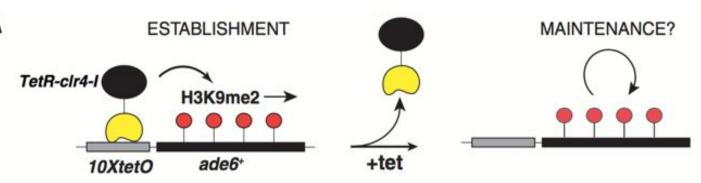
Epigenetic inheritance uncoupled from sequence-specific recruitment

Kaushik Ragunathan, Gloria Jih, Danesh Moazed

Presented by: Alison Bartkowski, Candice Gard, Dahlia Rohm

Premise of Paper

- Wanted to determine if the inheritance of H3K9 methylation is dependent on DNA sequence
- To determine the effects of DNA sequence on H3K9me
 - o Organism: fission yeast, Schizosaccharomyces pombe
 - Created an inducible system for heterochromatin establishment
 - Observed maintenance and inheritance of heterochromatin
- Results: Histone modifications can be transmitted independently of specific DNA sequences, DNA methylation or RNA interference ¹


Process of Histone Methylation Inheritance

- Parental histones are retained and randomly distributed to newly synthesized daughter DNA strands during DNA replication ¹
- In S.pombe yeast, H3K9 methylation is catalyzed by Clr4
 - Clr4 is also responsible for copying H3K9me to daughter histone
 - RNAi machinery and site specific DNA binding proteins recruit Clr4 to control heterochromatin establishment ²

Design of Inducible System for Heterochromatin

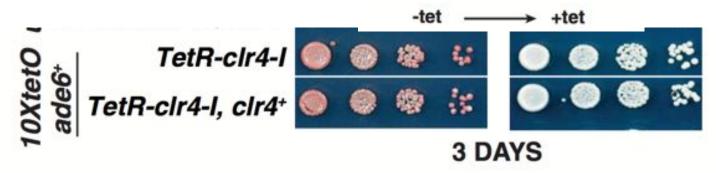

- Fused together TetR and clr4 methyltransferase without chromodomain to create the initiator TetR-clr4-I
- Used a promoter (10XtetO) and a reporter (ade6+) that changes color when expressed¹
 - pink for silent- H3K9me present,
 - white for expressed- no H3K9me

Fig 1A: Tetracycline (tet) A promotes the release of TetR-Clr4-I from tetO sites so that initiator-independent maintenance could be tested

Effects of Clr4 in tet+/tet- medium

Fig1B:

- Heterochromatin establishment does not require the chromodomain of Clr4
- Found loss of 40- to 50-kb domain of H3K9 H3K9me2 and -me3 encompassing the promoter-reporter region after 24 hours (~10 cell divisions) after adding tet¹
 - Why couldn't wild-type clr4 maintain the methylation of H3K9?

Deletion of Epe1 gene

- Hypothesized demethylase might remove marks before maintenance
- Epe1 = gene that encodes a putative histone H3K9 demethylase
- Deletion of Epe1 prevents demethylation

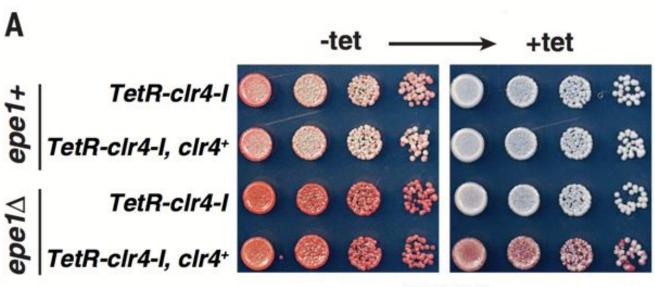
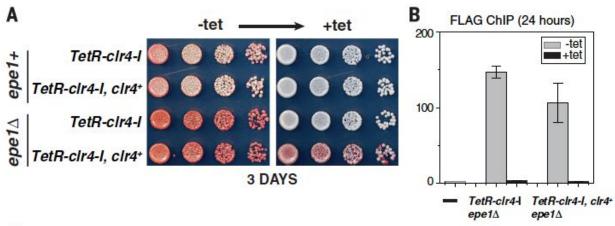
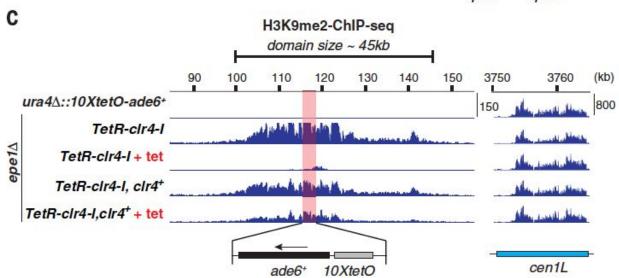




Fig2A: Color-silencing assays showing that in TetR-clr4-I, clr4+, epe1D cells, silencing is maintained on +tet medium.

3 DAYS

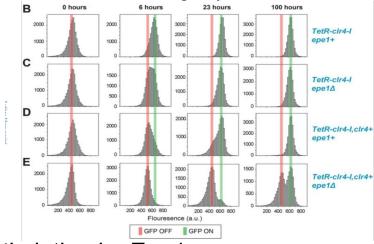
Importance of Epe1 gene

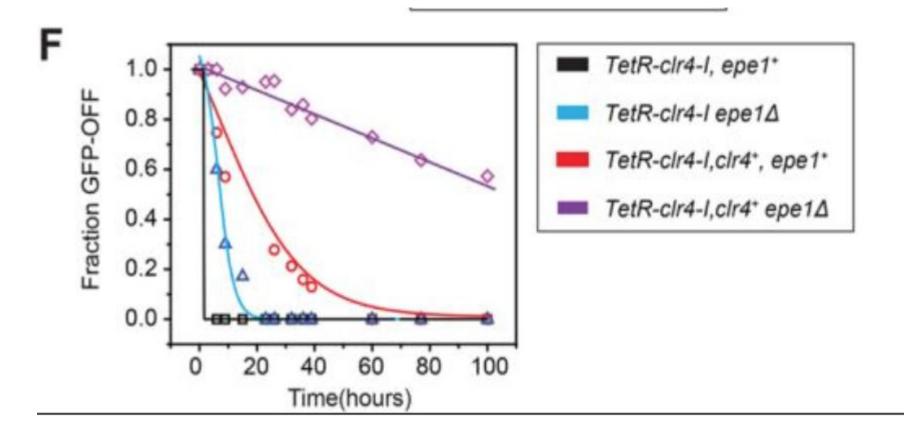
Epe1 dominates over clr4

Epigenetic maintenance not unique to epe1Δ cells

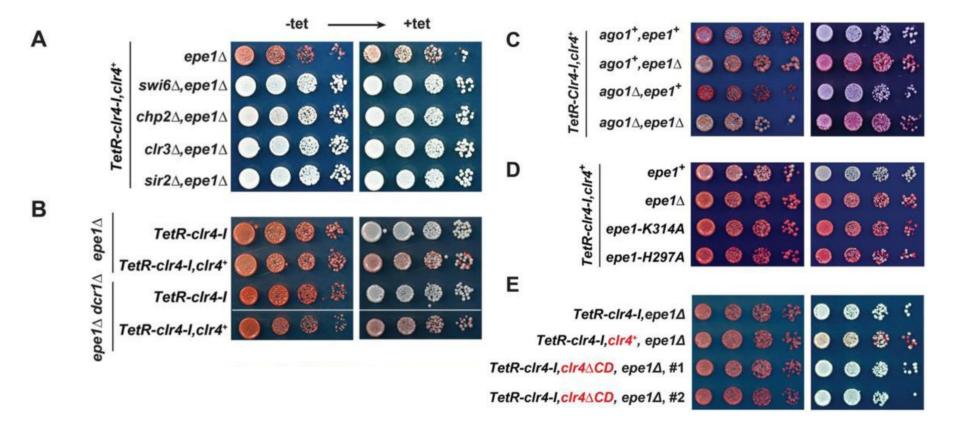
detection masked by the rapid erasure of H3K9me marks by Epe1.

Mst2∆ and Set1∆

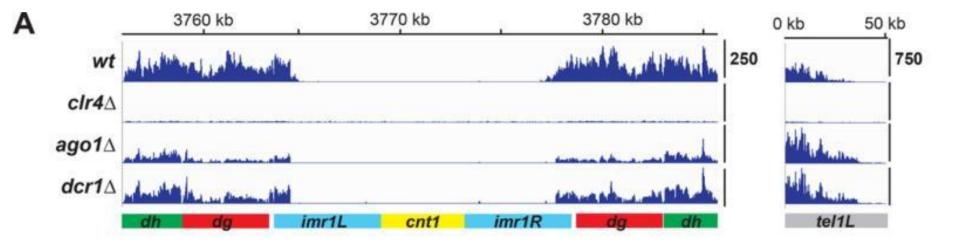

- Stronger than wild type establishment
- Weak maintenance


Pozl∆ and Dcrl∆

- No change in establishment
- No maintenance Dcrl, weak Pozl

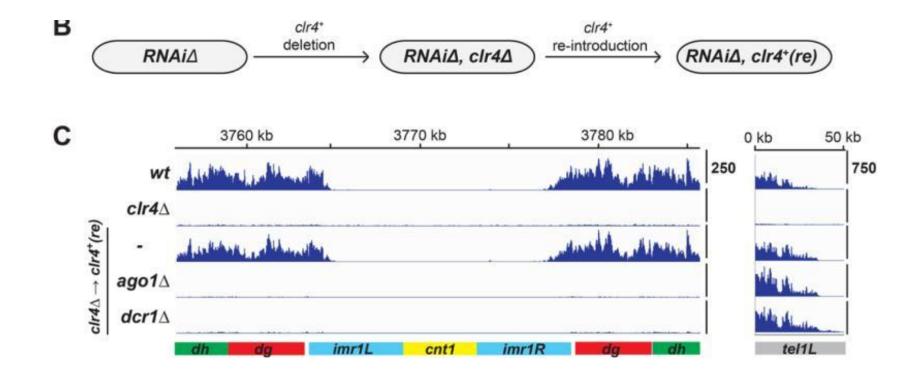

Conclusion:

The decay rate is primarily influenced by demethylation by Epe1



Deletion of Other Genes

RNAi at native heterochromatin


- Investigated the effect of RNAi on inheritance of H3K9me at native heterochromatin
- In *S. pombe,* RNAi is necessary for silencing in centromeric regions but not in other regions (e.g. mating-type) ³
- siRNAs might recruit proteins necessary for heterochromatin formation (e.g. Clr3, Clr4, Clr6)
- Found that even when RNAi components were deleted, some residual H3K9me remained

A: residual methylation in RNAi-deletion cells

RNAi

- Q: are there RNAi-independent mechanisms for methylation at pericentromeric repeats? Can H3K9me be established *de novo* in the absence of RNAi influence?
- No de novo establishment of H3K9me in RNAi-deleted cells
- Conclusion: RNAi is main mechanism for de novo methylation near centromeres (sequence-specific)¹
- the residual H3K9me is likely due to maintenance, not establishment¹

B: schematic of reintroduction of clr4 into RNAi(del), clr4(del) cells **C**: restoration of H3K9me upon reintroduction of clr4, only in clr4-deletion cells but not the double knockouts

Conclusions Summary

- Clr4 chromodomain not required for de novo H3K9me but IS required for maintenance
- Main mechanism of loss of methylation at ectopic locus (independent of sequence) is demethylation by Epe1
- Silencing at the ectopic locus is not influenced by RNAi
- RNAi seems to be the main mechanism for establishing H3K9me in pericentromeric regions but is not required for maintenance
- Overall: H3K9me histones can act "as carriers of epigenetic information1"

Dynamics and Memory of Heterochromatin in Living Cells

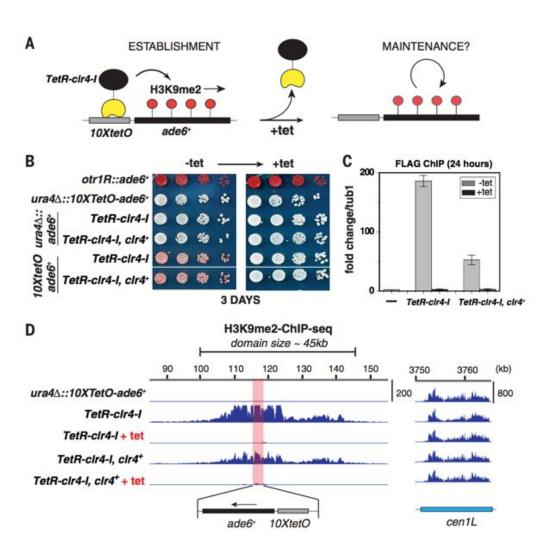
- Another paper exploring H3K9 methylation
- Used HP1a to induce methylation and observe kinetics and chromatin formation
- Done at Oct4 locus so could not be sequence independent
- Found methylation to propagate symmetrically at an average rate of 0.18 nucleosomes per hour
- Data allows for steady state dynamics predictions of on / off for H3K9 methylation

Current Work

- DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation
- 1 shared author, Danesh Moazed
- Main Conclusion: There are sequence dependant ATF / CREB transcription factors required for inheritance of silencing.

So is this the reason why only 60% remained silenced? Lack of these sequence specific silencers?

Appendix


Experimental Setup

- The experiments were performed using plasmids in order to eliminate the effects of silencers (sequences that promote heterochromatin formation in adjacent loci; required for inheritance of a repressed state)
- Generated cells in which TetR-Clr4-I replaced the wild- type Clr4
 (TetR-clr4-I) or ,if wild type Clr4 was needed, TetR-Clr4-I was
 inserted at the trp1+ locus

Methods

- PCR-based gene-targeting or random spore analysis: to produce deletions of the various RNAi and chromatin components
- ChIP: Confirmed the methylation of H3K9
- FLAG ChIP: tag initiator complex to complex and did ChIP PCR to find association
- GFP fluorescence measured via FACScalibur instrument

Fig. 1. Ectopic heterochromatin is lost after sequence-specific establishment upon tetracycline addition.

References

- (1)Ragunathan et al. Epigenetic inheritance uncoupled from sequence-specific recruitment. *Science* 348, 1258699 (2015).
- (2) Wang, Moazed. DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. *Science* (2017).
- (3) Hansen et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. *Molecular and Cellular Biology*. 590-601 (2005).
- (4) Hathaway, Nathaniel A. et al. "Dynamics and Memory of Heterochromatin in Living Cells." *Cell* 149.7 (2012): 1447–1460. *PMC*. Web. 2 May 2017.