
Screening for Next Generation Refrigerants

Piotr A. Domanski National Institute of Standards and Technology Gaithersburg, MD, USA

Acknowledgement

M.O. McLinden, A. Kazakov, J. S. Brown,

R. Brignoli, J. Heo

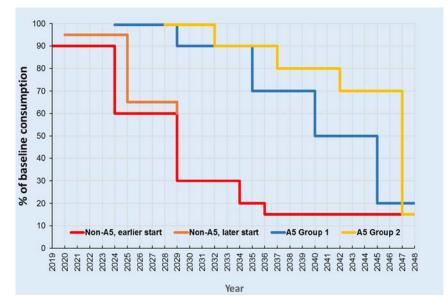
IEA HPT's Annex 54: Heat Pumps for Low-GWP Refrigerants

ICR2019, Montreal, Canada; August 29, 2019

Background

o Refrigeration is used everywhere

Food industry, air conditioning, cryogenics, medicine and health products, energy, etc.


O Use of refrigeration will increase, particularly in developing countries

Hotter countries tend to be less developed. Air conditioning offsets adverse effects of high temperature on human physical and cognitive performance. (Heal and Park, 2013)

$\,\circ\,$ Use of refrigeration has environmental consequences

- Current refrigerants (HFCs) are greenhouse gases; need for low-GWP refrigerants
- Emissions of CO₂ from fossil fuel power plants; need for high efficiency
- Kigali amendment to the Montreal Protocol (2016); production & consumption of HFCs to be cut by more than 80 % over the next 30 years.

Weighed GWP across all sectors ≈ 300

Beginnings of artificial cold

- 1755 apparatus to make ice by evaporation of water at reduced pressure; W. Cullen
- 1824 genesis of thermodynamics; Carnot
- 1834 refrigeration machine using compression of a liquefiable gas; Perkins
- 1834 demonstration of the Peltier effect
 - reliable compressor; Harrison
 - absorption machine; F. Carre
 - air cycle machine; Gorrie
 - machine relying on evaporation of water (R-718) at reduced pressure; E. Carre
 - refrigerants: ethyl ether, methyl ether (R-E170), petrol ether + naphtha (chemogene),
 CO₂ (R-744), ammonia (R-717), SO₂ (R-764), methyl chloride (R-40)
- 1876 ammonia compressors by Linde; application of thermodynamics

Main applications: ice making, transport of meat by sea, and brewing

- 1890 -> 1900 collapse of ice harvesting
- 1918 dominant refrigerants: ammonia, CO₂, SO₂
- 1920s introduction of HCs
- 1931 introduction of CFC refrigerants

Thevenot, R. (1979)

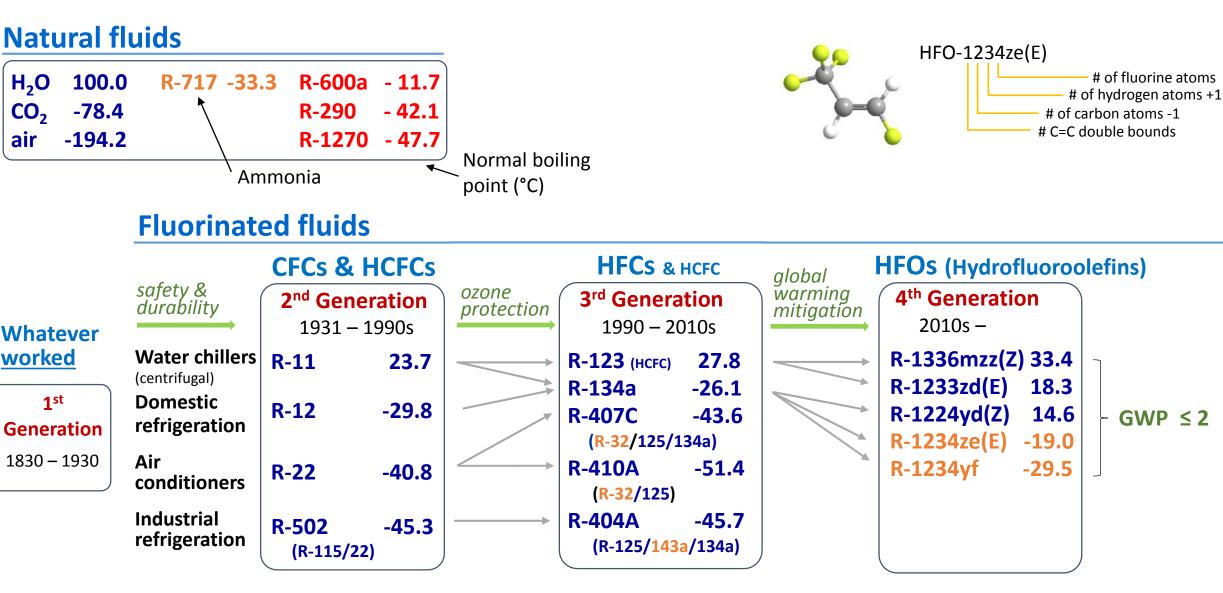
Ice harvesting

Calm (2008), Calm (2012), Myhre, G. et al. (2013)

H₂O

CO₂

Whatever


1st

Generation

1830 - 1930

worked

air

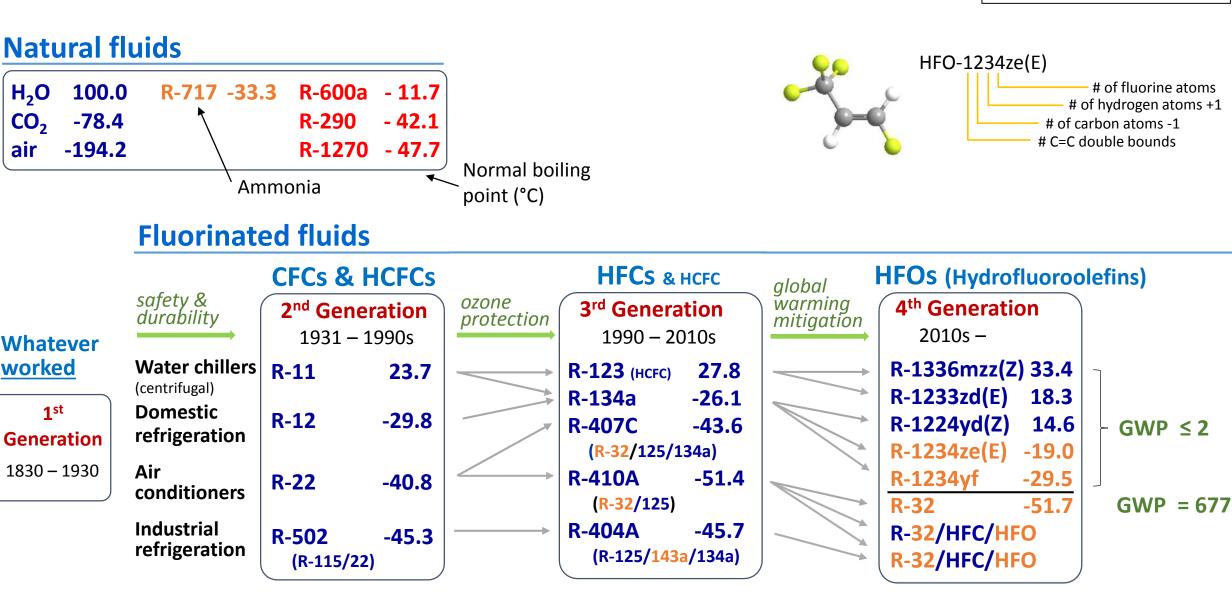
Application of refrigerants

Calm (2008), Calm (2012), Myhre, G. et al. (2013)

H₂O

CO₂

Whatever


1st

Generation

1830 - 1930

worked

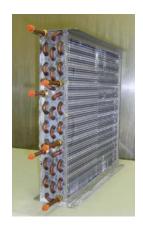
air

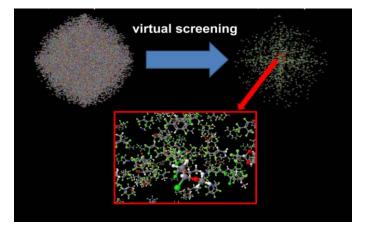
Application of refrigerants

NIST search for low-GWP fluids (2012 – 2017)

Objective: Identify molecules that might be good replacements for R-410A and R-22

Air-conditioning and refrigeration applications

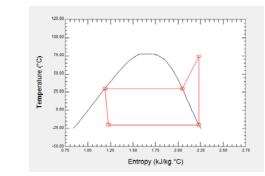

- positive displacement compressors
- forced-convection air-to-refrigerant heat exchangers


Approach: Perform <u>screening</u> using <u>comprehensive</u> database

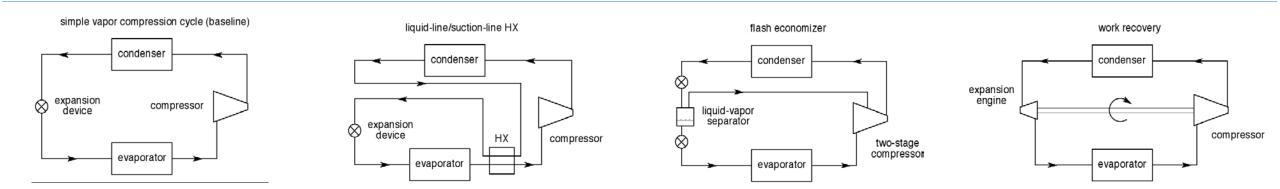
(PubChem lists over 60 million unique chemical structures)

Important attributes/filters:

- Performance: COP, volumetric capacity (Q_{vol})
- Environmental: ODP, GWP
- Safety: toxicity, flammability
- Materials: stability, compatibility (lubricant, seals, metals, etc.)



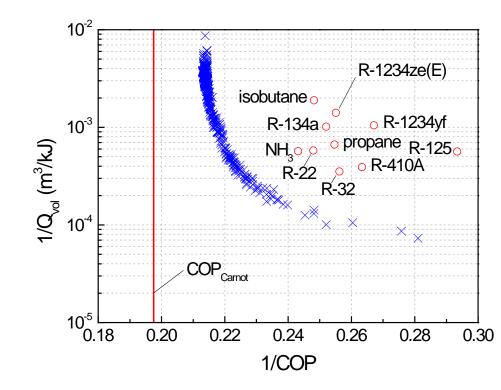
[•] Cost


Performance limit of the vapor-compression cycle

- What are thermodynamic limits of performance? 0 COP; volumetric capacity
- What are optimum thermodynamic parameters? Ο
- How do current fluids compare? Can we do better?

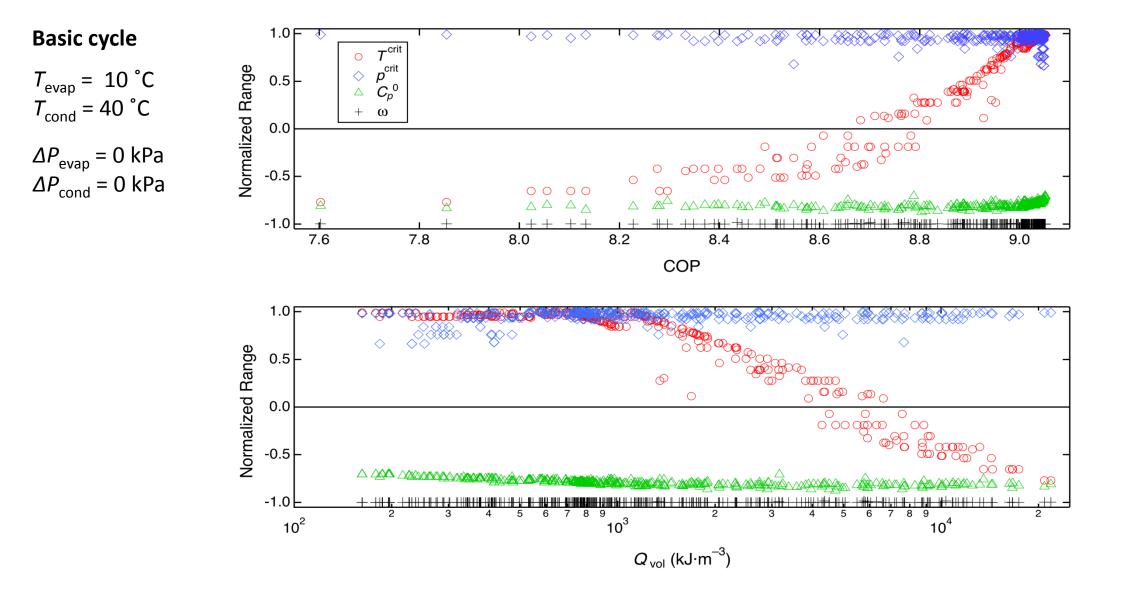
Studied applications:

- Cooling: $T_{evap} = 10 \degree C$, $T_{cond} = 40 \degree C$ Heating: $T_{evap} = -10 \degree C$, $T_{cond} = 30 \degree C$
- Refrigeration: $T_{evap} = -20$ °C, $T_{cond} = 30$ °C


Domanski et al. (2014)

Performance limit of the vapor-compression cycle

- Vapor compression cycle model
- Extended Corresponding States (ECS) model for representation of refrigerant properties
- Search for optimum ECS parameters


Bi-objective optimization for COP and Q_{vol} using evolutionary algorithms

Parameter	Units	Range	Granularity	
T _{crit}	K	305 ~ 650	0.5	
P _{crit}	MPa	2.0 ~ 12.0	0.05	
ω	-	0.0 ~ +0.6	0.005	
α1	-	-0.3 ~ +0.3	0.01	
α2	-	-0.8 ~ 0.0	0.1	
β ₁	-	-1.0 ~ +1.0	0.01	
β2	-	-0.8 ~ +0.8	0.1	
<i>С</i> _р °(300 К)	J·mol ^{−1} ·K ^{−1}	20.8 ~ 300	0.2	
γ	K ⁻¹	0.0 ~ 0.0025	0.0001	

$$\text{COP} = \frac{T_{evap}}{T_{cond} - T_{evap}}$$

Refrigerant parameters along Pareto front

Database screening

Molecule count н PubChem database 60 000 000 С Ν 0 В \mathbf{S} Si Component atoms: C, H, N, O, S, F, Cl, Br Br Maximum number of atoms: 18 184 000 $GWP_{100} < 1000$ Critical temperature: 46 °C < T_{crit} < 146 °C 138 Toxicity (MSDS, RCL, TLV, =CF₂) **Evaluated manually** Stability Volumetric capacity > 0.33 $Q_{vol,R-410A}$ 15 - at least mildly flammable (Basic cycle simulations) 6 - unknown hazards 21

21 (primary interest) + 3 (commercial interest) + 3 (low τ_{crit}) = 27 fluids

New toxicity data on R-1132a; 27 + 1 (low τ_{crit}) \longrightarrow 28 fluids

Performed detailed simulations with optimized heat exchangers for 24 fluids

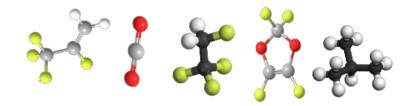
Air conditioning (McLinden et al., 2017)

Refrigeration and heating (Domanski et al., 2017)

Nonmetalic

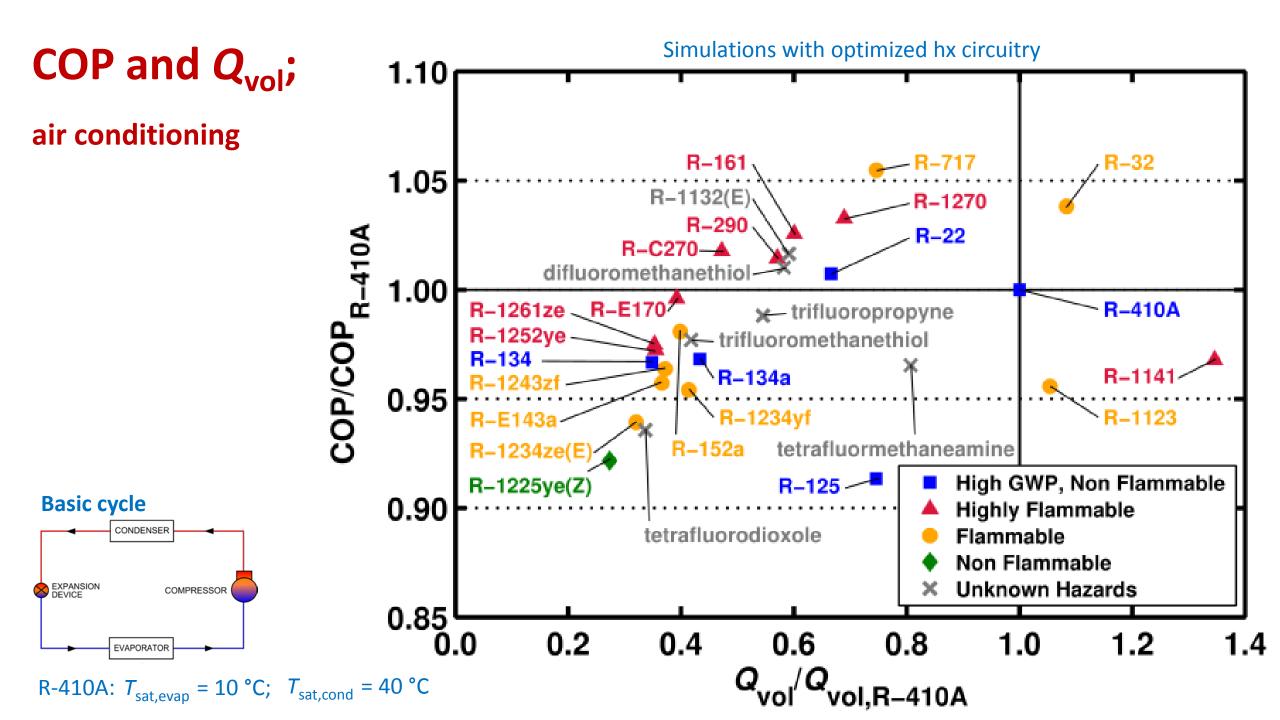
28 candidate fluids

Basic cycle; air conditioning; optimized heat exchangers

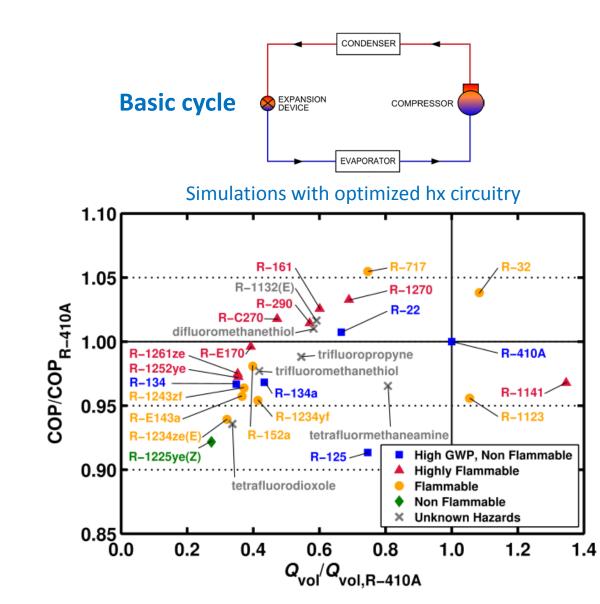

21 fluids of primary interest:

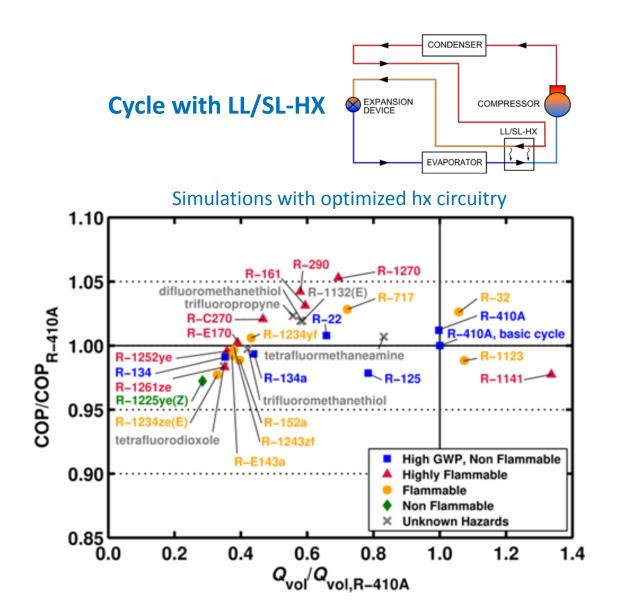
46 °C < T_{cr} < 146 °C Q_{vol} > 0.33 Q_{vol,R-410A}

15 - at least mildly flammable6 - unknown hazards

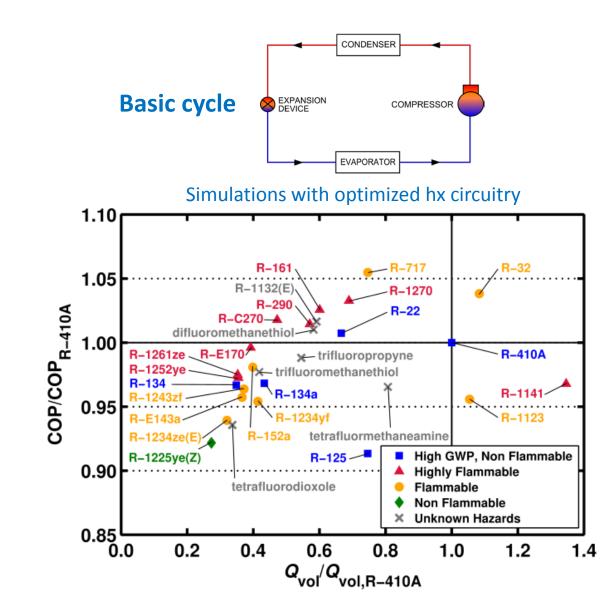

7 additional fluids:

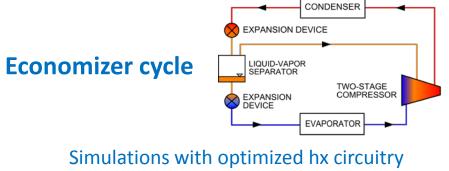
- subcritical operation; 3 fluids
 [R-134, R-1123, R-1225ye(Z)]
- supercritical or near-critical operation; 4 fluids
 [R-170, R-41, R-1132a, R-744]

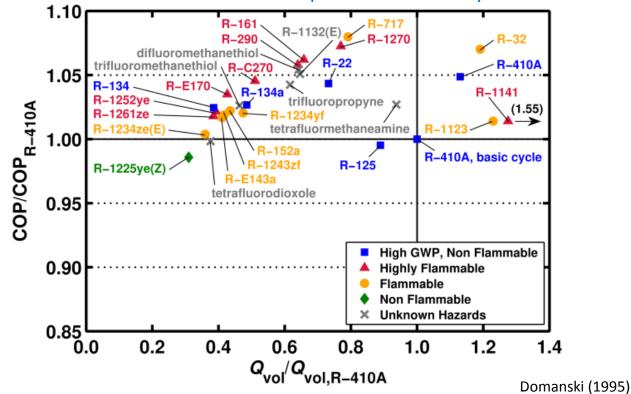


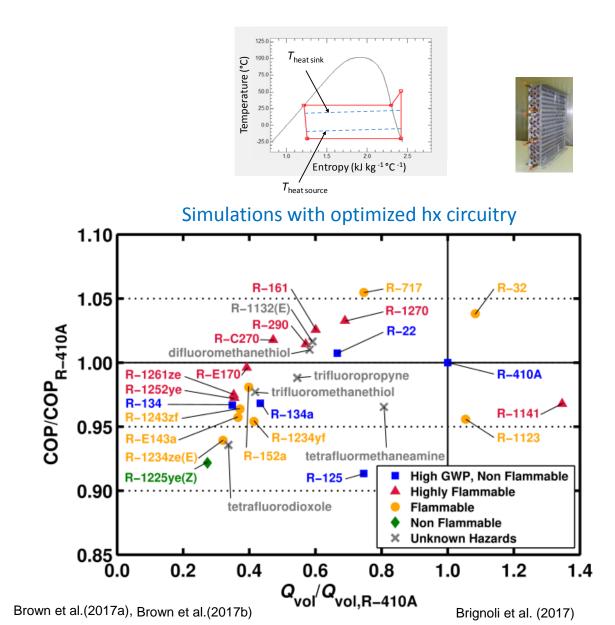

			GWP	T _{cr}	СОР	Q _{vol}		
Hydrocarbons and dimethylether				(К)	COP _{R410A}	Q _{vol, R410A}		
ethane	CH ₃ -CH ₃	R-170	6	305.3	NHION			
propene (propylene)	CH ₂ =CH-CH ₃	R-1270	2	364.2	1.033	0.689		
propane	CH ₃ -CH ₂ -CH ₃	R-290	3	369.9	1.014	0.571		
methoxymethane (dimethylether)	CH ₃ -O-CH ₃	R-E170	1	400.4	0.996	0.392		
cyclopropane	-CH2-CH2-CH2-	R-C270	86	398.3	1.018	0.472		
Fluorinated alkanes (HFCs)								
fluoromethane	CH ₃ F	R-41	116	317.3				
difluoromethane	CH_2F_2	R-32	677	351.3	1.038	1.084		
fluoroethane	CH ₂ F-CH ₃	R-161	4	375.3	1.026	0.601		
1,1-difluoroethane	CHF ₂ -CH ₃	R-152a	138	386.4	0.981	0.399		
1,1,2,2-tetrafluoroethane	CHF ₂ -CHF ₂	R-134	1120	391.8	0.967	0.348		
Fluorinated alkenes (HFOs) and alkynes								
1-1-difluoroethene	CF ₂ =CH ₂	R-1132a	<1	324.2				
fluoroethene	CHF=CH ₂	R-1141	<1	327.1	0.968	1.346		
1,1,2-trifluoroethene	CF ₂ =CHF	R-1123	3	343.0	0.956	1.054		
3,3,3-trifluoroprop-1-yne	CF3-C≡CH	n.a.	1.4	363.3	0.988	0.545		
2,3,3,3-tetrafluoroprop-1-ene	CH2=CF-CF3	R-1234yf	<1	367.9	0.954	0.414		
(E)-1,2-difluoroethene	CHF=CHF	R-1132(E)	1	370.5	1.016	0.591		
3,3,3-trifluoroprop-1-ene	CH ₂ =CH-CF ₃	R-1243zf	<1	376.9	0.964	0.372		
1,2-difluoroprop-1-ene‡	CHF=CF-CH ₃	R-1252ye‡	2	380.7	0.973	0.355		
(E)-1,3,3,3-tetrafluoroprop-1-ene	CHF=CH-CF3	R-1234ze(E)		382.5	0.939	0.320		
(Z)-1,2,3,3,3-pentafluoro-1-propene	CHF=CF-CF ₃	R-1225ye(Z)	<1	384.0	0.922	0.273		
1-fluoroprop-1-ene‡	CHF=CH-CH ₃	R-1261ze‡	1	390.7	0.975	0.353		
Fluorinated oxygenates								
trifluoro(methoxy)methane	CF ₃ -O-CH ₃	R-E143a	523	377.9	0.957	0.366		
2,2,4,5-tetrafluoro-1,3-dioxole	-O-CF ₂ -O-CF=CF-	n.a.	1	400.0	0.936	0.337		
Fluorinated nitrogen and sulfur compounds								
N,N,1,1-tetrafluormethaneamine	CHF ₂ -NF ₂	n.a.	20	341.6	0.965	0.807		
difluoromethanethiol	CHF ₂ -SH	n.a.	1	373.0	1.010	0.582		
trifluoromethanethiol	CF ₃ -SH	n.a.	1	376.2	0.977	0.418		
Inorganic compounds								
carbon dioxide	CO_2	R-744	1.00	304.1				
ammonia	NH ₃	R-717	<1	405.4	1.055	0.746		

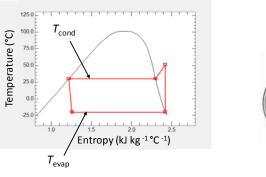
0

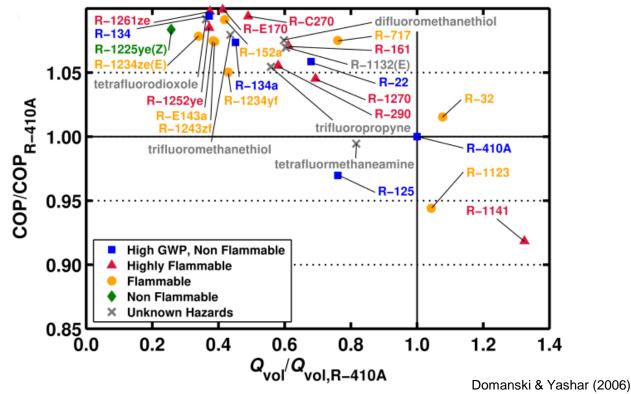



COP and *Q*_{vol}; air conditioning




COP and *Q*_{vol}; air conditioning

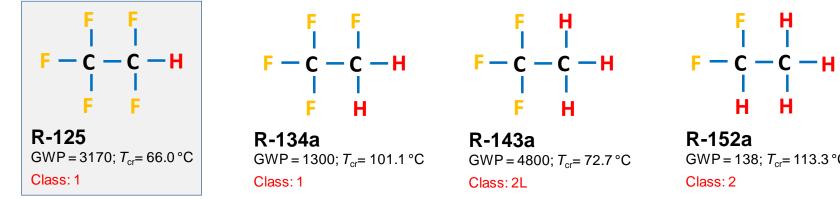


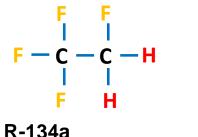


COP and *Q*_{vol}; air conditioning

Ideal cycle simulations (zero hx pressure drop)

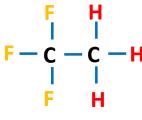
Basic cycle

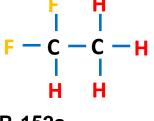

EVAPORATO


Why there are no low-GWP fluids that are nonflammable and have high Q_{vol}?

Trade-off between low GWP and flammability

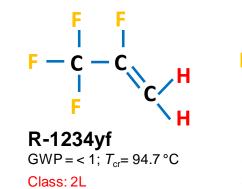
GWP can be lowered by:

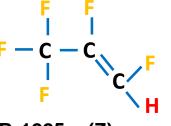

Replacing F or Cl with H. Ο It shortens the atmospheric life but leads to flammability.



Class: 1

R-143a GWP = 1300; T_{cr} = 101.1 °C GWP = 4800; T_{cr} = 72.7 °C Class: 2L

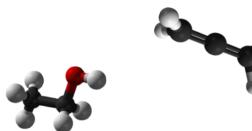




R-152a GWP = 138; T_{cr} = 113.3 °C Class: 2

Adding a C=C double bond. Contributes to the reaction

with oxygen.



R-1225ye(Z) GWP < 1; T_{cr} = 110.9 °C

Class: 1

Is it all ? Why some other fluids did not make it ?

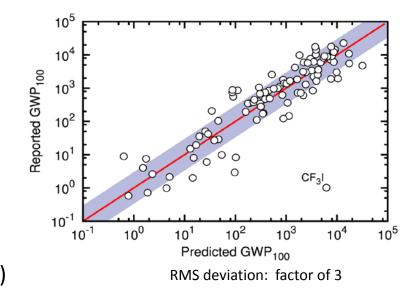
- Peroxides [-O-O-]: unstable, one dropped
- Alkynes [-C≡C-]: ≡ generally less stable than =, one retained
- Ketenes [>C=C=O]: generally very reactive, three dropped
- o Allenes [>C=C=C<]: very reactive</pre>
- Alcohols [-OH]: high T_{cr}

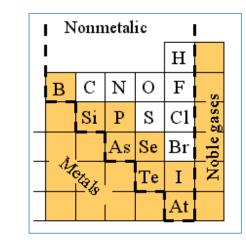
- \circ = CF₂ group: high reactivity often associated with toxic effects; some exceptions
- = OF group: not stable, may lead to hydrofluoric acid

How reliable was the screening process?

Did we miss good fluids?

PubChem database is complete (?)


PubChem lists 30 three-carbon HFOs out of 31 possible. It is unlikely that the missing molecule would posses significantly different properties than those already listed.


Component atoms: only C, H, N, O, S, F, Cl, Br (?) Maximum number of atoms: 18 (?)

Additional screening of a different database with 2000 industrial fluids yielded small molecules with the above eight elements only.

- GWP₁₀₀ < 1000 (?)
- Critical temperature: $46 \degree C < T_{cr} < 146 \degree C$ (?) Estimated with standard deviation of 16.5 K (4.5 %). $T_{cr, R-410A}$ =71.3 °C
- Stability and toxicity (?)

Published data may be erroneous. E.g., toxicity of R-1132a Unstable fluid may be stabilized and used in the system. E.g., R-1123, R-13I1 (CF_3I)

CF₃I - **ASHRAE Standard 34 proposed addenda 't' and 's'**

Addendum 't'

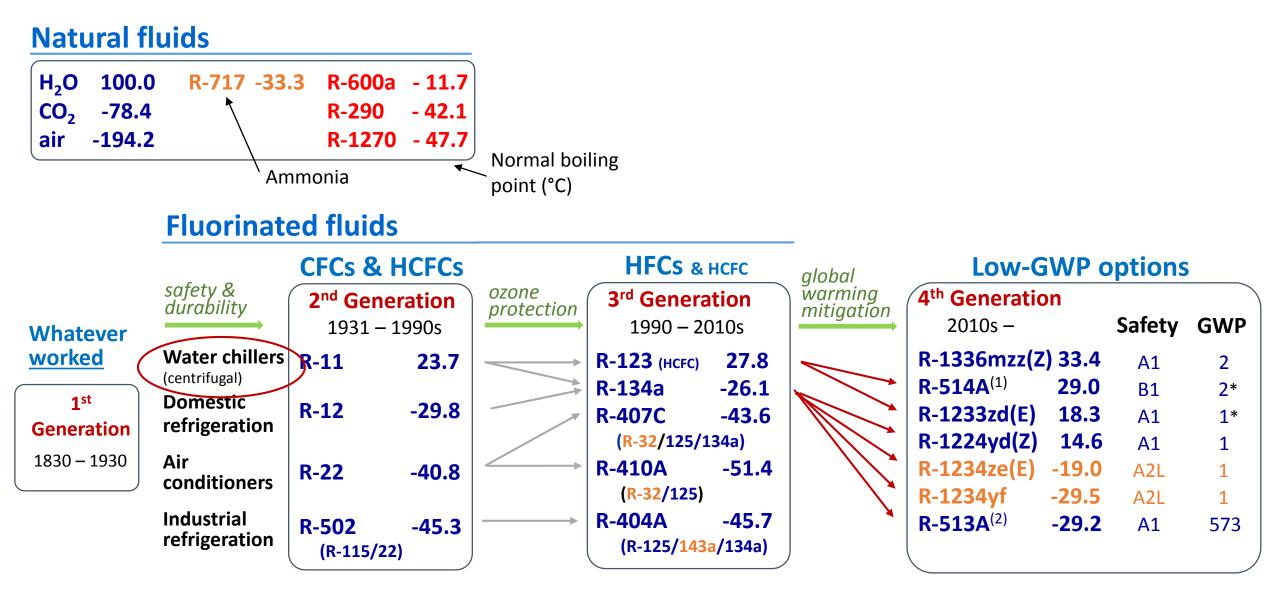
R-13I1

```
Chemical name = trifluoroiodomethane
```

- Chemical formula **CF₃I** OEL = 500 ppm v/v
- Safety Group = A1
- GPW = 0.4

Addendum 's'

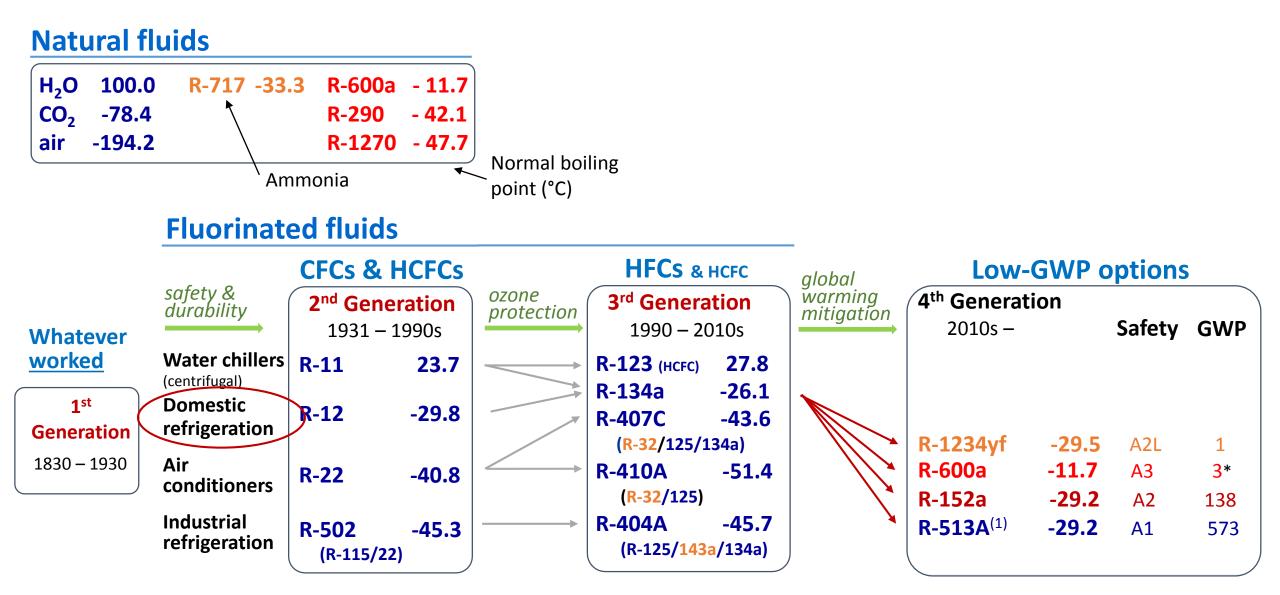
```
R-466A
Composition (mass %) = R-32/125/1311
(49/11.5/39.5)
OEL = 860 ppm v/v
Safety Group = A1
GWP = 733
```


- ODP = 0.008
- Good thermodynamic properties
- Fire suppression properties
- Toxicity of CF₃I was studied in the 1990s (McCain and Macko, 1999).
 CF₃I is SNAP-approved fire suppressing agent replacing halon 1301 (total flooding) and halon 1211 (streaming), with restrictions to unoccupied and non-residential uses, respectively.

F - **C** -

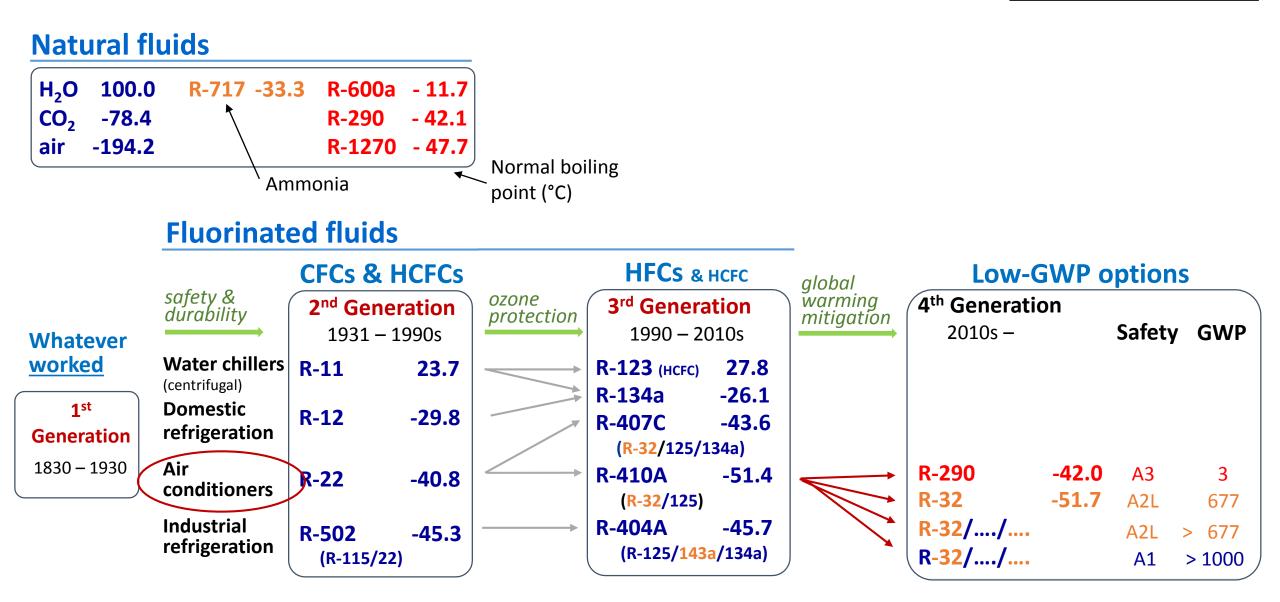
R-1234yf/CF₃I (70/30) was studied in the 2000s for automotive ACs, within the Cooperative Research Program CRP150 (SAE).
 Dropped over concerns related to the non-zero ODP and reactivity of CF₃I. (Brown, 2012)

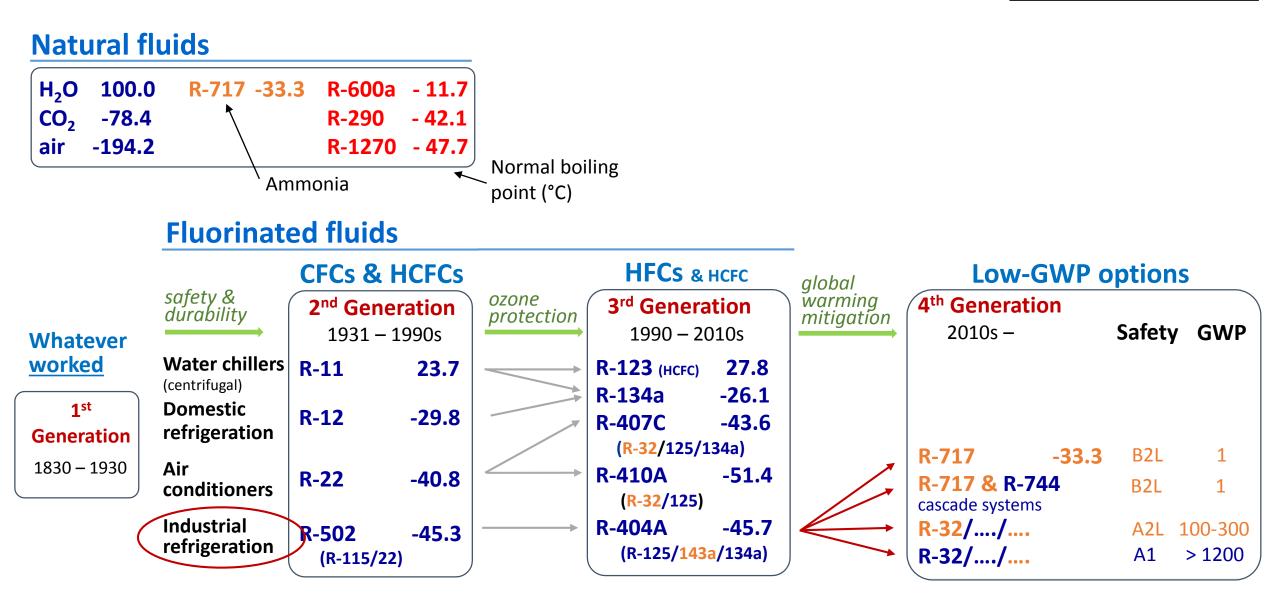
 $CF_{3}I$ is expected to see future application as a component of <u>nonflammable</u> blends. Application challenge: reactivity



Calm (2008), Calm (2012), Myhre, G. et al. (2013)

* Source other than IPCC AR5 ${}^{(1)}$ R-1336mzz(Z)/1130(E) (74.7/25.3) ${}^{(2)}$ R-1234yf/134a (56/44)

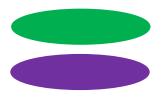


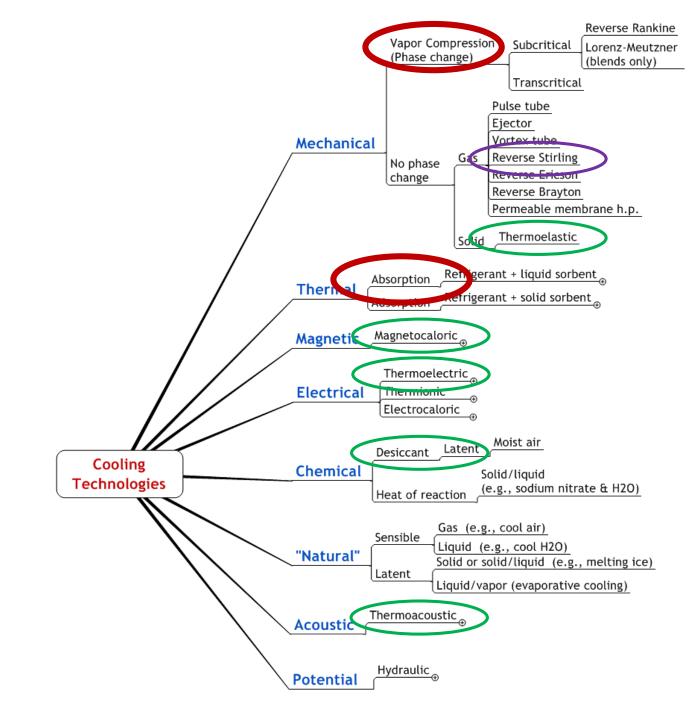

Calm (2008), Calm (2012), Myhre, G. et al. (2013)

* Source other than IPCC AR5 ⁽¹⁾R-1234yf/134a (56/44)

Cooling technologies

sorted by primary energy input


Acceptance criteria


- Coefficient of Performance
- Environmental
- Safety
- Cost
- Reliability
- Serviceability
- Physical size, weight

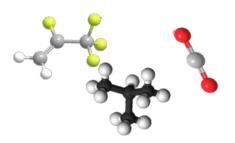
Best prospects for competing with vapor compression

Space conditioning

Food refrigeration

Concluding comments

o Availability of low-GWP refrigerants varies between applications


- Good availability of low-pressure fluids (low GWP, nonflammable)
- No direct HFO replacement candidate for R-22 or R-410A Single-component medium- and high-pressure replacement fluids are at least mildly flammable

• Prospects for finding new viable refrigerants are minimal.

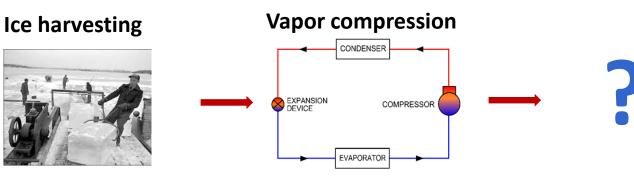
New equipment will have to be designed using the fluids we know already and their blends.

• Trade off between GWP and flammability

Concluding comments

• Alternative cooling technologies?

Alternative technologies will gain entry in niche applications


<u>but</u>

will need significant development effort and

material breakthroughs to be competitive and enter the main stream.

• We will have to use refrigerants judiciously, which includes:

- Selection of refrigerant for each application recognizing environmental and safety considerations
- High-efficiency, leak-free equipment
- Improved refrigerant handling practices (equipment commissioning, servicing, and decommissioning).

Thank you for your attention.

References

- Brignoli, R., Brown, J.S., Skye, H., Domanski, P.A., 2017. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers, Int. J. Refrig., 80: 52-65. doi:10.1016/j.ijrefrig.2017.05.014
- Brown, J.S., Brignoli, R., Domanski, P.A., 2017a. CYCLE_D-HX: NIST Vapor Compression Cycle Model Accounting for Refrigerant Thermodynamic and Transport Properties, Version 1.0. NIST Technical Note 1974, National Institute of Standards and Technology, Gaithersburg, MD. doi.org/10.6028/NIST.TN.1974
- Brown, J.S., Domanski, P.A, Lemmon, E.W., 2017b. CYCLE_D: NIST Vapor Compression Cycle Design Program, Version 5.1.1, Users' Guide, NIST Standard Reference Database 49, National Institute of Standards and Technology, Gaithersburg, MD. doi.org/10.6028/NIST.NSRDS.49-2017
- Calm, J.M., 2008. The next generation of refrigerants Historical review, considerations and outlook, Int. J. Refrig., 31:1123-1133. doi:10.1016/j.ijrefrig.2008.01.013
- Calm, J.M., 2012. Refrigerant Transitions ... Again. ASHRAE/NIST Refrigerants Conference, Gaithersburg, MD.
- Domanski, P.A., 1995. Minimizing Throttling Losses in the Refrigeration Cycle, Proceedings of the 19th Int. Congress of Refrig., The Hague, The Netherlands, August 21-25, 1995, Int. Inst. Refrig., Paris, France., 766-773. Domanski
- Domanski, P.A., Brignoli, R., Brown, J.S., Kazakov, A.F., McLinden, M.O., 2017. Low-GWP Refrigerants for Medium and High-Pressure Applications, Int. J. Refrig., 84:198-209, doi:10.1016/j.ijrefrig.2017.08.01
- Domanski, P.A., Brown, J.S., Heo, J., Wojtusiak, J., McLinden, M.O., 2014. A Thermodynamic Analysis of Refrigerants: Performance Limits of the Vapor Compression Cycle, Int. J. Refrig., 38:71-79. doi.org/10.1016/j.ijrefrig.2013.09.036.
- Domanski, P.A., Yashar, D., 2006. Comparable Performance Evaluation of HC and HFC Refrigerants in an Optimized System, 7th IIR Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway, May 28-31.
- Heal, G., Park, J., 2013. Feeling the Heat: Temperature, Physiology & the Wealth of Nations, Working Paper 19725, National Bureau of Economic Research, Cambridge, MA. http://www.nber.org/papers/w19725 (accessed 2018-4-5).
- McLinden, M. O., Brown, J. S., Kazakov, A. F., Brignoli, R., Domanski, P. A., 2017. Limited options for low-global-warming-potential refrigerants. Nature Communications, 8:14476. doi: 10.1038/ncomms14476.
- Myhre, G. et al. in Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press 2013).
- Thevenot, R., 1979. A history of refrigeration throughout the world, International Institute of Refrigeration, Paris, France.