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What is a clock and how to characterize it?

• Clock = oscillator + counter
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[1] Robert Lutwak, Principles of Atomic Clocks, 2011.

• Stability and accuracy

Oscillator Counter

Crystal 

oscillator

Pendulum clock

Stable and accurate Stable, inaccurate
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Why do we need a new, portable clock?
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Stability (σy,τ=103s) Volume Start-up Power Cost

OCXO, CO27 ~10-8 18cm3 3min 1.7W ~$100

CSAC, SA.45s 10-11 16cm3 <3min 120mW ~$1,500

Molecular Clock* 10-11 <10cm3 <1s <100mW <$10

Chip scale atomic clock 

(CSAC), Microsemi SA.45s
CMOS molecular clock 

(This work)

Oven controlled crystal oscillator 

(OCXO), Crystek CO27VH15DE

• Applications: wireless comm., sensor networks, instruments, engineering

*Predicted based on the current experiment results. 
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Acoustic sensor array

on the sea bed

Acoustic pulse

reflection

Perspective: Array Imaging, Navigation and Data Link w/o GPS
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• Improve the data coherency of multiple sensors.

• Improve the navigation accuracy and synchronization of data link.

Reflection seismology for oil exploration on 

the sea bed with large acoustic sensor array

[2] www.microsemi.com Drones for tunnel inspection
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The First Molecular Clock using Inversion Spectrum of NH3
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[3] C. H. Townes, J. Appl. Phys. 22, 1365–1372 (1951).

[4] H. Lyons, Scientific American, Vol. 196, No. 2, pp. 71-

85, Feb. 1957.

[5] D. J. Wineland, et.al, IEEE Trans. on Instru. and Meas., 

vol. 28, no. 2, pp. 122-132, June 1979.
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1
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1
H

Inversion spectral line 

of NH3 at 23.87GHz

Early Ammonia clock [4] Wineland’s Ammonia clock [5]

• Ammonia (NH3) inversion by tunneling of 14N atom through plane of 1H atoms.

• Advantages:
• All electronics

• Simple clock configuration

• Disadvantages:
• Weak absorption intensity

• Bulky gas cell due to the long wavelength
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Rotational Spectrum of Carbonyl Sulfide (OCS)
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The EM field exerts a torque 

on an electric dipole

• Stronger absorption intensity (100×) and higher quality factor (2×) than NH3.

• Sub-THz band → 0.1× wavelength → compact gas cell.

Rotation of polar 

gaseous molecule
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[6] hyperphysics.phy-astr.gsu.edu
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A Compact WR4.3 Waveguide Gas Cell

Slide 8

WR4.3 waveguide gas cell

Cross section= 1.092×0.546 mm2

Total length=140 mm

• Gas cell volume is reduced from 1~2 liter (NH3 
[5]) to 83 mm3 (OCS).

• Designed with optimum length, total loss (including sealing) is 7.3 dB.

Measured S parameter

Loss = 7.3dB

S11

S21

𝐿𝑜𝑝𝑡 =
1

𝑙𝑛 10−𝛼0/10
≈ 14cm

Optimum length

𝛼0 Loss of waveguide, 

0.2~0.3 dB/cm:

-

Vacuum sealing

Z

Y

X

OCS, pressure: 

0.1~10 Pa

Optically transparent epoxy

Loss=1.5dB

Air, pressure: 

1.01×10
5
 Pa



Symposia on VLSI Technology and Circuits

Lorentz Line Profile in WR4.3 Waveguide Gas Cell
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• Doppler broadening: the full width at half maximum (FWHM) is 534kHz.

• Wall collision broadening: slightly increases the FWHM by 7%.

Measured line profile of 267.530GHz (J=22←21)

spectral line of OCS, Pressure = 1 Pa, PRF = 1 μW

Wall collision 

broadening

Doppler 

broadening

Cylinder gas cell, 

Diameter=25.4mm

Length=35mm

WR4.3 WG gas cell, 

a×b=1.092×0.546mm
2

Length=140mm

f - f0 (MHz)

Vp
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Y

X
Sub-THz signal

Vm

Vm
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-Vm

-Vm

-Vm

Axial direction of WR4.3 waveguide

X

Y

Z

1.092mm

0.546mm

Cross-section of WR4.3 waveguide



Symposia on VLSI Technology and Circuits

Outline

• Motivations

• Rotational Spectrum of OCS Molecules 

• Fundamentals of Timekeeping

• Wavelength Modulation Spectroscopy

• Clock Feedback Loop

• Lab-Scale Molecular Clock

• The First Molecular Clock on CMOS

• Architecture

• CMOS TX/RX chipset

• Measurement Results

• Conclusion

Slide 10



Symposia on VLSI Technology and Circuits

Wavelength Modulation Spectroscopy
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• Use wavelength-modulated signal for spectral line probing;

• THz front-end + voltage controlled crystal oscillator(VCXO).

Vxo,n+ +

Vxo

KV= (fc-f0)/ΔVXO, [Hz/V]

VCXO

VCXO 

phase 

noise

TX
fc

Vc

fm

Measured spectrum of wavelength 

modulated signal at 267.530GHz

Wavelength-modulated 

sub-THz signal, VRF(t)

VRF(t)=Acos(fc+Δf/fm×sin(2πfmt))

• fc = 267.530239GHz (J = 22←21)

• Δf ≈ FWHM
• fm = 100kHz ≈ 0.1×FWHM

The modulation frequency fm (hence the clock loop

bandwidth) is limited by the absolute linewidth.
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Gas cell, 

line at f0
RX
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c

0
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V
)
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N=5

Wavelength Modulation Spectroscopy
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• The sub-THz signal interacts with the OCS molecules in the WR4.3 gas cell;

• The 5th order harmonic dispersion curve is obtained by scanning fc.
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Clock Feedback Loop
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Gas cell, 

line at f0
RX
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Lab-Scale Molecular Clock

• VCXO + Keysight signal generator + VDI frequency extender;

• Measurement: frequency counter + Rb atomic clock.
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TX RX

WR4.3 waveguide 

gas cell

Vacuum system

Schematic of lab-scale molecular clockPhotograph of lab-scale molecular clock

IF LNA
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Lock-in 
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TX RF signal 
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Vctrl
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WR4.3 gas cell
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RC filter
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Clock output
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Measurement Results of Lab-Scale Molecular Clock
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ADEV locking to 5th har.

• The measured Allan deviation (frequency stability): σy(τ=103s)=2.2×10-11;

• 103× Improvement compared with the free running VCXO.

Free running VCXO

Measured, 

5
th

 harmonic 

Predicted

Free running VCXO

Measured, 

5
th

 harmonic 

Instantaneous frequency over 4000s for 

5th har. locking, averaging time =1s
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CMOS Molecular Clock: Architecture

• Utilize 231.061GHz (J=19←18) rotational spectral line of OCS for power saving.

• FSK modulation (16kHz) instead of analog wavelength modulation.
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Architecture of CMOS molecular clock

Spectral line probing using 

frequency-shift-keying (FSK)
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CMOS Molecular Clock: Packaging
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CMOS TX

WR4.3 WG

Chip-to-WG 

transition 1 mm

CMOS RX

Chip-to-WG 

transition

WR4.3 WG

1 mm

WR4.3 waveguide gas cell

KF-10

Vacuum 

flange

Transition plate 1

Transition plate 2

Rubber sealring

Back lid

80MHz VCXO

DC Bias and SPI, Error signal

CMOS TX

CMOS RX

10mm

80MHz 

VCXO

DC Bias, SPI, 

Error signal

WR4.3 WG 

gas cell

Vacuum 

Pump

Back lid

10mm

220-240GHz Chip-to-

waveguide transition

• Measured loss: ~10 dB

S11

S21

CMOS chip

WR4.3 

waveguide

Quartz probe

Wire-bonding

Simulated
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CMOS TX: 224~242GHz, 40-bit Fractional-N PLL with FSK
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X2 X2

CML÷4TSPC÷2

5-bit Multi-

modulus 

divider

XOR 

PFD

Level 

shifter

Charge

pump

Off-chip loop filter, 

loop BW=250kHz

40-bit, 

3rd-order, 

MASH 1-1-1, 

Δ-Σ modulator 

VCXO 80MHz

clock input

Harmonic 

oscillator

FSK counter
Frequency 

deviation

SPI

Integer divisor, I, 5-bits

Fractional divisor, 

K/F, 40-bit

Δf  control, 

3-bit

fm control, 3-bit

FSK reference output for RX lock-in 

detection, fm=16kHz SPI control

28.88GHz, + 28.88GHz, -

7.22GHz3.61GHz

57.8GHz 115.5GHz

TX RF output: 

Freq: 231GHz

PRF=  -10dBm

Bias circuitry

DC bias

TX chip:  224-

242GHz, 40-bit, 

fractional-N PLL 

with FSK 

modulation

Divided signal

Enable 

FM, 1-bit

52-bit

• High efficiency 2nd harmonic VCO 

and THz multiplier chain;

• 40-bit Δ-Σ modulator, ppt level 

(10-12) frequency accuracy;

• FSK modulation, digitally 

controllable fm and Δf;

Technical Highlight
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250 um

58GHz 2
nd

 harmonic 

VCO and buffer

116GHz doubler 

and buffer

231GHz 

doubler

CMOS TX: High Efficiency VCO and THz Multiplier Chain
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CMOS RX: 231GHz Detector with On-Chip Lock-in Detector
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VDD=2V
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LN+DET+

DET-

FSK reference output for RX 

lock-in detection, fm=16kHz

30kΩ 

Sub-THz square-

law detector VDD/2=1V

231.061GHz

Verror,-

Verror,+

Verror,-

• 231GHz square-law detector 

based on sub-threshold NMOS 

transistor with flicker-noise 

reduction;

• Differential folded-Cascode

baseband low noise amplifier;

• Transmission-gate based on-

chip lock-in detector;

Technical Highlight
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DC Power Consumption of TX/RX Chipset
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Total DC power 

consumption: 66mW
mW

mWmW
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Measured Output Power of TX and NEP of RX
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Simulated:

Rx chip only

Measured

WG-to-Chip transition 

+ Rx chip

10 dB

Noise equivalent power (NEP) of RX: 

NEP = 501 pW/Hz0.5@fm=16kHz

11 dB

Simulated: Tx chip only

Measured: Tx chip + Chip-to-

WG transition

RF output power of TX

Pout = -20.2 dBm at 231GHz
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Measured Output Spectrum and Phase Noise of TX
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f – f0 (MHz)

231GHz output spectrum
Phase noise of 231GHz signal:

-68.4 dBc/Hz@1MHz offset
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Measurement Results of CMOS Molecular Clock
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fc - f0 (MHz)
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CMOS molecular clock

Free running VCXO

• Measured SNR with 1Hz BW 

is 445 (in voltage) or 53dB

(in power).

• Correct the drift of free 

running VCXO;

• 1s averaging time for 

each data point.

• ADEV σy(τ=103s)=3.8×10-10;
• 10× Improvement compared 

with free-running VCXO.

CMOS molecular clock

Predicted

Free running VCXO

Fund. dispersion curve Allan deviation Instantaneous frequency
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Performance Summary
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CMOS Molecular Clock Lab-scale Molecular Clock

TX output RF power -20 dBm* -13 dBm

Modulation 16 kHz, FSK 100kHz, Wavelength modulation

Phase noise -61.1 dBc/Hz @100kHz -85.0 dBc/Hz @100kHz

RX noise NEP: 501 pW/Hz0.5 * Noise figure:33 dB

Gas cell loss (dB) 7 7

Calculated SNR (dB) 57 92

Measured SNR (dB) 53 71

Stability σ(τ=1s) 2.5×10-9 3.2×10-10

Stability σ(τ=103s) 3.8×10-10 2.2×10-11

* Including 10 dB loss of chip-to-waveguide transition

• Gap between CMOS molecular clock and lab-scale prototype;

• Performance enhancement: loss reduction of package, phase noise optimization.
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Conclusion

• Molecular clock: a competitive candidate for highly-stable time-base generator

for future portable devices.

• Perspective: array imaging, navigation and communication under GPS denied

environment.
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Allan Deviation

(103 s)

Linewidth

(kHz)

tturn-on

(second)

PDC

(mW)
Implementation

This Work 3.8×10-10 880 <1 661 65nm CMOS

CSAC [7] 3×10-10 ~1 N/A 262
Electronics + Gas-Cell-

Integrated Laser and HeaterCSAC [8] 1×10-11 ~1 180 120

[7] D. Ruffieux, et al., ISSCC, pp. 48-49, Feb. 2011.

[8] Microsemi. QuantumTM, SA.54s chip scale atomic clock, 2017.

1 The power of the VCXO is not included.
2 The power of off-chip heater, laser, and other components is not included.
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