
Supporting Information: Molecular mechanisms of phosphoester bond formation in water using tight-binding ab-initio molecular dynamics

Zakarya Benayad, Matthias Bova Saint-André, and Guillaume Stirnemann*

CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France

E-mail: stirnemann@ibpc.fr

1. Phosphate monoanion

The following constrains were used in all simulations. They ensure that unrealistic molecular geometries do not occur during the metadynamics Gaussian deposition process.

Angles	α	β_1	γ_1	δ	β_2	γ_2	eta_3	γ_3
Atomic index	$O_1 P_2 O_9$	$O_1 P_2 O_3$	$O_3P_2O_9$	$C_8 O_9 P_2$	$O_1 P_2 O_4$	$O_4 P_2 O_9$	$O_1 P_2 O_5$	$O_5 P_2 O_9$

 Table S1: Definition of the molecular angles

Table S2: Constraints applied on angles of	or angle differences during the simula-
tions.	

			Force constant
Angles	Values	$a_i \ (\mathrm{rad})$	k_i
			(kcal/mol/rad^2)
	Lower wall	Upper wall	
$\beta_1 - \beta_2$	-0.5	0.5	400
β_1 - β_3	-0.5	0.5	400
β_3 - β_2	-0.5	0.5	400
$\gamma_1 - \gamma_2$	-0.5	0.5	400
$\gamma_1 - \gamma_3$	-0.5	0.5	400
γ_3 - γ_2	-0.5	0.5	400
δ	1.57	/	500

			Force constant
Atomic index	Values	k_i	
			(kcal/mol/Å^2)
	Lower wall	Upper wall	
$\begin{array}{c c} d_{pl}: \ P_2O_1 \\ \hline d_{pm}: \ P_2O_9 \end{array}$	/	4	500
d_{pm} : P_2O_9	/	4	500
d_{pl} - d_{pm}	-2.4	2.4	400
O_3P_2	/	1.8	500
O_4P_2	/	1.8	500
O_5P_2	/	1.8	500
$H_{11}C_8$	/	1.25	500
$H_{12}C_{8}$	/	1.25	500
$H_{13}C_{8}$	/	1.25	500
O_9C_8	1.35	1.6	500
O_1H_6	/	1.2	500

Table S3: Constraints applied on distances or distance differences during the simulations.

Table S4: Constraints applied on the numbers of coordination between two groups of atoms (A and B) during the simulations.

Group A	Group B	Values a_i		Force constant k_i (kcal/mol)
		Lower wall	Upper wall	
O_1	H_6, H_7, H_{10} and the H of the solvent	0.8	/	500
O ₉	H_6, H_7, H_{10} and the H of the solvent	/	1.5	500
O_3	The H of the solvent	/	0.5	500
O_4	The H of the solvent	/	0.5	500
H ₇	O_4, O_5, O_9 and the O of the solvent	/	0.5	500
H ₁₀	$O_1, O_3, O_5 + $ the O of the solvent	/	0.5	500

1.1. Phosphate monoanion reactivity with enforced substrate-

assisted proton transfer

Table S5: Additional constraints related to the proton transfers as defined through the distances to the protons donor and acceptors.

Atomic index	Values	Force constant k_i (kcal/mol/Å^2)	
	Lower wall	Upper wall	
d_{mm}	/	3.5	500
d_{ma}	/	3.5	500
d_{dd}	/	3.5	500
d_{dl}	/	3.5	500
δH_A	-2	2	500
δH_B	-2	2	500

Table S6: Additional constraints to be added to restrain the reaction to go through a mechanism of type $A_N D_N$ or $D_N + A_N$. The constraints are applied on the difference of the distances for transfers A and B.

Type of mechanism	Index	Values (Å) Upper wall	Force constant k_i (kcal/mol/Å ²)
$A_N D_N$	δ_B - δ_A	0.2	500
$D_N + A_N$	δ_A - δ_B	0.2	500

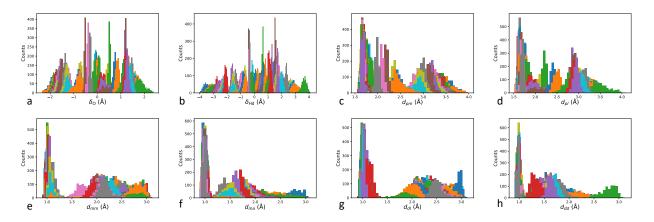


Figure S2: Overlap between umbrella sampling (US) windows, as represented along the different molecular distances as defined in the main text, for the associative mechanism with enforced substrate-assisted proton transfer. Each color corresponds to one US replica.



Figure S3: Overlap between umbrella sampling (US) windows, as represented along the different molecular distances as defined in the main text, for the dissociative mechanism with enforced substrate-assisted proton transfer. Each color corresponds to one US replica.

1.2. Phosphate monoanion reactivity with possibility of proton trans-

fer with the solvent

Table S7: New constraints related to the possibility of proton transfer with the
solvent. In that case, the constraints of Tab. 4, 5 and 6 are removed.

Name	Group A	Group B	Values		$\begin{array}{c} \text{Force} \\ \text{constant} \ k_i \\ (\text{kcal/mol}) \end{array}$
			Lower wall	Upper wall	
C_1	O_1	H_6, H_7, H_{10} and the H of the solvent	0.8	2.5	500
C_2	O_9	H_6, H_7, H_{10} and the H of the solvent	/	1.5	500

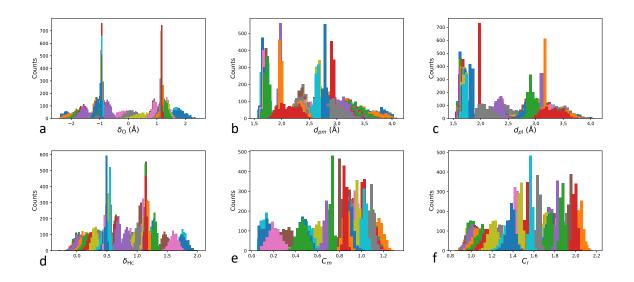


Figure S4: Overlap between umbrella sampling (US) windows, as represented along the different molecular distances as defined in the main text, for the phosphoester bond formation in the monoanion with possibility of solvent-assisted proton transfer. Each color corresponds to one US replica.

2. Phosphate dianion reactivity

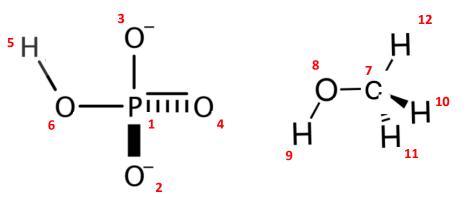


Figure S5: Identification of the atoms of phosphate dianion and methanol from 1 to 12.

Table S8:	Definition	of the	molecular	angles
-----------	------------	--------	-----------	--------

Angles	α	eta_1	γ_1	δ	β_2	γ_2	eta_3	γ_3
Atomic index	$O_6 P_1 O_8$	$O_6 P_1 O_2$	$O_2 P_1 O_8$	$C_7 O_8 P_1$	$O_6 P_1 O_3$	$O_{3}P_{1}O_{8}$	$O_6 P_1 O_4$	$O_4 P_1 O_8$

Table S9: Constraints applied on angles or angle differences during the simulations.

			Force constant
Angles	Values	$a_i \ (\mathrm{rad})$	k_i
			(kcal/mol/rad^2)
	Lower wall	Upper wall	
$\beta_1 - \beta_2$	-0.5	0.5	400
β_1 - β_3	-0.5	0.5	400
β_3 - β_2	-0.5	0.5	400
$\gamma_1 - \gamma_2$	-0.5	0.5	400
γ_1 - γ_3	-0.5	0.5	400
γ_3 - γ_2	-0.5	0.5	400
δ	1.745	/	500

Table S10:	Constraints	applied	on	distances	or	distance	differences	during	\mathbf{the}
simulations	•								

			Force constant
Atomic index	Values	k_i	
		$(\rm kcal/mol/Å^2)$	
	Lower wall	Upper wall	
$d_{pl}: P_1O_6$	/	4	500
$\begin{array}{c c} d_{pl}: \ P_1O_6 \\ \hline d_{pm}: \ P_1O_8 \end{array}$	/	4	500
d_{pl} - d_{pm}	-2.4	2.4	400
O_2P_1	/	1.8	500
O_3P_1	/	1.8	500
O_4P_1	/	1.8	500
$H_{10}C_{7}$	/	1.25	500
$H_{11}C_7$	/	1.25	500
$H_{12}C_{7}$	/	1.25	500
O_8C_7	1.35	1.6	500
O_6H_5	/	1.2	500

Table S11: Constraints applied on the number of coordination during the simulations.

Group A	Group B	Values		$\begin{array}{c} \text{Force} \\ \text{constant} \ k_i \\ (\text{kcal/mol}) \end{array}$
		Lower wall	Upper wall	
<i>O</i> ₆	$H_5, H_9, \text{ and}$ the H of the solvent	0.8	2.5	500
O ₈	$H_5, H_9, \text{ and}$ the H of the solvent	/	1.5	500

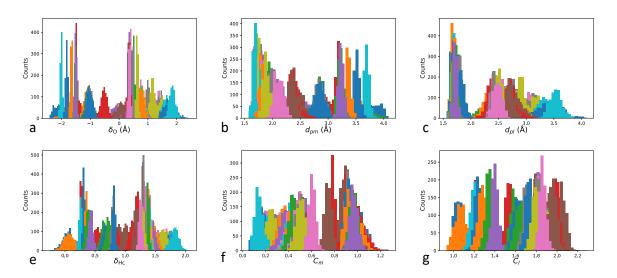


Figure S6: Overlap between umbrella sampling (US) windows, as represented along the different molecular distances as defined in the main text, for the phosphoester bond formation in the dianion with possibility of solvent-assisted proton transfer. Each color corresponds to one US replica.

3. DFT-based energetic corrections to the free-energy paths

For the PDP (phosphate diprotonated) species, we have calculated the single point energies for 10-40 structures randomly chosen around each point of the string along the free-energy path, both at the DFTB level, as well as at the BLYP DFT level, including dispersion interaction corrections (D3, similar to those tested for the description of the water bulk phase, see main text). We then compared the free-energy paths obtained from our aiMD DFTB simulations, to those for which the energetic contribution to the free-energy was corrected as follows: $G_{corr} = G_{DFTB} + E_{DFT} - E_{DFTB}$. This approach is simplistic and probably suffers from many approximations: the structures are those of DFTB, the calculations are performed in the gas phase in the absence of explicit solvent molecules (which could in particular impact the energies of species with large partial and/or net charges), and the entropic contributions are assumed to be similar at the two quantum levels. While a more systematic investigation would involve a much more elaborate and refined approach, these calculations enable a crude and rough estimate of the robustness of our conclusions.

As expected, single point calculations on the DFTB structures show some differences between the BLYP-D3 and the SCC-DFTB methods; however, we note that the "corrected" free-energy profiles exhibit the same qualitative behaviors, and that the dissociativeassociative mechanism remains much more favored than an associative-dissociative mechanism.

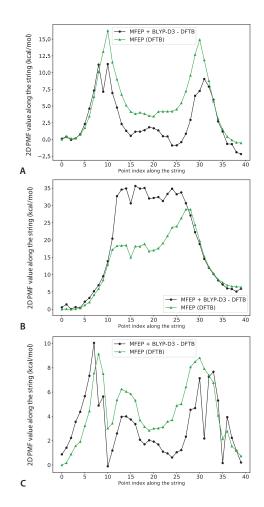


Figure S7: MFEP including (green) or not (black) corrections based on gas phase single point calculations at the BLYP-D3 level for (A) the dissociative-associative mechanism with distance-based proton transfer coordinates, (B) the associative mechanism with distancebased proton transfer coordinates, and (C) the dissociative-associative mechanism with coordination-based proton transfer coordinates.