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Abstract 

We present new strongly polynomial algorithms for special cases of convex separable 
quadratic minimization over submodular constraints. The main results are: an O(NM log (N2 /M) )  
algorithm for the problem Network defined on a network on M arcs and N nodes; an O(n log n) 
algorithm for the tree problem on n variables; an O(n log n) algorithm for the Nested problem, 
and a linear time algorithm for the Generalized Upper Bound problem. These algorithms are the 
best known so rar for these problems. The status of the general problem and open questions are 
presented as weil. 

Keywords: Quadratic programming; Submodular constraints; Kuhn-Tucker conditions; Lexicographically 
optimal flow; Parametric maximum flow 

1. Introduction 

In this paper we investigate strongly polynomial  algorithms for convex quadratic 

optimization problems. The motivation for such study is the fact that a number of  classes 

of  Linear Programming are solvable in strongly polynomial  time, whereas the corre- 

sponding quadratic optimization problems are not known to be solvable in strongly 

polynomial  time. In particular, Tardos proved in [24] that " combina to r i a l "  Linear 

Programming problems are solvable in strongly polynomial  time. (Combinatorial  linear 
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programs are those with 0-1 coefficients in the constraint matrix.) Separable convex 
quadratic optimization problems over "combinatorial" constraints are not known to 
possess strongly polynomial algorithms. 

Solvability in strongly polynomial time for a linear or quadratic programming 
problem on n variables and m constraints means that there exists an algorithm that 
solves the problem in a number of steps that is bounded by a polynomial function of n 
and m only. The general optimization problem over submodular constraints can however 
be described without an explicit description of the constraints. Such is the case when 
there is a constraint for each subset of the universal set of n variables. The input then 
describes the rank function defined on all possible subsets of the universal set. In this 
case, for an algorithm to be strongly polynomial, its running time depends on n alone, 
and the length of the description of the rank function. 

Although combinatorial Linear Programming problems are solvable in strongly 
polynomial time, this feature is not shared with nonlinear problems. In [17], it was 
shown that nonquadratic concave separable optimization problems are not solvable in 
strongly polynomial time in a computation model that includes the arithmetic operations, 
comparisons and the floor operation. This lower bound was illustrated for the simple 

resource allocation problem max{~~= 1 f j ( x i )  ]~nj= a xj ~< B, x >/0, x integer}, and for its 
continuous version. The simple resource allocation problem is the simplest form of 
nonlinear optimization over submodular constrains. This negative result applies only for 
nonquadratic objective functions, so the issue of the strong polynomiality of quadratic 
optimization problems over linear constraints is still open. 

While for a general optimization problem there is a clear distinction in complexity 
between optimizing over integers or over continuous variables, this is not the case for 
optimization over submodular constraints. It is proved in [17] that there is a "proximi ty"  

theorem between an optimal integer and optimal continuous solution to the problem 
where any optimal continuous solution rounded down bounds from below an integer 
optimal solution. This allows in particular to solve the integer problem by solving first 
the continuous problem and then apply what amounts to at most n steps to reach an 
optimal integer solution. This strategy is adopted throughout this paper in order to derive 
continuous and integer solutions to the quadratic optimizätion problem over submodular 
constraints. 

Known cases where convex quadratic optimization in integers (or continuous vari- 
ables) over linear constraints can be solved in strongly polynomial time include: a 
nonseparable quadratic transportation problem [19]; an unconstrained nonseparable 
quadratic optimization in the context of electrical distribution system [1]; a nonseparable 
problem in the context of toxic waste disposal [15]; a quadratic continuous Knapsack 
problem [4]; a problem where the constraints consist of two equations and lower and 
upper bounds [2]; a transportation problem with fixed number of sources (of sinks) [6]; 
an improvement in complexity to the transportation problem with fixed number of 
sources and extending the strong polynomiality to a quadratic problem over a fixed 
number of equations [21]; a quadratic series-parallel network with a single source and 
sink [23]. 
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Our aim in this paper is to establish the most efficient strongly polynomial algorithms 
known for several quadratic problems over submodular constraints. The general quadratic 
problem over submodular constraints is defined with respect to some submodular rank 
function r : A ~ R defined on a distributive lattice A of E = { 1 , . . ,  n} (a set of subsets 
of E which contains ¢, E and is closed on the set intersection and union), i.e. r(~) = 0 

and for all A,B ~ A, 

r(A)  + r(B) >~ r(A UB) + r(A AB) .  

(For a detailed description of submodular functions see e.g. [22].) The submodular 
polyhedron defined by the submodular function r is the set {xlEj~ Ax t <~ r(A), A ~ A}. 

We call the system of inequalities {F~j~Axj<r(A)IA~A}, submodular con- 
straints. The problem of quadratic integer optimization over submodular constraints is 

then, 

min 1 2 E ajxj + ~bj~j 
j ~ E  

~_,x j<r(A) ,  A ~ A  
jEA 

xj >~ 0 and integer, j ~ E. 

For b a nonnegative vector, the objective function is convex. This is a special case of the 
convex nonlinear problem over submodular constraints, the general resource allocation 
problem or (GAP): 

(GAP) max ~ ~.(xj)  
j~E  

~_,xj<~r(A), A ~ A  
j~A 

xj >~ 0 and integer, j ~ E. 

The problem (GAP) was proved polynomial by Groenevelt [16], using the ellipsoid 
algorithm, and by Hochbaum [17] nsing a proximity and scaling based algorithm. Since 
the number of constraints in the problem could be exponential in [ E I, the running time 
is expressed in terms of the number of calls to an oracle that determines whether a 
solution is a member of the submodular polyhedron, or equivalently, feasible for the 

submodular constraints. Let F denote the number of steps that an oracle requires to 
determine whether incrementing a given feasible solution vector in one of its compo- 
nents by one unit results in a feasible solution vector. The running time given in [17] is 
O(n(log n + F)log2(r(E)/n))), and for the confinuous case an e-accurate solufion 
(within « in the solntion space) is produced in O(n(log n + F) log2(r(E)/en)) steps. 
(There is no statement of running time in [16].) Note that this running time is 

polynomial, but not strongly polynomial as it depends on the value of the right-hand 
side, r(E). These algorithms apply particularly to the problem of quadratic optimization 

over submodular constraints. 
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The problem (GAP) has been studied extensively in the literature. A book by Ibaraki 
and Katoh [20] presents an excellent state-of-the-art survey on this problem and its 
special cases. Here we focus on the instances of the problem where the objective 
function is quadratic. We present here strongly polynomial algorithms for all cases of 
(GAP) studied in the literature. These problems, in addition to the simple resource 
allocation problem, (SRA), are the generalized upper bound resource allocation prob- 
lem, (GUß), the nested resource allocation problem, (Nested), the tree resource 
allocation problem, (Tree), and the network resource allocation problem, (Network). 
The definitions and formulations of these problems are given in Section 2. 

Prior work on strongly polynomial algorithms for the problems discussed here 
includes two algorithms. In [9], Fujishige devised an algorithm for the lexicographically 
optimum flow problem from which it is possible to derive an O(N2M log(N2/M)) time 
algorithm for (Network) when the underlying network has M arcs and N nodes, and 
hence for all other problems described here. This algorithm, when applied to (Tree), 
runs in O(n 2) time. Another algorithm by Tamir [23], solves the minimum convex 
separable quadratic cost flow problem on series-parallel network for which (Tree) is a 
special case. Applied to the problem (Tree), this algorithm has complexity O(n2). 

The main results here are an O(NM log(N2/M)) algorithm for (Network), an 
O(n log n) algorithm for (Tree) on n variables, an O(n) algorithm for (Nested) when 
given a sorted array of the coefficients, a j, and a linear time algorithm for (GUß). These 
results constitute therefore a significant improvement on the complexity of currently 
available algorithms. Such efficient algorithms also lend additional support to the 
conjecture that the problem of quadratic cost network flow is solvable in strongly 
polynomial time. 

The paper is organized as follows. Section 2 defines the classes of problems 
addressed and gives their formulations. In Section 3 we give the algorithm for the 
quadratic simple resource allocation problem that is used as building blocks for the 
nested and tree algorithms. Section 3 also describes the linear time algorithm used for 
the generalized upper bounds problem. Section 4 contains the algorithm for (Nested), 
and Section 5 contains the algorithm for (Tree). Section 6 describes the algorithm used 
for the (Network) case, and our implementation of a parametric flow algorithm. 

2. Formulations and preliminaries 

2.1. Formulations 

Important special cases of optimization over submodular constraints that have been 
studied in the literature are formulated here with a quadratic objective function. The 
formulations given here include a constraint for the rank of the entire set as an inequality 
constraint. However, all the algorithms given in this paper can be easily modified to 
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solve the corresponding problem given with this constraint as an equality. The problems 
are also slightly generalized by allowing upper bound constraints on the variables. 

We assume throughout that the objective functions are strictly convex, that is, the 
vector b is positive. This assumption is made for the sake of convenience of the 
presentation. All algorithms described apply also when some of the functions are linear 
with an obvious modification. For the network problem, where the modification is less 
obvious, there is a discussion on the method of modifying the algorithm. We choose not 
to treat the non-strictly-convex cases explicitly, in order not to obscure the main 
algorithmic issues involved. 

(1) The simple resource allocation problem: 

(SRA) min I 2 ~ ajxj + 7bjxj 
j = l  

B xj<~ß 
j = l  

0 ~ xj ~< uj integers, j =  1 , . . , n .  

The problem (SRA) may be viewed as a minimum cost flow problem with a source 
that has supply of B units. Each variable represents the amount of flow along each arc 
going from a node to a sink t. There are no costs or capacities associated with the arcs 
going into the nodes other than the sink, but there are capacity upper bounds uj 
associated with the arc going from node j to the sink and also quadratic cost functions 

1 2 ajxj + -~bjxj. Since the "supply" in the formulation above is up to B, this can be 
incorporated by adding an arc with zero cost (and infinite capacity) from source to t. 
Such arc is omitted from the network described in Fig. l(a). Note that (SRA) could also 
be considered as a quadratic transportation problem with a single supplier and n 
customers. This observation underlied the technique used in [6] for solving quadratic 
transportation problems. 

(2) The generalized upper bound resource aUocation problem: 

( GUB ) min 1 2 B ajxj + 2bjxj 
j = l  

B xj ~<B 
j= l  

E x j ~ p i ,  i = l , . . . , m  
j~S i 

0~<xj~<ujintegers, j = l  . . . .  ,n.  

where {S 1, S 2 . . . . .  Sm} is a partition of E = {1 . . . .  , n}, i.e. disjoint sets the union of 
which is E. A depiction of this problem as a minimum cost flow problem is given in 
Fig. l(b). 



274 D.S. Hochbaum, S.-P. Hong /Mathematical Programming 69 (1995) 269-309 

~ ~ \ v C 
v ~ x "c 

\ \ x - - -  ~ " ,.,~ g 
• . -  / / ~ "  / ( [ / I ° o.  \ .~ 

• , ,~o ~ ; 4 ~  -~ / ~ -  _ ' ~  

2- 
v / /  + 

/ ~ 

/ / 
/ / e , l  

J~ 

o\ ~ 

g 

\ 

\ . ,  

. ,  ,., x =  

\ \ oa  
" \ c 

\ \x + 

-2,,,~= 

e ------2 
g 

/ ii + 
/ / x'- 



D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 275 

(3) The nested resource allocation problem: 

(Nested) min 1 2 B ajxj + ~ójxj 
j = l  

B xj<~B 
.i=1 

~ xj<~p~, i = l , . . . , m  
j~Si 

0~<xj~<uj in tegers ,  j = l , . . . , n .  

where S m c S m_ 1 c • • • c S 1 c E. Notice that Pm ~ Pro- 1 ~< " " " ~< Pl ,  otherwise, if 
Pi > Pi+ 1, then the /th constraint is redundant and can be omitted. 

It is more convenient to analyze (Nested) with a constraint corresponding to each 
variable, that is, it is always possible to reduce (Nested) to the following special case 

with set S i = {i, i + 1 . . . . .  n}. Here Pl  = B. 

min ~~xj + lbjx~ 
j = l  

BXj<~Pi , i = l , . . . , n  
j=i 

O~<xj~<ujintegers ,  j = l , . . . , n .  

If  a set {x i . . . . .  x n} does not appear among the sets Sj, then set its right-hand side Pi 
to be equal to that of the smallest set among the Sj's containing {x i , . . . ,  Xn}. 

The problem (Nested) is described in Fig. l(c). 

(4) The tree resource allocation problem: 

(Tree)  min 1 2 B ajxj + ~bjxj 
j = l  

B xj ~ B  
j = l  

E Xj<~Pi, i = l , . . . , m  
j~S i 

O <~ xj <~ uj integers, j = l , . . . , n .  

The sets S i are derived by some hierarchical decomposition of E into disjoint subsets 
and the repeated decomposition of each of the subsets. Each set thus generated is among 
the sets Si, i = 1 , . . ,  m. Describing each set as a node and the decomposition as edges 
from the parent set to its subsets, one gets a tree on m nodes which is a branching, i.e. 
the indegree of each node except the root corresponding to the set E is one. 

It is convenient to extend the tree of sets by adding all singleton sets as leaves. Note 
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that the problem could be viewed as flow problem from the root to the leaves where the 
objective function minimizes the quadratic cost of the flow to the leaves only. All other 
flows have cost of  zero, and only the capacitated nodes and the flow balance constraints 
determine the feasibility. The network describing the flow problem corresponding to the 
tree allocation problem is given in Fig. l(d). 

(5) The network resource allocation problem is defined with respect to any network 
(or graph), with a single source and a set of  sinks. 

Given a directed graph (network) G = (V, A) with node set V and arc set A. Let 
s E V be the source and T ___ V be the set of  sinks. The supply of the source is B > 0, 
and the capacity of arc (i, j )  is Cij. Denote the flow vector by f =  {f/j [(i, j )  GA} 

1 2 (Network) min ~ akx k + 2bkxk 
tk~ T 

E fij-- E fji =0'  i ~ V - - T - - { s }  
(i,j)EA (j,i)~A 

E Lj<8 
(s,j)~A 

E ~,~- E Lj=x~, 
(j,tk)~A (tk,j)~A 

0~<f/ j~<cq,  ( i ,  j )  GA 

O <~ x~ < u k, tk ~ T. 

t h ~ T 

Given a feasible flow f in G, each variable x k represents the net value of the flow 
arriving at the sink t k. We call x the out-flow vector of  the flow f. The (quadratic) 
network resource allocation problem (Network) is not the same problem as the 
minimum quadratic cost flow problem. In the latter problem there is an underlying graph 
and a quadratic cost associated with the flow along each arc. In this problem the 
quadratic costs are associated only with the flow x k arriving at each sink te. An 
alternative representation is to augment G with a dummy sink t, and connect each sink 

t h to t with a directed arc (th, t) of  capacity u k. The costs are then only associated with 
the arcs (th, t). All other arcs have 0 cost associated with them. This graph is described 
in Fig. l(e). 

The relations between these problems are depicted in Fig. 2 where A ~ B if problem 

A is a special case of problem B. 

2.2. Deriving integer from continuous solutions 

Vectors in this paper are denoted by boldface letters. The vector e denotes the 
n-vector (1 . . . . .  1). 

A theorem in [17] states a proximity between an optimal (integer) solution to (GAP) 
and a scaled solution. A corollary of  this theorem is a proximity result on the distance 
between an optimal integer and optimal continuous solutions to (GAP). Such result is 
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not useful in finding optimal integer solutions to the problem unless the continuous 
problem is particularly easy to solve. The statement of this corollary [17, Corollary 4.4] 

is: 

Corollary 2.1. For an integer optimal solution to (GAP),  z *, there is a continuous 

optimal solution to (GAP),  x *, such that z * - e < x * < z * + ne, and vice versa; i.e. 

for a continuous optimal solution to (GAP),  x *, there is an integer optimal solution to 

(GAP),  z* ,  such that z * - e < x* < z* + ne. 

In particular, Hz* - x *  ][~ < n. This is a tighter proximity theorem than the one 
existing in the literature for constrained linear [5], quadratic [14] and nonlinear [16] 
optimization problems, all of which have []z * - x  * [la < nA,  where A is the largest 
subdeterminant of the constraint matrix. This result could be viewed as effectively 
considering the largest subdeterminant of a set of submodular constraints to be 1, 
although such subdeterminant is in general exponentially large. 

The proximity theorem is used to produce more efficiently integer solutions to the 
quadratic cases of (GAP), where the continuous solution is relatively easy to derive 
from Kuhn-Tucker conditions (all of which are linear for quadratic objective function): 

First a continuous solution is obtained, x *. The vector ~ = [x * + e] is then an upper 
bound on an integer optimal solution and the sum of its components is at most 

r ( E )  + n. Hence it suffices to remove the, up to n, units of ~ that contribute least to the 
objective function. This is done by considering the incremental contribution of each last 

unit of each component and removing the one that reduces the objective function by the 
least amount. This is continued until the constraints including ~~= 1 xj ~< B a r e  satisfied. 
The validity of such a greedy approach is documented in [20] and in [17]. 

Although it appears that a direct implementation of the procedure above requires 
O(n 2) time even for (SRA), this is not the case. The problem of obtaining an optimal 
integer solution from '~ is also an allocation problem in integers, but with right-hand 
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sides that are O(n). Such allocation problems, if they have same constraints as the 
problems in Subsection 2.1, with any convex separable objective function, are solvable 
with the following running times: 

(SRA) in O(n), [8], 
(GUß) in O(n), [17], 
(Nested) in O(n log n) [17], 
(Tree) in O(n log n) [17], 
(Network) and any submodular constraints, in O(nF) where F is the number of steps 

required to check whether an increment of one unit (of flow, in (Network)) is feasible. 
These running times are added to the complexity of the continuous problem in order 

to determine the complexity of the integer problem. Yet, in all cases these running times 
are dominated by those required to solve the continuous problem. Thus in the subse- 
quent part of this paper, we consider only the continuous versions of the problems 
defined in the previous subsection. 

3. A linear time algorithm for (SRA) and (GUß) 

Brucker [4], was the first to devise a linear time algorithm for the continuous convex 
quadratic Knapsack problem. This problem is more general than (SRA) in that its 
constraint may have nonnegative coefficients to the variables where in (SRA) all these 
coefficients are 1. The algorithm presented here is also directly applicable to the 
Knapsack version of the problem with a minor adjustment. The presentation here 
follows the algorithm given in [6] with some appropriate modifications. 

At the optimum of (SRA) the derivative with respect to each variable has to be 
nonpositive. (Otherwise, a variable with positive derivative value at the optimum can be 
decreased by e > 0 while only improving (reducing) the objective function and without 
violating any constraint.) In other words, xj <~ max{0, - a J b j } .  Hence we can update 
uj ~ min{uj, max{0, - a Jb j}}  for each j and then B ~ min{B, E~= luj} without affect- 
ing the optimality. Also, notice that with this preprocessing, taking O(n) time, at any 
optimal solution, F~7= l Xi <~ B is binding. Otherwise there should be a variable with 
value less than the (updated) upper bound and hence with a negative derivative. Then we 
can increase the value of the variable by a small amount to reduce the objective value 
while maintaining the feasibility, contradicting to the optimality assumption. Thus by a 
linear time preprocessing, (SRA) is reducible to the same problem with equality 
constraint: 

1 2 (SRA) min Æ ajxj + 7bjxj 
j=l 

~ x j = B  
j=l  

O<~xj<~uj, j = l , . . . , n ,  

where B is positive, B ~< E7 = 1% and each bj is positive. 
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The convexity of the objective function guarantees that a solution satisfying the 
Kuhn-Tucker conditions is also optimal. In particular, we seek a nonnegative solution 
x * and a value 6 * such that 

xj  = B and u j > x j  > 0  ~ ay + b i x j  = 6 " . 
j = l  

The situation is illustrated by Fig. 3. 
The value set for 6 determines associated values for xj. For any value 8, the 

associated solution x(6)  is 

/ O 

x j ( 6 )  = ( 3 - a j ) / b j  

I, uj 

if 8 ~< a j, 

if aj < ¢~ <~ aj + bj U j ,  

if aj + bjuj < 3. 

(3.1) 

Let / ~ ( 8 ) =  F.,~=lxj(6). Then finding the optimal solution to (SRA) is equivalent to 
~< n finding a value 8 * such that /}(6 * ) = B. (Since 0 < B ~ ~j= luj, it follows that there is 

a finite optimal 6 * for every instance of (SRA).) 
Notice that /}(8) is a monotone increasing, piecewise linear function of 8, having 

breakpoints at the values ai, and aj + bjuj for j = 1 . . . . .  n. So if /~(8) < B ,  then we 
could conclude that 6 * is greater than 6 and similarly, i f / ~ ( 6 )  > B, then 6 * is less 
than 6. Thus the monotonicity o f / 3 ( 6 )  allows for a binary search for the optimal value, 
6 * satisfying /~(8) = B. 

The algorithm we propose for finding 3 *, chooses "guesses"  (from among the 
breakpoint values, aj and aj + b j u )  until it finds two consecutive breakpoints which 
contain 6 * in the interval between them. In this range, /}(8) is a linear function. The 
problem is then solved by finding the particular value of 6 for which /} (8)  = B (i.e., by 
solving the linear equation in one variable). 
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From (3.1), we have, 

/ ~ ( 6 ) = 6  E 1 E ~ + E u j ,  (3.2) 
j ~ u  bj j ~ u  oj j c v  

where U = {j  I aj < 6 ~ aj + bjuy} and V = {j[ aj + bjuj < 6}. 
So at each iteration, we need to determine the index sets and the corresponding sums. 

To result in a better complexity, the algorithm avoids computing the index sets and the 
sums at every iteration from scratch. For this purpose, it maintains the parameters P, Q 
and R which retain partial sums from the previous iteration. 

Procedure SRA 

Step 0: {initialization} S ~ { a  1 . . . .  , a~; a 1 + b l U l , . .  , a,, + bnun}. 
I, J ~ {1 . . . . .  n}, P ":--~,~=laj/bj, Q <---2~7=11/b r 

Step 1: {selecting median of breakpoints} 
Set 6 to be the median value from the set S. 
{computing coefficients of/~(i~)} 
L(~)<---{j ~ I [  ~<~ aj}, R ( ~ ) ~  {j  E J l a j  + bjuj < ~}, 
M ( 8 ) ~  L ( ~ ) U  R( ~) 
t3 ~ P - Ei  E M(g)ai/bi, Ô ~ Q - Ei ~ M(g)l/bj,  1~ ~ Ej  ~ R(g)uj. 

Step 2: {computing-~(g)) ~ ,z gO _ ~ + ~. 
I f /~  ~- B then STOP, 6 * ~ 6. 
I f / ~ > B  then 6* < 6 .  
I f / ~ < B  then 6" > 6 .  

Step 3: {update index sets, breakpoints and partial sums} 
If 6" < 6  then 

I ~ I - L ( 6 ) ,  J ~ R(6) ,  S ~ {ay[j  ~I} t .3{ay + byu~b j ~ J } .  

If 8 = a,ù for some m, then P ~ P - am/b  m, Q ",- Q - 1 / b  m. 
Else {6* > 6}, 

I ~ L(6), J ",- J - R(~) ,  S ~- {aj[ j ~ I1 t3 {aj + bjujl j ~ J}. 
Step 4: {repeating until final interval is found} 

If [S[ >i 2, go to Step 1. 
Else, 6* ~ (B +/~ - / ? ) / Q .  

The algorithm outputs a value 6 *. Then the optimal solution is x(6 * ) which can be 
determined in linear time using (3.1). 

Theorem 3.1. Procedure S R A  finds 8 * and x* in O(n) time. 

Proof. To prove the validity of Procedure SRA, we need to show the correctness of /~  
in Step 2, which is the value of /~(6)  for 6 = 6. 

Consider Q in Step 1, which is the slope of the piecewise linear curve, /~(6), at 
6 = 6. To compute Q, we first calculate Q which represent the maximum possible value 
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of the slope o f /~ (6 )  when 6 takes value among the breakpoints of S. Thus, initially Q 
is ET= il~bi. From (3.2) and the definitions of L(6)  and R(6),  it follows that M(6)  is 
the set of indices j such that 1~bi needs to be subtracted from Q to obtain the correct 
slope o f / 3 ( 8 )  for 8 = 6. Therefore, Q should be 

1 1 1 1 z - =  ~ - -  z - = Q -  ~ -  (33) 

Hence the coefficient Q calculated in Step 1 is correct for the first iteration. 
If 6 * < ~, then the next guess is the median of the lower half of the current 

breakpoints, that is, those breakpoints less than 6. So in Step 3, the upper half of the 
current breakpoints (including the current guess ä)  is deleted from the set S and in Step 
3 S is updated accordingly. In this case Q, the maximum possible slope o f / ~ ( a )  over 
the updated S, is ô - aj /b  mi f  g = a m for some m, or O, otherwise. Furthermore, from 
the updated set I and J in Step 3 it follows again that M(/~) is the set of indices j such 
that 1~bi needs to be subtracted from (the updated) Q to obtain the correct slope of 
/~(6) for 6 = 6 in the next iteration. Thus the correctness of Q obtained in Step 1 
follows by induction on the numbers of iteration. 

On the other hand, if 6 * > 6, then the next guess is the median of the upper half of 
the current breakpoints. So, in this case, we use the same Q in the next iteration. Similar 
inductive arguments for/~ and /~ show the correctness of the computation o f / ~ ( 6 )  in 
Step 2. 

When S contains only one element, say aj (or, aj + bjuj), then we can conclude that 
6 * is between 6 and aj (or, aj + bjuj,^respectively). Furthermore, since /~ is a linear 
function of 6 in this range, (i.e. B = Q 6 - / 3  +/~), 6 * and x * are determined as in 
Step 4. 

The O(n) complexity of the algorithm follows from the fact that each of Step 1, 2 and 
3 can be pefformed in a number of arithmetic operations that is linear in the cardinality 
of the set S, including the selection of the median value [3]. Since the number of 
elements in the set is initially 2n and is cut in half after each pass, the total work is 
linear in (2n + n + n / 2  + n / 4  + • • • ) = 4n, so the complexity of the algorithm is 
O(n). [] 

The problem (GUß) is easier to handle once we observe that it is polynomially 
equivalent to a number of simple resource allocation problems. Consider the set S i, the 
constraint Ej E si xj ~< p» and the following simple resource allocation problem restricted 

to Si: 
1 2 ( SRAi) min Y'~ ajxj + ~bjxj 

jESi 

E Xj ~ Pi 
jES i 

O<~xj, j ~ S  i. 

Lemma 3.2 (Hochbaum [17]). Let the solution to (SRA i) be {x~i)}j ~ s~. Then there exists 
an optimal solution to (GUß), x *, satisfying x 7 <~ x~ i) for all j ~ S i. 
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Remark.  In [17], the lemma is proved for the discrete version of the problem. It is easy 
to see the proof is modified for the continuous version of the problem. This lemma is 
generalized and proved for the (continuous) (Tree) problem in Corollary 5.2. 

Lemma 3.2 implies that once an optimal solution, {x~i)}j~si has been obtained for 
(SRA i) for every i = 1 , . . . ,  m, an optimal solution of (GUB) can be found by solving 
the following problem, (UB), which is also an (SRA). 

n 
1 2 (UB)  min 2., ajxj + ~bjxj 

j=a 

~ x j = B  
j=l 

0 <~ xj <<. min{uj,x~i)}, j = 1 . . . . .  n. 

It is therefore sufficient to solve each of the (SRA i) problems, in order to derive the 
upper bounds. Then to solve the problem (UB). The running time of such procedure is 
O ( n l )  q- O ( n  2 )  + • • • q- O(n m) = O ( n ) ,  followed by the linear time required to solve the 
resulting (UB) (which is an (SRA)). 

4. An O(n log n) algorithm for (Nested) 

The algorithm proposed here solves the problems (Nestedn), (Nes ted ,_1) , . . . ,  
(Nested1), where (Nested i) is the problem, 

,,e,, 
1 2 ( Nestedi) ,  min 2., ajxj  + ~byxy 

j=i 

~ x j < ~ p k ,  k = i  . . . . .  n 

O<~xy<~uj, j = i  . . . . .  n. 

Let an optimal solution to (Nested i) be x (i). Several properties of (Nested i) are 
essential in order to establish the correctness of the algorithm. The next lemma states 
that for the problem (Nestedi), the constraint y'n .x(i) - - j = ~ - j  <~Pi may be assumed to be 
satisfied with equality. The proof is given for the analogous lemma, Lemma 5.3 for the 
tree resource allocation problem, (Tree), which generalizes (Nested). 

Lemma 4.1. In (Nestedi) , by updating uj ~ min(uy, max( - a j / b y ,  0}) for j = n, n - 
1 . . . . .  1 and pj ~ min{py, Py+I + uj} for j = n - 1, n - 2 , . . . ,  1, we may assume that 
the constraint S,~= i x~ i) <~ Pi is satisfied with equality. 

The following lemma contains the key idea of the algorithm. The proof is postponed 
to Section 5 where it appears as Corollary 5.2. 
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Lemma 4.2. x~i) <~ ~ (i+O.vj , for j = i  + l, . . . ,  n. 

283 

This lemma implies that the value of the optimal solution for (Nestedi+ 1) is an upper 
bound on the value of the variables, xi+ 1, xi+ 2 , . . ,  xn in (Nestedi). The upper bounds 
at each (Nested i) problem solved, uj can then be updated to u~ i) --- min{uj, x~ i+ 1)}, for 
j--- i + 1 , . . ,  n. Since {x~ i÷1)} satisfy constraints i + 1 . . . .  , n, these constraints no 
longer need to be explicitly incorporated. Hence (Nested~) is equivalent to the problem 

( Nested i) min 1 2 B ajxj + 7bjxj 
j= i  

n 

E Xj = Pi 
]=i 

O<~xi~u ~ 

0 ~ xj «. min{u,,x} i+ 1)}, j = i +  l , . . . , n .  

This latter formulation of the problem is an (SRA). The algorithm solves recursively 
the problems (Nested~) for i = n . . . . .  1 where at each call the optimal solution derived 
from the previous call is used as upper bounds to the variables in the current call. The 
optimal solution of (Nested~+ 1) is then used to derive an optimal solution to (Nested i) 
in constant amortized running time. 

The problem (Nested~) is an (SRA). This suggests immediately an algorithm that 
requires linear time with each call using Procedure SRA. Such algorithm would result in 
complexity of O(n2). In order to get a more efficient approach, we maintain all 
information obtained in previous iterations on the status of the breakpoints previously 
considered. These breakpoints are also maintained in a sorted array. The need to 
maintain a sorted array adds an additive 
preprocessing step. The algorithm runs 
coefficients {a l , . . . ,  a n} is available with 

factor of O(n log n) to the running time at a 
in linear time when the sorted sequence of 
the input. 

The algorithm produces a Lagrange multipliers 8 for each (SRA), (Nested i) for 
i = n . . . .  ,1. Let the Lagrange multiplier for (Nested i) be 8/. Unlike Procedure SRA 
which finds 6 by binary search, testing /3(8) on the median of the current (unsorted) 
breakpoints, the algorithm finds 8 by "linear search", testing /~(8) on consecutive 
elements of the current breakpoints given in sorted array. That is, starting with an initial 
guess, it continues to test the immediate successor (or predecessor) of the current guess 
until it finds the final interval. 

The initial guess for 8 i is 8i+ 1. All variables xj for j = i + 1 . . . .  , n are fixed for any 
8 >t 8i+ 1 in testing since, by Lemma 4.2, the optimal solution of (Nested i) is bounded 
by the optimal solution of (Nestedi+~). So if 8 i>  8i+» then there are only O(1) 
arithmetic calculations required to find 6i as there are at most two breakpoints to be 
tested; namely, ai and a~ + bit t  i. 8 i is then added to the top of the sorted sequence of 
breakpoints for the testing to solve (Nestedi_l). The crucial property is that when 
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0 ~ )(6(4) X5(4) X4(4) (=U4) 
ID, 

a 3 + b 3 u 3 . . . . . . . . . .  

a 5 , 

a 3 

a 4 , 

% 

Fig. 4. Solving (Nested 3) given the solution of (Nested 4 ) where n = 6. 

6i < 6i+ 1 then all breakpoints tested with value v such that 6 i < v need no longer be 

considered when we solve (Nestedi_l).  For, by Lemma 4.2 again, all variables 

x i , . . . ,  x ,  are fixed for 6>~ 6i when we test B ( 6 )  to solve (Nested{_1). Thus those 

breakpoints are deleted from the sorted sequence. The breakpoint arrangement at a 

typical iteration is depicted in Fig. 4. The thick solid line represents the piecewise linear 

curve corresponding to the additional variable x 3 of  (Nested3). (Compare this figure to 

Fig. 3.) 

In the algorithm there is some information stored at each 6 breakpoint. U(6)  is the 

sum of all variables whose upper bounds are attained at a breakpoint lower than 6. 

P ( 6 )  and Q ( 6 )  are sums of  a J b / a n d  1 / b  i respectively over variables j that get fixed 

at the breakpoint 6. For (Nested~) these are all the variables with index in the set 

{ i , . . . ,  n} that are not summed up in U(6).  For each variable in this sum its upper bound 

at the termination of  this iteration is 6 / b  i - aJb j .  
The description of Algorithm Nested is followed by the description of  Procedure 

Nested(i) called for in Step 2 of  the algorithm. 

Algorithm Nested 

Step 0: {Preprocess} 

For j = n, n - 1 . . . . .  1, uj ~ min{uj, m a x { - a J b j ,  0}}. 

For j = n - 1, n - 2 . . . . .  1, pj ~ min{pj, Pi+ 1 + uj}. 
Sort {a 1 . . . . .  a , ;  a 1 + blU 1 . . . .  , a n + bnu n} in decreasing order. 

Step 1: Solve (Nested n) by solving for 6, (8  - a , ) / b ,  = p , ;  6, ~ 8. 

P(6 , )  ~ an/b, ,  O(6 n) .-- 1 /b , ,  f ( 6 , )  ~ 0; S ~ {a,}, r ~- {8,}. 
Step 2: For i = n - 1 . . . . .  1, call Procedure Nested(i). 

Step 3: {calculating optimal solutions using the Lagrange multipliers} 



D.S. Hochbaum, S.-P. Hong / Mathematical Programming 69 (1995) 269-309 285 

Let the set of the Lagrange multipliers, T, be {8il , 8i2 . . . .  , 8iq}; iq+ 1 ~--n + 1. 
F o r p = q ,  q - - 1  . . . . .  1, do 

xj  = max{ 8ip/by - ay/bj,  0} for j = i p , . . . ,  ip+l - 1. 

Procedure Nested(i)  

Input: 

Step O: 
Step 1: 

Step 2: 

Step 3: 

Step 3(a): 

Step 3(b): 

Step 3(c): 

Two sorted sequences S and T. 
For each 6y, the values of P(6j),  Q(~j) and U(Sy). 

{trivial case} If a i > 0; stop, 8 i = 8i+ 1. 
{Check if 8 i is larger or smaller than 8i+ 1} 

If Pi+l q- min{(S/+l - a g ) / b i ,  ui} <Pi, then 8 i > 8/+1; go to Step 2. 
If Pi+l + min{(8i+l - ag)/bi, ui} ~-Pi, then 8 i = 8i+1; substitute the 
breakpoint label 8g by 8i+1; 

P(  8 i) '~-'- P ( 8 i +  1) + ag/b i, Q( Si) ~-- Q(8i+ 1) + l / b i ,  U( 8 i) ~-- U(S/+ 1); 
stop. 

If Pi+l "-}- min{(8i+l - ag)/bi, ui} >Pg, then 8 i < 8i+ 1; remove 8i+ 1 from 
the top of T; 

P ~ P ( 8 i + l ) ,  Q ~ Q(Si+l); U ~  U(Si+l); go to Step 3. 

{8 i > 8i+ 1} 
Solve for 6, (8 - ai ) /b  i =Pi --Pi+l" 

8 i ~ 8, P ( 8  i) ~ ai/b » Q(8)  ~ 1~bi, U(8/ )  ~Pi+~. 
Add a~ to the sorted sequence S; add 6 i to the top of T; stop. 

{8 i < 6i+ 1} 
I f  a i + biu i < 8 i +  1 then add a i and a i + biu i to the sorted sequence S; 

U ~ U( 6i+ l) + u i. 
Else, a d d a  i to S; P ~ P(8i+ 1) + ai /bi ,  Q ~ Q( 6i+ 1) + 1 / b  i. 
Let the largest breakpoint lower than 6g+ 1 be v. 
If v an aFbreakpoint then go to Step 3(a). 
If v an (ay + bjuy)-breakpoint then go to Step 3(b). 
If v a 6~-breakpoint then go to Step 3(c). 
Let the breakpoint be a k, set 6' = a«. 
If 8 ' Q - P +  U < p i  then 8 i>  8'; go to Step 4. 
If 6 'Q - P  + U >pi  then 6 i < 6'; remove a k from top of S; 

P *-- P - a k / b  » Q ~ Q - 1/b~; go to Step 3. 

If 6 ' Q - P +  U = p i ,  then 6 i=  6'; stop. 
Let the breakpoint be a« + bku k, set 6' = a k + bku k. 

If 6 ' Q - P +  U < p i  then 6 i>  8'; go to Step 4. 
If 6 ' Q - P +  U > P i  then 6g< 8'; remove a k + b ~ u  k from top of S; 

U ~ U -  u«; go to Step 3. 
If 6 ' Q - P  + U = p »  then 8 i = 6'; stop. 
Let the largest breakpoint be 6k; set a' = 8«. 

If 8 ' Q - P + P k  <Pi then 8 i > 6'; go to Step 4. 
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Step 4: 

If 6 'Q - P + pk > Pi then 6 /<  6'; 
P ~ P + P(6 ' ) ,  Q ~ Q + Q(6') ,  U ~ U - ( 6 ' Q ( 6 ' )  - P(6 ' ) ) ;  

remove 6 k from top of the sequence T; go to Step 3. 

If 6 ' Q - P  + P k  =Pi  then 6i = 6'; stop. 
{6/> 8'} Solve for 8, 6 Q - P +  U = p / .  

Set 6 /=  8, P (  6/) = P ,  Q( 6 i) = Q, U( 6 i) = U; stop. 

L e m m a  4.3. Algor i thm Nested is correct. With a given sorted sequence o f  

{a 1 . . . . .  an; a 1 + b l U l , . . .  , a n + bnun}, its complexity is O(n).  

Proofi The dominant operation in the algorithm is adding element a i and biu / to the 
sorted sequence S in Step 3. Using a straightforward approach of binary search, this 
takes O(log n) comparisons. We adopt here the UNION-FIND algorithm of Gabow and 
Tarjan [11]. Each subsequence is viewed as a collection of intervals that contains NO 
elements of a/ or a i q- biui, with endpoints at elements of the subsequence. Alterna- 

tively, the sorted sequence on { a l , . . . ,  an; a z + b l u  1 . . . .  , a,, + bnu n} may be viewed as 
an ordered vector. A subsequence is a 0 -1  vector of length n with 1 in position j if the 
jth element is included in the subsequence and 0 otherwise. The aim is to maintain this 
0 -1  vector with pointers from each entry containing a 1, to the next such entry. The set 
of 0 's  separating each pair of l ' s  is an interval (that could be empty). 

In order to position correctly an added item, we need to find an endpoint to the head 
(and tail) of the interval of elements to which it belongs. Since we have a given linear 
ordering of intervals the UNION-FIND algorithm applies. The other operation is SPLIT 
rather than UNION. Here when an element is added, an interval is split into two subsets. 

Still, an analogous algorithm to UNION can execute a sequence of p SPLIT-FIND 
operations on 2n elements in O(2n + p )  steps. In our case p --- 2n, so the running time 
is linear. 

Step 1 of the algorithm involves only a constant number of operations. If the outcome 
is to go to Step 2, 6 is above all other breakpoints, then there is only O(1) work. If 
however the outcome is that 6 is below some of the breakpoints we may need to inspect 
several breakpoints, say q, prior to Step 4. In this case the amount of work in Step 3 is 
O(q) except the adding operations. 

The key observation is that, in the linear search for the Lagrange multiplier 6/ on the 

current sorted list S of breakpoints, once a breakpoint turns out to be larger than 6 i then 
the breakpoint is permanently deleted from the sequence and hence is not further 

considered in search for 6 i_ 1 . . . . .  81. This is, as mentioned earlier, because whenever 6 
is under certain breakpoints, the values of the variables at 6 are upper bounds on the 
values of any optimal solution (Lemma 4.2). There is therefore no need to further 
consider any breakpoint above 6. 

To summarize, if the search for 6 goes up, as in Step 2 or 4, we add at most one 
breakpoint to the sequence, whereas if it goes down q breakpoints, then q -  1 

breakpoints get deleted. Each call to Procedure Nested(i) creates at most three break- 
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points, ak-type, (ak+bkuk)-type, and •i" Let call i involve the inspection of qi 
breakpoints. Then ~2~= lq~ = 3n + E ni= 11. Hence, the total number of operations is O(n). 

[] 

5. Two strongly polynomial algorithms for (Tree) 

In this section, we develop two strongly polynomial algorithms for the tree resource 
allocation problem which are more efficient than existing algorithms. The complexity of 
the first algorithm is O(dn), where n is the number of variables and d is the depth of the 
underlying tree (see Fig. 1). If the tree is balanced, that is, d = O(log n), then the total 
complexity is O(n log n). The second algorithm runs in time O(n log n) and hence 
dominates the first. The second algorithm makes use of Algorithm Nested. The reason 
for presenting also the first algorithm is that it is simpler in structure and follows 
immediately from the properties of the solution on subtrees. 

Two previously known strongly polynomial time algorithms are available for the 
problem (Tree). One is Tamir's algorithm [23] which minimizes the separable convex 
quadratic objective function on the feasible flows of a series-parallel network with single 
source and single sink. The algorithm complexity is O( I A [ • [ V I + I A [ log ] A [) for 
the general problems where, I A [ is the number of arcs and I V I is the number of nodes 
of the series-parallel network. For (Tree) it runs in O(n 2) time (where n is the number 
of variables). The other algorithm follows from a result of Fujishige [9]. Fujishige 
devised an algorithm for the network resource allocation problem. The running time of 
this algorithm is dominated by the time required to solve at most 2 [ V [ - 1 maximum 
flow problems on the underlying network. The maximum flow problem on a tree is 
solvable in linear time. Hence Fujishige's algorithm, when applied to (Tree), also runs 
in O(n z) time. 

Our algorithms rely on the recursive optimality structure of (Tree): the optimal 
solutions on subtrees are valid upper bounds of the optimal solution of the original 
problem. This property is established in Subsection 5.1. Subsections 5.2 and 5.3 include 
the description of the algorithms. 

5.1. Optimality properties of (Tree) 

Consider the tree resource allocation problem, (Tree), defined in Subsection 2.1. For 
notational convenience, we denote S O = E  ( =  {1, 2 . . . . .  n}), M =  {0, 1 . . . .  , m} and 
Po = B. Throughout this subsection, we assume that if S i ~ S i 4= ~J and i < i' then 
S i D Si,. Allowing Si's to be singleton sets, the problem can be rewritten as: 

1 2 (Tree) min ~,, ajxj + ~bix j 
jES  o 

xj <~ p~, i ~ M 
j ~ S  i 

xj>~0, j~So. 
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Let A i be the Lagrange multiplier of  the constraint on the index set  Si, ~-aj ~ siXj ~ Pi 
and let ~j = Ei~/( j )A» where I ( j ) -  {i ~ M I j ~ Si}. The Kuhn-Tucker  optimality 
conditions for this case, referred to hereafter as (KT), are: 

( KT) 

(i)  A i < 0  ~ ~ x j=Pi ,  i ~ M  
jES i 

(ii) x j > 0  ~ a j + b j x j - « j = O ,  j ~ S  o 

(iii) a j + b j x j - % > ~ O ,  j ~ S  o 

( iv) Ai~<0, i ~ M  

( V )  E Xj<~Pi, i ~ M  
j~Si 

(vi)  xj>~0,  j ~ S  0. 

Let (Tree i) be the tree resource allocation problem defined on a subtree rooted at 
node i of the underlying tree. For instance, (Tree o) is the problem (Tree). Ler C i be the 
set of children of node i in the underlying tree. In particular, C o is the set of children of 
the root node 0 and C o = {1, 2 , . . ,  l}. Then (Treek), k = 1 , . . ,  l, are resource allocation 
tree problems defined on the subtrees rooted at each child of the root node 0, and S k is 
the index set of  variables in (Tree«), (i.e., the leaves of  Treek). Let M« be the set of 
nodes in (Treek). Then M k are rnutually disjoint and M - {0} = M 1 t5 M 2 U . • • U M 1. 
Each problem (Tree k) can be written as: 

( Treek ) min 1 2 E ùjxj + ~bjxj 
j~Sk 

~ x j ~ P i ,  i ~ M  k 
jES i 

xj>lO, j ~ S « .  

For k = 1, 2 . . . .  , l, let {~j I j ~ Sk} and {Äi[ i ~ Me} be the optimal solution and the 
set of optimal multipliers of  (Tree k) respectively. 

From (KT) applied to (Treek) , for every j ~ Sk, we have 

(5.1) 

where, ~ = Ei~ lk(j)Ä i and lk(j) = {i ~ M~ I j ~ Si}. 
When Ej  ~ So xj ~< Po, then {2il j ~ S o} is an optimal solution of the original problem 

(Tree). This follows since {Nj l j  ~ So} satisfies ( K T )  with multipliers A o = 0 and 

Ai = Äi for i ~ M - {0}. 
On the other hand, when ]~j ~ so xj > Po, then the solution { x j(15) [ j ~ So} , defined in 

terms of the nonpositive parameter 6 as follows, is feasible as stated in Lemma 5.1, and 
satisfies (KT):  
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If  ~ j =  0 or equivalently ~~< aj (see (5.1)) then let x j ( 6 ) = O  for all 6-..<0. 
Otherwise, define 

{i 
: i f  6 > / ~ ,  

x j ( 6 ) =  j - ( Œ j - 6 ) / b j  if «j > 6 >  aj,  

if aj ~> 8. 

By (5.1), if ~ > 6 > ay in the above definition then 

x1(6 ) = 7c1- ( Œj- 6 )/bj = (aj- 6 )/bj. (5.2) 

L e m m a  5.1. For any fixed 6<~0, the solution {x j (6) l  j e E }  satisfies (KT)  except 
possibly the constraint S,j e So xj <~ Po. 

Proof.  First let A o = 6. For i ~ M - { 0 } ,  define parametrized multipliers Ai(6) in the 

following manner: Suppose that xj is a variable of (Tree k) and Ic(j)  = {i ~ M k I j ~ Si} 
= {ip i: . . . . .  i t} with i 1 < i 2 < • • • < i t. 

If  6 < ~ ,  then we let A/(6) = 0 for all i ~I«( j ) .  If  6 ~> ~ ,  then find the minimum r 

such that All + "Äi2 + • " " "]-•ir ~ 8, and for each s = 1 . . . . .  t set 

/ O if s < r ,  

Ais(6)= -l~il--[-Äia+ " ' "  "~-Äir-- 6 i f s = r ,  

~Ai, if s > r.  

First we need to verify that {Ai(6) [ i ~ Me} are well-defined, i.e. if s ~ Ic(j)  N Ik(j ')  
with j ~ j '  then As(6) is uniquely determined. It was assumed that the sets S i are 
indexed in such a way that i < i' and S i N S i, 4= ¢ only if S i 2 Si,. So if s ~ I ( j )  A I ( j ' )  
then {i <~ s [ i ~ M k} (~ Ik( j )  = {i <~ s l i ~ M k} A l e ( f ) ;  hence the definition above 
uniquely determines A/ (6)  for all s ~ M k. 

Next we verify (KT).  Since 0 --.< x j (6 )  ~ ~ j  for each j ~ S  o and Äi ~ Ai(6) ~< 0 for 
each i ~ M - {0}, these satisfy (iii), (iv) and (v) of  (KT)  except possibly the constraint 

Ei  ~ So xi ~< Po- Thus it remains to verify the complementary slackness conditions (i) and 
(ii), 

(i) Ai(6) < 0 ~ Ei~s jX i (6 )  =Pi for each i ~ M -  {0}, 
(ii) x i (6)  > 0 ~ ~«ie 1(1)1~i ( 6 )  "~- 1~o = ai + bix:(6)  for each j ~ E. 
To prove (i), assume for some i' ~ M - { 0 }  we have E j c s X j ( 6 ) < P i "  Either 

~«j~s:~¢j <Pi' o r  ~ß_,j~sXj =Pi" In the former case, the optimality of  ~1 in the 
subproblem implies A i, = 0. But, 0/> Ai(6) >~ Äi for all i, hence Ai,(6) = 0 as required. 

In the latter case, since 0 ~< x j(6)<~ Ycj for all j, the assumption implies that there 
exists j' ~ S  i, such that 0 <,.x1,(6) <~1 ,  So by the definition of x / ( 6 ) ,  ~., > 8. Then 
A i ( 6 )  = 0 for all i ~ I ( j ' )  by definition. Since i' ~ I ( j ' ) ,  Ai,(6) = O. 

To prove (ii), assume x1 , (6 )>  0. Either 0 < x / ( 6 ) < ~ j ,  or, 0 < x 1 , ( 6 ) = ~ 1 ,  In the 
former case, it follows from the definition of x / ( 6 )  that ai, < 6 < ~ ,  Therefore, by 
definition of the parametric multipliers, Ai (6 )=  0 for all i ~ I ( j ' )  and hence 8 =  
~_,i~l(j,)Ai(6) + 6. We set A 0 = 8. So it follows that 8 =  ~ ie l ( j , )A i (6 )  + A 0. Combin- 



290 D.S. Hochbaum, S.-P. Hong / Mathematical Programm ing 69 (1995) 269-309 

ing this with (5.2) which implies 8 = ay, + bj, xj,(8), we get Ei~ I(j')l~i ( 8 )  "~ 1~ 0 = aj, + 
bi, x j,(8), as required. 

In the latter case, when 0 < xj,(6) = ~j,, 8/> ~., by the definition of x/(8). From the 

definition of Ag(8), we have ~j, = Ei ~ i(j'~ Ai(8) + 8 = Ei ~ i(j') Ai(8) + A 0. Combining 
this with (5.1), which is equivalent to ~, = a / +  b/Yc/=aj,+b/xj,(8), implies the 
statement of the lemma. [] 

In the above proof, x j ( 8 ) =  ~j when 8 = 0. As 8 gets smaller below zero, x j (8)  
decreases piecewise linearly; x j (6)  is either 0 or a piecewise linear function with two 
breakpoints aj and ~ which is constant outside the interval determined by the two 
points. Hence, Ej ~ so Xj(8) is a monotone increasing piecewise linear function when 
6 ~< 0. Thus, by Lemma 5.1, the optimal solution of the problem (Tree) is either equal to 

{xj(0)[ j  ~ S  O } in the case ~j~So~j <Po,  or {xj(8*)[j  ~ S  O } for 8 " <  0 such that 
Ej~soXy( 8 *)=Po .  So the optimal solution { x / I j  ~ S 0} of the original problem is 
bounded by the optimal solution {~j [ j ~ S 0} of the subproblems, i.e. x /  ~< ~j. for each 

j ~ S  o. 
For any nonnegative vector x = {xy I j ~ Sk} such that xj ~< ~j, j ~ S» x is a feasible 

solution of the subproblem (Tree k) for k = 1 . . . . .  l. So we have the following corollary. 

Corollary 5.2. The optimal solution {Ycj [ j ~ S~} of the subproblem (Tree k) provides 
valid upper bounds on the optimal solution of the problem (Tree). That is, we can 
replace the constraints in the subproblem (Tree k) by the upper bound constraints 

xj <~ Ycy for all j ~ Sk, 

without changing the optimal solution of the problem (Tree). 

Corollary 5.2 is the key idea of the algorithms described in the following subsections. 
The next lemma establishes another useful feature that for each i ~ M the optimal 
solution of (Tree i) satisfies the constraint ~,y ~ s,x~ < el with equality. 

Lemma 5.3. If  the values of uj and Pj are updated from the leaf nodes to the root: 

u j~min{uj ,  max{-aJby,  O}} and p i ~ m i n ( p i ,  ~ pk I 
k G  C i I 

(where C i is the set of children of node i in the underlying tree), then the optimal 
solution of (Treei) satisfies the constraint on Si, ~ js  s Xj <~Pi, with equality for every 
i ~ M .  

Proof. The optimal value of each variable xj is in the range where the derivative of the 
corresponding function is nonpositive. So it may be assumed that uj ~< max{-  bffaj, 0}, 
otherwise we can set uj ~ max{-bJaj ,  0} for each j ~ S O without changing the 
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optimal solution. Also we may assume that Pi <~ S,«~c, Pk for every i; otherwise the 
constraint on S i would be redundant. The condition is satisfied for each node of (Tree) 
by setting pj ~ min{p» ~k ~ c,Pk}, in O(n) time. 

It is left to show that ~,j ~ s, xj <~ Pi is satisfied as equality in the optimal solution of 
(Tree i) for all i. Suppose not, then let {Ycj I j ~ Si} be the optimal solution of (Tree i) for 

some i ~ M with Ej ~ s, 2j < Pi. Since Pi <~ ]~k c c, Pk, there is k ~ C i such that ~y ~ s«2j 
< Pk- Repeating this, we find a path from node i to a leaf node representing an upper 
bound constraint problem xy ~< uj. In this path, the constraint corresponding to each 

hode has positive slack with respect to the optimal solution {2y ] j ~ Si}. Thus we can 
increase ~j by the smallest slack of the constraints in the path and strictly improve the 

objective value of (Treei). This contradicts the optimality of {2j I j ~ Si}. [] 

5.2. An O(dn) algorithm 

Consider the problem (Tree) defined on a tree of depth d. When all pi's are set as in 
Lemma 5.3, the optimal solution of (Tree i) satisfies the constraint on Si with equality. 
The subproblems defined on the subtrees rooted at the nodes of depth d - 1 are (SRA)s 
or single variable problems with upper bounds (see Fig. 2). Call these (SRA)s the 

(SRA)s at level d of the problem (Tree). Let the (SRA)s at level d be (Treei) . . . . .  (Treeip) 
and the optimal solutions respectively {2j I j ~ Si k} for k = 1 . . . .  , p. By repeated appli- 
cations of Corollary 5.2, for each k = 1 , . . ,  p the optimal solution {2 j[ j  ~ Si)  of 
(Treei~) provides valid upper bounds on the optimal value of {xj [ j ~ Si)  in (Tree). So 
we can replace the constraints of (Treeik) by upper bound constraints {xj <~ 2j I j E Si~}. 
Thus after solving the (SRA)s at level d, we get an equivalent tree resource allocation 
problem of reduced depth, d -  1. This procedure is repeated until we get the tree 
resource allocation problem of depth 1, which is an (SRA). Then the optimal solution to 
this (SRA) is the optimal solution to (Tree). The algorithm is formally presented as 

follows: 

Procedure Depth 

Step 0(a): {preprocess} From the leaf nodes to the root set uj ~ min{u j, m a x { - a J  

bi, 0}} and Pi ~ min{p/, ~ksc~Pk}" 
Step 0(b): If (Tree) is a problem with single variable xj (with d = 0) then stop. The 

optimal solution is xj = uj. Otherwise 1 <-- d. 

Step 1: Let the (S/~4)s at level I be (Treei l ) , . . , (Treei ) .  For k = 1 . . . .  , p,  solve 
(Treeik) by Procedure SRA and let the solution be {Ycj I j ~ Si).  

Step 2: If l = 1 then output the solution as the optimal solution; stop. Otherwise, 
continue. 

Step 3: For k = 1 , . . ,  p,  update the upper bounds uy <-- 2y for all j ~ Sik and delete 
the constraints of (Treeik) from (Tree). 

Step 4: Set 1 <-- I - 1. Go to Step 1. 
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For each l = 1 . . . .  , d, the running time is dominated by the calls to Procedure SRA 
for solving the (SRA)s at level l. Since the total number of variables in the (SRA)s at 
any level l is bounded by n, this can be done in O(n) time. Hence, the total complexity 
of Procedure Depth is O(dn). 

5.3. An O(n log n) algorithm 

When Procedure Depth is applied to a (Tree) problem such as (Nested), then the 
running time is O(n2). Yet (Nested) can be solved in O(n log n) time. The second 
algorithm makes use of Algorithm Nested. The array {al , . . . ,  a n} is initially sorted once. 
This sorted vector is then used in the linear time calls to Algorithm Nested. 

The idea of the algorithm is inspired by the one used by Dyer and Frieze [7] for the 
convex tree allocation problem. That algorithm first finds a " long"  path in the tree. 
Then it recursively finds optimal solutions on the subtrees rooted at nodes which are not 
on the path but have patents on the path. By Corollary 5.2, these optimal solutions 
provide valid upper bounds on the variables and thus reduce the tree resource allocation 
problem into an equivalent nested resource allocation problem. Finally the algorithm 
solves the nested resource allocation problem using the linear time algorithm (the sorting 
is given), Algorithm Nested. 

In order to find a " long"  path, for each hode i of the tree we evaluate the number of 
nodes in the subtree rooted at node i, n i. This can be done in O(n) time by a simple 
dynamic programming procedure. Starting at the root of the tree as the initial node, the 

1 algorithm finds recursively a child node k of the current node i with n« > 7n i. This is 
repeated until the current node is a leaf node. It is shown that the path obtained by this 
procedure is sufficiently " long" .  

Procedure Tree ( ( T r e e ) )  

Input: A tree resource allocation problem, (Tree). 
Output: The optimal solution of (Tree). 

Step 0(a): {preprocess} Sort { a  1 . . . . .  a n} in increasing order. 
Step 0(b): {preprocess} From the leaf nodes to the top node, set uj ~-min{u j, max 

{ - aJby, 0}} and Pi ~ min{p/, Ek ~ ciPk}. 
Step 0(c): If the problem has single variable xy, terminate with the optimal solution 

xy = uj. Otherwise, let i ~ the root of tree. 
1 Step 1: If i has a child k with n k > ~n i then i <-k and repeat Step 1. Otherwise 

continue to Step 2. 
Step 2: Let P(i) be the path from the root to i. Define K =  {k q~P(i)[k has the 

parent in P(i)}. 
Step 3: For k ~ K ,  call Procedure Tree ( (Tree k) ) and let {~ j [ j  ~ S e} be the 

optimal solution. 
For k ~ K, set uy <-- ~j for all j ~ Sk. 
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Step 4: Let (Nested) be the nested problem defined by the constraints corresponding 
to the nodes in P(i) and the updated upper bounds in Step 3. 
Solve (Nested) by Algorithm Nested. 

Theorem 5.4. Procedure Tree is correct and solves the problem in O(n log n) steps. 

Proof. Step 1 finds the " long"  path in tree in O(n) time. Step 2 identifies the roots of 
subproblems appended in the path, which also can be done in O(n) time. Step 3 solves 
the subproblems by recursive calls to Procedure Tree. Denote by C(n) the complexity 
of Procedure Tree applied to the problem with n variables, then the total running time is 
Ek ~ KC(nk) time. O(n) time is required to update all upper bounds in Step 3. After Step 
3, we obtain a nested resource allocation problem on n variables. Finally, Algorithm 
Nested solves this nested problem in O(n) time using the presorted data. 

The validity of the algorithm follows from Corollary 5.2 which ensures the equiva- 
lence of the original tree resource allocation problem and the nested resource allocation 
problem obtained in Step 3. Since every step except the recursive calls can be done in 
linear time, the total complexity is given by, 

C(n) <<. ~_~ C(nk) +an,  (5.3) 
k~K 

for some constant A. Assume inductively that C(m) <~ Dm log m for all m < n for 
some constant D. From (5.3), 

1 1 C(n) <~ ~_ù Dn k log n k + A n ~ D  log Tn ~_~ n k + A n = D n  log Tn+An.  
k~K k~K 

Taking D >_-A/log 2, we get C(n) ~Dn  log n. By induction the stated complexity 
follows. [] 

6. A strongly polynomiai algorithm for (Network) 

Fujishige [9] showed how to solve for a lexicographically optimal base of a 
polymatroid using n calls to an oracle identifying a maximal independent vector of a 
polymatroid. Fujishige notes explicitly, that this algorithm is applicable for solving the 
problem (Network) with strictly convex and homogeneous (that is, without the linear 
terms - a« = 0 for all k) cost function. As is easily established, the same algorithm 
applies with a minor modification also to the nonhomogeneous case, including linear 
terms, for a strictly convex cost function. Such algorithm requires in this case n calls to 
a procedure solving the maximum flow problem. 

Gallo, Grigoriadis and Tarjan [12], in their significant work on parametric maximum 
flow problem, noted that their algorithm is applicable to the lexicographically optimal 
flow problem, and the problem is solvable in the running time of a single application of 
the preflow algorithm of Goldberg and Tarjan [13]. The lexicographically optimal flow 
also provides an immediate solution to (Network) if the cost function is strictly convex 
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and homogeneous. Unlike Fujishige's algorithm, the lexicographically optimal flow 
algorithm of [12] does not extend to the nonhomogeneous case without change in the 
running time. This is because, as explained later, their algorithm requires that the 
parametric capacities are linear in the parameter, while for (Network) with nonhomoge- 
neous cost these capacities are piecewise linear. The purpose of this section is to devise 
and validate a lexicographically optimal flow algorithm that runs in the same time as a 
single application of the preflow algorithm, in the presence of piecewise linear paramet- 

ric capacities. This algorithm is shown to be applicable to solving (Network) with 
nonstrictly convex and nonhomogeneous cost in the running time of a single application 
of the preflow algorithm. 

It is also shown that the algorithm of [12] for finding all breakpoints of the cut 
capacity of a parametric flow network with linear parametric capacities has invalid 
initialization procedure. We propose an alternative valid initialization procedure that 
corrects for the flaw in that algorithm. 

The equivalence of (Network) and the lexicographically optimal flow problem is 
discussed in Subsection 6.1. In Subsection 6.2, we show how to formulate a parametric 
flow problem to solve the lexicographically optimal flow problem. Subsections 6.3 and 
6.4 contain the properties of the parametric flow problem which are used to prove the 
validity of the algorithm presented in Subsections 6.5 and 6.6. In Subsections 6.5 and 
6.6, we present the algorithm, based on the algorithms in [12], that solves the 
lexicographically optimal flow problem. 

6.1. Lexicographically optimal flow problem 

Let G be the multiple sink flow network on which problem (Network) is defined (as 
in Subsection 2.1, (5)). The following observations and assumptions simplify the 

problem: The optimal solution x satisfies x k <~--ak/b ~, hence we may set u k 
min{u k, - ak/bk}; As the maximum flow value may not exceed the capacities of the arcs 
adjacent to the sink, B ~ min{B, Etk ~ ruk}, and it is assumed without loss of generality 
that B is the maximum flow value. To ensure that, we add an additional arc going into 
the sink s with capacity equal to B and cost zero. The flow on that arc is then one 
component of the out-flow vector. 

Let the set of sinks be T = {t» t » . . . ,  t,,} and x i the flow from sink ti to t. Then the 

network resource allocation problem is rewritten as: 

(Network) min ~bk x k + ak x k 
k = l  

s.t. x = ( x  1, x a . . . . .  x~) is the out-flow vector of a 

maximum flow f of G. 

The corresponding lexicographically optimal flow problem is defined: 

(Lexico) Find a maximum flow f which lexicographically maximizes 

the n-component vector whose kth component is the 

kth smallest element of {bkx « + ak l tk ~ T}. 
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The following theorem due to Fujishige [10] and an additional observation stated as 
Lemma 6.2 establishes the equivalence of (Network) and (Lexico). 

Theorem 6.1. Let r be a submodular function defined on a distributive lattice A of 
subsets of E, a finite set, and let {gk(Xk)[ k ~ E} be differentiable convex functions. 
Consider the following optimization problem (which is similar to (GAP) defined in 
Section 1 except that the constraint on the set E is equality and there are no 
nonnegativity constraints) 

(GAP') min ~ gk(xk) 
k~E 

E xk = r ( E )  
k~E 

~_,xk<~r(A),  A ~ A .  
kEA 

Then x is an optimal solution of (GAP') if and only if x lexicographically maximizes 
the vector whose kth component is the kth smallest element of the vector of derivatives, 
{g~(xk) I k ~ E}. 

Lemma 6.2. Let r be defined on the lattice of all subsets of E. Assume that r is 
monotone, i.e. for every pair of subsets A, B GE with A GB we haue r (A)  <,% r(B). 
Then every feasible solution of (GAP') is nonnegative. 

Proof. Suppose that ~ is a feasible solution of (GAP') with Xp < 0 for some p ~ E. 
Then, 

r ( E - { p } ) > ~  ~,, Y c k = r ( E ) - 2 p > r ( E ) > ~ r ( E - { p } ) ,  
k ~ E - { p )  

which is a contradiction. [] 

Theorem 6.1 has an analogue for the network resource allocation problem. 

Theorem 6.3. x* = {x; It k ~ T} is an optimal solution of (Network) if and only if x* 
is the out-flow vector of a solution f of (Lexico). 

Proofi For all S _ T, define r(S) to be the value of maximum flow achievable through 
the subset of sinks, S. In particular, r ( T ) =  B, the maximum flow value of G. It is 
known (see e.g. [9]) that r is a submodular function and (Network) can be written as 

B 1 2 ( P ( 6 . 1 ) )  ~bkx k + akx k 
k ~ l  

(i) ~ «~ = B  ( =  r ( T ) )  
k=l  

(ii) ~_, xk<~r(S ), S G T  
tk~S 

(iii) x~>10 for k - - 1  . . . . .  n. 
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r is a monotone function defined on the set of all subsets of T. So by Lemma 6.2, the 
nonnegativity constraints, (iii) can be relaxed from (P(6.1)) without ehanging the 
solution. Thus our theorem directly follows from Theorem 6.1. [] 

For the case when a h = 0 and b h > 0 for all k = 1 . . . .  , n, Fujishige [9] developed a 
strongly polynomial algorithm which solves (Lexico) in the time required to solve at 
most 2 n -  1 maximum flow problems on G. It can be easily shown that the same 
algorithm can be used to solve the general case in which a 4= 0 in the same running time 

by the translation, Yh = x h -  ab/bh of the submodular polyhedron of (P(6.1)) as the 
translation preserves the submodularity. This running time exceeds the running time 
established here by a factor of O(n). 

6.2. The parametric flow problem 

In order to solve the problem (Lexico), we consider the network G with parametric 

capacities ck(A) assigned to eaeh arc (te, t) for k = 1 . . . .  , n, with co(A) = max{0, (A - 
a«)/b h} defined for A >~ min{ab I k = 1 , . . ,  n}. As shown in the following subsection, 
from the breakpoints of the parametric flow problem defined on G with the parametric 
capacities, one can construct a solution of (Lexico) and hence a solution of (Network). 

The parametric capacities functions ch(A) are monotone increasing in A, where the 
parametric algorithm of [12] which we use requires that the capaeity functions at the 
sink are nonincreasing, and at the source they are nondecreasing. To this end we 
reintroduce the problem with the reversed roles of source and sinks. 

(Lexico') Find a maximum flow f on G which lexieographically 

maximizes the n-component vector whose kth element is the 

kth smallest element of {bkx h + a h I sh ~ S}. 

In the reversed network, G, we have a sink s and ares (s, s h) for k = 1 . . . . .  n (each 

s h corresponds to a t h in G.) Each arc (s, s h) of 6 is assigned the parametric capacity 
ch(A). Denote this parametric flow network by G(A); so G(Ä) with some fixed value 

A = Ä stands for the network 6 with capacity ck(Ä) on each arc (s, s k) and 6 ( ~ )  is 6 
with each arc (s, s k) assigned infinite capacity. For an s - t  cut (X, X)  of G, ca(X, X )  
denotes the capacity of (X, ,~) in G(A). Let K(A) be the capacity of minimum s - t  cut 

of 6(,~). 
In order to establish the validity of the algorithm several important properties of G(A) 

are considered first. 

6.3. Properties of G(A) 

The minimum cut capacity function K(A), as shown in Subsection 6.6, is a monotone 
nondecreasing piecewise linear function. Ler the breakpoint of K(A) be the value of A 
where the slope of K(A) changes. At certain breakpoints, some nodes of 6 shift from 
the sink side to source side as A increases; we call such breakpoints node-shifling 
breakpoints. 
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For each k = 1 , . . ,  n, let A k be the node-shifting breakpoint where s k shifts from 
sink side to source side. Without loss of generality, we may assume that A 1 ~< A 2 ~< • • • 
<~ Aù. Let kl ,  k 2 , . .  , kp_ 1 be the values of k such that Akj < Akj+ 1. Let k o = 0 and 

kp = n. Then {Akt, Ak2 . . . . .  A«p} is the subsequence of all distinct values of A k sorted in 
increasing order: 

A1 . . . . .  A k  1 < l~k I + 1 . . . . .  A k  2 < " ° " < l~kj_ 1 + 1 . . . .  

= A k t <  . . .  <Akt,_1+1 . . . . .  Akp. 

L e m m a  6.4. (i) For j = 1 . . . . .  p ,  ( x 1 . . . . .  x k ) = (cl(A 1) . . . . .  c « ( A k )) attains the maxi- 

mum f low value achievable through sinks {sl . . . . .  sk),  i.e. E ~ ~ l x k  is the value o f  the 
maximum f low of  the multiple source network G with the additional restrictions that 

X k j + l  . . . . .  X n ~ O .  

(ii) On G(~),  there is a maximum f low f which gives the in-flow vector x such that 

x k = ck(A k) for  all k = 1 , . . ,  n. 

Proof.  The proof is essentially identical to the proof of Theorem 4.1 of [12] and is 
repeated here for completeness sake. 

(i) Let {s} = X  0 c X  1 c X  2 c . . .  c X p  be the sets such that (Xi, Xj) for j = 1 , . .  p 

is the minimum cut with the largest source side o_f G(Akt). Then ski - 1+ 1, Ski_l+2 . . . .  , Sk i 
~ X j - X j _  1. For j =  1 , . . , n ,  the cut (_Xj_» Xj_ 1) is a minimum cut for G(Ak)  as 

well. Thus C xk(Xj_I ,  Xj_  1)= cxk(Xj, Xj); see Fig. 5. It follows by induction on 
j = l  . . . . .  p,  

kj 

c%(Xj ,  X j ) =  ~ c / ( A k ) +  f i  Ck(Akj), (6 .1)  
k = l  k = k j +  l 

~k 

x/.--~." / , \ /  ? ~~+, 

Fig. 5. G(A). 
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which implies for j = 1 . . . .  , p, 
kj 

c ~ ( X j - { s } ,  Xy)= E ck(Ak). (6.2) 
k = l  

Which, in turn, implies (i). 
(ii) Consider the maximum flows, f~, f2 . . . .  , fp generated by the parametric flow 

algorithm of [12] for the successive parameter A values Akt, Ach, . . . .  Ak. When the 
parametric maximum flow algorithm is restarted with new value A~j of A, the flow on 
each arc (s, s k) with k ~ {ky_ 1 + 1, ky_ 1 + 2 , . . ,  n} is first increased frorn ck(A~j_~) to 
ck(Ak~). This additional flow will reach the sink t, because of (6.1) and the fact that (Xj, 
Xj) is the minimum cut of G(Akj). By repeating the argument inductively on j = 1 . . . .  , p, 
we have xk=  ck(A k) for k =  1 . . . . .  n. In particular fp is the desired flow. 

[] 

Remark 1. The proof holds for any type of parametric capacities once they satisfy the 
monotonicity assumption and the range of A begins at the point where all parametric 
capacities are zero. 

Remark 2. In the proof of Theorem 4.1 of [12], the cut (Xj, Xy) is claimed to be not 
only the minimum s - t  cut but also the smallest source side of minimum s - t  cut of 
G(A«j+I). This is false even in the simpler case where the parametric capacities are 
linear functions without constant terms: if there is alternate cut (Z, Z) such that 
sl . . . . .  ski ~ Z, c(Z - {s}, Z) = c(Xj - {s}, Xj) and Z is properly contained in Xj (see 
Fig. 5), then (Z, Z) is also a minimum s - t  cut of G(Ak~+l), and such an example is not 
hard to construct. Consequently, the breakpoint algorithm as currently stated in [12] is 
invalid, since "contracted" subsets of vertices in the initialization step are not necessar- 
ily disjoint. In Subsection 6.4, we define a new method of "contracting" a pair of 
subsets of vertices which are not disjoint but still possess the property required for the 
breakpoint algorithm. 

Lemma 6.5. Let ~ be a value such that Akj < 6 < A~j+ 1 for some 1 <~ j <~ p - 1. Then 
( Xj, Y,i) is the minimum s - t  cut with largest source side of  G(6). 

Proof. Let (Y, Y) be the minimum s - t  cut of G(B) such that [YI is maximum. Then 
since A,i </~, we have Xj ~ Y. Our claim is that Xj = Y. So assume the contrary: 
assume that Y properly contains Xj. Then Y must contain an element Sq ~{skj+l, 
ski+2, . . ,  ski+) with %(6) > 0 (see Fig. 5) since otherwise 

c ( Y - { s } ,  Y ) =  c ( X y - { s } ,  L ) ,  (6.3) 

and hence cak(Y, Y ) =  cAk(Xj, Xj). This implies that (Y, Y) is a minimum cut of 
^ , J . J . . 

G(Ak). But it contradlcts tlie maxlmahty of [Xy [. 
This however means that 6 is a breakpoint of K(A) at which the node Sq shifts from 

the sink side to source side. But it is not possible since Akj+x is the smallest breakpoint 
larger than 3% and Akj < 6 < Aki+l. So Xj = Y. [] 
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X j + "j + I ~ - ;~k i+~ 

X0." 
ù" X j.1., 

X j + 1 . "  t 

.* 

° ° . . ~ s  

Fig. 6. GR( - /x ) .  

Consider now the reversed parametric network Gg(A) of G(A), i.e. the parametric 
network obtained from G(A) by reversing the directions of all arcs, considering the 
sources as sinks and sink as source while maintaining the same capacities (Fig. 6). When 
the parametric maximum flow algorithm of [12] is applied to Gg(A), the parameter A is 
replaced by - / x  in order to satisfy the monotonicity requirement. For j = p, p - 1 . . . .  ,1,  

the algorithm finds the minimum cut with the largest source side (X}, X)) (in the 
reversed network) for the breakpoint --Akj; see Fig. 6. for -A«j+.  An argument 
analogous to the one in the proof of Lemma 6.5 implies that if Akj < 6 < Akj+~ (so 
--Akj+~ < --6 < --Akj), then (.,~~+ 1, X~+ 1) is the minimum cut with the largest source 
side for tz = - õ  in the reversed network. 

Corollary 6.6. Let  6 be a value such that A~j < 6 < Akj+l for  some 1 <~ j <~ p - 1. Then 

(X~+ 1, X}+ 1) is the minimum s - t  cut with smallest source side o f  G( $ ) where ( X)  , X~ ) 

denotes the minimum s - t  cut with smallest source side o f  G(A~j) for  k = 1, 2 . . . . .  n. 

The following lemma is also needed for the algorithms in subsequent subsections. 

Lemma 6.7. (i) X~+ 1 c X j  but, (il) X~+ 1 is not contained in X j_  1. 

Proof. (i) follows from the fact that (Xj, .Yj) is a minimum cut of G(Akj+l) as 
mentioned in the proof of Lemma 6.4. 

To prove (ii), assume X~+ 1 c_Xj_ 1. Then in G(Ak,+l), for every k ~ {kj_ 1 + 1, kj_ 1 
+ 2 . . . . .  kj}, the arc (s, s k) is saturated with the flow equal to ck(A~ +1). But ck(Akj+l) 
>~ ck(Ak~) for every k. Furthermore, there is at least one index q ~ tkj_ 1 + 1, kj 1 + 
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2 . . . .  , kj} such that Cq(l~kj) > 0 since otherwise (Xj, Xj) would not have been an s - t  
minimum cut of G(Ak). This implies that cù(A k ) > c_(A k ). 

Thus (6.1)implies ihat for I + {1, 2 . . . . .  kj_ li+~ (Xj+ 1 j {s}), 

k~l 

But in G(Akj_I) for each k e l ,  the flow ck(A k) on the arc (s, s k) can reach the sink t 
through the cut (X~+ 1 - {s}, - '  X~+ 1) of G. Hence, 

cœ(X;+I--{S}, ~tj+l) 9 E Ck(J~k), 
k~l 

which is a contradiction. [] 

6.4. The contraction of G(A) 

Let 6 and A be different values of A with 6 < A. Assume that all parametric 
capacities are linear functions of A on the closed interval [6, A] (but not necessarily 
outside the interval). Let f(g) be a maximum flow and (W, W) ((Z, Z), respectively) be 
the corresponding minimum cut with the largest source side of G(6) (GR(A), respec- 
tively). 

The purpose of this subsection is to show that the node-shifting breakpoints of G(A) 
on the open interval (6, A) can be found by the breakpoint algorithm of [12]. We first 
present a modified initialization procedure to correct for the flaw addressed in Remark 2. 

The initialization procedure of the algorithm contracts W and Z into source and sink 
respectively, where by the contraction of a subset of vertices we mean shrinking of the 
vertices of the set into a single vertex, eliminating loops and combining arcs by adding 
their capacities. This contraction procedure is to achieve the property that 

(*) in the contracted network, the s - t  cut with the trivial source side {s} (sink side 
{t}) is the unique cut which corresponds to a minimum s - t  cut of G(ô) (G(A), 
respectively), 

where the correspondence is the one obtained by expanding the contracted vertex set. 
However, as pointed out in the Remark 2 of the previous subsection, W and Z are not 

necessarily disjoint and the contraction procedure as proposed in [12] is invalid. 
The following preliminary lemma is needed to establish the modified initialization 

procedure. Its proof follows directly from Lemma 6.5, Corollary 6.6 and Lemma 6.7. 

Lemma 6.8. G(A) has node-shifting breakpoint on the open interval (6, A) if and only 
if W does not include Z; or equivalently, W U Z is a proper subset of the vertex set of 
G( A). 

Procedure Contraction(G(A); W, 2) 

Step 1" For every source s c E W A 2, delete the arc (s, s c) from G(A). 
Step 2: Contract W - Z  and 2 into single vertices. Call this contracted parametric 

network G(8, a)(A). 
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Step 3: 

s t 

~~b~' w 
A 

Fig. 7. 

Let f' be the flow G(~ a)(A) which corresponds to f of G(A). 
Let g' be the flow of G~, a)(h) which corresponds to g of GR(A). 
If G(~, a)(A) has at least three vertices, continue to the (main procedure) of the 
breakpoint algorithm with initial values f', g', 6 and zl; otherwise G(A) has no 
node-shifting breakpoints on (6, A); stop. 

Suppose a source Sq ~ W N  Z in Step 1 (see Fig. 7). Since 6 < A, c~(W, W )  = c s (W 

N Z, W N Z). So Xq = 0 in f. Once Sq is in the source side of an s - t  minimum cut of 
G(6),  for every h >~ 6, there is an s - t  minimum cut of G(h) in which Sq is in the 
source side. Thus for every h >~ 6_, Xq = 0 in the maximum flow of G(,~). So we can 
delete (s, %) for every S q ~ W N Z without changing the breakpoints. 

Consider Step 2 of the contraction. W is maximum and W n Z is shrunk into the sink. 
Hence, in the contracted network, G(a, ,~)(h) where W -  Z is shrunk into source, the s - t  

cut with the trivial source side is the unique cut corresponding to a minimum s - t  cut of 
G(6)  (see Fig. 7). Also by the maximality of Z, it is elear that the s - t  cut of G(~, a)()0 
with the trivial sink side is the unique cut corresponding to an s - t  minimum cut of 
~(A).  Thus (*)  is achieved in this contraction procedure. 

By Lemma 6.8, G(,~) has node-shifting breakpoints on (6, A) if and only if W U Z is 
a proper subset of the vertex set of G(h); which means G~~, ,a)(,~) has more than two 
vertices. Thus if G(~, a)(A) has only two vertices, source and sink, then we conclude that 
the original problem has no breakpoints in (6, A) and terminate. Otherwise we apply 
the breakpoint algorithm of [12] to G(~, A)(h). 

The details of the breakpoint algorithm of [12] are now briefly sketched: The (main 
procedure of the) breakpoint algorithm of [12] starts with a pair of parametric flow 
networks: G(~, a)(h) with initial preflow f' and G(~, a)(A) with initial preflow g'. Under 
the assumption that all parametric capacities are linear on [6, A], the minimum cut 
capacity is a piecewise linear concave function of h on [ 6, A]. Thus the next guess ~ of 
a node-shifting breakpoint on (6, A) can be calculated as the intersection of two tangent 
lines determined by the leflmost and the rightmost line segments of the (piecewise linear 
concave) minimum cut capacity function (restricted on [6, A]). The algorithm deter- 
mines whether ~? is a node-shifting breakpoint by calculating the tangent lines deter- 
mined by the s - t  minimum cuts with the largest source side and the smallest source side 
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for A = r/; if they do not coincide then ~/ is indeed a node-shifting breakpoint. The 
algorithm repeats this procedure on the next search intervals [6, r/] and [r/, A]. To 
obtain efficient time bound, in the current interval [6, A] the algorithm finds a 
maximum flow (and a minimum cut) for A = 7/by concurrent invocation of the preflow 
algorithm, for both G(~, a)(h) with initial preflow f' and G(~, a)(A) with initial preflow 
g'. By doing this the algorithm can "balance"  the numbers of nodes between the source 
side and the sink side of the minimum cuts considered in the subsequent search 
intervals. The algorithm finds the node-shifting breakpoints on (6, A) in 
O(N'M' log(N'2/M'))  steps, where M' and N'  are respectively the numbers of arcs 
and nodes of G(~, a)(h). 

6.5. The main algorithm 

When a = 0, the main algorithm is identical to the algorithm in Subsection 4.1 of [12] 
with the exception of using the modified subroutine, Subroutine Breakpoint-Finder for 
finding the node-shifting breakpoints of the minimum cut capacity function K(A), of 
d(,O. 

Algorithm Lexico-Finder 

Step 0: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Augment the network G with a dummy source s and the arcs (s, s k) for 
k = l , . . . , n .  
Call this augmented network G. 
Assign the parametric capacity ck(A)=rain{0, ( A -  ak)/b  k} to each arc 
(s, s k) of G. Denote the parametric flow network by G(A). 
Call Subroutine Breakpoint-Finder to find the node-shifting breakpoints of 
K(A) for A ~> min{ak I k = 1 . . . . .  n} 
For each source s~, k = 1 , . . . ,  n, find the node-shifting breakpoint A k at which 
s k shifts from sink side to source side of a minimum s - t  cut of G(A k) as A 
increases. 
Assign the capacity ck(A k) to each arc (s, s~) of G. 
Find a maximum flow f on the network with these upper bounds. 
Output the in-flow vector x of f as the optimal solution of (Lexico'). 

Subroutine Breakpoint-Finder is given in the next subsection. In the following 
theorem, we prove the validity of the main algorithm under the assumption that 
Subroutine Breakpoint-Finder correctly finds the node-shifting breakpoints of K(A). 

Theorem 6.9. Algorithm Lexico-Finder is correct: the maximum flow f obtained in 
Step 4 gives the in-flow vector x which is the optimal solution of the problem (Lexico'). 

Proof. Consider the breakpoints of Step 3, A1,..., A n. Without loss of generality, we 
may assume that A1 ~ A 2 ~< • • • ~< A n. Let k 1, k2 , . . . ,  kp_~ be the values of k such that 
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Akj < Akj+l. Let k 0 = 0 and kp = n. Then {Akl, Ak2 . . . . .  Akp} is the subsequence of  all 

distinct values sorted in increasing order: Also let f be the maximum flow obtained in 

Step 4. 
By Lemma 6.4, the in-flow vector x of  f satisfies x k = ck(A k) for all k = 1 . . . .  , n 

and: 

Faet  1. For j = 1 . . . . .  p ,  ( x  I . . . . .  Xkj ) = (cl(A 1) . . . . .  ckj(Akj)) attains the maximum flow 

value achievable through sinks {s 1 . . . . .  sk), i.e. E~~lx~ is the value of  the maximum 

flow of the multiple source network G with the additional restrictions that xkj + 1 . . . .  

x n = 0 .  

From the definition of  ck(A): 

ck(Ak)=((O A~-ak) /bk ififAk>~ak'A k < a  k. 

Define ]&k = max{Ak, ak}. Then we have: 

Fact  2. ck(A k) = ck(]&k) = ( ]&k -- ak)/bk for all k = 1 . . . . .  n. 

Fact  3. {A k ] k = 1 . . . . .  n} and { ]&k I k = 1 , . . ,  n} have the identical elements except for 

k ' s  such that A k < ]&k and ck(A k) = ck(]&k) = 0. 

Let o- be the permutation of {1 ,  . . ,  n} such that ]&«(a~ ~< ]&«¢2) ~< " " " ~< ]&teù). Let 

il, i 2 , . .  , iq_ 1 be the values of i such that ].Lo.(ij)< ].Zo_(/j+l). Let i 0 = 0  and iq=n. 
Then { ]&«~q~, ]&«~i2) . . . . .  ]&«<iq~} is the set of  all the distinct values in increasing order: 

B o ' ( 1 )  . . . . .  J[~o(i l)  < ] & o ' ( i l + i  ) . . . . .  ]&o'(i2) < " " " < ] & o ' ( i j - l + l )  

. . . . .  ]&o ' ( i j )  < " " " < ] & o ' ( i q _ l + l  ) . . . . .  ]&tr( iq)"  

For a fixed j = 1 . . . . .  q, let j* denote the maximum value such that Ak~ * ~< ]&«~i?, 

then since A~ ~< ]&k for all k = 1 , . . ,  n we have: 

Fact  4. { s l , . . . ,  sk~ * } _ {sc(l) . . . . .  schi?}. 

Thus for every j = 1 . . . . .  q: 
i j  i j  

~., x«~i)= ~, ( m<i)- a«~i))/b«~i~ (Fact 2) 
i = 1  i = 1  

«» 

= E c k ( A k )  (Fac t3 )  
k = l  

= the maximum flow value achievable through { S l , . . . ,  s U } (Fact 1) 

>~ the maximum flow value achievable through { S«(l~ . . . . .  schi? } 
(Fact 4).  

Since EI~ aXo-( i )  cannot be greater than the maximum flow value achievable through 

{s«o ) . . . . .  schi?}, E~~ lx«~i) is equal to the maximum flow value achievable through the 

sinks {S«~a) . . . . .  schi?}. 
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So rar we have proved that the maximum flow f yields the in-flow vector x such that 
for each j = 1 . . . . .  q: 

Fact  5 .  (Xo-(1)  . . . . .  Xo-(ij)) --" ( ( /&o- ( l )  - ao-(1))/bo-(1) . . . . .  (/&(r(i]) - ao'(ij))//bcr(ij)) is the 
in-flow sub-vector attaining maximum value achievable through the sinks 

{So-(1 ) . . . . .  SŒ(i])}" 

Fact 6. /&o-(l) ~/&o-(2) ~ " " " ~/&o-(n) and/&«(i0, /&o-(i2),'",/&cr(iq) is the subsequence of 
all distinct values sorted in increasing order. 

b(r (1) x ; ( 1 )  

and from (Fact 

bù(t) x;(,) 
Therefore, 

It is shown by induction on j = 1 . . . . .  q, using (Fact 5) and (Fact 6) that x is the 
solution of (Lexico')  with lexicographically maximized vector (/&«(1), /&«(2),..,/&«(n)). 
(Alternatively it follows directly from Theorem 9.1 of [16] which is stated in more 
general terms.) 

First, by (Fact 5), (x«o)  . . . . .  Xo-( i l ) )  = ( ( /&o.(1)  - -  ao_(1))//bo.(1 ) . . . . .  (/&o_(il)--ao.(il))// 
be(il )) is the in-flow sub-vector attaining maximum value achievable through the sinks 
{s«o ) . . . . .  sc(q)}. So the in-flow vector y of any maximum flow of G satisfies 

Y«(~) ~< X°'(1) ' "  " " '  YŒ(/1) ~ X°'(il)" 

Hence, 

b«(1)Y«(1) + acr(1) ~</&o-(l)  . . . .  , bo'(il)Yo-(il) -[- a g ( i l )  • ]-'~o-(/1). (6.4)  

Assume this holds for all k ~ j -  1, then 

b,r(1)Y,r(1) + ao-(1) ~</&o-(l), • • . ,  b,r(i;_l)Ycr(ij_l) + ao-(i;_1) ~</&o'(ij_l)" (6.5) 

Let x' be an iu-flow vector which gives a strictly better solution to (Lexico')  than x. 
Then by (6.5) we must have 

-1- a g ( i )  = /&o-(i) . . . .  ' b°'(ij-l)Xó-(ij 1) -~- a«(i;-1) = /&o-(ij 1)'  (6.6)  

6), there must be t with cr(i;_ 1 + 1) ~< o-(t) ~< o '( i ;)  such that 

+ at(t) >/&o-(t) = bcr(t)x«(t) + ag(t). 

(x'«) - o«,)) lBù) > (xt,)- a«,)) lB«). 
But then (Fact 5) implies that there must be t' with o-(i;_ I + 1) ~< or(t') ~< «(i;) such 
that 

( X'(r) - a«(t,)) /So.(, ) < ( Xo-(, ) - a«(t,)) /S«(t, ). 

Hence: 

bo~(t')x'(t') + a«(t') </&o-(t'). (6.7) 

(6.6) and (6.7) imply that x' is a worse solution than x, which is a contradiction. Thus 
we conclude that the in-flow vector x of f of Step 4 yields the optimal value 

(/&co), /&«(2), - . ,  /&«(n)) to the problem (Lexico').  [] 
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The complexity of the main algorithm, Algorithm Lexico-Finder, excluding Step 2, 
is the same as the complexity of the maximum flow problem on G. This is since Step 4 
requires the maximum flow problem on G, while Step 1 and Step 3 can be executed in 
O(n) (where n is the number of sources of G.) 

In the following subsection, we describe Subroutine Breakpoint-Finder that is called 
for in Step 2, which finds the breakpoints of K(A) in the time of a single application of 
the preflow algorithm. It follows that the complexity of Algorithm Lexieo-Finder is the 
same as that of the preflow algorithm. 

6.6. The breakpoint algorithm 

When a = 0, Step 2 of Algorithm Lexico-Finder is executed using the breakpoint 
algorithm of [12] (discussed in Subsection 6.4) which uses the parametric maximum 
flow algorithm developed in the same paper. While, the parametric maximum flow 
algorithm works for any type of parametric capacity function once it satisfies the 
monotonicity assumption, the breakpoint algorithm requires that parametric capacities 
are also linear functions. When all parametric capacities are linear, the capacity function 
K(A) is a piecewise concave function with at most n -  2 breakpoints since at each 
breakpoint at least one source of G()t) shifts from the sink side to source side of a 
minimum cut as ~t increases. 

In our case, each parametric capacity ck(A) is a piecewise convex linear function with 
single break point (see Fig. 8). So the minimum cut capacity function K(A) is piecewise 
linear but not concave in general. The function still has nice properties which allow us to 
use the breakpoint algorithm of [12] as subroutine in order to solve the problem in the 
same running time. 

The set of breakpoints consists of two types of points (which are not necessarily 
mutually exclusive). The first type of breakpoints are the node-shifting breakpoints 
(where some nodes of the network shift from the source side to the sink side of a 
minimum cut as )t increases). Consequently, the number of node-shifting breakpoints is 
bounded by the number of nodes in G. The second type of breakpoints are derived from 
the breakpoints of the parametric capacities, {a k I k = 1 . . . . .  n}. Even if we may have the 
same minimum cut over some range of A, there can be a change in the slope of K(A) if 
the parametric capacity of an arc (s, s k) in the minimum cut begins to increase from 

ck(x) 

/ 
-ak/b k 

/ 
ak 

Fig. 8. Capacity function on arc (s, s,). 
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Fig. 9. Minimum cut capcity function K(A) of G(A). 

zero to positive value at the point A = a k in the range. Thus the second type breakpoints 
are from the set D = {a«[k= 1 . . . .  ,n}. It may be assumed that a k < 0 for every k 
since, otherwise, x~ = 0 in the optimal solution. Let 30 ~< 31 ~ ' ' "  ~ 3 n _  1 be the 
elements of D sorted in increasing order. In particular 30 = min{a~ [ k = 1 . . . .  , n}. To 
this set we add 3ù = 0. In the proof of Theorem 6.9, /z~ is the derivative of kth 
objective function at the optimal solution which is nonpositive and h k ~</x~ for 
k = 1 , . . ,  n. So every breakpoint of K(A) lies on the interval [30,3n]. 

An important property of K(A) is that it is concave between two consecutive 3k's 
(see Fig. 9). This is because all parametric capacities are linear between two such points. 
This "piecewise" concavity of K(h) is crucial to get an efficient time bound of 
Subroutine Breakpoint-Finder. 

Subroutine Breakpoint-Finder 
Step 0: Obtain the sorted sequence {30, 31 . . . . .  3ù_ 1} of {ap . . . ,  aù}. Let 3 n ~--- 0. 
Step 1: Apply the parametric maximum flow algorithm of [12] to G(h) with 

h =  30 . . . . .  3ù to obtain for each 3 k the maximum flow fk and the 
min-cuts (Wk, W k) such that [W k [ is maximum. 
Also apply the parametric maximum flow algorithm to GR(h) to obtain for 
each 3 k the maximum flow gk and the minimum cuts (Zk, Zk) such that 
[Zkl is maximum. 

Step 2: For each k = 0 . . . .  , n - 1, create /~k(h) from G(A) by contracting W k - 
Zk+l and Zk+l to single vertices by Procedure Contraction (G(A); 
W~, Zk+ 1) in Subsection 6.4. 
Let f~ be the flow on /4k(A) corresponding to fk. 

t ^ R  Let gk+l be the flow on H~ (A) corresponding to gk+l. 
Step 3(a): For each k = 0 . . . . .  n - 1, find the node-shifting breakpoints of G(h) on 

(3~, 3k+ 1) by applying the (main procedure of) breakpoint algorithm of 
[12] to/~k(A) with initial values 3k, 3k+ 1, f~ and g~+i. Let L be the set of 
these breakpoints. 
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Step 3(b): 
Step 4: 

Let L' = L U {8 0, 31 . . . .  ,6n}. Sort L' in increasing order. 
Apply the parametric maximum flow algorithm to G(h) for all A ~ L'. 
Select all the values at which some nodes shift from the sink side to source 
side and output them as the node-shifting breakpoints of G(h). 

Theorem 6.10. Let G have N nodes and M arcs. Subroutine Breakpoint-Finder finds 
the node-shifling breakpoints of minimum cut capacity function K(A) of G(A) in 
O(NM log(NE/M)) steps. 

Proof. The validity of Step 1 through 3 follows/rom the arguments of Subsection 6.4 
which assert that the node-shifting breakpoints of G(A) on (6 k, 6k+ 1) can be found by 
applying the breakpoint algorithm of [12] to/~«(A) if all parametric capacities are linear 
on [6~, 6k+1]. 

The reason for creating the set L' in Step 3(b), rather than just taking L as the set of 
all node-shifting breakpoints, is that some of the 6k's can be node-shifting breakpoints 
as weil. Hence the parametric maximum flow algorithm in Step 4, extract all node-shift- 
ing breakpoints. 

Let A ~ and /~ denote the number of nodes and arcs of G(A) respectively. With this 
notation, A ? = N + 1 and /14 = M + n. Also let N« and M« be the number of nodes and 
arcs in /~k(A) for k = 0, 1 , . . ,  n - 1 respectively. 

A 

Since the number of parameter values, 3k's, is n ~< N - 2, Step 1 also can be done in 
O(N/~ log(NE//~t)) steps by applying the parametric maximum flow algorithm of [12] 
to G(A) and GR(A). 

For a contraction procedure in Step 2, we need to determine the edges in the cut 
defined by the vertex set to be shrunk into a single vertex. This can be done in O(/~) 
steps by a breadth first search. The running time of other efforts, deleting loops and 
combining arcs is also bounded by O(/~) using a standard data structure for network 
representation. Since n contraetions are done and n ~< ]V, Step 2 requires O(5,)N) steps. 

By Lemma 6.5, Corollary 6.6 and Lemma 6.7, it follows that eaeh node of G()t) can 
partieipate in at most a single Hk(A) as an unshrunk hode. Henee ù- 1 _ Ek=0N k - O(ü).  The 
running time of the breakpoint algorithm of [12] for the kth contracted network 6 k is 
O(NkM k log(N2/Mk)). Let A be the constant coefficient of the running time. Then the 
total work of Step 3 is: 

n - 1  n - 1  

A ~_~ NkMk log(NE/Mk)<~A ~_, NkM k log(2]VE/Mk) 
k = 0  k = 0  

n - 1  

~<A • NkM log(2]V2/M). 
k=0  

The last inequality follows from the fact that the function f ( x ) = x  log(K/x) is 
increasing in the range 0 < x «. K l4  (where K is a positive constant) and M k <~ ffI <~ 
2/V2/4. Since n -  1 __ 2k= 0Nk-  O(A?), Step 3 requires O(NM log(N2//~)) steps. 

The size of L' is O(A?); hence, again by the parametric maximum flow algorithm, 
Step 4 ean be done in O(Nk)log(/V2//~)) steps. So the total running time of 
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Subroutine Breakpo in t -F inde r  is O(ATAI log(A~2/&l)). Since A ~ = N + 1, h/l = M + n 

and n ~< M, the running time is O(NM log(N2/ (M + n))) which is O(NM log(N2/M)).  
[] 

Since the running time of Subroutine Breakpo in t -F inde r  is O(NM log(Ne/M)),  
and the dominant operations in Algorithm Lexieo-Finder  are the maximum flow on 

and the calls to Subroutine Breakpoin t -F inder ,  it follows that the network resource 
allocation problem is solvable in O(NM log(N2/M))  steps. 

So rar the objective function has been assumed to be strictly convex, i.e. b k > 0 for 
all k = 1, 2 . . . . .  n. Assume now that the objective function is convex but not strictly 
convex: hence there is a proper subset U c T such that b k = 0 if s k ~ T - U. 

Theorem 6.3 is still valid since it does not assume the strict convexity of  the objective 
function. So to solve (Network) is equivalent to solve (Lexico') which finds a maximum 

flow of G lexicographically maximizing the sorted sequence of {bkx k + ak[ s~ ~ T} in 
increasing order. 

I f  s k ~ T - U ,  then bkx k + a k is a constant. So it suffices to consider only the 
elements of  {bkx k + a«l s k ~ U}. That is, if x is an in-flow vector of  a maximum flow 
such that the sorted sequence of {bkx k + a k I sk ~ U} in increasing order is the lexico- 
graphically maximum among all in-flow vectors, then x is the solution of (Network). 

This can be done in the following manner: 
1. Augment  the network G with the arcs (s,  s k) and the parametric capacities ck(A) for 

only k ' s  such that s k ~ U. Apply Algorithm Lexieo-Finder  to obtain a maximum 

flow g and the corresponding in-flow vector {Yk I sk ~ U}. 
2. Create the residual network Gg of G with respect to the flow g. Augment Gg with 

the arcs (s, s~) for s k ~ T -  U and find a maximum flow of the network. Let the 
corresponding in-flow vector be {z~[ s k ~ T -  U}. 

3. Output the in-flow vector {Yk [ sk ~ U} U {zkl s k ~ T -  U} as an optimal solution of 
(Network). 
The additional work for the general convex case is to find a maximum flow in the 

residual graph Gg. Hence the total running time is the same as that of  the strictly convex 

case. 

7. Concluding remarks 

We presented new strongly polynomial algorithms for some special cases of  discrete 
and continuous ¢onvex separable quadratic optimizations over submodular constraints. It 
seems that further improvement on the complexities of  the algorithms developed here is 
going to be challenging. 

As mentioned earlier, every problem considered in this paper is a special case of the 
minimum quadratic cost network flow problem; costs are associated only to the flows on 
the arcs emanating into the sink of the network. This observation naturally leads us to 
the important open question of the strong polynomiality of (general) minimum quadratic 
cost network flow problem. This problem seems to be very challenging. Even if the 

number of  arcs with quadratic cost is fixed, the question still remains open. 
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