dd thus be treating the binomial

distribution as though it were a continuous distribution There is

nothing inherently wrong in treating the binomial distribution as a

continuous distnbution To do so, however, involves some rather

tedious calculations to find the interpolated probabilities for the sub-
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intervals No one has yet performed such calculations and published

them in a table, primarily because there seems to be no pressing de
mand for such interpolated values

6 Errors in the use of binomial probabilities as estimates of the proba-

bility that a given w; is in fact the truth are caused by the nanation tn

the vanance of the distribution for different sample values of p If

ive could allow p to vary without accompanying systematic variation

in the vanance of the distnbutiOD of t/, we would solve our problem

of errors in our probability esUmates We emphasize the word system-

atic because ne would not be concerned with random vanations m the

vanance Random vanations would tend to average out, thus leaving

us with constant vanance on the average

7 Errors m the use of binomial probabilities to estimate the probability

distribution of w/ tend to decbne as the size of the sample increases

This decline is caused b} the reduced vanance in p as N increases

8 The errors m the probabilities are more senous on the tails of the distri-

bution than thev are m the middle of the distnbution Thus the error

in the probability vanes inversely with the size of the probability

The net result is that small errors occur more often than large errors

9 The bmomial distribution gives probabilities for r; equal to 0 or 1

that are obviously wrong If we have a sample with, ssy, 25 defective

pieces, common sense suggests that this sample could not possibly

come from a universe with 0 defectives, or from one with 100% defec

fives The bmomial distnbution based on a p of 25 suggests positive

probabilities for a jt/ of 0 or of 1, however This sort of nonsense

could be considerably reduced if finer interpolations were made for

the values of ir/ This also would not appear to be quite so much

nonsense if we interpreted a ir/ of 0 to actually refer to a range of w/

from 0 to, saj, 10 Thus, apparently discrete estimates of probabilities

of TT/ for values of 0, 2, 4, 6, 3, and 1 0 could be interpreted as esti-

mates of the probabilities for w/ values m the intervals O-l, 1-3,

J5~5, b-T, 7- 9,
9-1 0 ‘Tfie existence of positive prohahuifies in the

two extreme intervals would not appear so shocking

The problem with the boundaries of 0 and 1 exists in some form with

any estimating method Fortunately, the restnctive impact of these

boundaries declines as the sample size increases Later we show how

we can solve the problem of boundaries by using an inference model

that has no boundaries, for example, the normal distribution

7.8 The \Jnder\Yind log'c of a Theory of Inference

Since we have already discussed the problem of developing some

procedure for making inferences about the unknown mean of a uni-

verse, it may seem strange that we posl^ione to now any explicit dis-

cussion of the logical requirements of an inference method We feel
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that we will be m a better position to appreciate the logic after we

have seen some of the problems a theory of inference faces

We now make an assertion that would have seemed to be quite

bold a few pages back Let us first make the assertion in the form

of a special case ^ e would like our theory of inference to be so con-

structed that if the probabih^ of a sample p of 20 is 158, given a

universe r of 40 the probability of a ^ of 40, given a sample p of

20, should also be 158, both statements, of course, for a given sample

size In symbols we would like to be able to assert the validity of

the following equality

P(p = 20U = 4Q,h0 = P{t ^ 40[p = 20, N)

Or, more generally, we would bke to assert the validity of

P(plr,JV)-P(r|p,?^)

If we call the probability on the left side of this equation the direct

probability and the probability on the nght side the inverse proba-

bility, we can now say that we would like our direct probabilities to

equal our inverse probabilities The direct probabilities are those

calculated about samples from a known universe The mverse proba-

bilities are those calculated about universe inferences from a known

sample

The fundamental condition for this equality to be true is that each

sample mean [p] should be able to occur with each possible sample

variance, and vnth each posed>le sample skewness Table 7 8 illus

trated such a condition for a case of zero skewness and for a case of

significant positive skewness

7.9 The Next Step

We now have a fairly clear idea of the essential conditions for

an ideal theory for making inferences about the mean of a universe

from information supplied by a landom sample We also have a

theorj' for making such inferences which works quite nell if the

sample is reasonably large and/or if the universe t is m fact ra the

neighborhood of 50 Our next step is to develop modifications of

this initial theory that will improve our estimates for small samples

and for v values some distance from 50 This is the task of the next

chapter
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PROBLEMS AND QUESTIONS

7 1 Staj \wthin tbe bounds of your present knowledge and analjze each
of the foUottJDg prediction problems Describe the histoncal sample infor
mation which jou have Infer tte umverse and any expected shifts in the

ninvei«e Make a probabiUtj mlerence about the event

(c) What time (to the minute) will you go to bed tonight*’

(b) How much (to the pound) mil you weigh tomorrow moniing’

(c) How far is it (to the yard) from where you now are to the nearest

source of a drink of water?

(d) What will the United States Gross National Product be (to the

bilhon S) during the current calendar year?

(e) How many people (to the hundred thousand) will be unemployed m
the United States next July 1?

7 2 Given each of the untverecs referred to and given the drawing of

an infinite numb“r of random samples of the specified size make inferences

about the relative frequency of all the po«8ible sample means Use tables

of the binomial » refers to the universe proportion to the size of the

sample

() ir * 2 iV = 5

() 8, Nn5
(c) w* 2, N*8
(d) r = 4 N « 20

7 3 Suppose that the information given in Question 2 represented hy

potheses tint you were making about the true conditions of a univcsfl

Would JOU make wagers consistent with (he probabilities you calculated

with re«i)ect to specific samples that could be drawn? For example if the

events in qucMion wore the number of defective radio tubes in a sample cf

five and if vour inference was that there was a probabilitj of 1 of getting

two defective tubes out of five would you be willing to bet S 10 to Si that

the next sample of five would have two defectives’ Why or vvhv not?

WouldjoubetSlOtoSIOO? Why orwby not?

If JOU decide not to bet $10 to SlOO would you be willing to bet SlOO to

$10 that there ui(f not be two defcctvvcs m the next sample of five’ Why

orwhy not’

If jQU decide to bet on neither side of the issue what do you plan to do’

7 4 For eacli of the sets of inferences you denved m Question 2 calculate

and interpret the following Use the direct calcdation and then check by

u'C of the formulas based on v and t as jiven in Table 7 2

() The arithmetic niein of the set {Xp)

() The variance of the set

(c) The standard deviation of the set

id) The crude skewness of the set (Lf) (Remember the L is for

(i-)op'ndedness

)

(e) The coefficient of skewness of the set [K,] (Remember the K is

for (R)ockeyedness

)

7 5 The problem of bias" m sample results can be very perplexing

Consider the case of the sample variance, or standard deviation, as an esti-

mate of the universe variance or standard devmtion The table below
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shows the expected sample results with samples of five from a universe with

a ir of 5 and thus a variance of *t, or 25

“Cor

Ad reeled”

Sam-

ple

P

(1)

Sam-

ple

Vi

(2)

Proba-

bility

P
(3)

Pn
(4)

justed

Vanance

vW
(5)

PpV
(6)

Adjusted

Vanance
p"«"

(7)

PvY
(8)

0 0 03125 0 0 0 0 0

2 16 15625 025000 20 031250 20 031250

4 24 31250 075000 30 093750 25 078125

6 24 31250 075000 30 093750 25 078125

8 16 15625 025000 20 031250 20 031250

10 0 03125 0 0 0 0 0

lOOOOO 200000 250000 21875

If we take the sample variances as we find them, we end up with an

arithmetic mean of estimates of 2 as shown in column 4 If we adjust each

sample vanance for the mean error and pay no attention to the fact that

some of the adjusted variances will be impossibly high, we would have esti*

mates with an arithmetic mean of 25, which is the actual universe value

(See column 6 ) If we arbitrarily reduce all impossibly high estimates to

the maximum of 25 (see column 7)) we get an arithmetic mean estimate

of 21875 (colunmS)

(o) What policy would you follow m making estimates in a practical

problem?

(6) What IS the logic of requiring estimates to have an anthmetic mean

equal to the true valued

(c) ov’Aiff cvriifrw m use hr vi^her cr Bot ss

estimate tends to have bias^ (Hint Could any other average be used than

the mean?)

(d) Suppose you had adopted the entenon that an estimate of the van-

ance should be as close as possible to the universe value Analyze the

estimates shown in column 2 to sec how close they are to the true value of

25 Compare the closeness of the column 2 estimates with that of the

column 5 estimates With the column 7 estimates

What conclusions do you draw now^
7 6 Make up an mference raatnx like that m Table 7 3 for samples of

four instead of five

() Suppose the universe ir were actually 5 There would then be a

probabibty of ^750 of getting a sample of four with a p of A According

to your matnx, what is the probabiLty (or inference ratio) of a sample of

four with a p of 5 having come from a umverse with a of 5’ Does this

strike you as a logical result considering that there is a 3750 probability of

getting such a sample from such a universe? Explain

() Again suppose a ir of 5 The probability of a p of 25 m a sample

of four is 2500 According to your matrix, what is the probability of a
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sample of four with a p of 25 bavmg come from a universe with a a- of 5'i’

Is this a logical result’ Explain What seems to be the cause of the ap
parent inconsistency?

7.7 Suppose a universe ir of^ and samples of four

() Determine the probabilities of getting all the various possible sample

results from this universe (In other words, determine the probability

vector for expected 'ample results

)

(5) Multiply your matrix of Problem 6 by this probability vector in the

manner shown m the text to develop Table 7 5 from Tables 7 3 and 7 4

(c) Why should the horizontal sums (the sums of the row vectors) give

exactly (except for rounding) the same probabilities joa have m your

probabilty vector that you multiphed by’

(d) Detenmne the suras of the column vectors in the matnx you calcu*

lated m (b) These make up the average inference ratio vector ^Vhy

should these sums add to I (except for rounding errors) ’

(e) What meaning do you attach to the “average inference ratio vector’'

developed in (d)

7 8 Calculate the mean and vannnee of your average inference ratio

vector developed in Problem 7(d) Are xour answers what you would

expect based on the formulas given in Table 7 6’

7.9 Make up a chart in the manner of Figures 7 11, 7 12, and 7 13 from

your matrix of Problem 6 bv reproducrag the intersecting vectors at p = 75

and ff = 75 Test these vectors foi correspondence

7.10 Test the intersecting vectors at p = 50 and jr = 50 in the same

manner as done in Problem 9 Are the vectors closer when ir- b than

whenfl-*® 76’ If so, why’

7.1
1 (fl) Set up the inference matrix for samples of 20

() Test the correspondence of the intersecting vectors at r and p of S5

Are these vectors closer than you found with your samples of only four’



chapter w
A theory and method for

making inferences about the

mean of a universe from

information supplied by a

random sample

The essence of anj modification of the lheor> of inference

outlined m the preceding chapter is to reduce the diSermet between

inference ratio sectors In other words, we would like to de\elop a

set of inference ratio sectors that would be identical except for the

displacement caused by \anati0D8 m the mean We illustrated this

condition m Table 78 on page 301

One approach to this problem is tramjorming p into another

variable The technique of transforaiing the scale and/or the ongin

of a variable can sometimes be \er} effects e in simplifjing a prob

lem. The transformation that has been performed on p with some

success in^ohes the u«e of arc stmt of p In high school geometry

it was explained that the sine of sn angle m a nght triangle is cal-

culated bj dividing the length of the side oppo'iite the angle by the

length of the hypotenu‘;e For example, if the side opposite the gn en

angle was 6 mches long and the hypotenuse was 9 inches long, the

sine of the angle would be 667 The angle would be about 42** Thus

we can say that the sine of an angle of 42® equals approximately

667 Since the opposite side cannot be any larger than the hjiiote-

nu«e, the sines of angles between 0® and 90° ^ ary from 0 to 1 , p al«o

vanes from 0 to 1 If we take p and treat it as though it were the

«ine of an angle and then replace p vith the corresponding number of

degrees tn the associated angle, we ha^ e made an arc sme transforina

tion For example, if we have a p of 40, we would replace it with an

310
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arc eine (the angle equivalent) of 23 6“ After making such arc sme

transformations, we would carry out all further analysis in terms of

the arc sines Although this metiiod is moderately successful in

equalizing adjacent inference rafao vectors, it is not perfect In ad-

dition, it does not open the door to some hues of reasoning that an

alternative approach does, lines of reasoning that are of great signifi-

cance in dealing with the many praotacal issues we face as we apply

any theory of inference, and we, therefore, say no more about the

arc since transformation ^

The approach we use involves a Ime of reasoning that has had a

somewhat checkered career over the last 2 centuries The line of

reasoning is really based on the application of the equal distnbution

of Ignorance rule, also called the rule of insufficient reason Although

the rule has actually been applied for many centuries, its first jomal

application to the problem of statistical inference is attnbuted to

Thomas Bayes, a Presbyterian minister in England who also had a

great interest in probability A posthumous article called “Essay

Towards Solving a Problem m the Doctnne of Chances" was pub-

lished m 1763, 2 years after the death of Reverend Bayes* Bayes

took his problem as

Given the number of times m nhicb an unknown eient has happened and

failed Required the chance that the probability of its happening in a single

trial lies somewhere between any two d^recs of probability that can be

named

If we restate Bayes’s language to conform to more modem usage,

his problem was

Given a sample of size n with proportioD of successes equal to p Required

tie probabihty that the universe proportion lies between any two specified

values

Or, m symbols, the problem becomes that of detennining the value of

•P(WL ^ ^ Wo|p, »)

(L and 11 refer to lower and upper bmlta to Uie value of r

)

Thus, Bayes's problem is precisely Idie same one that we have been

trying to solve

^ The interested reader will find a very luwd discussion of the arc sine trans-

formation in W E Deming, Some Theory of Samphny, John Wilej* and Sons

New York 1950,
and m Eisenhart, Haatay and Wallis Techniques oj Sfoitsttcal

McGraw-Hill New York 1947

2 Originally published m The Philosophical Tramctions The essay has since

been republished in Biomelnka,AS (1958), pp ^3-315



312 THE STATISTICAL METHOD IN BUSINESS

Considerable controversy has grown up around the question of the

validity of Bayes’s work Substantial creuence was placed m his

methods throughout most ot the 19th century, and significant exten-

sions of his methods \^ere developed, mostly by LaPlace However,

another school of thought emerged in the 20th century This school

prevailed with the result that Bayes’s methods fell into disrepute,

so much so that reputable books did not even discuss his work We

are now in the midst of a revival m interest m the ideas expounded

by Bayes, a revival that started at about midcentury

We cannot provide a thorough exposure to all the elements that

have precipitated the controversy We do hope, however, to cover

enough ground to give the more important ideas, ideas that are

absolutelj crucial for an intelligent application of any method of

making inferences.

8,1 Bayes's Theorem

A useful place to start is with a simple example that illustrates

the basic idea at the root of all our subsequent analysis. This idea

13 embodied in what is called Bayes’s theorem (There is some ques-

tion that Bayes would lay claun to this, or to many other things that

have become associated with his name

}

Suppose we have three boxes, marked A, B, and C for convenience

of reference Each box contains lOO email balls Box A has 207o

red balls. Box B has 407o red balls, and Box C has 80% red balls

One of these boxes is to be selected at random with each box having

the same chance of being selected as far as we know We have no

way of knowing which box has been selected We then are to select

at random five balls from this box and record the proportion of red

balls m the sample We select the balls one at a time, replacing after

each selection m order to maintain a constant universe for each

drawing Suppose that our sample showg 4 red balls What odds

would We require before we would be willing to bet that Box C had

been selected? Oi, in general, what is the probability that Box A

had been selected? BoxB? BoxC?

Figure 8 1 shows our problem in the form of a tree diagram The

first set of branches show the three possible boxes, with each having

a probability of 33 of being selected The second sets of branches

show the probabilities of getting vanoiis numbers of red balls given

a particular box Note that the probabilities add to 1 within each

set of branches At the tips of the second sets of branches are shown
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Tg 8 1 Tree diagram of problem of Eelectmg first a box and tben a random

sample of five balls from the box

tbe joint probabilities of having selected a particular box and a par-

ticular sample irom that box Note that these joint probabilities add

to 33 within each set the same probability as that for selecting the

branch from which the set is dcnved Also note that ali the joint

probabilities together add to I (except for rounding errors) This is

a way of saying that our sample of five balls must have come from

one of these 18 possibilities

Finally we come to the solution to our problem Note that there
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IS a joint probability of 0683 of our having selected Box A and o

sample of 40 red balls, amularly Tie have a joint probability of 1152

of our having selected Box B and a sample oj red balls and one

of 0171 of having selected Box C and a sample of 4^ balls Now,

since we know for a fact that we have selected a sample with 40 red

balls, IV e can rule out all the remaining 15 possibilities, such as those

with a sample of five with 0 red balls, etc One of the three possibib

ities marked by the arrows must have happened Hence, we deter-

mine the probability that any one of them has happened by dividing

the joint probability of any one of them by the total probability for

all of them Thus we divide the 0683 by 2006 to get 34 We get

the 57 and the 09 in a similarway

We can now answer the question of the odds we would require

before we would be willing to bet Uiat Box C had been selected

Since we estimate that there is a probability of only 09 that Box C

had been selected, we would require odds of at least 91 to 9, or a

shade more than 10 to 1 We would be very happy to bet even money

that Box B had been selected, and we would bet on A if we could

get odds of 2 to 1

Now let us link this theorem to our problem of making inferences

about the mean of a universe from mformation supplied by a random

sample The sample fact that we had to deal with in the above ex-

ample was a sample of five with a p of 4 We took this fact and

made an inference about the probability that this sample came from

a universe with a » of 20, or from one with a tt of 40, or of 80 W e

also had some pnor information about the vanous possible universe

tt's that might exist and also about the probability that any one of

these universes might have been selected There has been no contro

\ ersy about the legitimacy of Bayes’s theorem The controversy has

raged around the legitimacy of the various ways of acquiring the

necessary prior information Given this prior information, every

thing thereafter is essentially a matter of routine mechanics

8.2 Some Useful Languoge

We will make more rapid progress later if we now agree on a few

terms and thus reduce the possibility of misunderstanding Table 8

1

shows the relevant parts of the tree diagram of Fig 8 1 in a more

convenient form Columns 1 and 2 identify the three boxes and their

given characteristics Column 3 gives the list of probabilities for

the selection of the various boxes This distribution of probabilities
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TABLE 8 1

The Use of Bayes's Theorem lo Estimafe the Probability thof a Olvefl Somple

Came from Any One of Three Possible Universes

(1) (2) (3) (4) (5) (6)

Bov IT PM P(p = 4|ir, n) i’fp * 4, r\p n) P{r\p, t n)

A 20 1 3333 1 2048 0683 i

;

34

B 40
1

3333
1

3450 1152 57

C 80

1

3333
!

1

0512 0171
1

1 09

100
1

6016
1

100

t t T
Prior Marginal Postenor

Distribution Probabilitj Distribution

IS referred to as a pnor probcbUity distnhulton It ts called prior

because it comes before the second one which vie refer to shortly

Note that this distribution adds to 1 (except for rounding error®)

Column 4 gives the conditional probability of getting a sample of

five a p of 4, the conditions m each ca«e being the given r and

thesiaeofthe sample

Column 5 gives the ;omt conditional probability of getting both

a sample with a p of 4 and the parUcuIar universe Note that the

calculation of this probability requires knowledge of p, rr and n

The sum of column 5, or the sum of the joint conditional probabilities

18 called the marginal probability U is called marginal because it

occurs w the margin oi the lahh The JXDpnrtant iimig to remember

about marginal probabilities is that tliey are always the result of

adding some specific probabilities together, and they alw ay® refer to

the probability that some one of =ome collection of events has or will

occur In this case, the collection of events is the occurrence of a

sample with a p of 4 He could get such an eienfc from Box A, or

from Box B, or fiom Box C The probability tliat a 'sample with a p

of 4 will occur at all is the sum of the probabilities that it w ill occur

m any one of the given specifieways

Column 6 is simply a redistributiQn of the probabilities of column

5 so that the) add to 1 He justify thi® redistribution becaii'e we

know for a fact that a sample p of 4 has occurred The only re-

maining uneertajiit) is that of tlie box from which sucli a sample
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came We call the probabilitiea in column 6 posfenor probabilities

They are called posterior because they come after the pnor proba

bihties Note that their calculation requires knowledge about p, »,

and n These posterior probabilities are also sometimes called rented

probabilities The logic of this is Before, or prior to, our having any

sample information, we would assign a probability of 33 to our

having selected Bov B After, or posterior to, our having the sample

information, we assign a probabihty of 57 to our having originally

selected Box B The posterior probability of 57 is thus a rewjian

of the prior probability of 33 The basis of the revision is the mfor

mation supplied by the sample

8.3 The Problem of the Source of Prior Information

In the preceding section we were told that there w ere three possible

universe values of », namely, 2, 4, and 8 were also told that

each of these possibilities had a probabihty of being selected of 33

in each case It is conceivable of course, that the probabilities of

’electing the«e universes might have been any of an infinite number

possible combinations For example, the probabilities might have

been 10, 38, and 52, respectively The only condition is that the

probabilities add to 1 because of course, one of the universes must

be selected

Now let us take a slightly different problem Let us suppose that

we are told that a card has a number written on its concealed side

Lei as tksi riearesssared that this iS sms'

w here hetw een 0 and I A complete stranger walks into the room and

IS apprised of the situation He then offers to bet us $10 to $2 that

the number on the card is somewhere between 2 and 3 He bases

this action on his claim that he pos«esses occult powers Do we take

this bet? If we do not take this bet, is there any set of odds that we

would 'iccept? For example, suppose he offered to bet $100 against

$I that the value is between 2 and 3 Keep m mind that there is

absolulel) no wa) he can tell what is on the other side of the card

unless of course, he does have occult powers

Perhaps we feel quite uncertain about whether or not we should

take this $10 to $2 bet If so, perhaps it would be helpful to give per

mission to take the other side of the bet if we wish to After all, if

reject the offer of $10 to $2, we must feel that it is not a fair offer

In such a ca^e, we certainly must be willing to take the other side

of the bet because we would now be on the advantageous side Or,
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perhaps think the bet is \ery fair so fair that it does not make
any difference \\hat ®idc of the bet ^e go on The essential point is

that T\e wiwf make up our mind and take one side or the other'

(^ote e are assuming in all this that the money invoked is small

enough in any ea«e so that 'RC feel tiiat it is more the reputation of

our decision making pothers that is at stake rather than any signifi

cant amount of money )

Is there any rational way to decide an issue like the above’ It is

often argued that this is just tl e place for an application of the

equal distribution of ignorance rule This rule states that there is a

probability of 1 that the card has a number betiveen 2 and 3 be

cau^e 2 to 3 coTers I of the range from 0 to 1 The rale suggests

that we take the offer of $10 to $2 because the offered odds are 45

imes as great as they should be for a fair bet (He is offering o to

1 rvhen he should be offenng 1 to9

)

It i« ako sometime® argued that the equal distnbution of ignorance

rule IS the rankest form of non«ense How it is asked can we

base so called rational belia\jor on a base of complete ignorance’

Frankly we are not too sure whether we consider the rule rational

or not although we loan toward cons denng it so W hat attracts us

to the rule is that we do not know any other ruk of behavior to use

in a “ituation like that de«cnbed abo^e I\e do not belieic that any

bod^ else does either including those who inieigh against the equal

distribution of ignorance rule at tiie same time they are implicitly

using it W e all have undoubtedly used the rule many times per

haps under the name of splitting the difference

Bayes s Postulate

A® the Re\erend Bayes contemplated the problem of making in

ferenccs about a unnerse mean on the basis of solely the eMdence of

a sample he fir®t imagined that the true mean might ha\e any value

whatsoever between 0 and J He then postulated that each of these

pos®ibie values was egwally hkely witliwi the bounds of his pre®ent

knowledge with his present knowledge being zero Hence he set up

what we now call a prior distribidion of equally likely \alues of v

Some examples of some possibilities for such a distribution are shown

in Table 8 2 The ^ alues called m must be interpreted as the ^ alues

that represent a range of i ^lues Generalh w e use tlie midpoint of

tile range to represent the i alues (This is really another example

of the application of the equal distnbution of ignorance rule an ap

plication indulged in by all statisticians including those who object

to the rule )
Thus the probability of 2 paired with the v„ of 1 in
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TABU 83

EiompUt of Prior Diitr!butI«A» of Equally Ukily Valutt of w„

A a c

T« P(Ta) th P{rH) Til VM

1 2

2 2

^ 2

7 2

9 2

0 1

2 2

4 2

6 2

2 2

10 \

03 1

15 .t

25 ,1

35 .1

45 1

55 .1

65 .1

75 1

85 .1

95 1

10 10 10

tlie A (ii^tnbutmn should be interpreted as the probibilitj of a

falimp kluctn 0 and 2, suiularlj, there is a protiahihtj o( 2 of a

TH bctwcin 2 and I, mth this range rcprc«cntiHl bj a rn of 3

>Ve attach tlic snb*cnpt U to signilj that we art relcmng to lijpo*

thctical \alucs of r The trui r ha« *>01110 ^poclfic, but iinbno«ii

value.

Di-iinltuiion II «tem« at fii>l phntc to «liow uaft/unl prolnbihth*

\ftui!h, howtver, the dHnbutum of prob'ibililir‘i i« ftill f<!ual

UInt i* uiiftiuiil li tlie fire of the intervals U'wl for »//
'!*!» hr'l

Mill rv il, n prc-entid bv a »« of ft nm-^ from - I to 1, thus etnlentiR

on 0 Howcvir, the lowtrlmlf of tin*! mUrval i** mtnmnj’lt**' benu»e
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negative values for are impossible Hence the probability of a

value falling within tlie - 1 to 1 interval is only the probability of

a value falling between 0 and I, a range that is only half the length

of the inten al from say, 1 to 3 and represented by a its of 2 The

same explanation exists for the probability of 1 that is paired with

theiTff of 10

It IS possible, of course, to divide the full range from 0 to 1 into as

many intervals as we wish Distribution C shows what happens

wJien we divide the full range into JO equal parts The greater the

number of divisions we us^ the smaller will become the probability

that the true n will fall within any such interval For example, if

w e dn ide the range into 1 000,000 intervals the probability that ir

falls in any one w ill be only 000001

8.4 A Direct Application of Bayes's Theorem to the Prob*

lem of Inferences About ^ Based on Information from

a Random Samp/e

We are now in a position to apply Baye«’s theorem to our p'‘oblem

of making inferences about n Table 8 3 shows the routine Column

1 shows the various hypothetical values of n we have arbitranly

selected W e chose these because they are consistent with the value*!

we used in the preceding chapter when we were making inferences

based on the direct application of the binomial theorem

TABLE 8 3

Inferences about ;r Based on o Prior Distribution of Equal Probabilities

and on a Subsequent Soniplo of 5 Items with o p of 4

(1) (2) (3) (4) (5)

Plji = 4|v;/ ?(ti= 4 P(ir/f|H
-

PM vhUii N ~b) TT// Y = '

0 1 0 0 0

2 2 2048 04096 24G2

4 2 3456 06912 4154

6 .2 2304 04608 2769

S 2 0512 01024 0615

10 I 0 0 0

10 8320 16640 999910
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Column 2 «hov,s the pnof probabilities we associate with each of

the^e Ttf 8 It IS important to note that the«c are ba«ed on ^he assump-

tion of equal likelihood It is aleo important to note that these add

to I

Column 3 show« the conditional probability of getting a random

sample of 5 with a p of 4 given the truth of the particular value of

Tit The <um of these conditional probabilities is meaningless be-

cause it IS a function of the arbitrary number of hjpotheses The

more h) pothe'es the larger the sum

Column 4 shows the joint conditional probabilities of getting both

the sample p of 4 end the particular \a1ue of *a The total of these,

16$40, IS the marginal probabilit>
,
and it is the probabihtj of getting

a sample of 5 with a p of 4 provided each of the hypothetical s is

equalh likel\ We have more to say about tlie interpretation of

such marginal probabilities in a subsequent chapter

Column 5 is the postenor probability distribution of vh and repre

'ents the probabilities we a«sign to the truth of the various ir«s note

that V6 haie thw tampU injormtm This is also the object of our

«ivn for an inference diatnbution of * given a sample of 5 with a

pof 4

8.5 Comparing Boyesian Inferences with Binomiai

Inferences

We can now compare inferences ba*ed on B8}es's theorem and

equall) likely pnor hypotheses with those we made m the last chapter

ba«ed on the direct application of the binomial theorem Table 84

sho\\8 all the inference di^tnbutions we would get if we applied

Bayes’s theorem to all the possible results we could get from samples

of 5 Note that the probabilities shown in ihe vector (or column)

headed bj a p of 4 are exactly the same as our posterior probabilities

shown in column 5 ol Table 83 The other columns have been cal-

culated in exactly the ^ame way as shown in Table 8 3, with the only

difference being the different values of p (W e might note paren*

theticalij that column 4 can be omitted in a calculation of Bayesian

probabilities provided that the relevant probabilities in column 2 are

all equal Under such a circumstance, column 4 is just a proper

twnate adjustment of column 3, just as is column 5 Hence one can

make a single proportionate adjustment and go directly to column 5

from column 3 It is very important to remember, however, that
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TA&IE 8 4

Ertimotes of Inference Ratios for Vorious Values of Bosed «mj

Portenor Prebabiltliw Coleuloled From a Prior Distribution

of Equal Probabilities N ^ 5

/Bodyo/infliJKcoDtauis/’(3r//p vj N = 5)]

P

jrr 0 2 4 6 8 10

0
,

7062 0 0 0 0 0
1

7062

2 2314 5447 2462 0615 0085 0D02
1

1 0925

4 0549 3447 4154 2769 1021 0072 12012

6 0072 1021 2769 4154 3447 0519
1

12012

8 0002 0085 0615 2m 5447 2314 1 0925

10 0 0 0 0 0 7062 7062

9999 1 0000 1 0000 10000 1 0000 9999 > 5 ms

Column 4 is implied even if we skip across it if the relevant proba

bilities are all equal

)

Let us look at the horizontal vector at w; a 4 This vector tells

US the probability we would assign to n's being 4 if we had a sample

of 5 with a p of 0, or of 2, etc For example, this vector tells us that

if we ha^e a sample with a p of 2, we believe that there is a proba-

bility of 3447 that this sample came from a universe uith a r/ of 4

How much truth is there in this probability? We can ansiver this

question by first looking at Fig 8 2 and then at Table 8 5 Figure 8 2

pictures the line of reasoning we are following We assume that \^e

start with a universe that has a »• of 4 This is the trunk shown at

the extreme left We then generate ail possible samples from this

universe They are signified by the six branches fanning out from

the trunk Attached to each branch we show the sample p and the

probability it could occur We ^en use each sample p to generate

inferences about tt The binomial mfcrences are those ve vorked

out in the preceding chapter They can be found m Table 7 3 The

Bayesian inferences are those we have just shown m Table 8 4

The key inferences at the rownwit are those for a t, of 4 They

are marked by the arrows at the tips of the branches We have re-
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Inference ratios for

Inferences given s

about IT;
Binomial Bayes

h$ 8 2 Tree diagram illustrating patha of reasoning as we go from ft known

universe to inferences about samples from that unixeree and finally to inferences

about the universe from the samples

produced these particular inference ratios in columns 3 and 4 of

Table 85 U e ha\ e also reproduced m column 2 the probabilities

of getting gi\ en sample p s from a unu er^e w ith a w of 4 Note that

these are exactly the same as shown for the six branches emanating

from the trunk of Fig 8 2 Ideally, we should find the probabilities

in columns 2, 3, and 4 all alike For example, if the probability of

getting a sample p of 2 from & universe with a ir of 4 is 2592, the
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TABLE 8 5

Comporison of Bjnotnjo) ondBoyejjcn Inference Rof oj of rj Wtfh
Weal Probabihhes (Given N = 5 and r - 4)

(1)

POT'I

(2)

P(p|j-=4)

(3)

/(nip- 4)

W (5)

^(tjIp=4 rs) |(3)-(2)1

(6)

K4)-{2)|

0 0778 0 0i>49 0775 0229
2 2o92 2048 3447 0o44 085o
4 3456 3456 4154 0 0698

6 2304 2304 2769 0 0465

8 0768 0512 1021 0256 0253

20 0102 0 0072 0102 0030— —
1 0000 8320 12012 1680 2530

probability that a sample p of 2 came from a universe 'with a w of 4

should also be 2592 ^ote however that the binomial mferences

gne us a probability (or inference ratio) of 2048 that a sample p
of 2 came from a universe with a ir of 4 The Bayesian mferences

yield a value of 3447 thus being in error on the opposite side

Columns 5 and 6 of Table 85 calculate the absolute differences be

tween the true probability (column 2) and those estimated by the

binomial and Ba} esian formulas M e find that the binomial estimates

are quite good in the middle of the distnbution perfect m fact but

tJiey TDoko TB]at}M}]y large errors on the tails This js consistent with

what we found when we worked with a sample of 50 m the preceding

chapter The Bayesian estimates are a little closer on the tails but

significantly w or«e m the central area Tlie total error (signs ignored)

IS definitely in fa\or of the binomial estimates

Thc'-e result* come as a disappointment because we were hoping

to iraproie on the binomial estimates by the use of Bajes s theorem

We did improve the e^timat^ at Uie tails but only at the expense

of much poorer estimates m the central region In tlie next section

« e make some additional modifications in our procedures that correct

this situation Before doing *o howeier we should call attention to

a few other features of Table 85 that have some significance

The binomial estimates (column 3) arc in general too lo^i The

inference ratios for probabil ties) add to only 8320 instead of the

appropriate I

The Ba'vesian estimates are m general too high adding te 1 2012
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The average of the bmoimal and Bayesian estimates uould be

better in general than either one alone because the t^o methods tend

to make opposite errors

8,6 Modifying the Method of Calculating Conditional

Probabilities m Order to Improve the Bayesian

Estimates of Inference Ratios of

Figure 83 pictures the method tve used m the preceding section to

calculate the conditional probabilities of a sample p gi\ en some hypo-

thetical r The shaded section of Part A shews the probability of

a p of 4 given a jr/f of 4 Part B shows the probability of a p of 4

given a irn of 2 Similar charts could be drawn for any other values

of tH that n e might choose

Figure 8 4 pictures another way of calculating a conditional proba-

bility Part A shows the n hole probability distribution of the various

values of p that could occur given that ith equals ,5 The shaded area

marks off the probability of getting ap oi 4 or less (We are here

treating p as a conlinucm variable

)

Part B shows the whole distribution of p given that ir« equals 7

Again we shade in the area for a p of 4 or less

In Part C we superimpose the histograms of Parts A and B Note

the cross-hatched area This is where ?(p^ 4l»rif= 7) appears

now Note that it is entirely withm the total shaded area that shows

P(p^ 4|ir/r = 5) The numerical values associated with these two

Part A PartB

fig B 3 Illustration of the probability of a sample p of 4 in a sample of five

items from universes with different r*B— taken as a discrete variable



Parte

Rg 84 IlIustratiOQ of method of estimating the probability that *; lies be

tween 5 and 7 on the basis of cumulative probabilities and the treatment of p ns

a continuous variable

areas are 0969 and 3438 (These are taken from the binomial

tables in a manner that is explained shortly

)

We novt ask ourselves the interpretation we should put on the

difference betw een these two areas or between these t\\ o probabilities

The first thing we note is that the difference is caused by our change

from an hypothesis of a wn of 5 to one of a v/i of 7 and by nothing

else Hence we now assert that this difference is an estimate of the

probability that ir lies between 5 and 7 given a sample of 5 with a p

of 4 This statement makes sense only if two underlying assumptions

are correct

1 Direct md !n\er«e probabilities tend to equality in the 'en'e that

P(plir) = Pfffjp) We adopted this criterion for a useful tlieorv of

inference

2 The prior p^ob^blllt^ of a ttk of 5 is equal to the prior probabilit} of n

T{{ of 7 This permits ii« to cilcuhfe the difference between P{p^

4]jrw - 7} ^nrI Pip S 4]^;,
- 5) without mj concern for the po«i
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bility that one of the values of js more likely than the other The

fact that we are not cxphcitlj concerned about these possibilities

de^miely tmphea that we axe assuming cquflf prior probobihties

Let us now turn to Table 8 6 where we cany out the steps needed

to calculate the probabilities illustrated by Fig 8 4 Agam we use

a sample of 5 with a p of 4 Column 1 lists the various hypothetical

ir^’s we choose to pick We remind ourselves that we may choose as

many of these as we wish The only proviso is that we cover the

full range of possibilities from 0 to 1 m steps of any size we prefer

If our hypotheses cover a range narrower than that of 0 to 1, we find

that our inferences would also be restricted to such a narrower range

Column 2 shows the binomial probabilities of getting a sample p

equal to or more than ^ for selected vh that are 4 or less

Column 3 shows the binomial probabilities for a sample p equal to

or less than 4 for selected vu that are 4 or more

The two steps in the calculation of the probabilities in columns 2

and 3 are necessary because of the conventional form of the tables of

cumulative binomial probabilities In Fig 85 we illustrate what

the con; entional tables show Suppose we were to look up in the table

the probability of a sample p equal to or less than 4 given a ir;? of 5

The table would give us the probability represented by the shading

lines plus the area shown by the dots Thus the table treats p as a

strictly discrete variable and includes all of 4 m its calculation We
prefer to treat p as though it were really a continuous variable Thus

TABIE e 6

Inference RoTlei for Vd«es of nj Based on Difference* between

Probabilities of p Equal to or less than 4 for Various Hypothetical

Voluesofir N =s 5

(1)

P(pS4U„)

(2)

Pip^ 4|xb)

(3) (4)

7(ri|p=4 nir) Kn
(6) (6)

0 0-0 =0 0 0451 0

1 0815- 0361= 0451 2 2723 05446

3 4718- 1544= 3174 4 3388 13552

4 6630- 1728= 4902 6826- 1728= 509S 6 2469 14814

5 5000- 1562= 3438 8 0923 07384

7 1631-0662= 096!) 10 004G 004G0

9 OOS6- OWO- 0046 —
10 0000-6000= 1)000 10000 416o0
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PO>l3r=5Jy=5)

Pig 8 5 Illustration of effects of treating p as a discrete \ enable or as a con

tmuous variable

we think of 4 as reallj the middle point of a range of values njuning

from 3 to 6 Therefore we are interested in only the lower half of

this 3 to 5 interval

While we have Fig 8 5 before us, we should note that if vte treat p

as a strictly discrete variable and include the dotted area in our

calculations, we will find a larger di^erence than before between the

P(p^ i\iru = 5) and the P(p^ 4\vn = 7) Thus we will have a

larger probability than before of a n being between 5 and 7 Such

larger probabilities would exist for all ranges of «•/ lUien we add

such probabilities we would get a total greater than 1 This is, of

course, somewhat illogical Some people do follow this procedure

however so they are apparently willing to accept this bit of nonsense

in exchange for some other advantages which they think thej gam

IVhat these possible advantages are we consider later

Let us now return to Table 86 and trace through the calculations

performed there If we have a hypothetical vn of 1, we find from the

table of the cumulative bmomia! that there is a probability of 0815

of getting a sample p of 4 larger 0815 !'• the sum of the probability

of a p of 4 { 0729) the probability of a p of 6 ( 0081 )

,

the probabil-

ity of a p of 8 ( 0004) and the probability of a p of 1 0 ( 0000} {Ac-

tually these four probabilities add to 0814 The difference from 0815

IS due to rounding ) IVe then subtract 0364 from 0815 to eliminate

half of the probability shown for 4 The net result is 0451, which

we take to be the piobability of getting a p eqml to or larger than 4

given a of 1

Exactl} the same procedure is followed to get the estimates for a
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vh of 3 aod 4 Check at least one of these to make sure our pro-

cedure IS clear

We then re\erse our perspective, so to speak, and seek the proba-

biht> of a p equal to or fcss than 4 for various \alues of va of 4 and

larger To help us picture perspective, we might think of ourselves

as standing on the horizontal axis of a chart like Fig 8 5 at the point

corresponding to our kypolheixcal vb value Then we face the direc-

tion of the particidar sample result, 4 m our example If our hy-

pothesis happens to be exactly the same as the sample result, then,

of course, we find the sample p “at our feet Most of the time, how

ever, we find the sample p some distance in front The probability

we are interested in or the area under the distnbution, is that area

on the other side of p from where we are standing We are not at

all interested in the area under that part of the curve that is in bad

of us or in the area betueen our wh and p What we are doing m
column 2 is to first stand at a irn of 0 We then look beyond the p

of 4 and calculate the probability on the far side of 4 We then step

up to a of I and repeat the procedure, and then to a of 3, and

,

nally to a vh of 4 If we kept facing and mo\ ing m the same direc-

we would now find the p of 4 in back of us So we simply turn

about and are looking down at 4 We calculate these “looking-down"

probabilities successively from a *n of 4, 5, 7, 9, and finally 1

0

Column 3 ‘'hows the calculations from this perspective

Again, check at least one of these calculations It is particularly

useful to check one for a ir/, of more than 5 because it helps gam

some familiant) with the way the tables are set up Note that the

tables show v values (the actual table may call these p) only up to

i It IS then assumed that a person can figure out how to find the

appropriate values for higher » values bv finding their complements

among the jr’s less than 5 It takes a little practice to do this with

reasonable confidence that the answer is right See p 137 for some

guidance m using the binomial tables

We had to make two calculations for a r// of 4 This follow s from

the fact that it is legitimate to look in both directions from this point

The corrections are all equal to half the probability of a sample p

of 4 It IS instructive to examine the effects of the corrections for nn

at 4 If we look up from 4, we find the uncorrected probabilitj of

a 4 or more to be 6630, whereas the corrected probability is 4902

If we look down from 4, we find an uncorrected probability of 6826

and a corrected one of 5098 The two uncorrected probabilities add

to 1 3456, a sum that is obviously too large Such a finding is the

equivalent of standing at some point m a room 20 feet long and dis-
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covering that 12 feet of the 20 feet are in front of us and 13 feet of

the 20 arem back ofusf

The two corrected probabilttxee add to 10 as they should

In column 4 we list the particular x, s for which wc would like to

estimate probabilities As before, we ai^ using 0 to represent the

interval from 0 to 1, 2 to represent 1 to 3, etc [There is a bit of

awkwardness caused by the existence of the boundaries at 0 and 1

The TT/’s seem to be at the middle of their intervals except at these

boundaries They are also at the middle at the boundancs if we are

^villmg to imagine the httle fiction of the distnbution extending down

to - I and up to i 1 We find it convenient at the moment to engage

m this little fiction It causes us no real trouble and saves us other

troubles

)

In column 5 we show the mferred probabilities for the existence of

these various wi values These are calculated by taking the di^erences

between the successne cumulative probabilities we calculated m
columns 2 and 3 The 0451 is the difference between 0 and 0451,

the 2723 is the difference between the 0451 and the 3174 etc The

exception to this process occurs at the m of 4 Since part of the 3

to 5 interval comes from looking dom from 4 and the other part

from looking up from 4, we must add these two parts together Thus

3388 IS the sum of the difference between 3174 and 4902 and the

difference betw een 5098 and 3438

We find some comfort in the fact that the probabilities m column

5 add up to 1 0, thus conforming to the general rule of all probabili-

ties that the whole set of them must add to 2 0

In column 6 w e have multiplied each v, by its inference ratio The

total of these turns out to be 42656 Since the sample p is exactl}

4 we would prefer that the anthmetic mean of our inferences about

V were also 4 In such a case we would then be satisfying the desira-

ble criterion that the anthmetic mean of all our inferences would

equal the true value This entenon is satisfied if the inferences ba^ed

on any given sample p average out to that sample p

We are not exactly surpnsed that our Bayesian inferences are not

going to satisfy the criterion of aiengingout at the true value This

criterion was one of the things we might have to sacrifice if we were

going to improv e the accuracy of our inference ratios as estimator:

01 the true probabilities We also are not cxactlv surprised that the

sum of column 6 turned out to be forger thin 4 mther than smal/er

It IS larger because our u^e of the pnor disiribution of r// mth CQual

probabilities for the various rtt imparts a bias toward 5 in any in-

ferences that arc tied to thi": prior distribution What actually hap-
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pens 13 that our final inference distribution is really a weighted

average of the information contained m the pnor distribution of

and that contained in the sample The &\ erage of our pnor distnbu-

tion IS .5 {The assumption of eQual probabilities for all vhs results

m such an average )
Our final distnbution is thus an average of a

prior distribution vvith a mean of 5 and a sample ivith a mean of 4

It IS hence not surpnsing to find a result larger than 4 If ne had

worked with a sample with a p of 6, we would have ended up with a

mean of 58344, also biased toward 6 In general the bias is greater

the closer p is to 0 or 1 There would be no bias if p were 5 The

bias declines as the size of the sample increases because the sample

information would then carry greater and greater relative weight in

the average Theoretically the bias never completely vanishes until

the sample is infinitely large

have more to say about the relationships of prior distributions

and posterior distributions later when we discu«8 the pooling of in-

formation m more general terms than here Some people would

seriously question whether it is legitimate to develop this prior distri-

bution with which we have just been working They claim that it

IS based on sheer ignorance and should not carr>’ weight m any con-

I ' > supposedly based on factual evidence If there was any

* doubt that the assumption of equal probabilities based on the

equal distnbution of ignorance rule did m fact impart “information"

to the final conclusions, such doubt should now be dispelled Our

example above clearly demonstrates that this assumption does im-

part information in the sense that it does carry weight m the final

conclusion, a weight that leads to a bias toward 5 But, at the same

time the existence of this bias is realized, keep in mind that we may

have to pay the pnee of a little bias (as defined) in order to get

better estimates of the probabilities of

8.7 Testing the Accuracy of Inference Ratios Based on

Modified Estimates of Bayesian Probabilities

{Note From now on we use the term Bayesian probabilities to

refer to probabilities that are calculated by reference to both a pnor

distribution and to a sample

)

Let us apply our latest inference method to all possible samples of

10 items Table 8 7 shows the matnx of all such possible results

The leftmost column lists the 11 possible sample results that can

occur from a random sample of 10 items Each of the«e results has



INFERENCES ABOUT THE MEAN
331

TABIE fi 7

Matrix of All Possible Inferences About Tj Bosed on All Possible Samples
of 10 Items Each Probabilities (Inference Ratios) Are Calculated

From a Prior Distribution of Equal Probobtlitiei and From Cumulative

Binomial Probobihties Based on a Sample of 1 0 Items (See Table 8 6

for illustration of calculation routine)

(Body of table shows I(r/}p jn,N = lO)

»•/

been used to generate a set of inference ratios for values of rr/ These

inference ratios appear as the horizontal vectors The r/'s are shoini

as the headings for the vertical vectors

Let us first examine these vertical vectors Consider the one iieaded

by TT/ of 5 This vector indicates that if our sample of 10 has a p

of 0, we assign a probability of 003 to fins sample’s haimg come

from a universe with a ir of 5 What is the probability that a uni-

verse with a r of 5 will generate a sample of 10 with a p of 0? The

binomial theorem indicates that the probability is 001 The 002 is

quite close on a numerical basis, being off by onl> 002 ^^c must

admit that it is quite wrong on a percentage basis, however

Table 88 compares the entire lertical lector at r; = 5 with the

desired result as shown by the binomial probabilities In general the

correspondence is quite close, as can be seen by comparing columns

2 and 3 Our problem would have to be ver> entical to be dissatis-

fied with estimates as accurate as these

Column 4 of Table 8 8 shows the results we would get b) using the

simple binomial as a generator, the first inference method we used
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TABLE 8 8

Comparison of Modified Bayssian Esfimotei of ProbobilUies of o «-, of 50

for Vorioui Values of p with Probabilities of these Various Values of p

Given that r Realty Does Equal .5 N 1

0

(1) (2) (3) (4)

V P(pl» = 5) l{r, = 801p t«) f(Tj = ^Ip)

0 001 003 000

1 010 010 002

2 (U4 045 026

3 117 118 103

4 205 203 201

5 246 242 246

6 205 203 201

7 117 118 103

8 044 (MS 026

9 010 010 002

10 001 003 000

1000 1000 i

It IS obvious that our modification has resulted m significant improve-

ments

Figure 86 makes it possible to make these coropansons visually

The chart also shows the comparisons for T values of 4, 3, 2, l,and

0 It IS quite evident that the modified Bayesian estimates are closer

to the true probabilities for all values of r than are those estimates

based on the simple binomial (The results for ir values of 6, 1, 8,

9, and 1 are not shown because they would be mirror images of the

results shown for v equal to 4, 3, 2, 1, and 0, respectively ) It is

also evident that the estimates are poorer the further away we are

from a ?r of 5 However, the Bayesian estimates are not seriously

in error until we have a ir of 0 or 1

8.8 Bios in Modified Boyesion Estimates of Inference

Rotios for VI

We started our quest for a theory of making inferences about v by

developing inferences so that the arithmetic mean of all mh infer

ences would be the true universe value This seemed like a good idea
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Fig 8 4 CompansoQ of inference ratio rectors based on bmomml and Bayesian

inferences with the true probabilities
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at the time, aod it still is. Such & cntenon has guided many statis-

ticians m their search for what are called unbiased estimates Un-

fortunately, we found that this initial theory led to errors in estimat-

ing the inference ratios for the specific values of »/ We were stimu-

lated to try to reduce these errors, and we were successful by using

a modified form of Bayes’s theorem In the process of doing this,

hoTiever, we know that we have imparted a bias tomrd 5 m our

estimates of »; It is now necessary for us to examine the extent of

this bias to see whether our gam m mferenc? ratio accuracy is enough

to offset any losses due to this bias

Our procedure is the same as we used to test our inferences as they

were generated from sample ps by the use of the binomial We
illustrate it for the case in which ir actually does equal 3 A universe

with a ir of 3 will generate 10 item samples with p’s occurring with

the following frequencies (These are taken from tables of the

bmomial

)

p ?(p|t » 3, - 10)

0 028

1 121

2 234

3 267

4 200

5 103

6 037

7 009

8 001

9 000

10 000

1000

Since these frequencies tell us how often the various p’s will occur if

IT equals 3, we can use them to weight the honiontal vectors m
Table 87 Table 89 shows the resultant matrix after we multiply

the Table 8 7 matrix by these weights To make sure we understand

the exact process let us check some of the calculations for the hon-

lontal vector at p = 2 The proper weighting factor is 234 because

234 of all samples of 10 from a universe with a ir of 3 will have a

p of 2 We then multiply the vanous terras m the horizontal vector
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TABLE 8 9

Motnx of Inferences About r Generated by Sample p s thot PreyJeujIy

Had Been Generaled by o Universe Witb a r of 3 N 10

[Body of Matnx shows 7(rr|p -/,) X Pip\T ~
3)]

-7

at p ss 2 as given in Table 8 7 by this 234 The first term is 049

(see Table 8 7) The resultant product is Oil (see Table 8 9) The

second terra is 269 The resultant product is 063 etc Note that

the sum of these products for this vector m Table 8 9 is 233 This

would be 234 except for rounding errors and is what we would expect

because we have multiplied a vector that ongmally added to 1 (Table

8 7) by the number 234 The rest of the matnx is calculated in the

same way

The sums of the vertical vectors give us the total relative frequency

with which various inferences about r are made Since all of these

inferences were made solely on the basis of samples that came from

a universe with a r of 3 it is instructive to examine tbs senes of

sums For convemence of reference we call this senes of sums the

average inference ratio vector for samples of 10 from a universe with

a^rof 3
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Table 8 10 compares this vector with the vector we get if we use

the simple binomial as an inference generator (our first version for

an inference theory)

Column 2 shows the vector based solely on information about p

Column 3 is the product of this vector times the vanous vj values

It adds to 3003 Rounding errors prevent it from equalling exactly

3 Thus we confirm our earlier finding, namely that the arithmetic

mean of all inferences based on binomials generated from sample p’s

will equal the true universe*

Column 4 shows the vector generated by our modified Bayesian

technique, or by information about p and "mformation” about

equally-likely hypotheses about * Its failure to add to 1 is caused

by rounding errors Column 5 is the result of multiplying the column

4 vector by the various*! values Here we get a total of 3164 The

departure of this from the true value of 3 is not caused by rounding

errors Rather it is caused by the bias toward 5 that is imparted by

the assumption of equally-likely This bias is part of the price

we must pay in order to improve our estimates of the specific proba-

bilities for the vanous

Column 6 shows the difference between each value and the true

ff of 3 Note that the direction of the difference is ignored because

we are here concerned only with the size of the difference Thus

column 6 is the amount by which each */ misses as an estimate of the

ff of 3 Column 7 multiplies each mis3 given m column 6 by the

TABLE BIO

Comporofiff* Analytii of Avorogo Inforonco Ratio Voeton, Ono Vector

Based on Binomial Inferences from p, the Other Based on Bayesion

Inferences from ir^ end p Given * = 3, N=10

K) 13) (4) (S) (6) 0) (8)

•I H’l\p) /(*!1p)Xt; /MpTff) Xr! Irr- 3| (6)X(2) {8)X(4)

0 104 0
1 151 0131

2 18S 0370

3 182 0548

4 151 0604

8 108 0540

0 068 03S6

7 034 0238

•8 014 0112

9 004 0038

1 0 001 0010

053

157

191

tS9

IQO

119

072

039

014

003

OOO

0 -3

0157 3

0382 1

0567 0

OWQ i

0595 2

0432 3

a252 4

0112 3

0027 t

0000 7

0312 0159

0302 0314

0185 0191

0 0

0151 0160

0216 0338

0198 0316

0136 0144

0070 0070

0024 0018

0007 0000

1601 ISlO
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number of times it occui^ as indicated by the vector m column 2

The sum of column 7 gives us the total of all our errors if we use

p-binomials as estimators of »/ Ideally, of course, we would like

such a total to be as small as posable, even as small as 0 if that were

possible

Column 8 repeats the same process performed for column 7 except

that we now use the vector m column 4, the Bayesian estimators, as

our relative /rsQuencies of the column 6 errors Here we find a sum
of 1510 (This has a very skgU downward bias because the total

of column 4 is only 994 instead of 1 This bias will not affect our

conclusion given below ) Note that this sum of errors is smaller than

that for the p-binomial estimators Thus we can now argue that the

bias m the Bayesian estimators is offset by the improvements m the

specific probabilities, giving us an over-ail better estimation than

did our first inference method

8.9 Summary of Our Theory of Making Inferences About

from Information Supplied by a Sample p

J The objective was to estimate the probability that t bad any given

range of values We were to make this estimate on the ba«is of the

information supplied by a random sample Thus gives p and n, we

wished to estimate the value of Pfirx,^ r; - wp)
,
with the L and V re

ferrmg to the lower and upper limits to the inferred value of tt

2 The criterion that we evenluaOy adopted for a good estimate was the

probability of vi, given p, eboifld be the same as the probability of p,

given ir Or, m symbols, we wished the truth of the equality

P(Tr}p)=F(plr)

We assume, of course, that n is the same m both cases

3 We found that this was impossible to accomplish exactly because of

significant variation in inference veetois from one p to the aevt due

to our inability to keep pg constant as p vaned This problem

moderated as the size of the sample mcreased It ako tended to be

less a problem near the center of the vector, where the probabihties

were high, than on the tails, where the probabilities were low

4 We Mere also bothered by 000*^086 ansms near the boimdanes of 0

and 1

5 Our initial inference method did have the desirable feature that it

generated inferences that averaged out (in the arithmetic mean sen^e)

at the correct answer

6 We then set out to try to improve on our first inference method We

did this knowing that wc might have to sacnfice some desirable

features in order to gain more of others

7 We tried, and quickly rejected, a straightforward application of
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Ba}es’s theorem to the calcubtion of dtscrde probabilities This

method led us furthef astra>

8 We (hen modified this Bajesian approach by working with cumu/a(ue

probabilities and b) treating the binomial distribution as though u

were continuous We immediate!) noted marked improvements in

our estiraatei of the epecific probabilities for various jr; values

9 We then noted that the^ modified Bajesian estimates would not

average out at the true value of r The) imparted a bias toward 5

10

binomial estimates and found that the total errors in estimating the

value of the true » were less W’c were thus satisfied that the modified

Bajesian estimates represented a real improvement over the p-bi-

nomials

11 All three methods of making inferences (the p-bmomnl, the discrete

Baje'ian, and the continuous Bajesian) get better as the sample size

merea'ei. In fact thev all converge on the -same, and the correct,

value ofr

12 The methods varj with respect to the tedium of calculation and with

re'spect to the degree of «unplicit) of their undcrljmg logic The

generation of the binomial from p is probablj the simplest to perform

and the sunplest to comprehend However, this could become some-

w hat tedious if we wished to interpolate for n v alues not pv cn directly

m the table of the binomial It should b1«o be noted that some people

would find such an interpolation offensiv e to their fen<e of lope, despite

the fact that it would re«5uU in praclicallj useful answer^ There is

<ome evidence that more and more people are willing to accept the

idea of using (he binomial distribution as though it were a continuous

series

A? Jw m'’ pinsfelftw

tail probabilities, where the differences between the methods are most

pronounced, we might choo^ a method almost on the ba®is of taste

and on the availabililj of convenient binomial tables

H Manj of the above problems tend to disappear as the size of the

sample increa«ies As a matter of fact, we might switch over to the

u*5e of fiormof curie estimates as A’ achieves «orae minimum size AD

binomial distributions approach the normal as N mcrea«es, they also

become more obviously continuous m their form We postpone our

diccu<!sion of ‘iuch normal cune estimates until a later chapter when

we discuss inferences about the mean of a continuous variable

8,10 The Use of Poisson Probabilities in Making Inferences

We sometimes run mto problems m which it is practically impos-

sible to determine the refafitc frequency with which some event can

or has occurred in the usual sense in which we use the term relative
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frequencj The difficulty is caused by the fact that the o'pportmihes

for the event to occur are almost liniitleBS, and hence uncountabie

We ga\e illustrations of this problem by reference to the probability

of a defect in a paint surface and the probability that a machine Mill

break doan in some time mtenal About all we were able to do is

determine how many defects occurred in some specified area ol the

painted surface, or how many machines broke down m some specified

tune interval

If M e specify the average number of such dejects m the universe as

m and tlie number of such defects m a sample as c, ne &nd that ae

can estimate the probahility of a given sample c from knowledge

about a given unu erse m by the following formula

Yc = c"" — or P{c\m) = e"” —
c’ cl

This IS, of course, the formula we called the Poisson formula in an

earlier chapter We use this formula with a given m and then cal-

culate the probability of each of the possible c values The resultant

distribution is what we called the Poisson distribution

Now let us consider the problem in which we do not know the value

of m, but wc do know the value of c m a given sample What in-

ferences might w e then make about the value of m’ This problem is

exactly analogous to our problem of making inferences about r from

information about p, and wc could approach it in exactly the same

ways

We might simply reverse the c and m and let the information about

the sample act as a generator of inferences about the universe Such

inferences would have the same properties we discovered when we

let the sample p act as a generator of inferences about ir As they

apply to m, these properties would be

1 The arithmetic mean of all inferences about m would equal m
2 Tlie specific probabilitj of the correct m vrould be estimated exactly

3 The specific probabilities of ot'b in the neighborhood of the correct m

would be more accurately csiimated than those on the tails of the disln

bution

4 Tiie probabilities of ms below the true n would be underestimated,

tho«e for m's above tbe true m would be overestimated

If we used a pnor distribution of fti with equal probabilities as a

basis of estimation of the probability distribution of m/ (modified

Bayesian estimates)
,
we would find

1 The anthmetic mean of all inferences about m would be greater than

the correct m
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2 The specific probabiliiy for the correct m would be verj shghtly undtr-

estimated

3 The specific probabilities for all other m’s \^ould in general be more

closely estimated than if we had simply reversed m and c as above

In either case we would find our estimates impro^ng as c increased

This follows from the fact that we ore really assuming that the p is

a statistical constant in the equality c =Np If p is in truth very

small, as it should be to make the Poisson approximation work, and

if it IS constant, N increases proportionately with c Hence an in-

crease in c IS indicative of an increase in N .We have learned that

our estimates improve with an increase m N As a matter of fact,

the Poisson distribution approaches die normal as m (or c) increases

\\e might also add that these methods give identical, and perfect,

answers if the relevant sampling distributions are truly normal

PROBLEMS AND QUESTIONS

8
1 (a) You aic given a piesumably rsndom sample of four items with a

p of 55 You have no other information about the universe from which this

sample came Assume the validity of the equal disinbuiion of ignorance

rule and estimate the inference distnbutton of jr; by assumiDg equally Idtely

values of rs m tne manner of Table 8 3

(6) Explain the logic, if any, of the eq\^ distribution of ignorance rule

Give an ifiustration from your own expenence m which you have used the

rule or its equivalent (You may not have been aware of such an assump-

tion at the time

)

(c) Interpret the sum of the joml-conditioaal probabilit es you calculated

m (n) (The joint conditional probabilities are those shown m column 4

of Table 8 3 )
Suppose that youi answer had been as low as 0000147

,
what

would be your reaction^

8 2(a) Complete the inference matrix for a sample of 4 m the manner of

Table 84 This involves the assumption of equally likely prior values of

frfl Use the short cut method that omits the calculation of joint proba

bilities

[b] Under what circumstances is it appropriate to omit the calculation of

the joint probabihties on our way to the calculation of the posterior pioba

bilities?

(c) Assume that tt = 25 and iV = 4 and compare your bmoraial inferences

[/(tt/Ip® 4}] and your Bayeaan inferences [/(»/!?= 4 jr^lJ with the

ideal probabilities [P{p\n - 4)] ra the manner of Table 8 5

Do you find results consistent with those wc found in Tabic 85^

8 3(a) Given that p = 25 and Af a 4, estimate the modified Bayesian m
ferences about t; in the manner of Table 86

(6) This method assumes that the binomial distribution may be treated

as a conftmmus variable Do you approve’ Why or why not’

(c) How do you explain the fact that your average inference is larger

than 55 the value m the sample?

(d) Without doing any further calculation other than a simple subtraction
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estimate the aierage modified Bajeaan inference you would make if p = 75

and - 4 (Hint This should be less than 75

)

8 4(c) Calculate all other modified Bajesian inferences for samples of 4

in addition to the one you calculated m Problem S 3 (a)

(6) Form a matnx with these inferences m the manner of Table 8 7

(c) Interpret the vertical vector headed by irf= 26

(d) Compare this verticahector headed bj ff;
- 25 with the direct proba

bilities of getting these various sample p « (In the manner of the first three

columnsof Table 88)
8 5(fll Assume that - 25 and that - 4 Calculate the probabilil)

vector for various expected values of p
(h) Multiply this probability vector by the modified Bajcsian inference

matrix you calculated in Problem 8 4(&) (In the manner of Table 8 9

)

(c) (Compare the average inference ratio vector made from the column

sans ol this irs rx lujh the '•onespoading ieotor havd an snnpk binomnl

inferences (The latter vector comes from the column sums in the matrix

calculated in Problem 7 7

)

Follow Table 8 10 as a model

(d) 'Uhat conclusons do you draw about the relative advantages of

modified Baj'esiao estimates compared iviih the simple binomial estimates’

8 6 A sample of 20 radio tubes of a given type is tested All 20 tubes are

found satisfactory

(fl) What 18 the probability that all the tubes of this type and manu

factured by this process are satisfactory’

(6) What IS the probabilitj (hat no more than 80% of such tubes are

satisfactory’

(c) Are you sure that your answers in (a) and/or (6) are correct’

(Errors m arithmetic aside

)

8 7 A rookie in the American League fails to hit safelv in his first 10 times

It bat ^ hat is the probability that he wll never get a hit’

8 8 Tlie surface of a bathtub shows throe small blemishes What is the

probabiiil) that the universe of bathtubs averages four or more defects’



chapter 9
Inference ratios as ingredients

in planning and decision-making

In Chapters 7 and 8 we examined the problem of esti*

mating, from sample information, the probabilities (inference ratios)

that a unu er*e might have certain »; values We paid no real atten-

tion to whj we would make such inferences nor to what we would

do with them after we had them We now consider the role that

such inference ratios might play in facilitating planning and decision-

9.1 A Simple Decision-making Mode!

The president of a cereal manufacturing company with a national

market for a consumer cereal called Smoothies felt that his compaa>

"has been losing market share and decided to hre bis sales > ice presi-

dent if the compan) 's market share has fallen below A survey

ba*ed on a presumably random sample of 100 consumers reveals

that 28fe of them express a preference for Smoothies Should he

fire the vice president?

It takes very* little imagination (and the vice president would be

sure to point this out) to recopure that the true proportion in the

universe might still be larger than 30 even though a sample of 100

showed only 28 Maybe this was just an unlucky sample Another

sample might show a p of more than 30

A rational procedure at this stage would be to generate the in-

ference ratio dKnbution for the various possible values of xj We

would then be in a position to make estimates of the probability

that the true proportion was above 30 or below 30 Table 9 1 Shows

three sets of estimates of this infereni^ ratio distribution In column

2 are shown the ratios we get from the binomial expansion with p

342
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TABU 9

1

Etfimoiet of Inferonec Rolioi for Vorloo* Proportions of All Consumers
Who MisM AduotEy Prefer Smoottiloi Inforeneot Based on

Prosomebly Rmdom Somplo of 100 Consumors of

Whom Expreiilno o Proforence for Smoothies

0) (2)

12 14
•

0

14 10 002

16-18 001

IS- 26 021

20 22 055

22 24 m
24 20 145

2C 2<5 173

2h TO ICO

10 12 137

32 1? m
14 15 0^
tr % 026

35-40 010

10 42 004

12 a 002

U 40 0

tooo

(3) (4)

Hn\p r/r) I(ri\p) f

0 001

002 003

00a 009

020 025

052 054

010 095

U5 143

174 170

170 m
130 143

m 015

0 c 051

021 025

012 009

ow 003

001 001

001 0

100) 1000

*1/1' rr I triJt lnc1u«irc

) Normal citrvo approxirnnlion®

equal to 28 ntici A equal to 100 Note that wc ha\c gathered the

various point probabibhci into intervals Tor example, H5 sho\Mi

/or t)jc 24-20 intmal j® made up of half the frequency associated

^vilh a rt of 24 {1/2 of 062), the whole frequenej associated witii

a -I of 25 ( 073} and half of the frequenev associated with a r/ of

26 {1/2 of 0S2) A roori- refined method of interpolation would

not split the^e hoimdary frequencies exactly m half HQwc\or the

errors of tl e crude interpolation arc quite small and are generally

not w ortb tlic trouble of refinement It might he interesting to cheek

one of the other recorded ratios in column 2

Column 3 shows the set of ratios that result if «e talc a prior
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Jisttibulion ot equallj probable »bs and modify it by adding the

information supplied by 8 sample p of 28 The procedure is the

(me ne outlined in Chapter 8 Table 92 shons the detail of the

calculations for column 3 An examination of this table should help

) ou to refresh j our mctnory of this procedure

Note that the column 3 ratios tend to be below the columo 2 ratios

tor 4 alucs of •; Icjj than 28 and nbore the column 2 ratios for values

ot »1 more than 28 This is consistent nith our previous experience

nitb these tno methods The binomial estimates based only on the

sample inlonnation have an aiithmctie mean equal to the sample

p, ot 28 in this case The modified Bayesian estimates (column 3)

have a bias toward 5 {fi = 2824), though certainly not a serious

bias in this case B e also found that the modified Bayesian estimates

TABLE 9i

Ofltailt of Calculolion ofModifiod Bayesian Eilimatet

Shown in Column 3 of Toblo 9 1

(1) (2) (3) (4)

TH Pfp > 28 |»i() Pip < 28|t») »r Jfvrlp »b)

14 000 14 16* 002

16 002 - 000 = 002 16-18 005

18 000 - 002 * 007 18-20 020

50 034 - 007 « 027 20’ 22 0o2

52 095 - 016 * 079 22-24 096

24 2(M - 029 * 175 24-26 H5

26 360 - 040 = 320 26-28 174

28 53$ - 044 = 404 551 - j044 = 507 28-30 170

.30 377 -040* 337 30- 32 139

32 228-J030* 193 32-34 095

34 122 - 019 = 103 34-36 0o6

36 057 - jOIO » 047 36-38 029

38 023 - 005 * 018 38-40 012

4D OOS- 002 « OOG 40-42 004

42 003 - 001 * 002 42 44 001

44 001 - 000* 001 44- 46 001

43 000- Odd* OOQ 46-48 000

1001

Lower Limit Inclusive
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of the individual ratios were somewhat better than the p binomial

estimate'’ But here again we find the differences quite small

In column 4 we show by way of cmtrast the estimates ne would

get if we assumed that the r/s were normally distnbuted This

distribution is, of course, symmetrical, whereas the other two are

skewed positn elj
,
or to the right The mean of the normal di'tnbu-

tionisalso 28 Iti'^evidenttbatfesenormal curveapprosimations

are reasonably close to Uie other two distebutions We might be

forgn en if w e chose among tliese fliree methods on the basis of taste

and comenience rather than on the basis of theoretical accuracy

Unless we forget, we might remind ourselves that the modified

Bayesian estimates would be the closest to the truth (Table 93

table 9 3

Details of Cal«ufation of Normal Curve Estimates

Shown m CoWmn 4 of Toble 9

1

(1) (2) (3) (4) (5) (6) (7)

-! TI-P -—--Z /(tJi;) r,

12 -16 -3 55 000

14 -14 -310 001

16 -12 -266 004

18 -iO -222 013

20 -08 -177 038

22 -06 -133 092

24 -04 -089 187

26 -02 -0 44 330

28 0 0 500

3fl 02 44

32 04 59

34 06 133

36 08 177

38 10 222

40 12 266

42 14 310

44 16 355

12-14* 001

14-16 003

16- 18 009

18-20 025

20-22 054

22-24 095

24-26 143

26-28 170

500 28-30 170

330 30-32 143

187 32-34 095

092 34-35 054

038 36-38 025

013 38-40 009

004 40-42 003

OOJ 42-44 001

000 44-46 000

lOOO

Lower Limit Inclusive
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shows the detail of calculating the nonnal curve approximations

Note that it is necessary to make an estimate of vp in order to carry

out the calculations This estimate is made with N-1, or 99, as

a divisor rather than with 100 in order to adjust for the downward

bias in sample variances

)

Since the company president has simplified hia problem to the

point where he is concerned only with whether Smoothies’ share of

market la above or below 30, we do the same with our probabilities

Table 94 shows the results of cumulating our inference ratios above

and below 30 for the three methods of estimation The differences

in the estimates are certainly not of any great practical significance

TABLE 9 4

Probability That Smoothies' Share of Market It Above or Below 30

Modified

Binomial Bayesian Nonnal

l{r, i 30) 675 664 670

Hn g 30) 325 336 330

1000 1000 lOOO

The Probubility Motrix

The sample survey results obviously provide inconclusive evidence

on the question of whether the true market share is above or below

30 The president cannot fire the vice president without taking

the chance (approx 33) that the action is wrong because the mar*

ket share had not really fallen below 30 Similarly, the president

cannot retain the vice president without taking the chance (approx

67) that the retention is wrong because the market share had fallen

below 30 Table 9 5 summarizes thtee options and the probabilities

of their being chosen correctly or incorrectly We call such a table

a probability mafnr

If the president fires the vice president, there is a 67 probability

that hia decision is correct Note that we record this option as a

gam There is a probability of 33 that such a firing is an mcmeci

decision We record this option m the loss column Similarly we

record the probabilities for correctly or incorrectly keeping the vice

president Note that the row and column sums are all equal to 1
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TABLE 9 5

PKbshjhfyMpfnx hr Problem of Whafher fa Fire the Sales Vice President

(Based on sample of 100 wih p = 28 and on derived

probaWi^ffiaffl-i
I

30)

Gam Loss

Fire Vice President 67 33 100

Keep Vice President 3$ 67
:

100

100 100
I

Tks follows from ihe fact that we must either gam or lose when

we make a decision, and that we must either fire the vice president

or keep him

The Consequence Matrix

The president undoubtedly expects to gain Borne advantage for the

company if he correctly fires the sales vice president For example,

the new vice president would facilitate the recoveiy of lost market

share, or he might retard the rate of loss of market share Let us

suppose that the president assesses the value of such a correct action

asSlSO.OOa

On the other hand, if the sales vice president is incorrectly fired,

the company would he expected to suffer some loss, or expense, or

loss of revenue, etc For example, there would be the cost associated

with hinng a new vice president who may not be as good as the one

we fired There are also the possible effects flowmg from a feeling

among the remaining staff that the vice president had been unfairly

dealt V ith, etc Let us suppose the president assesses the cost of such

an incorrect action as $500,000

There are corresponding game and losses associated with correctly

or incorrectly keeping the vice president Let us suppose the pren-

dent estimates that it is worth $200,000 to correctly keep the vice

president, and that it will cost $100,000 to incorrectly keep him

Table 9 6 shows these possible consequences in a matrix very simi-

lar to that for the probability matrix A correct finng shows $150,000

m the gam column An mcorreci firing shows $500,000 in the loss

column A correct keeping shows a gam of $200,000 An incorrect

keeping shows a loss of $100,000
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TABLE 9 A

Ccdjeqoenee Mptrlx for Problem of Whothor to FIro th* Soloi Vice Protident

Gam Loss

Fire \lce PresideDt SI50,000 $500,000

Keep Vice President $200000 $100,000

The Poy-off Matrix

Common sense suggests that the president would like to make a

deci'iion about the sales \ice president that t\ill maximize the com-

pany's gam or minimize ita loss If ne multiply the gams and losses

of the CQnitquenu matrix b> the probabilities of their occurring as

•shown b) the p‘ohahility matrix, we mil be able to as«ess the prob-

able lo”e$ or gams associated nith a decision about the sales Mce

president Table 9 7 shon s the results of such a multiplication W e

call the resultant matax the pap*ojf mtnx Each cell ^alue m the

pay off matrix is the product of the \alues in the correspondmg cells

of the probability and con<equence matrixes For example, the

$100,050 is 67x8150,000

By adding the rong of the pay toff matrix ne are now able to

determine the expected ecmomic consequences of firing or retaining

the sales Mce president We find that we expect to lose $64500 if we

fire the vice president and to lose $10(X) if we keep him There is thus

an apparent advantage of $63,500 m keeping the vice president

It is intere^-ting to note that this is a situation m which either

decision remits m an apparent loss t\e, m effect, then choo'^e the

leaser of the two evils, as it were Sometimes we face decisions where

all options are apparently going to lead to expected gaiiw We then

choo'e the one with the maximum expected gam Finally, there

TABLE 9 7

Poy-fiff Matrix for Problem of Whether to Fire the Salet Vice Preiident

Gain Loss Net Gam (Loss)

Fire Vice President

Keep Vice President

$100,500

$ 66,000

$165,000

$ 67,000

($64,500)

(S 1,000)
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^'ould be cases in which some options give expected gams and others

expected losses Again we choose that with the maximuin expected

gam

9.2 Another Example with a Different Consequence
Matrix

Let us see wliat happens to our sales vice president with no change

in the facts about the worfeet but with a change in the way the presi-

dent assesses the cmsequences 0} his deasion Table 98 shows a

revised consequence matrix and hence a revised pay-off matrix for

the same problem as before The probability matrix remains the

same

It is nov evident tiiat the sales vice president should be fired'

TABLE 9 8

Revised Decision making Model on Problem of Firing the Sales Vice President

A Consequence Matrix

Gam Loss

Fire Vice President

Keep Vice President

$250,000

$150,000

$400,000

$250,000

B Pay-off Matrix

Gam Loss Net Gam (Loss)

Fire Vice President

Keep Flee President

$167,500

S 49,

m

S132 000

$167,500

S 35,500

($118000)

9.3 Is the Compon/s Shore of Market More Than .30?

We started out on this problem of what to do about the sales vice

president with the idea that he would be fired if the company s share

of market had falien below 30 IVe discovered, of course, that we

cannot make a judgment about the company’s share of market with-

out considering the consetjueDces of those actions that flow from such

a Judgment We saw that in one case the vice president w as retained.
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thus on the assuraptjon that the share of market had not falleo be]oTP

30 In the other case he was fired, thus on the assumption that

share of market had fallen below 30 And this despite no change

m the facts about share of marketl

Thus we see that what the president ts willing to believe about

share of market depends on what he is planning to do because of

that belief and on how he assesses the consequences of his contem-

plated actions The only possible ahsfruct answer to the question

of share of market is one which shows the iihole probahility dis-

tnbution of possible answers Any attempt to use only part of this

distribution as though this part contained the truth automatically

molves. US in ?i%k qI error aad kence in. the need for evaluation ot

the consequences of that nsk

9.4 Truth as an Abstraction vs. Truth as a Personal Belief

That Regulates Our Behavior

The notion that what we should believe about share of market

ds only partly on the facts about share of market is as profound

as It IS disconcerting Such a notion makes it perfectly rational for

a person to now act as though something is true and then act as

though it 15 false, with no change in the available information in

the interim People do this quite regularly Who among us has

never been told to “put your money where your mouth is,” and,

when 80 told, then proceeded to modify his beliefs We all are are

of the different consequences that fioiv from talking as though some-

thing were ho and acting as though something were &q That is v,hy

political commentators have much less difficulty making decisions

than senators, and senators less trouble than presidents Similarly

a jury finds it much less difficult to conMct a man if the penalty is

mild than if it is severe, all quite independent of the weight of the

evidence That is why, for example, a defense lawjer might lery

rationally try to maneuver the prosecution into asking for the death

penalty on the theory that the jury would not vote guilty on that

penalty, although it would on, say, a 20-year jail term

Some people have a strong philosophical objection to the notion

that it IS rational for people to believe what thej wish to believe

m the light of their own evaluation of consequences Such objectors

argue that truth is a property of the ctenfs in question (an event

such as share of market) and not a property ol the person acting

with respect to the e\ents They fear that such a notion grants
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cveiybody such wide latitude in what he can do rationally that the

notion of rationality becomes a usele® guide because there would
be no such thing as irrational behavior But, of course, there prob-

ably IS no such thing as irrational behavior in the sense that any
person ever knowingly behaves contranly to what his reason tells

him to at the moment he has to make the decision Tomorrow he

may decide that he should have behaved differently but that does

not mean tiiafc yesterday he was irrational It is very easy to con-

fuse rational behavior with behavior that turns out to have been

correct, howe\ er ue determine what is correct

The philosophical ailments pro and con the desirability of some

objective standards of truth arc certainly worth considerable dis-

cussion Such a discussion, however, would carry us well outside

the proper bounds of this book We are more concerned here nuth

certain practical issues that arise da.ly in a society as dominated

by division of labor as ours is From a philosophical point of view,

we find it very easy to argue that each person should take personal

responsibility for interpreting his own facts If a person had a job

in which he was merely supposed to report the facts, he would report

them in the form of probability distnbutions For example, the

United States IVeather Bureau office in Chicago w^ould make no

commitment on the next day’s temperature It would report the

best estimate it could make of the full probability distribution of

the expected temperatures The newspapers would publish this dis-

tribution, and all the readers who had any real concern with the next

day’s temperature would multiply this distribution by their own

peraonal consequence raatnx’ They would then decide what to

where ie etc, ere ihe iiaai'? eif^ .rasidtaoi ,nay-off matrix

Since the piobability distribution would usually cover quite a range

of possible temperatures, the weather bureau would never really be

wrong, nor, of course, would it ever really be right The only people

who could then do anv meaningful griping about the quality of job

being done by the weather bureau would be those who felt that the

bureau was stating incorrect probabilities (how could we determine

this?) or that the bureau was perhaps showing more unceitainty

about the outlook than more assiduous research would repeal Most

of the people probably would stop complaining about or e^en com-

menting on, the job being done by the weather bureau They would

look for some other agenc>' as a scapegoat for their need to feel that

they could do some other fellow’s job better than he is doing it'

The fact 18 that most of us have neither the time the energy, nor

the inclination to spend our days making up probability, consequence,
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and pa>-olT iimtnxea for the m^nad of events that press down on

us \\ e nece^saril)
,
and m a sen«e wilhnglj

,

ha\ e adopted a master

paj-off matnx that tells us what subsidiary pa>-off matrixes we

ourselves will work on and which ones we will leave to the judgment

of others In effect, we tell the weather bureau ' Pick out that part

of the probabilitj distribution of the expected temperature that you

think make' ‘^en'^e for the citireni^ at large 1 11 learn to adapt to

11 hatevtr}ou decide or gripe to m> Congressman ' The weather bu-

reau now finds itself on the spot So it docs what we all do when

we find ourselves on the spot It takes immediate steps to get off

the '^pot It does this bj taking refuge m some notion of objective

truth' Thus the bureau absolves itself of any personal responMbilitj

for what it sa> s about the next da> s temperature

Since all of us find ourselves in a position similar to that of the

weather bureau where we are a«ked to make deewons for which we

do not wich to take per«onal re«poneibility
,
we are very happj to

collaborate in a more or le«s genera! conspiracy to develop objective

procedures for making the«€ decisions We are thus able to blame

something else rather than ourselves when things go wrong and we

at the same time can pontificate on our objective and scientific pro

’dures

Wehave of course overdrawn the case «omew hat Actuallv there

are «orae verj practical arguments for assigning some of our re

«ponsibi!ities to others The tnck is to a«sign tho«e that can be

handled be'?t b) others and to devise a way of a«ise«smg how well

they are handling the responsibilities In effect we delegate the job

of determining the probability matrix and ihe CDn'CQuenfe matrix

The delegate then morelv tells us what to do We then as«ie«s the

outcome If the outcome «tnke*! us as tjpicallv unfavorable we

arc led to make up a probability matrix a con'^cquence matrix and

a paj-off matrix on the question of uhether ue vnll continue to

delegate this job to this person We would make a mistake as a

general rule to meddle with the matrixes he is using to do the job

he has been aligned

9.5 Some Commonly Accepted Standards of Objective

Truth

Although no person who thinks about it find« it ca^y to develop

notions about objective truth, the ‘same pei^on can appreciate the

practical value of having people more or le^s agree on some general
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standards of what constitutes an objective truth In other words,

we are not sure we know what objective truth is, or even that there

IS such a thing Nevertheless we are willing to adopt some standards

about it in order to facilitate communication Most work and social

groups not only develop their own jargon, they also develop implicit

notions of how true something has to be to be considered true This is

another w^ay of saying that the group learns how to adopt a generally

agreed upon criterion of acceptabh risk A member of such a group

IS expected to adhere to these accepted standards as one of the con-

ditions of remaining in good standing within the group This is true

whether we are trying to remain m good standing within a drag-

racing club or a university of scholars The pnmary argument for

the currently accepted standards is the same in either group, namely

that they are good standards because the group thinks they are

good standards If we 5nd the standards unpalatable, we leave the

group

The Notion of 50-50

If ve leave consequences entirely aside, we are bound to be at-

tracted to the notion that something is true if there is at least a 5

probability of its being true Correspondingly, something is false if

there is a less than 5 ciiance of its being true There seems to be

no offhand reason why we should adopt a more stringent standard for

truth than for falsity, or vice versa

The notion of 50-50 used to play a rather dominant role in statis-

tical work The probable error, the middle 50% range, used to be

much calculated and much quoted If a person acted as though the

truth were within the probable error range, he had an even chance

of bemg right If he were told that something was true fay a person

who believed in the 50-50 rule, he knew that he had at least an even

chance of success if he acted on that mfonnation More than that

he did not know

The Notion of 2 to 1

The 50-50 rule (consequences aade) seems to be a good rule if

we must act as though something is either true or false But some-

times a third act is available This is ^e act associated with I

don’t know ” Thus a person can conceive of three conclusions he

might make about an event True False, Do not Know What is

more natural, then (consequences aside), than to divide the probabil-

ity scale into three equal parts^ If the probability is less than 33,

the event is called false, if it is more than 67, it is called true, and if
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the probability is between S3 and 67, the evideute is inconclusive

Thus when we call something trae by this rule, we believe that there

IS at least a 2 to 1 chance that it is true, and similarly when we call

something false The rest of the time we say we do not know

This rule is being used far roore than we realize It so happens

tliat "the mean plus and minus one standard deviation” covers about

2/3 of the cases if a distribution is normal or nearly so Many peo-

ple make conclusions from evndence by stating the one standard de-

viation limits thus suggesting that an action based on such a con-

clusion has a 2 to 1 change of being right We hesitate to decide

whether the popularity of the 2 to 1 rule is because of the logic of the

2 to 1 or becau<!e o! the aura of respectability that has come to sur-

round the standard deviation

The Rule of Modesty or of Conservatism

As soon as we admit the possibility that we find the evidence in-

conclusive we open the door to the possibility of attaining a repu-

tation b> demonstrating that humbleness and modesty are also use-

ful traits \\e worrj so much about drawing hasty, premature, and

’ ’ founded conclusions that we end up drawfing practicallv no con-

clusions unless the evidence overwhelming or at least we think

we are drawing no conclusions As a matter of fact, life’s problems

pre«s in on us in such a way that the decision of ' no conclusion” is

nothing more than a decision to continue the old policies m effect

There is nothing inherently wrong m this, but it is important to

know that that is what we are doing when we "postpone” a decision

viwUl toftce m. Uosfc of vit dftcwo i-iw.-

forl in the continuance of the familiar routines We require rather

substantial contrary evidence before we abandon old ways We are

very likelj to become quite "scientific” and demand “proof" before

we make anj ‘ hasty and ill-founded" conclusions For example, the

evidence that has linked cancer to cigarette smoking has done more

to stimulate a scientific attitude among smokers than anything they

ever learned m a science course m school The subtleties of argu-

ment that people have been able to deduce to cast doubt on the

cancer-causing hypothesis would do justice to some of the world's

most profound philosophers who have tned to discover the real

meaning of truth Some have let their scientific enthusiasm run so

high that they have finally decided that they have proved that noth-

ing IS truel

The application of the rule of modesty generally leads to the re
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nent of odds m the neighborhood of 9 to 1, or 19 to 1, or 99

etc
,
before we label something as true, or false There is no

lular magic m these numbers, although we might think so if

e superstitious about 9’s Actually, they developed out of a

number philosophy Equivalent statements would be 1 out

1 out of 20, and 1 out of 100 Why 1 out of 60, or 49 to 1,

attained currency is a useful subject of research for a psy-

jist

ess we leave this section with the idea that we have been

ig sport with this modesty rule, we remind ourselves that it

obstinacy that causes most of us to adopt the slogan that “a

n the hand is worth two in tiie bush ” It is just that we ha\e

id that It IS a good idea to get odds before we risk something

'eady have for something we “might get
”

This is just another

if saying that we really find it impossible to leave consequences

The people who already have something are generally less

ed to experiment to get more than are those who do not have

mg to lose Nonsmokers find it much easier to accept the no-

if a link between cigarettes and cancer than do smokers and

CO companies What is surprising is not that this is so but that

3 seem to be surpnscd that it is so

It Is So Because It Cannot Be Proved It Is Not" Rule, or Vice

le people have rather badly misinterpreted what we have called

odesty rule They have accepted the stnngent requirement that

pparent odds be quite high before they can be persuaded to

;e a belief or an hypothesis Unfortunately, however, they have

Iways been loo carelul in tbeir mAia\ selecliDTi oi

perhaps they have been very careful, but very subtle')

e misinterpretation stems from the notion of the null hypothesis,

ion that has had considerable prominence in statistical work

nally this notion referred to an nypothesis that stated that

e IS no difference between these two phenomena ” For example,

i suppose that we are testing the effectneness of two different

of advertising copy We mitially adopt the hypothesi‘' that

IS no real difference betiveen the effectiveness of the tno types

ny We then collect evidence which shows any observed differ-

in effectiveness But, of course, we well know that there would

me observed differences m sample evidence e\en thougli there

10 real difference We liken the situation to that of drawing

ig cards out of a deck In this case we happen to know that
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two decks of cards are identical, hence we are not misled into be-

lieving that the cards have higher numbers in one deck than in the

other because we happened to observe two samples of five cards

each which showed higher numbers from one deck than from the

other We bru'h off such an observed difference as due to chance

and continue to behev e that there w no difference between the tm

decks An analogous line of reasoning tells us to brush off an ob-

served difference between advertising copies as due to chance unless

the chance is «o low that it would be imprudent to count on it For

example, if the observed difference could have occurred by chance

only 01 times on the hypothesis of “no difference," we might be par-

doned for abandoning the hypothesis of "no difference” Of course,

as soon as we abandon an hypothesis of "no difference," we aulo-

maticallj hav e adopted one of “some difference ” (The detenninatioii

of the size of the "some” was a neglected problem for many years

)

Thus the adjective null was appropriate (null means "nothing”)

The attendant notion that we should not abandon a null hypothesis

unless the odds were at least 9 to 1 is obviously a very conservative

rule Such a rule provides us with a very strong presumption to

tteat things as though they were the same unless we have rather strong

evidence that they are different This rule is practiced quite widely

m American life Our concept of democracy has strong leanings to-

wards treating people as though they were the same unless there are

definite reasons to the contrary

A person might grant the practical logic m the notion of the null

hj polhesis with a conservativ e rejection rule without, how ev er, grant-

ing the logic of its extension to cover all kinds of hypotheses As so

often happens with such things, the original meaning of the null

hypothesis has been lost over the years Some people now treat all

hypotheses as though they were null hypotheses They use the con

servative rejection rule and naturally have trouble refuting their

hypotheses They take what to them is the next logical step and

aipe that we should act as tiiough the h} pothesis is true becau'e

we hav e not been able to clearly demonstrate its falsity This is a

dangerous practice What very often happens is that the evidence

IS so scanty that we should hesitate strongly to say any more than

"we do not know ” It really is not at all difficult to dream up all

sorts of hypotheses that cannot be proved false To then call the«e

true must be some sort of nonsense Similarly, it is not at all diffi

cult to dream up all sorts of hypotheses that cannot be proved true

Lack of overwhelming proof certainly does not make them false

however
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9 6 The Policy We Follow in Drawing Conclusions from
Evidence

We leave the hinng and firing of vice presidents to presidents

Our task is the more modest one of estimating the probabilities that

are appropriate to the given facts We Jack the kiiou ledge that is

essential to the setting up of appropriate consec^uence matrixes p

have shov n the mechanics of deriving a pay off matrix or a decision

matrix from the underlying probabiJify and con*eQuence matrixes

in order to clarify the role that is played by the probability estimate^

Although ne are convinced that probability calculations should plax

a xery wportmt rok m decision making n Aether in 6iisine«« po/i

tics military strategy personal life ew and probablj an expanding

role we are equally com meed that the probabilities are not the uhole

story 11 e must ahia5
<j accept personal responsifailitr for our dcci

sions To take refuge m statistical formulas to justify dccis ons i«

to abdicate our responsibilities Sucl abdication viould also mean

that we would have failed to utilize in our decisions that great u clter

of accumulated experience both conscious and unconsciou'! that a«

yet has not yielded to reasonablv precise quantification In fact

most of the great historical decisions that have been made that hax e

affected the future of nation® and companies probably never would

have been supported by a rational consideration of the probahilitic®

Our discu«sioii m subsequent pages concentrate® almost exclusn ch

on the problems of estimating probabilities Our frequent reference®

to practical affairs should be interpreted as attempts to link our

calculations to such affairs not to piov ide a complete decision raak

ing mechanism for dealing with <uch affairs

9 7 Confidence Intervals-Abbreviofed Probabihfy

Distributions

Up to this time we hav e emphasized the importance of estim'itmg

the entire probability distribution of the value of some unknown

event such as the proportion of tJie people who prefer Smoothies

To report only part of this distribution tends to prejudice the final

decisions to some extent becau®e any u®er mii®t then confine In®

analysis to only tho®e parts that are presented For example if we

state that the evidence supports the statement that we are 90'/f
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coniident that Smoothies' share of market lies between 21 and 36

{see Table 9 1 for data that support this statement), the president

IS automatically restricted ui the kinds of decisions he can make

^\ hen a statistician has made such a report, he has implicitly usurped

some of the president's decision-making function The president is

probably m no position to supplement such probability statements

He will tend to accept the word of the statistician for what it is

worth Sometimes such statements are not worth very much, and

some presidents are smart enough to know it

The practice of summarizing a probability distribution by some

simple confidence interval like the above is much more common than

is the practice of reporting the whole distribution Both statisticians

and decision-makers have been at fault for the fostering of this

practice Statisticians ha\e been handicapped by the apparently

great difficulties that have stood m the way of the development of

rational procedures for estunatmg all the required probabilities The

flaior of some of these difficulties is apparent m the preceding chap-

ters Hence there developed a willingness to accept the notion that

rational confidence statements were legitimate at the same time that

the notion of a complete probability distribution was rejected It is

easj to look back and wonder about a logic that permitted us to take

any part of a probability distnbution but which forbade our putting

all the parts together

Decision makers also contributed to the fostering of this practice

of reporting abbreviated probability distributions in the form of

confidence intervals, mostly because they were human beings, as

were the statisticians too As we know, a good deal of admimstra*

tion theory is designed to pinpomt the responsibility for decision-

making Human beings m general, however, seem to have a distaste

for making unpleasant decisions, particularly decisions that involve

firing people, dismissing students, and the like Hence decision

makers are often very happy to point the finger of responsibility

away from themselves Since other people will resist if the finger

IS pointed at them the best place to point is at some inanimate ob-

ject, like a confidence interval This is particularly useful if the

object 13 surrounded w itb an aura of scientific respectability A pre-

set confidence inter\al is very handy to make a decision that is

“forced on us by the facts” Of course, confidence inter. als that

do not support the desired decision frequently get disqualified on

the grounds of “biased sample," “errora m measurement,” ‘ not the

whole picture,” etc Statisticians were often human enough to be
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Bomenhat thrilled that their results were being used to make impor-
tant decisions Their feelings when their results were ignored or
ridiculed were often not expressible

The preceding remarks ma} lead to the behe/ that confidence inter-

vals, or abbreviated probability distnbutions, have no proper place

m high-level practical statistical work This is not true, however
They definitely do have a place, but their place should not dominate

the scene The practical necessity to estimate the range within

which some value probably falls has been recognized for centuries

Engineers have been concerned with this problem under the name
of tolerance limits Although it is true that engineers have sometimes

impbcitly assumed that all or practically all of their products should

fall within their tolerance limits, practical expenence usually re-

pealed some failures In fact, this predilection of engineers for lOQfo

or practically 100% confidence intervals has probably had a con-

siderable effect on the general popularity of relatively high confidence

coefficients (the 90%, or 99%, etc, is known as a confidence coe^i-

(nent) Engineenng and production problems have played a sig

nificant role m the development of rules of thumb m practical sta-

tistical work Many of these rules have been faorropved for other

applications with little regard for their ongms and their practical

meaning

The important thing for us to keep m mind is that the selection

of a proper abbreviation from a probability distribution should be

made with explicit consideration given to the appropriate consequence

matrix There is no particular trick to the calculation of a 60%

interval vs a 90% interval The practical problem is the decision

of s'hieh to eakukte So now tet as get to ^ task of cakafating

confidence intervals on the a^umption that we have been told pvhich

coefficients we should use

Calculating a Confidence Interval Use of Tables of The Cumulative

Binomial Probabilities

Suppose we have a random sample of 40 items with a p of 25

What limits should we set on vj go that we can be 90% confident that

the true r falls within the limits?

We assume that we are satisfied if there is no more than a 05

chance that the true ir is above our upper limit and no more than

a 05 chance that it is below our lower limit Since the distribution

IS skewed, this is not the same as requinng the 90% to cover the

smallest possible range, although the difference between the two

possible intervals is negligible



360 THE STATISTICAL METHOD IN BUSINESS

Our approach to this problem is illustrated m Fig 9 1 Part A shoivs

how we locate the value of the lower limit to the interval, called

The sample p of 25 is taken as sl fixed point along the horizontal axis

We then search for a rt that will generate a distribution of p’s so that

there is a 05 probability of gettmg a p of 25 or larger Suppose that

VH IS such a TT and the pictured curve zs the generated distribution

The shaded area to the nght of p - 25 would then contain 05 of the

area under the curve An exammation of the table of the cumulative

binomial for r = 10 (equivalent of p «= 25) and n = 40 re\ eals that

the appropriate hypothetical t lies between 14 and 15 If we make

a linear interpolation, we find that an appropriate ir/^ is

14 -b

05 - 0453

0672 - 0453
X 01 « 142

We can now state that P(p > 25 It//

=

142, n = 40)= 05 Then,

followng the rule of inverse probabihties used m Chapters 7 and 8, we

turn this statement around to read P(ir/ < H2|p * 25, n - 40,

- 05

2
|

P

Part A

1
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Part E of Fig 9 1 illustrate tiie same argument for determining the
upper hrmt to the mterval We are now concerned with the probabihty
of getting a sample p of 25orkss given gome value of th, and we wish

this probabihty to be 05 The use of the bmomial table is not straight-

forward this tune The table diows the probabilities for a given r-valne

or more We wish the probabilities !or a given r-value or kss First

we note that the probabihty of r of f/ or more is the same as 1 minus

ihe probability oj 10 or kss For example, the table tells iis that the

probabihty of an r of 11 or more is 4161 if ir^ = 25 Hence it follows

by subtraction that the probabihty of 10 or less must be 1 - 4161,

or 5839

If this characteristic of the table is fixed m our mmds we can now
see that we look m the column for r = 11, n = 40 until v,e find the

nearest figure to 95 We find that 95 would fall between a te of 38

and 39 Usmg a hnear interpolation as before, ve estunate ite as

38 +
95 - 9400

9537- 94M
X 01 = 387

From this we state that P{ti > 387[p = 25, n « 40, tj) *= 05

We put these two statements together and say that there is a 90

probability that r; falls between 142 and 287 given the evidence of

a sample of 40 inth a p of 25 Note that the lower limit is closer to

25 than is the upper limit This is caused by the fact that the upper

limit was based on a vanance of 387 X 613, which is larger than the

variance used for the loiser limit, which was 142 X 858

The liimte of 142 and 387 are knoivn as conservative hmits They

actually cover more than 90% of the inference distribution and are

made conservative because we treat p as though it were a discrete

variable When we calculated the probability of an r of 10 or more,

we mcluded the full range of the 10, winch really runs from 9 5 to 10 5

This IS the same problem we noted m Chapter 8, and which we illus-

trated in Fig 8 5 To adjust for this conservatism we would have to

subtract half of the probabihty associated with r = 10 from our cu-

mulative probabihtie'i Table 9 9 shoivs the procedure

This adjustment contracts the mtervals from 142—387 to 151—

376 Most people would probably rather accept the conservatism

than the tedium of the adjustment It is important to remember,

however, that this adjustment can be quite important if N is mod-

erately small e disco\ered as much m Chapter 8 when we were

Working on the entire inference distribution instead of ju^t selected

parts of it as w e are doing here
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TABLE 9 9

Adjusting Confldance intarvali for Censotvotitm

Givon- p = .25, n » 40 Wonlod 90% Confldenca tnlervol of r

(l) (3) (3) (8) (3) (8)

P(p £ iJli-g; Plp-S ^Ir^) P(J> -JUlrg) iX{4) Plfi> IsUfpollllUU

IS 0873 0373 out 0488 ,, 1

05 - 04S8
.

'''

0702 - 0484^

IS 09S2 OIM 0230 0703 - 18!

J7 m m OtM 0374 .0 «-0412._.
”

.0374 - 0442^

33 0600 D3IS 0130 0442 - J76

Calculating a Confidence Interval: Use of o Normal Curve With

Symmetrical limits

With a sample as large as 40 and with p m the oeighborhood of

25, we might find that the normal curv'e will make a reasonable

approximation to the 90% confidence interval of w. Our first task is

to estimate the standard deviation of the universe, and from that

the standard delation of the sample p’s Since the only information

we have about the standard deviation of the universe is that sup-

plied by the sample, we use the sample standard deviation as the

basis of our best estimate We say “basis” because we must adjust

the sample standard deviation for the fact that sample standard

deviations are m general too small m the sense that the arithmetic

mean of all sample standard deviations is less than the standard

deviation of the universe The adjustment can be made as follows.

Thus m our problem we get an estimate of a^, called rf* of

.26X75 *.1923
40-1

We estimate the standard deviation of sample p's by the formula
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Note that the above two operations involved first a multiphcation

by N and then a division by iV If we combme these two formulas, we

can ehmmate this multiplication and division Thus we would get

ff, =
I
25X 75

40-1

Figure 9 2 illustrates liie line of rea'oning we will now follow

In fact, it illustrates tvo lines of reasoning Since we get the same

answer m either case, we can exercise our preference Part A illus-

trates the case in which we are really u«ang the sample information

as the basis of generating a probability or inference distribution of

the unknown universe » This is the process some people object to

because they do not bke to think about an unknown universe value

as though it were a random vanable If we agree with this objec-

tion, we would prefer the line of reasoning as exhibited m Part B

fig 92 Illustration of alterastive methods of making normal curve eatimates

of the 907o confidence latsrval (Note These curves are not drawn to stact

scales

)
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The ^ertlcaI lines are draT\n through Parts ^ and B to make it clear

that both methoda gl^e precisely the «ame values for irt and tc

Just as when T\e were u^^mg the binomial, we wish to find ulues

fori-t and it so that the excluded areas (shaded in the charts) con*

tarn Oo of the cases respectitelj We now search the normal cur\e

table for the value of Z that will cut off 05 of the tail of the normal

curv'e [Z - (ir - pj/a,] We find that the appropriate Z is 1 frl5

If we substitute this value m the equation Z- [w- p)/cf, we get

1 645 - (ff - ^o)/069 Tim gives a value for jrp of ^64

A simple rearrangement of terms makes it pos«ible to express this

formula as

+ 2’trp

The value for vi is similarly calculated from the formula n = P
-

Z<f, resulting in an answer of 136

If we compare the normal curve approximations to those we de*

rived earlier from the binomial, we find the differences to be just

about what we would expect The range between the upper and

lower limits is about the same m both cases The binomial gave

a range of 376 - 151 or 225 The normal gave a range of 364 -

136, or 228 The binomial gave a larger upper limit and a smaller

lower limit The«e differences were caused bj the fact that the

binomial considered the skewness m the distribution of n The nor*

mal cun e method av eraged out the skew ness

The differences shown here between the binomial and normal curve

estimates would tend to disappear as the sample size increased be

esase, as- jjw iiwjw, (he (ifsierlfcttm a/ tke mesn (p) tends tn the

normal as N increases The differences would aI«o be smaller if p

had been closer to 5 and, correspondingly the differences would have

been greater if p had been closer to 0 or 1 0 Whether we would

prefer the binomial or the normal curve estimates would depend

partly on the needed accuracj (binomial more accurate) and partly

on the availability of a table of the binomial The calculation of

the binomial estimates is qifficientlj tedious to cau^e almost an) one

to lower his standards of accuracy This is particularly true ‘^ince

most of us would not know what practical difference there is be-

tween say, 151 to 376 and 136 to 364

Calculating a Confidence Interval Use of the Normal Curve With

Asymmetrical Limits

In the above application of the normal curve we made a single esti-

mate of the standard devnation of p based on the v'alue of p itself We
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know, however, that the standard demtion of p is really a function
of the unknom ir Since the imknoivn a- might hare all sorts of values,

the standard deviation of p also might have all sorts of values, in lacti

one value for each of the possibles values For example, ue obtained

an upper limit of 364 for «• in the preceding section Using this in the

formula

we get a ffp of 076 [Note that we use AT instead of iV - 1 because

here we are working mth the ttmt;er«e proportion (albeit assumed)
]

SiimlaTly we would get a op of 054 with out lower limit of x of 136

Our single estimate had a value of 069

If we wish, we might use a value of <rp to get the upper limit of x

that IS appropriate for ibis x We would do likewise for the lower

hmit of X Since we cannot calculate ffp until we know x^ and xo, we

must estimate <Tp, x^,, and xy simultaneously The procedure is to re-

place the (Tp m the formula r = p d- Zvp with the value of cp as ex-

pressed m terms of x Domg this, we get

(Note that xr is the same as x - x^ ) A little rearrangement of this

expression and the application of the formula for the solution of a

quadratic equation results m the somewhat formidable-looking

f +m ± V(?+2Wp)“^p“(X + Ff)

2(Z“ + iV)

If we substitute m this expression the values given in our problem,

we get

1 645^ + 2 X 40 X 25

± + 2 X 40 X 25f - 4 X 40 645H~^

and subsequently values for x/ of 376 and 166

Calculating a Confidence Intervol: Compcirlson of Results from

Alternative Methods

To facilitate comparison of the various results we liave derwed

m our efforts to estimate the 905^ confidence limits of x, we have
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TA6LE 9 10

90% Confidence IntArvctli of r from o Sample of 40 with Q p of 25

Method Interval

n ro

A Di«icrete binomial 142 357

B Continuous bmomial 151 376

C S>'mractncal normal 136 364

D Asymmetrical norma! 156 376

gathered all our resulla together m Table 910 We assume that

Method B gi\e3 the most correct result It is interesting to note

that Method D gues the same upper limit as Method B but too

high a lotier limit This is as «e nould expect The upper limit

18 determmed from a distnbution centered on 376 and with a

variance of 376 X 624 With - 40, we would expect the nor*

mal approximation to the binomial to be quite good, and it is The

lower limit is determined from a distribution centered on 151 or

156 and with a variance’ of !51 X 849 or 156 X 844 The normal

curve tends to be a relatively poor approximation to the binomial

when V vanes this much from 50, even with N as large as 40 Tbs

error in the approximation is always on the side of making the m*

terv’al too short

Differences like those shown in Table 910 would tend to get

greater the smaller the sample sue and the more p varied from 5

Conversely, all of these methods tend to give the same answers as

iV increases and as p gets closer to 5 The choice we make among

the methods depends on the degree of accurac) apparently required

by our problem and on the availability of calculation aids such as

tables and desk calculators Method C is clearly the least accurate,

hut it is al^^o clearly the easiest to do vf tables of the bmoraial are

unavailable

9.B Hypothesis Testing, or Tests of Significance

It H a well known fact that all of us, including the lower animals,

make deemns and regulate our behavior according to what we be

lieve to be true The hungry squirrel will dig in the ground m the
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early spring looking for the nuts he believes are there, either be-

cause he believes he buried some id the fall or because he belie' es

other squirrels buried some, or maybe he digs because his mother

taught him to dig when he was hungry At any rate, the squirrel

has a problem if he does not find a reasonable number of nuts as a

result of his first efforts He might assume that he is not finding

many nuts because he is just unlucky If be reacts this "ay, he

retains his hypothesis that there really are some nuts and continues

his digging, maybe even with redoubled effort

On the other hand, be might decide that he is not finding man}

nuts because there are not many nuts to be found In this case he

rejects the ongmal hypothesis that started him to digging What he

does thereafter will depend on what kind of a squirrel he is he may

dig in another area, he may try to steal from other squirrels, he may

]U 5t he down and die, etc As a matter of fact, his quickness to

abandon his hypothesis that there are some nuts "ill also depend

on what kind of a squirrel he is and on "hat other options he has

for finding food other than by digging A lazy squirrel, for example,

would have a strong tendency to quickly abandon any hypothesis

that involved the work of digging A squirrel who got pleasure out

of digging might continue with the "dig for food" hypothesis long

after any reasonable squirrel would have abandoned it for other

hypotheses

To a statistician, testing a hypothesis means merely to calculate

the probability that some observed sample events could have oc-

curred if the hypothem w true It does not mean to determine

the hfpattern rs or JJWiJg ne Alw.y

as though it IS right or "rong Whether we should believe that an

hypothesis is right or wrong depends on more than the simple proba-

bility that a given set of events could have occurred if tiie hypothesis

18 true. Just as m the <ase of the squirrel, what we should believe

also depends on the other options available and on what kind of

people we are

The Routine of Hypothesis Testing

The procedure for testing an hypothesis has five elearlj' distin-

guishable steps They are

1. State the hypothesis or behef that is to be tested This is really a

statement of the universe conditions For example, the president of the
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fig f S Probability of getting a random sample p of ^8 or less if equals ^
and N equals 100 (normal curve approtunaUon)

willing to pay a small price to bghten this burden The rewards that

flow from the development of routine decision-makers can be quite

substantial both from the point of view of getting the job done and

from the easing of anxiety Onsidcr, for example, the problem of

deciding whether it is safe to drive our car through an intersection

In the absence of traffic lights, stop signs, yield right of way signs,

etc we would have to approach the intersection with considerable

caution We would have to be alert to the capabilities of our car to

stop, to turn, to accelerate, etc
,
and to the possible appearance of a

car on our right, our left m back of us {the fellow in back may be

assuming we are not going to slow down) It does not take much

imagination to realize that modem automobile traffic would be an

impossibility without the lights to tell us when “it is safe” to cross

The beueflts from our lighting system are so great that most of us

do not fret about the times when we can clearly see that it is safe but

the light IS red and says “no " (Pedestrians seem to have much less

respect for the decisions of the lights than do drivers

)

The primary mechanical requirement of a routine decision-maker,

or hypothesis tester, is an unambiguous system of signaling The

signal may be a particular color, a particular number, a bell, etc

Frequently it is sufficient to have a signal solely to reject the operat-

ing hypothesis The absence of any signal means "leave well enough

alone “ For example, many automobiles no longer have an oil pres-

sure gauge It has been replaced with a red light that Iignts only

when the oil pressure has fallen below a predetermined safe level

The primary philosophical reqmrement is a willingness to tolerate

a certain amount of error or variation m the phenomenon we are
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dealing with The best way to handle this philosophical problem is

to ignore the tolerable variation after we have made up our mind
that it 13 economic to not try to control it If we continue to worry
about it after we had presumably decided that it was tolerable, we
have not as yet achieved the primary benefit from a routine decision-

maker, namely, the need to no longer think about that decision prob-

lem This 18 what buBinessmen mean when they sav that they make
a decision and then forget about that problem What we do, in

effect, IS to make a decision about a system for decision-making, and

we have to have enough sense to then Jet the system do the deciding

It 18 surpnsmgly difficult to devise a decision-making system and

trust the system to make the decisions Most people seem to have

an almost uncontrollable urge to try to beat their own system This

means that the system never really baa a chance to be fairly tested

The system is allowed to make the decision only when it agrees with

what the pemon would decide if he did not have a system All other

times the system is overruled This very often happens when a

system is first installed The person who formerly made the decisions

quite naturally has serious doubts that a so-called mechanical mon-

ster can do at least as well as be did, or even well enough to ;ustify

releasing his mental energies for other more important tasks So the

mechanical decisions are checked very carefully Naturally the

machine makes mistakes that would be obvious to any reasonably

intelligent person, just as the mtersectioo light is sometimes red

when any one can see that the intersection is likely to be clear for

the next 30 seconds These mistakes are recounted with great glee

What IS even worse, the machine is sometimes prevented from making

such obvious mistakes, and, in fact, the same decision-makmg process

as before ism effect

9.10 Predicting the Performonce of a Roi/tine Decision-

maker—The Operating Characteristic Curve

Let us suppose that a simple routine deciaioa-raaker of the follow-

ing kind has been installed to control the operation of an automatic

machine

a Every 1000 cycles of the machine a sample of 10 pieces is taken off in

the order m which the machine produces toem

h These pieces are immediately measured for length on a "go, no go

gauge which tells whether or not the piece is shorter than some specified

maximum length
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D If itw) or /eu«r of the 10 pieces Id to pass the lest, the pioccsa is al-

lowed to continue operating, if three or more pieces are too long, the

process is stopped and an adjustment » made on the machine

(We can easily see the stimulation such a system tvould provide to

devise a machine to take the sample, test it, and make the needed

adjustment in the basic production machine

)

The engineers assure us that a sample of 10 so selected would he

reasonably random

The quality of the output of this machine depends on the universe

proportion ol defectives and the luck, we have with the samples It

is useful to ask the question of the probability that this process will

be stopped for adjustment under various hypotheses about the uni-

verse proportion of defectives Figure 9 4 shows the operating char-

acteristic curve of this decision system. Along the horiiontal axis

we show the various hypotheses we might make about the universe

being generated by this machine The vertical axis shows the proba*

bility of getting a sample of 10 with three or more defectives The

curve describes this probability for the various wmb

Rg. ?4 Operating characlerirtic eurve showing the performance of a deasion

rule that stops a roachme whenever a sample of 10 shows three or mom jiefects
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Rg 9 5 Operating characteristic cuncs for decision rule based alternatively on

samples of 10 items, 100 items, and on the whole universe

This curve shows that there is a 50 chance that the machine will

be stopped if the process is producing 267o defectives and, corre-

spondingly, a 50 chance that it will be allowed to run It is clear

that the higher the proportion of defectives the more likely the ma-

chine IS to be stopped For example, there is a probability of 9 of

stopping the machine if the universe proportion is 42

The region to the left of the cuiw^e is called the acceptance region

because it represents the probabilities of getting tw o or fewer defec-

tives in a sample of 10 The region to ^e right is called the rejec-

tion region because it represents the probabilities of getting three or

more defectives

The (act that this decision system is relatively loose is made ap-

parent if we consult Fig 9 5 Here we also show the operating char-

acteristic curve for a decision system based on a sample of 100

Suppose that if we knew nhat quality the machine was producing,

w e would stop the machine whenever it was producing at more than

a 30% rate of defectives Such knowledge would be indicated by a
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cal line on the chart at rn - 30 The dotted area beUeen the

iplete infonnation operating charactenstic curve" and the "A' =

peraling characteristic curve” shows the probabilities the ma*

} would be stopped even though the process was producing no

than 307o defectives The crosi^hatched area shows the proba-

es that the process will be allowed to run even though it is pro-

ig more than 30% defectives It is evident that these areas are

i less for a sample of 100 than for a sample of 10 It is also

ous that the cost of testing samples of 100 would be greater than

for samples of 10 * (It is worth noting parenthetically that the

iting characteristic curves shown m Figs 94 and 95 indicate

a process operating at exactly 30% defectives is more likely to

;opped than it is to be allowed to run This may offend our

non sense The difficulty is caused by the discrete senes If

7 to control at we have the problem of what to do with a

lie with exactly 30% defectives In a sample of 10, and with a

nuous senes, 30%> defectives would really represent between

and 357o defectives In a sample of 100, 30% would represent

ath«cuaucal methods of balancmg the coats of collecting more information

the estimated benefits are beyond the ecope of this book Such methods

part of a rapidly developing attempt to quantify more and more of the

oo-makiog process m business The most recently published large-scale

m this area is Robert Schlaifer s book on Frobohiiify end Slatutut Jot

ets Decitwna, McGraw-Bitl Book Company, New York, 1959 SchUtfer

jally quite critical of much of the earlier work that had been done on such

< as operating charactenstic curves, hypothesis testing Type I and Type

ors (discussed below), etc Nevertheless it appears likely that many of

ifers reconunendations will develop to be mpplementary to rather than

lacement of many of these things he cntiaied

Qterested m these and related developments look at some of the following

lally nonmathematical Ireatroenta (The mathematical demands of

fer’s book are also quite modest

)

rose, Irwin D J
,
Denpn for Dfomm, The Macmillan Company, New

k, 1953

bemoS, Herman and Moses, Lmcoin E, Elementary Decum Theory

n Wiley and Sons New York, 1959

uce, R Duncan, and Raiffa, Howard, Gamee and Deinstons, John Wiley

Sons, New York, 1957

^illiams, J The Compket Strategyst, McGraw-Hill Book Company,

V York, 1954 (Williams writes in a sufficiently light vem to make a tnp

lUgh his book somewhat fun-of the sort possible withm the limits of a

lonably ngorous treatment

)

aiffa and Schlaifer have also collaborated on a book that provides much of

mathematical argument that lies behind Bdlaifer’a book It is not recom-

ded for someone who is not mathematically sophisticated Its title

ifted Statulicol Deaston Theory, HarvaM Busmess School, Boston, 1901
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between 295fo and 30 5% We have arbitrarily decided to follow

the conservative rule and classify liie whole range represented by

30% as a rejection area We might just as well have classified it as

an occepfance area Or, if we wished, we might adopt a decision

system such that the occurrence of exactly 30% defectives m a

sample tells us to “toss a com ” If it comes up heads, we stop the

machine, if tails, we let it run Thus, m the long run we should

find it about equally probable that we will stop the machine or let it

run if p = 30% }

9.11 Type I vs. Type II Errors

It 18 clear from the operating characteristic curves shown in Figs

94 and 9 5 that there are times when our routine decision-maker

will stop the machine when it should let it run, and let it run when

it should stop it We might add that the same thing will happen if

the decision is being made by the operator In fact, this problem is

a characteristic of all two’choice problems when we do not know /or

certain what choice we should make This is, of course, why innocent

men sometimes go to jail and why guilty men sometimes go free

The convention is to call it a Type I error when we reject the

truth More exactly, we are really talking about some hypothesis

we have made For example, if we had set up the hypothesis

that the machine is producmg satisfactonly (no more than 30%

defectives, say), but we then stopped the machine on the basis of

sample information, we would have exposed ourselves to a Type I

error ^^’e might just as weff have set op the ftypothesrs that the

machine is not producing satisfactonly We would then expose our-

selves to a Type I error if we let the machine run on the basis of some

sample information

We make a Type II error whenever we accept a falsehood, or when-

ever we retain a false hypothesis

An additional convention has been established of always selecting

the hypothesis to be tested that is strongly preferred This prefer-

ence may be a result of accumulated experience with the phenomenon

which leads us to believe that it really is true, or it may be a prefer-

ence growing out of some general moral, political, social, etc
,
phi-

losophy For example, the Amencan judicial system requires that

an accused person be presumed mnocent The hypothesis of inno-

cence IS thus the one that is being tested by the evidence of the trial

Thus we see that a Type I error generally consists of rejecting

something that we have a strong pnor reason to believe is true or
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rejecting something that we prefer to believe is true. It is not

prising that it takes substantial evidence to persuade a mother to

indon her hypothesis that her son is innocent of a murder. Thus

lappens that many decision processes require probability of the

pe I error to be quite small. It is not unusual for people to require

i probability to be as low as .10, or .05, or 01, or even .0001. Thus

Smoothies Company president might have such a strong prefer-

e for keeping his son-m-law on the payroll that his preferred

lothesis is for a market share of 35%. Since the sample evidence

ated a risk of as much of .07 of rejecting this hypothesis when it

! really true (a Type I error), he naturally refuses such a "large

and retams his hypothesis, and his son-in-law's job. The situ-

m might be quite the reverse if his 8on-in-law were waiting in

: for the vice president to stumble*

t should be obnous that an effort to reduce the risk of Type I

ir automatically mcreases the risk of Type 11 error uithin the

its of a given set of eindeiice. Figure 96 illustrates this. Here

show the various optional operating charactenstics curves for

trolling our machine’s output on the basis of testing samples of

We set up the hypothesis that the machine is operating satis-

lonly (We prefer this hj-pothesis to the reverse one because the

ihine » very expensive and is aUo subject to rapid obsolescence.

? top executives get veiy unhappy when they see this machine

Also scrap is cheap and can be reworked through the machine

noderate cost ) If we decide to stop the machine only when there

at least seven defectives, we will almost never stop the machine

m process is producing ’lesa ttian defectives. the

ligible part of the No. 7 operating characteristic curi'e that is to

left of the 307o vertical line.) We would thus have reduced the

le I error to practically zero However, in doing this, we have

?tantially increased the probability of letting the machine run

n it is in fact producing more than 30% defectives. (Note the

e amount of area between the No 7 line and the vertical line at

;.) Thus this decision rule (slop at seven or more defectives)

make frequent Type II errors.

he rule to stop on three or more defectives will make far fewer

le II errors than the seven or more rule. However, to achieve this

iction it is necessary' to substantially increase Type I errors. The

.nee we choose between Type I and Type H errors depends on

we assess the consequences of each. It is a relatively simple

ter to do the arithmetic of balancing if we are able to quantify

consequences satisfactorily. The important thing is the ratio
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fig 96 Illustration of relaiiODshjp between type] aod type II errore lor vanoua

iecisiOD boundanes ^e assume tbal we wish to stop tbe machine if it is produc

fflg more than 50 defectnes A tjpe I eiror is made when we stop the machine

ei en though it is in fact producing jeicer than 30 defeclii es A tJ’PB II error

occurs when we fail to stop the machine e\en though it is m fart producing

more than 30 defectives The number attached to a gi\en operating charac-

tenstic curve i« the minimum number of defects that we will find in a sample of

10 that will cause us to slop the machine For example the curve labeled ' 8”

is for the rule that tells us to stop the machine whenev er we find 3 or more defects

m a sample of 10

between the consequences If they are considered of equal value, we

balance at odds of 6 to 5 If Type I errors are considered three

times os serious as Type II error*, we balance at 25 to 75

As shown in Fig 9 5, it is poss/bJe to induce the nsk of both Type

I and Type II errors by mcreasmg the sample size The expense of

doing this must be justified by the senousness of these errors Again

we can use our judicial g^stecP to illustrate this principle at work It

IS common knot\ ledge that a murder tnal is always more protracted

and considerably more expensive than a simple civil suit for the

simple reason that both Type I and Type II errors are considered

much more serious in a murder case than they are in a ease, say, of

trespass
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Iht Mechonin of Balancing Type I and Type tl Errors

Rarely do we find ourselves concerned only with the occmtnce

of an error The me of the error is also important In general, large

errors are more senous than small errors, although not necessarily in

proportion to sue It is conceptual!) possible to deal with these

error magnitudes o\er their full range However, it is usually suf-

ficient to merely state the maximum sue of error we are willing to

tolerate with a given frequency For example, we might state our

machine output problem as follows

j We wjsh to take no more than 05 chances of stopping the machine if

the machme is m fact producing leas than 30% defectives Thus we

wish the nsk of Tj'pe I error to be no more than J)5 This nsk is often

designated as a (alpha)

2 We wish to take no more than 15 chances of letting the machine run

if the procc^ is generating more than 35% defectives Thus we wish

the Type II error to be no more than 15 This nsk is often designated

as (beta)

Our problem is now to find the critical value of p in a sample, below

we let the process run and above which we stop the process,

and olid to find the appropriate sample sue To simplify the prob-

lem somewhat, we will assume that normal curve approximations

are Bufficiently accurate Otherwise tnal-and-error procedures would

have to be used If more accuracy is desired, we can make a first

approximation with the normal curve and then use this solution to

gi\e us a good start on a tnal-and-error procedure, say, with binomial

tables Figure 9 7 illustrates our problem We wish a value, p, so

that it cuts off the upper 05 of the normal curve centered on 30 and

Rg 9J Illustration of nature of problem of findmg the umque p and that

will give ua a type I error of no more than J)5 and a type II error of no more

than 15 (Note Curves are tot drawn to scale They merely illustrate lie

line of reasoning

)
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the kwer 15 of the normal curve centered on 35 We must find a

sample size that will give us the unique standard deviations of sample

means to accomplish this cut-oflf pomt We can see that if our sample

IS too mall, our two normal curves will overlap too much, thus giving

us larger nsks than we are willmg to take If our sample is too large,

we will be wasting money on larger samples than we really need

We use our now familiar formula for Z This is Z = (p - ir) /cp

Our nsk of 05 corresponds to a 2 of 1 645 and thus an equation of

1645 =
p- 30

[so ~ 30
'

V N

Our ^ nsk of 15 corresponda to a Z of 1 033 and thus an equation of

35 -p
1033 =

7
35 - 35^

We now have two equations with two unknowns A little re

arrangement of these wiO give us

( 1 )

and (2)

1 p- 30

VN
~

1 645V 30 - 30*

1 35 -y
1033V 35 - 35*

Thus the right sides of these equations are equal to each other If

we equate these and solve for p, we get a p of 330 We then find

thatW = 270

We would have to loosen our standards of control to reduce N
below 270 We could express this loosening either as increases in

our a and /3 errors, or as an increase in the spread between our lower

limit of 30 and our upper limit of 35

9.12 The Future Development of Statistical Decision-

making Models

We have merely scratched tbe surface of the potential of statistical

models as aids in decision-raakmg The development of the electronic

computer has now made practical a wide variety of applications that
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were formerly prohibitively expensive of money and time, or that

were even impossible because of the tremendous volume of arithmetic

in\ oh ed Our abilitj to deal with massiv e probability, consequence,

and pay off matrixes is no longer limited by the mechanics of calcula

tion The primary limitations are imposed by the problems of filling

m the appropriate values m these matnxes But the computer helps

us e\ en there e often find it very practical to make up several sets

of matrixes Thus v e can see the outcomes under various assumed

probabilitj and consequence conditions, with the computer running

through the calculations fast enough to make such experimental

analysis practicable This type of analysis is particularly valuable

when we can predetermine certain critical values for our matrixes

A critical value is one which acts as a dmdmg line between one de-

cision and another For example our president of Smoothies ma>

have adopted a tt of 25 as a critical value, w'lth the decision to fire

the vice president of sales following automatically if the sample indi-

cated a jr less than 25 Given such a critical value, we no longer

bother about the uhole probability distribution ^\e concentrate

on the simple issue of the probabilit) that * is less than 25

9 13 Our Next Step

Now that we have fortified ourselves with some ideas about how

the estimation of probabilities can be useful m aiding us m making

decisions we are better prepared in learning how to use probability

calculations most effectively This involves the problem of sjstem-

aticall} relating the implications of the most recent information

available to the ideas and hypotheses we might have accumulated

prior to the appearance of this recent information We have antici

pated this problem to some extent m our discussion of hypothesis

testing ideas and techniques, but m the next chapter we try to view

the issues from a broader point of v icw

PROBLEMS AND QUESTIONS

9 1 Assume that the sunej of a random sample of 100 consumers had

resulted m 25 consumers expressing a preference for Smoothies

() Generate inferences about the true proportion of preference in the

universe by the u^e of

1 Direct application of the binomial theorem {cf column 2 of Table 91)

2 Modified Bavesun eMimates (cf column 3 of Table 9 1)

3 Normal curve estimates (cf column 4 of Table 91)

() Cumulate the probabilities you calculated in (a) and determine the
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estimated probability (inference ratio) tiiat ulll^ erse proportion i"; less

than 30
,
more than 30

(c) Make up a probability matax for the problem of whether or not to

fire the sales vice president

(d) Assume the validity of the consequence matrix slioivn in Table 96
and combine this matrix tilth the probability matrix you constructed m (c)

in order to derive the estimated pay-off matrix

(e) What IS the apparent net expected gam (or loss) if the vice president

IS fired’ If he IS retained’

9.2 Logic suggests that there must be some point of indifference where

the evidence as summarized by the pay-oil matrix shows an equal gam (or

loss) regardless of whetlier the sales vice president is fired or retained

() Take the consequence maliu as given and determine the probabihtj

matrix that would lead to a no decision pay-erff matrix, that is, a pay-off

matrix that suggests an mdiffemice to whkher the sales vice president was

fired or retained

() What result in a eamjJe of 100 would correspond to this point of

indifference’ (For example, a sample p of 2S was associated with a proba-

bilitj' matrix witli a 67- 33 spirt in the probabilities (See Table 9 5

)

Your calculation in Question 91(c) was based on a sample p of 25 and re-

sulted in a probabihty matrix with a split in the probabilities

Tlius each sample result is paired with its own probability split Find the

p that pairs with tlie split that corresponds to the point of indifference

)

(c) Suppose that you were the president and were confronted with a

pay-off matrix tiiat expressed indifference to the direction of the decision

What action would you then take’

9.3 Suppose that you were the sales vice president whose fate was to

be decided by the results of an analysis of the sort illustrated in Questions

1 and 2 and m the text Suppose further that the director of market re-

search was to conduct tlie survey and supervise the nece«sary calculations

to derive the probability matrix The ultimate result was that the pay-off

matrix indicated a pay off just barely m favor of your dismissal Thus it

si&ir ihsS i Absgp Av the hsav prciahxbt'ss the

recommendation Inquiry repealed that the normal curve had been used

m inferring the probabilities What would be your reaction’

9 4 Tlie pay off matnx in Table 9 7 of the text points m the direction of

retaining the vice president Suppose you were the president You are

actually almost completely convmccd that you should fire the vice president

You had expected that the results of the analysis would have supported

such a decision and are now quite chagnned to find that the results did not

However, you have been so committed to a policy of being fair and objec-

tive that you are almost forced to abide by the decision of the matnx fn

fact, you are "o committed to a policy of being fair and objective that you

decide that tlie fairest thing of ^ is to collect a larger sample of evidence

before making such an important decision Actually, you suspect that a

larger sample will yield the same results as the original sample of lOO, namely,

a 28 preference rate Suppose your suspicion is correct about the results of

a larger sample

(o) Estimate the ramimum size of the total sample (including the original
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100) that would result m an mciifference point i{ the sarap/c p again came

out to be 28

(6) Again assume that p will be 28 What total sample should be planned

m order to result m a pay-off matnx with a net pay-off o{ $100,000 m (avoi

corporate these costs in your analysis of how much evidence you should try

to get m order to decide what to do mth the vice president (There must be

some point m any decision problem where the cost of collecting and analyz

mg additional evidence overbalances the contribution such evidence makes

to the decision making procea In other words, it becomes cheaper to make

more mistakes than to increase the research needed to reduce the number of

mistakes

)

9 5 The consequence matnx was taken as a fact in the text and m the

above problems Common sense suggests, however, that the figures shown

m the consequence matnx are really estimates Thus they are subject to the

same kinds of uncertainties as iho^ we had about the true state of the

market preference for Smoothies Suppose that further analysis on our part

resulted m the estimation of the following probability distributions for each

of the four categories shown m Table 9 6

Gam from Correcily

Fmng V P —0/ p«j/)

Loss from Inconeclly

Fmng VP—L/ F(C,)

t 25000 20 ; 0 25

100 ooo 94 500,000 60

600 000 16 lOOOOOO 25

100 100

Gam from Correefty Loss from /ncorrectly

Keeping V P—(?* m) Keeping V P —it m)

$ 0 40 $ 50000 60

50,000 22 100,000 10

500,000 38 200,000 30

100 100

(a) Suppose you decided to ignore your uncertainty about the exact

consequences of each of these four possible outcomes Whit procedure

would \ou follow to reduce each of the above probability distnbutions to a

single fi„’ure^ Defend your ^election

(i) Suppose you decided fo try to allow for >our uncertainty about the

consequences What suggestions do jou have for making this uncertainty

a part of jour formal development of a paj-off matrix’

(c) Uhit effect do vaq/ing degrees of uncertainty about consequences
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have on the usefulness of a pay-offmatm m decjaon-mahng? For example,
IS It possible that uncertainty about consequences can become so great that
the pay-off matrix will approach a point of indifference, and thus will give
DO guide to the correct decision? 'Ryplam

(d) What IS the effect (on the efficacy of a pay-off matrix) of an increased
uncertainty about the /acts? (Hint a smaficr sample of evidence increases

the uncertamty about the facts

)

9 6 How would you establish the truth of the following statements?
Do you find it necessary to use a standard for truth that falls somewhat
short of 100% confidence?

() If I toss this com, the probabihty that it will come up heads is 5

() We should lower the pnce of our product from S2 79 to S2 39 becauee

we will then be able to mcrease volume of unit sales by at least 2o%
(c) Since we have 200 antimissile mis-nles, each with a probability of 70

of operatii^ satisfactorily and destroyii^ its target, an enemy must have at

least 300 missiles, each with at least 50 probabihty of firmg properly, in

order have a reasonable chance of string our major cities and other

targets with at least 100 missiles

id) We cannot possibly afford to increase the wage rate S 17 per hour

without reducmg our profit to practically zero Our accounting records show

that the net profit last year was only S 19 per hour of labor input

(e) I must have a new set of spark plugs installed m my car m order to

prevent the motor from stalling at intersections when I slow down or stop

(/) I must vote for the conviction of this accused burglar because he

baa been positively identified by the shopkeeper

9.7 Most people agree that a proper standard of justice is one which

treats people impartially What quantitative criteria w ould you set up m
order to help you achieve justice m each of the following problems?

() You wish to pay your workers m such a way that they get ' equal pay

for equal work," and hence presumably "twee as much pay for twice as

much work

"

() As a judge you wish to assess fines for exceeding the posted speed hunt

in such a way that the fine is proportional to the increased nsk of accident

caused by the excessive speed

1 If the posted limit were 40 mpb, would jou fine a man twee as much

if he had been accused of going 80 mpb as you would if he had been going

60mph? Explain

2 Would you fine a man less, or even waive the fine, if he had a good

excuse, such as rushing to the hospital with an expectant mother?

3 What kind of proof would you require from the arresting officer

before deciding bow fast the car really was going?

(c) Two youngsters are caught fighting Interrogation reveals that each

claims the other "started it
” Might both boys be telling the truth’ Explain

What action would you suggest that would be fair to both boys but

which would still reduce the likelihood of either boj 's fighting m the future?

9 8 Estimate tlie 90% confidence interval for the location of the uni\ erse

proportion of defective radio tubes if a random sample of 50 tubea revealed

four defective tubes Use the following methods

(a) Cumulative binomial with discrete probabilities
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(6) Adjustment of (a) for conser\’aliaii by eluninating the extra proba-

bility in the manner of Table 9.9.

(c) Normal cur%’e approximation mlh a single estimate of the standard

deviation of sample means.

(<f) Normal curve approximation with a recognition of the fact that the

standard demtion of sample means vanes as the hypothesis about r varies

(e) Analyie the differences in the results obtain^ by the above methods

and make any generaliiations that you think vill be useful in helping you

to decide on a method m a practice problem.

9.9 An opinion poll based on a random sample of 100 people revealed

that 55 of the respondents expressed a preference for Candidate A in an

upcoming election and the remaining 45 expressed a preference for Candidate

B
(o) Estimate the 80% confidence limits for the proportion of all people

who prefer CandidateA Use any method you mab.

(6) Suppose you were the campaign manager of Candidate A Would

your responabihiies m, this position have any influence on your choice of

method for the estimation of the 80% confidence limits? Explain.

(c) Would normal curve estimates be cI<Ker to the true Uimts in this case

with a p of 55 and an N of 100 than they would be m the precedmg problem

with a p of 03 and an //of 50^ Explain

(d) How would you decide on 80% limits rather than, say, 95% limits,

60%, etc.’

9.10(a) What IS an hypothesis?

(6) List five hypotheses that have governed some cf your behavior during

the last 24 hours.

(e) Indicate the percentage of confidence you have that each of the above

hypotheses is true Explam the basis of your belief that some of these

hypotheses are more reliable than others.

9.1 1 State some hypothesis that you used to beliei’e true but which you

have since replaced with some alternative hypothesis WTiat was the evi-

dence that first suj^ted its truth? What eMdence caused you to change
fniiF TW/l v.c -an- a—J—— r—-nvr‘ *^1 tJjpjg j change

that your knowledge of the

* w have m the truth of the

hypothesis that you noif act on’

9.12 The World-Wide Casualty Company makes frequent use of mail

solicitations in trying to get new policyholders. It hires a mailmg service

to proiide the mailmg lists and also to handle the mechanical tasks of actually

mailing out the particular sobcitation pieces. The Casualty Company keepa

a record of the responses it has had from various mailings. It analyses these

in order to make more intelligent decisions about the kinds of lists it should

continue to use and about the particular mailing services that seem to have

the most rebable lists and mailing services Most mailmg sendees also keep

such records so they can make reasonable estimates of the expected responses

from various kinds of appeals to varioi^ types of listings Such estimates

are frequently used by customers in deciding whether to make a mailmg,

and if so, to what list.

The World-W’ide Casualty Company has recently placed a mailing order
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mailing service on the hypothesis that the mmlmg of 2800 pieces

result m a 12% response The actual response turned out to be only
How would this result affect your evaluation of the rehabihty of

ginal claim of a 12% response? For example, would you be incbned
i this maihng service another chance on the theory that the reduced
returns may have been due to chance? What chance would you be
to take that it was due to chance? Explam

You will recall that we discovered that the arithmetic mean of

! variances is less than the variance of the umverse However, if we
each sample vanance by multiplying it by N/(N -

1), we find that

thmetic mean of such results w^d now be equal to the true universe

le However, we also discovered that such a routine adjustment of

vanances sometimes led to nonsense answers that were larger than

ogicaUy be possible What is the difference, if any, between a policy

ung such an adjustment except when tt is clearly foolish, e g ,
except

t would give an answer larger than the known maxunura of 25, and

y of reqmrmg people to stop at an intersection when the bght is red

when no car is coming from the other side ?

The operator of a bolt making machine is required to stop the ma

:or adjustment whenever the penodic sample of 10 bolts shows two

e defective bolts

Construct the operatmg characteristic curve for this routine decision

and plot It on a graph

How did you treat the probability of exactly two defects? That is,

1 treat p as a discrete or as a continuous vanable?

What difference in your operating characteristic cuiwe is caused by

ir you treated p as discrete or continuous? Illustrate your ansiver by

g a free-hand sketch of the different OC curves that would result

Suppose that inquiry revealed that this routine decision-maker was

:ed to control quality such that there was a maximum of 12 percent

; in the universe of bolts What docs your OC curve say about

k that the process would be allowed to run even though the process

tisfactory because it is producing more than 12% defectives?

What IS the nsk that the process will be stopped even though the

? IS producing fewer than 10% defectives?

What steps would have to be taken in order to liave a routine decision-

with smaller risks than those you estimated in (d) and (e)?

You are asked to devise a routme decision maker that will give us

owing controls on Type I and Type II errors

We wish to take no more than a 10 chance of stopping the machine

irocess is producing 10% or fewer defectives

i^e wish to take no more Uian a 05 chance of letting the machine

1 process is producing more than 12% defectives

stmiate the cntical value of p and the size of sample necessary to

ontrol within these specified limits

ippose the testing process destroyed the bolt Hence it would be

rable to minimize the size of the sample to be tested What changes

ive to be made in the process or m the specifications in order to

le necessary size of sample?
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9.16 Analyze the comparative sues of the two types of errors involved

m the following decisions

(o) You are on the jury m a treason trial Conviction carries & death

sentence

(ft) You arc on the jury in a treason trial Conviction carries a sentence

of hfe imprisonment with parole possiWe after 20 years

(c) You are on the admissions committee of a “preferred” college If you

turn down an applicant, he is very likely to apply elsewhere with a reasona-

ble probabibty of acceptance

(d) Suppose you represented a “college of last resort " Your rejects al-

most never get to college

(c) Would you rather marry somebody you should not have, or not marry

somebody you should have?

{/) You are a military commander who must make deciaons about when

to commit men and materials to battle Would you rather lose opportunities

for successful attack than waste men in fruitless endeavors, or would you

rather waste men than lose opportumticsT

(p) You are a businessman who must make the decision about the design

of the product Your designers offer you several options Would you rather

go broke trying to make a major breakthrough m design, or would you

rather miss a breakthrough opportumty in the interests of a solvency of

longer term?



chapter 10
Pooling information

Most of the problems we run across from day to day are

not completely new
,
and we have contended with them before m one

form or another The new sample evidence that we expenence today

IS not the only evidence that we have experienced on similar prob

lems In fact, there la psy<'hological evidence to show that the

learning process consists of adding to and modifying what we already

know In a sense, new evidence must come to terms with what

we already know before it is really discernible

An attempt to treat sample evidence as though it were completely

independent of all prior evidence is an interesting exercise m logic

and m objective scientific analysis Such an attempt, however, does

run into the problem that it assumes that yesterday never existed

On the other hand, of course, such an attempt relieves us of the risks

associated with the prejudices and misinterpretations of past experi-

ences Even if it were desirable, however, there is a serious question

of whether it is really possible for us to ignore our yesterdays as we

contemplate today's problems and today's evidence Most business

organizations do not really think so That is why they make strong

efforts to periodically inject new blood into the organization in order

to provide a steady pressure /or adaptation to change The older

people tend to know what th^ know too well to be easily swayed

by new evidence In fact, they have trouble even seeing the evidence

'

The youngsters have little trouble grasping the new evidence because

it bulks so large m their accumulated pile* In a real practical sense,

yesterday may not have existed for the youngster

We have already spent some time on tha problem of what to do

with prior information as we are looking at a new sample of evidence

We tried very hard to act as though there were no prior information

as we made inferences about a universe v from a given sample We

discovered that there were certain advantages to such an approach,

not the least of which being that wc really felt that we had no pnor

387
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information However, eomewbat surprisingly, we discovered that

we could make better estimates of v if we assumed a prior distribu-

tion of equally-probable ir’s We know that this prior distribution

earned some weight m our inferences because the average of our

inferences had a bias toward 5, which was the average of our prior

distribution

But, just to show how our thinking is strongly influenced by our

point of \iew, let us suppose tiiat we take the view that the most ap-

propriate hypothesis about the vs is that they are equally probable

We will hold this view until new evidence causes us to modify it

Suppose the new evidence comes and suggests the possibility that

the true v is closer, say, to 3 than it is to 5 Open-minded that we

are, we now modify our original hypothesis of equal probability with

a mean expectation of 5 to one of unequal probabilities with a mean

expectation of, say, 34 We have thus allowed our conclusion to

show a strong bias fouiard 3 We are unwilling to throw our original

hypothesis completely away, but we are willing to give it a relatively

small weight as we pool our prior hypothesis with the new informa-

tion Should more than that be asked of any man?

Whether or not we find the above point of view at all attractive,

we must admit that there is some basis for arguing that the bias

runs toward the sample p of 30 rather than toward the hypothetical

r of 50 Or perhaps it would be better if w e dropped the word, bias

It has an invidious connotation and almost automatically causes

people to label it bad and deserving of eradication

We should also mention that analysis of such things as operating

charactenstics curves, Type I and Type II errore, and tests of signifi-

cance inadvertently involved the problem of reconciling prior beliefs

or hypotheses with new sample evidence People tend to keep the

risks of Type I errors low as a way of balancing the conclusions of

accumulated expenence agaimtthe indications of additional evidence

In this chapter we propose to extend some of the notions on pooling

previously touched on and to make explicit those things pre\iously

treated implicitly

1 0.1 Kinds of Prior Information

Quantitative vi. Nonquantitative Information

A good deal of the fruits of our past experiences are embodied in

the vague raiment of those things we call feelings, attitudes, etc We

find it very difficult to express their nature quantitatively so that we
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and others can mathematically combine them with ne^ evidence to

arrive at quantitatively expressed nei\ conclusions The closest ap-

proach we can make to quanUfymg these important regulators of

behavior is to quantify the behavior If we do this under various

kinds of stimuli (sample evidence), we can deduce the kinds and in

tensities of the beliefs that are apparently regulating that behavior

Research like this is very useful m studying how people actually do

pool their past experiences with new evidence However, since our

interest is in developing apparently rational ways of pooling the old

with the new, we leave to others the problems of research into how
people actually do it

We are going to confine oui attention solely to those problems of

pooling quantitatively expressed mfomiation In doing this we are

going to be willing to take moderate nsks that the quantification

process does not accurately measure the things it presumes to meas

ure For example, if someone tells us that he likes cake twice as

much as ice cream, we will take the nsks associated with calling it

twice as much when actually it may be only 1 7 as much or three

times as much

Undigested vs Digested Information Raw Data vs an Inference

Distribution

The human nervous system is essentially a date-processing system

It tends to digest information the same nay the stomach digests

food The output of this data-processmg system is a set of con

elusions or hypotheses The original infoiroation is essentially lost

m the process or, if it is stored, il is particularly inaccessible The

result IS that we can now call forth only Idie conchmons we have

made fiom our past experiences and not the experiences themselves,

except, of course, an occasional anecdote that we find fits our con-

clusions quite well and which probably never happened that i\ay

anyway We cannot easily determine how much experience or e\i-

dence supported the conclusion, or how variable was the experience,

the two things about evidence we have discovered it is most important

to know

We would not be overly concerned about this lack of direct evi-

dence on hov much and how variable the past experience has been

if we could be assured that the conclusions that ha\e been drai\n

were couched in terms that showed the modesty befitting the paucity

and inconsistency of the evidence Unfortunately, we find it un-

realistic to be assured on this matter Some people by their very

nature, ali\ ays strongly believe w hatever it is that they are currently
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believing They leave little doubt that their “conclusions follow

inevitably and unquestionably from the evidence,” whereas other

people tend to be somewhat tentative in all their views The first

type of person tends to swamp any new evidence m his prior con*

victioDS, the second type of person gets his prior convictions swamped

by the new evidence

Despite these difficulties in trying to assess the weight of past evi*

dence in supporting a given hypothwis, we do the b^t we can to

deduce its apparent weight from the strength of the convictions ex-

pressed m the conclusions This might result m our letting "men of

conviction" overly dominate a situation, however, we hope to reduce

the nsks of this by giving proper regard to the probabilities in a

situation

10.2 Weights in Pooling Information

As soon as we contemplate combining two sets of information in

order to extract a joint conclusion, we run mto the problem of the

relative weights we should assign to the two sets of information

The problem would be relatively simple if we could be assured that

the two sets of information definitely belonged to the same universe

For example, if we were presented with a sample of 10 cards from

a deck (not playing cards) and another sample of 6 cards from the

same deck, we would not hesitate to give the first sample a weight

of 2 and the second sample a eight of 1 in any pooling operation

But suppose the firet sample occurred last Fnday and the second

sample occurred today What assurrance do we have that they both

came from the same universe? Perhaps shifts have occurred which

would make it appropriate to completely ignore the first sample, thus,

in effect, giving it a weight of 0

To Pool or Not to Pool?

Many people have a predilection toward strong measures m choos-

ing iveightmg systems for pooling two sets of information We might

add, as a matter of fact, that the literature of statistics implicitly

supports such strong measures This approach to the problem re-

duces the basic issue to either poolmg or not pooling

Given the decision that the two sets did come from the same uni-

verse, weights are then assigned proportional to the sizes of the iw
samples If one set of information is m a predigested form, we must

try to deduce an appropriate N, a challenging task at times
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Modified Weighting Systems

If we find that it is not clear whether the two sets of evidence

came from the same universe, and it almost never is, we might try to

develop a modified weighting system that allows for the uncertainty

about whether to pool and also for the amount of evidence in each

set This 18 a pretty tricky business and not easily, or even pref-

erably, left to routine procedures We probably should not use

these difficulties, however, as an excuse to fall back on the pool or

not pool solution, a solution for which we do have simple routines

After posting this warning, we now turn to some of the simple

routines associated with a “pool or not pool” analysis We trust

that we can work out our own modifications of these routines in

order to allow for any indicated modified weight patterns

10.3 Procedure If Given Two Bits of Sample Information

Suppose we are given two samples of evidence One sample of

five items from a machine process contains one defective item The

other sample, also five items, contains two defective items from the

same apparent process The first sample occurred first in time

What can we now mfer about the process universe that has been

generating these samples? Do we conclude that the process is de-

teriorating, namely, that the second sample came from a different,

and poorer, universe than the first sample^ If so, what inference do

we now make^ Do we decide that a “trend” is at work and that the

process’ has by now dcteno-rrafed At an e}\?ii siJiwc •Xhiditm ihaa

when the second sample was taken?

Or do we infer that the two samples came from the same universe

and that the difference between the two samples was stnctly a matter

of chance? If we believe this, we would pool the two samples with

equal weights because th^ have equal N^s What inference would

we then make about the universe jr^

The Behavior of Paired Samples from the Same Universe

As an aid to deciding what to do with two samples that may or

may not have come from the same universe, it is interestmg to ex-

amine what happens when we pair samples that have come from the

same universe Let us suppose that we are drawing random samples

of two items from a universe that has 10% defectnes in it We

then pick out pairs of the samples of two and take the difference be-
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TABIE 101

Differences befween Means of Paired Samples of 2

from 0 Universe with r = 1

Part A Differences between Part 5 Probabilities of Differences

Means

pi Pt

pi 0 5 10 Pi 0 5 10 2

0 0 -5 -10 0 6561 1458 OOSI .81

5 5 0 -5 5 1458 0324 0018 18

10 10 5 0 10 0081 0018 0001 01

T
81 18 01 100

tween their means Table 101 suinmanzes the sort of results we

would get if we considered all possible differences between the means

in such pairs The matrix in Part A shows the differences that would

occur for all possible combinations of pi and Ps Part B shows the

probability that a given difference would occur These probabilities

are the probabilities for the simultaneous occurrence of the

^iven pj and p^ For example,, the probability of 0 defectives in a

sample of two is 9 X 9 or 81 The probability that pi will be 0 at

the same time that p: will be 0 is 81 X 81i or 6561 This is the

probability shown m the upper left-hand comer of the probability

matrix The other probabilities are similarly calculated Note the

symmetry in the table and also in the marginal probabilities The

total of all the probabilities must be 1 0, thus accounting for all the

possible differences

Table 102 analyzes the summary characteristics of these differ-

ences Here we find that the anthmetic mean of all the differences

equals 0 This is as we would expect This is another way of ex

pressing the notion that chance will (m the long nm) average

out differences between samples taken from the same universe

The standard deviation of these differences is 30 An interesting

thing about this standard deviation is that it can also be cal-

culated from the formula shown This formula is always true and
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TABLE 10 2

Stfmjnary Cfioraeleristies of Differences between Means of

PairedSoinplesofJwithris
J

(1) (2) (3) (4) (5)

P1 -P2

or d P Pd P*

-10 0081 - 0081 0081 0027
Arf - 0 prf = or 3-5 1476 - 0738 0369 1649

0 6649

1476 0738 0369 1649 "'Vs+iv;10 0081 0081 008] 0027

] 0000 0 0900 10001 9X1
V N, As

• Normal curve

©sJ{e5 }t poi^aijWe /o/ u"? to cakv}ate ca from knorrledge 0/ u and

of Ni and iVfl If the N’s are equal, we denve the interesting special

case that a =s y/^, or Ui&t the vamtue (square ot the standard

deviation) of the differences between sample means is equal to tiwce

the variance of the means If ne think about this, reahze that

this is not so far ^eIno^ed from what intuitne common «ense would

tell us

Another very interesting feature of this distribution of difference*:

IS that it is symvieincal even though the universe is quite skeiied

This symmetry is always a characteristic of the differences between

means of random samples provided that the samples came from the

same universe Thus normal cune estimates of this di^tributiDii

tend to be quite good even for relatively small samples For example,

in this case the normal curve probabilities are as shown in column 5

of Table 102 The closeness to tJie exact probabilities shown in

column 2 is quite remarkable considering how small our samples are

Estimating the Distribution of Differences between Sompfe Means

from the Some Universe

Let us now return to our two samples of five, one with one defec-

tive and the other with two defectives Let us assume that we have

no other information about this process A possible first step in

analysis is to set up the hypothesis that both samples came from the

same universe If this is true, we can estimate the standard deviation
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of this universe by combining the information m the two samples

The two samples together give us a sample of 10 with three defects

Thus our "best” estimate of o would be

(The N/{N - 1) adjustment is made because sample standard de*

viations tend to average out snialler than the universe standard de-

viation )
This works out to be 483 (Failure to make the bias

adjustment would give us a of 458

)

We have discovered that

This reduces to

9d
£7^

fd

a form that many people find more convenient to work with If we

substitute our estimate of 483 for we get

ij = 483vT+i

This works out to give us a (^4 of 305

We are now ready to estimate the probabibty that two samples

could have differed by at least as much as ours even though they both

came from the same umverse We assume that the normal curve will

make satisfactory estunates of this probabibty, an assumption that

seems quite reasonable m view of what we found out in the last section

about the distribution of differences Let us measure the observed

difference by subtractmg pi from pj, thus getting a d of + 2 Figure

10 1 illustrates our progress to this pomt The curve shown is a

normal distribution with a standard deviation of 305 and a mean of 0

Our observed difference of -f- 2 la jotted on the honzontal axis The

probabibty we are mterested m w mdicated by the shaded area to the

right of 2 We calculate this area by looking up the appropriate Z

in the normal curve table Here Z - {pi
—

Pi)/dp,-pi, or 2/305,

or 656 (WeBhowdjasrf„^,inthi8 formulatoemphasirethegeneral

character of all formulas for Z, namely that Z is the ratio of some

particular difference to the standard deviation of all such differences

In this case the difference m mmd is pi — pi We have abo had

expenence with p — x, and we nm into other differences m later work

)
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fig. 10.1 Estimated oonns! distnbutioa of differences between sample p’s fi

uaiveree, with a .3 (A'j = iVj =: 5). (Note: Not drawn to exact scale.)

A Z of .656 cuts off a tail area of .256. Thus we estimate tha'

difference of +.2 cf mort would occur .256 of the time even if thi

two eamples came from the same uoiverse.

Deciding Whether to Pool, and, If so, How to Pool Two Bits of

Sample information

Now that we have a probability to work with, we can turn to the

most difficult part of our task, that is, what do we decide to do about

the pooling issue, For the first time we have now explicitly come to

grips with the question of whether the universe we are dealing with

}m remained constant over the period of our samples. The corollary

question, and really the most important question, is to determine

what we would now like to say about &e universe from whicli the

next sample will be taken. We really cannot do anything about the

pieces the machine has akeady turned out, but we could prevent the

machine from turning out an excessive number of defective pieces

in the jutwre if we knew when to shut the machine off for adjustment.

As soon as we begin to think about the practical setting that caused

us to take the samples in the first place, we begin to project our think-

ing beyond the apparently simple issue of pooling. What is im-

portant is not whether we pool, but what happens to us if we pool

and what happens to us if we do not pool. For example, .suppose that

the results of both samples are sufficiently “good" so that w'e would

let the machine run on the bwis of either sample alone. Suppose
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further that the two samplca tmbwed, or pooled \vouId al«o tell us

to let the process run It» nov quiU clear that whether pool or

not mahes absolutefy no difference in our decision The issue of

pooling would then be jno^y an intellectual exercise

But suppose the first sample alone tells us to let the machine run

(It obviously must have or we would not have had the opportunity

to get another sample under the same apparent conditions ) Suppose

the second sample alone tells U8 to slop the machine Suppose the

two samples together tell us to let it run, but with the precautionary

note to immediately take another sample of five Now our decision

about pooling affects our decision about the machine'

It is also obvious that our decision about the machine also depends

on what happens to us if we incorrectly step the machine and what

happens i! ve incorrectly let it run and both of these incoirett deci

sions must be balanced against corresponding correct decisions In

other words we need the details of a consequence matrix And, ag

before, we would need the details of a probability matrix in order

to combine these two matrixes into a pay-off matrix The decision

to pool or not te pool would then automatically pop out As a matter

of fact, we could work up a model that would also permit a moderate

amount of variable weighting in the pooling process

Unfortunately, or fortunately depending upon our point ol vii»7i,

we cannot take the space needed to develop further any of ths

routines of building pay off matrixes * Our task is to uncover soms

of the problems involved in estimating the probabilities that would

be involved We find it necessaiy nevertheless to periodically raise

the issue of consequence matrixes lest we imply that it is pos'^iblt

to make real decisions about real problems on the basis of probabih

ties alone We also must coutpnd with our natural tendencies to

either dismiss probabilities as in-plevant or to treat them as the sole

determiners of truth, with the middle ground left unattended We

trust that we could all fill m the appropriate consequences if we

were dealing with a real problem In the meantime we try to explore

some of the mystenes of probabilities

Before leaving this section, we should point out that the test of

the hypothesis of no difference between the two universes from which

the samples came would traditionally have led to a decision to retain

the hypothesis This decision would follow from the widely prac

ticed conBervati\e rule of not rejecting an hypothesis unless the nsk

* See refeTeneea oq p S7i for furthet int&naaLion tm the process of combuiffii

probabibties and coMequences
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of Type I error rs less thaa some m the neighborhood of 10,

or 05 Since such a rejection would involve a risk of 26 in this

case, the hypothesis of no difference would sunive the test We
again remind ourselves that this conservative rule makes little prac-

tical sense unless we have accumulated previous experiences that

provide some presumption for the hypothesis of no difference, a pre-

sumption quite apart from the evidence oj the two samples Thus

m effect, the consenative rule is testing old evidence, although

vaguelj defined, against new evidence, usually quite specifically de-

fined in the form of random samples Personal judgment is thus a

very strong, though implicit, factor m the use of the conservatn e rule

Estimating the inference Distribution of the Differences between

the Aleons (jr's) of Two Universes

In the preceding sections we approached the problem of vhat to

do with the two samples by adopting a pnor hypothesis that the two

samples came from the same mmrse Another approach to the

problem is to make no pnor assumphon about the differences between

the two universes, but to Jet the sample information generate a set

of inferences about the kind of differences that might exist This

18 exactly what we tried to do in Chapter 7 vihen we had information

from only one sample, namely, let the sample tell us what to infer,

with as little prior assumption as possible

The best single estimate we can make of the differences between

the means of two universes is the difference observed between the

two sample means The arithmetic mean of ail such estimates would

equal the actual difference between the universe means We have

already discovered, for wcample, that the arithmetic mean of dif-

ferences between means of samples from the same universe would

be 0 In our case, the observed difference was -h 2 Thus we can

say that the best single estimate we can make is that the two uni-

verses have means that differ -f ? But, of course, we are well

aware of the fact that the tj^e difference might be more or less than

i- 2 The question, then, is to estimate the probability, or inference,

distribution of this difference

This IS precisely the same problem we tackled when w e estimated

the inference distribution for irj Unfortunately, our ta«k is made

more difficult by the fact that the distribution of differences between

means of samples from different universes conforms to no simple

pattern The distributions are skewed, although this skewness tends

to decline as the combined sample size increases The binomial
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>.4 -2 0 +2 4-.4 4.6 4£ 4lJ)

A/

fifl lOJ Bmomial esUmatea of laference ratios of A; given* Pj = 2, pj = .4,

A\ f; iVj = 5 (Note* Inference ratios are based on binomial with ps R Anti

y = io)

distribution with y equal to the combined sixes of the two samples

and with p4 equal to 5 plus one-hoI/ the diSeitnce between the two

sample p’s tends to approximate this distribution of differences. (We

use the subscript d merely to identify this synthetic p as a p that is

concerned with differences
)

Figure 10.2 and Table 10.3 show such

TABLE 10.3

Binomial Eitimatai of lnf«r«RC« Rotloi of A,. Civon: p^ = .2,

Pj » .4,N| s N] s S. (Boied On binomial with s; .6endM s ID)

(1) (2) (3) (4)

pj /(P.) Aj IXii

0 .000 -1.0 .0000

.1 .002 -.8 -.0016

.oil -.6 -.0066

.3 .042 -.4 -.0168

.4 .111 -2 -.0222

.5 .201 0 0

.6 2 .0502

.7 .215 .4 .0560

£ .121 .6 .0726

.9 .040 .8 .0320

1.0 .006 1.0 .0060

.1996



POOLING INFORMATION
399

an estimated inference ratio distribution based on our two samples

of five with p’s of 2 and 4 Note that the Aj (delta) values run

from -1 0 to -fl 0 and that the maximum probahility occurs at a

A/ of 2, the observed difference between the sample means Also

note that the anthmetic mean of the Aj’s is 2 (except for rounding

errors), again the observed difference Because we have actually

doubled the spread of the distribution from the binomial limits of 0

and 1 0, the ' anance of this distnbution of A; is twxe the variance

of the binomial distribution on which it is based

Table 104 shows the inference ratios for Aj based on samples with

p’s of 8 and 5 with N’s of o and 4, respectively Study columns 1

and 3, and you can see how wc transform p^ into A; Note that the

mean of A/ is 300, the observed difference between the samples

We could modify these inference ratios m Tables 103 and 104

the same way ue modified our binomial estimates of r; That is, we

could set up equally likely hypotheses for all possible values of A

and then use the Bayesian technique to get the postenor distribution

This 18 quite a tedious procedure, and it is rarely done Actually

normal curve approximations arc usually used because of their rela-

tive simplicity and al«o because we can easily interpolate for the

inference ratios for any selected intervals of A; Interpolations from

TABLE !0 4

Binomial Estlmatei of Inferene© Roliot of A, Given » 8, = 5,

Nj « 5, Nj = 4 (Bwed on binomial with = 65 and N = 9)

(1)

Pd

(2) (3)

4;

(4)

IX hi

0 000 -1000 0000

111 001 -778 -0008

222 010 -556 - 0056

333 042 -333 -0140

444 118 -111 -0131

556 219 111 0243

667 272 333 0906

778 216 556 1201

889 100 778 0778

1000 021 1000 0210

ggg 3003
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TABU 10 5

Normal Curve EitlmatM of Inference Ratios of A;.

Given Pi = Pj = 4, Ni « Nj = 5

(1) (2) (3) (4) (5)

Pfoportron^te

4; - 2 Height of

4; 4/ - 2 Ordinate Ixj

-1 000 -12
-8 -10
-6 -8
-4 -6
-2 -4

0 -2
2 0

4 2

6 4

8 6

10 8

the cnide bioomiBl are soraeirhat tedious Table 105 shoirs the

calculation of such normal curve estimates when p equals 2 and 4

and both iVs are 5 A notable difference exists between our pro-

cedure here and that when we made the normal curve estimates

assuming the two samples came from the tame unuerse Before,

we pooled the two samples and made a mgle estimate of «r Now we

do not pool because we do not assume the two samples came from

the same universe Hence we make two separate estimates of tr,

one for each universe The average of these two is greater than the

estimate we would get if we pooled because we now make a double

adjustment for bias m sample standard deviations

The other difference, of course, is that we now center around a

mean of 2 rather than a mean of 0

A comparison of these normal curve estimates with the binomial

estimates shows tolerably good agreement In most practical prob-

lems we would find ourselves unable to know what to do with the

differences between the two

What Odd* Would Wo Give fhot the Process is Now Generating

More Defectives Thon When the First Sample Was Drawn?

Although we do not have the necessary consequence raatnx to

really decide whether and, if so, how, to pool the information from

-3 79 001 000

-316 007 002

-253 04) 010
/2X 8^ 4X fi

'< "
'V—:— +-190 164 OH

-126 452 114 \ 4 4

-63 820 207 >« 316

0 1000 252 Muiaum ordioate * Ki

63 820 207
Ytt

-
^

126 452 114 2 5066 X 316

190 164 OH « 252

253 Oil 010

998
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these two samples drawn from this machine proce«s, we can try to

answer the mterestmg question of the odds we would be willmg to

give that the process is now generaUng more defectn es because the

second sample shows more defectives ^an the first Our mference

distribution shown m column 5 of Table 10 5 indicates a total prob-

ability of 271 that A/ lies betwem 0 and - 9 ( 002 -b 010 -{- 041 -i-

114 -b 207/2} (The binomial distribution m column 2 of Table 10 3

shows a probabibty of 266 for the same thing ) Thus there ^eems to

be about one chance out of four that the teue driierence <7 or less, or

three chances out of four that the true difference is 0 or more Does

this mean that we should now be willmg to bet almost 3 to 1 that

the process is producing more defeclaves than formerly?

The answer is that we would, provided we had absolutely no other

mformation about this process If, however, we have had some un-

defined past cxpenence with the process that told us that vanation

of the observed sort has been occumngw n random manner for quite

some time, we would be very foolish to abandon the le'sons of this

past expenence and be completely persuaded by the siren song of

the latest mformation In fact, our past expenence may be ao

persuasive that we would be willmg to bet nearly even-money that

the next sample of five will show fewer than 2 defective®

10 4 Procedure if Given a Prior Inference Distribution and

One Bit of New Sample Information

Let US suppo«e that the pnor mformation has been predigested

We have no w ay of recovermg the actual information, but we are

able to get the conclusions that had been drawn from that mforma-

tion Let us suppose further tiiat th^e conclusions are expressed in

the form of an inference distnbutron Our mformant cannot recall

where he got his notions, but he is willing to state the confidence

he has that the universe proportion has certain values Table 106

shows this mference distnbubon Thus he feels that there is a 26

probabibty that the universe t is 20 (Actually he is using 20 as

the center of a range from 15 to 25 Similarly for the other r;’s

}

Note that the inference ratios add to 1 In other words, his list of

r/s covers all possible values of -i

The universe in question is assumed to have some single specif

value, that value being unknown of course We mention this point

here because, as we see later, there are problems in which we actually

are dealing with several universes and m which the samphng process

goes through two stages In the first stage, one of the universes is
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TABIE 10 6

Prior Information In th« Pom of an Inferoneo Distribution

TI /

0 OS

2 26

4 34

6 33

8 08

10 01

100

selected by a process we do not fully understand Hence we do not

know which universe was selected In the second stage, a sample

13 selected from the chosen universe The problem is to infer from

the sample information the probability that any one of the universes

had been selected The problem we are working on at the moment

IS not that of determining which universe had been selected but rather

that of determining the unknown value of that universe that exuti

We can see that there are ana’ogies between these two problems, but

they are certainly different problems

We now suppose that additional evidence arises m the form of a

presumably random sample of five items with four successes among

the five If we add this information to what our informant has

already told us about this unknown *•, what should we now say about

the inference distribution of *•? As before, our first problem is that

of deciding whether his prior expenence and the new sample both

refer to the same universe It is entirely possible that his inferences

are very proper for the situation that histoncally existed but that

they are essentially irrelevant for the presebt and the future If we

decide that they refer to the same universe, we may pool the two

sets of information and come out with an inference set based on both

And, again as before, there is the possibility that we may be so

uncertain as to whether we should or should not pool the two seta

that we decide to pool with some weight modifications

We start by assuming that his prior inferences are correct and

that the new information came from the same universe that his old

information came from We calculate the probability that we could

get a sample of five with four successes if his inferences are correct
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Table 107 cames out the necessary {saJcuIations Columns 1 and 2

show the prior inference distnbutaon Column 3 sho\\s the probabil

ity we could get a sample of five with a p of 8 given the particular

value Tor example, given a of 2, we find we have 0064 chances

of getting a p of 8 in a sample of five Column 4 is the joint prob

ability of getting both the given ti? and a p of 8 It is simply a mul-

tiplication of column 3 by column 2 The sum of column 4 the

nmrgzml probability, tells us the probability of getting a sample of

five with a p of 8

1

/ the pnor wiierence distribution is true In other

words, the probability lliat this sample came from one or the other

of these unnerses is the sum of the probabilities that it came from

each one of them

Column 5 is simply column 4 adjusted proportionately so the total

probability adds to 1 rattier than to 1202 The logic behind this is

as follows

1 We assume that this «ample came from one of the specified universes

2 We also assume that the prohabibties m column 2 ere correct

3 Hence the probabihties in colunm 4 pvc us the correct probabihtiea

that we could get this sample from each of these universes

4 Since this sample must have (assumptions 1 and 2) come from these

and no other uraverses, the probability that it came from these universes

IS id

5 Therefore we enlarge 1202 to 1 0 This of course requires the raising

of each of the probabiliUes proportionately

6 Finally, we interpret column 5 as tellmg us the probabilities that this

•particular sample came from each of these universes, -provided each of

these universes had the probability of being true as indicated m column

2

TABLE 107

Testing o New Sample against Prior Information

(1) (2) (3) (4) (5)

'Tl JM P(pM mm
0 OS 0 0000 0

2 26 0064 0017 014

4 34 W 0261 217

6 23 2592 0596 496

8 03 4096 0328 273

10 01 0 0 0

100 1202 1000
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If all of our assumptions are correct, we could now argue that the

colunm 5 probabilities, or the posterior probabilities, provide us with

a revised inference distnbatioD of ir It would then represent the

result of pooling the prior infonnation with the new sample mfonna-

tion That this is so is illustrated m Table 10 8 Part A shows the

inference distribution that results from a sample of five with a p of 4

The method of generation is that of the crude version oi the applica*

tion of Bayes’s theorem We know how to do better than this, but

this version is quick and easy, and sufficient to illustrate our point

It is also a parallel method to that shown in Table 10 7 Part B of

Table 108 then takes the inference distribution generated in Part A

and adds the information in a new sample of five with a p of 8 In

other words, we use the posterior distnbutioa in Part A as the prior

distribution in Part B We then generate a new posterior distnbu

tion as shown in column 5 of Part B In Part C we show what

happens if we first pool the two samples and then generate an id'

TABU 10 8

llluttreting the Pooling Charad»nttie$ of the ApplicoHon of

Bayei'i Theorem Pi = 4, Nj * 5, Pj = 8, = 5

(1) (3) (» («) oiwao) m (4) (S)

r(r^) rtPiifffl fltrslPOiI'ff) A»/l»jTif) rWjlirp P(Ptlr;)/(»p

0 107 0 0

1 !«7 IMS m
4 167 J4S6 057S

6 167 4304 03S4

8 167 0511 00S$

10 167 0 0

Q 0

144 QOM

416 0768

in 159J

061 4006

0 0

0 0

QQIS Olt

0319 10
0718 iSl

0330 193

0 0

Pine ^»^-p-6 i^-/r,+A',-w

(U 0) (3) (4) (3)

0 167

3 167

4 167

6 167

8 167

10 167

1000

0009 113

0186 145

MIS 130

01(7 193

IJW

Ills

IW
0881

0760
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ference distribution The pooled sample would have 10 items with a

p of 6 If we now compare column 5 m Parts B and C, we find a

very satisfactory agreement

We may thus conclude that the application of Bayes’s theorem to

information provided by two samples gives us essentially the same

final inference distribution, whether we process the two samples in

sequence, or whether we combme the samples and then process the

combination

We still must face the quesiaon of whether it was appropriate to

pool the inference distnbution with the new sample If it is appro-

priate, we would now have a posterior distribution that gives us a

clearer picture of the state of this unknown universe r than before

the additional information provided by the new sample We say

clearer because this postenor distribution has less variation than

the prior, as it should considenng that it is based on more informa-

tion As a matter of fact, if this universe does not change, and if

we keep adding new sample information this way, we will ulti-

mately end up with a final postenor distnbution that will converge

on the true v At that point our postenor distribution will show a

probability of 1 for this vt value and probabilities of 0 for all others

The issue of the appropriateness of the pooling revolves around

the marginal probability and, of course, the consequences of the deci-

sion to pool or not pool Let us concentrate our attention on the

marginal probability We found it to be 1202 (see Table 10 7}

How do we evaluate this’ The first thing we must do is place this

in its proper perspective We do this by showing the whole distnbu-

tion of winch it IS a part Table 10 9 shows the matrix of all possible

imt (rcvbsbdiices cisaid gei if m esasbised sd fmsibh sesspies

of five with our prior distnbution

The column of probabilities listed under the p of 8 is exactly the

equivalent of column 4 in Table 107 The only differences are

rounding errors The other columns of the raatnx were similarly

calculated for each of the other possible p’s m a sample of five

First we note that the honzontal sums are equal to the original

prior probabilities (Rounding errors excepted) This is as we

would expect This is the equivalent of saying that the total of the

probabilities that a given sample came from a particular universe

is equal to the probability that tiie particular universe prevails, or

exists

The vertical sums are the maipnal probabilities These measure

the probability that any given sample could have come from this

whole set of universes If, for example, this really were a two-stage
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TABtf 10 9

Matrix of All Pettible Joint CondiHonol PrebablllHet from q Civtn

Prior Di»tr!but(on and All Peulblo Kotulti of a Sampio of 5

(Bod) of matrix Bhows P(plirr, “ 5) X /(«/)]

V

v / 0 2 4 6 s 10

0 OS 078 0 0 0 0 0 078

2 085 106 053 013 002 000
;

259

4 027 090 119 OSO 026 OOl
i 246

6 002 018 053 OSO 060 018 231

000 001 001 016 033 025 079

10 0 0 0 0 0 010 010

192 215 229 189 121 .057 1003

samplmg process, and if m tbe 6rst stage one of the universes is

selected with tbe indicated pnor probability, and then m the second

stage a sample of dve is selected, we would expect a sample p of 2

to occur ^15 of tbe time m the long run Our sample happened to

ha\e a p of 8 This would occur 121 of the time m the long run,

the ssiiunptms HV also note dfrad a p of 20 mwAf tmrr

057 times in the long run Thus we can say that we would expect a

p of ^ or more to occur 178 of the time

What do these mammal probabilities have to do with the I'^sue

of whether to pool? Let us answer this by assuming an extreme

condition Let us suppose that our prior distribution had been such

that the marginal probability of a sample p of 8 or nwre had turned

out to be 00002 We would now be in possession of a very unvsvd

sample from this set of prior umverses, or we would have a sample

that really did not come from this set In other words, we w ould

ha\e a strong suspicion that the prior information referred to a

uniierse different from the one from which this sample came Again

we find it impossible to rationallj state how strong this suspicion

would have to be before we would act on it It, as before, depends

on our e\aluation of the consequences of the pooling decision If a

person has a \ery strong attachment to his prior distnbution, sa),
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because it represents the accumulated expenence of 20 years’ work,

he i^ould require the mar|;iaaJ probabilitiea to be very low before

he would dismiss his prior experience as irrelevant to today’s prob

lems Human nature being what it la, it seems likely that more

people are pooling information when they should not than people

not pooling when they should (We should mention that we are

not considering at all the problem of people who have strongly held

prior distnbutions and then proceed to ignore all new information

These people are not pooling, but^ of couree, for quite different rea-

sons, the mam reason being that they do not even see that there is

anything that might be pooled

)

Some Reloffonships among Prior Probabtltfies, Posterior

Probabilities, and Marginal Probabilities

It IS evident that the posterior distnbution is directly related to

the prior distribution and the sample A change m either the poor

distribution or m the sample will change the postenor distnbution

The relative importance of the pnor distnbution and the sample m
this pooling operation will depend on the giuintity of information

contained in each and on the variance of this information A strong

prior distribution is one which has very smell varwnce, the strongest

possible being one uith 0 variance, a type we look at in the next

section Such a strong pnor distnbution tends to dominate the

posterior distribution unle^ the sample is tremendously large A

man of very strong convictions can be said to have very strong pnor

distributions His hypotheses are very little altered by additional

information In fact, some people have such strong pnor distribu-

tions that the issue of pooling becomes irrelevant Their pnor

distributions completely overwhelm the sample evidence If a person

with very strong prior distnbutions continues to run into very low

marginal probabilities, we have evidence that his prior distributions,

although veiy strong, are probably inappropriate to the current

problems In effect we find him labeling almost everything that

happens as “unusual”

A weak prior distribution is one with relatively large variance

The weakest prior distribution is that based on no previous informa-

tion We ran into this when we first stru^led with the problem of

inference We used Bayes's theorem with equal ‘probabilities assigned

to all possible tt/t’s across the full range from 0 to 1 0 We discov-

ered, however, that although this was certainly about as weak a

prioi distribution as we could imagine, it was not completely defense-

less against the sample information In fact, we did not want it to
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be completel) defenceless because were hoping to u«c the«e equal

prob^bjljtipc to modjf) the inferences from the sample alone \\c

did discover that this prior distribution modified the inference ratios

and also biased the average toivnrd 5 the average of the prior

diHnbution But the fact that this was a weak prior dislnbution

was evidenced by the speed with which it tended to become swamped

as the <izc of the sample increased (The modified Bnjcsinn method

and the binomial method converged fairly rapidly as the «i 2e of

sample increased )

If we could be ac«iired that our prior distributions were proper

characterizations of our pft‘»t experience wc would be le«s inclined

to worry about strong pnor di^inbulions dominating a situation over

a period of many vears of accumulation of additional evidence The

additional evidence would m fact bo only a small proportion of the

total accumulation But unfortunaUly we have abundant evidence

tint many people arc icmperamcntally mclini'd toward strong prior

di tnbutions jun tn other peopk arc temperamentally inclined

toward weak prior dHtnbuiions Thc<e evidences often «how up at

a very cnrlv age <av in tin lio^pilal nursery To apply the pooling

operation to tlic c people is o«iniially a waste of time Attention

to marginal prol abilities is ab<olutely c«cnilel if we hope to sig

nificantly alter the prior distributions

In conclusion wc emphasize very strongly that the calculation of

po'«tcnor proiiabilUits osjumes that the prior distribution is a proper

representation of past experience and not a mere outlet for the

expression of pipe dreams, prejudices liopes etc It aBo a«umes

that the univcr<L that is generating the expcncnec«, old and new

has not changed If thc«e assumptions stand up well under invc^ii

g tiion the po tenor distribution is a rca«onablc approximation to

our current state of effective knowledge The bc<l index we have

to Iht rolinbiiity of the-'C assumptions is the size of the marginal

probabilities

(^'e might parenthetically note that there are mathematical

nhtion hips that exi«t between the vaniince of the universe and the

variance of the pnor di tnbution assuming wc have u«ed standard

inference methods to derive our pnor distribution There arc al o

relationship^ among the variance of the univcrie, the variance of

iht prior ilhlnbution and the variance ol thi mirgmal di tnbulion

Tlicrc are similar relationships among the variance of the univer*;e

of the pnor and of the posterior distribution These relationdup*

become very useful if wc are Irymg to c'^timate the marginal and
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posterior distributions wilJa, say, normal curve approximations

Limitations of space prevent discussing these relations and their

applications

)

10.5 Procedure of Pooling If Given an Unqualified

Hypothesis and Sample Information

Most people are not in the habit of consciously maintaining m
their minds hypothetical inference distributions derived from their

accumulated past experiences It would not be surpnsing to find a

random sample of 100 businessmen yieldii^ no one who would admit

to such a practice This does not mean that these men do not daily

act as though they had such distr^utions It is also true that mod-

erately skillful questioning could help these men to bring such distri-

butions out of their subconscious minds into their conscious minds,

and onto a piece of paper, and from there into a pooling analysis

of the sort referred to in the preceding section Actually, most sue

cesaful people periodically do review their current operating hy-

potheses m a conscious way But they do this m terms other than

those we have been using Also, we find that many people consider

this reviewing as part of their pnvate life, so private that even

spouses are not allowed in on it Thus an attempt to pry into this

area often results in a rebuff, or a rationalization of the real operat-

ing hypotheses so that they look good to the public eye Mathe-

matical manipulations based on such rationalizations can lead to

some amusing posterior distnbutions at best, or some veiy serious

misconceptions at worst

Most people have a strong predilection toward consciously express-

ing their prior distnbutions m the form of a single number The

president of the Smoothies Company will admit that he believes tliat

the market share is 3S% or even that it is about SSfo, or sometimes

even that it is at least S5% If we try to get more from him, he may

even call us strange for thinking that there is any more Let us

suppose that all we can get him to say is 35^0 We know and he

knows that he does not mean exactly 359^, but a vague “about’ 35%

How do we pool this mfoimation with that appearing in a new

sample?

Actually we can proceed exactly as we did when we were given a

distribution of prior information Table 10 10 shows the calculations

We put the prior probability of 1 m quotes to signify that it is the

best we can say when we have only a smgle hypothesis The mar
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TABLE 10.10

Pooling 0 Voguoly Specific Prior Distribution with o

New Sample of 1 00 with a p of .28

(1) (2) (3) (4) (5)

TI I{ti) P(pi28|xi) JCir;)P(plT;)

.35 “1" 07 .07 ‘
1
”

1 00 .07 100

ginal probability of 07 la exactly the same answer we got in Chapter

9 when v, e tested the hypothesis that » js .35. If our president re-

tains this hypothesis m the face of a marginal probability of only .07,

we would be justided in saying that apparently he has a strong prior

preference for the hypothesis of .35 This is exactly the same as

saying that he is willing to take only a very small risk of Type 1

error If we were to interview this president and probe until we

found out how low a marginal probability he would tolerate before

he would revise hia hypothesis, we would be able to deduce the value

system or the consequence matrix (at least the ratios between values)

that 18 apparently guiding he thinking

We can thus see that the methods of hypothesis testing bear a

definite relationship to the problem of pooling pnor and new informa-

tion In a sense, the testing of a single hypothesis as though it were

the only one is simply a special case of the more general case where

we have a more explicit statement of the apparent strength of con-

viction reflected m the prior distnbution It is also worth noting

at this time that there is a strong likelihood that a person's pnor

distribution reflects not only his outlook on the probabilities, but

also some of his feelings about the consequences. For example, a

person expresses at least part of his fear of consequences in a gen-

erally weak prior distribution, probably weaker than that warranted

by just the experience of the actual frequency of events A person

who is very much afraid of death from an airplane accident will tend

to express this fear by remembenng an accident rate that is higher

than the truth Each subsequent accident tends to confirm this

prior distnbution The reverse is true for a person who strongly

believes that accidents do not happen to him. If we treat these

prior distributions as though they were pure probability distributions
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and subsequently combine the probabilities with a consequence

matrix, we may be inadvertently doing a bit of double counting of

consequences

PROBLEMS AND QUESTIONS

10 1 You probably have some prior conviction that the probability of

a head on the toss of a com is 5 Suppose a particular com is tossed and

comes up heads several times in succession How many such successive

heads would you tolerate and still retain your original conviction of a

P{H) = 5’

1 0 2 What IS the past evidence or past authority that supports your

pnor conviction that the probability of a head is 5?

1 0 3 Give an example of some conviction that you hold so strongly that

you would contmue to believe its truth evenm the face of almost overwhelm

ing evidence Distinguish carefully between something you say you believe

and something that you really bebeve in the srase that the belief controls

your actions For example, ahnost everybody believes in The Golden Rule

as an abstraction Very few people rdy on it as a guide to behavior

10 4 A universe of machine parts is known to have 20% of the parts

defective (Do not ask how it is possible to know something like this Wc
are just trying to keep things simple—for the moment )

Paired samples of

four items each are to be selected at random from this universe

() Construct a matrix that shows ail the possible combinations of sample

p's that can occur (In the manner of Part A of Table 10 1

)

() Construct the matrix of probabilities that would be associated with

each combination (In the manner of Part B of Table 10 1}

(c) Combine all similar differences between paired p’s m the form of a

frequency distribution (See Table 102, columns 1 and 2)

(d) Calculate the arithmetic mean and standard deviation of this distnbu

tion

(e) Check your calculation of the standard deviation by usmg the formula

<7rf
=

if) Make normal curve estimates of the expected frequencies and compare

them with the ones you calculated by direct application of the binomial

(p) Are the normal curve estunates you made in (/) closer than those

shown in the text for the case of a universe wiUi 1 and = 2^ Measure

the degree of closeness in some consistent manner Is there a logical explana-

tion for this I*

ik) Repeat parts (a) to (g) assuming a umveise with a tt = 2 and with

samples of two What differences, if any, do you find in the accuracy of

the normal curve estimates in this case compared with that m the text for

the case of » = 1? Is there a logical explanation for your results’

10 5 Assume that you have no poor information of any bnd about a

given machine process A sample of 10 items is selected at random from

the first hour's output It yields three defective items A sample of 10

items IS then selected from the second hour’s output It has one defective
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Item What, if anything, happened to the efficiency of the operation between

the first and second hour’ (Hint You should answer this question m
terms of the probabilihei involved A definitive answer is, of course, im-

possible
)

10 6(a) What IS the probabihty that the process referred to m Question

105 was generating more defeetives dunng the first hour than during the

second hour’

(b) What 13 the probability that the process was generating the same

proportion of defectives dunng each of the hours’

10 7 A given machine process is tuppond to be producing 10% defec

tives However, information that has accumulated to date about the process

during a period in which the process has been purportedly stable has resulted

in the following inference distribution about the umverse proportion of de-

fectives

Tl /

10* 90

30 08

50 02

100

• These values refer to the cwiler d an interval of values

A sample of 20 items has just been tested It had only one defective

(a) What inferences do you now make about the universe proportion of

defectives’

(b) What 13 the probability that the process is now producing fewer than

10% defectives’ Would you bet $1 of your own money at these odds’

Would you be wiling to claim fewer than 10% defectives m your promotional

literature? Why or why not?

(c) What is the probability that the process has shifted m some way from

what was formerly believed as expressed bj the prior inference distribution’

(d) What is the probability that the new sample evidence is consistent

with what was believed prior to its drawing and testing’ Explain the basis

ofyouransvser

10 8 You have a "vaguely specific” prior belief that a given setting on

a machine will result in 5% defectives A sample of JO pieces reveals three

defectives What, if anything, does this additional information do to your

belief about the long-run outcome of this partitulai machine setting’ But-

tress your argument with appropriate calculations

1 0 9 Practical affairs continually confront us with the need to rationalize

today’s events with yesterday's beliefs Critically analyze the problem of

developing a practical policy for handling this issue of rationalization For

example, w hat are the merits of a philosophy that

(o) Always believes strongly whatever is currently believed, thus leading

to so-called forthnght and decisive action

(b) Revises these beliefs in steps rather than in infinitesimal gradations

(c) Never admits doubt until wc are ready to modify the belief Con-
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qder this question both from the pomt of \new of jour per onal psychological

needs and from the point of view of a business manager m ho has to be ai^ are

of the impact of his behefs on the people he is managing (For example a

good college quarterback is perautted to fed uncertain that he has chosen

the right play but he apparently «hould never let the team suspect thi<;

uncertainty

)

Also con-'ider the problem of savmg face when we discover the need to

reject what has prev mu':!} been sold as an unquestioned truth



Inferences about later samples

from information about prior

samples

11.1 We Win (or Lose) with Samples, Not

Universes

Up to this point we have concentrated on making infer

ences about unn erses We ha\ e at times acted as though the universe

was the key element in a decision problem It is now time to recog-

nize that the unnerse as such really has no direct practical rele\ance

Practical affairs in\olve sample etenls, not the whole universe This

IS also true of games of chance We do not plaj bndge with the

universe of cards, but onl) with sample hands from that universe

When we buv an automobile we buy a sample of that manufacturer’s

unuer‘?e of cars, and we have to learn to live with that sample If

we hire a man to do a job, he gives a sample of his work, and never

more than that If a worker slops a machine on the basis of one

sample of information he is not really trying to control the universe

of this machine’s output He is simply trying to assure as best he

can that later samples ‘ of output will be satisfactory

The universe is relevant information only insofar as it helps us to

make inferences about the^^e future samples If we make plans

based solely on the universe characteristics, we are likely to be very

disappointed in the results of our planning The problem is created

bv t;anflhon, particularly unpredictable or random variation As

we mentioned m an earlier chapter, it is small solace to know that we

would have won m the long nin if we had not gone broke m the short

* Sometimes the later jampfcs are to Urge that we can safely assume that they

Me the equivalent of the universe In this case inferences about future sanjple

PS woitlH he- pwnhftllv the same as inferences about

•414
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run The ideal set-up is one in which we have a profit-potential uni-

verse working for us and also have sufficient reserves to withstand

those unlucky samples that are bound to happen sooner or later If

our reserves are thin, then we not only need a profit-potential uni-

verse but also to be lucky

In this chapter we direct our attention to making inferences about

future sawpks on the basis of mfoimation supplied by some past

sample or samples Since we have previously done all the work

necessary for this, we are essentially only reorienting some of the

past work

n.2 From Sample Wto Universe Inferences-^to Sample 2

To go from sample to universe-to sample involves the same kinds

of mechanics we used when we considered the problem of pooling a

past inference distribution with a new sample The only difference

16 that we are now going to predict what a second sample will be

rather than wait to sec what it is before we analyze the situation

Let U8 suppose we have a presumably random sample of 10 items

with three of the items defectives We would now like to predict

the number of defectives in a second sample of 10 items provided

the universe has not shifted m the meantime Figure 11 1 shows the

tree that outlines the paths of reasoning from our first sample to

expectations about a second sample Our first task is to infer the

probability distribution for the various universe proportions of defec-

tives that might exist Table 11 1 shows such an inference distribu-

tion This inference distnbution was copied from the fourth row of

Table 8 7 on p 331 It thus has been calculated by what we called

the modified Bayesian method With this inference distribution as

a base we now calculate the marginal probability of getting any

particular sample p, say, for a second sample of 10 (The same pro-

cedure would be used for any size sample ) The method of calculat-

ing the marginal probability is the same as we have used several

times previously Table 10 7 on p 403 being a typical example

In Table 11 2 we summarize ihe marginal probabilities for all

possible values of p that could result from the inference distribution

of Table 11 1 This table tells tiie probability of our getting a second

sample of 10 with the given pg i ‘ if we had a first sample of 10 with

a pj of 3 For example, jf a first sample of 10 has this pi of 3, there

* We use pj 1
to refer to a pj that iB conditiontd on a prior p^
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TABIE in

Inference PislTibutiono{T6«tcd«n a Sample of 10 wiihp - 3

(1) (2)

n /(tjIp, = 3 ¥ = 10)

0 007

1 108

2 234

Z 264

4 20a

5 118

6 050

7 013

8 002

9 000

10 000

1001

TABtB 11 2

Probability of Getting a Sueewdtng Semple of 1 0 with the Given p

If We Have a Rrst Sample with a p of 3 (Nj - 1 0)

pi ^(Pilpi)

0 07S

1 146

2 185

3 183

4 156

5 114

6 074

7 039

8 01?

9 006

10 000

998
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are only 017 chances that a second sample of 10 would have a pjj

of S

It IS instructive to compare this mference distribution shown in

Table II 1 with the distribution of marginal probabilities shown in

Table 11 2 In Table 11 3 we compare their means and variances

The two means of 318 and 317 differ only because of rounding

errors It is logical to expect that the arithmetic mean of all possible

sample means will equal the arithmetic mean of the generating uni

verse, or, m this case the anthmefac mean of the universe of inferred

universe s We also expected the mean to be higher than 3 because

we remember that the modified Bayesian method of mference does

result m a bias toward 5

TABLE 1 1 3

Comparison of Inference Pistribulion from a First Sample of 10 with

the Distribution of All Possible Second Somples of 10

(1) (2) (3) w (5) (6) (7)

ir/orpji / X JT/ IXr,' l’(pilpi) P X Pn p X pit

0 007 0 0 078 0 0

1 108 0108 00103 146 0146 00146

2 234 0468 00936 185 0370 00740

3 264 0792 02376 183 OHO 01647

4 205 0820 03280 156 0624 02496

5 118 0590 02950 114 0570 02850

6 050 0300 01800 074 0444 02664

7 013 0091 00637 039 0273 01911

8 002 0016 00128 017 0136 01088

9 000 0000 00000 006 0054 00486

10 000 0000 00000 000 0000 00000

1001 3185 12215 998 3166 14028

_ 3185
= 318

3166 _

“
1 001

Pii =—— = 317
988

j 1221B1 / 3185'
V .* » 14028 / 3166y

1001“uool,/ 998 \ 998 /

= 0209 == 0401

3x 7

10
0210 n hll + Nt rtl N/

20 = 043

Pi5i Ni + Ni _ , yi + ^i

“
ff, lii

~ *'
JV.
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The variance of the sample p2

1

’s (means) is larger than the variance

of the inference distribution This is also a logical expectation If our

second samples were infinitely hrge, we would then expect each sample

P2 j
to have the same value as the vi of the universe from which it

purportedly came, with no samphng variation at all The distribution

of such sample pa I’s would then have the same variance as the dis-

tribution of the 7r;’s However, if Uie second samples are not that

large, each purported universe will generate several possible p^i's

This would be an additional source of variation in the p2

1

’s, that is,

additional to the variation caused bj the variation in the ir;’s Hence

the Ps I’s vnW have a greater variation than the jt/’s At tlie bottom

of Table 11 3 we have sliown a formula that gives an approximate

relationship between the variance of xj and the variance of p2

1

It is

clear from this formula that approaches slj as N2 increases

because (A^2 + iVi)/A^2 ^ould then approach 1 For example, if iV2

were 1000, this ratio would be lOlO/IOOO

1 1 .3 From Sample 1 Directly to Inferences about Sample 2

If we are not really interested in the inference distmbvtion from

the first sample, but only m the kmds of second samples that might

be generated, we might short circuit this step of getting the inference

distribution To do this, however, we must make some assumptions

about the form of the distribution of the marginal probabilities Un

fortunately, they do not conform to any simple binomial or its

equivalent But, again we find that tlie distribution tends toward the

AS -V; snd Ni mcreasp J'nr mmplfy jf Ni jneraases^ the

distribution of vi approaches the normal The convergence of the

distnbution of p2

1

to the normal with increases m Ni and N2 would

be more rapid the closer the universe proportion is to 5 A normal

approximation to the distnbution of p2 i shown m Table 113 is

relatively poor We expect such a result with samples as small as

10 and with our basic information suggesting a sr of 3 Let us,

therefore, illustrate the direct approach to inferences about pj 1 by

using larger samples

Our first problem is that of devising a formula for estimating the

standard deviation of this distnbution of pz i We saw at the bot-

tom of Table 11 3 that the vanance of pai as there calculated can

be approximated by the formula
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This IS a familiar formula to us We used this when v,e were dia*

cussing the distiibutiou of the differences between sample p’s when

the tno samples came from the same universe The similarity is no

coincidence The problem of the distribution of second sample p’s

as inferred from a first sample p can be restated as the problem of

the differences that might exist between two sample p’s, given that

the two samples came from the same universe

tVe recall that the variance oi the differences between sample ps

js a function of the \anance of the universe and the sizes of the two

samples If we do not know this universe variance, we make the

best estimate we can from the available information, m this case

pi and Ni Our best unbiased estimate is

o Afi 10
^2 = p, 5 , or 3 X 7— = 233

- 1 9

for our precedmg problem If we have 50 items m the first sample,

the estimated universe variance would be

50
3 X 7 X - « 214

49

We next allow for the effects of sizes of samples by multiplying the

estimated universe vanance by

+ Wg

Note that it is irrelevant whether sample 1 is relatively large or

whether sample 2 is relatively large The important consideration is

the combined sizes of the two sample (The advantage of having

sample I relatively large is that this is the sample we must use to

estimate the universe variance The size of sample 2 is irrelevant for

this purpose

)

Suppose our second sample is to have 20 items Our estimate of the

variance of the distribution of p? is

iVi+iVi

m2
so

= 3X 7X-X
49

= 314 X 070

= 015

50 + 20

50X20
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(If we Simplify the above formula we get

°h\
~ Pl9l

~l) )

We are now readj to carrj out the routine for making normal

curve estimates of the distributaon of Table li 4 does tin® In

estimating the height of the ordinates \\e might just a« veil lu\c

used the differences between the cumulative probabilities Column 1

lists the particular
I
that we choose to represent the full range of

P2

1

Column 2 converts these p2

1

values into values of p-' pj

TABLE n 4

Expeclations about the p of a Second Sample Bosed on Inferences about

Differences between this Second p and the p of a First Sample

CD (2) (3) (4) (5) (G)

Normal

Proper Curve

tionatc Estimates Bmoim 1

P21-PJ - Height o! Pipilpi Estimates

Pn P2 I - pi 122 Ordinate A, \i) of /’(Pj l)

•

0 -30 -2 46 049 008 003

OS -25 -205 122 020 016

10 -20 164 261 04S 045

15 -15 -123 469 0/7 OSS

20 -10 -82 714 117 119

25 -05 -41 919 150 14G

30 0 0 1000 164 16!

35 05 41 919 150 141

40 10 82 714 117 10)

45 15 123 469 0/7 0/1

50 20 164 261 043 043

55 25 205 122 020 021

60 30 246 049 OOS 010

65 35 287 016 003 004

70 40 328 004 OOJ 001

998 97/

* These are straightforaard binomial estimates and hence the} differ slighth

from modified Bajcsian estimates
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gi\en that Pi = 3* Column 3 con'\erts those differences into Z

units, our standard unit for measunog the normal cur\c Cohimn

4 shons the corrc'^ponding TaJues from the Table of the Proportion*

ate Height of Normal Curve Ordinates Column 5 is the result of

multipljing tlie column 4 figures bj the maximum ordmatc of 163o

Column 6 sho^s the estimates get working through inferences

about the unner«:e proportion The correspondence is iea«onablj

clo«e particularly if nc ;\erc to round to iwo decimal places

11 4 Summary of the Problem and Methods of Making

Inferences

Practical problems m inference usually break dov\n into two parts

as far as the probabilities are concerned The fir^t part is the problem

of guessing or inferring the nature of the wiiveTse that will appar

entlj be generating the samples that will occur If we are plajmg

a game of cords we do not ha\e to gue&s what this unnerse is be*

cau«c we know what it Thus the first part of our problem does

not general y exist in games of chance

The second part of the problem of inference is to guess what kinds

of samples will actually occur These will be the actual events on

which we will be paid off with the pay off sometimes being negatne

These are the events that we must necessarily provide for m the

short-run in order to survive over the long-run and at least partlj

realize our long run expectations

These tvso problems are further coraplitated by the fact that the

actual universe may «hift before it ever generates enough samples

to give us a «embUnce of our long-run expectations Thus we maj

find that our earlier samples possibly classified ns unlucky, may

never have a chance to be averaged out in the sense that future

samples from the same universe will eventually overwhelm the first

samples If wc have fai ed to recognise a shift m the universe, we

may find ourselves waiting for something that is never going to come

The greater is our uncertainty about the true state of the univer'e

the greater is our problem of planning a long-run strategy e maj

have to act as though a given strategy has a profit potential even

though it in fact has a loss potential Similarly, of course, we maj

* The effect of this procedure « to assume that pt i will equal 3 the value of p\

Ourestimates therefore are unbiased in theaen^ that our estuwatea tend to sverafe

out at the true value Contrast this mth the Bayesian estimatcfl which have a

bias toward 5
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reject a strategy that has a profit potential because we cannot
clearly see this potential Uirough the fog of our ignorance

Uncertainty about the true state of the unuerse gets compounded

as we contemplate the kinds of samples that will actually occur

We would be uncertain about the samples even if ve Ln&w the uni

verse IVe haie seen what common sense already indicated, namely

that the uncertainty about tlic samples is a function of three factors

(1) uncertainty about the universe, (2) lanation within the uni-

verse, whatever its true state is, and (3) the size of the sample It

IS these uncertainties that cause us to proiide reserves against the

short run -vicissitudes In general, the greater the uncertainty, the

larger must the reserves be relative to die commitments that have

been made

Practicality lequires us to ‘supplement all our notions about the

probabilities of events with notions about the coneequenm of the

occurrence or nonoccurrence of these events Limitations of space

have forced us to concentrate on the probabilities with oniy passing

consideration of any formal ways oi combining probabilities with

consequences

Up to this point we have re4ncted our attention to information

about the phenomenon we were trying to predict This restriction

imposed a greater degree of uncertainty on oiir solutions than is gen

erally true in practice In subsequent chapteia we consider ways

to associate information about other phenomena with tlic phenome-

non of interest We can tJiu« reduce our uncertainties in exactly

the same way we reduce our uncertainty about the degree of heat

m the air by consulting the reading on a thermometer, although

untortunatefy we have much less success iU ai’so give more atten

tion than heretofore to whether and how a universe might be shift-

mg through time

PROBLEMS AND OUESTIONS

1 1 1 Most people would he wiUing to to''': a coin to determine who will

pay for the cokes However, iiKst of the"^ same people will refu e to to's

the same com for SlOO bilk Since the long run unner'e probabilitie': are

the same m both cases, there must be ‘wnething eke that causes the differ-

ent policy We have previous!) discu'sed this difference "i' being rooted in

the different consequences that people attach to losing 5 or 10 cents and

losing SlOO Discuss this same me m term' of the problem of having to

live vnth sample results, not with any long run lapectation'

112 We are frequent!) admoni'hed to avoid short-‘:ighted policies in

favor of policies that work over the long pull We are also ad\ wed to take

care of today, and tomorrow will take care of it'^lf

(a) Is there any necessary /aadamental confljtt between the sbort-nm
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ind (he lone run* Gt\e illustrations from jour own practical expenencc*

(6) Cjh \ou think of anv ituations m which jou see an opportunity for

along run gam without anj ri«kof®hort-niD!oss^

11 3 Rework problem 17 in Chapter 2 m the light of jour present knowl
etlse

IT 4 \<umpleoffixeitcm3}ieldaonedcfectne

() UInt inferences would \ou mike about the unner-e proportion of

dcfcctnes’

() Wlut inferences would jou make about the probabiliij distnbution

of the number of defecti\e3 m a *second ‘'ample of five on the assumption

th It the linn er«e remairia constant’

1 E-timate (hi di tnbution bv working through the inference di«tnbu
tion derived m (q)

2 Dnw 1 tree of jour line of inferences from the first sample to the

«Cfon I simple via the uni\ep;e

1 Eatimite this distribution by going directly from the first sample
toinfcreiKC about the <wond sample

4 Critnilj compare jouramwersm (a) and fc)



Inferences from information

expressed as a continuous

variable

We have so far confined our attention to the problem of

inferences about attribute data, data which can take on only the

values of 1 and 0 This gave us certain advantages of exposition

It also enabled us to point up some issues that tend to get buried

when we consider variable data At the same time we labored under

some difficulties which now disappear, more particularly the diffi-

culties associated with having our data bounded by limits such as 1

and 0 We now turn to the problem of inferences for ccmtinuovs

vanable^ A continuous variable can take on any siee whaUm’^r

within the range of the data, our treatment parallels that which we

used with attributes

r2.r Anafogy between iVfetfiotfs of Treating Attributes

and Methods of Treating Continuous Variables

Brief Summary of Some Important Things We learned From Our

Treatment of Attributes

1 The arithmetic mean of sample means equ^s the mean of the univer'e

We found this true for attnbutes where Xf = r It is also true for

variables, where Xz- ft the Greek m)

2 The arithmetic mean of sample variances is less than the vanance of tlie

universe We found that a arapl^adjustment could be made to correct

for this bias The formula was N/(ff ~ i) ~ If we had only

a single sample, the best unbiased esbmate of «* would be s’ N/(A - 1)

(If we use attnbutes s’ = pq

)

Precisely the same relation^p hoWs for variables

3 Tie anthmetic mean of the crude skewness of samples is less than the

crude skewness of the univeise We ba^e no occasion to use thi« rela

05
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tionship so \ve do not reproduce it here It is useful to remember, how

e\cr, that samples in general ha\e less skewness on the cvrrage than does

the umver’e from which the samples came

Another important thing to remember about skeivness is that a sample

can be skewed eien though the universe is symractncal In fact a

sj mmetncal sample is a great rantj

4 The variance of sample means is a direct function of the variance of the

univ erse and an inverse function of the sample site In formula y,*

«

ff*/iV or if ff’ is unknown which is the usual case d,* = dViV. Pre-

ciseh the same relationship holds for variables The expression is

5 Infcrenc i

by the s

«W . .L ^ f , IJ I _ J rr

the sample was quite large

6

If the sample is largo say 50 or more and if the sample p is near 50,

a normal curve approximation IS fairlj good (Asamplepnear SOwouId

indicate a rclativelv small skewmess) Our analj-sis of the binomial

diMnbution rev ealed that it approached the normal curv e as Af increased

with the approximation being better the nearer p » to 5 This phe-

nomenon for the binomial is a special cose of a general theorem (hat applies

to all sampling dinnbutions of the anlhmetic mean This is the central

generate symjnclncelly distnbuled sample means with the characteristic

shape of the normal curve with its center hump appeanng fairly quickly

as A increases A skewed universe never docs generate symmetrically

distnbuted sample means although the skewness does decline ns A

increases The crude skewness vanes inv crecly with A^ and the coefficient

of skewness inversely with N Hence we must u«c caution in assuming

that the normal curve appUes if we find evidence of substantial skewness

For example, our data on unit chaq^ sales for the hardw'arc store show ed

substantial skewness Normal curve inferences m this case would tend

to be poor for samples less than 50, or even much less than 100

7 Differences between means of independent samples from the tarn uni-

verse are alwaj-s symmetncally distnbuted and quite close to the normal

even for quite small samples Thw relationship applies tegardle® of the

shape of the uni v er<c It alao holds for \ enables

8 Differences between means (rf independent samples from different uni

versea are symmetncally distnbuted only if the univ cries are symmetn

cally distnbuted In such a case normal curv'e approximations would

hold quite w ell e\ en if AT is small If the univ erses are not symmetncsl

the distribution of differences will be skewed This skewness will tend

to decline as the sample sues increase, just as we found for the distnbution

of means from a smgle universe
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9 The variance of the d\ffeTenee between two sample means is essentially

fincc the variance of sample means The basic formula for attributes is

if Ni ^ Ni

Note that information from the two samples is pooled to derive a angle

estimate of the universe variance This formula holds strictly only on

the assumption that both samples came from umverses with equal van

ances The situation is more compbcated otherwise The formula is

approximately correct even with unequal variances and is often used as

such an approximation

Precisely the same formulas apply when we are working with variables

The basic formula is

Nt

Again we assume universes with equal vanances, and ne pool the two

samples to arrive at this single estimate

Seme important Differences between a Continuous Variable and on

' Measure

1 Most continuous vanables do not have any arbitrary boundaries Thus

we do not run into the sort of problem we did with attr>butes when

we were making estimates near the boundaries In fact, we generaOy

assume that our continuous vanables have no boundaries, in the same

sense that the normal curve has no boundancs Theoretically the

normal curve has no boundanes, however, the probabihties declme

quite rapidly as we move beyond, say, a distance three standard dcvia*

tions from the mean Thus we can 6x practical boundanes beyond

which the probabilities are negligible at the same time we reap the

benefits of working with an unbounded distnbution

2 Since a continuous vanable can take on any sue whatsoever withm

Its natural boundaries, we have an infimU number of possible values

to work with This results in certain mathematical advantages Not

the least of these advantages is that it makes it possible for us to make

independent estimates of the anthmetic mean and the standard devia

tion With attributes we were not able to get samples so that a given

mean could occur with all possible standard deviations In fact, we

found that each mean was paired with its owm standard deviation The

net result of this was that the inference vectors had different vanances

If a given sample mean can be paired with all possible standard devia-

tions, we find that the inference vectors will all average out to have the

some ronance This means that we will not have to use any pnor

hypotheses as we did with attributes We will thus get good estimates

of the inference ratios without necesitatmg any bias inducmg prior

probabilities

3 The universe distribution of a continuous vanable can take on all kinds

of shapes Hence the distnbution of sample means can lake on all

kinds of shapes Unfortunately, these vanous distributions do not
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belong to any well regulated family of distributions in the naj that
the attribute distributions belonged to the family of binomial distribu-
tions Our approach to inferences about the means of \ anablcs is thus
stnctlj in terms of approximations We adopt certain model distribu-

tions, such as the normal, a« the basis of our probability estimates
This tactic gives the appeaiance of making our procedures easier than
when working with the binomial distributions We should not forget,

Jiowcver that they are easier onlj because ne are forced to be satisfied

with approximations As indicated a few paragraph' before, di'tnbu
tions of sample means tend to converge on the normal as the 'ample

site increases Thus mo't of our big mistakes occur when we work
with small samples

12.2 Inferences About the Mean of a Continuous Variable

by the Use of Percentile Equivalents

Let us suppose we are making inferences about the universe mean

of the unit sales of our neighborhood hardware store We combined

the 200 raw figures into a frequency distribution This distribution

showed substantial positive skewness The magnitude of this skew-

ness IS indicated by the fact that the mean of S5 72 was located at

about the 74th percentile The mean would be at the 50th percentile

if the distribution were symmetrical A possible approach to infer-

ences about the universe mean is to work through the percenttk

equivalent of the mean In effect we would be converting our vari-

able data into attiibutc data for purposes of calculations If we let

a represent sample values below the mean and h represent values

above the mean, we could use the binomial, (74a+ 26b)^°^ to

generate percentile equivalents of the universe mean We could

then transform these back to unit sales figures The expansion of

this binomial would be quite tedious We cannot use tables because

tables are not conveniently available for an N as large as 200 Most

people would find it practical, therefore, to be satisfied with a nor-

mal curve approximation to this distribution This approximation

would fail to recognize the skewness involved, but the errors involved

would be small In order to illustrate the use of the percentile

equivalent approach we arbitranly assume that our sample had been

only 100 Tlius w e can use the Bomig binomial tables

Table 12 1 illustrates the calculations for the percentile equiva-

lent approach Column 1 lists arbitrarily chosen hypothetical r„'s

Coiumn 2 lists the modified Bayesian cumulative probabilities

These are taken from Homig’s binomial tables for N = 100 The
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TABLE 12.1

Inferences About n Based on Percentile Equivalents-Hardware Store

Unit Sales Data Given X 3= $5 72, Percentile Equivalent

equals 74, N = 100

(1) (2) C3) (4) (5)

Tr PCpS 74lrj,) P(j>S 74|i») v; I til

56 0002-0000= 0002 54- 58 *
00 3fr-39*

58 0006- 0002= 0004 68-62 01 3M3
.60 0024- 0006 = 0018 6^66 04 43-47

62 0078- 0018 = 0060 66-70 15 47-52

64 0220- 0046= 0174 .70-74 31 52-57

.66 0M4- 0102 = 0442 74-78 32 57-63

68 1180- 0192= 1088 78-82 15 63-74

70 2244- 0306= 1938 .82-86 02 74-101

72 .3748- 0410= 3338 —
.74 5525- 0453 = 5072 5381-0453- 4928 100

.76 3562- 0407 = 3156

78 1072- 0290- 1682

80 0875- 0158= 0717

82 0295- 0064= 0231

84 0071-0018= 0053

86 0011-0003= 0003

88 0001-0000= 0001

• Lower Limit Inclusive

method of calculation is the same as that shown m Table 8 6 Col-

umn 3 shows arbitrarily chosen intervals for v/ Column 4 shows

the inference ratios for these intervals based on the cumulative

probabilities given in column 2 Column 5 shows the unit sales

equivalents of the column 3 intervals The best way to transform

from percentile equivalents (the vj’s m column 3) into unit sales is

by means of a graph Figure 12 2 illustrates the procedure Here

we show the cumulative frequency chart of the frequency series of

unit sales given in Table 68 A smooth line has been drawn by

eye through the observed cumulative frequencies to provide the

basis of the interpolations The procedure is to locate the given

percentile on the vertical axis, for example, the 62 percentile A

honiontal Ime is drawn to intercept the cumulative frequency curve,

a vertical is dropped from this point of intersection to the borironta!,
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Rg 12 2 Cumulative frequency curve of umt Bales of hardware store Illustra

tion of traaf/ormation of pemmtiJe equivalents into dollar unit sales

or unit sales, axis The intercepted value is then the unit sales

equivalent of the percentile Such transformations are shown for all

the values given m columns 3 and 5 of Table 12 1 We could, of

course, use the same technique in reverse to transform unit sales

values into percentile equivalents

Columns 4 and 5 give us the estimated inference ratios for the un-

known universe /r Note an awkwardness caused by the uneqml

intervals for p.j We would have been better advised if we had

worked out equal intervals We chose the convenient route of using

equal intervals for the percentiles and also round numbers for the
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TABLE 12 2

lnferen<9$ About ft Bosed on Percontilo Equivalontt-for Equal

Intarvols of Hardware Store Unit Sales Given X = $5 72,

Percentile Equivolent & 74, N a: 100

(1)

ith

(2)

P(pa74|ir») P(pS74|ib)
(3) (4)

I

(5)

lii

470 0000-0000=^ 0000 610- 670* 07 542-48'

545 0001-0000- 0000 670- 718 25 48-54

610 0044- 0011= 0033 718-763 39 54-60

670 0815- 0143= 0672 763-794 20 60-66

718 3588- 0409= 3179 794-815 06 66-72

740 5525- 0453= 5072 5381-0453= 4928 815-830 02 72 78

763 3308- 0391= 2917 830- 840 01 78-84

794 1163- 0203= 0960

815 0411-0084= 0327

830 0151-0035= 0116

840 0071-0018= 0053

848 0038- 0010 = 0028

853 0024- 0006= 0018

860 0011-0003= 0008

870 0004- 0001 = 0003

880 0001-0000= 0001

• Lower Limit Inclusive

percentiles In general we find that we cannot have equal intervals

for both the percentiles and their variable counterparts In Table

12 2 we show the results of this percentile equivalent method if we

equalise the unit sales intervals Figure 12 3 shows the starting

point of an attempt to equalize these unit sales intervals We start

with equal intervals on the horizontal axis and estimate the per-

centile equivalents These percentile equivalents become the key

figures for estimating probabilities from the binomial tables Table

12 2 summarizes the calculations A little free-lance interpolating

IS needed to get the probabilities given m column 2 Other^vise every-

thing proceeds as shown in Table 12

1

Figure 124 pictures our second inference distribution of in The

skewness is quite evident, and is in the same direction as the skew-

ness in the sample This is as we found it for attributes This is

the ideal solution to our problem of making inferences about the un*
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Fig 12 3 Cumulative frequency cum of unit Eales of hardware store Illustra-

tion of transformation of dollar unit sales into percentile equivalents

verse mean of the hardware sales If tins procedure were repeated

for all possible samples of 100, we would find that the indicated

inference ratios would be almost eiactiy correct as indicators of the

probability that the universe mean falls within the specified values

The grand mean of all such inferences, however, would likely be a

little less than the true mean This bias is the result of using a prior

distnbution of equally probable jr^s Smce tins bias runs toward 5,

and our sample mean is at the 74th percentile, we would expect our

inferences to average out at sometiung less than 74 and hence some-

thing less than the true mean If our sample mean had been, say, at
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f^i

Fig 12 4 Infereoce distnbution of <^f dollar luut sales of hardware store

Given r=SS72 ?£,= 74 N^m

the 30th percentile, v,t would then expect our average inference to be

too large because it would be pushed upward toward the 50th per-

centile We might note that business data generally have ponhte

skewness rather than negative skewness, and we are more likely to

0nd our inferences with a downward bias than with an upward bias

12.3 Inferences About Based On the Normal Curve

Model

The use of percentile equivalents to estimate fi is somewhat tedious

It also presumes the availability of tables of the binomial Hence it is

much more customary to use the normal curve model as the basis of

estimates Table 12 3 shows the now familiar procedure for making

normal cune estimates Here Tve use cumulative frequencies rather

than ordinates of the normal curve The results are essentially the

same in either case We use the cumulative frequencies because of the

close analogy to the use of cumulative frequencies in Table 122

Note the calculation of at the base of the table We u«e - I m*

stead of N because w e use s instead of c We could hav e conv erted i

into ff by the relationd^ = s^N/{N — 1) and then usedNm the formula

for the standard deviation of the sample means The answers would

have been the same This short-cut formula is obviously more con-

vement Note that in column 3 we call {jii — X)/ii t instead of Z as

we hav e done previously The sigmficance of this is made clear when

we consider the problem of samples somewhat smaller than 100
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TABLE 12 3

Normal Curve Estimates of the Inference Distribution of the Mean of

Unit Sales of a Hardware Store ^ = $5 72 s = $7 61 N = 1 00

(J) (2) (3)_ (4) (o) (6)

m jij-X ffj ») ») w I(w)

S3 0 S-27 -353 0002 S3M2* 02

36 -21 -275 0030 42^8 09

42 -15 -196 02o0 48-54 23

iS - 9 -1 18 1190 o4-60 31

o4 - 3 - 39 3483 60-66 23

o7 0 0 5000 5000 66 72 09

60 3 39 3483 7 2 78 02

66 0 ns 1190 78-84 00

72 lo 190 Q2oQ

78 21 275 0030 99

84 27 353 0002

• Lo\\ er Limit Inclusive at

s S76J

Vn~\ "-v/qs
-^1 65

In TiibJfi J24 acH Pjg 125 Tre compare the percentile equna

lent estimates with the normal cune estimate^ The difference be

tween the means of the two distributions was caused mainly by our

rounding actnities If it were not for these we would expect the

mean ba«ed on the percentiles to be slightly smaller because of bias

toward 50 The 'tandard deMations are clearly different and ihi

difference is not caused by rounding errors (The difference between

the normal cune standard deviation of $75 and the expected '^tand

ard delation of S76 is cau'cd b} roundiDg error's) The modified

Bayesian estimates tend to haxe a smaller variance because of in

formation supplied by the pnor distribution of equal probabilities

In effect there is a pooling of two distribution^ one the prior distn

bution of equal probabilities and the other tlie binomial distribution

based only on the sample mfoimatioD The \anance of the pooled

di'itnbution must be less than the smaller of the Wo Mriances of

the separate distributions The bmomial distribution would ha\e a

variance that would be the equivalent of S 76 Hence the Baj esian

estimates must have a variance less than 8 76
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TABLE 124

Comparison of Porcenlilo Equtvol«n> end Normal Curve Estimates of

(he Mean of Unit Sotei of o Hardware Store

Percentile Equivalent Noraiil Curve

(1) (2) (3) (!) (5) (6) m
'

(tl* Ip Ipl‘1 I, hm hpi'

$39 00 000 0000 02 078 m2

45 07 315 14175 M 405 1 8225

51 25 1275 65025 23 1173 59823

57 39 2223 126711 31 1767 10 0719

63 20 1260 79380 23 1449 91287

69 06 414 28566 09 621 42S49

75 02 150 11250 02 150 11250

81 01 031 6561 00 000 0000

100 5718 331668 99 5613 327195

Percentile Equivalent Normal

P/ = J572

- V33 IW8^5T18*

Pr»$570

/327195

V 99

= S69 =$75

Percentile Equivalent of Mean = B (Approximate)

‘Midpoint of mter\al

Tlie percentile equivalent of the mean of w \% estimated to be

approximately 52 for the percentile based estimates It tvould be

50 of course, for the normal curve estimates because the normal

curve IS symmetrical Thus there is only very moderate skewnesi

in the inference distribution This w a mvid illustration of the ejject

of increasing sample si:e on the skewness of the distribution of

sample means

W hether we prefer the percentile equivalent estimates of the nor-

mal curxe estimates in a given problem depends on the significance

we attach to the differences like those ehowm in Table 12 4 In raan>
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Fig 12 5 CompanBon of the percentik equjvjlent and nomsi curve eslOTates

of the universe mean of hardware store unit sal^

problems v?e find that out notioTo of consequences are so vague that

modsr&te diSereoces m ihe probsbiJities w»l) Dot make any differences

in our decisions anyway Or at least they should not Many people

would prefer the normal curve approximations because of their rela-

tive ease of catcufatwn If this seems (ike a lazy man's rule, we

might emphasize the ccnservahve features of the normal curve esti-

mates Note that the normal curve «timates show greater uncer-

tainty (greater dispersion) than the percentile equivalent estimates

Many analysts consider this a positive virtue In other words, it is

apparently better to vnderestiTnate than it is to overegtimste what

we know This rule is obviously subject to dispute Perhaps a more

defensible rule would be to always try to estimate os accurately as

•uie can what we know, with no conscious bias toward under- or over-

estimation

12.4 The t Distribution

In the preceding section we called the ratio the equiva-

lent of t rather than of the more familiar Z "We then proceeded to use

f ID the normal curve table just as though it were Z It is now time to

make the appropriate disUnetion between t and Z
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The Assumption of Normality

Up to no^ we haTe been somewhat loose in our 'Specification of ex-

actly T'hat di'®tnbution were assuming had a normal distribution

\\ e ha\ e generallj stated the distribution of sample means was normal,

either becau«e the universe itself was normally distnbuted or because,

by the central limit theorem the means %ouId tend to^\a^d normality

as N increa'^ed We often proceeded to calculate the dtferences

tween these normally-distnbuted sample means and a constant, such

as a hypothetical umverse mean We implicitly assumed that these

differences would al^^o be nonnaUy distnbuted We now state ex-

plicitlj that these differences nould also be normally distnbuted if the

\ enable nere itself normally distnbuted In fact, we can state that,

in general, the subtraction (or addition) of a constant from (to) a

vanable does not alter the distnbution of the vanable The subtraction

merely alters the ongin of measure For example, the distnbution of

ordinary playing cards is rectangular If we subtract 5 from the value

of each card, the resultant distnbution is also rectangular

A second step we often took was to divide these differences by the

standard denaiion of mh differences If the standard deviation is

known, it IS obviously a cmwton/ The division of a variable by a con-

stant does not alter the form of the distnbution of that vanable It

merely changes its unit of measure Thus, if the vanable is normally

distnbuted, the ratios of this \anable to some constant is also normally

distnbuted

We can now be very specific about what Z really is Suppose we

ha\ e a set of sample means, or X*s, that are normally distnbuted If

we subtract n from each X, the resultant differences, or X — n, will

also be normally distnbuted If we divide these differences by the

standard deviation of such differences, or by ct, the resultant ratios

will also be normally distnbuted We call such ratios Z Hence Z

IS a noTTnally-distnlukd ratio Its value to us is that it is independeni

of the unit of the senes being analyzed and can thus be related to a

standard normal curve that can be used for all problems involving the

normal curve Thus one table of the normal curve is sufficient for us

We merely take our given normally-distnbuted vanable and transform

It into Z In this w'ay all normal distnbutions can be transformed into

Z We then look up Z in the normal curve table

The Case When (t is a Variable

Let us suppose that the standard deviation we divide by to get Z

IS not known We then have to estimate it This estimate might take

on many different values Hence our ratios of normal deviates will be
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to a vamhk rather than to a constant !lhe resultant ratios r^ill not be

normally-distnbuted Hence they are not proper / s The exact form

of their distribution depends on the degree to which a vane® Since s

lanes less as the size of sample increa^et, the e\act form of the distn

bution of the e ratios depends on the '®ize of the <«ample or more specif

icall} on the number of degrees offreedom in the data used to estunate

ff \\ e cafi these ratios (

The Notion of Degrees of Freedom

It goes without saying that a conclusion that purports to be ba®ed

on a certain set of eiidence should m fact be related to that evi

dence If we find that we can arrive at a given conclusion with no

reierence to a set of evidence we are justified m arguing that t!ie

conclusion has nothing to do with the evidence JIany of the rules

of evidence and the rules of procedure used in our court system are

designed to assure rea onably well that the final decision will be

based on the evidence freely given by the witnesses It is also true

that certain procedural rules mu4 be followed in statistical analysis

to pi event us from inadvertently actng as though our conclusion®

are ba®ed on the evidence when in fact they are quite independent of

the evidence It took ®tatiaticians quite a few years to learn onlv

a few of the simpler rules to be followed to prevent our promulgating

sophisticated non®cn®e in the gui«e of scienlifiD conclusions from

unbiased evidence Sophistication came from the use of analytical

methods not easily comprehended by tlie layman and nonsense came

from the fact that the methods were so complicated that they more

or less overwhelmed the evidence and developed conclusions that

Ajmrnfii/jKii raiW ifaa cirr iVev'iu’ftWf

Sion to «ce liow the worst offenses were committed wlien we study

correlation analysis in a later chapter

Vi e can illustrate the basic notion of degrees of freedom by re

ferring to the problem of attempting to estimate the anthmetic

mean and standard deviation of a universe Suppose we are asked

to estimate the arithmetic mean from a single number i e from a

sample w ith only one item in it e cannot po^siblv give an answ er

unless w e know the value of the item m question The arithmetic

mean of such a number is the number itself and any conclusion we

draw about the mean is nece®sanly based on the v alue of this item of

evidence But suppose we are a®ked to estimate the standard deme

tion from a sample of one item Vi e can easily see that the answer i®

0 and we can state this vnihout knowing the value of the item at all

Obviously this must be nonsense The fact i® that one item alone
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provides us with ab'-olutely no information about the value of the

standard deviation It takes af Uast tico items to giv e us anj infer-

mation about the standard deviation However, if either of the«e

Items alone tells us nothing it rouH be only the «econd one that tell*

us something Hence we conclude that the standard deviation i«

ba«ed on A’ - 1 items or A - 1 degrets of freedom

Another way to look at the problem is to consider what mu«t be

done in order to calculate something «uch as the standard deviation

The standard deviation is measured from the anthmeUc mean. We

must therefore know the mean before we can calculate the standard

deviation (Thi« is true even when we u'^e a method of calculation

which short-cuts the mean We may not then actuall} know the

mean, but re'it assured that our formula does ) The prior calcula

tion of the mean ‘u«es up” one of the items of evidence in a sen^e,

thus leaving one fewer item to provide evidence about the standard

deviation If we then calculate the standard deviation, we use up

another item, leaving only Y -- 2 items to tell us something about,

«a) the ^kewne-'S of the data If we have onlj two items to begin

with, we thu« would have no evidence at all about skewness (\^e

can demonstrate that this is «o bj calculating the skewness of a

2-item series We find that all such ^enos have a 0 «kewnc'>s re-

gardle^ of the values of the items

)

Thu«, if we have ever talked of 'drawing concluMons from evi-

dence,” we were being more literal than we perhaps thought In a

sense we drew these conclusions from the evidence the same waj we

would draw a cup of sugar out of a canister Each time we drew a

conclusion we left less evidence, jUst as each cup of sugar reduced

the contents of the canister Eventuall) the evidence gets ex-

hausted, just as the cani«ter does Infortunateh, it is not as ca«j

to see tlie evidence dwindle as it is to see the sugar disappear 1'e

must understand the notion of degrees of freedom to see the evidence

di-appear Othenvise we might go on indefinite)) drawing conclu-

sions from the evidence We would be kidding our=eI\cs, of course

and we would find this out when we discovered that our conclusions

were not standing up to the future facts This is what a person does

who draws all sorts of conclusions about human behavior based on

his expenence with one individual, who ina) even be himself

A more technical explanation of the u^c of the degrees of freedom

notion bv statisticians is as follows SuppO'^e we have a sample of A

ilem«, the items identified as A'l, Yi A’s X\ T\e calculate the

arithmetic mean of the-e item* and we can now logicalh argue that

this arithmetic mean was ba«cd on a sample of A' item* Since we
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did nothing in our calculation to fix, or constrain the value of any of

these items we s&y that the anttraetic mean was based on N
degrees of freedom. Each item was free to take on any value vhat-

soever as far as m are concerned Suppose we now calculate the

standard deviation of our N items To do this, we must take the

mean as a given, or fixed, or speafi^ed, value (vanous terms can be

applied to connote a lack of freedom) The specification of the mean

IS the equivalent of the specificataon of ttie total of the N items So

we can now write the equation

+ ^2 + Xg + +Xn = Jtfl = SX with 2X gwen

We now conceive of the X’s being free to have any values whatsoever

as far as we are concerned It is immediately apparent that one of

these X's is not really free as long as we insist that the N items

must add to the specified total As soon as iV - 1 of the items have

"chosen ’ their values, the Nth item vmt take on that value that will

make the correct total The Nth item is thus really determined by

the values of the other JV ~ 1 items and by the total It is not free

at all

For example, suppose a senes of 20 items has a mean of S5 00, and

thus a total of $100 00 Nineteen of the items are allowed to take on

any values that are determined by the evidence-generating process

Suppose these 19 items add to $9300 The 20th must now have a

value of $7 00 in order to make the total $100 00

This is why we say that the evidence available to tell us some-

thing about the standard deviation consists of only N - 1 degrees of

freedom It is useful to recall that the sample standard deviation

tends to be too malt on the average un/ess we use W - I instead of

N in its calculation We can now relate this phenomenon to the

notion of degrees of freedom

The notion extends beyond the calculation of the standard devia-

tion Consider the problem of skewness The coefficient of skew-

ness depends on the prior calculation of both the mean and the stand-

ard deviation The specification of the standard deviation really

specifies the sum of the squares of the items Thus we would now

have a second equation to go with the first one This second would

be

We now find that jV - 2 of the items are free to vary As soon as we

know these and the specified sum and sum of squares, the remain-

ing two items are easily calculated from the two equations This
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IS we say that the coefficient of skewness is based on only ^ - 2

degrees of freedoifi

We generally use the symbol k to represent the number of con-

straints or the number of values that are epeci^ed by pnor calcutu-

horw The number of degrees of freedom is represented by n and

the size of the sample by N Thus can define the number of

degrees 0/ freedom, n, as equal to AT -* A.

The general notion of degrees of freedom extends beyond the simple

mathematical case m v,hich we can count them with little difficulty

The notion applies also to the problem of psychological constraints

on the data themselves For example, if subtle psychological influ-

ences cause a respondent or a witness to unknowingly restrict his

answers to only certain limited categories, it would be incorrect to

treat the responses os though they were freely given Unfortunately,

V e do not have any routine procedures to measure the degree of con*

straint that has been put on the data Thus it is not unusual to find

ourselves using data as though they were "free,” except for the cai

culation restrictions ne later impose, when, m fact, the original data

were already se^e^ely restricted Bias is the term we usually apply

to any psychological restrictions we think exist should not let

the inherent difficulties in measuring the magnitude of this bias deter

us from making the attempt If we are deterred, we might find our-

selves m the essentially ridiculous position of using sophisticated

technique on naive data

It might be mstructne to speculate on the different interpretations

we should put on human beha\ior that is the result of free choice and

that which is the result of coercion For example, if we could plan

the menus at the Waldorf Astoria so that there was only an average

of 5^0 waste we could properly qualify as a genius in the art of

satisfying peoples food desires To have as little waste m serving

meals to a military group would take somewhat less than genius

To offer people real freedom of choice and to gamble on our ability

to anticipate those choices is the fundamental challenge of business

It is so much a challenge that most businesses find it desirable to

expend some effort m the arts of persuasion in order to help people

make their choices It is not at all easy to separate that part of a

consumers preference that was the result of persuasion from that

part that was based on a real choice for the product The more we

speculate on such matters the more we realize that the notion

degrees of freedom is closely related to our notions on freedom in

general
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The Shape of fhe t Distribution

Figure 12 6 illustrates the characteristic shape of a t distnbution

in comparison with the normal The Ksential difference is that the t

IS flatter than the normal Thus more of the frequency is at the tails

of the distribution The degree of flateess is a function of the num-

ber of degrees of freedom, with the relative flatness decreasing as n

increases The t becomes normal when n equals infinity Actually

it becomes quite close to normal for as little as 30 degrees of freedom,

especially if our concern is mostly with the interior sections of the

distribution

Since there is a different t distribution for each n, we find it too

expensive to provide t tables with as much detail as we have in a

normal table This lack of detail has probably contributed somewhat

to the tendency for statisticians to develop some standard criteria

fig 12 6 Comparative shapes of normal and £ distnbutions
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of risk We mentioned earlier the historical prominence of the 05

and 01 levels of risk People just naturally used the criteria that

nere available in the most popular publications of the t table

12.5 Inferences About m Bused on the t Distribution

Let us return to the problem of controlling the percentage of scrap

in a machine shop, a problem looked at briefly m Chapter 1

Table 12 5 shows a sample of 10 actual scrap percentages Column

2 lists the percentages in the order m which they occurred, with the

dates given in column 1 Column 4 lists the scrap percentages in

TABLE 13 S

Daily Strop P«reentog«s for o Mothino Shop

(I) (2) (3) (4) (5)

Scrap Item Scrap

Date Percentage No Pcrceatage-.Y A->

5/2/60 52 1 22 484

5/3/60 41 2 36 1296

5/4/60 47 3 41 1681

5/5/60 36 4 43 1849

5/6/60 22 5 44 1936

5/P/60 44 6 47 22 09

5/10/60 71 7 47 2209

5/11/60 43 8 52 27W
5/12/60 53 9 53 2809

5/13/60 47 10 7.1 5041

456 222 18

I = 4 56%

w ffX)'
' \ JV ^ \N-l N{N - 1)

- V22218 -20 704 = \/24 687 -

- 1 19% - 1 26%

rf,.
' 1.19 S 126

' Vn^i 3 V^“3162
= 40% = A(\0/.
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order oj size We will assume the time order is irrelevant In

other words, we will assume that tfie complex mechanism that is gen

erating scrap from daj to day is not undergoing any systematic

changes ^Complex mechanism refers to all aspects of the produc-

tion process, that is, the raw matenals, the machines, the workers,

the supen ision, etc
)
We make this assumption only for purposes of

exposition It is very likely an incorrect assumption, and, in prac-

tice, we do not make it until we have exhausted our efforts to detect

systematic movements This assumption enables us to combine these

10 scrap percentages into a stngU sample as though all 10 items came

from the same universe, or generating mechanism

At the base of the table are shown the calculations for the sample

mean, the sample standard deviation, the estimated universe standard

deviation, and the estimated standard deviation of sample means

The first issue we must face is that of the legitimacy of the assump-

tion that the distnbution of sample means of these percentages

would be nearly normal Since the sample is only 10 items, we

w ould be somewhat optimistic to rely on the centra! limit theorem

to justify this assumption This theorem states that tlie distribution

of sample means tends toward normality as the sample size in-

creases However, the distribution of sample means starts out, for

samples of size one, by conforming to the same shape as the uni-

verse If the universe itself is normally distributed, then, of course,

the sample means would be normally distributed regardless of the

sample size The greater the departure of the universe from no^

mality, the poorer the normal curve is as an estimate of the distri-

bution of sample means Unless our sample has at least 50 items

prudence requires us to check on this universe before making the

assumption of normality If wc find evidence of substantial de-

parture from normality, we are far less confident of our ability to

make reasonably accurate estimates of the desired inference ratios

Norma! curve estimates would be obviously crude If we used per

centile equivalents to make some allowance for skewness, we might

be better off than with the normal On the other hand, the errors

m interpolating for percentile equivalents can be quite large when

we have small samples Unfortunately, we do not have any other

easy way to handle the problem

An examination of the distnbution of our 10 scrap percentages as

shown m column 4 gives us reasonable confidence that the universe of

scrap percentages is closely approximated by a normal curve Our

sample appears quite symmetncal It also shows evidence of a

bunching in the neighborhood of the sample mean So let us assume
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that the distribution of sample means would be quite closely approxi-

mated by a normal cu^^e We remind you that this is the distnbu*

tion that appears m the numerofor of the Z or t ratio, Tihiche\er i«

applicable in a gnen problem If this numerator does not conform

cio«ely to the normal, neither the Z nor the t ratio is \ ery meaningful

Our next step is to estimate the standard delation of sample

means Two a\enues of approach to this are shoisn at the base of

Table 12 5 On the left is shown the sequence which first calcu-

lates the standard deviation of the sample, with no consideration be-

ing given to degrees of freedom. The second step is to estimate the

standard deviation of sample means with reference to this sample

standard deviation and the number of degrees of freedom

The second avenue of approach is to first estimate the standard

deviation of the universe by considenng the number of degrees of

freedom This gives us a value of 1265^ rather than the llO^o

which we got for the sample standard deviation itself The second

step IS then to u«e this estimated miverse standard deviation and the

sample size to denve an estimate of the standard deviation of sample

means The two avenues lead, of course, to the same result of 407o

Which avenue of approach we use is essentially a matter of per-

sonal choice There are strong logical arguments for almost never

calculating the standard deviation of a sample In fact, the argu-

ment extends to saying that any measure which refers solel} to a

given sample is really irrelevant for practical problems We are

basically interested in the universe and m future samples On the

other hand, there is a long tradition behind the calculation of sample

measures These measures have been defined with reference to a

sample Thus it is probably more practical to conform to traditional

definitions and make subsequent modifications than it is to create

new definitions that would confute most people

Now that we have cleared away these prehmmanes, we may pro-

ceed to the estimation of inference ratios for vanous possible values

of the universe mean of these scrap percentages Table 12 6 shows

the necessary calculations The routine is precisely the same as that

we have followed for our normal curve estimates The only difference

is that the probabilities in column 4 are taken from a t table rather

than a normal table The t table is in Appendix G This table has

been set up somewhat differently from the normal curve table The

body of the t table shows the probability of getting the given t value

or less Since f has a mean of icro, the probability of a t of rcro or

less is 5 There is a different probabilitv for each number of degrees

of freedom Note that the probabilities m column 4 are calculated
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TABLE 12 6

Estimalion of Inference Rolios for Selected Values of ihe

Universe Mean of Scrap Percentages

(I) (3) (4) (5) (6) (7)

%
fil-X

%
iii-X

ffi

--i piuiKm w
% /( L

2 88 -168 -42 00115 —288 ’
001 000

304 -152 -3 8 00211 2 88-3 04 001 000

3 20 -136 -34 00394 3 04-3 20 002 000

3 36 -120 -30 00748 3 20-336 004 001

3 52 -104 -26 01437 336-352 007 003

3 68 - 88 -22 02767 3 52-3 68 013 009

3S4 - 72 -18 05269 368-384 025 022

4 00 - 66 -14 09761 384-400 046 045

416 - 40 -10 17172 400-4 16 074 078

4 32 - 24 - 6 28165 416-432 no 116

448 - 08 - 2 42296 4 32-448 141 146

4 56 00 0 50000 50000 448-464 154 158

4 64 08 2 42296 4 64^80 141 146

480 24 6 28165 48(M36 110 116

4 96 40 10 17172 4 96-6 12 074 078

512 56 14 09751 512-528 046 045

528 72 18 05269 5 28-544 025 022

5 44 88 22 02767 5 44-560 013 009

560 104 26 01437 6 60-5 76 007 003

676 120 30 00748 5 76-592 004 001

592 186 34 00394 5 92-608 002 000

6 08 162 38 00211 6 08-6 24 001 000

6 24 168 42 00115 6 24— 001 ODO

1000 998

* Lower Limit Inclusive

by subtracting the table probability from 1 For example, we find

P (ft S 5 76) 18 equal to P{( S 3 0) or to 1 - 99252, or 00748

The considerable detail m Table 12 6 aids in comparing the t esti-

mates in column 6 itith the normal estimates m column 7 The

relative flatness of the t distribution is quite evident, with tlie tail

probabilities somewhat higher than for the normal If we are work-

ing with a problem that is concerned with the extreme tail values,

the relative differences between the t estimates and the normal esti-

mates can be quite critical Note, for example, that the inference

ratio in the 3 20-3 36 interval is 4 times as large for the t than for
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TABLE 12 7

Comparison of f Estimaios with Normal Estlmatfs of

Inference Ratios of^ Given X =456%, 1 26%, N = 10

(1)

%
(2)

I.

(3)

1,

28S-3 36* 01 00

336-3 04 03

3 84-4 32 23 .24

4^-480 44 45

489-528 23 .24

528-576 04 03

576-624 01 00

100 99

* Lower Limit Inclusive

the normal On the other hand, if our problem is not concerned with

these extreme \ alues, and/or if apparently precise estimates of proba«

bilities are meaningless because of uocertamties about consequences,

the differences between the t and nonnal estimates are trivial Note

the comparisons \\hen we broaden the intervals and round the

probabilities as shoivn in Table 127 Very lew of us would know

what to do with differences of this magnitude Thus we might as well

use the more convenient nonnal cur%e estimates if we find them more

convenient

12.6 Confidence Intervals for an Estimated Universe

Mean

If w e have a problem in which we are interested in only certain

parts of the distribution of w, wc simply calculate the estimates for

those parts For example, if we wish to develop a confidence range

for /t, so that we would like to feel 90^0 confident that the true mean

falls within the interval, we find the value of /i; below which 5% of

the probability lies and also tiie point above which 5% of the proba-

bility hes It is obvious, then, that there must be 90^^? of the proba-

bility between the two points Let us make such an estimate (or

our scrap problem We were given a sample mean of 4 567^ n^id an
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estimated standard deviation of sample means of A check of

the t table for n. = 9 reveals that a t of about 1 84 will cut off the

outer 5% of the probability Thus our 90% confidence limits would

be estimated as 4 56% ± 1 84 X 40% This works out as 3 82% to

6 30%

If we had decided to use the norma! curve instead of the t, we

would get a 2 of about 1 65 This would give us 90% limits of

3 90% and 5 22% Note that this is a narrower range than for t,

just as we would expect

The calculations would proceed exactly the same way for any

other confidence coefficient than 90%

12.7 Testing Hypotheses about the Universe Mean of a

Continuous Variable

Suppose the production supenntendent of our machine shop has

been insisting that the daily average percentage of scrap should not

run more than 4 00% His argument for this belief is based on what

he has learned about what some competitive machine shops have

purportedly been doing and also on what he believes can be achieved

on the basis of his own past cxpenence as a worker and foreman He

notes that the daily average for this two-week period was 4 567o

What action should he take^

We cannot determine a definitive answer to this question unless

we hat e a reliable consequence roatnx to combine with our probabil-

ity estimates, and/or unless we are prepared to take over the super-

intendent’s job, a task that we are probably not too well qualified

for What we can do, however, is help the supenntendent to develop

an answer by estimating for him some of the probabilities that are

involved

If we have no prior information about the standard deviation of

sample means other than that we can derive from the sample, we

would have to use the estimate of 40% that we calculated in a

preceding section We can picture our problem as shown in Fig

127 Both curves are of the t distribution for 9 degrees of freedom

and for a standard deviation of 40% Part A centers the distribu-

tion on 4 00%, the hypothetical universe mean The shaded area

in the right tail represents the probability that we could get a sample

of 10 with a mean of 4 56% or more if ttiis hypothesis is true Part

B centers the distribution on the sample Twean of 4 56% The shaded

area in the left tail represents the probability that the universe mean
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Part A Probability distnbiitim of^
around a givert hypothetical fiu

Scraps

Parts Inference dstrSbubondp;

20 2S 30 3S 40 4S SO 55 60 Scraps

\

Fg 13 7 Alternative models for testing hypothesis that the universe mean of

scrap percentage is still as low as 400c despite a sample of 10 with a mean of

456% (Note Not drawn to scale

)

IS Jt OO^o or loiver given this sample of 10 with a mean of 4

and a standard deviation of 1 19% Since these curves are both

symmetrical and identical in shape, the indicated probabilities are

exactly equal Some people would argue that onlj Part d is a legit-

imate representation of our problem because it is here that we treat

the universe mean as a cemsfanf (although obviously only hypo-

thetical) and the sample mean as a variable, or as a member of a

iihole hypothetical family of sample means Part B, on the other

hand, treats the sample mean as a given constant and the universe

mean as a vanable, that is, a variable in the sense that it could con-

ceii ably have all kinds of values as far as u e know Since both view s

result m the same answer, we can select either as our model We

prefer the B model generally because it appears to us to be more
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consistent v,ith the practical character of the problem Tve face, that

IS, it treats 'shat T\e know (the sample) as a gnen constant, and it

treats Tshat do not kno\v (the unueree) as though it might have

se\eral different values (which, of course, it might)

In either case w e calculate t and find it to be (4 00% - 4 56%) /

40%, or -1 4i/ne use Uie5 model and -fl 4 if we use the^ mode!

The t table tells us that this cuts off a tell probability of 098, or

10 Thus we might saj that there about 1 chance in 10 that the

unnerac mean is 4 00% or lower, given this sample result for a two-

V. eek period If tlie superintendent has had any other reasons te be

concerned about rising scrap percentage®, he is very likelj to conclude

at this time that some steps are neccssaiy to tr> to reduce scrap

On the other hand, if Uiis recent sample is the first indication in

quite awhile that scrap costs may be getting too high, he might very

well attnbute this sample to a chance occurrence and continue to

act as though the universe mean is no liigher than 4 00% At the

least, however, he certainly should be alerted to keep a closer watch

on the scrap percentages even though he plans no immediate change

m policy

1 2.8 Pooling Information About the Mean of a Continuous

Variable

Pooling Two Samples

It is not unusual to find that we have more than one set of evidence

about some phenomenon We all well know that the generation of

sample evidence is a continuous process in real life If w e are alert,

we accumulate this evidence and continuously modif) our hypothc^e®

about the phenomenon (Modification may mean no change in some

cases ) 'We faced this problem in our discussion of attributes Tliere

we discovered that the first issue to oe settled is that of deciding

whether the seveial sets of evidence should be considered as coming

from the same universe, or whetlier some of the evidence supersedes

others Tor example, if the daily average sciap percentage for the

tw 0 w ceks succeeding those referred to abov e tui ned out to be 4 04% t

how do wc combine this information witli the average of 456% we

had earlier? Do vve decide that the scrap percentage has gone down

or do wc decide that the difference m the averages wa« due to chance,

m the same sense that we would attnbute a poor bridge hand fol-

lowing a good hand as due to chance rather than to a general reduc-

tion of the values of the cardsm the deck?

Let us take a look at the probabilities involved in such an issue
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As a first approach we might set up the hypothesis that these two

average scrap percentages did come from the same universe Given

this hypothesis, we then proceed to estimate the probability that a

difference of the magnitude observed could have happened by chance

We use the familiar formula for the standard deviation of the dif*

ferences between two sample means from the same universe, namely

The first sample of 10 resulted m an estimated universe standard de-

viation of 1 267o The second sample of 10 yielded an estimated uni-

verse standard deviation of 94% A weighted average of these would

be

V Ni -f- Ni

Since the N's are equal m our problem, this reduces to a simple mean

of the two standard deviations, or (1 26 + 94)/2, or 1 10% Sub-

^ in Eq 12 1, we get

Vj, = 110V1+ l = nOX 447 «.49%

The appropriate t is (Xi - Xs)/(^ii-it)r or (4 56 - 4 04)/ 49 »

1 06 Figure 12 8 illustrates the situation at this point The curve is
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Fig 12 9 Model for inference dislnbulion of differences between means of two

universes from which two given samples have been drawn (see Table 123)

a t distribution for 18 degrees of freedom (9 duress from the first sample

and 9 from the second) The horizontal axis shows differences eon

sample means The curve is centered on 0 to conform to the hypothesis

of "no difference " The observed difference of + 52% cuts off the

shaded area m the right tail The probability enclosed by this shaded

area is the probability of getting a •lample difference of + 5S% or more

if It 18 true that these two samples came from the same universe The

i table for 18 degrees of freedom shows this probability to be about 15

WbAtbiW ’A vifSii'iSiti!} "iVit VA 'K Vi

unlikely that both samples came from the '’aine unnerse depends

as usual on the consequences of ttie available decisions If vc de

cide that the samples came from dijfcrent unuerses, this is the same

as deciding that the scrap percental has declined over this time

interval This decision would likely mean that there is no real need

for an action designed to lower the scrap percentage If, on the

other hand, we decide that the two samples came from the same

universe, we are very likely to then decide that the ^crap peicentage

IS running too much above the desired 400% level This would call

for some overt action to lower the percentage This would be a

needless action, and possibly a fruitless nud costly action, if the per-

centage already is practically below 4 00%

An alternative model for the same problem is shown in Fig 129
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Here the distribution of differences is centered on + 52% instead of

0 Thus we are taking the observed difference as the best estimate

we ha\e of the true difference (We are still assuming that the two

universes ha^e the same vanance even though they might have

different means ) Thus we find an estimated chance of 15 that the

true difference is 0 or less Table 128 shows various points of the

i\hoIe inference distribution of the possible differences between the

means of the universes from which these two samples came Note

that we have centered this distribution on the observed difference

of + 527^ This distribution provides us with the best base from

which to make any decision about the scrap percentage because it

co\ ers the full range of possibilities

If we decide to pool these two samples as though they both came

from the same universe we would get a joint distribution with a

mean of 4 30%i and an estimated universe standard deviation of

TABLE 12 8

Inferences Aboul Differences between Two Universe Means

of Scrop Percentage

Given J,- 4 60% <, = 1 26% hi, -10

.Ti-4(M% 01 = 94% Hi -10

Derived Ci = 1,
= 49% let )ii - (11 = Dj,^\ -Xi =

1d

(1) (2) (3) (4) (5) (6)

Di — d P/r < § Pfi > /A h.Hi ^2 “ i'/ S w; r U g ti) L)i /d,

-104% -156% -3 18 00 -104- -78 01

- 78 -130 -2 65 01 - 78- -52 01

- 52 -104 -212 02 - 5^-26 04

- 26 - 78 -159 06 - 26- 0 09

0 - 52 -106 15 0- 26 15

26 - 26 - 53 30 26- 52 20

52 0 0 50 50 52- 78 20

78 26 53 30 78- 104 15

104 62 106 15 104- 130 09

130 78 159 06 ISO- 150 04

156 104 212 02 156-182 01

182 130 265 01 182- 2 OS 01

2 OS 156 318 00 •

—

100
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1 10% and a sample size of 20 Table 129 shows the inference dis

tnbution if we pool these two samples Note the degree to nhicb the

increase m information has narrowed the uncertainty about the

value of II We would use narrower mtervals in practical work m
order to provide more detailed probabilities

TABLE 12 9

Inference Distribution of Universe Meon of Scrap Percentage

Based on Pooling of Two Samples Pooled Mean - 4 30%

Standard Deviohon = 1 10%, N - 20

(1} (2)

W-X
(3) (4)

?(isy Pit ^ Q

(5)

w

(6)

2 88% -142% -568 000

8 36 - 94 -376 001 3 36-384 04

3S4 - 46 -184 041 384-432 49

430 0 0 500 500 4 32-480 44

4 32 02 08 469 480-528 03

4 80 50 200 030 —
528 98 392 001 100

Pooling a Prior Inference Distribution with A New Sample

If we find that part of the information to be pooled is already in

the form of an inference dicinbutum, and the other part a sample

we can use Bayess theorem to pool two sets of information We

recall that Bayes's theorem involves calculating the joint probabilities

of getting the prior distnbution and the second sample This is a

tedious operation when applied to vanables particularly here where

the small samples require some intncate handling of the degrees of

freedom problem Fortunately the pooling of a prior distribution

with a sample is the equivalent of pooling the prior distnbution with

the inference distribution denved from the sample Table 12 10 illus-

trates the routine

Column 2 shows the inference ratios ba^ed on the first «ample of

10 with a mean of 4 56% and a standard deviation of 1 26% Column

3 shows the inference ratios based on the second sample of 10 with

a mean of 404% and a standard deviation of 94% Column 4 is
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TABLE 1210

Pooling a Prior Inforente Distribution with a New Sample

by the Pooling of the Inference Distributions

(1)

lir

(2)

/i

(3)

I,

0)

JiX/i

(5)

I,

(5)

fr

(7)

// Xm?

240-288% 001 002 000

288-336 007 023 000

336-3 84 045 235 oil 05 3 60% 180%

384-4 32 229 551 126 58 408 2366

432-4 80 436 173 075 35 4 56 1596

480-528 229 015 003 02 5W IDI

5^8 5 76 015 001 000

576-624 007 000 000

624-6 72 001 000 000

1000 1000 215 100 4243%

the result ol multiplj mg column 2 bj column 3 thus giving us the

joint probabilities of the gi\en ii, values Column 5 is our desired

set of pooled inference ratios and is simply the result of proportion-

ately adjusting the column 4 ratios «o they add to 1

Since these pooled estimates are based on exactly the same infer

mation we used when we pooled the samples we should get the “ame

answer m both cases If we compare column 6 m Table 129 witli

column 5 m Table 12 10, liowever, we see that the answers are not

the same The most notable difference is in the means of the two

distributions

When we pooled the two samples, we derived an inference dis-

tribution with a mean of 4 30% As showm in column 7 of Table

12 10, the mean when wc combine the inference distributions is 4 24%

Thus it IS obvious that the second sample, with a mean of 4 04%,

apparently earned more weight than the first "ample, with i mean

of 4 56%, e\ en though each sample had 10 items

The m"e of this unequal weighting is the uneguol standard dc-

nations of the two samples We pooled the two ‘sample standard

deviations when we pooled the hio samples We did this because

we belie\ed that the best single estimate of the standard deviation

of the universe is that based on the information from the two samples

"When we pooled the two inference distributions, however, we pooled

two distributions iihch had unequal standard deviations The "cc-
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ond sample generated the inference distnbution with the smaller

standard deviation because this second sample itself had a smaller

standard deviation This smaller standard deviation has the same

effect as a larger N when two distabutions are combined This fol-

lows from the formula for standard deviation of sample means,

which 18

It IS obvious that aj can get smaller edher because of a mailer a or a

larger M When we are given only an inference distribution, we have

no way of knrmng wh/d part of the &ii8 dueled and what part is due io N
Which of the tvo poobng procedures would we prefer"^ We would

prefer to pool samples and then make inferences, rather than make

inferences and then pool inferences Thus we would prefer the in-

ference distnbution that gives us a joint mean of 4 30fo in this prob

iem of scrap percentages The basis of choice is quite simple If we

pool samples, we can take full advantage of the available information

about both the sample sizes and the sample standard deviations We

need to make assumptions about neither If, on the other hand, we

pool inference distiibutions, we can use only the combined effects

of the sample sizes and the sample standard deviations The pooling

operation must then make eitlier implicit or explicit assumptions

about the separate effects of sample sizes and sample standard de

viations Since the fundamental assumption underlying the poolirig

operation is that the two sets of information came from the same

universe, it is automatically assumed that the two sets have the

same standard deviations Thus any difference between the stand-

ard deviations of the two inference distributions is automatically

attributed to differences in sample size

The Decision fo Pool New Mormofion with Old. So far we have

glossed over the issue of whether we should pool a prior inference

distribution with a new sample The issue is resolved by an analysis

of the probabilities shown m column 4, particularly by the total of

such probabilities We referred to this total as the marginal proba-

bility when we were discussing attributes In this previous work we

discovered that these marginal probabilities enabled us to estimate

the probability that the given sample could have come from the pos-

sible universes indicated by the pnor inference distribution If this

probability turned out to be very low, we would be disinclined to

assume that the new sample really referred to the same universe as

did the inference distribution, and hence we would hesitate to pool

the two sets of information
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The problem we now face is that of making some general state^

ments about the properties of this distribution of marginal jirobabili-

ties The mean of this distribution i\ould be the same as the mean

of the prior distribution This follows from the well-known fact

that the arithmetic mean of all possible sample means will be the

same as the mean of the generating distribution The variance of

this distribution is the same as the variance of the distribution of

difjerences between means of paited samples from the same universe

The logic of this la clear if we look behind the inference distribution

to the sample information that generated it We would now be

considering the difference between the mean of a first sample or a

prior sample, and that of a second sample If we were to know the

variance of this distribution of differences, we could deduce all pos

sible means of a second sample by simply adding the mean of the

given prior sample to each of these possible differences The re-

sultant distribution would have a mean equal to the mean of the

prior sample and hence also equal to the mean of the inference dis-

tribution It would also have a vanance equal to the variance of

the distribution of differences

The fundamental formula for the vanance of the distribution of

differences between means is

NiN,

The IS the vanance of the universe, is the size of the prior sample,

or the sample that underlies the inference distribution, and N2 is the

size of the second sample In the case of our current problem, we have

assumed that the only available information is the pnor inference dis-

tnbution and the mean, the variance, and the size of the second sample

The inference distribution is that shown in columns 1 and 2 of Table

12 10 A direct calculation from this distribution reveals that it has

a mean of 4 56% and a standard deviation of 47%, or a variance of

22o The second sample has a mean of 4 04%, a variance of 88 and

an N2 of 10

It IS clear that the only thing we laiow directly that could be sub-

stituted in the above formula is the value of N2 We could make an

estimate of tr® by using the vanance of the second sample, or we could

make an estimate of a^/Ni by reference to the vanance of the inference

distribution, which we might call We can estimate the variance of

sample means, or of inferences about the universe mean, by the formula
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Since w e u«ed the t distribution with Ni - 1 degrees of freedom to esti-

mate the desired probabilitiesm the manner show n in Table 12 G the re-

sultant inference distribution will actually end up with a larger variance

than 0^/

N

3
because the I distribution is more dispersed than the normal

Thus the realized will be larger than the one used as a base for cal-

culations For example, the variance used to estimate the inference

distribution show n in Tabic 12 6 was 16 The realized variance of the

Table 12 G distribution was approximately 21 Rounding errors and

grouping errors pushed this up to 225 when we combined intervals as

show n m columns 1 and 2 of Tabic 12 10 The greater spread of the t

distribution is an inverse function of the degrees of freedom In fact,

if we take the \ anance of the umt normal curve as equal to 1 the cor-

responding yamnee of the ^ t^istnbutm is n/{n ~ 2), mth n bang the

number of degrees of freedom With a sample of 10, we would have 9

degrees of freedom, and n'(n - 2) = 9/7 If we multiply 16, our

original variance by9/7,wcgct 206 a result that compares reasonably

well with the realized vanance of 210 Actually wc would expect the

calculated realized variance to be a little larger than expected because

of grouping error jn the calculation of the vanance from a frequency

distribution

Thus we can use -ai,] as an estimate

of—
ATi

We arc still left with the problem of estimating The only

possible approach to this problem is to assume that the unbiased

variance of the prior unknown sample was the same as the unbiased

vanance of the second sample We thus replace 0
^ with m the

equation (A^j - 3)/(A^i - l)<rl, = and solve for Wj A little

simple algebra results m an A^i of {N^ - l)/iV2 + 3 If 1

then substitute this estimate for iVi in our basic formula for the van-

ance of differences we get the somewhat formidable-looking

JV2 "I" 3 02“ lYa ~ 1

^2 ^2

This formula is not quite as had as it looks The left-hand term is

simply the vanance of the inference distribution with an adjustment

this adjustment ratio approaches 1 as W2 increases The right-hand

term is the vanance of sample means based on the variance of the

second sample also with an adjustment Also note that this adjustr

merit ratio approaches 1 as N2 mcrea^s
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We are now m a position to substitute the appropnate values in the

formula and thus make an estimate If we do this, we obtain

10 + 3 884 9

iU = 225— +— - = 372, and = 61%

Now we can estimate the probabiLty of obtaining a second sample of

10 with a mean of 4 04% tess, given our inference distribution based

on a first sample with a mean of 4 56% Our t ratio is i
- X2)/<ff,-i,,

or (4 56% - 4 04%)/ 61%, or 85 The t table for 9 degrees of freedom

reveals that this point cuts off about 21 of the tail of the t curve * Thus

we estimate that there are about 21 chances of getting a second sample

mean of 4 04% or lower, given this particular prior inference distnbu

tion Hence the hypothesis that this sample came from the same

universe as this inference distnbution seems fairly reasonable, unless

the consequence matrix is rather unusual or unless there are other rea

sons to doubt the hypothesis Given the acceptability of this hypothe-

sis, we are now willing to pool the two sets of information

12.9 Estimating the Probobllity Distribution of Means of

Subsequent Samples on the Basis of Informotion

Supplied by a First Sample

Inferences about the means of future samples often must be made

from prior sample information rather than from universe mforma-

tion The problem of going from past samples to future samples

IS a liltie easier with variables than il is uith attributes We used

iv<Q approaches m our attribute analysis The first approach in-

volved making inferences about the unii^erse proportion from the

sample information Then we used these universe inferences to

make inferences about future sample proportions The second ap-

proach was based on differences between the proportion m the given

sample and the possible proportions m the future sample The first

approach used binomial estimates of the probabilities, the second

approach used normal curve estimates Ideally, both approaches

should have given the same answers, however, they did not because

of the differences between binomial and the normal for small

samples When we work with vanables, we find that the normal

* There is some logic to allowing for the degrees of freedom embodied m the

inference distribution Estimation of Ni from the formula results in 6 5, or 6, and

thus m 5 d f If we add this to our 9 we get a total of 14 Our probability now

reduces to 30 from the 21, a negbgible difference
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curve IS the only practical basis for est mates unless we wish to

getm olved ith percentile equivalents

We derive an additional advantage if we work directly from past

samples to future samples by means of differences between sample

means By so doing we effectively short cut completely the need

to show any concern for the inference distnbution of the unknown

universe mean In addition to bemg a saMDg in labor this short

cut avoids any philosophical difficulties a person might have about

treating an unknown constant (the universe mean) as though it were

a random variable Whenever we have a choice of methods it is

an obvious advantage if we can use a metiiod that provokes the least

disagreement

Our basic formula is the now familiar

The only thing we do not know is As usual we make the best pos

eible estimate of In this case the only information we have about

iT^ 18 that supplied by the variance of the given sample Thus we can

reivnte the formula to read

Nj + Nj

Let U8 now apply these procedures to our example of the scrap per

centages Our first sample had a mean of 4 58% a tr of 1 26% and an

N of 10 What kinds of inferences might we now make about the mean

of a subsequent sample of eight items assum ng of course that the

second sample came from the same universe as did the firsts e first

specify that the mean of this inference distribution will have the same

mean as does the first sample We esfaraate its variance by substitut ng

the appropriate values in our fonnula Thus we get =

1 59 (10 + 8)/10 X 8 = 35 Henceo-, 59% \\ e assume that

a normal approximation is reasonable and thus we use the t d stnbu

tion to estimate probabilities because we do not know the standard

deviation of the universe We have 9 d^rees of freedom to work with

(At first glance it may appear that we have 17 degrees of freedom

However the key fact is the number of degrees ojfreedom on which we

bm our estimate of the standard demaiion Note that w e have informa

tion about the standard deviation onlj from the 10 items in the first

sample We have no information at all from the second sample

Everything we say about the second sample is based solely on infor

mation supplied by this first sample

)
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TABLE 1211

Inferences About Mean of a Future Sample of 8 Items

Based on o Fast Sample of 10 hems

Given Ai = 4 56% tfi = 1 26%

Derived *= 59% (see text)

(1) (2) _ m (4) (5) (6)

I(-Xi nx,&x,) p{hih) X,

144% -312 -529 000 1 44-1 92 001

192 -264 -4 47 001 182-2 40 002

240 -216 -3 66 003 240-288 007

288 -168 -2 85 010 2 88-3 36 027

3 36 -120 -203 037 3 36-3 84 090

3 84 - 72 -122 127 3 84-4 33 219

4 32 - 24 - 41 346 4 32-480 308

4 56 0 0 500 500 4 80-5 28 219

4 80 24 41 346 628-576 090

5 28 72 122 127 576-624 027

6 76 120 203 037 624-672 007

624 168 285 010 672-720 002

672 216 366 003 7 20-7 68 001

7 20 264 4 47 001 —
7 68 312 529 000 1000

Table 12 11 shows the now familiar calculations necessary to develop

an inference di'jtnbution, in this case for the means of a subsequent

sample based on information supplied by a prior sample

12.10 Inferences About the Standard Deviation of a

Continuous Variable

So far v,e have concerned oursehes only with the mean of a distnbu-

tion There are occasions when it is desirable to make some estimates

of the degree to which tndmdval items vary from each other Tor ex-

ample, an automobile battery manufacturer is not only interested in

the aierage life of his batteries, he is also interested m the unifomily of

the life of individual batteries If the manufacturer guarantees his

batteries for 24 months, and if the average life of the batteries is 28
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months, tliere might still Ije a large proporlioo of claims for “short-

life” if there is nide \arjation in ibe Incs of indmdual battenes In

fact, there are manj problems m nhich uniformitj, or dependability,

or stabilitj of performance is of sufficient importance to cause us to

tolerate some deficienc} m the aiCTage in order to achieve greater

umformitj' This is particulariy true with respect to individuals who

arc Viorkmg as part of a team effort A person who is verj good when

he js good, and \ cry bad when he is bad is frequently not as valuable

as another person who is almost never very good or verj' bad

In Tig 12 10 wc show m Part A the capected distribution of random

sample standard daialion<, drawm from a normal universe The uni-

verse standard deviation is 1 26% and all possible samples of 10 items

have been presumed to be drawn Note the positive skewness The

existence of positive skewness is as we would expect A below aicrage

value for a sample standard devnation is restricted by a Jloor atO An

flhei c m crfl/jc v aluc faces no sucli restriction Hence the sample stand-

ard dcv'ialjon has more room to wander in the plus direction than it

docs in the minus direction The anthmclic mean of this distribution

IS 1 10% Thux the mem of the sample standard deviations is less than

(he standard dev mtion of the univerec This is the same phenomenon

Rg 12 10 Distribution of sample standard deviations and sample variances

(pee Table 12 13)
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we have encountered previously If we multiply these sample standard

deviations by
3'

or by
20
/— = 1 085 we would get a mean
VI7

of 1 26%
Part B of Fig 12 10 shows the same distnbution as Part A except

for the use of the lanance, or the stjuare of the standard deviation,

along the horizontal axis We find it much more convement to work

with this distribution than with that of the standard deviation In

fact, m this case we first calculated the distnbution of the variance

and then derived the distnbuUon of the standard deviation The

greater convenience arises because the distnbution of sample variances

from a normal umverse conforms to a well-known model distnbution

called the chi-square (x^) distribution

The Distribution

In Chapter 8 we discussed the problem the president of the

Smoothies Co had in making a decision about market share of

Smoothies The available facts were a random sample of 100 con-

preferences for cereal which shovied 28 preferring Smoothies

me president was concerned that the market share had fallen below

30% At that time ae made some estimates of the probability that

a sample of 100 could show only 28% or less preferring Smoothies

when the universe actually had 30% prefernng The normal curve

estimate yielded a probability of 33 We now approach the problem

from a slightly different point of view

TahJA 1.2 1.2 sh/w.i CWiiwz!. 1*

the possible responses a person might make to the question of whether

he prefers Smoothies We assign a value of I if he says he does

and a value of 0 if he says he does not Column 2, headed by fa

(observed frequency) shows the number of people ^ho said yes and

the number who said no Column 3, headed by /« (hypothesized

frequency) shows the number who would have said yes or no if the

hypothesis of a universe preference of 30% is true Note that both

columns 2 and 3 add to lOO, the size of the sample This is a neces-

sary condition of the analysis, namely, that the total of the actual

sample frequencies must be the same as the total of the hypothesized

frequencies This condition impose a restriction on the freedom

of the h> pothesized frequencies to vary Note that if we hypothesize

that 30 of the people should say yes, we have automatically and at

the same time said that 70 of the people should say no simply be-

cause ne have imposed the condition that the total of yesses and
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TABLE 12 12

Calculation of Hypothesis that Brand Share ts 30% >

Given a Semple ef 100 with a Share of 28%

(1) (2) (3) (4) (5) (6)

X h fB U~js t/o -jaf
(fti - h)'‘

is

1 28 30 -2 4 133

0 72 70 2 4 057

100 100 0 8 190

Degrees of Freedom (n) = 1

Probabibty of a x* of 190 or larger ib 66

Frobabibbv of a saiuple proportion of jgS or few is 33

(H of 66)

nos must be 100 This condition is fbe basis of our saying that

these data have only one degree of freedom even though we have two

sets of frequencies to compare

Column 4 shows the differences between the actual and hypothe-

sized frequencies The algebraic sum of these is necessarily 0 be-

cause of the condition of the equality of the total frequencies Thus

the algebraic sum of these differences cannot be used as an indication

of the degree to which the actual frequencies differ from the hypothe

sized frequencies If we iporcd the signs of the differences, the re-

sultant sura would reflect the over-all d^ree of difference Unfortu-

nately, to Ignore the signs is to create some very awkward mathema-

tical problems Hence we prefer to solve the problem of signs by

squaring the differences thus making all the signs positive (This is

exactly how we solved the problem of signs when we talked about the

probiem <?/ msasunag the vanat^ou within s gives senes, a sohiUon

which led to the development of the staMard dewition as a measure

of vanation
)

The sum of the squared differences definitely does

reflect the degree of difference between the actual and hypothesized

frequencies Here we have a total of squared differences of 8 If

we had hypothesized frequencies of 32 and 68, we would have de-

rived a total of 32

If we wished, we could now analyze tins total difference shown

m column 5 We could calculate the probability that a difference
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of this magnitude or larger could have occurred by chance even

though our hypothesis is true This kind of analysis would be com*

plicated, however, by the fact that xt would have to be particular-

i:ed for this problem The resultant probability distribution ^ould

fit only the case m which we had an hypothesis of 30 and an N of

100 Various avenues could be selected tQ develop a generalized

distribution that could be used to solve all problems, m the same

way m vihich we are able to use the generalized normal distribution

The most convenient uay currently available is that shovm in col-

umn 6 Here the squared difference of column 5 is divided by the

hypothesized frequency This has the effect of making the result

independent of the particular magnitude of the frequencies The

sum of these ratios in column 6 is what we define as ^
The X® distribution has the veiy important property that it is

specified entirely in terms of n, the number of degrees of freedom in

the analysis For example, a given distribution has a mean of n

a standard deviation of V2n, and a coefficient of skewness of yJ2/n

The fundamental assumption underlying the x^ distribution is that

the distnhufion o/ difjercnces between actual and hypothemed /re-

quencies is normal Thus it is assumed that the -2 showm m the

first row of column 4 is only one of a normally distributed set oj such

dijjerences The same assumption applies to the -1-2, and, of course,

correspondingly to any other differences if our problem had included

more than two sets of differences In our problem we know that this

assumption is not strictly satisfied because these column 4 differences

are actually binomially distnbuted However, we also know that,

with a sample as large as 100 and with p not too far from 5, we

would find the normal curie to be a reasonably close approximation

to the binomial This assumption of normality is what causes us to

suggest that one should use the x* distribution with extreme caution

unless (1) the generating universe is normal or (2) the frequencies

in the various cells are moderately large, thus giving us some assur-

ance that a normal approximation is reasonable

The distribution has very large positive skewness if n is small

This skewness declines as n increases, as can be '^een from the fact

that tile coefficient of skewness = \/2/n In fact, the x^
distribu-

tion approaches the normal distnbution as n mcrea'^cs indefinitely

Many analysts have adopted the diiiding line of n ^ 30 as the point

below which they use the specific as an estimator and above which

they u^ie the normal curve Figure 12 11 shows some ^ distributions

for selected n.
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Fig 12 11 The x*<iistnbutioD for selected degrees of freedom (n)

Let us now return to Table 12 12 and complete our analysis The

in Appendix F tells us that with n ss l a of 190 or more could

occur by chance about 66 of the time But this includes not only the

case where the sample /o is less than the hjpothesized js but also the

case where it is more than the hypothesized fa For example, we

would also have had a of 190 if Jo bad been 32 Thus, since in

our problem we are concerned with the fact that /o is less than /«,

we must cut the probability of 66 in half, giving us a final probability

of 33 that we could get a sample of 100 with a p of 28 or less if the

universe had a proportion of 30 (This probability of 33 is exactly

the same answer we got when we used the normal approximation in

Chapter 8 It should be because the fundamental assumptions are

precisely the same In fact, Ihe normal curve approach and the x"

approach are fundamental y the same, with the first working with

normally distributed vanations and the second working with the

squares of normally distributed vanations In many problems, like

this one of market share, we choose between them as a matter of

taste and as a matter of availability of tables Normal curve solu-
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tions are more commonly used because of the rather general avail

ability of the normal curve teble

)

The Use of the Distribution to Make Inferences about the Standard

Deviations of Random Samples

We now return to the problem that originated the discuseion of the

distribution, namely that of making inferences about the standard

deviation of a universe on the basis of information supplied by a ran

doin sample We are not able to ddve deeply into the relationship of

the distnbution to the distribution of sample variances We merely

point out that do conform to a distribution when 5® is expressed

m standard units The detennmation of the appropriate n is a rather

straightforward arithmetical calculation The relationship between

the um\ erse variance and the arithmetic mean of sample variances can

be expressed as J?,i = — l)/N If we divide both sides of this

equation by the right side reduces toW - 1, or to n This n can

then be taken as the arithmetic mean of the appropriate x* distribution

If we then take any selected value of and divide it by aVW, we have

the value of corresponding to that particular N, and

Table 12 13 outlines the calculations necessary to develop the dis-

tribution of sample standard deviations and sample vanances from a

normal universe

Column 1 lists arbitrarily chosen values of sample standard devi-

ations These have been chosen with a constant interval of 12^0

Column 2 shows the squares of these standard deviations, or sample

vanances

Column S murtipfies each vanance in column 2 by b'29' TRe result'

is the value corresponding to the given The calculation of the

629 18 shown at the head of the table It is simply the result of

dividing N, or 10, by or 1 59 (The x“ formula of WsV<^ is the

result of dividing by <j^/N )

Column 4 Shows the probability of getting the column 3 x*

For example, there are 987 chances of getting a of or more

if the mean expectation w 9 (degrees of freedom), this mean expec-

tation IS the equivalent cf the expected mean of the sample vanances,

or 143, or (W~
Column 5 shows the intervals for e* that are the consequence cf

the arbitrarily chosen values of t given in column 1

Column 6 shows the estimated probabilities that sample vanances

will fall m the intervals shown in column 5 These probabilities

come from the cumulative probabilities of column 4 For example,

column 4 shows that there is a probability of 953 that a x* of
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TABU 1213

Inferences Aboul Sample Variances From a Normol Universe

Given ff = 1 26% - 1 59 AT = 10

(1) (2) (3) (4) (5) (6) (7) (S)

6298^

s 8*
=x.* P(x’ix.’) 8*

P(8®l<r* N} 8,n' P8„=

36 1296 082 1000 1296- 2304 003 1800 00054

48 2304 145 997 2304- 3600 010 2952 00295

60 3600 226 987 3600- 5184 034 4392 01493

72 5184 326 953 5184- 7056 073 6120 04468

84 7056 444 880 7056- 9216 120 8136 09763

96 9216 5 80 760 9216-1 1654 158 10440 16495

108 11664 7 34 602 1 1664-1 4400 170 1 3032 22154

120 14400 906 432 1 4400-17424 153 15912 24346

132 1 7424 1096 279 17424-2 0736 117 19080 22324

144 2 0736 1304 162 2073h-24336 079 22536 17803

156 24336 1531 083 2 4336-2 8224 045 26280 11826

168 28224 1775 038 28224-32400 022 80312 06669

180 32400 2038 016 3 2400-3 6864 010 3 4632 03463

192 8 6864 23 Id 006 3 6864-4 1616 004 39240 01570

204 41616 2618 002 41616-46858 001 44136 00441

216 46656 2935 001 4 6656-51984 001 49320 00493

1000 1 43656

least 3 26 will occur There is also a probability of 880 that a

of at least 4 44 will occur Therefore, there must be a probability

of 953 - 880, or of 073, that a between 3 26 and 4 44 will occur

A comparison of column 3 with column 2 shows that x^’s between

3 26 and 4 44 are the equivalent of s^'s between 5184 and 7056

Column 7 shows the midpomts of the intervals of column 5

Column 8 is the result of raulbplyiQg the midpoinis of column 7

by the probabilities of column 6 The total of column 8, or 1 437, is

the arithmetic mean of the s^’b This is slightly larger than the

expected value of 1 430 because of the bias resulting from using

midpoints to represent the intervals Note that the intervals are

skewed and that we have more interval above the median interval

than we have below it
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TABU 1214

Inferences About Somple Standard Deviations

(Basic Date Token front Table 1213)

(1) (3) (4)

8 P Pin

4S 42 003 00126

4&- 60 M 010 OOMO

60- 72 66 034 02244

72- 78 073 0s694

&t- 96 90 120 lOSQO

96-1 OS 102 158 16116

10S*120 114 170 193S0

120-1 32 126 153 19278

1 32-1 44 138 117 16146

144-156 ISO 079 11850

1 56-1 68 162 045 07290

1 68-180 174 022 03828

180-192 186 DID 01860

192-2W 198 004 00792

204-216 210 001 00210

216-228 222 001 00222

1000 1 16376

The Bias in s' and in s The fact that the arithmetic mean of the

s'" IS 1 43 * instead of 1 59 is a demonstration of the phenomenon that

we first discovered in Chapter 7, namely that sample vananccs and

sample standard deviations tend to be too small on the average

We also remmd ourselves that the exact magnitude of this bias for

the sample varmces is related toW and W - 1 Thus, if e multi*

ply each s* by 10/9, we would find that the arithmetic mean of the

Tiould be 159, the variance of the universe Also, if ve had

used \alues of {N - l)ff*/(r instead of in our Table 12 13

calculations, ae should have found that the <r* would have averaged

1^9 (except lor the minor upward bi&s due to use o! midpoints)

Unfortunately, the exact adjustment that corrects s* for bias is

not the same a-s the adjustment that corrects s for bias Table 12 14

illustrates the source of the difBculty Here we extend Table 1213

* Vi e wUi u«e the theoretically correct value of 1 43 instead of the calculated

value of 1 437 m Order to amphfy the following discussion
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to make the implied inferences about s The interval boundanes

given in column 1 are the square roots of the interval boundaries

gi\ en in column 5 of Table 12 13

Column 2 gives the midpoints of tlie intervals These roidpoinis

are then multiplied by the probabilities of column 3 to denve

column 4

The sum of column 4, or 1 16%, is the anthmetic mean of the ex-

pected sample standard deviataons If we square this mean we get

1 35 Note that this is not the same £« the mean of the squares given in

cohunn 8 of Table 12 13, nhich is 1 44 Nor would we expect it to be

The square of the mean of a set of numbere is not the same as the mean

of the squares unless the numbers are all the same In fact, one of the

short-cut formulas for calculating the variance of a set of numbers is to

subtract the square of the mean from the mean of the squares, namely,

Thus ve see that the iV - 1 adjustment corrects the s* for bias but

it does not completely correct the s The anthmetic mean of the cor-

rected s's, or the o-’s, would still be less than the cr of the umverse The

amount by which it would be less is obviously related to the variance of

the distribution of sample s’s because this \ anance is equal to the dif-

ference between the mean of the squares of « and the square of the mean

of s, or = IsVN - {IsiHf, or 1 44 - 1 35 « 09

If we wish to make an unbiased estimate of a, we can accompbsh it

approximately by the formula

,
2N

' 2iV-3
{ff« IS taken to represent an

unbiased estimate of a

)

If we apply this formula in this case, we get

<r/ = 1 16^
2X10

2 X 10 - 3

= 159

Thus ffe = 1 26%, the same as the standard deviation of the universe

To summarize this section, we might point out that if we are satisfied

to make the best single eslimak we can (rf the umverse variance, we can

do this by the relation a* = ^N/{N - 1) The square root of this is

not the best single estimate of the standard deviation of the universe

The best single estimate of the standard deviation of the universe can

be approximated from the relation

In the next section we consider the problem of making estimates of

the entire inference distribution of ^ and of a
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The Use of the ^ Distribution to Derive the Inference Distribution

of the Variance and Standard Deviation of the Universe

It IS a very formidable task to estimate the inference distribution

of a* and of a The difficulties are caused by the skewness m the

distnbution of and by the fact that the vanous inference vectors

will have different variances This was the same kind of difficulty

we had ^ith the binomial We can only approximate the inference

ratios unless N is large enough to make the skewness negligible and

the variances practically the same

We can illustrate the procedure and the difficulties by referring to

a specific example Suppose we have a sample of 10 with a standard

deviation of scrap percentages of 96% Table 12 15 shows the cal

culations

Column 1 shows the arbitrarily selected values of cr/ We ha\e

again used an interval of 12% to facilitate reference to our preced-

ing work

Column 2 shows the squares of the column 1 standard deviations

Column 3 shows the values appropriate to the ii*, the 4^ and the

^ Note that the tj? is in the denominator of the ratio and that it

varies as <t/* vanes Thus we are using our now familia’r technique

of selecting pn(w hypothem about We then use such an hy-

pothesis to calculate the x* for the given We assign implicit

equal weights to each of these pnor hypotheses Thus we are using

the familiar Bayes’s theorem The final distribution of inference

ratios shown m column 6 is the posterior distribution and is a revision

of the pnor distribution of equal probabilities

Column 4 shows the probability that a x* at least as large as that

specified could have occurred by chance

Column 5 lists the intervals for the possible values of iti^

Column 6 shows the inference ratio corresponding to each inter-

val of

The most interesting inference ratio is that for the interval 1 4400

to 1 7424 This is the interval which contains the it;* of 1 59 at its

approximate center If the universe variance really were 159, we

would expect a sample variance between 81 and 104 to occur

approximately 14 of the time (See Table 12 13, columns 5 and 6

)

Note, however, that we assign a probability of only 11 to a universe

variance between 1 44 and 1 74 if we are given a sample variance of

92 Ideally the«ie two probabilitite should be about the same The

difference is caused by the skewness of x^ by the vanation of

the variance from one inference vector to the next If were some-
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TABLE 12 IS

inferences Abou) ibeVorianee of a Normal Universe

Given 8 = 96%, iV - 10

8®= 9216

j _ Ws* 10 X 9216

(1) (2) (3)

lOX 9216

(4)

Xl’ f(x’>Xr’)

(5)

ffi’

(6)

IT/’

48 2304 4000 000 2304- 3600 002

60 3600 25 60 002 3600- 5184 036

72 5184 1778 038 5184- 7056 122

S4 7056 13 06 160 7056- 9216 190

96 9216 1000 350 9216-1 1664 194

108 11664 7 90 544 1 1664-1 4400 155

120 1 4400 640 699 1 4400-1 7424 109

132 17424 529 808 1 7424-20736 072

144 20736 444 880 2 0736-2 4336 045

156 24336 379 925 24336-28224 027

168 28224 327 952 2 8224-3 2400 018

180 3 2400 284 970 32400-36864 on

192 3 6864 250 981 3 6864-iI6l6 006

204 41616 221 987 4 1616-4 6656 005

2 id 4 6656 198 992 4 6656-5 1984 003

228 51984 177 995 51984:-576Q0 001

240 57600 160 996 5 7600-6 3504 001

252 6 3504 145 997 83504-69696 001

264 69696 132 998 6 9696-7 6176 001

276 76176 121 999 76176-82944 ooi

1000

what larger, say, about 35, then tins difference would be close to 0

If we had a sample of 10 with a standard deviation of 1

and a variance of 2 43, we would find the inference distnbution to

be more dispersed than we juat did for the case where s = 96%

The contrast is made clear in Fig 12 12 This illustrates the point

that tlie variance of the inference vectors vanes from one sample

result to another Ideally, n e would like the variance of the sample
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fig It ti lo/ereace distnbiitioos of tbe etAodard davi&tiOB of & uiuvene based

oa diflereat samples of W items

variances to be independent of the vanance This, of course, would

be quite a trick to achieve Since we cannot achieve it, we must be

satisfied tvif/i onfy crude approximations to our inference ratios

If we wish to make our inferences for the standard deviation

instead of for the variance, we could merely take the square roots

of the various s Or, if we felt the need to correct for the mod*

erate bias, we could multiply each by (2N - 2)/(2W - 3) before

taking the square root Most people do not make this adjustment

because they feel that the estimates are too crude to make such an

adjustment practically meaningful

Normol Curve Inferences About the Standard Deviation

When N is large

1/ we have a norml universe, and if the sample is large, say, 30 or

more, the distribution o! sample standard deviations is approximately
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we must esUmate the standard deviation of the umverse, the usual case,

s

we obtain c, « — For example, if we had a random sample

of 50 yam fibere with a standard devmtion of breakmg strength of

4 64 oz
,
we could make reasonably accurate inferences about the stand-

ard devmtjon of the umverse breakmg strength by appljmg our

usual procedure for normal curve estimates The mean of such infer-

ences would be approximated by 4 64 , or 471 oz m this

case The standard deviation of the assumed normal distribution

would be approximately 47 oz We do not carry out the rest of the

calculations here We merely note that there would be about 68

chances that the umverse standard deviation falls between 4 24 and

618 oz

Confidence Limits of cr and iP

If we are interested in specifying only parts of the distnbution of

mferences about <r and we can proceed exactly as we did m setting

confidence limits for the mean We can pick out the proper brmting

pomts from the whole inference distnbution, or we can take advantage

of special tables which provide the lumting points for the more conven-

tionaUy used confidence coefficients For example, suppose we wished

the 90% confidence limits for given a sample of 10 with a vanance of

92 (our familiar scrap percentage problem) We \vish to find the x*

values for n a 9 that cut off the lower 5% and upper 5% of the distn-

bution The lower 5% is the pomt abm which 95% of the cases faU

The table m Appendix F shows a x^ value of 3 325 at the 95% point

and a x^ of 16 919 at the 5% pomt Our fundamental formula is x^
==

Ns^/ff]^ Substituting values of x^j aud and solving for the ap-

propriate inference valu^ of we get 90% confidence limits of 54

and 2 77 These correspond qmte closdy to the values we would get

if we interpolated in the inference distnbuUon we worked out m Table

12 15

Confidence limits for <r could be denved from the confidence lumte

of ir^ by takmg square roots of the <r^ As before, we could first adjust

the 0
-^ m order to allow approximately for the bias in <r when it is cal-

culated from

PROBLEMS AND QUESTIONS

12 1 What do we mean when we say that the standard deviation of a

random sample is a bicwed estimate of the standard deviation of the uni

verse?
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12 2 The actual or potential enstcMe of skewness in a distribution is

allraj's a source of some concern to us because an attempt to allow for this

akewness adds conaderably to the difficult) of our work at the same time

as such an allowance would improve our estimates

TiSTiat do we biow about the behavior of skewness in samples that makes

It possible for us to gracefully compromise our desire to avoid difficult work

and our desire to mike reasonablj accurate estimates?

12 3 Our uncefiamtj about a future sample mean is a function of our

uncertainty about the universe that ts prevailing and our uncertainty about

the particular sample that will occur from whatever universe is prevailmg

Assime a case of a pnor sample of 10 items Then sketch a tree diagram

to illustrate the sources of our uncertainty about the results m a second

sample of 10 items

U*!? jour tree diagram as a reference and eaplam in nontechnical lan-

guage wh) we would expect the variance ol the expected sample resulta

to be about fince the variance of our loferencw about the univerie (Note

Me can say twice only beause our first and second samples have the

same are What would you S3> if the second sample were three times as

large as the first sample ’)

12 4 We find some very substantial analytical advantages if we work

with distnbution models that assume that the variable m question can

take on any lalue vhattoeier over an m/fm(e range We then use a fre-

quenc) curve that shows a concentration of frequency near some central

point of this infinite range and then tails off mto lower frequencies on both

sides of this concentration area, with the relative frequencies ultimately

^ ^ so small (e{, 00000001) that we can afford to ignore them m a

practical problem

Analjre what you know about the following distnbutiona from the point

of view of determming whether it would be practical to assume that the

distribution conformed to this model of a continuous distribution with an

infinite range (Note Keep lo mmd that the difference between a proba-

bility of 0 and a probability of flOOOOOOl is often of no consequence

)

() The distribution of heights of adult male human beings

() The di«tnbution of umt sales of a M’oolwortb store

(c) The distribution of «tock pnees on the N Y Stock Exchange (Note

You will have to face up to the problems of number of shares outstanding

and number of shares traded at tie particular prices

)

(d) The distnbutjon of sample ps m samples of 600 from a universe

withat-offi

(e) The distribution of sample ps in samples of 5 from a universe with

arof 05

(/) The distnbution of the dollar volume of sales that vughl occur next

week 10 the neighborhood super market

(ffl The distribution of automobile Ure sites that have been manufac-

tured m the United States during 1961

125 Explain the logic of our saying that random samples from an

mfinite and continuous universe will yield pairs of sample means and

sample standard deviations such that every possible standard deviation

will appear paired vrvtb every posable mean Turthennore, these pain

Will occur m such relative frequencies that the arithmetic mean of all the
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standard deviations associated with a given sample mean will be the same

as tbe anthmetiG mean of the standard deMations associated with any

other sample mean Thus the inference matrix will show the same vanance

for each vector, both horizontally and vertically

12 6 A study of the length of Me of a particular brand of 75 watt hght

bulbs resulted in a sample of 50 bulbs ^wing an arithmetic mean life

of S40 hours, a percentile equivalent of this mean of 64, and a standard

deviation of 80 hours

() Estimate an inference distributum for the universe mean life of these

bulbs by the use of the bmomal distribution and percentile equivalents

(5) Estunate an inference distribution for the universe mean life of these

bulbs by assuming a normal distnbution of sample means

(c) Compare your results m (o) and (6) and logically account for the

directions of the observed differences

12 7 Critically compare Uie distnbuti<m of Z (normal) with the distri-

bution of t fhy particular attention to tfie feet that the i distnbution is

denved from the normal

12 8(fl) Suppose 18>aionthold Baby Boy A and 18 month-old Baby

Boy 5 have both had perfect records of never having broken a flower vase

equally exposed in both ^leir hoines Which is the better behaved of these

two boys if one considers that A has always been confined m a playpen

when in the room in question while B has been allowed apparently un

restnoted freedom in the room^ Relate this problem to the concept of

degrees of freedom

() Attendance records show that durmg a given 10 week period the

statistics course at the local coDege had daily patronage closer to capacity

on the average than did the locd movie theater This is evidence that

1 The statistics instructor was putting on a better performance than

the offenngs of the local theater

2 The students would have had to pay their own fee at the theater,

an obvious deterrent to attendance, whereas the parents generally paid the

fee for the statistics course as part of the tuition Thus the students con-

sidered the statistics course was free of charge

3 The statistics course was required for a degree and the instructor

kept an attendance record He also asked questions on examinations that

were based on material available only in the lectures

4 The students rarrfy had any alternatives that they preferred to

the statistics couree

Discuss jour choice of explanation(s) in the light of the freedom that the

students had to exercise unrestricted choice

(c) Young children have a strong uige to grow older in a hurry in order

to have greater freedom to make their own Voices Have you f^und that

you have really had greater freedom as you have grown older’ In your

answer consider such things as

1 Physical restrictions on your freedom of choice

2 Psychological, sociological, moral, etc, restrictions

3 The correlation between your freedom to make one decision and

the effects of the decision (and its mrtcomes) on your freedom to make

other decisions For example, you mitially have freedom to choose your

intended career However, once you deade to try for a medical degree,
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jou automaticalJj impose all sorts of restnctions on jour remammg avail,

able choices At the same Ume, of cooTse, jour pursuit of jour medical

studies opens up a whole visla of choices that are demed to those who hai'e

not made the first choice

(d) If JOU are trjmg to understand v>hy jou made a particular decmon,

would It be important to analjte the scope of the freedom you possessed

m making the deciiion’ Might jou be unaware of some of the restnctions

on jour behavior because these restnctions are buned m jour subconscious^

(e) Why IS it often more accurate to predict a person’s behavior on the

basis of his past behavior rather than on the basis of what he sajs he is

gomg to do?

(/) What would be j our initial teaclion to a company's financial budget

that assumed a doubling of dolbr sales in the next jear compared wuth this

jear despite the fact that the past record of the company has never shown

a jear-to-jear sales increase of more than 15*^?

(ff) A traffic light obviously restricts a person’s freedom of choice as to

when he maj go through an intersection, particularly if there is a poheeman

on the comer On the other hand, the existence of the light also creates

some freedoms that might not ha\e been available if the hght were not

there What are some of these new found freedoms^ Do you feel better

off on balance because the light u there’

(h) All laws and regulations are ob'ioudj Test^ctl^e of freedom Other-

wise there would be no point m the law or regulation However, do laws

and regulations al«o create freedom’ lUusirate with respect to «ome of

the more controversial laws and regulations existing or proposed in jour en-

vironmental group

(t) What sense, if any would there be to an "index of the rate at which

Americans have loH their freedom" which is ba'^d on the rate of increase

in the number of bws and regulations “on the books” over the jears?

12 9 Suppose JOU had a sample of only 10 light bulbs instead of the

60 referred to m Question 12 6 The mean life is still S40 hours and the

standard deviation still 50 hours We hesitate to calculate the percentile

equivalent of the mean because of the senous interpolation problem pre

sented when we have onlj 10 items (If we overcome this hesitation, wc

estimate a percentile equivalent (P E j) of^

)

() Estimate an infe enee distribution for the mean life of these bulbs bj

the use of the t distnbution

() Make similar estimates by the use of the binomial distribution and

percentile equivalents of the mean
,

(c) Compare jour estimates m (o) and (6) Eiplam the logic of the

observed differences (Note You may have to be wary of reading errors

w hich j ou madem sw itchmg from vj to n,

)

12 10 Estimate the S0% confidence intervals of the universe mean

ba»ed on the following wnple information

(o) Sample of 100 cigarette gmokers shows a mean dailj’ consumption

rate of 147 cigarettes and a standard deviation of 39 cigarettes

(6) Sample of 10 bolts shows a mean breabng strength of 1146 pounds

and a standard deviation of 107 pounds

(c) A sample of 100 people reveals that 75 of them claim to smoke

fewer than 15 cigarettes per daj (Many of the«e people are nonsmokers

)

12 A particular brand of (re«h milk is claimed to have a mean
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butterfat content of 4 10% A random sample of 20 quart bottles shows
a mean of 4 00% and a standard deviation of What is your reaction

to this hypothesB of a unu er*e mean of 4 10%’ Show the relevant proba

bilities

(b) What IS the probability that this milk is actually averaging as low

as400% butterfat’

12 12(c) An initial study of the hfe of h^t bulbs is performed with a

sample of 15 bulbs It resulted jn a mean hfe of 790 hours and a standard

deviation of 146 hours The standard deviation impressed the researchers

as too high to provide rdiaWe mfonnatwn on the basis of such a small

sample Hence another study was made of 15 more bulbs This sample

yielded a mean of 820 hours and a standard deviatioa of 155 hours

Pool the information of the®e two samples and make inferences about the

mean hfe in the umversa

(b) Make inferences about the mean of the universe from the first sam

pie and then pool these inferences with the mformation of the second

sample m order to make final inferences about the mean of the universe

(c) Does it make any difference whether you pool samples or inferences’

(d) Does your analyus indicate that it was reasonable to pool the^e

tno sets of evidence as though they came from the same universe’ Justify

your conclusioa

1213(fl) Construct the inferent^ distnbution of the dijjermei that

might exist between the means of the two universes from which the above

two samples of light bulbs came

(b) il^at 18 the probability that the second sample came from a uni*

verse with a hgher mean life’

What would be your reaction if this probability turned out to ho 50’

12 t4(a) Given a sample of 20 light bulbs with a mean life of 800 hours

and a standard deviation of 100 hours construct the inference dmnbution

for the expected mean life of a second sample of 30 bulbs from the same

universe

(b) Also construct the inference distribution for the mean of a second

sample of 10,000 bulbs

(c) Contrast your distributions m (o) and (b)

(d) Would you say that a sample of 10,000 is practically infinite in this

case? Why or why not’

1215 Explain the relationship of the distnbution to the normal dis

tnbution Be very careful to note exactly what distnbution it is that the

distnbution assumes is normal

1216 It IS believed that the student body at a given college is split

50~5Ci m their preferences for das«eg <!tartrag at 8 a m or at S 30 a m A

presumably random sample of 50 students is polled by the student news

paper This sample shows 56% expressing a preference for the 8 30 start,

with 44% expressing a preference for the 8 00 a m start

(o) IS It important to report this survey by referring to the sample

es presumably” random’

[b) Why IS It important to state that the rwults reflect the ‘expressions’

of preference rather than the preferences themselves’

(c) Test this 50 hypothesis against this sample result of 56 by the use

of the following methods
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1 By use of tfae binomial distnbution (Note Would it be a good

idea to take only bU of tfae frequency asociated with a p of exactly ^6?

Eiplam)

2 By use of the Doimal distribution Use a mean of 5 and the appro-

priate associated standard deviation of sample p^a

3 By use of the distribution

4 Compare jour answers in (o), (6), and (cj Should any of these

answers be exactlj the same except for rounding and/or arithmetical errors?

Ecplam

13 17 Suppose we ha\e a universe with a standard demtion of (10

We then drau all possible random samples of 10 items each

(o) Make up an inference distribution for sample lan&nces (See Table

1213)

(6) Make up an inference distnbution for sample standard dciiationi

(c) Calculate the arithmetic mean of the variances and of the standard

deviations and compare them wlh the umvcRe values and with each other

(rf) Chart each of jour inference distributions and note ary Rgmficant

properties of the«e distnbutions

13 18 An automobile battery manufacturer applies an accelerated hfe

test to a «ample of 20 battenes His results show a mean bfe of 27^ months

and a standard deviation of 2 6 months

Make up an inference distribution for the value of the umverse standard

deviation

1 By the use of the^ distribution What assumption are you making

about the distnbution of the individual items m the universe? Po you

think this IS a reasonable assumption to make about the hfe of automobile

battenes’ Wbyorwhynot?

2 By the use of the normal curse

3 Compare your distnbutions to (a) and (b) end account for the dif*

ferencea

12 19 Use the infomation m Question 1218 and estimate the propor-

tion of batteries the manufacturer should expect to be returned for partial

credit if the batteries are warranted to give a minimum of 24 months' service

(Note There are at least two parts to this problem One part is the prob-

lem of estimating the proportion of battenes that will last fewer than 24

months The other part is to estimate the proportion of the owmers of

«uch defective battenes who will bother to claim a credit

)

12 30 A second sample of 20 battenes jielded a mean of 28 4 months

and a standard deviation of 29 months (See Question 1218 for the re-

sults of the first sample

)

(o) Pool this sample with the first sample and estimate the inference

distnbution for the unnerse standard denation from the pooled results

(6) Estimate the probabihlj that the wcond “ample came from a uni-

with a higher standard deviation than the universe from which the

first sample came

12 31 Given the fir^t sample with a mean of 27^ months and a standard

deviation of 26 months, estimate the probabilitj of getting a “second sample

of 20 battenes from the some mverse with a standard deviation of 2 9

months or more



chapter

Reducing uncertainty by

association: the problem and

the model for analysis

13.1 The Fundamentoi Idea of Association

The process of learmng by association js very familiar and

the tfichniqne simple It conaste of noting that events occur simul-

taneously, or ivjtii a predictable lag For example, freshening of the

wmd, distant thunder, and approaching dark clouds usually presage

a rain shower A prudent person can in this way be forewarned to

make any appropriate preparations

Association and Knowledge of "When"

In Chapter 2 we briefly discussed the various kinds of knowledge

we might have about an event Among the three kinds was knowl-

edge of ‘ When' an event would occur This is exactly the same

kind of knowledge as knowledge about association Our remarks

there apply equally well here, and it may be helpful to quickly

review the relevant pages

Association ond Sorting, or Classifying

Television panel programs mid many parlor games are really games

of association Success depends on our ability to associate the an-

swers to questions with certain classes and siibciosses of events The

tnck is to progressively narrow the range of variation within a class

until it IS practically zero, leavmg room for only one event, the one

at issue

We can best illustrate this process by a hypothetical example

Let us assume we have a set, or universe, of several hundred small

blocks of wood Each block has a number on it The numbers run
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from 0 to 100, with a mean of 60 and a standard deviation of 10

The numbers are approximately normally distributed

If Tse are told that one of the blocks has been drav^m from the box

that contained all of them and are asked to estimate the number on

the block, what can we say? The best single guess we can make is

“50 ” We could mcrease our confidence m guessing correctly by

estimating a range of values, such as “between 40 and 60 ” We

could novr feel that we had about two chances out of three of being

correct

Let us next suppose that we are permitted to ask and have an-

swered any question about the characteristics of the block except,

of course, a question about the number itself So decide to ask

about the color of the block because we have had some past experi-

ence that indicates that the numbers, to some extent, are assoaated

with color In fact, our past experience suggests the following sub-

sets, or subuniverses, of blocks according to the color of the block

Subset of red Subset of green Subset of yellow

Range « 0-40 Range - 30-70 Range - 60-100

». = 20 ,1 = 50 ,1 = 80

<r = 8 <r = 8 ff = 8

We are told that the block is red We can now estimate that the

block has a number between 12 and 28 with about two out of three

chances of being correct Note that knowkdge of the color has

enabled us to reduce our uncertainty (as measured by a) from ±10

to ±S, a reduction of 20 or 20^

We then recall that the blocks have different shapes and that the

shape IS also associated with the number In fact, our past expe-

nence suggests the following subsets of red'Square, red-tnangle, and

red-arcle blocks

Red-square Red-tnangle Red-circle

Range:0-20 Range ‘10-30 Range:20-40

,i:10 p:20 g:30

(r:5 ir:5 ff:5

We are told the block is circular, and we can now estimate that

the block has a number between 25 and 35 with about two out of

three chances of being correct Note that knowledge of shape has

enabled us to reduce our uncertamty from ±8 to ±5, or 375 below
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wiat it was when we knew only color Also note that knowledge

of both color and shape enable ns to reduce our uncertainty from

±10 to i 5, or 50^

Figure 13 1 shows all the subclasses of blocks we can presently

distinguish If we knew additional moaated characteristics of the

blocks, we might be able to reduce the uncertainty even further

For example, the blocks might have different weights, with the

heavier blocks haiing the larger numbers We would then sub-

divide each of the nine color-shape classes into the appropnate

color-shape-weight classes We have already earned the illustration

far enough to illustrate the process, so we make no further effort to

increase our knowledge about the numbers on the blocks

Measuring the Extent of Association

Association exists between two evente whenever we can make

improved estimates of one of the events from knowledge about the

other event For example, we say that there is some association

between the color of the blocks and the numbers on the blocks

because knowledge of color enables us to make improved estimates

of the numbers on the blocl^ There is no association between

events if knowledge of one tells us nothing about the other For

example, knowledge of the color, or of the suit, of an ordinary play-

ing card tells us nothing about the number on the card Hence there

18 no association between card color and card number (Note, how-

ever, there is some association between card color and card suit

)

Perfect association exists between two events when knowledge

about one of the events tells us all there is to know about the other

event For example, if all the red bloclm had 6’s on them, we would

know the number whenever we knew the block was red

Real-life examples of perfect association are practically non-

existent, as are real-Iife examples of no a^ociation Most practical

problems involve some intermediate degree of association between

events We can quantify the degree of associatm. m many different

ways One of the simplest ways is by measurmg the reduction in

error that occurs when we take advantage of some associated knowl-

edge Let us use the standard deviation as a convenient measure of

error (Other measures could be used ) We discovered that the

numbers on all the blocks have a standard deviation of 10 Thus, if

all we know about a block is that it le a member of this set of blocks,

we are subject to an error m the order of 10 as we estimate the

number on the block The red bloc^ have a standard deviation of
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only 8, as do the green blocks and tiie yelloTP blocks Thus, if we
know the color of the block we ace sub)ect to an error m the order

of 8 This IS an error reducim of 2 on a base of 10, or a 20%
reduction Therefore, it would be proper to state that knowledge

of color enables us to achieve a nlahw reduction oj error of 20

We might call such a result a coefficient of association, which we can

symbolize by the letter A

Since most problems involve several associated variables, we have

to use subscripts to clearly identify what it is we are associating

For example, we might label Ike coefficient of association between

block number and block color as Ane, that between number and shape

(not show n m Fig 13 1) as and that between number and shape,

mtk color constant, as The value of A„r from Fig IS I is

(8- 5)/8, or 375 The reason we say color is constant as we add

knowledge about shape to color is that knowledge about color appears

at both levels, thus any change in error from the second tier of cells

to the third tier of cells is independent of color We usually apply

the term partwi association to tiie degree of association between two

vanablcs when another, or other, vanabiefs) is (are) constant We

would say that 375 is the degree of partud association between num-

ber and shape tohen color w constant

Association Works Both Ways

Smee we were basically interested in the numbers on the blocks,

we naturally tended to think of the association as helping to estimate

the number If there is an association between number and color,

however, there is also an association between color and number,

and jf we know the number on a block, we also know something

about the color of the block

Similarly, we might have first sorted the blocks by shape and

then by color, obviously ending np with the same cells m the third

tier For example, the second tier might then have looked as follows

Subset of biangle

10-90

M 50

ff 9

Note that there is less association between number and shape

(An, = 1) than between number and color The reverse might as

well be true

Subset of square

Range 0-80

a. 40

(7.9

Subset of circular

Range 20-100

li GO

cr 9
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Association and Causation

No rea'onable person would e^er a^e that the red blocks have

small numbers because they are red, or that the small-numbered

blocks are red because the> are small numbered The a^allabIe evi-

dence 'suggests onl> that red blocks tend to be small-numbered blocks

this a««ociation exists is not revealed by a simple examination

of the association itself If, on the other hand, we were to pamt the

red blocks green, and if the numbers on the blocks automatically

changed to larger numbers, we would have some evidence that the

numbers vsere cau ed bv the color But, if we were only able to

obsene that green blocks had larger numbers than red blocks, we

w ould onij be able to saj that “green blocks have larger numbers

than red blocks
”

We all have an urge to infer a causal connection from observable

evudence of association This is perfectl> respectable as long as we

recognize that the particular inference is an expression of a personal

opinion, and not a conclusion that logicallj follows from the ob'erv ed

facts Such inferences are the same as unproved theones or hj

potheses If v\ e plan to act on the basis of such inferences, we would

be well advised to act with caution until additional evidence appears

to support our theorj about the nature of the causal connection

It is sometimes argued that we should pay no attention to an

observed association unless we can ‘ logicall) explain it,” with “logi-

call) explain” meaning the «ame as “know the cau«es ” For example,

an often quoted “nonsense association” is that between ministers’

salanes and liquor sales It is a fact that mmisters’ annual salanes

tend to be higher m those communities where per capita liquor con-

sumption IS high We should not ignore this fact just because it has

apparently illogical connotations tf tie conjuse association tnth causa-

tion. Thi' fact does not nece'sanl) implj that ministers earn high

salanes from the liquor trade, or that ministers encourage the con-

sumption of liquor It does not even necessarily imply what most

people would consider the most logical explanation, namely, that

people who can afford to pa> high salanes to ministers also have

enough monej to buy liquor The observable fact is just that,

namel), an observable fact Whether ue know uhy this fact exists

has nothing whatever to do with whether it is or is not a fact It is

never prudent to ignore a fact just because we do not understand it

Statistical anal) SIS is reall) a science for the analysis of obsena-

turns and not capable of uncovering the causes of observed facts

The study of associations between vanables maj stimulate our
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imaginations as to underlying causes, but it cannot directly point

to the causes In effect, we can determine ‘ what birds flock together”

without being able to determine “why tiiey flock together ” We leave

the latter task to the speciabsts m the particular area of knowledge

involved, whether it be migratory habits of birds, reactions of em-

ployees to a change in the length of the coffce-break, or the effect

of color on the reader response to an advertisement, etc

Association Conscious and Unconscious

Most of our associating is at the unconscious level We develop

habits of behavior and response which make it unnecessary to con-

sciously think about each of the associated or coordinated events

There is much evidence to support the view that the conscious mind

cannot consider more than two or three vanables at a time Since

most of our problems require the consideration of many more than

two or three variables, we find ourselves in a serious dilemma if we

try to think about a problem We solve the dilemma by a combina-

tion of analysis and ezpcrmenlation We analyze by breaking the

problem into parts, each part presumably having few enough van-

ables for us to mentally handle it, the other parte we temporanly

Ignore We then shift our attention to the othei parts After having

surveyed all the parte of the problem, we try to put the parte back

together again, with more or less success The process is not unlike

what goes on when we put a complex puzzle together

Experimentation is basically a cut-and try technique We sys-

tematically manipulate one vanable while attempting to hold the

others constant The test of the effectiveness is the outcome For

ji ws ^nsxesse- Ihe uw. rd colnr in our advertiBements, we

would tentatively assume that vanation in the results was attnb

utable to the color We say tentatively because we are never com-

pletely successful m holding other factors constant If we are able

to perform enough experiments, we can often gam additional con-

fidence in our results because the distoihing effects of the other

variables tend to average out This cut-and-try technique is obvi-

ously very time consuming If each of us were restricted to the

knowledge gained only from our own experiments, we would make

very slow progress in trying to improve our estimates Fortunately,

however, considerable competitive activity is going on As soon as

we see one person getting good results, the rest of us quickly copy

him, or at least as quickly as personal pnde and the patent laws will

allow

It is possible to considerably extend the scope for conscious con-
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sideratioQ of several variables by using mathematical tools In sub-

sequent pages we are not able to fully exploit these techniques but

^ e are able to explain some of the fundamentals and point the direc-

tions ue might follow if we were to become more ambitious

13,2 Some Practical problems

The fundamental technique used m di'^covenng and measunng as-

sociations IS sorting or classifying as shown in Fig 13 1 Unfortu

nately, we find it very difBcult to use the technique in that form

The difficulty develops because of the need for a large sample of

experience to make the technique effective We need the large sam-

ple to get a rea'ionable number of items m each cell or subset Our

example had only three colors and three shapes, and even then we

ended up with nine subsets If we desired a mimmum of 10 items

m each subset to give us a fair idea of the mean and standard

deviation of each subset, we would have to have a miniraura of 90

items (Actually we would probably need many more than 90 to

give us a mmimum of 10 per cell Items w ould not occur with equal

frequency in each of the cells unless we were able to control the

frequenc)
)

Imagine the problem that occurs if we needed, say,

four variables and five divisions of each This would lead to 5*

ultimate subsets, or 625 With tremendous luck we could get two

items m each cell with a sample of only 13501

TABLE 13 1

Sample of Hetghn and Welghu of Aduh American Males

Height TT eight Height Weight

(inches) (pounds) (inches) (pounds)

64 135 69 15S

65 125 70 155

65 140 71 180

66 160 71 195

66 145 72 170

66 122 72 185

67 145 72 210

67 170 73 225

69 175 74 ISO

69 160 74 195
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We solve the problem of sample size by using the simple idea

that the i anous cells are Ttot completely independent oj each other

We really do not ha\e to collect information on eiery cell to be able

to sa> something intelligent about the items m that cell A simple

example makes the pomt Consider the problem of the as'ociation

between the height and weight of adult American males Let us

suppose we hai e selected a random sample of only 20 men and have

measured their heights and weights Table 13 1 shows the results

Wte then plot these 20 paired figures in Fig 13 2A (Such a plotting

is called a scatter diagram, or scatte^ram for short
) It seems quite

clear to the naked ej e that tail men are m general heaner than short

men In fact, the e}e almost irresistibly draws in a Ime to show

how this relationship between height and weight progresses from left

to nght Figure 13 2B shows one posnble line

T^Tiat is the logic for drawing such a line^ It is simply that ex^ie-

rience and common sense suggest that a smooth hue marks the pro-

gression from one weight to the next as we let height increase

There seems to be no logical reason whj the progression should have

any plateaus or any reversals If we consider that each mch of

height represents a separate subclass for determining the weight of

those that fall m that class, we can use the smooth line as an estimate

of the mean weight in each class For example, we estimate that

adult American males with a height between 67 5 and 68 5 mches

HeihKmches)

Rg 13iA Scatter diagram of heights and weights of adult ^mencan males
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Fig iJJfl Scatter di^am of height^ and »eightj of adult Amencan males with

line of relationship fitted visually

have an arithmetic mean tteigbt of 160 pounds Thus this hoe is

really a basis for interpolattng the various mean weight values for

the guen height values

If ve t^ished, could treat the height factor as a contmwm

variable and divide the height groups into an injlnite number of

groups, each with an infinitesimal width It is obvious that most

of such cells should be empty of actual data We fill them in by the

use of the interpolation device

The problem of the venation of weight within the height groups

IS not so comfortably solved as is the problem of detennming the

mean weight within the group It is quite obvious that people of

the same height can and do have different weights The important

issue is whether the degree of vanation is the same m all the height

classes For example, suppose we happened to have substantial evi*

dence that the males 66 indies tall had a mean weight of 140 pounds

and a standard deviation of 7 pounds Would it then make sense

to assume that the men 74 inches tall had a mean weight of 195

pounds and also a standard dcwafion of 7 founds Most people

would naturally expect that the standard deviation of weight within

a class would increase as the mean weight within the class increased

Thus the} would expect the standard deviation m the 74-inch class

to be greater than 7 pounds But how much greater? Would there
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)e a systematic relationship between the mean and the standard
ieviation, say, something as coaveoient as a constant percentage

elationship? For example, given a constant percentage relationship,

ind given a standard deviation of 7 on a mean of UO, vie would
xpect a standard deviation of 9 75 pounds on a mean of 195

Although there are ways to solve the problem of a variable stand-

rd deviation the methods are outside the bounds of our treatment

lere We use methods which amm that the standard deviation of

ne variable w the same for att vaiuas 0/ the other variable This

'sumption considerably simplifies the anthmetic and usually does

ot introduce gross erroia We do caution, however, to be alert to

ituatioQs where this a'sumption would lead to gross errors

3.3 A Model for Association (Correlation] Analysis

Anj kind of mathematical analysis of data requires a model to

rovide the necessary steps of analysis and the basic of intelligent

iterpretation of the results The assumptions underlying the model

re the essence of the problem We should always know exactly

hat they are and exactly in what way they ma> not be completely

itisfied Otherwise, we run the danger of applv mg our results in

lost mappropnate circumstances We should have the same sort of

nervations about applying an untested mathematical model as we

ouid have about taking a tnp in an untested airplane that conforms

i the model that an engineer designed

ssociaied Conditional Probabiltty Distributions

Table 13 2 illustrates the first step m constructing our correlctMwi ^

odel The left-hand scale, labeled Jj, shows values of the de-

ndewt variable, the vanable wearepnmanl} interested in estimat-

g We should not interpret the word dependent literally This is

term that has been applied for years to any vanable listed along

e vertical axis We do not mean to imply that the vanable is

ally dependent on something A more descnptive term would be

e estimated variable

The horizontal scale, labeled I2, shows values of the independent

^ Note the us-’ of the term carrelaCm This is the coaieotionaj name applied

the statistical aBaljsis of the association between variables \Ye tend to u'e

> words association and correlation mterchangetdily most of the time The

rd relolionship is also used with essentially the same meaning
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variable Again caution against a literal interpretation It 13

merely the com entional term for a variable listed along the horizontal

axis A more descnptue term for our purposes Tvould be the esfi

mating vanable

The vertical and horizontal vectors within the body of Table 132

TABLE 13 2

Correlation Model With Equally Likely Veluei of the Independent Variable

Tout

Vl Frh^ueacy
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show probabikty distributions All of these distributions are normal

and identical except for the lateral displacement Each value of X2

IS associated with a particular probability distribution for vanous

values of Xi For example, if we were given an ^2 value of 6, we

would expect to find an associated value of Xi to occur with the indi-

cated frequency as shown in Table 133 This is taken from the

column vector in Table 132 that corresponds to an X2 of 6 This

particular distribution has an arithmetic mean of Ji of 95 If we

look again at Table 13 2, we note that Xt has a mean of 10 5 when

A’2 equals 7, a mean of 11 5 when X2 equals 8, etc If we wished, we

could generalize this relationship by using an equation It would

bell = 35 + 10X2

'Note that this equation gives us the mean of the possible Xi values

that might be associated with a given X2 If we wished to estimate

individual values of Xj that might be associated with a given Xa,

we would have to allow for the variation within each vector All of

tliese vertical vectors have a standard deviation of 2 Thus, if we

were given the information that Xz had a value of 6, wc would be

68% confident that the associated lalue of Xi was between 7 5 and

11 5 (Recall that these probability distributions are normal

)

TABLE 13 3

Expected Value of Xj when X2 >s Eqoot to 6

Probability, or

Xi Relative Frequency

n 000

16 001

15 005

14 017

13 044

12 092

11 150

10 191

9 191

8 150

7 092

6 044

5 017

4 005

3 001

2 000
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Let «s now return to Table 132, noting additional important

features The sura of each vertical vector is 1000 Here 1000 is

really 1 000 m terms of probability, or relative frequency Thus

are treating the A 2 values as equally likely or as given injoma

hen Each of the associated probability distributions is called a

conditional probability distribution because each distnbution is ap

plicable only on the condition that the given A 2 \ alue pre\ ails \\ t

shortly look at unconditioml probability distribut ons

What we have just said about the vertical vectors applies equally

well to the horizontal vectors Note that these also all add to 1000

or at least they would if we extended the table to include more verti

cal vectors We have enclosed 1000 m quotes in those ca«es that

do not actually add up to 1000 in the table but which would if the

table were extended It so happens that the horizontal vectors also

have a standard deviation of 2 It is of course not necessary for the

vertical and horizontal vectors to have the same standard deviation

For example if the unit of Ah were halved the standard deviation of

the vertical vectors would become 4 What is important js that the

horizontal vectors are also normally diatnbuied This is a direct

consequence of having the vertical vectors normally distributed and

also having the two variables related m the form of a straight line

(Note the diagonal straight line running through the means of the

vertical and also the horizontal vectors ) If the relationship had

been curved and many relationships m practice are curved no such

simple relationship exists between the vertical and horizontal vectors

and analysis becomes a bit more complex

The Stereogram

Another useful way to picture the model shown m Table 132 is

m the form of a stereogram 01 a three-dimensional structure Figure

13 3 shows how Table 132 looks if we show the probabilities as a

third dimension

Associated Unconditional Probobihty Distributions

Unless we have experimental control over our data we do not

find associated distributions appearing jo the form shown in Table

13 2 The values of the independent vanable (X?) are generally

not at all equally likely For example if we select a random group

of men in order to correlate their height and weight, we would tend

to find more men near the average height than we would men at the

extremes of height The same would be true of their weight of

course



fig 13 3 Correlation model 1 Conditional dstnbution of (Photograph

bj Herb Comees

)

So letr us modify our model of Table 13 2 by assuming that the

various values of Xc would occur with tlie probabilities gnen by a

nomal distribution We simply multiply each vertical vector in

Table 13 2 by tlie probability that the given Xz would occur Tor

example, let us assume that on A? of 8 has a probability of 0922 of

occuinng \'\q hence multiply each probability in the ‘Xz^S
vector of Table 13 2 by 0922 The result is as shown in the Xz =
8” vector of Table 13 4 The otlier vectors are similarly modified

from tho«e given in Table 13 2

The probabilities are carried out to four decimal places to make

it possible to see some of the detail near ^e tails of the distnbutions

It might be helpful to gain perspective for studying Table 13 4 if we

look at Tig 134 There we show the stereogram of Table 13 4

All vectors are normally dwfnhufed, whether we consider the verti-

cal vectors nr the horizontal vectors The truth of this statement

follows directly from tlie fact that the vectors in Table 13 2 were

normally distributed, and the only change we made from Table 13 2

to Table 13 4 ^as to multiply each vertical i ector by a constant, an
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TAUl T3.4
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.

Rg 13 4 Corrchfion Model II Uncondiliotfll distnbuiiona of Aj and

(Photograpli bj Herb Comess

)

anthmelical operation ^liich m no alters the siiope or jom of

the distribution

The distribution of the wns of the vertical vectors is also normal

(These sums arc shown along the horizontal axis just above the Xz

values
)

'This follows direct!) from the fact that we assumed that

^2 would occur with normally distnbuted probabilities

The distribution of the sums of tlic homontal vectors is also

norma! (Tiie^c sums are shown in tlie extreme right-hand column

)

This is the distribution of Xi we would expect i/ ue had no infoma-

lion about X: We have more to say about this distnbution later

The distribution of the diagonalmm is also normal (These suras

are shown in the box in the lower left section of the tabic They are

the result of adding the probabilities along a line parallel to the line

show mg the mean values of Xj for the various given values of Xs

}

The probabilities below the mam diagonal are not shown because of

lack of space They would be an exact mirrored image of the

probabilities shown The fact Uiat these diagonal sums are identical
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With the 'vertical sums is a coincidence 'with this illustration It is

not generally true

Note that the margmal probabilities and the diagonal sums add

to 10,000 This 13 really 1 0000, Tvith the decimal point oinmitted

for comenience Thus we find that all of the probabilities together

add to 1 0000, as any proper probability distnbution should Each

cell in the figure gues the unconditional probabihtj of finding a par-

ticular item occurnng in the gnen cell For example, we find that

there is a probability of 0138 of finding an X- of 12 paired with an

Ai of 12 provided we ha\e no prior information about either Aj or

Contrast this with a probability of 044 of finding an of 12

if we already know that equals 12 The latter is the eondifionai

probabilit) of Xi given knowledge of A'j and is found in the ap-

propriate cell of Table 135

(The dashed line diagonal on Table 134 is the line that passes

through the means of all the homontal vectors m contrast to the

«olid line diagonal which parses through the means of all the vertical

vectors If we were int€re«ted m estimating Aj from given values

of A'l, we would be interested m the da«hed diagonal Since we are

not interested in such estimates, we ignore this line through the means

of horizontal vectors m this discussion We merely point out that

these two diagonals would coincide if the association were perfect

They would be at right angles to each other and parallel to the re-

spective axes if the association were 0 In an exercise at the end of

the chapter, there is an opportunity to speculate on the logic of these

statements

)

Comparing the Two Correlation Models

It js useful at this stage to review the properties of the correlation

models and tie a few ends together

1 Both models assume that the probabilities are nornially distributed

for all relevant distributions This is the simplest model we know how-

to work with If we do not u'e normal distnbuUons, we have substan

tial difficcdties m trymg to estimate the probabilities m the vanous

cells and vectors If our actual distributions are not strictly normal,

and they rarely are, we generallj accept the reniltant crudities m our

estimates unless the departure from normal is so great that cntical

distortion occurs If such distortion would occur, we have several

avenue' open to us One is to try to transform the data by the use

of logarithms reciprocals, square roots, etc into distnbutions that are

more nearlj normal than the original data The use of transforma

tions involves some mathematical and theoretical difficulties that are
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beyond our present scope Anotlier way is to abandon the mean and
the standard deviation as meaeunng devices and use medians and
quartile deviation A third av^ue is not to bother with tlpfiniTig the

nature of the association between two variables This is not recom-

mended unless the whole problem is ao trivial that we can justify any
work on it as only useful exercise to tone up our mental muscles

2 Both models have vertical vectors so that t!m standard dewations are

all identical (The standard deviations of the horizontal vectors are

also equal ) This is a very cnUcal assumption, even more critical than

the assumption of normality It is this assumption that makes it pos-

sible to combine logically the separate bits of information we might

have on the way the various Xi values deviate around their mean for

the given values of Xi This is the assumption we referred to when

we chscuBsed the sample of only 20 pairs of heights and weights If,

for example, tall men show greater weight variation than short men,

our problems are substantially magmfied and we would find these

models somewhat crude in theu' abihty to approximate reality We
are not able to consider such additional complexities m this introduc-

tory discussion

3 Both of these models assume that the relationship between the two

vanables is linear, that is, a straight hne Although it is likely true

that there is no such thmg as a Imear relationship m real life, it is

nevertheless true that a straight line does come tolerably close to most

of the curvilinear relationships that we do find Figure 13 5 illustrates

a few of the types of curves tiiat might occur Parts A and B show

two types that occur fairly often In A the true relationship is rather

steeply positive for low values of Xj and tends to flatten out B shows

the same thing except that the relatioDship is negative (low values of

Xi associated with high values of Xi ) The important point about

both of these is that the true relation^p apparently never shifts from

positive to negative, or vice versa, as does the relationship m Part C

In Part C, it is quite clear that a straight line misses the truth rather

hsdJy Jn faeJy it indicates no relationship whereas actually it is ob-

vious that there is a clear relationship

One of the real dangers in using straight hnes to approximate curves

IS the temptation to extrapolate the line beyond the range of expen-

ence as shown by the dashed extenaon of the line m Part A It is

obvious that such an extension rather quickly leads to ridiculous an-

swers This IS the bnd of nonsense we can get mto if we let our

mathematics use us instead of our usit^ our mathematics

It is, of course, possible to use curved lines in our analysis We, in

later pages, mdicate briefly bow to do this However, most of our at-

tention 18 directed toward learning bow to work with straight lines

4 Practical correlation analysis involves working with observations that

fall mto a model like that shown as Model II, the model with uncon-

ditmal probabilities, and then converting our results into a model

like that shown as Model I, the model with the corulitwnal probabilities

We then are able to make estimates of Xj on the basis of any given

values ofX2



500 THE STATISTICAL METHOD IN BUSINESS

Xi Xi

Xi

c

Xt

Fig 19J Using & etr&ight ime to ftpproximgU & relationship

13.4 The Statistical Tools

The Line of Relationship, or Line of Conditional Means

Our first task m a correlation analysis is to determine the line that

passes through the means of the vanous vertical vectors If we have

information about the whole universe of Xu
vector means fall m a straight Ime, our problem is quite simple We

would merely calculate the means for two widely spaced vectors and

use these two means to determine the straight Ime that would pass

through all of the means We can write the general equation of such

a line as

fll2 = Oi2 + i3j2Xj (131)

The symbol we use to represent Uie umticrse mean of » ftw?

given a particular value of X2 For example, if the mean weight of all
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adult Amencea males who are 69 mches tali is 160 pounds, we would

say that /tu has a value of 160 when Xa equals 69 The «« (alpha)

defines the value of /112 when X2 equals 0 It is the point at which

the line of relationship intercepts the vertical axis, 012 has a value

of 3 5 m our model Usually this is a nonsense value in a practical

problem because it would be nonsense to talk about a 0 value for

the X2 variable For example, to state that an adult American male

0 inches tall would tend to average a weight of minus 320 pounds is

obviously nonsense This kind of nonsense points up the necessity

of remembering that the straight line is generally meaningful only

within a middle range of the data With a mathematical equation,

however, we can make estimates anywhere we wish, of course Thus

it IB very important that we exhibit the proper amount of common

sense The situation is not unlike the way an automobile steers

wherever we wish We should not blame the steering mechanism if

we steer the car into a ditch Similarly, we should not blame the

line if wc steer it into an area of nonsense answers

The Pit (beta) refers to the change m nn per unit change in Xz

It IS the slope of the line of relationship In our model it has a value

of 1 0 It has a value of about 7 pounds in our height-weight data

shown m Table 13 1 and Fig 13 2B The word change implies that

it 18 the vanatioQ m Xa that causes the observed change m na This

implication is unwarranted and is only a consequence of imperfec*

tiODS m our language It would be more exact to define jSij as the

difference we observe in ^12 for each unit difference we observe in Xz

If we were dealing with a cunnfmear relationship, the slope would

be a vanable rather than a constant as it is for a straight line Our

equation would then need some additional porcmefers beyond 012 and

j
8j2 For example, we might have a second-degree parabola which

would look somewhat similar to Part C of Fig 13 5 This would

have a general equation like

U12 “ ®I2 + + 712^2^

(We use parameter to refer to the mathematica) constants m an

equation that presumably descnbe ^e situation in the umume

We call the same constanta statistics if we are dealing only with a

sample of data We would Uien replace the Greek a,
ff,

and y

(gamma) with the English a, b, and c Thus we carry forward our

convention of using Greek letters for universe values and English

letters for sample values We also continue our convention of using

the circumflex (*) on top of a Greek letter to indicate an unbiased

estimate of a universe value

)
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(The subscripts attached to the various symbols are for the pur-

pose of clearly specifying exactly what vanables we are working

with We use the system of Xi, X3,
Xt, etc to specify our vanous

variables instead of the more familiar X, Y, and Z We do this be

cause most practical problems involve many more than three vana-

blea and a certain awkwardness develops after we pass Z We must

identify a and ^ by a subsenpi because in some problems we have

more than one a and For example, we might have jSu This

would be the difference observed in Xi for each unit difference ob-

served in Xs It 18 well worthwhile to take time to fix these vanous

symbols m mind as we go along If we do not understand our simple

symbolic language, we will have considerable difficulty understanding

the ideas being developed We use the symbols in order to make it

possible to express these ideas more clearly and more concisely We

add to our vocabulary as we go along

)

The Measure of Variation Around the Lino of Conditional Meant

We might measure the vanation m the vertical vectors m many

different ways, m fact, some of the early work in the development

of correlation technique used quartile deviations We, however, find

the standard deviation the most convenient measure, particularly

because of its simple relationship to nomal curve probabilities, and

we confine our work to the use of the standard deviation

Since the vertical vectors all have the eame standard deviation, we

can measure the standard deviation of any one of them and use the

I'Lte \Ti VUl TSftdftli 'Ih

Table 13 4 (or m the one shown m Table 13 2) the standard devia-

tion of the vertical deviations around the line of relationship happens

to be 2 0 This is calculated m the conventional way and is shown

m Table 135 for the vertical vector at X: = 10 m Table 134

Note the addition to our vocabulary of symbols We label Xi as

Xi j, the mean of Xj as fij j the standard deviation as ai 2 We do

this to signify that we are talking about the Xi’s for some fftven value

of X3, m this case an Xa of 10 Thus we can say that Xs is taken as

a constant while we study this variation in Xi We can also say that

the observed variation in Xi 2 is tndeperulent of any variation in X2

Or, we might alternatively say Uiat this particular distribution of

Xi 2 18 condifionof on X2 being equal to 10 If Xs had another value

than 10, we would find a different conditional distribution of X12

(We can see the vanous conditional dwtnbutions of Xi 2 if look

at the vertical vectors m Tables 13 2 and 13 4

)

If Xi and X2 were to be perfectly related, Xj 2 would always be

constant for a given Xs value This follows logically from the fact
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TABLE 13 5

Calrofaflon of fh$ Standard Dtviatton of Vertical Vectors Shown in

Table* 1 3 2 and 1 3 4 (llluttrated with reference to

vertical vector 01 Xj = 10 in Table 13 4)

Xn I /X., IPn

19 0002 0038 0722

18 0010 0180 3240

17 0032 0544 9248

16 0084 1344 21504

15 0176 2640 39600

14 0286 4004 56056

13 0364 4732 61516

12 0364 4368 52416

11 0286 3146 3 4606

10 0176 1760 17600

9 0084 0756 6804

8 0032 0256 2048

7 0010 0070 0490

6 0002 0012 0072

1908 23850 305922

S/Xi:
= 125

= 20

that if Xi and X2 are perfectly related, and if we hold Xa constant,

Xi 2 must also be constant

If Xi and X2 have no relationship whatever, all the Xi 2 distnbu-

tions would be precisely the same regardless of the particular value

ofX2 In such a case, ^e holding of X* constant makes no difference

in the value of X12

The Measure of the Degree of Association

It 18 impractical to pay any attention to an associated vanable

if there is no association, or if the degree 0/ association is negligible

To do so 16 a distractive waste of energy, and can sometimes be a

serious error For example, if we as an employer believed that in-

telligence were positively associated with head circumference »
'
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if Ffi THshed to hire only the most intelligent people, our personnel

questionnaire would be quite simple We would determine only a

person’s hat size and hire only the “big-headed " With average hick,

we should end up with a pretty good cross section of all shades of

intelligence, but certainly not with only the most intelligent people

Our trouble would develop as we asked these people to do tasks that

require above average intelligence

The simplest nay to measure and to understand the degree of

association is to compare the standard deviation of the conditional

distribution of the Xi a’a with that of the unconditional distribution

of In our model we have already discovered that the standard

deviation of the conditional disbibution of is 20 Table 136

TABIC t3 6

Calculation of Standard Daviotlon of (Dlitnbutlon tokin

from vartlcflt morgln of Tehlt 1 3 4)

Xi p PXi PXi»

23 0002 0016 1058

22 0009 0198 4356

21 0028 DSSS 12348

20 0071 1420 2 8400

19 0156 2964 6 6316

18 0305 M90 96320

17 0526 8912 152014

16 0807 1^12 20 6592

15 1092 163S0 24 6700

14 1303 18312 256368

13 1392 IKI96 235218

12 1303 15696 188352

11 1092 15012 132132

10 0S07 8070 8 0700

9 0526 4734 42606

8 0305 5440 19520

7 0156 1092 7644

6 0071 0126 m
5 0023 0140 0700

4 0009 0036 0144

3 0002 0006 0018

10000 130000 177 1592

>11 = 130 »i-Vl77 159"~(130)'-29
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shows the calcuJation of the standard deviation of the imconditionai

distnbution of Zi This distnbufaon is taken from the vertical

margin of Table 13 4 It is the sttm of all the conditional distribu-

tions and gives us the expected values of if we have no prior knowl-

edge of the value of X2 The unconditional standard deviation hap-

pens to be 2 9 Thus we find that knowledge of the value of

enables us to reduce our ignorance or uncertamty about Xi from 2 9

to 20

We can express this reduction m ignorance in relative terms by

dividing the amount of error reductaon, m this case 9, by the maxi-

mum possible reduction, in this case 29 We can call this result An,

or the degree of association between and Xz In formal terms we

have

ffi
— «rj9 2 9 " 2 0

An ——— = 31.

ffi 29

This relative redwhon m error (or of uncertainty, or of ignorance)

gives us a clearer idea of the degree of association than does the

amount of error reduction alone For example, if we had an uncon-

ditional standard deviation of 100 and a conditional standard devia-

tion of 99 1, we would also have an error reduction of 9 But it is

obvious that 9 on a base of 100 would indicate a trivial degree of

error reduction Similarly, if we could achieve a 9 reduction on a

base of 1 0, we would have achieved a very substantial degree of

error reduction

Alternative Ways of Measuring the Degree of Association

Although the above method’ ol’measunng the degree ol association

is very simple and very logical, it is not customarily used The acci-

dents of historical development have given prominence to two other

measures of association It is probable that the method just given

will eventually supersede the other two, however, it is necessary for

us to clearly understand the other two as long as they are commonly

used now

Probably the most mformatave way to approach the other measures

18 to start at the historical beginnings of formal correlation analysis

Sir Francis Galton published an article in 1886 on “Regression to-

wards mediocrity in hereditary stature His research interests

were essentially m biology and anthropology, two areas wherein

I Journal of Anthropological ItuMiUe Vol 15, 1886 p 246 as referred to by

G U Yule and M G Kendall ffl An Inlrodvction to the Theory of Statisim

12th edition, J B Lippincott Company 1940
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much of stAtlsticfil method originated. In this article he was eon*

cemed with the degree of association between the heights of fathers

and the heights of their male offspring. He approached his problem

by collecting a sample of heighU of fathers and sons and plotting the

pairs on a scatter diagram. It can be likened to Fig. 13.6. The evi«

dence of some kind 9 ! relationship was obvious to Gallon. Tall

fathers definitely tended to have tall sons and short fathers short

sons. In those pioneering days Gallon's problem was to figure out

a way to place a line on this scatter diagram to express this relation,

ship in the “best" way, that is, in such a way that nobody could

draw a “better" line. Gallon actually worked with notions of the

median and of the quartile deviation in his development. We discuss

his solution in terms of the mean and the standard deviation, the

measures that were used by Kart Pearson, another English stalls,

tician, who picked up Gallon’s work and developed it in the directions

that came to dominate statistics for over half a century.

The first step in discovering the path of the “best" line is to draw

the lines on the chart corresponding to the mean height of fathers

(the X variable) and the mean height of sons (the Y variable). The

11

X- Height of feSier tiochw)

fit’ lie Hypothetical relationship beti^ bel^t of a father and height of hit
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Fig t) 7 Analysis of hypothetical relationship between height of a father and

height of bis son

scatter diagram now looks as shown m Fig 13 7 This divides the

scatter into four quadrants Note tiiat there are more points m the

IV and n quadrants than in the I and III quadrants This imbalance

18 evidence of the positive association between heights of fathers and

sons If the pomte were more or less equally distnbuted through

the four quadrants, the evidence would suggest no association If

they predominated in the I and III quadrants, negative association

would be indicated, that is, tall fathera would tend to have short

sons If all of the points were located m the IV and II quadrants,

we would have evidence of practically perfect association In fact,

it IB possible to develop a crude measure of the degree of association

by the relative number of points m the vanous quadrants

The next step in analysis was to recogmze that it was not enough

to merely count the number of pomte m each quadrant The location

of the point within the quadrant was important The further into

a quadrant a point was, the more sipiificant was it as a possible indi-

cator of association Hence each point was measured as a dematum

from the mean For example, if a father were 68 inches tall, and the

mean height of fathers were 66 inches, the measurement would be
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recorded as -1-2 inches Such a deviation we can call X — X, or t

The same procedure was followed with the heights of the sons These

would be r — y, or y It is quickly evident that all points m the

II quadrant would have a plus x and a plus y, all those m the IV

quadrant a minus x and a minus y, those m the I quadrant a minus x

and a plus y, and all those m the III quadrant a plus x and a minus y

The next step was quite simple, but also quite ingenious The x

in o pair teas mulfiplwd by they vi the same poir For example, if

a given x, y pair had values of +4, +3, the product would be +12

This was done for all pairs (We call such multiplications cross

products ) Note what now happens All the products in the IV and

II quadrants end up with plus signs, and all those m the I and III

quadrants have minus signs

Now we may add all these cross products Suppose they add to 0

This tells us that the pomte are essentially equally scattered through

all four quadrants Hence there would be evidence of 0 association

and the best Ime of relationship would be horizontal If the sum

were positive, this would indicate a positive relative relationship

between X and F In addition, the larger (he positive sum the

greater the association, other things being equal (which they are not

as we see shortly) Similarly if the sum were negative

But it IS obvious that the magnitude of the sum of cross products

depends on two factors other than the degree of association They

are the unifi of the two series and the number of cross products added

For example, if we measure height m inches, we obtain one sum of

cross products, if we measure height m centimeters, we obtain a sum

which would be somewhat larger (It would be about 2 54* or 6 45

as large ) Smee there is no way of selecting any one unit as more

logical than any other unit, the tnck is to eliminate all units This

cau be done by dividing each x by the standard deviation of the x’s

and each y by the etomfard deviatum of the y’s We would now have

2(r/(r,) (y/cy) Since x and <r, have the same unit, the unit cancels

in the division Similarly for the unit of y We say the results of a

division by the standard deviation are expressed m standard units

The problem of the number of items added is very simple We
merely diinde by the number of items, thus getting the famibar

arithmetic mean

If we put all these steps together, we get

V
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An exact description of this fonnula wodd be the anthmetic

mean of the cross products in standard units If we followed the

logic of its development, we also know tiiat it must also be a measure

of the degree of association But, before we pursue that topic, let

us return to Galton’s problem of the “best” Ime Common sense

suggests that the beat line would pass through the point where the

mean of X and Y cross In other words, no one is able to argue suc-

cessfully against the notion that a father of average height should

have a son of average height The only issue remaining, then, is the

slope of the line as it passes through that point We already know

that this line should have a slope of 0 if there is no association We
also know that

N

would have a value of 0 if there were no association We also know

that the slope would increase from 0 (assuming a positive relation-

ship) as the degree of association increased But how high might

this slope logically become? Let ua look at Fig 13 7 and imagine

our straight line rotating around the mtersection of the two means

If we start at the horizontal and rotate counterclockwise, we infer

that we are showing an increose in the degree of association until we

reach the point marked 10, which corresponds to a line at a 45®

angle After that point, we infer that the degree of correlation is

decreasing again until it reaches 0 when the line becomes vertical

Thus we can picture a 0 correlation as showing a horizontal line of

relationship or a vertical fine of relationship Since we generaffy put

our estimating variable on the horizontal axis and the estimated

variable on the vertical axis, we normally do not think of drawing a

vertical line of relationship If, however, convention had started

with the estimating variable on the vertacal axis, we normally would

not think of drawing a honzontal Ime of relationship Actually both

lines are equally logical m the abstract

We thus see that any scatter diagram always has tm logical lines

of relationship, one for estimatmg Y from X and the other for esti-

mating X from Y If we now place the index finger of our hand on

the point V on the vertical line m Fig 137 and our thumb on point

H, we can simulate what happens as the degree of correlation in-

creases from 0 Draw the thumb and forefinger slowly together along

the periphery of the circle, bringing them together at equal rates
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At any stage of this operation the thumb and the forefinger would

each indicate a line of equal degrees of association If we continue

this operation to the end, we diseoTcr that our thumb and forefinger

come together at the point halfway between the honsontal and the

vertical, the point of a 45® 1id* The two lines hence become one

and the association is perfect Thus we can say that the slope of

either ol these Imes will measure the degree oi assomation, or, con-

versely, the degree of association measures the slope of these lines *

The final step m the logic of development we accept on faith This

step is the proof that

N

has a mmrimm nmencal value of 10 (If we consider the dmcim

of the association, we would say that the result might vary between

+ 1 and -1 The logic ol a negative relationship is precisely the

same as that for a positive relationship By using the lower right-

hand quadrant of Fig 13 7, we can duplicate all the steps we took m
the upper nght-hand quadrant ) We can now see that a value of

Ifor

If

can be taken to correspond to a dS** hne on the chart (if the variables

are measured m standard units), a value of 5 to a 22 5® Ime, etc

Thus we have the equivalent of Galton's solution to the problem

of the '‘best” Ime, namely, a hoe that passes through the general mean

with a slope equal to

At the same time we have a measure of the degree of association that

very convemently varies between 0 and 1 {ignonng the sign) This

18 the measure that was finally developed by Pearson He called it

I These statements assume that the slope is measured m standard units They

do not apply to a scatter diagram m natural units Thus the statements do

not really hold for Rg 13 7 We use 13 7 merely for convenience of refer

ence
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T (the coefficient of correlatjoD),tiie first letter of the word regression

(and coincidentally the firet letter of the word relation) It has been

known as the Pearsonian r ever since

We cannot help be attracted to the logic and ingenuity of this line

of development Unfortunately, thia meUiod of measuring the degree

of association, or of correlation, had an unsuspected tendency to lead

to substantial miBimderstanding Many people naturally assumed

that if an r of 0 indicated 0 correlation and an r of 1 mdicated perfect

correlation, an r of 50 would indicate 50^ correlation But this is

not so in any practical interpretation of what we might mean by

degree It became the custom for teachers and teictbook writera to

caution the student against such a ample percentage scale mterpre-

tation of r Rather the student was told that he would gradually

learn by experience how much correlation was really represented by

fractional values of r He might also be told to be waiy in the mean-

time of usmg the results of any correlation analysis unless r were at

least as large as 80 Naturally this advice was largely ignored, and

many people respected results that yielded r’s as low as 15, etc

Of course, many statisticians were unhappy with this situation.

They felt they were dealing with a hod of magic that could be really

understood only by a very few geniusee Hence it was not suipnBmg

that a way would be found around such a vague method of measuni^

the degree of correlation The measure that evolved, during the 1920'8,

was called the coe^ent ofdeiemtnatm It can be calculated m many

different ways, all of which are mathematical equivalents One way

18 to simply square the value of r For example, if r * 5, then r* » 25

Another way is to calculate the relative reduction in square error, or, to

use our ta-mifar gymbofs, (ef - fffaj'/fff for exampib, if we go back

to the illustration of our model, we would get = (2
9^ - 2 0“)/2 9^,

or (8 41 - 4 00)/8 41, or 52 (Note that we found a relative reduction

of error of 31

)

There has been a rather strong tendency to foster an interpretation

of that would permit a statement hke, "an r* of 25 means that 25%

of the variation in Xi is explaned by vanation m Xz
” We strongly

oppose this because it simply replaces a mismterpreted r with a mis-

mterpreted r^, although with not quite so much misinterpretation

The best way for us to unravel some of the mystery from the

various ways of measuring the d^ree of association is to write out

some of the alternative formulas for calculating them We can then

find the formulas that seem to provide fhe best links between these

measures We list some of these formulas below
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The Coefficient of Associatioi^A

(Ti — ffl 8

tfl

- (RelalH^ reduction m error
) (13 2)

Ai2 '

poefiicient of detemunatioiy

coefficient of nondeterimnation

coefficient of alienation

coefficient of association

(13 3)

The Coefficient of Deteminatwnr^

~ ffj 2—--— (Relative reduction in ejtwre error ) (134)

<fi

V12
r?a = (Proportion of total square variation that (13 5)

haa been explained

)

(f^

^coefficient of assomation)

loefficient of nonafflocmtion

square of coefficient of nonassociation

.coefficient of deternunation

(136)

ri2 « (fia)* (Coefficient of determination is the (13 7)

square of the coefficient of correlation

)

The Coeffinmi of Correfoiion—

r

hi = (Square root of coefficient of determination ) (13 8)

ri2

»

ff2 Cl

(Anthmetic mean of cross products m (13 9)

standard umts)

r,2
B

612 — (Slope of bne in standard umts

)

Ci

ca

= (

(1310)
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(Remember that there are two lines, one for eatimatmg Xj from Xg
and the other for estimatmg X2 fromh They both yield the same r

)

ri2 = — (Ratio of standard deviation of conditional (13 11)
'’1 means to standard deviation of dependent

variable

)

The formulas given are only a small sample 0/ the vanous algebraic

forms that can be used to calculate A, r^, and r They are enough

to give us an idea of how fertile an area correlation analysis is for

a person who likes to play with imaginative mathematics We con-

sider Eq 13 2 the most logical and most natural way to measure the

degree of association Our argument is very simple and straight-

forward Our fundamental purpose in stodymg association between

vanablea is to help us make estimates with smaUer errors Hence we

are naturally interested m the extent to which our knowledge about

the association reduces our errors

Equation 13 3 is very interesUng, it is also very useful if we are pre-

sented with a study that uses r’s and r^'s and we would like to convert

them to X’s We should study this foimula from the mside out by

starting with the smallest circle Here we have the coefficient of de-

termination, which we know is a measure of the degree of association

If we subtract P' from I, we have a measure of the degree of noo-

association We call this measure the coefficient of rmdetetmnahim

If we then take the square root of 1 - r^, we still have a measure of the

d^ee of nonassociation We call this measure the coefficient of alien-

ation This 18 really the counterpart to the coefficient of correlation,

which, as we know, is the square root ofthe coefficient ofdetermination

FmaDy, if we subtract the coefficient of ahenation (sometimes called

Je) from 1, we must have a measure of association, and, m fact, we do

have A, the coefficient of association

The Adding^up Problem Many analysts have been bothered by the

issue of whether a given measure of relationship (A, or r, or ‘P) yielded

a result of I when added to its counterpart measure of nonrelationship

For example, we know that the coefficient of determination plus the

coefficient of nondetermmation equals 1 b^iause we have just noted

that m the preceding paragraph But consider the coefficient of

correlation (r) and its counterp^ the coefficient of ahenation {k)

We have seen that k = Vl — P Suppose r = 8 Then = 64,

I - = 36, and = 6 Tliua r -f-

=

8 + 6 = 14, sub-

stantially larger than 1 In general r + fc ^ 1» with the sum 1 only

when the correlation is 0 or perfect This is obviously a very illogical

situation Two variables are either cwrelated or they are not, and
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the part that is not correlated must be correlated, and vice versa

Either r or k, or both, are too large

If we accept the vabdity of A, and we do, and since A^l^k,
we accept the validity of k Thus we decide that r must be too lafge

It 18 relatively easy to demonstrate why t is too large Consider Fig

13 8 Here we show a stnpped-down scatter diagram with only two

points and two lines Suppose we had to make an estimate of Xi

vnihmd any knowMge. at aU o/ tte witue o/ Xj Our best procedure

(assuming normality) would be to guess the mean of Xi with some

error allowance bas^ on ci Suppose the actual value turned out to

be at A* Our mean estimate would have missed by the vertical distance

shown as o Now suppose we had pnor knowkdge of Xi We would

now use the Ime of conditional means Oiij) as the baas of our estimate

with an error allowance based on ffi j Hence we would now miss by

only the distance h If we take the difference between a and 6
,
we get

c, which 13 the di^nce batwen the line of unconditional means (i»i}

and the line of conditional means (fii»)

We are aware that we can take all such distances as a, the difference

from an item to the mean, and adculate trj
,
and also that we can take

Rg lit lUustrfttioQ of the bitsm r
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the distances such as b, the difference between an item and the hne of

condition&l means, and calcukte «ri , Simiiarly, we can fake all such

distances as c and calculate their elandard deviation We caE this

0
-

12 ,
or the slcndard demHon of the condiiumal mans This follows

from the fact that the mean trf all the conditional means is equal to

the mean of the Xis (We place the fane of relationship so that it

passes through the general mean Since this Ime is symmetrical in its

extensions, the arithmetic mean of all^ values along the line must

equal the in part of the genial mean ) If we now note that c is the

deviationfroni/ii2 to/ii,andifwekeepmimndthat;j^j, » /ti.wecansee

that iti2 - Pi = Pi2 - and hence that ffi must also be which we

usually abbreviate to ai2

If we put a, 6, and c into words, we can see that the error we started

with (o) mtnn^ the error we ended wiih (6) equals the error we elim-

inated (c), and all of this would have been accomphshed by knowledge

of the value of X2 as we were estimatii^ Xi Ail of this makes very

good practical sense

But now let us look at a point fake B We again label the appropn-

ate deviations as a, fa, and c If we add fa and c algebraically (that

IB, with regard for the st^n attached to the deviation), we would get

c, just as we would for the pomt A For example, a might be -2,

6

+5, and c -7 We, however, now notice a bit of nonsense A value

of c of 7 indicates that we have reduced our error 7 units by use of

knowledge about X2,
and we accomplished this despite the fact that

we had only an error of 2 to with I Actually of course, knowl-

edge of the value of Xi causes us to make a poorer estimate here,

and to claim an error reduction of 7 units is a serious misrepresenta-

tion

We can picture what is happening by imagining that we start our

analysis of the association of Xi with Xz with the horizontal line of

uDConditjonal means. We then mentally rotate this line counter-

clockwise around the point 0 until it reaches the hne of conditional

means (See Fig 13 9 ) As we do this, we note that the line gets

closer to every point for a while But finally the line reaches some

of the points Any further rotaUon will definitely increase the errors

of estimating these points We continue to rotate, nevertheless, be-

cause we are trying to reduce our average cttoi as much as possible

We find that the average error tends to decrease as long as we rotate

toioard more points than we rotate away from Hence we stop the

rotation when we have as many points above the hne as we have

below the fine at all points ahng the hne, or as near to this ideal as

we can achieve We must qualify by saymg alt along the hne because
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Xi\

Fig. I) 9 Houilos the hoe of rel&tioaship to reduce average estifflaUDg error

the line always has about the same number of points above as below.

The problem is that m some positions of the line all the points above

the line are at one end of the line and all the points below the line

are at the other end Note that this is the situation with the line of

unconditional means

If we have followed the argument to this point, we can now see

why <rj2 is too big It contains all the rotation for all the points

Actually, however, we rotate too much for just about half of the

points because we must pass about half of the points in order to put

half of them on each side of the line and all along the line.

If we now recall that the coefficient of correlation is based on the

slope of this line that we have been mentally rotating, we can see

that r must have an upward bias We can confirm this impression by

turning back to Eq 13 11 on p 513 There we see that r can also be

calculated by getting the ratio of the standard deviation of con-

ditional means (with an upward bias m terms of error reduction) to

the standard deinatum of the dependent variable (Xi).

We do not find the adding-up property of particularly compelling

because it requires us to think in terms of square errors Square
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errors are usually meaningless, and to know how much we have re-

duced them does not enlighten the situation

A Smple Analogy We can use a simple analogy to illustrate the

relationship between A and r and the degree of association Suppose

we are the host (or hostess) at a dinner party and are asked hy one

of the guests to replenish the water m the water glass More spe-

cifically, we are asked to half-fill the glass This seems a simple

instruction unless we have a thoughtful turn of mmd and the glass

IS aesthetically shaped as shown in Fig 13 10 Is the glass half-full

as in Part A or as m Part B? If we think half-full means half-way

up the vertical distance from the bottom to the top of the glass, Glass

A is half-full If we think half-full means half of the total volume

in the glass, GlassB is half-full If we think of the degree of associa-

tion as being measured by the volume m the glass and the coefficient

of correlation as measuring the vertical distance from top to bottom,

we can see why the coefficient of correlation makes the glass look

fuller than it really is (We can see why commercial practice leads

to glasses with narrow bottoms and wide tops to encourage the il-

lusion of greater contents ) It is also interesting to note that the

problem of different scales disappears at the extremes of full sad
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empty, just as it disappears at the ^tremes of complete and 0 asso

ciation

A iScafe of Equivalence Between A and r Although the water

glass analogy conveys the idea, it does not communicate the exact

character of the relationship between A and r This is shown m
Fig 13 11 Here r is shown on the horizontal scale and A on the

vertical scale To convert a given r into A, or vice versa, we locate r

on the honzontal scale and run a vertical line upward until it hits

the curved line, as illustrated for a value of r of 80 We then extend

a horizontal from this pomt until it touches the A scale, m this case

at 40 It is interesting to note that the traditional intuitive idea

that r should be at least 80 really means that there should be at

least a 4055i error reduction We think it best not to have any arbi*

trary boundaries for a minimum degree of useful correlation We
deliberately selected an r of 80 as an illustration because it is that

pomt at winch r is exactly twice as lai^e as A Values of r less than

8 are more than twice as large as the corresponding A (except at the

’ of 0) For example, an r of 20 corresponds to an A of only

He mi Scale of equiTAlence betwMU 4 and r
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10 to 1 ratio We can thas see why an r of 2 represents a

.vially small degree of association Values of r greater than 8 are

;s than turn as large as A For example, an r of 95 corresponds

an i of 69, a 1 4 to 1 ratio

1.5 The Nexf Sfep

The preceding pages have concentrated mainly on the essential

jas in the analysis of the association between two or more sets of

ents In the next chapter we use these ideas and the associated

ihniques m a practical problem

3BLEM5 AND QLTESTfONS

:3 1 Suppose you were faced with the task of selecting a sales manager

your company To what extent would you be mterested m each of the

owing characteristics of a prospect’ E^lain the basis of your answer

lach case

a) Height

b) Sex

c) Age

d) Formal education

e) Years expenence as a salesman of your hne of products

’/] Years expenence as a sales manager, or assistant sales manager, for

f hne of products

g) Number of children

b) Weight of wife (or husband)

j) Proportion of gray hairs on head

3 2 We have learned to associate the temperature with the season of

year For example, consider a 30-year expenence m Chicago The

ly temperature has varied from an average low of 1? I degrees F to an

rage high of 853 if we ignore the season of the year, however, if we

sjfy these temperatures by monlb, we find the range of the average low

iverage high temperature varying as follows

Ifonth

Range of

the Daily

Temperature

Month

Range of

the Daily

Temperature

Average

Low

Average

High

Average

Low

Average

High

uaiy 171 327 July 639 853

ruary 198 350 August 623 830

rch 290 450 September 552 759

il 386 576 October 439 643

y 487 697 NoTCmber 313 47 6

e 588 800 December 206 353
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() Deteirome the difference between the low and high figure for each

month

() Calculate the arithmetic mean of such differences

(c) Compare your result in (b) with the difference between the low and

high figure for the full year

(d) What IS the degree of association between the temperature and the

month of the year?

13 3(o) What causes the tempeiature m Chicago to be generally higher

m July than m January?

(fc) Are these the same causes that result m the reverse relationship m
Buenos Aires?

T3 4 The Crayle Co has been considering the possibility of using the

results of a finger dexterity test as an aid in the selection of employees for

one of the assembly tasks m the production Ime The Pixem Test has been

given to 10 of its veteran employees with known production records The

scores and production records are as foUoire

Worker

Average

Daily Out-

put

Xi

Score on Pixem

Dextenty Test

Xf

A 220 n
£ 270 14

C 230 17

D 270 19

£ 320 21

F 340 27

G 320 30

H 390 31

I 370 39

J 420 43

() Construct a scatter diagram of these two senes

() Draw a smooth Ime on the graph to represent your best judgment

of a line that measures the average output expected bas^ on any given test

score Would you expect this Ime to be straight or curved? Is it possible

that the line might actually turn negative for very high test scores? Explain

(c) Extend your line to the left until it crosses the Xi axis Is there

any common sense interpretation to this value of for a case m which

X2 equals 0 f Is there any mathematical interpretation ?

(d) Would you expect the vanation in output among workers with the

same test score to be the same for all t«t score groups? Explain

(c) Suppose that these same workers were to be given this same test

again Would you expect each worker to get the same score as he did the

first time? Why or why not?

(/) What are the implications of your answer m (e) to a proper inter-

pretation of the specific test scores gnren above ?

13 5 What type of relationship would you expect to find between the

following pairs of vanables? (For example, would you expect the rela-

tionship to be straight Ime or some kind of curve?) In each case, be vi»rv
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jful to note whether you are refemi^ to the kind of relationship you
ild expect to ob&erve if you collected data &oin the real world or to the
1 of relationship you would kypothesue on the assumption that other

lables would be constant

ii) Relationship between height and weight of new-born babies

b) Relationship between price of a product and ite volume of sales

c) Relationship between price of a product and its quality

d) Relationship between the size—^in square inches of space—of a news

'Cr advertisement and the intensity of reader response as measured by
chase rate for product being adverbsed

e) Relationship between experience as measured by years on the job

the abihty to do the job

f) Relationship between thickness of a coat of paint and its ability to

nve the weather

3 6 Distinguish between a dep^dent and an independent variable

stratfi with reference to two variables that you have had some expen

iwith

3 7 Distinguish between a conditional probability distnbution of a de-

dent vanable and an unconditional prolwbihty distribution of that same

[able

3 B(o) What IS the relevance to correlation analysis of the assumption

t the vertical vectors be identical except for their averages ^

b) Suppose you had strong reason to believe that the coefficients of

lation of the vertical vectors were practically the same in a given prob

rather than the standard deviations being practically the sane What

gestions do you have for transforming the data so as to equahze the

lations of the vertical vectors?

3 9 Wiat are the theoretical and practical advantages of working with

assumption that the normal curve adequately descnbes the vector dis

utions in a correlation analysis’

3 10 Suppose we are given the infoimabon that the vertical vectors

\ correlation problem are all normal and that they all have the same

idard deviation We are also told that the relationship is Imear, at least

fun the relevant range of the data Wbat can we now say about

a) The horizontal vectors?

b) The diagonals?

c) The sums of the vertical vectors’

3 1 1 Why IS It appropnate to caQ a line of relationship between two

tables a hne of conditional averagest

3 12 Use the test score—output data of Problem 13 4 and calculate as

tyou can the followmg

fl) The standard deviation of the universe of worker outputs

b) The standard deviation of the umverse of test scores

c) The conditional standard deviation of worker output, given the test

re Use the variations around your visually fitted Ime of Problem 13 4

d) Compare the relative sizes of your conditional and unconditional

idard deviations of worker output

3 13 Would you expect the traivcrecs referred to m Problem 1312 to

lam stable through time so that the reults could be used as a guide for

ng future workers? Explam
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1 J 14 U«e the stAfldard demUons j-ou calcul4t«(l m Problem 13 12 jo

tilcuhtotbe following Interpret jturr^ta

(o) The coefficient of correlation -f

(h) TbeeoefficJeoto/detenmnatWD -r*

(e) The coefficient of assoeuticn -A
(tf) The coeffiaent of ilimtion '-ifc

(e) Thecocfficienlofnondetermination -i*



chapter 14
Reducing uncertainty by

association: application of the

mode/ to practical problems

So far our discussion of correlation, or association, has

for the most part been conbned to an ideal world Except for our ref-

erences to Galton's work, we have talked about correlations that

might exist m a universe Actually of course, we never really know

the content of any real universee We come m contact only with

samples that have happened to occur Sometimes we may actually

select a sample by random or other means Usually these samples

“just happen,” the way the weather ‘ jiat happens ’ Thus we come

back to our familmr problem How can we draw inferences from

past sample data so we can make some rahorwl predictions about the

future samples which have yet to occur but which we will have to

contend with? As before, we follow the path from past samples to

future samples by detouring around through past and future uni-

verses Also, as before, we do (his by making the most judicious

guesses we find practicable within the limits of time and costs

14.1 Selecting Relevant Variables

Before we can formally correlate any vanables, we must pick them

out and obtam their measurements Suppose we were a sales manager

who was tiying to gam some understanding of the variation m sales

from one sales territory to ihe next We would probably start our

analysis by trying to think of the various factors which we consider

to have something to do with sales Suppose our product were elec-

tric blankets Our list of factors might look something like the

following

m
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1 The salesman—his ability, his energy, etc

2 The size of the territory

a The number of people

b The number of people over 20 years of age

c The square miles in territory, etc

6 Costofelectncity

7 Sociological factors that might affect the acceptability of electnc

blankets

a Proportion of foreign borom population

b Proportion of people over 45 years of age (habits set before introduc-

tion of electnc blanket)

8 Competition in terntory

a Number of active competitive brands

b Pnees of competitive brands

c SkiU and energy of competitivesalesmen

d Volume of competitive promotional activity,

e Number of years competitors have beenm market

f Number of years we have beenm market, etc

9 Howmuchdowehelptbesalestnan?

a Promotional activity.

b Salary and commission

c Expense allowances

We can undoubtedly think of many more possible factors that

might help us understand the variation m sales from territory to

territory If we really knew something about the manufacture and

merchandising of electnc blankets, we could think of many more

than that Our list is long enough, however, to make a few practical

points quite clear

First, we note that if we select only one of these factors, say,

population, to correlate with sales, we will be considering only a small

part of the possibly relevant vanables No matter how fancy we get

in this analysis, we should never lose sight of our limited scope

(Second, we note that if we try to correlate all these factors at once,

we might confuse ourselves much as a golfer would if he tried to

consnouily think about the hundreds of muscles he must coordinate

in order to hit a proper golf shot Hence we should not forget that,

as mentorious as a "scientific” analysis of our problem is, it is not

a complete or necesaanly a aupeiior substitute for the kbd of intui-

tive and unconscious coordination that can be performed by a person

with several years of intelligently digested experience. The scientific

analysis can help an intelligent person It cannot create intelligence

where none existed before.
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Third, we have s definite proWem of choice of which variable or

vanabies we analyze m a formal way Naturally we would like to

analyze the most important ones, tiiat is, the variables that will tel!

U8 the most about the vanaiaou in sales But how can we do this

in advance of analysis, particularly since one of the purposes of the

aDa]3'Sis is to tell us which are the most important? This is a

dilemma, so we do the only practical thing We make an oduance

guess of which are the most important, and we use the results of the

analysis to tell us how good our guesses were In other words we

set up hypotheses about whether the variables are related and then

we test these hypotheses We use those hypotheses that survive the

test and put aside those that do not This approach works well over

time if we do not acquire strong emotjoaal attachments for some

of our hypotheses and convementiy ignore the results of the tests

when they are unfavorable For example, it is not unusual for a

sales manager to have a pet factor tiiat he thmks is important as a

measure of sales ability He would never think of hiring a man who

did not possess this attnbute, and he would rarely fire a man who

had a large amount of it^ and a)] this despite the fact that available

evidence suggests very strongly that this factor is at best neutral

towards sales ability He was probably victimized years ago by

some very vivid experience where this factor happened to play a

role, and it has colored his thmbng ever since

Our competitors will also be making guesses about which factors

are most important If they are lueber, or smarter, than we are,

their guesses will be better, and they will gam an advantage because

of this additional knowledge If we do not have luck like this, or

this kind of ' smartness," we can still survive if we do not let our

pride prevent us from imitating our successful competitor, at a

respectful distance of course Japanese businessmen, for example,

have demonstrated an amazing ability to follow close behind the

successful innovations of businessmen in England, Germany, and the

United States It is competitave imitatjon like this, of course, that

leads to progress If no one mutates our innovation, we can be

assured that we will not make much money with it

Most guesses about what factors seem worthwhile to analyze anse

in a relatively haphazard way Some of the best guesses come from

the most unlikely sources It 19 not uncommon to discover that some

of the moat foolish guesses turn out to be very fruitful In fact it

is almost certain to be so because its very foolishness is what has

prevented other people from investigataig it sooner We also have

the problem of not being able to think of some factors until other
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factors are thought of fint It is as though the factors are piled

up m interlocking layers and we have to unpeel than one by one

The situation is further complicated because many of the factors are

related to each other Thus things are not always what they seem

We sometimes find that we should do just the opposite of what

common sense suggests (Common sense la used here as a synonym

for superficial observation ) For example, a beginning automobile

driver tends to make turns with the brake partially on m order to

make a slow turn for comfort and control He eventually learns

(or at least some do) that he should slow down before the turn and

speed up while m the turn for much more comfort and control

Similarly, beginning golfers try to hit the ball into the air by lifting

the ball So they try to get the club under the ball Because the

earth 18 already in possession of the space under the ball, they do

not ha\ e much success They eventually learn (or some do) that the

ball should be hit up into the air by hitting down on the ball, thus

avoiding the attempt to move the earth out of the way first. It is

quite a day when the golfer first discovers that U is not he but the

lofted clubface that directs the ball into the air

The only useful positive suggestion in helping to select factors u

to get in the habit of making rou^ charts (called scatter diagrams)

of potentially useful relations If these sketches give the appearance

of association, preferably of a high degree, we have a fairly good

clue that further analysis will be fruitful On the other band, if our

sketch shows evidence of little association, as mdicsted in Fig U 1
,

we might hesitate to plunge into an immediate mvestigation But

do not then assume that these vanables are not related Their rela-

tionship may be buned under some other vanables that we have not

noticed yet. We discuss this later after we acquire some techmeal

knowledge on the analysis of more than two vanables at the same

tune

The Problem of Quantifying the Varioblet

So far we have carefully skirted the question of whether some of

the vanables are quantified, or even quantifiable Some of these

vanables exist only m our mind, and frequently it is better to first

think out an imaginary scatter diagram. In fact, even if we can

measure these vanables, we find that we can correlate the data

mentally first Most of us have never really seen a scatter diagram

of measured heights and weights of men Nevertheless we are quite

capable of mentally picturing what such a scatter diagram would

look like We have been accumulating the pomte for such a mental
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Xi|

X2

Rfl lAi An example of no apparent correlation

er diagram over the years as we made mental notes of the

its and weights of men we have observal

e problem of quantifying certain variables has prevented their

;
formally analyzed Everyone who thinks of such a variable

potential factor tends to dismiss it &5 unmeasurable or as too

isive to measure One of the most mteresting uses of correlation

'BIS, incidentally, 10 to quantify Bomethmg indirectly by measur

imething that is related to the variable we are trymg to mpasure

ixample a thermometer does not measure heat it measures the

mshy between the size of some mafenal and the vanation m
leat whether the material be bquid mercury or bimetallic bars

her interesting application of corrdation analysis to the problem

easurement is to make allowance for all the factors we can

ure and then attribute any remaining variation to some remain-

actor that we cannot otherwise measure For example suppose

Tshed to rate salesmen in their vanous temtones How do we

ure sales performance? Wbat we can do is allow for vanation

pulation mcome, etc and then argue that any remamtng van

8 m sales from temtory to temtory is a measure of the sales-

3 effectiveness This sort of measunng goes on every day We

occasion to examine it later

rrelation techniques have been worked out to study data ex

ed m many forms prmcipal ones being data expressed as con-

us vanables, discrete vanables, attribute data of all sorts,
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ranked data, and combinations of these. We concentrate on the

correlation of continuous variablea. The basic ideas are exactly the

same for all types, so that if we understand the correlation of coH'

tinuous variables, we should be able to make the necessary adapta-

tions to other types of data.

14.2 Test for Conformity of Data to Our Model

Let us suppose we have gone through the preliminary work of

trying to guess what factors might help the sales manager under-

stand the variation in sales from territory to territory. We have

finally guessed that population and income should certainly be im-

portant factors We would now like to make a formal analysis of

these if it is at all reasonable to do so. Our basic data are shown

in Table 14.1. Note that the data have been converted into per-

TABLE 14.1

Sflltt, P4pul«ul«n, ond Incdm* for lh« IS Tirritorfot of Tho Tlnglt ComjMny

(All dota r«pr«stnt onnuol crvirogM for the 3 yton of 1957-40)

Territory Data as Percent

of Company Total

Popu- Popu-

Terri- Sales lation Income Sales lation Income

tory loco’s loco’s $1 mn. X, X,

#1 6 5 16 4.0 2.4 8.9

2 4 6 12 2.7 2.9 6.7

3 10 8 17 6.7 3.8 9.4

4 8 9 15 5.3 4.3 83
5 6 11 11 4.0 52 6.1

6 9 11 15 6.0 5.2 8.4

7 12 12 15 8.0 5.7 8.4

8 9 14 9 6.0 6.7 50

9 12 15 13 8.0 7.1 U
10 11 17 11 7.2 8.1 6.1

11 10 17 8 6.7 8.1 4.4

12 13 20 13 8.7 9.5 67

13 12 21 8 8.0 10.0 4.4

14 15 22 12 10.0 10.5 6.7

15 13 22 6 8.7 10.5 33
'

—

— — —
160’ '210 IS) 100.0 100.0 100.0
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centages of the total for all temtones This has been done to simplify

the application of the multam subsequent years It would be very

unlikely that there would be a stable relationship between the actual

gunutittes over the years because of shifts m general acceptabrhly

of the product, shifts in prices, etc However, if such shifts were to

affect the vanous territories more or less equally, which they are

likely to do, the relationships among the percentages of total should

remain fairly stable For example, if the company’s total sales were

to grow lO^l) faster than population, use of the actual quantities of

population to estimate actual quantities of sales would result m
general underestimation However, i! a territory retained the same

percentage of population, it should retain its same percentage of

s^es

Deciding on Shape of Line of fteiolionship

The first decision is that about the shape of the line of relationship,

or the hue of conditional averages Our model requires that a straight

lins be a reasonable estimator of this shape The obvious approach

IS to sketch a scatter diagram of the sample data Figures 14 2, 14 3,

and 144 show the scatter diagrams (scattergrams) for the sales-
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population, saJes-income, and income-population relationships In

each case the large dot near the center of the graph shows the genera!

mean of the data This point was used as a pivot point for locating

the visually fitted line shown on the graph as V (The LS line is

referred to shortly
) Each line was placed by pivoting around the

center point until there were about as many points abo\e the line

as there were below the line on each side of the center point A
straight line seems to be a reasonable estimator m each case

A useful tnck in selecting the shape of the line is to divide the data

into sections according to the size of the independent variable For

example, we divided the data into two sections one for the values

of the independent variable that were below average (to the left of

the center point) and the other for the values above average (to the

right of the center point) We fitted fay eye an average for the de-

pendent variable m each section These are shown as J s on the

graphs We then drew the Ime as close to these averages, including

the general average as possible If we had more items we would

have found it advantageous to divide the data into more than

two sections If the data tended to conform to a curved pattern

the section averages would veo hfeely make this fairly clear See

Fig 14 5 to illustrate such a case with a tentative curved line drawn

in

Always remember we are dealing with only a sample of data We

cannot expect exact conformity of any Ime to the various section

jjL
1

7
nn r

1
n

n
°0 5 10 15 20 a 30 35 40 45

Speed Of automobile (miles per hour)

Rg 145 Iliustratioa of curvilinear relationship (Data show the average dis-

tance required to atop an automobile for various speeds Data taken from

Ezekiel & Fox Methods of Correlatum and Reffresston Analysts p 100 B>

permission of the publisher John Wiley and Sons)
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averages On the other hand, do not use the excuse of a small sample

to justify a straight Ime for almost any kind of data

Deciding on Applicobilify of Arithmetic Mean as an Average

We are not really interested in using the arithmetic mean as such

The arithmetic mean is appropnate when we are interested in the

totals of data Here we are interested ui making the closest possible

estimate of the sales in a temtoiy The total of a set of such esti-

mates IS essentially irrelevant The medum of a set of values is

closest to all the values The anthmetic mean of a set of values will

be the same as the median tj the dislnbution is symmetrical In

addition, the anthmetic mean of a random sample is subject to smaller

sampling errors than the median if the universe is symmefneol

Hence we prefer to use the mean rather than the median if the

sample is sufficiently aymmetneal to support the hypothesis of a sym

raetncal universe There are additional mathematical conveniences

if we use the mean Thus we tend to use means as estimators unless

there is reasonably strong evidence to the contrary

An examination of Figs 142 to 14 4 reveals no strong evidence

contrary to the hypothesis oC a symmetrical universe, and we are

willing to use the arithmetic mean If we had evidence of defiDite

skewness, as illustrated m Fig 146, we would then have the usual

options available

^1

line of

Hg 14 6 Illustration of effects of skewnessm Jtj on hue of means
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1 *7e could Ignore the skewness and continue to use the means with

recognition that our results are somewhat crude

2 We could try to transform the data, either one or both senes, to see if

such transformed data confonaed reasonably well to a symmetrical

distribution For example, there is some evidence that the weights of

adult males show definite positive skewness If we correlate the logo-

ntkms of weight with the heights we might achieve a closer approxi-

mation to symmetry (Incidentally, the most economical way to test a

loganthmic transformaticm is to use paper with a logarithmic scale in

either one or both axes, depending on our needs Do not waste time

looking up loganthms until such a relationship has been confirmed by
a graphic analysis

)

3 We could judiciously omit any items that seemed to be out of line

This is a dangerous practice and should be done only when there is

definite evidence that special and identifiable circumstances cootnbuted

to the departure of such items from a general symmetneaf pattern

Deciding on Applicability of Normal Curve Approximation

If we successfully jump the hurdles of Imeanty and symmetry, we

are generally very ready to accept the applicability of a normal

curve approximation This is because experience suggests that prac-

tically all symmetrical distnbutions have a central tendency, or a

tendency to bunch near the average In such a case we find a nor-

mal curve approximation not only better than any competitive ap-

proximation, but also quite accurate in its own right

The three graphs of the relationships among sales, population, and

income represent such small samples that it is somewhat ludicrous

to try to make any rational determination of whether a normal curve

IS a good approximation This, unfortunately, is rather common in

the analysis of bufuness data The trouble develops because the

basic universes are shifting so rapidly that it is very difficult for us

to collect large samples of bomogeoeouB data, and consequently we

tend to take the position of assuming the normal curve is appropn-

ate unless we find relatively strong contrary evidence This is, of

course, a relatively weak position, but, agam, we defend it because

we have trouble finding a stronger position Naturally, a prudent

analyst keeps these limitations m mmd as he draws any conclusions

from bis analysis

Mathematical Tests of Conformity of Data to Model

The above tests were confined to what we could find out from

graphic evidence It is possible to apply mathematical tests to

measure the conformity of the sample data to the conditions of this,

or other, models Such tests are outside the bounds of our limited
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discussion Also, we point out that these mathematical teats can be

applied only after we have fitted our model to the data The tests

then help us decide whether we should or should not use the re

suits Our discussion has been directed to the use of testa that help

us decide whether we should fit the model or not Thus it is a good

idea to make the graphic tests even when we are planning to make

the mathematical testa after our results are available This js

usually true even when we have access to an electronic computer

to process the results The computer is very quick, once we set it

up, but it still costs money to operate, and very few businesses can

afford to produce useless or misleading correlation analyses

14.3 Estimating a Line of Relationship

Since we have only a sample of data, with many gaps m both the

independent and the dependent variable, we cannot calculate a line of

averages by calculating all the separate averages for each vertical

vector We must devise an interpolation technique We have al*

ready seen how this can be done by hand and eye on a graph We

would DOW like to calculate such a line

The Least Squares Property of the Arithmetic Mean

The arithmetic mean has two very useful and mterestmg mathe-

matical properties

1 The sum of the deviations from the mean equals 0

S(X - X) = Si = 0

2 The sum of the squares of the deviations is a mimmum

18 a minimum

The least-squares property mteresta us the most at the moment

Suppose we did have all the umverse data and that they confonned

to the conditions of our model We would then find that the con

ditional means would fall in a straight line and that the standard

deviations around these means would all be the same Each of

these conditional means would be a kast-sqiiares value for the items

in its vector We could then label the line of means as a least-

squares line IE the sense that any other line would give a larger sum

of squares of the deviations of the items from the line because, of
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course, any other Ime would not pass through all the conditional

means

Now let us turn to sample data We argue that a least-squares

line fitted to the sample data would he the best possible estimate o{

the least-squares line in the universe This is the same principle we
followed when we stated that the arithmetic mean of a sample is the

best estimate of the arithmetic mean of the universe

It IS a good idea to keep in mind that a least-squares line is nothing

more than a line of means and can be called an anffimetic mean, hne

It has all the characteristics, both good and bad, of the arithmetic

mean

The determination of how to calculate a least-squares (L S ) line

involves the mathematics of the calculus and hence is outside the

scope of this book It is useful, however, to sketch the line of rea-

Bonmg used without getting into the mathematics Thus we might

dispel any notions that there is anything mystical about a L S line

The first step is to define the type of Ime we wish to fit In our case

this 18 a straight line, which can be represented in general form as

Xi2 = 012 + 613^2 {14 1 )

(It 18 not uncommon for students to get the idea that L S lines are

always straight lines, primarily because that is the only kind they

calculate in an introductory course Actually a L5 line can have

any shape we desire This follows obviously because the mans of

the vertical vectors do not necessanly have to form a linear pattern

In fact, it IS more likely than not that such means will form a

nonlinear pattern

)

The second step in reasoning is to subtract each actual Xi value

from the mean of its vector as estimated by X12 Thus we have

X; — X12 = Xi — (ai2 "i" ^*13^2) (14 2)

if we follow the conventional rule of treating both sides of an equation

alike

In the thud step we sguare each of these deviations, with the result

di - - (0,2 + 612X2)1== (14 3)

The fourth step is very critical from the point of view of the

assumptions of the model Here we add all the squared deinations

of Step 3 In other words we pool all the deviations, almost all of

them from di^erent vertical vectors, as though they all belonged to

the same dis^ution The logic behind this pooling is the assump-
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tion that all the vertical vectors have the same standard deviation

(We «ay a correlation matrix is homoscedastic when all its vertical

\ectors ha^e the same standard deviation ) If this assumption is

not true, ne end up with a conditional standard deviation that is an

anthmtic mean of the various vector standard deviations rather

than a specific estimate for each vector If Tie wished, we could

measure the degree to which these vectors might have different

standard dev lations, or the degree of heteroscedasticity Our sample

18 too small to do this successfully, however We would need enough

items in each vector to make it possible to estimate the standard

deviations separately W'e rarely have such large samples in prac-

tice, and we again use the backhanded rule that we adopt the hypoth-

esis of homoscedastic vectors unless u*fi have fairly strong evidence to

the contrary

Our equation now is

o 2(X, - (0,2 + bM? (14 4)

The fifth and last step is to find a way of choosing values for o and

b so that 2(Xi - Xta)* is a mmimum (Those famihar with calculus

can perform this step by taking partial denvstives mth respect to a

and 6 and then setting each of these equal to 0 Of course, it is better

to simplify the equation first) This step leads to two equations as

follows

(1) 2X, « Wa,2 + 6,22X2

(2) XXjXj = 0,22X2 "H 6,22X2^

(14 5)

If we fill m the appropriate sums and solve these tw 0 equations

for o and b, we have values for a and 6 so that the sums of the

squares of the deviations of the sample items around our Im mil be

a minimum There is no magic to these squares, we minimize their

sum only because this gives us an arithmetic mean line

Let us apply this technique to our problem of sales territories

Table 142 shows the detailed calculations for the relationship be-

tween sales and population It also shows the results for the hue

of linear relationship between sales and income and that between

income and population These lines are plotted as the LS lines in

Figs 14 2 to 14 4 Note their close confonnity to the V lines It is

worthwhile to speculate on how much of the differences between

and V and LS lines is due to errors m the visual fitting and how

much to the mapplicability of the L S model Suffice it to say that

we should not be too hasty u praising or condemning either line

(Remember also that if part of the test is to compare the standard
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table 142

Caleulafing a Least-square* Straight Line of Relationship

between Sales and Populallon

= Sales as % of Total of Ail Temtones
Xi “ Population “ “ “

^3 = Income " " "

Territory v. ^3 w w x,^ XiX, XiXt XjXj

1 40 24 89 1600 576 79 21 9 60 3560 21 36

2 27 29 87 729 841 4489 783 1809 19 43

3 67 38 94 44 89 1444 8836 2546 6298 35 72

4 53 48 83 2809 1849 68 89 22 79 43 99 35 69

5 40 52 61 1600 2704 37 21 20 80 24 40 31 72

6 60 52 84 3600 2704 70 56 31 20 50 40 43 68

7 80 57 84 5400 3249 7056 45 60 67 20 4788

8 60 67 50 3600 44 89 25 00 40 20 3000 33 50

9 80 71 72 64 00 5041 5184 5680 5760 51 12

10 72 81 61 5184 6561 3721 58 32 4392 4941

11 67 81 44 4489 6561 1936 54 27 2948 35 64

12 87 95 67 75 69 9025 44 89 8265 5829 6865

18 80 100 44 64 00 10000 1936 80 00 36 20 4400

14 100 105 67 100 00 11025 44 89 10500 6700 70 35

15 87 105 33 7569 11025 1089 91 35 2871 3465

100 0 1000 1000 724 38 770 94 71312 731 87 652 86 61780

L 8 Equation$

(1) iXi^Naii+kiZXi (1) 10000 « 16012 + 100 00t>i2

(2) iXiXi^aiiZXi + biiXXi^ (2) 731 87 » lOOaw + 770 946i2

Solution

Xq 0)XC S6&7 (S) 6&& 67 = JOOsrf + 666

Eq (2)
- Eq (3) 65 20 = 104 276b

bji - 925

Substitute jn Eq (I) 100 00 = ISou + 9250

012 =260

Hence L S equation equals _
Xb = 2 50 + 62SXt

Similarly

and

Jb = 8 65 - 297Jfj

X32 = 979- 469Xj

deviations around these lines, we will always find the standard devia-

tion around the L S line at least as small as that around the V line

This 16 a direct consequence of the least-squares property of the

LS line and has nothing to do with the applicability of the model

Itself

)
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One o! the most striking fentuies of the calculation of a LS hne

IS the rather large amount of anthmetic involved The arithmetic

nould be greater if we had used curves for our lines The routine

used m Table 14 2 to solve the two equations is the one most com*

monly taught m high school algebra courses There are other rou

tines that some might find more comfortable Since a curved line

would involve the solution of at least three equations, the solution

routine nould then be somewhat more tedious In fact, it would be

so tedious that it is worthwhile to develop shortcut techniques

We encounter these short cuts later during our discussion of multiple

correlation

14.4 The L.S. Line as an Estimator of

The acid test of the value of the L S line as an estimator of values

of Xi, given values of Xj, would be a test which involved making

estimates of ntw data, that is, data which were not available at the

time of the calculation of the line We would, however, like an odtonce

estimate of how close the L S Ime will be to the future data We make

the advance estimate by using the only available data, namely, the

same data we used to calculate the Im It should be obvious that the

advance estimate tends to be on the optimistic side unless we are very

stupid about the line we select to calculate In effect, we are going

to judge how accurate our forecasting system will be by seeing how well

the same system would have worked mth the past data, the same data

u e used to develop the system (the L S hne) There is a bit of circular

reasoning here unless the future shows the same patterns as the past,

which it rarely does in any great detail However, this is the best

we know how to do Thus it is important to be alert to the possible

need to discount the apparent accuracy of a forecast system if its

stated accuracy is based only on the data used to develop the system

Table 14 3 outlines the routine for estimating Xi and the standard

deviation of the errors in such estimates The estimates are shown

in column 4 Since the anthmetic mean has been used as the basis

of these estimates, the total should be exactly 100 The difference of

3 is due to rounding errors Note that this rounding error disappears

if we carry an additional decimal place as m column 3 This additional

place IS not mathematically significant, however, so it is better to

tolerate the rounding error

The sum of the errors (column 6) should add to 0 for the same reasons

as above
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TABLE 143

Eshmafes of Xj, and Error* Thereof, Based on Given Values of Xj

X, buX2 Qij + bijXi Xa X.

0) 12) (8) (i) (S) (6) '7)

24 150 400 40 40 00 00
29 181 4 31 43 27 -16 256
38 2 38 488 49 67 18 324
43 269 519 52 53 1 01

62 325 575 58 40 -18 324
52 325 575 58 60 2 04

57 3 56 606 61 80 19 3 61

67 419 663 67 60 -7 49

71 444 694 69 80 11 121

81 506 7 56 76 72 -4 16

81 506 7 56 76 6 ? -9 81

95 594 844 84 57 3 09

100 625 875 8 $ 80 -8 64

105 659 908 91 100 9 81

106 856 906 91 87 -4 16

1000 6250 100 00 1003 1000 -3 1707

8iJ = ^

V If

= 107%

ffl2 = "
/IT

= 1 07 X 1 07
V -k V 15-2

= 114%

We have calculated both sj 2 and ci 2 si 2 is the standard deviation

for this particular sample If, however, we conceive of this particular

sample as only one of the many different samples that might have

occurred as far as we know, and if we are willing to assume that this

sample generatmg process is random within the bounds of our present

knowledge, we might recognize the standard deviation of random

samples tends to be too small on the average (We found this to be so

for smgle variables It is correspondingly true for vanables that are

varying jointly ) The adjustment for thw downward bias was related

to the number of degrees of freedom used up in the calculation When

we had a single variable and based tiie standard deviation on the

mean of that variable, we used up 1 degree of freedom The standard
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deviation around the line is based on the line and on all the constants

used to define the line, in our case flu and Hence the hue uses

up 2 d f (If our hne vvere curved and had the constants o, b, c, and

d, we would have used up 4 d f ) Hence we make an eshmaU of ihe

urmcrse conditional standard denalton, or by allowing for the loss

of 2 d f
,
thus increasing the figure from 1 07 to 1 14

Table U 3 follows the straight definition of the procedure for calcu-

latmg «i 3 and 2 This routine is relatively tedious, however It

13 also subject to larger rounding errors Hence we usually calculate

2 by a short procedure that is analogous to that we used to calculate

the standard deviation of a single wiable For a (L S ) straight line

this formula ‘ is

“ fluSJ?]

" V n"
(145)

For our present problem we get

Su
1724 38 -250X 10000 - 625X73187

15

>106% = 113%

The difference between 1 07, the result of the direct calculation, and

the 1 06, the result of the short-cut calculation, is due to rounding

The 1 06 13 more accurate

14.5 Rondom Samp(in9 Errors in Estimating X12

It IS very unlikely that our estimates of the line and standard

deviations are strictly accurate Hence we must make some allow*

ance for the resultant uncertainty The values of flu and 6ij are

both subject to random samplmg errors Since both of them are

really arithmetic means, their samplmg errors are a function of the

I The above short-cut formula has aonie ample properties that make it rela-

ti ely easy to remember The first term SAjS is always the sum of the squares

of the dependent vanable TVe then Bublract a stream of products that consist

of the first constant of the equation times the left hand member of the fni

L3 equation, the second constant times the left-hand member of the second

L3 equation, etc We have occaaon to extend this prmciple to the case of

multiple Correlation
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relevant standard deviation and of the d f The appropriate for-

mulas for estimating these Rampling errors are

«12

° Vff-t Vn (14 6)

=
SiVN-k ^2^ (147)

Note their close sirmlanty to the formula for the standard error of

the mean, which is

/W^\ Vn
The standard error of ^12. the conditional mean, is a function of

both the error in a and m b We combine these errors m exactly the

same way we learned to combine errors when we were pooling two

sample means There we discovered that the variance of a sum equals

the sum of the variances (We also discovered that the variance of a

difference is also equal to the sum of the variances ) Hence we combine

these two errors as follows

^12 ^
N ml

(148)

Equation 14 8 allows only for the error in b for each unit of Xz

Actually the error in b tends to accumulate as we move away irora the

mean of Figure 14 7 illustrates the phenomenon The difference

between the solid line and the dashed line is the error m X12 caused by

the error m b It is clear that this error is larger as we move away

from the mean ofX2 Hence we must modify our formula as follows

2 ^2 «121X!-X2f

If we wish, we may factor out the ^12,
leaving us with

Finally, again if we wish, we may take the square root of both sides

and obtain

’In '*1

2

ijjf
(14 11)
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Table 14 4 applies thia formula to the problem of estimating the

75% confidence limits to the value of P12, the unknown universe

value 0/ the mean of for given values of Xs ^ Since we arc

assuming that the universe is normally distributed, we can use the t

distnbution as the basis for estimation A confidence coefficient of

75% corresponds to a t of 1 204 when we have 13 d f

Figure 14 8 shows the confidence band as it would appear on fl

graph Note how it spreads as it moves away from the mean of X:

Also note how we ha\e terminated all the lines at the limits of the

given values of Xj Extrapolations beyond these limits should

never be made without an explicit atatement that the estimates are

m an area beyond the bounds of past experience Whene\er cir

cumstances force us to make estimates outside this experience range,

we do so with some intuitively derived extra allowance for error

We become particularly concerned that the Ime may change its shape

as its range extends

^ We show only the 75Vc confidence limits for /ijj It is possible, of course to

show the whole inference diitnbulion of /ijj for any ^jven value of Yj

would use the same ideas and techniques described tn Chapter 12
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Rfl 148 75% confidence liiniU of (see Table 144)

Allowing for th« Sampling Error In the Standard Deviations

It IS possible to estimate the distnbution of the joint errors m both

the line and the standard deviation around the line We find, how

ever, that the error m the standard deviation tends to be small

enough to ignore as a practical matter, particularly since its estima-

tion IS fairly complex Hence we ignore the problem here

14.6 Random Sampling Errors in EsHmating Individual

Values of X12

In the preceding section we were concerned only with the mean 0!

the J12 values More often than not we are more concerned with

estimating indimdual values oj Xu The best single estimate we can

make of these Xu's is their mean, Xu (Recall we are assuming that

Xu is a reasonably normal distnbution
) However, we must make a

larger error allowance than above because of the dispersion of the items

around their mean This involves only a simple modification m the

error formula we used for the line of conditional means The ap-

propriate formula is

,2 ,
*^12

,

“ X2)*
(1412)
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AT} (Population %)

Fig 149 7S^« confidence lunita of ftnd of Ajj (see Tables 144 and Ui)

This IS exactly the same as Eq 14 9 except for the addition of the

This IS added to take care of the deviations of the X12 values

from their mean Figure 14 9 shows the 767o confidence limits for

estimates of Xu The 75% confidence limits to Xu are also shown

for contrast Note the very moderate rate of increase in the ^idth

of the confidence band for Xu, particularly when compared with that

for Xu An examination of column 8 m Tables 14 4 and H 5 conveys

the same idea Thus we discover that the variation in Xu is dmtnaUd

by the difference between Xu and Xu and is only moderately affected

by the samphng error m Xu Hence we usually do not bother with

an attempt to allow for the widening confidence band when we are

estimatmg ilem, particularly when the sample is moderately large

Errors In Estimates When Sample Is Urge

If our sample is moderately large, l/N and become

neghgible, and we usually ignore them when we are estimating the

\alues of individual items of the dependent vanable The only error

we allow for is rfi 2 We still show the same concern, however, for the

additional uncertainties as we extrapolate outside the range of past

expenence Remember intuition and judgment are the only tools we

have for handling the problem of extrapolation
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14.7 Estimating the Degree of Association

The results of our analysis of fJie association between sales and
population, sales and income, and mcome and population can be

summarized conveniently as shown in Table 146 Many analysts

find this information sufficient for their purposes However, it is

often useful to rephrase this information by calculating the coeffi

cients of association, such as A, r, and The coefiicients for the

sample data are

4.12 -
fli-si2 196-106

Si
~

196

Si^-sJs 3 84- 1 12

s,=*
'

384

46

71

ri2 = 84

4-13 “ 15 A32 = — 28

ri3 = 27 7^2= 49

ri3 = - 52 raa = - 70

If we use the estimates of the standard deviations for the universe,

these coefficients become

A\i = 45 4)3 = — 12 A32 — 27

4 =69 ^3 = 23 4 = 46

fsi~SS fa=~4S

(Look again at Chapter 13, pp 512-9, to review the interpretation

of these coefficients

)

We can see that the universe estimates are not significantly smaller

than those for the sample unless the degree of association is small,

as it is m the case of sales and mcome For this reason most prac-

tical analysts tend to use the sample coefficients, disregarding their

slight upward bias It is good practace, however, to not ignore this

bias if we are working with small samples and if our results show

relatively small associations

Note that minus signs are placed before iw, ris, A32 ,
and T32

They signify that the association is negative, that is, high values of

one variable are associated with low valura of the other Negative
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TABLE 14 6

Summary of Rotults of AnalyiU of AtiocioHons botwton Saloi and

Population, Selo* and Incomo, and Ineomo and Population

Estimating

Formula

Vanalion

in Sample df

Estimated

Variation m
Universe

Estimated

Item forecast

Error *

(1) -62% )i -196% 14 #1 - 204% 4^ -211%

(2) >250+ 625X1 <u - 1 66 13 lit s - 1 L3 4„,-117

(3) - 865 - 297Xi II. -167 13 ill, - 179 4*,, - 185

SuppUmectary Bata

-6 7% li -176 14 4,-183 4^ -189

- 979 - 469Xi 11,-126 13 4, , - 1 34 4.,, -138

*Tiie estmuted itemloreeaob error u tbe lesult of adiustiog ibe estimated

TanatiQD m the uuveree for samplmg error in ti)e estim&tioK formula The general

formula u

Since IS m this problem, 1 033 Note that this igBores the

samplmg error in b

association is, of course, as useful as positive association when it

comes to reducing errors ofestimate

Sompling Errors In Meosuring the Degree of Association

Coefficients of association based on sample data are subject to the

usual problem of errors in random sampling We are all familiar

with coincidence, the simultaneous occurrence of two or more events

that just happen to occur together For example, the poorest golfer

will occasionally correlate all his movements properly and make a

good shot Table 14 7 shows the results of random drawings from

an ordinary card deck Five cards were drawn with the right hand

and five with the left Very few people would conclude from this

evidence that there is correlation between the hand used and the

results we get despite the fact that the sample shows that the right

hand drew larger cards on the average than the left hand The

problem is very easy with playmg cards because everybody “knows”

that the results of card drawing are “due to chance ” The issue is



PRACTICAL ASSOCIATION ANALYSIS
549

TABLE 147

Correlation between Value of Randomly Drawn Ploying Cords and
Wbetfier Cords Were Drawn w/A the Right or Left Hand

Values of Cards Drawn vnth

Hight Hand Left Hand

9 7

6 8

6 1

2 2

12 2

35 20

not as easily resolved with correlations m tiie world around us We
believe the validity of correlations that make sense to us and dis-

count those that do not

Sampling Errors tn r

We confine our discussion to sampling errors m the coefficient of

correlation r Our remarks apply equally well to .4 and with the

obvious modifications It is more convenient to work with r because

all the formulas and tables have been worked out in terms of r which

is natural considering the long history of r

Analysis of sampling errors m r (or r* or A) is considerably com-

plicated because the sampimg distribution of r is obviouslj skewed

except in the special case when there is no correlation in the uni-

verse, or when p
= 0 CWe use the Greek r, or p (rho), to refer to

umeTse
] We suy obviously because common sense suggests that

if, say, p = 80, r cannot possibly be larger than 1 00, but it could

conceivably be a« small as - 1 00 Fortunately, we find as usual that

tJie centra] limit theorem ajq)ljes, and that the distribution of r (r is

an arithmetic mean) approaches normal as N increases This normal

curve approximation is better tiie closer p is to 0 because the skew-

ness would then be Jess (We except the special cases of p of +1 or

-
1, when the sampling crrOTS would be 0

)
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The standard deviation, or standard error, of r depends only on
p

and on the sample size The basic formula la

If we note that 1 - p® la the coefficient of nondelerminaim, and that

the coefficient of nondetenmnation n based on the conditional variance,

or we can see that tbs is our usual sampling error formula It

has a measure of variation m the numerator and the sue of the sample

m the denominator

In the special case when the universe correlation is 0, tbs formula

reduces to

The case when p = 0 has occupied a pre-eminent position m correlation

because many researchers have been most concerned with

testmg the null hypothesis, namely, the hypothesis that the umverse

contams no correklion Our sample of 15 is rather small to use the

normal curve as an approximator, but wo test the null hypothesis

anyway to illustrate the method Namely

1

A Z of 326 leaves about 0006 in the tail of the normal curve

Hence we could say that there ate about 0006 (6 out of 10,000)

chances of gettmg a sample of 15 items with a coefficient of correla-

tion of 4* *84 or more, even though the universe is uncorrelated

Miss David’s Tables * of the exact distribution of r show a probability

of about 0001 for this event

The t/se of Tob/ei of the Sampling Disfrihvf/on of r. Miss David

hoped to 8ol\e the problem of a different distribution of r for every

combination of p and N by constructing tables of enough exact dis-

tributions so that we could solve most practical problems with only

moderate interpolation Her tables are actually quite sparse in their

N David, Tablei o] the Ordaialet and ProbabtUtv /nifffral of the Dw*

IniniijOT* of the Correblum Coe^Tcienf in Small Samples, University College,
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coverage, however, thus creating interpolation problems She did

make up some nomographs for selected confidence coefficients that

some analysts have found quite useful Figure 14 10 reproduces

the nomograph for 90% limits This nomograph yields 90% confi-

dence limits for pi2 of 64 and 93 Note the asymmetry m the limits

around ri2 of 84

fisher's z' Tronsformafion of r. R A Fisher published a paper in

1921 which presented a method for transforming r mto z', with /
having a distribution quite close to normal, even for samples as small

as the neighborhood of 10 This discovery enabled us to largely

dispense with tables like those Miss David eventually developed

The formula for the transformation is

^ (1 + r) - log, (I - r)], (14 16)

1+r
or =iI5Ilog~ (1417)

z' has a standard deviation of

ct> «
^

(approxunately) (14 18)

Tables of z' are available to simplify the transformation (See

Appendix H ) Let us test the null hypothesis for our problem with

the use of the z' transformation An r of 84 is the equivalent of a z' of

about 1 22 (T, = 1/Vl2, or 289 Hence, 2 = (z' - 0)Af ,
or

1 22/ 289, or 4 22 This leaves an area of about 00001 in the tail of

the normal curve If we compare this with the 0001 of the exact

distribution and the 0006 of the normal curve, we see that for a sample

of this size, the normal curve is a bttle too dispersed and the z' distn-

bution 18 not dispersed quite enough Actually, of course, the differ-

ences shown here would not cause most people any practical concern

Confidence Limif* of p It is a relatively straightforward procedure

to estimate confidence limits for if we wish We illustrate by set-

ting 75% limits for ,112 ri2 of 84 transforms into a z' of 1 22 75%

limits correspond to a ^ of 1 IS m the normal curve Hence our

limits are at 1 22 + 1 15 X 289 and 1 22 - 1 15 X 289 m terms of s',

or 89 and 1 55 Referring to Appendix H, we find that these corre-

spond to
^

s of 71 and 91 (Contrast these limits with those of 64

and 93 calculated from Miss David’s nomograph for 90^ limits
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14.8 When Is Correlation Stgnilicant?

The concept of significance has played a substantial role m the

application of correlation results The concept has been misinterpreted

quite frequently and for this reason warrants a brief discussion We

^ve alre^y referred to the null hypothesis, or the hypothesis that

there is no correlation m the umverse In our problem we discovered

that there was a probability of about 0001 of getting an rj2 > 84 if

there were no correlation m the umverse Thus we might conclude

that there is defimte evidence of some correlation because it is highly

unhkely that there is none Many analysts would now say that there

IS si^ijicant correlation between sales and population What they

mean, or at least what they should mean, is that the evidence casts

considerable doubt on the hypothesis that there is no correlation

Unfortunately, many people have interpreted significant to mean much

more They have assumed it means that the correlation is sufficiently

high to justify the use of the correlation results as a basis of practical

prediction, if not as a basis for the presumption of some causal re-

lationship As we can imagine, the ultimate outcome often caused

considerable disappointment and some disillusionment about the effi-

cacy of coirelatton analysis m genera! The fault was not of the

correlation analysis but of the analysts and the interpreters

We can illustrate by taking a case where a sample of 50 yields an

r of 25 Since there are fewer than 05 chances of an r > 50 if p is 0,

we would conclude that the “correlation is sigmficant ” We discover,

however, that even if the true p is as high as 25, this amounts to only

an error reduction of about 3%, actually very httle (A = 1
-

Vi This IS how we translated 25 into Z%

)

14.9 Curvilinear Correlation

Most of the ideas and techniques of our linear normal curve model

can be extended to co\er the case of lines that are curved rather

than straight Some complications do anse, howeier, and there are

some things we still do not understand about curvilinear correlation

We also have the problem of getting mvolved in the solution of more

than two simultaneous equations when we introduce curvature For

these reasons, we do not pursue the study of curvilinear correlation

m detail We merely illustrate some of ^e routines by showing the

calculations for fitting a second-degree parabola to our sales-popula

tion data Our assumptions are essentially the same as for the linear
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mode] W& assume thai the vertical vectors have equal standard

deviations, but now these vectors have means that fall into a para-

bolic pattern instead of a linear pattern Figure 1431 shows the

result we are going to get for our line of conditional means We also

assume that the vectors have at least symmetrical distributions, and

preferably normal distributiom We desire the symmetry to make

our least-squares, or arithmetic mean, line a reasonable approxima-

tion to a least-error, or median, line We desire the normality to

simplify the estimation of probabihties from the values of the stand

ard deviations

Our basic equation is

^13 = UJ2 + 6j2^2 + (14 19)

Note that there ate three unknovms m this equation, and we need

three equations to solve for these three unknowns To get a few/-

squares solution, we must fill m and solve the following three equations

+ ci22X2^ {14 20)

(3)

Note that the part of these equataons enclosed in the rectangle is

precisely what we used for our linear solution We merely extend

(1) SXi *No,2-)-b,22X2

(2) SXjXs * 0,22X2 +fij2SX2^

B

-J L_j _j -jJrt l I I I > I I / t I I -L-l L-J 1—

f

0 I 2 3 4 5 6 7 8 9 IQ 11 12 13 U 15 16

Xa-PopulaSon

Rv 14 n k least-squaxes sseond-degree patabolc fitted to the sales-popnlation

data
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thc'e the nght and down by increasing the exponente of the AVs

by 1 ine\cr} case

If v,e fill in these equations for the sales-population data, we get

(1) 10000 “ 15 00ai2 + 100 00^12 'h 77094ci2

(2) 731 87 “ 100 OOdii + 770 946, j + 6533 18c,

j

(3) 6002 26 = 770 940,2 + 6533 186,: + 58793 03c,

j

The resultant estimating equation is

Ji2 = 1 895 + 839Xj - OlGXj*

The conditional standard deviation, «, 2, is 1 06%, the same as that

for the straight line Actually it would be a little smaller for the curve

than for the straight line if we were to carry more decimal places

These additional places would not represent significant digits, hoive\er,

considering the accuracy of the onginal data The practical identity

of the 2 for both these lines is clear evidence that the straight line

is a very good fit to the data Additional evidence is the very small

value for c of - 016 Note that Fig 14 11 shows the parabola is

practically straight within the bmits of the onginal data

If we adjust s, 2 for degrees of freedom to g'^t an estimate of rf, 21

we find that the curved line is really a poorer estimator than the

straight because we used up an additional degree of freedom in the

calculation of c Thus rf, 5 = a, - A), or 1 06V 15/12 »

1 00 X 1 118 = 1 19% When we used the straight line, we found a

(f, 2 of 1 13

This adjustment for degrees of freedom is very important for a proper

vrfLiTpitMwn itsfoVis k tfomd !im wi’A aiwxtys xeppm

in the sample to fit at least as well as a straight line, and the greater the

number of cuiv es the better the apparent fit The price of curvature,

however, is the additional constants needed m the equation, and each

additional constant uses up a degree of freedom Unless the curvature

reduces s, 2 enough to offset the loss of degrees of freedom, the curvature

IS a poor bargain In the sales-population relationship we found such

a poor bargain

There is no limit to the number of different kinds of mathematical

functions we might use to fit a line of means to a scatter diagram

We trust that the bnef discussion given about the use of a second*

degree parabola provides enough background so that we can safely try

curve fitting within the limits of our knowledge of analytical geometry

and, of course, our common sense

PROBLEMS AND QUESTIONS

14 1 How would you go about selecting a location for a retail outlet?

For example, suppose you were responsible for selecting appropriate loca*
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tiODs for a gasoline station or a supermarket or a shoe store etc Select

an) one of these or any other store type of interest

(o) List the factors that you think might be relevant in estimating the

future sales volume of such an outlet

(fa) Rank the five most important factors in their order of importance

that li as jou see their importance Explam m a sentence or two for each

factor why you think it has this d^yee of nnportance

(c) Can you find quantitative data on each of these five prmcipal factors?

Where?

If the data are not yet available but nevertheless can be collected at

reasonable (?) expense ouUme bnefiy how you would proceed to collect

such data

(d) Suppose that you find that your most important factor is presently

measurable only at exorbitant expense How would you allow for this factor

in selecting a location?

14 2 The personnel director of the Crayle Co was so pleased with his

first experience m using correlation analysis as an aid m selecting and rating

personnel (see Problem 13 4) that he decided to make a more extensive cor

relation analysis of the factors that might be related to another job in the

factory After a few brainstonniDg sessions with the foremen it was de

cided that the most promising factors among those on wbcb they had

measurements were

Jffl—Score on the Pixem Dextenly Test

Xj—Number of months experience on the job with the Crayle Co

Score on a standard intelligence lest

Xj—Number of years of formal education

Data on the*e variables were collected as of February 15 1961 It was de

cided to use the arithmetic mean of tbe most recent 5 days production rec

ords to measure the workers performances Thus the production data (Xj)

refer to the mean output per Tit-hour day Data were collected for a ran

dom sample of 50 workers out of the total of 247 who were working dunng

that penod The data are given below

Formal

Production Dextenty Expenence Inteihgence Education

(Pieces) Test Score m Mouths Test Score Yearn

Xi Xi X) X( Xe

1 117

2 112

3 133

4 119

5 135

13 14 92

14 9 76

17 12 94

18 5 87

20 24 97

120 20 15

139 21 17

130 21 20

130 22 21

144 23 23

90 10

94 10

84 9

92 9

93
10

10
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Tonnal

Production Dextenty Expenence Intelligence Education

(Pieces) Test Score in Months Test ^re Years

Xi X, X| Xi Xi

11 149 24 31 87 11

12 148 24 18 102 9

13 143 25 27 88 10

14 167 26 40 100 9

15 155 26 29 93 10

16 157 27 21 91 12

17 174 27 34 112 11

18 161 27 26 94 12

19 152 27 23 93 10

20 154 28 24 91 10

21 163 28 22 97 13

22 173 28 36 99 10

23 156 29 22 92 10

24 161 29 25 97 9

25 181 29 39 102 13

26 174 30 37 95 11

27 184 30 50 93 9

28 179 30 43 100 10

20 m 31 47 04 11

30 176 31 40 99 10

31 189 31 46 97 10

32 261 31 83 96 9

33 163 32 52 97 12

34 165 32 65 99 11

35 16S 32 n 117 12

36 152 33 3 108 13

37 206 34 44 102 15

38 205 34 55 101 12

39 169 34 7 98 11

40 201 35 59 104 10

41 167 36 10 110 11

42 155 37 4 100 10

43 200 38 38 107 11

44 225 38 74 113 12

45 221 39 49 126 10

46 m 39 53 103 10

47 232 41 90 102 11

48 234 42 79 107 11

49 230 45 63 103 12

50 229 48 57 101 10



(a) Use Uie data for the odd-numbeted workers (or for the evea-ni

hered) and analyze these factors by copstructmg tie 10 scatter diagra

tbat are necessary to study eacb pwt cd factors Consider the following

your analysis

1 Is there any evidence of a meaningful correlation between the gii

pair of vanablcs^

2 Do any of the mdcpendent variables show enough correlation w
each other to justify climmatuig one from further study because it is essi

tially duplicated by one of the other independent variables?

3 Wliat seems to be an appropriate line to describe the average re

tranship in each case’ Do any of the relationships appear to be curved''

4 Do the vatiouB telaUon^ps strike you as being logical in the sei

that you more or less would expect such variables to be related in sue!

way ’ If borne of the rdationships do not appear logical or if they had i

appeared logical, what effect would such a finding hare on any subseque

analysis’

5 Would you be willing to extrapolate any of these apparent relatic

ships and make estanales baaed on such extrapolations’ Explain

6 Do the dislnbutrons around the hues of relationship appear to

reasonably cymmelrica), or eien norawl’ What is the significance of wl

you find on this matter’

7 Does (iw assumption of a constant variance m the vertical vecti

appear to be a reasonable approximation in each case’

8 Rank the four independent variables in order of tbeir apparent i

portance m explaining vanations in output

(b] matrix bdow gives the various sums of cross products for thi

five variables

AT, X. Xi X, X

Xi 1,513,518 263,158 326,458 850,064 01,:

X, 46,360 56,174 147,339 16,;

X, 83,036 173,962 18,1

X, 487.603 52,1

X, 5,t

Calculate for each pair of variables

1 The least-squares straight fine of relationship

2 The standard deviation of the dependent variable

3 The conditional standard deviation of the dependent vanable (A

known as the standard error of estimate

)

4 70% confidence interval for the expected mean of the dependi

vanable for selected values of the independent variable (Select vali

throughout range of independent variable

)

5 70% confidence interval for the expected actual valm of the (

pendent vanable for selected values of the independent variable
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6 Plot your least-equaresliflte and jour 70*c confidence ranges on jour

graphs of Problem 14i(d) Evaluate tbe practical usefulness of ^ese

calculated results

(c) Calculate the coefficients of association, detemunalion, and correla.

tion for each of jour calculated rdalionships Perform these calculations

from the tompfe standard demtiona and from the cafimnted umt^erae

standard deviations Evaluate the practical significance of these coefficients

(rf) Estimate the 70% confidence limits for the coefficients of correlation

you calculated m (c) above

14 3 If jou were the personnel director of the Crajlc Co , to what extent

would JOU paj attention to each of the four factors referred to in Problem

142? In answering this jou might try to rank the factors m order of im-

portance and assign relative weights to their unportance

144 Examine the results of your analj-sis and also the original data in

order to assess tbe significance of "history^ to this problem For example

IS there any endence that the kmd of men hired recently is different from

those hired several years ago? If you find such a difference, how would

such a finding affect your mterpretation of your correlation results T

14 5 Suppose you have applicants who score as follows on the Pixem

Dexterity Test A—15, S— C—55 What estimate would you malfp of

their output rate’ WAm would j*ou expect them to achieve this rate?

Since you are given no information on the other independent variables, how

do j ou allow for them, if at all^

14 6 Select from the above relationships (treated as straight lines above)

that one that impresses you as tbe most likely to be reasonably well described

by a second-degree parabola Perfonn the necessary calculations to make a

correlation study ba^ on such a second-degree parabola Are these results

"significant”?



Reducing uncertainty by

association: multiple correlation

analysis

Up to this point we have analyzed the associations be-

tween sales and population and between sales and income, with each

analysis independent of the other We were in a position to make

estimates of sales based on population alone, or to make estimates

of sales based on income alone There was no reason why these

separate estimates should be particularly consistent with each other

For example, m Terntory 2 we get an X12 of 4 and an Xia of

6 7% (^1 actually equalled 27fo ] When we get different esti-

mates like this, we should use the one that is based on the better

estimator, in this case, Xz Or, we might use an estimate based on

a weighted corabmafcion 0/ the separate estimates, with the weights

proportional to the respective coefficients of association

We now try to solve the problem of smvltaneonsly analyzing the

three variables of sales, population, and income The method ex-

tends logically to cover any number of variables The method is

known as multiple correlation analysis

15.1 The Underlying idea of Multiple Correlation

Analysis

Although the straightforward matheraatacal analysis we use may

look as though we analyze the three variables simultaneously,

we, in fact, analyze the variables two al a time, with the other

variable constant We then add the net correlations together to get

estimates based on simultaneous vanation of the independent

variables
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It 18 easier to visualize the process of analyzing three variables

if we draw graphs m three dimensions It is possible to simulate

three dimensions on two-dimensional paper by using projection tech-

niques Most people are not adept at this, so we do not attempt

it here, but rather, we try to use the room m which tee are now sitting

so that we can see what three-% anabie analysis is

First we specify the axes Let us position ourselves so that we

are near the center of the room and are facing one of the walls of

the room Imagine that we are measuring sales vertically, that is,

from the floor to the ceiling We will measure population from left

to right, that is, along the wall that we are facing We measure in-

come from the hack to the front, that is, along the wall to our left

Now let us check our bearings by “plotting" some of our data Ter-

ritory 1 has a sales of 4 0%, a population of 2 i^o, and an income of

8 97o VVe are going to place a golf ball m the space of the room

to represent this combination of sales, population, and income Start-

ing at the origin, which is at the floor in the left comer facing us

mark off (mentally or actually) a distance of 2 4 units of population

at floor level along the facing wall (In selecting our units keep m
mind that population runs from 2 4 to 10 5

)

Next mark off a distance from the 2 4 population point poroffel

to the left tcaU so that it covers 89 units of income (Since 89 is

more than the a\€rage of 67, this point should be to our left-front

if we assume our original position in the center of the room
)

The

resultant coordinate point for population and income corresponds

exactly to what we would ha\e if we were planning to draw a scatter

diagram of population and income on the floor of our room

Finally, we measure a distance of 4 0 sales units straight up from

this population-income coordinate point We then hang the golf ball

so that it occupies the resultant position

The golf ball now has a position m the space of our room ';o that

its distance from the floor measures the sales, its distance from the

left wall measures population, and its distance from the rear wall

measures mcome (We are assuming we are m out ongmal position

in the center of the room ) Imagine we ha\e plated golf balls to

correspond to the sales-population-mcome of the other 14 temtone'=

Thus there are now 15 golf balls hanging in the space of the room

If we were to take a photograph of the room from the rear, it would

appear like Fig 151 (We eliminate all irrele\ancies from the

room)

What we would now like to do is place a flat piece of glacs in the

space of the room so that there are about as many golf balk abot’c

__the glass as there are below the glass all over the room, (We assume
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Fig 15

1

Stereogram of relationAip among (sales), Xg (population),

Xg (income) Sales measured from bottom to top population from lei

right and income from back to front (We assume we ere sittmg in middl

base and are facing the far 'wall ) Numbers identify temtones

Table 14

1

that we have do physical difficulty with the strings holding the
i

balls We have a special adhesive that enables us to place the b

in the air at any positioni) Examination of Fig 15 1 make:

rather apparent that the golf balls do follow a pattern m sp;

Figure 15 2 shows the glass in place

We call this piece of glass a plane m three-dimensional spi

It provides us with estimates of the cmdtiioTicl mean of sales gr

some combination of population and income If we measure

deviations of the golf balls from the plane, square them, divide

15, and take the square root, wc have the conditional standard

viation, or Sj 23 This is the variatira in sales that is independ

of variations in population and mcome, and hence the variation f

sumably associated with factors other than population and mco

The mathematical specifications of this plane are rather sini

to determine Suppose, for example, that we wished to give instr

tions to a carpenter so that he can build supports along the walk

hold this pane of glass We might write something like this

Nail a 2x2 m strip of wood along the south wall so that the top edgt

the strip 18 5 in above the floor at the southwest comer and so that the s
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Fig 1SJ Stereogram of relatiotsship among sales, population, and income v:th

fitted plane to deaenbe average relationakip Note that Territories 1, 7, 4, 6, 6,

10, 12, 13, aOd 14 are below the plane and 3, 7, 8> 0, 11, and 15 above the plane

Also note that the temtones further away, le , those that have higher mcoiaes,

tend to have higher sales for a given population

rises 7 ft for every foot of distance along the south wall. Then nail a similar

stnp along the west waU, joining the south wall strip jn the southwest corner,

and nsmg 9 ft for e''ery foot of distance along the west wall.

These two strips would be sufficieot to hold the rigid pane of glass

in place.

If our carpenter were a mathematician of moderate sorts, we could

have economized on langu^e by telling him to fit a plane with the

following equaUon;

Xi = .5 + .iXi -f~ .9-S^3,

where is the height of the plane for any given combination of Xj

(distance along the south wall) and Xj (distance along the west wall).

The .5 tells him the height of the plane in the southwest comer (where

both Xj and Xg have values of 0); the .7 tells him the slope of the

plane along the south wall (along which Xg is measured); and the .9

tells liim the slope of the plane aloi^ the west wall (along which Xg is

measured).

The general form of this equation would be

^183 “ sXi + his fiXs- {\hX)
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For our problem we would interpret this equation as

Xi23 IS an estimate of Xi (sales) based on given

values of X2 population) and Xj (income)

flj
(23 )

IS the estimated vtdue of X123 when X2 and X3

have values of 0

bis 3 JS the difference in associated with a umi

difference in X2 wAcn X3 w conslant

bis 2 38 the difference in Xt23 associated with a unit

difference in X3 w/ien Xs is eonslayit

We can easily grasp the logic of referring to X2 as constant if we

mentally return to our room Stand anywhere along the south wall

(the original rear wall) with our back to the wall Then we walk

straight out along a line parallel to tiie west wall As we walk along,

we are walking from temtones with small incomes to those with

large incomes But note that the pqndatm w rmoinin^i constant

because we are along a line at right angles to some point on the

population axis The lai^r sales we encounter as we walk along

this line arc the differences in sales associated with differences in

income wiien population is constant

The Situation When We Hove More Than Three Variables

The idea of three vanables was relatively easy to express because

we are all familiar with the three-dimensional world m which we

live If we add a fourth vanable, we create the need for a fourth

dimension, a fifth vanable requires a fifth dimension, etc One of

the best ways to picture a fourth dimension is to imagine the skele-

ton of steel or concrete m the beginning stages of the construction

of a multistory building Assume we are concerned only with rooms

to he built at the northwest comer of the building Let us measure

sales along the vertical axis as before Let us measure popula-

tion along the south wall and income along the west wall as be-

fore What do we now do with number of retail outlets our fourth

variable? We measure the fourth vanable along the same axis as

we measure sales The value of the fourth variable tells us what

floor 0/ the building to use m making our estimates Each floor con-

tains a room just like the one we used for our three-variabie analysis

Each room, however, will have a diSerently placed plane of glass

the difference associated with vanabons m X4 (We can immedi-

ately see that this is going io have to be a very tall building if X4
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IS a continuous vanable, and if we ha\e a separate floor for each

\alue ofAi)

SuppO'C we ha^e a fifth variable We now need more than one

room on each floor Let us use the rooms along the north wall of

the bmidmg to measure \atiatM)ns m the fifth vansble Each of

these rooms has a typical three-dimensional set-up, each with its

OTMi place We now u*e .T^ to tell us what floor to use and X5 to

tell us what room to use along the norik icalf

The re^t of the rooms m this buildmg are a\ailable to be u«ed,

«;o now we mlroduce a sixth \anable This ^a^able indicates to

us what room to u«e along the treat axis of the building

We ha^e now completed Uws analogy and can review the whole

picture Imagme a very extensile multistor} building In each of

the thousands of rooms we hate a plane which measures the as'^o-

ciation among Xi, X*, and X3 Each room has a different plane,

the differences dependmg on the particular talues of X4, A‘5, and X»

that pretail W e enter the building at the ground floor We get on

the eletatof and get off at the floor indicated bt the giten talue of

Xi We then consult the ^alue of X5 to find out how manj rooms

we must go along the north axis and the talue of Xi to find out how

many rooms we mu«t go along the west aii« We enter that room

consult the talues of Xs and X| and find our estimated value of

or more exactly, of X,234M
If we had a setenth, etc ,

tanable, we could contmue the analogy

bv stacking boxes in each room, with each box stacked with smaller

boxes, etc

equation ior abve-vsnaViepnhhemTm^W’K’iiKe

^123« “ Oi(j34S) + + hi3 315X3 + bl4 235^< ^15^34^5

If some of our relation^'bips were curtilinear rather than linear,

our buildmg would take on some terj mleresting futuristic shapes

We would also hate some interesting engmeenng problems if the

buildmg 13 to stand

15.2 Relationship of Multiple Correlation to Simple

Correlation

WTiiIe we hate our three-dimensional model m mind, it is a good

idea to compare our scatter diagratna for two tanables with our

stereogram for three vanables Figure 15 3 shows the scatter dia-

gram of the relationship between Xi and Xi next to the stereogram
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that IS being obsened from the same perspectne If Tie eliminate

the factor of depth from the stereogram, ure would get exactly the

same result as shown m the scatter diagram Since the factor of

depth reflects income, elimmation of the depth factor is the same as

the mcome factor Tbs is, of course, exactly what we did

when we drew the scattergram (a useful contraction of scatter dia-

gram) for sales and population

The contrast between a scatterpam and a stereogram is even more

viTud if we compare the scattei^ram of and Xj with the stereo-

gram from the same perspective See Fig 154 Note the negative

slope of the relationship in the scattergram when w e i^orc popula-

tion and the postfivc slope in the stereogram when we can observe

Xi and A’s with ^2 constant We can now see why our analysis of

the relationship between sales and mcome showed a rather surpnsmg

negofivc association Income and population are negatively cor-

related m Our sample Thus the depressant effects of a low popula-

tion are sufficiently strong to offset the stimulating effects of a high

mcome with the result that mcome and sales appear negatively

correlated when we ignore population

The Concept of the Portiol Relotionship

When we are dealing with the relationship between two vanables

when one or more other vanables are constant, it is a portwi rela-

tionship Thus we call bu s the coefficient of partial regression, m
contrast to bw, which is the coefficient of regression Similarly, we

call ilia 3 the coefficient of partial association and ri2 5 the coefficient

of pcrfwif correlation We eay more about these partial relations m
later pages

15.3 Assumptions Underlying Our Multiple Correlation

Model

Our approach to the mathematical analysis of three variables

parallels that we made of two vanables We make the same funda-

mental assumptions, namely.

1 The lines of conditional means are straight, or Imear This results m
our plane being flat rather than contoured

2 The condition^ standard deviations are equal m all vertical vectors

running above and below the plane Imagine the plane bemg marked

off m small squares or cells, with each square representing a particular

combination of Xj and Xj, and we can see toe imphcation of this
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mrim

Fig IS 4 CompariBOD of Bcattergram of relatioaship between sales and income

and same relationship as it appears jn tile stereogram The stereogram ifl

viewed from the east s de of Fig 153
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Fig 19J IllustrattoQ of a oonoal distributioa of coll frequencies for a smgle

cell of a threevsnable eterecjram

sssumptiOQ Assume that our sample is large enough so that each

combraatioa of and Xj is paired with severol values of Our

golf balls for a given cell ftould tend to hang down like a stalactite from

the roof of a cavern and also to project upward bkc a stalagmite from

the floor of a cavern We would thus get a distribution of values

(Golf tees would be a more appropriate simulator of the distribution

of the goU balls than would st^ctites and staUgmitesI
) Our assump-

tion of equal standa*d deviations refem to the equality of variations

around these cell means

3 The conditional distributions arc essentially normal This assumption

facilitates the interpretation of our standard deviations

15.4 Estimating a Least-squares Straight Line of Multiple

Relationship

We calculate an arithmetic mean 'plane through the data for the

Same reasons tre calculated an anthmetic mean line for a two-

variable relationship Again we accomplish this by taking advan-

tage of the least-squares property of the arithmetic mean We would

like to obtain values of Okjji, bug, and bn s in the equation
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^123 - Ol{23) +^12 3^2 + 6j3 2^3 (151)

60 that the suras of the squares of tiie deviations of the Xj from the

Xi23 IS a minimum The same mathematical routine that is used for

a two-vanable analysis indicates that we ^t such least-squares values

if we solve the following three equations (Equations for estimating

least-squares lines are often called normal equations, the term origi-

nating with the idea that the least-squares Ime achieves its most reliable

use when the underlying distnbutions are normal

)

(1) 0 + 0+5,30
(2) SX1X2 = ai{23j^^+ 5(3 32X2^ -f I>i3 2SX2X3 (15 2)

(3) 2X1X3 = ai(23@+ 612 32X3X3 + 61322X3'

If we fill in all the required sums from the data m Table 14 2, we get

(1) 100 00 = 15ai(23) + 100006is3 + 100006,3 2

(2) 731 87 = 100a, (23) + 770 946,2 3 + 617 806,3 2

(3) 652 86 = 100ai(23) + 617 806,2 3 + 713 126,3 s

These three equations can be solved simultaneously by any one of

several different methods, however, we often find it more expeditious

to take advantage of another property of the arithmetic mean and

thereby reduce the three equations to two This property is that the

sum of the deviations from the mean is 0 Hence, if we measure all

of our variables from their respective means instead of from the natural

origin of 0, we find that our three normal equations reduce to

(1) lixi = ]?ai(23) +6,23^-12 +6,3223:3

(2) 2zi 2:2 = ®i{23 )
2a:2 + 6,2 3212' + 6,3 22122:3

(3) 2a:jXa = fl, (23)22^ + 612 3SX2I3 + 6,3 aSis'

All the circled sums are zero Hence we find immediately that

Cl (23) 18 0 when we measure all vanables as deviations from their means

This is another way of saying that a temtory with a mean population

and a mean income should have mean sales We are then left with

the modified equations (2) and (3)

(2) 21,3:2 = hi + 5i3

(15 3)

(3) 23:13:3 = 6,2 323:23:8 + 5,3 323:3'

(It 18 mterestmg to note the appearance of the sums of the cross

producls of deviations m these equatioiw These sums of cross products
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definitely do measure the degree of correlation, among other things

)

If we had to calculate directly the«e sums of cross products and sums

of squares of dewtions, the reduction to two equations would be no

adrantage Fortunately, these sums are easily derived from data we

already have m Table 14 2 The required formulas are

2rii3 = 2X1X3 - XiSTa = 731 87 - 6 67 X 100 = 65 20

IxiXi = 2X1X3 - I12X3 = 6o2 86 6 67 X 100 = -13 81

2i2i3 = 2X3X3 - XjSXa = 617 80 - 6 67 X 100 = -48 87

2i3= =2X3' - XjIX, = 77001 ^ 6 67 X 100 = 1W 27

2i3® =2X3“ -132X3 = 713 12 - 6 67 X 100 = 46 45

Note that all these formulas are fundamentally the same The

general formula is the sums of products of deviations of two variables

from their re«pecti\e means is equal to the sums of products of the

original variables minus the product of the mean of one variable and

the sum of the other If we recognize that the tguart of one variable

IS simply the product of two variables that happen to have the same

value, we can see that this rule also extends to the sums of squares of

deviations

If we substitute these values m the two equations, we obtain

{2) 65^= 101276,3 3 - 48 876j3 3

(3) -1381 = -48876i,j + 46 456i3 2

Solving these two equations simultaneously gives us

6,2 3 « 959, or 96,

and 6,3 3
= 712, or 71

Ifwe leave the ongm at the general mean, 0,(33) “0 It is, however,

generally more convenient to have the ongm at 0 The value of 0, (33)

at the natural ongm is

0,(33)
= ^ ” ^13 2^3

= 6 667 - 959 X 6 667 - 712 X 6667

= -447

Thus the equation of our plane of conditional means is

Xij3 = -4 47+ 96X2+ 71X3
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Our mathematically mchned caipoiter could now build the sup-

ports for this plane in our room We hope he would have the good

sense to realize that we do not really wish him to cut a hole m the

floor at the southwest comet so he could anchor his 2x2’8 447 units

below the floor level We wish him to terminate at the floor level at

a point so that ij the 2x2 were extended, it would reach the comer

4 47 units below the floor

The fact that has a negative value points up the nonsense in

extending our plane into the comer where a territory has 0 people

and these 0 people have 0 income (On the other hand, there is some

logic to the presumption that if a sales manager shipped merchandise

into an empty territory, there would probably be some loss before

the merchandise could be rescued It is unlikely, though, that -4 47

IS a correct estimate of the probable lossf)

15.5 Estimating the Conditional Standard Deviation for

a Three-vorioble Anolysis

The standard deviation of the Xi values around our plane can be

calculated m the usual way We measure the deviation of Xj from

Xjgs and square the result We then add up all such squared devia-

tions, divide by the number, or by the degrees of freedom, and take

the square root In symbols we get

2(Xi-W
(154)

V N
'

lS(Xi — Xi2i)^
(IS 5)

This 18 a tedious calculation, and so, unless we have other reasons to

wish to calculate the Xus values, we prefer to use the short-cut version

of the formula (Remember that diorteuts almost always have more

twists and turns than the long way ) The shortrcut formula is

N

(A shorter short-cut version would be

(15 6)

Xx] — hi2 aXxiXj — bj3 jXxjXs
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15 6 A Summary of the Results of Our Analysis of

Territory Sales

"We can now extend Table 14 6 to include the results of our multiple

analysis Table 15 1 reproduces Table 14 6 except for the footnote

and adds the results of our multiple analysis It is quite e^dent that

knowledge of iwtA the population and income of a territory results m
smaller estimating errors than if we knew only one or neither of these

If we were to mtroduce knowledge about other relevant variables, such

as number of retail outlets, a%erege annual temperature, etc, we

probably could reduce ,
below the 66% which we achieved

with knowledge of Xj and Xj We would probably have some trouble

makmg >eiy large reductions, however, because of the few degrees

of freedom we have to work with If we enlarged our sample (assuming

the company has «ome additional temtones available) and introduced

some additional variables, we would encounter a substantial increase

m the amount of anthmetic mvolved A four-v'anable analysis m*

TABLE 15 1

Summary ef Resullt of Analytii of SoIbi in q Territory

Virulno D«br« {kbmiM

Eitiaitmf D (/ Tintiai Iles-foneut

StDplt rmdam uCainm

(1) Ti -6.77, n -198% H tf, -IM% -Jll%
mlu-lM+BUl, nj-lM n ^i>-US ^,,-117
0) Til -8.65- J97X, #11-167 13 #,,-179
(4) Ju,--t47+#59l,+ 71ir, n.H- J9 13 #,»- 66 68

SvpflMAidrir £Wd

T, -6.r« „ -ITS u #, -183 #,,-1.89

Xn-9W- 469I, ILI-U6 13 #i»-1.34
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volves almost twice as mucli MiUunebc as a three-vanable analysis,

for example Such a formidable load (rf work has prevented any wide-

spread use of multiple analysis of many variables The development

of the electromc computer promises to break this barner, so that we

should see a substantial increase m the use of multiple correlation

techniques Whether this upsurge will be accompamed by any sig-

nificant amount of misuse is yet to be seen There is a danger that

some people forget that the computer follows instructions as given,

with httle facihty for rejecting poor instructaons

Although we are not really mterested m estimating income from

population, we mclude the analysis as supplementary mformation to

help us understand better the structure of our problem Thus we can

see that there is a reasonably high association between the two in-

dependent variables This is the source of the rather dramatic shift

of the slope of the sales income Ime from negative to positive as we

maintain population constant

15.7 Sampling Errors tn Multiple Correlation Analysis

Estimation of sampling errors m the estimation of the plane of

conditional means parallels the reasoning we used for a Ime The net

error is a function of the error m ei(23), j, and 613 2 The basic

formula would be

^iitt “ (15 7)

Note that this error increases as we depart from the general mean

because d fbe cumulation ol enors m ’012 3 and bis 2

If coefficients of parhd association, or partial correlation have been

calculated, they too are subject to samphng errors For example, the

coefficient of partial association betiveen sales and population, with

income constant is

Ai23 -
^1 3 ~ *1 23

813

1 67 - 59

187
= 65

,

and the coefficient of partial correlation of the same is

ri2 3
=

= 94
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TraDsfommtion of r mto 2' gives us 1 74 The standard deviation of

z' (frequently called the standard tnor) is

1 1

<Ti>
= —

—

/= = 30
V^v-3-(it-2) vn

Note that the standard deviation of if la sbghtly larger here than it was

for the two-vanable coefficient, the increase being due to the loss of

one more degree of freedom Seventy’five percent limits correspond

to a Z of 1 15 m the normal curve Hence the limits to ZI23 are

1 74 ± 1 15 X 30, or 1 40 and 2 08 These correspond to lunite for

hi 3 of 89 and 97

15.8 Note on the Coefficient of Multiple Correlation or

Association

A coefficient of yimp^ association measures the relative error re-

duction which takes place when we consider om independent variable

in addition to the dependent vanable The coefficient of partial

association measures the relative error reduction which takes place

when we consider ons independent variable while holding one or more

other independent variables constant Some people bKo like to meas-

ure the relative error reduction which takes place when we consider

tu?o or more independent variables For example, if we calculate

^
3i - 81 23 1 96 - 59

«123 “ — “ “ 7U,

5i 1 96

we have measured the relative error reduction which takes place when

we consider both population and income Such a calculation is the

coefficient qf multiple association, or the multiple coeSicient of asso-

ciation

Since multiple coefficients always involve at least tm added

variables, they tend to be rather large m numerical value They

are very difficult to interpret because of the addition of two or more

variables \\ e have no basis of judging how much of the informa-

tion was contributed by one of the variables and how much by the

other or others We can judge the latter only with reference to the

partial associations, where we allow only one independent variable

to vary at a time Therefore we recommend avoiding the calcula-

tion of multiple coefficients because they contribute no precise and

useful information and yield numbers so large that the unimtiatcd

tend to be overimpressed
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15.9 The Relationship between Simple and Partial

Correlations

When we found sales and income with a negatwe association and

later found that the partial association was fositive when we held

population constant, we had empincal proof that the relationships

between simple and partial associations are not as obvious as we
might hope We can get a more precise idea of the relationships

between simple and partial coefBcienta if we show their e^act mathe-

matical function For example, usmg t for convenience, we get

1*123 -
Tia

-

Vi - 4
(15 8)

A few of the more obvious conclusions we can draw from this

equation are

1 Values of and rjj are interchangeable Each has the same and equal

effect on the value ofm 3

2 If both T« and r» ate 0, then 3 = fn We would infer this intuitively

because, if X3 were uncorrelat^ with both Xi and Xi the bolding of Xj

constant should have no bearing on the relationship between Xi and A?

3 If Tij and rjj are both 1, then must also be 1 and ru t must be 0

4 ru 18 not completely independent of ru and rjj This is obviously true

for the case menboned in 3 It is also clear if we play with various

combinations of values for ru, ru and ry For example, suppose we

know that r^ * 8 and f» * 5 What can wc say about the value of

ru and ru a? Substituting these given values we get

fu -• 40

If we give ru a value greater than 92, then ru 3 would have a value

greater than 1, a logical impossibihty Similarly, if we give ru a value

less than - 12, then ru $ would have a value less than -1 Therefore

we know that ru must have a value between - 12 and 92 given that

ri3 = 8 and ru * 5 If is mmus 8,
with ru remaining at 5, then ru

must be between -b 12 and - 92, a complete reversal of signs from the

case when tu was positive

These are enough to indicate the possibilities^ We can extend

the list of logical deductwiB if necessary This type of equation can

1 Ruth ¥ Lees and I^denc M Lord haw prepared a nomograph for the

calculation, of partial correlation toefficiente It is published in the JomttuiI oj

the American Statistical Assoaatum Dec, 1961 p 995 Errors have been dis-

covered m this nomograph A corrected nomograph will appear in a later

issue
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be extended to cover higher order coefficients of correlation (We

frequently identify the order of a coefficient by the number of vari-

ables held constant Thus ru is a lero-order coefficient, ru s a first-

order coefficient, ru n a second-order coefficient, etc ) The formula

for Titst IS

7i2 4
— Ti3 4^23 4

(15 9)

The pattern of these formulas is fairly simple to discern, and we

should be able to develop the appropnale formula for any coefficient

we wish

Although the coefficient of correlation is quite difficult to interpret

by itself, analysis of the collection of them for a g^ven problem will

give us a good insight into the structure of the relationships among

the variables If we start with all the possible rero order coefficients,

we can derive all the first-order coefficients, and then all the second-

order coefficients from the first-order ones, etc It is also possible

by a technique called factor analysis to discover the possible exist-

ence of an underlying factor that is apparently common to several

variables ' For example, the relatively abstract factor of intelligence

may be considered as an underlying factor that is common to several

problem-solving abilities we might measure

15.10 Spurious Correlation

One ^ay to study the correlation between sales and income ^ith

population constant is ivith the multiple correlation type of analysis

that we ha\e done above Another nay is to correlate per capita

sales with per capita income The calculation of per capita data

invohes diindin^ a senes such as sales by the population m each

territory Thus the resultant figures are rohos of one variable to

another When we divide each of two senes by the same third senes,

and correlate the resultant ratios, we get a spunow correlation

mixed with the so-called real correlation We say that some spurious

correlation develops when we calculate such ratios because the cal-

culation of the ratios tends to create some correlation The argu-

ment IS based on the behavior of random senes Suppose we had

‘ See H H Harman, Modem Factor ijwfyw, Umveraly of Chicago, I960
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two senes of random numbers that were uncorrelated Then sup-

pose we had a third senes of random numbers, uncorrelated with

either of the first two, which we divide into the other two senes

(We might as well multiply the first two senes by the third to illus-

trate the principle ) When we divide by a large number, the re-

sultant ratios tend to get very small together When we divide by

a STuall number, the resultant ratios tend to remain moderately large

together Thus the resultant ratios will tend to be positively cor-

related even though the onginal data were imcorrelated If we refer

back to our formula for the relationship between zero- and first-order

coefficients, honever, we note that if ri2 = 0, ns = 0, and r23 - 0,

then ri2 3 = 0 Nevertheless
^ will tend to be positive

There is nothing inherently wrong with tJie correlation of ratios

like these or with spurious correlation It is just as useful in pre-

diction as nonspurious correlation For example, if we were given

mformation on the value of one of the ratios, say X1/X3 ,
mdicatmg

that the ratio was low, we could make valid inference that

XsfXz 15 also low It IS not surpnsmg that the calculation of ratios

alters the correlations between the primary senes In fact, we

would not really think of calculating such ratios unless we believed

that some alteration would take place The difficult technical prob-

lem arises when it comes to estimating the number of degrees of

freedom m the final estimates We know that we lose 1 d f when

we hold a third variable constant linearly, but we are not too con-

fident that we know the restrictions that are imposed when we cal-

culate the ratios The issue is too complex for us to do any more

than mention it here

15.n The Phenomenon of Joint Correlation

Our treatment of multiple correlation analysis assumed that the

relevant relationships were all linear More importantly, perhaps,

the implication of this assumption is that it makes no difference at

which level we hold a tkird vanabU constant when we study the

correlation between two other variables An analogy from the

chemistry laboratory helps make the point Suppose we are per-

forming an experiment that involves water Suppose further that

we would like to hold the temperature of the room constant during

the course of the experiment The immediate question arises as to

the particular temperature we would like to maintain constant We

would obviously get different results if we held the temperature
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constant at 20°F than if T\e held it constant at 250''F. Thus the

results of our experiment are valid only within the limits of tempera-

ture where it makes no difference where we hold it constant

If we find that it does make a difference to a relationship depend-

ing on the level at which we hold a third variable constant, we are

dealing with variables that have joint correlation An everyday

example of a joint correlation is found among life expectancy,

weight, and age for human beings We are aware that overweight

people tend to have a shorter life expectancy than underweight

people What most people do not know, however, is that this state-

ment applies only to oWer people, those about 50 years of age or

more To be underweight is not an a^et for longevity at younger

ages In fact, at age 22, to be 207® underweight is more damaging

to longevity than to be 207o overweight*

The techniques for discovering and measuring joint correlation

are outside our scope here We merely mention its existence Com-

mon sense will usually warn us at the proper time if are at least

aware of the possibility

15.12 Nonlinear Multiple Correlation

We may wonder what we do if our linear model is not a reason-

ably accurate picture of reality We merely use the so-called ap-

iropriate cur%e8 ^\e say so-called because it is not at all easy to

Jecide on the proper curve m advance of any mathematics, and we

eafTnoi do any maCiVemadfor train' we haw sci'ccicd a carw, pnjpor

or not If time and money are plentiful, and if we have an elec-

tronic computer, we can always engage in a "fishing expedition

"

Wc fit all kinds of lines to the data and pick out the most appro-

priate at the end But if time and money are restricted, we try to

guess m advance the type of relationship that might be appropriate

Some people always guess "straight line,” thus putting very little

strain on their technical knowledge or their time and money They

never find out how much they might be missing by trying other

possibilities

Again it IS possible to use the clues from scattergrams to facilitate

accurate guessing The problem here is more complicated because

‘ Mordecai Erekial and Karl A Foi, Methods oj Correlaiwn and Regression

Analysts, John Wiley and Sons, New York, N Y Thia book w a very useful

reference for the theoretical and practical aspects of correlation analysis with

no mathematics beyond elementary algebra required
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of its multidimensional character, really requiring complex stereo-

grams There are some graphic techniques available, however, that

make it possible to achieve some multidimensional effects m two
dimensions An extensive discussion of these methods is in Ezekial

and Fox One useful point to know is that if qU nmple correlation

mttergram indicate straight Iwies, the partial relntionaliips wU
also be linear It is, therefore, always a good idea to draw at least

rough scattergrams for all possible pairs of the relevant vansbles

We recall that we started our analysis of the sales-populstion-income

problem by constructing the three possible scattergrams

15,13 Using Correlotion Anolysis Results as a Measure

of An Ignored Voriable

Suppose our sales manager wanted to measure the effectiveness of

his salesmen The obvious thing is to look at the sales ‘performance

of the salesmen If the sales manager desired, he might rate the

salesmen according to their sales For example, our data show

that the salesman in territory U is the “best" because be has had the

highest sales (See Table 15 2 ) Salesmen 12 and 15 are next best,

TABLE 1$2

Rating Salesmen According to Soles Performonee

After Allowing for Populotion ond Inceme

Territory

(it

Salesman Xi i'lj Xjh i Ri *il *1J RiJ *is» Ji

u) {!) (%) w La m cn w w ao) (u) aa oai

2

3

4

6

6

7

8

D

10

11

12

13

14

15

40 40

27 43

67 4S

S3 52

4 0 58

60 68

ao 61

60 67

80 69

72 76

67 7 6

87 84

80 88

100 91

87 9 i

60 42

6? 31

52 58
62 56

68 46
62 65

62 70

72 55

65 75
68 76

73 64

67 94

73 82

6.7 mi
77 80

1002 moo

-27 135

-40 15

0

8$

-14 12

-27 135

- 7 106

13 S

- 7 105

13 5

.5 7

0 85

20 26

13 5

33 1

20 25

- 5 120

0 8

-16 U
18 2

1 7

-18 15

2 6

19 1

- 7 11

11 8

- 4 95
- 9 18

3 5

- 8 12

9 4

-4 95

- 3 J20

-20 18

-40 15

8 6

- 9 11

-2 8 14

- 2 9

1 8 3

-12 12

15 4

4 8

- 6 10

20 2

7 7

33 1

10 6

- 120

-2 75

-4 U
9 2

-3 9

- 8 IS

-6 13

10 1

5 45

5 45
-4 11

3 6

-7 14

- 2 75

-4 11

7 3

0 120
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and salesman 2 is the "poorest” Note that here we get the same

ranking of salesmen whether use the sales figure (^i) or the devi-

ation from the mean (Xi) In subsequent discussion ue concentrate

on deviations from the mean for obvious reasons

Salesman 2 would probably be the first to complain about being

rated solely according to sales performance He would very likelj

claim that there are extenuatmg circumstances which make it com

paratively difficult to ^ell m his territory, especially when we com-

pare his temtory with 14 An intelligent sales manager would want

to investigate these extenuatmg circumstances He might run a cor

relation analysis similar to what we have done, or po<!3ibly more

comprehensive, and obtain results like those shown in Table 15 2

We use Salesman 1 in Temtory 1 as an example to explain the

table Salesman 1 actuall} sold 405& of the total (column 2) This
*

performance put him 2 7^ (column 6) below the average, a per-

formance that tied him for the 135 rank (column 7) (A rank of

13 5 represents a tie for both the 13th and 14th rank A proper way

to handle ties for any ranks m a ranking operation is to give each

tied rankee the arithmetic mean value of the ranks tied For exam-

ple, Salesmen 7, 9, and 13 all tied for ranks 4, 5, and 6 We assign

each a rank of 5 This method of handling ties assures that the sum

of all the ranks is the same whether or not there are any ties

)

However, Temtory 1 had a relatively low population, which,

when considered, gives us an arithmetic mean expectation of only

40^0 (column 3) This puts Salesman 1 right at the average (col-

umn 8) with a rank of 8 (column 9) Thus Salesman 1 rates much

better if we consider population in the rating

If we consider onl> income, we would expect mean sales of 60fo

m Temtory J, putting Salesman 1 207o below average (column 10)

with a rank of 13 (column 11) Finally, considering both population

and income, we would expect mean sales of 42^ (column 5), put

tmg Salesman 1 2% below average (column 12) with a rank of 75

(column 13)

Thus we see that our rating of Salesman 1 vanes from 7 5 to 13 5

depending upon whether we do or do not con'?ider population and in

come factors One of the most interesting outcomes is that for

Salesman 14 He goes from a rank of 1 if we ignore population

and income to a rank of 11 if we consider these factors Presum-

ably a good deal of his success is due to his territory rather than

to his own efforts Since such interesting things can happen if we

consider population and income, it is only natural to ask what would

happen if we considered even more factors The answer is that it
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would depend on the degree of assoeiation between these additional

factors and sales If there were veiy little association, very little

change would take place m the rankings Note, for example, that
knowledge of income makes very little diflference m the ranbngs
(Compare columns 7 and 11 ) On the other hand, knowledge of pop-
ulation makes a very definite difference {Compare columns 7 and

9 ) If we wished, we might measure the correlation between rank-

ings, with a result of 0 correspondmg to a correlation of 1 between

sales and the factor

If we are unsuccessful in finding additaonai factors that will sig-

nificantly change the rankings, our sales manager might then assume

that the ultimate rankings in terms of Deviations measures the

salesmen's performances with reasonable accuracy Of course, there

is always the problem of what to do with the unmeasurable factors

For example, the sales manager might visit a temtory for a few

days and call on a few customers with the salesman The sales

manager then claims to have developed a “feel” for the terntory

and its problems, and for the skill with which the salesman has been

exploiting the territory As a result he might substantially modify

the results of a formal correlation analysis There are no specific

rules for making such modifications other than the appointment of

a good sales manager If we could really establish such rules, we

could replace the sales manager with a statistician

15.14 The Problem of Stability of Past Relationships

Correlation analysis is necessarily restncted to histoncal data

Any discovered relationships generally have practical value only

when they can be applied to future events, and we again must con-

cern ourselves with the problem of shifts m universes over time

For example, a change m consumer tastes may substantially alter

the class of people who tend to buy a product Such changes could

easily alter the population-income relationships of the sort we meas-

ured If a sales manager ignored such changes because he was not

aware of them, his administration of Uie sales force would lag sev-

eral years behind the facte, with possibly disastrous results unless

the company had a sheltered monopoly

The only way we can keep abreast of such changes over time is

to stay alert to new data as th^ appear This is best done by

establishing some routine for recordmg new data and for assessing

their consistency with measured past relationships This is gener-
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ally better than waiting until some disadvantaged people become

sufficiently irritated to make complaints, or to resign, or to switch

their business elsewhere, as the case may be

15.15 The Problem of Cost

Again we must remind our>eKes that knowledge is not without

cost. There are alwajs costs of some kind, whether m money,

time, physical energy, pleasures gnen up, etc Conelation analysis

IS nothing more than a formal method for acquiring knowledge, or

for at least attempting to acquire knowledge We must always be

conscious of the need to make a ‘profit by acquiring knowledge with

the promise of a higher return than its co^t We emphasize promise

because there is no waj to be sure that any knowledge will have a

return The person who insi«ts that he will not learn anything until

he knows its value gcnerall) remains ignorant because he cannot find

any honest person who will guarantee a return

There is no formula for predetermining the value of knowledge

Each person must a<ise«<! his own costa and the value of his rewards

Our only guide is past expenence, our own and that of others We
can often catalogue some of the costa and potential rewards in some

parts of a business but we can never do it completely

We should also remember that know ledge is subject to depreciation

and obsolescence, a tjpe of cost we arc likely to forget until we dis-

cover that a particular set of knowledge is worthless We all know

many things that are no longer true and many things that ma) still

be true but that no one cares enough about to paj for. Some of this

knowledge is useful for the personal pleasure it gives m its retelling

or for otherwise nounshmg the ego

PROBLEMS AND QUESTIONS

15 1 It was suggested in the text that weighting m proportion to coef-

ficients of association (A’s) might be appropnate if we wished to combine

v’anables that have been treated independent!) of each other, the tjpe of

anal) SIS we made in the precedmg chapter What is the logic, if any, to this

use of weights?

A\hat other possible weighting 8}-stem3 might be used?

15 2 Calculate a least squares plane (linear) of relationship from the

data of Problem 14 2 among

() Production, dextent) test scores, and experience

() Production, dexterity test scores, and mteliigence test scores

(c) Production, dexterity test scores, and formal education
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{d) Production, experience, and mtdligence lest scores

(e) Production, experience, and formal education

(/) Production, inteEigence test scores, and formal education

(^) Production, dexterity test scores, expenence, and inteUigence test

scores

(b) Production, dexterity test scores, expenence, and education

(i) Production, expenence, inteJJigence test scores, and education

(;) Production, dexterity, mtdligence, and education

(L) Production, dexterity, expenence, mtelligence, and education

1 5 3 (a) For each estimating plane that you calculated in 15 2 make esti-

mates of the expected production for the odd numbered workers (or even-

numbered)

(6) Construct a scattergram using your estimates m (a) as the mde
pendent variable and the actual production as the dependent variable

1 Is there any evidence of a systenudic vanation around a straiglit line

on this scattergram? (In other words, is there any evidence that the plane

should probably be curved?) If so, what modifications do you suggest for

your estimating equation m order to bend the plane in the appropnate

directions? What clues for an appropnate modification do you find m the

scattergrams you drew in Problem 142? What clues from the logic’ of the

expected relationships?

1 5 4 Calculate the conditional standard deviation of production for each

of the relationships you have calculated in Problem 15 2 (These «bould be

unbiased universe estimates

)

15 5 Make 70% confidence estimates of the expected production for each

of the following combinations of factors Use only those factors included

in your estimating equation What is the practical significance of the

Ignored variables?

() Is = 28, Is = 45, X^ = 100 I^ - 10

() la = 47, la = 88, 14 = 125,15=12

(c) Is - 60, 13 = 0 I4 - 102 Ip = II

15 6 Construct a table like Table 15 1 nhich lists aU the possible results

of your correlation analj sis of these Crayle Co figures

(a) Which formula has the least error’

(h) Might the apparent superiority of the formula with the least error be

due to chance’ Explam

(c) What considerations would guide you m deciding which of these esti-

mating formulas you would use

1 In selecting new workers’

2 In evaluating the performance of a worker’ For example, suppose

you found a worker who was produemg Jess than expeefed (You shovJd

find about half the workers produemg Iks than expected IMiy? Suppose

you find more than 60% producing le^ than expected What would be jour

reaction’)

(d) Rank the four explanatory factors m order of importance Also

assign the most appropriate weights to each in order to signify their relative

importance as you see them

15 7 Your table m Problem 156 ha« several different estimates of the uni-

verse standard deviation, most of them bemg conditional on the avaiiabilitj

of values of the independent variables A coefficient of association (or 0
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determination, or of correlation) involves comparing two such standard

deviations with each other

(a) Calculate the coefficients of association that give meaningful answers

(b) Some of the coeBcmts calculated in (a) are Jaiown as coefficients of

partial association Explain what is meant by partial association

(c) What have you learned from your calculation of these coefficients

that you did not know before? (We are refernng to what you have learned

about this problem of personnel evaluation You have undoubtedly learned

about some other things too, such as the tedium of such calculations

)

15 8(a) Calculate all the sero-order coefficients of correlation for the

Crayle Co problem (There are 10 of them A cooperative effort is recom-

mended
)

(b) Deduce from these the 28 coefficients of partial correlation

(c) Deduce the 28 coefficients of partial assoerntton from your 28 coeffi-

cients of partial correlation Do these results agree with those you calculated

m 15 7a when you compared the standard deviations directly’ Should they?

15 9(a) Below are given three random senes Verify that these senes are

practically uncorrclated by calculating r^, r^, and rjj [A quick and con-

venient formula for calculating is by calculating Siiij/Vajaz and T2i

can be similarly calculated The necessary Bums of cross products [net yet

m deviations from the mean) are given below ]

Item Xt X.

1 5 3 9 rXi’ =299

2 7 3 8 ZX|X, = 205

3 7 6 6 XX,X, m 265

4 1 2 3 ZX,< =282

5 2 7 7 - 273

6 2 3 3 IX,' -369

7 7 0 0

8 1 9 6

g 6 7 2

10 9 6 6

47 46 53

(6) Divide both and ^2 by the appropriate and calculate the

coefficient of correlation between the resultant ratios Explain why you did

not get a result of 0

(c) Is the ratio of ^2 fo ^3 a valid base for estimating the rotw of

toYa? Explain

(d) Is the ratio of ^2 to X^ a valid base for estiraatmg ’ W^bat is the

relationship between X^ and the ratio of X2 to ?

15 JO Your multiple correlation analysis of the Crayle Co problem as-

sumed that the relationships between any pair of variables with one or more

other variables constant are mdependent of the level at which the other

vanables were held constant Does this seem a reasonable assumption m
this problem? (In answering, keep m mind that the actual data tend
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\ to stay within certain boundaries, hence what happens at hypothetical ex-

tremes may be irrelevant m practice

)

1511 The attempt to use correlation ana!)^s to eliminate the relation-

ships of some vanablea to a dependent variable and thus leave a residual

variation that might be attnbuted to some unmeasured variable sometimes

creates a dilemma (Refer m the text to Uie use of correlation anaijsis to

rate the effectiveness of salesmen ) If we search assiduously for explanatory

variables, we might end up leaving practically no residual to be attnbuted

to the unmeasured variable If we do not search assiduously
,
we lake the

risk of failing to find an explanatory variable that would explain a good part

of the variation that we may end up attnbutmg to the unmeasured vanable

(fl) How would you proceed to cope with these opposite nsks? Give par

ticular attention to how you would utihze the concept of degrees of freedom

in trying to reduce these nsks In order to lend some concreteness to your

reply, use the example of rating salesmen and devise o final ranking of soles

men in order of abdity Defend the basis, or bases, of your rankings

(6) Assign weights to your rankings so that we can tell how much supen-

onty you think Salesman X has over Salesman Y



The problem of changes over

time

16.1 The Challenge of the Future

In the final analysis, the acid test of the efficacy of any

knowledge is its usefulness m foretelling the future Mere descrip-

tion of historical events w useless unless future events conform in

some way to past patterns So far we have merely mentioned the

existence of the problem of whether past patterns have some stability

through time We now explicitly consider the problem of the rela-

tionship of the past to the future

16.2 The Nature of Time

Time is best not defined, we assume that everybody knows what

it IS, and attempts to define it n^rously usually lead into an almost

hopeless tangle of words So let us turn directly to the problem of

measurmgtime

All buds of physical phenomena could be used as reference points,

but those currently used are based on the physical relationships of the

earth, sun, and moon The year is, of course, the time it takes the

earth to complete one arcuit around the sun The day is the time

it takes the earth to make one complete spin around its axis The

month IS fundamentally rooted in the time it takes the moon to

complete one circuit around the earth Unfortunately, however, at-

tempts at personal aggranditement by ancient rulers have resulted

m months with different numbers of days Other units of time are

subdivisions or multiples of these principal units

It IS useful to speculate briefly on why man has chosen to use the

notions of the year, month, and day as units of time Each of the

5t6
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physical phenomena referred to makes a significant difference to the
amount of light and/or heat available to man, both of which are

essential to man s survival and comfort, and man knows they are

essential There are veiy likely other physical phenomena equally

essential to man’s survival but which we so far have not been able

to discern with sufficient precision to make their behavior tneanmgfu]

measures of time Jor example, the whole solar system is probably

going somewhere in the same sense that the earth is going around

the sun, but as yet we have not been able te clearly define any refer-

ence points or landmarks It is also very possible that the earth,

moon, and sun are all emitting and absorbing various kinds of energy,

and very likely at systematic rates If we could measure such energy

transformations, we might better understand climatic changes on the

earth, alternations of economic prospenty and depression, the long

cycle of success of the New York Yankees, etc In the meantime we

struggle along with the relatively crude units of the year, etc

The important point of this discussion of time is that there is no

particular magic to time It is simply a dating device that enables

us to relate all other phenomena to common reference points Its

value to US 18 not unlike the value of a money system, whereby we

are able to relate the value of all goods and services to a common

reference point Our time units are, of course, much more stable

than our money units

16.3 Time and Other Variables

We are not really interested in time as such Rather we are in-

terested in the other variables that we can understand better if we

date these variables

Problems m Meaningful Doting of Variables

Homogeneity of Data. An ideal time senes (a senes of dated

measurements) is one m which the unit of measure remains constant

over the full time period This is not at all easy to accomplish m

a dynamic society For example, if we are dealing with the sales of

a company, it is not unusual to find ^at the company has changed

its line of products over time, or has purchased other businesses

Such sharp changes in the integral unit can easily lead to misinter-

pretation of the sigmficance of time changes m the sales senes

Similar things can happen to an industry sales senes Since very
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few companies deal m only one product or service, it is just about

impossible to construct a homogeneous industry senes by adding

up the sales of individual compamee That is why we make strong

attempts to collect product statistics, such as sales of washing ma*

chines, rather than sales of washing machine companies

It 18 very important to familiarise ourselves with the definitions

of the units of measure and the changes therein before we engage

m any statistical analysis of a tone senes It is very embarrassing

to work up a very profound explanation of a variation and discover

that a change m unit accounts for it, particularly if the change in

unit IS common knowledge withm an industry A careful worker

roust therefore pay attention to the footnotes and the appendices

If we discover that there have been changes in units of a non*

ttuial type, we usually find that we should either confine our formal

analysis to only the later sections of data, the period after the

change in units, or we should modify the data by making some

adjustment for the change in unit Many analysts prefer to modify

the data because they feel more comfortable with the larger sample

of data that results than they would if they had to ignore the earlier

data before a unit change We usually prefer to modify data by

adjusting the earlier data to conlorm to the new unit, rather than

to adjust the later data to conform to the old unit In this way we

are able to add new data as they occur without any further adjust*

ments, unless, of course, there are subsequent changes in units

Exactly what we should do to modify data requires knowledge

rather than technique The important point is to know our data and

then do what seems to make sense The simplest technique of ad

justment is to assume that the relative changes m the data would

be about the same m both tiie new end old units We adjust the

level of the data only Such an assumption is almost never correct,

but it is frequently all that is available Naturally we should not

be too ambitious with our conclusions from the resultant senes

One of the advantages of analyzing data by the use of charts and

experience-based intuition rather than formal mathematics is the

flexibility for handling problems of heterogenous data The corre-

sponding disadvantage is of course, Wiat we might subconsciously

bias the results toward desired conclusions Thus an optimistic

analyst is more likely to foresee a ro^ future from a given set of

data than is a pessmustic one

Se/ect/on of Dotes An unlimited number of options is available

for the selection of dates We mjgbt check our cash balance eveiy
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hour, or every day, or once a week, etc We might cumulate sales

daily, or hourly, or monthly, etc Two analytical factors control

the selection The time period ^ould be long enough to permit
measurable and meaningful changes to occur Otherwise we put
ourselves m the position of trying to “see the cora grow The other

factor IS the desirability of not havmg a time period so long that

important changes are concealed withm items rather than being

shown as differences between items For example, if we cumulate

sales only annually, the data will conceal any seasonal variations

It is not necessaril} wrong to conceal changes In fact we often do

It deliberately as an analytical device What is wrong is to conceal

changes that are significant to the conclusions we are drawing A
useful general rule to follow is that we should conceal only those

movements that conform closely to a linear interpolation between

the data that are recorded Thus we could always make good esti-

mates of the mterinediate data if we had to

Another factor important in selecting dates for recording data is

cost vs benefits of additional knowledge A supermarket manager

might find it useful to check cash register tapes every hour Thus he

can schedule check-out clerks, bundle boys, etc
,
for the most efficient

use of their time without sacrificing customer convenience An auto-

mobile dealer would probably find an hourly check of sales a par-

ticularly erratic and useless activity Businessmen are continually

concerned with collecting sufficiently detailed information without

cluttering up the files with meanmgless trivia

Cmvlattve vs NciKumulafive Data

It 18 important to distinguish between two general classes of data

that occur in business tune senes Cumvlative data are data that

can be meaningfully added over time Thus we can add daily sales

to get weekly sales Conversely, we can subdivide annual sales into

monthly sales

Noncumuktive data are data that have different sizes at different

dates but which make meaningless totals if we add the data for dif-

ferent dates For example, if we add daily cash balances, we do not

get a weekly or monthly cash balance Similarly, if we add a per-

son’s height from year to year, we do not get his present height

Data which appear on the income, or profit and loss, statement of

a company are generally cumulative date Data which appear on

a balance sheet are generally noncumulative data
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General Classes of Variation m Time Series Data/

Systematic vs Nonsystematic Voriations

The fundamental objectne of tiie analysis of time series is to dis-

cover \ anations o\ er time that appear to hav e some pattern or system

to them We then hope that a projection of this apparent system

will produce useful estimates of future variation We say appear

because we can do no more than use what we ourselves can see We

do not really claim that the data themseUes have the given system

Nor do we claim that data that have no apparent system actually

do ha\e no system It may simply be that our perceptive abilities

are inadequate As a matter ol fact, we prefer to believe that all

^ anations are fundamentally systematic, just waiting for some man

who 18 smart enough to discover the system

Nonsystematic vanations are simply tho«e vanations left over

after we ha;e extracted the presumed systems In fact ^e often call

them residual sanations They are of the nature of random \ ana-

tions and can sometimes be treated successfully wth probability

techniques

Since different people bring different backgrounds of knowledge,

experience and analytical skills to a problem, it is not unusual to

find different people classifying the sanations differently Neither

person is technicallj wrong as long as he does the best possible job

i the bounds of his own limitations Ne\ertheless one of the

persons viill produce better results Unfortunately, it is not easy to

decide which imII be better The one who sees the most system in

the data may ha\e only a ^ery lively imagination coupled with a

strong background in analytical geometry The best we are able

to do is develop the habit of rating people on the results they produce

and to prefer the man witli the better record of results If we con-

centrate on elegance of method, we might be misled by the form

and Ignore the substance Unorthodoxy of method seems to be almost

a hallmark of outstanding achievement Unfortunately, it is also a

hallmark of poor achievement Thus, if we aim for the best, we

might achieve the worst On the other hand, if we are willing to

settle for good, but not outstanding, dependable performance, we

would do well to concentrate on form The situation is not unlike

that m athletic achievement Most golfers with bad form are bad

golfers, just as most golfers with good form are good golfers How-

e\er, the outstandingly good golfers often have poor form, although

we now call it unorthodox
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Types of Systematic Variation

Generally we do better in finding systematic behavior if we know
what to look for Man's experience in the physical sciences has

given us most of the clues we look for in business data The follow-

ing broad classes of systematic vanation have been found useful m
studying business and economic data Note that these systems are

simply the result of correUUmg a aenes with tme as an independent

variable Remember that tiiere should be no connotation that time

causes the systematic variation The underlying causes would really

be the other things that are also happmmg as time passes We make

no explicit attempt to identify these other things in a formal way

We do, however, make references to things that might be considered

probable causes of the observed behavior

Periodic, or fiepefifive, Voriafion. Figure 16 1 shows a very simple

periodic system, a familiar smc curve This system shows a constant

amplitiule of raovemeut and a constant period of movement Thus

each cycle is exactly like every other cycle Forecasting the next

wave IS a very simple task of extrapolating the constant cycle

If we measure the angle the sun's rays make every day at noon

with some point on the earth’s surface, we would find that this angle

would pass through a repetitive cycle of sufficient stability to warrant

Rg 16 1 A flitaple periodic ByBtem the erne curve
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predicting the angle at any date manj years into the future This

IS the a'itronoimcal basis which, among a few other factors, causes a

seasonal fonafwn m temperature, rainfall, etc
,
at that point on the

earths surface Unfortunately, the seasonal 'sanations do not con

form to as exact a pattern as the angle of the sun's rajs There is

clear evidence that the average of many jears of seasonal data mil

conform quite closel) to a simple cycle However the specific jear

data will show departures, sometimes in a discemiblj systematic

waj and other times in an apparently random way

When we move from weather phenomena to such things as sales

of bathing suits and of antifreese, we find the departure from a simple

cjcle even more pronounced Now we have to contend with events

which are somewhat under the control of man and his institutions,

and man is not alwajs, or really ever, in precise control Further-

more, man is not consistent m what he wishes to achieve with his

controls Hence we find seasonal variations in economic data

exhibiting sometimes rather wide departures from the underlying

cyclical phenomenon of the angle of the sun’s rays

Additional complications an'^e because of the institution of the

holiday As custom dictates certain kinds of traditional behavior

at a holidaj, definite patterns begin to appear m the relevant data

Customs change, however, and the lesultanl patterns also change,

creating a real challenge for the anal>st who is tr>ing to predict

future patterns

Cmlization also finds it neces‘«ary to adopt certain rtmtines of

behavior in order to make %l easier to predict certain phenomena

For example, America’s workdaj has been organized for years around

the “three meals a day" concept We recently have added the

organized coffee break m respon'e to the erratic and unorganized

coffee break which manj workers were taking anywaj Thus we

systematize events ourselves Such man-made systems are most al-

wajs tied to the clock, or the calendar, both rooted in the physical

world

Progressrve-Persisfenf Vorfof/on Figure 16 2 shows the population

of the United States at selected dates The most sinking feature of

this senes is its persistent tendency to grow There is no evidence

whatsoever of any periodic vanation "We get the definite impression

that this pattern of growth can be reasonably well represented by a

smooth line We might even extrapolate this line a few years into

the future with some confidence that the actual population will not

vary very much from such a line
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We call such a line a secular trend, or a trend over a long period

of time How Jong is long is not easy to determine All we can saj^

18 long enough so tliat we have etidence of a persistent tendency to

move m some general direction This iDovement may not be Imar,

but we do require that it not have ups and downs This does not

mean that the actual senes does not have ups and downs, but only

that the general persistent movement lias no ups and downs The

situation may be likened to the path of an ocean liner from New York

to London The trend of the liner I8 persistently toward London,

although the disturbances of wind, current, and human error cause

the hner to be almost always headed some other place with correc-

tions being made as soon as their need becomes apparent The

analog) is imperfect because we do not know the destination of

United States population or of similar senes Estimating secular

trend is more like plotting the general path of an ocean hner without

ever knowing exactly where the hner la going We steer for awhile

in terras of where we think it should be going, then we revise this

idea of destination as we come to realize it is not really going where

we originally thought Or perhaps a better analogy would be the

problem of some of the early explorers of the American wilderness
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They started out with ft more or less vague idea of the direction they

should try to go They then revised this idea as they confronted

certain problems of terrain, etc

This is the way a businessman steers his business He hopes the

business ^ ill grow, but he 13 not sure how fast it can or will grow

He IS also not sure of how much of its growth is uithm his own con

trol and hov much of it will be a function of those larger forces that

vould be like the wind, the current, and the terrain He must

ne^e^theIess plot a path he must have a plan With skill and luck

he ^vill end up cooperating with those larger forces and controlling

the ones that he can bend to his will Some businessmen still plot

their course the way we built our early roads, by following the paths

of the horses and cons The more daring businessmen bring other

forces to bear and more or less force a path of planned growth

the nay ne non force a highway with giant earthmoving equipment

One of the big issues facing the United States and the world is the

rate of growth of our national economy We do not really know n hat

the practical limits are to our growth rate, nor do we know how

much ne should try to force the rate by use of goiemmental power

The problem is not made simpler by the fact that we do not know

what it IS that should gron Gross national product is just a total

of a \ast number of specific goods and services It is not enough

to just make GNP gron with no concern for the specific parts that

make up the gronth The parts are of the essence, and one of our

risks is that we may make the total grow temporarily by sacrificing

some of the slow -growing parts, albeit crucial, in favor of some of

the fast-growing parts

The problem of the complexity of the growth process is a persistent

concern of the bu'^iness manager hear often of balanced growth

and healthy growth This must mean that thoughtful businessmen

and economists can conceive of unbalanced growth and unhealthy

growth, a kind of gro^sth that somehow apparently alters the struc-

ture of the organism in unfavorable ways thus ultimately precipitat-

ing retardation or decline or even death

For example the kind of growth that took place in the United

States dunng the 1920 s in real estate activities, automobile capacity,

radio capacity, etc
,
turned out to be unsustainable Much of this

capacity remained unu'ed until the advent of the inordinate demands

of World War II Some people still worry about what might have

happened to the United States economy if the war had not seemingly

solved what had begun to look like an almost unsolvable problem
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A person might be forgiven if he called liie growth of the 1920’$ un-

healthy We might also mention that one of the prime tasks of the

Federal Reserve Board is to encourage growtii of the economy without

letting the growth get unhealthy

It should be obvious that we have to be very naive to assume that

we can plot the path of future growth by simply extrapolating lines

on charts, or by the equivalent use of mathematical equations

Plotting the growth of a business, or of any institution, or of any

person’s career, is more a matter of knowledge, faith, and courage

than it is of statistical technique Where our statistical technique

can help us, however, is m pointing out the probable limits of what

can possibly happen For example, Fig 16 2 indicates the unlikeli-

hood that United States population will double over the next 10

years Such an event would represent such a substantial break with

past patterns of growth that we would necessanly have to have many

other things change also, events which themselves would be very

unlikely Having said this, however, again we remind ourselves that

past experience of this sort can also be a chain to our thinking

Statistical-minded people are notoriously conservative, with definite

tendencies to plan for and to expect the vsual, and they are nght most

of the time, because, of course, it is the usual that usually happens

The confident expectation of the improbable is not a charactenstio

of a statistician, but it is a charactenstic of the pioneer Until some-

body figures out a rational way to decide when to bet on the improba-

ble, society will just have to hope that its prevailing pioneers have

good instinct, or whatever quality it is that makes a few pioneers

geniuses while most of them turn out to be wastrels

Momenfym, or Runs, In Var/ofion Most of us are familiar with

the behavior of a pendulum If the pendulum is at rest and we push

it, it will oscillate with steadily dampening movements until it

eventually comes to rest again Let us suppose that we had the

problem of predicting the position of the pendulum Let us suppose

further that the force that activates the pendulum is essentially

mterraittent in its action, perhaps even essentially random as far

as we know Furthermore, the strength of the force vanes, again

intermittently The best way to predict the position of the pendulum

would be to study its past behavior We soon notice this tendency

of the swings to dampen unless the force were being applied so fre-

quently that rarely would the pendulum complete two swings before

it 18 impelled again If the outside force appears frequently enough,



59i THE STATISTICAL METHOD IN BUSINESS

it may ba tiiat the pendulum neser really this dampening

effect to the naked eye In fact, this is exactly what happens to the

pendulum in a clock (The clock is designed, of course, so that the

outside force is as constant as possible in its strength and m its time

interval, thus producing a pendulum with an essentially constant

oscillation

)

Whenever we have a phenomenon that is bemg acted upon by two

or more opposite, but not constantly equal, forces, we get a vanation

called a run, or momentum This may be what goes on when we ob-

serve a busmesa cycle Economic activity has always been charac-

temed by alternation of prospenty and depression The ups and

downs have not been too closely approximated by a periodic curve

of constant amplitude and length However, we definitely have not

fluctuated from prospenty to depression on a day-to-day basis, al-

though occasionally we have had panics that have caused rather

sharp drops over \ery short time penods Generally we find that it

has taken time for activity to progress from peaks of pro«penty to

depths of depression Since it does take time, it is possible to fore-

cast tonorrow’s activity by reference to today’s Furthermore, it is

sometimes possible to predict a continued me in activity (or a fall)

because there has been a nin of nses (or falls) What makes it

tncky is that the run has to have a certain minimum length to assure

us that it 18 unlikely to be a random nse
,
also the run cannot be too

long because we then fear that it has exhausted itself and will give

way to a reverse run

Table 16 1 shows the lengths of runs in business activity in the

United States as estimated by Geoffrey Moore of the National Bureau

of Economic Research and extended by reference to the turning points

of the Federal Reser^e Board Index of Industrial Production It is

obvious that the lengths have varied over the yeaia Note that the

runs of upswings have been generally longer than the runs of down-

swings, beha\uor consistent with the long-term growih of the economy

This differential m length is particularly pronounced dunng the last

15 to 25 years, with the lengths of downswings \ery short

Some analysts would rather look upon the ups and downs m
general business activity as disturbed cycles rather than runs Their

theory is that there are underlying cyclical forces similar to those

affecting seasonal van&tion, but that these forces are being partially

off«:et by disturbances which cause vanations m the lengths and

amplitudes of the cycles These analysts try to discover the length

and amplitude of this underlymg qrcle For example, there has been
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TABLE 16 1

Length of Cyda Phatat In Unlltd Stotei *

(Ab Indicated by National Bureau of Economic Research Reference Dates to

June, 1938 and by Federal Reserve Index of Industrial Production since)

Full

Trough Peak

Expaonon

(m Montha) Trough

Contraction

(m Months)

Cycle

(in Months)

Deo, 1854 June, 1857 30 Dec, 1858 IS 48

Dec
,
1858 Oct, 1860 22 June, 1^1 8 30

June, 1861 Apr
,
1865 46 Dec, 1867 32 78

Dec
,
1867 June, 1869 18 Dec, 1870 18 36

Dec, 1870 Oct
,
1873 34 Mar, 1879 65 99

Mar, 1879 Mar, 1882 36 May, 1885 38 74

May, 1885 Mar
,
1887 22 Apr, 1888 13 35

Apr, 1883 July, 1890 27 May, 1891 10 37

May, 1891 Jan, 1893 20 June, 1894 17 37

June, 1894 Dec, 1895 18 June. 1897 18 36

June, 1897 June, 1899 24 Dec, 1900 18 42

Dec, IMO Sspl, 1W2 21 Aug. 1904 23 44

Aug
,
1904 May, 1907 33 June. 1908 13 46

June, 1908 Jan
,
1910 19 Jan

,
1912 24 43

Jan, 1912 Jan, 1913 12 Dec, 1914 23 35

Dec
.
1914 Aug, 1918 44 Apr, 1919 8 62

Apr
,
1919 Jan, 1920 9 July, 1921 18 27

July, 1921 May, 1923 22 July, 1924 14 36

July, 1924 Oct
,
1926 27 Nov, 1927 13 40

Nov , ig?r June, 1929 19 Mar, 1933 45 64

Mar, 1933 May, 1937 50 June, 1938 13 63

June, 1938 Oct, 1943 64 Feb, 1945 28 92

Feb
,
1946 Oct, 1948 32 July, 1949 9 41

July, 1949 July, 1953 48 Aug, 1954 13 61

Aug
,
1954 Feb, 1957 30 Apr

, 1958 14 44

Apr, 1958 May, 1980 25 Feb, 1961 9 34

Feb
,
1961

Average 28 21 49

* Adapted from Geoffrey H Moore, Sbintual Indwaiors o/ Cydud Remvali and

Recessions, Occasional Paper 31 {New York National Bureau of Economic Re-

search, Inc
, 1950), p 6
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some evidence that there has been a building, or construction, cycle

of about 18 years in length in Uie United States

Another group of theorists looks upon the ups and downs of general

business activity as analogous to the weaving path of a ship at sea

or of an automobile on a highway The economy tends to drift off

course, or at least it tends to drift off what we think the course should

be But since we are never too aure of where we are or of where we

are going, we usually recognise a drift only after we have apparently

drifted quite far off course We then tend to overcorrect, thus send-

ing the economy into a dnft m the opposite direction

A theory related to the preceding theory emphaswes that the ups

and downs are lundamenlally a product of our remembered past ex-

pcncnce Since expenence tells us that the economy has gone up and

down, we assume that it will continue to go up and doam Hence

we eventually take defensive actions after the economy has run up

for awhile because "what goes up must come down ” These defensive

actions then precipitate the downswing, thus "conffrining" the theory

Conversely, ^e assume that the economy can run down only so many

months Hence start taking offensive action to take advantage

of the expected upturn These offensive actions then precipitate the

upturn, again "confirming” the theory of the inevitability of the ups

and downs

It IS not our task to pursue further the Bubtleties of u/ip economic

activity tends to run We wish only to point to enough of the issues

so we can recognite that infcof u« eventually do with our analysis oj

the evidence will depend to some extent on our theory oj why the

runs occur It is just about impossible to be completely objective

m our analysis, and we are not at all confident that we should try

to be completely objective What we eventually accomplish with

our personal career, or with our business, or with our national

economy will depend at least in part on the faith we ha^e in the

goals we set Although we wish to be realistic in setting our goals,

we Wish to avoid being so realistic that we De\er do more than re-

produce past expenence Attempts to grow always involve a stepping

out into the unknown, into areas where past expenence is not a

perfect guide to what might happen, and where failure is often more

frequent than success

Episod/c Vor/erf/ons WTien a modem nation gets involved m war,

It finds that massive forces are released which rather completely

alter the ordinary business of life The nation tends to step up its

efforts considerably, so much so that those remammg at home will
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frequently produce more than the nataon produced before roillions of

people left the working force to become soldiers War has a way
of making clear what must be done, so we set about to do it, to the

exclusion of many other thinp that normally distract and divide us

The resultant activity soon shows up m the economic figures and we
have a “boom

”

We call the economic consequences of such episodes as war,

revolution, famine, etc
,
episodic varuUwns We assume that such

events do not reoccur on any regular schedule In fact, we hope that

they never reoccur, although there is some evidence that such episodes

may be necessary to toughen a society so that it will go on paths of

future development that it could never have found without the

stimulus of a cnsis

Some analysts believe that episodic variations are the pnncipal

sources of the disturbances referred to earlier and which set in motion

the runs and oscillations m the economy They believe that the

economy would eventually become essentially stationary, similar to

the kind of stagnation that prevailed during the so-called Middle

Ages, unless it were to be occasionally shocked by episodic forces

The essential point about episodic variations from an analytical

viewpoint IS that the episode and its economic consequences are so

vivid that we have no trouble identifying the nature and source of

the initial impact The trouble develops as we try to trace through

the ramifications of this initial impact For example, the decade of

the 1960’s almost certainly will feel some of the effects of the forces

set m motion by World War II, and perhaps even some of the effects

of the forces set in motion by World War I The same thing can be

said about the ramifications of forces set m motion by major financial

pames Many of the men makmg the major decisions today in

American corporations were brought up during the days of the 1929

crash Their thmking is still colored by that traumatic expenence

Although we feel confident that such secondary effects exist, we have

had little success in working out methods for measuring them

Residua/ Variations After we have identified the periodic, the

progressive-persistent, the runs, and tie episodic vanations m a

given series, the remaining vanation is the residiud vanation This

is the vanation that presumably has no pattern or system beyond

that which might easily have occurred by chance m a small sample

Thus it is in the nature of a random vanation, a vanation that we

can predict only on a "how often” basis
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16.4 Relationship of Time Series Analysis to Correlation

Analysis

We analyze time eenea in essentaally the same way we analyzed a

correlation problem We take time as the independent variable and

try to describe any relationship we think we see between variation

in time and variation in the dependent senes The lines of relation-

ship we look for are generally more complicated than the simple

lines we generally use in ordinary correlation analysis As we have

already seen, we look for lines that describe a periodic relationship

in addition to those that describe a progressive-persistent relation-

ship Progressive-persistent relationships are, of course, very analo-

gous to a line of relationship m correlation analysis In fact, some

people calculate least-squares lines to estimate progressive-persistent

movements

There are some very important differences, however, between a

tune senes problem and a correlation problem The primary dif-

ferences are (1) the samples of data arise in different ways, {2} the

relationship is much more complex m a time senes
,
and (3) extrapola-

ton 18 required m the practical application of the results of time

series analysis Let us look at these three sources of difference

The Sample of Data in a Time Series

Suppose we take an ordinary deck of playing cards and draw out

a random sample of one card at 12 01 p m of a given day We then

return this card to the deck, shuffle the deck, and draw out another

random sample of one card at 12 02 p m Let us repeat this process

until we have the results of 10 drawings, each a minute apart

Figure 163 shows the results of such a process We now have a

tme senes of card drawings

Ordinarily we do not think of card drawings as constituting a

time series because we assume that time makes no difference m the

results Therefore we do not even keep track of the time Never-

theless, in a fundamental sense it is a time senes In fact, all events

that can occur only one at a time are necessarily time senes in the

sense that time passes between the events Whether or not time

makes any difference is an interpretation we put on the data, and this

interpretation should not be allowed to obscure the fact of whether

the series is or is not a time senes

If we date each universe as of the time the sample came out, we
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Ez M 3 Bcsults 0/ randon? drawing 0/ 10 cards from an ordinary deck of play-

ing cards (Card replaced after each drawing)

have the interesting case therein it is impossible to ever draw more

than one xim out of the ezacHame universe Por example it is

impossible for a company to get two samples of its monthly sales

volume during the mouth of June, 1961 Only one sample can

possibly occur The next sample will occur in July Any observed

difieience between the June and July sales may be associatfid with

the passage of time or it may be associated with simply a random

variation in monthly sales, m the same way that we might decide

that the decline q( 6 from 12 01 to 12 02 was simply a random

variation and not associated with the passage of time In either case,

y,e have to decide what to call it There is no law or fact that can

determine it

Since we can never get more than one sample item out of a given

dated univeise, we are obviously handicapped when it comes to draw

mg inferences about the universe from which this item came We

would have no information whatsoever about the variation that

might have existed in that unnerce as long as we confined out atten-

tion to that one item end thet one uwuerse We solve this problem

the same way we solved the similar problem in correlation analysis

We assume that the averages of these univerees differ systematicaUi/

and that the dispersions within these universes are the same, or, if

the dispersions are different, we assume that they differ systemat-

ically Naturally, the systems we always refer to are those v e think

exist
,

As soon as we adopt this model of the behavior of time senes, the
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logical way to analyze a senes stares us m the face The first step

13 to fit a system to the data, such as a straight line of relationship

as in correlation analysis What ^stem we choose in the beginning

IS theoretically irrelevant The next step is to analyze the variation

around the first system We may then find it desirable to fit a

system to this variation The thin! step is to analyze the variation

remaining after the second system has been fitted This may lead

to a third system, etc We stop when we are unable to find any

system in the residual venation The residual variation should then

have the properties of a random senes, with no correlations between

successive events and with apparently constant variation over the

full time period Naturally we perform our successwe step analysis

aware of the problem of degrees of freedom in the data Otherwise

we end up with systems that have been imposed on the data by the

analyst rather than with systems that actually exist in the data,

and it IS probably noise to act as though we know, when we do not,

than it 18 to act with a known degree of ignorance

Time Series Reiationships Are Complex

In view of the preceding discussion it is probably redundant to

state that time senes relationships are more complex than those we

encounter m typical correlation analysis They are so complex that

we prefer to handle the problem by distilling several relatively aimpU

systems rather than trying to discover some master system This

method of analysis creates some interesting problems of its own, but

they are not serious deficiencies as long as we are aware of what

we are doing

The Need to Extrapolate

We emphasized the importance of distinguishing the interpolation

range of the independent variable from the extrapolation range in the

application of correlation analysis The histoncal data always

straddle the interpolation range We, therefore, have reasonable

confidence that future items that occur within this range will con*

form to the historical patterns Although we find that the patterns

within the interpolation range give us some hints of the probable

patterns in the extrapolation range, we would never be so brash as

to assume that we should have as much confidence with our extrapola-

tions as we have with our interpolations

Unfortunately, all future events in time senes necessarily occur

in the extrapolation range, with the possible exception of seasonal

variations, which, of course, are only part of the total venation m
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the senes The year 1960 will never occur again, or at least not as

far as we know July will probably occur again, but it will be July

of a later year

The need to extrapolate makes time senes analysis a “catch-as-

catch-can” procedure In fact, some analysts argue that techniques

of time smes analysis are meanmgful to talk about only in the anal-

ysis of seasonal variations Any other conversation is simply a way

of padding a statistics course m a manner that would be tolerated

only by a naive and/or captave audience They would argue that

intelligent analysis of time senes is more a matter of becoming edu-

cated in the intricacies of the subject to be forecasted than a matter

of technique For example, the best place to get a weather forecast is

from a meteorologist, not from a mathematical statistician Simi-

larly, a good source for a forecast of the sales of Chevrolet cars is the

Chevrolet Division of General Motors

While there is undoubtedly much ment in this discounting of tech-

mque, it is still stimulating to explore some of the technical aspects

of time senes analysis A direct advantage may come from the

stimulation and guidance it gives to our efforts to become educated

in some particular area of application Thus it might help in telling

us what we should try to learn m a specific field of application An

indirect advantage may come from the fact that a minimum knowl-

edge of technique often protects us from being mesmerized by the

technical applications of others We are no longer such a naive

audience

16.5 Correlating Two Or More Time Series

Since it is unlikely that time is really the underlying explanatory

variable when we study a time senes, it is not surpnsing that we

frequently attempt to correlate various time senes with each other

rather than with time itself For example, suppose our company

sells a staple consumer product like sugar We may reason that

population growth would be the pnmaiy factor underlying the growth

of our market Hence we correlate the changes m population over

the years with the changes m our sales and find a relatively high

association We could now forecast our sales by first forecasting

population and then substitutang the population forecast in the esti-

mating equation (Note that we would probably be working in the

extrapolation range

)

This type of correlation analysis is very popular, whether done
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graphically or mathematically It comes under severe censure by

many people, however, if the analysis never gets more sophisticated

than that described One cnticism is that this technique merely

frans/ers the forecasting problem from one senes to another, and we

have no reason to believe that we can forecast the independent

variable ®o accurately that the mdirect forecast of the dependent

variable would be anv more accurate than if we had forecasted it

directly as a time ‘^enes Another cnticism is that this type of

analy'^is merely correlates the trends of the two series There might

be other systematic movements m the two series that would also be

correlated if we were to i«olate them by standard ty pes of time senes

analysis

An interesting way to handle the first cnticism is to search for

other variables that lead movements in the dependent vanable This

Is obviously a very useful idea If we found for example that move

ments in Senes A preceded movements in Senes B by 4 months on

the average we could forecast Senes B by simply watching Senes A

Thus we would hav e a barometer of mo\ emente in Senes B the w ay

air pre«sure is a barometer of precipitation in weather forecasting

Unfortunately there are surpnsinglj few economic events that lead

other economic events consistently enough and with enough lead to

provide us with practical guides One of our problems is that the

lag in the reporting of information on the lead senes is longer than

the length of the average lead The National Bureau of Economic

Re earch has done considerable research into the existence of leads

and lag< m various economic sene» and has published lists of leading

indicators of changes in fiusmess activity coincident indicators, and

lagging indicators
‘

Another problem in toing to di«cover consistent leading indicators

flow s from the reactions of busine«''men and consumers to any ev i

dences of leading tendencies Suppose, for example, that we were to

discover that the price of General Motors common stock lagged 10

days on the average behind movements m the price of Standard Oil

of New Jer«ey common stock would watch the price of Jersey

Standard and then take the proper action with respect to General

Motors If Jersey went up, we would buy GM, and vice versa If

only tie knew this, and if w e had only a small capital fund, we could

probably take advantage of UiB lead lag phenomenon for many

‘For current data on such indicators see Business Cycle Detelopmenls pub-

lished monthly bj the United Slates Department of Commerce Bureau of the

Census
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weeks Whafc is more likely is ^at others would discover the same

thing, or V e ould get greedy and toy to increase our rate of purchases

and sales We would then discover that tiie length of the lead would

begin to shorten as a result of Uie induced buying and selling action

If the knoiv ledge of the lead became common, the lead would dis-

appear entirely ' The last entrants would probably find themselves

actually victimized by a lo^ji whereas Uiere n as a lead before because

the induced market action, based on something that was no longer

true, would push the pnee of General Motors higher or lower than

could be sustained by the fundamental market forces

In fact, we might generalize that no diseermble lead in economic

senes will sustain itself if it is possible to make money by taking

advantage of the knowledge of the lead Thus, if we wish to make

money by taking advantage of leads, we are going to have to do it

helore others know about it, and we are going to have to do it before

indications of the lead are clear enough for others and us to be sure

it exists, and we still have the nsk that we are reading a system

into the data that is not there

16.6 The Use of Time as an Index of Other Variables

In an earlier chapter (Chapter 4) wc pointed out we frequently

measure one variable, such as ability to learn school subjects, by

reference to another variable, such as age We do this for many

reasons, a few of which we mention here One of the most commonly

used measures is time, particularly as it reflects age For example,

seniority, the number of years on the jo6, is taken as a measure of

the value of a worker Automobile dealers have an association

which publishes a book which tells the dealer how much a used car

16 worth with sole reference to the age of the car

The assumption that underlies this practice of using time as an

index of another variable is that the correlation between variations

in time and variations in the other vanable are sufficiently close so

that the resultant errors are of litfie practical consequence Most

intelligent people use such a time index only as a guide For example,

the intelligent automobile dealer will start with the book price, and

with the notion that this is a fair price for the average car of this

vintage He then modifies in the direction considered appropriate

by the departure of the particular car from the average The un-

imaginative dealer follows the book and offers too much for the poor

cars, which he thereby acquires, and too little for the good cars,
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which therefore get sold to his competitors Thus he systematically

and objectnely runs himself out of business

The use of time as an index has two rather obMous ad\antages

One, it IS \er5 easy to measure and just about e\erybody understands

it (With the possible exception of people like Archie Moore and

Satchel Paige) Two, it has objeciwity, a \erj desirable quality

when we are dealing with people For example,' if ^ e tell an executive

he must retire because he is 65 jears old and a company rule requires

retirement at that age, we ha\e none of the implications we would

ha^e if w*e tell the executi;e that he must retire because he is senile,

or because he is forgetful, etc Thus we find it \erj’ advantageous

to work out book rules ba<ed on tune We make some mistakes

when we apply the«e rules, but if we are intelligent about it, the cost

of these mistakes will be less than the cost of trying to use other

measures.

PROBLEMS AND QUESTIONS

16 1(a) Select a major United States corporation and collect its annual

dollar sales figures for the most recent 15 years

(6) Analjxe the history of the cerporauon for existence of mergers, pur*

chaseb of other companies, introduction of products m new fields, etc

(e) n hat b measured b> the tanauon in the companj sales over the

yearsT You «hould aho consider the problem of pnee changes and the

problem of changes m the “product and style mix
”

(d) Chart your sales data on both antlmetic and logantbmic scales and

uien extrapolate the apparent av erage rate of change of sales What assump-

tions are implied b) y our extrapolation with respect to the company 's future

rate of acquisition of other companies, expansion of the product line, price

change®, general rate of growth of the American economy, etc ?

Do lhe®e assumptions «tnke you as reasonable’

What modifications would be necessary in your extrapolation to allow for

any such assumption that you believe will not prevail?

162{o) As a busmess manager, wbt advantages do you see in having

doily sales figures in contrast to only monthly sales figures?

(6) The clectromcs and computer people are already contemplating the

day when an executive m a central office will be able to observe the Inlnut^

by -minute rate of sales of his products as fa^t as they take place all over the

country Such an elaborate set up of computer equipment, leaded telephone

wires, and television projection and receiving facilities will obviously cost

money ^\’hat advantages might such instantaneous reporting give a com-

pany that would justify its cost? Do you believe that such systems will

eventually come to pass, or do you look upon this as “pipe dreams"?

16 3 Classify each of the followup variables as being cumvlatm or non-

eumidaiiie

(o) Dollar sales of a company

(6) Wceklywageofanempbyee
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(c) Your weight from year to year

(d) Heights of school children

(e) Unit cost of production from year to year, or from department to

department, or from company to company

(/) Accounts receivable from week to week
16 4 Does It ever make sense to add up a noncumvlattve senes t Ex-

plam (Hint Note that the calculabon of the anthmetic mean mvolves

adding up the set of quantities

)

16 5 What bnds of systematic behavior, or vanation, are you aware of

in the following phenomena’ Note whether you are aware of any changes

in these systems over the years

(0) The number of leaves on an elm tree

(b) The time at which you eat breakfast

(c) Your weight smce birth

(d) The number of people hoed up at the tellers' windows in the local bank

(e) The Gross National Product of the United States

(/) The Dow-Jones average of the daily closing pnce of 30 industrial

common stocks sold on the New York Stock Exchange

ig) The daily closing price of General Motors common stock on the New
York Stock Ex^ange

(k) The winner of the Aroencsn I/cague pennant? Of the National

League pennant’

(1) Your personal sense of your own physical well being

(;) Your blood pressure

16 6(n) Use sales as a measure of sue and collect data on the annual sales

of some company that has experienced what appears to you as an exceedingly

high rate of growth

(b) Plot the sales on anthmetic and Ic^nthmic scales and draw in a

smooth line that describes your impression of the growth curve for this

company

(c) Has the company been growuig too fast for its own future health’

Explain (In answenng this you should refer to the “conditions of healthy

growth ” as you see them I’m! wiff profeftiy fed ti frarf/m' tfu minme tie

balance sheets and mcome statements of your selected company

)

(d) Some economic tbeonsta attribute a business decline to the “unhealthy

excesses ’ that accompanied the preceding “boom ” Do you agree that such

a theory has some vahdity? are some of the mamfestations of “un-

healthy excesses"?

16 7 Momentum and friction are forces commonly at work m the physi-

cal world, with momentum tendmg to keep a body in motion in its imtial

direction and fnction tending to retard this motion Similar forces are often

thought to be at work in the poblical, economic, social, competitive athletics,

etc
,
worlds Analyze the following phenomena for evidence of the action of

forces similar to momentum and faction Make note of any impelling forces

necessary to imtiate the motion Also note the path of vanation followed by

the given phenomenon as it responds to 1 an impelhng force, 2 momentum,

and 3 fnction

(o) The speed of an automobile

(b) The rate of sales of a new roodd ofm automobile



608 THE STATISTICAL METHOD IN BUSINESS

(c) The rate of production of pages per hour as you work on a term

paper or on a report to your boss

(d) The vanation m the cuecess ratio o! a baseball, football, etc
,
team

(You might consider this vanation as it takes place throughout a given

game, or from game to game, or from season to season

)

(e) The rate of sales of the vanous salesmen m the weeks following the

annual inspirational sales meetmg Contrast this with the vanation m the

rate of sales dunng the 8 weeks of a sales contest

(/) The progress of the relations between the Umted States and Russia

(9 ) The fuctuatiooa m general tmsmeas activity m the United States (as

measured by vanations m the Oiws National Product)

Id 8 The commonly quoted statement ‘you cant turn back the clock”

contains considerable wisdom In our terms, it is the equivalent of saying

that we cannot go back and get another sample from the old universe because

the old universe has ance been rej^ced by a new one (This is a hard lesson

for us to learn, and one which we would prefer not to have to learn For

example, as children we frequently pUy games that permit "take-overs,” a

practice we find it harder and harder to get away with as we get older We
sometimea ate successful in preserving this practice on the golf course by

permitting 'Mulligans” on the first tee

)

In each of the following cases indicate the degree to which you tbnk the

universe shifts as successive sample are drawn out Or, m other words, in

which of these cases is it possible to have take-overs?

() A com is tossed 10 tunes in a row

( ) Ten cards are dealt from an ordinary deck

(e) You throw the same dart 10 tunes m a row at a given ta^t and

from the came distance

(d) You throw 10 "different” darts at a target

(e) You take 10 quizzes dunng a course and have a grade on each

(/) You test a sales talk you have worked out by giving the "same” talk

to 10 successive prospects (Would an average of your results be a good

measure of the future usefulness of this sales talk^ Explain )

({7 ) You select 10 successive annual figures for the Umted States Gross

National Product

169 D^uss the advantages and disadvantages we derive by using tune

to measure the following phenomena

() It takes 4 years to earn a college degree

( ) It takes 60 mmutes to play a football game

(c) It takes 40 hours to do a week's work

(d) It costs $8 a day to rent a floor Sander

(c) It costs 8100 a day to buy an attorney's time

(/) A baby should be fed every 4 houm (Some books say this

)

(g) Depreciation on a huildmg should be charged at a rate of 2% per year

(A) A soft boiled egg should be boiled for 3 minutes

16 10 Give three examples of events, or symptoms, which precede some

other event on a reasonably consistent schedule as far as your experience

goes For eitample, does a sneeze presage a nose coldT



The anatomy of an economic

time series

Several approaches are available for the analysis of an

economic time senes We confine our attention to only two In this

chapter we examine the anat(my oj on hstoncal time senes using a

model that has a long history and a wide use, thus justifying its

being called traditional In the next chapter we examine an approach

that IS quite explicitly oriented toward 'predicting the future behavior

of an economic time series Before embarking on either approach

it 18 important to remind ourselves that no mechanical approach is

ever very satisfactory Judgment is, and should be, a very impor-

tant part of the procedure, and preferably judgment bom of knowl-

edge and experience beyond that which is obvious from the numencal

data

17.1 The Traditional Model

A simple model of an economic time senes is

A =TXSXCXR
A is the value of an item as it actually occurs, T is the value the

actual item would have had if only the secular trend had been operat-

ing on it, jS 18 the magnitude of Uae seasonal force on the actual item,

and C IS the magnitude of the force exerted by the ups and down

m general business activity Since this force used to be thought of

as a q/chcal force, it has become traditjonal to call itC is the

residual, or, as some prefer, the random variation Many analysts

prefer to call it I for irregular because rarely are strong attempts

made to punfy the residual sufficiently to satisfy some people’s con-

ception of random For example, it is not unusual to leave episodic

609
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factors in with the residual factors In fact, it is not unusual to

distill out only the trend and seasonal variations, leaving the cyclical

and residual, etc ,
as an unrefined conglomeration

Units in the Model

The actual item has some unit of measure, such as dollars, or tons

Since the four components of the model are mulhplied together (for

reasons described below), we cannot assign this unit to all four

components and get a meanmgful product. We assign this unit to

only one of the components, traditionally the trend component. We

treat the other components as ratios, for example, a typical result

might be

A^TXSXCXR
246 = 228 X 91 X 120 X 99 (Umts m SI milhon)

Thus the analysts would reveal that the sales would have been

$228 million if trend had been the only force operatmg, however,

dunng this particular season of the year, seasonal was a depressive

factor of 09, or 97o General busmess activity was 20 above aver-

age, thus raising the sales 20^c Finally, the residual forces resulted

a minor drop of 01

The Logie Behind Multiplying the Components

Expenence suggests that the forces acting on an economic time

series are relaUie m impact. Sears Roebuck’s total December sales

are affected by the Christmas season m about the same proportion

as is the small town department store's Obviously, howeier, the

mcrease m Sears' sales from November to December is in the

hundreds of millions of dollars m contrast to the thousands of dollars

of the department store

The same kind of reasoning applies to the cyclical, secular, epi-

sodic, and residual forces The big farm loses more com to the grass-

hoppers than the small farm, but they both suffer about the same

proportionately (Assuming other conditions the same

}

The only other simple way to combine the components is by add-

ing them together Expenence sug^ts, how ever, that this procedure

would be inferior to multiplication Attempts have been made to

develop more complex and subtle ways of combmmg components,

and they are still going on No significant successes of general

applicabilit} have been recorded, so we mention such subtleties only

in passing
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Estimating Components in the Model

4 = I’X<SXCX-Bis only a general statement for any model

for analyzing a time senes It merely tells lusw to combine the com-

ponents after we get them Each of the components must be esti-

mated and we must have a model scheme for doing it Eor example,

the traditional model for estimating secular trend has been the cor-

relation model with a least-squares estimating line Seasonal varia-

tion has been estimated in many different ways, some naive and

others sophisticated Cyclical vanation analysis has been more

notable for the frustrations created than for any successful tech-

niques Analysis of the residual is customanly by-passed Most

of the techniques that have been used to analyze the residual are

rooted m probability concepts, and traditional analysts have senously

questioned the applicability of probabilily concepts to any aspects

of the analysis of economic time senes Their argument flows from

a fundamental theory that economic events are not independent

This lack particularly applies to successive events of the same senes,

such as the monthly sales of Sears Roebuck Nobody really ques-

tions this theory, but many analysts are inclined to worry only about

dependence that they can meame If they cannot measure it, they

cannot take it into account, and they feel they must treat such vana-

tions os thcniyh they mre random, and as though they were subject

to probability considerations In our discussion of randomness and

probability we found this view as the most attractive We might

add that most of the traditionalisls also treat such unrationalized

variations as though they were random The difference is more

what they call them than what they do with them This is because

there is only one practical way to deaf with variations we do not

understand Some people do it implicitly and reluctantly Others

do it explicitly and with enthusiasm, sometimes with too much of the

latter

17.2 Estimating Seasonal Variation

We start our analysis of the components with the seasonal vana-

tion because it is the one kind of vanation that we know something

about We analyze the seasonal vanataon that has existed in United

States gasoline demand from 1951 to 1961

Homogeneity of Data

The first item we check is the definitioti of the data and any

changes therein We collected the date from various monthly issues



«13 THE STATISTICM METHOD IN EUStNESS

of the Survey cj Cmenl Bunntst and from the biennial issues of

Business Statutics, both compiled by the United States Department

of Commerce The folloiing information on the homogeneity of the

data was obtained from the footnotes gitcn m Biwineu 5!ahsfi«

fuels Domestic demand w computed from production plus imports, miam

exports, plus or minus the change in stocks npitcs beginning ivmrj,

1951 reflect adjustment to a new basis of reporting bulk-temunal stocks and,

therefore, arc not comparable with earher data The export figures used in

computing domestic demand include shipments to noncontiguous US
terntones

An idea of the magnitude of the effect of the change m definition of "bulk

terminal ' can be gamed from the fact that monthlj average domestic de-

mand for gasoline was OIjO mil bbla on the old bans for 1951 and 90S mil

bbU on the nev bans

An idea of the effect of the exclusion of jet fuel after 1952 can be gleaned

from the fact that 1 0 md bbls of jet fuel is included in the monthly aierage

figure for 1952

The collected monthly data arc shown in Table 17 1 for the year*

1M5 to 19G1 Note that two aeU of data are shown for 1951 and

1952 The revised figures have been lowered by 10 million per

month to allow for the amount of jet fuel that bad been included jn

the original data We confine our formal analysis to the data from

1951 to 1961 We thereby avoid the problem of the change in defi-

nition of bulk terminals and also some of the problems of interpreta-

tion of the post-World War II adjustments to a civilian economy

We are, of course, still plagued with an) problems associated with

Uie Korean War

Lest we make the error of attaching precise significance to small

differences in the data, we should note that it is not unusual to find

differences up to 1 million barrels between the preliminary and

revised items of thrae esliroates of gasoline consumption

Vor/ofien /n Number of Consumpfion Days fn a Month. Interpre-

tation of the monthly vanations in gasoline consumption » partly

confused by the monthly vanations in numbera and types of con-

sumption days The more obvious source of this calendar variation

18 the diffenng number of days in the vanous months February is

a consistently low consumption month because of its fewer days, in

addition, of course, to the fact that it is a poor month weather-wise

in most of the country February data are also affected by the
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TABLE 171

Monthly Domettic Contumption cf Gotolme in the United States

(including Armed forces contumphen]

Unit 1,000000 barrels

ReTiaed

1945 1946 1947 1948 1946 1950 1951 1952 1951 1952

Jan 520 517 571 613 631 670 807 86 9 797 859

Feb 489 477 606 565

(54 6)

580 633 726 820

(79 2)

716 810

(782)

Mar 554 56 7 600 6S2 733 788 867 871 857 861

Apr 59 0 621 633 722 753 804 873 98 7 863 977

May 607 668 709 772 817 89 0 994 1011 984 1001

Jun 60 6 632 712 780 834 902 96 3 99 3 95 3 933

Jul 662 691 734 814 821 917 1005 1053 99 5 1013

Aug 701 667 721 803 847 915 1011 1030 1001 1020

Sep 645 623 714 762 808 86 7 913 1001 903 991

Oct 55 7 66 6 733 752 793 891 1005 1037 995 102 7

Nov 535 613 641 726 763 827 880 913 870 903

Dec 49 7 611 675 722 756 810 852 95 8 812 94 8

Average 580 613 663 726

(724)

761 82 9 908 96i

(96 0)

89 8 952

(960)

1933 1954 1955 1956 1957 1938 1959 1960 1961

Jan 881 892 97 2 1005 1093 1073 1147 1113 1145

Feb 816 857 89 5 980 967 95 5 99 8 108 9 105 6

(94.6) (105 1)

Mar 96 7 100 8 106 6 1124 1132 1089 1190 120 5 126 6

Apr 1001 1034 1122 1130 1158 1185 1249 1291

May 1012 1034 1168 1236 1243 1231 1270 1300

JUD 1126 U29 1214 1268 1216 1254 1337 1389

Jul 1110 1115 1168 1207 1303 1309 1371 1358

Aug 1068 1096 1228 1258 1288 129 9 1329 1384

Sep 1036 103 9 1143 1116 1136 1204 130 3 1285

Oct 103 4 105 0 1139 1192 1194 1251 1209 126 2

Nov 96 9 1013 110 2 1121 1077 110 6 1161 1249

Dec 977 1038 1122 1081 1128 1203 123 6 1249

Averse 1005 1025 1112 1143 1161 118.2 123 3 126 4

(1140) (126 I)

}^ci6 See text for source and descnpbon of data.
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occurrence of leap-year every 4 years Revisions for leap-day in

February, 1952, 1956, and 1960 are shown m parentheses under the

actual figure m Table 17 1. (The adjustment was made by multiply-

mg the actual figure by 2S/29 ) We have made no adjustment for

the different days m the various months because it is customary

practice to make estimates for actual months, which would include

the factor of different numbers of days Preliminary estimates for

February of leap-year would have to be multiplied by 29/28 to

correct to an actual month basis

Another cause of calendar variations m the data would be the dif-

ferences m number of bundays, Mondays, etc
,
from month to month

and from one month of one year to the samp month of the next year

Insofar as gasohne eonsramption, or, more exact\y, gasohne purtAiases,

vary from day to day within the week, some of the monthly varia-

tions would be due to these calendar variations We have no way

of measuring these daily variations and their impact on monthly

variations, and we leave them in the data to get left m the residual

variations or to get absorbed into some other class of variation We
assume that these calendar vanations are Quite small and can be

safely neglected

One possible disadvantage m ignoring some of these calendar vari-

ations IS the disturbance they create m what otherwise might be

relatively smooth seasonal vanations Seasonal vanation m gasoline

consumption is fundamentally caused by variations in weather If

we average weather vanations over many years, we find relatively

smooth transitions from month to month, and even from day to day

Thus weather would tend to cause relafavely smooth transitions from

month to month in gasoline consumption, assuming the months have

equal days and assuming that weather is the almost exclusive cause

of the seasonal variation If weather were almost the exclusive cause

of seasonal vanation in gasoline consumption, we would be very

tempted to adjust all of our data to a daily average basis and thus

be in a position to work with smooth transitions However, such

factors as holidays, week-ends, pay-days, etc
,
affect gasoline con-

sumption These tend to disturb any weather-induced smooth transi-

tions from month to month

ChaiH In the Analysis of Seasonol Variation

A visual examination of the relationships among the vanous

monthly data serves several purpcraes It gives us a prelunmary

impression of the actual existence of measurable seasonal variations
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The mathemfitica! mechanics of seasonal analysis are quite tedious,

and M e do not like to plunge in without some reasonable assurance

that we will discover useful results Also there are occasions under

which a graphic onoii/sw will be sufficient to provide a reasonably

accurate measure of seasonal for the purposes in mind

A visual examination wiU also alert us to any idiosyncrasies of

data that probably warrant further investigation before we plunge

into any mathematical routmea

Figures 17 1 through 17 3 show three useful ways to chart data

for the study of seasonal variations Each chart has a logarithmic

1 ertical scale to shon the gasoline consumption variations The log-

arithmic scale enables us to concentrate on the relative variations

associated with seasonal forces

Figure 17 1 shons all the monthly data chronologically It is quite

evident that the senes has a general upward dnft from year to year,

a drift probably reflecting growth elements associated with popula-

tion growth, development of improved highways, growing intensity

of automobile use associated with growth in income, etc The straight

lines connecting Fcbruaiy, 1951 with rebruary, 1961 and August,

1951 nith July, 1961 make it easier to compare this apparent growth

With nhat it would have been if it had maintained a constant per-

centage rate of increase over these 10 years It appears that the rela-

tive rate of growth is slackening We get a better perspective on this

problem of growth when we examine more years of data m a later

section

There seems to be little evidence of any significant cyclical ^ or

episodic variations in gasoline consumption, although we may decide

later to associate some of the minor undulations with fluctuations

m general business or with some factors more particular to gasoline

consumption

The most obvious vanation in the data is that associated with the

months of the year There is clear evidence of a rather regular pat-

tern of this within year seasonal variation Figures 172 and 17 3

make it even easier to judge the consistency of this pattern Figure

17 2 38 a year-over-year chart It is the kind of chart many business

analysts use to plot new data as they become available Such a

chart enables the analyst to get a rough idea of the operation of

> We will use the word cyclical as ahortband to refer to variations associated

with fluctuationfl m general business activity Tfiese fluctuations are Dot stnctly

cyclical but do exhibit runs somewhat akin to a cyclical kind of movement
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noDseasonal forces For example, note that January, 1961 was

slightly higher than January 1960 This indicates a plus factor

because of trend cyclical, etc This plus differential of 1961 over

1960 continued through February and March, with March showing

an increased spread This be considered an advance indication

of a cyclical recovery in gasoline sales We could plot the later data

now available to see what happened to the spread of 1961 over 1960

Our interest now m Fig 17 2 la m the evidence it gives of a rather

stable seasonal pattern As we move from January to December,

we note the following general month«to-month directions of change

Jan to Feb—Down

Feb to Mar—Dp
Mar toApr^Up

Apr to May—Up
May to Jun—Up
JuD to Jul—Muted

Jul to Aug—6 down, 4 up

Aug to Sep—Down

Sep to Oct—6 up, 4 down

Oct to Nov—Down
Nov to Dec—Up
Dec to Jan—Down

If we were to find a change opposite to those listed id some of the

future months, we should be alert to a shift m general business con-

ditions or to a possible shift in the seasonal pattern

Figure 17 3 is another way of showing essentially what is shown

in Fig 17 2 Here we can see that February has always been the

lowest month with January next lowest m all years except 1957,

when November was apparently affected by an unusual depressive

force Careful stody would reveal the relative rankings of all the

other months

Figures 17 2 and 17 3 can be confusing because of the many lines

plotted This would be more kue if we were working with a series

that had weaker seasonal componentg and stronger cyclical and

irregular components The lines would then tend to enss cross,

whereas they are essentially parallel for gasoline consumption In

fact, the more confusing these charts are, the less w the relative

importance of seasonal variation m o given senes

It is a good idea to use an expanded vertical scale in charts of the

17 2 and 17 3 type in order to rainimiie the confusion in following

the Various lines
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Fig 17^ Month-ove^month chart of monthly consumptaon of gaBOlme m the

Jiliy-JAy /Aaj.w

The One>year Moving Total and One>year Moving Arithmetic Mean

The theory behind our method of measuring seasonal vanation is

very simple We start with an actual monthly item We develop

an item for the same montii from which the seasonal variation has

been removed We then compare the two figures, with the difference

being attributed basically to seasonal variation

Since seasonal variation is a withm-year movement, we would con-

sider amiml totals to be independent of ^aeonal This independence

would apply regardless of the particular calendar limits of the years

Although we ordinarily measure the year from Januaiy 1 to Decem-

ber 31, we might as well measure it from January 26 to January 25,

etc Column 3 of Table 17 2 bsts the possible annual totals we can

get from our gasoline data if we confine ourselves to terminal dates
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TABLE 17.2

Calevtotien of ReHes of Actual Monthly Consumption of Goteline to

Contorod 124Aenth Moving Avorago, 1951 to 1961

Wttghted

Weighted 13-Month

12-Month 13-M<mth Moving

Actual Moving Mo\'mg Average

(milliQiis Total Total (millions

of (millions (millions of

barrels) of of barrels) A/TC’t

Date * A barrels) barrek) = TC'r -Src*

0) (2) (3) w (5) (6)

1951

Jan 797

Feb 716

Mar 857

Apr 86^

htay 934

Jun 953

1077 6

Jul 995

10835

21614 901 nw

Aug 1001

1093 2

21770 907 not

Sep 90^

1093 6

21868 911 991

Oct 995

11050

21986 916 1086

Nov 870

11067

22117 922 944

Dec 845

11097

22164 924 911

1952

Jan 859

1114 5

22245 927 927

Feb 785

11164

22309 930 ^1

Mar 861

11255

22116 934 922

Apr 977

112S4

22536 939 IWO

May 1001

11317

22601 942 1063
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Actual

(imlhotis

of

barrels)

Date = A

(1 ) (2)

1952

Jun 983

Jul 1043

Aug 1020

Sep 991

Oct 1027

Nov 903

Dec 94^

1953

Jan 881

Feb 846

Mar 967

Apr 1001

May 1042

Jun 1126

Jul 1110

Aug 1068

Sep 1036

TABLE 172 Continued

Waghted

12-Month 13-Month

Moving Movmg

Total Total

(millions (iDlUlODS

of of

barrek) barrels)

(3) (4)

22740

11423

22867

11444

22925

11481

2306 8

11587

23198

11611

23263

11662

23447

11795

2365 7

11862

23772

11910

2386 5

11955

23917

11962

2399 0

12028

24085

1205 7

24125

12068

24147

1207 9

24199

12120

Weighted

13-Month

Moving

Average

(millions

of

barrels) AjTC'r

- TC'r = Sr(/

(5) (6)

948 1037

953 1094

95 5 1 068

961 1031

967 1 062

969 932

97 7 970

98 6 894

990 855

99 4 973

99 6 1005

1000 1 042

100 4 1 122

1005 1 104

100 6 1 062

1008 1028
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TABLE 171 Continued

Weighted

Wcigbted 13*Month

H-Afonth lS'^[ollth Moving

Actual Moving MOilDg Average

(millions Total Total (nuUions

of (millions (miUioQs of

barrels) of of barrels) A/rCr

Date -A barrels) barrels) “TCr = 5rc'

(1) (2) (3) (4) (5) (6)

1953

Oct 1034

12153

2427 3 lOU 1023

Nov 969

12143

24295 1012 95S

Dec 977

12143

24293 1012 965

19M

Jao 89^

12155

Feb 857

12131

Mar 1005

12184

Apr 1034

12200

May 1034

1224 4

JUQ 1129

12305

Jul 1115

12385

Aug 1096

12425

Sep 103 9

1248 1

Oct 1050

1256 9

Nov lOU

12705
Dec 1038

12788

24301 1015 581

2433 4 1015 544

2436 5 1015 993

21334 1016 1018

24444 1019 1015

21W9 1025 1 114

21690 1029 1084

24808 1034 1060

24904 1035 1001

25050 1044 1006

25272 1055 962

25491 1065 977
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Actual

(nuUions

of

barrels)

Date

(1)

= i

(2)

1955

Jan 975

Feb 89 5

Mar 1086

Apr 1122

May 1168

JUQ 12U

Jul 1168

Aug 1228

Sep 1143

Oct 1139

Nov 1102

Dec 1122

1956

Jan 1005

Feb 946

Mar 1124

Apr 1130

TABLE 17 2 Continued

Waghted

12-Month 13-Month

Moving Moving

Total Total

(cuUtODS (imUions

of of

barrels) barrels)

(3) (4)

25629

12841

25814

12973

26050

13077

26243

13166

26421

I325i

28594

13339

26711

13372

28795

13423

26904

13481

2697 0

1348 9

2704 6

1355 7

2716^

13611

27261

13650

27330

13680

27333

13653

2735 9

13706

Weighted

13-Month

Moving

Average

(nulbons

of

barrels) A/TC r

-TCr = Src'

(5) (6)

106 8 910

107 6 m
lOSi 982

109 3 1027

1101 1081

1108 109B

1113 1019

1116 noo

1121 1020

1124 1013

1127 578

1132 991

1136 585

1139 531

1139 987

1140 991
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TABtE 172 Continuid

Weighted

Weighted IS-Month

12<Month 13-Month Moving

Actual Moving Moving Average

(mtUioDS Total Total (milhona

of (milboDS (miUiona of

barrela) of of barrcb) A/TC'r

Date bamU) Umis) -rev -Sri

(1) (2) (3) (4) (5) W

1956

May 123 6

I372i

27431 1145 lOSl

Jim 126^

1368 4

27409 1145 1110

Jul 1207

13775

27456 114 4 1055

Aug 125^

13795

2756i 114 9 ms

8ep 1116

13301

27594 1150 970

Oct 1192

13329

27630 1151 1036

Nov 1121

1383 6

27606 1155 972

Dec lOSl

1378 4

27620 1151 939

1957

Jan 109^

13SS0

27664 1155 m
Feb 967

13910

2779 0 1155 535

Mar 1132

13930

27840 1160 976

Apr 1158

1393^

27862 1161 997

May 124^

13883

27820 1159 1072

Jun 1216

1393 5

27825 1159 1049

Jul 13M

1391A

27850 1160 1123

Aug 128A

1390^

27815 1159 nil
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TABIE 173 Cerfmuad

Weighted

Weighted 13 Month

12-Montb 13>Month Moving

Actual Moving Moving Average

(miUions Total Total (imlhons

of (zmlbons (fflllbODS of

barrels) of of barrels) A/TCV
Date = A barrds) barrels) = TC’t « Stc’

(1) (2) (3) (4) (5) (0

1957

Sep 1136

1386 0

2776 3 1157 982

Oot 1194

13887

2774 7 1156 1033

Nov 1077

13893

2778 2 1158 930

Deo 1128

13933

27828 1160 972

1058

Jan 1073

13939

27872 1161 924

Feb 953

13956

2788 9 1162 822

Mar 1089

14018

2796 8 1165 935

Apr I1S5

1407 5

W93 iin IQ12

May 1251

14104

28179 1174 1066

Jun 1254

14179

2828^ 1178 1065

Jul 1309

14253

2843 2 1185 1105

Aug 1299

14296

2SH9 1190 1092

Sep 1204

14397

2869 3 119 6 1007

Oct 1251

14461

28858 1202 1041

Nov 1106

1448 0

28941 1206 917

Dec 1203 29043 1210 994

14563
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Actwl

(millions

of

tamls)

Date

(I)

-A
(2)

1959

Jan 114.7

Feb Mi

Mar 119.0

Apr 124.9

May 127.0

Jun 133.7

Jful 137i

Aug 132S

Sep 130i

Oct 1209

Nov 116.1

Dec 123.6

19C0

Jan 11 li

Feb mi

Mar 120i

Apr 1291

TABLE 17J ConHnutU

Wmghted

12-Month iWIonth

Moving Moving

Total Total

(millions (millions

of of

barrels) lantls)

m (4)

29185

H62J
293S0

14655

2940.9

1475.4

2916.6

1471.2

2917.9

1476.7

29567

14SOO

2956.6

1476.6

29585

14S1.9

29655

14S3.4

2971.0

14S7.6

29782

1490.6

29S64

14955

29905

14945

29945

1500.0

299S5

149S.2

3001.7

15035

Weighted

13-Month

Moving

A«isge

([nillioQ9

of

bartls) A/rCr
- rev - Sre-

(5) (6)

121.6 .913

122.0 il8

122i J71

ffli 1017

I22i I.03I

1232 1JB5

1232 i.ra

123i 1.07S

iai.6 1.0M

123i i77

124.1 .936

1244 .991

121.6 i93

124i S42

124.9 .965

125.1 1.032
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TAB15 172 Continued

Weighted

Weighted 13 Month

12-Moiith 13-Month Moving
Actual Moving Moving Average

(milhons Total Total (milhons

of (milhoDB (milhons of

barrels) of of barrels) A/TCr
= A barrels) barrels) ^TCr = Stc'

(2) (3) (4) (5) (e)

I960

May 1301

15123

3015 S 125 7 1035

Jun 1389

15136

3(ffi59 3261 1 102

Jul 135^

15168

mo 4 1263 1075

Aug 1384

16173

30341 1264 1095

Sep 1285

16234

30^7 1267 1014

Oct 1262

Nov 1249

Dec 1249

m
Jan 1146

Feb 1056

Mar 1266

coinciding with the end of a month For example, 1077 6 is the total

of the 12 months of the year 1951, 10838 is the total of the last

11 months of 1951 and January of 1952, 1093 2 16 total of last 10

months of 1951 and first 2 months of 1952, etc

Since 10776, 10S3 8, 10932, etc, arc all annual totals, we argue

that the differences among these figures must be independent of sea-

sonal variation If we could now compare such figures with data

that include seasonal variation, we would be making progress toward

measunng the seasonal component We have two problems to solve

first First, we must reditce Oie me of these annual totals so they

are of the same order of magnitude as the actual monthly data which
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contam seasonal factors A simple and logical way to make such a

reduction is to divide our annual totals by 12 Second, we must re-

date these totals (or averages il we have already divided by 12) so

that they correspond to the dates of the actual monthly data Let

us turn to the dating problem first

The Problem of Dating Cumulofive Time Series Data The Janu

aiy, 1951 consumption was estimated to be 79 7 million barrels It

took the whole month of January to accuinulate this total Similarly

it took the whole month of February to accumulate 71 6 million

barrels in that month Thus we can say that gasoline consumption

has declined 8 1 million barrels between these two months But

there is really nothing between January and February except the

infinitesimal time interval between January 31 and February 1

Where, then, should we date these two figures in order to have a

monthly time interval between them?

We must proceed by assumption The conventional assumption is

that the middle of the month is the best date to use to represent a

month If we take the 15th of the month as the middle, we can then

say that, beginning with January 16th, we are starting to leave Janu-

ary and go into February We continue to go into February until

we reach February 15 After that we start leaving February and

go into March, etc Thus, we consider ttiat the time between January

and Febmaiy is the time between January 15 and February 15, that

between February and March is February 15 to March 15, etc This

assumption is also consistent with the equal distribution of ignorance

rule which we find so commonly used In essence we do not know

which day of the month is the best to use to represent that month

As far as we know, each is equally good The middle day, however,

18 the closest to all the days (Remember the least error property of

the median )

There are occasions in which we have definite reason to prefer one

day within a month over another For example, the date of Easter

plays a definite role in the timing of sales in a department store,

as does the date of Christmas, Independence Day, and other holidays

If such special dates are critical m a particular problem, we generally

modify our analysis to allow for them Generally, however, we find

the effects practically negligible and use the more convenient 15th

of month date

To return now to our gasoline problem If we date each monthly

figure at the middle of the month, the average or total of the 12

months of a given calendar year would be dated at July 1, the middle

of the year Note that we placed the 1951 total of 1077 6 at a point
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midway between June and July, or at July 1 Similarly, the next

total of 1083 8 is placed at Ai^ust 1, etc If we now add, or average,

these two figures and two dates, we get a result that is dated at July

15 This latter date is the same as the date for the July actual

figure of 99 5 Thus the 2161 4 m column 4 has a date corresponding

to 99 5 Since 2161 4 is the result of adding 24 months of data (2

sets of 12-month data), we next divide the 21614 by 24 to get 901

shown m column 5 The figure 901 is a monthly figure for July

which 18 independent of seasonal because it was based on annual

totals

We next divide the actual figure of 99 5 by the deseasonahzed

figure of 90 1 and get 1 104 shown in column 6 The departure of

this ratio from 1 is presumably associated with seasonal to some

extent We analyze these column 6 figures shortly, but first we

clear up a few points about column headings m Table 17 2

Note that we beaded column 4 witii Weighted 13-MoDth Moving

Total This describes exactly what we did The total of 1077 6 is

the sum of the data from January, 1951 through December, 1951,

1083 8 18 the sum from February, 1951 through January, 1952 Thus,

if we add these totals together, we are reaJiy covering a span of IS

months from January, 19M through January, 1952 In covenng this

epan, we really count the January, 1951 figure once, the February,

1951 through December, 1951 figures tvnce, and the January, 1952

figure mce We then have a weighted IS-vuynth moving total, with

11 of the months given a weight of 2 and two of the months a weight

of 1, and all the weights adding to 24 This is the 24 we dmde by

to get down to a monthly figure m column 5

W> fibf ujADtbJy -figure .m enJiuoD 5 ap TCJr to judinBifs tliat

it has no seasonal We put a pnme on the C to alert us to the possi-

bility that our averaging process has likely averaged out some of

the cycle We signify the residual by a lower case r to point up the

strong likelihood that the averaging process has averaged out a signifi-

cant part of the residual Insofar as the residual behaves like a

random senes, it will tend to obey the same laws we have discussed

m earlier chapters Since we combined 24 monthly figures, with

some double counting, we have the equivalent of a sample with 13

independent items (The remauimg 11 figures are not free because

they depend on the other 13 m the sense that we can always deduce

11 from 13 ) Hence we theorefacally reduced the vanation associated

with residual by multiplying it by the factor 1/V13,^ or by approxi-

mately 28

^Tius IS based on our familiar formnla it - t/'\/n—k
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We label the ratios in column 6 as Src* to signify that we feel

they contain practically all the seasonal, a significant part of the

residual, and possibly vestiges of i^clical

Our remaining task is to purify these column 6 ratios of Snf of the

re', thug leaving us with a measure ofS

Distilling the Vestiges of Rasiduo! and Cyclical Varlotlon

The best way to see the nature of our remaimng problem m the

isolation of the seasonal variation is to chart the Sref ratios Since

the time sequence may be of some significance, we find it desirable

to draw charts of the type shown m Fig 17 4 Here we show the

ratios separately for each month in chronological order. Our princi-

pal concern is whether the fluctuations from year to year in a given

month’s ratio show any evidence of systematic movements or of

sharp shifts in level We know, for example, that seasonal variation

does not necessarily remain constant over the years In fact, the

gasoline consumption seasonal patters has become a classic example

of one that has shifted over the years In the I920'b automobiles

and highways were not conducive to winter travel Hence the

seasonal swing from July consumption to February consumption was

quite wide The gradual development of better antifreeses, the car

heater, the immediate clearance of snow and ice, etc
,
tended to reduce

this summer-winter differential substantially over the years At

the same time we were having regional shifts of population that re-

sulted m a higher proportion of the population residing in the more

temperate parts of the country These changes are still going on

to a degree, but they seem to be exerting a smaller net observable

mfluence on the seasonal pattern of gasoline consumption The de-

velopment of the airplane industry, the mechanisation of the farms,

and the development of motor boats have combined to weaken the

dominance of automobile consumption m the over-all seasonal pat-

tern If we look over the 12 charts m Fig 17 4, we note no clear

evidence of a shift of relative consumption from the summer to the

winter months Such shifts would have been quite noticeable during

the decades preceding the one we are analysing

Analysis of charts like that of Fig 174 is subject to considerable

personal judgment We are going to be senously handicapped m
exercising judgment because we know practically nothing about

gasoline consumption beyond what shows up m the figures we have

We would be much better m our analysis if we had been working in

the industry for years and had acquired specialiied knowledge about

the many factoTs that affect gasoline consumption With these
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limitations m mind and wiUi' the strong possibility that we may
legitimately differ in our mteipretaUone, let us turn to these charts

and make a few observations

Although January shows a slight tendency toward higher ratios

m the later years compared with those m the earlier years we choose

to practically ignore the possibihty that January has shifted, or is

continuing to shift, to higher levels We have chosen to draw a

horizontal line slightly above the median figure that happened to

occur in 1955 The diamond at the nght edge of the line is our fore-

cast of the January ratio for the year 1962 We drew the line slightly

above the median instead of at the median m order to make a slight

concession to the possibility of this positive shift

The Februaiy data make it veiy tempting to postulate the kind of

downward drift shown by the curved Ime, although note that we have

flattened the line to horizontal over the latest 3 years and into 1962

Note the circled dote in the February chart These are the ratios

we would have gotten for those leap years if we had not adjusted

the data back to a 28-day basis We can see that they are con-

sistently out of Ime with the other items A forecast for the next

leap year m 1964 should, of course, allow for the extra day m Febru-

ary

Incidenteliy, since February could not have become less important

from 1952 to 1955 without another month or months becoming more

important, we would not leave this decbning line m February unless

we could find where the increase apparently occurred A quick glance

through the other months shows that only m November was there

any strong evidence of an increase from 1951 to 1955 Note how this

increase m November not only stopped, but seems to have been re-

placed by a sharp shift back to the leveb of the early fifties The

uncertainty about what we should now do with November points up

the need to have some more information than available m these

charts

We make two more observations about these charts before con-

cluding Note that we have drawn a box around some of the ratios

These are ratios that seem to be sufficiwitly out of line to warrant a

search for some episodic forces We have not made such a search

because it is best conducted by somebody who already knows con-

siderably more about gasoline consump^on than we do We have

generally ignored these boxed ratios m working out our lines and

averages

The other observation we wish to make is about our treatment of

August There seems to have been an abrupt upward shift from
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1954 to 1955 On the other hand, it may have been that 1952, 1953,

and 1954 just represented an unusual run of poor weather in August,

and the senes has now returned to its more typical level. In the

absence of additional knowledge, all we can do is use a "grab-bag”

technique to make a choice between these two hypotheses.

Quonh7y/n{f ond Cheeking the Seasonal Ratios, or Seasonal In-

dexes. The next and final step in the estimation of the seasonal in-

dexes for gasoline sales is to read tiie index values from the charts in

Fig 17 4 The resultant figures are shown in column 2 of Table 17 3

The remaining columns in Table 17 3 show the calculations we can

make to check the reasonableness of our seasonal indexes.

Column 3 shows the 12-month movmg total of the seasonal indexes

Theoretically these totals should fluctuate around and be very close

to 12 00 This follows because tiie average month, or the annual

total divided by 12, should have no seasonal m it, and the indexes

should average 1 OO and total to 12, We find in our case that the

moving totals vary between 12 05 and 12 08 We Attribute the varia-

tion from 12 00 mostly to rounding errors If we earned our indexes

to one more decimal place, we could eiimmate most of this systematic

error We definitely expect the total to fluctuate to some extent be-

cause of the shifts taking place m the seasonal pattern. If the indexes

were to remain the same year after year, then, of course, the moving

total would remain constant Some nnalyste require that the indexes

vjitkin a calendar year add to 1200 even if the seasonal indexes are

shifting, on the apparent theory that the average month withm a

calendar year definitely should have no seasonal Actually, however,

there is no more reason why the cafendor year should add to 12.00

than there is that any given fiscal year should add to 12 00 If we

insist that each fiscal year also add to 12 00, it would be logically

impossible for the seasonal pattern to show any shift We recommend

making no more e^ort to have a calendar year add to 12 00 than for

any other year The only rule is that the total should fluctuate

around 12 00, assuming no rounding errors such as we have

Deseasonaiized Data Should Hava No Seasonal Variation, If we

use our seasonal indexes to eliminate the seasonal variation from the

original data, the resultant data should have no seasonal vanation.

A simple way to check this is to try to measure any remaining

seasonal variation in the deseasonalized data Column 5 of Table

17 3 shows the deseasonalised gasoline consumption for the various

months It is calculated by dividing the actual data of column 4 by

the seasonal indexes of column 2 Tlie operation of division to elimi-
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TABU 17 3

Final Estimates of Seasonal Indexes of Gasoline Consumption,

With Cheeict on Their Accuracy

12 Month Weighted Weighted

Movug 13 Month 13 Month
Beaaonal Total OaaoitM Monag Moving
Index of Seasonal Conaump* Total Average Column S

Month « £ Index bon m A. A/S of A/8 of A/S + Column 7

(1) (2) (3) (4) (B) fO) (7) (8)

1851

J#a 707
Feb 716
Mar 857

Apr 863

May 084
Jun 9S2

Jul 1 10 086 006

Aug 107 1001 oao

8cp 101 003 804

Oot lOi 906 967

Not 94 870 026

Dk 9S

ISO!

84^ 869

1852

Jan 82

12 05

850 034 22096 921 1014

Feb 84

12 05

782 031 22156 922 1009

Mar 88

12 05

661 870 2225 0 027 048

Apr 102

12 05

977 058 2237 7 93 2 1028

May 105

12 05

1001 053 2244J 03 6 1019

Jus 1 10

12 05

983 894 2258.6 941 960

Jul 1 10

1205

1043 OIS 2271 8 947 1001

Aug 107

1205

1020 063 2281S 951 1002

8ep 101

1205

90! 081 23002 95 8 1024

Oot 104

1206

1027 OSS 23188 964 1026

Nor 84

1205

903 061 2319 5 966 996

Dee 88

1205

048 987 23904 074 993

1053

Jan 82

12 05

881 058 2366 6 981 977

Feb 34 840 1007 23661 986 1021

12 06
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TABLE 17.3 ContInv«<l

Month

(1)

Seuonnl

lades

-A
(2)

12-Moath

Movinc

Total

ofSeaMnal

Index

(3)

Oaaolioi

Contua;^

bon “ A

W
A/S

W

Weighted

13-Moath

MoTlni

Total

olA/S

(6)

Weighted

I^Montb

Movug
Axenge

d A/8

(0

Cotuioit 6

4- Ccliimn 7

(8)

Mv 98

12 05

967 017 23751 090 997

Apr 102

1205

1001 981 23603 992 989

M&t loa

12 00

104 2 09^ 23867 994 998

to IIQ

12 00

1126 1024 2395 6 998 1026

Jul no
1206

lliO 1009 2399 8 IDDO 1009

Aug 107

1203

1068 998 2403 6 1002 996

Bep lOl

12 05

1036 1026 24104 100.4 1022

Ort 1(M

1205

1034 094 2417 9 1007 987

Not 93

1203

969 1020 24205 1009 1011

D« 98

1305

977 997 2420 0 1008 989

Ju 02

1305

892 070 24207 1009 961

F«h 83

12 00

85T 1033 24229 1010 1023

Mu 98

1200

1008 1029 2424 9 1010 1019

Apr 102

1206

103 4 1014 2426 8 1011 1003

Mty 1J)5

1207

1034 985 2431 0 101.3 972

Jua 110

1207

1129 1020 24416 1017 1009

Jul no
12 07

1115 1014 2456 5 1024 990

Auj 109

1207

1096 lOIS 24697 1029 986

Sep lOl

12 07

1039 1020 24801 103 3 996

Oct 104

12 07

1050 1010 2494 6 103 9 972

Not 98

12 07

1018 loss 25150 104 8 1007

Dee 98

12 07

1038 1050 25364 1057 1C02

1955

Jut 92

12 07

97^ 1057 2549 0 1065 995

Feb 83 895 1078 25650 1069 1008

12 08
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TABLE 17.3 Continued

12-Month Weighted Weighted

Motihe 13-Month 13-Month

Seasonal Total Gaeohne Motue Moving

Index ol Seasonal Consutop- Total Average Column 6

Month = 5 Index hon - A A/8 oi A/S of A/8 + Column 7
(i) (2) (3) (4) (8) <6) (7) (8)

Mar 98

Apr 102

May 105

Jun 110

Jul 1 10

12 OS

1208

1208

1208

Aue 109

Sep 101

Oet 104

Not »

Dee 93

1956

Jan 62

Fell 83

Mar 98

Apr 102

May 105

Jim no

Jul no

Aue 1 10

Sep 101

Oet lOi

Not 90

Deo 98

1957

Jan 92

Feb ^

1208

12 08

1208

1208

12 08

1208

12 09

1209

1209

12 09

1209

12 09

1209

1208

1208

1208

1208

12 08

1209

1066 108A 2586 5

im 1100 2605 3

I16A HU 26231

12U 1104 26410

lies 106 2 2653 1

1228 112? 26C28

IIU 1132 2674 9

1139 1096 26816

1102 1148 2688.9

1122 114A 2700.3

1078 1 009

108 6 1 013

109 3 1 017

1100 1 004

IlOA 961

mo 1016

llli 1015

1117 980

1120 JQ25

112 6 1018

1005 1092

94.9 114 0

1124 1147

1130 lias

1239 1177

1268 115 3

1207 1097

1256 1144

1119 1106

ms lli.6

1121 119.8

1081 llOJ

2708 7 1129

2718 9 118 1

2712 9 1130

2716 8 1131

2722 4 113 4

2720.2 USA

2725 6 118 6

2737 7 114.1

2742 2 114A

sum lUA

2750A 114 6

2745 6 U4.4

967

1008

1016

1018

006

1X103

1010

994

11&8

lies

2760A

2761 7

1146

1151



633 THE STATISTICAL METHOD IN BUSINESS

TABLE )7.3 Continutd

Mcotii

(1)

Scamil

Index

-5
0)

13-Mwth

Motuk
Totel GmoCm

clSeuookl CoBiuap-

iDdex tiOfi * A
m (4)

A/S

(31

Weichted

IS-Month

MOTlCf

Total

or A/5

(6)

Weifhted

15-Mocitii

Monof
Armit
el A/5

t7)

CohuDB 5

+ CcduBlB?

m

IM7

Mu 97 USA 116.7 2786.4 115A 1013

Ar» IAS

12JH

USA Ills 3T68.6 1114 .934

M«y LOS

ILOS

134A 118.4 2766.6 1113 KGT

•Tob UO
lAM

1316 1103 3769A 1114 953

Jnl 110

ircM

1503 1115 2771A 1115 1036

Abx 110

1L03

1216 mi resA USA 1016

Bep lAl

13A0

113.0 Ills r614 nil AIT

Ort L04

ILM
1194 lUA 27*07 nio .993

Not M
1L0«

lOTT 1146 276il nu .995

D« 90

ILOO

1118 nil r68A n5A .993

IWS

Jia A3

aoo

IOTA 116A 2773A 1113 lAIO

F* A3

1100

95A nil 1773.8 1150 .996

Mu AT

aoo
1019 103 SreiA 1119 A69

Apr 103

1106

USA 116A 3793.7 1114 .90S

Mt7 1A5

1106

Ull 1191 S903A 1118 1A30

Jdh 110

1105

133.4 1110 331SA n7A .973

Jnl 110

ao5
1309 1190 :S31A 1110 1003

Attt UO
1105

130 0 ll&l SS44A nis .997

Sop lAl

1105

1304 119A 33600 n9A lAOO

Oct IM
1105

133.1 i:oA 33717 1199 1003

Not A3
1105

1106 '> 1109 23349 ISOA AS9

Dm AS
1105

130A 122A 3304A 1206 1A18

1959

Jib A3

13X15

HIT U4T 29074 Mil 1A30

Feb A3
1105

098 130A 39117 I21A .039
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TABLE 173 Continued

12.Month Weighted Weighted
Monng 13-Month 13-Month

Seasonal Total Gaa(3uia Moving Moving
Index ol Seasonal CoQsmnp* Total Average Column 5

Month - S Index boo - A of A/5 of A/S + Column?
(1) (2) (3) (4) (6) (7) (8)

1959

Mar 97

12.05

1190 1227 2928J 122 0 1009

Apr 102

12.05

1210 1226 2933 9 122.2 1002

Ms; 105

1205

1270 1210 2935 7 1223 989

Ju& no
1205

1337 121.6 2944 9 1227 990

Ju] no
1205

1371 1246 29445 1227 1015

Aog no
12 05

1329 im 2947.2 1228 984

Bep 10!

1205

130.3 1290 2955 1 123! 1048

Oct 104

12 05

1209 1162 2960 7 1234 942

Nor 93

12 05

1161 124.8 29877 123 7 1009

Dm 98

1205

1236 I2&] 297&4 124 0 1017

two

Jui 92

12 05

1113 1210 29*91 1241 975

Feb 83

12 05

1051 1266 2983 0 1243 1019

Mbt 97

1205

120.5 1242 2986i 124 4 998

Ap, 102

1205

ran m.6 23S3S 1246 im

Mar 105

1205

1301 1239 30041 125 2 990

Juo 110

1205

1369 1263 30149 125 6 1006

Jut no
1203

1358 123A 80197 125S 982

Aue no
1205

1884 126.8 3023 8 1250 998

Bep ICH

1205

128^ 127.2 30307 126S 1007

Oct 104

1205

1262 121.3

Nor 93

1205

1249 1343

Deo 98

2205

1249 1274

1961

Jac 92

1205

1146 12U

1205

lose mji
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TABLE 17^ ConKnuft<f

l^^Ioottl Wnt^ud Wonted

Uormc IS-UobUi 13-Mooth

Scuaul ToUl GuoliM XlOTtat Monot

lafes Ccunm> TMtl Colusa 3

UobUi - S lo^ tiOl > 4 A/S UA/i etA/S -t- Cohinin 7

(1) m (n (0 Oi it) m (»

1941

Xlir sn
11^

12S.B I30A

Apr lOS

uas
Mty 105

1105

/SB no
li03

Zul no
IlOS

Aq( uo
1105

Sep iJ)i

1105

Ort \SA

Nor 03
D«e S5

1H3

Jth oi

Feb S3

Vlv sn

sate seasonal variation is consistent with the model we started with.

Our model stated that A - TSCR If we divide both sides of this

equation by S, we get A/S = TCR. The last three columns carry out

the steps in the use of the 1-year moving average to isolate seasonal.

If we rearrange the column 8 data as shown m Table 17.4, we can

better see whether there is any significant seasonal variation in these

presumably dcseasonahzed data. We took the median ratio of each

month as a simple check. Note that all medians hover around 1.00.

If we wished, we could now adjust our original seasonal indexes to

allow for the vestiges of seasonal \'ariation still left in the data.

Although we realise we may be just piaymg with rounding errors,

we do go through the motions in Table 17.5 of making adjustments

in order to illustrate the procedure. We show the adjustments only

for the seasonal indexes as they appeared to stabilize in the last few

years. Corresponding adjustments could be made in the earlier years

when there seemed to be some evidence of shifting. Note that each
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TABU 17.4

Seasonal Analysis of Deseasonallzed Gasoline Consumption

(Data are ratios of deseasonalized data to weighted 1 3-month

moving averages of deseasonallzed data)

Jan Feb Mu Apr May Jan Jut Ang Sep Oct Nov Deo

1952 1 014 1 009 943 1 028 1 010

1953 977 1021 997 989 998

1054 961 1023 1 019 1 003 972

1955 995 1 008 1 009 1013 1017

1056 967 1008 1 016 D80 1 038

1957 1 037 1 012 1 012 984 1 027

1958 lOlQ 996 069 998 1020

1959 1 030 989 1 006 1002 989

1960 975 1 016 696 lOlG 600

Median 100 101 iOI 100 102

950 lOOl 1002 1024 1 025 995 993

1026 !«» 99D 1 022 987 1 011 989

1 009 m 986 996 972 1 007 1 002

1004 061 1015 1 015 080 1 025 1 018

1018 ^ 1 003 967 1 001 1 019 664

958 1026 1016 977 998 095 093

972 1098 997 1 000 1 003 989 1 018

990 1 015 684 1 048 042 1 009 1 017

1009 082 998 1 007

100 1 00 1 00 1 01 09 1 01 100

TABU 17 5

Adjusting Preliminary Seosenol indexes for Vestiges of

Seasonal Variation Diseevered m Deseasonallzed Data

(Adiustments only to indexes that are applicable from 1959 on)

Preliminary

Indexes

Vestiges

Indexes

Adjusted

Indexes

Final

Indexes

Jan 92 100 92 01

Feb 83 101 84 83

Mar 97 101 98 97

Apr 102 100 102 101

May 105 102 107 106

Jun no 100 no 109

Jul 1 10 100 no 109

A«g no 100 no 109

Sep 101 101 102 101

Oct 104 m 103 102

Nov 93 101 94 93

Deo 98 100 98 97

Total 12 05 1205 12 10 1198



642 THE STATISTICAL METHOD IN BUSINESS

of the adjusted indexes was reduced by 01 in order to make all 12

indexes add closer to 12 00

The Notions of Average and of Specific Seasonal Variation

We all know that some summers are hotter than others If a given

senes is affected by temperature, the magnitude of seasonal vanation

m a given spea/ic-yeai will depend on the temperatures spcci/ic to

that year If we analyze tiie seasonal variations, or the temperature

variations over several years we would expect most of these year-to-

year venations to average out If our seasonal indexes were based

on such averages we would have seasonal indexes that represented

onlj average expectation, not the expectation specific to a given

year The seasonal indexes calculated in the preceding sections are

average indexes That is why we found the indexes practically the

same m each year Any differences which we showed m earlier years

were not intended to represent specific seasonal variations Rather

they were to represent presumed shi/fs w the average seo^mwil varuir

turn We were concerned with patterns of vanation when we studied

the 12 monthly charts Thus our method of analysis automatically

treats vanations of specific seasonal from the average as residual

vanations

If we Wished to analyze specific seasonal vanation, we would need

more information than we have processed here The only seasonal

vanation that we were able to analyze was that which was associated

With time, in this ca«e the months of the year We paid no attention

to any of the real variables that might actually be responsible for

the. aaamal vmalana la g,a.v3).'jQR ‘yjosumpta We. maka

later to how we might use methods of multiple correlation analysis

to solve the problem of specific seasonal vanation

17.3 Estimating Progressive-persistent Variations* The

Secular Trend

In this Section we confine ourselves to the estimation of the histori-

cal secular trend In effect, we stand where we are now and look

back to see the general path that we have apparently been traveling

We look forward only insofar as we must if we are going to judge

where we ha\ e been going in the recent past.

Charts provide the best way to get perspective on where a given

senes has been going They help us the same way the top of the

mountain helps as a base if we would like to review the general path
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to the top Figures 17 5 and 17 6 diow &e history of reported gaso-

line consumption in the United States from 1923 to 1960 Figure

17 5 has an equally-spaced vertical scale, or an. anthmtic scale

Figure 17 6 has a loganikmc vertical scale The logantbmic scale

measures relative variations If, for example, a straight lane is dravim

on a log scale, it would represent a constant -percentage rate of change

The path of a savmgB account at 3% mterest per year compounded

would follow a straight line on a log scale

Let us first examine Fipire 17 5, the figure with an arithmetic

scale Let us ignore the smooth Lnes for the moment and concentrate

on the actual data First we note that we plot only annual data, m
this case annual totals divided by 12 to put the senes at the same

order of magnitude as monthly data By thus using annua! data

we avoid any concern with vanations associated with seasonal varia-

tion Beginning with 1923 the data show a very steady rate of in-

crease until 1929 The increase continues to 1931 but at a slackening

pace If we recall our economic history, we remember that the fall

of 1929 began the famous busmess collapse that ushered m the decade

Rg 17 S Monthly average consumpbrm of gasoline m the United States, 192J-

1960 with visually fitted estimates of growth patterns (Source United States

Department of (jornmerce, Busmea SUduUcs, various issues

)
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Rg VIA Moathbf mrtge «>asyta5tioti of paobne in tlie United Stitea, 1923-

I^jO, TerUcal *c&le logsnlhmc (^uree United States Department of Com-

mefte, Buii’ie« i-anous isuea.)

of the thtrUes The data then turn up after the 1932 bottom and

uearlj parallel the rate of gro^ of the twenties except for hesitation

at the 193S recession \SoTld War n forces then took o\er and

dominated this and other economic events for the next se\eral year?

Note the initial surge of consumption up to 1941, followed b} the

rationing penod after we entered the war

Smce the bo**om of 1943 the «enes has risen unintemiptedl} to

the late^ data available in 1960, an unbroken string of 17 jears

During the^e 17 years there ha^e been accelerations and decelerations

of moderate amounts onlv

Now let us stand back, «o to speak, and try to answer the question

of where the gasoline consumption senes has been travelmg over

the^ 3S j ear® If we think of direction as best eipres'^ed by straight

line®, we can distmgui'h at least two and possibly three «eparat€

penod^ m the growth of gasolme consumption The first penod ran

from 1923 to orld W ar II Arrow 1 «eems to be a fair representa-

tion of the general direction of growth dunng this period The second

penod ran from World II ar II to about 1955-195S, or perhaps it is

fftill running Arrow 2 represents the path of growth dunng this

penod If a third penod has started, it appears to ha\e begun at

the end of the decade of the fifties Arrow 3 is a \ery tentative indi-

cation of the direction thb path mav go

The penod approach with e^sentiallv straight lines for each penod

i> attractive to those analysts who conceive of economic and political

change as occumng m iraiM, or eras, with little logical continmt)
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of movement from one era to the next Such analysts might explain

the penod 1 era as the one dominated fay the exploitation of the

internal combustion engine in the automobile and truck, with the

airplane making only moderate contributions The second era wit-

nessed the intensive applicataon of the mternal combustion gasolme

engme to the airplane, boat motors, farm machinery, lawn mowers,

etc This was also the era of the trend toward big cars with high

horsepower engmes The airplanes are now shifting to jet fuel

(basically kerosene)
,
the automobile pubbe have become “economy-

minded,” the farms have be^ pretty much mechanized, and trucks

now are usually run by diesel engmes Thus we may be entermg a

third era of growth of gasobne sales, with a rate slower than the

decade of the fifties but faster than that of the twenties and thirties

What the fourth era will be like will depend on what happens to

packaged atomic fuel, new developments m electncity storage teeb-

mques, etc It may be that future generations will look back to the

decade of the fifties as the golden era of the gasoline engine

Other analysts are more inclined to to make one era grow out

of the preceding The curved Imes shown on Fig 17 5 show the

sort of growth paths 1^ey might draw The theory is that growth is

an essentially continuous phenomenon, with no real breaks between

eras Note that one of the curved Imes shows only the one bend,

with the line shooting upward at a pretfy good clip at 1980 This

line assumes that the last few years represent only a short-term de-

parture from a continued strong upward growth This departure

would be identified as having been induced by the faddish concern

with gasoline economy by otherwise profligate consumers, the moder-

ate decline in general busmess, and a temporary plateau in the rate

of technological advance m the gasolme engme The surge of the

fifties is presumably gomg to continue after these temporary depres-

sante abate and after the development of file private airplane takes

hold

The other curved line has two bends in it and is really a smooth

Ime connecting the three straight-lme eras A. line of this shape, an

elongated S, has had a very interesting history m man’s attempts to

discover the possible existence of hm of growth The physical,

chemical, and biological world we bve m seems to have all sorts of

rather inexorable laws of development and decline It is not surpris-

ing, then, that man would look for similar laws in his social, political,

and economic environment One of the first phenomena studied

scientifically on the basis of reasonably reliable data was population,

both animal and human It was hypothraized and then verified that



646 THE STATISTICAL METHOD IN BUSINESS

population growth of certain insects would tend to follow the elon-

gated S pattern provided the environmental conditions remained

essentially the same The msecte bad a natural tendency to repro-

duce themselves almost geometncally, ]ust like the fabled rabbits

This tendency would produce the upward curving line like that shown

in Fig 175 This tendency, however, obviously could not continue

indefinitely lest the particular type of insect were destined to mhent

the earth The general edvironment imposes certain restrictions on

this tendency toward geometnc growth The restriction might be

food supply, livmg space, natural enemies, etc The effect of these

restrictions is to impose a sort of moderately flexible ceiling on the

maximum population Starvation, disease, pestilence, warfare, etc

all combine to increase the deaUi rate to levels consistent with the

birthrate, the base population, and the restrictions Thus the popula-

tion curve turns from an accelerating, or geometnc, rate of increase

to a deceleratmg one, tracing a pattern very similar to that shown

on Fig 175 by the two-bend curve.

Such a theoiy of growth of population is very compelling Its

correctness has been rather well established m experiments with

msects The real problem is how to apply it intelligently to human

populations and to economic and political institutions The biggest

stumbling block to making accurate predictions in human affairs is

the same factor that gives man his greatest hope of preventing the

inexorable playing out of such underlying physical laws This is

man's adaptive abilities Although the history of man has been

t-lete with starvation, disease, pestilence, warfare, etc
,
as population

controls, the history has also been replete with examples of startlmg

changes in the environmental restnctions The gasoline engine, for

example, may yet emancipate most of mankind from the threat of

starvation as it finds even greater applications to the mechanization

of farming In fact, man has come to a stage m the Western World

where incredible efforts are being expended to keep man alive under

the most adverse conditions Such efforts would never be made if

we were already pressing the environmental limits for supporting our

present population

These adaptive movements that man makes surest to some people

that the notion of eras of growth and development as expressed by

the separate lines on Fig 17 5 is closer to the truth than any theory

of continuous development It is reasoned that man is not a con-

tnuously adaptive animal Rather he tends to shift, and often

rather abruptly, from one routine of behavior to another A certain

amount of pressure or discomfort has to develop before man is stimu-
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]ated to make a cbangej and whea he dore make the change, he tends

to leave a good many of the old habits behind The reason that data

on economic affaim do not show the changes as sharply as otherwise

IS that the data cover the b^iavior of thousands and milhons of

people Each person may make an abrupt shift m a consumption

pattern, but the timing of the shift differs from person to peiaon The
spread of a fad throughout the United States and, even around much
of the earth, illustrates Uie way a wave of adaptation takes place

The development of the communication arts m the modem world

has made it possible for much of the earth to become aware of some-

thing at almost the same tame Thus we now find rather sharp sbfts

takmg place m data that formerly were sluggish For example, the

cancer scare on cigarette smoking had as almost immediate and

significant impact on total cigarette consumption If it were com-

municated as m the I9th century, it would have been qmte difficult

to notice the impact of the scare on the data

We have perhaps raised enough issues to make it clear that we do

not feel at all competent to explain what the trend has been m gaso-

line consumption over the years We suspect that there have been

at least two eras of development, with the principal break between

them occurring during and after World War 11 What the future

holds we would hesitate to guess without more knowledge than we

have about the factors affecting the use of gasoline engines Despite

this hesitation, we nevertheless do make the guess that the decade

of the sixties will show s growth pattern somewhere between those

indicated by arrows 2 and 3 This is admittedly a fairly broad band,

bai aay aiiesjpi A? heiier nofAv.*? 4>/ niir psssssi' kii£>wJ-

edge would run the nsk of engaging in a bit of charlatanism.

Now let ns look briefly at Fig 17 6 where we have the gasolme

data plotted on a loganthmic scale A long sweepmg curve has been

drawn through the data to highlight the mam feature of this chart,

which IS that the evidence is clear that there has been a slackening

m the 'percentage rate of increase over the years This impression is

consistent with the notions we gained from studying the arithmetic

scale chart It is always a good idea to plot the data on both scales

Sometimes the patterns of development are clearer on arithmetic

than on loganthmic and vice versa, and often the impressions re-

inforce each other Occasionally we find that a straight line on

loganthmic paper appears to be a very good description of the pattern

of change Then we would suspect that the senes is undergomg a

development that is still well within Uie environmental limits The

development of the electric power industry in the Umted States has
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shown a rather persistent percentage rate of increase over the years,

for example Vanous particular uses of electric power have run into

saturation tendencies, but new uses have come forward fast enough

to continually lift any apparent ceiling on industry development It

IS possible that this development will continue until each consuming

unit can have its own power cell, say in the form of an atomic-

powered battery

Estimating Specific Trend Values

If we wish to estimate specific trend values for vanous months or

years, we can read them from our chart The first question is, of

course, to decide on the particular trend lines to use We arbitranly

choose the three straight lines as our guides We do this because we

lean toward the theory of eras of growth, and also because we feel

this procedure comes closest to what we would have done over the

years if we had had to estimate trend at vanous times dmng the

past, rather than having the advantage of the long look back The

natural human tendency is to plot a path of growth, say path 1, and

then stick to it until events seem to call for a revision The revision

then usually leads to a definite departure from the previous path

Thus we might have revised to something like path Z, etc

Column 3 in Table 17 6 shows the specific trend estimates which

we have taken from the three straight lines on Fig 17 5 Since the

results are rounded to one decimal place, there is an occasional un-

evenness in the trend estimates that apparently belies the hypothesis

of straight line changes The monthly estimates are simple linear

interpolations between the annual estimates taken from the chart

The Use of Mathemniical Methods in the Estimation of Seculor Trend

It IS possible to use mathematical methods rather than graphic

methods in estimating a secular trend line The mathematical

method that has been most commonly used is the least-squares

method, exactly the same technique we used in getting a line of rela-

tionship in correlation analysis The theory of the use of a least-

squares line as an estimate of secular trend is very simple The

path of the secular trend is essentially an average that runs through

the data If we use an arithmetic mean as the average, or a least-

squares line, we are assuming that the sum of the pfw deviatwns

around trend should equal the sum of the mim« deviations {One of

the properties of the arithmetic mean is that the sum of the deviations

will equal zero ) This is another way of saying that there should
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table 17 6

Estimates of Trend, Seasonoi, Cyela, and Residucri Variotions

intis Gasoline Consumption 1951-60

7 Month

C^cle Moving
Qyde and Average

Actual Trend Seasonal Runs Residual Residual ofCR
(2J (3) (4) (5) (0) (7)

mi

Jan 79 7 837 91 1047

Feh 716 841 84 1013
Mar 857 845 98 1034
Apr 86 3 848 101 1040 968 1007 1039
May 94 8 85 2 106 1048 1030 1089 1046

Jun 953 85 6 109 1052 971 1021 1048

Jul 995 860 109 1061 1001 1062 1080
Aug 1001 864 106 106$ 1028 1098 1068

Sep 903 86 7 101 1062 971 1031 1053

Oct 99 5 871 102 1058 1058 1110 1060

Nov 870 875 94 1054 1004 1058 1058

Beo 842 87 9 97 1049 941 987 1043

1952

Jan 859 883 91 1044 1024 1069 1051

Feb 810 886 87 IMO 1013 1051 1041

Mar 861 89 0 98 1036 954 988 1033

Apr 977 894 101 1042 1038 1082 1042

May 1001 89 8 106 1046 1005 1051 1041

Jun 988 90 2 109 1050 952 1000 1044

Jul 1043 90 6 109 1053 1003 1056 1060

Aug 1020 910 106 1056 1001 1057 1054

Sep 991 913 101 1058 1015 1074 1055

Oct 1027 917 102 1060 1086 1098 1061

Nov 903 921 94 lOGO 934 1048 1064

Dec 94 8 92 5 97 1061 995 1056 1064

less

Jan 881 92 9 91 1061 982 1042 1061

Feb 84 6 932 84 1062 1017 1080 1053

Mar 96 7 936 98 1062 992 1054 1060

Apr 1001 940 101 1062 992 1054 1061

May 104 2 94 4 106 1062 980 1041 1063

Jun 112 6 94 8 109 1062 1026 1090 1062

Jul lilO 95 2 109 1062 1007 1069 1062

Aug 1068 95 6 106 1062 992 1054 1062
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TABLE 176 Cent!iiu«d

7*MonUi

ActoAl

(1)

Trend

(2)

SeMonal

(3)

Cyde

Rum
(4)

Residual

(5)

Cycle

and

Residual

(6)

Moying

Average

ofCfl

(7)

1933

Sep 103 6 939 101 1058 1011 1070 1061

Oct 1034 963 102 1051 999 1053 1019

^ov 969 967 95 1050 1005 1055 1017

Dec 977 971 97 1016 991 1037 1046

1931

J&a S92 975 91 1012 9« 1005 1012

Feb 857 979 £i 1037 1017 1055 1032

Itu 1008 93J 9S 1031 1014 1018 1030

Apr 1034 9S.6 IQl 1031 1008 1039 1028

1034 990 106 1029 957 985 1031

JUQ 1129 994 109 1027 1015 1012 1027

Jul 1113 998 109 1025 1000 1025 1023

Aug 1096 1001 107 1025 998 1023 1023

Sep 1039 1005 101 1033 991 1024 1033

Oct lOoO 1009 102 103S 9S3 1020 1033

^0T lOU IQU 96 1012 999 1011 1037

Dec 1038 1017 97 1016 1007 1053 1012

Jan 97^ 1020 91 1050 997 1047 1050

Feb 895 1024 83 105t 999 1053 1056

Mar 1066 1028 98 1056 1002 1058 1060

Apr 112J2 103.2 101 1059 1017 1077 1057

ilay 116^ 103.6 106 1062 1002 1064 1062
Jun 1214 lOiO 109 1064 1007 1071 1066

Jul 116.8 10L4 109 1066 963 1027 1066
Aug 122.8 104.7 108 1068 1017 1086 1067
Sep Ills 1051 101 1070 1007 1077 1070
Oct 1139 105.5 102 1070 990 1059 1070
Nov 110.2 1059 96 1068 1015 1084 1071
Dec 112.2 1063 97 1066 1021 1088 1068

1956

Jan 1005 106.6 91 1064 974 1036 1063
Feb 980 1070 86 1062 1003 1065 1065
Mar 1124 1074 98 1060 1008 1068 1063
Apr 1130 1078 101 1058 9SI 1038 1053
51ay 1236 108.2 106 1056 1021 1078 1056
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TABLE 17 6 Continued

Actual Trend ScosonaJ

(1) (2) (3)

1950

JUQ 1208 108 6 109

Jul 1207 1090 109

Aug 1258 1094 109

Sep 1116 109 8 101

Oct 1192 1102 202

Nov 1121 110 6 96

Dee 1081 1110 97

1957

Jan 109 3 1114 91

Feb 967 1118 83

Mar 1182 1121 97

Apr 1168 1126 101

May 124 3 1129 100

JUD 1216 1133 109

Jul 1303 1137 109

Aug 1288 114 0 109

Sep 1136 114 4 lOi

Oct 1194 114 8 102

No> 1077 1152 94

Dee 1128 1166 98

1958

Jan 1073 1159 91

Feb 95 6 116 3 83

Mar 108 9 1167 97

Apr 118 5 1171 101

May 1251 1175 106

JUD 1254 1179 109

Jul 180 9 1182 109

Aug 1299 1186 109

Sep 1204 119 0 101

Oct 1251 1194 102

Nov 110 6 119 8 93

Dec 1203 1202 98

1959

Jan 1147 120 5 91

Feb 998 1209 83

7-Montli

(^cle

Cycle Moving

and Average

Huns Hc^dual Residual olCR
(4) (5) (6) (7)

1054 1016 1071 1047

1052 966 1016 1046

1049 1006 1055 1049

1047 961 1006 1038

1045 1016 1061 10S9

1042 1013 1056 1048

1039 966 1004 1041

1037 1040 1078 1043

1034 1008 1042 1040

1031 1010 1041 1030

1028 992 1020 1037

1025 1014 1039 1031

1022 964 985 1022

1019 1031 1051 1019

1010 1021 1037 1016

1012 971 083 1010

100$ 1012 1020 1014

1005 990 996 1005

1002 994 996 995

998 1019 1017 997

995 9Q5 990 995

995 967 902 992

995 1007 1002 995

905 1009 1004 993

998 977 976 995

1002 1014 1016 1004

1005 1000 1005 1003

1008 994 1002 1006

ion 1016 1027 1016

1014 978 992 1013

1016 1006 1022 1014

1014 1032 1046 1016

1012 982 994 1009
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TABLE 17 6 CenHnutd

Actual

(1)

Trend

(2)

Seaaofial

(3)

1959

Mar 1190 12U 97

Apr 124 9 1217 101

May 1270 122.1 106

Jtm 133.7 1224 109

Jul 1571 1238 109

Ad£ 132.9 1231 109

Sep 13a3 1234 101

Oct 1209 1217 102

Not 1161 1219 93

Dec 1236 124.2 SS

1960

Jaa 1113 124J 91

Feb 108.9 I24i i6

Mar 120.5 1250 97

Apr 1291 125J 101

May 1301 1236 106

Jtm 13S.9 1238 109

Jul im 12&1 109

Aus 1314 126.4 109

Sep 128.5 126.6 101

Oct 12&2 126.9 102

Not 1249 127.2 93

Dec 124.9 1274 98

1961

Jan 114.5 1277 91

Feb 1056 1280 .S3

Mar 126.6 12S.2 97

7*Montli

C>ck

Rune

(4)

Residual

(5)

Cyde
and

Readual

(6)

MoTinj

Average

ofCR

(7)

1010 1002 1012 1010

1009 1007 1016 ion
1008 973 .981 1003

1006 996 1003 1010

1005 1019 1024 1002

1001 9S6 990 1001

1003 1012 1015 1006

1003 956 958 1003

1001 1006 1007 1C02

1001 1014 1015 1002

1000 9S2 982 999

iccr 1014 1014 1001

1000 994 994 1002

1000 1020 1030 993

1001 976 977 1003

1001 1012 1013 1000

1001 987 9$S 9S9

1002 1003 1005 1003

1002 1003 1005 1006

1003 972 975 1002

1003 1053 1056 1003

lODl 996 1000 1005

9S5

994

1018

be as much prwpenty as depression over the course of the bu'oness

cycle.

Before we can calculate a least-squares trend Ime, we must make
two critical decisions, both based on persona! judgment The first is

that of the thape of the trend line, whether a straight Ime, a com-

pound mterest or exponential type, or a parabola of some form, or

an elongated S tj-pe, etc. The oier concerns the ttad terminal

yean on which to base the calculations. Different time periods will
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give different calculated hnes We have no objective standards on

which to base a choice of tune poiod Bad choices in either decision

will produce misleading tfend lines, more so because the mathematics

create an aura of authenticity in the mind of the uninitiated

Since the proper use of mathematically-fitted trend lines requires

a person highly skilled in both the mathematics and economics under-

lying his data, very few sophisticated analysts use mathematical

trends Their reasoning is that they might as well draw the trend

freehand after they have made all the subjective analysis necessaiy

for a mathematical line As a matter of fact, a mathematical trend

would not be considered a good trend unless it conformed to a line

that “looked right" on a graph

17,4 Estimating Cycle Runs and Residual

Now that we have estimated the seasonal and trend variations in

gasoline consumption we can tuni our attention to the cycle runs

and residual in the data The first step is to eliminate the seasonal

and trend vanations from the ongina! data Following our model,

we do this by dividing the actual data by the seasonal and trend In

formula

TXS" TXS

Column 6 of Table 17 6 shows the results of this elimination (Col-

umn 6 IS the result of dividing column 1 by the product of columns

2 and 3

)

We would now like to analyze these CR ratios for evidence of cycle

runs We could do this by plotting these ratios on a chart similar to

Fig 17 7 Actually, however, we prefer to try to average out some

of the residual before trying to identify cycle runs We have, for

example, taken a 7-month moving average of the CR ratios and

plotted these averages m Fig 177 The averages themselves are

shown m column 7 of Table 17 6 We then superimpose estimates of

the cycle runs on these movmg averages We can undoubtedly find

grounds for disagreement with the placing of some of these lines

Our timing of these runs would probably be considerably helped by

any extra knowledge we might have about market factors affecting

the sales of gasolme In the absence of such knowledge, we merely

draw hnes that look good
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The resdml variation is what is left It is shown m column 5 ol

Table 17 6 This is calculated by dividing the estimates of cycle

runs of column 4 into the CR rataos of column 6

17.5 The Completed Model Anatomy of Gasoline

Consumption

We set out to analyze gasoline consumption mto the component

vanations of trend, seasonal, cycle runs, and residual Columns 1

through 5 of Table 17 6 show the results of our analysis The actual

figure shown m column 1 should m each month be the product of the

T, S, C, and R shown in the table Since judgment played a major

role in this analysis, it is fair to state that this anatomy is only one

of several conceivable estimates that could have been made It is

likely, however, that other estimates would be fairly close to this

because gasoline consumption tends to be dominated by reasonably

strong and stable patterns, particularly in seasonal variation and

trend There would be much more room for disagreement m an

industry like pig iron production where the patterns are neither

strong nor stable An idea of the relative strengths of the four

components can be gamed from tiic coefficients (V) of their respective

variations The coefficient of vanation of the trend component is

123, that of the seasonal component is 073, that of the cycle runs

18 023, and that of the residual is 022 Thus it can be seen that

the senes is fairly well dominated by trend and seasonal forces

17.6 AutO'Correlation in the Residual Variation

Theoretically, the residual vanation should behave somewhat like

a random senes That means that there should be no correlation

between successive items, a condition that would make it impossible

to predict the next residual vanation from the preceding one A

simple way to test for the existence of correlation m the residual

vanations is to calculate the degree of oxtto-correlation in them This

is the degree of correlation between successive items in the residual

variations The independent, or predicting, variable is taken as the

residual for the preceding month Figure 17 8 illustrates this On

the horizontal axis are shown the v^ues of ttie residual vanations at

time T On the vertical axis are shown the values of the residual

vanations at time f plus one month For example, the residual van-
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ation for Apnl, 1951 was 968 What does this teU us about the

residual vanation for May, 1951, or, m general, what does the residual

vanation m one month tell us about the residual variation m the

next montii? We answer this question by painng successive residual

vanations 968 is the independent item associated with 1 039 of

May, 1951 , 1 039 then becomes the independent item associated with

the 971 of June, 1951, etc Figure 178 shows the scattergram of

these 1 16 possible pairs There is clear visual evidence of a negative

association

If we a least-squares straight line to this relationship, we get

the equation

Xi^i = 1 421 - 423X(

The atandard deviation around thia line is 016 compared to a stand-

ard deviation in the residual vanalions ot 022 Thus we get A of

27, or r of 78

We find that there is a ratiier large amount of auto-correlation

in these residual variations It is quite evident that plus deviations

icf worth T

Rj ReUtioiMhip between successive resdualai m easolme consumption
(DaU in Table 17 7)
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tend to be followed by minus deviafeons, and minus deviations by
plus deviations If we wished, we could incorporate such an apparent

systematic variation in our systematac elements as an oscillatory

movement in the manner described by the least-squares equation

We hiMtate to do this, however, for fear tiiat we would be cutting

our ani-'ysia rather thin We suspect that we may have induced

some of the auto-correlatiou by overrefined deacnptions of the cycle

runs It IS conceptually possible to always leave the residual varia-

tion with a high degree of negatave correlation by simply running

the cycle run lines through every little wave of the data Successive

residual variations would then almost always be on opposite sides

of such a line If we had confined our cycle runs to straight lines,

we might have eliminated a good deal of the negative auto-correla-

tion The practical problem is to abstract as much system from the

data as can be relied on to persist into the future Unfortunately,

the only way te test our skill m doing tins is to wait until the future

unfolds The biggest cnticism against most analyses of the type

we have been describing is that the abstracted systems tend to dis-

appear as the future unfolds Most analysts have been far too

generous m their allocations of variations to the trend, seasonal, and

cycle oategones with the result that they are unprepared for the

large errors their forecasts tend to produce

17.7 CriMeisms of the Traditional Approach to Time Series

Analysis

Traditional time senes analysis based on A - TKUff has enjoyed

the popularity it has had more because there is a lack of reasonably

simple competing analytical methods than because of any real suc-

cesses in its application The fundamental weakness in this approach

18 its lack of any operating rules to tell us how far we should go in

superimposing systems of variation on the data If we were to

extrapolate the systems we discovered in gasoline consumption to

make estimates, say, for the remaining months of 1961, it would be

very hard to place any meaningful confidence limits on our estimates

Experience with this method su^ests that the residual variation

would be a poor standard for settmg such limits because it tends to

be too small, thus leadmg to overoptimistic forecasts (overoptimistic

in the sense that we would imply a degree of error smaller than we

should)
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Two pnmarj weaknesses are at the root ol our diEcuHiea with the

traditional method The first is that the formal method restricts itself

to only the mformation supplied by the series itself, together with

the dates of such mformation Any attempt to allow for related

variables such as temperature, population, etc
,
must be handled in*

formallj and mtuitnely Smce most analysts always know more

than just the data, or at least they thmk they do, the final results

will tend to reflect this undefined subjecti\e knowledge m addition

to the obvious data themsehes We have no practical way to judge

the validit} of such an analysis except by judging the analyst himself

If he has a reputation for «kill and honesty, ^e accept his results at

face value Otherwise we apply appropriate discounts, themselves a

matter of judgment

The second weakness is that the method analyses all of the histori-

cal detad as if all such information were really available m a practi*

cal problem It is as though we were faced with the problem of

makmg decisions about problems to which we already had the an

swers! It is not surprising that we derive answers that are consistent

with the known outcomes The problem m practice, however, is

to make the decision be/ore the fact, and to still come up with an-

swers consistent ^*ith the outcome Traditional time senes analysis

IS really no more than a highly developed technique of second-guess

mg A techmque for first*gue«sing would be more appropnate

In view of these cntici<ims we should not now assume that the

results of this type of analysis are totally usele's Much of >alue

can be learned from such an analysis We know, for example, that

the seasonal \anation will very likely continue with a pattern very

similar to that which we found m the past data We also know that

gasoline consumption has had a clearly indicated upuvird trend o^er

the } ears and that it will continue upward unless some very spectacu-

lar events occur We are not at all confident of the rate of this up-

ward trend, or of whether this rate may be starting to retard some

what Fluctuations m general business have had only very moderate

influence on gasoline consumption a characteristic common to many

moderately-pnced consumer necessities We nould expect this situ

ation to continue On the other hand, we are not as confident of

our analysis of the'^e cycle runs as the analysis implies If we had

had more confidence, we would have analyzed the runs for average

length and average rate of change, thus hoping to gain some basis

for anticipating future runs
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17.8 The Use of Multiple Correlation Techniques in the
Analysis of Economic Time Series

An obvious way to improve the resulfe of a time senes analysis

would be to bring in additioosi informatton about the vanous sea-

sonal, trend, and cycle factors For example, we might analyze gaso-

line consumption with some of the following associated factors, among
others

Xj—Actual monthly gasoline consumption

J2—Average temperature during month

Rainfall during month

X4—Number of days in month

Xs—Number of major hohdays m month

Xe—Number of Saturdays and Sundays m month

Xy—Number of month (Jan = 1, Feb ® 2, etc

)

Xg—Number of registered automobiles

Xg—Number of airline passei^er miles Sown m piston engine

aircraft

Xio—Number of registered pnvate airplanes

Xii—Number of farm tractors in use

X] 2-“Nuraber of private motor boats m use

X13—Number of small gasolme engines m use on power mowers,

go-carts, garden tools, motorcycles, etc

X14—Miles of improved highways in use

Xj5—Number of compact cars m use

Xjfl—Rate of disposable personal mcome

X27—Federal Reserve Index of Industaial Production

X18—Average pnce of regular grade gasohne

X29—Mihtary budget of Federal Government

X20—The number of the year

In each case there is the possibibty of usmg time lags

If we vere to analyze the abo\e factors over a 15 year period, we

would have 180 observations on each factor, or a total of 3600 If we

confined our analysis to st^aight-hne relationships, we would have to

perform 31,200 multiplications to get tlie cross products We would

also have the squarings and additions to do and finally solve a con-

siderable number of simultaneous equations It is not surprising,

then, that no one as yet has performed such an analysis to our knowl-

edge But somebody will over the next few years because of the
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possibility of doing the calculations on an electronic computer It

will be very interesting to see what the outcome of such studies will

be Although there are nsks that we will again fall mto the trap of

overdrawing conclusions, such a multiple correlation analysis should

certainly help to formalize interpretations of factors that are currently

left to intuition and experience

17.9 Attempts to Simulate Actual Forecasting Conditions

Even an elaborate multiple correlation analysis is simply a second*

guessing technique in the sense that it utilizes the results it is trying

to predict in working out methods of prediction The methods are

sure to look good within the bounds of the data used to develop the

methods The situation might be quite different, and usually is,

when we apply the results to the future In the next chapter we look

briefly at a method of approach that attempts to confine itself to only

the information that could possibly be available at the time a fore-

cast had to be made Such an approach tends to give veiy discourag-

ing results because it leads to uncertainty about the future Perhaps

that IS why it is almost never used Most people would rather use

methods which give deceptively accurate results and rationalize away

their failures than use methods which give relatively inconclusive

results, even though the inconclusive results are a direct consequence

of our general state of ignorance about the future

17 1 Consider two of the vanous economic time senes that you

jou know somethmg about and evaluate the apphcabihty of the general

model of the components of variation that reads

A“rx5xCx/;

For example, do jou see any reasons why it might be preferable to add

some of these components together?

Also, are some of these components irrelevant in your senes’ Or, can you

think of some additional components, perhaps some components that are

parts of the major components referr^ to m the general model’
17.2(a) Use the monthly data on gasohne consumption given in Table

17 1 to construct a senes of (ptarterly data on gasohne consumption Use

quarterly totals Bring the data up to date

(6) Plot your quarterly data on a ycar-over-year chart with a loganthmic

vertical scale

(c) Analyze the chart for clues of the vanous kmds of systematic move-

ments that have apparently been occurring m gasoline consumption
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(d) Project the quarterly gasohne ctaisumption for 6 quarters beyond
the available data Indicate your range of uncertainty by shoving upper
and lower binits such that you would feel 80% confident that the actual

consumption will fall within your stated hmita (This 80% is the equivalent

of betting at odds of 4 to 1 that your forecast is correct You should choose

limits that are narrow enough to tempt sonmbody to accept your odds at

the same time that they are wide moi^h to give you a little more than 80%
confidence This can be done only by beu^ a little less ignorant than the

other fellow Or at least you must ttank you are less ignorant

)

ie) Cialculate a 4 quarter miynog mtbmetic mean for your data with the

final results centered at the middle of a quarter for correct matching with

the original data

(/) Your 4-quarter moving arithmetic mean actually ends up as a 5-

quarter weighted arithmetic mean because of the centering operation Why
18 tbs true? What are the weights?

(?) Calculate the ratios of the onginal data to your moving averages

(Slide rule accuracy is sufficient

)

(A) Plot these ratios on a separata chart for each of the 4 quarters (in

the manner of F^g 17 4)

(t) What components of variation are presumably dominating the ratios?

Explain

(j) Draw in visually fitted lines that presumably measure the progress of

the seasonal component for each quarter over these years Extrapolate your

lines to make a forecast of the seasonal component for the coming year

(k) What plus-and-minus error allowance do you think you need for j'our

bstoncal lines? For your extrapolations? Does this error allowance vary

from one quarter to another? (In other words, do you feel more confident

about your estimates of seasonal m some quarters than you do in others?)

(l) Read off seasonal estimates from your graphs

(m) Deseasonalize the bstoncal data by dividing the actual data by your

seasonal indexes

I'rr/ itifertmru iijiy vHsiJijjes' ui' setaJiiia' iir yuur idflfiswusiftVzitifi

vise your original mdexes

17 3 A common method of reporting business information is to provide

data for corresponding months of successive years For example, a sampling

of items on the financial pages of the Cbcago Daily News of October 10,

1961 shows the following items

1 "Income of International Business Machines Corp for the first nine

months soared to $152,887,977, Thomas J Wateon, Jr
,
chairman, announced

Tuesday

The earnings, equal to $5 55 a share, compare with net income of

3219,088,057 or $4 S4 a share m the nme-month period that ended Sept 30,

1960

Gross income from sales, service and rentals also was up—from $1,040,-

572,434 a year ago to $1,244,491,206 m the latest nine-month penod
’’

2 ‘Walgreen Co sales set new records for September and the first nine

months of 1961

Sales m September totaled $27,662,444 up 54 per cent from September,

1960 For the nine months sales totaled $236,638,613, up 4 6 per cent from

the corresponding period last year
”
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(o) What IS the vilue of this kiwi of reporting?

(6) Contrast the method of reporting data for corresponding periods of

consecutive jears with that of reporting “seasonally adjusted” data For

example, the DB News & World Report of October 9, 1961 reported on

page 137 that

"The country’s money supply rose sharply in early September After

seasonal adjustments, the total of cuirency outside banks and checking

accounts averaged 143 billion dollars in the first half of September, up 1

2

billion from late August
’’

Does this latter method convey any different kind of message 7 Explain

17 4(fl) Collect annual data on passenger miles flown for commercial air-

lines in the Umtcd States and on passenger miles for United States railroads

Collect the best data you can back to 1920

(6) Plot these data on charts and analyse the two senes for evidence of

growth patterns over the years Draw freehand lines on your charts that

reflect such growth patterns Consider both the apparent patterns exhibited

by the charts and an> other general information or insights you might have

Make no effort to collect any additional information at this point of your

analysis

(c) Project your expected pattern of growth for each series for each of

the next 10 years Indicate the maxunum and minimum levels you would

expect on the assumption that you wish to be 80% confident that your pro-

jected range will include the truth (You might keep m mind that it will

never be possible to determme the exact truth even after the etents have

occurred )

(d) You undoubtedly felt somewhat ignorant as you worked (6) and (c)

above and recognize that there are several things you would like to m\esti-

gate if you had the time and resources Suppose >ou have been granted the

free use of three research as«isiants for a period of 2 months In what direc-

tions would you instruct them to collect information, etc
,
m order to help

you derive a more expert opinion about the growth patterns—both past and

future—of the airline and railroad passenger mdustneg ra the United States?

Consider the data you would try to collect, the charts you would have

drawn, the correlations you would have ran, the brainstorming sessions you

would organize, the men you would have interviewed, etc

(e) Do you see any cadence that the airline passenger business might

follow the growth patterns that have been shown by the railroads, with the

appropriate time lags of course^

(/) Do jou see any evidence that either or both of these businesses have

followed or will follow a pattern of growth that corresponds to any general

law of growth like that exhibited by some animal and insect populations

under certain environmental conditions^ Explam

(g) To what extent do you believe that the growth patterns in these busi

nesses have and will be significantly under the control of the executives who

have made and will make major decisions for the various companies in each

of these mdustnes^ Or, in other words, if you were such an executive, to

what extent do you feel that you could count on certain underlying forces

of growth to propel your company and to what extent you would feel that

you and your co-workers would have to create such forces’

{h) If it has not already occurred to you in your analysis of the above
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questions, you should now consider the hkdihood that the railroad passenger
business Mill expenence a revival, say, somevihat like the revival ot the
phonograph record industry Mhicli »as once apparently threatened by the
radio industry but nhich has smee enjoyed several decades of considerable

groM tb (You might also consider the early tlireat of television to the radio

industry and the subsequent recovery of the radio industry both in broad-

rastmg and receiving

)

(i) ffhat recommendations do you have with respect to our national

policy for the regulation of railroads and airlines in order to foster a healthy

future gronth in our passenger transportabon facilities?

17 5 Select bomc corporation that jou ha\c an interest in (not neces-

sanJy financMl—yet) and analyze the growth prospects for this companj'

with an eye toward making a judgment about the investment value of this

company’s common stock Aa&mne you have S50K) to invest in tins or

other company You need some sort of annual return from this investment

m order to supplement your caraings You also have resources sufficiently

limited so that you could not easily laugh off the loss of a substantia! pro-

portion of your $5000 How much of this $5000 would you invest in this

company’s common stock at the current market price’ Explain

17 6(q) Use your final estimated trend lines in Problem 174 and read

off numencal trend i alues for each year

(6) Eliminate trend from the original data ^Vl^t is measured by the

resultant ratios’ (Slide nife accuracy is sufficient

)

(c) Analyze your ratios of trend to actual data for evidence of runs or

of eychcil varwtions You shotdd try to distiU these runs from the ratios

\Vliat do you then have left’ Can you detect any systems m these residuals’

(d) Which industry has been apparently more affected by cyclical fiuc*

tuations—airline passenger or railroad passenger’ How much more’ (Use

your own ingenuity to summarize rat* of the cyclical fluctuations m the

two senes

)

(e) Is there any evidence that the magnitude of cyclical fluctuations has

changed over the y'cars’ If so, how do you explain such changes’

(/) Make an 80% confidence projection of the trend/actual ratios for

the next tw o years for each of these industnes

(p) Do you note any significant evidence that the airline and railroad

passenger miles have cyclical fluctuations with different tmnff, particularly

at the turning points where the ratios shift from a positive run to a nega-

tive run, or vice versa? For example, re there any evidence that the air-

line business turns doivn before the railroads’ Would you be able to make

a sharper analysis of tins matter of comparative tuning if you had monthly

data to work wuth’ Explain

17.7(a) Make a formal analysis of the degree of auto-correlation that

exists m the residual variations you devdoped m Problem 176(c) above

Interpret your results

(6) You very likely u^ed one-year lags m measuring the auto-correlation

m (a) immediately above You might as well have used two-year lags, or

three-year lags, etc What would be the logical implications of such analyses’

For example, might you find iieffative correlation with one-year lags and

positive correlation with two-year lags’ If so, what would this tell you

about the behavior of the senes’
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1 7 8 Evalu^ite tbe foUowiDg quotation

“The current upturn in general businesa should run for at least 24 months

because we have not bad a shorter ei^iansion period since tbe one that ended

in 1929 However, we should be alert to signs of a downturn at the end of

this 24 month period because 3 out of the last 4 expansions have terminated

m 32 months or less " (See Table 16 1 for some ^toncal evidence on the

lengths of cychcal runs in general business in the Umted States)

17.9 Comment on the following

“While it may very well be true that traditional methods of analyzmg an

economic time senes give us a feeling of knowmg more about tbe probable

future than we really do, we should nevertheless not discount the psycho-

logical value we get from the results of such analyses While ovcrco^dence

may not be a good state for action when we are dealing with events over

which our actions have no control, there are times when the enthusiasm

generated by a httle overconfidence may help us to actually bnng to pass

events that would have been impossible if we bad appraised the situation

more 'reahstically ’ It is only when the analysis makes the situation look

dark that we should guard against overconfidence m the correctness of our

appraisal

"



Forecasting an economic time

series

In the preceding chapter we were concerned with the past

behavior of an economic time senes In this chapter we are concerned

with the problem of the future behainor of an economic time senes

Our study of the past behavior consisted of trying to analyze a senes

into its component, or anatomical, parts The knowledge gamed

from such a study is useful m predicting the future course of a time

series, particularly the future course of the witbin-tbe-year vanation

The method of approach, however, tends to overestimate what we

know about a situation, and thus leads to forecasts that imp]} smaller

errors than actually prevail

As we switch our orientation from the past to the future, we are

much more interested in the whole senes than m any of the com-

ponent parts, such as seasonal or secular trend We find that it is

the whole senes that the busmessman has to contend with, not with

any hypothetical parts that we might distill by statistical methods

We try to avoid making coruhtioTud forecasts, that is, forecasts that

assume certain things will be true Naturally, it is always true that

some conditions underlie any forecast For example, we assume

that there will be no nuclear war, or similar catastrophe during

the range of the forecast We also assume no miracles, such as the

discovery of a perpetual motion machine or a simple way for human

beings to subsist on air alone We do not) however, make forecasts

that assume a "steady rate of growth” or "no decline m general busi-

ness,” or "no particularly wet spring,” etc We consider our job

either to predict such phenomena or to allow for their occurrence

within the bounds of our expected error

665
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18 1 Naive Forecasting Methods

If we make a forecast of the future course of gasoline consumption

in the United States based almost solely on the past hekamr of

gasoline consumption, we say tiiat ne are making a mwe forecast

The simplest tjpe of nai\e forecast assumes that the next penods

figure will be the same aa the last period’s For example, given a

I960 gasoline consumption of 126 1 million barrels per month, we

might forecast that the 1961 consumption will also be 126 1 million

barrels per month We probably agree that such a forecast is \er}

naue ^Ahat we ma> not be aware of, however, is that it is not at

all eas) to improve this forecast verj much We try m later pages,

but the difficulties mount fairly rapidl)

A more complex naive s}stem is to assume the latest rate of

change will continue For example given a 1959 gasoline consump

tion of 123 3 million barrels per month and 126 1 for 1960, we might

assume that 1961 will be 1289 (up 28) or 1290 (up 23fo), de-

pending on whether we wish to assume a constant absolute rate or a

constant percentage rate Again although this is very naive, it is

surprising!} difficult to surpass m general accuracy

As we use more of the past histor} of the senes in our forecasting

6} stem the more complex the naive system becomes For example

ne might fit a <ecula'* trend line to the last 15 >ears of data and

extrapolate this This system would probably have a larger error

m general than the a''«umptioD of no change If we supported our

trend S}Slem with a seasonal index and «orae estimate of the cjcle

run we would have a verv complex naive system, albeit still naive

b} our definition because the onaly^^is paid no explicit attention to

any other information than that supplied by the history of gasoline

consumption itself Actually of course unless the analyst is just as

naive as his data he cannot help giving some impliat consideration

to such factors as the period® of major w ars, etc

In order to avoid the label of naive a forecasting method must

give tiome expliat attention to factors outside the series itself For

example, a study of ®ea®onal vanations in gasoline consumption

might include temperature variations

We should not get the idea that naive methods are ®omehow bad

or inefficient They are perfectly proper and respectable, and often

as effective as any other methods But they are naive in the true

meaning of the term Me consider naive methods sufficient!} re
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spectable to be worthy of discussion The remainder of this chapter

concentrates on such naive methods for forecasting an economic

time series The proper use of sophistecated methods which utilize

multiple correlation techniques for analyzing related factors requires

knowledge particular to the specific application and is better done

by somebody with enough expenence in tlie particular area to pick

out meaningful factors Such a specialized type of analysis is out-

side the scope of this book

18.2 The Base and Range of a Forecast

Forecasting is using the knowledge we have at cm moment of time

to estimate what will happen at amlher moment of ime The fore

casting problem is created by the interval of time between the two

moments The base point of a forecast is the knowledge point from

which we jump across the time gap The range of a forecast is t!ie

time interval between the base point and the forecast point For

example, suppose a company has a practice of forecasting the next

month’s sales as soon as the current month’s figure is available The

base point for a February sales forecast would be January, with a

range of 1 month Similarly, the base point for a November fore

cast would be October If there are lags m the reporting of data, a

very common problem, we may find ourselves at the end of the

month of February and just getting reports on December sales

Thus a March forecast would have to be based on December with a

range of 3 months It is often much more practical to spend money

on speeding up data reporting than it is to spend money on fore-

casts over longer ranges Some compames are m the very strong

position of knowing what last month’s sales were while their com-

petitors are still guessing Man has known for a long time that

knowledge is more valuable than the best guess or the best technique

for guessing

It IS very important to know the base point and range of a fore-

cast to develop a forecasting method constsfenf with the base point

and range To do otherwise would be tiie equivalent of a naval

gunnery crew practicing from a fixed base at a 2-imle range to

develop techniques for hitting targets 5 miles from a moving base

We illustrate some of the techniques for making naive forecasts

of gasoline consumption by using ranges of 1 month, 6 months, 1 year,

and 5 years
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18 3 Month-lo-month Forecasts of Gasoline Consumption

We are going to try to forecast gaaohne consumption for a given

month from the base of the preceding month We start our analysis

of the historical record by finding out what kinds of changes have

occurred in the past over a one-vumth range We can measure these

changes in terms of di^erences between the successive months or in

terms of the ratios of one month to its preceding month We find

it preferable/to use the ratios because the ratios would be more

comparable over the years than would be the .actual differences

The actual differences are at least partly a function of the si2e of th&

series, and the senes tends to have la^er sues at the later dates than

at the earlier dates because of the growth m gasoline consumption

over the years The ratios are more or less independent of this size

factor

Table 181 shows the month-to-month ratios for gasoline con-

sumption from 1951 to 1961 Such month-to-month ratios are often

called link relatives, the analogy being to a chain that has many

Imks tied together Here we tie all the months together with ratios

between successive months This table gives us 122 observations on

TABLE 181

Monthly link Relativoi of Oaioltno Con^vmplion 1951-1961

(Ongmol Dota In Toblo 17 1) (link rolotWo h thown

for tho dat« of tho ferocott month, not for the

dcrte of the baie month)

1951 1952 1953 1934 1955 1956 1957 1958 1959 1960 196!

Jan — 1020 029 913 938 896 1 011 951 953 900 917

Feb 898 910 960 961 921 941 885 890 870 944 922

Mar 1 197 1 101 1 143 1 176 1 191 1 188 1 171 1 140 1 192 1 147 1 199

Apr 1007 1 135 1 035 1 026 1 053 1 005 1 023 1 088 1 050 1 071

May 1 140 1 025 1 041 1000 1 041 1094 1 073 1 056 1 017 1 007

Jun 968 982 1 081 1092 1 039 1 026 978 1 002 1 053 1 068

Jul 1044 1 061 986 988 962 952 1 072 1 044 1 025 978
Aug 1006 978 062 983 1051 1042 988 992 969 1019
Sep 902 972 970 948 931 887 882 927 980 928

Oct 1 102 1 036 998 1 011 997 1 068 1 051 1039 928 982
Nov 874 879 937 965 968 940 902 884 960 990
Dec 968 1 050 1 008 1 025 1 018 964 1 047 1 088 1 065 1 000



FORECASTING A TIME SERIES
6i9

TABLE 16 2

Frequency DiifribuliQn of Monthly link Relatives of Gasoline Consumption

Link Relative f d Sd /d*

85-90* 10 -3 -30 90 Mean - 1 025
-f- X 05

90-95 19 -2 -38 76
122

95-100 30 -I -30 30
= 1 007-

100-105 30 0 0 0 Median = 1 0000 -j- — x 05
1 05-1 10 19 1 19 19

1 10-1 15 7 2 14 28
= 10033

115-120 7

122

3 21

-44

63

306

.= 05^^- 1007>

= 061

D, = 90 + X 05 = 906
®

19 of Mean

==115-- 05=1113
122*^ 05 ^122 518

• Lower Limit Inclusive

the ratio of one month to the preceding If wc ignore the dates on

the jinks and form a frequency senes as shown in Table 18 2, we

see what we face when we try to forecast a next month’s figure

Note that the mean of the ratios is 1 007 This implies that the

senes has grown at about 7 of Yfo per month over the 122 months

We would, however, be very foolish to rely on this as a meaning-

ful average rate of change from month to month If we start with

the January, 1951 consumption figure of 79 7 million barrels and let

this grow at a compounded rate of 007 per month, we arrive at a

figure for Januaiy, 1961 of 230 9 million barrels The actual reported

figure for January, 1961 was only 1145 million barrels

Thus we have a very practical illustration of the meaningless

character of the arithmetic mean of ratios of this type We dis-

counted the arithmetic mean for such a purpose on theoretical

grounds m Chapter 6 Although tie arithmetic mean may have no

inherent meaning unless we are actually interested in the total, it

sometimes gains meaning by coincidence if it happens to be practi-

cally equal to the median The median does have great inherent

value as an estimator whenever we are interested in mimmmng out
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errors of estimate, which we would certainly like to do in this problem

of forecasting gasoline consumption We find the median of these

ratios to be approximately 1 0033 From the point of view of the

uhole distribution of ratios, the mean of 1 0070 does not differ very

much from 1 0033 Note, for example, that the ratios range from

85 to 1 20 Also note that the percentile equivalent of the mean is

518, certainly not very far from 500 Thus the skewness of the

distribution is quite moderate

In this problem, however, the critical issue is the relationship of the

average ratio to 1 From this point of view, we find that the rate of

change represented by 1 0070 is more than tvnee as great as that

represented by the median of 1 0033 In some problems we might

find the mean and the median ratios even closer to each other than

we have here and jet the practical significance of the difference may

be quite substantial For example, we might have a mean ratio of

1 0007 and a median ratio of 9996 The mean indicates a groinng

senes, the median a dechntng senes

It is often argued that the proper R^erage to use for averaging

ratios of this type is the geometric mean We discussed this in Chap*

ter 6 m connection with the problem of the average 'alue of an in

vestment fund Since one of our problems m that discussion w'as

that we did not have any clear*cut idea of why we wished to know

the a'erage \alLe of the investment fund, it might be worthwhile

to raise again the i«sue of the geometm mean m our present context

We have a definite purpose for wishing to measure the average rate

of change of ga’^olme consumption from month to month This is

to provide a basis for jmeostmg gasoline consumption one month

m adv ance Common sense su^ests that w e would like this forecast

to be 05 close as possible to the actual consumption that will prevail

We have previously learned that the median 13 the average that will

accomplish this We have already found this median ratio to be

1 0033 ^\hat role might we now assign to the geometric mean?

The geometric mean is calculated by multiplying all the items

together The items in our present problem are the monthly imk

relatives If we multiply all of them together, we find that all the

consumption data for the months from February, 1951 to December,

I960 will cancel, leaving us only witli the ratio of the January, 1961

consumption to the Jamiaiy, 1951 consumption The reason for this

13 immediately apparent if we wnte out the detail of the miiltiplica*

tion of these links For example, we would be multiplying products

like the (ollowins (See Table 17 1 for the source of the figures

)
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!L?X—X“X—X— —
79 7 71 6 85 7 86 3 98 4 124 9

^
124 9 79 7

We end up with the interesting result that the geometric mean is

based on only the values of tiie^sf and the last items in this hst of

121 items It 18 just as though the other 119 items did not exist In

fact, we might arbitranly a^gn any values we wish to the intermediate

items We still get the same geometric mean This is why we say that

the most efficient way to calculate the geometric mean of such ratios

18 to sunply take the Wth root of the ratio of the last item to the first

item In this case we would have
i2o/114 5

\l 79 7
Solution of this by

the use of loganthms gives us a geometnc mean ratio of 1 0030, a

result that happens to be quite close to the median ratio of 1 0033 in

this problem There is no particular mherent reason why the geo-

metric mean and median should be this close

The above analysis of the geometnc mean should make it quite

obvious that its value has no particular relationship to the 7nantk‘

to-month changes m gasoline consumption Hence it would have no

inherent relevance to our problem It is a mere coincidence that it

has a value so close to the median The geometric mean definitely

bears a Tmthemahcal relationship to the ratio of the last item (Janu-

ary, 1961) to the first item (January, 1951) The practical signifi-

cance of this relationship is not at all apparent

Our Presenf Uncerfa/nt/ obouf Monffi-fo-Month Changes in Gaso-

line Consu/npfion. To be able to state a meaningful average rate

of change from month to month is of some value, although a quite

limited one Practical work requires that we have some awareness

of the probable range within which the actual rate might fall The

only basis we have for estimating such a probable range about jature

rates is the experience we have had with past rates The distribu-

tion shown m Table 18 2 could be used as a crude base for estimat-

ing such a range We hope to be able to improve this shortly
,
how-

ever, the best way to understand the degree to which we might be

able to improve it is to have a rather specific idea of how ignorant

we are at the moment Let us arbitrarily decide that we would like

the range that would give us about 80% confidence We could, of

course, select any confidence coefficient that seemed consistent with

our own consequence matrix We can estimate an 80% confidence

belt by finding the two points m our distribution that exclude the

lower and upper 10% of the past ratios We would accomplish this
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by estimating the values of the let decile, or ])i, and of the 9th

decile, or Dt The calculation of these, shown m Table 18 2, yields

results of 906 and 1 113

If we feel inadequate because all we can say is we estimate the

ratio of next month's consumption to this month’s consumption will

be somewhere between 906 and 1 113, we can always give the appear-

ance of more accuracy by using a narrower band If we do this,

however, we would have to accept a lower than 805^' confidence As

long as our information is restricted to what is available m Table

182, there is no way that we can legitimately reduce our apparent

uncertainty except by decreasing our confidence Fortunately for

our peace of mind, we are gomg to expand our knowledge of these

ratios a little and see if we cannot decrease the uncertainty hand

mthemt at the satne time decreasing cur confidence

Before we acquire this greater knowledge, let us simply note that

the difference between our upper and lower boundary to our SOfo

confidence belt is presently 207

Whot Difference Do the Months Moke In the Size of the Ratios?

We have probably wondered why we igiiored the possibility that

there may be a pattern to these link relatives or monthly ratios

Actually, we deliberately avoided such a possibility to set the scene

so that we would be able to measure the significance of such a

monthly pattern to the task of improving our forecasts Hence we

have tned to define our state of ignorance without any information

about monthly patterns We can then compare our state of igno-

rance with such information and our state without it and thus meas-

ure the value of the information

The logical thing now is to separate the 122 classes into 12 sub-

classes, one class for each month of the year For example, let us

look at the historical behavior of just the February to January links,

and then the March to February links, etc The best way is with a

chart like that shown in Fig 18 1 This is the same kind of chart we

drew when we analyzed the ratios of monthly data to the moving

averages, and we have the same purposes m mind The most promi-

nent feature of the ratios that is made apparent by examination of

Fig 18 1 IS that they have different sizes m the different months

For example, the March to February ratios are consistently around

1 14 to 1 19, whereas the September to August ratios are consistently

around 90 to 97 {We should note parenthetically that no adjust-

ment has been made for leap year. We assume we could make such

an adjustment if necessary on the basis of our treatment of this
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problem m Chapter 17 We leave il out here in order to simplify

our present discussion

)

What IS not so clear from these charts la Fig 18 1 is whether

any of these ratios for a given month show any shjting pattern over

the years Most of the months show what could be runs for a few

years, but no month seems to have shifted its level between the

early years and the later years There is some evidence of negative

correlation between the ratios for successive months Note, for

example, the reverse patterns of variation m the May/April ratios

and the June/May ratios TTiis is partly induced by the way the

ratios themselves are calculated For example, if a May figure is

unusually high, it will lead to an unusually high May/Apnl ratio

But this unusually high May becomes the denommator of the June/

May ratio Hence the June/May ratio would tend to be unusually

low

It IB also possible that part of tins negative correlation is caused

by the actual behavior of gasoline consumption We found quite a

bit of auto-correlation in the residual vanations m our analysis of

gasoline consumption At the time we thought that we might have

induced some of this by an overambitious specification of cycle

runs Although we still do not discount the possibility of our having

induced some of the auto-correlation, we must now recognize the

possibility that auto-correlation of this oscillatory type may be an

inherent part of the senes It might be due to a tendency for gaso-

line marketers to overcorrect their monthly errors m planning sales

and inventories, in the same way a person might follow an oscilla-

tory path in an automobile because of a tendency to overcorrect

steering errors Or, it might be due to a similar kind of error-cor-

rection technique followed by those who compile the gasoline con-

sumption senes It is not unusual to find some variation induced in

a senes by the person or persons domg the measunng We then

have to decide whether we use as a target the data os meosurei or

the data as they would be if they were correctly measured Usually

we are forced to tie into the data as measured for want of information

about what they should be

We are sufficiently confused about the source of this negative cor-

relation to avoid any explicit attempt to take advantage of it The

correlation is available to be analyied if we wish and if practical

considerations make it seem worthwhile We will assume that there

is no reliable system in these year-to-year vanations and treat them

as essentially random



Rf 18 1 Asalysis of oDe*n)o&th Ln^ ifUtxTM of guohne coosumptios

la Table 181)
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Defcrmining the Expected Monthly Ratios

We now come to the raam issue, which is the determmation of the

expected ratios of one month to the precedmg Smee it is clear that

lbe«e ratios \ary with the season of the year, we have worked out

expected ratios separately for each of the 12 months The horizontal

Imes drawn in each section of Fig 18 1 purport to show the 80%

range of expectation for the ratio m the year or years ahead These

ranges are rather conservative for use only one year ahead The

range mcludes SOJi of the historical ratios, and hence we hope*

fully beheve also t0% of the future ratios But rarely, however,

has the ratio shifted that much m one } ear’s time Hence we might

be able to work with a narrower range with no loss of confidence

if we start with the fast atoilabfe mho and take mto account the

maximum amount of shift that has occurred in one year’s tune m the

past. Starting with the last available ratio al«o has the advantage

of making us up to date m case there is any fundamental shifting

tabng place m the ratios, whereas if we consider some of the earlier

ratios we always run the nsk of paying attention to data that arc no

longer applicable

For simplicity, we ignore the possible refinements in determining

this SOftf band and tum to the results themselves Table isi

o the<e bands as numerical values We could use the specific

.jror band when making a forecast for a given month, or we could

TABLE IB 3

B0% Exptdtition Bondi for Monthly Unki of Caielino Centvmplien

S0% LimiU Error

Jaa/Dec 90(H1010 ±055
Feb/Jan .885- 960 ±033
Mar/Feh U4(Kt200 ±0S0
Apr/Mar 1005-1090 ±W2
Ma>/Apr 1005-1095 ±045
JunAlay .975-1080 ±032

Anthmetic mean

Jul/Jun 560-1060 ±050 error » ±014

Aug/Jul 570-1 WO ±035 Median error = d

Sep/Aug m~ 975 ±012
Oct/Sep 580-1070 ±045
Kov/Oct 575- 570 ±043
Dee/Kov 57WI060 ±045
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use an average error band and apply it to all months equally Usmg
specific error bands reveals that March will likely be the easiest

month to predict, with an error of ± 030, and January will be the

most difficult to predict wift an error of i 055, almost twice as

large as that for March The average of all the error bands is about

045 We can now estimate iJie value of knowing these monthly

patterns If we do not know them, we have an 80fo error band of

approximately ± 104 (This is 1/2 of 207 See p 672 ) Hence

knowledge of these monthly patterns enables us to reduce our aver-

age expected error from 104 to 045, or about 57^e

When we are usmg charts like those m Fig 18 1 as a basis of

forecasts from month to month, we should keep the data up to date

and modify the bands as the evidence warrants We chose 80%
bands m the illustration Naturally, of course, we should use the

confidence coefficient appropnate to the particular situation The

big advantage to this method of approach is the basis it provides

for establishing some rationally determined confidence band for our

expectations And, finally, remember we can analyze these ratios

for evidence of runs and of correlation between successive months

and thus possibly narrow the confidence band

18.4 Six>monfh Forecasts of Gasoline Consumption

As an additional illustration of the use of link relatives m fore-

casting we show the results for forecasting 6 months ahead m
TaWt® \%‘b hiA -m Ti(g 1ST lathta waS IbA

chart parallel the treatment we used on ttie l-month links

Let us first look at Table 18 5 where we show the frequency dis-

tribution of the 6-month links Here we see a substantial increase

m the venation m the links compared to the 1-month links, an

increase m the standard deviation from 061 to 149 This is what

we would expect This illustrates the rather general finding that

the further out we try to forecast the greater will the variation be

in the vanable being forecasted

Where we are surprised, however, is m the charts of Fig 18 2 and

m the summary of monthly errors shown in Table 18 6 Here we

discover that knowledge of the particular month enables us to sub-

stantially reduce our errors of estimate The average expected error

for 80% confidence is ± 037 if we use information specific to each

month This represents an 83% reduction m error from the 80%

confidence band of approximately ± 212 if we ignore the monthly
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TABU 18 4

Six month link Rolotlves of Unltod StalM Gatohna Ceniumptien 1951-1961

(Original doto in Tabla 171)

mi tss2 id5j UM toss less le;? 19^9 imo mi

Jvx/M _ 843 604 473 860 906 823 878 412 443

Feb/Au( — 781 429 402 S17 770 769 741 768 791 763

Mtr/B«p — 983 978 973 1038 083 1014 939 988 923 985

Apr/Oet — flS2 973 1000 1489 992 971 992 998 1063

>I*y/NoT — 1 181 1 134 1087 1153 1123 1109 1162 1148 1 120

Juo/Dee — n« 1188 1138 1170 1 130 1 123 1113 nil 1124

1248 1?14 1480 1230 1403 1401 1103 1220 1 195 1 220

Aot/Teb U98 ]204 1482 1479 U72 1430 1332 1360 1432 U17
8«p/Mkr 1084 1 131 1071 1031 1073 993 100( 1 108 1095 1066

Oet/Apr 1 183 1031 1033 1015 1015 1035 1031 1050 968 978

NoV/M*jr 902 930 eao 943 907 468 804 914 961

Dw/Juo i84 984 468 919 024 853 923 950 924 899

TABU 16 5

Froquancy Ditfrlbution of S-month links of Unitad Stolai Coiollna

Consumption 1951-1961

6>inoDth frequency

Links / d /d /d*

70-75* 1 -6 -6 36

75-80 6 -5 -30 150

80-85 8 -4 -32 128

i5-90 11 -3 -33 99

90-95 11 -2 -22 44

PWW X -1 -X X
100-1 05 9 0 0 0 Mean = 1025 +^XO
1 05*-l 10 11 1 11 11 117

1 10-1 15 10 2 20 40
1 0258116-120 12 3 36 108

1^1 25 6 4 24 96

i 25-UO 4 5 20 100 8 B 05i 10258’

U0-U5 5 6 30 180

1 35-1 40 3 7 21 147 -> 149

117 19 1159

a = 80+il^X05 = 829 Median - 10083

D, = 130-
117-80

4
X 05-‘1254 PEJ- 627

Ix)wer Limit Inclusive
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TABLE 18 6

80% Exportation Bands for 6.month links of United States Gasoline

Consumption 1951-1961 (Dota from Fig 18 2)

80% Limits Error

Jan/Jul 815- 880 ±032
Feb/Aug 760 820 ±030
Mar/Sep 950-1020 ±035
Apr/Oct 970-1070 ±050

1 110 1 155 ±022
Jun/Dcc 1 110-1 175 ±032
Jul/Ian 1 195-1 250 ± 028 Mean = 037

Aug/Fcb 1 280-1 370 ± 045 Median « 036

Sep/Mar 1 005-1 105 ±050
Oct/Apr 980-1 060 ±040
Nov/Maj 885- 960 ±038
Dcc/Jun 870- 0(50 ±045

447

informatton Thus tho seasoDal /actors are much more important

for tlie 6-month !mks titan they arc for the 1-month links In fact,

wo end up with smaller average errors for the 6-month forecasts

than we do for tlie 1 -montli forecasts ( 037 va 045) This phenome-

non of a Braaller net error for a longer forecast than for a shorter

tfuinuNViW oiTdiTkiU’i’ aiWmigiV iV* aitiftiny dlanr duiipuir jJir Ahr

exercises there js a chance to check out the behavior of the links for

other time intervals and make reasonably specific comments on the

behavior of the residuals in gasoline consumption

18.5 One-year Forecasts of Gasoline Consumpfion

Table 187 and Fig 183 show the calculation and analysis of the

1-year link relatives of gasoline consumption These are useful as

the basis of making a forecast one year ahead We used data back

to 1923 even though there are questions about the strict homo-

geneity of the senes for this period of time We feel, however, that

the errors in the data are small compared to the basic variation in

gasoline consumption itself and that it is useful to observe the be-

havior of the links over this iengfh of time
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TABIE IB

7

One-y«cir Link Rnlotivsi of Gnsolirft Coniumptlon 1923-19B0

Link Relatives

19JI/23 1 156

1925/24 1 214

1926/25 1 166

1927/26 1 133

1926/27 1 1®

1929/28 1 131

1930/29 1 061

1931/30 1 021

193M1 938

1933/32 1 006

1934/33 1 079

1935/34 1 Offi

1936/35 1 108

1937/36 1 080

1938/37 1m
1939/38 1 062

1940/39 1 060

1941/40 1 132

1942/41 883

1943/42 965

1944/43 1 112

1946/44 1 101

194S/45 1 057

1947/46 1(80

1948/47 1 094

1949/48 1 051

1950/49 1 089

1951/50 1 083

1952/51 1058

1953/52 1 058

1954/53 1 020

1955/54 1 085

1956/d 1026

M/eL 14)18

1958/57 1618

1959/58 1 043

1960/59 1 023

Sum -39404

Sum of squares - 42 111

Mean - 1 055
,
Median - 1 052

Standard Deviation - 053

Di- 994 (approximate)

0, - 1 143
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R9 ^8 3 1-yeai Ijok T^ilatwes ot gasolme coasumptioa m. the United States,

1623-1960 (Source Table 187) Note The link relative is plotted against

t&e tenatae} yeur at the Imking period See text for meaumg of patajfel lines

If we take all the Imks and ipore their time sequence, we find

that thQy average about 1 06-5 and haie a s^ndard demtm of 063

(The median ratio is about 1 062 ) Figure 18 3 makes it -very dear,

however, that the time sequence does make a difference The 1920’s

showed high annual rates that have not reappeared since, with the

possible exception of the 1940 to 1941 rate which felt the effects of

the beginning of World War II The two parallel solid lines run-

ning from the mid-thirties to the early-fifties show the boundaries

ol most of the ratios dunng tins run ot years (The World War II

years have been ignored ) It then appears that we might have moved

into a new era m the early-fifties, an era which shows slightly loner

annual rales than the previous two decades We detected the same

tendencies in oui study of the secular trend in gasoline consumption

The problem is now to estimate the limits 0/ annual change for

the next year or so The parallel broken lines represent our judg-

ment of a reasonable range of expectafaon for the annual rate of

cliange from I960 to 1961 We would again venture an ZOJo confi-

dence m this range In numbers, the range runs from a low of

1 0175 to a high of 1 0425, with an average expectation of 1 030
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It IS ob^^ous that we extracted quite a bit of information from

Fig 18 3 We started our study with a ^a^atlon m these annual

rates as indicated by a standard deviation of 063 We then pro

ceeded to ignore all the data pnor to the early fifties and made a

forecast for 1961 with an expected error of only ± 0125 for 80fo

confidence Thus we were able to reduce our expected error about

84fo (multiplying 063 by 158 to put it at the 80% level and then

calculating the relative reduction from the resultant 080 to 0125)

Perhaps we ha\ e been too ambitious m our use of Fig 18 3 The

acid test would be how people would react to the 4 to 1 odds if they

knew only what we now know from these data and this chart

Just as m the monthly and 6 month links, it is a good idea to keep

a chart like that in Fig 182 up to date and to modify the expecta

tion band as new evidence might suggest In addition, if we are mak-

ing both monthly say, and annual forecasts, we can correlate our

findings and thus more quickly revise our expectation bands For

example, as the monthly data for 1^1 become available, we should

be able to improve our forecast of the full year of 1961 The first 3

months of 1961 suggest that the ratio of 1961 to 1960 is going to be

above our minimum projection of 1 0175

' Five-year Forecasts of Gasoline Consumption

Table 188 and Fig 184 show the analysis of the 5-year links in

ga«olme consumption We find Uiat the vanation m these is sub-

stantially larger than m the l-year links, a standard deviation of 235

vs 063 Again we notice that the mean and the median are very

close, thus indicating a reasonable amount of symmetry m the dis-

tnbution of these ratios

When we look at Fig 184 we are not sure whether we should

charactente what we see as very wild or very systematic (Figure

18 4 has been drawn to the same scale as Fig 18 3 to facilitate a

Visual comparison of the relative fluctuations m the l-year and in

the 5 year links ) We get a definite impression of rather wide swings

in the ratios, at the same time we note that these swings are asso-

ciated with rather well-known major events The trough in the

early thirties is the result of the Great Depression The peak in the

late thirties is the recovery from that depression The height of this

peak in the ratios is partly induced by the low swings 5 years earlier

We noticed some evidence of negative correlation between successive

links in 1-month link relatives Here we have 5-year link relatives
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TASIE \Zt

F v»*year Link Relatives of GosoHne Consumption 1923-1960

Imk liflsfiras

1928/23 2092

1929/24 2013

1930/25 1759

J93I/26 1541

1932/27 1275

1933/28 1157

1934/29 1103

1935/30 1100

1936/31 1193

1937/32 1375

1938/33 1375

1839/S4 1354 Sum =44 451

1840/35 1356 Sum of squares s 61 703

1841/36 1387 Mean » 1 347 Median • 1 347

1942/37 1134 Standard Deviation - 235

1943/S8 1087 D, e 1 103

1844/38 1138 A a 1 69 (approamate)

1645/40 1181

1946/41 1103

1847/42 1348

1948/43 1527

1949/44 1444

1960/45 1429

1951/46 1465

1952/47 1435

1953/48 1388

1954/49 1047

1955/50 1341

1956/61 1269

1967/52 1222

1958/53 1176

1959/54 1203

1960/55 1104

and again we note some evidence of a negative correlation between

the links but this time the correlation is between the links 5 years

apart Note the lines ruimmg from 1^2 to 1&37 1933 to 1938 etc

Since 1932 was an unusually low year tiie link to that year was low

But when we get to 1937 we base the 1^7 link on the year 1932
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Rg Hi 5-year link feUtives of gasoline consumption m the United States

1923-1960 (Source Table 18 8 ) Note The link relate e is plotted against the

terminal year of the linking period Sec text for meaning of parallel lines

This gives 1937 a low base to jump from, hence it tends to ha\e a

high Imk

We can see the same phenomenon at work if we compare the

World W&T II low figures (due to rationing) with the postwar high

figures Again we must keep m mind that part of the swing from

low to high has been induced by our method of calculation Thus we
might keep in mind the general rule that link relatives of time senes

tend to oscillate from high to lowr and vice versa over an interval

equal to the range of the link Most of the time this induced oscilla-

tion IS negligible and causes no trouble m analysis It becomes quite

evident when we have a major outside force driving the data to one

extreme or the other Interestingly enough, the oscillation tends to

ha\ e only the single swing For example, the World War II artificial
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lows induced the postwar higha m tiie ratios, however, these postwar

highs will not necessanly induce subsequent lows They will do that

only if the postwar consumption is itself utmmlly high We do not

believe that the postwar consumption was unusually high (except m
comparison to the war-time artificial lows) Hence we do not expect

the ratios in 1953, 1954, etc, to be low because of the preceding

highs if they are low, and they tend to be, we conclude that it is

because the consumption rate m the fifties is itself tending to slacken

its growth We do not expect the bnka to bounce back from any

"induced” lows in the late fifties the same way we would have ex-

pected the ratios to bounce back from the induced postwar highs

We are now moderately ready to face the mam issue of what we

expect the consumption rate to be m 1965, 5 years beyond our base

date of I960 The two parallel lines indicate our 80^9 confidence

range This range runs from 1 09 to 1 26, or an average expectation

of 1 175 This IS more than five times our average expected 1-year

rate because we are more mclmed to anticipate a relatively large plus

variation in consumption than a relatively large minus variation

This expected error of ± 085 is approximately 72fp less than we

would have had if we had ignored the time sequence of these 5-year

ratios (As before, we multiplied the standard deviation of 235 by

1 28 to adjust to an SOfo level This adjustment raises the error to

301, 085 IS about 72fo less than 301 ) Thus we apparently did not

get as much from our charts with the 5-year links as we did with

the 1 year links In the latter ease we were able to reduce our errors

about 84% Of course, in both instances we may be deluding our-

selves, or we may be too conservative 'The only way we could tell

IS to compare our judgments with those of a reasonable number of

other people and perhaps make a few bets on our differences of opin-

ion, with the bets possibly consisfang of various decisions we might

make with respect to investaiente in inventories, in refining facilities,

m transportation facilities, in college graduate trainees, etc

1 8.7 Long-term Forecasts

If we wished, we could analyze the 10-year link relatives, the 20-

year link relatives, etc If we did, we would find two things happen-

ing that would tend to discourage us First, we would find very

substantial variation m the links, with the variation increasing as

we lengthened the range of the forecast Second, we vould have

increasing difficulty in understanding our chart because we would
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become most concerned that the links would be crossing from one era

to another in many instances, considerably increasing the possi-

bility that we would be misled by what we see As a result we would

end up with lorecasto with such wide error bands that our forecasts

would have very little practical value Very few businessmen find

It practical to plan on much of anythmg beyond a 5-year period

Most investment decisions postulate a "payout” period of 3 to 5

years or the investment will not be made This does not mean that

all investments turn out that way, but only that we do not plan on

less Even then the average payout will be somewhat more than 5

years

It also does not mean that businessmen are shortsighted and do

not look to the long-term future Quite the contrary It would be

very shortsighted to make plans for a 10-year period, say, urdets

we were able to control events reasonably well over those 10 years

Without such control, the plan probably will not be fulfilled We
will begin to find ourselves in the essentially absurd position of act-

ing according to a since out-dated plan in the face of developments

that make other action much more reasonable It is not farsighted

to make plans for events that are beyond our range of vision We
make plans for such out-of-range events by providing for fimbihty

in plans The greater the uncertainty, the greater is the necessity

to have dtemativi lines of action available For example, a wise

military commander makes up battle plans with due consideration

for the expected weather, expected deployment of enemy troops,

expected depth of water at a nver crossing, etc But he had better

be ready with alternative plans if he finds the river too deep to wade

Successful forecasting is as much the art of knowing what we carmot

easily forecast as it is the art of ciystal ball gazing That is why
it is so very important to have a reasonably clear idea of the amount

of variation we have to contend with

18.8 Mutliple Correlation Analysis of Link Relatives

We have so far confined ourselves to a naive type of analysis of

our link relatives We confined our attention to information sup-

plied by the gasoline consumption data themselves, with a few sam-

ples of subjective judgment added to intuitively reflect some phe-

nomena such as major depressions and wars If we wished, we

could still use our link relatives as our base and correlate such links

with additional information on temj^rature, number of registered
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nutomobiles, eta Such an analysis is outside our selected limits of

coverage, however We could pmaie such a multiple correlation

analysis on our own with a moderate amount of additional study of

methodology and a considerable amount of knowledge of the particu-

lar area of application

PROBLEMS AND QUESTIONS

181 It IS sometimes recommended that a person, ivhen dnvmg an auto-
mobile, should not commit himsdf furUier than he can see Thus an m
telbgent dnver presumably slows down at night and when approaching curves

or the brow of a hill An analogous hne of reasoning is often applied to

the problem of running a busmess An intelligent businessman does not

commit his company’s resources “further than he can iorecsst

"

If there is any merit in such a recommendation, it would seem that the

job of the forecaster consists of more than tiying to extend the range of

vision into the future In addition, the forecaster must be responsible for

making quite clear how far into the future his mm actually does extend

Just as It 13 possible to dnve a car at night without lights and at high rates

of speed on the assumption that the road is straight and clear, it is possible

to run a business by malong substantial financial commitments on the

mumptm that ‘the road is straight and clear ’ We have a feeling, how-

ever, that we do not wish to be aboard m either case There arc times v, hen

prudence suggests that some provisiOD be made for the uncertainties about

the road ahead

As a businessman, how would you protect yourself against sales fluctua-

tions if you could not sec these sales mth 80% confidence anj closer than

() Plus or minus 2% 1 month ahead’

ib) Plusorminus4%6monthsahead’

(c) Plus or minus 20% 2 years ahead’

(d) Plus 100% and minus 50% 5 years ahead’

(e) Plus 300% and minus 80% 15 years ahead’

1 8 2 Suppose you are responsible for the company s pobev in tne hinng

of college graduates as management trainees What are the relative merits

of a policy that advocates the hiring of ajveral trainees who have exhibited

erratic but occasionally brilliant performance in the hopes that one or two

of the several will develop, with the others fallmg by the wayside’

Contrast this with a pobey that advocates hirmg a trainee only if it is

considered "80%” probable that be will develop into a dependable and very

useful executive, although possibly not given to flashes of genius

18 3 Use your daU on quartcriy consumption of gasoline to develop

naive forecasts of gasoline consumpbon for a range of

(fl) One quarter

() Two quarters

In each case, give explicit consideration to

1 The average expected rate of change (Has it been changing’)

2 The 80% confidence limits for this rate (Have these limits been

changing’)

3 The relative reduction m ignorance that is achieved by paying atten-

tion to the particular quarter of the year that is used as a base
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1 8 4 Compare your ability to forecast gasolme consumption one quarter

ahead with that to forecast two quarters ahead Are you surprised at the

direction and magnitude of the djffwencet Explain

18 5 Use your annual data on airlme passenger miles and railroad pas-

senger miles and make naive forecasts for a range of:

(a) One year

(b) Three years

In each case, give exphcit consideration to

1 The average expected rate of change (Has it been changing’)

2 The SO'^o confidence hraits for this rate (Have these limits been

changing’)

18 6 Compare jour apparent ability to forecast airline passenger miles

with that of forecastmg railroad passenger miles

Are the^e differences mherent in the nature of the two industries or are

they a product of your greater ignorance about one industry than about the

other’ (Perhaps somebody else could have done better than you did m
either or both of the<3e two cases ) Explain

18.7 Use j’our naive forecasts of Problem 185 as a base and analyze

any additional related mformation that you anticipate will enable you to

narrow your range of uncertainty

State explicitly your 80% confidence limits after considering these other

factors Defend their validity

Compare your naive bouts with those after considering the additional

mformation Are they enough different to justify the extra tune and effort

you pul into attempting to nairow the hniils’ Explain

(Note It IS possible that your additional information may cause you to

discount something that you thought was useful m developing your naive

forecasts Hence you may find that your 80% limits gel wider rather than

narrower with the additional information In such a case would you now

say that the additional mformation made your forecasts worse, or would

you say something else’)

18 8 The attempt to combme some explicit statistical analysis of data

(of the sort illustrated by your naive forecasts) with other information

that may consist largely of the fruits of experience, etc
,
m order to arrive

at a final forecast that uses all the available evidence, including that infor-

mation embodied m the exercise of subjective judgment, can be likened to

the use of prior probability distributions in combination with explicit new

sample information to arrive at a final conclusion

(o) Do you find the two procedures analogous’ Explain

(6) Do you see any way by which ymu might combme your feelings about

the future of airime passenger miles with the historical data on such miles

in order to develop explicitly an inference distribution of your expectations’

Explain

(c) Assume that you do see such a way, even though imperfectly Would
such an inference distribution have any family relationship to the inference

distribution you might set up for the expected outcomes of the tossing of

10 coins? Explain.

(^Hmt: Do different people have to derive the same probability dis-

tribution for a problem in order for the distribution to be a proper probabil-
ity disltibution’ Why or why not?)
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18.9 Part I of Bminess Cyck Indicators, Vo!. I. (Geogrey H. Moore
Editor, a study by the National Bureau of Economic Research, Princeton

University Press, Princeton, N.J., 1961) has 10 essays on the selection and
interpretation of indicators. Select one essay and write a 5 to 10 page
typewritten report on it, This report should:

(o) Teli the reader the main concIuaraiB of the author of the essay;

(6) Outline the essential features of tiie evidence and/or the logical

argument that supports such coneluaons;

(c) Critically evaluate the practical t^efulness of the indicators referred

to or of the techniques of analyas referred to. This evaluation should

proceed to the point of recommending exactly what an economic forecaster

should now do about the substance of the essay in order to improve his own
forecasting efforts.



chapter

Index numbers: the comparison

of group characferisfics

19*1 The Group cs a Standard of Comparison

W e all frequently ha\e occasion to rate a person, perform-

ance, institution, etc
,
businessmen are no exception Although there

are vanoua ways of rating phenomena, one of the simplest and most

common ways is to compare an individual item ^ith the proup, or

clast, to which it belongs For example, we conclude that the Hous

ton Light and Power Company common stock has been a "fast

grower” bj comparing its rate of growth wnth the rate of growth of

common stocks of similar public utilities, or with public utilities m
general, or with common stocks in general, etc The problem that

immediately arises, however, is that of characterizing the behavior

of public utility common stocks Some of the stocks will have nsen

in price more than others Others might ha\e fallen in price Some

of the Stocks ha%e more shares outstanding than others and hence

might be considered more important than others m the group Some

of the stocks might be traded more than others and not m propor-

tion to shares outstanding The«e and other problems make it not

so easy as first imagined to describe the behavior of the proup of

stocks

It IS obvious that an average behavior would be of interest We
could then compare an individual stock with the average behavior

and determine whether the individual stock price had nsen more or

le^^s than average

For example, suppo«;e we have found that public utility common

stock pnces have nsen 23 6% on the average over a given time in-

terval Company A's stock rose 279% dunng the same interval

Thus We can saj that Company A*8 common has risen more than the

69i
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average Exactly what we mean when we ssy that will depend on

exactly how we calculated the average We might have used an

anthmetic mean of the prices of all the stocks, giving each stock

a weight according to shares outstanding Then we might find the

average so dominated by the lai^ company that, say, as many
as two thirds of the stocks actually rose in price more than the

average of 23 6% Thus Company A might be above average hut

still less than more than half the stocks If we had used a median

to average the group, we could Uien say unequivocally that Company

A’s stock did better than at least half of the companies'

We sometimes are interested m how much above or below average

a given item is Gnen some average and the individual item, such

as our average of 23 6% and the individual item of 279%, we can

always calculate the relative difference between the two Thus we

might say that Company A’s common stock rose 18% more than the

average (18% is the result of dividing the actual difference of 4 3%
by the average of 23 6 and then multiplying by 100 to coniert to

percentages for ease of interpretation ) We might not be too clear

about what we mean by 18% more than the average because we are

not entirely clear about the meaning of the average of utility com-

mon stock prices having risen 23 6% We might be much better

mformed if we could state such a comparison m terms of a percentile

ranking For example, if we knew that only 12% of all pubhc

utility common stocks rose more percentagewise than did Company

A’s, we would place Company A in a more exclusive position than

if we could say only that 44% of ail pubhc utility common stocks

rose more percentagewise than did Oompany A’s Either of these

statements might be true given that the average was 23 6% and Com-

pany A’s was 27 9% Thus we find oureelves unable to clearly in-

terpret a deviation from average unless we have some information

about all the demhone from average, information supphed, say,

by the standard deviation or the quartile deviation

This IS enough mtroduction to the fcmds of problem we di'cuss

in this chapter We are concerned mamly with the problem of meas-

uring changes in groups oj prices over tune and with changes in

physical outputs over tnw These are two of the most important

probleoKm group compansous over time for the general businessman,

and also, for economists, government officials, and the general public

There are many other areas where sniular problems arise, such as

in psychological testing, graihng of students, assessing the combined

effects of the several elements making up soil fertility, etc These



6n THE STATISTICAL METHOD IN BUSINESS

areas ha\e special problems of tfieir own that require more specific

knowledge of underlymg factors than we presume to possess In

fart, we must coufesa a certain superficiality of treatment of the

problems of pnce and output mdeiea because of lack of space to

discuss properl} the many difficult economic, social, and political

issues that frequently cloud the practical work of constructing a

pnce index. All we can do is pomt to the more general issues Actual

mdex number work is an extremely practical art. Compromise be-

tween theoretical niceties and budget considerations is very common

Errors m collectmg data are often sufficiently large to make refine-

ments of methodology somewhat like cutting firewood with scalpels

We probably tend m practice to pay far too much attention to

vanatioDS in our mdexes that are smaller than the basic errors in

the data A moderate amount of such self-delusion probably does

no harm, particularly if it eases relations m the busmess family, but

it would be well to aioid letting this become a way of life The

aierage cituen would be amaicd to discover the many decisions that

are being made, and the many more that are bemg recommended,

on the basis of the movement of a few pomts m some of our major

indexes, such as the Consumers* Pnce Index and the Dow-Jones

k\ erages of Stock Pnces

19.2 An Inadequacy In Most Published Index Numbers

Most published index numbers provide only a single average fig-

ure at each date Thus we cannot get any summary idea of the

sanation m the parts that make up the index. Most government

mdexes, however, are published with submdexes for vanous com-

modity clashes and for ^ anous regions of the country Thus we can

get information on food pnces as well as the behavior of Consumers’

Pnces in general \\Tiat we cannot get, however, is a summai}

evaluation, such as a standard deviation, of the degree to which,

saj
, food pnces differed in their pnce changes

Thm it IS necessary ino«t of the time to try to get infonnalion

on some of the more specialised mdex numbers if we wish to make

evaluations of how much more a given pnce has vaned than the

average as shown by the general index. We should not try to draw

more specific conclusions from an mdex number companson than

13 really warranted by the available information.
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19.3 The General Problems in Index Number Construction

It IS convenient to discuss index numbers m terms of certam rela-

tively diBtmct problem areas We separate the problems mto

1 The specification of the purpote which underlies the pnncipal uses of

the mdexes

2 The specification of the exact data diat are to be used m the index

the sources from which the data will be collected, and the specific dotes

at which the data will be collected

3 The detemiination of the base penod that will be used for anj cal-

culation of comparative relative changes

4 The detenmnation of the specific weights that will be attached to the

vanous elements m the mdex.

5 The detenmnation of the type of average that will be used to char-

acterize the group behavior

6 Determination of rcuiswinpob^ and procedures

19x4 The Purpose that Underlies an Index Number Series

It has been senusenously suggested that the pnmary use made of

the Dow-Jones Averages of Common Stock Pnces on the New York

Stock Exchange is as a conversation ice-breaker on commuter trams

The conversation might start with somethmg like “Wow, did you see

that the Dow-Jones went off S6 74 today’” The conversation might

then go almost anywhere from that begmning If this were the

only purpose for such an index, then we could bmld a good argument

for an mdex formula that would insure enough volatihty of move-

ment to be a good conveisatiou starter on almost any occasion

What the vanation in the index really meant would be unimportant

The important thing would be for the mdex to move In fact, it

would be better for conversation purposes if v, e did not know what

the vanation meant We could then have endless speculation on

theones about why it did or did not move m certam ways

The best way to find out what uses are really made of an index

senes is to be on hand when specific decisions are being made on

the basis of turns in the index Generally this is almost impossible

to do For example, with the Dow-Jones Averages, there are some

people who make predictions about the Dow-Jones Averages based

on theones about the past behavior of the Dow-Jones Averages But

this IS a game that they play What would be interesting to know
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13 exactly what buy and sell orders are gi\en for speafic stocks

ba«ed on the bchanor of the Dow Averages The indexes are sup-

posed to represent the trhole hs{ of stocks m some way But no one

ever puts m an order to buy a cross section of the whole list of

«tocki Specific stocks must be bought and sold, and it would be

very interesting to know exactly what the beha^^or of a general

mdex has to do with such specific transactions AVe could then make

proper decisions about the sample of stocb to include in the mdex,

the frequency with which we should collect the prices, the weights we

‘hould assign to the various stocks in the mdex, the average we

should use to summame the mdmdual stocU, etc

Mavbe it would be fruitful to turn the question around, and, m
stead of asking what our purposes are for an index, we find out how

a given mdex i® constructed and then a‘:k what we can do with it

as It 13 For example, the Dow-Jones A\Erage is essentially the

fofof of the pnces at the last transaction preceding the specification

time, say at clo^e of market, of a telected list of stocks, there being

30 issues mcluded m the mdustnal <tock section Each pnce is gi\cn

a weight of 1 m the mdex The totals are compared at different

times to find out what happened to stock pnces (Actual)) the totals

are dmded by factors that allow for stock splits, etc
, o\er the yean

For example, if a «tock had been sellmg at $120 per »hare and it

were split by issuing two new chares for each old share, the new

price jrould immediately moie to the neighborhood of $60 Actually,

of eour«e, there was no such spectacular decrease m the pnce of

this company’s stock- The Dow Average adju'ds for this by u^mg

a smaller dinsor than otherwise In effect, the Dow A\ erage is still

on the old pnce le\el before the splits that ha^e taken place That

13 why we find the Dow Industnal Average m the neighborhood of

$700 even though not a smgle issue m the list is pnced as high as

that The point u that they theoretically would have been pnced

as high as that if the stocks had not been split o\ er the years ) Table

191 shows a sample calculation of the mdustnals a\ erage for July

27,1961

AAliat docs mo\ement m such an index mean? It ob\uouslj means

what it 13 and what it does, namely, measures the changes m the total

pnces (or the anthmetic mean pnces) of fAe SO issues, with one share

of each bemg represented m the total But this cannot be what

mtcrests most people because most people do not e\fin know which

30 stocks are m the list. Presumably, then, the movement of the
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TABLE 19 1

Calculation of the Dow-Jones Averoge of 30 Industrial Stock Priees-

July27, 1961 (Source of dota The (Voff Street Journo/, July 28, 1961 )

Company

Closing

Pnee

per Share Company

Closing

Pnee

per Share

1 Allied Chemical S 63625 16 Intemat 1 Nickel S 82 000

2 Aluminum Co 74 250 17 Interaat’l Paper 32000
3 Amencan Can 44 875 18 Johns-Manviile 64 000

4 American Tel i Tel 124 250 19 Owens-Illinois Glass 86250

5 American Tobacco 92 625 20 Proctor 4, Gamble 87375
6 Anaconda 57 625 21 Sears Roebuck 68375

7 Bethlehem Steel 42875 22 Std Oil of Cal 52250

8 Chrj’sler 46000 23 Std OilofNJ 45875

9 DuPont 224125 24 Swift & Co 44 000

10 Eastman Kodak 104 000 25 Texaco 103000

11 General Electric 65625 26 Union Carbide 134 875

12 General Foods 83 000 27 Umted Aircraft 61 250

18 General Motors 47 375 28 US Steel 86500

14 Goodyear 43 875 29 Westinghouse Elect 43 876

15 International Harvester 51500 30 Woolworth 77250

Total S2224 50

Divisor 3 165 (iVute This would be 30 except for the need to adjust for stock

splits over the years)

total of these 30 is hopefully supposed to represent the movement

of something other than the total of these 30 issues

What might this be? It might be the total of all the industnal

issues, each with one share represented It is entirely conceivable

that the total of these 30 issues would go up, say, 10% if the total

of all the industrials went up 10% On the oUier hand, it is entirely

conceivable that they would not parallel the relative piovement of

the total of the whole list Suppose the movements were parallel

What would be the practical significance of the up and down move-

ment m the total price of all the issues on the New York Stock Ex-

change? We could not even say that it represented the movement
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m the investment value of a croes section of American industry be-

cause of the equal weights given to each issue A proper cross section

certainly should make eome allowance for the fact that different

issues have more outstanding shares than others

On the other hand, it is conceivable that the equally weighted total

would move parallel to the variable weighted total Suppose it did,

what could we now say that would have practical significance?

Given the validity of all these assumptions about the representative

ness of our unweighted list of 30 issues as a counterpart to the

weighted list of all issues, and given a little arithmetic, we could

now make statements as sometanes appear m newspaper headlines

such as "Market loses 14,500,000,000 of its value m a major sell-off I”

This IS certainly typical headlme material, but what else is it?

Would it mean that we as a citizen should support measures to re-

duce margin requirements, or to lower interest rates, or to eliminate

taxation of dividends, or that we should sell our holdings, or sell

short, or buy now to take advantage of the lower prices, etc ? It

might be interesting to try to find out who lost this $4,500,000,000

Or, even better, who gained it from the losers, or was everybody a

loser and the values just ‘ disappeared’* somewhere

We ask questions like these not to embarrass us, or to be pedan-

tically difficult, but only to emphasize that it is not easy to make a

simple statement of purpose that will lead to simple rules for con-

structing an index number series Most of the time we are not quite

sure why we do want an index We have a vague feeling that we will

be better m/onned if we have some indexes of group behavior, even

though we are not sure exactly what characteristic of the group is

being summarized More often than not we wistfully hope that we

would get about the same answers to our index number calculations

regardless of the vanous shading of methodology we might adopt

For example, the hope that underlies almost all practical uses (con-

versation starters and headline rostensl aside now) of the Dow and

other stock price indexes is that the distnbution of individual pnce

movements is sufficiently symmetrical so that changes m the total

or the arithmetic mean will parallel changes m the typical stock

price Thus, if a given stock increases m pnce more than the index,

it would be fair to state that ttie given stock has perfonned better

than the average, with the average now refemng to typical behavior

rather than an abstract total Most people have a feeling they know
what it means to compare an individual to a typical member of the

group They feel this even when they are not quite sure what is

really typical It is often as Dsvcholoacallv satisfvme to sav some-
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thing IS above average when we are mietaken as to what the average

IB as when we are correct in identifying iJie average

Most published index numbers have not been constructed with any

specific purpose in mind Somebody thought it would be a good idea

to measure changes in the behavior of some prices, say as an “addi-

tional service to subscnbers ” Hie first index was probably a simple

arithmetic mean Different people would have made many different

uses of the index over the years, some reasonable and others quite

farfetched The advantages of familianty and historical continuity

would then work against most recommendations for improvements

in the methods Most indexes compiled and published by the Federal

Government have started out as so-called general purpose indexes,

thus providing the widest possible use Most of the indexes are cal-

culated by weighted totals or their equivalents Frequent studies

of the behavior of individual prices have revealed that most of the

individual pnce changes form reasonably symmetncal distnbutions

particularly if the time interval is not more than a few years Thus

weighted totals, or aggregates, give about the same answers as would

medians or the equivalent

The problem of special purposes is handled not so much by differ-

ent formulas as by the construction of submdexes to cover the changes

m vanous component parts of the mam mdex If we are going to

use any published mdex number senes, we should investigate the

conditions of selection of data, selection of weights, etc
,
to make

sure we are using the best possible index for our purposes It is

particularly important to locate any specialized mdex, such as an

index of wholesale steel prices if that is what we wish, rather than

take a handy mdex of broader coverage, such as an index of ferrous

metals prices

If we are planning to construct our own indexes for a special

purpose, such as DuPont does for the seDmg prices of its products,

then, of course, we should make every effort to find out specifically

how the indexes are going to be used throughout our company or

by outsiders if we plan to publish our results Then to protect the

users and our reputation, we should clearly state sufficient detail on

our data and methods so that if anyone misuses the mdex, it is done

knowingly There are no secrets in constructing index numbers, and

people are just as suspicious of any secret methods we claim as

we should be of any secret methods that others claim It is the

tedium of collecting data and calculating results that deters most

people from making up their own mdexes, not any lack of sufficient
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19.5 The Specificalion of the Bosic Data to Be Used

We carmot collect dat3 until we ha\e specific knowledge of exactlj

what we want and of what can be made a\ailable within the current

limits of cu'tOTQ in the trade The Amencan economic s}«tem is a

\entable jungle of «t}le', sues model®, discounts, «pecia!

deals, tie-m ®ale®, etc If we were to a®k e people to find out v, hat

the pnce is of a 4-oi jar of Maxwell Hou«c powdered coffee m Town

X we would ^er\ hkelj get fi\e different answers The five people

would also return with a lot of question' thej would now a<k us so

the) could be more specific m «atisf)iiig our purpo«e The situation

would be even worve if we had asked them to find out the pnce of

a mans white short-'leeved ®port «hirt or the price of a 195S

Chevrolet 9-pa® enger station w agon m good condition
”

As bad a® the situation ma> «eem to be m the United States, it is

considerabl) wor®e (from the point of view of easy collection of

pnce data) m man) other countne® Individual bargaming^is the

custom in man) couatne' and our five people ina) find five different

prices even though thev all go to the same «tore and are waited on

b) the «aiDe clerk Most Amencan busine«es have a pnce polic)

that stabilues the price from customer to customer and daj to dav

In fact the be®t wa) to collect pnce 'tatistics in an AiP Super

Market i® to get the price Ii«ts from the regional office Store pnces

will be the same except for la^ardne's on the part of the 'tore

manager and «uch «pecialued problems as deteriorating baker) goods

Homogeneity of Data over Time

SuppO'e we were a«signed the ta®k of determining what happened

to the pnce of a Ford sedan from 1959 to 1960 \\ e would certaml)

have enough «eme to realize that we should pnce the car at the «arae

place each )ear and under the same «alea conditions, ®ay FOB
Detroit with full cash pa)Tn€nt and no trado-m e w ould aI«o

pnce the same ba«ic model with respect to standard and optional

equipment But what do we do about the fact that the Ford Motor

Compan) a«sure& us m its advertisements tliat the I960 car is sup-

po'cd to be a better car dollar for dollar than the 19o9 model despite

the fact that the list pnce i® S42 more m I960’ e now encounter

a common phenomenon m Amencan bu’-me®®, namel)
,
that stnctly

comparable products from )ear to jear do not exist. A 1960 car

^ not the ®ame as a 1959 car, for both ph)sical and p®)chological
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reasons Nor is a brand new 1959 car available for sale in 1960 the

same as a 1959 car available in 1959 How then do we determine

what happened to the price of a partacular model Ford sedan or to

the price of similarly so called improved products? The answer

IS that we make arbitrary rules about such things and let the puri«ts

argue about it A reincainated Solomon could not separate that pait

of the price change that was due to a change in the product from

that jiarb that waa due to a real price inciease The United State*

Bureau of Labor Stiitistic^ makes no claim to be Solomon so it make*

no effort to effect i separation It treats tlie price change a® entirely

a price change This distre<;ses the auto manufacturers and bo]«ur*

the argcimenfi of ana/ystv' that the bureau e Consumer Price

Index lia* an upward bn* The only time the USB LS find n

practical to allow foi changes m the quality of the product i wlui

the quality change ha^- an ob\ious physical base which afftcL* the

products durabiliU or serviceability OtlienyjsetheUSBLS find*

it wiser to avoid the subtler changes in product quality

The i*sue of wlnt really gives a product economic value has long

plagued economi*lfi and other social scicnlisu The is«ue In* aho

been dealt witli on a practical Icycl by any practicing busii ossman

who must try to «(.!} a pro luct at a price efficiently high to coyer ill

his costs W e all lecognizc the problem of trying to define an eco

nomic good or service so liiatwe can measure the changes in il* pneo

without the con/u ion cm cd by changes in tlie product* qualitie

both real and imagined The disagreement arises when wi try to

rationalize the problem One side for example would argue that the

al (he cost of Imof. has gone up tf the pace

of an lutomobilc has gone up quite irrespective of whether tie cir

1* a better car or a more comfortable car or a faster aicclcratin}.

car etc The point is that we must buy vvliat the rest of Vincnca i*

buying and of (ourst we can buy only tho*c product* tint ire

available

Anotiier side irgue* that to classify a higher price for a better

quality and hence a higher standard of Ining as an increase in the

cost of In mg i* to nnke the notion of measuring change* in the co*t

of living devoid of ill prnclieal meaning The fact that it i* difficult

to define an uminbignoii* b*tof items that make up some me inmgfii!

standard of living over lime is no excuse foi abandoning the attempt

entirely Hence tin* Mde would argue that a very senou* effort

should be made to estimati the prices of homogeneous unit* at differ

ent points in time even if we have to imagine wliat the price might

have been if the pradoet had not chsagod Thy* hr example if jt
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19 estimated that the 1959 Ford could have been profitably pnced

and sold in 1960 at ?25 less than m 1959, then the price of the Ford

car has gone down even though Uie only car available m I960 is

priced at $42 more than the car that was actually available in 1959

We can agree with this argument and still wonder who is going to

decide what a car that is not going to be built or sold would cost to

build and sell Imagine the UAW and the Ford Motor Company

arguing about this issue 1 They occasionally have difBculties with

the facts about cars that are actually built and sold

There is also the problem of classifying what happened to the

elderly couple on a fixed income who tried to maintam a constant

standard of living in the face of nsmg pnces Although it might

conceivably have been true that they could have continued to buy

some of their old items at the old pnc^ if they were still available,

the fact 13 that the old products are not available, and the elderly

couple mast adopt a higUr standard of living in some items ivhether

they wish to or not' Of course, if their resources are definitely lim-

ited, they will have to reduce their standard in, say, housing m order

to increase their standard in food Only a smooth talker could

convince such a couple that their cost of living has not gone up as

they move to poorer quarters

We are in no position to rationalise the problems that get con-

fused with economic, psychological, sociological, and political issues

We regret that they make a farce of any attempt to devise simple and

unequivocal statistical procedures for measuring what happened to a

few pnces over time We discover that the mechanical statistical

procedures are indeed quite simple once we have the data m hand

compared to the problems of gettmg good data in hand

The Problem of When lo Colleef Price Data

If we were asked to find out what the price of United States Steel

common stock was on the New York Stock Exchange on July 27,

1961, we would have an immediate problem of determining when on

the 27th we wish to get the price Hundreds of transactions oc*

curred dunng the day, most at different prices Do we wish the

opening pnce, the closing pnce, the midday price, or an average

price? The same problem exists if we wish to know the pnce of

butter in the A&P during the month of July, 1961

The ideal solution to the problem of what pnce to use to represent

a day, or month, or year of pnces would be a weighted anthraetic

mean of the pnces of all transactiona We would have to have a

very unusual purpose to find another solution, such as a weighted
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geometnc mean, preferable to the weighted arithmetic mean Prac-
tical considerations make it virtually impossible to keep records on
each transaction, hence compromises are usually made The most
common practice is to use the pnce prevailing near the middle of the

time interval or to use the simple anthmetie mean of the pnces at

the beginning and end of the penod An exception to this rule has

been the convention of usmg the end-of-day, or closing price for

stock exchange prices These compromises likely do introduce errors

for some applications, but they are justified by the saving in time and

money

There are occasions when simple solutions to the price-date prob-

lem are obviously seriously m error The retail grocery trade has

developed pnce policies that lead to a stream of week-end specials

The Thursday, Friday, and Saturday pnces of many items are lower

than the Monday, Tuesday, and Wednesday prices of the same items

A simple arithmetic mean would be a poor average because the

week-end volume tends to be much higher than the beginning-wcelc

volume, so much so that many stores have begun to offer beginning

week specials to try to even out this imbalance that was partially

caused by their week-end specials’ The USBLS must be very

judicious m its selection of the appropriate price for the week or the

month

The most important rule to follow m date selection is consistency

Since we are more interested in pnce movement than in pnce level

we often find that the comparison of two “too low’ pnces will give

just about the same answer as two ‘too high” prices or two average

pnces If bias is consistent, we can often ignore it m our final re-

sults provided we perform our calculatwos mtelhgently

The Problem of Where to Colled Price Date

If we are constructing an index of pnces of common stock on the

New York Stock Exchange, we have no problem of deciding where we

should get our prices But, if we are constructing a Consumers’ Price

Index for the city of Chicago, we defimtely have the problem of

selecting the stores from which to get the pnces We certainly could

not survey all the stores Even if we did we would still have the

problem of properly weighting the vanous store prices in order to

get an average for all stores We solve this problem the same w ay

we solve so many problems in economic data We concentrate on

the fact that we are interested m movement of pnets over time and

not the level of pnces at any moment of time and we assume that

the intense competition in Amencan business wiff force pnces into
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line fairly quickly For example, suppose the local independent

grocery charges $ 83 per pound for Land O' Lakes butter at the same

time the A&P is charging $ 79 If economic factors force the A&P

to raise its pnce to, say, S 82, the same economic factors will prob

ably affect the local independent grocer, and he will be forced to

raise his price to, say, $ 86 We would thus get about the same

relate e price change whether we measured the price change at the

independent grocery or the AiP (Note ttiat there would be round-

ing errors because of the custom of quoting prices to the cent

}

^^e should not always rely on the force of competition to quicklj

adjust prices at all levels and thus solve our problem oi where to

collect our prices For example, tlie postwar flowering of discount-

house retail merchandising led to rather chaotic price conditions in

the market for most, hou'^ehold appliances le retailers did not

react smoothl) to tliese new competitive pressures, nor did the dis

count houses always know their costs well enough to maintain con-

sistent pnee policies over time As a result it became ver> difficult

to find out uhat was happening to the price of a General Electric

refrigerator, partituhrly since the manufacturer was also changing

models every year U took an experienced price collector to chart

the cour'e of such prices dunng those ciiaotic tunes, and even he

would probabl) not have risked too much of In* money or his reputa

Uon on the accuracj of lus figures \\c can ‘•lc why monopolists,

curtclist" and other strong believers in orderly markets might ewiy

enli t the support of self-centered •‘latislicuns’ In fact nothing

w ould make tin pnee “tati’.tician s job easier than to ha\ e pnees set

b) decree of souk central aulhontj however, he would then have

the problem of deciding to what extent he '•hould take into account

bhek market and graj market prices a problem not at all foreign

to tht U b B L S during W orld ar II

The Problem of the Sample of Dota to Use

Suppo-e we were a«kod to make up a shopping h«t to cover the

Items purchased b) a Philadelphia familv dunng a month’s time

We would then price tins list m two separate months and calculate

the difference m total cost, thus getting a measure of the changes m
the totU cost of a specified list of items tint presumably represents

the items of expenditure of a Philadelphia family It is immediately

apparent that we have the problem of dcculmg w'lat family and

what month of thi-> family's purchase^ Tht appropriate familj

would be a family Upnal for the group wt are intere‘‘ted in The

Bureau of Labor Statistics uses Uie goods md services purchased by
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cjty wage-earner and cJencal-worker families They find a typical

list rather than a typical jatnily Stratified random samples are

taken of families, who then keep records of their expenditures These

vanous budget records are processed to develop a master typical

expenditure list for families m that and similar cities It is then

assumed that this expenditure pattern will remain reasonably con-

stant over several years, or until Congress can be persuaded to

appropriate the money for another bud^t study In the meantime,

minor modifications are made in some of the items to allow for well-

known and significant shifts in expenditures For example, the

rapid development of television necessitated some adjustments Dif-

ferent lists are developed for each major cify The vanous resultant

city indexes are then combined into a national index by the use of

weights proportionate to the number of wage earner and clencal-

worker families in the vanous cities Thus the national index is

much more affected by pnce movements in New York City than in

Augusta, Georgia

Similar problems of sampling exist for most indexes Ideally we

try to get a cross section of the group that is purportedly represented

by the index This is best achieved by those who are familiar with

the behavior patterns in the particular application Most samples

end up as a stratified-random sample, with the rules for stratification

coming from the specialised knowledge that is available and the

randomness coming from the ignorance that still remains Usually

we find the sample selection process so mixed up with judgmental

and intuitive elements that we hesitate strongly to apply the routine

probability formulas that we are familiar with to estimate the range

of expected sampling errors Most mdex numbers are calculated and

published with no attempt to quantify the possible sampling errors

in the final results The user has to use his own judgment in decid-

ing what significance he should attach to small movements in the

indexes That is one of the reasons why Congress and tlie U S B L S

have had frequent occasion to set up special commissions of inter

ested and/or expert parties to evaluate the accuracy of tlie indexes

A formula just does not do an intelligerv job

1 9.6 The Determination of the Base Period

It IS customary to express an index number as a percentage of

some base For example the U S B L S Index of Consumers’ Prices

m May, 1961 was 127 of the 1947 to 1949 average The mdex
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would be at a much higher figure if the base were 1933, or at a lower

figure if the ba<!e were 1960 Theoretically, the particular base used

should make no difference m the relative comparison of figures at

different dates For example, if we were to compare the figures

given in column 2 of Table 192, we would get the same relative

results regardless of which figure we used a* a base The other

columns show a few of the possibiliUes Figure 19 1 shows what

happens to these various compansons when they are plotted on a

logarithmic scale, as they should be when we are interested m relative

changes Note that all the lines of comparison are parallel, mclud*

mg the line showing the actual data This result is just what we

would expect because all the change in base does is change the unit

of measure

The problem we have with the base is partly psychological and

partly technical The technical problem arises because it does make

a difference what base we use if we average several individual senes,

which is of course what we often do m index number work We
consider this phenomenon tn a later section The psychological

problems arise because people are impressionable and can be per

suaded that, for example, prices are high because the index shows

big numbers or low because it shows small numbers This is what

pncourages advertising copy writers to talk about the giant 40*ounce

size instead of the 2 l/2*pound size There is some evidence that

people arc becoming more soplusticated m these matters and are per-

fectly capable of and willing to scrutinize the unit being used to

generate such big or small numbers

The base also becomes important when it comes to rationalizing

TABLE 192

Relative Differences in a Ctven Set of Figures with the Use of Different Bases

Time

Period

(1)

Data

(2)

Penod 1

as Base

(3)

Period 2

as Base

(4)

Penod 5

as Base

(5)

1 20 100 67 ^3
2 30 150 100 52

3 40 200 1^3 67

4 50 260 167 S3

5 60 300 200 100



index numbers

Rg 191 lilustiation of effects of a different base on the relative sjsea of a

senes of numbers (Source Table 193 ) Vertical scale is logarithmic

Boiae of the conflicts which anse in society People have an under-

standable desire to argue for that base which bolsters their own

argument The farmer, for example, is most eager to point out how

his relative price position has deteriorated since the 1910 to 1914

era He naturally is not eager to discuss what a fine position he

had during this era The farmer is not alone in this attitude, how-

ever Even college professors are not averse to pointing out how

their relatn e income position in society has declined since the 1930 s,

with no reference to how it improved to that point

The fact is that relative positions of pnees, incomes, etc
,

have

been shifting from year-to-year and decade-to-decade throughout

the centuries No group bkes to see its relative position worsen,

although it is perfectly willing to see it improved The base used

to compare such changes in relatave positions is often of the
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essence and is subject to considerable discussion and bargaining m
manj practical matters The compilers of general purpo«e index

numbers deplore such bickering (when it does not in\olve their per-

sonal welfare) and trj to a^oid any presumed fa\onti8m m select-

ing a base for a senes of index nmnbers The two primary consid-

erations which ha\e guided the selection of the base for most gov-

ernment indexes are the normahfy of the base period and its

recency

The u«e of the terra normality is unfortunate It has implications

to some people that are not neccssanly true A statistician uses

normal to mean the same as average, which is what most people

mean by middle In terms of index numbers, the proper base is that

which makes it possible for the indexes to fiiictuate around the ba'ie

data In numbers, this means that the indexes should sometimes be

abov e 100 and sometimes below 100, and they should do this within

the experience of li\ mg men Historically, the U S B L S used 1913

and then 1926 as ba«es partly becau«e they were considered average

)
ears from an economic point of \ lew The next base w as an average

of 1935 to 1939 data and after that an aierage of 1D47 to 1949 data

The use of an average of several jears as a base disturbs some people

because thej feel the base is elusive Actually, using an average

of several jears is an almost perfect solution to the problem of se-

lecting an average j ear as a base Its elusiveness serves to prevent

people from putting too much stock in the base as a source of argu-

ment

A recent base is desirable for several reasons One reason is that

it tends to make the indexes fluctuate around 100 within recent ex-

perience, thus satisfying the desire for a base that is average Sec-

ond, it provides a base that is within the memory span of man}

people, thus simplif}rag judgments about the sigmhcance of the

measured changes To be told that consumers’ prices toda) are six

times what they were durmg the Phoenician t\ars provides most

people with very little information Third, it usually reduces the

heterogeneity m the data The 19W) Ford sedan is more like the

1959 or 195S sedan than it is like the 1948 sedan Thus the price

comparison is more representative of a price difference instead of a

product difference if the base is reasonably recent Fourth, the

various prices m an index have less chance to wander off in different

directions over short periods of time than over long periods Hence

an av erage of short period price changes tends to hav e less dispersion

around it tlian an average of long-penod price changes
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19.7 Determination of the Specific Weights to Be Used

In most practical problems the particular weights to use for index

numbers is fairly obvious For example, it is difficult to argue against

the use of the number of loaves of bread purchased during a month

as the appropriate weight for the pncc of biead in a monthly index

of consumers’ prices The monthly rate of purchase would be simi-

larly logical for all other items m the list A wholesale price index

should be weighted according to the number of units sold at whole

sale during the particular time pciiod A newspaper adxeitismg

lineage rate index should probabl} be weighted according to the

number of circulation lines sold by a newspaper Thus a newspaper

with a circulation of 200,000 and with 50,000 lines of space sold

would have its basic line rate assigned a weight pioportional to the

200 000 X 50,000, or 10 000,000 000 Our most difficult piobIem=i occur

with durable goods that arc frequently sold and rc«old The extreme

example of such goods is a stock certificate Anotlior example w ould

be a home We now must choose between the number of transactions

and the number of units m existence as weights The issue is often

debated of wliethei we should use "shares tiaded’ as weights m a

stock price index, or whetlier wc should use "shares outstanding or

whether we should pay no attention to either as does the Dow- Tones

Average “Shares outstanding” as a weight is more attractive to

financial people than ‘shares traded” for reasons that aie best left

A'i' fiwftwawJ ssytixant? Av ihff Inadpd” .has Ju'p.p

used more often in indexes of real estate prices than "houses out

standing ” for reasons that are most understood by real estate experts

Incidentally, one of the apparent advanteges of using sliarcs out-

‘Standing in a stock price index is that the weights naturally stay

quite constant over the years, thus avoidmg the often very perplexing

issue of the time period for the choice of proper w^eights The number

of share*; traded fluctuates quite a bit, even from day to daj
,
tlius

altering the relative importance, by this measure of the vanous stock

issues The problem of when to select the weights and how often

to revise them would be quite pressing under such circumstances

The Problem of the Proper Time Period for the Detemiinotlon of

Weights

The relative frequency of purchase and sale of most commodities

IS in a constant state of flux Most familus do not maintain a fixed

consumption pattern over any significant penod of time Various



iucts gam and lose popularity over time New products enter

market and often start to displace some of the old products As

i as we try to give weights to commodity prices according to their

ti\e importance, we immediately come to the question of when.

common sense solution to this problem is to use a time penod

p
provides weights that are as applicable as possible to the points

g compared For example, if we were to measure changes in

lumers’ pnces from 1955 to 1960, we would do \vell to use a list

terns isith weights that reflect the consumption patterns in both

) and 1960 The best way to do this is with an average of the

eras in the two years

Ithough the use of w eights based on the averages of the years being

pared appeals to our sense of logic, it does not appeal to our

{etbook We cannot average the weights unless we have infor-

lon on them The collection of such information is often a major

or at least we have always thought of it as such, particularly

n it pertains to family consumption patterns Therefore we

promise our logical desires and usually use the weights that pre

ed m a particular } ear as though they also prevailed in the other

rs being measured We continue until our sense of propnety

imes sufficiently offended for us to spend the necessary funds to

;ct new information on consumption patterns It is possible that

6 day a countr) as wealthy as the United States may set aside

igh funds to make consumption pattern studies a continuing

:ess

'e may wonder why the USB LS does not go back and revise

ts indexes in the intervening years when new weight information

tmes available Thus, instead of an index for 1957 based on

>1952 weighta, they might recalculate to get a 1957 index

id on an average of, say, 19514952 and 1961-1962 weights

re 18 of course the clencal labor involved in such a task More

orlant, however, is the fact that the first published indexes were

ed upon as o^inal and became the basis of such decisions as the

ng and magnitude of wage-rate changes If revisions would

:e significant changes in such decisions, some people would be

' upset If they would make no significant differences m the

inal indexes, other people would wonder why so much money was

it on the revisions of the weights Thus, it is perhaps as well

I we do not know too much about what the force of the revisions

tit have been

ne factor we should always keep m mind when we are analyzing

:x number senes over a penod of years, however, is that we will
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be deluding ourselves li we pay mudi attention to every little change

m the indexes Many of these little chaises are no more than statisti-

cal mirages whose form would have changed with another selection

of weights

19.8 The Determination of the Type of Average to Use in

an Index Number Series

The subject of the proper type of average to use for the construc-

tion of index numbers been quite ttioroughly explored and dis-

cussed in the literature of the last 50 years or so Economists have

been the most concerned with the problem Unfortunately, the dis-

cussion has not resulted in any really satisfactory resolution of the

issues The difficulty is caused by the existence of certain funda-

mental dilemmas There arc several very desirable properties that

an index number senes should have—if we look at each of these

properties separately But when we put all these desirable properties

together, we find that some of them are self contradictory Hence

the discussion rages on as each discussant pleads for the pre eminent

importance of one property rather than another We merely indi-

cate the bare outlines of the dilemmas involved and then go on to

the types of solutions that are actually being used

Purpose and the Choice of on Average

We emphasized the extreme importance of purpose in the choice

of an average during our earlier discussion of the general problem

of averages and their use (See Chapter 6 ) At that time we pomted

iTtnf Aluit diluiT jfeeradf Ar umyAhw geinn’tfi’ ci'kisuir uif pm-pusifAW
would involve the use of an average These were

1 To select a figure that would have the property of being os close as

possible to the various items m the group that the average was sup

posed to represent If error m repres^tation is important such an

average would have the advantage of jmmmizmj such error We dis

covered that the median bad the inherent property of minimizing

error but we often used the anthmehc mean as a substitute when the

distnbution of items was reasotwMy symmetnzal We thus could

take advantage of certain desirable properties of the mean without

sacrificing our purpose

2 To select a figure that would have the property of being the most

pro6c6fe or the most frequent This is a useful property when the

size of an error makes no difference or m situations of an “all or

nothing ' condition We discovered that the mode had this inherent

property We asserted that there were very few such problem situa



712 THE STATISTICAI METHOD IN lUSlNESS

tioi^ m ted life outade the area of man made games Close does tend

to count m most other atuations

3 To select a figure that bears no mherent relfltionsbjp to the indiiidud

Items m the group but which docs haie some mherent relationship to

some propertj of the group as a ma« The most commonlj thought

of and mo&t useful mass property of a group is the tofof of the group

We discoAcred that this led us to the onthmtic mean as an aierage

that had inherent algebraic relationship to the told of a group (The

harmonic mean does al:o but we discovered that we could ahajs

avoid the use of the harmonic mean bj recasting the wav of expressing

the data “o that the anthmetic mean could be used instead

)

We also discovered that it is conceptuallj possible to calculate a

gtorriftnc mean that had the mtere^ting property of being algobnicalh

related to the prodiict of all the Item ina«efie3 ^\e did have trouble

however m finding e^d reasons nhj a person would be interc'ted in

the product of a senes of uumber, particular!) when the numbers had

units and the product would then have some mo«t peculiar unlt^ at

tached to it We now find the geometnc mean again bothenng u«

because it has caused index number theorists much concern

^\lth this renew we are now ready to face the problem of the

proper average m index number wrork As we can imagine since

indexes are concerned with the comparison of proups averages are

attheven heart of all index number work

The sine qua non of the proper average is that it sali'fv a meaning-

ful purpose This rule is not changed when wc consider index num-

ber* It 1* not accidental that practicalh all index number* have

been calculated with the anthmetic meu There are many reason*

for this, not the least of which has been its wide'pread familiant)

But more importantlv it tends to salisfj one or the other or both

of (he two purpo«e* (hat domina(e almost all u'es of av erace* It i*

uced because it represents the total and the total i« often of great

practical significance For example, the total of con'^umer expendi-

tures on the Item* of farailj Imng i* definitelj a meaningful figure

If the total increase* becau*e of pnee changes this has sigmfieanct

to the familj and its budget

The total of coraraon stock price* or of expenditures at wholesale,

ha* questionable practical significance Ivo one reillv tnc' to buv

a cross section of the available «U)ck i 'ue* and thu« build an invent

ment portfolio that would have its total value inovt somtwint the

same as the mov ements in tht total v alue of all tlie is*ul* (Pi rhap'

someone «hould Most people try to 'elect tlie best l^^ucs, hut ihtrt

IS some re-earch that indicaU* that very few selectid portfolio per-

form better than a random *eIection from the whole li-k Pirliap*-

there is mow lo^ic to some w( the mctlvwds vi®«d vw tivc p'AljU«.hed

stock indexes than wc su*i)cet') Similarly, no one rtalh goe* into
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tile retail business by tiymg to purchase a cross section of all goods

offered at wholesale The anUimetic mean might still be quite ap-

propriate, however, if either of two conditions exists in the data If

the distributions of items are symmetrical, the mean and median Mill

be the same We then prefer the mean because of its familiantv and

its ease of calculation The otter condition is the stahihfy 0/ the

shape of the disinbiLiion over time If the skewness remains essen-

tially constant, the relabve differences between the means and

medians will remain essentially constant The ratio between two

means would then be approximately the same as the ratio of two

medians, and it is these ratios that are of interest m index number

work, not the actual levels of the averages A simple example illus-

trates the point Suppose our base distribution of prices has a

median of S50 and a mean of $60 thus reflecting definite skewness

If prices then rise SO^o on the average with no change m the general

shape of the distribution, the new median would be §75 and the new

mean S90 The ratio of $90 to $60 is the same as the ratio of $75 to

$50 It IS obvious, however, that the two means tend to overstate

the level of prices in each penod

19.9 Some Technical Problems in Index Number Averages

Common sense suggests that index numbers should satisfy two

very logical requirements One we should get consistent answers

regardless of the base used in the calculation, and, second, a price

index multiplied by a quantity index should give the same result as

a uoiwe index from the same data Let us consider them m turn

The Base Reversal Test (Also Called the Time Reversal Test)

Let us consider a very simple problem with only two time periods

and two commodities involved Table 19 3 shows the basic data we

use We demonstrated earlier m Table 192 and Fig 191 that the

TABLE 19 3

Basie Price Data for Illustrating the Base Reversal Test m the

Ccleulation oi Index Numbers

Penod I Period 2

Product A

Product S

SIO

50

S^O

25
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base makes no difference if we are Tforkmg mth only one senes of

data. Now let us see what happens when we work with the averages

of two or more senes

The Use of Simp/e 4ggre{}crtes or Sfmp/e 4Wfhmeftc Meons Table

194 shows the possible results we obtam for our mdeies if we

use simple aggregates and simple anthmetic means as our sum-

manratiOQ techniques Note that we get the same answer with means

as we do with totals Vi e should expect this because of the algebraic

relationship of the mean to the total Also note that the indexes in

relative form are consistent regardless of whether we use Penod 1 or

Period 2 as a base, 100 0 to 75 0 is precisely the «ame as 133 3 is to

100 0 The last two numbers are each l/Z larger than the first two

This phenomenon is always the result when we calculate index num-

bers by getting Telofitcs o/ meofts or of aggregates For example,

if we had calculated the geometnc mean pncc in each penod and

then taken relatives of the results, we would ha\ e obtained consistent

results r^ardless of the base used Table 19i shows such calcula-

tions Note that the final answers are different from those when we

used the mean, a difference we comment about later At the moment

TABLE K4

Indexes Boi«d en Simple A^gregetes or Simple Arithmetic Meani

of Bone Oerte

Penod 1 Penod 2

Product A i 10 % .20

Products .50 35

Totals 1 60 S 45

Kelabves of Totals with

Penod 1 as Base lOOO* 750

Relatives of Totals with

Penod 2 aa Base 1333 1000

AntL Mean S 30 S 325

Relatives of I Base 1000 750

EelatiTO of lfon«—2 Base 1333 1000

*NcU In this and all eiibaequent tables we arbitrarily convert relatives to

pere^tages without espbat calculaboiia
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TABLE 19J

Indexes Based on (he Geomainc Means of Aetool Prices

Penod 1 Penod 2

Log office LogofPnce

Product A 90009-10 93010-10

Product B 9 6990-10 9 3979-10

Sum of Logs 186990-20 18 6989-20

Mean of 93495-10 93495-10

Geometric mean 12236 $2236

Relatives—I Base 1000 1000

Relatives—2 Base 1000 1000

we are concerned only with the rntmia.1 conmtency of a given type

of average, not with whether it gives the “nghf answer

The Use of Averages of Relatives When we compare two groups,

we have the option of charactenzing each group and then companng

these group charactenzations, or of companng the individual mem-

bers and then charactenzmg these individual compansons The

sane options are available for any kind of group compansons Sup-

pose, for example, we wished to compare the New York Yankee

baseball team with the Los Angeles Dodgers We might evaluate

the New York Yankees as a team and compare our evaluation with

a similar evaluation of the Los Angeles Dodgers A companson of

team batting averages would be an mraple On the other hand,

we might compare the New York catcher with the Los Angeles

catcher, the New York first baseman with the Los Angeles first base-

man etc
,
and then we would summanze all our compansons Usually

we would not get exactly the same answers That is why the sports

writers usually make both kinds of compansons Sometimes, as a

matter of fact, we find a sports wnter makmg a statement like, Team

A IS weaker at almost every poalion than Team B, but as a team

they are still tougher to beat We find the same kind of apparent

contradictions when we work with alternative ways of companng

groups of pnees

Table 19 6 shows the disconcertmg results when we reverse the

base m calculating the arithmetic mean of relatives Here we have

an obvious contradiction, with pnees apparently gomg up if we use
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TABLE 19 6

litdmi Bos«d on tho Arllhmotic M«an of RoloHves

Fenod 1 as Base Penod 2 as Base

Penod 1 Penod

2

Penod 1 Period 2

Relative Relative Relative Relative

Product A 1000 2000 500 1000

Product B 100 0 fiOO 200 0 1000

Anthmetic Mean 1000 1250 1250 1000

Period 1 as a base and going down if we use Penod 2 as a base Thus

we can assert that the use of the anthmetic mean of relatives will

not satisfy the base reversal test We will get different results de-

pending on the penod we use as a base Lest we get overly upset

about such inconsistent results as just given, we should hasten to add

that the above differences are very much larger than ever occur in

practice We have taken the very extreme case of one product

doubling m price while the other one halved m order to draw the

point very vividly

If we now look at Table 19 7, we can see why the geometric mean

TABLE 197

Indexes Bosed «n the Geomeiric Mson of Relolivei

Period 1 88 Base Penod 2 as Base

Penod 1

Relative

Penod

2

Relative

Penod 1

Relative

Penod 2

Relative

Product A 1000 2000 500 1000

Products 1000 500 200 0 1000

Product of Relatives lOOOOO 100000 100000 10000 0

of Product 1000 1000 1000 1000

ok The geometne mean is here calculated stnctly according to its definition,

namely as the nth root of the product of all the^tems Since we have

only two items, this formula becorara the square root of the product of

the two items
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has attained such promioence in discn^ons of index number theory

Note that the geometnc mean of rdataves gives consistent answers

regardless of the base In facty it gives exactly the same answers as

we got when we took the relatives of the geometric means of the actual

prices as in Table 195 T^ius the geometric mean has the very

interesting property of giving the same and consistent answers

whether we compare the averages of groups or whether we average

the individual comparisons Before we try to evaluate the practical

significance of this rather remarkabie property of the geometnc mean,

we analyze the impact of weiqkts on all of this and on related matters

The Foetor Reversal Test

Table 198 adds some quantity information to the price informa-

tion given in Table 193 We are now m a position to calculate

weighted price indexes, quantity indexes, and value indexes Let us

first calculate some weighted pnee indexes and check these for satis-

faction of the base revmal teet before going to the quantity and

value indexes and the checking of the consistency of all three indexes

with each other

Table 19 9 shows the vanous resuJte we get using the weighted

aggregate formula with different combinations of weights As ex-

pected, the base reversal lest is satisfied in every instance This

IS a direct consequence of not taking relatives until we have reduced

the data of a given year tom figure We did get different indexes,

however, depending on whether we used first or second period weights,

or an average of the two This is as expected, also If we did not

get different results with different weights, then, of course, weights

wou'ld not make any difference Tfe a'lso lound 't'ne indexes wffn

the average weights falling between those with first or second period

weights This is a common sense expectation, and it confirms what

we said earlier about the probable supenonty of average weights

TABLE 19 B

Pne«» and Quonmies of Produds A and fl et P«ri«d* \ and 2

Period 1 Period 2

Pnee—Pi Quantity—9i Price—pj Quantity—gj

10 gals

Product i

Products

510

50

50 lbs

Ifigsls

520

25



TABU 199

Th« Ui« ef Weighted Aggragota* In lh« Cenitructlon of Price Indexes

A Period 1 as Base Period 1 Quantities as Weights

Pi3i Pi7i

ProductA $500 $1000

Product B 7.50 375

$12A0 $1375

= ii)oo,?£^ =*4^ = 1100
ZMi »12J0 'ZpHi $12.50

B Penod 2 as Base Penod ! Quantities as Weights

Indexes
Ipi?i

Spj9i

Sl2i0

$1375

.

>1375

•Sp^i J1375

Bum Reversil Test 1100X809- IWO

1000

C Penod I as Base Penod 2 Quantities as Weights

figi pi?i

Pwdacld J 800 *1600

ProduetB 500 2 80

*13 00 *18 50

Meies|Hil! = |H^-lOOO,?ai!
2pi7i $1300 *2pi5j

$1850

$1300
142.8

D Penod 2 as Base Penod 2 Quantities as Weights

- *13 00 _ Zptgi _ $l8i0“““ - S850
- ™ - »i?6o

°

Base Reversal Test 142.3 X 70 3 « lOO 0

E Penod 1 os Base Average Quantities as Weights

"(4*) 2 /

Product A *650 $1300

Products 6.25 3125

*1275 $16 125

Indexes i«-'~ if--
Period 2 as Base Average Quantities as Weights

Indexes ^-791
*16125

»»6»25
00 0

*16125

Dn A b
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Table 19 10 shows the use of the weighted aggregate formula in

the construction of ijiumtity indexes The procedures are precisely

the same as with price indexes except for the interchanging of all the

p's and q’s Naturally, then, we would expect the quantity indexes

on different bases to also satisfy the base reversal test Table 19 10

does not show this test for all base and weight combinations because

everything parallels Table 199 We show Parte C and D in Table

19 10 because we need these results in the calculations of Table 19 11

We are now ready to check our price and quantity indexes to see

if they are consistent vnth each other For example, suppose we had

information that the average pnces of a group of agncultural com-

modities had gone up 12fo as measured by an index of prices We
also had information that the average quantities sold had gone up

15%, again as measured by an index of quantities We would then

expect to be able to estimate what had happened to the total valve

of these agncultural commodities by multiplying the rates of change

together, thus getting a joint rate of 1 12 X 1 15, or an increase of

288%
Let us look at our already calculated pnce and quantity indexes

and check their consistency Table 19 11 shows the necessary calcu-

lations There we see that the total value of our two products in-

creased 48% from the first to the second penod If we multiply our

pnce index with penod / wei^ts by our quantity index with period 1

weights, we get a product of only 1144, considerably less than the

true value If we use the indexes based on perwd 2 weights, we get a

product of 191 4,
considerably more than the true value * If we use

the indexes based on average weights, we get a product of 151 8, a

value very close to the true value of 148 0 And finally, if we cross

a price index with penod 1 weights with a quantity index with perwd

2 weights, or vice versa, we obtain the true value exactly (except for

rounding errors) The result of crossmq weights is a direct conse-

quence of the weighted aggregate formula The proof is very simple

In symbols we have

Sp2gi
^

SgaPj ^
2pi5i 2gjp2 Spi?!

for the case of crossing a price mdex with period 1 weights with a

quantity index with period 2 weights Note that the left side of the

1 It IE of interest to note that the geomefnc mean of 114 4 and 191 4 is 148 0

This relation is always true and is easily proved algebraically
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TABLE 1910

The Use of Weighted Aggregates In Constructing Quantity Indexes

A Penod 1 as Base, Penod 1 Prices as Weights

ffipl ?»Pi

Product A S 6 00 (800
Product B 7 60 500

$1250 $1300

^=1040
$1250

B Period 2 as Base, Penod 1 Prices as Weights

*>300

(13 00
"“”

Base Reversal Teat 104 0 X 96 2 =* 100 0

C Period 1 as Base, Penod 2 Pnees as Weights

9iP* m
Products JIOOO 316 00

Product B 3 75 250

(13 7e 318 50

in (1375
“'*^®

D Penod 1 as Base, Average Prices as Weights

„
/Pi + Vt\

Product A $ 7 50 31200

Product B 5625 375

$13 125 81575

‘-^-1200
313125
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TABLE 19 T1

Checking the Contittency of Pnce and Quantity Indexes ogams! the

Appropriate Volue Index—Weighted Aggregate Formulas

A Direct Construction of a Value Index

Pi?i Psqt

Products $ 5 00 $1600

Product B 7 50 2 50

Value

Indexes

$12 50

S12 50

$1250
= 1000

,

$1850

$18 50

$1250^

B Calculation of a Value Index by Multiplying a Pnce Index by a Quantity

Index

1 Indexes using penod 1 weights

Pti X Qa * = 1100X1040

100
1144

2 Indexes using penod 2 weights

Pn X Qa
1423X 134 5

100
1914

4 Pnce index with penod 1 weights and quantity indat with penod 2

„ ^ 1100X1345
Pa X Qa = 148 0

5 Pnce index with penod 2 weights and quantity index with penod 1

weights

PaXga =^^~^ = 1480

' Note P 18 often used to indicate a pnce index, Q the quantity index and

V the value index Pa means a pnce index for penod 2 on penod 1 as a
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humcTatot canceJs agaiost Hie Tight aide of the denominator, thus

leaving us with a formula for a value index The same result occurs

if we cross the period 2 weighted price index with the period 1

weighted quantity index

The last result is of great practical significance We frequently

have occasion to tiy to deduce a quantity index from given mfornia

tion on values and on a pnce index If, say, the price index is a

weighted aggregate with bose year weights a very common type of

formula used the division of the value senes by the price senes

results in quantity indexes that have been weighted in the given year

in each instance For exwnple, suppose we have a value index of

1500 for i960 on 1949 as a base Suppose further that the corre-

sponding price index is 1286 for I960 and also on a base of 1949 If

we divide 1500 by 1286, getting a quotient of 1166, we can now

state that the quantities sold of these products have increased 16 6%

on the average from 1949 to 1960 1/ m m 1960 pnees os weights

This testing of the logical consistency of price and quantity indexes

18 called the factor reversal test, with factor referring to the price or

quantity elements in an index number formula

Weighted Indexes Based on Relatives

Now let us review the effect of weights on indexes calculated by

mragxng relatives instead of by the relatives of averages Table

1912 shows the calculations of pnce indexes with the use of the

weighted arithmetic mean of relatives and the weighted geometric

mean of relatives We show the results only for period J weights

Period 2 weights would give the same kind of results with respect to

the satisfaction of the base reversal test First we note the weighted

anthmetic mean of relatives gives quite inconsistent results as we

change the base with prices going up with period 1 as a base and

going down with period 2 as a base The geometric mean again gives

consistent resulte, just as when the relatives were unweighted

We should also note that the weighted arithmetic mean of relatives

formula with base-year weights is the algebraic equivalent of the

weighted aggregate with base-year weights Hence the identical

answer of 1100 for the penod 2 index on the period 1 base is not

unc''nected The algebra of the equivalence is

2pi?i
-
Pi

2pi?i

Weighted Anthmetic Mean with Base-Year Weights



TABIE T9 12

The Ute of Weighted Relative* In Price Indexes

AnihmebcMean

A Penod 1 as Base, Period 1 ValuesM Weights

Pi

A. ^ Pi«i“
Pi

?£

Pi

Pi
pi?i-

Pi

ftoducti

Product B
1000 $500
100 0 7 50

1 500

750

200 0

60 0

$1000

375

SI260 $1250 $1375

Indexes
$1250 $1375

S1250
= 1100

B Penod 2 as Base Penod 1 Values as Weights

pi Pi

Pi Pi

£!

Pi
Ps?i-

P2

Product A
Product B

500 $250
200 0 1500

1000

1000

$ 500

750

$iSo S1250

Indexes
$1250

$1250
= 1000

Base Eevetsal Test ' '«

«

Geometric Mean

C Period 1 as Base, Penod 1 Values as Wei^te

log^
Pi ^Pi

Pi3ilog^
pi

Piwlucti 20000 $100000 23010 SlUOSO
Product B 2.0000 $150000 1 6990 127425

$250000 $24 2475

Mean of Loganthms

Geometnc Mean of

20000 19398

Weighted Relatives 1000 871

D Penod 2 as Base, Penod 1 Values as Weights

P!
pi?ifogr

pi Pi
pm logz

Pi

Product A 1 6990 $ 84950 20000 $100000

Product B 2 3010 17 2576 2 0000 15 0000

$«7526 $25 0000

Means of Logarithms

Geometnc Mean of

20502 20000

1000Weighted Relatives 1150

Base Kevereai Test 115 0 X 871 » 100 2 (Would be



TABLE 1913

The Us* of Weighted Relatives in Quontity Indexes

Arithmetic Means

A. Penod 1 as Base, Penod 1 Values as ^^eights

2l

9i

?!
Pi9t-

9t

i!

9i ?i

Products 1000 1 5000 1600 $ 8000

Products 1000 7500 667 5000

$12o00 $1300 0

Indeies
S1250

S1250
= 1000

$1300

S1250'
= 1010

B Tenodl asBase.Penod^Va'iues

9i 9i

?*

9i

9i
Mt7

9i

Product A 1000 $16000 1600 $25600

Products 1000 2500 667 1667

S18500 $2726 7

IndaTes
S1S500

?185
= 1000

$27267

$185
-1474

Geometnc Means

C Penod 1 as Base, Penod 1 Values as Weights

log^
9i

Ml log-
9i

log^
9i

Pi9ilog“
9i

Product A 20000 $100000 2mi $110205

Products 20000 150000 1^239 13 6792

525 0000 $24 6997

Mean of Logarithms

Geometnc Mean of

20000 19760

Weighted Relatn es 1000 916

D Penod 1 fls Base, Penod 2 Values as Weights

9i

log-
9i

P:?iWg-
5i

Product A 20000 $320000 2^1 $35^656

Products 20000 50000 U239 4^598

$370000 $39^
Mean of Loganthms 20000 21527

Geometric Mean of

Weighted RektivM iftnn
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If we cancel -pi in pigi of the numerator against pi m the denominator

of the relative, we get the weighted ^gregate formula of

2p23i

The calculation of quantity mdexes witti the weighted arithmetic

mean and weighted geometric mean of relatives is shown m Table

19 13 We do not show tiie base reversal test here because we would

get the same kind of results as for the pnce indexes, nameiy, the arith-

metic mean will not satisfy the test and the geometric will We are

more interested in the consistency of these quantity indexes with the

pnce mdexes given in Table 19 12 The test for consistency of these

mdexes is shown in Table 19 14

Thus w e see that both the anthmelic mean and the geometric mean

give inconsistent results if we try to denve a value index from the

corresponding price and quantity indexes We get the best results

when we crossed the weights by using the arithmetic mean of price

relatives with period 1 weights and the arithmetic mean of quantity

relatives with period 2 weights This result is consistent with what

happened when we crossed weights m this way using the aggregate

formula, with the cross of aggregates giving exact consistency

TABLE 1914

Checking the Consitlency of Price and Quantity Indexes agomsl the

Appropriate Value Index-Weighted Average of Relatives Formulas

A Weighted Arithmetic Wean of Pnce Bektives X Weighted Arithmetic

Mean of Quantity Relatives—Pcnod 1 Values os Weights in Each Case

1100 X 1040 = 1144 V8 the true 1480

B Weighted Arithmetic Mean of Pnce Reiativ® with Penod 1 Weights X
Weighted Arithmetic Mean of Quantity Relatives with Period 2 Weights

110 0 X 147 4 = 162 1 VB the true 148 0

C Weighted Geometric Mean of Pnce Relatives X Weighted Geometric

Mean of Quantity Relatives—Penod 1 Values as Weights in Each Case

87 1 X 94 6 = 824 vs the true 148 0

D Weighted Geometric Mean of Pnce Rdativ^ with Penod 1 Weights X
Weighted Geometric Mean of Quantity Relatives with Penod 2 Weights

87 1 X 1421 « 1238 VB the true 1480
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19.10 Summary Remarks on the Problem of Choice of an

Index Number Formula: the Average and the

Weight Base

If we were to write down a &et of nilea for selecting an index number

formula, the list might look like the following:

1. The average used should be cooststent with the purpose. This means

that users of the index should be able to understand exactly what is

being averaged and how it is being averaged Abstractions that pre-

sumably measure some undefinable properties of the senes should be

avoided

The two moat understandable purposes are.

a To compare totals or aggregates, and

b To compare typical changes in the individual items.

If the distnbution of individual items being averaged is essentially

symmetrical, or if the distnbutions being compared have essentially

smular shapes, the arithmetic mean of relatives or its equivalent, the

aggregate (properly weighted), can be used to satisfy both of these

purposes

2 The weights used should be as representative as possible of all periods

bemg compared Thus the use of average weights is strongly preferred

The only deterrent from the use of average weights should be practical

considerations of the cost and time m collecting tbe necessary weight

data If we are forced to use only one set of weights, there seems to

be no logical reason to prefer one in tbe comparison over the

other year If we are compani^ several years, the single year weights

should be for an average year

3 The index number formula should give consistent results for different

base penods and also with its counterpart price or quantity index l^o

reasonably simple formula satisfies both of these consistency require-

ments The geometnc mean perfectly satisfies the base consistency

requirement but fads badly on the factor reversal test

The best formula with which to approximate both results seems to

be the weighted aggregate with average weights We should never

use any other formula unless we have strong and explicit reasons to

the contrary This formula is technically sound and satisfies most

practical purposes

4 The base used is largely a matter of arbitrary choice The only rec-

ommendation IS that “special pleadmg'' bases should be avoided, or if

unavoidable, they should always be matched with the figures from some

other base that is equally logical

19.11 The Concept of the Chain Index

Practical index number work is replete with many “tricks of the

trade” to handle all the practical difficulties that arise because of lags
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m reporting data, sharp changes m weight patterns, the need to

insert new commodities and drop old commodities, etc We discuss

only the chain index, perhaps fie most useful “tnck” of them all

We found the link relahve a useful tool in measunng the vanation

from one time penod to another when we were analyzing time varia-

tions We can illustrate the relationship of the link relative to the

chain relative by reference to the following simple senes of data

1950 1951 1952 1953 1954

Price SI $2 $3 84 S5

We get link relatives of these pnees by relating a ynce in one year

to that m the immediately preceding year Such calculations are

shown in Table 19 15 This is what we calculated when we were

making year-to-year forecasts

Suppose, now, that we wished to get the ratio of the 1954 pnee to

the 1950 pnee We could do this directly by obtaining a fixed base

relative Thus we would divide $5 by 81 and get a ratio, or relative,

of 5 00 Or we could achieve the same result indirectly by working

through the link relatives that we have calculated For example,

given that 1951/50 = 200 and that 1952/51 = 1 50, a simple multi-

plication of 1951/50 by 1952/51 and 200 by 150 gives us that

1952/60 ss 3 00 This is, of course, exactly the same answer we would

have obtained by dividing the 1952 figure by the 1950 figure directly

If we continue to he together the links by multiplying them succes-

sively, we would get 1951/50X 1952/51X1953/52 x 1954/53 =

1954/50, and 2 00 X 1 50 X 1 33 X 1 25 = 5 00, again the same an-

swer as if we had calculated fhe result directly

Whenever we get the ratio of the data in one penod to those of

another period by working through the links connecting the inter-

TABU 1911

Link Rnlotivei

Year Pnee
II L?n)f Helatives

of Prices

1960 81 _
1951 2 1951/50 200

1952 3 1952/51 160

1953 4 1953/52 133

1954 5 1954/63 125
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vemng penods, we call the result a chain relative to distinguish it

from the direct ratio which we call the fijed base relative The terras

are quite apt Note that a whole senes of bases are used in the calcu-

lation of a chain relati\e while only one base is used in the direct

calculation

We may wonder why anyone would go through the additional work

required to obtain a chain relative when he could get the same result

with one calculation Our wonder is well founded We do not very

often calculate chain relatives outside statistics texts Such calcula-

tion simply demonstrates the logic of a procedure that does have

great practical application Suppose, for example, we have calculated

an index of consumers’ prices from 1926 to 1936, using a set of weights

that IS reasonably representative of both of those periods Suppose

further that we had also calculated an index of consumers’ prices

from 1936 to 1946, using a set of weights that is reasonably repre-

‘:entati\e of those two penods Finally, suppose we now wanted an

index of consumers’ pnces from 1926 to 1946 We could calculate

this index directlj, but the intervening span of years has led to such

great shifts in the patterns of consumption that we are not at all

happy with the representativeness of any set of weights we might

use for both periods So we now decide to compare 1946 with 1926

by uwking through 1936 Thus, if the 1936/26 ratio had been 768

and the 1946/36 ratio 1 497, we would estimate a chain index for

1946/26 of 768 X 1497, or 1150

Note that we used the term chain index rather than chain relative

This IS because we try to reserve the word index for comparisons of

groups of items Good sense recommends making long-term com

pansons of groups of prices, or other elements, by working through

a senes of short-term corapansons In this way we gam the ad

vantages of reasonably homogeneous data over such short periods

(the I960 Ford is more nearly like the 1959 Ford than it is the 1926

Ford), and we are able to use weights that are reasonably representa

tive of both periods In this way we have found it possible to con

struct meaningful pnce indexes going back before the Civil War A
direct comparison would be a statistical farce Practically no ele

ments of consumption pattens are common to both periods, with the

possible exception of such a mmor consumption item as bourbon

whiskey But by working with chunks of this long span of time and

chammg the chunks together, we feel that w e have devised a meaning-

ful, though imperfect, measure of changes over the full century

Cham indexes are sometimes cnticwed because they do not give
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the same answers as a direct comparison would have Such criticism

misses the point of calculaung a chain index Of course chain indexes

give different answers If th^ did not, there would be no point m
calculating the chain mdex The cham index answer is considered

better because it is based on nwwe homogeneous data and more

representative weight patterns

19.12 Determingtion of Revision Policies and Procedures

It should be evident from the preceding discussion that practical

mdex number work requires tiie resolution of dilemmas and several

conflicting desires It is almost impossible to construct a perfect

index number senes, and the more perfect the series is for some years

the worse it is for other years Thus an index number senes should

really be m a constant state of revision m data, sample, and weights

This is also impossible m practical affairs Hence most compilers

of mdex numbers may research the problem continuously but revise

only periodically, either as the results of research dictate a revision

or as necessary funds become available The practical art of con-

struction and use of index number senes is still m the formative

stages, having been practiced systematically only in this century

We are still trying to determine how much money it is worth spending

on it The United States Bureau of Labor Statistics is probably

the most assiduous practitioner of the art and will probably enjoy

larger budgets m the years ahead to make more frequent revisions

possible It is perhaps worth noting that most of the Bureau’s indexes

use the weighted aggregate, or its mathematical equivalent, the

weighted arithmetic mean of relatives, with links and chains in order

to facilitate weight changes m the years between major revisions

19.13 Measuring the Dispersion within Groups

As of now very little effort has been made to publish index num-

bers that are supported by quantitative statements of the variation

of the items within the group Partial answers to the problem of

variations within the group movements are provided by indexes for

subclasses of items There are also device such as simple tallies of

the number of items that have nsen or fallen during a given penod

This IB done, for example, in the reporting of the behavior of stock

prices.
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But these devices are still inadequate, and there are opportunities

for further development in measuring within-group variations

PROBLEMS AND QUESTIONS

19.1 You have had many occasions m which you have made decisions

based on an evaluation you have made of a group of events Analyze each

of the following group charactenzations according to

1 The particular quoliUet being measured (For example, the relevant

qualities m evaluatmg a meal at a restaurant may be the aroma of the

coffee, the temperature of the soup, the politeness of the waiter, the tough-

ness of the steak, etc

)

2 The method of miomxng those qualities

3 The method of averaging the measured qualities

(Note the purpose that underhes the desire to characterize the group

IS relevant in each of the above

)

(a) You would like to compare the meal you had at the "Rita” Hotel

with that you had at the dormitory

(h) You would like to compare grammar school with high school

(c) You would like to compare your bouse with that of your best fnend

(d) You would like to compare the new Chevrolet with the new Ford

(or Plymouth, or Rambler, etc

)

(e) You would like to compare two different pairs of shoes m order to

buy the better pair

(One useful purpose served by baving you struggle with problems hke

those given above is to get you to realise bow simple a problem of price

comparison really is!)

19 2 The followmg mdexes are m rather common use m Amencan life

What specific purposes do you think they can be used to satisfy? Give

some sort of an evaluation of the accuracy they have in serving such pur-

poses Also indicate whether you feci that these indexes are sufficiently

accurate for the purposes

() Scores on intelligence tests

() Dow Jones Averages of Stock Pnees

(c) U5BLS Index of Consumer Prices

(d) Temperature-humidity mdex puUished by the weather bureau for

a given city

(c) Number of degree-days during a month

(/) The won lost percentages of baseball teams

(j) The pnee of a quart of milk (Or of any product

)

{h) The total weight of a human being (as possibly distinct from the

19.2?

(6) What kmd should be used to best satisfy the purpose? Explain

(c) Is It possible that the actual average may work practically as well as

the "correct 'average? Explain

194 How can you tell when each of the above mdexes is high, or low.
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or about average, or very high? For exampk, suppose the following values

occurred for the indexes referred to in Problem. 19 2 State how large you
think these values are Explain the baas of your statement

(0) 184

(b) 306

(c) 124%

(d) 92

(e) 300

{/) 816

ig) S85

(h) 275 pounds

(1) S425

19 5 Below are given some of the typical items that make up the con

sumption pattern of an Amencan family Analyze each item for homoge-

neity during the penod 1945 to date Consider the physical homoge-

neity, the function homogeneity (eg, the ability of a washing machine

to wash clothes), and the psyckologtcd homogeneity (the ability of the

item to satisfy human wants) For example, the ownership of a horse

and buggy may have provided more human satisfaction m 1900 than does

the ownership of an automobile today

Finally, indicate what it is that you think is measured by the changes

in the pnee of the item In order to make your answer more concrete, de-

termine the 1945 price and the current pnee for each item and then account

for the difference

(o) A snowsuit for a 5 year-old male child

(6) A television set

(c) A pound of bacon

(d) Mailing a letter from New York to California

(e) A 4-y6ar college curnculum at a selected college

(/) A baseball game at Yankee Stadium

(j) Police protection at the local, state, or national level

(h) Religious instruction and inspiration at the church of your choice

19 6 What type of average womd you try to get in the following cases’

Explain

(o) The average pnee of a quart of home-delivered milk m the New

York metropolitan area for purpose of including m a Consumers’ Pnee

Index Also, for inclusion m an mdex to measure general changes in the

value of the dollar to guide the Federal Reserve Board in its attempts to

stabihze the value of the dollar (Note The variation we would be aver-

agmg IS that from place to place within the area and from milk company

to milk company

)

(&) The average pnee of a quart of home-delivered milk over the penod

of a year (The vanation we would be averaging is that from day to day,

or month to month, etc

)

(Note on this question The problem of which average to use in a prob-

lem IS often essentially the same problem as that of determining the hnd

of sample to use when only one item is to be selected Thus, the smgle

average price of milk over the y®nr is really a sample of the pnee of milk

)
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197 Below are given the prices and quantities of two commodities at

two different dates

Penod 1 Period 2

Pnce Quantity Price Quantity

Pi ?i pj <li

Product A S200 100 $250 150

Product B $1000 40 $12 00 30

(o) Calculate the following mdcices

1 Sunpla &eeretata o( pnees P«nod I u Um
2 2

S Simple tnthmetio meen of pnee niftbytf Penod 1 u bua

geomelna 1

7 Waishted eggnsate of pncee Penod I weighta Penod 1 bue
8 2

9 2 I

10 2

U Avenge 1

12 2

13 Weighted Antbmeue Mein ot Pnee Petitivw Penod 1 Wiigbu Pinod 1 biee

2

2

3

Avenge

1

25 Value mdea with Penod 1 aa ban
26 Value index with Penod 2 ae baae

(i) Analyze your results in Part (c) above for evidence of whether a

given formula type (average and weights) satisfies the base reversal test

(c) Repeat all the calculations of Part (o) above for the construction of

9watttt{|/ indexes rather than pnce indexes

(d) Test your quantity indexes for abihly to satisfy the base reversal

test

(e) Test your price and quantity indexes for ability to satisfy the factor

reversal test

(/) What practical significance do you find in the abihty of an index
number formula to satisfy the base reversal and factor reversal tests’

^9 B(o) Collect data on the annual Gross National Product of the United
States for the last 15 years Compare the results for the data based on
current dollars with the data based on eonatont dollars Collect or calculate
the ratios of the current dollar data to the constant dollar data The re

sultant ratios are obviously s pnce index What kind of fonnuJa (average
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and weights) underbes such an index number senes? What kind of formula

should \% he'* Explain

(b) Collect annual dollar sales figures for some large multiproduct firm

like General Motors, General Hectnc, Macy'e, etc Analyze the problem

of finding a price index senes that could be to deflate the dollar sales

senes m order to estimate the changes in physical volume of sales over the

years (Deflation, eonsiets of diinding the dollar sales figures by appropnate

price indexes
)

Find the best pnee mdex you can and perform the calcu-

lations necessary to get the physic^ volume senes

Evaluate tlie results frwn the point of view of theoretical niceties and

of practical usefulness

19 9 Suppose you were constructing mdex numbers of physical volume

of activity for a manufacturer of refrigerators This company builds the

refrigerator from such base raw materials as sheet steel, insulation rolls

paint, etc The company also handles a bne of other household appliances

such as electric and gas ranges, dishwashers, etc These other items, how-

ever, are built almost entirely by subcontractors who do practically all the

work on the products except for a few finishing touches, such as attachment

of distinctive dials and of the name plates

How would you give proper weight to the value of refrigerators vs these

other appliances in constructing your over ail index? (Hint You would

be concerned with the problem of estimating the value added by manufac-

ture You might relate your problem to that of the Federal Reserve Board

in combining the output of sheet steel with the output of automobiles in its

Index of Industnal Production Note that some of the sheet steel would

be embodied in the automobiles

)

1910 Below are given data on three items of a Consumers’ Price Index

for 5 specific years spanning a period of 20 yeare

1640 1946 1960 1966 1960

PriC6 Quantity Price Quantity Pnee Quantity Pnee Quantity Pnee Quantity

Bpsid S 10 IMlbs S 12 170 * 19 160 I 21 160 « 24 140

Shses 4 50 ZSpn 460 42 680 65 800 6 0 9 25 7 0

GaeoliQO 14 600 gale 18 500 29 650 SO 680 34 750

(o) Construct the best possible index of changes in these prices consid-

enng the available mfarmatm Express the final indexes on 1940 as a

base (Hint The use of links and chains, with the best weights used for

each link, would be a useful approach

)

( b) Evaluate your final indeiKS from the point of view of

1 Their conforming to any theoretical and practical entena of good

indexes

2 Their measuring somethu^ that has some practical meamng For

example, what difference might it make if the mdex went up 20% rather

than going down 5% ?

(c) What alternative method of construction would you recommend in

the interests of savmg some of the money needed to collect quantity data
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in each of year%^ Do >ou think that such an alternative nould result

m cbngea in the indexes of any practical concern? Explain

19.11 Suppose an index of common stock pnces goes up 10% IVbat

dilTerencea would it make if plus 10% were a result of

() stock prices increasing 10% each?

() 40% of the pnces increasing by more than 10%?

(c) 30% of the pnces increasing by more than 10% and 20% of them

actually decreasing?



Appendix A

Squares, Square-Roots, and Reciprocals

i’ Vn Vito 1000/n B n* Vn V^ 1000/n

10000
50000
30333
2S000

22361
2 4465
2 6458

707JJ
7 7460
83066
8 6443

160 3 7417 11 832

361 4 3689 13 784

576 4 8990 15 492

1 024 6 6569 17 889

39 1 521 6 2450

142 86
moo
JllJ]

60000
47 619
45455
43478
41 667

40 000
38462
37037
36714
34 483

27778
27027
26 316
26041

2025
2116
2208
2804
2401

22 222
21739
21^77

64 2 916 7 3485 33 238 18 529

18 1B2
17 857
17 544
17 241
16949

16 667

15 385
IS 162
14 925
14706
14493

13 333
13158
12 987
12 821
12658

12 500

11905

11765
11628
11 494
13 384
11236

735



726 THE STATISTICAL MCTHOD IN BUSINESS

Squares, $quare*Sofilt, and Reciprocals

Vn VIcin lOOO/ii « n* ViOn lOOO/n

90 8100 9 4868 30 000 II in 145 21025 12 042 38 076 6 8966
81 8 331 6 5394 30 166 10686 146 21316 12 083 38 210 6 8493
92 8484 9 5917 30 332 10870 147 21 609 12 124 38 341 6 8027
93 8649 9 6437 30 496 10753 148 21904 12 166 88 471 0 7568
64 6 836 6 6654 30 656 10638 149 22»)1 12 207 38 601 67114

95 9025 9 7463 30822 10520 ISO 22 500 12 247 38 730 6 6667
65 6 216 6 7680 30 684 10417 151 22801 12288 33 859 6 6225
87 9 406 3 8439 51145 10309 152 23 104 12 329 38 087 6 5789
68 9 604 9 8995 31305 10204 153 23 409 12 369 39115 6 5356
96 6 801 99499 31464 10 101 154 23 716 12 410 39 243 64935

100 10000 10 000 31823 10000 ISS 24 025 12 450 39 370 64516
101 10 201 10050 31781 99010 156 24 336 12 490 39 497 64103
103 10 404 10 100 31 637 6 8039 157 24 649 12 530 39 623 0 3694
103 10609 10 149 32 064 97087 158 24 964 12 570 39 749 6 3291
104 10816 10193 32 24B 9 6154 159 25 281 12 610 39 875 6 2893

105 11025 10 247 33404 9 5238 160 25 600 12 649 40000 6.2500
108 11236 10 296 32 558 0 4340 161 25 921 12 689 40 125 62112
107 11446 10344 32 711 9-3453 162 26 244 12 723 40.240 61728
108 11664 10363 32 863 9 2593 163 26 569 12767 40 373 61350
106 11631 10440 33015 91743 164 26 896 12 606 40 497 6 0976

110 13 100 10 488 33 163 90909 165 27225 12^5 40 620 6 0606
111 12 321 10 536 33317 90090 166 27 556 12B84 40 743 6 0241
112 12 544 10 583 33 466 36283 167 27 689 12 923 40 866 5 6880
113 12786 10 630 33 613 8 8496 168 28224 12061 40688 5 6524
lU 13666 10677 33764 87719 166 28561 13 000 41110 59172

ns IS 335 11)724 33613 8 6657 170 28600 13038 41231 56824
ns 13456 10 770 84 056 86207 171 29 241 18077 41852 5 8480
IIT 13639 10917 34 205 85470 M2 26554 13 115 41 473 SJUO
118 13934 10863 34 331 84746 173 26 626 13 158 41563 6 7803
116 U 161 10 909 34 466 84034 174 80 276 13 191 41713 57471

130 14400 10654 34 641 83333 175 30625 13226 41 833 S714S
121 14 641 11000 34 785 82645 176 30976 13 287 41652 56818
122 14 884 11045 34 629 81067 177 31 329 13 3U 42071 6 6497
133 IS 139 11061 35071 81301 178 31 654 IS 842 42 160 5 6180
134 15 376 11136 35214 80645 170 82 041 IS 879 42.308 6 5866

125 15 625 11 180 35353 8 0000 180 32400 13416 49 426 6.6566
136 15 876 11225 35 496 79365 181 32761 13454 42 544 6 5719
127 16 129 11269 35 637 7J740 182 33 124 13 461 42 661 5 4945
128 16384 11314 35 777 78m 183 33 486 13528 42 779 5 4645
136 J/164J i}X» JAl JUVW im' ^ AM?

130 16600 11402 36 056 76923 185 34 225 13 601 43 012 6 4054
131 17 161 11446 36 194 7 6336 186 34 596 13 638 43 128 6 3763
132 17 424 11489 36 332 75758 187 34 969 13 675 43 244 5 3476
133 17 689 11533 36 489 75188 188 35 344 13 711 43 359 5 3161
134 17656 11576 36 806 74627 189 35721 13 748 43 474 6 2910

135 18 225 n 619 36 742 7 4074 160 36 100 13 784 43686 5 2632
136 18 496 11662 36 878 7^20 101 36481 13 820 43 704 5 2356
137 18769 11705 37 014 72693 102 36 864 13 856 43818 5 2083
133 19 044 11747 37 148 72464 163 37 249 13 892 43 932 61813
139 16 321 11790 37^83 71942 m 37 636 13628 44 045 61546

140 19 600 n 832 37417 71429 165 88025 13964 44 159 51782
U1 16881 11374 37 550 7 0622 166 38416 14 000 44 272 51020
143 20 164 11916 37 683 70423 167 38 800 14 036 44 885 5 0761
143 20449 11953 87 815 6 6930 198 39 204 11071 44 467 6 0505
144 30736 12 000 37947 60444 166 39 601 14 107 44 606 50251



Appendix B

Roncfdm Sampling Numbers *

97 58 55 23 12 87 39 84 32 23 26 91 QI 11 26 ot 24 06 58 20 33 46 iB 86 23
84 95 87 34 95 31 23 64 75 89 26 38 15 9« 81 89 06 86 20 02 67
II 52 38 09 94 32 47 35 42 39 33 89 97 16 28 94 66 93 86 96 ‘3 43 85 99
38 69 94 97 10 44 42 85 46 88 56 56 63 58 22 89 19 26 82 25 94 15 54 (^5 62
23 99 38 33 41 99 76 22 *9 »9 92 53 92 15 71 47 57 74 89 03 65 57 90 53 27

09 «5 95 74 87 09 83 82 83 29 «4 57 45 80 07 13 57 40 58 34 21 93 90 39 21

55 75 9 « 38 57 38 30 89 64 4* ot 84 83 12 79 32 09 58 03 St 90 88 71 02
84 62 29 92 42 03 92 37 46 19 90 75 68 84 49 53 80 62 <9 20 31 14 42 II 17

n 25 fO S3 Sf S3 87 It 33 79 14 20 04 12 40 31 74 39 86 21 37 65
40 10 92 52 27 21 18 64 61 04 83 55 16 90 71 31 95 15 86 74 87 80 75 71 *7

93 18 86 63 72 22 53 44 23 89 38 06 46 04 79 87 77 33 21 75 40 51 74 6a 53
63 71 89 30 23 22 85 90 05 07 87 33 56 52 60 21 SO P 26 28 48 67 31 87 6[

«3 29 93 78 06 10 41 62 :8 37 42 91 98 43 33 20 58 62 60 65 19 90 07 84 49
30 04 29 90 89 64 25 66 38 4« 99 59 15 43 86 34 IC 05 99 83 08 02 18 22

75 50 83 42 46 80 78 77 34 16 04 05 06 28 86 60 70 04 13 28 95 76 78 43 89

63 82 44 U 33 n 20 42 00 22 40 03 06 12 45 06 32 34 44 16 01 26 36 78 42

38 78 69 85 *5 98 73 40 31 12 04 99 5« 09 49 04 32 63 68 54 64 1$ 25 68

98 41 Si 83 70 S8 43 39 93 18 54 48 98 33 01 47 85 39 81 II 48 84 07 64 76
06 44 37 St 33 39 87 II li S3 t6 98 16 52 52 39 32 18 22 03 06 77 17

17 30 92 82 09 42 37 88 43 35 It 54 89 05 61 10 46 2? 43 33 88 9* 72 62 0!

74 87 89 10 02 19 45 29 85 70 77 81 98 78 67 05 6: 57 oS 79 30 3* 62 92 87
61 Bi S* 5?

So 11 55 21 98 02 08 26 01 20 16 07 42 88 55 51 21 96 14 85 49

5S 08 43 08 22 SO 28 03 18 00 80 79 60 8 33 92 36 >3 SO 41 43 59 82 16 85

44 38 47 <5 16 96 03 51 42 15 35 98 40 87 9« 58 91 13 58 85 40 06 38 04 30

12 45 97 68 57 62 36 61 03 29 46 79 85 99 9> 13 99 95 58 75 14 74 88 12

J9 95 23 05 45 01 87 8: 18 9* 38 94 07 «4 08 90 32 5 « »9 61 50 60 34 92 »5

7 « 55 86 72 94 77 08 55 83 50 33 53 94 81 52 38 3 t S3 12 74 88 59 99 35 95

07 32 94 03 20 66 29 98 75 85 70 30 56 59 08 *4 51 75 48 73 It 29 77 08 38

to 35 38 59 25 89 62 60 77 71 24 13 38 20 83 02 48 tl 67 95 38 97 15 58 li

62 99 34 08 06 61 46 09 16 82 95 •7 '3 46 36 St 36 87 58 10 80 79 40 48 82

19 44 35 31 20 16 05 25 26 38 98 94 18 38 86 10 90 »9 01 12 48 85 52 97 22

77 78 94 64 49 45 39 58 07 88 32 II 43 09 51 32 89 31 63 02 33 47 08 94 85

97 43 81 59 46 59 26 04 83 S6 «7 31 55 50 66 II 37 04 68 14 57 17 oS Si 48

09 77 93 46 95 36 98 08 77 39 71 44 48 10 19 54 80 24 83 47 06 79 01 78 43

71 09 43 23 16 33 93 21 87 89 16 53 05 53 16 98 96 30 89 49 83 3* 23 13 32

25 19 47 70 4* 16 91 39 59 8a 66 77 96 02 oS 59 58 48 91 Sr 04 32 64 8S 15

43 23 23 81 42 61 42 37 «7 76 75 40 18 Si 33 5 ‘ 68 04 41 00 72 82 28 68 03

50 57 81 53 79 98 04 75 77 30 49 18 «7 01 70 06 01 53 04 76 49 93 39 68 00

81 04 78 50 33 21 84 10 00 49 43 08 86 53 25 50 24 70 63 01 08 52 66 87

19 62 59 60 23 26 It SO 12 83 26 60 6r 15 «3 27 41 M 61 80 72 ’9 91 56 53

3i 52 48 94 61 60 43 08 29 87 86 20 90 03 16 48 22 4» 62 59 84 3 « 00 92 15

79 73 88 84 27 89 92 95 64 78 40 06 16 26 65 54 93 14 19 00 39 II 13 27 55

05 93 24 38 18 25 84 85 51 81 15 So 43 94 49 89 58 80 80 78 25 65 89

59 72 45 18 64 49 87 78 83 66 72 92 83 42 78 21 14 35 00 16 05 92 74 20 3 «

23 75 30 52 34 00 43 50 50 97 10 64 18 60 30 48 99 84 23 37 20 03 50 50 05

86 2j 48 23 45 01 80 49 J3 99 57 9* 46 06 55 60 98 81 40 20 72 45 67 83 67

47 02 27 40 96 41 44 06 54 78 83 52 32 S8 15 09 45 22 54 07 49 70 54 48 84

36 76 21 72 44 85 55 63 87 29 62 84 18 48 29 23 75 29 90 68

83

58 04 32 34

43 84 04 45 20 18 42 25 25 95 70 IS 92 80 82 47 to 21 18 57 54 02 09 53

88 84 16 82 87 66 77 89 78 31 98 11 58 27 07 78 59 71 87 56 99 27 28

* F-nm nVxl X .



the statistical method in RUSINESS

Rondom SompllnB Nomb4rt

78 82 54 47 K *3 80 10 41 35 It *i 63 98 n 74 41 35 *5 78 73 93 47 83

Ti 5» 68 87 41 II 08 81 »9 »9 7 » »3 to 01 y 25 06 00 45 80 64 y 95 y y
51 4 » tl 03 ti 10 03 33 93 00 68 11 09 33 09 39 34 93 12 82 48 y y 59 17

M 15 07 60 86 97 37 94 *4 33 61 44 >9 92 99 21 84 y 04 y 8J 32 05 10 48

rj 31 66 62 09 34 27 31 *3 *7 y 37 39 n 73 y 39 37 It 67 23 21 y 33

n 44 83 55 47 98 50 93 58 82 58 16 35 18 87 94 08 22 47 93 86 43 43 y 27

*9 73 43 9 « 63 37 91 33 40 94 *3 6t 94 V 16 *9 93 99 *3 87 y *3 42 u 3 «

30 90 eo 38 15 99 93 33 9? 80 08 39 21 66 13 y 36 8J 23 03 3* 03 51 3 *

9T 33 17 r6 *3 64 73 18 10 03 34 40 6j 07 23 68 *9 31 97 89 57 93 55 26

*7 15 44 92 47 28 y 93 03 53 37 70 >9 68 39 95 39 87 y 49 98 94 46 *4 72

81 50 35 50 80 23 67 8t 25 02 «i 08 It y CO 23 32 33 80 06 29 86 14 39 27

S9 It 86 16 30 27 85 18 26 34 50 25 87 11 69 71 36 95 y 79 y « n 93 11

19 60 33 03 29 02 33 74 58 3» 84 >1 ®7 33 93 54 y tS 47 14 62 73 45 01

¥> 91 44 09 94 06 89 56 68 83 82 y 11 82 5« 30 68 91 c6 18 86 93 17 45 10

7 « 03 53 38 94 01 52 7* IS 44 49 53 42 43 00 j6 97 97 64 12 *7 46 00 tS

OJ T> 22 67 59 98 to 64 68 08 79 06 89 48 42 83 7» 19 8; 24 99 04 *0 68 00

08 45 79 46 89 74 73 67 60 15 70 37 61 44 07 9? 89 81 54 26 57 27 63 27 74

J 7 8g 05 75 64 48 31 68 63 *7 7 « 75 45 3* 27 76 35 26 58 88 9; 74 48 y 94

90 63 58 69 37 19 74 48 63 31 5* 36 84 4O 66 y 66 03 41 »7 95 y 12 39 64

22 69 38 O2 88 89 71 43 Ot B? 42 79 42 y *9 4 t 08 47 3 * 19 45 y 39 99 y

05 79 69 67 84 38 14 82 83 26 40 5» 93 4* 4* 83 48 34 21 04 33 26 52 26 52

48 91 33 03 82 94 24 06 5 « 03 97 44 8i 14 89 88 48 66 54 10 41 *7 y II 61

w 64 97 27 25 62 23 94 46 54 59 32 97 78 90 38 86 41 75 >9 42 y 85 39 68

IS 83 82 52 08 32 98 26 92 88 93 II *3 23 52 78 23 57 85 43 33 y 42 11 11

It 37 66 58 99 06 59 «9 48 *9 99 tt 95 21 08 15 24 45 59 *5 12 76 96

ti 83 99 62 7« 12 18 45 52 66 35 y 93 09 52 73 40 34 35 62 65 42 »7 10 39

SI 98 09 80 62 75 26 84 37 26 46 42 47 y 9? y 46 20 52 42 73 18 98 *? 9 <

fli 35 42 62 84 37 02 59 ?8 t6 17 99 05 72 39 88 05 y 05 9» 11 43 89 66 89

97 95 58 39 75 95 47 91 86 33 14 88 55 33 y 87 79 94 46 «7 9 i 7* *7 01

S 7 93 35 93 23 17 30 14 51 52 17 28 21 74 97 22 II 37 2? »7 38 y 73 Si 92

S9 22 96 06 48 52 49 6i 09 «o os y »7 54 y 99 06 52 It to 36 21 38 68 05

61 <9 84 54 51 60 <9 77 8 t 26 U 45 02 27 04 95 35 y 95 04 10 » 19 99 18

3* 84 18 10 29 >9 09 66 06 78 37 09 60 y 21 32 72 01 5 * y *9 95 05 St 16

64 *9 48 04 08 55 72 23 25 77 54 16 *7 24 39 66 97 d6 40 00 y 35 70 99 58

64 02 31 99 93 62 42 89 32 lo It 24 08 40 45 22 15 37 49 38 99 51 «9 08 27

>3 «3 39 31 30 3 » 49 94 «3 66 02 y 95 18 98 5« 84 y 58 8 r 00 40 9 « 11 46

*3 30 90 09 35 4 < 12 87 95 66 85 99 20 95 34 2J 23 05 42 01 91 48 95 59 45

46 63 S3 97 93 :8r 86 37 36 10 35 62 66 II 37 30 91 89 y 32 94 78 06 95 95

54 43 40 02 42 33 70 32 99 87 02 82 61 21 88 60 65 98 4* y 03 61 10 83 01

*7 18 95 62 01 97 45 79 5 « 37 74 47 20 11 48 97 93 73 86 y 46 61 95 01 y

45 4» >8 »3 20 34 31 08 71 52 39 *7 7 « 39 84 97 *7 72 49 4* 81 62 3* 87 11

35 92 97 02 34 93 3* 95 81 13 9* 03 4« y 95 71 66 61 24 09 77 31 73 66 n
60 33 35 37 24 32 95 64 90 58 » 7* y 27 98 4* 8S ¥> 97 41 12 83 27 78

43 17 It 09 60 58 86 12 31 II 66 61 43 99 CO 93 97 00 25 n 37 99 73 59 93

07 *3 74 38 28 38 74 68 32 61 87 14 7 » 83 47 y II 99 y o8 67 04 34 49 d8

33 CO *9 oB 67 42 59 40 24 97 44 99 23 93 02 47 97 89 2J 52 45 37 83

97 14 00 42 23 72 03 19 02 4 * 11 *3 39 98 J2 29 92 42 03 58 62 *3 74 45 06
(•8 38 32 80 82 40 49 72 8J 37 93 49 99 60 72 88 24 26 88 93 48 99 35 y 63

39 87 38 t6 06 82 9* 62 32 75 97 94 y 49 39 y 55 53 92 97 04 48 60 53 y
37 73 et «4 87 42 88 30 93 75 ot 18 n 73 y 28 44 28 18 01 00 it z6 38 37



Appendix C

LosBrithmt of ni
*

logH! lognl log"! « log"' „ lognl

00000 51 66 1906 101 1599743 151 264 9359 201 377-2001
2 03010 52 67-9066 102 161-9829 151 267 1177 202 379 5054
3 07782 53 69-6309 103 163-9958 153 2693014 203 3818129

4 138^ 54 713633 104 166-11128 154 2714899 204 384 1226

5 20792 55 731037 105 168-0340 155 273-6803 205 3864343

6 28573 56 74 8319 T06 170-0593 156 *75 8734 206 3887482

7 3-7024 57 766077 107 172-0887 157 278-0693 *07 391-0642
8 46055 58 78 3712 108 174 1221 158 280 2679 208 3933822

9 55598 59 80 142a 109 1761595 159 282 4693 200 39570*4
zo 65598 60 81 9202 no 1782009 160 284 ^35 210 398-0246

11 76012 61 83-7055 m 1802462 i6t 2S68803 2 II 4003489
12 86803 62 85 4979 1(2 182-2955 162 289-08^ 2X2 402 6752

13 97943 63 872972 113 184348s 163 291 3020 *13 405-0036

14 10-9404 64 891034 iH 1864054 164 2935168 214 4073340
15 12 1165 65 909163 115 188 4661 16s *957343 *15 409-6664

l6 13 3«o6 66 92 7359 116 190 5306 166 *97-9544 216 412-0009

1? 145511 67 945619 117 1925988 167 300 1771 217 4143373
i8 15 S063 68 963945 ti8 194-6707 168 302 4024 2IS 416-6758

19 17-0851 69 981333 «9 1967462 169 304 6303 *19 4194162

20 16 3661 70 100-0784 120 1988254 170 306 8608 220 4*13587

21 197083 71 101-9297 121 200 9082 171 3091938 221 4237031

22 21-0508 72 103 7870 122 2029945 17* 311 3*93 222 4*61494

S3 224125 73 105 6503 «3 2050844 i;j 3135674 »3 4283977

24 237927 74 1075196 »4 *071779 174 3158079 224 4307480

25 25 1906 75 1093946 «5 2092748 175 318 0509 225 433 100*

26 26 6056 76 III 2754 126 2113751 176 3*0 2965 226 4354543

27 28 0370 77 113 1619 127 2134790 177 3**5444 227 4378103

28 294841 78 1 15 0540 128 2155^ 178 3*4 7948 228 4401682

29 30 9465 79 116 9516 129 2176967 179 3*7-0477 ”9 4425281

30 32 4237 80 118 8547 130 219 8107 180 3*9 3030 230 4448898

31 33 9150 8! 120 7632 131 2219280 182 3315606 *31 447 *534

32 35 4202 62 122-6770 132 2240485 iS: 3338207 232 4496189

33 36-9387 83 1245961 133 2Z6 1724 183 336-0632 *33 451-9562

34 38 4702 84 1265204 134 228-2995 184 338 3480 *34 4543555

35 40-0142 85 128 4498 135 2304298 185 340 6152 *35 4567*65

3& 415705 86 1303843 136 2325634 186 34 * 8847 236 4590994

37 43 1387 87 132 3238 137 2347001 187 345 1565 *37 461 4742

38 447185 88 1342683 138 2368400 168 3474307 23B 4638508

39 463096 89 136-2177 139 169 3497071 *39 466 2292

40 47-9116 90 1381719 140 241 1291 190 3519859 240 468-6094

41 495244 91 140 1310 i4t 243*783 191 354*669 241 470-9914

42 SI 1477 92 142-0948 142 2454306 19* 3565502 242 473 375*

43 52 7811 93 1440632 143 2475860 19: 3588358 *43 475 7608

44 544246 94 146 0364 144 *497443 194 361 1236 *44 478 1482

45 56-0778 95 I4S-OI4C 145 2519057 19s 3634136 *45 4805374

46 577406 96 149 9964 146 254-0700 196 3657059 246 482-9283

47 59 4127 97 151-9831 147 256-2374 197 368-0003 *47 4853210

48 61-0939 98 153-9744 14S 2584076 298 3702970 248 4877154

49 627841 99 155-9700 149 2605808 199 37* 5959 249 4901116

50 644831 100 157-9700 150 2627569 200 3748969 250 4925096



Appendix D

Binomial Distribution

P T'd -

\oi< To find P when r > 5,fi&dP(n — *| I -“»,**)

1 -• 05 10 15 20 2S .30 35 40 45 50

1 0 Q'OO 9000 8500 iOOO 7500 7000 6500 6000 5500 5000

1 0500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2 0 902o 8100 7225 6400 5625 4900 4225 3000 3025 .2500

1 0950 isoo 2550 3200 3750 4200 4550 4SOO 4950 5000

2 0035 0100 0225 0400 0625 0900 1225 1600 2025 .2500

3 0 ^74 7290 6141 5120 4219 3430 2746 dJieo 166) 1250

I 13S4 2430 3251 ^0 4219 4410 4436 4320 40S4 3750

2 0071 oro 0574 0960 1406 IS90 23S9 .2850 .3341 3750

3 0001 0010 0034 0080 0156 0270 W29 0640 0011 1250

4 0 ^45 6561 5220 4W6 316) 2461 1735 1296 TO15 6625

1 1715 2916 3685 4096 4219 4115 3S45 3456 2995 2500

2 0135 (HS6 0975 1536 2109 .2646 3105 3456 3675 3750

3 0005 0036 0115 0256 0169 0756 1115 1536 2005 2500

4 0000 0001 0005 0016 0039 OOSl 0150 0256 0110 0625

5 0 7738 5905 4437 3277 .2373 16S1 1160 0778 0503 0312

1 32S0 3915 4096 3955 3602 3124 2592 .2059 1562

2 0314 0729 13S3 iXMS 2637 30S7 3364 3456 .3369 3125

3 0011 OOSl 0244 0512 0879 1323 1811 2301 2757 3125

4 0000 0004 0022 J3061 0146 0284 W8S 0768 1128 1562

5 0000 0000 0001 0003 0010 0024 0053 0102 0185 0312

* Adapted from Tables of At Binomial Pnbainhty Dislntruhon (n from 2 to 49),

^atlonal Bureau of Standards Applied Mathematics Senes, U S GoyI Printing

Office, Wash
, D CX, 1949, and from fiO-fOO BinomwZ TaWcs by Harry G Romig,

John ^Tley and Sons, 1953

740



APPENDIX D
741

Binomial Distribuhen

n * 05 10 IS 20 25 35 40 45 50

6 0 7351 5314 3771 2621

1 2321 3543 3993 3932

2 0305 0984 1762 2458

3 0021 0146 0415 0819

4 0001 0012 OOSS 0154

5 0000 0001 0004 0016

6 0000 0000 0000 0001

7 0 6983 4783 3208 2097

1 2573 3720 3960 3670

2 0406 1240 2097 2753

3 0036 0230 0617 1147

4 0002 0026 0109 0287

5 0000 0002 0012 0043

6 OOOO 0000 0001 0004

7 0000 0000 0000 0000

8 0 6634 4305 2725 1678

1 2793 3826 3847 3355

2 0515 1488 2376 2936

3 0054 0331 0839 1468

4 0004 0046 0186 0459

6 0000 0004 0026 0092

6 0000 0000 0002 0011

7 0000 0000 0000 0001

8 0000 0000 0000 OOOO

9 0 6302 3874 2316 1342

1 2985 3874 3679 3020

2 0629 1722 2597 3020

3 0077 0446 1069 1762

4 0006 0074 0283 0661

5 0000 0008 0050 0165

6 0000 0001 0008 0028

7 0000 0000 OOOO 0003

8 OOOO OOOO OOOO OOOO

9 OOOO OOOO OOOO OOOO

10

0 5987 3487 1969 1074

1 3151 3874 3474 2684

2 0746 1937 2759 3020

3 0105 0574 1298 2013

4 0010 0112 0401 0881

1780 1176 0754 0467 0277 0156
35fa0 3025 2437 1866 1359 0988
2966 3241 3280 3110 2780 2344
1318 I8S2 2355 2765 3032 3125
0330 0595 0951 1382 1861 2344

0044 0102 0205 0369 0609 0938

0002 0007 0018 0041 0083 0156

1335 0824 0490 0280 0152 0078

3115 2471 1848 1306 0872 0547

3115 3177 2985 2613 2140 2641

1730 2269 2679 2903 2918 2734

0577 0972 1442 1935 2388 2734

0115 0250 0466 0774 1172 1641

0013 0036 0054 0172 0820 0547

0001 0002 0006 0016 0037 0078

1001 0576 0319 0168 0084 0039

2670 1977 1873 0896 0548 0312

3115 2965 2o87 2090 1569 1094

i076 2541 2786 2787 2568 2188

0885 1361 1875 2322 2627 2734

0231 0467 0S08 1239 1719 2188

0038 0100 0217 0413 0703 1094

0004 0012 0033 0070 0164 0312

0000 0001 0002 0007 0017 0039

0751 0404 0207 0101 0046 0020

2253 1556 1004 0605 0339 0176

3003 2668 2162 1612 1110 0703

2336 2668 2716 ^508 2119 1641

IJ68 1715 2194 2508 2600 2461

0389 0735 1181 1672 2128 2461

0087 0210 0424 0743 1160 1641

0012 0039 0098 0212 0407 0703

0001 0004 0013 0035 0083 0176

OOOO IX)00 0001 0003 0008 0020

0563 0282 0135 0060 0025 0010

1877 1211 0725 0403 0207 0098

2816 2335 1757 1209 0763 0439

2503 2668 2522 2150 1665 1172

1460 2001 2377 2508 2384 2051



742 THE STATISTICAL METHOD IN BUSINESS

Binomial DUtrlbuHon

n X 05 10 15 20 25 30 35 40 45 50

10 5 0001 0015 0085 0264 0584 1029 1536 2007 2340 2461

6 0000 0001 0012 0055 0162 0368 0689 1115 1596 2051

7 0000 0000 0001 0008 0031 0090 0212 0425 0746 1172

8 0000 0000 0000 0001 0004 0014 0(»3 0106 0229 0439

9 0000 0000 0000 0000 0000 0001 0005 0016 0042 0098

10 0000 0000 0000 0000 0000 0000 0000 0001 0003 0010

11 0 6688 3138 1673 0859 0422 0198 0088 0036 0014 0005

1 3293 3835 3248 2362 1549 0932 0518 0266 0125 0054

2 0867 2131 2866 2953 2581 1998 1395 0887 0513 0269

3 0137 0710 1517 2215 2581 2568 2254 1774 1259 0806

4 0014 0168 0536 1107 1721 2201 2428 2365 2060 1611

S 0001 0025 0132 0388 0803 1321 1830 2207 2360 2256

6 0000 0003 0023 0097 0268 0566 0985 1471 1931 2256

7 0000 0000 0003 0017 0064 0173 0379 0701 II2S 1611

8 0000 0000 0000 0002 0011 0037 0102 0234 0462 0806

9 0000 0000 0000 0000 0001 0005 0018 0052 0126 0269

10 0000 0000 0000 0000 0000 0000 0002 0007 0021 0054

11 0000 0000 0000 0000 0000 0000 0000 0000 0002 0005

12 0 8404 2824 1422 0687 0317 0138 0057 0022 0008 0002

1 3413 3766 3012 2062 1267 0712 0368 0174 0075 0029

2 0988 2301 2924 2835 2323 1678 1088 0639 0339 0161

3 0173 0852 1720 2362 2581 2397 1054 1419 0923 0537

4 0021 0213 0683 1329 1936 2311 2367 2128 1700 1208

5 0002 0038 0193 0532 1032 1585 2039 2270 2225 1934

tf am &OOS om GISJ m{ !S8l irss 2i24 22J^

7 0000 0000 0006 0033 0116 0291 0591 1009 1489 1934

8 0000 0000 0001 0005 0024 0078 0199 (M20 0782 1208

9 0000 0000 0000 0001 0001 0015 0048 0125 0277 0537

10 0000 0000 0000 0000 0000 0002 0008 0025 0068 0161

11 0000 0000 0000 0000 0000 0000 0001 0003 0010 0029

12 0000 0000 0000 0000 0000 OOOO 0000 0000 0001 0002

13 0 5133 2542 1209 0550 0238 0097 0037 0013 0004 0001

1 3512 3672 2774 1787 1029 0540 0259 0113 0045 0016

2 1109 2448 2937 2680 2059 1388 0836 0453 0220 0095

3 0214 0997 1900 2457 2517 2181 1651 1107 0660 0349

4 0028 0277 0838 1535 2097 2337 2222 1845 1350 0873

5 0003 0055 0266 0691 1258 1803 2154 2214 1989 1671

6 0000 0008 0063 0230 0559 1030 1546 1968 2169 2095

7 0000 0001 0011 0058 0186 0142 0833 1312 1775 2095

8 0000 0000 0001 0011 0047 0142 0336 0656 1039 1571

0 0000 0000 0000 0001 0009 0034 0101 0243 0495 0873



APPENDIX D
743

Binomial Oittribuhon

n I 05 10 15 20 25 30 35 40 46 50

13 10 0000 0000 0000 0000 0001 0006 0022 0065 0162 0349
11 0000 0000 0000 0000 OOOO 0001 0003 0012 0036 0095
12 0000 0000 0000 0000 0000 0000 0000 0001 0005 0016
13 0000 0000 0000 0000 0000 OOOO 0000 0000 0000 0001

14 0 4877 2288 1028 0440 0178 0068 0024 0008 0002 0001
1 3593 3669 2539 1539 0832 0407 0181 0073 0027 0009
2 1229 2570 2912 2501 1802 1134 0634 0317 0141 0056

3 0259 1142 2056 2601 2402 1943 1366 0845 0462 0222
4 0037 0349 0998 1720 2202 2290 2022 1549 1040 0811

5 0004 0078 0352 0860 1468 1963 2178 2066 1701 1222

6 0000 0013 0093 0322 0734 1262 1769 2066 2088 1833

7 0000 0002 0019 0092 0280 0618 1082 1574 1952 2095

8 0000 0000 0003 0020 0082 0232 0510 0918 1398 1833

9 0000 OOOO 0000 0003 0018 0066 0183 0408 0762 1222

10 0000 0000 0000 0000 0003 0014 0049 0136 0312 0611

11 0000 0000 0000 0000 0000 0002 0010 0033 0093 0222

12 0000 0000 0000 0000 0000 0000 0001 0005 0019 0056

13 0000 0000 0000 0000 0000 0000 0000 0001 0002 0009

14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001

15 0 4633 2069 0874 0352 0134 0047 0016 0005 0001 0000

1 3658 3432 2312 1319 0668 030 0126 OM 0016 0005

2 1348 2669 2856 2309 1559 0916 0476 0219 0090 0032

3 0307 1285 2184 2S0I 2252 1700 1110 0634 0318 0139

4 0049 0428 1156 1876 2252 2186 1792 1268 0780 0417

S' sm sm ms ISSl smi sm m9 jm
6 OOOO 0019 0132 0430 0917 1472 1906 2066 1914 1627

7 0000 0003 0030 0138 0393 0811 1316 1771 2013 1964

8 0000 0000 0005 0035 0131 0348 0710 1181 1647 1964

fl 0000 0000 0001 0007 0034 0116 0298 0612 1048 1527

10 0000 0000 0000 0001 0007 0030 0096 0245 0515 0916

11 0000 0000 0000 0000 0001 0005 0024 0074 0191 0417

12 0000 0000 0000 0000 0000 0001 0004 0016 0052 0139

13 0000 0000 0000 0000 0000 0999 0001 0003 OOiO 0032

14 0000 0000 0000 0000 0000 0000 0000 0000 0001 0005

15 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

16 0 4401 1853 0743 0281 moo 0033 0010 0003 OOOl 0000

1 3700 3294 2097 1126 0535 0228 0087 0030 0009 0002

2 1463 2746 2775 2111 1336 0732 0353 0150 0056 0018

3 0359 1423 2285 2463 2079 1465 0888 0468 0216 0085

4 0061 0514 1311 2001 2252 2040 1653 1014 0572 0278



7U THE STATISTICAL METHOD IN BUSINESS

Btnomlat DttYnbirtion

I 05 10 15 JO J5 30 35 40 45 50

16 5 0003 0137 0555 1201 1802 J099 J005 1623 1123 0667

6 0001 0023 0180 0550 IlOl 1649 19S2 19S5 1654 1222

7 0000 mi 0015 0197 OSil 1010 1524 .1889 1969 1746

$ 0000 0001 0009 0055 0197 (MS7 0923 1417 1812 1961

9 0000 OOOO 0001 0012 0053 OISS 0442 0S40 1318 1746

10 0000 OOOO oooo 0002 0014 0056 0167 0392 0755 1222

II 0000 oooo oooo OOOO 0002 0013 0049 0142 0337 0667

12 0000 OOOO oooo oooo OOOO 0002 con OOlO 0115 0278

13 0000 oooo oooo oooo OOOO €000 0002 0008 0029 0085

14 0000 OOOO oooo oooo oooo OOOO OOOO 0001 0005 0018

15 oooo oooo oooo oooo oooo oooo OOOO oooo 0001 0002

16 oooo oooo oooo oooo oooo oooo OOOO oooo oooo OOOO

17 0 4181 1668 0631 0225 0075 0023 0007 0002 oooo OOOO

1 3741 3150 1893 0937 0426 0169 0060 0019 0005 0001

2 1575 :boo ^73 1914 1136 0581 0260 0102 0035 0010

3 0115 1556 2359 2393 1893 1245 0701 0341 0144 0052

4 0076 0605 U57 i093 J20d 1888 1320 0796 0411 0182

5 0010 0175 0663 1361 1914 20S! 1819 1379 0875 0472

6 0001 0039 0236 0680 1276 1784 1991 1839 1432 0W4
7 oooo 0007 0065 0267 0668 1201 1685 1927 1841 1481

8 oooo 0001 0014 0064 0279 0M4 1134 1606 1883 1855

9 OOOO oooo 0003 0021 0093 0276 0611 1070 1540 1855

10 oooo oooo OOOO OOW 0025 0095 0263 0571 1008 1484

II oooo oooo OOOO 0001 0005 0026 0090 0212 0525 0944

12 oooo oooo OOOO OOOO 0001 0006 0024 OOSl 0215 W72
13 oooo oooo OOOO oooo oooo 0001 0005 0021 0068 0182

14 oooo oooo OOOO oooo oooo oooo 0001 0004 0016 0052

15 oooo oooo OOOO oooo oooo oooo OOOO 0001 0003 0010

16 oooo oooo oooo oooo oooo oooo OOOO OOOO OOOO 0001

17 oooo oooo OOOO oooo oooo oooo oooo OOOO OOOO OOOO

18 0 3972 1501 0536 0180 0056 0016 0004 0001 OOOO OOOO

1 v3763 3002 17W osu 0338 0126 0042 0012 0003 0001

2 1683 2835 2556 1723 0958 0458 0190 0069 0022 0006

3 0173 1680 2406 2297 1704 1016 0547 0246 0095 0031

4 0093 0700 1592 J153 2130 1681 1104 0614 0291 0117

S 0014 0218 0787 1507 1988 J0I7 1664 1146 0666 0327

6 0002 0052 0301 0816 1436 1873 I94» 1655 1181 0708

7 OOOO 0010 0091 0350 0^ 1376 1792 1892 1657 1214

8 OOOO 0002 0022 0120 0376 0811 1327 1734 1864 1669

9 OOOO OOOO 0001 0033 0139 0386 0794 1284 1694 IS55



APPSNPIX D
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Binomio! DIstnbulipn

n X 05 10 15 20 25 30 86 40 45 60

18 10 0000 oooo 0001 0008 0042 0149 0385 0771 1248 1669

U 0000 OOOO OOOO 0001 0010 0046 0151 0374 0742 1214

13 0000 OOOO OOOO OOOO 0002 0012 0047 0146 0364 0708

13 0000 oooo OOOO OOOO OOOO 0002 0012 0045 0134 0327

14 0000 oooo OOOO OOOO OOOO OOOO 0002 OOU 0039 0117

16 0000 oooo OOOO oooo OOOO oooo OOOO 0002 0009 0031

16 0000 oooo OOOO OOOO OOOO oooo OOOO OOOO 0001 0006

17 0000 oooo OOOO OOOO OOOO oooo OOOO OOOO oooo 0001

la 0000 oooo oooo OOOO OOOO oooo OOOO OOOO OOOO OOOO

19 0 3774 1351 0466 0144 0042 0011 0003 0001 OOOO 0000

1 3774 2862 1629 0685 0268 0093 0029 OOOS 0002 OOOO

3 1787 2852 2428 1640 0803 0358 0138 0046 0013 0003

S 0533 ma 2428 2182 1517 0869 0422 0175 0062 0018

4 0112 0708 1714 2182 2023 1491 0909 0467 0203 0074

5 0018 0200 0907 1036 2023 1916 1468 0933 0497 0222

0 0002 0009 0374 0956 1574 1916 1844 1451 0949 0518

7 0000 0014 0122 0443 0974 1625 1844 1797 1443 0961

S 0000 0002 0032 0166 0487 0981 1489 179? 1771 1443

9 0000 oooo 0007 0061 0198 0514 0980 1464 1771 1762

10 0000 oooo 0001 0013 0066 0220 0528 0976 1449 1762

11 0000 oooo oooo 0003 0018 0077 0233 0532 09/0 1442

12 0000 oooo oooo OOOO 0004 0022 0083 023? 0529 0961

13 0000 oooo oooo OOOO 0001 0005 0024 0085 0238 0618

14 0000 oooo oooo OOOO OOOO 0001 0006 0021 0082 0222

15 oooo oooo oooo OOOO OOOO OOOO 0001 0006 0022 0074

10 0000 oooo oooo OOOO OOOO OOOO OOOO 0001 0006 0018

17 0000 oooo oooo OOOO OOOO oooo OOOO oooo 0001 0003

18 0000 oooo oooo OOOO OOOO OOOO OOOO oooo OOOO OOOO

19 oooo oooo oooo oooo oooo OOOO OOOO oooo OOOO OOOO

20 0 3586 12IG 0388 0116 0032 0008 0002 oooo OOOO OOOO

1 3774 2702 1308 0576 0211 0008 0020 0005 0001 OOOO

2 1887 2852 2293 1369 0669 0278 0100 0031 0008 0002

3 0596 1901 2428 2054 1339 0710 0323 0123 0040 0011

4 0133 0898 1821 2182 1897 m 0738 0350 0139 0046

6 0022 0319 1028 1746 2023 1789 1272 0740 0366

6 0003 0089 0464 1091 1686 1916 1712 1244 0746 Oj^O

7 0003 0020 0100 0546 1124 1043 1844 1669 1221 0739

8 oooo 0004 0040 0222 0609 1144 1614 1797 1623 1201

0 oooo 0002 0011 0074 0271 0654 1168 1697 1771 1602



746 THE STATISTICAL METHOD IN BUSINESS

Binomial Dittnbutien

n X 05 10 15 SO 25 30 35 40 45 50

20 10 0000 0000 0002 0020 0099 0308 06S6 1171 1593 1762

11 0000 0000 0000 0005 0030 0120 0336 0710 1185 1602

12 0000 0000 0000 0001 OOOS 0039 0136 0355 0727 1201

13 0000 ccoo 0000 oooo 0002 0010 0045 0146 0366 0739

14 0000 0000 0000 0000 0000 0002 0012 0019 0150 0370

15 0000 0000 0000 0000 oooo OOOO 0003 0013 cmo 0148

16 0000 0000 0000 0000 0000 oooo OOOO 0003 0013 0046

17 0000 0000 0000 0000 oooo oooo OOOO OOOO 0002 0011

18 0000 0000 0000 0000 oooo oooo OOOO oooo OOOO 0002

19 0000 0000 0000 0000 oooo oooo oooo coco OOOO OOOO

20 0000 0000 0000 0000 oooo coco OOOO oooo oooo OOOO

40 0 12S5 0148 0015 0001 — — _ _ _
1 0657 0106 0013 OOOl — — —
2 7m 1423 0365 0065 0009 0001 — —
3 ISSI 2003 0316 0205 0037 0005 0001 —
4 (Ml ^9 1332 0475 0113 0020 0003 — — -

5 0342 1M7 1692 OSM 0272 0061 0010 0001 _
6 0105 1068 1742 1246 0530 0151 0031 0005 —
7 0027 0576 1493 1513 0857 0315 COSO 0015 0002

8 0006 0364 1037 1560 1179 0557 0179 0040 0006 0001

9 0001 0104 06S2 1386 1397 0849 0342 0095 0018 0002

10 0036 0373 1075 1444 112S 0571 0196 0047 0008

11 — 0011 0180 0733 1312 1319 0S3S 0357 0105 0021

12 — 0003 0077 0443 1057 1366 1090 0576 0207 0051

13 0001 0029 Q23S 0759 1261 1285 0S27 0365 0109

14 - — 0010 0115 (HS8 1042 1313 1063 0575 0211

15 _ — 0003 0050 02S2 0774 1226 1228 0816 0366

16 — — 0001 0019 OU7 0518 1031 1279 1043 0572

17 — — — 0007 0069 0314 0754 1204 1205 0S07

18 — — — 0002 0029 0172 0539 1026 1280 1031

19 — — 0001 0011 0085 0336 0792 1194 1194

— — — — OOW 003S 0190 05M 1025 12«
— — - — 0001 0016 0097 0352 0799 IIW
™ — — — — 0006 0045 0203 0565 1031

— 0002 0019 0106 0362 CS07

“ — - - — 0001 0007 0050 0210 0572

— -^____0003 0021 0110 0366
— “ — — — 0001 OOOS 0052 0211— ~ “ — — — — 0003 0022 0109
— — — — — — — cool 0008 0051

— 0003 0021



APPENDIX D
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Binomial Ditfrlbutlon

sr

n z 4)5 10 16 20 25 30 35 40 45 50

40 30 - - - - - _ 0001 0008— __ — — _ 0002
32 — — — __ — _ _ _ 0001
33 ~ “ — - - - -

50 0 0769 0052 0003 _
1 2025 0286 0026 0002 _ _ _
2 2611 0779 0113 0011 0001 _
3 2199 1386 0319 0044 0004 — _ _ _
4 1360 1809 0661 0128 0016 0001 - - - -

6 0658 1849 1072 0295 0049 0006 _ __

6 0260 1541 1419 0554 0123 0018 0002 _ _
7 0086 1076 1575 0870 0259 0048 0006 _ _ _
8 0024 0643 1493 1169 0463 0110 0017 0002 _ _
9 0006 0333 1230 1364 0721 0220 0042 0005 - -

10 0001 0153 0890 1398 0985 0386 0093 0014 0001 _
11 — 0061 0571 1271 1194 0602 0182 0035 0004 —
12 — 0022 0328 1033 1294 0838 0319 0076 0011 0001

13 — 0007 0169 0755 1261 1050 0502 0147 0027 0008

14 - 0002 0079 0499 1110 1189 0714 0260 0059 0008

15 — 0001 0033 0299 0888 1223 0923 0415 0116 0020

16 — — 0013 0164 0648 1147 1088 0606 0207 0044

17 — — 0005 0082 0432 0983 1171 0808 0339 0087

18 — — 0001 0038 0264 0772 1156 0987 0508 0160

19 “ - - 0016 0148 0558 1048 1109 0700 0270

la Qim Q(K7 0874 1144 0884 0419

21 _ — — 0002 0036 0227 0673 1091 1038 0598

22 — — — 0001 0016 0128 0478 0959 1119 0788

23 _ _ — _ 0006 0067 0313 0778 1115 0960

24 _ - - 0002 0032 0190 0684 1026 1080

25 _ _ _ 0001 0014 0106 0405 0873 1123

26 _ _ _ _ _ 0006 0055 0259 0687 1080

27 _ _ _ _ _ 0002 0026 0164 0500 0960

28 _ _ 0001 0012 0084 0336 0788

29 - - - - - 0005 0043 0208 0598

30
_ _ 0002 0020 0119 0419

31 _ _ _ _ — 0001 0009 0063 0270

_ _ _ — 0003 0031 0160

_ _ 0001 0014 0087

34 — - - - - - - - 0006 0044



74S THE STATISTICAL MnHOO IN BUSINESS

BlnoffliDl DitHibvtlon

T

n 7 05 10 !S 20 25 30 35 40 45 50

50 35 — - — — — — — “ 0002 0020

36- — — — — — “ - 0001 0008

37 - — — - — — — 000333--“- — - — 0001

100 0 0059

1 0312

2 0812

S 1396

4 1781

5 1800

6 1500

7 10«0

8 0649

9 0349

10 0167

11 0072

12 0023

13 0010

14 0003

15 0001

16
-

17 “
18 -
19 -

20 -
21 -
22 -
23 -
24 -

30 -
31 -
32 -
33 -
34 -

0003 __ _
“

0016 — — — — —
0059 0001 — — — — _ __

0159 0003 - - - - - - “

0339 GOll — — - — _
0596 0031 0001 — — —
0S89 0075 0002 -* — — — — _
1148 0163 0006 — — — —
1301 0276 0016 — - - “ - -

1319 0444 0034 0001 — — —
1199 0640 0069 0003 — — —
0988 0838 0128 0006 — —
0743 1001 0216 0014 — — —
0513 1098 0335 0030 0001 — - - “

0327 Jill 0481 0057 0002 _ _
0193 1041 063S 0100 0006 — — —
0106 0908 0789 0165 0012 — — — —
0054 0739 0909 0254 0024 0001 — _ —
0026 0563 0981 0366 0044 0002 “ - -

0012 0402 0993 0493 0076 OOW — _
0005 0270 0946 0626 0124 0009 — — —
0002 0171 0849 0749 0190 0017 0001 _
0001 0103 0720 0847 0277 0032 0001 —

0058 0577 090C 0380 0056 0004 - “

0031 CH39 0918 0196 0090 0006

— 0016 0316 0883 0613 0140 0012 — —
— 0008 0217 0806 0720 0207 0022 0001

— OOM 0141 0701 0861 0290 0038 0002 —
0002 0088 0580 0356 038S 0063 OOW -

- 0001 0052 0458 0868 0494 0100 0008 —
— — 0029 0344 0310 0601 0161 0014 0001

— — 0016 0248 0776 0698 0217 0025 0001
— — 0008 0170 0685 0774 0298 0043 C002

“ 00« 0112 0579 0821 0391 0069 0005



APPENDIX D 749

Bmomtal Distnbuhon

n I 06 10 16 20 26 30 36 40 45 50

JOO 35 - - — 0002 0070 0488 0834 0491 0108 0009

36 - - - 0001 0042 0362 0811 0591 0157 0016

37 — - - — 0024 0268 0755 0682 0222 0027

38 - — — — 0013 0191 0674 0754 0301 0045

39 _ _ _ — 0007 0130 0577 0799 0391 0071

40 - - — — 0004 0085 0474 0812 0488 0108

41 — — — — 0002 0053 0373 0792 0584 0159

42 — — — — 0001 0032 0282 0742 0672 0223

43 _ _ „ _ „ 0019 0205 0667 0741 0301

44 _____ _ 0010 0143 0576 0786 0390

45 _____ 0005 0096 0478 0800 0485

46 _ _ _ _ _ 0003 0062 0381 0782 0580

47 - — - ~ — 0001 0038 0292 0736 0666

48 — — - — — 0001 0023 0215 0666 0785

49 ------ 0013 0152 0677 0780

50 ------ 0007 0103 0482 0796

51 _____ - 0004 0068 0386 0780

62 - _____ 0002 0042 0298 0735

63
______ 0001 0026 0221 0666

64 — - — - - 0015 0157 0679

0008 0108 0484

0004 0071 0389

0002 0045 0300

0001 0027 0223

0001 0016 0159

0009 0109

0005 0071

0002 0045

0001 0027

0001 0016

60 - -- -- --61---- — - -

63 - -- -- --

65 - -- -- --
66 - -- -- --
58



Appendix E

Cumutattv* Blftomlal

.•a -»)•"*

l^ote To find P when » > 5, calculate 1 - P{n - 1* 4* 1 !
1 — t, n) eg P(* ^

2t*r- 8, n 6) - 1 - P(r>5|»- 2.«- 6)-l - 0016 - 99SJ4

n I* 05 10 15 20

1

25

r

30 35 40 45 60

3 1 0975 1900 2775 3600 4375 5100 6775 6100 6975 7500

2 0025 0100 0225 0400 0625 0900 1225 1600 2025 2500

3 1 1425 2710 3859 4880 5781 6570 7254 7840 8336 8760

2 0072 0280 0608 1010 1562 2180 2818 3520 4252 5000

3 OOOl 0010 0034 0080 0156 0270 0429 0640 0911 1250

4 1 1855 3439 4780 5904 6836 7599 8215 8704 9085 9375

2 0140 0523 1095 1808 2617 3483 4370 5248 6090 6876

3 0005 0037 0120 0272 0508 0837 1265 1792 2416 3125

4 0000 0001 0005 0016 0039 0081 0150 0256 0410 0625

5 1 ^2 4095 6723 7627 8319 8840 9222 9497 9688

2 0226 OSIS 1648 2627 3672 4718 5716 6630 7438 8125

3 0012 00S6 0266 0579 1035 1631 2352 3174 4069 5000

4 0000 0005 0022 0067 0156 0308 0540 0370 1312 1876

5 0000 0000 0001 0003 00)0 0024 0053 0102 0185 0312

6 1 ^9 4686 6229 7379 8220 8824 9246 9533 9723 9544

2 0328 1143 2235 3446 4661 5798 6809 7667 8364 8906

3 0022 0158 0473 0989 1694 2557 3529 4557 5585 6562

4 0001 0013 0059 0170 0376 0705 1174 1792 2553 3438

6 0000 0001 OOOl 0016 0016 0109 0223 6410 0692 1094

6 0000 0000 0000 0001 0002 0007 0018 0041 0083 0156

• Source Same as Appenda D

7J0



APPENDIX E
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Cumulative Binomial

05 10 16 20 25 30 36 40 46 50

1 3017 6217 6794 7903 8665 9176 9610 9720 9848 9922
2 0444 1497 2834 4233 5551 6706 7662 8414 8976 9375
3 0038 0257 0738 1480 2436 3529 4677 6801 6836 7734
4 0002 0027 0121 0333 0706 1260 1998 2898 3917 6000
5 0000 0002 0012 0047 0129 0288 0556 0963 1629 2266

6 0000 0000 0001 0004 0013 0038 0090 0188 0367 0625

7 0000 0000 0000 0000 0001 0002 0006 0016 0037 0078

1 3366 5695 7276 8322 8999 9424 9681 9832 9916 9961

2 0572 1869 3428 4967 6329 7447 8309 8936 9368 9648

3 OOS8 0381 1062 2031 3215 4482 6722 6846 7799 8565

4 0004 0050 0214 0563 1138 1941 2936 4069 5230 6367

5 0000 0004 0029 0104 0273 0580 1061 1737 2604 3633

6 0000 0000 0002 0012 0042 0113 0253 0498 0886 1446

7 0000 0000 0000 0001 0004 0013 0036 0085 0181 0352

8 0000 0000 0000 0000 0000 0001 0002 0007 0017 0039

1 3698 6126 7684 8668 9249 9696 9793 9899 9964 9980

2 0712 2252 4005 6638 6997 8040 8789 9295 9616 9806

3 0084 0530 1409 2618 3993 5372 6627 7632 8505 9102

4 0006 0083 0339 0866 1657 2703 3P1 6174 6386 7461

5 0000 0009 0056 0196 0489 0988 1717 2666 3786 6000

6 0000 0001 0006 0031 0100 0253 0536 0994 1668 2539

7 0000 0000 0000 0008 0013 0043 0112 0260 0498 0898

8 0000 0000 0000 0000 0001 0004 0014 0038 0091 0196

0 0000 0000 0000 0000 0000 0000 0001 0003 0008 0020

1 4013 6513 8031 8926 9437 9718 9866 9940 9975 9990

2 0861 2639 4657 6242 7660 8507 9140 9536 9767 9893

3 0115 0702 1798 3222 4744 6172 7384 8327 9004 9453

4 0010 0128 0500 1209 2241 3604 4862 6177 7340 8281

5 0001 0016 0099 0328 0781 1603 2486 3669 4956 6230

6 0000 0001 0014 0064 0197 0473 0949 1662 2616 3770

7 0000 0000 0001 0009 0035 0106 0260 0548 1020 1719

8 0000 0000 0000 0001 0004 0016 0048 0123 0274 0547

9 0000 0000 0000 0000 0000 0001 0005 0017 0045 0107

10 0000 0000 0000 0000 0000 0000 0000 0001 0003 0010

1 4312 6862 8327 9141 9678 9802 9912 9964 9986 9995

2 1019 3026 5078 6779 8029 8870 9394 9698 9861 9941

3 0162 0896 2212 3826 6448 6873 7999 8811 9348 9673

4 0016 0186 0694 1611 2867 4304 6744 7037 8089 8867

6 0001 0028 0169 0504 1146 2103 3317 4672 6029 7266



752 THE STATISTICAL METHOD IN BUSINESS

Cumute(]v« SSnemiel

n i' 05 10 15 20 30 35 40 45 50

11 6 0000 0003 0027 0117 0343 0782 1487 .2465 3663 5000

7 0000 0000 0003 0020 0076 0216 0501 0994 1738 2744

8 0000 0000 0000 0002 0012 (KH3 0122 0293 0610 1133

9 0000 0000 0000 0000 0001 0006 0020 0059 0U8 0327

10 0000 0000 0000 0000 0000 OOOO 0002 0007 0022 0059

11 0000 0000 0000 0000 0000 oooo OOOO .0000 0002 0005

12 I 4596 7176 8578 9313 9683 9862 9943 .9978 9992 9993

2 1184 3410 5565 7251 &416 9150 9576 9804 9917 9968

3 0196 1109 2612 4417 6003 7472 8187 9166 9579 9807

4 0022 0256 0922 3512 5075 6533 7747 8655 9270

S 0002 0043 0239 0726 1576 2763 4167 5618 6956 8002

6 0000 0005 0016 0194 0544 1178 2127 3348 4731 6128

7 0000 0001 0007 0039 0143 0386 0846 1582 2607 3872

8 0000 0000 0001 0006 0028 0095 0255 0573 1117 1938

9 0000 0000 0000 0001 0004 0017 0056 0153 0356 0730

10 0000 0000 0000 0000 0000 0002 0008 0023 0079 0193

11 0000 0000 0000 0000 0000 OOOO 0001 .0003 0011 0032

12 0000 0000 0000 0000 oooo OOOO OOOO OOOO 0001 0002

13 1 4867 7458 8791 9450 9762 9903 9963 9987 9996 9999

2 1354 3787 6017 7664 8733 9363 97M 9874 9951 9983

3 0245 1339 27W 4983 6674 7975 8868 9121 9731 9888

4 0031 0342 0967 2527 4157 5794 7217 8314 9071 9539

5 0003 0065 0260 0991 206d 3457 4995 M70 7721 8666

6 0000 0009 0053 0300 0802 1654 2841 4256 5732 7095

7 0000 0001 0013 0070 0243 0624 1295 2288 3563 5000

8 0000 0000 0002 0012 0056 0182 0162 0977 1788 2905

9 0000 0000 0000 0002 0010 0(H0 0126 0321 0698 1334

10 0000 0000 0000 0000 0001 0007 0025 0078 0203 0161

11 0000 0000 0000 0000 0000 0001 0003 0013 ODll 0112

12 0000 0000 0000 0000 0000 OOOO OOOO 0001 0005 0017

13 0000 0000 0000 0000 oooo OOOO OOOO OOOO OOOO 0001

14 1 5123 7712 8972 9560 9822 9932 9976 9992 9998 9999

2 1530 4154 6433 8021 8990 9525 9795 9919 9971 9991

3 0301 1584 3521 5519 7189 8392 9161 9602 9830 9935

4 0(M2 (M41 1465 3018 4787 6448 7795 8757 9308 9713

6 0004 0092 0467 1298 2585 4158 5773 7207 ^2S 9102



APPENDIX E 753

Cumulahve Binotnia!

n z 06 10 IS 20 25 30 35 40 45 50

14 6 0000 0015 0115 0439 1117 2195 3595 5141 6627 7880

7 0000 0002 0022 0116 0383 0933 1836 3075 4539 6047

8 0000 0000 0003 0024 0103 0315 0753 1501 2586 3953

9 0000 0000 0000 0004 0022 0083 0243 0583 1189 2120

10 0000 0000 0000 0000 0003 0017 0060 0176 0426 0898

11 OOOO 0000 0000 0000 OOOO 0002 OOU 0039 0114 0287

12 0000 0000 0000 OOOO OOOO OOOO 0001 0006 0022 0065

13 0000 0000 0000 0000 OOOO OOOO OOOO 0001 0003 0009

14 0000 0000 0000 0000 OOOO OOOO OOOO OOOO OOOO 0001

15 1 5367 7941 9126 9648 9866 9953 9084 9995 9999 1 OOOO

2 1710 4510 6814 8329 9198 9647 9858 9948 9983 9995

3 0362 1841 3958 6020 7639 8732 9383 9729 9893 9963

4 0055 0556 1773 35)3 5387 7031 8273 9096 9576 9824

5 0006 0127 0617 1642 3135 4845 6481 7827 8796 9408

6 0001 0022 0168 0611 1484 2784 4357 5968 7392 8491

7 0000 0003 0036 0181 0566 1311 2452 3902 6478 6964

$ 0000 0000 0006 0042 0173 0500 1132 2131 3465 6000

g 0000 0000 0001 0008 0042 0152 0422 0950 1818 3036

10 0000 0000 0000 0001 0008 0037 0124 0388 0769 1509

n OOOO 0000 0000 0000 0001 0007 0028 0093 0255 0592

12 0000 0000 0000 0000 OOOO 0001 0005 0019 0063 0176

13 0000 0000 0000 0000 OOOO OOOO 0001 0003 oon 0037

14 0000 0000 0000 0000 OOOO OOOO OOOO OOOO 0001 0005

15 0000 0000 0000 OOOO OOOO OOOO OOOO OOOO OOOO OOOO

16 1 5599 8147 9257 9719 9900 9967 9990 9997 9999 1 OOOO

2 1892 4853 7161 8593 9365 9739 9902 9967 9990 9997

3 0429 2108 4386 6482 8029 9006 9549 9817 9934 9979

4 0070 0684 2101 4019 5960 7541 8661 9349 9719 9894

6 0009 0170 0791 2018 3698 5501 7108 8334 9147 9616

6 0001 0033 0235 0817 1897 3402 5100 6712 8024 8949

7 OOOO 0005 0056 0267 0796 1753 3119 4728 6340 7228

8 0000 0001 0011 0070 0271 0744 1694 2839 4371 5982

9 0000 0000 0002 0016 0075 0257 0671 1423 2559 4018

10 0000 0000 OOOO 0002 0016 0071 0229 0583 1241 2272

11 0000 0000 OOOO 0000 0003 0016 0062 0191 0486 1051

12 0000 0000 0000 0000 OOOO 0003 0013 0049 0149 0384

13 0000 0000 0000 0000 OOOO OOOO 0002 0009 0035 0106

14 0000 0000 0000 OOOO OOOO OOOO OOOO 0001 0006 0021

15 0000 0000 0000 OOOO OOOO OOOO OOOO OOOO 0001 0003

16 0000 0000 0000 OOOO OOOO OOOO OOOO OOOO OOOO OOOO



754 THE STATISTICAl METHOD IH BUSINESS

Cumuiatlvt Blnpiniat

A 05 10 16 20 25 30 35 40 45 50

17 1 &319 8332 9369 9775 9325 9977 9993 woa loooo ima
2 2078 5182 7475 8818 9499 0807 9933 9979 9994 9909

3 0503 23S2 4802 69(H 8363 9228 9673 9877 9959 9988

4 OOSS 0826 2444 4511 6470 7981 8972 9536 9816 9936

5 0012 0221 09S7 2118 4261 6113 7652 ^40 9401 9755

6 0001 0017 0319 1057 2347 4032 5803 7361 8529 9283

7 0000 0003 0083 0377 1071 2248 3812 5522 7093 8338

8 0000 0001 0017 0109 0402 m 212S 3595 5257 6855

9 0000 0000 0003 0026 0124 0103 0991 1989 3374 6000

10 0000 0000 0000 0005 0031 0127 0383 0919 1834 3U5

n 0000 0000 0000 0001 0006 0032 0120 034S 0826 1662

12 0000 0000 0000 OOOO 0001 0007 0030 0106 0301 0717

13 0000 0000 OOOO OOOO OOOO 0001 0006 0025 0086 0215

14 0000 0000 0000 OOOO oooo OOOO 0001 0005 0010 0061

IS 0000 0000 oooo OOOO oooo OOOO OOOO 0001 0003 0012

16 0000 0000 oooo oooo oooo OOOO OOOO OOOO OOOO 0001

17 0000 0000 oooo oooo oooo OOOO oooo OOOO OOOO oooo

18 1 6028 8499 9464 9820 9944 9984 9996 m 10000 loooc

2 2265 m 7769 9000 9605 9858 9954 9987 9997 WM
3 0581 2662 6203 7287 8647 9400 9764 9918 9976 9993

4 0109 0982 2708 4990 6943 8354 9217 0622 9880 9962

5 0016 0282 1206 2838 4813 6673 8114 9058 9589 9846

6 0002 0064 0419 1329 2825 4655 6450 7912 8923 9519

7 0000 0012 0118 0513 1390 2783 4509 6257 7742 8811

B oooo 0002 0027 0163 0569 1407 2717 4366 6085 7697

9 0000 0000 0005 0W3 0193 0596 1391 2632 4222 6927

10 0000 0000 0001 0009 0054 0210 0597 1347 2527 4073

11 0000 0000 OOOO 0002 0012 0061 0212 0576 1280 2403

12 0000 0000 OOOO OOOO 0002 0014 0062 0203 0537 1189

13 0000 0000 OOOO OOOO OOOO 0003 0014 0058 0183 0181

14 0000 0000 OOOO oooo OOOO OOOO 0003 0013 0019 0154

15 0000 0000 OOOO oooo oooo OOOO OOOO 0002 0010 0038

15 0000 0000 oooo oooo oooo OOOO OOOO OOOO 0001 cocr;

17 0000 0000 OOOO oooo oooo OOOO OOOO OOOO OOOO 0001

18 0000 0000 OOOO oooo oooo OOOO OOOO oooo oooo oooo

19 1 6226 8649 9544 9858 9958 9989 9997 9999 10000 1 0000

2 2153 8797 8015 9171 9690 9895 9969 9992 9998 1 0000
3 0665 2946 6587 7631 8887 9538 9830 9945 9985 9996
4 0132 1150 3169 5449 7369 8668 9409 9770 9923 9978

— S 0020 0352 1444 3267 5348 7178 8500 9301 9720 m
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Cumuiative Binomial

n 05 10 15 20 25 30 35 40 45 50

19 6 0002 0086 0537 1631 3322 5281 7032 8371 9223 9882

7 0000 0017 0163 0676 1749 3346 5188 6919 8273 9165

8 0000 0003 0041 0233 0775 1820 3344 5122 6831 8204

9 0000 0000 0008 0067 0287 0830 1855 3325 5060 6762

10 0000 0000 0001 0016 0089 0326 0876 1861 3290 5000

11 0000 0000 0000 0003 0023 0105 0347 0885 1841 3238

12 0000 0000 0000 0000 0005 0028 0114 0352 0871 1796

13 0000 0000 0000 0000 0001 (COO 0031 0116 0342 0835

14 0000 0000 0000 0000 0000 0001 0007 0031 0109 0318

15 0000 DODO 0000 0000 0000 0000 mi 0005 0028 009&

16 0000 0000 0000 0000 0000 0000 0000 0001 0005 0022

17 0000 0000 0000 0000 0000 0000 0000 0000 OOOl 0004

18 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

19 0000 0000 0000 0000 0000 0000 0000 OOOO 0000 0000

20 1 6416 8784 9012 9885 9968 9992 9998 1 0000 1 0000 1 0000

2 2642 6083 8244 9308 9757 9924 9979 9995 9999 1 0000

3 0755 3231 5951 7939 9087 9845 9879 9954 9991 9998

4 0159 1330 3523 5886 7748 8929 9556 9840 9951 9987

6 0026 0432 1702 3704 5852 7625 8818 9490 9811 9941

6 0003 0113 0673 1958 3828 5836 7546 8744 9447 0793

7 0000 0024 0219 0867 2142 3920 5834 7600 8701 9423

8 0000 0004 0059 0321 1018 2277 3990 5841 7480 8684

9 0000 0001 0013 0100 0409 1133 2376 4044 6857 7483

10 0000 0000 0002 0026 0139 0480 1218 2447 4086 5881

11 0000 0000 0000 0006 0039 0171 0532 1275 2493 4119

12 0000 0000 0000 0001 0009 0051 0196 0566 1308 2517

13 0000 0000 0000 0000 0002 0013 0060 0210 0580 1316

14 0000 0000 0000 0000 0000 0003 0015 0065 0214 0577

15 0000 0000 0000 DODO 0000 0000 0003 0016 0064 0207

16 0000 0000 0000 0000 0000 0000 0000 0003 0015 0059

17 0000 0000 0000 0000 0000 0000 0000 0000 0003 0013

18 0000 0000 0000 0000 0000 0000 0000 0000 0000 0002

19 0000 0000 0000 0000 0000 0000 0000 OOOO 0000 0000

20 0000 0000 0000 0000 0000 OOOO 0000 0000 0000 0000

40 1 8715 9862 9085 9999 10000 10000 1 0000 1 0000 1 0000 1 0000

2 6009 9195 9879 9985 9999 1 0000 1 0000 1 0000 1 OOOO 1 0000

3 3233 7772 9514 9921 9990 9999 I 0000 1 0000 1 0000 1 0000

4 1381 5769 8698 9715 9953 9994 9999 1 0000 1 0000 1 0000

5 0480 3710 7367 9241 9840 9974 9997 1 0000 1 0000 1 0000
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Cvmulativt Blflomlat

r

n x' 05 10 15 20 25 30 35 40 45 fiO

40 6 0130 2063 5675 83S7 9567 9914 9987 9999 1 0000 1 OOOO

7 0031 0995 3933 7141 903S 9762 9956 9901 9999 1 0000

8 0007 (M19 244 ! 5629 8180 9447 9876 9979 9998 1 0000

9 0001 0155 1331 4069 7003 8890 9697 9939 9991 9999

10 “ 0051 0072 2682 5605 8011 9356 9811 9973 9997

11 - 0015 0299 1608 4161 6913 8785 9018 9920 9089

12 - OOOl 0120 0375 2819 5594 7947 9291 9821 9968

13 - 0001 0013 0132 1791 4228 6857 8715 9614 9917

14 « — 0014 0194 1032 2968 5592 7883 9249 9808

15 _ - OOOl 0079 0M4 1926 4279 6826 8674 9597

16 - - 0001 0029 0262 1151 3051 6593 7858 9231

17 - - - 0010 0116 0633 2022 4319 6815 8659

18 - _ - 0003 0017 0320 1239 3115 5609 7852

19 - - - 0001 0017 0148 0699 2089 4349 6821

20 - - - ~ 0006 0063 0363 1298 3156 5627

21 - - - 0002 0024 0173 0744 2130 4373

22 ~ - - - - 0009 0075 0392 1331 3179

23-. _ _ - - 0003 0030 0189 0767 2148

24 - - - - - 0001 0011 0083 W05 1341

25 - - - - - - 0004 0031 0190 0769

26 - ~ — - - — 0001 0012 OOS6 0103

27 _ _ _ - - — — OOOl 0031 0192

28 - - - - - - - 0001 0012 008329---- — — — — OOOl 0032

30 - - - - - - ^ - 0001 0011

31 --- — — — — — — 0003

32 - 0001

50 1 9231 9948 9997 1 0000 1 OOin 1 0000 1 0000 1 0000 1 0000 1 0000

2 7206 9662 9971 9998 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000

3 4595 8883 9858 9987 9999 1 0000 1 0000 1 0000 1 0000 1 0000

4 2396 7497 9510 9943 9995 ! 0000 1 0000 1 0000 1 0000 1 0000

5 1036 5688 8879 9815 9979 9998 I 0000 1 0000 1 0000 1 0000

6 0378 3839 7806 9520 9930 9993 9999 1 0000 1 0000 1 0000

7 0118 2298 6387 8966 980o 9975 909S 1 0000 1 0000 1 0000

8 0032 1221 4812 8096 9547 9927 9992 9999 1 0000 1 0000

9 0008 0579 3319 6927 9034 9817 9975 0998 1 0000 1 0000

10 0002 0245 2089 5563 .8363 0598 9933 9992 9999 1 0000
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Curnulohve Binomial

n z' 05 10 15 20 25 80 36 40 45 50

50 11 0094 1199 4174 7378 9211 9840 9978 9998 1 OOOO

12 — 0032 0628 2893 6164 8610 9658 9943 9994 1 OOOO

13 — 0010 0301 1861 4890 7771 9339 9867 9982 9998

14 — 0003 0132 1106 3630 6721 8837 9720 9955 9995

16 - 0001 0053 0607 2519 6632 8122 9460 9896 9987

16 _ — 0020 0308 1631 4308 7199 9045 9780 9967

17 — — 0007 0U4 0983 3161 6111 8439 9573 9923

18 — — 0002 0063 0551 2178 4940 7631 9236 9836

19 — — 0001 0025 0287 1406 3784 6644 8727 9675

20 - - - OOOO 0139 0848 2736 5536 8026 9405

21 _ _ _ 0003 0063 0478 1861 4390 7138 8987

22 — — _ 0001 0026 0251 1187 3299 6100 8389

23 — — — — 0010 0123 0710 2339 4981 7601

24 — — — — 0004 0056 0396 1562 3866 6641

25 - - -- 0001 0024 0207 0078 2840 6561

26 — _ _ 0008 0100 0573 1966 4489

27 — — — — — 0903 0045 0314 1279 3359

28 — — _ — — 0001 0019 0160 0780 2399

29 — — — — — 0007 0076 0444 1611

30 - - - - - 0003 0034 0235 1013

31 _ — _ — _ 0001 0014 0116 0596

32 — — — — — _ 0005 0053 0326

33 — — — — — — — 0002 0022 0164

34 — — — — — — — 0001 0009 0077

36 ~ - - - - - - - 0003 0033

36 _ _ _ _ _ 0001 0013

37 _ — — — — — — — — 0006

38 — -- — — — _ — _ — 0002

39 - - - - - — - - - -

100 1 9941 1 0000 1 OOOO 1 0000 1 0000 1 0000 1 0000 I 0000 1 0000 1 0000

2 9629 9997 1 0000 1 0000 1 0000 l(K»0 1 0000 1 0000 1 0000 1 0000

3 8817 9981 10000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 OOOO

4 7422 9922 9999 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0090

5 6640 9763 9996 1 0000 1 0000 lOOOO 10000 1 0000 lOOOO 10000

6 3840 9424 9984 1 OOOO I OOOO 1 0000 1 0000 1 0000 1 0000 1 0000

7 2340 8828 9953 9999 1 0000 lOOOO lOOOO 10000 1 0000 lOOOO

8 1280 7939 9878 9997 lOOOO 10000 I OOOO 1 OOOO 10000 1 OOOO

9 0631 6791 9725 9991 1 OOOO 1 OOOO 1 OOOO 1 OOOO 1 OOOO 1 OOOO

10 0282 6487 9449 9977 1 OOOO 1 OOOO 1 OOOO 1 OOOO 1 OOOO 1 OOOO
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Cumulattv* Siftomlol

n j' 05 10 15 25 JO J5 40 45 50

100 U 0115 4168 9006 9013 9999 1 ocno 1 0000 1 0000 1 0000 1 0000

12 0(M3 ^70 8365 9874 9996 1 0000 1 0000 1 0000 1 0000 1 0000

13 0015 1982 "527 9747 9990

;

1 OOOO 1 0000 1 0000 1 0000 1 0000

14 0005 1239 6526 9531 9975 9999 1 0000 1 0000 1 0000 1 0000

15 0001 0726 5123 9196 9916 9998 1 0000 1 0000 1 0000 1 0000

16 0399 4317 8715 9889 9996 1 OOOO 1 0000 1 0000 1 0000

17 *- 0206 3275 8077 9789 9990 1 0000 lOOOQ 10000 10000

18
— 0100 2387 7288 9624 9978 9999 10000 10000 10000

19 — 0016 1628 6379 9370 9955 9999 1 0000 ]10000 lOOOO

20 - ms 1065 5398 9005 9911 9997 10000 10000 10000

21 _ 0008 0663 4405 8512 9835 9992 1 0000 1 0000 1 OOOO

22 — 0303 0393 3160 7886 9712 9983 :10000 1 0000 1 0000

23 — 0001 0221 2611 7136 9521 9966 9999 1 0000 1 0000

24 — — 0119 1891 6289 9245 9931 9997 1 0000 1 0000

25 - - 0061 1314 5383 88W 9879 9901 10000 10000

26 0030 0876 4465 8369 9789 9988 1 OOOO 1 0009

27 — — 0014 0558 3583 7756 9619 9976 9999 1 0000

28 — — 0006 0342 2776 7035 M42 9954 9998 1 0000

29 —

>

-> 0003 0200 2075 6232 9152 9916 9990 10000

30 _ - 0001 0113 1495 5377 8754 9852 9992 1 0000

31 — — 0061 1038 4509 8270 9752 9985 1 0000

32 — — — 0031 0694 3669 7609 9602 9970 9999

33 — — 0016 0446 2893 6971 9385 9945 9998

34 — — — 0007 0276 2207 6197 9087 9902 9996

35 - - “ 0003 0J6I J629 5376 8697 9834 9991

36 _ _ 0001 0094 1161 4512 8205 9728 9982

37 — — — OOOl 0052 0799 3731 7614 9571 9967

38 — — _ — 0027 0530 2976 6932 9349 9940

39 — — — — 0014 0340 2301 6178 9019 9895

40 - - - 0007 0210 1724 5379 8657 9824

41 - - _ _ 0003 0125 1250 4567 8169 9716

42 — — — — 0002 0072 0877 3775 7585 9557

43 — — — OOOI mo 0594 3033 6913 9334

44 — — — — 0021 0389 2365 6172 9033

45 - — - — 0011 (me 1789 5387 8644

46 - - — _ 0005 0150 1311 4587 8159

47 — *- — — — 0003 0038 0930 3804 7579

48 — — — — _ 0001 0050 0638 3069 6914

49 — — — — — OOOI 0028 0123 2401 6178

50 — 0016 0271 1827 5398
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Cumulative Binomtai

n » 05 10 15 » 25 30 36 40 45 50

100 51 - _ - _ _ — 0007 0168 1346 4602

52 _ — _ — — — 0004 0100 0960 8822

53 _ _ _ — — 0002 0058 0662 3086

54 - - - ~ — — 0001 0032 0441 2421

55 0017 0284 1841

56
— - 0009 0176 1366

57 _ — — — — 0004 0106 0967

5S
_ _ _ — _ — — 0002 0061 0666

59
_ - _ _ _ _ - 0001 0034 0443

5Q_ _ - - - 0018 0284

61______---0009 0176

52 - - — ~ - - — - 0005 0106

03 - _ — — - 0002 0060

04_ ^ -- _ - - — - 0001 0033

05
~ - 0013

07-

__-_-----OOO4
08

-

__ — — — — — — — 0002

09 — - — — — — — — 000170----------
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Appendix G

Cumulative Distnbudon of f

'

Table shows, Iot given n, piobahility of a t value equal to or less than the

observed t whea { is positive, or equal to or more than the observed t when t

IB negative

•Kepioduced mth pamssra fTOm B 0 Hatley itid E S Pearem,

"Table of the Probability Istegral of the t-Distribution ” Bwmelnin, Vol

37, June 1950, pp 168-172
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o-raooo w^tooo
ram s»2i
«800 67807

6IS98 61600

ram 6s:93

0 66306 ^e9S26
«1S5 72178
75301 76330

76228 78263

B0827 60266

0-823<8 0-82402

83542 83689

»676 01632

85163 «6jI8

86220 96273

096661 096913
9*403 9/452

S76M 9?H>4

96236 96291

83554 66594

&88616 098853

00033 69066

89211 882<1

89356 9628»

99176 96502

090576 &9'>S9;

99C56 99675

09 21 99739

99*74 90769

99617 99830

0-60000 OSOOOO O-SOOM
63928 68830 53933
67111 47820 J7J25
91619 61623 61636
65307 -OOSIO 65330

0-6B843 0-68656 0-63873

72201 72220 72238
75356 76350 75400
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61000 81031 81058

0-83472 0-83508 0-83537

95709 S5743 8576(J
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61074 9I1I8 61163
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WW 'WWl! V!Wi V/ftfc WO V^Vi W7> W/i
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Appendix H

r Values for Given z Values

z' 00 01 02 03 04 05 05 07 08 09

0 0000 0100 0200 0300 0400 0500 0599 0699 0798 0898
1 0997 1096 1194 1293 1391 1489 1587 1684 1781 1878

2 1974 2070 2165 2260 2355 2449 2543 2636 2729 2821

3 2913 3004 3095 3185 3275 3364 3452 3540 3627 3714

4 3800 3885 3969 4053 4136 4219 4301 4382 4462 4542

5 4621 4700 4777 4854 4930 5005 5080 5154 5227 5299

6 5370 5441 5511 5581 5649 5717 5784 6850 5915 5980

7 6044 6107 6169 6231 6291 6352 6411 6469 6527 6584

8 6640 6696 6751 6805 6858 6911 6963 7014 7064 7114

9 7163 7211 7259 7306 7352 7398 7443 7487 7531 7574

10 7616 7658 7699 7739 7779 7818 7857 7895 7932 7969

11 8005 8041 8076 8110 8144 8178 8210 8243 8276 8306

12 8337 8367 8397 8426 8455 8483 85)1 8538 8665 8591

13 8617 8643 8668 8693 8717 8741 8764 8787 8810 8832

14 8854 8875 8890 8917 8937 8957 8977 8996 9015 9083

15 9052 9069 9087 9104 9121 9138 9154 9170 9180 9202

16 9217 9232 9246 9261 9275 9289 9302 9316 9329 9342

17 9354 9367 9379 9391 9402 9414 9425 9436 9447 9458

18 9468 9478 9498 9488 9508 9518 9527 9536 9546 9554

19 9562 9571 9579 9587 9595 9603 9611 9619 9626 9633

20 9640 9647 9654 9661 9668 9674 9680 9687 9693 9699

21 9706 9710 9716 9722 9727 9732 9738 ms 9748 9753

22 9757 9762 9767 9771 9770 9780 9785 9789 9793 9797

23 9801 9805 9809 9812 9816 9820 9823 9827 9830 9834

24 9837 9840 9843 9846 9849 9852 9855 9858 9861 9863

25 9866 9869 9871 9874 9870 9879 9881 9884 9886 9888

26 9890 9892 9895 9897 9899 9901 9903 9905 9906 9908

27 9910 9912 9914 9915 9917 9919 9920 9922 9923 9925

28 9926 9928 9929 9931 9932 9933 9935 9936 9937 9938

29 9940 9941 9942 9943 9944 9945 9946 9947 9949 9950

30 9951

40 9993

50 9999

* Reproduced with permission from Fredenck C Mills, Staiishcd Methods,

Henry Holt and Company, Jfew York, 1955
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significant digits, 114

Accurncj of calculated DUmbers, 115-

117

cffeeUo/ chance on 116~J17

Addition theorem 179

Aggregate, in index numbere 714-722,

726

Alienation, coeScicnt of, Sl2-51<t

Arc sine transformation, 310411

Anthmetic mean and "best” estimate,

281-282

and coefRcmt of corrolalioo, SOS-

509

as estimate of median, 19(1-192

calculation of, 148

short-cut calculations, 237-246

confidence interval of, 357-^, 448-

449

defined, 148

distribution of, in samples, attn-

butes, 274-275, 277-279

variables, 425-425

inferences about, atlnbutea, 270-

341, 387-424

variables ©5-462

in normal curve, 148

least squares property of, 2CC-203,

534

mathematical properties of, 202-203

moving, 619-628

of attribute data, 270*271

prcdommancQ of, in atatisticaf cal-

culations, 257-258

to represent total, 190-192

781

Afisoctation, m oko Correlation

and causation, 486-487

between height and weight 438-490

coefficient of, A, 483, 485, Sos^os
coMcious V8 unconscious 487

degree oi, confidence limits of 550-

561

defined 483-485

in prwlica! problems, 547-548

multiple, 574

Partial, defined, 485

aample enors m, 548-552

teaming by,481-4S3

model for analysis oi, 491-519

multiple, defined, 574

partial, defined, 485

practical problems in 4^91
revetpible property ol, 485

Association analysis, and least squares

compared to visual Ime 536

and least squares line, 532

and (me of conditional means, 500-

502

and line of vector means 492

and normal curve approxitnahr

533

and probability dietributiuns, 492-

499

and scattergrem 489 S2G

and aelcction of relevant vanables,

523-528

and shape of relationship, 499-500,

629-532

and stereogram, 494-497

afiwmptiona of model, 4^-499

curved imes m, 499-500, 631

dependent variable in, 491
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Assocwtioa walysia, mdependeot

variable m, 491-493

interpolation m, 490

etandard deviation m, 493, 499,

503, 505

e^mboU and subscnpU in, 502

test of model, 52S-534

Attnbute measure, 103-103, 269

Auto-correlation, m residuals of gast^

Ime consumption, 655-657

Average deMation, 150

Average inference ratio, 287-293

Average mferenee ratio vector, 291-

293, 335-337

Averages, 186-203, sec aUa Anthme-

tic mean, Median, Mode, Geo-

metne mean, Harmonic mean,

Least equares

factors in choice of, 187-200

and transformation of data, 200-

201

m index numbers, 692-693

mathematical properties of, 202-203

purposes of, 187-199

Base, of forecast, 667

Base penod itt Index numbers

Bayes, Thos,31l

Bayesian estimates, smaller variance

than binomial, 435

Bayesian inferences, about differences

m universe proportions, 399

about percentile equivalent of uni-

verse mean, 429

about standard deviation, 472

about umvei^ proportion, 319-338

about variance, 472

and pooling information, 40M09,

455

bias in 32fM30. 332-337, 434-435

compared with binomial inferences,

320^24, 332-337

modified, 324-330

Bayes’s postulate, 317

Bayes’s theorem, 312-314

Best single estimates, 281-282

Bias, m Bayeaan inferences, 329-330,

INDEX

Bias, in frequency senes calculations,

229-232

in index numbers, 701, 713-725

in sample skewness, 276-277

in sample standard devution, 479-

471, 539-540

m sample vanance, 274-276, 479-

471, 539-540

Binomial coefficient, 136

Binomial probability, compared with

Bayesian, 32(^24, 332-337

compared with normal, 141-143,

156-159

compared with Poisson, 156-159

cumulative distnbution of, 143-144

defined, 135

distribution of percentile equivalent

of mean, 4^
table of, 749-759

use of. 137-139

Binomial theorem, 134

Business Cycle Developmenls, 604a

Busmess Cycle Indxotm, 691

Causation, and association (correla-

tion), 486-487

and knowledge of why, 28-30

Central limit theorem, 426-427, 438

and amall samples, 445

Cham index, 726-729

Chance, and accuracy of measure-

ment, 116-117

defined, 38-40

Cherts, arithmetic scale, 110

Ic^anthmic scale, 110

multiple scale, 110

of frequency senes, 228-236

Chi-square (x*), defined, 464-466

Chi-equare distribution, 464-475

and degrees of freedom, 464-466

and inferences about universe van-

ance, 472-475

and testing hypotheses, 463-467

compared to normal, 467

illustrated for various n, 467

related to normal distribution, 466

related to distribution of aample

variances, 467
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Co6fficieat, of association, 483, 485,

603^05, 5I&-5I9

of correlation, 510-511, 514-519

of determination 611-513

of nondetermination, 512-513

of variation, 249-250

Comparison of numbers, 103-113, 117-

1!S

and rank measure, 118

and relative differences, 105-113

and relative frequency of occniv

rence, 117-118

Computer, amulatmg random sam-

ples, 273

Conditional forecasts, 665

Conditional probability, 172-173

and association analysis, 491-494,

499

and Bayesian analysis, 316

Coodjtioasl standard deviation,

around line of associa-

tion, 502-503

around plane of association 571-572

Confidence coeffiaent, 359

Confidence intervals, defined, 367-359

for tune series forecasts, 669, 671-

672, 674-687

for univeree coefficient of correla-

tion, 551, 573-574

for universe line of relationship,

542-544

for universe mean, 448-449

for universe proportion, 357-366

for universe standard deviation, 475

for universe variance, 475

Consequence matrix, defined, 347-348

Consequences, uncertainty about, 368

and problem of decision, 3^

Conservative rule in estimation, 437

Constant adjustment, effect on shape

of distribution, 438

Constraints, k, related to degrees of

freedom, 442

Constraints, psychological, related to

bias and degrees of freedom,

442

Continuous variable, defined, 163

inferences about, 425-475

Controlling scrap, 15-18

and inferences about mean, 444-462

Controlling scrap, and inferences

about variance, 468475

Correlation, see also Association

coefficient of, 510-511, 614-610

defined, 491b

model for analysis, 491-619

simple vs partial 575-576

Correlation, cumimear, 552-554

least squares line in, 553

Correlation analysis and personnel se-

lection, 520

Coirclation results, as measure of ig-

nored variable, 579-681

Cost, and acquinng knowledge, 6-7,

374

and coneftquftnces, 347

and correlation analysis, 582

Cbanting, 86-103

and probability calculations, 133-

180

direct vs indirect, 93

units of, 89-97

Cross products, in association analysis,

508

in multiple correlation 669-570

CuiDuJative data, see Data, cumula-

tive

Cumulative probability, see Prob-

ability, cumulative

Cycle runs estimation of, 658-655

Cycles, length of in D S
,
596-598

Cycles, logarithmic scales, 110

Data, cumulative vs noncumulative,

689-590

dating of, in time senes, 628

Data types, m association analysis,

527-528

David, f N
,
551, 652, 553

Demies, defined, 237

ra forecasting 669, 671-672, 674487

Decision boundary, 377

Decision-making model, 342

future development of, 379-380

Deflation, adjustment for price vena-

tion, 733

Degree cf association correlation,

measurement of, adding up

problem m, 513-517

and scale of measure, 517-518
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Degree of sssoaaUos eorreUtiOD,

ronUsstmg methods, 511-513

Degrees of freedom, explamed, 43?-

<43

sod usoeistiOQ analysis, <48, 53^

MI, Sir, 551, 5M 57tS7i

and chi-square, 464-466

and ikewness 440-442

and t distribution, 443

and vanante, ^$-441,446

Dealing W 311n

Dependent van^le, 491

Dereasooalited data, 629

Detcnnination, coefficient of, de£oed,

511

Deviations, properties of, from mean,

149

from mean, squared, 150

from median, 187-189

Differences, tUasification of, 50

practically figmficaot vs statisti-

ally ognificaot, 49-80

real vs apparent 48-50

sigaiSeaoce of, 25-27

Differences, inferences about, between

universe means, <53-455

between universe proportions, 397-

401

Differences, sampling, between sample

means, <51-453

between sample proportions, 391-

395

Direct probability, 306, 325

Discrete variable, 164

compared to continuous, 163-167

Dow Jones Averages, 694-699, 709,

729

Eisenhsrt, C 3lln

Equal distnhutiOD of ignorance rale,

and Bayes’s postulate, 311, 317

and dating cumulative data, 62S

and impliat assumption in infeN

enccs, 326

and least error vahie, 189

Errors, balancing Type I and Type II,

378-379

m mfereoee ratios, 293-303

reduction m, by association, 481-

485, 67M77

INDEX

Errors, reduction m, by increasing

knowledge, 6-7, 10-12

rounding, IIS-II?

sampling, determinints of, 68-70

Type I and Type II 378-379

Events, m probability, J25-I33

simple vs complex, 125

Expected value, and anthmetic mean,

153

ExpertmefitatiOn, m acqumng knowl-

edge 17-18

in mlyiing associations, 4S7

Extrapolation, 499, 602-603

Etekial, M . 53In, 678n 579

Factor analysis, 576

Factona), in binomial calculations, 132

Factorials, logarithms of, table of, 739

Federal Reserve Board Index of In*

dustria! Production, 596-597

Flsh«, R A, and s' transformation of

T, 651

Forecasting, confidence interval m,

669, 671-672. 674-687

link relatives in, 668-673

multiple correlation m, 688^
reduemg errors m, 672-677

Forecasting range, 667-688

five-year range. 684-687

long-term range, 687-688

ooe-monlh range, 668-677

me-yen range, 679-683

eiz-montb range, 677-679

Fox,K A.S31tt,578n,579

Frequency senes coin tossing expen-

ment, 201

construction of 208-236

and criteria for mtervals, 222-22$

discontinuities m, 228

gaps in sample data, 208

hardware store safes, 205-222

interpolations m, 236-237

himpmess in, 228

ehapeaof 190-192

amoothness in universe, 220-222

Frequency senes calculations, 240-256

and equal intervab, 244-245

and open ends, 245-246

antbmetic; mean, 240-246

average deviation, 245
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Frequency senes calculations, kurto-

siB, 254-255

median, 248

median deviation, 249

percentiles, 236-237, 247

quartile deviation, 246-247

range, 247

skewness, 252-253

standard deviation 240-246

Frequency senes charts, 228-236

cumulative, 229 232

histogram, 231

polygon, 231

Galton Sir Francis, 505

Gaussian distribution, see Normal

distribution

Geometric mean, defined, 295

and average of link relatives in fore

casting, 670-671

and average value of investment

fund, 19^199

and index numbers, 714-725

Glasser, G J ,
427n

Gross National Product, current vs

constant dollars, 732-733

Group, as standard of comp&nsoa,

692-694

Growth theories of, 592-595

Hald, A ,
737n 739n, rear cover

Harman, H H 576n

Harmonic mean, 192-194

Hartley, H 0 , 159, 760n, 774n

Hts'tay.iA KjSUw
Homoscedastic distribution, defined,

536

How often, knowledge of, defined, 31

Hypothesis defined, 46

HjTJothesis, null, defined, 355

Hypothesis testere, routine, 369-379

Hypothesis tests, see o2«o Errors

alternative models for, 449-450

and differences m sample means,

451-453

m correlation analysis, 550

routine for, 367-380

Independent variable, 491-492

Index, numbers, averages m, 711-713,

716, 72^726

Hidex numbers, averages m, and dis-

tnbuCion of data 713

and offsetting biases, 713

factors ID choice of, 726

base period, 705-708

and normal period, 7(K

and recent penod, 708

and unit of measure, 706-707

base reversal test, 713-718, 720, 723

consumer price index, 694, 701

for, dating of samples, 702-703

homogeneity of, 700-702, 731

location of samples, 7/S-704

sampling problems of, 704-705

weights 709-711

djqjersiQD within groups, 729-730

Dow Jones Averages, 694-699, 709

729

factor reversal test, 717-725

price mdexea, 695-726

problems m construction of, 695

purposes of, 695-698

quantity indexes, 720

revifflon policies, 729

U£ Bureau of Labor Statistics, 701,

703, 704, 705, 710

wei^ts, 709-711

Ignorance, defined, 36

relative reduction m, 8, 10, 11

Iporance. equal distribution of, tee

£qua! distribution of ignorance

rule

Indifference point, in decision model,

381

related to cost of addibonsl evi-

dence, 382

related to sample size, 381

Inference, see Bayesian inferences, de-

fined, I, 262

flow diagram of chain of reasoning

for, 284

Inference disbobuboii, Bayesian, 311-

338, see Bayesian inferences

binonual, 282-305

defined, 283

illustrated, 285486

of differences between universe

means, 453-455

of differences between universe pro-

portions, 397-401
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Inference distrtbutioQ, of differencea

between uoiverae proportions,

binomisl 397-400

nonnsl, 399-400

of zaeina of Kcond sample, 414-423,

46M62

of universe mean, 42W51

bf percentile equivalents, 429-434

bf DonnsI curve, 434-43S

by t distribution, 438-448

of universe proportioa, by binomiil,

2S2-305

by Bayes’s theorem, 31 1-33S

by normal curve, 343

of universe rtand&rd deviation, 4fa-

475

of ujuiersevsnsnee 462-455

Poisson, 339-340

Inference matrix. 28S-2S9, 294-295,

30(W02

ideal, 30(KJ02

Inference ratio see aito Probability

accuracy of and sample sue, 302-

301

defined, 233

Inference ratio vector, JS7-293, 297-

300, 423

average, 2S7-2S3

compared with probability vector,

297-300

Inference theory, logic of, 3(B-306

summary of, 337-33S 425-429

Inference tree, 266, 26S

and Bayes's theorem 313

and inferences about umver^ pro-

portion, 290

Insufficient reason, rule of 189

Interpolation, m association analysis,

490

in frequency senes, 236-237

m probability calculations, 432

Ib\ erse probability, 306, 325

Joint correlation, 577-578

Joint probability, conditional, m
Bajes's theorem, 315

defined, 177

m pooling inferences, 403, 455

Kecaeny.J G,172a
Kendall,M G,103,5Cen

Knowledge, amount of, 34-33

conscious vs subconseious, 40

types of, 2M4
Kumow, E, 427n

Kurtosis, 254-256

Law of rare events (Poisson), 158

Lead-lag analysis, 6(M-605

Leap day, adjustment lor, 613-614

Least error, and dating cumulative

data. 628

and hne of relationship, 553

and median, 1S7-IS9, 202

Least square error, and snthmetic

mean, 202-203

and line of relationship, 534-537

and plane of relationship, 568-571

Lees, H
,
575n

Leptokurtic distribution, 255-256

Line of relationship, 500-502

and conditional means, 500-502

and existence of two lines in asso-

ciation analysi*, 509

and risks of extrapolation, 542

and uneondilional means, 514

eonfidence intervals lor, 514, 542-

544

meaning of constants m, 601

sampling errors m, 540-544

slope of and coefficient of correla-

tion. 510

Link relative, m forecasting, 668-689

in index numbers, 727-729

Logarithmic scale, explained, 105-113

in seasonal analysis, 615

Lt^antbms, table of, front cover

Lord.F M.fiTSn

Luck defined, 37

Marginal probabibty, and decision to

pool information, 457-460

defined, 315

Marginal probability distribution,

405-409, 418-419, 458-460

and distnbution of differences, 45$

mean of, 45S

related to prior and posterior prob-

ability, 407-409

vanaoce of, 418-419, 458

Matrix, defined, 288
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Mean, sec Arithmetic mean, Geo-

metnc mean, Harmomc mean

Median, defined, 187

and dating cumulative data, 628

and least error, 187-189, 202

Measurement, origin of, 97

scale of, 98-99

Mills, F C,778a

Mode, defined, 189

Model, for anatomy of time sericfi,

649-652

for association analyas, 491-519

for deciBion-makmg, 342-350

Moment, 254

Momentum, in time senes, 607

Moore, G H
,
596-597

Most probable value, 189-190

Moving arithmetic mean and moving

total, m seasonal analysis, 619-

630

Multiple correlation, analysis of, 5^
582

and bolding a variable constant 563

and net correlation, 559

assumptions of model, 566, 568

coefficient of, 574

compared to simple, 564-567

cumfmear, 578-579

equation for plane, 562-563

plane of relationship, 561

stereogram for study of, 561-562

with many variables, 563-564

Multiplication theorem, 178

Mutually exclusive events, 175

Naive forecasting methods, 866-667

National Bureau of Economic Re-

search, 596-597

National Bureau of Standards, 136n,

138

Negative relationship, logic of, 510

NondetermmstWD, eoeScieat of, 512-

513

Nonresponse, problem of, m sample

design, 78

Normal distribution, as standard, 438

compared to bmomial, 139-147, 165-

157

compared to Poisson, 155-167

defined, 147

787

Normal distribution, fitting of, with

areas, 167-170

with ordinates, 151-155

m association analysis, 491-497, 568

in inference, see Inference

maximum ordinate of, 154

models of, 140

table of, rear cover

Normal law of error, see Normal dis-

tribution

NuD hypothesis, and consequences,

453

and degree of correlation, 559

defined, 365

lor diCerences between sample

means, 451-453

Numbers, negative, 87

and ongm of measure, 86

Number systems, 87-89

Objective truHi, standards of, 352-356

Operating characlerislic curve, 371-

377

illustrated, 372

related to size of sample, 873

related to decioon boundary, 377

Ongm and measurement scale, 97-99

and shape of distribution, 438

and shortcut calculations, 237-240

Oltmen, F
,
427n

Parameter, in association analysis, de-

fined, 501

Partial association, coefficient of, 573

Partial relationship, defined 566

Pay-off matnx, 348

Pearson E S
,
76071, 774»

Percentile, 236-237, 247

Percentde equivalent of mean, and

skewness, 252-254

errota m interpolation for, 445

graphic conversion of, 43D-433

inferences about, 429-434

Perception devioefl, general character-

istics of, 56-60

Personnel selection and correlation

anal^ 55-58

Poisson probidcihties, 155-163

conpaied with binomial and nor-

mal, 155-159
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Poason probabiltUes, practical prob-

lems m use of, 160-163

table of, 760-773

Pooling information, 387-411, 45M60

and Bayes’s theorem, 4OM07

and behavior of sample differences,

391-395

and relevance of prior, margioal,

and posterior probabilities, 407

effect of sample sise, 455-456

effect on percentile equivalent esti-

mates of universe mean, 435

factors in, 39S-397

risks m, 390, 452

samples vs inference distributions,

465-457

Weights in, 390-391

with inference distribution and new

sample, 401-407, 45W57

with two samples, 391-397, 45MH
with unspecified prior distnbution,

409^11

Population, or universe, defined,W
Population, U5

,
growth in, 592-593

Posterior probability, defined, 316

interpreted, 403

related to prior and marginal prob-

ability, 407

Posterior probability distribution,

variance of, 472

Precision of measure, 114

Price relatives and indexes, 716-717,

732-725

Prior probability, and Bayes’s postu-

late, 317-319

and inferences about variables, 428

and pooling information, 401-409,

435

defined, 314-315

related to marginal and posterior

probability, 407-409

source of mfornnation about, 316-

319

Production estimates and personnel

testing, 582-584

Probability, see ako Inference

calculation systems, 13^179

Vneorem

,

indirect calculation, 176-172

Probability, calculation systems,

normal distribution, 139-155

PoiKon distnbution, 155-160

conditional, defined, 172-173

and association analysis, 491-494,

499

and Bayesian analysis, 315

cumulative, 143-144, 145

defined, 4?'-^8

direct, 306, 325

equal, notion of, 124

joint, defined, 177

in. Bayesian analyse, 315

m pooling, 403, 455

Qotalion for, 174

simple and complex events m, 125

theorems m, 175-179

addition theorem, 179

multiplication theorem, 178

unconditional, defined,m
m BssociatiOQ analysis, 514

Probability matrix, defined, 347

Probability paper, 143, 145

Probability vector, defined, 288

Proportions, as measuring device, 153-

154

inferences about, see Inference

mean of, 153

standard deviation of, 153-154

Pure Oil Company, 111-112

Purposive sample, 67-68

Quantity of knowledge, 34-36

Quantity relatives and indexes, 717,

719-722, 724-725

Quartile, 236

Quartile deviation, 246-247

Random numbers, defined, 66

table of, 737-738

Randomness, defined, 38-40

in probability calculations 123

Random sample, defined, 65-66, 123

Range, 247

Range of forecast, 667

Reciprocals, anda\erage3, 102-194^
table of, 735-736

Relationship, see Association, Corre-

lation, and Line of relationship

Reserves, required to cope with uo-
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Residual varmtioa, auto-correlatioc

m, 655-657

defined, 699

estimation of 655-657

Revised probabilities, defined, 316

Roimg, H G
,
136n

Romig binomial tables, 429

Routine hypothesis testers, 369-379

Rule of insufficient reason, 189

Sales temtones Mialysis, summary of,

simple association results, 548

multiple association results, 572-573

Sample, behavior of from a known

universe, 271-279

defined, 19

design, 71-79

economics of, 71

geographical cluatenng, 75

problem of nonresponse, 78

purposive, 67-68

random, 38, 65-68

sequential, 75-76

stratified, 72-76

systematic order, 76-78

errors m, see Errors and Inference

sue of, and central limit theorem,

42M27, 438, 446

and controlling Type I and Type

II errors, 373-379

and errors m inference ratios, 302-

303

and random errors, 6, 10-11, 277-

278

and skewness of sample means,

436

summary of characteristics of 280-

282

types, 61-78

Scales, arithmetic, 110

logarithmic, 105

probability, 112

reciprocal, 112

square root, 112

Scattergram (scatter diagram), de-

fined, 489

Scrap percentages, coutrollmg amount

of, 15-18

inferences about mean of, 444-462

Scrap percentages, mferences about

vananee of, 468-475

Seasonal variation analysis, 611-642

and calmdar variations, 612-614

and charts of TBiiOB to ajoyjng aver-

Bses, 631-633

and homogeneity of data, 611-612

md leap day, 612-614

and one-year moving arithmetic

mean, 619-628

and use of charts in, 614-619

and vestiges of seasonal m desea-

sonafiied data, 534-642

average vs specific, 642

Secular trend, estimation of, 642-648,

652-653

and logarithmic scale, 643-644

and mathematical methods, 648,

652-653

and Dobon of eras of change, 644-

645

and specific trend values, 648-652

and thcones of growth, 645-646

u gasoline consumption, 643-648

Sheppard’s correction, 241

Significance tests, 366-379, m aUo

Hypothesis tests and Errors

S^ficant correlation, 552

Significant digits, 114

Skewness, amount of in samples com-

pared with amount in universe,

425-

426

and applicability of least squares

hne, 532-533

and choice of average, 190-192

and ideal inference matrix, 300-302

and normal distnbution approxima-

Uons, 145-147, 345-346, 362-366,

426-

427

and Poisson distribution, 165-159

defined, 155, 191

illustrated, 192

measurement of, 250-254

Snell, J L.172n

Spunous correlation, 576-577, 584

Square roots, table of, 735-736

Squares, y>le of, 735-736

Stability of relationship m t^ociation

anai}^, 581-582
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Standard devutjon, and degrees of

freedom in laaociation analysts,

53W40
and normal curve, 147

bias m, in calculations from fce*

quescy senes, 241

m samples, 274-276, 47IH71

calculation of, 141W51, 239-245,211-

215

defined, 147

distribution of aamples of, 463

m association analysis, 502-503

inferences about, 46W75

value of, independent of ongm, 23S-

239

Standard Oil Company of Nj 111-

112

Standard units, in assoaation isalyau,

508

m normal curve, 438

Statistical method, defined, 1

Subconditionil probability, 173

Subuniverae, 174

Symmetncal distributiaos, il/itstrsted,

191

t distribution, and assumption of not'

mal imiiera?, 433

and inferences about mean, 444-44S

compared to normal, 255, 443, 447-

44$

table of, 775-778

explained, 446-447

I ratio, defined, 437-439
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