
Transfer Learning in Robotics:
An Upcoming Breakthrough?
A Review of Promises and Challenges

Journal Title
XX(X):1–20
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Noémie Jaquier⋆1 , Michael C. Welle⋆2, Andrej Gams3, Kunpeng Yao4, Bernardo Fichera4,
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Abstract
Transfer learning is a conceptually-enticing paradigm in pursuit of truly intelligent embodied agents. The core concept
— reusing prior knowledge to learn in and from novel situations — is successfully leveraged by humans to handle
novel situations. In recent years, transfer learning has received renewed interest from the community from different
perspectives, including imitation learning, domain adaptation, and transfer of experience from simulation to the real
world, among others. In this paper, we unify the concept of transfer learning in robotics and provide the first taxonomy of
its kind considering the key concepts of robot, task, and environment. Through a review of the promises and challenges
in the field, we identify the need of transferring at different abstraction levels, the need of quantifying the transfer gap
and the quality of transfer, as well as the dangers of negative transfer. Via this position paper, we hope to channel
the effort of the community towards the most significant roadblocks to realize the full potential of transfer learning in
robotics.
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1 The Rise of Transfer Learning in
Robotics

Transferring prior knowledge to novel unknown tasks is
one of the abilities that led humans to become the most
innovative species on the planet (Reader et al. 2016). In
particular, humans’ capability to transfer cognitive (Perkins
and Salomon 1992; Barnett and Ceci 2002) and motor
skills (Schmidt and Young 1987) from one context to
another makes the acquisition of new skills and the
resolution of problems possible to a large extent. For
instance, the difficulty of learning a new language is
significantly influenced by factors such as language distance,
native language proficiency, and language attitude (Walqui
2000) as humans can transfer their prior experience, e.g.,
grammatical constructions or words, from their native
language into the new language. In addition, transfer is a
key concept in education as the context of learning, e.g.,
the classroom, significantly differs from the context, e.g., the
workplace, where the learned concepts should ultimately be
applied (Perkins and Salomon 1992).

To evolve seamlessly in the real world, robots must feature
outstanding cognitive abilities allowing them to perceive
their environment, act and react to achieve various goals,
and learn continuously from observation and experience,
while coping with changes and uncertainty in the world.
The transfer learning paradigm for robotics is a promising
avenue to avoid learning from scratch by reusing previously-
acquired experience in new situations, similarly to humans.
The core idea of transfer learning in robotics, illustrated in
Figure 1, is simple: The experience of a robot performing one
task in an environment is leveraged to improve the learning

process of a (related) task in a different context. However,
successfully performing transfer learning in robotics requires
tackling three fundamental questions, namely identifying:
(1) when — under which conditions — it is advantageous
to transfer, (2) what — which knowledge or experience —
to transfer, (3) how — with which method — to transfer
it. Notice that these fundamental questions also apply to
transfer learning in machine learning (Yang et al. 2020) and,
to some extent, follow the central questions of imitation
learning* (Dautenhahn and Nehaniv 2002).

In the conceptual example of Figure 1, the experience
of the two fixed-based manipulators placing a box on a
conveyer belt (left) can be transferred to a humanoid robot
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Figure 1. Concept of transfer learning in robotics. The
experience of a robot performing a specific task in a specific
environment is leveraged to improve the learning of a related
task by another robot in a related context. Transfer can occur
across embodiments (yellow arrows), across tasks (purple
arrows), and/or across environments (blue arrows). It is
important to note that successful transfer requires commonalities
between the source and target robots, tasks, and environments.
For instance, a humanoid robot learning to kick a ball will most
likely not benefit from the experience of a dual-arm manipulator
systems manipulating a box and vice-versa.

executing the same task (middle-top). In this case, the three
fundamental questions can be answered as follows:

1. When: Although the embodiments of the two systems
differ, the upper body of the humanoid resembles the
dual-arm manipulator system. Moreover, the task and
environment remain the same, thus it is reasonable to
assume that experience can be transferred.

2. What: The bimanual manipulation strategy of the
two fixed-base manipulators can be transferred to
the humanoid robot. However, more degrees of
freedom must be controlled for the latter. Moreover,
the transferred strategy must respect additional
constraints, e.g., balance must be ensured to avoid
falls.

3. How: Optimal control or reinforcement learning may
be leveraged to transfer the bimanual control strategy
of the two fixed-base manipulators to the humanoid
robot.

In other cases, experience may be transferred across tasks.
For instance, the bimanual manipulation strategy used when
placing a box on a conveyer belt (Figure 1, middle-top) may
be transferred to a handover task (middle). Such transfer
may also be achieved across different embodiments: The
bimanual strategy of the two fixed-based manipulators (left)
may directly be transferred to a different robot executing
a related task, e.g., to the humanoid robot handing over
the box (middle). Here, the three fundamental questions are
answered as follows:

1. When: The environment and the manipulated object
remain the same for both tasks. In addition, either
the same robot is used for both tasks (middle-top

to middle), or crucial features (e.g., bimanuality) are
common between the two robots executing the two
tasks (left to middle). Therefore, it is reasonable to
assume that commonalities can be transferred from the
placing task to the handover task.

2. What: Bimanual manipulation strategies can be
transferred across tasks. In the case where the
humanoid robot is used for both tasks, the entire
actions may be directly transferred while taking
special care of adjusting only task-specific elements.

3. How: Optimal control or reinforcement learning may
again be leveraged. Here, it is important to notice
that the implementation of the initial task (placing a
box) greatly influences the methods that can be used
to transfer experience to a second task (handover). In
particular, the use of handcrafted strategies to achieve
the initial task may reduce the benefits of the transfer,
despite the similarities shared between both tasks.

Experience may also be transferred across environments.
For example, the bimanual manipulation strategies used by
the humanoid robot to place a box on the conveyer belt
or to handover the box (Figure 1, middle-top and middle)
may be reused by a humanoid robot manipulating a box in
space (right). In this case, the fundamental questions can be
answered as follows:

1. When: The humanoid robots on Earth and in
space have similar embodiments. Moreover, boxes
manipulated on Earth and in space have similar
characteristics. Therefore, it is reasonable to assume
that commonalities can be transferred from Earth to
space.

2. What: The bimanual manipulation strategies can be
transferred across environments.

3. How: Special care must be taken to handle the
different physical rules of the two environments. In
this example, controllers on Earth must handle the
influence of gravity. This is not required by controllers
acting in space.

Finally, in some cases, transferring knowledge may not
be beneficial or may even impede the robot performance.
For instance, we consider transferring experience from the
fixed-based bimanual setup placing a box in a conveyer belt
to a humanoid robot kicking a ball. In this case, employing
transfer learning might not be beneficial. Instead, the large
differences between the robots, tasks, and environments
might even cause transfer learning to impede the methods
employed to fulfill the ball-kicking task. This clearly
showcases the crucial importance of tackling the three
fundamental questions when, what, and how to transfer for
learning in robotics.

While the terms falling under the umbrella of transfer
learning in robotics are not exactly agreed upon, the robotics
community has intensified its effort to transfer various forms
of knowledge across different contexts. Figure 2 (top) shows
the recent rise in the proportion of published papers at the
two biggest robotics conferences — IROS and ICRA —
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Figure 2. Percentage of papers including words falling under
transfer learning in robotics umbrella over the years for the
two biggest robotics conferences. The results are based on
a systematic search through the content of 44067 papers,
excluding their references. Top: Percentage per conference.
Bottom: Percentage per keywords. Keywords related to transfer
across embodiments, tasks, and environments are depicted in
variations of yellow, purple, and blue. Knowledge transfer is
classified independently and thus is depicted in black.

invoking keywords† that we consider as falling under the
umbrella of transfer learning. This recent interest shows
that the community strives for embodied transfer learning,
which may be a necessary a-priori for truly intelligent
systems (Kremelberg 2019). It is interesting that different
keywords related to transfer learning in robotics display
different growth rates (see Figure 2, bottom). For instance,
terms related to imitation learning, behavioral cloning, and
learning from demonstrations display an early rise and a high
popularity nowadays, highlighting the effort of the robotics
community to tackle transfer between embodiments (human-
to-robot or robot-to-robot) from early on (Dautenhahn and
Nehaniv 2002). In contrast, terms related to transfer across
environments (i.e., sim-to-real and domain adaptation) only
recently gained interest, while terms related to transfer
across tasks remain less documented, suggesting that transfer
learning across environments and tasks is still in its infancy.

In this position paper, we contend that transfer learning in
robotics has the potential to revolutionize the robot learning
paradigm by enabling robots to leverage past experience
in novel contexts. However, key challenges remain to

be addressed to fulfill this potential. In particular, the
fundamental questions when — under which conditions —
, what — which semantic or sensorimotor information —,
how — with which method — to transfer must be thoroughly
tackled for transfer learning across robots, environments,
and tasks. This position paper reviews the successes of
the field and identifies relevant research questions and
promising directions paving the way forward. Starting from
the definition of transfer learning in the machine learning
field, we propose a unified definition of transfer learning
in robotics and subsequently build a novel taxonomy of
transfer learning in robotics based on the key concepts
of robot, task, and environment (see Section 2). Then,
we recount successful applications of transfer learning
in robotics and show how they align with the proposed
taxonomy (Section 3). In Section 4, we outline challenges,
as well as promising research directions to tackle them,
including abstraction levels and universal representations
for transfer learning in robotics, interpretability, benchmarks
and simulations, transfer learning metrics, and dangers of
negative transfer. Last but not least, we call for actions
to address the most immediate roadblocks in Section 5.
Overall, the contributions of this paper are twofold: (1) We
provide a unified view of transfer learning in robotics by
comprehensibly defining the notion of transfer learning in
robotics and by introducing the first taxonomy of transfer
learning in robotics; (2) We provide a review of promises
and challenges in the field of transfer learning in robotics,
identifying the most significant roadblocks on the way to
unraveling the full potential of transfer learning in robotics.

2 Transfer Learning Taxonomies: From
Machine Learning to Robotics

While the machine learning community has devoted
substantial efforts to defining and systematizing transfer
learning and categorizing its different instances, transfer
learning in robotics is found under various terminologies.
This section aims at providing a unified view of transfer
learning in robotics. To do so, we take inspiration from
machine learning taxonomies and define a taxonomy of
transfer learning settings that occur in robotics.

2.1 Taxonomy of Transfer Learning in Machine
Learning

In this section, we introduce the definitions that are
commonly adopted in the transfer learning community, see
e.g., (Pan and Yang 2010; Zhuang et al. 2020; Yang et al.
2020). Transfer learning builds on the two fundamental
concepts of domain and task. A domain D = {X , p(X)}

†The considered keywords are: domain adaptation, domain-adaptation,
meta-learning, meta learning, sim2real, sim to real, sim-to-real, knowledge
transfer, transfer of knowledge, skill transfer, skills transfer, transfer of
skills, task transfer, tasks transfer, transfer of tasks, motion retargeting,
motion-retargeting, embodiment transfer, transfer embodiments, morphol-
ogy transfer, transfer morphology, kinematic transfer, transfer kinematic,
robot transfer, robot to robot, imitation learning, learning by imitation,
imitation-learning, learning from demonstrations, learning from demon-
stration, learning by demonstrations, learning by demonstration, behavioral
cloning.
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Figure 3. Example of transfer learning on the Office 31
dataset (Saenko et al. 2010). Transfer can occur (1) between
the two label sets (tasks T1 and T2), (2) between the two
sources used to obtain the images (domains D1 and D2), and (3)
between both tasks and domains. The different transfer learning
instances are illustrated with black arrows.

consists of a feature space X and a marginal distribution
p(X), with X denoting an instance set of the feature space
such that X = {xi}Ni=1, xi ∈ X . Given a specific domain
D, a task T = {Y, f} consists of a label space Y and a
predictive function f : X → Y . The predictive function is
used to predict new labels y ∈ Y associated with a new
instance x ∈ X . It is typically learned from a training dataset
{xi,yi}Mi=1, with xi ∈ X , yi ∈ Y . While standard machine
learning approaches assume that training and test datasets
share common domains and tasks, in the case of transfer
learning they may instead belong to different spaces, referred
to as source and target spaces. Therefore, it also has the
potential to tackle open-set problems (Geng et al. 2021). An
example from computer vision is shown in Figure 3.

Transfer learning approaches are commonly categorized
into inductive, transductive, and unsupervised transfer
learning (Pan and Yang 2010; Zhuang et al. 2020; Yang
et al. 2020). This categorization focuses on the availability
of labels independently of the relationships between source
and target spaces. Namely, in the inductive setting, labels are
available in both source and target spaces, while they are only
available in the source space in the transductive setting, and
are not available in any space in the unsupervised setting.
For a more encompassing categorization that generalizes to
robotics, we instead propose to focus on the fundamental
concepts of domain and task and on their relationship in the
source and target spaces.

Definition 2.1. Transfer Learning in Machine Learning. Let
S = {DS , TS} a source space and T = {DT , TT } a target
space. The objective of transfer learning is to improve the
learning of the predictive function fT over the target domain
DT by taking advantage of knowledge from the source
domain DS , and task TS , where DS ̸= DT and / or TS ̸= TT .

We observe that Definition 2.1 implies the following
hierarchical taxonomy of transfer learning settings illustrated
in Figure 4.

1. Task transfer learning: {D, TS} → {D, TT }. In this
setting, the target task differs from the source task,
TS ̸= TT . This can indicate a difference in the label
space, the predictive function or both. Notice that we
refer to task transfer learning whenever the source
and target domains are identical while the source and
target tasks differ. The extent and conditions of the
task differences were further categorized according to
various transfer learning taxonomies, see, e.g., (Pan
and Yang 2010; Zhuang et al. 2020; Yang et al. 2020).
Task transfer learning approaches include learning
strategies involving Gaussian process (GP) prior
sharing across different tasks (Lawrence and Platt
2004; Bonilla et al. 2007). Other strategies focus
on sharing the parameters of the model itself rather
than the hyperparameters. One important category
of algorithms in this domain takes advantage of a
modified version of support vector machine (SVM)
to transfer knowledge between source and target
spaces (Evgeniou and Pontil 2004; Li et al. 2012).
In this modified SVM, the model’s parameters
consist of a part shared across the source and target
spaces, while the other part is space-specific. The
uniqueness of the solution (learning efficiency) and
model interpretation make these convex optimization
algorithms an interesting solution for robotics.
Multilinear relationship networks (Long et al. 2017)
leverages labeled data from related source domains by
adopting a Bayesian framework for the task-specific
portion of the network.

2. Domain transfer learning: {DS , T } → {DT , T }.
This form of transfer learning occurs when the source
and target tasks are identical, TS = TT , but the source
and target domains differ. The condition DS ̸= DT

can indicate a difference in the feature space, in
the marginal distribution, or in both. It is generally
assumed that the domains are related to a certain
extend.
The difference in marginal distribution is often tackled
by learning a mapping between overlapping instances
(also known as “support”) between the source and
target domains DS and DT . Such approaches primarily
rely on instance weighting strategies, such as assigning
weights to instances or labeled data in DS for reuse
in DS . For instance, kernel mean matching (Huang
et al. 2006) matches source and target domain
instance means within a reproducing kernel Hilbert
space. In the case of different feature spaces
(XS ̸= XT ), existing approaches aim at reducing
domain differences while preserving the properties
or structures within the same domain. For instance,
structural correspondence learning (Blitzer et al.
2006) utilizes pivot features to establish pseudo tasks
connected to the target task and applies multi-task
learning techniques to model relationships between
pivot features and other features. Spectral feature
alignment (Pan et al. 2010) models inter-dependencies
between pivot features and other features using a
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Figure 4. Hierarchical taxonomy of transfer learning in the context of machine learning. Domain transfer occurs when the source
and target domain differ and is characterized by a difference in the feature space and/or in the marginal distribution. Task transfer
occurs when the source and target task differ and is characterized by a difference in the label space and/or in the predictive function.
Dual-mode transfer occurs when both the source and target domain and task differ.

bipartite graph and identifies novel common features
through spectral clustering methods applied to the
graph.

3. Dual-mode transfer learning: {DS , TS} →
{DT , TT }. In this scenario, both the source and
target domains and tasks differ. This is the most
challenging setting in transfer learning as every
additional difference between the source and target
label space, predictive function, feature space, and
marginal distribution increases the complexity of the
problem.
Approaches in the dual-mode are currently mostly
related to unsupervised transfer learning scenarios.
This remains an underexplored area due to the
difficulty of capturing the similarities — or the
transferable information (instance, feature, parameter,
etc.) — between the source and target spaces.

Figure 3 illustrates the aforementioned transfer learning
setting using the transfer dataset Office 31 (Saenko et al.
2010), a classical benchmark for transfer learning. In this
case, the domains correspond to the source used to obtain
the images (i.e., Amazon and a webcam in Figure 3) and the
tasks correspond to the labels of the objects represented in
the images.

To extend these concepts to robotics, we must consider the
robot as an additional mode. In the next section, we discuss
its implications for transfer learning in robotics.

2.2 Taxonomy of Transfer Learning in Robotics
Transfer learning in robotics builds on the three fundamental
concepts of robot, environment, and task. A robot R is
defined as an embodiment that can act in and thus influence
its environment. It encompasses a body with defined
morphology, kinematics, dynamics, and sensor modalities.
In robotics, the domain D is generally considered equivalent
to the environment, which is defined as the virtual or
physical world in which the robot lives and interacts. The
robot accesses the state of the environment via sensory
observations, e.g., images, contact forces, auditory and
olfactory signals. Informally, the task T refers to what the
robot is required to do in the environment. More formally, a
task is a discrete or continuous (sub)goal that can be achieved

by the robot through (inter)actions within the environment.
In general, the goal of the robot is to perform a given task in
the environment. The goal of transfer learning in robotics is
to leverage prior knowledge from a source space, composed
by a robot, a task, and an environment, to improve the
performance in a target space, where one or more mode
differs from the source space. Formally, we define transfer
learning in robotics as an analogy of the machine learning
definition 2.1 as follows.

Definition 2.2. Transfer Learning in Robotics. Let S =
{RS ,DS , TS} a source space and T = {RT ,DT , TT } a
target space. The objective of transfer learning in robotics
is to improve the performance of the robot RT executing
the task TT in the environment DT by taking advantage of
knowledge from the source robot‡ RS , environment DS , and
task TS , where at least one element of the target space T is
different from its counterpart in the source space S.

It is important to emphasize that, unlike transfer learning
in machine learning which only involves disembodied
agents, the agent’s embodiment — in other words, the
robot — is key for transfer learning in robotics. This
introduces additional challenges: The presence of a robot
not only adds an additional mode to the transfer learning
problem and thus to the hierarchical categorization, but also
brings numerous robotics-specific issues. Transfer learning
methods for robotics must cope with the fact that robots are
embodied agents that act and interact in the real world.

Inspired by the hierarchical taxonomy defined for transfer
learning in machine learning community, we propose a
hierarchical taxonomy for transfer learning in robotics
based on the relationship between the source and target
robots, environments, and tasks, as shown in Figure 5.
Specific illustrative examples of its categories are depicted
in Figure 6. Our taxonomy considers the following settings:

1. Robot transfer learning: {RS ,D, T } →
{RT ,D, T }. The goal of this setting is to endow
a target robot with the ability to perform a given
task known by other source robot(s) in the same

‡Note that the source RS may be a human instead of a robot. This typically
occurs, e.g., in imitation learning.
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Figure 5. Hierarchical taxonomy of transfer learning in the context of robotics. Robot, environment, and task transfer occur when
the source and target robot, environment, and task differ, respectively. Dual-mode and triple-mode transfer occur when two of these
modalities and the three of them differ, respectively.

Figure 6. Illustration of the categories of the hierarchical taxonomy for transfer learning in robotics. The humanoid dual-arm robot
ARMAR-III (R1) and the four-legged robot ALMA equipped with a manipulator (R2) execute a cloth flinging task (T1) and a box
tossing task (T2) in three different environments, namely a simulator (D1), and in the real world with different object instances (D2

and D3). Transfer learning can occur (1) between the two robots, (2) between two environments, (3) between the two tasks, and
(4-5) between two or three instances thereof. The different transfer learning instances are illustrated with black arrows. Triple-mode
transfer learning, which reuses knowledge from a source space to a target space with different robots, environments, and tasks, is
depicted by a red arrow.

environment. Note that the source and target robots
may have (very) different morphologies, kinematics,
and sensor modalities, leading to different capabilities.
For example, Figure 6 illustrates a transfer between
the humanoid dual-arm robot ARMAR-III (Asfour
et al. 2006) and ALMA (Bellicoso et al. 2019), a four-
legged robot equipped with a robotic arm. Moreover,
the transfer can happen at different levels, e.g., at
the level of joint or task-space controllers, or at the
planning level. Instances of robot transfer learning are
(i) imitation learning (Schaal 1999), where a teacher
human or robot provides demonstrations of a task to a

student robot that learns to reproduce the given task in
the same environment, and (ii) (goal-directed) motion
retargeting (Dariush et al. 2008; Yin et al. 2023),
whose goal is to learn a mapping between different
kinematic structures.

2. Environment transfer learning: {R,DS , T } →
{R,DT , T }. This setting aims at transferring the
ability of a robot to perform a given task in a source
environment to a different target environment. Its
main challenge is to overcome the mismatch between
source and target environments in terms of data
and environment parameters such as, e.g., underlying
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dynamics or transition models. For instance, models
learned for a specific task performed on earth typically
needs to be adapted to perform the same task in an
underwater environment or in space. This requires
identifying which physical parameters differ between
DS (the earth) and DT (the underwater environment,
or space). Typical instances of environment transfer
learning are (i) domain adaptation (Bousmalis et al.
2018; Wang and Johnson 2021), and (ii) sim-to-
real transfer (Muratore et al. 2022). The latter is a
particular case of the former in which the experience
is explicitly transferred from a simulation environment
— in which training data are inexpensive and models
are fast to train — onto the real world. Sim-to-
real transfer is showcased by the first and second
rows in Figure 6. The second and third rows indicate
transfer between two real-world environments, where
the objects composing the physical environment (the
cloth or the box) differ.

3. Task transfer learning: {R,D, TS} → {R,D, TT }.
This setting aims at leveraging the ability of a robot
to perform a given task to learn how to execute a
different task in the same environment. The underlying
assumption is that the source and target tasks are —
to some extent — similar, so that experience can be
reused between source and target tasks. For instance,
the box tossing and cloth flinging tasks of Figure 6
share similar dynamics characteristics: In both cases,
the robot must generate high-velocity dynamic actions
to successfully execute the task. Therefore, we may
expect that experience about box tossing may be
reused by the robot when learning to fling a cloth.
Challenges of task transfer learning include inferring
which part of the source task experience should be
transferred and at which level (joint or task space,
planning, etc). Notice that generalizing a given task
to an unseen context is a special case of task transfer
learning (Mandlekar et al. 2020; Li and Figueroa
2023). In this case, the model is made compatible with
different instances of the same task.

4. Dual-mode transfer learning: {RS ,DS , T } →
{RT ,DT , T }, {RS ,D, TS} → {RT ,D, TT },
or {R,DS , TS} → {R,DT , TT }. This setting is
concerned by transferring knowledge between two
spaces which differ across two modes. It assumes that
the similarities between source and target spaces can
still be leveraged when they share a single common
mode. For instance, in Figure 6, it is reasonable to
assume that experience acquired in simulation to
toss a box may be reused to fling a cloth with the
same robot in the real world. Dual-mode transfer
learning remains largely unexplored in robotics due
to the additional level of complexity compared to the
single-mode transfer setting listed above, which has
not yet been fully resolved.

5. Triple-mode transfer learning: {RS ,DS , TS} →
{RT ,DT , TT }. This setting assumes that all three
modes of the source and target spaces differ. It is
inspired by the human ability to successfully acquire
knowledge by observing others executing similar tasks
in different environments. For instance, one may

observe a chef cooking a pie in a restaurant kitchen
and reuse some of her techniques to cook a cake in
her own non-professional kitchen. Reusing knowledge
from a source space in a target space with different
robots, environments, and tasks would endow robots
with human-like generalization abilities. This setting
is the most challenging, and requires bridging the gaps
between high-level semantic information — indicating
the degree of similarity between spaces — and low-
level actions. It is the ultimate goal of transfer learning
in robotics, as indicated by the red arrow in Figure 6.

Notice that, depending on the relationship between the
source and target spaces, our Definition 2.2 intrinsically
refers to related fields, some of which received significant
attention over the years. In Figure 2 (bottom), we notably
observe that imitation learning is the most mentioned transfer
learning field followed by sim-to-real and domain adapta-
tion. In this sense, we view transfer learning in robotics as an
umbrella term that encompasses “imitation learning”, “learn-
ing from demonstrations”, “sim-to-real”, “domain adap-
tion”, “meta-learning”, “knowledge transfer”, “skill trans-
fer”, “motion retargeting”, “embodiment transfer”, “mor-
phology transfer”, and “kinematic transfer”, among others.

3 Successes of Transfer Learning in
Robotics

Change of environment or domain as in {R,DS , T } →
{R,DT , T }, change of task as in {R,D, TS} → {R,D, TT }
and change of the robot as in {RS ,D, T } → {RT ,D, T }
have all been addressed with varying success in transfer
learning in robotics. The body of literature on the topic is
extremely vast, making a comprehensive overview beyond
the scope of this paper. On the other hand, research activities
that by definition fit into the scope of transfer learning have
been addressed before the term took root in robotics. An
example of such is imitation learning (Schaal 1999), where
task execution knowledge is transferred from the human to
the robot, or generalization, where task execution knowledge
is transferred to (at least) a variation of the task (Ude
et al. 2010). In the following, we provide examples of
transfer learning in robotics, also in the light of such above-
mentioned applications.

3.1 Environment Transfer
Change of environment conditions Kramberger et al. (2016)
or the complexity of the environment where the task is being
executed Vosylius and Johns (2023) provide examples of
generalization to a declaratively new environment. However,
the environment (domain), can be different in other aspects
that go beyond just the setting – e.g. contact conditions or
other physical conditions might not be the same Muratore
et al. (2022). One example of such is transfer from the
simulation-to-reality or sim-to-real.

Potentially unjustly, but transfer learning is in robotics
often associated exactly with sim-to-real, where typically
experience is obtained in one domain — the simulation
—, and exploited to accelerate learning in the transferred
domain — the real world. Several reviews cover sim-to-real
transfer learning in robotics, i. e., (Muratore et al. 2022; Zhao
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et al. 2020), affirming the notion of a huge body of work
in this field. The gist of sim-to-real lies in the notion that
collecting the data for modern (deep) learning and other AI
algorithms in the real world is too expensive in terms of time
and resources to scale up (Muratore et al. 2022). Therefore,
the data is collected in simulation, despite the difference
between the real and simulated domains. This difference,
referred to as the “reality gap” (Collins et al. 2019a), needs
to be overcome for real world execution, which is done using
transfer learning. Since collecting data in the real world is
so time-consuming and expensive, researchers might change
the domain to a different simulation, ending up with sim-
to-sim methodologies. These are applied to demonstrate the
behavior of transfer learning methodologies.

Different practices have been proposed for sim-to-real
transfer learning, starting with realistic modelling (Muratore
et al. 2022). No matter how accurate, modelling will never
be fully cover all the aspects of the real world (Muratore
et al. 2022), thus other approaches have emerged.
Domain randomization, such as randomization of image
backgrounds, of physical parameters of objects and robot
actions, or of controller parameters (Höfer et al. 2021), is
a common approach. By randomizing over, for example,
physical parameters, the approach tries to cover the entire
spectrum of these parameters in the hope that this includes
the parameters that describe the real world. Even so, one-
shot transfer learning is seldom successful (Zhao et al.
2020), and additional learning is required, for example
using reinforcement learning (Ada et al. 2022), back-
propagation (Chen et al. 2018) or both (Lončarević et al.
2022). If there are significantly fewer learning iterations
in the target domain, the process is called few-shot
transfer learning (Ghadirzadeh et al. 2021). Given that more
information can be available in the simulation, the notion
of privileged learning was introduced, where the privileged
information is used to train a high performance policy,
which in turn trains a proprioceptive-only student policy (Lee
et al. 2020). The idea was very successfully demonstrated
in quadrupedal locomotion by more than one group (Lee
et al. 2020; Kumar et al. 2022), and is general enough
to be applied for very different tasks, such as excavator
walking (Egli and Hutter 2022) and even robotized handling
of textiles (Longhini et al. 2022).

3.2 Task Transfer
Transferring of robot walking from one domain to the other
can be considered more than just domain transfer, as walking
itself can be different for different environments. Thus, a
walking policy learned for one terrain might be effective for
walking on a completely different kind of terrain. Moreover,
walking is not an isolated instance: If the robot can learn to
throw accurately at one target, a modulation of the throwing
task to aim at a different target can in fact be considered
at the least a different instance of the same task, if not a a
different task overall. Such transfers from one (or several)
task instances to a new one have been utilized in robotics
before, and it was often referred to as generalization. In
this sense, for example, fast learning from a small set
of demonstrations was applied with nonlinear autonomous
dynamical system (DS), which have the ability to generalize
motions to unseen contexts (Khansari-Zadeh and Billard

2011). Similarly, a set of dynamical systems in the form
of dynamic movement primitives was used to generalize to
transfer knowledge from known situations to unknown in
positions (Ude et al. 2010) and in torques (Deniša et al.
2016), probabilistic movement primitives (ProMPs) encode
complete families of motions (Paraschos et al. 2013), TP-
GMMs adapt to changes of predefined local frames (Calinon
2018), and Mixture Density Networks adapt a learned motion
primitive to new targets specified in a different space (Zhou
et al. 2020)§. Generalization was even termed inter-task
transfer learning (Fernández et al. 2010). Thus, in a broad
sense of Definition 2.2, such approaches already propose
solutions for {R,D, TS} → {R,D, TT }, although they were
not called transfer learning. Complete skill models were
learned from a set of executions also with DNNs (Lončarević
et al. 2022). The adaptation of the skill model for a new
environment is commonly referred to as transfer learning.

3.3 Robot Transfer
Above mentioned approaches use knowledge from several
instances of a task. However, learning of even one instance
of a task could pose a challenge. Imitation learning, where
human skill knowledge was transferred to a robot, has
been thoroughly researched as the means for learning of
task models and their execution on a robot (Billard et al.
2008; Ravichandar et al. 2020). Imitation learning (IL),
also known as programming by demonstration (PbD), is
in a strict sense an example where the task and the
environment remain the same, but the agent is different,
{RS ,D, T } → {RT ,D, T }, since one of the agents is in
fact a person. Note that, in some cases, the environment can
also change. In PbD one often transfers the demonstrated
motion (Ijspeert et al. 2013). However, if only the motion
is repeated, the task knowledge might be overlooked
and the task correspondence (Heyes 2001) might not get
preserved at all. This may be alleviated by transferring other
crucial characteristics of the task, so-called task constraints,
such as force patterns (Rozo et al. 2016) and posture-
dependent task requirements (Jaquier et al. 2020), or by
retargeting the demonstrated motion (Aberman et al. 2020),
e.g., by leveraging optimization methods (Rakita et al.
2017), learning approaches, or Riemannian geometry (Klein
et al. 2022). Task descriptions in the form of reward
functions learned from demonstrations are also promising for
transferring tasks across different robots. For instance, cross-
embodiment inverse reinforcement learning (XIRL) (Zakka
et al. 2022) learns a notion of task progress from
demonstrations, which is then used as a reward for robots
with different embodiments that successfully learn to
reproduce the task.

4 Challenges and Promising Research
Directions

The aforementioned examples highlight that knowledge can
be transferred across several robots, tasks, and environments,

§Note that demonstrations and reproductions performed with the same robot
avoid the need for robot transfer. This includes demonstrations acquired via
kinesthetic teaching or teleoperation.
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thus highlighting the potential of transfer learning for
robotics. However, several key questions falling under the
areas what, how, and when to transfer remain to be answered
to realize the full potential of transfer learning in robotics. In
this section, we describe the key challenges that currently
constitute roadblocks on the way to the future of transfer
learning in robotics.

4.1 Abstraction Levels in Robotics
Humans and some animals, such as great apes, acquire
cognitive skills via the concept of social learning (Whiten
and Ham 1992), whose main component is to copy (transfer)
behavior from one individual to another. Social learning
takes place at different levels depending on the goal and
context. In biology, the lowest level of transfer corresponds
to mimicry, where an individual mimics the actions of
another individual superficially, i.e., without any underlying
understanding of the goal (Genschow et al. 2017). Instead,
with a number of methodological differences, imitation
refers to an individual, i.e., the learner, copying the actions
of another individual, i.e., the teacher, with the aim of
achieving the same goal. As opposed to mimicry, imitation
implies an explicit understanding of the goal. At the
next level, emulation refers to the case where the learner
aims at achieving the same goal as the teacher without
copying their motor actions (Whiten et al. 2004). Combining
imitation, emulation, and some other techniques such as
object movement reenactment, the agent ultimately develops
an understanding of the world without having to understand
the theoretical concept of causality.

These cognitive skill levels can also be roughly identified
in robotics, where they intrinsically correspond to different
abstraction levels (see Figure 7). At the lowest learning
level, a robot simply mimics the motion of a teacher
without an explicit understanding of the underlying goal.
If the teacher and the learner have similar embodiments,
the task can simply be abstracted as a joint-level (positions,
velocity, or acceleration) trajectory. However, in the case
of different embodiments, transferring joint trajectories will
result in very different end-effector trajectories. The task’s
abstraction level can be increased by specifying, for example,
end-effector trajectories and leveraging Cartesian trajectory
controllers. To deal with changes in the environment, both
the learning and abstraction levels need to be raised.
For instance, transferring end-effector trajectories fails if
obstacles are present in the environment. In this case, the task
needs to be imitated instead of mimicked, i.e., the goal must
be explicitly identified by the robot. The task can therefore
be abstracted using, e.g., movement primitives (Ijspeert
et al. 2002), thus allowing the specification of the key
components of the imitated trajectory, e.g., the goal position,
while leveraging robot skills such as collision avoidance,
localization, and object detection to reproduce the task
in different environments. In some cases, the physical
capabilities of the teacher and the learner are very different,
so the learner cannot achieve a demonstrated task by
imitating the teacher. Instead, the learner must infer the
goal from the demonstrated task and develop a strategy to
achieve the same goal (Schaal 1999). In other words, the
transfer should be conducted at the higher abstraction level
corresponding to achieving the goal specifications without

imitating the teacher-specific actions. This corresponds to
the emulation learning level. Finally, on an even higher
abstraction level, the teacher should ideally give only high-
level verbal instruction to the robot such as “open the
drawer”, or “clean the room”. This requires the robot to have
a skill set resembling that of agents with higher cognitive
functions.

To elaborate on the different levels of “abstraction”,
consider the task of transferring a grasp performed by a
source hand (robot or human) to a target robotic hand. This
transfer can be performed on three levels: (1) The joint
angle level (Bouzit 1996; Kyriakopoulos et al. 1997) involves
directly replicating joint angles with minor adjustments if
the hands exhibit similar kinematic structures and degrees
of freedom (DoFs); (ii) The contact level (Peer et al. 2008;
Maeda et al. 2016) is applicable when both hands have
an equal number of fingers but differ in their kinematic
properties (e.g., DoFs, finger lengths). In this scenario, the
target hand strives to grasp the object by replicating the
contact positions of the source hand; and (iii) The outcome
level (Mahler et al. 2019) consists of learning new grasps by
optimizing the grasp success with different target hands.

It is important to notice that the abstraction level has
a direct influence on the capabilities that are required
for successful transfer across robots, environments, and
tasks. In particular, transfer at a given abstraction level
requires abilities ranging from the bottom of the robot
capability stack onto the abilities of the current level (see
Figure 7-right). For instance, transfer at the level of verbal
instructions demands robots not only to have an abstract
understanding of the word, but also to be endowed with
task and motion planners, a set of robot skills, and low-
level controllers to successfully execute the target task on the
target robot in the target environment. In this context, recent
advances in foundation models are a promising research
direction to endow robots with emulated high-level cognitive
capabilities (Bommasani et al. 2021; Ahn et al. 2022; Driess
et al. 2023). Such foundation models generate semantic
plans required to execute a target task based on language
and on continuous information collected by the robot (e.g.,
images, state vectors). Driess et al. (Driess et al. 2023)
proposed to address the correspondence problem between
tasks at the highest level, i.e., from a semantic perspective,
by combining a large language model with perceptual inputs
in an embodied multimodal model. Transfer between robots,
tasks, and environments is then achieved via a large amount
of training data and by training the models on several robots,
tasks, and environments simultaneously. In other words, the
transfer comes — to some extent — “for free” thanks to the
large scale of foundation models. Importantly, such transfer
happens only at the highest level, i.e., at the level of semantic
planning, while low-level policies and planners are assumed
to be given. In other words, transfer is not tackled at lower
levels. As a consequence, the difficulty of transfer, as well
as the resulting performance, is highly dependent on the
capability stack that is made available a priori for each robot.
Moreover, training a (still limited) low-level capability stack
from scratch, as done, e.g., in (Ahn et al. 2022), requires
months of data collection and is not scalable in the long run.

In this sense, we contend that investigating transfer
learning methods across the entire robot capability stack is
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Figure 7. Cognitive skill levels in biology, corresponding abstraction levels in robotics, and associated robotic capability stack. A
higher level of abstraction eases the transfer to different agents, environments, and tasks, but requires more and more complex
robot’s capabilities. Namely, transfer at a given abstraction level requires the robot to be endowed with abilities ranging from the
bottom to the corresponding level of the capability stack.

of utmost importance. In particular, we believe that bridging
the gap between high-level semantic task transfer (Driess
et al. 2023) and low-level execution of various tasks with
different robots in the real world is a crucial challenge
for transfer learning in robotics. These require grounding
the aforementioned transferable high-level representations
into the real world via robot sensorimotor experience. Such
grounded understanding of the world may enable imitation
and emulation learning to be intrinsically linked to the
robot’s physical capabilities, thus facilitating the inference
of what can be transferred, at which level, and in which
situation. Previous works aiming at grounding language
in robot sensorimotor behaviors (see, e.g., (Krueger et al.
2011; Cangelosi 2010) may serve as a starting point to
tackle this problem. An important challenge is to design
grounded representations that allow the expansion of the
robot capability stacks at all levels based on similarities
between tasks, environments, and robots, thus avoiding
cumbersome training of medium- and low-level abilities
in novel settings. In addition, designing shared grounded
representations as proposed in (Krueger et al. 2011;
Montesano et al. 2008) is crucial for transfer across different
abstraction levels.

4.2 Robotics Transformers
As previously mentioned, the use of large pre-trained
foundational models (Bommasani et al. 2021) to learn to
transfer is enticing. Several large transformer-based models
have been adapted for use in robotics, resulting into so-
called Robotic Transformers. These models take images and
natural language instructions as input and aim to output
direct robot actions in the form of Cartesian trajectories.
Robotics Transformers were popularized by RT-1 (Brohan
et al. 2023b), in which both the input sequence of images and
the natural language instructions were tokenized, i.e., broken
down into individual units — words or subwordsfor language
and patches for images — called tokens. RT-1 essentially
consists of a combination of existing architectures. Namely,
the natural Language instructions are first embedded using
the universal sentence encoder (Cer et al. 2018) and passed
into a FiLM layer (Perez et al. 2018), which then constitutes
the first layer of EfficientNet-B3 (Tan and Le 2019), thus
allowing the fusion of images and language instructions into
tokens. To achieve a closed loop action generation at 3Hz, the
number of tokens is reduced with the TokenLearner (Ryoo
et al. 2021). The obtained sequence of tokens, corresponding

to the sequence of images, is then finally fed into the
transformer architecture (Vaswani et al. 2017), which outputs
the action consisting 11 discrete variables of 256 bins (7
variables for the arm and gripper movement, 3 variables
for moving the base, and 1 variable that switches between
controlling the arm, the base, or terminating the episode).
The model is trained with a large dataset of approximately
130000 episodes performing over 700 tasks collected in the
real world. Despite the incorporation of semantic reasoning,
as well as the considerable amount of training data and model
parameters, RT-1 generalization is limited to the combination
of seen concepts. Moreover, it is limited to simple robotic
tasks, cannot, e.g., generate compliant motions or solve
complex and dexterous manipulation tasks, and cannot
outperform the task demonstrator.

The subsequent RT-2 (Brohan et al. 2023a) is a
vision-language-action model based on vision-language
models (Chen et al. 2023; Driess et al. 2023) trained on
web-scale data and tuned with robotic actions. The largest
RT-2 consists of 55 billions parameters. The increased
performance of RT-2 compared to RT-1 and other adjusted
baseline models (such as VC-1 (Majumdar et al. 2023),
R3M (Nair et al. 2022), MOO (Stone et al. 2023)) is
attributed to the vision-language backbone combining co-
finetuning the pre-trained model jointly on robotics and
web data, so that the model considers more abstract visual
concepts as well as robot actions. Interestingly, the largest
RT-2 model displays encouraging emergent capabilities,
where the model is able to use the high-level concepts
acquired from the web-scale data such as relative relations
between objects to complete tasks that were not present in
that form in the robotic dataset. However, these emerging
capabilities only emerged in the largest models, which
necessitate a complex cloud infrastructure to be deployed.
Therefore, they are currently unsuitable for deployment on
robotics platforms and self-sufficient autonomous systems.
Moreover, the model is not able to produce motions that are
not covered by the large robotics dataset. Furthermore, the
size of the model (55 billions parameters) can slow the model
inference down to 1Hz.

Overall, robotics transformers incorporated high-level
semantic reasoning capabilities directly into the robotic
actions. This is equivalent to fusing the capability stack of
Figure 7 into a single monolith model. This approach comes
at the price of reduced low-level performance and limited
capabilities compared to traditional methods that output
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continuous actions, or direct force control for compliant
tasks, among others. In addition, fusing the capability stack
also results in big and cumbersome models, which are
difficult to deploy. In this sense, decomposing the capability
stack may result in scalable models resulting in higher
performances in robotics tasks.

Importantly, robotics transformers still offer potential
beyond their usage as an end-to-end controller. Such models
can potentially be used in a similar fashion as large pre-
trained models have been used in machine learning to obtain
compact or universal representations. In this context, it is
worth highlighting RT-X (Padalkar et al. 2023) the latest
iteration of the robotic transformers, which aggregated 60
robotic datasets with 22 different manipulator embodiments
and made this data suitable for the robotic transformer
architecture. Such open-source tools and datasets are crucial
to bootstrap research in transfer learning for robotics.

4.3 Universal Representations
Pretrained representations are widely popular both in
machine learning and in robotics (Pari et al. 2022).
For instance, ImageNet (Deng et al. 2009) was often
used to acquire low-dimensional image representation
for picking via suction and parallel gripper (Yen-Chen
et al. 2020), contact-rich high-dimensional dexterous
manipulation tasks (Shah and Kumar 2021), and household
tasks such as scooping involving tools (Liu et al. 2018). The
main advantage of such representations is their flexibility
in being leveraged for many different downstream tasks
with little adaptation. Although these representations are
promising, they still require fine-tuning to be transferred to
different settings. In this sense, robotics would benefit from
truly universal representations that would be intrinsically
transferable between robots, environments, and complex
tasks without additional training.

In this context, adapting methods such as universal
domain adaptation (You et al. 2019) to robotics stands
as a particularly promising research direction. Universal
domain adaption removes many assumptions regarding
the relationship between source and target label dataset.
After extracting features from both domains, the proposed
universal adaptation network (UAN) employs (1) an
adversarial discriminator to match the source and target
feature distributions falling under common labels, (2) a non-
adversarial discriminator to obtain the domain similarity,
i.e., quantify the similarity of an input with the source
domain, and (3) a label classifier predicting the probability
of the input over to the source classes. Given the domain
similarity and the label predicted by the classifier, UAN
predicts either a known source label or an unknown class
label, thus enabling its use in settings where source and
target labels are different. Extending the universal domain
adaptation framework beyond classification tasks would be
a first promising step towards universal representations for
robotics. Such representations may then be directly leveraged
for planning and control.

Alternatively, universal representations may be con-
structed by tasking models with so-called pretext tasks, i.e.,
tasks designed solely to acquire representations that are then
used in a plethora of downstream tasks. In unsupervised
visual representation learning, the pretext task of instance

discrimination (Wu et al. 2018) inspired many representation
models based on contrastive learning (Chen et al. 2020; He
et al. 2020; Caron et al. 2020). Importantly, the pretext task
does not require any labels. In other words, the unsupervised
setting removes any assumptions on source and target labels,
similarly as in universal domain adaptation. Training models
unsupervisedly and jointly on source and target data may be
a promising direction to obtain universal representations for
transfer learning in robotics.

Moreover, the advent of large language models brought a
new breed of representation models that have been rapidly
applied in all areas of robotics, e.g., in planning (Shah et al.
2023; Huang et al. 2022), manipulation (Jiang et al. 2022;
Ren et al. 2023; Khandelwal et al. 2022), and navigation (Lin
et al. 2022; Parisi et al. 2022; Gadre et al. 2022). Such
models are excellent candidates to harvest novel universal
representations for robotics.

To be successfully leveraged in various robotic scenar-
ios, universal representations should be expressive, while
remaining simple enough to facilitate downstream applica-
tions. This is usually achieved via a dimensionality reduction
process by extracting low-dimensional latent representations
from data. While this latent space was usually assumed
to be Euclidean, i.e., flat, recent works have shown the
superiority of curved spaces — manifolds like hypersphere,
hyperbolic spaces, symmetric spaces, and product of thereof
— to learn representations of data exhibiting hierarchical or
cyclic structures (Nickel and Kiela 2017; Gu et al. 2019;
López et al. 2021). For instance, the compositionality of
visual scenes can be preserved via hyperbolic latent repre-
sentations, thus improving downstream performance in point
cloud analysis (Montanaro et al. 2022) and unsupervised
visual representation learning (Ge et al. 2023). This suggests
that rethinking inductive bias in the form of the geome-
try of universal representations may also be relevant for
robotics applications and for transfer learning in robotics.
For example, data associated with robotics taxonomies are
better represented in hyperbolic spaces (Jaquier et al. 2022)
and manipulation tasks encoded as graphs in the context of
visual action planning (Lippi et al. 2023) may benefit from
non-Euclidean representations.

4.4 Interpretability
Interpretability and explainability of learning-based
approaches are key to safely deploy robots into the real
world. In particular, black-box approaches lacking human-
level interpretability can severely hinder natural and safe
interactions with robots. In this context, transferable
universal representations should also be interpretable and
explainable. To do so, approaches in the field of visual action
planning (Lippi et al. 2023; Wang et al. 2019) proposed
to decode the underlying representations into a human-
readable format, i.e., images. Alternatively, representations
can be readily encoded into a human-readable format that is
additionally interpretable by many other methods or software
architectures. For instance, the universal scene description
(USD) (Studio 2023) was designed to interchange 3D
graphics information. This format was recently enhanced
by Nvidia to facilitate large, complex digital twins —
reflections of the real world that can be coupled to physical
robots and synchronized in real time (Nvidia 2023). USD
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is made from sets of data structures and APIs, which are
then used to represent and modify virtual environments
on supported frameworks such as Omniverse (Mittal et al.
2023), Maya (Autodesk, INC. 2019), and Houdini (SideFX
2022). Such a framework has significant potential to be
used for robotics transferability. For instance, it could be
leveraged to build joint representations of the world shared
across multiple robots, to share knowledge, and even to infer
digital twins from sensory readings.

4.5 Benchmarking and Simulation
Benchmarks and relevant metrics are key to evaluate and
compare methods, thus having the potential to boost the
development of innovative novel approaches. For instance,
the rapid improvement of deep-learning models benefited
from easily-accessible benchmarks that are widely accepted
by the community (Krizhevsky 2009; Deng et al. 2009; Lin
et al. 2014; Cordts et al. 2016). The robotics community
also benefited from impressive strides towards unified
benchmarks with efforts such as the YCB-(Calli et al.
2015) and KIT-(Kasper et al. 2012) object dataset, and
with regularly-organized benchmark competitions such as
RoboCup (Kitano et al. 1997), ANA Avatar Xprice¶, and
DARPA challenges||. However, they all face robotics unique
challenges. First, as robots are real systems evolving in
the real world, the deployment of any method can be
highly time-consuming. Second, as previously mentioned,
transferring methods to robots with different embodiments is
non-trivial, which intrinsically hinders benchmarking across
different research groups. Last but least, handcrafted, highly
tuned solutions usually outperform more general methods
to solve any specific or standardized task as defined in
classical benchmarks. This is especially notable for robotic
manipulation where accepted benchmarks remain scarce.

The Robothon 2023 task board challenge (So et al. 2022)
is an example of recent robotics manipulation benchmark.
This board is an assembly of various relevant robotics
tasks — including inserting a key into a keyhole and
turning it, plugging/unplugging an ethernet connector, and
pushing switches, among others — allowing the evaluation
of different approaches. As required for a benchmark,
the task board is standardized and its specifications are
given. However, in such settings, handcrafted, or even
prerecorded, motions can lead to surprisingly high scores.
Randomly orienting the board before every trial was later
included to discourage such solutions. Within machine
learning benchmarks, handcrafted solutions are prevented
by dividing the available data into training and test sets,
which consists of different samples drawn from a single
distribution. Analogously, the Robothon 2023 challenge
would require a large number of task boards consisting of
the same high-level tasks but differing in their geometric-
specific realization. A promising avenue to overcome the
impracticability of producing numerous physical task boards
would be to leverage simulators.

Modern robotic simulators, such as Mujoco (Todorov
et al. 2012), Bullet (Coumans and Bai 2016–2021), and
PhysX** have shown impressive improvements in various
areas, including in robotics assembly (Narang et al.
2022). Such simulators have the potential to generate
various parametrizations of simulated boards, and thus to

create training and test sets similar to machine learning
benchmarks. In particular, such sets would be of high
relevance for transferability in robotics, as they have the
potential to evaluate transferability across (1) robots, (2)
environments, i.e., different parametrizations, and (3) tasks
performed on the same board. The ultimate challenge is to
overcome the sim-to-real gap when deploying the developed
methods on a real, previously unknown task board using
a new robot during live competition. Such benchmarks
would boost research in transferability in robotics, as well as
provide valuable information on the difficulty and challenges
of each transfer setting. It is worth highlighting that a wide
range of works and methods have been developed in the
field of machine learning in recent years and subsequently
compiled into transfer-learning-libraries (Jiang et al. 2020).
Such a consortium of methods offers a huge potential to
be used in robotics contexts. Importantly, relevant metrics
must be defined to compare different approaches in different
transfer settings.

4.6 Metrics for Transfer Learning in Robotics
Metrics to measure the transfer quality in robotics transfer
learning settings remain overlooked in the community.
However, such metrics are crucial to evaluate and compare
the performance of transfer learning algorithms. Robotics
adds an additional challenge to the problem of defining
suitable metrics for transfer learning: Indeed, transfer
learning in robotics can be seen as a three-part transfer
problem consisting of transfer across robots, tasks, and
environments.

Several metrics have been defined and directly optimized
to solve each of these sub-problems. In this context,
domain adaptation received considerable attention from
the machine learning community in recent years. When
the distribution of the source and target domains can be
reliably estimated, simple divergences, e.g., the Kullback-
Leibler (KL) divergence (Kullback and Leibler 1951) or the
Maximum Mean Discrepancy (MMD) (Gretton et al. 2012)
for labeled data, and the H∆H divergence (Ben-David et al.
2010) for unlabeled data, provide a quantitative estimate of
the domain transfer gap. In robotics, a large body of work
focuses on the sim-to-real gap — or in other words, the
reality gap — as a specific domain gap GD. The sim-to-
real gap is often measured as the capacity of a realistic
simulator to emulate the real world. Collins et al. (Collins
et al. 2019b) quantified the reality gap by comparing
simulated robot trajectories, e.g. using Pybullet (Coumans
and Bai 2016) or Mujoco (Todorov et al. 2012), with real-
world trajectories captured by a motion capturing system.
Importantly, the simulators accurately model kinematics,
but generally struggle with dynamics of robots interacting
with objects. Zhang et al. (Zhang et al. 2020) specifically
focused on the sim-to-real gap in robotics and predicted
the transfer performance of reinforcement learning policies
using a probabilistic dynamics model. Limited attention was

¶https://www.xprize.org/prizes/avatar
∥https://www.darpa.mil/program/
darpa-robotics-challenge
∗∗https://developer.nvidia.com/physx-sdk
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devoted to designing metrics for transfer learning across
tasks or robots. In particular, the existing literature related
to skill transfer learning in human-robot cooperation (Liu
et al. 2020) does not agree on a specific skill transfer metric
to measure the task transfer gap GT . Although various
metrics have also been proposed in the context of motion
retargeting, see, e.g., (Gielniak et al. 2013; Penco et al.
2018), quantifying the quality of retargeted motions, as well
as robot transfer gap GR, generally remain open questions.

We contend that a suitable transferability metric M for
robotics should consider all three settings of transfer. For
instance, this metric may be defined as a simple combination
of individual metrics for robot, environment, and task
transfer, e.g.,

M = λ1GR + λ2GD + λ3GT ,

where λ1, λ2, λ3 are weights adjusting the individual metric
influence. Such transfer metric has the potential to bootstrap
the development of different transfer learning methods for
robotics. In addition to transferability metrics, we believe
that measures of the transfer gaps should be further
investigated to decide when and what to transfer.

4.7 Negative Transfer
Importantly, transfer learning is not necessarily beneficial
in all settings. Transfer learning algorithms build on
systematic similarities between source and target spaces.
However, if non-existing similarities are selected by the
algorithm, the transfer can have a negative impact on
the performance in the target space (Wang 2021). This
phenomena is denoted negative transfer (Rosenstein et al.
2005). Negative transfer has notably been studied within
the field of meta-learning (Thrun and Pratt 1998), in which
a rapid adaptation to the novel task is assumed to be key
for the success of the corresponding models. Preliminary
work (Deleu and Bengio 2018) showed that adaptation
using meta-learning algorithms, such model-agnostic meta-
learning (MAML) (Finn et al. 2017), can significantly reduce
the performance on meta-training tasks.

In robotics, negative transfer may occur at the different
levels of the robot capability stack. For instance, at the
low control level, transferring an inverse dynamic model
learned for a source quadrotor to a target quadrotor with
significantly different physical properties has been shown to
lead to worse performances than using a baseline controller
that disregards the inverse dynamics (Sorocky et al. 2020,
2021). Interestingly, the lower levels of the capability stack
may be more susceptible to negative transfer as low-level
information, e.g., inverse dynamic models, may only be
transferred across closely-related source and target spaces.
In contrast, experience at the higher levels is more general
and may be transferred across a larger range of source and
target spaces.

We believe that negative transfer remains an under-
investigated direction in robotics. In particular, negative
transfer may be particularly harmful for robotics. First,
negative transfer may lead to potentially-damaging behaviors
of the target robot, while safety is a crucial aspect when
deploying robots in the real world. Second, negative transfer
may lead to transfer learning requiring longer training time

than directly learning the desired behavior in the target
space, while low training time is crucial for real robots
acting in the real world. Therefore, the effects and causes
of negative learning remain to be thoroughly studied, as
they may be key to develop successful and reliable transfer
learning algorithms tailored to robotics.

5 Conclusion: The Future of Transfer
Learning in Robotics

The rise of transfer learning implies its potential to enable
robots to leverage available knowledge to learn and master
novel situations efficiently. In this paper, we aimed at
unifying the concept of transfer learning in robotics via a
novel taxonomy acting as a bedrock for future developments
in the field. Building on the successes of transfer learning
in robotics, we outlined relevant challenges that have to
be solved to realize its full potential. It is important to
highlight that these challenges intrinsically relate to the three
fundamental questions of transfer learning, i.e., what, how,
and when to transfer.

When to transfer refers to the conditions under which
transfer should occur. Although this aspect has been
overlooked, it is crucial to understand in which situations
transferring knowledge is beneficial to avoid phenomena
such as negative transfer. This is especially important in the
context of robotics, where performance is directly linked to
the efficiency of the robot performing tasks in the real world
as well as the safety of the robot and its environment.

What to transfer refers to the knowledge or experience
that should be transferred in a given setting. Answering this
question is paramount for the success of transfer learning
in robotics. We believe that linking the capabilities of
our systems to different abstraction levels is key to make
headway on this question. Moreover, metrics providing the
quantification of the transfer gap and of the quality of transfer
are crucial in this regard.

How to transfer relates to the methods, techniques,
or strategies that are used to transfer a given form of
knowledge or experience. Conceptually, we believe that a
large potential lies in universal representations obtained e.g.
via foundational models. Importantly, the obtained universal
concepts must be grounded via sensory-motor experience in
order to obtain truly intelligent embodied agents.

We hope that this position paper paves the way towards
successful transfer learning between robots, tasks, and
environments, as well as their compositions. Reusing
knowledge holds the promise of closing the performance gap
between humans and robots in overcoming novel challenges
and acquiring new skills and concepts.
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