

C11-1: A CMOS Molecular Clock Probing 231.061-GHz Rotational Line of OCS with Sub-ppb Long-Term Stability and 66-mW DC Power

<u>Cheng Wang</u>, Xiang Yi, Mina Kim, Yaqing Zhang, and Ruonan Han

Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Outline

- Motivations
- Rotational Spectrum of OCS Molecules
- Fundamentals of Timekeeping
 - Wavelength Modulation Spectroscopy
 - Clock Feedback Loop
 - Lab-Scale Molecular Clock
- The First Molecular Clock on CMOS
 - Architecture
 - CMOS TX/RX chipset
 - Measurement Results
- Conclusion

What is a clock and how to characterize it?

Symposia on VLSI Technology and Circuits

Slide 2

Why do we need a new, portable clock?

• Applications: wireless comm., sensor networks, instruments, engineering

CMOS molecular clock (This work)

	Stability (σ _y ,τ=10 ³ s)		Volume	Start-up		Power		Cost	
OCXO, CO27	~10 ⁻⁸		18cm ³	3min		1.7W		~\$100	\bigcirc
CSAC, SA.45s	10 ⁻¹¹	\bigcirc	16cm ³	<3min		120mW	\bigcirc	~\$1,500	
Molecular Clock*	10 ⁻¹¹	\bigcirc	<10cm ³ 😯	<1s	\bigcirc	<100mW		<\$10	\bigcirc

*Predicted based on the current experiment results.

Perspective: Array Imaging, Navigation and Data Link w/o GPS

- Improve the data coherency of multiple sensors.
- Improve the navigation accuracy and synchronization of data link.

Reflection seismology for oil exploration on the sea bed with large acoustic sensor array

Drones for tunnel inspection

[2] www.microsemi.com

Outline

- Motivations
- Rotational Spectrum of OCS Molecules
- Fundamentals of Timekeeping
 - Wavelength Modulation Spectroscopy
 - Clock Feedback Loop
 - Lab-Scale Molecular Clock
- The First Molecular Clock on CMOS
 - Architecture
 - CMOS TX/RX chipset
 - Measurement Results
- Conclusion

The First Molecular Clock using Inversion Spectrum of NH₃

• Ammonia (NH₃) inversion by tunneling of ¹⁴N atom through plane of ¹H atoms.

Inversion spectral line of NH₃ at 23.87GHz

- Advantages:
 - All electronics
 - Simple clock configuration
- Disadvantages:
 - Weak absorption intensity
 - Bulky gas cell due to the long wavelength

Early Ammonia clock [4] Wineland's Ammonia clock [5]

[3] C. H. Townes, J. Appl. Phys. 22, 1365-1372 (1951).
[4] H. Lyons, Scientific American, Vol. 196, No. 2, pp. 71-85, Feb. 1957.

[5] D. J. Wineland, et.al, IEEE Trans. on Instru. and Meas., vol. 28, no. 2, pp. 122-132, June 1979.

Rotational Spectrum of Carbonyl Sulfide (OCS)

- Stronger absorption intensity (100×) and higher quality factor (2×) than NH_3 .
- Sub-THz band \rightarrow 0.1× wavelength \rightarrow compact gas cell.

A Compact WR4.3 Waveguide Gas Cell

- Gas cell volume is reduced from 1~2 liter (NH₃^[5]) to 83 mm³ (OCS).
- Designed with optimum length, total loss (including sealing) is 7.3 dB.

WR4.3 waveguide gas cell Cross section= 1.092×0.546 mm² Total length=140 mm

Lorentz Line Profile in WR4.3 Waveguide Gas Cell

- **Doppler broadening:** the full width at half maximum (FWHM) is 534kHz.
- Wall collision broadening: slightly increases the FWHM by 7%.

Outline

- Motivations
- Rotational Spectrum of OCS Molecules
- Fundamentals of Timekeeping
 - Wavelength Modulation Spectroscopy
 - Clock Feedback Loop
 - Lab-Scale Molecular Clock
- The First Molecular Clock on CMOS
 - Architecture
 - CMOS TX/RX chipset
 - Measurement Results
- Conclusion

Wavelength Modulation Spectroscopy

- Use wavelength-modulated signal for spectral line probing;
- THz front-end + voltage controlled crystal oscillator(VCXO).

Wavelength Modulation Spectroscopy

- The sub-THz signal interacts with the OCS molecules in the WR4.3 gas cell;
- The 5th order harmonic dispersion curve is obtained by scanning f_c .

Clock Feedback Loop

Symposia on VLSI Technology and Circuits

Slide 13

Lab-Scale Molecular Clock

Photograph of lab-scale molecular clock

Schematic of lab-scale molecular clock

- VCXO + Keysight signal generator + VDI frequency extender;
- Measurement: frequency counter + Rb atomic clock.

Measurement Results of Lab-Scale Molecular Clock

- The measured Allan deviation (frequency stability): $\sigma_v(\tau=10^3 s)=2.2 \times 10^{-11};$
- 10³× Improvement compared with the free running VCXO.

Outline

- Motivations
- Rotational Spectrum of OCS Molecules
- Fundamentals of Timekeeping
 - Wavelength Modulation Spectroscopy
 - Clock Feedback Loop
 - Lab-Scale Molecular Clock
- The First Molecular Clock on CMOS
 - Architecture
 - CMOS TX/RX chipset
 - Measurement Results
- Conclusion

CMOS Molecular Clock: Architecture

- Utilize 231.061GHz ($J=19\leftarrow18$) rotational spectral line of OCS for power saving.
- FSK modulation (16kHz) instead of analog wavelength modulation.

CMOS Molecular Clock: Packaging

CMOS TX: 224~242GHz, 40-bit Fractional-N PLL with FSK

Technical Highlight

- High efficiency 2nd harmonic VCO and THz multiplier chain;
- 40-bit Δ-Σ modulator, ppt level (10⁻¹²) frequency accuracy;
- FSK modulation, digitally controllable f_m and Δf ;

CMOS TX: High Efficiency VCO and THz Multiplier Chain

Symposia on VLSI Technology and Circuits

Slide 20

CMOS RX: 231GHz Detector with On-Chip Lock-in Detector

Technical Highlight

- 231GHz square-law detector based on sub-threshold NMOS transistor with flicker-noise reduction;
- Differential folded-Cascode baseband low noise amplifier;
- Transmission-gate based onchip lock-in detector;

DC Power Consumption of TX/RX Chipset

Measured Output Power of TX and NEP of RX

Measured Output Spectrum and Phase Noise of TX

Measurement Results of CMOS Molecular Clock

- Measured SNR with 1Hz BW is 445 (in voltage) or 53dB (in power).
- ADEV σ_v(T=10³s)=**3.8×10⁻¹⁰**;
- **10**× Improvement compared with free-running VCXO.

- Correct the drift of free running VCXO;
- 1s averaging time for each data point.

Performance Summary

	CMOS Molecular Clock	Lab-scale Molecular Clock		
TX output RF power	-20 dBm*	-13 dBm		
Modulation	16 kHz, FSK	100kHz, Wavelength modulation		
Phase noise	-61.1 dBc/Hz @100kHz	-85.0 dBc/Hz @100kHz		
RX noise	NEP: 501 pW/Hz ^{0.5} *	Noise figure:33 dB		
Gas cell loss (dB)	7	7		
Calculated SNR (dB)	57	92		
Measured SNR (dB)	53	71		
Stability σ(τ=1s)	2.5×10 ⁻⁹	3.2×10 ⁻¹⁰		
Stability σ(τ=10 ³ s)	3.8×10 ⁻¹⁰	2.2×10 ⁻¹¹		

* Including 10 dB loss of chip-to-waveguide transition

- Gap between CMOS molecular clock and lab-scale prototype;
- Performance enhancement: loss reduction of package, phase noise optimization.

Outline

- Motivations
- Rotational Spectrum of OCS Molecules
- Fundamentals of Timekeeping
 - Wavelength Modulation Spectroscopy
 - Clock Feedback Loop
 - Lab-Scale Molecular Clock
- The First Molecular Clock on CMOS
 - Architecture
 - CMOS TX/RX chipset
 - Measurement Results
- Conclusion

Conclusion

- Molecular clock: a competitive candidate for highly-stable time-base generator for future portable devices.
- Perspective: array imaging, navigation and communication under GPS denied environment.

	Allan Deviation (10 ³ s)	Linewidth (kHz)	t _{turn-on} (second)	P _{DC} (mW)	Implementation
This Work	3.8×10 ⁻¹⁰	880	<1	66 ¹	65nm CMOS
CSAC [7]	3×10 ⁻¹⁰	~1	N/A	26 ²	Electronics + Gas-Cell-
CSAC [8]	1×10 ⁻¹¹	~1	180	120	Integrated Laser and Heater

¹ The power of the VCXO is not included.

² The power of off-chip heater, laser, and other components is not included.

[7] D. Ruffieux, et al., ISSCC, pp. 48-49, Feb. 2011.

[8] Microsemi. QuantumTM, SA.54s chip scale atomic clock, 2017.

Acknowledgement

- We acknowledge the helpful technical discussions with:
 - Dr. Stephen Coy (MIT, Department of Chemistry)
 - Prof. Robert Field (MIT, Department of Chemistry)
 - Prof. John Muenter (University of Rochester, Department of Chemistry)
 - Dr. Bradford Perkins (MIT Lincoln Labs)
 - Dr. Philip Nadeau (MIT, Department of Electrical Engineering and Computer Science)
 - Prof. Keith Nelson (MIT, Department of Chemistry)
- We also appreciate the financial support from:
 - NSF CAREER award ECCS-1653100
 - MIT Lincoln Laboratory ACC672
 - Texas Instrument (TI) Fellowship