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Abstract

We study the path Γ = {C6,x | x ∈ [0, 1]} in the moduli space of
configurations of 6 equal cylinders touching the unit sphere. Among
the configurations C6,x is the record configuration Cm of [OS]. We
show that Cm is a local sharp maximum of the distance function, so in
particular the configuration Cm is not only unlockable but rigid. We
show that if (1+x)(1+3x)

3 is a rational number but not a square of a
rational number, the configuration C6,x has some hidden symmetries,
part of which we explain.
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1 Introduction

This is a continuation of our work [OS]. In that paper we were considering the
configurations of six (infinite) nonintersecting cylinders of the same radius
r touching the unit sphere S2 ⊂ R3. We were interested in the maximal
value of r for which this is possible. We have constructed in [OS] the ‘record’
configuration Cm of six cylinders of radius

rm =
1

8

(
3 +
√

33
)
≈ 1.093070331, (1)

thus we know that the maximal value of r is at least rm. We believe that rm
is in fact the maximal possible value for r, but we have no proof of that.

In [OS] we have constructed the deformation C6,x of the configuration
C6 of six vertical unit nonintersecting cylinders. The configuration C6 corre-
sponds to x = 1 while Cm – to x = 1/2. These configurations are shown on
Figure 1 (the green unit ball is in the center).

Figure 1: Two configurations of cylinders: the configuration C6 of
six parallel cylinders of radius 1 (on the left) and the configuration
Cm of six cylinders of radius ≈1.0931 (on the right)

To explain the results of the present paper, we introduce some notation.
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A cylinder ς touching the unit sphere S2 has a unique generator (a line par-
allel to the axis of the cylinder) ι(ς) touching S2. We will usually represent
a configuration {ς1, . . . , ςL} of cylinders touching the unit sphere by the con-
figuration {ι(ς1), . . . , ι(ςL)} of tangent to S2 lines. The manifold of all such
six-tuples we denote by M6.

For example, let C6 ≡ C6 (0, 0, 0) be the configuration of six nonintersect-
ing cylinders of radius 1, parallel to the z direction in R3 and touching the
unit ball centered at the origin. The configuration of tangent lines associated
to the configuration C6 is shown on Figure 2.

Figure 2: Configuration C6 of tangent lines

Let ς ′, ς ′′ be two equal cylinders of radius r touching S2, which also touch
each other, while ι′, ι′′ are the corresponding tangents to S2. If d = dι′ι′′ is
the distance between ι′, ι′′ then we have

r =
d

2− d
,

so it is really the same - to study the manifold of six-tuples of cylinders of
equal radii, some of which are touching, or to study the manifold M6 and
the function D on it:

D (ι1, . . . , ι6) = min
1≤i<j≤6

dιiιj .
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In this paper we prove that the configuration Cm is a sharp local max-
imum of the function D. In the process of the proof we also show that
(modSO (3)) the 15-dim tangent space at Cm contains a 4-dimensional sub-
space along which the function D (m)2 decays quadratically, while along any
other tangent direction it decays linearly.

It turns out that the question of finding sufficient conditions for the ex-
trema of the min functions can be quite delicate.

For the configuration Cm we distinguish twelve relevant distances l1, . . . ,
l12 out of the total of fifteen pairwise distances between the tangent lines.
Thus the question is about the local maximum of the non-analytic function
(the minimum of the squares F1, . . . , F12 of these twelve distances) in fifteen
variables.

We make a general remark. Let F1, . . . , Fm be analytic functions in n
variables, n ≥ m, and let

F (x) := min {F1 (x) , . . . , Fm (x)} .

We assume that Fj(0) = 0, j = 1, . . . ,m. Suppose that the point 0 ∈ Rn is a
local maximum of the function F (x). Then the differentials dF1, . . . , dFm are
necessarily linearly dependent at 0. Indeed, let Π+

j , j = 1, . . . ,m, be the half-
space in Rn on which the differential dFj(0) is positive. If the differentials
dF1, . . . , dFm are independent at 0 then the intersection of the half-spaces
Πj is non-empty, so there is a direction from 0 along which all m functions
Fi are increasing, thus the point 0 is not a local maximum of the function
F (x). This remark is a generalization of the case m = 1 (just one analytic
function): if the point 0 is a local maximum of an analytic function F (x)
then its differential vanishes at the point 0, dF (0) = 0.

We return for a moment to the configuration Cm. We calculate explicitly
the differentials of the squares of the twelve relevant distances l1, . . . , l12.
Our first observation is that they are indeed not linearly independent. More
precisely, there is a single linear combination λ of the differentials which
vanish, λ(dl21, . . . , dl

2
12) = 0.

We continue the general remark. Suppose that the point 0 ∈ Rn is a local
maximum of the function F (x) and there is exactly one linear dependency
between the differentials dF1, . . . , dFm at 0. Then this dependency must be
convex, in the sense that it must have the form λ1dF1 + . . . λmdFm = 0 with
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λj > 0, j = 1, . . . ,m. Indeed, let us assume that the single linear combina-
tion of the differentials is not convex. Then, renumbering, if necessary, the
functions Fj(x), we write the linear dependency between the differentials in
the following form

dF1(0) = µ2dF2(0)± · · · ± µmdFm(0) ,

with µj > 0, j = 2, . . . ,m. The differentials dF2, . . . , dFm are independent
and the subset of Rn where µ2dF2(0)± · · · ± µmdFm(0) > 0 is a non-empty
open convex cone in which all the differentials are positive, so again the point
0 cannot be a local maximum of the function F (x).

This is exactly what happens for the configuration Cm. The unique lin-
ear combination λ(l1, . . . , l12) = 0 of the differentials of the twelve relevant
distances is convex. We thus have a four-dimensional linear subspace E of
the tangent space on which all twelve differentials vanish. Here 4 = 15 (di-
mension of the configuration space mod SO(3)) - 12 (the number of relevant
distances) + 1 (the number of relations between the differentials).

The presence of the linear convex dependency between the differentials is
necessary, but not sufficient, and we have to continue the analysis. Let q1,
. . . , q12 denote the second differentials of the functions F1, . . . , F12. Let q be
the restriction of the same convex combination λ of the second differentials
to the space E, q = λ(q1, . . . , q12)|E.

Our second observation is that the form q is negatively defined. We prove
(and it is not immediate) that the local maximality is implied by these two
observations.

Our results imply that the configuration Cm is unlockable and, moreover,
rigid.

The precise meaning of the unlocking is the following. Let Π be a col-
lection of non-intersecting open solid bodies, Π = {Λ1, . . . ,Λk} , where each
Λi touches the unit central ball, while some distances between bodies of Π
are zero. We call a family Π(t) = {Λ1(t), . . . ,Λk(t)}, t ≥ 0, of collections of
non-intersecting open solid bodies, touching the unit central ball, a contin-
uous deformation of the collection Π if Λj(t) = gj(t)Λj, j = 1, . . . , k, where
gj(t) is a continuous curve in the group of Euclidean motions of R3 with
gj(0) = Id. We say that Π can be unlocked if there exists a continuous de-
formation Π (t) of Π such that some of zero distances between the members
of the configuration Π are positive in Π (t) for all t > 0.
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We say that a configuration Π is rigid if the only continuous deformations
of Π are global rotations in the three-dimensional space.

In [K] W. Kuperberg suggested another configuration of six unit non-
intersecting cylinders touching the unit sphere and asked whether it can be
unlocked. It is the configuration O6 shown on Figure 3. We are planning to
address this question in the forthcoming work [OS-O6].

Figure 3: Configuration O6 of cylinders

While calculating variations of distances we observed that the coefficients
of the Taylor decompositions of squares of the pairwise distances around
the record point Cm belong, after a certain normalization, to the field Q[τ ],
where τ is the golden ratio. This miraculous fact allows us to reveal a hidden
symmetry of the formulas for the coefficients of the Taylor expansions of
distances around the point Cm. Namely, the Galois conjugation in the field
Q[τ ] restores the original D6-symmetry of the configuration C6.

Puzzled by the hidden Galois symmetry, we performed several experi-
ments wondering whether this symmetry is specific for the record point Cm

or it is inherent at some other points of the curve C6,x. It turns out that for

all rational x such that
√

(1 + x)(1 + 3x)/3 is not rational, we have a similar
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phenomenon. Namely, when we perturb the configuration C6,x, the Taylor
coefficients, after a certain normalization, belong to a (real) quadratic exten-
sion of the rational field Q, and Galois conjugation restores the D6-symmetry
of the formulas for variations.

The paper is organized as follows. The next section introduces further
notation, concerning our manifold M6. In Section 3 we formulate our main
local maximality results. Section 4 contains the proofs of assertions from
Section 3. Our general results concerning sufficient conditions for the local
extrema of the min function are collected in Section 5. The last Section 6 is
devoted to the hidden symmetry of the configuration Cm and, more generally,
to the hidden symmetry of the configurations C6,x.

2 Configuration manifold

Here we collect the notation of [OS] used below.

Let S2 ⊂ R3 be the unit sphere, centered at the origin. For every x ∈ S2

we denote by TLx the set of all (unoriented) tangent lines to S2 at x. We
denote by M the manifold of tangent lines to S2. We represent a point in M
by a pair (x, ξ), where ξ is a unit tangent vector to S2 at x, though such a
pair is not unique: the pair (x,−ξ) is the same point in M.

We shall use the following coordinates on M . Let x,y, z be the standard
coordinate axes in R3. Let Rα

x, Rα
y and Rα

z be the counterclockwise rotations
about these axes by an angle α, viewed from the tips of axes.

We call the point N = (0, 0, 1) the North pole, and S = (0, 0,−1) – the
South pole. By meridians we mean geodesics on S2 joining the North pole to
the South pole. The meridian in the plane xz with positive x coordinates will
be called Greenwich. The angle ϕ will denote the latitude on S2, ϕ ∈

[
−π

2
, π
2

]
,

and the angle κ ∈ [0, 2π) – the longitude, so that Greenwich corresponds to
κ = 0. Every point x ∈ S2 can be written as x = (ϕx,κx).

Finally, for each x ∈ S2, we denote by Rα
x the rotation by the angle α

about the axis joining (0, 0, 0) to x, counterclockwise if viewed from its tip,
and by (x, ↑) we denote the pair (x, ξx) , x 6= N, S, where the vector ξx points
to the North. We also abbreviate the notation (x,Rα

x ↑) to (x, ↑α).

Let u = (x′, ξ′) , v = (x′′, ξ′′) be two lines in M . We denote by duv the
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distance between u and v; clearly duv = 0 iff u ∩ v 6= ∅. If the lines u, v are
not parallel then the square of duv is given by the formula

d2uv =
det2[ξ′, ξ′′, x′′ − x′]

1− (ξ′, ξ′′)2
, (2)

where (∗, ∗) is the scalar product.

We note that if duv = d > 0 then the cylinders Cu (r) and Cv (r) , touching
S2 at x′, x′′, having directions ξ′, ξ′′, and radius r, touch each other iff

r =
d

2− d
. (3)

Indeed, if the cylinders touch each other, we have the proportion:

d

1
=

2r

1 + r
. (4)

We denote by M6 the manifold of 6-tuples

m = {u1, . . . , u6 : ui ∈M, i = 1, . . . , 6} . (5)

We are studying the critical points of the function

D (m) = min
1≤i<j≤6

duiuj .

Note that D (C6) = 1.

3 The critical point C6 (ϕm, δm,κm)

The configuration C6 ≡ C6 (0, 0, 0) in our notation can be written as

C6 =
{
A =

[(
0, π

6

)
, ↑
]
, D =

[(
0, π

2

)
, ↑
]
,

B =
[(

0, 5π
6

)
, ↑
]
, E =

[(
0, 7π

6

)
, ↑
]
,

C =
[(

0, 3π
2

)
, ↑
]
, F =

[(
0, 11π

6

)
, ↑
]}
.
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We need also the configurations C6 (ϕ, δ,κ):

C6 (ϕ, δ,κ) =
{
A =

[(
ϕ, π

6
− κ

)
, ↑δ
]
, D =

[(
−ϕ, π

2
+ κ

)
, ↑δ
]
,

B =
[(
ϕ, 5π

6
− κ

)
, ↑δ
]
, E =

[(
−ϕ, 7π

6
+ κ

)
, ↑δ
]
,

C =
[(
ϕ, 3π

2
− κ

)
, ↑δ
]
, F =

[(
−ϕ, 11π

6
+ κ

)
, ↑δ
]}
.

(6)

In [OS] we have constructed a a continuous curve

γ(ϕ) = C6

(
ϕ, δ (ϕ) ,κ (ϕ)

)
, ϕ ∈

[
0;
π

2

]
, (7)

on which the function D
(
γ(ϕ)

)
grows for ϕ ∈ [0, ϕm] and decays for ϕ > ϕm.

For the ‘record’ point Cm = C6 (ϕm, δm,κm) we have

D
(
γ(ϕm)

)
=

√
12

11
,

with

ϕm = arcsin

√
3

11
, κm = − arctan

1√
15

, δm = arctan

√
5

11
.

The radii of the corresponding cylinders are equal to rm (see formula (1))
which, we believe is the maximal possible common radius for six non-inter-
secting cylinders touching the unit ball.

Note that placing the cylinders of radius 1 instead of rm leaves a spacing
2(rm − 1) for each cylinder. Even if we could manage to move these unit
cylinders in such a way that the spacings would behave additively then the
total spacing would be 6 · 2(rm − 1) ≈ 1.116843972 which does not make
enough room for a seventh unit cylinder (the problem of whether seven infi-
nite circular non-intersecting unit cylinders can be arranged about a central
unit ball is open).

The configuration Cm is shown on Figures 4, 5 and 6.

There is now an animation, on the page of Yoav Kallus [Ka], demonstrat-
ing the motion of the configuration of 6 cylinders along the curve γ(ϕ).
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Figure 4: Record configuration, side view, the equator is yellow, the north
pole is white

Figure 5: Record configuration again, three upper tangency points shown

Figure 6: Record configuration once more, two upper and one lower tangency
points shown

11



3.1 Main maximality result

In [OS] we have shown that the function D (C6 (ϕ, δ (ϕ) ,κ (ϕ))) has a global
maximum at the point ϕm, corresponding to the configuration Cm. We now
study the function D in the vicinity of the point Cm in the whole space M6.

Theorem 1 The configuration Cm is a point of a sharp local maximum of
the function D : for any point m in a vicinity of Cm we have

D (m) <

√
12

11
= D (Cm) .

In the process of the proof, we will see that there exists a 4-dimensional
subspace Lquadr in the tangent space of M6 at Cm, such that for any l ∈ Lquadr
we have

−cu ‖l‖ t2 ≤ D (Cm + tl)−D (Cm) ≤ −cd ‖l‖ t2

for t small enough. Here cd and cu are some constants, 0 < cd ≤ cu < +∞
and Cm + tl ∈ M6 stands for the exponential map applied to the tangent
vector tl.

For the tangent vectors l outside Lquadr we have

−c′u (l) t ≤ D (Cm + tl)−D (Cm) ≤ −c′d (l) t,

where now c′d (l) and c′u (l) are some positive valued functions of l, 0 < c′ (l) ≤
c′′ (l) < +∞.

Note, however, that the last two inequalities do not imply our Theorem,
as the example of the Section 3.2 shows.

3.2 Toy example

Suppose that we know that along any tangent direction to the critical point
the function D decays, either linearly or at least quadratically. We emphasize
that this property by itself does not imply our main result about the local
maximality of this point. An extra work is needed to prove the maximality
statements. The following example explains this.

Let f be a function of two variables defined by

f := min{u1, u2} where u1 = −y + 3x2, u2 = y − x2 .

12



The function f equals 0 at the origin. Consider an arbitrary ray l starting
at the origin. Clearly, for some time this ray evades the ‘horns’ – the region
between the parabolas y = 3x2 and y = x2. But outside the horns the
function f is negative. Indeed, inside the the narrow parabola y = 3x2 we
have u1 < 0, u2 > 0 so f is negative there; outside the wide parabola y = x2

we have u1 > 0, u2 < 0 so f is negative there as well. Therefore the origin
is a local maximum of f restricted to l, for any l. Yet the origin is not a
local maximum of the function f on the plane, because inside the horns the
functions u1 and u2 are positive so f there is positive as well 2.

Note that there is a convex linear combination of the differentials of the
functions u1 and u2 which vanishes (the sum of the differentials); both dif-
ferentials vanish on the line y = 0. However the restriction of the sum of
the second differentials to this line is positive, in line with our Theorem 2,
Subsection 5.1.

This toy example captures the essential features of questions we encounter
in the study of local maxima of the distance functions. Some general the-
orems needed to establish maximality assertions are formulated and proven
in Section 5.

4 Proof of Theorem 1

For any ϕ, δ,κ the configuration C6 (ϕ, δ,κ), defined by the formula (6),
possesses the dihedral symmetry group D3 ≡ Z2 nZ3. The group D3 is gen-
erated by the rotations R120◦

z and R180◦
x . Because of the D3-symmetry, the

fifteen pairwise distances between the lines in the configuration C6 (ϕ, δ,κ)
split into four groups: we have dAB = dBC = dCA = dDE = dEF = dFD
for the six-plet {AB,BC,CA,DE,EF, FD}, and dAD = dBE = dCF , dAF =
dBD = dCE and dAE = dBF = dCD for the three triplets {AD,BE,CF},
{AF,BD,CE} and {AE,BF,CD}. For any configuration γ(ϕ) lying on
the curve γ, see (7), twelve of the fifteen distances coincide (we addition-
ally have dAB = dAD = dAF ). In the proof we shall study variations of
distances in a vicinity of the point C6 (ϕm, δm,κm) ≡ γ(ϕm) in M6. The
distances from the {AE,BF,CD}-triplet are greater than the other twelve

2Compare with the ‘Example of a differentiable function possessing no extremum at
the origin but for which the restriction to an arbitrary line through the origin has a strict
relative minimum there’, Chapter 9 in [GO].
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(equal) distances for the configuration C6 (ϕm, δm,κm), see [OS], so these
three distances are not relevant in the study of the local maximality of the
configuration C6 (ϕm, δm,κm).

The perturbed position of a tangent line J ∈ {A,B,C,D,E, F} is

J = J(κm + ∆κ
J , ϕm + ∆ϕ

J , δm + ∆δ
J)

where
{κm, ϕm, δm}

is the maximal point on our D3-symmetric curve and

∆κ
J =

11

32
√

3

(
Jκ,1t+ Jκ,2t

2 + o(t2)
)
,

∆ϕ
J =

11

4
√

6

(
Jϕ,1t+ Jϕ,2t

2 + o(t2)
)
,

∆δ
J =

11
√

11

48

(
Jδ,1t+ Jδ,2t

2 + o(t2)
)
.

(8)

The numerical factors here are introduced for convenience, because with this
normalization the coefficients of the Taylor decompositions of squares of dis-
tances around the record point C6 (ϕm, δm,κm) belong (we do not understand
the reason for this) to the field Q[τ ], where τ is the golden section,

τ =
1 +
√

5

2
, τ̄ =

1−
√

5

2
.

To fix the rotational symmetry we keep the tangent line A at its place,
that is, Aϕ,j = Aκ,j = Aδ,j = 0, j = 1, 2, . . . , working therefore in the
15-dimensional space M6 mod SO(3).

4.1 Variation of distances in the first order

We first list all differentials.

Let

β11 =
2

11
(4−

√
5) , β̄11 =

2

11
(4 +

√
5) ,

γ−19 = −1− 2
√

5 , γ̄−19 = −1 + 2
√

5 .

(9)
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The seemingly strange indices of β and γ are used due to the prime decom-
positions

11 = (4 +
√

5)(4−
√

5) , −19 = (−1− 2
√

5)(−1 + 2
√

5)

in the ring Z[τ ] of golden integers.

The differentials of the {AF,CE,BD}-triplet are[
d(AF )2

]
1

= β11
(
τ 2β11Fκ,1 + τ 3Fϕ,1 + Fδ,1

)
,[

d(CE)2
]
1

= β11
(
τ 2β11(Cκ,1 + Eκ,1) + τ 3(Cϕ,1 + Eϕ,1) + (Cδ,1 + Eδ,1)

)
,[

d(BD)2
]
1

= β11
(
τ 2β11(Bκ,1 +Dκ,1) + τ 3(Bϕ,1 +Dϕ,1) + (Bδ,1 +Dδ,1)

)
.

The differentials of the {CF,BE,AD}-triplet are[
d(CF )2

]
1

= −β̄11
(
τ̄ 2β̄11(Cκ,1 + Fκ,1)− τ̄ 3(Cϕ,1 + Fϕ,1) + (Cδ,1 + Fδ,1)

)
,[

d(BE)2
]
1

= −β̄11
(
τ̄ 2β̄11(Bκ,1 + Eκ,1)− τ̄ 3(Bϕ,1 + Eϕ,1) + (Bδ,1 + Eδ,1)

)
,[

d(AD)2
]
1

= −β̄11
(
τ̄ 2β̄11Dκ,1 − τ̄ 3Dϕ,1 +Dδ,1

)
.

For the 6-plet {AB,BC,CA,DE,EF, FD} we have[
d(AB)2

]
1

=
1

5
(Bκ,1 − 2τ γ̄−19Bϕ,1 − 2τ̄Bδ,1) ,

[
d(BC)2

]
1

=
1

5
(Cκ,1 −Bκ,1 − 2τ̄ γ−19Bϕ,1 − 2τ γ̄−19Cϕ,1 + 2τBδ,1 − 2τ̄Cδ,1) ,[
d(CA)2

]
1

=
1

5
(−Cκ,1 − 2τ̄ γ−19Cϕ,1 + 2τCδ,1) ,[

d(DE)2
]
1

=
1

5
(Dκ,1 − Eκ,1 − 2τ̄ γ−19Eϕ,1 − 2τ γ̄−19Dϕ,1 + 2τEδ,1 − 2τ̄Dδ,1) ,[

d(EF )2
]
1

=
1

5
(Eκ,1 − Fκ,1 − 2τ̄ γ−19Fϕ,1 − 2τ γ̄−19Eϕ,1 + 2τFδ,1 − 2τ̄Eδ,1) ,[

d(FD)2
]
1

=
1

5
(Fκ,1 −Dκ,1 − 2τ̄ γ−19Dϕ,1 − 2τ γ̄−19Fϕ,1 + 2τDδ,1 − 2τ̄Fδ,1) .

The expressions for the differentials [d(AF )2]1, [d(AD)2]1, [d(AB)2]1 and
[d(CA)2]1 look shorter but this is only because of our convention to keep
the tangent line A fixed.
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4.2 Linear dependence of differentials

Our 12 linear functionals are not linearly independent. To see this consider
the functionals

S1 :=
[
d(AB)2

]
1
+
[
d(BC)2

]
1
+
[
d(CA)2

]
1
+
[
d(DE)2

]
1
+
[
d(EF )2

]
1
+
[
d(FD)2

]
1
,

S2 :=
[
d(AF )2

]
1
+
[
d(CE)2

]
1
+
[
d(BD)2

]
1

and
S3 :=

[
d(CF )2

]
1
+
[
d(BE)2

]
1
+
[
d(AD)2

]
1
.

Let also (keeping in mind that Aϕ,1 = Aκ,1 = Aδ,1 = 0)

F := (Aϕ,1 +Bϕ,1 + Cϕ,1 +Dϕ,1 + Eϕ,1 + Fϕ,1)

and
D := (Aδ,1 +Bδ,1 + Cδ,1 +Dδ,1 + Eδ,1 + Fδ,1) .

A direct computation shows that

S1 = −18

5
F +

2√
5
D ,

and
(23 + 3

√
5)S2 + (23− 3

√
5)S3 = 36F − 4

√
5D ,

so the following strictly convex combination (that is, the linear combination
with positive coefficients) of the differentials vanish:

10S1 + (23 + 3
√

5)S2 + (23− 3
√

5)S3 = 0 . (10)

This is the only relation between the differentials: a direct computation
shows that the linear space, spanned by the differentials, is 11-dimensional.

Let E denote the null-space of our differentials, i.e. the linear subspace of
the tangent space on which all the differentials vanish. It has the dimension
4 = 15− 11.
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4.3 Relevant quadratic form

We have now to study our functions to the next order, t2. We have performed
the calculation of the 12 quadratic forms using Mathematica [W]. The for-
mulas are quite lengthy and we do not reproduce the full details since it is
just an intermediate result.

The only quadratic form important to us is, as we will explain in Section
5, the same combination (10) but calculated for [d(∗∗)2]2 instead of [d(∗∗)2]1.

This is a quadratic form in 15 variables. However, due to the results of
Section 5, it is enough to calculate the restriction of this form to the null-
space E of the differentials. If this restriction to E would be negatively
defined, that will prove our result.

The subspace E has dimension 4. As independent variables on E we
choose

w1 := Eκ,1 , w2 := Eϕ,1 , w3 := Bδ,1 and w4 := Cδ,1 .

The resulting quadratic form on E is
∑

Φijwiwj where

Φ =
11

9



−919

24

5663

12
√

5
− µ̄1

30
−µ1

30

5663

12
√

5
−18663

6
−7µ̄2

15

7µ2

15

− µ̄1

30
−7µ̄2

15
−4µ̄3

15
700

−µ1

30

7µ2

15
700 −4µ3

15


. (11)

Here µ1 = 2865 + 1438
√

5, µ2 = 3530 + 939
√

5, µ3 = 5335 + 1878
√

5, and
bar stands for the Galois conjugation (the replacement of

√
5 by −

√
5) in

the field Q[τ ].

A direct calculation shows that Φ is indeed negatively defined and the
result follows, by applying the theorem 2, Section 5.
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5 Local maximum

This section provides a sufficient condition which ensures that the point
0 ∈ Rn is a sharp local maximum of the function

F (x) := min {F1 (x) , . . . , Fm (x)} , (12)

where the functions F1 (x) , . . . , Fm (x) are analytic in a neighborhood of
0 ∈ Rn and Fu(0) = 0, u = 1, . . . ,m (for the configurations of tangent lines
in Theorem 1 the functions Fu are the differences between the squares of dis-
tances in the perturbed and initial configurations). This sufficient condition
is needed to complete the proofs of Theorem 1.

We denote by luj and qujk the coefficients of the linear and quadratic parts
of the function Fu(x), u = 1, . . . ,m,

Fu(x) = lujx
j + qujkx

jxk + o(2) , (13)

where o(2) stand for higher order terms. Here and till the end of the Section
the summation over repeated coordinate indices is assumed.

Let ξj, j = 1, . . . , n, be the coordinates, corresponding to the coordinate
system x1, . . . , xn, in the tangent space to Rn at the origin. We define the
linear and quadratic forms lu(ξ) ≡ lujξ

j and qu(ξ) ≡ qujkξ
jξk on the tangent

space T0Rn. Let E be the subspace in T0Rn defined as the intersection of
kernels of the linear forms lu(ξ),

E =
m⋂
u=1

ker lu(ξ) .

The configuration C6 (ϕm, δm,κm) provides a particular example, see Sec-
tion 4, of a family {F1 (x) , . . . , Fm (x)} of m analytic functions in n variables,
m ≤ n, possessing the following two properties:

(A) The linear space, generated by the linear forms l1(ξ), . . . , lm(ξ) is (m−
1)-dimensional; moreover, the linear relation between l1(ξ), . . . , lm(ξ) is
strictly convex,

λ1l1(ξ) + . . .+ λmlm(ξ) = 0 , (14)

with λi > 0 , 1 ≤ i ≤ m− 1. Therefore,

If lu(ξ) ≥ 0 for all u = 1, . . . ,m then ξ ∈ E . (15)
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(B) The inequality (
λ1q1(ξ) + . . .+ λmqm(ξ)

)
|
ξ∈E ≥ 0 (16)

admits only the trivial solution ξ = 0.

In the setting of Section 4, n = 15 and m = 12.

For the configuration C6 (ϕm, δm,κm) the properties (A) and (B) hold.
The only relation between the differentials is the relation (10); this is the
property (A). The property (B) follows since the form (11) is negatively
defined.

We note that if the linear space, spanned by the linear forms lu(ξ),
u = 1, . . . ,m, is (m− 1)-dimensional then the implication (15) is satisfied if
and only if the unique linear dependency between the differentials is strictly
convex.

Theorem 2 Under the conditions (A) and (B), the origin is the strict local
maximum of the function F(x).

Below we give two proofs of Theorem 2. These proofs are different
in nature. We present both of them because of the importance of Theo-
rem 2 for our conclusion about the local maximality of the configuration
C6 (ϕm, δm,κm).

Although Theorem 2 is formulated for analytic functions, any of the two
proofs show that Theorem 2 holds in fact for functions Fj of the class C3.

5.1 First proof of Theorem 2

Lemma 3 The conditions (A) and (B) are invariant under an arbitrary an-
alytic change of variables, preserving the origin,

xj = Ajkx̃
k + Ajklx̃

kx̃l + o(2) . (17)

Here the matrix Ajk is non-degenerate.

Proof. Substituting (17) into the decompositions (13) we find

Fu(x) = luj
(
Ajkx̃

k + Ajklx̃
kx̃l
)

+ quijA
i
kA

j
l x̃
kx̃l + o(2)

= l̃ukx̃
k + q̃uklx̃

kx̃l + o(2) ,
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where
l̃uj = lujA

j
k and q̃ukl = lujA

j
kl + quijA

i
kA

j
l .

The assertion is immediate for the condition (A). As for the condition (B),
it is enough to note that λ1l1j + · · ·+ λmlmj = 0, j = 1, . . . , n.

First Proof of Theorem 2. It follows from the condition (A) that the dif-
ferentials of the functions F1(x), . . . , Fm−1(x) are independent; by using the
implicit function theorem we change the variables to have

F1(x) = x1 , . . . , Fm−1(x) = xm−1 .

To make the notation lighter we use the same letters xj instead of x̃j.

We identify the tangent subspace E ⊂ T0Rn with the plane x1 = . . . =
xm−1 = 0.

The remaining function Fm(x) is

Fm(x) = − 1

λm

m−1∑
i=1

λixi + q(x) + o(2) ,

where q(x) is a quadratic form. Let

q(xm, . . . , xn) := q(x)
x1=...=xm−1=0

be the restriction of the quadratic form q(x) to E.

We consider separately two cases: (i) x ∈ E and (ii) x /∈ E.

(i) The property (B) refers in our situation to the quadratic form q. Due
to Lemma 3, the form q is negatively defined on E. Thus there exists a small
neighborhood V of the origin in E such that if x ∈ V \ {0} then Fm(x) < 0,
so F (x) = min {0, Fm (x)} < 0.

(ii) If U is a small enough neighborhood of the origin in Rn (in the cho-
sen coordinate system the smallness depends only on the coefficients of the
function Fm(x)) and x /∈ U ∩ E then the property (15) implies that there
exists j, 1 ≤ j ≤ m, such that lj(x) < 0. We have two subcases.

(ii)1 If there is a j, 1 ≤ j < m, such that lj(x) < 0 then Fj(x) = lj(x) < 0
hence F (x) < 0.
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(ii)2 Otherwise, we have that all xi ≥ 0, i = 1, . . . ,m−1. We set xi = z2i ,
i = 1, . . . ,m− 1. In terms of the variables z1, . . . , zm−1, xm, . . . , the function
Fm(x) has the form

Fm(z21 , ... , z
2
m−1, xm, ...) = − 1

λm

m−1∑
i=1

λiz2i +q(xm, ... , xn)+higher order terms .

The quadratic form − 1
λm

∑m−1
i=1 λiz2i + q(xm, . . . , xn) is negatively defined, so

the function Fm(z21 , . . . , z
2
m−1, xm, . . . ) is strictly less than zero in a punctured

neighborhood of the origin. This implies that the function Fm(x) is strictly
negative whenever all xi ≥ 0, i = 1, . . . ,m − 1, and at least one of them is
positive. Thus again F (x) < 0.

Remark. It follows from the proof that the function F(x) decays quadrati-
cally at zero along any direction in E and decays linearly along any direction
outside E.

5.2 Second proof of Theorem 2

The cornerstone of the second proof is the set

E = {x ∈ Rn : F1 (x) = . . . = Fm (x)} . (18)

We assume that all occuring real vector spaces are equipped with a Eu-
clidean structure. For a vector v we denote by v̂ the unit vector in the
direction of the vector v.

Our proof will use the following observation.

Lemma 4 Let λ = {λ1, . . . , λm} be a collection of m positive real numbers,
λj > 0, j = 1, . . . ,m. LetWλ be the space of m-tuples {v1, . . . , vm} of vectors
in Rm−1, generating the space Rm−1 and such that

λ1v1 + . . .+ λmvm = 0 . (19)

Then there exists a continuous positive-valued function δ : Wλ → R>0 such
that for any unit vector s ∈ Rm−1 we have

min
i
〈s, v̂i〉 < −δ (v1, . . . , vm) . (20)
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Proof. For an angle α, 0 ≤ α < π, let Dj (α), j = 1, . . . ,m, denote the open
spherical cap, centered at (−v̂j), on the unit sphere Sm−2, consisting of all
the points s ∈ Sm−2 such that the angle ] (s, v̂j) > α.

For any unit vector s there exists an index i such that 〈s, vi〉 < 0. Indeed,
since the vectors v1, . . . , vm span the whole space Rm−1, some of the scalar
products 〈s, vj〉, j = 1, . . . ,m, are nonzero. Taking the scalar product of the
relation (19) with the vector s we see that at least one of the scalar products
〈s, vi〉 has to be negative. Therefore

m⋃
i=1

Di

(π
2

)
= Sm−2 .

Thus,

α0 (v1, . . . , vm) >
π

2
,

where the function α0 (v1, . . . , vm) is defined by

α0 (v1, . . . , vm) = sup

{
α :

m⋃
i=1

Di (α) = Sm−2
}

.

Let

ᾱ (v1, . . . , vm) :=
1

2

[
α0 (v1, . . . , vm) +

π

2

]
.

Clearly,
⋃m
i=1Di (ᾱ) = Sm−2. Define the function δ by

δ (v1, . . . , vm) = − cos ᾱ (v1, . . . , vm) .

With this choice of the function δ the relation (20) clearly holds. The posi-
tivity and the continuity of the function δ are straightforward.

We return to the consideration of our analytic functions.

Lemma 5 If the point y ∈ Rn happens to be away from the set E, see (18),
and the norm ‖y‖ is small enough then one can find a point x on E such that
F (y) < F (x) .

Moreover, there exists a constant c such that for y /∈ E , and x = x (y) ∈ E
being the point in E closest to y we have

F (y) < F (x)− c ‖x− y‖ , (21)

provided, again, that the norm ‖y‖ is small enough.
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Proof. Since there is only one linear dependency between the differentials
l1, . . . , lm of the functions F1(x), . . . , Fm(x), the set E is a smooth manifold
in a vicinity of the origin, of dimension n−m+ 1.

We introduce the tubular neighborhood Ur (E) of the manifold E , which
is comprised by all points y of Rn which can be represented as (x, sx) , where
x ∈ E and sx is a vector normal to E at x, with norm less than r. Let Er′ ⊂ E
be the neighborhood of the origin in E , comprised by all x ∈ E with norm
‖x‖ < r′, and Ur (Er′) be the part of Ur (E) formed by points hanging over
Er′ . If both r and r′ are small enough then every y ∈ Ur (Er′) can be written
as (x, sx) with x ∈ Er′ in a unique way. Note that x is the point on E closest
to y. Also, for any r, r′ > 0 the set Ur (Er′) evidently contains an open
neighborhood of the origin.

Now we are going to show that if y = (x, sx) ∈ Ur (Er′) , sx 6= 0, and both
r and r′ are small enough then F (y) < F (x). To this end, let Nx be the plane
normal to E at x (so that sx ∈ Nx). We identify Nx with the linear space
Rm−1, so that x corresponds to 0 ∈ Rm−1.

Now we will use Lemma 4, applied not to a single space, but to the
whole collection of the (m− 1)-dimensional spaces Nx, x ∈ Er′ . To do this,
we equip each Nx with m vectors vx1 , . . . , v

x
m ∈ Nx, which generate Nx and

which satisfy the same convex linear relation. All this data is readily supplied
by the linear functionals l1, . . . , lm, restricted to Nx. Indeed, each restricted
functional lxj ≡ lj|Nx can be uniquely written as lxj (∗) =

〈
∗, vxj

〉
, with vxj ∈

Nx. Here the scalar product on Nx is the one restricted from Rn. Clearly, for
every x we have

λ1vx1 + . . .+ λmvxm = 0 ,

since for every vector s ∈ Nx we have λ1l1 (s) + . . .+λmlm (s) = 0 (as for any
other vector). Moreover, lj (s) < 0 for some j = j(s), 1 ≤ j ≤ m, see formula
(15) or the proof of Lemma 4.

Since the space Nx=0 is orthogonal to the null-space E, the m vectors
v01, . . . , v

0
m do generate N0. Because the spaces Nx depend on x continuously,

all of them are transversal to E, provided r′ is small. Thus, the vectors
vx1 , . . . , v

x
m do generate the spaces Nx for all x ∈ Er′ , provided again that r′

is small enough. Lemma 4 provides us now with a collection of functions
δx on the spaces Wx

λ of m-tuples of vectors from Nx. It follows from the
continuity, in x, of the spaces Nx and the m-tuples {vx1 , . . . , vxm}, and from
the Lemma 4 that the functions δx can be chosen in such a way that the
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resulting positive function ∆(x) := δx (vx1 , . . . , v
x
m) on Er′ is continuous in x

and also is uniformly positive, that is,

∆(x) > 2c for all x ∈ Er′ ,

for some c > 0, provided r′ is small enough.

In virtue of Lemma 4, for every x ∈ Er′ and each vector s ∈ Nx there
exists an index j (s) for which the value lj(s) (s) of the functional lj(s) is not
only negative but moreover satisfies

lj(s) (s) < −2c ‖s‖ . (22)

Hence for y = (x, sx) ∈ Ur (Er′) we have

Fj(sx) (y) < Fj(sx) (x)− c ‖sx‖ (23)

provided both r and r′ are small. Therefore

min
j
{Fj (y)} ≤ Fj(sx) (y) < Fj(sx) (x)− c ‖sx‖ = min

j
{Fj (x)} − c ‖sx‖ ,

where the last equality holds since F1 (x) = . . . = Fm (x), so we are done.

Theorem 2 is a straightforward consequence of the next Proposition.

Proposition 6 The point x = 0 is a sharp local maximum of the function F
if the form

m∑
u=1

λuqu (24)

is negative definite on E.

In the special case when all the functions Fu(x), u = 1, . . . ,m, are linear-
quadratic, Fu are sums of linear and quadratic forms,

Fu(x) = lujx
j + qujkx

jxk , (25)

the if statement becomes the iff statement.

Proof. In view of Lemma 5 we can restrict our search of the maximum of
the function F to the submanifold E .
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Note that the plane E is the tangent plane to E at the point 0 ∈ E , so
the coordinate projection of E to E introduces the local coordinates on E in
a vicinity of 0. As a result, E can be viewed as a graph of a function Z on
E, Z (x) ∈ Rm−1 :

E = {x, z : x ∈ E, z = (z1 (x) , . . . , zm−1 (x))} .

This is an instance of the implicit function theorem. The point x = 0 is a
critical point of all the functions zl (x) .

Denote by M the restriction of any of the functions Fi to E . Clearly,
it is a smooth function, and the differential dM vanishes at 0 ∈ E . So our
proposition would follow once we check that the second quadratic form of
M at 0 is twice the form (24) . To see that, let us compute the derivative
d2M
dx21

at the origin; the computation of other second derivatives repeats this

computation. We have

d

dx1
M (x, z (x)) =

(
∂

∂x1
M

)
(x, z (x))

+

(
∂

∂xn−m+2

M

)
(x, z (x))

∂

∂x1
z1 (x) + . . .+

(
∂

∂xn
M

)
(x, z (x))

∂

∂x1
zm−1 (x) ,

and then

d2

dx21
M (x, z (x)) |x=0 = 2 [q1]1,1 + [l1]1 · 0 (since all

∂

∂x1
zl (0) = 0)

+ [l1]n−m+2 ·
∂2

∂x21
z1 (0) + . . .+ [l1]n ·

∂2

∂x21
zm−1 (0) .

Let us introduce the vector

∆ =

(
0, . . . ,

∂2

∂x21
z1 (0) , . . . ,

∂2

∂x21
zm−1 (0)

)
.

Then we have

d2

dx21
M1 (x, z (x)) |x=0 = 2 [q1]1,1 + l1 (∆) .

Since we have m− 1 identities

M1 (x, z (x)) = M2 (x, z (x)) = Mm (x, z (x)) ,
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we can write also

d2

dx21
M (x, z (x)) |x=0 = 2 [ql]1,1 + ll (∆) , l = 2, . . . ,m.

By (14) we then have

d2

dx21
M (x, z (x)) |x=0 = 2

(∑
l

λl [ql]1,1

)
,

so our claim follows.

5.2.1 Concluding remark

We stress that the space E , on which all the functions Fu (x), u = 1, . . . ,m,
are equal, is a very natural object in the study of a local maximum of the
function F(x), see (12). As a supporting evidence we provide a simple proof
of a weakened form of Lemma 5.

Lemma 7 Assume that any m−1 differentials among dFj (0), u = 1, . . . ,m,
are linearly independent. If the equalities F1 (y) = ... = Fm (y) are not
satisfied at a point y ∈ Rn with small enough ‖y‖ then y cannot be a local
maximum of the function F.

Proof. Suppose that for some r, 1 ≤ r < m, we have

F1 (y) = ... = Fr (y) < Fr+1 (y) ≤ ... ≤ Fm (y) .

Since the linear functionals dF1, . . . , dFr are independent, there exists a vec-
tor v such that all the values dFi (v), i = 1, . . . , r, are positive. Therefore all
the functions Ni (t) := Fi (y + tv), i = 1, . . . , r, are increasing in t at t = 0,
provided both ‖y‖ and t are small enough.

In [OS], we were guided by this kind of logic in our search of the curve
γ(ϕ): for each ϕ the point γ(ϕ) ∈ M6 is defined by the condition that the
distances under consideration coincide.

However, Lemma 7 does not suffice for the proof of Proposition 6, as the
following example shows. Let n = m = 2 and

F1(x1, x2) = x2 − x21 , F2(x1, x2) = 2x2 − x21 .
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The set E is the x1-axis. The differential dF1(0) and dF2(0) are linearly de-
pendent but the dependency is not convex. The restriction of any of functions
Fu on E is the function −x21 having the maximum at the origin. However this
is not a local maximum F(x1, x2): for instance, the restriction of the function
F on the x2-axis is the monotone function{

x2 for x2 > 0 ,

2x2 for x2 ≤ 0 .

For the proof of Theorem 2, we need, in the relation (23), a quantitative
statement established in the claim (21) of Lemma 5.

6 Hidden symmetry

In this Section we discuss and generalize the observations from Section 4
about the algebraic nature of the Taylor coefficients for the deformations
around the configuration C6 (ϕm, δm,κm).

6.1 Galois symmetry

As we mentioned in the proof from Section 4, the coefficients of the differen-
tials of squares of distances around the record point C6 (ϕm, δm,κm) belong -
after the strange normalization (8) - to the field Q[τ ]. The same holds for the
coefficients of all 12 quadratic forms in 15 variables. This looks miraculous.
We believe that all coefficients of the Taylor decompositions of all 15 distances
(not only 12 relevant distances) around the record point C6 (ϕm, δm,κm) be-
long to the field Q[τ ]. We have checked that it is so to some orders of t (for
some distances up to t8).

The evidence that the Galois symmetry is global – that is, that the Galois
symmetry holds on the level of functions, not only their Taylor decomposi-
tions – is given in the Subsection 6.2, see Proposition 8 and especially formula
(37).

We reveal now a hidden symmetry, based on the above observation, of
the formulas for the coefficients of the Taylor expansions of distances around
the point C6 (ϕm, δm,κm).
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Let W be a Q-vector space with the basis

{Jυ} where J ∈ {A,B,C,D,E, F} and υ ∈ {κ, ϕ, δ} .

Let W̃ := Q[τ ]⊗QW . We consider W̃ as a vector space over Q. The differ-
entials of distances (see formulas in Subsection 4.1) are naturally interpreted

as elements of W̃ . The Galois conjugation τ 7→ τ̄ turns into an involutive
automorphism of the space W̃ which we denote by ι.

Let Π$ and Π% be the operators in W̃ realizing the following permuta-
tions:

$ := (A,B,C)(D,E, F )

and
% := (A,D)(B,F )(C,E) .

It is straightforward to see that the operators Π$ and Π% preserve the differ-
entials of distances from Subsection 4.1. The operators Π$ and Π% (as well
as the permutations $ and %) generate the group D3.

Let Π◦ς be the operator in W̃ defined by

Jκ 7→ −ς(J)κ , Jϕ 7→ ς(J)ϕ , Jδ 7→ −ς(J)δ , (26)

for the following permutation ς:

ς := (B,C)(D,F ) ,

the elements A and E are fixed by ς. Finally, let Πς be the composition of
the Galois involution and Π◦ς ,

Πς := ι ◦ Π◦ς . (27)

The direct inspection shows that the operator Πς preserves the differentials of
distances from Subsection 4.1; it sends the differentials of the {AF,CE,BD}-
triplet to the differentials of the {CF,BE,AD}-triplet and permutes the
differentials of the 6-plet {AB,BC,CA,DE,EF, FD}.

Let G be the group generated by the operators Π$, Π% and Πς . We have

Π$ = Π%ΠςΠ%Πς ,
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so the groupG is generated by the operators Π% and Πς alone. The underlying
permutation of Π%Πς is

(A,F,C,E,B,D) ,

so
(Π%Πς)

6 = id .

Thus, the group G is the dihedral group D6. Note that the underlying per-
mutations of tangent lines form exactly the the symmetry group D6 of the
initial configuration C6.

We have checked that the operator Πς preserves the second differentials
as well and we believe that it is so for all orders of the Taylor expan-
sion. In the same way as for the first differentials, the operator Πς sends
the second differentials of the {AF,CE,BD}-triplet to the second differen-
tials of the {CF,BE,AD}-triplet and permutes the second differentials of
the 6-plet {AB,BC,CA,DE,EF, FD}. To convince the reader we present
three formulas for the second differentials, one differential for each of the
triplets {AF,CE,BD} and {CF,BE,AD} and one differential for the 6-
plet {AB,BC,CA,DE,EF, FD}:

[
d(BD)2

]
2

=
2597− 1017

√
5

127776
(Bκ,1 +Dκ,1)

2 − 651 + 236
√

5

792
(B2

δ,1 +D2
δ,1)

+
−97 + 60

√
5

528
(B2

ϕ,1 +D2
ϕ,1) +

265− 3
√

5

132
Bϕ,1Dϕ,1 +

219 + 124
√

5

198
Bδ,1Dδ,1

+
29− 109

√
5

2904
(Bκ,1 +Dκ,1)(Bδ,1 +Dδ,1) +

5− 48
√

5

132
(Bϕ,1Bδ,1 +Dϕ,1Dδ,1)

+
181 + 29

√
5

132
(Bδ,1Dϕ,1 +Bϕ,1Dδ,1) +

90− 17
√

5

726
(Bκ,1 +Dκ,1)(Bϕ,1 +Dϕ,1)

for the {AF,CE,BD}-triplet,

[
d(CF )2

]
2

=
2597 + 1017

√
5

127776
(Cκ,1 + Fκ,1)

2 − 651− 236
√

5

792
(C2

δ,1 + F 2
δ,1)

−97 + 60
√

5

528
(C2

ϕ,1 + F 2
ϕ,1) +

265 + 3
√

5

132
Cϕ,1Fϕ,1 +

219− 124
√

5

198
Cδ,1Fδ,1

+
29 + 109

√
5

2904
(Cκ,1 + Fκ,1)(Cδ,1 + Fδ,1) +

5 + 48
√

5

132
(Cϕ,1Bδ,1 + Fϕ,1Fδ,1)

29



+
181− 29

√
5

132
(Cδ,1Fϕ,1 + Cϕ,1Fδ,1) +

90 + 17
√

5

726
(Cκ,1 + Fκ,1)(Cϕ,1 + Fϕ,1)

for the {CF,BE,AD}-triplet and

150

11

[
d(BC)2

]
2

=
1

32
(Bκ,1 − Cκ,1)

2 +
133 + 9

√
5

16
B2
ϕ,1 +

133− 9
√

5

16
C2
ϕ,1

+
27− 2

√
5

16
Bϕ,1(Bκ,1 − Cκ,1) +

27 + 2
√

5

16
Cϕ,1(Bκ,1 − Cκ,1) +

109

4
Bϕ,1Cϕ,1

+
19 + 5

√
5

4
Bδ,1Cϕ,1 −

19− 5
√

5

4
Bϕ,1Cδ,1 −

53

3
Bδ,1Cδ,1

−103 + 39
√

5

24
B2
δ,1−

103− 39
√

5

24
C2
δ,1−

43 + 4
√

5

2
Bϕ,1Bδ,1+

43− 4
√

5

2
Cϕ,1Cδ,1

+
7τ̄

4
Bδ,1(Bκ,1 − Cκ,1)−

7τ

4
Cδ,1(Bκ,1 − Cκ,1)

for the 6-plet.

We believe that this action of the group D6 extends to all orders of the
Taylor decompositions of the distances.

Remark. We were not discussing the remaining {AE,BF,CD}-triplet be-
cause it was not relevant for the proof. Still, the same phenomenon holds
for the Taylor coefficients of the squares of the distances in this triplet. As
an illustration we present the first and second differentials for the squares of
the distances between the lines B and F :

169

6

[
d(BF )2

]
1

= 2
√

5(Bκ,1 + Fκ,1) + 5(Bϕ,1 + Fϕ,1)−
√

5(Bδ,1 + Fδ,1) ,

and

−105456

11

[
d(BF )2

]
2

= 209(Bκ,1 + Fκ,1)
2 + 560

√
5(Bκ,1 + Fκ,1)(Bϕ,1 + Fϕ,1)

+57445(Bϕ,1 + Fϕ,1)
2 − 115600Bϕ,1Fϕ,1 − 404(Bκ,1 + Fκ,1)(Bδ,1 + Fδ,1)

+5492
√

5(Bϕ,1Bδ,1 + Fϕ,1Fδ,1)− 6208
√

5(Bϕ,1Fδ,1 +Bδ,1Fϕ,1)

+1466(B2
δ,1 + F 2

δ,1)− 968Bδ,1Fδ,1 .
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6.2 Discussion

Puzzled by the hidden Galois symmetry, described in Subsection 6.1, we
performed several experiments wondering whether this hidden symmetry is
specific for the record point C6 (ϕm, δm,κm) or it is inherent at some other
points of the curve γ(ϕ), see formula (7), Section 3. We computationally
clarify this question in the present section. Namely we explain the geometric
origin of the symmetry and show that it becomes the Galois symmetry for
‘rational’ points of the curve γ(ϕ).

We recall some information about the curve γ(ϕ) [OS].

The curve γ(ϕ) is related to a part Γ of the plane algebraic curve Ψ = 0
where

Ψ=4S2−8T 2−3S4+29S2T 2−4T 4−22S4T 2+14S2T 4+4S6T 2−7S4T 4+S2T 6 ,

see Fig. 7.

Figure 7: Curve Ψ = 0, the part Γ is depicted in red

The curve Γ admits the following parameterization:

S(x) = 2

√
(1− x)x(1 + x)

1 + 7x+ 4x2
, (28)

T (x) =

√
(1− x)(1 + 3x)

x(1 + 7x+ 4x2)
, (29)
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where x ranges from 1 to 0.

The parameterization of the curve γ(ϕ) is given by

S(x) ≡ sin
(
ϕ(x)

)
, T (x) ≡ tan

(
δ(x)

)
, (30)

and

tan
(
κ(x)

)
=

x− 1√
(1 + x)(1 + 3x)

. (31)

For brevity, we denote by C6,x the configuration C6

(
ϕ(x), δ(x),κ(x)

)
of six

tangent lines. The squares of the relevant twelve distances between the lines
of the configuration C6,x are all equal to

12x

1 + 7x+ 4x2
.

In our experiments we were fixing various rational values of the parameter
x, then making a general (involving all 15 parameters) perturbation of the
configuration C6,x and studying the nature and the structure of the Taylor
coefficients of the squares of distances in a vicinity of C6,x.

For example, at x = 1/3, the Taylor coefficients, after an appropriate
normalization, belong to Q[

√
2] and the Galois automorphism of Q[

√
2] re-

stores the D6 symmetry, as in Section 6.1. However, at x = 1/5, the Taylor
coefficients, after an appropriate normalization, belong to Q.

To summarize the results of our study, let

px =

√
(1 + x)(1 + 3x)

3
. (32)

As in Section 4 the perturbed position of a line J ∈ {A,B,C,D,E, F} in
the configuration C6,x is

J = J(κ(x) + ∆κ
J , ϕ(x) + ∆ϕ

J , δ(x) + ∆δ
J)

and
∆κ
J = ϑκ ·

(
Jκ,1t+ Jκ,2t

2 + o(t2)
)
,

∆ϕ
J = ϑϕ ·

(
Jϕ,1t+ Jϕ,2t

2 + o(t2)
)
,

∆δ
J = ϑδ ·

(
Jδ,1t+ Jδ,2t

2 + o(t2)
)
.

(33)
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Here ϑκ, ϑϕ and ϑδ are normalization constants.

As before, to fix the rotational symmetry we keep the tangent line A at
its place, that is, Aϕ,j = Aκ,j = Aδ,j = 0, j = 1, 2, . . . .

Proposition 8 Let x be a rational number between 0 and 1 such that px is
not rational.

(i) There exists a choice of the normalization constants ϑκ, ϑϕ and ϑδ such
that the Taylor coefficients of the squares of distances belong to Q[px].

(ii) The operator Πς , defined by the formula (27), where ι is the Galois con-
jugation px → −px of Q[px], restores the D6 symmetry.

Note. For x = 1/5 we find that px is rational, px = 4/5. The equation
px = r, x ∈ Q and r ∈ Q, can be easily solved: substituting x = (y− 2)/3 we
find y2 = 9r2 + 1, so the question reduces to Pythagorean triples.

The irrationality px can be found among the geometric objects in the
configuration C6,x. This irrationality is related to the cosine γx of the angle
between the tangent lines A and D. We calculate:

γx = − 3(1− x)

2(1 + 2x)
px +

x(1 + 5x)

2(1 + 2x)
.

In particular, under the conditions of Proposition 8, Q[px] = Q[γx] and we
can reformulate the part (i) of Proposition 8: the coefficients of the Taylor
expansions belong to the field Q[γx].

The cosine of the angle between the tangent lines A and F is equal to γx,
the Galois conjugate of γx in the field Q[px],

γx =
3(1− x)

2(1 + 2x)
px +

x(1 + 5x)

2(1 + 2x)
.

Sketch of the Proof of Proposition 8. We do not furnish the complete details
in order not to overload the presentation. Namely, we will work with only two
distances, d(AD) and d(AF ). Since we keep the line A fixed (which makes
the formulas more tangible), the distance d(AD) depends, for a given x, on
the three parameters, characterizing the position of the perturbed line D.
We consider only a simplified situation, namely we perturb only the angle3

3 Due to the character of the formulas, the angle δ is the most manageable of the three
angles. We will write the formula for the distance between the line A and the perturbed
line D ‘im großen’, without decomposing in the Taylor series.
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δ of the line D and follow the dependence of the distance on this variation.
Thus, for a given x, we consider the function d

(
A,D(ξ)

)
where

A = A(κ(x), ϕ(x), δ(x)) and D(ξ) = D(κ(x), ϕ(x), δ(x) + ξ) .

Since the tangent function has rational Taylor coefficients, we are allowed
to pass to the variable

Ξ = tan(ξ)

instead of ξ.

In the notation of Section 2, let u =
(
(ϕ1,κ1), ↑δ1

)
and v =

(
(ϕ2,κ2), ↑δ2

)
be two lines in M . The formula (2) for the square of the distance between
lines u and v has the following explicit form in the coordinates (ϕ,κ, δ)

d2
uv =

N 2(
1 + tan2(δ1)

)(
1 + tan2(δ2)

)
−D 2

, (34)

where

N :=
(
tan(δ1) + tan(δ2)

)(
cos(ϕ1) cos(ϕ2)− cos(∆κ)

(
1− sin(ϕ1) sin(ϕ2)

))
−
(
1− tan(δ1) tan(δ2)

)
sin(∆κ)

(
sin(ϕ1)− sin(ϕ2)

)
,

D := cos(ϕ1) cos(ϕ2) + cos(∆κ)
(
sin(ϕ1) sin(ϕ2) + tan(δ1) tan(δ2)

)
+ sin(∆κ)

(
tan(δ2) sin(ϕ1)− tan(δ1) sin(ϕ2)

)
and

∆κ = κ1 − κ2 .

Assertion (i). Let

Ξ1 =
qx
p2x

Ξ , (35)

where

qx =

√
1 + x

3x(1− x)(1 + 7x+ 4x2)
. (36)
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The formula (34) for the lines A and D(ξ) gives, after numerous simpli-
fications:

d
(
A,D(ξ)

)2
=
x(1− x)(1 + 3x)

1 + 7x+ 4x2
· n2AD
s− t2AD

, (37)

where
s = 1 + Ξ2 = x(1− x)(1 + 3x)(1 + 7x+ 4x2) Ξ2

1 ,

and

nAD =
3

x

(
2pxγx
1 + 3x

+
1

1 + 2x

)
+
(
(1 + 2x)2(γx − 1) + 6xγx

)
pxΞ1 ,

tAD = γx − 3(1− x)

(
pxγx +

1 + 3x

2(1 + 2x)

)
pxΞ1 .

The formula (37) establishes the part (i). Indeed, the formula (35) gives
the needed renormalization such that the final expression (37) is a rational
function in Ξ1 with coefficients in Q[px].

Assertion (ii). A parallel computation, now for the tangent lines A and
F (ξ) = F (κ(x), ϕ(x), δ(x) + ξ), yields

d
(
A,F (ξ)

)2
=
x(1− x)(1 + 3x)

1 + 7x+ 4x2
· n2AF
s− 3(1− x2) t2AF

,

where

nAF =
3

x

(
− 2pxγx

1 + 3x
+

1

1 + 2x

)
−
(
(1 + 2x)2(γx − 1) + 6xγx

)
pxΞ1 ,

tAF = γx + 3(1− x)

(
−pxγx +

1 + 3x

2(1 + 2x)

)
pxΞ1 .

A direct comparison shows that the expressions for d
(
A,F (ξ)

)2
are obtained

from the expressions for d
(
A,D(ξ)

)2
by the simultaneous change of sign of

Ξ and px, in the full accordance with the formula (26), so the Galois action
of the operator Πς , see (27), restores the D6 symmetry.

In the general situation, when all three parameters, κ, ϕ and δ of the
tangent lines D and F are perturbed, the closed formulas for the squares of
distances are considerably lengthier (and as non-illustrative as the formula
(37)) and we do not present them.
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Two phenomena exhibited in Proposition 8 – (i) all irrationalities, except
one, are absorbed in the normalization factors; (ii) the Galois conjugation
of the remaining irrationality restores the D6 symmetry – shows a certain
consonance between the curve Γ and the ingredients of the formula for the
distance between skew lines. In the process of calculations it was important
that for a rational x all angles ϕ(x), κ(x) and δ(x) are purely geodetic in the
sense of [CRS], that is, squares of trigonometric functions of these angles are
rational.

We conclude by two remarks.

Remark 1. The Galois symmetry can be extended to all values of x if one
works with the functional fields. We demonstrate it in the same simplified
situation, as in the proof of Proposition 8, where we perturb only the angle δ
of the lines D and F . Let F := Q(x) be the field of rational functions in one
variable. We consider its biquadratic extension F[qx, px], where px is defined
by the formula (32) and qx – by the formula (36). The Galois group of the
extension F[qx, px] of the field F is the Klein four-group C2 × C2 generated
by the sign changes of qx and px. The Galois involution ι : px → −px is
continuous in the natural sense; it allows to define the involution Πς which
restores the D6 symmetry. Thus, performing the involution Πς on the level
of the functional fields and only then specializing the value of x allows to see
a shadow of the continuous extension of the involution Πς to all points of the
curve Γ.

Remark 2. We have added this comment because of some questions raised
during our talks on the subject. The parameterization (28)-(29) serve only
the part Γ of the curve Ψ = 0. What can be said about other components?

It is easier to work with the curve ψ = 0, where

ψ=4s− 8t− 3s2 + 29st− 4t2 − 22s2t+ 14st2 + 4s3t− 7s2t2 + st3 ,

since the polynomial Ψ depends only on s = S2 and t = T 2. The real
components of the curve ψ = 0 are shown on Fig. 8.

The parameterization (28)-(29) becomes

s(x) =
4(1− x)x(1 + x)

1 + 7x+ 4x2
, t(x) =

(1− x)(1 + 3x)

x(1 + 7x+ 4x2)
.

The denominators of the rational functions s(x) and t(x) are singular at
x = 0 and the roots (−7−

√
33)/8 ≈ −1.5931 and (−7 +

√
33)/8 ≈ −0.1569
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Figure 8: Real components of the curve ψ = 0

of the polynomial 1 + 7x + 4x2. For x ranging from −∞ to (−7 −
√

33)/8
we obtain the part III (in green) on Fig. 8; for x ranging from (−7−

√
33)/8

to (−7 +
√

33)/8 – the part II (in yellow) on Fig. 8; for x ranging from
(−7 +

√
33)/8 to 0 – the part IV (in orange) on Fig. 8; finally, for x ranging

from 0 to +∞ we obtain the part I (in red) on Fig. 8.

The only singular point of the (homogenized) curve ψ = 0 in the complex
domain is the triple point (s = 1, t = −1); it is the image of three points
on the complex x-plane, namely, the point x = −1/2 and two other points
x = (−1± i

√
−7)/4.
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