applications

 of probabitity and inference to business and other problemsAUTHORIZED REPRLTT OF THE EDITON PUBLISHED EY JOHN WHEY \& SONS NS NEW YORK AND LOVDOY
COPYRICHT © IGE JOHN WTLYY \& SONS, INC
All Pughts Reserced No part of thes book may be roproduced in any form without the watten pertassion a! John Wiley \& Soms, Inc

LIRRARY OF CONGRES CATALOG CARD NUMBER. 628514

PRLSTED IN IAPAN
By TOPPAN PRLNTTNG COYPANY, LTD.

Preface

The Statustical Method in Buestess is prumarily a basse text for an mintroductory cource in business statistics The material bas proved sutable for undergraduates, primarly jumors, and for firstyear graduate students The book is also adaptable for a course in econome statistics

The point of neew is expressed by the subtitle, Applications of Probabilty and Injerence to Business ond Other Problems The statistical method is seen as a unfied body of thought coneerned with the basto human problem of uncertamty and the corollary problems of riki taking and decsion making . Tbe emphasis throughout the text is on 0 method of thought rather than a collection of methods, or a collection of meohanical tricks of the trade
The spint of the book can be best expressed by saymg that we continually ask questions that we cannot completely ansuer Thus seems to be a perfectly logreal result of any serious investigation of \% methori nt dealug with nreertinoty It would seem enatradnethry to be certann about how to deal with uncertanty Such a spirt has a price The reader will often feel confused and frustrated, and ne hope that such feeljngs are a consequence of the mherent nature of the problem rather that the uncertanty of fuzzy prose

Partailly to compensate for the duffcultues unherent in the subject matter an atternpt has been made to minmme the role of those parts of the statistical method whoch trouble begroning students but which esuse no trouble in practieal problems We really know how to calculate many things in many ways It is a chore to learn these calculations, hoxever, and difficulties with thes chore can easily dstract a person from coming to grips with the more fundamental diffioulties of the general philosophy of the statistical method Therefore, the mathematucal demands of the book are quite modest and can easily be satsfied by the entrance requirements of most colleges
Controversy about how best to handle problems of uncertanty $1 s$
 that molve the underijus philosophes gunding people in their wse of the staturical method Some fed that centrovery does not be. long in an antroductory trestment. Our feeling is quite the contrary. Woot students get onip an entroduction, and, it the stroduction is uruized of all the conilicts that plague and whahe the subject, the studeat ns eitber being ted pap" or he a beng modoctrinated In enthet care be is ill-ptepared to handle any of the mefectious adeas he ulikely to be fed when the leares the echethet of the textbook.
Although our orentaion is promanily toward burgness problems, we try to take maxumum adiantage of the veratility of the statistical method by introducing many concepts in a nonbusiness setting We thus draw on the gereral expenence of the reader to clarify an dea before te attempt to apply it to relaturely strange busaness situations.
The reope of bustaces statistes has grown subutactally m recent sears The prohiferation of specialued technuques and spplications has expanded the maternils well beyond the space immity maposed by the cypesif course and book. The advent of the electronic computer promuere to accelerste this prolferation More than ever, therefore, We must leare out fracy topics that rould be essentia! in a more erctaded coverage For example, we have substantally reduced the space devoted to collechon of dats tables, and charts Thas reduction intends no discountring of the practicaf atguficance of these topios it mersh refecto our judment that these topics can best be bundled elverhene
The orousion of some traditonal topies has made room for other thang The most asoubcati of these topers are

I The etatustual methos as preseated as sn integral part of the whole process by which human beings sequire and use bnowledge Euch a precentation provides a realistic appranal od the role that can actually be played by the etatustical method
2. a chapter is devoted to the problem ol pooing accurnulated knonledge with new mformation it as here that re make an sequantance nth "Basestan anablars," as it is currently called
3 A chapter is also devoted to the problem of making inferences sbout future samplas from information supphed by past samples This is the genera/ probletn of ufereoce that makes special casea of the tho traditonal problems:
2. Inferesces about a simale from a known universe
b Inferences about a unverse from a knos sample

4 An introduction is provided to an approach to time series forecasting that develops a rational base for explicotly estimating the degres of uncertanaty involved in a forecast Traditional analysis results in forecasts mith undetermined error allopances

Our approach to statistical inference is auficiently dufferent to warrant mention here The approach is bascally pragmatic We stait with a known unverse (We choose to use attribute data rather than the customary continuoua varables because of convennence of exposition and also because attribute data bring out losues that get lost when we use continuous variables) We thern generate all possible random samples from this universe Each sample is used to make inferences about the mean of the unverse as though we did not elready know the mean All such miferences are then analyzed to see if they make sense in view of the known facts We are next led step by step to a method of making inferences that seems to work reasonably welJ This process confronts us with the phlosophocal and practical 1 m plication of Bayes's theorem and Bayes's postulate that the "equal dastribution of agnorance rule' is applicable to the problem of inference We obtain an inference method that as fundamentally Bayesian with a slight modification in the mecbanics of cafoulating probabilities
The problems and questions at the end of each chapter are designed to supplement the text in addition to guining the student in his evalua. ton of how well he has grasped the mann features of the exposition Generally there is only one problem or question of a gaven type It 15 relatively easy to make varations to provide any desired degree
 eto Some of the problems anticipate materal of later chapters Other problems tend to go beyond the text coverage
Most of the problems are not practical in any real sense Practical problems become quite complex and molve many issues other than the statustical ones The problems are gemerally not trimal, however Their solution has practical signficance to real-life problems Some of the problems are "for fun" Statisties is not an easy subject, and any opportunity to have fun or make fun beips constderably in the struggle

The material in the book 12 more than sufficient for a one-semester or one-quarter course with minor supplementetion and/or with more intensive coverage of problem materials the book is sufficient for two semesters One very useful way to supplement the text is to assign students special projects to give them personal expenence with real data A very popular project requires eacb student to forecast
the egles of some corpans, say, by quarters for the next year and then by sutual totals 2 years henec, 5 yesrs hence, and 10 years hence Such a propet is much more challenging if the students are required to atate ther formests ath a mesnagiul error band and with come pereentage of confidence that the actual will fall ruthon the stated band The struggle to act meaninglul and defensible errot bands is ver educational and also quite sobenng
Vot of the matenal of the book has been uted in some way with mant students In fact students lase stmulated much of the deaclopment becauec they ineigted that they uodentand what they, were dous and wh they were doing it I am happy to acknon ledge my indebtedness to the more perserent of the students which 1 am sure sill durpriec some of them
Students are not the onls person* who have helped me Professor Abert Bennett at Broun Unocerity firet stmulated my interest in atuteties and Prolessor Arthur Tebbutt nurtured and sustaned this intereat fird at Brown and sub-equently at Northrestern Several collesgues have contributed much to my understanding of statistics and of the many prohlems of practucal application I feel particularls indebted to Arthur Auble John Dilligger Loring Farnell Zenon Walnoseh John OMell and Zenon Szatroncha
A special debt crists to those who kundly gase their tume to read vanous parts of the manuscript with entical care Foramost among these have been Borss Parl and Dirk Van Alstyne of Northrestern, Wilham Clarey ol Bradley Unnersity Yorris Hamburg of the Umsneratt of Pennay hama and Eugene Lerner of City College of New both
I aleo mah to thank Deans Donham and Andereon for making it poabibe for me to hive the umbterrupted time needed to put the finishong tourhes on a labor of many jcars
Finally there sre those persons whose belly over the vears has been *o uncinting and peronal that it would be unduly entursental to say more than juct thanks By mamag nonc, I mean to include all

Fianston Illinots

Frederick a Exeblad

Apmil 21, tate

Contents

chapter 1 The Nature of the Statistical Method 1
2 Some Fundamental Concepts 24
3 Sources of Knorledge 57
4 The Use of Numbers 86
5 Elements of Probability Calculations 123
6 Sone Useful Analytical Tools 185
7 Mahing Inferences About the Unknorn, or the Problem of Intelligent Guessmg 262
8 A Theory and Method for Mahing Inferences About the Mean of a Unverse from Information Suppled by a Random Sample 310
9 Inference Ratios as Ingredients in Planning and Decision-Making 342
10 Pooling Iniormation 387
11 Inferences About Later Samples from Informa- tor About Pror Samples 414
12 Inferences from Information Expressed as a Con- tinuous Varisble 425
13 Redueng Uncerianty by Association The Prob- lem and the Model for Analyss 481
14 Reducing Uncertamtr by Assocation Apphce- tion of the Model to Practical Problems 523
15 Reducung Uncertamty by Association Multiple Correlation Analysis 559
15 The Problem of Changes Over Time 586
17 The Anstomy of an Economic Time Senes 609
18 Forecsating an Econome Trme Series 665
19 Index Numbers The Comparson of Group Char- actersucs 692
appendus A Squares, Square-Roots, and Reciprocals 735
B Random Samping Numbers 737
C Logarithms of n l 739
D Bunemisl Distribution 740
E Cumulative Binomial 750
F Poxson and x^{2} Dietributions 760
G Cursulathe Distrbution of t 775
H r V'alues for Given z^{\prime} Values 779
Index 781

The Statistical Mefhad in Business, applications af probability and inference ta business and ather problems

chapter
 The nature of the statistical method

The statistical method has been called many thinge, wo choose to call it a method for making inferences about unhnown events on the basis of a systematic analyss of past experence Inferences are simply guesses dugnofied by the proor exerese of logical thought, undignified guesses can sometumes be just as effectne
We make inicrences about the unknown rather than the hoona sumply because it $1 s$ our ignorance about an event that forees us to guess Since there is much that we do not knom about all the problems that beset us, we find ourselves contmually guessing We ei en guess about something we could know if we took the then and trouble to learn We apparently enjoy guesong Otherwse how do we explan the widespread popularty of ganmes of chance, games that we have created in order to make guessing synonymous with entertamment? We have no shortage of opportunities to apply the statistical method, our shortage is more of effectise techniques and in a millingness to apply the technques ne do have
The statistical method makes inferences from past experence or from hoowledge about past events becauce that is the only kind of experience there is We have no crystal balls that enable us to see future elents before they happen Hence, the startung place for all inferences is some record of the past It is understood, of course, that no inference is any better than the quality of the histoncal data on which it is based
Although it is more common to them of "infermg the unknonn" in the context of the pact and the future, we find ourselves dealing whth many problems in rhuch the "unhnorn" is a current fact (to somebody) or in which the unknown is itself some historieql event For example, when re play cards, our hand 15 known to us but unknown to our opponents (unless they peck) Thus they must make
fecrions bsed on gutaret about our hatd, jush wa me must make lecrags bated on gueses about thens Smalaily, buanessmen muat nate gruaces about the resources of thent compelitors, and nee versa The polite detectre inverigatog a crme must male guesses about he copposs eveats that hase alcoady oceumed a jun may have le sare problem at a later date
Alhough the siatisuteal method is of mideaprese applicabilty and has mod features that apply with equal force regardless of the area Jf application, we put much grester emphssis on appheations in the busness ares This emphans becones more poticesble in the later thapters The earlist chapters are dommated by our efiorts to uncouet the fund amentis of the atatugeni method, tundamentals that apply to all forts of problems Thus out illustrations tend to be tomerhat inned, with the particular hope that they sefer to events that have alreads come inta the expenences of most of the readers

1.1 A Simple Game

Games car be fun and also nformanve, particulaly when they reveal the problems of gueseng in ther starkest smphietty Let us look at a sches of games of meressing complexity in ordef to uncover: many of the essental features of the challenge to the atatatices method
The game is played ath s conventional deek ol playing cards Sult dees not count in the game The deck is knoum to contan four
 four 13 a (kings) The method of play is as follows.

I λ pisyer swlets any oumber he nushes and placea a wager of $\$ 100$
$2 A$ eard o dnon from we deck If it it the number be selected, he wing $s 13(0)$, waluding the si be ket If it is wot his number, be bees bus $\$ 1$

The problem is uen sample, namely, the detemnation of what number to call Since wa Enow what cards are in the deck, all tre have to be concerned, w what catd uill be drawn ouk at any
 cand will be dramy The es prest and quorkest ray se to not try to find out and to ate bs ith we do not know whith of the thrteen catds whll be drant by thas lise of reasoning, we notuld deende that becanse ne do nat krom wheh cand will be drann, we nill asoume that esch cand has the same chace of being drawn O_{5} in
other words, we would assume that in a long series of drawngs, each of the thrteen cards would have been drawn about the same proportion of times as each other card It, therefore, really makes no difference to us wheh card we select
On the other hand, we may decide to "smarten up" by studying the drawing process and its results Let us first consider the results of some drawngs Let us assume we have observed the results of 45 consecubve drawings " (Fach card is replaced aiter it is drawn, and thus the deck ws the same for each drounng) Table 11 lasts the results
What can we find out from studying these results? We might first ggnore the order of drawing and count the number of times each card was drewn Table 12 shows the results
The most jnteresting feature of this experience $1 s$ the large number of 7's and 8's and the few 10's and 12's The queston is whether this expenence pust happened as it did and has no practical sumpscance, or whether it suggests that perhaps some of these cards have higher chances of being drawn thain others Unfortunately, there is no way to gave a definte anawer to this question We must talk entirely in terms of probabulutes For example, even if the expectathon were that these cards would come up equally often in the long ruth, we know that they wouldn't come up equally often in only 45 dramings The question really is whether it is reasonable to tolerate as many, say, as seven $8 ' s$ in 45 drawings and still belneve that the chances of an 8 are no better than any other esrd or whether we should decide that this is enough evidence to justify the beinef that 8 whil toine up more oftir in the 矣ture henanae it hag some up mare often in the past (or at least during our experience of the past)

Before we can rationalize such questions we must estimate the probabilities that certand thangs could happen if certan condrtions prevalled Here, for example we might start with the assumption

TABLE J]

Results of 45 Drawings from Ploying Card Deck
(Replacement of card after each dreming)

8	\rightarrow	$\mathbf{7}$	13	5	4	10	13	6	7
5	3	1	6	1	3	3	8	4	7
1	6	4	8	8	9	7	8	9	1
7	2	5	9	2	8	5	8	7	12
2	11	1	11	7					

1ABEE 1.2

Number of Timas Each Cord Was Drawa in 45 Drawings

Card	Frequency
one	5
two	3
three	3
four	3
five	5
818	3
selen	7
ught	7
nue	3
ten	1
eleven	2
trehe	1
thattea	2
	-
	45

that the conditions rufrounding the card drawings are such that esch card does hase the tame chance of beng dianm as each other card If this is π_{0} the probability is only about 1 out of 50 of getting as many as seven 8^{\prime} s an 45 draniags (Hon to calculate such probabulsthes is drecused later) This aeems unhaly enough to cauae us to rusert that perhaps the acsumptoon is not correct Perhapis ae should acoume that the prohability of an 8 w greater than for the other cards (mith the exception of the 7) On the other hand, the probabilts is about 1 out of 4 that at least one card will come up 7 or more tumes in 45 dramings Here, the card "happened" to be an 8 and a 7
We could cals we the poosbinues $f+$ other possible assumptions, but it is cot mportant for us to do so now it is more important for us to look briefly at the problem of deeiding what meaning ae shodi attach to the probabilitues ine have alread calculated To do thas most effecturely he should formalize our deernptions a lutle more Firet, let us write exactly what we knots about theoe card dranngs Ne lnou tbat

1 Each eard eruta in the deek the sarme number of tumes as each other card.

2 The cards are numbered 1 through 13 (there are no 26's, etc),
3 Forty five consecutive drawngs resulted in the numbers shown in Table 12

Unfortunately, we do not know enough about the cards to be able to tell exactiy what card will he drawn next Hence we must supplement our knowledge whth some behef, assumption, or hypothests But, we might assume all manner of thogs How do we decide what hypothess we should really adopt? The most important ennterion in judging the quality of an hypothesis is that it must be consustent with the facte This criterion aeems obvious, and that it is It is, however, the kind of ohvious thing that we need to be contmually remunded of We all have a terdency to retan hypotheses that have grown dear to us even when the fects no longer support them

We test the usefulness of a hypothess by calculating the probabuluty that the gwen factual events could have ocourred of the hypothests were true For example, let us set up the bypothess that the cards are equally hely From this we calculate by standard procedures (discuseed in laten pages) that there are only two chances out of 100, or 02, of getting seven or more 8's Suppose we decmde that only 02 is very rare in our judgment and that the facts are inconsistent with the hypothesis Ohviously, then, we discard the hypothesis, or behef, because we must retam the facts But possibly we do not think 02 us very rare, and we are perfectly willing to continue to accept the hypothesss on the grounds that the occurrence of as many as seven 8 's was unst a "matter of chance" Of course we might deode this ether nay and ether way might be correct To heip us decide we have to determune hov important the 0218 to us Suppose we conclude that our hypothesss was wrong, namely, we conclude thst the chances are greater than $1 / 13$ of getting an 8 Naturally we would now bet on the 8 What would this polcy cost us if, in truth, the chances of an 8 were no greater than $1 / 13$? This would obviously depend on the conditions of the game If the 8 Were paid off at the same rate as all other numbers, snd if the 8 had the same chance as all the other numbers, and if we always played the 8 begause we ersoneously belseved the 8 were more lakely, our erroneous belief costs us nothing
If, on the other hand, we pay more for an 8 because we believe it is more likely, and if, in fact, it is not we would be paying a penalty for our erroneous behef
Let us now summanice the kad of policy we might adopt for pleying this game in the light of what we know ahout it and of what
ate ongt: choore to guese or hypotheaze lie would definitely thase 8 (or i) as long as we do not hare to pay a premuma for the a chace onc: ofer numbers We do thas because the facts (eeven 8 en 45 trala) suggett to te that there is a greater chance fo- an 8 than fo mort of the other numbers Eien if we are wrong in th s belief thas decision corts us nothing becauce एe are quite wret that the chances of an δ are on the eudence no lower than for anv ohe number Thus we hare nothosg to lose by choowng \& and we ment hare comething to gain This $1 s$ obuoudy a very good perituon to be in for any stituation
But lat us esppose re have to pay a premsum to play 8 How I 直 a prounm now we be willing to past If preased of courae, we would be willing to par as much as we thought it were north The matht behere for exsmple that enne $\$$ has occurred more than trese a often as coost of the numbers pe would be milling to Fay teree as much for the pavilege of chooung it The point 15 ren ample People deade thangs according to what they beheve to be trite Trear wucceses mall gencralls be direetly related to how conely thel belvels are conestent with the facts But we are never able to tert how well a beltef concides sth the facts except on a probabulity base Thus we are alasars becet with uncertanty
He tave delberatelv aded questrons to wheh there is no defins the anomer The come up therefore mith no defintive anster But we are not doing thes juct to play games The estentiol characterste of all procturel problems is that they do not have defintuve cersers But they muat be deall with as though they do have aswer heace we muct choose an angwer based upon what we belcte ard ne lope that that we beleve 15 conontent with the for's Although we hope neres to elmmate all conifution becsuae to do so nould be to throw the problem away too, we do hope to uncoter astemstic ways of working ourselves through the confusten in euth a manoer that we will at lesat be conlused about the nate thing
Vore of an eflort maght rave been made to gam additional hnowledige about the game and is recults, and if there efforts were eomerhat ruceeseful there would be leso uncertanty For example, why stop at 45 sample deamings" Whi not make 100 or 1000 ? Why not indeed, There as no quertion about the fact that more drawnas mi promde wore information and would enable us to have more confidezer in our vlumate relectiona But additional drawings take additoonl tume and time is cooth Somerhere re have to *op *udurs a problem and atart alung it. Where thas point
sbould be is a matter of judgmeat agam, but there are ways of assessing the situation to gurde us in exercisong this judgment. Such ways are also discussed in later peges

We should mention tbat additional things could be done to gam more knowledge other than juat adding to the number of sample trials For one, we could examne the trials we already have to see if there is any evidence of systematic order to the numbers For example, were there more large numbers near the end of the trals? Was a large number generally followed by a small number? And so forth There 18 almost no end to this aort of analyss

Anotber, and quite dufferent, thing we mught do to gam more knowledge about these card drawings is to atudy very carefully not only the results of the drawings but also those otber things that were going on while the drawings were being made For example, was there any relationship bebween the number of tames the deck was shuffled and the number drawn? Between the distribution of the bets and the number drawn (maybe a certain amount of 'cheating" is going on)? And so forth It is likely we could gain increased knowledge by such assoctation of one thing with another This is something we discuss at considerable length later, however, we have to ignore this method of gaming knowiedge in this problem because we are given no information on those things that might have been going on during the drawings

1.2 A Liftle More Complex Game

Simple as the last game was, we managed to run into trouble as we tried to figure out a pohcy to help us choose a card Even though we knew exactly what was in the deck, and even though we had the experience of 45 drawngs, the nature of the problem still left as whth some uncertanty about hos often we should expect a gven card to be drawn We saw the posshility of several different policies we might adopt in choosing a card, hut no policy we could select gave us any assurance that st was the best policy
Now let us make the game a little more like real-life problems and therefore more complicated We now consider the same game, but without any knowledge of what is in the deek All we know about the deck is that there are 100 cards in it, and each card has a number of any saze whatsoever on it Our problem 18 still the same as before, namely, what number will be drawn? But now we have no way of predicting what will come out of the deck based upon what
: hoor it in in So let us move mmedately to the consideration tow we nould interpret sn" expenente we might have with eards It we mught have obe ereed be no dram
Suppose the fime card dama is a 17 It is then returaed to the ti What momber nould we eclect for the nest draming and hou ath conf dence nould we have no our selection?
We would have to select 17 oo the apple argument that that 13 Conh number that we koow is in the deck Ans other number : efletmas notecen extet
Hon mech eonderese should re hase an this selection? This de nts on hon many 17 s se thinh there are on the dech Our preemt :onidere indeates there mas be any a here from 1 to 10017 s For is reanon ae nould heatate strongly to bet naything on our choice 1^{1} unless ne nere paid oft at odds of at least 99 to 1
Lat us quekls vummanze the progress we have so tar made in un ng hnonledge shout the eards that might come out of this dech fore he had eeca any card we nould have to sdmat that our tonlederenas al or 0 of cons evely that cur sporance sas infinte somerbody had arked ug ahat se thought the probablitit ras of sumes as a 23 ae nould have had to admot that is far as ae len it nas somenhere betreen 0 and I But non that ne have en a 17 ne have reduced our gnorance somenhat We could now - thrt the probabilit of a 17 is somenhere betveen 01 and 100 that the probability of a 2315 somenhere betreen 0 and 98 If : wheded to express this decrease in ignorance mathematucally se uld eas that haonledse of the 10 has ensbled us to reduce our norance from a range of 1 to a range of 99 or a reduction of 1% low let us dam another card Suppose it is agam a 17 What es thas well us" It certa nly does not tell us defintely that there eat have tro lis to the dech because we might have dramn the me 17 s gan On the other hand in it reasonable to assume that : have dramin two 17 sin a rex if thete 15 only one of them in the ck' The probablity of wo 17 s in a ron if there is only one in ? dech is ond 01 X OI or 0001 or 1 oat of 10000 This 18 such are erent under the hapothees of only ore 17 that we may cecide ryect thrs hy pothesse in favor of one that mould make tho 17 s a pow appear to be less rise For cxample ne meght assume that re are ten 17 an the deek If tha were wo the probabiluty of two a row rould be 1×1, or bi Thas stal is not very often but it tainly 14 considecably mote often than 0001
H cource ne could make many different assumphons about the nier of 17 a 3 the dech Ereh assumption rould make it juseblele
for us to calculate the probability of drawng two 17 's in a row Table 13 hsts some of such assumptrons and their associated probabilities Which assumption should we adopti Agan we discover that it depends on judgment about what is at stake To make the situation more concrete, let us assume we are offered the following chorce of wagers If we select 17, we would be paid off at 9 to 1 if it came up on the third draw On the other hand, if we selected "not $17^{\prime \prime}$ and 17 did not come up, we would be pard of at 1 to 9 What bet should we take? Obviously, if we believe that there are at least ten 17's, we take the first bet, if we think there are fewer than ten 17 's, we take the second Or perhaps we are so confused that we do not wish to take eather!

TABLE 13

Relatronship between Hypothesis about the Number of 17's in the Dack and the Prabability of Geting Two 17 s in a Row

Hypothesss No of i7's in Deck	Probabslity of Two l7's in a Row
1	0001
2	0004
3	0009
4	0016
5	0025
6	0036
7	0049
8	0064
9	0081
10	0100
11	0121
12	0144
13	0169
14	0196
15	0225
20	0400
25	0625
30	0900
40	1600
50	2000

The last decison of tahing no postion 2s, of course, perfectly proper We have in effect deexded not to play this game The deerron to aspud a "dectson" ts one that all of us make many tumes a day in all eorts of problem stuations Sometimes it is the proper thing to do, other times, howeret, it is indieative of an unmilhigness to face up to a problem that as gong to be decided one way or another whether we parcicpate in it or not Also there is the fact that we will percr really give ourselves a chance to make a correct decision, of ary consequence unleng we are withing to take the nsk of making an meorrect decision There is much truth in the old proverb nothing ventured, nothing ganned" All business decisions are made in a context a hich euggesta the postbility that the decisson may be wrong We fust hope that on the average our decisions are based on correct by potheets often enough to reeult in a reaconsble net profit for the company
Let us decode that we belreve that there are at least ten 17 's in the dech Thus means that now we thulk the probability of a 17 on the next dranang is betreen 10 and 10 Note that the range of our uncertaints sbout the probability of a 17 is less than before the efeote 17 was drawn Then $t \mathrm{was} 01$ to 10 , now it is 10 to 10 , or 909% less Tbus the hnomledge gamed by the second drawing cnabled us to reduce our grorance another 909% (We should also note that nos we would cstumate the probability of a 25 as somewhere betseen 0 and 90 mstead of between 0 and 99)

When could we be sure that we knew the probability of drawing a 17 ? The antrer is that we never could More drawings would enable us to decrease our maorance, but re could never really reduce our genorance to zero, although we mught get very close to zero Table 14 gines us some dea of the rate at rhich additional drawinge would decreate our ignoramee about the probability of a 17 Thes table assumes thist ae keep getung 17 's This assurnption makes it consuderably easier to make the necessary calculations to illustrate the pro mple, aty other assumptions could be made
Figure 11 shoms the materal of Table 14 in grapho form Here It is quite easy, to see that the rate of reduction of grorance dechnes rather substaniulls after about 20 trals In other nords, a law of immohing relums sets in, adeitional investment of time to gam nore knonledge results in a smaller rate of return There would some a tume, of course, in any practical atuation where further intestment to increase knoaledge rould not be justified by the return

TABIE 14

Rate at Whrch Ignoranee abast the Probabilify of a 17 Is Reduced by Adddional Drewings
(It is assumed that a 17 is drame each tume)

Number Of Drawngs	Estmated Prob- ablhty of a 17 on the Next Draw	Rarge of
0	$00000-10000$	10000
1	$0100-10900$	9900
2	$1000-10000$	9000
3	$2154-10000$	7846
4	$3163-10000$	6837
5	$3981-10000$	6019
6	$4642-10900$	5858
7	$5180-10000$	4820
8	$5623-10000$	4377
9	$5995-10000$	4005
10	$6310-10000$	3690

$10 \quad 6310-10000 \quad 3690$
$11 \quad 6580-10000 \quad 3420$
12 6813-10000 3187
13 7016-10000 2884
$14 \quad 7196-10000 \quad 2804$
$15 \quad 7357-10000 \quad 2843$
16 7499-1 0000 2501
17 7644-10000 2356
$18 \quad 7743-10000 \quad 2257$
$18 \quad 7847-10000 \quad 2153$
$20 \quad 7943-10000 \quad 2057$

25	$8318-10000$	1682
30	$8576-10000$	1424
40	$8913-10000$	1087
50	$9120-10000$	0880
100	$9550-10000$	0450
500	$9908-10000$	0092
1000	$9954-10000$	0046

*The probability band is estimated such that the lower lumit would lead to a probability of 01 for the given sequence of 17 's For example, the probability of 1217 'sin a row is 01 if there sre 6817 'sm the deak

 additionaldamigns

13 Comparing the Two Games

Ilefore we mitroduce a thund game let us brefly summanze and compare the problem stuations created by the tro games so far dreen ed
firt ae note that our dection problem was bagcally the same In both eases nameln we had to select the number that we thought nould oceur in the next dramg In netther case did we hoow what nould oceur
Second we note that in both cares we became concemed with hor ofth we thought a green number mimht be dramn In other words we became concecmid with the probabity that a green number nould occur on a green dran
Thurd we note that the real difference betueen the tho games shoutd up athen we tned to ectumate the probablities of any grean rumber occurring In the first game we hnot what wes in the dech
(From thu hnow ledge we nere able to directly estimate probablitics

Some people might say that from this information we would hoow the probabilities We prefer not to take thas position for reasons that are brought out later In fact, we also looked at 45 trials from the first game This additional information, although very nelcome, caused us to have some doubt that the probabilities inferred from the cards m the deck were exactly the same as the probabilities we would infer from what ne had observed come out of the deek Therefore, let us not forget that we had some uncertanty about wbat the probabilities were that a given number would be drawn

Our problem of estmating the probabilities in the second game were much more senous however, than they were in the first game because we knew absolutely nothing about what was n the deck except insofar as $\pi \in$ could infer what was in the deck based on our experience π th that had been drawn out of the deek The greater uncertanty considerably complicated our problem of deciding on a definitrye polley for selecteng a number to bet on

1.4 A Third Game with a Little More Complexity

Disconcerted as we may feel because of our uncertainty about That strategies we should employ in the two previous games, we now have to accept that there is even worse to coine

The third game is exactly the same as the second except that now we are gong to play a game in wheh the deck is changed after each drawing At no time do se know what is in any deck, and at no time do we know if the succeeding deck is the same as or different from the last deck For example, if we get a 17 out of the first drawng from the first deck, we have no assurance that the second deck will even have a 17 gn it Similarly, we have no assurance that the second deck does not have all 17 's
Just so we may more clearly appreciate the enormaty of the problem now facing us, magine ourselves sithing down to a friendly (?) game of bradge played wth an unknosin deck The only anformation we could obtain about the dock is wbat we are able to observe and remember as the hands are being played And to make it worse, the physical deck is changed after each deal and we do not know whether the cards are the same as before, bigger than before, more hearts than before, etc Also keep in mind that, while we were learning by experience, we have been bidding and playing just as though we knew what we were doung!
Considering the challenge that most people belneve the game of
brade to be under its present rules ol a droten and constant deck, inagne the challenge of the game with an unh nourt and possubly thatong deck A first reaction probably is that such a game would be ampossble, and no ordinary prople could or would play such a game But let us analyze the stuation First, let us note that all the plasers are presumably equally ignorant We would not be playing aganst gomeone who necessanly knew more than re did The other person expenences the bame thinges of fear as we do fis guestes are just as mald as ours. As soon as we realize his predicament, we are not quite so upset about our predicament. We may even have room in our heart for compassion for that other personl
The third game brings to the forefront one of the most significant features that prodominates in many practical stuustions, and that 19 that how much re know about a situation is often not as important as hon much we hnow compared to competitors In lact, it is a commonplace obscr ation that if a busmess is easy to learn, in the zense that ne feel as though ne know what we are doing in auch a business, many people enter the business The resulting eompetition makes it no easer to make a profit than if we had gone into a more diffeult buanness, where the diffculties served to reduce the number of poople who thought they knew somethag about it.
If we grant that there may be some sense in playng euch a game, the next question is to determune how ne go about gaining as much knoaledge as possble as the game proceeds The answer is very ample We anslyte the results of the game as they untold We relate the figures to each other to try to discover any system or pollem that may exist As ne think ne have discovered such patterms, we begn to incorporate them into our deciston-making rules If ne can duccoer patterns sooner than our competitore, we will gan an adsantage If, on the otber hand, we act on patterns that are not really there, we mught find ourselseg at a dasadvantage
Hon se proced to analyze expeneace in order to abstract most eflectuely any systems or patterns of behavor is the challenge of the remainder of this book There are many routne procedures which re can follow that expencnee suggests will generally be very helpful Such routines are explained and discussed On the other band, there is no routine procedure that can be developed to substitute for all personal judgment Our basic problem is that of unceftanty, the same kind of uncertainty; we have experienced as we treed to figure out how to play these games We can never reduce this uncertainty to eero, and, therefore, the need to exercise faith and coursge in our hypotheses will always be present. We might
express our purpose as the one of learning how to reduce uncertanty and to cope with uncertanty, rather than the one of elmmating uncertainty

1.5 A Practical Example

Counterparts of the problems of playing our third game exist in many practical situations Let us examine a relatively smple practical illustration for such analogous prohlens
Manufacturing operations often result in the occasional production of unsatisfactory umits of product Such units are then rejected and often become classinfed as scrap An excessavely high production of such scrap is to be avolded if the company is to keep ats costs under control The control of serap has two parts to it One task is to be able to identify when the scrap rate has become too higb The other task is to know what to do to reduce the scrap when it is too high The second task usually involves such things as quality of rave maternals, engneerng aspects of the production process, training and supervision of workers, etc These factors are outside the bounds of this hook We are concemed, however, with the first task, that of deciding when the scrap rate is too high

If we were to interview the typical shop foreman in order to find out how he was able to decide when the scrap tate was too bigh, we would very likely find that he hased his decisions on "expernence" His experience would have given him an idea of the capabuthes of the materials, men, and machines to produce a certann proportion of satsfactory units of product He would be unreasonable to expect a scrap rate below the minmnm cietaied by these capabilites He would have discovered that efforts to reduce serap below such a minimum level resulted in reductions in the over-all rate of production, excessive anxieties on the part of workers, eto

He also would have leamed that there would he a minmum amount of unavordahle fluctuation in the daily scrap rate even though the production process was stll operating properly

In a particular machme shop that had heen dong fanly standard work over a period of several months we found that the foreman had decided that a dariy scrap rate of 25 to 75% was satisfactory If the dally rate went helow 25%, he checked to see if the workers had become so concerned ahout producing scrap that they had slowed down thear rate of production If the daly rate went above 75%, be checked to find the cause of this excessive rate He felt that a
rate betwen 255_{6} and 75% as about nght His nttempts to pmpont the caluese of the loner and hugher rates within this range were grmeall unoucceaful Such attempts also conrumed some of his the that he could mote profitably apply elvetthere They also eruted some urritations among the workers who felt that he was getung too fuecy and war try mg to do the impossible
Our interect in the forman a problem is ecaterd on the relationshap of his expenenee to his deesion to control dably scrap betacen $25{ }_{5}^{\circ}$ nad 75_{5}° We looked at a recond of 45 days of expertence as reproduced in Table 15 The moot notable and possibly drcouraging teature of these serap pereentages ts that they vary For example, durng tha 9 neek pernod the strap percentage has been ns Jon av 93 (4th day of the 8th weeh) and as high as 1237 (4th day of the 5th aeek) This the variation that the foreman nould like to control
Let us nor put thas scrap control problem in terms anslogous to Hoze of our almple card games Let us amage that the producton proecs that has generuted these ecrap persentages is like our deek

TABLE 15

Pareentage of Serap Produced

1 cec	Dsy	$\begin{aligned} & \text { \%od } \\ & \text { Errap } \end{aligned}$	Meck	D3)	$\%$ of Scrap	Heek	Day	$\begin{aligned} & \text { Wof of } \\ & \text { Bera: } \end{aligned}$
1	1	080	4	1	530	7	1	561
	2	402		2	612		2	797
	3	0.3		3	572		3	507
	4	042		4	763		4	827
	5	441		5	876		5	168

2		713	4	1	338	8	1	347
	2	1169		2	611		2	629
	3	7.84		3	811		3	682
	1	496		4	1237		4	03
	5	619		5	400		5	863
3	1	043	0	1	583	a		
	2	84		2	674	8	2	769 483
	3	603		3	850		2	489
		3.81			523		,	290
	5	594		5			4	709
				5	707		5	692

of cards This process, just hike our deck, has all sorts of scrap percentages in it Each day one of these percentages occurs, just as though it were drawn out of a deck by a random selection procedure If te compare the scrap percentages on two successive days, we are uncertain as to rhether any observed difference is due to chance or whether it is due to a change in the production process itself, and thus the equvalent of a change in the deck Naturally, if it represents a change that indicates a worsening in the process, the foreman would like to intiate correctine procedures Otherwse he would prefer to leave it as it is
The question is Hon can he tell the nature of the given variation? It is obvious that every thme the foreman mitates corrective procedures he is taking the risk that he mill be searching for a will-0'-the-xisp, or that he will change to an actually poorer process On the other hand, every time he leaves the process as it is, he tokes the risk that the process has actually gone out of control and will continue to produce an unsaisfactory rate of serap on the average No matter what he deodes, he takes the nck of doing the mrong thing If this kind of msk bothers him, he perhaps should return to his former job as a machnne operator

1.6 Our Task

The concepts and methods of tryng to gan understanding of problems like the scrap problem are going to be the subject of practically all the discussion tn the remander of this book Such concepts and methods have a much wider aoplication than to just problems like that of the scrap percentage We find that most of the concepts are gute smple We have been using most of them through most of our lives Our attempt to put labels on these concepts and to formalize therr relationshops causes us no trouble of we form the habet of contrinually relating our discussion to our own familiar problems The methods we use and/or refer to vary from things that are common knowiedge to the fifth-grader to things that aye best handled by professionals
Actually, the promary vritues needed for successful analyss of historical expenence of the scrap percentage sort are patience, persistence, and magration These are frequenily more important than knowledge of fancy methods or the ability to ardaculate about concepts The work routne in the analysis of data has only tro basce parts First, we ask a questron about the data, second, we answer
the question by rearrangug the dsta Fer exsmple, we might ask How oltex has the tersp percentage been over 90 ? We answer the gueston by a ample count of the relante frequenties of the a a ous erap percentages 0 r , we mithe akk 'Are the scrap per teniages get tung any larger as time pasess?" We maght toy to ansmer the question by comparms the average daly percenage during the last tro treehs with that duriag the first trio neeks Or, we might atk "Are the ecrap percentages any higher in general on Friday than they are on Tueday? Ne answer this by comparing the areage Findsy percentage with the sierage Tuesday percentage And so forth
Patunce and peratsence become necessary because the value of many quetrons canaot be determined untal after they have been arawered, and by then all the work of tearrangement bis been done including that part of it that we now wish ac had not bothered to do It is eas to te dreouraged if ous first questions lead to frutless recults Thas us partucularly true if we are being judged by the jesulte we produce rather that by the ume and effort we put in
fraggration is beeded to help us thatk of good questions and also of wanous wass of reartanging the data Too much magimation, of
whe may get us mion trouble because we pever run out of new questuons and new rethods and hence re may apead too much tume with the asme deta thus lesuang ourselves no tume to accumulate some additional evdence Somctumes it is betice to get impaisest and to quit $A D$ avalysas atter a moderste amount of effort, Un. fortunately thete is an way to atoid the riks and consequeaces of Guithg too coon or too late because ne bate to way ut predetermin. ing what is to evon or too late

1.7 The Notions of Universe and Sumple

Let ug take a mante now to fomalite a Iew terns from now on we reler to our deck sis a uruverse' Thus term applies whether our deck is resl of whether it is a figment of out magiaation as in the case of the scrap producing process More lormally, a uaverse ss 's coliection o! thngs nfuch contams all the things ahich we think might occur uader tome particolar circumblances" Rarely, most

[^0]often in games of chance re might deal witb a unverse that se know contams certan things
A sampie is a part of the universe It maght contain only one dem or it mught contein all the teme and thus be the same as the unnerce A semple as large as a mnerse is generall only a 800 ceptual possibility rather than a reahis The sample may refer to some items that are in the unverse or it may refer to items that are to be generated by the unverse or $1 t$ may refer to thems that have already been generated by the universe Thus we would reier to our 45 scrap percentages that have occurred over a 9 week period as a somple of the scrap percentages that might hase been gexerated by the umverse of scrap percentages

Fe have more to say later about difierent classes of unnerses and samples and the relationships between tbem

18 A Concepiual Scheme

We are now ready to propose a conceptual scheme to help us in our thinking about problems of the art described above problems that are characterzed by uncertanty and which are therefore prime subjects for the statastical method

We concerve of our problem as one of predicting that sample will occur at some defined period of time In order to do this re musi somehow develop a picture of what unverse tbis sample will come out of The only basis me have for developing the picture is our expertence rith past samples Each of the past samples came from its onn past unverse Possbly such past umverses are identical perhaps they are not At any rate, we mier what these past unn erses were like on the basss of the samples that we have observed

Starting now at the other end of the sequence ne proceed in our analysis as follous
1 We examue hastorcal somples of evdence
2 We infer from these eamples the cond toons we thate prevailed in the hustomeal unverses out of wheh thece samplec came
3 We infer from these hastontal un verces the future unverse out of Wheb we thmk our sample tem will eome Ths future mavere may or mal not be the came as the past unnersec
4 We preden the cample ae thut will occus Snce be cannot hnow evactly what wall occur te express the prediction in probab hity hn guage Generally this anolves three numbers Two of the numbers spectif the hatis mann in ch ie thunk the exmple 3ill orcur The third number expresses the confidence we have or tie probabilty that the cample rill be withon the lumes

For example, atter avalyas of nur past experience हith the scrap percentage, ne mught come up with the statement that "we are 80\% confident that tomorrow's serap percentage sill be between 47 and 03π " By expressing it this way ae make clear the degree of uncertainty $x e$ feel about nhat the scrap percentage really will be. It also seres io remind us thist since we really do not know why the strap percentage wall 'ars betweco 47% and 63%, there would be no point in invesugsung the cause of a acrap percentage, say, of 59\% At the same time, since this sange of uncertainty about serap tells us rhat re do not hnote about scrap, it sets our sughts for finding out more if the are of a mund to leam more In other words, it tells us ahat there still is to leam
Contast this "three-numbered anszer gysten" with the typical system of expressing snsx ets when we do oot know the exset answ er For example, let us suppose we nere asked right now for the correct tume Without looking at our match or at a clock, or without asking sometody else, phst nould we ssy? Uoless ne were very unusual, we mould probably say something like " 830 " or possably "about 830 " But, of course, fe really do not know the exact hme, even though ne have used an exact number in expecesiog it. We perhaps thank he corer ourselves sheo ne say "about," and in a sense we do But how b/g is the "about"? Is it plus or minus one minute, or is it plus or minus thenty minutes? Hon can one tell how uncertain ae are about the ume if ne doo't tell ham?
Can ne be rure thst the tume is " 830 plug or musus 20 manutes"? For example, nould ne bet $\$ 1000$ to a dime that it is? If we were really sure, we certasaly rould rake wuch a bet because it would be like finding a dime The chances ere that we nouldn't be rure But If we spr not sure, how confident are we? 90% ? 89% ? How can one teil hon confident we are it we don't tell him?
The time example is, of course generaily trivial, unless wee are running a palrond But ne all have ar alis we deal with that are umportant-rmportant enough, of that we really should do some acute thukng sbous them It our thinaing never gets beyond the "about," or the "wouslly;" e^{-}ie "Early often" Btage, ne are being tloppy Naturally it is now ehsy to pin down our thanking about a problem to a porat where ve can achieve a range and a percentage coafidener But at can be done As a matter of fact, every bumess decision that moohes money now or ultumately (and which one does not?) impless a degree of confidence on the part of the mao who moses the decision whether or not he realizes what that degree of c afidence 15

It is paricuiarly mportant for proiessionsl analyats to develop the habit of expresing the results of their analyses in the form of a range and a percentage confidence They generally are the only ones who have intimate knowledge of the evidence used in the analysis They are really the only ones who can give a reasonably accurate odea of phat degree of unsertamaty is assocated nith the analysis and the evdence If they tell the sales ure president that the evdence suggests that 'sales next year should be about $\$ 36,500,000$," how does the vice president knor ahether he should be really pre perred for sales as low as 851000000 or as high as $\$ 60,000,000$? He will not know unless they tell hm Nevertheless he is gorng to make many decisions based on what he thuks would be a rea onable masimum and manmum But what he thons may not be consistent with What the evidence suggests Sunce people seem to have a rather astural reluctance to pon themselves domn unless they hase to, wee presidents probably are not gong to get specfically stated confidence or tolerance limits unless they insist on them
Probably another reason why we Eeem to have a natural reluctance to speafy limits to our estumates is that to do so is an exphect confession of ignorance It is bad enough to pin our orn thinking donn to a point where we are consclous of our ignorance, it is even worse to confess it to the boss

problems and questions

11 You very thely feel that you have some pror knorledge about the probobiuty of dramige a 7 out of an ordmary card ceeck You maz bare bad some actusi expenence with card drarnogs, or perheps sead a book about them, or perbaps a "more experenced hand fold you about them Or perhaps you used 'logic' to figure out the probabilty of a 7 on the basss of the content of the deck and your mpprestons about the dramng process
(a) Considenng only your proo knouledge, what is sour reaction to the statement tbat "the probabitity of a 7 on a sigle dranmg from an ordmary dech is $1 / 13^{\prime \prime}$ "
(b) Gren the additional knowledge that is shom in Table 11, would jou make any modficetions nin jour reactions? Explan
12(a) What do you understarid is meant by the statement tbe probability of a head on the toss of a conn ss $1 / 2^{\prime \prime}$?
(b) Acsume tbat the statement given in (a) is correct How many beads should we expect in 10 toceres? 100 toseses? 1000,000 tosses?
13 Analyze the results grean Table 11 for ans evndence of sistem or pattem to the reaults For example, are the numbers getting biger? Are they alternately getting birger and then smaller? And vo forth (Note The order in which the numbers occorred is from left to right beginning mitb the first rors)
14 Gren the minormation in Table 11 and any pror knowledge you
th a you bave ntat odds would you gre that the next card drawn will be 2 2' Explain
1.s Conoder the problem of our second game, the one in which ne did not kow the con'ent of the deed but in what we did feel that the dech verconstant
(a) How masy Iis in a row would you wish to see before you would be Witing to bet 50 eents st even monts) that the next card ras a 17 ? (Hint Vo the materni of Tab'es 13 and 14 to help your thanking) Explan jour assmer
(b) Euppose the stake was ucreased to $\$ 500$ Mould thts change in rises base ans effect on your ansuer in (a) ' Explun
16 Outhat the bustors of your expenence with some event that you have had to deal mith over ume Thes event might be sour problem of getting up in the morning at some destred time or your problem of hatting a golf bsil so it lands in some presenbed lumits, such as the farwas Be as apeatic as you esa about any progress you mught have made in reducing uncertanty about the eleat allo explan bow jou can tell whether a departure from the planned event pust happened or whetber it indicates a bed for an adustrment in vour planning activties (For example, if jou hit the goll ball unto the rough do you adust jour exing ete on the nest thot of do you contunue as before on the assumption that the bad thot wa put luck')
if Take pome probiem that you have had, posibly the same one you referred to as Quecuas 6 and express it to terms of the thitd game That (t identik) the dexk or univere, adieate the asture of the event generatthe procest Hys the converes bete shifung over tume? How can sou tell? Are you sure of ths' If you are not sure, bow confdent are you that the Lanerse tu shifung or has shifted, the way you say it has" Uue numbers in exprestas the eonfidence
18 Answer the folloring questions about the hastory of scrap percentanes as pren in Table 1.5
(a) How often nss the scrap perrentege

1 Lexthan 455°,
2 Lesthan $66{ }^{\circ}{ }^{\circ}$
3 Vore than 55_{6}^{6},
4 Morethan $84{ }^{2}$?
3 Detmen 20rc and $36 \sigma_{c}$,
6 Br ween $25 \pi_{c}$ and 75 c \% ?
(b) Make the best guess 304 can about the probshility that the nert dus a cersp percentage will te higher than 84% Erplann the basia of your entamated probshility
(c) Astume that you af gong to bet $\$ 1$ on the correctness of your probabilty extumate given in (b) Thast odds would you be wrilung to gre that jou are trght ${ }^{\text {* }}$
(d) What wis the "sierage 'scrap percentage"
(t) Might sou bsse determined the "average in some otber may? Why did sou do th the way jou did'
(f) Hithn what range did the middle 50% of the crap pertentages fail? The midde $2 / 3$ at
(a) Were the percentages higher the last two weeks than they were the first two weeks? How much higher? Or lower?
(h) Were the Morday parcentages higher or Jover than the Friday percentages" Would you he willing to plan on a continuation of thas diference if you were the foreman?
1.9 What percentage of futare serap percentages would you expect to have the values indicated by the six parts to Questoon $18 a^{7}$ (Hint Keep in mund that you cannot possbly know these answers You must do some guessing So do not come up with a "one-number" answer)
110 Were the defferences you discovered between the first two weeks' percentages and those of the last two weeks sufficiently great to canse you to beheve that the unverse of scrap percentagey had shited between those two periods? Explatn and jubsty your answer
111 Answer the followng questions to the best of your ability Use only the knowledge you now have
(a) How heary 18 \& Woondot?
(B) What is the temperature rght now in Rangoon?
(a) What 18 today's closing pree of Generai Motors common stock on the Nerf York Stock Exchauge?
(a) How much do you wergh?
(a) How much does a 6 -foot-tall adult Amencan male wegh?
(f) How much does the first stnos defensive tachle of the Chucago Bears Professona'. Foothall Cluh weigh?

chapter 2

Some fundamental concepts

21 Variahon, or Differences

The unnersal extetence of caration is ofe of the most syar cant aspects of our enuronment Wabs scuntustz helreve that there are to tro objects of two parts of any ubject, exactly nolise The exvence of apparent dentity of objects is not looked st as etrdence of the denaty, but only as endeace of inodeguate perception ddianee un any aiet of man's snorledge has generally proceeded hard in hand ruth the developmeat of more refined measurng inatru mates including tot only phssical measuring metruments such es elithroais meroteopes but aloo the more abetract measuring instruteris guch as inteligetre teets It is obhous that ma cannot take 1 to account differences we cancot even percene Gor lack of pregaton of mearatement in the socal sclence (meluding business) is ore of the prome causes of frotrution in that area a frustration in makied coatratt to oup appareat success in the phancal area in
 adicule the tofea that the social repences are scuntific at all Thus is a mustake If is prefersbir sacociate setence nuth a method of inqurg pather than futh tbr wracy of the cberevations made in the inquiry
The unisersal exate of vation is at onee a problen and on opportuats The pro res becsuce unsersal tanation puts us on the homs of dide linetre to art at all tumes sa though all thing are dift of om each cthex, be roold probably freese meo state of mas.... Thas nould happen because re rould belese that our past expenente prowd ad ws with no gude to the future By definiton, so to speak the future is aptomatically different from the patt On the other hand if we act at though some things are the same when actually they are different, our setton is subject to reme rior pxamnlo an ant.an Alat
toadstools are the same is not only subject to error, but elso to error of some consequence
The opportunity anses because universal vapiation provides man wth an unlumted number of objects, both anmate and inammate, which can combine or be combraed in an unhmated number of combruations and for the potantial creation of new realitres In fact, it 28 here that we find the basss of progress-and also the basis of retrogression One of the strongest arguments for a dernocratically organized society is that it allows for the fullest possible development of individual differences and bence for the greatest potential progress At the same tame, of course, there is the companion risk of retrogression

2.2 What Differences Make a Difference?

The preceding paragraphs have pointed out thet we believe we live in a world of unversal varation where everything is different from everything else and where everything today 18 diferent from what it was yesterdey Althought this notion of universal venation is a very fundamental phliosophteal truth, it can cause all knds of trouble if we try to act on it in the solution of all routine problems We now have to face up to the problem of how we can tell when at is appropriate to act as though things were the same when we beleve they are truly different
The answer is quite sumple We treat things as the same when their differences 'don't make any duference" Casusi observation of the behaynor of anybody, moluding ourselves, wall soon convince us that a difference wheb makes no difference to a person wall be lgnored or assumed away It is absolutely essential that a person ignore some dufferences in order to bave the tare and energy to pay attention to others It is a muxed blessing that people differ widely on what dufferences they think make a diffierence it ann be good in that in a relatively free socetety somebody is paying particular attenthon to almost any area of dfferences that the can think of, plus a lot more areas that we cannot think of Einstem, for example, spent a good part of his hifetime studying differences that even he could not see but only suspect The average person thought him strange for spending so much of bis tume on such supposedly meaningJess differences, rather than on so-ealled mportant differences such as the sharpness of the crease in has trousers It turned out, of
coure that bie wherences the tida concerned with bind fart to make guite a dimerence to all of ot
Disgreement on what differences make a difference can be bad besaus such disatheruete often leads to deagreesblenews and confict Van people have real dificulty in permiting others ta ghore \$ Cerececs wheh to them are quese important sind vee sersa Pary of the problern of growing up is to enim a ente of values or a recognutun of what differences reslly make a difference to the aduits that: The ax gear ofd chide 18 rer, concerned sbout the sue difference betuen tho preces of pre and cares not one ahit for how Lus frend feels about aho gets whech peee The adult is sery much more concemed about haw bis frend feela than he s concemed about Weave of the pieces of ple Edecators are still faced with tle probfem (and arem to be ay mytuied as ever in finding a solution) of hor to persuale gutudents that certa n differencts make a difference otice than in the teecher s mind Sbould the student be drilled in the detaled diferoces on the theon il at he has to firt h.wow whint the differency are betore he can underatand ther mportance? Or thould he be plunged into stuations shere the differences co make a difference on the theory that he wall soon be strmulated to find out ahas these difierencee are that are causing all has trouble? Or should there be a maxture of these tho theone: ot thethers in proportions rafintely ramedt Or should the leacher not raste time trying to comunce the student of the mportance of the differences under dis eutan and concentrote motlly on the grade nere The teacher tw effect tells the atucient that the difference betreen a grade of A and a grade of B (a difference the etedent does appreciste) as equiva lent to a recogniton of the differcoce betheen a logatithm and a quadratic equation (a diference many students would not reall) ap presatel Thig adarect technque for gettong people to pay atten. ton to difierences they maght othernse a ghote is quite common in our tocely The rotker ss taught the mportance of noticing the difference beta cen a piston of a 006 in in dism ter and one of 3008 in by acoectating suel dyference with way, a diference of $\$ 850$ in h s pasheck The the us taught the diference between eamug $\$ 100$ and steai ng 1100 by aspocituge euch a dufference bith the differatice between freedom and a jal cell $\times 5$ (3282 K2 You propic afy not arare of any conserous process shereby they note a d Aerence, el aiuale the impartance of the difference and then deade to ignore or conerder the difference in there daily affars Most of the difererces in the objects around us are ignored amply because they are not even percened Fart of the ablity to percelve seems to
be inborn Some people bave a better "ear for muse" than others regardless of comparative trammg and of effort applied The other part of perception ablitiy seems to be related to how much a person practices or studies To a very large extent we perceve only those differences we have been told to look for It is the rare person who makes it a practice of percervig differences even where he had not been told to expect them The average person acqures most of his ideas of what differences exist and wbich ones are mpportant from other people hus parents, has teacbers, bis compantons, ete To a very considerable extent these adeas are pressed onto a person before he as ready to conscoously and wntlongly accept them, and certanly before he has had the experiences tbat enable hm to jucige for himself whether the differenees are really mportant or are just sham differences It is necessary that this be the procedure if man is going to make any progress Each of us bas to be brought up to date, so to speak, before we can proceed to make our onn contributions to the determination of what duferences make a difference As an anonymous person once expressed t_{1} "this wonld nould never have gotiten anyplace if each of us had to renvent the wheel "
But like most good thongs, the procedure of rather forcibly passing on mar's accumulated wisdom from one generation to another has lts bad staje too The elements of wisdom in one age may not be applicable in another, a possibhity known to any teenager But what we have learned at great pain in one age is not lightly tossed aside, especially if to has become part of the stock-1n-trade of a professional teacher Sellers of knowledge, as it were, can be just as tenacious in preserving a market for tber brand of knowledge as the seller of buggy whips was in trying to preserve his market Also there is the problem that some of man's ideas about phat dufferences make a difference have been wrong Athough good and workable reas probably have a better chance of surviving than bad or wrong ldess, this doesn't mean that bad ideas cannot do a great deal of harm betore they do dee
Each person, then, has a substantal personal responsibulaty as be tries to find out what differences exist, whech ones really do make a difference, and which ones can be safely ignored He must put considerable faith in the knowledge and integnty of others so he can be brought up to date At the same time he must preserve a sufficient degree of akeptrensm and of independent judgment so he can do some of his own sorting and some of his own seeking
We are contmually concerned witb differences or variation in the pages to follow Most of our concern, however, is wth the observa.
hon and analyss of diferences as re find them father than with the probiten of the mportance of the diferences Where the question ol mportance ss more or less a techneal one, that is, subject to objective arslym, we have sometheng to $88 y$ If, however, the question of importance resolves around whe judgments, we merely call attration to the problem and mote no effott to solve it

2.3 Kinds of Knowledge

Surce te are going to devote considerable thre to the problem of how to best wee the the koonledge re have and also to the problem of bow to acquire adduconal koorledse, it is useful at this point to take a fer muntes to discuss the varrous kind of koonledge that the bave occavon to deal with This discusa, on also makes it possible for us to be more explect about the kund of approach we are planning to uee in later pages

Knowladge of Why

The moet ureful kiad of knowledge is that rhach tells us why an erent accurs If me know why, in the sense that re hnow the cause, or caures of the event se have taken the first step in leaming how to physteclly control the erent Given thas kind of control, xe can then make the esent happen or not happen as we see fit, or perhaps We can then control the intensty of the esent
Rinowledge of why does not aecessarly lead to ability to physically control the event lie may know the causes of an crent but be unable to coatrol there cautes, thus beeng unable to enntrol the event. For example ne mught know the cauce of a tomado whout being able to sffect wuch causes and this present a tornado or alter the path of a wrmado But, of coure, knoring the causes, we rould better be able to predict the path of a tormao, then we could take stepe to remove things and perons from tust path
As ne sould expect knowledge of why somathing occurs 15 most dineult to find out He actually know the cauces of very len things that happen Ne ngturally have had greater suecess moth man-made thang Sure man has bust an sutomoble, he knows the causal ssecta that makes on automohile behave the way it was designed to behave If the automable does not behave properly, te can use our knon ledge of the causal system to laurly quekly put our finger on the dificullu and then mahe the proper reparr He have a bat more difculv shen ae find that the buman body is not norkng
properiy, or when the economic or political systems are not workng properly Snce we did not build these systems, we are never quite sure of the causal connections among the parts in fact, we even have disputes about whether such systems are or are not working properly, with some people pontung with alarm and others refommending relaxed patience With the humen body, we have apparently discovered that some parts, like the tonsils and the eppendrx, are quite supeifuous, at least in the sense that the body seems to function the same both with and without such organs Whether that 18 because these organs are really superfluous, or whether other organs, as yet unknown to us, take oyer ther functions When they are removed, or whether they really do make a dufference that we have not yet been able to perceave are questions stall to be answered
One of the theoretical advantages of a planned, engroeered, zegulated, or bult society, on contrast to a relatively free society that grew whthout planang, is that we would be able to fix it when it broke down because wre would know what it was made of Such a society rould have to be quite smple, however, because we could not understand it otherwise People would also have to agree on what kind of socety we would build, and this is very difficult to accomplish without help from the military Inendentally, the use of jorce to control events is quite common, whether it is the playpen to restrict the movements of the child or the atome submarne to modify the behavior of nations
The paucty of knowledge that man has of why thungs happen as they do has not deterred bim from actung as though he did know why Although such behevior appears to be arrogant and dangerous, and, in fact, is oiten just that, there seem to be good psychologival reasons for behsuing that way We seem to have an alrosst pathological need to act "logreally" and "sensibly" But how can we act "logically" af we don't know why? We cannot, of course So we menent reasons, preferably good ones, that is, reasons acceptable to our boss, or to our parents, or to our consurence, etc Most of the tume these reasons are at best trival and superficiel, and at worst they are wrong
Notions of why something bappene are essentially theoretioal or lyppothetacal Generally speakong we do not know why We belueve or assume why. The tendency of most of us to not state the essumpthons under which we aet, and often to not even be aware that we have made any assumptions, leads us to beleve that we really know when actually we should only assume that we know This tendency
ean establath solid blocks to lurther leamarg becaure, if we already "hor," there l" nothung further to fearn" and we mont make the efort

Knowledge of Whon

Mort people are engularly unolormed about the causal system which makes it poasible to turn a small switch and witness, in the comfort of ther living room events ahech are taking place thousands of miles axas They really have no need to hron It 19 sufficient for then purpoees if they hoow that most of the tmme, when they turn the smith the picture sppests on the television set If for some unknoxn reaton or teasons the aet does not nork properly, a telephone call aill brug a geruceman sho most of the twe will correct the difieults for less than $\$ 10$ Although the serviceraan is more sophistiested on technueal televition mattera than the typical user, even he wesprisungly ymorant of a good part of the causal sy atem that gets a p cture at the fick of a sritch He all likely work from a manual that was writuen by the engineers of the manufacturer The manusl urusill has mand phraees like
Whea jou find lip-llop, the duficulty may be corrected by repiacing tube to BAic of by turaisg the bold knob to the nght If none of these works the dutediy is then likely to be with the antenor section of the epbencal asuilstor Do not attempt to adrust thes Replace the shole section Re tura the replased estion to the factory
Thus even the reparman koors little of the theory or the why, of the mechamam he noris on His knonledge consiste almost exclurvely of the when you see this jou mill likely see tbis" kind This is obviouly a very useful kind of knowledge it is equally obrous it is not of the ssrae kind or of the same order as that poocesed by the electronics engneer whose, in turn, is not of the zante order as thst of the theoretical phusicist
hnotledge of when is acquired ' dssoctating things with each other, urualls as a result ol cbeernamon of past events He associate ram with clouds, bsoketbsil playes with tall men, Cadillacs with nealthr owners, July (in Chicago) with heat, elc At least by the tume he is bom, and mas be sooner, the baby starts associating events with each other The sounds or fooksteps, of clanking pans, of agitated mater, ete soon become aswocisted uth being fed, being bathed, berng cuddled, etc Even the moxt umaguative baby soon learng to associate the ecunds he hromeff can make and the actions that generalls follow He then maxes has first attempta to control what happens by eonscously makng selected vocal sounds, or noraes

It is prumarily our knowledge of when that enables us to reduce many activities of hife to a routine Such knowledge enables us to prediet events and thus plan for them It is essentral that we reduce many decisions to routine in order to relesse the conscious mind so it can refiect on decision problems in new areas Most "controls" in business are basically routune decision-makers based on assocution or knowledge of when wheh enable people to make decisions without the pan of conscous mental activity Thus the exceutive can delegate many of his decistors witbout also delegaing the deosionmaking function

Knowledge of How Often

When we play any one of the great number of conventional card games, we do bave some knowledge about the card that $1 s$ going to be dealt to us One thing we know for sure, for example, is that we will not be dealt the " 17 of hearts" But we do not know the ceusal syatern that results in the particular card selected, or at least we are not supposed to know Hence we really do not know why we get the card we do, although we may have some superstitions about why Also we do not know when we will get a certain card because, if the game 18 honest, there 18 no relahonship between how the cards are shuffed, cut, and dealt and the partheular card drawn at a partuculas: tume The knowledge that we do possess is very real, however, and we may call it knowledge of how often a given card pill be dealt We would expect, for example, that the Ace of Spades will be dealt on the caerage $1 / 52$ of the trme Thre does not mean that exactly one out of every 52 cards dealit to us wnll be the Ace of Spades it means only that in the long run we would expect that $1 / 52$ of all our thousands of cards wouid be Aces of Spades
Knowledge of how often is obviously inferior to knowledge of when end knowledge of why If we know only how often something whll happen, we do not know tis schedule for happening and our problem of planning is more difficult Sinee there 28 no sobedule known to us, the event is never reaily "due" or "overdue" to happen We can deal with such events only on a probability basis, and most people find thrs somewhat disconcering
Despite its obvious inferronty to knowledge of why and of when, knowledge of how often is still of considerable value The most strikıng illustration of its usefulness is the insurance business, one of the most stable and predetable of all businesses An insurance company bases its rates not on who is going to die and when he is going to die, but on how offen 'somebody' 18 goong to de in a given
ume petion In order to lend stabilty to ther predections, and thus to hase some control over ther woome and outgo, the insurance compana aill try to hase as many policyholders as practical, thus comang as cloee as possble to that long run

This tante hund of hnomledge aleo underles all honestly operated comeresal gambling games The propnetor, or anybody else, does nol hnow tho will hin nar uhen any guen person will win, but he does know quice accurstely how ofien anybody will was He quite naturally zets up the game oo that this how often is infrequent enough whe the propnetor ts the onls helk waner in the long run Incidentally the commercial gambling operatuen is about as close to a pure illurtration of how often hnowledge that man can magine The gante is dehberately dorgned to redute to zero any hnotledge of why or when something rall happen Thus, unless the game breaks dona or becomes mperiect, it is laterally mpassible to devise A sy tem to but the game a proper system requires knom ledge of ahen a fren event will occur The onls maj we can beat a game of chance is to be luch To be gmart helps not at all

Alrinding the Various Kinds of Knowledge

Mort stuations we encounter in real life find us using hoom ledge of more than one hind He find that any decrion me nake, or any sevor we take sa based on tome of each kind of hoonledge We parely hnon exactly why ansthing happens, although we often set as though ne do Our knowledge of when is usually imperfect in the seroe that we don thow cractly when but onls obout when As a mater of fact cien then we say or act as though me hoom that eonething will happen at sbout a certan tume, in reality we are not sure th will happen at that tome or any other tume When a ralroad c"ablushea a cchedule, st apecifies the times we might use as a guide to the true tumes It dors not guarantee the tume and it takes no responsobity whatsoeser for any inconventenre, expence, or datress ne mas be caused bo ats falure to be on tume
In reslity, all knomledge 13 fundamentally of how often, π th the countung of how ofen under certain restreted conditions ' To il-
' Theece are the con'thoos thas define what it is that is to be counted For esample we math dacile to court the relative faqueary of noontrme temperatures a: Midmes apport in Chaseo for even das during a 3 -etear period We mant fad wy that a noonlume temproulure of 45° to 30° orecured 8° r of the tume Howemer if we had counted trmperatures oaly for the month of Juls, we mipht find that a doontume lempersture of 46° to 50° oceurred only $1 / 2$ of tef of the tume Thus the change in resfreuve tonditoons changes the relative frequeacy of there tempentures

TABEE 21
Actuel Time of Anval of the '6 05 PM. Tremi"
(Recorded onty to the nearest minute)

Time of Amval	Frequemey of Occurrence
6 [0) or eariter	6
601	0
602	2
603	1
604	4
605	19
606	12
607	8
608	7
609	9
610	6
611	3
612	5
613	0
614	2
615 or later	16
	100

lustrate, let us look st the problem of the railroad schedule We might asis the queston "Exactly when does the 605 PM tram arnve?' The answer would be that it arrives at different tumes, or at least it has arrved at different thmes m the past Let us look at Table 21 which gives us the record of the last 100 arrivals measured to the nearest minute
It as obrous that it would be incorrect to ansker the question of When this tran arrives by staing a specric time All re really know is how often the tram has armved at eertain spewfied tames (Note

[^1]sto ths' we hrat that it has het amwed at come other tmen - Some「rone asexes to the que son of when the tran has armed might 1~

 trecrion with the farth. Which one a peron actually gies defeends on how tauch confidence he would hike to have in his snsmer The rooc confidenee he nould hike to hase the bronder muat be his coreage of the a a ose thinge that might happen It be mehes to be cure the has an ace fe cormet be really chould ansucr that the 602 ame wourn or masbe never This lead of course to a Andulow arcier al ach although it is cormect is no ansher at all n'en it comes to gung "omeloods some ideq of when he ahould plan to be ar the gation to meet the tran S_{0} in order to make the armen prettralls undul it is nececsan to be leas than aure that
 befor is contectuon ath the exap control problem to gue a really wee al arancr to the quection of when the tran armes means that wet me gle an anemet that might be wrong We aloo must gue an on wis that inter eits when ar colemg some range of talues ratl er than som e pectife r a lue
tasm ae "oald remand ourelime that peonle typeally do not thark and cenank do not tall in the teras andonted abose To the trpical pron the 600 surnes at ebout $603^{\prime \prime}$ and that a all But if that : all it is endent that the queation of the tume is esuntull trual to tie people conceraed or that somehon about' hse acquard a gencrall urdervtood meanag so that it requires no fur tep apectration Perhaps "about is understood to mean no furtlfa swas than plus 0^{-}munus 15 manuter In most evers day afars retain cons entrons hase grown up nith lead to generally acceped to'crances by which the group hes

24 Amount of Knowiedge

Table 22 preents the reord of the lact 200 amals of the ' 815 PY " tram for the same ralrosd The nost inportant thing to note

TABLE 22
Actual Time of Artival of the " B I5 PM" Tram
(Recorded only to the nearest mumte)

Tmne of Artral	Irequency of Occurrence
810 or carlier	12
811	3
812	1
813	5
814	3
815	11
816	7
817	4
818	6
819	8
820	7
821	6
822	5
823	3
824	4
825 or later	15
	-100

here is that there has been greater varnation in the arrival time of the " 815 " than there has been in that of the " 605 " We can see this if we compare the pereentage of tume that the two trans have arnved withon specried monutes of the seledule time Table 23 summarizes this companson In a sense, then, we know more about when the " 605 " will arrive than we do about when the " 815 " wull arrive We know more because we are able to state the arrival tume with greater confidence For example, we are 53% confident that the " 605 " will arrive within 35 monutes of its scheduled time, whereas we are only 37% confident that the " 815 " will arrye mithin those limits if we wished, we could quantify the amount by which this knowledge is greater and say that it is 43% greater [$(53-37) / 37$] Actually we generally do not wish to quantufy duferences in knowledge this way, but it suffices af the moment to illustrate the fact that

TA8连25

Comperisen of Arrivel Timen af the 805 ond the $\$ 15$

Departure Irura Schedule	\% of Anvals	
	600	\$ 15
Ylo of mines 5 musutes	19	11
1.5	35	21
25	4	30
35	5	37
45	62	43

there are quantifable differences in the smount of knonledge wa migh hase is we shall ee in a momant we find it more conv enient to meavie trontance thas re do to measure hnowidge

25 A Word about lgnorance

He are all anare of the fact that tgocrazee 15 the antuthesis of knoridge Complete ignorance would be the equivaleat of tero hoonldge and uce vers Thus it is possible to tall equarly well is tesme of grocasse as th terms of knouledge Let us take a look Girst at a casc of iem haviledze of of complete ignarance lle rany recall that one of the questione of the ead of the last chapter axeed hou lesty a Noondot is He probably bad no adea what a "lloondat is and besee mo dea di bow heary one is It may weugh only 0003 or On the other tand 14 maghe aetgh 33 mathon tons or eten more It mase esen hase a negatise wegglt and if it were not lued to the earth would lave scared nsto epace Thus ne are forced to admut that the ne hit of a lloondat is somerbere between minus minuty and phes int mite pounds Thes is of cource s large range of uncertanaty, or of igncrase
San let us look at romethong we knos exactly Sinee it is so hard to find liustrat ons of exact or complete kronledge exeept for things that ae hase defined that the , let us whe something that we know by defituman a good example as the salue of a plasing card be. Laon that the 7 of chubs 15 exactly the 7 of cluss and not the $61 / 2$ of clubz because 14 is $e 3$ arites on the card then we play carde we have no problem that prerhaps thes particulay 6 of clubs as one of
the biggest 6 's and hence is really bigger than this particular 7 of elubs whtch happens to be one of the smallest 7 's Anybody who argued this way would be thrown out of the gamel We can say, therefore, that we heve zero igmorance about the vaiue of the card, or we have complete knowledge

When we knon somethng, but not everythong, we find that we can state answers only withon certam lomits We found this to be so in the sarap problem, in the varous games, and in the arrival tume of the trans The range of uncertanty we had in any of the above really expressed the degree of tonorance we had about the partucular phenomenon We "do not know when the tram wall arrve between the lumits of 600 PM and 610 PM , although we are reasonably (68%) confident it wil arruve some time within those lumits" If perchance the ralroad were to improve its operations oo that we could then say that "the 605 will armve 68% of the tmese between 602 and 608 , 'we would now be less gnorant than before about the arrival tume If we wshed, we could say that we were 40% less ignorant $[(10-6) / 10]$
Whenever we desire to mprove our accuracy of estmation in a problem, or what amounts to the same thing, to reduce our range of ignorance, we take steps to try to learn something After taking such steps, we quite natarally are materested to see whether we had any success in our efforts to learn We find that it is very convenient to then measure the amount by which this leaming process reduced our zonorance We find $1 t$ very dfficult to specify what te knon and then to messure how much we have added to our knowledge It is much easter to specify what we do not know and then measure how much we reduce what we do not know

There is also a psychologicai advaniage in concentrating on our ignorance rather than on our knowledge When we are aware of hon much we do not know we are psychologically receptive to the need for reducing this ignoranee Also we are sware of how much reduction is possible By concentrating on what we know, ne might easily be satisfied with that and make no effort to learn more

2.6 Luck, Chance, and Randomness

We are all familar mith luck, that pry that makes footballs take funny bounces and that largely accounts for the success of the other fellow! Let us analyze what, we call luck to see if it has any relationship to a hat we have been talking about before Basleally, it seems
se use luck as an antonym for till. We use lucky to charace a peron who has acheved success with 00 apparent beoefit kill or knowledge We picture an ignorant person blundering is but comehom becoming the recipieot of good fortuoe. In are, then, it seems that we use luck as a synonym for successjul ntor based on ignoranee When a person acts or decides io rance, ne say that the outcome is in the hands of Lady Luck; n other nonds, the outcume is not under the control of the petson IG or deciding
hance allo refers to some sort of pixy that determoes events Whech re have no control A game of chance is a game so deed that ikill and knomiedge are not factors io the outcome. It mentumes ralled a far game because nobody has aoy advaotage anybody else, regardless of a persoo's age, aex, education, exance, $\begin{gathered}\text { nealth, etc. If skill and knowledge do become factors in }\end{gathered}$ me of chance, theort is oo longer a game of pure chance, although a may tull be chance elements in the game The winner of a col pure chance is lucky and the loser is unlucky The fact that games have resulth ndependent of a person's skill and knowlis such a game's main attraction Anybody might win; and it) reficction on a person's intelligence to lose, although it is suros that so many people, particularly children, take considerable onal atisfaction in moning, eveo implying that moong someor other makes them a kind of supernor being.
esennce, luck and chance refer to the same pixy.
ladom is a rord that we use frequently in subsequeot pages. tslk about random sarpples, random evente, random processes, Athough we eventually give rather apecifically-worded definiof these things, it is sufficient for our preseot purposes to simply that random events are caused by the same puxy that causes ce events In fact, we use the words chaire and random intergrably.
in these sre all importaot fords aod phraseg When we use we thould have some "urly clear sdea of what they mean. juestion is Exactly $>$ rar, nr who, is thes pixy that goes around mining these stmkes of formoe? The best and most straightird answer is that this pixy is a phole collection of factors and s that combine to produce the given result The forces are and/or are at the moment iodiseernible. The pixy is no magic smic forte.
us take a look at the problem of determining whether a coio og to come up heads or taile, or what is the same pmblem,
whether the coin that has zolled under the bed has come up heads or tails It is clear that whether the conn comes up heads or talls depends on such mundane factors as (1) how a person holds the coin, (2) the amount of friction between the fingers and the coin, (3) the angle of release of the com, (4) the force of release of the coin, (5) the drection of release, (6) the humudity of the arr, (7) the densiry of the aur, (8) the velocity and drectron of the prom, (9) the resilency and unformity of the surface the coin strikes, etc If we had precise knowledge of all these factors, and of those not mentioned, it is very likely that ne could rather suceessfully predict the reault of the toss In other words, the result of the toss follows rather drectly from these and smalar forces It does not follow from some cosmic force whose nature is forever hidden from man The fores exist, even though we are ignorant of then We may be ignorant because we are at the moment incapable of measumg these forces Or, more likely in this case, we are ighorant of these forces because we have decided that the cost of measurng them is too great conm sidering the value of being able to predict the result oi a coin toss
Ws must admit that the new that luck, chance, and random all refer to a collection of presently unmeasured forces is essentailly philosophical in the sense that it represents a fath or a belisf I have never tried to really measure the forces affectung the toss of a coin Nor do I know anyhody who haa But I have fartb that the forces enst, and they exast completely irrespective oi whether I know what they are or hore they hehave I have farth that they are there to be wentised and mearswed whouever we dopalop our sholle and desire to the point that makes us want to measure them The validty of this veew cannot be easily proved or demonstrated All we can do is argue for the practicality of this way of lookng at ehance The most mportant practreal argument is that as long as we have this belnef we do not find the door of hnowledge shut to ws If, on the other hand, we adopt the vew that luck, chance and random are absolute forces whose nature ia forever hidden from us, it is only natural for us to stop trying to add to our knowledge Our progress will stop as soon as we decide that there is no more to knor We are probably all familuar with at least one person who has decided that he has no more to discover or learn
Another way of expressing this particuiar new of the nature of chance is to say tbat chance has nothng whatever to do with the event itself Rather chance refers to man's knowledge about the event In other words, chance is a personal thing, it is a product of the human mund, a pure menention, it does not exist in the sense that
a stoncexicts The neather in all its aspects has gone on for centumes ard will probably go on for many more centunes, quite obluyous of nhat man has knowe about the westher and has been saying about the westiter th is hagh doubtful that man's ancreasing knonledge of the weather, an ocresse that has considerably mproved man's abluty to forceast the reathet, thereby enabing man to label weather pheromena as being due leas and less to chasee, has in any sugnificant nas affected the weather then se find ourselves labeling an event as a chance event, what we are really dong is confessing our ignorance about the etent: But soce human beangs do not like to confess thear gnorance, the project thers gnorance to the eveot and blame therr unabily to underatand the event on the event rather than on their ox in inorance This repreenis a certan kiod of clevemess, but it alro realta 10 a certapa amount of self-delusion

Another notable and interesting feature of this way of looking at charee is that it is con possible, and logicol, for tho different people to label the same eront as chance or as not chance becuuse they happen to have different amounts of knonledge about the event Thus the tro people might logicalls act differently with respect to the esent For exsmple, if we and a frend (some frend!) toss a con to ee who pays lor the dinner, and if our frend (who is dongs the tonema) hoons n hat he is dong, the conn comes up heads because that tas what he hed deeded on But ne think he does not know, to te thank the tors is random He thinks of the event as being enturels predetermined we thiak of it as beiog chance We both act fationall coneddemg that egch of us hooss But he 18 gorog to Fin, not because he 15 sur smater than we are in the sense that he turnhs more logrealls or more rapully, but becsure he knows somethang ae do not An adraotage in hnou ledge will ofteo offset an advatage in melligene ure of hoovedge The most clever guesser wat the merc of someone who hnows

2.7 Conscious vs. Subsonsciov: Knowledga

So far we heve talked about knowledge in an essentially abstract nas We have nade no reference really to the ferson who has it and to where te has it Although we trest such matters more claboratedy in the nexi chapher, it is useful to call our attention lere to the most obvous of all the distunctions that can be made in the vamous toryg fachitices that man has for has knorledge The destoctuon is betreen comsowis krouledse, which is essentially knowl-
edge we know we have and can transmit to cthers and subconscours knowledge, which is knowledge that we camot specuicesly identrfy and cannot pass on to otbers some wit once sadd that consclous knowledge is the kund we tallk about but do not use whereas subconscious knowiedge is the kund we use but do not talk about The same kind of distunction is being made to a certain extent when we say that a person knows how to do at, but can't do at," whereas another perzon 'cen do th, but doesn t know how to do it" This probably sounds somewhat like doubletalik A good example of what is meant would be a superathlete like Babe Rutb He could and did hit a baseball quite well but he dud not know how he did it in the sense that he could explan to somebody else how to hit a baseball There have been many suceessiul busmessmen who could run a bustness, therr success proved at But they were complete fallures when It came to knowing how they ran their busuness in the sense that they could help therr successors to ron the busmess
We are all aware of the fact that we do come things with conscous thought and some things with no apparent tbought at all We also know that we frequently do some thags better if we do not thank about them For example, most of us typically walk with far more grace than we exhibit if we walk across a stage before 1000 people
We would hestate to try to assess the relative importance to us of our conscoous knowledge and of our subconscious knowledge in later pages our discussions are almost exclusively confined to conscious knowledge This is not because we consider it more mportant, but only because this is the only kind we can talk dreetly about

2.8 Knowledge, Ignorance, and Decision-making

We become conscious of the problem of making decisions only when we are aware of alternatives or choices and we are aware of alternatives only when we are aware that we do not know exactly whet to do Hence we tave to take action despite a certinn amount of ggnorance and therefore uncertanty Fortunately many of our problems are trival enough or have enough roorn for error that we do not have to overly concern ourselves with how to best make our chores In fact, often the problem is so trivial or we are so indifferent to $2 t$, that we deliberately leave the decison to chance even though we know how to do better For example, most people just go to the bus stop and wat for the bus with no thought of the bus schedule This is because the bus generally runs often enough so
that ke feel we can sford to watt the 10 mmutes or so that might be 4 . maxmum mothal But if the possble waturg ume is
 perisps Ecres neceasary to gather more spectic knowledge of the bu tehecule and thus η 'se our arrisal at the stop so we save some of the t.me
Suce so rany people artiolly hope that there must be some jomula aberiby we cse mshe decisons about many matters, it is ueflul to remind oureves that thes mill always be a hope rather than a reality There can be no complete formula for decisionmakeng fo the cmple resson that the problem of decision arses only when we afe partally igrorant, and if we are partully ignorant, we ase bound ta be somathat uncertan about the decmion to make But, although we tave no complete formula, we do have wajs of analyung what we do hnow eo we get the most out of it without at the ame tume getuag too much out of it' It may sound surprising, but it as peverthelews true that we often have as much noh of getung too much out of nhat we hoow as ac have of getting too latte

2.9 Probability

The es canal tool in dealing with problems in whach we have only partal knomiedse ts the probsbility calculus Sioce thes connotes mathematucs to some people it all seems quate lorbiding But it does not really hase to be thrs was Actually ne all uee probability consepts ciesy das wath no thought about the mathematice of at In fact, the cat hying in the buches wating for the unary rabbit is Lung prohabsty coscepis in the sclection of the paracular buch, the parmular time, etc The cat does not know he is going to catch a rabbut, but he figures be has a 'pretty good chance" based on his pas: cxpenence
Faxactl) पhat do we mesn when we mahe such atatements as "the probabtity of a bead on the toss of a com $181 / 2$ or $5^{\prime \prime \prime}$. We might metn enther ofe of tro thing Wis might be talling stactly in abrtractions Then re nould be thankigg of a "far" com, which by definition is no conaructed sud so throma that each side has exactly the sare chance of comung up We might ammedatelv infer from thes that the cola would logreally slways stand on end, thus giving us $1 / 2$ tad and $1 / 2$ tall But we do not rant to mean this, so ne sdd the ?urther condirion that the com cannot stand on end! It must coten up bead or tall Hon olten will it come up heads? We
answer this by in effect preturing a com teetering on its edge but unable to really stay on its edge Sometmes it falls one way, sometrmes the other But by defintion, so to speak, wt will fall one way just as often as it mill iall the other way on the long mun. If the com alternates heads and tails, thus apparently coming as close as possible to the condition of an equal number of heads and tails, we quite logically recognize this system in the results and treat the com toss as a completely solved problem with no uncertantry and no need for probability calculations It sbould be clear, then, that the conoept of the long run is of the essence in understanding what is meant by probability But before we tackle the problem a little bit more let us look at the other way we might interpret the statement that "the probability of a head on the toss of a com is 5 "

The second way to start looking at the problem of probabihties for coin tosses is to start with real coms that are sevially going to be tossed, rather than with absfrect coms that exist only in our magrnstions If somebody asks whether we would guess heads, tails, or edge, we mught take a sclentific, or at least an apparently sclentifio approach, to the problem. We study the conn and the tosming process Let us say we do this whth our hands and our eyes and our other unanded senses Let us suppose further that after about 15 minutes of such study we have come to the followng conclusions

1 It must be aimost mpossible for this com to be tossed and end up on its edige because we heve found $t t$ almost umpossible to stand the com on its edge So let us for the moment rule out thes possibility
2 Wo have found no evideres to suppors the heluef that the coun 25 move likely to come up heads than it is to come up tails, and vice versa So let us assume for the moment that the com is just as hikely to come up heads as it is to come op tatls Or, in other words let us assume that the probability of a bead is 5
There are two very important aspects to note sbout this second approach to the problem of what we might wean when we talle about probablhties Furst, note that we make very clear that whatever we say about the probablity we say only on the basis of assumptrons we are making, and furthermore, we emphasize the tentative character of the assumptons by the quahiyng pbrase, for the moment In other words, we are prepared to cbange our assumptions whenever additional evidence suggests the possible supenonty of other assumptions And, of course, if we change our assumptions, we change the probabilities The fact that we would do thas tells us that we really are not assoclating the probablities with the conn, but rather with the assumptions that we cboose to make about the com Thus we
sere reall theing probsbility statements to our degree of hnonledge about tomething rather thass to the comething itself
Second note that we arnued at the equal chance hypothess by indirection In a cente we never really kald that beads and tails were equally hels What re tand was that we could gee no evidence that sureceqs that one is more lhely than the other in fact, ne are quite coaroced that either heads is more likely than tails or that tais iv more hieh than heads It is neredible to us that this conn, or any com is a perfectly balanced that it is truly just as likely to come up one kay as the other But unfortunately for us, at the moment te jut do not hnow abich 15 more likels Therefore ke teatatisely asume that they are equally likely But we are going to change that areumption at soon as we have crough additional endence
He might ravec a quection as to why all the luss about theae tro poosible wavs of looking at the probabuity statement when they both tome out at the eame plate and result in a probability of 5 for a head The point is that the fret ray of lookiag at the statement lakto the probabilts as a green and unchangeable and true fact, whereas the escond way asys the same thing but treats il as a deduced and tentatue assumption The second venpoint is strongly preferted to the firet for mons rea*ons that are obvous in vers of the diceusson to the preceding pages Later diccuseron alco reveals additionsl adrantager
This is a good tume to pursue a little further the notion that additional evdeace might caues us to change our hypothesis about the probabults of a head on the hase at a green con Knowng only What re could find out about the coin br examining at with our unsided senser we decided that the probabulity of a head (or of a tal) is 5 If re now had to call the result of a toss in adrance it is a matter of indiference to wa whether we call heads or tails We might eten toog another com and uec its result to tell us rhat to call on thas one't Let us ruppore ac deended to call heart The conn is toseed and tit does come up fiende We now have cume additional knorledge about thas on the have non had some actual experunce with the toseng of thes com Proe to thr everything nas apeculation What can we ma cof the cxpenencet It seems approprate to make tro obernatione

[^2]should see more heads than tals as a result of the toreng And we have seen more heads than talls
This evdence and the observations we made from the evidence now lead us to state a new tentatave hypothesss about the probability of a head We now might say that "ff the probsbility of a head is different from that of a tail, it is more litely to be in favor of heads than to be in favor of tals" We would now lean, ever so gently, torard calling heads rether than tails on the next toss We say, ever so gently, because the leaning is based on very slmm evidence, namely, only one toss But let us not forget that shm as the evidence. of only one toss ws, at wevedence and we should not rqnore it Just for fun, let us quantify the extent of the leaning that we now feel by stating that we believe now that the probabilty of a head ie at least as high as 50001 The dufference between 50000 and 50001 may seem very trival, and it does seem dificult to see hor we can take much prectical advantage of such a small dufference, but the pont, hoxever, and this 28 not trivisi, is that every shred of eyndence should tell us something we did not know before, even if only a ehred It is not proper to let addithonal evidence accumulate and then gerore it When we ggnore addtional knowledge, we are letting our knowledge become sterle, which is wasteful But even worse, we are falling to take advantage of opportuntties to alter our behavior to mcrease our rate of success in our acts and decisons
Let us pursue further the loge bebind our leanng toward calling heade on the next toss because we believe that if there 18 a difference in the probablities, it is in favor of heads Let us suppose that our original hypothesss as etill correct, namely, that the probablity of a head is the same as that of a tail Then it is a matter of indifference to us whether we call heads or tals But, if our second hypothesis of a little higher probahility for heads 13 correct, we should call heads rather than tarls 80 now we have two hypotheses to gulde (or confuse) us One is, call heads or tails, it makes no difference The other is, call heads Anyone can see that if we call heads, we are being consistent with both hypotheses Or, in other words, we have nothing to lose by calling heads if the first bypothesis is true, and we have something to gan by callng heade if the second hypothessis is true And we all know that we are living in the best of all worlds When we can make deesirons that cost us nothing but yet which might lead to a gam!
How do we feel if the second toss also results in a head? We should now leas even more to a belief that the probsblity of a head
n toont thao 5 , by cren as high as 5001 Aod the more heads io a row we get lhe this, the roore ne would lean in this direction. For example, I Ior one would be anling to bet $\$ 6$ to 44 that the 1 th toss rould also be a hesd if the firat 10 tosses bed been heads] Would jou take this bet?
Suppose the sccond toss had tumed out to be talls Nor, of course, we sould be beck to our ongmal hy pothests before fe had seen any wosers, namely, that of equal probsbilty for heads and tails. Our expeneoces sith the tho tosee woutd have teoded to confirm what The had belicurd on the basis of just examining the colo
We are now ready to state a general policy for problerns that involie unecrtuaty We cao do thes best by setterg down a eeries of propontions that geem to make cease

1 Sure we do por hrooc shat we should do or decide, ke must base our actuon on fonething that ne beltue is as close to the truth as he can ret ot the thoment
2 We prefer to label such a beliel sas hypothem Techarally, a bypothNa is "poretbung tastures for the proposc of argumeot" We have thes preferenee becase this a ord tend to remand us that we are basiag our action on asumpuion and aot on lact it reduces the posabiblaty that wife will develon such a strong attechment to our belef's that we will eonuoue to hoid them in the face of substanital contradictory endente Or, evea worse, we become so convpeed tha: our beliets are notbt thas re no logere conurve to sceumulate addrional erdence
3 Our by pothers choudd be se constest as possible moth all the knowt. edfe at our command In tha connection we should keep in mand thas fact and eapenence tuxe as atmost sucted qualty about them Wheneser we find our hypathetes somerthat urconsustent futh our experence, there chouid be mo queston about what should ave ground, namelj, our bypotheres We cannot deny the fact that "exparence is the bast teschet," and ae should always isten when erpentence epeake
4 Enge tre cacnol state or calkulate a probabity unta tre have allopted some bypothers, it is proper to state that all probabitues are hypothetecd is charater They ste not fotiual They tell us how often we thoudd expect something to buppen, of to be true, pronded our aurmption 4 correct If our ascursption is incorrect, thed things ast not gaing to horpen the asy ke erpect them to

Athough ne may be rather aell persuaded that these propositions do make a kind of scose, se may still be bothered by some other wotoos we hold about probabity, notions that we are not sure are conistent trith thece propositiogs for example, ne may have in the pase bad an indination to beliene that if n sentes of coun tosses had shomn more head than tails, it was logeal to call tails now be-
cause tails "Tras due" Our reasoning prohahly went something ilke this

1 The probnbulty of a head is 5 Thus, in the long run there should be as many heads as talle
2 We have had more heads thans talls If we are going to end up moth as many tals is beads, we are going to have to have more talls than heads in the remanng toses
3 Thercfore 'tals is cive'
The trouble starts with the first statement Thes statement mples that we know that there will be an equal number of heads and talls m the long num But ne do not know the at all, nor is there any "ay we could hnow this Moreover, the statement errs in referring to the number of heads and tank Probability statements should snd do refer only to the proportion expected in the long run, and ex en then not to any exact proportion for any exact and finte number of events Suppose somebody tossed a coin $1,000,000$ tomes and got exaotly 500000 heade sad 300,000 tails and then clamed that thes was evdence of a far coin farl\} tosed What nould be your re. action? My reactuon nonid be that this is evidence of something quite the contrary I toould be very susplecova, that he was so detammed to prore that thes was a farr com farrly tossed that he controlled the tosses and made the results conform to nhat he thought I would expect them to be In other nords, bis results are "too grod" to be true;' and I just do not beheve them I might expect the resulte of $1,000,000$ tosses to be such that the proportion of heads is in the reughborinood of 5 , say between 498 and 502 Bit 1 cettanily tont expect the proportion to be exactly 5 Recogninon that thangs can be too good to be true sa one of the problems of the card sharp who knows how to manipulate the deal To allay suspmenen, be sill deal so the results will appear to look lake ehance But he maght eassly overdo this and make them Jook too much like chance, and he will, therefore, be suspected by an intellagent opponent

The second statement tends to collapse now, but it is also based on another notion that frequently causes trouble, the very kmd of trouble that 18 exhibited by the thind statement Thas notion is thet somehow the unverse out of whach the sample atems are berng taken has only so many items in it, and that as we draw certain items there must be fewer of them left Sometmes the conditions of the problem are exactly this way, the most notable case being that of card games For example, when we deal cerds, we find that the longer we do not deal the Ace of Spades the greater is the probabinty that it will be
the next card In laet, if the Ace of Spades is not among the first 51 cand dealt, it 13 certan to be the 52 ad cand
But the cositions of the conn tossing are certanly not this way No matter hox many tumes we toss the com, and no matter how many lieads we get, re have not changed the proportion of heads to the unnere unless the toasing process wears a bass into the eom The csanot deal out all the heads the way we can deal out all the canis In fact, it is ressonabie to assume that the mechancal act of tosang a con is completely mdependent of the probability of getturg hetds and tails on subsequent tosess it is never appropriate ta belseve that heads is due because it hay not armed yet
Mort practical problems are mort analogous to the con-tossing stuation than they are to the card-drawng stuation it is much mone sppropnate for ua to look for the sort of thing we have already seen than to look for what we have not seeth If we see a basketball plaver mus 25 shota a a rom, he is not "due" to start making baskets If anything, he is "due" to be dropped from the first team Similarly, If a busneraman fals in five consccuure busmesses whoch he has tred to nun, he will not now mahe a million because he has already lost to much He is probably a very bad businesman, and you rould be well-adresed tot to mest any of your money in his aext benture But these judgments are self-evident ahen expressed this asy Any problems we iend to have in thes area probably stem from the fact that most of our consctous experience sth probabsity hes been mith card games, and ne unthonkingly apply what are perfectly good card game prociples to other problems in probability which are subject to sather diferent conditions

2.10 Real Differentes vs. Apparent or Statistical Differences

Suppore we have two decka of ordoary playing eards and we deal fire cards out of each deek at rancom The two sets of five cards will amost certandy be diferent from each other For example, the auctage sue ol the numbers on one set rial be larger than that of the numbers on the other get This is a difference on fact and, il we wer planing a game that depended on the average suze of the number, one hand rould be better than the other; and this difference in the numbers probsbly would be translated into a diference in the cores of the players Homeser, if ae uere to repeat this expenment many tmes, we bave a leelong that the differences between the hands
would 'teod to average out' In other words, differences like thas teod to disappear on the long run In dealing with difierences of this type, we must have two pohcies one for the short-run, where the differences will exist and will have to be dealt with as such, aod one for the long-min where the differences will teod not to exist and where we maght lgnore them
Nows let us consider two other decks of cards One $1 s$ ao ordmary deck, with the numbers running from 1 to 13 The other deck, however, has oumbers running from 3 to 15 We agand deal sets of five cards from each deck and compare the numbers Again we will find them almost always diferent Sometimes the cards from the first deck will be larger Other tumes the cards from the second deck whll be larger In gencral, howe er, knowng what we know about the two decks, we would expect the cards in the second deek to average timo uots hagher Thus all the differences between the five card hands will not average out
It should he clear, then, that any observed difference between two things or tryo groups of thangs mght very well be made up of some conitioation of tro dastinct and mportant knds of differences one the kind that will tend to average out in the long rom and the other the kiod that will persist anto the long run The differences that we beheve will average out we cail apparent, stanstical, chance, or random differences The drfferences that we do not expect to average out we call real or statustically stonnificant differences It is essential in prectical problems that re try to separate these two differences For example, if we bsee a long-run policy on a difference that tends to average out in the long-run, this policy must fail because the difference is hound to disappear Unfortunately, it is not at all easy to separate these dufferences All of us make dally monstakes in classiynog differences We label one difference as ohance and go on and ignore it when sctually it is real and will persist We label another difference as read when it is actusily chance We say much in subsequent pages about the problems and techniques in identaiying differences

211 Practically-significant Differences vs. Statistically. significant Differences

We spent some tame earler on the questoon of what difference makes a difference? In that discussion we taoctly assumed that we were dealing with real or statustically-stgmaficant differences We
*ere quite fure that one prece of cale nas really larger than another, bit re were not of gure that this dfference "made any differnce to us' Sunce we are not in danger of getung oursedics tangled up in nonds lat un brim thee argous weas about differences together and tr to claniy their distinetion at the same time, let us add a lourth type of diference that we have occamon to run across The tourth tipe ne call a shom differance becaure it is a difference that ne do not thank exprs at all wher is the short-rin or in the long. tun $T 1$ in kind of differene anees because human bengs ore not perfict in thar perceptung \$e not only fall to note differences that do cyat we note differences that do not exist For example, if a pervon were a aked to count the number of pennses in a bushel buthe he nould come up nith a certan answer But ne do not trux har or has countung ability completely, co we have somebody else check bus count. He counts 17 pennes ferer than the first person did What happened to those 17 penmes? Or did nothing happen to them and alt thos diference means is that etther one or the other, or both, cannol count accurately
So now tel us las in proper order the questions se mught ask of an obiered difiternce

1 Does thas injerence sedly exist or is at due only to errors in perception? Ift retlly ents then was ats
I Is this s thance diference the kind that erists only in the shon- furs, or
3 is thas a pail and permaneat daference that mil perctst into the lopgrun?
 to be conferned 5 , tha, we atk
4 What diference does tha duffereace make in ws? What gang enul loses are asocured with it? Or is it of such trival consequence to us that we can grave ts?
To summarze not, we can esy that
1 Sham difleresces are thase that we to nat therk remily enst at all
2 Chance diferences exist but only na the ehort-run Thes tenal to a cerage out in the long rua
3 Statuticelly-ngonfient of real deferencea exist on poth the sbort and lons-run
4 Practiceily signifcant diferences are non sham differences that make a difternec io us, and we therefore ruyst pey attention to them

2,12 Shorfrun va, longroun in Decision-making

Let us suppoue jou and a freend hase just fimshed a fine steak daner at a good restaurant Nof the chech appesrs amounting to

810 Each of you had intended to pay balf, but your frend has found that thes dimner and your congenality have shmulated his sportrug blood He suggests that you and he toss a com to see who pays the whole check You have absolutely no reason to believe that this wall not be a fair proposition You are convinced that your best hypothesis is that you are just as likely to wn and pay nothing as you are to lose and pay $\$ 10$ Of course, you could tum down has offer and pay 85 What decisson are you gomg to make? Because you are intelligent and systematic, you deade to analyze your problem as rationally as possible

The first thing you do as set down your alternatives

Decasion	Amount I'd Pay	Proba bulty I Would Pay It	Net Expected Cost
1 Refuse offer to toss com	\$ 5	100	85
2 Toss cone $\begin{aligned} & \text { If mm } \\ & \text { If lose }\end{aligned}$	$\begin{aligned} & \$ 0 \\ & \$ 10 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\left.\begin{array}{l}80 \\ 85\end{array}\right\}$ Total 85

This analy sis reveals that the net expected cost is going to be $\$ 5$ whether you pay for your own or whether you toss a com It looks as though it makes no difference whether you toss or not You are just about to accept his offer to toss when a horrible hought occurs to you The thought is that although to toss for $\$ 10$ dinner cheoks will cost you \$5 on the average and in the long-rm, this particular toss is certamly going to result in your actually spending so or $\$ 10$ So now you must face up to the question of whether you can efford to spend $\$ 10$ right now, in the short-run, for this dinner You don't bother to ask yourself whether you can afford to spend 801 You know you can do that Let us suppose you happen to have just $\$ 10$ in your pocket, plus a nuckel that you can use for the tossing Now you make up another table of your afternatives

Deasion	Money I Would Have Left
efuse ofier to oss conn	8505
If Fm	\$1005
oss coin If lose	\$ 05

Ne can be quite gure that rhen you walk out of thas restaurant jos will hase one of thoce three arounts of money in your pocket There is abonlutek no question in our mod thich amount you would preler But, unfortunately, in order to gat a chance at the most prefermed amount, j ou must take a chance on ending up with the least profernd amount And por re realize something elee the $\$ 5$ jou will gain if you min is not worth as much to you as the $\$ 5$ you will loe of the toos goes againstyou
So now jou ore just about to tum down hus offer, then another thoughe fashes through your mood You ack yourself "I wonder what kind of a eport he mill thank I am if I refuse to toss for the cherk" "lle's willing to tahe exactly the same rish that Im on the serge of turning down, so le ll probably thank I hate no sporting blood at all Il 1 tum him doxa " "ion 1 don't hnow that to do I neter should have tred to get ratuood about thes in the first place"
That sou will finally do will depend on your pertonal evaluation of the worth to you of his opinion about your sporting blood and the amount by which jou ciacount \$5 800 compared to 85 lost The *ealther you are, the less you will tend to discount the $\$ 5$ and the more hihely you are to sceept the offer to toss, unless, of course, you are conmiced that one of the reasons you are wealthy is because you have made it a pracuse to nes er engoge in unnecessary gambles, such ss this

Mort people are Hiling to toss a com to ece who pays for the "cokes," probabls becauee the amount involied is trival (although the prateple of darousting still apphes), and because they nould like to be considend as having at leost that amount of sporting blond lery len prople, however, are willing to toss coms for $\$ 100$ bilh The rearon is that, olthough such a practuce will result in a perton's breahiag even in the long-ran, he is atmat certan to be a ninner or a loser in the chart-run and ver w of us ean afford to take thot nach in fac what rill tead' ' sappen is that moct of us would go broke in the cior-run and thus never hate a chance to breskcieninthelong in
But aclually the an iation c, be even worse than thas We may even hase in "edige" in the longren, in the gense that the "grme" farors us a $\%$, by 5% Thus, we are almost certan to $\$$ in in the long-run, if e surnie lf, homever, we get gredy and try to nin too fast th the thor--run, are are almost certan to run into a streok of bad luck and ger wiped out and thus never get to see the longron Many burnesmen make this matake of trying to make money too fact and end up going broke and selling out to comebody who is less
greedy and thus better able to survive The first rule of success in any venture is survwal That is why it is essential to hold back some of our resources, some reserves so to speak, to protect ourselves agamst an unfortunate outcome to our current short-run commitments The age old proverb, "don't put all of your eggs in one basket," expresses this prociple

PRORLEMS AND QUESTIONS

21 Describe brefly the differences you are able to find between
(a) Two 'identical' dinang room chats
(b) Tro identical automobilos-eame manufacturer, same model, same body style same color same trim, or in short, exactly the same in every technucal feature
(c) Tro "identical" narls
(d) Tho 'Identicel penculs
(e) Tho dravers in the same file cabinet
(f) Tro argnatures that you have writien
(g) Tno peas in the same pea pod
(h) Tho identical twins of your acquamtance

22 Descrbe briefly the important characiersitics that are exeotly the same for any two objects that you are faminar with as for os you hnow
Might these identical charactenstics be duferent if you compared them with a microscope or other instrument ${ }^{\text {4 }}$
23 Give an ilustration of a duficrence that 'doesn't make any dufer ence' to you Describe the nature of the difference and how you know that it exists Explain why it doenn't make any dfference to you
24 Describe a dufference which you think makes a difierence but which your motber, or your father, or jour brother, ete, thinks makee no dsfierence at all Try to explam the basis of such a difference in taste or opmion
25 Outime some stmple causai system you are familar with For ex ample, the causal system that makes it possible for the light to light when jou flick the switch or the causal aystem that makes it posible for your ball point pen to make a visible lme
State n hat causes what and also the sequenee of action tf there 18 one
Does this system alweys work?
How do you teil when it Isn't worknes?
Fow do jou dagnose the dufficulty or dificulties if 14 ISB t norking?
How do you repar the difficulty?
Are you sure that all your answers to the above are correct?
26 In each of the following cares induate whether knowledge about the first elernent of the parr would help you in estumatrag the second element State the may in which it would help Be as spectic as possible Note any assumptions you are making
(a) A man s herght-the seme man's weight
(b) Speed of an autontohile-distance requred to stop it
(c) July 1,1960 New York Cily-noonday temperature Nerr York City
(d) December 11973 New York Cty-noonday temperature, New York
(e) Color of playnge card-humber onface of eatd
(1) Yas bat steforame manis

27 Destnbe eotrathig you hate leamed dumat the last week Explain bow this addetonal knoxiedge has eabled you to better control your acuntes and problerns Hox much bette. I He as specific as possible
21 Destrbe womethang you bave mbarned durng the last reek, tbat u, eomathog that you used to thing wat true, hut blich you now think is untree Do jou feel that you are nors better off even though in a sense you now know less than you might have thoughe you didt Explan

29 Uupg no orber koowiedge than what you already have, answer the following suestions by giving the locest value and the highest value you *ould expect Select these values as though you were going to bet 4 to 1 that the anwer will be within the stated limits and as though you realls expected somebody to atke the bet In other wards, don t state limits so hroad that only a fool rould bet aginst you

(b)

- "
(c)
ing round of the IPKO National Opent
(d) How many sutomobies prete eold in the Unuted States durng 1960 ?
(t) Thast will the Grass Nisuons' Product be in the Unated States dungg the curment calends! y ear?
(i) \#ow many games will your livonte basketball tesm xin this season?

210 What role does chasce play in determining the following events? Epht your antrute tato tho parts in one part indieate the role of chance Fithus the lumits of your knowiedge In the otber part indicate what you thank the role of chasoce would have been in the mind of an 'expart" in the gien field lo tome caser you may be the "expert"
(a) Your gomes to college
(b) The aumber of Buicks eold by General Motors dunng the calendar sear 1955
(c) The grade yout recened in that math course you bad in your farst yesr of high açhool
(d) The grade jou are going to receive on this course
(e) The time you got out of bed this moming

211 Write bate esay-no more than 1000 Hords-on one of the tolloning Prik out the one that you know best how to do
(a) How ta drue an antomobsle
(b) How to set the ducer table
(e) Itow to ralk
(d) How to ralk across the treet
(e) How to emile
(f) llow to hat a goll tall
($\mathrm{a}^{\mathrm{T}} \quad \because:$
(h)
(b)
(g) \quad.
(k) anatabjetty

212 Suppose ou had observed the recults of a carnusal wheel for sts lest lour epins The resulte fere, in order, 23, 8, 19, 26 If you are gong
to make a play, what number would you bet on for the next spin of the wheel The wheel has 48 numbers runnmg from 1 to 48 Explain the loge of your sefection
213 (a) A card is to be drawin from an ordmary deck What to the probabiuty that at whil be the 4 of duamonds? Explan
(b) A card hes already been drawn from an ordinaty deck It is lyng face down on the table What is the probability that it is the 4 of diamonds? Explain
214 A combat pilot ri defintely exposed to a rugk when he flee a mission Most nations have a policy of lmoning the number of messions a plot will be asked to fly before he se given some sost of relief What is the rationale bebind such a policy?
If you trere a fight cormander and had a particulerly mportant mission conong up, would you preter to use pulots who had already survived many miscrons or would you prefer plots who had flown relatively few misanss?

Explais

215 If you were a baseball mansger and needed the bast hatter (the one most ilkely to get a bit) you could get in a erucal spot whech of the followng two hatters would you choose? Explan your choice
Ore has made eight consecutive hits This hatter has never but safely nuge tames in a row to your knowledge In fact, he had never hit safely more than five tumes in a row untul this last streak Nine consecutive hits is a club record made 3 years ago hy a player now rethed

The other bas gone hitless in egght strarght turns He had never gone hutiess this long hefore as far as you know, although be has gone hitless as many as seven tumes in a rou quite jrequently

216 Does the saying 'The putcher went to the well once too often' (and got hroken) mean that the greater the number of tumes the pitcher goes to the well, the greater is the probahility it will get broken?
Suppose you have tro putchers One is hrand zess and has never "been to the well" The other has "been to the well" 1612 tumes You are a guest at the house and have been asked to go to the well to get a pitcher of water The last thung in the vorld you want to do is break the pitcher Which putcher do you tale (As far as you boow, the putchers have equal value to your hostess)
217 Suppoce you were offered the priviege of heng the propnetor of * game that was so destged that on the auleroge in the long-run you would retan 10 cents per doilar bet on the game The rules of the game were such that you pand off a wmer at odds of 8 to 1 although the odde aganst winning were 9 to 1 You would have to supply the caputal necessary to operate the game Winning and losing in the game is a matter of chance The unt of betting in the game is 81
It is obvous that a person should be able to earn some money in the long run by operatang this game Therefore this prolege must have some value
What is the maxumum price you would be miling to pay for the proviege of operating thas game? Assume that you hove estumated your potental volume of busness as averagug 10 plays per hour, 8 hours per day and 5 days per week
Hint Thas is a deceptively dufficult problem to work out in a com
f"es lomas maner But do nat be destourged too quelly Retnember the proveres of the wort have been bought and sold many tures by people

Some al tho quaticos jou mill have to shater are

- How rut captal mill I need to gre me a reatoatble(${ }^{(1)}$ chance

I If I tool the ame captal and mested it in United States govern ment bouds 1 could tara 400_{c}° wnth practestly no nsk at all What extra roke do l the whend try to ruse the expected retura by buyng th a etme"
Your that n aloul the proe you oflet for thes grivite should belp to slatify go r undaratand as of the problem of folloring a policy that gies 20u a fare chane of aunmag the short wo nesontudes of ehsnce at the ene (rt as jou tr) to make a fur aternge retum to the long run This I* of courne a problera the pervades all of busines and mith a complenty far mesers than the eomplesit) of the ample pame stuation
211 A area gumbh pres operat on in jout factorn is engmeered to tum ent $93 r_{0}$ actepable paeces It has been discovered that to redure the deirture pates belon 9 ris nould coct too mach in labor materals and tools I eruale isemethoos are made to pre ent zome precotable csue from

 prosere w etopped and the oprestor looks for the esure of course someimas the opratetet is fooled by has anapect on fesulis and goes looking for es are and domit find ans thus long valuable production time Other ures he is looted into letting the grocess ton when be should have stopped It thus producieg too much actap
(a) Supmes tbe last in pection of ten preces rerealed one prece defecture Shoul' the process te atopped for a seareh fot the trouble ? Explain gour detesion
(b) Euppore an irspection of ten peres sevealed two deffectues?
(c) Furd defortiseg?
(d) Suppere so indpection of fire preces revesals one defective? Do jou ante ary difermee brateen ten prever ath tro defectures and five pieces whan dofectne" What at the diference?
Hiat one nay to approach the problera is to elart with the hypothergs that the unnerse of preere has $5 r_{0}$ defe wee Thus the probabints that ans pree will be delective would be \sim or 0_{0} and the probstolut) that a prete voull be satsfactors πr \& $29 / 20$ or 95 The bance calculation needod to amonet fat (a, to calculate the probability of geting ten plese with cor defectue out of a unver of with 5% defect res This is lone by multuphting the rrobibilites for the ten eparate peeces togethes 11_{2} O. (defetue) $\times 95$ (scod) $\times 95 \times 130 \times 93 \times 95 \times 90 \times 95 \times 95$ $\times D 5$ or tocalculate $05 \times(\Omega)$ ' which equals ?
 to pren et evente ectept withas some range of errort Or in other merds al gouds not know pactly what your labor cost was gong to be per unit of produr durirg the next fisesl year, ahet strps would sou takp to protect
 deal with a union?

chapter 3

Sources of knowledge

It is self-evident that knowledge does not exist in the absitract It can be used only mosolar as it becomes part of the chemistry of the human body and thus can have some anfluence over the behavior of the human being (The same thing can be sald of any living object We are gorg to confine our attention, however, primarily to the use of knowiedge by human bengs) Mans knowiedge of the chemastry of the human body is not complete, 30 it 18 not possbble for us to specify exactly how the buman body acqures, stores, and uses knowledge Our trestment of the subject is further handrapped by our own mexpertiess in the general felds of study such as brology, physiology, psyehology, neurology, cto, and we approach the subject somewhat apologetically it is essential that we make some approach, however, if we are to get an adea of the limitations of the methods of solving problems that we are going to tallk about in later chapters We have occasion to state rather oiten, for example, that formal stahstical methods car be used successiully only to solve part of most practical problems It is mportant that we have some dea of what part we are solvmg and what part we must necessamly leave to solution denees that pannot easily be formalized and communcated

3.1 Perception Devices

Human Senses

It is customary to beleve that the buman body becornes aware of its envuronment through the medrum of the five senses We sometimes talk of a "sixth" sense as a sense that we cannot adentufy specrifically, or are even sure exists but wheh we find convenment to appeal to when we cannot otherwise adentufy how the apparent perception took place Specialsts in the field bave been able to make
nome sery wecful subelassficsuons of the sentes that relate the given stase to abat it is that is beag percened for example, the abjity to see color is not the same as the abilaty to see the distance of an oneoming object
Our interest in the aenees as not in the apecific characternatics of eath but rather in eertain geacral charatersties of all of them. The Grat characterate are note is that each sense has a limted range There are sounds that ne canoot hear odors' we cannot smell, ete Mana first inkling that the was so probably came from his obsenation of the behavor ol ammals Anmals frequently acted as though they could hear things ne could not. Thus one of the ph mary reasons man had for domesticating the dog was to supplement has oxa lumited enees The reacon it is mportant to recognize this umetation of our tenses is that it serves to remind us that there ore probably all knds of things going on around us of which we are not arare Thes recogation is both humbling and a challenge, o challenge to try to extend the range of our senses by ofie device or another And, of course, we have bad sonee success in meeting that, chalitoge
A aecond geoeral ehafactenstuc to note is that the range of parceptoo sarus from person to person At the same tume, we note that forunatel), this ranatioo usualty is not umiorm for all senses If proon A has a nider perceptwe range than B when it comes to seefig, he mught have a narroner raoge when it comes to hearing In tact there is some evdence that wealness 10 one sense is oiten associated *ith strength in other tenses The rare and girted persoo is the one who has mide sange in all has senses
A third thang we notc about our senges as that therr ragge, or acuity, eancs oter time for each of us Tranang can sharpen then On the other hand, fatugue can dull them The aging process also affecte them, urually adreacly Some of the varatior appears random to us, in other nords we cannot cxplain it, ac can we predict it
Fourth is the factor of the degree of control re have over our aenseg Some of thu centrol 13 rol atary We are able to deliberately focus our lookng, wur wstening our eaning ete We are aloo abje to rase and loker our threshold of conscousness For example, the atudent tudies with the rado on becauae he doesn't "hear the radio" The cits -dreller has almost permanently rased his threshold of ton*erounnesg aganst "city nosecs' that wrould mean sleepless mighte for the nexly-armed farm-boy Our abilty to control is limited, honeter There ss almavis a sound, or a aght, or an odor, or a touch that will reach our conectousness no matter how high we try to raise our

When we mentron conscrousness, we are led to wonder about the degree to which our senses still receve messages even though we are not consclously aware of them Although we have considerable uncertainty about the process hy whach suhconselous learming goes on, we have substantal evdence that it does In fact, some psychologists have been 80 mopressed by thas evidence that they are melined to beleve that practically all effective learnug takes place at the subconsclous level In other words, they beleve that we do what we are, not what we say or what we thoth we are And what We really are as burced mour subconscous They beltese that we cannot, and will not take any voluntary action that is not consistent with the condition of our subconscious
Another interesting characteriste of nur senses is them power, both absolute and relative, to convey knowledge Is a picture really worth a thnusand worde? If we mere restructed to the use of only one of our senses to lsarn all we could about an elephant, would we rather see, hear, touch, 8mell, ar taste one? Fortunately, we do not have to make chouces hke this Most of us are able to use ourr senses ali together, and here we find annther interesting property nf our senses It is not unusual to find that the senses seem to stmulate each other to greater effort To hear a mulse makes you want to ses what produced it The mfant crawhing on the rocky beach first sees the stones, then feels them, then hangs them together, then puts them in his mouth, then cries when his mother takes them away and moves hrm bock on the sand 1 On the ather hand, sometimes we find some senses completely drminating athers Tu feel the cmsp tool am, smell tbe smoke af the campfire, hear the steak suzaling, by now that steak 18 predestined to taste good, even with durt
This is perhaps enough discusson of the human senses to remind us of some important truths These truths are going to be persistently relevant, even though not always explicitly mentroned, as we pursue the prohlem of bunlding and usug statistical controls in business Agann we use the simple technque of a list nf "proposituons" that we take as having a reasonable measure of truth

1 The envronment in wheh we operate has an nfinte number of verrathons
2 Our knowledge of this envronment is usefil to us only insofar as it is part of the chemstry of the body
3 We accqure this knowledge only through the medrum of our senses, ureluding both those known to us and possibly others not known to us at thas tume
4 Our eenses have certar lemitations
(a) Limited range
(b) Jansble performance

1 From peron to peroon
a From tume to tume
m Frow place to place
(c) Itvoluntary thaction to eome extent
(d) Subject to actual error
5. Hence out knonledze of our enyiroment as pecessarily limited and in wome cated incorrect
6 Thus all our actions are subject to errons caused by what we do not know and by thase thang thast te know but whach are not true
7 Fortuntel) we ate not $1 s$ bad off as the above might lesd us to believe We sre not tenlly anare of most of the matakes re are making because our perceptions are too narrow for tos to realze they are mistakes We are not disturbed by what we do not know, beeause we do not know enough Igeorance is truly bliss, if we do not have somebody remunding tu how gmorant we are

Augmanting the Human Senses

The more intelligent of men aeross the centurtes have been fully alerted to the limitations of their own unaded senses, and they took steps to do zomething about them We have already mentioned man's early ure of the dog Another anumal that quickly comes to mind as one we have used in recent decades to supplement our senses is the noouse The moute has been used bs the coal miner to detect the delelopiat presence of gas in the tunnels But the most spectacular achievements of man in augrienting has senses have not been through the uae of ammals Thes have been through the creation of physical instruments Nort of these instruments are so commonplace todas that se do not fully apprectate ther furdamental amportance to the development and wasatenance of a complex cuvisation

3.2 Memory Devices

We not only have the prokem of properly exposing our natural and sugmented sences to the phenomena around us, we have the further problem of erv..ug that we have thus learned Also, we not only have to store them untal the day ne need them, but we have to know where we have stored them, and we have to know how to gan aecees to this storage place And none of the happens easily and autormatisally

Storegs fatiluties of the Human Body

The problem of the human memory has been the subject of much reeearch One theory hypothesizes that we never actually forget
anything Every stmolus is reputed to make some impression however faint, on the nervous system, and this mpression never really disappears even though the consctous mind may never be able to recall st Even if the is brue, we stall do not know if it affects behanor by actung through the lower nervous system We do know, however that we may never be able to communcate tbis knowledge because we are never able to get it into the conscrous nervous centers The mability to communcate is often disastrous in many practical situa thons For all prachica! purposes it is just as though we did not have the knowledge assuming we do

Augmenting the Human Memory

Man has been equally mgenous on augmentiog bis memory as he has been in augrenting the range of bis senses Record-keeping and prcture-making go back through the ages The twentseth century has witnessed the development of sound-recording to add to the sub stantial mprovements that have taken place in the protang and photographe arts In fact, we are now ruaning into the problem of providing storage facilthes for the ever-mounting volume of paper Business has developed record-keeping to a fine art It would be dificult to exaggerate the profound importance of the aimost revolutronary developments that have taken place in the 1940^{\prime} g and 1850^{\prime} s su the communication and record-keeping arts Execubives of today know in hours and minctes what executives of yesterday knew in weeks and months, if they ever knew at all This has substantally incressed the span of effective control of the sugle exacutive ferm and has made possible the substantal growth that has taken place in the suze of andividual businesses Of course, it has also paved the Way for big organzations of all types, ucluding political organizations If we fear bigness in any institation, we are not so sure that further advances in the communcation and recording arts is an unmixed blessing

3.3 Sompling Problems in the Perception and Recording of Historicol Dota

Two Distinet Kinds of Sampling Problems

We prevously had occaston to define a sample as an item or a group of thems that has actually occurred We now add the qualifing plrase, as far os we know Thes serves to remind us that it is entirely possible that the phenomenon we are dealing with may actually have
ortured tasey umes mithout our knowng it. Although ne neces sanly mesi tale actuon nitho the limets of what re hnow, we do not part to be wo preumptuous at to beleve that we krow sill that there swo kor One of out ramplang problems is that ufat tre hrane w cely a somple of what ras oradable to be krom, and, furthemore ote; poople hase difirent samples from ours Thus is the sampling problem that predominates then the Galluy Poll asks the opinoos of 100 people ga a cis in order to drate conclusions about the opimons of all the people ta the cth This as aloo the problem when we sample a boal of soup for astiness by tastang one spoonful of it What botliens us of coure is that what we hrou may be sornjicanily dyffetent, to us from ahat was aroulable to be known if it is sumbicanth diferent then ae will likels act meorrectly Gallup says A s.7l wita but actuslly B will

The other kind of samphing problem smess betause whet actually heppors at any tae 15 not the oals thang that could have happened at thst ume For exsmple let us suppose se throz a dart st a target. This not a sample of throms that we have made at tha terget. Thes is the rhole record becsuce achase ectually thrown it yust thes ance But ae uil haves samphag problem as soon as we try to ute thrs expenence to predict the recult of ous nett throw Thus problem anees beequec re do not fully understand ohy that particular result of the throniag occurred Wthun the limits of out knorledge, se can eacils coacuse of diferent pocgble recults that might have occursed as कe losed this dart ln addition because ne can concelve of to tral poseble things thist might have occurred, exen though they did tois, we can non concene of sererall poosgble thags that might ocur on the sext toee $\times 5$ (B28)
It a in evactly the same bavic roat our ighorame O on the one hand, se ser igrorant of thang that have actually happened or that exset, on the other hand re are genorant of the generating mechanism that produces the rerales even when we know oll the results Fortunstely, It is usuali not nectesty to try vo separate these tro problems in pracheal atustons We generally lump ther manifestations together sid treat them as one problem What as neceasary, however, is to retognise that ethes or both of these esmphng probiems will exist in cerejprachesl athation

$$
69113
$$

Somple Generating Procetves

In order to mprove our understending of the problen of samphing errors we muxt think about the uanous distingurshabie processes
that might regulate the occurrence of sample items We start by looking at the vamous kinds of unverses out of which the samples might come Actually we have already done this, but now we are going to formalize and orgamze the treafment

The Noture of the Universe, or Papulation, or Generating Source from Whreh Samples Might Come We have previously defined a unverse as a "collection of things which contans all the things which ne think might occur under the specified conditions of the problem at hand" We retain this defintion Unverses can be classified with respect to whether they are known or unkrowin, real or hypotheical, and finte or infinte We make these distunctions not because we belleve that practacal prohlems involve all possible combinations of these types, rather we do it to clarify our thinking about the problens of sampling For example, we have occesion later to make beleve we have certain types of unverses morder to develop certain principles in a smple and easily uncierstood context in addition, we discover that some types are simpler to work with than others, and we find it practical to saenfice a hittle accuracy to save effort as we work on actual prohlerns

The difference between a known and an unknomn unverse should be self-evident All of the conventional games of chance dllustrate known unverses The reason we know them is very simple we constructed the games It us quite dificult to think of amy other illustratrons of known universes In most practical problems, if not all we can only guess about what is in the unverse In fact, the reason we frequently take a scmple is to help us in making thrs guess

A real unverse as one which exnsis, in the usual meaming of the term It has a physical existence F. It can be seen and touched, ete The universes of some games of chance exast in this sense, but not of most of them Whenever the game deals wuth single events, as in roulette, the unverse is real But if the game deals with combrnatrons of events, as is true for most card games and some dice games, the unverse does not really exist For example where is the universe out of which we are going to "draw" a sample of five pennes, which in effect is what we are dong when we toss five pennes? If we thenk about it, we will discover that there are 32 different combinathons of the five pennes that might occur But those combinations do not exist except in our mind If we wnhed, we might put each combrnation on a slip of paper, put the slips in a howl, and draw one out at random We have now converted the hypothetical unverse of com tosses into a real unverze of slaps of paper The primary
dif cul y most prop'e hase uth by pothetral unneres and unforsunatels moot problens molise hipothetical unnerses is that they cun rotiemplate the unneres only if they thinh about it and work at it.
A frutc unnerse is a univere that has a limuted number of thems in it If ne dran items out of thas unieres and do not replace them, ve aill coentualbs exhaust all the rems and the unverae will have dapmand toinfinte uaresee, on the other hani, is ne haustable Tle real umporance of the dectuoction lies in the fact that somphing ind out rep'acement from a fate unierse causes the unn crse uself to change Tomorron a possulaltiee therciore, are different from yexerdas a beeause of yeterday samples a sumple illustration of a finte unurese 1 a dech of cards as used in most card games For exsmple If we play poker ond do not recognace that the cards already bealt in a hand have somethng to do with the eards thase mught oceur on the nex' deal ae ase dong a lot to encourage people to inute us to plig auth them but intle to eahance our chances of winning But hou almut towing coms or throwing dice" Hon many chrous are ti ere in a par of dice? Do ne change the umsene of powbibilties eren tume xe throw the dice" Of couree ne do not (except for the nethible lactor of near) How ong is the unteres of putches in the arm of a major league pither? To uhat extent does some samphing throxisgi atrengthen the sma and enlarge the unnerece? To what extent dons ampling ture the arm and contract the unveree? To what exunt does rest replace' the unverse? To what extent does ape thange the unterse' These and simular questions can be asked abont all sorts of prretical actustus and the answers are important to un lucause the ansurs ue give tell ue what to expect tomorron
Surpromgh enough although the conc pt of the infinte puzzes mamy prople se find $1 t$ muth eaver to rork with problerns if we belk se that the umbere is unfinde than if re beheve it is fimite in fact many pont und juct do oot exist for us if we holese the unneree is minite I a example la us look at the problem of farming If the farmer treliepea that has farm has coul with an mexlaustuble "upply of those themeals that his corn crop "takes out" of it be womes not at all akoul the problem of the optumum combination of uee, rete and renceal he thould edont His philosophy is that there is alnays more where that came from' Our society has to contunuth wreatle a the the peues of roncernation nnd replacement of natural rroutces 11 hat makes thece esues "iseucs" is that ne do not know the acturl extent of the reqources we hase, and ue do not knon the future rate of yee We must greas, and different people
guess differently Thrs problem is further complicated by the ques thon of how far into the future our thonhng proceeds
Fortunately; we hase many problems where the anverse though fante 15 so big considering the rate of use or of samping that ous answers turn out to be essentially the same whether we treat the unverse as finte or mininte For example let us suppose we partic: pate in a lottery with a total of $1,000,000$ contestants There are 100 prizes the prizes graded dorn in value from the lst to the 100 th The first sample determines the winner of the first prize ete No person can win more than one prize It is obvious that our chances of winning the 100th praze (assummg we have not non a pror praze) are greater than weze our chances of winnug the first prize I out of 'only' 999,901 compared to 1 out of 1000,000 But what is the practucal agguficance of thas 'greater chance'3 Most people would agree that at has none A difierence this small we often call 'of the second order of smalls," that 18 , too small to bother mith We partrectarly do not bother with it if it is a bother and we find that frequently the mathematics of dealing with finte uncrerses are much more bothersome than the mathernatics of dealing with mfinite un verses

Ways by Which Samples Might Come out of a Universe To have some understanding of that is in a umverse does not really tell us very much about shat is going to come out of that unverse unless ne have some dide of the 'coning out' process There are in general two nays in which samples may be said to come out of a uar erse one 15 by a random process and ine other is by a sysiematic or non random procese It is quite ampossible to tell exactly wheh process really prev ulis in e given ense In fact, if we adopt the philosoplucal new expressed in the preceding chapter we would say that there is no such thung as a bue candom process What east are proeseces that look to us like what random procesces nould look like if there were any In other words, be have created in our minds a model of what ir random process is Whenever we sce a process that looks hike this model, we treat the process as though it here a random process Although ne haie stated it several time in preceding pages th 15 worth repeating When our present apnorance prevents us from cdentijyng any process as systematc, we temporanily treat the process as though it were nonsystematic or random Tomorron we may be smarter and treat ft 2 a httle differently In the meantime re follooy the very simple, but profound, rule of action We do the best we can with what we know nou We waste no tme tryng to do the
treporeble of conadetiog hooriedge that we do not have The susproo of ay'ctantic raration is a good spur for futher study But the mere surpaion is ualery to ue if it gites us no concrete dides of the trecem To *ay that aomething is 'based,' but then be unable to arate the direction acd msgntude of the bos is to asy nothing that we can use
Actually tran has been creaturg thang" random models for many yeare The tiem generating processes in all so ealled games of chance ase randoin proceces in the ecace that these proceses are designed to frutrate man's bect efforta to detect any sstemstic behayor to treproces The 10 not as hand in do at it may aeem All we do is deagn out all the ssematic cantions ae hoor about, thus automatuenll learng only those saristions that ae do not knom about and thexe are fandom by defintion Of course if such a design was atemped by a relatively agrorant man wath the uec of relatuoly crude materals and relatively crude tools, it is hikely that his process Fodd have sore sstematic annaona detectable by a relatuely knoaledgesble nas wath rolatath sharp tools one of the most merestuag developments of the last couple of decades, consederably atmulased by the birth and gronth of the ejectronic dats processing mathine has been the ure of random procesces to generate tables o! random number dippendix B gres sample pages from such tables There tables are created by developing a process of generating the digits 0 through 's one after the other in such a way that the order of the digte is ouch thac ie defes the world's best munds to discover any wat of predictung some numbers in the table by referning to any other numbers in the table lou maght try such predictions wth the sample papes in Appendix B If you happen to hat some correcth, and you will tese your "s) stem' in other parts of the table belore you detede that \}ou are ansit rather than Juchy
It is probably obrous that most ssmples we deal with are not consolouly selected by us They just happen Iloneter, there are eces nong when we do conscously select e kample Sometumes ne seleet a 'gosd' of bised smple such pa when we select our clothes lor a job anteryeck sad tee do not thak it as appropaste "to be bureeliea' Refechon will revesl that most of our congcious sample selectrons ane bused in our favor, insofar as an knor whete our Isvor 13 Part of groning up is to learo hor to bise our onn samples and drecount the bias of the other felfor'sI But there are tumes when we want a "completels unbiased' ismple because we want to get as clove to the truth as as humanly poessble nith only part of the record If is then that we might be able to menfitahto wen a table of dadom
numbers The important prelmanary, bowever, is to be able to separately identufy each tem in the universe and attach a number to it different from the number we attach to every other item This is what was done, for example in preparing the selective servee drait The hghest number so assigned then determmes the number of digits we nelude in every number we pick out of the random number table For example, if the highest number we assigned was 4684 , we would then select four-d.dgt sequences from the table The number 6 would be 0006, the number 48 would be 0048 , ete We can start enywhere we wish in the table and go in any drection we wish The only rule is to proceed in some manner which is independent of the numbers we find Do not look for any numbers or pass over any numbers because of any personal likes or distikes It is usually a good jdea to select a random start by selecting a page number, a column number, and a row number by some random process, such as drapung cards out of a deck Then proceed systematcally through the table, by taking the numbers in the same order in wbieb we read the words in a book Or, to be doubly cautious, we could use one table of random numbers to guve the page, column, and row in another tablel The possbilities are almost limiless once we start by using one table of random numbers to belp make random selections in another table
Tables of random numbers undoubtedly would be used much more in practice than they are if it were not for the dfficulties often encountered as we try to identify and number each item in the unverse Certain charactersistics of the unverse must be known or we cannot Identufy an item when we see one The unverse must be finte at least, and preferably not very large, or we pill be overwheimed by the numbering job Sometmes it may take so long to perform the numberng job that we no longer need to know what it was we were sampling to ind out!
There are tumes when we already know the pertinent characteristics of the unverse, or at least we think we do We nevertheless prefer to work with only a sample of this universe, usually for reasons of economy or tame For example, a company may wish to measure changes over tume in the average prices it charges for the many items in the product hine The company certanly knows the items in tts line and needs no sample of tems to find out what these are We may decide, however, that we can derive a reasonably accurate mdex of prices by using only a sample of the items We would deiberately select this sample so it would be a "cross-section" of the full lime We call such a sample a purposive sample to distrngush it from a
 a purporse sample from a random eample is embodied in the role of tle peran dong the eclection In a purposue selection a particular tem 15 moriuded ta the sample becouse the selector decides that it is reyrevertatise of the unapree in a catdona selection a particular un+ w meloded betaure of the chance farces operating, the anshes of the peren involved preamshly have nothug to do whth it. Whether a furporie sample is tuly representature depends on the hoonleizer and sall of the selector and not pattucturly on the size of the sumple or on the ranabilhty of the tiems in the unserte, the ind faclore thist are relctant in jedong the probable accuracy of a rardam sample

Size ond Direction af Emers in Using Samples to Represent o Universe

it sorild be mosaculous indeed if a sample of any kind from a unnerse of any lund ace to lead to cxactls the same conclusiona *e nould ect il pe rere to contemplate the whole uniscre We must, berefore, have aome concem lor the croos 5% are going to mahe nftn we uee samplas it would of coure, be sery easy to determine the nat mod direemon of thes error if we hoen the unsere and could direttr compare the conclusion se get from the unseree with the ronclution ace get trons the particular cample we have But to do tims would make no practuesl seoce beeaue who would be uting eoncluatons from eample if he haer the unsere" (Before ne sas "no ore' too quichly se mus: note that statutucians have been known to do that, but not for the solution to practral problenis Rather
 difer from a anserec From thes recearch they hope to learn pmetphe that caa be used fren ne do not hoon the unarerse)
dnother redatuety easy thing to do is to compare the anower that ne get from a ample sth the anyure that nould hase been porfect,
 nas uect to pretiret. The is the 'second gu sug' technique There ate occusum, is I the we thetr, when that technique is the only one sprarnaly sisiable to swess the nue of sampling etrors
The typasl prol'm that we try to colve is that of elimatung the probable range of thr somphng erron irom ond the information pronded in the sampie thelf At first glanee this may semem like quite a trich, esen lise a but of chalatannom But we see chat it is not that at all Ciets if therea ne nould probably stall do it because ta most prob'ems the infornation to the sample is the only information we
have, and if we did not bave our estumation of the sample error on that anformation, ye rould base it on nothng
Logical deduction and experments with actual sampling processes confrm shat common sense suggests as the prime determinants of the size of sampling errors From a very carly age we have all felt better about our conclusions when our conclusions were baed on more rather than less evidence Our inturion tells us that sample errors should be smaller the larger the sample, and our inturiton is right What our inturtion does not tell us, however is the rate at which the sample error gets smaller as the suze of the sample gets larger Fortunately, ne have been able to us mathematical logic and experimental ex idence to help us discou er the relationslup between suze of error aod stze of sample We dicuss these results later In the meantime se continue to rely on our inturiton
The other factor that our inturtion tells us is maportant in draming conclusions irom any evidence is the factor of the conrstency of the evdence If every stem of evidence introdueed in a murder trial points drectly and unequivocally at the accused as guily, the jury is going to easily satusfy itself that it knows what to decrde If, on the other hand, the defense attorney has succeeded in motroducing evidence that could point in other drections, the jury is going to have problems because of a greater concern that they might make an error in deciding the verdet Againa, we find that our intaution is sound The more conssistent the endence, the smoller is the sample error apt to be
In a general way, we ean say that the size of sample crror varres anversely as does the size of the sample and the consstency of the sample Stace we find it more convenient to measure the enconsistency of the endence, or its variatod, we are more likely to say that the suze of the sample error saries dreetly with the variation in the evrdence Inturtion with respect to the zate at whrch sample error decines as the degree of vamation declnes 15 probably gomg to give us the correct answer this thme So we feal very safe if ne let oursel es rely on motution for a hetle longer
It should go without saying, assummg we have agreed to this point, that we really cannot predict sample error as cxactly as some of the preceding paragraphs may mply When we said, for example, that the suze of the sample error vanes muersely with the size of the sample, we did not mean th iterally We should have qualified it by adding, probably Although in general, or in the long-run, or on the average we find the sample error dechnang as the sample size increases, it may actually increase in size as the sample size mereases,
eopecially for very small incresces in a cry small samples Or, we can sav that "as the site of a tanple incresses, zocreaces in sample errot brome rarer and deceseses in sample errot become more frequent.'
Another thing that stould go mithout saying is that the above discusson of sample error makes aence onls when we are talhing about rardom errors The bused impression we gre of the usual state of ou drees when ze sprute up for a yob whterser does not get any leas the more job inten iers we bave In fach, it may even get greater as each job iaternien teaches ua how to ghe an even more brased impreseon the next ume Strolar comments appls to what we called a ruppate saraple a sample deliberacely selected by a peraon to conform so his des of what the unvere looks lake The cror in this kud of sample theds to reman the same no matter how bug the rample ts When the eelector adds atems to this lind of a sample, he jux adds items like the oues he had before, en, of course, the sample revans essentusll the same Purposive tamples have another charactersth, that me should meatoon Since the selector has essentally the same hind of a problem that the expert card dealer has, namely that of cratiag a sample that looks good he teads to make the ame kiod of uror thas the esed dealer does We makes the sample look too good He tends to delberatels leave out all ' extreme" alues concentrating his eceulis around what he thinks is the average He aloo tends to try to achese some aemblance of "balance" The dirifution of the thems in his armple teads to be quite symmetrical cien ahen the tems are not st mmetricslls datributed in the univerae

The problem of the dirction of the efror in a sample, in contrast thit probable nae is quite snother mater If we know the direetion of the error we nould of course adjut our conclux on in the same dreetion and thus ehmate the etror If ne do not hnow the diree. thon of the error but have good grounds for suepecting the direction, arain we adjust in that arrection albent somewhat gropingly If ne have no basis whsteon for determinn or suapeetiag the direction of the sample erro: hi al able to ir she bo adjustment for direction and must plan our actuth s Sor both directions of error, or even more disechons if there an rure dian tro directions to our probiem, as there rould be, for example in evaluatug the effects of artillery fire

34 Some Practical Consuderations in Designing 5amples

Aldhough practrestly all the esmples wre conader are samples that pud arte of the nomsl cotrice of buciness theme is some noceaint
for us to refer to desrgned samples that are intended for speoric purposes It 15 , therefore, worthwhle to consider some of the highlghts of the problem of efficientiv designing ssmples, and it can be only the higblights The field of sample design haa expanded tremendously in recent years If a person is not a specislist in this field, he is hikely to be somewhat behud the latest developments Many new tools have been developed to facultate the desge of experments in almost all of the physical and social serences Market research teehniques and methods have experienced smular advances
The fundamental purpose that gudes all pracieal sample desgns 1s "to buy the most and best miormation at the lowest possbble price" This is, of course like seyng that 'the way to make money in the stook market is to buy cheap and sell dear" Most of us know what we are tryng to accomphsh The tack is to figure out how to ac complish it Nevertheless, it is a good rdea to occasionally remind ourselves of this fundamental objectuve of sample design it is surprosing how often we can get in a rut and forget that information coste mozey

The Ezonomics of Sample Design

Tbe collection of information does cost money, and generally the cost goes up as me try to collect more Nobody will conscorouly pay this cost uniess he feels that the mformation gamed is worth it The problem of balaneing thas cost aganst value received is complecated by the fact that usually we can make onfy relatively poor advance
 Te cannot reelly assess the value of information unill we have it, and even then we have problems, and we cannot get it until we have pald for it If we unsist on gaarantees of our money's worth before we spend any money on researeh, we will never do any research
The so-called best guess about tbe probable gans from collecting some information then becomes the budget guide that tells us the limuts within which we should try to keep our expenses This does not mean that we siould spend all the money although often xe do spend all of it Research gets us mvolved in the kind of steps that lead from one to the other, and before we know to "we have gone too far to stop now"
The uncertanties about the value of our research efforis make us certann about one thing we should use all the deviees we can to make the data colicection proeess more efficient So let us turn to some of the more promnent waya we can make our sampling more efficient

Strotifying the Universe

We noted above thint arfoping errors are le a the more consistent He cudere of the lers canation in the eudence If we could somefou eut doun the potentisl samation on our zample endence, we would tod to cut down our efrors without lanigy to therease the quantrt: of our umple For example if we were dealing with an onimen dech of playng eard, we would hase to contend with cands 11 our thinpte that might wary afl the was from 1 to 13 Let us suppree that x_{e} nere interected in estimating the arthmetic mean of tha uniere from the infomation n a sample asy of five cards flere wehron the unvere has a mean of 7 But what hind of estu ma'compht ae get from the sample of fice earde Ve might though Ha unlihell) act anestumate as lor as 12 (cample of four Ares and ore deucei or as lugh as 128 (a sample of four hings and one Queen) This ne maght have an error in our estmate of as much as 58 in cutice direction
fine cin ne cut dorn this potentigl crror and ettll uee only a "ample of fare cards" (It should be obuou that re could cut it donn by uncreasing the aft of the eqmple The ansmer is that we rould cul it down bs spliting up the unneree of cards mito a act of cubunusere exth with onls, certan cards in it and then re could refect prit of the sample from each of the subumieress Suppose, for example we doude the unneree of earde anto the following five ruburiserea exch having onh the cards specified

Sub- unnere	Cards
A	1,2
B	$3 \$ 5$
C	078
D	01011
E	1213

Nom let ue gelect our ample of fine cards by draming one from subumetse A, one from subunseree B ete The lonest possible anthmetre mean he could get in our sample is nos the mean of 1,3 69,12 or a value of 62 The haghest possbie menn would be 78 It is ofvous that this is a consuderable improvement over the limuts of 1.2 and 12.8 that ne had before we stratified the unverse
This is verg well but we do not usually know the unterse And how ean we heatly dude the unu crec up into contencent parta if we
do not know what is in the unverse? For example, if we wanted to accelerate our rate of learning about the deck of 100 unknown cards we struggled with in Chapter 1, how would we go about dividng that deck into subdecks so that the smallest oumbers would be in one subdeck, etc " The answer is that we could not possibly do $1 t$, except by luck, as long as we did not have ancess to the number side of the card, unless we were able to detect some distingushable features on the backs of the cards that bore some relationsing to rhat was on the number-side or unless as we say, the cards were somehow "raarked" and we knew the marhings Let us assume that the backs of the cards do contain all sorts of distmgushable marks For example some of the backs are red in color, some blue, eto Suppose we sample one card of each color and find the following

Color	Number
Red	36
Blue	8
Green	23
Blach	30
White	100

The first thing we note is that the numbers are certanly duferent for the difierent colors, and we are tempted to behove that the whte cards have the big numbers and the blue cards the little numbers But a disturbing thought erosses our mind even of the numbers are the same ior all the colors, te are almost certain to find the numbers different on 5 different cards as long as there are different numbers in the deck For example, of we divide an ordinary deck of cards into the subupuverses of clubs diamonds hearts, and spades and then draw one card from each subunverse we are admost certam to get forr different numbers, and at would be a mistake to assume from this that the numbers are difierent from suit to suit
So we seem to be at a dead eod as loog as we are restricted to thas small sample of only one tem from each subunverse a larger sample would help to decide the sssue For example, is the next white card were to be ao 84 and the next blue card a 3, we would now be more unelned toward the hypothessis that white cards have larger numbers than blue cards Incideotally, as long as our information about the unverse was restmeted to what we could guess from samples, we could never be sure that the whte cards had larger numbers

Bhan the blue eards, although, grea large enough samples, ne might be' as furc as aure can be 11

Now wo afe fedd to move into the real world and talk about aratuication of unserses as it actually does and must the phate in real rather than matc-beliece problems Suppoce ve are a manufacture of a gy rup that ne sell to franchaced bottlers "ho make it upinte s carbonated soft dman. 'We nould the to find out more thas re presendy hoon about the famly sate of consumption of toft drime in the Unted States It sould, of course, be ridiculous for us to contemplate poling every faml) in the United States So we mut anaple There are many questions ac are going to have to araner about probnble benefits to us of the information, costs per natenen cte But the ooly question we are concemed aith at the moment se the one of the poentual value of stratification of the unvere of families for the parpose of finding oul thetr sate of consumptwon of solkdrinhis
In order to get the most possible salue out of our analogy of the card dech aecen magnac our umrere of famber as a deck of eards With the rate of consumption of soft dranks on the number side" (the unknonn side) and all other charactersties of these families artten on the up side,' the one we can see and examine and sort oy if ae athat to that are some of the ee distingurhable characterWhet that re might know about? Ne could make quite s lont list, particalarly if ae had the Unted States Census volumes handy Some things that quckils come to mind are geographical location, age of family head number of chaldren in famuly, ages of children He can uncoubtedly think of many more We now ask questions of this kind 'Suppoce we sorted our cards (familes) by geographical location Hould ne logically expect to find the rate of consumptan gnetalit' hugher in some locations than in others?' We would prob ably ansuer this question m the afirmatue So now, instead of thunhing of our tampling problera as erecting famhes from the unsserc of United States families we think of t at selecting samples from a subunvere of Southeast familes elc If we are correct in our hyfothess that the rate of consumption varies from one location to another ne will find that our final ammpling errors will be less than if no had not stratified If we are wrong, ne all not reduce our campling crrors and rall have, in one sense, wasted the and money sortug the familes On the other hand, it would not reaily be a aster ful because ae nould have at least found out, say, that geography is not related to the consumption of soft drinks Although it is al-
most always more valuable to find out what is true, we should not underrate the value of finding out what is not true

Another pome we should aute abnuit the value of stratification is thas at the same fime that we are atratnfying to reduce sampling errors, we are identifying charattenstacs of the amverse that may be helpful in their own right In other wirds, it not ouly makes sense to classify our famlies by lucation in urder to reduce samping errors in our estrmates of sofi drink consumptann, but also it makes setse to us as a manufaciuser to do the same thing in our efforts to bettes organize our marketing acthvines

Geographical Clusterıng of Samples

The usual methods of randrm semping frequently seatter the sample atems rather wdely througbout some geographe area Although this as adeal from the point of view of providng maximum accuracy for a given sample size it is quite expenswe to pay the expenses of the interviewing staf It is, therefore, often dessrable to sacrifice a little accuracy in order to save money The sample is designed to yield chusters of items so an intervewer can concentrate his effints in a relatively small area It is surpnisug how a wellworked out cluster design can save interviewer expense wih only relatuvely moderate loss of accuracy The Federal Government; for example, bas through such means fuund it financially feasible to oollect many statistacs that had heretofore been prohibitrvely expensive

Sequential Sampling

One of the bsaic problems in determuning the size of a sample we need for a given problem is tbat we do not have much information to gude us until after we have collected the sample items Thent of course it is too late If the collection problems are such that it is much more economical to collect all the sample tems at onee, rather: than one after another, if is usually wise to err on the bigh side in predetermining the mumum sample size It is much more diseoncerting to discover that the sample is ton small, than it as to discover that it is too Jarge Most sampling problems in marketing research are of thas type
There are ocessions, however, when the sampling and/or the testing process are so expensive that we wish to definitely monmze the size of the sample Constder the prohlem nf testing the Atlas missile, for example The test samples are very expensive and tume-consuming to buld In addition, they are an good after they are tested

We wantour ampie to be byg enough to grse us the kand of assurances we new before ke deade that the Athas is now ' operational, but me do no want the esmple to be ang larger than we need to decide the So what we do 5 tot the samples one ct a itme Afterench test we selct one of three posable deessons (1) we absadon the Atlas propet (2) we clasell the dilas as operationsl, or (3) we test an other sample
Vang modifictions can be made in the ssmple desiga to take adiantage of the base adea that prompts eequential samping Col lection and testing methods maj be such that there are certain con venert or econotacal ample ates for example perhaps sample lots of tea tems each are technirally consenuent. What we can do is tet requenees of lots of ten tems each lie nould then be able to come to a fassi deciron in our problem with an excess of items of no mote than a ae
The notoons and matheratice of enquential samplag aere de celoperi early ia horld har II and rere considered an mportant commbutron to the fantaslic productuon tecord of Amerrean industry The araled fores of the Unuted States have been iery nggreselve in thar e Forts to eacourage American mdutry to develop and adopt more ef cient methods of deaging and testing samples and the work bacd on the notuog of sequenial eampling has played a leading role in theese efforts

Saloction In Some Pressibed Order

Sometimes the untrene under mestrgation is hnorin to exist in *ome geographusal alphabetical chmological or other order For exarmpie a unurerse of telephone subscribers is hated alphabetreally in the telephote book Potato plante are found in a geographatal order in a protato field A ubueree of random numbers ss found in a random order in a table of random numbers If ae nould like to seleet a random sample from such ordered stuations the guestion of how to do it most eficiontly and comenambly mmediately artacs We nould hase no problem hath a table of candom numbers no matter what onder y 2 took then in becauve the sumbers are already in a random order hay desgan But let us eappose ne nere interested in samping teleplore subermbers ta order to find out there ages Coul I ne get a vald sample by taking as every 50th name in the book? Let ur sele the first name by ue of a talle of random num bers and then tahe every 50th name after that Is this likely to leal to a nample of too many old people? Too many young people? And so fonh We probably would ary no becauce we have no reason to
belleve that there would be any relatronship between the alphabetical character of a subscraber's name and has age In other nords, it may be perfectiy logical to argue that an alphabetical ordex of telephone subscribers leads to a random order of ages of telephone subscribers, and the ure of an alphabeticen order mught be perfectly valud for sampling ges

On the other hand, let us suppose that by some quurk of fate conpletely besond our comprehensiom, an alphabetcal hatang of subscribers automntically listed the subscribers in order of age What hanpens to our sample if we select ei ery 50th name with a random start? We should end up with an almost perfect cross section of the age dastribution 1 In other words, our sampling errors nould be at a muninum In efiect, that has bappened is that the alphabetical Listing tas neatly stratifod the unnerse for us hy age and we recnll that effectry stratification can be a very useful device to cut down samphing error
The practice of not noucing the order in thich data arise or samples are selected can be a very semous shoricoming to any study Knonledge of celevant order or system in phenomena is very precious in fact, it is shat we are always searchung for if we are searohing for anythang Nerertholass we are all gualty of the habit of assuming that no relevant order exists, we do not, thercfore, heep track of the order, and it never can east as far as we are concemed Most of us, for example, are very careless about dating events as they happen We assume that chronological order does not count Unfortunately for us it often counts more than we had thought Even stabisticens are gulty of this shortcoming Rarely, if eter, have we seen a statistreign treat a serins of coin tosses as a tume semes He treats the sales of a company as a time series, but be automaically assumes that the chronological order of the com tosses is urrelevant TVe cannot deny, however, that the com tosses actually oecurred chronologically in exactly the same sense that the company's sales did
We must aluays be olert to order as we obserye events We can dectde on therr relevance later

The only time we ean really get into trouble when we sample in some prescribed order is when the record being sampled also corresponds to the same order an the iollowing sense Suppose, agan for reasons beyond our comprehension, that every 50th telephone subscriber is a retired farmer, and that farmers do not retire untli they are 70 years of age The resultant sample would contan nothing but ages 70 years and over and would, of course, be most misleading Foriunately, only raroly do we find that the rhythm of the selection
order happens to couctide with the raythun in the order of what we are tudying
Thus desuspan of order brings up another mportant consideration to sample design, and that is the abolute neecssit) of getting elearly m mind exsety what it is we are samphing For example, sometimes *e hear wome ore say that they are going to tshe a ' sample of peopie" Dut what are people,' or what is a 'person? A 'person' is all sorts of thang Hess a hetght' he is a "eonsumer of esaced peas," he is an sdrater of Richard Nuson', he is a 'late sleeper on week. enda"etc. Thus no one ever really samples'people" What he does sanple is "characterstics of people,' and generally only very few at a tume If ne are to effecturely solve our problems of efficent eample deagn, we must pas specific sttention to exactly what it 18 *e are gorrt to mesauts For example an ordered selection of telephone rubecribers might be a reaconably acceptable sample for studying the age distribution of lamily heads in the communt) It nould be romerhat leas scceptable it ne xere studying the :ncome distnbutou of family heads on the grounds that the ren low income famulies Fould lend so be excladed from telephone subecnbership and the book Smilarls ne nught find that almost ans buchet of nater from the Atlatuc Ocesn nould be an acceptable sample for detectung the esline content of the itlante Ocean But just any buchet vould not be fatufactory if we were esmpling the temperature of the Atlantie Decail

The Problem of "Monresponss"

As Robert Burns sard 'The best laid plons of mace and men oft gang' asice ' And sampling phans are no exception It is one thang to plan to find out eomethang about a peroon who has been sceentuf. cally elected in a mample It is quite another thing to actually do th. Some people are not at home uhen we coll even anth many calls Some people do not share our cathusiasm about "reaearch" and the umpritabce of thert tole in it Some people lach the means of effecthe communcation woch as would be true for jecent mmigrants As the result of thase sod sumar frusirations, the fingl sample of data will not conform to all the epecifications of the orgmal derrgn
The question thal now snses is whether there is any reason to beliase that the aterus that did not get meluded are agnaficantly different from thore that did The antreer to this questorn is conaderably complicaled by the fact that tre do nat have any real information sbout the misung items, for if we did they would not be mungeg Several courees of aztion rould nor be open We might
sssume that sumee we knew of no recson to suspect significant differences, there are none This is, of course, haghly presumptuous on our part and generally not advisable We could ebeck the opinions of others who have had more expernence in asmilar problems This might bolster our hypothesis of "no signuicance" and make us less presumptuous if ye adopt it We might essume results for the missing cases that are about as defferent from the avalable data as common sense suggests is possible Then we pool the assumed results and the actual results and compare our final conclusions with those we would get if we ignored the massing cases If the conclustons are the sume, our problem of massing data has disappeared If the conclustons are different, we have now defined the magnitude of our problem of masemg data aod should be 10 an mproved position to decide the next step For exemple, we may now deerde to expend a lithle more time, eifort, and money on further follow-up of the masstog cases By using our early successes here in further comparisons of the kind we have just made, we will be able to more rationally decide when this follow-up program has gooe far earough
If our best efforis still leave us unceriann about the true signficance of the missing data, only one appropriate course of actioo is left we must admit uncertainty, and come up with a range of final conoluslons sufficently broad to cover the range of our uncertanaty

PROBLEMS AND QUESTIONS

31 Illustrate the fact that each of your five senses has a limited range by reportage the results of an experment you perform with each of them Use your owo ingenulty to set up an experment that "proves" the limated range and also uses quantuties to measure these hmots For caample you might report that you were able to read a given aga with the neked eye at a maximum distance of 37 feet However, with the asd of eyeglasses or binoculars you were able to read the sugn at a maxmum dustance of 148 Jeet
32 Suppose an attadning arpplane x outside the range of your ablity to percerve its exstence In other words, in one sense the plane does not exast as far as you are concerned If you were charged with the responstbulty of defendiag a elty aganst this 'monexustent" plane, how would you go about it?
3.3 Suppose a compeitor of yours has allocated $\$ 10,000,000$ to be used to promote has buscess at the expense of yours Unfortunately for you, however, he doesn't tell you thas Thus, in a sense, thas $\$ 10,000,000$ atlocathon does not exsist as far as you are concerved How do you defend your company against this "attack"?
34 Compare the pervepuve sholktes of your five senses mith those of another person Report on the measured dafferenees
35 Consider these two crreumstances
(a) Mr A lets olly tags gecumulate in his basement One night his house
 tocurs Ifr A and bis three chldren from the buramer house
(b) Vr B akm thiborse grecsutiont to present the start of a fire in In linge tha bome never cateter po fire He dies a matumi death one day
 for sa mandonfo hrys.
If your comiderstion of theme two ates ree of y ous can note any ielationThen to rant problem of what to do about the "nonexistent" plase and the namevatent promoton furd
18 Derione expenmants and/or keep reconds over a short period of fome to discour ant wanatoms that bou are able to detect in the perceprtive sh fithe of vour five cease Dh thigush smong varations asocuted with
(a) Faterum-dicienomation
(b) Truman-imptowement
(e) Apr-both detertoration and mprovement

Repart on your diecocerce In oddituon what as there sbout the aging proces that udffermot from fatioue andor traiman"

37 Contras loor ablaty to hesp every pord your mothet and when
 not thoth and exacly nhy sou should come bome when she sud youn should, math ;oir abibt io hest her every word as you latened in the upstars hail to her satto vose report to tous father oo the progress sha had made so Lar on the children s Chntimens freseat hist
That dow the thll vau sbout your abuth to conitol your scrisory pereeplions?
I \% Yon Betts was a well-known eatcher for the Nep York Yankew for mank seape (Wisgle te stll is'). Thas eprogde has been purported to have corured esth in bus major league easeet Ile was such an eager ksiter that fe often suun at, and hat quite well, pathes that were outside the sinke tone Since it is Luseball esenlege to help the precher by swingIne a) "uad putches, Inge wis adused by his coaches to curb hos eagezness and to sumg on's at "atnkes' In lact they urged ham to co yn to the baters box and tionk about what the pitcher was donds, what Yog was dontse ete So Yog went up to the bor and started thinkong While he Has thinking the preher put oret three called strikes Ioge eame back to the bench multengeg How son thes ceppect a man to bat and thank at the sume turne? ${ }^{\text {m }}$

Abshze thas eproxle from the pont of new of the general human prob-
 orme esces only one, whercas mam of our sctivites inolve the stmultaneous
 is dificult to mpror our perifommec of complex dutes without appication of the corvious mind to the detsid of thoe duties
If It chould le oby folus to you that you are ond a sample of what you moht hate been, toth for better and for worse It should be particularly obvols ti you have bopobers and sestery Also, ns you look bote ovet the rad jou travelled you can recoll mang forks in the rad and the mary chowe jou made that caned you to forego man other choces Without
mothog your autohography sketch bretly the unversa or unveres out of which you came
What had of e sample are you? Random? Purposive? Biased?
What unnerse do you sea slesed of you 10 yents from now?
310 Identify the follonmg underens with respect to whether they are renl or hy pothetucal knoun or unkzoma and finte or mente
(o) The usuverec out of which you anes sample
(b) Thic unt eree of grane of send on the beach at At tiantic City
(c) The unserce of sates of $19 c 0$ Hamhlet cars ons of nhoh the satual silus carte
(d) The umverse of possbulites for head and tal rombinations if one tossec fivp casns at onee
(e) The unverse of sords out of widah thas string of 18 gs a sample.
(f) The unveree of ecrap percentages out of shich todays percentage came
(d) The unisersc of volere out of wheh the last cralup Foil somple pas taker
(h) The unserec of woter opmoms out of which the last Gallup Poll

(f) The unureres of opimons out of whech your preeent optuon about questions hive the came
311 Suppore ue select a sample of 100 Itron a ubnerse that contauns 1000 atems in each of the followng tro nays
1 We dras out the first teem at random Record the result Rejplace the stem in the tusveree Dram out the eecond tem at random Record Replacs and so torth untal se have recorded the 100 sample items
2 We drus out all 100 tems at once agan at random (Inendentalls nould thas be the equivalent of draning them out one at a time but without replacement?
Whach sample noutd you expect to have the smilier sampleng error? Why?
Tould you be whing to bet $\$ 1$ to a dime that it actually doos bave a smaller eanphing error? Why or hbs not?
312 (a) The performance of a batter on a given turn at bat 15 obvously ondy a sample of what he meght hate done I_{6} it a random sample? Ex plann
(b) Suppose fou have the rexultr of ten succesave tmes at bat for a guen player hould you pudge that all these samptes came from the same umrerse? Explain
313 (a) The periormance of a hourcurfe in the bahng of b seunts is obwousl only a sample of what the maght have done Is it a candom sample? Explain
(b) Suppose ; ou have the results of ten sucressive "baknges for the same hourente (That is, you have the recorded results not the brecurts themselves) Would you judge that these ten eamples all came from the same unvere ${ }^{7}$ Explan
3 14(a) The performance of a student on an cxamanatoo is obvoursly only a sanple of what be might have dose Is it a random sample? Ex plan Would your answer be any duffereat for a surpnse exam than for one aunounced 10 weeks madvance?
(b) If joo bad the rexits of ten suecesure examunations for a given ructert in a brice coure, rould you judge that they all cane from the same untrise! Etphara
313 (a) The pumber of hours of life for a gisen ciectranc tute a obmous) ondy a cample of abat it makh have been If it a tandom sample? Explen
(b) Suproxe sou tat the data on the hours of ife of ten electrome tubes Intren at intenali froas the production lape Frould you judge that all ten tutric came frots the ame unirerse" Explan
316 Le: us get ourcelves macely contued about such a ample matter sater fergh of a rom
(a) An arcbutect dermeed the bouse that contans the room He specined that the room should be 245 to long However, be might have spectiod come othet fentht Iferec thes sperficatean is culy a sample of what it magt bue been What had of a uncerset Shat knd of a sample?
(b) The cargeater buide the boure and makes the room 14 \$5sif it long
 thorte! Thas hand of a uavere? What kud of a sample?
(d) The buyen of the boure messumes the length of the roum and gets on answer of 14.55 maches That kend of a anverse? What kind of a sumple"
(d) The buyp a mie messums the leggth of the room a meek hater and geta sa apraer of 14 f fet What kad of a unverse? What hind of a ample?
(e) How late 4 the rom"

IIt dralize ans 25 consentuve nutobery you find say place you mould hixe to losi in the tuble of raviom rumbers in appendut is Is there any system to the sequefce? Lish an "thntatue" systems you can find
S'ece some ofles rection of the table and test your sy stems Report 0π jour inglas
I18 Town an orlmary cona 15 times in a row Keep track of the chronologesl order of the resultart heads and tails Plot the resuite of the toasty on a mofit sith "ture" on the borizontal ans Examme the

If you thank jou have found a "system, 'teet it by coseng the conn five more tirser and reconding the resulis on the craph
"has condugong do you draw from thes erperiment?
319 Would jout guess that the stze of raadom sumphing erion would be greates or less for a sample of 100 dismeters of ' $1 / 2$ anch dameter' bolta than for s smple of ath desmeters of ' 18 -nch diamener' wood telephone poles? Explan
320 \&uppose jou fancied sourcolf a budding stist thit on colorg You finally get a thanct to shom your work to a well reypected crite He asks you to bria ham a "sample of your nork" What kud of a sample do
 kuds of answers to there questuog do you thath the critie would give? Explasa
321 The sales manager of your company ut taken and and you, the asystant cales manggre, are arked to take over his duties, at lenst temporatly That knd of a sampie of jour work are jou goung to give?

Are you gong to "run the shop" as you thenk the sales manager would If be were there? Or are you going to com it as you woudd if you were sales manager" Or are you goug to "sezze your big chance" and rum the shop with an expenditure of energy, ancerty, elc, that you know you covid not mantann over any protracted period of tume?
Elow can the presdent tell whach kund of a sample you are guving?
322 Why do most purchasers look below the top layer then they buy absket of frut?
323 At some time or other you must have been told to "be yourseli" by sone well- or otherrnee-meaming person Almost everybody bas Apparestly your recent behavor ampressed them as not a "good" sample of what they thought your true neture (unurerse) was What was your reaction at the turee? Did you agree writh ther mapytied evaluation? Did you protest that the sample of behanor certautly was typical of your nature? Eion
What dafference, 15 any, was there between your outward reartion, the one you wanted the person to get, and your anrard reaction?
324 Suppose you are throming darts at a target for the first tupe Your frot toss lands 12 melhes to the nghgt of the bullseye You would guite nstureily like to make your second toss closer Do you asumme that you mussed 12 unches to the nght because you "amed wrong' and bence you will now adjust your am 12 wehes to the let of the buifireya? or do you assume that you massed 12 meches, and t rust happered to be to the ruht, because you haven't yet mastered tbe art of throwng darts? \$o you amm your second toss the same place you thought you amed the first one How do you deude a questron tike this? (This is the same problem the arillery captan faces as he tnes to figure out what the reports of the spotiser mean from the poant of neew of any possible adjustrinents in the aim of the gur)
3.25 If you were on a jury and if a conviction on the given charge meant the death sentence, would you be less nchnned to vote guity than If convchon resulted in a sentence of 5 years in prison? If yes, how do you justify a postion that in efieet says that ' whether a mand is gulity or not depends of the severty of the pumshment The more severe the puns skiment, the less isely he ns to be gully'?
Would this problem chseppear $i t$ we could be sure that a man was or was not gullty?
326 A eample survey is to be made of Amencan houservives to find out about brand preferences for cofitee purchases It is dendeded to stratify the unverse accordug to geographeal Incatoon, age of houverwie, years of formal schooling of honseevfe, and number af peopie livnng in bouschold It is deended to use three divisons for each stratifyng factor The dvisioss are listed helow

Luestions	Age of Housewice	Educestion	Number in Household
Northeast	Under 25	Less than 10 ye	Under 3
Soutb	25 to 40	10 to 14 years	3 to 5
West,	Over 40	Over 14 years	Over 5

 ria to catcuate the proporbor of housemes in each category For ex

 with : \% of the towserne under 25 yests of age al=o Thus, if coffee tras 1 prefrescen have anythag to dn with age of housentie, our recults rois be throws of because we wall bave the nght age distabution of tosumine in out simple
 on all four catronem of stratication Is the a cufficent condition, or shent of Enal proportuoss be correct down to the proportion ay of
 of forman echoo'ss and in bouselolde muth three to five members? Or,
 in n^{2} mondeads mur we fill them in amultaneoudy thus endag up really with Si eparate quens
"hast ite the arues involied here? (The firt thang gau bad better do wrate pure wou know where thoce 81 apparste quotas come from You can do that by dramma tree of all the possbibitiea)
137 Sufpoce sou wefe supentisy a sutce; and had decided to use "disters of prapia in vour sample in order to esve some mones Do jou feel letter or wore about cour over all ampling errors if yeu fird prac tresbr no samation wotho claters and quate a bit of ranation between dis cou" How noud jou feel if the recere aere irve namely, quite a but
 Tha thanthrs befor rhould elanif your thankng about the mesnag of isi it on suthina ciuterand anston betwen clusters

5	7	1	1
5	7	2	2
5	7	3	3
5	7	4	4
5	7		5

Cluter A and B hace 20 isne won crian ther out they do have varation (of 2) betreen them
Clumes Cand Dase gute a int of varatien in han ther but po varation beven them

328 Cuppose you sre pasyo the follon a emple game you and a frend ate pagenng 10 ceots on the cutcome of the tors of a curn (You
 Sunce each of you has adopted the lif pothers thas heads and tals are equally hibein, it se deaded that tou wall call heads every tme and he tals, pather than wate tume betacen tosea deeding the amevaney of ' which to all' Sine it is your cors that is bewn tossed it wats agreed that he mill do all the tossing

You nevertheless do have a deaswon problem after each toss You nust decide whether to make another wager on the agreed upon terms, or to request some change in the terms (Be careful that your request for a change in the terms does not mply that you thons your frend os cheating unless you do not care whether or not you enoy has company for the next 17 hours)

What decision do you make after each toss of the followng represents the sequence of beade and tais? Jushiy your decsum in each case

$$
\mathrm{T}, \mathrm{~T}, \mathrm{H}, \mathrm{~T}, \mathrm{~T} T \text { H T, T, T, T H T, T, T, T T, T, H }
$$

(Hint Calculate the probahility that the sequence could have kappened up to the given point if your hypothesis of equal probabilty for heads and tauls 18 correct)
329 Suppose we had establashed control procedures for a gwen yoh that mstructed the operator to let the process run if he found no more than two defectives un a sample of ten He $z s$ instructed to take such a sample every 15 minutes Suppose he reports to you after sbout an hour that he has taken four samples so far and has found exactly two defeets in each 0 On This wornes him very much because he knows that the process is designed to yeld only 3% defectuves m the long rup He has stopped the machupe to come to talk to you What is yoor reaction?
330 Suppose you heve a problem such that a teleptome book provides an excellent source of all the pames of the people on the anverse you are concerned with You would like to take a rordom sample of 200 names hy the most efficent process possible What are the comparatave ments of using a table of rapdom numbers to pock out 200 numbers which you cas use to locate names in the hook and of taking every 25 th name after a random start (there are approxmately 5000 names in the book) " Which method would you recommend? Would the charscteristic of the people you were studying make any dfference in your recommendation" Explan and Liositate

.

The use of numbers

Numbere are the raw matenals of most statistical analysis The fundemental notions underlying the statistical method can also be apphed to non numencal data but the pouer of the statistical method is much more eudent when we can quantuly our data
Sanee кe have all been trained in the use of numbers since early chuldhood, it mas seem redundant for us to rever the fundamental nouons underlyng the crestion of numbers We find, honever, that 1213 vers eary to be so mesmerized by the intricacies of the manipulation of numbers that ae often lowe aight of the bayc meaning of the numbers A bree rever of once familar odeas will remmed us of the wherent chracterrucs of our rax matenals and curb any tendences we might have to use elaborate analy tical technques on rather in. adequate numental data

4.1 Counling and the Number System

The idea of counting things is one of the most important ideas man ever had Of cource, the earliest man probably had some idea of amount, and tome deas about more or less There is plenty of evdence to suggest that most anmmals can handle these ideas of more or less But sery few of the loner anmals, il any, can actually count. For example, the mother cat probsbly hnows all her sux kittens And If one as masung she will probably realize he is gone because she cannot find ths partcular kitten among the ones she sees But can she tell that one ts missug becaure all she can see is fice? Lien if the can do thes, and thus in a sense knons she has six kittens, there is athl concrderable doubt that she is able to brag to her neghbor cat that she liss sur hittens while her neghbor has only fie
The fundomental origin of all numbers is the process of counting This countung mas be of crutent sod eqparate thinge, or it mas be of
standard things tbat we have created, hike an "mob" Man un* doubtedly learned how to count the natural thange in his environment before he learned how to correlate these thags and count how many of one thing were contaned in one unt of another thing For example, he probably knew that he had three caves in whate to seek shelter before he knew that one cave was three thmes as deep as another because it had three umes as many spear lengths

Number Systems

Most of us have been tramed in the use of the "tens" system of numbering and think of the 10 numbers as running from 1 to 10 Actually, of course, the 10 numbers that form ous system are 0,1 , 29 What we call 10 is really a combination of the two numbers, 0 and 1 Orginally the system did run from one to ten, whth the basie dea coming from the fingers of the two hands But it was the unvention of the concept of nothing or 0 that really opened the doo: to the comprehensive development of the system that we know today The chald has some dificulty countung very high at the beginning because he does not grasp the system Thus he has to memorize his counting Eventually however, he does grasp the system, and then he has no trouble countang untl he is bored or exhausted At that tume he also becomes at least semiconscious of the rdea that our number system 3 such that there $3 E$ no limut to how hogh we can count This limitless range of our number system is very important because th meens that the e rannot be so many of something that we cannot specifically "centify "how many" wh our system Smilarly, there can never be too fetr of something for us to specificaliy identify

Eventually the concept of negative numbers nas created This meant that the range of our number system was truly infinte The ydea of less than nothing, or say, of -5 , is elusive to say the least But this is not reallj the adea behnd negative numbers The adea behind negative numbers is the idea of "take aways" or of subtractoon We also use negative aumbers to identify dizection from some specified point For example, if ne move forvard 5 feet from where We now are we maght say that our movement was phus af feet If we move beckrard, we might say our movement was murus 5 feet But note that we could have called the foru ard movement munus and the backward movement plus This brmge us to a fundamental point about the use of numbers The actual number and the sum, whether plus or minus, almost always depends on the paricular ongen of measurement we have chosen This number hes meaning ondy for that orgen Serious confusion resuite if we try to metpres the num-

We with no knonledge, of with meorrect bromledge of the orgin of meacurement. if I tell jou that I hate moved back 5 feet you still fise no dea of there I non am unlers you hoen where I was belore 1 moved
It is important to temernber that negatiee quanithes do not really exis: A tank just cannot contain minus 3 gallons of gesohne" The prmary value of the concepti of the regative number is in the thanuptilation of numbers by the procesess of addrion, subtractioa, multipls cation and divison The result of the mantpulation, or the amster, almore aluays is a posture number The mportani rute of interpretalinn of angnera a rule easy to state but sometimes defficult to apply, In that the sogn of the ansser must male sense on the problem at hand For example if ne ore nothing on all the cost figures relecent to a gren product in our plane and we finally come up with a unt con of minus 3328 we should check over out fgurng before te tell the bors that there as money to be made in marufaetaring this product evin if achave to pas people to tabe it anay on the other hand, If $n \mathrm{nc}$ tally all the toscoues and expenses of the company durng a perrod and decorer that the company had a profit of mand $\$ 8647$, Ho have a firure which may bery well be true oven though somenhat dasonecruag
Vin has incenced many other number systems than the 'tens srstem Some electronic computers for example, are based on thi bust or "tro number' gstem This system has nothing but " 0 and I in it In (act the deselopment of the electronie compute: as ne hnew if rould be umpossble uthout the binary number syatem The tens ssstem nould be just about hopelessly ankward The logic behard tle bramy sstem is quite ample An electenc arcual 18 ether open or it is cloeed The problem of controlling a suitch so that a curcut is enther open or che ed 13 a lot sumpler than the problem aty of controll ag sid measuring the voltage of a curtent so that one voltage represents 0 another voltage 1 ete through all the numbery of the tecmal osstem smee ne actually operate on a decimal ru zlem the problem of usigg the electronic computer became one of tranelatimg a n amber in the decimal sytem to one in the buang sestem He can tlustrate the numbers in the bunary as stem by ntos ng thetr cqualients in the decimal system for a fes numbers in Tabl 41 Vle mght note, meidentally, that each digt in the finsin aumber corremponds to a ercual in the computer Note that It thes threc erecats to reprosent the numbers 4 through 7 , 16 curcuts to repreent the number 10000 ete
If a peran is of an minusithe turn of mind, he might note the role - so novelt be the "porers of two' He maght elen be able to

LABIE 41

Decimal System Equivalents of Binary Numbers

Bivary Nuraber	Decmal Number
0	0
1	1
10	2
11	3
103	4
101	5
110	6
111	7
1000	8
100000	16
100000	32
1000000	64
10000000	128

develop a formula for easy conversion of any number in the decimal system to its corresponding number in the binary system, or vice versa
We mention these other number systems and llustrate the bunary system not to be confusing, but to remind us thet number systems unchuding the farallerer decumal system, are inventoons that man has mude to treip tram sube ins prodetens Beturase they gre mpentorns, Just like automobiles for example, they are subject to improvements or even replacement, of they cannot solve our problems as well as they mught It is unikely, however, that there will be an early teplacement or sigufficant modification of our decimal system Too many people undersiand thas system, or at least think they do, to tolerate the introduction of a new system Our avination will probably have to decine as ded ancent Chana before a new elvilizaton could be bult on a new system of countung

4.2 Units of Counting

It is possible to count, the way a chld counts to 100 for has proud parents, prithout really pountung anythang at all All we do is sound out or write the symbolism we have adopted for th $v r{ }^{2}$ ~int
 0° no practeal walue To be of salue our counting must count same. Hang, maybe thace, or horses, or red corpuscles, or degrees af heat, eic In practical work all numbers have unts attached to them The umber sa teanmgles if we do not kno the unit, or if we know the wrons uath. For cample, contras the problem of defining the meaning of 7 with the problen of defining the meaning of seren books

Ore of the first things a young er learns about counting is that he thould always eoutt luhe thing doc trible things For example, we should not add anples and aranges and tertasaly not apples and fores There are tames when re wander whether such thngs should be taught in grade school lt is certamly true that we bhould be care ful al what we counh it is equally true, honever that we should realize that re rasely if eier have the opportunty to count thmess that are cholutely alake of dentieal We frequently have the opportumty to count thngs that are essentrally alhe, or whose differences'do nos make a difterence But it is often important to realue that to act as though thmess are the same, say for purposes of counting does aot make them the same It tekes more pereeption and more magmantion to recogotize that apples are diferent from each other than it does to recogrute that appleg afe different lrom oranges, but it certansly should not be satd thaf it is proper to add apples but not apples and oranges As a matter of fact from the point of vien of certain units of putsition possessed by both apples and oranges, a grem apple san be more like a given orange than like another apple!
It should be obvaus that whether we chauld eount thangs togethet as though thes bad the ssme unst depends on the purpose of the coumt The ssuce is whether the differences beng gnored make any difference to the purpose For example we mught properly count all the artucles ti a haue as though they were the same, giviug equal attention to a thimble and to a drsa Or we mught count the peces of bedroom furnture, or the artule' of clothing, or the footwear, ar the shors, of the laa ri' ihoes cr the pars of blach leather shoes, or the pors of llack leather thoes that need poluhing
Probsbl; most il the mustakes that are made in eounting are not becau*e people cannat count but becau*e they do nat understand the thinge thes are counting well enough to know one when they see one They melude thrags they should nat and they excivede things they thould include

We thiok of such objects aa being integral objects, and we expect the fioal count to be a "wbole number" or an "minteger" We cormally do oot thirk of " $1 / 2$ of a person' or " $31 / 2$ table lamps' There are times, of course, when we do find it seasble to split some units and use ooly parts of the whole 10 our counting " $1 / 2$ ao apple," for example, might make sense in some contexts Rarely, however, do we find it apparently proper to think of fractiooal parts of living organisms, prmarly; we suppose, because we suspect that the fractrooahzation of a livog orgaonsm generally kills it Ths attitude us often a mastake, however, beceuse the purpose behnd the count sometmes makes the oeed for mental fractionalization quite mperatwe A group of boys chocsog sades for a baseball game show much more alertmess to this need at tmes than do many aduits The boys' objective is to make up "far" sides When they add up" the boys on one side they waot about the same ancwer as when they "add up" the boys on the other side But they reaily do not couot 'boys,' allhough it may seem so to the naked cye What they count is "baseball skill" Boy 1 bas one unt of such skall Boy 2 bas 175 umts, boy 3 only 5 units They then select boys so that the "skull points' add up Sometimes thas leads to more boys on one side than oo the other, which may strike an onlooker as "wofarr" The same boys will go to school and grow up and get excted bevause the population of Hokay 18 greater thao that of the Unted States
Tbe essentail poont beug mede with the above illustration is that we are almost never solely concerned with the integral unts we are counting Rarely do we couot the number of people beoause we are loterested in the number of people Wbat we are usualify interested In is some charrctersitce that people have, and we are countang the people to somehow add up the characterstio We would be very foolshh, however, to assume that ooe set of 10 people add up to the same amount of thes characterstse as another set We may wonder why it is done this ray instead of counting the ebaractensitie directly The aoswer is quite simple We count the obvous integral unit because we know how to aod because there is hittle room for disagreement about the answer Oif course, at may not be the rught answer for the underlying questioo, but it is the right answer for the question we are asking, oamely, "how many people are there?" We as human beings have stuch a stroog urge for the sense of securrty we get when we "know somethiog;" that we bave a great tendency to ask ourselves questuoos to which we do know the answer, albert both the question and the answer do not reflect a realistic apprasal of what is really at sssue For example, the boys would have to defend their decision to have ao unequal mumber of boys on the two teams Most
pople won'd a stomaticslly cusure that the asme number to a ade maher a far game Almott anyone can count hoss, the countuag of bixcasll skill porits is quite another matter

Stondard Units

He ste ron led to the problems of counting standard, or abstract wans There are unts that do not really exast in a patural and obvous sate at least not after they have been subjected to a certa a amoun of refirement Thef are bsoreally creations of man Lasell) the; manfert thencelves in some phyncal form, usually callod a mearinm unstument Sometume howeter, the physical netument take on such complex characteriatucs that the typical proon does not thith of it as a physcat messurng anstrument An example rould be the teatung procedure for mescuring a person's "IQ All of the measurable acturties in mellagence testing are phiseal in eharster although we thimh of the teating as measurng mertal setnviee But if ne think about it ne realiee that physical acuuty is probsbly the onls kind that can go on eten if we have scended to call vome hinds of phaceal acturties mental activites Ih is coneenable for example that comeone cotine day will dacover tie cherucal baws of mental actmis and therebs lay the ground work for mahng all of us genuses' Or at least gemuraes by todsy a anderda
Man created riendard units in an attempt to moderate the main doxdrasiage of the use of naturel unts asmely the varction in ratupal unts We huse alresds commented bnefly on some of the probiems of countra astural unts The foot ongraally a mans real lose and te cebs raning from man to ruan came to be replaced bv a andard fooi sen tarefully defined and opprommately equalled bs all the for rulers ete all over the morld With out repectuse machres ae base fer outdone nature when it comea to creating esentusily atmar unts of an object The adiantages ne ginn from tha are obvous as are the triks and dradsantages We sho try tos'andurdiee people to a conaderable crtent. We standardne textbook teachng methoda ete
Deapite the cerming emplanty of our standard unts the fact is that our frandard umts ato : arf $A 1$ foot rulers are defined alike but ther etull are not of the evact leagit In fact it is very unlikels that anv tho of them are exacth the eame length We cannot prove the a aldity of thas statement but the valudth of the contran statemeat cannot be proved ether Recogation of the lach istret identit, although mportant from the pont of wen of remm in ine
that there is still standardizng to be done if we wish to and are able to, does not gansay the fact that our foot rulem are considerably more alike than our feet And this last pomt illustrates a very important prinerple in the interpretation of the value of suggested standard units The pronciple is that we should not ask if a ant of counting is perfect We should ask if it is better than competing units

Direct Counting vs Indirect Counting

We have already hinted several tumes that there are occasions when we seemingly are counting one thing when ne are actually interested in counting something else Our youngsters, for example, were seemingly counting boys, but actuaily they were counting "batlplayers" whech are not exactly the same as boys, although they might look the same to the unmbated it is now trme to point out that indirect counting is not the exception, hut father the rule it is more subtly true when se count natural unts because we find it so easy to delude ourselves it is ohvously true when we count standard units simply because we really do not count standard units for thens own sake, we count standard units hecause we helave that the nataral object molved has the given number of the standard units For example, suppose we dectde to measure the number of inches in the length of a room (Incodentally, how many rooms have we ever seen with inches in them") We take a steel tape and stretch it from one end of the room to the other We then read off the answer and announce that we have measured the lenght of the room But we did not do that at all What we did was measure the length of the steel tapel (And actually the manuiacturer of the tape did most of the hard work) We belteve that we placed the tape in such a position relative to the length of the room that we also measured the lengith of the room when we measured the length of the tape Wheo We anounce the 'count" there is little doubt that we read the number ofit the tape correctly There is comsiderable doubt that we placed the tape correctly
Smolarly when we check the thermometer to measure the temperature, ne do not really measure the quantity of heat io the anr What we measure is the height of a column of colored liquid an a glass tube We believe that the degree of heat in the arr correlates closely enough with the height of the hquid so that if we know the height of the liquid ne have a satusfactory guess shout the heat in the arr And most of the time itis
The more we think about tt , the more we realize that practically all the familar numbers of our experience were not the result of
consuas something of direct metereet What ras counted nas something tha' ne are able to cound We then asoume that the thing we are able to cosat is the sume as the thing in which we are realls metereted The clasecexample 4 , of course, the way all of us essocute happines with mones
Thus the quection What do the numbers mean? is alm ay a fele razt. We should devclop the habit of acking three questions about the numbers we find Fust Exactly what nas counted or measured? Second Exactls what is it that as purported to have been measured al tre satuc ume? Thatd How close is the relationghip betwetn the two shinges? After enssermg these questrons, we are מos in a postios to uec the grea numbers more atelligently
After we bave traned oureelies to ask the three questions grven sbout the numbers te find, ne should atart to develop the habit of aking the following three queecons about the problems we find Firet What is there about our problem that we could understand better if we could measure it quantitotuelyt' Second 'What other things has alreads been messured or mught be measured, that nould pre as some knonledge of the quantatatro vanation of the thing re ate interested in" ${ }^{2 \prime}$ and fianlly Hon close as this selationship betaeen the tao things?

Untul man quantifed a phenomenon in has envaronment, be made little of no progress in understandars the phenomenon, controlling the phenomenon etc This has obuously becn true in dealing with p'isical phenomena It has been less obvously true but neyertheleng almoet equally true in out dealings ath what are called psychologreal, sociological and other related phenomena in fact as pointed out earlice the evdence is mounting that almost every phenomenon has a physeal bsee os if not a physcal base it has physecal mantfestations and the more quickly he quantuly there physical mant festatioas the better are we gong to be able to deal rith such problems Be should not we the obrious limitations of quantification to hold back its dev elopment and its extenamon into many areas heretolore hold somewhat ascred as though to use numbers to characterize the vanation in eomeching is somehos to defice it Dusiness affars have not been immune to man's persstent struggle to mprove his understandas by quastifying the redouat phenomena in many reapeets butnees has pronecerd decelopmenta in quantisication, although not from any motne other than personal profit The relentlens druse of competitive preasure has foreed business to contunally extend the scope of its "accounting" (Note count in the root of thes rord) The number of numbers generated by one day's business

In the United States 18 fantastic And there seems to be no end as eacb fim tries to gain a competatuve adrantage by creating new numbers before its competitors do The poor fellon who fries to run his busmess "by the seat of his pants" stands no more chavee today than a fighter pilot "fyyng by the seat of his pants" would aganst a jet pilot who knows oniy what he is told by the mynad dals in front of bim Very few plots, for example can compete successiully aganast an altumeter when it comes to figang out bor lugh the plane 15

4.3 Some Special Problems in Counting and Measuring

Choce of Units

The unt that we count 15 , of course, at the heart of the counting process We must know the unit well enough so that we can tell ode from the other when we see them One of the most uterashug aspects of the counting process, and one of its most valuable, is that we can count anything upon which we set our mind it is entirely up to us to decide phat unt be are going to count Since this 18 so , 3 t is absolutely essentral that re consclousiy define the unt we have decided to use in a given case If tro people use different unts in the same application, they are bound to get diferent numbers even though they may get identical answers, because the answer involies both the number and the untt

Since the choice of the unt 15 completely within our command, common sense suggest that we should' choose 'good" unts 隽hat are some of the desirable quahties of a uort, not necessarily in order of importance? One desirgble quality is that the unit he fomitar, or generally understood Of course, it cannot be faminar when it is first adopted, but, once a umt has attaned a substantial degree of familarity, either because of tradtional ucage or through education, subetantial disadvantages dev elop, at least temporamly, ti ne change the unt Such a change considerably neakens one of the greatest values of numbers, namely, added precision 10 communication betreen people We could communicate a strong mpression of our independence and indmivduality by adopting our pris ate set of unts of lengit, weght, ete, but we certamly could not communicate any notions about height weight etc The rule of fammarity puts a handicap on the process of introducing aen unts that might be better on many other accounts The calendar currently used on much of
the eath $2 s$ an illustrstion af a unt af measuring tume that is mainly recommended by familianty
Relatue wraformily of the elee of the unst is probsbly the most mportant objectuse quality of a unt of messure. We note tho aspects to the problen of uniormity A und might sary from elemeat to clement at one moment of tume, or all unts might vary over tame The human foot as a unt of length is an example This vanes from perton to person (and also from left foot to right foot) at any moment of tume It also has ramed over tume, there is aubstantial evdence that peoples' feet, particularly in the United States, are gretung longer in our chore of standard unts, we try to heep both types of tarstion to a minmum We are not alrays too successful, how cere, partucularly when we desl with some of the more complex unter Our most notable recent falure has been the shrinkage in the value of the dollar over the last fer decades Students are particu|arly aler to the defcences in umionmity of test grade units, both from student to student and over tume The most botable simple thing that $\begin{aligned} \\ \text { centunue to measure ath obviously nonuniform units }\end{aligned}$ is the month We hase inhented a calcondar that is not as serviceable as the Amencan Indian's conecpt of the moon Users of business data find then takks corasderably complented because of our present ealendar fyticm The ronths not only have difterent numbers of das a, they have different numbers of holndays, workdays, Sundays, ete fi would be sampler if esch week had the amme number of workdays, each month the same number of weeks, etc It has been serioudy rurnested, and strongly supported by all working statisticians, that ne atan mproving the sturborn
A unit thould also be of a sire that leads to numbers that are conicrucnt to work uth It is mpractueal to measure the quantity of coul in ounces besuuce it is generally purchaed and used in amounts that nould result in awkwardly large numbers Similarly, the astronomer mearures distances betwecn stars in hight-years rather than in leet and the computer engrecr measures time on the cormputer in milliseconds rather than in hours The mathematies student, on the other hand, messures the time it takes hum to do his homerork calculations in hours
The percan who is doing the nork is the best judge of the size of number that is the moct convenient to rork nith Some people like all the numbers to be betreen 1 and 100 , and all the numbers integers at that! If a person abhors fractions, decimal or cormon, he can sla ays asod them by choosing s amall enough unnt Probnbly conlention and habit are the prime determinants of ahat is convenient
for most people What we have been used to and what we have been tainght in school are generally easy for os Anythong else is strange and hence diffeult.
Another useful attribute of a unt is that it be a part of a system of units of different sazes that are easily converted into one another For example, the money system of the United States bas units of cents, mickels, dimes, quarters, half dollars, etc These are easly converted into each other Our system of volume measures, on the other hand, has a set of unts that are quite awkward in conversion from one to the other We go from teaspoons, tablespocns, cups, punts, quarts, gallons, ete, up to barrels Generally speaking, we find that the most conventent units are those that are hased on the decmal system, thus making it possible to shuft unts by shafting the decimal point

Choice of Origin

The ongn of measurement, or the value associated with " 0 ," is often a matter of arbitrary chorce Sometrmes what is herigg counted or measured has a natural orign, a ponot where 0 makes sence For example, if fe are measurng the length of a board, it makes sense to start at one end oi the board, call that 0 , and count the number of feet to the other end Some things we measure, however, do not have any natural ongm, or, if they do, we do not knon where it is For example, where 15 the orign of time? Wrestem civilzation has chosen to measure time forward and hackthard from the birth of Christ We probably date most of the signficant es ents in our hfetime with relerence to our age, a number which re find convenuent to measure from our birthday as the ongm
Common sense suggests that we choose a convenient orign if we have a chonce since the chonce of origin is what determines where the positive and negative numbers are going to ocour, the most imm portant factor in the cholee is the interpretation re wish to put on the negative numbers For example, the thcory of profit measurement and the accounforg system that results determme the 0 poont, or the point of 0 profit Many people misinterpret the conventional measurement of nrofit because they do not really understand the meaning of O profit The most common misinterpretation, probably, is to confuse the profit soale with the cash scale aod to assume that 0 profit means 0 cash

We have further occaston to consider the problem of ongin when We discuss the concept of the seale below

Coneap: of the Scale

We sre sll familar with that reasuring ingtrument called the raits in common usage if is a device to messure weight. Ne uas the tema in a mare general tente to refer to any measuring device that has the thin features of an ongen of measurement and a unt of nessurement In thes genee, an ordinary loot ruler is a ccale It Les an origin at one end (usually not matked ss 0 hometer) and is douded up into meches and fractrom of anches The same loot rule: sould sull be a scale if re deended to plate the ongin in the middle and mark of the neches plas and muns from that point The second stale nould now haves -4 there the fitst one had a +2 , etc. It should be obveus that the secoad wilet is as zood for messuring the length of a room as mould be the first Howevcr, it is also obvous that the numbers in the final answer will be different unless we choose to tranglate the retult on the second riler anto the asme result we nould get if we used the first ruler Thas could be done very simply If adiag 0 to cuery number that had been isad from the gecond rules to adyut for the fact that the ongin of the second ruler was daplaced ax unte from the ongon of the first riler

If we muhto, he could multuply cach number on the ordinaty ruler by 10 , eay, rezuling in 80 whereas we had 9 before For contenuence ne mighe call the nex numbers "dinches" We could now messure the fength of the room oth this fulet, geting a result in dinches snatesd of mehes The room is still the bame length Hor. esct, our numetical ansker would be ten lames as big as if we bad measumed it in whehes We could then convett the answer foom dinches to tnehes by dividing the number of dinches by 10

We could, of course, ahift the origin and change the unat at the same tume, thus getung a completely new scale And, knowing the relationthop bernean the onginal scale and the nen seale, we could Irandate a result from one scale into yis equvalent on the other scale Either at le woutd be equally good for measurng a grea phenomenon Saturally ae should know whtch scale we are ying When कe interpret the final ntwlt
We find the abinty to ehuft back and foth from one scale to another a great convenience in performing ccitan eniculations. The unal routin is to take the sesulte of ane acale that is very convenient for measunng and interpretation, translate these results into another scale that is aery contenient for calcutations, and finally tranglate the results of the calculation back into the orignal scale. The final results eno be quite mislesdmga sud sometumes qute ridiculous, it we err in the tranglation process

It is interesting to note that the wbole coneept of a scale drawing or scale model fows durectly from this concept of the scale and of changing the origin and unit of the arale We construct a scale drawing whenever we measure something in conventional units, such as feet and mehes and then arhitranly change the unat so that say, one anch on the orgmal scale becomes equal to 100 gmohes of the new scale The dmensiona of the actual object are then measured on the original seale A set of numbers results The model is then drawn hy using the same numbers (mckes) as though they were ginches The model should then have all the appropmste proportions, although it should he only $1 / 100$ th the size of the actual

The 100 Percent Scale A scale that has found wide apphication in many practical prohlems is the percentage acale This is an arb:tranly created scale that runs from 0 to 100 , although we see shorty that at is sometames more convenient to thank of it as running from 0 to 1 It can be used suecessfully only where the notion of ail, or total, and the notion of 0 make sense and also where it makes sense to think of the various parts that make up this total

We also use such a percentage scale at tumes when we are tryng to approxmmate the intensity of attitudes or feeings For example, a person mght attempt to communceate the strength of his 'likng" for Brand A cigarettes by making a mark on a 100% scale as shown in Fug 41 We can thuk of the 100% as beng the "total amount of affection" the person has for clgareites Since this partucular person bas a 65% liking for Brand A it is evident that he defintely prefers Brand A to any other brand because the maximum "likng" avallahle for whatever hrand is to second place is only 35%

A spenal case of the 100% scale is often used when we are interested in the decision a person will make because of some attitude or feeling he has Sunce a person elther votes for a candidate or does not vote for him, only two results are possible The sesue now 25 to determine what vaiue on the 100% scale we should assign a favorahle vote and an unfavorahle vote The convention has been adopted of assigning a value of 100% to a favorable vate or a favorable purchase and a value of 0 to all other possble decisions For example, if a person likes Brand A cugarettes more than any other brand, and hence buys Brand A, we would assgen a decision ratang of 100 to Brand A and a decisson rating of 0 to all other brands
Generally speaking there are sugmficant mathematical advantages to be derved by using a seaie from 0 to 1 , with decimal fractions occupying the intermediate values, mstead of the 0 to 100% scale This

Fif 4) Proferese sale for Drad A ciarettes
nould metsa that we would be dealog mith proportons rather than nith perentages The likng for Brand a referred to nould be ex-
 but we find is caser to manpulate matbematically It is no problem to sunt baek and forth from one scale to another because the numbers on tie perrentage scste are evactiy foo tumes the size of the nutabers on the proportan scales
The mathematteal advantages of the 0 to 1 scale are particularly imporant when we are deghng woth the decison problen just given. A dersion in favor of something nould be called 1 instead of 100 . If we wete dealing with many such decisions, some favorable and some unfavorable (0). we would have a collection of nothing but 1's and 0 's These nork rery neely in certun mathematheal derivations. Thas chote ia aleo conatsent with many of the practices of our demoeratic tradtions. When cctuens sote, they must make definite choies Person 1 may actuslly be quite undecided, but leans a shade ton ard candrdate A, say, rith a prefercace rating of .51. He must give his whole vote to $A_{\text {, however Person } 2 \text { on the other hand has }}^{\text {he }}$ an unqualfind preference of 1.00 for candadate λ. He is very happy to give his ahole vote to A, and may even with be had two or more
vates to give The record shows both of these votes exactly the same, namely as unquahfied votes for A The truth would shon candidate A with a total preference of 151 and canddate B whth a total preference of 49 The results of the election shor candudate A with 2 votes and candudate B wath 0 votes, a result whach seems substantually away from the inuth, whech it is if we consuder only those who voted for candidate A It is quate evdent that there is a bias in our measurement in favor of candidate A However, if we consider the votes for candidate B , we would find a smalar bias in favor of B If we add all the results together, we find these brases somewhat offsetting each other If A ended up with 53% of the vote we might say, whth caution, thas the citizenry apparently had an average preference of 53 for A and an average preference of 47 for B What this means is mpossmbe to determue, however, from the avaliable information It might mean that feelug was quite moderate for both canddates whth most people actually not oyerly eoncerned about which candidate ron Or feelngs might run quste strong, with about 53% of the people 100% for A and unalterably opposed to B, and with about 47% of the people havng equally strong but opposite feelings The latter sttatation is explosive and maghlead to a revolution
These two extreme possiblities are illustrated in Fig 42 Part A shows a distribution of moderate opmons and Part B a distributhon of extreme opinoons
Thus it is obvous that we pay a price in lost information when

Fig 42 Two of the many powsble destributions of antensity of opnion that might prevali on the assumption of en 'average" prefereate of 53%

We chooce the coaventeace of registenng a decision, a preference, or a vole as thouph th were 1 or 0 , wh no protision for recording intermedure opmons It it a good practuce in work oyer which we have wese eoatrol to ak ourcives whether the convenience of recording cnly I's and 0 ost worth the saenfice of information. With the sdrent of the roung machine, itis tomectrable, though not likely, that someday we may cast our voin by reguteriag a degree of preference rather than gutt gring the whole rote to one candidate and nothing to the others

The techarque of asengung a ralue of 1 or 0 to something according to whether a guea thing is or 15 not trve 3 s used commonly. Its tec is pot restreted to just those cases in which a decision is being made ether for or afumt something, as no voing, or as in marking Tru-False quethons We also use at at times when the varisble beung meserued actuslly takes on a great number, if not an infinite oumber, of values. For example, we mught arbutranly select a minimum he:gh, tay, 6 feet, and label all mea that herght or more as tall men We then collect fgures on whether a man ss tall or not tall If le st tall, bamely, 6 feet tall or tallet, be asesga a value of I. If ke ty not tall, ne asego salue of 0 Saturally we do not have as much ioformation sbout the herghts of a group of men is all we know uthat 18 co of them are tall and 82 So of them are not tall as if we knex the hetrhte of the indirdesl men nthin $1 / 2$ moch. But for some purposes, the retrieted information might be enough, to trich eacs there would be no point in collecheng any more, and at much krate: sxpense For example, a basketball coach may very well Wugh to make his mual sort of the men into tall and not tall players.

When we atbiranly select certan boundary points, such as in the heghe problem above, and thea sort our hems into the size classes marked ofl by those boundarues, the are classifying these ltems according to certan ottrontes By defintion, so to apeak, an ntem citter has the attrbute or 1 does not. Thes is true regardless of the number of atrnbutes re maght be sorting for. Let us suppose We ate going to sort some apples actordag to size. Actuslly, of course, the apples have all hunds of eues, probsbly as many sites as apples. But we abitranty define the boundarieg between five size clasey let us tow lool at how an apple arrting machine will sort the apples by size The apples are fed onto a screen which has holes lare coough to let the smallest apples fall through. This screen makes the decision of ahether the apples are "smallest" or "not smallest" The "rot smallest" apples are then passed along through the stachine until they reach another sereen. This sereen has larzes
holea tben the first one，but still boles not large enougb to aceept any apples larger than those medrum small or smaller＇This screen then deodes which applea fall sato the medum small class and which do not The sorting process contnues through larger and larger sereens untsl all the apples have been placed in one of the five siae classes Note that the machne never had to make a decision any more complicated than to dectede that an apple did or did not fall into a given class The abluty to narrow a decision to only two possiblhtues is not only highly effective when we use machunes to do the deerdng，but it is also highly effective when humen beings are making the decisions
Agam we remind ourselves that the advantages gamad by narrow－ ing our decision problem to a few categones or attrubutes are not prothout a price，the proce bemg the assumption that some differences do not make any difference whereas other dufferences，equally small or even sraaller，make a substantial dufierence For exarepie，some of the smallest apples differ more in size among themselves than do some of the emallest compared to the medum small The same thing happene when we grade students $\mathrm{A}, \mathrm{B}_{1} \mathrm{C}$ ，eto There is a greater difference among the B students than there is between sore of the A students and some of the B atudents But as any atudent knoks， our rsting systeras sttach cqute a but of siganfance to the difierence between an A and a B ，but no significance to the difference between two B＇s The use of a percentsge scale for grading solves some of these problems as it creates others

The analyens of attribute classificction data has a theory of its own For those interested，one of the more comprehenswe disoussions of
 thon to the Theory of Statistucs，Chapters I to 5

The Problem of＂Twise as Murh＂

As soon s⿱⿰㇒土口⿰丿⺄⿱㇒日⿱一土儿，we begut to messure things，we take the next step and start comparing the swes of the numbers that we get For example， we might compare tbe distanues hetween towns by saying that it is tunce as far from Town A to Town B as it is from Town A to Town $C^{\prime \prime}$ And just about everybody knows wbat thes means But what do we mean if we say that＂today is twice as cold as yesterday，＂or ＂Joe isn＇t half as smart as Tom＂We defintely know how to meas－ ure distance in a meanngful way，or，more particularity，with a meaningiul omgin If one distance measured is 25 miles and the other 50 miles，we have no trouble dividing 50 by 25 and geting 2 whech tells us that one is twee as mocb as the other But if yester－
 as cold tedsy Sumpee thas $2 F$ senterdar and $1^{\circ} F$ today? or I mon Joe a 1 Q 1105 and Toms 122 Hor mueh marter than Joe ${ }^{4} \mathrm{Tcm}$
Thut we eep that it male atence to compare the relative sires of sect nambers we get bs at make no terke at all to compare others Generall apeshing it is approprate to compare the relatue anes of number if there is treang full onges and if we know where it it 0 herwes pe get rather allh anrucre and we get answers wheh depend catirel on the abbitraty eflection of onkin that we made Fo example 1' 14 pos ible to make any degree of coldres taice as coid at any ofor degree of coldaess bs judesous selection of the ongin of reasurement Wheneter we can get ant anster ne kant,

Sceles with Appatenily Unequal Uam

We fryucnth epe sesles of meanure that seem to have units of
 or auch s wale ${ }^{*}$ the hotselold mensuring eup Such a cup is ued whrarus the crolume or rulac content of the cup or fraction thereof Tle "fale of in 'ex mu t be shoun verucalls on the tide of the cup foxe e" If the cup is shaped to that the side mahes a 90° angle mith tis base and al both the bare and the cides have straight auro fste: no problern in making the inder exists It re wathed to meas ure It we would mefel divde the vetucal surface into eight equal parts llarels honatice do we find merownge cups ot the the prop eries For acelhetic and other nasons tie ades do not mate a 0° angle of the bis tsuall the mouth of the cup is lager than the base and it takemere vertucal dirtance to mithe $1 / 8$ of a eup near the botom of the cup than it does near the top Thus the disisions marhed on the ade of the cup afe not equal But this is quite proper beau-c the divsons are not really intended to meacure the vertical datance They are intended to measure the a lume contansed by the cup if filled to the grea point
The techuque of umg one sate such as a sertical scale, to measune amethar: according to another aeale (not shonn) such as a volume seale, is gute commonk ued if sers often results in a woble scale that bis unequal durions, eten though the scale actually remresend but not shown, nould hate equal dtucwas If we use a ceale math unequal ditimons wheh cannot be translated into
a meanngful scale with equal divsons, we bave a senous problem of interpretation

The analysie of business problems is often helped by the use of a loganthmic or \log scale It is also sometmes called a ratio seale The purpose is to compare a ses of numbers with respect to their relative sizes rather than with respect to then actial numencal difference For example, 1000 is turce as large as 500 , as is 2 compared to 1 Interestingly enough, the logarthm of 1000183 whereas of 500 it is 2698970 , grvng us a dafjerence in loganthms of 301030 The logarithm of 2 is 301030 and the logarythom of 1 is 0 , aso grying us a difierence of 301030 Thus if one number is twiee the saze of another the difference in therr loganthms will be 301030 , regardless of how big or small the numbers are If one number is three tines as large as another, the difference in therr loganthms will be 477121 ; and so forth Hence, whenever we are meterested in the relatwe gaes of numbers, 7 , find that the loganthms of these numbers shos equal diferences whenever the relatne differences are equal even though the actual diferences between the nambers in the pars are quite unequal, just as we saw in the example above
Snce it nould be very tresome to actually look up loganthms to compare relative sizes or actually calculate the relative differences by dividug one number by another it has seemed appropriate to constrict what we call a logarthmec scale This is a scale so con* structed that the distances between the numbers listed on the scale is according to the diferences between the loganthms of the numbers rather than eccording to the differences between the numbers themselves An illustration should make this clear Table 42 shors the loganthms of the first 20 integers
There are several miteresting things to note about thrs table First the difierence between successwe logatums decines even though the difference between the successive number equivalents remans constant This makes sense becanse the relative difierences hetween successive numbers should be smaller as the numbers get bigger Eventually, of course, the relative difference between successive numbers gets to be practroally 0 Note also that the logarithma differences between the logs of 1 and 23 and 62 and 4,4 and 8 , 5 and 10,7 and 14 ete are all 301030 Those between 1 and 32 and 6,6 and 18 , ete areall 477121
If we now make up a scale that is actually land out so that equal distances represent equal logurithins, bat, mstead of making an index to the scale by wring down the loganthm we write down the num

IABE 4:

Loparithms al Firt 20 Integens

Number	D. Ferencts betreea Succravie Aumbers	Leganthn of Number	Differences between Sucersvie Logathms
1		0000000	
2	1	301033	0301030
3	1	17121	176091
4	1	C00050	124838
5	1	695970	096910
6	1	778151	079881
7	1	845033	00684
8	1	90099	057092
θ	1	95424	051153
10	1	1000000	045757
11	1	1011393	04189
12	1	1079881	037788
13	1	111393	037762
14	1	1146123	032185
15	1	1176081	022963
16	1	1204120	025029
17	1	1230419	026329
18	1	1255273	024534
19	1	1278754	023481
20	1	1301030	022278

ber that has euch a logatathm, we would then lisve a loogrthmice rale Figure 43 shows the sucenssive stages in the construction of a logarthturt tcale Part A shows an crdaary equal divison ecale wath loganthmic aslues alogg the verical axis Note that equal distanees slong the scale sre matched nith rqual diferences betxeen the loganthras Fart B thows exactly the same scale as in A except for the change from an undex in loganthms to an andex of therr number equialents For example, the loganthre 301030 has been replaced by 2 , its number equivaleat, the logarithm $1.20+120$ by 16 , its aumber equalent, ecc Part C bhors the same scale and markugge as B but with additonal divesons and markings for the intermedate numbery
Part C is the charactenstic fom of the loganthme seale Ready.

Fig 43 Stages an construction of a logarthmos scale
made seales of thus type ean be purchased Fugure 44 reproduces some samples of such commercially avalable paper We should note some of the most mportant characternstics of logarithme scales First, 0 or any negative number is never marked on the index The technucal reason is that there is no logarithm for either 0 or for negative numbers Another way to see the logne of no 0 and no negative numbess is to megsure the relative nocrease, say, from

fif 44 Esmples of logarthme scales

0 to 25 , or from -8 to 124 It is clear that these measurements cannot logeally be made
Another thing ae note is that if we nash to change the scale becauke our problem is dealing with mumbers that start in the neighbor* hood of 220, we change the marhangs supplied by the manufacturet by multiplying every green index by a constant, sas, by 200 Figure 45 tllustrates such a change It is wrong to add of subtroct numbers

Fig 44 Contınued

Sele marinns	Corwesters 10
prowided by	huw lowest
manulatuar	turater efual 20

Fig 45 Illustration of proper way to chenge a logarithouc seale
on a log sale If we wish to redure the size of the scale markings ot wdex, we can do the by multiph ing by sorce ftaction, of, if we prefer, by deuding by some appropnate number
A further point to note s that it rould not make sence to continut to bave a separate hase to shom each astural number ss we proceeded $u p$ the scale of numbers Part C in Fig 43 berins to demonstrate the problem qute elosis The lone eventually get so close that we esarot du'mourh them, and it becones necessary to start ekipping oume numbers so we go up the number scale, and the further we go up, the more numbers we hase to skip Certsin conientions hase fropro up about changing the frequency of subdinsons as we go up the aumber seale The most predomineat convention is that based on the notion of a cycle A cycle 15 a epar of numbers coverng a rarfn of trafold, wech se I to 10100,000 to $1,000,000$, etc ComTetcralli susulable logarthmic seale paper 15 sold with one-cycle, two-creler ete The oumber of ey eles neeessary for the eharing of a gueo problem depends on the range of the numbers to be plotted It the largett number is lecs than 10 tumes the mallest, one cycle is onoush, if the larest is betneen 10 times the smallest and 100 times the manllett tro geles are necessarf, ete
Sobacimes we would the to compare the relative ehanges in tro or more sets of aumbers, wech as the companson of the changes in tales over ture of two basiness froms If the two senes are quite diferent in maguitude, the tro lines nould be so lar spart on the chart chat detauled compsnoon would be most difieull Figure 46 Hllustrates the probem We can improve the situation by usiag two different stales on the ame chart, oue for the plotung of one senes and one for the other Figure 47 illustrates the improvement over Fig 46 by the ure of two zeales We could compare any number of tenes with the use of any number of loganthmuc socales on the sape chart
Inedentally, it is geserally not approprate to use eeveral different seales, or mulaple acales, on the zame chart il we are using ordinary equal-spaced graph paper the hud we call anthmetie scale paper We Fould attempt to compsre reveral aches the way onls then re are interected io compang the relante or percentage vanations, and these are properly compared only with the tuse of loganthmie ecalcs The use of multuple anthmetic scales results in distortions
A substutute for commeresally-prepared loganthmic paper ean be madi by using the ceales on a chde rule as a gude esince the promepal ecsles on a thde rula are loganthence scalts The C and D acales

Fis 46 Comparative ssles of Pure Oll Company and Standerd Od of Nem Jersey-1950 to 1959 (From 1959 Abutal Reparts)
show one cycle, the A and B seales show two cyeles, and the K scale shows three cyeles
There are many other possiblities for special purpose scales in addition to the log scale The most common of these are the reciprocal scale, the square root scale, and the probabinty seale The

Fi. 4.3 Comparsture alms of Pure Oit Company and Statederd Oll of New Jetry-tiso to 1208 (From lave Absual Reports)
distances on a reciprocal seale are epaed accordiog to the differences betacen the recoprocals of numbers. For example, the distanee betreeo 1 and 5 would be as the difference betreen 1 and $1 / 5$; that betreen 5 and 10 as the difference betacen $1 / 5$ and $1 / 10$, ete There are very fen ocessons to use such a scale in the analyas of business problema A square-root scale is such that the divisons between the numbers is proportional to the differences betreen the square roots of the numbers For example, the distance between I and i wouid be proportional to the difference between 1 and 2, the square roots of 1 and 4 , retpectively, ete The square-root scale has found some ontersting applestions in business problem analysis For example, there 19 some evidence that the comparative degree of fluctuation of a common stock pree is proportional to the square root of the pree In other nords, a $\$ 100$ stock mould fluctuate compared to a $\$ 50$ stock so the ratio of about 10 to 7 (the square roots of 100 and 50, reepectuely' mstesd of a ratoo of about 2 to 1 as the actual pares would id deate If the rule appled exactly, and if all other factors remained the same, we would expect the $\$ 50$ stock to rise to $\$ 57$ a hule the $\$ 100$ stock was naing to $\$ 110$
The probabilty scale is really a normal curve scale, the normal curve beng a apecal type of distribution which is widely applied
in probability analysis We touch upon the normal curte and on the probabilty scaie in later pages

4.4 Accuracy in Counting and Meosuring

The numbers which result from the countug process are usually not strictly accurate If we are counting integral wnts, such as boxes or chars, Te make mostakes in udewafyung the umb, and we make mistakes in the actual couming When we use standard units, We find that the object being measured almost always hes a size that does not correspond to a whole number of unts, thue involving us in fractional unts, and our percephe ablitues are not sharp enough, even with the and of mstruments, to determare the exact sure of the object bemg measured Furthermore, as pounted out earher, we do not measure the object durectly anyway, thur leavig room for further error as we purport to measure one thing by measunag something else

It is a good idea to be conscrous of the hmatatons of the accuracy of the numbers with which we deal Geverally speakng me do not know exactly hom accurate our numbers are If we did, we would make the appropmate correctrons Our experience does grve us usually some idea, however, of the probable magnstude of the emors Ideally we mould thke to state our measurements on the form of the confidence we have, or the probablity, that the true auswer falls Whthon a certain range For example, if we were to measure the
 the room is between 1445 and 1465 feet long We mould base such an answer either on repeated independent measurements of the room, treatang each measurenent as a sample of all passble measurements, or we might measure it only oace and use our accumulated experence over the years with mory meamorements of this type to estmate the prohable etror we are subjeet to here In any event, we would do our hest to adicate to anyone concemed, moludng ourselves, the limits to aceuracy of our basie numbers
Unfortunately, common practice does not yet approach this ideal Most numbers origuate with no mdication of ther accuracy The mplecation is that they are 100% securate, although everybody knows that is not true Physical scestists, of couree, have been doing a good job in the connection for many years, and it is to them
then fre one mot of the conventions that have grown up around the coscepta of sogrifecit digith and grotanon ol numbers

Siquifitent Digits

A digt is defined as runaficont if it is correct wathan $2 / 2$ of its tait For example, if we state the length of the room as being 14.5 fect, it is uaderatood that the true feogit is between 1445 and 1435 lect. If is gesersity asoumed that we are cetlann that the true leggh mould be within this rageg It would be more appropnate pethaps if we coasdered it practucelly certans rather than certan A careful wother never records a dign unless he feels it is agnificant to the above sene
The lecation of the decimal pount has nothung to do with the num ${ }^{-}$ ber of agozicant digus The decimal point depends only on the are of the unit, and the sire of the unit is strictly an arbitrary chore A consention has gromin ap ahich makes it possable to indeate elearls the aumber of sigulficant digite without complucsthes antroduced by the location of the decmal point. This convention is to thow all the sigulicant digts, put the decioal pont before Whe lan digith end roultuph ty the porer of ten that will put the desmal point where it belongs for the desired unt of measure For example muppoce we bave a count with fout-digit accuracy which rendis in 4,826000 al we conorder the unt of measure We make at clesr that only four of the seven digits are significant by recordung the reeult as 4520×10^{-1} If re had left the number as $4,826,000$, it if acty possible that sormeone might assume that the last three zetos ste ampificant Another wa) to andicate that only the first four depele are agmitesat is to wale 4825 thousands It is generally s good udes to assume that say zetos at the end of a number are not arguificant ualess we believe that the person who created the number is a verg careful worker teros at the begnoing of a number ahould never be counted as agaticant For example the nutaber 00035 has only two spanficant digits The number 0003s0, howerer, thould have three egraficant digute and nould have it revorided by a careful norker

Prectision

The preasion of a number reless to the number of dectusl places to whith it is recorded The number 00035 is more precuse than the number 356, although 356 has mote agbaficant dights Frecision is thus ascocisted with the unt of mearore and not whth accuracy per 8f The resion we think of precision as akin to accurscy is that we
are normally thnining of two thungs measured in the same unit In that case, the more preerse number will generally also have more ssgmuicant dights, such as 36948 feet vs 4685 feet

4.5 Accuracy of the Results of Calculotions from Numbers

The mampulation of partially accurate numbers by the standard methods of anthmetic ereates the problem of the sccuracy of the final results The fundamental rule governmg the accuraoy of calculated results is that the results cannot be any nore accorrate than the least accurate number included in the calculation Certan arbitrary rules have been adopied to help us abide by this gene:al dectum Although the rulea are not perfect in application, they work wsil snough for mosh problems and they are certanly much hetter than no rules at all

Accuracy of Resulis of Addition and Subiroction

Rule The least accurate number contaned in addition and subtraction problems ss the least prectse numher
Thus the answer is no more precise than the least precise number meluded The following three examples illustrate the application of ths rule The digits that have been marked out are thoss that

	378027	00378	14,806 29
	4860329	186,000	268
	261832	4087	006
	06	9,4262	97348
	489029847	195,467 07778	15,806 578
Rounded	4890298	195,000	15,806 6

must be dropped Note the rounding operation If the leftmost digt being dropped ts less than 5 , no change is made on the last digit reteined If the leftmost digit being dropped is more than 5 , the last retamed digit 18 rased by 1 Note that thrs rule of rounding 18 conssitent with the convention that the last sigunicent dight should be correet within 5 If the leftmost digit being dropped is exactly 5 , followed by nothang but zeroes (as far as we know), we then adopt a. rule that in the long rus will result in rounding up about as often as in rounding down This rule is to round to the nearest even number The rule might just as well be to round to the nearest odd
rumbe: The :mportant porst is to be ronestent. The followag examples llumbrate the application of the roubding rules The eecond number in the column wr rounded from the first one in each case

$$
\begin{array}{lllll}
37,002: & 6385 & 6395 & 4382 & 4186571 \\
37,803 & 6238 & 6240 & 438 & 4187
\end{array}
$$

Generally speaking, the results of addition are a inttle more accurnte than these rules permit us to show The acreased accuracy reault becsuce the process of addition prondes the opportunty for sote of the errors in the ongmaf numbers to aserage out. We would expect to have about as many numbers with plus errors as we have with minus errors This apparent gale in accuracy is not enough, howener, to jusufy adding acothe: digit. What it amounts to is: If we had a lotel, say, of $12,8 \mathrm{st}$ St, we nould thath of it as having a true alue between $12 \$ 46633$ and 12,346845 The averaging of erore proess may hase actually reduced the range to something betreen 12,846.83 and I2,816842 We stull cannot confidently put a digt in the third decimat place esen though we have greater than rormalatarsecy in the scond deemal place

Aecuracy of Results of Multiplication, Division, Squaring, Squart

 Rool3, EteRule The fect accurate number contaned in multiplication, and simular probicms, has the feuest stgnificant digts
The spplicatica of tho rule is uliustrated in the examples belon, Sote partucularly the thrd example The pumber 5 bere is an abso-
 really has an unlmited pumber of agauicant digits Thus the num.

	45697	07918	638406
	$\times 318$	$\times 61$	$\times 5$
	15488816	451828	3192030
Mlounded	1550	. 48	319.203
Or	155×10^{2}		

ber 5 places no restrictions on the accuracy of the final result The number of diguts in the final anszer then depends on the meanured number ath the fen est signiftant digits The reason no mention was made of sboplute numbery th the direussion of addition and rubtraction was that we almost neber have occaston to usc absolute numbers in these opcrations Therr use is quite common, however, in mulupheation and dyviston

Since we generdily do not muluply more thian two oumbers together at a tume, we canoot rely on the law of averages to help reduce our final errore, it is eaturely possble that our final aoswer is less accurate than these agmificant digat rules suggest For example, if we muitiply 46 by 83 , the nules suggest an answer of 38 If, however, we ate very unlucky, 46 may actually be as high as 465 and 83 as high as 835 If thrs were s , the fioal answe: would be 39 nostead of 38 Thus, 10 a sense, we can actually lose accuracy when we multuply Fortunately, we have to be very unlucky for this to happeo, so we do not worry about the problem very often.

4.6 Size Comparisons Based on Relative Frequency of Occurrence

One of the ressons we measure thinge is to facilitate companisons We bave already referred to such comparisons as "twice as long," "tonee as heavy, eto We bave also pooted out that there are some scales used that have do meanongful orgin and hence no basss of making comparative statements of this type We are still interested in compansons however Another way of comparing things quantitatively $: 8$ by refereoce to therr relative frequency of occurrence An American male who 186 feet 4 incbes tall is not cooeidered tall because he is 6 feet 4 unches Rather he 18 considered tall because relatively few meo are taller It is not his size, buit the rarty of hee elze that is mportaot Actually \& man of 6 feet 4 10ches is only about 9% taller than a man of average herght There are many dogs that are easily twice as brg as many other dogs, but they strll would oot be considered big dogs because there are sa many of them, sod also there are many dogs still larger What makes a grade of 95 on a test worth so mueh more thro a grade of 75 as the rarity of the 95 The students are very quick to recognize the cheapening of the value of a 95 that takes plase if 30% of the class achleves 95 or better
This question of "bow btg is brg?" is not always essy to answer because of the various ways we can answer it getting appareotly quite different results each tme For example, ooe of the continung issues in Americao society bas been the matter of "big busmess" Is a business bug because its sooual sales volume is $810,000,000$ more a year than its average competitor's, or than its average customer's? Or because its volume is 75% more? Or because its volume is the largest of any company 10 the undustry? What should we compare

Tib? tll the ateel cowpsajes are gisits compsred with department ture but some steel companes are pygmes compared to Unted S.sict Suet?

In a'mere all problems ruvoling the ratory of people we find what is amporart it cot say, bow much belon arerage a pervon 15 , but nifer it is the sese of how suaty people are above him or belon hum Fo examp ${ }^{\prime}$, it the aserage sales of a aslemsm in our company ar $\$ 205000$ par year, xe reall do not know bor had a salesman 15 *ho sells s110000 untul we koon how many salesmen sell more or less than $\$ 110000$ The $\$ 110000$ figure might be at the bottom, or there may be 40% of the salermen selling lese The distinction rould make quite a diference to ua if we pere the salesman, or the sales manset

Oy* ability to measure the relative frequency of thinge according to some ecale of meseare can be a very potent tool of analyos and twatol We may not koor the argno of our scale in a meanughul achee, and re mas not reslly hnow what 13 umpled by a difference in one unit in our sesle but if our scale tall mabes it possble to rack poople in the prope: order and in the proper frequency, we are tall able to mahe miellisent deesions based on messurements donued from tuch a scale for example, we really do not know what a toadituon of reoo inteligente is Nor do re know what 100 umita of methigesee is Sor co we know how much more intelligence ss represeated by 125 unts than by 120 units What we thank re kiow is that the aseage store on a gnen test for intelligence is 100 We aloc think that ecores on such a test mill enable us to properls rend people in order of ntelligence The also thatk we are nght *han tre asy a person tho seores 150 is rer intelligent becauee reng tex people hure been able to acheve such a high score But it is fallac ous to eas that a person who scores 150 is tuice as ntelligentas a pemen who scores is
The eyvem of proentite rabling familar to almost every school child in Anences, is an illuetration of ratugg or measuing with reference to rank, or relsture frequency of occurrance along some acale

prozlems and guistons

is Defare brefis but acrurately the meabing of the following mords
 cumbersint.
(a) Drutly not moore than 840
(b) Almos: almays betreen 60° nad 70°
(c) Appoxma:dy 8%
(d) Yow of the time oner 200 fet
(e) Fanly close to 4 pounds
(f) Good cbance of rain temorrow

42 A dining rule often suggested by safety engneers is that Ore should leave one car leageth between benselit and the car just abead for every 10 miles of speed Thos at 50 mph one showid leave five car lengtbs
How many feet are thers ina car length ?
43 The proiessonal goiter will often make the folloming suggestions Quantify the underlined words For example bow nosgy pounds of hand pressure should one apply to hold a club firmin?
(a) Fiold the cluh frmbly but not in a death grap
(b) Shuft most of the wegbt to the left foot as you swing at the ball

44 A new saleaman is told by the sales nasuger to spend more time trying to sell those producis with a large gross margin than on those products with a masil grasis margia
How much mare tume should be gpend?
45 Xou are told by the doctor to soal your munured wrist in hot water How hot?
46 Soft musc bas bees diseovered to be a factor in moreasing pro duction in many plants and offices How ooft should it be?
47 (a) Measure the leagth of a room by paeng it off Reeord the result
(b) Measure tibe length of the same roam by using \& foot ruie Record result
(c) Measure the lengith of the same room hy using a device (a plece of string 18 a possibility) that will stretch from one end to the other Record the realit
(d) Which result st the most securste? Explam
(e) Eow long is the room? How do you loow this?

48 What is the value of the parr of shoes you now have on or last wore? How did you measure ths?
49 Count the exuct number of books you bave un your room as of the moment Jave somebody else madependentily count the number of hooks Compare the resulks If they are different how do you explan the difference?
How many books are there really in the room? How do you know?
410 Suppose you worked in a super market and were asked to count the amount of cash in one of the cash regroters before you took over the oabirer duty Would you count the checiss that some peopila bad preserted for payment? Why or why not? Would you count the value of the soap coupons in the draner? Why or why not? Would pou count the regsister alip that had been asgned on the back by the customer because she had madvertently left her pocket book at home? Whu or why not"
How much cash is there in the drawert
411 What is actuilly herag measured when you mpusure the following thugs? How accurate is the measurement ${ }^{9}$
(a) You weigh yourself on a bathroom sesle
(b) You determine the distance between two athes by noting the odometer reading on your automobie both at the begronang and at the end of your tnp
(f) Sou decreate the tumber of kioceder of the wasteagth of your faret't ndo station by restref it of the dalal your matio
(d) louteravire reur tood presure by gang to the doctor and aking tan to mextert is and then to thy you what 114
(a) "ousteft iro basebalbist to see" whech one ulisher
(1) Yource (tuo sppresens for s job a ciencil sull" test One scored Mandibetite: i3
413 The foltoring unis are to common use Evaluste each from the pase of ver of the denable qualities of a'good umt
(d) O. Ore
(b) Dollsr
(c) Mue
(d) Degres Fahreabet:
(t) Mante

4is 11 you are asked to aimate the ume with no relerence to 8 cleck
 "rousd" tmer, ruch es " 3 o dook,' or' 315 ," etc rather than as "3 $27 \mathrm{~J} / 2$?
414 le'erpret the followng compansoas
(a) Jomen $u \mathrm{~S}_{\mathrm{c}}^{\mathrm{c}}$ tallet than Tom
(b) Jokn 14 ond buli as amsble as Tom
(e) Bolung kater is almact geven tumes at bot tat ice at sea leved
(d) Siar Tom reeved s grode of 0 on the exam and Sobs only a grade of to, it we enient that Tom koem Sow more than John
(e) Johas chart is ealy about halif ay red es Tons
() Consmering pnees are alorost twiee ss bugh todsy as they were irtaty yean 3\%o
415 Collect taxres on the annusil dollar sules of the Unted States Steel Com asd of the Theeding Steel Co for the last 20 zears
(a) Foi both eries on the reme lof antheresestie
(B) P'ot both eenes on the same saph but with mulupie scales Deaga
 pomble
(c) Comarest on tbe somparatite effectireness of the two graphs in

(d) That did you find out sbout the bistory of the sales of the two companes"
(c) Whact one do you erpace to prow fater bee the next 5 years? op what evdeace do you base your decren"
\$16 If you sk your hatease to pour you ords 'lull a gigss of mint,' do yol erpert the wust to to half wsy up the she or do you expect an arount of wibe equal to ball the cubic content of the ghati How can she tell which you expes:"
417 Obe of the atts of dexpang packses for produets is to ereate the illuron of a greater quantro of product than is actuath in the paekgege One devee ured a 0 to diret the perions attention to one seale of meaturt by theth the quantist is overtated and anay from the true sale
or those neat the borderlune? Why? How could you tell whech were whech?
419 Assume that your total affectron for vegetables can be repreented by 1' Make up a scale momng from 0 to 1 and mark of on the scale the degree of affection jou have for vanous kinds of vegetables Do these degrees of affection cary from tome to tome or from satuation to atuation? Explan
420 Worker A bas been averaging only 20 assembles an bour in 2 rado factory compared with an average of 30 asembies for the whole group Hom good a worker 18 A ?
421 The company economist forecast the company sales for a given year as $\$ 77500000$ The actual sales tumed out to be $\$ 83634916$ How grod a forecast was this?
422 A student recensed a grade of 68 us has math class with the class averaging 79 He recerved a grade of 72 m bis English class with the class averagng 77 In what subject dod he do the better job? Explan Eow much better?
423 The ability to make desienoss or decisivebess is generally con Eidered to be one of the dearrable qualities of a buspess executue Explan how you would measure the degree to wheb a person has this quaity or attribute Indicate the basc unt of masure the ongn (if any) and whether your measure is bssically a rankong or ratug devee rather than one which results in cumbers which cas be meanugfuly compared
424 Perform the mdicated calculations and round the result to the appropnste number of agouficant digts
(c) Addition

A		
$A 48049$	B 478010	C 7310846
350891	36387	90000
614357	781005	86091
300	118429063	24378429

(b) Subtraction

A 46182
-1207396

B $\begin{gathered}738126 \\ -181\end{gathered}$
C $\begin{array}{r}1136284 \\ -2437519 \\ \hline\end{array}$
(c) Multypicention

1439563	B 175007	C 43894
$\times 341$	$\times 375$	$\times 6$

(d) Division
A $2 8 3 \longdiv { 9 4 8 7 3 }$
B $6 9 3 7 \longdiv { 0 0 6 8 }$
C $8 \longdiv { 1 4 9 2 7 1 5 }$
(e) Square root
A $274183^{1 / 5}$
B $497^{\prime \mu}$
C $004283^{1 / 2}$
(f) Loganthm
A 347
B 124
C 4839260
(g) Antriogarth m
A 28
B 2079367
C - 18174
(h) Recuprocel
A $\frac{1}{347}$
B $\frac{1}{r n 6}$
C $\frac{1}{20}$

425 It bus beea somernest taduoal to establesh chases of studento in the frude schools acecrding to core What is the loge behnd this sytem

416 A groeraton of so 250 many puble school geztems in the Uatted Sisiod aft the frades into tho parts, with a student moving through a gride in tro s'ere meher than oxe as to more common today Thus a
 ir +est of 5 fery What are the comparatue ments of 16 53 8 steps? Whit weid you thank of a trontep sustem, with a student spendiug 4 yons ta cach step"
427 If you there derman an deal gradiog system how many cate-
 catenoty gytery moth grsdee of pass and fall, of would you hike a

114 What are the eomprative ments of a rage and salary plat based cn oals wen luruted number of morker estegones and one based on as man) catomes as there are moriera? Or, is other words, should all Forters on the same job met paid the same amount?

429 [lenn Ford asds malions of dollser seling sutamobiles while oftrat only a (ew bod) atyles and co choce of color horepower, transmasea ete Todavs manufacturers offer many body stsles, many colors and color combiastoag many horseports options eic They doa't ofter sletytody a durerat ess but thes certauly come conenderably eloser than Ford eresdid

What are the bue sees appects of trying to cover the range of a market With jwes a few models and tryng to eover it with many models?

Why den 1 toobbate manulscturers each ofer eevera! differant models, at lesti ss) mith respect to fisvor.
490 Thay do bugh proed rewaurants geoerally ofier a more raned fare than low proced retaurantel!

± 5

Elements of probability calculations

We deined probabuthy as "the relative irequency with which we expect an event to occur over the indefinte long rum" We use the notion of probabilty to help us deal with events which, as far sa we know, occur on no preducteble time schedule and beosuse ot no known and controllable ceuses We emphasize agan that probabilites are bssed on hypotheses whech we hold We myght base these hypotheses on all kuds of evidence, such as certam physioal characteristics of the event in question, our past experience with the event, or ever huach and antution Each person is has own boss in selecting bypotheses The only operating rule is that a perion must accept both the rewards and the losse8 associated with hes hypotheses

5.1 The Fundamental Assumption of Randomness

All mathematical manipulatione of probablithes are besed on the assumption tbat the events occur in a random manner, a random mamer is such that as far as we know there is no relation between the characteristic being sampled and the way in which the sample Is selected After we have estabhshed the randomnass of the occurrence of the events, and we do this quiker the less knowiedge we have, the only other element needed for calculating probabblitues 15 a hypothess about the relative frequency of the stems in the unverse The relatue quality of the final results will depend on how much knowiedge the person has compared to other people Whenever sornething is treated as though it were random, it is treated on a base of ignorance If knowledge were not costly to acçure and if knowledge were always possbbe to acquare, the ideal practice would be to never assume anything as random

Out diecu*son of the concept of randomness in Chapter 2 pointed out that a logral conrequence of our defintion of tandomess is "eschenent to the unvcrece has the zame ehance of occurrmg" The notion of equal chavec is what forms the basis of the matliematical models ured in probability calculstions There is nothing magical or mystrous alout thas model it is something that men have croated and whech seens to work [t is not a proper questan to ack whethe the model is right or wrong in a given problern In a sence, It IC ofnals wrong In another sense, it is always reght The only fart suettion to ach is whether the model works better than any ofter colution methed currently staulable We are quile sure it dor: not work sx well as some methods we hope to have avalable 10 yesre !rom now

5.2 The Notion of Equal Chanse or Equal Probability

A wherse, reardlesg of ite general character, is concelved of as consutimg of a aumber of indurdual members, cach member sefarate and dirtact from each other member and separately identifiable. An ordinary plaving card unicerec, for example haq 52 epparate and duthet mombers A coin uniserse has tro separate and distines members It is events such as these that ne are thinking abouk Whan we thenk of efrual chance Thus, fundamentally, the probabulity of ans reccific event occurng is $1 / \delta$, moth N being the total number of sil these indivdual erents in the unverse Any probafality that ne work uith that as greater than $1 / N$, auch as $15 / N$, is a donied propalulay That is, it is denied from the hasic probabutuces of $1 / 3^{\circ}$ We can get probabhltues greater than $1 / N$ only lecaure wa have decided to ignote certan diferences betreen individual cienter and group some events together as though they were the tame For example, xe might anooe the differnces in suits betheen cardis ia a deck and any that the probabilty of an 8 is $4 / 52$ Ot, it we ate totsing 3 differnt coing at the saune time, we might thnore the indindual character of the coms and say that the probarbihtr of getlung two hesds and one tall $193 / 8$, thus assumng that we do not care which coms have heady and wheh roin has the tails Dut the probsbilty of any guen combination of tro heads and one thil nould be only $1 / 3$
Since in most prolicens it is sbsolutely csentind that ae do con-

[^3]bine some items and treat them as all of the sbme kind, for the samer reasons that the automobile manufacturer does treat some of his customers as though they all hed the same preferences, most pract cal problems in probability calculations consist of forming the proper combenations of thems Thas is the problem that makes probability calculation so fiscmating, and difficult, too The rest of this chapter is concerned with the mam outines of the avalable techniques for attacking the problem of calculating the probabilty of combmations or groups of items

5.3 Simple Events vs. Complex Events

The King of Hearts is a mmple event If we have a set of five cards, such as a sei contaming the King of Hearts, the Eight of Spades, the Three of Dramonds, the Jack of Spades, and the Nine of Hearts, we have a complex event In general, we can say that a simple event 18 one that contains only one of the mdividual tems in the bssic umverse A complex event is one that conteins more than one of the individual elements in the baste unverse The malsvidual atems in a complex event do not have to be different in the terms of the problem For example if we toss three coins at the same trme and get three heads, we have a complex event because we bave three heads The fact that they are all heads is irrelevant to thas defintion
Most events Fe deal with in practice are complex Thas is true even in games that we create Practucally all card games involve hands of more thas one card Most dice games consist of tossing more than one die In more practical affars we find that a smple event provides so littie information on which to base a decision that We automatically find ourselves dealing with complex events as a matter of chole The haseball maneger likes to see the rookie hat more that once before making a decosion about ham The teacher lukes to ask the student more than one question before determining the grade The automato serew machune operator wants to test more than one holt before he decides to stop the machine for adjustment
The best way to thinis about the probabiltaes of complex events is to first think ahout the unuverse of complex events that is penterated by the unverse of smple events This adea is best communicated by an allustration Let us use the rather simple case of com tossing A simple event is the toss of one cam The unverse of
equal probsbiltues contaras one head (II) and one tan (T) If ne coss two coins or one coin twiec, we have the complex event of the results of tho coin toses This universe of equal probabilitics contury lour event, $H I H, H T, T H$, and $T T$ The probability, therfore, of any one of these four complex events is $1 / 4$ Table 51 lats the unateres of equal probsbithes for one com, tho coms, threceons lour coms and five coms
Thic most notable fenture of complex esents quite etident from the table is that the more complex the event the more events on the unvese in fact the number of csents mereases much faster than the aumber of terms in the esent For example five tumes bs many coins recules in 16 tumes as mang events It is easy to sec rity a eard game ath many cards in a hand hes many more possibulties than a game with only a leu eards in a hand in this sense, the game of brdge is much more eomplex than the game of poker An obuous and importact contequence of thas phenomenon namely an Irereses in the number of posibilities as the complexity of the event uneracts, 2 that a compler clent us alurays tess bhely to occur than a rmple etent from the arme base unneree

Again we remind ourcelles that, becaue of the equal probabilty a asumption the probability of say ceent is $1 / 6$ with N being the number of esents in the unverse The only xay we can get probabilues frester than $1 / \mathrm{A}$ is to determine the probabinty of combinathons of erants For exsmple in the case of toesing four coins, we Gind the probsbility of HHIHT to be $1 / N$ or $1 / 16$ but the probsbatity of three heads and one tail woth ne concera for which coins are heads and which one tals is $4 / 16$ becaue there are four events with three leads and one tal!
Since the probabilits of a angle event is always $1 / N$, the determunstion of euch a probability depends only on the determination of N The first step in determe ig A is to find ats value for stmple cienta This insolves the dr -mination of the number of different distungurbable zaluas of the thang being measured For example in coin toang there are only tuo possible results (we toss the eoin again if it lands on end) The moght arhutranly asagn a valuc of 1 th a hend and a value of 0 to a tal In card drawing there arc 52 posable results if the suit is consudered amportant If the sut is not important, there are only 13 posible reuilts
When we leave game deuces and turn to phenomena of the ceal world the problem of determining the value of N for simple esents breomes conaderably more duffeulf in ane senee and constacrably nauce in another For example, suppore ree ask ourselves the ques-

TABLE 5 ！

Universes of Equally Probable Euents for Tosses of Varying Numbers of Coins

1 Com	2 Coins	3 Coms	40 Con 8	5 Coins
H	HH	HHH	HHHH	HHHHH
T	HT	HRT	HhHT	HНННT
	TH	HTH	HНTH	HHHTH
2 Events	TT	HTT	HTHH	HHTHH
		THH	THHH	FTHHY
	4 Events	THT	HHTT	THTHH
		TTH	HTHT	HHHTT
		TTMT	HTTM	HMTHT
			TTHH	HHTTH
		8 Events	THFT	HTHHT
			THTH	HTHTH
			HTTT	HTTHH
			THTT	THHE゙T
			TTHT	2HHTH
			TTTH	THTHH
			TTTT	TMHHH
				TTTH二゙
			16 Events	TTHTH
				TTHET
				THHTT
				THTHT
				THTY
				HHTTT
				HTHTT
				HTTHT
				HTTTH
				TTTTH
				TTTJT
				TWHTT
				THTTT
				HTTTT
				$T T T T T$
				32 Events

ton tom ting difereat herghes might a peron be9' We than of couve that the peron wight be any one of an unfinte number of fecks if we nere able to meseure the pereons eract height. In fact wi h exact meseurement we would find that there are no two prop'e in the world of the same hergit If this 1 starthing, kecp in w. 51 tha: a prowe might coneenwbli be 5735022741174832406 feet tall a beakh wbich ie a litle diferent from 57380927411748329407 'er' Th ss we could constder that I is equal to minatt and that the probahilt that a peron 15 any gren heght is $1 / \infty$, which is practualls 0 If we do not measure these eients exactly, but round the marmarment to a certana number of signicant digits we disrover that some af the eveats do have the same calues by our measwremerts If we teest theer later salues as our basse events, we ron diacole that the base events are not equally proboble because snnec of them occur more often thao others Thus we are forced to reconne that our mabints to measure exactly sutomaticalls thross *ome ample evente into the same class and forces us to treat them as though ther nere identical

In mo. practical problems we realls do not have ans oecasmon to deal with irdindual ample ceents le deal with combinations or Froupe of ruch eicats sith the sanous combinations or groups havlag diferent probabilites lle could oor move to a diseussion of how to determane these vanous group probabilites, but we do not move to such practucal problems aor hoxeser becauee expenence surfetes that tie overamplifeations of games of chance make it poceble to undertand ame baye pranciples of probabbity calcula tion better than if the rere divereed th the context of a prentresl probleat In faet mans of the fechorques eventually wed in practical problems orginated trom thonking I nulsted by the proba. bulty problems of games of chaoce In addition many neople find prame ol chance soterestagin an their oun nght.
After we have determared the oumber of equally probable ample teats xe have to deal with xe are so a portion to deme the num fer of equally probable complex etente that can be senerated by theoe simple events One uss to determine the total number is to lut all the possble complex events Thas can be very time concum ing It cas afoo be very frutrating as we th to avod leasing out sov cients or hetung any event more than once The aserage peroon does not find to eas to list the cvents that maght happen when we toss onk five coine let alone 10 coms, particularly if we do not anou bou mans centes there should be 10 the list. A umpler ras to
find out the total number of events is to use a logical procedure Let us work out a logieal procedure for determinng the number of complex events for a iew com and card problems

- One logical approach is to draw a tree of all the possbibities Figure 51 shows the tree for the possible results for the tossing of four coins Thas is rather casy to do correctly becsuse all we do is have any given branch gemerate wo branches, and each of these generates two branches, ete, untal we have the desmed number of stages Each event can be determmed by tracng all possble paths from the trumk to the apmost branch For example, working along the left branches, we have the events HHHH, HHHT, HHTH, HHTT A smple count reveals that there are $\mathbf{1 6}$ tips and hence 16 of the lour-coin events If we were unterested in five cons, we nould split each of the four-com branches into two branches And so forth Of course, draming trees soon gets tedious, and 15 , therefore, a rather impractical method Nevertheless, the technique of drawing trees is very veluable in belpmg us think through a problem, even if all we do is to draw certain parts of the tree to get some Idee of the dimensions of the problem

Refection about the problem just given reveals the obvious fact that we can cajcuiate the number of complex events for a grven stage by multiplying the number of possibilities at the preceding stage by 2 The possibilues for suecessive stages would be one coin- 2 , two coins- 2×2, or 4 , three coms -4×2, or 8 , four cons

Fig 5y Tree of possiblulhes for tossing of \& coing
$\rightarrow \times 2$, of 16 , etc Another was to concense of this calculation is to rase the number of baste posivilities (2) to the porer equal to the number of cons For exmple, the number of possibulaties for four cons would be 24 or $2 \times 2 \times 2 \times 2$, or 16 The number of poustiblites for aght com would be ${ }^{2}$, or 256
Sor let us boh at the problem of playing eands We nesin start with t'e deise of the tree but we are not gong to dram the whole tre becaute the tree starts out n ith 52 branches from the mam trunk 51 branches from each of these, etc We smulate the misang branches by putting a elgn on the end of a branch to indreate how many loancher are represented by that one (See Fig 52)
The moa notable diferenec between the con problem and the eard probletn, other than the fact that there are many more possibhutus to count with the cards, 13 that a gren cand ean occur only one in the complex eicnt whereas a guen value of the eoin, such as a head can occur as many tumes as itens in the complex event. Fach branch of the coin tre kept generating two new branches, and tha procers of gencration could go on mdefintely But each braneh of the card tree generates one feurer branehes than its parent Eventually the card tree reaches the limit to its grosth, namely after 52 generstoons The con tree has no hmit The eause of this diference betreen eoins and cards is the difference in the character of the unverses and/or the diference in the say the vamous parts of the coinplex event are chosen In an earher chapter we made a dounction betreen finte and infinte universes In that sense the con unverse is infinte because a sngle con ean be tossed repentedth The card unserse is fimte We cannot conlune indefinutely to dran cards out of a deck unless ne replace them as we go The resl sugnficance of the distinetion betucen finite and infinte uncrerses is nos cudent, if it nas not earler That is, the probsbatutes of the vanous pants of a complex event are independent of each other if the unnerse is infinte, but they are not independent of each other if the unsuree is finte For example, the probability of a head on the oss of a fifth como, or on the fifth toss of a single con, is just the same no matter mhat the result is on the toss of the thred coin But the probabinty of the Ace of Spades on the fifth cand defintely depends on what nas oo the first card, the second card, ete, provided of course we know what ras on the firet card, de What actually happens whes the drav samples from a finite unserse is that the remosal of the sample ehanges the universe and

Fta 32 Tree of posibheries for the daswage of 5 carda from an ordary deek (Note The nunber is the "foluge" refers to the number of 'bratches' that might have been chosen at that particular drawing in additoon to the one that Fis chasen The vertical braaches represent thase chosen)
all the probabilutes of the riems still in t, and at the same tume, of course, reduces to 0 the probability that a drawn tem will be drawn agan This is why a poker hand with two Aces of Spades 35 considered quite remarkable and suspicious
Because we realue what a tedous job we would have if we tried
wo dan the tree of all the poosibuties from draming fite cards from a dech it is fortunste that ac can ealeulate hou many there are rathet amply We ute the aqme line of reasoning ne did with the co ne We think of each stage which we maght call the parent, ss fereraturg arothe stage wheh ne maght call the cluldren of roure yeiterdys schlden become tomorrons parents The probfrem is to calculate the number of events in ans given generation We tak tie prohtem generation br generation The first generation of canta mehtr be any one of the 52 cands on the dech Each one of those previblities might gencrate ans one of 51 possibilities He drop from 52 to $\$ 1$ because in a sense a marent cannot reproduce It* awn likenese Thus the second generation contans 52×51 or acta pos ble eventa Then each pocablity in the eecond generntion san beget onls 50 poosibulateg for the thard generation Thus the thir 'geteration contums 2652×50 or 132600 It is apparent that the number 0° poubblitues increases at a farly rapid pace It is obth us why it is undikely that ne would ever aee a duplicate draw19 n of 13 eseds from a dech conadering that there are $52 \times 51 \times 50$ $\times 49 \times 45 \times 47 \times 46 \times 45 \times 44 \times 43 \times 42 \times 41 \times 40$ different possbultue for a grendraning
Inet tentally although to arrite and calculate $52 \times 51 \times \times 40$ is far lews tedious than to construct the shole tree or to list all the po thulues if is atill too tedious for moet mathematicians, who have the intirenting faut of being willing to go to great lengths to avoid worh it fire" some of the thags done seem strange and compla cated and not nortinhule but after the motual shy ness it is apparent that thes reaule in a subtantial economy of eflort) Vany probkme in probsbilits require multipheation of sequences lake 52×51, ite To coonomise in ratung the symbol' (exelamation point) has been cloren to mean multiply conrecutisels by the next lower number ard then the next loner number until 1 is reached' For ex ample 5' means to determine the product of 5432152 means to determine the product of $52, \quad 321521 / 391$ means to determine the product of $52,5 \times$ ec and then divede the result bs tle product of $39,35 \quad 3,2$ 2 Lote that this vould grie exactls the enme ansmer as $52 \times 51 \times \quad \times 40$ Instead of writing $52 \times$ $51 \times 50 \times 49 \times 48 \times 47 \times 46 \times 45 \times 44 \times 43 \times 42 \times 41 \times 40$, we y nte $521 / 391$
To ste the actual tedium of ealculating say, 391, he can use the table given in Appondix C The name apphed to 1 is factorial, and ne say 391 as 39 factonal

5.4 Systems for Calculating the Probabilities of Combinations of Items

As already madicated, most problems are more concerned with groups or combinations of events than with single events of equal probability Now we must not only determine the number of all the equally likely events (N), but we must also deternine the number of such events that fall into the given group We call this number C, and the probablity of an event being mos such a group we will call C/N

The Technique of listing and Counting

The most durect way to determuse the probability that one atems out of a given group of items will occur is to list all the cvents, count all of them that fall moto s given group, and dwode the number in the group (C) by the total number (N) For example, if we look at the last of evente for the tossing of Ave comss as showa in Table 51 , we are able to count five cases of four heads and one tail If we form all the groups which would result if we gaore which partirular con is heads or taile, we would get the probabjlities as shown in Table 52 We find that the 32 equally probable events can be combined into six groups As we would logically expect, the probabilty of an item beng in a given group is the sum of the probabill-

TABLE 52
Probabultites of Resulis of Tosses of 5 Coms-Order of Coms lgnored

Group	Number of Events m_{1} Group (C)	Probablility of Itern Berng in Group (C / N)
5H, 01	1	1/82 or 03125
4H, 17	5	5/32 * 15625
3H,2T	10	10/32"31250
2H, 3T	10	10/32 * 31250
1H, 4 T	5	5/32 " 15625
OH, 5 T	1	1/32 " 03125
	$\overline{7}$	100000
Totals	$\begin{aligned} & 32 \\ & (M) \end{aligned}$	32/32 100000

ues of eseh of the thems in the group Ia general, the probability of a group tetem ar equal to or greater than the probablity of a magle hitm.
We aleo note that we non leave the equally probable events behand and are dealing with diferent probabilities for the various froupe But, do not forget that these unequal probabilites are still based on the asermption of equal probabilities for the indsidual coris All ne have done is take 32 equally probable eveats and combine them into atx groups or combinations It so bappens that the probabilties are diTerent for some of the groups because they emcompased different numbers of items Although thas is what almost aluays happens in practice it does not have to be that way For example if we take the 52 eards in a deck and form the 13 groupa which result il we gnore the ent, ne find that each of the groupe is equally probable although each group probsbility ($1 / 13$) 19 greater than the item probabilties ($1 / 52$)

The Sinemial Theceem System of Counting

The suatem of lisung and counting has obvous limitations Fortunatcly, ne have other systems of countung and of calculatiag probabilues of combiatioas of terms The binomial theorem, probably famuliar in a least a limited way, is oae buch system
The ampleas expresion of the braomal theorem in illustrated by $(a+b)^{2}=a^{2}+2 a b+b^{2} \quad$ The binomal may be rased to any porer, of eourse For example $(a+b)^{3}=a^{5}+5 a^{3} b+10 a^{2} b^{2}+$ $10 a^{2} b^{3}+5 a b^{4}+b^{4}$ It is possible to demuc each term of the expanson from the preceding term Thas system is To get the coefielunt of a term multuply the coefficent of the preceding term by the exponent of a and dude this product by 1 more than the exponent of 6 Then decrease the expoaent of a bt 1 and inerease the expoaent of b by 1

To get the thard term in the a'ove expansion from the second term, be multiply the coeficient 5 by the exponent of a 4 giving a product of 20 We divide this by 2 xhech is 1 more than the coelfiement of b The result is 10 , the coefficent of the third term We then redure the eoeficient of a from 4 to 3 and rase the coefficient of b from 1 to 2

The gystem just guten for expanding the binomial is reasonably eflicient if ne need all the tarms in the expansion If ne wish only certain specfic terme boxever we profer a syatem that enables us to denve a term without needing a relerence to a preceding term or to any other term lie illustrate tbia system by using the binomal remaminn to ealrulate the probntantites of the various outcomes of
the tossing of five coins The basie binomal is $(5 H+5 T)^{5}$ The values of the various terma can be ouloulated as shown in Table 53

Let us first look at column 2 because this shows the relationship to the system tue have already used of derning a term from the preceding term The first term has a coefievent of 1 with the $5 H$ raised to the 5th power and the 57 to the 0th power (Any expresson rased to the Oth power $=1$) The aecoad term has a coeffietent of $5 / 1$, whach $2 s$ the exponent of $5 H$ in the first term divided by oue more than the exponent of $5 T$ in the first term The exponent of $5 H$ is then reduced from 5 to 4 and that of the $5 T$ is cassed from 0 to 1
We now derive the third term as shown in column 2 We get the coefficient of the third term by multiplying the coefficient of the second term, which 18 ($5 / 1$), by the exponent of 5 H in the second term, which is 4 , and then by dividing by one more than the coeshcient of $5 T$ in the gecond term, which is 2 We then lower the enponent of $5 H$ by 1 and rarse that of $5 T$ by 1

All other terms are sumalarly denved Note that we have enclosed the two parts of the coefficient in parentheses in each case so that it $1 s$ olear what part is the coefficent of the preceding term and what part is the new factor

Columns 3 and 4 are precisely the same as column 2 except for the shorthand introduced for the expression of the coefferents Column 3 uses the factorial notation referred to on page 132 We shouid

78985 53
The Use of the Binomal Expansion to Calculate the Probabillies of the Various Culcomes on the Tossing of 5 Coins

$\begin{aligned} & \text { Term } \\ & \text { No } \\ & \text { iJ } \end{aligned}$	Esave Tent (2)	Shuzthand 1 (3)	Sharthand 2 (d)	Value of Therm (3)

[^4]Le able to make the trsalition from the epefiements of column $2: 0$ thoe of column 3 by applyar our hnowledge about factonal nostion
Dow examite the cocficients of the sanous tems as shown in column 3 and note that the possers a vers sumple system The rumerator is alwary 5!. The comexponds to the number of cotns in our probiem If we were to toss 20 cons the numerator would be 801 The denomator alwass conests of the tho factomal numbers that correpond to the exponents attuched to the pareotheticel terms contaming the H and the T If ne uece to tos 20 coins, and we nere interafed in the probsbith: of getumg 7 heads and 13 tails, we would lare to eraluate the term $\frac{20^{1}}{7^{\prime} 13^{1}}(5 I I)^{7}\left(5 T^{13}\right)^{13}$
The notation ehown in column its smply a further economing on the shorthand of column 3 Sunce the tiro numbers in the denominator alwisys add to the number th the numerator, there so no pont in anarg both of theee numbers Thus $\binom{5}{5}$ is understood to
 $\binom{5}{2} 5$ rularls. $\binom{20}{7}$ wh the equalent of $\binom{20}{13}$ Terns tuch as $\binom{5}{2}$ are

Column 5 of Tabe 53 shors the results of the indicated anthmetic The cestmsil iractions give the probabuth of getting the particular combuatoa or hasis and lalk prowed the tasse probsbluty of cach 145
Bromial Toles althourh the use of the bnomul expansion is cetambly an mprovement orer the listing and counting system, it is obs ous that the calculations are stall qute tedious. For example it we tosed 30 couns and wishel the probsbinty of geteing 37 hesdg and 13 tals, we nould bave to cralunte the tem $\frac{501}{37131}(5 / I)^{37}(5 T)^{13}$, wheh is a formudable tash Fortunately, mbles are aradable on bre nominl probabilites' Sample pages from such tables are ahown in

[^5]Appendix D For example, the table tells us that there is a probability of about 0071 of geting 39 heads on the toss of 100 coins
The fables also give the ctomulatue probabilities, that is, the probablities of getting a result, say, no larger than the one specified For example, the probabinty of getung 39 or fermer heads on the toss of 100 coms is about 0176 This is the sum of the probabilities of getizng exactly no heads, exactiy one head, exactly two heads, etc
Since binomal probabilites have certan symmetrical properties, the tables provede only the monmum amount of information Ths economizes on the size of the book of tables, but it does require a litile adaptation on the part of the user An example of the sym metry 18 evident if we compare the distubution of $(4 X+6 Y)^{5}$ with that of $(6 X+4 Y)^{5}$ These are mirror toages of each other as shown in Table 54 and Fig 53 The bromoal tables show only the

TABLE 54
Comparing the $(4 X+6 r)^{2}$ Binomial with the $(6 X+4 Y\}^{3}$ Binomial

X	Y	$\begin{gathered} P(X) \\ 0 \quad \\ P(Y) \end{gathered}$	$\begin{gathered} P(X \geqq X), \\ \text { or } \\ P(Y \leqq Y) \end{gathered}$	$\begin{gathered} P(X \leqq X), \\ \text { or } \\ P(Y \geqq Y) \end{gathered}$
0	5	0102	10000	0102
1	4	0688	9898	0870
2	3	2304	9130	3174
3	2	3456	6826	6630
4	1	2592	3370	9222
5	0	0778	0778	10000

 ablity of X equal to orgreater than that spectied, ete

$(41-63)^{3}$ dranbution II our problern requires the $(6 X+4 Y)^{4}$ d.sinbstan we muttintechsage \and \}

Sumis ngmetry must be uced if we use the tables for the cumulstue probsbintee For exsmple, the datioasl Buresu of Standards Tab'es show that the probabilts of tro or more I 's is 6630 if the bse c probsbink 0^{\prime} and is 4 and if a ssumple of 5 is taken Suppose we muted the probsbility of ont or feuct $\mathrm{X}^{\prime} \mathrm{s}$. The NBS tables do not give this result difecth, but it is ser esey to dense bs subtractung the probsbilh's of two cr more I 's which 156630 , from 1 , thus grteng a probebilits of one or ferer X's of .3370 If the basic probabilit had been 6 matiesd o! 4, a litile more jugging nould be regulted Tio or more X's is the same as one or fereer Y 's Hence, If we have a basce λ probabulty of 6 and we kich the probablity of two or more Ys, we find the probsbility of one or fewer γ 's with a bas c probabilty of 6 and rubract thas from 1 But, the probsbilts of one or fewer \bar{P} "s mith a base probabilits of 6 is the same as the probabluty of fost or more 15 with a bance probability of 4 Thus we amive at the probsbilty of two of more X's with a batic probsbutry of 6 by subtractung from 1 the probsbilitw of four or more Is with a basse probsblity of 4 This aounds confusing to heep
straight, but $1 t$ becores easier after working with the tables a bit (The material in Table 54 may be of some belp in understandmg these steps of adaptation)

Model Frequency Distributions as Systems of Approximate Counfing

Tables of the binomal distribution bave been available only in recent years Beiore then a person bad to do lis own calculating or use approxmation methods We find, therefore that statistical theory and statustical practice bas been largely developed in terms of approxumate methods of calculating probabilities Such approximate methods would have likely been worked out even if binomal tables had been avalable over the last balf century or so because of certain limitations in the practicatity of hoomasl tables Since each combination of basic prohability (usually called p) and sample size (usually called N) results in a different distribution binomual tables rather quickly become unweldy in size if they are to cover a reasonable number of the p, N combinations that are likely to occur in practice For example, the NBS tables cover 387 oversize pages despite the fact that at least hali the combmathons are left to be worked out by the user from the materral gueo 10 the tables In addition, most pracheal prohlems are not percested cleariy eoough to justufy the calculation of prohahilities to sereral digtt of accuraoy Most of the time we need only a rather moderate accuracy of estumation
For thesc and other reasons, we find that approxmation methods have and will cootrnue to dominate the calculation of probabilities The roost renowned approximation curve is that called the normal It has also been called the Gaussan curve and the normal haw of error Its economical use of space can he mamedately appreciated by reference to Appendx I, a table of the normal curve that is suffciently accurate for most practical problems we are likely to encounter
The Normal Curve as an Approxination to the Binomial Figure 54 shows some piatures of the normal curve The differences in their apparent ehapes are caused by the use of daferent vertical and horzontal scales The most commonly used standard shape 15 shown as B Here it has the appearance of a bell, and the normal curve is often referred to as a bell-shaped curve It is mportant, however, to remember that the normal eurve bas no actural standard shape In ploting a distribution to see if it looks normal, cere should be taken in choice of scales so that we do not misead oursselves The best way to chect fie nomainity of a distribution is to

5. 24 Madek of the nomal cune
fit a normal cune to the detribution and evaluate the accuracy of the fit or to plot the dastrbution on probublity paper.
Table 5.5 and Fit 5.5 compare the binoma! and nomal curce probabilucy for the toneng of $2,5,10,15$, and 20 coins (We decuse the meth od of estumating the normal cune probabilitue chortly.)

TABLE 55
Benomal and Narmal Curve Frobablitites for Tossing of $2,5,10,15$, ond 20 Cants

2 Conss 10 Coms

Proportion of Heads	Binomal Expectar thon	Normal Gurve Expectation	$\begin{aligned} & \text { Proportion } \\ & \text { of } \\ & \text { Heads } \end{aligned}$	Binomal Expectstion	Nommal Curve Expectation
$\begin{array}{r} 0 \\ 5 \\ 10 \end{array}$	200	208	0	001	002
	509	564	1	010	010
	250	208	2	044	042
			3	117	114
	1000	980	4	205	207
			5	246	252
	5 Coms		8	205	207
			7	117	114
Proportion of Heads	Binomal Expectation	Nonms!	8	044	042
		Nonns! Cure	9 10	010	010
		Expectaion	10	001	002
$\begin{array}{r} 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \end{array}$	031	029		1000	1002
	156	145	20 Coins		
	312	323			
	312	323			
	$\begin{aligned} & 156 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 145 \\ & 029 \end{aligned}$	Proportion of Heady	$\begin{gathered} \text { Binomusal } \\ \text { Expecta } \\ \text { tion } \end{gathered}$	Norme! Curve Expectation
	998	989	0	000	000
	15 Cons		05	000	000
			10	000	000
Proportion of Heads	Binomal Expectsthon	Normst Curve Expectation	15	001	001
			20	005	005
			25	015	015
			30	037	036
0	000	003	35	074	073
	000	001	$4)$	120	120
06678		004	45	160	181
2000	014	014	55	160	161
2667	042	040	60	120	120
3333	092	090	65	074	073
4000	153	153	70	037	036
4667	196	198	75	015	015
5333	196	198	80	005	005
6000	153	153	85	001	001
6667	092	090	90	000	009
7333	042	040	95	000	000
. 8000	014	014	100	000	000
. 8667	003	004			
$\begin{array}{r} 8003 \\ 1000 \end{array}$	0000	001		1000	1000
	000	000			
	1000	1000			

 and 20 colss

It as quite evident that the nomal cune probabiltiea are quite close estimales for as fem as five coms The estumates are ao close for 20 conss that the two distributions appear as one in $\mathrm{F}_{18} 55$ The binomial and normal distnbutions get closer together as the number of coins or stie of sample sncreares In lact, it can be proved mathematrially that the binomisl docs approach the normal distrbution as N incressex, with the tho comerding exactly when N reaches minuts
A ten quack way to check the applicability of a normal approximation to a gisen distribution to to plot the distribution on normal
probabihty scales Paper with such scales is avalable commercially Figure 56 illustrates the use of such paper for checking the normality of the distributions of the cons Table 56 shows the cumulative binomal probabilites on whuh Fig 56 is based A normal distributron would appear as a strouht hae on a probability scale Note that the line is practically straight in the case of the 20 -com dustributron

Fig 56 Cumulative binomal dsitrbutions of coin tosses for tosses of 25 , 1010 , and 20 eores

TABLE 56

Cumulative Binamial Probebittion for Tosing of 2, 5, 10, 15, and 20 Coins

of no more than the speufied number of heads) (Rounding erons prevent some cumulative probabhitue (rom rearhang exnctly 1.)	
2 Cons	10 Corns

Proportion of teads	Cumulature Probabilitues	Proportion of lieads	Cumulative Probabilutues
0	250	0	. 001
5	750	1	. 011
10	1000	2	. 015
5 Coiss		3	. 172
		1	. 377
	-	5	.623
Proportion olliends	Gumulature Probabilites	6	. 828
		7	. 845
		8	,099
${ }_{2}$	0.11	. 9	. 909
	157	10	1000
1	197	15 Coins	
8	811		
10	907		
	093	Iroportion	Cumulstive
	20 Cons	of licads	Probabilitiea
		0	. 000
Prowtion of Ileside	Cumulative frobabilitues	0687	000
		. 1333	003
		2000	. 017
00.0	000	2667	059
	. 000	3333	. 151
10	00	. 4000	301
15	001	. 4667	. 600
20	. 000	5333 000	. 699
25	. 121	6000	843
30	038	. 6867	. 941
35	. 122	733	. 983
. 40	252	S000	. 997
45	. 412	8667	1.000
. 50	S58	.0333	1000
55	. 749	10000	1.000
60	283		
. 65	. 912		
. 70	.879		
. 75	. 83		
50	000		
85	1000		
. 00	1000		
. 05	1.000		
1.00	1 mm		

Before we get too excred, however, about the accuracy of the normal curve as an estmator of the bmomal let us look at some cases in whoh the basic probability, or p equals something other than 5 Dice throws offer en common example Given equal likelibood for each of the sax sades on a dre we bave a basie probability of $1 / 6$, or 1637 , of getting a 6 , say Table 57 and Fig 57 compare the binomal and normal corve probabitites for the throwng of 2

Fig 57 Cumulatne bromual destributons of dree throws for tomes of 25 1015 and 20 droe

Ta뇨 3.7
Binamial and Normat Curve Prebablitits for Throwing of 2, 5, 10 15, and 20 Dise

5,1015, and 20 dice Athough we agam note that the accuracy of the normal curve approxmation mproves onth mocreasing N, just as it dad whth the coms, we must adnat that the errors are still relstwely large even when N is 20 It nould be even worse if p were smailer than 1667 (or larger than 8333) The convergence of the binomial to the normal as N mereases is still true, even when p departs from 5 , but the sample suze bas to be larger for a reasonable approxmation the further the departure of p from 5
Once many people thought the normal distributson described the true state of nature Ih even acquired the stature of a law to some (the normal law of error) Mary students have been graded sccord10g to the normal curve, and are still being so graded There is pothing mherently wrong with such an applieatron as long as we are aware of what we are doing Today, we are fat less ncluned to new the normal ourve as anylhong more than a farly versatile approximation device, mith no presumptoon that the errors we encounter are due to the faslure of the data to couform to the law We are more inclined to vew the errors as sumply errors in the use of an approxmation device

Coleulating Normal Curve Probabilities The mathematical equation for a normal curve is the somewhat formidabie looking

$$
Y=\frac{N t}{\sigma \sqrt{2 \pi}} e^{-x^{1} / 2 \sigma^{2}}
$$

The meaning of each of the terms is
$Y=$ the beeght of the ordmate for some green value of x
$N=$ the total frequency ta the distribution This becomes 1 if we use relative frequencies, or probabilities
$t=$ the size of the class interval used for tallying frequencies It is much more convenuent if we use intervals of canstant length
$\sigma=($ sigma $)$ the standard deration of all the items in the distribution This measures the degree of variatoon among the x 's and is explamed below
$\pi=$ the familar constant whth a value of 314159 , wheh is the ratio of the crrcumference of a curcle to the dameter
$\epsilon=$ another constant uth a value of 271888 It is the bace of the Naperian or nahural systern of logarthms (Common logarthms use the base 10)
$x=$ a dstance along the X-axis measured from the arthmete mean as an organ rather than from 0 as an orem

If we fill in the salues for the tro contante y and c and assume *e are wothing with relature frequencer the equation simplifes to

$$
Y=\frac{1}{25060 a} 271823^{-x^{1} / 2 r^{2}}
$$

E bet the stection of it atbitrat, the only tho unknows in this Must:on are the anthmethe mean of the unserse of poesbilitues and tee stordarid detration around that mean The anthmetie mean is yen famlar havig, beea explamed probsbly as early as the filth crash it is common's thought of as 'the sverge' ' There are other sucrapes bowenct and we gencrally say mean when we ste felerabg to the anthmetar arerge of anthmetie mean it is calctlated br duding the fom of a gel of guantities by the number of ruch quantures in the set If we wee the Gred letter $¥$ (pronounced nems) whech is the equesalent of the Englsh $\$$ (the first letter of the word eumpl to e gaty "take the sum of," and if we use Y to appresent the valucs of the anous quanhties and N to reprosent the number of quantitere the calculation of the anthmethe mean can be symblused in ehorthand as followy

$$
\text { Anthmetse mean } \approx \frac{\Sigma X}{N}
$$

He can sitaplity cten more bs using A_{s} to represent the mean of λ in the unimse μ (pronounced mu) to the Greek letter thnt corteuponds to the Engluha m lif we were refermang to the mean in a sample of A waluen ne would nsmbluse it anth mas Insofar as possible we if to use Grek fetien to symbohie values calculated from a unverse and Englest letters to symbolize those calculated from a tomple Another common waj to syrabolize the arthmetice mean is as X (pronounced I bar) or as \bar{F}, or $\overline{4}$, as the cass, may be Although \bar{X} is untally cised to ombolite the andarine mean of a sample it is aloo Lued when we are talhing in general terms that is, when the distinction beturen sample and tenterse ts of no umportance The context should maken dear in any mucacese
The atandard denation is probsbly a new conecpt Its purpoece is to meamure the degree of iarahom is a eet of numbers Consider the twa sollowing groups of numbers it a quite obyous from direet obseration that the numbers in Group A lase less variation than thore in Group B The standand denation of the Group A numbers ts 14 that of Group B is 41 , almost three tumey as great

Group A	Group B
1	1
2	4
3	6
4	9
5	13

The method of calculahng the standard deviatich is very materesto ing Table 58 shows the ealculation of the stardard devation of the numbers in Group A The steps in the caleulation are

1 Calculate the anthmetic mean
2 Messure the devaton of each item from the arthmetir mean
3 Square esch of these devations
4 Determme the sum of these equared denatoons
5 Divide the sum of squared devatrons by the number of items
6 Take the equare moot of the result
The logre of the first two steps ss probably selfevident We must measure the devations from some ongin, and the mest seems to be as good as any

The reason for squating the devations is probably not so obvous The devations are squared in order to aolve the problem that the devations themselyea will always add to 0 when they are measured from the arithmetie mean, ond this will bappen regardless of how big the devations are The sum of the devatiops cannot be used, therefore to reffect the degree of vamsion on all the numbers unless

TABLE 58

Calculation of the Stardord Devialian:

	$X-m_{x}$	$\left(X-3 z_{2}\right)^{2}$	
π	$=(x)$	$=(x)^{2}$	
(1)	(2)	(3)	
-	-	-	
1	-2	4	$\sqrt{\left(\underline{\underline{\chi}}-m_{z}\right)^{2}}=\sqrt{\frac{2 x^{2}}{}}$
2	-1	1	$\sqrt{N} \sqrt{N}$
3	0	0	
4	1	1	$\sqrt{10}$
5	2	4	$\sqrt{5}$
-	\cdots	-	
15	0	10	$=1414$

Fe decide to mane the plus and minta agns If we ignore the signs, the rum of the devatuas wall reficet the vanstions in the nurobers, but when we do this we creste tome zenous algebraic problems He ister refer to the oleroge denction, thach is what it is called Whea we grore noss
If we are gong to use sousd mathemstical methods to measure Lhe vanation, the casest way is to squatre the deviations, thes solvang the yroblem of agne Thas makes the mesults sil posituve We Wea lake teps 4 and 5 , which togethes eopsist of taking the arith. retec mean of the squares of the deriations $\$$ tep 6 is forsed by rep 3 Actuslly step 3 leads to rather peculiar unita of measure. For example, if out onginal numbers were in surts of pounds, the unis of the Rquared devations are equare pounds At the ead of trap 's we would sull be in unsts of equare pounds So logically we take the equare rool of out texult This returns out computation to untu of pounds

The process of going from pounds to square pounds and back again to pounds is what we rere talkigg about in the preceding chaptet when we pornted out that it is sometumes convenient to thit from one unt of racasure to another It also emphasizes the extreme importance of being slways conactous of the units of the numbers with whath redes!

Simplitying the Colculation of the Slandard Deviation. Although the calculation toutube of the standard devation is not very difficult, particularly if we have a cslculator and perhaps also a slide rule and a tet of tables of kquares snd equare roots, there are occasions *hen we can sugaticantly save time and cfiort by using a simple short-cut device Before looking at this device, we ahould be sware that ahort-eut calculations are exsethy like ahort-cut routes from one part of town to another There are alasys more stepa in the shortcut than there afe in the "long way around" Short-cula are seemungly complested untul ne become Jamilar with them Knowing this, we should not let ourselves be overkhelmed st the introduction of a thor-cul
Table 59 repeats the caiculatuon of the alandard devation for the earme data gren in Table 58 . Note that the answer 13 exactly the eame at in Table 58. The short-cut method aaves one column of calculation and adds ate extra step in the formula. Let us total up to tee what the nat astong is, if soything The eoluman saved contained fire aubtractions. We added a division ldivision of EX

TABLE 59
Shortrut Calculabon of the Shandard Daviatian

X X^{2} (1) (2) \cdots - 1 1		
2	4	$\sqrt{\frac{2 X^{2}}{N}-\left(\frac{5 X}{N}\right)^{2}}=\sqrt{\frac{55}{5}-\left(\frac{15}{5}\right)^{2}}$
3	8	
4	16	-1414
5	25	
-15	-	

by N), a squaring (ihe equaring of $\Sigma X / N$) and a subtraction $\left(\Sigma X^{2} / N-[\Sigma X / N]^{2}\right)$ Thus we traded five subtrachons for one division, one squaring, and one subtraction Thes certanily does not seem like much whach ut 18 not in this particular case But let us suppose we had 75 items to handle mastead of five We would now save 75 subtractions and still add ooly oze drvision one squarng, and one subtraction a rather substabtal net profit We may even do better however Usually the anthmetio mean has decimal frac trons Our deviations then have deamal fractions and they are more tedouna to square than the ongmal items
A smple way to rememher the shor-cut formula is the square root of the ruean of the squares minus the square of the mean Note that the rught-hsnd term in the formula, $\Sigma X / N$ is the antbmetre mean Those interested and mathematically molined should be able to derve this short-cut formula from the basie formula given in Table 58

Using the Normol Curve fo Estumaje Probabilites We are now ready for the problem of calculating the probabolities of combine tions of events by using the normal curve as an approximation de vice We illustrate the procedure by estroating the probabilities for the results of tossing 10 coms Table 510 shows all the necessary calculations Column 2 shows the haste data which we have arbs tranly chosen to messure as the proportion of heads showing on a grven toss of 10 colss We could just as well have used the propor then of tails Columus 3 and 4 show the relative frequences as they would be determoned etther by hising all the possibititee of by ex-

TAELE $\$ 10$

 Nemal Gury

CH_{4} tiston	Propore won of Ilicads p (7)	Relatue Frequenty		fp (5)	
			f		fp ${ }^{7}$
(1)		(3)	(4)		(6)
ofl 107	0	1/104 or	000377	000000	000000
$1 / \mathrm{OT}$	1	10/102:	009766	000977	000023
glf $8 T$	2	45/1021	0 03945	005789	001738
$3 / \mathrm{TT}$	3	120/1024	117157	035150	010511
$4{ }^{4} \mathrm{CT}$	1	2101024	205078	052031	039512
\$ ${ }^{\text {d }}$ ST	5	259/1024 ${ }^{\text {" }}$	216004	123017	061534
6ll 47	6	210/102: '	205088	123017	073 Sm
71137	7	10/1024	11715t	05\%031	057482
812, ${ }^{6}$	8	43/102	013945	035150	023125
9H1 17	8	10/1024	00856	005780	007810
10/I, 07	10	1/1024	00097	000977	000077
Toula		105/1024 *	1000000	300000	275001

panding the binomal Column 5 has the ealculations necessary for determinang the arthmetic mean Each term is the sum of all the events in a given class and is calculated by multaplying the value of the events in a class by the number of events For example, there are 043945 of the tosses that will result in 2 heads, or, about 439 tosses out of 10,000 wall show two heads and eight talls since all the events in a class are the same, we sum them by multiplying their common value by the number of them We then add all the class sums to determune the totai sum, which is 50000 We then divide by the total number of temen, which is 1 (see the totel of column 4 , geting an arithmetic mean of 5 We thus discover the very mportant result that the anthmetic mean of the distribution of cornplex events will be exactly the same as the arithmetic mean of the smaple events whech generated the coraplex events In other words we expect the average proportion of beads to be 5 in the long run regariless of how many cons we toss
Column 6 shows the class sums of the squares of the p values For example, the thind resalt of 001758 is the equare of 2 multiphed by 043945 (Actually the calculation was performed by multiplying 008789 by 2 , or $f p$ by p This is casier snee ne already have the (p in column 5) The total of thicse class sums of squares gives us 275001, whech is now used to calculate the standerd deviation The formula $3 s$

$$
\sqrt{\frac{\Sigma f p^{2}}{N}-\left(\frac{\Sigma f p}{N}\right)^{2}}
$$

The is the equrvalent formula to the one we used earler of

$$
\sqrt{\frac{\Sigma x^{2}}{N}-\left(\frac{2 X}{N}\right)^{2}}
$$

We have replaced X with p because we are now working with pro portions (based on a scale that runs only from 0 to 1) instend of vamables (based on a sesic that presumably runs indefintely) We introduced / beeause our daia have already been grouped into classes and / tells us the number of events in the giveri class We could have used f in the first formula, but snce it would have been 1 m each case becuuse the events were kept separate from each other, Be left th out entrely The standard denation was calcuated to in 1581, as shown at the botion of the bable it is intercsting to
rote that thas result of 1551 could also have been obtaned by colculating

$$
\sqrt{\frac{\mu_{p}\left(1-\mu_{s}\right)}{n}}
$$

*hech muals

$$
\sqrt{\frac{5 \times 5}{10}}
$$

This 14 , of course a much more efiesent way to calculate the standard devistion for problems of this sort We discover in a later eliapter that this st the way ne normally do it
Som that re have the anthmetic moan and the standard devation, we are reads to ealeulate probabluthes from the normal curse Column i through 10 show the neeessary ealculations Column 7 calculates the dewations from the mean These ate the x 's in the muation for the normal eune Fortunately, from nop on we can tahe adrantage of a table to eonsiderably smplify our work The table proudes us with the values of

$$
\frac{y^{\prime}}{e^{2 r}}
$$

for barouy values of x o Column 8 shons the calculation of $x / 0$ for esch value of x given so column 7 Column 9 shows the values from the table (insde front cover of book) for cach balue of x / a
Our next step is to calculate $1 / 2506$ big wheh is the value of γ when x equals 0 It is also the value of Y corresponding to the anthmetic mean of λ, of of p in tims caae Ence this value of Y is greater than for any ollher value of z it is usually called the mans. mum ordinate Performang the indjeated calculation yuelds a result of 2523 , as ohorm in the bothom of Table 510 When we multiph cach value in column 9 by 2523, we get the capected value of Y for each value of p as thon in columa 10 These are the normal curse entumates that we are ecching
Column II is a duplitate of column 4 sith the figures rounded to four decumal places
By companng the normal curve figures of column 10 rith the binonund figures of column 11 we can fuckly asects the closeners of the approximation The cloeness as esen more remarkathe if wo round both eets of figureg to tro decumal places We then find
exact agreement in all but two of the 11 classes, and these differ by only 01

The Poisson Distribution as an Approximation to Probobilfties We have already noted how the normal curve is a poorer approximatron to the probabihties of dice tbrows than of con tosses The dificulty 18 caused by the skewness, or asymmetry, that develops when the basic probabohty departs from s Mathematical statisthouans have developed other approximate distributions than the normal to handle such problems One of the most useful of these, and the only one we discuss, is the Pousson distribution, after $S \mathrm{D}$ Poisson, who first published it in Pars m 1837

Let us mtroduce the Poisson distribution by applying it to the simple problen of estomsing ibe probabihty of getting five 4 s on the toss of 12 dice We assume a basic probabolity of a 4 of $1 / 6$ Hbich we call p We then caleulate the arthmete mect number of I's we would expect on the tossing of 12 dice We call the number of dice N Thus we have $N_{p}=12 \times 1 / 6=2 \quad \mathrm{~N} p$ ss usually abbrevated to m, a prectice we follow At this ponst of our analysis, We can see that the getting of five d's on the tooss of 12 dice is an above average occurrence, consdering we would expect all such outcomes to brve a mean of 2

A Poisson estimate of the probability of five $4^{1} \mathrm{~s} 18$ made by solving

$$
e^{-2} \frac{2^{s}}{5^{1}} \text { or } \quad \frac{2^{5}}{e^{2} 5^{\prime}}
$$

The binomal probablity of getirg five 4's on the toss of 12 dice pould be $\binom{12}{5}\binom{1}{-p}^{5}\binom{5}{-q}^{7}$ or $0284 p^{5} q^{7}$ (We use p to Identify the probability of the event we are interested in-the occurrence of a 4 in this case-and we use q to refer to "not p " or to all other events that might occur) Thus we see that the Possson probability of 03600 $1 s$ too high by 0077 , or by 27% Thes is not a small error, and it is probably too large for most practical problems it is, however, not signficantly worse than a normal curve estmate, which is 021

Table 511 and Fig 58 compare the Poisson, binomial, and normal gurve probabilities for all possible number of 4 's The most striking feature of the comparson is that the Poisson and normal approxmatrons tend to be on opposite sides of the bmomal (We remmd our* selves that the binomial is taken as the trutb) The most important

TARLE $\$ 11$

Enomial Polston and Narmal Probabil the for the Occurrenee of it on the Throwing of 12 Dite

10 ol is Oecut 5 ng	Bincriad Probs lutht	Porsina Pruls blats	Barmal Srobs bulty	Ertor in Jouson	Error in Normal
0	112	135	093	003	019
1	89	T1	231	002	038
2	$\pm \times$	21	300	025	013
3	107	150	231	017	034
1	0×3	000	013	001	COH_{1}
5	029	030	021	005	007
6	00%	012	003	005	001
7	006	003	000	002	001
8	000	00t	000	001	000
8	000	000	000	000	000
10	0×0	000	000	000	000
11	000	000	000	000	000
$t 2$	000	000	000	000	000
Totals	999	909	951	054	120

feature for us howeter is that the Pousson approxumations are closer in genetal than are the nomnal Note that the total error is only O) 1 lof the Posscon compred with 120 for the normal

Aetusily, of roure, we xould probsbly use nether the Poisson nor the nomal as at opproximation in a problem as cass as this to hantle with the binoma! Ne have already dincosered that ue find the normal curve a praruesl deviee nhers the sample geta too large to le liandled consenently with the binomal, a point that is reached rather quackly if we do not have a table of binomial probabilties hand The tatme reseoning apphes to the Poisson In foct, we are mort likel to use the 'Oos on when the sample is extremely large, in Fome cases practically infinte in size Such a statement should be expimael, but first we mutre retum to our formula lor the Poisson and examine some of its general properties
We catimated the Pou*on probability of fise 4 'a on the throw of 12 dice ls the expretaion

$$
e^{-2} \frac{2^{2}}{5}
$$

Fis 5 a Binomal, Pousson and nomal probabrittes for the occurrence of 4 's on the togs of 12 dice

We can put this in general form by replacing the numbers with symbols, giving us

$$
e^{-m} \frac{m^{e}}{d!}
$$

The constant 271828 is e, m is $N p$, or the size of sanple multuphed by the basce probability, and c is the number of times the event in questron is taken to oecur The most remarkable property of thas formula is not evidenced by what is in it but rather by what 18 not in $3 t$, at least not in it exphetly Thas property is the independence of the formula from N, the szze of the sample Our formula for the normal curve had the same property, but then we were dealing with a distribution that always has the same form except for seales of measure variations The Polsson distribution takes many different forms very smular to the way the binomal takes many forms In lact, one form of the Posssan is the normal form, the hmot it approaches as m increases An m of 20 , for example, yields a Porsson distribution that is so close to normal that only a very unisual practical problem would not be satisfied by a noimal approsimation to the Polsson

Hence the best way to comprehend the meaming and usefulness of We Pouson detrobution ig to concentrate on the role and meaning of the m or the λp Ttble 512 hata acseral problem stuations whech nould reeult in exactly the asme Poisson disinbution but in quite different biaomal datrbutions This folloria from the fact that m or Λp remans contant at 5 for all the conibinations of N ard p listed Thus it is obtious that the constant Po sson cannot porybl be an equally good estmate of all these quite different bromaly The best entimate nould oceur for a binomeal that had an infintel large A pared with a sery mall p no that $\mathrm{N}_{\mathrm{p}} \mathrm{p}$ nould utill equal 5 The beat nay to thank of the is to magine that we continue to cetend Table 512 with latger and larger N^{\prime} s parged with zmaller and amaller p s but never daturb the product of 5 in the process
This charactenatic of the Posson makes it most applicable when we have a very large N pared oith a very emall base probability and a what has earned it the label at times as the law of rare events In a pracueal senee we find thost applicable when ne deal with an ecent that is len unlikely to happen at a giten exposure, but Whah severtheleas does hapren because of the tremendous rumber of exporures Invurance companies and sarcty councils find a great une for the Powson because they frequently deal with the probability of the occurence of aceidents For example chances of getting killed by lightning are ven emall so mall that we ean afford to tenore the poubbility unles of cource we take ateps to subglantially in. crease the probability say by holding atcel rods in our hands in the

TABEE 512

Rolotionahip Eotwesn the Binamist and Polsaen Diarilbutions for an No Constant of $\$$

N	p	$\begin{aligned} & \lambda_{p}, \\ & \text { or } m \end{aligned}$	Bungrasal	Poisom
10	20)	5	$\left(50 p+5 x^{2}\right)^{10}$	$4^{-1} \frac{6}{4}$
25	20	5	$(20 p+50 q)^{18}$	
100	05	5	$(.05 p+05)^{100}$	"
500	01	5	$\left(01 p+0 b^{\prime}\right)^{106}$	1
5000	001	5	$(001 p+990 y)^{180}$	"
5000000	000001	5	$(000001 \mathrm{p}+909999)^{3} \times$	"

modde of an open feld durng a thumder storm However, people get kulied by lightnirg almost every day around the earth, some days more than others We attribute such deaths, despite the jow probablinty, to the very hagh exposure rate, which is the equivalent of our N If we were to taily the number of days on which no persons were killed by lightning, the number of days on which one person was killed, etc, we would very likely dascover that the distribution of the tallies would conform quite closely to a Porsson distribution

Proctical Methods of Caleulating Poisson Probabulitres Although

 the drect applicatoon of the Poisson formula is somewhat easter than the direct application of the binomial, partheularly for cases of large N_{i} it stull is tedious enough to jushify the use of calculation asds The moss prominent of the tables of Poisson probabilities are those prepared hy Molns ${ }^{1}$ Appendix F contans selections from the tables published by Hartley We have reproduced these tables rather than Molina's because of ther inclusion of the x^{2} (chl, pronounced "ka") distribution, a distribution we have occasion to refer to in a later chapterWe illustrate the use of Appendx F by showing how to get the Porsson probabilites for our earier example of the number of 4 's we might get if we tossed 12 dice Let us first find the probability of gettong five 4's Thus we have an th of 2 and ac of 5 We first searoh the top rows of Appendx F unthl we find the column headed by an m of 20 The entries in this columa tell us the probability of geting a c less than that speeffed in the eatrome roght coumn (Pay no attention to the extreme left column headed by v Thas is used when we use the tabie for x^{2} estrustes) For example, the 94735 that is opposite the c of 5 is the probability of geting 4 or fewer occurrences of the specsifed event Stuce we are interested in the probability of exactly δ, we ean achieve our objective by subtracting the prohability of 4 or fewer from the probahility of b or fever (Atternatively, we can think of 4 or fewer as the saree as fewer than 5 , etc) The latter probablity is opposte the c of 6 and 18 shown as 98344 Thus the probability of exactly five $4^{\prime} s$ is $98344-94735$, or 03609 , the same result we derved hy formula
Perhaps at seems currous that the table lists the cumulatuve probsbuldtes or the probabititues of all the c's helow a spectied value, rather then the probabilties for specific c values The reason is the factor of convenence Most practical problens require us to esth-

[^6]Fste the probablitues tor groups of c salues, sucb as the probsbility of a clezs than a certan ashe, or more than a certan value, or betwen two rerann caluts Rarely do tee find at necessaty to erthmate the probsbilits of a preetfe c value, except for allustrative purpooes in a tialurues textbook Even then it is relatwely smple to take the dimerence betxeen two of the tabled values We Mlustrate tome of the typreal practical problems below Alvo try some on your oxn later by dong some of the problems at the end of the chapter
Mla* Thorodike has convrueted a chart, or nomagraph, to repreent the Porsen tables 1 reproduction is shown in Appendix E. The hase been found to be tery useful and convenient for many ampling problems in esatistical quality control work Naturalls, If does rot permit the accuracy of the tablec, but it is accurate enough for mot ntuations Note that thas chart ures the $p n$ nastead of them or ip ac have been unge $\mathrm{Ne}_{\mathrm{c}} \mathrm{c}$ can flustrate the use of the chas: br redong our five 48 on the toss of 12 dice problem The horiontal axes shons the alue of pn or $N p$, or m which is 2 in our ance He thart at thas point and trace the sertical line upward unill ne touch the diagonal eured line corresponding lo a c of 5 the then read honiontally from this pomst to find the indicated probubility on the verucal axis (A ruker of eome hind as useful to guide the cye) We ettmate a probsbility of about 982 This is the estumated probabiliti of getugg file or feare f's on the tors of 12 dice (Note that the tables refered to eaticer asociated the probability mith feuer than fie rather than fie or fever Thus illustrates a common problem in statusturl work namels, a lach of standardization in the use of terme symbols ete) If ne nor go back to the vertieal line ahose the no of 2 and read across from where it strihes the $c=4$ disgonal ae find an exumate of about 940 wheth is the probabilits of four or feuer 4* The difference between 982 and 046 , or 030 Is the cotmated probability of exactly fire 4's on the toess of 12 dice Thes is of course, bers elose to the 03603 ne derned from the table (We have to admut that our abihy to read a chart accuratciy is consdersbly umprosed by proor knouledge of the correct ansher!)

Some Practical Problems Involving the Polsion Distribution

 Iremple A A bolt manufacturer has a boltmahing machane aluch ahen producting large lots, turns out an sverage of of defective bolt But the machine and the matenals are subject to wamations which can lead to ao undesirably hagh proportion of defectues When such a stuation is surpected atrongh enough, the maclune is atopped and any adicated adjuatments are made in the procesa
ELEMENTS OF PROBABILITY CAICLLATIONS

There are several 1 ssues we would have to diseuss before we could handle such a problem whth reasonable intelligence, a discussion we get into in later chapters One factor that we are sure is involved however, 18 the probability that a given rumber of defectives might occur in a sample even though the process is produeng only of de fectives on the average Suppose, for example, that the quality in spector takes a sample of 50 bolts at random and finds that there are four defectives in the sample What is the probability of getting at least four defectives in a sample of 50 if the bass probability is 04? We quickly calculate cur $N p$ of 50×04 and get 2 In our table in Appendus F we ind that there is a Poisson probability of 85712 of geting fewer than four defectives We subtract 85712 from 1 and find an estimated probabsity of 1429 of geting at least four defectives in a sample of 50 even though the process is everaging 04 (Whether or not we should recormend stopping the machone "becouse the process is producing too many defectives' is a very interesting question we pursue later)
(It is interesting to note that the bmomual probabiity of this event is 1391 and the normal curve probability is 0748, the latter en obviously poor estimate)
Erample B An automoble manufacturer periodically inspects the pant surfiace of a finshed car for evidences of surface blemshes If the number appears excessive, steps are taken in the surface preparation processes, or the paint mixing or the paint applicetion and other operations to correct the apparent lack of minnum quality What makes ths a very interestung problem is that we have no way of determining the suze of the sample Most of the blemishes are very emall, less than $1 / 8$ meh in dameter The pand surface contains thousands of square inches Thus there are almost countless opportunitues for a blemish to occur, partucularly it we consider that a given $1 / 8$ inch of sarface can overlap with many other potentual $1 / 8$ moches of surface It is also evident that the probabulty that any $1 / 8$ of surface will have a blemsh must be very small If it were not, the whole surface would have quite a few blemishes, and the manufacturer's reputation would be in jeopardy
Let us suppose that the manufacturer has set a standard of an average of five minor blemushes per sutomobile (Large or conspreuous blemishes are caught in the mote cursary 100% unspection that 18 made of every car) What is the probability that a car mught have at least nue blemsbes even though the proeess is stinl averagng only five per car? We enter the Pousson tables at $m=5$ and find the entry opposite $c=9$, or 93191 TVe subtract, this from

1 and fet an estumate of 003 of geting a car with at least nime bronthet even though the average will be only five
We are no able to contrast thes estimate wath the binomal or nomsl eune cermates because to make the latter ac must know the separate values of A and p, and thus it is necessary to use a jonaon ectumate whether we muth to or not Fortunately, the 15 a very good example of the most appropante conditions for the use of the Powson-a ver lare A with a uen emall p
Frotyple C A manufacturer of santary naphons has 10 independent sutomatue machses to mahe the product The loss of production when a machine breaks doun is so serious that the company mantains an elce enth machine as a standly When a gren machine breaks down the operator calls the mantenance department and then resumes production on the spare machine The orginal maclane then becomes the apare when it has been repared Occasionally howeves a sceond machine will break down while a first ma clume is still being repared In faet there are sometumes three of more machanes all down at the same tume When such bottleneeks deeclop the operators are 'off production" a considerable eost to the compsny eten though the operators ean be diverted to less pro dectue duties in another department

The compani a prohiem as to find the best possoble combination of number of epsere machmes to hase amalable (at eould aln aye add a thelfth machine for easmple) and number of mantenance men to have in order to apeed up repairs when a breakdosn oceurs This is olviously a ver complicated problem, and uell beyond our modest goik If is ealled the queung probiem and 15 quite common in busi* ness, ae we esn attert from expericnees in wating for service in a bank, a restaurant or on a telephone call to a buginess concern with Imated amtchloward capacity One feature of the problem that ne can work on hosever, is the deccrmmation of the probability that a guven number of breakelowns mght occur in a gaven tume interval We use some amplifying assumptions to facilitate our caleulations, asturnptions that we do not expleatly specily but slach become obvous in seriourly soluing the prollem

Let us assume that expersenee of the company has been that it takes 2 hours on the aterage to separir a machane Thus, if breakdokns are spaced so that there neever is more than one breakdonn in a glean 2 -hour interval, the company is never without a maclune for an operator The company'a cxpenence has been that machine breakdoms have averaged one crerg 5 hours, or 4 per 2 -hour period

What is the probability of havigg two or more machnes down during a gyen 2 -hour penod? We have an $N p$ of 4 and a c of 2 Appenda F tells that there is a probability of 93845 oi fever than two breakdowns, or 062 of at least two Simalar calluiations oould be made for other numbers of breakdon ns
Note that this is also a problem in wheb we have no reay of determamag N aad p separately Any given 2 -hour pertod contains countiess opportunites for a machne to break down it might break down dunng the first minute, or the 274 th second, or the 4826 th milhsecoad, ete In other mords, a 2 -hour repart period might start at ony noment during a given 2 -hour clock period The probabihty of a breakiown at any moment is very small, of course

5.5 Discrete vs. Continuous Variables

Our calculation of probabilties haa so far been restricted to vamables that assume only specefic sizes, such as five 4's on the tose of 12 dice, or three blemshes in a paint surface or six defective bolits We restricted ousselves in order to smptily the mitroduction to the problem of estimating probabilites
We nor take note that, theoretically, strictly specific numencal values exist in only a very small proporion of our practical problems, and even then they exist as stretly specfic values only by definition, so to speak Practucally all the measurements we make are subject to error Hence our numbers are rounded to some degree of accuracy Such a number is not really a spection value but rather is the center of some renge of values For example, a person meas ured as 61 fect tall mgght be anyuhere from 605 feet to 615 feet tall If we had a distribution of men'a herghts and were calculating the probabilty that a man would be 61 feet tall, we would calculate the probability that he was between 605 and 615 feet tall An exaet heaght sould have to be carred out to an infinte number of decmal places There would be an unfinte number of such exaot heights avalable The probabtity of any one of them would be $1 / \infty$, or 0
When we deal with a phenomenon that vares by mfinitesmal amounts over tws full range, such as is true for human heights, or weights, we call such a phenomenon a contruwors variable is we have just seen the probabillty of some specific value of a contrnuous vamable would be 0 To get a probablity of more than 0 we must combne several suat specific values into a range or class of values

A cetian amount of such grouping automatueslif tahes place when we uee rounded numbere, as me murt becaure of our limited abinturs of perception

We call a phenomenon a ducete sarsable if lis nature is such that only cettan values of it exist withan the sange of its eoverage Other values juet do not exiet at all For example the $71 / 2$ of heapte just does not exist in a deck A famly just eannot have $41 / 2$ chaldren We are tempted to eas that a pant surface just cannot have $41 / 2$ blemshes, of that a sample of 50 bols just cannot have $\$ 1 / 2$ defeetue bolte But second thought reseals that in a sense they con, eien though our method of measurement does nol recogniec them A blemith becomes a blemath only when the observer is able of alling to sec it A defect in the paint surface has to be of a certain intenaty to be recoded It is also obvious that some defects or blemunhes are nore than others Thus a defeet is not a speetie and unchanging thing like the 7 of hearts It is actually a range of things One set of seven defects nould not be the same as gome other sets We treat them as the same for consenience of reeording, 1t would be incorrect to consider them as really the same
The bromal and Porson distabutions are discecte in the aense

Fs $\$ 9$ One method of charting a dacrele dastribution

ELEMENTS OF PPOBABHITY CALCUATIONS

ihat they proude the probabintes for only spectic saluec o wanable The in between trluee do not cure and hase no pu bilty If we nichod to be ven technceal we would dian a char the binomal or Pouccon as shown in Fre 394 rathor then as a ${ }^{\text {an }}$ in Fig o9B The thm homontal hes repre ont the probablhties the specific raluee indented on the vertecal nus The blonh ap: in between the hes do not reprecent anthing Compare FIg with Fig 510 and note what happens as the porer of the boo ancresees The lines get elocer tagether breause there are no greater number of specfic alatues on the horizontal axis It we r the poner of the bnomal high enough the line would toucl a

other and would make a colid black ares as shown in Fig 5.11. In efect, the bisomisl distribution has becotoc contonumus. (The same thumg happers to the Yoison as N, and heace m, ineresses, given a specifie p.) It is at thes point that the binomisl becomes the nomol duxtribution, whech is a conturuous distribution.

It should be obvous, non, that the seeuracy of the nomal curve (a continuous dusmbution) as an approximation to the binomisl (a diverete distribution) depends on how daserete the binomial is I(the gaps between the event values are very large, the binomial is very discrete and the normal is a poor approximation; if the gaps are sery emall, the binomal is almost continuous and the normal is a good approximation

We also note that we find it eonvenient sit times to treat a discrete datnbuthon as though it nere continuous Similarly, fe sometimes

Fig. 3 th Illuatration of how the dacrete bieomal disfribution approaches a cortinuots distributuog the the of eanple increases

Fig. 511 Illustration of how the discrete bmomal dustribution becomes continuous when the saraple becomes unfnitely lerge
consider it convenient to do the reverse. Cultivate the habit of being conscious of whether the variable sis discrete or continuous, and then note whether it is treated consistently with what it is or whether some approximation device is being used.

Normal Curve Estimates of Coin-Toss Probabilities Assuming a

Continuous Distribution

Let us look at the problem of estimating the probablities of the various results that might happen wher we toss 10 coins. Instead of treating the results of the tosses as a discrete varnable as in ous normal curve estrmates ahown in Table 5.10, we now treat them as though they were continuows. Table 5.13 ghows the necessary calculations.
Column 1 shows the results of the tosses in ranges, or intervals, of values instead of in the specific values as shown eariier. For example, instead of saying that the proportion of heads was s. 40 , we say it was hetpeen 35 and up to but not including . 45 (The reason we specify the limits to the intervals as having the lower limit in-

TABIE 313

Normal Curve Approzimations to the Probabilities for the Rasults of Foning to Coint-Une el Cumulotive Poboblifici for a Continuout Vorloble

- Lower Lami Inclusive $\mathrm{mp}=50, \mathrm{e},=158 \mathrm{I}$
f Sec table of normal curre west on uside rear cover
clusne, which is the same as eaying upper hmit exclusive, or of saying, 35 up to but not ancluding 45, to to remove the ambiguty of where to put a salue of 45 Of course, that s not really a problem here because there are no such values, but in a really continuous sertes it would be a problem) In effect, be are treating each actual afue, such as 40 , as though it were the unddle of a range of values Aloo, ne make the wanous ranges just large enough to bately touch each other Thus, when we finsh, our semes runs contunuously from one end to the other It is probably surprising that our first internal runs from - 05 to 05 since a minus proportion of heads is a literal mposability, however, it is neteanary to engage in thes fietion in order to complete the sertes, so to epeak If we did not do thas, the 0 value sould be resimeted to onh hal! the interval of all the other salues, and this mould lead to incorrect estumates of the probabihties

What we nox try to do as cetmate the probablities for esch of theae intersals We do not do this directls because the tables of
the normal curve are not set up this way Actually we are gong to do the same kind of thing we did when we used the Poisson Tables to estumate the probabinty of exactly five 4's We are going to determine two probablithes whicb straddle the interval, and then we are going to take the difference between them The process is illustrated in Fig 512 We would life to estmate the probability for the interval from I to 2 Ths involves determing the area of the shaded section of the distribution (Recall tbat the total probability, or the total area, is 100) The table gives us the area projected by the distance between 0 and 1 , and also the area projected by the distance from 0 to 2 If we take the difference between these two values, we have the area (probability) projected by the interval from 1 to 2
Just as we used the normal curve before, we now take our ongin of measure at the amthmetic mean, uhch is 50 in this case We measure the distance from the mean to the further limit of the given interval These distances are shown in column 2 Note that the middle interval contans two such distances because the mean is inside that interval We divide each of these distances, or deviations, by the standard deviation (This is the same standard devation we calculated in Table 510) These results are in column 3 We proseed to the table of normal curve areas on the msside rear cover, which grves us the area under the normal curve from the mean to any specified point, and look up the required areas These are shown in column 4 We take the difference between each of a par of these to get the find probabilites as shown in column 5 For example, column 4 tells us that the area from the mean to 25 us 4429 and the area from the mean to 35 is 3289 Therefore, the area between 25 and 35 is the difference, or 114
The estimates shown in column 5 are not quite the same as those shown in column 10 of Table 510 , but they are reasonably close
We now refer to some of the rmportant features of the table of normal curve areas as presented on the inside of the rear cover

Fig 512 Estimating a probablity as a duference between two other prohabilitues

Note that ure probabriteses in the body of the trble run from 0000 to 490997 The latter probabilits 13 very elore to 5 , and would be 5 if ee rounded 4299997 a hatue The reston the table stops to the neighborhood of 5 rustead of 10 is that it eovers onls holf of the full datribution But this is reaily all that is neceanary becouse the other hall nould be exaclly the rame emee the dastribution is peyfectly symmetrical
The probabillts aever really reaches 5 because the normal eurve theorcticallh has an infinte range, there being no upper or lower limit along the honzontal axis The sesumption of on anfinte range is not really botherome in practuce, ahere mast of the sencs we work with do have a finte range, because the probabilites are very clote to 5 for alues of x / t of 35 or more This is the basig of the itatement that cienta more than 35 standand devations from the mean almost ace er hatpen"

It is a grood idea to memorize a len of the values from this table Some uxeful thinge to know are ${ }^{\circ}$
1 sbout $2 / 3$ of the casea are macluded mibin one standard devastion of the mean (Actuilit it is 6586 which 14 twace 3413)
2 stout 19 out of 20 cases are within tro standard devations of the menh (Acually it is 9544 ahtebis twee 472)
3 Only about 3 ceses out of 1000 will be more that three Etandirid deustuns from the mesn

56 Seme Miscellaneous Aspects of Probability Calculations

Inditect Colculotion of Probobillites

It we nere interested in the prohablity of geting at least three heads on the tors of 10 coms, ac could determine this by adding together the probabilites of three heads, four heads, ete, up to the probablity of 10 heads On the other hand, we could also get the same onswer by adding together the probablities of no heads one head, and tho heads, and then subtracting this total from 10 The second woy would be considerably queker The fundamental prineuple that makes it possible to ealculate the probability of at least three heads in two way is that the probabihly that something will happen, or is true, plus the probability that it will not happen of is false, equals 10 Naturolly, we should choone the caser of the two Bays

There sre some problems in probsbility thot ore quite deceptue if
we try to calculate the probability directly It is much beter to calculate that the event will not happen and subtrect this from 10 than to try to calculate the probabilty baat it wall happen Consider this apparently smple problem Suppose two dice are going to be tossed A person offers to bet $\$ 1$ that at least one 1 or one 2 will appear Our first melmation is to take this bet because we figure that we have four numbers $(3,4,5,6)$ on our side and he has only two numbers on his, thus glvmg us 2 chances to his 1 If we had time to hist the 36 equally probable things that can happen when we toss two dee, we would find that we would be foolish to take thrs bet How can we easily calculate the probablity of getting at least one 1 or one 2? We do 1 by first calculating the probabinty that we will not The probablity that the first de does not have a 1 or a 2 is $2 / 3$ The probabblity tbat the secound dee also does not have a 1 or a 2 is aiso $2 / 3$ The probability that nether of them has a 1 or a $2152 / 3 \times 2 / 3$, or $4 / 9$ Hence, the probabinty that at least one 1 or one 2 will show is 5 out of 9 , and our friend was boping to take a little advantage of us by offering us only an even bet
A similar problem that bas become a classie ie what is called the "birthday problem" Suppose there were 30 people in a room Somebody offers to bet us that at least two of the people have their burthday on the same day in the same month Immedrately, we thank of 365 days in the year and only 30 people, and we are very happy to take the bet But we will probably lose because actually there are seven chances out of to that at leaet two of the people do have the same brithday Here agam we find it mucb more desmable to calculate the probability indirectly It is a very difficuit and tedious task to calculate cirrectíy the proboblity that at least two people have the same burthday It is not so dufficult to calculate the probability that it will not be true, and to subtract the result from 10 Let us take the 30 people in order Tbe first person can have any brithday out of the 365 possibilities (we ignore leap day as a very minor modification) The second person has only 364 days left for his birthday if he is not going to duplicate the 1st person's The thrrd person has only 363 possiblities without duplragion, ete We can now calculate the probability of no duplications as follows

$$
\frac{365}{365} \times \frac{364}{365} \times \frac{363}{365} \times \frac{336}{365} \quad \text { whach equals } \quad \frac{3651}{335} 1365^{30}
$$

This gives an answer of 294 When we subtract this from 10 , we get 706 Of course this calculation is not the sort of thing we can
do in our head, but it certainly is easier than the direct enleulation, of cascer than listug the $363^{\text {ta }}$ diferent combinations of 30 birthdays that can exist.'
The moral of the examples jut given is not to jump too last in picking out the method of calculatung probsbilities The shorest way to the corcect answer 25 often the indireet way.

Conditional Probobilities

We have seen that we eannot caleulate any probabilties until ac hnor, or assume, certan conditions The tro promary conditiona are I, the aite of the eample, and p, the baste probsbitity of we are norhing puth the bnomal The normal curse requires knouledge about m, the mean, and s, the standard deviation The Pojeson requires knowiedge of $N p$, or m, the mean number of occurrences expested in the loag run Thus it is proper to state that oll probabilites ore conditionol Given the conditions, which are really the bose of hnowledee from a hach the probabihties are ealculated, we usually find rather general agreement on what the probabuhtice are in a ghen stuation in other words, the mechanmes of calculation are gcostally not controversin\} Dissgrement ames because diferent people tend to assume different conditons, either legithrately beeaure of different hnou ledge bases, or illegitmately because of failure to askess properly the avalable informsuon Afler asserting the conditionsl character of oll probabiltues, we now find it necessary to reognize that certan contentions have grown up about the labeling of varous types of probabilucs These conventions have approproated the adjectuve conditional lor a more restructue type of probability than that wheh ne have been talking about For example, cuppose ne are asked to estimate the probabihty that on adult American male choeen at random will peggh between 170 and 180 pounds Our offhand guess might be a probability of .11. But, if ae are non green the additonal information that the inan in question is s'11" tall, "e nould resiec thrs probability of . Il to, say, . 28 . It is this latter probabilits that is typeally called a conditionol probo. bithy, in this ease the "probsbilty that an adult American male wrighe betneen 170 and 180 pounds gren the condition that he is 5'11" tall."
If we adopt this conventional nomenelature, be tall the "proha-

[^7]bility that an adult American male weigha 170 to 180 pounds" the uncondutional probability But, we might ask what we should call the "probabihty that an adult Amerncan wegghs 170 to 180 pounds," or the "probability that an American weighs 170 to 180 pounds," or the "probability that a human being weighs 170 to 180 pounds," ete It is immediately apparent that all probabilities have restrictive conditions of some sort
Hence we prefer to thini of all probabilttes as conditional probabilities This helps to prevent one of the most common errors made in the application of probability concepts, namely, the falure to be alert to the particular conditions which must necesserily surround sny probability For example, it is not uncommon for cardplayers to appeal to the laws of probability in selecting a particular strategy Sucb a policy presumably makes therr action scientific However, it is scarcely scientufic if the particular probability calculation is based on conditions which do not prevall The probability of a 5 -card deal from a deck havng sll five cards of the same sut is only 1 out of 500 But, if we are playing aganst an opponent tho obviously has at least four spades because the four are facing upward, sind if this opponent has been beteing as though the fifth card 15 also a spade, we would be well advised to substantally revise our notion of the probability that that partcular hand has five spades in it The 1 out of 500 is rather completely irrelevant under the given conditions (Of course, if we happen to have been lucky enough to have visually spotted what our opponent's fifth card 1s, the informaton condtions are now such that we know whether he has five spades or not, thus pushing the probabinty to either 1 or 0 The motrve for cheating in games of chance is to acquire additional information in order to improve probability estimates)
Since many practical problems provide us with alternative sets of conditions which we may analyze and use, it is useful to have some terminology to distinguish between two separate conditional probabilhties We prefer to use the terms of conditional and subcondrtional For example, the group of all $5^{\prime} 11^{\prime \prime}$ adult American males is a subgroup, or subset, of the group of adult American males Hence it seems appropriate to call probabilhties dealing with this subgroup subconditional and those associated with the larger group conditional Of course, in our problem shifts ao we also become concerned with the even larger group of Amencan males, the probabilites assoctated with the now subgroup of adult American males become subconditional

Subcondmonal Prebobilhies and Subuniverses it is probably appareot that the notion of group and eubgroup is preciecly the anme as univerec and rubunnerse sad of set and subset that se cneountered carler Thus a subconditional probsbinty u amply a probabulity for s uniserse that it a ubediary to a larger unverec that has slready been referred to in the given context.

Some Ureful Sherthand

Dicussuons of probability ate generally more satisfactory if the appropnate condutuons are apecified for any given calculation or indicated calculation For example, se maght make frequent use of a tatement auch as, the probability of five heads on the to as of 12 coins is 19330 green that the probabinty of a head on the toss of one com is 5 This is somerhat tedions to write out Hence be have sdopted some ample shorthand In shorthand the above statement becomes

$$
p\left(n^{8} \mid X=12, p=5\right)=19336
$$

We use capital P to stand for probability Be then encloce in prectheses what it ts we are gettong the probabinty of The first element rutho the parentheser always sefers to the ppectice event in question, auch as five heads, or H^{s}, in this case We then ereet a tertcal line This line is really the aymbol for the nord green Everstrag to the nght of this line refers to the conditions that are presumed to define the untserse out of which the specfic event :s to come, or has come The necessary and suffienent conditions in this case are the number of conos, or, more generally, the sue of the sample, and the base probabiluty of getting a head on the toas of one coin lie can take these tuo conditoons and proceed to expand the appropriate bnomal from whech we can get the probability
The fundsmental challenge of most pracheal problems is to specif) the approprate conditions, they are thooe that satiof the practical condtions of the problem aod aleo sre manageable from a calculatron point of wea Sometumes ue really do not knon how to calculate the probabilities for rome sets of conditions Then we must modily the conditions to we can make an cstumate These modifications naturally distort our concept of an ideal solution In other cakes we know how to calculate the probability for the conditions, but we find at too tedious Agan we modify and acecpt a less than ides! solution

Some Useful Theorems in Probability Calculations

Suppose we are going to draw cards from an ordinary deck with the fundsmental assumption that each card 18 equally likely Let us call these conditions X What is the prohability that the drawn card whil be a spade? In symbola, we can answer by saying

$$
P(S \mid X)=\frac{1}{4}=\frac{13}{5} \quad \text { (S atands ior spade) }
$$

A useful way to picture this problem is shown in Fig 513 The large enclosure represents all the cards in the deck Each of the smalier subensclosures represents the number of spades, hearts, etc Note that the subenclosures do not overlap at any points This is because it is mpossible for a card to be both a spade and a heart, for example, at the same time Such events are muttually exclusive events If we know that a given event has occurred, such as a spade, we know that all other mutually exclusive events have not occurred
Now consider the problem of the probahality of the drawn card being a 4 Figure 514 shows the distribution of the 13 mutually

Fis 513 Diagram of distrbution of cards in a deck by sutt, and then by number withn suit

Fif 314 Diarram of datribution of cads by numbet, and then by wit wathin number
exclume evento aluch diside a deck by cand number In symbols Behave

$$
P(t \mid X)=\frac{1}{13}=\frac{4}{3 I}
$$

We next consides the problem of the probability of the eard a beng both a spade and a 4 Figure 515 shows the distribution of the 52 cards classtied by rut and by number These are, of course, also mutually exclume events In a mbols a chave

$$
P(S \text { and } 4 \mid \lambda)=\frac{1}{2}
$$

We could aleo calculate this probsbbity by referting back to Figs 513 and 514 He non consider the sampling operation as having tuv stapes For example, fe can consider the first stage in Fig 513 as that of selectug the suat The probabhity that thes alection mill be a spade is $1 / 4$ Then, guen that we hase selected a spade, we can calculate the probability that we would select a in the eceond stage This nould be $1 / 13$ If ue now multuply these two probabildtues together, иe have $1 / 4 \times 1 / 13=1 / 52$, the same ansser we ob-
tained ahove Smilarly, we could have first selected the number (see Fig 514) and secondly selected the sut We would then have the probability of getting the 4 of spades as $1 / 13 \times 1 / 4=1 / 52$, again the same answer as above

When we combine several stages this way, we call the final probabulity a joint, or compound, prohabilaty We can symbolize the above operations as

$$
\begin{aligned}
P(S \text { and } 4 \mid X) & =P(S \mid X) P(4 \mid S, X)=\frac{1}{4} \frac{1}{13}=\frac{1}{52} \\
& \text { or } P(4 \mid X) P(S \mid 4, X)=\frac{1}{13} \frac{1}{4}=\frac{1}{32}
\end{aligned}
$$

Since, in the case of a card deck, the probablity of a 4 is mdependent of the sutt, we could have calculated the same answer by just multiplying the probability of a spade by the probablaty of a 4, namely

$$
P(S \text { and } 4 \mid X)=P(S \mid X) P(4 \mid X)=\frac{1}{4} \frac{1}{23}=\frac{1}{\frac{1}{2}}
$$

Suppose, however, that all the 4 's m the deck were also spades, but with there still being 13 spades and four 4's in the deck We would

Fig 515 Daggran of distrabution of cards by gut and number
zull obesin the some answer as before if ne asumed independence of sut and number Thas is obvously wrong The firet lomula will give the correct ansuer because it will allow for the fact that, knowng that we base a gpade, the probabilits of a 4 is now $4 / 4$ In symbols ne would hase

$$
\begin{aligned}
P(S \text { and } f \mid Y) & =P\left(\{\mid Y) P(S \mid 4,1)=\frac{1}{13} \frac{4}{2}=\frac{1}{13}\right. \\
\text { or } P(S \mid 1) P(d \mid S, y) & =\frac{1}{13}=\frac{1}{13}
\end{aligned}
$$

If ac let A reprecent the sut and B the number and X the general condtuons in the unveree, we can write the more gencral formula lor the probsbility of two joint etents

$$
\begin{align*}
& P(d \text { and } B \mid X)=P(A \mid X) P(B \mid A, X) \\
& \text { or } P(B \mid X) P(A \mid B, X) \tag{51}
\end{align*}
$$

Stnee this formula insolies the muliphication of probabilites, it Is often called the multipliection theorm. We hase ueed it many times in the preceding pages mithout realiong it as such Our use las to far been restrited to eaces of independent events where $P(A \mid X)=P(A \mid B \mu)$, for cxample
Suppoce nor ne convder the problem of the probability that the drawn card all be a spade or a 4 , with the or understood to also include a spade and a 4 or the 4 ol epades in common parlance Figure 516 dasgrame the The largest enclosute again represents the a hole deek The larger of the tro subenclosures refers to all the spodes in the deck, the smsller to all the 4'a Nole that the tro subenclosures oberlap becauec one of the 4 s 1 s aloo a apade The events apade and 4 , are not mutually exclume Hence we will not get the correct probabilats of a epade or a 4 if we sumply add the probsbility of a spade to that of a 4 We nould then be double-counting the overlap Ilence the eorrect procedure is

$$
\begin{aligned}
P(S \text { or } 4 \mid X) & =P(S \mid X)+P(4 \mid X)-P(S \text { and } 4 \mid X) \\
& =P(S \mid X)+P(4 \mid X)-P(S \mid X) P(4 \mid S, X) \\
& =\frac{1}{4}+\frac{1}{13}-\frac{1}{1} \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

The general formula rould be

$$
\begin{equation*}
P(A \text { or } B \mid X)=P(A \mid X)+P(B \mid X)-P(A \mid X) P(B \mid A, X) \tag{52}
\end{equation*}
$$

If A and B were mutually exclusse, then $P(B \mid A, X)$ would be 0 and the subtraction term nould drop out. This is so wien we deal

Fig 516 Dragram of the overlap befween the set of all spades and the eet of all 4811 a playng card dech
muth classified events mithin the same unverse, such as the weights of people If we have a person who weighs 145 pounds (A), the probability that he also neighs 185 pounds (B) is 0 Hence the probability that a persor weighs erther 145 pounds or 185 pounds is the smple sum of the probabilites of eaeh of these occurrences
The formule shown as Eq 52 1s known as the addition theorem or the theorem for adding the probsbilines of altemaive events The formuls applies whether or not the events are mutually ex clusive Since we are geverally dealing with mutually exclusive events, we often use the formula without the subtraction term

problems and questions

51 Would vou classify the followng samples as random? Explan
(a) A teaspoon of coffee from a cup to test the coffees sweeiness
(b) A thermometer reading of the sar temperature in your back yard to determse the alr temperature in your aty
(c) A 3 hour date with a menber of the opposite cex to test her (hum) for long run compatibulty
(d) A havdrul of ball bearings from the top of a barrel of zall bearngs
 tared bes tren shiprod fill males un a ralrode eas and beoce has leen Abicent to coersfable shaturs
 conal valure
(i) The Wedrectsy sale of two rupermathets in the sume cty for the propese of coapanme thent risture amuat volumes
(a) lour ancwet to gate (b) of the querton as a bass of judgne your frextal andere soding of the meanicg of rodon sumphing
52 (a) Construel a tree to thow all the posebte results from the toseng of 6 cons
(b) Lat all the poonble renduta of tomeng 6 cotrs
(c) How mans poabliters 1 re there?
(d) How mang groups cac vou make out of these posablutues if we 4frore thech con as terdes sod which tals in a guro complex eveot?
(e) Last the proupa sod state the relative frequency, of probsbluty, of each eroup
$5.3(\mathrm{a})$ Lum all the cemplex eveots that can oreur when you roll three dicesia time (Bepateat') (Example 146)
(b) Determire the tum of the 3 numbers to each event
(e) Combine all live numbers into a group and list all the groups and the relature frequeses of exch
(d) Csa you think of any *n) you mergh bave been able to determune the relawe frequect of esch group otber thas by lasting"
54 What is the tosal oumber of posibinties for a sample drame from rach of the followata, unveres" Sbor your method of ealeulation
lal Samp'r of one loss of 7 cons from a unseree of 7 cons
(b) Esmple of ore throw of ofice from a unvere of 6 dice
(c) Ssmple of ore tons of 4 cotas and 3 dice fron a unverse of 4 coins snd 3 diee
(d) Surpie of 13 cands from t deck ol 52 esids
(e) Sample of 10 manes dinnt frowa telephooe book with 5000 Damen l!

14 asme s replised attet breng drand
2 A asme un not replaced after beng drant
(f) Sample of five ants from an anthull to determine the averge lemgth of all the ants m the anthll (How msor aots man anthll ${ }^{7}$)
(o) Sumple of one trp through a maze that has the folloming empunce of number of chones at the succerve turning poors $3,2,4,5,3$
\$ $\$$ Evaluate the following Iou may we tables if you wish
(a) 71
(b) 59
(c) $\frac{121}{31}$ (d) $\frac{3651}{21341}$
(e) 6^{3} ($) 2718^{-1}=\frac{1}{2715^{4}}$

56 Ue the broomal theorem to ataulate the probebhitites of the vatious combinations that result from the tosing of ext coms
57 Eallate the following
(a) $\binom{5}{2}$
(b) $\binom{12}{4}$
(c) $\binom{12}{8}$
(d) $\left(\begin{array}{l}7 \\ 2 \\ 2\end{array}\right)$
(c) $\binom{12}{49,5}=\frac{124}{4315!}$ () $\binom{52}{13}$

54 Uxe binomsit te:ms to calculate the probabilites of the followins
(a) Sux beeds oo the loss of 9 coms
(b) 50 heads on the toss of 100 coms (Note how stuali this is even though it is the most probable resuit)
(c) Eight 5 's on the toll of 12 dice
(d) 265 s on the roll of 130 dee
(e) Four defectives ma sample of 10 bolts if the probability of a defective 152
(f) Would five defectives in a sample of 10 holts be quite convinoing evidence that the process was generating more than 20% defectives? Show calculations and explain basts of decision

59 Use the normal curve to approximate the probahultetes of getung the various results from the toesing of 6 come Let 0 heads be 0 , one bead 167, two heads 333, etc You can check your result for the calculation of the standard devention hy seetng if it agrees with

$$
\sqrt{(167 \times 833) / 6}
$$

510 Calculate the standard devation of the followng sets of numbers mothout the use of apy short cuts

(a) 2	(b) 27 (c)	324		(You may find it more con-
(4	34	571	6	vement to group the luke ttems)
7	41	068	3	
9	46	249	5	
13	58		3	
(c) 1286			4	
2572			3	
3858			5	
5144			4	
6430			4	

511 Calculate the standard deviation of the same senes as in Problem 10 with the use of any short euts you fiod handy
512 Calculate the standard devation of the series in Prohiem IOe by taking the folloung steps
(a) Dutce each number by 1286
(b) Calculate the standard devation of the resultant series by the short cut method
(c) Multiply the result by 1286
(d) Compare your answer and the amount of work wath what you did in Problems $10 e$ and $11 e$
513 Use the Porson formula

$$
Y_{c}=271828^{-m} \frac{m^{\varepsilon}}{c^{c}}
$$

or the Poisson Table to estumate the following prohabilities (Remember that a number rased to a negatuye power is the same as 1 divided by that number to tbe same positive power)
(a) The probability of seven 5 c on the roll of 100 dre
(b) The probability of two defects in a sample of 10 weids if the relding operation is supposed to he generating only 2% defeets
(c) The probability of two or fewer defects under same conditions as 1π
(d) The protablity of three or atore defects under same conditions at it (b)
(e) The probablity that tere mill be no more than 3 defects in the rurfact of a prexe of pate giass if $m=5$
(0) The protabith that exaetf two progte ort of 1000 poltcy bolders will be bil'ed by an accudect that bes a probarility of .000000 of bappeang to a pervon If your compung bad to pas clams on two such aceidenta would jou feel that you had any evidence that the acendens hase been "noged," and that the corpans would be guthied in apendmas a litue money on an nver"ration* Explan
5 ti Uir the Thormdike Chart for the followne problens
(a) At the parts of Problem 13
(b) The probsbilits of 23 or more 68 on the roll of 130 dice? (What If the diference betmeen rolling 10 dice 13 tmes and rollung 130 dice at once?)
(c) The probsbility of two or more 6 a on the rell of 10 dice? Why are yout astretr diferent in (b) and (c) 1
(d) The probebility of beeneen two and four machase breakdowns in an bour out of a total of 00 machines al the probabinty of a breakdown is 08
515 Une the normsif cune to estumste the probshbittes of the varous reults from the toxing of sex coms Let 0 beade be - 083 to 053 , one bead $0053-250, \mathrm{ecc}$
Compare sous rerula wrib these jou got in Problems 2, 6, and 9
516 Lo the normal curve to etumste the folloxing probabiluties
(a) Probshburs of a ssimple salue ol 6 or more if the univerce bas a mean of $4 \mathrm{atd} a \operatorname{standand~devation~of~} 15$
(b) Probshility of ample idue of less than 5 if $m=10$ and $=8$
(c) Probsbility of sample salue of betueen 5 and 9 if $m=15$ and $:=47$
(d) Probablaty of ample salue of 6 or more $1 / m=8$ and $s=1.5$

517 ldenuly the following varables as being euther diserete of contunuous
(a) The numbry of rooms in a bouse
(b) The number of roons in a bouse for porpose of getung an dea of the amount of linge space is the house
(c) The annual sales of a compsny from year to year
(d) The rate of tume lost acedenta per 1000 mas hours of expooure
(e) The proportuon of prople tho indeate a preference for a given hrand of tooth paste
(f) Manual dexterts of a group of workera

5 it In grading eome eximunatuon papers an matructor diseoven that two students aho at ners to each ather bad identical nording in one of the answers The answer was wrots It contaned 12 words What kind of endenee x this that the two riudenis cooperated with each other in wome way durng the examination?
519 that is the probabinty that at least one 3 will ghow up on the roll of 2 dice? Show your chlculations
520 What is the probabilty that at least three cards out of five playng earda all be bearys" Show calculatione
521 What is the prohability that at fast three eardo out of five playng cards will be the same surt? Show calculaton

522 The probability that any one component in a rocket will fail is 001 The rocket has son component parts
(a) What is the probabilty that the rocket will function properily?
(b) If it were descred to have a rocket that gave a 9 probability of a suacessful firng, how mary parts would it be necessary to climnate? (The parts would be elimunated through desga mprovements)
(c) The probability of successful fining could also be mproved by reducing the probablity of fahure of a component part To what level must the probahity of a component fallure be reduced in order to give a 9 probability of a successful fing?
5.23 The prohahility that a trailer truck will fal to negotate a given curve on a highway is 000001 if the truck does not exceed a speed of 30 mph coming uto the curve The probability of failure increases to 001 at 40 mph , 01 at 50 mph and to 1 at 60 mph A given truck faled to negotaite the curve, crashed through the guard rail and struck and semously infured two people In the anvestigation the driver clamed that he was not traveling ovet 30 mph and that something went wrong with the steenng What is the probabidty that the drwer was lymg, or at least insccurate in his perception of his true speed? (There is no way to check the steering)
How fast would you estmate that the driver was really traveling? How much confidence do you have in the correctness of your estmate? (Make sure tbat your estmate covers some range)
5.24 Your firm manuisetures a product that must be protected from temperature varations It is relatuvely expersive to provide this protection There are thmes when very hitle protectron is peeded because of the actual temperature prsvaing The decision on how muth artaficial protection to use is based on the weather forecasi for the critueal time pertod Two sources of such forecasts are used, the local office of the Upited States Weather Bureau and a local privite forecastung servee A check of the past record of these two sources reveals that they both have had a record of success of 9 in forecasting the temperature withn a tolemble range
(a) If both forecssters agree on a given forecast, what is the probability of a correct decison if you follow ther advee? What critical assumption did you make in calculatung thes probabinty"
(b) Suppose the two forecasters disagree How good a demsion teehnique would it be to flp a com to see wheh foreraster you will follow? Can you think of a better waty to mate the decision?
(c) A careful check of the historical reconds reveals that the two forecasters agree on therr forecasts 98% of the tume Are therr forecasts independent of each other? Explain (Note Independent does not necessarily refer only to the issue of whether there is of is not any actual commurucation or collaboration between, the two forecasters it is concelvable, for example, that both use essentially the same evideace and essentially the same techniques for analyuing that evidence Thenr answers would thus tend to agree even though the people involved operated independently of eact other We are concerned with whether their answers are undependent)
525 Your company hes a warehouse nght on the waterfronts at an enstern Unted Stetes part A hurncane has been moving up the coast
 foxds that will reate in 4 fet of watet on the first lloo of the warchoute You are remparble for dectume whether to spad the mone to bave the warthoum amperd on the fire floor The compiny his no hurneane ineurance
What factore would you a eigh m making your decmen? What jrobs. lithe would be important? Explan

chapter 6
 Some useful analytical tools

Our discussion of the normal curve montroduced the anthmetic mean and the standard deviation, the two most commonly used analyteal tools to statistical work These are only two members of a famuly of analytical tools It is now mportant for us to introduce other members and show how each of the various tools can play a special role in a particular problem Thus fortified, we will be able to pursue further study of the statrstical method without beang distracted by the necessity to stop and explan a tool that the current problem makes useful
The various tools pre discuss are all aumed at our besic problem of dealing with an event that might have all kands of values, the typical situation in all decision problems The drstrobution of such posstble values is our mann concern We have already discovered that we can deal with such distnbutions in many prays We dis-
 easy to understand, it is very tedious, and sometimes mpossible, to complete Hence we searched for shorthand ways of summanzing such a list One shorthand way was the binomual theorem system of counting Although the binomal theorem system was more efficent than the lising sysiem, it also gets very tedious, although tables are now available that can help considerably to expedite the routne work We then discovered that we could often make useful apprommations to a distribution by such model distributions as the Poisson and the normal In the case of the nomal, we discovered that all we needed were the anthmetie mean and standard deviation of the desired distribution and a table of the normal curve, a table that can be conveniently summarzed on one page of a book We could then estimate the relative frequencies, or probabilities, for any desired values withen the distribuition
If our practical problems were all such that normal curve approxmations were adequate, we could stop our discussion with the arith-
metic mean and the stagdard denation Inforturately thas is not so Uany esents in buenesa and ceosome problems have distmbu tors that do pot fall into convenient patterns $1 t$ is then that we must inproise and we other analv teal derices, such os the median in plate of the anthocte mean, and quandes and dectes in place of the standard devastion Sueh other analytues devices are our concem in thes chapter
Sirce the crucial mase in mamy practical problems is that of deed ng when we can use the mean and standard desiation ath reasonable impunity rather than betag fored by the shape of the relevant distributions to recert to Jess coas enient devices, we almo find u neceran to ${ }^{2}$ as parucular attention to thote desices that help us to gain a quack impression of the shape of the relerant trequency distrbutions We have alresdy used sorace charta of feequency diatributions as such a derice In this chapter ne elaborate a bit on the ure of charis to represent a picture of a distribution He aloo reler to some mathematucal tools for mensung the degree to a huch a distnbution lacks symoctry II a distribution is not symmetrical pe eas that it is skeucd and ne eall measures of lack of ey minctry measures of sheumess

Gnec ac canoot analyse a frequency datrobution until we have one we also diceuss the procees of constructing frequeney dutribuwons from real dato rather than from artificial data such as the hy pothetical results of eoin tosess

61 Averages

It has been customary to introduce chaddren to the average' in the fith grade in the Amencan school system The average is defined as the sum of the zet of numbers divded by the number of numbers in the set. This early indoctnation has rather thoroughly unplanted in our culture the notion that there is such a thing as the aicrage detually, of courae the problem is not quite so ample At the same tume that the ehild calculates the average in the approved way, he thinks of an average as something that connotes ordinar, or usual, or middle The mathematical properties of his calculation are generally of no concern In fact the tipesal youngster is not at all arare of what thore mathematical properties imply

We become coneened ath the subject of at erages because se oflen represent a set of numbers by a sugle number, or aserage it is important that we know what it is about the eet that we are repre-
benting, and also that what we are representing makes practical sense in our problem. We should mention, too, that the subject of averages ishvery important in its own right, quite apart from any particular use we make of averages in this book. We have been dealing with exverages in one form or another almost continuously since we became aware of our environment. We should now find it useful to try to organize our notions ahout averages as they affect our day-to-day conduct.

Three General Purposes Dictote the Choise of an Average

Alfhough there are many more than three different sverages, there really are only three general purposes for which averages are used. Any particular average will be found to fall under one of these three purposes:

1. The purpose requires the average to be as close as posmble to all the tems of the group Such an average is often calied a least-arror vaiue
2. The purpose requires the average to concade eacily with the event being predicted. In other words, being close does not count Common sense suggests that the best value to chooss from the group is the one that occurs most often. Such an average is oiten aalled the most probable value.
3. The purpose expresses no interest in individual 1 tems (The above two purposes are very much interested in indwidusl items) Pather is expresses an interest in combinatoons of items. The combination of items that is most meaningful, and heace most commonly used, is the total of the items.

The Least-Error Value, Although we deplore the practice, it is very common to make a singie-valued estimate of something, such as the company sales for the coming year. (We much preier that the sales forecast be expressed as a range of expectation with an associated probabihty in order to reflect explicitly the degree of uncertainty involved.) It is obviously important for the forecast to be close to the true value. The size of the error does make a difference. Hence we wish the forecast to be as close as possible to what is likely to happen.

We can make the problem more concrete by taking a much oversimplified example. Let us assume that our analysis of all pertinent (as far as we know) factors affecting our company's sales led us to beleve that any one of the following snles volumes might occur with equal probability:

What forceat nould ae make, keeping in mind that we want our foreast to be se close as poasble to the right ansmer? A useful approath to the problen is to put thece 5 poserblitites in perapective by plaeng them alongs acale as follows.

It is onn lously foolish to seleet a value such as A because we can get clouer to all five of the possible results by moving to the right untul we resch 12 If ane then mose from 12 to $B_{\text {, }}$ he get further nasy from 12 , but ne get cloas to the other four possinhitics if we quantily the value of such a movement from 12 to B, we can sas that for each eneredse th error of $\$ 1000$ with respect to 12 , he dearase our ifror a total of $\$ 1000$ wrth respeet to $14,17,18$, nad 24 , thu gurng us a net decreace of $\$ 3000$ It pays, therefore, to move to It If we contmue past it to the point C ye sould nos be mor. ing atway from two of the poacablities ond closer to three of them line gure in n net raduction in erfor of $\$ 1000$ It is, therefore, worthanive to mose to 17 If ne proced from 17 to D, we nould move nuns from three of the possibilites and torard only tho, thus increantg atror hy $\$ 1000$ and the salue that suca us the least Aetinton from all the posesble values, therefore, is 17

He can non sat that the least-error walue is the one that has as many walum move it in sate as it has belor it in stze Such a Whes we rallel the modian If there are na eten numbet of poses. hation, there is no sugle median Any salue cether equal to or In tuecen the tho maddle salues would satisly the least-error criterion We em see that this is so if ne eliminate 18 from our set of pooson lohties Sote that ans movement betreen 14 nad 16 results in moung clour to tuo of the items and furtice anay from two of the items, reultung in a net cliange of total error of zero Sometunes we art indifiernt to which of the set of leasteeror valueg we chooae So "ic nould be in tha proricular example ' whel aseames that only the arecified itema could occur However, in inost practical prob-
It in truth only theme four items could octur we mathe all argis for cthet Hor if, matiee than for any walue in betreen on the ground that the eatremes are equally good as the m-telemern salum at far an misimuting ertor is conethed But they laser an additonad adianage Cloore of etther of theer, or
 we choose a value that cranot ocsur Sueh a thrill has some value to most reople cren il onls ma chologen]
lemis no such lamitetions exist Gaps in the sample information are due to lumtatrons in the suze of the sample not to the fact that cer tan values cannot oceur Thus we can magine values in this in difference range We must make an assumption about the say these values are distributed In the absence of specifie information to the contrary we usually apply the equal distribution of ignorance rule and assume that the missing tems are equally spaced thoughout the indifference range The next step is to apply the least-error concept to these equally spaced items Thus coneept suggests that the muddie value among all these magned posstbities is the best one to use lie usually calculate the moddle value by taking lialf the sum or the arithmetic mean of the two moldle values in the sample Here newould gel 155

The Most Probable Volve If our problem is such that our an swer must be ezactly rught prudenee suggests that we should be nght as often as possible with no concern for the amount of erros whon we are arong The proper value to select for such a problem ${ }^{16}$ the one that 18 expected to have the haghest probability of occur ring We call such a value the mode Since the value that has occurred most often is the most hikely value to occur most often in the future (we assume no slifts on the umerse) the mode is simply the most frequent value that has oceuried
Although the mode has often been called the most logical of all the averages connoting what is usually thought as avelage there are really very few practical situations in which it is proper to use the mode Since the use should be limited to those cases there ne must be exactly night it ean logically be used only when ne can tell whether ne are exactly right Our lumted ablities of perception mahe it impossible to know when we are exactly right except where We have set up certsm defined rules or standrrds for exanple ne know we are cxactly right when we guess the 4 of spades and at occurs He know thas because the 4 of spadee is what it is by definition Tliere is no 400078 of spades for example But if we guess a mans herght as 6 feet how een ace ever be sure that he is 6 feet tall?
We say therefore that ne should use the mode only when me are dealing with things that are so defined that ne line no trouble distingustung one thing from another Even then me would not use the mode unless it was clear that the size of an crror is of no sig nficance One of the best ways to test whether we $n \mathrm{ml}$ a least enor value or a most probable value in a given problem 15 to magne
that ae hare alfesdy made an cetumste and are non companing it with the actual revelt. Or better thll, compure tho hypothetieal astuntes mith a presumed actual value For example, suppore we have two sales estimates of $\$ 5$ million and $\$ 15$ mullion dollars The actual happens to be $\$ 147$ milion If ne feel better with an estimute of $\$ 15$ milhon than we do with an estimate of 85 million, it is clear that it in important to us to be eloce If $\$ 15$ milhon is no better than $\$ 5$ million, it is not important to be clowe, and "a mass Is as good as a mule' It is, of course, ters important to be eloac with a sales forteath.

Combinotions of hems-Fotole If ne were trying to estimate the totol cost of a group of tems aheh ae had produced, we could make such an catimate by multipling the number of items in the group by the anthmetie mean cost of an sters We defined the arithmeticmean as

$$
X=\frac{\Sigma x}{N}
$$

It is clea: from the defintion that $N X=\Sigma \lambda$ It is equally clear that $\Sigma N / X=N$
Thes we see that the most unportant eharactertste of the anthmethe mesn is its afrechaic relationshop to the total and to the number of nems although most of us firs learned to caleulate the anthmetue mean as the avcrage," there is really nothing inlicreat in its ealculation that results in a value that could properly becealled an ascrage in the sense of a typeal or usubl tem The anthmetre mean becomes an average in the typical sense only by comedenee, certanly not by defintuon The comedence oceurs When the distribution of titoms happeas to be symmetned Figure 61 gives illustrations of symmetrical distributiong A single-humped 8) mmetrenl distrbution such as in A would bave its mean, median, and mode all equal to each other Thus ne might colculate the moon even though ne want the medion, and no harm is done a rectangular distnbution as in D sould have the inean equal to the median alo, but the distrabution has as many modes as it hat items because each tuin occurs equally often a bumodal distribution as in C again lass the metian equal to the mean The tro inodey guggect the possbibly that two overlapping ditntutions, tach with its own inode, have been combined and perthaps had better be seja. rated if at all poadile an example of yuch a bumolal distribution

Hig 6: Three examples of symmetrical distributions
would be a distribution of the heights of adult humans pith no dsstunction as to sex
Figure 62 shows some examples of asymmetreal, or skewed, distributions Part A, with positive skewness, is a type of distribution that occurs quite often in busmess and economic data Note that the mean is larger than the median, which in turn is larger than the mode If the skewness is only moderate, we find that the distance between the mode and median is about twnee that between the median and the mean, a relatonship that makes it possible to estumate any one of these from the other two Part B ullustrates what is called a reverse- J distribution, a distrimition with substantial posstuve skewness The above relationship among the median, mean, and mode would not hold in this case A negatively-skewed distrrbution as in \mathcal{C} is more a euriosity than a fact in business data It is so rare that, if we see one, we should suspect the method of collecting the data, or we should suspect that artficial restramts have been put on the phenomenon being measured
The fact that the mean moght be equal to the medran has been the cause of considerable chaos in the use of averages For reasons we cxamine shortly, the mean rather completely domnates the chome of average to use What causes chaos is that usually no exphoit

F. 4.2 Thire examples of thewed diatributions
seatennent is made ns to whether the mean is esected lecause it is the meqn and is the correct ialue to wee when we are interested in the total, or whether the mean as selected beeause ne believe the dintribution is suffiecnety symmetrical to make the mean a reasonable approrimation to the meduan, the value that we renlly anat
The Ilormone Mean to Represent a Totol Although the anthmetic mesn fortunately satusies most problems that require knowledes of the total, there nre erreumstanees under which it is not appropriste We can boet understand the eircumstances hy recognizmg that ninnost all measurements are really rates, and that all rates can be expresed in tro ways, with one way being the recoprocal of the other For example, a production rate for a man can be expresed an X preces per hour or as Y hours per pace Thus 20 preces pert hour would be the exact equinalent of 05 hours per prece In our automobile 30 miles per hour is the equivalent of 03333 hours per inile

Table 61 contrasts the two nsys of presentung the production rates of three workers Note that the first way, pisecs per hour, shows the output zarying from sotker to worker and the time constont The second way shows the tame torying and the outpul constant Suppore se had the problem of ctamatiag hon long th would take

TABIE 61

Contrasting Ways of Showing Production Rates of Workers

Man	Pieces per Hour	Hours per Plece
A	3	33338
B	4	25000
C	6	16667

these three men, or any given number of smular men, to fill a production order of 200 preess We would suppose that we could solve such a problem by using the average output per man per hour or the average hours per man per plece The propur average in each case would seem to be the arthmetic mean because we are interested in the total output or the total tme The mean pleces per hour is 43833 The mean hours per prece is 2500 Dividng 200 preces by 43333 pueces per howr, we find that tt will take 48154 manhours to turn out 200 preces Multiplying 200 preces by 2500 hours per prece, we find that it will take 50 man-hours to turn out 200 preces Something is wrong with at least one of these calculations The 50 hours calculated from the arathmetic mean of 2500 hours per prece is n rong here This calculation assumes that eacl man will produce the same number of preces during the production period Such an assumption would be correct if work rules were such that each man 18 assigned the same quota and would quit for the day whem ine had flled dre quaba Mosit wonk ruiles are not of tirns surt but rather such that each man works the same amount of thme, with the fast workers producing more than the slow workers flung that time
Note the assumption of equal number of pieces results in more man-hours than the assumption of equal amounts of time This is as we would expect If we restrict the output of fast norkers to the same amount as for slow workers, we would obvously reduce the over-all average rate of output, or conversely merease the average time required
Having concluded that the anibmetic mean of pueces per hour gives us the right answer and the arthmetic mean of hours per plece the wrong answer in this ease, we next must decide what ne should do if our data are expressed as hours per prece Probably the easicest thugg to do, and the mosh logenl, would be to convert the data to
preces par hour and ure the anthmese mean ff we lad some ceprat reacon for the bunl answer to be cxpresed in hours per piece, we could contert back by tahog the reeprocal of the anthractie mesan of peces per hour The reciprocal of 43333 prees per hour is 23077 rours per piece Note that 300 preces multuplied by 23077 hours per prees nill pree us a totaf man-hours of 46154 , the same rerult as dindang 200 bs 43333

The process of taking reciprocsls of a set of numbers because the arong factor is constant in the ongins! act, taking the anthmetie meat of the reciprocals, and then convertug back to the ongual form by tuhung the seciprocal of the anthmetic mean, rewulte in calculating the harmonic mean of the anginal at of numbers Thus we woutl call 23077 the harmome mean a! the three numbers, 3333 , 25000 and 16667 Using lamular symbols, we can express the formula for the harmonic mean as

$$
U=\frac{1}{\sum_{\frac{1}{N}}^{N}}=\frac{N}{\sum_{x}^{1}}
$$

Becsure the harroonic mean ss rather atrange to most people, we alould not use it it we ean avoid it We should smply consert our data and use the more lamiluar anthmetie mean The folloning routine mas help to deede when such conversson is needed

1 First, find out what factor us varying in the real ntuation fo our problem it would be output pet norker, not houry of mork
2 Second find out hhat factor is waning in the tenes of dats In out problem it nould be output per worker if we had the piecee per hour data, 15 mould be bours of rork if we had the bours per puece dats
3 Third, if the answers to the sbove two questons are the cume, an they noull be if $\pi \mathrm{me}$ had the pieces per bour dits, the suthmette mesn of the anen dots is correct If the anomers are different, the gien data muxt be converted by takiar, reeprocals of the numbers The anth metic mean of thee iemprosals nould thro pree a correct ansuer
Other Combinations of liems Although to add a set of numbers is certanly the most common and most meaningful nas to combanc numbers, it is not the only way Another thing ace could do is multiply a set of numbers For cxample, our pueces per hour tata could be added to get a totsf af 13 preces perp hour, they could be multiphed together to get the product $72^{\text {* }}$ We use the question mark beeause we have a definte problem of unta here The umt impled by nur mathematice would be cuble pieces ar, if you prefer,
pieces cubed Jusi to state such unts is to reveal their ridiculous character

Thus we can say that the product of a set of numbers usually makes no sense if the varous numhers bave some unit attoched to them unless our ultimate interest results ma the dusappearance of this unit The unit disappears only when we are basically concerned with rates of change from one number to another or with ratios of elements in one set to corresponding elements in another set For example, let us suppose we bad an mrestment fund that had the values as shown th column 2 of Table 62 Then let us suppose we made the vague request that we would like to know the average value of the fund dunng this pernod We say vague because we have falled to state our purpose, and wothout the purpose we can calculate several answers

Before we discuss the eght different answers shown in the lower section of Trahle 62 , let us explan the logic of the use of the logarithms We use the logs as a calculation tool to samplify the multhplying of the numbers together, and, even more imporiant to smplify the taking of the proper root of the resultant product Turn to column 4 for clarification of the procedure Here re determins the total of the logarithms of each of the fund values The total of loganthms is really the mathematical equivalent of the product of the fund values We then divided the total of the loganthms by 5, thus getting the anthmetre mean of the logarithms To divide the total of logarithms by 5 is the mathematical equivalent of taking the 5 th root of the product of the fund values We then took the sintilogarithm of 2067432 and got a value of $\$ 116,800$ The result of this routine of calculation is the geometric mean In famhar symbols the routine can be sumanzed as

$$
\text { Geometre Mean }=\sqrt[n]{X_{1} X_{2} X_{n}}
$$

or

$$
Q=\text { antilog } \frac{\Sigma \log X}{N}
$$

It is clear that the geometrix mean is strictly a function of the product of the atems If thas product has no meaning, it is extremely difficult to attach any signoficance to the nth root of that product As pointed out above, the product usually has no meaning If the numbers multipled together have some umil attached to them, such as dollars, bushets, pounds, feet, quarts, ete

Now let us turn to the discussion of the eaght answers The arithmetic mean of the five fund values is $\$ 117,600$ Thas has no

TABLE 62
Altomative Wors of Dolemining the Arepage Volue of en Investment Fund

inar (1)	Yalue of Fund-End of Year 81000 (2)	Ratio of Fund Yahe to that in Preced. ng cieat (3)	Logandims of Fund Values (4)	Lomenthens of Ratuos (5)
$10 \sim 5$	100	-	2000000	-
1050	109	10500	2033424	. 033424
1957	115	10615	2000038	02426
1059	125	10570	2006010	030330
1359	140	11200	2140128	02018
Totale	[58	43318	10337160	140140
Anth Itean	ค 1176	105705	2007432	.034335
Mrdinn	115	103380	2000098	.031837
AnLuosanthras				
Mern			11080	10578
Midean			115	10335

Yulue of Fiund at End of 1057 :
(I) Anthmene mean lafuc had provalued

1170
(9) Mrdan ralue had pretaled

115
(3) Geometne mean ralue had prevailed

11680
(d) Geomethe modinn ralue had prevaled

115
(5) Antumetue mean role of change hasd preyalled. $100 \times(105705)^{9}$

118304
(6) Median rate of change had prevaled
$100 \times(104350)^{1}$
117397
(7) Geometric mean rake of chonge had prevailed. $100 \times(1058 \mathrm{~g})^{1}$

118331
(S) Gometne median rate of change had prevailed:
significance as such bectuse the tontal from which it carne has no siguticance The lack of meanmg in the total is quite clear when we realue that we might as well have evalusted the fund every 6 months, or even every week, givigg us a total about twice as big, or 52 times as big

The medrun of 8115,000 would have sugusficance if we thought that our experience with this fund would he of value in predicting our expernence with a new fund also startung out at $\$ 100,000$ If we had no way of predicting bow long we would be able to let such a fund accumulate, other than that we would defintely laqudate it at the end of 4 complete years, if not sooner, we might ergue that the best single estimate of the value of the fund at this relatively unknown loquidation date would he $\$ 115,000$ We mght add that this solution assumes that the trme order of the varying rates of accumulation is of agnaficance The medan rate of change of the fund, lgnonng the tume order, is $+835 \%$ (See column 3) If we let this compound for 2 years, we get an expected vatue of the fund at the end of 2 years of $\$ 117,400$ (See solution 6)
The geometric mean value of the fund of $\$ 116,800$ has no practical signsicance hecause the product on which it is hased has no sigutficance
The geometre meduan value of the fund of $\$ 115,000$ has the same suguficance as the median because it 15 , of course, exactly the same snswer Examine the way these two measures were calculated and see that they will always yield the same answer
The arthmetre mean rate of change of 8795% has no signuficance hecause the total on whech it is based has none (It should go wathout saymg that a ratio of 108795 is the equivalent of a rate of change of 8795%) The fund value of $\$ 18,400$, therefore, which is based on this rate of change also has no practical significance (See solution 5)
 matical signufirance, even though its prachical signoficance is illusory If thes rate had prevaled m each of the 4 years of accumulatron, instead of the actual rate, the fund would have stall had a value of $\$ 140,000$ at the end of 1959 That thrs is 80 makes it clear that we went to considerable extra work in calculating this rate We could have obtaned the same answer more economically by taking the 4 th root of the ratro of the 1959 fund to the 1955 fund, or

Thes ealeulation is further smphiad by using logatithres the answre baris

$$
\text { anuleg } \frac{\log 140-\log 100}{4}
$$

It wery easy to prove that theec two methods give the sume araner b) prowing that the produrt of the ratios in column 3 ig exactly the "are as the ratio of 140 to 100 Let us wate out all the thens of the ratuos and the ther product

$$
\frac{10 S}{100} \times \frac{115}{105} \times \frac{12}{115} \times \frac{140}{125}=\frac{140}{100}
$$

Where hase we eaded up, then, in our attempt to answer the question of "hat ras the suepage value of the fund"' It seems th to fur to *as we have ended in a etate of confuron lie apparenth ses out to llluatrate the uee of the product of a ect of numbers and of it dernatwe concent the geometne mean We seem to bave denonatited that nether the product nor the geometrie mean af to ce fund blues has ans meaning the did go a step further, howesef th calculating the product of the rotios of surcesense fund calue The product docs have at least mathematieal meamang Sote that when we tooh the ratios we conceled oul the unt For example 10000 in column 3 has no unit Ilence the product of euch ration doce not cause us to and up with euch absurd answers as in puntue dollare which is what aeget when we thice the produet of the fire fund walues the aleo diecovered that the product of there ratios is the mathemates! muralent of the single ratio of 140 to 100 Thus if we hnow what thes muo means we how what the profluct of all the andordual ratuos means
Part of our confuen was caused by our not knowne why we ranted to hoow the average salue of the fund Not knownem, be Iet our imagination run and benee developed ceght diferent averages He chmansed three becaure they were based on meaningleas totals or products Thry are numbered (1), (3), and (5) in the table Since three of the remaming fire turned out to be the same, सe are nox reduced to only three open to consideration To chonec amons; there we must ach and anexer whe anubody would xish to knou the ha erage whe of sucha fund the diceured one pocsible purpoec when ne rute consderng the medisn walue and the medun rate of change There we decoured that $\$ 115000$ uas an approprate anewer if te
assumed that the time ordar of the rates of change was moneative of the dand of time order thet might prevan in the future If not, an answer of $\$ 117,400$ was appropmate

The only remauning possibility is the use of the geometric mean rate of change Thre would be meanmgful only if the investanent conditions were such that the fund must he committed for 4 years with no possibility of hquidation at a pnor date Thus 1s, of course, a very rare situation The clozest thing to it occurs with the Series E bouds of the Federal Government The advertused rate of interest on such bonds is the average rate of return only if the bonds are held to maturity Redemption at any pror date resulis in a rate of revurn less than the advertised rate Thus the advertised rate is really the maztmum rate we might eare if we bought such bonds We would really be quite foolush if we putchased such honds as though the maximum rate were the average rate The reader is left to figure out an appropriate average rate for Series E bonds to compare with the expected rate of return on an altemative investment

Clear-cut examples of the proper use of the geometrac mean are not easy to find We try again in the chapter on undex numbers In the meantime, we should not accept unthonkigly any presumably correct use of the geometric mean

Other Factors in the Choice of an Appropritate Average Al-

 though the three purposes mentioned dominate the choree of an average and should preval over any other consteration, there are tumes when the disirubution 18 sufficientily symmetrical for the three prumery ayerages, mesn, zaedian, and moder to be proctically the same size It is then that other critena enter the arena of choceRelatwe Stability in Sampling Figure 63 compares a distribution of means of random samples with one of medrans The samples each contanned three tems The unverse was symmetrical Note the greater spread of the medians This illustrates a very important weakness of the median compared to the mean the median in general is more subject to sampling errors than the mean Thus it 18 entirely possible for the mean of a random sample to be a better estmate of the median of the universe than the median of the sample would be
Therefore, whenever it is reasonable to assume that the universe is symmetrical, we defintely prefer to use the mean of the sample as our average, even thouga our purpose requires the least-error value or the median

Iis 45 Compansona of diatnitutope of means of matom sampies and medians of smion amples (Uenme conmat of the cumbers $1,2,3,4$ All posable

Susteptible to Algebrace Monipulation Another weakness of the modian is that it bears no precise algebrate selationshis to the digtribution from aliuch it is calculated Henee it becomes very difilcult to mampulate the median mathematically. The mean, on the otliey hand, has a precise retationslup to the total and the number of teins in the distribution it is not eurprosing, therelore, thint the hate structure of mothenatical statistes is beile sround the arithmetic mean It cannot be overemphaszed, however, that the fundhmental socumption underlying this onathematical structure is that the unverse is at least symmetreal We say at least because sometumes the even more restrictue assumption of normalty has to be made
Agan we concluce atatug that ne prefer the mean to the median na a least-croor value if the appropriate assumptions are rensonable
Transforming Dafa fo Mako Them 5ymmeifleal. Our preference for the mean over the movian can at times be so atrong that we make an effort to convert a skeoed datmbution into one that is resonably symmetteal Thas eonverson should not be carrich out by any arbotrary thronang nayy of some of the itemis of cvidence, a technique $\begin{gathered}\text { ometumes used } \\ \text { in tince stady } \\ \text { Rather it should be }\end{gathered}$ done by the application of a standard mathenatical procedurc. Table 63 illustrates such a mathematieal transformation of data. The orimal series, X, is definitely theserl. Note that the aritho

TABLE 63
Jransforming o Skewed Sermes to a Symmetrical Series by the Use of logerihms

X	$\log X$
1	000000
2	301030
4	602060
8	903090
16	1204120
32	1505150
64	1806180
-127	6321630
$\bar{X}-1814$	903090
$M e d r n(M d)=$	8
$G=8$ (antliog of	90303090

metis mean of 1814 is substantially larger than the median of 8 The distribution of the loganithms of X is symmetrieal, however Note that the median and mean of the $\log s$ are both equal to 903090 Also note that in this case the geometric mean of the original data wrill equal the median
We can do other thangs than use loganthms We find many physral phenomena that seem to follow a square root law in the sense that one variable varies as the square root of another variable Then we might find it conventent to work with the square roots of the original itens rather than with the items themselves Another possible transiormation dence is the recprocal, which we used in the calculation of the harimone mean We can also combine loganthms with reciprocals, ete
The work involved in doing this sort of thing can be quite sub stantial and very frustrating if our efforts turn out to be fruitless The use of spectal graph paper, constructed on the same principles as logarithmic paper and probabihty paper, can faciltate our efforts to make a skexed serees reasonably symmetrical We must confess, however, that relatively litile success has been had in transforming skewed business data into symmetrical data by some simple device We should hesitate to devote mucb thme to a saarch for a proper transformation unless we have very strong reasons to prefer the anthmetic mean to the medran

Mothematleal Propertior of Mean and Median. We alrendy have noted that the median is a least-ercor salue (p 165) and that the sum of the devistons arotad the mean equals 0 (p 149). We now nole thist the mean is a least-squared eror value These thres mathematical propertes are illustrated in Table 64

Column 2 illustrate that the sum of the deviations from the meqn equaly 0 This is the property that makes it posmble to uac shortcut methods of ealeulating the mean It also considerably sumplifies much of the mathematies of manipulating the anthmetue mean It aloo tells us that the mean dutdes a sernes into two parts so that the sum of all the tems abose the mean muals the sum of all the tems belon the mean It is thus analogous to the center of grasity, It ahould be clear that this zould mean nothing in a practical prob. lem unlees it were meaningiul to add the tems in a acmes

Column 3 allutratea the process of geting the sum of the squares of the devations from the mean The is fundamental to the calculation of the standard deriation and the equarng 19 done to ase tematically convert all the minus agns to plus arma The sum of the ae squared devations 338 , is the emallest sum of aquared dews. thoms it is powstule to get with this enes of five numbers If we meysure these "quard devations from any other value than 10 , the anthmetue mean, ne find theit sum to be larger than 338 For exnmple, column 6 measures them from the median, or 7 in the eace, resultung in a sum of 383 It is erinly proved lis the uee of calculus that the eum of the equared desiations in a mommum when

TABLE 64

Iflustration of Mathematioal Praperilat of the Arithmatic Moon end tha Median

$\begin{gathered} X \\ (1) \end{gathered}$	$x-8$ (2)	$(S-\bar{X})^{2}$ (3)	$\|X-X\|$ (4)	$\|x-M d\|$ (5)	$(X-M d)^{t}$ (6)
2	-8	0 Cl	8	5	25
4	-6	36	6	3	0
7	-3	9	3	0	0
12	2	4	2	5	25
25	15	225	15	18	321
\cdots	\cdots	\cdots	-	-	-
50	0	338	34	31	353
	* 7				

they are measured from the suthmetic mean Thes explans why the mean is often called the least-squares value
Although the least-squares property is very useful in calculations, it should not be interpreted as having any other practical slgulficance If least-squares estraates have any practical use, it is because they are the same as arthmetic-mean estumstes, not because they are least squares As a matter of fact, rarely does a squared error make any sense at all For example, we would hestate to tell our boss that the given sales estimate was expected to be accurate with 80% confidence withon a range of $300,000,000$ square dollars If a squared error makes no sense, then, of course, 泣makes no serse as such to mmmuze them
Column 5 illustrates the calculation of the sum of the devations around the median, with the direction of the devation being qunored, thus making all the signs plus We proved by the use of a grapb (p 188) that this sum is a minmum when it is measured from the median Note that the sum is 34 if we measure from the mean in this case
The fact that we generaliy are interested in a least-error value even though we usually calculate a least-squares value 18 a persistent complication on the apphcation of statistical methods It forces us to be continually alest to the shape of the distribution with whiob re work, the fundamental requirement being that the distribution be essentially symmetrical

62 Frequency Series

We bave already had substantial contact with frequency series in our study of com and dice throws The frequency series arose beeause we had deoldect to treat some mdividual events as though they were the same even though they were conceptually or actually difierent For example, if we toss five coins and get a result of HHTTH, this is obviously different from a Tesult of THHTH Ths difference makes a difference to us, however, only if the order of the heads and tanls counts If the order does not make a difference to us, we find it desirable to treat these two events as the same, thus gring us a frequency of 2 for the event of three heads and two tails
Another interesting thing we discovered in our analysis of the frequency distributions of cons and dice was the tendency of such destributions to conform quite well to the normal, or Gaussian, dis-
tribution. We acheved eansidersble conomy of time and effort by wing the notmal distnbution as an appraximation device.

Frequency Distributions of Coln Jouing Data

We nor drece our attention to the conatruchen of tropuency series from setual ample data We tan illustrate one of the problems that arices by examining some actual results of a coin tossing expernment. Table 0.5 eomparea the unverse of long-rua expectationg with two eeparate experiments in totsing five coins 100 times. Fint note that the tho experimeats yolded different results, the moot notable differnec bang the tkewness in the first distribution If we axsume that both of these erperimental distributions aree generated by the same unverse, and this seems rearonable sinte the same act of five coms was used for both, we can explain these different results only by labeing them due to fluctuations of random sampling (Thas is really another way of asying that the differenere ace due to reasons unknowi). Ilence we might assume that the differencte are strietly short-ron and would disappear if we made the sample large enough in eath case In fact, we might go even lurther and astume that both of these distributions would then be the same ss the hypotheszed unverse.

TAELE 6.5

Universe of longrun Expectaflens Campered with Revulti of Iwo Experiments in the fersing of 5 Coini 100 Timet

Number of Heads	Universe of Long-run Expectancy *	Actual Frequency for 100 Tasea	
		Exprnment 11	Experiment 42
0	3	6	2
1	16	17	19
2	31	33	29
3	31	33	3
1	10	8	17
,	3	3	3
	-	\sim	-
	100	100	100

[^8]We are thus brought to what is the real problem for us The typical practical situation finds us in possession of only one set of results of the kind shown an Experment 1 or 2 We are quite sure that if we obtained another set, the results nould be diferent from the first, and that both would be drfferent from the unknown unt verse of long-run expectations Our typical problem then, is makmg the best guess we can about the umverse dstribution from the information provided by one sample distribution in doing this we must answer questoons like this Is the unverse really symmetrical even though the sample shows some skewness? (Cf Experment 1) Does the unverse have a basically smooth distribution as we proceed from one frequency elass to another? Does the unverse have about the same degree of vanation in it as the sample, or might the sample have left out a proper share of extreme thems? And so forth
It should be obvous that our answers to these and smmar ques tions are subject to uncertanty Therefore we concentrate on coming up with not a single answer to such questions but really a set or class of answers, with the set big enough to properly refect the degree of ignorance we have about the location of the true answer

An Important Qualhication In order to smplify our discussion over the next several pages, we are goomg to assume away the prob lem that the unverse may be changing over the period under study We are going to treat our sample atems as though they all came from the same unverse This would be a very dangerous assumption in most practical problems, and we do not make it later But for the moment it will enable us to concentrate on other assues

Some Actual Data

Table 66 lists the first 200 charge sales on a given day in a neigh borhood hardware store in the order in which they actually occurred Since we are assuming that no shifts were taking place on the una verse durng the day that 1s, there were no tendencres for the sales to get larger or smaller in any systematie nay as the day progressed, we ignore the chronological order benceforth The mportant thing is how often sales of various sizes occurred
The Facts as We Find Them Figure 64 portrays graplically the 200 unit sales in order of sure The thers are used in order to concentrate the data in a reasonably small area for more effectue comprehension of their patern of variation
The most important point to note about the unt sales is the vara tron in theur frequency as we progress along the scale from 0 The density appears to increase unthl we reach $\$ 200$ to $\$ 250$ and then

TABte 6.6
Unfl Charge Solot of Nolighborhood Herdware Store In Order of Octurenee

104	200	11.00	124
75	1.25	300	129
423	13	297	139
82	539	52	185
91	316	402	859
29	200	509	174
330	4.50	12.35	512
18	2.58	4.23	500
404	1778	105	72
827	4%	190	309
480	200	88	2084
191	5.34	3283	695
? 64	800	214	4218
115	1030	616	60
3.50	1148	391	31
1047	217	255	711
437	504	179	180
100	210	207	146
81	482	1895	1.85
100	238	635	1008
6	1100	275	104
40	485	41	234
215	25.80	209	1203
523	3.25	247	212
20	217	314	540
200	100	2.25	875
16	1725	503	71.25
245	374	300	409
0.54	367	.84	504
202	12.05	215	140
1394	316	0.26	102
100	400	250	309
694	650	53	474
190	475	3.25	103
249	1700	81	1455
4\%	3605	534	2.54
330	1449	1316	5.28
202	393	191	220
246	179	407	219
115	102	433	2.5
3.20	77	415	110
1200	610	1599	102
2.50	610	124	1389
419	8.98	144	501
204	70	210	310
208	7.38	595	237
548	2.37	2.50	2.52
169	10	100	325
348	670	563	308
85	\$0	543	379

300	305	310	315	320	325	330	335	340	345	350	355	360
240	245	250	255	260	265	270	275	280	285	290	295	300
18	185	190	195	180	205	210	215	220	225	230	235	240
12	12.5	130	135	140	145	150	155	160	165	270	175	180
$\begin{array}{lllllllll}15 & 20 & 25 & \begin{array}{cc}30 \\ \text { Dollar unt sales }\end{array} & 35 & 40 & 45 & 50 & 55\end{array}$												

it deresese tathe: rap dily There sere relatucly fen instances wheren a men unt sale cecurred more than once There nere many unt ales that did oot oceur at atl, even wthn the ranee of high dene ty betacen $\$ 200$ and $\$ 750$ libs dud theee "gaps" appear? is it bectuse unt ales nf thee amounts jut do not oceur beesure they do not exast in the unverte? Or is it because our eample is ao small that 14 would be mpossible for all the different unt asles to apper? For example, 200 nems could not prosebly mer every unt sale scross a sange of $\$ 1000$ Or is it a combina. tion of theee twe explabatory eauece? In other words, perthps some of the gaps are duc to the emallnees of the asmple, whereas others are due to the pneng sy gtemuted in the store which makes it almoat umpossble for eertan prices to appear, and hence certain combinatoos of pacts alien the curtomer buss more than one nem
The beet way to answer theee questions is to ealarge the sample of data and see shat happons If the gaps lend to disappent as the sample ealares, the have evidence that they were not caused by ank petrictiong on the items themaches, but rather by the smatlo ness of the sample if we add another sample of 200 thems to our organal 200 , we find that many of the gaps do tend to fill up as ean bee een in Fit 65 We note, honever that there does seem to be evdence of bunching around $\$ 1, \$ 2,83$, and $8:$ the suspect that thus in a result of proce straters The eoncentration around the even dollar marks tends to disappar as the unit of sale nereneos Thes a probably becaure the unt sale is more likely to be made up of ste craf tems as the amount of the sale atereazes, and henee it is lous afiected by pmee strateg conerderations
If we xere to increse the sample size elen more, we could be still more confident about any conclusions ne meght make about the probsble pattem of distrabution in the unsvere lie would, hase ever, nevet be able to asodd completcly the problem of guessing Three serious restrictions urually prevent our enlarging a sample very much in practical problems One restrietion is inpoad by the fact that we merease the nik of a change in the unieree as we enlarge the sample if it tahes trne fo: sample atems to accumulate, thus pooably minduating any conclusions baved upon the asoumptuons of a single unnerse A second retrection is ecoriomie It coots mones to collect more data, and sometimes the mereased sceuracy s not worth the cott. And finally there is the fact that in many problems there is no way we can cularge the sample except by wating for the fulure to become the past, and by then it is too late to do any thing about the problem we were yorking on

Combening llems. It is posmble to get effects very similar to thoue that result fromenlargug the sample by ignoring pome of the differences betweo the sues of the items For example, if we use our 200 Iters to cover the range from $\$ 0 \mathrm{it}, 89 y$, 850 , with atteotion paid to differences as small as 1 ent, we sould have only 200 items to eover 5000 possuble results Obvously ne are poing to have gaps in the coverage 11,00 the other hand, ae were to decide to round each unit sale to the oestest $\$ 1$, we would oow have only 50 possible resulte It rould no longer be imposzble for our 200 ttems to cover sll the possibilitics Thus, if ne coocerve of the man purpore of calarging the sample as being to increase the rato of the number of thems to the number of possible resuits, we ean achere the same purpose by decreasing the number of possibiltues and keeping the sample sue coostant.

Let us experment with thas techaque by applying it to our 200 unt sales Table 67 shoma the vamous results ne get il we group the unit sales into classes, or intervals Column 1 apeeifies the uoit sale Columos 2 through 10 thew the Irequency for cach soterval of uot esles, with the length of the interval in each ease being apecified at the head of the column The Irequency in a given ioterval 49 plesed opposite the unit sales that would be at the middle of the given ineeval For example, the 26 in column 4 is placed opposite $\$ 100$, which is the maddle of the interval running from $\$ 625$ up to but not includiog $\$ 1375$
The rearon we experment with ecereal different intervals is that ne really hase no simple enterion for zelecting say one na the best The only general rule is an soterval too narron resuled in irregularithes in the datribution of the kind gencrally ssociated with sampling fluctuations, and an interwn too wide covers up too much of the detanl needed to confidently establish the general pattern of the unverse. The practeal probless is, of course, to find the length of interval that is nether too narron nor too wide. One of the best waya to judge shere this medum mugh be is to atudy a chatt of the distributions ae get for varions selceted intervals Figure 66 is such a chart.
The distribution for the amallest interval, $\$ 25$, shons marked irregulnritee The frequencics follow a zig-ag path as they progress toward the peak The $\$ 50$ datnbution is somerthat improved, although it shows a disconcerting dip betreen $\$ 1$ and $\$ 2$. The $\$ 75$ distribution shone comforting smoothness until it ecta above the $\$ 750$ mark The distributions with intervals larger than $\$ 75$ do not show a significant incresac in emoothness In tate, the $\$ 100$ and $\$ 125$ distributions show a disturbing discontunuty between $\$ 4$ and

VABIE 67
Frequency of Unit Charge Sales of a Naighberhood Herdwore Store Selacted Intervals

Dollar
Length of interval
$\begin{array}{llllllllll}\text { Unt } & & & & & & & & & \\ \text { Sales } & 825 & 50 & 75 & 100 & 125 & 150 & 200 & 250 & 300\end{array}$

TABiE 67 (Continurd)

TABLE 67 (Contmusab)

Doilar	Length of Interval								
Bales	825	50	75	100	125	150	200	250	300
9375									
950	0	1			3				
9625									
975	1								
9875									
1000	1	2	3	4		5			
10125									
1025	1								
10375									
1050	1	2							8
10625									
1075	0		3.		4				
10875									
1100	2	2		3			7		
11125									
1125	0							10	
11375			,						
1150	1	1.	2			6.			
11625									
1175	1								
11875									
1200	2	3		4	5				
12125			,						
1225	1		3						
12375									
1250	0	2							
12625									
1275	1								
12875									
1300	0	0	1	1		2	6		
13125									
1325	0				2				
13375									
1350	0	0.							8
13625									
1375	1.		2					5	
13875									
1400	1	2		3.					

1ABLE 67 (Conlinu*d)

TABLE 67 (Centinutd)

Dollar Unt Sales	$\$ 25$	50	75	100	125	150	200	250	300

LABLE 6.7 (Centinved)

TABLE 67 (Continued)

TABLE 6.7 (Continutd)

Dollar

Iecth of Interval

Cent	$\$$	$\$ 25$	50	35	100	125	1.50	200	250

TABLE 67 (Contanued)

Dollar Unit Sales	$\$ 25$	50	75	$\mathbf{1 0 0}$	125	150	200	250	300

TABLE 67 (Centinued)

Dollar	length of Interssl								
Sales	5.25	50	75	10	1.25	1.50	200	250	300
42625			-		---				
4275	0	-							
42.875		,				\checkmark			
4300	0	0	0	0		0	0		
43125	...								
43.35	0				0				
43.355			-						
4350	0								

 the mudpount of the interval
$\$ 6$ All the distnbutions make the pociture ekemness quite clesr. Practically all of them show a peak at, or sery close to, a unit sale of $\$ 200$.
Let us select the distribution mith an interval of $\$ 75$ as the best of those so far considered, and then ach ourselves why we think it is the best Our basse argument would be that it provides the optimum combination of smoothress and detant A smaller interral gives us more detail, which would be good, but only at the sacrifice of smoothness A larger interval grves us less detail, which is had, and with no ssgnificant increate in smoothness. We now ash ourselves thy tre put so much emphasis on smoothness. First, and more importantly, we belheve that most unuerses are smooth in therr

Fig 66 Graphic presentation of unt charge sales of nesghborhood hardware store-frequenceses for selected intervals
distributions This is not usually supported by direct evidence because we are always dealng with samples, and samples are always urregular to some extent We have found, honever, Just as we dad when we enlarged our sample of unit sales to 400 , that larger samples generally are more regular in distrbution form than are smaller samples We reason, therefore, that etlll larger samples would be even smoother, and that the unverse itself would be defintely devoid of integularitises
Second, we put so much emphasis on smoothness of the distrubution because it is conventent A umverse is much easier to deal with If it has a regular shape Such reguiarity is necessary, in faet, if we are going to represent the distribution by some mathematical model, as we did in an earther chapter when we used the model of the normal curve to represent the varous specafic forms of the bmomal In fact the pull of convenence $1 s$ so strong that we are frequently will-
ung to sacnifice a little accuracy to achieve it For example, with tbe umt charge sales we bave reason to suspect that the unverce mught sctually cuntan some untoward bunchng around the even dollar points If this is true, the distribntion would shnw some lumpiness as illustrated in Fig 67 This kand nf lumpiness would present quite a problem if re were to try to represent the distribution with a mathematical model We mght arbitranily smooth out thrs lumpiness on the basis that the resulting errors wnuld be relatively trinal Me can, if cnurce, overdo this and sacrifice too much for convemence

Some Useful Critaria in Selecting Intervals for o Frequency Series

Purpase Behind Construction of frequency Series Two bassc purproes might prompt the construction of a frequency sernes first to facilitate our understanding of the nature of the distrbution, and second to present the data in a form conventent for the use of others The prmary suguificance of the dafference between the two purpores lies in the fact tbat the peron who constructs the trequeacy series from the onginal dats has the orginal dota in hus possesmon and can alrass fall back on the onginal dats for some parts of hus ansluas On the other band if the frequency semes is all we have to rork mith sny firal conclusions must necessanly be directly determined by the frequency senes rather than by the ongunal data Insofar as the irequency senes does not adequately descmbe the original data such final conclusions are subject to error

Fig 6.7 Illustratron of s lumpy frequency distribution

When we construct a frequency senes from the onginal data, we are usually concerned with trying to dscover the general sbape of the universe In addition, we are usually hopeful that the general sbape conforms reasonably well to some standard distribution like the normal Our procedure is very sumlar to what we have done with the unit aales data to this point In addition we often chart the onginal data in a cumulative frequency form to faclitate smoothing and to compare the result with a standard distribution We found it very convenient to cbart our binomial distributions in a cumulative form to see better what was happening as we increased the size of our samples
Presentation of data in the form of a frequency series provides two advantages It enables the presentation of masses of data in a very small space and it preanalyzes the data It is most appropriate only when the sample of data is farrly large, say, at least 150 items If the sample as much less than 150, the economy of space provided hy the frequency series is less apectacular and the risks of error in the preanalyss increase With small amounts of data it is usually better to make our own mistakes hy constructing a series ourselves than to restrict our analysis to ouly what can be done with the preconstructed frequency series Oceasionally it is necessary to present even small samples in the form of frequency series in order to conceal the identity of the specific items Such concealment is often required in order to get cooperation from the suppliers of the orginal information For example, a woman might be willing to admut her age 18 between 30 and 40 years although she would not admit the exact year

Sometimes the sample of data is so large that we feel that for all practical purposes the resultant distribution will look very much like the universe Then, if we have no reason to belleve that the universe has gaps in it or has some ponis of unusually heavy concentration, we often will preset the motervals and collect the data by just tallying the proper interval locations Thus we never actually record a speceficic item
Intervals Should Be of Constant Length If af All Reasonable One of the points of interest in stadying a frequency senes is what happens to the frequency from interval to interval If the intervals themselves have varying lengtha, it 25 very dificult to separate that part of the change in frequency due to the change in interval length from that part due to a real cbange in frequency It is obvious, for example, that lage intervals will tend to have greater frequencies
than small untervals Equal stzed intervals will also considerably faciltate the anslysis of the senes, whether by matheraatics or by charts, as we see later
Unfortunately, there are many series in business and economic data which are so shered in their distribuitions that adherence to the equal intersal rule creates more problems than it solves Our unit sales sernes illustrates the dilemma An interval small enough in size to present a reasonable amount of detal in the areas where the bulk of the data falls results in a great number of empty intervals in the higher ranges of the dats The compromise solution is to leagthen the intervals as the data thin out and even possibly to pro unde what is called an open end to cover all the items that fall above a certain value (or below a certan value if the data are skened negatnely, which is very rare in business data) These compromses will force some modification of analytical procedures, but the problems are certandy not insurmountable For example, it should be pointed out that the length of the intervals usually has no effect whatsoever on the cumulative frequency chart

Intervols Should be Mutually Exfurive The intervals should be \checkmark defined that a particular item can fall in only one interal, and there must be an interval for every possible item Unfortunately, it is much more dufficult to unequivocally define an interval than me might umagine it is mportant here to keep clearly in mund the distinction betw cen a discrete vanable, one that varies in steps, and a contunuous varable, one that theoreticalls and actually vanes by infintesimal amounts If a series is discrete, there nould be gaps in the dsta themselves, and we solve our problem of unequivocally defined intervals by matching the gaps between iterns of data with gaps between the intervals For example, if we nere classifying familes by number of chidren in them, we might use intervals as follows
$0-1$ children
$2-3: "$
$4-5:$
etc

If the series is continuous, such as in a distribution of heights of human beings, the limits of adjacent intervals theoretically butt against each other, n ith nothing st sll in betneen We know, however, that hmitations of perception result in rounded measurements, thus presenting the appearance of gaps For example, if our meas
urements are rounded to one decimal place, there is no measurement recorded between 58^{\prime} and 59^{\prime} We know, nevertheless, that the 58 might actually be as large as 585 and 59 as small as 585 , thus theoretically elminating the gap
A theoretically perfect solution to the problem of intervals for a continuous series cannot be acheved without using footnotes because there is no other way to state the mtervals so that no one will be misled To make our discussion concrete, let us assume we have measurements rounded to one decimal place If we write our intervals, say, as $100-195,200-295$, etc, there would be no problem where to put a given atem All the numbers from 10 to 19 go into the $100-1.95$ interval, all those from 20 to 29 into tbe $200-295$ intervai, ete The true intervals, however, would be 95-1 95, 195295 , etc, and the midpoints of the intervals would be 145,245 , etc This follows from the fact that the number, 10, might actually be as small as 95 If ne state the mterval as $100-195$, a person using the series mught make two meorrect assumptions He may assume the data are accurate to two decmal places, and he may assume the modpoint is 1475 If we state the mterval as 95-1 95, he agam may assume 2 -deomal-place aceuracy In addution, he may be confused by the faet that the upper himit of one interval is also the lower hmit of the next interval We can eliminate both problems by using footnotes For example, the footnotes may read

1 Lower hime of interval is meluded, upper lame excluded
2 Data actually accurate to only one deemal place
Some people prefer to elmmate the first footnote by stating the intervals as " 95 up to but not meludeng 195 " ete This method takes quite a bit of space im the body of the table, however

Location of the Arathmetic Mean and Median in a Frequency Distribution It is an advantage to know the arithmetie mean and the medran of a senes before we seleet the class boundaries If the median and the mean are almost equal in size, this ndicates that the over-all distribution will be farly syrmetncal We should then select boundaries for the mterval contanning the medran and the mean so that they will be as close as possible to the midpoint of that interval If the mean and the median are sagmficantly different in size, the distribution is skewed in the direction of the mean For example, the arithmetic mean meome per family in the United States, and in every other country, is signficantly larger than the median, particularly before taxes are deducted Thas diference is caused by
the skewness in the direction of the high momes Figure 6.8 allustrates the situation Note that the peak irequency is to the left of the median, which is to the left of the mean Also note that the distance from the medran to the mean 13 about half as large as the distance from the median to the mode, the value associated with the peak frequency This approxmate 2 to 1 ratio of these distances is farly typical of moderately skewed senies Thas ratio does not hold too well, however, if the skewness is as large, say, as in our unit sales sernes Our first sample of 200 has an anthmetic mean of $\$ 72$ and a median of only 8314 If the 2 to 1 ratio prevaled, the mode would be only $\$ 185$. Figure 62 shows that a better estimate of the mode would place if somewhere between $\$ 200$ and $\$ 2.50$ Our second sample of 200 has an anthmetse mean of $\$ 490$ and a medran of $\$ 342$ The 2 to 1 ratio prould place the mode at $\$ 268$, a figure which seems to be too high

Logno suggests that the mode of the distribution should be near the center of the interval in which it falls and that the interval which contans the mode should also have the highest frequency. Unfortunately, there as no smople way to estumate the mode until we ve already selected our untervals and talled the thems Since such 4 pror selection influences the location of the mode, we run some

Fis 6.s Distribution of family nacorite in Vermont, 1959 (Source- United States Cexrus of Population, 1960-, Vermost; F 89)
risk of reasoming in a circle The ideal solution would be to select many intervals wheh differ hoth in suze and houndaries for the same size, and select the final distrihution wheh resulted in the best compromise between smoothness and detal, with no explicit concern for the mode The mode of the resultant distribution would then be ahout as good an estimate of the true mode as we might make But an approach like this involves considerahle labor, hence it is seldom used Rather we trust to luck and postronstruction analysis to locate the mode

Actually we are not overly concemed with the location of the mode except as a critenon for the selection of interval houndaries As we have seen, the mode bas practically no use in husiness prohlems and almost never has to he calculated for its own sake

Interval Boundaries and Midpoints Should Be Relotively Round Numbers This condition bas a very appealing rang, and there are occasions when it has merit However, we cannot acheve this objective without introdueing some has to the results we get from caloulations of the distrihution For example let us suppose we decided to round our intervals from 95-195 to 10-20 This would have the obnous ment of stating our intervals with the same number of decmal places as the data, thus elimmating the need for a footnote on accuracy It also results in round numhers It will, however, put numbers into the interval that nould be measured as running from 10 to 19 but whech actualiy would run from 95 to 195 (In this and subsequent digcussion we are assuming that the upper limat as excluded from the interval) The typical person prohahly would assume that the midpoint of an interval running from 10 to 20 would he 15 instead of the true mudpoint of 145 He would also gossume that the interval ran from 10 to 20 If he uses the 15 mm stead of the 145 in his calculations, his results would have an up ward bias in some cases Of course, this has is only 05 , and many people may be willing to have it in a given problem for the convensence of the round numbers Nevertheless a careful worker should know that the bias is there and know what he is agnonng if he so decides If we are construcing the frequency distribution for others to use, we defintely should provide information ahout any bias
The primary argument for relatively round numbers is convenience of calculation This is not so mportant as a few years ago With modern calculators and modern methods of short-cut calculation we are better advised to be more concerned with the accuracy of our data than with the "roundness" of our numhers An example
of how easy it is to solve the problem of round numbers when we are at the calculation stage would be the rounding of 145 to 150,245 to 250 , ete, by adding 05 to all the numbers before performing a calculation Then ahen we have fimshed, we merely subtract 05 from our answer if appropriate We say "if appropriate" because there are some calculations, such as the standard devistion, that would be unaffected by the addition of 05 to all the numbers

The Probfem of Lumpiness or Discontinuities in the Data. We have already noted the possbilly that our unt sales data had an apparent tendency to concentrate around the even dollar points, particularly at the lower values of the sertes We used $\mathrm{F}_{1 \mathrm{E}} 67$ to illustrate the problem We decided to ignore the problem in our treatment of the unit sales data It is mportant nevertheless, that we now note what we would have done if we had not decided to agnore the problem
We would have done two things First, we would have selected intervals in such a way that the dollar points would have been reasonably close to interval midponts Second, we would have made the intervals small enough so that intervals adjacent to those that had the dolla: ponts would have approprately low frequencies, thus highlighting the fact that the dollar-point concentrations did exist The resultant lumpmess would then be quite obvious, and appropriately so It would be inapproprate to worry about midpoints cor responding to concentration points and then choose inlervals so broad that the lumpmess gets smoothed over, thus encouraging people to assume that the series bas no concentration ponts other than the single one around the mode

6.3 Charts of Erequency Series or of Probability Distributions

We have already used charts extensively in our discussions We have found them a very useful tool to help us acquire a mental picture of the way in which a vamable may be varying and to compare the particular distribution with some pattern we might have in mund, thus helping us to decide whether any conformity to a pattern 15 close enough to justify the hypothesis that the pattern is a farr representation of the senes of data mvolved it 18 possible sometimes to make probability calculatuons to test the conformity of fact with hypothess Even these calculations, however, involve
some assumptions about the shape of the distribution we are dealing with, a shape best suggested by looking at a chart Thus we find charts helpful even if only prelmmary to using mathematical calculations

One of the most important functions of a chart 15 to provide gundance for interpolateng between given items in order to infer the values of atems whach we do not yet bave but which we suspect can occur nevertheless In fact, the whole process of inference is essentally a process of interpolating, and practically all statistical methods are interpolation methods In a sense there is no need to be persuaded to practice the art of interpolation, or the related art of extrapolation We all seem to have an mtutuve urge to read between the lines, 80 to speak Where we may need a little persuasion is to consider the possibility that apparently new and strange interpolathon methods may he useiful addutions to our present stock of treed and true methodsI
Figure 69 dlustrates five aiternative ways of pieturing a frequency distribution Each has its counterpart in the presentation of a cumulatuve frequency destribution as shown in Fig 610 Part A presents only the coordinate dots The location of the dot with respect to the variable as no problem for the cumulative distribution It is ior the noncumulative form, however The problem exists because the dot must, represent an interval, such as from 95 up to but not meluding 195 Where should we place the dot m the interval? The convention is to place the dot at the medpoint of the interval If the items were symmetrically distrihuted through the interval, the midpoint would correspond to both the meduan and the mean of the items in the interval. But, of course, the items are rarely symmetrycally distributed, esther actually or theoretically, with the possible exception of the muddle interval in an over-all symmetrical distribution What the midpoint represents, then, is really a concession to conventence The determination of the median or mean of the interval requires some assumptaons ahout the over-all dastribution Unless the assumption of normality is reasonable, we find ourselves getting into a veritable maze of difficultes in trying to locate the median or mean, and we choose to struggle along with the midpoint and its obvious bias In general the undpoints are too far away from the center of the distribution Note also that the bias in the lower half tends to balance that of the upper half Thus, we can see that a standard deviation calculated from the midpomts would be too large, but an arthmetic mean would be about right
Part B of Fig 69 uses a vertical har to represent the frequency

THE STATISTICAL METHOD IN BUSINESS

Fig 69

Fig 610

Fif 44 Alternative iorms of frequency distibution charts
Fig 610 Alternat ve forms of cunulative frequency dutribution cherts (oo of cases with valte lese (han specfied X)
in an interval The assumption of an even distribution within an interval, implied by the use of the midpoint in Part A, is nor made explucit The result is the appearance of a set of steps as we go from interval to intenal This type of cbart is called a hastogram Its apparent counterpart in Fig 610 requires ennnecting the dots with stranght lines Such a linear change ir the total, or cumulatise, frequency is the equralent of assuming that the frequency in an miterval is equally spaced
The use of veriteal lines as in Part C of $F i g 69$ is particularly appropriate when we are desling with a discrete series He used this form when charting some of our bmamial distributions This mode of presentatinn emphasizes that there are gaps in the data and that there is no need to solve the problem of how best to interpolate between recorded items
The cumulatre distribution counterpart of Part C of Fig 68 conssist of steps as we proceed from one value to the next This mode of presentation is consistent with the idea that the frequencess change in fumps then ise are dealing nith a discrete sernes Tins follons from the fact that there nould be no X values faling be treen those for rhich the frequencies are grven

Part D of Fig 69 is the result of connecting the mudponts gnen in Part A This form is usually called a frequency polygon The use of sucb connecting straight lines represents a relatis ely crude attempt at provining a basss for interpolating between the recorded frequencies This method of anterpolation assumes that the mtermediate frequences cbange at rates that are related to the frequencies that straddle the point of interest Ths assumption is generally more valid than the assumption of cqual frequencies that is mpleed by the ure of a histogram as in Part B of Fig 69
The cumulative distribution counterpart of the frequency polygon requires that the points be connected ath curved hnes as shown in Part D nf Fig 610 There is no sumple way to draw the evact curve that would correspond to the polygon lime The curves in Part D of Fig 610 have just been drawn by eye
Part E represents an attempt to draw a picture of the distribution of the unverse from the sample dots shorn in Part A Note that no attempt is made to dran the cune through the sample dots Rather, the curve generally goes between the dots It may seem currous that no nbvous attempt was made to dram the curve so it π as a little less dispersed than the dots, thus tending to offset some of the bras caused by placing the dnts at modpoints The reason 15 that samples tend to understate the dispersion of a unverse We
have occasion to explain this understatement later By drawing our curve in between the dots, we are letting the overstatement of $d_{1 s}$. persion caused by the use of mudponts balance somewhat the understatement caused by the use of a sample
The curve shown in Part E of Fig 610 is probably the best basis for interpolating the frequencies of subintervals The estimated frequency nould be caleulated by taking the difference between the cumulative frequencres indicated for the two boundaries of the subinterval For example, let us estmate the frequency for the subinterval between $\$ 450$ and $\$ 500$ for our distribution of unt charge sales Fugure 611 shows the cumulative distribution of such sales and also a smooth curve fitted by cye to that distrabution The smooth curve indicates 6875% of the aales falling below $\$ 500$ and $6 \pm \%$ falling below $\$ 40$ Thus we estimate that 475% of the sales would fall between $\$ 450$ and $\$ 500$

Fig 611 Cumulative frequency distribution of 200 unit charge sales of a neighborhood bardware store with smooth curve fitted by eye to represent the unverse of such sales

Charting Frequency Series with Unequal Intervals or with Open Ends

If a frequency distribution has unequal intervals, adjustments must be made in the recorded frequencies before we can draw a proper chart In effect we mush recreate the frequencies that would have existed if equal intervals had been used We can now see one of the advantages of equal intervals in the first place Table 68 shows the distribution of the 200 charge sales of our hardware store as it might typically be presented for the use of others Note that an interval of $\$ 75$ is used until we get to a value of $\$ 7375$ The interval then increases to a width of $\$ 150$ It stays at $\$ 150$ untal we reach $\$ 14875$, where 1 , mereases to a width of $\$ 300$ The sermes

TABLE 68
Relative Frequency of Unt Charge Sales of a Neighborhood Hardware Store (200 Unit Sules in Sumple)

Dollar Unt Sales	Proporton of Dut Sales
Dader 625^{*}	030
$625-1375$	130
$1375-2125$	150
$2125-2875$	145
$2875-3625$	085
$3625-4375$	085
$4370-5125$	065
$5125-5875$	065
$5875-6625$	045
$6625-7375$	020
$7375-8875$	025
$8875-10375$	020
$10375-11875$	025
$11875-13375$	020
$1337-14875$	020
$14875-17875$	020
$17875-20875$	010
20875 and over \dagger	040

* Lower Limut Inclusive Soles actually occurred only to nearest cent
\dagger Arthmetre mear of items in this class $15 \$ 3802$

TABEE 69
Revision of Table 6 I Distribution ia Equalle Length of Intervals

Dollar Unit Sales	Proportion of Unit Sales
$-125-625 *$	0900
625-1 375	1300
1375-2 125	1500
$2125-2876$	1450
2875-3625	0850
$3625-4376$	0850
4375-5 125	0650
$5125-5875$	0050
5 875-6625	0450
$6625-7375$	0200
$7375-8125$	0125
$8125-8875$	0125
$8875-9625$	0100
8625-10375	0100
$10375-11125$	0125
11 125-11875	0125
11 875-12 625	0100
12 625-13 375	. 0100
13 375-14 125	0100
14125-14875	0100
14875-15 625	0050
15825-10 3 ${ }^{5}$	2005
16373-17125	0050
17 125-17875	0050
17875-18625	0025
18625-19 375	0025
$19375-20125$	0025
$20125-20875$	0025
20875 and over !	0400
	10000

[^9]then becomes aper after 821875 The stmplest assumption we cen make about the frequeneres in the extra-mide intervals is that they are equally spaced We maght assume that the $\$ 8875$ to $\$ 9625$ interval has a frequency of 10%, just half the frequency in the full interval Common sense suggests that there probably would be slughtly more than 10% of the frequency in the lower half and slighty less than 10% in the upper half of the interval We are, however, well out on the tall of this distribution, thus making the curve farly close to homzontsl Hence the assumption of equal frequency is not so bed In fact, considering the errors in plotting a graph and the limited perceptive abllaty of the eye, it 18 entruely possible that the dufference between the assumed equal distribution and the so-called truth is withun the hmits of these crudities We would not say this if we were interpolating in the intenor ranges of the data, however Fortunately we rarely find the extra-large untervals in the interior ranges
If we iollow thas policy of equally dastrbuting the irequencies in the larger interval, we get frequencies as shown un Table 68 and in 1 ing 612 Note what we did on the chart with the open ends We closed the lower end by assumang that there pould be no sales of less than 0 This seems ressonable, although there might be some logic to macluding "sales returns" in the unt sales dastritution as though they were negative sales We attached an arrow at the upper end to mdioate that the distrbution continues Thue we have spread the 40% of the sales that were $\$ 21875$ or more over an in-

Fig 612 Graphic presentation of frequency distribution of unit charge sales of a neeghborhood hardware store (It hat been aswimed that the frequenenes in the extra lerge intervala are equelly dastributed See Tables 6.8 and 69)
definte range This indefinteness bothers some people because they think that the upper limit of the series should be explicitly stated We handled the problem by appending a footnote to the table which specifies the highest unit sale in our sample of 200 and also the anthmetic mean of all the sales in the open class Thss appended information can be very useful to a person who would like to make some calculations from the given distribution It can be a very challenging tack to estumate the anthmetic mean of a distribution with open ends if there is no specific information about the total of the tems in the open class

6.4 Interpolating in a Frequency Series

When we interpolate in a frequency series, we assume that each item within an interval occupies its own individual space and that all the spaces are equal For example, the interval $\$ 1375$ to 2125 of our unit sales series contains 15% of the 200 items Hence re dive the internal into 15 equal spaces, with each of the given items assumed to be located at the middle of its space (If re were working with the 200 items instead of the percentage of items, we nould have druded the interial into 30 spaces The principles and final answers would reman the same) See Fig 613 If ne mished to estimate the value below which 25% of the sales occurred, we would proceed as follors Since the two untervals below $\$ 1375$ contain a total of 16% of the items (see Table 68), ne must proceed another 9% to reach the $\mathbf{2 5 \%}$ pount. We go mine spaces into the interval, $\$ 1375$ to 2125 , or $9 / 15$ of the whole interval Suce the interval is $\$ 75$ long, ne go a distance of $9 / 15 \times \$ 75$, or $\$ 45$ We then add this to the value of the lower boundary, $\$ 1375$, and get a final estimate of $\$ 1825$ as the value below which 25% of the sales fell
Any pount belor (or sbare) which some given percentage of cases is estrmated to fall is calied a percentile For example, $\$ 1825$ would be the 25 th percentule, the point befon wheh 25% of the cases are

Fig 6.13 Illustration of spacing assumption for miterpolating in a frequencs

estimated to fall and above wbich 75% are estimated to fall It has become somewhat of a convention to count the percentiles from the bottom of a senes Thus a student scoming at the 95 th percentile on a test would be scoring higher than one who scored at the 5th percentile We have already noted that the 50 th percentile is specally named as the medran Tbe 25 th and 75 th percentiles are called the first and third quartiles, respectavely The 10th, 20th, ete percentiles are often called the first, second, etc deciles
All of these percentile measures are generally calculated by the method just desombed for the 25 th percentile Note that the fundsmental assumption is that the interval that contains the moncated percentile has as many equal spaces as there are atems in that mterval This assumption is not strictly correct, but the errors in using it are considered to be sraall, partieulariy m view of the difficulties caused by a more realishic assumption

6.5 Shart.cut Calculation Methods

We found a short-cut method of calculating the standard deviathon quite advantageous (p 150), and now we generalue this shortout procedure to better appreciate its versatility
Suppose we wish to calculate the anthmetic mean of the following five numbers $50,75,100,150225$ Following the defintion of the mean, we would add these five numbers and divide by 5 , geting a total of 600 and a mean of 120 If we diunde each of the numbers by 25 , we would get the senes $2,3,4,6,9$ The mean of the latter series is 48 , which when multaphed by 25 would give us 120 If we let k represent a number such as 25 , what we have done can be expressed as

$$
X=k \frac{\sum \frac{X}{k}}{N}
$$

Of course, k can be any value we mish it to be, zocluding a decimal fraction Thus it is proper to divide (or multiply) all the numbers in a series by any arbitrary number, take the mean of the result, and then multuply (or divide) by the arbitrary number to return to the orgmal units of the series We should be no more bothered by this process with arbitrary numbers than by the same process that we use when we convert dollars to cents and back again, or feet to mehes and back again, ete

Let us now subtract 100 from eacb nf our five numbers, resulting In the senes $-50,-25,0,50,125$, and then take the anthmetic mean of the resultant five numbers, getting a result of 20 If we now add the 100 back in, we get a final result of 120 If we let C represent a number such as 100 , what we have done can be expressed as

$$
X=C+\frac{\Sigma(X-C)}{N}
$$

C can be any arbitrary number, ether positive nr negative
If we wish we can subtract 100 from all nur numbers and dinde the resultant series by 25 , getung a final series of $-2,-1,0,2,5$ and a mean of 8 If we multuply 8 by 25 and sdd 100 , we agan end up with 120 Note that tbe order in which we make these adjustments is amportant. If we had added 100 and multiphed by 25 , we would have obtalned a ndiculous answer

These processes of sbifing the oncun of measure (subtracting C) and chsngng the untt of measure (dinding by k) can be combined into a angle formula as

$$
X=C+k \frac{\sum\left(\frac{X-C}{k}\right)}{N}
$$

The trick in practuce is to choose values for C and h so that the calculation of the mean is expedited We illustrate bow this can be done in the next section
The same transfomations can be used to expedite the calculation of the standard dernation Interesungly enough, hon ever, the value of the standard devastion is not affected by adding or subtracting C, and we do not have to reverse the process at the end of the calculation
Table 610 illustrates the application of these transformations to the calculation of the standard deviation These seem confusing at first but study this table column by column and any confusion should clear up Columns I through 3 show the calculation of the mean and standard deviation by straghtforward application of their defintions Column 4 shifte the ongun of measure from 0 to 100 The result is called d for convenjence of reference Column 5 calculates $d-\bar{d}$ Note that it turns out to be exactly the same as x in column 2 It can be seen that the standard devation of d is exactly the same as the standard devation of \bar{X}, thus venfyong that the standard devation is independent of the orgin of measure of the senes In

TABLE 610

Shorievt Methads of Calculeting the Standard Deviation

A Anth $\operatorname{Meg}=\frac{\Sigma X}{N}=\frac{600}{5}=120=I$
$B \bar{X}=C+\frac{\Sigma(X-C)}{N}=100+1 f 0=120$
$C \bar{X}=C+\frac{\sum \frac{X-C}{\gamma}}{N} 1=100+\frac{1}{6} 25=120$
D Standard Devation $s=\sqrt{\frac{\sum\left(X-\overline{X^{2}}\right)^{2}}{N}}=\sqrt{\frac{\sum \pi^{2}}{N}}=\sqrt{\frac{39250}{5}}=6205$
$E s=k \sqrt{\frac{\sum\left(\frac{X}{k}-\frac{X}{k}\right)^{2}}{N}}=25 \sqrt{\frac{3080}{5}}=25 \times 2482=6205$
$F s=k \sqrt{\frac{\sum\left(\frac{X-C}{k}\right)^{2}}{N}-\left(\frac{\sum\left(\frac{X-C}{k}\right)}{N}\right)^{2}}=25 \times \sqrt{\frac{34}{5}-\left(\frac{4}{5}\right)^{2}}$
$=25 \times 2482=6205$
column 6 we show the results of diving X by 25 If we divide the sum of thas column by 5 , we get 48 , wheh is $1 / 25$ of the mean of X Columns 7 and 8 carry out, the necessary calculations to determine the standard devation of $X / 25$ We find this standard devation to be 2482 , which $181 / 25$ of the standard devestion of X

We are now ready for columns 9 and 10 Column 918 the result of dividing d (see column 4) by 25 Note that column 9 does not add to 0 , wheh it would if d had been measured from the mean of 120 instead of 100 Column 10 squares the column 9 values The
sum of column 10 is not the proper sum for the determanation of the standard deviation because the deviations were not measured from the mean. A correction must be made to allom for the error The suze of the error is equal to the difierence between the mesn and the ongn actusily ueed The mean 1948 (Remember that all our numbers bate been davded by 25 , thus explanng how we get from 120 to 48) We measured our deviations from 40 , or from $100 / 25$, and each value in column 9 is too large by 8 Since we squared each of these values, $n e$ also quared the error We correct this error by subtracting S^{2}, or 64 , from the mean of the values in column 10 The square root of thes grelds 2482 , which when multuphed by 25 gres us the correct atandard devation of 6205
The whole process can be summanzed by the formula

$$
z=k \sqrt{\frac{\sum\left(\frac{X-C}{k}\right)^{2}}{N}-\left(\frac{\left.\sum \frac{X-C}{k}\right)^{2}}{N}\right.}
$$

Note that we must finsily multaply by k to reverse the ongmal dirssion by k No such reversal is necessary to adjust for the subtraction of C, becauce the standard devistion 15 mdependent of the ongen of measure The secood term under the radical is alrays tubtracted from the first term The first term can never be too small because of the least squares property of the mesn There are tro values that mught be choceo for C that are north commeotiog on When C equals 0 , the formula reduces to the equivaleot of the formuls we used in the preceding chapter (p 150), the only diference being the change an the unt by use of h. We expressed that formula as "the square root of the mesn of the squares minus the square of the mean "
When C equals the mean, the formula reduces to the calculation of the deviations from the mean itself Note that the second term under the radical becomes equal to 0 theo because the operation withn the parentheses would be the summation of the deviations from the mean, which we bave learned always equals zero

66 Calculating the Mean and Standard Deviatian Fram a Frequency Series

The calculation of the mean and standard devastion from a frequency senes miolves only manor modifications of the procedures
hitherto discussed Table 611 illustrates the procedures by applying them to our hardware store unt sales series Column 3 is the midpoint of each interval with the exception of the last interval, which is represented by the arthmetic mean of the items in that interval The fundamental assumption ta that the midpoints are ressonable approximations to the means of itens within intervals We know that the midpoints tend to be too small in the lower intervals and too large in the upper intervals, hut we expect that these errors will come close to canceling Column 4 gives the estimates for the total of the stems witho an interyal and is calculated by multaplying the irequency by the midpoint The total of thas column gives us the estimated total of all the items Division by N, the total frequency, grees us the estimate of the anthmetic mean, s value of $\$ 572$
Column 5 shows the deviation of each midpoint from the mean Hence we are now assumung that the midpoint is an adequate representation for each item within an interval to measure tit devation from the mean However, we know that the true mean or median of an interval as actually closer to the general mean than the midponit Thus the devations from the midpont are too large, and the standard deviation based on them $1 a$ in general too large Attempts have been made to develop a correction for thss error, the most notable that of Sheppard Sheppard's eorrection formula should be apphed only when N is farly large, say, 1000 or more, and also when the distribution is not very skew Neither condition is satisfied by our distribution, so we make no attempt to correct our standard deviation
Column 6 multiphes esch deviation by its frequeney This column nhowd add to nory it dees not dowate of rounding eirors Colum 7 is the product of columns 5 and 6 and gives us the sum of the squares of the devations from the mean This sum is then divided by N, or I, glving a result of 579339 square dollars We call this result, namely the mean of the squares of the deviations from the mean, the varance, a concept we run across frequently in later pages The square root of the variance gives us the standard deviation, or $\$ 761$
The calculations to this pont are the result of following the straughtforward definitions of the mean and standard deviation The remainder of the columns illustrate the apphcation of various shortcut devices, some of which seem not to be really shorit-euts

Column 8 can be used in place of columns 5,6 , and 7 in geting the standard deviation Column 8 is the product of columns 3 and 4 If we divide the sum of this column by 1 and subtract the

Calculation of the Aruhmatic Mean and the Standard Deviation frem the

Dollar Unis Ealea (1)	Propartana of Ralut f (2)	$\begin{gathered} \text { Muppont } \\ \text { of } \\ \text { Intervalt } \\ x \\ \text { (3) } \end{gathered}$	$\frac{\pi}{6}$	$\begin{gathered} x-F \\ \phi \\ z \\ (5) \end{gathered}$	$\begin{aligned} & f= \\ & \text { (6) } \end{aligned}$	$\begin{aligned} & f x^{t} \\ & (7) \end{aligned}$
Under 625*	000	3125	009775	-88084	- 162102	$8768 \% 5$
625-1 375	130	10000	130000	-47189	- 613457	2894842
1375-2125	150	17500	202500	-3 1080	- 605338	2368 E25
21252875	145	25000	308500	- 82189	-468740	1502389
2875-3025	085	32500	276230	-24089	-200850	518113
3625-4375	085	40000	340000	-17189	- 146108	251142
4375-5 125	005	47500	308750	-9680	-.052978	061019
3125-5875	Ots	55000	\$37500	- 2100	- 0142828	003115
5875-6625	045	6.2500	281250	8511	029900	012093
8525-7375	0 Ca	70000	140000	12811	025622	032834
$7375-8875$	025	51250	203125	24061	080152	144732
885-10 573	.020	98250	1825008	39001	O7812n	505152
10 375-11 875	023	11250	278125	54051	135158	730415
11875-13 375	080	128250	352500	89081	138122	053854
13.375-14 875	020	1 1230	288500	81001	108122	1413250
$14875-17875$	020	103750	327500	106581	218132	2.271049
17,875-20 873	010	103750	103750	138501	138581	1,844891
20 8is and over:	040	380200	1820900	32.3011	1.30204	4173442
	1000		5718825		000027	57 03x922
$x=\frac{2 f x}{N}=\frac{8718025}{1}=5572$			$I=c+\frac{z / X}{X}=478+9800-5372$			
$\omega=\sqrt{\frac{2 f(\bar{X}-\bar{\Sigma})^{1}}{N}}=\sqrt{\frac{x_{f x}}{N}}$			$x=c+k \frac{2 \gamma\left(\frac{x-c}{k}\right)}{N}$		$475+375 \times 2584901$	
$-\sqrt{ }$	$\frac{\sqrt{333882}}{1}=\$$		- $488+9880-557$			

[^10]square of the arithmetic mean, we get the variance The square root of this then gives us the standard deviation of $\$ 761$, the same answer as before This calculation saves 18 subtractions and 18 multiphications over the first method and adds only one multaphcation and one subtraction, a net saving of 34 operations
The remaining columns do not enable us to save on the number of operations They merely result in transforming the given numbers into other numbers which we hope are easuer to work with, either because the new numbers are smaller or because they are "rounder," or both

6 II
Frequency Distribution of the Unif Sales of a Nagghborhood Hardware Store

$\begin{aligned} & f x^{2} \\ & (8) \end{aligned}$	$\begin{gathered} x-G=X \\ (C=476) \end{gathered}$ (9)	$\begin{aligned} & J K \\ & (10) \end{aligned}$	$\begin{gathered} (1-X) \\ -x^{*} \\ (11) \end{gathered}$	$\begin{aligned} & \frac{\hbar-C}{k}=d \\ & (x=375) \end{aligned}$ (12)	$\begin{gathered} d \\ (k=75) \\ (12 a) \end{gathered}$	$(4$	$\underset{(14)}{\int_{1}^{2}}$
002930	-44375	- 133125	-84054	-118933	-69187	-354999	4200810
130000	-37500	-487500	-47189	-10	-50	-1300900	13 130000
459375	-30000	-450000	-38889	-8	-40	-1.200000	¢ 6000000
906250	-2.2500	-326230	-32189	-6	-30	- 870000	3220000
897812	-15000	-127500	-2 4888	-1	-20	- 340000	1360900
1360000	- 7500	-083750	-17189	-2	-10	-170000	340000
1466562	0	0	-0889	0	0	0	0
1906250	7500	028350	- 2189	2	10	130000	266\%
1757812	15000	067500	5311	4	20	180000	720000
980070	2.2500	\% 45000	12811	B	30	120000	720000
1650391	33750	083875	24051	9	46	225000	2025000
1852812	4.8750	097500	39001	13	65	260000	3380000
30 ¢f4151	03750	159375	54691	17	${ }^{85}$	425000	7225000
3187812	78750	157600	6 Cosi	21	105	480000	8820000
3900312	93750	187500	84061	25	125	500000	12.550000
5362812	11 6250	232500	10659	31	35	820000	19220000
3758906	146250	146250	136561	30	195	390000	15210000
57.820816	332700	1850500	32.3011	8872	4136	3548800	814849336
90636993		963925				25838	

$$
\begin{aligned}
& =\sqrt{\frac{\Sigma / X^{2}}{N}-\left(\frac{\Sigma j X}{N}\right)^{2}} \\
& =\sqrt{50638383-57188^{2}} \\
& =\$ 201 \\
& ==\sqrt{\frac{8 / 4^{4}}{N}-\left(\frac{\Sigma / d}{N}\right)^{2}}
\end{aligned}
$$

$$
=375 \sqrt{4186503-66760}
$$

$$
=375 \times 20207=5761
$$

In column 9 we subtract $\$ 475$ from each of the X values The reason is to try to get the sum of column 10 as close to 0 as we can We try to select the number we subtract so it is as close to the mean as possible but still keep it reasonably round and also equal to the madpoint of one of the intervals Note that $\$ 475$ is the midpoint of en interval and that it is in the negbborhood of the mean We might as well have chosen to subtract $\$ 50$ This maneuver does not seem to help us much here because all we have accomplished is to replace columns 3 , 4 , and 5 with columns 910 , and 11 to reduce the sum of column $4, \$ 5718925$, to the sum of column $10, \$ 968925$

This seems scarcely worthwhile, in fatt, bere it was a bad bargain (We merely note tbat columns 5 and 11 turn out to be identical, a result we sbould expect)
Actually we kneu that columns 9,10 , and 11 would turn out to be a poor bargain, rarely does it turn out otberwise The main purpose of doing these calculations was to demonstrate their uselessness and to prepare the groundwork for column 12 Column 12 divides each value in column 9 by $\$ 375$ If we ignore the first and last figures, we note tbat we have finally achieved some nice numbers to work with It was no accident that we chose to divide by $\$ 375$ This is balf the suze of the primary interval of $\$ 75$ If all the intervals had been the same width, we would bave divided by $\$ 75$ But the ex istence of the variable width intervals causes the kind of problem shown in column $12 a$ Note that column 12 eliminates most of the decimal fractions shown in $12 a$ We now carry out the calculation of the mean and standard devration as though we were working with the varable d astead of the vamable X We find that d has a mean of 25838 and a standard devation of 20297 Note that we have attached no umt to either of these numbers Actually they are in "units of $\$ 375$, ' which is the equivalent of "half a class interval" for most of the intervals
Since $\mathrm{d}=(X-C) / k$, we can convert d to X by solving that equality for X This gives us $X=C+k d_{\text {, }}$ or $\$ 475+\$ 375 X$ 25838 , or 8572 the same answer as by the direct calculation
Since the standard devation is independent of the origin of measure, we convert 20297 merely by multaplying hy \$375, agan getting $\$ 761$

In actual practice, if we were to use the short-cuts as indicated in colunms 12,13 , and 14 , columns 4 through 11 would be etiminated enturely Since column 3 is needed only to help measure the deviathons in units of $\$ 375$, we can also elmmate this if we are able to do this mentally Column 3 would definitely be eliminated if we were working with equal intervals In fact, the advantages of equal intervals are so substantial in performing the above type of calculathons that it is worth seeng how easy the job would have been if we had used equal intervals in our unt sales series Table 612 shows a serres with $\$ 500$ intervals used throughout Note that all the calculations in the table sre eassly done in our head Note particularly how smple the d column is if we use the class anterval of 8500 as a unit On the other hand, also note that the series is not very descriptive of the builk of the detail in the series, burying 68% of

TABLE 612
Iliustratian of Effect of Equal Intervals an Ease of Caleulations from a Fre quency Series (Data are unt sales of a hardware store 200 tems in sample)

$\begin{aligned} & \text { Dollar } \\ & \text { Unit Sales } \end{aligned}$	Proportion of Sales f	d	fd	$f d^{\prime \prime}$
0-5*	680	-2	-1360	2720
5-10	175	-1	-175	175
10-15	075	0	0	0
15-20	030	1	030	030
20-25	000	2	0	0
25-30	010	3	030	090
30-35	015	4	060	240
35-40	005	5	025	125
40-45	005	6	030	180
45-50	000	7	0	0
30-55	000	8	0	0
55-60	000	9	0	0
60-65	000	10	0	0
65-70	000	11	0	0
70-75	005	12	060	720
	1000		-1300	4280
$\begin{aligned} & C=\$ 1250 \\ & k=500 \end{aligned}$	$\frac{\Sigma f\left(\frac{X-C}{k}\right)}{N}=1250+500 \frac{-130}{1}=5600$			
$d=\frac{X-C}{k}$	$s=k \sqrt{\frac{\sum j d^{2}}{N}-\left(\frac{\Sigma f d}{N}\right)^{2}}=5 \sqrt{428-(-13)^{2}}$			

* Lower Lamit Inclusive
the items in the 0 to $\$ 500$ interval In addtion, the mean and standerd deviation are both somewhat larger than appropriate

The Problem of Open Ends

Although our series of unt sales had an open end, we were provided with the arthmetic mean of the items in the open class Usually such information is not avalable If it is not, we must make some estmate
of this value or give up the idea of calculating the mean or standard devation from such an open-end senes Theories that might be useful in making such estimates are outside the range of this book Fortunately, open ends become necesssry only when a distnbution has extreme skewness Then the anthmetic mean would be a relatively poor appronmation to a least-error value, and, unless our purpose dictated the mean because we were interested in the total of the series, it would be mappropnate to use the mesn snyway We would then prefer the median, which fortunately would not be bothered by the open end unless the median happened to fall in the open class, a very unlikely circumstance

6.7 Other Measures of Variption

The only measure of varation we have considered so far is the standard deviation The standard deviation is a very useful measure provided the distribution is normal, or nearly so We can then use tables of the normal curve to estumate probsbilities based on the standard devation If the distribution is not approximately normal, or cannot be transformed into a nearly normal form, the standard devation bas limited practical meaning It then becomes necessary to use otber devnces to estimate the proportions of cases that fall between given values of the series

The Quartile Deviation

The quartile devistion, or semi-nterquartule range, is commonly used when skewness makes the standard deviation inappropraste It $1 s$ usually stated as half the distance hetween the lst and 3 rd quartiles For example, the 1st quartale of our unit sales distnbuthon is $\$ 1825$ and the 3 rd quartile is $\$ 5817$ Hall the difference between these is $\$ 1996$ If we compare this with the standard devation of $\$ 7612$, we can see how inappropriate the standard deviathon is for estimating relatwe frequencies in this unit sales distribu* tion The normal curve undicates 676 of a standard deviation would include 50% of the cases if lard off on either side of the mean Here it would mean 50% of the cases would lall hetween $\$ 58$ and $\$ 1086$ Actually this band would contans ahout 86% of the cases.

The quartile devation is often used in conjunction with the median, the argument being that the median plus and minus one quartale devistion should eover $\mathbf{5 0 \%}$ of the cases The median of
our unt sales serves is $\$ 327$ Thus we would expect 50% of our unit sales to fall between \$128 and $\$ 527$ Actually 56% of the cases are withon this band Agan the problem is caused by the substantial skewness in thes series In a case such as this it would be preferable to state merely tbat it is estmated 50% of the cases fell between the two quartules of $\$ 1825$ and 85817 without trying to relate the quartile deviation to the mean or the median, relationships which are meanngful only when the distribution is at least reasonably symmetricel, if not reasonably normal

The Range

The range 15 the differense between the smallest and largest value In the semes, it covers 100% of the sample cases It has very little apphcability for its own sake ana is very erratic from sample to sample Rarely does at make practical sense to try to encompass all the possibulities mutban the scope of our expectation To do so would be to try to protect ourselves aganst ell eventualites, a poltcy that usually leads to raction and frustration
The range has been found very useful in recent years in statishical quality control applications The range is a rather good basis for estimating the standard deviation of the sample is small, say less than 15, and if the universe is thought to be approximately normal The advantages of the range are ts relative ease of calculation and relatively simple concept, two great advantages when we are dealing with routine calculations which must be performed hastuly by ordinary shop workers

Other Measures of Relative Frequency

Althougb tradition has concentrated promarily on the standard deviation (in conjunction with the normal curve), the quartile deviation, and the range as deviees for stating the relative irequency of cases within specified fumits, the percentules cen also be used as a basis for a so-called measure of dispersion We could, for example, directly determine the range withn which the maddle 80% of the cases fell by using the 10th and 90 th percentiles

The Average ar Mean Deviation

The average, or mean, devation is the amthmetic mean of the deviations from the median with the signs of the devations being groored It is sometmes calculated from the mean rather than the medran, although the median is preferred because the medran munmizes such deviations Table 613 shows the calculation of the

TABLE 613

Cakulation of the Average Deviallan of Untt Charge Salef of Hardware Slare

| Dollar Unit Sales | Propor-
 tion of
 Sales
 f | $\begin{gathered} \text { Mudpoint } \\ \text { of } \\ \text { Interval } \dagger \\ X \end{gathered}$ | \| X -Md| | $\mathrm{f}\|\mathrm{X}-\mathrm{Md}\|$ | Cum |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0-625* | 030 | 3125 | 29575 | 088725 | 030 |
| 625-1375 | 130 | 10000 | 2.2700 | 295100 | 160 |
| 1375-2 125 | 150 | 17500 | 15200 | 228000 | 310 |
| 2125-2875 | 145 | 25000 | 7700 | 111650 | 455 |
| 2875-3625 | 085 | 32500 | 0200 | 001700 | 540 |
| 3625-4375 | 085 | 40000 | 7300 | 062050 | 625 |
| $4375-5125$ | 065 | 47500 | 14800 | 096200 | 690 |
| $5125-5875$ | 065 | 55000 | 22300 | 144950 | 755 |
| 5875-6625 | 045 | 62500 | 29300 | 134100 | 800 |
| $6625-7375$ | 020 | 70000 | 37300 | 074600 | 880 |
| 7375-8875 | 025 | 81250 | 48550 | 121375 | 845 |
| 8875-10 375 | 020 | 96250 | 63550 | 127100 | 865 |
| 10375-11875 | 025 | 111250 | 78550 | 196375 | 890 |
| 11875-13 375 | 020 | 126250 | 93550 | 187100 | 910 |
| 18375-14875 | 020 | 141250 | 108550 | 217100 | 930 |
| 14875-17875 | 020 | 163750 | 131050 | 262100 | 950 |
| $17875-20875$ | 010 | 193750 | 161050 | 161050 | 960 |
| 20875 and over | 040 | $380200 \ddagger$ | 347500 | 1390000 | 1000 |
| | 1000 | | | 3899275 | |

Median $=\mathrm{Md}=2875+\frac{500-455}{0.5} \times 75$ Average Deviation $=\mathrm{AD}$

$$
\begin{aligned}
& =2875+397 \\
& =\$ 327 .
\end{aligned}
$$

$$
\begin{aligned}
A D & =\frac{\sum f|X-M d|}{N} \\
& =\frac{3899275}{1} \\
& =\$ 390
\end{aligned}
$$

*LLI
\dagger Except last interval
\ddagger Arthmetic mean of micrval
average deviation for the unit sales series The average deviation from the median is 8390 If it had been measured from the mean, it would have been $\$ 454$
We slould never really use the average deviation as a bass of estmating the frequency of cases between spectied limits It can be used when the distrubution is essentally normal, but then the standard deviation would be much preferred Its preferred use is as a basis for estimating the total error in a sernes of estumates Since it is an arithmetic mean of the deviations, it has all the properties and uses of the anthmetic mean, including an algebranc relation to the total In thas use it is a logical companion to the median The median minmuzes the error of estumate and the average deviation tells the suze of this mumum error

The Median Deviation

As we might expect, we could ealculate the medan of the devations from the medran A little reflection convinces us that this gives the same answer as the quartie deviation if the distribution is symmetrioal In the unit sales the medran devation $15 \$ 180$, compared ㅍith a quartile deviation of $\$ 200$, the difference caused by the skenness in the series The median devation would be preferred to the quartle deviation in a skewed semes because it does accurately indicate the range around the medaan within which 50% of the tiems fell

Measures of Relative Varration

All the mesurus of yeroborn os for reforved to are measured in the unts of the guven sertes As such they are affected by this unt There are tumes when it is useful to be able to compare the varathons in different series independent of therr units of measure We did something like this when we compared the sales of tro companes on a logarithmic scale (p 112) The simplest way to elimnate the effects of the unt is to divide the measure of varation by some average, preferably the average most logically connected with the given measure of variation For example, if we divide the standard deviation of the unt sales by the anthmetic mean of the sales, we get 133 This measure is given the spectal name of the coefficzent of varation, and is usually symbolized by V

Tle maght also divide the quartile deviation by the median, getting $\$ 200 / \$ 327$, or 61 , or the average deviation by the median, getting $\$ 390 / \$ 327$, or 119 , or the median deviation by the medaan, getting $8180 / \$ 327$, or 55

Measures of relative varration are also useful when we are companig the variations of two series which have quite different magmitudes even when measured in the same units For example, a netghborhood drugstore has an anthmetic mean unit charge sale of $\$ 264$ and a standard deviation of $\$ 212$ This results in a coefficent of variation of 80 If we compare this with the V for the handware store unit charge sales of 133 , we get the impression that there is about 65% greater vanation in the hardware store sales than in the drugstore sales if we compare the two standard deviathons of $\$ 264$ and $\$ 761$, we get the mpression that there is about 188% greater variation in the hardware store sales

6.8 Measuring Skewness

The mportance of the skewness of a distrbution should be clear because we have been forced to refer to it so many timea in preeeding pages We would naturally expect, therefore, that the measurement of the degree of skewness would play a key role in almost any statistical analysis Surprisugly enough, we rarely find the degree of skewness being calculated Most people seem to be willing to rely on some visual impression of the degree of akewness, and others seem quite satisfied with intuitive notions they have without even a visual examination of a chart

There are probably two major reasons for the rather general ds regard of the quantitative determmation of skewness One reason is that we have had little success in developing a measure of akewness that is completely satusfactory from the theoretical point of vew and from the point of veew of being easy to calculate and understand An associated factor ss that we have had even greater diffeulty in developing a simple way of measuring the sampling crrors in any given measure of skewness

The second reason is psychological The existence of skewness is a substantial meonvenience in most statistical analysis Most of the generally known statistical measures and most of the essily avaulable tables, such as the normal curve, assume a reasonable conformity to at least a symmetrical dastribution, and an some cases a normal distribution As soon as we explicitly realize that our distribution is signaficantly skewed, we also have to recogmze that almost all of the technques we know are mapplicable except with a degree of error Thus there is a great tendency to look the other way, as it were, when the issue of skewness comes up and make
beheve that it is not really an lssue at all In other words, we find it more comfortable to assume that a umverse 18 essentially symmetrical if we do not know how much skewness there is in the sample than if we do!
A good measure of skewness should have three properties It should.

1 Be a pure number in the sense that its value is independent of the units of the series and also of the degree of variation mn the sernes,
2 Have s value of zero when the dustrbution is symmetrical, and
3 Have some meaningful soale of measure so that we could easly miterpret the measured value
Thus an ideal measure of skewness might be one which varied in suze from 0 to 1 and in which iractional values, such as 35 ; could be meaningfully moterpreted as representing, say, 35% skewness on a known lmear scele of skewness, or as representing an amount of skewness that could be placed in some ranking of the amount of skewness we find from experience in various sernes An exsmple of the experience type of scale would be the wry we measure the signuficance of a batting average of 325 Most every American boy knows that this is a high batting average in the sense that very few ballplayers are able to acheve it Sumlarly, we meght be sble to sey that a skewness oi 35 is very high because there are relatavely few times in which a value of that or more has occurred Howaver; if we measure skewness on a lmear scele from 0 to 1 , with no knowledge of how often we might find certain values, it would be perfectly approprate to assume that a skewness of 35 is moderately 日mall

Oi the several methods oi measuring skewness that have been developed we discuss three formulas, the first is

$$
S k=\frac{\text { Mean }- \text { Median }}{s}
$$

This formula obviously satisfies the requrement of being a pure number because the unit of the senes cancels out in the division It also has a value of zero in a symmetrical distribution Although it 15 not obvious, it can be proved that this ratio bas a maximum value of 1
If we apply this formula to our umit sales data, we get

$$
S k=\frac{8572-8327}{8761}=+32
$$

The question now 18 to determine bow musb skewness 18 represented by 32 It is moderately low on the 0 to 1 scale Unforiunately, we
find that skewness is rarely measured, and we have no ready standard to pudge whether 32 is high or low on an experience scale We might say somewhat authontatively that we suspect that 3218 sctually quite bigh, a value that is rarely exceeded The knowledge that a sample of weights of adult American females yelds a skewness of 17 and the distribution of family incomes in the United States, before taxes, for the year 1947 was estumated to be 19 may be helpiul
The second measure of skewness we refer to is based on an extension of the rdeas underlying the calculation of the mean and the standard deviation The sum of the deviations from the mean alnays equals zero If, however, we cabe these deviations, the sum of the cubes defintely equals zero if the distribution as symmetrical but probsbly does not equal zero if the distribution is skewed Furthermore, we can say that in general the likelihood of the sum's being zero is less the greater the departure from symmetry, and we are able to say that the sum of the cubes of the devations from the mean 19 a function of the degree of skewness Moreparticularly, re say that

$$
\gamma_{1}(\text { gamma })=\frac{\mu_{3}}{s^{3}}
$$

where

$$
\mu_{3}=\frac{\Sigma f(X-\bar{X})^{3}}{N}
$$

Table 614 illustrates the calculation for our unit sales senies Note that the short-cut, method was used and that both μ_{3} and s were left in units of $\$ 375$ The answer of 315 is somewhat dufficult to interpret There is no limit to the value of γ_{1} so we cannot be helped by relating 315 to its potential limitung value Again we have rather limited expenence to tell u_{3} how often a γ_{1} of 315 occurs A gude might be the fact that the weights of a sample of adult American females has a γ_{1} of 95 and the distribution of United States family income in 1947 had a γ_{1} of 876

The tbird measure of skewness we refer to is based on the notions of the mean and the median as is the first one However, instead of considering the values of these in tbe units of the given senes, We now refer to therr percentule equavilents The median is equiv alent to the 50th percentile hy defintion The mean would also be equivalent to the 50 th percentile if the distribution were sym-

TABLE 614
Colculohon of Coefficient of Skewness of Unit Charge Sales of Hordwore Store
(Note This table is a contimuation of Table 6 11 The additions! information required is f^{3}, which is alloulated here as though it were Column 15 of Table 6 11)
$f d^{2}$
(15)

- 49709445
-130000000
- 76800000
- 31320000
- 5440000
- 680000

0
520000
2880000
4320000

$$
\text { Coefficient of skewness }=\gamma_{1}=\frac{\mu_{s}}{s^{7}}
$$

$$
=\frac{\Sigma f d^{3}}{N}-3 \frac{\Sigma f d^{2}}{N} \frac{\Sigma f d}{N}+2\left(\frac{\Sigma f d}{N}\right)^{3}
$$

18225000
43940000

$$
=29,5189414-3 \times 4186503 \times 25838+2 \times
$$

122820000
185220000
312500000
595820000
593180000
27933450834

$$
\mu_{2}=\frac{\Sigma f(X-\bar{X})^{3}}{N}
$$ 25838^{2}

$=26,3083144$

29518941389
metrical Departure of the mean from the 50th percentile can thus be taken as evideace of skewness The specific formula we use is

$$
S k=\frac{P_{m}-50}{50}
$$

where P_{m} is the percentile equvaleat of the mean This measure has a maxmum value of 1 and a mmmum value of 0 , if we agnose signs The sign indicates the durection of the skerness just as for the first two measures
If twe apply this formula to our unit sales series, we first calculate P_{m} We do this by matchng the mean of $\$ 572$ with its percentile equivalent We can see from Table 611 that $\$ 572$ falls in the interval $\$ 5125$ to $\$ 5875$ Since 69% of the cases have a value less
than $\$ 5125$ and 755% have a value less than $\$ 575$, we know ummedrately that the value of P falls betreen 59% and 75.5% A hnear interpolation gnes us an estimated value for P_{m} of

$$
69 \%+\frac{\$ 52-85125}{\$ 75} \times 65 \%=69 \%+52 \%=742 \%
$$

Substututing 74.2% in our formula, we get a skerness coefficient of

$$
\frac{742-50}{50}=48 t, \text { or } 484 \%
$$

The sumplest way to interpret the magnotude of the sherness hased on this percentule concept is to refer back to P_{m} We can say, for example, that the shewness of unit safes is such that there are about three chanes out of four that a gleen sale will be less than the anthmetic mesn (ignoning sampling errors in our information). Or, If Te prefer, we can say that the odds are 3 to 1 in favor of an item beng less than the mean Contrast thes mith the 1 to 1 odds for a avmmetrical distrihution
The income distrinution had a P_{n} of 64 , and the female reight distuhutron hsd a P_{m} of 56

6.9 Kurtosis

If we further extend the idea of rasing devations from the mean to some porer, we might rase these deviations to the fourth power and then take the arthmetre mean of the results We could then take the fourth root in order to get back to the orgunal units of the series The term moment hss been apphed to such measures bsed on various porers of the devathons a general formuls often used is

$$
\mu_{k}=\frac{\Sigma / x^{k}}{N}
$$

where h refers to the psiticular poter used If we wish, we can take the k th root of μ_{z} Note that the square root of the second moment ahout the mesn is the fambiar standard devation, we referred to the thrid moment in our discussion of measures of skerness The fourth moment, or $\left(\Sigma \mathrm{fr}^{-}\right) / N$, is the bass of measurng a characteristic of a frequency semes called hurtosus The most commonly used formula fint hurtacis is

$$
\gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3
$$

This is a pure number also Note that the numerator would have the same unit as the denommator The 3 is subtracted because a normal curve yields a value of 3 for the ratio of μ_{4} to $\mu_{2}{ }^{2}$ Thus γ_{2} has a value of zero for a normal curve If a curve has a relatively high proportion of cases in the tals compared with the normal curve, then γ_{2} will be posituve becanse of the greater effect of extremes on the value of μ_{1} than on the value of μ_{2} Figure 614 illustrates a curve with a positive kurtosis and compares it with a normal curve Figure 615 shows the same distribution on probability paper

We have little occasion to calculate the kurtosss of a dastribu-

Fig 614 Comparative shapes of normal carve and of curve with posituve kurtosis (leptokurtic curve) (Note Both curves have the same standard deviations)
tuon. Although it has conciderable mportance in theoretical statis tics, it is vers tedious to calculate and very difficult to interpret in most appled probleme It will have its greatest agnulicance to us when me consider the t distnbution later In fact the distribution illustrated in Fige 6 If and 615 is at distribution

Fin 615 Comparative shapes of cumulathe normal curve and of cumulative leptokurue curve-probability sale (Nate Boch merves hase the same standerd demations)

6.10 The Predominance of the Arithmetic Mean

Review the various calculations referred to in this and earlier chapters and note that the process of adding a sernes of numbers and then dividing by the number of numbers appears over and over again We can illuatrate this pomt by gathering together several of the measures that involve thas process

The arcied sreas call attention to this process of takng the arithmetic mean of some varrable The essental process is one of domg something, as it were, to an onginal set of numbers and then taking the anthmetic mean of the result Often, we undo what we did and return to the orginal units of the serres In fact, if we do not undo it or if we do not convert to a pare number, we end up with reasonably absurd units that defy practical interpretatiou
It is very helpful in trying to understand statistical formulas to remember that practically all the formulas consast of two parts One part involves transforming the umits of the semes, by taking logarithms, or by squaring, for example, and then possibly transforming back after the other part of the formula takes the arithmetic mean Some formulas are working formulas and, for example, might omit the process of dividug by N because it happens to conveniently cancel out in the total operation But the mean 18 certannly bumed somewhere in the formula, and it is usually worthwhile to dig it out be-
cause it 19 a fact that the essentially statsincal part of the analyas takes place where the mean is taken, and if we do not know where the mean is taken and of what it is taken, we sre in a position to rather completely msunderstand the mport of what we are doing
We have occasion to introduce addational tools in later chapters We try to call attention to where the averaging process takes place and tis sgmuicance in the given analysis The fact that the fundamental statistical operation consists of taking the arthmetic mean should greatly simplify the seemingly complex formulas

PROBIEMS AND QUESTIONS

61 State the average you would use in each of the following situations Give spectic reasons for your selection In some of the cases you will feel that an average is only a partial answer to the problem Do not let sucb a feeing deter you from selceting the best possible average
(a) The average beight of grammat school chldren for determung the best height for a dmnkng fountain
(b) Tbe average temperature durng a winter day for estumating tbe beating needs to mantain an adoor temperature of $72^{\circ} \mathrm{F}$
(c) The average muzzle veloetty of a $16^{\prime \prime}$ artillery shell for purposes of estimaturg the best raoge settung to strike a given target
(d) The average daly sales of newspapers in a given drugstore to make the best posshle estimate of the appropnate aumber of papers to order (Note Assume that the sales figures to be averaged bave not been affected by any "out of stock' lurntations)
(e) The average calonic content of one pound of round steak for mclusion in a table of caloric contents of varous foods
(f) Tbe average speed in miles per bour of tbree ferry boats for est1mating the number of trips that the boats can make between two nver pornts during a 24 -hour period
(g) The average dally attendance at a move theater for purposes of estimating

1 The total monthly revenue,
2 The number of ushers needed on any given day
(h) The average of your examination grades in a course for purpose of determining your course grade

62 In your brgh school algebra course there were probably such problems as "If John takes 6 days to dig a ditch, Tom takes 4 days to dig the same drtch, and Harry 3 days to dgg this dtch, how many days will it take for all three men together to dig the ditch?" The answer came from solvng for X in the equation

$$
\frac{1}{6}+\frac{1}{4}+\frac{1}{3}=\frac{1}{X}
$$

Show the analogy between thas knd of a problem and the need for the harmome mean in some cases when we are miterested in the total of some items

63 Given the vamable X find a value M so that $\Sigma(X-M)^{2}$ is a monmum (You will need sbulty with calculus to solve this problem)
64 Given the vanable X and that $M-(\Sigma X) / M$, prove that $\Sigma(X-M)$ -0 (You can do this with elementary aigebra)
65 Below are presented the 200 addinowal unit charge sales referred to in the text

Sample of 200 Unut Charge Sales of a Neighborbood Hardware Store (Thra sample of 200 occurred immedately afterin time-the 200 eales referred to in the text)
(Data histed in order of suze The chronulogical order is assumed to be irrelevant)

$\$ 20$	114	174	244	343	4,75	632	1004
35	114	179	247	346	476	645	1038
41	122	179	250	349	481	647	1038
47	130	180	254	349	483	656	1045
51	130	183	255	350	494	674	1046
56	135	185	255	357	495	679	1065
70	137	188	259	358	495	680	1091
71	140	191	270	359	507	690	1095
72	144	192	275	379	510	695	1159
85	148	195	275	379	513	708	1171
87	150	195	280	387	526	709	1190
88	150	196	285	390	528	720	1206
93	154	200	298	390	531	785	1237
94	154	200	296	395	534	789	1242
98	154	202	298	400	535	822	1294
98	155	205	308	403	543	827	1315
100	157	207	308	404	543	832	1404
100	157	207	308	409	549	833	1429
102	158	222	308	410	550	889	1558
102	159	223	310	412	553	895	2553
102	160	228	313	413	587	927	1675
103	160	231	317	450	594	945	2396
105	164	237	328	465	619	956	2640
106	173	240	341	470	621	983	2744
109	174	240	342	472	621	983	3291

(a) Construct the best frequency senes you can of such data using equal untervals Defend your choice of intervals by the use of appropmate charts
(b) Construct the best frequency senes you can of such data usmg varia hle sized intervals of you wish Defend your chonce of intervals
(c) Use charts to compare your two frequency senes with the ones given In the text for the first 200 unt charge saies Assume that the propryetor had only the information provided by one of these two sets of 200 Use what you have found out about the other 200 to estmate the errors he would make of he assumed that his sample of 200 represented the pattern of the unverse
66 It was pointed out in the text that the process of "rounding num
bers by comhuning them into intervals produced effects simular to thase r sulting from enlargug the sample Common sense suggests that we couldn't make such apparent gams without some price Discuss what we lost when we combined items anto intervals How would you try to balance the value of what you lost aganst the cost of addug more tems to your sample? Do you suspect that there might be a sort of "law of dimumshing returns" operating one ether the cost or gan function? Explan
67 Was there any evidence of "lumpiness" in your distribution of 200 items? What signifiance would thas evdence have to you as the proprietor of a small hardware store? Would it make any difference to you if your wife (rather than a hured clerk) was the hookkeeper?
80 The construction of a frequency sernes ohviously resuits in some steps beling taken to use the sample of data as a hass for estimating the distributyon of items in the unverse It is equally ohvous that only some steps are taken unless one earries his analysis to the point of drawing a smooth curve and then reconstructs his frequescies to conform to this smooth curve How would you explain what your frequency senes does represent if you find that it is somewhere hetween an exact replica of the ontonal sample and an estimate of the universe?
69 The assumption that atems are cqually spaced through some interval is an application of the "equal distrihution of igorance" rule, or the "rule of insufficient reason' to use unequal spaces Analyze the logic hehand the equal distrihution of ignorance rule as a device to choose among alternatives when you have insufficient knowledge to rationally weight the alternatuves What other rule or rules mught you apply?
610 Suppose you were using some sample evidence to make an estmate of some characterisuc of a unverse, such as the mean of the unverse if one method of estimation gave you the same chance of your estumate heing too high as it did of its being too low while another estumate was such that the anthmetic mesn of such estimates (fif you were to make many of them) would equal the desired unverse value, which method would you choose? Give ressons (Assume that the distrinution of estmates is skewed 80 that the two methods would give dfferent answers)
611 Calculate the following measures from your frequency senes of the second group of 200 unt sales
(a) Anthmetic mean
(b) Median
(c) Sem-mnterquartile range
(d) Median devation
(e) Mean deviation
(f) Standard devation
(g) Range withun which the moddle 60% of the cases fall
(h) Percentule equivalent of the mean
(1) Coefficient of skewsess by each of three methods given in text
(j) Coefficient of variation

612 Give a practical meterpretation of cach of your answers in 11
613 What differences exist between the sample of 200 analyzed in the text and the sample you analyzed? Do you judge that they are real differences which should be considered by the propnetor in his planming? Or are they of a sort that would cause you to he willing to combine the two
samples as though they both came from the same unverse? Defend your condusions

614 Suppose the coefficingt of skewness for a sample of 200 unit sales of a different hardware store tumed out to be 30 when measured by the formula

$$
S k=\frac{P_{m}-50}{50}
$$

How much less skewness does this distribution have compared with the one used in the text? Compared with the one you analyzed?

chapter

Making inferences about the unknown, or the problem of intelligent guessing

We non have most of the tools and ideas we need to tackle the central issue of any practical problem that intolves uncertanty, namely, how to make the most intelligent guesses we can about the things re do not hoor. Stace we try to work out methods of guesslag tbat conform to some simple rules of logre, re dignify such gucses by caling them inferences We ram, however, that ye are, in fact, guessing and our methods should be judged by whether or oot they work as mell as by whether or oot thes appear logieal

7.1 A Simple Example of Our Basic Problem

It is belpful now to revien some of the material from the natro ductory chapter Again ne use the devee of a smplified example to dramatize the man issues

Suppose there are 10 fish borls on a table The boris have beed panted so we cannot see the contents Each borl contans a large number of small balls about the sıze of marbles Some of the balls are purportedly white The rest of them are nonnhte We are to select any one of the bonis re pisb and set at assde We are then offered a bet of $\$ 5$ to $\$ 2$ that a random sample of five balls from this bow I will have one, tno, or three white balls Or, if we wished, we could accept the bet the other way around, namely, $\$ 2$ to $\$ 5$ that a random sample of five balls wall contan four or five white balls To help us decide which bet ne would lake to take, ne are permitted to draw a random sample of five balls from any one of the remainag oune bowls, or, if ne nished, we could select our total of five balls
from the nine bowls in any combination we wrisbed, such as one ball eacb from five of the bowls

This in quite obvously a guessing game Unless we peek, or cheat, or have inside information, there is in way that we can make a completely rational chonce in thes situation But let us head anto the problem to see af we can be rational about some parts of it

The first decision we have to make is our choree of one of the 10 bowls Since we presumably know nnthing about the contents of any of the bowls, we have motanal basse of chore Hence we choose one by any method we wah, meluding a hocus-pocus method if that gaves us any psychological artisfaction The importent thing is to not kid ourselves that our method is rationai

The second decision is to choose our informational sample of five balls from the remaning mine bowls Again we are handicapped by complete lack of knowledge of the contents of the bowls We must therefore proceed by assumption, hypothesis, or guess We do not know that, perhaps, the 10 bowls all have the same proportron of white balls, or that the proportions are all different We would prefer that the bowls were all the aame because we would then find that our five nformational balls would defintely be relevant to the first bowl that we had selected If the bowls are different, we mught be up agaunst an extreme situation in which the first bowl has all white bails whereas the bowl from which we select the miormational balls haa no whte balls We can avoid being misled by such a situation by aelecting our five informational balls from five difierent bowls, one ball irom each

Suppose we select one ball from each of sue bowls and find that four of the five are whate

We must now decide whether to bet $\$ 2$ aganst $\$ 5$ that a sample of five balls from the first bowl will cmatan four or five whte balls, or to bet $\$ 5$ aganst $\$ 2$ that the aample whli contain one, two, or three white balis If we knew the propartion of whate bails in the first bowl, our problem would be much smpler For example, if we knew that the bowl contamed 50% white balls, we could expand the binomal $(5 W+5 C)^{5}$ and easily estimate the probability of getting four or more white balls in a sample of five (It 28 1875) Since odds of 2 to 5 are fair if the probability of four or more is 2857 , we would prefer to bet aganst four or mare at these ndds Hence we would bet $\$ 5$ agamst 82 that there wall be three or fewer white balls (2857 is calculated by dividing 2 by 7,7 being the total chances associated with 2 to 50 dds)

Since we do not know the proportinn of white balls in the bowl, we
must guest, or infer The only basis we have for such an mference 18 the informational ssmple of five balls, four of them being white Common sense indreates that we should be more anchined to believe that the bowl contams a relahuely large proportion of white balls, given this sample with four white balls, than we would be if our sample had contaned only one white ball The issue, however, is whether this melination is strong enough to push the probsbility of four or more white balls from the first bowl beyond 2857, the dunding line between the tno bets The answer is not at all easy to determine in a rational manner Its determination involves those logical procedures that fall under statisticsl mference, the tople that concerng us in this and succeeding chapters Before outhing our plan of attack, we find it profitahle to retrew the conceptus scheme we introduced in the first chapter

7.2 Another Laok at Our Conteptual Scheme

Figure 71 presents a diagram that illustrates the flow of odeas ss we move from historical dats to inferences about future samples The broad arrors undicate the direction of for The whole process of miference starts mith the so called hastoncsl facts They might be the number of white bslls in a sample of five Or they mught be the output of a worker during his first month on the job Or they

Fig 71 Flow dagram for nferting unknown and/or future events from known and/or historical events
might be the varous pricea of a company's common stock during the last two weeks, etc These facts are then treated as though they were only a sample of what could have happered We might have had a sample with four white balls instead of two white balls Or the worker mught have produced 847 units instead of 769 , eto We find it easy to recognize that the unverse, or generaing mechannsm, whell produced the particular sample facts maght have all sorts of characteristics The unverse moght contain 70% white balls, or 40%, or 26%, etc The worker might be capable of averaging 826 pleces per month, or 806 , or 904 , etc There 15 no way that we unll ever be able to krow such a characternstec of the unverse unless we are dealing with games or the like Hence we can deal with such a characteristic only by using our magmation
Note that we separate the world of reality, where we find our sample facts, frorn the world of magmation, where we find our injerences about the kinds of universes which we belneve have generated the past samples and/or will generate the future samples

One of our very real practical problems is to judge whether the unverse that will generate the future sample facts is the same as that whach generated the past sample facts We do not know, for example, whether our 10 bowls have different proportions of white balls We do not know whetber our worker 18 Improving with practice or worsening whth age But we must make decisions about such events that are based on some sort of assumption about the prevailing conditions
After deling into the world of magnation, we must return to the world of reality and make a decisson about the knd of future sample facts we expect to encounter Our success m antacipating these sample facts is the real test of whether our magnings have been worthwhule The most elegant logic wnll be useless it the forecasts are not reasonably accurate
The process of going from fistoncal facts to inferences about future facts can be very haphazard unless we disaphene our thinking by unsisting that we assign probabilites to the truth of the various inferences we make In fact, the attempt to assign probabilites in some rational manner distungushes the statistical method from other methods we might use to armve at decisions Any decision in prac theal affars necessarly impless some probabilities quite irrespective of whether the decision-maker has consciously assugned them or not Sometimes we feel a sense of frustration as we try to exphertly assign probabilites in any practical statuation When we do, we should remind ourselves that everybody else does too

Another way of preturng our conceptual scheme is in the form of a tree dagram like that shown on Fig 72 We start at the extreme left with the facts, the histoncal sample, or S_{2} From these facts we make mferences about the vanous hastorical universes that

Fig 7.2 Tree dhagram ilhustrating the inference steps as we proceed from knowledge of a historical mmple to mferences about a future sample
might have generated these facts, or U_{k} We have restricted these inferences to only three in order to make the tree manageable winthn the bounds of the page Note that we have assigned prohabilities to each of these inferencea Alao note that these prohabilities add to 1 , as they must because our mierences should cover all the possiblities and one of them must he true

The next set of branchea ahows the various inferences we mught make ahout the future universe, or U_{f} We show the associsted probahilitres only for the topmost set Note that agein the three hranch prohahilities add to 1 (Ignore the number in the parentheses for the moment)

Finally we come to the last set of branches These shaw the varrous future samples that we mfer from the particular future unverse that we had prevously mferred These hranches are la heled S_{f} Again note that the assugned probabulthes add to 1

Now let us consider the probabilities that are ahown in parentheses These are the probahilities that our particular inferences to that point are correct Let us trace out the inferences along the topmost branches We start with a probability of 25 that U_{h}, is true Then, given tbat $U_{h_{1}}$ is true, we infer tbat there is a prohability of 20 tbat $U_{f_{11}}$ is true The probahility tbat botb $U_{h_{1}}$ and $U_{f_{11}}$ are true would he 25×20, or 05, as sbown in parentheses This as a joont, or compound, probability Finally, given that $U_{h_{1}}$ and $U_{f_{11}}$ are true, there is a probabjlity of 10 tbat $S_{f_{m}}$ is true The joint probabilty that $U_{h_{1}}, U_{f_{m}}$, and $S_{S_{m}}$ are all true would be $25 \times 20 \times 10$, or 005

If we were to assign probabilitues to all the branches on thas tres and caiculate ali the joint probabilities, we would find that the final jomt probablities at the extreme right of the tree would add to 1 Thes would mean the actual future sample must have some one of the varnous possible values shown in the list of S;'s Simularly, we would find that the joint prohabilitues associated with the occurrence of the vamous future unsersea would also add to 1 hecause tbis future unverse must take on one of the listed values

Since we are hasically interested in future samples in our practical prohlems, it rould be nice if we could avoid all the intervening steps; and associated arithmetse, hetween the historical facts and our inferences about future samples Our tree would then look hike Fig 73 We find that there are oceasions under which we are able to make such drect inferences However, we could not understand and appreciate such occasions until we have learned to "climh the tree" by taking advantage of the "footholds" provided by the intervening branches

Fig 7.3 Tree diagram illustrating the psths of inference when we go frorn past saraples directly to inferences about future samplea

7.3 How We Are Going to Study Our Problems of Inference

Although the conceptual scheme just given is quite stmple, our attempts to formalize the procedure, and particularly to quantify the relevant probabilities, will very likely be troublesome if we try to do too much at once We are, therefore, going to take the stages one at a time insofar as practicable This chapter is basicaliy con cerned with the exposure of the fundamental problems that develop as we try to infer the characteristics of a unverse from information suppled by a sample, the next chapter develops a method of handling these problems In both chapters we ignore the possibility that the unverse may be shiftng, or that the vamous samples may have come from different unverses

In Chapter 9 we discuss the relationahip of probabilities to the practical problem of decison-making, confining our attention to problems that involve actions based on certan beliefs we might hold about a unverse
In Chapter 10 we consider the problem of poohng all the information we might have about a problem in makung mierences about a unverse For cxample, past expenence may lead to the belief that the unverse of coin tosses 15 so constituted that 50% of the tosses will be beads in the long run Suppose we then observe a sample of 10 tosses which shows 80% heads How do we relate our orgnal experience and belee with this result? Do we now beleve that these coms will produce more than 50% heads when they are tossed? Or do we basically genore the new sample evidence and continue to beleve what we believed beiore we aaw at? This is the sssue of relating old information to new, or the assue of pooing information
In Chapter 11 we give expliest consideration to the problem of making inferences about future samples We consider both the method that works through mierences about unverses and the direct method which goes dreecty from the past sample to the future sample
In Chapter 12 we apply all the ideas and techniques we have developed in Chapters 7 tbrough 11 to the problem of making inferencea about a continuous varable, such as the unt aales of a hardware store, or the suze of the Federal Debt, or the height of an adult American male Prior to this we confine ourselves to the problem of mierences about attribute date Tbese are data that are measured in sucb a way that they can take on only values of 1 or 0 We approach our problems of mierences with attribute data because we then gan the advantages of smplicity of understanding At the same time, we can also uncover quite vivdly some probleme in inference that get obscured, or are assumed awey, if we work with conthouous variables

7.4 The Behavior of Random Samples From a Known Universe

The best, way to begin our speculations about the kind of unverses from which a given sample came is to study the reverse process, namely, the kinds of samples that can come from a known unverse We have already discussed this problem (Chapter 5) of the proba-
bilties of getung vanous sample resuits from a given unnerse We not supplement the earlier samlysis

The Basic Model Wo Use

We are going to try to develop most of the basic reeas mvolved in making inferences about a unverse by referng to a sumple model of a unverse The uce this model universe to generate sample informstion, and we then take the sample unformation and generate inferences about the unverse from which thece samples came and cbeck these inferences agaimst the known cbaracternstics of the universe We should thus be able to see quite elesrly whether our methods of making inferences work and in exactly wbat way they work At the same tume we can check other possable systems of making miferences

The model unverse re use consists of an unfinte number of objects, each aubject to a simple test of being satusfactory for some purpose These objecta could be some specified part for an sutomobule, for exsmple The bappen to know that 30%, or 30 , of all the parts are satusiactory The call a satisfactory part A Thus 70 of the parts are not satusfactory, we call these \bar{A} (not A) Since we would lube to treat our problem mathematically, we must assign numbers to the factor of a part's being satisfactory or not satusfac* tory We arbitranly assige a value of 1 to a satusfactory part and a value of 0 to an unsstisfactory one (The assggnment of tbese particular numbers considerably sumplifies our subsequent calculathons mithout significantly prefudecing our results Thus we can learn quite a but at a relaurely emall cost in anthmetical labor)

Let us now examine thes unnere quantitatively The objects are ideotifiable by the number 1 or the number 0 of all the objects. 30 are l's and 700 s Let us call this vansble (from 1 to 0) X. We car now carty out tbe famlar calculations as shown in Table 71

Although all these calculations are pretty faminar by now, we renew certann features because of their pertinence to what follows Note tbat $P_{\text {is }}$ tbe relatuve frequency and tbus adds to 1 We also use P to mean probsbility, a usage consistent rith our interpretation of a probability as a relative frequency of occurrence in the indefinte long run One of the convensences of using relatue frequeocies is illustrated in the calculation of the anthmetic mean, ete Note that we divide the sums of the $P X$'s, etc by 1 to get the anthmetic means
Altbough the calculations for the mean, the vanance, the crude skewness, and the coefficient of skemness are all carned out in a strangbtforward way in the table, we indicate the alternatwe ways

TASLE 71

Analysis and Summary Description of Unsvarse of Automabile Part 3496

Cond tron of Part	Value of Part X	Relative Frequency P	$P X$	$\begin{gathered} X-\bar{X} \\ \text { or } \\ x \end{gathered}$	Pr	$P x^{2}$	$P z^{3}$
\bar{A}	0	70	0	-30	-21	063	- 0189
A	1	30	30	70	21	147	1029
		100	30		0	210	084

$$
\begin{array}{ll}
\bar{X}=\frac{30}{1}=\pi & L_{x}=084=\pi r(r-\pi) \\
\sigma_{2}^{2}=21=\pi \tau=\pi-\pi^{2} & K_{x}=\frac{084}{(21)^{3 i}}=\frac{\tau-\pi}{\sqrt{\pi \tau}}=873 \\
\sigma_{x}-\frac{46}{} &
\end{array}
$$

of calculating these results with sole reference to π and r It 18 customary to label the arthmetic mean of the numbers 1 and 0 in a unverse as π (This assumes, of course, that only the numbers 1 and 0 can occur) The value of π also 18 always equal to the proportion of the given element in the unverse τ is then taken to equal 1 - π, or an thas case 70

Vemfy each of the calculations in Table 71 by substituting the values of 30 and 70 for π and τ, respectively, in the appropnate tormulas The ease of dotag this should make elear one of the advantages we prek up by restricting our model to values of 1 and 0

Flgure 74 shows where we now stand The top part of the figure indicates our unverse of 30% satusfactory parts, or the domain of knowledge We have slso listed the results of the analyms made in Table 71 The lower part of the picture is the doman of agnorance This is where all the samples from this unverse are We hope to illuminate this area by making inferences about the kinds of samples we might get from this known unverse

The Results af Drawing Random Samples

We are going to $1 m a g n e$ taking samples of five fems from our universe and assume that these samples are selected in such a way that we are unable to detect any relationsbip between the process of selection and the results we get We treat these samples, therefore, as though they were generated by a random proness We have pre-

Fig 74 Our present state of hnowledge about auto part 3496
voously defined a random process as one in whth ue are ignorant of any relationship between the process and the results, and our notion of randomness is sumply a model we have constructed to treat something we do not know anytbing about We do not argue that there is no relationship between the process of selection and the results that occur We merely note that ue know of no such relationships, and we must treat the process as though there were none It is not surptising then, that since randomness is a result of ignorance, we find oursolves mahing random etrors
Ile could, of course, actually construct a model universe of the type we have defined We could then actually draw samples of five itcms out of this unsverse and study the sample results and make conclusions about the kinds of samples we can get from this universe

Such conclustons would be hased on experience The more sueh samples we had, and hence the more expenence we had, the more specific could be our conclusions Such an experment pould be quite tedious for us to perform Some probahly would not be satisfied even if we took 1000 such samples We could considerably speed up such an experment by sumulatung the drawing process on an electronic computer We would program (give it mstructions) the computer so it would search a table of random numbers for sets of five atems The computer could conduct the search, and find results, et a prodigrous rate, thus spewing out random samples of 5 far faster than we could draw them, say, out of a bug bowl We could then program the computer to analyze the samples and indicate in a summary way what resulted

We are nether going to actually draw the samples nor are we going to program the computer in this way We are going to assume that we know enough about what the results would be so that we do not whsh to waste our time or computer time on such an experment Our problem 18 so smple that it was expermentally analyzed years ago We are reasonahly well satisfied that the binomal theorem, for example, predicts quite well the kinds of results the expermment gives In fact, it gives us better results than the experiment The experiment must somehow end before all possible samples have been selected and the results of the experment will always be a fraction of what could be The binomal theorem enables us to proceed 1 m mednately to an estmate of what would happen if we actually did carry out all possible experments
It is wort noting tiat there are many problems in probability and' inference that we do not understand very well in the sense that we do not have any ready formulas to predict the outoomes of mfinte experments These are the prohlems for whoh we should use the computer to help us search out likely formulas As pointed out earher, most of the logical inventions in probability and statistics were initally a response to observable phenomena, and the ciues to what a good formula should look like came from experience If we can leam how to smmulate expenence on the computer, the potential rate of progress is amazug It 15 now possable to have the computer generate more experience in a few hours than heretofore we have been able to generate m years or decades, however, we can remind ourselves that the computer can do only what we tell it, although certanly very quickly It even makes mistakes in a hurryl
Our procedure is to explot the bromal theorem to mdicate what kinds of samples of 5 will come out of thas unverse in the long run

Figure 75 continues the anslogy begun 10 Fig 74 We find that only six different kinds of samples can occur, the distingushiog feature being the number of satisfactors parts in the sample a number which can run from 0 to 5 Each of these results is pictured in the lower part of the duagram We have calculated the mean, the vanance the crude skemess, sod the coefficient of shewness for each possible sample
We have also noted the relatuve frequency with which ne would expect each of tbese samples in the long rin These ore shown along the light raj leading to a giveo sample For example, the extreme left tay shows $P(\mathrm{p}=0 \mid \pi=3 N=5)=16807$ This is sborthand for the probability of getting 0 satisfactory parts, gwen that there are 3 satusfactory parts in the unserse and that we are taknog samples of 5 is equal to 16807 If we change 0 to something else, aay to 2 as we do for the next ray to the rught, there is a change in the probability eveo though r god N remain the same Sumarly, if ne change π we cbange the probabiltty, or if we chaoge N Since each of these factors does male a differeoce 10 the probabilty, it 13 a good idea to cultrate the habit of explectly specify 10 g them It is iery easy to make rather serious blunders in the use of probabilities If ne misoterpret the conditions which necessanily must accompany anj statemeot of probabilits [It is conventronal to use capital P to suguly probability The eicat te are getting P for is encloeed in pareotheses The first item in parentheses is the event itself, here, $p=0 \quad$ (Thes is small p and refers to the proportion of 1 's in the ghen sample of only 1 s and 0 's can occur) We theo dram a vertucal line to separste the event from the conditions under which the event is pre umably being generated These conditions are essentral There is no way that a probablity can be caleulated except for come given cooditions]
The dagrams at the very bottom of Fig 75 summarize the results from these six possble sarmples Section A summanzes the various values for the sample meons, here called the sample p 's This is the distrbution we pay most attention to Part B cummanzes the sample varances Part C summarizes the sample skeunesses All of these distrabutioos tale into account the relative frequency with which each sample is expected to occur
Since we are going to make only passing refereaces to the distributions of the vanance and of the shemness, let us make sucb references first The most important tbing to note about the sample varances is that their antbmetic mean is less than the variance in the unnerse Note that the unverse tariance is 21 and the mean of

Unwerse Characteristics

Doman

(h) Chatics
of $\quad \pi=3$ (Proporion of $X \operatorname{sm}$ unverse) $\quad K_{x}=873$ (Relatve skwwness)
knowledge $\quad \pi 7=\sigma^{2}=21$ (Vanance of X s in unverse) $L_{2}=084$ (Crude skewness)

$$
\vec{x}_{p}=3=\pi
$$

$$
\sigma_{P}^{2}=092=\frac{\pi I}{N}
$$

$$
\overline{\mathrm{X}}_{\mathrm{XW}}=\overline{\mathrm{X}}_{22}=168=\pi T \frac{N-1}{N} \quad \bar{X}_{i}=04832=\mathrm{L} \frac{N^{2}-3 N+2}{N^{2}}
$$

$$
s_{P q}^{2}-\sigma_{z z}^{z}=00712
$$

$$
L_{p}=.00335-\frac{\pi r(7-\pi)}{N^{2}}
$$

$$
K_{P}=3904=\frac{\pi-\pi}{\sqrt{W_{\pi T}}}
$$

Fig 75 Inferences about samples of five stems from a known universe
the sample varsances is 168 Note also that there is a known exact relationship between these two values, thes relationshup being that $X_{p q}=\pi r(N-1) / N$ An explanstion for thes relationship is given later We should not be surpnsed to find $\bar{X}_{p g}$ less than πr Consider a unverse with a x of 5 It would bave a vanance of 5×5, or 25 This is the maximum possible vertance for any unverse, or asmple, that contans only $l^{\prime} \mathrm{s}$ and 0 s Samples from this unverse of $\pi=5$ thus have rome cesses of a sample vansuce less than 25 , hut no cases of a sample vanance more than 25 Thus the mean of such vamances must aecessanly be less than 25, and hence less than the varrance of the unverse A parallel argument would hold for all other unverges

The varagnce of the sample vanances is 0071232 This is considerably less than the universe varnance of 21 We do not show a formula for denving the variance of the varances from the informathon in the unverse hecause the formula includes elements that are outside the scope of this book We merely note that the formula in volves more than just the saze of the sample and the variance of the uaiverse It is atateresting to note, for example, that the vanance of the sample vanances from one unverse might he larger than they are from another unverse, for the same N, even though the vapance in the first universe is omaller than the varance of the second und verse
$L_{\text {pi }}$ or the crude skewness of the sample varisnces, is calculated to be -000644 Agsin we show no formula for the reason just given Note that the skewness is negatuve for these sample vananees even though the uaverse itself has positive skewness
We show only the arthmetic mean of the crude skewness in the varous samples It turns out to be 04032 Compare this with the crude skewness of 084 in the unverse It is clear, then, that if we use the akewness in the sample as an estumate of the skewness in the unverse, we are on the average too low The appropnate correction factor is shown as emodied in the formula for estumating X_{1} from L itself If we multiply a given sample l by $N^{2} /\left(N^{2}-3 N+2\right)$, we get estrmates of L so that the anthmetic mean of all auch estimates equals L It is interesting to note what happens if N is 2 The correction factor turns out to be 4/0 This imples that we should increase our estumate of skewness quite substantrilly What it really means is that we have created a bit of nonsense because we are dividing by 0 , an ullegtimate anthmetical operation Actually, a sample of only two items provides us with no information at all about the skewness in the unverse All samples of two items are automatrcally symmetrical regardless of how much akewness there is in the unverse It should be obvious then,
that it is a bit of nonsense to base any estimate of skewness on only two items

Now let us return to the dustribution of sample means, here called p 's Since we are going to be spending quite a bit of time with such distributions, it is a good idea to make very clear exactly how we have calculated the summary results shown at the base of Part A Table 72 shows the detall of the calculations The umportant features of each column are as follows

Column 1 These are the orley possble proportons of satisfactory unts that can oscur in samples of 5 These proportions are the equvalent of samples having 0 satisfactory umts, 1 satisfactory unit ete, up to a maxumum of 5 satisfactory units
Column 2 These are the probobitutes of getung samples with the given p 's Thus we are saying that we expect to get samples with 0 satusfactory units 16807 of the tmse on the long min The

TABLE 72

Anelysis of Distributian of Somplo Arthmetic Meons ($p^{\prime \prime}$) far Slmple Random Samples of 5 Iroms Each from a Univarse with on Arthmatic Meen (π) of 3

Sample

(1)	$\begin{aligned} & P \\ & (2) \end{aligned}$	$\begin{aligned} & P p \\ & \text { (3) } \end{aligned}$	$\begin{gathered} (p-\bar{p}) \\ (4) \end{gathered}$	$P(p-p)$ (5)	$\begin{gathered} P(p-p)^{2} \\ (6){ }^{2} \end{gathered}$	$\underset{(\bar{p})}{P(p-\bar{p})^{8}}$
0	16807	0	-3	-050421	0151263	-00458789
2	36015	072030	-1	-036015	0036015	-00036015
4	30870	123480	1	030870	0030870	00030870
6	13230	079880	3	039690	0118070	00357210
8	02835	022680	5	014175	0070875	00354375
10	00243	002430	7	001701	0011907	00083349
	00000	300000		0	0420000	00336000

$$
\begin{aligned}
\bar{X}_{p} & =\bar{p}=30=\pi, \sigma_{p}^{2}=042=\left[\frac{\pi T}{N}\right]=\frac{3 \times 7}{5} \\
L_{p} & =00336=\frac{L}{N^{2}}=\frac{\pi \tau(\tau-\pi)}{N^{2}}=\frac{3 \times 7(7-3)}{25}=\frac{084}{25} \\
K_{p} & =\frac{00336}{042^{3 / 4}}=\frac{00836}{\sqrt{042^{3}}}=\frac{00336}{008607}=3904=\frac{\pi}{\sqrt{N}}=\frac{\pi-\pi}{\sqrt{N} \times \sqrt{\pi r}} \\
& =\frac{7-3}{\sqrt{5 \times 7 \times 3}}=\frac{4}{\sqrt{105}}=\frac{4}{10247}
\end{aligned}
$$

probabilithes gaven here were taken from a table of the binomin? At least check them aganst the table, or possbly ebeck them by calculating the hnomial itself!
Column 3 This is the multupleation of each p by its corresponding P, or multiplying each sample mean by the relative frequency of its expected occurrence The sum of ths columa is the ant metic mean of all the sample mecons
NB A very important eharacteristc of the means of ran dom samples is now apparent, namely, that the arithmetic mean of all sample means is equal to the mean of the unverse
Column 4 Here we show the devatons of each sample mean from the unverse mean since they ate not yet weighted by then probabiluties, the sum of column 4 is meaningless
Column 5 Here we multuply each devation in column 4 by ita proba bility in column 2 We sum these welghted deviations and get 0 Ths is as we expect beause we know that the sum of the devations from the arithmetic mean adrays equals 0
Column 6 Here we have the weighted aquared devations They were calculated by multiping column 4 by column 5 The sum is the sum of all the squared devations Since N equals 1, this 18 also the mean of the squared deviations and hence what we call the variance If we were to take the square root of this, we would have the standard devation of the sample p 's
Note that we could have calculated the same result of 042 by divding the varance of the umverse (rr, or 21) by the number of tems th the ample (bere 5) Thas is a very im portant result and is ahooys true Its truth is quite independent of the shape of the unverse We almost always calculate the vanance of sample means by this formula rather than by the tedious process of a direct calculation from a distribution of sll possble sample means as we did here
Column 7 Here ne make the next logeal step atter squanng the devia toons Now we cube them (Although we do not do it here, or elsewhere we sbould note that the next logical step is to rase these deviations to the 4th power The omission of this step, and of the steps up to even hagher powers of devations, is what prevented us from eayng yery much about the distrbutions of sample vanances and sample skewnesses We would need these higher powers to say more)
We are interested in the cubes of devations because they indicate something about ateroness The sum of the cubes is 0 if there is no akewness Here we find a result of 00336 This indeates a postruce skeuness in the distribution of sample means

The calculations below the columns show that we could bave obtaned thas same result by dividug the crude sketriess in the universe (L) by the square of the sample suze This is also a very important result Again we emphasize that it is always true and is completely independent of the distribution form of tbe unverge We can pow see why we asserted in an
earker chapter that the normal curve is a rather good approxmation to the distribution of sample means even though the unverse 18 quite skewed provided the sample is reasonably large The crude skewness of sample means vanes inversaly ac the square of the sample sure

The cosficient of skewness of sample means is also calculated, it is 3904 Again we find that we could have calculated this directly from the unverse miormation, using the unverse K and dividing it by the square root of N Note that the relative skewness does not disappear as fast as doas the crude skewiness The reason is quite smple. The relatve skewness is calculated by divdrag the crude skewness by the cube of the standard devatuon As N mereases we find the crude skewness decreasigg quite rapudly in the numerator of the ratio But, also as N jncreases, we find the standard devation decressing in the denomanator of the ratio The net resuit 15 that the fato does not decrease mith N as rapudy as does the numerator
Now that we, to an extent, understand the behavior of samples as they are generated by a random process from a known untverse, we are in a better position to infer what is an unknom unverse on the basse of a known sample

7.5 Inferring the Mean of a Universe from Information Provided by a Random Sample

The typical practical situation is illustrated in Fig 76 All of our knowledge is in the sample domain Our problem is to make inferences about the unverse domam from thas sample information

We first must face a pholosophical issue The characteristics of the universe are in fact fired in the same sense that the characternstics of a deck of playmg cards are fixed Several different samples could have been drawn from this smgle unverse We might argue, therefore, that the umerse is a constant and the sample is a varable This argument is relevant only if we know the unverse and are guessing ahout the sample If we do not know the unverse, the stuatron is quite different We now have a case in which we know the sample end are guessing about the unverse Thereiore as for as we knove, the universe might have several characteristics and the sample has only the specific characteristics given Hence pe must treat the unverse as though jt were a vanable and the sample as though it were a constant
Some analysts ohject to treating a constant universe as though it

fig. 76 Our present state of knowledge about part 3496.
were a variable We answer this objection by pointing out that we must always treat a problem in terms of what we know about the situation, not in terms of what the situation really is 1f our knowledge is scanty, prudence requires that we allow for all the possibls values some unknown constant might have. We should understand, then, that when we treat a universe as though it were a variable, we do not da this because we think the universe really is a variable but hecause we do not know the precise value of the relevant constant

Summary Characteristles of Our Somple

Note that we have calculated the same summary figures for our sample of five suto parts as we did for our universe. We find that the sample has a mean of 4 , or 40% satisfactory parts. It has a variance of 24 , a crude skewness of 048 , and a coefficient of sketvness of 408. What might we now say about the unverse from which this sample came?

If the say that 'the tutverse bas a mean of $4^{\text {" we are making a }}$ statement about the mean which will be nght on the average, on the sense that the arithmetre mean of all sucb statements would give us the true umverse mean We are able to say this because we have already leamed that the anthmetue mean of all possible sample means ts equal to the mean of the unverse (See the previous secthon)

Similarly, we could say that "the unverse has a vamance of 30 " (the sample variance of 24 tmes $N /(N-1)$, or times 125) We make this adjustment in the sample variance because we have discovered that the arithmetse mean of sample varlances is too smell (See Section 74) After making this adjustruent, we can now say that the anthmetuc mean of all such estmates of the unverse varance will equal the true unverse varance

It may seem absurd to make an estmate of the unverse variance of 30 when we know that the maxmum possible vamance of the unverse is 25 (The vamance of a distmbution of is and 0 's, so equal to $\pi \tau$, and $\pi \tau$ can never be larger than 25) And it is absurd in a wry We are led into such an absurd statement if ne insst that our estimates have their erthmetic mean correspond to the truth, or the unnerse value that is being estimated It is thus apparent that we should attach no magical propertes to any method of making estimates that satisfies the arithmetic mean criterion It is quite clear here that we should abandon the anthmetio mean onterton for another general cuterion that comes to better terms with common
 this book, we merely advise an adjustment of the sample variance for its downward buas up to the logrcal traxmum of 25 , but no further Thus, in this case, we would adjust the sample variance of 24 up to the maximum value of 25
A parallel lane of reasoming leads us first, to estimate that the universe has a crude skewness of 100 [Ths 15 the sample crude sker. ness multiplied by $\left.N^{2} /\left(N^{2}-3 N+2\right)\right]$ Agan we find our estimate larger than a known maximum, in this case a maximum of 0967 Hence ne would reduce the estimate to 0967 We make no attempt to make the best single estmate of the coefficent of skonness in the universe

If we now combine these so-called best single estimates of the mean, variance, and skewness and come up with a universe that has a mean of 40 , a variance of 25 , and a crude skewness of 0967 , we nould have a "best single estamate" of the unverse We find the task of constructing such a universe quite formidable, almost like
constructing a Frankenstein monster, with a leg from here, a head from there, a torso from somewhere else, etc We are sure, however, that the resultant unverse does not conform to aby customary binomial distributions becsuse this combination of mean variance, and skewiess is a logical impossibility for a binomial distribution We feel confdent that we could eventually find a distribution form that would have these charactenstics, at least approxumately But we are not going to bother to look for it because we are quite sure we would have no practical uae for it after we found it because it would be only a sungle estrmate of the unknown unverse Such a sangle estumate sa almost certannly wrong (we are certa a it is in this case) To have an estituate that is almost certanly wrong, and to not know its margin of error, is to have no relisble base for rational action What we could try to do, of course, is first make this best estumate, then make a next hest, and a second next best, ete untul we have a whole collection of estumates of this voiverse Such an approach is conceptually possble, and it probably would be somewhat rewarding However, it would involve some very formidable challenges, and we must confess that we are not quite up to them here, and not just because this is an matroductory book
We are actuslly going to lower our arghts somewhat and not even try to describe the universe fully We are gong to confine ourselves to the relatively modest task of estumating the mean of the unverse We take up the parailel task of estimating the varance of a unverse in a Ister chapter (Chapter 12) Nowhere do we try to estumate both of these things at the same tame

One Approach to Inferences About the Universe Meon

We stant reasoning about the mean of the unverse with the best sugle estimate we have at the moment and that 15 a mean of 40 But we are quite sure tbat the true mean might be larger than 40 or smaller than 40 The problem, then, is to determine how much larger or how much smaller, and then to determine how often it mught be a given amount larger or a given amount amaller In other words we would like the equivalent of a probability distribution of the possible values of the unknown unverse mean How do we go about generating such a distrobution?
The smplest and most stragghtforward approach to the problem of generatung a probability distribution of the unknown unverse mean based on information supplied by a random sample is to let the sample act as though at were the unverse and let the unknowa and hence variable, unverse act as though it were the sample What

We are going to do, then, is follow a consistent procedure of letting knowledge beget inferences We bave previously used the procedure to let our knowledge about a muverse beget inferences about a sample We are now going to let our knowledge about a sample beget miferences about a unverse We bave no trouble doing this consistently as long as we concentrate on knotoledge and inference as the keys, rather than on unverse and sample, wbich are not the keys, although the distinction between unverse and sample is certanaly relevant to many thinge we are going to do
We call an inferred probability distribution of tue unknown universe mean the inference distribution of the tuknoun unverse mean, and we call the probabilities in sucb a distribution the inference rathos We use inference here rather than probablinty in order to reduce the possibility of masunderstandmg Thus we plan to use inference when our knowledge is in the sample domain and we ars making statements about the universe We use probabuty when our knowledge is in the uruverse domain and we are making statements about the sample
Figure 77 puctures a possible set of mierences about π (we call such an inference r) Note that we have done exactly what we did in Fig 75 We have used information in the domain of knowledge to generate inferences in the doman of ignorance The anference ratios referred to in the rays leading to the vamous possible values of r_{I} sre taken directly from a table of the binomal distribution, in this cass for a mean (p) of 4 and N of 5 , at would be good to vernity them We comment only on the leftmost one It is watten $I\left(_{\pi_{I}}=0 \mid p=4\right.$, $N=5$) $=0778$ This is shorthand for "the anjerence ratio of a value of π_{l} of 0 , grven a sample of hive items with a mean of $\frac{4}{2}, 18$ squal to $0778^{\prime \prime}$

Again we have the problem of some absurd answers If π really had a value of 0 , of course, all samples would have p 's of 0 Simlarly, if π really had a value of 1 , all samples would have a p of 1 Our inference ratios of 0778 and 0102 are thus apparently nothing but nonsense because common sense suggests they should have values of 0 Nonsense or not, we now are going to work with the inference ratios of 0778 and 0102 because we find it very convenient and also because we can discover some properties of mferences that would be obscured otherwise Actuaily, our problem is caused by working with very small samples and because we have arbitramly restncted the values of our basic data to l's and 0's If we worked with larger samples and/or continuous vernables, the problem of absurd answers would disappear Perhaps we would be more tolerant of these ab-
surditues if ne magined that a case of π_{i} of 0 is really a case of π_{i} of 0 to 1 Similarly, a π_{I} of 2 represents the range from 1 to 3 , ete, up to $a \pi_{J}$ of 1 representing the range from 9 to 1 We have merely decided to arbitrarily represent these ranges by certan specific values
Figure 78 shows the inferences of Fig 77 in the form of a single distribution Here we sbow π_{I} along the horizontal axis It runs from a minmum of 0 to a maximum of 1 We indicate the location of the sample p of 4 by the arrow The vertical axis shows the in ference ratios (Keep in mond that these are the equivalent of probabillties)
We would like to think that the distribution of $F \lg 78$ is a fair representation of the hkely values of the unknown π, but we must admit that at this stage it has only one property that gives us any comfort, namely, it is that this distribution has a mean of 4 , thus equal to the sample mean, and we know that the unverse mean does

Sampte dormain

Domain knowledge

$$
\begin{aligned}
& p=40 \\
& z^{2}=24 \\
& l=043 \\
& h=408
\end{aligned}
$$

Fig 77 Tentative inferences about $\pi_{\boldsymbol{y}}$ bssed on a random ample

Fis 78 Infereace dustrbution of π_{t} based on a semple of 5 with a p of 4
equal the arithmetic mean of all the sample means If, say, ol mference dietribution had a mean different from 4, we would 1 concerned because we would fear that the arithmetic mean of : suoh inferences would not be the universe mean It 18 proper, the for us to do a littile more testung before we accept Fig 78 as a fa and proper procture of the likely values of π_{1}

Summary of All Possible laferences that Could be Made from A Possible Samples

We make this test by considenng all the other possible samp results and making inferences about π from each of them, and the we average all these inferences
Figure 79 shows all such possible mierence distributions, molut ing that from a p of 4 Table 73 shows the same information: tabular form Let us turn our attention to the table The colum are headed by the various selected values of π, The rows are ident fied by the vanous possible sample p 's Since our samples conta only five tems each, we know that there are no other possible valu of p than the ones listed No such restriction apphes to the ris's W know that π in truth might have a value of 36947 , or any other val of an infinte set of values running from 0 to 1 We show only th

Fig 79 Inferance datributions of π_{I} based on all possible values of p to samples of five thems
values of $0,2,4,6,8$, and I It is obvous, then, that we are letting each of these six selected values represent a set of values In essence, He are Ietting 0 represent 0 to 1,2 represent 1 to 3 , ete These are quite crude intervals We justify ther use at the moment because

TABLE 73
Matrix of inference Ratios far All Passlble Values af π_{I} Based an All Possible Values of p for Samples of 5 trems
[The body of the matnx shows $I(\pi, \mid p, N=5)$]

they keep our model as smple as possible, we use more refined intervals later The crudities cause us no real trouble now with respect to the main purposes of our present investugations

Examine the row identifed by p equal to 4 and you will see the same sat of anference ratoos for the varous values of π, that we showed in Figs 77 and 78 The other rows guve the approprate ratios for the other values of p All of these ratios are obtamable from a table of the binomial We should spot check these agannet such a table in order to satisfly ourselves that we understand exactly how they are determined Note that each row has a sum of 10000 This should be so because π must have some value, and we clam that we have included that value somewhere in the row We show no sums for the columns Such sums would mply equal weights for each value of p, and we know that such equal werghts would not be true under any circumstances
Averagng the Inference Ratios We are now ready to average these inferences as soon as we determine the appropmate weights to use The appropriste weights would depend on the relateve frequency with which we would expect the various values of p to occur These relative frequencies depend on the true value of π in the untverse Since ne started out with a unverse with a π of 3 , let us

TABLE 74
Probabilaty Vector of Alf Possible Values of p for Samples of S from a Unlverse with $a \pi$ of 3

p	$P(p \mid x=3, N=5)$
0	1681
2	3632
4	3057
6	1323
8	0284
10	0023
	10000

assume that our "unknown" unverse does have a r of 3 Table 74 shows the expected relative frequency, or probability, of the vanous values of p for samples of five from a unverse with π equal to 3
We can now see where our inferences lead us Table 74 indicates that we get a sample p of 0 in 1681 of all samples from a unverse with $a \pi$ of 3 This means that we make the inference about π shown in the first row of Table 731681 of the time Similatly, we make the inference shown in the second row ($p=2$) 3602 of the time, ete If we now multiply each row of inferences shown in Table 73 by its relative frequency of occurrence shown in Table 74, we have welghted each inference about π according to the relative frequency with winch we would be making such an inference Table 75 shous the results of such a multiplication (Note that we have called Table 73 a matrx of inference ratios, and Table 74 a probability vector These are terms used in matrix algebra, a subject which may be unfamilar If so, it is sufficient to know that a matrx is essentially a table with rous and columns A vector is simply a spearal case of a matrix that has only one row, or, it could also have only one column Thus we talk about a row vector, which is a matrix whth only one ron, and a column vector, which is a matrix with only one column Thus we might call Table 73 a matrxx and Table 74 a column vector Those exposed to matrix algebra will note that Tahles 73 through 77 are parts of a system of matrix multiplication)

All of the inference ratios in Table 75 are the result of multiplyng the corresponding unt in Table 73 hy the anproprate ron probshility given in Table 74 For example, 1681 in the upper left-land

TABEE 75
Matrix of Welghted Inference Rahas for All Possible Values of π, Given that $\pi=3, N=5$
[The body of the matrix shows $1\left(\pi_{I} \mid p N-5 \tau=3\right.$]

corner of Table 75 is the result of multuplying 10000 from Table 73 by 1681 from Table 74, 1475 just southeast of the 1681 is the result of multiplying 4096 from Table 73 by 3602 from Table 74, 0738 m column 3, row 2 of Table 75 is the result of multiplying 2048 in column 3, row 2 of Table 73 by 3602 in the second row of Table 74 , ete Note that the rows add to the same probabilties as we had in Table 74 (except for shght rounding errors) This is as we would expect because we started with rows that each added to 10, and 1 multiplied by any number should give us the number
Another way to visualze the materisl of Table 75 is in the form of a tree Figure 710 shows the senes of branches We start with a universe with a π of 3 This umverse is then used to generate samples of five items each These samples could have the p values indicated by the six branches emansting from the trunk They would occur with the long run frequency mdreated at each branch These correspond to the probabilties given in Table 74 Then, given a parthcular sample p, we could generate inferences about π These inferences are shown by the six branches that emanate from each of the sample p 's Tro probabilities are designated for each of these 36 branches The first one is the probability (or mference ratio) of the particular π_{k}, guen the value of p Note that these probabilities add to 1

Fig 710 Tree of unference ratios for all possible values of r_{3} given that $x=3$
wuthnn euch set of sux bratches These probabilities correspond to those in Table 73 Tbe probablities shown at the tips of the branches, and labeled the joint probabilities, are the result of multiplying the probathlity of the x, by the probability of the p that generated the inference Tbese are the probablities that correspond to those shown in Table 75 Note that all s6 of these together add to 1
Our primary interest in Teble 75 is in the column totals Here we have the average (arithmetic mean) of all tbe different inferences we might make about π based on all the possible samples of five tems we sould get from the unverse Let us call this collechion of column totals the average injerence ratio vector for estimates of π, in this case the inferences based on samples of five tems each In Table 76 me rewrite this average inference raho vector as a column vector We then analyze this vector by calculating the mean, ramance, and skewness
The first and most important thing to note is that the arithmetic mean of all the inferences about π is equal to 300 , the vaiue of τ in the unverse In other words, if we use the bnomal based on the sample p 's to generate estrmates of π, we find that the arithmetic mean of all such estimates will equal the π in the unverse Thus any errors we make in estimaing π will average out in the arithmetis

TAELE 76
Analysis of Average Infarence Ratio Vector of Estimotes of π_{i} Based on Somples of 5, Given that r - 3
$\pi_{1} \quad l \quad I \times \pi_{I}\left(\pi_{I}-\bar{F}_{I}\right) I\left(\pi_{I}-\bar{\pi}_{I}\right) I\left(\pi_{I}-\bar{\pi}_{I}\right)^{2} I\left(\pi_{I}-\bar{\pi}_{t}\right)^{2}$

0	3114	0	-3	-09342	028020	-0084078
2	2379	04758	-1	-02379	002379	-0002379
4	2125	08500	1	02125	002125	0002125
6	1410	08460	3	04230	012690	0038070
8	0719	05752	5	03595	017975	0089875
10	0251	02510	7	01757	012299	0086093
	-	$-2998 *$				
	29980		$-00014 \dagger$	075494	0129706	

* Departure from 10000 due to rounding ecrors

$$
\begin{aligned}
& \dagger " \\
& \bar{\pi}_{I}=2998=300 \\
& \sigma_{r_{1}}=0755=\pi \tau \times \frac{2 N-1}{2 N} \times \frac{2}{N}=21 \times 9 \times 4 \\
& L_{r_{1}}=0130
\end{aligned}
$$

mean sense This seems to be a reasonsbly desirable feature of any estimating procedure. ${ }^{\text {. }}$ Although we should be quite pleased to find the arithmetic mean of our inferences equaling the true value of π, we should not then automatically assume that the inference ratios that accompany these estimates are meaningiful in any probability or relatuve frequency sense $1 n$ fact, it is easily demonstrated that there are many different dastributions of π_{t} that will average out at the true value However, these different distributions would give quite different inference ratios and hence would give quite different impressions of the chances that the true π falls within any specified limits withn the distribution We examine this problem as soon as we finish commenting on the variance and skewness of this average inference ratio vector

The varrance of this average inference ratio vector is .0755 Note that this same result could have been obtamed by multiplying the unverse varance of rr by the expression

$$
\frac{2 N-1}{2 N} \times \frac{2}{N}
$$

This expresson looks more formadable than at actually is. Note that the first half ($2 \mathrm{~N}-1$)/2N is practically equal to 1 if N is any size at all. For example, if $N=10$, then $(2 N-1) / 2 N=95$. Thus if N is large, we can treat this part as equal to 1 , thus leaving us with $2 / N$. As a matter of fact, if we had used the $(N-1)$ binomial instead of the (N) bmomal in generating our inferences, we would have found that the variance of the average inference ratio vector would have been exactly $\pi(2 / N)^{\prime}$ The variance of sample means (p 's)

[^11]1s equal to $\pi r / N$ Hence we can say that the vanance of the average inference ratio vector terds to equal twnce the varnance of sample p 's Another way to look at it is this Each sample is the basus of a distribution of sample $p^{\prime} s$, or of π 's Eiach of these distributions has a variance of $p q / N$ When we add all these distributions together to get the total, or average, mference rato vector, we find that this total distribution tends to have twace the vananee of its members
We merely note that the average inference ratio vector has a crude skewness of 0130 Since the crude skewness of the unverse is 084 , this makes the average mierence ratio vector skemness abouk $1 / 6$ of the unverse skewness The formula that expresses the exact relataonshup is quite forbiddng We note only that the skewness tends to disappear quite rapidly as N increases

7.6 Checking the Accurcecy of the Probabilities Implied by the Inference Ratio Distributions

The second test we must apply to our inference ratio distributions is that of determming therr accuracy in estrmating the probabilty that π does in faet fall withn speefied values of τ, (The first test, discussed above, established that the miferences did in fact average out to the correct value of π) In applying this test of the accuracy of the specifc inference ratos we use a much larger sample than before This larger sample makes it possible to see things that are somewhat obscured if we use a sample of only five items Table 77 shows the inference matrux for all possible sampies of 50 tems from a unverse that contans an unknown number of 1 's and 0's The numbers in the body of the matrix (reading korzontally) are taken from tables of the binomal distribution The probabilities are

The vanance of a binomal distribution varies mersely fith N That is the larger the N, the smaller the varrauce The isnances of random samples are in general too small In fact, the average sample variance is equal to the unverse vanance $\mathrm{X}(N-1) / N$ Since we base eath of our mierence ratio distributions on the sample mformation these distributions in general have varances which are smailer then they would be if they were based on the sarance in the unverte If we mash to conrect for thas deficiency we should use $N-1$ for our binomal minerence ratho distributions Incidentally if we do use $N-1$ instead of N we find that the mean of all our mferences will be the true π just as in usiog N However, our average inference ratio vector will have a larger vanauce than if we had used N
TABLE 7.7

8 月 \％
rounded to the nearest thousandth in order to accentuate the general pattern of the matrux in a limited space Verify at least one of these horizontal vectors for a selected $p \mathrm{~m}$ order to solidify understanding of what we are downg
A sample of 50 items might have a p rupning from 0 to 1 in steps of 02 These 51 different possibilties are show in both the leftmost and nghtmost vertucal columns The true umberse \boldsymbol{r} might have ony value runing from 0 to ! We have chosen to adentafy only the spe cific values marked off by steps of 02 We choose only these t order to simplify our compansons of the honzontal vectors and the vertical vectors H e might just as well hase chosen more or fener salues lor ms Keep in mind that, in reality, each selected 7123 a representatue of a class of π_{i} These classes can be considered as bounded by the points midras betreen the specific x_{i} 's The topmost and bottommost rows shom these vanous values of π_{I}

For each value of p te hase generated a distribution of inference ratios for the value of x_{1} It appears as though come values of $r \boldsymbol{r}$ apm imposable for a guven value of p For example, a p of Of yledds
probability for a rf of 2 S This is of course, not strictly true, but it is true if we round our probsbilities to thousandths

Each of these inference ratios is supposedly an estmate of the probability that the gisen smople came from the epecified umserse For example auppose we have a sample with in p of 36 The hon zontal vector at $p=36$ indicates there 15 a probability of 101 that this sample came from a umerse with a r of 32 Our problem is this How close to the truth is the inference ratho of 1017
Rather tban try to answer this specific question about the accuracy of 101 referred to above let us concentrate on the vertueal and honsontal vectors that intersect at $p=50$ and $\pi_{l}=50$ They are marked off in the center of the matrix for convemence te bave reproduced just this part of the matrix in Fig 711 It is useful to reler back to the full matrix penodically as we explam the meaning of these antersecting rectors The horzontal rector serves a double duts, it is the distribution of afference ratoos for tarious values of πi giten a sample p of 50 and if we interchange the $p s$ and $r s i n$ our matnx, it is al o the probability distribution for the vamous values of p we rould expect from a unvere with a π of 50 These tro dastrbutions are identical becaute we have chosen to act as though d noriedge about a sample provides exaetly the same inference base for speculation aboul the universe as hnotudede obont the uniterse prondes for speculation aboul samples

Fig 711 Comparison of inference and probability vectort-r $=5, N=50$ (See Table 77)

The vertical vector at $\pi_{y}=5016$ nothing more than a cross section of the horizontal vectors More particularly, here it represents the various probabilities that would have been assoned to the truth of 8π of 5 given the vamous speesfied semple p 's The arrows connect terms of the vectors which should have the sarae values of out theory of inference were perfect For example, if we are given a π of 30, we would assign a probability of 016 (the gixth term in from the left on the horzontal vector) to the occurreace of a random sample of 50 tems with a p of 50 Conversely, given a sample of 50 with a p of 36 , we would expect to assign a prohabiltty of 016 to the existence of a unsverse with a π of 50 We note however, that our inference method has actually assigued a prohability of 015 to a π_{t} of 50 , given a p of 36

015 is close enough to 016 to prevent too much consternation If we check all the terms of the two vectors, we find that in no case is there a difference of more than 002 It should be reeogoized, however, that in one csse the estimste massed by 50% This was a sample p of 70 (or of 30) where we expected a probability of 002 and estimated one of 001 As a practical matter we would have to admut, nevertheless, that these estmated probabilities are certanly close enough for just about any problem we could think of Unfortunately our theory of inference does not work this well all the tume!
Figure 712 clearly substantastes the fact that our theory of inference is not foolproof Here we show the intersecting vectora for a p and π_{t} of 92 It is rather discouragingly evident that some of the misses are quite large For example, with a π of 98 we assigned a probability of 067 to the oceurrenee of a sample with a p of 92 Conversely, we assigned a probahility of only 015 to the existence of a unverse with a 4 of 92 when we were given a sample with a p of 98
In Fig 713 we have the intersecting vectors for a p and πj of 20 Note that the estimates here are better in general than for the 92 vectors, but worse than for the 50 vectora

Fg 312 Comparson of mefenee aod probability vectors $x=92 N=50$ (See Table 77)

Fig 713 Comparson of inference and probabulty veators $\pi=20, N=50$

The Cause of the Errors in the Inference Ratios

Figure in is clearly demonstrates that the errors in the inference ratios are defintely systematic Note that the inferemee ratios are always below or equal to the drect probsbilities for values of p beiow 20 and always above or equal to the durect probabihtes for values of p above 20 (We are confining our attention to the intersecting vectors at π and p of 20) It looks as though a smple corrective action would be to rotate the distribution of inference ratios clockwise This would bring the two distributions into almost perfect agreement To accomplish thes, however, we would have to alter all our honzontal vectors because the verticel vectors are smply cross sections of the honzontal vectors If we alter these horzontsl vectors, we do two tbings that we do not like to do First, we would have abandoned the bunomal distrobution as our inference distribution, and we are reluctaat to do this becsuse we do not have at hand any other sumple class of distributions to substitute for the binomal

Fig 714 Comparison of convarse and direct probsbulties for samples of 50 Futh $x=20$ (Sse Table 77)
and still do the required job Second, we would end up with inferences that uould not average out at the true value of π We must admatt that there is no mherent magic in averaging out at π but to do so does guve us a sense of secunty that we besitate to abandon until we have something else

Let us examine the conditon that would defintely make the inter secting vectors tdentical Table 78 illustrates an adeal inference matrix wherem all the inference ratios are exactly equal to their companion direct probabilities The fundamental condition to accomplish this is that all the hortzontal vectors must have the same probabilthes Thus the vectors differ only with respect to their means All the vectors have the same vanance and the same skeuness Our problems would be solved if we could eliminate the correlation that exsts among the mean, variance, and skewness in our samples A mean of 50 as accompanied by the manmum varanre of 25 and by 0 skewness It is impossible to have a sample with a mean of 50 and, say, with a variance of 20 or with a skewness of 068 As the mean departs from 50 , the variance decreases and the skewness unereases If it were possible for any given mean to be parred with any given variance and with any given skewness, we would find that our horzontal vectors would average out to have the

TABLE 78

Idenl Inference Mahixes
Symmetrimal Probability and Inference Vectors

Skewed Inference and Probablity Yectors

0124691525201251	0	
012469152520125	1	0
01246915252012	5	10
0124693525	12	510
0124691525	20	$12 \begin{array}{llll}12 & 1 & 0\end{array}$
0124893	35	2012510
012469	15	252012510
01246	\bigcirc	152520125150
0124	-	$9152520125: 0$
012	4	6915252012510
01	2	46915252012510
0	1	246915252012510
	0	1246915252012510

same varnance and sanue skewness, thus satasfyng our desired condition We say sverage out because indrvdual honzontal vectors nould sometmes have small variance and sometmes large variance due to fluctuations of sampling The same would be true of skewness In Table 77 we note that the vanances of the honzontal vectors
are essentally the same near the center of the matrix This explans why our inference ratios are good estimates of the durect probabilities if π equals 50 The estimates would be almost as good if π equaled 48 , or 46 , etc We begin to get sugnoficantly poorer estumates only when the variance begins to decime sugnifantly
It is also mportant to note that the inference ratios do not become poor estimates untal we get near the tails of the distributions The maxtmum probability for a given vector 18 always exactly correct, the next adjacent probablities are nearly correct, the next a little less correct, etc Thus we do not begin to make large etrors untll we get to the small probabilitues, the very ones that are not 80 likely to occur For example, if π equals 30 , we find a probability of 122 that a sample p of 30 will occur When a p of 30 does occur, fe assign a probability of 122 to a π_{j} of 30 , and we have assigned the exactly correct probability If our aample happens to have a p of 28, we assign a probability of 117 to the existence of a r_{1} of 30 This compares with the direct probability of 119 , if we get a p of 26 , we assign an inference ratio of 100 instead of the correct 105 , if out sample has s p of 22 , we sesign on mierence ratuo of 052 to the existence of a π_{1} of 30 instead of the correct 060 But note that, although we make a relatively large error in our estumate of the probability of π_{I} of 30 when we have a sample p as low as 22 , we do not make thes error very often because a p of 28 does not occur very often It is appropriate to state that this method of stating inference ratios 88 such that the cases of small errors oceur more frequently than the cases of harge errors Therefore our total errors are moderately small

The Importance of the Size of the Sample to the Accuracy of Inference Ratios

The errors in the inference ratios decine as the sample size increases The decline a not because the varnances in the honzontal vectors become trore uniorm, because they in fact do not become more uniform The relative differences hetween the variances remand precisely the same regardless of the azze of the sample For example, the variance associated onth a p of 5 is alwaya about twice as large as the vanance associated with a p of 146 regardless of the size of N (See Table 79 and note that the relative sizes of the numbers are the same in columns 2, 3, 4, and 5) What does happen as N increases is that the relevant horzontal vectors are so close together with respect to a given p that we become concerned only with a very small

TABLE 79
Varionces of Binomal for Various Vaftes of p ond Various Sizes of Somples

p	$p q$	$\frac{L_{q}}{25}$	$\frac{p q}{5}$	$\frac{p q}{100}$
(1)	(2)	(3)	(4)	(5)

0	0	0	0	0
05	0475	19	0095	000475
10	0900	36	0180	000900
15	1275	51	0255	001275
20	1600	64	0320	001600
25	1875	75	0375	001875
30	2100	84	0420	002100
35	2275	91	0455	002275
40	2400	96	0480	002400
45	2475	99	0495	002475
50	2500	100	0500	002500

* This column cepresses each value of $p q$ as a ratio to the $p q$ of 25 that is associated with a p of 5
segment of the total matrix, and the varances of the bomzontal vectors are then practically the same For example note the case of a p of 3 If N equala 1, we get s vanance of 21 and a standard deviation of 458 If we use the normal curve probabilities as a crude basts of estimating the range of the bulik of the probabintes around a p of 30 , we find that plus and monus i standard deviation of 458 would be necessary to cover about $2 / 3$ of the cases Thus we would be running across the vectors from a p of 0 (we rule out p values of less than 0) to the nerghborhood of a of 75 Such a range of p vectors certanly gives us plenty of opportunity to be distressed by the changes in the variances But now consider the case if N equals 10000 Here we have a standard devation of only 00458 If we go to plus and minus 3 of these, we should include about 9975 of all the frequences (The normal curve estimate would be quite good with such a large sample) Thus we would find our relevant p vectors all within the span of a p of 285 and a p of 315 It should be obvious that the variances of these vectors would be practically identaeal and that our mference ratios would be almast exactly the same as the drect probabilities

7.7 A Summary of the Properties of the Binomiol Distribution as an Estimator of the Probability Distribution of the Volue of the Unknown π

We uncovered several concepts and ideas in our exploration of what happens if we use the hinomal distribution as an estumator of the value of the unknown π. Since we encounter these concepts and ideas again and again, it is useful to summanze them in order to fix them in our minds

1 Daes the probabilty distribution of an unknown unverse valuc exst? We have found that there is a dastnbution of the unknown π that has many of the properties of a probahility distribution We have not learned as yet bow to ectumate the probabilities precuely, but we have demonstrated that we can estimate them close enough for many practcal problems We would argue that such estmated prohabilites are subject to exactly the same kinds of interpretations as are the proba bilties generated from a known unverse about an unknown sample or samples
2 The binomial distributions have the property tbat the anthmetic mean of all the inferred distributions results in the exact true valua of the unknown π This means that repeated estmates produce errors wbich average out in the arithmetic mean sense T bis seems to ba a useful property of an estumating procedure and one we would always try to have if it is possible without saerifing some otber useful properties We see other useful properthes shortly
3 Our use of the bnomal inferences required that we make no assumpthons whatsoever about the meas, vanance, or skewness of the unverse other than what was umpled by tbe sample atself In other words, we did not impose any restrictions on our inferences owing to any notions we migbt have about the unverse, ether by assumption or from prior knowledge The mpostance of our not making any assumptions becomes clearer in later discussion when we do make some assumptions
4 The bonomal distributhons afe very handy to work with, tbey have known propertues and can he generated by a relatively simple formula The tedum of calculating hunomial probahilties can he releved by tables
5 The hanomal distnbution is dascrete It provides probabilites for only certain specific values of π_{j}, however, other values of π_{l} are possible If we wish to use the binomal distribution to estimate probabilities for the other values of $\pi_{\boldsymbol{z}}$, we must interpolate between the speefic discrete values We would thus be treating the binomal distribution as though it were os contrmuows distribution There is nothing inherently wrong in treating the hinomial distribution as a contunuous distrihution To do so, bowever, involves some rather tedrous calculations to find the interpolated probablities for the sub-
intervals No one has yet performed such calculations and published them in a table, pnmanly because there seems to be no pressing de mand for such interpolated $\sqrt{ }$ alues
6 Errore in the use of binomal probabilitues as estimates of the prohahility that a giver π_{I} is in fact the truth are caused hy the varnation in the varance of the distnhution for different sample values of p If me could allow p to vary mithout accompanying systematic varation in the variance of the distnhution of τ, , we would solve our problem of errors in our prohahility estwates We emphasize the word systemattc hecause re nould not be concerned with random varations in the varance Random varintions would tend to average out, thus leaving us whth constant vamance on the overoge
7 Errors in the use of biomual prohahiltes to estimate the prohability distribution of π_{I} tend to declme as the size of the sample increases This decline is caused by the reduced variance in p as N increases
8 The errors in the prohabilties are more senous on the talls of the distribution than thev are in the middle of the distraution Thus the error in the probahility vares inversely with the sure of the prohahility The net result is that smail errors occur more often than large errors
8 The binomal distribution gives prohablaties for T_{r} equal to 0 or 1 that are obvousiy wrong If we have a sample uth $8 s y, 25$ defectuve preces, common seare suggests that this sample could not posmbly come from a unverse moth 0 defectives, or from one with 100% defec taves The hinomial drtnhution hased on a p of 25 euggests postive probabiltes for a π_{j} of 0 or of 1 , however This sort of nondense could he consderably reduced if finer onterpolations were made for the values of πl The also would not appear to he quate so much nonsense if we mterpreted a π, of 0 to actually refer to a range of π_{1} from 0 to, say, 10 Thus, apparently discrete estumates of probabilities of π for values of $0,2,4,6,8$, and 10 could he interpreted as estrmates of the prohabilities for π_{l} values so the introrvals $0-1,1-3$, $2-5,5-7,7-9, ~ \mathbb{- 1 0}$ The exastence of postive probabutines in the two extreme intervals would not appear so shockng
The problen with the houndanes of 0 and 1 exsts in some form with any estimeting method Fortunately, the restrictive impact of these boundaries decines as the sample suze noreases Later we show how we can solve the prohlem of boundaries hy using an inference model that has no houndanes, for exsmple, the normal cistribution

7.8 The Underlying Logic of a Theory of Inference

Since we have already discussed the problem of developing some procedure for making inferences about the unknown mean of a untverse, it may seem strange that we postpone to now any explicit discussion of the logical requrements of an mference method We feel
tbat we will be in a better posityon to appreciate the logic after we have seen some of the problems a theory of mference faces
We now make an assertion that would have seemed to be quite bold a fer pages back Let us first make the assertion in tbe form of a special case We would like our theory of inference to be so constructed that if the probability of a ample p of $20_{1 s} 158$, given a uniserse x of 40 the probability of $\mathrm{a} \pi$ of 40 , given a sample p of 20 , should also be 158 , both statements, of course, for a given sample size In symbols we would like to be able to assert the validty of the followiog equality

$$
P(p=20 \mid x=40, N)=P(x=40 \mid P=20, N)
$$

Or, more generally, we would like to assert the validity of

$$
P(p \mid x, N)=P(\pi \mid p, M)
$$

If we call the probability on the left side of this equation the direct probability and the probabilty on the nght side the muerse probsbulity, we can now say that we would like our drect probabilities to equal our inverse probabilities Tbe direct probabilities are those calculated about samples from a knowa universe The inverse probabilithes are those calculated about unverse inferences from a known sample
The fundamental condision for thus equalsty to be true is that each sample meon (p) should be able to occur unth each possible sample varance, and with each posstble sample skeuness Table 78 allus trated such a condition for a case of zero skewness and for a case of signuficant positive skevness

7.9 The Nexl Step

We now have a farly clear adea of the essential conditions for an ideal theory for making onferenees about the mean of a universe from information suppled by a random sample We also have a theory for makng such meferences which works quite aell if the sample is reasonably large and/or if the unverse \boldsymbol{r} is in fact in the netghborhood of 50 Our next step is to develop modifications of this initial theory that will improve our estimates for small samples and for r values some distance from 50 This is the task of the next chapter

PROBtEMS AND QUESTIONS

71 Stay withn the bounds of your present knowledge and analyze each of the following preciction problems Describe the histoncal sample infor mation which you have Inter the unverse and any expected shifts in the unavere Make a prohabilty inference about the crent
(a) What time (to the minate) will you go to bed tonight?
(b) Hon much (to the pound) will you weigh tomorrow momng?
(c) How lar is it (to the yari) from where you now are to the nearest source of a drinh of water?
(d) What whill the United States Gross Natoonal Product be (to the billion \$) during the current ealendar y ear"
(e) Sos many people (to the bundred thousand) will be anemployed in the United States nest July 1?
72 Given each of the umerees referred to and given the drawmg of an infinite numbar of random samples of the spectied size make inferences about the relatue frequency of oll the posible sample means Itie tables of the binomal $\#$ refers to the unnerse proportion N to the size of the sample
(a) $\pi=2 \quad N=5$
(b) $\pi=8, N=5$
(c) $\pi=2, N=8$
(d) $r=4 N=20$

73 Suppose that the mformation glver in Queston 2 represented hy pothescs thint you rere making about the true conditions of a univerge Would you make sagers consstent with the probabilities you caleulated wath reepect to spectic samples that could be drama? For example if the events in question were the number of defective radio tubes in a sample of five and if vour inference sas that there sas a probablity of 1 of getting two delective tulues out of five sould you be willing to bet $\$ 10$ to $\$ 1$ that the next sample of fire nould have two defectues? Why ot why not? Would you bet \$10 to \$100? Why or \$bs not?
If you decide not to bet $\$ 10$ to 8100 would you be miling to bet $\$ 100$ to $\$ 10$ that there unil not be mo defectives in the next sample of fine? Why or why not?
If you dectde to bet on reather side of the assue what do you plan to do?
74 For each of the sets of inferences you denved in Question 2 calculate and interpret the following Use the drect calculation and then check by use of the fomulas based on π and τ as glucn m Table 72
(a) The anthmetse mean of the set $\left(\bar{X}_{p}\right)$
(b) The varanee of the set $\left(o_{p}{ }^{2}\right)$
(c) The standard devartion of the set (σ_{p})
(d) The erude skensess of the set $\left(L_{p}\right)$ (Remermber the L is for (L jopmidedness)
(e) The coefficment of skewness of the set $\left(K_{p}\right)$ (Remember the K is for (K)ockeyedness)
75 The probicm of hass" in sample results can be very perplexing Consider the case of the sample varance, or standard deviation, as an estimate of the unverse virance or standard denation The table below
shows the expected sample results with sumples of five from a universe with a π of 5 and thus a variance of πr, or 25

If we take the sample vanances as we find them, we end up with an anthretic mean of estimates of 2 as ahown in column 4 If we adjust each sample vanante for the mean error and pay no attention to the fact that some of the adjusted variances will be mpossily hagh, we would have estrmates with an arthmetic mesn of 25 , which is the actual unverse value (See column 6) If we arbitranly reduce all mpossibly hggh estmates to the maximum of 25 (see column 7), we get an anthrnetic mean estumate of 21875 (column 8)
(a) What policy would you follow in making estimates in a practical problem?
(b) What is the logic of requring estumates to have an anthmetic mean equal to the true value?
(a) What other ontens mimit we use for defining whether or not an estumate tends to have blas? (lint Could any other average be used than the mean?)
(d) Suppose you had adopted the entenon that an estumate of the vanance should be as close as possible to the universe value Analyze the estumates shown in column 2 to see how close they are to the true value of 25 Compare the closeness of the column 2 estumates with that of the column 5 estumates With the column 7 estmates
What conclusions do you draw now"
76 Make up an inference matnx like that in Table 73 for samples of four instead of five
(a) Suppose the umverse π were actually 5 There would then be a probability of 3750 of getting a sample of four with a p of .5 Accordng to your matnx, what is the probablity (or mference ratio) of a sample of four with a p of 5 having come from a unverse with 14 of $5{ }^{9}$ Does tbis strike you as a logieal result considering that there is a 3750 probability of gettung such a sample from such a umverse? Explain
(b) Agan suppose a π of 5 The probablity of a p of 25 in a sample of four is 2500 According to your matrux, what is the prohabulity of a
sample of four with a p of 25 hanng come from a unverse with a π of $\xi^{\text {? }}$ Is this a logical result? Explan What seems to be the cause of the ap parent inconsistency?
7.7 Suppose a universe π of 25 and samples of four
(a) Determine the probabitites of getting all the vanous possible sample results from thas unverse (In other words, determme the probabidty vector for expected cample results)
(b) Multiply your matrix of Prohlem 6 by thrs probability vector in the manner shown in the text to develop Table 75 from Tables 73 and 74
(c) Why should the horizontal sums (the sums of the ron rectors) gase exactly (except for roundmg) the same probabilties you hase on sour probabity vector that you multiphed hy"
(d) Determine the sums of the coinm vectors in the matro you calculated in (b) These make up the average jaference ratno vector Why should these sums add to 1 (except for rounding errors)?
(e) What meaning do you attach to the "average inference ratio vector" developed in (d)

78 Calculate the mean and varance of your average miference ratio vector developed in Problem 7(d) Are vour answers what you would expert based on the formulas given in Table 76°
7.9 Make up a chart in the manner of Frgures 711,712 , and 713 from your mstrxx of Problem 6 bv reprodueng the intersecting vectors at $p=75$ and $\pi=75$ Test these vectors iol correspondence
7.10 Test the intersecting vectors at $p=50$ and $\pi=50$ in the same manner as done in Problem 9 Are the vectors closer when $\pi=5$ than when $\pi=75^{\text {? }}$ If 80 , why?
7.11 (a) Set up the inference matrix for samples of 20
(b) Test the correspondence of the intersecting vectors at r and p of 35 Are these vectors closer than you found with your samples of only four?

chapter
 8

A theory and method for making inferences about the mean of a universe from information supplied by a random sample

The essence of saby modifiction of the theory of anference outlmed in the preceding chapter is to reduce the differences betreen inference ratio vectors in other mords, we mould like to detelop a set of inference ratio vectors that would be identical except for the displacement caused by vanations in the mean We illustrated this condition in Tsble 78 on psge 301

One approsch to this problem is transforming P into another variable The techmque of transforming the scale and/or the ongn of a vamable can cometimes be verf effecture in smplifying a prob lem. The transiormstion that has been performed on p mith some success involves the use of are sunes of p In high school geometry it was explaned that the sine of en angle in a nght trangle is calculated by dunding the length of the side oppoate the angle by the length of the hypotenuse For example, if the sude opposite the given angle was 6 inches long snd the hypotenuse was 9 inches long, the sine of the angle would be 667 The angle would be ahout 42° Thus we can say that the sine of an angle of 42° equals approximately 667 Since the opposite ade cannot be any larger than the hypotenuse, the sines of angles betreen 0° and 90° vary from 0 to $1, p$ also vames from 0 to 1 If we take p and treat it as though it were the ane of an angle and then replace p uth the corresponding number of degrees in the assoctated angle, we have made an arc ane transforma tion For example, if we base a p of 40 , we nould replace it with an
arc sine (the angle equivalent) of 236° After making such are sine transformations, we would carry out all further analyses in terms of the arc smes Although this method is moderately successful in equalizing adjacent inference ratio vectors, it is not perfect In addition, it does not open the door to some lines of reasoning that an alternative approach does, lines of reasoning that are of great signifcance in dealing with the many practical ssues we face as we apply any theory of inference, and we, therefore, aay no more ahout the are since transformation ${ }^{1}$

The approach we use mvolves a line of reasoning that has had a somewhat checkered career over the last 2 centuries The line of reasoning is really based on the apphation of the equal distnitution of agnorance rule, also called the rule of insuffiment reason Although the rule has actually been appled for many centuries, its first formal apphcation to the problem of statistical mference 15 attinbuted to Thomas Bayes, a Presbyterian mimister in England who also had a great interest in probability A posthumous artacle called "Essay Towards Solving a Problem in the Docinne of Chnnces" pras pablished in 1763 , 2 years after the death of Reverend Bayes ${ }^{2}$ Bayes took his problem as

Given the number of trmes in thich an unknown event has happened and failed Requtred the chance that the probability of its happening in a angle tral lies somewbere between any two degrees of probabutity that can be named

If we restate Bayes's language to conform to rore modern usage, his problem was
Given a sample of size π with proportion of successes equal to p Requared the probability that the unverse proportion lies between any two specified values
Or, in symhols, the problem becomes that of determing the value of

$$
P\left(\pi_{L} \leq \pi \leq \pi v \mid p_{1} n\right)
$$

(L and U reler to lower and upper hemits to the value of x)
Thus, Bayes's protlem is precsely the same one that we have been trying to soive

[^12]Considerable controveray bas grown up around the question of the validrty of Bayes's work Substantial crecence was placed in his methods throughout most of the 19th century, and sagnicant extensuons of his methods were developed, mostly by LaPlace However, another school of thought emerged in the 20th century This school prevaled with the result that Bayes's methods fell into disrepute, so much so that reputable books did not even discuss has work We are now in the midst of a revival in interest in the ideas expounded by Bayes, a revival that started at about mideentury
We cannot proude a thorough exposure to all the elements that have precipitated the controversy We do hope, however, to cover enough ground to give the more important ideas, ideas that are absolutely crucal for an intelligent application of any method of making inferences.

8.1 Bayes's Theorem

A useful place to stari is with a simple example that illustrates the basic idea at the root of all our subsequent analysis. Thas idea is embodied in what is called Bayes's theorem (There is some question that Bayes would lay clam to thas, or to many other things that have become assoctated with his name)
Suppose we have three boxes, marked A, B, and C for convemence of reference Each box contains 100 mmall balls Box A has 20% red balls, Eos B has 40% red balls, and Box C has 80% red balls One of these boxes is to be selected at random with each box having the same chance of beng selected as far as we know We have no way of knowing wheh box has been selected We then are to select at random five balls from this box and record the proportion of red balls in the sample We select the balls one at a time, replaeing after each selection on order to mamtam a constant unverse for each drawing Suppose that our sample shows 4 red balls What odds would we require before we would be willing to bet that Box C had been selected? Or, in general, what is the probability that Box A had been selected? Box B? BoxC?
Figure 81 shows our problem in the form of a tree diagram The first set of branches show the three possible boxes, with each having a probability of 33 of beng selected The second sets of branches show the probabilitues of gettung vanous numbers of red balls guten a particular box Note that the probabilities add to 1 wethin each set of branches At the tips of the second sets of branches are shown

F'g 81 Tree degram of problem of selechug firat a box and then a random sample of five balis from the box
the jount probabilities of baving selected a paricular box and a parthecular sample from that box Note that these joint probabilities add to 33 within each set the same probabuity as that for selectrog the branch from which the set is derved Also note that ald the zonnd probabilutes together add to 1 (except for rounding errors) This is a way of saying that our sample of five balls must have come from one of these 18 possbblitzes
Finally we come to the solution to our problem Note that there

18 a jount probability of 0683 of our having selected Box A ond o somple of 40 red balls, sumalarly we have a jont probability of 1152 of our having selected Box B and a sample of 40 red balls and one of 0171 of having selected Bor C and a somple of 40 red bolls Now, mance we know for o fact that we have selected a sample with 40 red balls, we can rule out all the remaming 15 possibulities, such as those with a sample of five with 0 red balls, etc One of the three possibilities marked by the arrows must have happened Hence, pe determine the probability that any one of them haa happened by dividing the joint probablity of any one of them hy the total probability for all of them Thus we divide the 0683 by 2006 to get 34 We get the 57 and the 09 in a simular way
We can now answer the question of the odds we would require before we would be willing to bet that Box C had been selected Since we estumate that tbere is a prohability of only 09 that Box C had been selected, we would require odds of at least 91 to θ_{1} or a shade more than 10 to 1 We would be very happy to bet even money that Box B had been selected, and we would bet on A if we could get odds of 2 to 1
Now let us link this theorem to our problem of making inferences about the mean of a unverse from information suppled by a random sample The sample fact that we had to deal with in the above example was a sample of five with a p of 4 We took this fact and made an inierence about the probability that this sample came from a universe with a π of 20 , or from one with a r of 40 , or of 80 We also had some pror information about the vanous possible universe π 's that might exist ond olso about the probability that any one of these umverses mught have been selected There has been no contro versy about the legitimacy of Bayes's theorem The controversy has raged around the legitimacy of the varous ways of acquiring the necessary proor informotion Given this prior information, every thing thereaiter is easentially a matter of routine mechancs

8.2 Some Useful Language

We will make more rapid progress later if we now agree on a fen terms and thus reduce the possibility of misunderstanding Table 81 shows the relevant parts of the tree diagram of Fig 81 in a more conventent form Columns 1 and 2 identify the three boxes and thenr given characteristics Column 3 gives the list of probabilities ior the selection of the various boxea This distribution of probabilities

TABLE 81

The Use of Bayes's Theorem to Estrmate the Probabilisy that a Given Sample Came from Any One of Three Possible Universes

(1) Bor	(2) π	$\begin{gathered} (3) \\ P(\pi) \end{gathered}$	(4) $P(p=4 \mid \pi, n)$	(5) $P(p=4,7$	(6) $P(r \mid p, \pi n)$
A	20	3838	2048	0683	34
B	40	3333	3456	1152	57
C	80	3333	0512	0171	09
		100	6016	2008	100
		$\stackrel{\uparrow}{\text { Pror }}$		$\stackrel{\uparrow}{\text { Margnal }}$	
		Distrabution		Probabilits	Destribution

is referred to as a pror probability distroutton it is called proor beeause it comes before the second one which we refer to shortly Note that this distribution adds to 1 (except for rourdmg errorc)
Column 4 gives the condetional probabilty of getting a sample oi fine n ith a p of 4 , the condhions on each case being the given r and the suze of the sample
Column 5 gives the gount conditional probablhty of getting both a sample with a p of 4 and the partculer unverse Note that the calculation of this probablity requres knonledge of p, π and n The sum of column 5 , or the sum of the jome conditional probabilites is called the murgmal probabinty It is called margmal because it Decurs in the margen of the table The mpartand thang to remember about marginal probabshties is that they are alnays the result of oddung some speefic probablittes together, and they alw ays refer to the probability that some one of come collection of events has or will oreur In thrs csese, the collection of events is the occurrence of a sample with a p of 4 He could get such an event from Boa A, or from Box B, or fiom Bon C The probability that a sample with a p of 4 will occur at all is the sum of the probabilities that it will occur in any one of the grven spectic ways
Columin 6 ss stoply a redstribution of the probabilites of column 5 so that they add to 1 We justufy thic redistrinution becative twe know for a fact that a sample p of 4 has occurred The only remaning uncertantit s that of the bos from wheh sucia a sample
came We call the probabilttes in column 6 postenor probabilites They are called posterior because they come after the proor proba bilsties Note that ther calculation requires knowledge about p, x, and n These posterior probabilities are also sometumes called retured probabilities The logic of tbis is Before, or pror to, our having any sample information, we nould assign a probability of 33 to our having selected Box $B \quad$ After, or postenior to ${ }_{3}$ our having the sample information, ne assign a probability of 57 to our having ongenally selected Box B The posterior probablity of 57 is thus a revision of the prior probability of 33 The basis of the revision is the infor mation suppled by the sample

8.3 The Problem of the Source of Prior Information

In the preceding section we were told that there uere three possible uns erse salues of x, namely, 2, 4, and 8 We were also told that each of these possiblitites bad a probabinty of being selected of 33 in eacb case It is concewable of course, that the probabilities of selecting these unn erses migbt have been any of an maninte number possble combinations For example, the probabilities might have been 10,38 , and 52 , respectively The only condition is that the probabilities add to 1 because of course, one of the unverses must be selected
Nor let us take a shghty different problem Let us suppose that ne are told that a card has a number written on its concealed side Let ur appone further thet ne are desured that this number is some where hetr een 0 and 1 A complete stranger walks into the room and is apprised of the stuation He tben offers to bet us $\$ 10$ to $\$ 2$ that the number on the card is somenhere betseen 2 and 3 He bases this action on his clam that be poseesses oceult poners Do we take this bet? If we do not take this bet, sa there any set of odds that re would secept? For example, suppose he offered to bet $\$ 100$ against $\$ 1$ that the value is betreen 2 and 3 Keep in mind that there is absolutely no way he can tell what is on the other side of the card unless of course, he does have occult powers

Perhaps we feel quite uncertain about whether or not ae should take thes $\$ 10$ to $\$ 2$ bet If so, perhaps at would be helpful to give per mission to take the other sude of the bet if re rish to Aiter all, if we reject the offer of $\$ 10$ to $\$ 2$, we must feel that it is not a farr offer In such a case, ne certanly must be milling to take the other side of the bet because ne would nom be on the adiantageous side or,
perlaps se think the bet is very far so far that it does not make any difference what adc of the bet re go on The essental point is that we must make up our mind and take one side or the other Crote lie are ascuming in all this that the money involied is small enough in any case so that we feel that it is more the reputation of our decision makng powers that is at stake rather than any signifi cant amount of mones)
Is there any ratronal way to decide an issue lake the above? It is often argued that this is yust the place for an application of the equal distribution of ignorance rule This rule states that there 15 a probability of 1 that the card has a number betmeen 2 and 3 be cause 2 to 3 cosers 1 of the range from 0 to 1 The rule suggests that we take the offer of $\$ 10$ to $\$ 2$ because the offered odds are 45 times as great as the\} should be for a fair bet (He as offermg 5 to I rhen he should be offerang 1 to 9)
It is also sometimes argued that the equal distribution of ignorance rule is the rankest form of nonsense How it 15 asked can ne base so called rational beliav ior on a base of complete ignorance? Frankly me are not too sure abether ae consider the rule rational or not althougth we lean tonard cons denng it so What attracts us to the rule is that ne do not know any other rule of behavior to use in a eituation like that deceribed above Ne do not belene that ans bodr else does either moluding those abo meegh aganst the equal distrubution of ignorance rule at the same tame they are implicith using it Tle all have undoubtedly used the rule many times per haps under the name of spliting the dfference

Boyes s Postulote

As the Reverend Bayes contemplated the problem of making in ferences about a unmerse mean on the bass of solely the evadence of a sample le firct magmed that the true mean might have any value whatsoever betueen 0 and I He then postulated that each of these poseble values "as equally luely nthm the bounds of has preant knowledge with has present knowledge beng zero Hence he set up what we now call a pror dustrabution of equally likely vahes of π Some examples of some possibilities for such a distribution are shorn in Table 82 The values called $n \boldsymbol{n}$ must be interpreted as the ralues that represent a range of illues Generally we use the modpont of the range to represent the values (Thes is really another example of the appleation of the equal distribution of ignorance rule an ap plication indulged in by all statustierans meluding those who object to the rule) Thus the probability of 2 pared with the π_{H} of 1 m

TAGIE 8

Examples of Prios Ditributient of Equally Ukely Valuet of $\mathrm{T}_{\text {If }}$

	A	B		C	
$\mathrm{r}_{\boldsymbol{H}}$	$P\left(x_{H}\right)$	${ }^{\text {r }}$	$P\left(r_{r}\right)$	T_{H}	$P\left(r_{H}\right)$
-		0	I	-	
				05	1
1	2				
				15	1
		2	2		
3	2			23	.
				35	.1
		1	2		
				45	1
\pm	2				
				5	. 1
		6	2		
				65	. 1
7	2				
				75	1
		8	2		
				85	.
9	2				
				95	1
		10	1		
	-		\cdots		-
	10		10		10

the A diatribution should be interpreted as the prohnbilty of $a \pi /$ fallang betwecn 0 and 2 , gumarls, there is a probabbity of 2 of a ma between 2 and 1, with thes samge repreacneel by a ra of 3 We attach the enberipe Il to arguly that we art relernme to hyro. thetical values of . The truc a lias ame apeeffic, hat unhnosn balue.

 mite 1 , repreented ha an of of rund from - 1 to 1 , thus centems

negative values for π_{R} are impossple Hence the probability of a value falling within the -1 to 1 interval is only the probability of a value falling between 0 and 1 , a range that as only half the length of the interval from say, I to 3 and represented by a π_{B} of 2 The same explanation exists for the probablity of 1 that is parred with the π_{H} of 10
It is possible, of course, to divide the full range from 0 to 1 into as inany intervals as we wah Distribution C shows what happens when we divide the full range mito 10 equal parts The greater the number of divisions we use, the smaller wall become the probability that the true π will fall within any sucb interval For example, if ne diude the range into 1000,000 untervals the probability that π falls in any one will be only 000001

8.4 A Direct Applicotion of Bayes's Theorem to the Problem of Inferences About π Based on Information from a Random Sample

We are non in a position to apply Bayec's theorem to our problem of makng merences about π Table 83 shors the routme Column 1 shows the varous hypothetical values of π we have arbitramb selected We chose these because they are consistent rith the values ne used in the precedng chapter when we were making inferences based on the direet apphication of the binomial theorem

TABLE 83

Inferences about ar Based on a Paor Distribution of Equal Probabilities and on a Subsequent Samplo of 5 tiems with op of 4

(1) TH	(2) $P(\pi N)$	$\begin{gathered} \stackrel{(3)}{ } \\ P(p=4 \mid \pi t \\ N=5) \end{gathered}$	$\begin{gathered} (4) \\ P_{H}(\nu=4 \\ \left.\pi_{H} N-5\right) \end{gathered}$	$\begin{gathered} (5) \\ P\left(\pi_{\mu} \mid n=4\right. \\ \left.\pi_{l i} V=5\right) \end{gathered}$
0	1	0	0	0
2	2	2048	04096	2462
4	2	3456	06912	4154
6	2	2304	04608	2769
S	2	0512	01024	0615
10	1	0	0	0
	0	-		9989
	10	8320	16640	998

Column 2 chous the pror probsbilties be associate with each of these π_{μ} 's It is important to note that theee are based on the assumptoon of equal likelihood It is aleo important to note that these add to 1
Column 3 shore the conditionsl probability of getting a random sample of 5 with a p of 4 given the truth of the particular value of π_{A} The cum of thece conditional probabilities is meaningless becauce it is a function of the arbitrary number of hypotheses The more hy potheces the larger the sum
Column 4 shows the jome conditional probabilities of getting both the sample p of 4 and the particular value of π_{H} The total of these, 16640 , is the marginal probability, and it is the probsbility of getting a sample of 5 wth $\& p$ of 4 pronded each of the hypothetical $\pi ' s$ is equall, likel, lle have more to say about the interpretation of such marginsl probabilities in a subsequent chapter
Column 5 is the postenor probability distribution of rn and repre rents the probabilties ne assign to the truth of the vanous m's now thot re hove this somple injormation This is also the object of our
wave for an inference distribution of π gnen a sample of 5 rith a pof 4

8.5 Comparing Bayesian Inferences with Binomial Inferences

We can nor compare inferences ba*ed on Bayes's theorem and equally likely prior hypothees math those ne made in the last chapter based on the direct application of the binomal theorem Table 84 sloms all the merence distabutions ne nould get if we appled Bayes's theorem to all the porsible results ne could get from samples of 5 Note that the probabilites shoma in the vector (or column) headed by a p of 4 are exactly the same as our posterior probablities shown in coluran 5 of Table 83 The other colunns have been calculated in exactly the same a as as shonn in Table 83, π th the only difference being the different values of p (We might note pareothetically that column 4 can be omitted in a calculation of Bayesian probabilites prouded that the relevant probabilities in column 2 are all equal Under such a encumstance, column 4 is just a propor tionate adjustrient of column 3 , just as is column 5 Hence one can make a single proportionate adjustment and go directly to column 5 from column 3 It 15 very important to remember, hovever, that

UABLE 84

> Estimates of Infarence Ratres for Vanous Values af π_{j} Based an Posterior Probabsities Coleulated From a Pror Distribution of Equal Probabilitiss N-5
[Body of metrix contains $P\left(\pi / \mid p \pi_{I} N=5\right)$]

column 4 is imphed even if we siap across it if the relevant proba bilthes are all equal)
Let us look at the horizontal vector at $x_{t}=4$ This vector tells us the probability we would assign to ri's being 4 if we had a sample of 5 with a p of 0 , or of 2 , ete For example, this vector telles us that if we have a sample with a p of 2 , we beleve that there is a probabllity of 3447 that this sample cane from a unverse π mith a $r r$ of 4
How much truth is there in this probability? We can answer this question by first rookeng at Fig 82 and then at Table 85 Figure 82 protures the ine of reasonng we are followng We assume that ne start with a unverse that has a π of 4 This is the trunk shown at the extreme left We then generate all possible samples from this unverse They are sigaified by the sa branches tanaing out from the trunk Attached to eacb branch we show the sample p and the probability it could oceur We then ase each sample p to generate mferences about π The binomal mferences are those we worked out in the preceding chapter They can be found in Table 73 The Bayesan inferences are those re have just shown on Table 84
The key mierences at the momerit aro those for a 7 of 4 They are marked by the arrous at the tups of the branches We have re-

Fig 82 Tree disgram illustrating piths of reasoning as we go from a known universe to mierences about samples from that unserse and finally to mferences about the tniverse from the kamples
produced these particular inference ratios in columns 3 and 4 of Table 85 We have also reproduced in column 2 the probabilities of getting guen saingle p from a unnerse with a π of 4 Note that these are exactly the same as shown for the six branches emanating from the trunh of Fig 82 Ideally, ne sbould find the probabilitics an columns 2,3 , and 4 all alake For example, if the probablity of getting a sample p of 2 from n unverse with a π of 4 is 2592 , the

TABLE 85

Comparison of Binomulal and Bayesian inference Rat os of r_{2} With |deal Probabilhes (Given $\mathrm{N}=5$ and $\pi-4$)

$\begin{gathered} \text { (1) } \\ \text { p or } \end{gathered}$	$\begin{gathered} (2) \\ (p \mid \tau=4) \end{gathered}$	$\begin{array}{cccc} (3) & \text { (4) } & \text { (5) } & \text { (6) } \\ I\left(\pi_{I} \mid p-4\right) & I\left(\tau_{I} \mid p=4\right. & \left.\tau_{A}\right) & \mid(3)-(2)! \\ \|(4)-(2)\| \end{array}$			
0	0778	0	048	0778	0229
2	2002	2048	3447	0044	0850
4	3456	3456	4154	0	0698
6	2304	2304	2769	0	0465
8	0768	0512	1021	0256	0253
10	0102	0	0072	0102	0030
	10000	8320	12012	1680	2530

probability that a sample p of 2 came from a unverse with a π of 4 should also be 2592 hote however that the bnomal mferences give us a probabjlity (or inference ratio) of 2048 that a sample p of 2 came from a universe with $a \pi$ of 4 The Bayesian inferences yreld a value of 3447 thus being in error on the opposite side
Columns 5 and 6 of Table 85 calculate the absolute differences be tween the true probability (column 2) and those estrmated by the bnomal and Bay essan formulas Me find that the binomal estmates are quite good in the middle of the distribution perfect in fact but they make relatsely large errors on the tajls Thas 18 consestent outh what we found when ne norked with a sample of 50 in the preceding chapter The Bayessan estumates are a little closer on the tails but significantly rorse in the central area The total error (signs ignored) is defintely in far or of the bmonalal estmates
These result come as a disappontment because we were hoping to mprove on the binomal estimates by the use of Bayess theorem He did improve the ectumates at the taits but only at the expense of much poorer extmates in the central region In the next section He make some addrtional modifications in our protedures that correct this stuation Before doing co however we should call attention to a fess other features of Table 85 that have some stgnificance
The imomial estimates (column 31 are m general too low The unference ratios (or probibultus) add to only 8320 instead of the appropinte 1
The Bayesian ectimates are in general too hegh adding to 12012

The average of the binomas and Bayesian estumates nould be better in general than etther one alone because the tro methods tend to make oppostte errors

8.6 Madifying the Methad of Calculating Conditional Prababilities in Order to Imprave the Bayesian Estimates of Inference Ratios of π_{1}

Figure 83 pretures the method we used in the preceding section to calculate the conditional probabilities of a sample p given some hypothetical π The shaded section of Part A shows the probability of a p of 4 given a πg of 4 Part B shows the probability of a p of 4 given a π_{H} of 2 Similar charts could be drawn for any other values of π_{H} that we might choose
Figure 84 pactures another way of calculating a conditional probability Part A shows the whole probability distribution of the various values of p that could occur given that π_{B} equals .5 The shaded area marks off the probabithy of getung a p of 4 or less (We are here treating p as a continuous variable)
Part B shoms the whole distribution of p given that πa equals 7 Again we shade in the area for a pol 4 or less
In Part C we supermpose the histograms of Parts A and B Note the cross-hatched area This is where $P\left(p \leq\left. 4\right|_{\pi_{H}}=7\right)$ appears now Note that it is entirely witho the fotal shaded area that shows $P(p \leqslant 4 \mid \pi s=5)$ The numerical values associated with these two

fig 83 Illustration of the probsblity of a mample p of 4 in a sampla of five items from universes with different \boldsymbol{r}^{\prime} - $-\boldsymbol{p}$ takea as a dascrete variable

Part C

Fis 84 Illustration of method of estimatiog the probability that π_{I} lies be tween 5 and 7 on the basis of cumulative probabilitues and the treatment of p as a contmutous varoable
areas are 0969 and 3438 (These are taken from the bmomal tables in a manner that ss explaned shortly)
We nor ask ourseives the interpretation we should put on the difference betw een these two areas or between these two probabilities
The first thing ne note is that the dufference ss caused by our change from an hypothesze of $a \pi_{n}$ of 5 to one of $a \pi_{H}$ of 7 and by nothng else Hence we now assert that this difference is an estimate of the probability that π hes betucen 5 and 7 gwen a sample of 5 with a p of 4 This statement makes sense only if two underlying assumptions are correct

1 Direct ond inverse probablatues tend to equality in the cence that $P(p \mid \pi)=P(\pi \mid p) \quad$ We adopted this enterion for a usefui theorv of inference
2 The pror probinhits of $a \pi_{H}$ of 5 is equal to the pror probability of a π_{H} of 7 This pernints us to cileulate the difference between $P(p \leqq$ $\left.\left.4\right|_{H}-7\right)$ nnd $P\left(p \leqq\left. 4\right|_{\pi /}-5\right)$ without ans concern for the posel
bilty that one of the values of π_{H} is more likely than the other The fact that we are not explictly concerned about these possbbilties defntely umphes that we are assumning equal proo probobllties
Let us now turn to Table 86 where we carry out the steps needed to calculate the probabilities illustrated by Fig 84 Agan we use a sample of 5 nith a p of 4 Column 1 lists the varous hypothetical π_{H} 's ne choose to pick We remind ourselves that we may choose as many of these as we wish The only prouso is that we cover the full range of possibilities from 0 to 1 m steps of any size we prefer If our hypotheses cover a range narrower than that of 0 to 1 , we find that our inferences would also be restricted to such a narrower range
Column 2 shows the hinomial probabilities of getting a sample p equal to or more than 4 for selected π_{H} that are 4 or less
Column 3 shows the binomal probabilities for a sample p equal to or less than 4 for selected r_{B} that are 4 or more
The two steps in the ealculation of the probabilities in columns 2 and 3 are necessary because of the conventional form of the tables of cumulative binomal probabilities In Fig 85 we illustrate what the conventional tables show Suppose we were to look up in the table the probability of a sample p equal to or less than 4 given a π_{n} of 5 The table nould give us the probability represented by the shading lines plus the area shown by the dots Thus the table treats p as a strictly discrete variable and meludes all of 4 m its calculation We prefer to treat p as though it were really a contunuous vamable Thus

TABLE 86

Inference Ratios for Values of π_{1} Based on Differences between Probabllities of p Equal ta or Less thon 4 for Various Hypothetical Valtues of $\pi N=5$

π_{H}	$P\left(p \geq 4 \mid \pi_{H}\right)$	$P\left(p \leqq 4 \mid \pi_{H}\right)$	$\pi_{I} I\left(x_{i} \mid p=4\right.$	$\left.\pi_{I}\right)$
(1)	(2)	(3) π_{I}		
(4)	(5)	(0)		

0	$0-0=0$		0	0451	0
1	0815-0361 $=0451$		2	2723	05446
3	$4718-1544=3174$		4	3388	13552
4	6630-1728=4002	6826-172S $=5098$	6	2469	14814
5		5000-1562 $=3438$	8	0923	07384
7		1631-0662 $=0969$	10	0046	00460
0		$0086-0040=0046$			--
10		$0000-0000=0000$		10000	41306

Fig 85 Inlustration of effects of treating p as a discrete varrable or as a con truous rariable
we think of 4 as really the maddle pount of a range of values running from 3 to 5 Therefore we are interested in only the lower half of this 3 to 5 interval

While we have Fig 85 bejore us, we should note that if ne treat p as a strictly discrete tanable and melude the dotted area in our calculations, we will find a lorger difference than before between the $P\left(p \leqq\left. 4\right|_{H}=5\right)$ and the $P\left(p \leqq\left. 4\right|_{\pi_{A}}=7\right)$ Thus re will have a larger probability than before of a 4, being betseen 5 and 7 Such larger probabilities would exist for all ranges of π_{j} When we add such probabilites we rould get a total greater than 1 This 15 , of course, somerhat illogeal Some people do follon this procedure horever so they are apparently willing to accept this bit of nonsense in exchange for some other advantages whell they think they gain What these possible aduantages are we consuder later
Let us now return to Table 86 and trace through the calculations performed there If we have a hypothetical x_{H} of 1 , we find from the table of the cumulative binomal tbat there is a probability of 0815 of getting a sample p of 4 or larger 08151° the sum of the probability of a p of 4 (0729) the probability of ap of $6(0081)$, the probabilaty of a p of $8(0004)$ and the probablity of a p of $10(0000)$ (Actually these four prohabilities add to 0814 The difference from 0815 is due to rounding) We then subtract 0364 from 0815 to elmmnate half of the probability shonn for 4 The net result is 045i, wheh we take to be the probability of gething a p equal to or larger than 4 glven a π_{H} of 1
Exactly the same procedure is followed to get the eetimates for a
Ψ_{H} of 3 and 4 Check at least one of these to make sure our procedure is clear
We then reverse our perspective, so to speah, and seek the probability of a pequal to or less than 4 for various values of x_{n} of 4 and larger To help us pinture perspective, we might think of ourselies as standing on the homental axis of a chart like Fig 85 at the point correspondeng to our hypothetical π_{B} value Then we jace the durectoon of the partcular sample resull, 4 in our example If our hypothess happens to be exactly the eame as the sample result, then, of course, se find the sample \boldsymbol{p} "at our feet" Most of the time, how ever, we find the sample p some distance in front The probability we are interested in or the area under the distribution, is that area on the other stide of p from where we are standing We are not at all interested in the area under that part of the curve that is in boch of $u s$ or in the area betueen our π_{H} and p What we are doing in column 2 is to first stand at a π_{π} of 0 We then look beyond the p of 4 and calculate the probability on the far side of 4 We then step up to a π_{H} of 1 and repeat the procedure, and then to a π_{H} of 3 , and nally to a πs of 4 If we hept fucing and moving in the same direc-
ne nould non find the pof 4 m back of us So ne smply tum about and are looking down at 4 We calculate these "looking-down" probabilitees successurely from a π_{A} of $4,5,7,9$, and finally 10 Column 3 shors the calculations from this perspective
Again, check at least one of these calculations It is particularly useful to check one for a rin of more than 5 because it helps gan some familarits wth the way the tables are set up Note that the tables shon π values (the actual table may call these p) only up to 5 It is then assumed that a person can fgure out how to find the appropriate salues for higher π values bv finding their complements among the r's less than 5 It takes a little practice to do this with reasonable confidence that the answer is right See p 137 for some guidance in using the binomial tables

We had to make two calculations for a π of 4 This follons from the fact that it is legitimate to look in both drections from this point
The corrections are all equal to half the probability of a sample p of 4 It is instructive to examine the effects of the corrections for π_{h} at 4 If we look up from 4, we find the uncorrected probability of a 4 or more to be 6630 , whereas the corrected probablity is 4902 If we look domn from 4 , we find an tencorrected probability of 6826 and a corrected one of 5098 The tro uncorrected probablities add to 13456 , a sum that is obviously too large Such a finding is the equralent of standing at some point in a room 20 fect long and ds-
covenng that 12 feet of the 20 feet are in front of us and 13 feet of the 20 are in back of us 1
The two corrected probabithees odd to 10 as they should
In column 4 we hist the particular $\pi_{1} s$ for which we would like to estmate probabilities As before, we are using 0 to represent the interval from 0 to 1 , 2 to represent 1 to 3 , ete (There is a bit of awikwardness caused by the existence of the boundaries at 0 and 1 The π_{i} 's seem to be at the moddle of their intervals except at these boundaries They are akso at the middle at the boundaries if we are rulling to imagine the litile fiction of the distrbution extending down to - I and up to 11 We find it convenient at the moment to engage ta this hitile fiction It causes us no real trouble and saves us other troubles)
In column 5 we show the inferred probabibties for the exastence of these varsous π_{I} values These are ealculated by taking the differences between the successine cumulatuve probabilites ne calculated in columns 2 and 3 The 0451 is the difference between 0 and 0451, the 2723 is the difference between the 0451 and the 3174 etc The exception to this process occurs at the π_{t} of 4 Since part of the 3 to 5 interval comes from looking down from 4 and the other part from looking up from 4, we must add these two parts together Thus 3388 is the sum of the difierence betwcen 3174 and 4902 and the dufference betw een 5098 and 3438
We find some comfort in the fact that the probabilities in column 5 add up to 10 , thus conforming to the gencral rule of all probabilties that the whole set of them must add to 10
In column of re have mulaphed each πf by its minerence ratio The total of these turns out to be 41656 Since the sample $p 15$ exactly 4 we would prefer that the arthmetic mear of our inferences about π were also 4 In such a case ke would then be satuslying the desirable criterion that the arithmotice mean of all our anferentes sould equal the true value This criterion is satisfied if the inferences baced on any given sample p average out to that sample p
We are not exactly surprised that our Bayesian mferences are not goung to satisiy the eriterion of avergging out at the true walue Ths onterion was one of the things we might have to sacrifice if we were going to improve the accuracy of our inference ratios as estimators of the true probabilithes We also are not exactiv surpised that the sum of column 6 turned out to be larger than 4 rather than sutualler It is larger because our use of the proor distnbution of 7 owith equal probabilites for the vanous $\mathrm{rem}_{\mathrm{a}}$ mparts a bras loward 5 m any inferences that are tied to thes proo distribution What actually hap-
pens is that our final inference distribution is really a weughted average of the information contamed in the prior distribution of $\boldsymbol{\pi}_{H}$ and that contaned in the sanple The average of our prior distributron 1s.5 (The assumption of equal probabilities for all πn^{\prime} 's results in such an average) Our final distribution is thus an average of a pror distribution with a mean of 5 and a sample with a mean of 4 It 18 hence not surprising to find a result larger than 4 If we had worked with a sample with a p of 6 , we would have ended up with a mean of 58344 , also buased toward 5 In general the bias is greater the closer p is to 0 or 1 There would be no bias if p were 5 The bras dechnes as the size of the sample increases because the sample unformation mould then carry greater and greater relatue sught in the average Theorctically the bias never completcly vanishes untul the sample is infinitely large

He have more to say about the relationshups of prior distributions and posterior distributions later when we disecues the pooling of information in more gencral terms than here Some people nould seriously question whether it is legitimate to develop this prior distribution with which we have just been norking They clam that it is based on sheer ignorance and should not carry neight in any con1 , , supposedly based on factual endence If there was any

I doubt that the assumption of equal probabulhties based on the equal distribution of agnorance rule did in fact mpart "information" to the final conclusions, such doubt should non be dispelled Our example above clearly demonstrates that this assumption does m mpart information in the sense that it does carry neight in the final conclusion, a negght that lcads to a blas toward 5 But, at the same time the existence of this bras is reahzed, keep in mind that we may have to pay the price of a little buas (as defined) in order to get better estimates of the probabilites of πt

8.7 Testing the Accurocy of Inference Rotios Bosed on Modified Estimates of Bayesion Probobilities

(Note From now on we use the term Bayestan probablitites to refer to probabilites that are calculated by reference to both a pror distribution and to a sample)
Let us apply our latest inference method to all possible samples of 10 stems Table 87 shons the matrix of all such possible results The leftmost column lists the 11 possible eample results that can occur from a random sample of 10 tems Each of thece results has

TABIE B 7
Matrix of All Possibfe Inferences Aboul r_{I} Based an All Possible Samplas of 10 liems Each Probabilihes (linference Rattos) Are Calculated From a Priar Distribution af Equal Probabilhes and From Cumulative Binomal Probabilities Based on a Sample of 10 Hems (See Yable 86 for lidustration of calculation routina)
(Body of table shows $I\left(r_{I} \mid p \pi_{N}, N=10\right.$)

been used to generate a set of inference ratios for values of πI Thase merence ratios appear as the hormontal vectors The ri's are shown as the headngs for the vertical veetors

Let us first examine these vertical vectors Consider the one headed by π_{I} of 5 This vector modeates that if our sample of 10 has a p of 0 , we assign a probabilty of 003 to thas sampte's having come from a unverse with $\mathrm{a} \pi$ of 5 What is the probabulity that a umverse with a τ of 5 will generate a sample of 10 mth a p of 0 ? The bnomial theorem mdeates that tbe probability is 001 The 003 is quite close on a numerteal bass, being off by only 002 We must admit that $1 t$ is quite rrong on a percentage basis, homet or
Table 88 compares the enture rertical vector at $7 \boldsymbol{r}=5$ math the desired result as shown by the binomal probabilities in general the correspondence is quite close, as ean be seen by comparing columns 2 and 3 Our problem would have to be very cntical to be dissausfied with estumates as accurate as these

Column 4 of Table 88 shons the results ne nould get by using the simple binomal as a generator, the first mference method ne used

TAGLE 88

Comparison of Modified Bayesien Esimates of Probobilities of $0 \boldsymbol{\pi}_{I}$ of 50 for Various Velues of p with Probabilities of these Variaus Values of p Olven thal m Reaffy Does Equal . $5 \quad N=10$

(1)	(2)	(3)	(4)
p	$P(p \mid \pi=5)$	$I\left(I_{1}=50 \mid p x_{H}\right)$	$I\left(r_{1}=50 \mid p\right)$
0	001	003	000
1	010	010	002
2	04	0.45	026
3	117	118	103
4	205	203	201
5	246	242	246
6	205	203	201
7	117	118	103
8	044	045	026
9	010	010	002
10	001	003	000
	1000	1000	910

It is obvious that our modification has resulted in signuficant mprovements
Figure 86 makes it possible to make these compansons visually The chart also shows the compansons for π values of $4,3,2,1$, and 0 It $1 s$ quite evident that the modifed Bayesian estmates are closer to the true probabilities for all values of π than are those estumates based on the simple binomal (The results for π values of $6,7,8$, 9 , and I are not shown because they would be mirror amages of the results shown for π equal to $4,3,2,1$, and 0 , respectively) It is also evident that the estimates are poorer the further away we are from $\& \pi$ of 5 However, the Bayesian estimates are not senously in error until we have a π of 0 or 1

8.8 Bias in Modified Boyesien Estimates of Inference Ratios for $\boldsymbol{\pi}_{t}$

We started our quest for a theory of making inferences about π by developing inferences so that the onthmetic mean of all such infer ences would be the true unverse value This seemed like a good idea

Fig 86 Comparsson of inference ratıo vectors based on binomal and Bayebian inferences with the true probsbilties
at the tume, and it still is. Such a critenon has guided many statistucians in their search for what are called unblased estumates Unfortunately, we found that this mitial theory led to errors in estumating the inference ratios for the specific values of x_{j} We were stimulated to try to reduce these errors, and we were successiful by using a modified form of Bayes's theorem In the process of dong this, honever, we know that we have mparted a buas toward 5 ta our estimates of π_{1} It 15 now necessary for us to examine the extent of this bias to see whether our gain in infereace ratio accuracy is enough to offset apy losses due to this bras

Our procedure is the same as we used to test our inferences as they were generated from sample $p s$ by the use of the binomial We illustrate it for the case in which π actually does equal 3 A universe with a π of 3 will generate 10 item samples with $p^{\prime} 8$ occurring with the folloming frequencies (These are taken from tables of the binomal)

p	$P(p \mid x=3, N=10)$
0	028
1	121
2	234
3	267
4	200
5	103
6	037
7	009
8	001
9	000
10	1000

Since these frequenctes tell us how often the various p^{\prime} s will occur if π equals 3 , we can use them to weght the honzontal vectors in Table 87 Table 89 shows the resultant matrix after we multuply the Table 87 matrix by these weights To make sure we understand the exact process let us check some of the calculations for the hotnzontal vector at $p=2$ The proper weighting factor is 234 because 234 of all samples of 10 from a universe with a x of 3 will have a p of 2 We then multiply the various terms in the homzontal vector

TABLE 89

Motrix of Inferences About τ Genarated by Somple p s that Previously Hod Bean Genarated by a Unverse Whth ar of 3 N 10
[Body of Matrix shows $I\left(\tau_{I} \mid \boldsymbol{p}-\boldsymbol{H}\right) \times P(p \mid \pi-3)$]

p	0	1	2	3	4	5	6	7	8	9	10	
0	011	011	004	001								027
1	029	047	027	012	004	001						120
2	011	063	069	049	026	011	003	001				233
3	002	029	052	070	030	082	013	003	001			267
4		006	024	043	050	041	024	010	002			200
5		001	005	012	021	025	021	012	005	001		103
6				002	004	008	009	008	004	001		036
7							002	002	002	001		008
8												
9												
10												
	U03	157	191	189	160	119	072	036	014	003		984

at $p=2$ as given on Table 87 by tbos 234. The first term is 049 (see Table 87) The resultant product is 011 (see Table 89) The second term is 269 The resultant product is 063 etc Note tbat the sum of these products for this vector in Table 89 is 233 This would be 234 except for rounding errors and is what we would expect because we have multepled a vector that ongmally added to 1 (Table 87) hy the number 234 The rest of the matrix 18 calculated in the same way
The sums of the vertical vectors give us the total relative frequency with which vanous inierences about r are made Since all of these inferences were made solely on the basis of samples that came from a unverse with a + of 3 it 18 motructive to examine this series of sums For conventence of reference we call thus series of sums the average inference rato vector for samples of 10 from a unverse with an of 3

Table 810 compares this vector with the vector we get if we use the simple binomal as an inference generator (our first version for aninference theory)

Column 2 shows the vector based solely on information about p Column 3 is the product of this vector times the various π_{s} values It adds to 3003 Rounding errors prevent it from equaling exactly 3 Thus we confirn our carlier finding, namely that the anthmetic mean of all inferences based on binomisls generated from sample p's will equal the true universe π

Column 4 shows the sector generated by our modified Bayesian technique, or by unformation about p and "information" about equally-likely hypotheses about x Its falure to add to 1 is caured by rounding errors Column 5 is the result of multiplying the column 4 vector by the various $\pi /$ ialues Herene get a total of 3164 The departure of this from the true value of 3 is not caused by rounding errors Rather it is caused by the bias toward 5 that is imparted by the ascumption of equally-likely π_{A} 's This bias is paft of the price we must pay in order to improve our estmates of the specific probs. bllitres for the various π 's

Column 6 shows the difference between each π_{1} value and the true π of 3 Note that the direction of the difference is ignored because we are here concerned only with the sizc of the difference Thus column 6 is the amount by which each π_{1} masses as an estumate of the π of 3 Column 7 multuplies each miss given in column 6 by the

TABLE 810

> Compartive Analysis of Avarage Inference Ratlo Vectars, One Vectar
> Based an Binamial Inferences fiom p, the Other Based an Bayesian Inferences from π_{h} end p Givon $\pi=3, N=10$

0	104	0	053	0	3	0312	0159
1	151	0151	157	0157	2	0302	0314
2	185	0370	191	0382	1	0185	0191
3	182	0546	189	0567	0	0	0
4	151	0609	160	0648	1	0151	0160
\$	108	0540	119	05ps	2	0218	0838
8	006	0398	072	0432	3	0198	0216
7	034	0238	039	.0252	4	0136	014
8	014	0112	014	0112	5	0070	0070
9	004	0034	003	0027	6	0024	0018
10	001	0010	000	0000	7	0007	0000
	1000	3003	P94	3104		1604	1510

number of times it occurs as monceted by the vector in column 2 The sum of column 7 gives us the total of all our errors if we use p-binomals as estimators of w_{I} Ideally, of course, re would like such a total to be as small as possible, even as small as 0 if that were possible

Column 8 repeats the same process performed for column 7 except that we now use the vector in colmon 4 , the Bayesian estimators, as our relative frequencies of the column 6 errors Here we find a sum of 1510 (Thas has a very shght cownward bias because the total of column 415 only 994 metead of 1 Thes bias will not affect our conclusion given below) Note that this oum of errors is smaller than that for the p-hnomal estrmators Thus we can now argue that the bras in the Bayesian estimators 15 offset by the mprovements in the specific probabilities, grving us an over-all hetter estumation than did our first inference method

8.9 Summary of Our Theory of Making Inferentes About π from Information Supplied by a Sample p

1 The objectuve was to estmate the probalulity that π bad any given range of values We were to make thas estmate on the bacss of the information suppied by a radiom sample Thus given p and n, te wished to estmate the value of $P\left(\pi_{L} \leq \tau_{1} \leq \pi_{4}\right)$, whth the L and U re ferring to the lower and upper lomits to the inferred value of π
2 The critenon that we eventually adopted for a good estimate was the probability of n_{I}, given p, chould be the same as the probahility of p, given ? Or, in symbots, we wished the trath of the equality

$$
P(\pi ; \mid p)=P(p \mid x)
$$

We assume, of course, that n is the same in hoth cases
3 We found that tbis was mpossble to accomplish exactly because of signticant variation in mference vectors from one p to the pevt due to our mability to keep $p q$ constant as p vaned This problem moderated as the size of the sample mereased It also tended to be less a prohlem rear the center of the vector, where the probabiltues were high, than on the talls, where the probabilitres sere low
4 We were also botbered by nozeense answers near the boundaries of 0 and 1
5 Our inital inference method dud have the desrable feature that it generated inferences that averaged out (in the anthmetic mean sence) at the correct answer
6 We then get out to try to mprove on our first inference method We did this knowng that me might have to sacrifee some desmable features in order to gem more of others
7 We tned, and quivkiy rejected, a stragbtionward appheation of

Bajes's theorem to the calculation of discrete probabilties Thus method led us furtber ustray
8 We then modifed this Bajesian approach by working with cumulatine probablitites and by treating the binomal distribution as thougb at nere continuous Te immadatel) noted marked improvements in our estumiter of the specific probabilitres for vatious π_{1} values
9 We then noted that these modified Bay eslan eetmates nould not alerage out at the true tolue of x They mparted a blas tomard 5

10
binomal estimates and found that the total errors in estronating the salue of the true π nere less We nere thus atisfied that the moditied Byyesian estumates represented a real umprovement over tbe p-bioomals
11 All tbree methods of making inferences (the p-binomul, the discrete Bayesan, and the contunuous Bayesan) get better as the sample size mereases In fact thes all conserge on the same, and the correct, value of π
12 The methods ian with reapect to the tedum of calculation and with reepect to the degree of emphaty of their underlymg loge The generation of the binomial from p is probably the sumplest to pertorm and the smplest to comprehend Horever, this could become someWht tedious if we wshed to interpolate for π_{j}, alues not gien directly in the table of the binomal It thould aloo be noted that some people would find such an interpolation offersive to therr sence of logic, despute the fact that it mould recult in practically ureful ansters There is some endence that roore and more people are rilling to accent the ides of using the binomal distribution as though tit were a continuous series
12 Enloss we find that ow problem straches costegl symitrance to the tal probabilities, where the differenees betneen the methods are most pronounced, we might chooce a method almost on the bass of taste and on the asalablity of convenient bonomal tables
It Many of the above problems tend to disappear as the sue of the sample increases As a matter of fact, me might smitch over to the use of normal turle estumatea as N acheres come minmum saze All binomial distrbutions approach the normal as N increaces, they also become more obviousls contanuous in their form We postpone our diccusson of such normal curve estunates until a later chapter uben ne discuss inferences about the mean of a contmuous varable

8.10 The Use of Poisson Probabilities in Making Inferentes

We sometimes run into problems in which it is practically impossble to determine the relatue frequency with which some event can or has occurred to the usual sense in which we use the term relatite
frequeney The difficuity is caused by the fact that the opportanaties for the event to occur are almost limitless, and hence uncountable We gave allustrations of this problen by reference to the probability of a defect in a paint surface and the probablity that a machime will broak don in some teme interal About all we were able to do 15 determine how many defects occurred in some specifed area of the panted surface, or hote moriy machmes broke down in some specified thine interval

If we specily the average number of such defects in the unverse as m and the number of such defects in a sample as c, re find that te can estumate the probabilty of a given sample c from knowledge about a green unverse m by the following formula

$$
Y_{c}=e^{-m} \frac{m^{e}}{c^{!}}, \quad \text { or } \quad P(c \mid m)=e^{-m} \frac{m^{i}}{c!}
$$

This is, of course, the formula we called the Porsson formula in an earler chapter We use tha formula with a given m and then calculate the probability of each of the posssble c values The resultant distribution is what ne called the Polsson distribution

Nou let us consider the problem in which we do not knon the value of m, but we do know the value of c in a given sample What inferences might πe then make about the value of m^{2} This problem is exacily analogous to our problem of making merences about r from informstion about p, and we could approach it in exactly the same Tays

We might simply reverse the c and m and let the information about the sample act as a generator of inferences about the unverse Such inferences would baie the same properties we discovered then we let the sample p act as a generator of inferences about π As they apply to m, these propertes nould be
1 The anthmetic mean of all inferences about on yould equal m
2 The specific probability of tise correci m would be estmated exactly
3 The spcenfe probabities of n's in the naghborhood of the corzest m would be moce accurately estrmated than those on the tauls of the distn bution
4 The probabilities of ms below the true m would be underestimated, those for n 's above the true m would be overestmated
If we used a proor distrobution of m with equal probablities as a basis of estimation of the probability distribution of n_{i} (modified Beyesian estimates), we would find
1 The anthmetic mein of all inferenecs about m would be greater than the correct m

2 The specific prohatility for the correct on would he very slightly underestimated
3 The spectic probahilites for all other m^{\prime} B would in general be more closely estumated than if ae had suaply reversed m and c as above

In either case we would find our estimates improving as carcreased Thas follows from the fact that we are really assuming that the p is a statistical constant in the equality $\mathrm{c}=\mathrm{N}_{\mathrm{p}}$. If p is in truth very small, as it should be to raske the Porsson approximation work, and If it is constant, N increases proportionately with c Hence an increase in c is indicative of an tncrease in N. We have learned that our estimates improve with an merease in N As a matter of fact, the Poisson distribution approaches the normal as in (or c) increases We might also add that these methods give adentical, and periett, answers if the relevant sampling distrbutions are truly normal

PRGALEMS AND QUESTIONS

8 i(c) You aje given a plesumahly random sample of four tems with a p of 25 You have no other mformation about the unverse from which thas sample came Assune the saldity of the equal distribution of genotabce rule and estruate the inference distribution of πd by assuming equaly likely values of π_{H} w the manne: of Table 83
(b) Explain the logic, if any, of the equal distribution of bporance rule Guve an ilustrition from your own expenence in wheh you have used the rule or its equavalent (You may not have been awtare of autb an assumptron at the trone)
(c) Interpret the sum of the joint-conditional probabilit es you calculated in (c) (The joint conditional probabilties are those shown in column 4 of Table 83) Suppose that your answer had been as low as D000147, what would be your reaction?

82 (a) Complete the inference matnx for a sample of 4 in the manner of Trable 84 Thas involves the assumption of equally likely pror values of π_{H} Use the short cut method that omats the calculation of the joint proba buities
(b) Under what cireumstances is it eppropraste to onat the calculation of the joint probabilities on our way to the calculation of the posterior proba bilites?
(c) Assume that $\pi=25$ and $N=4$ and compare your binombal inferences $\left[I\left(\pi_{l} \mid p=4\right)\right]$ and your Bayesisn mferences $\left[I\left(\pi / p=4 n_{H}\right)\right]$ whth the adeal probablitues $\left[P\left(\left.p\right|_{\pi}=4\right)\right]$ in the manner of Tahle 85
Do you find results consistent with those we found in Table 85°
83 (a) Given that $p=25$ and $N=4$, estumate the modafied Bayesian in ferences about π_{I} in the maner of Table 86
(b) This method assumes that the binomal disirbution may be treated as a continuous varsable Do you approve? Why of why not?
(c) How do you spplan the lact that your average inference is larger Than 25 the value in the sample?
(d) Without doing any further calculation other than a smople suhtraction
estimate the average modifed Bay eslan meterence you would make if $p=75$ and $N-4$ (Hint This should be less than 75)

84 (a) Calculate all other modified Bayestan inferences for samples of 4 in addution to the one you caiculated in Problem $83\{a\}$
(b) Form a matrux with these inferences in the manner of Table 87
(c) Interpret the vertical vector headed $b_{y} \pi_{I}=25$
(d) Compare this vertucal sector headed by $\pi_{5}-25 \mathrm{wth}$ the durect proba bultues of gettung these vanous bample p c (In the manner of the first three columns of Table 88\}
$85(a)$ Assume that $4-25$ and that $N-4$ Calculate the probabilst? vector for various expeeted values of p
(b) Multuply this probability vector by the modnsed Bayesan inference matrix you calculated in Probiem 84(b) (In the manner of Table 89)
(c) Compare the average mference ratio vector mide from the column surns of tha ma ra nth the norrespondng toator based on smple binomit unferances (The latter vector comes from the column sums in the matrix calculated mProblem 77)
Follow Table 810 as a modei
(d) What conclus ons do you draw about the relative advantages of modified Bajesatm estimates compared with the smple bnomal estumates?
86 A sample of 20 raduo tubes of a given type is tested All 20 tubes are found satusiactory
(a) What is the probabisty that all the tubes of thas type and manu factured by this process are satisfiactory?
(b) What 15 the probability that no more than 80% of such tubes are satisfactory?
(c) Are you sure that your answers in (a) and/or (b) are correct ${ }^{9}$ (Errors in anythmetic astde)
87 A rookle in the Amencan Leigue fals to hit safelv in has first 10 tmes at bat What is the probabinty that be wil never get a hat?
88 The surface of a bathtub shows three smull blemshes What is the probability that the umverse of batbtubs averages four or more defeets?

9

Inference ratios as ingredients in planning and decision-making

In Cbapters 7 and 8 we examoned tbe problem of estimatugg, from sample information, the probabilities (inference ratios) that a unnerce magbt have certain x_{1} values We paid no real attentuon to why ne nould make such inferences nor to what we would do with them after we had them We now consider the role that such inference ratios might play in facilitating planning and decimon-

9.1 A Simple Decision-making Mode\}

The president of a cereal manufacturing company mith a national marbet for s consumer cereal called Smoothres felt that his company has been losung marbet share and decided to fire has sgles vace pressdent if the company's market share bas fallea below 30% A survey baced on a presumably random sample of 100 consumers revesls that 28% of them express a preference for Smoothies Should he fire the vice president?
It takes very little imagination (and the vice pressdent would be sure to point this out) to recogaze that the true proportion in the unverse might still be larger than 30 even though a sample of 100 showed coly 28 Maybe thas was justan unlucky sample Another sample might show a p of more thang 30
A rstional procedure at thes stage vould be to gemerate the inference ratio distribution for the varous possible values of π_{J} We would then be in a position to make estumates of the probability that the true proportion fas above 30 or below 30 Table 91 shows tbree sets of estimates of this inference ratio distributions In column 2 are shown the ratios we get from the binomal expansion with p

TABLE 91

Estimates of Inference Rathos for Verious Proportions of All Consumers Who Might Aetwolly Profer Smeathior infereneos Hased on Prosumably Rendom Sumple af 100 Convumars $28^{\circ}:$ of Whom Expressimg a Proforenco for 5 moothies

$\begin{aligned} & \text { (1) } \\ & \pi i \end{aligned}$	(2) $I\langle-1 \mid p\rangle$	(3) $l\left\langle\pi \mid p \Gamma_{n}\right\rangle$	$\begin{gathered} (4) \\ I\left(r_{1} \mid p\right)! \end{gathered}$
$12 \mathrm{I}{ }^{\prime \prime}$	0	0	001
1410	002	002	003
16-18	009	000	009
18020	021	020	025
20.22	055	052	054
2224	079	090	005
2436	145	145	143
2025	173	174	170
2n 30	169	170	170
7132	137	139	143
3238	013	005	095
313	03	00	0.54
If 3n	020	029	025
35-40	010	022	000
1042	004	004	003
12 if	002	001	003
4140	0	001	0
	1000	1001	1007

- Thar It in Inclusur
\dagger Tormal curve approxumathone
equal to 28 and A equal to 100 Note that no hare gathered the various pant prolsabibiteq mimo intervals For example, 145 shown for the 24-26 internal is made up of hati the frequency a asoented with a r of $24(1 / 2$ of 062$)$, the whole frequeses ansocinted with a -1 of 25 (073) and kalf of the frequener atsocuted with a r_{1} of 23 (1/2 of 052) A mors refined method of interpolation woutd not split there houndary frequencies exaetly in half Howerer the errors of the crute interpolation are quite small and are generally not worth the irouhle of refincment il might be interesting to check one of the other recorded retios in column ?
Column 3 shous the sef of rathos that result if we taile a pror
distribution of cqualls probable $\pi_{H} s$ and modify it by adding the information supplied by a sample p of 28 The procedure is the one ve outlined in Chapter 8 Table 92 shows the detall of the calculations for column 3 An exsmination of this table should help jou to refresh jour memory of this procedare
Note that the column 3 ratios tend to be below the column 2 ratios for values of π_{1} less than 28 and above the column 2 ratios for values of πj more than 28 This is consistent with our previous expemence with these tro methods The binomal estimates based only on the sample infornation have an anthmetre meas equal to the sample p, or 28 in this case The modfied Baygan estimates (column 3) hase a bas toward 5 ($\bar{n}_{t}=2824$), though certanly not a sernous bras in this case Tl e also found that the modified Bayesian estmates

TABLE 92

Detalls of Calculation of Modified Sayesian Etimatex Shown in Column 3 of Tabie 91

(l)	(2)		(3)	(4)
TH	$P(p \geq 23 \mid \pi n)$	$P(p \leq 28 \mid \pi \mu)$	π	$I\left(T_{1} \mid p \pi_{B}\right)$
14	000		$1416{ }^{*}$	002
16	002-000 $=002$		16-18	005
18	$009-002=007$		1820	080
20	$042-007=027$		20.22	032
± 2	095-016-079		22-24	086
24	204-029 $=175$		24-20	145
26	$360-040=320$		26-28	174
28	$538-044=494$	$551-0.44=507$	28-30	170
30		$377-040=337$	30-32	139
32		$228-080=193$	32-3t	095
34		122-019 = 103	31.36	036
36		$057-010=047$	36-38	029
38		$023-005=018$	38-40	012
40		$005-002=000$	40-42	004
42		$003-501=002$	424	001
44		$001-000=001$	44-46	001
46		$000-0000=000$	45-48	000
				1001

[^13]of the indundual ratios were somewhat better than the p binomal estimatea But here agam we find the differences quite small
In column 4 we show by way of contrast the estimates ne would get if we ussumed that the n's were normally distributed This distribution us, of course, symmotrcol, wherese the other tso are skewed positively, or to the right. The mean of the normal distributron sts also 28 It 4 evident that these normal curve approxmations are reasonably close to the other tro distributions We might be forgnen of ree ohose among these three methods on the basis of taste and contemence rather than on the basts of theoretical accuracy Unleas me forget, we might remand ourselves that the modified Bayestan estamates would be the closest to the truth (Table 93

TABLE 93

Details of Calculation of Normol Curve Entimates Shown in Column 4 of Table 9 ?

(1)	(2)	(3)	(4)	(5)	(6)	(7)
${ }_{1}$	Tr $-p$	$\frac{\sigma_{l}-P}{\sigma_{D}}=Z$	$1(\pi \leq T f)$	$I(T \geq \pi t)$	r_{1}	$I(-n \mid p)$
12	-16	-355	000		12-14*	001
14	- 14	-310	001		14-18	003
16	- 12	-260	004		16-18	009
18	- 10	-222	013		18-9	025
20	- 08	-177	038		20-22	054
22	- 06	-133	082		22-24	005
24	-04	-089	187		24-26	143
26	- 02	-0 44	330		26-28	170
28	0	0	500	500	28-30	170
30	02	44		330	$30-32$	145
32	04	S9		187	32-34	095
34	06	133		092	$34-36$	054
36	08	177		038	36-38	025
38	10	222		013	38-40	009
40	12	266		004	40-42	003
42	14	310		OD)	42-44	001
44	16	355		000	44-46	000

[^14]shows the detal of calculating the normal curve approximationg Note that it is necessary to make an estumate of σ_{p} in order to carry out the calculations This estimate is made with $N-1$, or 99 , as a divisor rather than with 100 in order to adjust for the downward bias in eample pariances)
Since the company president has amplified his problem to the point rbere he is concerned only with whether Stuoothes' share of market is above or below 30 , we do the same with our probabilities Table 94 shows the results of cumulating our inference ratios above and below 30 tor the three methods of estimation The differences in the estimates are certanly not of any great practical signficance

TABLE 94
Probability That Smoothies' Share of Market is Above or Below 30

> Modified

Broomal Bayesisn Normal

$I\left(x_{1} \leqq 30\right)$	675	664	670
$I\left(x_{1} \geqq 30\right)$	325	336	330
	$\underline{1000}$	$\overline{1000}$	$\overline{1000}$

The Probability Matrix

The sample survey results obviously provide inconchurwe evidence on the question of whethes the true market share is above or below 30 The president cannot fire the vice president without taking the chance (approx 33) that the acton is 7rong because the market share had not reaily tallen below 30 Simularly, the president cannot retain the vice president without taking the chance (approx 67) that the retention is wroag because the market share had fallen below 30 Table 95 summarzes these options and the probabilites of their being chosen correctly or ancorrectly We call such a table a probablity matrix
If the president fires the viee presideat, there $2 s$ a 67 probability that his decisicn is correct Note that we record this option as a gam There is a probability of 33 that such a firng is an incorrect decision We record this option in the toss column Simalarly we record the probabilities for correctly or meorrectly keeping the vice president Note that the row and column sums are all equal to 1

TABLE 95
Probsblity Manux for Problen of Whether to Fire the 5 ales Vice President (Based on somple of 100 with $p=28$ and on derived prohabulty that $\left.\pi_{\pi_{I}} \leq 30\right]$

	Gan	Loss	
Fire Vice Pressdent	67	33	100
Keep Vice President	33	$6 b^{2}$	100
	100	100	

This follows from the fact that we must etther gan or lose when we make a decision, snd that we must eather fire the vice president or beep ham

The Consequence Mahrx

The preadent undoubtedly expects to gann some advantage for the company if he correctly bres the sales vice president For example, the new ruce president would facilitate the recovery of lost market shere, or he might retard the rete of loss of market share Let us suppose that the president assesses the value of such a correct action as 8150,000
On the other hand, if the sales vice president is incorrectily fired, the company would be expected to suffer some loss, or expense, or loss of revenue, etc For example, there rould be the cost assocrated mith bung a new nice presdent who may not be as good as the one we fired There are also the possible efects fowmg from a feeling among the remaining staff that the vice president had been unfarly dealt with, ete Let us suppose the president assesses the cost of such an incorrect action as $\$ 500,000$
There are corresponding gans and losses associated with correctly or incorrectly keeping the vice president Let us suppose the pressdent estimates that it is worth $\$ 200,000$ to correctly keep the vice president, and that it will cost $\$ 100,000$ to meorrectly keep him
Table 96 shows these possible consequences in a matrix very similar to that for the probability matirix A correct fring shows $\$ 150,000$ in the gain column An incorreet fining sbowe 8000,000 in the loss column A correct keeping shows a gam of $\$ 200,000$ An incorrect keeping shows a loss of $\$ 100,000$

TAELE 96

Consequence Matrix for Problem of Whether to Fira the Sales Vice Presldent

	Gain	Loss
Fire Vice Presideat	$\$ 150,000$	$\$ 500,000$
Keep Vice Prendent	$\$ 200000$	$\$ 100,000$

The Pay-off Matrix

Common sense suggests that the president would like to make a decison about the sales wee president that mill maxumize the company's gan or minmme its loss If ne multuply the gans and losees of the consequence matrx hy the probabilites of therr occurnag as ahown by the probabilaty matnx, ne nill be able to ascess the probable losess or gans asrociated with a decision ahout the sales wice president Tahle 97 shons the results of such a multuplestion He call the resultant matrix the pay-off motrix Each cell value in the pay of matrix is the product of the salues in the corresponding cells of the probsbility and consequence matnxes For example, the $\$ 100,050$ is $67 \times \$ 150,000$
By adding the rons of the pay-off matrix ne are now ahle to determine the expected economuc consequences of firing or retaming the sales vice presudent We find that ne expect to lose $\$ 64500$ if we fire the vice president and to lose $\$ 1000$ if $n e$ keep him There is thus an apparent advantage of $\$ 63,500 \mathrm{in}$ heeping the vice president.
It ts interesting to note that thes is a situation in which either decsion reaults in an apparent loss W, in effect, then chooce the lesser of the tro evils, as it nere Sometimes we face decisions where all options are apparently going to lead to expected gams We then choove the one with the maxumum expected gain Finally, there

TABLE 97

Poy-af Matrix for Problem of Whather to Fire the Sales Vies Proident
Gain Loss Net Gun (Loss)

Fire Fire President	$\$ 100,500$	$\$ 165,000$	$(\$ 61,500)$
Keep Vice President	$\$ 66,000$	$\$ 6 \pi, 000$	$(\$ 1,000)$

would be cases in whob some options gree expreted gams and others expected losses Again we choose that whth the maximum expected gan

9.2 Another Example with a Different Cansequence Matrix

Let us see what happens to our sales yice president. whth no change in the facts about the market but with a change in the way the pressdent assesses the comsequences of his decsion Table 98 shows a revised consequence matrix and hence a revised pay-off matrix for the same problem as before The probability matnv semans the same
It is nok evident that the sales viee president should be fired 1

TABLE 98
Revised Decisiont making Model on Problem of Firmg the Sales Vice Prestient
A Consequence Matrix

	Gann	Loss	
Fire Yice Presdent	\$250,000	8400,000	
Keep Vice President	\$150,009	8250,000	
3 Pay-of Matrx			
	Gan	Loss	Net Gain (Loss)
Fire Vice Prestent	8167,500	\$132000	\$ 35,500
Keep Fice Presudent	S 49,5000	S167,500	(\$128000)

9.3 Is the Campany's Share af Market More Than .30?

We started out on thrs problem of what to do about the sales vice president with the adea that he would be fired 15 the company s share of market had fallen below 30 We diseovered, of course, that we cannot make a judgment about the eompany's share of market without considering the consequences of those achons that flow from such a judgment We saw that in one case the vice president thas retamed,
thus on the assumption that the share of miarket had not fallen belors 30 In the other case he was fred, this on the assumption that share of market had fallen below 30 And thes despite no change in the facts about ghare of marketI
Thus we see that what the preadent 18 willing to beleve about share of market depends on what he is planning to do because of that belhef and on how he assesses the consequences of his contemplated actions The only possible abstract suswer to the question of share of market is one which shows the thole probability distrbution of possible answers Any attempt to use only part of thas distribution as though this part contsined the truth automatically nurolves us in ask of error and hence in the need for evaluation of the consequences of that risk

9.4 Truth as an Abstraction vs. Truth as a Personal Belief That Regulates Our Behavior

The notran that what we should believe about share of market ds only partly on the facts about shate of market is as profound as it 18 disconcerting Such a notion makes it perfectly rational for a person to now act as though something 13 true and then act as though it is false, with no change in the avarlable information in the interm People do this quile regularly Who among us has never been told to "put your money where your mouth 18 ," and, when so told, then proceeded to modity his belefis We all are amare of the different consequences that for from talking as though something were so and acting as though something nere so That is why political commentators have much less difficulty making decisions than senators, and senators less trouble than presidents Simlaty a jury finds it much less difficult to convet a man if the penalty is mild then if it is severe, all quite independent of the weight of the evidence That is why, for example, a defense lawner might very rationally try to maneuver the prosecution into asking for the death penalty on the theory that the jury nould not vote guilty on that penalty, although it would on, say, a 20 -year ja11 term
Some people have a strong phlosophical objection to the notion that it is ratonal for people to belleve what they wish to beleve in the Lught of therr own eqaluation of consequences Such objectors argue that truth 18 a property of the events in question (an event such as share of marhet) and not a property of the person acting "th respect to the events They fear that such a notion grants
everybody such wrie lattitude in wbat he can do rationally that the notion of rationshity becones a useless gunde because there would be no such thing as irrational bebavior But, of course, there probably is no such thing as urational behavior in the sense that any person ever knowingly bebaves coatraraly to what his reason tells him to at the moment he has to make the deciston Tomorrow he may decide that be should have behaved differently but that does not mean that yesterday he was rrational It is very easy to confuse rational behovior with behavior that turms out to have been correct, homeser ne determme what is correct

The philosophical arguments pro and con the desurabilty of some objective standards of truth are certanly worth considerable discussion Such a discussion, however, would carry us well outside the proper bounds of thas book We are more concemsed bere whth certain practical issues that anse daly in a society as dominated by dirision of labor as ours is From a philosophical point of view, we find it very easy to argue that each person should take personal respoasiblity for unterpreting has own facts If a person had a job in which he was merely supposed to report the facts, he would report them in the form of probability distributioas For example, the Unted States Weather Bureau office in Chucago mould make no comintment on the neat day's temperature It would report the best estumate it could make of the full probability distribution of the expected temperatures The newspapers would pubish this distributhon, and all the readers who had any real concem mith the next day's temperabure would multiply this distribution by their own personal consequence matrol They would then decide what to Woar, where to ga ete, to the hack of the resultont nay-nfi mainc Since the plobability distribution would usually cover quite a range of possible temperatures, the weather bureau nould never really be "rong, nor, of course, would it ever really be rught The only people who could then do any memngiul griping about the quality of job being done by the weather buteau would be those who felt that the bureau was stating incorrect probabilites (how could we determme this?) or that the bureau was perhaps showing more uncestanty about the outlook than more assiduous research nould reseal Most of the people probably would stop complaning about or even commenting on, the pob being done by the weather bureau They would look for some other agency as a scapegoat for ther need to feel that they could do some other fellow's job beiter than the is doing it!
The fact is that mosi of us have netther the time the energy, nor the inchimation to spend our days making up probabihty, consequence,
and pay-off matrixes for the mynad of events that press down on us We necessandy, and in a sease wilingly, have adopted a master pas-of matrix that tells us what subsudnry pay-off matrixes re ourselves will work on and which ones we will leave to the fudgment of others In effect, ne tell the neather bureau 'Pich out that part of the probability distribution of the expected temperature that you thenk make senve for the ctizenry at large Ill learn to adapt to whateur you decide or grupe to my Congressman' The neather buroue non finds itself on the spot So it does what ne all do when re find ourselves on the spot It takes immediate steps to get off the spot It does this by tahing refuge in some notion of objective truth! Thus the bureau absolves itself of any personal responsbility for what it says about the next day s temperature
Since all of us find ourselves in a position simblar to that of the nenther bureau where we are acked to mike dections for whech we do not wish to take perconal recponsibility, we are very hapns to colliborate in a more or leas general conspracy to develop objectue procedures for making the ee decsions We are thus able to blame something else rither than ourselves when thangs go wrong ind we at the ame tome con pontricate on our objectrie and sceentufic pro vdures
We have of course overdrawn the case comershat Actualls there are some sery pracheal arguments lor assigning some of our re eponsibilities to others The treh is to assign those that can be handled best by others and to devise q way of assecsing hon well they are handing the responsibilttes In effect re delegnte the job of determining the probubility matrse and the romenuence matrix The delegate then mercls tells us what to do lie then nseess the outcome If the outcome strikes us as typicnll uninorable we are led to make up a probability matrix a consequence matrix and a pay-off matrix on the question of whether ue mell contnue to delegate this job to thes person We would mnke a matake as a general rule to meddle whth the matrixes he is using to do the job he has been assugned

9.5 Some Commonly Acrepted Standards of Objective Truth

Although no person who thanks about it finds it ency to decelop notions about objecture truth, the same percon ran appreciate the practucal value of having people more or lecs agree on some gencral
standards of what constitates an objective trath In other words, we are not sure we know what objective truth 15 , or even that there 18 such a thing Neveriheless we are whing to adopt some standards about it in order to facchtate communceation Most work and social groups not only develop then own largon, they also develop 1 mphech , notions of how true something bas to be to be considered true This is another way of saymg that the group learns how to adopt a generally agreed upon criterion of acceptable nsh A member of such a group is expected to adhere to these aecepted standards as one of the conditions of remaming in good standing withn the group This is true whether we are trying to reman in good standmg within a dragracing olub or a umversity of scbolars The promary argument for the currently accepted standards is the same in ejther group, nemely that they are good standards because the group thinks they are good standards If we find the stardards unpalatable, we leave the group

The Notion of 50-50

If ne leave consequences enturely aside, we are bound to be attracted to the notion that something is true if there is at least a 5 probability of its being true Correspondingly, something is faise if there is a less than 5 chance of its being true There seems to be no offihand reason why we should adopt a more stringent standard for truth than for falsity, or vice versa

The notion of $50-50$ used to play a rather dommant role in statistheal work The probable error, the middile 50% range, used to be much calculated and much quoted If a person acted as though the truth were within the probable error range, he had an even chance of being riglt if he were told that something was true by a person who believed in the $50-50$ rule, he knew that he had at least an even chance of success if he acted on that information More than that he did not know

The Notion of 2 to 1

The $50-50$ ruie (consequences asdde) seems to be a good rule if we must act as though something is either true or false But sometimes a third act is avalable This is the aet associated with "I don't know" Thus a person can conceave of three conclusions he might make about an event True False, Do not Know What is more natural, then (consequeneess eside), than to divide the probability scale into three equal parts? If the probability is less than 33, the event is called false, if 14 is more than 67 , it is called true, and if
the probability is betneen 33 and 67 , the evidence is inconclusue Thus when we call somethang true by thes rule, ne believe that there is at least a 2 to 1 chance that it is true, and sumiarly when we call something false The rest of the tume we say we do not hnow
This rule is being used far more than se realize it so happens that "the mean plus and minus one standard devation" covers about $2 / 3$ of the cases if a distribution is nomal or nearly so Many people mahe conclusions from evidence by stating the one standard desuation limits thus suggesting that an action based on such a conclusion has a 2 to 1 chance of being right. We hesitate to decide \#hether the popularity of the 2 to 1 rule is because of the logic of the 2 to 1 or because of the aura of respectability that has come to surround the standard devation

The Rule of Modesty or of Conservatism

As soon as re admit the possbblity that we find the evidence inconclusne we open the door to the possbblity of attaining a reputation by demonstrating that humbleness and modesty are also use[ul tratts He norry so much aboul drawng hasty, premature, and ' 'founded conclusions that we end up drawing practically no conclusions unless the evidence s overwhelming or at least we think the are drawng no conclusions As a matier of fact, life's problems prees in on us in such a way that the decision of "no conclusion" is nothing more than a decision to continue the old policies in effect There is nothing inherently wroug in this, but it is mportant to hnow that that is what re are doung when πe "postpone" a decision untul more evidence comes on Lost of us denve consuderable comfort in the continuance of the fammar routines We require rather substantial contrary evidence beiore we abandon old ways We are very likely to become quite "scientific" and demand "prooi" before ne make any "hasty and ill-iounded" conclusions For example, the eudence that has linked cancer to cigarette smoking has done more to stmmulate a scentific attitude among smokers than anything they eier learned in a science course in school The subtlethes of argument that people have been able to deduce to cast doubt on the cancer-causing hypothesis would do justice to some of the worid's most profound philosophers who have tned to discover the real meaning of truth Some lave let their scientific enthusiasm run so high that they have finally decided that they have proved that nothing is truel
The application of the rule of modesty generally leads to the re
nent of odds in the neghhorhood of 9 to 1 , or 19 to 1 , or 99 etc, before we label something as true, or false There is no ular magic in these numbers, although we might thinh so if 'e superstitious about 9 's Actually, they developed out of a number philosophy Equvalent statements would be 1 out 1 out of 20 , and 1 out of 100 Why 1 out of 50 , or 49 to 1 , attained currency is a useiful subject of research for a psyInst
ess we leave this section with the idea that we have been ig sport with this modesty rule, we remind ourselves that it obsunacy that causes most of us to adopt the slogan that "a n the hand is worth two in the hush " It is just that we have ad that it is a good reea to get odds before we risk something ready have for something we "might get" This 18 just another If saying that we really find it impossithle to leave consequences
The people who already have something are generally less ed to experiment to get more than are those who do not have ing to lose Nonsmokers find it much easier to accept the noif a lonk between cigarettes and cancer thas do smokers and co compames What is surprising is not that this is so but that 3 seem to be surprised that itis so

It is So Because It Cannot Be Proved It is Not" Rule, or Vice

ne people have rather hadly misinterpreted what we have called odesty rule They have accepted the stongent requirement that pparent odds be quite bigb before they can be persuaded to ;e a belief or an hypothess Unfortunately, borrever, they have iways been too careful in theme inthal selecion of hypotheses perhaps they have been very careful, hut very subtiel) e misinterpretation stems from the notion of the null hypothess, yon that has had considerahle promenence in statistical nork nally this notion referred to an nypothesis that stated that e is no difference betrueen these two phenomena" For example, ; suppose that π e are testing the effectiveness of two different of advertising copy We mitually adopt the hypothesk that us no real dufference between the effectveness of the tuo types oy We then collect evidence which shows any observed differin effectiveness But, of course, we well knon that there nould me ohserved differences in sample evidence even though there 10 real difference We liken the situation to that of drawing vg cards out of a deck In this case we happen to know that
tho decks of cards are identical, hence we are not masled into beleving that the cards have hugher numbers in one deck than in the other because re happened to observe tuo samples of five cards each which showed higher numbers from one deck than from the other We brush off such an observed difference as due to chance and continue to believe that there as no difference between the two dechs An analogous line of reasoning tells us to brush off an obsered difference betreen advertisng copres as due to chance unless the chance is co lon that it nould he mprudent to count on it For example, if the obeered difference could have occurred by chance only 01 times on the hypothesis of "no difference," we might be pardoned for abandoning the hypothess of "no difference" Of course, as soon as ke abandon an hypothests of "no difference," we automatically have adopted one of "some difference" (The determination of the sure of tbe "some" ras a neglected problem for many years)
Thus the adjectsve pull was appropraste (null means "nothong") The attendant notion that we should not abandon a null hypothess unless the odds wete at least 9 to 1 is obvously a very conservative rule Such a rule provides us nith a sery strong presumption to treat things as though they were the same unless we have rather strong evidence that they are different This rule is practiced quite midely in American hife Our concept of democracy has strong leanngs towards treatiog people as though they nere the same unless there are definite reasons to the contrary
A person mught grant the practical logic in the notion of the null hy pothesis with a conservature rejection rule without, hor ever, granting the logic of its extenston to cover sll kinds of hypotheses As so often happens ruth such things, the original meaning of the null hypothess has been lost over the years Some people now treat all hypotheses as though they were null hypotheses They use the con sen atne rejection rule and naturally have trouble refuting then hypothese They take what to them is the next logical step and argue that we should act as though the hypothesis is true because we have not been able to clearly demonstrate its falsity This is a dangerous practice What very often happens is that the eyddence is so scanty that we should hesitate strongly to say any more than "we do not know" It really is not at all diffeult to dream up all sorts of hypotheses that cannot he proved false To then call these true must be some sort of nonsense Similarly, it is not at all diffi cult to dream up all sorts of hypotheses that cannot be proved true Lack of overwhelming proof certanly does not make them false however

96 The Policy We Follow in Drawing Conclusions from Evidence

We leave the himg and firng of vice presidents to presidents Our task is the more modest one of estumating the probabilities that are appropriate to the given facts We lack the knonledge that is essentail to the setting up of approprate consequence matrixes The have shorn the mechancs of derving a pay off matrix or a decision matrix from the underlyng probabilty and conequence matrues in order to clarify the rele that is played by the probabolity estimates Although te are convinced that probability calculations chould plav a tery important role in decision making ahether in busmes poh ties military strategy personal life ere and probably an expanding role we are equaliy con inced that the probabinines are not the whole story lle must alwas accept personal responsibility for our dect slons To take refuge in statistical formulas to justify decos ons 16 to abdicate our reeponsibilities Sucl abdication nould also mean that we would have farled to uthize in our decisions that great nelter of accumulated expersence both conscous and unconsclour that as yet has not ylelded to reasonablv precise quantafication In fact mosi of the great historical deensons that have been made that have afiected the future of nathone and compames probably never nould have been supported by a rational consideration of the probabilitice
Our discussion in subsequent pages concentrates almost exclusich on the probleins of estimating probabilties Our frequent referencee to practical affarrs should be interpreted as attempts to link our calculations to such affiars not to provide a complete decision inah ing mechanism for dealing with such afinus

97 Confidence Infervols-Abbreviofed Probobility Distributions

Up to this tume tre have emphaszed the importance of estrmatug the entive probability dsisibution of the value of some unknown event such as the proportion of the people who prefer Smoothos To report only part of this distnbution teads to prejudice the fina! decisons to some extent berause any user must then confine has analysis to only those purts that are presented For example if ne state that the evidence supports the statement that re are 90%
confident that Smoothes' sbare af market hes between 21 and 36 (see Table 91 for data that suppart this statement), the president is automatically restricted un the kinds of decisions he can make When a statistician has made such a report, he has mplicitly usurped some of the president's decision-making function The president is probably in no position ta supplement such probablity statements He will tend to accept the ward of the statistician for what it is worth Sometimes such statements are not worth very much, and some presidents are smart ennugh to know it

The practice of summarizing a probability distribution by some simple confidence interval like the above is much more common than is the practice of reporing the whole distribution Both statisticianss and decision-makers have been at fault for the fostering of thes practice Statisticians have been handicapped by the apparently great difficulties that have stond in the way of the development of rational procedures for estrmating all the required probabilities The flav or of some of these difficultues is apparent in the preceding chapters Hence there developed a willingness to accept the notion that rational confidence statements were legitimate at the same time that the notion of a complete probablity distribution mas rejected It is easy to look back and wonder about a logie that permited us to take any part of a probability distribution but which forbade our puting all the parts together
Decision makers also contributed to the fostering of this practice of reporting abbreviated probablity distributions in the form of confidence intervals, mostly because they were human bengs, as mere the statisticians too As we know, a good deal of admastrathon theory is designed to pinpont the responsibility for decisionmaking Human beings in general, however, seem to have a distaste for making unpleasant decisions, parthcularly decisions that involve firing people, dismissing students, and the like Hence decision makers are often very happy to point the finger of responsibility away from themselves Snce other people wall resist if the finger is pointed at them the best place to pount is at some manumate object, hike a confidence interval This is particularly useful if the object is surrounded wth an aura of scientific respectability A preset confidence interval is very handy to make a decision that is "forced on us by the facta" Of cnurse, confidence intervals that do not support the desired deesion frequently get disqualified on the grounds of "boased sample," "errors in measurement," 'not the whole proture," ete Statisticians nere often human ennugh to be
somen hat thriled that their results were being used to make important decisions Therr feelings when tber results were ignored or ridiculed were often not expressible
The preceding remarks mas lead to the belvef that confidence intervals, or abbreviated probability distributions, bave no proper place in high-ievel practical statistieal work This is not true, however They defintely do have a place, but ther place sbould not dominate the scene The practical necessity to estrmate the range mithon which some value probably falls bas been recognized for centuries Engineers have been concerned with this problem under the name of tolerance limits Although it is true that engneers have sometumes mplectly assumed that all or practically all of their products should fall within their tolerance limits, practical experience usually revealed some falures In fact, this predilection of engmeers for 100% or practically 100% confidence intervals has probably had a consuderable effect on the genaral popularity of relatively high confidence ooefficients (the 90%, or 99%, etc, 15 known as a confidence coefficrent) Engineenng and production problems have played a sig nificant role in the development of rules of thumb in practical statastreal work Many of these rules have been borrored for other applications with little regard for their orgens and ther practical meanng

The mportant thing for us to keep in mind is that the selection of a proper abbreviation from a probabulity distrubution should be made writh explect consideration given to the appropriate consequence matrix There is no particular trick to the calculation of a 60% interval vs a 90% interval The practical problem is the decision of wheh to caloulate So now let us get to the task of calculating confidence intervals on the assumption that we have been told thich coefficents we should use

Caleulating a Canfidence Interval Use af Tables af The Cumulative

 Binamial PrababilitiesSuppose we have a random sample of 40 Items with a p of 25 What limits should we set on π_{I} so that we can be 90% confident that the true π falls whthin the limits?
We assume that we are satisfied if there is no more than a 05 chance that the true π is ahove our upper limut and no more than a 05 chance that it is below our lower himit Since the distribution is skewed, this is not the same as requmng the 90% to cover the smallest possible range, although the difference between the two possible intervals is neglgible

Our approach to this problem es illustrated in Fig 91 Part A shows how we locate the value of the lower limet to the interval, called π_{I} The sample p of 25 is taken as a fixed pornt along the horizontal axis We then search for $a \pi r$ that will generate a distribution of p 's so that there is a 05 probsbility of getting a p of 25 or larger Suppose that π_{H} is such a π and the pictured curve ss the generated distribution The shaded area to the nght of $p=25$ would then contan 05 of the ares under the curve An examenation of the table of the cumulative binomal for $r=10$ (equivalent of $p=25$) and $n=40$ reveals that the approprate hypothetical r lies between 14 and 15 If we make a Inear interpolation, we find that an appropriate $\pi_{I_{L}}$ is

$$
14+\frac{05-0453}{0672-0453} \times 01=142
$$

We can now state that $P(p \geq 25 \mid r \mu=142, n=40)=05$ Then, followng the rule of inverse probabilties used in Chapters 7 and 8 , we turn this statement around to read $P\left(\pi_{I} \leq 142 \mid p=25, n=40, \pi_{B}\right)$ $=05$

Fig 91 Estinating a 90% confidence moterval given that $p=25 \mathrm{~N}=40$

Part B of $F_{1 g} 91$ illustrates the same argument for determining the upper lomit to the interval We are now concerned wnth the probability of getting a sample p of 25 or less given some value of π_{H}, and we whs this probability to be 05 The use of the binomial table is not straghtforward this tome The tahle shows the probabilites for a guven r-value or more We wsh the probabilhtes for a given r-value or less Frost we note that the probahblsty of r of 11 or more is the same as 1 minus the probabihty of 10 or less For example, the table tells us that the probability of an r of 11 or more is 4161 if $\pi_{H}=25$ Hence it follows by subtraction that the probability of 10 or less must be $1-4161$, or 5839
If this charactenstic of the table is fised in our minds we can now see that we look in the column for $r=11, n=40$ until me find the nearest figure to 95 We find that $\mathbf{9 5}$ would fall between a τ_{H} of 38 and 39 Using a linear interpolation as before, re estumate π_{H} as

$$
38+\frac{95-9400}{9537-9400} \times 01=387
$$

From this te state that $P\left(r_{I} \geq 387 \mid p=25, n=40, \tau_{H}\right)=05$ We put these two statements together and say that there is a 90 probability that τ_{I} falls hetween 142 and 387 given the evidenee of a sample of 40 with a p of 25 Note that the lower hront is closer to 25 than is the upper limit The is caused hy the fact that the upper limut was based on a vanance of 387×613, which 15 larger than the vanance used for the loner limit, which thas 142×858

The limits of 142 and 387 are known as conservative limits They actually cover more than 90% of the inference distribution and are made conservative because we treat p as though it mere a dascrele varable When we calculated the probability of an r of 10 or more, we included the full range of the $\mathbf{1 0}$, wheh really runs from 95 to 105 This is the same problem we noted in Chapter 8, and which we illustrated in Fig 85 To adjust for this conservatism re would have to subtract half of the probability associated with $r=10$ from our eumulative probabilities Tahie 99 shows the procedure
This adjustment contracts the mitervals from 142-387 to 151376 Most people wrould probably rather accept the conservatism than the teduum of the adjustment it is important to remember, however, that this adjustruent can be quile important if N is moderately small The discovered as much in Chapter 8 rhen we nere working on the entire mference distribution mstead of juct selected parts of it as we are doing here

TABLE 99

Ad]usting Canfidenea Intervols for Conservatism

Givan' $p=.25, n=40$ Wanled 90% Confidense Intervol of π

(1)	(2)	(3)	(1)	(3)	(6)	
	${ }^{2} 8$	≤ 31	- 25	$\times(4)$	$P\left(\pi>25 \mid T_{H}\left({ }^{\prime}\right)\right.$	Icterpauntios
13	0672		0373	018	0485	$15+\frac{05-0.48}{0702-0.188} \times 01$
18	0952		Ont	0250	0702	- 151
					$P(p<25 \mid \sim B)$	
3		978	0205	9184	0574	$39-\frac{05-0.044}{.0574-042} \times 0.01$
		0000	0135	0158	0412	- 376

Calculating a Canfidence Interval: Use of a Narmal Curve With Symmertical Limits
With a sample as large as 40 and with p in the Derghborhood of 25, we might find that the nomal curve will make a reasonable approxumation to the 90% confidence interval of π. Our first task is to estmate the standard deviaion of the unverse, and from that the standard devistion of the sample p 's Since the only information we have about the standard devation of the universe is that supplied by the sample, re use the sample standard deviation as the bass of our best estumate We say "basss" because ne must adjust the sample standard deviation for the fact that sample standard devations are in general too small in the sense that the anthmetic mean of all sample standard deviations is less than the standard deviation of the unverse The adjustment can be made as follons.

$$
\sigma^{2}=s^{2} \frac{N}{N-1}
$$

Thus in our problem we get an estumate of σ^{2}, called d^{2}, of

$$
.25 \times .75 \frac{40}{40-1}=.1923
$$

We estimate the standard devation of sample p's by the forcula

$$
f_{p}=\sqrt{\frac{\delta^{2}}{N}}=.069
$$

Note that the above fwo operations involved first a multiplication by N and then a division by N If we combine these two formulas, we can elmmate this multapheation snd dinson Thus we would get

$$
\sigma_{p}=\sqrt{\frac{s^{2}}{N-1}}=\sqrt{\frac{25 \times 75}{40-1}}=063
$$

Figure 92 illusirates the line of reavoning we will now follor In fact, it lllustrates tho hnes of reasoning Since te get the same answer in erther case, we can exercise our preference Part A illustrates the case in whinch we are really ucing the ssmple information as the bass of generating a probability or inference distribution of the unknown unverse π. The is the process some people object to because they do not like to thak about an unknorn unverse value as though it were a random variable If we agree with this objectoon, we would prefer the line of reasonng as exhibited in Part B

Fig 92 Illustration of altermetive methods of making normal curve estimates of the 90% confidence interval (Note These curyes are not drawn to strect scales)

The vertical lines are dramn through Parts A and B to make it clear that both methods gre precisely the same values for π_{L} and π_{0}
Just as when we were ungg the binomal, we wish to find values for π_{L} and τ_{C} so that the excluded areas (shaded in the charts) contain 00 of the eases respecturel\} We non search the normal curre table for the value of Z that will eut off 05 of the tail of the normal curve $\left[Z-(\pi-p) / \sigma_{0}\right]$ We find that the appropriate Z is 1645 If we cubstitute this salue in the equation $Z=(\pi-p) / \sigma_{p}$, we get. $1645-(x-20) / 069$ This gives a value for π_{0} of .364
A simple rearrangement of terms makes it possible to express this formula as

$$
\pi v=p+Z \sigma_{p}
$$

The value for π_{L} is simularly calculated from the formula $\pi_{L}=p-$ $Z 0$, resulting in an answer of 136
If we compare the normal curve approximations to those we denived earier from the binomal, we find the diferences to be just about what ne rould expect The range betreen the upper and loner limits is about the same in both cases The binomial gave a range of $376-151$ or 225 The normal gave a range of 364 136, or 228 The binomal gave a larger upper limit and a smaller lower limit These differences were caused by the fact that the bnomal considered the sheuness in the distribution of π_{1} The normal curse method averaged out the sherness
The differences shown here betmeen the binomal and normal curve estumates would tend to disappear as the sample size increased be
 normal as V increases The differences rould alco be smaller if p had been closer to 5 and, correspondingly the differences would have been greater if p had been clocer to 0 or 10 Whether ne would prefer the bromial or the normal curve ectimates mould depend partly on tbe peeded accuracs (binoma! more accurate) and partly on the aralability of a table of the binomal The calculation of the bmomal estimates is cufficiently tedious to cauve almost anyone to lower his standards of accuracy Thrs is particularly true ance most of us rould not know what practical difference there is between say, 151 to 376 and 136 to 364

Calculating a Confidence Inferval Use of the Normal Curve With Asymmetrical Lumiss
In the above application of the normal curve ne made a single estimate of the standard devzation of p based on the value of p itself We
know, however, that the standard devation of p is really a function of the unknown π Since the unknown π mght have all soris of values, the standard devation of p also might have all sorts of values, in fact, one value for each of the possible π values For example, se obtamed an upper limit of 364 for π in the preceding section Using this in the formula

$$
\sigma_{p}=\sqrt{\frac{\pi-\pi^{2}}{N}},
$$

we get a σ_{p} of 076 Note that we use N instead of $N-1$ beceuse here we are working with the chwerse proportion (albelt assumed)] Similarly we would get a σ_{p} of 054 whth our lower hmit of π of 136 Our single estmate had a value of 069

If we wish, we might use a value of σ_{p} to get the upper lumit of π that is approprate for this π We would do lukewse for the lonter limit of π Since we cannot calculate σ_{p} untal we know πt and πv_{1} we must estimate σ_{p}, π_{L}, and πv smultaneously The procedure is to replace the $\sigma_{p} n$ the formula $\pi=p+Z \sigma_{p}$ with the value of σ_{p} as expressed in terms of π Doing this, we get

$$
\pi=p+Z \sqrt{\frac{\pi-\pi^{2}}{N}}
$$

(Note that $\pi \tau$ is the same as $\pi-\pi^{2}$) A little rearrangement of this expression and the application of the formula for the solution of a quadratic equation results in the somewhat formudable-looking

$$
\pi_{1}=\frac{Z^{2}+2 N p \pm \sqrt{\left(Z^{2}+2 N p\right)^{2}-4 N p^{2}\left(Z^{2}+M\right)}}{2\left(Z^{2}+N\right)}
$$

If we substitute in thas expression the values given in our problem, we get

$$
\frac{\left\{\begin{array}{l}
1645^{2}+2 \times 40 \times 25 \\
\pm \sqrt{\left(1645^{2}+2 \times 40 \times 25\right)^{2}-4 \times 40 \times 25^{2}\left(1645^{2}+40\right)}
\end{array}\right.}{2\left(1645^{2}+40\right)},
$$

and subsequently values for π_{I} of 376 and 156
Calculating a Confidence inferval: Comparison of Results from Alternative Methods
To facilitate comparison of the vanous results we have derived in our efforts to estmate the 90% confidence limats of π, we have

TABLE 910

90\% Confidence lintervels of r fram a Sample of $\mathbf{4 0}$ with ap of $\mathbf{2 5}$
Method
Interval

	π	π
A Discrete bramial	142	387
B Contunuous binomis	151	376
C Symmetncal normal	136	364
D Anymetneal norreal	156	376

gathered all our results together in Table 910 We assume that Metbod B giveg the most correct result It is interesting to note that Method D gives the eame upper limat as Mothod B but too hugh a loner limat This is as ne nould expect The upper limit is determined from a distribution centered on 376 and with a varuance of 376×624 With $N=40$, ne would expect the normal approximation to the binomial to be quite good, snd it is The lower limit is determined from a distrobution centered on 151 o: 150 and with a varisne of 151×849 or 158×844 The normal curve tends to be a relatively poor approximation to the binomial when x varies this much from 50 , even with N as large as 40 The ertor in the approximation is alnays on the side of making the interval too short

Differences like those shown in Table 910 would tend to get greater the smaller the sample suve and the more p vaned from 5 Conserely, all of these methods tend to gue the same answers as N incresses and as p gets closer to 5 The choice we make among the methods depends on the degree of accurscy apparently required by our problem and on the avalability of calculation ards such as tables and desk calculators Method C is clearly the least accurate, but it is also clearly the easiest to do if tables of the bunomal are unavalable

9.8 Hypothesis Testing, or Tesis of Significance

It is a well known fact that all of us, meluding the lower anmals, make decmons and regulate our behanor according to what we be heve to be true The hungry squirrel will dig in the ground in the
early spring looking for the nuts he belseves are there, either because he belreves he burred some in the fall or because he beheres other squurrels bursed some, or maybe he digs because his mother taught hum to dig when be was bungry At any rate, the squirrel has a problem if he does not find a reasonable number of nuts as a result of his first efforts He might assume that he as not firding many nuts because he is just unlucky If he reacts thes way, he retams his hypothesse that there really sre some nuts and contanues his digging, maybe even with redoubled effort
On the other hand, he might deende that be is not finding many nuts because there are not many nuts to be found In this case he rejects the onginal hypotaesis that started him to diggng What he does thereafter will depend on what kund of a squurrel he is he may dig in another area, he may fry to steal from other squurrels, he mey just le down and dee, ete As a matter of fact, has quickness to abandon his hypothesss that there are some nuts will aiso depend on what kind of a squirrel he is and on what other options he has for finding food other than by digging a lazy squirrel, for example, would bave a sirong tendency to quickly abandon any lypothess that anvolved the work of diggng A squirrel who got pleasure out of digeing might contmue with the "dig for food" hypothess long alter any reasonable squirrel would have abandoned it for other hypotheses
To a statistuclan, tesing a hypoihesis means merely to calculute the probability that some observed sample avents could have ofcurred if the hypothests is true It does not mean to determme whetiter dite hypothessy is nght or wrogg or whether we chould act as though it is right or wrong Whether we should belicve that an hypothesis 18 right or wrong depends on more than the simple probabolity that a given set of events could have occurred if the hypothesis is true. Just as in the case of the squirrel, what we should believe also depends on the other optons available and on what kond of people we are

The Routine of Hyposhasis Testing

The procedure for testing an hypothesis has five elearly dasinGuishable steps They are

1. State the hypothess or belef that is to be tected This is really a statement of the uroverse condtions For example, the pressdent of the Smoothies Company might state the hypotheus
35% of ail the people prefer Smoothes

fig 93 Probability of getting a randorm sample p of 28 or less it π_{H} equals 35 and N equals 100 (normal curve appronimation)
wriling to pay a small pree to ligbten this burden The rewards that flow from the development of routine decision-makers can be quite substantial both from the point of view of getting the job done and from the easing of anxiety Consider, for example, the problem of deciding whether it is safe to drive our car through an intersection In the sbsence of trafic lights, stop signs, yueld right of way signs, etc we would have to approach the intersection with considerable caution We would have to be alert to the capabilites of our car to stop, to turn, to accelerate, etc, and to the possible appearance of a car on our right, our left in back of us (the fellow in back may be assuming we are not going to alow down) It does not take much magination to reahze that modern automobile trafic would be an mpossbility without the lights to tell us when "it is safe" to cross The benefits from our lighting system are so great that most of us do not fret about the times when we can clearly see that it is safe but the light is red and says "no" (Pedestrians seem to have much less respect for the decosions of the lights than do drivers)

The primary mechancal requarement of a routine decision-maker, or hypothess tester, is an unanabguous system of signaling The sagnal may be a particular color, a particular number, a bell, ete Frequently it is sufficient to have a signal solely to reject the operating hypothesis The absence of any signal means "leave well enough alone" For example, many automobiles no longer have an oul pressure gauge It has been replaced with a red hght that hgats only when the oul pressure has fallen below a predetermined safe level

The primary philosophtcal requrement is a willingness to tolerate a certan amount of error or variation on the phenomenon we are
dealng with The best way to handie this philosophical problem is to agnore the tolerable variation after we have msde up our mind that it as economic to not try to control it If we continue to worry about it after we had presumahly deaded that it was tolerable, we bave not as yet acheved the promary benefit from a routme deosionmaker, namely, the need to no longer thanls about that decision problem This is what busmessmen mean when they say that they make a decision and then forget about that problem What we do, in effect, is to make a decision about a system for decision-making, and We have to have enough sense to then let the system do the deciding

It is surprasingly difficult to devise a decision-making system and trust the system to make the decssions Most people seem to have an almost uncontrollable urge to try to beat therr own system This means that the system never really has a chance to be fardly tested The system is allowed to make the decision only when it agrees with what the person would decide if he did not have a system All other times the system is overruled This very often happens when a system 18 first installed The person who formerly made the decisions quite naturaily has serious doubts that a so-called mechanical monster oan do at least as well as he did, or even well enough to justrify releasing his mental energies for other more mportant tasks So the machanical decisions are checked very carefully Naturally the machine makes mustakes that would be obvious to any reasonably intelligent person, just as the intersection light $1 s$ sometimes red when any one can see that the intersectuon is likely to be clear for the next 30 seconds These mistakes are recounted with great glee What is even worse, the machine $1 s$ sometimes prevented from making such obvous mostakes, and, in fact, the same decision-makng process 8 s before is in effect

9.10 Predicting the Performance of a Routine Decision-maker-The Operating Characteristic Curve

Let us suppose that a simple routine decrson-maker of the following kind has been instailed to control the operation of an automatic machine
a Every 1000 cycles of the machne a sample of 10 pieces is taken off in the order in which the machone produces them
b These preces are mmedrataly measured for length on a "go, no go gauge which tells whether or not the prece is shorter than some speafied maxinum length
e If two or jewer of the $\mathbf{1 0}$ preces ful to pass the test, the process is allowed to continue operating, if three or more pleces are too long, the process is stopped and an adjustment is rade on the machine
(We can easily see the stimulation such a system would provide to devise a machune to take the samopie, test it, and make the needed adjustment in the basic production machne)
The engineere assure ue that a eample of 10 so selected would be reasonably random

The quality of the output of thas machine depends on the universe proportion of defectives and the luck we have with the samples It is useful to ask the question of the probability that this process will be stopped for adjustment under various hypotheses about the universe proportion of defectives Fugure 84 shows the operating characterstre curve of this cecision system. Along the horizontal axp we show the varrous hypothesee we might make about the universe being generated by this machune The vertical axis shows the probability of getting a sample of 10 with three or more defectives The curve describes thus probabilaty for the vatious πn^{\prime} 's

Fig. 94 Operatung characteritice eurve ahowng the performance of a deasion rule that stops a machine whenever a sample of 10 showa three or pore defects

Fig 93 Oparating charactenstic cunes for decision rule based alternatively on samples of $10 \mathrm{items}, 100 \mathrm{itams}$, and on the whole universe

Thas curve shows that there is a 50 chance that the machne whll be stopped if the process is producing 26% defectives and, correspondngly, a 50 chance that it will be allowed to run It $1 s$ clear that the higher the proportion of defectives the more likely the machine 1 s to be stopped For example, there is a probability of 9 of stopping the machine if the unverse proportion is 42
The regon to the left of the eurve is called the acceptance regron because it represents the probablithes of getting ino or fewer defertaves in a sample of 10 The region to the nght is called the rejecthon region because it represents the probablities of geting three or more defectuves
The fact that thas decision system is relatavely loose is made apparent if we consult Fig 95 Here we also show the operating characteristro curve for a decision systern based on a sample of 100 Suppose that if we knew what quality the machne was producing, He wrould stop the machme whenever it was produeng at more than a 30% rate of defectives Such knowledge would be mdicated by a
cal line on the chart at $\pi_{I}=30$ The dolted area betreen the iplete information operating charactenstic curve" and the " $N=$ perating characternsic curve" shows the probabilithes the ma: would be stopped even though the process was produeng no than 30% defectives The cross-hatched area shows the probaes that the process will be allowed to run even though it is proog more than 30% defectives It is evident that these areas are 1 less for a sample of 100 than for a sample of 10 It is also ous that the cost of testing samples of 100 would be grester than for samples of 10^{2} (It 12 worth noting parenthetically that the ating charactenstic curves shown in Figs 94 and 95 indicate a process operating at exactly 30% defectives is more likely to ropped than it is to be allowed to run This may offend our non sense The dificulty is caused by the discrete series If ry to control at 30%, we have the problem of what to do with a he with exactly 30% defectuves In a sample of 10 , and with a nuous senes, 30% defectives would really represent between and 35% defectuves In a sample of $100,30 \%$ would represent
athematical methods of balancing the costs of collecting more information
the estumated benefits are beyond the ceope of this book Such methods part of a rapdily developing attempt to quantify more and more of the on-making process is busness The most recently publusbed large-cale in this area is Robert Schlaleera book on Probobitidy and Statutca for ess Decisorns, McGraw-Hill Book Company, New York, 1959 Scblafer ually quite errical of much of the eartier worl that had been done ou weh 3 as operating charactenstic curves, hypothess testing Type I and Type ors (discussed below), etc Nevertheless it eppears likely that many of ufer a recomeneadations will develop to be eupplenentary to rather than bacemeat of many of these things he certicized
aterested in these and related developments look at bome of the following ually nonrmathematical treatments (The mathematical demands of fer's book are also quite modest)
ross, Irwin D J, Dengm for Denanon, The Macmillan Company, New k, 1953
bernoff, Herman and Moseas, Lincoln E, Elementery Decison Theory a Wiley and Sons New York, 1939
uce, R Duncan, and Raffis, Howard, Games and Decrnore, Jobn Wiey Sons, New York, 1857
${ }^{\prime}$ illaams, J D., The Compleat Strategyst, McGraw-Hill Book Company, - York, 1954 (Willamems writes it a eufficiently hight vein to make a mp ugh has book somewhat fun-of the sort possible withu the limits of a onably ngoroua treatment)
alfa and Schiafier have also collaborated on a book that provides much of mathematical argument that hes behnd Scilaiter's book It is not recomded for someone who wot mathematieslly sophsticated Ita tutle Leed Statustical Dectston Theory, Harvard Burnesa School, Boston, 1981
between 295% and 305% We bave armitraraly decided to follow the conservative rule and classify the whole range represented by 30% as a rejectron area We might just as well have classified it as an acceptance area Or, if we mashed, we might adopt a decision system such that the occurrence of exactly 30% defectives in a sample tells us to "toss a coun" If it comes up heads, we stop the machine, if tails, we let it run Thus, in the long run we should find it about equally probable that we will stop the machine or let it run if $p=30 \%$)

9.11 Type 1 vs. Type II Errors

It is clear from the opereting charactenstac curves shown in Figs 94 and 95 that there are tumes when our routine decision-maker will stop the machine when it sbould let it run, and let it run when it sbould stop it We might add tbat the same thing will happen if the decsion is being made by the operator In fact, this problem is a characteristic of all two-chowe problems wben we do not know for certain what chonee we should make Tbis 18, of course, why annocent men sometimes go to jall and why guilty men sometimes go free

The convention is to call it a Type I error when we reject the truth More exactly, we are really talking about some hypothess we have made For example, if we had set up the hypothesis that the machine is producing satisfactomly (no more than 30% defectives, say), but we then stopped the machane on the bass of sample miormation, we would have exposed ourselves to a Type I error W'e might just an well dave sed uf the typothess that the machine 88 not producing satisfactorly We would then expose ourselves to a Type I error if we let the machune run on the basis of some sample information
We make a Type II error wbenever we accept a falsehood, or whenever we retan a false hypothess
An additional convention has been established of always selecting the hypothesss to be tested that is strongly preferred This preference may be a result of accumulated experience with the phenomenon which leads us to believe that it really is true, or it may be a preference growing out of some general moral, political, social, ete, philosophy For example, the American juikial system requires that an accused person be presumed innocent The hypothest of innocence is thus the one that is heing tested by the evidence of the trial
Thus we see that a Type I error generally consists of rejecting something that we have a strong pror reason to beleve is true or
rejecting something tbat we prefer to believe is true. It is not prsing that it takes substantial evidence to persuade a mother to undon ber hypothesis that her son is innocent of a murder. Thus a appens that many decision processes require probability of the pe I error to be quite small. It is not unusual for people to require ; probability to be as low as .10 , or .05 , or 01 , or even .0001 . Thus Smoothies Compaoy president might have such a stroog prefere for keeping his son-m-law on the payroll that his preferred othesis is for a market share of 35%. Since the sample evidence ated a risk of as much of .07 of rejecting this hypothesis when it i really true (a Type I error), he naturally refuses such a "large :" and retains has hypothesis, and has son-in-law's job. The situin mught be quite the reverse if his son-1n-law were waiting in : for the vice president to stumble!
t should be obwous that an effort to reduce the risk of Type I Ir automatically mereases the risk of Type II error urthin the its of a green set of eudence. Figure 96 illustrates this. Here show the various optional operatiog characterstics curves for trolliog our machine's output on the basis of testing samples of We set up the hypothess that the machine is operating satis:orily (We prefer this hypothesss to the reverse one because the shioe ss very expenswe and is also subject to rapid obsolescence. : top executives get very unhappy when they see this machioe - Also serap is cheap and can be reworked through the machine noderate cost) If we decide to stop the machine only when there at least seveo defectrves, re will almost never stop the machine Ti the process is protucng less than 300 go defectives, Wote the ligible part of the No. 7 operating characteristuc curee that is to left of the 30% vertical line.) We would thus have reduced the je I error to practically zero However, in doing this, we have stantially increased the probability of lettung the machine run n it is in fact producing more than 30% defectives. (Note the e amount of ares between the No 7 line and the vertical lioe at 2.) Thus this decision rule (stop at seven or more defectives) make frequent Type II errors.
he rule to stop on three or more defectives will make far fewer e II errors than the seven or more rule. However, to achieve this tetion it is necessary to substantially increase Type I errors. The ace we choose between Type I and Type Il errors depends on we assess the consequences of each. It is a relatively simple ter to do the arithmetic of balancing if we are able to quantify consequences satisfactorily. The important thing is the ratio

fis 96 Illustration of relathonshap betreen type I and type II entors ior varoun decuson boundares We assume that we wish to stop the mechioe if it is produc gig more than 30 defectues A type I error 15 made rhen we stop the machme aren though it is in fact producug fewer than 30 defectues A ippe II afror oceurs when we fall to stop the machne even though it 25 in fert producing more than 30 defectives The pumber attached to a gives opergting charactenstue curve $1^{\text {s }}$ the miemum number of defects that we mill find in a sample of to that will cause us to atop the machume For example the murve labeled ' 3 ' is for the rule that tella us to atop the machno wheneser we find 3 or more defects yn a ample of io
between the consequences If they are considered of equal value, we balance at, odds of 5 to 5 If Type I errors are consldered three tmes as serous as Type II errors, we balance at 25 to 70
As shown in Fig 95, it is possale to reduce the ask of both Type I and Type II errors by increasing the sample size The expense of doing this must be justrifed by the seriousness of these errors Agan re ean use our judicial system to illustrate this prompeple at work It is common knorledge that a murder traal is always more protracted and considerably more expensive than a smple civil surt for the sumple reasco that both Type I and Type II errors are considesen much more serous in a murder case than they are in a case, Eay, of trespass

The Mechanies of Bolancing Type I and Type II Errors

Rarely do we find ourselves concerned only with tbe occurence of an error The stae of the error is also importsint In general, large errors are more serious than small errors, although not necessandy th proportion to suze It is conceptually possble to deal with these error magntudes over their full range Howeyer, it is usually sufficient to merely state tbe manmum sire of error we are willing to tolerate with a given frequency For example, we maght state our machne output problem as follows
1 We wish to take no more than 05 chances of stoppting the machune if the machne is in fset producing less than 30% defectives Thus we wish the nsk of Type I error to be no more than 05 This nsk is often dessgnated as a (alphas)
2 We wish to take no more than 15 chances of letting the machune run if the process is generating more than 355_{5} defectives Thus we wish the Type If error to be no more than 15 This nsk is often desgriated as β (beta)
Our problem is now to find the critical value of p in a sample, below we let the process run and above which we stop the process, and also to find the appropnate sample size To simplify the problem somewhat, re will assume that nomal curve approximations are suffictently accurate Otherwise tral-and-error procedures would have to be used If more accurscy is dessed, we can make a first approximation with the nomal curve and then use thas solution to gre us a good start on a tral-and-error procedure, say, with binomal tables Fugure 97 illustrates our problem We wash a value, p, so that it cuts off the upper 05 of the normal curve centered on 30 and

Fig 9.7 Illustration of nsture of problem of finding the umque p ond N that will give us a type I error of no more than 05 and a type II error of no more than 15 (Note Curves are not dramn to scale They merely illustrate the line of reasoning)
the lower 15 of the normal curve centered on 35 We must find a sample size that will give us the unique standard deviations of sample means to accomplish this cut-off point We can see that of our sample is too small, our two normal curves will overlap too much, thus giving us larger nsks than we are willing to take If our sample is too large, we will be wasting money on larger samples than we really need
We use our now familiar formula for Z This is $Z=(p-\pi) / \sigma_{p}$ Our risk of 05 corresponds to a 2 of 1645 and thus an equation of

$$
1645=\frac{p-30}{\sqrt{\frac{30-30^{2}}{N}}}
$$

Our β risk of 15 corresponds to Z of 1033 and thus an equation of

$$
1033=\frac{35-p}{\sqrt{\frac{35-35^{2}}{N}}}
$$

We now have two equetrons with two unknowns A little re arrangement of these will give us

$$
\begin{equation*}
\frac{1}{\sqrt{N}}=\frac{p-30}{1645 \sqrt{30-30^{2}}} \tag{1}
\end{equation*}
$$

and (2)

$$
\frac{1}{\sqrt{N}}=\frac{35-p}{1033 \sqrt{35-35^{2}}}
$$

Thus the right sides of these equations are squal to each other If we equate these and solve for p, we get a p of 330 We then find that $N=270$
We would have to loosen our standards of control to reduce N below 270 We could express thes loosening either as increases in our a and β errors, or as an merease in the spread between our lower limit of 30 and our upper limit of 35

9.12 The Future Development of Statistical Decisionmaking Models

We have merely scratched the surface of the potental of statistical models as ands in decision-making The development of the electronc computer has now made practicel a whe varety of applications that
were formerly prohbitively expensive of money and time, or that "ere even ampossible because of the tremendous volume of arithmetic involved Our ability to deal with massme probability, consequence, and pay off matrixes is no longer lumted by the mechanics of calcula tion The primary limitations are imposed by the problems of filling in the approprate values in these matrixes But the computer helps us even there We often find it very practical to make up several sets of matrives Thus we can see the outcomes under various assumed probability and consequence conditions, with the computer running through the calculations fast enough to make such experimental analysis practicable This type of anslysis is particularly valuable when ne can predetermine certan critical values for our matrixes A critical value is one thich acts as a dirding line betrieen one decision and another For example our president of Smoothes may have adopted a π of 25 as a critical value, with the decisson to fire the use president of sales following automatically if the sample indierted 3π less than 35 Given such a critical value, we no longer bother about the uhole probability distribution We concentrate on the sumple issue of the probability that π is less than 25

913 Our Nexi Step

Non that we have fortufied ourselies with some deas about how the estunation of probabilttes can be ueful in ading us in making decisions we are beter prepared in learning how to use probabtlity calculations most effectuely This involves the problem of şstematically relating the mplications of the most recent information wailable to the ideas and hypotheses we might have accumulated pror to the appearance of this recent information We have antice pated thes problem to some extent in our discussion of hypothesis testing ideas and techniques, but in the next chapter we try to ven the issues from a broader pont of wew

PROBLEMS AND QUESTIONS

91 Assume that the sunes of a random sample of 100 consurners had resulted in 25 consumers expressing a pacference for Smoothes
(a) Generate inferences about the true proportion of preference in the universe by the uce of

1 Drect appleation of the bnomal theorem (cl column 2 of Table 91)
2 Nodfied Bay eslan estimates (ef column 3 of Table 91)
3 hormal cure estumates (ef column 4 of Table 91)
(b) Cumulate the probabilutes you celculated in (a) and determine the
estimated probability (inference ratio) that the unverse proportion is less than 30, more than 30
(c) Make up a probabiluty matrix for the problem of whether or not to fire the sales vice prestent
(d) Assume the valody of the consequence matrix shom in Table 96 and combine thas matrax with the probibility matris you constructed in (c) in order to derve the estumated pay-aff matrix
(e) What is the apparent net expected gavn (or loss) if the vice president is fired? If he ss retanned?
9.2 Logic suggests that there must he some pont of matiference mbere the evidence as summarized by the pay-off matrix shows an equal gain (or loss) regardless of whether the sales viee president is fred or retaned
(a) Take the consequence matrix as given and determine the probabints matrix that would lead to a no decuson pay-off matrix, that 18 , a pay-off matux that suggests an mdiffernee to whether the sales wee presdent was fired or retanod
(b) What result in a sample of 100 would correspond to the point of indifference? (For example, a sample pof 28 was assomated nith a probsbulity matrix prth a 67-33 spit in the probebilities (See Table 95) Your calculation in Question 91 (c) uas based on a sample p of 25 and resulted in a probablity matrx with a Thus each sample result is paired mith its own probability sphit Find the p thet pairs with the splat that corresponds to the point of indiference)
(c) Surpose that you were the president and were confronted with a pay-off matrax that expressed undifierence to the direction of the decision What action would you then take?
9.3 Suppose that you were the sales vice president whose fate was to be deoided by the results of an analyses of the sort illustrated in Questions 1 and 2 and in the text Suppose further that the director of market research was to conduct the survey and supervise the neceseary calculations to derive the probabitity matrox The ulimate result was that the pay-off matrix indicated a pay of just barely in favor of your dismissal Thus it
 recommendation Inqury reveated that the normal curve had been used in inferring the probabilities What would be your reaction?
94 The pay off matrix in Table 97 of the text ponts in the direction of retaning the vice president Suppose you were the president You are actually ahmost completely convmced that you should fire the vice president You had expected that the resuits of the analyss would have suprorted such a decision and are now quite chagraned to find that the resuite did not Honever, you have been so commentied 10 a polsy of being fane and objertwe that you are aimosi forced to abide by the decision of the matrux in fact, you are so comsmitted to a policy of beng fair and objectuve that you deede that the farrest thang of all is to collect a larger sample of evidence before mahing such an mportant decision Actually, you suspect that a larger sample will yeld the arme resulfs as the original sample of 100 , namely, a 28 preference rate Suppose your suspicion is correct about the results of a laxger sample
(c) Estmate the mammen siee of the total sample funchuding the ongmal
100) that would result in an indfference point if the sample p agan came out to be 28
(b) Agan assume that p will be 28 What total sample should be planned morder to result m a pay-off matrix with a net pay-off of $\$ 100,000 \mathrm{~m}$ favor
ff \rightarrow L FAn moncrant?

1

corporate these costs in your analyses of how much evidence you should try to get in order to decide what to do wnth the vice president (There must be some point in any decision prohlem where the coss of collecting and analyz ing additional evdence overbalances the contrbution such evdence makes to the decision making process In other words, it becomes cheaper to make mare mistakes than to morease the research needed to reduce the number of mistakes)
IS The consequence matrix was taken as a fact in the text and in the above problems Common sense suggests, however, that the figures shown in the consequence matnx are really estumates Thus they are subject to the same kinds of uncertanties as those we had about the true state of the market preference for Smoothes Suppose that further anslysis on our part resulted in the estumation of the folloming probsbinty distrbutions for each of the four categories shown in Table 96

Gain from Corredly Fing V $P \rightarrow C_{t}$	$P(G)$	Loss from Ineorectly Fing VP $-L$ p	$P\left(L_{H}\right)$
\$ 25000	20	30	25
100000	64	500,000	30
500000	16	1000000	25
	100		100
Gain from Correctly Keepung $V P-G_{k}$	$P\left(G_{k}\right)$	Loss from Incortectly Keeping $V P-L_{1}$	$P\left(Q_{k}\right)$
$\begin{gathered} 0 \\ 50,000 \\ 500,000 \end{gathered}$	40	\$ 50000	60
	22	100,000	10
	38	200,000	30
	100		100

(a) Suppose you decided to ignore your uncertainty about the exact consequences of each of these four possible outcomes What procedure would vou follow to reduce each of the above probibility distributions to a single firure? Defend your election
(b) buppose you decided to try to allow for your uncertanty about the conseruences What suggestions do jou have for making thes uncertunty a part of your formal development of a pay-of matrix?
(c) What effect do varpang degrees of uneertanty about consequences
have on tbe usefuluess of a pay-off matrux in decison-makng? For example, is it possbble that uncertanty about consequences can become so great that the pay-off matrix will approach a point of mdifference, and thus will give no guide to tbe correct decision? Explana
(d) What is the effect (on the efficacy of a pay-of matrix) of an increased uncertanty about tbe facts? (Hint a smaller sample of endence nereases the uncertamty about the facts)
96 How would you establsh the truth of the followng statements? Do you find it necessary to use a standard for trutb tbat falls somewhat sbort of 100% confidence?
(a) If I toss ths com, the probahility that it will come up heads is 5
(b) We should lower the prite of our product from $\delta 279$ to $\$ 239$ becauce we will then be able to merease volume of unt sales by at least 25%
(c) Since we have 200 antmossle miscless, each with a prohability of 70 of operating satisfactonly and destroying its target, en enemy must have at least 300 mussles, each mith at least 50 probabbity of fring properly, in order to have a reasonable chance of strikng our major cittes and other targets with at least 100 massles
(d) We cannot possibly afiord to increase the wage rste $\$ 17$ per hour without reducing our profit to practucally zero Oar accounting records shon that the net proitt last year was only $\$ 19$ per bour of labor mput
(e) I must have a new set of spark plugs installea in my car morder to prevent the motor from staling at intersectuons when I slow down or stop
(f) I must vote for the conviction of this arctsed burglar because he bas been positively ydentuied by the shopkeeper
9.7 Most people agree that a proper standard of justice 18 one which treats people mpartailly What quantatative cntens rould you set up in order to help you achreve justice in each of the followng problems?
(0) You wish to pay your workers in such a way that they get ' equal pay for equal work," and hence presumably "twice as much pay for twice as much work"
(b) As a judge you mish to assess fines for exceeding the posted speed limit in such a way that the fine is proportional to the incresed nsk of accuient coused by the excesslve speed

1 If tbe posted lumt were 40 mph , would you fine a man thice as much If he had been accused of going 80 mph as you would if he bad been going 60 mph ${ }^{3}$ Explas

2 Would you fine a man less, or even nave the fine, if he had a good excuse, such as rusbing to the hosputal with an expectant mother?

3 What knd of prove vould you require from the arresting offcer before dending bow fast the car really was going?
(c) Two youngsters are caught fightug Interrogation reveals that exch clams the other "started it" Might both boys be telling the truth" Explain

What action mould you suggest that nould be farr to both boys but which would still reduce the likelhood of ether hoy's fighting in the future?
98 Esimnte the 90% confidence meterval for the location of the unn erse proporion of defective radio tubes if a random sample of 50 tubea revelled four defective tuhes Use the follomng methads
(a) Cumulative bromal with diserete probahilites
(b) Adjustment of (a) for conservatusn by elminating the extra probability in the manner of Table 9.9.
(c) Nornal curve approcumation with a sngle estimate of the standard devistion of sample means.
(d) Normal curre approvimation mth a recognition of the fact that the standard devason of sample means vanes as the hypothesis about \boldsymbol{r} varies
(e) Analyze the difierences in the results ohtained by tbe above metbods and make any generaluastions that you thank will be useful in beiping you to decide on a metbod in a practucal problem.
9.9 An opinion poll based on a random sample of 100 people revesled that 55 of the respondents expressed a preference for Candidate A in an upcoming election and the remainmg 45 expressed a preierence for Candidate B
(a) Estunate the 80% confidence limits for the proportion of all people who prefer Canddate A Use anj method you bush.
(b) Suppose you were tbe campangu manager of Canddate A Would your responsbbuties in thas postuon have any influence on your choice of method for the estumation of the 80% confidence limits? Explan.
(c) Tould normal curve estumates be closer ta the true hruts in this case muth a p of 55 and an N of 100 than they would be in the preceding prohiem mith a p of 08 and $\sin N$ of 50\% Explain
(d) How would you deode on $\mathbf{8 0 \%}$ lumts rather than, say, 95% limits, 60%, etc.?
9.10(a) That is an bypotiesss?
(b) Last five hypotheses that have governed some of your behaviot duting the last 24 bours.
(c) Indicate the percentage of confidence you have that each of the above hypotheses is true Explate the bass of your belief that come of these bypotheses are mare relishle than others.
9.11 State some hypothess that you used to believe true hut mhich you have snce replaced mith some alternative hypothesss What was the evidence that first suggested its truth? What evdence caused you to change unir mind? Thed this nate andinmen m....net "bast there had been a change that your knordedge of the
ro have in the trutb of the by potbesis that you now act on"
9.12 The World-Wide Casualty Compary makes frequent use of mail solicitatoons in tryng to get new polecyholders. It hires a mailing service to provide tbe mailung hats sud also to hasude the meebancal tasks of actusily manung out the particular solcitation preces. The Castalty Company kepps a recond of the responses it has had from vanous manngg. It anglyzes tbese in orier to make more intelligent deesions about the kinds of lists it should cuntinue to use and ahout the particular maling services thast seem to have tbe most relishle lasts and maling services Most maling services also keep such records so tbey can make reasomable estumates of the expected responses from various kinds of appesls to various types of histings Such estmates ate frequently used by customers in deeding whether to make a mailung, and if so, to what list.
The World-Wide Casualty Compzny has recently placed a maling ordet
maling service on the hypothess that the maing of 2800 paeces result in a 12% response The actual response tumed out to be only

How would this result affect your evaiuation of the relisabithty of ginal clam of a 12% response? For example, would you be inchned thus mailing service another chance on the theory that the reduced returns may have been due to chante? What chance would you be to take that it was due to chance? Explain
You will recall that we drscovered that the anthmetric mean of : varnances is less than the varuance of the unverse However, if we each sample vanance by multuplying to by $N /(N-1)$, we fiad that thmetic mean of such results would now be equal to the true universe 2e However, we also discovered that such a routinte adjustment of vamances sometimes led to nonsense answers that were larger than ogrally be possible What ta the difference, if any, between a policy ing such an adjustment except when it is clearly foolsh, eg, except t would give an answer larger than the known maxumurn of 25 , and y of requing people to stop at an mtersection when the light is red When no car ts coming from the other side?
The operator of a bolt making machane is required to ston the mas 'or adjustment whenever the perrodic sample of 10 bolts shows two e defective bolts
Construct the operating charactensive curve for the rovime decision and plot it on a graph
How dd you treat the probahity of exactly two defects? That is, 1 treat p as a discrete or as a continuous vamahle?
What difference in your operating charactenstic curve is caused by is you treated p as discrete or continuous? Illusirate your answer by g a free-hand aketch of the different OC curves that would result
Suppose that inquiry revealed that this routine deesion-maker was ed to control quality such that there was a maxmum of 12 percent in the universe of holts What does your OC curve say about k that the process would be allowed to run even though the process tasfactory because it is producing mose than 12% defectives?
What is the nsk that the process will be stopped even though tie is producing fewer then 10% defectives?
What steps would have to be taken in order to have a routine decisionwith smaller risks than those you estmated in (d) and (e) ?
You are asked to devise a routine decision maker that will give us owng controls on Type I and Type $I I$ errors
We wish to take no more than a 10 chance of stopping the machme rocess is producing 10% or fewer defectives
Ie mish to take no more than a 05 chance of lettang the machare ? process is producing more than 12% defectives
stimate the critical value of p and the size of sample necessary to ontrol whthn these specified limits
appose the testing process destroved the bolt Hence it would be rable to minmize the size of the sample to be tested What changes uve to be made in the process or in the specfications in order to te necessary suze of sample?
9.16 Analyte the comparative suzes of the two types of errora involved in the following decișons
(a) You are on the jury in a treason tral Conviction carnes a death sentence
(b) You are on the jury in a treason thal Conviction catnes a sentence of hfe imprisonment with parole possible after 20 years
(c) You are on the sdmissions committee of s "preferred" college If you turn down an applicant, he ss very likely to apply elsewhere with a reasoonble probabulty of acceptance
(d) Suppose you represented a "college of last resort" Your rejects al. most never get to college
(e) Would you rather marry somebody you should not have, or not marry somebody you should have?
(j) You are a military commander who must make decisons about when to commat men and materials to battle Would you rather lose opportunitus for successful attack than waste men in frutless endeavors, or would you rather waste men than lose opportunitus?
(o) You are a husinessman who must make the decosion about the dengu of the product Your designers ofier you several options Would you rather go broke trying to make a major breakthrough in desgn, or would you rather miss a breakthrough opportunty in the intereste of a solyenty of looger term?

10

Pooling information

Most of the problems we run across from day to day are not completely new, and we have contended whth them hefore in one form or another The new aample evidence that we experience today is not the only evidence that we have experienced on amilar prob lems In fact, there is psyrhological evidence to show that tha learning process conssists of addang to and modifyng what we aiready know In a sense, new evidence must come to terms with what we already know hefore it is really discernable
An attempt to treat sample evidence as though it were completely independent of all pmor evidence is an interesung exercise in logic and in objective scientific analysis Such an attempt, however, does run into the prohlem that it assumes that yesterday never existed On the other hand, of course, such an attempt releves us of the risks associated with the prejudices and misuterpretations of past expenencea Even if it were desirable, however, there is a sermoua question of whether it is really possble for us to ignore our yesterdays as we contemplate today's probleres and today's evidence Most business organizations do not really think so That as why they make strong efforts to periodically inject new hlood into the orgamaation in order to provide a steady pressure for adaptation to change The older people tend to know what they know too well to he easily swayed by new evidence In fact, they bave trouble even seeng the evidencel The youngsters have hitte trouble grasping the new evidence because it bulks so large in therr accumulated ple! In a resl practical sense, yesterday may not have existed for the youngster
We have already spent some time on this problem of what to do with proor information as we are looking at a new sample of evidence We tried very hard to act as though there were no pror information ss we made inferences about a unverse π from a given sample We discovered that there were certain advantages to such an approach, not the least of which being that we really felt that we had no pror
information However, somewhat surpnsiggly, we discovered that we could make better estumates of \equiv if we assumed a prior distribution of equally-probable $\pi^{\text {'a }}$ We know that thes pror distribution carried some weight in our inferences because the average of our anferences had a bias toward 5 , wheh was the average of our proor distribution

But, just to show how our thinking is strongly infuenced by our point of view, let us suppose that we take the view that the most appropriate hypothess about the m'a is that they are equally probable We will hold this view until new evidence causes us to modily it Suppose the new evidence comes and suggests the possibility that the true π is closer, say, to 3 than it is to 5 Open-minded that ne are, se now modify our crigmal hypothess of equal probability with a mean expectation of 5 to one of unequal probabilities with a mean expectation of, say, 34 We have thus allowed our conclusion to show a strong bras toward 3 We are unwilling to throw our orginal hypothess completely away, but we are willing to give it a relatively small weight as we pool our prior hypothesis with the new informatoon Should more than that be ashed of any man?
Whether or not we find the above point of view at all attrachive, we must admit that there is some basis for arguing that the bus runs toward the sample p of 30 rather than toward the hypothetical π of 50 Or perhaps it would be better if ne dropped the word, bies It has an invidoous connotation and almost automatically causes people to label it bad and deserving of cradication

We should also mention that analysis of such things as operating characterstics curves, Type I and Type II errors, and tests of slguifcance inadvertently avolved the problem of reconciling prior beliefs or hypotheses with new sample evidenre People tend to keep the risks of Type I errors lon as a way of balancing the conclusions of accumulated expenence against the indications of additional evidence
In this chapter we propose to extend some of the notions on pooling previously touched on and to make exphect those things prevously treated implictly

10.1 Kinds of Prior Information

Quanhtative vs. Nonquantitative Infarmation

A good deal of the fruts of our past expenences are embodied in the vague rament of those things ve call feehngs, attitudes, etc We find it very difficult to express their nature quantitatively so that we
and others can mathematically combine them with ner evidence to arnve at quantitatively expressed neu conclusions The closest approach we can make to quantifymg these mportant regulators of behavior is to quantujy the behavor If we do this under various kinds of stimuln (sample evidence), we can deduce the kinds and in tensities of the belefs that are apparently regulating that behavor Research like this is very useful in studying how people actually do pool therr past experiences wrth new evdence However, since our interest is in developing apparently rational ways of pooing the old with the new, we leave to others the problems of research into how people actually do it.
We are going to confine our attention solply to those problems of pooling quantitatively expressed information In doing thiss ne are going to be willing to take moderate risks that the quantufication process does not accuratcly ineasure the thngs it presumes to meas ure For example, if someonc tells us that he likes cake twice as much as ice cream, we will take the risks associated with calling it twice as much when actually it may be only 17 as much or three times as much

Undigested vs Digested Information Row Doto vs on Inference Distribution

The human nervous system is essentially a data-processing system It tends to digest information the same way the stomach digests food The output of than data-processing system is a set of con clusions or hypotheses The orgmal information is essentially lost in the process or, if it is stored, it is particularly maccessible The result is that we can now call forth only the concluscons we have made fiom our past experiences and not the experiences themselves, except, of course, an occastonal anedote that we find fits our conclusions quite well and which probably never happened that way anyway We cannot easly determune how much experince or ex1denee supported the conclusion, or how variable was the experience, the two things about evidence we have diseovered it 15 most important to know
We would not be overly concerned about this lack of direct evsdence on how inuch and how variable the past experience has been if we could be assured that the conclusions that have been dramn were couched in terms that showed the modesty befiting the paucity and inconssistency of the evidence Unfortunately, we find it unrealistic to be assured on thas matter Some people by their very nature, alu ays strongly belreve whatever it is that they are currently
believing They leave little doubt that their "conclusions follow mevitably aod unquestionably from the endence," whereas other people tend to be somewhat tentative in all therr views The first type of person tends to awamp any new evidence in his prior convictions, the second type of person gets has prior convictions swamped by the new evidence

Despite these difficulties in trying to assess the welght of past evidence in supporting a given hypothesss, we do the best we can to deduce its apparent weight from the strength of the convictions expressed in the conclusions Thas might result in our leting "men of conviction" overly dominate a situation, however, we hope to reduce the nsks of this by grving proper regard to the probabilities in a situation

10.2 Weights in Pooling Information

As soon as we contemplate combining two sets of information in order to extract a joint conclusion, we run into the problem of the relative weights we should asstgn to the two sets of information The problem would be relatively simple if we could be assured that the two sets of information defintely belonged to the same unverse For example, it we were presented with a sample of 10 cards from a deck (not playing cards) and another sample of 5 cards from the some deck, we would not hesitate to give the first sample a weeght of 2 and the second sample a neight of 1 in any pooling operation But suppose the first sample occurred last Friday and the second sample occurred today What assurrance do we have that they both came from the same unverse? Perhaps shifts have occurred which would make it appropriate to completely ignore the first sample, thus, in effect, giving it a weight of 0

To Pool or Not to Pool?

Many people have a predlection toward strong measures in choosing weighting systems for pooling two sets of information We might add, as a matter of fact, that the literature of statistics imphectly supports sucb strong measures This approach to the problem reduces the basse issue to etther pooling or not pooling

Given the decision that the two sets did come from the same unnverse, neights are then assigned proportionol to the sazes of the tho somples If one set of information is ua a predigested form, we must try to deduce an appropriate N, a challenging task at times

Modified Weighting Systems

If we find that it is not clear whether the two sets of evidence came from the same unverse, and it almost never is, we might try to develop a modified welghting system that allowa for the uncertainty about whether to pool and also for the amount of evidence in each set This 18 a pretty tricky busmess and not easily, or even preferably, left to routine procednres We probably should not use these difficulties, however, a a an excuse to fall back on the pool or not pool solution, a solution for which we do have simple routines

After posting this warning, we now tum to some of the simple routines associated with a "pool or not pool" analysis We trust that we can work out our own modifications of these routmes in order to allow for any indicated modified weight patterns

10.3 Procedure If Given Two Bits of Somple Informotion

Suppose we are given two samples of evidence One sample of five thems from a machene process contams one defectuve them The other sample, also five atems, contans two defective atems from the same apparent process The first sample occurred first in time What can we now infer about the process universe that has been generating these samples? Do we conclude that the process 18 deterroratung; namely, that the second sample came from a different, and poorer, unverse than the first sample? If so, what inference do we now make? Do we decide that a "trend" ss at work and that the provess has dy now determontader to an cven worbe omationi thair when the second sample was taten?
Or do we mfer that the two samples came from the same unverse and that tbe differeace hetween the two samples was strictly a matter of chance? If we believe this, we would pool the two samples with equal weights because they have cqual N 's What inference would we then make about the unverse a?

The Behavior of Paired Samples from the Same Universe

As an aid to decidng what to do with two samples that may or may not have come from the same unryerse, $3 t 25$ interesting to examine what happens when we par samples that have come from the same universe Let us suppose that we are drawing random samples of two items from a unverse that has 10% defectives in it We tben prek out parss of the samples of two and tahe the difference be-

TABLE 101

Differences between Means of Pared Samples of 2 frama Universe with $m=1$

Part A Dufferences between Means

Part B Probsbilites of Differeaces
p_{2}

| p_{1} | |
| :---: | :---: | :---: | :---: |
| 0 | $\left.\begin{array}{ccc}0 & 5 & 10 \\ 5 & 5 & 0 \\ 10 & 10 & 5 \\ \hline\end{array}\right]$ |

p_{2}

$p_{\mathbf{I}}$	0	5	10	Σ
0	6561	1458	0081	81
5	1458	0324	0018	18
10	0081	0018	0001	01
\mathbf{y}	81	18	01	100

treen ther means Table 101 summarzes the sort of resulte we would get if ne considered all possible differences betneen the means in such pairs The matrxx in Part A shows the diferences that nould occur for all possible combinations of p_{1} and p_{2} Part B shows the probability that a guen difference nould occur These probabilithes are the joint probabilttes for the smultaneous occurrence of the given p_{1} and p_{2} For example, the probability of 0 defcectives in a sample of two 189×9 or 81 The probability that p_{1} will be 0 at the same tume that p_{2} will be $01 s 81 \times 81$, or 6561 This is the probabilty shown in the upper left-hand comer of the probability matnx The other probabilties are stmilarly calculated Note the symmetry in the table and also in the marginal probabilities The total of all the probabilities must be $\mathbf{1 0}$, thus accounting for all the possible differences
Table 102 anslyzes the summary characteristics of these differences Here we find that the anthmetic mean of all the differences equals 0 This is as ne nould expect This is another way of ex pressing the notion that chance will (in the long run) average out differences between samples taken from the same unverse The standard deviation of these differences is 30 An interesting thing about this standard devation is that it can also be calculated from the formula sbown This formula is always true and

TABLE 102
Summary Characteristics of Differences between Means of Parred Samples of 2 with $==1$

(1)	(2)	(3)	(d)	(5)	
$\begin{gathered} p_{1}-p_{2} \\ \text { or } d \end{gathered}$	P	Pd	$P d^{2}$	P*	
-10	0081	-0081	0051	0027	
-5	1476	-0738	0369	1649	$\bar{X}_{d}=0 \quad v_{s} \pm \sqrt{09}$ or 3
0	6886	0	0	6649	
*	1476	0738	0569	1649	$s_{d}=\sqrt{\frac{\sigma^{2}}{v_{t}}}+\frac{\sigma^{2}}{N_{i}^{2}}$
10	0081	0081	0081	0027	$Y N_{1}$
	10000	0	0900	10001	$=\sqrt{\frac{9 \times 1}{N_{1}}+\frac{9 \times 1}{\Lambda_{2}}}$

* Normal curve
makes up possble for us to celculate σ_{d} from knowledge of a and of N_{1} and N_{0}. If the $N^{\prime \prime}$ s are equal, we derive the interesting special case that $\sigma_{d}=\sqrt{2 \sigma_{p}^{2}}$, or that the uurtance (square of the standard deviation) of the differences betreen sample means s equal to turce the vamance of the reans If se thinh about ths, re reaize that this is not so far removed from what intuture common cense nould tell 4 s

Another very interesting feature of this distribution of differences Is that it is symmeircal even though the unverse is quite sheued This symmetry is alsays a characteristic of the differences betreen means of random samples provided that the samples came from the same unverse Thus normal cune estmates of this distribution tend to be quite good even for relatively small samples For example, in this ease the normal curve probabilities are as shom in columan 5 of Table 102 The cooseness to the exact probabilites shorn in column 2 1s quite remarkable constdering how small our samples are

Estimating the Distribution of Differences between Sample Means from the Same Universe

Let us nor return to our two samples of five, one wh whe defective and the other with two defectwes let us assume that ne have no other information about this process A possible first step in analysis is to set up the hypotheses that both samples came from the same unverse If this is true, we can ectumate the standard deviation
of this universe hy combining the information in the two samples The two samples together give us a sample of 10 with three defects Thus our "best" estrmate of o would be

$$
\sqrt{p q} \frac{N}{N-1}, \text { or } \sqrt{7 \times 3 \frac{10}{9}}
$$

(The $N /(N-1)$ adjustment is made because sample standard do vations tend to average out smaller than the unverse standard devation) This works out to be 483 (Falure to make the bas adjustment would give us a of 458)

We have discovered that

$$
\sigma_{d}=\sqrt{\frac{\sigma^{2}}{N_{1}}+\frac{\sigma^{2}}{N_{2}}}
$$

This reduces to

$$
\sigma_{d}=\sigma \sqrt{\frac{1}{N_{1}}+\frac{1}{N_{2}}},
$$

a form that many people find more convensent to work with If we suhstatute our esthmale of 483 for 0 , we get

$$
t_{d}=483 \sqrt{\frac{t}{t}+\frac{t}{t}}
$$

This works out to give us a d_{d} of 305
We are now ready to estumste the probability that two samples could have differed by at least as much as ours even though they hoth came from the same unverse We assume that the normal curve will make satisiactory estumates of this prohahility, an assumption that seems quite reasonable in new of what re found out in the last section ahout the distrihution of differences Let us measure the observed difference hy suhtracting p_{1} from p_{2}, thus getting a d of +2 Figure 101 illustrates our progress to this point The curve shown is a normal distnbution with a standard devation of 305 and a mean of 0 Our observed dufference of +2 us spotted on the honzontal axd The prohability we are interested in is indicated hy the shaded area to the rught of 2 We calculate thus area by looking up the approprate Z in the normal curve tahle Here $Z=\left(p_{2}-p_{1}\right) / d_{p_{1}-p y}$ or $2 / 305$, or 656 (We show δ_{d} as $\delta_{p_{1}-p_{1},}$ in thes formula to emphasize the general character of all formulas for Z, namely that Z is the ratio of some particular defference to the standard deviation of all such differences In this case the duffetence in mind is $\boldsymbol{p}_{\mathbf{i}}-p_{2}$ We have also had expenence with $p-\pi$, and we run into other differences in later work)

Fig. 10.1 Estimated nonal distribution of diferences beineen sampla p's in ualverse, with $\pi_{1}=3\left(N_{1}=N_{2}=5\right)$. (Note: Not ditamp to exact acale)

A Z of 656 cuts off a tail area of .256 . Thus we estimste the difference of +.2 ir more would occur 256 of the time even if thit two samples came from the same universe.

Deciding Whether to Pool, and, If se, How to Pool Two Bits of Sample Information

Now that we have a probsbility to worls with, we can turn to the most diffeult part of our task, that is, what do we decide to do about the pooling issue. For the first time we have now explicitly come to grips with the question of whether the universe we are dealing with has remained constant over the period of our sermples. The corollary question, snd really the most important question, is to defermine what we would now like th say about the universe from which the next sample will be taken. We really cannot do anything about the pieces the machine has already turned out, but we could prevent the machine from turning out an excessive nuraber of defective pieces in the future if we knew when to sbut the machine off for adjustment.
As soon as we begin to think sbout the practical setting that eaused us to take the samples in the first place, we begin to project our thinking beyond the apparently simple issue of pooling. What is important is not whether we pool, but what happens to us if we pool and what happens to us if we do not pool. For example, suppose that the results of both saruples are sufficiently "good" so that we would let the machine run on the basis of either sample alone. Suppose
further that the two samples combined, or pooled would aleo tell ws to let the process wan It 18 now quite clear that whether ne pool or not makes absolutely no differance in our decision The issue of pooling would then be merely an intellectual exercise
But suppose the first sample alone tells as to let the machine run (It obviously must have or we mould not have had the opportumty to get another sample under the same apparent conditions) Suppose the second sample alone tells us to stop the machne Suppose the two samples together tell us to let it run, but with the precautionary note to ummedately take another sample of five Now cur decision abcut pooling affects our decision about the machinel
It 18 also obvious that our decision about the machise also cepends on that happens to us if we meorrectly stop the machune and what happens if ne ircorrectly let it run and both of these incorrect dea. gons must be balanced aganst corresponding correct decisions In other words we need the detals of a consequence matrux And, as before, we would need the detals of a probability matnx in order to cambune thesa two matrixes into a pay-off matrix The deesson to pool or not to pool would then automatucally pop out As a matter of lact, re could work up a model that would also permit a moderate amount of vamable reighting in the pooling process
Uniortunately, or fortunately depending upon our point of mma We cannot take the space needed to develop further any of the routines of building pay off matrixes ${ }^{1}$ Our task is to uneover some of the problems involved in estumating the probabilities that would be moolved We find it necessary nevertheless to periodically rase the ssuse of consequence matrixes lest we imply that it is posable to make real decisions about real problems on the basss of probabil thes alone We also must contend with our natural tendencies to ether dismiss probabilities as irrelevant or to treat them as the sole determiners of truth, with the madle ground left unattended W_{6} trust that we could all fill in the appropnate consequences if wi were dealing with a real problem In the meantume we try to explore some of the mystenes of probabiluties

Before leaving this section, we should point out that the test of the hypothesie of no differenee beta een the two universes from which the amples came would traditionally have led to a decision to retan the hypothess This decsisn nould follow from the widely prac treed conservative rule of not rejecting an hypathesis unless the rikh

[^15]of Type I error is less than some figure in the nexghoorhood of 10 , or 05 Since such a rejection would involve a risk of 26 in this case, the hypothesis of no difference would surnive the test We sgain remind ourseives that this conservative rule makes little practical sense unless we have aecumulated prevsous expenences that provide some presumption for the bypothess of no difference, a presumption quite apart from the eurdence of the two samples Thus in effect, the conseriative rule is testing old entdence, aithough vaguely defined, against new evndence, usually quite specifically dcfined in the form of random samples Personal gudgment is thus a very strong, though implieit, factor in the use of the conservative rule

Estimating the Inference Distribution of the Differences between the Meons $\left(\pi^{\prime} s\right)$ of Two Universes

In the preceding sections we approached the problem of what to do with the two samples hy adoptrag a pror hypothess that the two samples came from the same unverse Another approach to the problem is to make no proor assumption about the dufferences between the two unverses, but to let the sample unformation generate a set of mferences about the kund of differences that might exast This us exactly what we tried to do in Chapter 7 ohen we had information from only one sample, namely, let the sampie teil us what to mier, with as little pmor assumption as possible
The best single estrmate we can make of the differences between the means of two unverses is the difference observed between the two sample means The arithmetic mean of all such estmates would equal the actual difference hetween the unverse means We have aiready dascovered, for example, that the arithmetie moan of differences hetween means of samples from the same umverse nould be 0 In our case, the ohserved difference was +2 Thus me can say that the best single estumate we can make is that the two unsverses have means that differ by $+\mathbb{Z}$ But, of course, we are well aware of the fact that the true difference mught be more or less than +2 The question, then, is to estumate the prohability, or mference, distribution of this difference
This is precisely the same prohlem we tackled when we estmated the inference distribution for π_{I} Unfortunately, our tack is made more dufficuit by the fact that the distribution of differences between means of samples from different unverses conforms to no simple pattern The distributions are skerred, although this skerness tends to decine as the combined sample size inereases The binomal

fis 10.2 Binomial extimates of inference ratios of Δ_{1} given $\cdot p_{1}=2, p_{2}=4$, $N_{1}=N_{2}=5$ (Note' Iaference ratios are based on binomial whth $p=B$ and $N=10$)
distribution with N equal to the combined sizes of the tro ssmples and with p_{1} equal to 5 plus one-raly the difiference between the two sample p's tends to spproximate this distribution of differences. (We use the subscript d merely to identify this synthetic p as a p that is concerned with difierences) Figure 10.2 and Table 10.3 show such

TABLE 10.3

Einomial Estimotes of Inference Retios of Δ_{p}, Givent $p_{1}=.2$, $P_{2}=.4, N_{1}=N_{2}=5$. (Based on binomlal with $P_{4}=.6$ and $N=90$)

(1)	(2)	(3)	(4)
p_{i}	$I\left(p_{i}\right)$	Δ_{I}	$I \times \Delta_{I}$
0	.000	-1.0	.0000
.1	.002	-.8	-.0016
2	$.0 t 1$	-.6	-.0066
.3	.042	-.4	-.0168
.4	.111	-.2	-.0222
.5	.201	0	0
.6	251	2	.0502
.7	.215	.4	.0860
.8	.121	.6	.0726
.9	.040	.8	.0320
1.0	.006	1.0	.0060
			-.009

an estimated inference ratro distribution based on our two samples of five witb p^{\prime} 's of 2 and 4 Note that the Δ_{1} (delta) values run from -10 to +10 and that the maxmum probablity occurs at a Δ_{I} of 2 , the observed diference between the sample means Also note that the arthmetic mean of the Δ_{I} 's is 2 (except for rounding errors), again the observed difference Because we have actually doubled the spread of the distribution from the bnomal limits of 0 and 10 , the variance of this distrbution of Δ_{f} is twice the vamance of the binomal distribution on wheh it is based
Table 104 shows the inference ratios for Δ_{I} based on samples with p's of 8 and 5 with N 's of 5 and 4 , respectively Study columns 1 and 3 , and you can see how we iransform p_{a} Into Δ_{f} Note that the mean of Δ_{t} is 300 , the observed diference between the samples
We could modify these mference ratios in Tables 103 and 104 the same way ne modified our binomal estimates of τ_{I} That 15 , we could set up equally likely hypotheses for all possible values of Δ and then use the Bayessan technsque to get the posterior distribution This is quite a tedious procedure, and it is rarely done Actually normal curve approximations are usually used because of their relathe simplictity and also because we can easily interpolate for the inference ratios for any selected intervals of Δ_{f} Interpolations from

TABLE 104
Binomial Ertimates of infaranee Retros of Δ_{1} Given $P_{1}=B_{1} P_{2}=5$, $N_{1}=5, N_{2}=4$ (Based on binomial with $p_{2}=65$ and $N=9$)

(1)	(2)	(3)	(4)
p_{d}	$I\left(p_{d}\right)$	Δ_{l}	$I \times \Delta_{I}$
0	000	-1000	0000
111	001	-778	-0008
222	010	-556	-0056
333	042	-333	-0140
444	118	-111	-0131
556	219	111	0243
667	272	339	0906
778	216	556	1201
889	100	778	0778
1000	021	1000	0210
	-		-
	999		3003

TABIF 105

Normal Curve Estimates of Inference Ratios of Δ_{r}. Given $p_{1}=2, p_{2}=4, N_{1}=N_{2}=5$
$\left.\begin{array}{ccccc}\text { (1) } & \text { (2) } & \text { (3) } & \begin{array}{c}\text { (4) } \\ \text { Proportionate }\end{array} \\ \Delta_{I} & \Delta_{I}-2 & \begin{array}{c}\Delta_{I}-2 \\ d_{2}\end{array} & \begin{array}{c}\text { Feight of } \\ \text { Ordinate }\end{array} & I_{A_{I}}\end{array}\right]$
the crude broomal are somewhat tedous Table 105 shows the calculation of such normal curve estimates when p equals 2 and 4 and both N s are 5 A notable difference exsts between our procedure here and that when we made the normal curve estrmates assuming the two samples came from the same unnerse Before, we pooled the two samples and made a sungle estumate of o Now we do not pool because we do not assume the two samples came from the same unverse Hence we make two separate estmates of of one for each unverse The average of these two is greater than the estimate we would get if we pooled because we now make a double adjustment for bias in sampie standard deviations
The other difference, of course, is that we now renter around a mean of 2 rather than a mean of 0
A comparison of these normal curve eatumates with the bnomal estimates shows tolerably good agreement In most practical problems ne would find ourselves unable to know what to do with the differences between the tro

What Odds Would We Give that the Process is Now Generating More Defecives Than When the First Sample Was Drown?
Although we do not have the necessary consequence matnx to really decide whether and, if so, how, to pool the information from
these two samples drawn from this machine process, we can try to ansker the interesting question of the odds we mould be milling to give that the process is now generating more defectres because tbe second sample shows more defectres than the first Our mierence distrabution shown in column 5 of Tabie 105 indicates a total prob. ability of 271 that Δ_{1} lies between 0 and $-9(002+010+041+$ $114+207 / 2$) (The binomal distributhon in column 2 of Table 103 shows a prohablity of 266 for the same thing) Thue there seems to he about one chance out of four that the true difference is O or less, or three chances out of four that the true difference is 0 or more Does this mean that we should now be willing to het almost 3 to 1 that the process is producing more defecives then formerly?

Tbe answer is that we would, provided we had absolutely no other nformation about this process If, however, we have bad some undefined past expenence mith the process that told us that vanation of the obsersed sort has heen occurning in a random manter for quite some trme, we would be very foolish to abandon the lessons of thes past expenence and be completely percusded by the suren song of the latest information In fact, our past experience may he ao persuasive that we would he willing to het nearly even-money that the next sample of five mil show fewer than 2 defectues

104 Procedure if Given a Prıor Inference Distribution and One Bit of New Sample Information

Let us suppose that the pror information has been predigested We have no $\pi a y$ of recovening the actual information, but Fre are shls to get the conclusions that had heen drama from that informa. tron Let us suppose further that these conclusions are expressed in the form of an mference dsstnbution Our informant cannot recall where he got his notions, hait he is willug to state the confidence he has that the universe proporion has certan values Table 106 shows this inference distrinution Thus he feels that there is a 26 prohability that the unverse $\tau 1520$ (Actually he is uning 2088 the center of a range from 15 to 25 Sumiarly for the other -1 's) Note that the inference ratios sdd to 1 In other rords, has list of τ_{I} 's covers all possible values of $-_{I}$
The unverse in question is assumed to have some single specific value, that value being unknown of course We mentron tbis point here because, as we see later, there are prohlems in which we actually are dealing meth several universes and in whoch the sampling process goes through two stages In the first stage ore of the unverses is

TABLE 106

Priar Information in the Form of an Inferance Distribution

$\boldsymbol{T} \boldsymbol{I}$	I
0	08
2	20
4	34
6	23
8	08
10	01
	100

selected by a process we do not fully understand Hence we do not know which unverse ras selected in the second stage, a sample 19 selected from the chosen universe The problem is to infer from the sample information the probability that any one of the univerass had been selected The problem we are working on at the moment is not that of determining which universe had been selected but rather that of determang the unknown value of that unverse that exsist We can see that there are ana'ngles between these two problems, hut they are certandy different problems
We now suppose that additional evidence arses in the form nf a presumably random sample of five items with four successes among the five If we add this tuformation to what our informant has already told us about thes unknown π, what should we now say about the inference distribution of π ? As before, our first problem is that nf deaidng whether his pror experience and the new sample both refer to the same universe It is entrrely possible that his unferences are very proper for the situatinn that hastorcally exusted but that they are essentally urelevant for the presett and the future If we decide that they refer to the same unverse, we may pool the two sets of information and come nut with an inference set based on both And, again as before, there is the possibility that we may be so uncertain as to whether we should n r should not pool the two sets that we decide to pool with some weight modfications
We start by assuming that has prior inferences are correct and tbat the nea information came from the same unverse that his old information carre from We calculate the probability that we could get a sample of five with four successes af his anjerences are correct

Table 107 carries out the necessary calculatrons Columns 1 and 2 show the prior inference disinbution Column 3 shows the probabil ity we could get a sample of five with a p of 8 given the particular π_{I} value For example, given a π_{I} of 2 , we find we have 0064 chance of gething a p of 8 in a sample of five Column 4 is the jount prob ability of getting both the given x_{2} and a p of 8 It $1 s$ smply a multuplication of column 3 hy column 2 The sum of column 4 the margenal probability, tells us the probability of gething a sample of five whth a p of 8 af the proo muference dastroution is true In other words, the probability that thes sample came from one or the other of these unverses is the sum of the probahilites that it came from each one of them
Column 5 is simply column 4 adjusted proportionately so the total probablity adds to 1 rather than to 1202 The logie behned this is as follows

1 We assurge that this cample came from one of the spectied unverces
2 We also assume that the probabinties in column 2 are correct
3 Hence the probablities in column 4 gue us the correct probablities that we could get thus sample from each of thase unverses
4 Since this sample must bave (assumptions 1 and 2) come from these and no other unverses, the probability that it came from these unverses 1110
5 Therefore we enlarge 1202 to 10 This of couree requres the rasing of esch of the probablites proportionately
6 Finaliy, we interpret column 5 as telling us the probabilites thst thw particular sample came from each of these unverses, prourded each of these unverses bad the probabilty of beng true as indicated in column 2
rab: 107
Testing a New Sample gganst Priar Infarmation

(1)	(2)	(3)	(2)	(5)
τ_{I}	$I\left(\pi_{I}\right)$	$P\left(p \mid \pi_{I}\right)$	$I\left(\sigma_{I}\right) P(p)$	$I\left(\pi_{J}\left\|p, \tau_{I}\right\rangle\right.$
0	08	0	0000	0
2	26	0064	0017	014
4	34	0768	0261	217
6	23	2592	0596	496
8	08	4096	0328	273
10	01	0	0	0
	-100		1202	1000

If all of our assumptions are cnrrect, we could now argue that the column 5 probabilites, or the postervor probabilities, provide us moth a revised inference distribution of π It would then represent the result of pooing the prior infnrmation with the new sample information That this is so is murstrated in Table 108 Part A shows the inference distribution that results from a sample of five with a p of 4 The method of generation is that if the crude version of the applica* tron of Bayes's theorem We know how to da better than thes, but this version is quick and easy, and sufficient to illustrate our pont It is also a parallel method to that shown in Table 107 Part B of Table 108 then takes the inference distribution generated in Part A and adds the information in a new sample of five with a p of 8 In other words, we use the posterior distribution in Part A as the pror distribution in Part B We then generate a new posterior distribu tron as shown in column 5 of Part B In Part C we show what happens if we first pool the two samples and then generate an in.

TABLE 108

Illusirating the Peoling Charestenstita of the Applicailon of Bayon's Theorom $\rho_{1}=4, N_{2}=5, P_{2}=8, N_{2}=5$

Pert 4

futa			-	-	T-aty Puts		
$\begin{aligned} & {[1]} \\ & \mathbf{x}_{H} \end{aligned}$	$\stackrel{(11)}{P\left(\boldsymbol{\tau}_{\boldsymbol{H}}\right)}$	$\stackrel{\left(\xi_{1}\right)}{P\left(p_{1} \mid x_{H}\right)}$	$\stackrel{(1)}{P_{\left.\left.\left(\boldsymbol{r}_{\boldsymbol{H}}\right)^{1}\right)_{1} \mid \boldsymbol{r}_{\beta}\right)}}$	$\begin{aligned} & (5) \operatorname{cod}(Q) \\ & l_{\left(x_{1} \mid p_{1}=B_{B}\right)} \end{aligned}$	$\begin{aligned} & (0) \\ & P\left(x_{y} \mid \pi_{2}\right) \end{aligned}$	$\left.\frac{(1)}{P\left(r_{t} \mid x_{p}\right)} \right\rvert\,\left(r_{1}\right)$	$\begin{gathered} (5) \\ \left.\left(r_{i}^{\prime}\right)_{r} r_{r}\right) \end{gathered}$
0	$16 T$	0	,	0	0	0	0
2	44	2045	8041	348	O0\% ${ }^{1}$	0816	012
4	167	3456	6575	415	0783	8319	2, 24
1	148	8304	0334	477	2592	0718	45!
8	147	0512	0085	081	c008	020	192
10	167	0	¢	,	0	0	-
	1000		1556	1009		1203	1000

Patc $\frac{p_{1}+D_{3}}{2}-\mathrm{y}=0 \quad \mathrm{~N}=N_{2}+N_{1}=10$

$\begin{aligned} & \text { (1) } \\ & \pi_{Z} \end{aligned}$	(2) $P\left(x_{B}\right)$	$\begin{gathered} (6) \\ P\left(\left.\varphi\right\|_{H}\right) \end{gathered}$	(4) $P\left(\pi_{H}\right) P\left(p \mid r_{H}\right)$	(5) $f\left(\Psi_{I} \mid \bar{p}, \pi_{B}\right)$
0	167	0	0	
2	167	0055	0009	01.2
1	16%	$11 t 5$	0188	. 345
8	167	7518	015	550
8	167	0561	0167	103
10	16%	6	4	0
	1000		0700	1500

ference distribution Tbe pooled sample would have 10 Jtems with a p of 6 If ve now compare column 5 m Parts B and C, we find a very satisfactory agreement
We may thus conclude that the appleation of Bayes's theorem to information provided by two samples gives us essentially the same final inference distrubution, whether we process the two samples in sequence, or whether we combme the samples and then process the combination
We still must face tbe question of whether it was appropruate to pool the inference distribution with the new sample if it is approprate, we would nor have a posterior disinbution that gives us a clearer preture of the state of tbis unknown unsverse τ than before the additional miormation provided by the new sample We say clearer because this posterior distribution has less variation than the prior, as it should considering that it is based on more information As a matter of fact, of this unverse does not change, and if we keep adding new sample mformation this way, we will ultsmately end up with a final posterior distribution that will converge on the true π At that point our posterior distribution will show a probability of 1 for this π_{s} value and probabilities of 0 for all others

Tbe issue of the appropriateness of the pooling revolves around the marginal probability and, of course, the consequences of the decssion to pool or not pool Let us concentrate our attention on the marginal probability We jound it to be 1202 (see Table 107) How do we evaluate this? The first thing we must do is place this in ats proper perspective We do this by showng the whole distributhon of which it is a part Table 109 shows the matrix of ail possible jornt probabidthes we could get if we sombined sill pussible sampiles of five with our prior distribution
The column of probabilities listed under the p of 8 is exaetly the equivalent of column 4 in Table 107 The only differences are rounding errors The other columns of the matrix were sumilarly celculated for each of the other possible p 's in a sample of five
First we note that the horizontal sums are equal to the orignal prior probabilities (Rounding errors excepted) This is as we would expect This is the equivalent of saying that the total of the probabilities that a given sample came from a particular universe is equal to the probability that the particular unverse prevals, or exists
The vertheal sums are the margnal probablities These measure the probability that any given sample could have come from this whole set of unnverses If, for example, this really were a two-stage

TAEEE 109

Matrix of All Possible Jetrit Conditional Probabllities from a Given Prior Distribution and All Possible Rasults of a Sample of 5
[Body of matuz shows $\left.P\left(p \mid x_{t}, N=5\right) \times I\left(\tau_{j}\right)\right]$

p								
\boldsymbol{r}_{l}	1	0	2	4	6	8	10	
0	08	078	0	0	0	0	0	078
2	.26	085	106	053	013	002	000	259
4	.34	027	000	119	050	026	004	346
6	.23	002	018	053	050	060	018	231
8	08	000	001	004	016	003	025	079
10	01	0	0	0	0	0	010	010
	100	102	.215	229	189	121	.057	1003

sampling process, sod if in the first stage one of the universes is selected with the indicated pnor probability, and then to the second stage a sample of five $1 s$ selected, we would expect a sample p of 2 to occur 215 of the tume in the loog run Our sample happened to have a p of 8 This would occur 121 of the thme in the long run, grier the astumptions We also note that a p of 10 woudd oceur 057 times in the long run Thus we can say that we would expect a pof 8 or more to occur 178 of the tume
What do these marginal probabilities have to do mith the assue of whether to pool? Let us aoswer thas by assumiog ao extreme condtion Let us suppose that our pnor distribution had been such that the margloal probability of a sample p of 8 or more had tumed out to be 00002 We would now be 30 poseession of a very unumal sample from this set of proor unverses, or we would have a sample that really did oot come from this set In other words, we mould bave a strong suspicion that the pnor ioformation referred to a uonerse diferent from the one from which this sample came Agan ue fiod it impossible to rationally state how strong this suspmion would have to be before we nould act 00 at It, as beiore, depeods oo our evaluation of the eonsequences of the pooliog decision If a persoo has a very stroog attacbment to his prior distribution, say,
because it represents the accumulated expenence of 20 years' work, he would require the margmal probablitites to be very low before he would dismiss his prior experience as arrelevant to today's prob lems Human nature being what it is, it seems likely that more people are pooing information when they should not than people not pooling when they should (We should mention that we are not considerng at all the problem of people who have strongly held prior distributions and then proceed to agnore all new information These people are not pooling, bat, of course, for quite different reasons, the mann reason bemg that they do not even see that there is anything that might be pooled)

Some Relationships among Prior Probobilities, Posterior Probabilites, ond Marginol Probobilities

It is evident that the posterior distribution is directly related to the proor distribution and the sample A change in either the proor distribution or in the sample will change the posterior distribution The relative importance of the prior distribution and the sample in thas poolng operation woll depend on tbe quantity of anformation contaned in esoh and on the varance of ths information A strong proor distribution 18 one wheh has very small varance, the strongest possable being one xith 0 vanamce, a type we look at in the next seotion Such a strong proor distrihution tends to dominate the posterior distributson unless the sample is tremendously large A man of very strong convictions can be sad to have very strong proor distributions His hypotheses are very little altered by additional information In fact, some people have such strong pror distributrons that the issue of pooling becomes irrelevant Therr proor distributions completely overwhelm the sample evidence If a person with very strong prior distibutions continues to run into very low margual probabilities, we bave evidence that his prior distributions, although very strong, are prohahly mapproprsate to the current problems In effect we find hm labeling almost everything that happens as "unusual"
A weak prior distribution is one with relatwely large vanance The weakest prior distribution is that based on no previous information We ran into this when we first struggled with the problem of inference We used Bayes's tbeorem with equal probabulthes assigned to all possbble π_{H} 's across the full range from 0 to 10 We discovered, however, that although this was certanly about as weak a prion distribution as we could imagne, it was not completely defenseless against the sample information In fact, we did not want it to
be completely defeneeless because ne wire hoping to uee these equal probabinise to modifs the mferences from the sample alone He did discover that this pror distrabution modified the mincrenee ratios and also bared the nictage toward 5 the average of the phor distribution But the faet that this was a weak proor distribution was evidenced by the speed with whela it tended to become smamped is the size of the sumple mereased (The modified Bayesan method and the bnomal method conserged farly rapidly as the elze of sample acreased)
If ne conld be asaured that our prior distributions were proper characterizations of our past experience we nould be lees ineliaed to sorry about strong prior distributions dominating a astuation over I perood of many vears of accumulation of acditional cudenee The additional evdence would in fact be only a small proportion of the total iecumulation But unfortunatuls we have abundant cidenee that muny people are temperamentally inclined toward strong phor ditroutions pust ne other people nre temperamentally inclined towart weak prior distributions Thece cudenecs often thom up at a ver carlh age sas in the hospital nusery To apply the pooling operation to the e people is esentially a waste of tume Attention to marginal prolablities is absolutels cesentiof if we hope to sig nificantly alter the prior diatributions
In conclurion we emphasize sery strongly that the calculation of pouterior proinblitues assumes that the pror distribution is a proper repreentation of pist experience and not a mere outlet for the expreston of pipe dreams, presudices hopes ete it aloo aseumes thint the unuerac that is generating the experienece, old and nem has not elinged If these arsumptions stand up well under insecta fation the po terior distribution is a rearomble approumation to our eurrent state of eflectue knonledge The best inder we have to the relability of the ene nssumptions is the sue of the marginal probabintics
(1le might parenthetreally note that there are nuthematieal rulation hup that exiof between the vananer of the unvere and the bariance of the prior do tribution assumang we have used standard inference muthods to derice our pnor distribution There are at o relationslum among the sariance of the unnere, the varianee of the prior distrimation and the carinnee of the magenal ditmbution There are smular relationshaps among the rarianee of the unnerve of the prior and of the posterior distribution These relationahipa become very usciful if we are tring to ectumate the marginal and
posterior distributions wthi, say, normal curve approximations Limitations of space prevent discussing these relations and then appleations)

10.5 Procedure of Pooling if Given an Unquolified Hypothesis ond Somple Informotion

Most people are not m the habit of consciously mantaning in therr minds hypothetical inference distributions denved from ther accumulated past expernences It would not be surprising to find a random sample of 100 businessmen yielding no one who would admit to such a practice This does not mean that these men do not dally act as though they had such destroutions It is also true that moderately skillful questioung could help these men to bring such distributions out of therr subconscoous minds mito thenr conserous minds, and onto a prece of paper, and from there into a pooling analyas of the sort reierred to in the preceding seetion Actually, most suc cesstul people pernodically do review tbeir current operating hy" potheses in a conscious way But they do this in terms other than those we have been using Also, we find that many people consider this reviewing as part of their private life, so private that even spouses are not allowed in on it Thus an attempt to pry into chms area often results in a rebuff, or a rationalization of the real operating hypotheses so that they look good to the public eye Mathematioal mampulations based on such rationalizations can lead to some amusing posterior distributions at best, or some very serious musconceptions at worst
Most people have a strong prediection toward consciously expressing thear prior distributions in the form of a single number The president of the Smoothies Company will admit that he beleves that the market share is 35%, or even that it is about 35%, or sometrmes even that it is at least 85%. If we try to get more from him, he may even call us strange for thonkmg that there is any more Let us suppose that all we can get hm to say is 35% We know and he knows that he does not mean exactly 35%, but a vague "about' 35% How do we pool this mformation with that appearing in a new sample?

Actually we can proceed exactly as we did when we were given a dustrbution of pror information Table 1010 shows the calculations We put the prior probability of 1 m quotes to signify that it is the best we can say when we have only a sugle hypothesis The mar

TABLE 10.10

> Paoling a Vagualy 5pecific Priar Distrlbution with o
> New Sample of 100 with op af 28

(1) ($\stackrel{(2)}{I\left(x_{1}\right)}$	$\begin{gathered} (3) \\ P\left(p \leqq 28 \mid x_{i}\right) \end{gathered}$	$\stackrel{(4)}{I\left(\pi_{1}\right) P\left(p \mid \pi_{1}\right)}$	
. 35	"1"	07	. 07	'1'
	-		-	-
	100		. 07	100

ginal probability of 07 is exactly the same answer we got in Chapter 9 when πe tested the hypothesss that $\pi=35$. If our president retains this hypothesis in the face of a marginal probability of ouly 07 , we would be justufied in saying that apparently he has a strong prior preference for the hypothesis of .35 This is exactly the same as saying that he is willing to take only a very small mask of Type I error If we were to interves thas president and probe until we found out how low a marginal probability he would tolerate before he would revise his hypothess, we would be able to deduce the value system or the consequence matrix (at lesst the ratios betwecn values) that is apparently guiding bis thonking
We can thus see that the methods of hypothesis testing bear a definte relationship to the problem of pooling pror and nen information In a sense, the testing of a sugle hypothesis as though it were the only one is simply a special case of the more general case where we have a more explicit statement of the appsrent strength of conviction reflected in the prior distribution It is also worth noting at this time that there is a strong likelihood that a person's prior distribution reflects not only his outlook on the probsbilites, but also some of his feelings about the consequences. For example, a person expresses at least part of his fear of consequences in a generally weak prior distribution, probably weaker than that warranted by just the expersence of the actual frequency of events A petson who is very much afrad of death from an airplane accident will tend to express this fear by remernbering an accident rate that is hugher than the truth Each subsequent accident tends to confirm this prior distrabution The reverse is true for a person who strongly beleves that accidents do not happen to him. If we treat these prior distributions as though they were pure probability distributions
and subsequently combine the probablities with a consequence matrix, we may be inedvertently domg a bit of double counting of consequences

PROBLEMS AND QUESTIONS

101 You probably bave some pror conviction that the probability of a head on the toss of a con is 5 Suppose a partucular com is tossed and comes up heads several times m succession How many such suecessive heads would you tolerate sad stall retan your ormgal convetion of a $P(H)=5$?

102 What 18 the past evidence or past authonty tbat supports your proor conviction that the probability of a head is 5 ?
103 Give an example of some convetion that you hoid so strongly that you would contmue to beleve ats trutb even in the face of almost overwhelm ing evdence Distingush earefully between something you soy you believe and something that you really beleve in the sense that the belef controls your actions For example, almost everybody beheves in The Golden Rule as an abstraction Very few people rely on at as a gulde to behavior

104 A unverse of machue parts is known to have 20% of the parts defective (Do not ask how it is possible to know something like this We are just trying to keep things sumplo-for the moment) Parred samples of four items each are to be selected at random from this unverse
(a) Construct a matrix thet shows all the possibie combinations of sample p 's that can ocour (In the manner of Part A of Table 101)
(b) Construct the matris of probabilitues that would be associated with each combnation (In the manner of Part B of Table 101)
(c) Combine all sumlar differences between parred p's in the form of a frequency distribution (See Table 102, columns 1 and 2)
(d) Calculate the anithmetic mean and standard devation of this distribu thon
(e) Check your calculation of the standard devation by using the formula

$$
\sigma_{d}=\sqrt{\frac{\sigma^{2}}{N_{1}}+\frac{\sigma^{2}}{N_{2}}}
$$

(j) Make normal curve estunates of the expected frequencues and compare them whth the ones you calculated by direct a pplication of the binomial
(g) Are the normal curve estmates you made m (j) closer than those shown in the text for the case of a universe with $\pi=1$ and $N=27$ Measure the degree of closeness in some consistent manner Is there a logical explanatron for this?
(h) Repeat parts (a) io (g) assuming a unverse with $2 \pi=2$ and with samples of tro What differences, if any, do you find in the accuracy of the normal curve estimates in this case compared whth that in the text for the case of $\pi=1$? Is there a logical explanation for your results?

105 Assume that you have no pror information of any kind about a given machine process A sample of 10 items is selected at random from the first hour's output It yelds three defentive itams A sample of 10 atems is then selected from the second hour's output It has one deiective

Item What, if anything, happened to the effictency of the operation between the first and second hour? (Hunt You should answer this question in terms of the probabhities unvolved A defintive answer 2s, of course, imposable)
$108(a)$ What is the probability that the process referred to in Question 105 was generating more defectives during the first hour than during the second bour?
(b) What is the probability that the process was generating the same proportion of defectives dunng each of the hours?
107 A given machuae process is supposed to be producing 10% defec twes However, information that has accumulated to date about the process during a period in which the process has been purportedly stable bas resulted in the following inference distnbution about the unverse proportion of defectures

π	I
$10 *$	90
30	08
50	02
	100

*These values refer to the center of an interval of values
A sample of 20 items has just been tested It bad only one defectuve
(a) What inferences do you now make about the unverse proportion of defectives?
(b) What is the probabulity that the proces is now producing femer than 10% defectuves Would you bet $\$ 1$ of your own money at tbese odds? Would you be miling to clam lewer than 10% defectives in jour promotional laterature? Why or why not?
(c) What ts the probsbilny that the process has shifted in some way from what was formerly believed as expressed by the prorinference distribution?
(d) What is the probabluty that the new sqmple endence is consistent witb what was believed proor to its drawng and testing? Explain the basis of your answer

108 You have a "vaguely speccic" pror belef that a given setting on a machine will result in 5% defectives A sample of 10 preeces reveals three defectives What, if anything, does this additional information do to your belief about the long-run sutcome of this partucular machne setting ${ }^{7}$ Buttress your argument with approprate calculations

109 Practical afiars continually confront us with the need to rationalize today's events with yesterday's beliefs Crtically analyze the problem of developing a practical pohcy for handing this issue of rationalization For example, what are the ments of a phlosophy that
(a) Almays beheves strongly whatever is currently belee ed, thus leadng to so-called fortbright and dectsive action
(b) Revises these beliefs in steps rather than in infinitesmal gradatoons
(c) Never admits doubt until we are ready to modify the belef Con-
ader this quection hoth from the pont of veew of your per onal peychologeal needs and from the point of new of a busmess manager who has to be anare of the impact of his hefiefs on the people he is managng (For example a good college quarterbiok is permited to feel uncertann that he has chocen the rught play but he apparently shouid never let the tem suspect thas uneertanty)

Also consider the prohlem of eaving face when we discover the need to reject what has prevouly been sold as an unquestroned truth

chapter
 11

Inferences about later samples from information about prior samples

11.1 We Win (or Lose) wilh Samples, Not Universes

Up to this pount we have concentrated on making infer ences about tunt erses. We have at times acted as though the unverse \#as the Ley element in a decision problem It is now tume to recognue that the unverse es such really has no drect pratical relevance Practies affars involve sample events, not the whole unnerse Thas is also true of games of chance He do not plas bridge with the unverse of cards, but onls with sample hands from that unserse Hhen ne buy an automobile ne buy a sample of that manufacturer's unverse of cars, and ne have to learn to heve xith that sample if He hure a man to do a job, he gives a sample of his rork, and never more than that If a sorker stops a machine on the basss of one sample of infomation he is not really trying to control the unverse of thus machne's output He is simply trying to assure as best he can that later samples ' of output $\begin{aligned} \\ \text { ill } \\ \text { be satisfactory }\end{aligned}$
The uns erse is relesant information only insofar as it helps us to make inferences about these future samples if we make plans based solely on the unn erse chatactersties, we are likely to be very dssappointed in the results of our planing The problem is created by varation, partieularly unpredictable or random variation As "e mentioned in an earler chapter, it is small solace to how that we would have non in the long run if we had not gone broke in the short

[^16]run The ideal set-up is one in which we have a profit-potential unsverse working for us and also have sufficient reserves to withstand those unlucky samples that are bound to happen sooner or later If our reserves are thin, then we not only need a profit-potental umverse but also to be lucky

In this chapter we direct our atitention to making inferences about future samples on the basis of information supplied by some past sample or samples Snce we bave prevously done all the work necessary for this, we are essentalify only reorienting some of the past work

11.2 From Sample $1 \rightarrow$ to Universe Inferences \rightarrow to Sample 2

To go from sample to unserse-to sample נnvolves the same kinds of mechanics we used when we considered the problem of pooling a past inference distribution witb a new sample The only difference 18 that we are now going to predict what a second sample will be rather than wait to sec what jt js before we analyze the situation

Let us suppose we have a presumably random sample of 10 tems with three of the items defectives We would now like to predret the number of defectives in a second sample of 10 thems provided the universe has not shifted in the meantime Figure 111 shows the tree that outlines the paths of reasoning from our first sample to expectations about a second sample Our first task is to infer the probability distribution for the vanous unzverse proportions of defectuves that might exist Table 111 shows such an inference distributron Thas infercnce distribution was copied from the fourth row of Table 87 on p 331 It thus has been calculated by what we called the modified Bayestan method With this inference distribution as a base we now calculate the margual probability of getting any partucular sample p, say, for a second sample of 10 (The same procedure would be used for any suze sample) The method of calculating the marginal probability is the Bame as pe have used several times previously Table 107 on p 403 being a typical example

In Table 112 we summarze the marginal probabilities for all possible values of p that could result from the inferenee distribution of Table 111 Thas table tells the probability of our getting a second sample of 10 wth the gaven $p_{2 I}{ }^{1}$ if we had a frst sample of 10 with a p_{1} of 3 For example, if a first sample of 10 bas thas p_{1} of 3 , there

[^17]

table 11

Inference Distribution of π Based on a Samplo of 10 with p - 3

(1)	(2)
TI	$I\left(n_{T} \ p_{1}=3 \quad N=10\right)$
0	007
1	108
2	234
3	294
4	203
5	118
6	0.50
7	0×3
8	002
9	000
10	009
	1001

TABLE 112

Prebability of Getting o Suctiveding Sample of 10 with the Givan p If We Have a First Sample with a pof $3\left(\mathrm{~N}_{1}-10\right)$

$p 1$	$P\left(p_{2} \mid p_{1}\right)$
0	078
1	146
2	185
3	183
4	155
5	114
6	054
7	039
8	017
9	006
10	000

are only 017 chances that a second sample of 10 would have a p_{2} of 8
It is mstructive to compare this inference distribution shown in Table 111 with the distribution of marginal probabilitees shoun in Table 112 In Table 113 we compare therr means and variances The two means of 318 and 317 differ only because of rounding errors It is logical to expect that the arthmetic mean of all possible sample means will equal the arthmetic mean of the generating uni verse, or, in this case the anthmetic mean of the unverse of inferred unverse $\pi_{1} s$ We also expected the mean to be higher than 3 because we remember that the modified Bayessan method of mference does result in a bias toward 5

TABLE 113

Camparison of Inference Distribution from a First Sample of 10 with the Distribution of All Fossible Second Samples of 10
(1)
(2)
(3)
(4)
(5)
(6)
(7)
$\pi_{l} \circ \rho_{p_{11}} \quad l(\pi)_{1} \quad l \times \pi_{i} \quad l \times \pi_{I}^{2} \quad P\left(p_{2} \mid p_{1}\right) \quad P \times p_{91} \quad p \times p_{11}^{2}$

0	007	0	0	078	0	0
1	108	0108	00108	146	0146	00146
2	234	0468	00936	185	0370	00740
3	264	0792	02376	183	0549	01647
4	205	0820	03280	156	0624	02496
5	118	0590	02950	114	0570	02850
6	050	0300	01800	074	0444	02664
7	013	0091	0063	039	0273	01911
8	002	0016	00128	017	0136	01088
9	000	0000	00000	006	0054	00486
10	000	0000	00000	000	0000	00000
	1001	3185	12215	998	3166	14028
$\tilde{\pi}_{I}=\frac{3185}{1001}=318$			$p_{21}=\frac{3166}{988}=317$			
$g_{\tau_{t}^{2}}^{2}=\frac{12215}{1001}-\left(\frac{3185}{1001}\right)^{2}$			$g_{n_{1}}^{2}=\frac{14028}{998}-\left(\frac{3166}{999}\right)^{2}$			
$=0209$			$=0401$			
$\approx \frac{p_{1} q_{1}}{N_{1}}=\frac{3 \times 7}{10}=0210$			$\approx p_{1} G_{1} \frac{N_{1}+N_{2}}{N_{1} N_{2}}=21 \times 20=0.42$			
				$p_{1 g_{1}} N_{2}+N_{2}$		

The variance of the sample p_{2} 's (means) is larger than the variance of the mierence distrinutioo This is also a logeal expectation If our second samples were infintely large, we would then expect each sample p_{2} to bave the same value as the π_{I} of the unverse from which it purportedly came, with no sampling varation at all The distribution of such sample p_{2} 's would then have the same varnance as the distribution of the π_{i} 's However, if the second samples are not that large, each purported universe will generate several possible p_{2} 's This would be an additoonal source of varatioo in the p_{21} 's, that is, additional to the varation caused by the varation in the πl 's Hence the p_{2} 's mill bave a greater varation than the π_{I} 's At the bottom of Table 113 we bave stown a formula that gives an approxtmaie relationship betweeu the variance of π_{1} and the variance of p_{21} It is clear from thas formula that $\delta_{p_{2}}^{2}$ approaches $\delta_{s, t}^{2}$ as N_{2} inereases because ($N_{2}+N_{1}$)/N N_{2} nould then approach 1 For example, if N_{2} were 1000, thes ratio would be $1010 / 1000$

11.3 Fram Sample 1 Directly to Inferences about Sample 2

If we are not really interested in the inference dustribution from the frst sample, but only in the kinds of second samples that might be generated, we might short circuit this step of geting the mierence distribution To do this, however, we must make some assumptions ahout the form of the distribution of the margnal probahilities Un fortunately, they do not conform to any simple bmomal or its equivalent But, again we find that the distribution tends toward the normol as N_{i} and N_{2} warease For example, if N_{2} macreases, the dustribution of π_{1} approaches the normal The convergence of the distribution of p_{11} to the normal with nereases in N_{1} and N_{2} would be more rapid the closer the unverse proportion is to 5 A normal approxmation to the distribution of p_{21} shown in Table 113 is relatively poor We expeet such a result with samples as small as 10 and with our basie miormation suggesting a π of 3 Let us, therefore, illustrate the dreet approach to roferences about p_{21} by using larger samples
Our first problem is that of devising a formula for estmating the standard deviation of tbis distribution of p_{21} We saw at the bottom of Table 113 that the variance of p_{21} as there calculated can be approximated by the formula

$$
\hat{\sigma}_{p_{2}}^{2}=p_{1} q_{2} \frac{N_{1}+N_{2}}{N_{1} N_{2}}
$$

This is a familar formula to us We used the when re were discussing the distrubution of the dfferences between sample p 's when the tro samples came from the same unuverse The sumalanty is no concidence The problem of the distribution of second sample p 's as inferred from a first sample p can be restated as the problem of the differences that mught exast between two sample p 's, given that the tro samples came from the same unverse
We recall that the variance of the difierences between sample $p s$ is a function of the variance of the universe and the sizes of the two samples If we do not know this unverse vanance, we make the hest estimate ne can from the avalable information, in this case p_{1} and N_{1} Our best unhased estmate 18

$$
\dot{\sigma}^{2}=p_{1} \eta_{1} \frac{N_{1}}{N_{1}-1} \text { or } 3 \times 7 \frac{10}{9}=233
$$

for our preceding problem If we have 50 tems in the first sample, the estunated universe variance would be

$$
3 \times 7 \times \frac{50}{49}=214
$$

We next allow for the effects of sizes of samples by multuplying the estimated universe vamance by

$$
\frac{N_{1}+N_{2}}{N_{1} N_{2}}
$$

Note that it is irrelevant whether sample 118 relatively large or whether sample 2 is relatively large The important consideration is tbe combined sizes of the two samples (The advantage of having sample I relatively large is that this is the sumple we must use to estmate the unverse vanance The size of sample 2 is urelevant for thrs purpose)
Suppose our second sample is to have 20 items Our estimate of the variance of the distribution of p_{2} is

$$
\begin{aligned}
\delta_{R_{1}-p_{2}}^{2} & =\sigma_{R_{1}}^{2} \\
& =p_{1} q_{1} \frac{N_{1}}{N_{1}-1} \times \frac{N_{1}+N_{2}}{N_{1} N_{2}} \\
& =3 \times 7 \times \frac{50}{49} \times \frac{50+20}{50 \times 20} \\
& =24 \times 070
\end{aligned}
$$

$$
=015
$$

(If we smplify the above formula we get

$$
\left.\sigma_{p_{21}}^{2}=p_{1} q_{1} \frac{N_{1}+N_{2}}{N_{2}\left(N_{1}-1\right)}\right)
$$

We are now ready to carry out the routme for makug normal curve estimates of the dustribution of $p_{o_{1}}$ Table 114 does thas br estimating the herght of the ordinates We might just as well have used the differences between the cumulative probalsilitics Column 1 hasts the partucular $p_{2 \text { I }}$ that we chooce to represent the full range of p_{21} Column 2 converts these p_{21} values into values of $p_{n} p_{1}$

TA8LE 114

Expectations about the p of a Second Sample Based an Inferences about Differences between this Second p and the p of a Firsl Sumple

[^18]guen that $p_{1}=3^{\circ}$ Column 3 converts these differenees into Z units, our staodard unt for measuriog the normal curve Colunn 4 shons the correcponding talues from the Table of the Proportionate Heught of Normal Curve Ordinates Columo 5 is the result of muluplying the column 4 figures by the maxmum ordinate of 1630 Column 6 shows the estumates ne get working through mferences about the unverse proportion The correspondcoce as reatonably cloce particularly if ne were to round to two decmal places

114 Summary of the Problem ond Methods of Moking Inferences

Practical problems in mference usually breah donn moto tro parts as far as the probablutics are eoncerned The firt part is the problem of guessing or infering the nature of the unverse that mill appar ently be genurating the samples that will oecur If we are playing a game of cards we do not have to guess what this uonerse is be. cauce ne hnow what it s . Thus the first part of our problem does not general y exist in games of chance
The second part of the problem of inference is to guess ohat hinds of samples will actually occur These will be the actual events on Which we will be pad of with the pay of sometimes being negatue These are the events that ne must necessanly proude for in the short-run in order to survise over the long-run and at least partly realize our long run expectations

These tho problems are further compluated by the fact that the actual unnerse may alnft before it ever generates enough samples to gre us a semblance of our long-run expectations Thus we mas find that our earher samples possibly classified as unluchy, may never have a chance to be averaged out in the sense that future samples from the same universe will eventually overshelm the first samples If we have far ed to recognize a shift in the unverse, ne may find ourselves wating for something that is never going to come
The greater is our uncertanty aboul the true state of the unverce. the greater is our problem of plannag a long-run strategy We mas have to act as though a given strategy has a profit potental even though it in fact has a loss potental Similarly, of course, re may

[^19]reject a strategy that has a profit potental becausp we cannot clearly see this potential through the fog of our agrorance

Uncertainty about the true state of the unrerse gets compounded as we contemplate the kiods of samples that will actually occur We would be unecrtam about the samples even if we honeu the uns verse We have seen nhat common sense already indicated, namely that the uncertannty about the samples is a function of three factors (1) uncertanty about the umverse, (2) vanation within the unsverse, whatever its true state 15 , and (3) the suze of the sample It is these uncertainties that cause us to provide reserves against the short run verssitudes In general, the greater the uncertanty, the larger must the reserves be relative to the commontwents that have been made

Practicality requires us to cupplement all our notions about the probabultzes of events uith notions about the consequences of the occurrence or nonoccurrence of these exents Limitations of space have forced us to concentrate on the probabilities n ith onfy passing consideration of any formal nays of combining probabilites nith consequences

Up to this point we have restricted our attention to information about the phenomenon we were trying to predict This restriction imposed a greater degree of uncertanty on our solutions than is gen erally true in practice In subsequent chaptens ne consider ways to assoctate nfformation about other phenomena with the phenomenon of interest We can thus reduce our uncertantines in exuctly the same n ay s e reduce our uncertanty about the degree of heat in the air by consulang the reading on a thermometer, although unfortunately we have much iess succes, We also give more atten thon than heretofore to whether and hon a unverse might be shiftmg through time

PROBLEMS AND QUESTIONS

111 Most people wonld be nilling to tose a com to determine who will pay for the coles Honever, most of these same poople mill refue to toss the same con for $\$ 100$ bills Since the long run umerce probabihtes are the same in both cases, there must be comething eke that causes the different policy We have prevousif duscussed thus dufference as beng rooted in the different consequences that people attach to locing 5 or 10 cents and losing \$100 Discuss this same isue in terns of the problem of havigy to Weve unth sample results, not with any long run expectations

112 We are frequently admonshed to avord short-enghted polcies in favor of poluces that worl over fhe long pull We are also advised to take care of today, and tomorrow wall take care of itelif
(a) Is there any neceseary iundamental confiat botneen the short-rum
thel the lone tun" Gue tllustrations from jouf oun practical expenence
(b) Cin wou think of anv ituations m which you see an opportunaty for a long run gan without any nak of chort-run loss?

113 Rew ork problern 17 in Chapter 2 in the light of your preent knoml Alate

114 I ample of fivertems y relds one defective
(a) What mferences would sou mike about the umere proportion of defectives?
(b) What inferences nould you mathe about the probabilits distribution of the number of defectres in a eecond cample of five on the assumption that the umerte remams constant?

1 Etimate thi di tabution by working through the anference distribu thon dernedin (a)
? Drow i tree of jour hne of inferences from the first sample to the scron 1 entaple sua the unnerce

3 Estimate thas distribution by gang directly from the first ample 10 inferenter dbout the second sample

4 Crarrills compare your answers in (a) and (c)

mome 12

Inferences from information expressed as a continuous variable

We have so far confined our attention to the problem of mferences about attroute data, data wheh can take on only the values of: 1 and 0 Ths gave us certam advantages of exposition It also enabled us to point up some Issues that tend to get buried When we consider varabie data At the same tome we labored under some difficulfues which now disappear, more particularly the difioculties associated whth havigg our data bounded by limuts such as 1 and 0 We now turn to the problem of inferences for contunuous varabies A continuous vanable can take on ony size whateoser within the range of the data, our ireament parallels that which we used with attrubutes

12.I Anology between Methods of Treofing Affríbutes and Methods of Treating Continuous Voriobles

Brief Summary of Some Important Thngs We Leorned From Our Treatment of Attributes
1 The arthmetic mean of sample mears equals the mean of the unuerse We found this true for attributes where $\bar{X}_{\mathrm{p}}=\pi$ It is also true for varables, where $\bar{X}_{z}=\mu$ (m u, the Greek m)
2 The anthmetic mean of sample vanances is less than the vanance of the unverse We found that a ample adjusiment coald be made to correct for this bras The formula was $\bar{X}^{2} N /(N-1)=\sigma^{2}$ If we had only a single sample, the best unbuased estuate of σ^{2} yould be $s^{2} N /(N-1)$ (II we use attributes $s^{*}=y q$)
Precisely the same relataonshp holds for variables
3 The anthmethe mean of the crude skemess of samples is less than the crude skewness of the unverse We bave no occasion to use this rela
tionshup so we do not reproduce st here It 18 useful to remember, how ever, that samples in general have less skenness on the overage than does the unnerce from which the eamples came
Another important thing to remember about skewness is that a sample can be shewed eien though the unverse is symmetncal In fact a a) mmetncal sample 18 s great rant3

4 The varance of sample means is a daret function of the vanance of the universe and an inserse function of the sample size la formula $\sigma_{0}{ }^{3}=$ σ^{1} / N of if σ^{1} is unknown whech is the usual case $\partial_{j}^{2}=d^{2} / N$. Preasel) the same refatoonshup holds [or vanables The expression is $\sigma_{2}^{2}=\sigma^{4}$ a
5 Inferenc
-
by the 5

the ample nas quite large
6 If the sample sa large say 50 or more and if the sample p is near 50 , a normal curce approvomation 18 farrly good (A sample p near 50 nould indicate a relatinely small skenness) Our analyss of the binomas? dietribution revealed that it approached the normal cure as N incressed nith the approximation beng better the aearer p is to 3 This phenomenon for the bunmal sa a special cise of a general theorem that applass to all sampling distributions of the antbmetic mean This is the central 1-mth - -2 4 ••
generate mymmeineally distnbuted sample means with the characterstic sbape of the normal curve wth its center hump appeang larly quekly as A meresses A skened unverse geter doces generate aynuretrically distnbuted sample means although the skemnesg does dechne as A increases The crude shewness wares insersely with N^{7} and the coeffielent of skewness ms erely with N Hence we must uec caution in assuming that the normal cure apphes if we ind endence of substrntal skewpess For example, our dats on unt charge sales for the hardware store shon ed substantial skewness Normal curve inferences in thas case nould tend to be poor for smpmles less thsn 50 , or cren much less than 100
7 Differences between means of independent samples from the same untverke are alnays symmetrically distributed and quite close to the normal even for qute small samples This relationshap applas regardess of the shape of the unverce It alko holds for vanatles
8 Differences between means of independent samples from different unn terses are symmetrically distributed onfy if the unvereas are symmeth cally distnbuted In such a case nommsl curve approximations rould hold quite nell eren if N is small If the unis erses are not symmetneal the distribution of differences will be skened This shewness will tend to decline as the sample sues meresse, just as we found for the distrbution of means from a angle tunverse

fig 121 Efiects of sample su2e and shape of unverse on dstribution of means of random samples (Reproduced with permussion from E Kurnow G d Glaser and F Ottman Statuitcs for Busmess Decroms Racherd D Imin Inc, Homewood Ihnoss pp 182-3)

9 The varance of the diference between two sample means is essentality tutce the variance of sample means The basie formula for attnbutes is

$$
\dot{d}_{p 1-\infty}^{2}=\frac{\partial^{2}}{N_{1}}+\frac{\dot{d}^{2}}{N_{2}}=\dot{d}^{2}\left(\frac{1}{N_{2}}+\frac{1}{N_{1}}\right)=2 \frac{\hat{\theta}^{2}}{N_{1}} \quad \text { if } \quad N_{1}=N_{2}
$$

Note that information from the two samples is pooled to derive a magle estimate of the unverse vanance This formula holds strictly only on the assumption that both samples came from unverses with equal van ances The situation is more complicated otherwise The formula is approximately correct even with unequal vanances and is often used as such ap approximstion

Precsely the same formulas apply when we are workng with vanables The bssic formula is

$$
\partial_{I_{2}-t_{2}}^{2}=\frac{z^{2}}{N_{1}}+\frac{\partial^{2}}{N_{2}}=\partial^{2}\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}\right)
$$

Agan we assume unverses with equal vanances, and we pool the two samples to arnve at this single estimate

Some Importanl Differences between a Continuous Variable and an Measure

1 Most continuous vanahles do not have any arbitrary boundaries Thus we do not run into the sort of problem re did with attributes when we were making estmates near the boundarles In fact, we generally assume that our contunuous vamables have no boundaries, in the same sense that the normal curve has no boundsnes Theoretically the normal curve has no boundanes, honever, the probabilites declme quite mpidly as we move beyond, say, a distance three standard devistrons from the mean Thus we can fix procicol boundanes beyond which the probabilites are aegigible at the same tume we reap the benefits of working with an unbounded distnbuion
2 Since a contunuous varable can take on any saze whatsoeser vathun its natural boundaries, we have an anfuate number of possuble values to work with This results in certan mathematical advantages Not the least of these adruntages is that it makes it possible for us to make andependent estimates of the anthmetue mean and the standard devis thon With attributes ne were not able to get samples so that a given mean could occur with all possible standard devations In fact, ne found that each mean was pared with its own standard devintion The net result of this was that the inference vectors had different vanances If a guen sample mean can be parred wath all possible standard deviatrons, we find that the inference vectors will ail average out to have the same variance Thas means that we will not have to use any pror hypotheses as we did with attributes We will thus get good estumates of the inference ratios without necesstating any has inductig pror prohabilites
3 The universe distribution of a contunous varable can take on all kinds of shapes Hence the distribution of stmple means can trike on all kinds of shapes Unfortunately, these varrous distributions do not
beloug to any well regulated famuly of distributions in the way that the attribute dstributions belonged to the family of binomal dratributions Our approach to inferences about the means of vamables is thus strictly in terms of appronmainons We adopt certam model distributrons, such as the normal, as the basts of our probability estimates This tactue gives the appearance of makng our procedures easter than when working with the binomal distributions We should not forget, hownver that they are easter only because we are forced to be catisficd with approximations As udienled a fers paragraphs before, deetribu trons of sample means tead to converge on the normal as the sample size increases Thus most of our big mistakes occur ithen we work with smail samples

12.2 Inferences About the Meon of o Continuous Variable by the Use of Percentile Equivolents

Let us suppose we are makng nferences about the unverse mean of the unit sales of our neighborhood hatdware store We combined the 200 raw figures into a frequency distribution Thas dustrabution showed substantial posituve skewness Tbe magnitude of this skewness 18 indicated by the face that the mean of $\$ 572$ was located at about the 74th percentile The mean would be at the 50th percentile If the dastribution were symmetrical A possible approach to inferences about the universe mean is to mork through the percentile equivalent of the mean In effect we nould be convering our varlable data into attabute data for purposes of calculations If we let a ropresent sample velues below the mean and b represent v alues above the mean, we could use the binomial, $(74 a+26 b)^{200}$, to generate percentile equivalents of the unverse mean We could then transform these back to unit sales figures The expansion of this binomal would be quite tedous We cannot use tables because tables are not conventently avalable for an N as large as 200 Most people would find it practical, therefore, to be satisfied with a normal curse approximation to this distribution This approwmation would fall to recognze the skewness molved, but the errors anvolyed would be small In order to tliustrate the use of the percentile equivalent approach we arbitranly assume that our sample had been only 100 Thus we can use the Romg bromial tables

Table 121 illustrates the calculations for the percentile equivalent approach Column 1 hsts arbitrarly chosen hypothetical $\pi n^{\prime} s$ Column 2 lists the modified Bayesian cumulative probabilities These are taken from Romg's buomal tables for $N=100$ The

TABLE 12.1

Inferences About μ Bosed on Percentile Equivalents-Hardware Store
Unit Sales Data Given $\overline{\mathrm{X}}=\$ 572$, Percentila Equivalent
equals $74, \mathrm{~N}=100$

(1)	(2)		(3)	(4)	(5)
$\pi_{\text {R }}$	$P(p \geq 74 \mid \pi \mu)$	$P\left(p \leqq 74 \mid x_{H}\right)$	π	I	μ_{I}
56	$0002-0000=0002$		54-58*	00	36-39*
58	0006-0002-0004		58-62	01	39-43
. 60	0024-0006=0018		62-66	04	43-47
62	0078-0018 $=0060$		66-70	15	47-52
64	$0220-0046=0174$.70-74	31	52-57
. 66	0544-0102 = 0442		74-78	32	57-63
68	1180-0192= 1088		78-82	15	63-74
70	2244-0306= 1.938		.82-86	02	74-101
72	3748-0410 $=3339$			-	
. 74	5525-0453=5072	$5381-0453=4928$		100	
. 76		$3562-0407=3155$			
78		$1972-0290=1682$			
80		0875-0158=0717			
82		0295-0064 $=0231$			
84		0071-0018=0053			
86		0011-0008-0008			
88		$0001-0000=0001$			

* Lomer Lumt Inclusive
method of calculation is the same as that shown in Table 86 Column 3 shous arbitranly chosen ontervals for π_{I} Column 4 shows the inference ratios for these intervals based on the cumulative probabilities given in column 2 Column 5 shows the unt sales equivalents of the column 3 mtervals The best way to transiorm from percentile equivalents (the a's in column 3) anto unit sales is by means of a graph Figure 122 illustrates the procedure Here we show the cumulative frequency chart of the frequency series of unit sales given in Table 68 A smooth line has been drawn by eye through the observed cumulative frequencess to provide the basis of the interpolations The procedure is to locate the given percentile on the vertical axis, for example, the 62 percentile A horizontal lne as drawn to intercept the cumulative frequency curve, a vertical is dropped from this point of intersection to the horizontal,

Fig 122 Cumulative frequency surve of unst sales of herdware store Illustra toon of transformation of percentile equevalents mto dollar unit sales
or unit sales, axis The intercepted value ss then the unit sales equivalent of the percentile Such transformations are shown for all the values given in columns 3 and 5 of Table 121 We could, of course, use the same tecbnique on reverse to transform unit sales values into percentile equivalents
Columns 4 and 5 give us the estimated inference ratios for the umknown unverse μ Note an awkwardness caused by the unequal intervals for μ_{J} We would have been better advised if we had worked out equal intervals We chose the convenient route of using equal intervals for the perceatiles and also round numbers for the

table 122

$$
\begin{aligned}
& \text { Inferences About } \mu \text { Bosed on Percentila Equivalents-for Equol } \\
& \text { Intervals of Hordware Slore Unit Sales Given } \bar{X}=\$ 572 \text {, } \\
& \text { Percentlo Equivoleni }=74, N=100
\end{aligned}
$$

(I)	(2)		(3)	(4)	(5)
π_{H}	$P\left(p \geqq 74 \mid \pi_{H}\right)$	$P\left(p \leq 74 \mid \pi_{R}\right)$	$\pi \%$	I	μ_{I}
470	0000-0000 $=0000$		610-670*	07	S4-48*
545	0001-0000-0000		670-718	25	48-54
610	0044-0011 = 0033		718-763	39	54-60
670	0815-0143=0672		763-794	20	60-66
718	$3588-0109=3179$		794-815	06	66-72
740	$5525-0453=5072$	$5381-0453=4928$	815-830	02	7278
763		3308-0391 $=2917$	830-840	01	78-84
794		1163-0203 $=0960$			
815		$0411-0084=0327$			
830		$0151-0035=0115$			
840		$0071-0018=0053$			
818		0038-0010 $=0028$			
853		$0024-0006=0018$			
860		0011-0003=0003			
870		$0004-0001=0003$			
880		$0001-0000=0001$			

* Loher Lamat Inclusive
percentiles In general we find that we cannot have equal intervals for both the percentles and ther vamable counterparts In Table 122 we show the results of this percentlle equivalent method if we equalize the untit ates ontervals Figure 123 shows the starting point of an attempt to equalize these unit sales intervals We start with equal intervals on the honzontal axis and estimate the percentule equivalents These percentue equivalents become the key figures for estumating probabilities from the binomial tables Table 122 summarizes the calculations A little free-lance interpolating is needed to get the probabilities given un column 2 Otherwise everything proceeds as shown in Table 121

Figure 124 pictures our second inference distribution of μ_{I} The skewness is quite evident, and is in the same direction as the skewness in the sample Thus is as we found it for attributes This $1 s$ the ideal solution to our problem of makang inferences about the un'

Fig 123 Curnulative frequency curve of untt sales of hardipere store Illustratron of transformation of dollar unit sales into percentule equivalents
verse mean of the hardware sales If this procedure were repeated for all possible samples of 100 , we would find that the indieated inference ratios would be almost exactly correct as indicators of the probability that the snverse mean falls within the spectied values The grand mean of all such mferences, however, would likely be a littie less than the true mean This blas is the resuit of uning a prior distribution of equally probable π_{i} 's Since this bias runs towand 5 , and our sample mear is at the 74th percenthle, we would expect our miferences to average out st somethong less than 74 and hence something less than the true mean If our sample mear had been, say, at

Fig 124 Inference distribution of μ_{f} of dollar unat sales of hardmare store Given $X=3572$ PE $y_{2}=74 X=100$
the 30 th percentile, ne would then expect our average inference to be too large hecause it would be pushed upward toward the 50th percentlle We might note that business data generally have positue skerness rather than negatue skerness, and be are more likely to find our inferences with a downward bias than with an upward bias

12.3 Inferences About μ Based On the Narmal Curve Mode!

The use of percentile equivalents to estrmate μ is somewhat tedions It also presumes the availahilty of tables of the hinomal Hence it is much more custornary to use the normal curve model as the basis of estmates Table 123 shons the now famuar procedure for makng normal curve estumates Here ae use cumulative frequencies rather than ordinates of the normal curie The results are essentially the same in ether case We use the cumulative frequences because of the close analogy to the use of cumulature frequencies in Tablc 122 Note the calculation nf d_{2} at the base of the table We ure $N-1$ nnstead of N because ne use sustead of σ We could have converted \& into σ hy the relation $\dot{\delta}^{2}=s^{2} N /(N-1)$ and then used N in the formula for the standard deviation of the sample means The ansters would have been the same This sbort-cert formula is obvously more convenient Note that in column 3 we call $\left(\mu_{I}-\bar{X}\right) / \sigma_{ \pm} t$ instead $n f Z$ as we have done prevously The signuficance of this is made clear when we consuder the prohlem of samples somerhat smaller than 100

TABLE 123
Normal Curve Estimates of the Inference Distribution of the Mean of Unt Sales of a Hardware Store $\bar{X}=\$ 572 s=\$ 761 \mathrm{~N}=100$

\$30	S-27	-353	0002		$836-42 *$	02
36	-21	-275	0030		42-48	09
42	-15	-196	0200		48034	23
48	- 9	-138	1190		3 4-60	31
04	-3	-30	3483		$60-66$	23
07	0	0	5000	5000	6672	09
60	3	39		3483	7278	02
66	9	118		1190	$78-84$	00
72	13	196		0200		-
78	21	275		0030		99
84	27	353		0002		

* Loner Limit Indusve $\sigma_{2}=\frac{\varepsilon}{\sqrt{N}-1}-\frac{\$ 761}{\sqrt{99}}-9765$

In Table 124 and Frg 125 se compare the percentule equita lent estimates with the normal curne estmate The dfference be tween the means of the tro distributions ras caused mamly by our rounding actusties If th were not for these we nould expect the mean baced on the percentiles to be shghtity smatler because of bias toward 50 The ctandard detations are clearly different and the duterence is not caused by younding errors (The dafference betreen the normal curve standard devation of $\$ 75$ and the expected stand ard denation of $\$ 762 s$ cauced by rounding errore) The modified Bayesian estmates tend to have a smaller variance hecruse of in formation supplied by the proor dictribution of equal probabilties In effect there is a pooling of two distributions one the prior disitrs bution of equal probabilites and the other the binomal distribution based only on the sample mformation The variance of the pooled deatribution must be less than the smaller of the tyo vanances of the separate distributions The hnomal detrabition would have a variance that would be the equivalent of S 万 6 Hence the Bayesian esumates must have a varrance less than $\$ 76$

TAStE 124

Comparison of Percentilo Equivalenl and Normal Curve Estimates of the Mean of Unll Soles of a Hardware Store

Percentule Equivalent				Nornal Curve		
(1)	(2)	(3)	(1)	(5)	(6)	(7)
$\mu{ }^{*}$	I_{p}	$I_{p+1}{ }^{\text {I }}$	$I_{\text {p }} H_{1}{ }^{\text {2 }}$	I_{1}	$I_{4} \mu$	$I_{\text {s }} \mu_{T}{ }^{2}$
\$39	00	000	0000	02	078	3042
45	07	315	14175	09	405	18225
51	25	1275	65025	23	1173	59823
57	39	2223	I26711	31	1767	100719
63	20	1280	70380	23	1449	91287
69	06	414	28566	09	621	42349
75	02	150	11250	02	150	11250
81	01	081	6561	00	000	0000
	100	5718	331668	99	5643	327195
Percentile Equivalent				Normal		

$$
\begin{aligned}
\mu_{l} & =\$ 572 & \beta_{l} & =\$ 570 \\
s_{\mu_{j}} & =\sqrt{331668-5718^{2}} & s_{\mu} & =\sqrt{\frac{327195}{99}-57^{2}} \\
& =\$ 69 & & =\$ 75
\end{aligned}
$$

Perrentile Equivalent of Mean $=52$ (Approumate)

- Vudpoint of interval

The percentile equivalent of the mean of μ_{Γ} Is estmated to be approximately 52 for the percentle based estimates It nould be 50 of course, for the normal curve estmates because the normal curve is symmetrical Thus there ss only very moderate sketness in the inference distribution This is a unvd allustration of the effect of increasing sample size on the skeuriess of the distribution of sample means
Whether we prefer the percentule equivalent estimates or the normal curve estimates in a given problem depends on the significence we attach to the dfferences like those shown in Table 124 In many

Fig 125 Corapamson of the parcentle equygient and nomas corve estimates of the universe mean of herdware store unt sales
problems we ind that our notions of consequences are so vague that moderate differeaces in the probabiltues will not make any differences in our deosions anyway Or at least they should not Many people would preter the normal curve apprownations because of their relatwe ease of calcuiation If this sems like a lazy man's rule, we maght emphasize the conservative features of the normal curve estimates Note that the normal curve estamates show greater uncertainty (greater dispersion) than the percentale equivalent estimates Many analysts consider this a positwe virtue In other words, it is apparently better to underesiamate than it is to overestimate what we know This rule is obviously subject to dospute Perapps a more defensibie rule rould be to always try to cstmate as accurately as we cath what we know, with no conserous has toward under- or overestmation

12.4 The + Distribution

In the preceding sectuon we called the ratuo $\left(\mu_{I}-\bar{X}\right) / \dot{o}_{x}$ the equvalent of t rather than of the more farmilar Z We then proceeded to use t an the normal curve table just as though it were Z It is now trae to make the appropriate dstrnction between t and Z

The Assumption of Normelity

Lp to non we have been somewhat loose in our apectication of exactly what datribution we were assuming had a normal distribution We have generally, stated the ditintution of sample means was normal, ether because the unverse itself was normally distributed or because, by the ceotral limet theorem the means uould tend tow ard oormality as N increased We often proceeded to calculate the dufferences between these normally-distrabuted sample meaos aod a constant, such as a bypothetical unverse mean We impheitly assumed tbat these differences would also be normally distributed We now state exphectly that these differeoces nould also be nomally distrbuted if the vanable nere itseli normally distnbuted In fact, we can state that, in general, the subtraction (or addition) of a constant from (to) a vanable does oot alter the distribution of the vanable The subtraction merely alters the orign of measure For example, the distribution of orduary playng cards is rectangular If ne subtract 5 from the value of each card, the resultant distribution 13 also rectaogular
A second step ne ofteo took nas to divide these differeoces by the standard denation of such dafferences If the standard devistioo is known, it is obvously a constant The division of a variable by a coostant does not alter the form of the distribution of that varable It merely changes its unit of measure Thus, if the varable is normally distributed, the ratios of this vanable to some constant is also normally distnbuted

We can now be very spectic about wbat Z really is Suppose ne have a set of sample means, or \bar{X} 's, that are normally distributed If we subtract μ from each \bar{X}, the resultaot differences, or $\bar{X}-\mu$, will also be oormally distributed If we divde these differences by the standard deviatioo of such defferences, or by σ_{k}, the resultant ratios will also be normally distributed We call such ratios Z Hence Z is a normally-distributed ratho Its value to us is that it is independent of the unut of the series bentrg analyzed and can thus be related to a standard normal curve that esn be used for all problems nvolvog the normal curve Thus one table of the normal curve is sufficieot for us We merely tahe our given normally-distributed varable aod transform it into Z In thes way all normal distributions can be transformed into Z We then look up Z in the normal curve table

The Case When of is a Variable

Let us suppose that the standard devation we divde by to get Z is not hnoten We then have to estumate it This estumate mugbt take on many defferent values Hence our ratios of normal devates will be
to a variable rather than to a constant The resultant ratios will not be normally-distributed Hence they are not proper \angle s The exact form of ther distribution depends on the degree to which σ varjes Since σ saries less as the size of sample mereases the evact form of the distri bution of the e ratios depends on the sze of the sample or more specif really on the number of degrees of jreedom in the data used to estumate σ Te call these ratios t

The Notion of Degrees of Freedom

It goes without saying that a conclusion that purports to be based on a certan set of evdeace should in fact be related to that evn dence If re find that we can arnve at a gren conclusion with no reterence to a set of evidence we are justhfied in arguing that the conclusion has nothing to do with the eudence Many of the rules of evidence and the rules of procedure uced in our court aystem qre designed to assure rea onably well that the final decision rill be based on the eudence freely given by the witnesses It is also true that certan procedural rules must be follomed in ctatsicical analy as 2 to prevent us from madvertently act ng as though our conclucions are based on the eudence when in fact they are quite meependent of the evidence It took staistacians quite a few years to learn onlv a fer of the simpler rules to be follored to prevent our promulgating sophisticated noneense in the guse of screntific conclusions from unbiased evdence Sophetteation came from the use of analytucal methods not easily comprehended by the layman and nonsense came from the fact that the methods were so comphoated that they more or less overnhelmed the evidence and dereloped conclusions that
 sion to see how the norst offenses rere committed when we study correlation analysis in a ister chapter
He can illustrate the basce notion of degrees of freedom by re ferring to the problem of attempting to estimate the anthmetic mean and standard devation of a unnerse Suppose we are asked to estmate the arithmete mean from a sughe number ie from a sample uth only one atem in it We cannot possibly give an ansmer unless we know the value of the item in question The arithmetic mean of such a number is the number itself and any conclusion we draw about the mean is necessanily based on the ralue of this item of curdence But suppose we are ached to estrmate the standard denna tron from a sample of one item We can easuly see that the answer is 0 and we can state this unthout knowong the value of the item at all Obuously this must be nonsense The fact is that one atem alone
provides us with ab-olutely no taformation about the salue of the standard devation It tahes at lecsit tue items to give us any infor. mation about the standard devation Howeser, if ether of thece Items alone tella us nothing it must be only the eccond one that tella us something Hence we conclude that the standard devation: baed on $N-1$ items or $\lambda-1$ degrees of freedom
Another way to lood at the problem is to consider what must be done in order to calculate something cuch as the standard demation The standard devistion is measured from the anthmetic mean. We must therefore hnon the mean before ne can calculate the standard devation (This is true even when we ure a method of calculation which short-cuts the mean We may not then actually hoor the mean, hut rest assured that our formula does) The pror calcula tion of the mean "uses up" one of the items of evidence in a sence, thus leaving one ferer tem to prowde evtence about the standard devation If ne then calculate the standard devation, we use up another item, lesuing only $\mathrm{V}-2$ items to tell us something about, as) the chernecs of the data If we have only tro tems to begen nith, we thue nould have no evdence at all about skerness (We can demonstrate that this 15 so by calculating the skemness of a 2atem sernes We find that all such senes have a 0 shenners regardless of the values of the atems)

Thus, if we have ever talked of 'draning conclustons from endence," we nere being more literal than we perhaps thought In a sence ne dren these conclusions from the evdence the same mas ac nould dran a cup of sugar out of a camster Each trme ne dren a conclucion we left less endence, just as each cup of sugar reduced the contents of the canster Eientualig the etidence gets crhausted, just as the canseter does Infortunatelr, it is not as easy to see the evidence donndle as it is to see the sugar disappear We must understand the notion of degrees of freedom to see the evidence doappear Otheruce se mught go on mdefintels drawng conchslons from the evidence We would be hidding ourcehes, of coure and we rould find this out when ne dseavered that our conclusions nere not standing up to the future facts This is nhat a person docs Who drass all sorts of conclustons about human beliawor bated on his erpenence ath one indurdual, who may even be himself
A more technueal explanation of the use of the degrees of fredom notion br statutucians is as follows Suppose we have a sample of N items, the items identified as $X_{1}, X_{2} X_{3} \quad X_{a}$ We calculate the arthmetic mean of the e rtema and ne can non logicill argue that this arthmetic mean was based on a sample of X steme Since we
did nothing in our calculation to fix, or constram the value of any of these A theras we say that the arthmetue mean was based on N degrees of freedom Each tem was free to take on any value whatsoever as far as we are concerned Suppose we now calculate the standard devation of our N items To do this, we must take the mean as a grven, or fired, or specfived, value (various terme can be appled to connote s lack of freedom) The spectication of the mean is the equivalent of the speafiestion of the total of the N items S_{0} we can now write the equation

$$
X_{1}+X_{2}+X_{3}+\quad+X_{N}=N \bar{X}=\Sigma X \text { whth } \Sigma X \text { gwen }
$$

We now coneeve of the X 's being free to have any values whatsoever as far as we are concerned It as mmedately apparent that one of these X^{\prime} 's is not really free as long as we msest that the N items must add to the specised total As soon as $N-1$ of the items have "chosen' therr walues, the Nth atem must take on that value that will make the correct total The Nth stem is tius realiy determined by the values of the other $N-1$ items and by the total It is not free at all
For example, suppose a serres of 20 tems has a mean of $\$ 500$, and thus a totad of $\$ 10000$ Nineteen of the tiems are allowed to take on any values that are defermoned by the evidence-generating process Suppose these 19 stems add to 89300 The 20th must now have a value of 8700 in order to make the total $\$ 10000$

Thas 18 why we say that the evdence avalable to tell us some. thing about the standard devation consists of only $N-1$ degrees of freedon It is useful to recall that the sample standard devation tends to be too small on the average uniess we use $N-1$ insteed of N in its calculation We can now relate this phenomenon to the notion of degrees of freedom
The notion extends beyond the calculation of the standard deviation Consider the prohlem of skewness The coefficent of skewness depends on the pror calculation of both the mean and the standard deviation The spectication of the standard deviation really speaties the sum of the squares of the tems Thus we would now have a serond equation to go with the first one Thas second would be

$$
X_{1}{ }^{2}+X_{2}{ }^{2}+X_{3}{ }^{2}+\quad+X_{N}{ }^{2}=\Sigma X^{2}
$$

We now find that $N-2$ of the items are free to vary As soon as we know these and the spechifed sum and sum of squares, the remannmg two tems are essly calculated from the two equations This
is why we say that the coefficent of skewness is based on only $N-2$ degrees of freedom

We generally use the symbol \boldsymbol{k} to represent the number of con stromits or the number of values that are specified by pror calcututhons The number of degrees of freedom is represented by n and the size of the sample by N Thus ne can define the number of degrees of freedom, n, as equal to $N-h$

The general notion of degrees of freedom extends beyond the simple mathematical case in which we can count them wath little dificulty The notion spphes also to the problem of psychological constramts on the data themselves For example, if subtle psychological infuences cause a respondent or a winess to unknowingly restrict his answers to only certan lamited categones, it would be incorrect to treat the responses as though they were freely grven Unfortunately, we do not have any routine procedures to measure the degree of constraint that has been put on the data Thus it is not unusual to find ourselves using data as though they were "free," except for the cal culation restractions we later mpose, when, in fact, the orginal data were already severely restncted Bus is the term we usually apply to any psychological restrictions re think exist The should not lat the inherent difficulties in measuring the magnitude of this bias deter us from making the attempt If we are deterred, we might find ourselves in the essentally indiculous position of using sophisticated technique on naive data

It might be instructive to speculate on the different interpretations we should put on human behavor that is the result of free choice and that which is the result of coercion For example, if we could plan the memus at the Waldorf Astoria so that there was only an average of 5% waste we could properly qualify as a genulus in the art of satisfying peoples food desires To have as little kaste in serving meals to a military group sould take somewhat less than genus To offer people reol freedom of cholce and to gamble on our abllity to anticipste those chorees is the fundamental challenge of busness It is so much a challenge that most bustnesses find it desirable to expend some effort in the arts of persuaston in order to help people make ther chonces It is not at all easy to separate that part of a consumers preference that was the result of persuasion from that part that was based on a real chooce for the product The more we speculate on such matters the more we realize that the notson of degrees of freedom is closely related to our notnons on freedota an general

The Shape of the t Distribution

Figure 126 illustrates the charactenstae shape of a t distribution in comparison with the normal The essential difierence is that the t is flatter than the normal Thus more of the frequency is at the tails of the distribution The degree of flatness is a function of the number of degrees of freedom, with the relative flatness decreasing as n increases The t becomes normal when n equals mfinty Actually it becomes quite close to normal for as little as 30 degrees of freedom, especially of our concern as mostly with the intertor sections of the distribution
Since there is a different t distribution for each n, we find it too expensive to prowde t tables with as much detal as we have in a norma! table Thas lack of detall has prohably contributed somer hat to the tendency for statusticians to develop some standard criteria

Fig 126 Comparative shapes of normal and l distributions
of risk We mentioned earher the hastorical prominence of the 05 and 01 levels of rask People zust naturally used the criteris that nere avalable in the most popular publications of the t table

12.5 Inferences About μ Based on the if Distribution

Let us return to the problem of controlling the percentage of scrap in a machine shop, a problem ue looked at briefly in Chapter 1 Table 125 shows a sample of 10 actual scrap percentages Column 2 hists the percentages in the order in which they occurred, with the dates given in column 1 Column 4 lists the scrap percentages in

TAELE 125

Daily Scrap Parentagas for a Mathino Shop

order of size We will assume that the time order is irrelevant In other words, we whll assume that the complex mechanism that is gen eratiog scrap from day to day 18 not undergong any systematic changes (Complex mechaoism refers to all aspects of the production process, that is, the raw materials, the machines, the workers, the supervision, etc) We make this assumption only for purposes of expostion It is very likely an meorrect assumptioo, and, in practhee, be do not make it untll we have exhausted our efforts to detect systematic movements This assumption enables us to combioe these 10 scrap percentages into a sangle sample as though all 10 tems came from the same unverse, or generating mechanism
At the base of the table are shown the calculations for the sample mean, the sample standard deviation, the estimated universe standard deviation, and the estimated standard deviation of sample means The first ascue we must face is that of the legimacy of the assumptron that the distribution of sample means of these percentages would be nearly normal Since the sample 18 only 10 items, we nould be somewhat optumstic to rely on the central limit theorem to jusuify this assumption This theorem states that the distribution of sample means tends toward normality as the sample size 13 creases Howeyer, the distribution of sample means starts out, for samples of size one, by conforming to the same shape as the umiverse If the unverse itself is normally distributed, then, of course, the sample means nould be normally dstributed regardless of the sample size The greater the departure of the unverse from normality, the poorer the normal curve is as an estimate of the dustrubution of sample means Unless our sample has at least 50 items prudence requires us to check on this unverse before making the assumption of normaity If we fiod evidence of substantial departure from normality, we are far less confident of our ablity to make reasonably accurate estmates of the desired inference ratios Normal curve estmates nould be obvously crude If we used per centile equivalents to make some allowance for skewness, we mught be better off than with the normal On the other haod, the errors in interpolating for percentile equivalents cao be quite large when we have small samples Uniortunately, we do not have any other easy way to handle the problem
An examioation of the distribution of our 10 scrap percentages as shown in column 4 gives us reasonable coofidence that the universe of serap percentages $1 s$ closely approximated by a normal curve Our sample appears quite symmetrical It also shows evidence of a bunching in the neeghborhood of the sample mean So let us assume
that the distribution of sample means wnuld be quite closely approximated by a normal curve We remind you that this is the distribution that appears in the numerntor of the Z or t ratio, whichever is applicable in a guen problem If thus numerator does not coniorm cloeely to the normal, nether the Z nor the t ratio is very meaningiul

Our next step is to estumate the standard deriation of sample means Two avenues of approacb to this are shorn at the base of Table 125 On the left is sbnwn the sequence which first calculates the standard devation af the sumple, with no consideration beung given to degrees of freedorn. The second step is in estimate the standard deviation of sample means with reference to this sample standard deviation and the number af degrees of freedom
The second avenue of approach is to first estmate the standard devation of the unverse by considerng the number of degrees of freedom This gives us a value of 126% rather than the 119% which ae got for the sample standard deviation itself The second step is then to ure this estrmated universe standard devation and the sample size to deme an estumate of the standard deviation of sample means The tro avenues lead, of course, to the same result of 40%
Which avenue of approach we use is essentally a matter of personal chorce There are strong lngieal arguments for almost net er calculating the standard dersation of a bample In fact, the argument extends to saying that any measure which refers solely to a gren sample is really urrelevant for practical problems We are basically interested in the umerse and on future samples on the other hand, there is a long tradition behind the calculation of sample measures These measures have been defined with reference to a sample Thus it is probably more praetieal to conform to traditional definitions and make subsequent modfications than it is to crate nen defintions that would confuse most people

Nor that ne have cleared amay these prelimnaries, we may proceed to the estimation of inference ratios for varous possible values of the unverse mean of these scrap percentages Table 126 sbows the necessary calculations The routine is preciscly the same as that ne have followed for our normal curve estumates The nnly dificrence is that the probabilities in columon 4 are taken from a t table rather than a normal table The l table is on Appendix G This tabic has been set up somenhat differently from the normal curve table The body of the t table shons the probability nf geting the gren t alne or less Since t has a mean of zero, the probability of a t of z cro or less is 5 There is a different probabilits for each number of degrees of freedom Note that the probabilities in column 4 are calculated

TABLE 126

Estimation of Inference Rutros for Selecjed Values of the Universe Meen of Serap Percentages

(I)	(2)	(3)	(4)		(5)	(6)	(7)
$\begin{aligned} & \mu t \\ & \% \end{aligned}$	$\begin{gathered} \mu_{I}-\bar{A} \\ \% \end{gathered}$	$\frac{\mu_{1}-\bar{X}}{\sigma_{x}}=1$	$P\left(\mu \leq \mu_{1} \mid \bar{X}\right)$	$P\left(\mu_{2} \sum_{M I} \mid \bar{X}\right)$	$\begin{aligned} & \mu \\ & \% \\ & \% \end{aligned}$		
288	-168	-42	00115		-288*	001	000
304	-152	-38	00211		288-304	001	000
320	-136	-34	00394		304-320	002	000
336	-120	-30	00748		320-336	004	001
352	-104	-26	01437		3 36-352	007	003
388	- 88	-22	02767		352-368	013	009
384	- 72	-18	05269		3 65-384	025	023
400	- 55	-14	09751		384-400	045	045
415	- 40	-10	17172		$400-416$	074	078
432	- 24	-6	28165		415-432	110	116
448	- 08	-2	42296		432-4 48	141	140
456	00	0	50000	50000	448-454	154	158
464	08	2		42296	464-480	141	146
480	24	6		28165	480-436	110	115
496	40	10		17172	$496-512$	074	078
812	58	14		09751	$512-528$	045	048
528	72	18		05269	$528-544$	025	022
844	88	22		02757	$544-560$	013	009
500	104	26		01437	$360-576$	007	008
576	120	30		00748	578-502	004	001
592	336	34		00394	592-608	002	000
608	162	38		00211	608-524	001	000
624	168	42		00115	624-	001	000
						1000	998

* Lower Lamit Inclusive
by subtracting the table probability from 1 For example, we find $P(\mu \geqq 576)$ ss equal to $P(t \geqq 30)$ or to 1 - 99252 , or 00748
The consaderable detail in Table 126 add in compuring the t estimates in column 6 sith the normal estmates in column 7 The relative flatness of the t distribution is quite evident, with the tall probabilites somewhat higher than for the normal If we are workung with a problem that is concerned with the extreme tail values, the relative differences between the t estimates and the normal estimates oun be quite critical Note, for example, that the inference ratio in the $320-336$ interval is 4 trmes as large for the t than for

TABE 127

Comparison of Etimoles with Normal Estimates of Inferance Rohion of μ. Given $\bar{X}=456 \%, \bar{\sigma}=126 \%, N=10$

(1)	(2)	(3)
\%	I_{4}	1.
288-3 36*	01	00
336-384	04	03
384432	23	. 24
432-480	44	45
$480-528$	23	. 4
528-576	04	03
576-624	01	∞
	\cdots	-
	100	99

* Iorer Lumat Inclussve
the normal On the other hand, if our problem is not concerned with these extreme values, and/or if apparently precise estimates of probsbilties are meaningless because of uncertamties about consequences, the differences between the t and normal estumates are trual Note the comparisons ahen we broaden the intervals and round the probabilities as shown in Table 127 Very lew ol us nould know "hat to do with differences of thas magnitude Thus we might as nell use the more convenient notmal curte estmates if we find them more convensent.

12.6 Canfidence Intervals for an Estimated Universe Mean

If we have a problem in which we are interested in only certan parts of the distribution of μ, we simply calculate the estimates for those parts For example, if we wasb to develop a confidence range for μ_{I} so that we would like to feel 90% confident that the true mean falls within the interval, we find the salue of μ_{s} below whech 5% of the probability lees and also the point above which 5% of the probsbhity lies It is obvous, then, that there must be 90% of the probabllity between the two points Let us make such an estumste for our scrap problem We nere given a sample mean of 456% and an
estimated standard devation of sample means of 40% A check of the t table for $n=9$ reveals that a t of about 284 will cut off the outer 5% of the probability Thus our 90% confidence limits would be eatimated as $456 \% \pm 184 \times 40 \%$ Thes works out as 382% to 530%
If we had decided to use the normal curve instead of the t, we would get a Z of about 165 This would give us 90% inmits of 390% and 522% Note that tha is a narrower range than for t, just as we would expect
The calculations would proceed exactly the same way for any other confidence coeffictent than 90%

12.7 Testing Hypatheses about the Universe Mean of a Cantinuous Variable

Suppose the production supenntendent of our machine shop has been insisting that the daly aversge percentage of screp should not run more than 400% His argument for this behef is based on what he has learmed about what some competituve machne shops have purportedly been doing and also on what he believes can be acheved on the basss of his own past expersence as a worker and foremsn He notes thst the daly average for this two-week period was 456% What action should he take?
We cannot determine a definutive answet to this question unless we have a reluable consequence matry to combme with our probability estumates, and/or uniess we are prepared to take over the superintendent's job, a task that we are probably not too well qualified for What we can do, however, 18 help the superntendent to develop an answer by estmating for him some of the probabilities that are mvolved
If we have no pror miormation about the standerd deviation of sample means other than that we can derive from the semple, we would have to use the estumate of 40% that we ealculated in \& precedng section We can preture our problem as shown in Fyg 127 Both eurves are of the t distribution for 9 degrees of freedom and for a standard deviatoon of 40% Part A centers the distributron on 400%, the hypothetcal unverse mean The shaded area in the right tail represents the probability that we could get a sample of 10 wth a mean of 456% or more if thrs hypothesis is true Part B centers the dstribution on the sample mean of 456% The shaded area in the left tall represents the probability that the unverse mean

Part A Probabilty distritation of X arcund a gren typothetical μ_{H}

Fg 127 Alternative models for testug hypothess that the unverse mean of scrap pereentage is still as low as 40% despute a sample of 10 with a mean of 456\% (Note Not dramp to scale)
15400% or lower given this sample of 10 with a mean of 456% and a standard deviation of 119% Since these eurves are both symmetricel and identical in shape, the mdicated probabilities are exactly equal Some people would argue that only Part A is a legitumate representation of our problem beeause it is here that we treat the universe mean as a constant (although obviously only hypothetical) and the sample mean as a variable, or as a member of a whole hypothetical famrly of sample means Part B, on the other hand, treats the sample mean as a given constant and the unverse mean as a vanable, that is, a variable in the sense that it could concenably have all hinds of values as far as ue know Since both vers: result in the same answer, we can select etther as our model We prefer the B model generally because it appears to us to be more
consistent with the practucal eharacter of the problem we face, that 15, it treats what me hnow (the sample) as a gry en constant, and it treats what ne do not hoow (the unverse) as though it might have several different values (wbich, of course, it mgint)
In either case ne calculate t and find to be $(400 \%-456 \%) /$ 40%, or -14 if ne use the B model and +14 if ne use the A model The t table tells us that thes cuts off a tall probsbility of 098, or 10 Thus we might say that tbere 18 about 1 chance in 10 that the unnerso mean is 400% or lower, giten thes sample result for a twoweek period If the superintendent has had any other reasons to be concerned about rising serap percentages, he ss very likely to conclude at this time that some steps are neeeasary to try to reduce serap On the other hand, if thas reecnt sample is the first indieation in quite anhile that scrap costs may be getting too high, he might very Well attribute thes sample to a chance occurrence and contmue to act as though the universe mean is no bogher then 400% at the least, however, he eertaniny should be alerted to heep a closer wateh on the scrap pereentrges even thougle lie plans no immediate change in policy

12.8 Pooling Information About the Meon of o Continuous Variable

Pooling Two Semples

It 18 not unusual to find that we have more than one set of evndence about some phenomenon We all sell hnow that the generation of sample evidence is a contnuous process in real life If we are alert, we accumulate this evidence and eontmuously modify our hypotheses about the phenomenon (Modifiation may mean no change in some cases) We faced thas problem on our discussion of attributes There we discovered that the first assue to oe settled is that of decidng Whether the sevelal sets of eudence should be considered as coming from the same unverse, or whether some of the endence supersedes others For example, if the dally average sciap percentage for the tro seeks succeeding those refarred to above tunned out to be 404%, how do we combine this information with the average of 456% we had earher" Do we decide that the scrap pereentage has gone down or do ne decide that the diffesence in the averages was due to chance, in the same sense that re would attribute a poor brige hand following a good hand as due to chanee ratier tinn to a general reduetron of the values of the cards in the dech?

Let us take a look at the probabilites involved in such an issue

As a first approach we might set up the hypothess that these two average scrap percentages did come from the same universe Given this hypothesss, we then proceed to estrmate the probability that a difference of the magnitude observed could have happened by chance We use the familar formula for the standard deviation of the differences betreen two sample means from the same unverse, namely

$$
\begin{equation*}
\partial_{f_{1}-t_{2}}=\dot{\delta} \sqrt{\frac{1}{N_{1}}+\frac{1}{N_{2}}}=\dot{\delta} \sqrt{\frac{N_{1}+N_{2}}{N_{1} N_{2}}} \tag{121}
\end{equation*}
$$

The first sample of 10 resulted in an estimated unverse standard devation of 126% The second sample of 10 yrelded an estimated universe standard devistion of 94% A weighted average of these would be

$$
\sqrt{\frac{N_{1} \dot{\partial}_{1}^{2}+N_{2} \dot{o}_{2}^{2}}{N_{1}+N_{2}}}
$$

Since the N 's are equal in our problem, this reduces to a smple mean of the two standard deviations, or $(126+94) / 2$, or 110% Sub, in Eq 12 1, we get

$$
d_{t_{1}-t_{1}}=110 \sqrt{1+1}=110 \times 447=.49 \%
$$

The appropriate t is $\left(\bar{X}_{1}-\bar{X}_{2}\right) /\left(\partial_{x_{1}-4_{2}}\right)$, or $(456-404) / 49=$ 106 Figure 128 illustrates the situation at this point The curve is

Fig ins Model for testing hypothess that two samples came from unirertes with the same mean (Note Not dramn to stale)

Hg 129 Model for inference distrobutron of duterences between means of two uncerses from which two given samples have been drawn (see Tah)e 12.).
a t distribution for 18 degrees of freedom (9 degrees from the first sample and 9 from the second) The horzontal aus shows differences between sample means The curve is centered on 0 to conform to the hypothess of "no dufterence" The observed difference of $+52 \%$ cuts off the shaded area in the nght tall The probability enelosed by this shaded area is the probability of geting a sample difference of $+5 \% \%$ or more If it is true that these two samples came from the same universe The t table for 18 degrees of freedom shons this probabilty to be about 15
 unlikely that both sampies came from the ame unncorse depends as usual on the consequences of the avalable decisions If re de cide that the samples came from different unverses, thes is the same as deciding that the scrap pereentage has dechned over this tume interval This decision would likely mean that there is no real need for an action designed to lower the scrap percentage If, on the other hand, we decude that the two samples camo from the same unverse, we are very hkely to then decide that the scrap peicentage is running too much above the desired 400% level Tlus sould call for some overt action to lower the percentage Thas mould be a needless action, and possibly a frutless and costly artion, if the percentage already is practucally helow $\mathbf{4 0 0 \%}$
An alternative madel for the same problem is shorn in Fig 120

Here the distribution of differences is centered on $+52 \%$ instead of 0 Thus we are taking the observed dffference as the best estimate we have of the true difference (We are stall assuming that the two unverses have the same vanance even though they might have different means) Thus we find an estmated chance of 15 that the true difference 150 or less Table 128 shows various points of the whole inference distribution of the possible differences between the means of the universes from whoh these two samples came Note that we have centered this distribution on the observed difference of $+52 \%$ This distribution provides us with the best base from which to make any decision about the scrap percentage because it cosers the full range of possibilities
If we decade to pool these two samples as though they both came from the same universe we would get a joint distribution with a mean of 430% and an estmated untverse standard devation of

TABLE 12 g

Inferences About Differences befween Two Unlverst Means of Scrap Porcentago

$$
\text { Given } \begin{aligned}
\bar{X}_{1} & =450 \% \quad \partial_{1}=126 \% \quad N_{1}=10 \\
\bar{X}_{1} & =404 \% \sigma_{2}=04 \% \quad N_{2}=10
\end{aligned}
$$

Denved $\sigma_{d}=\sigma_{t_{1}-t_{3}}=49 \% \quad$ Let $\mu_{2}-\mu_{i}=D_{i}, \bar{X}_{1}-\bar{X}_{1}=d$
(1)
(2)
(3)
(4)
(5)
(6)
$\mu_{1}-\mu_{1}=D_{t} \quad D_{t}-d \frac{D_{i}-d}{\partial_{d}}=l_{d} P\left(l \leqq l_{d}\right) P\left(l \geqq l_{d}\right) \quad D_{t} \quad I_{D_{t}}$

-104%	-156%	-318	00		$-101--78$	01
-78	-130	-265	01		$-78-52$	01
-52	-104	-212	02		$-52--26$	04
-26	-78	-159	06		$-26-$	0
0	-52	-106	15		0	09
06	-26	-53	30		$26-$	52
20	20					
52	0	0	50	50	$52-78$	20
78	26	53		30	$70-104$	15
104	52	106		15	$104-130$	09
130	78	159		06	$130-150$	04
156	104	212		02	$156-182$	01
182	130	265		01	$182-208$	01
208	156	318		00		
						100

110% and a sample size of 20 Table 129 shows the inference dis tribution if we pool these two samples Note the degree to which the merease in information has narrowed the uncertanty about the value of μ We would use narrox er intervals in prachical work in order to provide more detaled probablitities

TABIE 129

> Inference Distribution of Universe Mearn of Serap Percentoge Bosed on Pooling of Two Samples Pooled Mean - 430% Standard Deviohion $=110 \%, \mathrm{~N}-20$

$$
\sigma_{x}=\frac{110 \%}{\sqrt{20}}=25 \%
$$

(1$)$	(2)	(3)	(4)		(5)	(6)
μ_{1}	$\mu_{l}-\bar{X}$	$\frac{\mu_{1}-\bar{X}}{\sigma_{z}}=t_{x}$	$P\left(t \leq f_{t}\right)$	$P\left(l \geqq l_{2}\right)$	μ_{1}	$I_{1 / 2}$
288\%	-1 42%	-568	000			
336	- 94	-376	001		336-3 84	04
384	- 46	-184	041		384-432	49
430	0	0	500	500	432-480	44
432	02	08		469	480-5 28	03
480	50	200		030		-
528	88	392		001		100

Pooling a Pror Inference Distribution with A New Sample

If we find that part of the information to be pooled is already in the form of an inference distrbution, and the other part a sample we can use Bayess tbeorem to pool two sets of information We recall that Bayes's theorem involves calculating the joint probabalities of getting the prior distribution and the second sample This is a tedous operation when apphed to varables particularly here where the small samples require some intricate handing of the degrees of freedom problem Fortunately the pooling of a pror distribution with a sample is the equivalent of pooing the pror distribution with the inference distribution denved from the sample Table 1210 nluustrates the routine
Column 2 shors the inference ratios based on the first ample of 10π th a mean of 456% and a standard devation of 126% Column 3 shows the inference rainos based on the second sample of 10 with a mean of 404% and a standard deviation of 94% Column 4 is

TABLE 1210

Paoling a Prier Inference Distubution with a New Sompla by the Paalligg of the Inference Distributions

(1) HI	$\begin{gathered} (2) \\ I_{1} \end{gathered}$	(3) I,	$\stackrel{\text { (4) }}{I_{1} \times I_{4}}$	$\begin{aligned} & (5) \\ & I_{1} \end{aligned}$	(6) μ_{I}	$\stackrel{(7)}{I_{j} \times \mu_{t}}$
240-288\%	001	002	000			
288-3 36	007	033	000			
336-3 84	045	235	011	05	360%	180\%
384-4 32	229	551	126	58	408	2366
432-480	436	173	085	35	456	1596
480-5 98	229	015	003	02	501	101
5.28575	045	001	000			
576-624	007	000	000			
624-672	001	000	000			
	1000	1000	215	100		4243\%

the result of multiplying column 2 by column 3 thus giving us the joint probabilities of the green μ_{s} values Column 5 is our destred set of pooled inference ratios and is smply the result of proportionately adjusting the column 4 ratios oo they add to I
Since these pooled estumates are based on exactly the same infor mation se used when we pooled the samples ne should get the aame ansmer in both eases If we compare column 6 in Table 120 nith column 5 in Table 1210 , however, we see that the ansmers are not the same The most notable difference is in the means of the two distributions

When we pooled the two samples, we derived an inference distribution with a mean of 430% ds shown in columin 7 of Table 1210 , the mean when re combene the inference distrbutions is 424% Thus it is obvous that the second sample, with a mean of 404%, apparently carned more negght than the first eample, with a mean of 456%, even though each sample had 10 tems
The cause of this unequal werghting is the unequal sfamdard deuations of the two samples We pooled the tro sample standard devations when ne pooled the tuo samples We did this hecause we behered that the best single estmate of the standard devation of the unverse is that based on the information from the tro o samples When we pooled the tro inference distributions, honever, we pooled tuo distributions whech had unequal standard deviatoons The sec-
ond sample generated the inference distribution with the smaller standard deviation beeause this second sample itself had a smaller standard deviation This smaller standard deviation has the same effect as a larger N when two distributions are combined Thus follows from the formuia for the standard deviation of sample means, which is

$$
\sigma_{4}=\frac{\hat{\theta}}{\sqrt{\bar{N}}}
$$

It is obvious that $\hat{\sigma}_{3}$ can get smaller euther because of a smaller $\dot{\sigma}$ or a larger N When we ate given only an mferente disiribution, we howe no way of knoungy what part of the $\hat{\sigma}_{5}$ as due lo $\dot{\sigma}$ and what part is due to N

Which of the tro pooling procedures would we prefer? We would prefer to pool semples and then make inferenees, rather than make inferences and then pool mierences Thus we would prefer the mference distribution that grves us a jomt mean of 430% in this prob lem of scrap pereentages The basis of chore is quite smple lf we pool samples, we can take full advantage of the avalable information about both the sample sues and the sample standard deviations We need to make assumplions about nether If, on the other hand, we pool inference distributions, we can use only the combined effects of the sample sizes and the sample standard devatrons The pooling operation must then make either implicit or expliot assumptions about the separate effects of sample suzes and sample standard de vations Since the findanental assumphon underlying the pooling operation is that the two sets of information came from the some unverse, it is automaticaliy assumed that the two sets have the same standard deviattons Thus any difference between the standard deviations of the two mjerence distmbutions is automatically attributed to dufferences in scmple saze

The Decision to Fool New Information with Old. So far we have glossed over the issue of whether we should pool a prior inference distribution with a new sample The assue is resolved by an analysis of the probablities shown in column 4, particularly by the total of such probabilities We referred to this total as the marginal probabilty when we were discussing aitnibutes In this previous work we discovered that these margnal probabilitres enabled us to estimate the probability that the given sample could have come from the possible universes indicated by the pror inference distribution If this probability turned out to be very low, we would be disinelined to assume that the new ssmple really referred to the same universe as did the inference distribution, and hence we would hesitate to pool the two sets of information

The problem we now face ss that of making some general statements about the properties of thus distribution of marginal probabilsties The mean of this distribution nould be the same as the mean of the pror distribution This follows from the well-known fact that the arithmetic mean of all possible sample means will be the same as the mean of the generating distribution The variance of this distribution is the same as the variance of the distribution of differences between means of parted samples from the same unwerse The logic of this is clear if we look behind the inference distribution to the sample information that generated it We would now be considering the difference between the mean of a first sample or a prior sample, and that of a second sample If we were to know the variance of this distribution of differences, we could deduce all pos sible means of a second sample by smply adding the mean of the given prior sample to each of these possible differences The resultant distribution would have a mean equal to the mean of the pror sample and hence also equal to the mean of the inference distribution It would also bave a vanance equal to the varrance of the distribution of differences
The fundamental formula for the variance of the distribution of differences between means is

$$
\sigma_{2_{1}-x_{1}}^{2}=\sigma^{2}\left(\frac{1}{N_{1}}+\frac{1}{N_{2}}\right)=\sigma^{2} \frac{\left(N_{1}+N_{2}\right)}{N_{1} N_{2}}=\frac{\sigma^{2}}{N_{1}}\left(\frac{N_{1}+N_{2}}{N_{2}}\right) .
$$

The σ^{2} is the variance of the unverse, N_{1} is the size of the prior sample, or the sample that underles the inference distribution, and N_{2} is the saze of the second sample In the case of our current problem, we have assumed that the only avalable information is the proor inference distribution and the mean, the varuance, and the size of the second sample Tbe inference distribution is that shown in columns 1 and 2 of Table 1210 A direct calculation from this distribution reveals that it has a mean of 456% and a standard deviation of 47%, or a variance of 220 The second sample has a mean of 404%, a varance of 88 and an N_{2} of 10
It is clear that the only thang we know dreectly that could be substituted in the above formula is the value of N_{2} We could make an estimate of σ^{2} by using the variance of the second sample, or we could make an estimate of σ^{2} / N_{1} by reference to the varance of the inference distribution, which we might call σ_{μ}^{*}. We can estimate the variance of sample means, or of inferences about the unaverse mean, by the formula

$$
\hat{\theta}_{z}^{2}=\sigma_{\mathrm{Ft}}^{2}=\dot{d}^{2} / N_{1}
$$

Since we used the ℓ dstribution with $N_{1}-1$ degrees of freedom to estimate the dessred probabilities in the manner show in Table 126 the resulfant inference distribution will actually end up with a larger variance than σ^{2} / N_{1} because the l distrihution is more dispersed than the normal Thus the realized $\sigma_{\mu_{z}}^{2}$ wall be larger than the one used as a base for calculations Tor example, the varinee used to estumate the infercance distrinution shom in Table 126 wis 16 The realized variance of the Table 126 distribution was approximately 21 Rounding errors and grouping errors pushed this up to 225 when we combmed intervals as shoun in columns 1 and 2 of Table 1210 The greater spread of the t distribution is an inverce function of the degrees of freedorn In fact, If we tahe the varance of the unit normal curve as equal to 1 the correspanding variance of the 1 distribution is $n /(n-2)$, wth n berng the number of degrees of frecdom With a sample of 10 , we would have 9 degreces of freedom, and $n /(n-2\rangle=9 / 7$ If we muttiply 16 , our ongmal variance by $9 / 7$, weget 206 a result that compares reasonably well whth the realized varance of 210 Actually we would expect the calculated realized variance to be a little larger than espected because of grouping error in the calculation of the varance from a frequency distribution
Thus we can use $\frac{N_{1}-3}{N_{1}-1} \sigma_{w_{1}}^{2}\left(\right.$ same as $\left.\frac{n_{1}-2}{n_{1}} \sigma_{\mu_{1}}^{2}\right)$ as an estumate of $\frac{\sigma^{2}}{N_{1}}$
We are still left with the problem of estimating N_{1} The only possible approach to this problem is to assumo that the unbiased varinace of the pror unknown sample was the same as the unblaued vanance of the second sample We thus replace o σ^{2} with $\sigma_{2}{ }^{2}$ in the equation $\left(N_{1}-3\right) /\left(N_{1}-1\right) \sigma_{\beta_{f}}^{2}=\sigma^{2} / N_{1}$ and solve for N_{1} A inttle smple algebra results in an N_{1} of $\sigma_{2}^{2} / \sigma_{N_{I}}^{2}\left(N_{2}-1\right) / N_{2}+3$ If we then suhstitute this estimate for N_{1} m our basic formula for the varnance of differences we get the somewhat formidable-looking

$$
\sigma_{3_{1}-f_{2}}^{2}=\sigma_{n_{1}}^{2} \frac{N_{2}+3}{N_{2}}+\frac{\sigma_{2}^{2}}{N_{2}} \frac{N_{2}-1}{N_{2}}
$$

This formula is not quite as bad as it looks The left-hand term 18 simply the variance of the inference distribution with an adjustruent this adjustment ratio approaches 1 as N_{2} mereases The right-hand term is the variance of sample means based on the variance of the second sample also with an adjustment Also note that this adjustment ratio approaches 1 as N_{2} mereases

We are now in a position to substatute the appropriate values in the formula and thus make an estimate of $\dot{\delta}_{1_{1}-f_{4}}^{2}$. If we do this, we obtain

$$
\partial_{t_{1}-x_{1}}^{2}=225 \frac{10+3}{10}+\frac{884}{10} \frac{9}{10}=372, \quad \text { and } \quad t_{2_{1}-R_{2}}=61 \%
$$

Now we can estumate the probability of obtanngg a second sample of 10 with a mean of 404% or less, given our inference distribution based on a first sample whth a mean of 456% Our 1 satio is $\left(X_{1}-\bar{X}_{2}\right) / t_{t_{1}-t_{v}}$ or $(456 \%-401 \%) / 61 \%$ or 85 The L table for 9 degrees of freedom reveais that this point cuts off about 21 of the tall of the t curve * Thus we estumate that there are about 21 chances of getting a second sample mean of 404% or lower, given this particular prior mference distribu tion Hence the hypothesis that thas sample came from the came universe as this mference distrbution seems farty reasonable, unless the consequence matrix is rather unusual or unless there are other rea sons to doubt the hypothesis Given the acceptability of ths hypothesis, we are now willing to pool the two sets of information

12.9 Estimating the Probability Distribution of Means of Subsequent Samples on the Basis of Information Supplied by a First Sample

Inferences about the means of future samples often must be made from prior sample information rather than from umverse informatoon The problem of going from past samples to future samples is a intie easter with vamables than it is ath atributes We used tho appraaches in our attrbute analyss The first approach involved making inferences about the unverse proportion from the sample information Then we used these unverse mferences to make inferences about future sample proportions The second approach was based on differences between the proportion in the given sample and the possible proportions in the future sample The first approach used binomal estimates of the probabilites, the second approach used normal curve estumates Ideally, both approaches should have given the same answers, however, they did not because of the differences between the binomal and the normal for small samples When we work with vanables, we find that the normal

[^20]curve is the only pracucal bass for est mates unless we wish to get in olved with percentile equvalents
We derve an addtional advantage if we work directly from past samples to future samples by means of dufferences between sample mesiss By so dong ne effectuvely shart cut completely the need to show any concern for the inference distribution of the unknorn unverse mean In addition to being a sasing in labor this short, cutt avoids any philosophical dufficulthes a person might have about, treating an unknown constant (the nniverse mean) as though it were a random variable Whenerer ne hare a chore of methods it is an obvious advantage if we can use a method that provokes the least disagreement
Our basic formula is the now familar
$$
\sigma_{x}^{2} z_{z}=\sigma^{2} \frac{N_{1}+N_{2}}{N_{1} N_{2}}
$$

The only thang we do not know is 0^{2} As ustual we make the best pos aible estimate of σ^{2} In this case the only information we have about σ^{2} 18 that suppled by the variance of the gzen sample Thus we can rewnte the formula to read

$$
\sigma_{2}^{2}=\phi_{1}^{2} \frac{N_{1}+N_{2}}{N_{1} N_{2}}
$$

Let us now apply these procedures to our example of the scrap per centages Our first sample had a menn of 458% a σ of 126% and an N of 10 What kinds of inferences might we row make about the mean of a subsequent sample of eight items assum ng of course that the second sample came from the same unverse as did the first $\# \mathrm{We}$ first specefy that the mean of this inference distribution will have tbe same mean as does the first sample We estmate its variance by substituit ng the appropriate talues in our formula Thus ne get $\dot{f}_{x}^{2} x_{2}=$ $159(10+8) / 10 \times 8=35$ Hence $\sigma_{z_{2}} x_{3}-59 \%$ We assume that a normal approxmation is reasonahle and thus we use the $t \mathrm{~d}$ stribu tion to estimate probabilties because we do not know the standard deviation of the univesse We have 9 degrees of freedom to work with (At first glance it may appear that we have 17 degrees of freedom However the hey fact is the number of degrees of freedom on whach we base our esthate of the standard devation Note that ne have ninforma tion about the standard devation onlf from the 10 atems in the first sample We have no uformation at all from the second sample Everything we say about the second sample is based solely on infor mation suppled by this first sample)

table 1211

Inferences Aboul Mort of o Future Sample of 8 Items

Based on a Past Sample of 10 ltems

Given $\bar{X}_{1}=456 \% \quad \sigma_{1}=126 \%$
Derved $\sigma_{i_{1}-f_{7}}=59 \%$ (see text)

(1)	(2)	${ }^{(3)}$	(4)	(5)	(6)
\bar{X}_{I}	$\bar{X}_{I}-\bar{X}_{I}$	$\frac{\bar{X}_{I}-\bar{X}_{L}}{\bar{d}_{i_{1}-t_{1}}}=1$	$P\left(\bar{X}_{1} \leqq \bar{X}_{I}\right)$	$P\left(\bar{X}_{2} \leq \bar{X}_{I}\right)$	\bar{X}_{I}
	$P\left(\bar{Y}_{I}\right)$				

144%	-312	-529	000		$144-192$	001
192	-284	-447	001		$102-240$	002
240	-216	-366	003		$240-288$	007
288	-168	-285	010		$288-336$	027
336	-120	-203	037		$336-384$	090
384	-72	-122	127		$384-432$	219
432	-24	-41	346		$432-480$	305
456	0	0	500	500	$480-528$	219
480	24	41		346	$528-576$	090
828	72	122		127	$576-624$	027
576	120	203		037	$624-672$	007
634	168	285		010	$672-720$	002
672	216	366		003	$720-768$	001
720	264	447		001		
768	312	529		000		1000

Table 1211 shows the now famular calculations necessary to develop an inference distribution, in this case for the means of a subsequent sample based on information suppled by a prior sample

12.10 Inferenses About the Standard Deviation of a Continuous Variable

So far we have concerned ourselves only with the mean of a distribution There are occasions when it is desirable to make some estumates of the degree to which indirdual tems vary from each other For example, an automobile battery manufacturer is not only interested in the aterage life of his battenies, he is also interested in the umformtty of the life of mdvidual batteries If the manufacturer guarantees his batteries for 24 months, and if the average hife of the batteres is 28
montbs, there mught stlll be a large proportion of clams for "shorthife" if there is wde vaniataon in the hes of endivdual batienes in fact, there are many problems in wheb unformity, or dependability, or stablity of performance is of sufficent mportance to cause us to tolerate somo defieneng in the aicroge in order to achreve gredter unformity Thes is particularly true with respect to individuals who are worhing as part of a team effort A person whots very good when he is good, and wory bad when he is bad is frequently not as valuable as another person who is almoct never very good or very bad
In Tig 1210 se shos in Part A the capected distribution of random sample standard doutuons drawn from a normol unserse the unverse standard devation is 126% and oll passble samples of 10 tems have been presumed to be drawn Note the postive shewness The eustence of posituce shenness 19 os we would expect A below a erage value for a sanple standard devation is restricted by a floor at 0 an abote acranc value faces no uarb restriction Hence the sample standnrd devation has more room to wonder in the plus drection thon it does in the mmus direction The anthmetce mean of thes distribution is i 10% Thus the mem of the sample standard dennations is less than the standard devation of the unsere This is the same phenomenon

Fig 1210 Distrifutian of sampie standard devations and sampie vanamess (Fee Table 1213)
we have encountered prevously If we multiply these sample standard devations by $\sqrt{\frac{2 N}{2 N-3}}$, or by $\sqrt{\frac{20}{17}}=1085$ we would get a mean of 126%
Part B of Fig 1210 shows the same distribution as Part A except for the use of the tarance, or the sguare of the standard deviation, along the honzontal axis We find it much more convenent to work wuth this distribution than wth that of the standard devistion In fact, in this case we first calculated the distribution of the varance and then derived the distribution of the standard deviation The greater convenience arses because the distrbution of sample vanances from a normal universe conforms to a well-known model distnbution called the ch-square (χ^{2}) distribution

The x^{2} Distribution

In Chapter 8 we discussed the problem the president of the Smoothies Co had in making a decision about market share of Smoothies The avalable facts were a random sample of 100 conpreferences for cereal which showed 28 preferring Smoothies Ine president was concerned that the market share had fallen below 30% At that time we made some estumates of the probability that a sample of 100 could show only 28% or less preferring Smoothies when the universe actually had 30% preferning The normal curve estumate yielded a probability of 33 We now approach the problem from a slightly different point of veer
 the possible responses a person might make to the question of whether he prefers Smoothies We assugn a value of I if he says he does and a value of 0 if he says he does not. Column 2 , headed by f_{0} (observed frequency) shows the number of peaple who said yes and the number who said no Column 3, headed by f_{n} (hypothessed frequency) shows the number who nould have saad yes or no if the hypothesis of a uniterse preference of 30% is true Note that both columns 2 and 3 add to 100 , the size of the sample This is a neeessary condition of the analysss, namely, that the total of the actual sample frequencies must be the same as the total of the hypotheszed frequencies This condition mposes a restriction on the freedom of the hypothesszed frequences to vary Note that if we hypothesize that 30 of the people should ssy yes, re have automatically and at the same time sald that 70 of the people should say no sumply because we have imposed the condition that the total of yesses and

TABLE 1212

Celculation of χ^{2} for Hypathesss that Brend Share is 30%, Given e Sample of 100 with a Share of 28%

(1)	(2)	(3)	(4)	(5)	(6)
\bar{X}	fo	f_{H}	$f_{0}-f_{H}$	$\left(f_{b}-f_{g}\right)^{2}$	$\underline{\left(f_{0}-f_{H}\right)^{2}}$
				$\left({ }_{6} \sim f_{B}\right)^{2}$	$f_{\text {II }}$
1	28	30	-2	4	183
0	72	79	2	4	057
	-	-	-	-	-
	100	100	0	8	190

Degrees of Freetom $(n)=1$
Probablity of a χ^{2} of 100 or larger is 66
Probabilitv of a sample proportion of 28 or less is 88 ($1 / 2$ of 66)
nos must be 100 This condition is the basse of our saying that these data have only one degree of freedom even though we bave two sets of frequencies to compare
Column 4 shows the dufierences between the actual and hypothesized frequencies The algebrace sum of these is necessarly 0 because of the condition of the equality of the total frequencies Thuss the aigebrace sum of these dufierences cannot be used as an nadication of the degree to which the actual frequencies dhfier from the hypothe sized frequencies If we ignored the signs of the differences, the resultant sum would reflect the over-all degree of difference Unfortunately, to lgnore the signs is to create smme very awkward mathematucal problems Hence we prefer to solve the problem of sigus by squarng the dufferences thus makmg ali the sigas posisive (This is exactly how we solved the problem of signs when we talked about the problem of measurigg the varaston withon a grvers serzes, a solutuon which led to the development of the standard devration as a measure of variation) The sum of the squared dafferences defintely does reflect the degree of dufference between the actual and hypothesized frequencies Here we have a total if squered differences of 8 If we had hypotheszed frequencies of 32 and 68 , we would have deruved a total of 32

If we wished, we could now analyze this total difference shown in column 5 We could calculate the prababinty that a difference
of this magnitude or larger could have occurred by chance even though our hypothesis is true This hind of analysis would be comphicated, however, by the fact that it would have to be particularzzed for this problem The resultant probability distribution nould fit only the case in wheh we bad an hypothesss of 30 and an N of 100 Various avenues could be selected to develop a generalized distribution that could be used to solve all problems, in the same way in which we are able to use the generalized normal distribution The most convement way currently avalable is that shown in column 0 Here the squared difference of column 5 is divided by the hypothesszed frequency This has the effect of making the result undependent of the particular magmtude of the frequences The sum of these ratios in column 6 is what ne define as x^{2}
The x^{2} distribution has the very important property that it is specified entirely in terms of n, the number of degrees of freedom ia the analysis For example, a given x^{2} distrabution has a mean of n a standard deviation of $\sqrt{2 n}$, and a coefficient of skewness of $\sqrt{2 / n}$ The fundamental assumption underlying the χ^{*} distribution is that the distnoution of diferences betueen actual and hypotherzed frequencies is normal Thus it is assumed that the -2 shorn in the first ror of column 4 is only one of a normally distrouted set of such differences The same assumption apples to the +2 , and, of course, correspondingly to any other differences if our problem had meluded more than tro sets of differences In our problem ne knos that thrs assumption is not strictly satisfied because these column 4 differences are actually binomally distrouted Hosever, we also know that, with a sample as large as 100 and with p not too far from 5, we rould find the normal curve to be a reasonably close approximation to the binomal This assumption of normality is what causes us to suggest that one should use the χ^{2} distribution $\begin{aligned} & \text { nith extreme caution }\end{aligned}$ unless (1) the generating universe is normal or (2) the frequencies in the varnous cells are moderately large, thus giving us some assurance that a normal approximation is reasonable
The χ^{2} distribution has very large positne sherness if $n_{1 s}$ mall This skenness dechnes as n increaces, as can be seen froin the faet that the coefficient of skewness $=\sqrt{2 / n}$ In fact, the x^{2} distribution approaches the normal distribution as n increases indefintely Many analysts have adopted the duding line of $n=30$ as the point belon which they use the speefic x^{n} as an estunator and above which they use the normal curve Figure 1211 shons some χ^{2} distributions for selected n .

Fig 1211 The χ^{2} distributhon for selected degrees of freedorn (n)

Let us now return to Table 1212 and complete our analysis The x^{2} in Appendix F tells us that with $n=1$ a χ^{2} of 190 or more could occur by chance about 66 of the time But this moludes not only the case where the sample f_{0} is less than the hy pothesized f_{a} but also the case where it is more than the hypothesized f_{H} For example, we would also have had a x^{2} of 190 if f_{0} had been 32 Thus, since in our problem we are concerned with the fact that f_{0} is less than f_{H}, we must cut the probability of 66 in balf, giving us a final probability of 33 that we could get a sample of 100 with a p of 28 or less if the universe had a proportion of 30 (Thes probability of 33 is exactly the same answer we got when we used the normal approxmation in Chapter 8 It should be because the fundamental assumptions are precisely the same In faet, the normal curve approach and the x^{2} approach are fundamental y the same, with the first working with normally distrbuted vamations and the second working with the squares of normally distrouted vartations In many problems, like this one of market share, we choose betreen them as a matter of taste and as a matter of avalablity of tables Normal curve solu-
thons are more commonly used because of the rather general avall ability of the normal curve table)

The Use of the x^{2} Distribution to Moke Inferences about the Stondord Deviotions of Randam Samples

We now return to the problem that ongmated the discussion of the χ^{2} distribution, namely that of making inferences about the standard devation of a unverse on the basis of information supplied hy a ran dorn sample We are not ahle to delve deeply into the relationship of the χ^{2} distrihution to the distribution of sample vanances We merely point out that $s^{23} \mathrm{E}$ do conform to a χ^{2} distribution when s^{2} is expressed in standard unts The determination of the appropriate n as a rather straghtforward anthmetical calculation Tbe relationshup hetween the umuerse variance and the arthmetic mean of sanule vanances can be expressed as $X_{z^{2}}=\sigma^{2}(N-1) / N$ If we divide botb sides of this equation hy σ^{2} / N, the right asde reduces to $N-1$, or to n This n can then be taken as the arthmetic mean of the approprate χ^{2} distribution If we tben take any selected value of s^{2} and divide it by σ^{2} / N, we have the value of χ^{2} corresponding to that particular N, z^{2}, and σ^{2}
Tahle 1213 outlines the calculations necessary to develop the disthhution of sample standard devations and sample varances from a normal universe

Column 1 lists arhatranly chosen values of sample standard den. ations These have heen chosen with a constant interval of 12%

Column 2 show the squares of these standard devations, or sample variances
Column $\hat{3}$ mulitplies each varance in colum 2 by 62% The result is the χ^{2} value corresponding to the given 8^{2} The calculation of the 629 as shown at the head of the tahle It is simply the result of dividing N, or 10 , by σ^{2}, or 159 (The χ^{2} formula of $\mathrm{Ns}^{2} / \sigma^{2}$ is the result of divdtng s^{2} by g^{2} / N)
Column 4 shows the prohshility of getting the column $3 x^{2}$ or larger For example, there are 987 chances of gettung $a x^{y}$ of 2.26 or more if the mean expectation is 9 (degrees of freedorn), this mean expettation is the equivalent of the expected mean of the sample varances, or 143, or $(N-1) \sigma^{2} / N$
Column 5 shows the intervals for s^{2} that are the consequence of the arhitranly chosen values of s given in column 1
Column 6 shows the estumated probabilities that sample vanances will fall in the intervals shown in column 5 These probahinties come from the cumulative probahilites of column 4 For example, column 4 shows that there is a probability of 953 that a x^{2} of at

TAELE 1213
Inferentes Aboul Sample Vanances From a Normal Universo

$$
\text { Given } \begin{aligned}
\sigma & =125 \% \sigma^{2}-159 N=10 \\
\chi^{2} & =\frac{N s^{2}}{\sigma^{2}}=\frac{108^{2}}{159}-629 s^{2}
\end{aligned}
$$

(1)	(2)	$\begin{gathered} (3) \\ 6298 e^{2} \end{gathered}$	(4)	(5)	(b)	(7)	(8)
s	s^{2}	$=x_{0}{ }^{2}$	$P\left(\chi^{2} \geq x_{*}^{2}\right)$	8^{2}	$P\left(\sigma^{2} \mid \sigma^{2} N\right)$	$8_{m}{ }^{2}$	$P \varepsilon_{m}{ }^{2}$
36	1296	082	1000	1296-2304	003	1800	00054
48	2304	145	997	2304-3600	010	2952	00295
60	3600	226	988	3600-5184	034	4392	01493
72	5184	326	953	5184-7056	073	6120	04468
84	7056	441	880	7056-3216	120	8136	09763
96	3216	580	360	9216-1 1664	158	10440	16485
108	11664	734	602	11664-14400	170	13032	22154
120	14400	906	432	14400-17424	153	16912	24345
132	17424	1096	279	$17424-20736$	117	10050	22324
144	20736	1304	162	20736-2 4336	079	22536	17808
156	24336	1531	083	$24338-28224$	045	26280	11826
168	28224	1775	038	$28224-32400$	022	30812	06668
180	32400	2038	016	32400-36864	010	34832	03468
192	36884	2319	000	$36864-41616$	004	39240	01570
204	41616	2618	002	$41616-46656$	001	44136	00441
216	46656	2935	001	$46656-51984$	001	49320	00498
					1000		143656

least 326 will occur There ss also a probability of 880 that a χ^{2} of at least 444 will occur Therefore, there must be a probability of 953 - 880, or of 073, that a x^{2} between 326 and 444 will occur A comparson of column 3 witb column 2 shows that $x^{21} s$ between 326 and 444 are the equivalent of 8^{2} a between 5184 and 7056
Column 7 shows the midponnts of the mtervals of column 5
Column 8 is the resuit of multhplying the mapoints of column 7 by the probabilities of column 6 The total of column 8, or 1437 , 18 the anthmetic mean of the $8^{2} \mathrm{~s}$. This is slightly larger than the expected value of 1430 hecause of the blas resulting from using midpoints to represent the mtervals Note that the intervals are skewed and that we have more intervals above the median interval than we have below it

table 1214

Inferences About Sompla Standard Davlahoms (Bassc Date Ioken from Ioble 12 13)

(1)	(2) 8m	(3)	(4) Pr_{m}
36-45	42	003	00128
48-60	54	010	00540
60-72	66	034	03244
72-84	78	073	02694
8496	00	120	10800
96-1 08	102	158	16116
108-120	114	170	19350
120-132	126	153	19278
132-144	138	117	16146
$144-156$	150	079	11850
156-168	162	045	07250
165-180	174	022	03528
180-192	186	010	01800
192-2 04	198	004	00702
20t-2 16	210	001	00210
216-2 28	222	001	00222
		1000	118336

The Bias in s^{7} and in s The fact that the anthmetic mean of the s^{n} is 143^{1} instead of 15915 a demonstration of the phenomenon that we first discovered in Chspter 7, namely that sample vanances and sample standard devations tend to be too small on the average We also remind ourselves that the exact magnitude of this bias for the sample varances is related to N and $N-1$ Thus, if ne multhply each s^{2} by $10 / 9$, we would find that the arthmetic mean of the s^{2} 's nould be 159 , the varance of the unverse Also, if we had used x^{2} ralues of $(N-1) \sigma^{2} / \sigma^{2}$ unstead of $N s^{2} / \sigma^{2}$ in our Table 1213 calculations, we nould have found that the σ^{2} would have averaged 1.59 (except for the manor upwand blas due to use of modoants)

Unfortunately, the exact adjustment that corrects s^{2} for bias is not the same as the adjustment that corrects s for bias Table 1214 Illustrates the source of the difficulty Here we extend Table 1213

[^21]to make the mphed mierences abouts The interval boundaries given in column 1 are the square roots of the interval boundaries guen m column 5 of Table 1213

Column 2 gives the mudponts of the intervals These modponts are then multiplied by the probabilities of column 3 to derive column 4

The sum of column 4 , or 116%, ws the anthmetic mean of the expected sample standard deviations If we square thre mean we get 135 Note that the is not the same as the mean of the squares given in column 8 of Table 1213 , rhuch is 144 Nor would we expect to to he The square of the mean of a set of numhers ss not the same as the mean of the squares unless the numbers are all the same In fact, one of the short-cut formulas for calculating the varrance of a set of numbers is to subtract the square of the mean from the mean of the squares, namely, $s^{2}=\left(\Sigma X^{2}\right) / N-\bar{X}^{2}$

Thus we see tbat the $N-1$ adjustment corrects the s^{2} for bias but It does not completely correct the 8 The anthmetio mean of the corrected $s^{\prime} s$, or the σ^{\prime} s, would still be less than the σ of the unverse The amount by which it would be less is obvously related to the varaance of the distrihution of sample s 's hecause this vamance is equal to the difference between the mean of the squares of 8 and the square of the mean of s, or $\sigma_{s}{ }^{2}=\Sigma \delta^{2} / N-(\Sigma s / N)^{2}$, or $144-135=09$

If we wish to make an unbased estumate of σ, we can accomplisb it approximately by the formula

$$
\sigma_{e}^{2}=s^{2} \frac{2 N}{2 N-3} \quad \begin{aligned}
& \left(\sigma_{\varepsilon}\right. \text { s taken to represent an } \\
& \text { unhased estimate of } \sigma \text {) }
\end{aligned}
$$

If we apply this formula in this case, we get

$$
\sigma_{t}^{2}=116^{2} \frac{2 \times 10}{2 \times 10-3}=158
$$

Thus $a_{8}=126 \%$, the same as the standerd devation of the universe
To summarize this section, we mught pont out that if we are satisfied to make the best stngle estrmate we can of the unverse varance, we can do this by the relation $\sigma^{2}=s^{2} N /(N-1)$ The square root of this $1 s$ not the best suggle estimate of the standard devation of the universe The best sungle estmate of the standard deviation of the unverse can
be approximated from the relation $\sigma_{\varepsilon}=\delta \sqrt{\frac{2 N}{2 N-3}}$
In the next section we consider the problem of making estimates of the eniture unjerence distribution of σ^{2} and of σ

The Use of the x^{2} Disinimution to Derive the Inferente Distribution

 of the Variante and Standard Deviation of the UniverseIt is a very formidahle task to estimate the inference distribution of σ^{2} and of σ The difficultes are caused by the shewness in the distribution of χ^{2} and by the fact that the vanous inference vectors will have different variances This was the same kind of difficulity we had with the hinomial We can only approximate the inference ratios unless N is large enough to make the skewness negligible and the variances practically the same
We can illustrate the procedure and the difficulties by referring to a specfic exampla Suppose we have a sample of 10 with a standard deviation of scrap percentages of 96% Table 1215 shows the cal culations

Column 1 shows the arbitranly selected values of a_{l} We have again used an interval of 12% to faciltate reference to our prceeding work

Column 2 shows the squares of the column I standard deviations
Column 3 shons the χ^{2} values appropriate to the σ_{1}^{2}, the s^{2}, and the N Note that the $\sigma_{1}{ }^{2}$ is in the denominator of the ratio and that at varies as $\sigma_{l}{ }^{2}$ varies Thus we are uang our now familhar technque of selecting pnor hypotheses aboul σ^{2} We then use such an hypothess to calculate the x^{2} for the given s^{2} We assign imphicit equal weights to each of these pror hypotheses Thus we are using the familar Bayes's theorem The final distribution of inference ratios shown in column 6 is the postenor distribution and is a revision of the pror distribution of equal probabilites
Column 4 shows the probabithty that a x^{2} at least as harge as that specified could have occurred by chance
Column 5 lists the intervals for the possble values of $\sigma_{1}{ }^{2}$
Column 6 shows the inference ratio corresponding to each interva! of σ_{l}^{2}

The most interesting inference ratio is that for the interval 14400 to 17424 This is the interval which contains the $\sigma_{1}{ }^{2}$ of 159 at its approximate center If the unverse vanance really were 159 , we would expect a sample variance betwecn 81 and 104 to occur approxmately 14 of the time (See Table 1213 , columns 5 and 6) Note, however, that we assign a probability of only 11 to a umberse varance between 144 and 174 if we are given a sample variance of 92 Ideally these two prohabilities should be about the same The difference ss caused by the skewness of x^{2} and by the vanation of the varance from one inference vector to the next If N were some-

TABLE 1215

Inferences About the Variance of a Normal Universe

$$
\begin{aligned}
& \text { Given } s=96 \%, N-10 \\
& s^{2}=9216 \\
& X^{2}-\frac{N s^{2}}{\sigma_{1}^{2}}=\frac{10 \times 9216}{\sigma_{1}^{2}}
\end{aligned}
$$

48	2304	4000	000	$2304-3600$	002
60	3600	2560	002	$3600-5184$	036
72	5184	1778	098	$5184-7056$	122
84	7056	1306	160	$7056-9216$	180
96	9216	1000	350	$9216-11664$	194
108	11654	790	544	$11664-14400$	155
120	14400	640	699	$14400-17424$	109
132	17424	529	808	$17424-20736$	072
144	20736	444	880	$20736-24336$	045
150	24336	379	925	$24336-28224$	027
168	28224	327	952	$28224-32400$	018
180	32400	284	970	$32400-36864$	011
192	36864	250	981	$36864-41616$	006
204	41616	221	987	$41616-46656$	005
216	46856	198	992	$46656-51984$	003
228	51984	177	995	$51984-57600$	001
240	57600	160	996	$57600-63504$	001
252	63504	145	997	$63504-69696$	001
264	69696	132	998	$69696-78176$	001
276	76176	121	999	$76176-82944$	001
					-
					1000

what larger, sey, about 35 , then this difference would be close to 0
If we had a sample of 10 with a standard deviation of 156% and a varance of 243 , we would find the inference distribution to be more duspersed than we just did for the case whese $s=96 \%$ The contrast is pade clear in $\mathrm{F}_{1 g} 1212$ This illustrates the point that the variance of the mierence vectors varies from one sample result to another Ideally, we would like the variance of the sample

fig 12 it Inference distributions of the standard deviation of a universe based on two different ssmples of 10 tems
variances to be mdependent of the vanance This, of course, would be quite a trick to achreve Since we cannot acheve it, we must be satisfied with only crude approximations to our inference ratios
If we wish to make our miferences for the standard devation matead of for the vanance, we could merely take the square roots of the vanous $\sigma_{r}{ }^{2}$ s Or, if we lelt the need to correct for the modcrate blas, we could multiply each σ_{5}^{2} by $(2 N-2) /(2 N-3)$ before taking the square root Most people do not make this adjusiment because they feel that the estumates are too crude to make such an adjustment practically meanagiul

Normal Curve Inferences Abeut the Standard Deviation When N is large

If the have a normal universe, and if the sample is large, say, 30 or more, the distribution of sample standard devations is approxmately normal with a standard devation equal to approximately $\frac{\sigma}{\sqrt{2 \mathrm{~N}}}$ If
we must estimate the standard denation of the universe, tbe usual case, we obtain $\sigma_{s}=\frac{s}{\sqrt{2 N-2}}$ For exsmple, if we had a random sample of 50 yarn fibers mith a standard devation of breakng strength of 464 oz , we could make reasonably accurate inferences about the standard devasion of the unverse of brealang strength by applyng our usual procedure for normal corve estimetes The mean of such infer-
ences would be approximated by $464 \sqrt{\frac{2 N}{2 N-3}}$, or 471 oz in this
case The standard devation of the assumed normal distribution would be approxmately 47 oz We do vot, carry out the rest of the calculations here We merely note that there would be about 68 chances that the unverse standard deviation falls between 424 and 518 or

Confidence Limits of σ ond σ^{2}

If we are interested in specifyng only parts of the distribution of merences about σ and σ^{2}, we can proceed exactly as we did in seting confidence limits for the mean We can piok out the proper limiting points from the whole inference distnbution, or we can take advantage of special tables which pronde the lurting points for the more conventronally used confidence coeffictests For example, suppose we wshed the 90% confidence lumts for σ^{2} given a sample of 10 with a varnance of 92 (our familar scrap percentage problem) We wish to find the χ^{2} values for $\pi=9$ that cut of the lower 5% and upper 5% of the distrnbution The lower 5% is the point above which 95% of the cases fall The χ^{2} table in Appendix F shows a χ^{2} value of 3325 at the 95% point and a x^{2} of 16919 at the 5% point Our fundmental formula 5 坟 $=$ $N s^{2} / \sigma_{I}^{2}$ Substituting values of χ^{2}, N, and s^{2} and solving for the approprate inference values of σ_{I}^{2}, we get 90% confidence limits of 54 and 277 These correspond qute closely to the values we would get if we interpolated in the inference distribution we worked out in Table 1215
Confidence limits for σ could be derved from the confidence limits of σ^{2} by taking square roots of the σ^{2} As before, we could first adjust the σ^{2} in order to allow approxmately for the bras in σ when it is calculated from σ^{2}

probiems and ouestions

12 I What do we meas when we say that the standard devation of a random sample is a biased estmate of the standard devation of the unt verse?

122 The actual or potentual enstente of skemoss in a dastnbuthoo is alrays a source of some coocera to us becsuse an attempt to allow for thas Ekempess addr consderably to the dufficulty of our work at the same time as such an allowance would mprove our estmates

That do we know about the behnvor of skempest in samples that makes it possinle for us to gracefully compromese our desre to syond deffeult work and our desire to make reasonably accurate estrmates?

123 Our uncertants about a future sample mean is a function of our uncertanoty about the unverse that is prevaling and our uncertanty about the partucular sample that will occut from whatever unverse is pres aling Assume a case of a phor sample of 10 items Then sketch a tree diagram to lllurirate the sources of our uncertanty about the results in a secood sample of 10 tems

Uee sour tree disgram as a reference aod explam in oontechneal lan. guage nity we would expect the vanance of the expected sumple resulta to be about turce the vansnce of our inferenes about the unveree (rote We can say trice only because our first and secood samples have the same size What rould you sub of the second sample were three tumes as Large as the first sample?)

124 Te find some very substantial amalyucal advantages af we mork mith distrubution models that assume that the ranahle in questioo can take 00 any talue whatroeter over an minite sange We then use a frequency curve that shows a conceotration of frequency dear some central point of this infinte raoge and then tails off into lower frequeocies on both sudes of this coocentratio0 srea, with the relstive frequencies ultumaly - so emall (eg, 00000001) that we cas afford to tgnore them in a practical problem

Analyze rhat you know about the followng distributions from the point of wew of deterouning whethef at would be pratical to assume that the distrbutaoo cooformed to this model of a contunuous distribution mith ao unfinte range (Note Keep in mind that the difercoce between a probshilts of 0 and a prohablity of 00000001 is often of 00 consequence)
(a) The distribution of heughts of adult male human bengg
(b) The distributron of unit sales of a Wooirnorth store
(c) The distributioo of stoek prices oo the N Y Stock Exchange (Note

You will bave to face up to the prohlems of number of shares outstanding sod number of shares traded at the particular pnees)
(d) The dastahution of sample p s in samples of 500 irmm a univerce with a T of .5
(e) The distribution of sample ps 10 samples of 5 from a unverse with a rof 05
(f) The distributhon of the dollar volume of sales that mught occur oext week is the oeighborhood super market
(g) The distribution of sutomoble tre sutes that have been tiamfactured in the United States durng 1961

I25 Explan the loge of our coyng that raodom samples from an infinte and conthouous unverse will yehd pais of sample means and sample standard devistioos such that every possihle standard devistioo will appear pared with every posyble mean Furthermore, these pairs will oceur in such relative frequeocies that the orithmetic meon of all the
standard devations ssociated with a given sample mean mill be the same as the arithmetic mean of the standard devatans assockated mith ary other sample mean Thus the inference matnx will show the same varnance for each vectar, bath horauntally and vertieally
126 A study of the length of hife of a partecuar hrand of 75 watt bght bulbs resulted in a sample of 50 hulbs showing an anthmetic mean ife of 840 bours, a pereantule equivalent of thes mean of 64, and a stancised devation of 80 hours
(a) Estamate an uferenee disinbuiton for the unyerse mean infe of these bulbs by the use of the binomad detribution and parcentile equrvalents
(b) Estimate an inference distribution for the unverse meen life of these bubs by assuming a normal distribution of sample means
(c) Compare your results in (a) and (b) and logically account for the directrons of the obsen ed difierences
127 Crincally compate the distribution of 2 (nomal) with the distribution of : Pay partucular atteniron to ble faet that the f distribution is denved from the nomal
128 (c) Suppose 18 month oid Baty Boy A and 18 month-ald Baby Boy B have both had perfect records of never having hroken a flower vase equally exposed in both their bomes Which is the betier behaved of these tro boys if one considers that A bas always bect confined in a playpen when in the room in queston whle B has been alloped apparently un restroted freedom in the room? Relate thes problem to the concept of degrees of freedom
(b) Attendance records chow that dunng a given 10 week perod the statistics course at the local eollege had daty patrozage closer to capacity on the average than did the local roove theater This is evidence that

I The statustics mativetor was putting on a better periomance than the offerngs of the local theater

2 The students would have had to pay therr own See at the theater, an covious detertent to attendanee, wheress the parents generally pard the fee for the statistes course as part of the tutton Thus the students considered the statistics course was free of cbarge

3 The statusucs course was requred for a degree and the instructor kept an attendance recond He also asked questrans on exammations that were based on matenal avalable oply in the lectures

4 The students rareiy had any alternataves that they proferred to the etatistues course

Discuss jour chooce of explaintion(s) an the light of the freedom that the students had to exercise unrestreted choree
(c) Young chaldren have a stroag urge to grove older in a hurry in order to bave greater freedom to make therr own chooess Have you found that you have really had greater freedora so you have gromo older? In your answer cornider such things as

1 Physies restructions on your freedon of choice
2 Psychological, sociological, moral, etc, restrictuons
3 The correlation between your freadom to malie one deciston and the effects of the dectson (and ris outcomes) on your freedom to make other decsions For example, you mutually have freedom to choose your monded career Howerer, once you deade to try for a medical degree,
jou automatically mpose sll sorts of restnctions on jour remaning aval. able chorecs At the same tume, of course, your purgut of your medical studes opens up a whole vista of chocees that afe demed to those who have not made the first choice
(d) If you are trying to understand why you made a particular deenson, would it be mportant to amaly $2 e$ the scope of the freedom you possessed in makug the dection ${ }^{\text { }}$ Might you be unaware of some of the restnetions on your behsvor because these rectnctions are buried an your suhconscous?
(e) Why is it often more accurate to predict a person's behswor on the bass of lus past behavor rather than on the bassis of what be says he is gong to do?
(f) What would be your amusl reaction to a company's finarical budget that assumed a doubling of dollar eales in the next year compsred with this year despite the fact that the past record of the company has never shown a jear-to-jear sales incresse of more than $15 \sigma_{0}^{\circ}$?
(g) A traffic light obviously restncta a petson's freedom of chome as to when be mag go through an intersection, particularly if there is a policeman on the comer On the other hand, the enstence of the light also creates some freedoms that mught not have been avalable if the light Here not there What are some of these new found freedoms? Do you focl better of on halance because the light is there?
(h) All laws and regulations are ohviously restnctise of freedom Othermise there would be no point in the law or regulation However, do lans and regulations aloo creste freedom" Illustrate mith respect to come of the core controsersal lams and regulations eustug or proposed in jour envroumeata! group
(1) What sense, if any rould there be to an "Index of the rate at rhich Amencans have loat their freedom" whech is based on the rate of increace in the number of lams and regulations "on the books" over the jears?
129 Suppose jou bad a sample of only 10 laght hulbs instead of the 50 referred to in Question 126 The mean life is still 840 hours and the standard devation stlll 80 hours We hestate to calculate the percentule equisalent of the mean because of the senous unterpolation problem pre sented when we have onif 10 tems (If me overcome thes hestation, we estumste a percentule equivalent (PE_{7}^{-}) of 58)
(a) Estumate an infe ence distnbution for the mean life of these hulbs by the use of the t distribution
(b) Make timular estimates by the use of the hinomal distnitution and percentile equivalents of the mean
(c) Compare sour estumstes in (a) and (b) Explan the logic of the observed differences (Note You may hare to be mary of reading errors which jou made us sutchung from π_{I} to μ_{I})
1210 Estimate the 80% confidence intervals of the unverse mean based on the folloming carnple ufformation
(a) Sample of 100 eygarette emohers shows a mean daly consumption rate of 147 cigarettes and a stsndsrd deuation of 39 eigarettes
(b) Sample of 10 bolts shows s mean hreaking strength of 1140 pounds and a standard denation of 107 pounds
(c) A sample of 100 people reveals that 75 of them clam to snoke ferer than 15 cigarettes per day (Many of theere people ate nonsmokers)
$12 \mathrm{II}(a)$ A partucular brand of frech malk is clamed to hase a mean
butterfat content of 410% A random sample of 20 quart botties shows a mean of 400% and a stardard devation of 08% What is your reaction to this hy pothess of a unrerve mean of 410% ? Show the relevant proba bhtres
(b) What is the probablaty that the mulk is actually averagng as low as 400% butterfat?
$1212(a)$ An intual study of the life of hght bulbs is perionmed with a sample of 15 bulfos it resulted tn a mean hfe of 790 hours and a standard devation of 146 hours The standard devation mptessed the researchers as too high to provide reinable noforimatuan on the basis of sum a suall sample Hence another ctudy was made of 15 more bulbs This sample yelded a mean of 820 hours and a standard devation of 155 hours

Pool the information of thece two samples and make mferences about the mean life in the unverse.
(b) Make infotences about the mean of the universe from the first sam ple and then pool these merences with the mfarmatron of the second sample in order to make final inferences about the mean of the unverse
(c) Does it make any difference whether fot pool sampies or inferences?
(d) Does your analyes mdicate that it was ressonable to pool thene tho sets of evidence as though they came from the same unverse? Justify your concluson
$1213(\mathrm{a})$ Construct the merence distribution of the differences that might exust between the means of the two unverses from which the ahove two samples of aght hulbs came
(b) What is the probability that the second sample came from a unverse witha hagher mean hie?

What would be your reachon if this probability turned out to be 50 ?
1214 (a) Given a sample of 20 light bulbs with a mean life of 800 hours and a standard deviation of 100 hours construct the inferenee distribution for the expected mean life of a second sample of 30 bulbs from the same untverse
(b) Also construct the miereace distribution for the masa of a second sample of 10,090 bulbs
(c) Contrast your distributions in (a) and (b)
(d) Would you say that a sample of 10,000 bs practically manite on thas case? Why or why not?

1215 Explam the relathonshsp of the χ^{2} distribution to the normal dis tribution Be very careful to cote exactly what datribution ti 15 that the χ^{2} distribution assumes as normal

1216 It is beheved that the stadent body at a given college as split $50-50 \mathrm{in}$ therr preferences for clasees etartung at 8 Am or at 830 km A presumably random sample of 50 students is poiled hy the student news paper Ths sample shows 56% expressing a preference for the 330 start, with 44% expressing a preference for the 800 AM start
(a) Why is it important to report thes survey by refernng to the sample as presumably" random?
(b) Why 15 it important to state that the results reflect the 'expresswos' of preference rather than the preierences theanselves?
(c) Test this 50 hypothess agaunst this sample result of 56 by the use of the following methods

1 By ues of the bnomsl distrabution (Note Would at be a good Idea to tske only ball of the frequency associsted with a p of exactly 56 ? Explan)

2 By use of the nomal distribution Use a mesn of 5 and the approptate associted standard devistion of sample p 's

3 By use of the χ^{2} distrihution
4 Compare jour answers in (a), (b), and (c) Sbould any of these arislers be exactly the sume except for roundrg and/or anthmetieal errors? Explan
1217 Suppose we have a unverse mith a standard denation of $\$ 10$ We then drau all possitle random samples of 10 items each
(a) Make up an inferanee distnhution for szmple tanances (See Tahle 1213)
(b) Make up an unference distritution for sample standard dernations
(c) Calculate the anthmetuc mean of the vanances and of the standard deviatons and compare them with the unverse values and wath each other
(d) Chart each of your inference destrobutions and note any mguficant properties of thece distrinutions
1218 An automoble hattery manufacturer apples an accelerated hie test to a sumple of 20 batteres His results show a mean life of 27.3 months and a standard dernation of 26 months
Make up an inference distribution for the value of the unverse standard devation

1 By the use of the x^{2} distritution What assumption are you making about the distrbution of the individual tems in the unverse? Do you think this is a reasonable assumption to make about the hife of automotive batteres? Why or why not?

2 By the use of the notmal curse
3 Coropare your distnhutions an (a) and (b) and account for the differences
1219 Use the information in Question 1218 and estimate the proportuon of battenes the manufacturer should expect to be returned for partul credit if the hatteries are narranted to give a mumum of $2 t$ months' servce (Note There are st least tro parts to ths prohlem One part is the problem of estumsting the proportion of batteries that will last fewer than 24 months The other part is to estimate the proporion of the owners of uuch defective battenes who all bother to clam a credit)
1220 A second sumple of 20 batenes yelded a mean of 284 months and a standard deviation of 29 months (See Question 1218 for the results of the first sample)
(a) Pool this sample noth the first sample and estimate the inference distrihution for the unverse standard devation from the pooled results
(b) Estimate the probahithy that the second sample came from a un:vere with a higher standard devation than the uns erse from which the first sample came
1221 Given the firt sample with a mean of 27.3 months and a standard deisian of 26 monthe, estimate the probability of getting a second sample of 20 battenes from the some unverse with a standard devistion of 29 months or more

$+13$

Reducing uncertainty by association: the problem and the model for analysis

13.1 The Fundamental Idea of Association

The process of learning by associstion is very faminar and the teohnique simple It consists nif noting that events occur simultaneously, or with a predrotable lag For example, freshening of the wind, distant thunder, snd approsching dark elouds usually presege a rain shower A prudent person can in this way be iorewamed to make any approprete preparatinns

Association and Knowledge of "When"

In Chapter 2 we briefly discussed the varrous kinds of knowledge we might have about an event Anong the three kinds was knowiedge of 'When' an event would occur This 18 exactly' the same kund of knowledge as knnwiedge about asbociation Our zemarks there apply equally well here, and it may be helptul to quickly review the relevant pages

Association and Sarting, or Classtyyng

Television panel programs and meny parlar games are really games of association Success depende on nur ability to assocate the answers to questions with certain classes and subclasses of events The trick is to progressively narmow the range of varation withon a class untal it is practically zero, leavmg noom fir only one event, the one at gssue

We can best illustrate this process by a hypothetices example Let us assume we have a set, or umverse, of several hundred small blocks of wood Each block bas 4 number in it The numbers run
from 0 to 100 , witb a mean of 50 and a standard deviation of 10 The numbers are approximately normally dstributed
If ne are told tbat one of the blocks bas been drawn from the bos that contaned all of them and are asked to estimate the number on the block, what can we say? The best sungle guess we can make is "t0" We could morease our confidence in guessing correctly by estmating a ronge of values, sucb as "between 40 and 60 " We could non feel that we had about two cbances out of three of being correct
Let us next suppose tbat we are permitted to ask and have answered any question about the cbaractenstics of the block except, of course, a question about the number theef So me decide to ask about the color of the block because we have bad some past expenence that indicates that the numbers, to some extent, are assocnted with color In fact, our past experience suggests the following sub. sets, or subumiverses, of blocks secording to the color of the block
Subset of red
Range $=0-40$
$\mu=20$
$\sigma=8$

$$
\begin{gathered}
\text { Subset of green } \\
\text { Range }=30-70 \\
\mu=50 \\
\sigma=8
\end{gathered}
$$

$$
\begin{gathered}
\text { Subset of yellow } \\
\text { Range }=80-100 \\
\mu=80 \\
\sigma=8 \\
\hline
\end{gathered}
$$

We are told that the block is red We can now estumate that the bloch has a number between 12 and 28 with about two out of three chances of being correct Note that knowledge of the color has enabled us to redure our uncertanty (as measured by σ) from ± 10 to ± 8, a reduction of 20 or 20%

We then recall that the blocks have deferent shapes and that the shape is also associated with the number In fact, our past expenence suggests the following subsets of red-square, red-trangle, and red-crrcle blocks

Red-circle
Range:20-40
$\mu: 30$
$\sigma: 5$

We are told the block is carcular, and we can now estumate that the block has a number between 25 and 35 with about two out of three chances of being correct Note that knowledge of shape bas enabled us to reduce our uncertanty from ± 8 to ± 5, or 375 below
what it was when we knew only color Also note that knowledge of both color and sbape enable us to reduce our uncertanity from ± 10 to ± 5, or 50%
Figure 131. shows all the subelasses of blocks we can presently distrugush If we knew additional assocated characterstues of the blochs, we might be able to reduce the uncertanty even further For example, the blooks mught have drferent weights, with the heavier biocks haung the larger numbers We would then subdivide each of the nune color-shape classes mono the approprate color-shape-weight classes We have already carred the मlustration far enough to illustrete the process, so we make no further effort to nocrease our knowlcdge about the numbers on the blocks

Measuring the Extent of Association

Assocuation exists between two events whenever we can make mproved estumates of one of the events from knowledge about the other event For example, we say that there 18 some assoctation between the color of the blocks and the numbers on the blocks because knowledge of color enables us to make improved estimates of the numbers on the blocks There is $n 0$ assoctation between events if knowledge of one tells us notbing about the other For example, knorledge of the color, or of the sutt, of an ordinary playing card tells us nothing about the number on the card Hence there 18 no association between card color and card number (Note, however, there as some association betyeen card color and card surt)
Perfect association exsts between two events when knowledge about one of the events tells us all there is to kzow about the other event. For example, if all the red blocks had 6 's on them, we rould know the number whenever we knew the blook was red
Real-life exsmples of perfect association are practically donexastent, as are real-life cxamples of no association Most practical problems anvolve some intermedate degree of association between events We can quantafy the degree of acsocuaton in many different ways One of the smplest waye is by measuring the reduction in error that occurs when we take advantage of some associated knowledge Let us use the standard devistion as a convenient measure of error (Other measures could be used) We discovered that the numbers on all the blocks have a standard deviation of 10 Thus, if all we know about a block is that it is a member of this set, of blocks, we are subject to an error m the order of 10 as we estimate the number on the block The red blocks have a standard deviation of

only 8 , as do the green blocks and the yellow blocks Thus, if we know the color of the block we are subject to an error in the order of 8 This 18 an error reduction of 2 on \& base of 10 , or a 20% reduction Therefore, it would be proper to state that knowledge oi color enables us to achieve a relative reduction of eryor of 20 We mught call such a result a coefficent of assonation, which we can symbolize by the letter A
Since most problems nvolve several assocoated vanables, we have to use subscripts to clearly adentify what it is we are associating For example, we mught label the ceefficient of association between thock number and block color as $A_{\text {ece }}$, that between nurbber and shape (not shorn in Fig 131) as $A_{\text {net }}$, and that between number and shape, urth color constant, as $A_{\text {ne }}$. The value of $A_{n 0}$ from Fig 131 is (8-5) $/ 8$, or 375 The reason we say color is constant as we add knowledge about shape to color 18 that knowledge about color appears at both levels, thus any change in error from the second ther of cells to the thard teer of cells ss undependent of color We usually apply the term partunl assocuaton to the degree of association belween two varables when another, or other, varable (s) is (are) vonstant We would say that 375 is the degree of partual cssoccution between number and shape when color is constant

Association Works Both Ways

Smoe we were basieally mierested in the numbers on the blocks, we naturally tended to think of the assocciation as helping to cstumate the number If there as en assoccation between number and color, however, there is also an association between color and number, and if we know the number on a block, we also know something about the color of the block
Similariy, we mught bave first sorted the blocks by shape and then by color, obvously endagg up with the same cells an the thurd ther For example, the second tuer mught then have looked as follows

Subset of square Range $0-80$ $\mu .40$ $\sigma .9$

Note that there is less assoblation between number and shape $\left(A_{n}=1\right)$ than between number and color The reverse might as well be true

Association and Causshon

No rea-onable person mould exer argue that the red blocks have small oumbers because they are red, or that the small-numbered blocks are red because they are small numbered The aralable eu. dence cuggests only that red blocks tend to be small-oumbered blocks W bj this ascociation exasts is oot revealed by a simple exsmoation of the ascocation itself II, on the otber band, we were to patot the red blocks green, sod if the oumbers on the blocks sutomatically chioged to larger numbers, we mould have some endeoce that the oumbers nere cau ed bv the color But, if we were only able to obserze tbat green blocks had larger numbers tban red blochs, tre mould onls be able to eay that "green blocks have larger numbers tban red blochs"
We all have ao urge to infer a causal connection from observable evdeoce of association This is perfectly respectable as loog as we recognize that the particular inference is an expreesion of a pervonal opinion, and oot a concluslon that logically follors from the obsersed facts Such inferences are the asme as uoproved theories or hy pothesea If re plan to act oo the basis of such iofereoces, we nould be well adised to sct with caution until additioosl endeoce appears to support our theory about the nature of the causal connectioo
It is sometimes argued that we chould pay no attention to an obsen ed asoctatioo uoleas ne can 'logically explam it," mith "loglcally explain" meaning the eame as "hnon the caures" For example, an ofteo quoted "oonsense association" is that between mosters' salarres and luquor cales It is a fact that munsters' anoual salanes tend to be higher in those commuoties where per capita hatuor consumption is high We should not ignore this fact just because it has appareotly illogical connotations \mathfrak{t} u c confuse assocration wnt causatwon. Thr fact does not necesarily mply that munisters earn high salarnes from the hquor trade, or that monsters eocoursge the consumption of hquor It does not even netessanly imply what most people would consider the most logical explanation, oamely, that people who cao afford to pas high salaries to ministers also have eoough mones to buy liquor The observable fact is just that, namely, an observable fact Whether $u e$ know u hy this fact exusts has oothing whaterer to do with whetber it is or is oot a fact It is never prudent to ignore a fact just because we do not uoderstand it
Statistical anslysis is really a scrence for the analyos of obsenatrons and oot capable of vocovering the causes of observed facts The study of associations between varisbles may stumulate our
magnations as to underlywg causes, hut it camot directly point to the ceuses In effect, we can determme ' what burds floek together" without being able to determine "why they flock together" We leave the latter task to the specialists in the particular area of knowledge movolved, whether it be migratory habits of burds, reactions of employees to a change in the length of the coffe-break, or the effect of color on the reader response to an advertisement, eto

Association Conscious and Uneonscious

Most of our assocrating is at the unconsmous level We develop habits of behavior and response which make it unnecessary to conscoousily think about each of the associated or coordnated events There is much evidence to support the vew that the conscous mind cannot consider more than two or three variables \boldsymbol{a}^{*} a time Since most of our problems require the consideration of many more than two or three vamables, we find ourselves in a serious dilemma if we try to think about a problem We solve the dilemma by a combination of aralyss and expermentation We analyze by breaking the problem into parts, each part presumably having feve enough varrables ior us to mentally handle t, the other parts we temporarily 1gnore We then shift our attention to the othei parts After having surveycd all the parts of the problem, we try to put the parts back together agan, witb more or less sucess The process is not unlike what goes on when we put a complex puzzle together
Expermentation is basically a cut-and try technique We systematically manupulate one varable while attempting to hold the others constant The test of the effectuveness is the outcome For example, if we marease the wise nf onler in our ardvertisements, we would tentatively assume that vanation in the results was attub utable to the color We say tentatively beesuse we are never completely suceessful in holding other factors constant If we are able to perform enough experments, we can often gan additonal confidence in our results hecause the disturbing effects of the other varabies tend to average out This cut-and-try technıque $1 s$ obviously very tume consuming If each of us were restricted to the knowiedge gansed only from our own experments, we would make very slow progress in trying to improve our estimates Fortunately, however, considerable competitive activity is going on As soon as we see one person getting good reswits, the rest of us quickly copy him, or at least as quickly as personal pride and the patent laws will sllow
It is possible to considerahly extend the scope for conscious con-
sideration of several variables by using mathematical tools In subsequent pages we are not able to fully explot these technqques but ne are able to explain some of the fundamentals and point the dree.thons we might follow if ne nere to become more arabitious

13,2 Some Proctical Problems

The fundamental technque used in discoverng and measurng associations is sorting or classifying as shown in Fig 131 Unfortu nately, we find it very dificult to use the technique in that form The daficulty develops becsuse of the need for a large sample of experience to make the technique effective We need the large sample to get a reasonable number of atems in each cell or subset Our example had only three colors and three shapes, and even then πe ended up wth nithe subsets If re desired a minmum of 10 tems in each subset to give us a lar idea of the mean and standard devation of each subset, ne rould have to have a mimmum of 90 tems (Actually we would probably need many more than 90 to give us a mimmum of 10 per cell Items would not occur with equal frequency in each of the cells unless πe were able to control the frequency) Imagne the problem that occurs if ne needed, say, four vamables and five divisons of each This would lead to 54 ultmate subsets, or 625 With tremendous luck re could get two tems in each cell with a sample of only 13501

TABIE 131

Sample of Heights and Wetighs of Adult American Males

Height inches)	Height (pounds)	Height (inches)	Werght (pounds)
64	135	69	158
65	125	70	155
65	140	71	180
66	160	71	195
66	145	72	170
66	122	72	185
67	145	72	210
67	170	73	225
69	175	74	180
69	160	74	195

We solve the problem nf sample saze by using the simple adea that the ramous cells are not completely mdependent of each other We really do not have to callect minmation on es ery ceil to be able to say something intelligent about the utems in that ceil A smple example makes the point Consider tbe problem of the asociation betreen the beight and weigbt if adult American males Let us suppose we bave selected a randnm sample of only 20 men and have measured thear beeghts and weights Table 181 shows the results We then plot these 20 pared figures in Fig 132A (Such a plottung is called a scatter duagram, ar scattergram for short) It seems quite clear to the aahed eye that tail men are in general hearner than short men In fact, the eje almost arreststhly draws in a line to shors how this relationship betn een heught and weight progresses from left to nght Figure $132 B$ shons one poseble line
What is the logic for dramng such a lane? It is smply that experience and common sense suggest that a smooth lue marks the progression from one weight to the next as we let heught macrease There seems to be no logeal reason why the progression should have any plateaus or any retereals If we consider that each meh of height represents a separate subclass for determining the weight of those that fall in that class, we can ure the smooth line as an estmate of the mean weight in each class For example, we estmate that adult American males with a beight hetreen 675 and 685 unches

Fig 13.2A Scater duagram of herghts and weughts of adult 4 mencan males

fig 1328 Seatter dingram of heights and weights of adult Amencan males mith lune of relatuonship fitted visually
have an anthmetic mean weight of 160 pounds Thus this line is really a basis for mterpolating the various mesn weight values for the gren height values
If we wished, we could treat the height factor as a contrumow variable and divde the height groups into en infinate number of groups, each with an infintesimal width It is obvious that most of such cells nould be empty of actual data We fill them in by the use of the interpolation device
The problem of the varation of weight within the height groups is not so comfortably solved as is the problem of determining the maan weght withn the group It is quite obvous that people of the same herght can and do have different weights The umportant issue 18 whether the degree of varistion is the same in all the herght classes For example, suppose we happened to have substantial evrdence that the males 66 mehes tall had a mean werght of 140 pounds and a standard devistion of 7 pounds Would it then make sense to assume that the men 74 nehes tall had a mean weight of 195 pounds and also a standard devations of 7 pounds Most people would naturally expect that the standard deviation of weight whum a class nould increase as the mean weight within the class increased Thus they would expect the standard deviation in the $74-$ noch class to be greater than 7 pounds But how much greater? Would there
le a systematic relationship between the meas and the standard levation, say, something as convemient as a constant percentage elatoonship? For example, given a constant percentage relationship, and given a standard devation of 7 on a mean of 140 , re rould spect a standard devyation of 975 pounds on a mear of 195
Although there are ways to solve the problem of a varmable standrd dewation the methods are outside the bounds of our treatroent lere We use methods which assume that the standard dewathon of ne varable is the same for all values of the other varable This esumption considerably smplifies the arthmetie and usually does ot introduce gross efrors. We do enution, homever, to be alert to ituations where this assumptron nould lead to gross errors

3.3 A Model for Associotion (Correlotion) Anolysis

Any kund of mathematical amalyss of data requres a model to rovide the necessary steps of analysss and the basso of mtelligent iterpretation of the results The ussumptionts underiying the model re the essence of the problem We should almays knor exactly hat they are and exactly in what way they mas not be completely itisfied Othermse, we run the danger of applitng our restits in nost inappropnate circumstances We should have the same sort oi servations about applying an untested mathernatical model as we ould have about taking a trip in an untested arplane that conforms t the model that an eugneer designed

esociated Conditronal Probabsthy Distributhons

Table 132 tllustrates the first step in constructing our correlation ${ }^{2}$ odel The left-hand ssale, labeled \mathbb{X}_{1}, shows values of the dendent wartable, the vamable ne are promarily uterested in estumatg We should not miterpret the word dependent litetally Thas as term that has been appled for years to any variable listed along e vertucal axis We do not rean to mply that the vamable is ally dependent on sometbing A more desenptive term would be e estumated varrable
The horzontal scale, labeled $X_{2 \mathrm{q}}$ shows values of the andependent
'Note the usp of the term comelahon This is the conventronel ame appled the statustical analysis of the associetion between venables We tend to ure * words association and correlation unterchangeably moot of the time Thee rd relatwoshap is also used with essentally the same meaning
variable Again we caution against a literal interpretation it is merely the conientional term for a varable histed along the horizontal anos A more descriptive term for our purposes would be the esth mating variable
The vertacal and honzontal vectors wthin the body of Table 132

TABIE 132
Corralation Model with Equally Likely Volues of the Independent Variable

show probabuty distributions All of these distributions are normal and udentical except for the lateral displacement Each value of X_{2} is associated with a particular probability distribution for vanous values of X_{1} For example, if we were given an X_{2} value of 6 , we would expect to find an associated value of X_{1} to oceur wath the indrcated frequency as shown in Table 133 This is taken from the column vector in Table 132 tbat corresponds to an X_{2} of 6 Thas partheular distribution hes an anthmetre mean of X_{1} of 95 If we look agam at Table 132, we note that $X_{ \pm}$bas a mean of 105 when X_{2} equals 7, \& mean of 115 wben X_{2} equals 8, ete If we wished, we could generaluze this relationship by using an equation it would be $\bar{X}_{1}=35+10 X_{2}$

Note that thas equation gives us the mean of the possible X_{1} values that might be assocrated with a given X_{2} If we wighed to estmate indrudual values of X_{1} that might be associated with a given X_{2}, we would have to allow for the varation withen each vector All of these vertical vectors have a standard deviation of 2 Thus, if we were given the informetion that X_{2} had a value of 6 , we would be 68% confident that the sssociated ialue of X_{1} was between 75 and 115 (Recall that these probablity distrabutions are nomal)

TAELE 133

Expectod Value of X_{2} when X_{2} is Equel to 6

Probability, or
$X_{1} \quad$ Relative Frequency

17	000
16	001
15	005
14	017
13	044
12	092
11	150
10	191
9	191
8	150
7	092
6	044
5	017
4	005
3	001
2	000

Let us now return to Table 132, noting addtional mportant features The sum of each vertical vector is 1000 Here $1000{ }_{1 s}$ really 1000 in terms of probsbility, or relative frequency Thus we are treating the X_{2} values as equally likely or as given informa tron Each of the associated probability distributions is called a conditional probability distribution because each distribution is ap plicable only on the condteon that the given λ_{2} salue prevals We shortly look at uncondituonal probability distribut ons
What we have just said about the vertical vectors apples equally well to the homzontal vectors Note that these also sill add to 1000 or at least they would if we extended the table to include more verth cal vectors We have enclosed $\mathbf{1 0 0 0}$ in quotes in those cases that do not actually add up to 1000 in the table but which would if the table nere extended It so happens that the honzontal vectors also have a standard devation of 2 It is of course not necessary for the vertical and horizontal vectors to have the same standard devation For exacople if the unit of X_{1} were halved the standard deviation of the verucal vectors would become 4 What is important is that the honzontal vectors are also normally distmbuted This as a direct consequence of haung the vertical vectors normally distmbuted and also having the tho vartables related in the form of a straight line (Note the dagonal straight line rumning through the means of the vertical and also the horizontal vectors) If the relationship had been curved and many selationshups in practice are curved no such simple relationship exists betreen the vertical and honzontal rectors and analysis becomes a bit more complex

The Stereogram

Another useful way to proture the model shown in Table 132 w in the form of a stereggram or a threc-dimensional structure Figure 133 shous how Table 132 looks if we shon the probabilutes as a third dmension

Associated Unconditlonal Probablaty Distributions

Unless we have expermental control over our data we do not find associated distributions appearing in the form shown in Table 132 The values of the mdependent vamable (X_{8}) are generally not at all equally likely For example of we select a random group of men in order to correlate tber beight and neerght, we nould tend to find more men near the average height than we rrould men at the extremes of height The same would be true of therr weight of course

Fis 133 Corrolation model I Conditional dstrabution of X_{1} (Photosraph bs Eerl Comeeg)

So let us modry our model of Table i3 2 by assuming that the varrous values of X_{2} would occur with the probabilites gren by a normal distribution We simply muituply each vertical vector in Telle 132 by the probabinty that the giver X_{2} rould occur For example, let us assume that an λ_{2} of 8 has a probability of 0922 of occurang We hence multuply each probabilty in the $X_{2}=8$ vector of Table 132 by 0922 The result 15 as shown in the $X_{2}=$ 8 " vector of Table 134 The other vectors are simularly modified from those gives in Table 132
The probabilities are carried out to four demal places to make at possible to see some of the detall near the talls of the distributions It might be heipiful to gain perspective for studying Table 134 if we look at Tig 134 There we shon the stereogram of Table 134
All vectors are normally distnbuted, whether we consider the vert1cal vectors or the horizontal vectors The truth of thes statement follows dreetily from the fact that the vectors in Table 132 were normally distributed, and the only change we made from Table 132 to Table 134 nas to multaply each verical wector by a constant; an

TABE 13.4

Correlation Model II-Uncondmional Associated Probabilities

2
Total 00100170 0222 130 00020080
1 Freqkency $0052 \quad 0436 \quad 1802 \quad 1008 \quad 0922 \quad 0170 \quad 0010$ (10000)
$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 5 & 4 & 8 & 6 & 7 & 8 & 0 & 10 & 11 & 12 & 13 & 14 & 15 & 18 & 17\end{array}$ X_{i}

Fig 134 Correlition Model II Uncondinional distrputions of λ_{1} and X_{c} (Photograph by Herb Cometa)
anthmetical operation wheh in no way alters the shape or form of the distribution
The distribution of the sums of the vertical vectors is also normal (Thece sums are shown ajong the horizontal ans just alove the X_{2} values) 'This follows dreeth from the fact that we assumed that X_{2} sould occur wth normally distributed probabilites
The distribution of the sums of the horzontal vectors is also normal (Thece sums are shown in the extreme right-hand column) This is the disiribution of X_{1} we would expect if ue had no information about X_{2} We have more to say about thas dastribution later
The distribution of the dugonal sums is also normal (These sums are slown in the box in the louer left section of the table They are the result of adding the probablitises along a line parallel to the line shox agg the mean values of X_{1} for the varous given values of X_{2}) The probabilities below the main dagonal are not shown because of lack of space They would be an exaet marrored mage of the probabilites shown The faet that these diagonal sums are identical
with the verical sums is a conacidence with this illustration It is not genersily true
Note that the marginal probabilites and the diagonal sums add to 10,000 This is really 10000 , witb the decimal point ommitted for conveurence Thus re find that all of the probabilites together add to 10000 , as any proper probability distribution should Each cell in the figure gues the unconditional probability of finding a partucular item occurning in the given cell For example, we find that there is a probability of 0138 of finding on X, of 12 parred mith an λ_{1} of 12 prounded re have no prior mformation about either X_{2} or X_{1} Contrast this with a probability of 044 of finding an X_{1} of 12 if we already know that X_{2} equals 12 The latter is the conditiona! probability of X_{1} guen knowledge of X_{2} and is found in the approprate cell of Table 13.2
(The dashed line diagonal on Table 134 is the line that passes through the means of all the horzontal vectors in contrast to the soldd line diagonal which passes through the means of all the vertical vectors If we were interested in estrmating λ_{2} from given values of X_{1}, be nould be interested in the dached dragonal Since ne are not interested in such estimates, we ignore this hine through the means of horzontal vectors in this discussion We merely point out that these tro dagonals nould concide if the association were perfect They rould be at right angles to each other and parallel to the respective axes if the association sere 0 In an exeresse at the end of the chapter, there is an opportumity to speculate on the logic of these statements)

Compering the Two Correlatan Models

It is useful at this stage to review the properthes of the correlation models and tie a fer ends together

1 Both models assume that the probablittes are normally distnbuted for all rele ant distributoons This is the sumplest model ne know how to work with If ne do not uce normal distributions, we bave substan tial difficulties in trying to estmate the probabilities in the varous cells and vectors If our actual distributions are not strietly nomal, and they rarely are, we generally accept the resultant crudites in our estumates unless the departure from normal is so great thast entical distortion occurs If such distortion would occur, n , have several asentien open to us One is to try to Cransform the data by the use of loganthms receprocals, equare roots, ete into distributions that are more nearly normal than the orgral data The use of transforma thons invoives some mathematical and theoretical difficultes that are
heyond our present scope Another way is to abandon the mean and the standard deviation as mersung devees and use medians and quartile deviations A thurd avenue is not to hother wnth defining the nature of the association between two varnables Thes is not recommended unless the riole problema is co trival that we can justify any work on it 88 only useful exercise to tone up our mental muscles
2 Both models have vertical vectors so that the standard devations are all adentucal (The standard devations of the bonzontal vectors are also equal) Thes is a very critical assumpton, even more critical than the assumption of normality It is thas assumption that makes it possible to combine logically the separate bits of information we might have on the way the various X_{1} values devate around them mean for the given values of X_{2} This as the assumption we referred to when we discussed the sample of only 20 parrs of belghts and weights If, for example, tall men show greater welght vamation than short men, our problems are suhstantally magnufied and we would find these models somewhat orude in their ahulity to approximate reality We are not able to coosider such additomal complaxitus in the introductory discussion
3 Eoth of these models assume that the relationship hetween the two varsahles is linear, that 18, a straught bue Athough it is likely true that there 88 no such thing se a bnear relationship in real life, it 15 nsvertheless true that a straght line does come tolerably close to most of the curviluesr relationships that we do find Figure 135 illustrates a few of the types of curves that might occur Parts A and B show two types that oceur farrly often In A the true relationship is rather steeply positive for low values of X_{2} and tends to fatien out B shows the same thing except that tha relationshup is negative (low values of X_{2} assonated with high values of X_{1}) The emportant point ahout both of these is that the true relatoonship apparently never shifts from positive to negative, or nee versa, as does the relationship in Part C In Part C, it is quate clear that a straght line misses the truth rather badjy In facts it indicates no relationehup wheress actually it is obnous that there is a clear relationship
One of the real dangers in uising straight lines to approximate curves is the temptation to extrapolate the line beyond the range of experience as shown hy the dashed extenson of the line in Part A It 15 ohvous that such an extension rather quackly leads to mdaulous answers This is the kand of nonsense we can get into if we let our mathematics uee us instead of our using our mathematics
It is, of course, possble to use curved lines in our analybis We, in later pages, undicate hniefly how to do this However, most of our attention is directed toward leaming bow to work with stragith bnes
4 Practical correlation analysis anvolves working with ohservations that fall into a model hke that shown as Model II, the model whth unconditional probabilities, and then convertang our resulta into a model like that shown as Model I, the model with the condittonal probahilities We then are able to make extmates of X_{1} on the hasis of any grven values of X_{2}

Fiy 13.5 Using a straght lime to spprowmate \& relatronahip

13.4 The Statistical Tools

The Line of Relotionship, or Line of Conditional Means

Our first task in a correlation analysis is to determine the lene that passea through the means of the varous vertical vectors If we have information about the whole unverse of X_{1}, X_{2} pairs, and if these vector means fall in a straght Ine, our problem is quite simple We would merely calculate the means for two whely spaced vectors and use these two meana to determme the straght line that would pass through all of the means We can write the general equation of such s luee as

$$
\begin{equation*}
\mu_{12}=\alpha_{12}+\beta_{12} X_{2} \tag{131}
\end{equation*}
$$

The symbal we use to represent the universe mean of X_{1} is $\mu_{1} s_{1}$ given a particular value of X_{z} For example, if the mean weight of all
adult Amencan males who are 69 mehes tall 18160 pounds, we would say that μ_{12} has a value of 160 wben X_{2} equals 69 The α_{12} (alpha) defines the value of μ_{12} when X_{2} equals 0 It is the point at which the line of relationship intercepts the vertical axis, α_{12} has a value of 35 in our model Usually this is a nonsense value in a practical problem because it would be nonsense to talk about a 0 value for the X_{2} variable For example, to state that an adult Amencan male 0 nehes tall would tend to average a weight of mmus 320 pounds is obvously nonsense Thr kind of nonsense points up the necessity of remembering that the atraight line is generally meaningful only mithin a middle range of the dats With a mathematical equation, however, we can make estmates anywhere we wish, of course Thus it is very important that we exhibit the proper amount of common sense The situation is not unlike the way an automobile steers wherever we prsh We should not blame the ateenng mechanism if we steer the ear into a diteb Similarly, we should not blame the line if pe strer it into an area of nonsense answers

Tbe β_{12} (beta) refera to the change in μ_{12} per unut change in X_{2} It 18 the slope of the line of relationship In our model it has a value of 10 It has a value of about 7 pounds in our height-weight dats shown in Table 131 and Fig $132 B$ The word change implies that it 18 the variation in X_{2} that couses the observed change in μ_{12} This implication is unwarranted and 18 only a consequence of imperfecthons in our language It would be more exact to define β_{12} as tha difference we observe in μ_{12} for each unit difference we observe in X_{2}

If we were dealing with a curvinnear relationsbip, the slope would be a variable rather tban a constant as it is for a straight hine Our equation would then need some additional parameters beyond a_{12} and β_{12} For example, we might have a second-degree parabola which would look somewhat amilar to Part C of Fig 135 This would have a general equatron like

$$
\mu_{12}=\alpha_{12}+\beta_{12} X_{2}+\gamma_{12} X_{2}^{2}
$$

(We use parameter to refer to the mathematical constants in an equation that presumably describe the satuation on the unverse We call the same constants statustucs if we are dealing only with a somple of data We would then replace the Greek α, β, and γ (gamma) with the English a, b, and c Thus we carry forward our convention of using Greek letters for unverse values and Englsh letters for sample values We also contanue our convention of using the circumfiex (*) on top of a Greek letter to indicate an unbiased estmate of a unverse value)
(The subscripts attacbed to the various symbols are for the purpose of clearly specifying exactly what variables we are working with We use the system of X_{1}, X_{2}, X_{8}, ete to specify our various varables instead on the more familar X, Y, and Z We do thus be cause most practical problems mvolve many more than three vanables and a certain awkwardness develnps after we pass Z We must Identify a and β by a subscrpt becsuse in some problems we have more than one α and β For example, we might have β_{18} Thus would be the difference observed m X_{1} for each unit difference obgerved in X_{2} It is well worthwhile to take time to fix these vanous symbols in mind as we gnalong If we do not understand our simple symbolic language, we will have considerable duficulty understanding the ideas being developed We use the symbols in order to make it possble to express these ideas more clearly and more concisely We add to our vocabulary as we go along)

The Measure of Variatian Around the Ine of Conditional Means

We migbt measure the vanation in the vertical vectors in maiy different waya, in fact, some of the early work in the development of correlation technique used quarthle deviations We, however, fiod the standard deviation the most convenient measure, partucularly because of tha sumple relationship to normal curve probabilities, and we confine our work to the use of the standard deviation

Since the vertical vectors all have the amme standard deviation, we can measure the standard deviation of any one nf them and use the
 Table 134 (or in the one shown in Table 132) the standard devistion of the vertical deviations around the line of relationship happeos to be 20 This is calculated in the conventional way and is shown in Table 135 for the vertucal vector at $X_{2}=10 \mathrm{jn}$ Table 134

Note the addition to nur vocabulary of symbols We label X_{1} as X_{12}, the mean of X_{1} as μ_{12} the standard deviation as σ_{12} We do this to signify that we are talking about the X_{1} 's for some given value of X_{2} in this case an X_{2} of 10 Thus we can say that X_{2} is taken as a constant while we study this variation in X_{1}. We can also say that the observed vamation in X_{12} ie andependent of any variation in X_{2} Or, we might alternatively say that this partucular distribution of X_{12} is conditional on X_{2} being equal to 10 If X_{2} had another value than 10, we would find a diffetent conditional distribution of X_{12} (We can see the various conditional distributions of X_{12} if we look at the vertical vectors in Tables 132 and 134)

If X_{1} and X_{2} were to be perfectly related, X_{12} would always be constant for a given X_{2} value This follows logically from the fact

TABLE 135

Calculation at the Standard Devnation of Vertical Vactars Shown in Tables 132 and 134 (illustrated with reference to vertleal vector at $X_{2}=10$ in Tabl 13 4)

X_{12}	f	$f X_{12}$	$f X_{12}$
18	0002	0038	0722
18	0010	0180	3240
17	0032	0544	9248
16	0084	1344	21504
15	0176	2640	39600
14	0286	4004	56056
13	0364	4732	61516
12	0304	4368	52416
11	0285	3148	34606
10	0176	1760	17600
8	0084	0756	6804
8	0032	0256	2048
7	0010	0070	0490
6	0002	0012	0072
	1908	23950	305922

$$
\begin{aligned}
\mu_{1} & =\frac{\Sigma f X_{12}}{N}=125 \\
\sigma_{1}: & =\sqrt{\frac{\Sigma f X_{1}^{4}}{N_{1}}-\left(\frac{\Sigma f X_{1} 2}{N}\right)^{2}}=\sqrt{\frac{305922}{1003}-(125)^{2}} \\
& =20
\end{aligned}
$$

that if X_{1} and X_{2} are perfectly related, and if we hold X_{2} constant, X_{12} must aiso be constant
If X_{1} and X_{2} have no relationghip whatever, all the X_{12} diatributrons would be pfecisely the same regardese of tbe parhicular value of X_{2} In such a oase, the holding of X_{2} constant makes no difference in the value of X_{12}

The Measure of the Degree of Asseciation

It is impractical to pay any attention to an associated variable If there is no ascociation, or if the degree of assocsation is neglugble To do so is a distractive waste of energy, and can sometames be a serious error For example, if we as an employer believed that intelligence were positively associated with head circumference a;

If Fe rished to hure only the most matelligent people, our personnel questroanare would be quite smple We would determioe only a person's hat size and hire only the "big-headed" With average luck, we should end up mith a pretty good cross section of all shades of intelligence, but certainly not with only the most mitlingent people Our trouble nould develop as we asked tbese people to do tasks that require above average mtelligence
The smpliest nay to measure and to understand the degtee of association is to compare the standard deviation of the conditional distinution of the X_{12} 's mith that of the unconditional distribution of X_{1} In our model we have already discovered that the standard deviation of the conditional distribution of X_{32} is 20 Table 136

TABEE 136

Caleulatian of Standard Deviatian of X_{1} (Distribution saken from vertisal mergin of Teble 13 4)

X_{2}	P	$P X_{1}$	$P X_{2}{ }^{2}$
23	0002	0046	1058
22	0009	0198	4356
21	0023	0588	12448
20	0071	1420	28400
19	0156	2964	56316
18	0305	\$400	98820
17	0526	8942	152014
16	0007	1.2912	206592
15	1092	16380	245700
14	1308	18312	256868
13	1392	18096	23548
12	1308	15896	188352
11	1092	1.2012	13.2152
10	OSO7	8070	80700
9	0526	4734	42806
8	0305	2440	19520
7	0156	1092	7644
6	0071	0426	. 250
5	0028	0140	0700
4	0009	0036	0144
3	0002	0006	0018
	10000	130000	1771592
$\mu_{1}=130$	$\sigma_{1}=\sqrt{177159-(130)^{2}}=29$		

shows the calculation of the standsrd deviation of the unconditioual distribution of X_{1} This distribution is taken from the vertical margin of Table 134 It is the sum of all the conditional distributrons and gives us the expected values of X_{1} if we have no pror knowledge of the value of X_{2} The unconditional standard deviation happens to be 29 Thus we find that knowledge of the value of X_{2} enables us to reduce our zgorance or uncertanty about X_{1} from 29 to 20

We can express this reduction in 1 gnorance in relative terms by dividing the amount of error reduction, in this case 9 , by the maximum possible reduction, in this case 29 We can call this result A_{12}, or the degree of association between X_{1} and X_{2} In formal terms we have

$$
A_{12}=\frac{\sigma_{1}-\sigma_{12}}{\sigma_{1}}=\frac{29-20}{29}=31 .
$$

Thas relatuve reduction in error (or of uncertanty, or of ggaorauce) glves us a clearer idea of the degree of association than does the amount of error reduction alone For example, if we had an unconditional standard denation of 100 and a conditional standard deviathon of 981 , we would also have an error reduction of 9 But $1 t$ is obvious that 9 on a base of 100 would indrcate a trival degree of error reduction Simlarly, if we could acheve a 9 reduction on a base of 10 , we would have acheved a very substantial degree of error reduction

Alternative Ways of Measuring the Degree of Association

Although the above method of measurng the degree ot asbociation is very smple and very logical, it is not customarly used The acendents of historical development have given prominence to two other measures of assocuation It is probable that the method just given will eventually supersede the other two, however, it is necessary for us to clearly understand the other tro as long as they are commonly used now

Probably the most mformative way to approach the other measures is to start at the hastorical begunngs of formal correlation analysis Sir Francis Galton published an artucle in 1886 on "Regression towards medrocrity in hereditary stature ${ }^{11}$ His research interests were essentially in biology and anthropology, two areas wheren

I Journal of Anthropological Intitute Vol 15, 1886 p 246 as referred to by G U Yule sad M G Kendail man Introduction to the Theory of Statistics 12th edition, J B Lippincott Campany 1940
much of statistical method originsted. In this article he was conceraed with the degree of association between the heights of fathers and the heights of their male offispring. He approached his problem by collecting a sample of heights of fathers and sons and plotting the pairs on a scatter diagram. It cas be likened to Fig. 13.6. The evidence of some kind of retationship was obvious to Galton. Tall fathers definitely tended to have tall sons and short tathers ahort sons. In those pioneering days Galton's problem was to figure out a way to place a line on this scatter diagram to express this relationship in the "hest" way, that is, in such a way that nobody could draw a "better" line. Galton actually worked with notions of the median and of the quartite deviation in his development. We discuss his solution in terms of the mean and the standard deviation, the measures that were used hy Karl Pearson, another English statistician, who picked up Galton's work and developed it in the directions that came to dominate statistica for over half a century.
The first step in discovering the path of the "hest" line is to draw the lines on the chart corresponding to the mean height of fathers (the X variahle) and the mean height of sons (the Y variable). The

fis. 14. Eypothetial relationship between height of a lather and beight of hin

Fig 137 Analysis of hypothetieal relatuonship between heght of a father and hesght of bis 60 a
scatter duagram now looks as ahown on Fig 137 This divides the seatter into four quadrants Note that there are more poonts an the IV and II quadrants then in the I and III quadrants This imbalance 18 evidence of the positive association between herghts of fathers and. sons If the pomts were more or less equally distributed through the four quadrants, the evidence would suggest no association If they predominated in the I and III quadrants, negative association would he indicated, that is, tall fatbers would tend to have short sons If all of the points were located in the IV and II quadrants, we would have eydence of practically perfect association In fact, It 1 possible to develop a crude measure of the degree of association by the relative number of points in the vanous quadrants

The next step in analysis was to recognize that it was not enough to merely count the number of ponts meach quadrant The location of the point within the quadrant was important The further into a quadrant a point was, the more anguicant was it ab a possible indicator of association Hence each point was measured as a devtaton from the mean For example, if a father were 88 inches tall, and the mean heaght of fathers were 66 mehes, the measurement would he
recorded as +2 inches Such a devation we can call $X-\bar{X}_{1}$ or a The same procedure was followed with the heights of the sons These would be $Y-\bar{Y}$, or y It is quickly evident that all points in the II quadrant would bave a plus x and a plus y, all those in the IV quadrant a minus x and a manus y, thase in the I quadrant a manus x and a plus y, and all those in the III quadrant a plus x and a minus y
The next step was quite smple, but also quite angentous The 1 in a por was multuphed by the y in the some parr For example, if a given x, y parr had values ol $+4,+3$, the product would he +12 This was done for all pairs (We call such mulupheations cross products) Note what now happens All the products in the IV and II quadrants end up with plus signs, and all those in the I and III quadrants have manus signs
Now we may odd all these cross products Suppose they add to 0 This tells us that the ponts are essentally equally scattered through all four quadrants Hence there would be evidence of 0 association and the best line of relationship would be honmantal If the sum were positive, this would indicate a positive felative relationship between X and Y In addition, the larger the positive sum the greater the association, other things being equal (which they are not as we see shortiy) Similarly il the aum were negotive
But it is obvious that the magnitude of the sum of cross products depends on two lactors other than the degree of association They are the unts of the two series and the number of cross products added For example, if we measure height in anches, we ohtann one sum ol cross products, if we measure beight in centumeters, we ohtain a sum which would be somewhat larger (It would be about 254^{2} or 645 as large) Since there is no way of selecting any one unit as more logical than any other unit, the trick is to elminate all units This can he done by dividing each z by the standard devration of the x 's and each y by the stondard devation ol the y 's We would now have $\Sigma\left(z / \sigma_{z}\right)\left(y / \sigma_{y}\right)$ Since z and σ_{z} have the same unit, the unit cancels in the davision Simalarly for the unt of y We say the resulte of a division hy the standard deviation are expressed in standard unts
The prohlem ol the number of items added 18 very simple We merely diude hy the oumber of tems, thus gettung the lamusi anthmetic mean
II we put all these steps together, we get

$$
\frac{\sum \frac{x}{\sigma_{x}} \frac{y}{\sigma_{z}}}{V}
$$

An exact descruption of thas formula would be the antimetic mean of the cross products in standard units If we followed the logic of its development, we also know that it must also be a measure of the degree of association But, before we pursue that topse, let us return to Galton's problem of the "hest" line Common sense suggests that the best line would pass through the point where the mean of X and Y cross In other words, no one is able to argue successfully against the notion that a father of average height should have a son of average height The only issue remaining, then, is the slope of the line as it passes through that point We already know that this line should bave a alope of 0 if there is no association $W e$ also know that

$$
\frac{\sum \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}}{N}
$$

would have a valus of 0 if there were no assoentrion We also know that the slope wrould meresse from 0 (assuming a positive relationship) as the degree of association increased But how high might tha slope logically become? Let us look at Fig 137 and magme our straight line rotating around the interaection of the two means If we start at the horizontal snd rotate counterclockwse, ws infer that we are showing an increase in the degree of association until we reach the point marked 10, which corresponds to a line at a 45° angle After that point, we infer that the degree of correlation is decretasng again until it reaches 0 when the line becomes verical Thus we can proture a 0 correlation as showing a homzontal line of relationship or a vertucal fine of refationsfip siace we generally put our estumating variable on the horizontal axas and the estumated variable on the vertical axis, ye normally do not think of drawing a vertical line of relationship If, however, convention had started with the estumating variabie on the vertacal axis, we normally would not think of drawing a horizontal line of relstionship Actually both lines are equaily logical in the ahstract
We thus see that any scatter dagram always has two logicel lines of relationship, one for estumating Y from X and the other for estimating X from Y If we now place the mdex finger of our hand on the point V on the vertical line in Feg 137 and our thumb on point H, we can smulate what happens as the degree of correlation inoreases from 0 Draw the thumb and forefinger alowly together along the periphery of the carcle, bringing them together at equal rates

At any stage of this operstion the thumb and the forefinger would esch indicate a line of equal degrees of association If we continue this operation to the end, we diseover that our thumb and forefinger come together at the point halfway between the horiontal and the vertical, the point of a 45° line The two lines hence become one and the association is perfect Thus we can say that the slope of erther of these lines wili measure the degree of assocmation, or, conversely, the degree of association messures the alope of these hines ${ }^{1}$
The final step in the logic of development we accept on faith This step is the proof that

$$
\frac{\sum \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}}{N}
$$

has a morimum numertcal value of 10 (If we consider the direction of the association, we would say that the result might vary hetween +1 and -1 The loge of a negative relationship is precisely the same as that for a positive relatonshap By using the lower righthand quadrant of Fig 13 7, we can duplicate all ths steps we took in the upper nght-hand quadraut) We can now see that a vslue of 1 for

$$
\frac{\sum \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}}{N}
$$

can be taken to correspond to a 45° line on the chart (if the vanatles are measured in atandard unts), a value of 5 to a 225° line, etc
Thus we have the equivalent of Galton's solution to the prohlem of the "best" line, namely, a line that passes through the general mean mith a slope equal to

$$
\frac{\sum \frac{x}{\sigma_{x}} \frac{y}{\sigma_{y}}}{N}
$$

At the same time we have a measure of the degree of assocuation that very convenently varies between 0 and 1 (Ignoring the sign) This is the measure that was finslly developed hy Pearson He called it

[^22]r (the coefficient of correlation), the first letter of the word regression (and comcudentally the first letter of the word relaticn) It has been known as the Pearsonian r ever smee
We cannot belp be attracted to the logie and ongenuity of this line of development Unfortumately, this method of messurng the degree of association, or of correlation, had sn unsuspected tendency to lead to substantial misunderstanding Many people naturally assumed that if an r of 0 mdicated 0 correlation and an r of 1 mdicsted perfect correlation, an $\%$ of 50 would mdicate 50% eorrelation But thes is not so in any practical meterpretation of what we mught mean by degree $I t$ hecame tbe custom for teachers and texibook writers to caution the student sganast ruch a smple percentage scale interpretaion of r Rather the stadent was told that he would gradually learn by experience how much correlation was realiy represented by irsetional values of r He might eleo be told to be wary in the meentrame of uang the results of any comelation analyss uniess γ were at least as large as 80 Naturally this advice was largely 1gnored, and many people respected results that yelded r^{\prime} as low as 15 , eto
Of course, mayy statistucians were unhappy with thrs stustion. They felt they wera dealung with a kand of mage that could be really understood only by a very few genuses Hence it was not surpizing that a way would be found eround such a vegue method of measurng the degree of correlation The measure that evolved, durng tbe 1920's, wes called the coeficient of determination It can be celiculated in many different waya, all of which are mathematical equvalents One way is to sumply square the value of r For example, if $r=5$, then $T^{2}=2.5$ Another way is to calculate the relatue reduchon in square error, or, to use our familat symbolis, $\left(\sigma_{1}^{3}-\sigma_{12}^{3}\right) / \sigma_{1}^{2}$ For exarnple, if we go dank to the illustration of our model, we would get $r^{2}=\left(20^{2}-20^{2}\right) / 29^{2}$, or (841-400)/841, or 52 (Note that we found a relative reduction of error of 31)
There bes been a rather stroag tendeney to foster an interpretstion of r^{2} that would permit a atatemeat hike, "fin i^{2} of 25 means thet 25% of the varation in X_{1} is explaned by varation of X_{2} " We strongly oppose thus beceuse it surply replaces a manterpreteit + with a missinterpreted r^{2}, although with not quite so much misuterpretaition

The best way for us to unravel some of the mystery from the various ways of measurng the degree of association is to write out some of the alternative formulas for calculating them We can then find the formulas that seem to provide the best lonks betryeen these measures We list some of these formulas below

The Coefficent of Assocuatorn-A

$$
\begin{equation*}
\left.A_{12}=\frac{\sigma_{1}-\sigma_{12}}{\sigma_{1}} \text { (Relative reduction in error }\right) \tag{132}
\end{equation*}
$$

The Coefficent of Determination- $\boldsymbol{1}^{2}$

The Coefficent of Cortelathon-r

$$
\begin{equation*}
r_{12}=\sqrt{r_{12}^{2}} \quad \text { (Square root of coefficient of determunation) } \tag{138}
\end{equation*}
$$

$$
r_{12}=\frac{\sum \frac{x_{2}}{\sigma_{2}} \cdot \frac{x_{1}}{\sigma_{1}}}{N} \quad \begin{aligned}
& \text { (Anthmetuc mess of cross products in } \\
& \text { standard unis })
\end{aligned}
$$

$$
\begin{align*}
r_{12} & =b_{12} \frac{\sigma_{1}}{\sigma_{2}} \quad \text { (Slope of hine in standard units) } \tag{1310}\\
& =b_{22} \frac{\sigma_{2}}{\sigma_{1}} \quad(, \quad)
\end{align*}
$$

$$
\begin{align*}
& r_{12}^{2}=\frac{\sigma_{1}^{2}-\sigma_{12}^{2}}{\sigma_{1}^{2}} \quad \text { (Relative reduction in square ertor) } \tag{134}\\
& r_{12}^{2}=\left(r_{12}\right)^{2} \quad \text { (Coefficent of determination is the } \\
& \text { square of the coefficent of correlation) }
\end{align*}
$$

(Remember that there are two lines, one for extmating X_{1} from X_{2} and the other for estimatung X_{2} from X_{1} They hoth yeld the same r)

$$
r_{12}=\frac{\sigma_{12}}{\sigma_{1}} \quad \begin{aligned}
& \text { (Ratio of standard deviation of conditional } \\
& \text { means to standard devation of dependent } \\
& \text { varnahle) }
\end{aligned}
$$

The formulas given are only a small sample of the vanous algebrace forms that can he used to calculate A, r^{2}, and r They are enough to give us an adea of how fertile an area correlation analysis is for a person who likes to play wth magnotuve mathematies We consider Eq 132 the most logical and most natural way to measure the degree of association Our argument is very simple and straightforward Our fundamental purpose in studying association between vanahiles is to heip us make estmates unth smaller errors Hence we are naturally interested in the extent to which our knowledge ahout the assocnation reduces our errors
Equation 133 is very interesting, it is also very useful if we are presented with a study that uses τ^{\prime} s and $r^{2 \prime}$ s and we would luke to convert them to A's We should study thes formula from the insode out hy starting with the smallest carcle Here we have the coefficent of determinalion, which we know 18 a measure of the degree of association If wa subtract t^{2} from 1 , we have s measure of the degree of nonassocration We call this measure the coeffictent of nondetermination If we then take the square root of $1-\tau^{2}$, we still have a measure of the degree of nonassociation We call this measure the coefficent of ahenation This 18 really the counterpart to the coefficient of correlation, which, as we know, is the square root of the coefficient of determination
Finally, if we subtract the coefficient of alenation (rometimes called k) from 1, we must have a measure of association, and, in fact, we do have A, the coefficient of association

The Addanf-up Problem Many analysts have heen hothered by the issue of whether a given measure of relationship $\left(A\right.$, or T, or T^{2}) yelded a result of 1 when added to ats counterpart measure of nonrelationshup For example, we know that the coefficent of determination plus the coefficent of nondetermination equals 1 because we have just noted that in the preceding paragraph But consider the coefficient of correlation (τ) and its counterpart, the coefficient of alienation (k) We have seen that $k=\sqrt{1-r^{2}}$ Suppose $r=8$ Then $r^{2}=64$, $1-\tau^{2}=36$, and $\sqrt{1-r^{2}}=6$ Thus $r+k=8+6=14$, substantially larger than 1 In general $T+k \geq 1$, with the sum 1 only when the correlation is 0 or perfect Thas is obviously a very lllogical situation Two vanables are etther correlated or they are not, and
the part that is not correlated must be correlated, and vice versa Erther r or k, or both, are too large
If we sccept the valdity of A, and we do, and sunce $A=1-k$, we accept the valdity of k Thus we decte that r must be too latge It is relatively easy to demonstrate why r is too large Consider Fig 138 Here we show a strpped-down scatter diagram with only two points and two lines Suppose we had to make an estumate of X_{I} wuthout any knowledge at all of the ralue of X_{2} Our best procedure (assuming normality) would be to guess the mean of X_{1} with spme error allowance besed on a_{1} Suppose the actual value turned out to be at A. Our mean estumate would have mossed by the vertical distance shown as a Now suppose we had pror knocledpe of X_{2} We would now use the line of conditional means (μ_{12}) as the basis of our estumate with an error allowance based on σ_{12} Hence we would now miss by only the distance b If we take the diference between a and b, we get c, which is the distance bretween the line of uncondtional means (μ_{1}) and the line of condituonal means ($\mu \mathrm{H} 2$)
We are arrare that we can take all such distances as a, the diference from an tem to the mean, and calculate σ_{1}, and also that we can take

Fig ite Illutration of the bise in y
the distances sucb as b, tbe defference between an tem and the hine of conditional means, sad calculate σ_{12} Sumlarly, we can take all such distances as c and calculate therr standard devation We call this σ_{12}, or the standard devatem of the condtional means The follows from the fact that the mean of all the condtional means as equal to the mean of the X_{1} 's (We place the line of reletionship so that it passes through the general mean Since this line is symmetrical in its extersions, the anthmetic mean of all the values along the lue must equal the μ_{1} part of the general mean) If we now note that c is the deviation from μ_{12} to μ_{1}, and in we keep in mund that $\mu_{\mu_{1}}=\mu_{1}$, we can see that $\mu_{12}-\mu_{1}=\mu_{12}-\mu_{\mu 12}$ end hence that s_{ε} must also be $\sigma_{\mu_{11}}$ whatb we usually abbreviate to σ_{12}
If we put a, b, and c into words, we can see that the arror we started wnth (a) munus the error we ended with (b) equals the error we chmmated (c), and all of this would bave beea accomplished by knowledge of the value of X_{2} as we were estmating X_{1} All of thus makes very good practical sense
But now let us look at a point lise B We agann Tabel the approprnate devations as a, b, snd c If we add b and c alecbracaily (that 15, with regard for the sugn attached to the deviation), we would get a, just as we would for the pount A For example, a might he $-2, b$ +5 , and $c-7$ We, however, now notice a bit of nonsense A value of c of 7 mdicates that we have reduced our error 7 unts by use of knowledge about X_{2}, and we accoopished this despite the fact that we hid only an error of 2 to begin with! Actually of course, knowiedge of the value of X_{2} causes us to make a poorer estumate here, and to clame an error reduction of 7 units 13 a serous memerpresenta toon

We can plcture what is happening by magining that we start our analysis of the associstion of X_{1} with X_{2} mith the homental line of unconditional mesns. We then mentally rotate this line counterclockwise around the point 0 until it reaches the hne of conditional means (See Fug 139) As we do thrs, we note that the line gets closer to every point for a whle But finally the line reaches some of the pounts Any further rotation will defintely 2 norease the errors of estimating these points We continue to rotate, nevertheless, because we are trying to reduce our average error as mudh as possible We find that the average error tends to decrease as long as we rotate toward more ponts than we rotate away from Hence we stop the rotation when we have as many points above the lime as we have beiow the line at all pornts along the lune, or as near to thes ideal as we car achieve We must qualify by saying all along the line because

Figi its Rotatiog the lipe of relationshap to reduce average estimeting error
the line always has about the same number of pomats above as below. The problem is that in some positions of the line all the points above the line are at one end of the line and all the points below the line are at the other end Note that this is the situation with the line of unconditional means
If we have followed the argument to this point, we can now see why σ_{12} is too big It contams all the sotation for all the ponts Actually, however, we rotate too much for just about half of the points because we must pass about half of the points in order to put half of them on each side of the line and all along the line.
If we now recall that the coefficent of correlation is based on the slope of this line that we have been mentally rotating, we can see that + must have an upurard bias We can confirm thas impression by turning back to Eq 1311 on p 513 There we see that r can also be calculated by getting the ratio of the standard deviation of conditional means (xith an upward blas in terms of error reduction) to the standard devation of the dependent variable (X_{1}).
We do not find the adding-up property of r^{2} particularly compelling because it requires us to think in terms of square errors Square
etrors are usually meaningless, and to know how much we have reduced them does not erlighten the stenation
A Simple Analogy We can use a simple analogy to llustrate the relationship between A and r and the degree of association Suppose we are the host (or hostess) at a dmner party and are asked by one of the gueste to replenish the water in the water glass More specafically, we are asked to half-fill the glass This seems a simple instruction unless we have a thoughtful turn of mind and the glass is aesthetically shaped as shown in Fig 1310 Is the glass half-iuli as in Part A or as in Part B? If we think hali-full means half-way up the vertical distance from the bottom to the top of the glass, Glass A is half-fill If we think half-full means half of the total volume in the glass, Glass B is hall-foll If we think of the degree of association as being measured by the volume in the glass and the coefficient of correlation as measuring the vertical distance from top to bottom, we can see why the coefficent of corrclation makes the glass look fuller than it really is (We can see why commercal practice leads to glasses with narrow bottoms and wide tops to encourage the allusion of greater contents) It is also interesting to note that the problem of different ecales disappears at the extremes of full and

A

B

Fig 1310 Half a glass of water
empty, just as it disappears at the extremes of complete and 0 asso ctation

A Scale of Equvalence Between A and r Although the water glass analogy conveys the idea, it does not communicate the exact cbaracter of the relationship between A and r This is shown in Fig 1311 Here r is shown on the horigontal scale and A on the vertical sesle To convert a given r into A, or vice versa, we locste r on the horizontal scale and run a vertical line upward until it hits the curved ine, as illustrated for a value of r of 80 We then extend a horizontal from this point until it touches the A scale, in this case st 40 It is interesting to note that the traditional intuive ides that r should be at least 80 really means that there should be at least a 40% error reduction We think it best not to have any arbitrary boundames for a minmum degree of useful correlation We deliberately selected an of 80 as an illustration because it is that point at which r is exactly tunce as large as A Values of r less than 8 are more than tunce as large as the corresponding A (except at the of 0) For example, an r of 20 corresponds to an A of only

Fig twill Scale of equavalence between A and r

3, \& 10 to 1 ratio We can thus see why an r of 2 represents a vally smail degree of association Vahes of r greater than 8 are is than twice as large as A For example, an r of 95 corresponds an A of 69 , a 14 to 1 ratio

1.5 The Next Step

The preceding pages have concentrated mainly on the essential zas in the analysis of the association between two or more sets of ents In the next chapter we use these ideas and the associated thatques in a practical problem

JBLEMS AND QUESTIONS

; 31 Suppose you were faced witb the task of selecting a sales manager your company T_{0} what extent wrould you be interested in each of the owng characterstics of a prospect? Explan the hasis of your answer sach case
a) Herght
b) Sex
c) Age
d) Formal education
e) Years expenence as a salesmsn of your hne of products
in Years expernence as a sales manager, or assitiant sales madsger, for thae of products
0) Number of chaldren
h) Weight of wife (or husband)
i) Propostion of gray hars on head

32 We have learned to assocate the temperature with the season of year For example, constder a 30 -year expenence in Chrago The ly temperature has vaned from an average lom of 171 degrees F to an rage high of 853 if we groore the sesson of the year, borever, if we :sly these temperatures by montb, we find the range of the average low werage high temperature varying as follows

Wonth	Range of the Darly Temperature		Month	Range of the Disly Temperature	
	Average Low	Average HIgh		Average Low	Average High
usiy	171	327	July	639	853
ruary	198	350	August	623	830
rch	290	450	September	552	759
al	386	576	October	438	643
y	487	697	November	313	476
e	588	800	Decenber	206	353

(a) Determine the difference between the Inw and high figure for each month
(b) Calculate the arthmetic mean of such differences
(c) Compare your result in (b) with the difference hetween the low and high figure for the full year
(d) What is the degree nf association between the temperature and the month of the year?
13 (a) What causes the temperature in Chrago to be generally higher in July than in January?
(b) Are these the same ceuses that result in the reverse relationship to Buenos Arres?
134 The Crayle C_{0} has heen consderng the possibhity of using the results of a finger dextenty test as an and in the selection of employees for one of the assembly tasks in the production fine The Pixem Test bra heen given to 10 of its veteran employees with known production records The scores and production records are as follows

Worker	Average Deily Output X_{1}	Score on Pyem Dextenty Test X_{1}
A	220	11
B	270	14
C	230	17
D	270	19
E	320	21
F	340	27
G	320	30
H	390	31
1	370	39
J	420	43

(a) Construct a seatter deagram of these two serres
(b) Draw a smooth line on the graph to represent your best pudgment of a line that measures the average output expected based on any given test score Would you expect this hine to be straight or curved? Is it possible that the Lne maght actually tura negative for very bugh test scores? Explan
(c) Extend your line to the left until it crosses the X_{1} axis Is there any common sense interpretation to this value of X_{1} for a case in which X_{2} equals 07 Is there any mathematical interpretation?
(d) Would you expect the vaination in output among workers whth the same test score to be the same for all test score groups? Explain
(e) Suppose that these same workers were to he gren this same test agan Would you expect each worker to get the same score as he did the first time? Why or why not?
(f) What are the impheatons nf your answer in (e) to a proper interpretation of the specific test scores given above?
135 What type of relatoonshap wauld you expect to find between the followng pars of varables? (For example, would you expect the relstronship to be straght line or some kind of curve?) In each case, be varv
sful to note wbether jou are refermg to the knd of relatnonship you Id expect to observe if you collented data from the real world or to the I of relationsisp you would hypothesze on the assumption that other rables would be constant
a) Relationship hetween beight and weight of new-born babues
b) Relatonship hetreen price of a product and its volume of sales
c) Relatonsitip between proe of a product and its quality
d) Relationsitip hetreen the suze-in square nohes of space-of a news er advertisement and the intensity of reader response as measured by chase rate for product being advertised
e) Relationship between expenence as measured by years on the job the ahullty to da tbe job
f) Relationship hetween thuckness of a coat of pantu and its ability to nve the weather
36 Distmgush between a dependent and an mdependent varahle strate mith reference to two vanables that you have had some exper 3 witb
37 Distungush hetreen a condiwonal probabuity distribution of a dedent varahle and an unconditional probahulity dastratution of that same lable
38 (a) What is the relevance to correlation analys.s of the assumption t the vertical vectors be identical except for their averages?
b) Suppose you had strong reason to beleve that the coefficents of uation of the vertical vectors were practically the same in a given prob rether than the standard devations heing practically the same What gestions do you have for transforming the data so as to equalize the lations of the vertucal vectors?
39 What are the theoretieal and practucal advantsges of Forking mith assumption that the normal curve adequately descrines the vector dis utions in a correlation analysss?
310 Suppose we are given the miormation that the vertical vectors a correlatoon prohlem are all nomal and that they all have the same udard devation We are also told that the relationship is hnear, st least bun the relevant range of the data What can we now say ahout
a) The honzontal vectors?
b) The dragonals?
c) The sums of the vertical vectors?

311 Why 18 it appropnate to call a hae of relationsitip between two ables a line of conditronal averages?
312 Use tbe test score-output data of Problem 134 and calculate as t you can the following
a) The standard deviation of the unveree of worker outputs
b) The standerd devation of the unverse of test scores
c) The condinonal standard devianon of worker output, grven the test
re Use the variations around your visually fitted line of Problem 134
d) Compare the relative sizes of your conditional and unconditional adard deviations of worker output
313 Would you expect the unverses referred to in Problem 1312 to uan stable through tume so that the results could he used as a guade for ng future workers? Explain

14 14 Uat the standard devatuons you calculated in Problent 1312 to culculate the followng Interpret your resulto
(a) The coefficent of cortelation -r
(b) The reefficent of determusstho $-r^{2}$
(c) The coeflicient of associstion -A
(d) The coefficient of alemation $-k$
(c) The coeffienent of nondetermmstion $-k t$

dement 14
 Reducing uncertainty by association: application of the model to practical problems

So far our discussion of correlstion, or associstion, bas for the most part been contned to an adeal world Except for our references to Galton's work, we have talked shout correlations that mught exist in a unwerse Actually of course, we never really know the content of any real untverses We come in contact only with samples that haye bappened to occur Sometrmes we may actually select a sample by random or other means Usually these samples "just happen," the wry the weather 'just happens' Thus we come back to our famulur problem How cen we draw inferences from past sample data so we can mate some rathonal predictions shout the future samples whach have yet to occur hut which we will have to contend with? As before, we follow the path from past samples to future samples by detounng around through past and future unsverses Also, as before, we do this by miking the most jucicious guesses we find precticsble withen the himits of time and costs

14.1 Selecting Relevant Variables

Before we can formally correlste any vambbles, we must pick them out and ohtain therr messurements Suppose we were a sales manager Who was trying to gam some understanding of the variation in sales from one sales terntory to the next We would probahly stant our anslysis by trying to thank of the various factors whoh we cousider to have something to do with sales Suppose our product were electric blankets Our list of factors maght look something like the following

I The salesman-hus abinty, his energy, etc
2 The sute of the territory
a The number of people
b The number of people over 24 years of age
c The square miles an terntory, eic
n
,

6 Cost of electncity
7 Sociological factors that mugt affect the acceptabulty of electric blankets
a Proportion of foretga born in population
b Proportion of pcople oves 45 years of age (habis set before introduc. tion of electric blanket)
8 Competition in terntory
a Number of active competitive brands
b Prees of competituve brands
e Skull and energy of competitive salesmen
d Volune of competitive promotional actuvity.
e Number of years competitors have bees in market
f Number of yeara ve bave been in market, atc
9 How much do we belp the salesman?
a Promotional activity.
b Salary and commission
c Expense allowances
We can undoubtedly thunk of many more possible factors that might help us understand the variation an sales from territory to ternitory If we really knew something about the manuiacture and merchandising of electre blanketa, we could than's of many more than that Our list is long enough, however, to make a few prachecal points quite clear

First, we note that it we select only one of these factors, say, population, to correlate with sales, we wull be congdering only a small part of the possibly relevant ramables No matter how fancy we get in this analysis, we should never lose sight of our limited scope
Second, we note that if we try to correlate all these factors at once, We might confuse ourselves much as a golier would if he tried to conscrously think about the hundreds of muscles he must coordnate in order to hit a proper golf shot Hence we should not forget that, as mertorious as a "scientific" analysis of our problem is, it is not a complete or necessanly a superior subsitute for the kind of inturtwe and unconscious coordination that can be performed by a person with several years of intelligently digested experieace. The scientific analysis can help on intelligent person It csnnot create intelligence where none exasted before.

Therd, we have a definte probiem of chocse of witred vartable or vanables we analyze in a formal way Naturally we would like to analyze the most mporfani ones, that 18 , the varables that will tell us the most ahout the vanation in sales But how can we do this In advance of analysis, particularly sunce one of the purposes of the analysis is to tell us which are the moot mportant? Thrs is a dilemms, so we do the oniy practical thing We make an advance guess of which are the most mportant, and we use the resultis of the analysis to tell us how good our guesses were in other words we set up hypotheses about whether the varibbles are related and then we test these hypotheses We use those hypotheses that suryve the test and put aside those that do not This approach works weil over time if we do not acquare strong emotional attachments for some of our hypotheses and conveniently gnore the results of the tests phen they are unisvorable For example, it is not unusual for a sales manager to have a pet factor that he thinks $2 s$ unportant as a measure of sales ability He would never thunk of hinng a man who did not possess thes attrinute, and he would rarely fire a man who had a large amount of it and all this despite the fact that available evidence suggests very strongly that this factor is at heat neutral towards sales abilty He wes probaily vicimized years ago by some very vind expertence where thia factor happened to play a role, and it has colosed his thioking ever suce
Our competitors will also be makug guesses about whach factors are most mportant If they are luckier, or marter, than me ara, ther guesses will he beiter, and they will gan an advantage because of thes additional knowledge If we do not have luck like this, or this kind of ' smariness," we cen stall survive if we do not let our pride prevent us from mastating our successful competitor, at a respectful distance of course Japanese busidessmen, for example, have demonstrated an amazing ability to follow closa hehind the suecessful innovations of busnessmen in Eigiand, Germany, and the United States It is competitive umitation like thes, of course, that leads to progress If no one mitates our innovaton, we can be assured that we will not make much money whth it
Most guesses about what factors seem worthwhule to analyze anse ma relatuvely haphazard way Some of the best guesses come from the most unlikely sourres It manot uncommon to dascover that some of the most foolish guesses turn out to be very frutitul In fact it is almost certain to he so because its very foohshness is what has prevented other people from investigating it sooner We also have the problem of not berng eble to think of come factors unthi other
factors are thought of first It 18 as though the factors are piled up in interlocking layers and we have to unpeel them one by one The situation is further complicated because many of the factors are related to each other Thus thangs are not always wbat they seem We sometimes find that we abould do just the opposite of wbst common sense suggests (Common sense is used here as a synonym for superficisl observation) For example, a beginnag automobile drver tends to make turns mith the brake partally on in order to make a slow turn for comfort and control He eventually leama (or at lesst some do) that he abould slow down before the turn and apeed up whle in the turn for much more comfort and control Simularly, beginning golfers try to bit the ball anto the air by hiftag the ball So they try to get the club under the hall Because the carth is already in possession of the apsce under the ball, they do not hate much success They eventuslly leam (or some do) that the ball sbould he hut up into the aur by hitting domi on the ball, thus avoiding the attempt to move the earth out of the way firsh it is quite a day wben the golfer first discovers that it is not he but the lofted elubface that directs the bsll into the sur
The only useful postive suggestion in belping to selcet factors is to get in the babit of making rough charts (called scatter diagrams) of potentially useful relations If these sketches give the appearance of association, prelerably of a hagh degree, we have a farly good clue that further analysus will be frutiul On the other band, if our sketcb shows evdence of little association, as indicated in Fig 141, we might hesitate to plunge into an mmediate anvestigation But do not then asgume that these varables are not related Ther relstronship may be buried under some other varables that we bave not noticed yet. We discuss this later after we scquire some tecbnical knowledge on the analyis of more than tro vanables at the same ture

The Problem of Quantifying the Variables

So far we bave carefully skutted the question of whether some of the vanables are quantified, or even quantifiable Some of these variables exist only in our mand, and frequently it is better to first think out an imagenary scatter diagram. In fact, even if we can messure these variables, we find that we can correlate the dats mentally firsh Most of us have never really geen a scatter diagram of measured heights and wetgbts of men Nevertheless we are quite capable of mentally prcturng what such a scatter duagram would look like We bave been accumulating the point for aucb a mental

Fg 141 An example of no apparent correlation
er diagram over the years as we made mentsl notes of the its and weights of men we have ohserved
e problem of quantifyng certam variahles has prevented their ; formally analyzed Everyone who thinks of such a vamable potential factor tends to dismiss it as unmessurable or as too 18ive to measure One of the most interesting uses of correlation rise, incidentally, 18 to quantrify something indrectly hy measur mothing that 18 related to the variable we are trying to measure sample a thermometer does not measure heat it messures the conshop hetween the suze of some materal and the varation in ceat whether the maternal be lquid mercury or bimetallic bars her interesting apphoation of correlation analyas to the problem easurement 18 to make alloryance for all the factors we can ure and then attribute any remaining verration to some remsinactor that we cannot otberwise meagure For example suppose ashed to rate salesmen in their vanous terntonas Eow do we ure sales performance? What we can do 18 allow for variation pulation nocome, ete and then ergue that any remanne var s in sales from terntory to territory 15 a measure of tbe saless effectiveness This sort of measurng goes on every day We occasion to examine it later melation techniques have been worked out to study data ex ed in many forms prineipal ones being data expressed as conus vamables, discrete vamables, attribute dats of all sorts,
ranked data, and combinations of these. We conceatrate on the correlation of continuous variables. The basic ideas are exactly the same for all types, so that if we understand tie correlation of con. tinuous variables, we should be able to make the necessary adaptations to otber types of data.

14.2 Test for Conformity of Dota to Our Model

Let us suppose we have gone through the preliminary work of trying to guess what factors might help the sales manager understand the variation in sales from ternitory to territory. We have finslly guessed that population and income shovid certainly be important factors We would now like to make a formal analysis of these if it is at all reasonable to do so. Our bassic data are shown in Table 14.1. Note that the data have been converted inte per-

TABLE 14.1

Salen, Papulation, and Income for the is Tarritorias of The Tingle Compeny (All data represent annuol evirages for the 3 years of 1957-60)

Territory Data as Perceat of Company Total

$\begin{aligned} & \text { Terri- } \\ & \text { tory } \end{aligned}$	$\begin{gathered} \text { Sales } \\ 1000 \mathrm{~s}_{\mathrm{s}} \end{gathered}$	PopuIation 1000's	Income $\$ 1$ mil.	$\begin{aligned} & \text { Sales } \\ & X_{1} \end{aligned}$	$\begin{gathered} \text { Popu } \\ \text { Lution } \\ X_{2} \end{gathered}$	$\begin{gathered} \text { Income } \\ \bar{X}_{1} \end{gathered}$
\$1	6	5	16	4.0	2.4	8.9
2	4	6	12	2.7	2.9	8.7
3	10	8	17	6.7	3.8	9.4
4	8	9	15	5.3	4.3	8.3
5	6	11	11	4.0	5.2	8.1
6	9	11	15	6.0	5.2	8.4
7	12	12	15	8.0	5.7	8.4
8	9	14	9	6.0	6.7	50
9	12	15	13	8.0	7.1	7.2
10	11	17	11	7.2	8.1	6.1
11	10	17	8	6.7	8.1	4.4
12	13	20	12	8.7	9.5	67
13	12	21	8	8.0	10.0	4.4
14	15	22	12	10.0	10.5	6.7
15	13	22	6	8.7	10.5	3.3
	150 ${ }^{-}$	210	180	100.0	100.0	100.0

centages of the total for all terntones. This has been done to sumplify the appheation of the results in cubsequent years It would be very unlakely that there would be a stable relationship between the actual quattithes over the years becsuse of shifts in general scceptabluty of the product, shifts in prices, etc However, if such shifts were to affect the various terntones more or less equally, whach they are likely to do, the relationshipe among the percentapes of total should remain farrly stable For example, if the company's total sales were to grow 10% faster than population, use of the setual quantities of population to estrmate actual quantaties of sales would result in general underestimstron However, if a terntory retaned the same percentage of population, it should retann its same percentage of ssles

Deciding on Shape of line of felationship

The first decision is that about the shape of the line of relatanoship, or the line of conditsonal syerages Our model regures that a straight line be a reasonsble estimator of thes shape The obvious approach is to sketch a acatiter dagram of the sample date Figures 142, 143, and 144 show the geatter disgrams (scattergrams) for the sales-

Fiy 142 Scettergram of relatuonsiup bebreen asles and population (Data from Table 141)

Fif. 14.3 Scattergram of relationshup between asles and meome. (Data from Table 141)

Mo 144 Scattergram of relationshup between population and ncome (Dats from Table 14 1)
population, soles-ineome, and meome-population relationships In each case the large dot near the center of the graph shows the general mean of the data Tbis pont was used as a pivot point for locating the visually fitted line shown on the graph as V (The LS line is referred to shortly) Each line was placed hy pivoting around the center point untal there were about as many points above the line as there were below the lme on each sade of the center point A straught line seems to be a reasomahle estmator in each case

A useful trick in selecting the shape of the line is to divide the data into sectrons according to the sire of the independent variable for example, we divided the data into two sections one for the values of the mdependent vamable that were below average (to the left of the center point) and the other for the values above average (to the nght of the center point) We fitted by eye an average for the dependent variable in each section These are shown as $X \mathrm{~s}$ on the graphs We then drew the Lne as close to these averages, including the general average as possibie If we had more items we would have found it advantageous to divide the dats into more than two sections If the data tended to conform to a curved pattern the section averages rould very likely make this fanly clear See Fig 145 to illustrate such a case with a tentabive curved line dramn in

Always remember we are dealing whth only a sample of data We cannot expect exact conformity of any line to the varnous section

Fig 14.5 Illustration of curvinear relationship (Data show the average distance required to stop an automobile for vanous speeds Data taken from Ezekiel \& Fox Mothods of Correlataon and Regresson Andivss p 100 By permission of the publisher John Wiley and Sons)
averages On the other hand, du not use the excuse of a small sample to justify a straight line for almast any kind af data

Deciding on Appltability of Arithmetic Mean as an Average

We are nint really interested in using the anthmetic mean as such The arithmetic mean is apprnprate when we are interested in the totals of data Here we are interested in making the closest possible estimate of the sales in a terntory The total af a set of such estrmates is essentually urrelevant The medran af a set of values is closest to all the values The anthmetic mean if a set of values will be the same as the median if the disinbution is symmetrical In addition, the arithmetic mean of a randam aample is subject to smaller sampling errors than the median of the unwerse is symmetrical Hence we prefer to use the mean rather than the median of the sample is sufficently symmetrical to support the hypothesss of a sym metrical unverse There are additional mathematical conventences di we use the mean Thus we tend to use means as estumators unless there is reasonably strong evidence to the contrary
An examination of Figs 142 to 144 reveals no strong evidence contrary to the hypothesis of a symmetrucal unverse, and we are willing to use the anthmetic mean If we had evidence of definte skewness, as illustrated in Fig 146, we would then have the usual options svaliable

Fis 146 Illustration of effecta of skerness in X_{1} on line of meatis

1 Fre could Igrore the skewness and continue to use the means with recognition that our results are somewhist crude
2 We could try to transform the data, etther one or both senes, to see if such transformed data conformed reasonably well to a symmetrical distribution For example, there 38 some evidence that the weights of adult males show definte postive skewness If we correlate the logarothms of welght with the heights we mght acheve a clocer approxmation to symmetry (Incidentally, the most economeal way to test a loganthmic transformation ss to use paper with a logarithme seale in euther one or both azes, depending on our needs Do not waste tume looking up loganthms untal such a relationship has been confirmed by a graphic analyes)
3 We could judicousily omat any rems that seemed to be out of line This is a dangerous practuce and should be done only when these is defmite evdence that special and identifiabie crreumstances contrituted to the departure of such items from a general symmetrical pattern

Deciding on Applicability of Normal Curve Approximation

If we successfully jump the hurdies of hnearty and symmetry, we are generally very ready to accept tbe applicability of a normal curve approximation Thus is because expertence suggests that practically all symmetrical distributions bave a central tendency, or a tendency to bunch near the average In such a case we find a normal curve approximation not only better than any competitive approximation, but also quite accurate in its own right
The three graphs of the relationships smong sales, population, and income represent such small samples that it is somerthat luderous to try to make any rational determination of whether a normal curve is a good approximation This, unfortunately, is rather common in the analyses of buseness dafa The trouble develops because the basic universes are shifing so rappily that it is very defficult for us to coilect large samples of homogeneous data, and consequently we tend to take the position of assuming the normal curve is appropnate unless we find relatwely strong contrary endence This 15 , of course, a relatively weak postion, but, again, we defend it because we have trouble finding a stronger position Naturally, a prudent analyst keeps these hmitations in mond as be draws any conclusions from his analyers

Mathematizal Tests of Conformity of Data so Madel

The above tests were confined to what we could find out from graphic evidence It is possible to apply rathematical tests to measure the conformity of the sample data to the condrions of this, or other, models Sucb tests are outside the bounds of our lumited
discussion Also, we point out that these mathematical tests can be applied only after we have fitted our model to the data The tests then help us decide whether we should or should not use the re sults Our discussion has been drected to the use of tests that help us decide whether we should fit the model or not Thus it is a good sdea to make the graphse tests even when we are planning to make the mathematical tests after our results are avalable This is usually true even when we have access to an electronic computer to process the results The computer is very quack, once we set it up, but it still costs money to operate, and very few busmesses can afford to produce useless or maleadng correlation analyses

14.3 Estimating a Line of Relationship

Sunce we have only a sample of data, with many gaps in both the radependent and the dependent vamable, we cannot calculate a line of averages by calculating all the separate averages for each vertical vector We must devise an interpolation technque We have already seen how thts can be done by hand and eye on a graph We would now hike to calculate such a line

The Least Squares Property of the Anthmetic Mean

The anthmetic mean has two very useful and interesting matbematical properties

1 The sum of the devations from the mean equals 0

$$
\Sigma(X-X)=\Sigma x=0
$$

2 The sum of the squares of the deviations is a minmum

$$
\Sigma x^{2} \text { is a minumum }
$$

The least-squares property moterests us the most at the moment Suppose we did have all the unverse data and that they cooformed to the coaditions of our model We would then find that the con ditional means would fall in a straight line and that the standard devations around these means would all be the same Each of these conditional means would be a least-squares value for the items in ths vector We could then label the line of means as a leastsquares line in the sense that any other line would give a larger sum of squares of the deviations of the stems from the line because, of
course, eny other line would not pass through all the conditional меядя
Now let us turn to sample date We argue that a least-squares line fitted to the sample data would he the best possible estumate of the least-squares hae in the unverse Thus is the same principie we followed when we stated that the smthmetic maan of a sampie is the best estumate of the enthmetic mean of the unuverse
It is a good ides to keep in mind that a lesst-squares line is nothing more then a line of means and can he called an arthmetre mean hne It has all the characterstirs, hoth good and bad, of the arithmetce mean
The determination of how to calculate a lesst-squares (LS) line involves the mathematics of the calculus and bence $1 s$ outside the scope of this book It 18 useful, hovever, to sketch the lune of reasoning used without gething into the mathematics Thus we might dispel any notions that there 15 anything mystical about a $\mathrm{L} \$$ line The first step st to define the type of lane we wheh to fit In our case this is a strazeht line, which ean he represented in general form as

$$
\begin{equation*}
X_{12}=a_{12}+b_{12} X_{2} \tag{141}
\end{equation*}
$$

(It is not uncommon for students to get the idea that LS lines are always stranght hnes, primanly hecause that is the only kind they calculate in an introductory course Actually a $L . S$ hine osn have any shape we desire This follows obviously because the means of the vertical vectors do not necessarily have to form a dinear pattern In fact, it is mose hikely than not that such means mill form a nonlnear pattern)

The second atep in reasomag as to subtract asch actual X_{1} value from the mean of its vector as estmated by X_{12} Thus we have

$$
\begin{equation*}
X_{1}-X_{12}=X_{1}-\left(a_{12}+b_{12} X_{2}\right) \tag{142}
\end{equation*}
$$

if we follow the conventronal rule of treating both sides of an equation aluke

In the thard step we square each of these devations, with the result

$$
\begin{equation*}
\left(X_{1}-X_{12}\right)^{2}=\left[X_{1}-\left(a_{12}+b_{12} X_{2}\right)\right]^{2} \tag{143}
\end{equation*}
$$

The fourth step 18 very critical from the point of view of the assumptions of the model Here we add all the squared devations of Step 3 In other words we pool all the deviations, almost all of them from different vertiesl vectors, as though they all belonged to the same distribution The logic hehind this pooling is the ascump-
tion that all the vertical vectors have the same standard deviation (We asy a correlation matrix is homoscedastic when all its vertieal vectors have the same standard devation) If this assumption is not true, we end up with a conditional standard deviation that is an anthmetic mean of the vanous vector standard deviations rather than a specific estmate for each vector If we wished, we could measure the degree to which tbese vectors might have difierent standard deustions, or the degree af heteroscedastucty Our sample is too smail to do this successfully, however We pould need enough items in each vector to make it possable to estimate the standard devations separately We rarely lave such large samples in practice, and we agana use the backhanded rule that we adopt the hypothests of homoscedastic vectors unless we have farly strong endence to the contrary
Our equation now 15

$$
\begin{equation*}
\Sigma\left(X_{1}-X_{12}\right)^{2}=\Sigma\left[X_{1}-\left(a_{12}+b_{12} X_{2}\right)\right]^{2} \tag{14}
\end{equation*}
$$

The fifth and last step is to find a way of choosing values for a and b so that $\Sigma\left(X_{1}-X_{12}\right)^{2}$ is a munumum (Those famular with calculus can perform this step by taking partal derwatives witb respect to a and b and tben setting each of these equal to 0 Of course, it is better to smplufy the equation frst) This step leads to tro equations as follows

$$
\begin{align*}
& \text { (1) } \Sigma X_{1}=N a_{12}+b_{12} \Sigma X_{2} \\
& \text { (2) } \Sigma X_{1} X_{2}=0_{12} \Sigma X_{2}+b_{12} \Sigma X_{2}^{2} \tag{145}
\end{align*}
$$

If we fill in the approprate sums and solve these tro equations for a and b, we have values for a and b so that the sums of the squares of the devuatuons of the somple ttems around our line wall be a munmum There is no magic to tbese squares, ne minumze therr sum only because this gives us an onthmetic mean line
Let us apply this technique to our problem of sales territones Table 142 shows the detailed calculations for the relationship between sales and population It also shows the results for the line of heear relationship between sales and income and that between income and population These lines are plotted as the LS lines in Figs 142 to 144 Note their elose conformity to the V lines It is worthwhile to speculate an haw much of the differences between and V and LS lines is due to errors in the visual fittung and how much to the mapplicablity of the $L S$ model Suffice it to say that we should not be too hasty in prasing or condemning euther line (Remember also that if part of the test is to compare the standard

TABIE 142

Calculating a Least-squamas Straight Line of Relationship between Soles and Papulatlon

$X_{1}=$ Sales es $\%$ of Total of All Teratones
$X_{2}=$ Population \quad "
$X_{3}=$ Income \quad " \quad " \quad "

Territory	X_{1}	x_{2}	X_{2}	$X_{1}{ }^{2}$	$X_{2}{ }^{2}$	$\mathrm{X}_{5}{ }^{2}$	$X_{1} X_{2}$	$X_{1} X_{2}$	$\mathrm{X}_{2} \mathrm{~K}_{3}$
1	40	24	89	1600	576	7921	960	3560	2136
2	27	29	67	729	841	4489	783	1808	1943
3	67	38	94	4489	1444	8836	2546	6298	3572
4	53	48	83	2809	1849	6889	2270	4398	3569
5	40	52	61	1600	2704	3721	2080	2440	3172
6	60	52	84	3600	2704	7056	3120	5040	4368
7	80	57	84	6400	3249	7055	4560	6720	4788
8	60	67	50	3600	4489	2500	4020	8000	3350
0	80	71	72	6400	5041	5184	5680	5760	6112
10	72	81	61	5184	6561	3721	5832	4392	4941
11	67	81	44	4489	6561	2936	5427	2948	3564
12	87	96	67	756	9025	4489	8265	5829	6865
13	80	100	44	0400	10000	1936	8000	3520	4400
14	100	105	67	10000	11025	4488	10500	6700	7035
15	87	105	33	7569	11025	1089	9135	2871	8465
	1000	1000	000	72438	77094	71312	73187	65286	780

$L S$ Equations
(1) $\Sigma X_{1}=N a_{12}+b_{12} \Sigma X_{2}$
(l) $10000=15_{12}+10000 b_{12}$
(2) $\Sigma X_{1} X_{2}=a_{12} \Sigma X_{2}+b_{12} \Sigma X_{2}^{2}$
(2) $73187=100 a_{12}+77081 b_{32}$

Solution
Eq (1) $\times 66667$ (3) $\quad 66667=3000_{2 z}+66667 b_{2}$
$\mathrm{Eq}(2)-\mathrm{Eq}(3) \quad 6520=10427 \mathrm{~b}_{12}$ $\mathrm{b}_{12}=025$
Substitute in $\mathrm{Eq}(\mathrm{l}) \quad 10000=15 a_{12} \div 6250$ $a_{12}=250$
Hence LS cquation equale

$$
\bar{X}_{12}=250+625 x_{2}
$$

Smilarly

$$
\bar{X}_{13}=865-297 X_{8}
$$

and

$$
\tilde{X}_{32}=979-469 X_{2}
$$

deviations around these hnes, we will always find the standard deviation around the LS line at least as small as that around the V line This is a direct consequence of the least-squares property of the LS line and has nothing to do with the applicability of the model itself)

One of the most strakng features of the calculation of a LS hine is the rather large amount of anthmetre involved The arithmetce nould be greater if we had used curves for our lines The routine used in Table 142 to solve the two equations is the one most com. monly taught in hugh school algebra courses There are other fou tines that some might find more comfortable Since a curved line would anvolve the solution of at least three equations, the solution routine nould then he somewhat more tedious In fact, it would be so tedoous that it is worthwhile to develop short-eut techniques We encounter these short cuts later durngg our discussion of multuple correlation

14.4 The L.S. Line as an Estimator of X_{1}

The aced test of the value of the LS line as an estumator of values of X_{1} given values of X_{2}, would be a test which involved makng estumates of new data, that is, data whech were not avalable at the tume of the calculation of the line We would, however, like an ada ance estimate of how close the LS line will be to the future data We make the advance estumate hy using the only avalahile data, namely, the same data we used to calculate the hne It should be obvious that the advance estimate tends to be on the optimistic side unless we are very stupid about the line we select to calculate In effect, we are gong to judge how accurate our forecaskng system will be hy seeing how well the same system would have worked with the past data, the same data re used to develop the system (the LS line) There as a bt of circulas reasoning here unless the future shows the same patterns as the past, which it rarely does in any great detal However, this is the bett we know how to do Thus it is umportant to be alert to the possble need to discount the apparent accuracy of a forecast system if its stated accuracy is based only on the data used to develop the syytem
Tahle 143 outlines the routme for estumating X_{1} and the standard devation of the errors in such estumates The estimates are abown in column 4 Since the arthmetic mean has been used as the bass of these estumates, the total should be exactly 100 The difference of 3 is due to roundng errors Note that thas rounding error dssappears if we earry an additional decimal place as in column 3 This additional place is not mathematreally sugnificant, however, so it is better to tolerate the rounding error
The sum of the errors (column 6) should add to 0 for the same reasons as above

TABLE 143

Estrmates of X_{1}, and Errors Thereof, Based on Given Values of X_{2}

X_{2} (1)	$b_{12} X_{2}$ (2)	$a_{12}+b_{12} X_{2}$ (3)	$\begin{aligned} & \bar{X}_{12} \\ & (4) \end{aligned}$	$\begin{aligned} & X_{1} \\ & \langle 5) \end{aligned}$	$X_{1}-\bar{X}_{12}$ (6)	x_{12}^{2} 17
24	150	400	40	40	00	00
29	181	431	43	27	-16	256
38	238	488	49	67	18	324
43	269	519	52	53	1	01
52	325	575	58	40	-18	324
52	325	575	58	60	2	04
57	356	606	61	80	19	361
67	419	669	67	60	-7	49
71	444	694	69	80	11	121
81	506	756	76	72	-4	16
81	506	756	76	67	-9	81
95	594	844	84	87	3	09
100	625	875	88	80	-8	64
105	658	905	91	100	9	81
105	656	906	91	87	-4	16
1000	6250	10000	1003	1000	-3	1707
$s_{1}=\sqrt{\frac{2\left(X_{1}-\bar{X}_{12}\right)^{2}}{N}}=\sqrt{\frac{1707}{15}}=107 \%$						
$\begin{aligned} \sigma_{12} & =\sqrt{\frac{\sum\left(X_{1}-\bar{X}_{12}\right)^{2}}{N-k}}=s_{12} \sqrt{\frac{N}{N-k}}=107 \sqrt{\frac{15}{15-2}}=107 \times 107 \\ & =114 \% \end{aligned}$						

We have calculated both s_{12} and $\sigma_{12} s_{12}$ is the standard devation for this particular sample If, however, we conceive of this particular sample as only one of the many different samples that might have oceurred as far as we know, and if we are willing to assume that this sample generating process is random within the bounds of our present knowledge, we might recognze the standard devation of random samples tends to be too small on the average (We found this to be so for sugle variables It is correspondugly true for variables that are varying jomtly) The adjustment for thus downward bias was related to the number of degrees of freedom used up in the calculation When we had a single varrable and based the standard devation on the mean of that varrable, we used up 1 degree of freedom The standard
devation around the line is based on the line and on all the constants used to define the hine, in our case a_{12} and b_{12} Hence the hine uses up 2 df (If our line there curved and had the constants a, b, c, and d, we would have used up 4 d f) Hence we make an estamate of the unterse condtional standard devalton, or $\delta_{1,2}$, by allowing for the lose of 2 df , thus increasing tbe figure from 107 to 114
Tahle 143 follows the straght definition of the procedure for calculating s_{12} and ϕ_{12} This routine is relatively tedrous, however It is also subject to larger rounding errors Hence we usually calculate $s_{1} 2$ by a sbort procedure that is analogous to that we used to calculate the standard devation of a single varisble For a (LS) straght line this formula ' is

$$
\begin{equation*}
s_{1,2}=\sqrt{\frac{\Sigma X_{1}^{2}-a_{12} \Sigma X_{1}-b_{12} \Sigma X_{1} X_{2}}{N}} \tag{145}
\end{equation*}
$$

For our present problem we get

$$
\begin{aligned}
s_{12} & =\sqrt{\frac{72438-250 \times 10000-625 \times 73187}{15}} \\
& =106 \% \quad t_{23}=113 \%
\end{aligned}
$$

The difference between 107 , the result of the dreet calculation, and the 106 , the result of the short-cut calculation, is due to roundiag The 106 is more accurste

14.5 Random Sampling Errors in Estimating \bar{X}_{12}

It is very unlikely that our estrmates of the line and standard devations are strictly accurate Hence we must make some aliowance for the resultant uncertannty The values of a_{12} and b_{12} are both subject to random sampling errors Since both of them are really anthmetic means, therr sampling errors are a function of the

[^23]relevant standard deviation and of the df The appropriate formulas for estmating these sampling errors are
\[

$$
\begin{align*}
& \dot{t}_{a}=\frac{s_{12}}{\sqrt{N-k}}=\frac{\dot{\sigma}_{12}}{\sqrt{N}} \tag{146}\\
& \dot{\sigma}_{b}=\frac{s_{12}}{s_{2} \sqrt{N-h}}=\frac{\hat{t}_{12}}{d_{2} \sqrt{N}} \tag{147}
\end{align*}
$$
\]

Note therr close simalanty to the formula for the standard error of the mean, which is

$$
\sigma_{s}=\frac{s}{\sqrt{N-1}}=\frac{\sigma}{\sqrt{N}}
$$

The standard error of \bar{X}_{12}, the conditional mean, is a function of both the error in a and in b We combine these errors in exactly the same way we learned to combine errors when we were pooling two sample means There we discovered that the varuance of a sum equals the sum of the varrances (We also discovered that the variance of a difference is also equal to the sum of the variances) Hence we combine these two errors as follows

$$
\begin{equation*}
\dot{\sigma}_{\mathrm{t}_{14}}^{2}=\frac{\hat{\delta}_{12}^{2}}{N}+\frac{\hat{\partial}_{12}^{2}}{N \dot{\sigma}_{2}^{2}} \tag{148}
\end{equation*}
$$

Equation 148 allows only for the error in b for each unat of X_{2} Actually the error in b tends to accumulate as we move away from the mean of X_{2} Figure 147 illustrates the phenomenon The difference hetween the solid line and the dashed line is the error in \vec{X}_{12} caused by the error in b It is clear that this error is larger as we move away from the mean of X_{2} Hence tre must modify our formula as follows

$$
\begin{equation*}
\sigma_{i_{12}}^{2}=\frac{\dot{\sigma}_{12}^{2}}{N}+\frac{\dot{\theta}_{12}^{2}\left(X_{2}-\bar{X}_{2}\right)^{2}}{N \sigma_{2}{ }^{2}} \tag{149}
\end{equation*}
$$

If we wish, we may factor out the $\dot{\sigma}_{12}^{2}$, leaving us with

$$
\begin{equation*}
\hat{\sigma}_{x_{1 / 4}}^{2}=\hat{\sigma}_{12}^{2}\left[\frac{1}{N}+\frac{\left(X_{2}-\bar{X}_{2}\right)^{2}}{N_{\hat{\sigma}_{2}^{\prime}}{ }^{2}}\right] \tag{1410}
\end{equation*}
$$

Finally, again if we wrsh, we may take the square root of both sides and obtan

$$
\begin{equation*}
\hat{t}_{t_{12}}=\dot{t}_{12} \sqrt{\frac{1}{N}+\frac{\left(X_{2}-\bar{X}_{2}\right)^{2}}{N \dot{\sigma}_{2}^{2}}} \tag{1411}
\end{equation*}
$$

Fig 147 Illugtration of cumulating eifect of an error in b_{12}

Table 144 applies this formula to the problem of estmating the 75% confidence limits to the value of ρ_{12}, the unknown unverse walue of the mean of X_{1} for given values of $X_{2}{ }^{2}$ Since tre are assuming that the unverse is normally distributed, we can use the t distribution as the bass for estimation a confidence coefficient of 75% corresponds to a t of 1204 when we have $13 \mathrm{~d}!$

Figure 148 shows the confidence band as at would appear on a graph Note how it spreads as it moves away from the mean of X_{2} Also note how we have termanated all the lines at the hruts of the given values of X_{2} Extrapolations beyond these lumits should never be made without an explectitatement that the estumates are in an area beyond the bounds of past experience Whenever cir cumstances force u s to make estumates outside this expenence range, we do so with some intutuvely denved extra allowance for error We become particularly concerned that the heme may change ts shape as its range extends

1 We ehow only the 75% confidence limits for $\alpha_{12} \mathrm{It}$ s possble, of course to show the whole inference distribution of f_{12} for any given value of Γ_{2} We would use the same idess and techniquea desernbed in Chapter 12
TABLE 144

Note There are only 12 rows in the table because some of the $15 X_{2}$ values are duplientes

Fis 14875% confidence himits of $\hat{\mu}_{12}$ (see Table 144)

Allowing for the Sampling Error in the Standard Deviatiens

It is possible to estimate the distribution of the joint errors in both the line and the standard devation around the line We find, how ever, that the error in the standard deviation tenda to be small enough to ignore as a practical matter, particularly since its estimation is farrly complex Hence we gnore the problern here

14.6 Random Sampling Errars in Estimating Individual Values of X_{12}

In the preceding section tre were concerned oaly wath the mean of the X_{12} values More often than not we are more concerned with estumating indurdual values of X_{12} The best single estmate we can make of these X_{12} 's is therr mean, \bar{X}_{12} (llecall we are assumng that X_{12} is a reasonably normal distribution) Honever, we must make a Larger error allonance than above beteuse of the dispertion of the tems around ther mean This involves only a emmple modification in the error formula we used for the line of conditional means The appropriate formula is

$$
\begin{equation*}
{f_{1,3}^{2}}_{2}=\partial_{1.2}^{2}+\frac{\partial_{12}^{2}}{N}+\frac{\partial_{1.2}^{2}\left(X_{2}-X_{2}\right)^{2}}{N \dot{t}_{2}^{2}} \tag{1412}
\end{equation*}
$$

TABLE 145

$1+\frac{1}{N}+\frac{x_{2}^{2}}{N \dot{\sigma}_{2}^{2}}$ (6)	$\left(1+\frac{1}{N}+\frac{x_{3}^{2}}{N \partial_{2}^{2}}\right)^{\mathrm{M}}$ (7)	$\mathrm{t}_{\mathrm{k}_{2}}\left(1+\frac{1}{N}+\frac{x_{2}{ }^{2}}{N \tilde{d}_{2}^{2}}\right)^{1 / s}$ (B)	$X_{12}+l d_{x_{12}}$ (9)	$X_{12}-t_{A_{19}}$ (10)
1230	1109	151	551	249
1194	1003	149	570	281
1141	1068	145	335	345
1118	1057	14	684	376
1087	1043	142	722	438
1076	1037	141	751	469
1067	1033	140	810	530
1068	1033	140	830	550
1084	1041	142	0 OL	618
1136	1066	145	985	605
1163	1079	147	1027	733
1194	1093	149	1059	781
13558	12752	1735	9515	6045

Fig 14975% confdence lunts of X_{12} and of \boldsymbol{H}_{12} (see Tsbles 144 and I45)

This is exsctly the same as Eq 149 except for the addition of the d_{12}^{2} This is added to take care of the denations of the X_{12} values from ther mean Figure 149 shows the 75% confidence limits for estimates of X_{12} The 75% confidence limuts to \bar{X}_{12} are also shown for contrast Note the very moderate rate of increase in the midth of the confidence band for X_{12}, partucularly when compared with that for \bar{X}_{12} An exammation of column 8 m Tables 144 and 145 conveys the same idea Thus we discover that the variation in X_{12} is dominaled by the difference between X_{12} and \bar{X}_{12} and is only moderately affected by the samphng error in X_{12} Hence we usually do not bother with an attempt to allow for the modenug confidence band when we are estumating tems, partcularly when the sample is moderately large

Errors in Estimates When Sample is Large

If our sample is moderately large, $1 / N$ and ${F_{2}}^{2} /\left(N \delta_{2}{ }^{2}\right)$ become neghgible, and we usually 1 gnore them when we are estimating the values of individual items of the dependent variahle The only error we allow for $1 s \delta_{1}$ 2 We still show the same concem, however, for the additional uncertanties as we extrapolate outside the range of past expenence Remember intuition and judgment are the only tools we have for handling the problem of extrapolation

14.7 Estimating the Degree of Association

The results of our analysis of the assoctation between sales and population, sales and meome, and meome and population can be summarized conveniently as shown in Table 146 Many analysts find this information sufficient for therr purposes However, it 15 often useful to rephrase this miormation by calculating the coeffi clents of association, such as A, r, and r^{2} The coeficients for the sample data are

$$
\begin{gathered}
A_{12}=\frac{s_{1}-s_{12}}{s_{1}}=\frac{196-106}{196}=46 \\
r_{12}^{2}=\frac{s_{1}^{2}-s_{12}^{2}}{s_{1}^{2}}=\frac{384-112}{384}=71 \\
r_{12}=84 \\
A_{13}=-15 \quad A_{32}=-28 \\
r_{13}^{2}=27 \quad r_{72}^{2}=49 \\
r_{13}=-52 \quad r_{22}=-70
\end{gathered}
$$

If we uss the estimates of the standand deviations for the universe, these coefficients become

$$
\begin{aligned}
& \hat{A}_{12}=45 \quad \hat{A}_{12}=-12 \quad \hat{A}_{32}=-27 \\
& f_{12}^{2}=69 \quad f_{13}^{2}=23 \quad f_{32}^{2}=45 \\
& f_{S T}=8 S \quad f_{S S}=-48 \quad f_{S Z}=-88
\end{aligned}
$$

(Look again at Chapter 13, pp 512-9, to review the interpretation of these coefficients)
We can see that the unverse estmates are not significantly smaller than those for the sample unless the degree of association is small, as it is in the case of sales and neome For this reason most practical analysts tend to use the sample coefficients, disregarding then slight, upward bias It is good practice, however, to not ignore this blas if we are workug with small samples and if our results show relatwely smail associations

Note that minus sgis are placed before $A_{13}, \tau_{13}, A_{32}$, and τ_{32} They sigmify that the association is negative, that is, high values of one variable are assocuated with low values of the other Negative

TABLE 146

Summary of Rasulis af Analysis of Associatlons botween Sales and Papulation, Soles and Inzame, and Incame and Papulatian

Fstimating	Varnation		Estimated Venationin	Estunated Item forecast
Formula	in Sample	df	Unverse	Error*

(I)	$X_{1}=67 \%$	${ }_{1}=198 \%$	14	$t_{1}=204 \%$	$\delta_{x_{1}}=211 \%$
(2)	$\bar{X}_{12}=250+625 X_{1}$	$\mathrm{J}_{1} \mathrm{I}=106$	13	$t_{12}=113$	$\delta_{z_{1}},=117$
(3)	$X_{13}=865-297 X_{1}$	$\mathrm{J}_{1} \mathrm{~J}=167$	13	$\mathrm{d}_{11}=179$	$\delta^{818} 5185$
		Supplementary Data			
	$\bar{X}_{5}=67 \%$	ts $\mathbf{m} 176$	14	$A_{3}=183$	$d_{4}=189$
	$X_{37}=979-469 X_{3}$	$H_{2}=126$	13	$A_{3:}=134$	$t_{23},=138$

[^24]Since $N=18$ in this problem, $\sqrt{1+\frac{1}{N}}=1033$ Note that thas ignores the sampling error in b
association is, of course, as useful as positive association when it comes to reducing errors of estimate

Sampling Errors in Measuring the Degree of Association

Coefficients of association based on sample data are subject to the usual problem of errors m random samphang We are all familiar with connedence, the smultaneous occurrence of two or more events that just happen to occur together For example, the poorest goller will occasionally correlate all his movements properly and make a good shot Table 147 shows the results of random drawings from an ordinary card deck Five cards were drawn with the right hsid and five with the left Very few people would conclude from this evidence that there is correlation between the hand used and the results we get despite the fact that the sample shows that the right hand drew larger cards on the average than the leit hand The problem is very easy with playing eards because everybody "knows" that the results of card drawing are "due to chance" The issue is

TABIE 147
Correlestion between Valve of Raadamly Drtwin Playing Cords and Whether Cards Were Dravin with the Right or Leff hiand

Values of Cands Drawn month	
Rught Hand	Left Hand
9	7
6	8
6	1
2	2
12	2
3	-

not as easily resolved with correlations in the world around us We believe the validity of correlations that make sense to us and descount those that do not

Sampling Etrors in r

We confine our discusson to sarmpling errors in the coefficient of correlation r Our remarks apply equally woll to A and r^{2} nith the obvious modifications It is more convement to work with r because all the formulas and tables have been worked out in terms of r which is natural considering the long history of t
Analysis of sampling errors in r (or r^{2} or A) 18 conssderably cont pliceted because the samping distrbution of + is obvously skered except in the special case when there is no correlation in the universe, or when $p=0$ (We use the Greek r, or p (rho), to refer to unverse) We say obviously becease common senge suggests that if, say, $\rho=80, r$ cannot possibly be larger than 100 , but it could concelvably be as small as - 100 Fortunately, we find as usual that the eentral hmit theorem apples, and that the distrabution of r (r is an arthmetac mean) spproaches normal as N mereases This normal curve approximation is better the clocer ρ is to 0 because the skewness would ther be less (We except the specal cases oi p of +1 or -1 , when the sampling errors would be 0)

The standard dernation, or standard error, of r depends only on p and on the sample saze The basic formula as

$$
\begin{equation*}
a_{t}=\frac{1-p^{3}}{\sqrt{N}} \tag{1414}
\end{equation*}
$$

If we note that $1-p^{2}$ is the coeffictent of nondelerminatoon, and that the coefficient of nondetermination is based on the condtional varance, or $\sigma_{1,3,}^{2}$ we can see that the is our ususi sampling error formula It has a measure of vaniation in the numerator and the size of the sample in the denominator
In the special case when the unverse correlation is 0 , thas formuls reduces to

$$
\begin{equation*}
\frac{1}{\sqrt{N}} \tag{1415}
\end{equation*}
$$

The case when $\rho=0$ has occupied a pre-minent position in correlation
1, because many researchers have been most concerned with testing the null hypothess, namely, the bypothess that the universe contains no correlation Our sample of 15 is rather small to use the normal curve as an approxmator, hut we test the rull hypothesss anyway to llustrate the method Namely

$$
\begin{aligned}
& \sigma_{r}=\frac{1}{\sqrt{15}}=258 \\
& Z=\frac{r-p}{\sim}=\frac{84}{258}=326
\end{aligned}
$$

A Z of 326 leares about 0006 in the tall of the normal ourve Hence we could say that there are about 0006 (6 out of 10,000) cbances of getting a sample of 15 stems with a coefficient of correlation of +.84 or more, even though the universe is uncorrelated Miss Davd's Ta bles ${ }^{1}$ of the exact distribution of 7 show a probability of about 0001 for thas event.

The Use of Tables of the Sampling Distribution of r. Miss David hoped to solve the problem of a different distrihution of r for every combination of ρ and N by constructing tables of enougb exact distrihutions so that we could solve most practical prohlems with only moderate interpolation Her tables are actually quite sparce in their

[^25]coverage, honever, thus creating mterpolation prohlems She did make up some nomogrephs for selected coofidence coeficients that some analysts have found quite usefui Figure 1410 reproduces the nomograph for 90% hmits The nomograph yelds 90% confidence limits for ρ_{12} of 64 and 93 Note the asymmetry in the limits around r_{12} of 84

Fisher's z^{\prime} Transformotion of r. R A Fisher published a paper in 1921 which presented a method for transforming τ into z, with $z '$ having a distrihution quite close to normal, even for samples as small as the neighhorhood of 10 This discovery enabled us to largely dispense with tahles like those Miss David eventually developed The formula for the transioraation is

$$
\begin{align*}
z^{\prime} & =\frac{1}{2}\left(\log _{c}(1+r)-\log _{c}(1-r)\right) \tag{1416}\\
& =1151 \log \frac{1+r}{1-r} \tag{1417}
\end{align*}
$$

z has a standard deviation of

$$
\begin{equation*}
\sigma_{z^{\prime}}=\frac{1}{\sqrt{N}-3} \quad \text { (approxumately) } \tag{1418}
\end{equation*}
$$

Tables of z^{\prime} are available to smplify the transformation (See 'Appendix H) Let us test the null hypothess for our problem wnth the use of the z^{\prime} transformation $\mathrm{An} r$ of 84 is the equivelent of $a z^{\prime}$ of about $122 \sigma_{z}=1 / \sqrt{12}$, or 289 Hence, $Z=\left(z^{\prime}-0\right) / \sigma_{z}$, or $122 / 289$, on 422 This leaves an aren of ahout 00001 in the tall of the normal curve If we compare this with the 0001 of the exact distribution and the 0006 of the normal curve, we see that for a sample of this size, the normal curve is a little too dispersed and the z^{\prime} distribution is not dispersed quite eaough Actually, of course, the difierences shown here would not cause most people any practical concern

Confidence Limits of p It is a relatvely straghtforward procedure to estmate confidence limis jor ρ if we wish We illustrate by setting 75% limits for $\rho_{12} \quad r_{12}$ of 84 transforms into a a z^{\prime} of 12275% limits correspond to a 2 of 115 m the normal curve Hence our limits are at $I 22+115 \times 289$ and $122-115 \times 289$ in terms of z^{\prime}, or 89 and I 55 Referring to Appeodex H, we find that these correspond to $\hat{\rho}$ s of 71 and 91 Contrast these lamits with those of 64 and 93 calculated from Muss David's nomograph for 90% fimuts

14.8 When Is Correlation Signifitont?

The concept of signficance bas played a aubstantial role in the applieation of correlation results The concept bas heen misinterpreted quite frequently and for this reason warrants a hnef diselussion We have already referred to the null hypothesss, or the hypothesss that there is no correlation in the unverse In our problem we discovered that there was a probability of about 0001 of getting an $r_{12} \geq 84$ if there were no correlation in the universe Thus we might conclude that there is definte endence of some conrelation hecause it is highly unikely that there is none Many analysts would nnw say that there is sromficant correlation between sales and population What they mean, or at least what they should mean, is that the evidence casts considerahle doubt on the hypothesis that there is no correlation Unfortunately, many people have interpreted sigmificant to mean much more They have assumed it means that the correlation is sufficiently high to justify the use of the correlatinn results as a basis of practical prediction, if not as a basis for the presumption of some causal relatoonship As we can magme, the ultumate nutcome often caused considerahle disappontment and some disilusionment about the effcacy nf correlation analysis in general The fault was not of the correlation analysis but of the analysts and the interpreters
We can illustrate by taking a case where a sample of 50 yields an r of 25 Since there are fewer than 05 chances of an $r \geq 50$ if ρ is 0 , we vould conclude that the "correlation as signuicant" We discover, however, that even of the true ρ is as high as 25 , this amounts to only an error reduction of about 3%, actually very little $(A=1-$ $\sqrt{1-r^{2}}$ Thus 18 how ne translated 25 into 3%)

14.9 Curvilinear Correlation

Most of the adeas and techntques nf our linear normal curve model can he extended to cover the case of lincs that are curved rather than straight Some complications dn arse, hovever, and there are some things we still do not understand about curvilinear correlation We also have the prohlem of getting invalved in the solution of more than two simultaneous equations when we introduce curvature For these reasons, we do not pursue the study of curvinear correlation in detal We merely illustrate some nf the routines hy showing the calculations for fitting a second-degree parabola to our sales-popula tion data Our assumptions are essentually the same as for thic linear
model We assume thet the vertical vectors heve equal standard deviations, but now these vectors have meaus that fail into a parabolic pattern instead of a linear pattern Figure 1411 showa the result we are gong to get for our line of conditional means We also assume that the vectors have at least symmetrical distributions, and preferably normal distributions We desse the symmetry to make our least-squares, or snthmetie mean, line a reasonable approximation to a least-error, or median, line We desire the normaity to smphify the estimation of probabihaes from the values of the stand ard deviations

Our basic equation is

$$
\begin{equation*}
\bar{X}_{12}=a_{12}+b_{12} X_{2}+c_{12} X_{2}^{2} \tag{1419}
\end{equation*}
$$

Note that there are three unknowns in thas equation, and we need three equations to solve for these three unknopns To get a leasisquares solution, we must fill in and solve the following three equatrons

$$
\begin{align*}
& \left.\begin{array}{l}
\text { (1) } \Sigma X_{1}=\mathrm{Na}_{12}+b_{12} \Sigma X_{2} \\
\text { (2) } \Sigma X_{1} X_{2}=a_{12} \Sigma X_{2}+b_{12} \Sigma X_{2}{ }^{2}
\end{array}\right\}+c_{12} \Sigma \mathrm{c}_{12} \Sigma X_{2}{ }^{2}
\end{aligned} \begin{aligned}
& \text { (3) } \Sigma X_{1} X_{2}{ }^{2}=a_{12} \Sigma X_{2}{ }^{2}+b_{12} \Sigma X_{2}^{3}+c_{12} \Sigma X_{2}^{4} \tag{1420}
\end{align*}
$$

Note that the part of these equations eaclosed in the rectangle is premsely what we used for our lwear solvtion We merely extend

Fin 1411 A leasb-squares second-degree parbola fitted to the seles-population data
thece to the nght and down by increasing the exponents of the X_{2}^{\prime} 's by 1 in every case
If re fill in these equations for the sales-population data, we get
(1) $10000=1500 a_{12}+10000 b_{12}+770 \mathrm{OH}_{\mathrm{c}_{12}}$
(2) $73187=10000 a_{12}+77094 b_{12}+653318 c_{12}$
(3) $600220=77094 a_{12}+653318 b_{12}+5870303 c_{12}$

The rcsultant estimating equation is

$$
\lambda_{12}=1895+839 X_{2}-016 X_{2}{ }^{2}
$$

The conditional standard devation, s_{12}, is 106%, the same as that for the straght line Actually it would be n little smaller for the curve than for the straight line if we were to carry more decimal places These ndditional places would not represent eggnificant digits, howeser, considenag the necuracy of the origual data The practical deatity of the s_{12} for both these hines is clear evidence that the straght line is a very good fit to the data Additional evidence is the very mall value for c of $\mathbf{- 0 1 6}$ Note that Frg 1411 shows the parabola is practucnily straight within the limuts of the orginal data
It we adjust s_{12} for degrees of freedom to $g^{\circ} t$ an estimate of d_{12}, we find that the curved line is really a poorer estumator than the straght because ne used up an additional degree of frecolom in the calculation of c Thus $j_{12}=s_{1} 2 \sqrt{N /(N-k)}$, or $100 \sqrt{15 / 12}=$ $100 \times 1118=110 \%$ When we used the straight lane, we found a d_{12} of 113
This adjustment for degrees of freedom is very mportant for a proper
 in the sample to fit at least as well as a straght lane, and the greater the number of curves the better the npparent fit The price of curvature, howeser, is the addtional constants needed in the equation, and cach additional constant uses up a degree of freedom Unless the curvature reduces 8_{12} enough to offset the loss of degrees of irecdom, the curvature is a poor bargain In the sales-population relationship we found such a poor bargain
There 18 no limut to the number of different kinds of mathematical functions we might use to fit a line of means to a seatter dagram We trust that the bref discussion given nbout the use of a seconddegree parabola prondes enough background so that we can saíly try curve fitting withun the limits of our knowledge of analytical geometry and, of course, our common sense

PROBLEMS AND QUESTIONS

14) How nould you go about selecting a location for a retal outlet? For example, suppose you were responsble for selectigg approprate locs-
thons for a gazolne station or a supermarket or a shae store etc Select any one of thase or any other store type of interest
(a) Lust the factors that you think might be relevant in estumating the future sales volume of such an outlet
(b) Ranh the five most mportant factors in ther order of mportance that is as you see their mportance Explam in a sentence or two for each factor why you think it bas this degree of mportance
(c) Can you find quantatuve data on each of these five prmenpal factors? Where?
If the data are not yet avalable but zevertheless can be collected at reasonable (?) expense outhne bnefly how you would proceed to collect such data
(d) Suppose that you find that your most mportant factor is presently measurable only at exorbitant expense How would you allow for thas factor is selecting a location?
142 The persomut drector of the Crayle Co was so pleased with his first expenence in using correlation analysis as an and in selectug and rating personnel (see Problem 134) that he decided to make a more extensuve cor relation analyas of the factors that might be related to another job in the factory After a feu branstorming eessons with the foremen it was de cided that the most promssing factors among thoss on which they had measurements were

$X_{8}-$ Number of months expenence on the job with the Crayie Co
X_{4}-Score on a standard intelligence test
$X_{\sigma}-$ Number of years of formal education
Data on there variables nere collected as of Fehruary 151961 It was de coded to use the anthmetic mean of the most recent 5 days production rec ords to measure the workers periormances Thus the production data $\left(X_{1}\right)$ refer to the mean output per 7\%-hour day Data were collected for a ran dom sample of 50 workers cut of the total of 247 who were workug durng tbat period The data are given below

Formal

Production	Dextenty	Experience	Inteiligence	Educaton
(Peces)	Test Score	in Months	Test Score	Years
X_{1}	X_{2}	X_{3}	X_{4}	X_{5}

1	117	13	14	92	11
2	112	14	9	76	10
3	133	17	12	94	10
4	119	18	5	87	9
5	135	20	24	97	9
6					
7	120	20	15	90	10
8	139	21	17	94	10
9	130	21	20	84	9
10	139	22	21	92	9
	144	$\mathbf{2 0}$	28	93	10

	Production (Reces) X_{1}	Dextenty Tent Score X_{1}	Experteate 10 Months X_{1}	Intelligenee Test Score X_{4}	Formal Education Years X_{1}
11	149	24	31	87	11
12	148	34	18	102	9
13	143	25	27	88	10
14	167	26	40	100	9
15	155	26	29	93	10
16	154	27	21	91	12
17	174	27	34	112	11
18	161	27	26	\%	12
19	152	27	23	93	10
20	154	28	24	91	10
21	163	28	22	97	13
22	173	28	36	99	10
23	156	29	22	92	10
24	161	29	25	97	9
25	181	29	39	102	12
20	174	30	37	95	11
27	184	30	50	98	0
28	179	30	43	100	10
29	187	31	47	94	11
30	176	31	40	99	10
31	189	31	46	97	10
32	201	31	83	96	9
33	183	32	52	37	12
34	195	32	65	89	11
35	186	32	11	117	12
36	152	33	3	108	13
37	206	34	44	102	15
38	205	34	55	101	12
39	159	34	7	98	11
40	201	35	59	104	10
41	167	36	10	110	11
42	155	37	4	100	10
43	200	38	38	107	11
44	225	38	74	113	12
45	221	39	49	126	10
46	208	39	53	108	10
47	232	41	00	102	11
48	234	42	79	107	11
49	230	45	63	103	12
80	229	48	57	101	10

(a) Use the data for the odd-numbered workers for for the everi-nt bored) and snalyze theae factors by construoing the 10 seatter dagra that are necessary to shody each par of factors Consider the followng your analysis

1 Is there any evidewe of a meanugitul correlation between the gis parr of varables?

2 Do any of the codependent varables show enough correlation w each other to fustrify climmating one from further study because it is esso trally duplicated by one of the other mdependent variables?

3 What seems to be an approprate lise to describe the average re toonship in cach case? Do any of the relatoonshing appear to be curved ${ }^{\text {? }}$

4 De the varous rehnonshoss struke you as bemg logeal in the set that you more or less would expect such varmbles to be related in suct way? If some of the relatonships do not appear logical or if they had i appenred logua, what efiect wouled such a finding hove on any subseque analysis?

5 Would you he whiling to excrapolate any of these apparent relatic ships and mehe eshmates besed on such extrapolations? Explain

6 Do the destrbutions around the lunes of relationslup appear to reasonably symmetrseal, or eren normal? What is the sugnficance of wh you find on the matter?

7 Does the assumption of a constant vamance in the verucal recte appear to be a reasonable approxmation un cach case?

8 Rank the four mdependent varnables in order of therr apparent a portance on explapeng varatoons in output
(b) The matrix below goves the vancus sums of coose products for th: five vanables

	X_{1}	X_{2}	X_{1}	X_{4}	X
χ_{1}	1,53,518	263,158	325,458	850,064	01,:
X_{2}		46,360	58,174	147,339	15,i'
X_{3}			83,036	173,962	18,4
X_{4}				487,603	52,
X_{6}					5,1

Calculate for each parr of vanables
1 The least-squares strayght fine of relationship
2 The standard deviation of the dependent varable
3 The conditional standard devation of the dependent varable (A knomas the standard error of estmate)
470% confidence interval for the expected mean of the depend varuable for salected values of the madependent variable (Select valt throughout range of independent vamalle)
570% confidence unterval for the expected actual values of the (pendent varseble for seleoted values of the indepeadent vamable

6 Plot your least tequares hates and yout 70\% confidence ranges on your graphs of Problem 14?(0) Evaluate the practical usefulmes of these calculsted results
(c) Calculate the cofficients of associstion, determuation, and correlatoon for each of your calculsted relationships Perform these calculations from the sample standard devatoons and from the estumated unverse standerd denations Eviluate the practueal signuicance of these coeficients
(d) Estumate the 70% confidence limuts for the coefficients of correlation you calculated in (e) above
143 It you were the personel drector of the Cray le C_{0}, to what extent would 30 u pas attention to each of the four factors referred to in Problem 1427 In answenng this jon might try to rank the lactors in order of importance and assign relatuve werghts to theit mportance
144 Examine the results of your anaysas and also the ongural data in order to assess the aguificance of "hastory" to this problem For example, is there any evdence that the hand of men hured recently is different from those hred several years ago if you find such a diference, how would such a finding affect your interpretation of your correlation results?

145 Suppose you have applicants who score as follows on the Pixem Dextenty Test $A-15, B-34, C-55$ What estmate would you make of therr output rate? When would you erpect them to acheve thes rate ${ }^{\text { }}$ Since you are given no informatron on the other undependent vanables, hor do j ou allow for them, if at all ${ }^{\prime}$
146 Select from the shove relationshups (treated as straight lipes sbove) that one that impresses you as the most hikely to be reasonably well decenbed by a second-degree parabola Periom the necessary calculations to make a correlation study based on such a second-degree parabois Are these results "egruficant"?

\pm

Reducing uncertainty by

 association: multiple correlation analysisUp to thes porint we have amalyzed the associations between sales and population and between sales and nowowe, with each analyss independent of the other We were in a position to make estimates of sules based on population alone, or to make estumates of sales based on income alone There was no reason why these separate estimates should be parthcularly consistent $\begin{array}{r}\text { rith } \\ \text { eech other }\end{array}$ For cxample, in Territory 2 we get an \bar{X}_{12} oi 43% and an \bar{X}_{18} of 67% (X_{1} actuaily equalled 27%) When we get diferent estimates like this, we should use the one that is based on the better estimetor, in this case, X_{2} Or, we might use an estrmate besed on a weighted combination of the separate estmetes, with the welghte proportional to the respective cocfficients of association

We now try to solve the problem of stmultaneousiy anslyzing the three varrables of sales, population, and meome The method extends logicelly to cover any number of varables The method 18 known as multiple correlation analyas

15.1 The Underlying Idec of Multiple Correlation Analysis

Although the straghtforward mathemntical analyals we use may look as though we analyze the three varsables smultaneotsily, we, in fact, analyze the varrables two at a time, whth the other variable constant We then add the net corralations together to get estimetes based on smultaneous varation of the independent, variables

It is easier to visualize the process of anslyzing three varables if we draw graphs in three dimensions it is possible to sumulate three dimensions on two-dimensional paper by using projection tecliniques Most people are not adept at this, so we do not attempt it here, but rather, we try to use the room in which wee are now suttmg so that we can see what three-varable analysis is
First we specify the axes Let us position ourselves so that we are nenr the center of the room and are facing one of the walls of the room Imagne that we are measuring sales vertically, that is, from the floor to the celling We will measure population from left to rught, that 18 , slong the wall that we are facing We measure income from the bach to the front, that 1s, along the wall to our left Now let us check our bearings by "plothng" some of our data Territory 1 has a sales of 40%, a population of 24%, and an income of 89% We are going to place a golf ball in the space of the room to represent this combination of sales, population, and income Startlog at the orign, which is at the floor in the left corner facing us mark of (mentally or actually) a distance of 24 units of population at foor level along the facing mall (In selecting our units heep in mind that population runs from 24 to 105)
Next mark off a distance from the 24 population point parallel to the left wall so that it covers 89 umts of meome (Since 8918 more than the average of 67 , thas point should be to our left-front If we assume our orignal postion in the center of the room) The resultant coordinate point for population and income corresponds exactly to what we nould have if we pere planning to drave a scatter diagram of population and income on the floor of out room
Finally, we measure a distance of 40 sales units straight up from this population-meome coordinate point We then hang the goli ball so that it occupies the resultant position
The golf ball now has a position in the space of our room so that its distance from the floor measures the sales, its distance from the left wall measures population, and its distance from the rear mall measures income (We are assuming we are in our onginal position in the center of the room) Imagme me have placed golf balls to correspond to the sales-population-income of the other 14 terntones Thus there are now 15 golf balls hanging in the space of the room If we were to take a photograph of the room from the rear, it would appear luke Fug 151 (We elminate sll irrelevaneies from the room)
What we would now like to do is place a flat piece of glass in the space of the room so that there are about as many golf balls above the glass as there are below the glass all over the room, (We assume

Fig 151 Stereogram of relationship among X_{1} (esles), X_{7} (population), X_{g} (income) Sales measured from bottom to top population from lei nght and income from back to froat (We assume we are sitting it midd) base and are fecing the far 'wall) Numbers identafy terntories Table 141
that we have no physcal dificulty writh the strings holding the । balls We have a special adhesive that enables us to place the b in the arr at any positionl) Examination of Fig 151 make rather apparent that the golf balls do follors a pattern in spi Figure 152 shows the glass mp place

We call this prece of glass a plane m three-dumensional spi It provides us with estumates of the conditional mean of sales gr: some combination of population and meome If we measure deviations of the goll balls from the plane, square thern, divide 15, and take the square root, we bave the conditional standard vation, or s_{123} Thus is the varation im sales that 15 andepend of varrations in population and income, and hence the varration I sumably assocated with factors other than population and meo
The mathernatical specfications of this plane are rather sim to determine Suppose, for example, that we wished to give instr hons to a carpenter so that he can buld supports along the walle hold this pane of glass We might write something lake this

Nail a 2×2 in strip of wood along the south wall so that the top edg! the strip is 5 in aboye the floor at the scuthwest corner and so that the s

Fig 15.2 Stereogram of relationship among ealcs, population, and income mith fitted plane to descnbe average relatronship Note that Territories $1,2,4,5,6$, $10,12,13$, atd 14 are below the plave and $3,7,8,9,11$, and 15 above the plane Also note thst the territones further amay, is, those that have higher meomes, tead to have bigher sales for a given population
nses 7 fl for every foct of distance along the forth wall. Then nail a simular strip along the west wall, porung the south nall stnp in the southrest comer, and nsing 9 il for erery foot of distance along the west wall.

These two strips would be sufficient to hold the rigid pane of glass in place.

If our carpenter were a mathematicinn of moderate sorts, we could have economized on languege by telling him to fit a plane with the following equation:

$$
X_{1}=.5+.7 X_{2}+.9 X_{3}
$$

where X_{1} is the height of the plane for any given comhination of X_{2} (distance along the south wall) and X_{3} (distance along the west wall). The 5 tells him the height of the plane in the southwest corner (where both X_{2} and X_{3} have values of 0); the .7 tells him the slope of the plane along the south wall (along which X_{2} is measured); and the, 9 tells him the slope of the plane slong the west wall (along which X_{s} is messured).
The general form of this equation would he

$$
\begin{equation*}
X_{123}=a_{1(23)}+b_{15} X_{2}+b_{132} X_{3} . \tag{15.1}
\end{equation*}
$$

For our problem we would meterpret this equation as

$$
\begin{array}{ll}
\bar{X}_{123} & \text { is an estumate of } \bar{X}_{1} \text { (sales) based on given } \\
& \text { values of } X_{2} \text { (population) and } X_{3} \text { (mncome) }
\end{array}
$$

We can easily grasp the logic of referming to X_{2} as constant if we mentally return to our room Stand anywhere along the south wall (the orgmed rear wall) with our back to the wall Then we wrolk straight out along a hine parallel to the weat wall As we walk along, we are walkang from termories with small incomes to those with large incomes But note that the populaion is remaning consiant because we are along a line at right angles to some point on the population axis The larger sales we encounter as we walk along this line are the differences in sales associated with differenees in meome when population ws constant

The Situation When We Have More Than Three Variabies

The idea of three varables was relatively easy to express because we are all familar with the three-dmensional world in which we live If we add a fourth variable, we create the need for a fourth dimension, a fifth varable requires a fifth dimension, etc One of the best ways to preture a fourth dimension is to magine the skeloton of steel or concrete in the begranng stages of the construction of a multustory building Assume we are concerned only with rooms to be bult at the northwest corner of the buldmg Lest us measure sales along the vertical axas at before Let us measure population along the south wall and income along the west wall as before What do we now do with number of retal outlets our fourth varrable? We measure the fourth varrable along the same anns as we measure sales The value of the fourth variable telles us what floor of the buildug to use in making our estimates Each floor contams a room just like the one we used for our three-vanable analysis Each room, however, will have a differently placed plane of glass the difference asbocrated with varations in X_{4} (We can mmedrately see that thas $1 s$ going to have to be a very tall bulding if X_{4}
is a contunuous vanable, and if we bave a separate floor for each value of λ_{1})

Suppore we bave a fifth varnable We not need more tban one room on each loor Let us use the rooms along the north wall of the building to messure sanations in the fifth vansble Eacb of these rooms bas a typical three-dmensional set-up, each with its own plane We now uce X_{4} to tell us what floor to use sand X_{5} to tell us wbatroom to use along the north call
The reat of the rooms in this bulding are avalable to be uced, so now we introduce a arth tarisble This vanable indeates to us π bst room to use along the ues! aus of the bulding
We have now completed thrs analogy and can rener the whole preture Irnague a rery extensue multustor buiding In eoch of the thoussuds of rooms we bave a plane mhich measures the association among X_{1}, X_{2}, and X_{3} Each room has a dufferent plane, the differences depending on the particular values of X_{4}, X_{5}, and X_{5} that preval We enter the building at the ground floor Te get on the eler ator and get off at the floor indacated by the given ralue of X_{4} We then concult the salue of X_{s} to find out how many roms we must go slong the north axis and the value of X_{6} to find out hom many rooms we must go slong the rest ans TVe enter that room consult the values of X_{2} sud X_{3} and find our estrmated value of Y_{123558} or more exsetly; of X_{13656}
If re had a setenth, etc, isnable, tre could controue the analogy br staching boxes in each room, whth each box stacised mith smalle: boxes, etc

An equation for a fre-varabise problem maghtoon'h he

$$
X_{12345}=a_{1(2355)}+b_{12.345} X_{3}+b_{13} 245 X_{3}+b_{14235} X_{4}+b_{15.23} X_{5}
$$

If some of our relationships were curvilnesr rather tban linear, our bulding would tahe on some very interesting futurstuc sbapes We would also bave some interecting engmeeng problems if the building is to stand

15.2 Relotionship of Multiple Correlotion to Simple Correlation

While we base our three-dumensional model in mund, it is a good idea to compare our scatter dasgrams for two vansbles with our stereogram for three ramables Figure 153 shows the sestter dasgram of the relatoonship betreen X_{1} and X_{2} next to the stereogram

Fig 153 Comparison of seattergram of relationghy between sales and population and same relationship as it appears in the stereogram
that is beng observed from the same perspective Il we ehminate the lactor of depth from the stereogram, we would get exactly the same result as shown in the seatter dagram Since the lactor of depth reffects income, elimination of the depth factor 18 the ssme as sgnonng the ancome factor This is, ol course, exactly what we did when ne drew the scattergram (a useful contraction ol scatter dasgram) lor sales and population
The contrast between a scattergram and a stereogram is even more nuld if we compare the seattergram of X_{1} and X_{3} with the stereogram from the same perspective See Fig 154 Note the negatve slope of the relatuonchip in the scattergram when ne unore populatuon and the portuve slope in the atereogram when me can observe X_{1} and X_{3} with X_{2} constant We can now see why our analysis of the relationship between ssles and income showed a rather surpming negative association Income and population are negatively correlated in our sample Thus the depressant effects of a low populatoon are sufficiently strong to offeet the stmulating effects of a bugh neome with the result that nncome and sales appest negatively correlated then te ignore population

The Concept of the Partial Relationship

When we are dealing with the relationshap betreen tro vanables when one or more other vanables are constant, it is a partual relathonshtp Thus we call b_{12} the coefficient of partul regression, in contrast to b_{12}, which is the coefficent of regression Sumularly, we call A_{12} s the coefficent of partual association and r_{12}, the coeffictent of parthal correlation We say more about these partial relations in later pages

15.3 Assumptions Underlying Our Multiple Corzelation Model

Our approach to the mathematucal analysis of three varables parallels that we made of two wanables We make the same fundsmental assumptions, namely.

1 The lines of tonditional means are stragbt, or linear This results in our plane being fiat rather than contoured
2 The conditionsi standard devistions are equal in all vertical vectors running above and below the plane Imagme the plane being marked of in small squares or cells, with each square representing a particular combingtion of X_{2} and X_{5}, and we can see the mplication of this

Fig 154 Comparison of acaitergram of relationshap between sales and noome and same relationship as it appears in the stereogram The stereogram 19 vewed from the east a de of FIg 153

Fig 15.3 Illustration of a normal distribution of ceil frequencies for a angle cell of a three-vanable stereogram
assumption Assume that our sample is large enough so that each combmation of X_{2} and X_{3} is parred mith seeveral values of X_{1} Our goll balls for a green cell nould tend to hang down like a stalactut from the rof of a casem and slso to project upward like a stalagmate from the foor of a casern We would thus get a distribution of X_{1} valueg
 (Golf tees rould be a more appropnate smmuator of the dustribution of the goif balls than would stalactites and stalagmetes!) Our assumptoon of equal standard devations refers to the equality of vanations around these cell means
3 The conditional dstinbutions are essentually normal This assumption faclitates the interpretation of our standard devations

15.4 Estimating a Least-squares Straight Line of Multiple Relationship

We calculate an anthmetic mean plane through the data for the same reasons we calculated an anthmetic mean line for a twovariable relationship Agan we accomplish this by taking advan$t_{a g e}$ of the least-squares property of the arthmetic mean We would like to obtan values of $a_{1(23)}, b_{12} s_{1}$ and b_{132} in the equation

$$
\begin{equation*}
\bar{X}_{123}=a_{1(23)}+b_{12} X_{2}+b_{132} X_{3} \tag{151}
\end{equation*}
$$

so that the sums of the squares of the deviations of the X_{1} from the \bar{X}_{123} Is a minmum The same mathematical routine that 15 used for a two-variable analysis indicates that we get such least-squares values If we solve the followng three equations (Equations for estimating least-squares lines are often called normal equations, the term origlnating with the idea that the least-squares line achieves its most reliable use when the underlying distributions are normal)
(1) $\triangle X_{1}=N a_{1(23)}+b_{12}\left(2 \mathrm{X}_{2}\right)+b_{13},\left(2 X_{2}\right.$
(2) $\Sigma X_{1} X_{2}=a_{1(23}\left(\sum X_{2}\right)+b_{12} \Sigma X_{2}^{2}+b_{12} \Sigma X_{2} X_{3}$
(3) $\Sigma X_{1} X_{3}=a_{1(23} \Sigma X_{3}+b_{12} \Sigma X_{2} X_{8}+b_{13} \Sigma X_{3}{ }^{2}$

If we fill in all the requred sums from the data in Tahle 142 , we get
(1) $10000=15 a_{1(23)}+10000 b_{12} 3+10000 b_{132}$
(2) $73187=100 a_{1(23)}+77094 b_{123}+61780 b_{132}$
(3) $65286=100 a_{1(23)}+61780 b_{123}+71312 b_{132}$

These three equations can he solved simultaneously by any one of several different methods, however, we often find it more expeditious to take advantage of another property of the arithmetic mean and therehy reduce the three equations to two This property is that the sum of the deviations from the mean is 0 Hence, of we measure all of our varahles from ther respective means mstead of from the natural origin of 0 , we find that our three normal equations reduce to

$$
\begin{aligned}
& \text { (1) } \Sigma x_{1}=N a_{1(23)}+b_{12} \Sigma \Sigma x_{2}+b_{13} \Sigma x_{3} \\
& \text { (2) } \Sigma x_{1} x_{2}=a_{1(23)} \Sigma x_{2}+b_{12} \Sigma x_{2}{ }^{2}+b_{13} \Sigma x_{2} x_{8} \\
& \text { (3) } \Sigma x_{1} x_{3}=a_{1(23)} \Sigma x_{3}+b_{123} \Sigma x_{2} x_{3}+b_{13} \Sigma x_{3}{ }^{2}
\end{aligned}
$$

All the orcled sums are zero Hence we find immediately that $a_{1(23)}$ is 0 when we measure all variables as deviations from their means This is another way of saying that a territory with a mean population and a mean ncome should bave mean sales We are then left with the modified equations (2) and (3)

$$
\begin{align*}
& \text { (2) } \Sigma x_{5} x_{2}=b_{12} \Sigma \Sigma x_{2}^{2}+b_{12} \Sigma x_{2} x_{3} \\
& \text { (3) } \Sigma x_{1} x_{8}=b_{12} \Sigma x_{2} x_{y}+b_{12} \Sigma x_{3}^{2} \tag{153}
\end{align*}
$$

(It is interesting to note the appearance of the sums of the cross products of devations in these equations These sums of cross products
defintely do measure the degree of correlation, annoug other thangs)
If re had to calculate directly these sums of cross products and sums of squares of devistons, the reduction to two equations would be no advantage Fortunstely, these sums are essily denved from data we already bave in Table 142 The requred formulas are

$$
\begin{aligned}
& \Sigma x_{1} x_{2}=\Sigma X_{1} X_{2}-\bar{X}_{1} \Sigma X_{2}=73187-667 \times 100=6520 \\
& \Sigma x_{1} x_{3}=\Sigma X_{1} X_{3}-\bar{X}_{1} \Sigma X_{3}=65286-667 \times 100=-1381 \\
& \Sigma x_{2} x_{3}=\Sigma X_{2} X_{3}-\bar{X}_{3} \Sigma X_{3}=61780-667 \times 100=-4887 \\
& \Sigma x_{2}{ }^{2}=\Sigma X_{2}{ }^{2}-X_{2} \Sigma X_{2}=77094-667 \times 100=10427 \\
& \Sigma x_{3}{ }^{2}=\Sigma X_{3}{ }^{2}-\bar{X}_{3} \Sigma X_{3}=71312-667 \times 100=4645
\end{aligned}
$$

Note that all these formulss are fundamentally the same The general formula is the sums of products of deviations of two varables from their reppective means is equal to the sums of products of the onginal ranables minus the product of the mean of one varnsle and the sum of the other If we recoguze that the square of one varable is simply the producl of two varnables that happen to have the same value, the can see that this rule also extends to the sums of squares of devations
If we substutute these values in the two equations, we obtain
(2) $\quad 65.20=10427 b_{123}-4887 b_{132}$
(3) $-1381=-4887 b_{123}+4645 b_{13} 2$

Solnng these two equations sumultaneously gives us
and

$$
b_{123}=959, \text { or } 96,
$$

$$
b_{132}=712 \text {, or } 71
$$

If we leave the orgin at the gencral mean, $a_{1(23)}=0$ It is, however, generally more convenuent to have the ongin at 0 The value of $a_{1(23)}$ at the natural ongn is

$$
\begin{aligned}
a_{1(23)} & =X_{1}-b_{12,3} X_{2}-b_{132} X_{3} \\
& =6667-959 \times 6667-712 \times 6667 \\
& =-447
\end{aligned}
$$

Thus the equation of our plane of conditional means is

$$
X_{123}=-447+96 X_{2}+71 X_{3}
$$

Our mathematically inchned carpenter could now buld the supports for thas plane in our room We hope he would have the good sense to realize that we do not really wish him to cut a hole in the floor at the southwest corner so he could anchor hes 2×2 's 447 unts below the floor level We wish him to terminate at the floor leyel at a pont so that of the 2×2 were extended, it would reach the comer 447 unts below the floor
The fact that $a_{1(2 z)}$ has a negative value points up the nonsense in extending our plane into the cormer where a territory has 0 people and these 0 people have 0 income (On the other hand, there is some logic to the presumption that if a sales manager shipped merchandise unto an empty terntory, there would prohahly be some lose before the merchandise could be reseued It is unikely, though, that -447 is a correct estamate of the probable loss ${ }^{\prime}$)

15.5 Estimating the Canditional Standard Deviation for a Three-variable Analysis

The standard deviation of the X_{1} values around our plane can be calculated in the usual way We measure the denation of X_{1} from \bar{X}_{123} and square the result We then add up all such squared deviations, divide by the number, or by the degrees of freedom, and take the square root In symbols we get
or

$$
\begin{align*}
& s_{122}=\sqrt{\frac{\sum\left(X_{1}-\bar{X}_{123}\right)^{2}}{N}}, \tag{154}\\
& \hat{\sigma}_{123}=\sqrt{\frac{\Sigma\left(X_{1}-\bar{X}_{122}\right)^{2}}{N-3}} \tag{155}
\end{align*}
$$

Thus is a tecious calculation, and so, unless we have other reasons to wish to calculate the $\bar{X}_{\text {I2 }}$ values, we prefer to use the short-cut version of the formula (Remember that shortcuts almost always have more twists and turns than the long way) The chort-cut formula 18

$$
\begin{equation*}
s_{125}=\sqrt{\frac{\Sigma X_{1}^{2}-a_{1(23)} \Sigma X_{1}-b_{12} \Sigma \Sigma X_{1} X_{2}-b_{18} \Sigma X_{1} X_{3}}{N}} \tag{156}
\end{equation*}
$$

(A shorter short-cut verson would be

$$
\left.s_{1.33}=\sqrt{\frac{x_{1}^{2}-b_{12} z^{\Sigma} x_{1} x_{2}-b_{13} \Sigma^{2} x_{1} x_{3}}{N}}\right)
$$

Substituting in this equation, we get

$$
\begin{aligned}
s_{1.23} & =\sqrt{\frac{72438-(-447) \times 100-96 \times 73187-71 \times 65286}{15}} \\
& =59 \%
\end{aligned}
$$

If we adjust, as we should, for degraes of freedom, we get

$$
t_{123}=s_{133} \sqrt{\frac{N}{N-3}}=59 \times 1118=66 \%
$$

156 A Summory of the Results of Our Anolysis of Territory Soles

We can now extend Table 146 to include the results of our multiple anslysis Tahle 151 reproduces Tahle 146 except for the footnote and adds the results of our multuple analyss It is quite endent that knorledge of both the population and income of a terntory resulte in smaller estimating errors than if re kner only one or nether of these If Te were to introduce knowledge about other relevant vanshles, such as number of retal outlets, average annual temperature, ete, we prohahly could reduce d_{13}. below the 66% which we schieved mith knorledge of X_{2} and X_{3} We rould probahly have some trouhle
mokng very large reductions, however, because of the ferv degrees of freedom we have to work mith If we enlarged our sample (assuming the company has some additional terntortes avalahle) and antroduced some additional vanshles, Te Fould encounter a substantial increase in the amount of anthmetuc molved A four-varahle analysis in-

TABLE 151
Summary of Rusulfs of Anslysis of Soles in o Terntery

Etimatiat Frugih	lentioc m Sudu	Dequen \square 7 7ew	Brtmand Turstion u Caverw	Batrated 1tewforent Empo	
(1) $\Sigma_{1}=6.7 \%$	3 - 10.8	14	8 - $1.0 .10 \%$	$t_{1_{1}}=211 \%$	
	0.2 $=108$	13	$\mathrm{H}_{1} 19=2.13$	$d_{1,1}=117$	
(3) $\bar{X}_{11}=8.05-.895_{5}$	$41=167$	13		$\delta_{11}=1 . s$	
(i) $X_{10}=-447+859 \mathrm{r}_{4}+719 \mathrm{C}_{1}$	R $\mathrm{B}=5$	13	fix= 0	$d_{L_{1}}=\\|$	
Supplesartary Dida					
$\bar{X}_{1}=8.4 \%$	4. 7178	1	$A_{3}=18$	$t_{1}=209$	
$x_{5}=077-4098_{1}$	m m $=128$	3	$d_{12}=1.4$	$t_{r_{1}}=1.35$	

volves aimost twice as much arithmetic as a three-vanable analysis, for example Such a formudable load of work has prevented any midespread use of multiple analysis of many variables The development of the electronic computer promises to break this barrier, so that we should see a substantial nerease in the use of multiple correlation techniques Whether this upsurge will be accompanied by any signfficant amount of misuse is yet to be seen There is a danger that some people forget that the computer follows instructons as given, wnth little facility for rejecting poor instructions
Although we are not really interested in estumating income from population, we include the analysis as supplementary iniormation to help us understand hetter the structure of our prohlem Tbus we can see that there is a reasonahiy high association between the two independent variables This is the source of the rather dramatic shut of the slope of the sales meome line from negative to positive as we mainaman population constant

15.7 Sampling Errars in Multiple Correlatan Analysis

Estimation of sampling errors in the estumation of the plane of conditional means paraliels the reasoming we used for a line The net error is a function of the error in $a_{1(23),}, b_{12}$ 3, and b_{132} The hasic formule would he

$$
\begin{equation*}
\dot{\sigma}_{I 14}=\sqrt{\frac{\sigma_{123}^{2}}{N}+\frac{\dot{\sigma}_{123 x_{2}^{2}}^{2}}{N \dot{\sigma}_{2}^{2}}+\frac{\dot{\sigma}_{123 z_{3}^{2}}^{2}}{N \sigma_{3}^{2}}} \tag{157}
\end{equation*}
$$

Note that this error mereases as we depart from the general mean because of the cumulation of errors in ' $\mathrm{o}_{12} 3$ and b_{132}

If coefficients of partal association, or parizol correlation have been calculated, they too are subject to campling errors For example, the coefficient of partial assocration between sales and population, with uncome constant is

$$
A_{123}=\frac{s_{13}-s_{123}}{\delta_{13}}=\frac{167-59}{167}=65
$$

and the coefficient of partual correlation of the same 18

$$
\begin{aligned}
r_{123} & =\sqrt{\frac{s_{13}^{2}-\delta_{123}^{2}}{s_{13}^{2}}}=\sqrt{1-\left(1-A_{123}\right)^{2}} \\
& =94
\end{aligned}
$$

Transformation of r into z^{\prime} guves us 174 The standard deviation of z^{\prime} (frequently called tbe standard etror) is

$$
\sigma_{l^{\prime}}=\frac{1}{\sqrt{N-3-(k-2)}}=\frac{1}{\sqrt{11}}=30
$$

Note that the standard deviation of z^{\prime} is slughtly larger here than it was for the tro-vanable coefficient, the increase being due to the loss of one more degree of freedom Seventy-five percent limits correspond to a Z of 115 in the normal curve Hence the lumits to s_{123}^{\prime} are $174 \pm 115 \times 30$, or 140 and 208 These correspond to limits for \hat{p}_{173} of 89 and 97

15.8 Note on the Coefficient of Multiple Correlation or Association

A coefficient of smple assoctation measures the relative error reduction which takes place when be consider one independent variable in addition to the dependent variable The coefficient of partual association messures the relative error reduction which takes place when we consider one independent variable while holding one or more other independent varables constant Some people al.o like to measure the relative error reduction which takes place when we consider two or more independent varnables For example, if we calculate

$$
A_{123}=\frac{s_{1}-s_{123}}{s_{1}}=\frac{196-59}{196}=70
$$

He have messured the relative error reduction which takes place when we consider both population and income Such a calculation is the coefficient of multiple association, or the multople coefficzent of assoclation
Since multiple coefficients always involve at least tuo added variables, they tend to be rather large in numerical value They are very difficult to interpret because of the addition of two or more variables We have no bass of judging hon much of the informathon was contributed by one of the variables and how much by the other or others We can judge the latter only with reference to the partual associations, where we allow only one independent variable to vary at a time Therefore tre recommend avoiditg the calculation of multiple coefficients because they contribute no precise and useful information and yield numbers so large that the unimituated tend to be overimpressed

15.9 The Relationship between Simple and Partial Correlations

When we found sales and meome with a negatwe assometion and later found that the partal assoeration was positive when we held population constant, we had empincal prooi that the relationshups between simple and parial associations are not as obvious as we might hope We can get a more preelse idea of the relationships between smple and parbal coefinents if we show ther exact mathematical function For example, umg r for conventence, we get

$$
\begin{equation*}
r_{123}=\frac{\tau_{12}-\tau_{137_{23}}^{\sqrt{1-r_{13}^{2}}} \sqrt{1-\tau_{23}^{2}}}{2} \tag{158}
\end{equation*}
$$

A few of the more obvious conclusions we can dranf from thus equation are

1 Values of t_{13} and r_{33} are interchangeable Esch bas the same and equal effeet on the value of riz_{2}
2 If both r_{10} and ${ }_{22}$ are 0 , then $r_{122}=r_{12}$ We would infer this inturutuvely because, if X_{3} were uncorrelased wth both X_{1} and X_{9} tbe holding of X_{t} constant should bave no bearng on the relatoonship between X_{1} and X_{2}
3 If r_{18} and τ_{21} are both 1 , then r_{12} mast a aso be 1 and $r_{12}:$ must be 0
$4 T_{12} 18$ not completely udependent of f_{13} and f_{23} Tbis is obviously true for the case mentioned in 3 it is also elear if we play witb various combinstions of values for r_{12}, r_{13} and r_{27} For exsaple, suppose we know that $r_{48}=8$ and $r_{23}=5$ What casi we say about the value of r_{12} and τ_{12} ? Substituting these given values we get

$$
r_{12}=\frac{r_{12}-40}{\sqrt{3 \times r_{10}}}=\frac{r_{12}-40}{52}
$$

If we give $7_{12} a$ value greater than 92 , then $r_{\text {R }}$; would beve a value greater then 1 , a logical mpossibility Similariy, if we give r_{12} a value less than -12 , then τ_{12} w woud have a value less than -1 Therefore we know that r_{22} must have a value betryeen - 12 and 02 given that $r_{t 3}=8$ and $r_{25}=5$ If $r_{13} 18$ mantis 8 , with r_{29} remaning at 5 , then μ_{12} must be between +12 and -92 , a complete reversal of sagns from the case when r_{13} was postuve
These are enough to macate the possibilitues ${ }^{2}$ We can extend the list of logreal deductions of necessary This type of equation can
${ }^{1}$ Ruth W Lees and Fredenc M Lord have prepared a nomograph for the calculation oi partuil correlaton coeficients its is published in the Journal of the American Statistacal Assoetetion Dee, 106L p 995 Errors have been dis. covered in this nomograph A corrected nomograph will eppeat in a later issue
be extended to cover hagher order coefficients of correlation (We frequently idenufy the order of a coefficient by the number of varsables held constant. Thus r_{12} is a zero-corder coefficient, r_{12} a firstorder coefficent, $\mathrm{r}_{12} \mathrm{~s}^{2}$ a second-arder coefficient, etc) The formula for $\mathrm{r}_{\mathrm{L}, \mathrm{a}}{ }^{18}$

$$
\begin{equation*}
r_{1234}=\frac{r_{123}-r_{143} r_{243}}{\sqrt{1-r_{143}^{2}} \sqrt{1-r_{243}^{2}}}, \quad \text { or } \quad \frac{r_{124}-r_{134} r_{234}}{\sqrt{1-r_{134}^{2}} \sqrt{1-r_{234}^{2}}} \tag{159}
\end{equation*}
$$

The pattern of these formulas is farrly simple to discern, and we should be able to develop the approprate formula for any coefficient we wish
Although the coefficient of correlation is quite difficult to interpret by dself, analysis of the collection of them for a given problem will give us a good insight into the structure of the relatoonshups among the varuhies If we start with all the possible sero order coefficients, we can denve all the first-order coeflicrents, and then all the secondorder coeficients from the first-order ones, ete it is also possible by a techmque called factor analyss to discover the possible existence of an underlying factor that is epparently common to several vamables ${ }^{1}$ For example, the relatavely abstract factor of intellgence may be considered as an underlying factor that is common to several problem-solving ablitites we might measure

15.10 Spurious Correlotion

One nay to study the correlation betreen sales and meome with population constant is ath the multaple correlation type of analysis that we have done above Another may is to correlate per capita sales with per capta income The calculation of per capita data involves durdung a sernes such as sales by the population in each terntory Thus the resultant figures are rahos of one variahle to another When we divide each of two series by the ame third series, and correlate the resultant ratios, we get a spurrous correlation mixed with the so-called real correlation We say that some spurious correlation develops when we calculate such ratios because the calculation of the ratios tends to create some correlation The argument is based on the behavior of random series Suppose we had

[^26]two seres of random numbers that were uncorrelated Then suppose we had a thard series of random numbers, uncorrelated with eather of the first two, whicb we divide into the other two series (We might as well multiply the first two eenes by the third to illustrate the promelple) When we divde by a large number, the resultant ratos tend to get very small together When we divide hy a small number, the resultant ratios tend to reman moderately large together Thus the resultant ratioe will tend to be positvely correlated even though the ongnal data were uncorrelated If we refer back to our formula for the relationship between zero- and frst-order coefficients, however, we note that if $\tau_{12}=0, r_{13}=0$, and $r_{23}-0$, then $r_{12}=0 \quad$ Nevertheless $r_{1 / 3}$ \% will tend to be positive
There is nothing inherently wrong with the correlation of ratios like these or with spurious correlation It is just as useful in prediction as nonspurious correlation For example, if we were given information on the value of one of the ratios, say X_{1} / X_{3}, madicating that the ratio was low, we could make the valid mierence that X_{2} / X_{3} is also low It is not surprising that the calculation of ratios alters the oorrelations between the primary eeries In fact, we would not really think of calculating such ratios unless we beheved that some alteration would take place The diffcult technical problem arises when it comes to estimatang the number of degrees of freedom in the final estimates We know that we lose 1 df when Fe hold a third varmable constant linearly, but we are not too confident that we know the restactions that are mposed when we calculate the ratios The resue is too complex for us to do any more than mention th here

15.11 The Phenomenon of Joint Correlation

Our treatment of multuple correatation analysis sssumed that the relevant relationships were all linear More mportantly, perhaps, the impleation of this assumption is that ut makee no difference at whech level we hold a throd varuble constant when we study the correlation between two other vanables An analogy from the chemistry laboratory helps make the point Suppose we are performing an experiment that involves water Suppose further tbat we would like to hold the temperature of the room constant during the course of the experment The ummedate question arnses as to the partcoular temperature we would like to manatan constant We would obviously get different results of we held the temperature
constant at $20^{\circ} \mathrm{F}$ than if we held it constant at $250^{\circ} \mathrm{F}$. Thus the results of our experiment are valid onty urthon the limuts of temperature where it makes no difference where we hold it constant

If we find that it does make a dufference to a relationship depending on the level at which we hold a third variable constant, we are dealing with vanables that have jont correlation An everyday example of a joint correlation is found among life expectancy, weight, and age for human beings We are aware that overweight people tend to have a shorter life expectancy than underwerght people What most people do not know, however, is that this statement apphes only to older people, those about 50 years of age or more To be underweight is not an asset for longevity at younger ages In fact, at age 22 , to be 20% underwerght is more damaging to longevity than to be 20% overveight ${ }^{1}$
The techniques for discovening and measurng joint correlation are outsude our scope here We merely mention its existence Common sense will usually warn us at the proper thme if he are at least aware of the possibility

15.12 Nonlinear Multiple Correlation

We may wonder what we do if our linear model is not a reasonably accurate pleture of reahty We merely use the so-called apiroprate curses $\| \mathrm{l}$ e say so-called because it 38 not at all easy to lecide on the proper curve in advance of any mathematics, and we
 or not If time and money are plentifut, and if we have an elcctronic computer, we can always engage in a "fishing expedition" We fit all kinds of lines to the data and pack out the most appropriate at the end But if time and money are restricted, we try to guess in advance the type of relationship that might be appropriate Some people always guess "straght line," thus putting very little strain on their techncal knowledge or their tme and money They never find out how much they might be missing by trying other possibilities
Again it is possible to use the clues from scattergrams to facilitate accurate guessing The problem here is more complicated because

[^27]of its multidmensional character, really requiring complex stereograms There are some graphis teehniques avalable, however, that make it possible to achieve some multidmensional effects in tho dimensions An extensive diseussuon of these methods is in Ezekial and Fox One useful pount to know is that of all simple correlation scattergrams undoate straught lines, the partul relatonships vill also be innear It 1s, therefore, alwaya a good idea to draw at least rough scattergrams for all possible pars of the relevant varisbles We recell that we started our analysta of the sales-population-mneome problem by constructing the three possable scattergrams

15.13 Using Correlation Analysis Results as a Measure of An Ignored Variable

Suppose our sales manager waoted to measure the effectiveness of has salesmen The obvious thung is to look at the sales performance of the salcemen If the sales manager desured, he maght rate the salesmen according to theer sales For example, our data show that the salesman in teritory 14 is the "best" because he has had the hughest sales (See Table 152) Salesmen 12 and 15 are next best,

tAELE 152

Rating Solesmen According to Stles Performanee

 After Allowing for Population and Intome| Tertiory 6 Salagman (1$)$ | $\begin{aligned} & X_{1} \\ & \text { (2) } \end{aligned}$ | $\begin{aligned} & 8_{19} \\ & (3) \end{aligned}$ | x_{19}
 (4) | $\begin{gathered} X_{123} \\ \text { (3) } \end{gathered}$ | x
 (6) | $\begin{aligned} & R_{1} \\ & (3) \end{aligned}$ | $\begin{gathered} \Sigma_{12} \\ (g) \end{gathered}$ | $\begin{aligned} & R_{12} \\ & \left(a_{1}\right) \end{aligned}$ | $\begin{aligned} & 2_{1} 1 \\ & (10) \end{aligned}$ | R_{1}
 (12) | $\begin{aligned} & 2_{12} 2 \\ & (12) \end{aligned}$ | $\begin{aligned} & R(\text { s } \\ & (18) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | 40 | 60 | 42 | -27 | 135 | 0 | 8 | -20 | 13 | -2 | 75 |
| 2 | 27 | 43 | 87 | 31 | -40 | 15 | -16 | 14 | -40 | 15 | -4 | 15 |
| 3 | 67 | 49 | 59 | 68 | 0 | 85 | 18 | 2 | 8 | 6 | 9 | 2 |
| 4 | 53 | 52 | 62 | 56 | -14 | 12 | 1 | 7 | -9 | 11 | -3 | ${ }^{9}$ |
| 5 | 40 | 58 | 68 | 48 | -27 | 135 | -18 | 15 | -28 | 14 | -8 | 18 |
| 6 | 60 | 58 | 62 | 65 | -7 | 105 | 2 | 0 | -2 | 9 | -5 | 13 |
| \% | 8.0 | 61 | 62 | 70 | 13 | 5 | 19 | 1 | 18 | 3 | 10 | 1 |
| 8 | 60 | 67 | 72 | 55 | - 7 | 10.5 | -7 | 11 | -12 | 12 | 5 | 45 |
| 9 | 80 | 69 | 65 | 75 | 13 | 5 | 11 | 8 | 15 | 4 | 5 | 45 |
| 10 | 72 | 76 | 68 | 76 | 5 | 7 | -4 | 95 | 4 | 8 | -4 | 11 |
| 11 | 67 | 76 | 73 | 04 | 0 | 85 | -9 | 13 | -6 | 10 | 8 | 6 |
| 12 | 87 | 84 | 67 | 94 | 20 | 25 | 3 | 5 | 20 | 2 | - 7 | 14 |
| 13 | 80 | 88 | 73 | 82 | 13 | 5 | -8 | 12 | 7 | 7 | -2 | 75 |
| 14 | 100 | 18 | 6.7 | jas | 33 | 1 | 0 | 4 | 33 | 1 | -4 | 11 |
| 15 | 87 | 91 | 77 | 80 | 20 | 25 | -4 | 95 | 10 | 5 | 7 | 3 |
| | 1090 | 1003 | 1002 | 1000 | -5 | 129 | -3 | 120 | - 2 | 120 | 0 | 120 |

and salesman 2 is the "poorest" Nnte that here we get the same ranking of salesmen whether ne use the sales figure (X_{1}) or the deviation from the meas (x_{1}) In aubsequent discussion we concentrate on devations from the mean fnr obvous reasons
Salegman 2 would prohahly be the first to complain ahout being rated solely according to asles performance He would very likely clam tbat there are extenuating circumstances which make it com paratsely diffeult to eell in his territory, especially when we compare his terntory with 14 An intelligent sales manager would want to investigate these extenuating circumstances He might run a cor relation apalysis sumurar to what ne have done, or possibly more comprehensie, and obtain results like those shown in Table 152
We use Salesman 1 in Terntory 1 as an example to explam the table Salesman 1 actually snld 40% of the total (column 2) This performance put hum 27% (column 6) below the average, a performance that thed hum for the 135 rank (column 7) (A rank of 135 represents a tie for both the 13th and 14th rank A proper way to handle ties for any ranks in a ranking operation is to give each thed rankee the anthmetic mean value of the ranks thed For example, Salesmen 7,9, and 13 all teed for ranks 4, 5, and 6 We assign each a rank of 5 This method of handling thes assures that the stm of all the ranks is the same whether or not there are any ties)
However, Territory 1 had a relatively low population, which, when considered, gives us an arthmetic mean expectation of only 40% (column 3) Tbis puts Salesman 1 nght at the average (column 8) with a rank of 8 (column 9) Thus Salesman 1 rates much better if we consider population in the rating
If we consider only income, the would expect mean sales of 60% in Territory 1, puttung Salesman 120% below average (column 10) with a rank of 13 (column 11) Finally, considering both papulation and meome, ne zould expect mean sales nf 42% (column 5), put ting Salesman 12% below average (column 12) with a rank of 75 (column 13)
Thus we see that our rating of Salesman 1 varies from 75 to 135 depending upon whether re do or do not conerder population and in come factors One of the most minteresting outcomes is that for Salesman I4 He goes from a rank of 1 if we ignore population and income to a rank of 11 if we consider these factors Presumably a good deal of bis success is due to his territory rather than to his own efforts Since such interesting thungs can happen if we consider population and income, it is only natural to ask what would happen if we considered even more factors The answer is that it
would depend on the degree of association hetween these additional factors and sales If there were very little association, very intle change would take place m the rankings Note, for example, that knowledge of income makes very little dufference in the rankings (Compare columns 7 and 11) On the other hand, knowledge of population makes a very definite difference (Compare columns 7 and 9) If we wrished, we might measure the correlation between rankings, with a result of 0 corresponding to a correlation of 1 between sales and the factor
If we are unsuccessfili in finding additional factors that will eignficantly change the rankmge, our aules manager might then assume that the ultimate rankings in terms of oevations measures the salesmen's periormances with reasonable accuracy of course, there 18 always the prohlem of what to do with the unmeasurable factors For example, the sales manager might visit a territory for a few days and call on a few customers with the salesman The sales manager then clams to have developed a "feel" for the territory and its problems, and for the skill with which the salesman has heen exploitung the terntory As a result he moght suhstantally modify the resulk of a formal correlation analysis There are no specific rules for making such modifications other than the appointment of a good sales manager If we could really establish such rules, we could replace the sales manager with a statistician

15.14 The Problem of Stability of Past Relationships

Correlation analysis is necessarly restricted to histomeal date Any discovered relationships generally have pracheal value only when they can be apphed to future events, and we again must concern ourselves with the problem of shifts in universes over tame For example, a change in consumer tastes may substantally alter the class of people who tend to buy a product Such changes could easily alter the population-meome relationships of the sort we measured If a sales manager ignored such changes because he was not aware of them, his admumstration of the sales foree would lag sereral years hehind the facts, with possably disastrous results unless the company had a sheltered monopoly
The only way we can keep abreast of such changes over time is to stay alert to new data as they appear This 18 hest done hy estahlishng some routine for recording new data and for assessing their consistency with measured past relationships This is gener-
ally better than waiting until some dissdvantaged people become sufficiently irntated to make complaints, or to resign, or to switch therr busmess elsewhere, as the case may be

15.15 The Problem of Cost

Agan we must remind oureles that knowledge is not without cost. There are always costs of some kind, whether m money, tume, physical energy, pleasures gren up, etc Correlation analysus is nothing more than a formal method for acquirng hnowledge, or for at least attemptung to acquire knowledge We must alnays be consclous of the need to make a profit by acquring knowledge with the promuse of a higher return than its cost We emphasize promise because there is no was to be sure that any hnowledge will have a return The person who insicts that he will not learn anything until he hnons its uslue generally remans ignorant beecause he cannot find any honest peron who will guarantee a return
There is no formula for predetermining the value of knowledge Each person must asses his own costs and the value of his remards Our only gude is past expertence, our onn and that of others We can often catalogue some of the costs and potential rewsids in some parts of a buaness but we can never do it completely
We should also remember that knowledge is subject to depreciation and obsolescence, a ty pe of cost ae are lihely to forget untal tre discover that a particular set of hnomledge 19 worthless We all know many thugs that are no longer true and many thangs that mas stall be true but that no one cares enough about to pas for. Some of ths hnowledge is useful for the personal pleasure it gises in ats retelling or for otherwise nourishing the ego

problems and questions

151 It was suggested in the text that wenghting in proportion to coefficents of ascociation (A's) might be approprate if we wshed to combine varables that bave been trested mdependently of each other, the type of analysis we made in the preceding chapter What is the loger, if any, to this use of neights?
What ather posilile weghtugg systems maght be used?
152 Calculate a least squares plane (lmear) of relationship from the dats of Problem 142 among
(a) Produthon, dextents test seores, and expenence
(b) Production, dextenty test scores, and intelligenee test scores
(c) Production, dextenty test scores, and formal education
(d) Production, experience, and inteilugence test scores
(e) Production, expersence, and formal education
(f) Production, inteligence test scores, and formal education
(g) Production, deatenity test ecores, experience, and intelligence test scores
(h) Production, dexterity test scores, experience, and education
(a) Productoon, expenence, mielligenee test scores, and education
(j) Production, dexterity, miteligence, and education
(h) Production, dexterity, experience, motelligence, and educstion

153(a) For each estimating plane that you calculated in 152 male estimates of the expected production for the odd numbered workers (or evennumbered)
(b) Construct a scattergram using your estimates in (a) as the inde pendent variable and the actual production as the dependent vamable

1 Is there any cvidence of a systematic vanation around a stratght line on this santtergram? (In other words, is there any cuidence that the plane should prohably he curved?) If so, what modsfications do you suggest for your estimating equation in order to bend the plane in the appropriate directions ${ }^{9}$ What clues for an approproate modification do you find in the scattergrams you drew in Problem 142^{2}. What clues from the loge' of the expected relationshipa?

154 Calculate the conditional standard devation of production for each of the relationshups you have calculated in Prohlem 152 (These should he unhased untverse estimates)

155 Make 70\% confidence estmates of the expected production for each of the following combinations of factors Use only those inctors inciuded in your estimating equation What is the practical significance of the yguored variables?
(a) $X_{2}=28, X_{8}=45, X_{4}=100 X_{5}-10$
(b) $X_{2}=47, X_{3}=88, X_{4}=125, X_{5}=12$
(c) $X_{2}-60, X_{3}=0 X_{4}-102 X_{5}=11$

156 Construct a tahle like Table 151 n.meh lusts all the possikle results of your correlation analy is of these Crayle Co figures
(a) Which formula has the least error?
(b) Might the apparent superiority of the formula with the least error be due to chance? Explam
(c) What considerations would gude you in deading which of these est:mating formulas you would use

1 In selecting new workers'
2 In evaluating the performance of a worker? For example, suppose you found a worker who was producing less than expected (You should find about half the workers producing leas than expected Why? Suppose you find more than 60% producing les than expected What would be your reaction?)
(d) Rank the four esplanatory factors in order of amportance Also assign the most approprate nexghts to each in order to signafy their relative mportance as you see them

157 Your table in Problem 156 has several different estimates of the universe standard devation, most of them berng conditional on the avilinblity of values of the independent variables A coefficient of ascocintion for of
determination, or of correlation) invalves comparing two such standard denations with each other
(a) Calculate the coefficents of assocsition that give meanngful answers
(b) Some of the coefficents calculated in (a) are known as coeffecents nf partal assocation Explam what is meant by partial association
(c) What have you learned from your calculation of these coefficents that you did not know before? (We are referring to what you have learned about this problem of personnel evaluation You have undoubtedly learned about some other things too, such as the tedum nif such calculations)
158(a) Calculate all the zero-order coefficients of correlation for the Crayle Co problem (There are 10 of them A cooperative effort is recommended)
(b) Deduce from these the 28 coefficents of partual correlation
(c) Deduce the 28 coefficents of partual cassocution from your 28 coefficients of partal correlation D_{D} these resulte agree with those you calculated in $157 a$ when you compared the standard deviations directly? Should they?
$159(a)$ Below are given three randmun series Venfy that these senes are practically uncorrelated by calculating r_{12}, r_{13}, and r_{23} [A quek sad convenient formula for calculating r_{12} is hy calculating $\Sigma r_{1} r_{2} / \mathrm{Ns}_{1} s_{2} \quad r_{13}$ and r_{23} can be smmiarly calculated The necessary sums nif cross products (not yet is devations from the mean) are given below $]$

Item	X_{1}	$X_{:}$	X_{3}	
1	5	3	9	$\sum X_{1}^{2}=299$
2	7	3	8	$\sum X_{1} X_{2}=205$
3	7	6	6	$\sum X_{1} X_{1}=265$
4	1	2	3	$\sum X_{2}^{2}=282$
5	2	7	7	$\sum X_{2} X_{1}=273$
6	2	3	3	$\Sigma X_{1}^{2}=369$
7	7	0	0	
8	1	9	6	
9	6	7	2	
10	9	6	9	
	-	-	53	
	47	46	53	

(b) Divde both X_{1} and X_{2} by the approprate X_{3} and calculate the coefficent if correlation between the resultant ratios Explan why you did not get a result of 0
(c) Is the ratio of X_{2} in X_{3} a valud base for estimatung the ratuo of X_{1} to X_{3} ? Explain
(d) Is the ratio of X_{2} to X_{3} a valid base for estumating $X_{1}{ }^{7}$ What is the relationship between X_{1} and the ratio of X_{2} to X_{3} ?
1510 Your multiple correiatinn analysis of the Crayle Co problem assumed that the relationships between any parr nf variables with one or more other varables constant are independent nf the level at which the other va mables were held constant Does the seem a reasonable assumption in this problem? (In answering, keep in mind that the actual data will tend
(t) tay within certain boundaries, hence what happens at hypothetical extremes may be arrelevent in prachee)

15 II Tbe attempt to use correlation analysis to elimnate the relationships of some variables to a dependent varable and thus leave a restdual variation tbat migbt be attributed to some ummeasured vamable sometmes creates a dilemma (Refer in the text to the use of correlation anj)s:s to rate the effectiveness of salesmen) If we search assiduouly for explanatory varables, we migbt end up leaving practically no residual to be attributed to the unmeasured varable If we do not search assuduously, we take the risk of failing to find an explanatory varable that would explain a good part of tbe variation that we may end up attrbuting to the unmeasured varable
(a) How would you proceed to cope with these opposite rasks? Gwe par ticular attention to bow you would utilize the concept of degrees of freedom in trying to reduce tbese rasks In order to lend some concreteness to your reply, use tbe exnmple of rating salesmen and devwe a final ranhing of soles men in order of abulty Defend the basss, or bases, of your ranisings
(b) Assign veigbts to your rankings so that we can tell how much superrorty you thank Saleaman X has over Salesman Y

demern 16 The problem of changes over time

16.1 The Challenge of the Future

In the final analysis, the acd test of the efficacy of any knowledge is its usefulness in foretelling the future Mere description of bistorical events is useless unless future events conform in some way to past patterns So far we have mercly mentioned the existence of the problem of whether past patterns have some stability through time We now explicitly consider the problem of the relatoonship of the past to the future

16.2 The Nature of Time

Time is best not defined, we assume that everybody knows what it $1 s$, and attempts to define it ngorously usually lead into an almost bopeless tangle of words So let us turn directly to the problem of measurng tume
All kinds of physical phenomena could be used as reference points, but those currently used are based on the physica! relationships of the earth, sun, and moon The year is, of course, the time it takes the earth to complete one carcuit around the sun The day is the time it takes the earth to make one complete spin around its axis The month is fundamentally rooted in the tume it takes the moon to complete one crrcut around the earth Unfortunately, however, attempts at personal aggrandizement by ancient rulers have resulted in months with different numbers of days Other units of time are subdivisions or multiples of these proncipal units
It is useful to speculate briefly on why man has chosen to use the notions of the year, month, and day as units of time Each of the
physical phenomena referred to makes a sigulicant difference to the amount of leght and/or heat available to man, both of which are essental to man's survival and comfort, and man knows they are essental There are very likely other physical phenomena equally essental to man's survival but which we so far have not been able to diseern with sufficient precision to make their behavior meanngiul measures of time For example, the whole solar system is probably goong somewhere in the same sense that the earth is going around the sun, but as yet we bave not been able to clearly define any reference points or landmarks It is also very possible that the earth, moon, and sur are sll cmiting and absorbing various kinds of energy, and very likely at systematic rates If we could measure such energy transformations, we mught hetter understand climatic changes on the earth, alternations of economic prosperity and depression, the long cycle of success of the New York Yankees, etc In the meantime we struggle along with the relatwely crude unts of the year, ete
The important point of thas discussion of tume is that there is no particular magio to tume It is simply a dating device that enahles us to relate all other phenomena to common reference ponts Its value to us is not umlike the value of a money sybtem, whereby we ars sble to relate the value of all goods and services to a common reference pount Our thme units are, of course, much more stable than our money units

16.3 Time and Other Variables

We are not really interested in time as such Rather we are unterested in the other varnahles that we can understand better if we date these varnahles

Problems in Meaningfut Dating af Variables

Homogeneity af Doto. An ideal tume serres (a senes oi dated measurements) is one winch the unit of measure remans constant over the full time period This is not at all easy to accomphish in a dynsmic society For example, If we are dealing with the sales of a company, it is not unusual to find that the company has changed its hne of products over tume, or bas purchased other businesses Such sharp changes on the mtegral unt can easily lead to masinterpretation of the sognsicance of time changes in the sales series Similar things can happen to an mdustry sales series Since very
fem companies deal in only one product or service, it is just about mpossible to construct a homogeneous industry senes by addag up the sales of individual companses That is why we make strong attempts to collect product statistits, such as sales of washing machines, rather than sales of washugg machine comprnes
It is very mportant to familanze ourselves with the defintions of the units of measure and the changes theren before we engage in any statistical analysis of a time series It is very embarrassing to work up a very profound explanation of a variation and discover that a change in unit accounts for it, particularly if the change in unit is common knowledge whthin an industry A careful worker must therefore pay attention to the footnotes and the appendices
If we discover that there have been changes in units of a nontrival type, we usually find that we ahould enther confine our formal analyes to only the later sections of dsta, the period after the change in units, or we should modify the data by making some adjustment for the change in unit. Many analysts prefer to modify the data because they feel more comfortable with the larger sample of data that results than they would if they had to Ignore the eather data before a unit change We usually prefer to modify data by adjusting the earier data to conlorm to the new unit, rather than to adjust the later data to conform to the old unit In thes way we are able to add new data as they occur without any further adjustments, unless, of course, there are subsequent changes in units
Exactly what we should do to modify data requires knowledge rather than techarque The mportant point is to know our data and then do what seems to make sense The smplest technique of ad justment is to assume that the relative changes in the data nouid be about the same in both the new and old units We adjust the level of the data only Such an assumption is almost never correct, but it is frequently all that is avalable Naturally xe should not be too ambitious with our conclusions from the resultant senes
One of the advantages of analyung data by the use of charts and experrence-based intuition rather than forma! mathematics is the flexability for handing problems of heterogenous data The corresponding disadvantage is of course, that we might subconscoously bias the results toward desired conclusions Thus an optimistic analyst is more lakely to foresee a rosy future from a given set of data than 18 a pessimistre one

Selection of Dates An unlimited number of options is avalable for the selection of dates We mugt check our cssb balance every
hour, or every day, or once a week, ete We might cumulate sales dally, or hourly, or monthly, etc Two analytical factors control the selection The time period should be long enough to permit measurable and meaningful changes to occur Otherwise we put ourselves in the position of trying to "see the carn grow" The other factor is the desirahility of not having a time period so long that, moportant changes are concealed withon tems rather than being shown as differences hetween items For example, if we cumulate sales only annually, the data will conceal any seasonal variations It is not neressanh wrong to conceal changes In fact we often do it deliberately as an analytical device What is wrong is to conceal changes that are significant to the conclusions we are drawing A useful general rule to follow is that we should conceal only those movements that conform closely to a lanear interpolation between the date that are recorded Thus we could always make good estrmates of the intermeduate data if we had to
Another factor mportant in seleching dates for recording data is cost vs benefits of addtional hnowledge A supermarket manager maght find it useful to check cash regster tapes every hour Thus he oan schedule check-out clerks, bundle boys, eto, for the most efficient use of their time without sacrificing customer convenience An automobile dealer would probably find an hourly check of sales a partreularly erratic and useless activity Busmessmen are contmually concerned with collecting suffiesently detaled information wathout cluttemng up the fles with meanngless triva

Cumulative us Nomeumulotive Data

It is important to distngush between two general classes oi data that occur in business time series Cumeliative data are data that can be meanngiully added over hme Thus we can add dally sales to get ueekly sales Conversely, we can subdurde annual sales into monthly sales
Noncumulatwe data are data that have different sizes at different dates but which make meanmgless totals if we add the date for different dates For example, if we add daly cash balances, we do not get a weekly or monthly cash balance Smilarly, if we add a person's heught from year to year, we do not get his present height
Data which appear on the meome, or profit and loss, statement of a company are generally cumulative data Data which appear on a balance sheet are generally noncumulative data

General Classes af Variation in Tume Series Dała, Systematic vs Nonsystematic Voriations

The fundamental objective of the analysis of time semes is to discover vanations over tume that appear to have some pattern or system to them We then hope that a projection of thes apparent system will produce useful estrmates of future variation We say appear because te can do no more tban use what we ourselves can see We do not really clam that the data themselses have the given system Nor do we clam that data that have no apparent system actually do have no system It may sumply be that our perceptrve abilities are inadequate As a matter ol fact, we prefer to belheve that all vanations are fundamentally systematic, Just wating for some man who is smart enough to discorer the system
Nonsystematco vanations are simply those vanations left over after we have extracted the presumed systems In fact re often call them resudual vamations They are of the nature of random sariations and can sometimes be treated successfully with probabjlity techniques
Since different people bring different backgrounds of knowledge, experience and analytical skills to a problem, it is not unusual to find different people classifying the zanations diferently Nether person is technically wrong as long as be does the best possible job
a the bounds of his own limitations Nevertheless one of the persons mill produce better results Unfortunately, it is not easy to decide which will be better The one who sees the most system in the data may have only a very lively magination coupled with a strong background in analytical geonetry The best we are able to do is develop the babit of rating people on the results they produce and to prefer the man with the better record of results If we concentrate on elegance of method, we might be misled by the form and ignore the substance Unorthodoxy of method seems to be almost a hallmark of outctanding achevement Unfortunately, it is also \& hallmarh of poor achevernent Thus, if we am for the best, we moght achieve the worst. On the other hand, uf we are willing to settle for good, but not outstandung, dependable performance, we rould do well to concentrate on form The situation is not unlike that in athletic achevement. Most golfers with bad form are bad golfers, just as most golfers woth good form are good golfers However, the outstandangly good golfers often have poor form, althougb we now call tt unortbodox

Types af Systematic Variation

Generally we do better in findug systematic behavior if we know what to look for Man's experience in the physical sclences has given us most of the clues we look for in busmess data The followmg broad classes of zystematec vanation have been found useful in studymg business and econome data Note that these systems are simply the result of correlating a senes with time as an independent variable Remember that there should be no comnotation that time causes the systematic variation The underlying causes would really be the other things that are also happening as inve passes We make no explicit attempt to identify these other things in a formal way We do, however, make references io thngs that might be considered probable causes of the observed behavor

Periodic, or Repettive, Variation. Figure 161 shows a very smple periodic system, a famular sine curve Thes system shows a constant ampittude of movement and a constant perrod of movement Thus each cycle is exactly like every other cycle Forecasting the next wave is a very ample task of extrapolating the constant cycle
If we measure the angle the sun'a raye make every day at noon with some pount on the earth's surface, we wouid find that this angle would pass through a repchitive cycle of sufficient stablity to warrant

Fig 16 : A smple penodic syatem the sine curve
predictung the angle at any date many years into the future This is the astronomical hasis which, among a few other factors, causes a seasonal varation in temperature, ramfall, ete, at that point on the earth s surface Unfortunately, the seasonal vanations do not con form to as exact a pattern as the angle of the sun's rays There is clear evidence that the average of many years of seasonal data will conform quite closels to a smple cycle Howeter the specific year data will show departures, sometimes in a discernhly systematic way and other times in an apparently random way

When we move from weather phenomena to such things as sales of hathing suts and of antifrecze, we find the departure from a simple cy cle even more pronounced Now we have to contend with events rhich are somerhat under the control of man and his institutions, and man is not always, or really eter, in precise control Furthermore, man is not consistent in what he wishes to achieve rith his controls Hence we find seasonal vamations in economic data exhbitung sometimes rather aide departures from the underlying cyclical phenomenon of the angle of the sun's rays
Additional complications anse because of the institution of the holday As custom dictates certam kinds of tradisional behavor at a holidaj, definte patterns begin to appear in the relevant data Customs change, horever, and the resultant patterns also change, creating a real challenge for the analsst who is trying to preduct future patterns

Civiluation also finds it necessary to adopt certan routnes of behavior in order to make at easter to predict certan phenomena For exaraple, Amenca's rorkday has been organzed for years around the "three meals a day" concept We recently have added the organzed coffee break in responce to the erratic and unorganzed coftee breab which many norkers were takang anymas Thus we systematze events ourselves Such man-made systems are most always thed to the cloch, or the calendar, both rooted in the physical world

Progressive-Persistent Voriatlon Figure 162 shows the population of the United States st selected dates The most striking feature of this series is its persistent tendency to grose There is no evidence whatsoever of any perodic variation We get the definte mpression that this pattern of growth can be ressonably well represented by a smooth line We might even extrapolate this line a few years anto the future witb some confidence that the actual population will not vary very much from such a line

Fig 162 Population of the United States 1790-1980 (Source United States Bureau of the Census Hitstoncal Slatutics of the US Colonal Thmes to 1367, Washugion DC p 7 sod Curreat Population Reporta June 14 1061)

We call such a line a secular trend, or a tread over a long perod of time How long is long 18 not easy to deterrmine All we can say is long enough so that we have erdence of a persistent tendency to move in some general drection This novement may not be lunear, but we do require that it not have ups and downs This does not mean that the actual series does not have ups and downs, but only that the general persstent movement has no ups and downs The situation may be likened to the path of an ocean liner from Nery York to London The trend of the hner 18 persistently toward London, although the disturbances of wod, current, and human error cause the liner to be almost always headed some other place with correctoons being made as soon as thear need becomes apparent The analogy is mperfect because we do not know the destination of United States population or of smmilar series Estimating secular trend is more like plotting the general path of an ocean liner without ever knowing exactly where the liner is going We ateer for awhle in terms of where we thak it should be gong then we revise this adea of destuation as we come to realize it is not really going where we orignally thought Or perhaps a better analogy would be the problem of some of the early explorers of the American wilderness

They started out with a more or less vague idea of the direction they should try to go They then revised this idea as they confronted certan problems of terran, etc
This is the way a busmessman steers his busmess He hopes the busmess will grow, but he is not sure how fast it can or will grow He is also not sure of how much of its growth is within his own con trol and hor much of it will be a function of those larger forces that would be like the wind, the current, and the terram He must nevertheless plot a path he must have a plan With akill and luck he will end up cooperating with those larger forces and controlling the ones that he can bend to his will Some businessmen still plot therr course the way we built our early roads, by following the paths of the horses and cous The more daring businessmen bning other forces to bear and more or less force a path of planned growth the say ne now force a highway with gant earthmoving equipment One of the big Issues facing the United States and the world is the rate of growth of our national economy We do not really know what the practical limits are to our growth rate, nor do we know how much ine should try to force the rate by use of gor emmental potwer The problera 15 not made simpler by the fact that we do not know what it is that should gron Gross national product is just a total of a vast number of specific goods and services It is not enough to just make GNP gros with no concem for the specific parts that make up the gronth The parts are of the essence, and one of our rusks is that we may make the total grow temporarily by sacrfieng some of the slon-growing parts, albest crucial, in favor of some of the fast-growng parts

The problem of the complexity of the growth process is a persistent concern of the busmess manager We hear often of balanced growth and healthy growth This must mean that thoughtiul businessmen and economists can conceive of unbalanced growth and unhealthy growth, a kind of grow th that somehow apparently alters the structure of the organism in tinfaiorable ways thus ultumately precipitat1ng retardation or decline or even death
For cample the kind of gronth that took place in the United States during the 1920 s in real estate actuvities, automobile capacity, radio capacity, ete, tumed out to be unsustamable Much of this capacity remamed unused until the advent of the inordinate demands of Worid War II Some people still worry about what might have happened to the United States economy if the rar had not seemingly solved what had begun to look luke an almost unsolvable problem

A person maght be forgiven of he called the growth of the 1920 's unhealthy We might also mention that one of the prume tasks of the Federal Reserve Board is to encourage growth of the economy without letting the growth get unhealthy

It should be obvous that we bave to be very nalve to assume that we can plot the path of future growth by sumply extrapolating lines on charts, or by the equivalent use of mathematical equations Plottang the growth of a businesa, or of any instatution, or of any person's career, 15 more a matiter of knowledge, faith, and courage than it is of statistical teehnique Where our statistical technque can help us, however, is in pointing out the probable limits of what can possibly happen For example, Fig 162 indicates the unlikelihood that United States population will double over the next 10 years Such an event would represent such a substantial break with past patterns of growth that we would necessamly have to have many other things change also, events whin tbemselves would be very unlikely Having said this, however, again we remind ourselves that past experzence of this sort can also be a cham to our thinking Statistical-minded peopls are notortously conservative, with definte tendencies to plan for and to expect the usual, and they are right most of the tme, because, of course, it is the usual that usually happens The confident expectation of the mprobable is not a characteriatio of a statistician, but it is a characterjstic of the proneer Until somabody figures out a rational way to decade when to bet on the improbable, socjety will just have to hope that its prevaling pioneers have good instinet, or whatever quality it is that makes a few proneers genuses while most of tbem twin out to be wastrels

Momentum, or Runs, in Variation Most of us are famliar with the behavior of a pendulum If the pendulum is at rest and we push it it will oscillate with steadily dampening movements until it eventually comes to rest again Let us suppose that we had the problem of predicting the position of the pendulum Let us suppose further that the force that actrvates the pendulum is essentally intermittent in its action, perhaps even essentially random as far as we know Furthermore, the strength of the force varnes, again intermittently The best way to predict the position of the pendulum would be to study its past behavior We soon notace this tendency of the swings to dampen unless the force were being applred so frequently that rarely would tbe pendulum complete two swings before it is impelled agang If the outside force appears frequently enough,

It may be that tbe pendulum never really shows this dampening effect to the naked eye In fact, thes is exactly what happens to the pendulum in a clock The clock $3 s$ desgraed, of course, so that the outside force is as constant as possible in its atrength and in its tume interval, thus producing a pendulum with an essentally constant oscillation)
Whenever we bave a pbenomenon that is being acted upon by two or more opposite, but not constantly equal, forces, we get a variation called a run, or momentum This may be what goes on when we observe a business cycle Economic attivity has always been characterned by alternation of praspenty and depression The ups and downs have not been too closely approximated by a periodic curve of constant amplitude and length However, we defintely have not fluctuated from prospenty to depression on a day-to-day basis, although occastonally we have had pames that have caused rather sharp drops over very short tume penods Generally we find that it has taken tume for actirity to progress from peaks of proapenty to depths of depression Since it does take time, it is possible to forecast tomorrow's sctuvity by relerence to today's Furthermore, it is sometimes possible to predict a contunued nse in activity (or a fall) because there has been a run of nses (or falls) What makes it tricky is that the run has to have a certan momum length to assure us that it is unlikely to be a rondom nse, slso the run cannot be too long because we then fear that it has exhausted atself and will give way to a reverse run
Table 161 shows the lengths of runs in business activity in the United States as estimsted by Geoffrey Moore of the National Bureau of Economic Research and extended by reference to the turning ponts of the Federa! Reserve Board Index of Industrial Production It 18 obvous that the lengths have varied over the years Note that the runs of upswings have been generally longer than the runs of dowiswings, behavior consistent with the long-term growth of the economy Thus differential in lengtb is parthcularly pronounced durng the last 15 to 25 years, with the lengths of downswings very short
Some analysts would rather look upon the ups and downs in general business actuvity as dasturbed cycles rather than runs Their theory is that there are underlying cychical forces smmar to those afiecting seasonal vanstion, but that these forces are beng partully offeet by dasturbances which cause vanations in the lengths snd amplitudes of the cycles These anglysts try to discover the leagth and amplitude of this underlyng cycle For example, there has been

TABLE 16!

Langth of Cyele Phases in United States *

(As Indicated by National Bureau of Econome Reseasch Reierence Dates to June, 1938 and by Federal Reserve Index of Industrial Production ance)

Full

Trough Peak \begin{tabular}{c}
Expansion

(in Montha)

 Trough \quad

Contraction | Full |
| :---: |
| (in Monthy) |
| (in Mouths) |

\end{tabular}

Dec, 1854	June, 1857	30	Dec, 1858	18	48
Dec, 1858	Oct, 1860	22	Juad, 1861	8	30
June, 1861	Apr, 1865	46	Dec, 1867	32	78
Dec, 1867	June, 1889	18	Dec, 1870	18	36
Dec, 1870	Oct, 1873	34	Mar, 1879	65	99
Mar, 1870	Mar, 1882	38	May, 1885	38	74
May, 1885	Mar, 1887	22	Apt, 1888	13	85
Apr, 1888	July, 1890	27	May, 1891	10	37
May, 1891	J8, 1893	20	June, 1894	17	87
June, 1894	Dee, 1895	18	June, 1897	18	36
June, 1897	Junee, 1899	24	Dec, 1900	18	42
Dee, 1800	Sepl, 1902	21	Aut, 1004	23	44
AuE, 1004	May, 1907	33	June, 1808	13	46
June, 1908	Jon, 1910	19	Jad, 1912	24	43
Jan, 1912	Jsa, 1913	12	Dec, 1914	23	35
Dec, 1914	Aug, 1918	44	Apr, 1919	8	52
Apr, 1919	J8n, 1920	9	July, 1921	18	27
July, 1921	May, 1923	22	Juily, 1024	14	85
July, 1924	Oct, 1926	27	Nov, 1927	13	40
Nov, 1924	June, 1929	19	Mar, 1933	45	64
Mar, 1933	M8y, 1937	50	June, 1938	13	63
June, 1938	Oct, 1948	64	Feb, 1946	28	92
Feb, 1946	Oct, 1948	32	July, 1949	9	41
July, 1949	July, 1953	48	Aug, 1054	13	61
Aug, 1954	Feb, 1957	30	Apr, 1858	14	44
$\begin{aligned} & \text { Apr, } 1958 \\ & \text { Feb, } 1961 \end{aligned}$	May, 1960	25	Feb, 1961	9	34
Average		28		21	49

[^28]some evidence that there has beea a bulding, or constructuon, cycle of about 18 years in leagth in the United States
Another group of theonsts looks upon the ups and downs of general busness actuvty as anatogous to the weaving path of a shp at sea or of an automobile on a highway The ecoasmy tends to drift off course, or at least it teads to drift off what we thak the course should be But sace we are never too sure of where we are or of where we are gong, we usually recognze a drift only after we have apparently dnited quite far off cousse We tben tend to overcorrect, thus sending the economy rato a dnft ia the opposte direction
A theory related to the precedng theory emphasizes that the ups and downs are fundamentally a product of our remembered past espeneace Since expenence tells us that the economy has gone up aad down, we assume that it will eontinue to ga up and down Hence we eventually take defensive actions after the economy has run up for awhile because "what goes up must come down" These defensuve actuons then preciputate the downswing, thus "eonfirmung" the theory Conversely, re sssume that the economy can run down only so many month Hence ne atart takag offensive sction to take advantage of the expected upturn These offensive actions then precipitate the upturn, agan "coniming" the theory of the mevitability of the ups and downs
It is not our tagk to pursue further the subtietes of uhy economio acturity tends to run We nish only to point to enough of the issues 30 सe csa recognze that what ue eventually do unth our analyss of the evdence will depend to some extent on our theory of why the runs occur It is just sbout mpossble to be completely objective 1a our analyses, and we are not at all confideat that we should try to be completely objectuve What we eventually accomplsh with our personal career, or with our busmess, or with our national ecoaomy will depend at least in part on the fath ne have in the goals we set Although we nsh to be realstic in selting our goals, we wish to avod beagg so realistic that we never do more than reproduce past expeneace Attempts to grow slmays involve a stepping out into the unknown, into areas where past expenence is not a perfect gude to what mught happen, and where fallure ss oftea more frequent than success

Eplisodic Variatlons When a modern natioa gets involved in war, it fiads that massive forces are released which rather completely alter the ordiaary busness of hife The nation teads to step up its efforts coasderably, so much so that those remaming st home will
frequently produce more than the nation produced before millions of people left the workng force to hecome soldiers War has a way of making clear what must be done, so we set about to do it, to the exclusion of many other things that normally distract and divide us The resultant activity soon shows up in the economic figures and we have a "hoom"

We call the economac consequences of such episodes as war, revolution, famine, etc, eprsodec varations We assume that such events do not reoccur on any regular schedule In fact, we hope that they never reoccur, although there is some evidence that such episodes may be necessary to toughen a society so that it will go on paths of future development that it could never have found without the stimulus of a crisis
Some analysts believe that episodrc varnations are the princpal sources of the disturbances referred to earlier and which set in motion the runs and oscillations in the economy They believe that the economy would eventually become essentially stationary, sumilar to the kind of stagnation that prevailed during the so-called Middle Ages, unless it were to be occassonally shocked hy episodto forces

The essential pont about episodec vamatrous from an analytical vewpoint is that the episode and its economic consequences are so ruvd that we have no trouble dentrifyng the nature and source of the intrual mpact The trouble develops as we try to trace through the ramufications of this intial mpaet For example, the decade of the 1960'a almost certanaly will feel some of the effects of the forces set in motion by World War II, and perhaps even some of the effects of the forces set in motion by World War I The same thing can be sard sbout the ramuications of forces set is motion hy mazor financial panics Many of the men making tbe major decisions today in American corporations were brought up during the days of the 1929 crash Their thinking is sall colored by that traumatic experience Although we feel confident that such secondary effects exist, we have had little success in workng out methods for measurng them

Residual Variations After we bave identulied the periodic, the progressive-persistent, the runs, and the eprsodic variations in a given series, the remaning variation is the rescdual varation This is the variation that presumably has no pattern or system beyond that which might easily have occurred by chance in a small sample Thus it 15 in the nature of a random variation, a vanation that we can predict only on a "how often" bass

16.4 Relationship of Time Series Analysis to Correlation Analysis

We analyze tume series in essentually the same way we analyzed a correlation problem We take tume as the independent varable and try to describe any relationship we thank we see between varistion in time and variation in the dependent series The lines of relstionship we look for sre generally more complicated than the simple hnes we generally use in ordinsry correlation anslysis As we have alresdy seen, we look for lines that describe \& periodsc relationship in addition to those that describe a progressive-persistent relationship Progressuve-persistent relationships are, of course, very anslogous to a line of relationship in correlation analysis In fact, some people calculate least-squares lines to estamate progressive-persistent movements

There are some very mportant differences, however, between a time senes problem and a correlation problem The prumary dit. ferences are (1) the samples of date anse in different ways, (2) the relationghip is much more complex in a time seres, and (3) extrapolation is requared in the practical applacation of the resulte of time series analysis Let us look at these three sources of difference

The Sample of Data in a Time Saries

Suppose we take an ordinary deck of playing cards and draw out a random sample of one card at 1201 PM of a given day We then return this csrd to the deck, shuffle the deck, and draw out another random sample of one card at 1202 pm Let us repeat this process unts! we have the results of 10 drawngs, each a monute apart Figure 163 shows the results of such a process We now have a time sertes of card drawings
Ordinanly we do not think of card drawings as constituting a tume serres because we assume that tume makes no difference in the resulte Therefore we do not even keep track of the time Nevertheless, in a fundamental sense it is a time series In fact, sll events that cen occur only one at a time are necessarily time senies in the sense that tume passes between the events Whether or not time makes any difference is an interpretation we put on the data, and ths interpretation should not be allowed to obscure the fact of whether the series is or is not a time senes

If we date esch universe as of the time the sample csme out, we

Fin 163 Results of random draving of 10 cands from ant orinary deck of plagung cards (Card replaced after each draming)
have the interesting case x herem it is mpossible to ever draw more than one ttem out of the exact-same unverse For example it is mpossible for a company to get two samples of its monthly sales volume durng the month of June, 1961 Only one sample can possibly occur The next sample will occur in July Any observed difference between the June and July sales may be associated whth the passage of tume or to may be assocasted mith sumply a random variation in monthly sales, in the same pay that we might deade that the decine of 6 from 1201 to 1202 was simply a random variation and not associated with the passage of tume In either case, we have to decede what to call it There is no law or fact that can determine at
Since we can never get more than one sample tem out of a given dated unvelse, ne are obvously handicapped when $1 t$ comes to draw ing inferences about the unverse from which this item came We would have no information whatsoever about the vamation that mught have existed in that umverse as long as we confined our attentwon to that one item and that ane umverse We solve this problem the same way we solved the smular problem in oorrelation analysis We assume that the averages of these universes differ systematically and that the dispersurns whin these unverses are the same, or, if the dispersions are different, we assume that they differ systematzcally Naturally, the systems we always refer to are those ne think exist

As soon as we adopt this model of the behavior of time series, the
logical way to analyze a series stares us in the face The first step is to fit a system to the data, such as a straight line of relatronship as in correlation analysis What system we choose in the beginning is theoretcally urrelevant The next step is to analyze the vamation around the first system We may then find at dessrable to fit a system to this variation The third step is to analyte the variation remaning after the second system has been fitted This may lead to a thurd system, etc We stop when we are unable to find any system in the residual variation The residual variation should then have the propertues of a random seties, with no correlations between successive events and with apparently constant varation over the full time period Naturally we perform our successive step analysis aware of the problem of degrees of freedom in the data Otherwise we end up with systems that have been mposed on the data by the analyst rather than with systems that actually exist in the data, and it is probably norse to act as though we know, when we do not, than it is to act with a known degree of ignorance

Time Series Relationships Are Complex

In vew of the preceding discussion it is probably redundant to state that tume series relationships are more complex than those we encounter in typical correlation analysis They are so complex that Te prefer to handle the problem by disthling several relatively sumple systems rather than trying to discover some master system This method of analysis creates some interesting problems of its own, but they are not serous deficiencies as long as we are aware of what we are doing

The Need to Extrapolate

We emphasized the importance of distinguishing the interpolation range of the independent varnable from the extrapolation range in the application of correlation analysis The historical data always straddle the interpolation range We, therefore, have reasonable confidence that future items that occur within this range will conform to the histoncal patterns Aithough we find that the patterns within the interpolation range give us some hints of the probable patterns in the extrapolation range, we would never be so brash as to assume that we should have as much confidence with our extrapolatoons as we have with our interpolations

Unfortunately, all future events in time series necessarily occur in the extrapolation range, with the possible exception of seasonal variations, which, of course, are only part of the total variation in
the series The year 1960 will never occur again, or at least not as far as we know July will probably occur agan, but it will be July of a later year

The need to extrapolate makes tume sernes analysis a "catch-as-catch-can" procedure In fact, some analysts argue that technnques of tome senes analysis are meaningful to talk about only in the analysis of seasonal vanations Any other conversation is simply a way of padding a statistios course in a manner that would be tolerated only by a naive and/or captive audience They would argue that intelligent analysis of time semes is more a matter of becoming educated in the intricacies of the subject to be forecasted than a matter of techmque For example, the best place to get a weather forecast 18 from a meteorologst, not from a mathematical statisticien Simllarly, a good source for a forecast of the asles of Chevrolet cars is the Chevrolet Division of General Motors

While there is undoubtedly much ment in this discounting of techmque, it is still stmulating to explore some of the technical aspects of time series analysis A direct advantage may come from the stmulation and gudance it gives to our efforts to become educated in some particular area of apphcation Thua it might help in telling us what wa should try to learm in a specific field of application An mdirect advantage may eome from the fact that a mmmum knowledge of technique often protects us from being mesmerized by the techncel applications of others We are no longer such a nave audience

16.5 Correlating Two Or More Time Series

Since it is unlikely that tame 18 really the underlying explanatory variable when we study a tume serres, it is not surpmsing that we frequently attempt to correlate vanous time semes with each other rather than with tume itself For example, suppose our company sells a staple consumer product like augar We may reason that pomulation growth would be the promary factor underlying the growth of our market Hence we correlate the changes in population over the years with the changes on our sales and find a relatively high association We could now forecast our salea by first forecasting population and then substitutigg the population forecast in the estimating equation (Note that we would probably be working in the extrapolation range)

This type of correiation analyaia is very popular, whether done
graphically or mathematically It comes under severe censure by many people, horserer, if the analysis never gets more sophisticated than that described One cnticism is that this technique merely transfers the forecasting problem from nne serves to another, and we have no reason to believe that we can forecast the independent isriable so accurately that the indrect forecast of the dependent variable would be ani more accurate than if we had forecasted it directly as a tume sernes Another criticism is that this type of analy cis merely carrelates the trends of the tro senes There might be other sy stematic movements in the tun sertes that rould also be correlated if we were to isolate them by standard ty pes of time series analysis
An interesting way to handle the first criticm is to search for other ranables that lead mniements in the dependent vanable This to obriously a vers useful idea lf ne found for example that mose ments in Senes A preceded movements in Serees B by 4 months on the average we could forecast Series B by smply watching Series A Thus we would have a barometer nf movements in Series B the wa air pressure is a barometer nf precipitation in weather forecasting Unfortunately there are surpisuggly fes economic events that lead other economic er ents consistently enough and with enough lead to pronde us with practical guides One of our problems is that the lag in the reporting of information on the lead series is longer than the length of the arcrage lead The National Bureau of Economic Re earch has done considerable research into the existence of leads and lags in varrous economic series and has published lists of leading moicators of changes in business actavity coincident indicators, and' lagging indicators ${ }^{1}$
Another problern in tring to dircover consistent leading indicators flons from the reactions of busmesemen and consumers to any eut dences of leading tendencies Suppose, for example, that re were to discover that the price of General Motors common stock lagged 10 days on the average behind movements in the price of Standard $0_{1} 1$ nf Nen Jersey common stoch The wnuld watch the price of Jersey Standard and then take the proper action with respect to General Motars If Jercey nent up, we wnuld buy GM, and vice versa If nnly ue hnen this, and if we had noly a small capital fund, we could probably take advantage of this lead lag phenomenon for many

[^29]weeks What is more likely is that others would discover the same thing, or we would get greedy and try to merease our rate of purchases and sales We would then discover that the length of the lead would begin to shorten as a result of the indnced buyng and selling action If the knonledge of the lead became common, the lead would disappear entirely! The last entrants would probably find themselves actually victimized by a \log whereas there nas a lead before because the mduced market aetion, based on something that was no longer true, nould push the prece of General Motors higher or lower than eould be sustaned by the fundemental market forces
In fact, we might generalize that no discermble lead in econome series will sustan itself if it is possible to make money by taking advantage of the knowledge of the lead Thus, if we wish to make money by taking advantage of leads, we are going to have to do it before others hnow ahout it, and we are going to have to do it before indications of the leed are clear enough for others and us to be sure it exists, and we stll have the risk that we are reading a system moto the data that 18 not there

16.6 The Use of Time as an Index of Other Variables

In an earlier cbapter (Chapter 4) we pointed out He frequently measure one variable, such as ablity to learn school subjects, by reference to another vanable, such as age We do this for many reasons, a few of which we mention here One of the most commonly used measures ts time, particularly as it refects age For example, senoonty, the number of years on the job, is taken as a measure of the value of a worker Automoble dealers have an association which publishes a book wheh tells the dealer how much a used car 18 worth with sole reference to the age of the car
The assumption that underles this practice of using time as an index of another variable is that the correlation between variations in time and variations in the other vanable are sufficiently close so that the resultant errors are of little practical consequence Most intelligent people use such a time index only as a ourde For example, the intellhgent automobile dealer will start with the book price, and with the notion that this is a far pnee for the average car of this vintage He then modifies in the direction considered appropriate by the departure of the particular car from the average The unmagnative dealer follows the book and offers too much for the poor ears, which he thereby acquires, and too little for the good cars,
which therefore get sold to his competitors Thus he systematically and nhjectively runs himself nut of business
The use nf tume as an mdex has two rather obuous adiantages One, it is ver easy to measure and just about everybody understands it. (With the possible exception of people like Archie Moore and Sstchel Parge) Tro, it has objectunty, a very desurable quality when we are dealing with people For example, if we tell an executive be must retire because be as 65 years old and a company rule requires returement at that age, we have none of the implications ne would have if we tell the executive that he must retire because he is senule, or because he $1 s$ forgetful, ete Tbus we find it very advantageous to work out book rules baced on time We make some mistakes when re apply the ee rules, but if we are intelligent about it, the cost of these mustakes will be less than the cost of trying to use other measures.

PROBLEMS AND QUESTONS

181 (a) Select a masor Unted States corporation and collect its annusl dollar sales figures for the most recent 13 years
(b) Analyse the hastory af the corporation for exntence of mergers, purchases of other companies, introduction of products in nen fields, ete
(c) That is measured hy the sanason to the company sales over the years' You chould also consider the problem of price changes and the mohlem of changes in the "product and style mix"
(d) Chart your sales data on both anthmetic and logsnthmic seales and wen extrapolate the spparent average rate of change of sales What assumpuons are smpled by your ertrapolation with respect to the company's future rate of sequstuon of other companses, expansion of the product line, price changer, general tate of growth of the Amenesn economy, eta?

Do thece assumptions strise jou as reatonable?
What modifications would be necesary in jour extrapolation to allow for any such assumption that $;$ ou belreve wull not preval?
162(a) As a husness maniger, what adrantages do jou see in hanng datily sales figures in contrast to only monthly sales figures?
(b) The electromes and computer peaple are already contemplsting the day when an executuve in a central nffice mill be sble to observe the minute-hy-minute rate of sales of his products as fatt as they take place all over the country Such an elaborste set up of coraputer equrpment, leased telephone mires, and televsion projection and receming fachities mill ohnously cost money What advantages might such instantaneous reporting give a company that would justufy to cost? D_{0} yau beheve that such systems mill eventually come to pise, or do you looh upon thas as "pipe dreams"?
163 Classify each of the followng wanables as beang cumulative or noncomulatue
(a) Dollar sales of a compans
(b) Weelly wage of an emplosee
(c) Your weight from year to year
(d) Heights of school children
(e) Unit cost of production from year to year, or from department to department, or irom company to company
(f) Accounts receivahle from week to week

164 Does it ever make sense to add up a noncumulative sertes? Explan (Hint Note that the calculation of the anthmetie mean involves adding up the set of quantithes)

165 What kuds of syatematic behavor, or vanation, are you aware of in the following phenomens? Note whether you are aware of any changes in these systems over the years
(a) The number of leaves on an elon tree
(b) The tume at whech you est hreakfast
(c) Your werght suce burth
(d) The number of people hned up at the tellers' wndows in the local hank
(e) The Gross National Product of the United States
(f) The Dow-Jones average of the daly closing price of 80 industrial common stocks sold on the New York Stock Exehange
(g) The daily cloang price of General Motors common stock on the New York Stock Exchange
(h) The minner of the Amencan League pennant? Of the Natoonal League pennant?
(1) Your personal sense of your own physical well bemg
(j) Your blood pressure

I6 6(a) Use sales as a measure of size and collect data on the annual salea of some company that has expenenced what appears to you as an exceedrngly high rate of growth
(b) Plot the sales on anthmetic and loganthmic scales and draw in a smooth line that descrines your impression of the growth ourve for this compsay
(c) Has the company bsen gromng too fast for ite own future health? Explain (In answening this you should refer to the "conditions of bealthy growth" as you see idem Ior wil probadiy find at fruition to examme tide halance sheets and nocome statements of your selected company)
(d) Some eccoomie theorsts attabute a husiness dechne to the "unhealthy excesses' that accompamed the preeeding "hoom" Do you agree that sueh a theory has some valdity? What are come of the manifestations of "unhealthy excesses"?

167 Momenturn and friction ase forees commonly at work in the physcal world, with momentum tending to keep a hody in motion in its intial direction and friction tendmg to retard thes motion Slmular forces are often thought to he at woik in the political, economic, social, competitive athleties, etc, worlds Analyze the followng phenomens for evdence of the action of forces suralar to momentum and friction Make note of any mpelling forces necessary to intiate the motion Also note the path of vanation followed hy the given phenomenon as it responds to 1 an mpelling force, 2 momentum, and 3 friction
(a) The speed of an automohule
(b) The rate of sales of a new model of an automonile
(c) The rate of production of pases per hour as you work 00 a term psper or on a report to your boss
(d) The vanatioo in the success ratuo of is baseball, foothall, etc, team (You might consder thes varation as it takes place throughout a given game, or from game to game, or from season to seasoo)
(e) The rate of sales of the vanous saleamen in the weeks followiog the anoual inspiratiooal sales meeting Contrast thes with the vanation in the rate of sales dunng the 8 weeks of a gales cootest
(j) The progress of the relations between the Unted States and Russa
(g) The fuctuations in geoeral busuess actinty in the United States (as measured by vanatoons in the Gross Nations Product)
168 The commonly quoted statement 'you cant turn back the clock" cootanss considerable wisdom In our terms, it is the equivalent of sayng that we cannot go hack and get soother ssmple from the old universe because the old unverse has since been replaced by a new ooe (Thes is a hard lesson for us to learn, sod ooe which we would prefer oot to have to learn For example, as childreo we frequeotly play games that permit "take-overs," a practice we find 1 t barder aod harder to get amay with aa we get older We sometumes are successtul 10 preservimg thas prsetice on the golf coutse by permittiog "Mulligans" on the first tee)
Io each of the follownog cases indecate the degree to which you thunk the universe shifta as successive samples are drawn out Or, in other words, in which of these cases is it possthle to have tske-overs?
(a) A coin as tossed 10 times in a row
(b) Teo cards are deall from 8 n ordinary deck
(c) You tbrow the same dart 10 tumes in a row at a given target and from the came distaoce
(d) You throw 10 "differeot" darts at a target
(e) You take 10 quizzen durng a course sind have a grade oo each
(f) You test a sales talk you have worked out by giving tbe "same" tall to 10 successuve prospects (Would an average of your ressites be a good measure of the future usefulness of this sales talk? Explana!
(g) You select 10 successive amnual figures for the Umted States Gross National Product

169 Discuss the sdvantagea and disadvantages we denve by usng tme to measure the following phenomena
(a) It takes 4 years to earn a college degree
(b) It takes 60 minutes to play a football game
(c) It takes 40 hours to do a week's work
(d) It costs $\$ 8 \mathrm{a}$ day to reot a floor Eander
(e) It costs 8100 a day to huy an attorney's tume
(f) A baby should be fed every 4 hours (Some hooks say this)
(g) Depreciation on a huildung thould be charged at a rate of 2% per year
(h) A soft boled egg should be boled for 3 minutes
1610 Give three examples of events, or symptoms, which precede some other cyent on a reasooahly consstent schedule as far as your expenence goes For example, does a sueeze pressge a nose coid?

doment 17
 The anatomy of an economic time series

Several approaches are avalable for the analysis of an economic time serres We confine our attention to only two In this chapter we examine the anatomy of an historcal time semes using a model that has a long history and a wrde use, thus justifying its being called traditional In the next chapter we examine an approach that is quite explictly onented toward preducting the future behavior of an economo time senes Before embarking on ether approsoh it is mportant to remind ourselves that no mechamical approach 18 ever very satisiactory Judgment 18 , and should be, a very mportant part of the procedure, and prefersbly judgment born of knowledge and experience beyond that which is obvous from the numerical dats

17.1 The Traditional Model

A smple model of an econome tume aenes 25

$$
A=T \times S \times C \times R
$$

A is the value of an item as it ectually oecurs, T is the value the actual item would have had if only the secular trend had been operating on $\mathrm{it}, \$$ is the magutude of the seasonal force on the actual item, and C is the magnitude of the force exerted by the ups and down in general business activity Since this force used to be thought of as a cychcal force, it has become traditional to call it $C \quad R$ is the residual, or, as some prefer, the random variation Many analysts prefer to call it I for uregular because rarely are strong attempts made to purify the residual suffiuently to satisfy some people's conception of random For example, it is not unusual to leave eprsoduc
factors in with the residual factors In fact, it is not unusual to distull out only the treod and seasooal vanations, leaving the cyclical and residusl, etc, as an unrefioed conglomeration

Units in the Model

The actual item bas some unt of measure, such ss dollars, or tons Since the four compoosots of the model are multhphed together (for reasons descrihed helow), we cannot assign this unit to all four componeots and get a meaongful product. We assign this uoit to only one of the compooents, tradtuonally the trend components. We treat the otber compooeots as ratios, for cxample, a typical result migbt be

$$
\begin{aligned}
A & =T \times S \times C \times R \\
246 & =22 S \times 91 \times 120 \times 99 \quad \text { (Unts in } 81 \text { mulhon) }
\end{aligned}
$$

Thus the analysis would reveal that the sales rould bsve been $\$ 228$ million if treod had beeo the ooly force operatung, however, dunog thes partucular season of the year, seasooal was a depressive factor of 09, or 9% General busmess activity was 20 above average, thus rasing the sales 20% Finally, the residual forces resulted a minor drop of 01

The Loglc Bohind Multuplying the Components

Experence suggests that the forces acting on an economato time series are relatue in umpact. Sears Roebuck's total December sales sre affected by the Christmas seasoo 10 sbout the same proportion as is the small town department store's Obviously, howeter, the nocrease 10 Sears' sales from November to December is in the hundreds of millions of dollars in cootrast to the thousands of dollars of the departmeot store
Tbe same kind of ressonng apphes to the cyclical, secular, eptsodic, and residual fores The hig farm loses more corm to the grassboppers than the small farm, hut they both suffer about the same proportrooately (Assuming other conditions the same)

Tbe ooly otber sumple way to combine the components is by add. log them together Experience suggests, honever, that this procedure would be infenor to multipheation Attempts have beeo made to develop more complex aod subtle ways of combiniog componeots, and they are still golog oo No signuficaot successes of geoeral applicability bave been recorded, so we meotioo such subtletres ooly ta passiog

Estimating Components in the Modal

$A=T \times S \times C \times R$ is only a general statement for any model for analyzing a tume series It merely tells how to combine the components after we get them Each of the components must be estimated and we must have a model scheme for doing it For example, the traditional model for estrmating secular trend has been the correlation model with a least-squares estmating line Seasons! variation has been estimated in many different ways, some nave and others sophsticated Cycical varnation analysis has been more notable for the frusiretions created than for any successful technuques Anelysis of the residuai is customanly by-passed Most of the techniques that have been used to analyze the residual are rooted in probability concepts, and traditional analysts have seriously questioned the applicablity of probabilty coneepts to any aspects of the analysis of economic tume series Their argument fows from a fundamental theory that economic events are not undependent
This lack particularly apphes to successive event of the same series, suoh as the monthly sales of Seara Roebuck Nobody really questoons this theory, but many analysts are nclined to worry only about dependence that they cats mearure If they cannot measure it, they cennot take it into account, and they feel they must treat such vanstions as though they were random, and as though they wers suhject to probability considerations In our discussion of randomness and probability we found this view as the most atractive We mught add that most of the traditionalists also treat auch unrationalized variations as though they were random The difference is more what they call them than what they do with them This is because there is only one practical way to deaf with varations we do not understand Some people do it mploctity and reluctantly Others do it expliertly and with enthussasm, sometumes with too much of the latter

17.2 Estimating Seasonal Variation

We start our analysis of the components with the seasonal variation because it as the one kind of varnatinn that we know something about We analyze the seasonal vanation that hes existed in United States gasoline demand from 1951 to 1961

Homageneity of Dota

The first tem we check is the defintion of the data and any changes theren We collected the data from various monthly issues
of the Surtey of Curten! Burness and from the bienmal issues of Burness Statithes, both compuled by the Uuted States Department of Commerce The following information on the homosenety of the data was obtained from the footrotes gricn in Burness Stataties

fucts Domestic demsnd is emnputed from production plua imports, minus exports, phus or minus the change in stocks Figures begunug January, 1951 reflect adjustment to a nes basis of reporting bulk-temunal stockt and, therefore, ate not compatable witb earher dsts The export figures used in computing domestec demand include ghpments to noncontiguous US lemtones
An idea of the magutude of the effect of tbe change in defintion of "bulk termanal' can be gamed from the fact that moathly average domentic demand for gasoline tis 910 mill buls on the old bases for 1951 and 00.8 mml bbls on the new bass

An dea of the eflect of the exclusion of jet fuel after 10 pa can be pleaned from the fact that 10 mll bbls of jet fuel is meluded in the monthly average figure for 1052

The collected monthly data are shown in Table 171 for the ycars 1955 to 1961 Note that tro sets of data are ahorn for 1951 and 1952 The ressed figures have been lowered by 10 millon per month to allow for the amount of jet fuel that had been macluded in the organal dats We confine our formal analyas to the data from 1951 to 1961 We thercby avold the problem of the change in definution of bulk termioals and also some of the problems of interpretstion of the post-World War II adjustments to a civilan economy We arc, of course, atill plagued with any problems associated with the Korean War

Lest we make the crror of attsching precse significance to small differences in the data, we should note that it is not unusual to find defferences up to 1 million barrels betreen the prelminary and revised items of these estimates of gasome consumption
Variation in Number of Consumpiton Days in a Menth. Interpretation of the monthly vanations 10 gasoline consumption is parthy confused by the monthly vanations in numbers and types of consumption days The more obvous source of this calendar vanation Is the diffeng number of daya in the varous months February 15 a consictently low consumption month because of its fewer days, in nddition, of course, to the fact that it is a poor month weather-wise in most of the country Febreary data are also sffected by the

TABEE 179

Monthly Domestic Consumpion of Gasoline in the United States (inclusing Armed Forces censumphon)

Unit 1,000 000 berrels
Remsed
$1945 \quad 1946$

Jan	520	517	571	613	$6{ }^{6} 1$	670	807	869	797	859
Feb	489	477	506	565	580	633	726	820	716	810
				(54 6)				(792)		(782)
Mar	554	567	600	692	783	788	857	871	857	861
Apr	590	621	633	722	753	804	873	987	863	977
Mzy	607	668	709	772	817	890	994	1011	984	1001
Jun	606	632	712	780	834	902	963	993	953	983
Jul	682	691	734	814	821	917	1005	1053	995	1043
Aug	701	667	721	803	847	94.5	1011	1030	1001	1020
Sep	645	623	714	762	808	867	913	1001	008	991
Oct	557	666	738	752	793	891	1005	1037	995	1027
Nov	535	613	641	726	763	827	880	013	870	908
Dec	497	611	875	722	756	810	852	958	84.2	948
Aversge	580	613	668	726	761	828	908	96.2	898	952
				(724)				(960)		(950)

$\begin{array}{lllllllll}1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1981\end{array}$

Note Sen text for saurce and description of data.
occurrence of leap-year every 4 years Revisions for leap-day in February, 1952, 1956, and 1960 are shown in parentheses under the actual igure in Table 171. (The adjustment was made by multuplying the actual figure by $28 / 29$) We have made no adjustment for the different days in the vamus months because it is customary practice to make estimates for actual months, which would anelude the factor of different numbers of days Prelmmary estmates for February of leap-year would have to be multipled by $29 / 28$ to correct to an actual month bass
Another cause of calendar vanstions in the data wnuld be the differences in number of Sundays, Mondays, etce, from month to month and from one month of one year to the same month of the next year Insofar as gasoline consumpthon, ar, minte exactly, gasohne purchases, vary from day to day mithin the week, sone of the monthly vanations would be due to these calendar varations We have no way of measunng these dsily varastions and their umpact on monthly variations, and we leave them in the data to get left in the residual variations or to get absorbed into some other class of varation We assume that these calendar variations are quite small and can bo safely neglected
One possible disadvantage in agnoning some of these calendar varlations is the disturbance they create in what otherwise might be relatively smooth seasonal vanations Seasonal varnation in gasoline consumption is fundamentally caused by variations in weather If we average weather varations over many years, we find relatively smooth transitions from month to month, and even from day to day Thus weather would tend to cause relatively smooth transitions from month to month in gasoline consumption, asbuming the months have equal days and assuming that weather is the almost exclusive cause of the seasonal variation If weather were almost the exclusive cause of seasonal variation in gasoline consumption, we would be very tempted to adjust all of our data to a dally average bassis and thus be in a position to work with smooth transitions However, such factors as holdays, week-ends, pay-days, etc, affect gasolne consumption These tend to disturb any weather-nduced smooth transltions from month to month

Chars in the Analysis of Seasonal Variation

A visual examination if the relationships among the vanous monthly data serves several purposes it gives us a prelmmary umpression of the actual canstence of measurable seasonal vanations

The mathematical mechanies of seasonal analysis are quite tedious, and we do not like to plunge in without some reasonable assurance that we will discover useful results Also there are occasions under which a graphec analyses will be sufficient to provide a reasonably accurate measure of seasonal for the purposes in mind
A visual examnation will also alert us to any tdosyncrasies of data that probably warrant further nesestigation before we plunge into any mathematical routines
Figures 171 through 173 show three usefiul ways to chart data for the study of seasonal varations Each chart has a logarthmic ierical scale to stor the gasolme consumption variations The logarithmuc scale enables us to concentrate on the relative variations associated whit seasomal forces
Figure 171 shons all the monthly data chromologically It is quite evident that the semes has a gencral upward drit from year to year, a duift probably refecting growth clements associated with populathon growth, development of improved highways, growing intensity of automobile usc associated with growth in income, ete The straight lines connecting February, 1951 with February, 1961 and August, 1951 mith July, 1961 make it easicr to compare this apparent growth whth what it would have been if it had maintamed a constant percentage rate of jncrease over these 10 years It appears that the relaive rate of growth is slackening We get a better perspective on this problem of growth when we examine more years of data in a later section

There seems to be ititie evidence of any slgnificant cycircal ${ }^{2}$ or eplisodic vamations in gasoline consumption, although we may decide later to associate some of the minor undulations with fluctuations in general business or with some factors more particular to gasoline consumption
The most obvious varnation in the data is that associated with the months of the year There is clear evidence of a rather regular pattern of this within year seasonal varnation Figures 172 and 173 make it even easier to judge the consistency of this pattern Figure 172 18 a year-over-year chart It is the kund of chart many busmess analysts use to plot new data as they become avalable Such a chart enables the analyst to get a rougb idea of the operation of

[^30]

nonseasonal forces For example, note that January, 1961 was slightly hugher than January 1960 This indicates a plus factor because of trend cyclical, ete This plus differential of 1961 over 1960 contnnued through February and March, with March showing an increased spread Thas taght be considered an advance indication of a cychical recovery in gasoline sales We could plot the later data now available to see what happened to the spread of 1961 over 1960

Our interest now in Fig 172 is in the evidence it gres of a rather stable seasonal pattern As we move from January to December, we note the following general month-to-month directions of change

```
Jan to Feb-Down
Feb to Mar-Up
Mar to Apr-Up
Apr to May-Up
May to Jun-Up
Jun to Jul-Mixed
Jul to Aug-6 down, 4 up
Aus to Sepr-Down
Sep to Oti-6 up, 4 down
Oct to \(\mathrm{Now}-\mathrm{Down}\)
Nov to Der-Up
Dec to Jan-Down
```

If we were to find a change opposite to those listed in some of the future months, we should be alert to a shift in general business conditions or to a possible shift in the seasonal pattern
Frgure 173 ss another way of showing essentially what is shown in Fig 172 Here we can see that February has always been the lowest month with January next lowest in all years except 1957, when November was apparently affected by an unusual depressive force Careful study would reveal the relatuve rankings of all the other inonths
Figures 172 and 173 can be confusing because of the many lines plotted This would be more true if we were working with a senies that had weaker seasonal components and stronger cyclical and urregular components The lines would then tend to criss cross, whereas they are essentrally parallel for gasoline consumption In fact, the more confusing these charts are, the less is the relatuve tmportande of seasonal varation in a guven semes
It is a good idea to use an expanded vertical scale in charts of the 172 and 173 type in order to munmize the confusion in following the varous lines

Fig 173 Month-over-month chart of monthly corsumption of gasoline in the Inuted Stater 1851-IGs (SNurs Tohlo 171),

The One-year Moving Total and One-year Moving Arithmetic Mean
The theory behund our method of measuring seasonal variation 18 very smple We start with an actual monthly tem We develop an item for the same month from whech the seasonal varation has been removed We then compare the two figures, with the difference being attributed basically to seasonal variation

Since seasonal vamation is a withon-year movement, we would consider annual totals to be independent of seasonal This independence would apply regardless of the partucular calendar lunts of the years Although we ordmarly measure the year from January 1 to December 31, we might as well measure it from January 26 to January 25 , ete Column 3 of Table 172 lists the possble annual totals we can get from our gasolne data if we confine ourselves to termmal dates

TABIE 17.2
Calculation of Rotios of Actual Monthy Consumption of Gasoiine to Centored 12Month Moving Averege, 1951 to 1861

			Werghted	Weughted	
				13-Month	
		12-Sonth	13-Month	Moving	
	Actual	Moring	Moving	Average	
	(milhons	Totsl	Total	(millons	
	of	(millons	(millons	of	
	barrels)	of	of	barrels)	A/TC's
Date	$=A$	basrels)	barrels)	$=T C^{\prime} \mathrm{r}$	$=S \cdot c^{\prime}$
(1)	(2)	(3)	(4)	(5)	(6)

1951

Jsn	797
Feb	716
$M a r$	857

Apr 863
Msy 984
Jun 953

10776

Jul	995		21614	901	1104
Aug	1001	10838		21770	907
		10832		1104	

Sep	903		21868	911	991
Oct	995	10936	21086	916	1086
Nov	870	11050		22117	922
Dec	84.2	11057		944	
			22164	924	911

$\underline{1952}$

Jan	859		2224.2	927	927
Feb	78.2	11145	22309	930	941
Mar	861	11164		22416	934
Apr	977	1125.2	22536	939	1040
May	1001	11284	22001	94.2	1063

11317

TABLE 172 Contınued

				Werghted	
			Werghted	13-Month	
		12Month	13-Month	Moving	
	Actual	Moving	Moving	Average	
	(millons	Total	Total	(millons	
	of	(millions	(multiens	of	
	barrels)	of	of	barrels)	$A / T C^{\prime \prime}$
Date	= A	barrels)	barrels)	- TC'r	$=S r c^{\prime}$
(1)	(2)	(3)	(4)	(5)	(6)

1952

Jun	983		22740	948	1007
Jul	1043	11423	22867	953	1094
Aug	1020	1144	22925	955	1068
Sep	991	11481	23068	961	1031
Oct	1027	11587	23198	967	1062
Nov	903	11611	23263	969	932
Dec	948	11652	23447	977	970

$\frac{1953}{\text { Jen }}$	881			23657	986
Feb	846	11862	23772	890	854
Mer	967	11910	23865	934	973
Apr	1001	11955	23917	996	1005
Mey	1042	11962	23920	1000	1042
Jun	1126	12028	24085	1004	1122
Jul	1110	12057	24125	1005	1104
Aug	1068	12068	24147	1008	1062
Sep	1036	12079	24199	1008	1028

12120

TABLE 172 Continued

Date (1)	Actual (millons of barrels) $=1$ (2)	12 Mobth Monng Total (millions of barrela) (3)	Werghted 13Month Mongg Total (millions of barrels) (4)	Wexthted 13-Month Moving Average (millions of barrels) $=T C$ r (5)	$\begin{aligned} & A / T C+ \\ & =S r c^{\prime} \end{aligned}$ (6)
1953					
Oct	1034	1215.3	24273	1011	103
Nor	869		24298	1012	958
		1214.5			
Dec	977		24293	101.2	965
		1214.8			
1954					
Jas	89.2		24301	101.3	\$881
		12153			
Feb	857		24334	1015	84
		12181			
Mar	100.8		24365	101.5	993
		12184			
Apr	1034		24384	1016	1018
		12200			
May	1034		2444 4	1010	1015
		12244			
Jun	1129		24540	102.3	1114
		1230.5			
Jul	111.5		24690	1029	1084
		12385			
Aug	1096		24508	1034	1060
		12423			
Sep	1039		24004	1038	1001
		12481			
Oct	1050		25050	1014	1006
		12569			
Nor	101.3		25272	105.3	962
		12703			
Dec	1038		25491	106.2	977
		12788			

TABLE 172 Continued

tabte 172 Conthued

TABEE 172 Conhnued

table 17.2 Cenfinued

Date (l)	Actual (millions of barrels) $=A$ (2)	12- Mooth Moving Total (mitions of barrebs) (3)	Weighted 13-Month Moving Total (millions of bsurets) (4)	Fieighted 13-Month Moving Average (millions of barrels) $=5 C^{\prime}$ (5)	$\begin{aligned} & A / I C_{r}^{\prime} \\ & =S r^{\prime} \end{aligned}$ (6)
1959					
Jan	114.7		2918.8	121.6	. 943
		1462.5			
Feh	998		2930	108:0	. 818
		1485.5			
Mar	119.0		2910.9	120.8	571
		1425.4			
$A p r$	124.9		2946.6	1235	1017
		14812			
AIsy	127.0		2947.9	1205	1.034
		1486.7			
Jun	133.7		29567	1332	1.085
		14800			
Jul	137.1		2956.6	1238	1.113
		14.8 .6			
Ang	1399		29585	1233	1.078
		$14 \$ 1.9$			
Sep	1303		\$0033	123.6	1054
		1483.4			
Oct	1209		2971.0	123.8	. 976
		1457.6			
Noy	116.1		29782	124.1	. 936
		1420.6			
Des	123.6		29564	1944	. 994
		14958			
1960					
Jan	1113		2990.3	124.6	. 593
		1494.5			
Feb	105.1		29945	124.8	842
		1500.0			
Nar	120.5		29892	124.9	. 965
		1408.2			
Apr	1291		3001.7	125.1	1.032
		1503.5			

TABLE 172 Conhinued

Date (1)	Acturl (millions of barrels) $=A$ (2)	12-Month Moving Total (millions of barrels) (3)	Wetghted 13-Month Moving Tctal (mullians of barrels) (4)	Weighted 13 Month Moving Average (milhons of barrels) $=T C_{r}$ (5)	$\begin{gathered} A / T C r \\ =S t c^{\prime} \\ (B) \end{gathered}$
1960					
May	1301		30158	1257	1035
Jun	1389	15123	30259	1261	1102
Jul	15136				
15158					
Aug	1384		30341	1204	1095
15173					
Sep	1285		30407	1267	1014
15234					
Oct	1262				
Nov	1248				
Dec	1248				
1961					
Jan	1145				
Feb	1056				
Mar	1266				

comeding with the end of a month For example, 10776 is the total of the 12 months of the year 1951, 10838 a the total of the last 11 montha of 1951 and January of 1952, 10932 16 total of last 10 moaths of 1951 and first 2 monthe of 1952 , ete
Since $10776,10838,10932$, etc, are all amual totals, we argue that the dafferences among these figures must be mdependent of seasonal variation If we could now compare such figures with data that molude seasonal vanation, we would be makng progress toward measuring the seasonal component We have iwo problems to solve frst First, we must reduce the stze of these annual totals so they are of the same order of magnitude as the actual monthly date whinch
contan seasonal factors A smple and logical way to make such a reduction is to divde our annual totals by 12 Second, we must redate these totals (or averages if we have already divided by 12) so that they correspond to the dates of the actual monthiy data Let us turn to the dating problem first.

The Problem of Dating Cumulative Iume Series Data Tbe Janu

 ary, 1951 consumption was estimated to be 797 million barrels It took the whole month of January to accumulate this total Similarly it took the whole month of February to accumulate 716 mithon barrels in that month Thus we can say that gasoline consumption has decined 81 mullion barrels between tbese two months But there is really nothing between January and February except the infintesimal time interval between January 31 and February 1 Where, then, should we date these two figures in order to have a monthly time interval between them?We must proceed by assumption The conventional assumption is that the middle of the montb is the best date to use to represent a month If we take the 15 th of the month as the maddle, we can then say that, begrang with January 16th, we are starting to leave January and go into February We continue to go into February untal we reach February 15 Atter thst we start leaving February and go into March, etc Thus, we consider that the tume between January and February is the time between January 15 and February 15, that between February and March is February 15 to March 15, eto This assumption is also consistent with the equal distribution of ignorance rule which we find so commonly used In essence we do not know which day of the month is the best to use to represent that month As far as we know, each is equally good The madle day, however, is the closest to all the days (Remember tbe least error property of the medun)

There are occasions in which we heve definte reason to prefer one day within a month over snother For example, the date of Easter plays a definte role in the tuming of sales in a department store, as does the date of Christmas, Independence Day, and other holidays If such special dates are critical in a particular problem, we generally modify our analyss to allow for them Generally, however, we find the effects practically neglagble and use the more convenent 15th of month date
To return now to our gasoline problem If we date each monthly figure at the middle of the month, the average or total of the 12 months of a given calendar year would be dated at July 1, the moddle of the year Note that we placed the 1951 total of 10776 at a point
modway between Jume and July, or at July 1 Smilariy, the next total of 10838 is placed at August 1, etc If we now add, or average, these two figures and two dates, we get a result that is dated at July 15 This latter date is the same as the date for the July actual figure of 995 Thus the 21614 m column 4 bas a date corresponding to 995 Snce 21614 ia the result of adding 24 months of data (2 sets of 12 -month data), we next divide the 21614 by 24 to get 901 sbown in column 5 The figure 901 is a montbly figure for July which is independent of seasonal because it was based on annual totals
We next divide the actual figure of 985 by the deseasonalized figure of 901 and get 1104 shown in column 6 The departure of this ratio from 1 us presumably associated witb seasonal to some extent We analyze these column 6 figures shortly, but first we clear up a few points about column headngs in Table 172
Note that we headed column 4 with Werghted 13-Month Moving Total This describes exactly what we did The total of $107761 s$ the sum of the data from January, 1951 tbrough December, 1951, 10838 18 the sum from February, 1951 through January, 1952 Thus, if we add these totals together, we are really covenng a span of is monthe from January, 1951 through January, 1952 In covering this apan, we really count the January, 1951 figure once, the February, 1951 through December, 1951 figures twice, and the January, 1952 figure once We then have a werghted 18 -month moung total, with 11 oi the monthe glven a weight of 2 and two of the months a weight of 1 , and all the weegbts adding to 24 This is the 24 we divide by to get down to a monthly figure in column 5
We latel the manthly figure in columo 5 as $T C \prime$ to modrate that It has no seasonal We put a prime on the C to alert us to the possibillty that our averaging process has likely averaged out some of the cycle We siguty the residual by a lower case τ to point up the strong likelhood that the averaging process hes averaged out a signuicant part of the ressidual Insofar as the residual behaves like a random serjes, it will tend to obey the same laws we have discussed in earher chapters Snce we combned 24 monthly figures, with some double counting, we bave the equivalent of a sample with 13 independent items (The remamang 11 figures are not free because they depend on the other 13 in the sense that we can always deduce 11 from 13) Hence we theoretically reduced the variatron associated with residual by multiplying it by the factor $1 / \sqrt{13},{ }^{1}$ or by approximately 28

[^31]We label the ratios in column 6 as $S r^{\prime}$ to arguify that we feel they contan practically all the seasonal, a slgmficant part of the residual, and possibly vestiges of cyeheal

Our remaning task is to purify these calumn 6 ratios nf $S r c^{\prime}$ of the $r c^{\prime}$, thus leaving us with a measure ni S

Distilling the Vestiges of Rasidual and Cyclical Variation

The best way to see the nature of our remsining problem in the isolation nf the seasonal vanation is to chart the Srd ratios Bince the tme aequence may be of some eagmficance, we find it dearrable to draw charts of the type shown in $\mathrm{Frg}_{\mathrm{g}} 174$ Here we show the ratios separately for each mnnth un chronological order. Our princlpal concern is whether the fluctuations from year to year in a given month's ratin show any evidence of systematic movements or of aharp shifte in level We know, for exsmple, that aeasonsl vanation does not necessanly remain constant over the years In fact, the gasoline consumptun seasonal pattern has become a classic example of one that has shifted over the yesrs In the 1920'a sutomobsles and highways were not conducive to monter travel Hence the seasonal swing from July consumption to February consumption was quite wide The gradual development of better antifreezes, the car heater, the immediate clearance of snow and ice, etc, tended to reduce this summer-winter differentual aubstantrally over the years At the same tume we were having regional shifts of population that resulted in a higher proportion of the population residing in the more temperate parts of the country Theae changes are still going on in a degree, but they seem to be exering a smaller net observable influence on the seasonal pattern of gasoline conqumption The development of the arplane industry, the mechanizahon of the farms, and the development of motor boata have combined to weaken the dominance of autornoble consumption in the over-all seasonal pattern If we look nver the 12 charts in Fig 174, we note no clear evidence nf a shift nf relative consumptinn from the summer to the winter months Such shifts would have been quite noticeable during the decadea preceding the one we are analyzing
Analysis of charts like that of Fig 174 is subject to considerable personal judgment We are going to be serously handicapped in exercising judgment because we knnw practically nathing about gasoline consumption beyond what shnws up in the figures we have We would be much better in our analysis of we had been working in the industry for years and had acquired apecialized knowledge about the many factors that affect gasolne consumption Whith these
limitations in mind and with the strong possibility that we may legitimately differ in our interpretations, let us turn to these charts and make a few observations

Althougb January sbows a sight tendency toward higher ratios in the later years compared with those in the earller years we choose to practically ignore the possibility that January has shifted, or is continuing to sbift, to higher levels We have chosen to draw a horizontal line slightly above the median figure that happened to ocour in 1955 The diamond at the right edge of the lime 18 our forecast of tbe January ratio for the year 1962 We drew the line slightly above the median instead of at the median in order to make a slight concession to the possibility of this positive sbift

The February data make it very tempting to postulate the knd of downward dulft shown by the curved line, although note that we have flattened the line to honzontal over the latest 3 years and into 1962 Note the circled dots in the February chart These are the ratios we would have gotten for those leap years of we had not adjusted the data back to a 28 -day basss We can see that they are consuatently out of line with the other atems A forecast for the next lasp year in 1964 should, of course, allow for the extre day in February

Incidentally, since February could not have become less mportant from 1952 to 1955 without another month or montha becoming more important, we would not leave tha declining ine in February unless we could find where the increase apparently occurred A quick glance through the other months shows that only in November was there any strong evdence of an ancrease from 1951 to 1955 Note how thas ncrease in November not only siopped, but aeems to have been replaced by a sharp shift back to tbe levels of the early fifties The uncertainty about what we should now do whth November points up the need to have some more mformation than avaliable in these charts

We make two more observations about these charts before concluding Note that we have drawn a box around some of the ratios These are ratios that seem to be suficiently out of line to warrant a search for some episodic forces We have not made such a search because it 18 best conducted by somebody wbo already knows consderably more about gasolne consumption than we do We have generally ignored these boxed ratios m working out our lines and averages

The other observation we wab to make is about our treatment of August There seems to have been an abrupt upward shift from

THE STATISTCAL METHOD IN BUSINESS

Fis 17,4 Sessonal vanation in United Stater gasoline consumption. (Data in Table 172) Notes $1 \mathrm{X}^{\prime \prime}$ mark estimsted avergges of ratios for first hall of years and eccond ball of years 2 Careled ratios in Feb highight fact thet these were "leap years" 3 Bored ratoos hyghight very unusual ratios

FIg 174 Continued

1954 to 1955 On the other band, it may have heen that 1952, 1953, and 1954 just represented an unusual run nt poor weather in August, and the serres has now returned to ata more typical level. In the absence of addtional knowledge, all we can do 18 use a "grab-bag" technique to make a chonce between these two hypotheses.

Quantifying and Checking the Seasonal Ratios, or Seasanal In-

 dexes. The next and final step in the estmation of the seasonal indexes for gasoline sales is to read the index values from the cbarts in Fug 174 The resultant figures are ahown in column 2 of Tahle 173 The remaning columns in Table 173 show the calculations we can make to check the reasonableness of our seasonal indexes.Column 3 shows the 12 -month moving total nf the seasonal ndexes Theoretically these totals should fluctuste around and be very close to 1200 This follows because the average month, or the annual total divided by 12 , should bave no seasonal in it, and the indexes should average 100 and total to 12 . We find io our case that the moving totals vary betweeo 1205 and 1208 We átribute the varatioo from 1200 mostly to rounding errors If we carried our odexes to ooe more decimal place, we could elmmoste most of this systematio error We defintely expect the total to fluctuate to some extent because of the shifts taking place in tbe seasoral pattern. If the indexes were to reman the same year after year, then, of course, the moving total would remaio coostaot Some anslysts sequire that the indexes within a calendar year add to 1200 even if the seasonsl iodexes are shiftiog, oo the apparent theory that the average month within a caleodar year defintely should bave no seasonal Actually, howeves, there sa no more reason why tbe calendar year should add to 12.00 than there is that any given fiscol year should add to 1200 Ii we insist that eacb fiscal year also add to 1200 , it would be logically impossble for the seasonal pattern to sbow any shift We recommend making no more effort to have a calendar year add to 1200 than for any other year The only rule is that the total should fluctuate around 1200 , assuming no rounding errors such as we have

Deseasonalized Data Shauld Heve Na Seasanal Variation, If we use our seasonal indexes to eliminate the seasonal variation from the original data, the resultant data should have po seasonal varation. A simple way to check this is to try to measure any semaining seasonal variation in the deseasonalized data Column 5 ni Table 173 shows the deseasonaluzed gasnline consumption for the various months It is calculated by duvideng the actual data of column 4 by the seasonal indexes of column 2 The operation of division to elimi-

TAELE 173

Fintil Estimates of Seasonal Indexes af Gasoline Consumption， with Checks an Their Accuracy

1951

5 an		797	
Feb		716	
Mey		857	
Apr		863	
May		884	
Jun		053	
$\sqrt{41}$	110	005	00.5
Avg	107	1001	时6
Sep	101	098	894
Ost	104	025	057
Nav	4	870	026
Dec	98	84.2	888

1052

Jnn	92		859	884	22005	921	1014
Feb 24 1205							
			782	\％ 1	22186	02，8	1009
Mar o8 1205							
			881	的 0	22250	027	048
1205							
Apr	102		977	25 8	22377	032	1028
1205							
May	105		1001	058	2244.3	038	1018
1205							
Jun	110		183	894	2258.6	941	$0 \cdot 50$
1205							
Jus	110		1043	04.8	22718	047	1001
1205							
Atag	107		1020	053	228L．${ }^{\text {S }}$	951	1002
1205							
Bep	101		991	明1	23002	968	1024
1205							
Oot	104		1027	98.8	2318.2	984	1025
1205							
Nor	04		903	1	23108	006	995
Des pg 1205							
			98	987	23884	974	903
		1205					

1953

Jan	92		881	80.8	23555	981	977
Feb	84	1205	846	1007	$2858!$	980	1021

TABLE 17.3 Continued

		12-Month			Wughted	Weaghtod	
		Movine			13-Myath	13-Month	
	Sestonal	Total	Tasolen		Morlin	Movice	
	Indor	of Examosal	Consunip-		Tond	Averaest	Columa 5
Month	- \ddagger	Iadar	tora $=A$	4/5	d A/S	of A / s	4 Coldawn $\%$
(1)	(2)	(3)	(4)	(b)	(8)	(7)	(8)

1053

Mar	88		97	98.7	23751	980	967
1205							
Ant	102		1001	981	238503	932	\% ${ }^{\text {\% }}$
May 1085205							
			1012	00.1	23864	024	988
1208							
\$un	110		1120	1024	23958	938	1028
1200							
Jul	110		1110	1009	27808	1000	1008
1208			1048	098	24036	1002	096
1208							
Ber	101		1034	1080	24104	100.4	1022
1205							
Oct	10.4		1034	094	24172	1007	987
1205							
Nor	05		869	1020	24205	1009	1011
Des 981205							
			977	997	32200	1008	989
		1205					

1054

TABLE 17.3 Continuad

1855

Mer	98		1065	108.8	25565	1078	1008
1208							
Apr	102	1208	112.2	1100	28053	1086	1013
May	105		116.8	1112	28231	1093	1017
		1208					
Jun	110		124	1104	28410	1100	1004
		1208					
Jul	110	1203	1188	1062	28531	110.5	961
Aug	108		122\%	1127	26028	1110	1015
		1208					
Eep	101	1208	113	1132	28559	11.5	1014
Oct	104		1138	1095	28818	1117	880
		1208					
Nor	2		110.2	1148	26888.0	1120	3025
		1208					
Deg	93		1122	11595	2700.3	1125	1018
		1208					

1956

Jin	02		1005	1092	27087	1129	96
Feb 89 1208							
			9.6	1140	27138	1181	1008
MEN O8 1209							
			1124	1147	27128	1130	1015
1208							
$A p r$	102		1120	1308	27156	1131	8\%0
1209							
Msy	105		1238	1177	27224	1134	1038
1208							
Jifin	110		1268	1153	2720.2	113.8	1018
1209							
Jul	110		1207	1097	27258	1136	PCR
1208							
Aug	110		1258	114	22377	114,1	1.003
1209							
Sep	101		1116	1105	27422	114.3	267
1208							
Oct	204		1892	114.6	2748.8	114.8	I 00,
1208							
Nov	93		1121	110\%	2750.	1146	1015
1208							
Deo	88		1081	110.3	27455	114.4	884
		1208					

$\frac{1957}{54 n}$		
Feb	02	1208
		1208

1092	118.	2750.2	1148	1037
067	1185	27817	1151	1012

TABLE 17.3 Continued

	12－Mconth Monar						
					Werctied	Werchted 13－400th	
	nand	Momar Total	＋01		13－Honth Movial	13－Month Mamer	
	Inder	a Semotal	C		Total	Averap	Columa ${ }^{\text {a }}$
Mroath	－5	Inder	400.4	A／S	ol A／S	of $4 / 5$	＋Columit 7
（t）	（ ${ }^{\text {d }}$	（3）	（4）	（5］	（b）	（0）	（\％）

1957

Mrr	97		113.	11.7	7318	115.3	1012
12.88							
4pr	1．02		11.8	1135	550．6	115.4	． 88
Mey 1.051208							
			124.3	118.	768.8	115.3	1087
Imm 1.10 1206							
			1116	11.5	28692	1124	05
Fil 110 1200							
			1503	118.5	771.8	115.5	1000
12000							
			1288	1171	77682	115．3	1018
1200							
809	101		113.6	1225	27624	115，	．n77
1200							
Del	1.04		1194	114．8	\％764	115.0	． 82
12.68							
Nov	H		1077	1148	274.1	115	． 925
D＊e 㰬 1200							
			112.8	115.1	Tetss	115．9	．
		1200					

1888

Jan	93		107＊	110.8	3785	11.5	1.010
12．06							
Ped	89		25．5	115．1	27388	115	．090
Ms 77 12．6才							
			1089	1125	27813	1150	． 30
1001208							
Apr	109		118.5	1183	2089	118.4	． 008
12.08							
364	1.05		145	1181	2903.5	118.8	1.080
Jun 1200							
			125.4	$11 \% 0$	24185	1173	． 178
1205							
Jul	110		1309	1100	2815	118.0	1000
Ater 12．05							
			1289	118.1	2545	118.5	． 997
12.05							
Sep	1.01		120.4	1192	28000	110.3	1.000
Oet 1．04 12．05							
			175.1	1203	2576.7	1199	1003
12.05							
Nov	． 98		110.8	118.9	2549	1202	080
Det－88 12.05							
			150．	320s	53445	120.0	1.018
		12.05					

1859

Itas	P2	114．7	1547	2507 4	1211	1．050
Fab	－83	998	50\％	20157	121.8	．899

TABIE 173 Continued

	L2-40nth				Frembited	Preghted	
		Morng			13-3 ronth	13-Month	
	Seasonal	Total	Genoling		Morng	2rowns	
	Inder	at Sexsaral	Consamp		Total	Averagr	Columa 5
Month	$=S$	Inder	tron $=A$	4/3	of A/S	of A / S	+ Colama 7
(1)	(2)	(3)	(4)	(5)	(5)	(7)	(8)

1969

Mar	97		1190	1227	2988,2	1220	1006
Apr	102		12.9	1225	28338	122.2	1002
383	105	1205	1270				988
		1205					8
Jun	110		1337	121.6	2448	1227	990
		1205					
Ju	110		3371	1246	2048	1227	1025
		1205					
Aus	110		1329	1208	2907.2	1228	93
		1203					
Hep	101		130.3	1290	2955	1231	1048
		1205					
Oot	104		1208	1162	29307	1234	942
		1205					
Nov	83		1161	124.8	2967	1237	1008
		1205					
Doc	88		1236	$12 \mathrm{R}, 1$	2975.4	1240	1017
		1205					

$19 \% 0$

Jan	82		1112	1210	20901	1241	975
1205							
Feb	83		1051	1288	28830	1248	1018
		1205					
Mar	97		120.5	12.2	2988.2	1244	998
		1205					
Apt	102		120 1	120,6	2180.5	120	1065
		1205					
May	105		1801	129	20041	1252	890
		1205					
Jull	110		1389	1283	80149	125	1008
		1205					
Jul	110		1358	123,8	30187	125.8	888
		1205					
Aug	110		1284	125.8	30238	1250	998
		1205					
Sop	101		1285	127.2	30307	122.3	1002
		1205					
Oct	104		1252	121.3			
		1205					
Nov	63		1249	1348			
		1205					
Dos	88		1249	1274			

$\frac{1981}{\text { Jan }}$				
Feb	.82	1205	145	124.5
		1205		

TABLE 17.3 Continued

nate sessonal variation is consistent with the model we started with. Our model stated that $A=T S C R$ If we darade both sides of this equation by $S_{\text {, we get }} A / S=T C R$. The last three columas carry out the steps in the use of the 1 -year moring average to isolate seasonal.
If we rearrange the column 8 data as shown in Table 17.4, we can better see whether there is any significant seasonal variation in these presumably deseasonalived data. We took the median ratio of each month as a smple check. Note that all medians hover around 1.00. If we wished, we could now adjust our originsl seasonal indexes to allow for the vestiges of seasonal variation still left in the data. Although we realite we may be just playing with rounding errors, we do go through the motions in Table 17.5 of making adjustments in order to illustrate the procedure. We abow the adjustments only for the seasonal indexes as they appeared to stahilize in the last fer years. Corresponding adjustments could be made in the earlier years when there seemed to be some evidence of shifting. Note that each

TABIE 17.4

Seasonal Analysis of Deseasonalized Gasoline Consumption
(Data are rahos of deseasonalized data fo weighted 13 -month moving averages af deseasonalixed data)

Jen Feb Mar Ape May Jea Jal Aurs Eep Oct Noy Dec

1952	1014	1009	948	1028	1018	059	1001	1002	1024	1025	998	993
1853	877	1021	097	989	998	1026	1009	030	1022	087	1011	989
1954	661	. 023	1019	1083	972	1009	893	989	996	072	1007	1002
185:	995	1008	1009	1013	1077	1004	061	1015	1015	080	1025	1018
1056	967	1008	1015	DBS	1038	1018	0.6	1008	957	1001	1019	004
1857	1037	1012	1012	984	1027	958	1026	1016	977	688	095	OPS
1958	1010	926	2008	598	1020	972	1003	907	1000	1003	089	1018
1959	1030	989	1008	1002	089	990	1013	1884	1048	08	1009	1017
1960	975	1019	998	1016	000	1000	082	098	1007			
Medinn	100	101	101	100	102	100	100	100	101	90	101	100

TABLE 175
Adjusting Preliminary Seasonel indexes for Vestiges of Seasonal Voriotion Dlscovered in Deseasonalized Doto (Adjustments only to indexes that are applitoble from 1959 on)

	Preliminary Indexes	Vestuges Indexes	Adjusted Indexes	Fina! Indexes
Jan	02	100	92	01
Feb	83	101	84	83
Mar	97	101	98	97
Aps	102	100	102	101
May	105	102	107	108
Jun	110	100	110	109
Jul	110	100	110	109
Aug	110	100	110	109
Sep	101	101	102	101
Oct	104	99	103	102
Nov	93	101	94	98
Des	98	100	98	97
Total	1205	1205	1210	1198

of the adjusted ndexes was reduced by 01 morder to make all 12 indexes add closer to 1200

The Notions of Average and of Speafic Secsonal Variation

We all hnow that some summers are hotter than others If a given sernes $1 s$ affected by temperature, the magutude of seasonal vanation in a given specsfic year will depend on the temperatures spentic to that year If we analyze the seasonal varaations, or the temperature varations over several years we would expect most of these year-toyear vanations to average nut If nur seasonal mdexes were based on such averages we would have seasonal indexes that represented only average expectation, not the expectation speafic to a given year The seasonal indexes calculated in the preceding sections are average inderes. That is why we found the indexes practically the same in each year Any differences which we showed in earler years uere not intended to represent specifc seasonal vanations Rather they were to represent presumed shifs in the average seasonal varhotion We were concemed with patterns of varation when we studied the 12 monthly charts Thus our method of analysis automatically treats vanations of spectic seasonal from the average as resudual varations
If we Fished to analyze specfic seasonal vanation, we would need more information than we have processed here The only seasonal varnation that we rere able to analyze was that which was associated with time, in this case the months of the year We paid no attention to any of the real vamables that maght actually be responable for the sessonal tanatinn un gesoluse conaunaption We make reforenes later to how we might use methods nf multuple correlation analysis to solve the problem of specific seasonal varation

17.3 Estimating Progressıve-persistent Variations. The Secular Trend

In this section we confine ourselves to the estimation of the histor: cal secular trend In effect, we stand where we are now and look back to see the general path that we have apparently been traveling We look forward only insofar as we must if we are going to pudge where we have been going in the recent past.
Charts provide the best way to get perspective on where a given sernes has been going They help us the same way the top of the mountann helps as a base if we would like to rever the general path
to the top Figures 175 and 176 show the hastory of reported gasohane consumption in the United States from 1223 to 1960 Figure 175 has an equally-spaced vertical scale, or an anthmetic scale Figure 176 has a logarthmic vertucal scale The loganthmic scale measures relative variations If, for example, a straght hne is drawn on a \log scaie, it would represent a constant percentage rate of change The path of a savinge account at 3% interest per year compounded would follow a straght line on a log seale
Let us first examne Figure 175, the figure with an anthmetie beale Let us ignore the smooth lines for the moment and concentrate on the actual data First we note that we plot only annual data, in this case annual totals divided by 12 to pot the series at the same order of magutude as monthly data By thus using aminual data we avoid any concera with variations associated with seasonal varathon Begrinng with 1923 the data show a very steady rate of morease until 1928 The merease contunues to 1931 but at a slackening pace If we recall our economic history, we remember that the fall of 1922 began the famous busness collapse that ushered in the decade

Fis 175 Montilly average consumphon of gesoline in the United States, 19231960 muth viruslly fitted csamstes of growth patterns (Source United States Department of Commaree, Business Statustics, various 1ssues)

Fig 17.6 Monthk srersge cossumption of gasone in the United States, 19n1000 , vertiesl seale loganthme (Source Unted States Depserment of Conmette, Busvess Statulus vanorss wiles.)
of the thirtes The data then tura up after the 1932 bottom and nearly parallel the rate of growth of the trenties except for heatation at the 1933 recesson World War II forces then took over and dominated thrs and other economic events for the next aeveral years Note the mitual surge of consumption up to 1941, followed by the rstioning penod aifer me entered the war:
Since the bortom of 1043 the cenes has risen unaterruptedly to the latert dats avalsble in 1960 , an urbroken atning of 17 years Durng thece 17 year there have been accelerations and decelerations of moderate smounts onls
Nor let us stand back, co to speah, and try to answer the question of there the gasoline consumption semes bas heen travelng over these 35 yesr If we thith of durection as best expressed by straght lines, we can dustingurh at least two and posshly three eeparate penods in the growth of gasoline consumption The first period ran from 1923 to Morld V as II Arow 1 seems to be a far representaton of the general direction of growth dunng this perod The second penod ran from World Wer II to about 1956-1933, or perhaps it is atill running Arrow 2 represents the path of growth during this pehod If a third pertod has started, it appears to have begun at the end of the decade of the fiftues Arrow 3 is a very tentatue indcation of the direction this path mar go
The perrod approsch with essentuall straught lines for each penod 1s attractive to thase anslysts who concene of economic and politueal change as occurnitg in cates, or eras, with hittle logeal continuty
of movement from one era to the next Sucb anslysts might explan the period 1 era as the one dominated by the explotation of the internal combustion engme in the automobile and truck, with the arplane making only moderate contributions The second era witnessed the intensive apphesion of the internal combustion gasoline engine to the arplane, boat motors, farm machinery, lawn mowers, etc Thes was also the era of the trend toward big cars with bigh horseposer engues The auplanes are now shiftung to jet fuel (basically kerosene), the automobile puble have become "economyminded," the farms have been pretty nuucb mechamzed, and trucks now are usually run by diesel engines Thus we may be entering a third era of growth of gasolue sales, with a rate slower than the decade of the fifties but faster than that of the twenties and thirtwes What the fourth era whli be like will depend on what happens to packaged atomic fuel, new developments in electrinity storage techniques, etc It may be that future generations will look back to the decade of the fiftes as the golden ers of the gasoline engune
Other analysts are more inched to try to make one era grow out of the preceding The curved lmes shown on $\mathrm{Fig}_{\mathrm{g}} 175$ show the sort of growth paths they mught draw The tbeory is that growtb is an essentially coninuous phenomenon, with no real breaks between eras Note that one of the curved lines shows only the one bend, with the lune shootang uprard at a pretty good chp at 1960 Tbls line assumes that the last few years represent only a short-term departure from a continued strong upwsid growth Tbis departure would be identified as havng been induced by the fadish concern with gasolne economy by otherwise profigate consumers, the moderate dechne in general business, and a temporary plateau in the rate of technological advance in the gasoline engine The surge of the fiftes is presumably going to continue after these temporary depressants abate and after the development of the private arplane takes bold
The other curved line has two bends in it and ts really a smooth line connecting the three stragght-line eras A line of this shape, an elongated S, has had a very meresting bistory in man's attempts to discover the possible extstence of lavs of growth The pbysicsil, chemical, and bologreal world we live in seems to have ail sorts of rather mexorable laws of development and dechne It is not surprismg , then, that man would lowk for smilar laws in his social, political, and economic enviromment $O n e$ of the first phenomena studied scientifically on the basis of reasonably relable data was population, both anmal and human It was hypotheszed and then verfied that
population growth of certain insects would tend to follow the elongated S pattern pronded the environmental conditions remained essentially the asme The insecta had a natural tendency to reproduce themseives almost geometriesily, just lake the fabled rabbits This tendency would produce the upward curving line like that shown in Fug 175 This tendency, bnwever, obviously could not continue indefintely lest the paricular type of insect were destined to mherit the eartb The gencral edivironment imposes certain restmetions on this tendency toward geometne growth The restretion might be food supply, living space, natural enemies, etc The effect of these restrictions is to mpose a sort of moderately flexible cealing on the maximum population Starvation, disesse, pestalence, warfare, etc all combine to merease the death rate to levels consistent with the burthrate, the base population, and the restrictions Thus the population curve turns from an accelerating, or geometric, rate of ancrease to a decelerating one, tracing a pattern very simular to that shown on $\mathrm{Fig}_{\mathrm{g}} 175$ by the two-bend curve.
Such a theory of growth of population is very compelling Its correctuess has been rather well established in experiments with unsects The real problem is how to apply it intelligently to human populations and to economic and political instrutuons The biggest stumbling block to making aceurate predictions in human affaurs is the same factor that gives man his greatest hope of preventing the mexorable playing out of such underlying physical laws This is man's adaptive abilities Although the history of man has been plete with starvation, cisease, pestilence, warfare, etc, as population controls, the history has also been replete with examples of starting changes in the environmental restrictions The gasoline engine, for example, may yet emancipate most nf mankind from the threat of starvation as it finds even greater applications to the mechanzation of farming In fact, man bas come to a stage in the Western World where incredible efforts are being expended to keep man alve under the most adverse conditions Such efforts would never be made if we were already pressing the envronmental lumits for supporting our present population

These adaptive movements that man makes suggest to some people that the notion of eras of growth and development as expressed by the separate lines on Fig 175 is claser to the truth than any theory of continuous development It, is reasoned that man 18 not a contnuously adaptive ammal Rather he tends to shith, and often rather abruptly, from one routune nf behayor to another A certam amount of pressure or discomfort has to develop before man is stimu-
lated to make a change, and when he does make the change, he tends to leave a good many of the old bahits behind The reason that data on economic affiars do not show the changes as sharply as otherwise is that the data cover the behavior of thousands and milhons of people Each person may make an ahrupt shift in a consumption pattern, but the taming of the shut deffers from person to person The spread of a fad throughout the Unuted States and, even around much of the earth, illustrates the way a wave of adaptation bakes place The development of the communcation arts in the modern world has made it possihle for much of the earth to hecome aware of something at almost the same tume Thus we now find rather sharp shifts taking place in data that formerly were sluggish For example, the cancer scare on cigarette smolong had an almost mmeduate and signticant impact on total cigarette consumption If it were communicated as in the 19th century, it would have been quite difficult, to notice the ampact of the scare on the data

We have perhaps razed enough iesues to make it clear that we do not feel at all competent to explan what the trend has been in gasoline consumption over the years We suspect that there have heen at least tro eres of development, inth the primpal break hetween them occurring durng and after World War II What the future holds we would hesitate to guess mithout more knowledge than we have about the factors affectung the use of gasoline engines Despite this hesitation, we nevertheless do make the guess that the deosde of the suxties will show a growth pattoris somewhere hetween those indicated hy arrows 2 and 3 This is admottedly o farly hroad hand, but sny attamint to do battor wothe the hounde of owr prasent kowledge would run the mek of engaging in a hit of charlatamem.
Now let us look hriefly at Figg 176 where we have the gasoline data plotted on a loganthmic scale A long sweeping ourve has been drawn through the dats to highlught the mann feature of this chart, which is that the evdence is clear that there has been a slackening in the percentage rate of morease over the years This impression 18 consistent with the notions we gamed from studying the anthmetre scale chart It is always a good idea to plot the data on hoth scales Sometmes the patterns of development are clearer on arithmetio than on loganthmic and vice veras, and often the impressions reinforce each other Occasonally we find that a straight line on loganthmic paper appears to be a very good desorntion of the pattern of change Then we would suspect that the series is undergoing a development that 18 stall well within the environmental limits The development of the electrie power industry in the United States has
shown a rather persistent percentage rate of increase over the years, for example Varıous particular uses of electnc power have run into saturation tendencies, but new uses have come forward fast enough to continually lift any apparent ceiling on industry development it is possible that this development will continue until each consuming unit can have its own power cell, say in the form of an atomicpowered battery

Estimating Specific Trend Values

If we wish to estimate specfic trend values for various months or years, be can read them from our chart The first question is, of course, to decide on the particular trend lines to use We arbitranly choose the three straight lines as our guides We do this because we lean toward the theory of eras of growth, and also because we feel this proeedure comes closest to what we would have done over the years if we had had to estmate trend at varrous tmes during the past, rather than having the advantage of the long look back The natural human tendency is to plot a path of growth, say path 1, and then stick to it untal events seem to call for a revision The revision then usually leads to a definite departure from the prevous path Thus we might have revised to something like path 2, etc
Column 3 in Table 176 shows the specific trend estumates which we have tsken from the three straight lines on $\mathrm{F}_{1 g} 175$ Since the results are rounded to one decimal place, there is an occasional unavenness in the trend esumates that apparently belres the hypothesis of straight line changes The monthly estimates are simple hnear interpolations between the annual estmates taken from the chart

The Use of Mathemntieal Methods in the Estimetion of Secular Trend

It is possible to use mathematical methods rather than graphic methods in estimating a secular trend line The mathematical method that has been most commonly used is the least-squares method, exactly the same technique we used in getting a line of relatwonship in correlation analysis The theory of the use of a leastsquares line as an estumate of secular trend is very simple The path of the secular trend 15 essentally an average that runs through the data If we use an arthmetic mean as the average, or a leastsquares line, we are assuming that the sum of the plus devrations around trend should equal the stum of the minus devrations (One of the properties of the anthmetic mean is that the sum of the deviations will equal zero) This is another way of saying that there should

TABLE 176
Estimates of Trend, Seasanal, Cycle, and Residual Variations in US Gasoline Consumption 19\$1-60

						Cycie
					Month	
Moving						

1951							
Jan	797	897	91			1047	
Feb	716	841	84			1013	
Mar	857	845	98			1034	
Apr	863	848	101	1040	968	1007	1039
May	948	852	106	1048	1039	1089	1046
Jun	953	856	108	1052	971	1021	1048
Jul	995	860	109	1061	1001	1082	1060
Aug	1001	864	106	1068	1023	1098	1008
Scp	903	867	101	1062	971	1031	1053
Oct	995	871	102	1058	1058	1119	1050
Nov	870	875	94	1054	1004	1058	1068
Dec	842	879	97	1049	941	987	1043

1952

Jon	859	883	91	1044	1084	1068	1051
Feb	810	886	87	1040	1011	1051	1041
Mar	861	890	98	1036	954	988	1033
Apr	977	894	101	1042	1038	1088	1042
May	1001	898	106	1042	1005	1051	1041
Jun	983	902	109	1050	959	1000	1044
Jul	1043	906	109	1053	1003	1056	1060
Aug	1020	910	106	1056	1001	1057	1054
Sep	991	913	101	1058	1015	1074	1055
Oct	1027	917	102	1068	1038	1098	1061
Nov	903	921	94	1060	984	1048	1064
Dec	948	925	97	1061	995	1056	1064

1053

Jan	881	929	91	1061	982	1042	1061
Feb	846	982	84	1062	2017	1080	1053
Mar	967	936	98	1062	992	1054	1060
Apr	1001	940	101	1062	992	1054	1061
May	1042	944	106	1062	980	1041	1063
Jun	1126	948	109	1062	1006	1090	1062
Jul	1110	952	109	1062	1007	1069	1062
Aug	1068	956	106	1062	992	1054	1062

TABLE 176 Carlinued

					Cycle and	Moving Average
Actual (1)	Trend (2)	$\begin{aligned} & \text { Sessonal } \\ & \text { (3) } \end{aligned}$	$\begin{aligned} & \text { Russ } \\ & \text { (4) } \end{aligned}$	$\begin{gathered} \text { Readual } \\ \text { (5) } \end{gathered}$	Readual (6)	of Cl (7)

1953							
Sep	1036	959	101	1058	1011	1070	1001
Oet	1034	963	102	1054	999	1053	1049
Nov	969	967	95	1050	1005	1055	1047
Dec	977	971	97	1046	991	1037	1046

1954

Jan	892	975	91	1042	964	1005	1042
Feb	857	979	83	1037	1017	1055	1032
Mas	1008	93.2	98	103	1014	1048	1030
Apr	1034	98.6	101	1031	1008	1039	1028
May	1034	990	106	1029	957	985	1031
Jun	1129	994	109	1027	1015	10.2	1027
Jul	1115	998	109	1025	1000	1025	1023
	1096	1001	107	1025	998	1023	1023
Sep	1039	1005	101	1033	991	1024	1033
Oct	10.0	1009	102	1038	933	1020	1033
Nov	101.3	1013	96	1042	999	1041	1037
Dec	1038	1017	97	10.16	1007	1053	1042

Jan	972	1020	91	1050	997	1047	1050
Feb	895	1024	83	1054	999	1053	1056
Mar	1066	1029	98	1058	1002	1058	1060
Apr	112.2	1032	101	1059	1017	1077	1057
May	116.8	103.6	106	1062	1002	1064	1062
Jun	1214	1040	109	1064	1007	1071	1065
Juld	116.8	10.4	109	1068	963	1027	1066
Aug	122.8	10.7	108	1068	1017	1085	1067
Sep	114.3	1051	101	1050	1007	1077	1070
Oct	1139	10.5	102	1070	990	1059	1070
Nor	1102	1059	96	1068	1015	104	1071
Lee	112.2	1063	97	1065	1021	1088	1068

1956

Jan	1005	106.6	91	1054	974	1036	1063
Feb	980	1070	86	1062	1003	1065	1065
Mas	1124	1074	98	1050	1008	1068	1063
Apr	1130	1078	101	1058	981	1038	1053
May	1236	108.2	106	1050	1021	1078	1058

TABLE 176 Continued

Actual (1)	Trend (2)	Sensonal (3)	Cycle Ruse (4)	Resdan: (5)		7-Month Moving Average of $C R$ (7)
					Cycle and	
					Restdual (6)	

1950

Jun	1268	1086	109	1054	1016	1071	1047
Jul	1207	1090	109	1052	966	1016	1046
Aug	1258	1094	109	109	1008	1055	1049
Sep	1116	1098	101	1047	961	1008	1088
Oct	1192	1102	102	1045	1015	1061	1059
Nov	1121	1106	98	1042	1013	1058	1043
Dec	1081	1110	97	1039	988	1004	1041

1957

Jan	1093	1114	01	1037	1040	1078	1043
Fob	967	1118	83	1034	1008	1042	1040
Mar	1132	1121	97	1031	1010	1041	1030
Apr	1158	1125	101	1028	992	1020	1037
May	1243	1120	106	1025	1014	1039	1031
Jua	1210	1133	109	1022	964	985	1022
JuI	1303	1137	109	1019	1031	1051	1019
Aug	1288	1140	109	1016	1021	1037	1016
Sop	1136	1144	101	1012	971	983	1010
Oot	1194	1148	102	1008	1012	1020	1014
Now	1047	1182	94	1005	990	995	1005
Deo	1128	1156	98	1002	994	900	995

1958

Jan	1073	1159	91	998	1019	1017	907
Feb	955	1103	83	995	905	990	985
Mar	1059	1167	97	095	987	902	992
Apr	1185	1171	101	995	1007	1002	095
May	1251	1175	106	095	1009	1004	093
Jun	1254	1179	109	988	977	976	995
Jul	1309	1182	109	1002	1014	1016	1004
Aug	1290	1180	109	1005	1000	1005	1007
Sep	1204	1190	101	1008	909	1002	1006
Oct	1251	1184	102	1011	1029	1027	1016
Nov	1106	1198	92	1014	978	992	1013
Dec	1203	1202	98	1018	1006	1022	1014

1859

Jan	1147	1205	91	1014	1032	1046	1016
Feb	098	1209	83	1012	982	094	1009

TABLE 176 Confinued

1959							
Mar	1190	121.3	97	1010	1002	1012	1010
Apr	1249	1217	101	1099	1007	1016	1011
Msy	1270	1221	105	1008	973	. 881	1003
Jum	133.7	1224	109	1006	996	1002	1010
Jul	1371	1228	109	1005	1019	1024	1002
Aug	1329	1231	109	1004	956	990	1001
Sep	130.3	1234	101	1003	1042	1045	1006
0 ct	1299	123.7	102	1002	936	958	1003
Nor	1161	123.9	93	1001	1006	1007	1002
Dee	1236	124.2	95	1001	104	1015	1002
1950							
Jsa	1113	12.5	91	1000	29	985	999
Feb	108.9	12.8	. 86	1000	1014	1014	1001
Mar	120.5	1250	97	1000	994	094	1002
Apr	1291	12.3	101	1000	1030	1000	998
Mas	1301	1236	108	1001	976	977	1002
Jus	1399	1238	109	1001	1012	1013	1000
Jul	1358	128.	109	1001	957	958	099
Aug	1284	12.4	109	1002	1003	1005	1003
Sep	1235	12.6	101	1002	1003	1005	1006
Oct	1252	12.9	102	1003	972	975	1008
Mor	1249	127.2	93	1003	1053	1056	1003
Det	124.9	1274	95	1004	998	1000	1005
1961							
Jan	114.5	1277	91			085	
Feb	1056	1280	S3			994	
Mar	120.6	128	97			1018	

be ss much prospenty as depression over the course of the buaness cycle.
Before we can calculate a lesst-squares trend line, we must make tro cricsi decisions, both bssed on personal judgment. The first is that of the shape of the trend line, whether a straight hine, a compound interest or exponential type, or a parabola of some form, or an elangated S type, etc. The other concerns the exact terminal years on which to base the calculations. Difierent tume periods will
give different calculated lunes We have no objective standards on wheh to base a choice of time period. Bad choices in etther decosion will produce misleading trend lines, more so because the mathematics create an aura of authentacity in the mind of the unnmitated
Since the proper use of mathematically-fitted trend lines requires a person haghly skilled in both the mathematios and economics underlying his data, very few sophistreated anslysts use mathematical trends Their reasoning is that they might as well draw the trend freehand after they have made all the subjective analysis necessary for a mathematical line As a matter of fact, a mathematioal trend would not be considerad a good trend unless it conformed to a line that "looked rught" on a graph

17.4 Estimating Cycle Runs and Residual

Now that we have estmated the aeasonal and trend variations in gasolune consumption we can turn our attention to the cycle runs and residual in the data The frst step is to elminate the ssasonal and trend variations from the onginal data Following our model, we do this by duviding the actual data hy the seasonal and trend In formula

$$
\frac{A}{T \times S}=\frac{T \times S \times C \times R}{T \times S}=C \times R
$$

Column 6 of Table 176 shows the results of this elimination (Column 6 s the result of diving colvinn 1 by the product of columns 2 and 3)
We would now like to analyze these $C R$ ratios for evidence of cycle runs We could do this by ploteng these ratios on a chart sumilar to Fig 177 Aotually, however, we prefer to try to average out some of the residual before trying to idenufy cyole runs We have, for example, taken a 7 -month moving average of the $C R$ ratios and plotted these averages in $\mathrm{F}_{\mathrm{Ig}} 177$ The averages themselpes are shown in column 7 of Table 176 We then superimpose estimates of the cycle runs on these moving averages We can undoubtedly find grounds for disagreement with the placing of some of these lines Our timing of these runs would probably be considerably helped by any extra knowledge we moght have ahout market factors affecting the sales of gasoline In the ahsence of such knowledge, we merely draw lines that look good

The residual variation $1 s$ what is left It is shown in column 5 of Table 176 This 18 calculated by dividng the estrmstes of cycle runs of column 4 into the $C R$ ratios of column 6

17.5 The Completed Model Anotomy of Gosoline Consumption

We set out to snslyze gasolme consumption into the component vsristions of trend, sessonal, cycle runs, and residual Columns 1 through 5 of Tsble 176 sbow the resulis of our analysis The sctus] figure shown in column I should in each month be the product of the T, S, C, and R shown in the table Since judgment plsyed s msjor role in this snslysis, it is farr to state that this snatomy is only one of sevcral concelvable estumates that could have been made It is likely, however, that other estimates would be iamrly close to this because gasolme consumption tends to be dominated by reasonably strong and stsble pstterns, particularly in seasonal varaation and trend There would be much more room for disagreement in an industry like pig roon production where the patterns are nether strong nor stable An dea of the relative strength of the four components can be gamed from the coeficients (V) of their respective varrations The coefficient of varation of the trend component 15 123, that of the seasonal component 18 078, that of the cycle runs is 023, and that of the residual is 022 Tbus it csn be seen that the series is farrly well dominated by trend and seasonsl forces

17.6 Auta-correlotion in the Residuol Variation

Theoreticslly, the residual vs mation should behave somewhst like s random seres That means that there should be no correlation between successive items, a condition that would make it impossible to predict the next residusi varation from the precedng one A simple wsy to test for the existence of correlation in the residus. variations 18 to calculate the degree of auto-correlation in them This is the degree of correlation between successive items in the residusl vsriations The independent, or preducing, variable is tsken as the residusl for the preceding month Figure 178 illustrates thas On the borizontal axis are shown the values of the residual vsrations at tume T On the vertical axas are shown the values of the residusl vanations at time T plus one month For example, the residual vsit-
ation for April, 1951 was 968 What does thes tell us about the residual variation for May, 1951, or, in genersl, what does the residual varation in one month tell us about the residual variation in the next montht We answer this question by paring successive residual varistions 968 is the andependent item associated with 1039 of May, 1951, 1039 then becomes the independent stem assocsated with the 971 of June, 1951, ete Figure 178 shows the scattergrsm of these 116 possible pairs There is clear nisual evidence of a negative association
If we fit a least-squares straght line to this relatronship, we get the equation

$$
X_{t+1}=1421-421 \bar{X}_{t}
$$

The atandard deysation eround thes line is 016 compared to a standand deviation in the restdual varnations of 022 Thus we get A of 27 , or r of 78
We find that there 18 a rather Jarge amount of auto-correlation in these residual vamations It is quite evident that plus devations

 (Data in Table 177)
tend to be followed by minus deviatons, and minus deviations by plus deviations If we wrised, we could meorporate sucb an apparent systematic variation in our systematic elements as an oseillatory movement in the manner described by the lesst-squares equation We his atate to do this, however, for fear that we would be cutting our analysis rather thin We suspeet that we mey have mduced some of the auto-correlation by overrefined deseriptions of the cycle runs It is conceptually possible to always leave the residual variation witb a high degree of negative correlation by simply running the cycle run lines through every little wave of the data Successive restidual vamations would then almost always be on opposite aldes of such a line If we had confined our cycle rans to straught lines, we might have elmmated a good deal of the negative auto-correlathon The practical problem is to abstract as much system from the deta as can be rehed or to persist into the future Unfortunately, the only way to test our skill in doing this is to wast untril the future unfolds The biggest eriticisa agamst most analyses of the type we bave been describing ${ }^{2 s}$ that the abstracted systems tend to disappear as the future unfolds Most analysts have been far too generous in their allocations of varmatons to the trend, seasonal, and cyole categories with the result that they are unprepared for the large errors their forecosts tend to produee

17.7 Criticisms of the Traditional Approach to Time Series Analysis

Traditional time series analysss based on $A=$ TNCR har enjoyed' the popularity it has had more because there 25 a lack of reasonably simple competing analytical methods than because of any real successes in its application The fundamental weakness in this approach 18 its lack of any operating rules to tell us how far we should go in superimposing systems of varation on the data If we were to extrapolate the systems we discovered in gaboline consumption to make estimates, say, for the remanngy months of 1961, it would be very hard to place any meaningful confidence hmits on our estimates Exporience with this method suggests that the residual vanation would be a poor standard for setting such lmits because it tends to be too small, thus leading to overopthmstec forecasfs (overoptimistic in the sense that we would imply a degree of error smaller than we should)

Two pruary reaknesses are at the root of our dificuities with the traditional method The first is that the formal method restrcts itself to only the information sapplied by the series itself, together with the dates of such information Any attempt to allow for related ramahles such us temperature, population, etc, must be handled informally and montuely Since most analysts always know more than just the data, or at least they thunk they do, the final results will tend to reffect thas undefined subjective knowledge in addition to the obvous data themselies We have no practucal way to judge the validity of such an analyss except by judging the analyst himself II he has a reputation for chill and honesty, ne accept his results at fate value Otherwse we apply approprate discounts, themselves a matter of judgment
The second weakness is that the method analyzes all of the hastoncal detal as if all such information were really avalable in a practical prohlem It is as though we were faced with the prohlem of making decistons ahout problems to which we already had the an swers! It is not surprising that we denve answers that are consistent with the hnown outcomes The prohlem in practice, however, is to mabe the decision before the fact, and to stall come up with an. swers consistent mith the outcome Tradutuonal tume series analysis is really no more than a highly developed technique of second-guess ing A technique for first-guessing would be more appropnate
In new of these criticomes we should not now assume that the results of thas type of analysis are totally useless Much of value can he learoed from such an analysis We know, for example, that the seasonal sanation will very likely contanue with a pattern very smilar to that which we found in the past data We also know that gasoline consumption has had a clearly indicated upurard trend over the years and that it will continue upward unless some very spectacular events occur We are not at all confident of the rcte of thas upward trend, or of whether this rate mas he starting to retard some What Fluctuations in general business have had only very moderate infuence on gasolune consumption a charactenstuc common to many moderately-priced consumer necessities We rould expect this situ ation to continue $O n$ the other hand, we are not as confident of our analysis of these cycle runs as the analysis mples If we had had more confidence, ne nould have analyzed the runs for average length and average rate of change, thus hopug to gain some hasus for antricipating future runs

17.8 The Use of Multiple Correlation Techniques in the Analysis of Economic Time Series

An ohvious way to mprove the results of a time serres analysts would be to bring in additional mformation about the varrous seasonal, trend, and cycle factors For example, we might analyze gasohe consumption with some of the followng associated factors, among others
X_{1}-Actual monthly gasolne consumption
$X_{2}-$ Average temperature during month
$X_{3}-$ Ramfall during month
$X_{4}-$ Nuraher of days in month
X_{6}-Number of major bolidays in month
$X_{6}-$ Number of Saturdays and Sundays in month
X_{7}-Numher of month (Jan $=1, \mathrm{Feb}=2$, etc)
$X_{5}-$ Number of registered automohiles
$X_{0}-$ Number of arline passenger mules flown m piston engene arreraft
$X_{10}-$ Number of registered private arplanes
X_{11}-Number of farm tractors in use
$X_{12}-$ Number of private motor boats in use
X_{13}-Number of small gasoline engnes in use on porter morvers, go-earts, garden tools, motorcycles, etc
X_{14}-Miles of moproved highways in use
$X_{15}-$ Number of compact cars in use
X_{16}-Rate of disposable personal income
$X_{17}-$ Federal Reserve Index of Industrial Production
X_{18}-Average price of regular grade gasoline
$X_{10}-M_{1 i l}$ tary budget of Federal Covernment
X_{20}-The number of the year
In each case there is the possiblibty of using time lags
If we nere to analyze the above factors over a 15 year period, we would heve 180 observations on each factor, or a total of 3600 If we confined our analyss to stragght-line relationships, we would have to perform 31,200 multiplications to get the cross products We would glso lave the squarings and additions to do and finally solve a considerable number of simultaneous equations it is not surprising, then, that no one as yet has performed such an analysis to our knowledge But somebody will over the next fery years because of the
possibility of doing the calculations on an electronic computer It will be very interestang to see what the outcome of such studies will be Although there are naks that we will agan fall woto the trap of overdrawing conclusions, such a multaple corrclation analysis sbould certanly belp to formahe interpretations of factors that are currently left to anturion and experience

17.9 Attempts to Simulate Actual Forecasting Conditions

Even an elaborate multiple correlation analysis 18 smply a ceeondguessing technique in the sense that it uthizes the results it is trying to predict in morking out methods of prediction The methods are sure to look good within the bounds of the data used to develop the methods Tbe atuation might be quite different, and usually is, when we apply the results to the future In the next chapter we look breefy at a method of approach that attempts to confine itself to only the information that could possibly be avalable at the time a forecast had to be made Such an approach teads to give very discourag. ang results because it leads to uncertanty about the future Perhaps that is why it is almost never used Most people would rather use methods which give deceptively sccurate result and rationalize amay their falures than use methods which give relatuvely incouclusive results, even though the inconclusive results are a direct consequence of our general state of genorance about the future

PROMTMS AND OUSSDENS

171 Consider two of the vanous economac tume senes that you thulk you know somethrig about and evaluate the applicablity of the general model of the components of vanation that reads

$$
A=T \times S \times C \times R
$$

For example, do you see any reasons why it might be preferable to add some of these components togetber?
Also, are some of these components irrelevant in your senes? Or, can you think of some additional components, perhaps some components that are parts of the major components referred to in the general model?
17.2(a) Use the monthly data on gasoline comsumption given in Table 171 to construct a senes of quarterly data on gasolme consumption Use quarterly totals Bnag the data up to date
(b) Plot your quarterly dats on a year-over-year chart with a loganthme vertical scale
(c) Anslyze the chart for clues of the vanous knds of aystematic movements that have apparently been occurning in gasoline consumption
(d) Project the quarterly gasoine consumption for 6 quarters beyond the avalable data Indicate your range of uncertanty by shoning upper and lower lunts such that you would feel 80% confident that the actual consumption will fall wihun your stated limits (This 80% is the equivalent of betting at odds of 4 to 1 that your forecast is correct You should choose hmits that are narrow enough to tempt somebody to accept your odds at the same tume that they are wode enough to give you a little more than 80% conffidence Thas can be done only by beng a littie less ignorant than the other fellow Or at least you must thak you are less a morant)
(e) Calculate a 4 quarter monng anthmetne mesn for your date with the final results centered at the middle of a quarter for correct matching with the orggnal data
(f) Your 4-quarter moving anthmetuc mean actually ends up as a 5 quarter wetghted anthmetic mean because of the centeng operation Why us this true? What are the weights?
(g) Calculate the ratios of the ongnal data to your monng averages (Shde rule accuracy 78 sufficient)
(h) Plot these ratios on a separate chart for each of the 4 quarters (in the manner of Fig 174)
(t) What components of vanation are presumably dominating the ratios? Explain
(j) Draw in vsually fited lones that presumably measure the progress of the seasonal component for each quarter over these years Extrapolate your lines to make a forecast of the seasonal component for the coming year
(d) What plus-and-muvs error allowance do you think you need for your hastorical lines? For your extrapolations? Doss thes error allowazce vary from ore quarter to another? (In otber words, do you feel more confident about your eatimates of seasonal in some quarters than you do in others?)
(l) Read off seasomal estumstes from your graphs
(n) Deseasonalize the histoncal data by dividing the actual data by your seasonal indexes
 vise your original undexes

173 A common method of reporting business information is to provide data for corresponding montis of successive years For example, a samphing of tems on the financial pages of the Chueago Daly Newis of October 10 , 1961 shows the following items

1 "Income of Internatunal Busneess Machmes Corp for the first mine months soared to $\$ 152,887,977$, Thomas J Watson, Jr , chairman, announced Tuesday

The earnings, equal to $\$ 555$ a sbare, compare whth net mnome of $\$ 119,088,057$ or $\$ 434$ a share in the mne-month period that ended Sept 30 , 1960

Gross income from sales, service and rentals also was up-from \$1,040,572,434 a year ago to $\$ 1,244,491,206$ in the latest mine-month period "

2 'Walgreen Co sales set new records for September and the first nine months of 1981

Sales in September totaled $\$ 27,662,444$ up 54 per cent from September, 1960 For the pine months sales totaled $\$ 236,638,613$, up 46 per cent from the corresponding penod last year"
(a) What is the value of thas kud of reporting?
(b) Contrast the method of reporting dita for corresponding penods of consecutive years with that of reporting "seasonally adjusted" data For example, the U.S News \& World Report of Octoher 9,1961 reported on page 137 that
"The country's money supply rose sharply in early September After seasonal adjustments, the total of currency outside hanks and checking accounts sveraged 143 hullion dollars in the first half of September, up 12 billion from late August"

Does thas latter method corivey any different knd of mesage? Explan
17 4(0) Collect annual data on passenger miles flown for commercial alr. lines in the United States and on passenger miles for United States railroads Collect the hest data you can back to 1920
(b) Plot these data on charts and analyze the two semes for evidence of growth patterns over the years Draw freehand lines on your charts that reflect such growth patterns Constder both the apparent patterns exhibited hy the charts and any other general infomation or msights you might have Make no effort to collect any additional information at this point of your analysis
(c) Project your expected pattern of growth for each sertes for each of the next 10 yenrs Indicate the maxumum and monnum levels you nould expect on the assumption that you wish to be 80% confident that your projected range will include the truth (You might keep in mind that it will never he possible to determine the exact truth even after the events have occurred)
(d) You undouhtody felt somewhat ignorant as you worked (b) and (c) above and recognize that there are several things you would luke to investrgate of you had the time and resources Suppose sou have heen granted the free use of three research asestants for a period of 2 months In what directoons would you instruct them to collect informstion, etc, in order to belp you denve a more expert opminon about the growth patterns-both past and future-of the arime and ralroad passenger industress in the Upited States?

Consider the data you would try to collect, the charts you would have drawn, the correlations you would have run, the branstorming sessions you would organize, the men you would have mitervewed, etc
(e) Do you see any cridence that the ardine passenger husiness might follow the growth patterns that have been shown by the raulroads, with the appropnate time lags of course?
(f) Do you see any evidence that ether or both of these husunesses have followed or wll follow a pattern of growth that corresponds to any general law of growth like that exhibited hy some anumal and insect popalations under certain environmental conditons ${ }^{7}$ Explam
(o) To what extent do you believe that the growth patterns m these husi nesses have and whil he stgufiently under the control of the executives who have made and will make major decsions for the various companies in each of these industres? Or, in other words, if you were such an executive, to what extent do you feel that you could count on certam underlyng forces of growth to propel your company and to what extent you nould feel that you and your co-morkers would have to create sueh forces?
(h) If it has not already occurred to you in your analysis of the above
questions, you should now consoder the hikelhood that the ralroad passenger busmess will expencoce a revval, say, comerbat like the revral of the phonograph record mdustry whech was once apparently threatened by the rado industry but which has since enoyed several decades of considerable grouth (You might also consider the early threat of television to the rado undustry and the subsequent recovery of the radro mdustry both in broadrasting and renelumg)
(i) What recommendations do you have wth respect to our national policy for the regulation of ratroads and arrlines in order to foster a healthy future groa th in our passenger transportatoon fachttes?

175 Selset some corporation that 300 bave an interest in (not necessarly finanonl-yet) and analyze the growth prospects for this company with an eje toward makug a judgment about the investment value of this company's common stock Aewne you bave $\$ 5000$ to weest in thas or other company You need eome cort of annual return from this investment In order to supplement your earmangs You also have resources sufficentily limited so that you could not easily laugh off the loss of a substantsal proportion of your $\$ 5000$ How much of this $\$ 5000$ would you meat in thes company's common stock at the curreat market proe? Explan
i76(a) Use your final estumated trend lines in Problem 174 and read off numerical trend values for each y car
(b) Elrmate trend from the ongmal data What is measured by the resuitant rayos? (Shde ruie accuracy is sufficent)
(c) Analyze your ratios of trend to actual data for endence of runs or of oycleal variations You should try to distill these runs srom the retios What do you then have left? Can you detect any ss stems in these residuale?
(d) Whach endustry has been apparently more affected by eyolloal flup-tuations-arhine passenger or sairoad passenger? How much more? (Use your own mgenuty to summanze rate of the cycheal fluctuations in tbe two series)
(e) Is there any endence that the magntude of cyelical fluctuations has changed over the ycars" If $s 0$, how do you explann such changes?
(j) Mahe an 80% confidence projection of the trend/actues ratios for the next two years for each of these industres
(g) Do you note any significant evidence that the arime and ralroad paseenger miles have cycheal fluctuatons whin dfferent timang, particularly at the turaing points shere the ratoos chft from a positive run to a negative sun, or vice versa? For example, is there any evidence that the arline business turns down before the railoads? Would you be able to make a sharper analyss of the matter of comparatwe tuming if you had monthly' data to work with? Explan
I7.7(a) Make a formal snalyses of the degree of auto-correlation that exists in the residual variatoons you developed in Problem 176 (c) above Interpret your results
(b) You very likely used one-year lags in measuring the auto-cortelation in (a) immedtately above You rught as well bave used two-year lags, of three-year lags, etc What would be the logreal mpleations of such analyses? For example, might you find aegative correlation with one-year lags and posituve correlation with two-year lags? If so, what would this tell you about the bebavior of the serres?

I78 Evaluate the following quotation
"The current upturn in general husiness should run for at least 24 months because we have not had a shorter expansion penod sunce the one that ended in 1929 However, we should be alert to signs of a downturn at the end of thus 24 month penod because 3 out of the last 4 expansions have termunated in 32 months or less" (See Tsble 161 tot some bistoneal evidence on the lengtbs of cycheal russ in general husiness in the United States)
17.9 Comment on the following
"While it may very well be true that traditional methods of analyang an economic trme senies give us a feeling of knowng more about tbe probable future than we really do, we should neveriheless not discount the psycbologreal value we get from the results of such analyses Whie overconfidence may not be a good state for action when we are dealing witb events over wheb our actions have no control, there are tumes when the enthusasmo generated by a little overconfidence may help us to actually bring to pass events that would have been mposshle of we had apprased the struation more 'realistically' It is only when the analyss makes the sturtion look dark that we should guard aganst overconfidence in the correctress of our apprasal"

$+18$

Forecasting an economic time series

In the preceding chapter we were concerned with the past behavior of an economio trime senes In this chapter we are concerned with the problem of the juture behavnor of an economic time series Our study of the past behavor consisted of trying to analyze a series mito its component, or anatomical, parts The knowledge ganed from such a study is useful in predictong the future course of a tume semes, partucularly the future course of the withm-the-year varation The method of approach, however, tends to overestrmate what we know abouts situation, and thus leads to forecasts that mply smeiler errors than actually preval
As we switch our onentation from the past to the future, we are much more interested in the whole series than in any of the component parts, such as seasonal or secular trend We find that it is the whole series that the businessman has to contend with, not with any hypothetical parts that we might distill by statistical methods We try to avoid making conditional forecasts, that 15 , forecasts that assume certain things will be true Naturelly, it is always true that some conditzons underle any forecast For example, we assume that there will be no puclear war, or smilar catastrophe durng the range of the forecast We also assume no miracles, such as the discovery of a perpetual motion macbize or a smple way for human beings to subsist on arr alone We do nots however, make forecasts that assume a "steady rate of growth" or "no declne in general business," or "no partucularly wet spring," etc We consider our job etther to predict such phenomena or to allow for ther occurrence within the bounds of our expected error

181 Noive Forecasting Mehhods

If we make a forecast of the future course of gasoline consumption in the Unted States based slmost solely on the past beharor of gasoline consumpton, we say that «e are making a nave forecast. The simplest type of nave forecast assumes that the next peroods figure will be the same as the last penod's For example, given a 1960 garolne consumption of 1261 million barrels per month, we mght forecast that the 1961 consumption mill also be 1261 mullion barrels per month We probably agree that such a forecast is very nare What we may not be aware of, howee er, is that it is not at all eass to mprove this forecast very much We try in later pages, but the dificulties mount farly rapidly
A more complex nave system is to assume the latest rate of change tull continue For example guen s 1959 gavoline consump tion of 1233 million barrels per month and 1261 for 1960, we might scsume that 1961 will be 1289 (up 28) or 1290 (up 23%), depending on whether we wish to assume a constant absolute rate or a constant percentage rate Again allough this is very naive, it is surprismgll difficult to surpass in general accuracy
As we use more of the past history of the senes in our forecasting ss stem the more complex the nave ssstem becomes For example we mught fit a secula- trend line to the last 15 years of dsta and extrapolate this This system nould probably have a larger error in general thsn the ascumption of no change if ne supported our trend system with a seasonal inder and come extmate of the cycle run we would have a vers complex nave system, albet still nave by our definition hecaure the analy cs paid no expluat ottention to any other information than that suppled by the hastory of gasolne consumptoon itself Actually of course unless the analyst is just as nave as his data he cannot help grung some umpleat consideration to such factors as the perrods nf major wars, etc
In order to avord the label nf nave a forecastung method must give come explict attention to factors mutside the serres itself For example, a study of ceasonal vanations in gasoline consumption might include temperature varatinns
We should not get the idea that nave methods are somehow bad or seeficient They are perfeetly proper and reepectable, and oiten as effective as any other methods But they are nare in the truc meanng of the term He consider nane methods sufficently re
spectable to he worthy of dscussion The remainder of this chapter concentrates on such najue methods for forecasting an economic time series The proper use of sophisticated methods which uthlize multrple correlation techniques for analyzing related factors requires knowledge partucular to the specific application and is hetter done by somebody with enough experience in the particular area to pick out meaningful factors Such a specialued type of analysis is outside the scope of this hook

18.2 The Base and Range of a Forecast

Forecasting 18 using the knowledge we lave at one moment of trme to estmate what will happen at another moment of tome The fore casting problem 18 created by the interval of tume between the two moments The base pornt of a forecast is the knowledge pont from which we jump across the time gap The ronge of a forecast $1 s$ the time interval between the base point and the forecast point For example, suppose a company has a practice of forecasting the next month's sales as soon as the current month's figure is available The base point for a February sales forecast would he January, with a range of 1 month Simularly, the hase point for a Novemher fore cast would be October If there are lags in the reporting of data, a very common problem, we may find ourselves at the end of the month of Fehruary and just geting reports on Decemher sales Thus a March forecast would have to be based on Decemher whth a range of 3 months It is often much more practical to spend money on speeding up data reporting than it is to spend money on forecasts over longer ranges Some companies are in the very strong position of knowing what last month's sales were while ther competitors are still guessung Man has known for a long time that knowledge is more valuahle than the hest guess or the hest technıque for guessing

It is very important to know the hase point and range of a forecast to develop a forecasting method conssstent with the base point and range To do otherwise would be the equavalent of a naval gunnery crew practiong from a fixed hase at a 2 -mile range to develop techniques for hittug targets 5 miles from a moving hase
We illustrate some of the techniques for making nave forecasts of gasolne consumption hy using ranges of 1 month, 6 months, 1 year, and 5 years

183 Month-fo-month Forecasis of Gasoline Consumption

We are going to try to forecast gasoline consumption for a guven month from the base of the preceding month We start our analysis of the historieal record by finding out what knds of changes have occurred in the past over a one-month ronge We can measure these changes in terms of differences between the successive months or in terms of the ratios of one month to its preceding month We find it preferable $/$ to use the ratios because the ratios would be more comparable over the years than would be the actual differences The actual differences are at least partly a function of the sze of the, series, and the series tends to have larger szees at the later dates than at the earler dates because of the growth in gasoline consumption over the years The ratuos are more or jess independent of thas saze factor
Table 181 shows the month-to-month ratios for gasoline consumption from 1951 to 1961 Such month-to-month ratios are often called link relatwes, the analogy beng to a chann that has many links ted together Here we the all the months together with ratoos between successuve months This table gives us 122 observations on

TABLE 181

Menihly LInk Relatives of Gasoline Consumpioun 1951-1961 (Ongingl Data in Toble 171) Alink rulolve is thown for the date of the forecost manlh, not far the dete of the bowe month)
$\begin{array}{lllllllllll}1951 & 1952 & 1953 & 1954 & 1855 & 1956 & 1957 & 1958 & 1959 & 1960 & 1861\end{array}$

Jas	-	1020	929	913	938	896	1011	951	953	900	917
Feb	898	910	960	961	921	941	885	890	870	944	922
Mar	1197	1101	1143	1176	1191	1188	1171	1140	1192	1147	1199
Apr	1007	11135	1035	1026	1053	1005	1023	1088	1050	1071	
May	1140	1025	1041	1000	1041	1094	1073	1056	1017	1007	
Jun	988	982	1081	1092	1039	1026	978	1002	1053	1068	
Jul	1044	10061	986	988	062	952	1072	1044	1025	978	
Aug	1006	978	962	983	1051	1042	988	092	969	1019	
Sep	902	972	970	948	931	887	882	927	980	928	
Oct	1102	1036	998	1011	997	1088	1051	1039	928	982	
Nov	874	879	937	965	968	940	902	884	960	990	
Dec	968	1050	1008	1025	1018	964	1047	1088	1065	1000	

TABIE 182

Frequency Ditribution of Manthly Link Relatives of Gasolina Consumption Lunk Relative $f \quad d \quad j d \quad f d^{2}$

* Lower Limat Laclusve
the ratio of one month to the preceding if we igoore the dates on the links and form a frequency series as shown in Table 182, we see what we face when we try to forecast a next month's figure Note that the mean of the ratios 151007 This mphes that the serres has grown at about 7 of 1% per month over the 122 months

We would, however, he very foolsh to rely on this as a meaningful average rate of change from month to month If we start with the January, 1951 consumption figure of 797 million barrels and let this grow at a compounded rate of 007 per month, we arrive at a figure for January, 1961 of 2309 millon barrels The actual reported figure for January, 1961 was only 1145 million barrels
Thus we have a very practieal illustration of the meaningless character of the anthmetic mean of ratios of this type We discounted the arithmetic mean for such a purpose on theoretical grounds in Chapter 6 Although the anthmetic mean may have no inherent meaning unless we are aetually interested in the total, it sometimes gains meaning by concodence if it happens to be practically equal to the median The median does have great mherent value as an estanator whenever we are interested un mmming our
errors of estimate, which we would certanly like to do in this problem of forecasting gasoline consumption We find the median of these ratios to be approximately 10033 From the point of view of the uhole distrbution of ratoos, the mean of 10070 does not duffer very much from 10033 Note, far example, that the ratros range from 85 to 120 Also note that the percentule equivolent of the meon $1 s$ 518 , certanly not very far from 500 Thus the skewness of the distribution is quite moderate
In this problem, however, the entieal issue is the relationship of the average rato to! From this point oi vew, we find thot the rate of change represented by 10070 is more than lunce as areat as that represented by the median of 10033 In some problems we might find the mean and the medion ratios even eloser to each other than We have here and yet the practucal signficance of the difference may be quite substantial For exomple, ne might hove a mean rotio of 10007 ond a median ratio of 9996 The mean indicates a groump semes, the median a decluneng semes

It is often argued that the proper aserage to use for averaging rablos of thus type ss the peometre mean We discussed this tn Chapter θ in connection with the problem of the averoge solue of an m Yestment fund Since one of our problems in that discussion was that we did not have any clear-cut dea of why we washed to know the aseroge value of the investmeot fund, it migit be northwhile to raise again the asue of the geometric mean in our present contex: We have a definte purpose for wishung to measure the average rote of change of gasoline consumpitoo from month to month This is to proude a basis for forecasting gasolute eonsumption one month in od once Common sense suggests that ne would live this forecast to be as close as possible to the actual consumption that will prevall We have prevously leamed that the median os the average that will accomplush this We have already found this median ratoo to be 10033 What role might ne now assign to the geometric mean?
The geometric mean is caleulated by multeplyng all the atems together The atems in our present problem are the monthly link relotives If we muluply all of them together, we find that all the consumption dota for the months from February, 1951 to December, 1960 will cancel, leaving us only whth the roto of the January, 1961 consumption to the Jonvory, 1951 consumption The reason for this is immedrately opperent if we wnte out the detal of the multiphacation of these links For example, we would be multiplying produets like the following (See Table 171 for the source of the figures)

$$
\frac{716}{797} \times \frac{857}{716} \times \frac{863}{857} \times \frac{984}{863} \times \frac{953}{984} \quad \frac{1249}{1249} \times \frac{1145}{1249}=\frac{1145}{797}
$$

We end up with the interesting result that the geometric mean is based on only the values of the first and the last items in this hist of 121 tems It is just as though the other 119 atems did not exist In fact, we migbt arhitramly assign any values we wish to the intermedrate items We still get the same geometric mean This is why we say that the most efficient way to calculate the geometne mean of such ratios is to sumply take the N th root of the ratio of the last stem to the first item In this case we would have $\sqrt[120]{\frac{1145}{797}}$ Solution of thes by the use of loganthms gives us a geometric mean ratio of 10030 , a result that happens to be quite close to the median ratio of 10033 m this problem There is no partscular mherent reason why the geometric mean and median should he this close

The above analysis of the geometric mean should make it quite obvious that the value has no particular relationship to the month-to-month changes in gasoline consumption Hence it would have no sherent relsvance to our problem It is a mers comerdencs that it has a value so close to the median The geometric mean defintely bears a mathematical relationshup to the ratio of the last item (January, 1961) to the first item (January, 1951) The practical signaficance of this relationship is not at all apparent

Our Present Uncertainty about Month-fo-Month Changes in Gaso-

 line Consumption. To he able to state a meaningful average rate of change from month to month is of some value, alithough a quite limited one Practical work requres that we have some awareness of the probable range withn wheh the actual rate might fall The only hasis we have for estomatong such a prohahle range ahout future rates is the experience we have had with past rates The distribution shown in Table 182 could he used as a crude base for estimating such a range We hope to he ahle to umprove this shortly, however, the hest way to understand the degree to which we might he able to improve it is to have a rather specific idea of how iguorant we are at the moment Let us arhitranly decide that we would like the range that would give us about 80% confidence We could, of course, select any confidence coefficient that seemed consistent with our own consequence matrix We can estrmate an 80% confidence belt hy finding the two points in our distrihution that exclude the lower and upper 10% of ihe past ratios We would accomplish thisby estimsting the values of the 1st deale, or D_{1}, and of the 9 th decule, or D_{s} The calculation of these, shown in Table 182, yelds results of 906 and 1113

If we feel inadequate because all we can say is we estmate the ratio of next month's consumption to this month's consumption wrill be somewhere between 906 and 1113 , we can always give the appearance of more accuracy by using a narrower band If we do this, however, we would have to accept a lower than 80% confidence As long as our information is restricted to what is available in Table 182 , there is no way that we can legitmately reduce our apparent uncertanty except by decreasing our confidence Fortunately for our peace of mind, we are gong to expand our knowledge of these ratios a little and see if we cannot decrease the uncertanty band unthout at the same time decreasing our confidence

Before we acquire this greater knowledge, let us simply note that the difference between our upper and lower boundary to our 80% conidence belt is presently 207

What Difference Do the Months Make in the Size of the Ratios? We have probably wondered why we groored the possibulty that there may be a pattern to these lunk relatives or monthly ratios Actually, we deliberately avoided such a possiblity to set the sceas so that we would be able to meosure the significance of such a monthly pattern to the task of mproving our forecasts Hence we have tned to define our state of ignorance without any information about monthly patterns We can then compare our state of 1840 rance with such mformation and our state without it and thus measure the value of the information
The logical thing now is to separate the 122 classes into 12 subclasses, one class for each month of the year For example, let us look at the historical behavior of just the February to January links, and then the March to February links, etc The best way is with a chart like that shown in Fig 181 This ss the same kind of chart we drew when we analyzed the ratios of monthly data to the moving averages, and we have the same purposes in mind The most prominent feature of the ratios that is made apparent by examination of Fig 181 is that they have duferent sizes in the different months For example, the March to February ratios are consistently around 114 to 119 , whereas the September to August ratios are consistently around 90 to 97 (We should note parenthetically that no adjustment has been made for leap year. We assume we could make such an adjustment if necessary on the batas of our treatment of this
problern in Chapter 17 We leave at out here in order to slmplify our present discussion)
What is nut so clear from these charts in Fig 181 is whether any of these ratios for a given month show any shiftung pattern over the years Most of the monthe show what could be runs for a few years, but no month seems to have shifted its level between the early years and the later years There is some evidence of negative correlation beiween the ratms for successive months Note, for example, the reverse patterus of vanation in the May/April ratios and the June/May ratios This is partly induced by the way the ratios themselves are calculated For exampie, if a May figure is unusually hugh, it will lead to an unusually high May/Apnl ratio But this unusually high May becomes the denomunator nf the June/ May ratio Hence the June/May ratin would tend to be unusually low
It 18 also possble that part of the negative correlation is caused by the actual behavior of gasoline consumption We fownd quite a bit of auto-correlation in the residual varnations in our analysis of gasolne crnsuraption At the time we thnught that re mught have saduced some of this hy an overambitious spectication of cycle runs Aithough we stall do not dsenent the possiblity of mur having snduced some of the auto-correlatim, we must naw recognaze the possibility that auto-correlation of this nscllatory type may be an unherent part of the series It might be due to a tendency for gasoline marketers to overcorrect therr monthly errors in planning sales and inventones, in the aame way a person might follow an oscillatory p sth in an automobile becsuse of a tendency to overcorrect steenng errors Or, it might be due to a sumilar kund of error-correction technique fillowed by those why comple the gasoline consumption series It is not unusual to find snme varation induced in a serres by the person or persons doing the measuring We then have to decide whether we use as a target the data as merisured or the data as they would be tf they were correctly measured Usually we are forced to the into the data as measured for want nf mformation ahout what they should he
We are sufficiently confused about the source of this negative correlation to avoid any exploct attempt to take advantage of $1 t$ The correlation is avalable to be analyzed if we wish and if prackical considerations make it seem worthwhle We will assume that there is no relable system in these year-to-year vamations and treat them as essentally random

Unks

Fif is 1 Analyss of one-month link relaturee of gasolize comsunption (Dita in Table 181)

AugiJul

Fig it 1 Conthanted

Determining the Expected Menthly Ratios

We now come to the main issue, which is the determination of the erpected ratios of one month to the preceding Since it 18 clear that these ratios vary with the season of the year, we have worked out expected ratios separstely for each of the 12 months The honzontal lines dramio in each section of Fig 181 purport to show the 80% range of expectation for the ratio in the year or years ahead These ranges are rather conservatue for use only one year ahead The range includes 80% of the hastoncal ratios, sud hence we hopefully helseve also 80% of the future ratios But rarely, however, has the ratoo shufted that much mone jear's time Hence we might be able to work with a narrower range with no loss of confidence If we start rnth the last atmilable ratio and take into account the marimum amount of sbilt that has occurred in one year's tume in the past. Starting mith the last avalahle rato alco has the advantage of making us up to date in case there is any fundamental shifting tsking place in the ratios, whereas if we consider some of the earier ratios we almays run the nsk of payng attention to data that are no longer apphicsble
For smplicity, we ignore the poanble refinements in determung this 80% bsid and turn to the results themselves Table 18.3

- thece bands as numerical values We could use the specific wror hand when making a forecast for a given month, or we could

TABLE is 3

80\% Expectation Bands for Monthly Uaks of Oasoline Censumptien

$$
80 \% \text { Lumits Erer }
$$

$\mathrm{Jsa} / \mathrm{Dec}$	900-1010	± 055	
$\mathrm{Feb} / \mathrm{Jan}$	885-960	± 0	
$\mathrm{Ms} / \mathrm{Feb}$	$1140-1200$	± 000	
Apr/Mar	1005-1090	± 042	
May/Apr	$1003-1095$	± 045	
Jun/May	. $775-1050$	± 0.2	Anthmetic mean
Jul/Jun	.960-1 060	± 050	eror $= \pm 044$
Aug/Jul	.970-1040	± 1035	Medisn error $= \pm 045$
Sep/Aug	890-975	$\pm 0 \cdot 2$	
Oct/Sep	.9SO-1 070	± 045	
$\mathrm{Nov} / \mathrm{Oct}$	875-. 970	± 048	
$\mathrm{Dec} / \mathrm{Nor}$.970-1 060	± 045	

use an average error band and apply it to all months equally Using specfic error bands reveals that March will likely be the easest month to predict, with an error of ± 030, and January will be the most difficult to predict with an error of ± 055, almost twice as large as that for March The average of all the error bands is about 045 We can now estimate the value of knowng these monthly patterns If we do not know them, we have an 80% error band of approximately ± 104 (Thus $181 / 2$ of 207 See p 672) Hence knowledge of these monthly patierns ensbles us to reduce our average expected error from 104 to 045, or about 57%
When we are using charts like those in $\mathrm{F}_{\mathrm{lg}} 181$ as a basis of forecasts from month to month, we should keep the data up to date and modify the bands as the evidence warrants We chose 80% bands in the illustration Naturally, of course, we sbould use the confidence coefficient approprate to the particular situation The bug adventage to this method of approach is the basss it provides for establishing some rationelly determined confidence band for our expectations And, finsily, remember we can analyze these ratios for evidence of runs and of correlation between successive months and thus possibly parrow the confidence band

18.4 Six-month Forecasts of Gasoline Consumption

As an additional illustration of the use of link relatives in forecasting we show the results for forecasting 6 months ahead in Tuble 184 thatugh 186 sind in Fyg 182 These toblas and the chart parellel the treetment we used on the 1-month links
Let us first look at Table 185 where we show the frequency distribution of the 6 -month links Here we see a substantial increase in the variation in the links compared to the 1 -month links, an merease in the standard deviation from 061 to 149 Thas 28 what we would expect Thas llustrates the rather general finding that the further out we try to forecast the greater whll the varsation be in the varable beang forecasted
Where we are surprised, however, is in the charts of Fig 182 and in the summary of monthly errors shown in Table 186 Here we discover that knowledge of the paricular month enables us to substantally reduce our errors of estimate The average expected error for 80% confidence is ± 037 if we use mformation specific to each month This represents an 83% reduction in error from the 80% confidence band of approxmately ± 212 uf we agrore the monthly

SAELE 184

Six month Uink Rolalives of United Stoles Gosoima Consumplion 1951-1981 (Original data In Toble 17 1)

	1951	1952	108.	1044	1935	1930	1057	1055	1959	1060	1061
Jun/Jut	-	. 893	845	604	872	80	000	823	876	. 812	. H_{3}
Feb/Aug	-	781	889	H2	817	770	789	741	768	791	783
Marj ${ }^{\text {Pep }}$	\square	055	076	073	1020	083	1014	050	988	925	985
Apr/Oct	-	982	975	1000	1.069	992	971	092	978	1048	
$\mathrm{My/} / \mathrm{Nov}$	-	1151	1154	1067	1153	1122	1108	1162	1148	1120	
Jun/Dec	-	1187	1188	1158	1170	1130	1125	1117	1111	1124	
\$ul/Jan	1248	1714	1.280	1250	1.292	1.201	1182	1220	1183	1220	
Ant/Teb	1.308	1304	1.28	1.279	1.372	1330	1932	1360	1,332	1.317	
86p/Mar	1054	2151	1081	1031	1072	903	1001	1108	1085	1088	
$\mathrm{Oc} / \mathrm{Apr}$	1154	1051	1033	1015	1015	1055	1031	1050	988	076	
Nov/Miy	884	002	$\$ 30$	080	943	907	\% 6	84	914	01	
Dec/Jun	. 884	984	283	919	924	853	988	959	021	898	

TABLE 185
Frequency Distribution of 6-month Unks of United States Gosoline Consumption 1951-1961

6-month frequency
Laks $\quad f \quad d$ fd $f d^{\text {f }}$

$70-75$	1	-6	-6	36	
$75-80$	6	-5	-30	150	
$80-85$	8	-4	-32	128	
$85-90$	11	-3	-33	99	
$90-95$	11	-2	-22	44	
$95-100$	20	-1	-20	20	
$100-105$	9	0	0	0	$M e a n=1025+\frac{19}{117} \times 0$
$105-110$	11	1	11	11	
$110-115$	10	2	20	40	$=10258$
$115-120$	12	3	36	108	
$1.20-125$	6	4	24	96	$=05 \sqrt{\frac{1159}{117}-10258^{4}}$
$125-1.30$	4	5	20	100	$s=149$
$1.30-1.35$	5	6	30	180	
$135-140$	3	7	21	147	$=10$

$D_{1}=80+\frac{117-70}{8} \times 05=829 \quad$ Medasa $=10083$
$D_{1}=130-\frac{117-80}{4} \times 05=1254 \quad P E . \bar{X}=527$
*Lower Limit Inclusive

TABE 186

80% Expectation Bands for G-month Lunks of United States Gasoline
Consumption 1951 -1961 (Date from Fig 182)

	80\% Lamts	Error	
Jan/Jul	815-880	± 032	$\begin{aligned} & \text { Mean }=037 \\ & \text { Medrat }=036 \end{aligned}$
$\mathrm{Feb} / \mathrm{Lug}$	760820	± 030	
Mar/Sep	950-1 020	± 035	
$\mathrm{Apr} / \mathrm{Oct}$	970-1 070	± 050	
May/Nor	11101155	± 022	
Jun/Dee	110-1 175	± 032	
Jul/Jan	1105-1250	± 028	
Aug/ T, b	1280-1370	\pm O45	
Sep/Mar	1005-1105	± 050	
$\mathrm{Oc} / \mathrm{Apr}$	980-1 000	± 040	
Nov/Mas	885-960	± 038	
Dec/Jun	870- 060	± 045	
		447	

miormation Thus the sessonal factors are much more mportant for the 6 -month haks than they are for the 1 -month links In fact, Ho end up whith smaller average errors for the 6 -month forecasts than we do for the 1 -month forecasts (037 vs 045) This phenomenon of a smaller net error for a longer forecast than for a shorter
 esereses there ss a chance to cheek out the behavior of the links for other tume intervals and make reasonably specisic commeats on the behavior of the residuals as gasoline consumption

18.5 One-year Forecasts of Gasoline Consumption

Table 187 and Frg 183 show the calculation and analysis of the 1-year link relatives of gasolme consumption These are useful as the basts of making a forecast one year ahead we used data back to 1923 even though there are questoons about the strict homogenerty of the sernes for thas period of thme We feel, however, that the crrors in the deta are small compared to the basic variation in gasoline consumption itself and that it is useful to observe the behavior of the links over thise length of tume

Fig 18.2 Asalysis of 6-month lost relatives of gasolue conmuption (Data in Table 184)

Fig. 18.2 Canlinved

TABLE 187
One-year Lunk Relatives of Gasolins Consumption 1923-1980
Luk Relatives

1924/23	1176	
1925/24	1214	
1926/25	1166	
1927/26	1183	
1938/27	1109	
1929/28	1131	
1930/29	1063	
1931/30	1021	
1932/31	938	
1933/32	1005	
1934/33	1079	
1935/34	1055	
1936/35	1108	
1937/36	1080	
1938/37	1007	
1989/38	1062	Sum $=39401$
1910/39	1060	
1941/40	1132	sum of 8 quares $=42111$
1942/41	883	Hean e 105s, Median az 1022
1913/42	665	Standard Deviation $=0$
1914/43	1112	$D_{1}=094$ (apprommate)
1945/44	1101	$D_{0}=1143$
1646/45	105%	
1947/46	1050	
1048/47	1094	
1048/48	1051	
1850/49	1089	
1851/50	1083	
1852/51	1058	
1853/52	1058	
1954/53	1020	
1955/54	1085	
1056/5	1025	
1957/00	1.018	
1958/57	1018	
1850/58	1043	
1980/59	1023	

Fig 183 d-year torls relatives of gasoline consumptron in the Uitited States, 1933-1960 (Source Table 187) Note The luok relative is plotted againgt the termand year of the laking perod See toxt for meanng of parailel inas

If we take all the links and ignore their time sequesce, we find that they average about 1085 and have a standard devretion of o6s (The median ratio 18 about 1062) Figure 183 makes it yery clear, however, that the time sequence does make a difference The 1920^{\prime} 's showed high annual rates that have not reappeared since, with the possible exception of the 1940 to 1941 rate whach feit the effectis of the beginning of World War II The two parallel sold lines runnung from the mid-thirties to the early-fiftes show the boundaries of most of the ratoos durng thas ran of years (The World War II years have been ggnored) It then appears that we maght have moved mito a new era in the early-fiftes, an era which chows slightly loner annual rates than the previous two deades We detected the same tendences in our study of the secular trend in gasoline consumption
The problem is now to estimate the limits of annual change for
 ment of a reasonable range of expectation for the annual rate of change from 1960 to 1961 We would again venture an 80% confdence in thes range In numbers, the range runs from a low of 10175 in a high of 10425 , with an average expectation of 1030

It is obvous that we extracted quite a bit of information from Fig 183 We started our study with a vanation in these annual rates as mdicated by a standard deviation of 063 We then pro ceeded to ignore all the data pror to the early fiftues and made a forecast for 1901 whth an expected error of only ± 0125 ior 80% confidence Thus we were able to reduce our expected error about 84% (multiplying 063 by 1.28 to put it at the 80% level and then calculating the relative reduction from the resultant 050 to 0125) Perhaps we bsve been too ambitous in our use of Fig 183 Tbe acid test would be bow people nould react to the 4 to 1 odds if they knew only what we now know from these data and this chart

Just as in the monthly and 6 month links, it is a good idea to keep a chart like that in Fig 182 up to date and to modify the expecta tion band as nery evidence might suggest In addition, if we are making both monthly say, and annual forecasts, we can corelate our findings and thus more quickly revise our expectation bands for example, as the monthly data for 1961 become available, we should be able to improve our forecast of the full year of 1961 The first 3 months of 1961 suggest that the ratio of 1961 to 1960 is going to be above our minimum projection of 10175

- Five-year Forecasts of Gasoline Consumption

Table 188 and $\mathrm{F}_{1 \mathrm{~g}} 184$ show the analysus of the 5-year links in gacolise consumption We find that the vamation in these is substantally larger than in the I-year links, a standard devation of 235 va 063 Again we notice that the mean and the median are very close, thus indicating a reasonable smount of syminetry in the dis. tribution of these ratios
When we look at Fig 184 we are not sure whether we should charactente what we see as very wild or very systematic (Figure 184 has been drawn to the same scale as Fig 183 to facilitate a visual companson of the relative fluctuations in the 1 -year and in the 5 year links) We get a definte umpression of rather wide swings in the ratios, at the same tume we note that these swings are assocated with rather well-known major events The trough in the early thirthes is the result of the Great Depression The peak in the late thirties is the recovery from that depression The height of this peak in the ratios is partly mduced by the low swings 5 years earher We noticed some evidence of negative correlation between successive links in 1 -month link relatives Here we have 5 -year link relatives

TARTE 388

F ve-yaur Link Relatives of Gosoline Consumpton 1923-1960
Luok Relatyves

1928/23	2022	
1929/24	2013	
1930/25	1759	
1931/26	1511	
1932/27	1275	
1933/28	1157	
1984/29	1108	
1935/30	1100	
1036/3!	1193	
1937/32	1375	
1938/33	1375	
1938/34	1354	Sum $=4461$
1940/35	1350	Sum of equares $=61703$
1941/36	1357	Mean = 1347 Median $=1347$
1942/37	1134	Standard Deysation - 235
1943/38	1087	$D_{1}=1103$
1944/38	1138	$D_{0}=169$ (approxmete)
1945/40	1181	
1946/41	1103	
1947/42	1348	
1948/43	1527	
1949/44	144	
1950/45	1429	
1951/46	1405	
1952/47	1435	
1953/48	1388	
1954/29	1347	
1955/50	1341	
1956/51	1269	
1057/52	1222	
1958/58	1176	
1959/54	1283	
1960/55	1184	

and agan we note some endence of a negative correlsion between the lonks but this tume the correlation is between the links 5 years apart Note the lines rumung from 1932 to 10871933 to 1938 ete Since 1932 was an unusually low year the lank to that year was low But when we get to 1937 we base the 1937 link on the year 1932

Fig 184 5-yeas link relatives of gasolme consumption in the United Staten 1923-1900 (Source Table 188) Note The link relatne is plotied aganast the terminal year of the hakug penod See text for meaning of parallel hines

This gives 1937 a lon base to jump from, hence it tends to have a hugh link
We can see the same phenomenon at work if we cormpare the World Itar II low figures (due to rationing) with the postwar high figures Again we must keep in mund that part of the swing from low to high has been induced by our method of calculation Thus we might heep in mind the general rule that link relatives of time series tend to oscillate from high to low and vice versa over an interval equal to the range of the limh Most of the time this induced oscillatron ts negligible and causes no troulle on analysis It becomes quite evident when we have a major outside force driving the data to one extreme or the other Interestingly enough, the osclilation tends to have only the single swing For example, the World War II artificial
lows induced the postwar bighs in the ratios, however, these postwar hughs will not necessarly mduce subsequent lows They will do that only $t f$ the postwar consumptron is atselj unusually high We do not believe that the postwar consumption was unasually high (except in comparison to the war-tume artifical lows) Hence we do not expect the ratios in 1953, 1954, ete, to be low becouse of the precedng highs If they ere low, and they tend to be, we conclude that it is because the consumption rate in the fiftues is itself tending to slacken its growth We do not expect the limks to bounce back from any "nduced" lows in the late fiftees the same way we would have expected the ratios to bounce back from the mduced postwar highs

We are now moderately ready to face the man sssue of what we expent the consumption rate to be in 1965, 5 years beyond our base date of 1960 The two parellel Imes mdicate our 80% confidence range This range runs from 109 to 126, or an average expectation of 1175 This 15 more than five times our average expected 1 -year rate because we are more melined to anticipate a relatively large plus variation in consumption than a relatively large minus vamation Tbis expected error of ± 085 is approximately 72% less than we would have bad if we bad ignored the time sequence of these 5 -ycar ratios (As before, we multipled the standard deviation of 235 by 128 to adjust to an 80% level This adjustment rases the error to 301, 085 is about 72% less than 301) Thus we apparently did not get as much from our charts with the 5 -year lonks as we did with the I year links In the latter case we were able to reduce our errors about 84% Of course, in both instances we may be deludng ourselves, or we may be too conservative The onily way we could tell is to compare our judgments with those of a reasonable number of other people and perhaps make a few betz on our differences of opin10n, with the bets possbly consisting of varous decisions we might make with respect to mvestments in mventories, in refining facilites, in transportation facilities, in college graduate tranees, eto

18.7 Long-term Forecosts

If we whshed, we could analyze the 10 -year link relatives, the 20 year link relatives, etc If we did, we would find two things happening that would tend to discourage us First, we would find very substantial variation in the links, whth the variation increasing as we lengthened the range of the forecast, Second, we nould have increasing difficulty in understanding our chart because we would
become most concerned that the links would be crossing from one era to another in many instances, considerably uncreasing the possibility that we would be misled by what we see As a result we would end up with forecasts with such wide error bands that our furecasts would have very little practical value Very few businessmen find it practical to plan on much nf anything beyond a 5 -year penod Most investment decisions postulate a "payout" period of 3 to 5 years or the investment will not be made This does not mean that all investrments turn out that way, but only that we do not plan on less Even then the average payout will be somewhat more than 5 years

It also does not mean that busmessmen are shortaghted and do not look to the long-term future Quite the contrary It would be very shortsighted to make plans for a 10 -year period, say, unless we were able to control events reasonably well over those 10 years Without such control, the plan probably will not be fulfilled We will begin to find ourselves in the essentally absurd position of acting according to a bince nut-dated plan in the face of developments that make other action much more reasonable It is not farsighted to make plans for events that are beyond our range of vision We make plans for such out-of-range events by providing for flexbihty in plans The greater the uncertanty, the greater is the necessity to have altertatuve lines of action avalable For example, a wise mulitary commander makes up battle plans with due consideration for the expected weather, expected deployment of exemy troops, expected depth of water at a nver crossing, etc But he had better be ready with alternative plans of he finds the river too deep tn wade Successful forecasting 2 as much the art of knowing what we cannot easly forecast as it is the art of crystal ball gazing That is why It 18 so very important to have a reasonably clear dee of the amount of varration we have to contend uth

18.8 Multiple Correlation Analysis of Link Relatives

We have so far confined ourselves to a naive type of analysis of our link relatives We confined nur attention to information supplied by the gasoline consumptinn data themselves, with a few samples of subjective judgment added tn intuitively reflect some phenomena such as major depressinne and wars If we wished, we could stall use our link relatives as our base and correlate such hinks with additional information in temperature, number of registered
automobles, etc Such an analysis is outiside our selected hamts of coverage, however We could pursue such a multiple correlation anslysis on our own with a moderate amount of additional study of methodology and a considerable amount of knowledge of the paricular area of application

PROBLEMS AND QUESTIONS

181 It is sometimes recommended that a person, Nhen dnvigg as automobile, should not coramit huaself further than ke can see Thus an in telligent driver presumably slows down at ught and when approaching curves or the hrow of a hill An analogous line of reasoning is oiten apphed to the problem of running a busmess An mtelligent businessman does not commit his company's resources "further than be can forectast"
If there is any ment in such a recommendaton, it would seem that the job of the forecaster consusts of more than trying to extend the range of vsion into the future in addition, the forecaster must be responglide for makng quite clear how far into the future has vison actually does extend Just as it is posalie to drve a car at mught without lights and at high retes of speed on the assumption that the road is straggt and clear, it is possible to run a business by malang substantusl financial commitments on the assumption that 'tbe road is straight and clear' We heve a feeling, bowever, that we do not wish to be aboard in ether case There are tures riben prudence sugeests that some provision be made for the uncertanties about the road abead
As a busnessman, bow would you protect yourself aganst seles fuctuahons if you could not see these sales with 80% confidence any closer than
(a) Plus or minus $2 \% 1$ month abead ?
(b) Plus or minus $4 \% 6$ months ahead?
(c) Plus or minus $20 \% 2$ years abeed?
(d) Plus 100% and munus $50 \% 5$ years aheed?
(e) Plus 300% and munus $80 \% 15$ years shead?

182 Suppose you are responsthle for the companys polev in ine hirng of college graduates as management trames What are the relative merits of a policy that advocates the harng of several tranness who bave extabited erratic but occasionally brilliant periormance in the hopes that one or two of the several will develop, with the others faling by the wayade?
Contrast thas with a polcy that advocates hirng a tramee only if it is considered " 80% " probable that the will develop unto a depardable and very useful executive, although posshly not given to fashes of genus
183 Use your data on quarterly consumptoon of gasoline to develop nave forecasts of gasoline consumption for a range of
(a) One quarter
(b) Two quarters

In each case, give explect consmideration to
1 The average expected rate of change (Kas it been changng?)
2 The 80% confidence limits for this rate (Eave these limits been changing?

3 The relative reduction m grorance that is achared by paying attenthon to the particular quarter of the year that is used as a base

Is 4 Compare your ablity to forecast gasolne consumption one quarter ahead whth that to forecast two quarters ahead Are you surprised at the direction and magatude of the difference? Explam

185 Use your annual data on arime passenger miles and railroad passenger miles and make nave forecasts for a range of:
(a) One year
(b) Tbree years

In eacb case, give explact consideration to
1 Tbe average expected rate of change (Has it been changing?)
2 The $80^{\circ} \circ$ confidence limuts for this rate (Have these limits been changing ${ }^{9}$)
186 Compare jour apparent ahilty to forecast arrine passenger mules with that of forecastung rairoad passenger miles
Are thece differences anherent in the nature of the two nodustries or are they a product of your greater ggorance about one industry than about the otber? (Perhaps somebody else could have done better than you did in euther or both of these two cases) Erplan
18.7 Use your nave forecasts of Problem 185 as a base and analyze say additional related mformation that you antucpate will ensble you to narrow your range of uncertanty
State explictly your 80% confidence limts after considering these other factors Defend tbeir valdity

Compare your nave lumts mith those after considering the additional uformation Are tbey enough different to justify the extra time and effort you put into attempting to narrow the lumis? Explath
(Note It is possible that your additional information may csuse you to discount something that you thought was useful in developing your nave forecasts Hence you may find that your 80% limits get wder zather than narrower wntb the additional information In such a case would you now say that the additional mformation made your forecests worse, or would sou say sometbing else?

188 The attempt to combine some explicit statistical analyos of data (of the sort illustrated by your nave forecasts) with other minformation that may conssis largely of the fruils of expenience, ete, in order to arrve at a final forecast tbat uses all the available evidence, including tbat unfor* mation embodied in the exercise of subjective judgraent, can be likened to the use of proor probability distributions in combination witb explicet nery sample information to arrive at a final conclusion
(a) Do you find the two procedures analogous? Explam
(b) Do you see any way by uhrh you maght combine your feelings about the future of arrhe passenger mules with the historcal data on such miles in order to develop explietty an inference distrabution of your expectations? Explang
(c) Assume that you do see such a way, even though imperiectly Would such an inferente distnbution have anj family relationship to the inference distribution you migbt set up for the expected outcomes of the tossing of 10 cons? Explain.
(Hint: Do different people have to derise the same probablity distnbution for a problem in order for the distrabution to be a proper probabiity dstribution? Wby or mhy not?)
18.9 Part I of Business Cycle Indicators, Vol. I. (Geofirey H. Moore, Editor, a study by the National Bureau of Economic Researeh, Princeton University Press, Princeton, N.J., 1961) has 10 essays on the selection and interpretation of indicators. Select one essay and write a 5 to 10 page typewritten report on it. This report should;
(a) Tell the reader the main conclusions of the author of the essay;
(b) Outline the essential feakures of the evidence and/or the logical argument that supports such conelusions;
(c) Critically evaluate the practicel usefulness of the indicators referred to or of the techniques of analysis referred to. This evaluation should proceed to the point of recommending exactly what an economic forecaster should now do about the substance of the essay in order to improve his own forecasting efforts.

19

Index numbers: the comparison of group characteristics

19.1 The Group as a Standard af Comparison

We all frequently have occasion to rate a person, performsnce, insutution, etc , businessmen are no exception Although there are varnous rays of ratung phenomens, one of the simplest and most common ways is to compare an indivdual stem with the group, or closs, to which it belongs For example, we conclude that the Hous ton Lught and Power Company common stock has been a "fast grower" by companing its rate of grouth mith the rate of growth of common stecks of similar public utilities, or with public uthlities in general, or with common stocks in genersl, etc The problem that immediately arises, however, is that of characterizng the bebavior of puble utiltty common stacks Some of the stocks mill have risen in price more tban others Others magbt have fallen in price Some of the stocks bate more shares outstanding than others and hence mught be considered more important than others in the group Some of the stocks might be traded more than others and not in proporthon to shares outstanding These and other problems make it not so easy as first umagined to deseribe the behavior of the group of stocks

It is obvous that an average behavior would be of interest We could then compare an indrudual stock with the average behavor sud determine whether the indivdusl stoch price hid risen more or Iess than average

For example, suppose we have found that public utility common stock prices have misen $\mathbf{2 3} 6 \%$ on the average over a given time interval Company A's stock rose 279% durng the same interval Thus we can say that Company A's common has risen more than the
average Exactly what we mean when we say that mill depend on exactly how we calculated the average We might have used an anthmetic mean of the prices of all the stocks, grving each stock a weight according to shares outstanding Then we mught find the average so dominated hy the lergest company that, say, as many as two thurds of the stocks sctually rose in proce more than the average of 236% Thus Company A might be above average but still less than more than hailf the stocks If we had used a median to average the group, we could then say unequivocally that Company A's stock dud better than st least half of the companes'

We sometimes are interested in how much shove or helow average a given item 18 Given some sverage and the indrondual stem, such as our average of 236% and the individual tem of 779%, we can always calculate the relative difierence betmeen the two Thus we might say that Company A's common stock rose 18% more than the average (18% is the result of dividing the sctual drference of 43% by the average of 236 and then multiplyung hy 100 to contert to percentagea for ease of interpretation) We might not be too clear about what we mean by 18% more than the average because we are not entrely clear about the mesning of the syerage of utility common atock prices having risen 236% We rought be much better mformed if we could stste auch a comparison in terms of a percentile ranking For example, if we knew that only 12% of all puble utility common stocks rose more percentagevise than did Company A's, we would place Company a in a more exclusuve position than if we could say only that 44% of sll publa utility common stacks rose more percentagewise than dud Company A's Enther of these statements nught be true given that the average was 236% and Company A's was 279% Thus we find ourselves unable to clearly interpret a deviation from average unless we have some minormation about all the derratoons from average, information supplied, say, by the standard devatron or the quartule deviation
Thus is enough mitroduction to the knds of problem we diceuss in this chapter We are concerned matoly with the problem of measuring changes in groups of proces over time and with changes $n n$ physcal outputs over time These are two of the most mportant problems in group comparsons over tume for the general hasinessman, and also, for economists, government officials, and the general pable These are many other aress where emmlar problems arise, such as in psychological testing, gradug of students, assessing the combined effects of the several elements making up soll fertility, etc These
aress have special problems of then orn that require more specific knowledge of underlying factors than we presume to possess In fact, we must confess a certan suparficality of treatment of the problems of price and output indeses because of lack of space to discuss properly the many diffeult economic, socisl, and politucel usues that frequently cloud the practical rork of constructing a pnee index. All we can do so pornt to the more general lssues Actusl index number work is an ertremely practical art. Compromse between theoretical neethes and budget considerations is very common Errors in collecting data are often suffeiently large to make refinements of methodologs somerbest like cutimg firewood with scalpels We probably tend in practice to pay far too mucb attention to ranations in our indexes that are smaller than the base errors in the data A moderste amount of such self-delusion probably does no harm, partculary if it esses relstions in the busmess famly, but it would be well to stand letting this become a way of life The average citiven would be amazed to duscorer the many decosons that are being made, and the many more that are being recommendec, on the haus of the movement of a fer points in some of our masor indexes, such as the Consumers' Pnce Index and the Dor-Jones Averages of Stock Pnces

19.2 An Inadequacy in Most Published Index Numbers

Most publeshed index numbers pronde ouly a angle as erage figure at each date Thus we cancot get any summary idea of the vanation in the parts that make up the index. Most government uderes, however, are puhlished with subindexes for vanous commodity clases and for ismous regrons of the country Thus we can get information on food pnces as well as the behavor of Consumers' Prices in general. What we cannot get, however, is a summary evaluation, buch ss a standard devation, of the degree to which, say, food prees difiered in therr pree changes
Thus it is necessary mot of the tume to try to get anformation on sorve of the more specialized inder rumbers if we wish to make eveluations of how much more a given pnce has vaned than the sverage as shomn by the genersl index. We should not try to dram more specific conclusions from an inder number companson than is reslly warranted by the avalahle mformation.

19.3 The General Problems in Index Number Construction

It is convenient to discuss index numbers in terms of certam reletwely distunct problem areas We separate the problems into
1 The specification of the purpose which underles the promepal uses of the radexes
2 The sperification of the exact data that are to be used in the inder, the sources from whech the data will be eollected, sed the sperific dotes at which the data will be collected
3 The determmation of the base penod that will be wed for ans calculation of comparatire relk tuve changes
4 The determunation of the speafic woughts that will be attached to the

5 The deterimation of the type of average that wall be usod to charactenze the group beiavnor
6 Determination of reviton policy and procedures

19.4 The Purpose that Underties an Index Number Series

It has heen semseriously suggested that the primary use made of the Dom-Jones Averages of Common Stock Prices on the New York Stock Exchange is as a conversation ice-breaker on commuter trans The conversation might start with tomething like "Wor, did you see that the Dow-Jones went of $\$ 674$ today ${ }^{97 \prime}$ The conversation might then go almost anywbere from that begnang If this rere the only purpose for such an index, then we could buld a good argument for an mdex formula that would nsure enough volatilty of movement to be a good conversation starter on almost any occasion What the varration in the index realiy meant would be unimportant The important thing would he for the index to move In fact, it would be better for conversation purposes if ne dad not know what the variation meant We could then have endless speculation on theortes about why it did or did not move in certan ways

The best way to find out what uses are really made of an madex senjes is to be on hand when specfic decisions are beng made on the basis of turms in the mdex Generally this as almost impossible to do For example, with the Dow-Jones Averages, there are some people who make predictions about the Dow-Jones Averages based on theornes about the past behanior of the Dow-Jones Averages But this is a game that they play Wbat would be mineresting to know
ls exactly what huy and sell orders are gren for spectic stocks hased on the behanor of the Dow Arerages The mdexes gre supposed to represent the rhole lutt of stochs in some way But no one ever puts in an onder to huy a cross section of the rhole list of alocks. Specific stochs must be bonght and sold, and it would be very interesting to know exactly what the behanor of a general undex bas to do mith such specific tranestions We could then make proper decisions about the asmple of stocks to welude in the index, the frequency with which we should collect the pnces, the weights we thould asogn to the vanous stocks in the index, the average we should use to summarize the indindual stochs, ete
Varbe it rould be frutiful to turn the quection around, and, in stead of ashang what our purpores are for an index, we find out bow a gren uedex is constructed and then ack what we can do with it as it 18 For example, the Dow-Jones Average is essentially the total of the prices at the last tranasction preceding the specification tume, ssy at close of market, of a zelected lut of stocks, there being 30 asues uncluded on the industral stoch section Each pnee is given a wetght of 1 in the ander The totals are compared at diferent tumes to find out what bappened to stoch prees (Actuslly the totals are durded by factors that allow for stoch spits, etc, over the years For example, if a tock had been selling at $\$ 120$ per ohare and it mere splt by lssuing tro ners chares for each old share, the new price fould ammedistely more to the nerghborhood of \$co Actually, of course, there ras no such spectacular decrease an the proce of thus companj's stoch. The Dor Arerage adjuts for thes by uang a smallet dirsor than othermise In effect, the Dor Average 19 stall on the old pnee level before the splits that bave taken place That ss why we find the Dow Industral Average in the nelgborhood of $\$ 700$ even though not a single jssue in the list 15 priced as bigh as that. The point is that they theoretically would bare been preed as high as that if the stocks had not been splat over the years) Table 191 shows a eample calculation of the industnals average for July 27, 1961
What does movement in such an zndex mean? It ohwously means what it is and what it does, namely, measures the changes in the total prices (or the anthmetre mean prices) of the $\$ 0$ 1ssues, with one share of each being represented in the total But this cannot be what interests most people becsuse most peaple do not even know which 30 stocks are in the list. Presumsbly, then, the movement of the

TABLE 191

Calculation of the Dow-Jones Average of 30 Industrial Stock PricesJuly 27, 1961 (Source of dala Tha Wall Strest Journal, july 28, 1961)

Company	Closing Price per Share	Company	Closing Price per Share
1 Alled Chemical	\$ 63625	16 Internat I Nickel	\$ 82000
2 Aluminum Co	74250	17 Internat'l Paper	32000
3 Amercan Can	44875	18 Johns-Manville	64000
4 American Tel \& Tel	124250	19 Owetis-Illinois Glass	86250
5 American Tobacco	92625	20 Proctor \& Gamble	87375
6 Anaconda	57625	21 Sears Roebuck	68375
7 Bethlehem Steel	42875	22 Std Onl of Cal	52250
8 Chrysler	46000	23 Std Oil of NJ	45875
9 DuPont	224.125	24 Switd ${ }^{\text {co }}$	44000
10 Esstman Kodak	104000	25 Texsco	103000
11 General Electro	65625	26 Union Carbide	184875
12 General Foods	83000	27 United Autcrait	51250
13 General Motors	47375	28 US Steel	85500
14 Goodyear	43875	29 Westmghouse Elect	43875
15 International Harvester	51500	30 Woolworth	77250
		Total	\$2224 50

Divisor 3165 (Note This would be 30 except for the need to adjust for stock splits over the years)

Average

$$
\frac{\$ 222450}{3165}=870280
$$

total of these 30 is hopefully supposed to represent the movement of something other than the total of these 30 issues
What might thus be? It might be the cotal of all the industrial issues, each with one share represented It 15 enturely concervable that the total of these 30 sssues would go up, asy, 10% if the total of all the industrals went up 10% On the other hand, it is enturely concervable that they would not parallel the relative movement of the total of the whole hist Suppose the movements were parallel What would be the practical sygnficance of the up and down movement in the total price of all the $15 s u e s$ on the New York Stock Eychange? We could not even say that it represented the movement
in the investment velue of a cross section of American industry because of the equal weaghts given to each issue A proper cross section certanly should make some allowance for the fact that different issues have more outstanding shares than others

On the other hand, it is concervable that the equally weighted total would move parallel to the varable werghted total Suppose it did, what could we now say that would have practical agnuficance? Given the validity of all these assumptions about the representative ness of our unweighted list of 30 18sues as a counterpart to the weighted list of all issues, and given a little anthmetic, we could now make statements as sometmes appear in newspaper headlines such as "Market loses $\$ 4,500,000,000$ of its value in a major sell-off!" Tbis is certannly typical headine material, but what else is it? Would it mean that we as a citizen ahould support measures to reduce margin requirements, or to lower interest cates, or to elimnato taxation of dividends, or that we should aell our holdings, or sell short, or buy now to take sdvantage of the lower prices, etc ? It might be interesting to try to find out who lost thes $\$ 4,500,000,000$ Or, even better, who ganned it from the losers, or was everybody a loser and the values just " disappeared" somewhere

We ask questons like these not to embarrass us, or to be pedantically dufficult, but only to emphasse that it is not easy to make a simple statement of purpose that will lead to ample rules for constructing an index number series Most of the tume we are not quite sure why we do want an index We have a vague feeling that we will be better informed if we have some indexes of group behavios, even though we are not sure exsctly what characterstic of the group is being summarized More often than not we wistfully hope that we would get about the same answera to our index number calculations regardless of the various shadings of methodology we might adopt For example, the hope that underlies almost all practical uses (conversation starters and headine matersal assde now) of the Dow and other stock price indexes is that the distribution of individual price movements is sufficiently symmetrical so that changes in the total or the arithmetic mean will parallel changes in the typical stock price Thus, if a given stock increases in price more than the index, It would be farr to state that the given stock has performed better than the average, with the average now referning to typical behavor rather than an abstract total Most people have a feeling they know what it means to compare an individual to a typical member of the group They feel this even when they are not quite sure what is really typical It 18 often as psychologically satisfung to say some-
thing 18 above average when we are mistaken as to what the average is as when we are correct in identifying the average
Most published index numbers bave not been constructed with any specfic purpose in mind Somebody thought it would be a good idea to measure changes in the hebavior of some prices, zay as an "addrtronal service to suhscribers" The first index was prohahly a ample arithmetic mean Different people would have made many different uses of the index over the years, some reasonable and others quite farietched The advantages of familarity and historical contunuty would then work agamet most recommendations for improvements in the methods Most indexes compled and pubished by the Federal Government have started out as so-called general purpose indexes, thus providing the widest possible we Most of the indexes are calculated by weighted totals or their equivalents Frequent studes of the behavior of individual proces have revealed that most of the individual price changes form reasonably symmetrical dismbutions partucularly if the tume interval is not more than a few years Thua weighted totals, or aggregates, give about the same answers as would medans or the equivalent
The problem of special purposes is handled not so mucb by dfferent formulas as by the construction of subndexes to cover the changes in varous component parts of the man index If we are going to use any published index number cerres, we should investigate the condrtions of selection of dats, selection of weights, etc, to make gure we are using the best possible index for our purposes It 18 particularly moportant to locate any specialzed index, such as an index of wholesale steel prices if that is what we wish, rather than take a handy index of broader coverage, such as an index of ferrous metals prices

If we are planming to construct our own indexes for a special purpose, such as DuPont does for the selling prices of its products, then, of course, we should make every effort to find out specifically how the indexes are going to be used throughout our compeny or by outsiders if we plan to pubhsh our results Then to protect the users and our reputation, we ahould clearly state sufficient detail on our data and methods so that if anyone mesuses the index, it 18 done knowingly There are no secrets in constructing mdex numbers, and people are just as suspicious of any secret methods we clam as we should be of any gecret methods that others clam It 18 the teduum of collecting data and calculating results that deters most people from making up therr own indexes, not any leck of sufficient knowledge

19.5 The Specifieation af the Basic Data to Be Used

He cannot collect data until we have specific hnowledge of exactly what we mant and of what can be made available withon the current hmits of cu-tom in the trade The Amencan econome system is a ventable juagle of style-, sures, colors, models, diccounts, epecial deals, tre-in asles, etc If we were to ask five people to find out π hat the price is of a 4 -0z jar of Yfaruell House pondered coffee in Toun I me mould ven lihely get five different answers The five people would also return with a tot of questions thes, would norm ach us so they could be more specific in eatisfy ing our purpose The situation would be even rore if we had asked them to find out the price of a mans thate short-leeved sport shirt or the price of a 1958 Cherrolet 9 -pas enger station "agon ingoed condition"

As bad as the cutuation mas seem to be in the United States, it is considersbly worke (from the pont of vier of easy collection of price datal in many other countrie Indrudual barganing is the cu-tom in many countrev and our five people maz find fire dufferent prices even though they all go to the same etore and are mated on by the same clerh Yost American businerea bave a price policy that stabulizes the price from cu-tomer to curtomer and day to day In fact the best way to collect pnce etatistics in an ASP Super Uarket is to get the price licts from the regonal ofice Store pries will be the same except for laggardners on the part of the store manager and such specialized problems as deterorating bakery goods.

Homogenesty of Doto over Iime

Suppore ne nere arsigned the tact of determning what happened to the price of a Ford sedsa from 1959 to 1960 We rould certanly have enougb cen.e to reshize that we should pnce the car at the came place each year and under the ssme sales conditions, say FOB Detroit with full cash payment and no trade-n he nould also price the same base model with repeet to standard and optional equapment But what do we do about the fact that the Ford Motor Company ascures us in its advertisements that the 1960 car is sup-po-ed to be a better car dollar for dollar than the 19.9 model deapite the fact that the list price $₹ \$ 42$ more in 1960" We now encounter a common phenomenon in Amencan bu-iness, namely, that strictly comparahle products from jear to jear do not evist. A 1960 car is not the same as a 1959 ear, for both physical and psychological
reasons Nor is a brand new 1959 car avalable for sale in 1960 the same as a 1959 car avallable in 1959 How then do we determine what bappened to the price of a partucular model Ford sedan or to the price of simularly so called mproved products? The answer is that we make arbitrary rules about such things and let the pursts argue about 1 t. A remean nated Solomon could not separate that part of the proce change that nas due to a change on the product from that part that was due to a real price inciease The United States Bureau of Labor Statistres makes no clam to be Solomon so it makec no effort to effect a separation It treats the price ebange as entirely a price clange Thas dastrecses the auto manufacturers and boleters the argument of conie analyste that the Bureaus Consunner Proce Indes ha an unard bine The only time the USBLS find it practical to allon ion changes in the qualts of the product 1 wion the qualitr change has an obvous physical base wheh affecte the products durabilin or scriccability Othervise the USBLS finds it riser to avoid the subtler changes in product quality

The resue of what really gives a product cconomic valuc has long plagued economists and other social scicnusts The assue he also bean dealt with oul a proctical lesel by ans practicing busn essman Who must try to acll a proluct at a proce sufficiently high to corer ill his costs We all iccogniz the problen of trying to definc an coo nomue good or scruce so that we can measure the ehanges in tha puce nithout the coniv inn cus ed by changes in the product a quilitye both real and mingned The disagrement anses when at tri in rationaliza the problem (one side for example nould argue that the tramportation appesi of the cost of hamg has gone up of the proce of an tutomoble has gone up quate irrespectse of wheticr the cir os a better car or a more comfortable car or a faster uteckratint car ete The point is that ne must buy what the rest of tumerici ${ }^{\circ}$ buying and of course we can buy only those producte that are avalable
Another side rgues that to classify a higher price for a better quathth and heure a hugher standard of hing as an mereice in the cost of hung is to make the notion of mensurne changes in the cost of hiving devodd of ill pructical meaning The fact that it is dificult to define an unmbinuous inst of tems that make up some me nnigiul standard of living over tume is no excuse for abandoning the attempt entirely Hence thas ode nould argue that i very sermuc cffort should be made to cetrinate the prices of homogencons unite at differ ent points in time cven of we have to magise what the pore matht have been if the produet had not changed Thas for eampple if it
is estumated that the 1959 Ford could have been profitably priced and sold in 1960 at $\$ 25$ less than in 1959, then the pnice of the Ford car has gone down even though the only car available in 1960 is proed at $\$ 42$ more than the car that was actually avalable in 1859 We can agree with this argument and atil! wonder who as going to decide what a car that is not going to be built or sold would cost to build and sell Imagne the UAW and the Ford Motor Company arguing about this issuel They occablonally have difficultes with the facts about cars that are actually bualt and sold
There is also the problem of classifying what happened to the elderly couple on a fixed ancome who tried to mantain a constant standard of living in the face of nising prices Although it might concervably have been true that they could have contunued to buy some of their old items at the old prices if they were strill avalable, the fact is that the old products are not available, and the elderly couple must adopt a hogher standard of living in some atems whether they unsh to or not' Of course, if thear resources are definitely hm. ited, they will have to reduce their standard m, say, housing in order to increase their standard in food Only a smooth taiker could convince such a couple that their cost of living has not gnne up as they move to poorer quarters

We are in no position to rationalize the problems that get confused with economic, psychologieal, sociological, and political issues We regret that they make a farce of any attempt to devise simple and unequivocal statistical procedures for measuring what happened to a few prices over tume We discover that the mechanical statistical procedures are indeed quite simple once we have the data in hand compared to the problems of getting good data in hand

The Problem of When to Collect Prteo Data

If we were asked to find out what the price of United States Steel common stock was on the New York Stock Exchange on July 27, 1961, we would have an immedrate problem of determinng when on the 27th we wish to get the price Hundreds of transactions ofcurred during the day, most at different prices Do we wish the opening price, the closing pnce, the midday price, or an average price? The same problem exists if we mash to know the price of butter in the A\&P during the month of July, 1961
The deal solution to the problem of what price to use to represent a day, or month, or year of pnces would be a weighted anthmetic mean of the pnces of all transactions We would have to have a very unusual purpose to find another solution, such as a weighted
geometric mean, preferable to the weighted arithmetic mean Practical considerations make it virtually mpossible to keep records on each traisaction, hence compromses are usually made The most common practice is to use the price prevaling near the muddle of the tume interval or to use the simple arithmetre mean of the prices at the beginning and end of the period An exception to this rule has been the convention of using the end-of-day, or closing price for stock exchange prices These compromises likely do introduce errors for some applications, but they are justufied by the saving in time and money
There are occasions when smple solutions to the price-date problem are obviously semously in error The reteal grocery trade has developed price poheres that lead to a stream of week-end specials The Thursday, Friday, and Saturday prices of many items are lower than the Monday, Tuesday, and Wednesday prices of the same items A simple anthmetso mean wrould be a poor average because the week-end volume tends to be much higher than the beginning-week volume, so much so that many stores have begun to offer beginning week specials to try to even out the imbalance that was partially caused by their week-end specials! The USBLS must be very Judicous in its selection of the approprate priee for the week or the month
The most mportant rule to follow in date selection is consistency Since we are more interested in pree movement than in price level we often find that the companson of two "too low' prices will give just about the same answer as two "too high" prices or tro average prices If bias is consistent, we can often lgnore it in our final results pronded we perform our calculations mtelligently

The Problem of Where ia Collect Price Data

If we are constructing an index of prices of common stook on the New York Stock Exchange, we have no problem of deeding where we should get our prices But, if we are constructing a Consumers' Price Index for the city of Cheago, we defintely have the problem of selecting the stores from which to get the prices We certandy could not survey all the stores Even if we did we would still have the problem of properly weighting the various store prices in order to get an average for all stores We solve this problem the same nay we solve so many problems in econome data We concentrate on the fact that we are interested in movement of pricts over tume and not the level of prices at any moment of time and we arsume that the intense competition in American business will force prices into
lioe farly quickly For example, suppose the local independent grocery charges $\$ 83$ per pound for Land 0' Lakes butter at the same time the A\&P 18 charging $\$ 79$ If economic factors force the AdP to rase its price to, say, $\$ 82$, the same economac factors will prob ably affect the local independent grocer, and he will be forced to ralse his price to, say, $\mathbf{\$ 8}$ We would thus get about the same relative price change whether we measured the price change at the andependent grocery or the AdP (Note that there would be rounding errors because of the custom of quoting prices to the cent)
We slould not always rely on the force of compettion to quickly adjust praces at all levels and thus solve our problem of where to collect our prices For example, the postuar flowenng of discounthouse retal merchandsing led to rather chaotic price conditions in the marhet for roost household apphanees Old-etyle retailers did not react smoothly to these oew competitive pressurcs, nor did the dis count houses always hnow therr costs well enough to mantaio consistent pince polices over tume As a result it became very diffeult to find out what was happening to the price of a General Electro refigerator, partucultrly since the manufacturer was also changing models every jear It tooh an cxpenenced price collector to chart the coure of such price during those chaotic tumes, and even he would probalily not have rished too much of las money or Ins reputa thom oo the accuracy of lits figures lle can we why monopolsts, cartchst and other strong belevers in orderly marhets might easily enlit the support of self-centered tatisticianst In fact nothong would make thu price statustician s job easer than to have paces set. by decree of some contral authonty howerer, he vould then have the problem of decuding to what extent he chould tuhe into account blach market and gray market prices a problun oot at all foregn to the UsBLS during World V ar II

The Problem of the Sample of Dala to Use

Suppore we nere acked to make up a shomping lat to cover the atema purclased by a Phadelpha famly during a month's tane We would then price this list m tro separate months and calculate the difference in total cost, thus getting a ineasure of the changes 10 the tot al cost of a speeffied list of atems that premumbly represents the tems of expenditure of a Phadelpha fannly It is mmedately apparent that we have the problem of decoling what family and what month of ths fanuly's purchases 'The appropriate family would be a family tipmal for the group we are interented in The Burcau of Labor Statisties uses the goods and evencees purchased by
orty whage-earner and olernal-worker famules They find a typncal ust rather than a typical famly Stratfied random samples are taken of familes, who then keep records of therr expenditures These various budget records are processed to develop a master typical expenditure list for familes in that and similar eitues it is then assumed that this expendture pattern will remain reasonably constant over several years, or until Congress can be persuaded to appropriate the money for another budget study In the meantume, minor modjfications are made in some of the tems to allow for wellknown and signuficant shfts in expenditares For example, the rapid development of television necessitated some adjustments Different lists are developed for each major city The various resultant cuty indexes are then combined into a national index by the use of weights proportionate to the number of wage eamer and clencalworker familes in the vanous citues Thus the natronal index is much more affected by price movements in New York City than in Augusta, Georgaa

Simar problems of sampling exist for most indexes Ideally we try to get a cross section of the group that is purportedly represented by the index This is best achueved by those who are familar with the behavior patterns in the partucular appheation Most samples end up as a stratified-random sample, with the rules for stratfication coming from the specialized knowledge that is available and the randomness coming from the gnorance that still remans Usually we find the eample selecion process so maxed up with judgmental and intuitive elements that we hesitate strongly to apply the routine probability formulas that we are familar with to estumate the range of expected samphing errors Most index numbers are calculated and published with no attempi to guantify the posstble sampling errors in the final results The user has to use has own judgment in deading what sigmificance he should attach to small movements in the indexes That is one of the reasons why Congress and the USBLS have had frequent occasion to set up speeral commissions of inter ested and/or expert partes to evaluate the accuracy of the andexes A formula just does not do an intelligers job

19.6 The Determination of the Base Period

It is customary to express an mdex number as a percentage of some base For example the USBLS Index of Consumers' Priecs m May, 1961 was 1274% of the 1947 to 1949 average The index
would be at a much higher figure if the base were 1933, or at a lower figure af the base were 1960 Theoretacally, the parthcular base used should make no difference in the relative comparison of figures at different dates For example, if we were to compare the figures given in column 2 of Table 102, we would get the same relative results regardless of which figure we used $a=$ a base The other columns show a few of the possibilites Figure 191 shows what happens to these vartous comparsons when they are plotted on a logarithmic scale, as they should be when we are interested in relative changes Note that all the lmes of comparison are parallel, meluding the line showing the actual data This result is just what we would expect because all the change in base does is change the unit of measure
The problem we have with the base is partly psychological and partly technical The technical problem arises because it does make a difference what base we use if we average several individual series, which is of course what we often do in index number work We consider this phenomenon in a later seetion The psychological problems arise because people are impressionable and can be per suaded that, for example, prices are high because the index shows big numbers or low because it shows small numbers This is what ancourages advertising copy writers to talk about the giant 40-ounce size instead of the $21 / 2$-pound size There is some evidence that people are becoming more soplustucated in these matters and are perfectly capable of and walling to scrutanze the unt being used to generate sueh brg or small numbers
The base also becomes mportant when it comes to rationalizing

TABLE 192

Relative Differences in a Coiven Sel of Figuses with the Use af Different Bases

Tyme Period (1)	Data (2)	Penod 1 as Base (3)	Period 2 as Base (4)	Period 5 as Base (5)
1	20	100	67	33
2	30	150	100	50
3	40	200	1.33	67
4	50	250	167	83
5	60	300	200	100

Fig 191 Illustiation of effects of a daficrent base on the relative szes of a sortes of numbers (Source Table 19.2) Vertical scale 38 logarithmic
some of the conflicts which anse in society Peopie have an understandable desire to argue for that base whach bolsters them own argument The farmer, for example, is most eager to point out how his relative price position has detenorated since the 1910 to 1914 era He naturally is not eager to diecuss yhat a fine position he had during this era The farmer is not alone in this attitude, however Even college professors are not averse to poining out how ther relathe income postion in socrety has declined since the 1930 s , with no reference to how it mproved to that point
The fact is that relative positions of prices, moomes, ete, have been shiftung from year-to-year and decade-to-decade throughout the centurles No group likes to see its relative position worsen, although it is perfectly willing to see it mproved The base used to compare such changes in relatave positions is often of the
essence and is subject to considerable discussion and bargaining in many practical matters The complers of general purpose index numbers deplore such bickering (nhen it does not aniolve therr personal welfare) and trj to avord any presumed favoritism in selectmg a base for a series of indey numbers The tho primary considerations which have guded the selection of the base for most government modexes are the nomality of the basc period and its recency

The use of the term normality is uniortunate It has mplications to some people that are not oecessanly truc A statistician uses normal to mean the same as average, which is what most people mean by maddle In terms of mder numbers, the proper base is that Which makes it possible for the inderes to fluctuate around the base data In numbers, this means that the indexes should sometimes be above 100 and sometmes below 100, and they should do this within the crpertence of living men Historically, the US B LS u used 1913 and then 192 as bases portly because thoy were consudered average jears from an economic pont of ven The next base nas an overage of 1935 to 1935 data and after that an alerage of 1947 to 1948 data The use of an average of scleral years as a base disturbs some people because they feel the base is eluane Actually, using an average of several jears is an almost perfect solution to the problem of selecting an average zear as a bsse Its elusveness serves to prevent people from putting too much stoch in the base as a source of argu* ment.
A recent base is desirable for several reasons One reason is that it tends to make the indexes fluctuate around 100 within recent crperience, thus satsfying the desire for a bace that is aserage Second, it proudes a bsse that is π thin the memory span of many people, thus smmphifyg judgments about the significance of the measured changes To be told that consumers' prices todsy are sux trmes what they nere durng the Phoencian Wars provides most people wth very little information Thurd, at usually reduces the heterogenety in the data The 1960 Ford sedao is more like the 1959 or 1955 sedsn than it is the the 1998 sedan Thus the price comparison is more representstive of a pnee differeoce instead of a product difference if the base is reasonably recent Fourth, the ianous prices in an index bave less chance to wonder off in different directioos over short periods of thme than over long periods Hence an sverage of short period price changes tends to have less dispersion around at than an average of long-period price changes

19.7 Determination of the Specific Weights to Be Used

In most practical problems the particular weights to use for inde numbers is farly obvious For example, it is difficult to argue aganst the use of the number of loaves of bread purchased during a month as the approprrate weght for the price of bead in a monthly modex of consumers' prices The monthly rate of purchase would be sumlarly logioal for all other items in the list A wholesale priee mdex should be weighted according to the number of unts sold at whole sule durng the particular tume penod A newspapor adveltising Ineage rate index should probably be weighted according to the number of crrculation limes sold by a nemspaper Thus a newspaper with a circulation of 200,000 and with 50,000 lnes of space sold Hould have its basie hee rate assigned a resght proportional to the $200000 \times 50,000$, or 10000,000000 Our most difficult pioblems occur with durable goods that are frequently sold and resold The extreme axample of suoh goods is a stock certficate Another example nould be a home We now must choose between the number of transartions and the number of unts in exastence as weights The sssue is often debated of whether we should use "shares taded' as weghts in a stock price midex, or whether we should use "shares outstandmg or whether we should pay no attention to etther as does the Dou-Tones Average "Shares outstandung" as a reaght is more attractive to financal people than "shares traded" for reasons that are best left fo finanerial oxparis on the ather hanc, "kuses ynaded" has hean used more often in mdexes of real estate prices than "houtes out standing "for reasons that are most understood by real estate experts
Incidentally, one of the apparent advantages of using shares outstanding in a stock price index is that the weights naturally stay quite constant over the years, thus avoiding the often very perplesing issue of the time period for the choice of proper weights The number of shares traded fluctuates quie \& bit, even from day to day, thus altering the relative importanee, by this measure of the various stock ussues The problem of when to select the weights and how often to rewise them would be quite pressing under such corcumstances

The Problem of the Proper Tume Period for the Determinotion of

Weights

The relative frequency of purehase and sale of most commodities is in a constant state of flux Most familes do not mantain a fixed consumption pattern over any signficant period of time Various
lucts galo and lose popularity over tume New products enter market and often start to displace some of the old products As 1 as we try to give weights to commodity prices accordiog to their tre importaoce, we immediately come to the question of wher. commoo sense solution to this problem is to use a time penod , provides weights that are as applicable as possible to the points g compared For exsiople, if we were to messure changes in sumers' prices from 1955 to 1960, we would do rell to use a list tems with weights that reflect the consumption patterns in both ; aod 1960 The best way to do this is with an average of the erns in the two years
lthough the use of weights based on the sverages of the years being pared appeals to our seose of logic, it does not appeal to our setbook We cannot average the werghts unless we have infor100 on them The collection of such information is often a major ;, or at least we have always thought of it as such, parthcularly a it pertans to family consumption patterns Therefore we promise our logical desires and usually use the weights that pre ed in a particular year as though they also prevaled to the other s being measured We continue until our sense of proprety mes sufficiently offended for us to spend the necessary funds to set new ioformstion on consumption patterns It is possible that o day a couotry as realthy ss the Uorted States may set aside agh funds to make consumption pattern studies a cootinuiog ess
'e may wooder why the USBLS does not go back and revise ts andexes in the interveoing yesrs when new weight information mes avalable Thus, instead of an index for 1957 based on -1952 weights, they might recalculate to get a 1957 index id on an average of, say, 1951-1952 and 1961-1062 werghts re is of course the clencal labor involved in such a task Mora ortant, however, is the fact that tbe first publushed indexes were ed upon as official and became the basis of such decisions as the ng aod magnitude of wage-rate changes If reusions would e significant changes in such decisions, some people would be - upset If they would make no sygmicant differences in the inal indexes, other people would nooder why so much mooey was it on the revisions of the weights Thus, it is perhaps as well we do not know too much about what the force of the revsioos het have been
ne factor we should always keep in mind when we are analyzing x number senes over a period of jears, however, is that we mill
be deluding ourselves of we pay much attention to every lititle change in the indexes Many of these little ohanges are no more than statistical mirages whose form would have changed with another selection of weights

19.8 The Determinotion of the Type of Average to Use in an Index Number Series

The subject of the proper type of average to use for the construction of nodex numbers has beea quite thoroughly explored and discussed in the literature of the last 50 years or so Economsts have been the most concerned with the problem Uniortunately, the discussion has not resulted in any really satnsfactory resolution of the 1ssues The dufficulty 18 caused by the existence of certann fundamental dilemmas There are several very desirable properties that an mdex number series should have-nf we look at each of these properties separately But when we put all these dessrahle properthea together, we find that some of them are self contradictory Hence the discussion rages on as each discussant pleada for the pre eminent importance of one property rather than another We merely indicate the hare outines of the dilemmas mvolved and then go on to the types of solutions that are aetually beng used

Purpose and the Choice of an Average

We emphaszed the exreme importance of purpose in the chove of an average during our earher discussion of the general problem of averages and therr use (See Chapter 6) At that time we pointed
 would involve the use of an average These were

1 To select a figure that would have the property of beng as close as posable to the wanous items in the group that the average was sup posed to represeni If error m represeatation is umportant such an average would have the advantage of minmmzng such error We dis covered that the meduan had the nherent property of mumazing error but we often used the anthmetce mean as a subsstutue when the distrbution of items was reasonabity symmetrical We thus could take advantage of certasi desrable properthes of the mean without sacrifieng our purpose
2 To select a figure that nould have the property of being the most probable or the most jrequent Thes is a useful property when the Ege of an error makes no difference or un stituations of an "all or noting ' condition We discovered that the mode had this mherent property We acserted that there were very fev such problem situa
tions in resl hife outade the ares of man made games Close does tend to count in mast other stustions
3 To select a figure that besrs no mherent relatoonship to the undurdual stems in the group hut which does hate some mherent relationship to some property of the group as a mass The most commonly thought of and most useful mass property of a group is the total of the group We discovered that this led us to the orathmetce meore as an average that bad uherent algebrove relstronship to the total of a group (The barmone mean does alo but we discovered that we could alwass arod the use of the hamonic mean by recasting the was of expressing the dats of that the anthmetic mean could be used matead)

We als dusconered that it is conceptually possible to calculate a geometne mean that had the intere-ung property of beine algehricalli related to the produrt of all the nem in a sencs We did hus trouble howeset in finding good reasons why a person would be menereted in the product of a senes of uumbers, particularly when the numbers had units snd the product nould thea have come most pecular unts at tached to it We now find the geometne mean agan bothenng us beciuse it has caused inder number theorsts much concem

With the remer ne are non ready to face the problen of the proper aserage in index number work As we esn imagine sinee indcxes are concerved whth the eompanson of groups lierages are at the ien heart of all index number nork

The sine qua non of the proper suerage is that at satufis a meaningful purpose This rule is not changed when ne consider index numbere It le not acedeatal thet praetiealls all index numbers hase been calculated with the amthmetic mens There are mams reasons for this, not the least of which has been its wide-pread faminanty But more importantly it tends to satisfy one or the other or both of the two purposes that dommate almost all uses of azcrages It is used beeause it represents the lotal and the total $1 \times$ often nif greal practieal sigmfieanee For example, the total of consumer expendtures on the atems of family lonigg 15 definitely a meamigful figure If the total increases because of price changes thus has atgnficanct to the family and its budget

The total of common stoch price or of expenditures at wholenale, has questonable practical simnifeance so one reall trie to but a cross section of the avalable slock ; wer and thus buld an onvest ment portfolo that nould have its total value move somerint the same as the movements in the total value of all the rasuce (Promp someone should Bost people try to aclect the best mues, hut thert ts some revearch that indicates that vers fen selected portiolo perfnrm better than a random selection from the whole lat. Pirhapa there is nooe loge to some of the methots weed in the publuthed stoch indexes than we suspect') Sumlarly, no nne reall goes into
the retal business by trying to purchase a cross section of all goods offered at wholesale The arithmetic mean might still be quite ap~ proprtate, however, if ether of two condithons exists in the data If the distributions of items are symmetrical, the mean and median will be the same We then prefer the mean because of ats familianty and its ease of calculation The other condition se the stabilty of the shape of the distribution over tame If the skewness remams eseentaily constant, the relatwe differences between the means and meduans will remam essentially constant The rato between two means would then be approxumately the same as the ratio of two medians, and it is these ratios that are of interest in medex number work, not the actual levels of the averages A simple carmple illustrates the point Suppose our base distribution of prices has a median of $\$ 50$ and a mean of $\$ 60$ thus reflecting definite skewness If prices then rise 50% on the average with no change in the general shape of the distribution, the new median would be $\$ 75$ and the nes mean $\$ 90$ The ratio of $\$ 90$ to $\$ 60$ is the same as the ratio of $\$ 75$ to \$50 It is obvous, however, that the two means tend to overstate the level of praces in each perrod

19.9 Some Technicol Problems in Index Number Averages

Common sense suggesis that index numbers should satisfy tho very logical requirements One we should get consistent answers regardless of the base used in the calculation, and, second, a price index multuphed by a cuantity undex should give the same result as a value index from the same data Let us consider them in turn

The Base Reversal Test (Also Called the Time Reversal Test)

Let us consider a very sumple problems with only two time periods and two commodites mvolved Table 193 shoms the basse data we use We demonstrated earler in Table 192 and Fig 191 that the

table 193

Basic Prue Data for illustrahng the Base Reversal Test in the Celculation of Index Numbars

Penod 1 Period 2

Prodiact A	$\$ 10$	$\$ 20$
Product B	50	25

hase males no difference if we are working with only one semes of dats. Nowr let us see whst happens when we work with the averages of tro or more sertes

Tha Use of Simpla Aggregotes or Simple Arithmehte Heans Tahle 194 shows the possible results we obtsun for our inderes if we use sumple aggregates and simple anthmetic means as our summanzation techuques Note that we get the same answer mith means as we do with totals We should expect thas because of the algebrate relationship of the mean to the total Also note that the indexes in relature form are consistent regardless of whether we use Period 1 or Period 2 as a hase, 1000 to 750 is precisely the same as 1333 is to 1000 The last tro numbers are each $1 / 3$ larger than the first tro This phenomenon is always the result when we calculate index numbers by gettung relatues of means or of aggregates For example, If we had calculated the geometre mean price in esch period and then taken relatures of the results, we would have obtamed consistent results regardless of the base used Table 19.5 shows such calculatrons Note that the final adsters are dufferent from those when we used the mean, a difference we comment sbout later At the moment

TABLE 194
Indexes Ioged on Simpla Aggregetes ar Simple Anthmetie Mans of Baste Dato

	Penod 1	Penod 2
Product A	- 10	\$ 20
Product B	. 50	25
Totals	1 60	5 45
Relstives of Totals mith		
Penod 1 as Buse	1000^{*}	750
Relitives of Touds mith		
Penod 2 as Base	1333	1000
Anth. Mean	3 30	\% 223
Relatives of Meart-1 Base	1000	750
Relatures of Meart-2 Base	133.3	1000

[^32]
TAPIE 19.5

	Penod 1 Log of Price	Period 2 Log of Pnce
Product A	$90000-10$	93010-10
Product B	$96990-10$	$93878-10$
Sum of Logg	$186990-20$	186989-20
Mean of Loge	$93495-10$	88485-10
Geometric mesn	82223	\$2236
Relatives-1 Dase	1000	1000
Relatives-2 Base	1000	1000

we are concerned only with the internal consustency of a given type of average, not woth whether it gives the "nght' answer

Tho Use of Averages of Relatives When we compare two groups, we have the option of charactenzing each group and then comparing these group characterizations, or of companng the individual members and then eharacterizing these indiviual compansons Tbe same options are avalable for any kind of group compansons Suppose, for example, we wished to compare the New York Yankee baseball team with the Los Angeles Dodgers We mught evaluate the New York Yankees as a team and coompare our evaluation with a smmar evaluation of the Loo Angeles Dodgers A companson of team batting avergges would be an example On the other hand, we might compare the New York catcher with the Los Angeles catcher, the New York first baseman with the Los Angeles frost bascman ete, and then we would summenze all our compansone Usually We would not get exsctly the same answers That 18 why the sports wnters usually make both kunds of compamsons Sometrmes, as a matter of fact, we find a sports wnter makng a atatement like, Team A is wegker at almost every position than Team B_{1} but as a team they sre still tougher to beat We find the same kind of apparent contradictions when we work mith altemative ways of companng groups of prices

Table 196 shows the disconcerting results when we reverse the base in calculating the srithmetic mean of relatives Here we have an obvious contradiction, with prices apparantly going up if we use

TABIE 196

Indexes Bosed on the Arthmone Meon of Relarives

Pernod 1 as Base	Period 2 as Base		
Penod 1 Relative	Penod 2 Relative	Penod 1 Relative	Penod 2 Relative
1000	2000	500	1000
1000	500	2000	1000
1000	1250		1250

Period 1 as s base and going down if we use Period 2 as a base Thus we can assert that the use of the anthmetse mean of relatives will not satusfy the bose reversal test We will get difierent results depending on the penod we use as a base Lest we get overly upset about such unconsistent results as just given, we should hasten to add that the above differences are very much larger than ever oecur in practice We have taken the very extreme case of one product doubling in price while the other one halved in order to draw the point very vuvidly

If we now look at Table 197, we can see why the geometno mean

TABE 197

Indexes Eased on the Geamertic Maon af Rolotives

Penod 1 ss Base		Perod 2 as Base	
Perod 1	Penod 2	Penod 1	Period 2
Relative	Relative	Relative	Relative
1000	2000	500	1000
1000	500	2000	1000
100000	100000	100000	100000
1000	1000	1000	1000

Note The geometne mean is here calculated strictly according to its definition, namely as the nth root of the product of all theoterng Since we have only two atems, this formula becomes the equare root of the product of the two thems
has attained such promunence in discussions of index number theory Note that the geometne mean of relatwes gives consistent sasvers regardless of the base In fact, it gives exactly the same answers as we got when we took the relatives of the geometrie means of the sctual prices os in Table 195 Thus the geometric mean has the very interesting property of grving the same and consubtent answers whether we compare the averages of groups or whether we average the undividual comparisons Beiore we try to evaluate the practical sigmficance of thrs rather remarkabie property of the geomeirue mean, we analyze the mpact of weaghts on all of this and on related matters

The Factar Reversal Test

Table 198 adds some quantity information to the price informathon given in Table 193 We are now in a position to calculate weighted prace indexes, quantity mdexes, and waius mdexes Let us first calculate some weighted price ndexes and check these for satusfaction of the base reversal test before going to the quaptaty and value indexes and the checkiog of the consistency of sll three indexes mith esoh other

Table 199 shows the venous results we get usiog the meighted ageregate formula with different combmations of weights As expected, the bese reversal test is satasfied in every unstance Thas is a drect consequence oi not taking relatives unth we have zeduced the data of a given year to one figure We did get afferent madexes, however, depending on whether we used fist or second perood wenghts, or an sverage of the two This is as expected, also If we did note get difierent results with dufferent weights, then, of course, weights woild not msike bay ditterence We aifo lound the mdexes win the averape weights falling between those with first or second pertod Weughts This is a common sense expectation, and at confirme what we sadd eariner about the probable supenority of average welghts

TABLE 198

Prices and Quantites of Producis A and B at Peneds I and 2
Penod 1
Proe-p p_{1} Quartity- q_{1}

Profuct A	$\$ 10$	501 lbs	820	80 Ibs
Product B	50	15 gals	25	10 gels

The Use of Walghted Aggragatas In the Esnstruation of Price Indexes
A Period las Base Perod 1 Qusntuties as Weights

	$p_{12}{ }_{1}$	$P_{\text {P }}+1$
Product 1	\$500	\$1000
Product B	7.50	375
	\$12.50	\$1375

Inderes $\frac{\Sigma p_{1} q_{1}}{\Sigma_{p_{1} q_{1}}}=\frac{\$ 1250}{\$ 12.50}=1000, \frac{\Sigma p_{r_{1}}}{\Sigma p_{1} q_{1}}=\frac{\$ 1375}{812.50}=1100$
B Penod 2 as Base Penod 1 Quantitues as Werghts
Indeses $\frac{\Sigma_{p 1 q_{1}}}{\Sigma_{p+q_{1}}}=\frac{\$ 12.50}{\$ 1375}=009, \frac{\Sigma_{p q q_{1}}}{\Sigma_{p+p_{1}}}=\frac{\$ 1375}{\$ 1375}=1000$
Base Reveral Test $1100 \times 009=1000$
C Penod 1 as Base Penod 2 Quantities as Weughts

	$\frac{\eta_{1} q_{1}}{}$	$\frac{p: q_{1}}{}$
Product A	$\$ 800$	$\$ 1600$
Product B	$\frac{500}{}$	$\frac{250}{\$ 1800}$
	$\$ 1850$	

Inderes $\frac{\Sigma p_{1} q_{1}}{\Sigma p_{1} q_{1}}=\frac{51300}{\$ 1300}=1000, \frac{\sum p_{12} q_{2}}{\Sigma p_{1} q_{1}}=\frac{\$ 1850}{\$ 1300}=1423$
D Perod 2 \& Base Penod 2 Quastituen as Werghts
Indexes $\frac{\Sigma p_{1} q_{2}}{\Sigma p_{z} q_{2}}=\frac{\$ 1300}{\$ 1850}=703, \frac{\Sigma p_{p} q_{2}}{\Sigma p_{p 12}}=\frac{\$ 18.50}{\$ 1850}=1000$
Base Reversal Test $142.3 \times 703=1000$
E Penod 1 as Base Average Qasntuties as Weights

	$p_{1}\left(\frac{q_{1}+q_{7}}{2}\right)$	$p p_{2}\left(\frac{g_{1}+g_{2}}{2}\right)$
Product A	8650	51300
Product B	6.25	3125
	51275	816125
Inderes	$\frac{81275}{81275}=1000$	$\frac{816125}{\$ 1275}=1265$

F Period 2 as Base Average Quantries as Werghts Inderes $\quad \frac{\$ 1275}{\$ 16125}=791 \quad \frac{\$ 16125}{\$ 16125}=1000$

Table 1910 shows the use of the weighted aggregate formula in the construction of quantity inderes The procedures are precisely the same as with price indexes except for the interchanging of all the p^{\prime} 's and q 's Naturally, then, we would expert the quantity tndexes On different bases to also satisfy the base reversa! test Table 1910 does not show this tess for all base and weight combnations because everything parallels Tabie 199 We show Parts C and D in Table 1910 because we need these resuits in the caleulations of Table 1811
We are now ready to check our price and quantuly indexes to see If they are conssitent unth each other For example, suppose we had information that the average pnces of a group of agroultural commodities had gone up 12% as measured by an index of prices We also had information that the average quantities sold had gone up 15%, again as measured by an index of quantutses We would then expect to be able to estmate what had happened to the total value of these agricultural commodites by multhplyng the rates of change together, thus getting a joint rate of 112×115, or an merease of 28 8\%
Let us look at our already calculated prace and quantaty mdexes and check their consisteney Table 1911 shows the necessary calculations There we see that the total value of our two products increased 48% from the first to the second period If we multhply our price index with perrod I weights by our quantity index wath perrod 1 weights, we get a product of only 1144 , considerably leas than the true value If we use the indexes besed on perod 2 weights, we get a product of 1914 , considerably more than the true value ${ }^{1}$ If we use the indexes based on average wegghts, we get a product of 1518 , a value very close to the true value of 1480 And finally, if we cross a pree index with perrod 1 weeghts with a quantuty andex with period 2 werghts, or vice versa, we obtan the true value exactly (except for rounding errors) The result of crossung weights is a direct consequence of the weighted aggregate formula The proof 18 very simple In symbols we have

$$
\frac{\Sigma p_{2} q_{1}}{\Sigma p_{1} q_{1}} \times \frac{\Sigma q_{2} p_{2}}{\Sigma q_{1} p_{2}}=\frac{\Sigma q_{2} p_{2}}{\Sigma p_{1} q_{1}}
$$

for the case of crossing a price moex with period 1 weights with a quantity index writh period 2 weights Note that the left side of the
${ }^{1}$ It is of interest to note that the geometric mean of 1144 and 1014 is 1480 Thas relation is always true and is easisly proved algebracally

table 1910

The Use of Welghted Aggregates in Construsting Quantity indexes
A Penod 1 as Base, Peniod 1 Prices as Weghts

	$91 p_{1}$	$q_{2} p_{1}$
Product A	\$500	\$800
Product B	750	500
	\$1250	$\$ 1300$

Indexes $\quad \frac{31250}{\$ 1250}=1000 \quad \frac{\$ 1300}{\$ 1250}=1040$
B Penod 2 as Base, Period 1 Prices as Weights
Inderes $\quad \frac{\$ 1250}{81300}=962 \quad \frac{81300}{\$ 1300}=1000$
Base Reversal Test $1040 \times 962=1000$
C Period 1 as Base, Period 2 Prices as Weights

	$91 p_{1}$	qup:
Product A	81000	\$1600
Product B	375	250
	81375	\$1850

Inderes $\quad \frac{\$ 1375}{51375}=1000 \quad \frac{\$ 1850}{\$ 1375}=1345$
D Period 1 as Base, Average Prices as Weights

	$\frac{Q_{1}\left(\frac{p_{1}+p_{2}}{2}\right)}{\$ 7\left(\frac{p_{1}+p_{2}}{2}\right)}$	
Product A	$\frac{750}{\$ 1200}$	
Product B	$\frac{5655}{\$ 13125}$	$\frac{375}{\$ 1575}$
Indeyes	$\frac{\$ 13125}{\$ 13125}=1000$	$\frac{\$ 15750}{\$ 13125}=1200$

TABLE 1911

Checking the Consistency of Price and Quantity Indexes against the Apprapritate Value Index-Werghted Aggragate Fermulas

A Drect Construction of a Value Fidex

	$\frac{p_{1} q_{1}}{}$	$\frac{p_{2} q_{2}}{}$
Product A	$\$ 500$	$\$ 1600$
Product B	$\frac{750}{\$ 1250}$	$\frac{250}{81850}$

Value
Indexes $\frac{\$ 1250}{\$ 1250}=1000, \quad \frac{\$ 1850}{\$ 1250}=1480$
B Calculation of a Value Index by Multaplying a Price Index by a Quantity Index

1 Indexes using perrod 1 werghts

$$
P_{21} \times Q_{21}^{*}=\frac{1100 \times 1040}{100}=1144
$$

2 Indexes using penod 2 weights

$$
P_{21} \times Q_{21}=\frac{1423 \times 1345}{100}=1814
$$

3 Indexes usmg avereges as weights

$$
P_{21} \times Q_{21}=\frac{1255 \times 1200}{100}=1518
$$

4 Price adex with perod 1 welghts and quantaty andex sath perad 2 weights

$$
P_{a_{1}} \times Q_{n}-\frac{1100 \times 1345}{100}=1480
$$

5 Price index with perad 2 weghts and quantity undex with penod 1 weights

$$
P_{51} \times Q_{21}=\frac{1423 \times 1040}{100}=1480
$$

[^33]numerator cancells against the nght ede of the denominator, thus leaving us with a formula for a value index The same result occurs if we cross the period 2 weighted pree index with the period 1 weighted quantity index
The last result is of great practical significance We frequently have nceasion to try to deduce a quantity index from glven informa tion on values and on a price andex If, say, the price index is a weighted aggregate with base year werghts a very common type of formula used the divison of the value senes by the price series results in quantity indexes that have been werghted in the given year in each instance For example, suppose we have a value index of 1500 for 1960 on 1949 as a base Suppose further that the correspondung price andex 181286 for 1960 and also on a base of 1949 If we divide 1500 by 1286 , gettmg a quotient of 1166 , we can now state that the quantites sold of these products have increased 166% on the average from 1949 to 1960 if we use 1960 prees as weahts
This testing of the logical consatency of price and quasitity indexes is called the factor reversal test, with factor referning to the price or quantity elements in an index number formula

Werghted Indexes Based on Relatives

Now let us rever the effect of weights on indexes calculated by averaging relothes instead of by the relotues of overopes Table 1912 shows the calculations of price indexes with the use of the meighted arthmetic mean of relatives and the werghted geometric mean of relatives We show the results only for pemod l weights Period 2 weights would gue the same kind of resulls with respect to the satusiaction of the base reversal test First we note the werghted anthmetic mean of relatures gives quite meonsistent results as we change the base with prices going up with period 1 as a base and gong down with period 2 as a base The geometric mean again guves consistent results, fust as when the relatives were unweighted
We should also note that the welghted arthmetic mean of relatives formula with base-year weghts is the algebrace equivalent of the weighted aggregate with base-year weights Hence the identical answer of 1100 for the period 2 udex on the period 1 base is not unc-nected The algebra of the equivalence is

$$
\text { Weighted Artbmetic Mean with Base-Year Weights } \frac{\Sigma \mathrm{p}_{1} q_{1}}{p_{2}} \frac{p_{1}}{\Sigma_{1} q_{1}}
$$

TABLE 1912

The Use of Weighted Relatives in Price Indexes

Anthmetac Mean

A Period 1 as Base, Period 1 Vahues as Werghts

B Perod 2 as Base Perod 1 Values as Weights

	$\frac{p_{1}}{p_{2}}$	$p_{1} q_{1} \frac{p_{1}}{p_{2}}$	$\frac{p_{2}}{p_{2}}$	$p_{19} q_{1} \frac{p_{2}}{p_{2}}$
Product A Product B	500	820	1000	\$ 500
	2000	1500	1000	750
		\$1750		\$1250
Indexes	$\frac{81750}{81250}$	1400	$\frac{81250}{81250}$	100

Base Reversel Test $\frac{1100 \times 1400}{100}=1540$
Geometrec Mean
0 Period 1 as Base, Perood 1 Vslues as Weaghts

	$\log \frac{p_{1}}{p_{1}}$	$p_{19} q_{1} \log \frac{p_{1}}{p_{1}}$	$\log \frac{p_{2}}{p_{1}}$	$p_{19} \log ^{\log } \frac{p_{2}}{p_{1}}$
Product A	20000	\$100000	23010	\$11.5050
Product B	2.0000	\$150000	16990	127425
		8250000		\$24 2475
Mean of Loganthros Geometric Mean of		20000		18808
Weyghted Relstives		1000		871

D Period 2 ss Base, Period 1 Values ns Weghts

	$\log \frac{p_{2}}{p_{2}}$	$p_{t g} \log \frac{p_{3}}{p_{s}}$	$\log \frac{p_{2}}{p_{3}}$	$p_{1 g i} \log \frac{p_{2}}{p_{2}}$
Product A	16900	\$8495y	20000	\$100000
Product B	23010	172575	20000	150000
		\$25 7525		\$250000
Neans of Loganithms		20602		20000
Geometro Mean of				
Weighted Relatives		1150		1000
Base Reversal Test		1150×87	1002	(Would be 1000 except

TABIE :913

The Use of Werghiod Relatives in Quantity Indexes

Anthmetre Means

A. Perod I as Base, Penod 1 Yalues as Wrenghts

	$\frac{q_{1}}{q_{1}}$	$p_{1} g_{i} \frac{q_{1}}{f_{t}}$	$\frac{q_{7}}{q_{1}}$	$p_{1} q_{1} \frac{q_{4}}{q_{1}}$
Product A	1000	\$ 5000	1800	\$8000
Product B	1000	7500	667	5000
		\$12,00		813000
Inderes	$\frac{\$ 1250}{\$ 1250}$	1000	$\frac{\$ 1300}{\$ 1250}$	1040

I Penod 1 as Base, Penod 2 Yalues as Wienghs

Geometnc Means

C Perod 1 as Base, Penod 1 Values as TVerghts

	$\log \frac{q_{1}}{q_{1}}$	$p_{1} q_{1} \log \frac{q_{1}}{q_{1}}$	$\log \frac{q_{2}}{q_{1}}$	$p_{21} q_{1} \log ^{92}$
Product A	20000	\$100000	2.2041	\$110005
Product B	20000	150000	1.8239	136792
		\$250000		\$246997
Mean of Loganthms Geometne Mesn of		20000		19760
		1000		946

D Period 1 as Bise, Penod 2 Yalues as Weights

	$\log \frac{q_{1}}{q_{2}}$	$p \gamma_{12} \log \frac{q_{1}}{q_{1}}$	$\log \frac{q_{i}}{q_{1}}$	$\underline{p r y 2} \log ^{\frac{q_{2}}{q_{1}}}$
Product 4	20000	\$320000	2.2041	\$35.2656
Product B	20000	50000	1.8239	4.5598
Yean of Loganthms		\$370000		\$39.8254
		20000		21527

If we cancel p_{1} in $p_{1} q_{1}$ of the numerator agamst p_{1} in the denominator of the relative, we get the werghted aggregate formula of

$$
\frac{\Sigma p_{2} q_{1}}{\Sigma p_{1} q_{1}}
$$

The calculation of quantity mdexes with the weighted anthmetic mean and weighted geometre mean of relatives is shown in Table 1913 We do not show the base reversal test here because we would get the same kind of results as for the price indexes, namery, the arithmetic mean will not satsify the test and the geometric will We are more interested in the consstency of tbese quanitity indexes with the price indexes guen in Table 1912 The test for consistency of these indexes 28 shown in Table 1914

Thus we see that both the anthmete mean and the geometric mean give anconsistent results if we try to derive a value andex from the corresponding price and quantity mdexes We get the best results when we crossed the weights by using the arthmetuc mean of price relatives with perod I weights and the anthmetio mean of quantity relatuves with perrod 2 weights This result is consistent with what happened when we crossed weights 10 this way using the aggregate formula, with the cross of aggregates giving exaci consistency

TABLE 1914

Checking the Cansistency of Price and Quantity Indexes aganst the Apprapricte Valus index-Weighted Average of Rolatives Farmulas

A Weighted Anthmetic Mean of Pnee Relatwes \times Weighted Anthmetio Mean of Quantity Relatives-Pened 1 Valueg as Weghts in Each Case

$$
1100 \times 1040=1144 \text { ys the true } 1480
$$

B Werghted Anthmettic Mean of Price Relatives with Penod 1 Werghts X Weighted Arthimetic Mean of Quantity Relntwes with Period 2 Weights
$1100 \times 1474=1621$ vs the true 1480
C Werghted Geometric Menn of Price Relatuves X Werghted Geometric Mean of Quantity Relatives--Perod 1 Values as Weghts in Each Case
$871 \times 946=824$ ys the true 1480
D Weighted Geometric Mean of Priee Relatives with Perrod 1 Weights X Weighted Geometnc Mean of Quantity Relatives with Penod 2 Weights
$871 \times 1421=1238$ vs the true 1480

19.10 Summary Remarks on the Problem of Choice of an Index Number Formula: the Average and the Weight Base

If we were to write down a eet of rules for selecting an index number formula, the list maght look like the following:

1. The average used should be consstent with the purpose. This means that users of the index should be ahle to understand exactly what is being averaged and how it is beng averaged Abstractions that presumahly measure some undefinsble properties nf the senes should be avoided
The twn most underatandable purposes ate.
a To compare totals or agoregates, and
h To compare typical changes in the indivdual tems.
If the distrbution of indindual tems being averaged is essentally symmetrical, or af the distributions being compared have essentually sumalar abapes, the anthmetce mean of relatives or ats equvalent, the apgregate (properly weighted), ean be used to satrsfy hoth of these purposes
2 The weights used should he as representative as possble of sll periods being compared Thus the use nf average weights is strongly preferred The only deterrent from the use of average weights should be practical considerations of the cost and tume in collecting the necessary weight data. If we are forced to use only one set of weights, there seems to be no logical reason to prefer one year in the comparson over the other year If we are compangg several years, the single year weights should he for an average year
3 The inder number formuls should give conortent result for different base penods and also with its counterpart price or quantity index No reasonably simple formuls satsfies both of these consstency requrements The geometric mean perfectly satufies the bese conssistency requrement but fails hadly on the factor reversal test
The best fnrmuls with which to spproximate botb results seems to be the weighted aggregate torth average weeghts We should never use any other formula unless we have strong and explent reasons to the contrary This formuls a technieally sound and satusfies most practical purposes
4 The base used is largely a matter nf arbitrary choice The only recommendation is that "special plesding" hases should be avoided, or if unavoidahle, they should always be matched with the figures from some other hase that is equally logesal

19.11 The Concept of the Chain Index

Practical index number worls is replete with many "tricks of the trada" to handle all the practical dfficulties that arise hecause of lags
in reporting data, sharp changes in weight patterns, the need to insert new commoditses and drop old commodities, etc We discuss only the chain index, perhapa the most useful "triocs" of them all

We found the lonk relatave a useful tool in measurng the variation from one time period to another when we were analyzing time variathons We can illustrate the relatomship of the ind reistive to the chan, relative by reference to the following ample sernes of data

We get lank relatives of these prices by relating a prace in one year to that in the immedutely preceding year Such calculations are shown in Table 1915 This is what we calculated when we were meking year-to-year forecasts

Suppose, now, that we wished to get the ratio of the 1954 price to the 1950 prace We could do thas directly by obtaining a fixed base relative Thus we would divide $\$ 5$ by $\$ 1$ and get a ratio, or relative, of 500 Or we could acheve the same result indrectly by working through the link relatives that we have calculated For example, given that $1951 / 50=200$ and that $1952 / 51=150$, a sumple multiphacation of $1951 / 50$ by $1952 / 51$ and 200 by 150 gves us that $1952 / 50=300$ This is, of course, exactly the same answer we would have obtanted by dividing the 1952 figure by the 1950 figure directly If we continue to the together the links by multiplying them succeeslvely, we would get $1951 / 50 \times 1952 / 51 \times 1953 / 52 \times 1954 / 53=$ $1954 / 50$, and $200 \times 150 \times 133 \times 125=500$, agan the same ansper as $1 t$ we had calculated the result directly

Whenever we get the ratio of the data in one period to those of another period by working through the lonks connecting the onter-

TABLE 1915
Unk Rolatives

Year	Price	Time Ratio	Link Relotwes of Pnces
1980	$\mathbf{8 1}$	-	
1951	2	$1951 / 50$	200
1952	3	$1952 / 51$	150
1953	4	$1953 / 52$	133
1954	5	$1954 / 53$	125

vening penods, we call the result a charn relative to distungush it from the direct ratio which we call the fixed base relative The terms are quite apt Note that a whole seres of bases are used in the calculation of a chain relatise whle only one base is used in the direct calculation
We may wonder why anyone nould go through the additional work required to obtain a chan relative when he could get the same result with one calculation Our wonder is weil founded We do not very often calculate chain relateves outside statistics texts Such calculation sumply demonstrates the logic of a procedure that does have great practical application Suppose, for example, we have calculated an index of consumers' prices from 1926 to 1836 , using a set of weigbts that is reasonably representative of both of those periods Suppose further that we had also calculated an mdex of consumers' prices from 1936 to 1916 , using a set of weights that is reasonably repre«entatite of those two perods Fiaally, suppose we now wanted an mdex of consumers' prees from 1926 to 1916 We could calculate this index directl\}, but the intervening span of years has led to such great ahifts in the patterns of consumption that we are not at all bappy with the representativeness of any aet of weights we might use for both penods So we now decide to compare 1946 with 1926 by workng through 1986 Thus, if the 1986/26 ratio had been 768 and the 1946/36 ratio 1497 , we would estumate a cham mdex for $1946 / 26$ of 768×1497, or 1150
Note that re used the term chan ondex rather than chann relateve This is because we try to reserve the word andex for comparisons of groups of items Good sense recommends making long-term com pansons of groups of prices, or other elements, by norking through a senies of short-term comparisons In this way we gan the ad vantages of reasonably homogeneous data over such short petlods (the 1960 Ford is more nearly like the 1959 Ford than it is the 1926 Ford), and we are able to use weights that are reasonably representa tive of both periods In this way we have found it possible to con struct meaningful price indexes golag back before the Civil War A direct companson would be a statistucal farce Practically no ele ments of consumption patteras are common to both periods, with the possible exception of such a moor consumption item as bourbon whiskey But by norking with chunks of thas long span of tume and cbaining the chunks together, we feel tbat re have devised a meaningful, though imperfect, measure of chauges over the full century
Cham indexes are sometimes criticized because they do not give
the same answers as a direct companson would have Sueh entienm misses the point of caleulating a cham index Of course chain indexes give different answers If they did not, tbere would be no point in calculaking the cham mdex The cham index answer is consldered better because it is based on more homopeneous data and more representatwe weught patterns

19.12 Determination af Revision Policies and Procedures

It should be evident from the preceding dsoussion that practical index number work requires the resolution of dilemmas and several conficting desires It as almost impossible to construct a perfect index number series, and the more perfect the serres is for some years the worse it is for other years Thus an mex number series should really be in a constant state of revision in data, sample, and weights This is also impossible in practical affars Hence most compilers of index numbers may research the problem contmuously but reuse only periodically, either as the results of research dictate a revision or as necessary funds become available The practical art of construction and use of index number senes is stall in the formative stages, having been practiced systematically only in this century We are still trying to determine how much money it is worth spending on it The United States Bureau of Labor Statistics 18 probably the most assiduous practitioner of the art and wall probably enjoy larger buggets in the years ahead to make more frequent revisions possible It is perhaps worth noting that most of the Bureau's mdexes use the werghted aggregate, or its mathematical equivalent, the weighted arithmetse mean of relatives, with links and chans in order to fachitate weight changes in the years between major revisions

19.13 Measuring the Dispersion within Groups

As of now very little effort has been made to publish index numbers that are supported by quantitative statements of the variation of the items within the group Partial answers to the problem of variations within the group movements are provided by indexes for subclasses of items There are also devices such as simple tallies of the number of items that have risen or fallen during a given period This is done, for example, in the reporing of the behavior of stock prices.

But these devices are atill madequate, and there are opportunties for further development in measuring within-group variations

problems and questions

19.1 You have had many occasions om which you have made decisions based on an evaluation you have made of a group of events Analyze each of the following group characterzations atcording to

1 The particular quahities beng measured (For example, the relevsint qualties in evslusting a meal at a restaurant may be the aroma of the cofice, the temperature of the soup, the polteness of the water, the toughness of the steak, ete)

2 The method of measunge those qualities
3 The method of averagng the measured qualtites
(Note the purpose that underhes the desire to charactenize the group is relevant in each of the above)
(a) You would like to compare the meal you bad at the "Ritz" Hotel mith that you had at the dormitory
(b) You would like to compare grammar scbool mith high school
(c) You would like to compare you: house pith that of your best frend
(d) You would like to compare the new Chevrolet with the new Ford (or Plymouth, or Rambler, ete)
(e) You would like to compare two different pars of shoes in order to buy the hetter parr
(One useful purpose served by baving you struggle with problems luke those given above is to get you to realize how ample a problem of pace companson really 1sl)
192 The followng indexes are in rather common use in American bie What specific purposes do you think they can be used to satisfy? Give some sort of an evaluation of the aceuracy they have in serving sach pur. poses Also indicate whether you feel that these indexes are sufficiently accurste for the purposes
(a) Scores on intelligence tests
(b) Dow Jones Averages of Stock Prices
(c) U.SBLS Index of Consumer Proes
(d) Temperature-bumadity index published by the weather hureau for a given city
(e) Number of degree-days durag a month
(f) The won lost pertentages of haseball tearns
(g) The price of a quart of milk (Or of any product)
(h) The total weght of a human being (as possibly distunct from the mn chin neth
19.2 ?
(b) What kund should be used to best satisiy the purpose? Explan
(c) Ia it possible that the actual sverage may work practically as well as tbe "correct 'average? Explain
194 How can you tell when each of the above andexes as hugh, or low,
or about average, or very higb? For example, suppose the following values occurred for the indexes referred to in Problem 192 State how large you thank these values are Explan the bass of your statement
(a) 184
(b) 306
(c) 124%
(d) 92
(e) 300
(j) 816
(g) $\$ 85$
(h) 275 pounds
(i) $\$ 425$

195 Below are given bome of the typual atems that make up the con sumption pattern of an Amencan family Analyze each item for homogeneity during the perod 1845 to date Consider the physical homogeneity, the function homogeneity (eg, the sbulty of a pashmg machone to wash clothes), and the psycholopucal homogeneity (the ability of the atem to satisify human wants) For example, the opnership of a horse and huggy may have provided more buman satusfaction in 1900 than does the ownersbip of an automoble todsy

Finally, inducete what it is that you think 15 measured by the changes in the price of the dem. In order to make your answer more concrete, determine the 1945 proe and the current pree for each item and then account for the difference
(a) A mowsut for $\$ 5$ year-old male child
(b) A television set
(c) A pound of becon
(d) Mating a letter from New York to Calforme
(e) A 4-year college curnculum st a selected college
(f) A baseball game at Yankee Stadium
(g) Police protection at the local, state, or national level.
(h) Religous instruction and mspiration at the church of your choice

196 What type of average woud you try to get in the following cases? Explan
(a) The average price of a quart of home-delivered molk in the New York metropohtan area for purpose of moluding on a Consumers' Pnce Index Also, for inclusion in an index to measure general changes in the yalue of the dollar to gude the Federal Reserve Board in ats attempts to stabluze the value of the dollar (Note The vamation we would he averaging is that from place to place within the area and from mile company to milk company)
(b) The average price of a quart of home-delivered mulk over the pernod of a year (The varation we would be averaging is that from day to day, or month to month, etc)
(Note on this question The problem of which average to use in a proklem 18 often essentally the same prohlem as that of determinung the hind of sample to use when only one item is to be selected Thus, the single average price of mulk over the year is really a sample of the price of mulk)

197 Below are given the prices and quantites of two commodities at two defferent dates

	Period 1		Penod 2	
	Price p_{1}	$\begin{gathered} \text { Quantity } \\ q_{1} \end{gathered}$	Price p_{q}	Quanthty $q t$
Product A	\$200	100	8250	150
Product B	\$1000	40	\$1200	30

(a) Calculate the folloming indexes

(b) Analyze your results in Part (a) above for evidence of whether a given formula type (average and weaghts) Eatisjes the base reversal test
(c) Repeat all the calculations of Part (a) above for the construction of quantity inderes rather thsn price indexes
(d) Test your quantity mdexes for abinty to satisly the base reversal test
(e) Test your price and quantity indexes for ablity to satisfy the factor reversal test
(f) What practical symnficance do you find in the ablity of an mdex number formula to satisfy the base reversal and factor reversal tests?
198 (a) Collect data on the annual Gross Natronal Product of the United States for the last 15 years Compare the results for the data based on current dollars with the data based on constant dollars Collect or calculate the ratios of the current dollar data to the constant dollar data The re sultent ratios are obvously a price index What bind of formula (average
and weights) underles such an mdex number serres? What kand of formula should it be Explan
(b) Collect annual dollar sales figures for some large multaproduct firm hise General Motors, General Electric, Macy's, etc Analyze the problem of finding a price inder senes that could be used to defate the dotilar sales series in order to estmate the changes on physical volume of sales over the years (Deflation cansists of dundung the dollar selas figures by appropmate proce mdexes) Find the best price mdex you cau and perform the calculations necessary to get the physical volume sertes
Evaluate the results from the pont of vew of theoretroal nueties and of practical usefulness
199 Suppose you were construcing index numbers of physical volume of activity for a manufacturer of refrigerators This company bulds the refrygator from such base raw matenals as sheet steel, meulation rolls pant, etc The company also handies a hae of otber bouschold applances such as electric and gas ranges, dishwashere, etc These other atems, however, are bult almost entuely by subeontractors who do practically all the rork on the products except for a few fimshag touches, such as attachment of distinctive dials and of the name plates
How would you give proner werght to the value of refngetators vs these other applances in constructing your over all index? (Hint You would be concerned watb the problem of estmating the value odded by manufacture You maght relate your problem to that of the Federal Reserve Board in combing the output of sheet steel with the outpht of automobles in its Index of Industral Production Note that some of the sheet steel mould be embodred in the automobiles)

I9 10 Below are given data on three items of a Consumers' Price Index for 5 specific years spanning a period of 20 years

1940		1946		1950		1055		1960	
Prue	Quantity	Price	Quentuly	Price	Quantity	Prate	Quantity	Pnce	Quantity
$\leqslant 10$	160 tbs	$\leqslant 12$	170	* 19	100	\% 21	100	\% 24	140
450	38 mm	\$60	42	690	5.5	800	00	925	70
14	609 gals	18.	500	29	650	30	880	34	750

(a) Coustruct the best possble index of changer in these prices considenng the avealable informetron Express the final indexes on 1940 as a base (Hint The use of hoks and chans, with the best wergbts used for each hnk, would be a useful approach)
(b) Evaluate your final mdexes from the pout of vow of

1 Then conformung to any theoretical and practical critera of good andexes

2 Ther measurng something that has some practical meaning For example, what difference might it make if the undex went up 20% rather then going down 5% ?
(c) What alternative method of construction would you recommend in the interests of saving sume of the money needed to collect quantity data
in each of these years" Do you think that such an alternative would result in changes in the indexes of any practacal concem? Explan
19.11 Suppose an index of common stock pnces goes up 10% What sufferences would it make if plus 10% were a result of
(a) All stock paces increasing 10% each?
(b) 40% of the prices increscmg by more than 10% ?
(c) 30% of the pnces mereasng by more than 10% and 20% of them sctually decressing?

Appendix A

Squares, Square-Raots, and Reciprocals

n	8^{2}	\sqrt{n}	$\sqrt{10 m}$	1600/n	n	n^{2}	$\sqrt{5}$	$\sqrt{10 \pi}$	1000/n
					45	2025	6 7088	21213	22.22
	1	10000	31823	10000	46	2116	67823	21448	21730
2	4	14142	44721	50000	47	2208	68557	21676	21.27
8	${ }^{9}$	17221	54772	22333	44	2804	39882	21009	20833
4	${ }^{8}$	20000	6.3248	25000	48	2401	70000	22136	20408
5	25	22361	70713	20000	50	2500	70812	22381	20000
8	36	24495	77460	16667	51	2601	71414	22583	10608
7	49	26453	83065	14286	52	2704	7211	2204	10231
8	84	2828	89443	12500	53	2809	72801	2302	18868
9	81	30000	94808	11111	54	2816	73485	37238	28318
10	100	31823	10000	10000	55	3025	74162	23452	18182
11	121	38166	1048	9090	58	3130	74833	23664	17857
12	144	34641	10954	8333	5	3249	75498	23875	17544
18	169	36056	11402	7693	58	3364	78158	2408	17241
14	106	37417	11832	71429	59	3481	76811	24290	16949
15	225	38730	12 247	66607	60	3600	77480	24495	16887
16	266	40000	12649	62500	01	3721	78103	24698	10308
17	259	41221	13038	88824	62	3844	78740	24900	16129
18	324	42426	13416	35356	63	3969	79373	25100	15873
19	361	43589	13784	52632	64	4095	80000	25208	15023
20	400	44721	13142	50000	65	4225	80523	25405	15385
21	441	45920	14491	47619	66	4336	81240	25600	15152
22	484	46984	14832	48455	67	4489	81854	25834	14025
23	528	17968	15165	43478	68	4624	82462	26077	14706
21	576	48990	15492	41667	65	4761	83068	26258	14483
25	686	50000	15811	40009	70	4900	83866	$2 ¢ 458$	14288
26	676	50900	10125	38462	71	5041	84268	26646	14085
27	729	51962	16432	37057	72	${ }^{8} 184$	84853	26853	13889
28	784	52915	16733	33714	73	5329	85446	27018	13689
29	841	${ }_{5} 3852$	17029	34483	74	5476	86023	27203	13514
30	900	54772	17321	33333	76	5625	86003	27386	13 333
31	961	55678	17607	32238	76	5776	87178	27588	13158
32	1024	56506	17889	31250	77	5929	87750	27749	12887
33	1089	67440	16166	30303	78	0081	88318	27928	12821
34	1150	88310	18439	29412	79	0241	88882	28107	12858
35	1225	59181	18708	29571	80	6400	89473	28284	12500
36	1298	60000	18974	27778	81	651	90000	2846	12348
37	1360	80828	10235	27027		6724	80554	28636	12195
38	1444	61044	19404	26316	83	6^{889}	91104	88810	12048
38	1521	62450	19748	25041	84	7050	91852	28088	11805
40	1600	83846	20000	25000	8	7285	92185	29185	11765
41	1681	64031	20.248	24380	85	7398	02736	29.326	11828
42	1764	64807	20494	23819	87	7549	93274	29496	1484
43	1849	85574	20736	23256	88	784	93508	29885	11384
44	1036	86333	20076	22727	89	7921	[14340	29833	11238

Squares, Square-Rools, and Reciprocals

*	s^{1}	\sqrt{n}	$\sqrt{10 n}$	1000/n	n	$\mathrm{n}^{\text {' }}$	$\sqrt{8}$	$\sqrt{107}$	1000/n
90	3100	9488	30000	11111	145	21025	12042	38079	08068
01	8281	- 3394	30108	10983	145	21310	12083	33210	88493
02	8484	05917	30332	10870	147	21809	12124	38341	08027
93	8649	96437	30498	10753	148	21004	12186	33471	07588
94	8838	96954	30639	10633	140	22501	12207	38601	87114
95	0025	97468	30822	10586	150	22500	12247	88280	86667
0	0218	97980	30884	10417	151	22801	12.288	43859	88225
07	8409	28488	31145	10309	152	23104	12320	88087	8578
98	8604	08905	31305	10204	153	23409	12360	39115	83359
90	9801	99109	31464	10107	154	23716	12410	39243	64935
100	10000	10000	31823	10000	155	24025	12450	38370	84516
101	10201	10050	31781	09010	156	24330	14490	39497	04103
102	10404	10100	11937	98039	157	24049	12530	39023	03694
103	10809	10149	32084	93097	153	24264	15570	39740	63291
104	10810	10198	3224	05154	150	25281	12810	39875	62803
105	11025	10247	32404	03233	160	25000	12640	40000	0.2500
106	11238	10296	32553	04340	101	25821	12689	40125	02112
107	11449	10344	32711	0.3453	152	28244	12723	40.249	01728
108	11064	10392	32883	92598	161	26568	12787	40373	61350
109	11881	10440	33015	01743	J64	26800	13800	40497	00976
110	12300	10488	33.168	00009	105	27225	12.45	40820	00606
111	12321	10535	33.317	90090	150	27350	12884	40743	60241
112	12344	10 S 3	33468	8 c 296	167	27880	12923	40880	50880
113	12769	10830	331515	88406	168	23224	12901	40088	56524
114	12998	10677	33764	37719	100	28561	13000	41110	59172
115	13225	10734	33912	8697	170	23800	13038	4154	08824
110	19456	10770	3405	00807	171	27211	15077	41352	68480
117	1368	10817	34205	83470	172	29364	13119	4173	8.8140
118	13924	10803	34391	84748	173	2980	1818	41393	37803
119	14161	10909	84496	34034	174	80276	13101	41713	37471
120	14400	10954	4481	8833	175	30625	13229	41833	07143
121	14841	11000	34785	32043	176	30976	13867	41052	58818
122	1483	11045	34929	81807	177	31329	15304	4201	88497
123	15129	11091	35071	E1301	178	31884	19342	42100	08180
124	15876	11130	35214	80645	179	32041	13379	42.308	05856
125	15625	11130	35355	80000	189	\$2400	13418	49420	0.5556
128	15878	11225	35496	79385	181	32781	13454	4254	85249
127	18129	11258	25637	7.8740	182	\$3124	13491	42861	54945
128.	10381	11814	35777	73125	18	3345	13528	4278	54845
129	18843	1) 268	20075	3209	189	3ada	1885	48.805	\$ ${ }^{4 \times 4}$
130	10900	11402	30050	76923	185	34225	13801	43012	54054
131	17161	11446	36104	76336	188	34596	13038	43128	03763
132	17424	1.489	38332	75758	187	34068	13075	43244	33470
138	17088	11533	80469	75188	188	35344	13711	43358	53101
134	17950	11578	86605	74587	189	35721	13748	43474	02910
185	18225	11810	38742	74074	190	36100	13784	48588	52832
158	13488	11662	36878	73599	191	36481	18820	43704	38350
137	18769	11705	37014	75903	102	36804	1360	43818	32083
138	19044	11747	37143	72484	103	37248	13892	43032	01813
139	19321	11700	37.253	71045	194	37830	150	44045	0150
140	15000	11882	37417	71429	195		13904	44158	\$1282
41	19881	11874	37550	70022	195	38410	14000	44272	31020
142	20164	1916	37683	70923	197	388003	11036	44385	30761
14	20440	1195	37815	69930	198	39204	14071	44.407	50505
144	20736	12000	37.94	8944	190	30601	$1+107$	4460	50251

Appendix B

Random Sampling Numbors *

Randam Sampling Numbert

Appendix C

Logurithms of ni *

\#	$\log n!$	*	$\log n$	n	$\log n!$	\#	$\log n^{1}$	n	$\log 81$
1	00000	51	66 ± 906	101	1599743	151	2549359	201	
2	03010	52	679065	102	15148929	152	2571577	201	3795054
3	07782	53	6 ly 4309	103	1534958	${ }^{15} 5$	2593024	203	${ }_{3} 31585$
4	13802	34	$7 \% 3633$	304	rstort 8	154	2714699	204	3891325
5	20792	55	731037	105	1680310	155	2726803	205	${ }_{3}{ }^{35} 4343$
6	28573	56	748510	306	5700593	156	2758734	306	3887482
7	37024	57	756077	107	$1720{ }^{\text {为 }} 7$	157	2784693	807	3910642
8	46055	58	783712	108	174 1221	158	2807679	08	393.3822
9	\$5958	59	801420	rog	1761595	159	2884593	359	3957024
10	65598	60	819202	180	1782009	160	2846735	10	39800246
11	76012	61	837005	111	1802462	167	2868803	211	4003489
12	86.803	62	Bs 4979	$1{ }_{12}$	182-2955	162	2890808	212	402675
13	97943	63	872972	IIJ_{3}	2843435	163	2953020	213	4050036
14	109404	64	891034	114	1864054	164	2935168	214	$4{ }^{5} 3340$
15	12126	65	909163	115	788 4661	165	2957343	215	4096664
16	133206	66	927359	126	Igo 5305	166	2979594	216	4120009
17	145517	67	945619	119	1925988	157	3001771	217	$4 * 4373$
18	558063	68	953945	118	194.6707	158	3024024	218	426475
19	$17085 \pm$	69	9972313	If	1967462	169	3046303	219	4790162
20	18386:	70	100.0584	820	1988354	17\%	3068008	220	4213587
21	797083	71	101 ${ }^{\text {S29 }}$ 27	27	2009032	174	3590938	321	4237038
32	21.0508	72	1037870	122	2029945	172	3113293	222	4260494
33	324125	71	1096503	123	2050844	573	3535674	223	428397
24	237927	74	1075196	124	2071779	174	3558079	22.4	4307480
25	351900	75	1093946°	125	2092748	175	3880509	225	4351002
26	266056	76	1123854	126	211375	576	3202055	226	4354543
27	280370	77	153 1699	127	2134790	179	3225444	227	4378103
18	294845	78	1150540	128	215 56.28	178	3247948	228	4401682
29	309465	79	1169516	129	2176967	179	3270477	229	4458282
30	324237	80	1138547	130	2198107	180	3293030	230	44488.98
31	339150	81	1207632	131	2219280	IBI_{1}	3915606	23:	4472534
32	354292	82	122-6\%70	132	2240485	182	3338207	232	$449.6 \mathrm{rBg}^{4}$
33	36.9387	83	1245961	133	2251724	183	3360832	233	4519862
34	$3^{8} 4702$	84	1265204	134	2282995	${ }^{18} 4$	3383480	234	4543555
35	400142	B5	1284498	135	2304298	IES	3406152	235	4567265
35	419705	85	1303843	136	2325634	185	3428847	236	4590934
37	431387	${ }^{8} 7$	1323738	137	2347001	${ }^{187}$	3451565	237	4614742
38	44758	88	1342683	138	2368400	188	3474307	238	4638508
39	463096	89	135-2177	139	2389830	189	3497071	239	466 ± 292
40	479116	90	438 17519	14°	$241129 r$	rga	3519359	240	468.6094
4 I	495244	91	1401320	4 4	2432783	195	3542569	24.	470.9914
42	512477	92	5420948	542	2454306	192	3365502	242	4733752
43	5278 Cr	93	1440632	843	2475850	193	3588358	243	4757608
44	544246	94	1460364	144	2497443	194	3611336	244	4781482 4805374
45	560778	95	14^{800142}	${ }^{1} 45$	2519057	195	3634536	245	405374
46	577406	96	1499564	146	2540700	196	3657059 368.0003	246 247	 4853210
47	594127	97	$151283 x$	147	2562374	197	368.0003 3702970	247 248	$\begin{aligned} & 8853210 \\ & 4877154 \end{aligned}$
48	610939	98	153.9744	148	258480	298	3202970 3725059	248 249	$\begin{aligned} & 8877154 \\ & 4901116 \end{aligned}$
49	627841	99	1559700	149 150	2605808 262.7559	199 209	3725959 3748969	249 250	4901516 4925096
50	644831	100	1579700	150	262.7559	200	3748969	250	$45^{2} 50$

Appendix D^{*}

Einomlal Distribation

$$
P=\binom{n}{v} \pi^{s}(1-\pi)^{v-s}
$$

hote Tofind P when $r>5$, find $P(n-r \mid 1-r, n)$

n	2	05	10	15	20	25	30	35	40	45

1	0	9500	9000	8500	8000	7500	7000	6500	6000	5500	5000
	1	0500	1000	1500	2000	2500	3000	3500	4000	4500	5000
2	0	902	8100	7225	6400	5625	4000	4225	3000	3025	2500
	1	0950	1800	2550	3200	3750	4200	4550	4800	4950	5000
	2	0025	0100	0225	0400	0625	0500	1225	1600	2025	.2500

3	0	.8574	7290	6141	5120	4219	3130	2746	2160	1664	1250
	1	1354	2430	3251	3540	4219	4110	4436	4320	4091	7750
2	0071	$02^{\circ} 0$	0574	0260	1406	1890	2359	2850	3341	3750	
	3	0001	0010	0034	0080	0156	0270	0429	0640	0911	1250

4	0	8145	6551	3220	4096	3164	2101	1783	1296	0915	5825
1	1715	2916	3685	4096	4219	4116	3545	3456	2995	2500	
2	0135	0456	0975	1536	2109	2846	3105	3456	3675	3750	
3	0005	0036	0115	0256	0469	0756	1115	1536	2005	2500	
4	0000	0001	0005	0016	0039	0081	0150	0256	0410	0625	

$\begin{array}{llllllllllll}5 & 0 & 7733 & 5905 & 4437 & 3277 & 3373 & 1651 & 1160 & 0778 & 0503 & 0312\end{array}$

1	2036	3250	3915	4096	3955	3602	3124	2592	.2059	1562

$\begin{array}{lllllllllll}2 & 0214 & 0729 & 1352 & .2048 & 2677 & 3057 & 3364 & 3456 & .3369 & 3125\end{array}$
$\begin{array}{lllllllllll}3 & 0011 & 0081 & 0244 & 0512 & 0879 & 1323 & 1811 & 2301 & 2757 & 3125\end{array}$
$4000000004 \quad 0022,0064 \quad 0146$ 0884 0483
$\begin{array}{lllllllllll}5 & 0000 & 0000 & 0001 & 0003 & 0010 & 0024 & 0053 & 0102 & 0185 & 0312\end{array}$

[^34]Ginomal Distribulion

n	2	05	10	15	20	25	30	35	40	45	50

6	0	7351	5314	3771	2621	1780	1176	0754	0467	027	156
	1	2321	3543	3993	3932	3560	302\%	2437	1866	59	38
	2	0805	0984	1762	2458	2965	3241	3280	3110	2780	2344
	3	0021	0146	0415	0819	1318	1852	2355	2765	3032	3125
	4	0001	0012	0055	0154	0330	0585	0951	1382	1861	2344
	5	0000	0001	0004	0015	0104	0102	0205	0369	0608	0938
	6	0000	0000	0000	0001	0002	0107	0018	0041	0083	0156
7	0	6983	4783	3208	2097	1335	0824	0480	0280	0152	0078
	1	2573	3720	3980	3670	3115	2471	1848	1306	0872	0547
	2	0405	1240	2097	2753	3115	3177	2985	2613	2140	164]
	3	0036	0230	0017	1147	1730	2263	2679	2803	2918	2784
	4	0402	0026	0109	0237	0577	0972	1442	1935	2388	2734

5	0000	0002	0012	0043	0115	0250	0466	0774	1172	1641
6	0000	0000	0001	0004	0013	0036	0084	0172	0820	0547
7	0000	0000	0000	0030	0001	0032	0005	0016	0037	0078

$\begin{array}{llllllllllll}8 & 0 & 6634 & 4305 & 2725 & 1678 & 1001 & 0576 & 0319 & 0168 & 0084 & 0039\end{array}$

1	2798	3826	3847	3355	2670	1977	1373	0896	0348	0512

2	0515	1488	2376	2036	3115	2065	2087	2050	1569	1094

| 3 | 0054 | 0831 | 0838 | 1468 | 2076 | 2541 | 2785 | 2787 | 2568 | 2188 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}4 & 0004 & 0046 & 0186 & 0459 & 0885 & 1361 & 1875 & 2322 & 2627 & 2784\end{array}$

$\begin{array}{lllllllllll}5 & 0000 & 0004 & 0026 & 0092 & 0231 & 0467 & 0808 & 1239 & 1718 & 2188\end{array}$
$600000 \quad 00000$
$\begin{array}{lllllllllll}7 & 0000 & 0000 & 0000 & 0001 & 0004 & 0012 & 0033 & 0078 & 0164 & 0312\end{array}$
$\begin{array}{lllllllllll}8 & 0000 & 0000 & 0000 & 0000 & 0003 & 0001 & 0002 & 0007 & 0017 & 0035\end{array}$
$\begin{array}{llllllllllll}9 & 0 & 6302 & 3874 & 2316 & 1342 & 0751 & 0404 & 0207 & 0101 & 0045 & 0020\end{array}$
$\begin{array}{lllllllllll}1 & 2985 & 3874 & 3678 & 3020 & 2253 & 1556 & 1004 & 0605 & 0339 & 0176\end{array}$ $\begin{array}{lllllllllll}2 & 0689 & 1722 & 2597 & 3020 & 3003 & 2458 & 2162 & 1612 & 1110 & 0703\end{array}$ $\begin{array}{lllllllllll}3 & 0077 & 0446 & 1069 & 1762 & 2330 & 2668 & 2716 & 2508 & 2119 & 1641\end{array}$ $\begin{array}{lllllllllll}4 & 0006 & 0074 & 0283 & 0561 & 1168 & 1715 & 2194 & 2508 & 2600 & 2461\end{array}$
$\begin{array}{lllllllllll}5 & 0000 & 0008 & 0050 & 0165 & 0389 & 0735 & 1181 & 1672 & 2128 & 2461\end{array}$ $\begin{array}{lllllllllll}6 & 0000 & 0001 & 0006 & 0728 & 0087 & 0210 & 0424 & 0743 & 1160 & 1641\end{array}$ $\begin{array}{lllllllllll}7 & 00000 & 00010 & 0000 & 0003 & 0012 & 0035 & 0098 & 0212 & 0407 & 0703\end{array}$ $8 \quad 0000 \quad 0000 \quad 0000 \quad 0000$

$\begin{array}{llllllllllll}10 & 0 & 5987 & 3487 & 1969 & 1074 & 0563 & 0282 & 0135 & 0060 & 0025 & 0010\end{array}$ $\begin{array}{lllllllllll}1 & 3151 & 3874 & 3474 & 2884 & 1877 & 1211 & 0725 & 0403 & 0207 & 0098\end{array}$ $\begin{array}{lllllllllll}2 & 0746 & 1837 & 2759 & 3020 & 2816 & 2825 & 1757 & 1209 & 0763 & 0439\end{array}$ $\begin{array}{lllllllllll}3 & 0105 & 0574 & 1298 & 2013 & 2503 & 2968 & 2522 & 2150 & 1655 & 1172\end{array}$ $\begin{array}{lllllllllll}4 & 0010 & 0112 & 0401 & 0881 & 1460 & 2001 & 2377 & 2508 & 2384 & 2051\end{array}$

\boldsymbol{n}	2	05	10	15	20	25	30	35	40	45	50

10	5	0001	0015	0085	0264	0584	10	1536	2007	2340	2461
	6	0000	0001	0012	0055	0162	0368	0689	1115	1596	51
	7	0000	0000	0001	0008	0031	0090	0212	0425	0746	72
	8	0000	0000	0000	0001	0004	0014	0033	0106	0229	439
	9	0003	0000	0000	00003	0000	0001	0005	0016	0042	0098
	10	0000	0000	0000	0000	0000	0000	0000	0001	0003	0010
11	0	6688	3138	1673	0859	0422	0198	0088	0036	0014	
	1	3293	3835	3248	2362	1549	0932	0518	0266	0125	0054
	2	0867	2131	2866	2353	2581	1938	1385	0887	0513	269
	3	0137	0710	1517	2215	2581	2568	2254	1774	1259	806
	4	0014	0168	0530	1107	1721	2201	2428	2365	2060	1811
	5	0001	0025	0132	0388	0843	1321	1830	2207	2360	2256
	6	0000	0003	0023	0097	0268	0586	0935	1471	1931	56
	J	0000	0000	0003	0017	0034	0173	0379	0701	1128	1611
	8	0000	0000	0000	0002	0011	0037	0102	0234	0462	0800
	9	0000	0000	0000	0000	0001	0005	0018	0052	0126	0269
	10	0000	0000	0000	0000	0000	0000	0002	0007	0021	
	11	0000	0000	0000	0000	000	0000	0000	0000	0002	0005
12	0	5404	28	1422	0687	03	01	0057	0022	0008	2020,
	1	8413	3766	3012	2062	1267	0712	0368	0174	0075	0029
	2	0988	3301	2924	2835	2323	1678	1088	0639	0339	0161
	3	0173	0852	1720	2362	2581	2357	1054	1419	0923	0537
	4	0021	0213	0688	1328	1930	2311	2367	2128	1700	1208
	5	0002	0038	0193	0532	1032	1585	2039	2270	2225	4
	4	0000	0005	0010	0155	A1I	Orsa	3281	1789	2184	22\%
	7	0000	0000	0006	0033	0116	0291	0591	1009	1489	1934
	8	0000	0000	0001	0005	0024	0078	0199	0420	0782	1208
	9	0000	0000	0000	0001	0004	0015	0048	0125	0277	0537
	10	0000	0000	0000	0000	0000	0002	0008	0025	0068	0161
	11	0000	0000	0000	0000	0000	0000	0001	0003	0010	0029
	12	0000	0000	0000	0000	0000	0000	0000	0000	0001	0002
13	0	5133	2542	1209	0550	0238	0097	0037	0013	0004	0001
	1	3512	3672	2774	1787	1029	0540	0259	0113	0045	0016
	2	1109	2448	2937	2680	2059	1388	0836	0453	0220	0095
	3	0214	0997	1800	2457	2517	2181	1651	1107	0660	0349
	4	0028	0277	0838	1535	2097	2337	2222	1845	1350	0873
	6	0003	0055	0266	0691	1258	1803	2154	2214	1989	1671
	6	0000	0008	0063	0230	0559	1030	1546	1968	2169	2095
	7	0000	0001	0011	0058	0185	0442	0833	1312	1775	2095
	8	0000	0000	0001	0011	0017	0142	0336	0656	1089	1571
	9	0000	0000	0000	$000]$	0009	0034	0101	0243	0495	0873

Binomal Ditirbbution
$\begin{array}{llllllllllll} & 1 & x & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 \\ 50\end{array}$

10	0500	0000	0000	0003	0001	0006	0022	0065	0162	03
11	0000	0000	0000	0009	0000	0001	0003	0012	0036	00
12	0000	0000	0000	0000	0080	0000	0000	0001	0005	001
13	0200	0000	0000	0000	0000	0003	0000	000	000	

$14 \quad 0 \quad 4877 \begin{array}{llllllllll} & 2258 & 1028 & 0440 & 0178 & 0068 & 0024 & 0008 & 0002 & 0001\end{array}$

1	3593	3559	2538	15	0832	0407	0181	0073	0027	0009
2	1228	2570	2912	2501	1892	1134	0631	0017	014	008

$\begin{array}{lllllllllll}2 & 1229 & 25050 & 2912 & 2551 & 1802 & 1134 & 0634 & 0317 & 0141 & 0056 \\ 3 & 0259 & 1142 & 2056 & 2501 & 2402 & 1943 & 1366 & 0845 & 0462 & 0222\end{array}$
$\begin{array}{lllllllllll}4 & 0037 & 0349 & 0998 & 1720 & 2202 & 2290 & 2022 & 1549 & 1040 & 0611\end{array}$
$\begin{array}{lllllllllll}5 & 0004 & 0078 & 0352 & 0860 & 1468 & 1963 & 2178 & 2066 & 1701 & 1222\end{array}$
$\begin{array}{lllllllllll}6 & 0000 & 0013 & 0093 & 0322 & 0734 & 1262 & 1759 & 2066 & 2088 & 1833\end{array}$
$\begin{array}{lllllllllll}7 & 0000 & 0002 & 0019 & 0052 & 0280 & 0618 & 1082 & 1574 & 1052 & 2095\end{array}$
$\begin{array}{lllllllllll}8 & 0050 & 0000 & 0003 & 0020 & 0082 & 0232 & 0510 & 0918 & 1398 & 1833\end{array}$
$\begin{array}{llllllllll}9 & 0000 & 0000 & 0000 & 0003 & 0018 & 0066 & 0183 & 0408 & 0762\end{array} 1222$
$\begin{array}{llllllllll}10 & 0000 & 0000 & 0050 & 0000 & 0003 & 0014 & 0049 & 0136 & 0312\end{array} 0611$
$\begin{array}{lllllllllll}11 & 0000 & 0000 & 0050 & 0000 & 0050 & 0002 & 0010 & 0033 & 0083 & 0222\end{array}$
$\begin{array}{llllllllll}12 & 0000 & 0000 & 0000 & 0000 & 0050 & 0000 & 0001 & 0005 & 0019\end{array} 0056$
$130000000000000000000000000000000010001 \quad 00020009$
$\begin{array}{llllllllll}14 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 \\ 0001\end{array}$
$\begin{array}{llllllllllll}15 & 0 & 4638 & 2059 & 0874 & 0352 & 0134 & 0047 & 0018 & 0005 & 0001 & 0000\end{array}$
$\begin{array}{lllllllllll}1 & 3658 & 3432 & 2312 & 1319 & 0868 & 1330 & 0128 & 004 & 0016 & 0005\end{array}$
$\begin{array}{lllllllllll}2 & 1348 & 2669 & 2856 & 2309 & 1559 & 0916 & 0475 & 0219 & 0090 & 0032\end{array}$
$\begin{array}{lllllllllll}3 & 0307 & 1285 & 2184 & 2501 & 2252 & 1700 & 1110 & 0634 & 0318 & 0138\end{array}$
$\begin{array}{lllllllllll}4 & 0049 & 0428 & 1156 & 1876 & 2252 & 2186 & 1792 & 1268 & 0780 & 0417\end{array}$

$\begin{array}{lllllllllll}6 & 0000 & 0018 & 0132 & 0430 & 0917 & 1472 & 1906 & 2466 & 1814 & 1527\end{array}$
$\begin{array}{lllllllllll}7 & 0030 & 0003 & 0030 & 0138 & 0393 & 0511 & 1319 & 1771 & 2013 & 1964\end{array}$

8	0070	0000	0005	0035	0131	0348	0710	181	1847	1964

$\begin{array}{lllllllllll}9 & 0070 & 0000 & 0001 & 0007 & 0034 & 0115 & 0298 & 0612 & 1088 & 1627\end{array}$
$\begin{array}{lllllllllll}10 & 0000 & 0000 & 0000 & 0001 & 0007 & 0030 & 0096 & 0245 & 0515 & 0916\end{array}$
$\begin{array}{llllllllll}11 & 0000 & 0000 & 0000 & 0000 & 0001 & 0006 & 0024 & 0074 & 0191\end{array} 0417$
$\begin{array}{llllllllllll}12 & 0000 & 0000 & 0000 & 0000 & 0000 & 0001 & 0004 & 0016 & 0052 & 0139\end{array}$
$13000000000 \quad 00000003000000000310001 \quad 00030303010032$
$\begin{array}{lllllllllll}14 & 00000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0001 & 0005\end{array}$
$\begin{array}{llllllllll}15 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 \\ 00000\end{array}$
$\begin{array}{llllllllllll}15 & 0 & 4401 & 1853 & 0743 & 0281 & 0100 & 0033 & 0010 & 0003 & 0001 & 0000\end{array}$ $\begin{array}{lllllllllll}1 & 3706 & 3284 & 2097 & 1125 & 0535 & 0288 & 0087 & 0030 & 0009 & 0002\end{array}$ $\begin{array}{lllllllllll}2 & 1463 & 2745 & 2775 & 2111 & 1336 & 0732 & 0353 & 0150 & 0056 & 0018\end{array}$ $\begin{array}{lllllllllll}3 & 0859 & 1423 & 2285 & 2463 & 2079 & 1465 & 0888 & 0468 & 0215 & 0085 \\ 4 & 0001 & 0514 & 1311 & 2001 & 2252 & 2040 & 1553 & 1014 & 0572 & 0278\end{array}$

16	5	0003	0137	0555	1201	1802	. 2099	. 2008	1623	1123	0667
	6	0001	0093	0180	0550	1101	1649	1952	1983	1654	122
	7	0000	OOOH	0045	0197	0524	1010	1524	. 1889	1968	1.46
	8	0000	0001	0009	0055	0197	$0: 57$	0823	1417	1812	196
	9	0000	0000	0001	0012	0068	0185	0442	QS40	1318	1746
	10	0000	0000	0000	000	0014	0056	0167	0392	0755	22
	11	0000	0000	0000	0000	0002	0013	0049	0142	0337	0667
	12	0000	0000	0000	0000	000	0002	0011	0040	0115	0278
	13	0000	0000	0000	0000	0000	0000	0002	0008	0029	0085
	14	0000	0000	0000	0000	0000	0000	0000	0001	0005	0018
	15	0000	0000	0000	0000	0000	0000	0000	0000	0001	0002
	16	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
17	0	4181	1668	0631	0225	0075	0023	0007	0002	0000	0000
	1	3741	3150	1893	$00^{0} 5$	0426	0169	0060	0019	0005	0001
	2	1575	2800	. 2683	1914	1136	0581	0260	0102	0035	0010
	3	0 H 15	1555	2359	2933	1893	1245	0701	0341	014	0552
	4	0066	.0605	1457	2043	. 2209	1868	1320	0796	0411	0182
	6	0010	0175	0668	1361	1914	2091	1849	1379	0875	077
	6	0001	0039	0236	0650	1276	1784	1091	1839	1432	004
	7	0000	0007	0065	0267	0088	1201	1685	1927	1841	148
	8	0000	0001	0014	00St	0279	0644	1134	1600	1883	185
	8	0000	0000	0003	0021	0093	0276	0611	1070	1540	1855
	10	0000	0000	0000	0001	0025	0095	0263	0571	1008	1484
	11	0000	0000	0000	0001	0005	0026	0000	0242	0525	$0{ }^{2}$
	12	0000	0000	0000	0000	0001	0006	0024	0081	0215	
	13	0000	0000	0000	0000	0000	0001	0005	0021	0068	018
	14	0000	0000	0000	0000	0000	0000	0001	000	0016	005
	15	0000	0000	0000	0000	0000	0000	0000	0001	0003	001
	16	0000	0000	0000	0000	0000	0000	0000	0000	0000	0001
	17	0000	0000	0000	0000	0000	0000	0000	0000	0000	
18	0	3972	1501	0538	0180	0056	0016	0001	0001	0000	000
	1	3763	3002	170:	CS11	0378	0128	0012	0012	0003	
	2	1688	2835	2556	1723	0958	0458	0100	0069	0022	
	3	0473	1680	2406	2297	1704	1096	0517	0246	0095	
	4	0093	0700	1592	2153	2130	1681	1104	0614	0291	
	5	0014	0218	0787	1507	1958	. 2017	1664	1146	0666	032
	6	0002	0052	0301	0816	1436	1873	1941	1655	1181	07
	7	0000	0010	0091	0350	0820	1376	1792	1892	1657	121
	8	0000	0002	0022	0120	0876	0811	1327	1734	1864	166
	9	0000	0000	0004	0033	0133	0386	0784	1284	1694	18

Binemul Distribution

Binemial Distribution

n	2	05	10	15	20	35	30	35	40	45	50

2010	0000	0000	0002	0020	0099	038	06s6	1171	1593	1762
11	0000	0000	0000	0005	0030	0120	0336	0710	1185	1602
12	0000	0000	0000	0001	0008	0039	0136	0355	0727	120
13	0000	0000	0000	0000	0002	0010	0045	0146	0360	073
14	0000	0000	00	00	0000	0002	0012	0049	0150	0370
15	0000	0000	0000	000	0000	0000	0003	0013	OOH_{5}	145
16	0000	0000	0000	0000	0000	10000	0000	0003	0013	0016
17	0000	0000	0000	0000	0000	0000	0000	0000	0002	01
18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0002
19	0000	0000	0000	0000	0000	0000	0000	0000	0000	000
20	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
40	1225	0145	0015	0001						
1	2706	0657	0108	0013	0001	-				
2	2 m	1423	0365	0065	0009	0001				
3	1851	2000	Cost6	0205	0037	0005	0001			
4	0001	. 2059	1332	0775	0113	0020	0003			
5	0\%2	16	1692	Os5	0272	000	0010	0001		
6	0105	1038	1742	1246	053	0151	0031	0005		
7	0027	0576	1493	1513	0557	0315	COSS	0015	0002	
8	0006	0264	1087	1560	1179	0557	0179	0040	0006	0001
2	0001	0104	0682	1386	1397	OS49	0342	0095	0018	08
10	-	0036	0373	1075	144	1128	0571	0106	0017	0008
11	-	0011	0180	0733	1312	1319	0838	0357	0.05	202
12	-	0003	0077	0443	1057	1365	1090	0576	0207	I
13		0001	0029	033	0759	1261	1265	0527	0365	Lu9
14			0010	011	04	1042	1313	1063	157	021
15	-	-	0000	0050	0×2	074	122	1228	0816	336
16			0001	0019	014	0518	1031	1299	1043	0572
17				000	0069	0314	0784	1204	1205	507
18	-			0002	0023	0172	0535	1026	1280	1031
19	-			0001	0011	0085	0336	0792	119	119
20					0004	0033	0190	0554	1025	1254
21					0001	0016	0097	0352	0799	119
22	-					0006	0045	0203	0565	析
23						0002	0019	0106	0362	0soz
4						001	0007	0050	0210	0572
25	-	-					0000	0021	0110	0366
26							0001	0008	0052	0211
27	-		-				-	0003	0022	0109
23	-	-	-	-			-	0001	0008	0051
29	-	-	-	-	-	-		-	0000	0021

Binomial Distribution

50	0	0769	0052	0003	-	-	-	-	-	-	-
	1	2025	0286	0026	00022	-	-	-	-	-	-
2	2611	0779	0113	0031	0001	-	-	-	-	-	
3	2199	1386	0319	0044	0004	-	-	-	-	-	
4	1360	1809	0681	0128	0016	0001	-	-	-	-	

5	0658	1848	1072	0295	0049	0006	-	-	-	-
6	0260	1541	1419	0554	0123	0018	0002	-	-	-
7	0086	1076	1575	0870	0259	0048	0006	-	-	-
8	0024	0648	1483	1169	0463	0110	0017	0002	-	-
9	00066	0333	1230	1864	0721	0220	0042	0005	-	-

10	0001	0152	0830	1398	0985	0386	0098	0014	0001	-
11	-	0031	0571	1271	1194	0602	0182	0035	0004	-
12	-	0022	0328	1033	1294	0888	0319	0076	0011	0001
18	-	0007	0169	0755	1261	1050	0502	0147	0027	0008
14	-	0002	0079	0489	1110	1188	0714	0260	0059	0008

15	-	0001	0033	0299	0888	1223	0923	0415	0116	0020
16	-	-	0018	0164	0048	1147	1088	0606	0207	0044
17	-	-	0005	0082	0432	0983	1171	0808	0839	0087
18	-	-	0001	0038	0264	0772	1156	0937	0508	0160
18	-	-	-	0016	0148	0558	1048	1109	0700	0270

20	-			20968	90\%	350.	0885	L14.6.	2088	\$419
21	-			0002	0038	0277	0673	1091	1088	05
22	-			0001	0016	0128	0478	0858	1119	078
23	-	-	-	\sim	0006	0057	0313	0778	1115	O9
24	-	-			0002	0032	0130	0584	1028	

25	-	-	-	-	0001	0014	0106	0405	0873	1123
26	-	-	-	-	-	0006	0055	0259	0687	1080
27	-	-	-	-	-	0002	0026	0154	0500	0960
28	-	-	-	-	-	0001	0012	0084	0836	0788
29	-	-	-	-	-	-	0005	0043	0208	0598

30	-	-	-	-	-	-	0002	0020	0119	0419
31	-	-	-	-	-	-	0001	0009	0063	0270
32	-	-	-	-	-	-	-	0003	0031	0160
33	-	-	-	-	-	-	-	0001	0014	0087
34	-	-	-	-	-	-	-	-	0008	0044

Binomital Dianbulan
$\begin{array}{llllllllllll}n & x & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 80\end{array}$

50	35	－	－	－	－	－	－	ー	－	0002	0020
	36	－	TT	－	－	－	－	－	－	0001	0008
	37	－	\sim	＂	－	\cdots	－	－	－	－	0003
	38	－	\cdots	－	－	－	－	－	－	－	0001
	30	－	－	－	－	－	－	－	－	－	－
100	0	0059	－	－	－	－	－	－	－	－	－
	1	0312	0003	－	\sim	－	\cdots	－	－	－	\cdots
	2	0812	0016	－	－	ー	－	－	－	－	－
	3	1396	0059	0001	－	\cdots	－	－	－	－	－
	4	1781	0159	0003	－	－	－	ー	－	－	－
	5	1800	0339	0011	\cdots	－	－	－	\square	\cdots	－
	6	1500	0596	0031	0001	－	－	－	－	－	－
	7	1040	0889	0075	0002	－	－	\square	\checkmark	－	－
	8	0649	1148	0163	0006	－	－	－	\sim	－	－
	9	0349	1304	0276	0015	－	－	－	－	ー	ー
	10	0167	1319	0 ± 44	0034	0001	－	－	－	－	－
	11	0072	1199	0640	0068	0003	－	－	－	－	－
	12	0028	0988	0838	0128	0008	－	－	－	－	－
	13	0010	0743	1001	0216	0014	－	－	－	－	－
14		0003	0513	1088	0335	0030	0001	－	ー	－	ー
15		0001	0327	1111	0481	0057	0002	－	－	－	－
16		－	0198	1041	0638	0100	0006	－	－	－	－
17		－	0106	0908	0789	0165	0012	－	－	－	－
18		－	0054	0739	0909	0254	0024	0001	－	－	－
19		－	0026	0563	0981	0365	0044	0002	\cdots	－	－
20		－	0012	0402	0993	0493	0076	0004	－	－	－
21		－	0005	0270	0946	0626	0124	0009	－	－	－
22		－	0002	0171	0840	0749	0190	0017	0001	－	－
23		－	0001	0103	0720	0847	0277	0032	0001	－	ー
24		－	\cdots	0058	0577	0906	0380	0055	0004	－	－
25		－	$=$	0031	0489	0918	0496	0090	0006	－	－
26		－	－	0016	0316	0583	0613	0140	0012	－	－
27		－	－	0008	0217	0scc	0720	0207	0022	0001	－
28		－	－	0004	0141	0701	0804	0290	0038	0002	－
29		－	\cdots	0002	0088	0580	0856	0388	0063	0004	－
30		\cdots	－	0001	0052	0458	0868	0494	0100	0008	－
31		－	\sim	－	0029	0344	0840	0801	0151	0014	0001
32		－	\square	－	0016	0248	0776	0698	0217	0025	0001
33		－	\sim	－	0008	0170	0685	0774	0298	0043	0002
34		－	\cdots	－	0004	0112	0579	0821	0391	0069	0005

Binomial Distimbuhon

n	2	05	10	15	20	25	30	35	40	45	50
100	35	-	-	-	0002	0070	0488	0834	0491	0106	0009
	36	-	-	-	0001	0042	0862	0811	0591	0157	0016
	37	-	-	-	-	0024	0208	0755	0682	0222	0027
	38	-	-	-	-	0013	0191	0674	0754	0301	0045
	38	-	-	-	-	0007	0130	0577	0799	0391	0071

40	-	-	-	-	0004	0085	0474	0812	0488	0108
41	-	-	-	-	0002	0053	0373	0702	0584	0159
42	-	-	-	-	0001	0032	0282	0742	0672	0223
43	-	-	-	-	-	0019	0205	0667	0741	0301
44	-	-	-	-	-	0010	0143	0576	0780	0390

45	-	-	-	-	-	0003	0096	0478	0800	0485
46	-	-	-	-	-	0003	0062	0381	0782	0580
47	-	-	-	-	-	0001	0038	0292	0736	0666
48	-	-	-	-	-	0001	0023	0215	0666	0785
49	-	-	-	-	-	-	0013	0152	0577	0780

80	-	-	-	-	-	-	0007	0103	0482	0798
51	-	-	-	-	-	-	0004	0068	0386	0780
52	-	-	-	-	-	-	0002	0042	0298	0735
58	-	-	-	-	-	-	0001	0026	0221	0865
54	-	-	-	-	-	-	-	0015	0187	0578

55	-	-	-	-	-	-	-	0008	0108	0484
56	-	-	-	-	-	-	-	0004	0071	0389
57	-	-	-	-	-	-	-	0002	0045	0300
58	-	-	-	-	-	-	-	0001	0027	0223
59	-	-	-	-	-	-	-	0003	0016	0158

60	-	-	-	-	-	-	-	-	0002	0109
61	-	-	-	-	-	-	-	-	0005	0071
62	-	-	-	-	-	-	-	-	0002	0045
68	-	-	-	-	-	-	-	-	0001	0027
64	-	-	-	-	-	-	-	-	0001	0016

65	-	-	-	-	-	-	-	-	-	0009
66	-	-	-	-	-	-	-	-	-	0005
67	-	-	-	-	-	-	-	-	-	0002
68	-	-	-	-	-	-	-	-	-	0001
69	-	-	-	-	-	-	-	-	-	0001

Appendix E^{\prime}

$$
\begin{aligned}
& \text { Cumulativa Binomlal } \\
& \sum_{x=r^{\prime}}^{n}\binom{n}{z} r^{t}(1-r)^{n-a}
\end{aligned}
$$

Note T 0 find P when $\gg 5$ calculate $1-P\left(n-x^{\prime}+1 \mid 1-x, n\right)$ eg $P(\tau \geq$ $\left.\left.2\right|_{r}=8, n-6\right)=1-P(x \geq 3 \mid r=2, n-6)-1-0016=0984$

\%	z	05	10	15	20	25	30	35	40	45	50
2	1	0975	1900	2775	3600	4375	5100	5775	6400	6975	7500
	2	0025	0100	0225	0400	0625	0900	1225	1600	2025	2500
3	1	1426	2710	3859	4880	5781	6570	7254	7840	8336	8780
	2	0072	0280	0608	1040	1562	2180	2818	3520	4252	\$000
	3	0001	0010	0034	00S0	0156	0270	0429	0640	0911	1250
4	1	1855	3439	4780	5904	6836	7599	8215	8704	0085	9375
	2	0140	0523	1095	1808	2617	3483	4370	5248	6000	6875
	3	0005	0037	0120	0272	0508	0837	1285	1792	2118	3125
	4	0000	0001	0005	0016	0039	0081	0150	0256	0410	0625
5	1	,2262	4095	556	6723	7627	8319	8840	9222	9497	88
	2	028	0815	1048	2627	3672	4718	5716	6630	7438	8125
	3	0012	0086	0266	0579	1035	1631	2352	3174	4069	5000
	4	0000	0005	0022	0067	0158	0308	0540	0870	1312	1875
	5	0000	0000	0001	0003	0010	0024	0053	0102	0185	0312
6	1	. 2649	4686	6229	7379	8220	8824	9246	9533	8723	9844
	2	0328	1143	2235	346	4661	5793	6809	7667	8364	8906
	3	0022	0158	0473	0989	1694	2557	3529	4557	3585	6562
	4	0001	0013	0059	0170	0876	0705	1174	1792	2533	3438
	5	0000	0001	0004	0016	0046	0109	0223	0410	0692	1034
	6	0000	0000	0000	0001	0002	0007	0018	00.4	0083	$0: 56$

[^35]Cumulative Binomial

n	x^{\prime}	05	10	15	20	25	30	36	40	46	50

7	1	3017	5217	6794	79	8865	9176	9610	9720	9848	98
	2	0444	1497	2884	4233	5551	6708	7662	8414	8876	9875
	3	0088	0257	0738	1480	2436	3529	4077	6801	6836	7734
	4	0002	0027	0121	0333	0706	1200	1998	2898	3917	6000
	5	0000	0002	0012	0044	0129	0288	0556	0963	1529	2266
	0	00	0000	000	0004	013	0038	0000	0188	0367	625
	7	0000	0000	0000	0250	0001	0002	0006	0016	0	8
8	1	66	5695	727	832	899	9424	9681	32	9815	961
	2	0572	1869	3428	4467	5329	7447	8309	8936	9368	9648
	3	0058	0381	1052	2031	3215	4482	5722	6846	7799	8655
	4	0004	0050	0214	0563	1138	1941	2936	4059	5230	B367
	5	0000	0004	0029	0104	0278	0580	1081	1737	2604	3633
	6	0000	0000	0002	W1	0012	010	0253	0498	0885	14.5
	7	0000	(000	0000	0001	0004	0013	0030	0085	0181	0352
	8	0000	0000	000	0000	0000	0001	0002	0007	0017	0038
θ	1	3698	51	768	86	9249	9593	9793	8898	54	80
	2	0712	2252	4005	5638	6997	8040	8780	2205	8615	8805
	3	0084	0530	1408	2618	3993	6372	562\%	7682	8505	9102
	4	0005	0083	0339	0856	1657	2703	3C11	5174	6886	7461
	5	0000	0009	0055	019	0489	0988	1717	2666	8785	5000
	6	0000	000	0008	003	0100	02	0536	0984	1658	2039
		0000	0000	0000	0005	0013	0043	0112	0250	0498	0898
	8	0000	0000	0000	0000	0001	0004	0014	0038	0091	0185
	0	0000	0000	0000	0090	0000	0000	0001	0008	0008	0020
10	1	4013	6613	8051	8926	9	9718	9855	0940	9875	9980
	2	0861	2838	4557	5242	7560	8507	9140	9536	9767	9893
	3	0115	0702	1798	3222	4744	6172	7384	8827	9004	8453
	4	0010	0128	0500	1209	2241	3504	4862	0177	7840	8281
	5	0001	0010	0099	0328	0781	1503	2486	3668	4956	6280
	6	0000	0001	0014	0064	0197	0473	0949	1662	2616	3770
	7	0000	0000	0001	0009	0035	0106	0260	0548	1020	1719
	8	0000	0000	0000	0001	0001	0016	0048	0123	0274	0547
	8	0000	0000	0000	0000	O000	0001	0006	0017	0045	0107
	10	0000	0000	0000	0000	0000	0000	0000	0001	000	00
11	1	4312	0862	8327	9141	0.78	0802	9012	0964	9886	9995
	2	1019	3026	6078	6779	8029	8870	9394	9698	9861	9941
	3	0152	0898	2212	3826	5448	6873	7909	881	9348	9673
	4	0016	0185	0684	1611	2887	4304	5744	7037	8088	8867
	5	0001	0028	0159	0504	1145	2103	3317	4672	5028	7256

Cumulative Einomial
$\begin{array}{llllllllllll}n & x^{\prime} & 05 & 10 & 15 & 20 & -25 & 30 & 35 & 40 & 45 & 50\end{array}$

Cumulative Bunomal

n	x	05	10	15	20	25	30	35	40	43	50
14	6	0000	0015	0115	0439	11	2195	3595	5141	6627	7880
	7	0800	0002	0022	0116	0383	0483	1836	3075	4539	47
	8	0000	0000	0003	0024	0103	0315	0753	1501	2586	3953
	9	0000	0090	0000	0004	0022	0083	0243	0583	1189	2120
	10	0000	0000	0000	0000	0003	0017	0060	0175	0426	0898
	11	0000	0000	0000	0000	0000	0002	0011	0039	0114	87
	12	0010	0000	0000	0000	0000	0000	0001	${ }^{0} 0006$	0022	0065
	13	0000	0000	0000	0000	0000	0000	0000	$0 \mathrm{CO1}$	0003	0009
	14	0000	0000	0000	0000	0000	0000	0000	0000	0000	0501
16	1	5363	7941	8123	9648	9865	Tod)	9095	9999	000
	2	1710	4510	6814	8329	9198	9847	9858	9048	9983	9895
	3	0362	1841	3958	6020	7639	8732	9383	9729	9893	3963
	4	0055	0556	1773	3518	5387	7032	8273	9096	9578	9824
	6	0096	0127	0617	1642	3135	4845	6481	7827	8796	9408
	6	0001	0022	0168	0611	1484	2784	4357	18868	7392	491
	7	0000	0003	0036	0181	0566	1311	2452	3902	5478	6984
	8	0000	0000	0006	0042	0173	0500	1132	2131	8465	6000
	8	0000	0000	0001	0008	0042	0152	0422	0950	1818	3036
	10	0000	0000	0000	000	0008	0037	0124	0838	0768	1509
	11	0000	0000	0000	0000	0001	0007	0028	0093	0265	032
	12	0000	0000	0000	0000	0000	0001	0005	0010	0063	0176
	13	0000	0000	0000	0000	0000	0003	0001	0003	0011	0037
	14	0050	0000	0000	0000	0000	0000	0000	0000	0001	0005
	15	0000	0000	0030	0000	0000	0000	0000	0000	0000	0090
10	1	5599	8147	9257	0719	9900	9967	9900	9997	9990	000
	2	1892	4853	7161	8593	9365	9738	9902	9967	9990	9997
	3	0429	2108	4386	6.482	8029	9006	\$549	9817	9934	0979
	4	0070	0684	2101	4019	5950	7541	8661	9349	9719	989
	5	0009	0170	0791	2018	3698	5501	7108	8334	9147	
	6	0001	0033	0235	0817	189\%	3402	5100	6712	8024	8949
	7	0000	0005	0050	0267	0796	1753	3119	4728	6340	7228
	8	0000	0001	0011	0070	0271	0744	1694	2839	4371	698
	9	0000	0000	0002	0015	0075	0257	0671	1423	2559	018
	10	0000	0000	0000	0002	0016	0071	0229	0583	1241	22
	11	0500	0000	0000	0000	0003	0016	0062	0191	0486	1051
	12	0000	0000	0000	0000	0000	0003	0013	0049	0149	384
	13	0000	0000	0000	0000	0000	0000	0002	0009	0085	10
	14	0000	0000	0000	0000	0000	0000	0000	0501	0006	21
	15	0000	0000	0000	0000	0000	0000	0000	0500	0001	
	16	0000	0000	0000	0000	0000	0000	0000	0000	0000	

Cumulativa Einomia?

```
# I' 05 10
```

17	8819	8332	9369	9775	9825	997	0993	09081000010000		
2	2078	5182	7478	8818	9499	0807	8933	0979	09\%	9839
3	0503	2352	4802	6904	8363	9228	9873	9877	0959	9088
4	0058	0938	2444	4511	6470	7931	8972	9536	9816	9936
5	0012	0221	0957	2418	4291	6113	7652	. 8740	0404	0755
	0001	0047	0319	1057	2247	1032	8803	7361	8529	203
7	0000	0008	0083	0377	1071	2248	3812	S522	7093	8338
8	0000	0001	0017	0109	0402	1048	2128	3505	5257	S55
9	0000	0000	0003	0028	0124	0403	099	1989	337	5000
10	0000	0000	0000	0005	0031	0127	0383	0019	183	2145
11	0000	0000	0000	0001	0008	0032	0120	0348	0820	1662
12	0000	0000	0000	0000	0001	0007	0030	0108	0301	0617
13	0000	0000	0000	0000	0000	0001	0006	0025	0080	0248
14	0000	0000	0000	0000	0000	0000	0001	0005	0019	0064
15	0000	0000	0000	0000	000	0000	0000	0001	0003	012

16	0000	0000	0000	00000	0000	0000	0000	0000	0000
0001									

| 17 | 0000 | 0000 | 0000 | 0000 | 0000 | 00000 | 0000 | 0000 | 0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0000

18	1	0023	8499		98	044		9996	8989		0000
	2	2665	8497	7759	900	0	08	90	9987	095	(1)
	3	0581	2682	5203	7287	8647	9400	9764	9918	9975	099
	4	0109	0082	2788	4990	0043	8354	9217	9672	9880	9962
	s	0015	0282	1208	2836	4913	6673	8114	8058	9859	0848

6	0002	0064	0419	1329	2825	4658	6450	7912	8323	9519

7	0000	0012	0118	0513	1330	2763	4509	6257	7742	8811

8	0000	0002	0027	0163	0569	1407	2717	$43 E 6$	6035	7087

9	0000	0000	0005	0043	0183	0506	1391	2033	4222	5927

10	0000	0000	0001	0009	0054	0210	0597	1347	2827	4073

11	0000	0000	0000	0002	0012	0001	0212	0576	1280	2103

12	0000	0000	0000	0000	0002	0014	0062	0203	0537	1189

13	0000	0000	0000	0000	0000	0003	0014	$00 \$ 3$	0183	0181

14	0000	0000	0000	0000	0000	0000	0003	0013	0049
0154									

15	0000	0000	0000	0000	0000	0000	0000	0002	0010	0038

18	0000	0000	0000	0000	0000	0000	0000	0000	0001
00007									

17	0000	0000	0000	0000	0000	0000	0000	0000	0000
0001									

18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000

18	1	8220	8048	9544	9856	9958	9989	9997	9909	000	000
	2	2453	5797	8015	9171	9600	9898	0299	0982	9088	0000
	3	0885	2946	5587	7631	8887	9538	9830	9945	9985	9986
	1	0132	1150	3159	8448	7389	8888	8409	9770	0223	6078
	5	0020	0352	1444	3267	6346	7178	8500	9304	9720	990.4

Cumultive Binomial

n	x	05	10	15	20	25	30	35	40	45	50

19	0032	0086	0537	1631	3322	5261	7032	8371	9223	9882
7	0000	0017	0.63	0676	1749	3346	5188	6919	8273	9165
8	0050	0003	0031	0238	0775	1820	3344	5122	6831	8204
9	0000	0000	0008	0057	0287	6839	1855	3325	5060	6762
10	0970	0000	0001	0016	0089	0326	0875	1801	3290	500
11	0000	0009	0000	0003	0023	0105	0347	0885	1841	3238
12	0000	0000	0000	0000	0005	0028	0114	0352	0871	1796
13	0000	0000	0000	0000	0001	0006	0031	0116	0342	
14	0000	0020	0000	0000	0000	0001	0007	0031	0109	
15	0000	0000	0000	00na	0000	DiD	pow	0906	0028	0096
16	0000	0000	0000	0000	0000	0000	0000	0001	0005	0022
17	0000	0000	0000	0000	0000	0000	0000	0000	0901	0004
18	0900	0000	0090	0000	0000	0000	0000	0000	0000	0000
19	0709	0090	0000	0000	0000	0000	0000	0000	0000	000

$20 \begin{array}{llllllllllll} & 1 & 6415 & 8784 & 9012 & 9885 & 9968 & 9992 & 9998 & 10000 & 10000 & 10000\end{array}$

3	0755	3231	5951	7939	9087	9645	9679	9964	9091	9998

4	0159	1830	3523	5886	7748	8929	9558	9840	9851	9987

$\begin{array}{lllllllllll}5 & 0026 & 0432 & 1702 & 3704 & 5852 & 7625 & 8818 & 9490 & 9811 & 9941\end{array}$

6	0003	0118	0673	1958	3823	3836	7646	8744	0447	9793
7	0000	0024	0219	0867	2142	3920	5834	7500	8701	9423
8	0050	0004	0059	0821	1018	2277	3000	5841	7480	8684
9	0000	0001	0013	0100	0409	1133	2076	4044	5857	7483
10	0000	0000	0002	0026	0189	0880	1218	2447	4086	5881

11	0000	0000	0000	00006	0039	0171	0532	1275	2493	4119
12	0000	0000	0000	0001	0009	0051	0196	0565	1308	2517
13	0000	0000	0000	0000	0002	0013	0060	0210	0580	1316
14	0000	0000	0000	0000	0000	0003	0015	0065	0214	0577
15	0000	0000	0050	0000	0000	0000	0703	0916	0064	0207

16	00000	0000	0000	0000	0000	0000	0000	0003	0015	0059
17	0000	0000	0000	0000	0000	0000	0000	0000	0003	0013
18	0000	0000	0000	0000	0000	0000	0000	0000	0000	0002
19	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
20	0000	0900	0000	0000	0000	0000	0000	0000	0000	0000

$40 \quad 1 \quad 8715 \quad 98529985 \quad 9999100901000010000100001000010000$
$\begin{array}{llllllll}2 & 6099 & 9195 & 9879 & 9985 & 9999 & 1000010050109001000010000\end{array}$
$\begin{array}{llllllllll}3 & 3233 & 7772 & 9514 & 9921 & 9990 & 9999 & 1000010000 & 10000 & 10900\end{array}$
$4 \begin{array}{llllllll}4381 & 5769 & 8698 & 9715 & 9953 & 9894 & 9890 & 10000 \\ 10000 & 10060\end{array}$
$\begin{array}{lllllllllll}5 & 0480 & 3710 & 7367 & 9841 & 9840 & 9974 & 9897 & 10000 & 10000 & 10000\end{array}$

Cumuloliva Elnomlol

n	I	05	10	15	20	25	30	35	40	45	30

406	0139	2003	5075	8357	0567	9914	9987	9999	0000	0000
7	0034	0995	393\%	7141	003	9762	9056	9934	9899	000
8	0007	0419	$244!$	5629	8180	9447	0576	9779	9908	000
9	0001	0155	1354	4069	7002	8S90	9697	0939	9991	999
10	\cdots	0051	0672	2682	3605	8011	1836	9844	9973	9997
11	-	0015	0293	1608	4161	6913	8785	9648	0926	9989
12	-	0094	0120	0875	2449	5504	7947	0291	9821	996
13	-	0001	0043	0432	1791	4228	6857	8715	9614	9917
14	-	-	0014	0194	1022	2008	5592	7859	9249	9808
15	-	\square	0001	0079	0544	1926	4279	6820	8674	9537
16	-	-	0001	0029	0262	1151	3054	\$593	7858	9231
17	-	-	-	0010	0116	0633	2022	4319	6815	8659
18	-	-	-	0003	0047	0320	1239	3115	5609	785
19	-	-	-	0001	0017	0148	0699	2089	4349	082
20	-	-	-	-	0006	0063	0363	1298	3156	862
21	-	-	-	-	0002	0024	0173	0744	2130	437
22	-	-	-	-	-	0003	0075	0392	1331	317
23	-	-	-	-	-	0003	0030	0189	0767	214
24	\cdots	-	-	-	-	0001	0011	0083	0405	134
25	\cdots	-	-	-	-	-	$000-4$	0034	0100	0760
26	-	-	-	-	-	-	0001	0012	0086	0103
27	-	-	-	-	-	-	-	0004	0031	010
23	-	-	-	\sim	-	-	-	0001	0012	003
29	-	-	-	-	-	-	-	-	0004	003
30	-	-	"	-	\sim	-	-	-	0001	0011
31	-	-	-	-	-	-	-	-	\cdots	0003
32	-	-	\cdots	-	-	-	-	-	-	0001
33	-	-	--	-	-	-	\cdots	-	-	-
34	-	-	-	-	-	-	-	-	-	

$\begin{array}{llllllll}50 & 1 & 9231 & 9918 & 9997 & 10000100001000010000100001000010000\end{array}$
$\begin{array}{llllll}2 & 7206 & 9662 & 9971 & 9998 & 100001000010000100001000010000\end{array}$
$\begin{array}{llllll}3 & 4595 & 8883 & 0858 & 9987 & 9999 \\ 10000 & 10000100001000010000\end{array}$
$4 \quad 3396 \quad 7497 \quad 9540 \quad 934399951000010000100001000010000$
$5 \quad 1036 \quad 5088 \quad 8879 \quad 9815 \quad 9379 \quad 999810000100001000010000$

6	0378	3839	7804	9520	9930	9993	9999	100001000010000	
7	0118	2298	6387	8960	9805	9975	$999 S$	10000	10000
8	0032	1221	4812	8096	9517	9927	9992	9999	10000
9	0008	0579	3319	6927	9034	9817	9975	0908	10000
9	10000								
10	0002	0245	2089	5563	8363	0598	0933	9992	9999

Cumuletive Binomisal
$\begin{array}{llllllllllll}n & x^{\prime} & 05 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50\end{array}$

5011	-	0093	1198	4174	7378	9211	9840	9978	0008	10000
12	-	0032	0628	2803	6184	8610	0658	9948	9994	0030
13	-	0010	0301	1861	4890	7771	9339	9857	9982	9988
14	-	0003	0132	1100	3630	6721	8837	9720	9955	9095
16	-	0001	0053	0607	2519	5532	8122	9460	9886	9987
16	-	-	0020	0308	1631	4308	7199	9045	9780	9967
17	-	-	0007	0144	0883	3161	6111	8439	9573	9923
18	-	-	0002	0063	0551	2178	4940	7631	9235	0836
19	-	-	0001	0025	0287	1406	3784	6644	8727	9675
20	-	-	-	0000	0183	0848	2736	\$535	8026	9405
21	-	-	-	0003	0063	0478	1861	4380	7188	8987
22	-	-	-	0001	0025	0251	1187	3298	0100	8389
23	-	\cdots	-	-	0010	0123	0710	2338	4881	7601
24	-	-	-	-	0004	0050	0396	1562	3860	6641
25	-	\cdots	-	-	0001	0024	0207	0078	2840	8561
28	-	-	-	-	-	0008	0100	0573	1866	4488
27	-	-	-	-	-	0003	0015	0314	1279	3359
26	-	\cdots	-	-	-	0001	0019	0160	0780	2399
29	-	-	-	\sim	-	-	0007	0076	0444	1611
30	-	-	-	\sim	-	-	0008	0084	0235	1018
81	-	-	-	-	-	-	0001	0014	0110	0595
32	-	\cdots	-	-	-	-	-	0005	OH3	0325
33	-	-	-	-	-	-	-	0002	0022	0164
34	-	-	-	-	-	-	-	0001	0000	0077
35	-	-	-	-	-	-	-	-	0003	0033
36	-	-	-	-	-	-	-	-	0001	0013
37	-	-	-	-	-	-	-	-	-	0006
38	-	-	-	-	-	-	-	-	-	0002
39	-	-	-	-	-	-	-	-	-	-

$100 \quad 1984110090100001000010000100001000010000110000 \mathrm{~L} 0000$
$29629 \quad 99971090010000100001009010090100001000010000$
3881789811000010000100001000010000100001003010000
$4 \quad 7422 \quad 9922$ g999 10000100001000010000100001000010000
$5 \quad 56409763999810000100001000010000100001000010000$

3840										
7	2240882880953 0909 10000 10000 10000 10000									
8	1280	7939	9878	9997	0000	0000	0000	0000	000	1000
	0831	6791	9725	9991	0000	00001	0000	0000	0000	1000
	0282	5487	449	997	0000	1000	10000	1000	0000	

Cumulaifu Binamlal
$\begin{array}{llllllllllll}n & 2 & 05 & 10 & 15 & .20 & 25 & .30 & .35 & 40 & 45 & 50\end{array}$

10011	0115	4168	9006	993	9999	10000	10000	100001	10000	0000
12	0043	. 2970	836	9574	0051	10000	10000	100001	10000	10000
13	0015	1982	-327	9747	9990	10000	100001	100001	100001	10000
14	0005	1239	6526	9531	975	0999	10000	10000	I 0000	0000
15	0001	0720	5123	0196	9016	0998	10000	100001	10000	10000
16	-	0399	4317	8715	1389	0995	10000	0000	10000	00
17	\square	0208	3276	8077	9789	¢090	10000	10000	100001	0000
18	-	0100	2367	7283	9624	9978	9999	10000	10000	10000
19	-	0046	1828	6379	8370	9955	9999	10000	10000	10000
20	-	0020	1065	5398	9005	8911	9978	100001	10000	10000
21	-	0008	0663	4405	8512	0935	9992	0000	10000	0000
22	-	0003	$0 \hat{9} 93$	3460	7886	0712	9933	10000	10000	0000
23	-	0001	0221	2611	7136	952]	9056	9098	10000	0000
24	-	-	0118	1891	6289	0245	993.1	9997	10000	10000
25	-	-	0061	1314	5383	8864	9870	9991	10000	0000
28	-	-	0030	0875	4465	8369	9789	9988	10000	0000
27	-	-	0014	0558	3583	7756	9619	0978	0099	10000
33	-	-	0008	0312	2776	7036	0412	9954	9998	10000
20	-	-	0003	0200	2075	6232	9152	9016	9900	10000
30	-	-	0001	0113	1495	5377	8764	9852	0992	10000
31	-	-	-	0081	1033	4509	8270	9752	0985	0000
32	-	-	-	0031	0691	3669	7609	9602	10970	0299
33	-	-	-	0018	0446	2893	6931	9385	8915	9998
34	\sim	-	-	0007	0278	2207	6197	9087	9902	9998
35	-	-	-	0003	0164	1689	Esin	8697	1034	9991
36	-	-	\checkmark	0001	0009	1161	4542	8205	8728	9982
37	-	-	-	0001	0052	0799	3731	7614	9571	9967
38	-	-	-	-	0027	0530	2976	6932	9349	9940
39	-	-	-	-	0014	0340	2301	8178	P0,18	9895
40	-	-	-	-	0007	0210	1724	5379	8657	982
41	-	-	-	-	0003	0125	1250	4567	8169	9716
42	-	-	-	-	0002	0072	0877	3775	7585	9557
43	-	-	-	-	0×01	0010	0.594	3033	6913	9334
44	-	-	-	-	-	0021	0339	2385	6172	9033
45	-	-	-	-	-	0011	0246	1789	5387	8614
46	-	-	ー	-	-	0005	0150	1311	4587	8159
47	-	-	-	-	-	0003	0088	0030	3804	7579
48	-	$=$	-	-	-	0001	0050	0638	3069	6914
49	-	-	\square	-	-	D001	0023	0123	2104	6178
50	-	-	-	-	-	-	0015	0271	1827	5398

Cumulative Bmomal

n	x	05	10	15	20	25	30	35	40	45	50
100	51	-	-	-	-	-	-	0007	0168	1346	4602
62	-	-	-	-	-	-	0004	0100	0960	2822	
63	-	-	-	-	-	-	0002	0058	0662	3086	
64	-	-	-	-	-	-	0001	0032	0441	2421	
55	-	-	-	-	-	-	-	0017	0284	1841	
				-	-	-	-	-	0009	0176	1356
56	-	-	-	-	-	-	-	0004	0106	0967	
57	-	-	-	-	-	-	-	0002	0061	0669	
58	-	-	-	-	-	-	-	0001	0034	0443	
59	-	-	-	-	-	-	-	-	0018	0284	
60	-	-	-	-	-						
				-	-	-	-	-	0009	0176	
61	-	-	-	-	-	-	-	-	0005	0105	
62	-	-	-	-	-	-	-	-	0002	0060	
63	-	-	-	-	-	-	-	-	0001	0033	
64	-	-	-	-	-	-	-	-	-	0018	
65	-	-	-	-	-	-					
68	-	-	-	-	-	-	-	-	-	0009	
67	-	-	-	-	-	-	-	-	-	0004	
68	-	-	-	-	-	-	-	-	-	0002	
69	-	-	-	-	-	-	-	-	-	0001	
70	-	-	-	-	-	-	-	-	-	-	

Poisten end x^{3} Disiributione *

0	－ف	＊ 4	I＊\quad \％	ㅂ m	9	4
$\underset{\infty}{\infty}$			 $\rightarrow \infty$ 里定 －		＊ 8 安 B	
$\begin{gathered} \infty \\ \infty \end{gathered}$	 －	 ∞ 必比些 －	000 世是 － 的以 あぁあめ○क ©	 为动 かわめぁめめ \square	$0 \pi 0 \mathrm{c}$ 때요 conomo －	8 8 8 $\boldsymbol{8}$ $\boldsymbol{8}$ $\mathbf{8}$
$t \omega$		 앵№s －		0		
$\begin{aligned} & +10 \\ & t+\infty) \end{aligned}$		＊ Ha $_{6} 0$的新 58 的気俭 r 0	 0000006 0	$\infty \times \infty$ －m500 －	化时 10 10600 5	9 \square \square 0 0 0
$\begin{aligned} & \infty \infty \\ & 5 \infty \end{aligned}$	 58的 58 θ					$\boldsymbol{\$}$ $\$$ $\$$ ∞ ∞
$5 \operatorname{lot}$				 4800060 ©		
$\begin{aligned} & x+\infty \\ & c \infty \end{aligned}$	 －60れ心世 θ		 Caymbr － ■かっかっか 0	＂ cy 5 un un －140 mox ○めためOめ ф		
$\begin{aligned} & \therefore \theta \\ & \approx \theta \end{aligned}$	 0	 $5 \cos _{4} \mathrm{x}$ $-8 x 98$ － $+10 \infty$ －	48が心 － 언ㅇot कかめ6on ©	0		
$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{Cl} \end{aligned}$		SO日 $-4 \sigma_{0}$ ＂80 － 80% 为 0	© ∞ © CHEHOC 90989 －Mrn m \square	 禺 $=\boldsymbol{\theta}$ \square		
	FOATH 0		10 क中 $64=10 \%$ 0			
\％	－40＊－ 476	$\cdots \infty \cos \theta$		우ㅇㅒㅐํ	以 सी Wल	8

\bigcirc	Her mos	－10 0	－$\quad \infty$		깪 벅
$\begin{aligned} & 00 \\ & 001 \end{aligned}$	 0			\square	
∞	－ θ				
$\begin{gathered} \infty \\ \hline \end{gathered}$		N（ －			8思に留等 rooric $\infty \infty$ －
$\begin{aligned} & +\infty \\ & \infty \\ & \infty \end{aligned}$					
$\underset{\sim}{*}+\infty$	청애앵ㅇ 8 0	 o			－ －
06 ©			解中「ががぁ －	 －	
©헤 0		80 －			
$6 \mathrm{~m}$		NEN 	NH5 Min あかが心め －	o 5品品思免 －	
$\operatorname{H}_{\infty}^{+60}$	${ }^{12} 98980$ 옹ㅇㅇㅇ․․ 0		8919．9\％ － －		
	 －		 0		
：	－NMザ心0	\cdots－		9\％	

Polsson and x^{2} Distributions

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& 0 m \\
\& 0 t
\end{aligned}
\] \& \& \& \begin{tabular}{l}
 \\
 \\
8x．\(x^{3} 8\) \\
 \\
b
\end{tabular} \\
\hline ot \& \& \& \\
\hline \[
\begin{aligned}
\& 90 \\
\& y t
\end{aligned}
\] \& \& \& \begin{tabular}{l}
 \\
№t응 \\
「以 \\
 \\
－
\end{tabular} \\
\hline \begin{tabular}{l}
0 \\
0
\end{tabular} \& \& \& \begin{tabular}{l}
 \\
a grow \\
 \\
－ 4450 \\
\(\phi\)
\end{tabular} \\
\hline \& \& \& \\
\hline \[
\begin{aligned}
\& 48 \\
\& 54 \\
\& 4
\end{aligned}
\] \& \& \begin{tabular}{l}
 ज0かな 98040 \\

\end{tabular} \&

\hline $$
\begin{aligned}
& \theta \\
& \rightarrow \pi
\end{aligned}
$$ \& \& \&

\hline \[
$$
\begin{aligned}
& 0 \% \\
& =50
\end{aligned}
$$

\] \& \& | 179円ヵ以 NOPGOM6 |
| :--- |
| \rightarrow H世 $\rightarrow \overrightarrow{4} \mathrm{HAC}$ \pm | \&

\hline \[
$$
\begin{aligned}
& 0.0 \\
& \# 5
\end{aligned}
$$

\] \& \& | |
| :--- |
| Orymog |
| |
| |
| -0 析 40 |
| © | \&

\hline \begin{tabular}{l}
－\({ }^{4}\) \\
Ol \\
\(\rightarrow\) \\
1I \\
3 E
\end{tabular} \& \& \& \begin{tabular}{l}
 \\
 \\
Bet60 90 \\
\(\omega N た め \infty\)

\end{tabular}

\hline $\boldsymbol{*}$ \& \& \[
\cdots \infty \infty

\] \& | $\rightarrow+\infty$ |
| :--- |
| |

\hline
\end{tabular}

$\underset{\rightarrow c}{\infty} \boldsymbol{r}$	出	$\rightarrow \cdots \text { 为 }$	엉
 ω	क $\cdots \overrightarrow{5} 5$ － ＊msing 6	romer onomos ocscm 0 OHOC ఉ	
		$5 \mathrm{yc}+\infty$ 1w 영ㅇㅇㅇ ఉ	个om man $\underset{6}{6}$ \oplus
 トめからの \square		 Rrocio 號品 © ©	$\begin{aligned} & \infty 0 \\ & \infty \\ & \infty \\ & \phi \\ & \phi \\ & \hline \end{aligned}$
00 mc ఉ	10020 wincos θ	4 4 － 0 cico cmper © misuo 0	
	\＆ \boldsymbol{y}_{6} Eg要要 $\$$	新 Noncoc $50{ }^{\circ} \mathrm{O}$ 4のあめ6 \oplus	$\begin{aligned} & \boldsymbol{6} \\ & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{8} \\ & \boldsymbol{\theta} \end{aligned}$
由のm定分 \dagger			$\begin{aligned} & 9 \\ & 8 \\ & 9 \\ & 0 \end{aligned}$
定禺定 的あぁあぁ ©	$x^{2}-18 t$ को की ¢心6 © ©		
	的安皃 cosmo mosomo e		
－20 $x^{2} 0$ $04=509$ ¢ E	1549 － ¢4 Mço就以100m 0 c $00 \% 0$ －		
दind 紫が心 ω	 － 5000 －可以 0	个氷禹 0074 dom $\boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{\omega}$ －	
也为部影	$\operatorname{cic}_{\cos }^{\infty} \infty$		$\otimes+$

$0 \quad N \quad \underset{r-1}{n}$	$\underset{\sim}{\text { H }}$	内人monos	어어웅	10% ल⿵人
		Tos on cr mintuc －かめぁ －	Medme 12040 monono cong あ	13 cos 0 6mo OMD禺 0 －
		 onton 0 OHOH 0	onclom सoscm gomon かめあぁか 0	
	 －空気 －	－ cwger cosdenin 0	ज以 940400 ondcos manoso cacion 0	
		$0 \cos _{0} 0$ ©COME cicomo 0	190485 कलかな mCOC 0 OHOC 0	0 $\%$ 0 0 0 0
		为禺禺以 mためNG nang －	44^{4} 列 0	0 8 8 0 0
 －COMW6 ϕ			4010000 cromich © g copp 06060 0	
		010000 40705 ciorto （w）cos －ancom 0	（matmo NTMOC फめक co －cioncos	
	0	－ －4 40的以下品 $4 \Leftrightarrow$ めのがक 0	空新和和 ©9004 0 CO 010 Ca ω	
		＊${ }^{4}$ ） 5170） 5 010606 ancomo	Mry Tomb が家 0 0	
m－ 0 ©		Q 90818初COH $0 \mathrm{OH} \mathrm{COO}_{3}$ 0 CHO がロロッか 0	$\operatorname{mos} \cos$ $0 \mathrm{BHO}_{5}$ cronas cocm の心が ©	
	 	© 		$8 \mathrm{Cl} 7$

ct	Motmon		NENAR	Cremon	10
 2100．00 0	 100 － －	为的品品 CIO OOH 1ヶ世世た。 0	forone苟的心5 0	08 0180 19कかが品 かのक क 0 कのक力。 －	
		geter 会为为 \square	－ thom cyncos ぁぁぁぁぁ －	$0010 \infty 0$下禺が品 $\mathrm{a}_{\mathrm{O}} \mathrm{O} \mathrm{H} \mathrm{O}$ $-$	
15015 ma ∞ －サーから	乐的 － 9 onto Ogintag Thiscos 	○力のかに $10 \% 90$ लब1 4istos $\infty \infty \boldsymbol{\infty} \infty$	कのロロ 00 O物 － 0ヵकめの ©OMOD \square		
 －	F 9 剈多齐入以 － 4 m © C		क力 워웅 Nलdक － 0 क 6 amodis $\boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{\omega}$ －		
	mかets － 4 17450 －	लめめめ ranomp twis ${ }^{\circ}$他的 कかわ日内 －	（\％1087 88150 －		
			 かぁかg\％ －		
 क thom $\cdots 508$ ज15 6		T－ $\infty \omega_{0}^{\infty}$ かめぁ历の कの円の日 0	$-\infty \cos +\infty$ क क中mag かめの 0	ϕ ϕ ∞ ∞ ∞	
 以 50200 50005 ©	$0 \mathrm{O}=4 \mathrm{c}$ 130049 －	－ 8 cot 629Cl－4 110660 国 900 －			
ती ती Cl Cl			4101615	영홍ㅇ	9

\cup	0	\cdots u＊	¢ 0	$9 \mathrm{H}$	曾
$\stackrel{0}{2}$					
业昜					
∞_{∞}^{∞}					
宛			 COGM15 \＄88988 688858 \square		
㒾			中事心㱜 9月 5889% －	 －$\quad \mathrm{y} 96$ \oplus	क 5 O 0 06 明明 ＂易 O日wrim
$\begin{gathered} \infty \\ \operatorname{mot} \end{gathered}$			名果 889898 \oplus	 あ69888 0	
	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$			 $\infty \square$ －90以 U	
分					
定				 －4 ONO －0Somen	0－0が $12005=$ mmicnm ©
	$\begin{aligned} & \text { B } \\ & \text { 昫 } \\ & 8 \\ & 8 \end{aligned}$		 080606 －	tontacto 0	
2	150	－men	m		

	OR然以 सर6ENC	1095盟男 ※めNGC	O max 0060	W800
		SOMClt 0 O cractrio 0	क也的 NOCom かかめの 0	
	단웅 Tm 904 － m_{on}的世 0 下 O	068 每 orpent \％の日以 ゅゅゅめぁ θ	 98 cos ©	$\begin{aligned} & 9 \\ & 8 \\ & 6 \\ & 6 \\ & 0 \end{aligned}$
		10N里电 COAN $60-160$ g91060 $\boldsymbol{\omega} \boldsymbol{6} \boldsymbol{6}$ क 0	1508かO 40 0 かの品わす。 － 0	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$
	15019 앙N 19 ¢OTH10 0000 ©OTmom ©	Nㅏㅇ웅 9） － कロのक ©	禺等酸 12rand H25日苗 品男男息 ©	$\begin{aligned} & \$ \\ & \phi \\ & \boldsymbol{\phi} \\ & \boldsymbol{\phi} \\ & \boldsymbol{6} \end{aligned}$
 ○品酸 0	00000 oosw © Nため ©	 Fontom － 5 部品 Θ	 9080 4∞ 6909\％ あがあり ©	$\begin{aligned} & 10 \\ & 6 \\ & \$ \\ & \$ \\ & 6 \end{aligned}$
		 6月058最最的品 काकの日 ©	安果酸 \％ 6 －	$\begin{aligned} & 2 \rho \\ & \phi \\ & \hline \\ & \hline \\ & \hline \end{aligned}$
0 部 07 F 9 O OnEm会 व的乐以 0		10∞ C）wrym क力 काOO ©	Fivisco 0125000 $5 \infty \cos$ ～क क力口 のーの日の ©	ϕ ϕ ϕ ϕ
40401013 100 WO 쌩N융 ©	© 0 ODN $1 \rightarrow \infty$ $\cdots \infty$ 8		080% 	$\begin{aligned} & 14 \\ & 8 \\ & \mathbf{0} \\ & \boldsymbol{n} \\ & 0 \end{aligned}$
	19 N CHENO \＄め 日～8 ${ }^{-10 \% O}$	 ＊ 0.100% 240cirs $1 \rightarrow \infty 060$ 6 60 Om	Ftern のがロO $0 \sigma_{0} \sigma$ agos宜 C） CHO	$\begin{aligned} & \text { w } \\ & \infty \\ & \phi \\ & \sigma \end{aligned}$
0	0	0	\bigcirc	\bigcirc
\rightarrow－ 40 जロFFB － 	MTV曻 0 15050 15 H 以 －cromb 06060			
$\underset{r}{c} \underset{\sim}{c}$		Sow	Oめ世	0

Cumulative probability curves of the Poisson exponential distribution (a modification of a chart given by Miss F Thorndike in The Bell System Technical Journal, October 1926) These curves from mation under certain conditions for determining the probabinty of occurrence of a or less defectives for a given p and n Further they gerve as a gencralized set of OC curves for single sampling plans, when the Possson distribution 15 applicable (Used with permassion from H F Dodge and E. G Romig Sampleng Inapection Tables, John Wiley and Sons, Ine, New York. 1959, p 35;

Appendix G

Cumulative Distabution of 9 *

Table ahows, for given n, probabity of a t value equal to or lees than the observed t when it is postuve, or equal to or more than the observed t whee t 25 negative

* Reproduced with permisson from E 0 Hentley and E S Pearson, "Table of the Probablity Integral of the t-Dnstrobution" Buomeinka, Yol 37, June 1950, pp 168-172

Cumulafive Distribution of ;

	t1	12	13	4	15	10	H	13	19	20
00	0－80009	O． 50000	0－80000	0－80009	0．50000	0－8000	0．00060			
0.1	53893	533000	${ }^{693603}$	F36t2	51917		53921	${ }_{60020}$	0.55000	0－50000
08	57744	57150	${ }^{59771}$	57782	87592	57850	${ }^{67807}$	E7514	58950	${ }^{53933}$
0.3	51615	61581	81554	4157	61585	61898	61.157 61095	87819 81918	57840 61528	37625 61638
04	58159	85191	85217	60849	65800	65278	65293	86307		61638 85339
0.5	0.66654	0．68gs	－ 0 －8826	0 C 5004	04678	005600	068598			
08	71957	72017	72059	72095	72127	72155	72179	－22083	$\begin{array}{r}068959 \\ \hline 1220\end{array}$	0.88973
$0 \cdot 8$	76077	75126	75187	75339	75229	75850	32330	${ }_{7} 7225158$	$\underset{7}{72250}$	72238 74400
$0 \cdot 8$	7385	75037	78036	${ }^{-18148}$	75100	73285	73261 ，	${ }_{7 B 293}$	788320	${ }_{7}^{73400}$
Ot	50620	60700	80788	90833	60503	80227	603Es	${ }^{81000}$	${ }^{170321}$	7836 81058
10	0.88050	08314	0.83222	0－63293	088311	0－63590	96at3			
11	83259	8535	80438	85506	${ }^{355 B 8}$	Esfes	6rist	－ 8.85772	0．88598	0.83537 85509
12	87233	87335	\％942	${ }^{83497}$	81582	87629	82670	8875	87756	${ }_{87722}$
13	869	${ }^{8} 80059$	2101	80279	29339	58399	89652	89500	89512	（8958］
14	90648	90556	00754	${ }^{20} 836$	29897	20079	01025	91071	9116	8156
15	$0-21912$	082027	90925	0－82009	0.02381	0.92346	0．2402	$0-82152$	50.5488	0.02538
16	03105	${ }^{93221}$	${ }^{23320}$	23194	95488	${ }^{6} 3542$	23693	03555	93585	${ }^{23739}$
17	91140	91256	94354	94435	${ }^{14512}$	95576	01532	04693	24758	94558
16	35034	93148	93.365	83.35	\＄5100	95463	9354．	935 58	${ }_{951515}$	${ }_{80} 8553$
18	85802	95914	86048	90063	0.5158	C6220	66293 －	90521	$4{ }_{6} 364$	6403
20	096460	0－06587	$0 \mathrm{Pf} \mathrm{SNS}^{\text {d }}$	－ 0675	006503	090554	09695	1965958	09－000	097037
91	97020	97125	971095	$0-23$	00^{0367}	$8{ }^{2} 405$	0.45%	98969	9734	9\％s69
32	07108	97589	90^{-6-3}	0^{-204}	pists	97088	97804	97045	8951	93014
23	986298	97950	965	94192	28169	28238	0829！	8839	2535	93883
24	93234	8838］	P6385	98437	98509	09554	58394	95629	985\％	95889
45	0－98425	－936m	088851	$0 \cdot 89729$	09875	0－03515	098\％ 53	088885	0.98813	0.08383
16	06785	05659	\＄5000	988．31	98935	97033	coose	99005	09121	9914
2%	38967	98035	\＄9．95	08151	818109	99211	c924，	99267	99290	99311
28	00198	99198	89849	c02	93327	98335		暂號	69489	98115
28	99878	29301	89390	89418	9350	99176	99502	49538	5854	88537
20	0.89996	29044	0 0．76 0^{4}	OOn）${ }^{\text {at }}$	${ }^{0} 93851$	090575	0－5nsp	0.09518	096532	
31	90145	9954	055， 8	9nvel	88534	00686	69575.	940991	Spisp	99718
32	905＂7	90958	Pram	9960	9970n	${ }_{0}^{40} 91$	crias	98.52	$93 * 5$	89776
13	90646	03665	90713	$00^{\circ} 0^{\circ}$	29is？	93－4，	907E2	9980］	99512	20881
34	29703	99737	\＄5763	$05^{\circ} \mathrm{E} 4$	99602	92617		93810	99150	97658
98	0.98951	09988		20.533	0.83339	－29802	049363	099872	098580	0 09685
98	90701	90918		Us）	09859	9月809	99350	99898	99305	pabll
31	901545	9964	ysuls	8381	07503	90003	99811	99916	99394	92999
36	96853	98954	9nest	9\％ 02	93913	99921	C903 3	93934	93939	693944
31	98988	99565	89909	08930	99220	99938	59412	89816	29932	99600
40	0098594	099912	0 P9\％ 4	097034	0994929	050948	00945	099358	098962	
$1{ }^{\prime \prime}$	Whati	WNS	11， 46	tanne	What	W9fth	2040	2093	सuy ${ }^{\text {a }}$	393\％
14	92917	96954	01944	93930	0094	99\％\％	99500	${ }^{959} 93$	99935	99986
46	09583	989tis	8965	加枵 9	29043	59995	59997	94989	00990	99993
48	59772	87978	29053	99384	00988	99950	39092	29693	6998	06975
	089859	0 92985	0.00498	09\％ 230	－ 29092	0.97093	0.09395	0.89895	0.89985	0.99998
12	W9885	99067	Dukt ${ }^{\text {a }}$ ！	99418	97973	99996	pande	99997	9997%	98983
4	97969	999， 2	3 mm	91295	99939	99927	90093\％	99998	99978	98989
8	89372	98994	9คกร5	99977	90997	49298	29998	99999	99839	97999
58	09094	$0 \mathrm{EP96}$	90985	03995	99996	95009	09968	88829	89998	10978
80	0－60975	0.09597	0－16928	0．03588	089598	0．99958	09909	098989		
02	97937	gners	89094	89998	93973	98928				
61	9917	29593	Man ${ }^{\text {an }}$	99809	99999					
$8{ }^{8}$	00938	00989	99929	00020						
6.8	89838	09999	90\％\％							
70	009999	0.90898		Upper pertentoge ponta of l						

$1-P$	$\boldsymbol{H}=1$	2	3	4	5	6	\dagger	8	9	10
10^{1}	3183	2133	1021	117	589	521	479	450	430	414
101	3153	107	2＂00	1303	088	808	106	644	601	569
101	3185！	224	4；\％1	2333	1554	12.03	$10: 16$	880 989	8	163 815
5×10^{-4}	63652	316	6940	2782	1789	1355	1129	979	883	815

Appendix H^{+}

r Values for Given z Values

z^{\prime}	00	01	02	03	04	05	06	07	08	08
0	0000	0100	0200	0300	0400	0500	0599	0699	98	0898
1	0897	1096	1194	1203	1391	1489	1587	1684	1781	1878
2	1974	2070	2165	2280	2355	2449	2543	2635	2729	2821
3	2913	3004	3095	3185	3275	3364	3452	3540	3627	3714
4	3800	3885	3969	4053	4136	4219	4301	4382	4462	4542
-	4621	4700	4777	4854	4930	5005	5080	5154	5227	5299
6	5370	5441	5511	5581	5549	5717	5784	5850	5015	5980
7	6044	0107	6169	6231	6291	6352	6411	6489	6527	6584
8	3640	6698	6751	6805	6858	6911	6963	7014	7064	7114
9	7163	7211	7259	7306	7352	7398	7443	7487	7531	7574
10	7616	7658	7699	7739	7779	7818	7857	7895	7832	7968
11	8005	8041	8076	8110	8144	8178	8210	8248	8275	8306
1.2	8337	8367	8397	8426	8455	8483	8511	8538	8565	8591
13	8617	8643	8688	8693	8717	8741	8764	8787	8810	8832
14	8854	8875	8896	8917	8937	8957	8977	8996	9015	9033
15	9052	9069	9087	9104	9121	0138	9154	8170	9186	0202
16	9217	9232	9246	9261	9275	9288	9302	9316	9329	2342
17	9354	9367	9379	9891	9402	9414	9425	9436	9447	84.58
18	9468	9478	9498	9488	9508	9518	9527	8.536	9745	95.54
19	9562	9571	9579	9587	9595	9003	3611	9619	9626	9633
20	9640	9847	9654	9661	9688	9674	9880	9887	9893	8699
21	9705	9710	9716	9722	9727	9732	9738	9743	9748	9753
22	9757	9762	9767	9771	9770	9780	9785	9788	9783	9797
23	9801	9805	9809	9812	9816	9820	9823	9827	9830	9834
24	9837	9840	9843	9846	9849	9852	9855	8858	9861	8883
25	9866	9868	9871	9874	9876	8879	9881	9884	9886	9888
26	9800	9892	9895	9897	9899	9301	9903	8805	9906	9808
27	9910	9912	9914	9915	9917	9919	9920	9822	9023	8925
28	9926	9928	9929	9931	9932	9833	9935	9836	9937	9938
29	9940	9941	9942	9943	9.944	9945	99*6	9847	8948	9850
30	9951									
40	9883									
50	9989									

*Reproduced with permisaion from Fredenik C Mills, Statashical Methods, Henry Holt and Company, New York, 1055

Index

Acturacy in counting and measurs2nent, 113-115
pression of tumbers, 114 symaficant digets, 114
Accuracy of calculated numbers, 115114
ctitects of chatce of $116-117$
Addaton theorem 179
Aggregate, in iadex numbers 714-722, 726
Alienation, voeffiesent of, 512-512
Are sine traneformatron, 310-311
Anthmetse mean and "best" cetmate, 281-282
and cueficient of cortolator, 3as809
as eathate of tnadian, 190-192
calculation of, 148
short-cut cslealatons, $275-245$
confidence Iaterval of, $357,368,448$ 440
defined, 148
distriburtuon of, in samples, attrobutes, 274-275, 277-279
veriables, 425-428
infereaces about, attmbutes, $2 \pi 0$ 341, 387-424
vernables $425-462$
In normal curre, 148
leasd squares property ol, 202-203, 634
mathematical proparties of, 202-203
moviag, 619-828
of attribute data, 270-871
prodomumace of, no sfatishenl calculations, $257-258$
to represent total, 190-182

Assocretion, see also Correlation
and caikention, $480-48 \%$
betreen heyght and werght $488-400$
cocffierant of $A, 483,485,503-505$
a onecous vs unconscious 48%
degree of, contideate hamits of, 550 501
defined 483-485
in practical probleme, 547-548
multiple, 534
Partisl, defined, 48
8ample erran w, 448-552
learang by, 481-489

multuple, definea, 57%
partial, defined, 485
practues probleme in
reversble jroperty ai, 485
Astociation analysis, and least equares compared to wisual lise 536
and least equares line, 532
and line of condstronal mears, 500 502
and lime of vector meatas 40
and normal curve epproxumatr 505
and probabitity distubutuons, 492 499
and scattergrem 459526
and gelection of relevant vartables, 5筑-529
and shape of relatunothyp, 498-500,束20-522
and stereagram, 494-497
as\%umptroirs of nodel, 480 490
curved hne
dependent variable In, 491

Aswociation analysts, independent variable 10 , 491-492
interpolation in, 490
standard deviation $10,493,499,500$ 503,508
symbols and subscripte in, 802
test of model, 523-534
Attabute roeasure, $100-103,209$
Auto-correlation, in residuals of gasoline consumptuon, 655-657
Average deviation, 150
Average unference rstuc, 2\$7-293
Average inference ratio vector, 291293, 335-337
Averages, $180-203$, see also Arthmer the mean, Median, Mode, Geometre mean, Earmoase mean, Least equares
factors in choice of, $187-300$
and transformation of data, 200 201
H1 Inder numbert, 692-693
mathematical properties of, 202-200
purposes of, 187-109
Bave, of lorecast, 662
Base penod see Index numbers
Bayes, Thos, 31t
Bayesian etinated, scanallar varsnce than bunomal, 435
Bayesian uferecces, sbout differences In universe proportions, 399
sbout percentule equivaleat of moYerse mean, 429
sbout atandard deviation, 472
about unverse proportion, 319-338
about vanance, tis
and pooling information, 405-409, 455
bise in $329-330,332-337,434-435$
compared with bioomial inferences, 320-324, 332-337
modifed, $324-330$
Bayes'a postulate, 317
Bayes'i theorem, 312-314
Best single estumatea, 28!-292
Blas, in Bayesian inferences, $329-330$,

Buas, in frequency zenes calculations, 299-232
10 index numbers, 701, 713-725
in asmple alke wness, $276-277$
us ample standard deviation, 470471, 539-340
in ample variance, $274-276$, 4\%471, 539-540
Hinomal coeflitreat, 136
Binomial probability, compared mith Bayessm, 320-324, 302-337
compared with normal, 141-143, 156-159
compared with Powson, 158-159
curaglative distipution of, 142-144
defined, 135
distribution of percentule equivalent of mead, 429
table of. $740-759$
use of, 137-139
Btoornal theoter, 134
Butness Cucle Developments, 601n
Bueness Cycie Indicalors, 691
Causatron, and assectation (correlat.100 $\rangle_{,} 486-487$
and knowledge of why, 25-30
Central limit theorem, 428-427,438
and amall samples, 445
Chase index, 728-729
Chance, and accuracy of measurement, 116 -117
defined, 38-10
Charts, arthmetic scale, 110
logarth wie seale, 110
multuple acsle, 110
of frequency series, 228-238
Chi-tquare (x^{2}), defined, 464-486
Ch-square disinbution, 484-475
and degrees of freedom, $484-468$
and inferesces about unverse vanante, 472-475
and testing hypotheses, 463-467
compared to cormal, 467
lllustrated for vanous $n, 457$
related to normal distribution, 486
related to dastribution of asmple vanancea, 467

Coeffictent, of assceration, 483, 485, 503-505, 518-519
of correlation, 510-511, 514-\$19
of determunawon $511-213$
of noudetermimation, 512-518
of vernation, 249-250
Comperison of numbars, 103-113, 117118
and rook measure, 118
and relative difierences, $105-113$
and relative frequency of occar-
rence, 117-118
Computer, manulenng random samples, 273
Conditional forecasts, 6.65
Condtuonal probability, 172-173
and association analyais, 491-494, 499
and Bayesian analysis, 316
Condrional ataydard devistion, around line of associnthon, 502-503
around plane of associetion 571-572
Confidence coeffement, 359
Confidence mtervals, defined, $357-359$
for time series forecaste, 659, 671-$672,674-687$
for unverse confficient of correlst10n, 551, 573-574
for universe line of relsnonship, 642-644
for unyerse mean, 448-449
for universe proportion, 357-366
for universe standard deviation, 475
for unverse varnacce, $4 / 5$
Consequerce matrix, defined, $34-348$
Consequences, uncertainty about, 368
and problem of decisiod, 382
Conservative rule in estamation, 437
Constant adjustment, effect on shepe of distribution, 438
Constrants, k, related to degrees of freedom, 442
Constrants, peychological, related to bras and degress oi freedom, 442
Continuous varreble, defined, 163
niferences about, $425-475$
Controlling scrap, $15-18$
and inferences ebout mean, 444-482

Controlling serep, and mferences about variance, 468-475
Correlation, see also Association
coefficient of, 510-511, 514-519
defined, 491 n
model for suelyas, 491-519
simple vs partal $575-576$
Correlation, curvilinear, 552- 554
least squares luee m, 553
Correiation analysis and personnel selection, 520
Correlation results, es measure of $\mathrm{gg}-$ nored variable, $579-581$
Cost, and auqumag knowiedge, 6-7, 34
and consequances, 3 3
and correlation analysas, 582
Countus, 86-103
and probabitity calculations, 133180
drect vs indrect, 93
units of, 89-59
Cross products, in ascociation anslyau, 518
in multaple correlation B69-570
Cumulatave data, seo Data, cumulatwe
Cumulatave probabolity, see Prob. abulity, cumulative
Cycle runs eatumation of, 853-655
Cycles, length of in US, $596-598$
Cycles, logarithmic sceles, 110
Data, cumulative ve moncumulative, 589-590
dating of, in time sernes, 628
Data types, in association analyes, $527-528$
Davud, F N , 551, 552, 553
Deciles, defined, 237
in forecasting 669, 671-672, 674-687
Decision boundery, 377
Decision-raakng model, 342
future development of, $379-380$
Delation, aducusment for price varietion, 783
Degree of association correlation, measurement of, addug up problem m, 513-517
and scale of measure, 517-518

Degree of associstion correlstion, contrasting methods, $511-513$
Degrees of freedom, explanod, 13942
and asocuation analyas, 44, 532541, 547, 55t, 554 57t-544
and chn-aquare, 164-455
and ekerness 440-442
and t datribution, 43
and vanamite, 439-441,448
Deming W E., 311n
Dependent variable, 491
Devearonalized data, 629
Determation, coefiकcreat of, defined, 511
Deviations, properties of, from mesa, 148
from mean, squared, 130
from tnedian, 187-189
Diferences, clasifiction of, 50
pracheally agnificant va statustucally agnificant, 49-50
real ys appsrent $48-30$
tuguifance of, 25-27
Differences, inferences about, between чиverse mesas, 453-455
between universe proportions, 39% 401
Differences, sappleng, beiween aample tuens. 451-453
between sanople proportions, 391305
Drect probabidty, 300,325
Discrete variable, 164
compared to contipuous, 163-167
Dow Jones Averages, 694-699, 708, 729

Essenhart, C 311n
Equal distribution of igrorance sale, and Bayes's postulate, 311,317
and datige cumulative data, 65
and impliet assumption to tufereaces, 32%
and least error value, 189
Errors, balanamg Type I and Type II, 378-379
in ulerenee ratios, 293 -303
reduction in, by asociation, 481485, 676-677

Errors, reduction in, by increasung knowledge, 6-7, 10-12
rounding, 115-117
sampleng, determunants of, 68-70
Type I and Type II 378-379
Everts, in probability, 125-152 smple va complex, 125
Expected value, and anthmetre mean, 13
Expetmentation, in sequing knowledge 17-18
in ansiyning associstions, 437
Extrapolation, 499, 602-600
Exelial, M, 531n, 578 n 579
Factor analysa, 576
Factonal, tu britomial calculahions, 132
Factornals, loganthms of, table of, 739
Federal Thesrese Board Index of In* dustras! Product:ou, 592-597
Fuber, R A., and z^{\prime} transformation of $r, 551$
Forecanting, confidence meterval im, 669, 671-672, 674-657
liok relaives m, 668 - 63
multiple torrelation in, 6SS-659
reducimg errors $10,672-677$
Forecating range, $667-638$
6yt-year tange, 684-0.37
long-term range, 687-658
osemonth rapge, $668-67 \%$
oze-year range, 679-683
ex-month range, $677-679$
Fox, K A. . $331 \mathrm{n}, 578 \mathrm{n}, 579$
Frequency series con tossing expenment, 204
construction of $203-236$
and crileria for intervals, 222-228
dssontinuties 10,228
gaps in sample data, 208
hardware store sales, 205-2272
nuterpolations ; n, 236-237
lumpiness in, 228
shapes of 190-192
ernoothness 10 undvere, 220-222
Frequency series calculations, 240-258
and equal intervals, 244-245
sud open evds, 245-246
anthmetic mean, 240-216
averge devation, 248

Frequency senes calculations, kurto-
sis, 254-256
median, 248
median deviation, 249
percentites, 236-237, 247
quartale devation, 246-247
rance, 247
shewness, 252-253
standard devation 240-246
Frequency senes charts, 228-226
cumnative, 229232
histogram, 231
polygon, 231
Galton Sir Francis, 505
Gaussan distrbution, see Normai distribution
Gecmetric meaiz, defined, 185
and average of link relatwes in iore casting, $670-671$
and average value of minestment fund, 195-199
and index numbers, 744-725
Glasser, G J, $427 n$
Grose National Product, current vs eanstant dollars, 732-723
Group, as standard of comparison, 692-694
Growth theorres of, 592-595
Hald, A, $737 \mathrm{n} 739 n$, reat cover
Harman, H H 570π
Harmonie mesn, 192-194
Hartley, H 0, 159, 760n, 774n
Hastay, M [$\mathrm{H}, 31 \mathrm{~B}$
Homoscedastic distribution, defined, 536
How often, knowledge of, defined, 31
Hypothess defined, 46
Hypothesss, null, de\{ined, 355
Hypothesis testers, routsne, 369-379
Hypothesss tests, see aloo Errors alterative models for, 440-450 and differences un somple means, 451-453
in correlation analysis, 550
routune for, 367-380
Independent variable, 491-492
Indes numbers, averages in, 711-713, 716, 723-726

Index numbers, averages in, and distribution of data 713
and offeting blases, 713
factors in chence of, 726
base penod, 705-708
and normal penod, 708
and recent period, 708
and unt of messitre, 206-707
base reversal test, 713-718, 720, 723
consumer price index, 694, 701
data for, datiog of samples, $702-713$
homogenesty of, 700-702, 731
location of samples, 703-704
sampling problems of, 704-705
weughts 709-711
displerson withen groups, 720-730
Dow Jones Averages, 684-699, 709, 729
factor reversal test, 717-725
price indexes, 685-729
problems in construction of, 695
purposes of, 695-698
quantity indexes, 720
revison policies, 729
US Bureaus of Labor Siatistrss, 701, $703,704,705,710$
weghts, $700-711$
Ignorance, defined, 36
relative reducton in, $8,10,11$
Igporance, equal distnbution of, see Equal distribution of ygrorance rule
Indifference point, in decision model, 381
related to cost of addutuonel evzdence, 382
related to semple size, 381
Inference, zee Bayerian unfereaces, defined, 1, 262
flow diagram of chan of reasoning for, 254
Inference distnbution, Bayesian, 311 338, see Bayesian inferences
hmomal, 282-305
defined, 283
Illustrated, 285-286
of differences betreen unverse means, 453-455
of difierences between universe proporthong, 397-401

Inference distribution of differencta between unverse proportions, bizomial $357-400$
normst, $399-400$
of mesns of second sample, 414-423, 160-462
of univeree mean 425-451
by percentile equivalenta, 429-431
by nommal curve, 131-138
by 1 detribution, $433-448$
of unvere proportion, by bnomial, 253-305
by Rayea's theorem, 311-3i3s
by normal eurre, 313
of uaverse slandard deviatotn, 462475
of unverm vanace 462-465
Poisson, 33-340
Infereace matrix, 288-259, 24-205, 300302
udeal, 300-302
Irference ratio see olfo Probability aceuracy of and smple ate, 302 30
defined, 233
Inference ratho vestor, 257-298, 297300, 428
average, 257-293
compared with probsbluty vectot, $207-300$
Inference theory, logic of, 305-306
surnatary of, 337-338825-429
Infereate tree, 266, 268
and Bayes's theorem 313
and miferences about unverse proportion, 230
Insuficteat reason, rule of 159
Interpolation, in asocistion snalysis, 400
in frequeacy series, 230-237
in probability calculations, 422
Inverse probabultry, 306,325
Jount correlation, 577-378
Jonnt probability, eonditional, in
Has es's theorem, 315
defined, 177
to pooling anferences, 403, 455

Khowledge, amount of, 3438
consyous ve subeonscious, 40
types of, 8834
Kumor, E, 427
Kurtcass, 25+256
Law of rare events (Pomson), 158
Leadollag analyas, 601-605
Leap dyy, adjustmen: for, 612-614
Least error, and dating cumulative data, 625
and live of relstionshyp, 533
and median, 187-189, 2020
Least square error, and anthmette trean, $202-203$
and bne of relatuonchip, 53-537
and plane of relationship, 565-571
Lees, R B, 575 n
Leptoturtio disinibution, 255-258
Line of relattooshinp, 500-502
and cobditional means, $500-502$
and existence of two baes in asoogation malysis, 509
and neks of extrapolation, 542
and uxeoodhonal means, 514
conideace mitervels lor, 514, © 12 34
meaning of constants $\mathrm{m}, \mathrm{SO} 0$
samploge erors m, 340-34
slope of and coefferent of comelaHon, 510
Lurk relative, in foreastung, 668-\$\$9.
is udex numbers, $727-729$
Loganthaue eate, erplanaed, 105-113
in reasonal asalysas, 615
Laganthms, table of, front cover
Lord, FM, 575 n
Luck defined, 37
Margnal probabiluty, and decision to pool anformetion, 457-460 defined, 315
Margus! probablity distrubution, $405-105,418-419,458-460$
and distribution of differences, 458
mean of, 458
related to pror and pactenor probablity, 407-409
vanazce of, 418-4it, 458
Matru, de5ned, 288

Mean, see Arithmetic meax, Geometrac mean, Harmonic mean
Medsan, defined, 187
ayd dating cumulative data, 628
and least error, 187-189, 202
Measurement, ongm of, 97
scale of, 98-98
Mills, F C, $778 n$
Mode, defined, 189
Model, for anatomy of time series, 649-652
for association analyes, $491-519$
for decision-making, 342-350
Moment, 254
Momentum, in tirne series, 60%
Moore, G H, 596-597
Most probable velue, $189-190$
Moving arithmetac mean and moving total, in seesona! analysis, 619630
Multiple correlation, analysis of, 559582
and holdng a variable constant 503
and net correlation, 559
assumptions of model, 566, 568
cosfficient of, 574
compared to simple, 584-567
curvilinear, 578-679
equation for plane, 662-563
plane of relationshyp, 561
stereogram for study of, 561-562
Fith many vamables, 563-564
Multiphication theorem, 178
Mutually exclusure events, 175
Nave forecasting methods, 666-607
National Bureau of Economic Research, 596-597
Natiodal Bureau of Standards, 136n, 138
Negative relatoonship, logic of, 510
Nondetermination, coefficient of, 512 513
Nonresponse, problem of, in sample design, 78
Normal distribution, as standard, 438
compared to binomal, 139-147,155157
corapared to Poisson, 155-157
defined, 147

Normal distrabution, fituing of, with areas, $102-170$
with ordmates, 151-155
in association analys.s, 491-497, 568
in unference, see inference
maximum ordanate of, 154
models of, 140
table of, rear cover
Normal law of error, see Normal dsetmbation
Null bypothesis, and consequences, 453
and degree of correlation, 500
defined, 355
for differences between sample means, 451-453
Numbers, negative, 87
and ongin of measure, 85
Number syateme, 87-89
Obsective truth, standards of, 352-358
Operatmg characteristic curve, 371377
Illustrated, 372
related to site of sample, 373
related to decseon boundary; 377
Origut and measurement beale, 97-99
and shape of distribution, 438
and short-cut calculations, 237-240
Ottmen, F, 42im
Parameter, masociation analyas, defined, 501
Partial association, coefficient of, 573
Partial relatronship, defined 566
Pay-af matrix, 348
Pearson E 8, $760 \mathrm{~m}, 774 \mathrm{n}$
Percentile, 236-237, 247
Percentule equivalent of mean, and skewpess, 252-254
errors in interpolation for, 445
graphe conversion of, 130-433
inferences about, $829-439$
Perceptron devices, general characteristres of, 56-50
Personnel selection and correlation analysis, 55-58
Porsonan probabilities, 155-163
compared with binomal and nor$\mathrm{mal}, 155-159$

Pouson probabilities, practical problems in use of, 100-163 table of, 760-773
Pooling information, 387-411, 451-460 and Bayes's theorem, 40t-407 and bebavior of ample difierenees, 391-305
and relevance of pror, marginal, and posterior probabilites, 407
effect of sample s12e, 455-456
effect on percentile equivalent estrmates of unverse mean, 435
facters $\mathrm{in}, 395-397$
rikks in, 356, 452
samples vg inference dustributions, 455-457
weights $1 \mathrm{In}_{1}$ 390-391
with inference distribution and new sample, 401-407, 455-157
whth two esmples, 391-397, 451-453 with unspecfied petior distribution, 409-411
Population, or unverse, defined, 18
Population, US, growth w, 593-593
Posterior probabihty, defined, 316
interpreted, 403
related to priot and margiaal probbblaty, 407
Postemor probability distribution, variance of, 472
Precsson of measure, 114
Price relatives and indexes, 715-717, 722-725
Pror probability, and Beyer's postulate, 317-319
and inferences about ramsbles, 428
and poohing information, 401-409, 435
defined, 314-315
related to marginal and postenor probsbitity, 407-403
source of information about, 316319
Production estimates and personal testing, 582-584
Probabluty, see also Inference calculation systems, 133-179
brosmal thettem, 134-139 indirect caleulation, $170-172$

Probabluty, caloulation systems, normal distribution, 130-155
Porsson distribution, 155-100
conditional, defined, 172-173
and associatron analysis, 491-494, 409
and Bayesman analyals, 315
cumulative, 143-144, 145
defined, 42-48
direct, 306,325
equal, notion of, 124
joint, defined, 177
in. Bayesian analysus, 315
in pooling, 403, 455
notation for, 174
simple and complex events in, 125
tbeorema in, 175-179
addition theorem, 179
multiplication theorem, 178
unconditional, defined, 173
in asbocration analysis, 614
Probability matrix, defined, 347
Probabhity paper, 143, 145
Probablity vector, defined, 288
Proportions, as measurig deviee, 153154
uferences about, see Inferente nieal of, 153
standard deviation of, 153-154
Pure Onl Company, 111-112
Purposive sample, 67-88
Quantity of knowledge, 3436
Quantity relatives and andexes, 717, 719-722, 724-725
Qusitile, 236
Quaptile deviation, 246-247
Random numbers, defined, 66
table of, 737-738
Randomness, defined, 38-40
In probability calculations 123
Random sample, defined, 65-66, 123
Mange, 247
Rapge of forecast, 667
Resprocals, and averages, 192-194 $\mathrm{K} h$ table of, 735-736
Relationship, see Association, Correlation, and Line of relationship
Reserves, required to cope with un-

Residual varistion, auto-correlatron 14, $855^{2}-657$
defined, 599
estmation of $655-657$
Revised probabilitees, defined, 316
Roma, H G , 186n
Romig butumal tables, 429
Routine hypothesis testers, 369-379
Rule of msufieient reeson, 189
Sales terntores amalysis, sumunary of, sumple association results, 548
multiple assocration results, $572-578$
Sample, behavior of from a known universe, 271-279
defined, 18
des!gu, 71-79
cconomes of, 71
geographeal clustenng, 75
problem of nonrespodse, 78
purposive, 67-68
random, 38, 65-68
sequential, $76-76$
stratifled, 72-75
zyatemathe order, 78-78
errors in, see Errore and Inference
brae of, and central limut theorema, 426-425, 438, 445
and controlling Type I and Type II errors, 373-370
and errors in mietence ratios, $302-$ 303
and mandom errora, 6, 10-11, 277278
and skewness of carnple means, 436
summary of charactentices of 280252
types, 61-78
Scales, arithmetic, 110
logarathmac, 100
probabulity, 112
ree.eprocal, 112
square root, 112
Scattergram (scatter dagrsm), defined, 488
Scrap percentages, controlling amount of, 15-18
inferences about mean of, 444-462

Scrap percentages, inferences gbout vanance of, 488-475
Seasonal varistion enalysis, 611-642
andi colendar varlations, 612-614
and charts of retag lo moyng averages, 631-63:3
and homogenety of data, 311-612
and leap day, 612-814
and one-yert moving arthmetic mean, 619-528
and use of cherts in, 614-610
and vestiges of reasonal in deseasobairsed data, $634-612$
average ps specific, 642
Secular trend, estimation of, 642-648, $652-653$
and logarthmic geale, 643-si44
and mathematical methods, 648, 652-653
and nohon of eras of change, 644645
and specfic trend values, 698-652
and theones of growth, 645-846
In gasolve consumption, 643-648
Sheppard's correction, 241
Siguticance teste, 366-3\%0, see allo Hypothease fests and Errors
Sigulicadt correlation, 562
Srguricant dagits, 114
Skewness, amount of in samples compared with amount in unuverse, 425-426
and applicability of least squares lue, 532-533
and choice of average, 180-182
and ideat inference matrix, 300-302
and normal distribution spproximatrons, 145-147, 345-346, 362-366, 425-427
and Poisson destribution, 155-159
defined, 155,191
Illustrated, 102
measurement of, 250-254
Snell, J l, 172m
Spurious correlathon, 576-577,584
Square roots, table of, $735-736$
Squares, table of, 735-736
Stabilhty of relationship in association anelyses, 581-582

Standard devitions, and degrees of freedon in esocistion anslyus, 599-540
and normal curve, 147
bteatw, in calculations from frequezcy senes, 241
д samples, 274-276,470-471
calculation of, 149-151, 279-245, 241245
defined, 147
distribution of samples of, 163
in associatioco enslysis, 802-503
unferences ebout, $452-475$
value of, ndereadent of omgin, 208299
Standard OII Company of NJ 111112
Standard unts, in astocintion anslyses, 508
un normal curve, 418
Statustrcal method, defined, 1
Subrondtronsl probibiluty, 173
Subunverse, 174
Symmetrica! dutributroos, llustrsted, 191

1 discroution, and stsumption of normal wnerne, 48
and mferences about meab, $34-448$
tompared to normal, 255, 44, 447448
table of, 775-778
explatsed, 446-447
t ratio, defined, $437-409$
Temperatures, monthly range in CH cago, 519
Thompson, G, Li, 17\%n
Thomdike, Muss, 160
Thomdike chart, 160,724
Tirne, ree oloo thme senes
and cumulature data, 589-590
and cychcal varatuons, 595-598
and dating, 588-559
and episodic varistions, 598-599
and growth, 592-595
and homegencity of data, $587-559$
and noncumulative data, 559- 890
and other variables, 587-593
and periodic variations, 591-602

Thme, and progresive-persistent var, 1ationg, 592-595
and random varistions, 611
and resudual varsations, 599
and rums, or momentum, 595-598
and seasomal yanations,591-592
and secular vansuons, 522-595
as index of other varables, $605-606$ meture of, 586-58\%
Tume series, see aloo Ture
Analyois of, ans logerus to associstron analyses, 600-602
and need to extrapolate, $602-603$
and role of toowledge, 503
and role of technique, 603
and sample of data, $600-603$
by comparing correspondiog perrods of successuve years, 651
fraditional approach to, cniticurns of. $357-558$
cotrelation of, 602-605, 659-660
lorecasting of, 685-688
Thanformation of data, are suee, 310311
Jogart ${ }^{\text {Brate, } 200-201}$
to faciltate calculations, 237-245
Tree diagram, of Bayeate theorem, 31\%
of card drawigg $13!$
of coin tosses, 129
of miferences about $x, 290,322$
of ufferenees about sceond sample $p^{4} 81.6$
of meference steps, 266,268
Truth, abstraction vs personal belief, 35035

Uuts of counting and measure, 89-93, 95-87
and integral unuts, 90-92
and chape of distribution, 438
and stardard uots, 22-09
and varable units, 104-113
factors in chaice of, 05-97
Uuverse (or population), defined, 18
fiate vs unfinte, 64,130
known ve. unknown, 63
Dike a varable when uaknown 279
real vs hypothetical, 63
shafts m, and playing cards, 130

Universe, stratified, 72-75
types of, 63-65
Value-added weights, 733
Variable, continuous vs. discrete, 163167
dependent and independent, 491492
Variance, and chi-square distribution, 464
bias in, in camples, 274-276, 470-475
correcting for biss in, 281, 425
defined, 241
distribution of, in samples, 224-276, 463-464
estimates of, for sample means, 425428
inferences about, 462-475

Variance, unknown, and t distribution $438-439$
variknte of , in samples, 276
Variation, cosflicient of, 249
degree of, 148
measures of, 240-250
relative, 249-250
Vector, defined, 288
Wallie, W. A. $311 n$
Weights, value-added, 733
When, knowledge of, defined, 30
Why, knowledge oi, defined, 28
Yule, G. U, $103,505 n$
Z, a normally distributed ratio, 438
z^{\prime} transiformation, 551
table of, 779

[^0]: ${ }^{1}$ The word "population" is abo commonity used to mean the eatme thug Wo
 chould be prepared for both \# Entiogs os stsuruth meebod

[^1]: Sometimes a change in conditions does not change the relatire frequency of some phenometion. In this case the conditions are urtelea ant for the purpoce For example $1 / 18$ th of all the cards in a deck are $6 s$ Also $1 / 13$ th of all the red cards ale 65 Knowledge of card color is thetefore mreleiant if we are interested in the cuid number Knomiedge of the month is not imelavant if we are inter ested in Churago temperatures

[^2]: 1 Sace we hoow that the corn his come up heads anen to ced we bave more cortdence that it esn agrin We cannot eay be same thing about tala beraue we hase not jet reen tala as the resull of a toss
 ? If in truth there a a greater probsbuit) of heads than of tuls we

[^3]:

[^4]:

 $4\left(\frac{54}{12}\right)\left(\frac{3}{3}\right)(6 H)^{2}(5 T)^{2}=\frac{5 T}{261}(5 A)^{2}(5 T)^{1}=\binom{5}{2}(6 T)^{2}(5 T)^{2}=31250 / T^{2} T^{2}$
 $5\left(\frac{542}{123}\right)\left(\frac{2}{4}\right)(5 R)^{5}(5 T)^{4}=\frac{51}{114!}(5 E)^{3}(5 T)^{4}=\binom{5}{1}(5 B)^{2}(5 T)^{3}=15625 H^{1} T^{4}$
 6) $\left.\left(\frac{5432}{1284}\right)\binom{1}{5}, 65\right)^{6}(5 T)^{5}=\frac{51}{0751}(5 A)^{0}(5 T)^{6}=\binom{5}{0}(507)^{0}(5 T)^{6}=03125 H^{8 \pi}$

[^5]: ${ }^{1}$ Tehles of tie Buromal Probehaty Dustioution, Astions! Bureau of Stand
 Thas roluse gres the bisomall probabultes for beve probatulitiea from of to 30 in erfy of of and far rample saty frota 2 to 43
 Romir Ham G, so-100 Bunomal Tables Joha Maley and Sons New lork
 Ol to 30 us reve of Dl asd for ample ares of 30 to 100 un tepas of 5

[^6]: ${ }^{1}$ Molua E C Powson's Exponental Bromual Lamt, D Van Nostrand Co Prmceton N.J 1949

[^7]: 1ff you would the to know the probablathes for oflee than 30 people and you do pot wreh to do your ona cakultiong, you can find a partial lating in Introductuon to Fiente Vathematucu by Kemeay, Snell, and Thompere, Prentice Hall, 3957, p 125

[^8]: - Blased upon the hypothesin that the probability of a head is 3 for each of the 5 coins.

[^9]: - Lower Limit Inclusive Onginal dsta accurate to nearest cent
 † The highestampleitem was $\$ 7125$ Antherehe Mean of items in thisclass เ $\$ 8802$

[^10]: - Lower Lambis Incluaspe
 \dagger Except for lant firteryal
 $\$ 38020$ in anthmotio mean of itoma matiorval.

[^11]: 1 We might aino argue that it mould be a desurable feature to make estumates that have a minmum error in the eense that tha sum of all possble errors, agns groored, is as amall as possible It is the median of a bet of numbers that minumies the sum of the devistrons of the agne are ignored if the dstribution $1 s$ symmetrical, the mean rill equal the median and we can smultaneously bave estumates that have minmum error and errose that will average out If the distribution is akered, it is impossble to satisly hoth these dearable conditions at the same tume We must then make a choice Sinee the dastribution we are working with is skewed, we face such a choice here We have chosen to satusfy the condition of averagug out our errors rather than of minuming them We make thas choiee mostly for conveneace
 ${ }^{2}$ We may ask why anybody would consider usng $N-1$ instead of N in makung inferences about \mathbf{r} For example, although we had samples of δ items, we maght bave used 4 to generate the bmomal. The logic for using 4 would be this

[^12]: ${ }^{1}$ The interested reader pill find a very lued dircussion of the are ane transformation in W E Deming, Some Theory of Samping, John Whey and Sons New York 1950, and in Eisenhert, Hastay and Wellis Technqques of Stctasitcal Anehuse, MeGraw-Hill New York 1947
 ${ }^{2}$ Orginally pubished in The Phlowophacal Tranactions The essay bis ance been reputhished in Brometria, 45 (1958), pp 293-315

[^13]: * Lower Inmat Inclusive

[^14]: * Lower Lunt Inclusve

[^15]: : See references on $p 374$ for further minformation on the procees of combinit probablities and consequences

[^16]: ${ }^{1}$ Sometumes the later samples are so large that we can sufely assume that they are the equivalent of the unn erse In this ease inferences about future sarmple $p s$ would he esentritly the same as inferences about r_{I}

[^17]: ${ }^{1}$ We use p_{2} to refer to a p_{2} that is conditional on a proor p_{1}

[^18]: * These are straightiornard biomal estumates and hence they dufier sighth from moditid Bay csian estrmates

[^19]: - The effect of this procedure is to assume that p_{2} will equal 3 the value of p_{1} Our estumates therefore are unbiased in the senage that our estumates tend to sverage out at the true value Contrast this with the Rayesian metmate which bave is bas tow ard 5

[^20]: -There is some logic to allowng for the degrees of freedom embodied in the inference distribution Estimation of N_{1} from the formula results in 65 , or 6 , and thus in 5 d! If we add this to our 9 we get a total of 14 Our probablity now reduces to 20 from the 21 , a neghgitle difference

[^21]: 1 We will use the theoretucally correct value of 143 instead of the calculated value of 1437 in order to simplify the followang discussion

[^22]: ${ }^{1}$ These etatements asaine that the slope is mengred in standard units They do out apply to a scatter diagram in nataral unite Thus the statements do not really hold for Fiz 137 We use Fig 137 merely for convenuance of refer eace

[^23]: ${ }^{1}$ The above short-eut formula bas some simple properties that make it relato ely easy to remember The first term $\Sigma X_{1}{ }^{2}$ is always the sum of the squares of the dependent vomable The then esbract a stream of products that connst of the frrst constant of the equation tumes the left hand member of the firt LS equation, the second congtact tumes the lefthand member of the second L.S equation, etc We have occason to extend this principle to the case of multuple correlation

[^24]: *The estimated item forecsat error 13 the result of adjusting the estumated paration in the univeref for mamplang error in the estimating formula The general formula is

 $$
 \begin{equation*}
 \theta_{2}=\sqrt{1+\frac{1}{N}} \tag{array}
 \end{equation*}
 $$

[^25]: ${ }^{1} \mathrm{~F}$ N David, Tablet of the Ordunates and Probabildy Integral of the DuInbution of the Correlation Coeficient in Small Samples, Unversty College,

[^26]: ${ }^{1}$ See H H Harman, Modern Factor Analysut, Universty of Chesgo, 1960

[^27]: ${ }^{1}$ Mordecar Esekial and Karl A Fox, Methods of Correlation and Represson Analysts, John Wiley and Sons, New York, NY This book is a very uscful reference for the theoretical and prectucal aspects of eorrelation analyse with no mathematics beyond elementary algebra required

[^28]: *Adapted from Geoffrey H Moore, Statstucal Induratora of Cyelical Revvale and Recessons, Oceasional Paper 31 (New York National Bureau of Economic Research, Inc , 1950), p 6

[^29]: ${ }^{1}$ For eurrent data on such indrators see Busaness Cycle Detelopments pubhished monthly by the United States Department of Commerce Bureau of the Census

[^30]: I We will use the word cycheal as shorthand to refer to varrations associated with fluctuations in general business activty Thase fuctuations are bot stricity cyelical but do exhibit runs somewhat akn to a cycheal kund of movement

[^31]: ${ }^{1}$ This is based on our famular formula ${ }^{4}=t / \sqrt{n-k}$

[^32]: * Nole In thes and all eubsequent tshles we arbitranly convert relatures to percentages onthout explect calculstons

[^33]: * Note P_{15} often used to mdicate a price mdex, Q the quantity index and
 V the value index $P_{2 s}$ mesus a prce index for perod 2 on period 1 as a base

[^34]: *Adapted from Tables of the Binomial Probability Drsinbuhon (n from 2 to 49), Aational Buresu of Standards Appled Yathemsucs Senes, US Govt Proting
 Joho Wiler and Sons, 1953

[^35]: * Source Same as Appendux D

