
Fundamentals of Service-Oriented
Engineering

Stefan Hüttenrauch, Uwe Kylau, Martin Grund, Tobias
Queck, Anna Ploskonos, Torben Schreiter, Martin
Breest, Sören Haubrock, Paul Bouché

Technische Berichte Nr. 16
des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Nr. 16

Fundamentals of
Service-Oriented
Engineering

Stefan Hüttenrauch, Uwe Kylau, Martin Grund, Tobias
Queck, Anna Ploskonos, Torben Schreiter, Martin Breest,
Sören Haubrock, Paul Bouché

Potsdam 2006

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Editoren
Email:

Vertrieb:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Andreas Polze, Nikola Milanovic, Michael Schöbel
{andreas.polze; nikola.milanovic, michael.schoebel}@.hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@uni-potsdamde
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2005

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft Nr 16 (2006)
ISBN 3-939469-35-1
ISBN 978-3-939469-35-3
ISSN 1613-5652

Fundamentals of Service-Oriented Engineering

Prof. Dr. rer. nat. habil. Andreas Polze
Dr.-Ing. Nikola Milanovic
M.Sc. Michael Schöbel

In the summer term of 2006 the “Operating Systems and
Middleware” chair at the Hasso-Plattner-Institute held the
seminar “Fundamentals of Service-Oriented Engineering”. This
technical report summarizes the student papers, which were
created during the seminar.

The term service-oriented engineering describes practice of
design and implementation of service-based IT systems. The
goal of the seminar was to introduce the discipline of service-
oriented software engineering to the students through
understanding of basic standards, technologies, tools and
methodologies. The seminar topics were structured in the
bottom up fashion across the following layers:

• Native capabilities (publication, discovery, selection,
binding)

• Interaction (coordination, conformance, monitoring, QoS)
• Management (certification, rating, trust, liability,

dependability)

The field of service-oriented computing was defined (Stefan
Hüttenrauch), and the basic properties of service-oriented
systems, such as description, discovery and communication
were described (Uwe Kylau, Martin Grund). In order to
emphasise that not all services are Web services, and that
service-oriented computing is a concept instead of a fixed
technology or implementation platform, the role of JINI in
service-oriented computing has been investigated (Tobias
Queck). Interaction of the services deployed within a service
landscape enables design and implementation of dynamic and
adaptive applications. In this context service composition, as a
method of building composite service-based applications and

creating added-value, was explored (Anna Ploskonos) and the
significance of semantic information for complex service
interactions was demonstrated (Torben Schreiter). Property of
loose coupling has been also investigated in this context
(Soeren-Nils Haubrock). Finally, service management was
described using enterprise service bus architecture as an
example (Martin Breest) and “real-world” issues and limitations
were shown on the example of serialization and deserialization
in the context of client-service interaction (Paul Bouche).

Through the choice of topics we tried to cover the complete
lifecycle of a service-oriented software system: design,
development, deployment, verification and validation and
maintenance. We also introduced “real-world” examples in
order to show the open issues and limitations and demonstrate
that service-oriented computing is not a “silver bullet” but only a
software engineering paradigm specifically tailored to the needs
of interoperation and dynamic interactions in the current IT
landscape.

Editors,
Potsdam/Berlin, December 2006.

Content

1. Definitions, Historical Development, Advantages and
Drawbacks of Service-Oriented Computing
Stefan Hüttenrauch

2. Service Description

Uwe Kylau

3. Service Communication and Discovery
Martin Grund

4. Role, capabilities and position of JINI Network

Technology in SOC
Tobias Queck

5. Service Composition

Anna Ploskonos

6. Semantic Web Services
Torben Schreiter

7. Enterprise Service Bus

Martin Breest

8. Loosely couples services with JMS and JavaSpaces
Sören Haubrock

9. Serialization / Deserialization in the context of SOAP

and Web Services
Paul Bouché

Fundamentals of Service-Oriented Engineering 1-1

Stefan Hüttenrauch

stefan.huettenrauch@hpi.uni-potsdam.de
st.huettenrauch@freenet.de

Since 2002, keywords like service-oriented engineering, service-oriented

computing, and service-oriented architecture have been widely used in research,
education, and enterprises. These and related terms are often misunderstood or
used incorrectly. To correct these misunderstandings, a deeper knowledge of the
concepts, the historical backgrounds, and an overview of service-oriented
architectures is demanded and given in this paper.

Keywords: Service-Oriented Engineering, Service-Oriented Architecture, SOA,
Web Service, Distributed Objects, Service Design, Service Science

1 Overview
Since this paper is an introduction to service-oriented engineering, associated

terms will first be defined. The rest of this document is organized as follows. In
chapter 3 the historical background of service-oriented computing (SOC) is analyzed,
including the roots of SOC and middleware concepts connected to SOC. Chapter 4
focuses on service-oriented architecture (SOA) as a common SOC approach. The
final chapters 5 and 6 summarize the advantages and disadvantages of SOC, draw a
conclusion, and provide an outlook into the future of SOA.

The content of this paper refers to SOC and SOA in an equal measure. Therefore
the terms SOC and SOA are often used synonymously.

2 Definitions
This chapter concentrates on defining the terms correlated to service-oriented

engineering to sensitize the reader to the following chapters and to impart knowledge
about the most important service-oriented concepts.

2.1 Service
The word service is used in many contexts, not only in reference to IT systems.

For example, Merriam Webster Online describes a service as “a facility supplying
some public demand” [2], which implies that a service can be performed by nearly
anyone (e.g. craftsman, enterprises, hardware systems, or software) following the

Definitions, Historical Development,
Advantages and Drawbacks

of Service- Oriented Computing

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-2 Fundamentals of Service-Oriented Engineering

idea of a service consumer on the one and a service provider on the other side, as
shown in Figure 1. This wide spectrum of service providers can be narrowed down by
adding the phrase ‘a service “does not produce a tangible commodity” [2]’. That
creates an IT system based definition.

Figure 1 - Relationship between service consumer and provider [1]

In ‘Enterprise SOA: Service-Oriented Architecture Best Practices’ [1], a service is

stated as a “meaningful activity that a computer program performs on request of
another computer program. [...] A service is a remotely accessible, self-contained
application module”.

Because a service can use other services to perform tasks and be addressed
locally as well, a service does not have to be self-contained or remotely accessible.

Summarized in a software-focused definition ‘a service is a piece of software that
computes a certain task on request of another piece of software or a human user’.

2.2 Web Service
Similar to different definitions of the term service, several explanations of the word

web service can be found. Krafzig, Banke, and Slama’s generalized definition is
contrary to the service definition above. They define web services as “application
services delivered to human users over the web” [1].

Applying a more accurate definition from Factory3x5 “a web service is any piece of
software that […] uses a standardized XML messaging system. There should be
some simple mechanism for interested parties to locate the service and its public
interface.” [15]. This indicates that web services are platform-independent based on
the standardized XML format of consumer-provider exchanged messages. Moreover,
this definition shows an impression of needed technologies to enable potential
consumers to find web services.

Being more focused on SOA, the Web Services Architecture W3C Working Group
defines: “A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL (Web Services Description
Language)). Other systems interact with the Web service in a manner prescribed by
its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.” [17]. Further this W3C
Working Group states that “a Web service is a software system identified by a URI
[RFC 2396], whose public interfaces and bindings are defined and described using
XML. Its definition can be discovered by other software systems.” [18]

In addition to the previously mentioned facts, the first W3C definition also
addresses the need of an interface to promote communication between web service

 2 DEFINITIONS

Fundamentals of Service-Oriented Engineering 1-3

consumers and providers. The latter definition emphasizes the need to explicitly
identify a web service using an URI.

Thus, a web service consists of the three parts: a service (functionality, including
the interface definition), platform-independent messages (request and reply), and
address or port reference [10]. Web services in general are stateless.

2.3 Service-Oriented Architecture
“SOA refers to service creation, interaction, presentation, and integration

infrastructure capabilities” [5] to build software on a more abstract level (also known
as business-level software) based on reusable components, an approach already
used with distributed technologies.

Today’s SOA hype arises from multiple new concepts: “application front-end,
service, service repository, and service bus” [1] (see below for more details). Now,
the introduction of a new layer of abstraction bridges the communication gap
between IT developers and enterprise experts proposing a new, business process-
driven approach.

To build SOAs web services are most commonly used, because of their
associated platform-independent standards like XML, Web Service Description
Language (WSDL), and SOAP. SOA, as a set of development pattern, focuses on
service design, reuse, and accessibility to build highly flexible and agile software
systems, but is also an architectural approach.

2.4 Service-Oriented Development of Applications (SODA)
Along with SOA, Service-Oriented Development of Applications “is focused on the

composition of process flow that orchestrates services into a fused business process”
[8]. SODA “applies the concepts of a service-oriented architecture to the design of”
business applications [13]. Accordingly, SODA can be explained as a development
process to design and implement SOAs. The lifecycle model drawn by IBM’s SOA
Foundation (Figure 2) shows that agile software development processes are
preferred for the development of SOA based systems, which becomes more obvious
considering inflexible and complex processes like the V-Model or the Waterfall
Model. Services and service combinations are highly flexible and can be changed
rapidly. Therefore the software development processes need to be able to cover that
ephemerality. That makes agile development models most applicable.

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-4 Fundamentals of Service-Oriented Engineering

Figure 2 - Life cycle model from IBM's SOA Foundation [16]

3 Historical Background of Service-Oriented Computing
New technologies are often based on previous approaches, so is Service-Oriented

Computing (SOC). This chapter analyzes the historical development of programming
paradigms and patterns, distributed technologies, business computing, and
middleware concepts in relation to SOC. At the end an overview of SOC-related
standards and platforms is given.

3.1 The Roots of Service-Oriented Computing
In history there have been three main branches leading towards SOC. These

developments are discussed in separate paragraphs but are associated.

3.1.1 Programming Paradigms and Patterns

One of the first programming paradigms was Functional Decomposition (FD). The
first language suitable for FD was COBOL, introduced in 1959, which enabled
abstraction by creating reusable functions. Also flow charts for modeling data and
process flows arose from this paradigm.

FD had its limits with multi-purpose reusable functions, because it was necessary
for the caller to provide many parameters and a lot of data. The growing complexity
of computer programs reached the limits of FD and promoted the concept of modules
and components in the 1980s. A component was stated to be an encapsulation of
data and data-related functions.

An important step towards SOC was made with information hiding and code reuse
during development. The distribution and runtime reuse, which SOC is focused on,
came up later. [1]

Object-Oriented Programming (OOP) became popular in the mid 1980s
introducing the term object as a programming and runtime model. In the face of SOC,
OOP contributed two central concepts: communication via messages and
inheritance. The former was already mentioned in the web service definitions above.

 3 HISTORICAL BACKGROUND OF SERVICE-
O CO G

Fundamentals of Service-Oriented Engineering 1-5

The latter initiated the programming-by-interface paradigm and will be discussed
below in the context of service contracts.

One problem of OOP is its interface granularity exposed to a client. This aspect of
OOP makes OOP difficult to use in a distributed computing environment with
distributed objects. SOC try to solve this problem with a more abstract level of
granularity and specific access patterns for remote services. [1]

SOC is an aggregation of many positive aspects of previous concepts regarding

distribution, encapsulation, and reuse. Yet, SOC also has its drawbacks which will be
discussed later.

3.1.2 Distributed Technologies

As mentioned earlier in this paper, distribution plays an important role in the
context of SOC. As a result, the idea of service orientation is about ten years old.
Parallel to the development of programming paradigms and patterns, the use of
distributed technologies has also increased and became indispensable for business
software in particular.

The introduction of mainframe computing was the origin of distributed
technologies. Data and displays were distributed, but not computing power.
Nevertheless such systems had to share data and output devices (e.g. printers).

When hardware became cheaper in the early 1970s, computers could operate
more economically and more independently. Especially with the development of the
UNIX operating system, the network became an essential part of the growing system
environment. Thereby, communication between operating nodes was introduced to
share functionality and hardware resources throughout the enterprise. The so-called
client-server approach led to the distribution of functionality, first by using stored
procedures in databases and Novell’s NetWare Loadable Modules, which were small
programs that run on server side.

As the evolution of distributed technologies continued, the Distributed Computing
Environment (DCE) and the Common Object Request Broker Architecture (CORBA)
were created, thereby blurring the differences between client and server. With
CORBA the functionality is broken down into remotely accessible objects which
communicate with each other using an Object Request Broker (ORB). ORBs forward
requests and provide abstraction mechanisms (e.g. naming service). Also, the
programming-by-interface paradigm was adapted to attain programming language
independence. Using an Interface Definition Language (IDL) the objects could be
implemented in different programming languages, whereas the IDL is mapped upon
language specific constructs [1]

With DCE and CORBA, functionality was distributed and platform-independence
was achieved. Problems arose with the more complex interaction patterns, object
lifecycle and reference management, and the often fine-grained object model.
However, the CORBA Component Model is still widely used, also to realize SOAs.

In the mid 1990s, objects were clustered inside a single server increasing the
functionality a server can offer to its clients. A higher level of abstraction was
provided with application containers being responsible for resource, lifecycle,
transaction, and security management. Sun Microsystems’ Enterprise Java Bean

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-6 Fundamentals of Service-Oriented Engineering

(EJB) technology in particular made lifecycle management almost dispensable and
focused on more coarse-grained components.

With these advances, challenges arose especially with the communication
between heterogeneous middleware. One solution to this problem was the platform-
independent XML. Today, it is used among others for message exchange and
service description languages or transmission protocols, such as WSDL or SOAP. [1]

3.1.3 Business Computing

Another keystone of SOC is the aggregation of business data and business logic.
In history and even today the development of computer science was and is coupled
with the demands of enterprises.

As businesses grew, they required more computing power, distributed databases
and functionality, as well as increasing flexibility to meet every day’s needs. As a
result, information technology targeted to equip enterprises and their employees with
needed hardware and software.

Database systems have been developed to store enterprise related data.
Distributed systems and grid technologies were using computing power even
between different enterprises. Terms like service and business workflow came up in
parallel with the need to change workflows as easy and as fast as possible. Later,
this led to the necessity of agile and flexible service-oriented architectures, where
services can be connected and arranged according to business’ needs. [1]

Figure 3, as a summary, gives an overview of the development of programming

languages, distribution technologies, and business computing with respect to SOA.

S
O

A

B
u
sin

ess
C
o
m

p
u
tin

g
D

istrib
u
tio

n
T
ech

n
o
lo

g
y

P
ro

g
ram

m
in

g
Lan

g
u
a
g
es

content: data &
business logic

remote access &
infrastructure

implementation
platform, interfacing
techniques,
interaction patterns

1950 1960 1970 1980 1990 2000

C#

Java

Ada

Prolog

C++

Pascal Modula 2

Smalltalk

Simula

Assembler

Cobol

VT3270

VT100

TCP/IP
Sockets

RPC

Client/Server

NFS

stored
procedures

CORBA

EAI

WWW

MQ

EJB

SOAP

WSDL

Mainframe

batch processing
Databases

SQL

Visicalc

R/2

IBM PC

Data Warehouse

EAI

R/3
WWW

BPM

packaged
applications

MDA

S
O

A

B
u
sin

ess
C
o
m

p
u
tin

g
D

istrib
u
tio

n
T
ech

n
o
lo

g
y

P
ro

g
ram

m
in

g
Lan

g
u
a
g
es

content: data &
business logic

remote access &
infrastructure

implementation
platform, interfacing
techniques,
interaction patterns

1950 1960 1970 1980 1990 2000

C#

Java

Ada

Prolog

C++

Pascal Modula 2

Smalltalk

Simula

Assembler

Cobol

VT3270

VT100

TCP/IP
Sockets

RPC

Client/Server

NFS

stored
procedures

CORBA

EAI

WWW

MQ

EJB

SOAP

WSDL

Mainframe

batch processing
Databases

SQL

Visicalc

R/2

IBM PC

Data Warehouse

EAI

R/3
WWW

BPM

packaged
applications

MDA

Figure 3 - Historical development towards service-oriented computing [1]

3.2 Middleware Concepts
Together with distributed technologies, middleware concepts were developed to fill

the gap between OS and applications.

 3 HISTORICAL BACKGROUND OF SERVICE-
O CO G

Fundamentals of Service-Oriented Engineering 1-7

The first well-liked approach towards distributed functionality was the Remote
Procedure Call (RPC), created to access remote file systems. Later it was adapted to
realize platform-independent services as well as location transparency on basis of
RPC stubs and libraries.

In the 1990s Distributed Objects were introduced to use the object-oriented
programming style for distributed applications. As mentioned above, ORBs enabled
remote object lifecycle management. They were based on the Interoperable Object
References concept for remote object creation, location, invocation, and deletion
(Figure 4). Reputed ORB implementations are CORBA, RMI, and Microsoft’s
COM/DCOM. [1]

client
application

client
proxy

ORB

network
protocol

call
method

server
application

server
skeleton

ORB

network
protocol

execute
method

create, locate, delete, invoke

Figure 4 - Remote creation, location, deletion, and invocation of objects via an ORB [1]

Around 1995 Message-Oriented Middleware (MOM) became part of the

communication infrastructure of enterprises. One main concept of MOM was
message queuing to ensure reliable distribution. This concept decouples message
senders and receivers enabling new sender-receiver combinations (e.g. 1:n; n:m).
With MOM XML-based messages and quality of service parameters were established
which are taken into consideration for service negotiation today. As a result, MOM
allows for “dynamic, reliable, flexible, high-performance systems” [1].

Beginning in the late 1990s the introduction of application servers achieved
mediation between presentation logic and enterprise backend systems (databases
and/or functionality). For example, with the EJB technology service-like modules can
be created to access enterprise’ functionality or data. EJBs are container-managed
(automatic or semi-automatic caching, load balancing, transaction management) and
can produce platform-independent HTTP replies.

3.2.1 The Difference between Distributed Objects and Web Services

Many people think of web services as distributed objects. In spite of many
similarities they also have a number of significant differences. (For more details see
W. Vogels [10].)

Distributed objects have a lifecycle model. Hence, the instance using a remote
object is responsible for its lifecycle management after asking for the object’s
instantiation. Having a reference to an object, the client can use the same object

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-8 Fundamentals of Service-Oriented Engineering

several times. It is stateful and object methods can be called. In addition, distributed
objects can hold references to other objects as well.

On the other hand, web services do not have these properties: no object
instantiation, no reference handling, no state, and no lifecycle management. Web
services instead are stateless and deal “with XML documents and document
encapsulation” [10] or, for very simple services, with mechanisms like REST
(Representational State Transfer) or JSON (JavaScript Object Notation).

Moreover the data flow is different. While the information exchanged with a web
service is based on the structure of an XML document, the data flow between a
distributed object and its caller is based on the interface an object supports. [10]

3.3 Standards and Tools and Platforms
Athough SOC is well-researched, standardization of SOC is not yet complete.

Thus, some standards might change in the near future and new products to support
service-oriented software development will come to market.

The de facto standards for dynamic discovery and invocation of web services are
WSDL 1.11 and SOAP 1.22. The latter is often used via HTTP to be as platform-
independent as possible. (A simpler but not standardized ‘protocol’ is REST3.) The
standard for messages is, as mentioned above, XML4. Modeling of processes is often
done with BPEL5.

Many platforms and tools are available to build service-oriented architectures.
Engineers can choose between open-source or commercial solutions. For example,
existing products are:

 Eclipse-based SOA Tools Platform Project6
 BEA WebLogicTM Product Family7
 IBM SOA Foundation8
 Oracle SOA Suite9
 JINI (Java Intelligent Network Infrastructure)10

4 An Overview of Service-Oriented Architectures
Before discussing the basic concepts of SOA and services in its context, the three

main protagonists are explained; namely the service provider, the service broker, and
the service requestor (Figure 5). Service providers develop services to be used by
service requestors (consumers). Therefore the provider publishes descriptions of

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/TR/soap/
3 http://www.xfront.com/REST-Web-Services.html)
4 http://www.w3.org/XML/
5 www.ibm.com/developerworks/library/ws-bpel
6 http://www.eclipse.org/stp/
7 http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic
8 http://www-306.ibm.com/software/info/soa/flexibility/index.jsp
9 http://www.oracle.com/technologies/soa/soa-suite.html
10 http://www.jini.org/

 4 AN OVERVIEW OF SERVICE-ORIENTED
C C S

Fundamentals of Service-Oriented Engineering 1-9

these services to a so-called service broker. The requestor can then search a service
database to get service addresses and other service parameters needed to invoke
services. To achieve platform-independence, the communication between the three
is done with XML messages.

Service
Provider

Service
Requestor

Service
Broker

publis
h bind

find

Service
Provider

Service
Requestor

Service
Broker

publis
h bind

find

Figure 5 - SOA participants and their interactions [6]

4.1 Key Concepts of Service-Oriented Architectures
The book “Enterprise SOA: Service-Oriented Architecture Best Practices” [1]

introduces four main concepts that all SOAs are build upon: application front-end,
service, service repository, and service bus.

Application front-ends are the active parts of an SOA and initiate business
processes by calling services or service combinations. They can have a graphical
user interface (e.g. web front-ends or rich clients), but can also be batch programs
reacting on events.

Another concept is the service. As previously stated, web services are often used
to realize application functionality. An SOA service consists of a service contract,
service interface(s), and a service implementation (Figure 6).

The contract provides an informal description of the constraints, functionality,
purpose, and usage of a service. It can impose detailed semantics about the
functionality. A formal interface description to provide technology-independent
abstractions is not mandatory. The service interface is part of the service contract
and is provided to clients connected to a service. The technical set-up of such an
interface consists of service stubs incorporated with the clients. Business logic and
data are the two parts of a service implementation that fulfills the service contract.
The business logic is meant to be the functionality of the service operating on the
included data. Consequently, a service is a high-level business entity with a
functional meaning. [1]

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-10 Fundamentals of Service-Oriented Engineering

Figure 6 - Components of a service and their dependencies (alike [1])

The service repository is closely related to the service broker (Figure 5). It enables

service discovery and contains all information for service usage. Even though most of
this information is part of the service contract, the service repository can offer
additional aspects, such as physical location, fees for usage, technical constraints,
access rights, and quality of service parameters.

The last, already mentioned, key concept of SOA is the service bus. It connects
services and application front-ends with each other. To support the heterogeneity of
available technologies it necessarily needs to be platform-independent. In general, a
service bus must be able to deal with different communication modes (e.g.
synchronous and asynchronous) and has to provide technical services, such as
logging, security, and transactions.

E. Lane [7] includes the concept of messages along with these four key concepts
SOAs are build on. Messages are written in XML, because of its software-
independence and its extensibility with a comparably limited vocabulary set.

4.2 Services in the Context of Service-Oriented Architectures
Services are one of the key concepts of SOAs. Chapter 4.2.1 illustrates the

characteristics that services have. Later, different service types are discussed and
binding between service clients and services is explained.

4.2.1 Service Characteristics

To allow for a single point of administration and to provide consistency in services,
it is rational to share services enterprise-wide. This ensures flexible service
configuration and a central change management system. However, this approach
can result in a single point of failure.

When speaking about different service types, service granularity is also discussed.
Services can be either fine-grained or coarse-grained [1]. Fine-grained services
commonly have a light interface and allow only small messages to be exchanged.
Because of their limited functionality, they can be used with high flexibility, imposing
strict security and access policies at a granular level. In addition, testing is
independent and simple. Coarse-grained services are the opposite. Because the
functionality provided is more complex, testing is intricate. Messages between a
client and a service may contain more data. Coarse-grained services can comprise a
number of fine-grained services not requiring multiple service calls.

 4 AN OVERVIEW OF SERVICE-ORIENTED
C C S

Fundamentals of Service-Oriented Engineering 1-11

There are additional service characteristics that merit to be mentioned. For this
purpose, Lane [3] again offers a short summary: “Services in SOA are: loosely
coupled, asynchronous, platform- [and language-] independent, dynamically located
and invoked, and are self-contained”. The asynchrony of services should be seen as
a characteristic of the API/transport infrastructure rather than a service attribute.

4.2.2 Service Types

Basic Services form the foundation of SOAs. They do not maintain any state and
can be either data-centric or logic-centric. Data-centric services handle persistent
data (storage, retrieval, locking, etc.) for one major business entity and provide strict
interfaces to access data. Logic-centric services encapsulate implementation for
business rules and difficult calculations. For example a service calculating income
taxes is logic-centric. In practice there is a soft transition between both types, as
data-centric services can also include logic.

Uncontrolled invocation of basic services can cause inconsistencies, e.g. in
enterprise databases. (Consider a booking item that has changed. The billing has to
be adapted accordingly.) Thus, Intermediary Services are used to bridge the
mentioned inconsistencies. These services are stateless and can act as client and
server at the same time. They split into gateways, adapters, facades, and
functionality-adding services. Intermediary services are more business-process-
centric as they can implement simple (in general project-specific) business workflows
that are in general projec-specific. [1]

More complex workflows are realized with (often state-enhanced) Process-Centric
Services. Encapsulating the knowledge of the organization’s business processes,
process-centric services use basic or intermediary services to perform tasks and to
deal with business data. Process-Centric Services separate process logic from
presentation to enable load balancing and encapsulate process logic and complexity
for a single point of administration. A common example is an online shopping
process, which includes filling the shopping cart, ordering products, and execute
billing.

To suit Business to Business (B2B) computing, Public Enterprise Services are
commonly used. These services are offered to partner companies as an interface to
in-house systems. The interfaces in turn have the granularity of business documents
and are coarse-grained. As decoupling between business partners is frequently
needed, public enterprise services are accessed asynchronously. To offer public
enterprise services, security standards as well as service level agreements have to
be considered in the service’s design phase. [1]

These different service types aim to increase the flexibility and agility of SOA

design, which is further discussed below, focusing on the layered design of SOAs.

4.2.3 Service Bindings

To enable the service requestor to use a service (Figure 5), service binding is
required, which exist in three different types.

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-12 Fundamentals of Service-Oriented Engineering

The simplest binding is called development-time binding and is preferred if the
service to be used is fixed and its protocol, physical location, and parameter set are
known at design time.

More complex bindings are runtime bindings, which split into look-up by name,
look-up by properties, and discovery based on reflection. The first is most generally
used [1]. The service definition is known at development time. The client then selects
a specific service to bind to at runtime. For example, an end user can select a
specific billing service to pay for a flight. The program then binds to that service,
looked-up by the given name.

Look-up by properties is similar. The service is selected on base of client-given
properties. For example, imagine that a client wants to pay with Visa card. Thus a
billing service supporting Visa cards needs to be invoked.

The most complex runtime binding is based on reflection. At development time
only the semantic of the service is known. Hence, a reflection mechanism must be
implemented on the client side to discover the interfaces of services with the desired
semantic to invoke a context-suitable service with an appropriate message. [1]

4.3 Layered Design
In Figure 7 a commonly used layered architecture with web and application

servers is depicted (left side). These architectures adopt the Model-View-Controller
design pattern, as there is a separation between the graphical user interface as a
view (web server), a database or enterprise application as a model (host), and
applications mediating between the two as a controller (application server).

The question brought forth is, whether or not we have a one-to-one
correspondence from layered architectures to service-oriented architectures (right
side of Figure 7).

browser browser

web server

application server

host

enterprise layer

process layer

intermediary layer

basic layer

???

browser browser

web server

application server

host

browser browser

web server

application server

host

enterprise layer

process layer

intermediary layer

basic layer

enterprise layer

process layer

intermediary layer

basic layer

???

Figure 7 - Mapping from commonly used layered architectures to SOAs [1]

On the one hand, there can be a one-to-one mapping if all layers in an SOA are

present. On the other hand, SOAs are more flexible and agile. This is demonstrated
with the example explained below.

Envision an airline company that has a consumer-facing website providing options,

such as flight search, customer details, booking, and billing. If each feature was
placed into a service, the SOA showed in Figure 8 would be built. This can be the
first step, introducing SOA for the airline’s business processes.

 4 AN OVERVIEW OF SERVICE-ORIENTED
C C S

Fundamentals of Service-Oriented Engineering 1-13

Figure 8 - A simple SOA with only enterprise and basic layer services [1]

As SOAs are meant to be flexible and agile, this architecture can be extended to

be more suitable to the needs an airline may have. Consider that if a booking is
canceled, the billing has to be rolled back as well. Hence, an intermediary service
could be one possible solution to prevent the database from inconsistencies. Billing
then is only accessible via this service to double-check booking (Figure 9).

Figure 9 - A simple SOA with integrated intermediary service [1]

Assume, a third party wants to resell an airline booking service. A fourth layer can

then be integrated, which provides process encapsulation for the particular business
process, as discussed above.

Figure 10 - An enhanced SOA with process centric service

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-14 Fundamentals of Service-Oriented Engineering

This short example indicates that service-oriented architectures are flexible and
can be built step-by-step. Moreover, they are easy to adapt and extendable, if
needed. The loosely coupled services used, have limited functionality and can be
developed separately.

5 Benefits and Drawbacks of Service-Oriented Archi-
tecture and Computing

The benefits of SOAs as well as of SOC were discussed simultaneously
throughout this paper. This chapter summarizes their advantages and disadvantages.
Within the next two subchapters the applicability and limits of this technology are
touched.

5.1 Advantages
The most important attributes of SOA are high level agility and flexibility. For these

reasons, SOAs are independent from different technologies using XML as a generic
message format. Combining a number of small services and focusing on service
reuse, development processes are supposed to be more efficient and cost-saving.
Speaking in terms of advertisement, SOA concentrates on building more stable and
load-balanced, high performance applications, which is at least partly true (see
chapter 5.2). The evolutionary approach of building SOAs results in adequate
business infrastructures suitable for and easy adaptable to current business needs.
As there might be no need to plan large business applications with development
times of several months or even years, SOAs reduce the risk of erroneous trends,
software migration, complex component integration, and can also reduce time to
market. Although SOAs are not a panacea, they are more business-oriented,
enabling a better communication between IT developers and often workflow-focused
business people.

5.2 Disadvantages
The last chapter mentioned the cost effectiveness of SOA and SOC. Nevertheless,

this cost effectiveness depends on the actual level of reuse achieved and the number
of customers using the built services. As previously stated, standardization of
service-related technologies is not yet completed. This can cause problems with
future service developments and influence the cost factor.

In addition, the introduction phase of an SOA must be taken into account. New
technologies require new software frameworks as well as trainings and lectures for
employees. Developers have to adopt new, more agile, development processes, in
which especially the inter-enterprise communication to design service interfaces and
the reflection of service reuse need to be considered.

Also error tracking is an issue to be discussed. As application servers became the
central point of coordination across multiple client-server systems, it is hard to track
failures along the transaction path. Moreover, with a fast, agile, and flexible

 6 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 1-15

infrastructure it may be difficult to define “which service was deployed at the time of
the error” [14].

Two essential drawbacks of SOC are performance and security. Response times
are difficult to calculate and to ensure, because the concrete system load the time a
request is served can not always be foreseen. Vise versa, load characteristics are
hard to plan and to predict. This becomes more obvious thinking about what
knowledge a developer has about a service. In many cases it is unidentified how
many and what kind of services are used invoking one single service. For
performance reasons, also the message passing and parsing overhead must be
considered. Even though XML parsers and message bus systems are well explored
and optimized, it costs time and resources to forward and parse messages. Other
aspects include concurrent database access of loosely coupled services and the
access of several sources.

With the introduction of service-oriented architectures, overall security
mechanisms do not work in most cases. As services are supposed to be stateless
and services can invoke other services without forwarding the user context, it is not
always known, who is requesting a certain service. Hence, there is an absolute need
for suitable security policies and identity management for the participating back-end
systems. That, though, produces administration overhead.

6 Conclusion and Outlook
This paper discussed several definitions of terms associated with SOC. As seen,

the approach of SOC is based on an evolution of former technologies and patterns.
As a result, designing SOAs means using a pattern of how to build agile and flexible,
loosely coupled applications.

The future of SOC is quite uncertain. Some people see Service Science as a new
field of research, merging the traditional management, computer, social, legal, and
psychological sciences to develop skills required in a services-led economy. Like a
cross-disciplinary approach, service science states that innovative services are the
key to economic success to meet the real needs of customers maximizing customer
satisfaction while minimizing costs. [11]

It remains open, whether SOC will be used for several years or if it will be replaced
by newer technologies in the short-term future.

Definitions, Historical Development, Advantages and Drawbacks of SOC

1-16 Fundamentals of Service-Oriented Engineering

References
[1] D. Krafzig and K. Banke and D. Slama. Enterprise SOA: Service-Oriented

Architecture Best Practices. Prentice Hall, 2004.
[2] Merriam Webster OnLine. http://www.m-w.com/dictionary/service, April 2006.
[3] Edward Lane. Demystifying Service-Oriented Architecture.

http://www.itweb.co.za/sections/industryinsight/java/lane040615.asp, 2004.
[4] Edward Lane. SOA Design Goals and Benefits.

http://www.itweb.co.za/sections/industryinsight/java/lane041026.asp, 2004.
[5] S. Nigam. Service Oriented Development of Applications (SODA) in Sybase

Workspace. http://searchvb.bitpipe.com/detail/RES/1120843540_325.html, April
2006.

[6] S. Burbeck. The Tao of e-business Services, Emerging Technologies. IBM Software
Group, ftp://www6.software.ibm.com/software/developer/library/ws-tao.pdf, 2000.

[7] Edward Lane. SOA Fundamentals and Characteristics.
http://www.itweb.co.za/sections/industryinsight/java/lane040806.asp, 2004.

[8] M. Dolgicer. How Service Oriented Architectures Enable Business Process Fusion.
Technology Transfer, http://www.tti.it/, April 2006.

[9] M. Singh, M. Huhns. Service-Oriented Computing. John Wiley & Sons, Ltd., 2005.
[10] W. Vogels. Web Services are not Distributed Objects. Common Misconceptions

about the Fundamentals of Web Service Technology, IEEE Internet Computing,
7(6), 59-66, 2003.

[11] J.M. Tien and D. Berg. A Case for Service Systems Engineering. Journal of
Systems Science and Engineering, 12(1), 13-38, 2003.

[12] Compuware. SOASODASurvey2005.
http://www.compuware.com.au/resources/SOASODASurvey2005.pdf, 2005.

[13] Monomentum Software. SODA - Service Oriented Development of Applications.
http://www.serviceoriented.org/soda.html, 2003.

[14] Wily Technology Division. SOA and Web Services: the Performance Paradox,
www.wilytech.com, California, 2006.

[15] Factory3x5. Web Service Definition. www.factory3x5.com, April 2006.
[16] IBM SOA Foundation. SOA design & development. http://www-

306.ibm.com/software/info/developer/solutions/soadev/index.jsp, April 2006.
[17] W3C Working Group. Web Services Architecture.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis, November 2006.
[18] W3C Working Group. Web Services Architecture Requirements.

http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211/#id2604831, November
2006

Service Description

Uwe Kylau

uwe.kylau@student.hpi.uni-potsdam.de

The emerging concept of service-orientation in the area of enterprise computing is
considered by many as the next step to integrate businesses into collaborations. For
this purpose an open and universal architecture is proposed, called Service-Oriented
Architecture (SOA). An important aspect of the integration, that must be addressed
in the architecture, is the capability to establish trusted relationships, essential to the
business world. Qualified description of services are identified as the means to formu-
late terms of a contract between service consumer and provider. This document deals
with the characteristics of service descriptions and presents a concrete language, the
Web Services Description Language (WSDL). WSDL version 1.1 is studied in detail,
whereas evolvement to version 2.0 is only outlined. The question, whether WSDL fa-
cilitates qualified descriptions, is also answered in the course of the examinations.

Keywords: Service-Oriented Architecture, Web Services, Web Services Description
Language, software specification, Design by ContractTM

1 Introduction

Currently, research and industry in the field of Information Technology (IT) Systems
elaborate on a new promising paradigm, the Service-Oriented Architecture. SOA is an
architectural concept that heavily relies on services as the main building blocks of en-
terprise applications. The main goal behind a SOA is to create a uniform collaboration
platform to conduct electronic business, which is sometimes referred to as an open
marketplace for services. It defines a common foundation to build various concrete
architectures, without demanding particular technologies for implementation. However,
there are prerequisites that must be considered for all types of adopting SOA to the
world of enterprise computing. The environment underlying a SOA is highly distributed
and heterogeneous, i.e. many different kinds of local infrastructures exist, all globally
connected via the Internet. This definitely requires standardized protocols.

Other features of a SOA that must be supported by those protocols are loose cou-
pling, dynamic discovery and late binding of services. Years of work in distributed com-
puting have shown that these are necessary to develop flexible applications sufficient
for business needs. Most prominent Among theses needs is a trend to concentrate
on core business and outsource unprofitable functions (single tasks or whole business
sectors). Service-orientation offers the means to extend and shift this trend in order to
directly support it with IT systems. In this context it is desirable to have the possibility
to adaptively decide who will execute outsourced business functions. The best solution
would be to base the decision on most up-to-date information, which are available right

Fundamentals of Service-Oriented Engineering 2-1

Service Description

before enactment of a task, at runtime. Thus, a SOA can be employed to increase
the benefits of electronic collaboration and outsourcing (cost reduction, speed up of
business procedures, etc.).

There are a few key requirements for a SOA in order to establish an open merket-
place (see also [11]). On of them is to provide descriptions of the services that are
offered. On the one hand this is necessary to tell the consumer how to access and use
the service, but another aspect is at least equally important. Consumers in a business
scenario will only rely and trust services, if they know “what they do and what data
elements they manipulate mean” [2]. An expressive description is the key to this re-
quirement. Expressive here means, that essential aspects of the service are included.
Briefly summarized, operational properties and their semantics must be described. As
services are used to expose software components, service descriptions are a new form
of software specification.

To further motivate the central role of the service description, take into account that
SOA defines a general application scenario, depicted in Fig. 1. Three roles are distin-
guished: service provider, service requestor and service broker. The entities participat-
ing in a SOA are limited to a single role only for the time of a single interaction. In the
scenario service providers publish their services at one or more service broker, each
maintaining a registry of services. On service publishing, the description is supplied,
which in turn is used by the broker to categorize the service. Service requestors on
the other side use a search facility at the broker to find a desired service. The search
can be performed based on different criteria, e.g. category or functionality. If it has
been successful, a set of service descriptions is delivered to the requestor, who then
chooses the service most suitable for the intended purpose. With the information in the
description a connection to the service endpoint at the provider can be established, i.e.
the requestor’s client application binds itself to the service endpoint for invocation.

Figure 1: SOA roles and their basic interactions

As delineated above, service descriptions contain the information to enable the in-
teractions that take place in a SOA. Furthermore, they are also used to form an agree-
ment on what is expected by the requestor and what is delivered by the provider. In

2-2 Fundamentals of Service-Oriented Engineering

2 SPECIFYING PIECES OF SOFTWARE

other words the description represents a specification of the service. The characteris-
tics of software specifications will be explained in section 2. In addition, particularities
of service descriptions in comparison to traditional specifications are delimited. This is
connected to the question, whether service descriptions are sufficient as an agreement.
Section 3 introduces the Web Services Description Language. It is the de-facto stan-
dard for describing services in a Web-/XML-based SOA. Section 4 will discuss what is
missing in WSDL to form a capable service description for a mature SOA (referring to
the results of section 2) Finally, section 5 summarizes and concludes the examinations
on service descriptions.

2 Specifying Pieces of Software

When programmers are asked to explain what the specification of a piece of software
is, they tend to present the functional specification document. In fact, if it is properly
formulated, this is the most precise version of a software specification they have at
their disposition. But it is not the only one. The specification of a software artifact exists
repeatedly and is scattered across various locations, e.g. method signatures, source
code comment or the human brain. In this sense, specifying software can be seen as
an abstract concept not bound to any particular format or formalism. A definition from
David L. Parnas, who is a pioneer in software engineering (he introduced modules to
software), subsumes this: “The specification must provide to the user all the information
that he will need to use the program correctly and nothing more.” [12]

From the beginnings of programming to the present, specifying software has under-
gone a certain development. In the era of unstructured programming monolithic appli-
cations were written by a single (or few) programmers. So, a common understanding of
the specification, i.e. what the software is about and how it works, could be established
in the mind of the person(s) writing the source code. On deliverance to the user a man-
ual had to be supplied, in order to avoid transferring the informal specification from one
mind to another, which usually has no special knowledge of the subject. Consequently,
user relevant parts of the specification are transformed into informal prosaic text.

As software grew in size, two tendencies occurred. First, programs became sys-
tems; systems that are structured, in order to deal with complexity. Second, parts of
the system got distributed over a network.

Remark on structuring systems. The following list roughly outlines the evolution of
functional decomposition.

• functions (procedures, subroutines): Reuse of recurring routines is the most sim-
ple form of decomposition. Calling a function is accomplished by adhering to a
well defined signature. This signature represents the formal functional specifica-
tion of the subroutine. It comprises all information necessary to make a correct
invocation, i.e. identifier (name), order and types of parameters and type of return
value.

Fundamentals of Service-Oriented Engineering 2-3

Service Description

• modules (abstract data types, classes): Modules are self contained units of soft-
ware. They consist of properties (typed data elements) and functions that achieve
a certain functionality, e.g. manipulate the properties. Functions of a module are
often called methods. The collection of method signatures comprises the inter-
face of the module, which in turn represents the functional specification of that
module. In addition, modules often define complex data types that are not part
of the programming language’s type system. Their definition represents another
type of specification: the data specification.

When object-orientation (OO) entered the stage, the concept of separating the in-
terface from the implementation was introduced. The interfaces are well designed
to form a point that remains unchanged over a longer period of time. Therefore, a
reliable API can be offered. Besides, in OO a new part is added to the functional
specification: types of failures (exceptions) that might be occur.

• subsystems: Subsystems are larger pieces of software assembled from numer-
ous modules. Systems and their subsystems demand another type of specifi-
cation. A more or less formal description is required, giving details on how the
modules work together. In most cases this is a combination of the functional
specification document and one or more design models.

A main benefit of functional decomposition is the possibility to distribute the develop-
ment of software. However, a huge team of programmers typically have no common
insight into all aspects of a complex system. Nonetheless, it is important that system
modules and components are accurately integrated. The question of how to access
a software unit is answered by its interface. Unfortunately, the interface gives no ex-
planation of what is done inside, what the semantics of the functionality are. Also
there is no information on non-functional properties, like probability of failure or maxi-
mum response time. All these aspects are important for the integration and should be
part of the functional specification document. But this document mostly abstracts from
the actual software structure, and associated design models do not contain explicit
semantics. They could be gathered by putting together a lot of information from struc-
tural, behavioral and data models. To avoid such an overhead informal comments are
inserted into the source code. They provide the user, i.e. the programmer that wants to
integrate a certain module, with in-place descriptions of semantics and non-functional
properties. Some description techniques, like JavaDoc, even go farther. They em-
ploy a semi-formal approach to connect semantics with functional properties, e.g. the
meaning of parameters.

In summary, the specification of a piece of software is divided into two sections (see
Fig. 2). The operational specification, or syntactic interface, defines all the information
necessary to interact correctly with the software unit. It consists of the functional, non-
functional and data specification. The non-functional part is often referred to as Quality
of Service (QoS) specification. On the other side there is the meta level specification,
or semantic interface. According to the operational section, it also consist of three
parts, each explaining the semantics of its associated counterpart. Nowadays, these
semantics and the non-functional specification are communicated rather informally via
text or speech, whereas the remaining two make use of formal techniques.

2-4 Fundamentals of Service-Oriented Engineering

2 SPECIFYING PIECES OF SOFTWARE

Figure 2: Entity-relationship diagram depicting a model for a component specification
(notation: Fundamental Modeling Concept (FMC), [10])

Remark on distribution of systems. In contrast to its non-distributed counterpart,
a distributed system involves middleware, which abstracts from communication and
other common infrastructure issues. Most middleware architectures define a compo-
nent model. This model provides conventions on how to develop modules (now called
components), on how to assemble them to a distributed application and how to enforce
specific middleware services for the application, e.g. security or persistence. A SOA
must unify different types of middleware systems and their component models. There
has to be an agreement that directs, in what way entities of one component system are
mapped to corresponding entities of another system. The component’s formal specifi-
cation can be used as a point of connection. For this purpose, SOA applies universal
specification standards with semantics defined as precisely as possible. From this extra
layer of abstraction a particular component architecture can derive its custom, but con-
stant, mapping. Next to the heterogeneity of middleware architectures, the nature of
distribution and feature of loose, dynamic coupling have caused a temporal shift in the
process of integrating components into an application. Classical component program-
ming makes design time decisions which component is used. In a highly adaptive SOA
this decision is now made at runtime. But, such an approach has to entail a specifica-
tion, that is completely machine-parsable. Hence, the entire specification must adhere
to a formal definition and informal parts (in comments, etc.) must be minimized.

A subsequent step in distributed computing was to spread applications across orga-
nizational boundaries and develop real business-to-business (B2B) scenarios. Again,
the factor of trust must be mentioned, that is an essential precondition for businesses to
collaborate. Trusted relationships require each party to be sure of, not only the identity
claimed by the other side, but of the correctness of remote components they want to
operate on. In this context, it should be stated that correctness in computer science is
always relative. A component behaves correctly according to its specification. In or-

Fundamentals of Service-Oriented Engineering 2-5

Service Description

der to confirm this and make accurate usage possible, a more advanced specification
method is necessary. For that reason, Design by ContractTM ([14]) was developed by
Bertrand Meyer. The concept demands to clearly specify (prior to component design):

• What is the offered functionality of the component? Which input data is consumed
and which output data is delivered?

• What are the preconditions the requestor is expected to assert prior to execution?

• What are the effects (postconditions) the provider will guarantee after execution?

• Which invariants remain unaffected during execution?

• What are the semantics of specified elements?

The concept is also known as IOPE, a lineup of the first characters of terms input,
output, precondition and effect. If Design by ContractTM is applied, an increment in
expressiveness of the specification can be identified. Beside functionality and its se-
mantics, requestor and provider additionally assert certain conditions. This means,
each side is obliged to ensure that its respective parts of these conditions hold true.
On the other hand, it has the right to insist on validity of assertions made by the other
side. Generally, such characteristics define a contractual relationship. Thus, the spec-
ification of a component is augmented to a contract regulating the interaction with that
component.

The description of services. As stated earlier, services are the building blocks of
a SOA. They make business entities available to the open marketplace, which is cre-
ated by a particular SOA. Functionality of these entities is implemented by software
components. Consequently, techniques that are necessary and proved to be practical
for component specifications, should be transferred to service descriptions. First, the
description must be complete, i.e. must contain all types of specifications, which were
distinguished above. Here attention should be drawn to the fact that non-functional
properties and formal semantics are scarcely put into practice in classical component
programming. Rather interface matching is employed to find a suitable candidate. But
this procedure is unsatisfying for an open, dynamic SOA, where the set of offered
services changes constantly. And the question, what a service does, can hardly be
answered just by looking at the functional specification, at least for a software client.

It was also mentioned above that services are supposed to be discovered, enacted
and invoked by machines in a heterogeneous infrastructure. That makes open, formal
and accepted standards indispensable for their description. These standards have to
be extensible, since an evolution of the service concept cannot be ruled out. In addition,
Design by ContractTM becomes more important than ever before. The reason is, that in
a SOA consumer (requestors) demands meet provider offers with the goal to perform a
task or request a service. Real business relationships are established and their terms
are settled in a contract. These terms are expressed in the service description and
represent the agreement brought up in section 1.

Alltogether, the service description is used to advertise capabilities, interface, be-
havior, quality and meaning of a service on the open marketplace. To which extent this
is achieved in the area of Web Services, will be presented in the next section.

2-6 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

3 Web Services Description Language (WSDL)

The Web Services Description Language originates from a combination of IBM’s Net-
work Accessible Services Specification Language (NASSL) and Microsoft’s Service
Description Language (SDL). Its development was one of the first efforts to realize an
initial Web services landscape that spans across multiple organizations. Namely, a
coalition of 36 companies formed an initiative to create a directory for Web services,
that soon required a platform-independent language to describe the services. There-
fore, it might not be astonishing, that an XML-based approach was chosen for WSDL.

These early beginnings of service-orientation go back to the year 2000. After releas-
ing WSDL 1.0 in September 2000, a submission to the World Wide Web Consortium
(W3C) was made, already backed by several major software vendors. WSDL Version
1.1 became an adopted specification in March 2001.

During the following years WSDL 1.1 emerged as the de-facto standard for describ-
ing Web services. Nowadays, it represents one cornerstone of a whole Web Services
Architecture, that was designed to achieve a common understanding among Web ser-
vices software vendors. This so called Web Services Stack is assembled from numer-
ous Web Services specifications, e.g. UDDI, WS-Policy, WS-Addressing or WS-BPEL
(see Glossary for complete names). But, academic examination of WSDL and its appli-
cation in real world industry scenarios quickly showed some limitations. Its expressive
capabilities are sometimes too restrictive and sometimes not restrictive enough. Ad-
ditionally, ambiguities within the specification occurred. Altogether, this caused a lot
of difficulties with interoperability, which is the main idea behind WSDL. The problems
were addressed by the Web Services Interoperability (WS-I) Organization that defined
a Web Services Interoperability Basic Profile. The profile is a collection of rules on how
to use WSDL, SOAP and UDDI to build interoperable Web service systems.

Nevertheless, the WSDL specification itself, i.e. its structures and definitions, had
some weak spots. These resulted from intentions of the authors, that proved to be
impractical, but also from developments in the Web Services world, that could not be
foreseen. Accordingly, the Web Services Description Working Group at W3C evolved
the specification to the next stage. First, they planned to create a version 1.2. Then,
some major changes were proposed, that lead to an increment of a full version number.
The overall work on WSDL 2.0 took about three years and its final draft is still under
revision. But standardization process is expected to finish within 2006 or 2007 and
the main authors state: “[...] it is unlikely that the WSDL specification will be further
evolved.” [15]

3.1 WSDL 1.1

The Web Services Description Language defines the structure of an XML document. It
is comprised of an ordered list of child elements. This list can be divided in an abstract
part and a concrete part. The abstract part describes the abstract interface of the Web
service in terms of message structures and operation signatures with their parameters.
It is often called the WHAT, whereas the concrete part refers to the HOW (bindings)
and WHERE (endpoint ports). Bindings specify which transport and message protocol

Fundamentals of Service-Oriented Engineering 2-7

Service Description

to use. Endpoint ports give a network address where the Web service can be invoked.
These different elements of the WSDL document are interconnected (as explained
below in this section).

Architectural Concepts. It should be pointed out that WSDL documents, containing
only elements of the specification (pure WSDL), are restricted to be functional speci-
fications of the Web service components they describe. Within this sentence two ar-
chitectural concepts can be identified, which among others were chosen as guiding
principles for the development of WSDL. First, the language is extensible. Other XML-
fragments that reside in a XML namespace different from the WSDL namespace can
be embedded into the description. This allows for integration of supplementary Web
Services specifications, as well as any other XML syntax. That might be, for instance,
WS-Policy or XML Schema (which is extensively used in WSDL). The second discov-
erable concept: no semantics. Semantic descriptions were omitted on purpose, which
is also true for non-functional properties. The authors of WSDL decided, that it simply
would have been too early to consider a fully equipped component specification. At
the time WSDL came into play, research in the field of non-functional properties and
semantics had just begun.

Another architectural concept is the separation of WHAT from HOW and WHERE,
that was already mentioned above. Hence, it is possible to use the abstract part of
the description for various types of bindings and an arbitrary number of endpoint ports,
even across different WSDL documents. This reuse makes sense, because there is
also the concept to support multiple message formats and transport protocols. As it is
not predictable which communication means, today’s and future one’s, will be available
to Web service implementers, the service description language should not be restricted
to a single technology. Same applies to the type system used for definition of message
types. Thus, representation of data types in form of schemas or other data models
remains independent of the service description. The extensibility concept ensures that
defined data types can be embedded into the description.

To complete the list, two more concepts must be named that were taken into ac-
count when WSDL was developed. The authors designed WSDL to unify the world
of message-oriented middleware with the world of object-oriented systems. Conse-
quently, interaction with a Web service can be described as a flow of messages, that
are processed by the Web service implementation. On the other hand, the interaction
can also be described as a remote procedure call (RPC), where the invocation of a Web
service operation is mapped to a method of the Web service implementation. Besides,
the number of operations a Web service defines is not limited. And in some cases
the whole service may be structured into multiple steps, offered via several operations.
In order to consume the service correctly, the operations must be invoked in the right
order. The last architectural concept of WSDL forbids these implications. The order of
operations in the description does not resemble the order of invocation. In fact, a Web
service client should clearly not assume any connection between offered operations. A
choreography of invocations is subject to other Web Services specifications.

2-8 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

Language Structure. For the purpose of better understanding the points that are
subsequently explained below, a small example will accompany the reader through the
rest of the document. Listing 1 shows a simple Java class, that introduces a method
add with two integer parameters.

public class SimpleMathClass {

public i n t add (i n t i n t1 , i n t i n t 2)
throws Inva l idArgumentExcept ion

{ return i n t 1 + i n t 2 ; }
}

Listing 1: Java class SimpleMathClass with method add (adding two integers)

In what way the presented architectural concepts of WSDL are realized, can easily
be found in the structures defined by the specification. Fig. 3 depicts a model of service
description elements and their relations for the given example. Listing 2 (see next page)
gives the complete XML syntax of the description.

Figure 3: Model illustrating interrelation of WSDL elements

A WSDL service description has a root element <definitions> that contains
seven main elements: <documentation>, <import>, <types>, <message>, <portType>,
<binding> and <service>. The elements have to appear in the given order, starting
with an optional human readable <documentation> element. Each WSDL document
must define a target namespace in its <definitions> element. In combination with
each element’s local name, qualified names are constituted that uniquely identify each
element. This fundamental mechanism of XML allows to unambiguously reference
elements from another WSDL description (assuming correct name and namespace
assignment by the user). The <import> element specifies location and namespace
of external descriptions, that are available for referencing. As none of the main ele-
ments is mandatory, the total service description might be comprised of more than one

Fundamentals of Service-Oriented Engineering 2-9

Service Description

WSDL document, consequently increasing modularity (separating WHAT from HOW
and WHERE).

Within the <types> element data type declarations are inserted. Because of its
maturity and wide adoption, XML Schema is proposed as the default language. Its
support is obligatory, which is conceivable of the fact that XML Schema simple types
are built-in types of WSDL and do not have to be declared explicitly. However, there
could be other languages, as already mentioned above. Also, the number of declaration
elements is not restrained, e.g. several entire XML schemata may be contained or
referenced. The given example declares a complex type MyFaultType, that is used to
customize a SOAP fault message with information about Java exceptions.

The <message> element is intended to provide an intermediary layer between data
parameters and the actual interface, represented by the <portType> element. Each
<message> may declare an arbitrary number of <part> elements (see Fig. 3), which in
turn reference data types. Such a reference is either the value of a type attribute or an
element attribute. The latter is employed for XML Schema global elements, while the
other one is used for complex or simple types. This is the point in WSDL where the
unification of messaging and RPC is achieved. Beside the aspect of reuse, this had
been the only reason for introducing the <message> element.

<d e f i n i t i o n s targetNamespace = ‘ ‘ h t t p : / / my. example . de / 1 . 1 / ’ ’
xmlns:mytypes = ‘ ‘ h t t p : / / my. types . de / ’ ’
xmlns:xsd = ‘ ‘ < !−− XML Schema namespace −−> ’ ’
xmlns:wsdlsoap = ‘ ‘< !−− namespace of SOAP extens ion −−> ’ ’
xmlns = ‘ ‘< !−− WSDL 1.1 namespace −−> ’ ’ >

<documentation>
Place p l a i n t e x t documentation here .

< / documentation>

<impor t />
< !−− Spec i fy namespace and l o c a t i o n a t t r i b u t e

to impor t ex te rna l WSDL −−>

<types>
<xsd:schema targetNamespace = ‘ ‘ h t t p : / / my. types . de / ’ ’

xmlns:xsd = ‘ ‘ < !−− XML Schema namespace −−> ’ ’>
<complexType name= ‘ ‘ MyFaultType ’ ’>

<sequence>
<element name= ‘ ‘ Except ionClass ’ ’ type = ‘ ‘ s t r i n g ’ ’ />
<element name= ‘ ‘ Desc r i p t i on ’ ’ type = ‘ ‘ s t r i n g ’ ’ />

< / sequence>
< / complexType>

<xsd:schema>
< / types>

. . .

2-10 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

<message name= ‘ ‘ AddRequest ’ ’>
<pa r t name= ‘ ‘ i n t 1 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />
<pa r t name= ‘ ‘ i n t 2 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />

< / message>
<message name= ‘ ‘ AddResponse ’ ’>

<pa r t name= ‘ ‘sum ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />
< / message>
<message name= ‘ ‘ AddFault ’ ’>

<pa r t name= ‘ ‘ f a u l t ’ ’ type = ‘ ‘ mytypes:MyFaultType ’ ’ />
< / message>

<portType name= ‘ ‘ SimpleMath ’ ’>
<opera t ion name= ‘ ‘ add ’ ’>

< i npu t name= ‘ ‘AddReqMess ’ ’ message = ‘ ‘ AddRequest ’ ’ />
<output name= ‘ ‘AddRespMess ’ ’ message = ‘ ‘ AddResponse ’ ’ />
< f a u l t name= ‘ ‘ AddFaultMessage ’ ’ message = ‘ ‘ AddFault ’ ’ />

< / opera t ion>
< / portType>

<b ind ing name= ‘ ‘ SimpleMathSOAPBinding ’ ’ type = ‘ ‘ SimpleMath ’ ’>
<wsdlsoap:b ind ing s t y l e = ‘ ‘ rpc ’ ’

t r a n s p o r t = ‘ ‘ h t t p : / / schemas . xmlsoap . org / soap / h t t p ’ ’ />
<opera t ion name= ‘ ‘ add ’ ’>

< i npu t> <wsdlsoap:body use = ‘ ‘ l i t e r a l ’ ’ />
< / i npu t>
<output> <wsdlsoap:body use = ‘ ‘ l i t e r a l ’ ’ />
< / ou tput>
< f a u l t>

<wsd l soap : f au l t name= ‘ ‘ AddFaultMessage ’ ’
use = ‘ ‘ l i t e r a l ’ ’ />

< / f a u l t>
< / opera t ion>

< / b ind ing>

<serv i ce name= ‘ ‘ SimpleMathService ’ ’>
<po r t name= ‘ ‘ SOAPPort ’ ’ b ind ing = ‘ ‘ SimpleMathSOAPBinding ’ ’>

<wsdlsoap:address l o c a t i o n = ‘ ‘ < !−− place URL here −−> ’ ’ />
< / po r t>

< / se rv i ce>
< / d e f i n i t i o n s>

Listing 2: Complete WSDL document for exposing the example class, defining RPC/lit-
eral SOAP/HTTP binding

The abstract part of the WSDL is completed with the <portType> element. It de-
fines an interface type in terms of operations with input, output and fault messages.

Fundamentals of Service-Oriented Engineering 2-11

Service Description

Depending on the type of the operation, the occurrence and ordering of these elements
is constrained. Four types are distinguished.

• one-way operation: one input message must be declared

• request-response operation: one input message, followed by one output mes-
sage must be declared, optionally several fault messages are allowed

• notification operation: one output message must be declared

• solicit-response operation: one output message, followed by one input message
must be declared, optionally several fault messages are allowed

The list of fault message is not restricted. Therefore different types of faults can
be indicated, that might occur during operation execution. In the example a request-
response operation add is defined, according to the Java method. Until here only WHAT
has been described with HOW and WHERE remaining.

The <binding> element first identifies via its type attribute which interface type it
implements. For each operation of the <portType> the <binding> defines how to for-
mat the messages and what transport protocol to use for their exchange. A <portType>

can be bound to numerous communication technologies. Most common is a combina-
tion of SOAP as packaging format and HTTP(S) as transport protocol (see example).
Aside, there exist many more types of bindings, e.g. HTTP/MIME or SOAP over SMTP
(omitted in Listing 2). For more information on those, please refer to the WSDL specifi-
cations ([7], [1], [6], [5]). Details on the SOAP/HTTP binding are examined in the next
subsection.

Finally, the <service> element accumulates a group of endpoint ports. Each port
associates an interface and transport protocol with a network address by referencing
a binding that must be used for the invocation on this port. WSDL extensibility is em-
ployed to define the concrete address, since different binding types may require differ-
ent types of endpoint addresses. The SOAP/HTTP binding uses <wsdlsoap:address>

element, that has a location attribute with the endpoint URL as value. The prefix
wsdlsoap resolves to the namespace of extensibility elements for the SOAP binding.

3.2 WSDL Usage Scenarios

This subsection concentrates on two aspects of WSDL that might be of particular inter-
est. On the one hand, a SOAP/HTTP binding can have different characteristics. These
have impact on other parts of the descriptions. What effects are implied by a certain
type, will be examined first (see also [3]). Then some small examples for complex type
declarations are presented, that are necessary, if array and object parameters are to be
exposed. Please note that the scenario already takes conformance to the WS-I Basic
Profile 1.0 into account. At the appropriate position some important rules of the profile
are mentioned. For the full collection see [4].

2-12 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

SOAP/HTTP Binding. This binding has two central properties: the style attribute of
<wsdlsoap:binding> and the use attribute of <wsdlsoap:body>. The style can be doc-
ument or rpc. These two types directly refer to the two worlds that WSDL intends to
unify (message-orientation and RPC). The use attribute describes whether and how the
XML elements in the actual SOAP message contain type information (XML Schema in-
stance types). Possible values are literal or encoded. If the use is marked as encoded,
an additional attribute (encodingStyle) must define the type system used for encoding.
WS-I Basic Profile discourages encoding, because it creates an extensive amount of
content overhead (type attributes). For WS-I compliance, the binding is limited to literal
use only, which indicates no type information at all. Typing is done in the description
via XML Schema.

In Listing 2 an RPC/literal binding is used. For RPC-style the WS-I Basic Profile
mandates that <part> elements define the type attribute. In the SOAP message the
parts are then wrapped inside an element named after the operation. Hence, any
incoming message can easily be mapped to the correct operation that is to be invoked.
In case of an overloaded operation parameter, matching must be performed in addition.
Unfortunately, the message content can only be validated against information that is
part of the WSDL itself. So this step is subject to several parts of the Web Services
middleware (minimal: WSDL processor and SOAP runtime).

<d e f i n i t i o n s targetNamespace = ‘ ‘ h t t p : / / my. example . de / 1 . 1 / ’ ’
. . . >

<types>
<xsd:schema targetNamespace = ‘ ‘ h t t p : / / my. types . de / ’ ’

xmlns:xsd = ‘ ‘ < !−− XML Schema namespace −−> ’ ’>
<complexType name= ‘ ‘ MyFaultType ’ ’>

<sequence>
<element name= ‘ ‘ Except ionClass ’ ’ type = ‘ ‘ s t r i n g ’ ’ />
<element name= ‘ ‘ Desc r i p t i on ’ ’ type = ‘ ‘ s t r i n g ’ ’ />

< / sequence>
< / complexType>
<element name= ‘ ‘ MyFault ’ ’ type = ‘ ‘ MyFaultType ’ ’ />
<element name= ‘ ‘ IntElement ’ ’ type = ‘ ‘ integer ’ ’ />

<xsd:schema>
< / types>
<message name= ‘ ‘ AddRequest ’ ’>

<pa r t name= ‘ ‘ i n t 1 ’ ’ element = ‘ ‘ mytypes:IntElement ’ ’ />
<pa r t name= ‘ ‘ i n t 2 ’ ’ element = ‘ ‘ mytypes:IntElement ’ ’ />

< / message>
<message name= ‘ ‘ AddResponse ’ ’>

<pa r t name= ‘ ‘sum ’ ’ element = ‘ ‘ mytypes:IntElement ’ ’ />
< / message>
<message name= ‘ ‘ AddFault ’ ’>

<pa r t name= ‘ ‘ f a u l t ’ ’ element = ‘ ‘ mytypes:MyFault ’ ’ />
< / message>
. . . < !−− po r t type of l i s t i n g 2 −−> . . .

Fundamentals of Service-Oriented Engineering 2-13

Service Description

<b ind ing name= ‘ ‘ SimpleMathSOAPBinding ’ ’ type = ‘ ‘ SimpleMath ’ ’>
<wsdlsoap:b ind ing sty le = ‘ ‘document ’ ’

t r a n s p o r t = ‘ ‘ h t t p : / / schemas . xmlsoap . org / soap / h t t p ’ ’ />
<opera t ion name= ‘ ‘ add ’ ’>

. . . < !−− same content as i n l i s t i n g 2 −−>
< / opera t ion>

< / b ind ing>
. . . < !−− serv i ce o f l i s t i n g 2 −−> . . .

< / d e f i n i t i o n s>

Listing 3: WSDL document defining a document/literal binding

For document-style the <message> elements are constrained to contain only a single
part, declaring the element attribute. Listing 3 presents a document/literal binding. The
element attribute references an XML Schema global element. An instance of such an
element is then formed as payload of the message. In contradiction to RPC, mapping
a document-style message to the correct operation proves to be difficult. As there is
no information on the operation, parameter matching is the only way to achieve this. If
there are two operations that have the same message type as input, the implementation
system gets stuck, because it cannot decide which operation was invoked. On the other
hand, there is the advantage that message content can be validated comfortably via
XML Schema validation tools. To meet the problem, Microsoft came up with a work-
around called document/literal wrapped style. The idea is to add one layer of indirection
and declare global elements that are named after the operation they are used for. This
way of describing Web services combines both advantages: easy validation through
use of XML Schema and unambiguous mapping to operation. Listing 4 shows an
example.

<d e f i n i t i o n s targetNamespace = ‘ ‘ h t t p : / / my. example . de / 1 . 1 / ’ ’
. . . >

<types>
<xsd:schema targetNamespace = ‘ ‘ h t t p : / / my. types . de / ’ ’

xmlns:xsd = ‘ ‘ < !−−XML Schema namespace−−> ’ ’>
<complexType name= ‘ ‘ addType ’ ’>

<sequence>
<element name= ‘ ‘ i n t 1 ’ ’ type = ‘ ‘ i n t e g e r ’ ’ />
<element name= ‘ ‘ i n t 2 ’ ’ type = ‘ ‘ i n t e g e r ’ ’ />

< / sequence>
< / complexType>
<element name= ‘ ‘add ’ ’ type = ‘ ‘ addType ’ ’ />

<complexType name= ‘ ‘addResponseType ’ ’>
<sequence>

<element name= ‘ ‘sum ’ ’ type = ‘ ‘ i n t e g e r ’ ’ />
< / sequence>

< / complexType>
<element name= ‘ ‘addResponse ’ ’ type = ‘ ‘addResponseType ’ ’ />

2-14 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

<complexType name= ‘ ‘ MyFaultType ’ ’> . . .< / complexType>
<element name= ‘ ‘ MyFault ’ ’ type = ‘ ‘ MyFaultType ’ ’ />

<xsd:schema>
< / types>
<message name= ‘ ‘ AddRequest ’ ’>

<pa r t name= ‘ ‘ i npu t ’ ’ element = ‘ ‘ mytypes:add ’ ’ />
< / message>
<message name= ‘ ‘ AddResponse ’ ’>

<pa r t name= ‘ ‘ r e s u l t ’ ’ element = ‘ ‘ mytypes:addResponse ’ ’ />
< / message>
<message name= ‘ ‘ AddFault ’ ’>

<pa r t name= ‘ ‘ f a u l t ’ ’ element = ‘ ‘ mytypes:MyFault ’ ’ />
< / message>
. . . < !−− po r t type of l i s t i n g 2 −−> . . .

<b ind ing name= ‘ ‘ SimpleMathSOAPBinding ’ ’ type = ‘ ‘ SimpleMath ’ ’>
<wsdlsoap:b ind ing sty le = ‘ ‘document ’ ’

t r a n s p o r t = ‘ ‘ h t t p : / / schemas . xmlsoap . org / soap / h t t p ’ ’ />
<opera t ion name= ‘ ‘add ’ ’>

. . . < !−− same content as i n l i s t i n g 2 −−>
< / opera t ion>

< / b ind ing>
. . . < !−− serv i ce o f l i s t i n g 2 −−> . . .

< / d e f i n i t i o n s>

Listing 4: WSDL document with document/literal wrapped Web service style

To finish the examinations on the SOAP/HTTP binding, consider the example in
Listing 5. It defines a document/literal binding. The binding lists an operation add that
has addRequest as its input message. The message contains two parts declaring the
type attribute. In this special case, which is syntactically correct WSDL, it might be
unclear how to format the SOAP message. The content of the message is supposed
to be an instance of the referenced XML Schema construct. But what is an instance of
the integer simple type? Instantiation is only specified for global elements. Although
there are many more scenarios, the one presented here should give the reader a hint,
why the WS-I Basic Profile was created.

<message name= ‘ ‘ addRequest ’ ’>
<pa r t name= ‘ ‘ i n t 1 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />
<pa r t name= ‘ ‘ i n t 2 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />

< / message>
. . .

<b ind ing name= ‘ ‘ SimpleMathSOAPBinding ’ ’ type = ‘ ‘ SimpleMath ’ ’>
<wsdlsoap:b ind ing sty le = ‘ ‘document ’ ’ . . . />
<opera t ion name= ‘ ‘ add ’ ’>

< i npu t>
<wsdlsoap:body use = ‘ ‘ l i t e r a l ’ ’ />

< / i npu t>

Fundamentals of Service-Oriented Engineering 2-15

Service Description

. . .
< / opera t ion>

< / b ind ing>

Listing 5: Extract from WSDL document with undefined binding implications

Complex Type Declarations. An RPC-style Web service normally exposes a pro-
gramming interface to the outside world. Such services have to deal with various types
of operation parameters. If structured parameters are declared in the implementation,
they need a representation in the service description. XML Schema complex types
offer a mechanism to accomplish this. During invocation of the operation, the parame-
ters are serialized from the programming language data type to the XML structure and
deserialized vice versa. This is subject to the Web Services middleware.

A first example in Listing 6 illustrates the definition of a custom array type. The
occurrence feature (minOccurs and maxOccurs attributes) of XML Schema is employed
to allow multiple entries of the same type in the sequence. On execution of the add
method all summands in the list are added, returning the sum as result.

<types>
<xsd:schema . . .>

<complexType name= ‘ ‘ myArrayType ’ ’>
<sequence>

<element name= ‘ ‘summand ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’
minOccurs = ‘ ‘0 ’ ’
maxOccurs = ‘ ‘ unbounded ’ ’ />

< / sequence>
< / complexType>
<element name= ‘ ‘summands ’ ’ type = ‘ ‘ myArrayType ’ ’ />

< / xsd:schema>
< / types>

< !−− example ins tance of ‘ ‘ summands ’ ’ −−>
<summands>

<summand>14< / summand>
<summand>5< / summand>
<summand>32< / summand>

< / summands>
Listing 6: WSDL types element declaring custom array type, plus example instance

The definition of a custom object type is quite straightforward too. Messages ex-
changed in a Web service interaction can only contain static data, not functionality.
Thus, it is sufficient to declare a complex type, that includes all of the object’s attributes.
Listing 7 shows a simple example. The object type has three attributes, representing
two summands and a sum. Initially, sum is set to zero. After execution of the add
method, a similar object is returned with sum set to the appropriate value.

2-16 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

<types>
<xsd:schema . . .>

<complexType name= ‘ ‘ addObjectType ’ ’>
<sequence>

<element name= ‘ ‘ i n t 1 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />
<element name= ‘ ‘ i n t 2 ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’ />
<element name= ‘ ‘sum ’ ’ type = ‘ ‘ x s d : i n t e g e r ’ ’

defaul t = ‘ ‘0 ’ ’ />
< / sequence>

< / complexType>
<element name= ‘ ‘ addObject ’ ’ type = ‘ ‘ addObjectType ’ ’ />

< / xsd:schema>
< / types>

< !−− example ins tance of ‘ ‘ addObject ’ ’ −−>
<addObject>

< i n t 1>14< / i n t 1>
< i n t 2>5< / i n t 2>
<sum>0< / sum>

< / addObject>
Listing 7: WSDL types element declaring custom object type, plus example instance

3.3 Evolving WSDL 1.1 to 2.0

Despite its great success, WSDL 1.1 has several limitations. Some of them were ad-
dressed in WS-I Basic Profile 1.0, while others remained fundamental problems. First
of all, there is the concept of operation styles and encodings in the binding. Though it
was designed to bridge the gap between message-orientated and RPC-oriented ser-
vices, it has caused huge difficulties for Web Services middleware implementers and
users. As outlined in the previous subsection, both styles have their advantages, that
can be combined into one form (document/literal wrapped). If a service description has
no ambiguities regarding message-to-operation mapping, plain document/literal style
works fine. In WSDL 2.0 there is just document/literal style. However, RPC-like ser-
vices can be built on top of that, simply through adhering to certain conventions for
message type declaration (document/literal wrapped). These, in turn, are now refer-
enced directly from the input, output and fault elements of the operation description.
This change is the consequence of another problem.

The <message> construct became superfluous, because it is not able to describe a
variable number of message items. Each message type defines a constant set of parts
and the whole set is bound to a message format. Occasionally, it might be useful to
vary the content of a message, in order to trigger alternatives in complex Web service
operations. It keeps the set of offered methods small and comprehensible. To motivate
this, imagine a Web service that defines numerous operations. They conceptually have
the same functionality, but are invoked with a wide variety of input data. It should be

Fundamentals of Service-Oriented Engineering 2-17

Service Description

possible to defer the decision to the service implementation, how to react on a given
input message. The other way round, there may exist a choice of response messages,
of which only one is sent back to the requestor. All this cannot be expressed with the
<message> construct itself. It has to be done with the XML Schema language, that
has more capable and flexible means. Since RPC-style also became a subtype of
Document-style, <message> and <part> are not needed in the new version of WSDL.

Another problem concerns the understanding and clarity of the <service> element.
In the case of multiple interfaces (<portTypes>), described in a single service descrip-
tion, it is not specified whether to group all of them in one <service> element, or give
each one in its own element. For that reason, it should not be assumed that all end-
point ports of a <service> give access to the same abstract interface. This means
that the decision, which port of a service is used, determines the functionality offered
to a service requestor. Usually, a client expects the interface of a component to be
constant. Besides small irritations that might arise out of this, it also leads to lack of
interoperability.

WSDL 2.0 Language Structure. The new version of WSDL is carefully designed to
overcome the limitation of its predecessor. Make it simpler to get more usable service
descriptions was the guideline during development. Alltogether, it is more profound. A
precisely specified component model serves as the backbone of the language. It is tex-
tually described and therefore independent of any particular formal notation. A mapping
of the model elements to the most common syntax, XML, is defined by default. Fur-
thermore, SOAP/HTTP and HTTP bindings are included. Listing 8 shows a WSDL 2.0
service description for the example of the last subsection. New and changed elements
are marked bold. Subsequently, the most important changes will be explained (those
that were not already mentioned).

<description targetNamespace = ‘ ‘ h t t p : / / my. example . de / 2 . 0 / ’ ’
xmlns:mytypes = ‘ ‘ h t t p : / / my. types . de / ’ ’
xmlns:wsoap = ‘ ‘ < !−−namespace of SOAP extens ion−−> ’ ’
xmlns = ‘ ‘< !−− WSDL 2.0 namespace−−> ’ ’ >

<documentation />
<impor t />
<types>

<xsd:schema targetNamespace = ‘ ‘ h t t p : / / my. types . de / ’ ’
xmlns:xsd = ‘ ‘ < !−−XML Schema namespace−−> ’ ’>

<complexType name= ‘ ‘ MyFaultType ’ ’>
<sequence>

<element name= ‘ ‘ Except ionClass ’ ’ type = ‘ ‘ s t r i n g ’ ’ />
<element name= ‘ ‘ Desc r i p t i on ’ ’ type = ‘ ‘ s t r i n g ’ ’ />

< / sequence>
< / complexType>
<element name= ‘ ‘ MyFault ’ ’ type = ‘ ‘ MyFaultType ’ ’ />
<element name= ‘ ‘ In tE lement ’ ’ type = ‘ ‘ i n t e g e r ’ ’ />

<xsd:schema>

2-18 Fundamentals of Service-Oriented Engineering

3 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

< / types>
<in ter face name= ‘ ‘ SimpleMath ’ ’>

<f a u l t name= ‘ ‘ baseFault ’ ’ element = ‘ ‘ mytypes:MyFault ’ ’ />
<opera t ion name= ‘ ‘ add ’ ’

pattern = ‘ ‘ h t t p : / /www.w3 . org /2006/01 / wsdl / in−out ’ ’>
< i npu t name= ‘ ‘AddReqMess ’ ’ messageLabel = ‘ ‘ In ’ ’

element = ‘ ‘ mytypes: IntElement ’ ’ />
<output name= ‘ ‘AddRespMess ’ ’ messageLabel = ‘ ‘ Out ’ ’

element = ‘ ‘ mytypes: IntElement ’ ’ />
<out fau l t re f = ‘ ‘ baseFaul t ’ ’ messageLabel = ‘ ‘ Out ’ ’ />

< / opera t ion>
< / in ter face>
<b ind ing name= ‘ ‘ SimpleMathSOAPBinding ’ ’

in ter face = ‘ ‘ SimpleMath ’ ’
type = ‘ ‘ h t t p : / /www.w3 . org /2006/ wsdl / soap ’ ’
wsoap:version = ‘ ‘ 1 .1 ’ ’
wsoap:protocol = ‘ ‘ h t t p : / /www.w3 . org /2003/05 /

soap / b ind ings /HTTP ’ ’>
<f a u l t re f = ‘ ‘ baseFaul t ’ ’ wsoap:code = ‘ ‘ soap:Server ’ ’ />
<opera t ion re f = ‘ ‘ add ’ ’ wsoap:mep= ‘ ‘ h t t p : / /www.w3 . org /

2003/05/ soap /mep/ soap−response ’ ’ />
< / b ind ing>
<serv i ce name= ‘ ‘ SimpleMathService ’ ’

in ter face = ‘ ‘ SimpleMath ’ ’>
<endpoint name= ‘ ‘ SimpleMathSOAPPort ’ ’

b ind ing = ‘ ‘ SimpleMathSOAPBinding ’ ’
address = ‘ ‘ < !−− place endpoint URL here −−> ’ ’ />

< / se rv i ce>
< / description>

Listing 8: Complete WSDL 2.0 document exposing the example class, defining
SOAP/HTTP binding (document/literal by default)

Obviously, several components have been renamed, e.g. <definitions> to
<description> and <portType> to <interface>. For the latter the concept of interface
inheritance is introduced, which is well known from object-orientation and increases
modularity and reuse potential. Additionally, the interface design itself is more modular.
Fault types are declared per interface and are referenced in <infault> and <outfault>

elements, that were added to the operation description. The <fault> element of WSDL
1.1 was removed.

The <service> component is bound to a single interface now, in order to resolve
the drawbacks of the old version. The <port> element is renamed to <endpoint> for
the purpose of consistency with common network terminology.

Most significant impact on the WSDL standard has the introduction of Message Ex-
change Pattern (MEP). An MEP defines a number of placeholder messages and a flow
of interaction (exchanges) for these messages. Participants of the interaction are as-

Fundamentals of Service-Oriented Engineering 2-19

Service Description

signed as source and destination of messages. The set of participants is not limited to
client and service, but allows any third-party actor to be included. As a result, complex
MEP can be created, that go beyond the four standard operation types of WSDL 1.1.
An MEP is applied to an operation by specifying its unique URI as value of the oper-
ation’s pattern attribute. The child elements of <operation> are abstract messages
that define an attribute messageLabel. It is used to indicate which placeholder the mes-
sage refers to. In the SOAP binding, WSDL MEPs are mapped to (realized by) SOAP
MEPs. Eventually, at runtime the placeholders in the interaction flow are substituted
with concrete messages, e.g. SOAP messages.

A last innovation is that each component in WSDL 2.0 may declare <feature> and
<property> elements. The former is intended to associate non-functional properties
with the component, whereas the latter is used to express deploy-/runtime invariants.
There is a controversial discussion whether WSDL should contain these elements,
because they overlap with features of the WS-Policy specification. Most likely, the
problem will be solved in favor of WS-Policy. An overview of this and other supporting
specifications will be given in the next section.

4 WSDL Enrichment

Investigations on WSDL in the previous section have shown that it is only concerned
with two types of specification. On the on hand, there is a data specification rep-
resented by XML Schema entries in the <types> element and built-in XML Schema
simple types. From this universal type system each underlying component architecture
can map data types to its proprietary type system. On the other hand, the functional
specification is provided in form of a classical interface. First, functionality itself is
presented in the <portType> / <interface> element. Then, with the <binding> and
<service> elements, information is given on how to and where to invoke the function-
ality. But, nothing is said about non-functional properties and semantics of declared
elements. If results of section 2 are taken into account, this means that WSDL clearly
lacks expressiveness. However, this was intended, because separation of concerns is
one guiding principle for the definition of WS-* family specifications. There are several
of them that these address the types of an overall component specification that are
missing in a WSDL service description. In the same way as XML schemata are em-
bedded, the extensibility mechanism is used to supplement the description with other
non-WSDL elements. The rest of the section briefly outlines what can be done to attain
a more capable service description.

The WS-Policy family of specifications (see [15], [9]) defines a framework to declare
capabilities and requirements without referring to a particular subject, where these
should apply to. Proclaimed assertions are collected in a policy container, in which
conditional and set operators are used to express options and alternatives. A policy
intersection mechanism is also specified. This can be employed in a SOA to match re-
questor demands with provider offers. Take the case where each side presents its own
policy. If an intersection is found, i.e. both policies have a common set of assertions,
then a match can be indicated. In order to associate a policy with a subject, two ways

2-20 Fundamentals of Service-Oriented Engineering

4 WSDL ENRICHMENT

of attachment are available. Both make use of URIs to identify the policy documents.
Either PolicyURIs attribute is declared at a WSDL element or <PolicyReference> ele-
ments are added as child of a WSDL element.

There are four types of subjects distinguished in a WSDL description: service, end-
point, operation and message. Each entry of the list is parent to its successor. The
effective policy of an individual subject is a union of policies declared at different WSDL
elements. For the actual message exchange an overall policy is applied, aggregated
from the effective policies of the individual message subject and the three implicitly
associated subjects. This concept allows for modularization of a policy according to
the different entities taking part in a Web service interaction (namely the four subject
types).

The peculiarity of WS-Policy is, that it does not declare particular policy types, e.g.
transaction or security properties. These should be defined in independent domain-
specific policy schemes, following again the principle of separation of concerns. With
such a flexible mechanism any conceivable type and format of policies can be em-
ployed. This includes QoS parameters, as well as support for Design by ContractTM,
which also is not covered in WSDL. Already existing schemes were created with re-
spect to higher-level WS-* specifications that address QoS concerns (WS-Security,
WS-Transaction, WS-ReliableMessaging, etc.).

Upcoming trend in Web technologies is the use of semantics. A promising approach
to add semantics to XML-based resources is the Web Ontology Language (OWL, [13]).
It is based on the Resource Description Framework (RDF), in WSDL 2.0 conceived as
a type system alternative to XML Schema. The idea behind an ontology is related
to the concept of a knowledge domain. To put it simple, entities of a certain field of
knowledge are detailed with attributes, delimited from disjoint entities and their associ-
ations to other entities are defined. The logical constraints described in this way permit
reasoning about the concepts of the ontology. Thus, semantics can be deduced.

A concrete OWL ontology deals with the semantic description of Web services:
OWL-S ([8]). As this is an ontology with general concepts, orthogonal to real world
application domains, it is called upper ontology. A service is described in terms of a
service profile, service model and service grounding. The profile is used to advertise
capabilities and requirements of the service and presents functional (IOPE) and non-
functional properties, plus supporting information. Elements of the profile are linked to
corresponding elements in the service model. This model, in turn, describes the be-
havior of the service through classification in a small set of predefined process models.
Most likely, a service will be an unstructured atomic process. Additionally, functionality
and non-functional properties are declared in detail and, in order to associate seman-
tics, are mapped to entities of a certain application ontology. Finally, the grounding
connects the service with a concrete implementation, i.e. a WSDL description and its
Web service. In this way semantics are added to WSDL documents.

As a result it can be stated, that a complete service description is distributed across
various documents of different specifications (WSDL, WS-Policy and OWL-S). A lot of
information exist redundantly in several documents, e.g. functionality or QoS param-
eters, but it is used to glue the parts together. An increment in expressiveness of the
overall description undoubtedly exists. Whether this leverages the description to be

Fundamentals of Service-Oriented Engineering 2-21

Service Description

completely qualified (referring to the results of section 2), was not yet proven. Anyhow,
it is now possible to provide a description that covers all types of specifications.

5 Conclusion

The previous sections have shown various issues with regard to the description of ser-
vices. It should be clear at this point that a service description is indispensable. Not
only to provide a necessary interface for service invocation, but also to constitute a
contract for interaction in electronic business. Providers specify their terms and capa-
bilities in the description to advertise the contract they offer. Consumers that demand
certain capabilities and agree to follow certain contract terms can use the description to
discover matching services. The evolution of component specifications to a contractual
service description is a natural one, driven by the requirements the open marketplace
of a SOA dictates.

Implementation of a SOA with XML- and Web-based technologies is addressed in
the Web Services Architecture. Basically, this architecture is described with a stack
of Web Services specifications, of which several became widely adopted in today’s
software industry. As no major vendor can ignore service-orientation, the need for in-
teroperable standards is intensified even more. However, these standards must be all-
embracing, i.e. must concern all aspects of their problem domain. Service Description
is a fundamental domain of a SOA and WSDL the language to express definitions in
that domain. Unfortunately, the task of describing turned out to be complex and WSDL
was only a first step towards a mature technique. Therefore, WSDL must be enriched
with other forms of description. Non-functional issues are covered with WS-Policy and
its supporting specifications, while semantics can be provided with OWL-S. The lat-
ter will probably progress to be the center of an overall service description, because
semantic service discovery is more flexible and capable.

References

[1] David Booth and Canyang K. Liu. Web Services Description Language (WSDL)
2.0, part 0: Primer. http://www.w3.org/TR/wsdl20-primer/, 2006. W3C.

[2] Steve Burbeck. The Tao of e-business services: The evolution of Web ap-
plications into service-oriented components with Web services. http://www-
128.ibm.com/developerworks/webservices/library/ws-tao/, 2000. Emerging Tech-
nologies, IBM Software Group.

[3] Richard Butek. Which style of WSDL should I use? http://www-
128.ibm.com/developerworks/webservices/library/ws-whichwsdl/, 2005. IBM De-
veloperWorks.

2-22 Fundamentals of Service-Oriented Engineering

REFERENCES

[4] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau, David
Orchard, and Sanjiva Weerawarana. Basic Profile Version 1.0. http://www.ws-
i.org/Profiles/BasicProfile-1.0/, 2004. Web Services Interoperability Organization.

[5] Roberto Chinnici, Hugo Haas, Amelia A. Lewis, Jean-Jacques Moreau, David Or-
chard, and Sanjiva Weerawarana. Web Services Description Language (WSDL)
2.0, part 2: Adjuncts. http://www.w3.org/TR/wsdl20-adjuncts/, 2006. W3C.

[6] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 2.0, part 1: Core.
http://www.w3.org/TR/wsdl20/, 2006. W3C.

[7] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl/,
2001. W3C.

[8] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/1.0/owl-s/, 2003.

[9] Francisco Curbera et al. Web Services Policy Attachment (WS-PolicyAttachment)
1.2. http://specs.xmlsoap.org/ws/2004/09/policy/ws-policyattachment.pdf, 2006.

[10] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. Fundamental Modeling
Concept: Effective Communication of IT Systems. Wiley, 2006.

[11] Mike P. Papazoglou and Dimitrios Georgakopoulos. Service Oriented Computing.
Communication of the ACM, 46(10):25–28, 2003.

[12] David L. Parnas. A technique for software module specification with examples.
Communication of the ACM, 15(5):330–336, 1972.

[13] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL Web Ontology
Language Guide. http://www.w3.org/TR/owl-guide/, 2004. W3C.

[14] Eiffel Software. Building bug-free O-O software: An introduction to Design by
ContractTM. http://archive.eiffel.com/doc/manuals/technology/contract/, 2006.

[15] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Don-
ald F. Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall
PTR, 2005.

Fundamentals of Service-Oriented Engineering 2-23

Service Communication and Discovery

Martin Grund

martin.grund@hpi.uni-potsdam.de

This paper deals with two basic elements within the service world - Service Commu-
nication and Service Discovery. Service communication is possibly the most important
part. Without the knowledge on how to communicate or which language to speak, in-
teraction between services will not be possible. Service Discovery on the other hand
takes into account the service communication and wants to support the service re-
quester to find the correct service to fulfill a certain business need. This paper concen-
trates thereby on web services using SOAP as a communication layer and UDDI as a
discovery facility.

Keywords: SOAP, UDDI, Service Oriented Architecture, Introduction, Discovery, Di-
rectory

1 Introduction

Looking at the evolution of software systems within the last decades, it is possible to
discover a new trend. Old monolithic systems evolved to modern client-server systems.
By today the client server principle was pushed forward to a new software paradigm -
Service Oriented Architecture. The new feature of this design paradigm is the so called
service. A single service provides functionality to fulfill a certain task to accomplish a
business need. Services can be discovered at runtime and bound dynamically to the
underlying software. The acronym SOA in itself does not describe a brand new technol-
ogy, but describes the industry need for a more flexible, reusable software architecture.

As a first step to understand the topics Service Discovery and Service Communi-
cation in the context of Service Oriented Computing, the keywords Service Communi-
cation, Service Discovery and Service Directory are specified in detail.

1.1 Context Definition

For normal people and even people with a technical background, it is very hard to un-
derstand the main principles of Service Oriented Computing. All terms and keywords
used in this area of information technology industry are often claimed by marketing
departments and thereby evolved to buzzwords for that nobody is able to give a clear
definition. Therefore some of the most important keywords for this paper will be ex-
plained.

Service A Service is a piece of software to accomplish a certain task in a business
environment. Compared to real life an example for a service can be a typical parcel

Fundamentals of Service-Oriented Engineering 3-1

Service Communication and Discovery

service. The service, the parcel service provider provides is to deliver a certain good
to a specific location. Input parameters for this service are the destination, the source
location and the freight weight. The service itself acts as a black box. The parcel
service provider is called a service provider. The person engaging the parcel service
is called a service requester.

Service Communication Since it is defined now, what is a service and the two most
simple roles within this environment. The next definition to follow, is about how parties
in this process communicate. In the normal world we assume, that people, trying to
engage in a contract, speak the same language to be sure everybody understands the
contents of this contract. The situation is not too different in the environment of Service
Oriented Computing. It is even harder to communicate, since the humans intelligence
is able to help in situations a language is not spoken correctly, the humans brain will
put everything in a more or less correct context. For the computer world this is not
possible to achieve. Either a system speaks the desired language or no communication
is possible.

Service Communication defines the communication between two endpoints - e.g.
the service requester and the service provider. Since both need to understand the
same communication protocol communication must be standardized.

Service Discovery The role of a service requester is defined by the need to execute
a specific task. By now there are two possibilities on how to fulfill this task. Either
the service requester has already knowledge about the service providers location and
interface for its application. Or on the other hand the knowledge is not available and the
service requester has to gain this knowledge. In the human world, the person acting as
a service requester will use specific search facilities to find a suitable service provider.
These search facilities can be yellow pages or industry specific guides.

In the computer world the process of finding and binding to a service is called Ser-
vice Discovery.

Service Directory Since yellow pages are often paper based knowledge, there is a
need for software based solutions - a Service Directory. Furthermore this solution does
not only allow humans to browse and search for suitable services but allows machines
as well to search and extract the information. Therefor the application programming
interface to a service directory must be specified and of course the communication
between the service directory and a requesting endpoint.

Web Service Following to available definitions a web service is characterized as a
software system designed to support inter-operable machine-to-machine communica-
tion over a network. Since as many parties as possible should integrate into this net-
work, during the specification process a focus was set on open standards like XML and
HTTP. These standards are available for everybody and at no license fees.

3-2 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 1: Webservice Overview

As a all main terms are discussed now, for service oriented computing using Web
Services the following terms are to be used - Publish, Query and Bind. Publish de-
fines the communication with a service registry to publish informations for a service.
Query defines the process of searching a service registry to find a service, while bind
determines the process of binding a found service to the service requester. The com-
munication between all parties is done using SOAP1, the service registry is represented
as a UDDI Server2. The binding of a service interface is described using WSDL3. Bind-
ing to a service does not require the existence of a service directory. All information
needed to connect to a remote service provider can be obtained anyhow.

2 Web Service Communication using SOAP

2.1 SOAP History

This part of the paper is totally dedicated to Web Service Communication based on
SOAP. The initial development on SOAP was started by Microsoft in early 1998. The
most important members of this development group were Dave Winer and Don Box.
The initial target was to develop a RPC4 protocol based on XML5. A first objective to
achieve the main goal, was now to model a common type system for this communica-
tion protocol. As XML was only released as a recommendation this time and no XML
schema was available. The SOAP specification draft had to model the type behavior
by their selves. The original type system of SOAP (and XML-RPC) had a handful of
primitive types, composites that are accessed by name (a.k.a. structs) and composites
accessed by position (a.k.a. arrays). [1] Once the representational types were in place,
the modeling of behavioral types by defining operations/methods in terms of pairs of

1No acronym - formerly known as Simple Object Access protocol
2Universal Description Discovery and Integration Server
3Web Service Description Language
4Remote Procedure Call
5eXtensible Markup Language

Fundamentals of Service-Oriented Engineering 3-3

Service Communication and Discovery

structs started and were aggregated into interfaces. The result of these first goals were
put together and released as the RPC-XML specification.

The second phase of developing SOAP started in the 4Q of 1999 by adopting
progress being achieved by the XML Schema working group. Types that were not
available using XML Schema were modeled directly within the SOAP specification e.g.
types like soap:reference and soap:Array. Furthermore in the fourth quarter of 1999
the first SOAP specification (1.0) was released. Version 1.1 of the SOAP specification
was released under the leadership of IBM and now for the first time introduced to the
W3C6. From a technical point of view this version did not include major improvements
compared to version 1.0. While SOAP in the SOAP 1.0 and SOAP 1.1 specification
was still an acronym for Simple Object Access Protocol. This changed with version
1.2, because all members of the specification working group agreed, that this acronym
would express less than the possibilities SOAP offers.

In the second quarter of 2003 the SOAP 1.2 specification was released. This ver-
sion of the specification now implements almost all possibilities provided by the XML
Schema Standard. For version 1.2 minor changes to the XML based syntax were
made, improvements to SOAP faults introduced and changes to the SOAP encoding
system were applied.

Version 1.2 of the SOAP specification is the most current one and available at [6].

2.2 SOAP in Detail

From the down most point of view SOAP describes a stateless one-way message
exchange paradigm. Whereby more complex message exchange patterns can be
achieved by combining multiple SOAP messages. The data for a message is de-
scribed using XML notation as it is already known from the SOAP history introduc-
tion. To be independent from possible ways of transporting a message, SOAP allows
to bind a message exchange to a specific transport method. In general almost every
network transportation method can be suitable for SOAP. From the SOAP specification
accepted transportation methods are SOAP over HTTP and SOAP over SMTP. The
most common method is nevertheless SOAP over HTTP.

The message within a SOAP message exchange is modeled using the Head/Body
pattern. While the SOAP header contains mainly optional data, the SOAP body con-
tains the payload for a message.

A SOAP header is an extension mechanism that provides a way to pass information
in SOAP messages that is not application payload. Such ”control” information includes,
for example, passing directives or contextual information related to the processing of
the message. This allows a SOAP message to be extended in an application-specific
manner. The immediate child elements of the env:Header element are called header
blocks, and represent a logical grouping of data which can individually be targeted at
SOAP nodes that might be encountered in the path of a message from a sender to an
ultimate receiver.

SOAP headers have been designed in anticipation of various uses for SOAP, many

6World Wide Web Consortium

3-4 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 2: SOAP Message

of which will involve the participation of other SOAP processing nodes - called SOAP in-
termediaries - along a message’s path from an initial SOAP sender to an ultimate SOAP
receiver. This allows SOAP intermediaries to provide value-added services. Headers
may be inspected, inserted, deleted or forwarded by SOAP nodes encountered along
a SOAP message path [6].

The SOAP body is the mandatory element within the SOAP env:Envelope, which
implies that this is where the main end-to-end information conveyed in a SOAP mes-
sage must be carried. The SOAP body can be encoded using different encoding styles.

The last feature regarding the SOAP body is important in case of unpredicted pro-
gram behavior or invalid input values. To give feedback to the SOAP requester, the
SOAP node has the possibility to throw SOAP Faults. Within the document body only
one SOAP fault is allowed as the only child in the SOAP body element.

Interoperability is one of the most important targets regarding the whole technol-
ogy around service oriented computing. Communication between nodes in a service
oriented system should work even if the requester and the provider use different oper-
ating systems and/or different SOAP implementations. Since the SOAP specification
leaves enough possibilities open on how to communicate7 a web service interoperabil-
ity profile was created. The WS-I Basic Profile (Web Services-Interoperability) provides
interoperability guidance for core Web Services specifications such as SOAP, WSDL,
and UDDI. The profile uses Web Services Description Language (WSDL) to enable the
description of services as sets of endpoints operating on messages. As an effect all
services and service implementations declaring to be WS-I compatible should be able
to communicate together within the frontiers of the WS-I profile.

7e.g. regarding the different ways of encoding a SOAP request

Fundamentals of Service-Oriented Engineering 3-5

Service Communication and Discovery

2.3 SOAP Examples

The following section will introduce the different possibilities on how to encode a SOAP
message. On the other hand it will show how to read a WSDL example and to un-
derstand how a possible SOAP request could be formulated. The terminology of
RPC/literal, RPC/encoded and Document/literal8 is very unfortunate: RPC versus doc-
ument. These terms imply that the RPC style should be used for RPC programming
models and that the document style should be used for document or messaging pro-
gramming models. That is not the case at all. The style has nothing to do with a
programming model. It merely dictates how to translate a WSDL binding to a SOAP
message. Nothing more. [4] It is possible to use either style for any programming
model.

For all WSDL files shown in the next paragraphs the current encoding style is de-
clared within the binding part of the WSDL file. The next part should give an overview
over existing encoding styles and show their advantages or disadvantages.

RPC/literal The following paragraph shows an excerpt of an example WSDL docu-
ment. Only the main important parts to build a SOAP request are shown. The encoding
used for the SOAP messages is defined within the binding element of the WSDL doc-
ument. In the example below the binding style is rpc and the operation add uses the
literal possibility (Fig. 3).

The resulting SOAP request message then looks like the following document (Fig.
4).

From the SOAP node point of view this results into the following problem. Only int1

and int2 are defined using a schema, the rest of the message in soap:body is only
defined in the WSDL. But using the WSDL file and the schema, this message can be
parsed. This encoding style is WS-I compatible.

RPC/encoded The next example will show the RPC/encoded style. The WSDL file is
defined like the following(Fig. 5).

A SOAP request for this message can look like the next example (Fig. 6).
As in RPC/literal style only int1 and int2 are defined using a schema. So the

schema type definition in the SOAP request message is usually only overhead and
lowers the throughput of the SOAP node. The schema type definition is the only differ-
ence from the SOAP point of view to the RPC/encoded encoding style. This encoding
style is not WS-I compliant.

Document/literal The next example will show the Document/literal style. The WSDL
file is defined like the following (Fig. 7).

In the Document/literal style all parts of a message are defined using a XML schema
(Fig. 8).

As a result the SOAP request message can be easily validated using the XML
schema. On the other hand this encoding style opens up a new problem; the method

8Document/encoded is out of scope here because it is not relevant

3-6 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 3: WSDL RPC/literal

<message name="addRequest">

<part name="int1" type="xsd:integer"/>

<part name="int2" type="xsd:integer"/>

</message>

<message name="addResponse">

<part name="sum" type="xsd:integer"/>

</message>

<portType name="SimpleMath">

<operation name="add">

<input message="addRequest"/>

<output message="addResponse"/>

</operation>

</portType>

<binding name="SimpleMathSOAPBinding" type="SimpleMath"/>

<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="add">

<input>

<wsdlsoap:body use="literal" namespace="..."/>

</input>

<!-- same for Output -->

</operation>

</binding>

Figure 4: SAOP request RPC/literal

<soap:envelope>

<soap:body>

<add>

<int1>1</int1>

<int2>2</int2>

</add>

</soap:body>

</soap:envelope>

Fundamentals of Service-Oriented Engineering 3-7

Service Communication and Discovery

Figure 5: WSDL RPC/encoded

<message name="addRequest">

<part name="int1" type="xsd:integer"/>

<part name="int2" type="xsd:integer"/>

</message>

<message name="addResponse">

<part name="sum" type="xsd:integer"/>

</message>

<portType name="SimpleMath">

<operation name="add">

<input message="addRequest"/>

<output message="addResponse"/>

</operation>

</portType>

<binding name="SimpleMathSOAPBinding" type="SimpleMath"/>

<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="add">

<input>

<wsdlsoap:body use="encoded" namespace="..."

encodingStyle="..."/>

</input>

<!-- same for output -->

</operation>

</binding>

3-8 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 6: SOAP request RPC/encoded

<soap:envelope>

<soap:body>

<add>

<int1 xsi:type="xsdInteger">1</int1>

<int2 xsi:type="xsdInteger">2</int2>

</add>

</soap:body>

</soap:envelope>

name is no longer part of the SOAP message. Mapping a request to a available method
can be very complex now if types from the schema definition are reused and part of dif-
ferent methods. Furthermore the WS-I specification allows only one child in the SOAP
body. The above noted example would break the WS-I specification. This encoding
style is only WS-I compatible with restrictions.

Document/literal wrapped The next example will show the Document/literal wrapped
style. The WSDL file is defined like the following (Fig. 9).

To avoid the problems coming along with Document/literal and to be fully WS-I com-
pliant the Document/literal wrapped encoding style was introduced. The most impor-
tant difference to Document/literal is, that parameters to a method are wrapped into
own schema types. As a result each message has exactly one part within a SOAP re-
quest; mapping requests to operations is again possible. The resulting SOAP message
can be fully validated with a schema and is fully WS-I compliant.

To be fully WS-I compliant and to make it easy for senders and receivers to handle
a SOAP message it is recommended to use the Document/literal wrapped encoding
style (Fig. 10).

2.4 SOAP Attachments

Usually SOAP message exchange only textual data. But of course there is as well the
need to transfer binary data. For example the parcel service wants to offer customers
the possibility to download their invoices directly using a web service. Problem here is,
that the invoice is in PDF format, so there need to be a possibility to transfer it. The
most obvious method would be to re-encode the message and transfer it directly within
the SOAP message. But this comes along with a big disadvantage.If a big file is directly
transmitted within the SOAP body, the receiver has to decode the whole message even
then if the binary part is not needed, which would lower the throughput dramatically.

Another possibility is to reuse already existing standards and best practices already
known from Internet Mail. Internet mail uses the MIME standard to send messages that
are able to carry a so called attachment. The idea is now to encapsulate binary parts of
a SOAP message within a MIME message. Already existing software to decode MIME

Fundamentals of Service-Oriented Engineering 3-9

Service Communication and Discovery

Figure 7: WSDL Document/literal

<types>

<xsd:schema ...>

<element name="IntElement" type="xsd:integer"/>

</xsd:schema>

</types>

<message name="addRequest">

<part name="int1" element="myNS:IntElement"/>

<part name="int2" element="myNS:IntElement"/>

</message>

<message name="addResponse">

<part name="sum" element="myNS:IntElement"/>

</message>

<portType name="SimpleMath">

...

</portType>

<binding name="SimpleMathSOAPBinding" type="SimpleMath"/>

<wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="add">

<input><wsdlsoap:body use="literal"/></input>

<output><wsdlsoap:body use="literal"/></output>

</operation>

</binding>

3-10 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 8: SOAP request using Document/literal encoding style

<soap:envelope>

<soap:body>

<IntElement>1</IntElement>

<IntElement>2</IntELement>

</soap:body>

</soap:envelope>

messages can be reused. To access parts of the MIME message from the SOAP
message special addressing is used. This addressing allows to locate parts relative
or absolute to the SOAP message. The first part of the MIME message contains the
SOAP message, this MIME part uses the content type text/xml. This part can now be
easily parsed and processed without touching the other parts of the MIME message.

Of course decoding the MIME message(Fig. 11) lowers the throughput, but not as
dramatically as submitting the binary documents directly within the SOAP message.

As it is obvious in the above mentioned example, the message itself changed a lot.
The SOAP message within the first MIME part on the other hand did not change and
can be easily forwarded to the SOAP processing part of the application. If the SOAP
actor needs the binary part of the message it can access it using the provided link to
the MIME part.

2.5 SOAP Pros & Cons

As a conclusion it is possible to say, that enabling applications to consume services or
to provide services based on web services allows a complete new architectural pattern.
SOAPs advantage is, that it is based on open standards like XML, HTTP or MIME.
This leads to the possibility to implement SOAP on merely every platform or operating
system, where a HTTP connection is possible. Since SOAP it self describes only
a one way message exchange pattern, also very simple stateless network protocols
can be used. SOAP profits here from the side effect, that the port 80 to make HTTP
connections is available almost everywhere, even within big company networks.

On the other hand SOAP comes along with a couple of disadvantages. The time
needed to process a message is always dependent from the size of the message. Pars-
ing complex and big XML documents can lead to a decreased throughput. Compared
to binary protocols SOAP is always handicaped. Another issue is the serialization of
data types. Complex data types cannot be easily serialized to be transmitted over a
network. This serialization must not only contain the data, but needs to be conform
to the SOAP specification and must be read on the receiving SOAP node. Regard-
ing the use of SOAP in productive environments and distributed networks security can
be a problem as well. The SOAP specification does not define any security related
solutions, security must be implemented from a SOAP extension like WS-Security. In
its basic constellation SOAP relies on the security features of the underlying trans-

Fundamentals of Service-Oriented Engineering 3-11

Service Communication and Discovery

Figure 9: WSDL Document/literal wrapped

<types>

<xsd:schema ...>

<complexType name="addType">

<sequence>

<element name="int1" type="xsd:integer"/>

<element name="int2" type="xsd:integer"/>

</sequence>

</complexType>

<complexType name="addResponseType">

<sequence>

<element name="sum" type="xsd:integer"/>

</sequence>

</complexType>

<element name="add" type="addType"/>

<element name="addResonse" type="addResponseType"/>

</xsd:schema>

</types>

<message name="addRequest">

<part name="params" element="myNS:addType"/>

</message>

<message name="addResponse">

<part name="result" element="myNS:addResponseType"/>

</message>

<portType name="SimpleMath">...</portType>

<binding name="SimpleMathSOAPBinding" type="SimpleMath"/>...

3-12 Fundamentals of Service-Oriented Engineering

2 WEB SERVICE COMMUNICATION USING SOAP

Figure 10: SOAP request using Document/literal wrapped

<soap:envelope>

<soap:body>

<myNs:addType>

<int1>1</int1>

<int2>2</int2>

</myNS:addType>

</soap:body>

</soap:envelope>

Figure 11: SOAP with Attachment

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version=’1.0’ ?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

..

<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>

..

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: image/tiff

Content-Transfer-Encoding: binary

Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...

--MIME_boundary--

Fundamentals of Service-Oriented Engineering 3-13

Service Communication and Discovery

port protocol. The underlying transport protocol defines as well frontiers for message
exchange patterns, that can be realized. Since HTTP does not allow asynchronous
access, asynchronous message exchange cannot be realized using SOAP in a simple
way. This goal must be achieved by combining different web services on the receivers
side as well as on the senders side.

3 Web Service Discovery

3.1 Introduction

To understand service discovery the term service directory must be defined. A directory
service in general is a software application - or a set of applications - that stores and
organizes information about a shared resource in a network. Additionally, directory
services act as an abstraction layer between users and shared resources. Examples
for directory services are for example the well known Active Directory from Microsoft
used to store informations about users in a domain network, LDAP9 or JNDI10. As a
consequence a service directory is a directory service where the shared resources is
a service to fulfill a business need. In the world of web services this can be a UDDI11

server. Both kinds of directories have the need of a resource description and the need
for possibilities to search for a resource in common.

3.2 UDDI

UDDI is the abbreviation for Universal Description Discovery and Integration. The tar-
get of UDDI is to support finding the right service and dynamic binding of services by
helping others to determine the answers to the questions ”‘who, what, where and how”’.

Universal The universal in UDDI stands for open standards and that UDDI will be
open to any business, any industry and any communication protocol. Even if UDDI
uses web service technology to communicate with its clients, the binding from the
service requester to the service provider is not bound to web services and can be
any communication protocol.

Description Since not only services are registered within the UDDI but business en-
tities too, there is a need to describe these pieces of information. These descriptions
can be made using different formats and should be readable for humans as well as
for machines. Usually descriptions are made on a textual basis and use for examples
taxonomies to categorize business entities or services.

9Lightweight Directory Access Protocol
10Java Naming and Directory Interface
11Universal Description Discovery and Integration

3-14 Fundamentals of Service-Oriented Engineering

3 WEB SERVICE DISCOVERY

Discovery Discovery describes the process of finding a service that fulfills the busi-
ness need. UDDI allows searches based on categories that match the request or
simple text based matching like search for a city, a name or a phone number.

Integration The integration part of UDDI determines the binding of a selected re-
source to the service requester. To be able to support remote communication and
binding of services UDDI relyes on open standards and interoperability between clients
and the UDDI server.

3.3 UDDI Basics

In general the structure of a UDDI server from the service requester point of view is
divided into three parts. These parts have their name through the commonness of a
UDDI server to paper based business registries as for example the yellow pages. The
first part of the UDDI server is the White Pages part, this part stores information about
addresses and other contact information about known identifiers of a business entity or
service. The Yellow Pages determine the industrial categorization of a business entity
or a service based on standard taxonomies. The third part, the Green Pages, contain
technical information about services exposed by business entities.

The data structure within the UDDI server is described using XML schema. Rela-
tions between model elements are defined and every request and answer is as well
defined using this XML schema. The classification within the UDDI server to support
different categories for business entities or services is usually achieved by using tax-
onomies. The classification based on taxonomies is not mandatory for a UDDI server.
Furthermore, since no specific taxonomy is mandatory for a UDDI server, different
UDDI server may use different taxonomies. This can result in different results for same
search requests.

3.3.1 Taxonomy

The word taxonomy derives from the Greek word ”‘tassein”’, that means to classify and
the word ”‘nomos”’, that means law or science; drawn together the meaning defines a
classification rule or law. A taxonomy defines a hierarchical tree structure to classify
something. It is not important what something is, only the hierarchical relation is rel-
evant. The nodes below an entry define a subject that is more specific, while entries
above the selected subject define something that is more general. A search on such
a classification tree can be made by calculating the degree of commonness between
entries.

3.3.2 UDDI Structure

The internal structure of an UDDI server is divided as shown in figure 13. The business
entity describes for example a company. For each business service exists exactly one

Fundamentals of Service-Oriented Engineering 3-15

Service Communication and Discovery

Figure 12: Example Taxonmoy

Figure 13: Internal UDDI Structure

3-16 Fundamentals of Service-Oriented Engineering

3 WEB SERVICE DISCOVERY

business entity. Attributes for the business entity are usual contact details like name,
city or country.

A business service now belongs to one business entity. The business service de-
scribes the service exposed by the business entity. Attributes submitted to the business
service are for example name and description. Both, business entity and business ser-
vice can be member of different categories that allow searching based on these cate-
gories. For each service multiple binding templates can be defined. A binding template
describes how to bind to a service in a technical way. For each binding template a
tModel is defined. The tModel is the concrete technical description of the service used
to dynamically bind to the service. If the service is exposed using web services the
tModel would refer to the WSDL file, that describes the interface of the service. Since
UDDI is open to different communication protocols, any other technical description
could be available here. If the service would be exposed using CORBA12, the tModel
would contain the IDL file, that describes the interface to the service and the binding
template would contain information on where to find the ORB13.

3.4 UDDI Application Programming Interface

The UDDI server provides access for two different parties. One party for service re-
questers, that want to search the UDDI server, the other party is for service providers
that want to register services to the UDDI server. To access the UDDI server, UDDI
provides two different APIs for users. The inquiry API to search for services and the
publish API for publishing service information.

UDDI Inquiry The Inquiry API describes a standard way to access the registry to
search for a specific service. Thereby the UDDI supports three different search pat-
terns to find a correct result. The browse pattern characteristically involves starting with
some broad information, performing a search, finding general result sets and then se-
lecting more specific information for drill-down. The UDDI API specifications accommo-
date the browse pattern by way of the find_xx API calls. These calls form the search
capabilities provided by the API and are matched with summary return messages that
return overview information about the registered information that is associated with
the inquiry message type and the search criteria specified in the inquiry. A typical
browse sequence might involve finding whether a particular business the requester
knows about has any information registered. This sequence would start with a call to
find_business, perhaps passing the first few characters of a business name that the
requester already knows. This returns a businessList result. This result is overview in-
formation (keys, names and descriptions) derived from the registered businessEntity

information, matching on the name fragment that the requester provided. [12]
Once the requester has a key for one of the four main data types managed by a

UDDI or compatible registry, he can use that key to access the full registered details for
a specific data instance by using the drill-down pattern. The current UDDI data types

12Common Object Request Broker Architecture
13Object Request Broker

Fundamentals of Service-Oriented Engineering 3-17

Service Communication and Discovery

are businessEntity, businessService, bindingTemplate and tModel. The requester
can access the full registered information for any of these structures by passing a
relevant key type to one of the get_xx API calls. [12]

The invocation pattern as a last step uses the retrieved key to fetch a binding tem-
plate for a registered service and uses the technical description from the service reg-
istry to bind to the service. Binding to the service can either be done at development
time or at runtime. Once the service requester bound to the service, it is able to com-
municate with the remote service.

Figure 14: find business API call

The image shown in figure 14 describes the schema for a find_business API call.
An example call to the UDDI server could look like the following example (example 3.4).
Additional attributes to the call may specify the maximum number of results displayed
or include wildcards to allow a more general search. The result of this API call will be
a businessList containing all entries, that match the query. This API call coresponds
to the browse-pattern.

UDDI Publish The messages for publishing represent commands that require au-
thenticated access to an UDDI Operator Site, and are used to publish and update
information contained in a UDDI compatible registry. Each business should initially se-
lect one Operator Site to host their information. Once chosen, information can only be
updated at the site originally selected. UDDI provides no automated means to recon-
cile multiple or duplicate registrations. The messages defined for publishing all behave
synchronously and are callable via HTTP-POST only. HTTPS is used exclusively for

<find_business maxRows="100">

<name>%Car Rental</name>

</find_business>

3-18 Fundamentals of Service-Oriented Engineering

3 WEB SERVICE DISCOVERY

all of the calls defined in this publisher’s API. [12] From the UDDI server side it is guar-
anteed, that all messages send to the server and that result in operations on the UDDI
data are fully atomic. This ensures, that no corrupt data is stored on the server.

Figure 15: save business API call

The save_service API call adds a new service or updates an already existing ser-
vice in the UDDI registry. The call must contain a businessKey identifier to assign the
service to an already registered business entity. The uddi:businessService informa-
tion itself is described using the UDDI XML schema.

3.5 UDDI Replication

As UDDI is not only foreseen to provide service search capabilities for inter-company or
inter-community networks but for largely scaled networks too. It opens up the question
on how the technical problem of data management within the network of multiple UDDI
servers must be solved.

There is an identified set of (operator) nodes involved in the operation of the UDDI
Service. To the outside world, the cloud of Operator nodes should appear and act as
a single service. Each Operator node within the UDDI Service will be identified within
a Replication Configuration File. The contents and format of this configuration file are
described in the UDDI Replication Specification.

An individual Operator node may be comprised of several physical computers but
will be represented by one unique ID of type Universal Unique Identifier (UUID). Details
specifying the format of the UUID can be found in the UUID Algorithm section in the
UDDI Operators Specification. As is shown in the Replication Configuration file, one
unique URL is specified to represent the replication point, soapReplicationURL for
each Operator node.

A goal of UDDI replication is to ensure that, all nodes see all the changes that have
originated at individual Operator nodes. An additional goal is that registry inquiries
made at any Operator node within the UDDI Service yield results consistent to those
made at any other Operator node within the UDDI Service. The response should be
complete and sent to the caller as quickly as possible. This consistency is defined as
a response comprised of the same businessEntities, businessServices, tModels,
bindingTemplates and publisherAssertions, sorted the same way. The consistency
of the results is subject to any replication latencies. [14]

Each node has custody of a certain portion of the aggregate data managed by the
UDDI Service. Each datum is in the custody of exactly one such Operator node. A
datum can be a business entity, a business service, a binding template, a tModel, or an

Fundamentals of Service-Oriented Engineering 3-19

Service Communication and Discovery

assertion within a business relationship. Changes to a datum in the UDDI Service can
only be made at the node in whose custody the datum resides. Although Publishers
initiate the changes by their inserts, updates, or deletes of the actual data, Operator
nodes are said to ”‘originate changes”’ for such data into the Replication stream. The
Operator node that is the custodian of a datum can be changed. The Change of Cus-
tody process utilizes a multi-step process and utilizes ”‘replication”’ to accomplish the
final steps within this process. The complete Change of Custody Process is defined
within the UDDI Operators Specification. [14]

An example implementation of UDDI Replication was provided by SAP, IBM, Mi-
crosoft and others, called the UDDI Business Registry(UBR). The UBR was shut-down
on January first 2006, because all parties agreed, that all goals - e.g. to show that
UDDI Replication works - where accomplished.

3.6 UDDI Limits and UDDIv3

UDDIv3 When UDDIv1 was introduced it provided only basic features needed for a
business registry, in terms that storing data was possible, but searching for businesses
was implemented only rudimental. As an improvement in UDDIv2 searching capabil-
ities where extended. But still the service registry lacked fine-granular security con-
cepts. These security concepts where introduced in UDDIv3. As main improvements
certificate based and token based authentication where integrated. By now it is possi-
ble to limit the search capabilities for specific parties by defining policies for accessing
the UDDI server.

Limits of UDDI Still one of the main drawbacks of UDDI is the lack of semantic ser-
vice discovery. This means to search for a service on the basis what the service does
instead of how the service is described. In general it is really difficult to implement
such a semantic based search capability because everybody would have to agree on
one specific semantic implementation. [18] Furthermore this would require a general
specification algorithm for service providers if they register their services.

From the technical point of view UDDI already offers almost all functionality needed
to create a reliable and functional service registry. But another drawback is, the lack
of functionality to validate a published service and a possibility to check for updates or
changes of the requested service.

4 Conclusion

In terms of service oriented computing service communication using SOAP is a very
interesting possibility. Its main advantage is the use of open standard and its simplicity.
It is possible to implement a SOAP stack on nearly every platform and so to connect
divers devices in a service oriented environment. On the other hand its ease leads to
various problems. Since Web Services using SOAP rely on the underlaying transport
stack, not every communication scenario can be realized easily (see asynchronous

3-20 Fundamentals of Service-Oriented Engineering

REFERENCES

communication). Furthermore security and performance can be major issues for SOAP
based applications. But beeing open to domain specific add-ons SOAP is able to solve
these problems as well.

UDDI on the other side does not focus on the service communication but on service
discovery. Based on SOAP UDDI provides a framework for service discovery. The
advantage of UDDI is its openness to the used technologies. Besides using SOAP
as a communication protocol, there is no restriction on communication protocols that
are used within the registered components. With UDDIv3 a better authorization and
authentication support was integrated. As a drawback UDDI still lacks a standardized
interface to allow semantic searches for registered services. Furthermore by January
1st 2006 all UDDI industry partners stopped their effort in providing sample service
registries, that independent software vendors could use for reference implementations.
By now UDDI only exist on a specification sheet and future support by industry leaders
is still unclear.

References

[1] SOAP History by Don Box

[2] SOAP History by Dave Winer
http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html

[3] SOAP in Wikipedia
http://en.wikipedia.org/wiki/SOAP

[4] SOAP Message Encoding
http://www-128.ibm.com/developerworks/library/ws-whichwsdl/

[5] SOAP w/ Attachments
http://www.w3.org/TR/SOAP-attachments

[6] SOAP Specification 1.2

[7] Ontology by Wikipedia
http://en.wikipedia.org/wiki/Ontology_\%28computer_science\%29

[8] Taxonomy by Wikipedia
http://en.wikipedia.org/wiki/Taxonomy

[9] Web Service Transactions
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/#L1177

[10] Web Service Security
http://www-128.ibm.com/developerworks/library/specification/ws-secure/

[11] UDDI v3 Specification
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.

2-20041019.htm

Fundamentals of Service-Oriented Engineering 3-21

Service Communication and Discovery

[12] UDDI v2 Specification
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

[13] UDDI and WSDL
http://www.w3schools.com/wsdl/wsdl_uddi.asp

[14] UDDI Replication Specification
http://uddi.org/pubs/Replication-V2.03-Published-20020719.htm

[15] OASIS Homepage
http://www.oasis-open.org

[16] Web Service Discovery: UDDI and beyond
http://wwwcs.uni-paderborn.de/cs/ag-kao/de/teaching/ws05/ws/03\%20-\

%20SemWS\%20-\%20Ausarbeitung\%20-\%20Hans\%20Gossen\%20-\%20UDDI\

%20and\%20beyond.pdf

[17] What’s new in UDDIv3
http://www.webservices.org/categories/technology/registry_uddi/what_s_

new_in_uddi_3_0_part_1/(go)/Articles

[18] Paolucci et al: Importing the Semantic Web in UDDI. In Proceedings of Web Ser-
vices, E-business and Semantic Web Workshop, 2002

3-22 Fundamentals of Service-Oriented Engineering

Fundamentals of Service-Oriented Engineering 4-1

Role, capabilities and position of JINI
Network Technology in SOC

B.Sc.Tobias Queck

tobias.queck@hpi.uni-potsdam.de

Diese Ausarbeitung beschäftigt sich mit der von Sun entwickelten Technologie

JINI. Zu Beginn wird ein Überblick über JINI gegeben, auf den dann eine
Beschreibung der JINI Architektur folgt. Daran angeschlossen wird diskutiert, ob JINI
eine Service-orientierte Architektur besitzt und welche Rolle diese in der Service-
orientierten Welt spielt. Zum Schluss wird ein Vergleich zwischen Webservices mit
JINI durchgeführt an welchen sich ein abschließendes Fazit des Autors anschließt.

Keywords: JINI, SOA, Webservices, JavaSpaces, Leasing, Distributed Events

1 Einleitung und Grundlagen
Der Mitbegründer von Sun Microsystems, Bill Joy verkündete am Anfang der 90er

Jahre seine Vision von einer verteilten (Computer-) Welt, in der Software auf jedem
Computer unabhängig von seiner Architektur oder seines Betriebssystems
ausgeführt werden kann und mit anderen transparent kommuniziert. Um diese Vision
zu verwirklichen Trieb er die Entwicklung von Java voran. Dadurch wurde eine
Technologie geschaffen, die es ermöglicht Software zu entwickeln, die in einer
Virtuellen Maschine abgewickelt wird, unabhängig von den darunter liegenden
Schichten.

Der nächste Abstraktionsschritt sollte die Computergrenzen beseitigen. Dazu
sollten die Java Konzepte so erweitert werden, so dass Programme transparent über
Computergrenzen hinweg interagieren können. Erste Ideen wurden bei Sun von Bill
Joy zusammen mit den Ideen für Java entwickelt. Die Umsetzung erfolgte bis 1999
mit der ersten Veröffentlichung von JINI. [1][12]

1.1 Ziele
Ziel eines JINI Systems ist es einerseits dem Benutzer die Möglichkeit zu geben

Dienste und Ressourcen in einem Netzwerk zur Verfügung zu stellen. Andererseits
soll es auch für Benutzer leicht sein, Ressourcen und Dienste Anderer zu finden und
zu verwenden. Dabei soll der administrative Aufwand zur Erstellung, Wartung und
Erweiterung des Netzwerkes so gering wie Möglich bleiben.

Netzwerke werden bei JINI nicht als starre immer funktionierende Konstrukte
betrachtet, sondern als flexible Gebilde, in denen keine Garantien für Durchsatz oder

Role, capabilities and position of JINI Network Technology in SOC

4-2 Fundamentals of Service-Oriented Engineering

Erreichbarkeit gegeben werden können. Daher werden Aspekte wie Skalierbarkeit
oder Ausfallbehandlung besonders betrachtet. Weiterhin muss ein Netzwerk nicht nur
aus leistungsstarken Computern bestehen, sondern kann ebenso Geräte, wie eine
Kamera oder ein Drucker, enthalten, die aber selbst in der Lage sind einen Dienst
anzubieten oder zu nutzen.

Für die Umsetzung wird das Java Konzept der Ausführung von Programmen in
einer virtuellen Maschine (VM) erweitert. Mit JINI soll es möglich sein zwischen
verschiedenen VMs zu kommunizieren, und dabei sowohl Daten als auch Code zu
transferieren. [2]

1.2 Anwendungsszenario
Das typische Anwendungsszenario für JINI beinhaltet ein variierendes Netzwerk

bestehend aus Computer und Geräten, wie z.B. in einer Firma mit Innen- und
Außendienstmitarbeitern, beispielsweise in der Immobilienbranche.

Angenommen es gäbe ein Bürogebäude mit mehreren Computern, Druckern und
Beamern, die alle einem Netzwerk angehören. Auf allen Geräten sind JINI Dienste
entweder zum anzeigen, drucken oder speichern von Fotos vorhanden. All diese
Dienste sind auf einem zentralen Server registriert. Zusätzlich gibt es noch ein
Bluetooth Empfänger über den es möglich ist mobile Geräte in das Netzwerk zu
integrieren.

Kommt nun ein Außendienstmitarbeiter, der eine Bluetoothfähige Digitalkamera
dabei hat, auf der ebenfalls JINI Dienste vorhanden sind, in das Büro, so kann dieser
seine Kamera aktivieren und diese integriert sich automatisch in das Netzwerk.
Danach kann über ein Benutzerinterface auf der Kamera nach einem Anzeige-Dienst
auf einem Beamer gesucht werden und die Fotos den Kollegen gezeigt werden. Jetzt
kann im Büro über die Bilder diskutiert werden und die benötigten aussortiert werden.
Diese können dann über einen anderen JINI Dienst gedruckt oder gesichert werden.
Danach deaktiviert er die Kamera wieder und verlässt das Büro.

1.3 Konzepte
Das wichtigste Konzept eines JINI Systems ist der Dienst. In einem JINI System

ist alles ein Dienst, das beinhaltet Programme, Programme und Daten, Geräte und
auch den Benutzer selbst. Diese Dienste und ihre Kommunikation bilden zusammen
das Gesamtsystem. Um die Kommunikation untereinander zu ermöglich gibt es einen
zentralen Dienst, den Lookup Service. Andere Dienste müssen sich bei ihm
anmelden, damit sie gefunden werden können (join – siehe 2.2) und wiederum
müssen sie ihn kontaktieren wenn sie andere Dienste finden wollen (lookup – siehe
2.3).

Als darunter liegende Infrastruktur wird die Java Technologie RMI (Remote
Method Invocation) verwendet. Damit ist es möglich Objekte zu finden, zu aktivieren
und auch zu versenden. Insbesondere ist es mit RMI möglich nicht nur Daten zu
verschicken, sondern komplette Objekte mit ausführbarer Programmlogik. Weiterhin
bringt RMI ein Sicherheitsmodell mit, welches den Zugriff auf Objekte und deren
Rechte über die Grenzen der Virtuellen Maschine hinweg regelt. Dazu werden policy
Dateien verwendet, in denen genau festgelegt werden kann, von wem ein

 1 EINLEITUNG UND GRUNDLAGEN

Fundamentals of Service-Oriented Engineering 4-3

bestimmtes Objekt aufgerufen werden kann, und welche Funktionalitäten erlaubt
sind. [5]

Der Zugriff auf die meisten Dienste ist über Leasing regelt. Das heißt,
Dienstanbieter und -nutzer handeln eine Zeitperiode aus in der dem Nutzer der
Zugriff auf den Dienst garantiert wird. Ist diese Periode abgelaufen und es wurde
keine Verlängerung ausgehandelt, verfällt das Zugriffsrecht des Nutzers und auf
Nutzer- und Anbieterseite werden die reservierten Ressourcen wieder freigegeben.
Dementsprechend muss das Recht zu Nutzung immer wieder vor Ablauf der
Zeitperiode erneuert werden, wenn ein Dienst weiter verfügbar sein soll. Treten nun
Netzwerkprobleme auf, so dass eine Verlängerung nicht möglich ist, verfällt
Nutzungsrecht nach Ablauf des der ausgehandelten Zeitperiode. Damit können
einerseits Ressourcen für längere Zeit nicht mehr verfügbare Dienstnutzer freigeben
werden und andererseits kurzeitige Netzwerkprobleme ignoriert werden, was in
Netzwerken mit einer dynamischen Infrastruktur essentiell ist.

Beim Leasing können entweder exklusive oder nicht-exklusive Rechte auf
Ressourcen vergeben werden. Bei einem exklusiven Zugriff wird dem Dienstanbieter
ein alleiniges Recht auf die zur Verfügung gestellten Ressourcen gewehrt, wobei bei
einem nicht-exklusiven Lease mehrere Nutzer gleichzeitig die Ressourcen eines
Dienstes teilen können.

Des Weiteren enthält JINI die Möglichkeit Transaktionen zu verwenden, das heißt
einzelne Dienste können miteinander zu einer Transaktion verknüpft werden, um
gegebenenfalls bei einem Fehler durch einen Rollback inkonsistente Zustände zu
vermeiden. In JINI wird dafür das 2-Phase-Commit Protokoll verwendet. Die
Implementierung des Protokolls ist aber dem Entwickler selbst überlassen, es
müssen nur die angebotenen Interfaces implementiert werden.

.Abschließend wird in JINI eine verteilte Lösung für das bereits in Java
vorhandene Konzept für Events angeboten. Dazu wird das Event-Modell von
JavaBeans erweitert indem Events über das Netzwerk verschickt werden können,
und Aspekte wie Verzögerung und nicht Erreichbarkeitsprobleme beachtet werden.
Dies wird erreicht indem zwischen dem Eventgenerator und dem Eventinteressenten
eine zusätzliche Komponente, der Event Listener, eingebaut wird. Dieser erhält die
Events vom Eventgenerator und leitet sie dann nach einem frei implementierbaren
Algorithmus weiter. So könnten z.B. alle Events die durch eine Verzögerung schon
zu alt sind, ignoriert werden und nur aktuelle Events and den Eventinteressenten
weitergeleitet werden. Ebenso sind Konzepte wie Notification Filter, Step-and-
Forward Agents oder Notifaction Mailboxes denkbar. [8]

1.4 Komponenten
Um die im vorherigen Kapitel erläuterten Konzepte umzusetzen, besteht das JINI

System aus Komponenten, die in die drei Bereiche Infrastruktur, Programmiermodell
und Dienste eingeteilt werden. Dazu wird durch JINI nicht alles neu umgesetzt,
sondern es wird auf vorhandene Java Komponenten aufgebaut (siehe Abbildung 1).
Demzufolge kann JINI nicht getrennt von Java betrachtet werden, sondern ist als
eine Erweiterung dieser Technologie einzuordnen.

Role, capabilities and position of JINI Network Technology in SOC

4-4 Fundamentals of Service-Oriented Engineering

JavaSpacesRemote EventsLookup
Transaction ManagerTransactionsDistributed Security
PrintingLeasingDiscovery/JoinJava

+
JINI

JTS...Java Security
Enterprise BeansJavaBeansRMI
JNDIJava APIsJava VM

Base
Java

ServicesProgramming ModelInfrastructure

JavaSpacesRemote EventsLookup
Transaction ManagerTransactionsDistributed Security
PrintingLeasingDiscovery/JoinJava

+
JINI

JTS...Java Security
Enterprise BeansJavaBeansRMI
JNDIJava APIsJava VM

Base
Java

ServicesProgramming ModelInfrastructure

Abbildung 1 - JINI und Java

Infrastruktur. Den Kern des JINI Systems bildet die Infrastruktur. Die

Infrastrukturkomponenten sind für den Aufbau des verteilten Systems verantwortlich.
Dies beinhaltet sowohl das verteilte Sicherheitssystem, welche in RMI integriert ist
als auch das discovery/join Protokoll als Grundlage der verteilten Kommunikation. Als
Service Repository, also zur Verwaltung alle registrierten Dienste, dient der Lookup
Service.

Programmiermodell. Das Programmiermodell stellt Interfaces zur Verfügung,
gegen die die anderen Konzepte (Leasing, Transaktionen, Events) implementiert
werden können.

Das Leasing Interface von der Klasse net.jini.lease.LeaseRenewalManager
implementiert. Der Dienstnutzer erstellt eine Instanz davon in seinem lokalen
Adressraum und nutzt die angebotenen Methoden zur Verwaltung seiner Leases. [6]
Dazu wird das Java Modell, welches Objekte zur Garbage Collection freigibt, sobald
keine Referenzen mehr darauf vorhanden sind, um einen Zeitstempel erweitert. Eine
Objektreferenz verfällt nicht sofort, sondern erst wenn die Zeit (Leasetime)
abgelaufen ist.

Die Interfaces für Transaktionen befinden sich in dem Paket
net.jini.core.transaction.server. Das Interface TransactionManager ermöglicht einem
Entwickler auf Dienstanbieterseite ein 2-Phase-Commit Protokoll zu implementieren,
wobei aber keine verschachtelten Transaktionen erlaubt sind. Sollen diese verwendet
werden muss das Interface NestableTransactionManager implementiert werden. Alle
Dienste, die in Transaktion verfügbar sein sollen, müssen das Interface
TransactionParticipant implementieren, d.h. sie müssen unter anderen die Methoden
prepare, commit und abort anbieten. Auf Dienstnutzerseite kann dann der
implementierte TransactionManager genutzt werden. [7]

Um das Konzept für Distributed Events umzusetzen, muss eine Eventinteressent
sich bei einer Komponente die das EventGenerator Interface implementiert anmelden
und dabei auf den gewünschten Event Listener verweisen und erhält dann Objekt
vom Typ EventRegistration zurück. Diese wird dann den Event Listener
weitergeleitet, welcher nun über das RemoteEventListener Interface bereit ist Events
zu empfangen. Alle Events sind Instanzen der Klasse RemoteEvent. [8]

Dienste. Die JINI-Dienste werden als Java Objekte mit einem öffentlichen
Interface implementiert. Sie bieten die eigentliche Funktionalität eines JINI Systems
an und nutzen dabei die Infrastruktur und das Programmiermodell. Weiterhin können
Dienste auch aus anderen Diensten zusammengesetzt werden.

 2 ARCHITEKTUR

Fundamentals of Service-Oriented Engineering 4-5

Zum JINI Standard gehören ein Druckdienst, ein Transaktionsmanager und Dienst
der das Konzept der JavaSpaces realisiert.

2 Architektur
Der Aufbau eines JINI Systems ist relativ einfach, da es nur aus drei Akteuren

besteht. Es gibt einen Dienstanbieter, einen Dienstnutzer und einen Vermittler
(Lookup Service). Der komplexere Teil der Architektur ist das Zusammenspiel dieser
drei Komponenten. Dazu wird im folgenden Kapitel der Ablauf eines Dientaufrufes
beginnend bei dessen Registrierung betrachtet.

2.1 Discovery
Wie bereits erwähnt, müssen Dienste bei einem Lookup Service registriert

werden, damit sie genutzt werden können. Dazu muss als erstes der Dienstanbieter
einen passenden Lookup Service finden. Für diesen Prozess gibt es drei Protokolle,
die die Kommunikation zwischen Dienstanbieter und Lookup Service regeln. Wobei
zwei verschiedene Szenarios möglich sind.

Zum einen könnte der Dienstanbieter die Adresse eines Lookup Services kennen.
Dann würde das Unicast Discovery Protocol verwendet werden. Hierbei würde der
Dienstanbieter eine Nachricht an den Lookup Service senden und eine Lookup
Service Id zurückbekommen, mit der er seinen Dienst registrieren kann.

Der andere Fall tritt ein, wenn der Dienstanbieter keine Lookup Service kennt. In
diesem Fall würde das Multicast Request Protocol verwendet werden. Dabei schickt
der Dienstanbieter einen Multicast Request an sein lokales Netzwerk. Alle Lookup
Services die diesen Request erhalten, antworten dann mit dem Multicast
Announcement Protocol und senden damit ihr Id zurück, so dass der Dienstanbieter
sich dann aussuchen kann, bei wem er den Dienst registrieren möchte.

Service
Provider

Proxy
Attributes

Lookup Service

Client

Abbildung 2 - Discovery

2.2 Join
Nachdem ein Dienstanbieter einen Lookup Service gefunden hat, kann er seinen

Dienst registrieren. Dazu schickt der Dienstanbieter einen den Dienst

Role, capabilities and position of JINI Network Technology in SOC

4-6 Fundamentals of Service-Oriented Engineering

repräsentierenden Proxy und eine Liste von nichtfunktionalen Attributen, die den
Dienst beschreiben, an den Lookup Service. Diese werden dort gespeichert und
können somit von anderen Diensten gefunden werden.

Diesen Vorgang kann der Dienstanbieter bei allen ihm bekannten Lookup Services
wiederholen. Bei der Registrierung wird das in Kapitel 1.3 erläuterte Leasing-
Konzept verwendet. Das heißt, dass ein Dienst nur für eine bestimmte Zeit registriert
wird, und der Lease regelmäßig erneuert werden muss. Findet eine Erneuerung nicht
rechtzeitig statt, wird die Registrierung verworfen.

Service
Provider

Proxy
Attributes

Lookup Service

Client

Proxy
Attributes

Abbildung 3 - Join

2.3 Lookup
Möchte nun ein Dienstnutzer einen registrierten Dienst verwenden, so muss er als

erstes einen Lookup Service finden. Dafür verwendet er die in Kapitel 2.1
beschriebenen Discovery Mechanismen.

Nachdem die Verbindung zum Lookup Service hergestellt wurde, kann der
Dienstnutzer nach Diensten suchen. Dazu erstellt der Dienstnutzer ein Template,
welches dann an den Lookup Service geschickt wird. Das Template besteht aus drei
Teilen: Als erstes kann eine ServiceId angegeben werden, falls ein bestimmter,
bekannter Dienstanbieter verwendet werden soll. Der zweite Teil ist zwingend. Hier
müssen die Interfaces aufgelistet werden, die der gesuchte Dienst implementieren
soll. Als dritter und letzter Teil, können noch Attribute angeboten werden, die der
Dienst erfüllen muss.

Als Antwort erhält der Dienstnutzer den ersten gefunden passenden Proxy zurück.

 3 EINORDNUNG IN DIE SERVICE-ORIENTIERTE WELT

Fundamentals of Service-Oriented Engineering 4-7

Service
Provider

Proxy
Attributes

Lookup Service

Client

Proxy
Attributes

Proxy

Abbildung 4 - Lookup

2.4 Dienstaufruf
Nachdem der Dienstnutzer den Proxy erhalten hat, wird der Lookup Service nicht

mehr benötigt, da die Kommunikation jetzt direkt über den Proxy abläuft.
Der Proxy ist im einfachsten Fall ein generierter RMI Proxy, der sich für den

Dienstnutzer als lokales Objekt repräsentiert und jeden Methodenaufruf direkt an das
entfernte Objekt, den Dienst, weiter leitet. Ebenso könnte der Proxy auch selbst
implementiert werden und dabei eigene Kommunikationsprotokolle verwendet
werden.

Zusätzlich zur selbst definierbaren Kommunikation können auch so genannte
Smart Proxies entwickelt werden. Ein Smart Proxy enthält zusätzlich zur
Aufrufweiterleitung Programmlogik. Beispielsweise könnte ein Proxy für einen
Mathematik Dienst alle einfachen Anfragen (z.B. Addition, Subtraktion) komplett
selbst beantworten und alle Anfragen die viel Rechenleistung benötigen (z.B.
Integrale), an das entfernte Objekt weiterleiten.

Service
Provider

Proxy
Attributes

Client

Lookup Service

Proxy
Attributes

Lookup Service

Proxy
Attributes

Proxy

Abbildung 5 - Dienstaufruf

3 Einordnung in die Service-orientierte Welt
In diesem Kapitel wird diskutiert ob mit JINI eine Service-orientierte Architektur

realisiert wird und wo diese sinnvoll eingesetzt werden kann.

Role, capabilities and position of JINI Network Technology in SOC

4-8 Fundamentals of Service-Oriented Engineering

3.1 Ist JINI eine SOA?
Um diese Frage beantworten zu können, muss als erstes eine eindeutige

Definition für Service-orientierte Architekturen gefunden werden. Es gibt jedoch nicht
nur eine Definition in der Service-orientierten Welt, sondern mehrere verschiedene,
die aber in einigen Punkten übereinstimmen. In einer vorangegangenen
Ausarbeitung im Rahmen dieses Seminars, wurde folgende Definition für eine
Service-orientierte Architektur geliefert: “A SOA is a software architecture that is
based on the key concepts of an application frontend, service, service repository, and
service bus” [3]. Anhand dieser Definition wird im Folgenden gezeigt, das JINI eine
SOA ist.

In Kapitel 2 wurden die drei Bestandteile der JINI Architektur Dienstanbieter,
Dienstnutzer und Lookup Service benannt. Diese können auf die Schlüsselkonzepte
aus der Definition abgebildet werden. So entspricht der Dienstanbieter dem service,
da hier eine in sich abgeschlossene Funktionalität als Dienst angeboten wird. Der
Dienstnutzer entspricht dem application frontend, da hier die Schnittstelle der
Applikation nach außen ist. Die Funktionalitäten sind zwar in den Diensten
implementiert, jedoch werden sie erst durch den Dienstnutzer aufbereitet und
außerhalb des Systems verwendbar. Das service repository im JINI System ist der
Lookup Service, da hier alle Informationen über die Dienste verwaltet werden, und
nur darüber Kontakt zwischen Dienstanbieter und –nutzer hergestellt werden kann.
Das letzte fehlende Konzept der Definition, der service bus, wurde ebenfalls implizit
in den Kapiteln 1.4 und 2 benannt. Der service bus verknüpft die einzelnen
Komponenten mit einander. In JINI wird dies gemeinsam durch die Infrastruktur, das
Programmiermodell und Kommunikationsprotokolle erbracht.

Demzufolge entspricht die JINI-System-Architektur der für das Seminar gültigen
Definition einer Service-orientierten Architektur.

3.2 Einsatzgebiet
In Kapitel 1.2 wurde ein für JINI geeignetes Anwendungsszenario dargestellt. Das

Einsatzgebiet ist aber nicht nur auf das Büroszenario beschränkt. JINI kann seine
Stärken immer dann zeigen, wenn ein häufig variierendes Netzwerk benötigt wird, da
durch das selbständige finden des Lookup Services jeder neue Dienst ohne
administrative Aufwand hinzugefügt werden kann.

Aktuelle Projekte mit JINI beschäftigen sich beispielsweise mit einem schnurlosen,
automatisierten Haushalt (siehe [9]„home-automation“). Ein weiteres interessantes
Einsatzgebiet für JINI sind Java Spaces.

Zum JINI-Paket gehört ein Dienst zur Verwaltung von Java Spaces. Dieser Dienst
ermöglicht das Vereinen der Konzepte von JINI für variable Netzwerke mit denen von
Java Spaces zur Datenverwaltung. Einsatz findet diese Verbindung z.B. bei
GigaSpaces zur Verwaltung von Data Grids [10].

3.3 Probleme
Im letzten Unterkapitel wurden die am besten geeigneten Einsatzgebiete von JINI

dargelegt. Bei der Recherche für dieses Seminar (Juni, Juli 2006) konnten aber

 4 BEZIEHUNG ZU WEBSERVICES

Fundamentals of Service-Oriented Engineering 4-9

außer [10] keine Quellen gefunden werden, die auf eine Verwendung von JINI
hinweisen.

Dies bestätigend, wurde schon im März 2000 [11] geschrieben, dass die von Sun
angepriesene Technologie im Einsatz vermisst wird. Begründet wird diese Aussage
dadurch, das JINI der Zeit voraus sei. Die JINI Technologie sei nur sinnvoll in
Szenarien mit einem Netzwerk aus Kleingeräten. Zum Zeitpunkt des Artikels gab es
aber noch keine Kleingeräte die JINI-Dienste anboten. Die Grundlagen dafür, eine
Microedition einer Java VM, eine ressourcensparende schnurlose
Netzwerktechnologie wie Bluetooth und Geräte die genügend Speicher und
Prozesserleistung haben, wurde bis heute geschaffen, jedoch besteht das Manko,
das JINI nicht eingesetz wird, weiterhin. Trotz der vorhandenen Grundlage gibt es
noch keine Hersteller von Kleingeräten, die Hardware mit einer „JINI-Schnittstelle“
anbieten.

Zusätzlich steht Sun mit JINI in Konkurrenz zu anderen Technologien, die die
gleichen Einsatzgebiete haben, wie z.B. Microsofts Universal Plug and Play (UPnP).

4 Beziehung zu Webservices
Wird heutzutage von dem Konzept der Service-orientierten Architektur

gesprochen, so wird damit häufig die Technologie Webservices verbunden.
Nachdem im vorherigen Kapitel die Probleme JINIs dargestellt wurden, soll nun

untersucht werden, ob sich beide Technologien unterscheiden, erweitern oder
ergänzen und ob die Popularität oder die Eigenschaften von Webservices ein Grund
für JINIs Probleme sein könnten.

4.1 Geschichtliche Entwicklung
Die Geschichte von JINI beginnt mit der ersten Version von Java 1995, da hier die

Grundlage geschaffen wurde. Die erste Veröffentlichung von JINI war 1999. Die
Geschichte von Webservices hingegen, beginnt erst zwei Jahre später mit der
Schaffung von Standards wie SOAP (2000) und WSDL (2001). Die eigentliche
Bewegung zur Standardisierung von Webservices wird im Januar 2002 gestartet. [13]

Demzufolge dauert es nach dem ersten Release des JINI Frameworks fast drei
Jahre bevor Webservices als Konkurrenz dazu auf den Mark kamen. Da aber schon
2000 in [11] angemerkt wurde, das JINI nicht verwendet wird, können die Probleme
aus den ersten Jahren nicht durch die Konkurrenz zu Webservices begründet
werden.

Heutzutage haben sich aber Webservices als die Technologie für SOAs
durchgesetzt, was es unwahrscheinlich macht, das JINI sich gegen Webservices
durchsetzen kann.

4.2 Vergleich der Architekturen
Beide Architekturen sind Service-orientierte Architekturen nach der Definition aus

[3]. Es sind alle vier definierten Konzepte in beiden wieder zu finden (vergleich
Abbildung 6).

Role, capabilities and position of JINI Network Technology in SOC

4-10 Fundamentals of Service-Oriented Engineering

Service
Provider

Lookup Service

ClientWebservice

Service Registry
(UDDI)

Client
ProxyWSDL

Publish Find

Bind/Invoke

Publish Find

Bind/Invoke

Service
Provider

Lookup Service

ClientWebservice

Service Registry
(UDDI)

Client
ProxyWSDL

Publish Find

Bind/Invoke

Publish Find

Bind/Invoke
Abbildung 6 - Webservice OA gegen JINI OA

Webservices sind durch fünf entscheidende Konzepte gekennzeichnet. Sie
können beschrieben werden durch WSDL (Description), in einer Service Repository
normalerweise UDDI veröffentlicht werden (Publishing), in diesem gefunden werden
(Discovery), aufgerufen werden über eine API (Invocation) und zu mehreren
komponiert werden (Composition).

Bei JINI werden drei dieser Konzepte ebenfalls erfüllt. Durch den Lookup Service
können Dienste veröffentlicht und gefunden und mit dem Proxy Aufrufe an den
Dienst weitergeleitet werden. Die Aufrufe unterscheiden sich aber, da Webservice-
Aufrufe Nachrichten-orientiert sind (meist SOAP), wohingegen bei JINI ein RPC an
ein entferntes Objekt geschickt wird, wobei das Protokoll nicht vorgegeben ist. Die
beiden anderen Konzepte werden standardmäßig mit JINI nicht umgesetzt. Es
existiert keine explizite Dienstbeschreibung. Bei JINI gibt es kein WSDL welches
beschreibt welche Schnittstelle der Dienstnutzer ansprechen muss, sondern einen
fertigen Proxy, der schon die Implementierung des Aufrufes vorgibt, so das keine
Beschreibung mehr nötig ist. Es können zwar Attribute zu einem Dienst angeben
werden, diese sind jedoch nicht mit einer Dienstbeschreibung gleich zu setzen. Die
Komposition von JINI Diensten ist ebenfalls nicht im Programmiermodell vorgesehen,
sondern müsste per Hand beim Dienstnutzer oder im Dienst implementiert werden.

Außerdem sind Webservices vollständig plattformunabhängig, da sie
standardisierte Protokolle und Beschreibungen verwenden. Im Gegensatz dazu baut
JINI auf Java auf, und ist davon nicht trennbar, wobei durch die Java VM die
Plattformunabhängigkeit eine Schicht tiefer realisiert wird. Ein weiterer Unterschied
zwischen beiden ist der Zustand. Webservices sind zustandslos, JINI-Dienste
hingegen können durch das Verwenden des Leasingkonzepts zustandsbehaftet sein.

 Webservices JINI
Description WSDL Proxy + attributes
Invocation Message oriented

 (SOAP)
RPC
(RMI, Smart Proxies)

Discovery UDDI LookupService
Serviceimplementation Platform independent JAVA
Availability Static and stateless Leasing concept

 5 FAZIT UND AUSBLICK

Fundamentals of Service-Oriented Engineering 4-11

4.3 JISGA Projekt
JISGA (JINI based Service oriented Grid Architecture) ist ein Projekt, welches

versucht bei Technologien miteinander zu verknüpfen. Es soll damit ermöglicht
werden, dass auch auf ein lokales JINI System über Webservicestandards
zugegriffen werden kann. Dafür werden JINI-Dienste die auch nach Außen verfügbar
sein sollen mit einer zusätzlichen Schnittstelle für Webservice-Aufrufe versehen. [14]

Dieses Projekt zeigt, dass sich beide Technologien nicht gegenseitig ausschließen
müssen, sondern dass sie geschickt miteinander verknüpft die Vorteile beider Ideen
nutzen können.

4.4 Fazit
Abschließend kann festgestellt werden, dass beide Technologien eine Umsetzung

einer Service-orientierten Architektur sind. Trotzdem stehen sie nicht in Konkurrenz
zueinander, da sie unterschiedliche Einsatzgebiete haben. JINI wurde für
dynamische lokale Netzwerke entwickelt und Webservices für ein B2B
Kommunikation über das Internet. Folglich hängen die Probleme JINIs in der
Verbreitung nicht mit Webservices zusammen. Ebenso ist die Kombination beider
möglich, was das JISGA Projekt zeigt.

5 Fazit und Ausblick
Nachdem in der bisherigen Ausarbeitung eine möglichst objektive Sicht auf JINI

dargelegt worden ist, wird im folgenden Kapitel, das wichtigste noch einmal benannt
und vom Autor bewertet.

5.1 Fazit
JINI ist als eine Erweiterung zu Java zu sehen, die es ermöglicht dynamische

Netzwerke aufzubauen, wobei ein geringer Wartungsaufwand benötigt wird. Die
Konzepte auf denen die JINI-Architektur aufbaut ist laut Definition eindeutig eine
Service-orientierten Architektur. Im Vergleich mit Webservices wurde festgestellt,
dass sich beide Ansätze unterscheiden und nicht miteinander konkurrieren.

Ich selbst würde JINI als eine interessante Technologie bezeichnen, die wirklich
Erfolgreich bei der Idee des schnurlosen Haushalts werden könnte. Zusätzlich ist
JINI für den Aufbau einer SOA innerhalb eines Firmen-LANs ebenfalls eine sehr gute
Lösung.

5.2 Ausblick
Wenn die Entwicklung irgendwann soweit ist, dass alle Haushaltsgeräte mit

einander vernetzt werden sollen, so dass sie automatisch gesteuert werden können,
dann könnte JINI endlich in den Vordergrund treten. Eine weitere Möglichkeit JINI zu
etablieren wäre der Zusammenhang mit Java Spaces. Jedoch ist diese Technologie
auch ohne JINI verwendbar. JINI könnte nur als Netzwerkerweiterung auftreten. Bei

Role, capabilities and position of JINI Network Technology in SOC

4-12 Fundamentals of Service-Oriented Engineering

meiner abschließenden Recherche fand ich eine relativ neue Ausarbeitung (Januar
2006) die über die Nutzung von JINI in dynamischen Clustern spricht [15].
Möglicherweise könnte JINI dort zum Standard werden.

Dessen ungeachtet ist JINI jetzt schon so lange auf dem Markt und noch nicht
durchgebrochen, so dass ich vermute, dass JINI unter diesem Namen nicht mehr
erfolgreich sein wird. Möglicherweise wird Sun einen erneuten Versuch starten, wenn
die Zeit für JINI reif ist und eine neue Technologie herausbringen, die nicht mehr JINI
heißt, aber die Ideen und Konzepte von JINI enthalten wird.

Literatur
[1] Bill Venners, “The JINI Technology Vision”, Reprinted from JavaWorld, August

1999. http://java.sun.com/developer/technicalArticles/jini/JINIVision/jiniology.html
[2] Sun Microsystems Inc., “JINI™Architectural Overview”, Palo Alto 1999.
[3] D. Krafzig, K. Banke and D. Siama, “Enterprise SOA: Service-Oriented

Architecture Best Practices”. Prentice Hall 2004
[4] “JINI™Technology Core Platform Specification”, Version 2.0, June 2003.

http://www.sun.com/software/jini/specs/core2_0.pdf
[5] Sun Developers Network, RMI Whitepaper.

http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/index.jsp
[6] Jini.org, Jini Lease Utility Specification.

http://www.jini.org/wiki/Jini_Lease_Utilities_Specification
[7] Jini.org, Jini Transaction Specification.

http://www.jini.org/wiki/Jini_Transaction_Specification
[8] Jini.org, Jini Distributed Events Specification.

http://www.jini.org/wiki/Jini_Distributed_Events_Specification
[9] Java.net, “The Source for Java Technology collaboration”. https://jini.dev.java.net/
[10] Gigaspaces, “Documents”. http://www.gigaspaces.com/os_docs.html
[11] Stephen Shankland (Staff Writer, CNET News.com), “What is holding up Sun's

much-hyped technology?“, 15. März 2000.
http://news.com.com/JINIs+bottleneck/2009-1001_3-237378.html?tag=st.num

[12] Bill Joy, „Java and JINI: Towards a Science of Computing“.
http://technetcast.ddj.com/tnc_program.html?program_id=63&page_id=1

[13] W3C, “History”. http://www.w3.org/Consortium/history
[14] Yan Huang, “JISGA: A JINI-Based Web Service-Oriented Grid Architecture”.

http://www.wesc.ac.uk/resources/publications/pdf/JISGA.pdf
[15] Frank Sommers, “Dynamic Clustering with JINI Technology”, Januar 2006.

http://www.artima.com/lejava/articles/dynamic_clustering.html

Fundamentals of Service-Oriented Engineering 5-1

Service Composition

Anna Ploskonos

anna.ploskonos@student.hpi.uni-potsdam.de

Service-oriented Architecture has been established as the de-facto standard in
building of software applications. By using the service paradigm we can easily
integrate widely distributed information systems or we can obtain a new enterprise
solution by composing web services in appropriate order according to existing
business processes. Now the service composition is one of main research topics in
the computing industry. This paper gives an introduction to a web service
composition; we will discuss some existing approaches for a service composition like
Business Process Execution Language for Web Services, Web Services
Choreography Description Language, Petri Nets, Pi-calculus and Web Component.
We will also compare existing methods for a service composition: manual, semi-
automated and full-automated.

Keywords: Service-Oriented Architecture, Web service, Service composition,
BPEL, WS-CDL, Petri Nets, full-automated service composition

1 Introduction
At present thousands of companies make their business by using the Internet.

They provide information about stock tickers, product catalogs or perform Business-
to-Business (B2B) commerce activities like purchasing, delivery, payment and other
business transactions. It means that business software applications intensively
collaborate with one another through the Internet.

To support such interoperability Service-oriented Architecture (SOA) was
developed [1] which gives an independence from specific programming languages or
operating systems. The ecology of the SOA combines service providers, service
requesters, service brokers. Service providers create and publish web services; the
broker performs categorization of services and search functions; requesters utilize
presented services.

The SOA is built using three main technologies: Web service Description
Language (WSDL), SOAP that enables an XML-based message exchange format
and Universal Description, Discovery, and Integration (UDDI) used for implementing
registries that allow you to publish and to discover web services.

As the result of the popularity of the SOA, a set of available services on the
Internet is growing very quickly. The central issue within the SOA is how to describe
services and how to publish them in order to support the dynamic discovery of
appropriate ones. For this purpose Semantic Web Services (SWS) was invented that
presents the meaning of services, its arguments, effects, results and allows agents to
reason about it in order to find required web services.

Service Composition

5-2 Fundamentals of Service-Oriented Engineering

As mentioned before software applications communicate with each other via web
services and such collaboration should satisfy security and transaction issues. The
questions are how to protect private data in the collaborating system, how to secure
collaborating transactions. Thus the next challenge issues of the SOA are related to
authentication, access control, encryption and error handling. To solve these
problems additional standards were developed such as WS-Addressing, WS-
Transactions and WS-Security. However each of these approaches solves its own
specific problems without taking into account requirements from other areas.

Another strong research topic within the SOA is related to the service composition.
The advantages of the service composition are clear; we can obtain a new enterprise
solution by composing web services according to business requirements and reuse
existing services. One can integrate various information systems like Customer
Relationship Management (CRM), Business Warehouse (BW) in appropriate order to
support business complex interactions between partners and customers.
Unfortunately these modeling processes are currently done manually.

There is a wide range of approaches to support the service composition from
abstract methods to industrial standards and the goal of this work is to give an
introduction to web service composition and to discuss existing approaches and
techniques, their advantages and disadvantages.

The remainder of this work is organized as follows: In section 2 we will give a
definition of the term “service composition”. Section 3 offers an overview over current
approaches in the field of the service composition; we will consider Business Process
Execution Language for Web Services, Web Services Choreography Description
Language, Petri Nets, Pi-calculus and Web Component. Section 4 presents methods
for the service composition: manual, semi-automated and full-automated, discusses
their advantages and disadvantages. Section 5 gives conclusions and outlooks.

2 Service Composition: a Definition
The purpose of this section is to give a working definition for the service

composition and to discuss some characteristics of service composition. The term
“service composition” is often used in research papers, but a cleat definition is still
absent. Some of authors mention service composition as “behavior of web services”
another as “properties of the interactions” or “high level description of interactions”.

We define the service composition as a process of binding web services into a
new one using construct operators in order to solve the given business tasks. Service
composition should satisfy functional, non-functional requirements and guarantee the
correctness of the result.

As an element of the service composition it can be one service or the whole
service composition. Completed service composition may be described as a new web
service and reused in building a new one. Such reusability of the service composition
is especially suitable for often requested tasks.

Each service has input and output parameters. Input parameters represent data
needed to initiate the service in order to obtain its functionality and output parameters
represent the result data of the service’s execution.

 2 SERVICE COMPOSITION: A DEFINITION

Fundamentals of Service-Oriented Engineering 5-3

To invoke a certain web service the predefined set of preconditions should be
satisfied, for instance, to perform a payment operation, a credit card should be
available. The execution of the service can change the state of the world; it
characterizes an effect of the service, for example, the effect of the payment
transaction is “the payment is done”.

The service composition defines a control flow of the process in which order the
activities of the service composition are enacted, there are such control flows:
sequential, parallel, alternative, etc. Different workflow patterns for control flows are
described in the work [2].

The sequential control flow consists of activities which are enacted one after
another in a well-predefined order. For example, someone would like to buy
products; firstly he/she makes an order for products, then obtains an invoice from the
seller and makes payment regarding this invoice. These three activities are
performed in a sequential order as shown in Figure 1.

Figure 1: Workflow Pattern: Sequence

The parallel control flow allows you to make a parallel invocation of two or more

activities. By getting the order the seller makes a decision whether to delivery
products or not and calculates an invoice for the customer in the positive case. Firstly
the availability of the required amount of products and the availability of delivery
service are checked. These two activities can be performed in a parallel manner as
depicted in Figure 2.

Figure 2: Workflow Patterns: Parallel Split and Synchronization

The parallel control flow can be realized by using two patterns: Parallel split and

Synchronization.
Alternative control flow occurs where one out of many control flows are possible.

In our business scenario the seller can reject the order or can accept the order. (see
Figure 3).

Service Composition

5-4 Fundamentals of Service-Oriented Engineering

Figure 3: Workflow Patterns: Exclusive choice and Simple Merge

The alternative control flow can be realized by using the workflow patterns:

Exclusive choice and Simple Merge. In case of multiple alternative flows, it is
possible to simulate with Parallel Split and Exclusive Choice. Synchronization Merge
can be used for the flow synchronization.

Within the execution of the service composition a data flow can occur, while
activities exchange data. The data flow connector connects the output parameter of
one activity with the input parameter of another one.

A service composition can be modeled from two perspectives: from the point of
view of all participants – a global view and from the point of view of one participant –
a single view, Choreography and Orchestration respectively. We can obtain the
single view model from the global model by projecting based on one participant.

Orchestration defines a centralized execution of application components from
internal and external sources, coordinates a process flow, exception handlings, data
transformations, and transaction compensations. The process is always controlled
from the perspective of one of the business parties.

Choreography specifies an interoperable business process protocol between
multiple parties including customers, suppliers and partners collaborating to
accomplish a common business goal. Choreography provides a common
understanding between collaborating parties.

3 The State-of-the-art of the Service Composition
This section gives an overview over current research efforts in the field of the

service composition and compares existing approaches regarding requirements for
the service compositions defined in the work [3].

The requirements for the service composition are as follows:
− Connectivity
− Non-functional properties
− Correctness
− Scalability
The connectivity requirement describes the possibility to reason about input and

output parameters of web services. By making a service composition non-functional
properties should also be taken into account like performance, execution time, cost,
security and others. The verification of service compositions is required in order to
guarantee correct executions without deadlocks or livelocks. Since the web service

 3 THE STATE-OF-THE-ART OF THE SERVICE

Fundamentals of Service-Oriented Engineering 5-5

environment is highly dynamic, where anytime changes can be expected, the next
requirement is scalability. The approach should be scalable to additional functional
and non-functional requirements for a service composition.

In the next subsections existing service composition approaches and evaluations
regarding aforementioned requirements will be presented.

3.1 Business Process Execution Language for Web Services
Business Process Execution Language for Web Services (BPEL4WS) [4] is an

XML-based language for defining a composition of web services, which is developed
by BEA, IBM, Microsoft, SAP, Siebel and standardized by the Organization for the
Advancement of Structured Information Standards (OASIS).

There are several BPEL4WS implementations for both J2EE and .NET platforms:
IBM WebSphere, Oracle BPEL Process Manager, Microsoft BizTalk 2004,
OpenStorm ChoreoServer and Active BPEL.

BPEL4WS composition is defined as a process which consists of a set of activities
ordered in a certain manner. Activities exchange messages and belong to
participating services, which are defined as partners. All interactions between
partners are done via WSDL interfaces. The BPEL4WS entities and relationships
between them are depicted in Figure 4.

Figure 4: BPEL4WS elements

The BPEL4WS basic language element groups are:
− process initiation: <process>
− definition of the participating service: <partnerLink>
− synchronous and asynchronous calls: <invoke>, <invoke>... <receive>
− intermediate variable: <variable>
− results manipulation: <assign>, <copy>
− error handling: <scope>, <faultHandlers>
− sequential execution: <sequence>
− parallel execution: <flow>
− logic control: <switch>
The simple example of the BPEL4WS process for handling a purchase order can

be found in [5].

Service Composition

5-6 Fundamentals of Service-Oriented Engineering

BPEL4WS is not a choreography language. BPEL4WS depicts the focus on the
view of one participant and thus it is an orchestration language. Concerning
aforementioned requirements for service compositions BPEL4WS satisfies
connectivity and scalability, unfortunately this industrial standard does not provide a
verification of the correctness and does not take into account non-functional
properties for a service composition. In the work [6] authors try to solve verification
problems by transferring BPEL4WS to Petri Nets in order to check the correctness of
the service composition by using instruments of Petri Nets.

3.2 Web Services Choreography Description Language
Web Services Choreography Description Language (WS-CDL) [7] is an XML-

based language which describes peer-to-peer interactions of partners from a global
viewpoint.

When two or more companies would like to integrate their applications via web
services, they negotiate observable behaviors of their services, information
exchanges and ordering rules, which occur during the interaction, by using WS-CDL.
Thus the choreography specifies common interactions between services of business
partners and actual implementation decisions are left for each individual company.
The implementation can be realized by using BPEL4WS or J2EE solution
incorporating Java and Enterprise Java Bean Components or a .NET solution
incorporating C#. The logical representation of goals of WS-CDL is shown in Figure
5.

 3 THE STATE-OF-THE-ART OF THE SERVICE

Fundamentals of Service-Oriented Engineering 5-7

Figure 5: Logical representation of goals of WS-CDL

As BPEL4WS the WS-CDL supports connectivity and scalability requirements for

service compositions, for the verification purpose WS-CDL uses pi-calculus, where
some safety and liveness properties can be verified. Non-functional properties are
not supported in the current version.

3.3 Petri Nets
Petri nets were invented in 1962 by Carl Adam Petri. It is a well-founded process

modeling tool with a strong mathematical basis. Petri nets can be used to model and
analyze business processes. One of the advantages of this tool is that processes can
be graphically represented allowing you to express and reason about the created
model.

A Petri net is a directed graph which consists of place nodes, transition nodes and
arcs connecting places with transitions. Places may contain tokens. If each input
place consists of at least one token, the transition is enabled and can be fired. As it
fires, one token is removed from each input place and generated at each output
place. For a more elaborate introduction to Petri nets, the reader is referred to [8].

The work [9] describes a Petri net-based algebra for composing web services. The
proposed net-based algebra captures all semantic specifications needed for service
compositions: to obtain a new service from existing web services and to support
emerging control flows (sequence, alternative, iteration, arbitrary sequence, parallel
with communication, discriminator and selection), verifications in terms of workflow
correctness and refinements.

Regarding this work operations of web services are modeled by transitions and
states of services are modeled by places. The arrows between places and transitions
are used to specify causal relations. At any given time, a web service can be in one
of the following states: not initiated, ready, running, suspended, or completed. When
a web service is in the ready state, it means that a token is in its input place, whereas
the completed state means that a token is in its output place.

The example of an alternative operator is shown in Figure 6. Syntactically it can be
written as S1⊕S2 and represents a composite service that behaves as either service
S1 or service S2. The full description of service algebra operators can be found in [9].

Service Composition

5-8 Fundamentals of Service-Oriented Engineering

Figure 6: Services S1⊕S2.

The benefit of use Petri Nets for the service composition is that they present

verification features to check whether a created service composition is live or
bounded. It is very important to analyze a created composition of web services in
terms of errors before it is put into use.

Some of the non-functional properties can be modeled by using Colored Petri Nets
that extends classical Petri Nets with time and resource management.

Unfortunately the Petri Nets do not give any suggestions for implementation; it
offers only a general theoretical framework for a composition of web services.
However it can complement other existing approaches, for example BPEL4WS by
giving verification features to check the correctness of created service compositions.

3.4 Pi-calculus
Pi-calculus was created in 1980 by Robin Milner, Joachim Parrow and David

Walker. Pi-calculus provides a conceptual framework and mathematical tools for
expressing mobile systems and reasoning about their behaviours [10]. The example
of the mobile system is cellular phone that can change the connection to a network of
a base station as the telephone is carried around.

There are two basic entities in the Pi-calculus: names and processes. Names
represent names of links and processes can communicate by sharing these names.
The connection between processes can change over time, in an arbitrary way.

The basic process constructs available in the Pi-calculus are as follows:
− Communication: input prefixing and output prefixing. Input prefixing - ()Pxc . , the

process P waiting for a message x, which is sent on a communication channel c.
Output prefixing - Pyc . describes that the message y is sent on channel c
before proceeding the process P.

− Concurrency – QP | , where P and Q are two processes executed concurrently.
− Replication - P! , the creation of a new copy of P.

 3 THE STATE-OF-THE-ART OF THE SERVICE

Fundamentals of Service-Oriented Engineering 5-9

− Creation of a new name – ()Pxν , the allocation a new constant x within the
process P.

− Nil process - 0, shows that a process execution is complete and has stopped.
The other definitions and theorems of Pi-calculus can be found in [10].
Bellow we present an example of processes expressed in Pi-calculus. There are

three agents: Tom, Tim and Printer. Tim knows about the Printer and sends this
information to Tom. Tom receives it and sends a file to print.

()
() 0..int!

0.int.int

0.int

PRINTfileprPRINTER
fileprprtalkTOM

prtalkTIM

τ=

=

=

Thus new links between active processes are dynamically created and thereby
make the system mobile.

The advantage of use the Pi-calculus for a service composition is that it gives the
possibility to model mobile systems and to reason about their behaviours by using a
strong mathematical basis. Since the web service environment is highly dynamic
where everything changes, it can be considered as a mobile system. For instance the
used service is not available at the execution time then a new web service should be
dynamically found. Another advantage of Pi-calculus ensures safety, liveness
properties of the created service composition.

The disadvantage is that it is only the theoretical approach and several adaptation
steps should be done before we can talk about PI-calculus as an industrial standard
for the service composition.

3.5 Web Component
Web Component approach was developed by Yang and Papazoglou and

described in the work [11]. They define the web component approach as “a
packaging mechanism for developing web-based distributed applications in terms of
combining existing (published) web services.” The platform gives a possibility to
develop value-added services by combining existing elementary or complex services
offered by different enterprises. For instance, a travel plan service can be developed
by composing elementary services such as hotel reservation, ticket booking, car
rental and sightseeing service.

The main idea of this approach is that a web service can be described as a class
that represents a public interface in terms of performed functionality and composition
logic.

Composition logic consists of composition type and message dependency.
Composition type has two forms:

− Order determines whether services in the composition are executed sequentially
or in parallel.

− Alternative service execution determines whether alternative services can be
invoked in the composition.

Message dependency determines whether there is the message dependency
between parameters of services. Three types of the dependency are defined:

Service Composition

5-10 Fundamentals of Service-Oriented Engineering

− Message synthesis combines the output messages of elementary services with
the output message of the compose service.

− Message decomposition decomposes the input message of the composite
service into the input messages of the elementary services.

− Message mapping allows mapping between the input and output messages of
elementary services.

The created public interface can be published, discovered and used by
applications like any other normal web services. A web component is specified in two
forms: first as a class definition and second as an XML specification expressed in
Service Composition Specification Language (SCSL). Thus, the process of the web
service composition deals with reusing, specializing and extending the available web
components.

3.6 Summary
We have considered some existing approaches for the service composition from

industrial standards like BPEL4WS, WS-CDL to abstract methods like Petri Nets, Pi-
calculus and Web Component. And we have found that there is a big gap between
industrial standards and theoretical approaches. The main problem of industrial
standards is that they do not recommend correct verifications of created service
compositions, but deal with real implementation. On the other hand, abstract
methods have a strong theoretical background with mathematical instruments,
suggest correct verifications. They are often used as a theoretical backbone for other
languages.

4 Service Composition Methods
This section discusses methods for the service composition – manual, semi-

automated, full-automated, their advantages and disadvantages. By making a
service composition there are such common steps: to discover appropriate web
services from existing ones that will be composed to solve a given business problem,
then to make data and control-flow linkages between them. In the following
subsections we will consider each method by taking into account these assembling
steps:
− service discovery;
− service matchmaking;
− data-, control-flow linkages.

4.1 Manual Composition of Services
Now a composition of services is usually made manually. Staring from the process

description a composer try to compose web services, firstly he/she looks for proper
services using textual descriptions provided by service providers in order to

 4 SERVICE COMPOSITION METHODS

Fundamentals of Service-Oriented Engineering 5-11

understand web service capabilities and their non-functional properties. Then he/she
connects web services in an appropriate order. By matching output parameters with
input parameters it can happen that parameters have different data structures and
he/she should handle it by finding a transformation mechanism. Such assembling
steps are made step by step until achieving the sequence of web services
corresponding to the desired business goals.

Modeling all these aspects by using a service composition language like
BPEL4WS it is impossible to ensure all feasible and future situations that can occur
during the execution of the process. Also it is not possible to consider all failures. And
that's nature a composer can make errors (or deficits) in the service composition. All
these factors do not guarantee that the service composition created manually is
correctly modeled.

The created service composition is not flexible to changes in the environment
during its execution. One of the composed services may become unavailable when
the composition is enacted, hence the service composition should be immediately
rebuilt by the composer.

Therefore we need fast adaptive approaches for modeling of a service
composition. For this reason semi-automated and full-automated approaches for the
service composition are strong research topics now.

4.2 Semi-automated Composition of Services
The main idea of semi-automated method is to support users in creating a service

composition by giving the possibility to filter, select web services and by providing
intelligent suggestions. The service composition system should be able to analyze a
partial service composition created by the user, notify the user of issues that have to
be resolved in the current situation and suggest the user what actions could be taken
next.

By making a service composition the user may use different strategies: 1) top-
down selection of components, for instance, the user does not have an explicit
description of the desired result, they may start making a composition from abstract
model and then specify it; 2) result-based selection of components, the user has an
explicit description of the desired result and would like to simulate the situation that
leads to this desired result; 3) situation-based of components, the user has only a
description of initial states and wants to get a simulating model that describes
possible results.

To perform aforementioned tasks semi-automated service composition tools and
methods provide service discovery, matchmaking tasks in automatic way and difficult
tasks of control- and data-flow linkages they leave for the user.

Service discovery can be performed by using service repositories like UDDI
provided by the OASIS. It gives the possibility to register and advertise web services
in order to discover by service requestors.

Since the number of potential services may be huge in the repository, we need
matchmaking mechanisms that can be able to find a proper service by using
semantic descriptions. Unfortunately the current standards for service descriptions -
WSDL and UDDI do not provide semantics. WSDL includes information about how a

Service Composition

5-12 Fundamentals of Service-Oriented Engineering

service has to be invoked and what the structure of the input and output parameters
are, but does not say about functionalities of the service and the meaning of its input
and output massages. For this purpose semantic descriptions are used that provide
meanings for agents so that they can reason about web services to perform
automatic web service discovery, execution and composition.

Now the four major semantic web service specifications are recommended by the
World Wide Web Consortium (W3C): OWL-based Web service ontology (OWL-S),
Semantic Web Service Language (SWSL), Web Service Semantics - WSDL-S and
Web Service Modeling Ontology (WSMO).

OWL-S [12] is an OWL based upper ontology semantically representing web
services and consists of three main elements: service profile for advertising and
discovering services, service model, which gives a detailed description of service's
operations, service grounding, which provides details on how to interoperate with a
service via messages. The formalism mechanism is accomplished by using
description logic.

SWSL [13] is a logic-based language for specifying ontology as well as individual
web services. The language consists of two parts: a first-order logic language
(SWSLFOL), which is used for the formal specification of ontology and a rule-based
language (SWSL-Rules), which provides an actual language for the service
specification.

WSDL-S [14] extends WSDL elements by adding references to a part of the
domain ontology.

WSMO [15] provides a conceptual framework, a formal language for semantically
describing web services. The four main elements are ontologies, which provide the
terminology, web service descriptions, which describe functional and behavioral
aspects of a web service, goals that represent user desires and mediators, which aim
for handling interoperability problems between different WSMO elements.

The aforementioned semantic technologies are complex in use and require from
the user additional knowledge about semantic specifications. All of them use different
ontology formats to represent domain knowledge making it difficult to integrate them.
The existing semi-automated tools use these semantic standards in order to make
automatic Web service discovery and matchmaking tasks.

The most known tools for semi-automated service composition are Web Service
Composer created by Sirin, Parsia and Hendler [16], Composition Analysis Tool
(CAT) developed by Kim, Spraragen and Gil [17], Internet Reasoning Service created
by Hakimpour [18].

The tool presented by Sirin, Parsia and Hendler works based on OWL-S semantic
standard where functional and non-functional attributes of web services presented by
OWL classes. The process of compositing services starts from the specification of
the desired result and then the user composes web services by interacting with the
system until achieving known input parameters to the whole composition. The
composition system has following components: an inference engine, a composer and
a graphical user interface, though which users can establish their preferences for the
workflow and make the service composition by selecting components. The inference
engine stores service advertisements, process requests and performs the role of
OWL reasoner. OWL reasoner matches two services if an output parameter of one
service is the same OWL class or subclass of an input parameter of another service.

 4 SERVICE COMPOSITION METHODS

Fundamentals of Service-Oriented Engineering 5-13

If more than one match is found, the system filters the services based on the non-
functional attributes. The composer generates a service composition by
communicating with the inference engine and presents users possible choices at
each step.

In summary semi-automated service composition tools assist users in making a
service composition by presenting proper services and checking a created service
composition in terms of errors at each step. And the user makes a decision and
connects control- and data-flows. However this method does not provide any
solution for the dynamics of the web service world. If changes occur during an
execution of the service composition, the user should immediately rebuild it. Thus the
human factor can be as a bottleneck here.

4.3 Full-automated Composition of Services
The full-automated service composition supposes that service discovery,

matchmaking and data-, control flow linkages are performed automatically. It means
that the human factor as a bottleneck is removed and service compositions are made
on-demand at each case and automatically adapted to the current state of the world.
Full-automated service composition may be used not only for the creation of the initial
service composition, but for error handling by re-planning of service compositions
which have been already enacted.

However, a dynamic service composition is a hard task, one of the techniques that
have been proposed for this task is Artificial Intelligence (AI) planning. In the work
[19] the planning is characterized as follows: “Planning can be interpreted as a kind
of problem solving where an agent uses its beliefs about available actions and their
consequences, in order to identify a solution over an abstract set of possible plans”.

In general, a planning problem consists of such components:
− a description of the possible actions (domain specifications) which may be

expressed in some formal language
− a description of the initial state of the world
− a description of the desired goals.
Figure 7 visualizes AI planning tasks.

Figure 7: AI planning tasks.

Service Composition

5-14 Fundamentals of Service-Oriented Engineering

The formalization of the domain represents physical operations as well as more
abstract actions that are available or relevant to the agent. Operations must be
defined with their preconditions and effects to the world.

By making a plan the planning agent must take into account the initial world state,
because it provides a plan that will lead to the specific goal and will be executed in
the initial world state. However it is a difficult task to specify all knowledge relevant to
the planning task.

The planner has to identify a plan, which is executed in the initial state and will
lead to the world state that satisfies the goal. Usually the goal specifies properties of
the final state or a description of final operations.

The plan consists of the sequence of operations. It is also possible to define all
possible contingencies that could arise during the execution and the agent based on
the situation chooses the appropriate plan branch that is prepared for that situation.

The good example of an Artificial Intelligence planning method is Hierarchical Task
Network (HTN) planning [20]. HTN planning provides a hierarchical abstraction of
planning domains that represents a set of operations with their preconditions and
effects and also supports a set of methods, which describe how to decompose some
task into some set of subtasks. A HTN planning system decomposes the desired task
into a set of sub-tasks and then these tasks are also decomposed into another set of
sub-tasks, until the resulting set of tasks consists only of primitive tasks, which can
be executed directly by invoking atomic operations.

The approach of use HTN planning for a web service composition was proposed in
[21] as SHOP2 system. The work suggests a transformation method of atomic
services and composed services described in OWL-S into a hierarchical task
network. The user specifies an initial state and composed services, which have to
been decomposed into atomic services according to a given optimization rule. The
advantage of this approach is that it easily deals with very large problem domains;
however, the need to explicitly provide the planner with a task that it has to
accomplish may be as a disadvantage, since it is not always possible to define this
required description in the dynamic environment.

For further elaboration of AI planning techniques the interested reader is referred
to [22].

5 Conclusion and Outlook
In this work we have presented the overview over current research efforts in the

field of the service composition. We defined the service composition as a process of
binding web services into a new one to solve the given business problems. A service
composition should satisfy functional, non-functional requirements and guarantee the
correctness of workflow.

Within the chapter “The State-of-the-art of Service Composition” we discussed
existing approaches for the service composition from industrial standards like
BPEL4WS, WS-CDL to abstract methods like Petri Nets, Pi-calculus and Web
Component. And we have found that there is a big gap between industrial standards
and theoretical approaches. The problem of industrial standards they do not propose

 5 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 5-15

correct verifications of service compositions. On the other hand abstract methods
have a strong theoretical background with mathematical instruments and suggest
correct verifications, but they say nothing about real implementation. However they
can complement industrial standards by giving verification instruments.

In the chapter 4 the methods for a service composition – manual, semi-automated,
full-automated, their advantages and disadvantages were discussed. Currently the
most used method is manual. The disadvantage of manual method is that it is very
difficult to anticipate all feasible and future situations that may occur during an
execution of the process and sometimes the human composer can make mistakes in
the service composition that leads to errors at the runtime.

The semi-automated tools assist users in composing services by presenting next
possible steps and checking a partial service composition in terms of errors.

The realization of full-automated method is usually done by using AI planning
techniques. The advantage of full-automated method is that it suggests not only the
creation of the initial service composition, but also the exception handling by giving a
possibility to re-plan service compositions which are in enactment. This is possible by
defining a new initial state that consists of results of all executed and failed services.

We can conclude that the service composition is currently a strong research topic
and promises a lot of benefits. The further research works may refer to finding
methods for the service composition, re-composition and improving languages for
semantic service specifications and descriptions of service compositions.

References
[1] S. Burbeck: The Tao of e-business Services, Emerging Technologies. IBM

Software Group, ftp://www6.software.ibm.com/software/developer/library/ws-
tao.pdf, (2000)

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros:
Workflow Patterns. Distributed and Parallel Databases 14, 5–51, (2003)

[3] N. Milanovic and M. Malek: Current Solutions for Web Service Composition.
IEEE Internet Computing, 8(6):51–59, (2004)

[4] Sanjiva Weerawarana, Francisco Curbera: Business Process with BPEL4WS:
Understanding BPEL4WS. http://www-128.ibm.com/developerworks/library/
ws-bpelcol1/ (2002)

[5] T. Andrews et al.: Business Process Execution Language for Web Services.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, (2003)

[6] Bernd-Holger Schlingloff, Karsten Schmidt, Axel Martens: Modeling and Model
Checking Web Services. Electronic Notes in Theoretical Computer Science
126, 3–26, (2005)

[7] WS-CDL: Web Services Choreography Description Language Version 1.0,
W3C Candidate Recommendation. http://www.w3.org/TR/ws-cdl-10/, (2005)

[8] Wil van der Aalst and Kees van Hee: Workflow management: Models,
Methods, and Systems. The MIT Press, Cambridge, Massachusetts, London,
(2002)

Service Composition

5-16 Fundamentals of Service-Oriented Engineering

[9] R. Hamadi and B. Benatallah: A Petri Net-based model for Web Service
Composition. In Proceedings of the 14th Australasian database conference on
Database technologies, pages 191–200, Adelaide, Australia, (2003).

[10] Davide Sangiorgi and David Walker: The Pi-Calculus: A Theory of Mobile
Processes. Cambridge University Press, (2001)

[11] J. Yang and M. P. Papazoglou: Web Component: A Substrate for Web
Service Reuse and Composition. In Proceedings of 14th Conference on
Advanced Information Systems Engineering (CAiSE02), pages 21–36,
Toronto, Canada, (2002)

[12] OWL-S: Semantic Markup for Web services, W3C Member Submission.
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/, (2004)

[13] SWSL: Semantic Web service Language, W3C Member Submission.
http://www.w3.org/Submission/SWSF-SWSL/, (2005)

[14] R. Akkiraju, et al.: WSDL-S Web services Semantics – WSDL-S, W3C
Member Submission. http://www.w3.org/Submission/WSDL-S/, (2005)

[15] WSMO: Web service Modeling Ontology (WSMO), W3C Member
Submission. http://www.w3.org/Submission/WSMO/, (2005)

[16] Sirin, E., Parsia, B., Hendler, J.: Filtering and Selecting Semantic Web
Services with Interactive Composition Techniques. IEEE Intelligent Systems
42–49, (2004)

[17] Kim, J., Spraragen, M., Gil, Y.: An intelligent assistant for interactive workflow
composition. In: IUI ’04: Proceedings of the 9th international conference on
Intelligent user interface, New York, NY, USA, ACM Press ,125–131, (2004)

[18] Hakimpour, F., Sell, D., Cabral, L., Domingue, J., Motta, E.: Semantic Web
Service Composition in IRS-III: The Structured Approach. In: CEC, IEEE
Computer Society, 484–487, (2005)

[19] Russel, S. and Norvig, P.: Artificial Intelligence: A Modern Approach.
Prentice-Hall Inc., (1995)

[20] Erol, K., Hendler, J., and Nau, D. S.: Semantics for HTN planning. Technical
Report CS-TR-3239, (1994)

[21] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, Dana Nau: HTN Planning
for Web Service Composition Using SHOP2. In web services: Modeling,
Architecture and Infrastructure workshop in conjunction with ICEIS 2003,
(2002)

[22] Joachim Peer: Web Service Composition as AI Planning – a Survey. Second,
revised version, Technical Report, University of St.Gallen, (2005)

Semantic Web Services

Torben Schreiter

torben.schreiter@hpi.uni-potsdam.de

The recent deployment of a large variety of web services available through the
Internet identified a number of problems regarding ambiguity of service descriptions.
Semantic web services are a promising approach towards machine-processability of
web service’s functional and non-functional capabilities.

This paper aims at introducing the general concepts of semantic annotation of web
services. Therefore, ontologies will be explained first. The concrete ontology represen-
tation language OWL (Web Ontology Language) as well as its foundation, the Resource
Description Framework (RDF), are described. Furthermore, by means of OWL-S as an
upper ontology for services, it is illustrated how web services can be semantically de-
scribed. Finally, the characteristics of semantic matching algorithms are defined and
the architecture of the METEOR-S framework as an environment for adaptive and most
optimal execution of web processes is explained.

Keywords: Semantic, Webservice, Ontology, OWL, OWL-S, METEOR-S, RDF

1 Introduction

Web services have become very popular amongst providers of various commercial
(e.g. B2B) and non-commercial services on the web due to the opportunity to interop-
erate with a large number of service requestors. This interoperability of different service
requestors and providers has been facilitated by a (small) set of standardized technolo-
gies. Currently, the practical interoperability of web services is based on syntactical
service descriptions using e.g. the widely spread Web Services Description Language
(WSDL) [1]. However, it is desired to automate service discovery and service composi-
tion during the execution of web processes. Furthermore, the consideration of various
Quality of Service (QoS) constraints is desirable. In general a more flexible and advan-
tageous selection of services at run-time is expected to improve overall effectiveness
and efficiency of the process since the range of services is also expected to change
continuously. Regarding the process’s entire lifecycle, it is e.g. conceivable that certain
services are no longer available, whereas in other cases services might evolve, which
are more suitable than those initially selected.

Current service descriptions do not provide any means of stating any information
about the semantics of a service’s characteristics and capabilities. Thus, services can-
not be unambiguously described. Problematically, as a requirement for automation of
aspects like service discovery and service composition, machines have to be able to
process services’ descriptions in order to determine their applicability in certain (busi-
ness) context. Currently, high research efforts are invested in the field of semantic

Fundamentals of Service-Oriented Engineering 6-1

Semantic Web Services

annotation of web services based on ontologies in order to tackle this problem. The
concept of semantic web services is based on the idea of the Semantic Web.

Originally, the Semantic Web was manifested in [2] as a vision for the future of the
world wide web (WWW). This vision resulted in a project by the World Wide Web Con-
sortium (W3C) in 2001 aiming at the development of technologies supporting machine-
processability of web content. Within the scope of this project, the model of a semantic
web language stack (see figure 1) was developed. The stack is based on well-known
and mature concepts such as Unified Resource Identifiers (URIs), Unicode as well as
XML documents (eXtensible Markup Language). Above of the foundation technolo-
gies, ontologies are intended to enable processing and reasoning on the knowledge.
Ontology representation languages like the Web Ontology Language (OWL) [7, 8] are
utilized as a means for concrete representation of domain knowledge.

Figure 1: W3C Semantic Web Language Stack. (Figure taken from [3])

Both concepts, Semantic Web and semantic web services, are based on the idea of
machine-processable ontological domain knowledge forming the basis for reasoning.
The major difference is, however, that the Semantic Web project intends to annotate
passively presented web content, whereas semantic web services aim at annotating
active services’ capabilities. The remainder of this paper focuses on concepts and
technologies related to semantic web services.

This paper is organized as follows: Section 2 introduces ontologies, provides some
fundamental definitions and describes the Resource Description Framework (RDF) as
well as OWL as concrete means for ontological knowledge representation. Next, sec-
tion 3 summarizes how web services in particular can be semantically described using
an Upper Ontology for Services (OWL-S). The fourth section explains, which aspects
are to be considered when semantically matching different services’ capabilities. Sec-
tion 5 briefly explains the architecture of the METEOR-S framework, which is capable
of executing dynamic web processes based on semantic service descriptions. Finally,
the paper is summarized and a conclusion is provided.

6-2 Fundamentals of Service-Oriented Engineering

2 ONTOLOGIES

2 Ontologies

Ontologies are the foundation of semantic knowledge representation. They are crucial
for reasoning on domain knowledge. This section starts giving a set of definitions in
order to properly achieve a common understanding of what is meant by an ontology
throughout this paper.

Definition 1. Ontology is the metaphysical study of the nature of being and existence.

Since the term ”ontology” originates from the field of philosophy, definition 1 is to
be seen in this context. Ontology tries to find answers for questions like the following
ones:

What characterizes being?
Eventually, what is being?

Of course, this definition is not helpful concerning the field of semantic web services.
Therefore, definition 2 is more appropriate for an ontology in the context of computer
science.

Definition 2. An Ontology in computer science is a controlled vocabulary and
associated phrasings, i.e., representation language, used to express the content of a
particular domain or field of knowledge.

When using the term ”ontology” in the following, it is meant in the context of com-
puter science as defined in definition 2. Additionally, the term ”upper ontology” occa-
sionally shows up. When speaking of an upper ontology, a special kind of ontology is
meant. This kind of ontology usually describes very general concepts that are orthog-
onal to specific domains. The Dublin Core Metadata Element Set [4] is an example for
general descriptions of resources including such elements as e.g. title, creator, subject,
language, and date.

Generally, an ontology defines different types of elements. These are concepts
and individuals (sometimes also referred to as classes and instances), attributes, and
different kinds of relations (e.g. is-a relations, part-of relations, amongst others). Addi-
tionally, a set of grammar rules can defined in order to express logical constraints.

Ontologies are usually related to a corresponding data model represented in XML.
Reasoning engines and query languages operate on top of this data model. A rea-
soning engine is a software system capable of gaining further knowledge based on the
information included in the ontologies using e.g. first-order logic. Query languages fa-
cilitate querying an ontology. An exemplary query might be: What are the sub-concepts
of person? Please note that even though one particular representation language for
an ontological data model is described later in this section (OWL), a detailed survey of
reasoning engines and query languages is out of scope of this paper.

Fundamentals of Service-Oriented Engineering 6-3

Semantic Web Services

2.1 Related concepts in Knowledge Representation

As stated above, an ontology is a concept intended for knowledge representation. Ad-
ditionally, there are a number of similar concepts for representing knowledge. These
include taxonomies and thesauri. This section intends to demarcate the different con-
cepts and to pinpoint their individual properties.

2.1.1 Taxonomy

A taxonomy is a primarily hierarchically structured terminology. It contains a number of
terms, which are arranged in a hierarchy. A common example for this is the biological
taxonomy of species. In some cases of a taxonomy, it is permitted that one term is
child of not only one other term, but of two or more.

2.1.2 Thesaurus

A thesaurus is a hierarchical structure of terms similar to a taxonomy. Additionally,
there is a very limited set of relation types between terms available. Common relation
types are for instance the similarity and the synonymity of terms. Consequently, only
information regarding the similarity and synonymity of two terms in the vocabulary can
be expressed apart from the hierarchical relation.

Compared with taxonomies and thesauri, ontologies are the most expressive and
powerful approach for knowledge representation. They allow an arbitrary number of
different types of relations and, furthermore, allow to define logical constraints in order
to define certain restrictions on the vocabulary.

2.2 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) provides basic fact-stating facilities [5,6].
With RDF, any resource (identified through an URI1) can be described. Similarly to
natural languages, these descriptions follow the scheme subject, predicate, object.
This scheme is called a triple.

A basic fact-stating example is depicted in listing 1. The subject constitutes the
resource to be described (in this case: http://example.org/). Next, the predicate ex-
presses a relationship between subject and object (here: ”has creator” 2). Finally, the
object is defined (”Torben”).

1 < r d f : D e s c r i p t i o n r d f : a b o u t = ” h t t p : / / example . org / ”>
2 <dc :Creator>Torben< / dc :Crea tor>
3 < / r d f : D e s c r i p t i o n>

Listing 1: Simple example of stating a fact in RDF.

1Uniform Resource Identifier
2The namespace dc: references the previously mentioned Dublin Core elements as defined in [4].

6-4 Fundamentals of Service-Oriented Engineering

2 ONTOLOGIES

On top of RDF, there exists an extension called RDF Schema. RDF extended by RDF
Schema (RDFS) can be seen as a vocabulary description language providing class-
and property-structuring facilities. Hence, it is possible to define classes, sub-classes
and properties of classes. This allows a more flexible way of structuring a vocabulary
compared to simple fact-stating of RDF without RDFS.

Listing 2 shows an exemplary RDFS file (in XML syntax). First of all, the basic
namespaces are defined. Then, three classes Country, Person, and Referee are de-
fined, whereas Referee is a sub-class of Person. Next, the property Nationality is
defined for a Person (domain) and has values of the class Country (range). Finally, two
instances of the class Country are created.

1 <rdf:RDF
2 xm lns : rd f = ” h t t p : / /www.w3 . org /1999/02/22− rd f−syntax−ns# ”
3 xmlns : rd f s = ” h t t p : / /www.w3 . org /2000/01 / rd f−schema# ”
4 xml:base = ” h t t p : / / example . org / schemas / myschema”>

6 <r d f s : C l a s s r d f : I D = ” Country ”>
7 < r d f s : l a b e l>count ry< / r d f s : l a b e l>
8 <rdfs:comment>The c lass o f a l l coun t r i es< / rdfs:comment>
9 < / r d f s : C l a s s>

11 <r d f s : C l a s s r d f : I D = ” Person ”>
12 < r d f s : l a b e l>person< / r d f s : l a b e l>
13 <rdfs:comment>The c lass o f a l l people< / rdfs:comment>
14 < / r d f s : C l a s s>

16 <r d f s : C l a s s r d f : I D = ” Referee ”>
17 < r d f s : l a b e l>re fe ree< / r d f s : l a b e l>
18 <rdfs:comment>The c lass o f a l l re fe rees< / rdfs:comment>
19 <rd fs :subClassOf r d f : r e s o u r c e = ” #Person ” />
20 < / r d f s : C l a s s>

22 <r d f : P r o p e r t y r d f : I D = ” N a t i o n a l i t y ”>
23 < r d f s : l a b e l>n a t i o n a l i t y< / r d f s : l a b e l>
24 <rdfs:comment>N a t i o n a l i t y o f a person< / rdfs:comment>
25 <rd fs :domain r d f : r e s o u r c e = ” #Person ” />
26 <r d f s : r ange r d f : r e s o u r c e = ” #Country ” />
27 < / r d f : P r o p e r t y>

29 <Country r d f : I D = ” B r a z i l ” />
30 <Country r d f : I D = ” TrinidadTobago ” />

32 < / rdf:RDF>

Listing 2: An RDFS example.

Please note that RDF(S) alone has not the complete expressiveness of a typical ontol-
ogy representation language. A number of logical constraints cannot be defined using

Fundamentals of Service-Oriented Engineering 6-5

Semantic Web Services

RDF(S). This results in the inability of expressing the following cases (amongst others):

• logical combinations of classes (intersection, union, complement)

• advanced attributes of properties (transitive, symmetric, functional, inverse)

• restrictions on local properties (e.g. one value must come from a particular class
or at most 11 values are allowed)

• equivalence and disjointness of classes

As a result of the last issue, notion of contradiction might be impossible with the lim-
ited set of information expressable using RDF(S). Consider the following example: the
range of a property is both the class Metal and the class Plant. Based on the informa-
tion stated using RDF(S), the reasoner has to assume that all values of this property
are members of the class of plants and of the class of metals. However, there can
never be any value for this property since there exists no instance that can be mem-
ber of both classes. Problematically about this is, that a reasoner is unable to detect
this contradiction, because it is not possible to state that Metal and Plant are disjoint
classes.

2.3 The Web Ontology Language (OWL)

The Web Ontology Language is an ontology representation language standardized by
the W3C. Ontology representation languages have evolved over the years. Originally,
two major projects were involved in the development of two separate ontology rep-
resentation languages, which later were incorporated into OWL. These projects were
those of the Ontology Interchange Language (OIL) and the DARPA Agent Markup Lan-
guage (DAML). Both projects were merged into the DAML+OIL project. The resulting
ontology representation language was submitted to the World Wide Web Consortium
and was adopted by the WebOnt working group as the basis for their development of
the Web Ontology Language.

OWL is conceptionally based on top of RDFS. Practically, it is realized as vocabulary
extension of RDF(S). This can also be seen in figure 2. All major classes of OWL are
derived from corresponding RDFS base classes.

Considering the example depicted in listing 3, OWL enables the definition of more
advanced aspects than in RDF(S). Following the RDF header, the ontology itself is de-
fined. Next, the classes Country and Person are declared to be disjoint. Two object
properties InNationalTeam and HasCitizen are defined, whereas HasCitizen is addi-
tionally declared as the inverse property of Nationality3. Finally, a new class National-
TeamMember is defined, having precisely those members of Player that have exactly
one value for the property InNationalTeam.

1 <rdf:RDF
2 xmlns:owl = ” h t t p : / /www.w3 . org /2002/07 / owl# ”

3Range and domain have, of course, been swapped compared to the property Nationality.

6-6 Fundamentals of Service-Oriented Engineering

2 ONTOLOGIES

Figure 2: Inheritance of OWL classes from RDFS pendants. (Figure adapted from [7])

3 xm lns : rd f = ” h t t p : / /www.w3 . org /1999/02/22− rd f−syntax−ns# ”
4 xmlns : rd f s = ” h t t p : / /www.w3 . org /2000/01 / rd f−schema# ”
5 xmlns:xsd = ” h t t p : / /www.w3 . org /2001/XMLSchema# ”>

7 <owl :Onto logy r d f : a b o u t = ” ”>
8 <rdfs:comment>An example OWL onto logy< / rdfs:comment>
9 < r d f s : l a b e l>Soccer World Cup Ontology< / r d f s : l a b e l>

11 <owl :Class r d f : a b o u t = ” Country ”>
12 <o w l : d i s j o i n t W i t h r d f : r e s o u r c e = ” #Person ” />
13 < / owl :Class>

15 <owl :Ob jec tProper ty r d f : I D = ” InNationalTeam ”>
16 <rd fs :domain r d f : r e s o u r c e = ” #Player ” />
17 <r d f s : r ange r d f : r e s o u r c e = ” #NationalTeam ” />
18 < / ow l :Ob jec tProper ty>

20 <owl :Ob jec tProper ty r d f : I D = ” HasCi t izen ”>
21 <rd fs :domain r d f : r e s o u r c e = ” #Country ” />
22 <r d f s : r ange r d f : r e s o u r c e = ” #Person ” />
23 <owl : inverseOf r d f : r e s o u r c e = ” # N a t i o n a l i t y ” />
24 < / ow l :Ob jec tProper ty>

26 <owl :Class r d f : a b o u t = ” #NationalTeamMember ”>
27 <rd fs :subClassOf>
28 <o w l : R e s t r i c t i o n>
29 <owl :onProper ty r d f : r e s o u r c e = ” #InNationalTeam ” />
30 <o w l : c a r d i n a l i t y r d f : d a t a t y p e = ” h t t p : / /www.w3 . org /2001/

XMLSchema#nonNegat iveInteger ”>
31 1
32 < / o w l : c a r d i n a l i t y>
33 < / o w l : R e s t r i c t i o n>

Fundamentals of Service-Oriented Engineering 6-7

Semantic Web Services

34 < / rd fs :subClassOf>
35 < / owl :Class>

37 < / owl :Onto logy>

39 < / rdf:RDF>

Listing 3: An OWL example.

2.3.1 Variations of OWL

Since the universal expressivity has a critical impact on the practical computability,
three differently powerful variations of OWL are available. Therefore, the variations
differ in terms of expressivity. These variations are:

• OWL Full

• OWL DL (Description Logic)

• OWL Lite

OWL Full includes all language primitives and, thus, poses the most powerful OWL
variation. Unfortunately, this high level of expressiveness leads to computational unde-
cidability. Advantageous about OWL Full is, however, that it is the only variation fully
upward compatible with RDF. I.e. any correct RDF document is, at the same time, a
correct OWL Full document.

OWL DL on the other hand is not fully compatible with RDF(S) anymore. The lan-
guage is partially restrained, enabling efficient reasoning support. Some of the limita-
tions compared to OWL Full are described in the following. Please note that the list of
limitations is not exhaustive. For instance, in OWL DL it is disallowed to define cardinal-
ity restrictions on transitive properties. Moreover, the vocabulary has to be partitioned,
meaning that a particular resource is only allowed to be either a class, a datatype, a
datatype property, an object property, an individual, a data value or part of the built-in
vocabulary at a time. Additionally, the partitioned resources have to be explicitly typed.
If a certain resource is e.g. referred to as a class, it is necessary to explicitly define this
resource as a class. Consequently, all named resources that are used in a OWL DL
document have to be explicitly defined.

The least powerful variation is OWL Lite. OWL Lite is a real subset of OWL DL. It is
supposed to be easier to learn and was also intended to push the development of tools.
Again only a subset of all limitations is presented. Additionally to the limitations of OWL
DL, cardinalities different from 0 or 1 are excluded as well as e.g. enumerated classes
and disjointness statements. Please refer to [7] for further information on limitations of
the OWL variations.

6-8 Fundamentals of Service-Oriented Engineering

3 SEMANTIC SERVICE DESCRIPTIONS

3 Semantic Service Descriptions

Any given service has a number of functional and non-functional properties. Further-
more, there usually exists additional information about the service such as e.g. legal
information about the service provider that might be of interest when describing a ser-
vice. As explained in the previous sections, it is a non-trivial challenge to semantically
describe all of these capabilities of a web service and, therefore, to enable (semi-
)automated service discovery and composition.

Different technologies exist that enable semantic annotation of web services in order
to tackle this problem. Currently, none of the eligible technologies has been declared
as standard (e.g. by W3C) so far. However, this paper intends to describe only one
of the available technologies (OWL-S) in detail, whereas competing technologies such
as WSDL-S (Web Service Semantics) [28] and WSMO (Web Service Modeling On-
tology) [29] are only named. Please have a look at [16], which provides an excellent
overview and an evaluation of the three most popular technologies enabling semantic
description of web services: OWL-S, WSMO and WSDL-S.

3.1 OWL-S: An Upper Ontology for Services

The previous section described how ontologies can be defined in order to be process-
able by a computer. This definition of ontologies is not restricted to concrete domain
ontologies capturing information about a certain business domain for instance. An
ontology representation language such as OWL can also be used in order to define
an upper ontology capturing different aspects that are orthogonal to specific domain
aspects. OWL-S is an upper ontology for services. Therefore, it provides a set of con-
cepts necessary for the semantic description of (web) services. OWL-S originates from
DAML-S, and is developed and maintained by the OWL-S Coalition (former DAML-S
Coalition).

According to OWL-S, a service is described by the following aspects, each of which
is usually captured in a separate XML file.

• The Service Profile describes what the service does.

• The Service Model describes how to use the service.

• The Service Grounding describes how to access the service.

The different aspects reflect different views on a service defining a set of details relevant
for this particular view. The specifics of each view is described in the following sections.
Listing 4 shows an exemplary OWL-S service definition. The following sections contain
listings continuing this example.

1 <se rv i ce :Se rv i ce r d f : I D = ” WCTicketPurchaseService ”>
2 <se rv i ce :p resen ts r d f : r e s o u r c e = ” P r o f i l e . owl#

P ro f i l e T i cke tPu rchase Serv i ce ” />
3 <serv ice :descr ibedBy r d f : r e s o u r c e = ” Process . owl#BasicTicketPurchase ”

/>

Fundamentals of Service-Oriented Engineering 6-9

Semantic Web Services

4 <se rv i ce : suppo r t s r d f : r e s o u r c e = ” Grounding . owl#
BasicTicketPurchaseServiceGrounding ” />

5 < / se r v i ce :Se rv i ce>

Listing 4: OWL-S definition of a World Cup ticket purchasing service (Service.owl).

3.1.1 Service Profile

The Service Profile is intended to be used as an advertisement for a service in a ser-
vice repository. It provides information about the service, which are rather general.
Accordingly, this information is only used for selection of a service and not for detailed
planning of interaction with it.

Information captured by the Service Profile includes contact information of the ser-
vice provider, a categorization of the service, a set of non-functional properties such
as QoS constraints, and, finally, a functional description of the service. The functional
description specifies inputs, outputs, preconditions, and effects, which often are collec-
tively labelled as IOPEs. An exemplary definition is shown in listing 5.

1 <p r o f i l e H i e r a r c h y : T i c k e t S e l l i n g r d f : I D = ”
P ro f i l e T i cke tPu rchase Serv i ce ”>

2 <serv ice :presentedBy r d f : r e s o u r c e = ” WCTicketPurchaseService ” />
3 <p r o f i l e : h a s p r o c e s s r d f : r e s o u r c e = ” Process . owl#BasicTicketPurchase ”

/>
4 <pro f i l e : se rv i ceName>WC Ticket Resale< / p ro f i l e : se rv i ceName>
5 . . .
6 <p r o f i l e : c o n t a c t I n f o r m a t i o n> . . .< / p r o f i l e : c o n t a c t I n f o r m a t i o n>
7 <p r o f i l e : h a s I n p u t r d f : r e s o u r c e = ” Process . owl#

BasicTicketPurchaseFirstName ” />
8 <p r o f i l e : h a s I n p u t r d f : r e s o u r c e = ” Process . owl#

BasicTicketPurchaseLastName ” />
9 . . .

10 <p r o f i l e : h a s P r e c o n d i t i o n r d f : r e s o u r c e = ” Process . owl#
BasicTicketPurchaseCCExists ” />

11 . . .
12 < / p r o f i l e H i e r a r c h y : T i c k e t S e l l i n g>

Listing 5: Excerpt of an OWL-S Service Profile for the ticket purchasing service
(Profile.owl).

When considering another example of a service to buy a certain good (e.g. a ticket
or a book), a means of payment is, usually, required. Let us, in this case, consider
the use of a credit card. So, the corresponding Service Profile would have to define
the IOPEs for the use of a credit card. The credit card has to be valid in order for the
precondition to be fulfilled. The service, then, takes the credit card number and its
expiration date as input. As output, a receipt is generated by the service. The effect,
after correct execution of the service, is that the credit card is charged.

6-10 Fundamentals of Service-Oriented Engineering

3 SEMANTIC SERVICE DESCRIPTIONS

3.1.2 Service Model (Processes)

After selection of a service based on the Service Profile, the Service Model is consulted
for information on the interaction with the service. An available interaction scenario with
the service is called a process. Formally, a process is a sub-concept of Service Model.
Therefore, the term process is often used instead of Service Model. The provided
process description is used by the requestor to coordinate interaction with the service.

There are three different types of processes (interaction scenarios) available. These
are:

• Atomic process

• Composite process

• Simple process

Atomic processes are directly invokable and execute in a single step. Thus, the interac-
tion essentially consists of an input message containing values for the input parameters
and an output message returning the results. A composite process specifies a more
complex interaction with the service. Listing 6 partially shows the XML structure of an
exemplary atomic process.

A composite process consists of a number of logical steps, which again represent
any kind of process. In order to model control flow, a number of control constructs
(Sequence, Split, Split-Join, Any-Order, If-Then-Else) is available to compose the sub-
processes. The composite process is not directly invokable. Therefore, the subsequent
steps have to be followed by the service requestor according to the defined control flow.
Since any composite process is based on a set of concrete atomic processes, these
processes have to be grounded using a Service Grounding in order to be invokable.

A simple process should be chosen in case it is desired to provide a different ab-
stract view on an atomic process or to provide a simplified representation of a com-
posite process. The definition of a simple process is to be seen as an abstraction
mechanism. Such an abstraction can be useful for hiding certain details of a process
model that may be either irrelevant for certain purposes or confidential.

Similarly to the Service Profile, the process description also contains information
about IOPEs. However, these might be defined more fine granular than those in the
Service Profile. In any case, consistency between the two descriptions has to be main-
tained either manually or by a supporting tool. Alternatively, it is possible to define the
IOPEs once and, then, reference them (this can be seen in listing 5). Please note, that
preconditions and effects have to be defined using logical formulas (using e.g. KIF [12],
PDDL [13], SWRL [11]). [9] proposes a syntax for integration of expressions into OWL
ontologies.

1 <process:AtomicProcess r d f : I D = ” BasicTicketPurchase ”>
2 <process:hasInput>
3 <process : Inpu t r d f : I D = ” BasicTicketPurchaseFirstName ”>
4 <process:parameterType r d f : d a t a t y p e = ” h t t p : / /www.w3 . org /2001/

XMLSchema#anyURI ”>

Fundamentals of Service-Oriented Engineering 6-11

Semantic Web Services

5 AnyOntology . owl#FirstName
6 < / process:parameterType>
7 < / p rocess : Inpu t>
8 < / p rocess:hasInput>
9 <process:hasInput>

10 . . .
11 < / p rocess:hasInput>
12 . . .
13 <process :hasPrecond i t ion>
14 . . .
15 < / p rocess :hasPrecond i t ion>
16 . . .
17 < / process:AtomicProcess>

Listing 6: Excerpt of an OWL-S Process definition for the ticket purchasing service
(Process.owl).

3.1.3 Service Grounding

Grounding means to map a service’s description to a concrete service. An OWL-S
service description might apply to a number of different implementations. Hence, dif-
ferent languages and technologies such as e.g. WSDL [1] are involved and have to
be interfaced. Of course, it is conceivable that multiple groundings are available for a
service description, i.e. the service is implemented multiple times. In OWL-S a Ser-
vice Grounding defines how the abstract semantic description of a service is to be
interpreted in order to technically execute the actual service. This is accomplished by
defining how to format inputs and outputs as messages and how to exchange these
messages.

Grounding OWL-S on WSDL is very common. OWL-S suggests the complementary
use of OWL-S and WSDL. That is, OWL-S aspects can be mapped onto aspects of
WSDL. An OWL-S atomic process can be mapped onto a WSDL operation for instance.
OWL-S in- and outputs can, furthermore, be mapped onto (parts of) WSDL in-/output
messages of an operation. [10] describes in detail how OWL-S can be grounded on
WSDL 1.1. Important is, however, that both service descriptions (WSDL and OWL-S)
are consistent.

4 Semantic Matching

After a service is semantically described and its advertisement (e.g. OWL-S Service
Profile) is stored in a central semantic service repository, it is possible to discover the
service when searching for its capabilities (IOPEs plus QoS constraints). Service dis-
covery is a step that, normally, preceeds the task of (automated) service composition.
When searching for services, exact matches of capabilities is not necessarily the nor-
mal case. Thus, a matching engine has to consider inputs and outputs as well as
preconditions and effects in order to determine the functional suitability of a service.

6-12 Fundamentals of Service-Oriented Engineering

4 SEMANTIC MATCHING

Matching given QoS constraints usually takes place after a particular set of services
has been identified as functionally suitable.

First of all, all inputs and outputs of the query have to be matched against those of
the service descriptions. [15] identifies four possible kinds of results, that might occur
when matching web services’ capabilities. The most straight-forward ones are that
there is no match at all (fail) or there is an exact match. Moreover, it is possible that
a service provides a subset of the requested capabilities (subsumes). This matching
result indicates a service that fulfills the needs of the requestor only partially. However,
this does not mean that the service is not suitable at all. It is e.g. conceivable that
a set of services collectively provide the capabilities originally requested. Similarly,
also a superset of the requested capabilities can be provided (plug in). That is, a
service call potentially returns more results than of particular interest for the requestor.
Alternatively, in case of an input parameter, the service would potentially take more
input values than provided by the requestor. In any case, this supersetted capabilities
do not pose a problem in particular. Instead, by using an efficient matching algorithm,
the service landscape can potentially be used more universal than without. This is
because, a more advanced matching scheme enables services to be discovered and
used that do not exactly fit the requirements but are, nevertheless, applicable to a
certain extent.

Still, it is important to notice that pure matching of inputs and outputs alone is not
sufficient. In order to illustrate the necessity for considering preconditions and effects
as well, an example adapted from [30] is depicted in figure 3.

Scenario: A customer who already bought tickets, calls the callcenter again to mod-
ify some details concerning his order. The callcenter employee should, therefore, be
able to oversee the customer’s order as quickly as possible. A (web) service GetTick-
etOrder is capable of displaying a customer’s order based on the customer’s address.
However, asking the customer for his address is quite time-intensive. Therefore, the
phone number of the caller should be utilized in order to determine the caller’s address
first. Assuming that the caller is located at the billing address, this address should be
used as input for the previously described web service GetTicketOrder. This simple
case of a service composition involves the discovery of a suitable service determining
a caller’s location.

Now imagine, there are two different services advertised in the service repository
taking a phone number as input and providing an address as output. If the matching
engine would only match inputs and outputs, it would not matter which service is cho-
sen4. In this case, it would be assumed that both services do exactly the same thing.
The problem is: in- and outputs do not completely characterize a service’s behavior. If
we, additionally, consider preconditions and effects, it is possible to tell what the world
looked like before the execution of the service (precondition) and how it was changed
(effect). The semantic description of preconditions and effects is, therefore, a proper
means to distinguish the behaviour of services. Visualizing all IOPEs as in figure 3
shows that only the service FindAddressByPhoneNr is suitable for the given scenario.
This is because the other service GetProviderInformation has an incompatible precon-
dition and effect. It does not provide the address, where a certain phone number is

4In case QoS constraints are considered, maybe the cheaper or faster one would be chosen.

Fundamentals of Service-Oriented Engineering 6-13

Semantic Web Services

GetTicketOrder

Input

Output

Precondition

Effect

Address Customer
has

TicketOrder Employee

initiatedBy

gets

FindAddressByPhoneNr

Input

Output

Precondition

Effect

PhoneNr

Address Customer
has

locatedAt

GetProviderInformation

Input

Output

Precondition

Effect

PhoneNr

Address Phone
Provider

has

servedBy

Figure 3: An example for complete matching of inputs, outputs, preconditions and
effects of web services.

located, but does return the address of the service provider hosting the phone line.
However, there is still a big challenge in the proper definition of preconditions and

effects. Whereas it is rather straight-forward to define inputs and outputs, preconditions
and effects have to be defined in a very balanced way. They should not be too general,
but also not too specific. This can be very complex, since people involved in advertise-
ment as well as in capturing the requirements for services to be used have to define
preconditions and effects using the same granularity. Otherwise, semantic matching of
the expressions can become problematic.

5 The METEOR-S Framework

The previous sections introduced the fundamentals of semantic web services. Cur-
rently, implementations of frameworks supporting automated discovery and composi-
tion of semantic web services are, however, very rare. The METEOR-S project [18–20]
at the LSDIS Lab, University of Georgia develops one of the most popular and mature
frameworks of its kind. Conceptually, the METEOR-S framework enables the defini-
tion of web processes comparable to workflows. These web processes are composed
of web services. Abstract process definitions are, then, used to semantically define

6-14 Fundamentals of Service-Oriented Engineering

5 THE METEOR-S FRAMEWORK

the behavior of the processes (METEOR-S Composer). These abstract definitions (in
WS-BPEL [27]) consist of a number of semantic (service) templates defining partic-
ular abstract operations. Web services with semantic annotations are registered in
a repository. During service discovery the requirements of the semantic templates
are matched against the capabilities of the registered services (METEOR-S Web Ser-
vice Discovery Infrastructure). Functional as well as non-functional properties of the
services are considered. In order to find the services suiting a template best, the
framework, first of all, identifies the set of services that functionally fulfill the template’s
requirements. Next, the suitable services are ranked according to the non-functional
constraints (QoS constraints). Non-functional constraints can either be quantitative
or non-quantitative (qualitative) constraints. Integer Linear Programming (ILP) [18] is
used for the analysis of quantitative constraints. An example for quantitative constraints
is: ProcessCosts ≤ $10000. In order to satisfy non-quantitative contraints, the Semantic
Web Rule Language (SWRL) [11] is used. Logical expressions such as preferences
for certain service providers before others are, therefore, defined using SWRL.

Service
(bound)

Invoker
R

Operation Name
Input

Output

Protocol
Mediator

R

METEOR-S
Execution Engine

R

Data
Mediator

Pr
oc

es
s

C
on

fig
ur

at
io

n
M

od
ul

eR

Binding
Data

Proxy

RR

Web Service 1

Web Service n

Process
Data

Figure 4: FMC Block diagram showing the compositional structure of the METEOR-S
Execution Environment. (Please see [31] for notational reference)

The remainder of this section aims at summarizing the software architecture of the
METEOR-S Execution Environment as depicted in figure 4. The execution environment
is responsible for dynamic configuration and execution of the process during the entire
lifecycle. After the ranked set of services is available, the most optimal services are
selected and bound to the process by the Process Configuration Module. Binding a
service can be performed either static (at build-time), at deployment-time or at run-time.
Most flexible is, of course, binding at run-time. However, losses in performances are to
be expected. [18] provides a performance analysis of the different binding options. The
Execution Engine can in some respects be compared to a workflow engine managing
the execution of the processes. Invokation of a service is performed using a Proxy,

Fundamentals of Service-Oriented Engineering 6-15

Semantic Web Services

which is dependent on the binding. Mediation takes place in case of protocol and data
heterogeneities (Protocol Mediator, Data Mediator). Due to the use of proxies, the
process can be dynamically re-configured on failure of a service.

6 Conclusion

We provided an overview of the field of semantic web services by introducing a re-
duced subset of available technologies and putting them into context of the concept
of semantic web services. Firstly, we pointed out the commonalities as well as the
differences between the Semantic Web project and and the concept of semantic web
services. Generally, this paper is not intended to provide a detailed comparison and
evaluation of major existing technologies. Instead, we concentrated on one particular
technology for each of the aspects introduced.

Ontologies are the foundation for semantic annotation of web services. They are
defined using ontology representation languages. This paper provided a brief overview
of the history of ontologies and their representation as well as of related concepts in
knowledge representation. Furthermore, we introduced the Web Ontology Language
and the Resource Description Framework, which, together, enable the development of
domain ontologies. Both languages were illustrated using an example. Next, we pro-
vided an overview of OWL-S as an upper ontology for services. It enables the semantic
description of web services. The different parts of an OWL-S description - Service Pro-
file, Service Model and Service Grounding - were introduced and described. Important
aspects concerning semantic matching of web services’ capabilities were discussed in
section 4. Finally, we described the architecture of the METEOR-S framework, which
is capable of executing workflow-like web processes composed of semantically anno-
tated web services. This framework provides support for dynamic re-configuration at
run-time as well as consideration of QoS constraints for service selection. Data and
protocol mediation is performed in order to guarantee interoperability of heterogeneous
services.

However, the field of semantic web services is, generally, still a dedicated research
topic. Consequently, there is a lack of accepted standards. Existing implementations
comparable to METEOR-S are very rare and still in development. Additionally, the ser-
vice landscape is, currently, in most domains still not rich enough in order to enable
comfortable automated service composition. Moreover, it is questionable if (fully) auto-
mated service composition will ever be facilitated with a reasonable effort. There are
a number of drawbacks, turning the semantic description of web services into a com-
plex problem. First of all, high quality domain ontologies do not exist in an acceptable
quantity. They are difficult to develop and to maintain. It is not clear who could be
responsible for standardization of the domain ontologies. Potential conflicts and incon-
sistencies between different ontologies are to be resolved. Next, defining preconditions
and effects of services in a way that they are universally applicable is extremely difficult.
Finding the correct granularity and ’completeness’ are complex tasks.

Semi-automated service composition, on the other hand, seems to be a very promis-
ing approach. Semi-automatism would enable (human) process designers to efficiently

6-16 Fundamentals of Service-Oriented Engineering

REFERENCES

compose a process of services supported by a tool. Such a tool could possibly present
a set of preselected services for a certain purpose based on semantic annotations.
Compared to fully automated composition, this would be much easier to accomplish.
Of course, flexibility at run-time is limited.

References

[1] Christensen, E. et al.: Web Services Description Language (WSDL) 1.1. (March
2001)
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[2] Berners-Lee, T. et al.: The Semantic Web. Scientific American. (2001)
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21&ref=sciam

[3] Nykänen, O.: W3C FI & W3C Semantic Web. (2002)
http://www.w3c.tut.fi/talks/2002/0923sw-vtt-on/

[4] Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Version 1.1:
Reference Description. (2004)
http://dublincore.org/documents/2004/12/20/dces/

[5] Beckett, D., McBride, B.: W3C: RDF/XML Syntax Specification. (February 2004)
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

[6] McBride, B.: The Resource Description Framework (RDF) and its Vocabulary De-
scription Language RDFS. in: The Handbook on Ontologies in Information Sys-
tems, S. Staab, R. Studer (eds.), Springer Verlag. (2003)

[7] Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL.

[8] Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. (2003)

[9] OWL-S Coalition: OWL-S: Semantic Markup for Web Services.

[10] Martin, D. et al.: Describing Web Services using OWL-S and WSDL. (2004)
http://www.daml.org/services/owl-s/1.1/owl-s-wsdl.html

[11] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean,
M.: SWRL - A semantic web rule language combining owl and ruleml. (2003)
http://www.daml.org/2003/11/swrl/

[12] KIF: Knowledge Interchange Format - Draft proposed American National Standard
(dpans). Technical Report 2/98-004, ANS. (1998)
http://logic.stanford.edu/kif/dpans.html

[13] Ghallab, M. et al.: PDDL - The Planning Domain Definition Language V.2. Tech-
nical Report, report CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control. (1998)

Fundamentals of Service-Oriented Engineering 6-17

Semantic Web Services

[14] Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Importing the Semantic Web
in UDDI. (2002)

[15] Paolucci, M. et al.: Semantic Matching of Web Services Capabilities. (2002)

[16] Schaffner, J.: Paving the Way for Automated Web Service Composition. (2005)

[17] Naumenko, A., Nikitin, S., Terziyan, V., Veijalainen, J.: Using UDDI for Publishing
Metadata of the Semantic Web. University of Jyvaskyla, Finland. (2005)

[18] Sheth, A. et al.: The METEOR-S Approach for Configuring and Executing Dy-
namic Web Processes. (2005)

[19] Sheth, A. et al.: METEOR-SWSDI: A Scalable P2P Infrastructure of Registries for
Semantic Publication and Discovery of Web Services. (2005)

[20] Sheth, A., Cardoso, J.: Semantic E-Workflow Composition. (2003)

[21] Van den Heuvel, W., Maamar, Z.: Moving Toward a Framework to Compose Intel-
ligent Web Services. (2005)

[22] Object Management Group: Ontology Definition Metamodel. IBM, Sandpiper Soft-
ware, Inc. (August 2005)

[23] Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services
using Semantic Descriptions. (2002)

[24] McIlraith, S., Cao Son, T.: Adapting Golog for Composition of Semantic Web Ser-
vices. (2002)

[25] Ullrich, M., Maier, A., Angele, J.: Taxonomie, Thesaurus, Topic Map, Ontologie -
ein Vergleich. v1.4 Ontoprise Whitepaper Series. (2004)
http://www.ullri.ch/download/Ontologien/ttto13.pdf

[26] Pidcock, W.: What are the differences between a vocabulary, a taxonomy, a the-
saurus, an ontology, and a meta-model?. Boeing. (2003)
http://www.metamodel.com/article.php?story=20030115211223271

[27] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems: Business Process Exe-
cution Language for Web Services version 1.1. (2005)
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[28] Akkiraju, R. et al.: Web Service Semantics - WSDL-S. W3C Member Submission.
(November 2005)
http://www.metamodel.com/article.php?story=20030115211223271

[29] Roman, D. et al.: Web Service Modeling Ontology. Applied Ontology 1 (2005)
77106 77, IOS Press. (2005)

[30] Weske, M.: Business Process Management Lecture Notes. Hasso-Plattner-
Institute Potsdam. (2006)

6-18 Fundamentals of Service-Oriented Engineering

REFERENCES

[31] Tabeling, P., Gröne, B., Knöpfel, A.: Fundamental Modeling Concepts - Effective
Communication of IT Systems. John Wiley & Sons, Ltd. (2006)

Fundamentals of Service-Oriented Engineering 6-19

Enterprise Service Bus

Martin Breest

martin.breest@student.hpi.uni-potsdam.de

The enterprise service bus (ESB) is the most promising approach to enterprise ap-
plication integration (EAI) of the last years. It promises to build up a service-oriented
architecture (SOA) by iteratively integrating all kinds of isolated applications into a de-
centralized infrastructure. This infrastructure combines best practices from EAI, like
message-oriented middleware (MOM), (Web) services, routing and XML processing
facilities, in order to provide, use and compose (Web) services.

Because the term ESB is often used to name different things, for example an archi-
tecture, a product or a ”way of doing things”, we point out in this paper what exactly an
ESB is. Therefore, we first describe what distinguishes the ESB from former EAI solu-
tions. Second, we show what the key components of an ESB are. Finally, we explain
how these key components function alone and how they work together to achieve the
aforementioned goal.

Keywords: ESB, SOA, EAI, Enterprise Service Bus, Service Oriented Architecture,
Enterprise Application Integration

1 Introduction

Due to the ongoing globalization, enterprises all over the world have to face a fierce
competition. In order to stay in business, they constantly have to automate their busi-
ness processes, integrate with their business partners and provide new services to
their customers.

With the changing demands in business, the goal of IT has also changed. Today,
IT has to actively support enterprises in global competition. Therefore, it has to make
business functionality and information available across the enterprise in order to allow
software engineers to create, automate and integrate business processes and com-
pany workers to access all kinds of information in a unified way via a department- or
enterprise-wide portal.

Today, most companies try to achieve the aforementioned goal by developing a
service-oriented architecture (SOA) [1, 7, 9, 10]. In a SOA, the business functionality,
implemented by different applications in the enterprise, is provided via coarse-grained,
loosely-coupled business services. These business services allow to easily create and
automate business processes by using, reusing and composing the provided business
functionality.

The enterprise service bus (ESB) [2–4,12] promises to build up a SOA by iteratively
integrating isolated applications into a decentralized infrastructure. Various research
and consulting companies like Forrester Research, IDC or Gartner Inc. believe that

Fundamentals of Service-Oriented Engineering 7-1

Enterprise Service Bus

ESB is the most promising approach for enterprise application integration (EAI) [5,6,8]
of the last years. Forrester Research for example regards the ESB as ”a layer of mid-
dleware through which a set of core (reusable) business services are made widely
available”. IDC believes that ”the ESB will revolutionize IT and enable flexible and scal-
able distributed computing for generations to come”. Gartner Inc. analyst Roy Schulte
wrote in 2002: ”A new form of enterprise service bus (ESB) infrastructure, combining
message-oriented middleware, Web services, transformation and routing intelligence,
will be running in the majority of enterprises by 2005. ... These high-function, low-cost
ESBs are well suited to be the backbone for service-oriented architectures and the
enterprise nervous system”.

Because the term ESB is obviously not clearly defined and often used to name
different things, for example an architecture, a product or a ”way of doing things”, we
point out in this paper what exactly an ESB is. Therefore, in section 2, we discuss what
the difference between ESB and former EAI solutions is. In section 3, we describe
what the key components of an ESB are and how they work together. In this section,
we also explain the most important features of the three components message-oriented
middleware (MOM), service container and management facility in detail. In section 4,
we describe the special facilities of an ESB, which are the routing and XML processing
facilities. Finally, in the last section, we give a conclusion and a short and final answer
to the most important question: ”What is (an) ESB?”.

Throughout this paper, we use the block diagram notation of FMC1 [11] to illustrate
architectural issues and BPMN2 to illustrate business process issues.

2 The ESB: An Innovative Approach to EAI

ESB is about enterprise application integration. Whether the ESB approach to inte-
gration is innovative or not is open for discussion. However, as a matter of fact, most
enterprises today try to develop a SOA by using an ESB. Because of that, we introduce
our work by answering the following questions: ”Why do we need Integration?”, ”Why
do we need the ESB?” and ”What does the ESB promise?”.

2.1 Why do we need Integration?

The IT landscape that we find in most enterprises today, is a result of a historical
development with a missing long-term strategy. It emerged from different IT projects
that have been conducted to develop new applications, to refactor existing applications
or to buy, customize and introduce standard applications.

The result of this development is a heterogeneous IT landscape that consists of
a variety of different applications. Each of these applications has been bought for a
particular purpose, supports people in a specific domain and is owned by a certain
department in the enterprise.

1Fundamental Modelling Concepts, http://www.f-m-c.org
2Business Process Modelling Notation, http://www.bpmn.org/Documents/BPMN V1-0 May 3 2004.pdf

7-2 Fundamentals of Service-Oriented Engineering

2 THE ESB: AN INNOVATIVE APPROACH TO EAI

Naturally, the heads of the departments try to protect their resources, which are in
our case the machines and applications that they bought from their budget, and the
information gathered and maintained by their people. Therefore, they only share their
resources if it is either beneficial for themself or if the enterprise’s management forces
them to do so. The result of this behaviour is that the IT landscape inside a department
and across the enterprise often consists of many isolated applications.

Due to the ongoing globalization, enterprises today have to face a fierce competi-
tion. To stay in business they have to reduce their costs through process optimizations
and gain new market shares through process and product innovations. Therefore,
today’s IT has to actively support enterprises in their development by continuously au-
tomating processes, integrating with business partners and delivering new business
services to customers. In order to achieve this, applications from different domains
and departments have to be integrated. As a consequence, to keep their departments
alive and to not offend the enterprise’s management to much, the heads of different
departments have to start collaborating.

Collaboration happens in those cases where two or more heads of a department
agree, after tough negotiations, upon sharing a certain piece of information or a specific
business functionality. To actually integrate their applications, they setup one or more
integration projects. Each integration project has the goal to integrate the affected
applications.

The two common approaches for application integration in the past have been point-
to-point integration and integration using a centralized EAI broker. A point-to-point inte-
gration aims at directly connecting two applications. An integration using an EAI broker
has the goal to connect two or more applications via a centralized mediator. This me-
diator is capable of routing and transforming messages sent between the applications.

2.2 Why do we need the ESB?

The result of conducting numerous point-to-point and EAI integration projects is the so
called accidental architecture. It consists on the one hand of unreliable point-to-point
connections between tightly coupled applications and on the other hand of so called
islands of integration.

The point-to-point integration approach leads to unreliable, insecure, non-monitorable
and in general non-manageable communication channels between applications. The
problem of this approach is also that the applications are tightly-coupled, which means
that the integrating application has to know the target application, the interface meth-
ods to call, the required protocol to talk and the required data format to send. The
general problem is that process and data transformation logic are encoded into the ap-
plications. Thus, each time a change occurs in an application, a new integration project
has to be launched in order to refactor the depending applications. Figure 1 illustrates
an example of an accidental architecture.

The EAI integration approach tries to integrate all kinds of applications using a cen-
tralized EAI broker. As we can observe in most enterprises today, this leads to so
called islands of integration. They exist because at a certain point in time even the
most ambitious and best-funded EAI integration project fails, because the heads of the

Fundamentals of Service-Oriented Engineering 7-3

Enterprise Service Bus

M
y

C
om

pa
ny

Pa
rt

ne
r

ERP

Finance

ERPOrder System

CRM
Email

SOAP FTP

Email

Figure 1: An example of an accidental architecture that consists of tightly-coupled
applications that are connected via unreliable point-to-point connections. The process
and data transformation logic is encoded into the applications.

departments refuse to give up control over their resources through integrating them into
or moving them to a centralized infrastructure controlled by the enterprise. However,
inside this islands of integration, most of the aforementioned point-to-point integration
problems are already solved.

Thus, the resulting architecture is named accidental not only because it has been
developed through a number of ”accidents” but also because it is very accident-sensitive
through the aforementioned characteristics.

2.3 What does the ESB promise?

The ESB promises to construct a SOA by iteratively integrating all kinds of isolated
applications into a decentralized infrastructure called service bus. In general, ESB is
based on ideas from EAI, in special message routing and transformation. But, because
of the decentralized infrastructure, it does not force departments to integrate their ap-
plications into a centralized EAI broker and, therefore, to loose control. It rather allows
departments to provide selective access to their business functionality and information,
to enforce local policies and, therefore, to keep local autonomy.

Iterative integration means that the ESB does not follow an all-or-nothing approach.
Because of the infrastructure that is not only decentralized but also highly distributed
and versatile, it rather allows to bring all kinds of applications step-by-step to the ser-
vice bus. Therefore, the integration projects now have the goal to bring the business
functionality implemented by different applications as reusable business services to
the bus. These business services can then not only be used in the current integration
project but also reused and composed in subsequent projects. The main difference
compared to former EAI solutions is that the conducted integration projects now follow
a long-term strategy, that is to bring all kinds of enterprise applications as business

7-4 Fundamentals of Service-Oriented Engineering

3 THE NATURE OF AN ESB

services to the service bus.

M
y

C
om

pa
ny

Pa
rt

ne
r

ERP

Finance

ERPOrder System

Service Bus

SOAP FTP

Email

Service Bus

CRM SOAP/
XML

SOAP/
XML

SOAP/
XML

SOAP/
XML

SOAP/
XML

Figure 2: An example ESB architecture in which all kinds of applications are provided
as business services and connected via reliable, secure and manageable virtual chan-
nels. As a consequence, process orchestration and data transformation logic can be
moved to the bus and process interactions can be performed in a controlled manner.

Technically, the main difference between the ESB and former EAI solutions is that
it replaces all direct application connections through reliable, secure and manageable
virtual channels. Through the introduction of these virtual channels the applications
are also decoupled, which leads to loosely coupled interactions and interfaces. To
allow a standardized message exchange between different business services, ESB
also propagates the use of XML as data format and SOAP3 as message exchange
protocol.

As a consequence of this changes, process orchestration and data transformation
logic can be moved from the applications to the service bus. Because of that, the ESB
now can also perform process interactions (choreographies) between a company’s pro-
cesses and its business partner’s processes in a controlled manner. Figure 2 illustrates
the result of refactoring the accidental architecture from figure 1 to an ESB architecture.

3 The Nature of an ESB

Having clarified what ESB promises, we now explain how these promises are realized.
We will therefore give an overview about the key components of the ESB architecture
and discuss each component in detail.

3SOAP specification, http://www.w3.org/TR/soap/

Fundamentals of Service-Oriented Engineering 7-5

Enterprise Service Bus

3.1 The Key Components of the ESB

The key components of an ESB architecture are MOM, service container and manage-
ment facility. Figure 3 illustrates these key components and their relationships.

Service Container

Message-Oriented Middleware (MOM)

Management Facility

Service Container

XML
Services

Internal/
Managed
Services

Service Container

Service Container
External
Services

Routing
Services

Adapter

JMS WS-ReliabilityWS-Reliable
MessagingSOAP

FTP,
Email,
HTTP

JCA,
JNI,
RMI

ESB Components Integrated Services Service
Repository

Figure 3: FMC diagram of the ESB architecture that shows the relationship between
MOM, service containers and management facility.

The MOM is basically a highly distributed network of message servers and is, there-
fore, also called the backbone of an ESB. It allows to establish reliable, secure and
manageable virtual channels and to send messages over them.

A service container either manages an application internally or provides access
to an external application via an appropriate adapter. Adapters provide access to all
kinds of applications. They allow for example to upload and download files, to send and
receive emails or to invoke a remote method via RMI. In all these cases, the service
container makes the business functionality implemented by the managed application
available as business services. It also connects these business services to particular
virtual channels and therefore allows them to send and receive messages over the
MOM. Both, intelligent service containers and highly distributed MOM give the ESB its
decentralized nature.

In an ESB architecture, a number of special services are available by default.
Among these are routing and XML processing services. As the integrated services,
they are managed by service containers and connected to certain virtual channels.

Software engineers can easily use, reuse and compose business services by es-
tablishing virtual channels and connecting the right business services to them. In order
to do that, MOM and service containers need to be configured.

Therefore, ESB has a powerful management facility to which MOM and all service
containers are connected. Because of that the management facility knows all business
services and virtual channels and allows to configure and monitor them.

7-6 Fundamentals of Service-Oriented Engineering

3 THE NATURE OF AN ESB

3.2 The MOM

The MOM is the most important component of an ESB and we explain it therefore first.
In this section, we will answer the following questions: ”What is the benefit of having
a MOM?”, ”How does a MOM function?”, ”How are virtual channels established?” and,
finally, ”What are the main characteristics of a message?”.

CRM Finance

Before

HTTP/SOAP

Call remote
method

Server Server

After

CRM Finance

XML

Add XML-Message to the
right virtual channel and let
MOM take care of delivery

XML XML

MOM

Figure 4: The shift from synchronous remote calls to asynchronous message ex-
change.

3.2.1 The Benefit of Having a MOM: Reliable, Asynchronous Message Exchange

As aforementioned, in an ESB, all direct communication channels between applica-
tions are replaced by virtual communication channels. As a result, all synchronous
remote calls are replaced by asynchronous message exchange. Because of that, all
tightly-coupled point-to-point interactions are replaced by loosely-coupled indirect in-
teractions. The MOM actually takes care of sending the messages via the setup virtual
communication channels to the connected business services. Figure 4 illustrates the
shift from synchronous remote calls to asynchronous message exchange and the re-
sulting impact.

3.2.2 Sending Messages over the MOM

The MOM that actually takes care of the message delivery consists of a network of
message servers and a number of message clients. Figure 5 illustrates that on an
example setup.

A message server basically manages various queues and topics and is able to
store messages sent to those. An ESB often consists of multiple message servers
that are connected to each other. The MOM routes the messages reliably through this
network of message servers via a store and forward mechanism. This means, that each
message server on the route stores the message, tries to send it to the next message
server and deletes it only if the target server has acknowledged the reception. Using
this mechanism, the MOM can guarantee the message delivery.

Each message client is connected to a message server and runs inside a service
container. Because of that, it is able to send messages to and receive messages from

Fundamentals of Service-Oriented Engineering 7-7

Enterprise Service Bus

Service Container A

MOM Server MOM Server MOM Server

Service Container B

Queues &
Topics Messages

Messages Messages

1. Send MessageXML XML

2. Store & Forward Message

3. Receive Message 4. Reply6. Receive

5. Store & Forward

Message Client Message Client

Figure 5: FMC diagram illustrating how messages are sent over the MOM.

this message server. However, the service container actually manages the message
client and takes care of transforming the received messages into service invocations.
Most message clients are also able to store messages temporarily.

There are different messaging standards and APIs, that can be used to send mes-
sages to and receive messages from a MOM. Using JMS4 in conjunction with SOAP
is very popular but only works in a Java environment. Therefore, upcoming standards
such as WSRM5 pose a promising approach for the future.

3.2.3 Establishing Virtual Channels in a MOM

As aforementioned, a message server is able to manage topics and queues. They are
either used to realize a point-to-point or a publish-subscribe messaging model. Figure
6 illustrates the use case and the technical realization of both models.

One can use a queue to realize a point-to-point messaging model. Therefore, a
message sender sends messages to a queue. The queue just exists virtually and is
managed by a message server. This message server also stores the received mes-
sages temporarily. To receive messages, a message receiver can connect to a queue
and fetch the oldest message. But, although multiple message receivers might be
connected to this queue, the oldest message in the queue will only be delivered to
that message receiver that fetches the message first. As you can see in figure 6 this
messaging model can be used to establish a virtual channel between two applications.

One can use a topic to realize the publish-subscribe messaging model. Similar
to the point-to-point messaging model, a message publisher publishes messages to
a topic. Message subscribers can subscribe to that topic to receive the published
messages. However, in this case, the message server manages the virtual topic and
for each subscriber a private queue in which the messages are stored. Therefore, not
only one but all subscribers receive the published message. As you can see in figure
6, this model can be used to establish a virtual channel between multiple applications.

4Java Message Service API web page, http://java.sun.com/products/jms/
5Web Service Reliable Messaging specifiation, http://www.oasis-

open.org/committees/tc home.php?wg abbrev=wsrm

7-8 Fundamentals of Service-Oriented Engineering

3 THE NATURE OF AN ESB

Point-to-Point Messaging Model (1->1)

Publish-Subscribe Messaging Model (1->many)

Every subscriber
gets message

First receiver
gets message

CRM Finance

XML

CRM

ERP

Finance

XML

Figure 6: Establishing virtual channels using either point-to-point or publish-subscribe
messaging models.

Through the intelligent connection of queues and topics that are managed by dif-
ferent message servers, one can also establish virtual channels between business
services provided at different geographic locations. As aforementioned, the MOM will
take care of the reliable message delivery.

3.2.4 Messages: The Means to Transport Data

In an ESB, messages are the basic unit of transaction. Because they are sent instead
of direct method invocation, they have to contain more information than the plain data
to be transmitted.

Therefore, a message consists of a header, properties and a body. The header
contains identification and routing information. The properties allow to pass application-
specific values. Typical message properties are replyTo, correlationId and messageId
attributes. The body, finally, contains the actual payload of the message.

The ESB is based upon a standardized message exchange. This means that mes-
sages are sent in a normalized format. Therefore, on a business service invocation,
they might have to be transformed from the normalized format to the format required
by the business service and vice versa.

Because the SOAP message exchange protocol has exactly the aforementioned
characteristics and is standardized, it is used in most ESBs to send messages across
the network. But SOAP is not mandatory and other, sometimes proprietary protocols,
can also be used. However, using a proprietary protocol might lead to a vendor look-in
and therefore to islands of integration, again.

The message payload often contains XML documents although this is not manda-
tory, too. But the advantage of using XML and the reason why it is used in most cases
is that it allows to easily transform the contents and route messages based on the
contents through the service bus.

Fundamentals of Service-Oriented Engineering 7-9

Enterprise Service Bus

3.3 The Service Container

In an ESB, the service container is the means to service-enable all kinds of applica-
tions. It is connected to topics and queues provided by the MOM and is able to trans-
form messages into service invocations. It service-enables applications, that are either
managed internally by the container or managed externally and adapted by the con-
tainer, by providing the business functionality of these applications as loosely-coupled,
coarse-grained business services. Therefore, a business service can encapsulate very
different functionality, such as to upload or download a file from an FTP server, to send
or receive an email from a mail server, to invoke a method on an EJB, to invoke a
method on a simple Web service or to invoke a method on a SAP R/3 instance using a
JCA6 adapter.

Each business service is represented by an ESB endpoint, has a unique endpoint
address which can be used to reference it, and is registered at the distributed man-
agement infrastructure. Because of that, they can be used to route messages to and
compose business processes out of them. An ESB endpoint can be represented by a
Web service but does not necessarily have to.

Service containers are not a unique feature of ESBs. They have been used for
years in EAI solutions. They are also used for example in J2EE7 to manage JSPs,
Servlets and EJBs. Recently, new lightweight containers such as the ones provided by
the Hivemind8 and Spring9 project have become very popular. Each of these service
containers can in general be used in an ESB, as long as it can be connected to the
MOM and can be managed by the management facility.

3.3.1 Connecting Services to the ESB

As we already know, the service container manages a message client, that allows to
send and receive messages from certain queues and topics, and it manages or adapts
an application. It also manages a number of ESB endpoints. These ESB endpoints
are the mediators between message client and the application’s business functionality.
David Chappell describes in his book ”Enterprise Service Bus” [2] a special kind of ESB
endpoint that we want to explain here as well. Figure 7 illustrates this ESB endpoint
approach.

An ESB endpoint is similar to a Servlet in J2EE. It has a standardized interface that
consists of an entry point and an exit point. The service container places all received
messages in the queue of the entry point and messages that shall be sent in the queue
of the exit point. Each ESB endpoint has a service method. The service method
is called each time an arriving message triggers an event that has to be processed.
Calling the service method, the only input parameter is an ESB context that allows to
access messages in the entry point queue and place messages in the exit point queue.
Finally, the service method contains the code that handles the received message and

6Java EE Connector Architecture web page, http://java.sun.com/j2ee/connector/
7Java Enterprise Environment web page, http://java.sun.com/javaee/
8Hivemind Framework web page, http://jakarta.apache.org/hivemind/index.html
9Spring Framework web page, http://www.springframework.org/

7-10 Fundamentals of Service-Oriented Engineering

3 THE NATURE OF AN ESB

Service Container

ESB EndpointESB Endpoint

MOM Server

Message Client

ESB Endpoint

Internal/ Managed Service

Entry
Point

Exit
Point

Operations

Place message in
entry point queue

Trigger event that
can be processed
by service-method

Place message in
exit point queue

Execute service-
method and call

operation

Receive and send
messages

Figure 7: Connecting serivces to the ESB using ESB endpoints that are managed by a
service container.

might send new messages or error message to the MOM. However, using the ESB
context arbitrary messages can be send to the MOM.

The code of the service method can for example transform the received XML mes-
sage into a Java object and call a specific method on the managed Java application.
As aforementioned all kinds of integration tasks can be achieved using this approach.
There are also a variety of default ESB endpoint implementations available that al-
low the integration of all kinds of applications by simply setting up some configuration
parameters.

3.3.2 Possible Capabilities of the Service Container

The core functionality of each service container is that it manages a message client to
send and receive messages, that it has a management interface that allows to config-
ure, manage and control the container, that it manages a number of configured ESB
endpoints and that it has a simple service invocation framework that allows to call the
service method on these ESB endpoints. However, having a service container, that
manages the translation of pure messages send over the MOM into service invoca-
tions, allows to add almost arbitrary functionality in between, as long as it is manage-
able via the management interface. Figure 8 illustrates the possible capabilities of a
fully-blown service container.

Each service container can additionally provide functionality for auditing, tracking,
logging and error handling. Besides this functionality, one can also add QoS function-
ality that allows to measure all kinds of service invocation relevant data, such as the
average service execution time, the throughput of the service or the average usage of
the service.

Additional functionality might also be responsible for handling the security configu-
ration that is required for accessing the MOM and the adapted, external applications.

Fundamentals of Service-Oriented Engineering 7-11

Enterprise Service Bus

Service Container

MOM Server

Internal/ Managed Service

Invocation and Mgmt. Framework

Message Client

ESB Endpoint

M
es

sa
ge

s
C

on
fig

ur
at

io
n

Service Invocation

Thread Management

Lifecycle Management

Connection
Management

Asynch Dispatch

Auditing/ Tracking

Itinerary Management

Quality of Service

Security

Management Interface

Correlation
Transaction
Management

A
ud

it
&

Tr

ac
ki

ng
 D

at
a

Lo
g

&
 E

rr
or

M

es
sa

ge
s

Q
oS

 D
at

a

M
es

sa
ge

s

Q
ue

ue
s

&

To
pi

cs

Figure 8: FMC diagram that shows the possible capabilities of a service container.

For internally managed applications, the service container might also manage a
thread or object pool in order to allow a faster request processing.

Itinerary management basically allows to handle itineraries, as it will be explained
in section ”Itinerary-Based Routing”. Correlation handling means that the service con-
tainer is able to correlate request and a corresponding response messages using cer-
tain correlation ids.

Besides the described functionality a service container might provided functional-
ity for lifecycle management, transaction management, connection management and
much more.

There are many organization that try to standardize the capabilities of a service
container. One standard is JBI10, which is the result of a Java community process
and widely accepted in the Java world. WSRF11 is another emerging standard, that is
based on Web services standards.

3.4 The Management Facility

The ESB is based upon a highly distributed and decentralized infrastructure that con-
sists of many service containers, that provide the business functionality of the man-
aged applications as business services, and a MOM to which all service containers are
connected and that connects these business services by establishing virtual channels
between them. Thus, the service containers and the message servers of the MOM
need to be configured, managed and monitored.

10Java Business Integration web page, http://www.jcp.org/en/jsr/detail?id=208
11Web Services Resource Framework specification, http://www-

106.ibm.com/developerworks/library/ws-resource/ws-wsrfpaper.html

7-12 Fundamentals of Service-Oriented Engineering

3 THE NATURE OF AN ESB

Service ContainerMOM Server

Internal/ Managed Service

Invocation and Mgmt.
Framework

Message Client

M
es

sa
ge

s
C

on
fig

ur
at

io
n

&
 D

at
a

Management Interface

C
od

e/
 S

cr
ip

ts
/

Pr
oc

es
se

s

......

Management Interface

M
es

sa
ge

s
To

pi
cs

 &

Q
ue

ue
s

C
on

fig
ur

at
io

n
&

 D
at

a

Management Facility

Configuration Service
Repository

Management Tool Code/ Scripts/
Processes

Manage and
monitor

Manage and
monitor

Message
exchange

Figure 9: FMC diagram illustrating the key components of the management facility of
an ESB.

Because of the variety of managed applications, ranging from simple EJBs that
are deployed via an deployment archive to transformation engines that require XSLT12

scripts to BPEL13 engines that require process definitions, and possibly different mes-
sage servers, very different requirements concerning configuration, deployment, man-
agement, and monitoring have to be satisfied.

The basic idea of an ESB is to have a decentralized infrastructure but to manage
it centrally. Each ESB, therefore, has a powerful and versatile management facility.
This management facility basically consists of a central repository, a network of man-
agement servers, management interfaces at message servers and service containers,
and different configuration, management and monitoring tools. Figure 9 illustrates the
relationship between the aforementioned components.

3.4.1 The Central Repository: The Means to Store all Kinds of Artifacts

In the central repository, all kinds of ESB related artifacts are stored. Besides the ESB
endpoint configuration for the service containers and the topic and queue configura-
tion for the message servers it also contains program code, deployment descriptors,
deployment archives and XSLT scripts. The central repository also contains a list of
available business services and their ESB endpoints, BPEL process definitions and
message routing configurations. Because the management facility monitors all kinds
of components, it also contains different monitoring data.

12XML transformations specification, http://www.w3.org/TR/xslt
13Business Process Execution Language specification, http://www- 128.ibm.com/developerworks/

library/specification/ws-bpel/

Fundamentals of Service-Oriented Engineering 7-13

Enterprise Service Bus

3.4.2 The Network of Management Servers: Managing the Decentralized Infras-
tructure

The management facility is built upon a network of management servers. These servers
are connected to the central repository. In case of a globally distributed ESB, the man-
agement servers can also replicate the data to different physically separated reposito-
ries.

Each message server or service container is connected to one of the management
servers. They therefore cannot only read data from and write data to the central repos-
itory but also to all connected components. These components can store certain data
locally. Because of having a central repository on the one hand and storing the appro-
priate data for each component locally, the management facility is very robust.

A management server basically configures the connected components, deploys
files on them, monitors them and manages them in general. Configuration means,
that it configures topics and queues of the message servers and the ESB endpoints
of the service containers. It also stores the ESB endpoint references along with the
business service description in the central repository. However, other aspects like log-
ging, error handling, auditing, QoS and security can also be configured. What can be
configured basically depends on the capabilities of the service container or message
server.

Deployment means, that the management server can upload all kinds of files to
a service container. To deploy an EJB in a service container it uploads for example
a Jar file, to configure a transformation engine it uploads certain XSLT scripts and to
configure a BPEL engine it uploads specific BPEL process definitions.

Besides the configuration and deployment aspect, a management server can also
monitor the connected component and collect all kinds of management data. Among
these data are for example life-cycle, log, error, auditing or QoS data.

Finally, a management server can also manage the life-cycle of the connected com-
ponents. It therefore can, for example, start, stop and restart the connected compo-
nents.

3.4.3 The Management Interface: Providing Access to all Kinds of Components

Each message server and service container has a management interface that basically
provides configuration, deployment, monitoring and lifecycle management functionality.

The management interface can be based, for example, on the older SNMP14, on
the popular JMX15 or on the latest WSRF management standard.

3.4.4 The Management Tools: Configuring, Monitoring and Managing Compo-
nents

The management tools allow human beings to access the data that is stored in the
central repository, and the message servers and service containers that are connected

14Simple Network Monitoring Protocol specification, http://www.snmp.com/protocol/
15Java Management Extension (JMX) web page, http://java.sun.com/products/JavaManagement/

7-14 Fundamentals of Service-Oriented Engineering

4 SPECIAL FACILITIES OF THE ESB

to the management infrastructure.
Using a management tool, software engineers or business process specialists can

for example view all available business services that are stored in the central repository,
including their description and ESB endpoint reference. They can use these services
to compose them, in order to create and automate business process. Because busi-
ness processes that are managed by a BPEL engine can be accessed like any other
business service, one can also define process interactions resp. choreographies.

Having these management tools, one can also monitor the components to see
which components are available and which ones are down. Using the lifecycle man-
agement functionality provided by the management interface one can also start, restart
and stop these components. The management tools also allow to monitor and manu-
ally handle errors that occured in the message or process flow. Therefore, they allow
to access the service container or message server where the processing error occured
and to edit for example the XML content of the message by hand.

The management tools also allow to view all kinds of monitoring data, for example
QoS, error, log and auditing data, to create statistics based on that data and to visualize
them as graphics.

4 Special Facilities of the ESB

Until now, we have only described the basic functionality of an ESB. However, the
goal of an ESB is to integrate all kinds of isolated applications into a decentralized
infrastructure to provide the business functionality as reusable business services, to
create, automate and integrate business processes using them, and to manage and
monitor the created business processes. Because messages sometimes have to be
pre-processed before and post-processed after service invocation, and business ser-
vices and business processes have to be enacted somehow, the ESB provides special
routing and XML processing facilities. We will explain them in the following section in
detail.

4.1 Routing Facilities

Through the usage of a MOM, an application’s functionality is no longer executed based
on a direct, synchronous method invocation but on an indirect, asynchronous message
exchange. This message exchange is always conducted between a business service
and the service bus. So, somehow the service bus needs to know how to route the
messages through the bus.

Therefore, an ESB basically provides three mechanisms to route messages through
the bus thereby invoking multiple business services: itinerary-based routing, service
orchestration using BPEL and content-based routing. This mechanisms allow not only
to manage the business processes but also to monitor them.

Fundamentals of Service-Oriented Engineering 7-15

Enterprise Service Bus

4.1.1 Itinerary-Based Routing

Itinerary-based routing is often used to manage short-living, transient process frag-
ments. Gartner Inc. calls this process fragments microflows. A microflow consists
of a sequence of logical steps. Each logical step refers to a business service. Thus,
to enact a microflow, a message is sent through the service bus in such a way that all
business services are invoked. Therefore, one must think of the service bus as a highly
distributed routing network that is build up by a variety of message servers and service
containers.

In order to route a message through the bus, each message contains an itinerary.
The itinerary consists of a list of ESB endpoints that have to be visited and the infor-
mation about already visited ESB endpoints. The message also contains the current
processing state as message payload. Because the itinerary and the process state
is carried by the message as it travels across the bus, each service container is able
to evaluate the itinerary and to decide in which virtual channel the message has to
be placed, to send it to the next ESB endpoint in the list. Figure 10 illustrates this
approach.

Message
XML Content

Itinerary
(ESB Endpoints)
1: CRM Service
2: Finance Service
3: ERP Service

Service Container

Service Bus – MOM

CRM
Service

(J2EE Server)

Service Container

Finance Service

JCA Adapter
(J2EE Server)

JMS SOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

1 2 3

Figure 10: Itinerary-based routing in an ESB.

The advantage of using the decentralized routing network is that different parts of
the network can operate independently of one another without relying on any central-
ized routing engine. Because of the decentralized nature of this approach, there is no
single point of failure or performance bottleneck.

4.1.2 Service Orchestration using BPEL

Service orchestration using BPEL is used to manage long-running business processes
that might run for months or years. A BPEL process definition consists of a number of
logical steps that are connected to each other by conditional or unconditional links and
can be executed in sequence or in parallel. A BPEL process definition also allows to
define time-based, condition-based and event-based triggers. As in the itinerary-based
routing, each logical step refers to an ESB endpoint.

A service orchestration or BPEL engine is used to enact BPEL processes based on
the process definitions. The BPEL engine is provided by the ESB as a special service
via an ESB endpoint an can therefore be accessed like any other service. Depending

7-16 Fundamentals of Service-Oriented Engineering

4 SPECIAL FACILITIES OF THE ESB

on the setup, an ESB might contain multiple BPEL engines in different geographic
locations that manage different BPEL processes.

During enactment, the BPEL engine simply sends asynchronous messages to and
receives asynchronous message from the MOM. Depending on the kind of logical step,
it can thereby invoke a business service or interact with a business process managed
by another BPEL engine. The procedure of invoking a business service follows the find-
bind-invoke mechanism. This means, that the BPEL engine finds the required business
service by resolving the defined ESB endpoint, binds to it, and, finally, invokes it by
sending a message. To emulate a synchronous service invocation, the BPEL engine is
also able to correlate the send request with a reply message of the invoked service.

BPEL Engine

O
rd

er

Pr
oc

es
s

M
O

M

Credit
Check

Inventory
Check

Order
fulfillment Invoice

<invoke> <receive>

Service Container

Service Bus – MOM

CRM
Service

(J2EE Server)

Service Container

Service Container

BPEL Engine
(Java VM)

JCA Adapter
(J2EE Server)

JMS SOAPSOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

Service Container

SOAP

Partner Service

WS Adapter

SOAP

Finance Service

1 2

1

2

Definition of Message Exchange with ESB in BPEL Process

Management of Message Exchange by BPEL Engine and ESB

Figure 11: Service orchestration using BPEL.

Figure 11 illustrates an example of a service orchestration. The part above shows
the message exchange between BPEL engine and MOM as a BPMN diagram. The part
below shows how the message exchange between BPEL engine service and business
services actually functions as an FMC block diagram.

As you might have noticed already, the BPEL engine not only manages the process
definitions but also the state of the currently enacted processes. Therefore, service or-
chestration can be used to handle more complex situations than with a simple itinerary.
Such complex situations occur, for example, when a stateful conversation between two
business processes is carried out over a long duration with pauses and resumes that
are separated by time and triggered by external events.

The disadvantage of the service orchestration through a centralized BPEL engine
is that it represents a possible single point of failure and a performance bottleneck. The
advantage of this approach is obviously, that through the central process management,
failure and recovery can be handled and processes can also be suspended for a certain

Fundamentals of Service-Oriented Engineering 7-17

Enterprise Service Bus

time.
Although we talked about service orchestration using BPEL in this section, you can

orchestrate services without using BPEL as well. However, although the BPEL stan-
dard has many flaws, it is adopted as the process definition standard by the industry.
Therefore, to avoid a vendor lock-in by using a proprietary language you should use
BPEL.

4.1.3 Content-Based Routing

Content-based routing (CBR) is based on the fact that XML processing services with
different capabilities are plugged into the bus. They basically allow to validate, enrich,
transform, route and operate XML messages. Combinations of these services allow to
form lightweight processes with the sole purpose to process messages.

Service Container

Service Bus – MOM

Transformation
Engine

Service Container

Service Container

Finance Service

CBR Router

JCA Adapter
(J2EE Server)

SOAP

Legacy
Protocol

WS Adapter

ERP Service

SOAP

Service Container

SOAP

Partner Service

WS Adapter

SOAP

MT2

MT1

Figure 12: Content-based routing in an ESB.

Plugging such a lightweight process as CBR service into the message flow be-
tween a message producer and a message consumer (which might be for example two
business services) allows to handle all kinds of complex integration tasks, for example
before and after a service invocation.

Figure 12 shows a content-based routing example. As you can see, a CBR router
and a transformation engine are plugged into the bus between a message producing
service and the partner service. The sole purpose of the CBR router is to apply an
XPath16 expression to determine whether the message conforms to message format
M1 and to sent it to the transformation engine if the message format is M2. The trans-
formation engine then basically transforms message format M2 to M1 by transforming
for example a 5 digit postal code to a 9 digit one.

16XML Path Language specification, http://www.w3.org/TR/xpath

7-18 Fundamentals of Service-Oriented Engineering

5 CONCLUSION

4.2 XML Processing Facilities

Because an ESB is used to integrate all kinds of applications, and for really integrating
an application it might require more than one simple step, the ESB provides a wide
range of XML processing facilities, that can be plugged together as described in the
content-based routing section to handle all kinds of complex integration tasks.

These XML processing facilities allow, among others, to validate, transform, and
persist messages. They are either provided by the service containers or by special
XML services that are plugged into the bus.

Message validation means that validation services are plugged into the bus that
are capable of checking whether a message conforms to a certain message or data
format. Therefore, it either checks the XML payload for the existence of certain at-
tributes and tags or evaluates the contents using configured validation rules. Validation
services have often some routing intelligence and transformation capabilities that al-
low them to modify the processed message or the routing information (the itinerary) of
the processed message based on the validation result. In order to validate messages,
validation services use XML standards, such as XPath or XQuery17.

Message transformation means that transformation services in the bus or transfor-
mation functionality implemented in the service container is used to change, extract,
enrich or aggregate the XML payload of the processed messages. In order to do that,
transformation facilities use XML standards, such as XSLT, XPath or XQuery.

Message persistence means that special services are plugged into the bus that are
connected to XML or relational databases and are able of storing XML messages or
their payload.

As mentioned above, XML processing services are mostly used in content-based
routing scenarios. However, because these services are accessible via an ESB end-
point like any other service in the ESB, they can easily be used in microflows and BPEL
processes, as well.

5 Conclusion

In this paper, we gave an introduction to the ESB. Therefore, we described what the ba-
sic promises of ESB and the main differences to former EAI solutions are. We explained
the key components of an ESB, which are MOM, service container and management
facility, in detail. We also described the special facilities, which are routing and XML
processing facilities, that actually make up an ESB.

As a conclusion of our work, we can say that ESB combines best practices from EAI
of the last years, reuses and integrates components that have been on the market for
years, and makes it more manageable. It combines best practices from EAI because it
is based on concepts from MOM, event-driven architecture (EDA) and SOA. It reuses
components, such as messaging systems, J2EE servers, integration adapters from
centralized EAI solutions, business process management engines and XML processing
services, and integrates them to provide added-value. Finally, it makes the integrated

17XML Query Language specification, http://www.w3.org/TR/xquery/

Fundamentals of Service-Oriented Engineering 7-19

Enterprise Service Bus

components more manageable and therefore more valuable by providing a powerful
management facility and integrating them into it.

5.1 What is (an) ESB?

Having clarified the advantages and disadvantages of an ESB, let us finally answer the
question: ”What is (an) ESB?”.

5.1.1 A ”Way of Doing Things”?

Yes, the ESB is definitively a ”way of doing things”. It is an incremental approach of con-
structing a SOA by connecting all kinds of applications to a enterprise-wide distributed
infrastructure.

5.1.2 An Architecture?

Yes, the ESB is an architectural style in which applications are service-enabled through
service containers and connected to a MOM based service bus, that is not only capa-
ble of routing messages but also of transforming them. This architectural style allows
to iteratively construct a SOA, to create, automate and integrate business processes
based on the provided business services, and to easily manage and monitor these
business processes.

5.1.3 A new Type of Product?

Yes, somehow. There are many companies that sell ESB infrastructure products allow-
ing enterprises to build up an ESB. These products are often composed out of existing
components, such as MOMs, J2EE servers and EAI integration adapters, and provided
in a manageable manner.

Software companies, such as IBM18, Sonic Software19, Seebeyond20 and Cape
Clear21 are very active participants in this market. They are fighting for market shares
by selling there own ESB infrastructure products and offering consulting services to
help enterprises in realizing their ESB.

There are also a number of open source projects, such as Open ESB22 sponsored
by Sun and Mule23 sponsored by Codehaus that try to provide enterprises with free
ESB infrastructure implementations.

18IBM Websphere ESB product page, http://www-306.ibm.com/software/integration/wsesb/
19Sonic Software ESB product page, http://www.sonicsoftware.com/products/sonic esb/index.ssp
20Seebeyond eInsight ESB product page, http://www.seebeyond.com/software/einsightenterprise.asp
21Cape Clear ESB product page, http://www.capeclear.com/products/cc6.shtml
22Open ESB project page, https://open-esb.dev.java.net/
23Mule ESB project page, http://mule.codehaus.org/

7-20 Fundamentals of Service-Oriented Engineering

REFERENCES

References

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:
Concepts, Architectures and Applications. Springer-Verlag, 2004.

[2] David A. Chappell. Enterprise Service Bus. O’Reilly Media Inc., 2004.

[3] M. Keen et al. Implementing an SOA using an Enterprise Service Bus. IBM
Redbook, 2004. http://www.redbooks.ibm.com/redpieces/pdfs/sg246346.pdf.

[4] M. Keen et al. SOA with an Enterprise Service Bus in WebSpehere. IBM Redbook,
2005. http://www.redbooks.ibm.com/redbooks/pdfs/sg246494.pdf.

[5] Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley,
2002.

[6] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Pearson Edu-
cation, 2004.

[7] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented Ar-
chitecture Best Practices. Prentice Hall, 2004.

[8] Sun Microsystems. Service oriented business integration.
http://java.sun.com/integration/.

[9] Mike P. Papazoglou and Dimitrios Georgakopoulos. Service oriented computing.
Communications of the ACM, 2003.

[10] Eric Pulier, Hugh Taylor, and Paul Gaffney. Understanding Enterprise SOA. Man-
ning, 2006.

[11] Peter Tabeling, Bernhard Groene, and Andreas Knoepfel. Fundamental Modeling
Concepts - Effective Communication of IT Systems. John Wiley & Sons, Ltd.,
2006.

[12] PolarLake: Understanding the ESB. http://www.polarlake.com/en/assets/ whitepa-
pers/esb.pdf.

Fundamentals of Service-Oriented Engineering 7-21

Fundamentals of Service-Oriented Engineering 8-1

Loosely coupled services
with JMS and JavaSpaces

Sören Haubrock

soeren-nils.haubrock@hpi.uni-potsdam.de

Loose coupling is a central aspect in service-oriented computing. While the
general concept of service-oriented architectures (SOAs) does not imply any
particular restrictions on how to realize this aim, certain technologies provide ways to
support loose coupling and thereby follow different approaches.

In the Java world, two technologies are particularly aiming at providing middleware
components to support message and workload exchange in an asynchronous
fashion. While the Java Message System (JMS) follows the idea of a central platform
for message exchange in order to de-couple the communicating partners, the
JavaSpaces approach relies on the concept of a space-based object and data
exchange repository in order to distribute workloads among several participants in a
highly-flexible way.

In the scope of this paper, these two approaches are described, exemplified and
analysed with respect to their role in service-oriented computing.

Keywords: JMS, JavaSpaces, SOA, Loose Coupling

1 Loose coupling in service-oriented computing
The concept of a service-oriented architecture (SOA) relies on a set of certain

aspects, which can be summarised by the definition of Wilkes [1]: “[A SOA is] a way
of designing and implementing enterprise applications that deals with the
intercommunication of loosely coupled, coarse grained (business level), reusable
artefacts (services) that are accessed through well-defined, platform independent,
interface contracts.“

Loose coupling is a fundamental aim in service-oriented computing. „It describes a
resilient relationship between two or more computer systems that are exchanging
data. […] with few assumptions about the other end“[3].

The benefits of loose coupling are seen in the transparency, flexibility in large
application composition and resource binding[4,5]. Hereby, the aspects of de-
coupling in terms of location, time and reference at build-time are to be differentiated.

De-coupling in terms of reference is already realised in the SOA-implementation of
SOAP web services. While the interface of such a service needs to be known a-priori
(or at least to be found and understood), the actual instance of a service can be
deployed and exchanged at run-time.

In the same case, the location of a web service is de-coupled from the client in the
sense that it can be looked up at run-time from a registry. The location of a service
itself might change from one URL to another as long as the registry consistently

Loosely coupled services with JMS and JavaSpaces

8-2 Fundamentals of Service-Oriented Engineering

updates the location changes. However, once a consumer of a web service does not
use the registry anymore (to find the service) or the address in the WSDL document
is not up-to-date, the invocation of a service leads to malfunction. Therefore, the
realisation of space-de-coupling in SOAP web service implementations strongly
depends on the policy of both, the service provider and the service consumer.

Regarding the time aspect, the current standard SOAP web services do not
provide a means to systematically de-couple communicating end points from each
other. However, only when components are de-coupled not only by reference, but
also by location and time, the establishment of SOAs with asynchronous information
exchange becomes feasible. As an example, memory- and time-consuming
processes encapsulated by services might run in the background after being invoked,
while a client disconnects from the service and proceeds with other tasks without
waiting for the service to be finished. Later on, the client may fetch the result data
either by asking for the state of a service process or by being informed through the
service or some other component after the completion of the job. Both approaches
sketched in this paper realise time-decoupling in a specific way.

2 Java Message Service (JMS)

2.1 Loose coupling in messaging systems
In messaging systems, applications are loosely coupled through the exchange of

self-describing messages. In theory, these messages can contain any information
needed by the implicit communication protocol between sender and receiver, i.e.
some text information, an XML-document (e.g. SOAP message) or binary data.

In such a system, a component is needed to receive, store and send messages for
all participating endpoints. In most cases, this functionality is provided by a service,
which can be accessed by the communication partners. The components responsible
for the messaging process including these access services are subsumed as
Message Oriented Middleware (MOM). Obviously, there are certain requirements to
be fulfilled by such a messaging system in terms of reliability, accessibility, security
and performance.

With the message service as a central component in this architecture,
communication partners in a messaging architecture are de-coupled in all relevant
aspects. The endpoints do not communicate directly with each other, but rather send
messages to the service. Thus, each communication partner only needs to know the
reference and location of the message service itself.

With respect to time, the messaging approach provides a highly flexible way to
realise de-coupled communication. After sending a message to a messaging system,
it either remains there until the (set of) client(s) fetch(es) it, or a certain time-out
policy prevents the server from being overloaded.

 2 JAVA MESSAGE SERVICE (JMS)

Fundamentals of Service-Oriented Engineering 8-3

2.2 What is JMS?
The Java Message Service API is a messaging standard that allows application

components based on the J2EE platform to create, send, receive, and read
messages. It enables distributed communication that is loosely coupled, reliable, and
asynchronous [6].

Existing messaging systems, such as Bea WebLogic, IBM MQSeries or MSMQ,
each have their specific, non-standardised interface and are therefore not compliant
with one another. JMS provides a standard Java-based interface to these messaging
systems. The idea of the Java Message Service is to provide a message transport
service, called the provider, implementing the JMS interface and giving access to the
proprietary system.
The specification does not define how messages need to be transported within a
particular implementation. This clear separation of concerns was essential in order to
allow vendors of existing messaging products, to support the JMS specification.

2.3 JMS messaging approaches
In the JMS context, the co-called endpoints play an important role. Instead of

sending a message directly to its receiver address (tight coupling), the sender
delivers the data to an abstract endpoint, which takes care of the following tasks.

On the other side, the receiver to whom the message is dedicated, does not fetch
it from the sender, but rather determines, from which endpoint it is willed to receive
messages. It is therefore possible, that multiple receivers consume messages from
the same sender, as long as they all determine the same endpoint to communicate
with. The communicating partners do not need to “know” about each other.

At the same time, the receiver might fetch messages from multiple senders. This is
the case, when each of the senders puts its messages to an endpoint that the
receiver communicates with.

The two implementations of the different messaging approaches are described in
the following: p2p and publish/subscribe messaging.

2.3.1 Point-to-point messaging (p2p)

Messages are most often dedicated to one specific receiver. In this case, the task
of a messaging system is to provide a storage capacity accessible via endpoints that
receive messages from the sender and store them in a queue, meaning that a
message fetched from the queue (consumed) is gone and therefore not accessible
by other consumers anymore. The message system schedules the message
forwarding in a FIFO order, the next query for a message at the same endpoint
serves the following message. Figure 1 shows the p2p approach for a simple set-up
of two message exchanging communication partners. In figure 2, the case of two
receivers fetching from the same queue is depicted exemplary.

The two core characteristics of this concept are on the one hand the fact that each
message can be consumed at most once due to the queue storage system. On the
other hand, the dynamic addition of senders and receivers to the infrastructure at

Loosely coupled services with JMS and JavaSpaces

8-4 Fundamentals of Service-Oriented Engineering

runtime offers a high flexibility, fulfilling some important criteria of service-oriented
architectures.

Figure 1: p2p-Messaging architecture [8]

Figure 2: Message sequence in p2p-messaging [8]

While the JMS does not explicitly interdict that multiple consumers share the same

endpoint for receiving messages to be read at most once from a single sender, the
p2p messaging approach is not intended for this communication pattern. JMS does
not specify any semantics for this case either.

2.3.2 publish/subscribe messaging (pub/sub)

For the case that many consumers are interested in the same information from a
sender, the second communication pattern can be used.

Instead of providing queues for the messages, the endpoints are representing so-
called topics, to which consumers are able to subscribe. Similar to the concept of a

AA

BB
Queue

Sender Queue Receiver
send(m1)

send(m3)

send(m2)

receive()
m1

m2
receive()

Put message into
queue

Consume message

Receiver

 2 JAVA MESSAGE SERVICE (JMS)

Fundamentals of Service-Oriented Engineering 8-5

mailing list, each communication partner interested in a certain topic will receive the
messages that are bound to the specific endpoint. These messages are provided by
a publisher of the topic. In general, the communication takes place between m
publishers and n subscribers via a single topic (endpoint). Figure 3 shows an
example of a single publisher sending messages to an endpoint, to which several
consumers are subscribed.

Figure 3: publish/subscribe-messaging architecture [8]

In contrast to p2p messaging, consumers obtain messages without having to

explicit request them. Once subscribed to the topic, the system pushes the message
to the client as soon as it is accessible and the delivery is being scheduled.

In this approach, it is guaranteed that each subscriber receives a copy of every

message belonging to the topic of the very endpoint. However, certain restrictions
apply to this rule of thumb, taking into account that accessibility of the consumers
and storage capacity of the message system are limited.

2.4 Concepts and application of the JMS API
While Sun developed two different interface families for the messaging

architectures in the first API version (JMS 1.0), they have been unified in the version
1.1 from 2002. Table 1 shows these interfaces and their specific names bound to
each of the two messaging architectures.

Table 1: Relationship of p2p and pub/sub interfaces [6]

JMS Common Interfaces P2p-specific Interfaces Pub/sub-specific interfaces
ConnectionFactory QueueConnectionFactory TopicConnectionFactory
Connection QueueConnection TopicConnection
Session QueueSession TopicSession
Destination Queue Topic
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

The ConnectionFactory is used by clients to set-up a connection with the JMS
provider, resulting in a Connection object. A connection can contain multiple
sessions, each of which stands for a single-threaded context for sending and
receiving messages.

 SS

Topic
 SS

SS

SS
SS

Loosely coupled services with JMS and JavaSpaces

8-6 Fundamentals of Service-Oriented Engineering

The destination object encapsulates the identity of a message destination (the
consumer(s)). The MessageProducer object is created by a Session and used for
sending messages to a destination, while the MessageConsumer is used for
receiving messages that are sent to a certain destination.

Figure 4: JMS object relationships [6].

A working JMS application consists basically of one or more JMS clients

exchanging messages, and the messaging system providing the JMS interface. The
following scenario depicts a typical use case where a client consumes a message
from a topic endpoint via JMS.

The message consumer looks up a topic connection factory in the JNDI context.
The sole purpose of the factory is to create JMS connections. Before it is bound to
JNDI, connection parameters can be configured (IP, port, protocol, reconnection and
load-balancing strategy). A Topic object, providing a handle for the physical
implementation of a topic, can be referenced via JNDI as well.

A TopicConnection is a unique, direct connection to the JMS provider and serves
as a factory for TopicSessions. As each connection can potentially mean a pool of
threads, an underlying TCP connection and more administrative overhead, in general
each client is supposed to have only one connection to a provider.

TopicConnectionFactory tcf =
(TopicConnectionFactory)context.lookup("TopicConnectionFactory");

Topic topic = (Topic)context.lookup("Quotes");

TopicConnection tc = tcf.createTopicConnection();

With a connection established, a session is created in the next step. The
parameters for session creation determine whether a message transfer is
transactional and acknowledged, respectively. Furthermore, a session can be used

 3 JAVA MESSAGE SERVICE (JMS)

Fundamentals of Service-Oriented Engineering 8-7

as a factory for messages, topic subscribers and topic publishers. Sessions are not
thread-safe.

TopicSession ts =
 tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);

Once the session object is created, it is possible to create its TopicPublisher object

and start the session. Messages can then be sent to the topic with the publish-
method.

TopicPublisher tp = ts.createPublisher(topic);
tc.start();

String quoteStr = "HPIStocks, 23.31";
TextMessage quote = ts.createTextMessage(quoteStr);
tp.publish(quote);

On the other side of the communication, the subscriber object is created and can

be used in two different forms. With the explicit call of the receive-method, messages
are fetched synchronously. As an alternative, the listener concept can be utilized in
order to inform subscribers automatically when a new message arrives for a certain
topic. A MessageListener object is used for events of this type, while objects of type
ErrorListener are used to handle exceptions that might occur (typically security
exception or transport failure).

TopicSubscriber tSub = ts.createSubscriber(topic);

//synchronous message fetch
Message msg = tSub.receive();
String message = ((TextMessage)msg).getText();

//asynchronous message fetch
tSub.setMessageListener(new MyMessageListener());
tc.setExceptionListener(new ErrorListener());

Loosely coupled services with JMS and JavaSpaces

8-8 Fundamentals of Service-Oriented Engineering

3 JavaSpaces
In distributed computing, one approach for a client-server system is based on the

use of a virtual compute server implemented on a number of co-operating
workstations or PCs. Hereby, clients send requests (jobs) to the virtual compute
server, where one or more of its processors complete the job. Since the
computational power of the server derives from an aggregation of machines, it is
possible to scale the system by changing the number of machines without affecting
ongoing activities. In theory, the server can be expanded on the fly to meet peaks in
demand by adding machines temporarily. Due to the distribution of processing power,
the system can be up and running full time, with hardware maintenance and updates
handled incrementally, a few machines at a time.

The overall idea of such a system is to perform a number of jobs simultaneously in
a reliable and flexible way at locations that may be physically dispersed. In the
context of service-oriented computing, this approach is particularly interesting when
processes need to be distributed due to high demands on processing power.

3.1 Virtual shared memory and the space concept
A virtual shared memory is a shared object repository that can be used to store

data, which is shared among the components of a distributed program. It is virtual in
the sense that no physically-shared memory is required to create it. Its potentials in
load balancing, high performance and fault tolerance are seen as the key advantages
of such a system [12].

Tuple spaces are one way to implement virtual shared memory. A tuple is a simple
vector of typed values (field). Each field may have one of the three basic forms: a
constant, an expression that evaluates to a constant or a formal parameter. The tuple
space provides a repository of tuples that can be accessed concurrently. Producers
post their data as tuples in the space, and the consumers then retrieve data from the
space through a certain pattern matching approach. Thus, the tuple space realizes a
logical associative memory.

The tuple space concept originates from the Linda parallel programming language,
developed by David Gelernter and Nicholas Carriero at Yale University [13]. Linda is
implemented as an extension of other (sequential) languages [14]. It consists
fundamentally of four operations through which the tuples can be added, retrieved or
destructively retrieved from the tuple space.

With the concept of virtual shared memory in form of tuple spaces, it becomes
possible to communicate asynchronously and anonymously in a distributed and
persistent way.

3.2 What are JavaSpaces?
The JavaSpaces technology is an implementation of the tuple space concept in

the Java programming language based on the JINI architecture. It can therefore be

 3 JAVASPACES

Fundamentals of Service-Oriented Engineering 8-9

seen as a distributed programming model as well as an API [10]. The tuple concept is
realized by providing a space for storing regular Java objects with its data and
functionality in it.

There are three access operations for objects in the space: write, read and take.
With read, a copy of an object is created and can be further modified. With take, the
object is not only read, but also removed from the space. Figure 5 illustrates the
different access methods.

Space objects are read-only, i.e. the content of the objects can not be modified by
users while accessing the space. In order to do so, the object needs to be removed
(taken) from the space and written back to it in a modified state. In JavaSpaces it is
possible to register a listener for a certain object class or value range in the form of
templates by using the notify method.

The associative look-up in JavaSpaces is realized by the use of template objects
that are passed to the space in order to match with the objects in it.

A template object is passed as a parameter in the read method. Matching between
the template object and objects in the space is successful in the case that a) the
template is of the same type and b) all values are identical to those in the matched
object in space, where null serves as a wildcard. As a precondition for the matching
concept to work, all object fields used for matching must be public, non-static, non-
final, non-transient and instances of a class (no simple data types).

All objects that are put to the space need to implement a certain interface called
Entry. Apart from that, objects can be of arbitrary class, state and size.

Figure 5: Overview of the JavaSpace concept [9].

A great potential in the JavaSpaces technology is the possibility to store objects

together with their functionality in one or several spaces that can be arbitrarily
distributed and only need to be made accessible to the clients (directly or indirectly).
Thus, workload can be encapsulated in these objects with class-specific
implementations. As a consequence, it is possible to make use of processing

Loosely coupled services with JMS and JavaSpaces

8-10 Fundamentals of Service-Oriented Engineering

machines that are unaware of any processing algorithms simply by loading an object
from the space, executing a well-defined processing (e.g. compute()) method and
writing the result back to the space. With the aid of the notification system, clients
interested in the outcome of the processing get informed and can then proceed with
their work. This concept is called master/worker-scheme.

3.3 Architecture of the space
The virtual shared memory in form of as space is created by connecting the

memories of each participant. Distributed data structures are created by putting
objects into space. The space engine replicates those objects to participants that
expressed interest. In other words, a distributed cache facility is incorporated into the
space infrastructure. Protocols like RMI (or others) are used for the actual
transportation. An embedded mode may be also available if participants share the
same JVM, in order to avoid the overhead of network serialization.

3.4 Features and limitations of JavaSpaces
JavaSpaces can be run in as a persistent space that maintains state between

executions or as a transient space that loses its state between executions. The
underlying data representation within the JavaSpace is the serialized version of an
object. Figure 6 shows how a JavaSpace operation uses a local proxy to
transparently serialize and deserialize entries, based on the principles applied in Jini.
The space stores entries in their serialized form and the read or take operations
match serialized templates to serialized entries field by field. With each read or write
method call, at most one object is processed. Due to the associative lookup
procedure, the exact instance to be read can only be determined when the tuples of
field values are unique and each tuple value is known by the reader. This is however
in most cases not a useful pre-condition given that de-coupling and information hiding
of the objects’ states is intended.

Obviously, the serialization of objects is a potential bottleneck in the performance
of the overall JavaSpaces architecture, especially when being configured as a
persistent space. Thus, in order to avoid certain issues such as the network
communications and serialization overhead, the query for objects should me
minimized where possible.

The literature describing this technology generally promotes the flexibility,
expressiveness and simplicity of the framework. However, a number of potential
drawbacks exist, including the inability to extract more than one object at a time and
the unpredictable selection of the entries returned. A more fundamental limitation
may be the Java centric nature of the service they provide. For a JavaSpace to be
suitable for a particular application, the objects that need to be stored persistently
must be Java objects. Further, the often asserted scalability is restricted to a certain
amount, since local memories are used for storage of serialized objects.

 4 JMS AND JAVASPACES IN SOC

Fundamentals of Service-Oriented Engineering 8-11

Figure 6: Serialization of entries by a local proxy object before transmittance

in the remote space [9].

4 JMS and JavaSpaces in SOC
JMS and JavaSpaces both provide a concept and technology that aims at the

provision of loosely-coupled communication in terms of reference, location and time.
Both approaches provide run-time extensibility, time (store-and-forward) and location
independence as well as latency hiding (through asynchronous communication).

JMS is designed for information delivery, whereas JavaSpaces can be called an
information-sharing infrastructure. While the JMS approach focuses on the exchange
of messages in form of (structured) text or binary data via message-oriented
middleware, the JavaSpaces technology is based on the exchange of Java objects
via the virtual shared memory.

4.1 JMS in SOC
Distributed environments where service-oriented computing bares highest

potential typically have certain properties. Their heterogeneity in terms of underlying
platforms, architectures and implementations make a direct communication between
components without any middleware unfeasible. JMS is a technology providing
access to message based systems for the Java environment. With its potential to
provide asynchronous communication to exchange messages (text, objects, binary),
it is suitable for applications where the context consists of exactly these environments
with de-coupled systems communicating over system boundaries. Due to de-coupling
with respect to time, reference and location, message receivers need not be aware of
their senders’ identities.

Loosely coupled services with JMS and JavaSpaces

8-12 Fundamentals of Service-Oriented Engineering

In contrast to standard service-oriented architectures, JMS as a MOM does not by
definition connect services to each other, but rather couples distributed messaging
clients. However, in the context of service-oriented architectures, the JMS messages
are suitable to convey service calls between multiple components. The P2P
approach hereby provides the base mechanism of delivering a message from the
caller over the queue to a certain callee. The messaging clients can hereby take the
role of the client and service, respectively. The queue contains all messages/service
calls that are related to a certain service instance.

With the aid of the publish/subscribe mechanism, the issue of long service delay
due to queuing might be overcome by bringing in certain redundancy. It is imaginable
that multiple service instances of this very class exist at the server side and register
with a certain JMS message (service) type in order to share the workload of service
requests on a “first available, first served” basis. The first service instance finishing
the received task can be configured to send the result back to the JMS server, which
forwards it to the initial service caller. Since a service caller is generally interested in
making use of a service class rather than in an actual instance of that class, this
approach would be transparent to the service consumer. However, this architecture is
not at all efficient and only makes sense when the cost of redundancy is weighed up
with the advantage of fast service execution in high workload situations.

4.1.1 Feasibility of JMS

JMS is an especially feasible approach for service-oriented computing when
certain characteristics apply to the communication infrastructure.

In the case that no immediate response is required or expected from the
underlying service, which might be the case for computing-intense processes or high
workload and potential congestion situations at the service input, JMS offers a
reliable mechanism for storing and forwarding the messages. Messages are
delivered to the service endpoint when resources become available, allowing for an
efficient utilization ratio. In the case of synchronous services, however, the
messaging system is not appropriate since the middleware has no direct control over
the actual service component in the background (the message receiver or
subscriber).

When guaranteed delivery of the service request may be necessary, sending or
receiving the message may be part of a transaction and security mechanism, which
is partly integrated in the JMS architecture provided by the API. JMS supports the
concepts of message acknowledgment, message persistence, message priority,
expiration time and temporary destinations in order to support reliability and
prioritization.

A typical application domain for the JMS technology in the context of service-

oriented computing can therefore be found in the mobile application context, where
message exchange heavily relies on message storage capacities working on a 24/7
basis. Since the availability of communicating devices cannot be guaranteed,
asynchronous communication needs to be realized. Hereby, both messaging
approaches can be useful. While p2p messaging enables communication between

 4 JMS AND JAVASPACES IN SOC

Fundamentals of Service-Oriented Engineering 8-13

two partners, publish/subscribe is feasible for applications where users are interested
in certain topics and want to be informed e.g. by SMS.

4.1.2 Service-orientation with JMS

In a JMS-based distributed system, external clients (or services) use the
technology to exchange messages between each other asynchronously. In the
context of service-oriented computing, the JMS technology can be understood as a
component in the service bus [2]. The actual service calls in a SOA might be
maintained, controlled and scheduled by the JMS, providing a layer between the user
and the actual services. With this extension, an asynchronous communication can be
realised in a more convenient way for the user.

Java Message Services provide a message-centric exchange of small data
chunks. In order to make use of the messages, their format needs to be part of a
contract between users. In other words, although the communication between clients
via JMS is de-coupled as described above, it is still necessary for a client to know
how to access the type of message or topic he is interested in. Thus, not the
concrete provider, but the format or content type needs to be known in order to bind
it.

JMS architectures for service-oriented computing need to extend the basic
mechanisms by customized protocols for communicating back to the invoking client.
Due to de-coupling in reference, the caller needs to identify itself when sending a
message to the JMS server, and a backchannel queue has to be established for
sending the results to that client.

4.1.3 Connecting JMS and SOAP-web services

To make use of JMS’s advantages in standard web service architectures, the
following architecture combines both approaches.

From the client’s perspective, the SOAP endpoint communicates with an endpoint
in a standard manner. However, this endpoint isn't a standard web service but rather
a protocol handler that listens for SOAP messages and passes them into a message
queue. With the aid of a listener, the messages are then routed to the correct target
(web service) asynchronously.

The motivation for this approach is that while the web services technology enables
the execution of remote services, it does not provide a robust infrastructure for
handling information. An enterprise-class application that communicates with web
services however must ensure that the data can be handled appropriately. There are
three reasons why standard web services can be enhanced by extending them as
exemplified. Firstly, the data will be lost if the application fails because the data is not
persisted, Second, if the system is inundated with orders, it must be able to handle
the increased load. And finally, in the case that the application needs to communicate
with a backend system, there must be a bridge for efficient and reliable
communication. JMS supports these requirements and provides features to couple
both systems, standard SOAP web service communication with the outer world and
JMS messaging within a network to handle service requests.

Loosely coupled services with JMS and JavaSpaces

8-14 Fundamentals of Service-Oriented Engineering

Besides its significant advantages over web services, the JMS technology has
some relevant drawbacks. They can be categorised as its potential overhead,
additional complexity and the risk to form a communication bottleneck at the
message server. The queues or topics need to maintain and control all incoming
messages, perform (de-) serialisation of messages and schedule outgoing
messages.

Figure 7: Architecture of connection between JMS and SOAP web services

4.2 JavaSpaces in SOC

In the literature JavaSpaces technology is said to be the „technology providing a

high-level co-ordination tool for gluing processes together into a distributed
application“[9]. With its concepts, it truly offers a loosely coupled communication with
respect to location, time and reference. Its (not unlimited) scalability and fail-proof
storage and exchange mechanism make it usable for services, which are reasonably
executed asynchronously and in parallel.

As with JMS, JavaSpaces provide a communication middleware component for
services to exchange data. Further, the processing directives are also encapsulated
in the Entry objects. This makes architectures feasible where “workers” perform the
computing by fetching any object from the space and doing its processing locally by
calling the computing method.

4.2.1 Feasibility of JavaSpaces

The space functions as a "shared object pool" for communication and coordination
that holds state information in a persistent and long-term manner across different
communication contexts. Application design patterns are free to choose in which way
objects are created and consumed. Instead of publishing interfaces, the space
objects are functioning as a bulletin board and implicitly bi-directional communication
channel. It's a data-oriented approach creates the illusion of a single address space
where the code looks like it's running on a single machine.

SOAP-
HTTP
Client

JMS
Client/ServiceJMS

SOAP

Protocol

Handler

 5 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 8-15

Especially its potential in flexible workload-distribution, scalability (up to a certain
point) and reliability make it feasible for a range of application classes, where the
combination of distributed caching and easy distribution of load is relevant. Typical
examples are workflow systems, parallel computing servers, or collaborative
systems. In the context of SOA, JavaSpaces provide a valuable component “behind”
existing services.

4.2.2 Service-orientation with JavaSpaces

In the JavaSpaces approach, the term service is interpreted in a slightly different

way then it is the case for SOAP web services. The service as an open, self-
descriptive component that provides a contract between provider and consumer in
SOA does not explicitly exist in this architecture. JavaSpaces comprise object-centric
data structures while each object can contain service logic. In fact, since the
processing is performed by objects with access to the space, the service itself is
distributed over an unknown and not controllable number of systems consuming
space objects. When a service is distributed as a data structure written to the space,
no service level agreement can be verified.

However, JavaSpaces can be combined with standard web services in the same
manner as it was the case for JMS. The web service client hereby uses the well-
known SOAP interface to call a gateway which distributes the service execution in a
space. The difference hereby is that with JavaSpaces the main purpose is to
distribute workload, not to call third-party systems (like JMS clients).

5 Conclusion and Outlook
JMS and JavaSpaces can provide significant components in a SOA

 by supporting loose coupling in the sense of location, time and reference. Especially
when asynchronous communication between client and server is necessary, these
concepts show their potential. Integration into standard web services can be realised
by providing additional components in the architecture, which pass SOAP calls to an
internal message server or space. But both concepts can also be integrated into a
SOA without making use of web services.

The major limitations of both approaches are technical. They are restricted to the
Java context and form certain bottlenecks in terms of memory and processing.

Both technologies provide an Java API for concepts that are significantly older.

JMS 1.0.2b originates from 2001, the actual version 1.1 has been released in March
2002. The idea of message servers is however somewhat older. The concept of tuple
spaces has been developed in 1982, while JavaSpaces has been released in 1998.

There has been a tremendous hype about these two technologies. JavaSpaces
were claimed to be „[...] a full generation ahead of anything else on the market“ and
that „the power of such systems would bring multicomputing to the masses.“[11]

Today, only few new articles or books are published about these two technologies.
In the case of JavaSpaces, their application area seems to be restricted to scientific
Grid-Computing while JMS is mainly used as SOAP transport mechanism.

Loosely coupled services with JMS and JavaSpaces

8-16 Fundamentals of Service-Oriented Engineering

Although both technologies do not yet play the role that have been predicted, the

concepts behind both technologies bare high potential for a real loosely-coupled
service-oriented computing environment. When certain issues in the architecture are
addressed by applying additional mechanisms (e.g. components to administer and
control JMS servers or the space workload), powerful SOAs can be set-up in the
Java environment quite easily.

References
[1] S. Wilkes: SOA - Much More Than Web Services.

 http://dev2dev.bea.com/pub/a/2004/05/soa_wilkes.html.
[2] D. Krafzig, K. Banke and D. Slama. Enterprise SOA: service-Oriented

Architecture Best Practices. Prentice Hall, 2004.
[3] Wikipedia: Loosely Coupled, http://en.wikipedia.org/wiki/Loosely_Coupled.
[4] B. Angerer and A. Erlacher: Loosely Coupled Communication and Coordination in

Next- Generation Java Middleware,
today.java.net/pub/a/today/2005/06/03/loose.html, 2005.

[5] J. Hanson: Take Advantage of the benefits of loosely coupled Web Services,
 builder.com.com/5100-6386-1050425.html, 2002.

[6] Java Message Service Specification: http://java.sun.com/products/jms/.
[7] G. van Huizen. JMS: An Infrastructure for XML-based Business-to-Business.

 Communication. http://www.javaworld.com/javaworld/jw-02-2000/jw-02-
jmsxml.html, 2000.

[8] S. Maffeis. Introduction to the Java Message Service (JMS) Standard,
 http://www.ch-open.ch/html/ws/ws01/11_jms.html#Download.

[9] E. Freeman, S. Hupfer and K. Arnold: JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley, 1999.

[10] JavaSpaces, http://www.javaspaces.homestead.com/files/javaspaces.html.
[11] R. Shah: The skinny on Jini, http://www.javaworld.com/jw-08-1998/jw-08-jini.html.
[12] Scientific Computing. Virtual Shared Memory and the Paradise System for

Distributed Computing. Technical white paper, 1999.
[13] D. Gelernter: An Integrated Microcomputer Network for Experiments in

Distributed Programming. PhD thesis, State University of New, 1982.
[14] Wikipedia: Linda, http://en.wikipedia.org/wiki/Linda.

Fundamentals of Fundamentals of Service-Oriented Engineering 9-1

Serialization / Deserialization
In the context of SOAP and Web Services

Paul Bouché

paul.bouche@hpi.uni-potsdam.de

This paper deals with the problems of automatic serialization and deserialization in

the context of Web Services and the JAX-RPC specifications. First the general
different approaches of message and RPC orientation are presented. Secondly an
analysis of both versions of JAX-RPC is conducted. Thirdly possible solution
approaches are presented and evaluated in the conclusion. A general comparison of
message orientation and RPC orientation is carried out in the conclusion. Depending
on the requirements for a service either one needs to be taken. We suggest a varying
degree of abstraction from XML suiting the needs of the service implementation. The
conclusion is completed with a short summary of this paper’s findings and possible
future work.

Keywords: WEB SERVICES, JAVA, JAX-RPC 1.1, JAX-RPC 2.0, JAX-WS,
SOAP, WSDL, AXIS

1 Introduction
One of the motivations and design goals for SOAP [11, 12, 13] was to allow

interoperable business-2-business integration in a cost effective and standard way.
SOAP nodes communicate via HTTP and send XML documents. Web Service
implementers use programming language specific data like objects and classes.
Hence the SOAP stack has to provide a mapping from objects to XML and vice-
versa. In this paper we refer to this mapping, the implementing process respectively
as serialization (from objects to XML) and deserialization (from XML to objects). De-
/Serialization is also known as Un-/Marshalling.

We observe naming the mappings this way indicates an object centric viewpoint.
One could have also named the mapping from XML to objects as serialization. We
further observe that serialization / deserialization is not necessarily a problem of
every service oriented architecture (SOA) but only of the Web Services world.

The problems that exist with the mapping of objects to XML and vice-versa are the
focus of this paper. We will first introduce the general notions of RPC orientation and
message orientation in this context in section 2. In section 3 we will conduct an
analysis of the current specifications for Java in the context of Web Services with a
main focus on the Java API for XML-based RPC (JAX-RPC) 1.1 [5]. Section 3 has
four parts. In part one an overview of the related specification is given. In part two an
analysis of JAX-RPC is carried out including positive and negative aspects of JAX-
RPC. In part three possible solution approaches are presented and in part four the
progress that JAX-RPC 2.0 has made in resolving the found issues is investigated.

Serialization / Deserialization

9-2 Fundamentals of Service-Oriented Engineering

We conclude this paper in section 4 with comparing the two general approaches
introduced in section 2 and summarizing and evaluating our findings.

2 Preliminaries
In the context of web services and serialization / deserialization one can take two

different approaches: a message oriented one and a remote procedure call (RPC)
oriented one.

RPC orientation. RPC orientation in this context means that the main focus lies in
executing RPCs. The transport medium, the transport format and transport errors
are abstracted from. XML in this context is the transport format. Objects need to be
transported, so the underlying XML representation of these objects is viewed as
almost irrelevant and should be transparent, i.e. objects should be transported from A
to B, have the same state at B which they had at A and the XML representation will
appear neither to A nor to B. Along with that also SOAP and HTTP are just means
and should be transparent to the application. If there are errors in the underlying
transport / network structure these should be automatically covered and the RPC
application should be oblivious to these. RPCs can be carried out asynchronously
and synchronously.

Due to the fact that all XML, SOAP, SOAP stack related set-up and WSDL [14]
should be transparent a high automation is needed. Services are developed just as if
executing normal RPCs and after that all Web Service related set-up is automatically
covered, i.e. the XML schema [25] for representing objects, WSDL descriptions and
serializers and deserializers are generated automatically from the service
implementation. Along with these, configuration information for the SOAP stack is
also automatically generated.

RPC as a concept has been criticized as a bad concept [1, 2, 3] because the
things that are abstracted from should not be abstracted from in this manner. It
supplies to the developer an ideal world that does not exist. Transportation and
network errors that are likely to occur in Internet architecture should not be
automatically handled, but be propagated to the application. Especially synchronous
RPC suffers from the complete abstraction very much in the case of network lag or
data loss: due to its the blocking nature, it will lead to very long execution times.

Message orientation. Message orientation in context of Web Services means that

the focus lies in sending and receiving messages. Message formats and transport
medium are important. The interpretation of the message or the results of the
message reception are not important. The basic operation here is the sending of a
message and forgetting about it (“fire and forget” principle). In this context an RPC is
just an interpretation of a SOAP message, i.e. that the contained XML document of a
message triggers a method call at the receiving end is just a pre-agreed
interpretation and the contained XML document could be interpreted completely
different. With message orientation in the context of Web Services an XML centric
approach is taken. Hence, the first question is what are the XML data types, XML
schema respectively and of secondary nature is the question of how this XML data
can be accessed programmatically.

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-3

We will investigate what implications each of these approaches have and will
evaluate both at the end of this paper.

3 Java Web Service Technology
In this section we will give an overview of the current state of the Java Web

Service world, i.e. the specifications and technologies in conjunction with Web
Services. Afterwards, we will analyze the main specification in this context, the Java
API for XML-Based RPC Version 1.1, from a XML viewpoint and from a Java
viewpoint. Finally, we will try to show possible solutions for the problems encountered
in the analysis.

3.1 The Java Web Services World
In conjunction with realizing Web Services in Java several specifications have

been published:
• Java API for XML-Based RPC (JAX-RPC) 1.1 [5],
• Java API for XML Web Services (JAX-WS) 2.0 [6]
• Java Architecture for XML Binding (JAXB) 1.0 [7],
• Java Architecture for XML Binding (JAXB) 2.0 [10],
• Java API for XML Messaging (JAX-M) 1.1 [8] and
• Java API for XML Processing (JAX-P) 1.3 [9].

Both Versions of JAX-RPC specify how to create and execute RPCs using the
SOAP protocol along with WSDL. In version 1.1 the mapping of java types to XML
types and vice versa and all other serialization and deserialization related things are
specified. Version 2.0 refers to JAX-B 2.0 for this. JAX-RPC 2.0 extends version 1.1
in the following areas: support for SOAP 1.2, WSDL 2.0, WS-I Basic Profile 1.1 [16]
and better support for document/message1 centric usage. JAX-RPC is obviously
RPC oriented.

JAXB specifies a complete serialization and deserialization framework to/from
XML. More specifically it defines a mapping of Java classes to XML schema and vice
versa. We observe based on the fact that both versions of JAXB try to hide all XML
related things (for example SAX, DOM or any other XML parsing) and provide the
developer with just Java classes to work with it is RPC oriented.

The JAX-M specification defines an API for sending and receiving XML messages
(XML documents) based on the SOAP 1.1 with attachments specification. XML
documents are represented syntactically differing from JAXB where they are
represented semantically. It provides a Document Object Model (DOM) like interface.

JAX-P is not Web Service focused but focused on XML in general. It is included
here because SOAP documents are XML documents and hence can be processed
using this API. This API provides an abstraction layer from concrete underlying
technology implementations such as SAX, DOM, XSLT etc. It has become a standard

1 Document/literal refers to a scheme (x/y) which indicates the style of Web Service usage where the first part

indicates the encoding of the data either document (doc) or RPC (rpc) and the second the usage of the data either
encoded (enc) or literal (lit). For more information please refer to [18].

Serialization / Deserialization

9-4 Fundamentals of Service-Oriented Engineering

to use and in fact is part of the standard runtime libraries for the Java Virtual
Machine. Hence the other specifications or their respective implementations rely on
JAX-P.

JAX-RPCJAX-M

JAXB

JAX-P

SOAP

XML

SAX, DOM, etc.SOAP

Message
oriented

RPC oriented

Figure 1 Java XML Specification Overview

In Figure 1 we illustrated an overview of the mentioned specifications and their

dependencies. We also note that JAX-RPC and JAX-B are RPC oriented (in the
sense we described in the previous section) and JAX-M is message oriented.

3.2 Analysis of JAX-RPC 1.1
We noted in the previous section that JAX-RPC is PRC oriented in the sense we

described in section 2. Hence, a high level of automation needs to be offered by an
implementation of the specification. Here we will address an implementation called
AXIS version 1.4 [20]. AXIS is one of the widely used implementations of JAX-RPC
1.1. AXIS completely implements JAX-RPC 1.1. Therefore, we can infer from the
implementation AXIS 1.4 to the actual specification JAX-RPC 1.1. Another main
implementation of JAX-RPC 1.1 is Sun’s own implementation, the Web Services
Developer Pack (WSDP) [21]. We decided for AXIS due to its familiarity to the author
and its higher ease of use.

AXIS offers the high automation that is needed for RPC orientation. In the service
provider development process the service is implemented as if writing a usual
application, a WSDL document is generated (including automatically generated XML
schema for interface Java classes2), serializers and deserializers for all interface
Java classes are chosen automatically and the service is registered with the AXIS
engine. In the service consumer development process client stubs are generated
from the WSDL including automatically generated Java classes for the schema
section of the WSDL, corresponding de-/serializers are chosen automatically and the
client is implemented. The automatic process concerning the type mapping on the
provider and consumer side can be summarized as:

Provider class-files wsdl schema section consumer class-files.
The automatic decision on the type mapping, i.e. what XML type each Java type is

mapped to and vice versa and on the automatic choice of the provided de-/serializers

2 Interface Java classes are those classes that are exposed through methods in the service, i.e. the classes in

the parameter list of the methods and those being referenced (transitive closure).

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-5

has implications that we will look at in this section. This “automatic” decision is
derived from the type mapping specified in JAX-RPC 1.1 and is done exactly
according to the specification where applicable. First, we will present the positive
aspects of JAX-RPC, i.e. everything that is functioning well with JAX-RPC. Second,
we will present the negative aspects of JAX-RPC, i.e. problems that arise with this
fully automated de-/serialization system and aspects that were not covered by JAX-
RPC. This will also include some interoperability aspects.

3.2.1 Positive Aspects of JAX-RPC 1.1

To construct a fully automated de-/serialization system that covers all possible
Java class hierarchies and all possible XML type hierarchies is a non-trivial, very
hard task. As stated in [1] this problem can be called the O/X-mapping problem. It
seems to be has hard as solving the O/R-mapping problem from the domain of
relational databases. Completely solving O/R-mapping problem with only very few
uncovered scenarios has taken many years of brain and engineering work. Because
the O/X-mapping problem seems to be so hard it is worth mentioning the progress
that has been made towards solving it on the one hand and on the other how much
of the actual real life scenarios are covered by this progress.

We will look at what Java types can be successfully processed using a JAX-RPC
implementation, in our case AXIS 1.4. When we refer to “successfully processing a
type” we mean that if this types is an interface Java type (for a definition see footnote
2) there occur no problems, i.e. instances of this type are sent without information
loss, the state of the instance at the receiver is the same as at the sender and all
serialization and deserialization works without problems.

The basic components of Java classes are primitive types, namely byte, short,
int, long, float, double, boolean, char and java.lang.String where
java.lang.String is an object type already but is counted as a basic building block
for more complex types. The basic Java types are successfully processed. Thus the
corresponding XML types are also processed successfully.

Basic Java types can be combined into more complex types using arrays of such
types and creating classes that have fields of these types. Arrays of primitive types
are processed successfully. Nested arrays of primitive types (a.k.a. multi dimensional
arrays) are also processed successfully. The nesting depth is limited only by the
stack size due to the recursive calls done during the automatic type mapping phase.
Arrays of JavaBeans [22] can be processed successfully as well.

Classes that correspond to the JavaBean [22] specification at least for the purpose
as a data container, i.e. fields with corresponding getter/setter-methods and a public
parameterless constructor exists, can be processed successfully. The field’s type can
be a basic Java type, a JavaBean class, an array of a basic type or an array of a
JavaBean. Here an arbitrary nesting depth of a JavaBean referencing another Java
Bean is possible only limited by the stack size. We tested the nesting depth with
AXIS 1.4 on a system with Windows XP SP 1, 512 MB RAM, JDK 1.5.3, JVM
HotSpot (build 1.5.0_03-b07, mixed mode, sharing) and Tomcat 4.1. The result was a
maximum nesting depth of 200 that should be sufficient for most real life scenarios.

Therefore rather complex Java classes can be processed successfully. The

Serialization / Deserialization

9-6 Fundamentals of Service-Oriented Engineering

complexity that is covered should also cover most real life scenarios. This is a very
promising and positive fact about JAX-RPC 1.1. The coverage of arbitrary JavaBeans
is also an extension by AXIS 1.4 and is not covered by JAX-RPC per se. Yet there
are Java types for which it is desirable to be successfully processed, but which are
not. There are also XML types and other XML related problems that arise with JAX-
RPC 1.1. We will address both of these issues in the next section.

3.2.2 Negative aspects of JAX-RPC 1.1

This section deals with the problems that arise with JAX-RPC 1.1. There are two
approaches taken, first from a Java point of view, and second from an XML point of
view.

Problems from a Java Point of View. There exist Java types for which the

specification does not define a standard mapping to XML but which are used
frequently in real life scenarios. When these types occur as interface types, i.e. as
part of the parameter list for a given method or referenced by it, a mapping cannot be
performed automatically. These types include java.util.HashMap,
java.util.ArrayList and classes that implement the java.util.Collection
interface. For the java.util types JAX-RPC does not define a standard mapping and
they do not follow the JavaBean scheme so AXIS 1.4 cannot send them
automatically in a standardized way. Yet there exist de-/serializers for these types,
but especially java.util.HashMap has proven to be a very uninteroperable type. The
type mapping applied by AXIS 1.4 to the mentioned types produces most of the time
uninteroperable XML schema either because when serializing actual instances they
do not conform to the previous generated schema themselves (namespace
problems) or because the schema will contain references to xsd:anyType which
poses problems. The problem with processing xsd:anyType is that any XML can be
sent including types that are not part of the type section of the WSDL document (a
small help may be xsi:type attributes). The type xsd:anyType in the generated
schema is of course due to the fact that these types contain java.lang.Object in the
parameter lists of their methods. This can be helped using generics, yet those were
to part of the Java Language Specification at the time when JAX-RPC 1.1 was
created.

If processing a java.util.Calendar, the sender being in a different time zone than
the receiver and the receiver being for example a .NET service then hours are added
or subtracted unexpectedly and the result is undefined behavior. The reason may be
that the mapping for java.util.Calendar is xsd:dateTime and if the time zone
information for xsd:dateTime is omitted then according to ISO 8601 the time zone is
considered undetermined [23].

Array encoding though it works now has been a problematic issue in the past
because according to the SOAP specification there are several valid ways to encode
arrays. Yet with the creation of the WS-I Basic Profile this issue is settled because it
now defines only one interoperable way to encode arrays and all other ways are
defined as uninteroperable. Though the question remains why it was not possible to

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-7

have an interoperable array encoding from the beginning since interoperability was
one of the main goals for the SOAP specification.

A reference to one object usually incorporates a whole graph of objects
referencing each other. If there are cycles in the object graph, the serialization of it
fails because in the currently accepted doc/lit Web Service style the cycles cannot
be resolved (trying to serialize a cyclic object graph will result in a
StackOverFlowError). This was only possible with rpc/enc (which is seen as
deprecated in the Web Service community). If there are cross-references in the
object graph the cross-references are resolved using copying, but at the receiving
end the object identity is lost and the object graph is not the same as at the sending
end. The copying of objects can also create memory space issues.

If the service provider has Java classes with fields that have initial values attached
then these values are not propagated to the service consumer generated classes
because XML schema does not support initial values for elements of complex types.
Hence the consumer classes are not equivalent to the provider classes. This effect
appeared when implementing an echo function on the provider side which simply
echoes back the value it receives, yet when the consumer sends instances of these
classes with null values for fields where the provider class has initial values the
consumer receives a different object then he sent, i.e. the fields that had null values
are now initialized with the initial values from the provider side.

Please see section appendix I.1 for examples on the mentioned issues.

Problems from an XML Point of View. In the case where a JAX-RPC 1.1

implementation has to process a WSDL document that was not automatically
generated from service implementation code but manually written there arise
problems. XML types may appear that the automatic generation of XML schema for
Java classes would never generate. Hence also Java classes will be generated that
would not normally be generated and the generated XML schema in turn from those
generated Java classes may generate a different XML schema from the original one
(ignoring any annotation tags or the alike of course). So the process XML schema A

 Java class XML schema A’ may result in unequal XML schema A and A’
(defining a formal equality for XML schema instances is out of the scope of this
paper). Many of the mentioned problems in this section have been adopted from [1].
Those XML types (mainly XML Schema defined types) that appear which “normally”
wouldn’t pose the problems that we discuss here. They range from specific problems
that appear in the detail but cause irritation on higher levels to more general
problems that seem to be inherent in the approach that JAX-RPC took with SOAP.

The obvious equivalent of a Java identifier is a name in XML: an element has to
have a name, a complex type as has name, etc. The problem is that all possible Java
identifiers almost comprise a real subset of the possible XML names. Therefore a lot
of XML names may exist that cannot be expressed with Java identifiers. For example
a complex type may have a child element named name.public. This name cannot be
mapped to a Java identifier directly due to the “.” (dot) and the Java keyword public.
According to the JAX-RPC XML name mapping algorithm it will be mapped to
namePublic. Another example would be a child element named crazy-name which

Serialization / Deserialization

9-8 Fundamentals of Service-Oriented Engineering

would map to crazyName. Any name that contains Unicode characters that may not
be part of Java identifiers poses this problem. In the mapping process characters are
added to or omitted from the original name or the their case is changed. This may
result in obfuscation and the semantic of the original name may be lost. For more
examples see section appendix I.2.1

The type system of XML Schema is much richer than that of Java and there exist
schemes or concepts that have no real counterpart in Java. For example in XML
Schema new simpleType’s can be defined by restricting existing simpleType’s. This
mechanism is commonly used to define enumeration types or limited value ranged
types. JAX-RPC does not deal with this mechanism well. An example for such a type
would be defining a type of xsd:string that only holds alphanumeric characters. This
type is based on xsd:string and would carry the information that valid values
conform to the regular expression ([a-z]|[A-Z]|[0-9])* , i.e. only small letters, tall
letters and numbers in any combination are valid values. JAX-RPC maps this to a
java.lang.String and the restriction information is completely lost. The intuitive
approach for this case would have been to extend the java.lang.String in a suitable
way, yet java.lang.String cannot be extended because it is declared final. For the
full example see section appendix I.2.2 (AlphanumericString).

JAX-RPC maps the values of an enumeration type, for instance values of the
grade scale A+, A, A-, B+ etc. to Java identifiers that ideally have the same name
as the value of the enumeration. The base type of the enumeration value will be
mapped to the corresponding Java type. A Java 1.4 enumeration class will be
generated which will have the same name as the enumeration type, static fields
whose type are the generated class with identifiers that are the same as the
enumeration values and internal static fields which carry the actual enumeration
value information. Static initialization connects the right fields with the right values.
The example value of A+ cannot be mapped to a Java identifier because of the “+”
(plus) sign. The mechanism applied in this case is that all values that cannot be
mapped to a Java identifier directly will be mapped to identifiers of the scheme
valueX where X is a number from 1 to n. The above example enumeration list is
mapped to value1, value2, etc. Thus the actual information about the enumeration
value is lost. The fields valueX may carry a completely different semantic if the
underlying schema is modified (for example for extension purposes), the enumeration
values are reordered and the corresponding code is regenerated. Yet this is not
apparent at all and the resulting semantic is unclear. For the full example see section
appendix I.2.3 (GradeValue).

Namespace identifiers in XML are Uniform Resource Identifiers (URIs) [24].
Examples for uniform resource identifiers are http://www.example.org/Foo, urn:Foo,
mailTo:foo@bar.com. In a WSDL document the portType (the description of the
service in methods and their parameter types) is defined within a certain name space
and each XML type is defined within a certain namespace. Namespaces are required
to be mapped to unique package names by the JAX-RPC but an exact mapping is
not defined. AXIS 1.4 has a mapping algorithm that works well for most cases but the
problem is that not all possible URIs are mapped to valid package names. From the
example only the first and second URI map well to a package name. The third URI is

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-9

mapped to the package name .any@address_com, which is not a valid package
identifier. Hence the generated source code does not compile. The designers of JAX-
RPC seemed to only have URIs in mind which are of the form http://... or urn:. This
issue could be helped in overriding the default mapping and mapping all types to one
single package, yet this does not work if there exist types with the same name in
different namespaces. Another solution could be using annotations as per Java 1.5.

In XML schema some types are defined that can have an arbitrary length or
precision. Yet it is well known that on computers there is always a storage limit. If for
example the device communicated with is a SOAP aware smart phone or any other
mobile device this storage limit may be below the normal expectations in comparison
to a standard desktop computer. Additional to the inherent space limitations each
programming language has its limitations. If an xsd:string which maps to
java.lang.String is received that exceeds the current limitations (either by stack
size limit or by max memory size limit etc.) no processing is possible at all and
probably no error for the sender will be generated other than a timeout error. This
may as well be the case with xsd:decimal.

SOAP Faults are mapped to exceptions by JAX-RPC, yet a soap fault can contain
arbitrary instances of XML types that may or may not be part of the type section of
the corresponding WSDL document. Even if the types are known at build time the
additional information is most of the time lost at runtime.

The concept of data validation that is inherent in XML does not have any
counterpart in Java and the JAX-RPC does not provide for it at all. Not any validation
process related things are mentioned in the JAX-RPC specification. The developer is
left alone with the rather hard and tedious task of implementing validation. This is can
be especially tricky as in the example with the AlphanumericString. The behavior
that should be exposed when invalid data is received is completely left open to the
developer’s determination.

Appendix I.2 contains examples corresponding to this section.

3.3 Solution approaches to the mentioned problems
In the previous section we looked areas of JAX-RPC where there are no problems

and where problems are. In this section we want to propose some solution
approaches. These approaches are just that: approaches. Some of these may not
even be seen as a solution in the narrow sense, but rather as a workaround or
avoidance of the problems. Additional to all of the presented solutions should be
interoperability testing with at least one other SOAP stack.

3.3.1 Custom Serialization and Deserialization

One approach to the problems of fully automatic serialization and deserialization is
to include manual work into the fully automatic process, to adopt the generated
classes or to completely avoid all fully automatic de-/serialization altogether. In other
words, to customize the de-/serialization process and the applied type mapping, i.e.
to adjust the generated classes, to decide yourself on the mapping of XML to Java

Serialization / Deserialization

9-10 Fundamentals of Service-Oriented Engineering

types or vice-versa. This adjustment can include a varying level of automation. Either
one works completely manually on the raw XML and SOAP messages without any
automation or one adjusts the generated classes or de-/serializers a little bit.

We want to present here our experiences with custom serialization and
deserialization. We implemented custom de-/serializers for the types we presented
here as examples for the problems of XML to Java mapping in section 3.2.2 mainly
AlphanumericString and ComplexData. We note that this was the author's first time of
implementing serializers and deserializers. For the source code see appendix I.3.

After the required learning phase we were fully able to map the XML types to the
desired Java classes.

The AXIS components are not at all or not that well documented. That leads to a
shallow learning curve, i.e. it takes a long time to learn a small amount or make some
progress towards the goal. So, it takes a long time for the first time to fully
understand the de-/serialization system of AXIS and implement custom de-
/serializers.

The syntax of the schema for the XML type has to be hard coded into the serializer
or at least a hard coded reference to a file as to be included. The semantic of the
schema and its structure is also hard coded and not obviously visible for another
person than the code’s author. Thus the code becomes very hard to maintain
because changes of the schema will require changes in the code, yet it may not be
obvious where the change needs to take place and a small change in one place of
the schema may require changes in several places of the code.

If a semi-automatic approach is taken, i.e. client side and server side stubs are
generated along with the automatic type mapped classes by AXIS. The server side
and client side stubs need to be adjusted in order to use the custom de-/serializers.
There need to be adjustments in several places and they may vary depending upon
the XML schema from the type section of the WSDL. It is very badly maintainable to
adjust generated code because every time the code is regenerated the manual
adjustments need to be redone. To automate this process (the changing of the
generated code) a diff to the original has to be maintained and full automation may
not be possible.

Yet there exists a hierarchical structure in the de-/serialization framework that
increases the maintainability of the de-/serializer code. Since XML is a tree structure
for each sub tree there exists a de-/serializer. Each simpleType has a de-/serializer
and each complexType has a de-/serializer. If one complexType references other
complexTypes in its child elements the corresponding de-/serializer will also just
reference those de-/serializers and refer the de-/serialization of the contents for this
element to this referenced de-/serializer. Actually the de-/serialization is referred back
to a SerializationContext or DeserializationContext, which will determine the right
de-/serializer for this type and invoke it.

All custom de-/serializers have to be registered with the AXIS framework. There is
a different mechanism for this on the client and server side. This could also be done
programmatically, but this is as well poorly documented.

For serialization AXIS has an own API of startElement(), writeString() and
endElement() to write the needed XML data into the SOAP document. For

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-11

deserialization AXIS uses the SAX API. Yet in the deserialization phase there is also
a DOM object of the SOAP body available, but its contents are undefined and vary
from time to time. This led to much confusion in implementing the deserializer.

Validation for the XML types is hard to implement and can only be done on a per
element, per attribute basis. There exist no predefined structures in helping with this
task and to signal to a referring deserializer that the value for an element is invalid is
almost not possible because AXIS determines at runtime when and what
deserializers are called.

The implementation of doc/lit or rpc/enc de-/serializers does not vary much
because AXIS provides full own functionality of resolving the HREF references that are
used in rpc/enc. Yet to resolve this automatically leads to a rather complex reflection
and call back structure, i.e. the time when a deserializer is invoked varies and the
time when the value of an element is known and ready for processing varies as well.

3.3.2 Pure Development Approach

In the Web Service community there has been long discussions about what
development process should be taken when developing Web Services in order to
avoid most of the problems and pit falls with this technology. There had been
discussion on several mailing lists between implementers of SOAP stacks and users
of those. The result has been a best practice approach that here we call “Pure
Development Approach”. The word “pure” in the name should not be taken too
literally. This is to indicate with a little bit of irony that of course this approach has its
price and does not avoid all problems, but helps to avoid some (so in this sense it is
not pure, for then it would guarantee problem freedom, where of course no such
thing exists).

This approach is also known as contract first design. In this perspective the WSDL
document for a service is seen as a contract with potential business partners as
service consumers. Thus the design of the contract should be the beginning and the
rest should follow afterwards. The main part of the contract is the data types and the
methods to be invokable (the functionality offered). Hence in effect this approach is
the same as contract first design. The development approach is depicted in Figure 2.

Serialization / Deserialization

9-12 Fundamentals of Service-Oriented Engineering

S
er

vi
ce

 P
ro

vi
de

r

Create
XML data

types

Create
WSDL file

Write prog. lang. interface
with placeholder names

Use
?2wsdl

generator

Stub
generation

Service
implemen-

tation

Deploy
service

S
er

vi
ce

 R
eq

ue
st

or

Query for
WSDL

XML
Sche
ma

WSDL Impl.
stub

Ser-
vice
Impl.

WSDL
Stub

Submit
WSDL

No Auto Generation! (at
least of schema section)

Figure 2 Pure Development Approach

We used the Business Process Modeling Notation (BPMN) [28] because it allows

us to show the development steps (activities) and the data objects that result from
these. This development approach is XML centric, i.e. first the XML data types will be
designed and lastly the actual implementation will be done.

Two process pools are shown: the service provider and the service consumer. The
service consumer is actually not included in the development process of a service,
yet it is shown here to make a crucial point clear. The process starts at the service
provider. The blue marked activities show the main process flow. Each activity except
the “Deploy Service” activity results in a data object. First, the XML data types are
designed. This results in an XML schema. Secondly the WSDL document is created
having the just created XML schema in its type section. Alternatively additionally
between the XML schema creation and the WSDL document writing, a WSDL
document stub can be created using automation. This step should be used with
caution and only placeholder names should be used in the interface. This alternative
additional step can introduce interoperability problems and include the XML name
mapping problems, yet will ease WSDL document creation a lot.

Thirdly the service stub is generated automatically from the WSDL. This step
ensures that potential problems with the WSDL that later will be given to the service

 3 JAVA WEB SERVICE TECHNOLOGY

Fundamentals of Service-Oriented Engineering 9-13

consumer appear and can be dealt with accordingly (i.e. custom de-/serialization may
have to be applied and the type mapping may have to be adjusted). Thus a high level
of interoperability (one of the main reasons for SOAP and Web Services) is ensured.
A step not shown in the above diagram is to go back and adjust the created WSDL to
help solve the problems that appear with stub creation. That introduces a cycle in the
development process and thus reflects reality better.

Using the generated service stubs the service is implemented. In AXIS this
amounts to implementing a generated interface class. This step should not mean to
edit generated code. That should be avoided because regeneration will delete the
modifications and thus potentially the implementation. Next the service
implementation is deployed along with the additional generated classes and possible
custom de-/serializers. Now the service is ready to be consumed.

The service consumer starts its development process with querying for service
provider’s WSDL document. The service provider does not automatically generate
the WSDL for the service implementation, but provides the previously manually
written WSDL to the service consumer as depicted in the above diagram. This is a
crucial point because WSDL auto-generation from service implementation introduces
a lot of the problems that we discussed in this paper. It has to be ensured that the
SOAP stack does not automatically generate the WSDL but in fact provides the
manually written WSDL. With AXIS this is ensured using the tag
<wsdlFile>/path/to/wsdl/file</wsdlFile> in the WSDD-file for the service
(deployment descriptor).

Hence the pure development approach tries to avoid many of the problems of
automatic type mapping or at least makes them apparent. A high level of
interoperability is provided, but the price for this is possible longer development time.
It completely avoids the problems we described in section 3.2.2 from a Java point of
view.

3.3.3 Using a different data binding framework

The core of the problems lies in the data binding framework. The data binding
framework will map the XML and Java and defines what types to map to what types.
There exist several other XML data binding frameworks for Java. We want to mention
XMLBeans [29] and Castor [4] here. JAX-RPC and AXIS allow plugging in a
completely different data binding mechanism and thus some of the existing problems
may be solved. The effort to seamlessly integrate other data binding frameworks in
AXIS is not null but not overly much either. For Castor there exists already a pair of
de-/serializers that completely wraps all de-/serialization in AXIS.

XMLBeans and Castor are a lot more XML centric than the JAX-RPC data binding
framework and thus most of the problems will be resolved and manually written XML
schema are processed with less problems.

Testing exactly which of the mentioned problems can be solved this way remains
future work and consequently leads to a set of criteria with which to measure the
quality and performance of XML data binding frameworks in the context of Web
Services.

We have done some exemplary testing with Castor and were able to map the

Serialization / Deserialization

9-14 Fundamentals of Service-Oriented Engineering

example XML types AlphanumericString and GradeValue with fewer problems. The
former is mapped to a class with the same name, the regular pattern and a validation
check is included in the generated class. The latter is mapped much in the same way
as with JAX-RPC (the name problem remains) but the actual enumeration values are
included in a JavaDoc comment for each of the valueX. This is thus a medium
improvement. Still a better name mapping would be desirable, for example the value
A+ could be mapped to value A_plus.

3.3.4 Avoiding problematic Java types

Avoiding the problematic Java types as interface types is rather a work-around
than a problem solution, but may be seen as best practice to ensure higher
interoperability. The types that should be avoided as interface types include basically
all types from the java.util package and java.lang.Object. Preferably only basic
types, arrays and JavaBeans built with those should be used as interface types.

3.4 Evaluation of JAX-WS 2.0 (formerly JAX-RPC 2.0)
In this section we want to investigate how much progress JAX-WS 2.0 made

towards solving the problems of JAX-RPC 1.1 we discussed here.
JAX-WS 2.0 refers all type mapping to JAXB 2.0. Hence JAXB 2.0 has to be

investigated as well. We will shortly present an analysis of the progress made from
both the Java and XML point of view by investigating for each of the issues weather
or not it was resolved. We will use the categories resolved, partly / possibly resolved,
poorly resolved and unresolved. Where the former two constitute a positive tendency
and the latter two a negative tendency.

Java Point of View.
• java.util.HashMap – resolved, Generics are used when in place, a standard mapping

is defined, the mapping is customizable through annotations; interoperability testing
remains future work

• java.util.ArrayList – see java.util.HashMap
• java.util.Collection – see java.util.HashMap
• java.util.Calendar – to be tested, remains future work, time zone problem not

specifically addressed
• object graph, cycles – poorly resolved, only resolvable by reference, customizable by

annotation, results in an extra element of type xsd:ID, developer has to ensure referential
integrity, introduces interoperability issues, to be tested, remains future work

• object graph, cross-references – poorly resolved through annotations, may introduce
interoperability issues because of extra xsd:ID used in the semantics of a reference, to
be tested, remains future work

• classes with initial values – to be tested, not explicitly mentioned, remains future work
XML Point of View.

• name mapping problem (Name.Public, null) – poorly resolved, mapped by the name
mapping algorithm; omission, addition of characters; name collisions resolvable by a
customized binding (configuration of JAXB engine)

• mapping of enumeration types (AlphanumericString) – resolved, mapped to
java.lang.String with attributes enforcing the pattern, type checking is done at
construction or serialization

 4 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 9-15

• mapping of enumeration types (GradeValue) – party resolved, mapped to an Enum Java
type with values of those of the original, constructing valid identifiers by leaving out or
adding characters, if a collision of names occurs (in this case A+ A and A A) one is
mapped to valueX, actual value from enumeration xml type included in annotations

• namespace identifier (URI) mapping (maito:any@domain.com) – unresolved, JAXB 2.0
actually contains the exact same text that JAXB 1.0 contains on this issue (!)

• soap faults – unresolved, seems rather the same procedure as in v1.1, still mapped to
exceptions, mechanism only underwent minor modifications

• xml type instance validation support – party resolved, for some instances there is validation
logic included

Thus the progress is that out of 13 issues are 4 resolved, 2 possibly/partly
resolved, 3 poorly resolved and 2 unresolved. Two remain to be future work
(untested). Hence, 6 issues have been resolved or signification progress towards a
resolution has been made. Yet 5 issues are (almost) unresolved. Two candidates for
whom we speculate potentially unresolved issues remain. The issue of
java.lang.HashMap has to undergo interoperability testing to finally declare it
“resolved” which remains future work.

As result a medium level of progress has been made.

4 Conclusion and Outlook
In this section we want to conclude on statements in this paper, present possible

future work and give on outlook concerning related solution approaches. First we will
compare message orientation and RPC orientation. Second we will formulate our
concluding statements.

4.1 Comparison of message orientation and RPC orientation
In order to compare both approaches we have formed of list of criteria and

compared both approaches with these. The comparison is shown in Table 1.

Service provider Message orientation RPC orientation
XML Hands on usage Almost no contact
Ease of Use Hard; complex

A lot of manual work
Easy
A lot of automation

Type Mapping Manually Automatic
Interoperability (Almost) Guaranteed Complex to ensure
Transport mode Inherently asynch. Synch., asynch. higher complexity
Transport layer Mild abstraction Full abstraction
Time-to-market Long Short

Table 1 Comparison of message orientation and RPC orientation

This list of criteria is of course just a selection of relevant criteria and could be

carried on. We selected those most relevant to us and a more in-depth comparison
remains future work.

Serialization / Deserialization

9-16 Fundamentals of Service-Oriented Engineering

The comparison has been done from a service provider point of view. In order to
safe space we will refer to RPC orientation as RPC and message orientation as
MSG. The developer has almost no contact with XML in RPC and will have to deal
with a lot of XML in MSG. Creating good XML schema and WSDL documents
manually and writing custom de-/serializers is a hard task and much more complex
than using the full automation offered with RPC.

In MSG the type mapping has to be decided manually but offers a lot higher
flexibility than with RPC. As we have shown, in RPC the type mapping is flawed as
per JAX-RPC, yet demands a lot less complexity than with MSG. Thus the
interoperability in MSG is almost guaranteed because the messages are constructed
manually and all XML constructs can be processed whereas in RPC interoperability
is a lot more complex to ensure and may not be fully achieved.

Asynchronous communication is rather complex with RPC, but inherent in MSG
due to the transport layer abstraction and supported transport modes.

Resulting from the previous properties for each of the approaches is the time-to-
market for a service provider. We mean with time-to-market the time it takes for a
potential service provider from the initial decision to offer a service until a functional
implementation. In MSG the time-to-market is rather longer than in RPC due to the
more complex tasks of manual work involved.

It seems inappropriate to us to evaluate based on this comparison one approach
per se better than other. Rather it depends on the requirements and constrains on
the service to be implemented what approach should be taken. If a fast
implementation is needed where interoperability as a low priority clearly RPC
orientation should be taken, yet if later on interoperability becomes an issue the price
paid to provide better interoperability will be higher than with message orientation
(from a cumulative point of view). Before taking one orientation or the other a well
reasoned decision should be taken and all requirements should be taken into
account.

A mix of both worlds, i.e. a semi message oriented approach with some
automation or a semi RPC oriented approach with customization might be the more
ideal solution if that is possible with the SOAP stack at hand.

4.2 Concluding statements
JAX-RPC and JAXB are RPC oriented. From the investigation into the Java Web

Service related specification it seems that into message orientation has not been put
as much development effort as into RPC orientation. Thus there seems to be a bias
towards RPC orientation where such a bias is not justified as we tried to show in the
previous section (4.1).

JAX-M provides a syntactic mapping of XML/Java and JAXB a semantic one.
Rather complex Java classes (JavaBeans with some restrictions) can be

processed successfully with JAX-RPC. The problem lies in the detail and in receiving
manually written WSDL / XML Schema with XML types which JAX-RPC would never
generate. Several Java classes cannot be processed without failure. The semantic of
some Java classes simply cannot be expressed well in XML or not at all. The tree

 4 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 9-17

structure of XML is a sub set of the possible objects graphs of Java. Valid values of
XML schema types and validation have no counter part as a concept in Java and are
not supported natively.

Hence, in both worlds concepts exist that have no counterpart in the other or
cannot be expressed in the other. Therefore some authors call the general O/X-
mapping problem ill posed and fundamentally flawed as among others in [1]. It has
also been stated that there is an “impedance mismatch” between Java and XML to
express the same.

We looked at the problems that exist from a Java and XML point of view with JAX-
RPC 1.1. There were several. The improvements from JAX-RPC 1.1 to JAX-RPC 2.0
are medium and some problems remained the same. As of the date of this writing we
could not finish the needed testing to declare some issues resolved or unresolved.

We posed solution approaches. Custom de-/serialization costs more time, yet will
ensure higher interoperability and may be unavoidable if certain XML constructs
and/or Java classes need / want to be used. The "Pure Development Approach" was
presented which is a best-practice recommendation of the Web Service community
and has trade-offs as the other solution approaches. It will help avoid problems and /
or make the developer aware of problems. A different data binding framework can be
used to solve some mapping problems and the problematic Java types can be
avoided completely.

All these solutions leave out parts of JAX-RPC in one way or the other. It is
obvious that either there needs to be much more work put into it to archive seamless
fully automated RPC orientation or RPC orientation in decentralized environments
such as the Internet with the O/X-mapping problem is in deed an inherently flawed
approach and high interoperability cannot be achieved this way.

A good SOAP stack should offer the developer varying degrees of XML
abstraction from full message orientation to full RPC orientation. JAX-RPC 2.0 has
better support for message orientation than JAX-RPC 1.1 and offers some varying
degree of abstraction from XML to choose from.

Future work. Generalizing the found problems to quality criteria for XML data
binding frameworks for Web Services and evaluating with these the major SOAP
stacks: .NET 2.0, WSDP, AXIS 2.0 etc. is possible future work.

Outlook. To solve the O/X-mapping problem generally and fully the approach to
include the XML type system natively into a programming language as been taken.
An example for this is an extension to C# called Comega [30, 31]. It will have to be
observed how this approach develops as it matures and if it will be adopted in the
mainstream technology. It seems promising nevertheless.

Another approach taken is XML Language (XL) [32] that is a completely new
programming language just designed for the domain of Web Services and object-
relational-data-mapping (O/R-mapping). The type system of XL is that of XML
Schema. It allows logic to be written in XL and no “classic” programming language
like Java or C# is needed. If XML is the type system there neither exist an impedance
mismatch nor an O/X mapping problem. Yet, if a connection between XL and Java or
C# has to be performed, the same impedance mismatch will arise at the interface
between XL and Java or C#. It will also have to be seen how this research project
develops in the future.

Serialization / Deserialization

9-18 Fundamentals of Service-Oriented Engineering

References
[1] S. Loughran, E. Smith, Rethinking the Java SOAP Stack, HP Laboratories Bristol,

University of Edinburgh, IEEE ICWS 2005, July 2005
[2] Richard Monson-Haefel, JAX-RPC is Bad, Bad, Bad!, personal blog, June, 2006,

http://rmh.blogs.com/weblog/2005/06/jaxrpc_is_bad_b.html
[3] Steve Vinoski, RPC Under Fire, IEEE Internet Computing, vol. 09, no. 5, pp. 93-

95, Sept/Oct, 2005
[4] Castor, An Open Source Data Binding Framework for Java, Werner Guttmann,

Keith Visco, Ralf Joachim, et. al., Castor, ExoLab Project, Intalio Inc., Version
1.0.2, Aug 2006, see http://www.castor.org/

[5] JSR-101 Expert Group, Java API for XML-based RPC, Version 1.1, Final, Sun
Microsystems, October 14th 2003

[6] Sun Community, Java API XML Web Services, Version 2.0, Proposed Final Draft,
Sun Microsystems, October 7th 2005

[7] Sun Community, Java Architecture for XML Binding, Version 1.0, Final, Sun
Microsystems, January 8th 2003

[8] Sun Community, Java API for XML Messaging, Version 1.1, Final, Sun
Microsystems, June 11th 2002

[9] Sun Community, Java API for XML Processing, Version 1.3, Final, Sun
Microsystems, September 1st 2004

[10] Sun Comminity, Java Architecture for XML Binding, Version 2.0, Final, Sun
Microsystems, April 19th 2006

[11] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman et. al., Simple
Object Access Protocol (SOAP) 1.1, Status: Note, W3C, May 2000, see
http://www.w3.org/TR/SOAP/

[12] Martin Gudgin, Marc Hadley, Noah Mendelsohn et. al., SOAP Version 1.2 Part 1:
Messaging Framework, Status: Recommendation, W3C, June 2003, see
http://www.w3.org/TR/2003/REC-soap12-part1-20030624

[13] Martin Gudgin, Marc Hadley, Noah Mendelsohn et. al., SOAP Version 1.2 Part 2:
Adjuncts, Status: Recommendation, W3C, June 2003, see
http://www.w3.org/TR/2003/REC-soap12-part2-20030624

[14] Erik Christensen, Francisco Curbera, Greg Meredith et. al., Web Services
Description Language (WSDL) 1.1, Status: Note, W3C, March 2001, see
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[15] Keith Ballinger, David Ehnebuske, Martin Gudgin et. al., Basic Profile Version 1.0,
Final Material, WS-I [17], April 2004, see http://www.ws-i.org/Profiles/BasicProfile-
1.0-2004-04-16.html

[16] Keith Ballinger, David Ehnebuske, Christopher Ferris et. al., Basic Profile Version
1.1, Final Material, WS-I [17], April 2006, see http://www.ws-
i.org/Profiles/BasicProfile-1.1.html

[17] Web Services Interoperability Organization (WS-I), Community of SAP AG, BEA
Systems, Fujitsu, Helett-Packard, Sun Microsystems, IBM, Intel, Microsoft, Oracle
and webMethods, see http://www.ws-i.org

 4 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 9-19

[18] Martin Grund, Service communication and discovery, Service Oriented
Computing Seminar, Hasso-Plattner-Institute, unpublished, Mai 2006

[19] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, et. al., Document Object
Model (DOM) Level 3 Core Specification, Status : Recommendation, W3C, April
2004, see http://www.w3.org/TR/DOM-Level-3-Core/

[20] Andras Avar, David Chappell, Glen Daniels, et. al., Apache eXtensible Interaction
System – AXIS, Version 1.4 Final, The Apache Software Foundation, April 2006,
see http://ws.apache.org/axis/

[21] Sun Mircosystems, Java Web Services Developer Pack, various versions, Sun
Microsystems Inc., 2005 – 2006, see http://java.sun.com/webservices/jwsdp/

[22] Graham Hamilton, Tom Ball, Jeff Bonar, et. al., Java Beans™, Version 1.01,
Final Version, Sun Microsystems Inc., August 1997, see
http://java.sun.com/beans/

[23] Eric van der Vlist, RELAX NG, Part II, Ch. 17, Element Reference, O'Reilly,
December 2003, ISBN 0-596-00421-4, see
http://books.xmlschemata.org/relaxng/relax-CHP-17.html

[24] T. Berners-Lee, R. Fielding, L. Masinter, Uniform Resource Identifier (URI):
Generic Syntax, Request for Comment Document No. 3986, Internet Engineering
Task Force, The Internet Society, January 2005, see
http://www.ietf.org/rfc/rfc3986.txt

[25] Priscilla Walmsley, David C. Fallside, XML Schema Part 0: Primer Second
Edition, Status : Recommendation, W3C, October 2004, see
http://www.w3.org/TR/xmlschema-0/

[26] Noah Mendelsohn, Henry S. Thompson, David Beech, et. al., XML Schema Part
1: Structures Second Edition, Status : Recommendation, W3C, October 2004, see
http://www.w3.org/TR/xmlschema-1/

[27] Ashok Malhotra, Paul V. Biron, XML Schema Part 2: Datatypes Second Edition,
Status: Recommendation, W3C, October 2004, see
http://www.w3.org/TR/xmlschema-1/

[28] S. White (Editor), et. al., Business Process Modeling Notation, Business Process
Management Initiative & Object Management Group (OMG), OMG Final Adopted,
Version 1.0, Feb 2006, see http://www.omg.org/cgi-bin/apps/doc?dtc/06-02-
01.pdf

[29] BEA Systems, David Blau, Apache Software Foundation, XMLBeans, Apache
Software Foundation, Version 2.2.0 and 1.0.4, June 2006, see
http://xmlbeans.apache.org/

[30] Gavin Bierman, Erik Meijer, Wolfram Schulte, The essence of data access in Cω,
In: Andrew Black, Editor: ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 2005, Proceedings. Lecture Notes in
Computer Science 3586, Springer, 2005. pp. 287-311, see
http://research.microsoft.com/Users/gmb/Papers/ecoop-corrected.pdf

[31] Erik Meijer, Wolfram Schulte and Gavin Bierman, Unifying Tables, Objects and
Documents, updated version to appear, In the proceedings of DP-COOL 2003,
year 2003, see

Serialization / Deserialization

9-20 Fundamentals of Service-Oriented Engineering

http://research.microsoft.com/users/schulte/Papers/UnifyingTablesObjectsAndDo
cuments(DPCOOL2003).pdf

[32] Daniela Florescu, Donald Kossmann, An XML Programming Language for Web
Service Specification and Composition, IEEE Data Engineering Bulletin, June
2001, Vol. 24 No. 2, pages 48-56, see http://xl.inf.ethz.ch/publ/debull01.pdf

Hyperlinks last visited on August 11th 2006

 4 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 9-21

Appendix I

I.1 Examples Java Perspective (corresponding to section 3.2.2)
Processing the following class yields the following XML schema snippet

public class ComplexData {
 public HashMap<String, Integer> mapping;
 public ArrayList<String> identityList;
}

<complexType name="ComplexData">
 <sequence>
 <element name="mapping" nillable="true" type="apachesoap:Map"/>
 <element name="identityList" type="?" />

<!-- the question mark indicates that the XML type for ArrayList is not generated at all,
i.e. the generated schema is invalid -->

 </sequence>
</complexType>

<complexType name="Map">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item" type="apachesoap:mapItem"/>
 </sequence>
</complexType>
<complexType name="mapItem">
 <sequence>
 <element name="key" nillable="true" type="xsd:anyType"/>
 <element name="value" nillable="true" type="xsd:anyType"/>
 </sequence>
</complexType>

Processing a java.util.Calendar through an echoCalendar method:

public Calendar echoCalendar(Calendar date) {
 return date;
}

creates an object at the consumer different from the one that was sent by the
consumer:

I sent :
java.util.GregorianCalendar[time=1155305991038,areFieldsSet=true,areAllFieldsSet=true,lenient=
true,zone=sun.util.calendar.ZONEINFO[ID="ETC/GMT+10",offset=-
36000000,dstSavings=0,useDaylight=false,transitions=0,lastRule=null],firstDayOfWeek=2,minimalD
aysInFirstWeek=4,ERA=1,YEAR=2006,MONTH=7,WEEK_OF_YEAR=32,WEEK_OF_MONTH=2,DAY_OF_MONTH=11,DAY_O
F_YEAR=223,DAY_OF_WEEK=6,DAY_OF_WEEK_IN_MONTH=2,AM_PM=0,HOUR=4,HOUR_OF_DAY=4,MINUTE=19,SECOND=
51,MILLISECOND=38,ZONE_OFFSET=-36000000,DST_OFFSET=0]

I got:
java.util.GregorianCalendar[time=1155305991038,areFieldsSet=true,areAllFieldsSet=true,lenient=
true,zone=sun.util.calendar.ZoneInfo[id="GMT",offset=0,dstSavings=0,useDaylight=false,transiti
ons=0,lastRule=null],firstDayOfWeek=2,minimalDaysInFirstWeek=4,ERA=1,YEAR=2006,MONTH=7,WEEK_OF
_YEAR=32,WEEK_OF_MONTH=2,DAY_OF_MONTH=11,DAY_OF_YEAR=223,DAY_OF_WEEK=6,DAY_OF_WEEK_IN_MONTH=2,
AM_PM=1,HOUR=2,HOUR_OF_DAY=14,MINUTE=19,SECOND=51,MILLISECOND=38,ZONE_OFFSET=0,DST_OFFSET=0]

One main difference is highlighted in red.

the logic applied here seems to always send in UTC time zone:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>

Serialization / Deserialization

9-22 Fundamentals of Service-Oriented Engineering

 <echoCalendar xmlns="http://soc.hpi.org">
 <date xsi:type="xsd:dateTime">2006-08-11T14:19:51.038Z</date>
 </echoCalendar>
 </soapenv:Body>
</soapenv:Envelope>

When processing the following class through the .class wsdl .class chain the
follwoing class results
public class Nested0 {
 public String nestedId0 = "Nested0";
 public Nested1 nextRef;
}

public class Nested0 implements java.io.Serializable {
 private java.lang.String nestedId0;
 private org.hpi.socgen.Nested1 nextRef;

 public Nested0() {}
 // getters / setters and other constructors left out
}

the initial value for nestedId0 is lost and sending of a Nested0 object with the value
null for field nestedId0 to a simple echo-function will result in a different object
where the initial value Nested0 from the provider is set

I.2 Examples XML Perspective (corresponding to section 3.2.2)

I.2.1 XML Name problem
The following XML type will be mapped to the following Java type:
<complexType name="Problematic.Name.public">
 <sequence>
 <element name="id" type="xsd:string"/>
 <element name="crazy-name" type="xsd:string"/>
 </sequence>
</complexType>

public class ProblematicNamePublic {
 private java.lang.String id;
 private java.lang.String crazyName;
}

Note that the “.” (dots) in the name of the complexType are left out, the case is
changed and the “-“ (dash) in crazy-name is left out (case changed also).

I.2.2 XML type restriction – loss of information
For the following XML type there occurs loss of information.

<simpleType name="AlphanumericString">
 <restriction base="string">
 <pattern value="([a-z]|[A-Z]|[0-9])*" />
 </restriction>
</simpleType>

This type is mapped to a java.lang.String without any additional information on the
regular pattern. This can lead to unforeseen invalid value errors on either client or
server side.

I.2.3 XML enumeration type – enumeration value to Java identifier mapping
problem

 4 CONCLUSION AND OUTLOOK

Fundamentals of Service-Oriented Engineering 9-23

The following XML enumeration type will result in the following generated Java code.

<simpleType name="GradeValue">
 <restriction base="string">
 <enumeration value="A" /> <enumeration value="A-" />
 <enumeration value="B+" /> <enumeration value="B" />
 <enumeration value="B-" /> <enumeration value="C+" />
 <enumeration value="C" /> <enumeration value="C-" />
 <enumeration value="D" />
 </restriction>
 </simpleType>

... will map to...

public class GradeValue implements java.io.Serializable {
 private java.lang.String _value_;
 private static java.util.HashMap _table_ = new java.util.HashMap();

 // Constructor
 protected GradeValue(java.lang.String value) {
 value = value;
 table.put(_value_,this);
 }

 public static final java.lang.String _value1 = "A";
 public static final java.lang.String _value2 = "A-";
 public static final java.lang.String _value3 = "B+";
 public static final java.lang.String _value4 = "B";
 public static final java.lang.String _value5 = "B-";
 public static final java.lang.String _value6 = "C+";
 public static final java.lang.String _value7 = "C";
 public static final java.lang.String _value8 = "C-";
 public static final java.lang.String _value9 = "D";

 public static final GradeValue value1 = new GradeValue(_value1);
 public static final GradeValue value2 = new GradeValue(_value2);
 public static final GradeValue value3 = new GradeValue(_value3);
 public static final GradeValue value4 = new GradeValue(_value4);
 public static final GradeValue value5 = new GradeValue(_value5);
 public static final GradeValue value6 = new GradeValue(_value6);
 public static final GradeValue value7 = new GradeValue(_value7);
 public static final GradeValue value8 = new GradeValue(_value8);
 public static final GradeValue value9 = new GradeValue(_value9);

 public java.lang.String getValue() { return _value_;}

 public static GradeValue fromValue(java.lang.String value)
 throws java.lang.IllegalArgumentException {
 GradeValue enumeration = (GradeValue)
 table.get(value);
 if (enumeration==null) throw new java.lang.IllegalArgumentException();
 return enumeration;
 }

 public static GradeValue fromString(java.lang.String value)
 throws java.lang.IllegalArgumentException {
 return fromValue(value);
 }

 public boolean equals(java.lang.Object obj) {return (obj == this);}

 public int hashCode() { return toString().hashCode();}

 public java.lang.String toString() { return _value_;}

 public java.lang.Object readResolve() throws java.io.ObjectStreamException {

return fromValue(_value_);
 }

 // AXIS specific code cut out
}

Serialization / Deserialization

9-24 Fundamentals of Service-Oriented Engineering

The problem here is that for the developer the static fields value1, ..., value9 are
usable instead of the desired A+, ..., D . The usage of an enumeration in Java is that
the identifier carries information about the semantic behind the enumeration value,
yet in this case that was not accomplished. Additionally if reorderingof the values in
the underlying schema occurs and the code is regenerated the values carry a
different semantic than before, yet this is very unobvious to the developer.

I.2.4 Combined example
We have combined all the previous examples into one complexType mainly for
demonstration purposes.

<complexType name="MyComplexType">
 <sequence>
 <element name="alphanumericStringVal" type="soc:AlphanumericString"/>
 <element name="gradeValue" type="soc:GradeValue"/>
 <element name="problematicNamepublic" type="soc:Problematic.Name.public"/>
 <element name="null" type="xsd:int"/>
 </sequence>
</complexType>
</schema>

public class MyComplexType {
 private String alphanumericStringVal;
 private GradeValue gradeValue;
 private ProblematicNamePublic problematicNamePublic;
 private int _null;

 // getters / setters cut out
}

This is to show the following. The XML type AlphanumericString is mapped to
java.lang.String with information loss. The mapping of GradeValue has been
discussed. In mapping the element name null and the complexType name
Problematic.Name.public character omission, addition and case change occur which
may lead to information loss in the name.

I.3 Source code for custom de-/serializers
We mapped the XML type AlphanumericString to class AlphanumericString with a
field to store the pattern, a field to store the actual value and a constructor that
validates possible values against the stored pattern. Also a method was added to
start the validation process. The class was designed upon the knowledge of intended
meaning of the corresponding schema.

Technische Berichte des Hasso-Plattner-Institut

Band ISBN Titel Autoren / Redaktion

1 3-937786-37-6
Auf dem Weg zu einem
Softwareingenieurwesen

Prof. Dr. Ing. S. Wendt

2 3-935024-98-3 Conceptual Architecture Pattern Bernhard Gröne, Frank Keller

3 3-937786-28-7 Grid-Computing
Dipl.-Inf. Peter Tröger; Sabine
Wagner

4 3-937786-10-4
JAVA Language Conversion Assitant An
Analysis

Stefan Richter, Stefan Henze,
Eiko Büttner, Steffen Bach,
Andreas Polze

5 9-937786-14-7 The Apache Modeling Project

Bernhard Gröne, Andreas
Knöpfel, Rudolf Kugel und Oliver
Schmidt

6 3-937786-54-6

Konzepte der Softwarevisualisierung für
komplexe, objektorientierte
Softwaresysteme

Prof. Dr. Jürgen Döllner,
Johannes Bohnet

7 3-937786-56-2
Visualizing Design and Spatial Assembly
of Interactive CSG

Prof. Dr. Jürgen Döllner, Florian
Kirsch, Marc Nienhaus

8 3-937786-72-4
Resourtcenpartitionierung für Grid-
Systeme

Prof. Dr. A. Polze Matthias
Lendholt, Peter Tröger

9 3-937786-73-2
Sichere Ausführung nich
vertrauenswürdiger Programme

Prof. Dr. A. Polze Johannes
Nicolai, Peter Tröger

10 3-937786-78-3 Survey on Service Composition
Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

11 3-937786-81-3 Requirements for Service Cinoisutuib
Prof. Dr. M. Weske Dominik
Kuropka Harald Meyer

12

3-937786-89-9 /
978-3-937786-
89-6

An e-Librarian Service - Natural Anguage
Interface for an Efficient Semantic Search
within Multimedia Resources Serge Linckels, Christoph Meinel

13

3-939469-13-0 /
978-3-939469-
13-1

A Virtual Machine Architecture for
Creating IT-Security Labs

Ji Hu, Dirk Cordel, Christoph
Meinel

14

3-939469-23-8 /
978-3-939469-
23-0

Aspektorientierte Programmierung –
Überblick über Techniken und Werkzeuge

Janin Jeske, Bastian Brehmer, Falko
Menge, Stefan Hüttenrauch, Christian
Adam, Benjamin Schüler, Wolfgang
Schult, Andreas Rasche, Andreas
Polze

15

3-939469-34-3 /
978-3-939469-
34-6

Concepts and Technology of SAP Web
Application Server and Service Oriented
Architecture Products

Peter Tabeling, Bernhard Gröne,
Konrad Hübner

ISBN 3-939469-35-1
ISBN 978-3-939469-35-3
ISSN 1613-5652

	_vorwort.pdf
	_inhalt.pdf
	_empty.pdf
	01_Definition_StefanHuettenrauch.pdf
	02_ServiceDescription_UweKylau.pdf
	03_ServiceCommunicationAndDiscovery_MartinGrund.pdf
	04_Jini_TobiasQueck.pdf
	05_ServiceComposition_AnnaPloskonos.pdf
	06_SemanticWebServices_TorbenSchreiter.pdf
	07_ESB_MartinBreest.pdf
	08_JMSJavaSpaces_SoerenHaubrock.pdf
	09_SerializationDeserialization_PaulBoucher.pdf
	Begleitschein.pdf
	 Begleitschein für „Technische Berichte des HPIs“

	UmschlagImp.pdf
	Fundamentals of Service-Oriented Engineering
	Potsdam 2006
	 Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

	Technische Berichte Liste.pdf
	Technische Berichte des Hasso-Plattner-Institut

